PASCAL USEKS GROUP

Pascal News

NUMBER 17

COMMUNICATIONS ABOUT THE PROGRAMMING LANGUAGE PASCAL BY PASCALERS

SEPTEMBER, 1980

Policy

POLICY: PASCAL NEWS (15-Sep-80)

*

*

Pascal News is the official but informal publication of the User's Group.

Pascal News contains all we (the editors) know about Pascal; we use it as
the vehicle to answer all inquiries because our physical energy and
resources for answering individual requests are finite. As PUG grows, we
unfortunately succumb to the reality of:

1. Having to insist that people who need to know "about Pascal" join PUG
and read Pascal News - that is why we spend time to produce it!

2. Refusing to return phone calls or answer letters full of questions - we
will pass the questions on to the readership of Pascal News. Please
understand what the collective effect of individual inquiries has at the
"concentrators" (our phones and mailboxes). We are trying honestly to say:
"We cannot promise more that we can do."

Pascal News is produced 3 or 4 times during a year; usually in March, June,
September, and December.

AL =THE "NEWS - THAT 'S EIT, - WE - PRINTS Please send material (brevity is a
virtue) for Pascal News single-spaced and camera-ready (use dark ribbon and

18.5 cm lines')

Remember: ALL LETTERS TO US WILL BE PRINTED UNLESS THEY CONTAIN A REQUEST
TO THE CONTRARY.

Pascal News is divided into flexible sections:

POLICY - explains the way we do things (ALL-PURPOSE COUPON, etc.)

EDITOR'S CONTRIBUTION - passes along the opinion and point of view of the
editor together with changes in the mechanics of PUG operation, etc.

HERE AND THERE WITH PASCAL - presents news from people, conference
announcements and reports, new books and articles (including reviews),
notices of Pascal in the news, history, membership rosters, etc.

APPLICATIONS - presents and documents source programs written in Pascal
for various algorithms, and software tools for a Pascal environment; news
of significant applications programs. Also critiques regarding
program/algorithm certification, performance, standards conformance,
style, output convenience, and general design.

ARTICLES - contains formal, submitted contributions (such as Pascal
philosophy, use of Pascal as a teaching tool, use of Pascal at different
computer installations, how to promote Pascal, etc.).

OPEN FORUM FOR MEMBERS - contains short, informal correspondence among
members which is of interest to the readership of Pascal News.

IMPLEMENTATION NOTES - reports news of Pascal implementations: contacts
for maintainers, implementors, distributors, and documentors of various
implementations as well as where to send bug reports. Qualitative and
quantitative descriptions and comparisons of various implementations are
publicized. Sections contain information about Portable Pascals, Pascal
Variants, Feature-Implementation Notes, and Machine-Dependent
Implementations.

------ ALL-PURPOSE COUPON - - - - = = (15-Sep-80)

Pascal User's Group, c/o Rick Shaw
P.0. Box 888524
Atlanta, Georgia 30338 USA

NoTe

- Membership fee and All Purpose Coupon is sent to your Regional
Representative.
= SEe THE PoLIicYy SECTION ON THE KEVERSE SIDE FOR PRICES AND
ALTERNATE ADDRESS if you are located in the European or
Australasian Regions.
Membership and Renewal are the same price.
Note the discounts below, for multi-year subscription and renewal.
- The U. S. Postal Service does not forward Pascal News.

USA Europe Aust.
[]1year $10. £6. A$ 8.
[] Enter me as a new member for:
[] 2 years $18. £10. A$ 15.
[] Renew my subscription for:
[] 3 years $25. £14. A$ 20.

! | !
[] Send Back Issue(s) ! !

[] My new address/phone is listed below

[] Enclosed please find a contribution, idea, article or opinion
which is submitted for publication in the Pascal News.

[] Comments:

! $!
! ENCLOSED PLEASE FIND: A$!
! £ . !
! CHECK no. !
! !

NAME

ADDRESS

PHONE

COMPUTER

DATE

JOINING PASCAL USER'S GROUP?

- Membership is open to anyone: Particularly the Pascal user, teacher,
maintainer, implementor, distributor, or just plain fan.

- Please enclose the proper prepayment (check payable to "Pascal User's
Group"); we will not bill you.

- Please do not send us purchase orders; we cannot endure the paper work!

- When you join PUG any time within a year: January 1 to December 31, you
will receive all issues of Pascal News for that year.

- We produce Pascal News as a means s toward the end of promoting Pascal and
communicating news of events surrounding Pascal to persons interested in
Pascal. We are simply interested in the news ourselves and prefer to share
it through Pascal News. We desire to minimize paperwork, because we have
other work to do.

———" - - —————— ————— — - — - — ——— —— — — o~ — . — - — — — — —— —————— ——— o~ — -~ ——————————_—— -

- American Region (North and South America): Send $10.00 per year to the
address on the reverse side. International telephone: 1-404-252-2600.

- European Region (Europe, North Africa, Western and Central Asia): Join
through PUG iUK5. Send £5.00 per year to: Pascal Users Group, c/o Computer
Studies Group, Mathematics Department, The University, Southampton S09 S5NH,
United Kingdom; or pay by direct transfer into our Post Giro account
(28 513 4000); International telephone: 44-703-559122 x700.

- Australasian Region (Australia, East Asia - incl. Japan): PUG(AUS). Send
$A10.00 per year to: Pascal Users Group, c/o Arthur Sale, Department of
Information Science, University of Tasmania, Box 252C GPO, Hobart, Tasmania
7001, Australia. International telephone: 61-02-23 0561 x435

PUG(USA) produces Pascal News and keeps all mailing addresses on a common
list. Regional representatives collect memberships from their regions as a
service, and they reprint and distribute Pascal News using a proof copy and
mailing labels sent from PUG(USA). Persons in the Australasian and European
Regions must join through their regional representatives. People in other
places can join through PUG(USA).

RENEWING?

- Please renew early (before November and please write us a line or two to
tell us what you are doing with Pascal, and tell us what you think of PUG
and Pascal News. Renewing for more than one year saves us time.

ORDERING BACK ISSUES OR EXTRA ISSUES?

- Qur unusual policy of automatically sending all issues of Pascal News to
anyone who joins within a year means that we eliminate many requests for
backissues ahead of time, and we don't have to reprint important information
in every issue--especially about Pascal implementations!

- Issues 1 .. 8 (January, 1974 - May 1977) are out of print.

(A few copies of issue 8 remain at PUG(UK) available for £2 each.)

- Issues 9 .. 12 (September, 1977 - June, 1978) are available from PUG(USA)
all for $15.00 and from PUG(AUS) all for $A15.00

- Issues 13 .. 16 are available from PUG(UK) all for £10; from PUG(AUS) =all
for $A15.00; and from PUG(USA) all for $15.00.

- Extra single copies of new issues (current academic year) are: $5.00 each
- PUG(USA); &3 each - PUG(UK); and $A5.00 each - PUG(AUS).

SENDING MATERIAL FOR PUBLICATION?

- Your experiences with Pascal (teaching and otherwise), ideas, letters,
opinions, notices, news, articles, conference announcements, reports,
implementation information, applications, etc. are welcome. Please send
material single-spaced and in camera-ready (use a dark ribbon and lines 18.5
cm. wide) form.

- All letters will be printed unless they contain a request to the contrary.

Index

PASCAL NEWS #19 SEPTEMBER, 1980 INDEX

2 POLICY, COUPONS, INDEX, ETC.

1 EDITOR'S CONTRIBUTION

3 HERE AND THERE WITH Pascal

3 Tidbits

7 Pascal in the News

9 Gossip

9 Books and Articles

23 Book review: "Pascal with Style: Programming Proverbs"

24 Review of all back issues of Pascal News (l..16)!!

27 Pascal Users Group finances: 1978-1979

28 Computer systems represented by PUG -- a summary

29 APPLICATIONS

29 Corrections to the XREF program (PN#17)

30 Pascal-S Subset Pascal written in Pascal

41 Notes on System Dependent Code in Pascal-S & Pascal-I

44 LISP Lisp Interpreter written in Pascal

48 ARTICLES

49 "An Implementation of NEW and DISPOSE Using
Boundary Tags" -- Branko J. Gerovac

60 "A Simple Extension to Pascal for Quasi
Parellel Processing” -- Terje Noodt

67 OPEN FORUM FOR MEMBERS

71 PASCAL STANDARDS

85 IMPLEMENTATION NOTES

85 Editorial

85 Validation Suite Reports

112 Checklists

125 ONE PURPOSE COUPON, POLICY

Contributors to this issue (#19) were:

EDITOR Rick Shaw

Here & There John Eisenberg

Books & Articles Rich Stevens

Applications Rich Cichelli, Andy Mickel
Standards Jim Miner, Tony Addyman
Implementation Notes Bob Dietrich, Greg Marshall

Administration Moe Ford, Kathy Ford, Jennie Sinclair

APPLICATION FOR LICENSE TO USE VALIDATION SUITE FOR PASCAL

Name and address of requestor:
(Company name if requestor is a company)

Phone Number:

Name and address to which information should
be addressed (Write "as above" if the same)

Signature of requestor:

Date:

In making this application, which should be signed by a responsible person in the
case of a company, the requestor agrees that:

a) The Validation Suite is recognized as being the copyrighted, proprietary prop-
erty of R. A. Freak and A.H.J. Sale, and

b) The requestor will not distribute or otherwise make available machine-reéadable
copies of the Validation Suite, modified or unmodified, to any third party
without written permission of the copyright holders.

In return, the copyright holders grant full permission to use the programs and doc-
umentation contained in the Validation Suite for the purpose of compiler validation,
acceptance tests, benchmarking, preparation of comparative reports, and similar pur-
poses, and to make available the listings of the results of compilation and execution
of the programs to third parties in the course of the above activities. In such doc-
uments, reference shall be made to the original copyright notice and its source.

Distribution charge: $50.00

Make checks payable to ANPA/RI in US dollars drawn on a US bank.
Remittance must accompany application. Mail request to:
Source Code Delivery Medium Specification: ANPA/RI
9-track, 800 bpi, NRZI, Odd Parity, 600 Magnet1c Tape P.0. Box 598
Easton, Pa. 18042
() ANSI-Standard USA
Attn: R.J. Cichelli
a) Select character code set:

() ASCII () EBCDIC

b) Each logical record is an 80 character card image.
Select block size in logical records per block.
() 40 ()20 ()10

() Special DEC System Alternates:
() RSX-IAS PIP Format
() DOS-RSTS FLX Format

0ffice use only
Signed
Date

Richard J. Cichelli
On behalf of A;H.J. Sale & R.A. Freak

Editor’'s Contribution

SO WHATS NEW

Well lots! We have extended the subscriptions of all members
by 6 months. The effect of this change is that we align the
subscription year to the calendar year instead of an academic
year. So now, it should be easier to know when your
subscription expires. Note that our policy of sending all
back issues for the year has not changed. Therefore the year
marked on the 1labels 1is the year through which your
subscription is effective. Remember, now subscriptions
expire on December 31.

Also, as you can see -if you have read the new APC, the price
of Pascal News is going up. Sorry. We resisted as long as we
could. But note that we offer a good price break for multiple
year subscriptions. Subscribing for more than one year saves
us a great deal of work. Please, please help us save paper
work! The new prices will go into effect 1-January-80. Until
then, we will accept renewals and subscriptions at the old
price. So if you have not yet renewed, do it now, while the
price is low low low! We also have a new address! (note the
new APC again) You may recognize it as the return address for
issues 17 and 18. The address is simple and does not include
a company name. (yes the box number really does have six
digits and three are 8's) I hope the new address mollifies
those people who worried about vendor bias. By the way, my
employer provides no support for Pascal Users Group, in any
way shape or form. Which leads me to the next subject.

HELP -- I'M BEGGING

Pascal Users Group needs its own computer. It has become a
necessity, to be able to maintain our ever increasing data
base, and do all of our record keeping. If your company can
offer any type of a product for our use either as a gift, for
long term use, or at a substantial discount we would like to
hear from you. We are not very ambitious. Our thoughts are to
secure a micro processor, a terminal, a small line printer, a
hard disk, and a set of floppys. Small potatoes! Right? The
system must be in place by December in order for us to be on
time for the next issue. So, please, won't you call right
away. (Jerry Lewis, eat your heart out) I have exausted all
my favors in Atlanta.

CHANGE OF ADDRESS -- A REAL PROBLEM

I just can not believe how many people change there address
and do not inform Pascal News! The expense 1is phenominal.
Bulk mail is not forwardable by the post office. It costs

TnoLvVNL "Ly Tav ——

$.15 to send a change of address card to us, and $1.43 just
in return postage if you do not. That does not include the
postage to get it to you at your new address. This 1is a
tremendous expense to PUG when 142 people "just forgot".
Please help us get Pascal News to you on time. O0K? So if you
suspect we may have your back copies, send us a stamped
self-addressed envelope with a note telling us which issues
you have not recieved and we will give you your copies or a
new set, no questions asked. Simple, right?

THE GOOD STUFF -- WHAT'S IN THIS ISSUE

As wusual, we have a gigantic "HERE AND THERE" section this
issue. it is chock full of feedback from the readers. If you
put anything on the "comments" section of the APC or sent
anything to me or John that was not a letter, it ends up
here. So keep up the notes and comments.

I would also like to call your attention to the section on
"BOOKS AND ARTICLES" if you are looking for some side reading
on Pascal there are over 300 citings. Wow! And Rich has
collected together a very complete list of the text books
available on subject of Pascal. If your favorite is not there
please drop us a line on an APC. OK?

Since Andy Mickel has a few spare moments lately, he has
contributed 3 fine tidbits of information. The first is a
thumbnail review of all the back issues of Pascal News
(1..16). Second, he has rolled up the 78-79 finances. And
third, is a summary of all the machines represented by the
PUG membership, derived from the old APCs. Very interesting.

The "APPLICATIONS" section contains Wirth's Pascal-S, the
subset Pascal compiler. It has been around for a while but
many new users have never seen it. We also have included a
LISP interpreter, for those who need the power and
flexibility?! Enjoy.

The "ARTICLES" are really great too. Both show a solid
approach to making a good thing better.

Jim Miner reports on the standards turmoil. The facts are
laid out, and testimony from both sides is presented. You be
the judge. And Let us know what you think.

And finally "IMPLEMENTATION NOTES". Fourty pages of them.
Note IBM's offical entry. 'Nuff said.

Hope you like it. P
{/ﬁf

Here and There With Pascal

TTTTTTT
T
T
T
T
T
T 1IDBITS

Peter C. Akwai, IBM Kst. 3787, Postfach 33 09,6000 Frankfurt/Ml West

Germany: "We are willing to assume some of the unassigned Pascal Newsletter
work caused by Andy Mickel’s retirement. Let us know what we can do to
help. Pasteup, Selectric composer facilities available, some
graphics/cartooning, etc." (*79/05/05%)

Haim Avni, Givat Brenner, Israel 60948: "We are a rather new software group,

very keen Pascalers and eager to have this line of communication with other
Pascal users." (*80/05/09%)

David P. Babcock, 508 First Street, Alamosa, CO 81101: "Disappointed to note
address is now DEC. Please try to maintain at least a semblance of
independence in any case." (*80/01/20%)

John W. Baxter, 1830 Avenida del Mundo, Apt. 1710, Coronado, CA 92118 is
using Pascal on an Apple at home, and also uses "an of fspring of PASCAL --—
called NCR language -- in my work at NCR Corp." (*79/12/28%)

Hank Becker, Yourdon - Software Products Group, 1133 Ave. of the Americas,

New York, NY 10036: "We will be distributing a Concurrent Pascal (compiler

is transportable) with P-codes to run on 8080/8085/Z80 and eventually other
[micros]." (*80/02/23%)

Paul J. Beckmann, 1907 Bohland, Ste Paul, MN 55116: "PN outstanding!

Thanks to Andy and the U of M Pascal Think Tank. Good luck to you, Rick, in
Georgia." (*80/02/23%)

Norman Belssner, 9616 Thunderbird Drive, San Ramon, CA 94583 is interested
in implementations of Pascal on TRS-80. (*80/01/05%)

K.S. Bhaskar, 22828 76th Ave. W. Apt. #33, Edmonds, WA 98020 is using the
NBS Pascal Compiler on a PDP 11/70 to generate code which is executed on a
stand-alone LSI-11 for real-time applications. (*80/01/21%)

K. Brauer, Universitaet Onasbrueck, 45 Onasbrueck, Postfach 4469 uses and
teaches Pascal at University, and is very much iterested in getting further
issues of the newsletter. (*80/01/03%)

Frank M. Brewster, 1 North Vista Ave., Bradford, PA 16701: "If you live up

to Andy’s standards, you’ll deserve the same huge thanks we owe to hime
Goiod luck." (*80/02/06%)

Frank Bush, Tennessee Teche Univ., Box 5071, Cookeville, TN 38501 has just
started using UCSD B-6700 Pascal. (*80/05/06%)

Re Bush, P.0. Box F, North Bend, OR 97459: "yeah “Applications’, Validation

Suite et al. Kudos to AM for service...is nasty K. Bowles really that bad?"
(*%80/01/23%)

Larry He Buss, 10l South U St., Apt,. 1, Lompoc, CA 93436: "I have a system
running under standard CP/M with 48K.... I would like to examine the latest
Pascal documentation. It seems that there are so many different versions of
Pascal out. Is the standard Pascal from UCSD the best one?" (*80/01/17%)

Robert Caldwell, Scientific/Humanistic Interfaces, 2939 Governor Dr., San
Diego, CA 92122: "Superb job - hang in there!" (*80/01/21%)

Dan Cantley, 3423 Carpenter Rd. Lot 10, Ypsilanti, MI 48197: "Just found the
Pascal News - it’s GREAT. Learned Pascal six months ago...our Accounting
Department wanted an A/R package - our system didn’t have the time or space
- so I wrote the A/R package on our own micro - stuck it in Accounting
Department. They love the package, and I love PASCAL." (*80/01/20%)

Chip Chapin, 3960 La Jolla Village Dr., La Jolla, CA 92037: "Should have

joined long ago - have worked with UCSD Pascal project for 3 years."
(*80/01/02%)

Les Cline, 1235 Wildwood Ave. #361, Sunnyvale, CA 94086: "I know not what
others say, but as for me, give me Pascal, or give me Assembler!!"
(*80/05/06%)

Roger A. Collins, 1653 Olmeda St., Encinitas, CA 92024: "I have found Pascal
News very informative and helpful. Brought up an interpreter (* on a
Perkin-Elmer 8/32 *) but found it unworkable in our enviromment, am now
looking for a compiler." (%*80/01/23%)

Stan Crouch, Technicon Medical Information Systems Corp., 3255-1 Scott
Blvd., Santa Clara, CA 95051: "I am doing a study on the feasibility of
converting some on-line programs to Pascal. I need to know whether or not
Pascal programs can be made re- entrant and what is required in the
operating systeme Also, if you have any information on ADA capabilities I
would appreciate any input in that area." (*80/04/08%)

Jeff Davis, 1515-J Tivoli Court, Raleigh, NC 27604 belongs to a local Apple
users group that has started a Pascal Special Interest Group with good
response. (%80/02/06%)

Tony DiCenzo, Digital Equipment, MR1-1/M40, Marlboro, MA 01752: "Good luck
Rick - I‘m sure this publication will flourish in your capable hands."
(*80/02/03%)

George B. Diamond, Diamond Aerosol Corporation, R.De #1, Glen Gardner, NJ
08826: "If we had this kind of effort in other fields we would not be a 3rd
rate power.' (*80/01/23%)

John Dickinson, Depte of Elec. Engr., Univ. of Idaho, Moscow, Idaho 83843 is

running Pascal on an IRM 370/145 and an HP1000 model 40. (*80/04/01%)

M. F. Doore, 1015 E. 10th St., Long Beach, CA 90813 is a Pascal Watcher in
Electrical Engineering hoping to be the owner of a Western Digitial P
Machine soon. (%*80/03/31%)

Donald L. Dunstan, Cogitronics Corporation, 5470 N.W. Innisbrook Place,
Portland, OR 97229: '"Cogitronics develops software for microprocessor
development systems. Currently we are working with a GenRad/Futuredata 8085
development systm and have generated a Pascal compiler for this system.”
(*80/01/23%)

Haunk Feeser, 644B Washington Ave., Ft. Lawton, Seattle, WA 98199 owns an
Apple II with Pascal and would greatly appreciate "any additional
information on the implementation of Pascal on the Apple II". (*80/01/23%)

William A. Freberg, Computer Sciences Corporation, 2753 Highland Dr., Las
Vegas, NV 89109: "Implementing Pascal 6000 from Zurich on CDC 6400 owned by
Department of Energy at Las Vegas NV (NOS/BE operating system)."
(*80/05/06%)

Edward R. Friedman, CIMS/New York Univ., 251 Mercer Street, New York, NY
10012: "Pascal is currently being used in courses devoted to programming
languages. PROSE is also popular among researchers." Versions in use are
Pascal 6000 Release 3 and Pascal from Sweden. (*80/01/23%)

Stuart H. Gage, Department of Entomology, Michigan State Univ., East
Lansing, MI 48824 is "currently running UCSD Pascal on a Terak 8510/a and a
CRDS MF-211, along with CDC Pascal on a Cyber 750/175. Our applications
deal with delivery of agricultural information using microcomputer networks
with an emphasis on graphics.™ (%80/01/23%)

Stephen Gerke, 1646 Parkcrest Cir. #301, Reston, VA 22090 says we should

"consider publishing smaller but more regular PNs. Validation reports are
very helpful." (*80/05/05%)

Pete Gifford, Allegheny College, Meadville, PA 16335 is running Pascal on an
IBM 4331. (*79/12/26%)

Paul J. Gillian, P.0. Box 2202 C.S., Pullman, WA 99163: "finally got my

computer (a Western Digital Pascal micro-Engine) and it’s great!"
(*80/01/23%)

Thomas Giventer, 127 Linden Ave., Ithaca, NY 14850: "You might be interested
to know that the latest version of Ithaca Intersystems’...Pascal/Z now runs
under CP/M (instead of K2) and supports real numbers and pointer
variables.... See Byte, Jan. 80, page 14." (*80/01/23%)

Re Steven Glanville, Silicon Valley Software, Inc., 1531 Sandpiper Ct.,

Sunnyvale, CA 94087 is currently implementing an MC68000 Pascal compiler
(*80/03/04%)

Steven K. Harr, Ohio State University, University Hospitals, 410 W. 10th
Avenue, Columbus, OH 43210: "We are currently in the process of evaluating

PASCAL, compilers for use at our installation. We are ruaning VS2 Release
1.7J on an IBM 370 Model 158J with 1.5 Mbytes of memory.... Any literature
you may have concerning PASCAL compilers for IBM 370 computers would be
extremely helpful to us at this point." (*80/01/16%)

Michael E. Harris, 407 W. Calhoun #17, Springfield, IL 62702: "I heartily
agree with the PUG direction. I hope to be installing PASCAL on my Z-80
S100 system later this years. The main thing that I would like to see happen
relative to PASCAL would be the establishment of an IBM/AMDAHL 370/3033/470
vendor supported standardized version of the language. Anybody out there
have a Sperry-Univac/Varian V77-600 PASCAL that an individual could afford?"

Sassan Hazeghi, P.O. Box 4526, Stanford, CA 94305:"How about setting up a
Pascal Program Library (a la SHARE)?" (*80/04/01%)

Thomas Hickey, 295 Garden Rd., Columbus, OH 43214:"Enjoy Pascal News very
muche Have brought up Brinch-Hansen’s Sequential on (*Xerox*) Sigma-9:
limited implementation & very slow!" (*80/04/01%)

Jean Philippe Hilsz, 77 rue Vergniaud, 75013 Paris, France would like to
know who supplies PASCAL compilers for Interdata 8/32, Interdata 8/16,
Perkin Elmer DS 3220 and 3240. (*80/01/23%)

William T. Hole, M.D., 260 Collingwood, San Francisco, CA 94114 has Pascal/M
and is hoping to "unleash the power of Pascal on my massive behavioral
research observation files, which deal with premature babies in an intensive
care nursery." (*80/04/23%)

Kenneth Re Jacobs, 10112 Ashwood Dr., Kensington, Maryland 20795 is using
Pascal on a DEC-10 and Xitan (Z-80) (*79/02/13%)

Steve Jay, Computer Center, University of Arizona, Tucson, AZ 85721: "I am
manager of software for the University’s Computer Center. We provide PASCAL
for use by any of our customers (* on a CDC Cyber 175 and a DEC-10 *). So
far, they seem happy with it." (*80/01/21%)

Re L. Jenkins, Hartman Technica, #612-815-lst St. S W, Calgary, Alberta,
Canada T2P 1IN3: "We are particularly interested in PASCAL for
microprocessors. As an electronics design consultancy we produce a lot of
microprocessor machine code, and would prefer to leave this uninspiring task
to a compiler." (*80/02/14%)

Mort Jomas,P.0. Box 390874, Miami Beach, FL 33139: "I’ve been using Pascal
on the Apple II, and would be most interested in seeing how it would do on
the validation suite, though I’m afraid I don’t have time to do it myself."
(*80/01/23%)

Berneta Kipp, 2206 NE 197th Place #D, Seattle, WA, 98155: "I am a programmer

for Boeing writing my first PASCAL program to update a Boeing cost
accounting data entry system." (*80/01/20%)

Les Kitchen, Computer Science Center, University of Maryland, College Park,
MD 20742: "We’re using National Bureau of Standards compiler (PDP-11/Unix),
Naval Undersea Lab compiler and University of Wisconsin compiler (both

ATH CMIN IWACHA

‘YA ae

nocT

an4yd

h

Univac 1108,1100/40) for computer vision research and for teaching
programming." (*80/04/03%)

Richard V. Kreutzer, 644 Elizabeth St., Salt Lake City, UT 84102: "I would
like to see updates/corrections to the Pascal validation suite published
regularly. I think what you are doing is great." (*80/01/23%)

Peter Kugel, Fulton Hall, Computer Science Department, Boston Colege,
Chestnut Hill, MA 02167: "I like Pascal News. (This validation issue is

fiendishe. Compliment, not insult.) I use Pascal for teaching. Why do I
keep hearing so much about Tasmania?" (%80/05/06%)

Be Kumar, 420 Persian Dr., Sunnyvale, CA 94086 would like information on any
Pascal compilers available for PRIME systems. (%*80/01/23%)

Karl P. Lacher, 1132 W. Skillman Ave., Roseville, MN 55113: "I am an
undergraduate at the Unive. of Minnesota in CSci. I was told about PASCAL
NEWS by Andy Mickel who taught a SNOBOL short course I attended. PASCAL is
definitely superior to FORTRAN." (*80/05/05%)

Carroll R. Lindholm, P.Os. Box 3007, Santa Monica, CA 90403: "Please do not
attempt to push state-of-the-art in print size reduction. My eyes are out
for days after receiving an issue." (*80/01/21%)

Thomas J. Loeb, 2106 E. Park St., Arlington Heights, IL 60004: "We have
formed a small user’s group here in Arlngton Heights. The majority of us
are firmly based in BASIC and are finding the transition to Pascal most
iterestings..e We are unable to find any books that explain how to put the
language to practical application. All the information we have been able to

locate seems to be directed to the classroom or beginning programmers."
(*80/04 /06%)

Gary Loitz, 575 S. Rengstorff Ave. #157, Mountain View, CA 94040: "Using
OMST Pascal V1.2 as the primary implementation language for the
Watkins-Johnson Magnetic Bubble Memory test system." (*80/02/06%)

Robert S. Lucas, 6941 N. Olin Ave., Portland, OR 97203: "Keep up the good
work!!" (*80/05/05%)

James We Lynch, Computer Services Marketing, Babcock & Wilcox, P.O. Box
1260, Lynchburg, VA 24505: "New to PUG; have Pascal available on NOS &
NOS/BE; used by our service bureau customers & limited internal
applications; use here is growing but not widespread; am looking forward to
7600 version.' (*80/05/05%)

George A. Martinez, 654 1/2 S. Soto St., Los Angeles, CA 90023: "Keep up the
good worke. You guys are just great.'" (%80/01/05%)

David Paul McCarthy, 1532 Simpson #1, Madison, WI 53713: "Keep up the fine
work." (*80/04/01%)

John J. McCandliss, 12164 Wensley Road, Florissant, MO 63033: "I am very

happy to know that you are contimuing the “Pascal News’ in the same fashion
as before." (*80/01/20%)

Fred McClelland, 5319 Northridge Ave., San Diego, CA 92117: "Would it be
possible for you to reprint the first eight issues of Pascal News?? I would
be very interested in purchasing them. (*80/01/21%)

Paul McJones, Xerox Corp., 3333 Coyote Hill Road, Palo Alto, CA 94304: "I
would like to see more on languages derived from Pascal, such as Modula and
Mesa." (*80/04/03%)

Tony Meadow, P.O. Box 5421, Oxnard, CA 93031: "The PUG Newsletter is one
(*of*) the most enjoyable & readable journals/books/«.. in the computer
field - and it”s not stuffy at all! Keep it up! Some of the features in it
which I find of especial interest is the software exchange and information
on current implementations of PASCAL." (*80/01/03%)

Bert Mendelson, McConnell Hall, Smith College, Northampton, MA 01063: "We
have switched our introductory course to PASCAL, originally using OMSI
PASCAL and will change to DEC’s version on our VAX." (*80/03/31%)

Paul Minkin, 3141 Rhode Island Aves S., Ste Louis Park, MN 55426: "Leaving
a Concurrent Pascal compiler project & finding myself in an assembly
language world has made the benefits of Pascal very clear. I finally have
the OMSI compiler & will send more as we use Pascal in the CAD/CAM worlde.
My new company is National Computer Sys. CDM Division." (*80/02/14%)

Cs We Misner, Dept of Physics, Unive. of Maryland, College Park, MD 20742:
"Teaching myself programming after 15 years away from it by writing a
gradebook editor/analyser.' (*80/01/04%)

David V. Moffat, Rte 7 Box 52A, Chapel Hill, NC 27514: "At N.C.S.U., we run
several Pascals: A.A.E.C., Stony Brook, on 370; sequential & concurrent, on
PDP-11; soon will try Gae. Tech & U. of Hull on a PRIME, and somebody’s (?)
on the VAX. There is a movement here to use Pascal in intro courses when a
friendly, informative, cheap compiler is found." (%80/01/04%)

Hugh W. Morgan, 7725 Berkshire Blvd., Powell, TN 37849: "I have recently
purchased Pascal from North Star...since this is my first experience with
PASCAL and since I am a computer novice with no experience with machine or
assembly language this has been a real experience for me, or perhaps I
should say ordeal... If you have any information, or can refer me to any
published articles which may help me get the terminal options worked out I
would be very grateful to you... Now that PASCAL is running I am very much
like the dog which finally caught the school bus. The dog didn’t know what
to do with the bus and I don”t know what to do with PASCAL. That’s where I
hope the PASCAL NEWS and User’s Group may help." (*80/01/05%)

Morgan Morrison, Unicorn Systems Company, Suite 402, 3807 Wilshire Blvd.,
Los Angeles, CA 90010: "We are engaged in the implementation of a software
product that is being written in PASCAL. We are interested in CDC Cyber
PASCAL implementations.' (%80/02/24%)

Timothy A. Nicholson, 97 Douglass Ave., Atherton, CA 94025: "Will be using
SLAC Pascal on IBM & UCSD Pascal on Apple." (*80/05/05/%)

FTH AT muiAAL

L s LA Ko M e [

noRT

——r

Bill Norton, M.H.S. Div., Harnischfeger Corp., 4400 W. National, Milwaukee,
WL 53201: "Keeping the present PUG structure and mission is the best way to
go. Best of luck to Rick Shaw and friends. Can’t use Pascal much right
now, but want to stay current.'" (*80/01/21%)

Thomas Je. Oliver, Blue Hills, Dewey, AZ 86327 has a micro and plans to
mainly work on alpha numeric, gray scale, pictorial maps and some LANDSAT
satellite algorithms." (*80/03/20%)

Ross Re We Parlette, Chemical Systems, United Technologies, P.0O. Box 35B,
Sunnyvale, CA 94086: "I went to a 1 day seminar to introduce Pascal; it was
very helpful. We hope to have the Validation Suite ready on the VAX for DEC
Pascal in Feb. “80. (%80/01/23%)

Jeff Pepper, 5512 Margaretta Ste. #3, Pittsburgh, PA 15206: "Glad you exist!"
(*80/02/24%)

James G. Peterson, 1446 6th St., Manhattan Beach, CA 90266: "Keep up the
good work! Some form of advertising might be worthwhile, so that more people
would know about PUG. T am writing a large CAD system with PASCAL at TRW
DSSG." (*80/01/21%)

Gregory N. Pippert, 1200 Columbia Ave., Riverside, CA 92507: "I am using
Electro Science Inde Pascal to drive an ESI Laser system which is used to
trim thick-film potentiometers." (%80/02/14%)

Fred Pospeschil, 3108 Jackson St., Bellevue, NC 68005: "I am looking for
Pascal implementations on Heath H8 computers" (* That’s a PDP-8 architecture
*) (*80/04/03%)

Hardy J. Pottinger, EE Dept., Unive. of Missouri, Rolla, MO 65401: "Keep up

the good work! I am using Pascal as a microcomputer system development
language." (* 80/01/23%)

Fred W. Powell, P.O. Box 2543, Staunton, VA 24401: "I am now using Pascal on
a TI 990/10. Thanks for such a tremendous job with Pascal News."
(*80/01/08%)

Charles A. Poynton, 113 Chaplin Cr, Toronto, Canada M5P 1A6: "I anxiously
and eagerly await each issue; keep up the excellent work!" (*80/02/14%)

Robert M. Pritchett, Trans-National Leasing, Inc., Box 7245, Dallas, TX
75209 is looking for Pascal for the IBM Series/l running the EDX operating
system, or for source code for a Pascal compiler/interpreter on IBM standard
8-inch single-density diskettes, 128 bytes per sector, single or double
sided.

Paul Rabin, Philadelphia Health Mgmt. Corp., 530 Walnut St., l4th Floor,
Philadelphia, PA 19106: "I am interested in using Concurrent Pascal to
implement a real-time dispatch system for the Phila. fire dept. I am
looking for D.G. implementations or help comverting another to D.G."
(*80/04/03%)

Armando Re Rodriguez, c/o S.P. Wovda, Armanspeergstrasse 15, 8000 Muenchen

90, West Germany: "Coming soon: I‘11 have all PUG software tools in diskette

(8 inch, single density, one-sided) to distribute and/or exchange for other
tools." (*80/01/07%)

Bernie Rosman, 864 Watertown St., We Newton, MA 02165: "We use Pascal
heavily at Framingham State College and all in-house software at Paramin,
Inc...sis written in Pascal. Keep up the good work!" (*80/01/21%)

Ira L. Ruben, 2104 Lincoln Dr. East, Ambler, PA 19002: "Have used Pascal to
code a Floyd-Evans production metacompiler, also currently designing and
coding a communications system (Univac ‘DCA’) in Pascale. The language is
the best I have ever used for implementation except for its lack of data
alignment control and packing control, which is needed when processing
bit-oriented protocols. PUG is good, but it would be nice if the news came
out at more predictable intervals!" (*80/01/21%)

William John Schaller, 4309 28th Ave. S., Minneapolis MN 55406: "I work for
Sperry Univac. We are developing a graphics system on a color terminal
(Chromatics). We are using UCSD Pascal on a Z80 to accomplish this."
(*80/05/05%)

Ge A. Schram, Dr. Neher-Laboratories, P.0O. box 421, 2260 AK Leidschendanm,
The Netherlands would like to know about the availablility of a DEC-10 or
PDP-11 Pascal cross-compiler for the M6800 or Z-80. (*79/11/07%)

Herbert Schulz, 5820 Oakwood Dr., Lisle, IL 60532: "I‘ve been very excited
about Pascal ever since reading about it in BYTE. Have had UCSD Apple
Pascal since it came out and just got UCSD Pascal for our H-11/A at the
Community College where I teach. Will be teaching Pascal to the faculty
next terme 1°d appreciate any help for that task!" (*80/04/01%)

Ted Shapin, 5110 E. Elsinore Ave, Orange, CA 92669 sends word that Dr.
Donald Knuth and Dr. Luis Trabb Pardo at Stanford University are working on
a typesetting system, to be implemented in Pascale.

Richard Siemborski, Communicatons & Computer Sciences Dept., Exxon Corp.,
Box 153, Florham Park, NJ 07932: "I would like a copy of the listing of ALL

known PASCAL implementations for micro’s, mini’s, and mainframes."
(*80/02/03%)

Seymour Singer, Bldg. 606/M.S. K110, Hughes Aircraft Co, P.0. Box 3310,
Fullerton, CA 92634: "We are offering a 12-week class on PASCAL programming
to Hughes personnel using Grogono’s text. We have installed both the SLAC
and HITAC compilers on our twin Amdahl 470 V/8 computers. The response to
this class has been overwhelming! Many students have bought the UCSD system
on the Apple microcomputer." (*80/01/10%)

K R Smith, 1632 Hialeah St., Orlando, FL 32808: "Have just ordered HP/1000
(RTE IVB) Pascale 1711 let you-all know as I start using it." (*80/05/05%)

Jon L. Spear, 1007 S.E. 13th Ave., Minneapolis, MN 55414: "I am working with
Prof. S. Bruell and G M« Schneider on a text: "Advanced Programming and
Problem Solving with Pascal" which may be available from Wiley by the fall."
(*80/05/06%)

—iiAaA

~rn

a1 Ae

nonT

E. L. Stechmann, ARH272, Control Data Corp., 4201 N. Lexington Ave., Ste
Paul, MN 55112: "I enjoy PUG very much: Pascal News is a high point in a
daye...-Question: How can we get the big mainframe manufacturers to accept &
support Pascal to the same extent as FORTRAN & COBOL?" (%80/05/06%)

Andrew Stewart, 11 Woodstock Rd., Mt. Waverley, VIC 3149, Australia:
"Pascal is a marvellous language because it is so simple and Elegant. I
think Pascal News is an excellent means of communication (when it comes!)"
(*80/04/14%)

Frank M. Stewart, Mathematics Department, Brown University, Providence, RI

02912: "I have only today learned of your invaluable organization."
(*80/03/31%)

Jerry S. Sullivan, Philips Laboratories, 345 Scarborough Road, Briarcliff
Manor, NY 10510: We have made extensive use of the UCSD Pascal System,
written a MODULA compiler in Pascal, (* and *) written a number of micro
operating systems in MODULA." (*80/03/31%)

Anthony J. Sutton, 1135 We 4th St., Winston-Salem, NC 27101 is looking for a

Pascal implementation under VM/370 CMS (comversational monitor).
(*80/01/23%)

Ko Stephen Tinius, 1016 Halsey Drive, Monterey, CA 93940: "I am a student at
the Naval Postgraduate School here in Monterey.... PASCAL is taught in
our...Introduction to programming course, which follows (usually) intros to
COBOL and FORTRAN. We run UCSD PASCAL on Altos microprocessors....For my

thesis, I‘m (trying) to implement NPS-Pascal on Intel hardware to run under
CP/M." (*80/01/23%)

Mike Trahan, University Computing Company, 1930 Hi Line Drive, Dallas, TX
75207: "UCC is using PASCAL Release 3.0.0 on a CDC Cyber 175 and CDC 6600
running the NOS/BE v.1l.3 - PSR 498 operating system. We use PASCAL for

applications programs, utility programs and general programming."
(*80/01/05%)

Transmatic Company, Rte 2, Box 86, Hamlin, TX 79520 has been moving some
programs from other machines onto Texas Instruments Pascal with great
difficulty because it does not meet the minimum conformance standards.
However, it takes less than two seconds to do a job which takes over three
and a half minutes on the same machine in BASIC. (*80/04/22%)

Frederick John Tydeman, 3901 Northfield Road, Austin, TX 78759: 'Finished
my master’s in computer science: “Abstract Machines, Portability, and a
Pascal Compiler’. Defined M-code (mobile code) as an intermediate language
and implemented a portable Pascal compiler using it." (%80/03/31%)

Stan Veit, Veit’s Diversified Operating Systems Ltd., 19 W. 34th St., Room
1113, New York, NY 1000l: "We are eastern reps for A.C.I. (* Pascal
microengine *) and a Pascal software house." (%80/02/24%)

Ray Vukcevich, 7840 N. 7th St. #1, Phoenix, AZ 85020 would like to know
where to get Pascal on a single density PerSci 8" disc for an Imsai 8080

with 56Ke (*79/12/28%)

Howard White, Jr., 799 Clayton St., San Francisco, CA 94117 would like
information on Pascal 8000 as developed by the Australian Atomic Energy
Commission; he is especially interested in references, bibliographies, and
user feedbacke (%80/03/18%)

Jerome P. Wood, 6105 Harris, Raytown, MO 64133 is interested in Pascal
compilers for an IBM S/370 at work. (*80/02/03%)

Stephen Woodbridge, 642 Stearns Ave., Palm Bay, FL 32905: "Please keep up
the great work. #13 is my lst issue and I can’t get enough of it."
(*79/12/28%)

R. P. Wolff, Ajax Corp., W154 N8105 Elm La., Menomonee Falls, WI, 53051:

"Are any compilers available for a ‘Microdata Reality or Royale’ system?"
(*80/01/23%)

George O. Wright, 700 7th Ste. SW 635, Washington, DC 20024: "Please be
friendly to UCSD PASCAL and micro users!" (*80/02/23%)

Earl M. Yavner, 195 Varick Rd., Newton, MA 02168: "Have just heard that
Hewlett Packard will have PASCAL for HP1000 systems in a few months. Will
send info as I get it." (*80/04/01%)

Dr. Richard Yensen, 2403 Talbot Road, Baltimore, MD 21216: "LOVE screen
interactive features of UCSD Pascale We need an interchange format for
screen control on different CRT terminals." (*80/05/06%)

PPPPPP
P P
P

P

PPPPPP

P

P

P ASCAL IN THE NEWS

JOBS:

(* Note-these listings are intended primarily to show that there are indeed
openings for Pascal programmers "out there". By the time you see these
listings, the jobs may well be filled. *)

Allen-Bradley, 747 Alpha Drive, Highland Heights, OH 44143, wants software
engineers to "apply your software experience — assembly languages, PASCAl,
FORTRAN" on a VAX 11/780, DEC 11/34 or TEKTRONIX Development systeme
(*80/04 /24%)

Control Data Corporation, 4201 N. Lexington Ave., Arden Hills, MN 55112 is
looking for diagnostic engineers to "utilize both...hardware and softare

ATH# QMIN IYNCWL

YAaLI LA

NORT

LRI

aptitudes...in maintenance software systems development and PASCAL
applications programming."

Medtronic, Ince 3055 01d Highway Eight, P.O. Box 1453, Minneapolis, MN 55440
"has a position that recognizes your BSEE, and 6-8 years experience with
PASCAL-based computer simulation..." (*80/03/24%)

MTS Systems Corpe P.O. Box 24012, Minneapolis, MN 55424 is looking for a
software development engineer for products "based upon latest microprocesor
technology. PASCAL and assembly language will be .used for implementation."”
(*80/03/10%)

The New York State Legislature, 250 Broadway - 25th Floor, New York NY 10007
wants a demographer, cartographer, and junior programmers. All applicants
"should have practical computer programming experience in FORTRAN, COBOL, or
PASCAL." (*80/03/10%)

Northern Telecom, P.O. Box 1222, Minneapolis, MN 55440 is looking for a

senior programmer/analyst with "high-level programming language (PASCAL,
COBOL, BASIC) and compiler writing.'" (*80/03/24%)

Texas Instruments, P.O. Box 401628, Dallas, TX 75240, has openings in Dallas
and Lewisville, Texas, to work "with real-time software applications for
mini/micro computer based systemss and on distributed computer architectures
and uni-processor systems." One of the languages: Pascal.

(* Andy Mickel passed on to me the following Want Ad, which appeared in the
March 1980 issue of the Pug Press, published by Maryanne Johnson of
Excelsior, MN 55331. It is offered here, verbatim, without further
commentess %)

WANTED - Small PUG stud to breed with the Classiest Bitch in Town. Stud
must be experienced yet gentle, loving, and discreete Contact Ron or Marlys
Hampe (612)-890-4141

MANUFACTURERS® ADVERTISEMENTS:

(* A lot of these advertisements appear in several publications; this list
is gleaned from a "spot check" of several months’ worth of magazines and
trade journals. Where a product description is much more detailed than the
information given here, a reference is provided. *)

Associated Computer Industries, Ince 17751 Sky Park East, Suite G, Irvine,
CA 92714, announced a Pascal Video terminal for use with UCSD Pascal. It
accomodates several international languages character displays by internal
switch changes, with no optional ROM required. They also sell the ACI-90
Pascal Professional Performance Computer, based on the Western Digital
Microengine. Includes the UCSD Pascal operating system, and business
software: General Ledger, Accounts Payable, Accounts Receivable, Payroll,
and Order Entry Inventorye.

Hewlett-Packard Data Systems Divison, Dept. 370, 1100 Wolfe Road, Cupertino,
CA 95014 offers Pascal for the HP/1000 computer; it has added double-word
integer, double-precision data types, random access I/0, and external

FORTRAN and assembly language capability.

