
:,,!-

PASCAL USER'S GROUP

Pascal News
NUMBER 14

COMMUNICATIONS ABOUT THE PROGRAMMING LANGUAGE PASCAL BY PASCALERS

JANUARY J 1979

TABLE OF CONTENTS

Cover No Special Frills
o POLICY: Pascal News
1 ALL-PURPOSE COUPON
3' EDITOR'S CONTRIBUTION

:.. Special Issue
4 The BSI 1.·IS0 Working Draft of Standard Pascal by the

BSI DPS/13j4 Working Group
'4

5

5

7
7
9
9
9

10
10
11
12
50
55

55

56
58

61

Cover

Letter about page 13
- Tony Addyman

Coveri ng Note
- Tony Addyman

A Commentary on Working Draft/3
- Tony Addyman

The Draft
Table of Contents
o. Foreword

';.' 1. Scope'
, 2., References

3. Definitions
t 4. The Metalanguage

5.' Compl iance
6. The Programming Languag~ Pascal
Index

Related Documents
The History Leading to Standardization

- Tony Addyman'
Members of DPSjI3/4 .
The ISO Pascal Proposal

- Tony Addyman
POLICY: Pascal User's Group
University of Minnesota Equal-Opportunity Statement

POLICY: PASCAL NEWS (78/10/01)

* Pascal News is the official but informal publication of the User's Group.

Pascal News contains all we (the editors) know about Pascal; we use it as
the vehicle to answer all inquiries because our physical energy and
resources for answering individual requests are finite. As PUG grows, we
unfortunately succumb to the reality of (1) having to insist that people
who need to know "about Pascal" join PUG and read Pascal News - that is
why we spend time to produce it! and (2) refusing to return phone calls
or answer letters full of questions - we will pass the questions on to
the readership of Pascal News. Please understand what the collective
effect of individual inquiries has at the "concentrators" (our phones and
mailboxes). We are trying honestly to say: "we cannot promise more than
we can do."

* An attempt is made to produce Pascal News 3 or 4 times during an academic year
from July 1 to June 30; usually September, November, February, and May.

* ALL THE NEWS THAT FITS, WE PRINT. Please send material (brevity is a virtue) for
Pascal News single-spaced and camera-ready (use dark ribbon and 18.5 cm lines!).

* Remember: ALL LETTERS TO US WILL BE PRINTED UNLESS THEY CONTAIN A REQUEST TO
THE CONTRARY.

* Pascal News is divided into flexible sections:

POLICY - tries to explain the way we do things (ALL-PURPOSE COUPON, etc.).
EDITOR'S CONTRIBUTION - passes along the opinion and point of view of the
editor together with changes in the mechanics of PUG operation, etc.
HERE AND THERE WITH PASCAL - presents news from people, conference
announcements and reports, new books and articles (including reviews),
notices of Pascal in the news, history, membership rosters, etc.
APPLICATIONS - presents and documents source programs written in Pascal for
various algorithms, and software tools for a Pascal environment; news of
significant applications programs. Also critiques regarding program/algorithm
certification, performance, standards conformance, style, output convenience,
and general design.

ARTICLES - contains formal, submitted contributions (such as Pascal
philosophy, use of Pascal as a teaching tool, use of Pascal at different
computer installations, how to promote Pascal, etc.)
OPEN FORUM FOR MEMBERS - contains short, informal correspondence among
members which is of interest to the readership of Pascal News.
IMPLEMENTATION NOTES - reports news of Pascal implementations: contacts
for maintainers, implementors, distributors, and documentors of various
implementations as well as where to send bug reports. Qualitative and
quantitative descriptions and comparisons of various implementations are
publicized. Sections contain information about Portable Pascals, Pascal
Variants, Feature-Implementation Notes, and Machine-Dependent Implementations.

* Volunteer editors are (addresses in the respective sections of Pascal News):
Andy Mickel - editor
Jim Miner, Tim Bonham, and Scott Jameson - Implementation Notes editors
Sara Graffunder and Tim Hoffmann - Here and There editors
Rich Stevens - Books and Articles editor
Rich Cichelli - Applications editor
Tony Addyman and Rick Shaw - Standards editors
Scott Bertilson, John Easton, Steve Reisman, and Kay Holleman - Tasks editors

PASCAL USER'S GROUP

USER'S

GROUP

Pascal User's Group, c/o Andy Mickel
University Computer Center: 227 EX
208 SE Union Street
University of Minnesota
Minneapolis, MN 55455 USA

ALL-PURPOSE COUPON

(78/10/01) • •

+ ClLp, photocopy, o~

+ ~e~oduce, etc. and

+ mail. to tw ad~e6.6.

/ / Please enter me as a new member of the PASCAL USER'S GROUP for Academic
year(s) ending June 30, (not past 1982). I shall receive all the
issues of Pa.6cal N0W.6 for each year. Enclosed please find (* Please
see the POLICY section on the reverse side for prices and if you are joining
from overseas, check for a PUG "reg iona1 representative. II *)

/ / Please renew my membership in PASCAL USER'S GROUP for Academic year(s)
ending June 30, (not past 1982). Enclosed please find ---

/ / Please send a copy of Pa.6cal N0W.6 Number(s) . (* See the Pa.6cal N~
POLICY section on the reverse side for prices and issues available. *)

/ / My new a~~~~!s is printed below. Please use it from now on. I'll enclose an
old mailing label if I can find one.

(* The U.S. Postal Service does not
/ / You messed address up my phone' See below. forward Pa.6cal New.6. *) -

/ / Enclosed please find a contribution (such as what we are doing with ~ascal at
our computer installation), idea, article, or opinion which I wish to submit
for publication in the next issue of Pa.6cal New.6. (* Please send bug reports
to the maintainer of the appropriate implementation listed in the Pa.6cal New.6
IMPLEMENTATION NOTES section. *)

/ / None of the above.

Other comments: From: name ---------------------
rna il i ng add res s ___________________ _

phone ____________________ _

computer system(s) ____________________ _

da te _______________________ _

(* Your phone number aids communication with other PUG members. *)

JOINING PASCAL USER'S GROUP?
- membership is open to anyone: particularly the Pascal user, teacher, maintainer,

implementor, distributor, or just plain fan.
- please enclose the proper prepayment (checks payable to "Pascal User's Group");

we will not bill you.
- please do not send us purchase orders; we cannot endure the paper work,! (If you are

trying to get your organization to pay for your membership, think of the cost of
paperwork involved for such a small sum as a PUG membership!)

- when you join PUG anytime within an academic year: July 1 to June 30, you will
receive all issues of Pascal News for that year unless you request otherwise.

- please remember that PUG is run by volunteers who don't consider themselves in the
"publishing business." We produce Pascal News as a means toward the end of
promoting Pascal and communicating news of events surrounding Pascal to persons
interested in Pascal. We are simply interested in the news ourselves and prefer to
share it through Pascal News, rather than having to answer individually every letter
and phone call. We desire to minimize paperwork, because we have other work to do.

- American Region (North and South America): Join through PUG(USA). Send $6.00 per year
to the address on the reverse side. International telephone: 1-612-376-7290.

- European Region (Europe, North Africa, Western and Central Asia): Join through PUG(UK).
Send~4.00 per year to: Pascal Users l Group/ c/o Computer Studies Group/ Matnematics
Department/ The University/ Southampton S09 5NH/ United Kingdom. International
telephone: 44-703-559122 x700.

Australasian Region (Australia, East Asia -incl. Japan): Join through PUG(AUS).
Send $A8.00 per year to: Pascal Users Group/ c/o Arthur Sale/ Dept. of Information
Science/ University of Tasmania/ Box 252C GPO/ Hobart, Tasmania 7001/ Austra'lia.
International Telephone: 61-02-23 0561.

PUG(USA) produces Pascal News and keeps all mailing addresses on a common list.
Regional representatives collect memberships from their regions as a service, and
they reprint and distribute Pascal News using a proof copy and mailing labels sent
from PUG(USA). Persons in the Australasian and European Regions must join through
their regional representatives. People in other places can join through PUG(USA).

RENEWING? (Costs the same as joining.)
- please renew early (before August) and please write us a line or two to tell us what

you are doing with Pascal, and tell us what you think of PUG and Pascdl News to help
keep us honest. Renewing for more than one year saves us time.

ORDERING BACKISSUES OR EXTRA ISSUES?
- our unusual policy of automatically sending all issues of Pascal News to anyone who

joins within an academic year (July 1 to June 30) means that we eliminate many
requests for backissues ahead of time, and we don't have to reprint important
information in every issue--especially about Pascal implementations!

- Issues 1, 2, 3, and 4 (January, 1974 - August, 1976) are out of print.
- Issues 5, 6, 7, and 8 (September, 1976 - May, 1977) are out of print.

(A few copies of issue 8 remain at PUG(UK) available for-t2 each.)
- Issues 9, 10, 11, and 12 (September, 1977 - June, 1978) are available from PUG(USA)

all for $10 and from PUG(AUS) all for $A10.
- extra single copies of new issues (current academic year) are:

$3 each - PUG(USA); i 2 each - PUG(UK); and $A3 each - PUG(AUS).

SENDING MATERIAL FOR PUBLICATION?
: check the addresses for specific editors in Pascal News. Your experiences with Pascal

(teaching and otherwise), ideas, letters, opinions, notices, news, articles~
conference announcements~ reports, implementation information, applications, etc.
are welcome. "All The News That Fits, We Print.1I Please send material single-spaced
and in camera-ready (use a dark ribbon and lines 18.5 cm wide) form.

- remember: All letters to us will be printed unless they contain a request to the
contrary.

MISCELLANEOUS INQUIRIES?
- please remember that we will use Pascal News as the medium to answer all inquiries, and

we regret to be unable to answer individual requests.

PASCAL NEWS #14

UNIVERSITY OF MINNESOTA
TWIN CITIES l5il

The Draft Pascal Standard

JANUARY, 1979

University Computer Center
227 Experimental Engineering Building
Minneapolis, Minnesota 55455

(612) 376-7290

PAGE 3

We're devoting a whole issue to this BSI/ISO Working Draft 3 for Standard Pascal.
(BSI is the British Standards Institute; ISO is the International Standards
Organization.) As Tony Addyman says in his "covering note", the draft is presented
for public comment, and comments should be sent to him. When the final draft is
submitted to BSI and approved, it will be disseminated through ISO to member bodies
such as ANSI (the American National Standards Institute) for adoption. An ISO
Standard will avoid the horror of national variants for Pascal.

Pascal standards have been a topic in every issue of Pascal News since issue #6.
The PUG membership through Tony will soon benefit from the standardization of
Pascal in a form preserving the Revised Report. For an important programming
language, this is an unusual event, because it will now spur on manufacturer
interest in Pascal.

We have always contended that Pascal standards should be given special consideration~
because the language and its development have been unique:

1. Pascal was designed by a single computer scientist--Nik1aus Wirth--not by
a committee inside or outside a computer manufacturer.

2. Pascal has been used widely and successfully not only to teach the art of
programming, but also as an acceptable systems-implementation language.

3. Pascal incorporates machine-independent programming concepts with the goal
of program portability. It is an increasingly-used, respectable vehicle
for writing portable, systems software. Unlike other programming languages,
a clear distinction was made between the language Pascal and any
particular implementation of Pascal.

4. Toward this end, there are aspects of Pascal which are explicitly left up
to an implementation to define, and there may be cases where an individual
implementation may add machine-dependent extensions.

5. Pascal represents a combination of design compromises whose balance was
well-considered: simplicity, power, generality, efficiency, portability,
clarity, conciseness, redundancy. and robustness. In the late 60's and
early 70's, ideas in programming languages and existing machine designs
influenced but did not determine the form of Pascal. There exists a
delicate equilibrium among these conflicting design goals.

It is important, then, that the BSI/ISO Standard was not meant to incorporate any
change to the language with the single exception that the formal parameters of
procedures and functions which are themselves parameters be fully specified. The
results of the International Working Group on Pascal Extensions (see Pascal News
#13) will be included as a non-binding, supplemental Appendix to the Standard.

Finally, it seems only appropriate that a language with European origins has been
standardized through the efforts of Europeans: The British Sta~dards Working Group
DPS/13/4, The Swedish Technical Committee on Pascal, the French AFCET Subgroup on
Pascal, the Pascal Group \1ithin the German ACM, and Niklaus Wirth.

Editor's Contribution ~ - 78/12/01

PASCAL NEWS #14 JANUARY, 1979 PAGE 4

PROFESSOR OF COMPUTER SCIENCE
T. KILBURN, C.B.E., M.A .. Ph.D .•

D.Se., F.I.E.E .• F.B.C.S., F.R.S.

DEPARTMENT OF COMPUTER SCIENCE

ICL PROFESSOR OF COMPUTER ENGINEERING
D. B. G. EDWARDS. M.Se .• Ph.D., M.I.E.E.

PROFESSOR OF COMPUTING SCIENCE
F. H. SUMNER, Ph.D .. F.B.C.S.

PROFESSOR OF COMPUTER PROGRAMMING
D. MORRIS. Ph.D.

Dear Andy,

THE UNIVERSITY

MANCHESTER

M139PL

Telephone: 061-273 5466

24th November, 1978.

Since sending out a large number of copies of the
third working draft, one of the members of DPS/13/4 (Brian
Wichmann) has noticed a serious, unintentional error on
page 13. I am including a corrected version of this page
for you but I cannot afford to send corrections to all the
forty or so recipients of the draft. This error will be
corrected in the BS1/1S0 draft and in any other copies I
send out. (I currently have none left!)

Please print this letter or draw the essential
contents of the letter to your readers for the benefit of
those already in receipt of the draft.

Yours sincerely,

1 :2: A. M. addyman.

II

(* Note: the new page 13 has been included in this issue (page 21). *)

Mr. Andy Mickel,
University Computer Center,
227 Exp. Engr.,
University of Minnesota,
East Bank,
Minneapolis,
MN.55455,
U.S.A.

PASCAL NEWS #14 JANUARY, 1979 PAGE 5

COVERING NOTE

This document has been sent for processing by B.S.I. and will be

the basis of a draft for public comment. The official draft will be available

through the usual channels. I will be unable to informally circulate the

official draft myself. For this reason, together with the further delay

caused by the B.S.I. processing, I am sending you a copy of this working draft.

This document has no official status within B.S.I. Any comments

concerning this document should be sent to the address below. If you wish to

delay your consideration of this matter until the official draft for public

comment becomes available you should acquire the official draft from, and

send your comments to, an official standards organisation.

bodies.

I expect that the official draft will be distributed to ISO member

Address:

•

A.M.Addyman

A.M.Addyman

8.11.78

Dept. of Computer Science

University of Manchester

Oxford Road,

MANCHESTER M13 9PL.

