
PASCAL USERS GRUUP

PASCAL NEWS
NUMBER 18 .,

COMMUNICATIONS ABOUT THE PROGRAMMING LANGUAGE PASCAL BY PASCALERS

MAY) 1980

>
(.) . --o
Q.

POLICY: PASCAL NEWS (17 -Mar-80)

* Pascal News is the official but informal publication of the User's Group.

* Pascal News contains all we (the editors) know about Pascal; we use it as
the vehicle to answer all inquiries because our physical energy and
resources for answering individual requests are finite. As PUG grows, we
unfortunately succumb to the reality of:

1. Having to insist that people who need to know "about Pascal" join PUG
and read Pascal News - that is why we spend time to produce it!

2. Refusing to return phone calls or answer letters full of questions - we
will pass the questions on to the readership of Pascal News. Please
understand what the collective effect of individual inquiries has at the
"concentrators" (our phones and mailboxes). We are trying honestly to say:
"We cannot promise more that we can do."

* Pascal News is produced 3 or 4 times during an academic year; usually in
September, November, February, and May.

* All THE NEWS THAT'S FIT, WE PRINT. Please send material (brevity is a
virtue) for Pascal News single-spaced and camera-ready (use dark ribbon and
18.5 em lines 1)

* Remember: All LETTERS TO US WILL BE PRINTED UNLESS THEY CONTAIN A REQUEST
TO THE CONTRARY .

* Pascal News is divided into flexible sections:

POLICY - explains the way we do things (All-PURPOSE COUPON, etc.)

EDITOR'S CONTRIBUTION - passes along the opinion and point of view of the
editor together with changes in the mechanics of PUG operation, etc.

HERE AND THERE WITH PASCAL - presents news from people, conference
announcements and reports, new books and articles (including reviews),
notices of Pascal in the news, history, membership rosters, etc.

APPLICATIONS - presents and docunents source programs written in Pascal
for various algorithms, and software tools for a Pascal environment; news
of significant applications programs. Also critiques regarding
program/algorithm certification, performance, standards conformance,
style, output convenience, and 'general design.

ARTICLES - contains formal, submitted contributions (such as Pascal
philosophy, use of Pascal as a teaching tool, use of Pascal at different
computer installations, how to promote Pascal, etc.).

OPEN FORUM FOR MEMBERS - contains short, informal correspondence anong
members which is of interest to the readership of Pascal News.

IMPLEMENTATION NOTES - reports news of Pascal implementations: contacts
for maintainers, implementors, distributors, and documentors of various
implementations as well as where to send bug reports. Qualitative and
quantitative descriptions and comparisons of various implementations are
publicized. Sections contain information about Portable Pascals, Pascal
Variants, Feature-Implementation Notes, and Machine-Dependent
Implementations.

- - - - ALL-PURPOSE COUPON - - - - - - (17-Mar-80)

Pascal User's Group, c/o Rick Shaw
Digital Equipment Corporation

5775 Peachtree Dunwoody Road
Atlanta, Georgia 30342 USA

NOTE

Membership is for an academic year (ending June 30th).
Membership fee and All Purpose Coupon is sent to your Regional
Representative.
SEE THE POLICY SECTION ON THE REVERSe SIDE FOR PRICES AND
ALTERNATE ADDRESS if you are located in the European or
Australasian Regions.
Membership and Renewal are the same price.
The U. S. Postal Service does not forward Pascal News.

- - - - - - - - - - - - - - - - - ------ - - - - - - - - -
[1 1 year ending June 30, 1980

[1 Enter me as a new member for:
[1 2 years ending June 30, 1981

[1 Renew my subscription for:
[1 3 years ending June 30, 1982

[1 Send Back Issue(s)

[1 My new/correct address/phone is listed below

[1 Enclosed please find a contribution, idea, article or opinion
which is submitted for publication in the Pascal News.

[] Comments: ---

NAME

ADDRESS

PHONE

$
ENCLOSED PLEASE FIND: A$

£

COMPUTER

DATE

JOINING PASCAL USER'S GROUP?

Membership is open to anyone: Particularly the Pascal user, teacher,
maintainer, implementor, distributor, or just plain fan.

- Please enclose the proper prepayment (check payable to "Pascal User's
Group"); we will not bill you.

- Please do not sendlUs purchase orders; we cannot endure the paper work!
- When you join PUG any time within an academic year: July 1 to June 30, you

will receive all issues of Pascal News for that year.
- We produce Pascal News as a means toward the end of promoting Pascal and

communicating news (jf" events surrounding Pascal to persons interested in
~Pascal. We are simply interested in the news ourselves and prefer to share
it through Pascal News. We desire to minimize paperwork, because we have
other work to do. ----

- American Region (North and South America): Send $6.00 per year to the
address on the reverse side. International telephone: 1-404-252-2600.

- European Re1ion (Europe, North Africa, Western and Central Asia): Join
through PUG UK). Send £4.00 per year to: Pascal Users Group, c/o Computer
Studies Group, Mathematics Department, The University, Southampton S09 5NH,
United Kingdom; or pay by direct transfer into our Post Giro account
{28 513 4000); International telephone: 44-703-559122 x700.

- Australasian Region (Austral ia, East Asia - incl. Japan): PUG (AUS) • Send
$A8.00 per year to: Pascal Users Group, c/o Arthur Sale, Department of
Information Science, University of Tasmania, Box 252C GPO, Hobart, Tasmania
7001, Australia. International telephone: 61-02-23 0561 x435

PUG (USA) produces Pascal News and keeps all mail ing addresses on a common
list. Regional representat.iltes collect memberships from their regions as a
service, and they reprint and distribute Pascal News using a proof copy and
mailing labels sent from PUG(USA). Persons in the Australasian and European
Regions must join through their regional representatives. People in other
places can join through PUG(USA).

RENEWING?

- Please renew early (before August) and please write us a line or two to tell
us what you are doing with Pascal, and tell us what you think of PUG and
Pascal News. Renewing for more than one year saves us time.

ORDERING BACK ISSUES OR EXTRA ISSUES?

- Our unusual policy of automatically sending all issues of Pascal News to
anyone who joins within aacademie year (Jttly 1 to June 30}means "that we
eliminate many requests for backissues ahead of time, and we don't have to
reprint important information in every issue--especially about Pascal
implementations!

- Issues 1 •• 8 (January, 1974 - May 1977) are ~ of print.
(A few copies of issue 8 remain at PUG(UK) available for £2 each.)

- Issues 9 •• 12 (September, 1977 - June, 1978) are available from PUG(USA)
all for $lcr.OO and from PUG(AUS) all for $AIO.

- Issues 13 •• 16 are available from PUG(UK) all for £6; from PUG(AUs) all for
$AIO; and from PUG (USA) all for $10.00.

- Extra single copies of new issues (current academic year) are: $3.00 each
- PUG(USA); £2 each - PUG(UK); and $A3 each - PUG(AUs).

SENDING MATERIAL FOR PUBLICATION?

Your experiences with Pascal (teaching and otherwise), ideas, letters,
opinions, notices, news, articles, conference announcements, reports,
implementation information, applications, etc. are welcome. Please send
material single-spaced and in camera-ready (use a dark ribbon and lines 18.5
em wide) form.

- All letters will be printed unless they contain a request to the contrary.

PASCAL NEWS 1118 MAY, 1980 INDEX

o POLICY, COUPONS, INDEX, ETC.

EDITOR'S CONTRIBUTION

SPECIAL ARITCLE 2
2 "ISO DP/7185 A Draft Proposed Standard for

the Programming Language Pascal" -- A. Addyman, et al.

Contributors to this issue (1118) were:

EDITOR Rick Shaw
Here & There John Eisenberg
Books & Articles Rich Stevens
Applications Rich Cichelli, Andy Mickel
Standards Jim Miner, Tony Addyman
Implementation Notes Bob Dietrich
Administration Moe Ford, Kathy Ford, Jennie Sinclair

APPLICATION FOR LICENSE TO USE VALIDATION SUITE FOR PASCAL

Name and address of requestor:
(Company name if requestor is a company}

Phone Number:

Name and address to which information should
be addressed (Write lias above" if the same) --------------

Signature of requestor:

Date:

In making this application, which should be signed by a responsible person in the
case of a company, the requestor agrees that:

a) The Validation Suite is recognized as being the copyrighted, proprietary prop­
erty of R. A. Freak and A.H.J. Sale, and

b) The requestor will not distribute or otherwise make available machine-readable
copies of the Validation Suite, modified or unmodified, to any third party
without written permission of the copyright holders.

In return, the copyright holders grant full permission to use the programs and doc­
umentation contained in the Validation Suite for the purpose of compiler validation,
acceptance tests, benchmarking, preparation of comparative reports, and similar pur­
poses, and to make available the listings of the results of compilation and execution
of the programs to third parties in the course of the above activities. In such doc­
uments, reference shall be made to the original copyright notice and its source.

X Distribution charge: $50.00

X Make checks payable to ANPAjRI in US dollars drawn on a US bank.
Remittance must accompany application.

Source Code Delivery Medium Specification:
9-track, 800 bpi, NRZI, Odd Parity, 600' Magnetic Tape

() ANSI-Standard

a) Select character code set:
() ASCII () EBCDIC

b) Each logical record is an 80 character card image.
Select block size in logical records per block.

() 40 () 20 () 10

() Special DEC System Alternates:
() RSX-IAS PIP Format
() DOS-RSTS FLX Format

Office use only

Ma il request to:

ANPAjRI
P.O. Box 598
Easton, Pa. 18042
USA
Attn: R.J. Cichelli

Signed ____________ _
Date

Richard J. Cichelli
On behalf of A.H.J. Sale & R.A. Freak

PASCAL NEWS #18 MAY, 1980 PAGE

Editor's Contribution

Wow! Bet ya didn't expect to see another edition of Pascal News
so soon! Actually, PN #17 was so late tha t we pr inted both
editions at the same time.

ABOUT THIS ISSUE

In an effort to keep our members up to date with activity on the
standards front, we have devoted this whole issue to the proposed
ISO draft standard.

It is very important that our members review this proposal and
comment if they feel it necessary. The national standards body in
your country, or a member of the standards committee is the best
person to send any comments. (See also Tony Addyman's comments on
returning comments.)

ON BEING ON TIME

As you have probably noticed, Pascal News is still not back on a
proper schedule. So, what are we doing about it? Well I'll tell
you. We are working very hard. Honest! The plan is to publish PN
#19 in June. This would get us almost up to date for this year.
Then work through the summer to get PN #20 out by September. This
would make us almost on schedule, right? The reason that we can
be so optimistic is that all the set up work for an operation in
Atlanta (as opposed to Minneapolis) has been completed. Now all
we have to do is crank out the news!

THE BAD NEWS

Inflation has hit PUG. As of I-July-80 the membership fee for
Pascal Users Group will have to be raised. It will not be much,
but at least enough to cover the cost of printing and mailing. We
are loosing money every issue now. In the U.S. at the moment it
is only a few cents a copy. But at $1.43 a copy for returned
issues by the Post Office we are getting killed. Note that you
members can help with this problem, by always informing us of
your new address when you move.

THANKS

We all owe Tony Addyman a debt of grati tude, for the year s
(literally!) of work that has gone into the proposal for an ISO
standard for the language Pascal. without his drive and
enthusiasm, the standard for Pascal would still be just a good
idea.

PA::iL;AL Nt.W.::> if 10
&& t . ." ..., -

A Draft Propasal for Pascal

A.M.Addyman
Dept of Computer Science
University of Manchester
Oxford Road
Manchester, M13 9PL, United Kingdom

CONTENTS
Foreword

Page
1

1. Scope of this standard 2
2. References 2
3. Definitions 2
4. Definitional Conventions 3
5. Compliance 3
5.1 Processors 3
5.2 Programs 4
6. Requirements 4
6.1 Lexical Tokens 4
6.2 Blocks and scope 6
6.3 Constant-definitions 8
6.4 Type-definitions 8
6.5 Declarations and denotations of variables 18
6.6 Procedure and function declarations 21
6.7 Expressions 34
6.8 Statements 39
6.9 Input and output 46
6.10 Programs 51
6.11 Hardware representation 54

APPENDICES

A.
B.

TABLES

1 •
2.
3.
4.
5.
6.
7.

Collected syntax
Index

Metalanguage symbols
Dyadic arithmetic operations
Monadic arithmetic operations
Boolean operations
Set operations
Relational operations
Alternative symbols

O. FOREWORD TO THE DRAFT

55
61

3
36
36
37
37
38
55

The language Pascal was designed by Professor Niklaus Wirth to
satisfy two prinCipal aims:
(a) to make available a language suitable for teaching programming

as a systematic discipline based on certain fundamental concepts
clearly and naturally reflected by the language.

PASCAL NEWS 1/18 MAY, 1980 PAGE 3

(b) to define a language whose implementations could be both
reliable and efficient on then available computers.

However, it has become apparent that Pascal has attributes which go
far beyond these original goals. It is now being increasingly used
commercially in the writing of both system and application software.
This standard is primarily a consequence of the growing commercial
interest in Pascal and the need to promote the portability of Pascal
programs between data processing systems.

1. SCOPE OF THIS STANDARD

1.1 This Standard specifies requiremen ts for
(a) the syntax of Pascal;
(b) the semantic rules for interpreting the meaning of a program

written in Pascal;
(c) the form of input data to be processed by a program written in

Pascal;
(d) the form of output data produced by a program written in

Pascal.

1.2 This standard does not specify
(a) the size or complexity of a program and its data that will

exceed the capacity of any specific data processing system or
the capacity of a particular processor;

(b) the minimal requirements of a data processing system that is
capable of supporting an implementation of a processor for
Pascal;

(c) the set of commands used to control the environment in which a
Pascal program is transformed

(d) the mechanism by which
transformed for use by a data

2. REFERENCES

None.

3. DEFINITIONS

and executed;
programs written
processing system.

in Pascal are

(a) error. A violation by a program of the requirements of this
standard.

(b) implementation-defined. Those parts of the language which may
differ between processors, but which will be defined for any
particular processor.

(c) implementation-dependent. Those parts of the language which may
differ between processors, and for which there need not be a
definition for a particular processor.

(d) processor. A compiler, interpreter, or other mechanism which
accepts the program as input and either executes it, prepares it
for execution, or both.

(e) scope. The text for which the declaration or definition of an
identifier or label is valid.

(f) totally-undefined. If a variable is of a structured-type, the
state of the variable when every component of the variable is
totally-undefined. Totally-undefined is synonymous with
undefined if the variable is not of a structured-type.

PA:5CAL NEWS 1118 MAY, 1980 PAGE 4

(g) undefined. The state of a variable or function when the variable
or function does not have attributed to it a value of its type.

4. DEFINITIONAL CONVENTIONS

The metalanguage used in this standard to specify the syntax of the
constructs is based on Backus-Naur form. The notation has been
modified from the original to permit greater convenience of
description and to allow for iterative productions to replace
recursive ones. Table 1 lists the meanings of the various
meta-symbols. Further specification of the constructs is given by
prose and, in some cases, by equivalent program fragments. Any
identifier that is defined in clause 6 as the identifier of a
predeclared or predefined entity shall denote that entity by its
occurrence in such a program fragment. In all other respects, any
such program fragment is bound by any pertinent requirement of this
standard.

Meta-symbol

=

[x]

{x}

"xyz"

lower-case-name

Table 1. Metalanguage symbols

Meaning

shall be defined to be

alternatively

end of definition

o or instance of x

o or more instances of x

grouping: anyone of x,y, ... ,z

the terminal symbol xyz

a non-terminal symbol

For increased readability, the non-terminal symbols are hyphenated.
A sequence of terminal and non-terminal symbols in a production
implies the concatenation of the text that they ultimately
represent. Within 6.1 this concatenation is direct; no characters
may intervene. In all other parts of this standard the
concatenation is in accordance with the rules set out in 6.1.

The characters required to form Pascal programs are those implicitly
required to form the tokens and separators defined in 6.1.

5. COMPLIANCE

5.1 Processors
A processor complying with the requirements of this standard shall:

PASCAL NEWS 1118 MA Y, 1980 PAGE 5

(a) accept all the features of the language specified in clause 6
with the meanings defined in clause 6;

(b) be accompanied by a document that provides a definition of all
implementation-defined features;

(c) treat each occurrence of an error in at least one of the
following ways:
1) there shall be a statement in an accompanying document that
the error is not reported;
2) the processor shall have reported a prior warning that an
occurrence of that error was possible;
3) the processor shall report the error during preparation of
the program for execution;
4) the processor shall report the error during execution of the
program.
The method for reporting errors or warnings shall be
implementation-dependent.

(d) be accompanied by a document that separately describes any
features accepted by the processor that are not specified in
clause 6. Such extensions shall be described as being
'extensions to Pascal specified by ISO : 198-'.

(e) be able to process in a manner similar to that specified for
errors any use of any such extension;

(f) be able to process in a manner similar to that specified for
errors any use of an implementation-dependent feature.

5.2 Programs
A program complying with the requirements of this standard shall:
(a) use only those features of the language specified in clause 6;
(b) not rely on any particular interpretation of

implementation-dependent features.

6. REQUIREMENTS

6.1 Lexical tokens

NOTE. The syntax given in this sub-clause (6.1) describes the
formation of lexical tokens from characters and the separation
of these tokens, and therefore does not adhere to the same rules
as the syntax in the rest of this standard.