Intel Corporation of Santa Clara now has Pascal for its Intellec development
systems, as reported in the Intel Preview of February 1980. It "encompasses
the full standard...as defined in Pascgl User Manual and Report by Jensen
and Wirth", and "...offers several more extensions to the UCSD Standard."
The blurb also notes, "The UCSD Pascal implementation has become the
industry standard and was the first such implementation of this relatively
new programming language." (* The person who sent me this noted, in the
margin, "!!!". I agree. *)

Meta Tech, 8672-1 Via Mallorca, La Jolla, CA 92037 advertises Pascal/MT, a
compiler running under CPM in 32K bytes or more. Compiles a subset of
Pascal into ROMable 8080/Z80 code. Object code costs $100, source code
costs you OEMs $5000.

North Star, 1440 Fourth St., Berkeley, CA 94710, advertises Pascal for its
Horizon systeme

Oregon Software, 2340 S.W. Canyon Road, Portland, Oregon 92701 announced
OMST Pascal V1.2 with symbolic debugger and profiler, for any RSTS/E, RT-l1,
RSX-11, or IAS operating systeme (* Computerworld 80/01/28%)

Rational Data Systems, 245 W. 55th St., New York, NY 10019 has Pascal for
Data General computers, and also puts out a small Pascal Newsletter. (*
And, in my opinion, it looks very nice! *)

Renaissance Systems, Inc., Suite M, 11760 Sorrento Valley Rd., San Diego, CA
92121 offers Proff and Forml, word processing support programs for
formatting and printing text files and aiding in document generation.
Written in UCSD Pascal, the combination costs $500. Documentation costs
$25. (* Computerworld 80/01/14 p. 50 *)

SofTech Microsystems, 9494 Black Mountain Road, San Diego, CA 92126, offers
UCSD Pascal "with full documentation and support."

Valley Software Inc., 390-6400 Roberts Street, Burnaby, B.C. Canada V5G 4G2

is a systems/design, programming and consulting service of fering Pascal
compilers for DEC and Data General.

NEWSLETTERS & ARTICLES:

Brown University Computer Center has arranged to lease a new PASCAL compiler
developed at the University of Waterloo; it is the PASCAL described in the
British Standards Institute DPS/14/3 Working Draft/3...it offers extended
1/0 capabilities to allow convenient acces to CMS files. (* March 1980 *)

The Institue for Information Systems, Mail Code C-021, University of
California at San Diego, La Jolla, CA 92093 is publishing newsletters
describing the UCSD Pascal Systeme

Mr. Jim McCord sends a "UCSD Pascal Hobby Newsletter #1." (* Sorry, I have
no address on this; could someone out there please provide it? *)

The University of Michigan Computing Center presented a short course on
Pascal this April. In the blurb, the newsletter states that..."Pascal
of fers significant advantages over other languages for general purpose
programming.”" (*80/03/19%)

(* Ah-ha! Here’s the article that answers just about all of the '"can I get a
version of Pascal for my [fill- in-the-blank] microcomputer?” questions. *)

Mini-Micro Systems April 1980 Issue has a lengthy article (pp. 89-110)
entitled "High-level languages for microcomputers", by Mokurai Cherlin.
Along with the article is a table of microcomputer high-level language

suppliers; there are over 40 suppliers of Pascal for fifteen different
chips.

The Northwestern University newsletter announced the arrival of the Pascal
Release 3 compiler for the Cyber, with compiler options for selecting
run-time tests and post-mortem dumps; and defining file buffer and central
memory sizes. (*April 1980%)

The University of Southern California is forming a Users Group for PASCAL
and ALGOL users. (*Feburary 1980%)

GGGGG
G

GGG
G
G
GGGGG 0SSIP

[2 N> N> N>Rl

Commodore displayed a version of Pascal for their PET personal computer at
NCCe The compiler was developed in Great Britain.

While at NCC, I heard a rumor that someone is developing a version of Pascal
for the Atari 800 personal computer.

I have seen an advert [in Japanese, unfortunately, so I can’t give details]
for UCSD Pascal for the NEC PC-8000 personal computer, which has colour
graphicse The PC-8000 has been on the market in Japan for some months now,
and it appears they may be marketing in the U.S. by year’s end.

There was a session on Pascal at NCC, according to one of the attendees, it
was fairly interesting. He said Ken Bowles spent some of his speaking time
trying to6 defend his position re UCSD Pascal and Softech. Those who are
interested in this subject may wish to take a look at past issues of
INFOWORLD. Adam Osborne recently wrote a column which seems to address the
issue quite objectively and unemotionally. (* NO, I am NOT going to say
what I think of the whole thing. Mom always told me not to discuss religion

and politicse *)

The Canadian Information Processing Society held their "Session ‘80" in
Victoria, British Columbia in early May. A good time was had by all. While
working the booth for Apple, I noticed that most of the people from
universities had an interest in Pascal or were using it in their classes.
The business community was aware of Pascal, more so than they may have been
in the past, but didn’t seem to be as familiar with its capabilities and
wide usagee (* Unabashed plug: Victoria is a very beautiful city, and all
the people I met were very friendly. It was greate *)

Rick Shaw, Editor
pascal News 6 August, 1980
pigital Equipment Corporation

Atlanta, Georgia

Mr. Shaw:

Enclosed is a copy of "A Pascal Bibliography (June 1980)".
Although it excludes references to articles on Pascal appearing
in magazines such as BYTE and Datamation, it may be of some

interest to your readers. (* See Page 12 -ed. *)

If anyone wishes to inform me of errors or omitted articles, I

would be grateful to hear from him.

Respectfully,

David V. Moffé%zz//

Department of Computer Science
North Carolina State University

Raleigh, North Carolina 27650

N96T “H3IWILI3S 6T# SMIN TYISYd

6 39vd

BOOKS ABOUT PASCAL Wegner, P., Programming with ADA: An Introduction by Means £
Graduated Examples, Prentice-Hall, 1980, 211 pages. -

(* This is a complete listing of all known books about Pascal *)
Welsh, J. and J. %lder, Introduction to Pascal, Prentice-Hall, in

Alagic, S. and M. S. Arbib, The Design of Well-Structured and press.
Correct Programs, Springer-Verlag, 1978, 292 pages, S$12.80.

']) Wilson, I. R. and A. M. Addyman, A Practical Introduction to
Bowles, K. L., Microcomputer Problem Solving Using Pascal, Pascal, Springer-Verlag, 1978, 144 vages, $7.90. -
Springer-Verlag, 1977, 563 pages, $9.87. o

Wirth, N., Systematic Programming: An Introduction, Prentice-

Bowles, K. L., Beginner's Guide for the UCSD Pascal System, Byte Hall, 1973, 169 pages, S$19.50.
Books, 1989, $11.95.

Wirth, N., Algorithms + Data Structures = Programs Pr ice-
Brinch-Hansen, P., The Architecture of Concurrent Programs, Hall: 1976, 366 vages, $2%.95. & ' entice
Prentice-Hall, 1977, $22.00. o

5T4 SMIN TYISYd

Coleman, D., A Structured Programming Approach to Data, MacMillan
Press, London, 1978, 222 pages.

Conway, R. W., Gries, D. and E. C.. Zimmerman, A Primer on Pascal,
Winthrop Publishers, 1976, 433 pages.

Conway, R., Archer, J. and R. Conway, Programmigg for Poets: A
Gentle Introduction Using Pascal, Winthrop Publishers, 1979,
352 pages, $11.95.

Findlay, B. and D. Watt, Pascal: An Introduction to Methodich
Programming, Computer Science Press (UK Edition by Pitman
International), 1978.

Grogono, P., Programming in Pascal, Addison-Wesley, 1978, 359
pages, $11.50.

Hartmann, A. C., A Concurrent Pascal Compiler for Minicomputers,
Springer-Verlag Lecture Notes in Computer Science, No. 57,
1977, $8.49.

Jensen, K. and N. Wirth, Pascal User Manual and Report,
Springer-Verlag Lecture Notes in Computer Science, No. 18,
2nd Edition, 1975, 167 pages, $6.8d.

Kieburtz, R. B., Structured Programming and Problem-Solving with
Pascal, Prentice-Hall, 1978, 365 pages, $12.95.

Ledgard, H. F. and J. F. Hueras, Pascal With Style: Programming
Proverbs, Heyden, 198¢, 224 pages, $6.95.

Liffick, B. W. (Ed), The BYTE Book of Pascal, Byte Books, 1989,
342 pages, $25.94.

Rohl, J. S. and H. J. Barrett, Programming via Pascal, Cambridge
University Press, in press.

Schneider, G. M., Weingart, S. W. and D. M. Perlman, An
Introduction to Programming and Problem Solving with Pascal,

Wiley and Sons, 1978, 394 pages.

Webster, C. A. G., Introducfion to Pascal, Heyden, 1976, 152
pages, $11.094.

S

a
a

T NN LA

nen

39Yd

nt

ARTICLES ABOUT PASCAL

(* These articles have appeared since the preparation of #17. *)

Addyman, A. M., "A Draft Proposal for Pascal", SIGPLAN Notices,
Vol. 15, No. 4, April 1983.

Addyman, A. M., "Pascal Standardization", SIGPLAN Notices, Vol.
15, No. 4, April 1984.

Baker, Henry G., "A Source of Redundant Identifiers in Pascal
Programs", SIGPLAN Notices, Vol. 15, No. 2, Feb. 1984.

Bond, Reford, "Another Note on Pascal Indention", SIGPLAN No-
tices, Vol. 14, Wo. 12, Dec. 1979.

Bron, C. and E. J. Dijkstra, "A Discipline for the Programming of
Interactive I/0 in Pascal", SIGPLAN Notices, Vol. 14, No.
12, Dec. 1979.

Byrnes, John L., "NPS-Pascal: A Pascal Implementation for
Microprocessor-Based Computer Systems", Naval Postgraduate
School, June 1979, 283 pages, NTIS Report AD-A71 972/4%C.

Cichelli, Richard J., "Pascal-1 - Interactive, Conversational
Pascal-S", SIGPLAN Notices, Vol. 15, No. 1, Jan. 1987,

Cichelli, Richard J., "Fixing Pascal's 1I/0", SIGPLAN Notices,
Vol. 15, No. 5, May 1987.

Cornelius, B. J., Robson, D. J. and M. I. Thomas, "Modification
of the Pascal-P Compiler for a Single-accunulator One-
address Minicomputer", Software - Practice and Experience,
Vol. 19, 241-246, 1987%.

Kaye, Douglas R., "Interactive Pascal Input", SIGPLAN Notices,
Vol. 15, No. 1, Jan. 1984.

Ljungkvist, Sten, "Pascal and Existing Fortran Files", SIGPLAN
Notices, Vol. 15, No. 5, May 1984.

Luckham, David C. and Norihisa Suzuki, "Verification of Array,
Record and Pointer Operatinns in Pascal", ACM Transactions
on Programming Languages and Systems, Vol. 1, No. 2, Oct.
1979.

Luckham, D. C., German, S. M., Henke, F. W. V., Karp, R. A. and
P. W. Milne, "Stanford Pascal Verifier User Manual", Stan-
ford Univ. Dept. of Computer Science, Mar. 1979, 121 pages,
NTIS Report AD-AM71 903/5WC.

Machura, Marek, "Implementation of a Special-Purpose Language Us-
ing Pascal Implementation Methodology", Software-Practice
and Experience, Vol. 9, 931-945, 1979.

Mateti, P., "Pascal Versus C: A Subjective Comparison", Proceed-
ings of the Symposium on Language Design and Programming

Methodology, Sydney, Australia, Sept. 1979.

Mattsson, Sven Erik, "Implementation of Concurrent Pascal on
LSI-11", Software - Practice and Experience, Vol. 14,
205-217, 1989.

Runciman, Colin, "Scarcely Variabled Programmina &% Pascal", SIG-
PLAN Notices, Vol. 14, No. 11, Nov. 1979.

Sale, Arthur, "Miniscules and Majuscules", Software - Practice
and Experience, Vol. 9, 915-919, 1979.

Shimasaki, M., Fukaya, S., Tkeda, X. and T. Kiyono, "An Analysis
of Pascal Programs in Compiler Writing", Software - Practice
and Experience, Vol. 19, 149-157, 1984,

Shrivastava, S. K., "Concurrent Pascal with Backward Error
Recovery: Language Features and Examples", Software - Prac-
tice ani Experience, Vol. 9, 1061-1929, 1979.

Shrivastava, S. K., "Concurrent Pascal with Backward Error
Recovery: Implementation”, Software - Practice and Experi-
ence", Vol. 9, 1021-1933, 1979.

Simpson, D., "Structured Programming and the Teaching of Comput-
ing: Experience With Pascal", Sheffield City Polytechnic
Dept. of Computer Studies, Sheffield, England, 1979.

Sites, Richard L. and Daniel R. Perkins, "Universal P-Code Defin-
ition, Version (2.3)", Univ. of California at San Dieqgo
Dept. of FElectrical Engineering, July 1979, 45 pagqges,
UCsSD/Cs-79/%37, NTIS PB-208 577/8WC.

Smith, G. and R. Anderson, "LSI-11 Writable Control Store
Enhancements to UCSD Pascal", Lawrence Livermore Labs, Oct
1978, 112 pages, UCRL-81808(Sup), NTIS UCID-18M45.

Wegner, Peter, "Programming with ADA: An Introduction by Means of
Graduated Examples", SIGPLAN Notices, Vol. 14, No. 12, Dec.
1979.

Welsh, J. and D. W. Bustard, "Pascal-Plus - Another Language for
Modular Multiprogramming", Software - Practice and Experi-
ence, Vol. 9, 947-957, 1979.

Wirth, Nicklaus, "The Module: A System Structuring Facility in
High Level Programming Languages", Proceedings of the Sympo-
sium on Language Design and Programming Methodology, Sydney,
Australia, Sept. 1979.

5T# SMIN YISV

31439

NeRT ¥AF

v vd

1]

(21

[31]

(4]

[5]

(e}

(7]

[8l]

9]

f10]

A PASCAL BIBLIOGRA
{June, 1980
David V. Moffat
North Carolina State University
Faleigh, North Carolina

A. M. Addyman, "Oon the Suitability of a Pascal
Compiler in an Undergraduate Environment", Pascal
Newsletter, 6, 35-36 (November 1976)

A. M. Addyman, et al., "The BSI/ISO Working Draft of
Standard Pascal by the BSI DPS/13/4 Working Group®,
Pascal News, 14 (entire issue), (January 1979)

A. M. Addyman, et al., "A Draft Description of
Pascal", Software-- Practice and Experience, 9,
381-424 (1979)

A. M. Addyman, "A Draft Proposal for Pascal", SIGPLAN
Notices, 15, 4, 1-66 (1980)

A. M. Addyman, "pascal Standardisation®, SIGPLAN
Notices, 15, 4, 67-69 (1980)

A. M. Addyman, "A Draft Proposal for Pascal", Pascal
News, 18, 2-70 (May 1980)

L. Aiello, M. Aiello and R. W. Weyhrauch, The
Semantics of Pascal in LCF, stanford University

(August 1974)

S. Alagic and M. A. Arbib, The Design of HNell
Structured and Correct Programs, Springer-Verlag, New
York (1978)

A. L. Ambler and C. G. Hoch, "A Study of Protection
in Programming Languages", SIGPLAN Notices, 12, 3,
25-40 (1977)

U. Ammann, "The Method of Structured Programming
Applied to the Development of a Compiler",
International Computing Symposium 1973, Gunther, et

(1]

[12]

[13]

(1]

(18]

{191

[20]

[21]

[22]

(23]

[24]

al., eds,, 93-99, North Holland {1974)

U. Ammann, "On Code Generation in a Pascal Compiler",
Software-- Practice and Experience, 7, 391-423 (1977)

U~ Ammann, "Error Recovery in Recursive Descent
Parsers", ETH Zurich, Berichte des Imnstituts fur
Informatik, No. 25 (May 1978)

K. R Apt, "Equivalence of Qperational and
Denotational Semantics for a Fragment of Pascal",
Proceedings of the IFIP Working Conference on Formal
Descriptions of Programming Concepts, St. Andrews,
Canada, August, 1977, 139-63, North-Holland, Amsterdanm
(1978)

K. E. Apt and J. W. De Bakker, "Semantics and Proof
Theory of Pascal Procedures", (Preprint), Mathematics

Center, Department of Computer Science, Amsterdam
{1977)

J. Q. Arnold, "2 Novel Approach to Compiler Design",
Pascal News, 11, 34-36 (February 1978)

L. V. Atkinson, "Know the State You Are In", Pasca
News, 13, 66~-69 (December 1978)

I

L. V. Atkinson, "Pascal Scalars as State Indicators",
Software-- Practice and Experience, 9, 427-431 (1979)

L. Atkinson, "A Contribution to Minimal Subranges",
Pascal News, 15, 60-61 (September 1979)

J. W. Atwood and T. M. Pham, "A Concurrent Pascal
Interpreter for the Texas Instruments 9808",
Proceedings of the International Symposium on Mini and
Micro Computers, Montreal, Canada, November, 13977,

41-48, IEEE (1978)

B. Rustermuehl and H.-J. Hoffman, "Generic Routines
and variable Types in Pascal", Pascal News, 9 & 10,
43-46 (September 1977)

H. G. Baker, Jr., "A Source of Redundant Identifiers
in Pascal Programs", SIGPLAN Notices, 15, 2, 14-16
(1980)

T. P. Baker and A. C. Fleck, “poes Scope=Block in
Pascal?", Pascal News, 17, 60-61 (March 1980)

Fleck, "A Note on Pascal

T. P. Baker and A. C.
17, p-62 (March 1980)

Scopes", Pascal Neus,

M. S. Ball, Pascal 1100: An Implementation of the

N967T “¥ITWILA3S HT# SHIN T¥ISYd

A9Yd

71

£25]

(26]

{271

[28]

[29]

(301

3]

[32]

(331]

[34]

[35]

[3e]

[37]

£38]

Pascal Language for Univac 1100 Series Computers,

Naval Ccean Systems Center, San Diego (July 1978)

D. Bar, "A Methodology for Simultaneously Developing
and Verifying Pascal Programs", Constructing Quality
Software, Novsibirsk, USSE, May, 1977, 419-48, North-
Holland, Amsterdam, Netherlands (1978)

W. Barabesh, C. R. Hill, and R. B. Kieburtz, "
Proposal for Increased Security in the Use of Variant
Records", Pascal Newsletter, 8, 15-15 (May 1977)

D. Barron, "On Programming Style, and Pascal",
Computer Bulletin, 2, 21, (September 1979)

L. W. Barron and J. M. Mullins, "What to do After a
khile", Pascal News, 11, 48-50 {(February 1978)

D. W. Barron and J. M. Mullins, "Life, Liberty and
the Pursuit of Unformatted Input", Pascal Newsletter,
7, 8-9 (February 1977)

D. W. Barron and J. Mullins (eds.), "Pascal, The
Language and Its Implementation", Proceedinygs of the
Southampton Symposiunm, University of Southampton,
24-25 March 1977 (1977)

D. Bates, Letter to the Editor {on formattinyg Pascal
programs), SIGPLAN Notices, 13, 3, 12-15 (1978)

D. Bates and R. Cailliau, "Experience with Pascal
Compilers on Mini-Computers®, SIGPLAN Notices, 12, 11,
10-22 (1977)

D. Bates and F. Cailliau, NS-Pascal User's Guide,
CERN Note PS/CCI 77/3 (1977)

- M. Berry, "Pascal or Algol-687?", Research
rections in Software Iechnology, (P. Wegner, ed.),
1-46, MIT Press, Cambridge Massachusetts (1979)

R. E. Berry, "Experience with the Pascal P-Compiler",
Software-- Practice and Experience, 8, 617-627 {(1978)

A. Biedl, "An Extension of Programming Languages for
Numerical Computation in Science and Engineering with
Special Reference to Pascal", SIGPLAN Notices, 12, 4,
31-33 (1977)

C. Bishop, "Some Comments on Pascal I/0", . Pascal
Newsletter, 8, 18-18 (May 1977)

C. Bishop, "Pascal: Standards and Fxtensions", Pascal
News, 11, 54-56 (February 1978)

[39]

[40]

[41]

[42]

[u3]

[44]

[45]

[46]

[47]

L48]

[u491]

[59]

5]

[52]

(53]

[54]

J. M. Bishop, "subranges and Conditional Loops",
Pascal News, 12, 37-38 (June 1978)

J. M. Bishop, "On Publication Pascal", Software—=-

J. M. Bishop, "Implementing Strings in Pascal",
Software-- Practice and Experience, 3, 779-768 (1979)

R. Bord, "Another Note on Pascal Indention", SIGPLAN
Notices, 14, 12, 47-49 (1979)

M. Bonham, ™'Minor' Problems in Pascal", Pascal
Newsletter, 5, 20-22 {(September 1976)

Ta
NeWSLlE

H. J. Boom and E. DeJong, "A Critical Comparison of
Several Proyramming Languayges", Software-- Practice
and Experience, 10, 435-473 (1980)

M. Boot, “Comparable Computer Languages for
Linguistic and Literary Data Processing, II: SIMULA
and Pascal", Association for Literary and Linguistic
Computing Bulletin, 7, 2, 137-46 (1979)

K. L. Bowles, Microcomputer Problem Solving Using

Pascal, Sprinyer Verlag, New york 77577) T T
K. L. Bowles, "gpdate on UCSD Pascal Activities",
Pascal Neusletter, 8, 16-18 (May 1977)
K- L. Bowles, "An Introduction to the UCSD Pascal
System", Behavioral Research Methods and Instruments,
10, 4, 531-4 {1978)

K. L. Bowles, "Status of UCSD Project", Pascal News,
11, 36-40 (February 1978)

K. L. Bowles, Beginner's Guide for the UCSD Pascal
System, BYTE/McGraw-Hill (1979)

P. Brinch Hansen, “Universal Types in Concurrent
Pascal", Information Processing Letters, 3, 165-166
(1975)

P. Brinch Hansen, "Concurrent Pascal, A Programming
Language for Operating Systems Design", Technical
Report 10, Information Science, California Institute
of Technology (April 1974)

P. Brinch Hansen, "The Purpose of Concurrent Pascal",
SIGPLAN Notices, 10, 6, 305-309 (1975)
P. Brinch Hansen, nT

" Programming Language
Concurrent Pascal", 1

he
EE Transactions on Software

STH SMIN THISYd

‘NAGWILAIS

nosT

1Yd

¢l

[55]

(56]

(571

(58]

{591

(60]

[61]

[62]

[63]
[64]

[65]

[e6]

[67]

ngineering, 1, No. 2, 199-207 (1975)

P. Brinch Hansen, "Experience With Modular Concurrent
Prograrming", IEEE Transactions on Software
Engineering, 3, 2, 156-159 (1977)

P. Brinch Hansen, The Architecture of Concurrent
Programs, Prentice Hall, Englewood Cliffs, New Jersey

(1977)

P. Brinch Hansen, "Concurrent Pascal Machine",
Information Science, California Institute of

Technology (1975)

P. Brinch Hansen, "The SOLO Operating System: A
Concurrent Pascal Proyram", Software-- Practice and
EZxperience, 6, 141-149 (1976)

P. Brinch Hansen and A. C. Hartman, “Sequential
Pascal Report'", Technical Report, Information Science,
California Institute of Technology (1975)

P. Brinch Hansen, "Microcomputer Comparison®,
Software-- Practice and Experience, 9, 211-217 (1979)

C. Bron and W. de Vries, "A Pascal Compiler for
PDP-11 Minicomputers", Software-- Practice and

Experience, 6, 1, 109-116 (1976)

C. Bron and 3. J. Dijkstra, "A Discipline for the
programming of Interactive I/0O in Pascal", SIGPLAN
Notices, 14, 12, 59-61 (1979)

D. M. Bulman, "Stack Computers"™, Computer, (May 1977)
W. F. Burger, Parser Generation for Micro-Computers,
TR=77, Department of Computer Sciences, University of

Texas at Austin (March 1978)

W. F. Burger and D. Lynch, Pascal Manual, Computer
Center of the State University of New York at Buffalo,

Buffalo (1973)

D. W. Bustard, 2 Manual, Queen'’s

J. L. Byrnes, NPS-Pascal: A Pascal Implementation for
#icroprocessor Based Computer Systenms, Naval
Postyraduate School, Monterey, California (1979)

k. H. Campbell and R. B. Kolstad, "pPpath Expressions
in pascal", Proceedings of the 4th International

Conference of Software Engineering, Munich, Germany,
ITEE, New York (1979)

[69]

{70]

(711
[(72]

73]

(741

761
(773
(78]
(797
[80]

[81]

[82]

[83]

A. Celentano, P. Della Vvigna, C. Ghezzi, and
D.Mandrioli, “Modularization of Block-Structured
Languages: The Case of\Pascal", Proceedings of the
Workshop on Reliable Software, Bonn, Germany, 167-79,
Ccarl Hasser Verlayg, Munich (1979)

A. Celentano, P. Della Vigna, C. Ghezzi, and
D.Mandrioli, “Separate Compilation and Partial
Specification in Pascal", IEEE Transactions on

A. Celentano, P. Della Vigna, C. Ghezzi, and
D.Mandrioli, W"SIMPLE: A Program Development Systen",
Computer Languages, 5, 2, 103-114 (1980)

G- W. Cherry, Pascal Programming Structures: An

Introduction to Systematic ggég amming, Reston
80)

R. Cichelli, wpascal-I-- Interactive, Conversational
Pascal-s", Pascal News, 15, 63-67 {September 1979)

K.Cichelli, "Pascal-I-- Interactive, Conversational
Pascal-S", SIGPLAN Notices, 15, 1, 34-ud4 (1980)

ko Je Cichelli, ®pPascal Potpourri", Pascal
Newsletter, 6, 36-41 (November 1976)
k. J. Cicnelli, "Fixing Pascal's /0%, SIGPLAN

Notices, 15, 5, p.19 (1980)

R. J. Cichelli, "Fixing Pascal's I/O", Pascal News,
17, p-65 {(March 1980)

K. G- Clark, "Interactive Input In Pascal®, SIGPLAN
Notices, 14, 2, 9-13 (1979)

R. G. Clark, "Input in Pascal", SIGPLAN Notices, 14,
11, 7-8 (1979)

D. Coleman, A Structured Programming Approach to
Datda, MacMillan Press {1978)

D. Coleman, R. M. Gallimore, J. W. Hughes, and
M. S. Powell, "An Assessment of Concurrent Pascal",
Software-- Practice and Experience, 38, 827-837 (1979)

I'. Coleman, J. W. Hughes and M. S. Powell,
"Developing a Progyramming Methodology for
Multiprograms", Department of Computation Report
No._218, UM1ST (1978)

C. Comer, "MAP: A Pascal Macro pPreprocessor for Large
Program Development", Software-- Practice and

5T4 SHIN TYISYd

N9KT “NIAIALL IS

10Y4

h1

[(84]

(85]

[86]

(871

[es]

[(89]

[(90]

£91]

192]

(93]

[94]

£97]

[98]

Experience, 9, 203-209 (1979)

M. N. Condict, "The Pascal Dynamic Array Controversy
and a Method for Enforcing Global Assertions", SIGPLAN
Notices, 12, 11, 23-27 (1977)

K. Conradi, "Further Critical Comments on Pascal,
Particularly as a Systems Programming Language",
SIGPLAN Notices, 11, 11, 8-25 (1976)

R. Conway, J. Archer, and R. Conway,
Poets: A Gentle Introduction Using Pa
Emglewood Cliffs, New Jersey (1980)

ogramming for
al, Winthrop,

Br
sc

R. Conway, D. Gries and E. C. Zimmerman, A P er on

Primer on
Pascal, winthrop, Cambridge, Massachusetts {1976)

B. J. Cornelius, D. J. RoObson, and M. I. Thomas,
"Modification of the Pascal-P Compiler for a Single-
Accumulator One-Address Minicomputer®, Software--
Practice and Experience, 10, 241-46 (1980)

G. Cox and J. Tobias, Pascal 8000 Reference Manual

{IBM 3607370 Version), Australian Atomic Energy
Commission, Australia (February 1978)

J. E. Crider, "Structured Formatting of Pascal
Programs", SIGPLAN Notices, 13, 11, 15-22 (1978)

J. Crider, "Why Use Structured Formatting", ascal
News, 15, 68-70 (September 1979)

J. Deminet and J. Wisniewska, "SIMPASCAL", Pascal
News, 17, 66-68 {(March 1980)

P. Desjardins, "A Pascal Compiler for the Xerox Sigma
6", SIGPLAN Notices, 8, 6, 34-36 (1973)

P-. Desjardins, "Dynamic Data Structure Mapping",
Software-- Practice and Experience, 4, 155-162 (1974)

P. Desjardins, "Type Compatibility Checking in Pascal
Compilers", Pascal News, 11, 33-34 (February 1978)

K. S. Deverill and A. C. Hartmann, "Interpretive
Pascal for the IBM 370", Information Science Technical
keport No. 6, California Institute of Technology
{1973)

¥. Edwards, "Is Pascal a Logical Subset of Algol 68
or Not?", SIGPLAN Notices, 12, 6, 184-191 (1977)

J. Eisenberg, "In Defense of Formatted Input", Pascal
Newsletter, 5, 14-15 (september 1976)

[93]

[100]

{101]

{102]

[103]

[104]

{1057

[106]

[{107])

[108]

[109]

[110]

{1113

H. Erkio, J. Sajanienu, and A. Salava, “Pn
Implementation of Pascal on the Burroughs B6700",
Report A-1977-1, Department of Computer Science,
University of Helsinki, Finland (1977)

E. N. Faiman and A. A. Kortesoja, "An Optimizing
Pascal Compiler", Proceedings of COMPSAC (IEEE Third

International Computer Software and Applications
Conference), IEEE, 624-28 (1979)

L. Feiereisen, "Implementation of Pascal on the
pPDP-11/45", DECUS Conference, Zurich, pp- 259 (1974)

E. E. Fergyuson and G. T. Ligler, “The TI Pascal
System: Run-Time Support", Proceedings of the

Eleventh Hawaii International Conference on Systen
Sciences, Part III, 69-84, Westerr Periodicals Co.,
North Hollywood, California (1978)

W. Findlay, "The Performance of Pascal Programs on
the MULTUM", Report No. 6, Computing Department,
University of Glasgow, Scotland (July 1974)

W. Findlay and D. F. Watt, Pascal: An Introduction to
Hethodical Programming, Pittman, London (1978)

C. N. Fischer and k. J. LeBlanc, Uk-Pascal Ref (o]
Manual, Madison Academic Computing Center, Madison
Wisconsin (Cctober 1977)

C. N. Fischer and Rs. J. LeBlarc, n"Efficient
Implementation and Optimisation of Run-time Checkiny
in Pascal", SIGPLAN Notices, 12, 3, 19-24 (1977)

C. N. Fischer and R. J. LeBlanc, "a Diagnostic
Compiler for the Programming Language Pascal", USE
Fall Conference Iechnical Eapers, Lake Buena Vista,
Florida {(October 1976)

C. N. Fischer and K. J. LeBlanc, "The Implementation
orf Run-Time Diagnostics in Pascal", IEEE Transactions
on Software Engineering, SE-6, 4, 313-319 (1980)

E. A. Fraley, "Suggested Extensions to Pascal"®,
Pascal News, 11, 41-43 (February 1978)

R. A. Fraley, "SYSPAL: A Pascal-Based Language for
Operating System Implementations", Proceedings of
spring Compcon 78, San Francisco, 32-35, IEEE (1978)

G. Friesland, et al., "A Pascal Compiler Bootstrapped
on a DEC-System 10%, Mitteiluny nr._5, Iastitut fur

Irformatik der Universitat Hamburg, 13 (March 1974)

STH SHIN TYISYd

95T “N3AWIL4S

a0y

<t

[112]

[113]

[114]

{115]

[116]

(117]

[(118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

{126]

A. J. Gerber, "pPascal at Sydney University", Pascal
News, 9 & 10, 39-40 (September 1977)

J. C. Gracida and K. R. Stilwell, NPS-Pascale.

A
Partial 1Implementation of PRascal Language for a
2

Microprocessor-Based Computer Systenm, AD-A061040/
Naval Postgraduate School (June 1978)

N. Graef, H. Kretschmar, K. P. Loehr, and
B. Morawetz, "How to Desiyn and Implement Small Time-
sharing Systems Using Concurrent Pascal", Software--
Practice and Experience, 3, 17-24 (1979)

N. Graham, Introduction to Pascal, West, St. Paul,

Minnesota (1980)

D. Gries and N. Gehani, "Some Ideas on Data Types in
High Level Languages", CACM 20, 6, 414-420 (1977)

G. R. Grinton, "Converting an Application Program
from OMSI Pascal 1.1F to AAEC Pascal 8000/1.2", Pascal
News, 17, p.59 (March 1980)

P, Grogono, "On Layout, Identifiers and Semicolons in
Pascal Programs", SIGPLAN Notices, 14 4, 35-40 (1976)

P. Grogono, Programming in Pascal, Addison-Wesley,
Reading, Mass. {1978, revised 1980)

C. C. Grosse-Lindemann, P. W. Lorenz, H. H. Nagel,
and P. J. Stirl, "A Pascal Compiler Bootstrapped on a
DEC-System 10", Lecture Notes in Computer Science 3,
Springer-Verlag (1974)

C. O. Grosse-Lindemann and H. H. Nagel, "Postlude to
a Pascal-Compiler Bootstrapped on a DEC-System 10%,
Software-- Practice and Experience, 6, 29-42 (1976)

T. R. Grove, Waterloo Pascal User's Guide and
Language Description, University of Waterloo, Ontario
(January 1980)

G. G. Gustafson, "Some Practical Experiences
Formatting Pascal Programs", SIGPLAN Notices, 14, 9,
42-49 (1979)

A. N. Habermann, "Critical Comments on the
Programming Language Pascal", ACTA Informatica, 3,
47-57 (1973)

M. P. Hayerty, "The Case for Extending Pascal's I/0",
Pascal Newsletter, 6, 42-45 (November 1976)

G. J. Hansen and C. E. Lindahl, Preliminary

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

{136]

(1373

[138]

[139]

ion of Real-time Pascal, Florida University

G. J. Hansen, G- A. Shoults, and J. D. Cointment,
"Construction of a Transportable, Multi-Pass Compiler
for Extended Pascal", SIGPLAN Notices, 14, 8, 117-26
(1979)

S. Hanson, E. Jullig, P. Jackson, P. Levy, and
T. Pittman, "Summary of the Characteristics of Several
"Modern" Programming Languages", SIGPLAN Notices, 14,
5, 28-45 (1979)

2. C. Hartman, "A Concurrent Pascal Compiler for
Minicomputers", Lecture Notes in Computer Science, 50,
Springer-verlag, New York {(1977)

D. Heimbigner, "Writing Device Drivers in Concurrent
Pascal", SIGOPS, 11 (1978)

E. Heistad, "Pascal-- Cyber Version", Teknisk Notat
$=-305 Forsvarets Forskningsinstitutt, Norwegian
Defense Research Establishment, Kjeller, Norway (June

v.Henke and D. C. Luckham, Autonm
ation III: A Methodology £
s, Stanford University (December

atic Progran
ot Verifying
1974)

T. Hikita and K. Ishihata, “pascal 8000 Reference
Manual", Technical Report 16=02, Department of
Information Science, Faculty of Science, University of
Tokyo (March 1976)

T. Hikita and K. Ishihata, "An Extended Pascal and
Its Implementation Using a Trunk", Report of the
Computer Centre, 5, 23-51, University of Tokyo, (1976)

C. A. R. Hoare and N. Wirth, "An Axiomatic Definition
of the Programming Language Pascal", ACTA Informatica,
2, 335-355 (1973)

R. C. Holt and J. N. P. Hume, Programming Standa

Pascal, Reston Publishing Co., Reston, Virginia (198

L
0

~

J. Hueras and H. Ledgard, "An Automatic Formatting
program for Pascal", SIGPLAN Notices, 12, 7, 82-84
(1977)

M. Iglewski, J. Madey and S. Matwin, "A Contribution
to an Improvement of Pascal", SIGPLAN Notices, 13, 1,
48-58 (1978)

T. Irish, "What to do After a While... Longer",

GT4 SHIN TYISYd

0967 “NIIWIL43S

ANYd

9T

[140]

[181]

[142]

[143]

[144]

[145]

[146]

{147]

[148]

[149]

[150]

[151]

[152]

{153]

Pascal News, 13, 65-65 (December 1978)
K- Ishihata and T. Hikita, Bootstrapping Pascal Using
a Trunk, Department of Information Science, Faculty of
Science, University of Tokyo (1976)

Ch. Jacobi, "Dynamic Array Parameters", Pascal
Newsletter, 5, 23-25 (September 1976)

K. Jensen, and N. Wirth, "Pascal-- User Manual and
Report", Lecture Notes in Computer Science, a8,
Springer-vVerlag, New York {1974)

K. Jensen, and N. Wirth, Pascal-- User Manual and
Report, Springer-Verlag, New York (1974)
O. G. Johnson, " Generalized Instrunentation

Procedure for Concurrent Pascal Systems", Proceedings
of the 1979 1International Conference on Parallel
Processing, 205-7, IZEE (1979)

D. A. Joslin, "jA Case for Acquiring Pascal",
Software-- Practice and Experience, 9, 691-2 (1979)

W. N. Joy, S. L. Graham, and C. B. Haley, Berkeley
Pascal User's Manual Version 1.1, Computer Science

Division, University of California at Berkeley (April
1979)

W. H. Kaubisch, R. H. Perrott, and C. R. R. Hoare,
“"Quasiparallel Programming", Software-- Practice and
Experience, 6, 341-356 (1976)

D. R. Kaye, "Interactive Pascal Input", SIGPLAN
Notices, 15, 1, 66-68 (1980)

W. Kempton, "Sugyestions for Pascal Implementations",
Pascal News, 11, 40-41 (February 1978)

K- Kieburtz,
Solving with Pas

New Jersey (1977)

tructured Programming and Problem
al, Prentice-Hall, Englewood Cliffs,

S
c

R. B. Kiepurtz, W. Barabash and C. R. Hill, "A Type-
checking Program Linkage System for Pascal",
Proceedings of the Third International Conference on

Software Engineering, Atlanta, Georgia, May 10-12
(1978)

k. B. Kieburtz, W. Barabesh and C. R. Hill, Stony
Brook Pascal/360 User's Guide, Department of Computer
Science, SUNY, Stony Brook (February 1979)

E. N. Kittlitz, "Block Statements and Synonyms for

[154]

[155]

[156]

{1571

[158]

[159]

[160]

[161]

[162]

{163]

{1e4]

[165]

[166]

[167]

Pascal", SIGPL

-

Notices, 11, 10, 32-35 (1976)

E. N. Kittlitz, "another Proposal for Variable Size
Arrays in Pascal", SIGPLAN Notices, 12, 1, 82-86
(1977)

B. Knobe and G. Yuval, "Some Steps Toward a Better
Pascal", Journal of Computer Languages, 1, 277-286
(1976)

S. Knudsen, "Indexed Files", Pascal Newsletter, 6,
33-33 (November 1976)

G. A. Korn, "Programming Continuous-System Simulation
in Pascal", Mathematics and Computers in Simulation,
21, 276-81 (November 1979)

B. B. Kristensen, O. L. Madsen and B. B. Jensen, "A
Pascal Environment Machine (P-Code)", Daimi PB=-28,
University of Aarhus, Denmark (April 1974)

C. Lakos and A. H. J. Sale, ns disciplined
Programming Transferable, and Is It Insightful?"®,
Australjan Computer Journal, 10, 3, 87-97 (1978)

W. R. Lalonde, "The Zero Oversight", SIGPLAN Notices,
14, 7, 3-4 (1979)

A. R. Lawrence and D. Schofield, "SFS-- A File Systenm
Supporting Pascal Files, Design and Implementation",
NPL Report NAC 88, National Physics Laboratory
(February 1978)

R. J. LeBlanc, "Extensions to Pascal for Separate
Compilation®, SIGPLAN Notices, 13, 9, 30-33 (1978)

K. J. LeBlanc and J. J. Coda, A Guide to Pascal
Textbooks, School of Information and Computer Science,
Georgia Institute of Technology, Atlanta, Georgia

0. Lecarme, "Structured Programming, Programning
Teaching and the Language Pascal", SIGPLAN Notices, 9,
7, 15-21 (1974)

0. lecarme, "Development of a Pascal Compiler for the
CII IRIS 50. A Partial History", Pascal Newsletter, 8,
8-11 (May 1977)

0. Lecarme, "Is Algol 68 a Logical Subset of Pascal
or Not?", SIGPLAN Notices, 12, 6, 33-35 (1977)

0. Lecarme and P. Desjardins, "More Comments on the
Programming Language Pascal", ACTA Informatica, 4,
231-244 (1975)

H5T4 SHIN Tv9SYd

IRECIEIPEN

noaT

nNvd

Ly

[168]

{109]

[17¢]

[171]

[172]

{173]

[174]

{175]

[176]

{1773

{178]

£179]

[180]

{181]

0. Lecarme and P. Desjardins, "Reply to a Paper by
A. M. Habermann on the Programming Language Pascal",
SIGPLAN Notices, 9, 21-27 (1974)

0. Lecarme and M-C. Peyrolle-Thomas, "Self-Compiling
Compilers: An Appraisal of their Implementation and
Portability”, Software-- Practice and Experience, 8,
149-170 (1978)

L. A. Liddiard, "Yet Another Look at Code Generation
for Pascal on CDC 6000 and Cyber Machines", Pascal
Newsletter, 7, 17-23 (February 1977)

B. W. Liffick (ed.), The BYTE Book of Pascal,
BYTE/McGraw-Hill (1979)

S- Ljungkvist, "Pascal and Existing FORTRAN Files",
SIGPLAN Notices, 15, 5, 54=-55 ({1980)

K. P. Loehr, "Beyond Concurrent Pascal"%, Proceedings
of the Sixth ACM Symposium on Operating Systen

Principles, 173-18C (1977)

D. C. Luckhanm, S. M. German, F. W. V. Henke,
R. A. Karp, and P. W. Milne, Stanford Pascal Verifier
User Manual, STAN-CS-79-731, Department of Computer

Science, Stanford University, California (1979)

D. C. Luckham and N. Suzuki, "Verification of Array,

1, 2, 226=244 (1979)

W. I. MacGregor, "An Alternate Approach to Type
Equivalence®, Pascal News, 17, 63-65 {(March 1980)

M. Machura, "Implementation of a Special-Purpose
Language Using Pascal 1Imnplementation Methodology",
Software-- Practice and Experience, 9, 931-945 (1979)

B. J. MacLennan, "A Note on Dynamic Arrays in
Pascal", SIGPLAN Notices, 10, 9, 39-40 {1975)

C. D. Marlin, A Model for Data Control in the
Programming Language Pascal", Proceedings of the
Australian Colleges of Advanced Education <Computing
Conference, Auqust 1977, (A. K. Duncan, Ed.), 293-306
(1977)

C. D. Marlin, "A Heap-based Implementation of the
Progyramming Language Pascal", Software-- Practice and
Experience, 9, 101-119 {1979)

E. Marmier, "A Program Verifier for Pascal®,
Information pProcessing 74, (IFIP Congress 1974),

[182]

[183]

[184]

[185]

[186]

1187]

{188]

[189]

{190]

[191]

[192]

{1931

[194]

North-Holland (1974)

S. E. Mattsson, "Implementation of Concurrent Pascal
on LSI-11", Software-- Practice and Experience, 10,
205=-217 (1980)

S. Matwin and M. Missala, "A Simple, Machine
Independent Tool for Obtaining Rough Measures of
Pascal Programs", SIGPLAN Notices, 11, 8, 42-45 (1976)

B. A. E. Meekings, "A Further Defence of Formatted
Input", Pascal Newsletter, 8, p.11 (May 1977)

A. Mickel, Pascal Newsletter, University of Minnesota
Computer Center, Minneapolis: No. 5 {September 1976),
No. 6 (November 1976), No. 7 ({(February 1977), No. 8
{May 1977). Pascal News {change of name): No. 9 and
10 (September 1977), No. 11 (February 1978), No. 12
(June 1978), No. 13 {(December 1978), No. 14 (January
1979), No. 15 (SEPTEMBER 1979), No. 16 (OCTOBER 1979)
{See also G. Richmond and R. Shaw)

D ller, "aAdapting Pascal for the PDP 11/45%,
a

. Do HMi
Pascal News, 11, 51-53 (February 1978)

F. ¥inor, "Overlays: A Proposal", Pascal Newsletter,
5, 16-19 (September 1976)

D. V. Moffat, "A Categorized Pascal Bibliography
{June, 1980)", Technical Report TR80-06, Department of
Computer Science, ©North Carolina State University,
Raleigh (1980)

P. R. Mohilner, "Prettyprinting Pascal Programs",
SIGPLAN Notices, 13, 7, 34-40 (1978)

P. R. Mohilner, "Using Pascal in a FORTRAN
Environment", Software-- Practice and Experience, 1,
357-362 (1977)

T. Molster and V. Sundvor, "Unit Pascal System for
the Univac 1108 Computer®, Teknisk Notat 1/74,
Institutt for Databekandling, Univeritetet I Tronhein,
Norway (February 1974)

H. H. Nagel, "Pascal for the DEC-System 10,
Experiences and Further Plans", Mitteilung Nr. 21,
Institut fur Informatik, Universitat Hamburg (November
1975)

J. Nagle, "A Few Proposed Deletions"™, Pascal News,
12, 39-39 (June 1978)

K. T. Narayana, V. R. Prasad, and M.Joseph, "Some

5T# SMIN TYISYA

EN

M3ayIid

nesT

A9Yd

’1

[195]