A Commentary on Working Draft/3

At the September meetirig of DPS/13/4 it was agreed that the second

working draft with certain corrections would be sent to B.S.I. for processing

to form a draft for public comment. This decision does not indicate that the group

are completely satisfied with the document. In fact, there are several areas of

detail in which many of the group are unhappy' with the draft, but feel that we

must stay with the currently accepted definitions.

PASCAL NEWS #14 JANUARY, 1979 PAGE 6

The rest of this document lists the main areas which caused concern

and also draws the attention of the reader to items in Working Draft/3 which are

likely to be of interest.

Areas of Concern

6 • 1. 3 and 6. 6

6.2

Should directives be reserved words?

\('·s<
Should the ordering of the definition and declaration parts
be relaxed? This would permit any number of such parts in
any order.

N , 6.4.2.1 and 6.5.2.1 Are the array equivalence rules of any benefit?

6.6.4.1.1 Should the use of rewrite be mandatory? Should its omission
have a defined effect? ~~S

6.6.4.2.3. and 6.9 Should there be default file parameters? To which

6.7.1.1

6.9

6.9.5.

Areas to Note

6.3.2.1

procedures and functions do these apply?

Should DIV have an implementation-dependent effect for
negative operands? ~ rJ~'

What are the correct definitions of the form of Pascal
output? In particular - leading spaces on numbers and
strings in a small field width.

Should the page procedure be removed from the definition
of Pascal.

The definitions and subsequent uses of the terms error,
implementation defined, implementation dependent and
undefined.

6.4.2.2 and 6.8.2.4 Concerning the scope rules.

6.4.2.4

6.4.4 and 6.4.5

6.6.3.2.

Defines the structure of a textfi1e

Define type compatabi1ity etc.

VAR parameters are defined as having the effect of a
reference implementation.

6.6.3.3 and 6.6.3.4 The only language change - the specification of

6.7

6.8.2.3.3

procedural and functional parameters. This change was
introduced after repeated requests to do so from Prof.
N. Wirth.

Defines the type of an expression.

Note the definition of the for-statement.

PASCAL NEWS #14

Table of Contents

O. FOREWORD
0.1 History.
1. SCOPE
2. REFERENCES
3. DEFINITIONS
4. THE METALANGUAGE
5. COMPLIANCE
5.1 Processors.
5.2 Programs.

JANUARY, 1979

6. THE PROGRAMMING LANGUAGE PASCAL
6.1 Lexical tokens.
6.1.1 Special symbols.
6.1.2 Iden~ifiers.
6.1.3 Directives.
6.1.4 Numbers.
6 • 1 .5 Label s •
6.1.6 Character strings.
6.1.7 Commerlts, spaces, and ends of lines.
6.2 Blocks, Locality and Scope.
6.2.1 Scope
6.3 Constant definitions.
6.4 Type definitions.
6.4.1 Simple types.
6.4.1.1 Standard simple types.
6.4.1.2 Ehumerated types.
6.4.1.3 SUbrange types.
6.4.2 Structured types.
6.4.2.1 Array types.
6.4.2.2 Record types.
6.4.2.3 Set types.
6.4.2.4 File types.
6.4.3 POirlter types.
6.4.4 Iderltical and compatible types.
6.4.5 Assignment-compatibility.
6.4.6 Example of a type definition part
6.5 Declarations and denotations of variables.
6.5.1 Entire variables.
6.5.2 Component variables.
6.5.2.1 Indexed variables.
6.5.2.2 Field designators.
6.5.2.3 File buffers.
6.5.3 Referenced variables
6.6 Procedure and function declarations
6.6.1 Procedure declaratiorls.
6.6.2 Function Declarations.
6.6.3 Parameters.
6.6.3.1 Value parameters.
6.6.3.2 Variable parameters.
6.6.3.3 Procedural parameters.
6.6.3.4 Functional parameters.
6.6.3.5 Parameter" list compa~ibili~y.

3
4

4
4
4
5
5
5
5
6
6
7
7
8
8
8
9
9

10
10
11
12
12
13
13
13
13
14
15
15
15
15
15
16
16
16
17
19
20
20
20
20
20

PAGE 7

PASCAL NEWS #14 JANUARY, 1979

6.6.4 Statldard procedures and functions.
6.6.4.1 Sta~dard procedures.
6.6.4.1.1 File handling procedures
6.6.4.1.2 Dynamic allocation procedures
6.6.4.1.3 Transfer procedures
6.6.4.2 standard Functions.
6.6.4.2.1 ArP,hmet.ic Functiorls.
6.6.4.2.2 Transfer functions
6.6.4.2.3 Ordinal functions
6.6.4.2.4 Predicates
6.7 Expressions.
6.7.1 Operators
6.7.1.1 Arithmetic operators
6.7.1.2 Boolean operators
6.7.1.3 Set operators
6.7.1.4 Relational operators
6.7.2 Function designators.
6.8 statements.
6.8.1 Simple stat.ements.
6.8.1.1 Assignment statements.
6.8.1.2 Procedure statements.
6.8.1.3 Goto statements.
6.8.2 Structured statements.
6.8.2.1 Compound statemerlts.
6.8.2.2 Conditional statements.
6.8.2.2.1 If sta~,emeTlts
6.8.2.2.2 Case statements.
6.8.2.3. Repetitive statements.
6.8.2.3.1 Repeat statements
6.8.2.3.2 While statements
6.8.2.3.3 For statements.
6.9 Input and output.
6.9.1 The procedure read.
6.9.2 The procedure readln.
6.9.3 The procedure write.
6.9.4 The procedure writeln.
6.9.5 The procedure page
6.10 Programs.
6.11 Hardware representation.

21
21
21
22
22
23
23
23
24
24
24
26
26
27
28
28
28
29
29
29
29
30
30
30
30
31
31
32
32
32
33
35
36
37
37
40
40
40
41

PAGE 8

PASCAL NEWS #14 JANUARY, 1979

O. FORE'WORD

This standard is designed to promote the portability of Pascal
programs among a variety of data processing systems.
0.1 History. The language Pascal was designed by Professor Niklaus
Wirth to satisfy two principal aims.

1. To make available a language suitable for teaching programming
as a systematic discipline.

2. To define a language whose implementations may be both reliable
and efficient on currently available computers.

1. SCOPE

This standard is designed to promote the portability of Pascal
programs among a variety of data processing systems. Programs
conforming to this standard, as opposed to extensions or
enhancements of this standard are said to be written in "Standard
Pascal".

This standard establishes

1. The syntax of Standard Pascal.

2. The semantic rules for int.erpreting the meaning of a program
written in Standard Pascal.

3. The form of writing input data to be processed by a program
written in Standard Pascal.

4. The form of output data resulting from the use of a program
written in Standard Pascal.

This standard does not prescribe

1. The size or complexity of a program and its data that will
exceed the capacity of any specific data processing system or
the capacity of a particular processor.

2. The minimal requirements
capable of supporting an
Standard Pascal.

of a data processing system which is
implement ion of a processor for

3. The set of commands used to control the environment in which a
Standard Pascal program exists.

4. The mechanism by which programs written in Standard Pascal are
transformed fOt' use by a data processing system.

2. REFERENCES

ISO 2382 : Glossary of terms used in data processing
as 3527

PAGE 9

PASCAL NEWS #14 JANUARY, 1979 PAGE 10

DPS/13/4 Working Draf~/3 P2

3. Dt:f INI TIONS

For the purposes of t".hLs standard the definitions of BS3527 apply
together with the following.

error. A violation by a program of the specification of Standard
Pascal whose detection normally requires execution of the program.

implementation defined. Those parts of t.he language which may differ
between processors, but which will be defined for any particular
processor.

implementation dependent. Those parts of the language
differ between processors, for which th~re need not be a
for a part icular pr'ocessor.

which may
defini tion .

processor. A compHer, interpreter or other mechanism which accepts
a program as input.

scope. The text for which the declaration or definition of an
identifier or label is valid.

undefined. The value of a variable when the variable does not
necessarily have assigned to it a value of its type.

4. THE METALANGUAGE

The metalanguage used to define the constructs
Backus-Naur form. The notation has been modified from
to permit greater convenience of description and
iterative productions to replace recursive ones. The
describes the usages of the various meta-symbols.

is based on
the original

to allow for
following 4::able

PASCAL NEWS #14 JANUARY, 1979 PAGE 11

DPS/13J4 Working Draft/3 P3

Meta-symbol

=

[x]

{ xl

(xlyl •• lz)

IIxyz"

lower-case-name

Meaning

is defined to be

al ternati vely

end of definition

o or 1 instance of x

o Or mOre repetitions of x

grouping: anyone of x,y, •• z

the terminal symbol xyz

a non-terminal symbol

For increased readability, the lower case names are hyphenated.
The juxtaposition of two meta-symbols in a production implies the
concatenation of the text they represent. Within 6.1 this
concatenation is direct; no characters may intervene. In all other
parts of this standard the concatenation is in accordance with the
rules set out in 6.1.

The characters required to form Pascal pl'ograms are those implicitly
required to form the symbols and separators defined in 6.1.

5. COMPLIANCE

5.1 Processors. A conforming processor ~ball.

1. Accept all of the features of the language specified in clause 6
with the meanings defined in clause 6.

2. be accompanied by a document which provides a definition of all
implementation defined featUres.

3. Process each occurrence of an errOr in one of the following
ways.
a) It is stated in the aforementioned document that the errOr is
not detected.
b) The processor issued a warning that an occurrence of that
errOr was possible.
c) The processor detected the error.

4. Be accompanied by a document which separately describes any
features accepted by the processor which are lwt specified in
clause 6. Such extensions shall be detaile(J as .)eing 'extensions
to the Standard Pascal specified by BS •••• ; 19'f -'.

A conforming processor should.

PASCAL NEWS #14 JANUARY ~ 1979 PAGE 12

DPS/13/4 Working Draft/3 P4

1. Be able to reject any program wrJich uses extensi.ons ~o tne
language specified in clause 6.

2. Process programs whose
implementation dependent
prescribed for errors.

interpretation is affected by
features in a manner simjlar to that

A conforming processor ~ include additional pre-defined procedures
and/or functions.

5.2 .fr.ograms. A conformj.ng program sball.

1. Use only those features of the language specified in clause 6.

2. Not use any implementat.ion dependent feature.

A conforming program shQuld not have its meaning altered by the
truncation of its identifiers to eight char'acters or the truncation
of its labels to four digits.

6. THE PROGRAMMING LANGUAGE PASCAL

6.1 Lexical tokens.. The lexical tokens whic:h are used "0 const ruct
Pascal programs are classified into special symbols, identifiers,
numbers, labels and character strings. The syntax given in this
section describes the formation of these tokens from character's and
their separation, and therefore does not adhere to the same rules as
the syntax in the rest of this standard.

letter = "A"I"B"I"C"I"D"I"E"I"F"I"G"I"H"I"I"I"J"I"K"I"L"I"M":
"N"I"O"I"P"I"Q"I"R"I"S"I"T"I"U"I"V"I"W"I"X"I"Y"I"Z":
"a"I"b"I"c"I"d"l"e"l"f"l"g"I"h"I"i"I"j"I"k"I"l"I"m":
"n"I"o"l"p"I"q"I"r"I"s"I"tlll"u"I"v"I"w"I"x"I"y"l"z" .

digit = "0"1"1"1"2"1"3"1"4"1"5"1"6"1"7"1"8"1"9" .

6.1.1 SpeQjal symbols. The special symbols are tokens having a fixed
meaning; they are used to specify the syntactic structures of the
language.

special-symbol = "+"1"-"1"*"1"/"1"="1"<"1")"1"["1"]"1
" "I" ,,111.11111.,,1,,1',,1 • , , , • , , I , ,

Hor'd-symbol =

"<)"1"<="1")="1":="1" •. "1 word-symbol.

"AND" 1 "ARRAY"I "BEGIN" 1 "CASE" 1 "CONST" 1 "DIV"1
"DOWNTO"I "00"1 "ELSE:": "END" I "FILE" I "l"CH" I
"FUNCTION" I "GOTO": "IF" I"IN"I "LABEL" InMOD" 1
"NIL"I"NOT"I"OF"I"OR"I "PACKED" 1 "PROCEDURE" 1
"PROGRAM" 1 "RECORD": "REPEAT" 1 "SET": "THEN" 1
"TO"I"TYPE"I"UNTIL"I"VAR"I"WHILE"I"WITH" •

Matching upper and lower
word-symbols.

case letters are equivalent i.n

6.1.2 Identifiers. Identifiers serve to denote constants, types,

PASCAL NEWS #14 JANUARY, 1979 PAGE 13

DPS/13/4 Working Draft/3 P5

variables, procedures, functions and programs, and fields and
tagfields in records. Identifiers are permitted t.o be of any length.
Matching upper and lower case letters are equivalent in
identifiers.

identifier = letter {(letterldigit)} •

Examples:
X Rome gcd SUM

6.1.3 Directiyes. Directives only occur
procedure-headings or function-headings.

directive = letter {(letter I digit)} •

immediately after

6.1.4 Nymbers. The usual decimal notation is used for numbers, which
are the constants of the data types integer and real (see 6.4.1.1).
The letter E preceding the scale factor means "times ten to the
power of ".

digit-sequence = digit {digit} •
unsigned-integer = digit-sequence •
unsigned-real =

unsigned-integer "." digit-sequence ["E" scale-factor]
unsigned-integer "E" scale-factor •

unsigned-number = unsigned-integer I unsigned-real •
scale-factor = signed-integer •
sign = "+" I "_" .
signed-integer = [sign] unsigned-integer •
signed-number = [sign] unsigned-number •

Examples:
1 +100 -0.1 5E-3 a'T.35E+a

6.1.5 Labels. Labels are unsigned integers and are distinguished by
their apparent integral values.

label = unsigned-integer •

If a statement is prefixed by a label, a goto statement is permitted
to refer to it.

6.1.6 Character strings. Sequences of characters enclosed by
apostrophes are called character-strings. Character-strings
consisting of a single character are the constants of the standard
type char (see 6.4.1.1). Character-strings consisting of n (>1)
enclosed characters ar'e the constants of the type (see 6.4.2.1)

PACKED ARRAY (l •• n] OF char

If the character string is to contain an apostrophe, then this
apostrophe is to be written twice. Consequ~ntly the third example
below is a constant of type ohar.

character-string = 11111 character {character} 11111 •

PASCAL NEWS #14 JANUARY, 1979 PAGE 14

DPS/13/4 Working Draft/3 p6

Examples:
'A'
'Pascal'

, . , , " "
'THIS IS A STRING'

6.1. r
{ Comments, spaces, apd ends of line;;;. The construct

II {n any-sequence-of-symbols-not-containg-right-brace "}"

is called a comment. The substitution of a space for a comment does
not alter' t.he meaning of a program.