6.1.1 General. The lexical tokens used to construct Pascal programs
shall be classified into special-symbols, identifiers, directives,
unsigned-numbers, labels and character-strings. The case of any
letter occurring anywhere outside of a character-string (see 6.1.7)
shall be insignificant in that occurrence to the meaning of the
program.

letter = "a"l"b"l"c"l"d"l"e"l"f"l"g"l"h"l"i"l"j"l"k"l"l"l"m"1
"n"l"o"l"p"l"q"l"r"l"s"l"t"l"u"l"v"l"w"l"x"l"y"l"z" .

digit = "0"1"1"1"2"1"3"1"4"1"5"1"6"1"7"1"8"1"9" .

6.1.2 Special-symbols. The special-symbols are tokens having special
meanings and shall be used to delimit the syntactic units of the
language.

MAl, 19t)O

special-symbol = "+"1"-"1"1"1"1"1"="1"<"1">"1"["1"]"1
"."I","I":"I";"I"T"I"("I")"I
"<>"1"<="1">="1":="1" .. "1 word-symbol.

word-symbol = "and" 1 "array" I "begin" 1 "case"l "const" I "div" I
"do" I "downto" I "else" 1 "end" I "file": "for" 1
"function" 1 "goto" 1 "if"I"in"l "label" I "mod" I
"nil" I "not" 1 "of" I "or" I "packed" 1 "procedure" I
"program" 1 "record" I "repeat" I "set" I "then" 1
"to"lfltype"I"until"l"var"I"while"I"with" .

PAGE 6

6.1.3 Identifiers. Identifiers shall serve to denote constants,
types, variables, procedures, functions parameters, bounds and
programs, and fields and tag-fields in records. Identifiers may be
of any length. No identifier shall have the same spelling as any
word-symbol.

identifier = letter {(letter digit)} •

Examples:
X time read integer sum AlterHeatSetting
InquireWorkstationTransformation
InquireWorkstationIdentification

6.1.4 Directiyes. Directives shall only occur as a replacement for a
procedure-block or function-block. The directive forward shall be
the only standard directive (see 6.6.1 and 6.6.2). Other
implementation-dependent directives may be defined. No directive
shall have the same spelling as any word-symbol.

directive = letter {(letter: digit)} •

6.1.5 Numbers. Decimal notation shall be used for numbers that are
the constants of integer-type and real-type (see 6.4.2.2). The
letter "e" preceding a scale factor shall mean 'times ten to the
power of'. The value of an unsigned-integer shall be in the closed
interval 0 to maxint (see 6.4.2.2).

digit-sequence = digit {digit} .
unsigned-integer = digit-sequence •
unsigned-real =

unsigned-integer fl." digit-sequence ["e" scale-factor]
unsigned-integer "e" scale-factor .

unsigned-number = unsigned-integer I unsigned-real •
scale-factor = signed-integer •
sign = fI+" I "-" •
signed-integer = [sign] unsigned-integer .
signed-real = [sign] unsigned-real .
signed-number = signed-integer 1 signed-real .

Examples:
1e10 +100 -0.1 5e-3 87. 35E+8

6.1.6 Labels. Labels shall be digit-sequences and shall be
distinguished by their apparent integral values, that shall be in
the closed interval 0 to 9999.

PASCAL NEWS 1118 MAY, 1980 PAGE '{

label = digit-sequence .

6.1.7 Character-strings. A character-string consisting of a single
string-element shall denote a constant of char-type (see 6.4.2.2). A
character-string consisting of enclosed string-elements shall denote
a constant of a string-type (see 6.4.3.2) with the same number of
components as the character-string has string-elements. If the
string of characters is to contain an apostrophe, this apostrophe
shall be denoted by an apostrophe-image. Each string-character shall
denote an implementation-defined value of char-type.

character-string = "'" string-element
{string-element} "'" •

string-element = apostrophe-image l string-character .
apostrophe-image = """ .
string-character =

one-of-an-implementation-defined-set-of-characters .

Examples:
'A'
'Pascal'

, . , , , , , ,
'THIS IS A STRING'

6.1.8 Token separators. The construct

"I" any-sequence-of-characters-and-ends-of-lines-not­
containing-right-brace "1"

shall be a comment if the "{" does not
character-string. The substitution of a space for
not alter the meaning of a program.

occur within a
a comment shall

Comments, spaces (except in character-strings), and ends of lines
shall be considered to be token separators. Zero or more token
separators may occur between any two consecutive tokens, or before
the first token of a program text. There shall be at least one
separator between any pair of consecutive tokens made up of
identifiers, word-symbols, or unsigned-numbers. No separators shall
occur within tokens.

6.2 Blocks and scope
6.2.1 Block. A block shall consist of the defipitions, declarations
and statement-part that together form a part of a
procedure-declaration, of a function-declaration or of a program.

block = label-declaration-part
constant-de fin it ion-part

type-definition-part
variable-declaration-part

procedure-and-function-declaration-part
statement-part .

The label-declaration-part shall specify all labels that prefix a
statement in the corresponding statement-part. Each declared label
shall prefix at most one statement in the statement-part. The

PASCAL NEWS 1118 MAY, 1980 PAGE 8

occurrence of a label as part of a label-declaration-part shall be
its defining-point for the region that is the block immediately
containing the label-declaration-part.

label-declaration-part = ["label II label {", II label} II j II] •

constant-definition-part = [llconst" constant-definition
{constant-definition "j"}]

type-definition-part = [lltype" type-definition ";"
{type-definition "j"}] .

".11 ,

variable-declaration-part = ["var" variable-declaration "j"
{variable-declaration "j"}] .

procedure-and-function-declaration-part =
{(procedure-declaration l function-declaration) "j "} •

The statement-part shall specify the algorithmic actions to be
executed upon an activation of the block.

statement-part = compound-statement .

All variables whose identifiers are declared in the
variable-declaration-part of a block, except for those listed as
program-parameters, shall be totally-undefined when execution of the
statement-part of their block commences.

6.2.2 Scope
6.2.2.1 Each identifier or label within the block of a Pascal

program shall have a defining-point.
6.2.2.2 Each defining-point shall have a region that is a part of

the program text, and a scope that is a part or all of that
region.

6.2.2.3 The region of each defining-point is defined elsewhere (see
6.2.1, 6.2.2.10, 6.3, 6.4.1, 6.4.2.3, 6.4.3.3, 6.5.1,
6.6.1, 6.6.2, 6.6.3.1, 6.8.3.10).

6.2.2.4 The scope of each defining-point shall be its region
(including all regions enclosed by that region) subject to
6.2.2.5 and 6.2.2.6.

6.2.2.5 When an identifier or label that has a defining-point for
region A has a further defining-point for some region B
enclosed by A, then region B and all regions enclosed by B
shall be excluded from the scope of the defining-point for
region A.

6.2.2.6 T~e field-identifier of a field-designator (see 6.5.3.3)
shall be one of the field-identifiers associated with the
type of the record-variable.

6.2.2.7 The scope of a defining-point of an identifier or label
shall include no other defining-point of the same
identifier or label.

6.2.2.8 Within the scope of a defining-point of an identifier or
label, all other occurrences of that identifier or label
shall be designated corresponding occurrences. No
occurrence outside that scope shall be a corresponding
occurrence.

PASCAL NEWS 1118 MAY, 1980 PAGE 9

6.2.2.9 A defining-point of an identifier or label shall precede
all corresponding occurrences of that identifier or label
in the pr.ogram-block with one exception, namely that a
type-identifier T, that denotes the domain of a
pointer-type TT, may have its defining-point anywhere
within the type-definition-part in which TT occurs.

6.2.2.10 Identifiers that denote standard constants, types,
procedures and functions shall be used as if their
defining-points have a region enclosing the program.

6.2.2.1' Whatever an identifier or label denotes at its
defining-point shall be denoted at all corresponding
occurrences of that identifier or label.

6.3 Constant-definitions. A constant-definition shall introduce an
identifier to denote a constant.

constant-definition = identifier "="
constant = [sign] (unsigned-number

I character-string.
constant-identifier = identifier •

constant •
constant-identifier)

The occurrence of an identifier as the left-hand side of a
constant-definition shall be its defining-point, at the end of the
constant-definition, for the region that is the block immediately
containing the constant-definition-part in which the
constant-definition occurs. Each corresponding occurrence of that
identifier shall be a constant-identifier and shall denote the
constant of the constant-definition. A constant-identifier preceded
by a sign shall have been defined to denote a value of real-type or
of integer-type.

6.4 TYDe-definitions
6.4.' General. A type shall be an attribute that is possessed by
every value and every variable. Each occurrence of a new-type shall
denote a distinct type. A type-definition shall introduce an
identifier to denote a type.

type-definition = identifier "=" type-denoter .
type-denoter = type-identifier I new-type .
new-type = simple-type I structured-type I pointer-type .

The occurrence of an identifier as the left-hand side of a
type-definition shall be its. defining-point, at the end of the
type-definition, for the region that is the block immediately
containing the type-definition-part in which the type-definition
occurs. Each corresponding occurrence of that identifier shall be a
type-identifier and shall denote the same type as is denoted by its
type-denoter.

Types shall be classified as simple, structured or pointer types
according to the new-type with which they have been denoted. There
shall be in addition certain predefined types which shall be denoted
by predefined type-identifiers (see 6.4.2.2 and 6.4.3.5). A
type-identifier shall be considered as a simple-type-identifier, a
structured-type-identifier, or a pointer-type-identifier, according
to the type that it denotes.

• no.JvnL nr:.vv.:> tF I ~ MAY, 1980 PAGE 10

simple-type-identifier = type-identifier .
structured-type-identifier = type-identifier
pointer-type-identifier = type-identifier
type-identifier = identifier .

6.4.2 Simple-~
6.4.2.1 General. A simple-type shall determine an ordered set of
values. The values of each ordinal-type shall have integer ordinal
numbers.

simple-type = ordinal-type I real-type .
ordinal-type = enumerated-type I subrange-type

integer-type I Boolean-type I
ordinal-type-identifier .

I
I

char-type

Where an appropriate word is substituted for x, an x-type-identifier
shall be a type-identifier defined to denote an x-type.

6.4.2.2
standard:

Standard simple-types. The following types shall be

integer-type

real-type

Boolean-type

char-type

The predefined integer-type-identifier integer shall
denote the integer-type. The values shall be a subset
of the whole numbers, denoted as specified in 6.1.5
by the signed-integer values (see also 6.7.2.2). The
ordinal number of a value of integer-type shall be
the value itself.

The predefined real-type-identifier ~ shall denote
the real-type. The values shall be an
implementation-defined subset of the real numbers
denoted as specified in 6.1.5 by the signed-real
values.

The predefined Boolean-type-identifier Boolean stlall
denote the Boolean-type. The values shall be the
enumeration of truth values denoted by the predefined
constant-identifiers false and ~, such that false
is the predecessor -of true . The ordinal numbers of
the truth values denoted by false and ~ shall be
the integer values 0 and 1 respectively.

The predefined char-type-identifier char shall denote
the char-type. The type shall be the enumeration of a
set of implementation-defined characters, some
possibly without graphic representations. The ordinal
numbers of the character values shall be values of
integer-type, that are implementation-defined, and
that are determined by mapping the character values
on to consequtive non-negative integer values
starting at zero. The mapping shall be order
preserving. The following relations shall hold:

(a) The subset of character values representing the
digits 0 to 9 shall be numerically ordered and

PASCAL NEWS 1118 MAY, 1980 PAGE

contiguous.

(b) The subset of character values representing the
upper-case letters A to Z, if available, shall be
alphabetically ordered but not necessarily
contiguous.

(c) The subset of character values representing the
lower-case letters a to z, if available, shall be
alphabetically ordered but not necessarily
contiguous.

(d) The ordering relationship between any two
character values shall be the same as between their
ordinal numbers.

NOTE. Operators applicable to standard types are specified in
6.7.2.

6.4.2.3 Enumerated-types. An enumerated-type shall determine an
ordered set of values by enumeration of the identifiers that denote
those values. The ordering of these values shall be determined by
the sequence in which their identifiers are enumerated, i.e. if x
precedes y then x is less than y. The ordinal number of a value that
is of an enumerated-type shall be determined by mapping all the
values of the type as they occur in the identifier-list of the
enumerated-type on to consecutive non-negative integer values
starting from zero.

enumerated-type = "(" identifier-list H)" .
identifier-list = identifier { "," identifier} .

The occurrence of an identifier as part of the identifier-list of an
enumerated-type shall be its defining-point as a constant-identifier
for the region that is the block immediately containing the
type-definition-part or variable-declaration-part in which the
enumerated-type occurs.

Examples:
(red ,yellow, green ,blue ,tartan)
(club,diamond,heart,spade)
(married ,divorced ,widowed ,single)
(scanning,found,notpresent)
(eusy,InterruptEnable,ParityError,OutOfPaper,LineBreak)

6.4.2.4 SUbrange-types. The definition of a type as a subrange of an
ordinal-type shall include identification of the smallest and the
largest value in the subrange. The first constant shall specify the
smallest value which shall be less than or equal to the largest
value. Both constants shall be of the same ordinal-type, and that
ordinal-type shall be designated the host type of the
sUbrange-type.

subrange-type = constant" "constant.

1 1

PASCAL NEWS 1118

Examples:
1 •• 100
-10 .. +10
red .. green
'0' .. '9'

6.4.3 Structured-types

MAY, 1980 PAGE 12

6.4.3.1 General. Structured-types shall
record, set or file types according to the
immediately contained in their denotation.
a structured-type shall be a value.

be classified as array,
unpacked-structured-type

A component of a value of

structured-type = ["packed"] unpacked-structured-type
structured-type-identifier .

unpacked-structured-type = array-type : record-type set-type
file-type .

A structured-type which immediately contains an
unpacked-structured-type shall be designated packed if and only if
the token packed is immediately contained in the structured-type.
The designation of a structured-type as packed shall indicate to the
processor that data-storage should be economised, even if this
causes operations on, or accesses to components of, variables of the
type to be less efficient in terms of space or time.

The designation of a structured-type as packed shall affect only the
representation in data-storage of that structured-type. If a
component is itself structured, the component's representation in
data-storage shall be packed only if the type of the component is
designated packed.

NOTE. Sections 6.4.3.2, 6.4.5, 6.6.3.3, and 6.6.5.4 specify the
ways in which the treatment of entities of a type is affected by
whether or not the type is designated packed.

6.4.3.2 Array-types. An array-type shall be structured as a mapping
from each value of its index-type onto a distinct component. The
index-type shall be an ordinal-type.

array-type = "array" "[" index-type { "," index-type} "J" "of"
component-type .

index-type = ordinal-type .
component-type = type-denoter

Examples:

array [1 .. 100] of real
array [Boolean] of colour

An array-type that specifies a sequence of two or more index-types
shall be an alternative notation for an array-type specified to have
the index-type of the first index-type in the sequence, and to have
a component-type that is an array-type specifying the sequence of
index-types without the first and specifying the same component-type
as the original specification. The component-type thus constructed

PASCAL NEWS 1118 PAGE 13

shall be designated packed if and only if the original array-type is
designated packed.

NOTE. Each of the following two examples thus contains different
ways of expressing its array-type.

Example 1.
array[Boolean] of array[1 .• 10] of array[size] of real
array[Boolean] of array[1 •. 10,size] of real
array[Boolean,1 .. 10,size] of real
array[Boolean,1 .. 10] of array[size] of real

Example 2.
packed array[1 .. 10,1 •• 8] of Boolean
packed array[1 •. 10] of packed array[1 .. 8] of Boolean

Let i denote a value of the index-type; let v[i] denote a value of
that component of the array-type that corresponds to the value i by
the structure of the array-type; let the smallest and largest values
of the index-type be denoted by m and n; and let k =
(ord(n)-ord(m)+l) denote the number of values of the index-type.
Then the values of the array-type shall be the distinct k-tuples of
the form:

(v[m], ..• ,v[n])

NOTE. A value of an array-type does not therefore exist unless
all of its component values are defined. If the component-type
has c values, then it follows that the cardinality of the set of
values of the array-type is c raised to the power k.

Any type d~noted by

packed array[Tl] of T2

where T1 is a subrange-type with a lower bound of 1 and T2 is the
char-type, shall be designated a string-type.

NOTE. The values of a string-type possess additional properties
which determine their correspondence with character-strings (see
6.1.7), allow writing them to textfiles (see 6.9.4.7) and define
their use with relational-operations (see 6.7.2.5).

6.4.3.3 Record-types. A record-type shall be structured as a fixed
number of components that shall be designated fields.

The occurrence of an identifier as a tag-field or as part of the
identifier-list of a record-section shall be its defining-point as a
field-identifier for the region that is the record-type immediately
containing the tag-field or record-section. Each field-identifier
shall be associated with a component of the specified type.

Let a variant-par.t contained in a field-list be considered as an
additional field with appropriate values, and let Vi denote a value
of the i-th field in a record-type definition with m fields. Then
the record-type shall have a single null value if it has no fields;
otherwise it shall have only the set of values:

PASCAL NEWS /118 MAY, 1980 PAGE 14

V1, ••• ,Vm

NOTE. If the number of values in each of the fields is
F1,F2, ... ,Fm; then it follows that the cardinality of the set of
values of the record-type is (F1*F2* ... ·Fm).