[196]

[1971]

{198]

[199]

{200]

{2011

[202]

[203]

[2084]

[205]

[206]

Aspects of Concurrent Programming in CCNPASCAL",
Software-- Practice and Experience, 3, 9, 749-70
(1979)

D. Neal and V. Wallentine, "“Experiences with the
Portability of Concurrent Pascal", Software-- Practice
and Experience, 8, 341-353 (1978)

P. A. Nelson, ™A Comparison of Pascal Intermediate
Languages", SIGPLAN Notices, 14, 8, 208-13 (1979)

T. Noodt, "pascal Environment Interface", Pascal
News, 12, 35-37 (June 1978)

T. Noodt and D. Belsnes, "A Simple Extension to
Pascal for Quasi-Parallel Processing", SIGPLAN
Notices, 15, 5, 56-65 (1980)

K. V. Nori, U. Ammann, K. Jensen, H. H. Nageli, and
Ch. Jacobi, The Pascal "P" compiler: Implementation
Notes (Bevised Edition), Berichte Nr. 10, Institut fur
Informatik, Eidgenossische Technische Hochschule,
zZurich, Switzerland, 1976

Ke V. Nori, U. Ammann, K. Jensen, H. H. Nageli, and
Ch. Jacobi, Corrections to the YPascal Compiler:
Implementation Notes", Berichte Nr. 10, Institut far
Informatik, Eidgenossische Technische Hochschule,
Zurich, Switzerland, 1976

G. J. Nutt, "A Comparison of Pascal and FORTRAN as
Introductory Programming Languages", SIGPLAN Notices,
13, 2, 57-62 (1978)

J. S. Parry, "The Pascal String Library Notes",
Information Science Student Report, University of

Tasmania (1978)

A. L. Parsons, "A Microcomputer Pascal Cross
Compiler", Proceedinys of Spring Compcon 78, San
Francisco, February-March, 1978, IEEE, 146-50 {1978)

S. Pemberton, "Comments on an Error-recovery Scheme
by Hartmann", Software-- Practice and Experience, 10,
231-240 (1980)

D« E. Perkins and R. L. Sites, *"Machine-Independent
Pascal Code Optimization®, SIGPLAN Notices, 14, 8,
201-7 (1979)

G. Persch and G. Winterstein, #Symbolic
Interpretation and Tracing of Pascal Programs", 3rd
International Conference on Software Engineering,

Atlanta, Georgia, May, 1978, IEEE, 312-19 {1978)

[207]

[208]

[209]

[210]

[211]

[212]

213}

[214]

[215]

£216]

[217]

[218]

[219]

[220]

J. L. Peterson, "0n the Formatting of Pascal
Programs", SIGPLAN Notices, 12, 12, 83-86 (1977)

S. Pokrovsky, "“Formal Types and their Application to
Dynamic Arrays in Pascal", SIGPLAN Notices, 11, 10,
36-42 {1976)

B. W. Pollack and R. A. Fraley, Pascal/UBC User's
Guide, Technical Manual TM-2, Department of Computer
Science, University of British Colambia (1977)

M. S. Powell, "Experience of Transporting and Using
the SOLO Operating System®, Software-- Practice and
Experience, 9, 7, 561-569 (1979)

T. W. Pratt, "Control Computations and the Design of
Loop Control Structures", IEEE Transactions on

Software Engineering, SE-4, 2 (1978)
W. Ca Price, "What is a Textfile?", Pascal News, 9 &
10, 42-42 (September 1977)

J. Pugh and D. Simpson, "Pascal Errors-- Empirical
Evidence", Computer Bulletin, 2, 19, 26-28 (March
1979)

P. P. FRansom, "Pascal Survey", Pascal News, 17, 57-58
{March 1980)

B. W. Ravenel, #"Toward a Pascal Standard", IEEE
Computer, 12, 4, 68-82 (1979)

B. W. Ravenel, “"Will Pascal be the Next Standard
Language?", COMPCON 79 Digest of Papers, LEEE, 144-146
(1379)

W. Femnmele, "Design and Implementation of a
Programming System to Support the Development of
Eeliable Pascal Proygrams", Proceedings of the Workshop
on Reliable Software, Bonn, Germany, 73-87, Carl
Hanser Verlag, Munich (1979)

G. He Ricamond, “proposals for Pascal®", Pascal
Newsletter, 8, 12-14 (May 1977)

G. Richmond (ed.), Pascal Newsletter, University of
Colorado Computiny Center, Boulder: No. 1 (January
1974), SIGPLAN Notices, 9, 11, 11-17 (1974); No. 3
(February 1975), SIGPLAN Notices, 11, 2, 33-48 (1976);
No. 4 (July 1976) (See also A. Mickel and R. Shaw)

M. Roberts and k. Macdonald, "“A EKesolution of the
Boolean-Evaluation Question =--or-- if not Partial

N2[T “HITWILAAS AT# SMIN TYISYd

Y4

61

[221]

[2221]

[223]

[224]

[225]

[226]

[227]

[228]

[229]

[230]

[231]

[232]

[233]

[234]

[235]

[236]

Evaluation then Conditional Expressions"™, Pascal News,
13, 63-65 {(December 1978)

P. Roy, "Linear Flowchart Generator for a Structured
Language", SIGPLAN Notices, 11, 11, 58-64 (1976)

He Rubenstein, “pPascal Printer Plotter®, Pascal
Newsletter, 7, 9-16 (February 1977)

A. Rudnik, “Compiler Design for Efficient Code
Generation and Program Optimization", SIGPLAN Notices,
14, 8, 127-38 {1979)

C. Runciman, "Scarcely Variabled Programming and
Pascal", SIGPLAN Notices, 14, 11, 97-106 (1979)

A. H. J. Sale, "Stylistics in Languages with Compound
Statements", Australian Computer Journal, 10, 2 {1978)

A. H. J. Sale, "sStrings and the Sequence Abstraction
in Pascal", Software-- Practice and Experience, 39,
671-683 (1979)

A. H. J. Sale, “Implementing Strings in
Pascal--Again", Software-- Practice and Experience, 9,
839-841 (1979)

. H. J. Sale, "A Note on Scope, Ore-Pass Compilers,
and Pascal", Australian Computer Sciences

Communications 1, 1, 80-82 (1979)

A. H.o J. Sale, "Conformant Arrays in Pascal", Pascal
News, 17, 54-56 (March 1980) I

A. Sale, "A Note on Scope, One-pass Compilers, and
Pascal", Pascal News, 15, 62-63 {September 1979)

A. Sale, "The Pascal Validation Suite-- Aims and
Methods", Pascal News, 16, 5-9 {October 1979)

A. Sale, "Scope and Pascal", SIGPLAN Notices, 14, 9,
61=-63 (1979)

A. Sale, "General Thoughts on Pascal Arising out of
Correspondence Between Southampton and Tasmania",
Pascal Newsletter, 6, 45-47 (November 1976)

A. Sale, "pascal Stylistics and Reserved Words",
Software—- Practice and Experience, 9, 821-825 (1979)

A. Sale, %"Some Observations on Pascal and Personal
Style", Pascal News, 17, 68-71 (March 1980)

V. Santhanan, "A Hardvare-Independent Virtual

[237]

[238]

[239]

[240]

[241]

[242]

[243]

[244]

[245]

[246]

{247]

[248]

[249]

[250]

Architecture for Pascal", AFIPS Conference
Proceedings, 48, 637-48 (1979)

J. B. Saxe and A. Hisgen, "Lazy Evaluation of the
File Buffer for Interactive I1/0", Pascal News, No. 13,
(December 1979)

S. Schach, "Tracing the Heap", Pascal News, 15, 67-68
(September 1979)

S. R. Schach, "A Portable Trace for the Pascal Heap",

H. Schauer, YMicropascal—- A Portable Language
Processor for Microprogramming Education", Euromicro
J. {(Netherlands), 5, 2, 89-92 (1979)

R- Schild, “"Implementation of the Programming
n

Language Pascal", Lecture Notes in Economics and
Mathematical Systems, 715, {1972)

J. W. Schmidt, "Some High Level Language Constructs
for Data of Type Relation", ACM Transactions on
Database Systems, 2, 3, 247-261 (1977)

F. B. Schneider and A. J. Bernstein, "Scheduling in
Concurrent Pascal", QOperatirg Systems Review, 12, 2,
15-20 (1978)

G. M. Schneider, "The Need for Heirarchy and
Structure in lLanguage Management"”, Pascal Newsletter,
6, 34-34 (November 1976)

G« M. Schneider, "pascal: An Overview", IEEE
Computer, 12, 4, 61-65 (1979)

G. M. Schneider, S. W. Weingart and D. M. Perlman, An
Introduction to Programming and Problem Solving With
Pascal, Wiley, New York {1978)

M. J. R. Shave, "The Programming of Structural
Relationships in Dynamic Environments", Software--
Practice and Experience, 8, 199-211 (1978)

R. Shavw (ed.), Pascal News, Digital Equipment Corp.,
Atlanta, Georgia: No. 17 (March 1980), ©No. 18 (May
1980) (See also A. Mickel and G. Richmond)

K. A. Shillington and G. M. Ackland (ed.s), ucsp
Pascal Version 1.5, Institute for Information Systenms,
University of California, San Diego (1978)

M. Shimasaki, S. Fukaya, K. Ikeda, and T. Kiyono, "An
Analysis of Pascal Programs in Compiler Writing",

6HT# SMIN TYISHd

Ne5T “HATYILIAS

07 39

{251]

[252]

1253]

{254]

{255]

[256]

[257]

[258]

[259]

[260]

[261]

[262]

Software-- Practice and Experience, 10, 149-157 (1980)

S. K. Shrivastava, "Sequential Pascal With Kecovery
Blocks", Software-- Practice and Experience, 8,
177-185 (1978)

S. K. Shrivastava, "Concurrent Pascal with Backward
Error FRecovery: Language Features and Examples",
Software-- Practice and Experience, s, 1001-1020
{1979)

S. K. Shrivastava, "Concurrent Pascal with Backward
Error Fecovery: Implementation", Software—- Practice
and Experience, 3, 1021-1033 (1979)

A. Silberschatz, "On the Safety of the I/O Primitive
in Concurrent Pascal", Computer Journal, 22, 142-45
(May 1979)

A. Silberschatz, R. B. Kieburtz and A. J. Bernstein,
"Extending Concurrent Pascal to Allow Dynamic Resource
Management", 1EEE Transactions on Softuare
Engineering, SE=3, No. 3 (May 1977)

A. Singer, J. Hueras and H. Ledgard, "“A Basis for
Executing Pascal Programmers", SIGPLAN Notices, 12, 7,
101-105 (1977)

k. L. Sites, "Programming Tools: Statement Counts and
Procedure Timings", SIGPLAN Notices, 13, 12, 98-101
{1978)

F. L. Sites, "Moving a Large Pascal Program from an
LSI-11 to a Cray-1", Pascal News, 13, 59-60 (December
1978)

k. L. Sites and D. R. Perkins, Universal P-code
Definition, Version {(0.2), California University, San
Diego ({January 1979)

N. Solntseff, "McMaster Modifications to the Pascal
6000 3.4 System", Computer Science Technical Note
74-CS=-2, McMaster University, Ontario, Canada
(November 1974)

N. Solntseff and D. Wood, "Pyramids: A Data Type for
Matrix Representation in Pascal", BIT, 17, 3, 344-350
{1977)

A. Springer, "A Comparison of language C and Pascal",
IBM Technical Report No. 6320-2128, 1IBM Cambridge
Scientific Center, Canmnbridge, Massachusetts (August
1979)

[263]

[264]

[265]

[266]

[267]

[268]

[269]

[270]

[271]

[272]

[273]

[274]

[275]

[276]

[277]

J. Steensgaard-Madsen, “"More on Dynamic Arrays in
Pascal™, SIGPLAN Notices, 11, 5, 63-64 (1976)

J. Steensgaard-Madsen, "Pascal-- <(larifications and
Recommended Extensions", ACTA Informatica, 12, 73-94
(1979)

N. Suzuki and K. Ishihata, "Implementation of an
Array Bound Checker", Internal Report of the
Department of Computer Science, Carnegie-Mellon
University (1976)

M. Takeichi, Pascal cCompiler for the FACOM 230
0S2/VS, University of Tokyo (1975)

A. S. Tanenbaum, Pascal-U Manual, Vrije University,
Amnsterdam {1977)

A. 5. Tanenbaum, "A Comparison of Pascal and Algol
68", The Computer Journal, 21, 4, 316-323 (1978)

R. D. Tennent, "Another Look at Type Compatibility in
Pascal™", Software-- Practice and Experience, 84
429-437 (1978)

ke D. Tennent, #"A Denotational definition of the
Programming Language Pascal"™, Technical Report 77-47,
Computing and Information Science, Queen's University,
Canada (1977)

R. D. Tennent, "Language Design Methods Based on
Semantic Principles", ACTA Informatica, 8, 2, 97-112
(1977)

R. D. Tennent, "A Note on Files in Pascal", BIT, 17,
3, 362-366 (1977)

D. Thibault and P. Mancel, "Implementation of a
Pascal Compiler for the CII Iris 80 Computer”, SIGPLAN

R. D.Vavra, "What Are Pascal's Design Goals?", Pascal
News, 12, 34-35 (June 1978)

T. Venema and J. des Rivieres, "Euclid and Pascal",
SIGPLAN Notices, 13, 3, 57-69 (1978)

W. de vVries, "An Implementation of the Language
Pascal for the PDP 11 Series, Based on a Portable
Pascal Compiler"®, Technische Hogeschool Twente,

Enschede {(March 1975)

S. P. Wagstaff, "Disposing of Dispose", Pascal News,
9 & 10, 40-41 {September 1977)

N8AT “N3A9KI]143S AT# SMIAN TYISYd

A0Yd

1z

[278]

[279]

[280]

[281]

[282]

[283]

[284]

[285]

[286]

[287]

[288]

[289]

[290]

{291]

[292]

[293]

B. Wallace, "More on Interactive Input in Pascal®¥,
SIGPLAN Notices, 14, 9, p-76 (1979)

A. I. Wasserman, "Testing and Verification Aspects of
Pascal-like Languages", Computer Langquages, 4, 155-169
(1979)

n Extended Attribute Grammar for
Notices, 14, 2, 60-74 (1979)

D. A. Watt, "a
Pascal", SIGPLAN

C. A. G. Webster, Introduction to Pascal, Heyden,
London (1976)

J. Welsh, “"Economic Range Checks in Pascal",
Software-- Practice and Experience, 8, 85-97 (1978)

J. Welsh and D. W. Bustard, ‘"Pascal-Plus-- Another
Language for Modular Multiprogramming", Software=-
Practice and Experience, 9, 947-957 (1979)

J. Welsh and J. Elder, Introduction to Pascal,
Prentice-Hall International, London (1979)

J. Welsh and R. M. McKeag, Structured Systenm
Prograrming, Prentice-Hall, Englewood Cliffs, New

Jersey (1980)

Je Welsh and C. Quinn, "A Pascal Compiler for the ICL
1900 Series Computers", Software-~ Practice and
Experience, 2, 73-77 ({1972)

J. Welsh, W. J. Sneeringer and C. A. R. Hoare,
"Ambiguities and Insecurities in Pascal", Software--
bractice and Experience, 1, 685-696 (1977)

B. A. Wichmann and A. H. J. Sale, "A Pascal Processor
Validation Suite", Pascal News, 16, 12-24 (October
1979)

K. Wickman, "Pascal is a Natural®, IEEE Spectrunm,
{March 1979)

Re Wilsker, "On the Article 'What to do After a
While'", Pascal News, 13, 61-62 (December 1978)

I. R. Wilson and A. M. Addyman, A Practical
Introduction to Pascal, springer-verlag, VNew York

(1979)

N. Wirth, “The Design of a Pascal Compiler",
Software-- Practice and Expeiience, 1, 309-333 (1971)

N. Wirth, "The Programming Language Pascal and its
Design Criteria", High Level Languages, Infotech State

[294]

£295)]

[296]

[297]

[298]

{299]

[300]

[301]

[302]

[303]

of the Art Report 7 (1972)

N. Wirth, Pascal-S: A Subset and its Implementation,
Berichte Nr. 12, Institut fur Informatik,
Eidgenossische Technische Hochschule, Zurich,

Switzerland, 1975

N. Wirth, "The Programming Language Pascal", ACTA
Informatica, 1, 35-63 (1971)

N. Wirth, "The Programming Language Pascal (Revised
Report) ", Bericate der Fachgruppe Computer=
Wissenschaften, 5, Zurick, 49 {November 1972)

N. Wirth, "Comment on a Note on Dynamic Arrays in
pascal", SIGPLAN Notices, 11, 7, 37-38 (1976)

8000 gggggzégj— STAE-CS-72-257, Computer Science
Department, Stanford University, Stanford, 28 (1972)

N. wirth, Cn "Pascal', Code Generation, and the CDC

N. Wirth, "An Assessment of the Programming Language
Pascal", SIGPLAN Notices, 10, 23-30 (1975)

N. Wirth, Algorithms 4+ Data Structures = Progranms,
Prentice Hall (1976)

N. Wirth, Systematic Programming: An Introduction,

Prentice Hall, Epnglewood Cliffs, New Jersey (1973)

. Wupper, "“sSome Remarks on 'A Case for Acquiring
Pascal'", Software-- Practice and Experience, 10,
247-48 (1980)

M. Yasumura, "Evolution of Loop Statements", SIGPLAN
Notices, 12, 9, 124-129 (1977)

5T# SMIN TYISYd

06T “M3AIWIL43S

39vd

(4

That wawe thew could have done some editing and had s comriler look at

the exemrles ~ @ Sood waw to eliminste errors. (In Facte RKernishan apd
REVIEW: PASCAL With Stule! Progsramming Froverbs Flauger used this techmioue in "Softwzre Tools* (MeGraw-Hill)y wherein
’ ATFOR was rresented.)

"FASCAL With Stule! Frosramm Froverbs" (Hawdern Book Comsargs .
Rochelle Farky New Jersewy USHy 197 is an addition to "UBASIC, COROL DNesreit, .
FORTRANT With Stule! Frosgramming Proverbs" bw Henrw Ledsard (with n# tor-down techni

I found the section
abtie T

the zboves:s PRI is nolt 2 usele
aes Lo be useful.

various others), "FASCALY is co-authores . wl Nagins sncd John Heurss. T hes bo eroblem definitionssolution snd o L i ail
A1l three suthors z2re at the 1 aBohusetts, Th volumes oftern,. The suthors law out in detsil thg wro;e 9FA_
Like its rredecessorsy is "intended for ... #rodgrammers who want to refinemnert. This is clear and to the =oint. The bibliodgrarhs

o the stzndard references to Wirthe Didkstray eto.y as well as
well known sources. The Frogrammindg Irovnrh" are uer"
Thew are sresented with exelasn ar Fowie
3 1. sretty-srinting srogram
This ig written in fine :nuld hpq
giver: on the ro
version of the =r
: z thors, Manw seorle wriltir
and following them. Others mi

write carefulls constructed
=oint oul that "PASBCAL" is ghowt this hook in e 2
traditionsly and corrects "Fascal®s and that this evror is swmel
of my mein criticism of "FARCAL With Stele® (PUWS for short),

=rograms”. I Feel comesll

tie
st oo

in o&n aee
is alightle rework the srevious o dnform
First), The Froverbs ma et n
S T B e . Thm e

What Leddgarde et a2ly have dor
trooks (1 believe "RASIC.. " ws
it wEs wittur “vu for s

&

raverbs with the others din the N i
]l nas bheen trested he were Lilke vt i develor their own stule rnlee,*

1. Anc this is
failed to addre
cdifferent from other lanfussges. Thuss
it owers sn osoronsne becsuse "FORTRAN' snd "RasIC®
ma. This sssro also ref tbed drn

Wi T

nave n
of

which mak
soal’s name
of 'UUNHL"
GOME ST

Firallwr there sre 2 lot of reosls wiho
o or who think it rot dmeortants ov
e it bt dont. FWS Qs conciser ea
i to slsorithmic issues with

e 3% bthew state thalt one 103t] aii COrnEs atl [Zlatx} learmed the suntsy of Pas
are declasrated s e I the vhencey thoudne thew glgorithms oclesrlyry or how tﬁ srRErOsch
that mo executable s 7outd Finet) hthe va P me bl fashion PUES F R TEVE
Pascsls of COUTSEr simele oan not e “moco ima” .,] SLITE WO dn? oW o won

o O O

and elsewheres 1mentjl1vrs Hueh

; PGAME..MOY
woulad be legsl din PLATy but rot

Fascsl.

BYE usad,

to lend

Furerienced Fascal rrogvsmmers resding PUS would seot most of b
aulrkas meke & mental notes b move slong,. The novicer thoushe could

of Mirm

e Christosher Anlew Unlvwrﬁzf“

BRAOR09

conpceivably e misleady and that woul

3o most snnow

letdowny not 8o muct b
ut because of the €3

eeause of the (brivi
tounfilled. Recur

Lsa

dismissed with 10 short ssrsdrarhs. There :
dezl of the literatur devoted o remurﬁrnr (@ s 138

refarances are
er twres (znd their sr
trested include only srreus,

ionsy bt it does em hhat dn P
entation is a&n imeor borart of & TEME OO
fidman minc. Ared omeki 15 7 comFrehensiiole (and corr

: LA i] sk ing s (i =3 siinl 3 a¥h / wiat
ogranming stele is a1l sbout. Sebss subrangess snd record twres are ‘————< »___
simsle not trested,

@ 118, For

L TECLUTE]

mt&lnLerwret
eeracisllaey s

TH@1@ are & fTew nidggling swrtsx errors,. On
ommitted in & rrocedure tion. Thi oL L% anﬁ
phdon Lt only because @ ook are 0 heve ¢ T
Decwritery dmelwing the text was machine-readable. Whe not 211 of it7?

‘)”f SMIN TYICHd

“HITWALAAS

a7

Yd

154

Backissues of Pascal News(letter) from Time Zero - Andy Mickel 80/07/11. in Industry Literature. Pascal User's Group / Pascal News status:

why we are behind.

. Computing Here and There: News from Pascalers; a very large Pascal in the News; another Pascal
letter was started by George Richmond at the University of Colorado p ¢ X P ;
%§§525%§§E§;§I~_1974 primarily to spread information about the distribution of the CDC T-shirt; Pascal in Te?chlng; Books and Articles; Conference reports: French AFCET
Pen Zl o ilei and the Pascal-P compiler and to answer questions about other issues. Pascal Group,-Au§tra11an Computer Science Conference, SIGPLAN ACM meeting, UCSD Pascal
HZSZdited ?ssues 1 through 4. In 1976 Pascal User's Group assumed control of Pascal Workshop. A Review of Pascal News 9/10, 11, and 12. Roster Increment 78/04/22 - 10/31.
P, N ith issue 9. Below are some facts about X . .
1\']ewsl(=_-t:t:e?:1:l I ﬁhigged the name to Pascal News w Applications: A review of Software Tools by Rich Cichelli; Algorithm A-1 comments, A-3
issues 1 throug] . Determine Real Number Environment. Software Tool S-3 Prettyprint; S-4 Format.
Date Issue pages (numbered) Estimated Print?d copies Articles:
Jan 1974 Pascal Newsletter #1 8 (8 200+SIGPLAN Notices 1974 Mar "Moving a Large Pascal Program from an LSI-11 to a Cray-1"
May 1974 Pascal Newsletter #2 18 (18) 250+SIGPLAN Notices 1974 gog — Richard L. Sites
Feb 1975 Pascal Newsletter #3 19 (19) 400+SIGPLAN Notl;ez 1976 Fe [A 2400-1line Pascal program was moved between 2 machines whose CPU speed ratio is
Aug 1976 Pascal Newsletter #4 103 (103) 500+230 sent by PU 150 to 1. The task proved easy and 6 portability problems are outlined. Lack of
) adherence to standards and incompatibilities in the run-time environment were the
Sep 1976 Pascal Newsletter #5 124 (65) iigg:gzg gﬁ major areas of difficulty.]
Pascal Newsletter #6 180 (91) . .
gzz ig;g Pascal Newsletter #7 90 (45) 1150+350 UK "gn tze 3?§1§1e "What to do After a While'"
May 1977 Pascal Newsletter #8 128 (65) 1150+450 UK oy A. Wilsker ' '
[ﬁn examination of a table search algorithm is made with respect to considerations of
. hological set," "proving programs correct," "the spirit of Pascal," and
N 10(combined) 220 (113) 3500+600 UK+150 AUS PSY? 0 5 r 5 D scal," an
;eg ig;; g::zzi sz: zi{ (202 (105) 3500+600 UK+150 AUS "eff%glency." Conditional evaluation of Boolean expressions as advocated in the
Jﬁn 1978 Pascal News #12 135 (69) 3500+600 UK+150 AUS original paper is not necessarily the solution.]
"A Resolution of the Boolean Expression-Evaluation Question or If Not Partial
Dec 1978 Pascal News #13 239 (123) 4000+750 UK+250 AUS Evaluation Then Conditional Expressions'
Jan 1979 Pascal News #14 61 (61) 4100+750 UK+250 AU: - Morris W. Roberts and Robert N. Macdonald
Sep 1979 Pascal News #15 247 (125) 4000+750 UK+§50 iUS [The language features of case expression, value block and the conditional expression
Oct 1979 Pascal News #16 305 (155) 4000+750 UK+250 AU are recommended as additions to Pascal taken from the precedents of ALGOL-60 and
100 . £ 13-16 1left ALGOL-W. An analysis of several control structure constructs is given.]
At PUG(USA) there are approximately 700 copies of 9-12 and 1 copies o . "What to do After a While .. Longer"
- T.M.N. Irish
i letters 1-8.
#9/10, page 11 describes ;hedcont?;ts ;: i:icgiwziZit:rses—8. [A thorough reply to Mullins and Barron's article "What to do After a While"
#11, pages 16-19 completely descr}be P Sal News 9-12 arguing against conditional Boolean expression evaluation. He says we should not
#13, pages 16-18 completely describe Pasc : 1) write programs that rely on ill-defined factors, side-effects of functions, or
. . il the story behind the Pascal undefined values, 2) depend on implementors to let us get away with them, 3) tell
éf §Zﬁ gan; i?i::ed tEZOZ$;;iZﬁeazzztoiai;:tiigzp;fe;§%tware too{s,and a complete implementors to le? us get away with theT, or 4) c?mplain if implementors use any
rg:te:r0§ tge PUGy;embershiP 1976-1979, there is no substitute for obtaining all the means they can devise to prevent us getting away with them.]
available backissues: 9-16. "Know the State You Are In" —
- Laurence V. Atkinson
. . - Andy Mickel 80/07/11. [A number of recent articles have highlighted problems with multiple exit loops
Review of Pascal News 13, 14, 15, and 16 ndy in Pascal. Many of these problems disappear when a loop is controlled by a user-
. ider obtaining backissues 13-16 so defined scalar. The state transition technique is applicable to a number of
ihzzuiguléziltgeugiitziloizznzzg :§m2$:§t:°igozzi iecent past% programming situations and to multi-exit loops in particular.]
To describe the highlights: #13 and #15 are the meaty issues. #13 contains the most Open Forum:

recent, complete summary of all Pascal compilers to present. The articlés in #13 are
mostly centered on a lively discussion of control structures. #15 describes a lot of
standards activity and the resolution of the future of Pascal News and PUG.

78/05/25 Sam Calvin to Andy Mickel: [Department of Defense Dependents schools use
of Pascal in Math programs to teach K-12 students with personal instruction]
78/06/08 Dave Rasmussen to Andy Mickel: [Building Automation Systems process control
. language using Pascal, at Johnson Controls in Milwaukee]
#14 is completely devoted to Working Draft 3 of the Pascal Standard, and #16 is 78/04/24 C. Edward Reid to Andy Mickel: [corrections to letter of 78/03/16 in PN #12 p47]

completely devoted to a Validation Suite of more than 300 Pascal programs. 78/12/01 Andy Mickel to PUG members: [The future of PUG and Pascal News; turning the

editorship over to someone else. A proposed constitution]

78/07/17 Charles L. Hethcoat III to Andy Mickel: [The reference to "Implications of

Structured Programming for Machine Architecture'" by Andrew Tanenbaum in CACM

. describing EM-1 a compact instruction machine.]

Editor's Contribution: Thanks to those people at the University of Minnesota who have 78/07/28 C. Edward Reid to Andy Mickel: [Pointing attention to Dijkstra's article
given Pascal News the shadow of their smile, FORTRAN - The End at Laft? Recent '"DOD-1: The Summing Up"in SIGPLAN Notices and highlighting shortcomings]
events: Employment opportunity, Concurrent Pascal, NASA and the Galileo Project, 78/07/29 Ralph D. Jeffords to Andy Mickel: [Annoucing the construction of 2 software
Conventionalized Extensions, Standards, Pascal Machines, Pascal Usage, Explosion tools in Pascal: LEXGEN and LALRl for Syntax Parsing and Generating.]

Pascal News #13, December, 1978, Pascal User's Group, University of Minnesota Computer
Center, 239 pages (123 numbered pages), edited by Andy Mickel.

ATH QMIM IWACH 1

HIAGWNIIAAS

NRAT

A9Yd

he

78/08/23 Jim Merritt to Andy Mickel: [The impact and future of Pascal implementations
on personal computer systems. Very optimistic.]

78/08/29 Chuck Beauregard to Andy Mickel: [Pascal jobs on the West Coast]

78/09/08 Eiiti Wada to Arthur Salée: [Experience with teaching Pascal at the University
of Tokyo]

78/09/23 Rod Montgomery to Andy Mickel: [News in New Jersey about recent microcomputer
Pascal events and the blossoming interest in UCSD Pascal]

78/07/10 Kenneth Wadland to Andy Mickel: [News about teaching Pascal at Fitchburg State
College and support for Charles Fischer's method of standardization]

78/10/18 William C. Moore to Andy Mickel: [Need for a Pascal book with complete compiler
specifics.]

78/10/10 D. J. Maine to Andy Mickel: [Pascal developments at Computer Automation--
compilers and jobs]

78/09/25 H.H.Nagel to Andy Mickel: [General reactions to PUG's work; the DECSystem 10
implementation and incorporation of otherwise]

78/? Karl Fryxell to Andy Mickel: [Reaction to Judy Bishop's discussion of subranges
and conditional loops]

78/08/16 Richard Hendrickson to Andy Mickel: [Problems with performance of CRAY Pascal
compared to CRAY Fortran and problems with Pascal in general.]

78/09/04 Laurence Atkinson to Andy Mickel: [Comments on programming logic--use of
Booleans instead of two-state scalars; negative logic]

78/09/27 Judy Bishop to T.M.N.Irish: [Clarification of points of agreement and disagreement
about "What to do after a While."]

Pascal Standards:
Report by Andy Mickel on: corrections to EBNF by Niklaus Wirth; Distribution plans
for the Validation Suite; Working Draft/3 will appear as Pascal News #14; News from
the Internation Working Group on Pascal Extensions.

78/01/30 Niklaus Wirth to Andy Mickel: [Suggesting the formation of a small group of
implementars to implement agreed-upon extensions]

78/07 Arthur Sale: Consensus Position on Case defaults--adding an otherwise clause.

78/06/12 Brian Wichmann to Andy Mickel: [Announcement of a Pascal Test Suite which
is under development.]

78/09/15 Tony Addyman:: Progress R&port on the Standard Number 1. Plans for producing
a draft for public comment by the BSI and submission to ISO.

78/09/12 Rick Shaw to Andy Mickel: [Will act as USA Standards liason to Tony Addyman;

. will draw up program interchange guidelines and gather test programs.]

78/09/27 Andy Mickel to William Hanrahan: [Urge that Pascal standardization be left
to the BSI and not undertaken separately by ANSI.]

78/10/23 News Release by CBEMA on behalf of ANSI of the formation of ANSI committee
X3J9 for Pascal standardization.

78/11/10 News Release by CBEMA on behalf of ANSI regarding first X3J9 meeting.

Implementation Notes:
General Information, Implementors Group Report, Checklist, Portable Pascals:
Pascal-P, Pascal P4--Bug Reports, Pascal Trunk, Pascal J; Pascal Variants:
Pascal-S, Concurrent Pascal; Modula; Feature Implementation Notes: INPUT and
OUTPUT, Improved Checking of Comments, Lazy I/0; Machine-Dependent Implementations:
Altos ACS-8000, Amdahl 470, BESM~6, BTI 8000, Burroughs 5700, 6700, 7700,
CDC 6000, Cyber 70,170, 7600, Cyber 76, Cyber 203, Data General Nova, Eclipse,
DEC PDP-8, PDP-11, VAX 11/780, DECsystem 10,20, Heathkit H-11, Hewlett Packard
21MX, 2100, Honeywell H316, IBM 360/370, Series 1, ICL 1900, 2900, Intel 8080,
Interdata 7/32, 8/32, Marinchip M9900, MOSTEK 6502, Motorola 68000, North Star
Horizon, Northwest Micro 85/P, Prime P-300, Processor Technology SOL, Radio
Shack TRS-80, SEL 8600, Siemens 4004,7000, Telefunken TR-440, TI-ASC, 980,990,9900,
Univac 90/70, 1100, Western Digital Microengine, Zilog Z-80,Z-8000; Index.

Pascal News # 14, January, 1979, Pascal User's Group, University of Minnesota Computer

Center, 61 pages (61 numbered pages), edited by Andy Mickel.

Editor's Contribution: A special issue devoted to the Draft Péscal Standard. Ngtes
that Pascal the language and its development have been unique. The appropriateness
of letting Europeans standardize a: language with European origins.

The BSI / ISO Working Draft of Standard Pascal by the BSI DPS/13/4 Working Group.+
Letter, Covering Note and Commentary by Tony Addyman; The Draft (6 sections
index); Related Documents: A history, members of DPS/13/4 and the ISO proposal.

Pascal News #15, September, 1979, Pascal User's Group, University of Minnesota Computer
Center, 247 pages (125 numbered pages), edited by Andy Mickel.

Editor's Contribution: Why Pascal News #15 is so late and thanks for’not'giving’up hope.
The future of PUG and Pascal News. Voting on the proposed constltuthn. Rick Shaw
as new editor. Jottings on the standard, Validation Suite, Distribution problems,

and Pascal on Micros.

Here and There: Tidbits (news from Pascalers), a very large Pascal in the Nevs,
Ada, Books and Articles including a Textbook survey, Conferences and Seminars
(4 Industry Seminars to be given on Pascal), Announcements for ACE 7? and IFIP 80.
2 reports on the DECUS Pascal SIG ; Pascal session at ACH 78. PUG Finances 77-78;
Roster Increment to 79/05/14.

Applications: News: Business Packages available, Data Base Management Systems, Interpreters

Inter-language translators, Bits and Pieces. Software Toolsi changgs'to §-1
Compare, S-2 Augment and Analyze on the Dec 10, S-3 Prettyprint clarlflcatlons,' N
S-4 Format confessions, S-5 ID2ID documentation + program, S—6'Prose do?umentatlon
program. Programs: P-1 PRINTME. Algorithms: A-3 Perfect Hashing Function.

Articles: "
"A Contribution to Minimal Subranges
- Laurence V. Atkinson)
[Enumerated and subrange types are two of the most important features of Pascal.

Their contribution to transparency, security and efficiency is often not fully
appreciated. Their under-utilization is one of the (many!)‘featu€es I r?peatedly
criticize when reviewing Pascal books. Minimal subranging is des%rable 1n'P?scal.
One benefit of a state transition approach to dynamic processes, is that minimal
subranging can be achieved.]

"A Note on Scope, One-Pass Compilers, and Pascal"

- Sale

[Tﬁzt:zZpe rules set out in section 2 and now incorporated into ?he dfaft Pascal
Standard are sufficient to permit even one-pass compilefs to reject 1ncorrec§ programs.
The suggested algorithm adds an overhead at every definlng.occ?rre?ce, bu? since

uses exceed definitions in general it may not be too expensive in time to implement.

In any case, what price can be put on correctness?]

"pagcal-I - Interactive, Conversational Pascal-S"

- Richard Cichelli))

[Pascal-I is a version of the Wirth Pascal-S system designed to interéct with the
terminal user. The system contains a compiler, interpreter, text ed1t?r, fotmat%er,
and a run-time debugging system. A description of commands and a terminal sesstion

are given.]

"Tracing the Heap"
- Steve Schach
[The package HEAPTRACE outlined in this paper aids the user to debug his p;ogﬁams
by providing information as to the contents of the records on tHe‘heap. ac "]
field is named, and its value is given in what might be termed high-level format'.

BRI

7

"Why Use Structured Formatting"

- John Crider

["Structured Formatting" is a technique for prettyprinting Pascal programs. It is
based on a single indented display pattern which is used to display almost all of
the structured statements in a Pascal program.]

Open Forum:

79/01/30 David Barron to Andy Mickel: [Thoughts on the future of PUG prompted by Open
Letter in #13. PUG has succeeded beyond all reasonable expectation because it
has been informal and unconventional.]

79/03/12 Paul Brainerd to Andy Mickel: [Understands the time to produce Pascal News
and we should pick a new editor carefully and perhaps be realistic about price.]

79/03/19 John Earl Crider to Andy Mickel: [Pascal News has become an impressive journal
thatI am sure serves most other PUG members as their major link to Pascal
developments.]

79/03/19 John Eisenberg to Andy Mickel: [The Bald Organization--An Anti-Constitution
For Pascal User's Group]

79/05/01 Jim Miner to Friends of PUG: [Save the PUG! What is PUG? On the Proposed
Constitution. Where Now, PUG?]

79/05/12 Rich Stevens to Jim Miner: [I agree with Save the PUG. Would rather see a
smaller , more frequent publication.]

79/05/18 Arthur Sale to Jim Miner: [I agree with Save the PUG. Constitution would

. effectively eliminate international cooperation by ignoring it.]

79/05/20 David Barron to PUG membership: [I agree with Save the PUG. The only real
function of PUG is to publish Pascal News.]

79/05/11 Gregg Marshall to Andy Mickel: [I oppose any movements which advocate
dissolution, or radical change from the current editorial policies.]

79/05/30 Bill Heidebrecht to Andy Mickel: [PUG must be kept alive, independent, and
international--it has not outlived its usefulness.]

78/09/30 Tom King to Andy Mickel: [Use of Pascal on an AM-100 system in Winnemucca,
Nevada with varied applications]

78/11/02 John Eisenberg to Andy Mickel: [Arguments over the use of Pascal and Pascal,
Standards and extensions.]

78/10/16 Robert Cailliau to Andy Mickel: [Comments on Pascal News #12 standards and
extensions.]

78/10/22 C. Roads to Andy Mickel: [Pascal in Music applications in the Computer Music
journal.]

78/11/07 Laurent 0. Gelinier to Andy Mickel: [Applications on a large file processor
and intelligent terminals network]

78/11/08 Eugene Miya to Andy Mickel: [Jet Propulsion Labs and Pascal on their 300
computers: the Deep Space Network and need for validation programs.]

78/11/27 Paul Lebreton to Andy Mickel: [News on the Motorola 68000 and Pascal and
Bus standards and other hardware conventions.]

78/11/21 Sergei Pokrovsky to Andy Mickel: [Use of a double-variant node in Pascal
used to create a syntax for graph structures.]
79/03/26 Bill Marshall to Andy Mickel: [Deviations in 4 compilers for TRUNC and ROUND]

79/02/09 Curt Hill to Andy Mickel: [Pascal at the University of Nebraska: good
report on the Stanford 360/370 compiler.]

79/03/08 James Cameron to Andy Mickel: [The problems of extensions might be solved by
also providing a superset language "PascallI"]

79/03/13 Roger Gulbranson to Andy Mickel: [Reply to Richard Cichelli's claim that
complex numbers are easy to create in Pascal. Probably need an Operator declaration]

79/04/30 B. J. Smith to Andy Mickel: [The production of various Software Tools in
Pascal by Interactive Technology INC. including a DBMS and business applications.]

79/07/20 Peter Humble to Andy Mickel: [Need for conformant arrays in Pascal for numerical
applications]

79/06/05 George Richmond to Andy Mickel: [Pascal at Storage Technology Corp. Errors
in the Pascal-P compiler.]

79/06/07 Bob Schor to PUG: [Pascal at Rockefeller University and on PDP-11'g]

79/06/29 Jack Dodds to Tony Addyman: [The need for conformant arrays in Pascal for
the use of libraries and a better definition of EXTERNAL]

79/09/20 Andy Mickel to Ken Bowles: [Pascal-P is public-domain software and UCSD Pascal
is based on Pascal-P, yet Improper modification history and credit is made.]

Pascal Standards.

Progress Report by Jim Miner, with help from Tony Addyman, Andy Mickel, Bill Price and
Arthur Sale. Progress of the BSI/ISO standard. Standards activity in the United
States. Other National Standards Efforts. ANSI charter documents for 2 committees.

Report of the ANSI X3J9 meeting in Washington by Richard Cichelli. Lots of politics.
Statement by Niklaus Wirth supporting the ISO Standards activity by Tony Addyman.

79/03/19 News Release by CBEMA on behalf of ANSI regarding the solicitation of public
comments on the ISO draft standard for Pascal.

79/08/31 Experiences at the Boulder, Colorado meeting of IEEE/X3J9 committee by Andy
Mickel. More politics.-

Validation Suite.

Announcement by Arthur Sale of the distribution centers and prices for the forthcoming
Pascal Validation Suite.

Implementation Notes:
Portable Pascals: Pascal-P, Pascal-E. Pascal Variants: Tiny Pascal, Pascal-S,
Pascal-I, Concurrent Pascal, MODULA, Pascal-Plus. Hardware Notes: Pascal
Machines. Feature Implementation Notes: Comment on Lazy I/0; Wish list to
implementors; Note to all implementors; The for statement. Checklist. Machine-
Dependent Implementations: Apple II, BESM-6, Burroughs B5700, CDC 6000/Cyber 70,170
Data General Eclipse, DEC PDP-11, LSI-11, Digico Micro 16E, Facom 230-45S, GEC 4082,
Honeywell Level6, Level 66, IBM Series 1, IBM 360/370, ICL 1900, Intel 8080,8085,
8086, MODCOMP II/IV, Norsk Data NORD-10, Perkin Elmer 7/16, 3220, RCA 1802,
SWTP 6800, Sperry V77, TRS-80, TI-9900, Zilog A-80.

Pascal News #16, October, 1979, Pascal User's Group, University of Minnesota Computer

Center, 305 pages (155 numbered pages), edited by Andy Mickel.

Editor's Contribution: A special issue devoted to the Pascal Validation Suite. Rick
Shaw is new editor of Pascal News; Thanks to everyone. How we put together an
issue of Pascal News. Final thoughts on the PUG phenomenon. Greetings from the
new editor and predictions of the next two issues.

The Pascal Validation Suite. Introduction to the special issue by Arthur Sale. Aims
and Methods of the Validation Suite. Version 2.2 of the Validation Suite.
Distribution Information, Distribution tape format and addresses.

"A Pascal Processor Validation Suite" by Brian A. Wichmann and Arthur H. J. Sale.
Listing of the 300+ test programs.

Four Sample Validation Reports: introduction, UC B6700 compiler, Tas B6700
compiler, OMSI PDP-11 compiler, Pascal-P4 compiler.

Stamp out bugs T-Shirt.

PUG FINANCES 1978-1979 (Actually through 79/12/12 just before transfer to Atlanta) Computer Systems Represented by the PUG Membership 1976-1979.

Here is a list of the computer systems listed on A11-Purpose Coupons by the 4676 different
members of Pascal User's Group from 76/03/03 through 79/11/01 (the last date for which

I processed PUG memberships). Duplicate Tistings from the same people on different
(renewal, change of address, etc.) coupons were eliminated.

Here are the details for PUG(USA)'s finances for the 78-79 academic year. We have not
included PUG(UK) because they will report separately. PUG(AUS) never has reported.

PUG(USA) Summary of Accounts:
Income:

Unfortunately I don't know all these computer systems so I may have many misplaced
(alphabetically by manufacturer); check through the whole 1ist if you are looking for a
system in particular.

196.53 1977-78 Surplus
334.94 1976-77 Surplus (forgot to include on 77-78 accounting!)
197.20 Interest on Bank Account
87.30 Contributions
5130.00 Sale of 513 sets of backissues (9..12) @ $10
66.00 Sale of 33 miscellaneous backissues (5..8) @ $2
132.00 Sale of 44 miscellaneous backissues (9..14) @ $3
2500.00 625 subscriptions @ $4
10950.00 1825 subscriptions @ $6

As PUG member A. J. Sutton so aptly stated on his 78/10/15 coupon: "cheers, but what does
this [computer system(s)] mean? Owned? Operated? Programmed? Designed? Delivered?
Desired?" I guess I meant using, so take these figures with a grain of salt!

Andy Mickel 80/06/24.
(Note: the notation (+n) indicates additional quantity for micros under a different name.)

$19593.97 Total income.