Comments, spaces, and ends of lines are considered to be token
separators. An arbitrary number of separators are permitted between
any two consecutive tokens, or before the first token of a pI'ogram
text. At least one separator is required between any consecutive
pair of tokens made up of identifiers, wOI"d-symbols, or numbers.
Apart from the use of the space character' in character strings, no
separators occur within tokens.

6.2 elocks, Localitv and Scope. A block consists of the definitions,
declarations and statement-part which together form a part of a
procedure-declaration, a function-declar'ation or a program.
All ident Hiers and label s with a defining occurence in a part icular
block are local to that block.

block = label-declaration-part]
[constant-definition-part]

[type-definition-part]
[variable-declaration-part]

[procedure-and-function-declaration-part]
statement-part •

The label-declaration-part specifies all labels which mark a
statement in the corresponding statement-part. Each label marks one
and only one statement in the statement-part. The appearance of a
label in a label-declaration is a defining occurrence for the block
in which the declaration occurs.

label-declaration-part = "LABEL" label {II," label} ";11 •

The constant-definition-part contains all constant-definitions local
to the block.

constant-defi.nition-part = "CONST" constant-definition ";"
{constant-definition n;n} •

The type-definition-part contains all type-definitions which are
local to the block.

type-defintion-part = "TYPE" type-definition ";"
{type-definition n;,,} •

The variable-declaration-part contains all variable-declarations
local to the block.

PASCAL NEWS #14 JANUARY, 1979 PAGE 15

DPS/13/4 Working Draft/3 P1

variable-declaration-part : "VAH" variable-declara~ion "j"
{variable-declaration "j"} •

The procedure-and-function-declaration-part contains all procedure
and function declarations local to the olock.

procedure-and-function-declaration-part :
{(procedure-declaration I function-declaration) "j II} •

The statement-part specifies the algorithmic actions to be executed
upon an activation of the block.

statement-part : compound-statement

Local variables have values which are undefined at the beginning of
the statement-part.

6.2.1 Scope

(1) Each identifier or label within the block of a Pascal program
has a defining occurrence whose scope encloses all
corresponding occurrences of the identifier or label in the
program text.

(2) This scope is the range for which the occurrence is a defining
one, and all ranges enclosed by that range subject to rules(3)
and (4) below.

When an
for range
enclosed
excluded
A.

identifier or label which has a defining occurrence
A has a further defining occurrence for some range B
by At then range B and all ranges enclosed by Bare

from the scope of the defining occurrence for range

(4) An identifier which is a field-identifier may be used as a
field-identifier within a field-designator in any range in
which a variable of the corresponding I'ecord-type is
accessible.

(5) The defining occurrence of an identifier or label precedes all
corresponding occurrences of that identifier or label in the
program tex~ with one exception, namely that a type-identifier
Tt which specifies the domain of a pointer-type fT, is
permitted to have its defining occurrence anywhere in the
type-definition-part in which 1T occurs.

(6) An identifier or label has at most one defining occurrence for
a particular range.

6.3 Constant definitions. A constant-definition introduces an
identifier to denote a constant.

constant-definition: identifier ":"
constant: [sign] (unsigned-number

I character-string.
constant-identifier : identifier •

constant •
constant-identifier)

PASCAL NEWS #14 JANUARY, 1979 PAGE 16

DPS/13/4 Working Draft/3 p8

The occurrence of an identifier on the left hand side of a
constant-definition is its defining occurrence as a
constant-identifier for the block in which the constant,-defir,ition
oceurs. The scope of a constant-identifier does not include its own
definition.

A constant-identifier following a sign must denote a value of type
integer or real.

6.4 ~ definitions. A type determines the set of values which
var'iables of that type assume and the operations performed upon
them. A type-definition associates an identifier with the type.

type-definition = identifier "=" type •
type = simple-type : structured-type : pointer-type •

The occurrence of an identifier on the left hand side of a
type-definition is its defining occurrence as a type-identifier for
the block in which the type-definition occurs. The scope of a
type-identifier does not include its own definiticm, except for
pointer-types see 6.1.4.

A type-identifier is considered to be a simple-type-identifier, a
structured-type-identifier, or a pointer-type-identifier, according
to the type which it denotes.

simple-type-identifier = type-identifier •
structured-type-identifier = type-identifier •
pointer-type-identifier = type-identifier •
type-identifier = identifier •

6.4.1 Simple types. All the simple types define ordered sets of
values.

simple-type = ordinal-type I real-type •
ordinal-type = enumerated-type I subrange-type

ordinal-type-identifier •
ordinal-type-identifier = type-identifier •
real-type = real-type-identifier •
real-type-identifier = type-identifier •

An ordinal-type-identifier is one which has been defined to denote
an ordinal-type. A real-type-identit'icl' is one which has been
defined to denote a real-type.

6.4.1.1 Standard simple types. A standard type is denoted by a
predefined type-identifier. The values belonging to a standard type
are manipula!ed by means of predefined primitive operations. The
following types are standard in Pascal:

integer The values are a subset of the whole numbers, denoted as
described in 6.1.4. The predefined integer constant
maxint, whose value is implementation defined, defines the
subset of the integers available in any implementation

PASCAL NEWS #14 JANUARY, 1979 PAGE 17

DPS/13/4 Working Draft/3 P9

real

Boolean

char

over which the integer operations are defined.
The range is the set of values:
-maxint, -maxint+1, ••• -1, 0, 1, ••• maxint-1, maxint.

The values are an implemen:ation defined subset of the
real numbers denoted as defined in 6.1.4.

The value., are truth values denoted by the identifiers
false and true, such that false is less than true.

The values are an implementation defined set of
characters. The denotation of character values is
described in 6.1.6. The ordering properties of the
character values are defined by the ordering of the
(implementation defined) ordinal values of the characters,
i.e. the relationship between the character variables c1
and c2 is the same as the relationship between ord(cl} and
ord(c2). In all Pascal implementations the following
relations hold:

(1) The subset of character values representing the digits
o to 9 is ordered and contiguous.

(2) The subset of character values
upper-case letters A to Z is ordered but
contiguous.

representing the
not necessarily

(3) The subset of character values representing the
lower-case letters a to z, if available, is ordered but
not necessarily contiguous.

Integer, Boolean and char are ordinal-types. Real is a real-type.

Operators applicable to standard types are defined in 6.7.

6.4.1.2 Enumerated tYDes. An enumerated-type defines an ordered set
of values by enumeration of the identifiers which denote these
values. The ordering of these values is determined by the sequence
in which the constants are listed.

enumerated-type = "(II identifier-list II)" •
identifier-list = identifier { "," identifier} •

The occurrence of an identifier within the identifier-list of an
enumerated-type is its defining occurrence as a constant for the
block in which the enumerated-type occurs.

Examples:
(red,yellow,green,blue)
(club,diamond,heart,spade)
(married ,divorced ,widowed ,single)

6.4.1.3 Sybrange types. The definition of a type as a subrange of

PASCAL NEWS #14 JANUARY, 1979 PAGE 18

DPS/13/4 Working Draf~/3 Pl0

another ordinal-type, called the ~ ~, necessitates
identification of the least and the largest value in the subrange.
The first constant spec ifies the lower bound, which i.5 less ",han or
equal to the upper bound.

subrange-type = constant" "constant •

Examples:
1 •• 100
-10 •. +10
red •• green

A variable of subrange-type possesses all the properties of
variables of the host type, with the restriction that its value is
in the specified closed interval.

6.4.2 Structured types. A structured-type is characterised by the
type(s) of its components and by its structuring method. If the
component type is itsel f structured, the r'esulting structured-type
exhibits several levels of structuring.

structured-type = ["PACKED"] unpacked-structured-type
structured-type-identifier •

unpacked-structured-type = arraytype I set-type I file-type
record-type •

The use of the prefix PACKED in the definition of a structured-type
indicates to the processor that storage should be economised, even
if this causes an access to a component of a variable of the type to
be less efficient in terms of space or time.
An OCCUl'rence of the PACKED prefix only affects the representation
of the level of the structured-type whose definition it precedes. If
a component is itself structured the component's representation is
packed only if the PACKED prefix occurs in the definition of its
type as well.

6.4.2.1 Array types.
of a fixed number of
the component-type.
indices, which are
definition specifies

An array-type is a structured-type consisting
components which are all of one type, called

The elements of the array al'e designated by
values of the index-type. The array type

both the index-type and the component-type.

array-type = "ARRAY" "[" index-~,ype
component.-type •

index-type = ordinal-type
component-type = type •

Examples:

ARHAY[1 •• 100] OF real
ARRAY[Boolean] OF colour

"," index-type} "),, "OF"

If the component-type of an array-type is also an array-type, an
abbreviated form of definition is permitted. The abbreviated form is
equi valen t to the full form.

PASCAL NEWS #14 JANUARY, 1979 PAGE 19

DPS/13/4 Working Draft/3 Pl1

For example:
AHRAY[Boolean] OF

AR8AY(1 •• 10] OF AHRAY[size] OF real
is equivalent to

ARRAY[Boolean,1 •• 10,size] OF real
and

PACKED ARHAY[l •• 10] OF
PACKED ARRAY[1 •• 8] OF Boolean

is equivalent to
PACKED ARRAY[l •• 10_1 •• 8] OF Boolean

The term string ~ is a generic term u~ed to describe any type
which is defined to be

PACKED ARRAY[l •• n] OF char

6.4.2.2 Record types. A record-type is a structured-type consisting
of a fixed number of components, possibly of different types. The
record-type definition specifies for each component, called a
field, its type and an identifier which denotes it. The occurrence
of an identifier as a tag-field or within the identifier-list of a
record-section is its defining occurrence as a field-identifier for
the record-type in which the tag-field or record-section occurs.

The syntax of a record-type permits the specification of a
variant-part. This enables different variables, although of
identical type, to exhibit structures which differ in the number
and/or types of their components. The variant-part provides for the
specification of an optional tag-field. The value of the tag-field
indicates which variant is assumed by the record-variable at a given
time. Each variant is introduced by one or more constants. All the
case-constants are distinct and are of an ordinal-type which is
compatible' with the tag-type.(see 6.4.4)

For a record with a tag-field a change of variant occurs only when a
value associated with a different variant is assigned to the
tag-field. At that moment fields associated with the previous
variant cease to exist, and those associated with the new variant
come into existence, with undefined values. An error is caused if a
reference is made to a field of a variant other than the current
variant.

For a variant record without a tag-field a change of variant is
implied by reference to a field which is associated with a new
variant. Again fields associated with the previous variant cease to
exist and those associated with the new variant COUle into existence
with undefined values.

record-type = "RECORD" [field-list [1/; II]) "END" •
field-list = fixed-part [";" variant-part] : variant-part •
fixed-part = record-section { 1/;" record-section } •
record-section = identifier-list ":" type •
variant-part = "CASE" (tag-field ":"] tag-type "01""

variant { ";1/ variant} •
tag-field = identifier •
variant = case-constant-list 11,11 "(II [field-list [";"l] "),, .

PASCAL NEWS #14 JANUARY, 1979 PAGE 20

DPS/13/4 Working Draft/3 P12

~ag-type = ordinal-type-identifier •
case-constant-list = case-constant "," case-constant} •
case-constant = constant •
field-identifier = identifier •

Examples:

REGORD
year : integer;
mont h : 1 •• 12;
day: 1..31

END

RECORD
name, firstname : string;
age : 0 •• 99;
CASE married : Boolean OF
true: (spousesname string);
false: ()

END

RBCORD
x,y : real;
area : real;
CASE s : shape OF
triangle : (side : real;

inclination, anglel, angle2
rectangle: (side', side2 : real;

skew, angle3 : angle);
circle: (diameter: real);

END

angle) ;

6.4.2.3 ~ types. A set-type
the powerset of its ~ .t.m.e..
permitted in the base type
defined.

defines the range of values which is
The largest and smallest values

of a set-type are implementation

set-type = "SET" "OF'" base-type •
base-type = ordinal-type •

Operators applicable to set-types are defined in section 6.7.1.3.

6.4.2.4 File ty~. A file-type is a structured-type consisting of a
sequence of components which are all of one type. The number of
components, called the l~ngth of the file, is not fixed by the
file-type definition. A file with zero components is ~y.

file-type = "FILE" "OF" type •

A standard file-type is provided, which is denoted by the predefined
type- ident ifier text. Variables of t'Ype text are called textfiles.
Each component of a textfile is of type char, but the sequence of
characters represented as a textfile is substructured into lines.
All operations applicable to a variable of type FILE OF char are
applicable to textfiles, but certain additional operations are also
applicable, as described in 6.9. Using the notation of clause 4, the

PASCAL NEWS #14 JANUARY, 1979 PAGE 21

DPS/13/4 Working Draft/3 P13

strugture of textfiles is defined as:

text-structure = { {character} linemarker } •

6.4.3 Pointer types. A pOinter type consists of an unbounded set of
values pointing to variables of a type. No operators are defined on
pOinters except the tests for equality and inequality.

Pointer values are created by the standard procedure ~ (see
6.6.4.1.2). The pOinter value NIL belongs to every pOinter type; it
does not point to a variable.

pointer~type = "T" type-identifier I pointer-type-identifier •

6.4.4 Identical and gompatible types. Types which are designated at
two or more different places in the program text are identical if
the same type identifier is used at these places, or if different
identifiers are used which have been defined to be equivalent to
each other by type definitions of the form T1 • T2.

Two types are Compatible if they are identical, or if one 1s a
subrange of the other, or if both are subranges of the same type, or
if they are string types with the same number of components, or if
they are set types of compatible base types.

6.4.5 Assignment-compatibility. An expression E of type T2 is
a3sispment-Compatible with a type T1 if any of the five statements
which follow is true.

1. Tl and T2 are identical and neither is a file-type nor a
structured-type with a file component.

2. T1 is a real-type and T2 is integer.

3. Tl and T2 are compatible ordinal-types and the value of E is in
the closed interval specified by the type Tl.

4. Tl and T2 are compatible set-types and all the members of the
value of the set E are in the closed interval specified by the
base type of Tl.

5. Tl and T2 are compatible string types.

At any place where the rule of assignment-compatibility is used.
If T1 and T2 are compatible ordinal-types and the value of the
expression E is not in the closed interval specified by the type
Tl, an error occurs.
If T1 and T2 are compatible set-types and any of the members of
the set expression E is not in the closed interval specified by
the base type of the type Tl, an error occurs.