If the record-type contains a variant-part, the tag-type of that
variant-part shall be an ordinal-type. All the case-constants of
that variant-part shall be distinct and shall be of a type
compatible with the tag-type (see 6.4.5). The set of values of all
the case-constants shall be equal to the set of values of the
tag-type.

Let each field-list immediately contained in a variant of a
variant-part be considered to be a record-type with values as
defined above. Then, if the variant-part contains a tag-field in its
variant-selector or if its variants immediately contain no
case-constant-lists with more than one case-constant, the
variant-part shall have only the values:

k,Xk

where k denotes a value in the tag-type and Xk denotes a value of
the variant associated with k. The occurrence of a case-constant in
the case-constant-list of a variant shall associate the value of the
case-constant with that variant.

NOTE. If there are n values in the tag-type, and the variant
associated with the value i has Ti values, then it follows that
the cardinality of the set of values of the variant-part is
(T1+T2+ ... +Tn).

If a variant-part contains no tag-field in its variant-selector and
it immediately contains case-constant-lists with more than one
case-constant, then its values shall be determined as follows. Let
f(i) denote an implicit function mapping values of the tag-type onto
a new ordinal-type that shall have as many values as there are
variants in the variant-part, and let the mapping be determined by
associating with each variant in turn one value of this new type
that is the result of applying f to each of the values of the
tag-type in the case-constant-list associated with that variant.
Then this case shall be equivalent to the one given before with the
substitution of this new type for the tag-type and appropriate
substitution of the case-constant-lists.

NOTE. A record-value exists only when none of its fields are
undefined. A value of a variant-part exists when one and only
one of its variants has a value.

The value of a tag-field shall determine which variant is active in
determining the value of a variant-part. It shall be an error if any
field-identifier defined within a variant is used in a
field-designator (see 6.5.3.3) unless the value of the tag-field is
associated with that variant. A variant-part that does not contain a
tag-field in its variant-selector shall be assumed to have a virtual
tag-field of the constructed ordinal-type described above and a

PASCAL NEWS fl18
MAY, 1980 PAGE 15

reference to a field of a variant shall attribute to the virtual
tag-field the value of the constructed ordinal-type that is
associated with that variant. Whenever a new variant is selected,
the fields of that variant shall be totally-undefined unless they
have been attributed a value subsequent to the change of variant.

record-type = "record" [field-list [";"]] "end" .
field-list = fixed-part [";" variant-part] i variant-part
fixed-part = record-section { ";" record-section} •
record-section = identifier-list ":" type-denoter •
variant-part = "case" variant-selector "of"

variant { ";" variant} .
variant-selector = [tag-field ":"] tag-type .
tag-field = identifier .
variant = case-constant-list ":" "(" [field-list [";"]] ")" .
tag-type = ordinal-type-identifier
case-constant-list = case-constant
case-constant = constant •

Examples:

record
year. : 0 .. 2000;
month: 1 .. 12;
day: 1 .. 31

end

record
name, firstname : string;
age: 0 .. 99;
case married : Boolean of
true: (Spousesname : string);
false: ()

end

record
x,y : real;
area: real;
case shape of
triangle :

(side : real;

" " ,

inclination, angle 1 , angle2
rectangle

angle) ;

(side1, side2 real;
skew : angle);

circle :
(diameter: real);

end

case-constant }

6.4.3.4 Set-types. A set-type shall determine the set of values that
is structured as the powerset of its base-type. Thus each value of a
set-type shall be a set whose members shall be unique values of the
base-type. If the base-type is the integer-type or a subrange
thereof, the largest and smallest values of the base-type shall lie
within limits which are implementation-defined.

- -- - - n i...t "u 1t I 0 MAY, 1980

set-type = "set" "of" base-type
base-type = ordinal-type .

PAGE 16

NOTE. Operators applicable to values of set-types are specified
in 6.1.2.4.

6.4.3.5 File-tvQes.

NOTE. A file-type describes sequences of values of the specified
component-type, together with a current position in each
sequence and a mode which indicates whether the sequence is
being inspected or generated.

file-type = "file" "of" component-type .

A type-denoter shall not be permissible as the component-type of a
file-type if it denotes either a file-type or a structured-type
having any component whose type-denoter is not permissible as the
component-type of a file-type.

A file-type shall define implicitly a type designated a
sequence-type having exactly those values, which shall be designated
sequences, defined by the following five rules.

(a) SO shall be a value of the sequence-type S, and shall be called
the empty sequence. The empty sequence shall have no
components.

(b) Let c be a value of the specified component-type, and let x be a
value of the sequence-type S. Then S(c) shall be a sequence of
S, consisting of the single component value c, and S(c)-x shall
also be a sequence, distinct from SO, of type S.

(c) Let c, S, and x be as in (b); let y denote the sequence S(c}-x;
and let z denote the sequence x-S{c}; then the notation y.first
shall denote c (i.e., the first component value of y), y.rest
shall denote x (i. e., the sequence obtained from y by deleting
the first component), and z.last shall denote c (i.e., the last
component value of z).

(d) Let x and y each be a non-empty sequence of type S; then x = y
shall be true if and only if both (x. first = y.first) and
(x.rest = y.rest) are true. If x is the empty sequence, then x
= y shall be true if and only if y is also the empty sequence.

(e) Let x, y, and z be sequences of type S; then x-(y-z) = (x-y)-z
shall be true.

NOTE. The notation x-y represents the concatenat'ion of sequences
x and y. The explicit representation of sequences (e.g. S(c»,
of concatenation of sequences, of the first, last and rest
selectors, and of sequence equality is not part of the Pascal
language. These notations are used to define file values,
below, and the standard file operations in 6.6.5.2 and 6.6.6.5.

A file-type also shall define implicitly a type designated a

PASCAL NEWS 1/18 MAY, 1980 PAGE

mode-type having exactly two values which are designated Inspection
and Generation.

NOTE. The explicit denotation of these values is not defined in
the Pascal language.

A file-type shall be structured as three components. Two of these
components, designated f.L and f.R, shall be of the implicit
sequence-type. The third component, designated f.M, shall be of the
implicit mode-type.

Let f.L and f.R each be a single value of the sequence-type; let f.M
be a single value of the mode-type; then each value of the
file-type shall be a distinct three-tuple of the form

(f.L, f.R, f.M)

where f.R shall be only the empty sequence if f.M is the value
Generation. The value, f, of the file-type shall be designated
empty if and only if f.L-r.R is the empty sequence.

NOTE. The two components, f.L and f.R, of a value of the
file-type may be considered to represent the single sequence
f.L-f.R together with a current position in that sequence. If
f.R is non-empty, then f.R.first may be considered the current
component as determined by the current position; otherwise, the
current position is called the end-of-file position.

A standard file-type shall be denoted by the predefined
structured-type-identifier ~. The component-type implicitly
specified -by type text shall be the standard type char. The
structure of type text shall define an additional sequence-type
whose values are designated lines. A line shall be a sequence
x-See), where x is a sequence of components of type char, and e
represents a special component value, which shall be designated an
end-of-line, and which shall be indistinguishable from the char
value space (denoted ') except by the standard function ~
(6.6.6.5) and by the standard procedures reset (6.6.5.2), writeln
(6.9.5), and ~ (6.9.6). If x is a line then no component of x
other than x.last shall be an end-of-line. This definition shall not
be construed to determine the underlying representation, if any, of
an end-of-line component used by a processor.

A line-sequence, z, shall be either the empty sequence or the
sequence x-y where x is a line and y is a line-sequence.

Every value t of type text shall satisfy one of the following two
rules.

(a) If t.M = Inspection, then t.L-t.R shall be a line-sequence.

(b) If t.M = Generation, then t.L-t.R shall be x-y where x is a
line-sequence and y is a sequence of components of type char.

NOTE. In rule (b), y may be considered, especially if it is
non-empty, to be a partial line which is being generated. Such a

PASCAL NEWS 1118 MAY. 198 a PAGE 18

partial line cannot occur during inspection of a file.

A variable declared to be of type text shall be called a
textfile.

NOTE. All standard procedures and functions applicable to a
variable of type ~ -2! char are applicable to textfiles.
Additional standard procedures and functions, applicable only to
textfiles, are defined in 6.6.6.5 and 6.9.

6.4.4 Pointer-types. The values of a pointer-type shall corisist of a
single nil-value, and a set of identifying-values each identifying a
distinct variable of the domain-type. The set of identifying-values
shall be dynamic, in that the variables and the values identifying
them, may be created and destroyed during the execution of the
program. Pointer values and the variables identified by them shall
be created only by the standard procedure new (see 6.6.5.3).

NOTE. Since the nil-value is not an identifying-value it does
not identify a variable.

The token n1l shall denote the nil-value in all pointer-types.

pointer-type = "T" domain-type I pointer-type-identifier •
domain--type = type-identifier •

NOTE. The token nil does not have a single type, but assumes a
suitable type to satisfy the assignment-compatibility rules, or
the compatibility rules for operators, if possible.

6.4.5 Compatible types. Types T1 and T2 shall be designated
compatible if any of the four statements that follow is true.
(a) T1 and T2 are the same type.
(b) T1 is a subrange of T2, or T2 is a subrange of T1, or both T1

and T2 are subranges of the same host type.
(c) T1 and T2 are set-types of compatible base-types, and either

both T1 and T2 are designated packed or neither T1 nor T2 is
designated packed.

(d) T 1 and ~2 _are _~~!,_ins- types ~i ththe sa,me number of components.

6.4.6 Assignment-compatibility. A value of type T2 shall be
designated assignment-compatible with a type T1 if any of the five
statements that follow is true.
(a) T1 and T2 are the same type, that is neither a file-type nor a

structured-type wi til a file component (this rule is to be
interpreted recursively).

(b) T1 is the real-type and T2 is the integer-type.
(c) T1 and T2 are compatible ordinal-types and the value of type T2

is in the closed interval specified by the type T1.
(d) T1 and T2 are compatible set-types and all the members of the

value of type T2 are in the closed interval specified by the
base-type of T1.

(e) T1 and T2 are compatible string-types.

At any place where the rule of assignment-compatibility is used:

PASCAL NEWS 1118 MAY, 1980 PAGE

(a) It shall be an error if T1 and T2 are compatible ordinal-types
and th~) \ralue of tYlJe 1'2 is not. in the (:lO!5Aci int;erval apecifi.ed
by the type Tl.

(b) It. shall b<:: an error tf Tl and T2 are compatible S(~t-types and
any ruembe;t' of the value of tYPE~ T2 is {lot in the closed inter'val
specified by the base-type of the type 71.

type
nG. tUl:'C:, 1 :;; 0 .. roaxint;
count :: integer';
range :; int,"!ger;
colour:: (reds yellow, green, blue);
sex:;: (male, female);
year:: 1900 .. 1999;
shape = (triangle, rectangle, circle);
puncbedcard = array[1 .. 80] of char;
stl'iilg :. filt~ of cbat';
polar' :: record

r : r'eal j
th€,ta : angle

end;
indextype:: 1 ••]jmit;
vector:: array [indextype] of real;
person :: Tpersondetails;
per'sondetai is =

racord
name, fi.rsi:;name : string;
age : integer;
married : Boolean;
father I child, sib.l ing ?E;t'SOn;

case s : sex of

end;

male :
(enlisted,bearded : Boolean)j

female :
(mot.her, progr'ammer : Boolean)

tape:: file of person;
FileOfInteger :: file of integer;

NOTE. In the above example QQID1.b .r1!.n1!& and j.DJj~g,~j: denote the
same type. The types denoted by yeae and Ilj,\.1..u.r.al are compatible
with, but not the s?.me as, the type denot.ed by .rGlll,g~, .~unt and
Int~.

NOTE. Types occurring in examples i.n the remainder' of this
standard should be as~umed to have been declaced as sp€lo:ified in
6. JL7.

6. 5 ~rattons ~§nQ.!,.u.tJ..Q.!)S oL'yG.ri~.J2lf ... ~.
6.5.1 Variable::.9.JlQlarations. A var'l.able Is an enttty to which a
(em"rent) value may be attributed (;~<?e 6.8.2.2)' A
v3l"iable-declarati.on ~~halJ. c(Jnsist of' a list of identifIers d~noting
the distinct variab.les I followl'3d by a denot.atiOl.l of tneir t.ype.

19

PASCAL NEWS 1118 MAY, 1980 PAGE 20

variable-declaration = identifier-list ":" type-denoter •

The occurrence of an identifier as part of the identifier-list of a
variable-declaration shall be its defining-point as a
variable-identifier of the given type for the region that is the
block immediately containing the variable-declaration-part in which
the variable-declaration occurs. A variable declared in the
variable-declaration-part of a block shall exist from the time the
block is activated, until its statement-part is completed.

NOTE. This implies that each activation of a block introduces a
distinct set of variables.

The structure of a variable of a structured-type shall be the
structure of the structured-type.

Example of a variable-declaration-part

var
x,y,z,max: real;
i,j: integer;
k: 0 •• 9;
p,q,r: Boolean;
operator: (plus, minus, times);
a: array[O •• 63] of real;
c: colour;
f: file of char;
hue1,hue2: set of colour;
p1,p2: person;
m,m1,m2 : array[1 •• 10,1 •• 10] of real;
coord : polar;
pooltape : array[1 •• 4] of FileOflntegerj
date: record month: 1 •. 12; year: integer end;

A variable-access, according to whether it is an entire-variable, a
component-variable a referenced-variable or a buffer-variable,
denotes either a declared variable, or a component of a variable; a
variable which is identified by a pointer value (see 6.4.4) or a
buffer-variable.

variable-access = entire-variable I component-variable
referenced-variable I buffer-variable •

NOTE. Variables occurring in examples in the remainder of this
standard should be assumed to have been declared as specified in
6.5.1.

6.5.2 Entire-variables. The identifier of an entire-variable denotes
the variable of the corresponding variable-declaration,
value-parameter-specification or variable-parameter-specification
(see 6. 6 • 3 • 1) •

entire-variable = variable-identifier •
variable-identifier = identifier •

PASCAL NEWS 1118 MAY, 1980 PAGE 21

6.5.3 Component-variables
6.5.3.1 General. A component of a variable of a structured-type
shall be a variable and shall be denoted by a component-variable.
The type of a component-variable shall be the type of the specified
component. The value, if any, of the component of a variable shall
be the same component of the value, if any, of the variable.

component-variable = indexed-variable : field-designator .

6.5.3.2 Indexed-yariables. A component of a variable
array-type shall be denoted by an indexed-variable.

indexed-variable =
array-variable "[" index-expression
{ "," index-expression} "]"

array-variable = variable-access
index-expression = expression .

of an

The action of selecting a particular component of an array-variable
shall be designated indexing. An array-variable shall be a variable
of an array-type. The value of each index expression shall be
assignment-compatible with the corresponding index-type specified in
the definition of the array-type. The component denoted by the
indexed-variable shall be the component that corresponds to the
value of the index-expression by the mapping of the type of the
array-variable (see 6.4.3.2).

Examples:
a[12]
a[i+j]

If the array-variable is itself an indexed-variable an abbreviation
may be used. In the abbreviated form, all the index expressions
shall be contained within the same enclosing square-brackets, a
single comma replacing the sequence of right-square-bracket
left-square-bracket that occurred in the full form. The abbreviated
form shall be equivalent to the full form.

Examples:
m[kJ[1]
m[k,1]

NOTE. The two examples denote the same component variable.

6.5.3.3 Field-designators. A field-designator shall denote the
component of the record-variable that is associated with the
field-identifier by the type of the record-variable (see 6.2.2.6 and
6.4.3.3). A record-variable shall be a variable of a record-type.

field-designator. = record-variable
record-variable = variable-access .
field-identifier = identifier •

" " . field-identifier .

PASCAL NE\-lS 1118

Examples:
p2i .mother
coord.theta

6.5.4 Referenced-variables.

MAY, 1920 PAGE 22

A referenced-variable shall denote the variable (if any) identified
by the value of the pointer-variable (see 6.4.4 and 6.6.5.3).

referenced-variable = pointer-variable "T"
pointer-variable = variable-access

A variable allocated by the standard procedure new (see 6.6.5.3)
shall be accessible until it is deallocated by the standard
procedure dispose (see 6.6.5.3) or until program execution
terminates. A pointer-variable shall be a variable of a
pointer-type. The use of a pointer-variable in a referenced-variable
shall be designated de-referencing.
It shall be an error if the pointer-variable has a nil-value or is
undefined at the time it is de-referenced.

Examples:
pH
pH. fatherT
p1i.siblingT.fatherT

6.5.5 Buffer-variables. A file-variable shall denote a variable of a
file-type. With each file-variable shall be associated a variable
of the component-type specified by the file-type, denoted by a
buffer-variable containing the file-variable.

buffer-variable = file-variable
file-variable = variable •

Examples:
inputT
pool taper 2]f

", " I •

It shall be an error if the value of a file-variable f is altered
while the buffer-variable ·is an actual variable parameter, or an
element of the record-variable-list of a with-statement, or both. It
shall be an error if the value of a file-variable f is altered by an
assignment-statement which contains the buffer-variable fT in its
left-hand side.