AACT faTmamT e mn

nul

1 AC0S-800 16 Data-100 (Northern Telecom) 78
Expenses: 1 AIM/65 132 Data General 600/Nova + microNova
$ 181.00 People who still owe us money (bounced checks) 1 ALGO 2100 74 Data General Eclipse
104.91 Mailing SIGPLAN meeting notices 18 Alpha Micro AM-100 13 Datapoint
319.45 Advance printing #14 - 200 copies 6 Altos ASC-8000 32 DEC PDP-8
1541.00 Printing #14 - 3000 copies 1 AMC System 29 746 DEC PDP-11
3538.92 Printing #13 - 3000 copies 52 Amdahl 470 95 DEC LSI-11 (+114)
4650.95 Printing #15 - 4000 copies 1 American Microsystems S6800 2 DEC PDP-15
6050.55 Printing #16 - 4000 copies 1 AMTELCO 59 DEC VAX 11/780
122.86 Postage due from returned issues 1 Andromeda 189 DECsystem 10
414.76 Postage #13 36 Apple II 61 DECsy tem 20
307.96 Postage #14 1 Astrocom S760 1 Dieh%jC?ﬂ
534.65 Postage #15 2 Basin-4 3 Dietz MINCAL 621
629.02 Postage #16 1 BESM-6 9 Di iia] Group Z-80
34.27 Miscellaneous photocopying costs, postage 1 Beta WS-1000 1 Digita] S stgm SD3
50.48 UPS shipping of the files to Atlanta from Minneapolis 1 Billings 8080 1D ; byt %B 8/1
935.24 PUG(UK) 1977-78 rebate 1 BTI-4000 2 E{Bam¥c$o ind
784.90 Reprinting #12 - 500 copies 2 BTI-8000 1 ES-1022 "
19 BuY‘Y‘OUgES B1700/1800 2 Exidy Sorcerer Z-80
20200.92 Total expenditure. iture = 5 Burroughs B2700 i
$ penditure Excess expenditure = $606.95 12 Burroughs B3700/3800-84700/4800 g Egg;ﬁgﬁ;sgrg;itggg
--- 6 Burroughs B5500/5700 2 Foxboro FOX-1
An attempt to assess the financial health of PUG: ;? Eggr?ggg;C3g700{ggoo'377°°/7800 1 Fujitsu FACOM M190
yber ..
Assets: $ 2988.86 Bank Account Liabilities: 15 CDC 3000 f Eui]tsg EACgM3§3O
1930.43 Computer Center Account . . 562 CDC 6000,7000/Cyber 70,170 1 Gu‘ure g e
7000.00 Cash sent to Atlanta to start up $ 606.95 78-79 deficit 6 CDC Cyber 200/Star-100 2 axy i
2348.50 Face value of 3566 backissues 6858.00 79-80 subscriptions collected 1 CDC MP-32 2 General Automation 18/30
on hand (=cost to print) (132 @ $4 + 1055 @ $6) 3 CDC MP-60 1 General Automation 100
1808.00 8?-81 sugscriptions co}1ected 3 CDC Omega 480 lg genera} ﬁutomazion 228
26 @ $4 + 284 @ $6 i eneral Automation
$16363.79 Total assets. 830.00 81-82 subscriptions collected é g%% {:}: 28/10070 7 GEC 4080
(110 3%4+ 131 @ $6) 6 Commodore Pet 1 Gimix 6800
2 ¢ . 2 GOLEM B
- omputer Automation 216 1 GRI System 99
$10102.95 Total liabilities. 7 Computer Automation LSI-2 7 Harris 4/6
I claim we didn't do too bad. Since 79/12/12 we have spent almost all of the remaining g EgﬁigﬁefNé§§°mat1°" Ls1-4 6 Harris S135
cash here in Minneapolis on reprinting backissues 9..14. These details will be reported 1 COSMAC ELF 8 Harris S200
with the 79-80 report by Rick. 1 CPS-03 (M6800) 5 Harris S500
Andy Mickel 80/06/24. 17 Cray Research CRAY-1 7 feathkit %
5 Cromemco Z-80 15 Heathki
2 CTL Modular One

17

16
30
23
80

—

77
63
11

14
430
36

44

=N

31
118
16
18
16

—

—
O RN NN N WN - 00 = N

o) =
NS

—_
S~ OO

=
HR,OORAEN

—
o

Hewlett Packard 1000
Hewlett Packard 2000/2100
Hewlett Packard 21MX
Hewlett Packard 3000
HEX-29

Hitachi 8000
Honeywell H316
Honeywell Level 6
Honeywell 6000/Level 66/68
IBM Series 1

IBM System 3

IBM System 32/34

IBM 1130

IBM System 360/370
IBM 3030

IBM 4330

ICL 1900

ICL 2900

ILLIAC 1V

IMSAI VDP 40

IMSAT VDP 80

IMSAT 8080/8085
Intel 8080 (+73)
Intel 8085 (+5)
Intel 8086

Itel (National) AS 456
Ithaca Audio

ITT 1652

ITT 2020

Jacquail J-100

KIM-1

LEC-16

Lockheed Sue
Manchester MU-5
Marinchip 9900
MDS-800

MEMBRAIN

Microdata 32/5
Microdata 1630

MITS Altair 680

MITS Altair 8800
MITS Altair Z-80
Mitsubishi MELCOM 7700
3M Linolex

MODCOMP 11

MODCOMP 1V

Mostek 6502 (+44)

Motorola 6800 (+10)
Motorola 6809

Motorola 68000

Nanodata QM-1

National Semiconductor S-400
National Semiconductor 2900
National Semiconductor PACE
NCR Century

NCR 8000

NEAC-900

NEAC-3200

Norsk Data NORD-10

North Star Horizon (Z-80)
Northwest Micro 85/P

1
11

w S

— n
hgo—-b N OCIO s == N

12

n

n

()]
WNNWN=EFRFONOORFRENHENEEOAERFWONFWH O O -

1=
wo

19

Ol

32

156

36

ww

0dell System 85

Ohio Scientific Challenger
Ontel OP-1

PDS-4

Pertec PCC XL40

Pertec PCC 2000

Perkin Elmer Interdata 7/16
Perkin Elmer Interdata 7/32
Perkin Elmer Interdata 8/16
Perkin Elmer Interdata 8/32
Perkin Elmer 3200

Polymorphics 88

Prime P-300

Prime P-400

Prime P-500

Processor Technology SOL-20
Quasar 6800

Quotron 801

Radio Shack TRS-80

RCA 301

RCA 1802

Rockwell 6502

ROLM 1600

RP-16

SBC 80/20

Systems Engineering SEL 32
Systems Engineering SEL 8600
SEMS SOLAR

SEMS T1600

Siemens 4000

Siemens 7000

Singer GP-4B

Singer Librascope

Singer System 10

SORD M-222

SPC-16

Sperry SDP-175

SWTP 6800

Sycor (Northern Telecom) 445

Tandem 16

TDL Z-80

TDS-8 (Z-80)

Tektronix 8002
Telefunken 80
Telefunken TR-440
Terak 8510

Three Rivers PERQ
Texas Instruments 980
Texas Instruments 990
Texas Instruments 9900
Texas Instruments ASC
Texas Instruments DX-10
Time Machine TM-600
Univac 418

Univac 90/9000

Univac 1100

Univac V70/77

Univac UYK-7

Vector Graphics MZ

2

- NN

Wang WPS-30

Wang WPS-40

Wang 928

Wang 2200

Western Digital Microengine
Xerox (Honeywell) 560
Xerox (Honeywell) Sigma 3
Xerox (Honeywell) Sigma 5
Xerox (Honeywell) Sigma 6
Xerox (Honeywell) Sigma 7
Xerox (Honeywell) Sigma 8
Xerox (Honeywell) Sigma 9
Xitan Z-80

Zilog Z-80 (+78)

Zilog Z-8000

unspecified microprocessors

N96T “M3IAWILd3S 6T# SMIN TYISYd

8Z 37Vd

PASCAL NEWS #1Y SEPIEMBER, 198U PAGE 29

Applications

~LJLLJLILILdL

Corrections for Xref program. Pascal News #17

AKKKRAAKKRKKKAKAKKRANAKRKARAARKKKARRKAKRAKRAKRKKAAKRKRKAARAKAKX
1) XREF,PAS;|

464 LinesOnPage := LinesPerPage; MoveTolIndx 2= 0 (x compress table x)
46% for TbliIndx := @ to HashTblSize = 1 do
KRAKKKKRAKKAKAKAR
2) XREF,PAS;2
464 ; MovelolIndx = 4 (x compress table x);
465 for ThlIndx 3= 4 to HashThblSize = { do

ARKKKKKRKARRKRKKKEKKRKANRKAKRARKARKAKAKRKKRKKKKRKKKKNKNKA AKX
1) XREF,PAS;1

1156 UutputSection 3= listing; scan; OutputSection t= idents;

1157 DumpTables; writeln(tty, ®= End CrossRef’); writein(tty, * *);
ARKRKAKKAKNKRAAR

2) XREF,PAS;2

1156 LinesOnPage 3= LinesPerPage;

1157 OQutputSection = listing; scang UutputSection iz idents;

1158 LinesOnPage := LinesPerPage;

1159 DumpTables; writeln(tty, *= End CrossRef’); writeln(tty, ° *);

¢ DIFFERENCES FOUND
LP:=sDP1sXREF,PAS;1,DP1:XREF,PAS;2

All occurences of ChrCatagory should be changed to ChrCategory.

1 program pascals(input, output, tty); m linelimit = 132 { maximum output line size };
2 112 stacksize = 600 { run-time stack size 1};
3 4 Author: N. Wirth, E.T,H. CH-8092 Zurich, 1.3.76 } 113
4 114 type
5 { Pascal-s: compiler and interpreter for a subset of Pascal } 115 symbol =
6 116 (intcon, realcon, charcon, string, notsy, plus, minus, times, idiv,
7 117 rdiv, imod, andsy, orsy, eql, neq, gtr, geq, lss, leg, lparent,
8 * Purpose: 118 rparent, lbrack, rbrack, comma, semicolon, period, colon, becomes,
9 This program compiles and interprets Pascal programs which 119 constsy, typesy, varsy, functionsy, proceduresy, arraysy, recordsy,
10 are written in a subset of standard Pascal called Pascal-s. 120 programsy, ident, beginsy, ifsy, casesy, repeatsy, whilesy, forsy,
" 121 endsy, elsesy, untilsy, ofsy, dosy, tosy, downtosy, thensy);
12 % Editors: 122 index = - xmax .. + xmax;
13 R. J. Cichelli with corrections and enhancements from D. Baccus. 123 alfa = packed array [1 .. alng] of char;
14 124 object =
15 * References: 125 (konstant, variable, type1, prozedure, funktion);
16 Niklaus Wirth, "PASCAL-S: A subset and it's implementation", 126 types =
17 Institut fur Informatik, Eidgenossische 127 (notyp, ints, reals, bools, chars, arrays, records, scalars);
18 Technische Hochschule, Zuerich (1975). 128 symset = set of symbol;
19 129 typset = set of types;
20 % Method: 130 item = record
21 Recursive decent compilation into stack code for internal 131 typ: types;
22 stack machine interpreter. 132 ref: index
23 133 end;
24 * Input: 134 order = packed record
25 Pascal-s source programs and input data for them. 135 f: - omax .. + omax;
26 136 x: = lmax .. + lmax;
27 * Output: 137 : - nmax .. + nmax
28 Listing and execution results (post mortum dump on errors.) 138 end;
29 139
30 * Limitations: 140 var
31 THE LANGUAGE PASCAL-S (by N. Wirth) 141 ~ sy: symbol { last symbol read by insymbol };
32 The choice of features to be included in the subset now 142 id: alfa { identifier from insymbol 1};
33 called PASCAL-S was mainly guided by the contents of 143 inum: integer { integer from insymbol };
34 traditional introductory programming courses. Beyond this 144 rnum: real { real number from insymbol 1};
35 it is subject to personal experience, judgement, and 145 sleng: integer { string length 1};
36 prejudice. A firm guideline was provided by the demand that 146 ch: char { last character read from source program };
37 the system must process a strict subset of PASCAL, i.e. that 147 Line: array [1 .. Llng] of char;
38 every PASCAL-S program must also be acceptable by the 148 cc: integer { character counter };
39 compiler of Standard PASCAL without being subjected to the 149 Lc: integer { program location counter };
40 slightest change. This rule makes it possible for students 150 LL: integer {. length of current line };
41 to switch over to the regular system in later courses 151 errs: set of 0 .. ermax;
42 "without noticing". A language's power and its range of 152 errpos: integer;
43 applications largely depend on its data types and associated 153 progname: alfa;
44 operators. They also determine the amount of effort 154 iflag, oflag, skipflag: boolean;
45 required to master a language. PASCAL-S adheres in this 155 constbegsys, typebegsys, blockbegsys, facbegsys, statbegsys: symset;
46 respect largely to the tradition of ALGOL 60. Its primitive 156 key: array [1 .. nkwl of alfa;
47 data types are the integers, the real numbers, and the 157 ksy: array [1 .. nkwl Z symbol;
48 Boolean truth values. They are augmented in a most 158 sps: array Cchar] of symbol { special symbols };
49 important and crucial way by the type char, representing the 159 t, a, b, sx, ¢1, ¢2: integer { indices to tables 1};
50 available set of printable characters., Omitted from PASCAL 160 stantyps: typset;
51 are the scalar types and subrange types. 161 display: array [0 .. lmax] of integer;
52 162 tab: array [0 .. tmax] of { identifier table }
53 163 packed record
54 PASCAL-S included only two kinds of data structures: 164 name: alfa;
55 the array and the record (without variants). Omitted are 165 Link: index;
56 the set and the file structure. The exceptions are the two 166 obj: object;
57 standard textfiles input and output which are declared 167 typ: types;
58 implicitly (but must be listed in the program heading). A 168 ref: index;
59 very essential omission is the absence of pointer types and 169 normal: boolean;
60 thereby of all dynamic structures. Of course, also all 170 lev: 0 .. lmax;
61 packing options (packed records, packed arrays) are omitted. 171 adr: integer
62 172 end;
63 The choice of data types and structures essentially 173 atab: array [1 .. amax] of { array-table 1}
64 determines the complexity of a processing system. Statement 174 packed record
65 and control structures contribute but little to it. Hence, 175 inxtyp, eltyp: types;
66 PASCAL-S includes most of PASCAL's statement structures 176 elref, low, high, elsize, size: index
67 (compound, conditional, selective, and repetetive 177 end;
68 statements). The only omissions are the with and the goto 178 btab: array [1 .. bmax] o_f—{l block-table }
69 statements. The latter was omitted very deliberately 179 Eacked record
70 because of the principal use of PASCAL-S in teaching the 180 Last, lastpar, psize, vsize: index
71 systematic design of well-structured programs. Procedures 181 end;
72 and functions are included in their full generality. The 182 stab: packed array [0 .. smax] of char { string table 1};
73 only exception is that procedures and functions cannot be 183 rconst: array [1 .. c2max] of r'e_a'L;
;15‘ used as parameters. 184 code: array [0 .. cmax] of order;
185
76 * Computer system: 186
77 Pascal-s was origionally installed on the CDC 6000 systems at 187 procedure abend;
78 E.T.H. The program was modified to compile on DEC PDP 11's 188
79 using the Swedish Compiler. 189 begin
80 Scalar types were added using Don Baccus' changes. 190 { goto 99 }
81 191 { 1} halt
82 } 192 end;
83 193 T
84 {$W- no warning messages } 194
85 {$R- no runtime testing } 195 procedure errormsg;
86 196
87 197 var
88 Llabel 198 k: integer;
89 99 { abort target }; 199 msg: array [0 .. ermax] of alfa;
90 200
91 const 201 begin
92 nkw = 27 { no. of key words }; 202 msgC0] ‘undef id '; msgC1] ‘multi def ';

93 alng = 10 { no. of significant chars in identifiers }; 203 msgC2] 'identifier'; msg(3] := ‘program ';

94 tlng = 120 { input line length }; 204 msgl4] " '; msgC5] : '

95 emax = 38 { max exponent of real numbers }; 205 msg[6] 'syntax '; msgl7] ‘ident, var';

96 emin = = 38 { min exponent }; 206 msgC81 '; msgl9] := '('

97 kmax = 15 { max no. of significant digits }; 207 msg[10] '; msgl11] := 'C ¥
98 tmax = 100 { size of table }; 208 msgl12] '; msgl13] :='.. '
99 bmax = 20 { size of block-table }; 209 msgC14] '; msgl15] := 'func. type';
100 amax = 30 { size of array-table }; 210 msgC16] : '; msgC17] := ‘boolean ';
101 c2max = 20 { size of real constant table 1}; 211 msgC18]1 := ‘'convar typ'; msg[19] := 'type i
102 csmax = 30 { max no. of cases }; 212 msg[20] := 'prog.param'; msgf21] := 'too big ';
103 cmax = 500 { size of code 1}; 213 msg[22] '. '; msgl23] := "typ (case)';
104 tmax = 7 { maximum level }; 214 msgl24] ‘character '; msgCf25] := ‘const id ';
105 smax = 300 { size of string-table }; 215 msgl26] 'index type'; msg[27] := 'indexbound';
106 ermax = 58 { max error no. }; 216 msgl28] 'no array '; msgl29] := 'type id ';
107 omax = 64 { highest order code }; 217 msgl30] ‘undef type'; msg(31] := 'no record ';
108 xmax = 32767; 218 msgl32] 'boole type'; msgl33] := 'arith type';
109 nmax = 32767; 219 msgl34] := 'integer '; msg[35] := 'types ';
110 Lineleng = 132 { output line length }; 220 msgL361 := 'param type'; msg[371 := 'variab id ';

221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259

261
262
263
264
265
266
267

269
270
271
272
273
274
275
276
277
278
279

298

301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330

LR AR A SR N T Y W "ao
msg(38] := 'string ' msgl39] := 'no.of pars';
msgl40] := ‘type '; msgl41] := 'type '
msglf42] := 'real type '; msg[43] := 'integer °';
msglL44] := ‘var, const'- msgl[45] := 'var, proc ';
msgl46] := 'types (:=)' msgC47] := 'typ (case)';
msg[48]1 := 'type ' msgl49] := ‘'store ovfl';
msgC50] := 'constant '; msg[51]1 := ':= ';
msgl52] := 'then '; msg[53]1 := ‘until 5
msgL54] := ‘do '; msgl55] := 'to downto ';
msg[56] := ‘begin '; msgf57] := 'end '
msgC58]1 := 'factor ' k :=0; writeln;
writeln(' key words');
while errs <> [1 do
begin
while not (k in errs) do k =k + 1; writeln(k, '

errs := errs - [kl
end
end T errormsg };

procedure endskip;

begin { wunderline skipped part of input }
while errpos < cc do begin write('-');
skipflag := false

end { endskip };

read next character; process line end };

procedure nextch {

function uppercase(ch: char): char;
begin
if C(ch >= 'a') and (ch <= 'z')
then

uppercase := chr(ord(ch) - ord('a') + ord('A"))
{ ASCII case conversion routine ... EBCDIC requires a
more elaborate test }
else uppercase := ch
end T uppercase };

begin { nextch }
T3f cc = UL
then
“begin
7T eof (input) then
egin
writeln; writeln(' program incomplete'); errormsg;
abend;

et
if errpos <> 0 then

beg1n 1f skipflag then endskip; writeln; errpos :=
end; ‘

write(le: 5, ' "); L :=0; cc :=0;

while not eoln(input) do
begin UL := LL + 1; ~ read(ch); write(ch); LineCLL] := ch
end;

writeln; L == LL + 1; read(linellL])

end;
cc 3= cc + 1; ch := uppercase(linelccl);
end { nextch };

procedure error(n: integer);

begin
if errpos = 0 then write(' #x%x');
if cc > errpos then
" begin
write(' 'z cc - errpos, '"', n: 2);
errs = errs + [n]
end
end T error };

errpos := cc + 3;

procedure fatal(n: integer);

var
msg: array [1 .. 7] of alfa;

begin
writeln; errormsg; msgf1] := 'identifier';
msgl2] := 'procedures'; msg[3] := 'reals '
msgl4] arrays '; msg[5] := 'levels '
msglé] := 'code '; msgl7] := 'strings '

writeln(' compiler table for ', msglnl, ' is too small');

abend { terminate compilation }
end { fatal 1};
{ insymbol- }

procedure insymbol { reads next symbol };

Label
,2,3;

var
i, i, k, e: integer;

procedure readscale;

var
s, sign: integer;

begin

nextch; sign := 1; s := 0;

', msglkl);

errpos := errpos + 1 end;

DL I LITULRn,

331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
37
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
41
412
413
414
415
416
47
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440

4 Jov

if ch = '+' then nextch
else if ch = '-* then begin nextch;
while ch in C'0" .. "9"] do
begin s ":= 10 * s + ord(ch) - ord('0");
e 1= s % sign + e
end { readscale };

nuL 4

sign = - 1 end;

nextch end;

procedure adjustscale;

var
s: integer;
d, t: real;

begin
k + e > emax
else
if k + e < emin
else
begin
s := abs(e);
repeat
while not odd(s) do begin s := s div 2; d := sqr(d
s :=s-1; ti=d*xt
until s = 0;
ife>=0
end
end { Tadjustscale 1};

then error(21)

then rnum := 0.0

t :=1.0; d :=10.0;

then roum := rnum * t

begin { insymbol }
1t while ch = * ' do nextch;
if ch in ['A' .. '2']

then
begin { identifier or wordsymbol }
k :=0; id = ! ';
repeat
if k < alng then begin k := k + 1; idCk] := ch end;
nextch
until not (ch in ['A' .. 'Z', '0' .. '9']);
T =17 § := nkw;
{ “binary search }
repeat
k= G+ §) div2; if 1d keyCk] then j := k - 1;
if id >= keylk] then i ;= k + 1
until i > j;
T3 -1>3 then sy := ksy[k] else sy := ident
end
else
if ch in ['0" .. '91]
then
begin { number }
k ==0; inum := 0; sy := intcon;
repeat
inum := inum * 10 + ord(ch) - ord('0"); k :=k + 1;
nextch

until not (ch in L'0" .. '9'D);
if (k > kmax) or Cinum > nmax)
‘then begin error(21); inum :=0; k :=0 end;

end;

else rnum := rnum / t

if ch = '.'
Then
nextch;
if ch = '.' then ch := ':'
else
begin
sy := realcon; rnum := inum; e :=0;
while ch in C'0' .. '9'] do
begin
e :=e-1;
rnum := 10.0 * rnum + Cord(ch) - ord('0"));
nextch
end'
if ch = 'E' then readscale;
—7 <> 0 then adjustscale
end
ena 5
else
if ch = 'E' then
begin
sy 1= realcon; rnum := inum; e :=0; readscale;
if e <> 0 then adjustscale
end;
end
else
case ch of
ale
begin
nextch;
if ch = '=" then begin sy := becomes; nextch end
else sy := colon
end;.
<
begin
nextch;
if ch = '=" then begin sy := leq; nextch end
else
if ch = '™>' then begin sy := neq; nextch end
else sy := Lss
end;
">
begin
nextch;
if ch = '=' then begin sy := geq; nextch end
else sy := gtr
eng;
‘.l
begin
nextch;

if ch = '.* then begin sy := colon; nextch end

441
442
443
44k
445
446
447
448
449
450
451
452
453
454
455
456

484
485
486
487
488
489

491
492
493
494
495
496
497
498

500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519

521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
532
539
540
541
542
543
544
545
546
547
548
549
550

D

[aXVASTAR

else sy := period
en
llll:
begin
= 0; 2: nextch;

if ch = teee
then begin nextch; if ch < *''!
1 SX+ = smax

if then goto 3 end;
then fatal(7);

stablsx + k] := ch;

k + 1,
_i then begin { end of line 1} k :=0; end
else g 2,
3: if k=1
then begin sy := charcon; inum := ord(stablsx]) end
else
ifk=0
then begin error(38); sy := charcon; inum :=0 end
else
begin
sy := string; inum := sx; sleng := k;
sx = sx + k
end
d-
Y
begin
nextch;
if ch < '#' then sy := Llparent
else
begin { comment }
nextch;
repeat while ch <> '*' do nextch; nextch
until c¢ch = ")';
nextch; goto 1
end
end;
v.,.u_"":_v, L DLV A DD LR L D DL T L DL LD P
begin sy := spsCchl; nextch end;
LT A LR L L A T e le’_'lav, ",
begin error(24); nextch; goto 1 end
end
end { insymbol 1
{ enter —-- 1}

procedure enter(x0: alfa; x1: object; x2: types; x3: integer);
begin
ti=t+1;
{ enter standard identifier }
with tab[t] do
begin
name := x0;
ref := 0;
end
end T

t-1;

Link :
:= true;

obj := x1;
normal ;

Lev

enter };

procedure enterarray(tp: types; L, h: integer);

begin
T L > h then error(27);
IF (abs(L) >xmax) or (absCh) > xmax)
then begin error(27); L::=0; h :=0; end;
7f a = amax then fatal(4)
else
begin
a:i=a+1;
with atablal do beg1n inxtyp := tp;
ena
end T

end

enterarray };

procedure enterblock;

begin
ifb =

else
begin b := b + 1;
end T enterblock };

bmax then fatal(2)

.
"
o

btabCbl.last := 0; btablbl.lastpar end

procedure enterreal(x: real);
begin
if ¢2 =
else
begin
rconstfc2 + 11 := x; ¢l :=1;
while rconstlc1] <> x do ¢1 :=
= if ¢1 > c2 then c2 := = c1
end
end T enterreal };

c2max = 1 then fatal(3)

cl +1;

procedure emit(fct: integer);

begin
Lc = cmax
emit };

then fatal(é); codellcl.f := fct; le := lc +1

end ¢

procedure emit1(fct, b: integer);

begin
if Lc = cmax then fatal(6);

With codellc] do be begin f := fct; y :=b end; lc :=
ena T emit1 };7 ’

le +1

procedure emit2(fct, a, b: integer);

Vit el iy

551
552
553
554
555
556
557
558
559
560
561

562
563
564
565
566
567
568
569
570
571

572
573
574
575
576
577
578
579
580
581

582
583
584
585
586
587
588
589
590
591

592

593

594
595
596
597
598
599
600
601

602
603
604
605
606
607
608
609
610
611

612
613
614
615
616
617
618
619
620
621

622
623
624
625
626
627
628
629
630

632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660

procedure block(fsys:

PR A A L

begin
if Lc = cmax then fatal(6);
with codellc] do begin f := fet; «x
lc 2= lc +1

end { emit2 };

b end;

procedure printtables;

var
i: integer;
o: order;

begin
writeln;
writeln(' identifiers Link obj
for i := btab[1].last + 1 to t do
u1th tabLil do
“writeln(i, ' ', name, link: 5, ord(obj): 5, ord(typ): 5, ref: 5,
ord(normal): 5, lev: 5, adr: 5);
writeln; writeln(' blocks Last lpar psze vsze');
for i :=1tobdo
with btab[il do
writeln(i, last: 5, lastpar: 5, psize: 5, vsize: 5);
writeln; writeln(' arrays xtyp etyp eref Llow high elsz size');
for i :=1toado
with atab[il do
writeln(i, ord(inxtyp): 5, ord(eltyp): 5, elref: 5, low: 5, high
: 5, elsize: 5, size: 5);
writeln; writeln(' code:');
for i == 0 to lc =1 do

beg1

typ ref nrm Llev adr');

write(i:

-y

mod 5 =0
Todelil;
f <31

then begin writeln;
write(o.f: 5);

5) end;

[EENE
3 O 'I; e

el
if o.f < 4
else write('
write(',")
end;
writeln
end { printtables 1}

then write(o.x: 2, o.y: 5)
I);

else write(o.y: 7

o

~

{ block-- }

symset; isfun: boolean; Level: integer);

type
conrec = record
rf: integer;
case tp: types of
~ints, chars, bools, scalars: (i: integer);
reals: (r: real)
end;
var
TTdx: integer { data allocation index 1};
prt: integer { t-index of this procedure 1},
prb: integer { b-index of this procedure };

x: integer;

procedure skip(fsys: symset; n: integer);

begin

error(n); skipflag := true;

while not (sy in fsys) do insymbol; if skipflag then endskip
end { skip };

procedure test(s1, s2: symset; n: integer);

test };

begin if not (sy in s1) then skip(s1 + s2, n) end { ;

procedure testsemicolon;

begin
if sy = semicolon then insymbol
else

begin error(14); if sy in [comma, colonl
test(Cident] + blockbegsys, fsys, 6)
end { testsemicolon };

then insymbol end;

procedure enter(id: alfa; k: object);

var
j, L: integer;

begin
if t = tmax then fatal(1)
else
begin
tab[0l.name := id; j tabldisplayllevelll.last; L= j;
while tab[jl.name <> 1d d j := tab[jl.link;
if j <> 0 then error(1)
else
begin
t:=t+1;
with tabCt] do
begin
name : link = L; obj := k; typ := notyp;
ref : lev := level; adr :=0
end;
btabLdisplayllevelll.last := t
end
end

661

663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
74
75
716
M7
718
719
720
721
722
723
724

750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770

end { enter J;

function Loc(id: alfa): integer;

var
—_— s
i, j: integer;

begin { locate id in table }
i := level; tab[Ol.name := id { sentinel };

repeat
j = btab[display[ill.last;

while tabCjl.name <> id do j := tab[jl.link; i
until (i < 0) or (j <> 0);
if 7 =0 then error(d);

|7

.
"
-
]
-
e

loc == j

procedure entervariable;

begin
if sy = ident
else error(2)
end { entervariable };

then begin enter(id, variable); insymbol end

procedure constant(fsys: symset; var c: conrec);

var
x, sign: integer;

begin
c.tp := notyp; c.i :=0; c.rf :=0;
test(constbegsys, fsys, 50);
if sy in constbegsys
then

begin
if sy = charcon

then begin c.tp := chars; c.i = inum;
else
begin
sign := 1;
if sy in Cplus, minus] then
begin if sy = minus then sign := - 1;
if sy = ident
then
begin
x 1= loc(id);
if x <> 0
then
if tab[x].obj <> konstant
else
begin
c.tp := tabCxJ.typ;
if c.tp = reals
then c.r := sign * rconst[tabCxl.adr]
else
begin
if (c.tp <> ints) and (sign=- 1)
then error(50);
c.1 := sign * tabCxJl.adr
end
end;
insymbol
end
else
if sy = intcon
then
begin c.tp := ints; c.i = sign * inum;
end
else
if sy = realcon
then
begin
c.tp := reals;
end
else skip(fsys, 50)
end;
test(fsys, [1, 6)
end
end T constant };

insymbol end

insymbol end;

then error(25)

c.rf := tabCxJ.ref;

|

insymbol

C.r := sign * rnum; insymbol

procedure typ(fsys: symset; var tp: types; var rf, sz: integer);

var
x: integer;
eltp: types;
elrf: integer;
elsz, offset, t0, t1: integer;

procedure arraytyp(var aref, arsz: integer);

var
itscalar: boolean;
eltp: types;
Low, high: conrec;
elrf, elsz, i: integer;

begin
itscalar := false;
if sy = ident then
begin
i := loc(id);
;tscalar := (tab[il.obj = type1) and (tabLil.typ = scalars)
end;
if not itscalar
then
begin

VLl ILIIDER,

™
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801

802
803
804
805
806
807
808
809
810
811

812
813
814
815
816
817
818
819
820
821

822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880

130V PARGL 3D

constant(Ccolon, rbrack, rparent, ofsyl + fsys, low);
if low.tp = reals
then begin error(27); low.tp := ints;
if sy = colon then insymbol else error(13);
constant(Crbrack, comma, rparent, ofsyl + fsys, high);
if Chigh.tp <> low.tp) or (high.rf <> low.rf)
Then begin error(27); “high.i := low.i end;
end
else
with tab[il do
begin
insymbol ; low.tp := typ;
high.i := tabCrefl.adr
end;
enterarray(low.tp, low.i, high.i);
if sy = comma
then
begin insymbol;
else

Llow.i := 0 end;

low.i :=0;

aref := a;

eltp := arrays; arraytyp(elrf, elsz) end

if sy = rbrack then insymbol
else begin error(12); if sy = rparent then insymbol end;
ii sy = ofsy then insymbol else error(8);
typ(fsys, eltp, elrf, els2)

end;

with atablaref] do

begin
arsz := (high - low + 1) * elsz;
eltyp := eltp; elref := elrf;

end;

ﬂ-(_,arraytyp 1;

size := arsz;
elsize := elsz

begin { typ }
tp := notyp; rf :=0; sz :=0;

if sy in typebegsys

test(typebegsys, fsys, 10);

then
begin
if sy = ident
then
" begin
x = loc(id);
if x <> 0 then
with tablx] do
if obj <> typel then error(29)
else R
begin
tp := typ; rf := ref; sz := adr;
if tp = notyp then error(30)
end;
insymbol
end
else
Tif sy = arraysy
then
begin
insymbol;
if sy = lbrack then insymbol
else
begin error(11); if sy = lparent then insymbol
end;
tp := arrays; arraytyp(rf, s2)
end
else
if sy = lparent { scalar types }
then
begin
sz :=0; t0 = t;
repeat
insymbol;
if sy <> ident then error(2)
else
begin
enter(id, konstant);
with tabCt] do
begin
adr := sz; ref = rf; typ := scalars
end;
sz :=sz +1; insymbol
end
until sy <> comma;
if sy = rparent then insymbol else error(4);
while t0 < t do
begin t0 := t0 + 1; tablOl.ref := t end;
rf = t; sz = 1; tp := scalars
end
else
begin { records 1}

enterblock; tp := records; rf :=b;
then fatal(5); Level := level + 1;
offset := 0;

insymbol;
if level = Lmax
display[levell := b;
while sy <> endsy do

field section }
if sy = ident

t; entervariable;
sy = comma do
begin insymbol; entervariable end;
if sy = colon then insymbol else error(5);
t1 := t;
typ(fsys + [semicolon, endsy, comma, identl,
eltp, elrf, els2);
while t0 < t1 do
begin
t0 :=t0 + 1;
with tab[t0] do
begin
typ := eltp; ref := elrf;
normal := true; adr := offset;

z

>
<
—
o

881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931

932
933
934
935
936
937
938
939
940
941

942
943
4t
945
946
947
948
949
950
951

952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990

TRAOVAL NLWNO #1D

offset := offset + elsz

end
end
end;
1f sy <> endsy then
beg1n
if sy = semicolon then insymbol
else
begin

then insymbol

end;
test([1dent, endsy, semicolonl, fsys, 6)
end
end;
btablrfl.vsize := offset; sz := offset;
btabCrfl.psize := 0; insymbol; Level := level - 1
end;
test(fsys, [1, 6)

end
end { typ %

procedure parameterlist { formal parameter list 1};
var

tp: types;

rf, sz, x, t0: integer;

valpar: boolean;

begin
insymbol; tp := notyp; rf :=0; sz @
test(Lident, varsyl, fsys + [rparentl, 7);
while sy in [ident, varsyl do
begin -
if sy <> varsy then valpar := true
‘else begin 1nsymbol' valpar := false end;
entervariable;
while sy = comma do beg1n insymbol;
if sy = colon

= 0;

entervariable; end;

then
begin
insymbol ;
if sy <> ident then error(2)
else
begin
x = loc(id); insymbol;
if x <> 0 then
Twith tabCxJ do
If obj <> Typel then error(29)
else
begin
tp := typ; rf := ref;
if valpar then sz := adr else sz :=1
end;
end; T
test([semicolon, rparent]l, Ccomma, ident] + fsys, 14)
end
else error(5);

while t0 < t do

begin
t0 = t0 + 1;

with tab[t0] do

begin
typ := tp; ref := rf; normal := valpar;
adr := dx; Lev := level; dx = dx + sz
end
end;
if sy <> rparent
then

Segin
if sy = semicolon then insymbol

—Tke begin error(14); if sy = comma then insymbol end;
test(Tident, varsyl, [rparent]l + fsys, 6)
end
end { while 1

if sy = rparent

then begin insymbol;

else error(4)

end { parameterlist }

test(Lsemicolon, colonl, fsys, 6) end

procedure constantdeclaration;
procecure

var
T ¢: conrec;
begin
insymbol; test(Lident}, blockbegsys, 2);
while sy = ident do
begin
enter(id, konstant); insymbol;
ii sy = eql then insymbol

eLse begin error(16); if sy = becomes then insymbol end;
Constant(Lsemicolon, comma, ident] + fsys, c);
tabltl.typ := c.tp; tabCtl.ref := 0;
if c.tp = reals
Then begin enterreal(c.r);
else tabLtl.adr := c.i;
testsemicolon
end
end T constantdeclaration 1;

tabCtl.adr := c1 end

procedure typedeclaration;

var
tp: types;
rf, sz, t1: integer;

V!l TLINVLN,

991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100

1J0vV TRULC 24
begin
insymbol; test(Cidentl, blockbegsys, 2);
while sy = ident do
begin
-—%F?ér(id, type1); t1 :=t; insymbol;
if sy eql then insymbol
else egin error(16); if sy = becomes then insymbol end;
Typ(Csemicolon, comma, identl + fsys, tp, rf, s2);
with tabCt1] do begin typ := tp; ref := rf; adr := sz end;
testsemicolon
end

end T typedeclaration };

procedure variabledeclaration;,

var
t0, t1, rf, sz: integer;
tp: types;

begin
insymbol;
while sy =
begin

ident do

.4

=ty entervariable;

while sy = comma do begin insymbol; entervariable; end;
if sy = colon then insymbol else error(5); t1 1= t;
typ([sem1colon, comma, ident] + fsys, tp, rf, sz);

H1th tab[t0] do
beg1n
typ := tp; ref = rf;
normal := true; dx =
end
end;
testsemicolon

Lev := Llevel;
dx + sz

adr := dx;

end
end T variabledeclaration };

procedure procdeclaration;

var
isfun: boolean;

begin
isfun := sy =

functionsy; insymbol;
ii sy <> ijdent then begin error(2);
if isfun then enter(id, funktion)
tabCtJ.normal := true; insymbol;
block(Csemicolon] + fsys, isfun, level + 1);
if sy = semicolon then insymbol else error(14);
emit(32 + ord(isfun)y [exit 1}

end { proceduredeclaration 1};

id = ' ' end;
else enter(id, prozedure);

{ tatement-- }

procedure statement(fsys: symset);

var
j: integer;
x: item;

procedure expression(fsys:
forward;

symset; var x: item);

procedure selector(fsys: symset; var v: item);

var

x: item;

a, j: integer;
begin { sy in [lparent, lbrack, period] }
repeat

if sy = period

begin
insymbol;
{ field selector }
if sy <> ident then error(2)

else
begin
if vatyp <> records then error(31)
else
begin { search field identifier 1}
j := btablv.refl.last; tabLOJ.name := id;
while tabCjl.name <> id do j := tab[jl.link;
if j =0 then error(O)' v.typ := tabCjl.typ;
V.ref := tablLjl.ref; a := tabLjl.adr;
if a <> 0 then emit1(9, a)
end;
insymbol
end
end
else
begin { array selector }
if sy < Lbrack then error(11);
repeat
insymbol; expression(fsys + [comma, rbrackl, x);
if v.typ <> arrays then error(28)
else

begin
a := v.ref;
if atablal.inxtyp <> x.typ
else

then error(26)

10
1102
1103
1104
1105
1106
107
1108
1109
110
111
112
1113
114
115
116
117
1118
1119
1120
1121
1122
1123
124
1125
1126
127
1128
1129
1130
1131
1132
1133
1134
1135
136
1137
1138
1139
1140
141
142
1143
1144
1145
1146
1147
1148
1149
1150
151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
170
17
172
173
174
175
1176
177
178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
19
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210

EELARSAVY s WEGY) JUR | NV IS ; 3 Rbw |

if atablal.elsize = 1
else emit1(21, a);
v.typ := atablal.eltyp;
end

until sy <> comma;

if sy = rbrack then insymbol

else

begin error(12);

then emit1(20, a)

v.ref := atablal.elref

if sy = rparent then insymbol end

end
until not (sy in Clbrack, lparent, periodl);
test(fsys, [1,7 &)
end { selector };

procedure call(fsys: symset; i: integer);

var
x: item;
lastp, cp, k: integer;

begin
emit1(18, i) { mark stack 1};
lastp := btabCtabLil.refl.lastpar; c¢p :
if sy = Llparent

"
-

~

then
begin { actual parameter list }

repeat
insymbol;
if cp >= lastp then error(39)
else

begin
=cp+1;

cp :
if tabCcpl.normal
n

hel

Eegin { value parameter }
expression(fsys + [comma, colon, rparentl, x);
if x.typ = tabCcpl.typ

then
begin
if x.ref <> tablcpl.ref then error(36)
else

ii x.typ = arrays
then emit1(22, atablx.refl.size)
else
if x.typ = records
then emit1(22, btablx.refl.vsize)
end T
else
li (x.typ = ints) and (tabLcpl.typ = reals)
then emit1(26, 0)
else if x.typ <> notyp
end T T
else
begin { variable parameter }
if sy <> ident then error(2)
else
begin
k = loc(id);
if k<> 0
then

begin
li tablLkl.obj <> variable

then error(37);

X.typ := tablCkl.typ;

x.ref := tab[kl.ref;

if tablkl.normal

then emit2(0, tabCkl.lev, tabCkl.adr)

else emit2(1, tabCkl.lev, tabCkl.adr);

if sy in Clbrack, lparent, period] then
selector(fsys + [comma, colon, rparent],

x);
if (x.typ <> tabLcpl.typ) or (x.ref <> tab
Cepl.ref)
then error(36)
end

then error(36);

insymbol ;

end
end
end;
test(Ccomma, rparent], fsys, 6)
until sy <> comma;
if sy = rparent
end;
if cp < lastp then error(39) { too few actual parameters };
emit1(19, btabLtablil.refl.psize - 1);
if tabLil.lev < level then emit2(3, tab[il.lev, Level)
end { call };

then insymbol else error(4)

function resulttype(a, b: types): types;

begin
if (a > reals) or (b > reals)
then begin error(33); resulttype := notyp end

else
TT3f (a = notyp) or (b = notyp) then resulttype := notyp
else
if a = ints
then
if b = ints then resulttype := ints
else begin resulttype := reals; emit1(26, 1) end
else
begin
resulttype := reals; if b = ints then emit1(26, 0)
end

end { resulttype };

procedure expression;

var

SLFILIMDBLK,

1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231

1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261

1262
1263
1264
1265
1266
1267
1268
1269
1270
1271

1272
1273
1274
1275
1276
1277
1278
1279
1280
1281

1282
1283
1284
1285
1286
1287
1288
1289
1290
1291

1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320

198U

y: item;
op: symbol;

PAGE 35

procedure simpleexpression(fsys: symset; var x: item);

yar
y: item;
op: symbol;

procedure term(fsys: symset; var x: item);

yar
y: item;
op: symbol;
ts: typset;

procedure factor(fsys: symset; var x: item);

var
i, f: integer;

procedure standfct(n: integer);

var

s: typset;

begin { standard function no. n }
if sy = lparent then insymbol else error(9);
ifn<17
the
begin
expression(fsys + [rparent], x);
case n of
0, 2:
begin { abs, sqrt }
ts := [ints, reals]; tablil.typ := x.typ;
if x.typ = reals then n :=n +1
end;
4,75t ts == [ints] { odd, chr };
6: ts := [ints, bools, chars, scalars] { ord };
7, 8:
begin
—'%E_:= Cints, bools, chars, scalarsl
{ succ, pred 1};
tablil.typ := x.typ
end;
9, 10, 11, 12, 13, 14, 15, 16:
round,trunc,sin,cos,... }
begin
ts := [ints, reals];
if x.typ = ints then emit1(26, 0)
end =
end;
if x.typ in ts
else if x.typ <> notyp
end
else { eof,ecln }
“Dbegin { n in [17,18] }
if sy <> ident then error(2)
else
3f id <> 'INPUT '

33

then emit1(8, n)
then error(48);

then error(0)

end;
X.typ := tabl[il.typ;
if sy = rparent then insymbol

else error(4)
end { standfet };

begin { factor }
x.typ := notyp; x.ref :=0;
while sy in facbegsys do
Eegin
if sy = ident
then
begin
i = loc(id);
with tabCil do
case obj of
konstant:
begin
x.typ := typ; x.ref :=0;
if x.typ = reals then emit1(25, adr)
else emit1(24, adr)
end;
variable:
begin
x.typ := typ; x.ref := ref;
if sy in [lbrack, lparent, periodl
then
begin
if normal then f := 0
emit2(f, Lev, adr);
selector(fsys, x);
if x.typ in stantyps
end
else

be%in
if x.typ in stantyps

then
if normat
else f =2

test(facbegsys, fsys, 58);

insymbol;

else f :=1;

then emit(34)

then f = 1

L

o
"3
o

.
"
o

if normal
else f :=1;
emitzlf, tev, adr)

then f

end
end;
tySET: prozedure: error(44);
funktion:
begin
x.typ := typ;
if lev <> 0 then call(fsys, i)
else standfct(adr)
end
end { case,with }
end
else
if sy in [charcon, intcon, realconl
then
begin
if sy = realcon
then
begin
X.typ := reals; enterreal(rnum);
emit1(25, c1)
end
else
begin
if sy = charcon then x.typ := chars
else x.typ := ints;
emit1(24, inum)
end;
x.ref = 0; insymbol
end
else
li sy = lparent
then
begin
insymbol; expression(fsys + [rparentl, x);
if sy = rparent then insymbol
else error(4)
end
else
if sy = notsy then
begin
insymbol; factor(fsys, x);
if x.typ = bools then emit(35)
else if x.typ <> notyp then error(32)
end; o
test(fsys, facbegsys, 6)
end { while }
end T factor 1};