6.4.6 Example of a type definition part

TYPE
count = integer;
range = integer;
colour = (red, yellOW, green, blue);
sex = (male, female);

PASCAL NEWS #14 JANUARY, 1979 PAGE 22

DPS/13/4 Working Draft/3 P14

year = 1900 .• 1999;
shape = (triangle, rectangle, circle);
card = ARRAY[l •• 80] OF char;
str = FILE OF char;
polar = RECORD r : real; theta angle END;
person = fpersondetails;
persondetails = RECORD

name, firstname : str;
age : integer;
married : Boolean;
father, child, sibling person;
CASE s : sex OF'
male: (enlisted,bearded : Boolean);
female: (pregnant: Boolean)

eND;
tape = FILE OF persondetails;
intfile = FILE OF integer;

With the above examples count, range and integer denote identical
types. The type year is compatible with, but not identical to, ttle
types range, count and integer.

6.5 Declarations ~ denotations
declaration consists of a list of
variables, followed by their type.

~ yariabl~~. A variable
identifiers denoting the new

variable-declaration = identifier-list ":" type.

The occurrence of an identifier within the identifier-list of a
variable-declaration is its defining occurrence as a
variable-identifier for the block in which the declaration occurs.
A variable declared in a variable-declaration exists during the
entire execution process of the block in which it is declared.

Examples:
x,y,z: real
i,j: integer
k: 0 •• 9
p,q,r: Boolean
operator: (plus, minus, times)
a: AHRAY[O •• 63J OF real
c: colour
f: nLE Of' char
hue 1 , hue2: SET OF colout'
p1,p2: person
w,ml,m2 : AHflAY[1..1O,1..10] OF real
coord : polar
pool tape : ARRAY[1 •• 4] OF tape

A denotation of a variable designates either an entire-variable, a
eomponent of a variable, or a variable r'eferenced by a pointer (see
6.4.3) • Var'iables occurrtng in examples in subsequent Chapters are
assumed to be declared as inaicated above.

variable = entire-variable I component-variable
re·ferenced-var·iable •

PASCAL NEWS #14 JANUARY, 1979 PAGE 23

DPS/13/4 Working Draft/3 P15

6.5.1 .Entire variables. An entire-variable is denoted by its
identifier.

entire-variable = variable-identifier .
variable-identifier = identifier •

6.5.2 Component variables. A component of a variable is denoted by
the variable followed by a selector specifying the component. The
form of the selector depends on the structuring type of the
variable.

component-variable = indexed-variable I
field-designatol' file-buffer •

6.5.2.1 Indexed ~iables. A component of a vari.able of array-type
is denoted by the variable followed an index expression.

indexed-variable =
array-variable "[" expression

array-variable = variable •
" " f expression} "]" •

The index expression is assignment-compatible with the index-type
specified in the definition of the array-type.

Examples:
a[12]
a[i+ j]

If the component of an array-variable is also an array-variable an
abbreviation is permitted. The abl:>reviated form is equivalent to the
full form •

F'or example:
m(i](j]

is equivalent to
m(1, j)

6.5.2.2 field deSignators. A component of a variable of record-type
is denoted by the record-variable followed by the field-identifier
of the component.

field-designator = record-variable
r'ecord-variable = variable •

" " . field-identifier •

Example3:
p2f • pregnant
coord.theta

6.5.2.3 file buffers. The existence of a file
components of type T implies the existence of a
type T. This buffer variable is deno~ed by f1 and
components to the file during generation, and
during inspection(see 6.6.4.1.1).

variable f with
buffer variable of
serves to append
to access the file

At any time, only the one component of a file variable deter'mined by
the current file position is direc~ly accessible. This component is

PASCAL NEWS #14 JANUARY, 1979 PAGE 24

DPS/13/4 Working Draft/3 P16

called the current ~ compQnent and is rept'esent-ed by the file's
buffer variable.

file-buffer = file-variable "T" .
file-variable = variable •

6.5.3 E~fereoced variables

referenced~variable = pointer-variable "T" .
pointer-variable = variable •

A variable allocated by the standard procedure new(see 6.6.4.1.2)
exists until it is deallocated by the standard pr'ocedure dispose
(see 6.6.4.1.2).
If P is a pOinter variable which is bound to a type T, p denotes
that variable and its pointer value, whclreas pT denotes the variable
of type T ret~renced by p.
An error is caused if the pointer value is NIL or undefined at the
time it is dereferenced.

Examples:
plT.father
plT.siblingT.bearded

6.6 Procedure and function declarations

6.6.1 Procedyre declarat~. A procedure-declaration associates an
identifier with a part of a program so that it can be activated by a
procedure-statement.

procedure-declaration = procedure-heading ";"
(procedure-block I directive).

procedure-block = block.

The procedure-heading specifies the identifier naming the procedure
and the formal parameters (if any).
The appearance of an identifier in the procedure-heading of a
procedure is its defining occure.nce as a procedure-identifier for
the block in which the procedure-declaration occurs.

procedure-heading = "PROCEDURE" identifier
[formal-parameter-list]

procedure-identifier = identifier •

The algorithmic actions to be executed upon activation of the
procedure by a procedure-statement are specified by the
statement-part of the procedure block.
The use of the procedure-identifier in a procedure-statement within
the procedure-block implies recursive execution of the procedure.
The full set of directives permitted after a procedure-headlng is
implementation dependent. However, to allow the call of a procedure
to precede textually its definition a forward declaration is
provided. A forward declaration consists of a procedure-heading
followed by the directi.ve forward. In the subsequent
procedure-declaration the formal-parameter-list is omitted. The
forward declaration and the procedure-declaration are local to the

•

'*

•

•

PASCAL NEWS #14 JANUARY, 1979 PAGE 25

DPS/13/4 Working Draf~/3 P17

same block. The forward declaration and subsequent
procedure-declaration constitute a definlog occurrence a~ the place
or the forward declaratlon.

Examples of procedure declarations:

PROCEDURE readinteger (VAR f: text; VAH x: integer)
VAR i,j: integer;
BEGlN WHILE fT = ' , DO get(f); i :=0;

WHILE fT IN ['0' .• ' 9'] DO

x : = i
END

BEGIN j : = ord (fTJ - ord (, 0 ') ;
i := lO*i + j;
get (f)

END;

PROCEDURE bisect(FUNCTION r(x : real) : real;
a,b: real; VAR z: real);

VAR m: real;
BEGIN {assume f(a) < 0 and feb) > 0

WHILE abs(a-b) > lE-10*abs(a) DO
BEGIN m := (a+b)/2.0j

IF f(m) < 0 THEN a := m ELSE b :=m
END;
z := m

END

PROCEDURE append(VAR f : intfile)j
{Enables items to be appended to a file regardless of its current
s~.ate }

VAh g : intfilej
PROCEDURE copy(VAR f,g intfile);
BEGIN
reset(f)j rewrite(g)j
WHILE NOT eof(f) DO

BEGIN
gT : = fT;
put(g)j get(f)j
END;

ENDj { of copy}
BEGIN
copy(f,g);
copy(g,f)j
END { of append

6.6.2 Functioo Declarations. Function declarations serve to dtfine
par'ts of the pr'ogram which compute a value of simple-type or a
pointer value. Functions are activated by the evaluation of a
function-designator (see 6.7.2) which is a constitu.ent of an
expression.

function-declaration = function-heading ";"
(function-block I dil'ective) •

function-block = block .

PASCAL NEWS #14 JANUARY, 1979 PAGE 26

DPS/13/4 Working Draft/3 P18

The function-heading
the formal parameters
resul t.

specifies ~he iden~ifier naming the function,
(if any) ,and the type of the fUtlc~ion

The appearance of an identifier in the function-heading of a
function-declaration is its defining occurrence as a
function-identifier for the block in which the function-declaration
occurs.

funct.ion-head ing = "FUNCTION" identi fier [formal-parameter-list]
U:" result-type

function-identifier = identifier •
result-type = simple-type-identifier I

pointer-type-identifier •

The algorithmic actions to be executed upon activation of the
function by a function-designator are specified by the
statement-part of the function block.
The function-block contains at least one assignment-statement which
assigns a value to the function-identifier. The result of the
function will be the last value assigned. If no assignment occurs
the value of the function is undefined. The use of the
function-identifier in a function-designator within the
function-block implies recursive execution of the function.
The full set of directives permitted after a function-heading is
implementation dependent. However, to allow the call of a function
to precede textually its definition a forward declaration is
provided. A forward declaration consists of a function-heading
followed by the directive forward. In the subsequent
function-declaration the formal-parameter-list and the result-type
are omitt,ed. The forward declaration and the function-declaration
are local to the same block. The forward declaration and subsequent
function-declaration constitute a defining occur'rence at the place
of the forward declaration.

Examples:

FUNCTION Sqrt(x:real): real;
VAR xO,xl: real;
BEGIN xl := Xj ~>1, Newton's method}

REPEAT xO := xl; xl := (xO+ x/xO)*O.5
UNTIL abs(xl-xO) < eps*xl ;
Sqrt : = xO

E~D

FUNCTION GCU(m,n integer) in~eger; forwardj

..

•

,

•

PASCAL NEWS #14 JANUARY, 1979 PAGE 27

DPS/13/4 Working Draft/3 P19

FUNCTION max(a: vector; n: integer): real;
VAR x: real; i: integer;
BeGIN x : = a[1) ;

END

FOR i : = 2 TO n DO
BeGIN {x = max(a(l], .•.• a(i-l])}
IF x < a[lJ THEN x := a(i]
END;
{x = max(a(l], •••. a[n])}
max := x

FUNCTION GCD; {which has been forward declared}
BEGIN IF n=O THEN GeD := m ELSE GCD := GCD(n,rn MOD n)
END

FUNCTION Power(x: real;y: integer): real
VAR w,z: real; i: integer;
BEGIN w := Xj z := 1; i := y;

END

WHILE i > 0 DO
BEGIN {z*(w**i) = x ** Y

END;

IF odd(i) THEN z := z*w;
i .- i div 2;
w : = sqr(w)

{z = x**y }
Power : = z

{ y >= O}

6.6.3 Parameters. There are four kinds of parameters value
parameters, variable parameters, proced ural parameters and
functional parameters. A parameter-group without a preceding
specifier is a list of value pal'ameters.

formal-parameter-list = "(" formal-parameter-section
{";" formal-parameter-section} ")" •

formal-parameter-section =
["VAli"] parameter-group
procedure-heading I
function-heading •

parameter-group =
identifier-list 11.11 type.

parameter-identifier = identifier •

The occurrence of an identifier within the identifier-list of a
parameter-group is its defining occurrence as a parameter-identifier
for the formal-parameter-list in which it occurs and any
corresponding ppocedure-block or function-block.
The occurrence of an identifier within a procedure-heading in a
formal-parameter-section is its defining occurrence as a procedural
parameter for the formal-parameter-list in which it occurs and any
corresponding procedure-block or function-block.
The occurrence of an identifier within a function-heading in a
formal-parameter-section is its defining occurrence as a functional

PASCAL NEWS #14 JANUARY, 1979 PAGE 28

DP~/13/4 Working Draft/3 P20

parameter for the formal-parameter-list in which it Occurs and any
corresponding procedure-block or function-block.
If the formal-parameter-list is within a procedural parameter or a
functional parameter, there is no corresponding procedure-block or
funct ion- block.

6.6.3.1 Value paramete~~. The actual-parameter(see 6.7.2 and
6.8.1.2) is an expression. The formal parameter denotes a variable
local to the block. The current value of the expression is assigned
to the variable upon activation of the block. Tne actual-parameter
is assignment-compatible with the type of the formal parameter.

6.6.3.2 rn:iable parameters. The actual-parameter(see 6.'(.2 and
6.8.1.2) is a variable. The formal parameter denotes this actual
variable during the entire activation of the block. Any operation
involving the formal parameter is per-formed immediately on t.he
act.ual-parameter. The type of the actual parameter is identical to
tnat of the formal parameter. If the selection of this variable
involves the indexing of an array, or the dereferencing of a
pOinter, then these actions are executed before the activation of
the block.

The use of components of variables of any packed type as actual
variable parameters is prohibited.

6.6.3.3 Procedural parameters. The actual-parametel'(see 6.7.2 and
6.8.1.2} is a procedure-identifier. The formal parameter denotes a
procedure which represents the actual pl'ocedure dur'ing the entire
activation of the block. If the procedural parameter, upon
activation, accesses any entity non-locally, then the entity
accessed is one which was accessible to the procedure when its
procedure-identifier was passed as a procedural parameter. The
actual procedure and the formal procedure have compatible
formal-parameter-lists(see 6.6.3.5).

6.6.3.4 Functional parameters. The actual-parameter(see 6.7.2 and
6.8.1.2} is a function-identifier. The formal parameter denotes a
function which represents the actual function during the entire
activation of the block. If the functional parame~er, upon
activation, accesses any entity non-locally, then the entity
accessed i.s one which was accessible to the function when its
function-identifier was passed as a functional parameter. The actual
function and the formal function have compatible
forrnal-p~-:lrameter-li3ts(see 6.6.3.5) and identical result-types.

6.6.3.5 .f~...t.su:._Jist compatibilit¥. Two formal-parameter-lists a.re
compatible if ·hey contain the same number of parameters anJ if the
pacameters in corresponding posii.:ions matCh. Two par'ametel's match
if

They are both value parameters of identical type.

01' They arl~ both variable parameters of ident ieal type.

or They are both procedural parameter's with compatible parameter
lists.

-.

r

l

PASCAL NEWS #14 JANUARY, 1979 PAGE 29

DPS/13/4 ~orking Draft/3 P21

or' They are bO~.h functional parameter's with compatible parame~er
lists and identical result-types.

6. 6 .I~ Standard procedure~.....aw1 fync+-. ions. Standard procedures and
functions are predeclared in every implementation of Pascal. Any
implementation is permitted to feature additional predeclared
procedures and functions. Since all predeclared en+-.ities are
declared in a range surrounding the program, no con fl ic arises from
a declaration redefining the same identifier within the program
block.
The standard procedures and functions are listed and explained
below.
6.6.4.1 standard procedyres. The effect of using standard procedures
as procedural parameters is implementation dependent.

6.6.4.1.1 File bandling procedyres

put (f)

get (t')

reset (f)

If the predicate eof(f) yields true prior to execution
of put(f) then the value of the buffer variable fT is
appended to the file f, eof(f) remains true and the
value of fT becomes undefined. If eof(f) does not yield
true prior to execution an error occurs.

If the predicate eof(f) yields false prior to the
execution of get(f) then the current file position is
advanced to the next component, and the value of this
component is assigned to the buffer variable fT. If no
next component exists, then eof(f) becomes true, and the
value of fT becomes undefined. If eof(f) does not yield
fal se prior to execution, an ef'ror occurs.

resets the current file position to its beginning and
assigns to the buffer variable fT the value of the first
element of f • eof(f) becomes false, if f is not empty;
otherwise the value of fT is undefined, and eof(f) is
true.
This is a necessary initialising operation prior to
reading the file f.

rewrite(f) discards the current value of f such that a new file may
be generated. eof(f) becomes true.
Thi.s is a necessary initialising operation prior t.o
generating the file f.