6.6 Procedure and function declarations
6.6.1 Procedure-declarations. A procedure-declaration shall
associate an identifier with a procedure-block so that it can be
activated by a procedure-statement. Activation of the procedure
shall activate the procedure-block.

procedure-declaration =
proced ure-heading "j" directive I
procedure-identification "j" procedure-block
procedure-heading "j" procedure-block •

PASCAL NEWS 1118 NAY, 1980

procedure-heading =
"procedure" identifier [formal-parameter-list J

procedure-identification =
"procedure" procedure-identifier

procedure-identifier = identifier .
procedure-block = block .

PAGE 23

The procedure-heading shall specify the identifier denoting the
procedure and the formal parameters (if any).

The occurrence of an identifier as part of the procedure-heading of
a procedure-declaration shall be its defining-point as a
procedure-identifier for the region that is the block immediately
containing the procedure-and-function-declaration-part in which the
procedure-declaration occurs.

The defining-point of a procedure-identifier shall be followed by a
declaration of its procedure-block. Where the procedure-heading and
the procedure-block occur in separate procedure-declarations, the
correspondence shall be established by the use of the
procedure-identifier that denoted the procedure.

In the case where the declaration of the procedure-block immediately
follows the declaration of the procedure-heading, an abbreviation
shall be allowed where the sequence

directive ";" "procedure" procedure-identifier ";"
may be omitted between the procedure-heading and the
procedure-block. The abbreviation shall be equivalent to the full
notation.

Examples:

procedure readinteger (var f: text; var x: ihteger);
var

i:natural;
begin

end;

while fi = ' , do get(f);
{The file buffer contains the first non-space char}
i : = 0;
while fi in ['0' .. '9'] do begin

end;

i := (10 * i) + (ord(fi) - ord('O'»;
get(f)

{The file buffer contains a non-digit}
x := i
{Of course if there are no digits, x is zero}

procedure AddVectors(var A,B,C: array[low .. high: natural] of real);
var

i : natural;
begin

for i := low to high do A[i] := B[i] + C[i]
end { of AddVectors };

PASCAL NEWS 1118 MAY, 1980

procedure bisect(function f(x : real) real;
a,b: realj
val' result: real);

{This procedure attempts to find a zero of f(x) in (a,b) by
the method of bisection. It is assumed that the procedure is
called with suitable values of a and b such that

(f(a)<O) and (f(b»O)
The estimate is returned in the last parameter.}

val'
midpoint: real;

begin
{The invariant P is true by calling assumption}
while abs(a-b) > le-10'abs(a) do begin

end;

midpoint := (a+b)/2;
if f(midpoint) < 0 then a := midpoint
else b ::midpoint
{Which re-establishes the invariant:

P = (f(a)<O) and (f(b»O)
and reduces the interval (a,b) provided that the value
of midpoint is distinct from both a and b.}

{P together with the loop exit condition assures that a zero
is contained in a small sub-interval. Return the midpoint as
the zero.}

result := midpoint
end;

procedure ConditionForAppending(var f: Fi1eOfInteger)j
{This procedure takes a file in an arbitrary state and sets
it up in a condition for appending data to its end. Simpler
conditioning is only possible if assumptions are made about the
initial state of the file.}

val'
LocalCopy : Fi1eOflntegerj

procedure CopyFi1es(var from,to FileOflnteger)j
begin

reset(from) j rewrite (to) j
while not eof(from) do begin

to r : = from r ;
put(to)j get(from)

end;
end { of CopyFiles }j

begin {of body of ConditionForAppending}
CopyFiles(f,LocaICopY)j
CopyFiles(LocaICopy,f)

end { of ConditionForAppending }j

PAGE 24

6.6.2 Function-declarations. Function-declarations shall associate
an identifier with a function-block so that it can be activated by a
function-designator. Activation of tbe function shall activate the
function-block.

PASCAL NEWS 1/18 MA Y, 1980

function-declaration =
function-heading ";" directive:
function-identification ";" function-block
function-heading ";" function-block .

function-heading =
"function" identifier [[formal-parameter-listJ
":" result-type]

function-identification =
"function" function-identifier .

function-identifier = identifier .
result-type = simple-type-identifier :

pointer-type-identifier
function-block = block .

PAGE 25

The function-heading shall specify the identifier denoting the
function, the formal parameters (if any), and the type of the
function result. The function-block shall contain at least one
assignment-statement that attributes a value to the
function-identifier (see 6.8.2.2). The value of the function shall
be the last value attributed to the function-identifier. If no
assignment occurs during the activation of the function-block the
function shall be undefined.

The occurrence of an identifier as part of the function-heading of a
function-declaration shall be its defining-point as a
function-identifier of the type denoted by the result-type for the
region that is the block immediately containing the
procedure-and-function-declaration-part in which the
function-declaration occurs.

The defining-point of a function-identifier shall be followed by a
declaration of. its function-block. Where the function-heading and
the function-block occur in separate function-d.eclarations, the
correspondence shall be established by the use of the
function-identifier that denoted the function.

In the case where the declaration of the function-block immediately
follows the declaration of the function-heading, an abbreviation
shall be allowed where the sequence

directive ";" "function" function-identifier ";"
may be omitted between the function-heading and the function-block.
The abbreviation shall be equivalent to the full notation.

PASCAL NEWS 1118 MAY, 1980

Examples:

function Sqrt(x:real): real;
{This function computes the square root of x (x>O)
using Newton' s meth~,d.}

V'ar
old,new: real;

begin
new := x;
repeat

old := new;
new := (old + x/old)*O.5j

until abs(new-old) < Eps*new;
{Eps being a global constant}
Sqrt := new

end { of Sqrt };

function GCD(m,n: natural): natural;
forward;

function max(a: vector; n: indextype): real;
{TMs function finds the largest value in a, whlch is declared

a: array[indextype] of real
and where

val'
indextype = 1 .. limit}

largestsofar: real;
fence: indextypej

begin
largestsofar : = a[1 J;
{Establishes largestsofar = max(a[1])}
for fence := 2 to limit do begin

if largestsofar < a[f~nce] then largestsofar' := a[fence]
{Re-establishing largestsofar = max(a[1], ,., ,a[fence])}

end;
{So now largestsofar = max(a[1], , .. ,a[Hmit])}
max := largestsofar

end { of max };

fune tion GCD;
{Parameters omitted as this completes a forward declaration}
begin

if n=O then GCD := m else GCD := GCD(n,m mod n);
end;

6.6.3 Pararuete~

PAGE 26

6.6.3.1 .Q.Q.neral. There shall be four kinds of parameters value
pa'rameters , variable parameters, proced ural parameters and
functional parameters. An identifier-list in a
value-parameter-specification shall be a list of value parameters.
An identifier-list in a variable-parameter-specification shall be a
list of variable parameters,

PASCAL NEWS #18 MA Y, 1980

formal-paraMeter-list =
"(,, formal-paraMeter-section
{";" formal-parameter-section} ")" •

formal-paraMeter-section =
value-paraMeter-specification :
variable-paraMeter-specification :
procedural-paraMeter-specification
functional-paraMeter-specification •

value-paraMeter-specification =
identifier-list ":" type-identifier .

variable-paraMeter-specification =
"var" identifier-list ":"
(type-identifier : conformant-array-schema) •

conformant-array-schema =
"array" "[" index-type-specification
{ ";" index-type-specification } "]" "of"
(type-identifier : conformant-array-schema) .

index-type-specification =
identifier " •• " identifier
":" ordinal-type-identifier .

bound-identifier = identifier •
procedural-paraMeter-specification =

procedure-heading •
functional-paraMeter-specification =

function-heading .

PAGE 27

An identifier that is defined to be a parameter-identifier in a
formal-paraMeter-list shall be designated a formal parameter of the
corresponding function-block or procedure-block, if any.

The occurrence of an identifier as part of an identifier-list of a
value-paraMeter-specification or a variable-paraMeter-specification
shall be its defining-point as a parameter-identifier for the region
that is the formal-paraMeter-list immediately containing it and its
defining-point as a variable-identifier for the region that is the
corresponding procedure-block or function-block, if any.

The occurrence of an identifier as part of an
index-type-specification shall be its defining-point as a
bound-identifier for the region that is the formal-paraMeter-list
immediately containing it and for the region that is the
corresponding procedure-block or function-block, if any.

The occurrence of an identifier as part of a procedure-heading in a
procedural-paraMeter-specification shall be its def~ning-point as a
parameter-identifier for the region that is the
formal-paraMeter-list immediately containing it and its
defining-point as a procedure-identifier for the region that is the
corresponging procedure-block or function-block, if any.

The occurrence of an identifier as part of a function-heading in a
functional-paraMeter-specification shall be its defining-pOint as a
parameter-identifier for the region that is the
formal-paraMeter-list immediately containing it and its
defining-point as a function-identifier for the region that is the

PASCAL NEWS 1118 MAY, 1980 PAGE 28

corresponding procedure-block or function-block, if any.

NOTE. If the formal-parameter-list is within a
procedural-parameter-specification
functional-parameter-specification, there
procedure-block or function-block.

or a
is no corresponding

If the component of a conformant-array-schema is itself a
conformant-array-schema, then an abbreviated form of definition may
be used. In the abbreviated form, all the index-type-specifications
shall be contained within the same enclosing square brackets, a
single semi-colon replacing each sequence of right-square-bracket
"of" "array" left-square-bracket that occurred in the full form. The
abbreviated form shall be equivalent to the full form.

Examples:
array[u .• v: T1) of array[j .• k: T2] of T3
array[u .• v: T1; j .. k: T2] of T3

6.6.3.2 Value parameters. The formal parameter shall denote a
distinct variable of the specified type. The actual-parameter (see
6.7.3 and 6.8.2.3) shall be an expression whose value is
assignment-compatible with the type of the formal parameter. The
current value of the expression shall be attributed upon activation
of the block to the variable that is denoted by the formal
parameter.

6.6.3.3 Variable parameters. The actual-parameter shall be a
variable-access. The actual-parameters (see 6.7.3 and 6.8.2.3)
corresponding to formal parameters that occur in a
variable-parameter-specification shall all be of the same type. This
type shall be the same as the type denoted by the type-identifier in
the variable-parameter-specification if the formal parameter 1s so
specified, otherwise it shall be conformable to the
conformant-array-schema in the variable-parameter-specification.
Each formal parameter shall denote the corresponding
actual-parameter during the entire activation of the block.

If access to the actual-parameter involves the indexing of an array
and/or a reference to a f'i~ld within a variant of a record and/or
the de-referencing of a pointer-variable and/or a reference to a
buffer-variable, these actions shall be executed before the
activation of the block.

Components of variables of any type designated packed shall not be
used as actual variable parameters.

and T2
the

T1

If T1 is an array-type,
ordinal-type-identifier of
conformant-array-schema, then
conformant-array-schema if all the
true.

1s the type denoted by the
index-type-specification of a

is conformable with the
following four statements are

(a) The index-type of T1 is compatible
(b) The smallest and largest ~alue of

with T2.
the index-type
by values of T2.

of T1 lie
within the closed interval defined

PASC.!\L HEHS ff18 MAY, 1980 PAGE 29

(c) The component-type of T1 is the same as the component type of
the conformant-array-schema, or is conformable to the component
conformant-array-schema.

(d) T1 is not designated packed.

It shall be an error if the smallest or largest value of the
index-type of T1 lies outside the closed interval defined by the
values of T2.

During the entire activation of the block, the first
bound-identifier shall denote the smallest value of the index-type
of the actual-parameters, and the second bound-identifier shall
denote the largest value of the index-type of the
actual-parameters.

6.6.3.4 Procedural parameters. The actual-parameter (see 6.1.3 and
6.8.2.3) shall be a procedure-identifier that has a defining-point
in the program-block. The actual procedure and the formal procedure
shall have congruous formal-parameter-lists (see 6.6.3.6). The
formal parameter shall denote the actual parameter during the entire
activation of the block. If the procedural parameter, upon
activation, accesses any entity whose region encloses the
procedure-block, the entity accessed shall be one that would have
been accessible to the procedure-declaration when its
procedure-identifier was passed as a procedural parameter.

6.6.3.5 Functional parameters. The actual-parameter (see 6.1.3 and
6.8.2.3) shall be a function-identifier that has a defining-point in
the program-block. The actual function and the formal function shall
have congruous formal-parameter-lists (see 6.6.3.6) and the same
result-type. The formal parameter shall denote the actual parameter
during the entire activation of the block. If the functional
parameter, upon activation, accesses any entity whose region
encloses the function-block,the entity accessed shall be one that
would have been accessible to the function-declaration when its
function-identifier was passed as a functional parameter.

6.6.3.6 Parameter list congruity. Two formal-parameter-lists shall
be congruous if they contain the same number of
formal-parameter-sections and if the formal-parameter-sections in
corresponding positions match. Two formal-parameter-sections shall
match if any of the four statements that follow is true.
(a) They are both value-parameter-specifications containing the

same number of parameters that are of the same type.
(b) They are both variable-parameter-specifications containing the

same number of parameters that are of'the same type, or have
equivalent conformant-array-schemas. Two
conformant-array-schemas are equivalent, if they have the same
ordinal-type specified in their index-type-specifications and
their components are either of the same type or are equivalent
conformant-array-schemas.

(c) They are both procedural-parameter-specifications with
congruous parameter lists, if any.

(d) They are both functional-parameter-specifications with
congruous parameter lists; if any, and the same result-type.

PASCAL NEWS 1118 MAY, 1980 PAGE 30

6.6.4 Standard procedures and functions
6.6.4.1 General. Standard procedures and functions shall
predeclared. The standard procedures and functions shall be
specified in 6.6.5 and 6.6.6 respectively.

be
as

6.6.5 Standard procedures
6.6.5.1 General. The standard procedures shall be file handling
procedures, dynamic allocation procedures and transfer procedures.

6.6.5.2 File handling procedures. The effects of applying each of
the file handling procedures rewrite, ~, reset and ~ to a
file-variable f Shall be defined by pre-assertions and post­
assertions about f, its components f.L, f.R, and foM, and about the
associated buffer-variable fro The use of the variable g within an
assertion shall be considered to represent the state or value, as
appropriate, of f prior to the operation, and similarly for gr and
fT, while f (within an assertion) shall denote the variable after
the operation.

It shall be an error if the stated pre-assertion does not hold
immediately prior to any use of the defined operation. It shall be
an error if any variable explicitly denoted in an assertion of
equality is undefined. The post-assertion shall hold prior to the
next subsequent reference to the file, its components, or the
buffer- variable.

rewrite (f)

put(f)

reset(f)

pre-assertion:
post-assertion:

true.
(foL = f.R = S(» and
(f.M = Generation) and
(fT is totally-undefined).

pre-assertion: (g.M = Generation) and
(g.L is not undefined) and
(g.R = Se» and
(gr is not undefined).

post-assertion: (foM = Generation) and
(f.L = (g.L-S(gT») and
(foR = S (» and
(fT is totally undefined).

pre-assertion: The components g.L and g.R are not
undefined.

post-assertion: (f.L = S(» and
(f.R = (g.L-g.R-X» and
(f.M = Inspection) and
(if f.R = S() then (fr is
totally-undefined)
else (fT = f.R.first»,

where, if f is of type text and if
g.L-g.R is not empty and if
(g.L'-g.R) .last is not designated an
end-of-line, then X shall be a sequence
having an end-of-line component as its
only component; otherwise X = S().

PASCAL NEWS 1118

get(f)

MAY, 1980 PAGE 31

pre-assertion: (g.M = Insp(;,; tion) and
(neither g.L nor g.R are undefined) and
(g.R<>SO).

post-assertion: (f.M = Inspection) and
(f.L = (g.L-g.R.first» and
(f.R = g.R.rest) and
(if f.R = S() then (fi is
totally-undefined)
else (fi = f.R.first».

When the file-variable f is of a type other than text, the standard
procedures ~ and write shall be defined as follows.

read

write

Read(f,v1, ... ,vn) where v1 ... vn denote variables shall
be equivalent to

begin read(f,v1); ... ; read(f,vn) end

Read(f,v) where v denotes a variable shall be equivalent
to

begin v := fi; get(f) end

Write(f,e1, •.. ,en), where e1 ... en denote expressions
shall be equivalent to

begin write(f,e1); write(f,en) end

Write(f,e), where e denotes an expression shall be
equivalent to

begin fi := e; put(f) end

NOTE. The standard procedures read, write, readln, writeln, and
page, as applied to textfiles, are described in 6.9.

6.6.5.3 Dynamic allocation procedures
The parameters p and q shall be variable-parameters of a
pointer-type.

new(p)

new(p,c1, ... ,cn)

shall allocate a new variable v that is
totally-undefined. The pointer-variable p shall
have attributed to it a value that identifies
the new variable v.
shall allocate a new variable v that is
totally-undefined. The pointer-variable p shall
have attributed to it a value that identifies
the new variable v. The allocated variable shall
have nested variants that correspond to the
case-constants c1, ... ,cn. The case-constants
shall be listed in order of increasing nesting
of the variant-parts. Any variant not specified
shall be at a deeper level of nesting than that
specified by cn. It shall be an error to change
any variant-part of the allocated variable from
a variant specifi~d.