:

begin { term 1}
factor(fsys + [times, rdiv, idiv, imod, andsyl, x);
while sy in [times, rdiv, idiv, imod, andsyl do
egin
op := sy; insymbol;
factor(fsys + [times, rdiv, idiv, imod, andsyl, y);
if op = times
then
begin
X.typ := resulttype(x.typ, y.typ);
case x.typ of
notyp:;
ints: emit(57);
reals: emit(60)
end
end
else
if op = rdiv
then
begin
if x.typ = ints
then begin emit1(26, 1); x.typ := reals end;
if y.typ = ints
then begin emit1(26, 0); y.typ := reals end;
li (x.typ = reals) and (y.typ = reals) d
then emit(61)
else

begin
if (x.typ <> notyp) and (y.typ <> notyp)
then error(33);
x.typ = notyp
end
end
else
if op = andsy
then

if (x.typ <> notyp) and (y.typ <> notyp)
then error(32);
X.typ := notyp
end
end
else
begin { op in [idiv,imod] }
if (x.typ = ints) and (y.typ = ints)

if op = idiv then emit(58) else emit(59)

begin
li (x.typ <> notyp) and (y.typ <> notyp)
then error(34);
X.typ := notyp

end

1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471

1472
1473
1474
1475
1476
1477
1478
1479
1480
1481

1482
1483
1484
1485
1486
1487
1488
1489
1490
1491

1492
1493
1494
1495
1496
1497
1498
1499
1500
1501

1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521

1522
1523
1524
1525
1526
1527
1528
1529
1530
1531

1532
1533
1534
1535
1536
1537
1538
1539
1540

begin { simpleexpression } -
if sy in [plus, minus]

then
begin
op := sy; insymbol; term(fsys + [plus, minusl, x);
if x.typ > reals then error(33)
e

then if x.typ = reals then emit(64) else emit(36)

end
else term(fsys + Cplus, minus, orsyl, x);
while sy in [plus, minus, orsyl do
begin
op := sy; insymbol;
term(fsys + [plus, minus, orsyl, y);
if op = orsy
then
begin
if (x.typ = bools) and (y.typ = bools)
then emit(51)
else
begin
if (x.typ <> notyp) and (y.typ <> notyp)
then error(32);
x.typ := notyp
end
end
else
begin
xatyp := resulttype(x.typ, y.typ);
case x.typ of
notyp:;

:

:

ints: if op = plus then emit(52) else emit(53);
reals: if op = plus ~then emit(54) ~else emit(55)

end
end

end { simpleexpression };

begin { expression }

simpleexpression(fsys + [becomes, eql, neq, Lss, leq, gtr, geql,

X);
if sy in [becomes, eql, neq, lss, leq, gtr, geql
then

begin

sy = becomes then begin error(6); op := eql end
else op := sy;
insymbol; simpleexpression(fsys, y);

if (x.typ in [notyp, ints, bools, chars, scalars]) and (x.

typ = y.typ) and (x.ref = y.ref)
then
case op of
eql: emit(45);
neq: emit(46);
Lss: emit(47);
Leq: emit(48);
gtr: emit(49);
geq: emit(50)
end
else

begin
if x.typ = ints
then begin x.typ := reals; emit1(26, 1) end
else
if y.typ = ints
then begin y.typ := reals; emit1(26, 0) end;
if (x.typ = reals) and (y.typ = reals)
then
case op of
eql: emit(39);
neq: emit(40);
Lss: emit(41);
Lleq: emit(42);
gtr: emit(43);
geq: emit(44)

end
else error(35)
end;
X.typ := bools
end
end T expression };

procedure assignment(lv, ad: integer);

var
X, y: item;
f: integer;
{ tabl[il.obj in [variable,prozedure] }

begin
x.typ := tablil.typ; x.ref := tablil.ref;
if tabCil.normal then f := 0 else f :=1;
emit2(f, Lv, ad);
if sy in Clbrack, lparent, period]
then selector(Cbecomes, eqll + fsys, x);
if sy = becomes then insymbol
‘else begin error(51); if sy = eql then insymbol end;
expression(fsys, y);
if x.typ = y.typ
then

if x.typ in stantyps then emit(38)
Hse -
7f x.ref <> y.ref then error(46)
else

if x.typ = arrays then emit1(23, atabCx.refl.size)
else emit1(23, btabLx.refl.vsize)
else

1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650

if (x.typ =
then begin emit1(26, 0);
else

3T (x.typ <> notyp) and (y.typ <> notyp)
Tassignment };

reals) and (y.typ = ints)
emit(38) end

(then error(46)
end

procedure compoundstatement;

begin
insymbol; statement(Lsemicolon, endsyl + fsys);
while sy in [semicolon] + statbegsys do
begin
if sy = semicolon then insymbol

if else error(14);
statement(Csemicolon, endsyl + fsys)

end;
if sy = endsy then insymbol else error(57)
end { compoundstatemenet };

procedure ifstatement;

var

x: item;
Lec1, Lc2: integer;

begin
insymbol; express1on(fsys + [Cthensy, dosyl, x);
if not (x.typ in Cbools, notypl) then error(17);
emit(11) { jmpc

if sy = thensy then insymbol
else begin error(52); if sy = dosy then insymbol end;
statement(fsys + [elsesyl);
if sy = elsesy
then
begin
insymbol; Le2 := Lle; emit(10); codellc1l.y := Lc;
statement(fsys); codellc2l.y := Llc
end

else codellcll.y := lc
end { ifstatement I;

procedure casestatement;

var
T x: item;
i, 3, k, Lc1: integer;
casetab: array [1 .. csmax] of packed record
val, lc: index
end;
exittab: array [1 .. csmax] of integer?——

procedure caselabel;

var
Ltab: conrec;
k: integer;

begin
constant(fsys + [comma, colon], Lab);
if (lab.tp <> x.typ) or (lab.rf <> x.ref)
else
if i = csmax
else
begin
i=i+1; ko

then error(47)

then fatal(6é)

0; casetab[il.val := lab.i;

repeat k := k + 1 til casetablkl. val = lab.i;
if k< i then error(1) { multiple definition 1};

end

end { “caselabel };

procedure onecase;

begin
1T sy in constbegsys
then
be begin
" caselabel;
while sy = comma do begin insymbol; caselabel end;
if sy = colon then insymbol else error(5);
statement([semico[on, endsyl + fsys); j=3j+1;
exittabljl := Lc; emit(10)
end
end { onecase I
begin { casestatement }

insymbol; i :=0; j ==

expressvon(fsys + Lofsy, comma, colonl, x);

if not (x.typ in Cints, bools, chars, notyp, scalarsl)
then error(23);

TcT := Le; emit(12) { jmpx };

if sy = ofsy then insymbol else error(8);
_FHLe sy = semicolon do begin insymbol;
TcodeClc1l.y := lc;

onecase;
onecase end;

for k :=1 to i do .
begin emit1(13, casetablkl.val); emit1(13, casetabCkl.lc)
end;
emit1(10, 0); for k :=1 to j do codelexittablkll.y := Lc;
if sy = endsy then insymbol else error(57)
end { casestatement };

procedure repeatstatement;

var

lel := Llc;

f———y

1651

1652
1653
1654
1655
1656
1657
1658
1659
1660
1661

1662
1663
1664
1665
1666
1667
1668
1669
1670
1671

1672
1673
1674
1675
1676
1677
1678
1679
1680
1681

1682
1683
1684
1685
1686
1687
1688
1689
1690
1691

1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721

1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751

1752
1753
1754
1755
1756
1757
1758
1759
1760

CE TS -

x: item;
Lc1: integer;

insymbol; statement([semicolon, untilsyl + fsys);
while sy in [semicolon] + statbegsys do
begin

if sy = semicolon then insymbol else error(14);
Statement([semicolon, untilsyl + fsys)
end;
ifsy =
then
begin
insymbol; expression(fsys, x);
if not (x.typ in [bools, notypl)
emiti(11, Le ™
end
else error(53) .
end { repeatstatement };

untilsy

then error(17);

procedure whilestatement;

var

x: item;
Le1, lec2: integer;

begin
insymbol; Let := Le;
if not (x.typ in [bools, notypl)

expression(fsys + [dosyl, x);
then error(17); Le2 := Llec;

emitin; 1f sy = dosy then insymbol else error(54);
statement(fsys); emit1(10, lc1); codellc2l.y := lc
end { whilestatement 1};

procedure forstatement;

xar
cvt: types;
cvr: integer;
x: item;
i, f, lc1, Lc2: integer;

begin
insymbol;
if sy = ident
then
begin
i = loc(id); insymbol;
if i =0 then begin cvt := ints; cvr := 0 end
else
if tablil.obj = variable
then
begin
cvt := tabCil.typ; cvr := tablil.ref;
if not tabCil.normal then error(37)
else emit2(0, tabCil.lev, v, tablil.adr);
3f not (cvt in Cnotyp, ints, bools, chars, scalars])
then n error(18)
end
else begin error(37); cvt := ints; cvr :=0 end
end

else skip(Lbecomes, tosy, downtosy, dosyl + fsys, 2);
sy = becomes

then
begin
insymbol; expression([tosy, downtosy, dosyl + fsys, x);
if (x.typ <> cvt) and (x.ref <> cvr) then error(19);
end
else skip([tosy, downtosy, dosyl + fsys, 51);
f = 14;
if sy in [tosy, downtosy]
then
begin
if sy = downtosy then f := 16; insymbol;
‘expression(Ldosy] + fsys, x);
if (x.typ <> cvt) and (x.ref <> cvr) then error(19)
end
else skip(Ldosy] + fsys, 55);
lel 2= lec; emit(f);
if sy = dosy then insymbol else error(54); Le2 := Llc;
Statement(fsys); emit1(f + 1,7 (cd); codellcll.y := Lc

end { forstatement };

procedure standproc(n: integer);

var
7, f: integer;
x, y: item;

begin
case n of
1, 2:
begin { read 1}
1f not iflag then begin error(20); iflag := true end;
1f Sy = lparent
then
begin
repeat
insymbol;
if sy <> ident then error(2)
else
begin
i 2= loc(id); insymbol;
if 1 <> 0
then
if tabLil.obj <> variable then error(37)
else

begin

1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791

1792
1793
1794
1795
1796
1797
1798
1799
1800
1801

1802
1803
1804
1805
1806
1807
1808
1809
1810
1811

1812
1813
1814
1815
1816
1817
1818
1819
1820
1821

1822
1823
1824
1825
1826
1827
1828
1829
1830
1831

1832
1833
1834
1835
1836
1837
1838
1839
1840
1841

1842
1843
1844
1845
1846
1847
1848
1849
1850
1851

1852
1853
1854
1855
1856
1857
1858
1859
1860
1861

1862
1863
1864
1865
1866
1867
1868
1869
1870

FAOULAL NLCWO #iJ Vhe ! BRIy e o
x.typ := tabCLil.typ; 1871 then
x.ref := tablil.ref; 1872 begin
if tablil.normal then f =0 1873 x := loc(id); insymbol;
else f :=1; 1874 if x <> 0 then
‘emit2(f, tablil.lev, tabCil.adr); 1875 _f tablxT.obj <> typel then error(29)
if sy in [lbrack, lparent, period] 1876 else
Then selector(fsys + [comma, rparentl, x); 1877 if tabCxl.typ in stantyps
if x.typ in Cints, reals, chars, notypl 1878 then tabLprtl.typ := tab[xl.typ
Then em1t1(27 ord(x.typ)) 1879 else error(15)
else error(loD) 1880 end
end 1881 else skip([semicolon] + fsys, 2)
end; T 1882 end
test(Lcomma, rparentl, fsys, 6); 1883 else error(5);
until sy <> comma; 1884 1f sy = semicolon then insymbol else error(14);
if sy = rparent then insymbol else error(4) 1885 Trepeat
end; 1886 if sy = constsy then constantdeclaration;
if n=2 then emit(62) 1887 if sy = typesy then typedeclaration;
end; 1888 if sy = varsy then variabledeclaration; btablprbl.vsize := dx;
3, 4: 1889 Eﬁlﬁi sy in [proceduresy, functionsyl do procdeclaration;
begin { write } 1890 test([beginsyl, blockbegsys + statbegsys, 56)
if sy = lparent 1891 until sy in statbegsys;
then 1892 tablprtl.adr := Llc; insymbol ;
begin 1893 statement(Lsemicolon, endsyl + fsys);
repeat 1894 while sy in [semicolon] + statbegsys do
insymbol; 1895 begin
if sy = string 1896 if sy = semicolon then insymbol else error(14);
then 1897 statement(Csemicolon, endsyl + fsys)
begin 1898 end;
emit1(24, sleng); emit1(28, inum); insymbol 1899 1f sy = endsy then insymbol else error(57);
end 1900 Test(fsys + [periodl, [1, 6)
else 1901 end { block 1I;
begin 1902
expression(fsys + LCcomma, colon, rparentl, x); 1903 { - interpret--- }
if not (x.typ in (stantyps - [scalarsl)) 1904
Then error(4N; 1905
if sy = colon 1906 procedure interpret;
then 1907 global code, tab, btab }
begin 1908
insymbol; 1909 Label
expression(fsys + [comma, colon, rparentl, y 1910 98 { Wirth used a 'trap label' (non-standard) here
; 1911 to catch run time errors. See notes for alternate solution. 1};
if y.typ <> ints then error(43); 1912
if sy = colon 1913 var
then 1914 ir: order { instruction buffer };
begin 1915 pc: integer { program counter };
if x.typ <> reals then error(42); 1916 ps:
Fnsymbol ; 1917 (run, fin, caschk, divchk, inxchk, stkchk, linchk, Lngchk, redchk)
expression(fsys + [comma, rparentl, y); 1918 H .
if y.typ <> ints then error(43); 1919 t: integer { top stack index 1};
emit(37) 1920 b: integer { base index 1};
end 1921 lnent, ocnt, blkent, chrent: integer { counters };
else emit1(30, ord(x.typ)) 1922 h1, h2, h3, h4: integer;
end 1923 fld: array [1 .. 4] of integer { default field widths 1};
else emit1(29, ord(x.typ)) 1924 display: array [1 .. (max] of integer;
end 1925 s: array [1 .. stacksizel of { blockmark: }
until sy <> comma; 1926 record
if sy = rparent then insymbol else error(4) 1927 case types of { s[b+0] = fet result }
end; 1928 ints: (i: integer);
if n=4 then emit(63) 1929 { s[b+1] = return adr }
end 1930 reals: (r: real);
end T case } 1931 s[b+2] = static link }
end { standproc }; 1932 bools: (b: boolean);
1933 { s[b+3] = dynamic link]}
1934 chars: (c: char) { s[b+4] = table index 1}
begin { statement } 1935 end;
if sy in statbegsys + [identl 1936
then 1937 begin { interpret }
case sy of 1938 sC1J.1 :=0; sC21.i :=0; sC31.i :=-1;
Tddent: 1939 sf41.7 := btabC1l.last; b :=0; d1splayt1f| = 0;
begin 1940 t := btablf2].vsize - 1; pc := tablsC4l.il.adr; ps := run;
b oc(id); insymbol; 1941 lnent := 0; ocnt := 0; chrent := 0; fLdC11 := 10;
ii i<0 1942 fLdf21 := 22; fLdi3] := 10; fLdC4] := 1;
t 1943 repeat
case tab[il.obj of 1944 ir := codelpcl; pc :=pc + 1;
konstant, typel: error(45); 1945 if ocnt < maxint then ocnt := ocnt + 1;
variable: assignment(tabCil.lev, tabCil.adr); 1946 case ir.f of
prozedure: 1947 0:
if tablil.lev <> 0 then call(fsys, i) 1948 begin { 1load address }
else standproc(tabCil.adr); 1949 t:=t+1;
funktion: 1950 if t > stacksize then ps := stkchk
if tablil.ref = display[levell 1951 else sCtl.i i= displaylir.x] + dir.y
then assignment(tabCil.lev + 1, 0) 1952 _end;
else error(45) 1953 1:
end 1954 begin { load value 1}
end;” 1955 t =t +1;
beginsy: compoundstatement; 1956 if t > stacksize then ps := stkchk
ifsy: ifstatement; 1957 else s[t] := sCdisplayfir.x] + dir.yl
casesy: casestatement; 1958 end;
whilesy: whilestatement; 1959 2:
repeatsy: repeatstatement; 1960 begin { load indirect }
forsy: forstatement 1961 t:=t+1;
ggg; 1962 ift> stacksize then ps := stkchk
test(fsys, [1, 14) 1963 else sCt] := sCsCdisplaylir.x] + ir.yl.il
end { statement }; 1964 end;
1965 :
1966 begin { update display 1}
begin { block } 1967 hT := dir.y; h2 i= ir.x; h3 := b;
dx :=5; prt = t; if Level > lmax then fatal(5); 1968 repeat
test([lparent, colon, semicolonl, fsys, 14); enterblock; 1969 display[hﬂ 1= H3; h1 := h1 =1; h3 := sCh3 + 21.1
displayClevell :=b; prb := b; tablprtl.typ := notyp; 1970 until h1 =
tabCprtl.ref := prb; 1971 end;
if (sy = Lparent) and (level > 1) then parameterlist; 1972 8:
btab[prb] Lastpar 1= t; btabCprbl.psize := dx; 1973 case ir.y of
if isfun 1974 0: sCtl.i := abs(sCtl.i);
then 1975 1: sCtl.r := abs(sCtlar);
if sy = colon 1976 2: sCtl.i := sgr(sCtl.i);
then 1977 3: sCtlar := sqr(sCtler);
begin 1978 4: sCtl.b := odd(sCtl.i);
insymbol { function type }; 1979 5:
if sy = ident 1980 begin { s[tl.c := chr(s(tl.i); }

I AR A AT T L TR .

1981 if (sftl.i < 0) or (sCtl.i > 127) then ps := inxchk 2091 22:

1982 end; 2092 begin { load block }

1983 6: { s[tl.i :=z ord(s[tl.c) }; 2093 h1 == sCtl.i; t =t =1; K2 = dr.y + t;

1984 7: sCtl.c := succ(sCtl.c); 2094 if h2 > stacksize then ps := stkchk

1985 8: pred(sCtl.c); 2095 else

1986 9: round(sCtl.r); 2096 while t < h2 do

1987 10: trunc(sCtl.r); 2097 begin t =t + 1; sCtl := sCh1]; ht := h1 + 1 end
1988 11: sin(sCtl.r); 2098 end;

1989 12: cos(sCtl.r); 2099 23:

1990 13: exp(sCtl.r); 2100 begin { copy block }

1991 14: tn(sCtl.r); 2101 h1 := st - 11.1; h2 := sCtl.i; h3 := h1 + ir.y;
1992 15: sqrt(sCtl.r); 2102 while h1 < h3 do

1993 16: sCtl.r := arctan(sCtl.r); 2103 begin sCh1] := sCh2]; h1 := h1 + 1; h2 := h2 + 1 end;
1994 17: 2104 t:=t-2

1995 begin 2105 end;

1996 ti=t+1; 2106 24:

1997 if t > stacksize then ps := stkchk 2107 begin { 1literal 1}

1998 else sf[tl.b := eof(input) 2108 t:=t+1;

1999 end; 2109 if t > stacksize then ps := stkchk else sCtl.i := ir.y
2000 187 2110 end;

2001 begin 2111 25:

2002 t =t +1; 2112 begin { load real }

2003 if t > stacksize then ps := stkchk 2113 t =t +1;

2004 else sCtl.b := eoln(input) 2114 Jf t > stacksize then ps := stkchk

2005 end 2115 else sCtl.r := rconstlir.y]

2006 end; 2116 end;

2007 9:7sCtl.i == sCtl.i + ir.y { offset }; 2117 26: begin { float } h1 := t - dir.y; sCh1l.r := sCh1l.i end;
2008 10: pc := ir.y { jump }; 2118 27:

2009 11: 2119 begin { read }

2010 begin { conditional jump } 2120 if eof(input) then ps := redchk

2011 if not sCtl.b then pc := ir.y; t:=t-1 2121 else

2012 end; 2122 case ir.y of

2013 12: 2123 1: read(sCsCtl.il.i);

2014 begin { switech } 2124 2: read(sCsCtl.il.r);

2015 h1 := sCtl.i; t:=t-1; h2 := ir.y; h3 = 0; 2125 4: begin sCsCtl.il.i := 0; read(sCsCtl.il.c) end
2016 repeat 2126 end;

2017 if codeCh2l.f <> 13 2127 t:=t-1

2018 then begin h3 := 1; ps := caschk end 2128 end;

2019 else — 2129 28:

2020 if codeCh2].y = h1 2130 begin { write string }

2021 then begin h3 :=1; pc := codeCh2 + 1].y end 2131 h1 == s[tl.i; h2 := drsy; t ==t -1;

2022 else he := h2 + 2 - 2132 chrent := chrent + h1;

2023 until h3 <> 0 2133 if chrent > Llineleng then ps := lngchk;

2024 _e_n_a; 2134 Tepeat write(stab[h21); h1 :=h1 - 1; h2 := h2 +1
2025 14z 2135 until h1 =0

2026 begin { forlup } 2136 end;

2027 ThT := sCt - 11.4; 2137 297

2028 if h1 <= sCtl.i then sCsCt - 21.iJ.i := h1 2138 begin { writel 1}

2029 else begin t := t - 3; pc := ir.y end 2139 chrent := chrent + fldCir.yl;

2030 end; - 2140 if chrent > lineleng then ps := Lngchk

2031 15: 2141 else

2032 begin { for2up } 2142 case ir.y of

2033 h2 := st - 2].i; h1 := sCh2].i + 1; 2143 s write(sEtl.i: fLdl1I);

2034 if h1 <= sCtl.i 2144 2: write(sCtl.r: fLAE2D);

2035 then begin sCh2].i := h1; pc := ir.y end 2145 3: write(sCtl.b: fLAI3D);

2036 else t := t - 3; - 2146 47 write(chr(sCtl.i mod 127 { ASCII 1))

2037 éend; 2147 end;

2038 16: 2148 t:=t-1

2039 begin { forldown } 2149 end;

2040 Th1 := s[t - 11.4; 2150 30:

2041 if h1 >= sCtl.i then sCsft - 2].i1.7 := h1 2151 begin { write2 }

2042 else begin pc := ir.y; t :=t=-3end 2152 chrent := chrent + sCtl.i;

2043 end; 2153 if chrecnt > lineleng then ps := lngchk

2044 17z 2154 else

2045 begin { for2down } 2155 case ir.y of

2046 h2 := s[t - 21.i; h1 == sCh2l.i - 1; 2156 1: writeCsCt = 11.9: sCtl.i);

2047 if h1 >= sCtl.i 2157 2: write(s[t = 1J.r: sCtl.i);

2048 then begin sCh2l.i := h1; pc := ir.y end 2158 3: write(sCt - 1J.b: sCtl.i);

2049 else t := t - 3; - 2159 : write(chr(sCt - 11.3 mod 127 { ASCII }): sCtl.i)
2050 end; 2160 end;

2051 182 2161 t:=t-2

2052 begin { mark stack } 2162 end;

2053 hT := btabCtabCir.yl.refl.vsize; 2163 31: ps := fin;

2054 if t + h1 > stacksize then ps := stkchk 2164 32:

2055 else 2165 begin { exit procedure 1}

2056 begin 2166 t :=b-1; pc := slb + 11.14; b i= slb + 37J.1

2057 t:=t+5; st - 11.i = h1 - 1; sCt].i == ir.y 2167 end;

2058 end 2168 33

2059 end; 2169 begin { exit function 1}

2060 19: 2170 t :=b; pc :=slb+ 11.i; b :=slb + 31.7

2061 begin { call } 2171 end;

2062 h1 := t = ir.y { h1 points to base }; 2172 347 sCt] := sCsftl.il;

2063 h2 := sCh1 + 43.3i { h2 points to tab }; h3 := tabCh2l.lev; 2173 35: sftl.b := not sCtl.b;

2064 disptayCh3 + 11 := h1; h4 := sCh1 + 31.i + h1; 2174 36: sCtl.i := - sCtl.i;

2065 sCh1 + 13.4 c; sCh1 + 21.4 := displaylLh3]; 2175 37:

2066 sCh1 + 33.1 H for h3 := t + 1 to h4 do sCh3l.i := 0; 2176 begin

2067 b := h1; h4; ~ pc := tabCh2l.adr 2177 chrent := chrent + sCt = 17.4;

2068 end; 2178 if chrent > Llineleng then ps := lngchk‘

2069 20: 2179 else write(sCt - 2J.r: sCt - 11.i: sCtl.i);

2070 begin { index1 } 2180 t:=t-3

2071 h1 = ir.y { h1 points to atab }; h2 := atabCh1l.low; 2181 end;

2072 2182 38T begin { store } sCsCt - 11.i3 := sftl; t :=t - 2 end;
2073 if h3 < h2 then ps := inxchk 2183 39: begin t =t - 1; sCtl.b := sftl.r = st + 1l.r end;
2074 else 2184 40: begin t =t - 1; sl;tLb sCtl.r <> sCt # 11.r end;
2075 if h3 > atabCh1l.high then ps := inxchk 2185 41: begin t = t = 1; sCtl.b sCtl.r < sCt + 11.r end;
2076 else begin t := t = 1; sCtl.i := s[tl.i + (h3 - h2) end 2186 42: begin t =t - 1; s[tl.b sftl.r <= st + 11.r end;
2077 end; - 2187 43: begin t :=t - 1; sCtl.b sttl.r > sCt + 11.r end;
2078 21T 2188 44: begin t := t - 1; sltl.b sCtl.r >= sCt + 11.r end;
2079 begin { index 1} 2189 45: begin t := t = 1; sCtl.b := sCtl.i = sCt + 1.1 end;
2080 h1 := ir.y { h1 points to atab }; h2 := atabCh1l.low; 2190 46: begin t := t - 1; sCtl.b := sCtl.i <> sCt + 11.7 end;
2081 h3 := sCtl.i; 2191 47: begin t ==t = 1; sCtl.b := sCtl.i < sCt + 11.7 end;
2082 if h3 < h2 then ps := inxchk 2192 48: begin t =t - 1; sCtl.b sftl.i <= sft + 11.7 end;
2083 else 2193 49: begin t :=t - 1; sCtl.b sCtl.i > st + 11.7 end;
2084 if h3 > atabCh1l.high then ps := inxchk 2194 50: begin t :=t = 1; sCtl.b sCtl.i >= sCt + 11.9 end;
2085 else 2195 51: begin t := t - 1; sCtl.b := sftl.b or sCt + 11.b end;
2086 begin 2196 52: begin t =t = 1; sCtl.i sCtl.i + sft + 11.4 end;
2087 t =t -=1; 2197 53: begin t := t = 1; sCtl.i sCtl.i = sCt + 13.4 end;
2088 sCtl.i := sCtl.i + (h3 ~ h2) * atablh1l.elsize 2198 S4: begin t =t - 1; sCtl.r sCtl.r + sCt + 11.r end;
2089 gr__g. 2199 55: begin t =t - 1; sCtl.r sCtl.r = sCt + 11.r; end;
2090 end; 2200 56: begin t := t - 1; sCtl.b := sCt].b and sCt + 11.b end;

PASCAL NEWS #19 SEPTEMBER, 1980 PAGE 44U

2201 57: begin t =t - 1; sCtl.i := sCtl.i * sCt + 1].i end; 2306 ksy[23] := tosy; ksy[24] := typesy; ksy[25] := untilsy;
2202 58: - 2307 ksy[261 varsy; ksy[271 := whilesy; sps['+'] := plus;
2203 begin 2308 spsC'-'] := minus; spsC'#'] := times; spsC'/'] := rdiv;
2204 t:=t-1; 2309 spsC' ('] Lparent; spsC')'] := rparent; spsC 1 := eql;
2205 if sCt +11.9 =0 then ps := divchk 2310 spsC','] comma; spsC'C'] := lbrack; spsC']'] := rbrack;
2206 else sCtl.i := sCtl.§ div sft + 11.3 2311 spsC';'] := semicolon;

2207 end; - 2312 constbegsys := [plus, minus, intcon, realcon, charcon, identl;
2208 59z 2313 typebegsys := [lparent, ident, arraysy, recordsyl;

2209 begin 2314 blockbegsys := [constsy, typesy, varsy, proceduresy, functionsy,
2210 t:=t-1; 2315 beginsyl;

2211 if sCt + 1.9 = 0 then ps := divchk 2316 facbegsys := [intcon, realcon, charcon, ident, lparent, notsyl;
2212 else sCtl.i := s[tl.7 mod sCt + 1.1 2317 statbegsys [beginsy, ifsy, whilesy, repeatsy, forsy, casesyl;
2213 end; - 2318 stantyps := [notyp, ints, reals, bools, chars, scalarsl; lc :=0;
2214 60T begin t := t - 1; sCtl.r := sCtl.r * sCt + 1].r; end; 2319 Lt :=0; cc :=0; ch :=="'"; errpos := 0; errs := [J;
2215 61: — 2320 { } reset(input, '"MYPROG.PAS',,'DP0:');

2216 begin 2321 insymbol; t :=-1; a :=0;

2217 t = t=-1; 2322 b :=1; sx :=0; ¢2 :=0; displayl0] :=1; iflag := false;
2218 if st + 1J.r = 0.0 then ps := divchk 2323 oflag := false; skipflag := false;

2219 else sCtl.r := sCtl.r / sCt + 1].r 2324 if sy <> programsy then error(3)

2220 end; 2325 else

2221 62: if eofCinput) then ps := redchk else readln; 2326 begin

2222 63: 2327 insymbol;

2223 begin 2328 if gy <> ident then error(2)

2224 writeln; Lnent := lnent + 1; chrent := 0; 2329 else

2225 if tnent > Llinelimit then ps := Llinchk 2330 begin

2226 end; 2331 progname := id; insymbol;

2227 643 sCtl.r := - sCtl.r 2332 if sy <> lparent then error(9)

2228 end { case }; 2333 else

2229 until ps <> run; 2334 repeat

2230 98: if ps <> fin 2335 insymbol;

2231 then 2336 if sy <> ident then error(2)

2232 begin 2337 else

2233 writeln; writeln; write(' halt at', pc: 5, ' because of '); 2338 begin

2234 case ps of 2339 if id = "INPUT ' then iflag := true
2235 run: writeln('error (see dayfile)'); 2340 else

2236 caschk: writeln('undefined case'); 2341 if id = ‘ouTPuT ' then oflag := true
2237 divchk: writeln('division by 0'); 2342 else error(0);-

2238 inxchk: writeln('invalid index'); 2343 insymbol

2239 stkchk: writeln('storage overflow'); 2344 end

2240 Linchk: writeln('too much output'); 2345 until sy <> comma;

2241 Lngchk: writeln('line too long'); 2346 if sy = rparent then insymbol else error(4);
2242 redchk: writeln('reading past end of file') 2347 if not oflag then error(20)

2243 end; 2348 end

2244 hT := b; blkent := 10; 2349 end;

2245 { post mortem dump } 2350 enter(' ', variable, notyp, 0) { sentinel };

2246 repeat 2351 enter ('FALSE ', konstant, bools, 0);

2247 writeln; blkent := blkent - 1; 2352 enter ('TRUE ', konstant, bools, 1);

2248 _]_f_ blkent = 0 then h1 := 0; h2 := sCh1 + 4].1; 2353 enter ('REAL ', type1, reals, 1);

2249 ifh <o 2354 enter ('CHAR ', typel, chars, 1);

2250 then writeln(' ', tablh2l.name, ' called at', sCh1 + 11.i: 5); 2355 enter("BOOLEAN ', typel, bools, 1);

2251 h2 := btab[tabCh2l.refl.last; 2356 enter ('INTEGER ', typel, ints, 1);

2252 while h2 <> 0 do 2357 enter('ABS ', funktion, reals, 0);

2253 with tabCLh21 do 2358 enter('SQR ', funktion, reals, 2);

2254 begin - 2359 enter('0DD ', funktion, bools, 4);

2255 if obj = variable 2360 enter('CHR ', funktion, chars, 5);

2256 then 2361 enter('ORD ', funktion, ints, 6);

2257 if typ in stantyps 2362 enter('SUCC ', funktion, chars, 7);

2258 Then 2363 enter ('PRED ', funktion, chars, 8);

2259 begin 2364 enter ("ROUND ', funktion, ints, 9);

2260 write(' ', name, ' = "); 2365 enter (' TRUNC ', funktion, ints, 10);

2261 if normal then h3 := h1 + adr 2366 enter('SIN ', funktion, reals, 11);

2262 else h3 := sThT + adrl.i; 2367 enter('COS ', funktion, reals, 12);

2263 case typ of 2368 enter ("EXP ', funktion, reals, 13);

2264 ints: writeln(sCh31.9); 2369 enter('LN ', funktion, reals, 14);

2265 reals: writeln(sCh3l.r); 2370 enter('SQRT ', funktion, reals, 15);

2266 bools: writeln(sCh31.b); 2371 enter (*ARCTAN ', funktion, reals, 16);

2267 chars: 2372 enter('EOF ', funktion, bools, 17);

2268 writeln(chr(sCh3].i mod 127 { ASCII 1) 2373 enter('EOLN ', funktion, bools, 18);

2269 end - 2374 enter ('READ ', prozedure, notyp, 1);

2270 end; 2375 enter ('READLN ', prozedure, notyp, 2);

2271 h2 := Link 2376 enter ('"WRITE ', prozedure, notyp, 3);

2272 end; 2377 enter (*WRITELN ', prozedure, notyp, 4);

2273 h1 := sCh1 + 31.4 2378 enter(’ ', prozedure, notyp, 0);

2274 until h1 < 0; 2379 with btab[1] do

2275 end; 2380 begin last := t; Lastpar :=1; psize := 0; vsize := 0 end;
2276 writeln;) 2381 block(blockbegsys + statbegsys, false, 1);

2277 if ocnt = maxint then write(' many') else writelocnt); 2382 if sy <> period then error(22); emit(31) { halt 1};
2278 writeln(' steps.'); 2383 z btabl2].vsize > stacksize then error(49);

2279 end { interpret }; 2384 if progname = 'TESTO ' then printtables;

2280 - 2385 if errs = 01

2281 { in----} 2386 then

2282 2387 begin

2283 2388 if iflag

2284 begin { main } 2389 then

2285 writeln(tty, '~ pascals (10.2.76)"); key[1] := 'AND '; 2390 begin

2286 key[2] := 'ARRAY '; key[3] := 'BEGIN ' 2391 {1} reset(input, "MYPROG.DAT',, 'DPO:");

2287 key[4] 'CASE '; key[5] 'CONST i 2392 if eofCinput) then writeln(' input data missing')
2288 keyl6] DIV '; key[7] 'pO ' 2393 else

2289 key[8] := 'DOWNTO '; key[9] := 'ELSE '; 2394 begin

2290 key[10] := 'END '; keyC111] 'FOR '; 2395 writeln(' (eor)') { copy input data };

2291 key[12] := 'FUNCTION '; key[13] 'IF ' 2396 while not eof(input) do

2292 key[14] := 'MOD ' keyC15] 'NOT ' 2397 begin

2293 key[16] := 'OF '; key[17] 'OR ' 2398 write(' ');

2294 keyC18] := 'PROCEDURE '; key[19] 'PROGRAM '; 2399 while not eoln(input) do

2295 key[20] := 'RECORD '; keyl21] 'REPEAT ' 2400 begin read(ch); write(ch) end;

2296 key[22]. := 'THEN '; key[23] 'T0 '; 2401 writeln; read(ch)

2297 key[24] := 'TYPE '; key[25] 'UNTIL ' 2402 end;

2298 key[26] := 'VAR ' key[27] := 'WHILE '; ksy[1] := andsy; 2403 reset(input);

2299 ksy[2] := arraysy; ksy[3] beginsy; ksy[4] := casesy; 2404 end

2300 ksy[51] constsy; ksy[61] idiv; ksy[7] := dosy; 2405 end;

2301 ksy[8] := downtosy; ksy[91 elsesy; ksy[10] := endsy; 2406 writeln(' (eof)'); writeln; interpret

2302 ksyL11] := forsy; ksy[12] functionsy; ksy[13] == ifsy; 2407 end

2303 ksy[14] := imod; ksy[153] notsy; ksy[16] := ofsy; 2408 else errormsg;

2304 ksy[17] := orsy; ksy[18] := proceduresy; ksy[19] := programsy; 2409 99: writeln

2305 ksy[20] := recordsy; ksy[21] := repeatsy; ksy[22] := thensy; 2410 end { pascals }.

const

. { lots of these }
Notes on system dependent code in Pascal-S and Pascal-1I. .
type
by Richard J. Cichelli X { lots of these }
abértcodes =
(timelimit, userabort); { The types of aborts that are processed
Pascal-S had a 'trap label' to recover (just once) from user abortset = set of abortcodes;
errors that cause aborts. 1In Pascal-I, John MecGrath, Curt
Loughin and I solved similar problems with what we think var
are cleaner, simpler and more generally useful techniques.
We'd like to share them with you here. : { lots of these }

i : olean;
{ Pascal-I ... Interactive, conversational Pascal-S. :gZZEiq’igégzg:F b ’
These code fragments from Pascal-I show nearly all lastabort: real.
of the non-standard and/or system dependent parts !
of the 7500 line program that is Pascal-I.

procedure rename(var f: textfile; 1fn: scopelfn); ex@erg;

This procedure changes scope file names by modifying

their FETs. .)
I really think this is the right way.to spe01fy the dyngmlc
(run-time) association of a system file with a Pasca} file.
Overloading the reset and rewrite procedures and adding
standards violating parameters to them seems so messy.

The code illustrates how functionality, which must {
be provided for the system to work in its given

environment and obviously cannot be specified in

a standard way, can be isolated so that reasonable

portability can be obtained.

Of particular note is the method for recovering from timeouts }
and user aborts. On a user abort, Pascal-I terminates the

user initiated action, recovers and accepts the next user procedure interupt(procedure inproc(reasons: abortset)); extern;
command request. Pascal-I also does interactive I/0.

{ This procedure arms the SCOPE system routine 'reprieve' with
: : a user supplied recovery routine. Time-outs and aborts are
handled by this routine. Upon interruptz tbe procedure passed
as a parameter to the interrupt routine is 1nyoked. After
it executes, the program is restarted at the 1nstfuct10n where
it was interrupted. By having the interrupt routine set global

program pascali(textin, textout, input/+, output+);

{ The '"/+' and '+' declare these files interactive.
On input, the initial 'get' is supressed and on

iei flags, controlled recovery is possible. }
output, buffers can be flushed explicitly.
If Pascal 6000 had 'Lazy I/0', then this non-standard code :
would be unnecessary. : { about 140 additional procedures here.
: . all written in quite Standard Pascal.
label . . - i eter that is similar
T, 2, 3, { recovery labels ... targets for low level error . Note: Pascal-I has an interpr

to that of Pascal-S. 1In it, and in other procedures

handling routines. where the user might want to quit the actions of the

Note: This is where you really need those gotos out : program, loop terminators include a test of the

of procedures. : aborted flag. Since Pascal-I has control of when.
: . aborts are acted upon, it does so only at convenient
13 { terminate program on multiple aborts. stopping places. For example, the interpreter only
This is so you can abort Pascal-I itself. : tests for aborts on user program statement boundaries.
(You might think that we software giants never . The state of Pascal-I and the interpreting user
code infinite loops. Well, this is just in case . program always appear well defined. }
the compiler generates bad code for perfect logic.
Right?) ’

No5T “W3ITWIL43IS 5T# SHIN 19ISYA

YA

Th

procedure timeoutsave;

This routine is called if a time out occurs. It is called
by the main routine if the timeout flag is set during a
recovery. Upon 'reprieve' invocation, enough additional
time is allocated so that a user can save his/her program
to a file. After exiting Pascal-I, more time can be
requested (with ETL) or another login session started.

The saved file allows the user to procede from where he/she

left off.
}

var
1fn: scopelfn;

begin
writeln(' You are out of time. Please enter the name of');
writeln(' the file to which you want your program saved -');
{ putseg(output); flush buffer }

if eos(input) then getseg(input); getch;

{ The eos (end of segment) and getseg (get segment) are
rather unpleasent ways to interface to terminals.
Fortunately, only a very few other places in Pascal-I
have such code. Porting the program usually only requires
defining null procedures for getseg and putseg and making

eos return false. At one place, eos may need to be changed to

eof.

getlfn(1lfn); rename (textout, 1fn); rewrite(textout);

{ get the file name and associate it with textout }

saveblk(btabmax - 1, true); reset(textout);

{ write the program to it and rewind it for next time }
end { timeoutsave };

procedure intproc(reasons: -abortset);

{ No Pascal procedure in Pascal-I calls this routine.
It is invoked by the 'reprieve' service routine which
is invoked by the system montior when a time-out or
user abort occurs.

Incidentally, Pascal 6000 version 2 didn't have reentrant
system routines. (The fault of using the RJ (return jump)
to implement the calls.) Because this routine doesn't
require any of the system routines to be accessed
reentrantly, we can use a very simple version of the
recovery routines in Pascal-I. Pascal-I is distributed
with fully re-entrant recovery capabilities in its systems

routines.
}
const

abtmintime = 2.0; { minimum time limit allowed between
user recoverable aborts (2 secs.)
If less, then kill Pascal-I, cause
he wants us dead.

}
maxabtwoemd = U4; { maximum user aborts allowed between

commands. If more then kill Pascal-I.

var

now: real;

function rtime: real;

extern { real time clock
Returns time in seconds, accurate to milliseconds.

begin { intproc }

timeout := timelimit in reasons;
aborted := userabort in reasons;
if aborted
then
begin
abtent := abtent + 15 now := rtime;
if now - lastabort < abtmintime
then
begin message('* multiple aborts.'); goto 13 { bag it
end
else lastabort := now;
end;
writeln; ich := ' ';

{ clear and restart I/0 }

if abtent < maxabtwoemd then interupt(intproc);

{ Set up for the next user abort or time-out }
end { intproc 1};

begin { Pascal-I - - - Main Routine }
. { 1initialize the world }
lastcommand := badcommand; interupt(intproc);
repeat { the commmand loop
if timeout then begin timeoutsave; command := enditall; end
else
begin
{ prompt for wuser command }
writeln; writeln(' :'); { putseg(output); flush buffer
getln;
if eos(input) then getseg(input); getch; getnb;

{ Another instance of that 1I/0 mess.
Note: The Pascal programs that are interpreted by
Pascal-I run interactively (how else) and have
none of this garbage.

: getcommand(command);

: case command of
bottom: botcom;
change: ccom(false);
compilecom: compcom;
continue: execom(true);

.

- W

. { there are about thirty more commands }

}

6T# SMIN TYISYd

0857 “¥3IMAL43S

th 9V

question: gmcom;

end;
end;
. { command loop wrap-up stuff here }
aborted := false; abtent := 03

until command in [bye, enditalll;

13: { terminate program on multiple aborts and fatal errors
if abend <> notfatal then printfatal(abend);
message('- End Pascal-I');

end { Pascal-I }.

The entire supplemental system routines are presented here.
Bill Cheswick coded these for CDC's NOS operating system.

ident pi-aid

syscom bl

title pi-aid - Pascal-I helper routines.
space 4,10

bl rename - change local file name.
*
* rename (ifet, name)

entry rename

rename ps
bx6 x1 new file name
sab x0+13+1 efet + 1
eq rename exit

interup space 4,10
®¥¥

interup - set user-abort interupt address.
*

* interup(procaddr)

entry interup
interup ps

sx6 x0 get proc address
sab inta
distec on,int1l,int
eq interup exit
* entry on user abort.
int1 bss 20B
sb1 1
sal inta get procedure address
sb7 x1
zr x7,*¥+400000B if no address to jump to
sx6 b1 reason code = user abort
jp b7 exit to processor
inta data 0 address of interupt procedure

s

*

* K ok K

space 4,10
* rtime - get realtime since deadstart.
X := rtime
returns the time since deadstart as a real number, accurate
to milliseconds.
entry rtime
rtime ps
rtime rtia
sal rtia
mx0 -36
bx6 -x0%x1 millisecs
px6
nx6
sal =0.001
fx6 x6%x1
nx6
eq rtime exit
rtia bss 1 rtime status word
space 4,10
end

Of all the complex functions described, getting the real
time took the most code to implement. Implementing Pascal-I
on IBM, DEC and other systems proved easy because of the
simplicity and isolation of the system dependent interface.

KKK KRR RKKKKK KKKk K Kk kkkkkkk

6T# SHIN T¥ISYHd

“NIINALAS

nenT

nyd

¢h

VNS NN =

IR R T T D R PR

program LISP(input, output);

{

The essence of a LISP Interpreter.
Written by W. Taylor and L. Cox
First date started : 10/29/76
Last date modified : 12/10/76

}

Label

T, {

used to recover after an error by the user }

2 { in case the end-the file is reached before a fin card };

const

maxnode = 600;

type

=

T e e e T L)

inputsymbol =
(atom, period, lparen, rparen);
reservedwords =
(replacehsym, replacetsym, headsym, tailsym, eqsym, quotesym,
atomsym, condsym, lLabelsym, Lambdasym, copysym, appendsym, concsym,
conssym);
statustype =
(unmarked, Lleft, right, marked);
symbexpptr = “symbolicexpression;
alfa = array [1 .. 101 of char;
symbolicexpression = record
status: statustype;
next: symbexpptr;
case anatom: boolean of
true: (name: alfa;
case isareservedword: boolean of
true: (ressym: reservedwords));
false: (head, tail: symbexpptr)

end;

Symbolicexpression is the record structure used
to implement a LISP list. This record has a tag
field 'anatom' which tells which kind of node

a particular node represents (i.e. an atom or

a pair of pointers 'head' and 'tail').