If an activation of the procedure put(f) is not separated
dynamically from a prey ious act! vat ion of ge+: (f) or reset (f) by an
activation of rewri tee f) the effect is implementation dependent.

An er'ror is
a1 tered while
parameter or
with-statement

caused if the current
the buffer variable fr

an element of the
or both.

file position of a file f is
is either an actual variable
record-variable-list of a

PASCAL NEWS #14 JANUARY, 1979 PAGE 30

DPS/13/4 Working Draf~/3 P22

The standard procedures r'ead, write, rea(iln, wY'lteln, and page ar'e
described in 6.9.

6.6.4. 1. 2 Dynamic all ocill..Q.O....QcQcedure :3

new(p) allocates a new variable v and assigns a pointer to v to
the pOinter variable p. if the type of v is a record
type with variants, the form

new(p,tl, •••. tn) allocates a variable of the variant with tag-field
values tl, .••• ,tn. The tag-field values are listed
contiguously and in the order of their declaration and
are not to be changed during execu~ion from the values
indicated. Any trailing tag-fields may be omitted. The
tag-field values are not given to the tag-fields by this
pr'oced ure .

dispose(p) indicates that storage occupied by the variable pT i.s no
longer needed, All pOinter values whi.ch referenced this
variable becolJe undefined. If the second form of new was
used to allocate the variable then it is necessary to
use

dispose(p,tl, •••• ,tn) with
that storage
needed.

identical tag-field
occupied by this

values
variant

to indica~e

is no longer

An error is caused if the value of the pointer parameter of dispose
is NIL or undefined.

An error is caused if a variable which is currently either an actual
variable parameter, or an element of the record-variable-list of a
With-statement, or both, is referred to by the pointer parameter of
dispose.

An error is caused if a referenced-variable created using the second
form of new is used as an operand in an expression, or the variable
in an assignment-statement or as an actual-parameter.

6.6.4.1.3 Tran~fer QrQg~dures

Let the variables a and z be declared by

a: ARHAY[m •. n] OF T
z: PACKED ARRAY (u •• v] OF T

where orden) - ord(m) >= ord(v) - ord(u)
and oed(m) <= ord(l) <= (ord(n) - or<1(v) + ord(u»
then the statement pack(a,i,z) means

fOR j := u TO v DO z[j] := ark)

and the statement unpack(z,a,i) means

FOR j := u TO v DO a(k] := z[j]

,
'\

" l

~.
'I
lJ

• '\
!\
»

PASCAL NEWS #14 JANUARY, 1979 PAGE 31

DPS/13/4 Working Drar·/3 P23

wnere j and k denote auxiliary variables not occuring elswhere in
the program and k is the result of applying t.he func~ion suec
(ord(j)-ord(u» times to i.

6.6.4.2 ~11ru:.d. ... functiQru!.. The effect: of using standar'd functions
as actual functional parameters is implement.ation dependent •

6.6.4.2.1 .AJ::ithmetic Fynctions. For t.he following ari~hme~lc
functions, the type of the expression x is either real or integer.
For the functions aba and sqr, the type of the result is the same as
the type of the parameter, x. For the remain in'!; ari thmetie
functions, the type of the result is always real.

abs(x)

sqr(x)

sin(x)

cos(x)

exp(x)

In(x)

sqrt (x)

arctan(x)

computes the absolute value of x.

computes the square of x.

computes the sine of x, where x is in radians.

computes the cosine of x, where x is in radians.

computes the value of the base of natural lo,!;arlthms
raised to the power x.

computes the natural logarithm of x, if x is greater
than zero. If x is not greater than zero an error
occurs.

computes the positive square root of x, if x is not
negative. If x is negative an error occurs.

computes the principal value, in radians, of
arctangent of x.

the

6.6.4.2.2 Transfer fynctiQD~

trunc(x)

r'ound(x)

From the real parameter
integer result which is
absolute value of the result

x,
the

is
absolute value of the parameter.

this function returns an
integral part of x. The
not greater than the

An error occurs if the result is not a value of the type
integer.
For example:
trunc(3.1) yields 3
trunc(-3.1) yields -3

From the real parameter x, this function returns an
integer result which is the value of x rounded to the
nearest integer. If x is positive or zero then round(x)
is equivalent to trunc(x+O.5), otherwise round(x) is
equivalent to trunc(x-O.5).
An error occurs if the result is not a value of the type
integer.

PASCAL NEWS #14 JANUARY, 1979 PAGE 32

DPS/13/4 Working Draft/3 P24

~'or example:
round(3.7) yields 4
l'ound(-3.7) yields -4

6.6.4.2.3 Or'dinal functions

ord(x)

chr(x)

succ(x)

The parameter x is an expression of ordinal-type. The
result is of type integer. If the parameter is of type
integer then the value of the parameter is yielded as the
result. If the parameter is type char, the result is
implementation defined. If the parameter is of any other
ordinal-type, the result is the ordinal number determined
by mapping the values to the type on to consecutive
non-negative integers starting at zero.
ord(false) yields 0
ord(true) yields 1

yields the character value whose ordinal number is equal to
the value of the integer expression x, if such a character
value exists. If such a character value does not exist an
error occurs.
For any character value, ch, the following is true:

chr(ord(ch» = ch

The parameter x is
result is of a type
(see 6.7). The function
is one greater than
value exists. If such a
occurs.

an expression of ordinal-type. The
identical to that of the expression
yields a value whose ordinal number
that of the expression x, if such a
value does not exist, an error

pred(x) The parameter x is an expression of ordinal-type. The
result is of a type identical to that of the expression
(see 6.7). The function yields a value whose ordinal number
is one less than that of the expression x, if such a value
exists. If such a value does not eXist, an error occurs.

6.6.4.2.4 er~dicates

odd(x)

eot'(f)

eoln(f)

yields true if the integer expression x is odd otherwise
it yields false.

indicates whether the associated buffer variable fT is
positioned at the end of the file f. If the
actual-parameter-list is omit ted the function is applied
to the standard file input.

indicates whet.her the associated buffer variable fT is
positioned at the end of a line in the textfile f(see
6.9). If the actua.l-parameter-list 1s ornitt.ed the
function is applied to the standard file input.

6.1 Expressions. Expressions consist of operators and operands i.e.
var'iables, constants, and function designators. An error is caused
if any variable or function used as an operand in an expression has
an undefined value at the time of its use.

r

..

PASCAL NEWS #14 JANUARY, 1979 PAGE 33

DrS/l j/llworking Dr'a rU3 P;?5

Toe r'ules of cornposi ~ion specify opera tor Dreceden~ accord ing ~'.o

four classes of operators. The operator NOT ~as the hi~he~t:

precedence, followed by the multiplying-operators, then the
adding-operators and signs, and finally, with the lowest precedence,
tne r'elational-operators. Sequences of two 01' more oper'a~ol's of t.he
same precedence are executed from left to right.

unsigned-constant. = unsigned-number I string I
constant-identifier I "NIL" •

factor = variable I unsigned-constant I
funct,ion-designator' I set I "(" expression ") II
"NOT" factor .

:~et = u[" [element { "," element }] II)" •
element = expression [" .. " expression] .
term = factor { multiplying-operator factor } •
simple-expression = [sign] term { adding-operator term } .
expl'€ssion =

simple-expression [relational-operator simple-expression] .

Any operand whose type .is S, where S is a subrange of T, is treated
as if it were of' type T. Similarly, any operand whose type is SET OF
S is treated as if i~ were of type SET OF T. Consequently an
expression which consists of a s.ingle operand of type S is itself of'
type T and an expression wh.ich consists of a single operand of type
S~T OF S is itself of type SET OF T.
Expressions which are members of a set are of' identical type, which
is the base type of the set. [] denotes the empty set which belongs
to every set type. The set [x •• y] denotes the set of all values of
the base type in ~he closed interval x to y .
If X is greater than y then [x .• y] denotes the empty set.
An error is caused if the value of an expression which is the member
of a set is outside the implementation defined limits.

examples:

Factol's:

Terms:

x
15
(X+y+z)
sin(X+y)
[r'ed ,e ,green 1
[1 , 5, 10 •• 19, 23)
NOT p

x*y
i/(l-1}
P OR q
(x<=y) AND (y < z)

Simple expressions: x+y
-x
hue 1 + hue2
i * j + 1

PASCAL NEWS #14 JANUARY, 1979 PAGE 34

DPS/13/4 Working Draf~/3 P26

Expressions:

6.7.1 Opera~,ors

x :: 1.5
p<::q
p :: q AND r
(i<j) :: (j<k)
c IN hue 1

multiplying-operator:: "." : "I" : "DlV"

adding-operator :: "+" "_" : "OR" •

relational-operator ::

"MOD" "ANO" .

":: " : " < >" : "< " : "> " : "< :: II : \I>:: " : " IN" •

The order of evaluation of the operand s of a binary operator is
implementation dependent.

6.7.1.1 Arithmetic operators
Binary

operator operation type of operands type of result

+ addition integer or real integer or real

- subtraction integer or' real integer or real

• multiplication integer or real integer or real

I division integer or real real

DIV division with integer integer
truncation

MOD modulo integer integer

Unary

operator operation type of operand type of result

+ identity integer or real integer or real

- sign-inversion integer or l"eal integer or real

The symbols +,
6.7.1.3).

and * are also used as set operators (see

If both the operands of the addition, subtraction Ol"
operators are of the type integer, then the result is

multiplication
of the type

PASCAL NEWS #14 JANUARY, 1979 PAGE 35

DPS/13/4 Working Draft/3 P27

integer otherwise the result is of the type real. If the operand of
the identity or sign-inversion operators is of the type integer then
the result is of the type integer otherwise the result is of the
type real.

The value of i DIV j is such that i-j < (i DIV j)*j <= i, if i >= 0
and j > 0; an error is caused if j = 0; otherwise the result is
implementation defined.

The value of i MOD j is equal to the value of i - (i DIV j)*j.

The predefined constant
implementation defined
conditions.

maxint
value.

is of
This

integer type and has an
value satisfies the following

1. All integral values in the closed interval from -maxint to
+maxint are representable in the type integer.

2. Any unary operation performed on an integer value in the above
interval is correctly performed according to the mathematical
rules for integer arithmetic.

3. Any binary integer operation on two integer values in the above
interval is correctly performed according to the mathematical
rules for integer arithmetic, provided that the result is also
in that interval.

4.

If the result is not in that interval an error occurs.

Any relational operation on two integer
interval is correctly performed according
rules for integer arithmetic.

values in the above
to the mathematical

6.7.1.2 Boolean operators

operator operation type of operands type of result

OR logical "or" Boolean Boolean

AND logical "and" Boolean Boolean

NOT logical negation Boolean Boolean

Whether a Boolean expression is completely or partially evaluated if
its value can be determined by partial evaluation is implementation
dependent.

PASCAL NEWS #14 JANUARY, 1979 PAGE 36

DPS/13/4 Working Draft/3 P28

6.7.1.3 Set operators

operator operation type of operands type of result

+ set union any set type T T

- set difference any set type T T

* set intersection any set type T T

6.1.1.4 Relational operators

operator type of operand s type of result

= <> any set, simple, Boolean
pointer or string type

< > any ~imple or string type Boolean

<= >= any set, simple or string type Boolean

IN left operand:any ordinal type T Boolean
right operand: SET OF T

Except when applied to sets the operators <> , <= , >= stand for
notequal, less than or equal and greater than or equal
respectively.
The operands of =, <>, <, >, >=, and <= are either of compatible
type or one operand is real and the other is integer.
If u and v are set operands, u <= v denotes the inclusion of u in v
and u >= v denotes the inclusion of v in u.
If p and q are Boolean operands, p = q denotes their equivalence and
p <= q denotes the implication of q by p, since false < true.
When the relational operators = , <> , < , > , <= , >= are used to
compare strings (see 6.4.2.1), they denote lexicographic ordering
according to the ordering of the character set(see 6.4.1.1).
The operator IN yields the value true if the value of the operand of
ordinal-type is a member of the· set, otherwise it yields the value
false. In particular, if the value of the operand of ordinal-type is
outside the implementation defined limits, the operator IN yields
false.

6.1.2 Fyngtion deSignators. A function-designator specifies the
activation of the function denoted by the function-identifier. The
function-designator contains a (possibly empty) list of
actual-parameters which are substituted in place of their
corresponding formal parameters defined in the function-declaration.
The correspondence is established by the positions of the parameters
in the lists of actual and formal parameters re~pectively. The

PASCAL NEWS #14 JANUARY, 1979 PAGE 37

DPS/13/4 Working Draft/3 P29

number of actual-parameters is equal to the
par'ameter's. The order of evaluation and
actual-parameters is implementation dependent.

function-designator = function-ident ifier

number of formal
bInding of the

[actual-parameter-list] •
function-identifier = identifier •
actual-parameter-list =

"(II actual-parameter { "," actual-parameter} II)" •
actual-parameter = (expression I variable I

procedure-identifier I
function-identifier) •

Examples: Surn(a,63)
GCO(1~~(,k)
sin(x+y)
eof(f)
ord(fT)

6.8 Statern~nts. Statements denote algol'ithmic actions, and are said
to be executable. They may be prefixed by a label which can be
referenced by goto statements.

statement = [label ":"] (simple-statement I
structured-statement) •

label = unsigned-integer •

6.8.1 Simple statements. A simple-statement is a statement of which
no part constitutes another statement. An empty statement consists
of no symbols and denotes no action.

simple-statement =
[(assignment-statement I
procedure-statement I goto-statement)] •

6.8.1.1 Assignment statements. The assignment-statement serves to
replace the current value of a variable by a new value specified as
an expression.

assignment-statement =
(variable I function-identifier) 11._" . - expression •

The expression is assignment-compatible with the type of the
variable or function.
If t.he selection of the variable involves the indexing of an array
or the dereferencing of a pointer, then whether tbese ac"ions
precede or follow the evaluation of the expression is implementation
dependent.

Examples: x := y+z
p := (1<=i) AND (i<100)
i := sqr(k) - (i*j)

hue1 := [blue,succ(c)]

6.8.1.2 Procedyre st.atements. A procedure-statement serves to

PASCAL NEWS #14 JANUARY, 1979 PAGE 38

DPS/13/4 Working Draft/3 P30

execute the procedure denoted by the procedure-identifier. The
procedure-statement contains a (possibly empty) list of
ac~ual-parameters which are substituted in place of their
corresponding formal parameters defined in the procedure-declara~ion
(see 6.6.3). The correspondence is established by the positions of
the parameters in the lists of act.ual and formal parameters
respectively. The number of actual-parameters is equal to the number
of' formal parameters. The order of evaluaUon and binding of the
actual-parameters is implementation dependent.

procedure-statement = procedure-identifier
[actual-parameter-list] •

procedure-identifier = identifier •

Examples: printheading
transpose(a,n,m)
blsect(fct,-1.0,+1.0,x)

6.8.1.3 Goto statements. A goto-statement serves to indicate that
further processing is to continue a~ another part of the program
text, namely at the place of the label.

goto-statement = "GOTO" label •

The following restrictions hold concerning the use of labels:

1- A goto-statement leading to the label which prefixes a
statement S causes an error unless the goto statement is
activated either by S or by a statement in the
statement-sequence(see 6.8.2.1 and 6.8.2.3.2) of which S is an
immediate constituent.