PASCAL NEWS 1118 MA Y, 1980 PAGE 32

dispose(q) shall indicate that the variable qT is no longer
accessible. All pointers that referenced this
variable shall become undefined. It shall be an
error if the variable qT had been allocated
using the form new(p,c1, ... ,cn).

dispose(q,k1, ... ,km)shall indicate that the variable qT, whose
variants correspond to the case-constants
k1 , ••• , km, is ·no longer accessible. The
case-constants shall be listed in order of
increasing nesting of the variant-parts. All
pointers that referenced this variable shall
become undefined. It shall be an error if the
variable had been allocated using the form
new(p,c1, .•. ,cn) and m is less than n. It shall
be an error if the variants in the variable qT
are different from those specified by the
case-constants k1 ... km.

It shall be an error if the pointer parameter of dispose has a
nil-value or is undefined.

It shall be an error if a variable that is identified by the pointer
parameter of dispose (or a component thereof) is currently either an
actual variable parameter, or an element of the record-variable-list
of a with-statement, or both.

It shall be an error if a referenced-variable created using the
second form of new is used in its entirety as an operand in an
expression, or as the variable in an assignment-statement or as an
actual-parameter.

6.6.5.4 Transfer procedures

Let a be a variable of a type denoted by 'array [s1] of T', let z be
a variable of a.type denoted by 'packed array [s2] of T' , and u and
v be the smallest and largest values of the type s2, then the
statement pack(a,i,z) shall be equivalent to

begin
k := ij
for j := u to v do

begin

dnd

z[j] := a[k]j
if j <> v then k := succ(k)
end

PASCAL NEWS #18 MAY, 1980 PAGE 33

and the statement unpack(z,a,i) shall be equivalent to

begin
k := i;
for j := u to v do

begin

end

a[k] := z[j];
if j <> v then k := succ(k)
end

where j and k denote auxiliary variables that do not occur elsewhere
in the program. The type of j shall be s2, the type of k shall be
s1, and i shall denote an expression of a type that is compatible
with s1.

6.6.6 Standard functions
6.6.6.1 General. The standard functions
functions, transfer functions, ordinal
functions.

shall be
functions

arithmetic
and Boolean

6.6.6.2 Arithmetic functions. For the following arithmetic
functions, the expression x shall be either of real-type or
integer-type. For the functions abs and sqr, the type of the result
shall be the same as the type of the parameter, x. For the remaining
arithmetic functions, the result shall always be of real-type. It
shall be an error if the mathematically defined result as defined
below would fall outside the set of values of the indicated result
type.

abs(x)
sqr(x)
sin(x)
cos(x)
exp(x)

In(x)

sqrt(x)

arctan(x)

shall compute the absolute value of x.
shall compute the square of x.
shall compute the sine of x, where x is in radians.
shall compute the cosine of x, where x is in radians.
shall compute the value of the base of natural
logarithms raised to the power x.
shall compute the natural logarithm of x, if x is
greater than zero. It shall be an error if x is not
greater than zero.
shall compute the non-negative square root of x, if x is
not negative. It shall be an error if x is negative.
shall compute the principal value, in radians, of the
arctangent of x.

6.6.6.3 Transfer functions
trunc(x) From the expression x that shall be of real-type, this

function shall return a result of integer-type. The value
of trunc(x) shall be such that if x is positive or zero
then O<=x-trunc(x)<1; otherwise -1<x-trunc(x)<=O. It
shall be an error if such'a value does not exist.
Examples:
trunc(3.7) yields 3
trunc(-3.7) yields -3

round (x) From the expression x that shall be of real-type, this
function shall return a result of integer-type. If x is
positive or zero, round (x) shall be equivalent to

PASCAL NEWS 1118

6.6.6.4
ord(x)

chr(x)

MAY, 1980 PAGE 34

trunc(x+O.5), otherwise round(x) shall be equivalent to
trunc (x-O .5) .
It shall be an error if such a value does not exist.
Examples:
round(3.7) yields 4
round(-3.7) yields -4

Ordinal functions
The parameter x shall be an expression of an ordinal-type.
The result that is of integer-type shall be the ordinal
number (see 6.4.2.2 and 6.4.2.3) of the value of the
expression x. It shall be an error if such a value does not
exist.
The parameter x shall be an expression of integer-type. The
result shall be the value of char-type whose ordinal number
is equal to the value of the expression x if such a
character value exists. It shall be an error if such a
character value does not exist.

NOTE. For any value, ch, of char-type, the following is
true:

chr(ord(ch» = ch

succ(x) The parameter x shall be an expression of an ordinal-type.
The result shall be of the same type as that of the
expression (see 6.7.1). The function shall yield a value
whose ordinal number is one greater than that of the
expression x, if such a value exists. It shall be an error
if such a value does not exist.

pred(x) The parameter x shall be an expression of an ordinal-type.
The result shall be of the same type as that of the
expression (see 6.7.1). The function shall yield a value
whose ordinal number is one less than that of the
expression x, if such a value exists. It shall be an error
if such a value does not exist.

6.6.6.5 Boolean functions
odd(x) The parameter x shall be an expression of integer-type.

eof(f)

eoln(f)

The function yields the value of the expression 'abs(x)
mod 2 = 1'.

The parameter f shall be a file-variable; if the
actual-parameter-list is omitted, the function shall be
applied to the standard textfile input (see 6.10). When
eof(f) is activated, it shall be an error if f is
undefined; otherwise the function shall yield the value
true if f.R is the empty sequence (see 6.4.3.5),
otherwise false.

The parameter f shall be a textfile; if the
actual-parameter-list is omitted, the function shall be
applied to the standard textfile input (see 6.10). When
eoln(f) is activated, it shall be an error if f is
undefined or if eof(f) is true; otherwise the function
shall yield the value true if f.R.first is an
end-of-line component (see 6.4.3.5), otherwise false.

PASCAL NEWS 1118 MAY, 1980
PAGE 35

6.7 Expressions
6.7.1 General .. An expression
or function-designator used
undefined at the time of

shall possess a value unless a variable
as a factor in that expression is
its use, in which case an error shall

occur.
The use of a variable-access as a factor shall denote the value, if
any, attributed to the variable denoted by that variable-access.
Operator precedences shall be according to foul' classes of operators
as follows. The operator nQi shall have the highest precedence,
followed by the multiplying-operators, then the adding-operators
and signs, and finally, with the lowest precedence, the
relational-operators. Sequences of two or more operators of the same
precedence shall be left associative.

unsigned-constant = unsigned-number : character-string :
constant-identifier : "nil" .

factor = variable-access : unsigned-constant : bound-identifier
function-designator : set-constructor
"(" expression ")" : "not" factor.

set-constructor = "[" [member-designator
{ "," member-designator}] "]" .

member-designator = expression [" .. " expression] .
term = factor { multiplying-operator factor } .
simple-expression = [sign] term { adding-operator term } •
expression =

simple-expression [relational-operator simple-expression] .

Any factor whose type is S, where S is a subrange of T, shall be
treated as of type T. Similarly, any factor whose type is set of S
shall be treated as of an anonymous type set of T, and any factor
whose type is packed set of S shall be treated as of an anonymous
type packed set of T.

NOTE. Consequently an expression that consists of a single
factor of type S shall itself be of type T, and an expression
that consists of a single factor of type set of S shall itself
be of type set of T, and an expression that consists of a single
factor of type packed set of S shall itself be of type packed
set of T.

A set-constructor shall denote a value of a set-type. The
set-constructor [] shall denote that value in every set-type that
contains no members. A set-constructor containing one or more
member-designators shall denote a value of type set of T or packed
set of T, where T is the type of all expressions immediately
contained in all member-designators of the set-constructor. The type
T shall be an ordinal-type. The value denoted by the set shall
contain zero or more members each of which shall be denoted by at
least one member-designator of the set. It shall be an error if the
value of any member denoted by any member-designator of the
set-constructor is outside the implementation-defined limits (see
6.4.3.4).

The member-designator x, where x is an expression, shall denote the
member that shall have the value x. The member-designator x .. y,

..- l1.u\".H.L IH.W0 It 18
MAY, 1980

PAGE 36

where x and yare expressions, shall denote zero or more members
that shall have the values of the base-type in the closed interval
from the value of x to the value of y.

NOTE. The member-designator x .. y denotes no members if the value
of x is greater than the value of y.

A set-constructor shall assume a suitable type to satisfy the
assignment-compatibility rules, or the compatibility rules for
operators, if possible. It shall be an error if the possible types
of a set-constructor do not permit it to assume a suitable type.

Examples are as follows:

(a) Factors:

(b) Terms:

(c) Simple expressions:

(d) Expressions:

6.7.2 .. Operators
6.7.2.1 General

x
15
(x+y+z)
sin(x+y)
[red,c,green]
[1 ,5, 10 •. 19, 23]
not p

x*y
i/(1-i)
(x <= y) and (y < z)

x+y
-x
hue 1 + hue2
i*j + 1

x = 1.5
p <= q
p = q and r
(i < j) = (j < k)
c in hue1

multiplying-operator = "*" I "I" I "div"

adding-operator = "+" I "-" I "or" •

"mod" "and" .

relational-operator =
"=" I "<>" I "<" ">" I ,,<=" I ">=" I "in" .

A factor, or a term, or a simple-expression shall be designated an
operand. The order of evaluation of the operands of a dyadic
operator shall be implementation-dependent.

NOTE. This means, for example, that the operands may be
evaluated in textual order, or in reverse order, or in parallel
or they may not both be evaluated.

PASCAL NEWS 1118 MAY, 1980 PAGE 37

6.7.2.2 Arithmetic operators. The types of operands and results for
dyadic and monadic operations shall be as shown in tables 2 and 3
respectively.

Table 2. Dyadic arithmetic operations

operator operation type of operands type of result

+ addition integer-type) integer-type
or real-type)if both

subtraction integer-type)operands are
or real-type)of integer-type

* multiplication integer-type) otherwise
or real-type) real-type

I division integer-type real-type
or real-type

div division with integer-type integer-type
truncation

mod modulo integer-type integer-type
--

Table 3. Monadic arithmetic operations

operator operation type of operand type of result

+ identity

sign-inversion

integer-type
real-type
integer-type
real-type

integer-type
real-type
integer-type
real-type

NOTE. The symbols +, - and * are also used as set operators (see
6.7.2.4).

It shall be an error if j is zero, otherwise the value of i div j
shall be such that
abs(i) - abs(j) < abs«i div j) • j) <= abseil
where the value shall be zero if abs(i)<abs(j), otherwise the sign
of the value shall be positive if i and j have the same sign and
negative if i and j have different signs.

It shall be an error if j is zero or negative, otherwise the value
of i mod j shall be that value of (i-(k*j» for integral k such that
o <= i mod j < j.

The predefined constant maxint shall be of integer-type and shall
denote an implementation-defined value. This value shall satisfy the
following conditions:

PASCAL NEWS 1118 MAY, 1980 PAGE 38

(a) All integral values in the closed interval from -maxint to
+maxint shall be values in the integer-type.

(b) Any monadic operation performed on an integer value in this
interval shall be correctly performed according to the
mathematical rules for integer arithmetic.

(c) Any dyadic integer operation on two integer values in this same
interval shall be correctly performed according to the
mathematical rules for integer arithmetic, provided that the
result is also in this interval.

(d) Any relational operation on two integer values in this same
interval sllall be correctly performed according to the
mathematical rules for integer arithmetic.

It shall be an error if the operation is not performed according to
the mathematical rules for integer arithmetic.

6.7.2.3 Boolean operators. The types of operands and results for
Boolean operations shall be as shown in table 4.

Table 4. Boolean operations

operator operation type of operand(s} type of result

or logical or Boolean-type Boolean-type

and logical and Boolean-type Boolean-type

not logical negation Boolean-type Boolean-type

Boolean-expression = expression •

A Boolean-expression shall be an expression that possesses a value
of Boolean-type.

6.7.2.4 ~perators. The types of operands and results for set
operations shall be as shown in table 5.

Table 5. Set operations

operator operation type of operands type of result

+ set union) }
})

set difference }any set-type T }T
} }

• set intersection .> }

PAS'CAL NEWS 1118 MAY t 1980 PAGE 39

6.7.2.5 Relational operators. The types of operands and results for
relational operations shall be as shown in table 6.

operator

= <>

< >

<= >=

in

Table 6. Relational operations

type of operands

any set, simple,
pointer or string-type

any simple or string-type

any set, simple or string-type

type of result

Boolean-type

Boolean-type

Boolean-type

left operand:any ordinal type T Boolean-type
right operand: set of T(see 6.7.1)

-----------------------~---------------------------------------

The operands of =, <>, <, >, >=, and <= shall be either of
compatible type, or one operand shall be of real-type and the other
shall be of integer-type.

The operators =, <>, <, > shall stand for "equal to", "not equal
to", "less than" and "greater than" respectively.

Except when applied to sets, the operators <= and >= shall stand for
"less than or equal to" and "greater than or equal to"
respectively.

If u and v are operands of a set-type, u <= v shall
inclusion of u in v and u >= v shall denote the inclusion

denote
of v

the
in

u.

NOTE. Since the Boolean-type is an ordinal-type with false less
than true, then if p and q are operands of Boolean-type, p = q
denotes their equivalence and p <= q means p implies q.

When the relational operators = , <> , < , > , <= , >= are used to
compare operands of a string-type (see 6.4.3.2), they denote
lexicographic ordering according to the ordering of the character
set (see 6.4.2.2).
The operator in shall yield the value true if the value of the
operand of ordinal-type is a member of the value of the set,
otherwise it shall yield the value false. In particular, if the
value of the operand of ordinal-type is outside the
implementation-defined limits on the base-type of the set (see
6.4.3.4), the operator in shall yield the value false.

6.7.3 Function designators. A function-designator shall yield the
value of the function denoted by the function-identifier immediately
contained within it. If the function has any formal parameters the
function-designator shall contain a list of actual-parameters that
shall be bound to their corresponding formal parameters defined in

MAY. 1980 PAGE 40

the function-declaration. The correspondence shall be established by
the positions of the parameters in the lists of actual and formal
parameters respectively. The number of actual-parameters shall be
equal to the number of formal parameters. The types of the
actual-parameters shall correspond to the types of the formal
parameters as specified by 6.6.3. The order of evaluation and
binding of the actual-parameters shall be implementation-dependent.

function-designator = function-identifier
[actual-parameter-list] .

actual-parameter-list =
"(,, actual-parameter { "," actual-parameter} "),, .

actual-parameter = expression: variable-access I
procedure-identifier I
function-identifier •

Examples:

6.8 Statements

Sum(a,63)
GCD(147,k)
sin(x+y)
eof(f)
ord(fi)

6.8.1 General. Statements shall denote algorithmic actions, and
shall be executable. They may be prefixed by a label.

If a label prefixes a simple-statement or structured-statement S,
that label shall only be allowed in goto-statements (see 6.8.2.4) in
the statement S, or in the statement-sequence (if any) in which S is
immediatey contained and if this statement-sequence is the
statement-sequence of the compound-statement that forms the
statement-part of a block, the procedure-declarations and
function-declarations of that block .

•
statement = [label ":"] (simple-statement I

structured-statement) .

NOTE. A goto-statement within a procedure may refer to a label
in an enclosing procedure, provided that the label prefixes a
simple-statement or structured-statement at the outermost level
of nesting of the block of the procedure.

6.8.2 Simple-statements
6.8.2.1 General. A simple-statement shall be a statement of which no
part constitutes another statement. An empty-statement shall consist
of no symbols and shall denote no action.

simple-statement =
empty-statement I assignment-statement
procedure-statement I goto-statement .

empty-statement = .

6.8.2.2 Assignm~nt-statements. The
attribute to the variable, denoted
function-identifier a value, specified
be assignment-compatible with the type

assignment-statement shall
by the variable-access, or
as an expression, that shall
of the variable or function.

PASCAL NEWS #18 MAY, 1980 fAG!:: 41

An assignment-statement that has a function-identifier as its
left-hand side shall occur only within the function-block (if any)
that corresponds to the function denoted by the
function-identifier.

assignment-statement =
(variable-access I function-identifier) ":=" expression

If access to the variable involves the indexing of an array and/or a
reference to a field within a variant of a record and/or the
de-referencing of a pointer-variable and/or a reference to a
buffer-variable, the decision whether these actions precede or
follow the evaluation of the expression shall be
implementation-dependent.

Examples: x . - y+z
p := (1<=i) and (i<100)
i := sqr(k) - (i*j)
hue 1 := [blue,succ(c)]
p1i.mother := true

6.8.2.3 Procedure-statements. A procedure-statement shall specify
the activation of the procedure denoted by the procedure-identifier
immediately contained within it. If the procedure has any formal
parameters the procedure-statement shall contain a list of
actual-parameters that shall be bound to their corresponding formal
parameters defined in the procedure-declaration. The correspondence
shall be established by the positions of the parameters in the lists
of actual and formal parameters respectively. The number of
actual-parameters shall be equal to the number of formal parameters.
The types of the actual-parameters shall correspond to the types of
the formal parameters as specified by 6.6.3. The order of evaluation
and binding of the actual-parameters shall be
implementation-dependent.

procedure-statement = procedure-identifier

Examples:

[actual-parameter-list] .

printheading
transpose(a,n,m)
bisect(fct,-1.0,+1.0,x)

6.8.2.4 Goto-statements. A goto-statement shall serve
that further processing is to continue at another
program text, namely at the place prefixed by
6.8.1).

goto-statement = "goto" label .