'Anatom' is always checked before accessing
either the name field or the head and tail
fields of a node. Two pages ahead there are
three diagrams which should clarify the data
structure.

The global variables }

Variables which pass information from the scanner to the read
routine }

lookaheadsym, { wused to save a symbol when we back up }
sym: inputsymbol { the symbol that was last scanned 1+
idz alfa { name of the atom that was last read };
alreadypeeked: boolean { tells 'nextsym' whether we have peeked 1;
ch: char { the last character read from input };
ptr: symbexpptr { the pointer to the expression being evaluated 1;

{ the global lists of LISP nodes }

freelist, { pointer to the linear list of free nodes }
nodelist, { pointer used to make a linear scan of all

the nodes during garbage collection }
alist: symbexpptr;

{ two nodes which have constant values }
nilnode, tnode: symbolicexpression;

{ variables used to identify atoms with pre-defined meanings 1}
resword: reservedwords;

reserved: boolean;

reswords: array [reservedwords] of alfa;

freenodes: integer { number of currently free nodes known };
numberofgcs: integer { number of garbage collections made };

\
\
\
JES V.

the atom 'a' is
represented by ---> i i

\
the dotted pair i i
'(a.b)'is i/ i\ i
represented by ---> i/ i\ i

/ \
PR S
i i i
i a i i b
i i i

~
R R

L N Yl

1M
112
13
114
115
116
117
118
119
120
121

122
123
124
125
126
127
128
129
130
131

132
133
134
135
136
137
138
139
140
141

142
143
144
145
146
147
148
149
150
151

152
153
154
155
156
157
158
159
160
161

162
163
164
165
166
167
168
169
170
171

172
173
174
175
176
177
178
179
180
181

182
183
184
185
186
187
188
189
190
191

192
193
194
195
196
197
198
199
200
201

202
203
204
205
206
207
208
209
210
21
212
213
214
215
216
217
218
219
220

A A o o i o A A A o A A i pan o o o b

-

}

\ }

\ }

\ }

...... L }

i i i }

the list '(ab) i / i\ i }
is represented i/ i \ i }
by —==> B e }
/ \ }

——fe— \ }

i i \ }

i a i P) }

i i i i i }

--------- i /i N\ i }

i/ i \ i }

=/ \ }

/ \ }

——f ——=\-e=— }

i i i i }

i b i i nil i }

i i i i }

}

}

}

—~

the garbage collector

procedure garbageman;
==

In general there are two approaches to maintaining lists of
available space in list processing systems... The reference
counter technique and the garbage collector technique.

The reference counter technique requires that for each node

or record we maintain a count of the number of nodes which
reference or point to it, and update this count continuously.
(i.e. with every manipulation.) In general, if circular or ring
structures are permitted to develop this technique will not be
able to reclaim rings which are no longer in use and have been
isolated from the active structure.

The alternative method, garbage collection, does not function
continuously, but is activated only when further storage is
required and none is available. The complete process consists
of two stages. A marking stage which identifies nodes still
reachable (in use) and a collection stage where all nodes in
the system are examined and those not in use are merged into

a list of available space. This is the technique we have chosen
to implement here for reasons of simplicity and to enhance the
interactive nature of our system.

The marking stage is theoretically simple, especially in LISP
programming systems where all records are essentially the same

size. All that is required is a traversal of the active list
structures. The most obvious marking system consists of a procedure
which makes a number of successive passes through the data
structure, each time marking nodes 1 level deeper into the tree

on each pass. This is both crude and inefficient.

Another alternative procedure which could be used would use a
recursive walk of the tree structure to mark the nodes in use.

This requires the use of a stack to store back pointers to

branches not taken. This algorithm is efficient, but tends to

be self defeating in the following manner. The requisite stack could
become quite large (requiring significant amounts of storage).
However, the reason we are performing garbage collection in the
first place is due to an insufficiency of storage space. Therefore
an undesirable situation is likely to arise where the garbage
collector's stack cannot expand to perform the marking pass.

Even though there are significant amounts of free space waiting

to be reclaimed.

A solution to this dilemma came when it was realized that space

in the nodes themselves (i.e. the left and right pointers) could

be used in lieu of the explicit stack. In this way the stack
information can be embedded into the list itself as it is traversed.
This algorithm has been discussed in Knuth and in Berztiss: Data
Structures,; Theory and Practice (2nd ed.), and is implemented below.

Since Pascal does not allow structures to be addressed both with
pointers and as indexed arrays, an additional field has been added

to sequentially link the nodes. This pointer field is set on initial
creation, and remains invarient throughout the run. Using this field,
we can simulate a linear pass through the nodes for the collection
stage. Of course, a marker field is also required.

procedure mark(lList: symbexpptr);

var
?ather, son, current: symbexpptr;

begin
father := nil; current := Llist;
while current <> nil do
with current” do
case status of

son := current;

unmarked:
if anatom then status := marked
else
if (head”.status <> unmarked) or (head = current)
then

if (tail”.status <> unmarked) or (tail = current)
Then status := marked
else
begin
status := right;

son := tail; tail := father;

FAVLAL LN maiv oLTiILCrbLK, 1Y0UVU FAUCL 4>

221 father := current; current := son 331

222 end 332

223 else 333 Procedure nextsym reads the next symbol from

224 begin 334 the input file. A symbol is defined by the

225 status := left; son := head; head := father; 335 global type 'inputsymbol'. The global variable

226 father := current; current := son 336 'sym' returns the type of the next symbol read.

227 end; 337 The global variable 'id' returns the name of an

228 left: — 338 atom if the symbol is an atom. If the symbol is

229 if tail”.status <> unmarked 339 a reserved word the global variable 'reserved'

230 then 340 is set to true and the global variable 'resword'

231 begin . 341 tells which reserved word was read.

232 status := marked; father := head; head := son; 342

233 son := current 343

234 end 344

235 else 345 procedure nextsym;

236 begin 346

237 status := right; current := tail; tail := head; 347 var

238 head := son; son := current 348 i: integer;

239 end; 349

240 right: 350 begin

241 begin 351 if alreadypeeked

242 status := marked; father := tail; tail := son; 352 then begin sym := Lookaheadsym; alreadypeeked := false end
243 son := current 353 else

244 end; 354 begin

245 marked: current := father 355 while ch = ' ' do

246 end { case } 356 begin if eoln(input) then writeln; read(ch); write(ch);
247 end { “mark }; 357 end;

248 358 if ch in C'C', '.', "]

249 359 then

250 procedure collectfreenodes; 360 begin

251 361 case ch of

252 var 362 "(': sym := Llparen;

253 temp: symbexpptr; 363 '.': sym period;

254 364 *)': sym := rparen

255 begin 365 end { case };

256 writeln(' number of free nodes before collection = ', freenodes: 1 366 if eoln(input) then writeln; read(ch); write(ch)
257 s 'eY; 367 end

258 freelist := nil; freenodes := 0; temp := nodelist; 368 else

259 while temp <> nil do 369 begin

260 “begin - 370 sym := atom; id = ' s i=0;

261 1f temp”.status <> unmarked then temp”.status := unmarked 371 repeat

262 else 372 i:=4i+1; ifi <11 then id[i] := ch;

263 begin 373 if eolnCinput) then writeln; read(ch); write(ch)
264 %reenodes := freenodes + 1; temp”.head := freelist; 374 until ch in C* ', 'C*, '.', 9'];

265 freelist := temp 375 resword := replacehsym;

266 end; 376 while (id <> reswordsCresword]) and (resword <> conssym) do
267 temp := temp”.next 377 resword := succ(resword); -

268 end; 378 reserved := id = reswords[resword]

269 writeln(' number of free nodes after collection = ', freenodes: 1, 379 end

270 ; 380 end

271 end { collectfreenodes }; 381 end { nextsym };

272 - 382

273 383

274 begin { garbageman } 384 procedure readexpr(var sptr: symbexpptr);

275 numberofgcs := numberofgcs + 1; writeln; 385 T

276 writeln(' garbage collection. '); writeln; mark(alist); 386 This procedure recursively reads in the next symbolic expression
277 if ptr <> nil then mark(ptr); collectfreenodes 387 from the input file. When this procedure is called the global
278 end { garbageman ~J; 388 variable 'sym' must be the first symbol in the symbolic expression
279 T 389 to be read. A pointer to the symbolic expression read is returned
280 390 via the variable parameter sptr.

281 procedure pop(var sptr: symbexpptr); 391 Expressions are read and stored in the appropriate structure
282 392 using the following grammar for symbolic expressions :

283 begin 393

284 if freelist = nil then 39 <{s-expr> ::= <atom>

285 “begin - 395 or (<s-expr> . <s-expr>)

286 writeln(' not enough space to evaluate the expression.'); 396 or (<s-expr> <s-expr> ... <s-expr>)

287 { goto 2 } 397

288 end; 398 Where ... means an arbitrary number of. (i.e. zero or more.)
289 freenodes := freenodes - 1; sptr := freelist; 399 To parse using the third rule, the identity

290 freelist := freelist".head 400 (abec...2z)=(a.(bec...2))

291 end { pop }; 401 is utilized. An extra left parenthesis is inserted into

292 - 402 the input stream as if it occured after the imaginary dot.

293 403 When it comes time to read the imaginary matching

294 | input/output utility routines } 404 right parenthesis it is just not read (because it is not there).
295 405 }

296 406

297 procedure error(number: integer); 407 var

298 408 T nxt: symbexpptr;

299 begin 409

300 writeln; write(' Error ', number: 1, ',"); 410 begin

301 case number of 411 pop(sptr); ’ nxt := sptr-.next;

302 1: writeln(' atom or Llparen expected in the s—expr. '); 412 case sym of

303 2: writeln(' atom, Lparen, or rparen expected in the s-expr. '); 413 rparen, period: error(1);

304 3: writeln(' label and lambda are not names of functions. '); 414 atom:

305 4: writeln(' rparen expected in the s-expr. '); 415 with sptr® do

306 5: writeln(' 1st argument of replaceh is an atom. '); 416 begin { <atom> }

307 6: writeln(' 1st argument of replacet is an atom. '); 417 anatom := true; name := id; isareservedword := reserved;
308 7: writeln(' argument of head is an atom. '); 418 if reserved then ressym := resword

309 8: writeln(' argument of tail is an atom. '); 419 end;

310 9: writeln(' 1st argument of append is not a list. *); 420 Lparen:

3N 10: writeln(' comma or rparen expected in concatenate. '); 421 with sptr® do

312 11: writeln(' end of file encountered before a "fin" card. '); 422 begin

313 12: writeln(' Lambda or Label expected. ') 423 nextsym;

314 end { case ' }; 424 if sym = period then error(2)

315 if number in [11] then goto 2 425 else)

316 else goto 1 426 if sym = rparen then sptr® := nilnode { () = nil }
317 end { error }; 427 else -

318 428 begin

319 { 429 anatom := false; readexpr(head); nextsym;
320 Procedure backupinput puts-a left parenthesis 430 if sym = period

321 into the stream of input symbols. This makes 431 then

322 procedure readexpr easier than it otherwise 432 begin { <<s-expr> . <s-expr>) }

323 would be. 433 nextsym; readexpr(tail); nextsym;

324 } 434 if sym <> rparen then error(4)

325 435 end

326 436 else

327 procedure backupinput; 437 begin { (<s-expr> <s-expr> ... <s-expr>) }
328 438 backupinput; readexpr(tail)

329 begin alreadypeeked := true; Lookaheadsym := sym; sym := Llparen 439 end

330 ﬂ T backupinput }; 440 end

441
442
443
Lk
445
446
447

449
450
451
452
453
454
455
456
457
458
459
460
461
462

464
465

467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483

485
486
487
488
489
490
491
492
493
494
495
496
497
498

500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547

549
550

InNvVnL Lny
end { with }
end { “case };
sptr”.next := nxt
end { readexpr };

procedure printname(name: alfa);
——
Procedure printname prints the name of

an atom with one trailing blank.
}

var
T: integer;

begin
1 :=1;
repeat write(namelil); i=d4+1
Until Cname[il = ' ') or (i = 11);

write(' ')
end { printname };

procedure printexpr(sptr: symbexpptr);
™

The algorithm for this procedure was provided by
Weissman's LISP 1.5 Primer, p.125. This
procedure prints the symbolic expression pointed
to by the argument 'sptr' in the lisp list
notation. (The same notation in which expressions
are read,)

}

Label

’

begin
if sptr”.anatom
€lse
begin
write(* (");
1: with sptr® do
begin
Tprintexpr(head);
if tail”.anatom and (tail”.name = 'NIL "
Then write(')*) —
else
T3F tail®.anatom
Then
begin write('.');

then printname(sptr”.name)

printexpr(tail);

else begin sptr := tail; goto 1 end
end)
end
end T printexpr };
{ end of i/0 utility routines

{ The Expression Evaluater Eval

function eval(e, alist: symbexpptr): symbexpptr;
T

Function eval evaluates the LISP expression 'e' using the
asspeiation list 'alist'. This function uses the following
several local functions to do so. The algorithm is a
Pascal version of the classical LISP problem of writing

the LISP eval routine in pure LISP. The LISP version of
the code is as follows:

(lambda (e alist)
cond
((atom e) (lookup e alist))
((atom (car e))
(cond ((eq (car e) (quote quote))
(cadr e))
((eq (car e) (quote atom))
(atom (eval (cadr e) alist)
((eq (car e) (quote eq))
(eq (eval (cadr e) alist)))
((eq (car e) (quote car))
(car (eval (cadr e) alist)))
({eq (car e) (quote cdr))
(cdr (eval (cadr e) alist)))
((eq (car e) (quote cons)
(cons (eval (cadr e) alist)
(eval (caddr e) alist)
((eq (car e) (quote cond)
(eveon (cdr e))
(t (eval (cons (lookup (car e) alist)
(edr e)) alist)))
((eq (caar e) (quote label))
(eval (cons (caddar e)
(edr e)
(cons (cons (cadar e) (car e))
alist)))
((eq (caar e) (quote lambda))
(eval (caddar e)
(bindargs (cadar e) (edr e))))))

The resulting Pascal code follows:

var
" temp, carofe, caarofe: symbexpptr;

The first ten of the following local functions implement
ten of the primitives which operate on the LISP data
strueture. The last three local functions, 'lookup',
'bindargs' and 'eveon', are used by 'eval' to interpret

nao ———

write(*)') end

551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578

580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599

601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639

641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660

{

a LISP expression,

function replaceh(sptr1, sptr2: symbexpptr): symbexpptr;

begin
if sptr1”.anatom
replaceh := sptri
end { replaceh };

then error(5) else sptr1”.head := sptr2;

function replacet(sptr1, sptr2: symbexpptr): symbexpptr;

begin
if sptr1”.anatom
replacet := sptrl
end { replacet };

then error(6) else sptr1”.tail := sptr2;

function head(sptr: symbexpptr): symbexpptr;

then error(7) else head sptr”,head

begin if sptr”.anatom
end { head };

function tail(sptr: symbexpptr): symbexpptr;

begin if sptr”.anatom then error(8) else tail := sptri.tail
end { tail };

function cons(sptr1, sptr2: symbexpptr): symbexpptr;

var
temp: symbexpptr;

begin
pop(temp); temp”.anatom := false; temp~.head := sptril;
temp®.tail := sptr2; cons := temp

end { cons };

7

function copy(sptr: symbexpptr): symbexpptr;

This function creates a copy of the structure
pointed to by the parameter 'sptr'

var
temp, nxt: symbexpptr;

begin
if sptr”.anatom
Then
begin
pop(temp); nxt := temp”.next; temp” := sptr”;
temp”.next := nxt; copy := temp
end
else copy := cons(copy(sptr”.head), copy(sptr-.tail))

end T copy };

function append(sptr1, sptr2: symbexpptr): symbexpptr;

The recursive algorithm is from Weissman, p.97.
}

begin
if sptr1”.anatom
then
if sptr1”.name <> 'NIL

else append := sptr2
L

then error(9)
e

append := cons(copy(sptr1~.head), append(sptri-.tail, sptr2))
end { append };

o
"]

function conc(sptri: symbexpptr): symbexpptr;

This function serves as the basic concatenation mechanism
for variable numbers of list expressions in the input stream.
The concatenation is handled recursively, using the identity:

cone(a,b,c,d) = cons(a,cons(b,cons(c,cons(d,nil))))

The routine is called when a conc(.... command has been
recognized on input, and its single argument is the first
expression in the chain. It has the side effect of reading
all following input up to the parenthesis closing the

conc command .

The procedure consists of the following steps-

1. call with 1st expression as argument.

2. read the next expression.
if the expression just read was not the last, recurse.
. otherwise... unwind.

=w

var
sptr2, nilptr: symbexpptr;

if sym <> rparen
then
begin
nextsym; readexpr(sptr2); nextsym;
«onc := cons(sptr1, conc(sptr2));
end
els

if sym = rparen

661
662
663
664
665
666
667
668
669
670
671

672
673
674
675
676
677
678
679
680
681

682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702
703
704
705
706
707
708
709
710
1

712
713
714
715
716
"7
718
719
720
721

722
723
724
725
726
727
728
729
730
731

732
733
734
735
736
737
738
739
740
741

742
743
744
745
746
747
748
749
750
751

752
753
754
755
756
757
758
759
760
761

762
763
764
765
766
767
768
769
770

function eqq(sptr1, sptr2:

thel
Eegin
new(nilptr);
with nilptr® do
Segin anatom := true; name := 'NIL
conc := cons(sptr1, nilptr);

3

symbexpptr): symbexpptr;

var
temp, nxt: symbexpptr;

begin
pop(temp) ; nxt := temp”.next;
if sptr1”.anatom and sptr2”.anatom
then -
if sptr1”.name = sptr2”.name
else temp”™ := nilnode
else
if sptr1 = sptr2 then temp” := tnode
else temp” := nilnode;
temp”.next := nxt; eqq := temp
end { eqq };

then temp” := tnode

function atom(sptr: symbexpptr): symbexpptr;

var
temp, nxt: symbexpptr;

begin
pop(temp); nxt := temp”.next;
if sptr”.anatom then temp~ := tnode
temp”.next := nxt; atom := temp
end { atom };

function lookup(key, alist: symbexpptr): symbexpptr;

var
temp: symbexpptr;

begin
temp := eqq(head(head(alist)), key);
if temp”.name = 'T ' then Lookup := tail(head(alist))
‘else Lookup := lookup(key, tailTalist))

end { lookup };

function bindargs(names, values: symbexpptr): symbexpptr;

var
temp, temp2: symbexpptr;

begin
if names”.anatom and (names".name =
then bindargs := alist
else
begin
temp := cons(head(names), eval(head(values), alist));
temp2 := bindargs(tail(names), tail(values));
bindargs := cons(temp, temp2)
end
end { bindargs };

'NIL "

function evcon(condpairs: symbexpptr): symbexpptr;

var
temp: symbexpptr;

begin
temp := eval(head(head(condpairs)), alist);
if temp~.anatom and (temp”.name = 'NIL *)

then evcon := evcon(tail(condpairs))
else evcon := eval(head(tail(head(condpairs))), alist)
end { eveon };

begin { eval }
if e".anatom then eval := lookup(e, alist)
else
begin
carofe := head(e);
if carofe”.anatom
then
if not carofe”.isareservedword
then

eval := eval(cons(lookup(carofe, alist), tail(e)), alist)

else
case carofe”.ressym of
Labelsym, Lambdasym: error(3);
quotesym: eval := head(tail(e));
atomsym: eval := atom(eval(head(tail(e)), alist));
eqsym:

eval := eqq(eval(head(tail(e)), alist), eval(Chead(tail(

tail(e))), alist));

headsym: eval := head(eval(head(tail(e)), alist));
tailsym: eval := tail(eval(head(tail(e)), alist));
conssym:

eval := cons(eval(head(tail(e)), alist), eval(head(tail(

tail(e))), alist));
condsym: eval := evcon(tail(e));
concsym:;
appendsym:

eval := append(eval(head(tail(e)), alist), eval(head(

else temp” := nilnode;

oL1 ILINDLR,

77
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
8

872

874
875
876
877
878
879
880

1J0V

PAGLE 4/

tail(tail(e))), alist));
replacehsym:

eval := replaceh(eval(head(tail(e)), alist), eval(head(

tail(tail(e))), alist));
replacetsym:

eval := replacet(eval(head(tail(e)), alist), eval(head(

tail(tail(e))), alist))
case }

begin
caarofe := head(carofe);
if caarofe”.anatom and caarofe”.isareservedword
then
if not (caarofe”.ressym in [labelsym, Lambdasyml)
then error(12)
else
case caarofe”.ressym of
Labelsym:
begin

tem

tail(carofe)))), alist);

:= cons(cons(head(tail(carofe)), head(tail(

eval := eval(cons(head(tail(tail(carofe))), tail(e

)), temp)
end;
Lambdasym:

begin
temp
eval

end
end T case }

else

eval(head(tail(tail(carofe))), temp)

bindargs(head(tail(carofe)), tail(e));

eval := eval(cons(eval(carofe, alist), tail(e)), alist)

end
end

end T eval };

procedure initialize;

var

i: integer;
temp, nxt: symbexpptr;

begin
alreadypeeked := false; read(ch); write(ch); numberofgcs
freenodes := maxnode;
with nilnode do
begin
anatom := true; next := nil; name := 'NIL ';
status := unmarked; isareservedword false
end;
with tnode do
begin
anatom := true; next := nil; name 'T '
status := unmarked; isareservedword false
end;

{

{

allocate storage and mark it free }
freelist := nil;
igg i :=1 to maxnode do
egin
new(nodelist);
nodelist”.head := freelist;
freelist := nodelist
end;

nodelist”.next := freelist;
nodelist”.status := unmarked;

initialize reserved word table }
reswordsCreplacehsym]l := 'REPLACEH ';
reswordsCreplacetsym] := 'REPLACET °';

reswordsCheadsyml := 'CAR '
reswordsCtailsym] 'CDR ';
reswordsCcopysym] *COoPY ';
reswordsCappendsym] := "APPEND i
reswordsCconcsym] := 'CONC '
reswordsCconssym] 'CONS '
reswordsCegsym] := 'EQ '
reswordsCquotesym] := 'QUOTE '
reswordsCatomsym] := 'ATOM L¥]
reswordsCcondsym] := 'COND '
reswordsClabelsym] := ‘'LABEL '

reswords[Lambdasym] := 'LAMBDA

- initialize the a-list with t and nil }
poplalist); alist”.anatom := false; alist".status := unmarked;
popCalist®.tail); nxt := alist”.tail”.next;
alist”.tail™ := nilnode; alist”.tail”.next := nxt;
pop(alist®.head);

--=- bind nil to the atom nil }
with alist".head” do

begin
anatom := false; status := unmarked; pop(Chead) ;
nxt := head”.next; head” := nilnode; head”.next := nxt;
pop(tail); nxt := tail®.next; tail” := nilnode;
tail®.next := nxt

end;
pop(temp); temp~.anatom := false; temp”.status := unmarked;

temp”.tail := alist; alist := temp; pop(alist”.head);
bind t to the atom t }
with alist”.head” do
begin
anatom := false;
nxt := head”.next;

pop(head);
head”.next := nxt;

status := unmarked;
head” := tnode;

pop(tail); nxt := tail".next; tail™ := tnode;
tail”.next := nxt
end;

end T initialize };

0

;

PASCAL NEWS #19 SEPTEMBER, 198u PAGE 43

881 begin { LISP }

882 writeln(' * EVAL * '); initialize; nextsym; readexpr(ptr);

883 readln; writeln;

884 while not ptr~.anatom or (ptr”.name <> 'FIN ') do

885 begin -

886 writeln; writeln(' * value * '); printexpr(eval(ptr, alist));

887 1: writeln; writeln; if eof(input) then error(11);

888 ptr := nil;

889 { call the } garbageman; writeln; writeln;

890 writeln(' x EVAL * '); nextsym; readexpr(ptr); readln;

891 writeln;

892 end;

893 2: writeln; writeln;

234 writeln(' total number of garbage collections = ', numberofgcs: 1, '."
5);

896 writeln;

897 writeln(' free nodes left upon exit = ', freenodes: 1, '.');

898 writeln;
899 end { LISP }.

W WAL

Articles

An Implementation of New and Dispose
using Boundary Tags

Branko J. Gerovac

The standard Pascal procedures New and Dispose are implemented using boundary=-tag
memory management. This implementation replaces the original New and Dispose module in
the run—time library of Oregon Minicomputer Software, Inc. Pascal-l which executes on
Digitral Equipment Corp. PDP-11 computers. Design details, although aimed at this
configuration, should be generally useful. Performance of the original and
boundary~tag implementations are analyzed and compared.

Key words: Pascal, New and Dispose, memory management, boundary tag.

1. Introduction

Many Pascal systems do not fully implement New and Dispose. One can speculate
that (1) the full generality of New and Dispose was deemed unnecessary or undesirable,
or that (2) efficient algorithms for New and Dispose are not readily available. This
paper addresses the latter issue.

The standard Pascal run-time environment has two functionally different data
stcrage areas: the stack and the heap.

The number of accessible data items on the stack is designated by the declarations
of a program, and all operations that allocate and release stack storage and access
stack data are implicit in program syntax. In addition, the block structure of a
program designates the period (lifetime) during which stack storage is set aside.

In contrast, the number and lifetime of items on the heap are largely independent
of program declarations, and heap operations are programmed explicitly. At run time, a
program must (1) maintain access to heap data, by using pointers, and (2) allocate and
release heap storage, by using New and Dispose.

Some Pascal systems implement the heap as a second stack (e.g., P-code Pascal
[NAJNJT76]). A second stack requires that a program maintain the information necessary
to release heap storage, and that heap storage 1s released in the reverse order from
which it was allocated. This restriction may prevent the programmer from implementing
algorithms that use a non-stack-like data structure [cf., HS76, HS78, W76].

Here, a boundary-tag scheme for managing free blocks permits an efficient
implementation of New and Dispose. This module has many advantages over the original
New and Dispose module in the run-time library of OMSI-Pascal-l [1]. OMSI-Pascal’s
original New and Dispose provided some insight into the problems of heap management.
With the original module, examples of wide variation in memory efficiency and execution
time are apparent. Since one of OMSI-Pascal”s strong features is its applicability to
real-time programming, many design decisions for the boundary-tag module were aimed at
decreasing execution time. Memory efficiency improved also.

Performance analyses of each New and Dispose module are compared. Analyses of
specific heap operations were carried out by calculating run times of each
implementation. Simulation tests were run to obtain comparative performance during

Author”s address: Behavioral Sciences Department, Eunice Kennedy Shriver Center for
Mental Retardation, 200 Trapelo Road, Waltham, Massachusetts 02154; Phone:
(617)893-3500.

[1] Oregon Minicomputer Software, Inc. distributes and maintains the Pascal system
that was implemented by Electro Scientific Industries. An earlier version of
OMSI-Pascal-l was known as ESI~Pascal. This Pascal was one of the first to implement
Dispose. OMSI-Pascal runs on Digital Equipment Corp. PDP-11 computers and uses
standard operating system facilities.

actual execution.

Although a specific hardware-software environment is discussed here, the design
rationale would ©be appropriate for other systems. Pascal sour:es for each
implementation of New and Dispose and assembly language sources for the boundary-tag
module are provided to promote general use.

2. Description of the Original New and Dispose Module

: The run-time memory configuration of
OMSI-Pascal-l [ESI77], under DEC”s RT-~1l real-time . .
operating systen[n, is typical for block structured Diagram of Memory Layout:
languages [NAJNJ76, AU77]). The operating system 1777778

maintains areas of memory for interrupt vectors,
system communication, the resident monitor and
peripheral device registers [DEC78]. When a Pascal
program is run, the program code is loaded into low
memory, and then a Pascal run—-time 1library routine
initializes the data areas. The heap is located in
low memory just above the program code and global

Peripheral Device
Registers

Resident Monitor

Pascal Stack

storage, and the stack is located in high memory. I wi et
The heap grows upward and the stack grows downward;

the unused memory between the heap and the stack is 4

available for expansion of either. No automatic |—— ————— 2 — |

memory-disk swapping of data occurs. Pascal Heap

Two pointers are maintained by New and Dispose
to manage heap memory: (1) $KORE points to the
beginning of the unused area above the heap, and
(2) $FREE points to a 1list of free blocks in the
heap. The free 1list is a singly 1linked 1list of
blocks that have been disposed [2]. Each free block
contains (1) a pointer to the next block in the 1list
(a nil pointer if it is the last block in the list) System Communication
and (2) the block”s size. An advantage of the free and
list is that the information needed to manage a free Interrupt Vectors
block 1s contained within the block, thus no
additional memory overhead 18 required for 000000
free-block management. (Computers with virtual
memory may benefit from a separate table of free
blocks to avoid excessive memory-disk swapping.)

New. To allocate storage on the heap, program code passes the size needed to New
[3]. T (Appendix A contains Pascal sources of New and Dispose.) If one word is
requested, it is allocated by extending the top of the heap by one word; one~word
blocks do not fit on the free 1list because two words are necessary to contain pointer
and size information. For a request of more than one word, the free list is searched
for a block of the exact size (exact-fit) of the block requested. If such a block is
found, it is unlinked from the list and allocated; if no such block is found or the
free 1ist is empty, the heap is extended by the number of words needed to allocate the
block. If collision with the stack results from extending the heap, program execution
is terminated. The newly allocated block is zeroed to provide a clean slate and to
help prevent inadvertant violation of the free list. New returns the address of the
new block, and program code assigns this address to a pointer.

Dispose. To release storage to the heap, program code passes the address and the
size _ofr;tﬁe block to Dispose. A block that is larger than one word is linked to the

Pascal Global Variables

Pascal Run-time Library

User's Pascal Program Code

[2] sSince New and Dispose may be called in any sequence, the heap can contain a mix of
allocated and free blocks. The free list permits New to reuse free blocks.

[3] The size is always an even number of bytes due to the PDP-11°s restriction that
word based data, e.g., integers, be stored at even byte (word) locations.

NR_T “UIIWT|43S ATH# SMIN TYISHd

Avd

6h

beginning of the free list and its size is recorded;
not released. Then, the free 1list is searched for a block adjacent to the top of the
heap. If a block is found, it is released from the heap by unlinking it from the free
list and decrementing $KORE. This search is repeated until a full scan of the list is
made without a decrease in the upper bound of the heap.

The original implementation of New and
Dispose 1s uncomplicated, requires little
code, and seems as though it would work
well with typical Pascal programs.
Generally, only a few different data sizes
are specified in a program. The exact-fit
allocation scheme often finds the size
block needed in the free list; the size of
the last disposed block is likely to be the
same as the size of the next requested
block, hence, placement of the disposed
block at the beginning of the free list may
speed allocation. However, problems arise
when worst—case memory-space and
execution-time performance are considered.

For example, since the free list does
not keep track of disposed one-word blocks,
one-word blocks limit the extent to which
the upper bound of the heap can be reduced.
Free blocks that are below a one=word block
will never be adjacent to the top of the
heap and cannot be released. Even so,
Dispose continues to scan these free
blocks. A simple solution would allocate
two words for a one-word request so that
the block would fit on the free list.

Another problem, easily fixed, is the
unnecessary search that Dispose makes when
a block is first linked to the free 1list.
The free list need be searched only if the
block currently being disposed is adjacent
to the top of the heap.

Even with these changes, certain
configurations of the free list generate
inefficient memory use and a wide range of
execution times.

Consider a program that places
blocks of one size in the free 1list.
Suppose the program then requests a block
of some different size. Since New employs
an exact-fit algorithm, a search of the
free 1list will not produce a block of the
correct size and the heap will be extended
for the new block. Effectively, 100 blocks
of storage are not usable, the total size
of the heap is larger than necessary, and
the execution time of New has increased by
the amount of time required to search 100
blocks.

Now consider that the 100 blocks were disposed in the reverse order from which
they were allocated (last allocated, first freed). In other words, the blocks nearer
the top of the heap are farther from the beginning of the free list. When the final
block (keystone) between the top of the heap and the 100 blocks on the free list is
disposed, a chain reaction releases all 100 blocks from the heap. However, the full
depth of the free list must be scanned for each block to be released. This results in

a one-word block effectively is

Diagram of Heap, original module:

$KORE—

Pascal
pointer2—

size=12
next e——r——

$FREE—>

size=16
next=ni —

Pascal
pointerl—|

100 —_—

size=12
next ————)

a single call of Dispose that
O[Sqr(N)/2].

performs

5,050 comparisons,

3. Selection and Design of a Heap Management Algorithm

In both cases described above, the
large number of free blocks causes
worst-case performance. This number can
be reduced by merging adjacent free
blocks. The resulting larger block
would be available for allocation when
its constituent blocks would have been
too small. By allocating a portion of a
large block and returning the remainder
to the free 1list, the larger block is
available for a variety of smaller size
allocations. Thus , reusability of
available memory is enhanced.

Since the heap grows
stack, the upper extent of the heap
should be kept as low as possible. To
accomplish this, blocks in the free list
can be ordered by memory location;
blocks which are nearer the bottom of
the heap are placed closer to the
beginning of the list. New, employing a
first-fit search algorithm, allocates
the lowest free block of sufficient
size. If the block exceeds the
requested size, only the lower portion
is allocated, and the remainder is
returned to the free list. Biasing heap
allocations toward lower memory helps
avoid collision with the stack.

Dispose, then, maintains the
ordered free 1list, and merges adjacent
free blocks. Simply, when a block is
disposed, a comparison with blocks
already in the free list would determine
whether to merge the disposed block with
a free block or to insert the disposed

toward the

block into the free list; potentially,
a full scan of the free 1list would be
needed. However, literature on

memory-allocation strategies [K73, §74,
G76, H76, HS76] indicates that a dispose
operation can be performed without
scanning the free 1list by employing
Knuth“s "Boundary Tag" scheme for
free-block management [K73]. The
implementation presented here differs
from Knuth“s presentation in order to
maintain the ordered free list.

The boundary-tag scheme uses two
boundaries of each block;

i.e.,

a complexity of

Diagram of a Heap, boundary-tag module:

$KORE—> size=0 F
size=12 A
Pascal
pointerl—
size=12 A
size= F
previous e—f————
next —t
size=28 F =)
size=16 A
Pascal
pointer2—
size=16 A
size=12 F
previous N
next]
size=12 3
size=2 A
previous —
$FREE—> next
size=2 A

additional words
lower and upper boundary words are identical.

of storage to mark the

Each boundary

word contains the size of the block and a one-bit tag that signifies whether the block

is allocated or free.
be used to tag the block.
set to indicate that the

block is allocated.

Since the size is always an even number of bytes, bit zero can
Bit zero is clear to indicate that the block is free and 1is
Dispose need check only the boundary

words of the blocks adjacent to the block being disposed to determine whether a merge
can be performed.

Each free block contains two pointers which enable access to the next and previous
free blocks during insert and merge operations. Placement and referencing of the
pointers was chosen to facilitate access using the auto-increment/auto-decrement
addressing modes of the PDP-11 instruction set. Also, placement at the bottom of the
block corresponds to Pascal pointer referencing. (Although, placement of the pointers
at the top of the blick would seem advantageous when the lower portion is allocated,
preliminary coding indicated a marked increase In code size and a very slight decrease
in execution time.)

The heap is initialized with boundary blocks at the bottom and top of the heap.
$FREE points to the lower boundary block, which is tagged as being allocated, and links
the bottom and top of the free list into a circular list; the list can be traversed in
either direction. $KORE points to the upper boundary block, which is tagged as free
and has a size of zero. This is a pseudo block in that it is not linked into the free
list; it serves only to provide a boundary word to check when the block adjacent to
$KORE is being disposed. The boundary blocks eliminate the need for tests which
otherwise would have to check boundary conditions during insertion on and removal from
the free list. Without boundary blocks, Dispose would have required as many as 8
conditional tests to select from 12 separate operations. With the boundary blocks,
only 4 tests and 6 operations are needed.

4. Description of the Boundary~Tag New and Dispose Module

The boundary-tag module was written so that no changes to the compiler or the rest
of the run-time library would be needed (see Appendix Notes).

New. To allocate storage on the heap, program code passes the size of the block
to New. (Appendix B contains Pascal sources of New and Dispose, and Appendix D,
Macro-ll sources.) A request for one word is changed to two words. The free 1list is
searched starting at the bottom. If a large enough block is not found, then the heap
is extended, providing that the heap does not collide with the stack. If a block which
is larger than needed is found, the lower portion is allocated and the upper portion
(remainder) is returned to the free list. However, if the remainder would be too small
to fit in the free 1ist, the entire block i1s allocated. Then, the tags of the new
block are set, the block is zeroed, and its address returned.

Dispose. To release storage to the heap, program code passes the address and the
size “of the block to Dispose; the size parameter is ignored since the actual size of
the block is contained in the boundary word. The block”s tag is checked to see that it
is allocated and the block”s address 1is checked to see that it is within the heap
(OMSI-Pascal has been extended to permit pointers to data which are not stored on the
heap). Then its tags are set to free, and the addresses of the lower— and
upper—adjacent words are calculated. If the lower-adjacent block 1s free, the two
blocks are merged; a merge with a lower—adjacent block is rapid, since the next and
previous links are not changed. If the upper-adjacent word is the top of the heap
($KORE) the block 1s released from the heap. If the upper-adjacent block is free, the
blocks are merged and the links are adjusted; 1link adjustment depends on whether a
merge with the lower—adjacent block had occurred. If neither adjacent block is free,
the free list is scanned to compare the address of the block being disposed with the
addresses of blocks in the free list. The disposed block is inserted in proper order,
maintaining the ordered free list.

Problems in the original module have been corrected. One-word requests return a
two-word block that will fit in the free list without specfal handling. Allocations
are made from the lowest possible free block; the upper free blocks are more likely to
be released from the heap. Free blocks are merged; the larger blocks are available
for a variety of allocation sizes, and the shorter free list is more rapidly scanned.
Boundary tags permit most blocks to be disposed without a scan through the free list.

5. Static Analysis

The additional operations of the boundary-tag module require more than twice the
instruction space of the original. The number of storage words for each procedure is:

original boundary tag
New 38 103
Dispose 33 78

Execution~time equations for both New and Dispose modules were calculated using
the instruction execution times given by the manufacturer for an LSI~1l with a 350
nanosecond microcycle time [DEC77]. Representative data, based on simulation tests
(N=4, random) presented in the next section, are shown in brackets; all execution
times are in microseconds (us). Subsequent references to the original implementation
of New and Dispose and the boundary-tag implementation of New and Dispose are indicated
respectively by New-org, Dispose-org, New-tag and Dispose-tag.

New-org performs three likely forms of allocation: (1) the free 1list is empty,
allocate by extending the heap, (2) a free block of the correct size is found, allocate
this block, and (3) the free list contains blocks that are not the correct size,
allocate by extending the upper bound of the heap. The execution-time equations for
New-org are:

1. free list empty 89.25 + 28.70*L [433.65us]
2. allocate free block 76.30 + 30.80*Korg + 28.70*L [497.70us]
3. extend heap 117.95 + 30.80*Norg + 28.70*L [1232.352}]

Norg [25] the number of blocks on the free list.

Korg [2.5] the number of blocks searched to find one of the correct size.

L [12] the size in words of the newly allocated block, represents the time
required to zero the block (the 28.7*L term could be recoded to 11.9*%L).

The New-tag algorithm also performs three forms of allocation: (1) allocate an
entire block from the free list, (2) allocate the lower portion of a block from the
free list, and (3) allocate by extending the heap. New-tag:

1. entire free block
2. portion of free block
3. extend heap

160.65 + 26.60*Ktag + 11.90*L
207.90 + 26.60*Ktag + 11.90*L
176.05 + 26.60*Ntag + 11.90*L

[303.45us]
[350.70us]
[531.65us]

Ntag [8] the number of blocks on the free list.
Ktag [3] the number of blocks searched to find one of the correct size.
L [12] the size in words of the newly allocated block.

The advantage cf New-tag results from the fewer blocks contained on its free list.
In the 100 free-block example given in section 2, a single call of New-org runs
3,542.35 us., while New-tag runs 378.00 us. The free list for New=tag contains only
one block. Remember that New-org 1s extending the heap, while New-tag is reusing
memory from the free list.

The Dispose-org algorithm has two major forms of releasing storage: (1) add the
block to the free 1list and do not decrease the upper bound of the heap, and
(2) decrease the upper bound of the heap by the size of the block being disposed.
Also, (3) worst-case execution time for a single call is the dispose of the keystone
block described in section 2; representative time is given with Norg=25 for comparison
with (1) and (2). Dispose-org:

1. add to free list
2. decrease heap
3. worst-case

72.45 + 42.00*Norg [1,122.45us]
92.05 + 42.00*Norg [1,142.05us]
72.45 + 42%(Sqr(Norg)/2) + 61.60%Norg [14,737.45us]

SMAN YIQYA

GTH#

RERIEIREN

0ot

994

14

The Dispose-tag algorithm has six forms of releasing storage: (1) scan the free
1ist and insert the block without a merge, and (2) five forms of merging the block
without a scan, the range and average of these are given. (3) The keystone dispose 1is
not worst case for Dispose-tag; it would execute as a merge operation. Instead, worst
case is a full scan of the free list to insert the block at the bottom of the free
list. Dispose-tag:

1. scan and insert 143.85 + 14.70%(Ntag/2) [202.65us]
2. merge range (134.05 .. 205.10) [average 173.74us]
3. worst-case 143.85 + 14.70*Ntag [261.45us]

An examination of the time needed to dispose an entire list shows the effect that
multiple Dispose operations have on program execution. Assume a 1list of blocks is
allocated and numbered in order of allocation (1,2,3..X); the free list is initially
empty. Two simple cases of disposing the list are: (1) LAFF-——last allocated, first
freed—blocks are disposed 1in the reverse order from which they were allocated
(X..3,2,1). Each call of Dispose decreases the upper bound of the heap. And,
(2) FAFF—first allocated, first freed—blocks are disposed in the same order as
allocation (1,2,3..X). Each call of Dispose adds the block to the free list; the last
call decreases the upper bound of the heap by the extent of the entire 1list. Also,
worst case for each version of Dispose is: (3) LAFF-keystone, described in section 2
((%=1)..3,2,1,X), is worst case for Dispose-org. And, (4) odd-LAFF/even-FAFF is worst
case for Dispose-tag. The odd numbered blocks are disposed in reverse order, then all
even numbered blocks are disposed in increasing order ((X-1)..5,3,1,2,4,6..X); assume
X 1s an even number. Each dispose of an odd numbered block must scan the entire free
11st to insert the block in order, the even numbered blocks merge with both lower- and
upper-adjacent, and the Xth block decreases the upper bound of the heap by the extent
of the list.

Dispose a list with X blocks [X=100]:
original boundary tag

134.05 * X
[13,405us]

1. LAFF 134.05 * X
[13,405us]

2. FAFF (134.05%X)+(42%(Sqr(X)=X)/2) 355.60+(142.80%(X=-2))
[221,305us] [14,350us]
3. LAFF- (134.05%X)+(42*%(Sqr(X)=(X/2))) 134,05 * X
keystone [431,305us] [13,405us]
4. odd-LAFF/ (134.05*%X)+ (174.48*%X)=(8.05)+
even-FAFF (42*((3/4)*Sqr(X)=X)) (14.70%((Sqr(X)/8)=(X/4)))
[324,205us] [35,447us)

LAFF and LAFF-keystone are respectively the best- and worst—case examples for the
original Dispose. The similarity of ordering between the two complicates the
evaluation of run time for programs using the original module.

While the original implementation of New and Dispose exhibits a wide range of
execution times, the boundary-tag 1implementation 1is orderly even in the extreme
examples.

6. Dynamic Analysis

Simulation tests were run to collect additional information on the comparative
performance of the original and boundary-tag implementations of New and Dispose. The
simulation program is similar to the one recommended by Knuth [K73] and 1is based on
Monte Carlo techniques.

The test program runs in simulated time; the major loop of the program defines a
simulated=-clock tick. Briefly, at each clock tick: (1) All blocks that are at their
lifetime limit are disposed. (2) Then, a single block 1is allocated, its size and
lifetime determined by generator functions. The allocated block is placed on a list
that is ordered by lifetime 1limit. (3) Statistics on heap size and utilization and the
numbers of allocated and free blocks are recorded. Periodically, statistics and an
optional picture of memory are output. The program continues until a simulated-time, a
real-time, or a heap-size 1limit 1is reached; all tests reported here ran the full
simulated-time limit of 25,000 ticks. At the end of the program, summary statistics
and a frequency plot of memory use are output.

All tests were run with the same main program; only the generator functions for
size and lifetime differed. A variety of generator functions were used. The functions
were chosen so that the average allocated-block size was 12 words and so that the
average number of allocated blocks was 50. A random number generator (0 .. 0.99999)
serves as the basis for size and lifetime selection; the same sequence of random
numbers was used for all tests.

Seventeen size functions were used. Each generated an even distribution of N
block sizes (N = 1..17) centered around 12 words. These 17 size functions are of the
form:

size(N) : Trunc((random*N) + (12-Trunc(N/2)))

The function for N=5 requests allocations of 10, 11, 12, 13, or 14 words with equal
probabilty. For N=4, allocations of 10, 11, 12, or 13 are requested; functions for
even values of N request blocks whose average size is 11.5 words.