2. A goto-statement does not refer to a case-constant.

6.8.2 ~tructured ~tatements. Structured-statements are constructs
composed of other statements which have to be executed either in
sequence (compound-statement), conditionally
(conditional-statements>, r'epeatedly (repetitive-statements), or
within an expanded scope (with-statements).

struc~ured-statement =
compound-statement I conditional-statement:
r'epetitive-statement : with-sta':.ernent •

6.8.2.1 Compound 3tatem~. The compound-statement specifies that
its component statements are to be executed in the same sequencE. as
they are writ~en. The symbols Bl:!:GIN and END act a.s statement
br'aokets.

c,::>mpound-statement = "Bf!:GIN" statement-sequence "END"
statement-sequence = statement { ";" statement} •

Example: Bt!:GIN z:= x ; x := y; y := z END

6.8.2.2 Conditional statements. A conditional-statement selects for
execution a single one of its component statements.

PASCAL NEWS #14 JANUARY, 1979 PAGE 39

DPS/13/4 Working Draft/3 P31

conditional-statement = if-statement case-statement •

6.8.2.2.1 If statements

if-statement = "IF" Boolean-expression "THEN" statement
[else-part] •

else-part = "ELSE" statement •

If the Boolean-expression yields the value true, the if-statement
specifies that the statement following the THEN be executed. If the
Boolean-expression yields false the action depends on the existence
of an else-part; if the else-part is present the statement following
the ELSE is executed otherwise an empty statement is executed.

Boolean-expression = expression •

A Boolean-expression is an expression which produces a result of
type Boolean.

The syntactic ambiguity arising from the construct

IF e1 THEN IF e2 THEN s1 ELSE s2

is resolved by interpreting the construct as being equivalent to

IF e1 THEN
BEGIN
IF e2 THEN sl ELSE s2
END

Examples:

IF x < 1.5 THEN z := x+y ELSE z := 1.5
IF p1 <> NIL THEN p1 := p1r.father

6.8.2.2.2 ~ statements. The case-statement consists of an
expression (the case index) and a list of statements. Each statement
is preceded by one or more constants. All the case-constants are
distinct and are of an ordinal-type which is identical to that of
the case-index. The case-statement specifies that the statement be
executed whose case-constant is equal to the current value of the
selector.
An error is caused if none of the case-constants is equal to the
current value of the selector.

case-statement =
"CASE" expression "OF"
case-list-element {";" case-list-element } [II;"] "END" •

case-list-element = case-constant-list II." statement.

PASCAL NEWS #14 JANUARY, 1979 PAGE 40

DPS/13/4 Working Draft/3 P32

Examples:

CASE opera~or OF
plus: x.- x+yj
minus: x.- x-Yj
times: x.- x*y

END

CASE i OF

EN])

1: x : = sin (x) j
2: x .- cos(x)j
3: x .- exp(x)j
4: x . - In(x)

6.8.2.3. ReDe~i~iye statements. Repetitive-statements specify that
certain statements are ~o be executed repea~edly.

repetitive-statement = while-statement :
repeat-statement

6.8.2.3.1 Repeat statements

for-statement ..

repeat-statement = "REPEAT" statement.-sequence
"UNTIL" Boolean-expression .

The sequence of statements between the symbols REPEAT and UNTIL is
repeatedly executed until the Boolean-expression yields the value
true on completion of the statement-sequence. The statement-sequence
is executed at least once, since the Boolean-expression is evaluated
after execution of the statement-sequence.

Examples:

REPEAT k .- i .-
i . - jj .-
j .- k . -

UNTIL j = 0

REPEAT
process(fT) ;
get (f)

UNTIL eof(f)

MOD j j

6.8.2.3.2 While statements

While-statement = "WHILE" Boolean-expression "DO" statement •

The statement is repeatedly executed while the Boolean expression
yields the value true. If its value is false at the beginning, the
statement is not executed at all.

The while-statement

WHILE b DO body

is equivalen~ to

PASCAL NEWS #14 JANUARY, 1979 PAGE 41

DPS/13/4 Working Draf~/3 P33

IF b THEN
Ht:PEAT
body
UNTIL NOT b

Examples:

WHILE a[i] <> x DO i := i+1

WHILE DO DO
BEGIN IF odd(i) THEN z .- z*x;

i : = i DIV 2;
x := sqr(x)

END

WHILE NOT eof(f) DO
BEGIN process(f!); get(f)
END

6.8.2.3.3 ~ statements. The for-statement indicates that a
statement is to be repeatedly executed while a progression of values
is assigned to a variable which is called the control-variable of
the for-statement.

for-statement = "FOR" control-variable ":=" initial-value
("TO I "DOWNTO") final-value "DO" statement •

control-variable = entire-variable •
initial-value = expression •
final-value = expression •

The control-variable is an entire-variable which is local to the
immmediately enclosing block. The control-variable is of
ordinal-type, and the initial and final value are of a type
compatible with this type. An error is caused if the
control-variable is assigned to by the repeated statement or altered
by any procedure or function activated by the repeated statement.
After a for-statement is executed (other than being left by a goto
statement leading out of it) the value of the control-variable is
left undefined. Apart from the above restrictions

The for-statement

FOR v := e1 TO e2 DO body

is eQuivalent to

PASCAL NEWS #14 JANUARY, 1979 PAGE 42

DPS/13/4 Working Draft/3 P34

BEGIN
temp 1 : = e 1;
temp2 := e2;
IF templ <= temp2 THEN

BEGIN
v : = temp 1;
body;
WHILE v <> temp2 DO

BEGIN
v : = sucd v) ;
body
END

END
END

and the for-statement

FOR v := el DOWNTO e2 DO body

is eauiyalent to

BEGIN
temp 1 : = e 1 ;
temp2 .- e2;
IF temp1 >= temp2 THEN

BEGIN
v := templ;
body;
WHILE v <> temp2 DO

BEGIN
v : = pred (v) ;
body
END

END
END

where templ and temp2 are auxiliary variables of the host type of
the variable v which do not occur elsewhere in the program.

Examples:

FOR i := 2 TO 63 DO
IF a[i] > max THEN max := a[i]

FOR i := 1 TO n DO
FOR j := 1 TO n DO

BEGIN

FOR

x : = 0;
FOR k := 1 TO n DO

x := x + ml[i,k]*m2[k,j];
m[i, j] : = x
END

C .-.- red TO blue DO q(c)

PASCAL NEWS #14 JANUARY, 1979 PAGE 43

DPS/13/4 Working Draft/3 P35

6.8.2.4 With statements

with-statement =
"WITH" record-variable-list "DO"
statement •

record-variable-list =
record-variable { "," record-variable } •

variable-identifier = field-identifier •

The occurrence of a record-variable in the record-variable-list is a
defining occurrence of its field-identifiers as variable-identifiers
for the with-statement in which the record-variable-list occurs.

The statement

WI TH v 1 ,v2, •••• vn DO s

is equivalent to

WITH v1 DO
WITH v2 DO

WITH vn DO s

Example:

WITH date DO
IF month = 12 THEN

BEGIN month := 1; year := year + 1
END

ELSE month := month+1

is equivalent to

IF date.month = 12 THEN
BEGIN date.month := ,; date.year := date.year+1
END

ELSE date.month := date.month+1

If the selection of a variable in the record-variable-list involves
the indexing of an array or the dereferencing of a pointer, then
these actions are executed before the component statement is
executed.

6.9 Input and oytput. The basis of legible input and output consists
of textfiles (see 6.4.2.4) that are passed as program-parameters
(see 6.10) to a Pascal program and in its environment represent some
input or output device such as a terminal, a card reader, a line
printer or a file in the backing store. In order to facilitate the
handling of textfiles, the four standard procedures ~, write,
readln, and write In are introduced in addition to the procedures ~
and ~. The new procedures are used with a more flexible syntax for
their parameter lists, allowing, among other things, for a variable
number of parameters. Moreover, the parameters need not necessarily
be of type char. Certain other types are permitted, in which case
the data transfer is accompanied by an implicit data conversion

PASCAL NEWS #14 JANUARY, 1979 PAGE 44

DPS/13/4 Working Draf~/3 P36

operation. If the first parameter is a file variable, then this is
the file to be read or written. Otherwise, the standard files input
and output are automatically assumed as default values in the cases
of reading and writing respectively.(see 6.10)

Textfiles represent a special case among file types insofar as texts
are substructured into lines by line markers (see 6.4.2.4). If, upon
reading a textfile f, the file position is advanced to a line
marker, that is past the last character of a line, then the value of
the buffer variable fi becomes a space, and the standard function
~(f) yields the value true. Advancing the file position once more
either causes eof(f) to become true or assigns to fi the first
character of the next line, and eoln(f) yields false (unless the
next line consists of zero characters). Line markers, not being
elements of type char, can be generated only by the procedure
writeln.

6.9.1 ~ procedure read. The syntax of the parameter list of read
is

read-parameter-list =
"("[file-variable ",H) variable I"," variable}")" •

The following rules hold for the procedure ~; f denotes a
textfile andv1 •• vn denote variables of the types char (or a
subrange of char), integer (or a subrange of integer), or real.

1. read(f,v1, ••• ,vn) is equivalent to

BEGIN read(f,v1); read(f,vn) END

2. If v is a variable of type ~ or subrange of char, then
read(f,v) is equivalent to

BEGIN v := fT; get(f) END

3. If v is a variable of type integer (or subrange thereof), then
read(f,v) implies the reading from f of a sequence of characters
which form a signed-integer according to the syntax of 6.1.4.
The value of the integer is assigned to v, if it is
assignment-compatible with the type of v. Preceding spaces and
line markers are skipped. Reading ceases as soon as the file
buffer variable fi contains a char~cter which does not form part
of a signed-integer. An error occurs if the sequence of
characters does not form a signed-integer according to the
specified syntax.

4. If v is a variable of type real then read(f,v) implies the
reading from f of a sequence of characters which form a
signed-number according to the syntax of 6.1.4. The value of the
number is assigned to the variable v. Preceding spaces and line
markers are skipped. Reading ceases as soon as the file buffer

PASCAL NEWS #14 JANUARY, 1979 PAGE 45

DPS/13/4 Working Draf~/3 P37

variable fT contains a character which does not form par~ of a
signed-number. An error occurs if the sequence of characters
does not form a signed-number according ~o ~he specified
syntax.

The procedure read can also be used to read from a file f which is
not a textfile. read(f,x) is in this case equivalent to

BEGIN x := fT; get(f) END

6.9.2 The orocedure readln. The syntax of the parameter list of
readln is

readln-parameter-list =
["(" (file-variable variable) {", II variable} ") II] •

1. readln(f,v1, .•. ,vn) is equivalent to

BEGIN read(f, vl, •.• , vn); readln(f) END

2. readln(f) is equivalent to

BEGIN WHILE NOT eoln(f) DO get(f); get(f) END

Readln is used to skip to the beginning of the next line.

6.9.3 The procedure write. The syntax of the parameter list of write
is

write-parameter-list =
"("[file-variable ","] write-parameter
{II,II write-parame~er}")" •

write-parameter =
expression [":,, expression [II:" expression]] .

The following rules hold for the procedure write; f denotes a
textfile, p1, ••• ,pn denote write-parameters, e denotes an
expression, m and n denote expressions of type integer.

1. write(f,pl, ••• ,pn) is equivalent to

BEGIN write(f,pl)j . .. , write(f, pn) END

2. The write-parameters p have the following forms:

e:m e:m:n e

e is an expression whose value is to be IIwritten li on the file f:
it may be numeric (integer or real), char, Boolean or a string.
m and n are expressions whose integer values are the field-width
parameters. Their values are greater than zero. Exactly m
characters will be written (with an appropriate number of spaces

PASCAL NEWS #14 JANUARY, 1979 PAGE 46

DPS/13/4 Working Draf~/3 P38

to the left of the representation of e), except when e is a
numeric value which requires more than m characters for its
representation: in such cases the number of characters writ~en

will be as small as is consistent with the representation of e
(see rules 4 and 5).

write(f,e) is equivalent to write(f,e:m), using a default value
for m which depends on the type of e: for integer, Boolean and
real types this value is implementation-defined.

write(f,e:m:n) is applicable only if e is of type real (see rule
5) •

3. If e is of type ~ then the default value for m is one.

4. If e is of type integer, then the decimal representation of the
number e is written on the file f. If P is the positive integer
defined by:

If' e = 0
THeN p := 1
ELSE determine p such that 10**(p-l) <= abs(e) < 10**p

the representation consists of:

(a) if m >= p +
(m-p-l) blanks,
the sign character ('-' if e<O, otherwise a blank),
p digits.

(b)If m<p+l, p characters are written if e>=O, (p+l) if e<O.

5. If e is of type ~, a decimal representation of the number e,
rounded to the specified number of significant figures or
decimal places, is written on the file f.

write(f,e:m) causes a floating-point representation of e to be
written. If d is an implementation-defined value (representing
the number of digit characters written in an exponent), and the
non-negative number er and the integer p are defined by:

If' e = 0.0
THEN BEGIN er := 0.0; p := 1 END
ELSE
BEGIN

er := abs(e);
determine p such that 10**(p-l) <= er < 10**p;
er := er + 0.5 • (10**(p-m+d+4»;
er is truncated to (m-d-4) significant decimal figures

END

PASCAL NEWS #14 JANUARY, 1979 PAGE 47

DPS/13/4 Working Draft/3 P39

6.

the representation consists of:

(a) if m >= d + 6:
the sign character

('-' if e<O and er<>O, otherwise a space),
the leading digit of er,
the character '.',
the next (m-d-5) digits of er,
the character "E',
the sign of (p - 1) ('+' or '-'),
d digits for (p - 1)

(with leading zeros if necessary).

(b)If m<d+6, (d+6) characters are written, including one
digit after the decimal point.

write(f, e:m:n) causes a fixed-point representation of e
written. If the non-negative number er and the positive
p are defined by:

IF e = 0.0
THEN er := 0.0
ELSE
BEGIN

er := abs(e);
er := er + 0.5 • 10*'(-n);
er is truncated to n decimal places

END;
IF trunc(er) = 0

THEN P := 1

to be
integer

ELSE determine p such that 10*'(p-l) <= trunc(er) < 10**p

the representation consists of:

(a) if m >= p+n+2:'
(m-p-n-2) spaces,
the sign character

('-' if e<O and er<>O, otherwise a space),
the first p digits of er,
the character '.',
the next n digits of ere

(b)If m<p+n+2, (p+n+2) characters are written.