6.8.3 Structured-statements

to indicate
part of the

the label (see

6.8.3.1 General. Structured-statements shall be constructs composed
of other statements that have to be executed either in sequence
(compound-statement), conditionally (conditional-statements),
repeatedly (repetitive-stateme~ts), or within an expanded scope
(with-statements).

.1 L.\: tt-i \J .n..l...I l' "-' n...... Tr I V I"JAY, 1980

structured-statement =
compound-statement conditional-statement:
repetitive-statement : with-statement .

PAGE 42

6.8.3.2 Comoound-statements. The compound-statement shall specify
that its component statements are to be executed in textual order,
except as modified by execution of a goto-statement.

compound-statement = "begin" statement-sequence "end"
statement-sequence = statement { "j" statement} .

Example: begin z:= x j x := Yj y := z end

6.8.3.3 Conditional-statem~.
conditional-statement = if-statement

6.8.3.4 If-statements

case-statement .

if-statement = "if" Boolean-expression "then" statement
[else-part] .

else-part = "else" statement •

If the Boolean-expression yields the value true, the statement
following the then shall be executed. If the Boolean-expression
yields the value false, the action shall depend on the existence of
an else-partj if the else-part is present the statement following
the ~ shall be executed, otherwise an empty-statement shall be
executed.

To resolve the so-called 'dangling-else' ambiguity, an if-statement
without an else-part shall not be followed by the token ~.

NOTE. An else-part thus becomes paired with the
preceding unpaired ~.

Examples:

if x < 1.5 then z := x+y else z := 1.5
if pl <> nil then p1 ::: pH. father

nearest

6.8.3.5 Case-statements. The case-statement shall consist of a
case-index and a list of statements. Each statement shall be
preceded by one or more case-constants. All the case-constants shall
be distinct and shall be of the same ordinal-type as the case-index.
The case-statement shall specify execution of the statement whose
case-constant is equal to the value of the case-index upon entry to
the case-statement.
It shall be an error if none of the case-constants is equal to the
value of the case-index upon entry to the case-statement.

NOTE. Case-constants are not the same as statement labels.

PASCAL NEWS 1118 MAY, 1980 PAGE 43

case-statement =
"case" case-index "of"
case-Hst-element {";" case-Hst-element } [";"] "end" •

case-list-element = case-constant-list ":" statement.
case-index = expression •

Example:

case operator of
plus: x:= x+y;
minus: x:= x-y;
times: x:= x1y

end

6.8.3.6. Repetitive-statements. Repetitive-statements shall specify
that certain statements are to be executed repeatedly.

repetitive-statement = repeat-statement I
while-statement I for-statement •

6.8.3.7 Repeat-statements

repeat-statement = "repeat" statement-sequence
"until" Boolean-expression •

The sequence of statements between the tokens repeat and until shall
be repeatedly executed (except as modified by the execution of a
goto-statement) until the Boolean-expression yields the value true
on completion of the statement-sequence. The statement-sequence
shall be executed at least once, because the Boolean-expression is
evaluated after execution of the statement-sequence.

Example:

repeat k := i mod j;
i : = j;
j := k

until j = 0

6.8.3.8 While-statements

while-statement = "while" Boolean-expression "do" statement •

The while-statement

while b do body

shall be equivalent to

? ASCAL NEWS 1118

begin
if b then

repeat
body
until not (b)

end

MAY, 1980

Examples:

while a[i] < x do i := i+1

while DO do
begin if odd(i) then z := z.x;

i := i div 2;
x := sqr(x)

end

while not eof(f) do
begin process(fT); get(f)
end

PAGE 44

6.8.3.9 For-statements. The for-statement shall specify that a
statement is to be repeatedly executed while a progression of values
is attributed to a variable that is designated the control-variable
of the for-statement.

for-statement = "for" control-variable ":=" initial-value
("to" : "downto") final-value "do" statement .

control-variable = entire-variable .
initial-value = expression .
final-value = expression .

The control-var1able shall be an entire-variable whose identifier is
declared in the variable-declaration-part of the block immediately
containing the for-statement. The control-variable shall be of an
ordinal-type, and the initial-value and final-value shall be of a
type compatible with this type.

An assigning-reference to a variable shall occur if any of the six
statements that follow is true.
(a) The variable is denoted by a variable-access as the left hand

side of an assignment-statement.
(b) The variable is denoted by an actual variable parameter in a

function-designator or procedure-statement.
(c) The variable is denoted by an actual parameter in a

procedure-statement that specifies the activation of the
standard procedure read or the standard procedure readln.

(d) The variable occurs as the control-variable of a
for-statement.

(e) A procedUre-identifier in a procedure-statement
function-designator denotes a procedure-declaration
contains an assigning reference to the variable.

(f) A function-identifier in
function-designator denotes
contains an assigning reference

a procedure-stantment
a function-declaration
to the variable.

or
that

or
that

PASCAL NEWS t/18 MAY, 1980 PAGE 45

Assigning references to the control-variable shall not occur within
the repeated statement. It shall be an error if the final-value is
not assignment-compatible with the control-variable when the
initial-value is assigned to the control-variable. After a
for-statement is executed (other than being left by a goto-statement
leading out of it) the control-variable shall be undefined. Apart
from the restrictions imposed by these requirements, the
for-statement

for v := e1 to e2 do body

shall be equivalent to

begin
temp1 : = e1;
temp2 : = e2;
if temp1 <= temp2 then

begin
v : = temp1 j
body;
while v <> temp2 do

begin
v : = succ (v) ;
body
end

end
end

and the for-statement

for v := e1 downto e2 do body

shall be equivalent to

begin
temp1 : = e1;
temp2 := e2;
if temp1 >= temp2 then

begin
v : = temp1;
body;
while v <> temp2 do

begin
v : = pred (v) ;
body
end

end
end

where temp1
elsewhere in
that type is
variable v.

and temp2 denote auxiliary variables that do not occur
the program and are of the type of the variable v if

not a subrange-typej otherwise of the host type of the

PASCAL NEHS 1118 MAY, 1980

Examples:

for i := 2 to 63 do
if a[i] > max then max := a[i]

for i := 1 to 10 do
for j := 1 to 10 do

begin

for

x : = OJ
for k := 1 to 10 do

x := x + m1[i,k]*m2[k,j)j
m[i,j) := x
end

C .-.- red to blue do q(c)

6.8.3.10 With-statements

with-statement =
"with" record-variable-list "do"
statement .

record-variable-list =
record-variable { "," record-variable} .

PAGE 46

The occurrence of a record-variable as part of the
record-variable-list shall be a defining-point of the
field-identifiers of its record-type as variable-identifiers for

the region that is a part of the with-statement immediately
containing the record-variable-list. The region is that part of the
with-statement that follows the record-variable. If access to a
variable in the record-variable-list involves the indexing of an
array and/or a reference to a field within a variant of a record
and/or the de-referencing of a pointer-variable and/or a reference
to a buffer-variable, these actions shall be executed before the
component statement is executed.

The statement

with v1,v2, ... ,vn do s

shall be equivalent to

with v1 do
with v2 do

with vn do s

Example:

with date do
if month = 12 then

begin month := 1j year := year + 1
end

else month := month+1

PASCAL NEWS 1118 MAY, 1980

shall be equivalent to

if date.month = 12 then
begin date.month := 1; date.year := date.year+1
end

else date.month := date.month+1

6.9 Input and output

PAGE 47

6.9.1 General. Textfiles (see 6.4.3.5) that are identified as
program-parameters (see 6.10) to a Pascal program shall provide the
standard legible input and output.

6.9.2 The procedure read. The syntax of the parameter list of read
when applied to a textfile shall be:

read-parameter-list =
"("[file-variable ","] variable-access
I"," variable-access}")" .

If the file-variable is omitted, the procedure shall be applied to
the standard textfile input.

The following requirements shall apply for the procedure read (where
f denotes a textfile and v1 .•. vn denote variables of char-type (or
a subrange of char-type), integer-type (or a subrange of
integer-type), or real-type):

(a) read(f,v1, ... ,vn) shall be equivalent to
t

begin read(f,v1); read(f,vn) end

(b) If v is a variable of char-type (or subrange thereof), read(f,v)
shall be equivalent to

begin v := fT; get(f) end

(c) If v is a variable of integer-type (or subrange thereof),
read(f,v) shall cause the reading from f of a sequence of
characters that form a signed-integer according to the syntax of
6.1.5. The value of the signed-integer thus read shall be
assignment-compatible with the type of v, and shall be
attributed to v. Preceding spaces and end-of-lines shall be
skipped. Reading shall cease as soon as the file's
buffer-variable fT contains a character that does not form part
of the signed-integer. It shall be an error if the sequence of
characters does not form a signed-integer as specified in
6.1.5.

(d) If v is a variable of real-type, read(f,v) shall cause the
reading from f of a sequence of characters that form a
signed-number according to the syntax of 6.1.5. The value
denoted by the number thus read shall be attributed to the
variable v. Preceding spaces and end-of-lines shall be skipped.
Reading shall cease as soon as the file's buffer-variable fT
contains a character that does not form part of the
signed-number. It shall be an error if the sequence of

PASCAL NEHS 1118 MAY, 1980 PAGE 48

characters does not form a signed-number as specified in 6.1.5.

(e) When read is applied to f, it shall be an error if f is
undefined or if f.M = Generation (see 6.4.3.5).

6.9.3 lb& procedure readln.
readln shall be:

The syntax of the parameter list of

readln-parameter-list =
[11(11 (file-variable I variable-access)
{II," variable-access} ")"] •

Readln shall only be applied to textfiles. If the file-variable or
readln-parameter-list is omitted, the procedure shall be applied to
the standard textfile input.

readln(f,v1, ••• ,vn) shall be equivalent to

begin read(f,vl, .•. ,vn); readln(f) end

readln(f) shall be equivalent to

begin while not eoln(f) do get(f); get(f) end

NOTE. The effect or readln is to place the current file
position just past the end of the current line in the
textfile. Unless this is the end-of-file position, the
current file position is therefore at the start of the next
line.

6.9.4 Tbe procedure write. The syntax of the parameter iist of write
when applied to a textfile shall be:

write-parameber-list =
"("[flle-variable ","] write-parameter
{"," write-parameter}")" •

write-parameter =
expression [":" expression [":" expression]] •

If the file-variable is omitted, the procedure shall be applied to
the standard textfile output. When write is applied to a textfile,
it shall be an error if f is undefined or f.M = Inspection (see
6.4.3.5).

6.9.4.1 Multiple parameters. Write(f,pl, ... ,pn) shall be equivalent
to

begin write(f,pl); ... ; write(f,pn) end

where f denotes a textfile, and pl, •.. ,pn denote write-parameters.

6.9.4.2 Write-parameters. The write-parameters p shall have the
following forms:

e:TotalWidth:FracDigits e:TotalWidth e

PASCAL NEWS 1118 MAY. 1980
PAGE 4-9

where e is an expression whose value is to be written on the file f
and may be of integer-type, real-type, char-type, Boolean-type or a
string-type, and where TotalWidth and FracDigits are expressions of
integer-type whose values are the field-width parameters. The values
of TotalWidth and FracDigits shall be greater than or equal to one;
it shall be an error if either value is less than one. Exactly
TotalWidth characters shall be written (with an appropriate number
of spaces to the left of the representation of e), except when e
requires more than TotalWidth characters for its representation; in
such a case the number of characte~s written shall be as small as is
consistent with the representation of the value of e (see 6.9.4.4
and 6.9.4.5).

Write(f,e) shall be equivalent to the form write(f,e:TotalWidth),
using a default value for TotalWidth that depends on the type of e;
for integer-type, real-type and Boolean-type the default values
shall be implementation-defined.

Write(f,e:TotalWidth:FracDigits) shall be applicable only if e is of
real-type (see 6.9.4.5.2).

6.9.4.3 Char-tYDe. If e is of char-type, the default value of
TotalWidth shall be one. The representation written on the file f
shall be:

(TotalWidth - 1) spaces,
the character value of e.

6.9.4.4 Integer-type. If e is of integer-type, the decimal
representation of e shall be written on the file f. Assume a
function
function IntegerSize (x : integer

{ returns the number of digits,
10 to the power (z-1) <= abs(x)

) : integer ;
z, such that
< 10 to the power z }

and let IntDigits be the positive integer defined by:

if e = 0
then IntDigits := 1
else IntDigits := IntegerSize(e);

then the representation shall consist of:

(1) if TotalWidth >= IntDigits + 1 :
(TotalWidth - IntDigits - 1) spaces,
the sign character: '_'if e < 0, otherwise a space,
IntDigits characters of the decimal representation of abs(e).

(2) If TotalWidth < IntDigits + 1:
if e < 0 the sign character '-',
IntDigits characters of the decimal representation of abs(e}.

6.9.4.5 Real-Type. If e is of real-type, a decimal representation of
the number e, rounded to the specified number of significant figures
or decimal places, shall be written on the file f.

PASCAL NE\vS 1118 MAY, 1980 PAGE :;0

6.9.4.5.1 The floating-point representation.
Write(f,e:TotalWidth) shall cause a floating-point representation of
e to be written. Assume functions

function TenPower (lnt : integer) : real ;
{ Returns 10.0 raised to the power lnt }

function RealSize (y : real) : integer
{ Returns the value, z, such that
TenPower(z-1) <= abs(y) < TenPower(z) }

function Truncate (y : real ; DecPlaces
: real ;
{ Returns the value of y after truncation
to DecPlaces decimal places }

integer)

let ExpDigits be an implementation-defined value representing the
number of digit-characters written in an exporoent;

let ActWidth be the positive integer defined by:

if TotalWidth >= ExpDigits + 6
then ActWidth := TotalWidth
else ActWidth := ExpDigits + 6;

and let the non-negative number eWritten and the integer ExpValue be
defined by:

if e = 0.0
then begin eWritten := 0.0; ExpValue := 0 end
else
begin
eWritten := abs(e);
ExpValue := RealSize (eWritten) - 1;
eWritten := eWritten / TenPower (ExpValue)
eWritten := eWritten +

0.5*TenPower(- (ActWidth-ExpDigits-5));
if eWritten >= 10.0

then
begin
eWritten := eWritten / 10.0;
ExpValue := ExpValue + 1
end;

eWritten := Truncate (eWritten, ActWidth
- ExpDigits -5)

end;

then the floating-point representation of the value of e shall
consist of:

the sign character,
('-' if e < 0, otherwise a space)

the leading digit of the decimal representation of eWritten,
the character '.' ,
the next (ActWidth - ExpDigits - 5) digits

of the decimal representation of eWritten,

PASCAL NEWS #18 MAY, 1980

an implementation-defined exponent character
(either 'e' or 'E'),

the sign of ExpValue
('-' if ExpValue < 0, otherwise '+'),

the ExpDigits digits of the decimal representation of ExpValue
(with leading zeros if the value requires them).

6.9.4.5.2 The fixed-point representation.

PAGE 51

Write(f,e:TotalWidth:FracDigits) shall cause a
representation of e to be written. Assume the function
described in clause 6.9.4.4, and the functions TenPower
described in clause 6.9.4.5.1;

fixed-point
IntegerSize

and Truncate

let eWritten be the non-negative number defined by:

if e = 0.0
then eWritten := 0.0
else
begin
eWritten := absCe);
eWritten := eWritten + 0.5

• TenPower (- FracDigits);
eWritten := Truncate (eWritten, FracDigits)
end;

let IntDigits be the positive integer defined by:

if trunc (eWritten) = a
then IntDigits := 1
else IntDigits:= IntegerSize (trunc(eWritten));

and let MinNumChars be the positive integer defined by:

MinNumChars := IntDigits + FracDigits + 1;
if e < 0.0

then MinNumChars := MinNumChars + 1;{'-' required}

then the fixed-point representation of the value of e shall consist
of:

if TotalWidth >= MinNumChars,
(TotalWidth - MinNumChars) spaces,

the character '-' if e < 0,
the first IntDigits characters of the decimal representation

of the value of eWritten,
the character '.',
the next FracDigits characters of the decimal representation

of the value of eWritten.

NOTE. At least MinNumChars characters are written. If TotalWidth
is less than this value, no initial spaces are written.

6.9.4.6 Boolean-type. If e is of Boolean-type, a representation of
the word true or the word false (as appropriate to the value of e)
shall be written on the file f. This ~hall be equivalent to writing
the appropriate character-strings 'True' or 'False' (see 6.9.4.7),

PASCAL NEWS 1118 MAY, 1980 PAGE 52

where the case of each letter is implementation-defined, with a
field-width parameter of TotalWidth.

6.9.4.7 String-types. If the type of e is a string-type
components, the default value of TotalWidth shall be
representation shall consist of:

if TotalWidth > n,
(TotalWidth - n) spaces,

the characters e[1] through ern] in that order.

with n
n. The

6.9. 5 ~ procedure writeln. The syntax of the parameter list of
writeln shall be:

writeln-parameter-list =
[tI(" (file-variable I write-parameter)
{II," write-parameter}")"] •

Writeln shall only be applied to textfiles. If the file-variable or
the writeln-parameter-list is omitted, the procedure shall be
applied to the standard textfile output.

writeln(f ,p1, •.. ,pn) shall be equivalent to

begin write(f,p1, ... ,pn); writeln(f) end

Writeln shall be defined by a pre-assertion and a post-assertion
using the notation of 6.6.5.2.

pre-assertion:
post-assertion:

(g is not undefined) and (g.M = Generation).
(f.L = (g.L-S(e») and
(f.R = SO) and (f.M = Generation),
where See) is the sequence consisting solely of the
end-of-line component defined in 6.4.3.5.