Four lifetime functions were used: (1) Random, evenly distributed from 1 to 100
simulated-clock ticks, (2) Queue, fixed value of 50 ticks, (3) Stack, allocate 100
blocks, one per tick, then dispose all of them in the reverse order from which they
were allocated, LAYF, and (4) 80% Stack, lifetimes are 80% stack-like and 20% random.
The equations for these functlons are (simtime is the value of the simulated clock in
ticks):

1. Random: Trunc(random*100) +1
2. Queue: 50
3. Stack: 100 = (simtime mod 100)

4. 80% Stack: 80 - (simtime mod 80) + Trunc(random*20) [if O then 1]

Each size function (17) was paired with each lifetime function (4) to produce a
test (1 of 68) performed with each New and Dispose module. (Other tests produced
similar results.) Statistics were gathered separately for each test-module
combination.

Figure 1 plots the average number of blocks on the free 1list versus the size
function for each test. Data points of the same lifetime function and New and Dispose
module are connected Each data point is the sum of the free=block counts from each
simulated-clock tick averaged over 25,000 ticks. The free-block counts for the
stack-lifetime tests were always zero and are not plotted.

Another way to view the results is to consider the ratio (p) of free blocks to
allocated blocks; the average number of allocated blocks 1s approximately 50 for all
tests. In the random-lifetime curves, the boundary-tag module starts with p=5.4% when
N=1 and increases to p=20.3% when N=7 where a plateau develops not rising above 24%;
results with the original module begin with p=10.7% when N=1, p=72.6% when N=7 and
continues to increase until p=130.2% when N=17. The other lifetime functions show an
even greater difference between the two modules.

Figure 2 shows the average of total heap size divided by the number of allocated
words, a measure of a module”s memory-space efficiency. A value of 100% means that all
words (average 600) are allocated and that there is no additional overhead; the
stack-lifetime tests with the original module show this performance. Even though there
are no free blocks, stack-lifetime tests with the boundary-tag module show a 17%
overhead due to the two boundary words needed for each block. Since the average
allocated block is 12 words, 14 words actually are used; smaller or larger blocks

~ra

fumarim e

AnCT

~— 807 Stack

Original
— Queue Module
== Random
o
=
S
2
a
o
o
&
-
w
°
n
3
2
E
5
E
P
&
@
i
g
s
<
— Random
Boundary~-tag

— 80% Stack MHodule
— Queue

Size Function

Freure 1, Free BLock Count

240 — — 80% Stack
Original

H -- Random Module
- = Queue
®
@
o
=
S
=
o
3
S
]
S
S
<
~
v
N — 802 Stack
@
& -- Random
o
= Boundary-tag
~ Module
& — Queue
2
E - e — . — I = Stack

.
ll)()—f

N= 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Size Function

- Stack = Original

Freure 2. Heap UTiLizATION

— 80% Stack
Original
5:00 — — Queue Module
~— Random
4:40 —
>
8420 —
El
2
£
E4:00 —
9
£
T 3:40 —
2 = &:usetuk Boundary=-tag
3120 — — Random Hodule
2
©3:00 —

330 - b—eo——— 4 —+ — Stack - Original
1:47 = 4 ~ — Stack - Boundary-tag
! | | | | | | | | | | | | | | | |
N=1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Size Function

Frure 3. ToTAL RunTIME OF TESTS

respectively raise or 1lower this overhead. The other 1lifetime tests show a
correspondence between overhead and free blocks. The original module”s overhead
increases with increasing N while the boundary-tag module”s overhead stabilizes.

Maximum heap size also closely corresponds to the number of free blocks and to the
average heap size for the various tests. The maximum heap size for the original module
was about 17% greater than average heap size, and the maximum for the boundary-tag
module was 20% greater. However, maximum heap size for the original module was
generally more than 20% greater than maximum heap size for the boundary-tag module.

Figure 3 presents the total run time of each test. Special hardware to measure
only the run time of the New and Dispose operations was not available. The simulation
program was revised to provide more meaningful run times; specifically, free blocks
were not counted and statistics were not gathered since these measures vary between
modules. The same random number sequence was used so that these statistical measures
would be the same as in the previous tests with the unrevised program. The revised
simulation program still included test-specific operations, such as calculation of
lifetime and size of the block to be allocated and maintenance of the
ordered-by-lifetime list of allocated blocks; however, since the test specific
operations depend on the test performed rather than the New and Dispose module, a
comparison between modules is meaningful even though comparisons between different test
types may not be. Note that the run time difference between the original and
boundary-tag modules on the same test is entirely due to the run times of New and
Dispose.

The stack-lifetime tests contain the fewest test—specific operations and are
considerably shorter than the other tests. The tests with other lifetime functions
contain more test-specific operations and exhibit a shape similar to the previous two
figures.

The boundary-tag module frequently maintains a smaller heap even though the two
additional boundary words are needed per block. Thus, programs using the boundary-tag
module are less likely to terminate from heap-stack collision. The boundary-tag module
executes faster even though it involves more computation to allocate a portion of a
larger block and to doubly link and order the free 1list.

The boundary-tag module”s performance can be explained by the "systematic”
memory-management strategy employed. The effects of the ordered free list, the
first-fit allocation, and the allocation of the lower portion of a free block ensure
that allocations are made as low as possible in memory; this results in a smaller heap
and in maximal reuse of free memory. The boundary tags permit a merge of adjacent free
blocks without a scan of the free 1list, and the resulting shorter free list permits a
faster scan, when necessary. Similar results are analyzed more fully by Shore [S77].

7. Future Directions
Fine Tuning

The boundary=~tag New and Dispose module shows improved performance in execution
time and free block count. However, the two boundary words per block sometimes can use
a significant proportion of total memory. This is true only when the heap contains
many small blocks. Can this overhead be reduced?

The current module optimizes execution time with the added boundary words;
however, much of the boundary-tag module”s improved performance can be attributed to
merged adjacent free blocks, the ordered free list and first-fit allocation. It may be
possible to modify or eliminate the boundary words with only a slight increase in
execution time.

To permit separate tests of each modification, the module should be revised in
stages that progressively simplify the structure of a heap block. First, remove the
upper boundary word. Without this boundary tag, the dispose operation must always scan
the free 1list. Second, remove the backward pointer and singly link the free list.
Now, the free list can be scanned only forward. Currently, Dispose scans the free list
from top to bottom 1in order to minimize the average depth of a scan; a block being
disposed would seem to be nearer the top of the heap (a test of this supposigion is

ATH SMIN TYISYd

IRERVEIEEN

nosT

g6 94

necessary, cf., [S77]). Finally, remove the lower boundary word. This lower boundary
word contains the actual size of the block which may be slightly larger than the
requested block. Remember that while a free block is being allocated if the upper
portion is too small to fit on the free 1list, the entire block 1is allocated.
Therefore, the elimination the lower boundary word is not recommended.

Alternately, other methods of allocating small size blocks could be explored.
Architectures which have large word sizes (32..64 bits) and restricted byte addressing
exhibit a greater memory-space overhead when small blocks are requested. One possible
method (described wusing a 16-bit architecture) allocates a larger block, e.g., 16
words, and allocates successive requests of one word from this same block; an
additional word in the block would "bit map” the allocated portions. When the block is
full, another l6-word block would be allocated. This method would require a separate
free 1list of these partially allocated blocks. This two-tier structure could be
considered for 2, 3,... word blocks, also. Such an arrangement of heap structure could
reduce memory-space overhead for small blocks while maintaining the advantages of
boundary tags. Other improvements in the boundary-tag module may be possible in a
different implementation environment.

Extensions

The boundary-tag module provides a fully general facility, permitting all typical
uses of memory management. The heap becomes a perfect place to store objects whose
size is run-time dependant.

The run—time system can make extensive use of the heap for I/0 buffers, queues,
etc. Small processor systems can use the heap for external code swapping instead of
using the traditional overlay scheme. Demand paging (with random access files) can be
used for virtual arrays and data base files.

The Pascal set type need not be restricted to the typical 64 or 256 elements.

Extensions to standard Pascal (i.e., dynamic arrays, strings, etc.) are easily
implemented. For example, an Allocate procedure has been written with which a program
can request any size block from the heap at run time. Allocate has been used to
implement dynamic arrays accessed via a pointer.

The boundary-tag module provides the programmer with a powerful and efficient heap
structure that not only implements standard Pascal effectively, but also permits
applications that extend Pascal”s scope.

Acknowledgment

I would like to thank William J. McIlvane and F. Garth Fletcher for their helpful
comments on drafts of this paper.

References

[AU77] Aho, Alfred V., and Ullman, Jeffery D., Principles of Compiler Design,
chapt. 10, Addison-Wesley, Reading, MA, 1977.
[DEC77] Microcomputer Handbook, Digital Equipment Corporation, Maynard, MA, 1977,
pp. BI-B5.
[DEC78] RT=-11 Advanced Programmer”s Guide, Digital Equipment Corporation, Maynard,
MA, 1978.
[ESI76] "ESI-Pascal Supplement to the User Manual and Report,” Electro-Scientific
Industries, 13900 NW Science Park Drive, Portland, OR, 1976, 1977.
[FL77] Fischer, Charles N., and LeBlanc, Richard J., "Run-Time Checking of Data
Access in Pascal-Like Languages,” in Lecture Notes in Computer Science,
Vol. 54, Springer-Verlag, New York, 1977, pp. 215-230.

[G76] Griffiths, M., "Run-Time Storage Management,” in Lecture Notes in Computer

Science, Vol. 21, Springer-Verlag, New York, 1976, pp. 195-221.

[H76] Hill, Ursula, "Special Run-Time Organization Techniques for Algol-68," in
Lecture Notes in Computer Science, Vol. 21, Springer-Verlag, New York, 1976,
Pp. 223-737. —_—
[HS76] Horowitz, Ellis, and Sahni, Sartaj, Fundamentals of Data Structures,
Computer Science Press, Woodland Hills, CA, 1976, pp. 142-155.
[HS78] Horowitz, Ellis, and Sahni, Sartaj, Fundamentals of Computer Algorithms,
Computer Science Press, Woodland Hills, CA, 1978.
[JW74] Jensen, Kathleen, and Wirth, Niklaus, Pascal User Manual and Report,
Springer-Verlag, New York, 1974, 1978. -
[K73] Knuth, D.E., The Art of Computer Programming, Vol. 1, 2nd ed.,
Addison-Wesley, Reading, MA, 1973, pp. 435-463. - -

[NAJNJ76] K.V. Nori, U. Amman, K. Jensen, H.H. Nageli, Ch. Jacobi, "The Pascal <P>
Compiler: Implementation Notes, Revised Edition,"” Eidgenossische
Technische, Hochschule, Zurich, 1976.

[OMS178] "OMSI-Pascal-l User”s Manual,” Oregon Minicomputer Software, Inc., 2340 SW

Canyon Road, Portland, OR 97201, 1978.

[S74] Shaw, Alan C., The Logical Design of Operating Systems, Prentice-Hall
Englewood Clitfs, NI, 1974, ppe T30-137. ’ ’

[S77] Shore, John E., "Anomalous Behavior of the Fifty-Percent Rule in Dynamic
Memory Allocation,” Com. ACM 20,11 (Nov. 1977), pp. 812-820.

[W76] Wirth, Niklaus, Algorithms + Data Structures = Programs, chapt. 4,
Prentice-Hall, Englewood Cliffs, NJ, 1976.

Appendix

Notes

—The Pascal code in Appendixes A and B closely mirrors the actual run—time 1library
sources which are in Macro-11 assembler code. The original New and Dispose Pascal
sources are translated from OMSI-Pascal”s run—time library.

—Extensions to standard Pascal are used.
(1) Pointer arithmetic is used where necessary. A pointer 1is evaluated as a
positive 16-bit 1integer, 1i.e., range 0..64K. Although addresses are actually in
bytes, word addressing is generally used. The comment, {"}, at the left margin marks
pointer arithmetic.
(2) The construct, "@"<identifier>, evaluates as the address of the storage location
where the named object, <identifier>, is stored. Those familiar with OMSI~Pascal
will recognize this extension. The comment, {@}, at the left margin marks this
usage.

=—In Appendix D, much of the documentation text has been removed. Most of the
information has been covered in the body of this paper.

——Persons wishing to install the boundary-tag module in their OMSI-Pascal should note
that file open code (in S3 or SUPOPN) uses storage on the heap without calling New.
This code should be changed so that storage is allocated by an explicit call to New.

06T N4 IS 6T# SMIN TVISYd

I9Yd

hs

it ot

QTH CMIN IWNCW

} scan”.next := Free;
-Appendix A—Original New and Dispose } Free := scan; {—1link to beginning—}
{@} scan := @Free; {— of free list—-}
type
blockptr = “block; {=—search free 1list to release blocks from heap—}
block = record while (scan”.next <> nil) do
next : blockptr; {=—link to next free block—} *} if ((scan”.next + scan-.next”.bsize) = Kore)
bsize : integer; {-—size in words of block—} “then {--release block and try again—}
filler : array [3..bsize] of word “s;§1n
end; ' Kore := scan”.next;
var scan”.next := scan”.next”.next;
" Free, {=—pointer to beginning of free list—} {@} scan := @Free
Kore : blockptr; {-—pointer to beginning of unused area—} end
else
function New (size{in words} : integer) : blockptr; scan := scan”.next
—calling sequence: P := New(slze)—} end
var end{Dispose};
" scan, lastscan : blockptr; -
i : integer; {
begin{New] { Appendix B--Boundary-Tag New and Dispose
scan := nil;
if ((Free <> nil) and (size >= 2{words})) const
“then {-—free 1ist 1s not empty—} alloc = true; {=-bit set—}
“begin {-—search for exact-fit—} freed = false; {-——bit clear—}
{e} lastscan := @Free; {--i.e., lastscan” = Free—} type
scan := Free; blockptr = “block;
while ((scan®.bsize <> size) and (scan <> nil)) do block = record
begin 1size : integer, {=—only bits<l..15>—}
lastscan := scan; ltag : boolean; {--only bit<0>—}
scan := scan”.next next : blockptr; {——up link by address—}
end prev : blockptr; {-—down link by address—}
end; filler: array [3..lsize] of word;
usize : Integer, {--only bits<l..15>—}
if ((scan <> nil) and (size >= 2{words})) utag : boolean {=—only bit<0>—}
“then {——free block found, unlink it from list—} end;
T Tastscan".next := scan”.next var -
else {-—no free block found or size is 1 word—} " Free, {——pointer to boundary block at bottom of heap—}
begin {-—extend heap for new block—} Kore: blockptr; {-——pointer to boundary block at top of heap—}
““scan := Kore;
{~} Kore := Kore + size; function New (size{in words} : integer) : blockptr;
if (Kore >= Stack Pointer) var
“then {-—collision with stack—} scan, remscan : blockptr;
fata@_gtror('ﬂeap overwriting Stack”) i : integer;
end;
- procedure initialize heap;
New := scan; {=—return address—} “begin {—only calTed once, to set up boundary blocks—}
{=-clear the new block=-} {~} Free := Kore + l{word};
for i:=size downto 1 do scan”.filler[i] := 0 Free“.lsize := 2{words}, Free“.ltag := alloc;
end[New}; Free“.next := Free;
Free“.prev := Free;
procedure Dispose (P : blockptr; size{in words} : integer); Free“.usize := 2{words}, Free“.utag := alloc;
Tvar {~} Kore := Kore + 4{words};
scan ¢ bloc?ptt; Kore®.lsize := 0 , Kore“.ltag := freed;
egin{Dispose end;
1f ((P < nil) and (size >= 2{words})) -
{=——no action for 1 word block—} begin{New}
then 1f (size < 2{words}) {=—a request of one word——}
begin “Tthen size := 2{words}; {==will return two words——}
scan := P; {-—set up free block—} —

scan”.bsize := size; scan := Free;

NI 43S

negT

I0Yd

199

if (Free = nil)
then {-—this is the first New call--}
T Initialize heap;
else {-—search free list for first-fit——}
repeat
scan := scan”.next
until ((scan = Free) or (scan”.lsize >= size));

1if (scan = Free)]
then {=—did not find a large enough free block=—}
begin {--must increase heap size——}

{~} scan := Kore + l{word};
{~} Kore := Kore + size + 2{words};

{=—stack is moved for some system calls—}

{~} if ((Stack <= Kore) and (Stack > Free))

“then {—collision with stack—}
fatal error(“Out of Memory”);

Kore“.lsize := 0, Kore".ltag := freed;
end

else if (scan".lsize >= (size + 2{words} + 2{words}))
“then {-—found a free block that is too large—}
begin {—split into remainder—}
{~} remscan := scan + size + 2{words};
remscan™.usize := scan“.usize - size - 2{words},
remscan”.utag := freed;
remscan”.lsize := remscan”.usize,
remscan”.ltag := remscan”.utag;

remscan”.next := scan”.next;
remscan”.prev := scan”.prev;

remscan”.next”.prev := remscan;
remscan”.prev-.next := remscan
end

else {=-found a free block just about the right size——}

begin {-—use the entire block—}
size := scan”.lsize;
scan”.next”.prev := scan”.prev;
scan”.prev”.next := scan”.next
end;

New := scan;

scan”.lsize := size, scan”.ltag := alloc;
scan”.usize := size, scan®.utag := alloc;
{=——clear the new block—}

for 1:=size downto 1 do scan”.filler[i] := 0

end{New};

procedure Dispose (P : blockptr);
—do not need size parameter because——}
{—boundary words contain actual size—}

var
T LA, UA, scan : blockptr;
begin{Dispose}

if ((P < Free) or (P > Kore)) {=-OMSI permits pointers—}

“then warning(“not a heap pointer”) {-— to non-heap objects—}

else if ((P <> nil) and (P".ltag <> freed))

"}

{==block better not be free already—}

then
begin

P".1tag := freed;

P~.utag := freed;

LA := P - 2{words} = LA".usize; {=—lower adjacent of P——}
UA :=P + P~.lsize + 2{words}; {=—upper adjacent of P—}

if (LA".utag = freed)
then {--merge P with LA—}

begin

__%K’.lsize := LA®.1size + P~.1lsize + 2{words};
LA%.usize := LA".lsize;
P := LA

end;

if (UA".1ltag = freed)
“then {-—decrement or merge?—-}
if (UA = Kore)
then {=-—decrement Kore—}
begin
1f (P = LA)
then {=—remove P from free list—}
begin
P .prev”.next := Free;
Free™.prev := P .prev
end;
Kore := P = 1l{word};
Kore®.1lsize := 0, Kore“.ltag := freed
end
else {-—merge P with UA—}
begin
if (P < LA)
“then {-—also link P to previous—}
begin
P7.prev := UA™.prev;
P".prev”.next := P
end;
P~.next := UA".next;
P .1size := P".lsize + UA~.lsize + 2{words};
P*.usize := P".lsize;
P~.next”.prev := P
end

else 1f (P <> LA)
then {—-must search to insert P in order—}
begin
scan := Free;

re geat

until (scan < P);
.next := scan”.next;
scan”.next = P;
P".prev := scan;
P~.next”.prev := P
end
end

end{Dispose};

scan := scan”.prev {=—search from top to bottom—}

6T# SMIN TYISYd

NAT NI L4 IS

95 39vd

{ }
}

{ Appendix C—R k on Error Handling

Error handling receives only brief mention since its implementation depends
on the facilities of the total Pascal system; however, a few problems with
mem%:{)management and pointers, in general, are worth consideration (cf.,
[FL .

Correct operation depends on the integrity of the information stored to
manage memory; a program that writes outside of an allocated block can corrupt
management information. To prevent corruption, bounds checking should be
incorporated in the Pascal implementation (bounds checking is available in
OMSI-Pascal V1.1). However, a few additional tests in the boundary~tag module
may provide information on the cause of a failure and possibly show how to
continue program execution.

During Dispose, a block”s upper and lower boundary words can be compared;
a difference 1indicates an out-of-bounds access. The size parameter, which
approximates the actual block size, can be used to examine adjacent blocks and
possibly to reconstruct the boundary words. In addition, since the free list is
ordered, the pointers can be checked for proper order. With a short free 1ist,

these tests would not incur a great time overhead. If the free-list links have -

been overwritten, the entire heap could be scanned by use of the size field in
the boundary words. Sometimes regeneration of the free-list 1links and
correction of mismatched boundary words may be possible; in most cases though,
little can be done, except to terminate program execution.

Dangling pointer references also pose a problem. Compiler generated code
passes the address of the block to be disposed and leaves the pointer to this
block unchanged. In other words, the pointer points to a free block giving the
program direct access to the free list. Dispose should be able to reference the
pointer so that its value can be set to nil. When there are multiple pointers
to the same block, however, the other pointers continue to reference the free
list, even though the disposed pointer may be set to nil. A solution requires
redesign of pointer implementation.

we we

Appendix D—Boundary-Tag New and Dispose, Macro-11
«TITLE NEWDIS : NEW&DISPOSE w/boundary tag
-IDENT /vO0101C/
.ENABL LC,REG
«REPT 0

Module Version : l.lc: 20-Jan-80 ; Tested : 26=Jan-80

Module Version : l.1b: 17-Nov=-79 ; Tested : 24=Nov-79
Module Version : 1.1 : 16-Mar-79 ; Tested : 30-Mar-79
Module Version : 1.0 : 03-0ct-78 ; Tested : 16=Oct-78

Branko J Gerovac

Eunice Kennedy Shriver Center
200 Trapelo Road

Waltham, Massachusetts 02154
(617) 893-3500 ext 157

+ENDR

we we

e we we

we

I

e We e We W We We We We We Wl Ve We e we We We We We We'we we We we we we

e

- e e @ W w e - e e ... e e e e®"®®®®®®e>=

«SBTTL Heap Initialization

Initag Version : 1.0 : 03-Oct-78

.PSECT $$$NEW ; 1.1
.GLOBL $FREE, $KORE s {# import global pointers #}

NTHEP: 3 proc init heap;
MOV RO,=(SP) s begin -
MOV @#$KORE ,RO B {# RO==$KORE #}{ $KORE is first of heap }
MOV #5.,(RO)+ H $FREE~.lsize:=2w , $FREE“.ltag:=alloc;
MoV RO, @#SFREE ; $FREE : =$KORE+1w
MOV RO, (RO) ; $FREE"~ .bot : =$FREE ;
MOV (RO)+, (RO)+ B SFREE”.top:=$FREE;
MOV #5.,(RO)+ B $FREE“.usize:=2w , $FREE“.utag:=alloc;
MOV RO, @#SKORE ; $KORE : =$KORE-+iw ;
CLR (RO) H $KORE~:=0;
MOV (SP)+,R0 ;
RTS PC ;3 end;

- e - e ... e e e ... e > " .- """ ®® == ®®® == =

«SBTTL $B70 : New with boundary tag

Newtag Version : l.lc: 20-Jan=-80 ; change in memory overflow test
Newtag Version : 1l.1b: 17-Nov-79 ; change in memory overflow test
——option call to debugger, Pascal V1.1

Newtag Version : 1 : 16=Mar=79 ; minor changes to improve speed
Newtag Version : 1.0 : 03-Oct-78

.
.

Calling Sequence

H NEW(P);
MOV SIZE,~-(SP) s even size in bytes
JSR PC, $B70 3
MOV (SP)+,P(Rx) ; register 5 or 6 offset
Stack Image during call :
size | <= return new_block address
PC_ret
RO_sav
Rl _sav
R2_sav
R3 sav } (= SP
«PSECT $$$NEW H 1.1
.ENABL LSB H 11.1

.GLOBL $B70, $NEW
.GLOBL $FREE, $KORE
.GLOBL ERRI.1
.MCALL .EXIT,.PRINT

{# export global procedure #}
{# import global pointers #}
{# import global conditional #} 1B
{# import system macros #}

e we wo oo

3 { for Pascal V1.1, debugger, set true } 1B
.IIF NDF,ERR1.1,ERR1.1=0; (undef(errl.l)|errl.l=false); : 1B

CTH# CMIN TTHACHA

“\aguaItaac

nenT

J9Yd

1S

$B70:
$NEW:

we

2$:
3$:

we

418:

.IF NE, ERR1.1
.GLOBL RTERR
.GLOBL COROVR

.ENDC

MOV
MOV
MOV
MOV
MOV
CMP
BHIS
MOV

MOV
MOV

BNE
JSR
BR

MOV

cMp
BEQ
cMP
BHIS
BR

MOV
TST
MOV
TST
ADD
MoV
BCS
CMP
BHI
CcMP
BHI

CLR
BR

MOV
ADD
CMP
BLO
MoV
MOV
SuUB
SUB
ADD
MOV
SUB
MOV
MOV

RO,=(SP)
R1,=(SP)
R2,-(SP)
R3,=(SP)
10.(SP),RO
RO, #4.

1$

#4.,RO

@#$FREE,R1
R1,R3

2%
PC, INTHEP
4%

(R1),R1

R1,R3

43
~2.(R1),RO
5%

38

@#$KORE,R1
(R1L)+
R1,R2
(R2)+
RO,R2
R2,@#$SKORE
OUTMEM
SP,R2

4%

SP, @#$FREE
OUTMEM

(R2)
7%

#8.,R2
RO,R2
-(R1),R2
6$
(R1)+,R2
R2,R3
RO,R3
#4.,R3
R1,R2
R3, (R2)
R3,R2
R3,=2.(R2)
(R1)+,R3

e we wo we

WO Wl we We WE Ve We WO W We W WO Ls We We we We We WO We W We Wwe WO Lo WS We Ve We W We Ve We W WS We e e We YO we We We VO We We We e we VO We Ve We we we

#1f (errl.1<0) #then
{# import global proc #}
{# import global label #}
#endif

proc NEW(size:int):pointer;
begin

{# save registers #}
{# RO==gize #}
if size < 2w
then
size:=2w
endif;
{# Rl==gcan #}
{# R3==$FREE #}
if (scan:=$FREE)=nil
then
init heap;
goto alloc_from $KORE
endif;
repeat
scan := scan”.next
until

scan=$FREE
or
scan”.sized=size

)
if scan=$FREE
then allocate from $KORE :

scan:=$KORE+1lw;
{# R2==$KORE #}

if carry set($KORE:=$KORE+size+2w)
or ((SP<=$KORE)
and
(SP>$FREE))
then error(out of memory)
endif;
SKORE" :=0;

else if scan”.size >= sizet2wi2w
then
alloc_lower_portion of scanblock :

{# R3==gcan”.size-size=2w #}
{# R2==remscan #}
remscan”.usize:=scan”.size-size-2w;

remscan”.lsize:=remscan”.usize;
{# R3==scan”.next #

!B
!B
IB
!B

B
1B
B

1Cc
B
!B
!B
1B
!B

11.1
11.1
1.1
11.1

6$:

7%

.

8¢:

we

MOV
MOV
CMP
MOV
MOV
BR

MOV
MOV
MOV
MOV

MOV
INC
MOV
ADD
DEC
MOV
ccc
ROR

CLR
SOB

MOV
MOV
MOV
MOV
RTS

JIF N,
JSR
WORD

. IFF
+PRINT
-EXIT

ERRO:

Ve we e we Ve Ve we we e we we we we

.ASCIZ
<EVEN
«ENDC

+DSABL

«SBTTL

Distag Version :
Distag Version :

R3,(R2)+ 3 remscan”.next:=scan”.next;
(R1),(R2) H remscan”.prev:=scan”.prev;
=(R1),=(R2) H
R2,2.(R3) H remscan”.next”.prev:=remscan;
R2,@2.(R2) H remscan”.prev”.next:=remscan;
7$ H
H else allocate entire scanblock :
(R1)+,RO H size:=scan”.size; 11.1
(R1),@.(R1) H scan”.prev”.next:=scan”.next;
(R1),R2 H
2.(R1),2.(R2) H scan”.next”.previ=scan”.prev;
H endif;
3
R1,10.(SP) H New:=scan;
RO H
RO,=-(R1) H scan”.lsize:=size, scan”.ltag:=alloc;
(R1)+,R1 H
R1 H
RO, (R1) H scan”.usize:=size, scan”.utag:=alloc;
H {# clear carry et al #}
RO H
H for i:=size in words downto 1 do
-(R1) H scan”[1]:=0
RO,8$ H endfor;
’
(SP)+,R3 H {# pop registers #}
(SP)+,R2 s
(SP)+,R1 H
(SP)+,R0 ;
PC ;s end;
’
ERR1.1 s #if (errl.1<>0) #then 1B
R5,RTERR H rterr(corovr) 1B
COROVR ; 1B
5 felse 'B
ERRO H print(“out of memory”)
H
’
/?Paslib=F=-NEW=Out of Memory/
; fendif B
LSB s 11.1

$B72 : Dispose with boundary tag

1.1 : 16=Mar-79
1.0 :

03-0ct-78

Calling Sequence :

3 DISPOSE(P);

MOV P(Rx),=(SP)
MOV SIZE,RO
JSR PC,$B72

; check for pointer not to heap

; register 5 or 6 offset
even size in bytes

we we

N2HT “NIAWILA IS 6T4 QMIN Twacwd

8¢ A9vd

we we we we ve we

we we

we

we

we

we

we

21§

we

Stack Image during call :

RO | size |

JPSECT $$$DIS
.ENABL LSB

.GLOBL $B72,$DISPO
.GLOBL $FREE, $KORE
.GLOBL WRND1
.MCALL .PRINT

.IIF NDF,WRND1,WRND1=1

H
$B72:

$DISPO:

MoV R1,=(SP)
MOV R2,-(SP)
MoV 6.(SP),R1
BEQ 27%

.IF NE, WRND1l

CMP R1,@#$FREE
BLO NOHEAP

CMP R1,@#$KORE
BHI NOHEAP
+ENDC

BIT #1.,-(R1)
BEQ 27%

DEC (R1)

MoV R1,RO

MOV (R1)+,R2
ADD R1,R2

DEC (R2)+

BIT #1.,=-(RO)
BNE 21$

SUB (RO),RO
ADD -(R1),=(RO)
ADD #4.,(RO)
ADD (R1)+,R1
Mov (RO)+, (R1)
MOV RO,R1

BIT #1.,(R2)
BNE 258

CMP R2,@#$KORE
BNE 23$

cMP R1,RO

BNE 22$

MOV (R1),@2.(R1)
MOV (R1),R2

MoV 2.(R1),2.(R2)

we ws we we

.

We e We we We Wa we We WE We Lo We We Ve We We Ve Ve Ve we We e We Ve We we Ve Ve we Wi W We We Ve We Vo we We we we we

block addr,
— PC ret
Rl _sav
R2 sav

| <— spP

e we

{# export global procedure #}
{# import global pointers #}
{# import global conditional #}
{# import system macro #}

(undef(warn_dl)|warn_dl=true);

proc DISPOSE(P:pointer);
begin

{# Rl==P #}
if P=nil then goto return endif;

#if (warn d1<>0) #then
1f P<$FREE
or
P>$KORE
then warn(not a heap ptr) endif;
#endif

{ use physical size }
if P~.ltag=free then goto return endif;

P".1ltag:=free;
{# RO==LA==lower_adjacent(P) #}

P*.utag:=free;
{# R2==UA==upper_adjacent(P) #}
1f LA".utag=free
then
{ merge(LA,P) }

LA*.1size:=LA".1size+P".1size+2w;

LA®.usize:=LA".1size;
P:=LA
endif;

if UA".ltag=free
then
1f UA=$KORE
then { merge(P,$KORE) }
if P=LA
then
P*.prev”.next:=P".next;

P~.next”.prev:=P".prev;

1.1
1.1
1.1
1.1
1.1
1.1

11.1

228:

248:

258:

26$:

273:

we we

NOHEAP:

WRN1:

we

’
CLR -(R1) H (P=1w)~:=0; 1.1
MOV R1,@#$KORE H $XORE: =P-1w;
BR 278 ;
B e¢lse { merge(P,UA) }
CMP R1,RO H if POLA
BEQ 248 B then
MOV 4.(R2),2.(R1) B P~.prev:=UA”.prev;
MOV R1,@2.(R1) : P~ .prev”.next: =P
H andif;
MOV 2.(R2),(R1) H 2" .next:=UA".next;
ADD (R2),-(R1) H
ADD #4.,(R1) H P~.1size:=P~.1size+UA".1size+2w;
ADD (R2)+,R2 H
MOV (R1)+,(R2) H P".usize:=P~.1size;
Mo (R1),R2 s
MOV R1,2.(R2) H P”.next”.prev:=P;
BR 27% :
H endif;
CMP R1,RO H else 1f POLA
BEQ 273 : chen { scan and insert(P) }
MOV @#$FREE,R2 B scan:=$FREE; {# R2==gcan f}
H repeat
MOV 2./R2),R2 H scan:=scan”.prev
CMP R2,R1 H untii
BHIS 26$ s (scan<P);
MoV (R2),(RY) H P".next:=scan”.nexc;
MOV R1,(R2) B scan”.next:=P;
MOV R2,2.(R1) H P”.previ=scan;
MoV (R1),R2 ;
MOV R1,2.(R2) N P".next”.prev:=P;
H andif;
MOV (SP)+,R2 3 return @
MOV (SP)+,R1 s
MoV (SP)+, (SP) ;
RTS PC ;3 end;
H
’
.IF NE, WRND1 H
’
»FRINT WREN1 H
BR 27% H
’
+A5CIZ /?Paslib-W~DISPOSE-not a heap pointer/ ; 11.1
-EVEN
.ENDC
.DSABL LSB

endif;

11.1
.1
il.1
11.1
ii.l

11.1
1.1

1.1

e we we

LAV o S R W B o

nNocT

Ny

cr

EDB - SENTRET

PO
Os

I

UNIVERSITETET | OSLO

PHONE (47) - 2 - 46 68 00

BLINDERN. Jyupe 18, 1980

STBOKS 1059 - BLINDERN
LO 3 - NORWAY

Mr. Richard J. Cichelli

ANPA

1350 Sullivan Trail,

P.0. Box 598, Easton

Pennsylvania 18042 -

Dear Mr. Cichelli,

wWe are of course happy to submit the QPP article for
publication in Pascal News. (Actually, being a member of PUG
myself, I should have thought of sending you the article
earlier.)

Enclosed is a copy of the SIGPIAN article together with the

_code implementing the external procedures on the Nord.

incerelx,

Terj; Nobd t

A Simple Extension of Pascal
for Quasi-~Parallel Processing

Terje Noodt
" Dag Belsnes
Computing Center
University of Oslo

1 Introduction

The University of Oslo has for a number of years been engaged
in the development of systems for data communications. The
main work investments have been the design of suitable
protocols, and the implementation of these in network node
machines. Most of the node machines have been of the Nord
family, produced by the Norwegian manufacturer Norsk Data A.S.

There exists no suitable language on the Nord for programming
real-time stand-alone systems. Therefore, all programming has
been done in assembly code. Even though we have felt the need
for a high-level language tool, the cost of developing and/or
implementing a suitable language was thought to be high.

Some time ago, we looked into the possibility of using the
existing Pascal <compiler for our purposes. It proved that a
simple but usable language tool could be made from Pascal very
cheaply. We have called this extension of Pascal for QPP
(Quasi-Parallel Pascal). This article describes QPP and its
implementation.

2 Basic primitives

The present section first discusses how to establish a
suitable process concept. Then the sequencing of processes is
treated.

2.1 Processes

The most important task in the design of QPP was to establish
a process concept without deviating from Standard Pascal. In
this context, a process is a sequential program together with
a set of data on which the program operates. We call this set
of data the attributes of the process.

In several respects, the Pascal procedure has the
characteristics of a process. We have managed to use the
procedure as a process, by overcoming the following two
obstacles:

1. It 1is necessary that several processes can be executed
simultaneously =~ that is, the processes must be able to
have active phases in quasi-~parallel.

6T# SHIN TYISYd

09671 “¥IINWALA3S

Q0 9vd

2. It must be possible for processes to exchange
information -~ that 1is, one process must be able to
access the attributes of another process.

To transform the procedure concept into a process, point 1.
requires that the attributes of a "process~procedure" must be
retained while it has a passive phase. That 1is, a
"process—procedure" cannot execute on the stack top as usual,
but must have some permanent space in memory.

Point 2. requires some form of looking "into" a procedure. In
Pascal, a similar mechanism is given by the record concept.
Consider the following program fragment:

type
PROCESS = record
X, y: T
end;
PTRPROCESS = %tPROCESS;
var

p: PTRPROCESS;

procedure processprogram;
var

LOCALS: PROCESS;
begin

with LOCALS do

begin

nd

F

e

en

Within the with statement in processprogram the attributes x
and y may be accessed directly.

A process is created by calling the function
function NEWPROCESS (procedure PROG);

This function allocates data space for the procedure PROG on
the heap. The function value is a pointer to the reCO{d
containing the process attributes. In reality, the pointer is
a reference to the inside of the procedure object. The Pascal
system, however, treats the pointer as if it were generated by
the NEW function.

The main program (or another process) may access the
attributes through the pointer generated by NEWPROCESS.

The following program fragment shows how a process is
generated, and its attributes accessed from the outside:

p := NEWPROCESS (processprogram) ;

o« s e

o e e

.

pl.y

with é¢ do
1if x = . . .

Several processes of the same type may be generated as
follows:

var
pl, p2: PTRPROCESS;

o e e

pl
p2

Z 2

EWPROCESS (processprogram) ;
EWPROCESS (processprogranm) ;

Processes of different types may be defined by declaring
different PROCESS types, or by defining a variant part for
each type of process within PROCESS.

Thus, a usable process concept has been established by

1. Implementation of the function NEWPROCESS. In Nord-10
Pascal this is an assembly routine of 15 instructions.

2. Requiring that the programmer stick to the following
rules:

a. Define a record type PROCESS which contains those
variables of a process which are to be visible from
outside the process.

b. Declare a variable LOCALS of type PROCESS as the
first variable within the process procedure.

c. Surround the statements of the procedure by
with LOCALS do begin . . . end

2.2 Sequencing

It must be possible to start and stop the execution of any
process, in order that operations occur in the seqguence
required by the actual application. For this purpose, two
operations are implemented (these are modelled after the
corresponding primitives in Simula 67):

procedure RESUME (p: PTRPROCESS);
This procedure transfers control from the caller to the
process given by the actual parameter p. The execution of p

is resumed at the place where the process last became
passive. The caller becomes passive.

procedure DETACH;

5T4 SMIN T¥ISHd

NQ[T WA IAIC

NYd

13

When a process p calls DETACH, it becomes passive, Control
goes to the last process x which called RESUME(p).

The following method has been used to implement RESUME and
DETACH efficiently and with ease.

A Pascal procedure object will normally contain one location
for the return address (RA), and one location for the dynamic
link (DL). ©Let CP be a pointer to the currently active
process, and consider the main program to be a process with
the name MAIN.

The operation RESUME(p) leaves the current program address in
CP.RA, and the address of the currently active object (which
may be CP itself or an ordinary pr ocedure called by CP) in
CP.DL. p.DL becomes the new active object, and execution is
resumed at p.RA.

The DETACH operation is restricted to be used to give control
back to the main program. It leaves the current program
address in CP.RA, and the address of the currently active
object in CP.DL. MAIN.DL becomes the new active object, and
execution is resumed at MAIN.RA.

The DL 1location of a process is zero while the process is
executing. Thus, CP is found by following the DL chain until
DL equals zero. The following function is provided to enable
the Pascal program to find CP:

function THISPROCESS: PTRPROCESS;
2.3 Summary

With a very small effort a primitive but usable process
concept has been implemented within Pascal. On the Nord-19,
the routines NEWPROCESS, RESUME, DETACH and THISPROCESS
consist of ca 60 assembly instructions. No changes have been
made to the Pascal compiler or the Pascal run~time library.
Although Pascal may operate differently on other computers,
the authors believe that our method of implementation may be
adapted to most Pascal systems.

On the Nord-18, an ordinary procedure called from a process
will execute in the memory space allocated to that process.
This requires that the process object be large enough to
accommodate such procedure calls. We have solved this problem
by 1letting NEWPROCESS have one extra parameter, giving the
largest necessary space for the process.

3 Process Scheduling

Section 2 defines and indicates how to implement a process
concept and the basic primitives for process sequencing. To
program a real-time system or a simulation model, some

additional concepts are needed. Also in this case SIMULA 67 is
used as a source of inspiration. The new programming platform
contains:) k

* a system time concept.

* a “sequencing set" containing the processes scheduled for
future execution. '

* primitives for process scheduling.

In this section we show how these concepts may be implemented
in Standard Pascal, using the basic primitives of section 2.

3.1 Simulated time, Real time

;n the case of simulations, the system time is introduced as
in SIMULA, but in a real~time environment the system time
corresponds closely to the time defined by the computer ‘s
real-time clock. The system time is represented by a variable
in the main program:

SYSTIME:real;

The exegution of an active phase of a process, called an
event, is regarded as not consuming system time. That is,
SYSTIME is only updated between the events. How SYSTIME is
updated is described below.

3.2 The sequencing set
A process may be scheduled for the execution of a future
event. An event is associated with a system time, indicating
when the event will occur. This time is represented by a
variable local to each process:

EVTIME:real;

All scheduled processes are collected in a set, the sequencing
set, sorted on the EVTIME variable. The sequencing set is
represented by a main program variable:

SQS : PTRPROCESS;
which points to the first member of the set, and a variable
. NEXTPR: PTRPROCESS;
1nteach process pointing to the next element of the sequencing
set,

When an act?ve phase of a process ends, the first process P in
the S0S will be the next process to execute an event. The
value of SYSTIME is changed to EVTIME of P, If simulated time

is used, the simulation is carried on by resuming the process
P.

In a real-time system the new value of SYSTIME is compared
with the computer s clock. If the difference is positive, the
Pascal program makes a monitor call to release the use of the

N36T “MIWAL4 IS 6T4# SHIN TYISYd

NVd

29

CPU for the given amount of time. On return from the monitor
call the procedure RESUME(P) is called.

3.3 Process scheduling

The following procedures define a small but convenient set of
operations for discrete event scheduling. All procedures are
written in Standard Pascal. The amount of Pascal code is about
40 lines. For a detailed description see the appendix.
procedure PASSIVATE;
The caller process ends its active phase, and the next
event 1is given by the first element of the SQS. SYSTIME is
updated, and in the real-time case the program may request
a pause before the next process is resumed.
procedure HOLD(del:real);

Equivalent to PASSIVATE, except that the caller is put into
the SQS with an event time equal to SYSTIME+del.

procedure ACTIVATE (p:PTRPROCES; del:real);

The process p 1is scheduled to have an event at the time
SYSTIME+del.

procedure CANCEL(p:PTRPROCESS) ;

If the process p is scheduled to have an event, this event
is cancelled. That is, p is removed from the SQS.

3.4 Summary

Based on the basic primitives discussed in section 2, we have
defined a set of additional primitives suitable for discrete
event scheduling. These primitives are implemented by Standard
Pascal procedures and data structures. The system time concept
is introduced in two variations: simulated time and real time.
In the implementation the difference between the two time
concepts is only visible as a small modification of the
procedure PASSIVATE. An important consequence is that it is
possible to test out a program by simulation and afterwards
use the same program as a part of a real time system.

4 Concluding remarks

As an example, the Bounded Buffer problem has been programmed
in the appendix.

At the University of Oslo, QPP has been used to program the
UNINETT node. UNINETT 1is a computer network of the central
computers of all universities in Norway, plus several other
governmental computers. Each institution has a node machine

which hooks one or more computers into the network. At the
University of Oslo, this node is a Nord-1@. The size of the
UNINETT node program is about 2200 lines of QPP code. In the
development of this program, keeping to the restrictions of
QPP was neither hampering nor the cause for any serious
problems. The UNINETT project has shown that a considerable
amount of development time may be gained by going from
assembly code to a "primitive" high-level language tool. In
cases where a full-fledged 1language tailored to the actual
application (such as Concurrent Pascal) 1is not available,
there seems to be good reason to select a solution such as
ours.

The UNINETT node program was developed on a Nord-10 running
the MOSS operating system. The first step in testing the
program was to run it under MOSS as a simulation, using
simulated time. Then the program was run in real time under
MOSS. Finally, the program was transported to the UNINETT node
machine, where it runs in real time. The node machine has a
rudimentary operating system only, which supports stand-alone
systems of this kind. The small size of the code which
implements the QPP process primitives, has allowed us to
easily make different versions to adapt to the environment in
which the UNINETT program was to be run. It has proved very
valuable to run the program as a simulation before it was run
in real time. Development time was also saved by testing under
an operating system with wutilities such as interactive
debugging, a file system etc. The errors remaining after
transporting the program to the node machine have been few.

The reader who compares QPP with for instance Concurrent
Pascal, will remark that QPP contains no primitives for the
protection of shared data. Such a mechanism could be useful in
QPP, but is not strictly necessary. The reason 1is that
processes run in quasi-parallel rather than true parallel. An
active phase of a process is regarded to take zero time, and
thus is an indivisible operation. Time increases only when
control is transferred from one process to another. It is the
programmer who decides at which points in the program this may
occur.

Appendix

This appendix contains a simple example of the use of QPP. A
producer process generates characters which are read by a
consumer process. The rate of production/consumption is up to
the processes themselves, and in order to remove some of the
time dependency between the processes, they are connected by a
bounded buffer. However, since the buffer may get full (or
empty) there 1is still need for some synchronization of the
processes. This 1is achieved by the use of the ACTIVATE and
PASSIVATE primitives.