If e is of type Boolean, then a representation of
or the word false (as appropriate) is written on
This is equivalent to

the word true
the file f.

write(f,'TRUE ':m) or write(f,'FALSE':m)

as appropriate (see rule 7.).

7. If e is of a string type, then the value of e is written on the
file f preceded by (m-n) spaces if m>=n. If m<n, characters one

PASCAL NEWS #14 JANUARY, 1979 PAGE 48

DPS/13/4 Working Draft/3 p40

~hrough m of ~he string are writ~en. If m is omitted, the
default value is n.

The procedure write can also be used to write on to a file f which
is not a textfile. write(f,x) is in this case equivalent to

BEGIN fT := xi put(f) END

6.9.4 lb& procedure writeln. The syntax of the parameter list of
writeln is

writeln-parameter-list =
["(" (file-variable: write-parameter)
("," write-parameter}")"] •

1. writeln(f,p1, ••• ,pn) is equivalent to

BEGIN write(f,p1, ••• ,pn)j writeln(f) END

2. writeln(f) appends a line marker (see 8.2.4) to the file f.

6.9.5 The procedure page

page(f) causes skipping to the top of a new page, when the textfile
f is printed. If the actual-parameter-list is omitted the
procedure is applied to the standard file output.

6.10 Programs. A Pascal program has the form of a procedure
declaration except for its heading.

program = program-heading

program-heading =

II." , block " II

"PROGRAM" identifier ["(II program-parameters ")"] •

program-parameters = identifier-list •

The identifier following the symbol PROGRAM is the program name; it
has no significance within the program. The program-parameters
denote entities that exist outside the program, and through which
communication with the environment of the program is possible. These
entities (usually files) are called external, and are declared in
the variable-declaration-part of the block which constitutes the
program. The two standard files input and output are not declared
explicitly (see 6.9), but are listed as parameters in the
program-heading if they are used in the program. The appearance of
the files input or output as program-parameters causes them to be
declared in the program block. The initialising statements
reset(input) and rewrite(output) are automatically generated if
required. The effect of an explicit use of reset or rewrite on the
standard files input or output is implementation dependent.

PASCAL NEWS #14 JANUARY, 1979 PAGE 49

DPS/13/4 Working Draft/3 P41

Examples:

PROGHAM copy(f,g);
VAR f,g: FILE OF real;
Bt:GIN reset(f)j rewrite(g)j

END.

WHILE NOT eof(f) DO
BEGIN gT := fTj get(f); put(g)
END

PROGRAM copytext(input,output)j
{This program copies the characters and line-markers of the
textfile input to the textfile output.}

VAR ch: char;
BEGIN

WHILE NOT eof(input) DO
BEGIN

WHILE NOT eoln(input) DO
BEGIN read(ch); write(ch)
END;

readln; writeln
END

END.

6.11 Hardware reoresentation. The representation for tokens and
separators given in 6.1 constitutes a reference representation.

This is the standard representation and is used for publication or
interchange of programs written in Standard Pascal.
Only in cases where the character set is insufficiently rich to
permit the full use of the reference language, are the character
combinations given in the table below defined as substitute
symbols.
In the case of symbols which are pairwise matching, such as comment
markers, the pairwise sets are either both be in the reference
representation, or both be in an equivalent representation.

Reference Symbol Equivalent Symbol

.,.
@ or ..

I

{ } (* *)
[(.
] ·)
0- or %= .- · -· , · , · % · > GT
< LT
>= GE
<= LE
<> NE

PASCAL NEWS #14 JANUARY, 1979 PAGE 50

actual 6.6.3.2 6.6.3.3 6.6.3.4
6.6.4.1.1 6.6.4.1.2 6.6.4.2
6.7.2 6.8.1.2

actual-parameter 6.6.3.1 6.6.3.2 6.6.4.1.2
6.7.2

actual-parameter-list 6.6.4.2.4 6.7.2 6.8.1.2
6.9.5

array-type 6.4.2.1 6.5.2.1
array-variable 6.5.2.1
assignment 6.6.2
assignment-compatible 6.4.5 6.5.2.1 6.6.3.1

6.8.1.1 6.9.1
assignment-statement 6.6.2 6.6.4.1.2 6.8.1

6.8.1.1
base-type 6.4.2.3
block 6.2 6.2.1 6.3

6.4 6.4.1.2 6.5
6.6. 1 6.6.2 6.6.3.1
6.6.3.2 6.6.3.3 6.6.3.4
6.6.4 6.8.2.3.3 6.10

body 6.8.2.3.2 6.8.2.3.3
booleah-expression 6.8.2.2.1 6.8.2.3.1 6.8.2.3.2
case-constant 6.4.2.2 6.8.1.3 6.8.2.2.2
case-con stant-list 6.4.2.2 6.8.2.2.2
case-irld ex 6.8.2.2.2
case-list-element 6.8.2.2.2
character 6.1 6.1.6 6.1.7

6.4.1.1 6.4.2.4 6.6.4.2.3
6.7.1.4 6.9 6.9.1
6.9.3 6.11

character-string 6.1. 6 6.3
comment 6.1.7 6.11
compatible 6.4.2.2 6.4.4 6.4.5

6.4.6 6.6.3.3 6.6.3.4
6.6.3.5 6.7.1.4 6.8.2.3.3

component 6.4.2 6.4.2.2 6.4.2.4
6.4.5 6.5 6.5.2
6.5.2.1 6.5.2.2 6.5.2.3
6.6.4.1.1 6.8.2.1 6.8.2.2
6.8.2.4

component-type 6.4.2.1
component-variable 6.5 6.5.2
compound-statement 6.2 6.8.2 6.8.2.1
constant 6.1. 6 6.3 6.4.1.1

6.4.1.2 6.4.1.3 6.4.2.2
6.7.1.1

constarlt-defirli tion 6.2 6.3
constant-definition-part 6.2
constant-identifier 6.3 6.7
control-variable 6.8.2.3.3

PASCAL NEWS #14 JANUARY, 1979 PAGE 51

declarat.ion 3. 6.2 6.5
6.6.1 6.6.2 6.6.4
6.6.4.1.2 6.10

defined 3. 4. 5.1
6.4.1 6.l.i.1.1 6.4.2.1
6.4.2.3 6.4.2.4 6.4.3
6.4.4 6.6.4.2.3 6.7
6.7.1.1 6.7.1.4 6.7.2
6.8.1.2 6.9.3 6.11

defining 6.2 6.2. 1 6.3
6.4 6.4.1.2 6.4.2.2
6.5 6.6.1 6.6.2
6.6.3 6.8.2.4

definition 3. 4. 5.1
6.3 6.4 6.4.2
6.4.2.1 6.4.2.2 6.4.2.4
6.5.2.1 6.6. 1 6.6.2

denotation 6.4.1.1 6.5
dereferencing 6.6.3.2 6.8.1.1 6.8.2.4
directive 6.1.3 6.6.1 6.6.2
entire-variable 6.5 6.5.1 6.8.2.3.3
enumerated-type 6.4.1 6.4.1.2
error 3. 5. 1 6.4.2.2

6.4.5 6.5.3 6.6.4.1.1
6.6.4.1.2 6.6.4.2.1 6.6.4.2.2
6.6.4.2.3 6.7 6.7.1.1
6.8.1.3 6.8.2.2.2 6.8.2.3.3
6.9. 1

expression 6.l.i.5 6.5.2.1 6.6.2
6.6.3.1 6.6.4.1.2 6.6.4.2.1
6.6.4.2.3 6.6.4.2.4 6.7
6.7.1.2 6.7.2 6.8.1.1
6.8.2.2.1 6.8.2.2.2 6.8.2.3.2
6.8.2.3.3 6.9.3

external 6.10
factor 6. 1 .4 6.7
field 6.4.2.2
field-designator 6.2.1 6.5.2 6.5.2.2
field-identifier 6.2.1 6.4.2.2 6.5.2.2

6.8.2.l.i
field-list 6.4.2.2
field-width 6.9.3
file-buffer 6.5.2 6.5.2.3
file-type 6.4.2 6.4.2.4 6.4.5
file-variable 6.5.2.3 6.9.1 6.9.2

6.9.3 6.9.4
for-statement 6.8.2.3. 6.8.2.3.3
formal 6.6.1 6.6.2 6.6.3.1

6.6.3.2 6.6.3.3 6.6.3.4
6.7.2 6.8.1.2

PASCAL NEWS #14 JANUARY, 1979 PAGE 52

formal-parameter-list 6.6.1 6.6.2 6.6.3
formal-parameter-section 6.6.3
forward 6.6.1 6.6.2
function 6. 1 • 1 6.2 6.6. 1

6.6.2 6.6.3.4 6.6.4.1.3
6.6.4.2.2 6.6.4.2.3 6.6.4.2.4
6.7 6.7.2 6.8.1.1
6.8.2.3.3 6.9

function-block 6.6.2 6.6.3
function-declaration 6.2 6.6.2 6.7.2
function-designator 6.6.2 6.7 6.7.2
function-heading 6.6.2 6.6.3
function-identifier 6.6.2 6.6.3.4 6.7.2

6.8.1.1
functional 6.6.3 6.6.3.4 6.6.3.5

6.6.4.2
goto-statement 6.8. 1 6.8.1.3
identical 6.4.2.2 6.4.4 6.4.5

6.4.6 6.6.3.2 6.6.3.4
6.6.3.5 6.6.4.1.2 6.6.4.2.3
6.7 6.8.2.2.2

identifier 3. 6.1.2 6.2. 1
6.3 6.4 6.4.1.2
6.4.2.2 6.4.4 6.5
6.5. 1 6.6.1 6.6.2
6.6.3 6.6.4 6.7.2
6.8.1.2 6.10

identifier-list 6.4.1.2 6.4.2.2 6.5
6.6.3 6.10

identity 6.7.1.1
if-statement 6.8.2.2 6.8.2.2.1
implementation 3. 5. 1 5.2

6.4.1.1 6.4.2.3 6.6.1
6.6.2 6.6.4 6.6.4.1
6.6.4.1.1 6.6.4.2 6.6.4.2.3
6.7 6.7. 1 6.7.1.1
6.7.1.2 6.7.1.4 6.7.2
6.8.1.1 6.8.1.2 6.10

index 6.5.2.1 6.8.2.2.2
index-type 6.4.2.1 6.5.2.1
indexed-variable 6.5.2 6.5.2.1
integer 6.1.4 6.3 6.4.1.1

6.4.2.2 6.4.5 6.4.6
6.5 6.6.1 6.6.2
6.6.4.2.1 6.6.4.2.2 6.6.4.2.3
6.6.4.2.4 6.7.1.1 6.7.1.4
6.9. 1 6.9.3

label-declaration 6.2
local 6.2 6.6.1 6.6.2

6.6.3.1 6.8.2.3.3

PASCAL N[WS #14 JANUARY, 1979 PAGE 53

maxint 6.4.1.1 6.7.1.1
number 6. 1.7 6.4.2.1 6.4.2.2

6.4.2.4 6.4.4 6.6.3.5
6.6.4.2.3 6.7.2 6.8.1.2
6.9 6.9.1 6.9.3

occurrence 5.1 6.2 6.2.1
6.3 6.4 6.4.1.2
6.4.2 6.4.2.2 6.5
6.6.1 6.6.2 6.6.3
6.8.2.4

operand 6.6.4.1.2 6.7 6.7.1.1
6.7.1.4

operator 6.5 6.7 6.7.1
6.7.1.1 6.7.1.2 6.7.1.3
6.7.1.4 6.8.2.2.2

ordinal-type 6.4.1 6.4.1.3 6.4.2.1
6.4.2.2 6.4.2.3 6.6.4.2.3
6.7.1.4 6.8.2.2.2 6.8.2.3.3

ordinal-type-identifier 6.4.1 6.4.2.2
parameter 6.6.3 6.6.3.1 6.6.3.2

6.6.3.3 6.6.3.4 6.6.3.5
6.6.4.1.1 6.6.4.1.2 6.6.4.2.1
6.6.4.2.2 6.6.4.2.3 6.9

pOinter 6.4.3 6.5 6.5.3
6.6.2 6.6.3.2 6.6.4.1.2
6.7.1.4 6.8.1.1 6.8.2.4

pointer-type 6.2.1 6.4 6.4.3
pointer-variable 6.5.3
predefined 6.4.1.1 6.4.2.4 6.7.1.1
procedural 6.6.3 6.6.3.3 6.6.3.5

6.6.4.1
procedure 6.1.1 6.2 6.4.3

6.5.3 6.6.1 6.6.3.3
6.6.4.1.1 6.6.4.1.2 6.8.1.2
6.8.2.3.3 6.9 6.9.1
6.9.3 6.9.5

procedure-block 6.6.1 6.6.3
procedure-declaration 6.2 6.6.1 6.8.1.2
procedure-heading 6.6.1 6.6.3
procedure-identifier 6.6. 1 6.6.3.3 6.7.2

6.8.1.2
procedure-statement 6.6.1 6.8.1 6.8.1.2
program 1. 3. 5.1

5.2 6.1.1 6.1. 7
6.2 6.2.1 6.4.4
6.6.1 6.6.2 6.6.4
6.6.4.1.3 6.8.1.3 6.8.2.3.3
6.9 6.10

program-parameters 6.9 6.10
range 6.2.1 6.4.1.1 6.4.6

6.6.4

PASCAL NEWS #14 JANUARY, 1979 PAGE 54

real 6.1.4 6.3 6.4.1.1
6.4.2.1 6.4.2.2 6.4.6
6.5 6.6.1 6.6.2
6.6.4.2.1 6.6.4.2.2 6.7.1.1
6.7.1.4 6.9.1 6.9.3
6.10

record 6.1.1 6.4.2.2 6.4.6
6.6.4.1.2

record-section 6.4.2.2
record-type 6.2. 1 6.4.2 6.4.2.2
recursive 4. 6.6.1 6.6.2
result 6.6.2 6.6.4.1.3 6.6.4.2.1

6.6.4.2.2 6.6.4.2.3 6.7.1.1
6.7.1.2 6.7.1.3 6.7.1.4
6.8.2.2.1

scope 3. 6.2.1 6.3
6.4 6.8.2

selector 6.5.2 6.8.2.2.2
set-type 6.4.2 6.4.2.3
statement 6.1. 5 6.2 6.6.4.1.3

6.8 6.8.1 6.8.1.3
6.8.2.1 6.8.2.2.1 6.8.2.2.2
6.8.2.3.2 6.8.2.3.3 6.8.2.4

statement-sequence 6.8.1.3 6.8.2.1 6.8.2.3.1
statements 6.4.5 6.8 6.8.2

6.8.2.1 6.8.2.2 6.8.2.2.2
6.8.2.3. 6.8.2.3.1 6.10

string 6.1.6 6.4.2.1 6 .l! .2.2
6.4.4 6.7 6.7.1.4
6.9.3

structured-type 6.4 6.4.2 6.4.5
subrange 6.4.1.3 6.4.4 6.7

6.9.1
symbols 4. 6. 1 6.7.1.1

6.8.1 6.8.2.1 6.8.2.3.1
6. 11

tag-field 6.4.2.2 6.6.4.1.2
text 3. 4. 6.1.7

6.2.1 6.4.2.4 6.4.4
6.6.1 6.8.1.3

token 6.1.7
type-identifier 6.2.1 6.4 6.4.1

6.4.1.1 6.4.2.4 6.4.3
undefined 3. 6.2 6.4.2.2

6.5.3 6.6.2 6.6.4.1.1
6.6.4.1.2 6.7 6.8.2.3.3

variable 3. 6.2. 1 6.4.1.3
6.4.2 6.4.2.4 6.4.3
6.5 6.5.2 6.5.2.1
6.5.2.2 6.5.2.3 6.5.3
6.6.3 6.6.3.1 6.6.3.2
6.6.3.5 6.6.4.1.1 6.6.4.1.2
6.6.4.2.4 6.7 6.7.2
6.8.1.1 6.8.2.3.3 6.8.2.4
6.9 6.9. 1 6.9.2

varial1t 6.4.2.2 6.6.4.1.2
word-symbol 6.1.1

PASCAL NEWS #14 JANUARY, 1979

PASCAL STANDARDISATION

This is a brief summary of what has been done so far in the
effort to produce a standard. Although several individuals have
made significant technical contributions, these have been omitted
from this summary. This summary is essentially a catalogue of sig­
nificant events.