NOTE. Wri teln (f) termina tes the partial line, if any, which is
being generated. By the conventions of 6.6.5.2 it is an error if
the pre-assertion is not true prior to thewriteln(f).

6.9.6 The procedure page
It shall be an error if the pre-assertion required for writeln(f)
(see 6.9.5) does not hold prior to a the application of page (f). If
the actual-parameter-list is omitted the procedure shall be applied
to the standard textfile output. Page (f) shall cause an
implementation-defined effect on the textflle f, su,ch that
subsequent output to f will be on a new page if the text file is
printed on a suitable device, and shall perform an implicit
writeln(f) if f.L.last is not the end-of-linecomponent (se.e
6.4.3.5). The effect of inspecting a t·extfile to which the page
procedure was applied during generation shall be
implementation-dependent.

6. 10 Programs., A Pascal program shall have the form ofa procedure
declaration except for its headlngand its termination by a period.

program = program-heading "." , program-block ""

PASCAL NEWS 1118 MAY, 1980 PAGE 53

program-heading =
"program" identifier ["e" program-parameters H)"] .

program-parameters = identifier-list
program-block = block .

The identifier following the token program shall be the program name
which has no significance within the program. The program-parameters
shall be distinct identifiers~ The program-parameters shall be
declared in the variable-declaration-part of the program-block. The
binding of the variables denoted by the program-parameters to
entities external to the program shall be implementation-dependent,
except if the variable is of a file-type in which case the binding
shall be implementation-defined.

NOTE. The external representation of such external entities is
not defined by this Standard, nor is any property of a Pascal
program dependent on such representation. The appearance of an,
identifier in the program-parameters is not a defining-point nor
a corresponding occurrence to a defining-point (see 6.2.2)
because it is not in the program-block.

The two standard textfiles input and output shall not be declared
expliCitly, but shall be listed as parameters in the program-heading
if they are used in the program-block. The occurrence of the
identifiers input or output as program-parameters shall have the
effect of declaring them as textfiles in the program block. The
effects of the initialising statements reset(input) and
rewrite (output) shall be caused to occur by the processor
immediately following the begin of the block of the program if the
respective identifier occurs in the program-parameters. The effect
of an explicit use of reset or rewrite on the standard textfiles
input or output shall be implementation-defined.

Examples:

program copy(f,g);
var f,g: file of real;
begin reset(f); rewrite(g);

end.

while not eof(f) do
begin gT := fT; get(f); put(g)
end

PASCAL NEWS 1118 MAY, 1980 PAGE 54

program copytext(input,output)j
{This program copies the characters and ends-of-lines of the
textfile input to the textfile output.}

var ch: char;
begin

while not eof do
begin

while not eoln do
begin read(ch)j write(ch)
endj

readlnj writeln
end

end.

PASCAL NEWS #18 MAY, 1980

program t6p6p3p3d2revised(output)j
var globalone, global two : integerj

procedure dummy;
begin
writeln('fai14 ••. 6.6.3.3-2')
end { of dummy }j

procedure p(procedure f(procedure ff; procedure gg)j
proced ure g) j

var localtop : integerj
proced ure r;

begin
if globalone = 1 then

begin
if (globaltwo <> 2) or (localtop <> 1) then

writeln('fail1 .•. 6.6.3.3-2')
end

else if globalone = 2 then
begin
if (globaltwo <> 2) or (local top <> 2) then

wri teln (, fail2 ... 6.6.3.3-2')
else

writeln('pass •.. 6.6.3.3-2')
end

else
writeln('fai13 ... 6.6.3.3-2')j

globalone := globalone + 1
end { of r }j

begin { of p }
global two := global two + 1j
local top := globaltwoj
if global two = 1 then

p(f,r)
else

f(g,r)
end { of p}j

procedure q(procedure fj procedure g)j
begin
fj
g
end j

begin
globalone := 1j
global two := OJ
p(q,dummy)
end.

PAGE 55

6.11 Hardware representation. The representation for tokens and
separators given in 6.1 constitutes a reference representation. In
addition to these symbols several alternative symbols shall be
defined. A processor shall accept all the reference symbols and all
the alternative symbols except for any symbol whose representation
contains a character not available in the character set of the
processor. The reference symbols and the alternative symbols are

t'Jl.::SCAL NEWS 1118 MAY, 1980

given in table 7.

Table 7. Alternative symbols

Reference Symbol Alternative Symbol

l'
I

{
}

@ or ..
(*
*)

PAGE 56

NOTE. The alternative comment delimiters are equivalent to the
reference comment delimiters, thus a comment may begin with ,,{It
and close wi th ".)", or begin with "(*" and close with "}".

APPENDIX A. COLLECTED SYNTAX

letter = "a"I"b"I"c"I"d"I"e"I"f"I"g"I"h"I"i"I"j"I"k"I"l"I"m"l
"n"l"o"I"p"I"q"I"r"I"s"I"t"I"u"I"v"I"w"I"x"I"y"I"z" •

special-symbol = "+"1"_"1"*"1"1"1"="1"<"[">"1"["1"]"1
"."I","I":"I";"I"T"I"("I")"I
"<>"1"<="1">="1":="1" •• "1 word-symbol.

word-symbol = "and" 1 "array" I "begin" 1 "case" 1 "const"l "div" 1
"do" I "downto" 1 "else" I "end" 1 "file" 1 "for" 1
"function" 1 "goto" I "if"l "in" 1 "label" I "mod" I
"nil"I"not"I"of"I"or"I"packed"I"procedure"l
"program" 1 "record" 1 "repeat" 1 "set"l "then" 1
"to"l "type" I "until" I "var" I "while" 1 "with" •

identifier = letter {(letter 1 digit)} .

directive = letter {(letter I digit)} .

digit-sequence = digit {digit} •
unsigned-integer = digit-sequence .
unsigned-real =

unsigned-integer "." digit-sequence [lie" scale-factor]
unsigned-integer "e" scale-factor .

unsigned-number = unsigned-integer 1 unsigned-real •
scale-factor = signed-integer .
sign = "+" 1 "-" •
signed-integer = [sign] unsigned-integer
signed-real = [sign] unsigned-real .
signed-number = signed-integer 1 signed-real •

label = digit-sequence •

character-string = "'" string-element
{string-element} '"" •

PAS C ~. L II BW S 1/1 8 MAY, 1980

string-element : apostrophe-image string-character.
apostrophe-image: """
string-character :

one-of-an-implementation-defined-set-of-characters .

block : label-declaration-part
constant-definition-part

type-definition-part
variable-declaration-part

procedure-aRd-function-declaration-part
statement-part •

label-declaration-part = ["label" label {"," label} "i"]

constant-definition-part = ["const" constant-definition "i"
{constant-definition "i"}] .

type-definition-part = ["type" type-definition "i"
{type-definition It;,,}] •

variable-declaration-part = ["var" variable-declaration "i"
{variable-declaration "j"}] •

procedure-and-function-declaration-part :
{(procedure-declaration I function-declaration) "i"} •

statement-part = compound-statement •

constant-definition : identifier ":"
constant = [sign] (unsigned-number

I character-string.
constant-identifier : identifier •

constant •
constant-identifier)

type-definition : identifier ":" type-denoter •
type-denoter = type-identifier I new-type •
new-type = simple-type structured-type pointer-type.

simple-type-identifier : type-identifier
structured-type-identifier = type-identifier •
pointer-typ.e-identifier : type-identifier •
type-identifier : identifier •

simple-type = ordinal-type I real-type •
ordinal-type : enumerated-type I subrange-type :

integer-type I Boolean-type I char-type
ordinal-type-identifier •

enumerated-type = "(,, identifier-list ")" •
identifier-list : identifier { "t" identifier } •

subrange-type = constant " •• " constant.

structured-type = ["packed"] unpacked-structured-type
structured-type-identifier •

PAGE 57

t' Ii " \., 1,1. Ll~ t; W::i. It 1 8 MAY, 1980

unpacked-structured-type = array-type : record-type
file-type .

set-type

array-type = "array" "[" index-type { "," index-type} "]" "of"
component-type .

index-type = ordinal-type .
component-type = type-denoter •

record-type = "record"[field-list [";"]] "end" •
field-list = fixed-part ["i" variant-part] : variant-part .
fixed-part = record-section { ";" record-section } .
record-section = identifier-list ":" type-denoter .
variant-part = "case" variant-selector "of"

variant { "i" variant} .
variant-selector = [tag-field ":"] tag-type.
tag-field = identifier •
variant = case-constant-list ":" "(,, [field-list ["i"]] "),, •
tag-type = ordinal-type-identifier
case-constant-list = case-constant { "," case-constant }
case-constant = constant •

set-type = "set" "of" base-type .
base-type = ordinal-type •

file-type = "file" "of" component-type

pointer-type = "T" domain-type I pointer-type-identifier •
domain-type = type-identifier .

variable-declaration = identifier-list ":" type-denoter •

variable-access = entire-variable : component-variable
referenced-variable : buffer-variable

entire-variable = variable-identifier .
variable-identifier = identifier •

component-variable = indexed-variable

indexed-variable =

field-designator .

array-variable "[" index-expression
{ "," index-expression} "]" .

array-variable = variable-access .

field-designator = record-variable "." field-identifier.
record-variable = variable-access .
field-identifier = identifier •

buffer-variable = file-variable "T" .
file-variable = variable-access

referenced-variable = pointer-variable
pointer-variable = variable-access •

""',, I •

PAGE 58

P-ASCAL NEWS #18 MAY, 1980

procedure-declaration =
proced ure- head ing ";" direc ti ve I
procedure-identification "j" procedure-block
procedure-heading "j" procedure-block.

procedure-heading =
"procedure" identifier r formal-parameter-list]

procedure-identification =
"procedure" procedure-identifier •

procedure-identifier = identifier .
procedure-block = block •

function-declaration =
function-heading "i" directive I
function-identification "i" function-block
function-heading "i" function-block .

function-heading =
"function" identifier [[formal-parameter-list]
":" result-type]

function-identification =
"function" function-identifier

function-identifier = identifier •
result-type = simple-type-identifier I

pointer-type-identifier .
function-block = block •

formal-parameter-list =
"(" formal-parameter-section
{";,, formal-parameter-section} "),, .

formal-parameter-section =
value-parameter-specification I
variable-parameter-specification I
procedural-parameter-specification
functional-parameter-specification .

value-parameter-specification =
identifier-list ":" type-identifier.

variable-parameter-specification =
"var" identifier-list ":,,
(type-identifier I conformant-array-schema) .

conformant-array-schema =
"array" "[" index-type-specification
{ "i" index-type-specification } "]" "of"
(type-identifier I conformant-array-schema) •

index-type-specification =
identifier " •• " identifier
":" ordinal-type-identifier •

bound-identifier = identifier .
procedural-parameter-specification =

procedure-heading .
functional-parameter-specification =

function-heading .

unsigned-constant = unsigned-number I character-string
constant-identifier I "nil" .

PAGE 59

PASCAL NEWS 1118 MAY, 1980

faotor :: variable-access I unsigned-oonstant I bound-identifier
function-designator : set-oonstructor
"(It expression ")" f Itnot" factor.

set·oonstructor :: "[" [member-designator
{ ",It member-designator}] "],, .

member-designator = expression [" •. " expression] .
term :: faotor { multiplying-operator factor } •
simple-expression = [sign] term { adding-operator term } •
expression ::

PAGE 60

simple-expression [relational-operator simple-expression] .

multiplying-operator = II... : "I" I "div" "mod" "and" .

adding-operator :: "+" I "_" I "or" •

relational-operator =
"::" I "<>,, I "<,, I ">,, : "<=" I ">=" "in" •

funotion-designator = function-identifier
[actual-parameter-list] •

actual-parameter-list ::
11(11 actual-parameter { "," actual-parameter

actual-parameter = expression I variable-access
procedure-identifier f
function-identifier •

statement = [label ":" J (simple-statement I
structured-statement) •

simple-statement =
empty-statement I aSSignment-statement
procedure-statement I goto-statement •

empty-statement = .

aSSignment-statement =

"),, .

(variable-access function-identifier)": =" expression •

procedure-statement = procedure-identifier
[actual-parameter-list] •

goto-statement = "goto" label .

structured-statement =
compound-statement I conditional-statement I
repetitive-statement I with-statement .

cOMpound-statement = "begin" statement-sequence "end"
statement-sequence = statement { ";" statement} .

conditional-statement = if-statement case-statement •

PASCAL NEWS 1118 MAY, 1980 PAGE 61

if-statement : "if" Boolean-expression "then" statement
[else-part] .

else-part : "else" statement .

case-statement :
"case" case-index "of"
case-list-element {";" case-list-element} [";"] "end" •

case-list-element : case-constant-list "." statement.
case-index : expression .

repetitive-statement : repeat-statement I
while-statement I for-statement .

repeat-statement : "repeat" statement-sequence
"until" Boolean-expression .

while-statement : "while" Boolean-expression "do" statement

for-statement: "for" control-variable "::" initial-value
("to" I "down to") final-value "do" statement .

control-variable : entire-variable .
initial-value : expression •
final-value : expression •

with-statement:
"with ll record-variable-list "do"
statement •

record-variable-list :
record-variable { "," record-variable} •

read-paraMeter-list :
'I (.. [file-variable ", II] variable-access
{"," variable-accessl")U •

readln-parameter-list :
[" (tl (file-variable I variable-ac.cess)
{"," variable-access} ,,),,] •

write-paraMeter-list :
"("[file-variable ","] write-parameter
("," write-parameter}")" •

write-parameter:
expression [":" expression [":" expression]] •

writeln-parameter-l1st :
[I' (" (file-variable I write-parameter)
{"," write-parameter}")"] .

program: program-heading "j" program-blook tI it

program-heading :
"program" id·entifier ["(" program-parameters ")"] .

program-parameters: identifier-list .
program-block: block •

... - '-' .n. oW 11 .LJ ,WV u 11 I 0 MAY, 1980 PAGE 62

APPENDIX B. INDEX

actual 6.6.3.3 6.6.3.4 6.6.3.5
6.6.5.2 6.6.5.3 6.7.3
6.8.2.3 6.8.3.9

actual-parameter 6.6.3.2 6.6.3.3 6.6.3.4
6.6.3.5 6.6.5.3 6.7.3

actual-parameter-list 6.6.6.5 6.7.3 6.8.2.3
6.9.6

array-type 6.4.3.1 6.4.3.2 6.5.3.2
6.6.3.3

array-variable 6.5.3.2
assigning-reference 6.8.3.9
assignment-compatible 6.4.6 6.5.3.2 6.6.3.2

6.8.2.2 6.8.3.9 6.9.2
assignment-statement 6.6.2 6.6.5.3 6.8.2.1

6.8.2.2 6.8.3.9
base-type 6.4.3.4 6.4.6 6.7. 1

6.7.2.5
base-types 6.4.5
body 6.6. 1 6.8.3.8 6.8.3.9
boolean-expression 6.7.2.3 6.8.3.4 6.8.3.7

6.8.3.8
boolean-type 6.4.2.1 6.4.2.2 6.7.2.3

6.7.2.5 6.9.4.2 6.9.4.6
buffer-variable 6.5.3.1 6.5.5 6.6.3.3

6.6.5.2 6.8.2.2 6.8.3.10
6.9.2

case-constants 6.4.3.3 6.6.5.3 6.8.3.5
char-type 6.1.7 6.4.2.1 6.4.2.2

6.4.3.2 6.4.3.5 6.6.6.4
6.9.2 6.9.4.2 6.9.4.3

character 6.4.2.2 6.4.3.5 6.6.6.4
6.6.6.5 6.7.2.5 6.9.2
6.9.4.3 6.9.4.4 6.9.4.5.1
6.9.4.5.2 6.11

character-string 6.1.1 6.1.7 6.1.8
6.3 6.7.1

closed 6.1.5 6.1.6 6.4.6
6.6.3.3 6.7.1 6.7.2.2

compatible 6.4.3.3 6.4.5 6.4.6
6.4.7 6.6.3.3 6.6.5.2
6.6.5.4 6.7.2.5 6.8.3.9

component 6.4.3.1 6.4.3.2 6.4.3.5
6.4.6 6.5.1 6.5.3.1
6.5.3.2 6.5.3.3 6.6.3.1
6.6.3.3 6.6.5.2 6.6.5.3
6.8.3.2 6.8.3.10

component-type 6.4.3.1 6.4.3.2 6.6.3.3
component-variable 6.5.1 6.5.3.1
component-variables 6.5.3
components 6.1. 7 6.4.3.1 6.4.3.3

6.4.3.5 6.4.5 6.5.5
6.6.3.3 6.6.3.6 6.6.5.2
6.9.4.7

&~"""'I _ If I V "'I1.L, 1';10 U PAGE 63

compound-statement 6.2. 1 6.8.1 6.8.3.1
6.8.3.2

con formant-array-sc hem a 6.6.3.1 6.6.3.3
oongruous 6.6.3.4 6.6.3.5 6.6.3.6
constant 6.3 6.4.2.4 6.4.3.3

6.6.2 6.7.2.2
corresponding 6.2.1 6.2.2 6.3

6.4.1 6.5.3.2 6.5.3.3
6.6.3.1 6.6.3.3 6.6.3.6
6.7.3 6.8.2.3 6.10

de-referencing 6.5.4 6.6.3.3 6.8.2.2
6.8.3.10

defining-point 6.2.1 6.2.2 6.3
6.4.1 6.4.2.3 6.4.3.3
6.5. 1 6.6.1 6.6.2
6.6.3.1 6.6.3.4 6.6.3.5
6.8.3.10 6.10

definition 3. 4. 5.1
6.4.2.4 6.4.3.3 6.4.3.5
6.5.3.2

directive 6.1.4 6.6.1 6.6.2
empty-statement 6.8.2.1 6.8.3.4
entire-variable 6.5.1 6.5.2 6.8.3.9
enumerated-type 6.4.2.1 6.4.2.3
error 3. 5.1 6.4.3.3

6.4.6 6.5.4 6.6.3.3
6.6.5.2 6.6.5.3 6.6.6.2
6.6.6.3 6.6.6.4 6.6.6.5
6.7.1 6.7.2.2 6.8.3.5
6.8.3.9 6.9.2 6.9.4.2

expression 6.4.6 6.5.3.2 6.6.2
6.6.3.2 6.6.5.2 6.6.5.3
6.6.5.4 6.6.6.2 6.6.6.3
6.6.6.4 6.6.6.5 6.7.1
6.7.2.3 6.7.3 6.8.2.2
6.8.3.5 6.8.3.9 6.9.4
6.9.4.2

factor 6.1.5 6.7. 1 6.7.2.1
field 6.4.3.3 6.6.3.3 6.8.2.2

6.8.3.10
field-designator 6.2.2 6.4.3.3 6.5.3.1

6.5.3.3
field-identifier 6.2.2 6,4.3.3 6.5.3.3
file-type 6.4.3.1 6.4.3.5 6.4.6

6.5.5 6.10
file-variable 6.5.5 6.6.5.2 6.6.6.5

6.9.2 6.9.3 6.9.4
6.9.5

for-statement 6.8.3.6. 6.8.3.9
formal 6.6.1 6.6.2 6.6.3.1

6.6.3.2 6.6.3.3 6.6.3.4
6.6.3.5 6.7.3 6.8.2.3

formal-parameter-list 6.6.1 6.6.2 6.6.3.1
6.6.3.3

t'A:5CAL NEWS 1118 MA Y, 1980 PAGE 64

function 3. 6.1.2 6.4.3.3
6.4.3.5 6.6 6.6. 1
6.6.2 6.6.3.5 6.6.6.3
6.6.6.4 6.6.6.5 6.7.3
6.8.2.2 6.9.4.4 6.9.4.5.1
6.9.4.5.2

function-block 6. 1 .4 6.6.2 6.6.3.1
6.8.2.2

function-declaration 6.2. 1 6.6.2 6.6.3.5
6.7.3 6.8.3.9

function-designator 6.6.2 6.7.1 6.7.3
6.8.3.9

funotion-identifier 6.6.2 6.6.3.1 6.6.3.5
6.7.3 6.8.2.2 6.8.3.9

functional 6.6.3.1 6.6.3.5 6.6.3.6
goto-statement 6.8. 1 6.8.2.1 6.8.2.4

6.8.3.2 6.8.3.7 6.8.3.9
identifier 3. 4. 6.1.3

6.2.2 6.3 6.4. 1
6.4.2.3 6.4.3.3 6.5. 1
6.5.2 6.5.3.3 6.6. 1
6.6.2 6.6.3.1 6.8.3.9
6.10

identifier-list 6.4.2.3 6.4.3.3 6.5. 1
6.6.3.1 6.6.3.3 6.10

if-statement 6.8.3.3 6.8.3.4
implementation-defined 3. 5. 1 6.1.7

6.4.2.2 6.4.3.4 6.7. 1
6.7.2.2 6.7.2.5 6.9.4.2
6.9.4.5.1 6.9.4.6 6.9.6
6.10

implementation-dependent 3. 5.1 5.2
6.1.4 6.7.2.1 6.7.3
6.8.2.2 6.8.2.3 6.9.6
6.10

index-type 6.4.3.2 6.5.3.2 6.6.3.3
indexed-variable 6.5.3.1 6.5.3.2
indexing 6.5.3.2 6.6.3.3 6.8.2.2

6.8.3.10
integer-type 6. 1.5 6.3 6.4.2.1

6.4.2.2 6.4.3.2 6.4.3.4
6.4.6 6.6.6.2 6.6.6.3
6.6.6.4 6.6.6.5 6.7.2.2
6.7.2.5 6.9.2 6.9.4.2
6.9.4.4

label 3. 6. 1 .2 6.1.6
6.2.1 6.2.2 6.8.1
6.8.2.4

maxint 6.1.5 6.4.7 6.7.2.2
member 6.7. 1 6.7.2.5
member-designator 6.7.1

PASCAL NEWS fl18 MAY, 1980 PAGE 65

note 6.1 6.4.2.2 6.4.3.1
6.4.3.2 6.4.3.3 6.4.3.4
6.4.4 6.4.7 6.5.1
6.5.3.2 6.6.3.1 6.6.5.2
6.6.6.4 6.7. 1 6.7.2.1
6.7.2.2 6.7.2.5 6.8. 1
6.8.3.4 6.8.3.5 6.9.3
6.9.4.5.2 6.9.5 6.10
6. 11

number 6.1.7 6.4.2.2 6.4.2.3
6.4.3.3 6.4.3.5 6.4.5
6.6.3.6 6.6.6.4 6.7.3
6.8.2.3 6.9.2 6.9.4.2
6.9.4.4 6.9.4.5 6.9.4.5.1
6.9.4.5.2

operand 6.6.5.3 6.7.2.1 6.7.2.2
6.7.2.3 6.7.2.5

operator 6.5.1 6.7. 1 6.7.2.1
6.7.2.2 6.7.2.3 6.7.2.4
6.7.2.5 6.8.3.5

ordinal 6.4.2.1 6.4.2.2 6.4.2.3
6.6.6.1 6.6.6.4 6.7.2.5

ordinal-type 6.4.2.1 6.4.2.4 6.4.3.2
6.4.3.3 6.4.3.4 6.6.3.6
6.6.6.4 6.7. 1 6.7.2.5
6.8.3.5 6.8.3.9

parameter 6.6. 1 6.6.3.1 6.6.3.2
6.6.3.3 6.6.3.4 6.6.3.5
6.6.3.6 6.6.5.2 6.6.5.3
6.6.6.2 6.6.6.4 6.6.6.5
6.8.3.9 6.9.2 6.9.3
6.9.4 6.9.4.6 6.9.5

pointer 6.4.4 6.5. 1 6.5.4
6.6.3.3 6.6.5.3 6.7.2.5
6.8.2.2 6.8.3.10

point~r-type 6.2.2 6.4.1 6.4.4
6.5.4 6.6.2 6.6.5.3

predeclared 4. 6.6.4.1
predefined 4. 6.4.2.2 6.4.3.5

6.7.2.2
procedural 6.6.3.1 6.6.3.4 6.6.3.6
procedure 6. 1 .2 6.4.3.5 6.4.4

6.5.4 6.6 6.6.1
6.6.3.4 6.6.5.2 6.8.1
6.8.2.3 6.8.3.9 6.9.2
6.9.3 6.9.4 6.9.5
6.9.6 6.10

procedure-block 6.1.4 6.6.1 6.6.3.1
procedure-declaration 6.2.1 6.6. 1 6.6.3.4

6.8.2.3 6.8.3.9
procedure-identifier 6.6. 1 6.6.3.1 6.6.3.4

6.7.3 6.8.2.3 6.8.3.9
procedure-statement 6.6.1 6.8.2.1 6~8.2.3

6.8.3.9

MAY, 1980 PAGE 66

program 1 . 3. 4.
5.1 5.2 6.1.1
6.1.2 6.1.8 6.2. 1
6.2.2 6.4.3.5 6.4.4
6.5.4 6.6.1 6.6.2
6.6.5.4 6.8.2.4 6.8.3.9
6.9.1 6.10

program-parameters 6.2.1 6.9.1 6.10
real-type 6.1.5 6.3 6.4.2.1

6.4.2.2 6.4.6 6.6.6.2
6.6.6.3 6.7.2.2 6.7.2.5
6.9.2 6.9.4.2 6.9.4.5

record-type 6.4.3.1 6.4.3.3 6.5.3.3
6.8.3.10

record-variable 6.2.2 6.5.3.3 6.8.3.10
referenced-variable 6.5.1 6.5.4 6.6.5.3
region 6.2.1 6.2.2 6.3

6.4.1 6.4.2.3 6.4.3.3
6.5.1 6.6.1 6.6.2
6.6.3.1 6.8.3.10

result 6.4.3.3 6.6.1 6.6.2
6.6.6.2 6.6.6.3 6.6.6.4
6.7.2.2 6.7.2.3 6.7.2.4
6.7.2.5

same 6.1 6.1. 3 6.1.4
6.1.7 6.2.2 6.4.1
6.4.2.2 6.4.2.4 6.4.3.2
6.4.5 6.4.6 6.4.7
6.5.3.2 6.6.3.1 6.6.3.3
6.6.3.5 6.6.3.6 6.6.5.2
6.6.6.2 6.6.6.4 6.7.1
6.7.2.2 6.8.3.5

scope 1 • 3. 6.2
6.2.2 6.5.3.3 6.8.3.1

set-type 6.4.3.1 6.4.3.4 6.7.2.4
6.7.2.5

statement 5.1 6.2.1 6.6.5.4
6.8.1 6.8.2.1 6.8.3.2
6.8.3.4 6.8.3.5 6.8.3.8
6.8.3.9 6.8.3.10

string-type 6.4.3.2 6.7.1 6.7.2.5
6.9.4.2 6.9.4.7

string-types 6.1.7 6.4.5 6.4.6
6.9.4.7

structured-type 6.4.1 6.4.3.1 6.4.3.2
6.4.3.3 6.4.3.5 6.4.6

subrange 6.4.2.4 6.4.3.4 6.4.5
6.7.1 6.9.2

symbols 4. 6.7.2.2 6.8.2.1
6.11

tag-field 6.4.3.3
text 3. 4. 6.1.8

6.2.2 6.4.3.5 6.6.1
6.8.2.4

PASCAL NEWS 1118 MAY. 198C PAGE 67

textfile 6.4.3.5 6.6.5.2 6.6.6.5
6.9.2 6.9.4 6.9.4.1
6.9.6 6.10

tokens 4. 6.1 6.1.1
6.1.2 6.1.8 6.8.3.2
6.8.3.7 6.11

totally-undefined 3. 6.2.1 6.4.3.3
6.6.5.2 6.6.5.3

type-identifier 6.2.2 6.4.1 6.4.2.1
6.4.3.5 6.4.4 6.6.3.1
6.6.3.3

undefined 3. 6.5.4 6.6.2
6.6.5.3 6.7.1 6.8.3.9

variable 3. 6.4.3.5 6.4.4
6.5.1 6.5.2 6.5.3.1
6.5.3.2 6.5.3.3 6.5.5
6.5.4 6.6.3.1 6.6.3.2
6.6.3.3 6.6.5.2 6.6.5.3
6.6.5.4 6.7.1 6.8.2.2
6.8.3.9 6.8.3.10 6.9.2
6.10

variable-access 6.5.1 6.5.2 6.5.3.2
6.5.3.3 6.5.5 6.5.4
6.7.1 6.7.3 6.8.2.2
6.9.2 6.9.3

variant 6.4.3.3 6.6.3.3 6.6.5.3
6.8.2.2 6.8.3.10

with-statement 6.6.5.2 6.6.5.3 6.8.3.1
6.8.3.10

word-symbol 6.1.2 6.1.3 6.1.4

PASCAL NEWS #18

Pascal Standardisation
A M Addyman
Department of Computer Science
University of Manchester
Oxford Road
MANCHESTER Ml3 9PL
United Kingdon

MAY, 1980 PAGE 68

HISTORY

In 1977 a working group was formed within the British Standards
Institution (BSI) to produce a standard for the progr8lll1ling language Pascal.
This working group is responsible to the technical committee on programming
languages (DPS/13) and is designated DPS/13/4.

The Attention List

The working group first produced a list of all the known problems
with the current definition of Pascal. This was called the Attention List.
The final version of the Attention List, which was produced in January 1978,
ran to 17 pages. It contained contributions from members of the group,
from correspondents and from published criticisms of Pascal.

In April 1978 it was decided that further work on the Attention List
should be suspended in favour of the production of a draft Q To date there
have been five working drafts.

The First Working Draft

The first working draft was produced by dividing up the subject
matter into some 16 sections. Many of the section topics corresponded
to those of the Revised Report. Each section was the responsibility of
two group members; one to write the section and one to comment upon it.
The first draft was completed by mid-July 1978.

The Second Working Draft

Immediately following receipt of all the sections which formed the
first working draft, the convenor (A.M.Addyman) was a participant at a
workshop which was organised to discuss Pascal o The first working draft
was the subject of informal discussions at the workshop. On returning
from the workshop, the document was redrafted to:

(a) remove obvious inconsistencies in style ~tc.
(b) produce a document whose form was closer to that of a

British Standardo
(c) incorporate comments from the informal discussions.

Both the first and second working drafts were distributed to the
members of the working group during August 1978.

The Third Working Draft

A meeting of the group was held in September 1978 to discuss the
drafts. This resulted in a list of corrections and amendments to the
sec('Ind working drafL These Wl'rE:' incorporated in a new draft together with
some further editorial cha\lgps which w('re necessary to form a British
Stalld[lnL This draft \.:;11' 1'11blislled in rascal Ncws 1114 and Softw.lre Practice
and Experit'llce, VOIUIIlt' g NlImbcr ') (N,I\' IQ7Y),

PASCAL NEWS #18 MAY, 1980

The Draft for Public Comment

The draft for public comment was an edited version of the third
working draft. The changes introduced bring the document into line with
BSl/lS0 editorial practice. The draft for public comment became BSI
document 79/6052BDC and ISO/TC97/SC5 N462. It also appeared in IEEE
Computer Volume 12 Number 4 (April 1979)

The Fourth Working Draft

The fourth working draft was produced in repsonse to the comments
received by August 1979 0 The group (DPS/13/4) met in September 1979 to
discuss these comments and create the draft. This document was circulated
as ISO/TC97/SC6 N510. It was further discussed at a November meeting.

The Fifth Working Draft

This draft was the result of an ISO Pascal Experts Group meeting in
Turin, Italy in November1979. It was circulated to members of the group
in December 1979 for editorial and typographical comments. It became
ANSI X3J9/BO-003.

The First ISO Draft Proposal

This is the fifth working draft with editorial corrections etc.
It is being circulated to those ISO members bodies which are members for
ISO/TC97/SC5 (Programming Languages) for comment and three month letter
ballot. To ensure the widest possible exposure of the draft it is
being printed in SIGPLAN Notices.

Commenting on the Draft Proeosa1

Ideally you should send your comments to the standards organisation
which participates in ISO activities on your country's behalf. All these
organisations will have received a copy of the draft and should be actively
considering it. In several countries e.g. France, Germany, the Netherlands,
the U.K. and the U.S.A. a group was formed which met and considered a previous
public draft. In some other countries e.g. Canada, there is the
possibility that such a group will soon be formed. If your national
standards organisation needs comments from individuals to assist it with its
national response you should send your comments to them. In the U.S.A.
please send your comments to the secretary of the Joint ANSI X3J9 - IEEE
Pascal Standards Committee, who is:

Note

Carol Sledge
On-Line Systems, Inc.
115 Evergreen Height Drive
Pittsburgh PA 15229

The last meeting of the Joint Pascal Committee during the comment/
ballot period will be April 23-25th in Washington D.C.

- -. - •• - lr I V
MAY, 1980 PAGE 70

If you are in the U K, or are outside the USA and are unwilling
or unable to communicate with your own standards wQrking body you should
send your comments to:

Tony Addyman
(Convener ISO/TC97/SCS/WG4)
Department of Computer Science
University of Manchester
Oxford Road
MANCHESTER M13 9PL
United Kingdom.

Organising your Comments

The previous comment period produced a very large volume of
comments in a wide variety of formats. It will assist in the processing
of the comments if the following guidelines are adhered to.

1. References to the text should be by section number ~
by page number.

2. A clear statement of the nature of the problem should be given.

3. Suggestions entailing revision to the text should indicate
the preferred wording.

For Example (from the US comments on N462)

Section 6.8.2.2 Assignment-statements

Problem

If the selection of a vari.able involves the selection of a field of a
variant record, for consistency the time of selection should also be
implementation-dependent.

Solution

Change line 8 to

"If the selection of the variable involves the indexing of an array, the
selection of a field of a variant record,"

Thank You.

Note

The ISO/TC97/SC5 members countries are:

P-Members
Canada, China, Finald, France, Germany, Hungary, Italy, Japan,
Netherlands, Romania, Spain, Sweden, Switzerland, UK, USA.

O-Members
Australia, Austria, Belgium, Bulgaria, Czechoslovakia, Denmark,
India, Israel, Norway, Poland, Portugal, Republic of South Africa,
USSR, Yugoslavia.

5th February 1980