February 1975 A. M. Addyman J01ns DPS/13 (then called DPE/13).
A Pasca1er is now in a position where action is
possible.

PAGE 55

June 1976 Professor N. Wirth welcomes the ide~ of an official
standard.

August 1976

September 1976

March 1977

April 1977

June 1977

September 1977

November 1977

December 1977

January 1978

February 1978

March 1978

April 1978

In Pascal News (letter) #6 my intentions are made
public for support or objections.

Pascal is placed on the DPS/13 agenda.

Standards debate at the Southampton Symposium (see
Pascal News (letter) #8). The symposium acted as
a catalyst.

Attention List (part 1) created (PN #8).

BSI Pascal project is proposed. Formation of
DPS/13/4 is approved.

BSI Pascal project is approved.
Another Attention List is produced (PN #9/10).
Initial meeting of DPS/13/4 to discuss the Atten­
tion Lists.

ISO/TC97/SCS meeting in The Hague. Pascal is on
the agenda at the request of the UK. Sweden indi­
cate that they have some Pascal activity. The UK
announces its intention to propose an ISO project.

Swedish Attention List received. UK Working papers
sent to Sweden.

A combined Attention List #2 is produced and cir­
culated.

Contact established with Lecarme's French group
and with Arthur Sale.

After much unnecessary delay a proposal is sent
to the SCS secretariat for voting on the formation
of a work item for Pascal.

DPS/13/4 decides to prepare its first working
draft.

PASCAL NEWS #14

July 1978

September 1978

October 1978

The Future

December 1978

December 1978
January/February
19791

A. M. Addyma.n,

JANUARY, 1979

The La Jolla Workshop. This provided an opport­
unity for Pasca1ers to discuss the standardisa­
tion problems informally. These discussions and
a lot of individual e.ffort over August led to the
second working draft.

DPS/13/4 discusses the working drafts and agrees
on a set of amendments.

After two voting extensions Pascal is added to
the ISO work program. The third working draft is
sent to BSI for processing. ANSI announces the
formation of X3J9.

X3J9 to meet in Washington D.C.
DPS/13 to meet. BSI amendments to the working
draft to be received and processed.

The BSI draft for comment will be available from
BSI. It will also be sent to the ISO/TC97/SCS
secretariat for distribution and comment.

MEMBERS OF VPS/13j4

061-273 7121 : Ext.5546
Ve.paJttme.n.:t 06 Compu.telL Sue.nce.,
The. UniVeJr..6Uy, Co nv e.nOJL , e.:tc.
Ox60JLd Road,
Va.nchu:telL ,
M13 9PL.

P1L06u.60JL v. w. BaJuton,
Compu.telL S:tu.cUu Gl!.oup,
The. UniVelL.6Uy,
So u.thamp:ton,
S09 5NH.

R • BIL e.we.Il. ,
So 6.:OOvr.e. Ve.paJttme.n.:t,
GEC Compu.teJr..6 UmU:e.d,
EUtILe.e. Wa.y,
BoJLe.ha.wwoo d ,
HeJL:t.6.

V. G. Butne.tt-Ha.i.i,
Ve.paJtt1r(e.n.:t 06 ComputelL Sc...i e.nce.,
UniVeJr..6Uy 06 YOJLk,
HuUng:ton,
Yo,'Lk,
YO 1 500.

0703-559122 : Ext.700

Va.y no long.elL be. active..

0904-59861

PAGE 56

PASCAL NEWS #14

R. M. Ve. MOJtgan.,
EuJtopean. S06twaJte. En.gin.e.~n.g,
Vig~ Equipme.VLt Compan.y Limite.d,
Foun.tain. HOMe.,
The. BLLtt6 Ce.n.:tJr.e.,
Readin.g,
RGI 7QN.

W. FbuLta.y,
Computin.g Seie.n.ee. Ve.paJttme.VLt,
UvtiveJL6dy 06 Gwgow,
Gwgow,
G12 8QQ.

M. I. Jadz..6on.,
LV.LC.,
HotbJtooi2. HOMe.
Coei2.60.6te.Jt.6 Road,
BaJtn.e.t,
He.Jtt.6, EN4 OVU.

V. A. JO.6Un.,
Hutt Cotte.ge. 06 Highe.Jt Edueation.,
In.gte.n.UJte. Aven.ue.,
Hutt,
HU6 7LJ.

M. J. Ree..6,
Compute.Jt Studie..6 GJtoup,
The. Uvtive.Jt.6Uy,
Southampto n.,
S09 5NH.

V. A. Waft,
Computin.g Seie.n.ee. Ve.paJttmen.t,
UvtiVeJL6Uy 06 Gwgow,
Gta.6gow,
G12 80..0...

J. Wehh
VepaJttme.VLt 00 ComputeJt Seie.n.ee.,
Queen.'.6 UvtiveJL6dy,
Be.tOMt,
BT7 INN.

B. A. Wiehman.n.,
VepaJttme.VLt 00 In.dMt'l..y,
Nation.ai PhY.6ieat Labo~oJty,
T e.ddin.gto n.,
MWdte..&ex,
TW11 OLW.

JANUARY, 1979

0734-583555

May n.o to n.ge.Jt be. awve..

041-339 8855 Ext.7391

01-440 4141

(T h1.6 i.6 ITT BMin.e..6.6
S Y.6tem.6 I .

0482-42157

0703-559122

May n.o ton.ge.Jt be aetive.

041-339 8855 Ext. 7458

0232-45133 Ext.3221

01-977 3222

PAGE 57

PASCAL NEWS #14 JANUARY, 1979 PAGE 58

A Proposal for a New Work Item - Pascal (* Early 1978 ~:)

This document is to accompany the corresponding ISO PLACO form.

1. Introduction

The programming language Pascal is a simple high-level language. It is

a general-purpose rather than an all-purpose language. Pascal is being used

increasingly in three areas:

1) The writing of system software

2) The writing of application software

3) The teaching of programming.

There are implementations of Pascal available for most mainframe and

mini-computers. There are also Pascal implementations for seven different

microprocessors.

In the summer of 1976 a Pascal Users Group (PUG) was formed to encourage

the use of Pascal. In the first 18 months of its existence, PUG has attracted

1600 members from 30 different countries.

2. Description

The purpose of the proposed project is to produce a formal standard for

the programming language Pascal. The language is currently, informally,

defined by three documents:

The Pascal Report

The Pascal User Manual

The Axiomatic Definition of Pascal

complete references

appear later

The definition provided by these documents is incomplete and, in a few

instances, contradictory. The project will involve the identification and

resolution of these difficulties.

3. Benefits

The benefits to be derived from the production of a standard for Pascal

are the same as those for any other widely-used programming language. namely:

1) Enhanced program portability reduces programming costs, which are
estimated to be about 70% of the cost of a computer system.

2) It will become easier to recruit trained staff and cheaper to
train staff.

PASCAL NEWS #14 JANUARY, 1979 PAGE 59

4. Development Feasibility

The most important factor in this proposal is the timeliness of the

standardisation of Pascal. Pascal has been implemented on a large number of

different computers. In most cases, the implementations have been made

compatible with existing compilers for different computers. If the problems

relating to the definition of Pascal are not resolved in the very near future,

there is a danger that the various implementations will become incompatible.

The growth of a large number of incompatibilities would hinder any subsequent

standardisation activities.

The current lack of any significant incompatibilities should be seen as

a good reason for standardisation ~.

4.1 Available Resources

There are already two national working groups concerned with the production

of a Pascal standard. They are:

DPS/13/4

Swedish Technical Committee on Pascal

(in the United Kingdom)

(in Sweden)

These two groups are cooperating with each other and are corresponding

with interested parties in the following countries: Australia, Canada,

Denmark, France, Germany, Poland, Switzerland and the USA. Many of these

correspondants 'are suppliers of Pascal compilers.

4.2 Cost

This is difficult to estimate. However, since most (if not all) of

the deficiencies of the current reference documents are known, there are no

technical obstacles to the production of a draft proposal within 12 months.

4.3 Bibliographic References

Jensen, K. and Wirth, N. (1975), Pascal - User Manual and Report.

(Springer-Verlag, New York)

Hoare, C.A.R. and Wirth, N. (1973), An axiomatic definition of the

programming language Pascal, Acta Informatica 2, 335-55

Habermann, A.N. (1974), Critical comments on the programming language

Pascal, Acta Informatica 3, 47-57

Lecarme, o. and Desjardins, P. (1975), More comments on the programming

language Pascal, Acta Informatica, 4, 231-45

Welsh, J., Sneeringer, W.J., and Hoare, C.A.R. (1977), Ambiguities and

insecurities in Pascal, Software Practice and Experience, 7, 685-96

Wirth, N. (1975), An assessment of the programming language Pascal,

SrGPLAN Notices, 10, 23-30.

PASCAL NEWS #14 JANUARY, 1979 PAGE 60

5. Implementation Feasibility

A large number of the people currently involved in the standardisation

effort are suppliers of Fascal compilers. It is expected that most (if not

all) suppliers will be willing to conform with the standard.

In parallel with the standardisation effort a suite of programs is being

developed which should form the basis of a conformance test. This work is

being performed jointly by groups based in Australia and the UK.

It is not intended that the standardisation of Fascal will introduce any

changes which will cause any currently legal Pascal programs to become illegal.

With one or two notable exceptions, the charges envisaged relate ~o matters

of detail. The exceptions are certain points e.g. type compatibility, where

it is known that there is currently no generally accepted definition. This

lack of a satisfactory definition need not prevent the writing of portable

Fascal programs.

6. Closely Related Standards Activities

Those activities which are directed towards the production of a standard

for Pascal have already been described. The US Department of Defense is

currehtlyengaged in the creation of a new 'real-time' language. (The

"Ironman" Project). It has been stated that the resulting language will be

Fascal-based., Since Pascal has no 'real-time' features and is consequently

not suitable for such applications, there is no conflict of interests.

Furthermore, there are several resident microprocessor implementations of

Pascal. It is believed that the size of the DOD language would necessitate

cross-compilation, if it were to be used on a microprocessor.

7. Outline of the Work Program

The work program has already been started in the form of work towards a

British standard for Pascal. It consists of the following steps:

1. The production of a list of the omissions from and the deficiencies

of the Pascal Report. This is called the Attention List. (This

could be completed by mid-1978).

2. The solution of these problems.

3. The production of a draft proposal, possibly as an edited version of

the Pascal Report.

It is not intended that the standardisation effort will involve any

development of the language.

POLICY: PASCAL USER'S GROUP (78/10/01)

Purposes: Pascal User's Group (PUG) tries to promote the use of the programming
language Pascal as well as the ideas behind Pascal. PUG members help
out by sending information to Pascal News, the most important of which
is about implementations (out of the necessity to spread the use of
Pascal).

The increasing availability of Pascal makes it a vi~ble alternative for
software production and justifies its further use. We all strive to
make using Pascal a respectable activity.

Membership: Anyone can join PUG: particularly the Pascal user, teacher, maintainer,
implementor, distributor, or just plain fan. Memberships from libraries
are also encouraged.

See the ALL-PURPOSE COUPON for details.

FACTS ABOUT Pascal, THE PROGRAMMING LANGUAGE:

Pascal is a small, practical, and general purpose (but not all-purpose)
programming language possessing algorithmic and data structures to aid
systematic programming. Pascal was intended to be easy to learn and
read by humans, and efficient to translate by computers.
Pascal has met these design goals and is being used quite widely and
successfully for:

* teaching programming concepts
* developing reliable "production" software
* implementing software efficiently on today's machines
* writing portable software

·Pascal is a leading language in computer science today and is being
used increasingly in the world's computing industry to save energy and
resources and increase productivity.

Pascal implementations exist for more than 62 different computer systems,
and the number increases every month. The Implementation Notes section
of Pascal News describes how to obtain them.

The standard reference and tutorial manual for Pascal is:

Pascal - User Manual and Report (Second, study edition)
by Kathleen Jensen and Niklaus Wirth
Springer-Verlag Publishers: New York, Heidelberg, Berlin
1978 (corrected printing), 167 pages, paperback, $6.90.

Introductory textbooks about Pascal are described in the Here and There
Books section of Pascal News.

The programming language Pascal was named after the mathematician and
religious fanatic Blaise Pascal (1623-1662). Pascal is not an acronym.

Pascal User's Group is each individual member's group. We currently have more than
2712 active members in more than 41 countries. This year Pascal News is
averaging more than 120 pages per issue.

Return to:

University Computer Center
227 Experimental Engineering Building
208 Southeast Union Street
University of Minnesota
Minneapolis, Minnesota 55455 USA

return postage guaranteed

address correction requested

The University of Minnesota is committed to the policy that all persons shall have equal access
to its programs, facilities, and employment without regard to race,
creed, color, age, sex, national origin, or handicap.

NON-PROFIT ORG. -
U. S. POST AGE

PAID
MINNEAPOLIS, MINN.

PERMIT NO. 155