6T# SMIAN TYISYd

0RRT “NIAWTI|4IS

AYd

€9

The program also contains a complete implementation of the
concepts defined in section 3. Names corresponding to concepts
and primitives in QPP are written in capital letters, while
small 1letters are wused for variables particular for the
example.

program prodcon;
const
buflength =
buflgml = 15
type

16;

(* definition of bounded ring buffer *)

bufindex = @..buflgml;
buf=record
p,c:bufindex;
txt:packed array[bufindex] of char;
end;
ptrbuf=1buf;

(* definition of the data structure of the processes *)

PTRPROCESS=1PROCESS;
processtype=(producer ,consumer) ;
PROCESS=record
NEXTPR:PTRPROCESS; EVTIME:real; INSQS:boolean;
case processtype of
producer : (outbuf:ptrbuf; outcha:char);
consumer : (inbuf :ptrbuf; incha :char);
end;

var
SQS:PTRPROCESS; SYSTIME:real;
ptrpro,ptrcon:PTRPROCESS ;

(** basic primitives * %)

function NEWP (procedure p; siz:integer) :PTRPROCESS; extern;
function THISP:PTRPROCESS; extern;

procedure RESUME (p:PTRPROCESS); extern;

procedure DETACH; extern;

(** sequencing routines * %)
procedure INTOSQS (p:PTRPROCESS) ;
var rp,rpo:PTRPROCESS;
begin
with pt do
begin
rp:=SQS; rpo:=nil;
while (rp<>nil) and (rp1T.EVTIME<KEVTIME) do
begin rpo:=rp; rp:=rp?.NEXTPR end;
if rpo=nil then SQS:=p else rpo?.NEXTPR:=p;
NEXTPR:=rp; INSQS:=true
end;
end;

procedure CANCEL (p:PTRPROCESS) ;
var rp,rpo:PTRPROCESS;

begin

with p? do

if INSQS then
begin

INSQS:=false; rp:=SQS; rpo:=nil;
yhile rp<>p do begin rpo:=rp; rp:=rp}.NEXTPR end;
if rpo=nil then SQS:=rp%.NEXTPR else rpo?.NEXTPR:=rp?.NEXTPR;
end;
end;
procedure PASSIVATE;
var p:PTRPROCESS;
begin
p:=SQS; if p=nil then DETACH else SYSTIME:=pt.EVTIME;
(* if realtime then monitor call PAUSE (SYSTIME~CLOCK) *)

SQS:=p?.NEXTPR; p%?.INSQS:=false; RESUME (p)
end;

procedure HOLD(del:real);
var p:PTRPROCESS;
begin p:=THISP; p{.EVTIME:=SYSTIME+del; INTOSQS (p); PASSIVATE end;

procedure ACTIVATE (p:PTRPROCESS; del:real);
begin CANCEL(p); p?.EVTIME:=SYSTIME+del; INTOSQS (p) end;

AT# SMIN TYISYd

N96T “MIINILA IS

ELLE

(** buffer routines * %)

function bufempty(bp:ptrbuf) :boolean;
begin bufempty:=(bp?.p=bpf.c) end;
function buffull (bp:ptrbuf):boolean;
begin buffull:=(((bp}.p+1l) mod buflength)=bpt.c) end;
function putchar (bp:ptrbuf; ch:char) :boolean;
begin with bp?t do
if ((p+l) mod buflength)=c then putchar:=false else
begin txt[p]:=ch; p:=(p+l) mod buflength; putchar:=true
end;
function getchar (bp:ptrbuf; var ch:char) :boolean;
begin with bp? do
if p=c then getchar:=false else
begin ch:=txt[c]; c:=(c+l) mod buflength; getchar:=true
end;

(** processes * k)

procedure pproducer ;
var LOCALS:PROCESS;
begin DETACH;
with LOCALS do
while true do
begin
(* produce next character *)
if bufempty(outbuf) then ACTIVATE (ptrcon,0);
while not putchar (outbuf,outcha) do PASSIVATE
end
end;

procedure pconsumer ;
var LOCALS:PROCESS;
begin DETACH;
with LOCALS do
while true do
begin
if buffull (inbuf) then ACTIVATE (ptrpro,0);
while not getchar (inbuf,incha) do PASSIVATE;
(* consume character *)
end
end;

(** main program *%)

begin
ptrpro:=NEWP (pproducer ,100); ptrcon:=NEWP (pconsumer ,100);
new(ptrprof.outbuf); ptrcon?t.inbuf:=ptrprot.outbuf;
RESUME (ptrpro)

end.

end;

end;

BTLLHLLLL222222222222223222223322222932229332TTIULLIIILLLIIBIBTIIIBILY

QP

INTO TREATING QUASI-PARA

(IN THIS VERSION THE R
CONTROL TO THE MAIN P

PROGRAMMER: T. NOODT,
DATE: JUNE, 1980

TIIBTIXLIILIIBIIBIILRIL%

NOTE:

PROGRAM COUNTER
LINK REGISTER
POST~INDEX REGIST
PRE-~INDEX REGISTE
TEMPORARY REGISTE
ACCUMULATOR
EXTENDED ACCUMULA
2. THE B REGISTER CONTA
OBJECT + 200 OCTAL.
3. WHEN A ROUTINE IS CA
(B) + (A) + N, WHERE
4. A FUNCTION RESULT IS

OrHWXO oY

%
%
%
%
%
%
%
3
%
%
%
%
%
%
%
3
%
%
%
%
%
%
%
%
%
3
%
%
%
%

TIITIILLIITIITIVLILLIB39%

RETB= -2 3
RETP= -1 3
STLK=) %
DYLK= 1 3
3
LSC= 2 3
PARAM= 4 3
SAVB= 10 3
SAVL= 11
SAVX= 12
) 9BEG
) 9LIB NEWP
) 9ENT NEWP SPESH
) 9EXT 5PNEW
3
$ FUNCTION NEWP (PROCEDURE
%
3 GENERATE NEW PROCESS
3 P IS THE PROCESS COD
3 SIZE IS THE OBJECT S
3
NEWP= *
SWAP SA DB
RADD SA DB
STA SAVB,B

COPY SL DA

P

RUN~TIME ROUTINES TO TRICK THE NORD PASCAL SYSTEM

LLEL PROCESSES

ESTRICTION THAT DETACH MAY RELINQUISH
ROGRAM ONLY, HAS BEEN REMOVED)

COMPUTING CENTER, UNIV. OF OSLO

$222229232T3TLILTTILTIIIILBIILLRIBRLR%%

1. THE NORD-10/100 REGISTERS ARE:

ER
R
R

TOR
INS A POINTER TO THE CURRENTLY ACTIVE

LLED, THE PARAMETERS ARE FOUND AT ADDRESS
N=4 FOR FUNCTIONS, N=3 FOR PROCEDURES.
TRANSFERRED IN A.

2232IILIILTIILIVLIILLILLILIILIILRIIL32R3%%

RETURN B

RETURN P

STATIC LINK

DYNAMIC LINK

POINTS "INWARD" IN PROCESSES
LOCAL SEQUENCE CONTROL

RELATIVE LOCATION OF PARAMETERS
SAVE LOCATIONS

P; SIZE:INTEGER) :PTRPROCESS;

E
IZE

% B IS NOW TOP OF STACK
% SAVE POINTER TO CALLER OBJECT

%
%
%
%
%
%
%
%
%
%
%
%
%

T4 QPIN THICH

0087 “YAGKIAL4IS

69 A9vd

STA SAVL,B % SAVE POINT OF CALL
copY SB DX
LDA PARAM+3,B % GET SIZE
ARA 2 % ADD SPACE FOR RETB AND RETP
JPL I (5PNEW % CALL NEW TO GET OBJECT
LDX 2,B % OBJECT POINTER
AAX 2 % ADJUST POINTER PAST RETB AND RETP
LDA PARAM+1,B % P°S STATIC LINK
STA STLK, X
LDA SAVL,B
STA RETP, X
LDA SAVB, B
STA RETB, X
STZ DYLK, X $ INDICATE ACTIVE PROCESS
LDT PARAM+2,B $ P’S CODE
AAT 4 % SKIP FIRST 4 INSTRUCTIONS OF P
% (THEY DO NON~RELEVANT CHECKS)
CoPY SX DA
ARA 3 % "RECORD" POINTER
% (REFERS TO FIRST LOCAL VARIABLE)
COPY SA DB
AAB 175 % STACK POINTER
CoPY ST DP % EXECUTE PROCESS
) FILL % (GENERATE LITERALS)
5PESH= * % IGNORE THE USUAL STACK-HEAP OVERFLOW CHECK
EXIT
) 9END
) 9BEG
) 9LIB THISP
) 9ENT THISP
%
% FUNCTION THISP: PTRPROCESS;
3
THISP= *
copY SB DX
LDA DYLK-200,X % FOLLOW DYNAMIC LINK
JAZ *43 % UNTIL IT IS ZERO (=PROCESS FOUND)
copPY SA DX
JMp *-3
CcoPY SX DA
ARA -175 % ADJUST POINTER BY ~208+3
EXIT
) 9END
) 9BEG
) 9LIB RESUME
) 9ENT RESUME
3
% PROCEDURE RESUME (PTR: PTRPROCESS);
%
RESUME= *
copy SA DX
LDX 3,X,B % PTR
ARX -3 % TOP OF OBJECT
copy SL DA
STA RETP, X % RETURN POINT

COPY SB DA

STA RETB, X % RETURN OBJECT
LDA DYLK, X % ACTIVE OBJECT INSIDE PROCESS -
CcopPY SA DB s
STZ DYLK, X % INDICATE ACTIVE PROCESS o
LDA LSC, X =
COPY SA Dp % JUMP =
g‘:
) 9END &
) 9BEG pay
) 9LIB DETACH “
) 9ENT DETACH
3
% FUNCTION DETACH: PTRPROCESS;
3
DETACH= *
COPY SB DX
LDA DYLK~200,X % FOLLOW DYNAMIC LINK
JAZ *43 % UNTIL PROCESS OBJECT IS FOUND
COPY SA DX
JMP *-3
AAX ~200 % ADJUST X TO TOP OF OBJECT o
coPY SB DA T
STA DYLK, X % SET "INWARD" DYNAMIC LINK ="
CoPY SL DA =
STA LSC, X % SAVE PROGRAM POINT =
LDA RETB, X % CALLER’S OBJECT =
copy SA DB
LDT RETP, X &=
CoPY SX DA o
AAA 3 % PROCESS PTR (FUNCTION RESULT) O
COPY ST DP % RETURN TO CALLER
) 9END
) 9BEG
)9LIB DISPP
) 9ENT DISPP
) 9EXT 5PDSP
3
% PROCEDURE DISPP(VAR PTR: PTRPROCESS);
3
3 DISPOSE PROCESS
2
3 MAY BE INCLUDED IF DYNAMIC DEALLOCATION OF PROCESSES IS =
z WANTED, AND THE PASCAL SYSTEM HAS THE DISPOSE PRIMITIVE. =5
DISPP= * 74
copPyY Sa DX o
LDX 3,X,B % GET POINTER TO PTR
LDA 9,X % GET PTR
STZ 8,X $ PTR := NIL
AAA -5 % ADJUST TO TOP OF ALLOCATED OBJECT
sax 177
RADD SB DX
STA g,x % TRANSFER PARAMETER TO DISPOSE
JMP I (5PDSP % CALL DISPOSE
) FILL
) 9END

) 9EOF

Open Forum For Members

Lawrence Berkeley Laboratory

University of California
Berkeley, California 94720
Telephone 415/486-4000
FTS: 451-4000

Pascal Users Group

c/o Rick Shaw

DEC

5775 Peachtree Dunwoody Road
Atlanta, GA 30342

Hi,

I understand that the Pascal Users Group is interested in putting
together a package of software tools. We of the Software Tools
Users Group are doing much the same thing. We have some 50-60
tools (editing, text manipulation, formatting, sorting, command
line interpreter, etc.) which simulate the Unix environment and
originated from the little book Software Tools by Brian Kernighan
and P. J. Plauger. The tools are currently written in ratfor, a
portable Fortran-preprocessor language, and running on everything
from an 8080 to a Cray. Our users group has a mailing list of
almost 700 and holds meetings twice a year.

There have been several people in the group interested in
translating the tools into Pascal. One man has already hand-coded
a few of them in Pascal. Another group in England has used a
mechanical translator written in Snobol to transfer the tools
into BCPL. I think a similar translator could be developed to
translate into Pascal. If people in your group were interested in
our tools, perhaps we ocould work together to build such a
translator.

I've enclosed an LBL Programmers Manual to give you an idea of
what we have available. Other sites also have nice
tools--University of Arizona and Georgia Tech. have good packages
too. I've also sent along our newsletters to give you an idea of
what the users group is doing.

Even if translation of our tools into Pascal doesn't seem

feasible, do let me know if you think there might be other ways
our groups could work together.

Sincerely,

D\L\"ij\ﬁ M‘M‘W

Debbie Scherrer
Co-ordinator, Software Tools
Users Group

the Time-Miszhine Lid.

HNN 111 pun-omn

Dear Editor,

I am happy to have(at last) PUGN #15.

It arrived only in July, 1980, but better late than never. 2 Questions:

1) What happened to #14? I've never seen it.
2) How do I renew my membership for the next year (starting June-1980)?
PUG #15 does not have any "all-purpose coupons'. I am very interested

in PUGN, just let me know how to pay for it.

Now, for the PASCAL issues. We use the FORMAT prgram published in PUGN #13,
and all our sources have to pass it,so we achieve uniform layouts.

There were several problems setting up FORMAT,some of them were real bugs.
But now it is well and running with all the options operative. I must mention
its portability. We moved it from RSX-11M to UNIX within half an hour,just
by changing the file handling part.

We do almost all our development in PASCAL and have several utilities

to offer to anyone interested:
1) File copying between CP/M and UCSD in both directions
2) File copying between RSX-11M and UNIX in both directions

3) The debugged FORMAT on RSX and on UNIX
4

—

File copying from an IBM diskette to UCSD

5) A big (CMD) disk driver for a Z80 under UCSD

By the way ,UCSD software seems very unportable,due to lots of non-
standard tricks which are heavily used.

Best regards o j
J

\

Gershon Shamay

Mgr. Software Development

Eder St. 49a, P.O.B. 72, Haifa, Israel. Phone: 04-246033.
Telex 46400 BXHA IL, For No. 8351

5T# SMAN TYISYd

NRQT “HI9KAL43S

39Yd

{9

SDC INTEGRATED SERVICES. INC. System
Deveiopment
Corporation

PASCAL USER'S GROUP

c/o Rick Shaw

Digital Equipment Corporation
5775 Peachtree Dunwoody Road
Atlanta, Georgia 30342

Dear Mr. Shaw:

I maintain PASCAL 6000 Version 2 and Version 3 at NASA, Langley Research
Center, Hampton, Virginia. I have made several modifications to our com-
pilers to enhance the usability of the compilers without changing the
language itself. I am writing to describe briefly one such modification
because it is easily implemented and may be useful to other installations.
This modification introduces a new option to the compiler which displays
the locations of the fields within a record when invoked. Following

each record type declaration, the field identifiers with their relative
locations in the record are given. The following is an example of the
output generated by our compiler with the option invoked:

3 REC = PACKED RECGRD

4 FIELDOL: CHARS

5 FIELDN2: CHARS

6 FIELD3: INTZGERS

7 FIELD4t PACKED ARRAY[1..200]1 OF BOCOLEAN;S
8

END?S
FIELD1 02<539,54> FIELD2 0t< 5, 0>
FIELD3 1:1<59, 0> FIELDY 2:<53, > - 5i< L40>
9
10 VAR
11 VREC: RRECORD
12 STYORAGE1L1? INTEGERS
13 STORAGEZ23 CHAR3
14 STOPAGE 3t BO0LEANS
15 STORPAGEL: REALS
16 END?
STORAGE1 0:<538, 0> STORAGE?2 13< 5, 0>
STORAGE3 21< 0, 0> STORAGES 3:<53, 0>

The formats used above have the following meanings:

W:<B1,B2> Indicates the field is in word W relative to
the start of the record and uses bits Bl
through B2.

W1<Bl,>-W2:<,B2> Indicates the field is longer than 1 word

beginning at word W1, bit position Bl and

going through word W2 bit position B2.

This type of information can be very helpful when interfacing with other
languages such as COMPASS or FORTRAN and also when trying to minimize the
size of a record by rearrangement of its fields.

Sincerely,

Ricky W. Butler
Systems Programming
SDC-Integrated Services, Inc.

for

NASA, Langley Research Center
Hampton, Virginia
MS 157B

RWB/ghf
P.S. To obtain more information or the update mods for this option contact:

Rudeen S. Smith

MS 125A

NASA/Langley Research Center
Hampton, Virginia 23665
(804) 827-2886

hT# SMIN 1YISYd

EN

noeT “NA9WILd

89 2A9vd

THE UNIVERSITY OF KANSAS LAWRENCE, KANSAS 66045

Department of Computer Science
114 Strong Hall
913 864-4482

Rick Shaw

Pascal User's Group

Digital Equipment Corporation
5775 Peachtree Dunwoody Road
Atlanta, Georgia 30342

Dear Rick:

Since the last time I wrote to PUGN (PUGN #11 - February 1978), many
things have happened both here at KU and with Pascal on Honeywell/GCOS.
1'11 start off with the nmew happenings with Honeywell Pascal (under GCOS
not MULTICS).

Pascal version 7 is available and is finally complete (up to now the
PROGRAM statement was not recognized). This version has much better error
messages and is very stable (at the moment there are only a very few gnown
bugs and those are minor). It fully implements the Pascal described in
Jensen and Wirth (except for file of file). There are two major extensions:
and "else" clause in the case statement and the variant record, and a
relaxation of the type checking when applied to variables and con§tants of
"packed array of char" (the first elements of each are made to align and)
the shorter is logically blank extended for compares and assignments; §tr1ngs
can be read using read). Pascal is available through Honeywell marketing,
but was written and is maintained at the University of Waterloo. Anyone
interested in obtaining a copy of the documentation should write to:

The Oread Bookstore / Kansas Union / The University of Kansas / Lawrence,
Kansas 66045 and request a copy of "Pascal on the Honeywell Computer
System" ($3.00 plus $1.00 postage).

I have been promoting Pascal in the Honeywell Large System Users .
Association (HLSUA). I am the chairman of the Scientific Language committee
and have given 3 talks about Pascal over the last 2 years; one a tuto¥ial
about Pascal, and the other 2 comparisons of Pascal compile and run times
versus FORTRAN, B and C (unfortunately Pascal came out on the sh?rt en? most
of the time). I will include a copy of the *comparison' paper with this
letter.

Pascal has been in use at the University of Kansas since 1976. Almost
all the undergraduate computer science classes use Pascal., We teach a

university wide service course which serves as an introduction to programming

to over 900 students a semester. For the past two years some portion (at
least 1/3) of these students were taught Pascal ‘(the others were ta?ght
FORTRAN). This coming Fall semester, the Pascal portion will be slightly
greater than a half. Myself, another graduate student, and a faculty member

have put together a brochure which we are distributing to the faculty of
other schools within the university who use our introductory class. The
purpose of the brochure is to introduce the other faculty members to Pascal
and to explain why we (CS) want to teach Pascal, instead of FORTRAN, in the
introductory course. After sending the brochure, we meet with the faculty
from the other department or school and answer any questions they want to
ask and further expand upon the reasons for teaching Pascal outlined in the
brochure, (Within the CS department, our little group is known as the "Pascal
Road Show",) Thus far, we have only met with faculty from the School of
Engineering. We have had some success. If they can find 1 more credit hour
in the majors involved, they have tenatively agreed to allow their students
to take Pascal as their first language if we also offer a 1 hour course for
their students in which they would learn FORTRAN. We currently have plans
to meet with the faculties of Business and Journalism next fall.

If any other schools have done this, I would very much appreciate
hearing from you. If anyone is interested in our brochure or in talking
about our experiences, I1'd be happy to do whatever I can.,

Other Pascal news from KU: we have a student oriented Pascal syntax
checker (written in B using YACC - probably not portable except to another
Honeywell). The syntax checker runs much faster than the compiler and
generates much more explanative error messages. It explicitly looks for
many of the mistakes commonly made by novice programmers and diagnoses them.
There should be a paper written on this project (by Jim Hoch and Uwe Pleban)
in the upcoming months. I have ported the Path Pascal compiler (written
at the University of Illinois and acquired through Dr, Edwin Foudriat at
NASA-Langly) to the Honeywell and am currently porting a newer version of
the compiler (we have to change 112 out of 7562 lines in the source). We
have almost all of the programs that have appeared in PUGN up and running,
most of which required only minor changes. (The portability of Pascal and
its availability on micro computers have been the most important arguments
to others in convincing them of the value of Pascal, let's keep it standard!)

I'd like to thank everyone at PUG central (Andy, Rick, and all the others
whom I don't know) for the great job you're doing. PUGN is a tremendous
help in promoting Pascal and the standards efforts by PUG-USA and Tony
Addyman with BSI are extremely important to the vitality Pascal currently
enjoys. Again, thanks.

Sincerely,

b,

Gregory F. Wetzel
Assistant Instructor

N85T “H3AWIIL3S 6T# SMIN TYISYd

JYd

69

5. More generally, packed arrays should be permitted to be
used anywhere that unpacked arrays are permitted, unless
there is a very powerful reason to forbid that use. One
place where there is a real problem is in the use of

Dr. A. M. Addyman, a component of a packed array as a variable argument to

Dept. of Computer Science, a procedure. That is the only place where packed arrays
University of Manchester, arelimited, at present. If more limitations are introduced,
oOxford Road, the result, as Sale suggests, will be non-standard
Manchester M13 9PL compilers which support conformant packed arrays. This
England will have a detrimental effect on portability.

My reasoning may appear highly dependent on the perceived
need for easy string manipulation facilities. But articles
too numerous to mention have keen appearing on the topic of
This is a comment on the proposed Pascal standard. strings, and the reason is that this is a problem which is
encountered by virtually every applications programmer. So
please - let's not go halfway on the conformant array problem.

Dear Dr. Addyman:

It is good to see that conformant array parameters are to be
included in the Pascal standard in a neat and carefully
considered manner. This will prevent the proliferation of non- Thank you for considering my comments.
standard implementations (an alarming thought) .

I do wish to take issue with the proposal to exclude the

Yours truly,
"packed" attribute from the conformant array schema (Pascal

News 17, p. 54). My reasoning is this.]
. . . el Jeollt
1. A problem with Pascal perceived by a number of applications ,
programmers is the difficulty of manipulating strings and
of formatting text output (and interpreting printable input). Jack Dodds

2. The logical response is to make available a library written
in standard Pascal which will perform formatting and string
manipulation. (Some can be found in Pascal News 17.)

3. If conformant packed arrays are not permitted, such a library
must use standard length strings, longer than the longest actual
string which is to be processed. Alternatively strings must be

I I processed in unpacked arrays. In either case, there is a wastage

1 ! of storage space, which iz a significant problem for some users.

!l][jr]t(?(:‘ Or, space can be allocated dynamically in chunks for strings.

(700 LMITED |

cc A. J. Sale
J. Miner
Pascal News

This complicates the library routines, resulting in a wastage
of program storage, again a significant problem.

=

The problems cited by A.J. Sale which lead him to recommend
against packed conformant arrays are really no more serious
than the implementation of packed arrays themselves. When
referencing any packed array, information on the bit-length
25 HOWDEN ROAD, of the component type is always needed. When the packed array

[t is a conformant packed array of conformant packed arrays, the
MIR SA

PO ey 751.8055 bit length will have to be passed by the calling procedure,

TELEX 6 et rather than being a constant. Since the array dimensions already
A oRoNTO must be passed, this is hardly a serious problem!

Enertec inc. 19 JENKINS AVE, LANSDALE, PA. 19446
Phone: (215) - 362-0966

Pascal Users! Group
c?o Rick Shaw

Digital Equipment Corporation
5775 Peachtree Dunwoody Road
Atlanta, Georgia 30342

Dear Rick:

This letter is to inform you and all PUG members of the intro-
duction of a Pascal-based real-time applications programming language
called Micro Concurrent Pascal (mCP). mCP was developed and has been
used by ENERTEC over the past two years. ENERTEC is a small systems
software house which uses and develops Pascal-based software tools for
our programming needs.

Micro Concurrent Pascal was developed from Per Brinch Hansen's
Concurrent Pascal; however mCP is a language in its own right. The
mCP compiler is a stand-alone program and interpreter/kernels presently
exist for the Z80 and 8080/8085 microprocessors.

Brinch Hansen's Concurrent Pascal extends Pascal with the real-
time programming constructs called processes, monitors and classes.
In addition to the process, monitor and class constructs, Micro Con-
current Pascal contains the device monitor construct.

A device monitor is a variant of a monitor which permits the writing
of device drivers directly in mCP, Each device driver is associated
with a specific interrupt. Processes call device monitors to do I/O,

The DOIO statement, permissable only in a device monitor, blocks the
process which ‘called the device driver until the associated interrupt
occurs, Other statements restricted to device monitors allow an mC
program to access absolute hardware addresses and perform bit manip-
ulations on data. Among other ENERTEC additions are:

a drop-to~ assembly language capability
separate data types for 8§ and 12 bit integers
string manipulation intrinsic routines
hexadecimal constants

Additionally, P-code output by the Micro Concurrent Pascal compiler is
approximately one third the size of the P-code output by Brinch Hansen's
Concurrent Pascal compiler,

I've enclosed a technical article which walks through the pro-
gramming of a simple real-time ogerating system in Micro Concurrent
Pascal. Anyone interested in mCP is invited to call or write to
ENERTEC,

Keep up the great work with Pascal!

Sincerely,

A ,) ;
e AT T

7
Cynthia Fulton

CF/cc
enc,

PASCAL USERS' GROUP

Gentlemen:

I am a deputy district attorney in a rural area at the foot
of the Rocky Mountains. The Institute for Law and Research,
Washington, D.C., has implemented a Prosecution Management
Information System (PROMIS) in COBOL for Big Machines and for
minicomputers.

I am interested in adapting at least part of that system to
microcomputers, especially in view of the availability of 8" hard
disc drives. Pascal may be the ideal language for it. Can any of
your readers provide insights into the process of creating data
base management systems with Pascal, and with practical, if not
optimum, algorithms for using hard disc storage? 1I'm fluent in
MBASIC and the CP/M systems, but Pascal is new to me. I would
appreciate hearing from anyone interested in the PROMIS project,
as well as anyone who can recommend books or articles for the
study of Pascal. The Pascal available to me presently is the UCSD
Pascal for microcomputers.

Finally, I would be interested in comments concerning the
relative strengths and weaknesses of the Microcomputer COBOLs for
data base management vis-a-vis Pascal (assuming a Pascal
implementation which includes random disc files, and reasonable
interactive facilities for on-line terminal I/0).

Thank you. I look forward to seeing my first copy of the

Sir\cere/ly,

newsletter,

Canon City, CO 81212
(303) 275-1097

NRAT “NIGUWILd3IS 6T# SMIAN TYISYd

Ny

T

DataMed

R ESEARTCH

The Pascal User's Group, c/o Rick Shaw
Digital Equipment Corporation

5775 Peachtree Dunwoody Road

Atlanta, Georgia 30342

Dear Rick:

I am enclosing with this letter notices of two new projects of which | am very ex-
cited: the UCSD Pascal Users' Group and SOFTDOC, a medical software network featuring
Pascal as the preferred language.

Fundamentally, the reason behind the UCSD users' group is that to date, it is the
best Pascal system for microcomputers, trading somewhat slower execution for speedy disk
access (three times faster than CP/M), a superb development and operating system, and
compact code, allowing macro programs in mini memories. As we all recognize, because
Pascal is so close to the machine, there is a great need to develop a library of commonly
used routines so we don't have to continually "reinvent the wheel" each time we program.
I and my friends have been using the UCSD system a great deal, and a fair amount of
software is beginning to be exchanged -- enough to fill up two volumes. | have included
the two Pascal formatters/prettyprinters published in the Pascal News No. 13, as well, and
plan to enter the other superb Pascal software tools you publish as time permits.

We microcomputer users receive little benefit from software offered on 9-track tapes
(I suspect the tape drive costs more than my entire system); so machine-readable software
must be shared on floppy disks. Because UCSD has been so careful (almost paranoid) about
preserving the integrity of their RT-Ill-like disk and directory format, it turns out that
anyone running UCSD Pascal on a system with access to an 8-inch floppy drive can share
software inexpensively, regardless of the host CPU.

| do have a question about software published in the Pascal News. Programs pub-
lished in magazines or journals are generally considered to be in the public domain.
Would the members of the Pascal User's Group have any objection to my offering, as inex-
pensively as possible, the software published in the Pascal News to anyone who can utilize
an 8-inch floppy disk? Of course, the source will be acknowleged, and | am including suf-
ficient documentation on the disk so that users need not refer elsewhere to be able to use
the software. | have made the minimal changes necessary for the programs to run on a
UCSD system. | would like specifically to inquire whether there is an objection to my
making available the Validation Suite published in No. 6.

SOFTDOC is more ambitious than the users group project. Medical computing has
been at an impasse almost since its inception: medically trained people tend not fo use
tools developed by nonmedical personnel, including programmers, because these tools rarely
fit into the pecularities of medical thinking and practice. So there is a history of failure,
and not a little bitterness on the part of computer professionals. Few accepted uses of
computers in the health sciences exist outside of the laboratory.

As you can see in the enclosed material, the aim of SOFTDOC is to form a net-
work of health care professionals, via a floppy-disk journal, so thq1.f'ogefher we can deyel-
op medical applications for computers that are truly valued by clinicians. | am informing
the members of the PUG of SOFTDOC because 'JCSD Pascal is the preferred language for
programs submitted to SOFTDOC for disk publication. In oddiﬁ.on, | bel‘le.ve ﬂ:ne enormous
potential of Pascal for medical computing (exclusive of applic‘ctlons requiring sizeable
mathematical power and speed) has been insufficiently emphasized.

| would be interested in hearing from anyone with further ideas on sharing micro-
computer soffwore inexpensively, especially in the area of medical computing. Let me
know, too, if you would like to work out some sort of reciprocal sharing arrangement.
P'erho.ps I would send the PUG a copy of each disk as it was released, and you would pub-
lish items of interest to the broader PUG.

Sincerely,

Jim Gagn&, M.D.
President

SOFTDOC is a new service recently announced by Datamed Research to aid
health professionals who are interested in utilizing computer systems in their prac-
tices.

Small computers have the potential to serve a myriad of needs in health care
practices. Such applications as obtaining the routine portions of histories directly
from patients, patient education, and limited assistance with diagnosis or treatment
are readily achievable. To date, most authors of medical computer programs have not
taken into account the true needs of health care professionals, and the programs have
not been utilized by those they were designed to serve. Effective medical computing
requires a network of health professionals writing programs and sharing their software.

In the past fifteen years, over a hundred health professional office business sys-
tems have reached the market. While the majority have failed, a few have trans-
formed the business office info a streamlined, highly accurate system. Unfortunately
for the small office, the cost of the better systems usually exceeds $30,000. Now,
however, with the advent of quality hardware systems for well under $10,000, new,
less expensive medical business packages are being released. The difficulty is to lo-
cate software of quality amid a rain of inadequate programs.

SOFTDOC will support the emergence of high-quality, low-cost medical comput-
ing in the following manner:

1) We are now issuing a call for health-related software to be published in a
quarterly machine-readable software journal.

2) The journal will also contain in-depth user reviews of both SOFTDOC and
commercial software, so that together we can determine just which programs are the
most effective and why.

3) Datamed Research will collect and evaluate vendor's descriptions of commer-
cial software. In addition, user evaluations of software will be collated and summar-
ized. Our findings will be published semiannually in the SOFTDOC journal. Vendors
and users who participate in the evaluation will also receive a summary of the find-
ings. Because to date the focus of software products for health professionals has been
the business office, our initial concentration will be in this area.

The preferred medium of SOFTDOC is IBM-compatible floppy disks; for the con-
venience of those without 8-inch floppy drives, it will also be issued in printed form.
Material on a disk may be submitted to SOFTDOC for inclusion in the first issue un-
til May 1, 1980; all programs must be in source code form and contain adequate doc-
umentation. Publication will take place on June |, 1980, and quarterly thereafter.
Subscriptions will cost $55 per year, or $18 per individual diskette. Those who donate
software, reviews or articles will receive a one-issue credit per item published.

Subscribers must indicate which they prefer: 8-inch, single-density, single-sided,
IBM-compatible floppy disk available in CP/M or UCSD Pascal format (specify) or hard
copy. We would like to find someone who can copy the material on 5-1/2 inch disk-
ettes for distribution in that format. However, these are not available at the present.

If you are interested in promoting valid medical uses for microcomputers, we in-
vite you to send us programs you have written. Your software will be given the wid-
est possible distribution. Together, we may change the long overdue promise of medical
computing to a reality.

A New, Minimal-Cost Software Club for Users of UCSD Pascal
Introduction.
The UCSD Pascal language system is one of the most sophisticated microcomputer

software systems available today. Because of the ease with which one can write and
maintain high quality programs of most types, from systems software to business appli-

2103 Greenspring Dr. Timonium, Md. (301) 252-1454
21093

cations to games, it promises to be the vanguard of an enormous interest in Pascal in
the coming decade. Already a number of other Pascal implementations have appeared for ?giﬁ?n
microprocessors, though none so complete. 4

UCSD Pascal compiles its programs to P-code, designed for a hypothetical 16-bit
stack machine that must be emulated in software on most microprocessors. As a result,
once the P-code interpreter has been installed, programs written in UCSD Pascal may be
run on any microprocessor without modification. Even the disk formats are the same,

24-June-1980

aYGNETRUIN

except for the minifloppies used for the Apple, North Star, or TRS-80. So disk soft-
ware in either source or object form may be freely shared among users of such diverse
machines as a PDP-11 or an 8080.

The Pascal Users Group.

It would seem natural for a large users group to arise to share software. To
date, however, only the original Pascal Users Group ("PUG") serves this function. Pri-
marily, they support the standard language based on the Jensen and Wirth Pascal User
Manual and Report and report on available Pascal implementations and programmer oppor-
tunities. Only secondarily does the PUG disseminate software (based on Jensen and
Wirth Pascal), although since 1978 the PUG has published several superb "software
tools". The major difficulty with the PUG newsletter is that it is offered only on
paper; any machine-readable software is offered on 9-track tapes, which are not sup-
ported by the majority of microcomputers. So a microcomputer user must type the soft-
ware into the machine on his/her own.

A UCSD Pascal Users Group on machine-readable media.

Datamed Research is announcing the formation of a UCSD Pascal users' group. It
will take a form very similar to the highly respected CP/M Users Group: all offerings
will be on 8-inch, single density, IBM-compatible soft-sectored floppies, offered vir-
tually at cost ($10 per disk). Software will be donated by interested users. Software
donors will receive a free disk volume of their choice in acknowledgement of their do-
nation. For software to be accepted for distribution it MUST come with adequate docu-
mentation on the disk. Further, with rare exceptions it must be supplied in source code
to allow other users to adapt it to their systems.

Potential sources of Pascal software abound; by no means must one donate only ori-
ginal work. There is a mountain of public-domain Basic software that is easily adapted
to Pascal. 1In the process, one can usually spruce up the program a good deal, because
Pascal is so much easier to work with than Basic. It will be important, in addition,
for the users to begin a library of Pascal procedures and functions to handle the more
common programming problems. For example, we need a set of mathematical functions for
complex variables, statistical functions, and basic business software support (routines
to translate integers into dollars and cents and vice versa) to realize the full power
of the language.

You can find out more about the present status of the users group by sending a
self-addressed, stamped envelope to the following address:

DATAMED RESEARCH
1433 Roscomare Road
Los Angeles, CA 90024

Alternatively, 8-inch floppies can be ordered at $10 per volume; there are two vol-
umes available at the present time. Because the BIOS for the 512-byte sectors is writ-—
ten for Digital Research's CP/M-based macroassembler, the second volume contains both a
CP/M- and a UCSD-format disk (though if you prefer, both disks can be of the same type;
the volume is of use primarily to those who have both CP/M and the UCSD system, however)
and costs $20. California residents must add 6% sales tax. Be sure to specify UCSD or
CP/M format. -

Pascal User's Group

c/o Rick Shaw

Digital Equipment Corp
5775 Peachtree Dunwoody Rd
Atlanta, GA 30342

Dear Rick:

Thanks for all your work to help keep the lines of communication
open between all us Pascal user's. It's good to hear that all
the moving and setup is now complete.

I am currently using Pascal in developing small real-time process
control systems based around Z80 micros. At present I am using
Pascal/Z running under CP/M and MP/M although I am also interested
in finding more out about using a concurrent Pascal compiler for
the same application. Also I use UCSD Pascal for other development
on the side although I am disappointed at Pascal/Z incompatability
with the UCSD Pascal. May the standard come soon.

I would very much like to hear from others in the Baltimore-Wash-
ington-Philadelphia area using Pascal/Z and/or doing real-time
multi-task applications with Pascal in order to swap stories.
Also would like to borrow if possible any of issues 1..8 of PN

to look through or copy from someone close by.

Thank you.

Sincerely,

Dound W Eelbr

David McKibbin

c/o Sygnetron

2103 Greenspring Drive
Timonium, MD 21093

2233223332 2222222222222222222222233
Pascal Standards

Pascal Standard: Progress Report

by Jim Miner (1980-07-01)

A serious disagreement over conformant array parameters is the only major
remaining obstgcle to obtaining an ISO standard. Hopefglly both sides will
quickly resolve this impasse in a friendly and dlplomatlg way, because there
is a real possibility that one or more national groups will be compelled by
time constraints to break with the international effort and seek to obtain

their own standard.

RECENT EVENTS

Voting on DP 7185

The latest draft standard ("DP 7185") was published %n.Pasca} News #l§ and
in SIGPLAN Notices (April 1980). Votes cast by specific national bodies on
this draft are as follows.

Votes on DP 7185

Approval .
Approval with comments Disapproval
Finland Australia ** Canada
Hungary Czechoslovakia * Germany
Italy Denmark * Japan
Romania * France U.S.A.
Sweden Netherlands
U.K.
* "Observer" member -- vote is advisory.

*% Australia has become a "Principal™ member since
this vote.

Working Group 4 Meeting

The comments accompanying the votes revealed several technical inédequacies as
well as some issues on which there is disagreement. Tgny Addyman”s report
"The Pascal Standard: Progress and Problems" (below) discusses several of
these issues.

i 3 i ! England during June in
The ISO Working Group on Pascal (WG4) met in Manchester
an effort to rgsolve these issues and to prepare a ge?ond Draft Proposal.
(See Pascal News #17, pages 83-84, regarding the origins of WG4.) Attendees

were:

Pierre Maurice (France)

Jim Miner (U.S.A.)

Kohei Noshita (Japan)

Bill Price (U.S.A.)

Helmut Sandmayr (Switzerland)
Karl-Heinz Sarges (Germany)
Barry Smith (U.S.A.)

Alain Tisserant (France)
David Williams (Canada)

Tony Addyman (U.K.)

Burkhard Austermuehl (Germany)
Albrecht Biedl (Germany)

Coen Bron (Netherlands)

Joe Cointment (U.S.A.)
Christian Craff (France)
Jacques Farré (France)

Charles Haynes (U.S.A.)

Ruth Higgins (U.S.A.)

Mike Istinger (Germany)

JPC Meeting

A few days after the Manchester meeting, the U.S.A. committee (JPC) met in
Portland Oregon. Out of that meeting came the memos from David Jones to WG4
and to the National Bureau of Standards which are reproduced below.

THE PROBLEM

As Tony”s article points out, the most difficult problem which the standard
now faces is the disagreement over "conformant array parameters". It has been
clear to many of us who are deeply involved in the standardization work for
some time that this topic could give us much trouble. The extent of the
present difficulty became more obvious at the Working Group 4 meeting in

June. No conclusion was reached by WG4 regarding conformant array parameters.

The papers by Tony Addyman and David Jones, together with Arthur Sale”’s

article in Pascal News #17 (pages 54-56), provide much insight into the
nature of the disagreement.

In favor of conformant arrays

The capability to allow formal array parameters to have "adjustable" index
ranges is deemed necessary for the construction of libraries of separately
compiled procedures, especially numerical routines. It is argued that failure
to standardize now on the form of such a capability will make future
standardization impractical due to many incompatible extensions which will be
made to provide the capability.

Based on statements made in the WG4 meeting, the following member bodies are

likely to vote "No" on a Draft Proposal which does not contain a conformant
array feature: Germany, Netherlands, U.K.

Against conformant arrays

Those opposing the inclusion of conformant arrays in the standard argue that
the proposal is technically flawed and as a result that its inclusion in the
draft will delay the entire standard. (The attachment to David Jones” memo to
Working Group 4 contains a technical assessment of the existing proposal.) It
is also argued that conformant arrays are not needed more than other
extensions which have not been included in the draft proposal.

Based on statements made in the WG4 meeting, member bodies likely to vote "No"
if conformant arrays remain are Canada, Japan, U.S.A.

Variations on the theme

Some member bodies have expressed a preference for generalizations of the
conformant array feature; Germany, for example, voted "No" partly because
value and packed conformant arrays are not allowed.

The U.S.A., which has expressed opposition to conformant arrays on several
occasions, proposed a compromise in its vote. The compromise would make
conformant arrays optional for an implementation, but with the requirement
that any such capability supported by an implementation have the syntax and
semantics specified in the standard. Several members of WG4 expressed dislike
of this proposal.

CONCLUSION

The standard has been stalled by the disagreement over conformant array
parameters. In order to obtain an ISO standard, it is necessary that a
compromise of some kind be reached. At this time it is hard to predict what
the nature of that compromise will be.

1.

N

w
.

The Pascal Standard : Progress and Problems,
May, 1980

A. M. Addyman

University of Manchester

Introduction

Within the International Standards Organization (ISO), there is
a work item which is to result in the production of a standard for
the programming language Pascal. This work began in ISO in October 1978
as the result of a proposal from the United Kingdom. Work in the
United Kingdom began early in 1977. At the time of writing this report,
a ballot is taking place within ISO on the acceptability of the first
Draft Proposal for the Pascal standard. This report, written immediately
after the April 1980 meeting of the U.S. Joint Pascal Committee (X3J9),
contains a summary of the substantial progress made to date and
discusses the few remaining problems which stand in the way of inter-
national agreement.

Progress

There is now agreement on the details of all the main areas,
although in one or two areas the wording is being improved or drafting
errors are being corrected. The areas in which agreement has been
reached include:

lexical issues,

scope rules,

type rules,

the syntax and semantics of the statements and declarationms,
almost all of the input and output facilities.

Indeed, since there is agreement on so much, it would be better to devote
space to the consideration of those issues which have yet to be resolved.
Before doing so it should be noted that there is agreement that a
standard is needed without delay. This attitude has helped to resolve
minor differences of view, since neither party has wanted to risk the
standard on such issues. ’

Problems

The outstanding problems will be divided into two categories -
minor and major. The major problems are the ones which could substantially
delay the production of the standard. The category into which a problem
has been placed is necessarily a matter of personal judgement.

3.1 Minor Problems

3.1.1 Alternative Lexical Tokens

The issue is simply that (.and.) should be accepted as alternatives
for[and] . There are strong feelings both for and against this. The
strongest opposition appears to be from the U.K. The probably outcome
will be acceptance of the alternative tokens.

3.1.2 String Truncation on writing

This is a request which involves a change from the current de facto
definition. Its advocates cite efficiency, utility and frequent violation
of the de facto definition as justification for the change. Opponents
argue that
(a) this is a change and consequently must be rejected, and

(b) that a truncated representation of the array cannot in any way
represent the array.

The possible outcome is unclear, but will undoubtedly be influenced by
the U.S.A. position on the major problem (see later).

3.1.3 Tag-fields
There are three loosely related problems in this area:
(a) a change to prohibit use of tag-fields as var-parameters
(b) a relaxation of the syntax to replace "type" by "type-identifier"
(c) a change which would disallow the creation of tag-less variants

Each of these is a change to the de facto definition and as such
provoke opposition.

The first is proposed in the interests of promoting the implementation

of certain checks desired by the Draft Proposal. It will probably be
accepted.

The second change is a change to the syntax to eliminate one of
the circumstances in which a type-identifier is necessary amd a type
definition is unacceptable. The change was strongly opposed at the
Pascal Experts meeting in Turin. I expect this opposition to continue..

The third change is proposed on the grounds that its only uses are
in implementation dependent '"dirty tricks". While this is untrue, the
wording of the Draft Proposal suggests that an implementation which
performs checks in this ares will have to provide a tag-field if the
programmer does not. The only justification for this feature which is
within the proposed standard is associated with the saving of storage
space for variables. Since a large number of implementations incorporate
this restriction, which is aimed at improving security, there is a
possibility that it will be accepted.

NORT “YIAKRALATS T4 SHIN T4ISYd

anvd

SL

3.1.4 New and Dispose

There is a form of these standard procedures which may be used to
reduce the storage requirements of a program. The use of this feature
may lead to errors which are difficult for the programmer to detect,
furthermore an implementation can detect such errors only by using
additional stomge! There is pressure to have this form of new and dispose
removed.

Given the increasing usage of Pascal on microcomputers it is likely
that the definition of new will be unchanged. There is a much stronger
case for changing dispose since most implementations maintain enough
information to ensure the security of the heap. The final irony is that
the Draft Proposal identifies two error conditions which can only be
detected by maintaining enough information to make this form of dispose
redundant.

3.1.5 The Rest

There are a number of minor problems which have been raised by
various parties and subsequently dropped e.g. the U.K. Pascal group has
expressed a desire to remove pack, unpack and page from the language;
other European groups have requested extensions to the case-statement
and changes to the syntax of a block etc. There is a danger that
decisions to make changes in any of the areas cited above may provoke
more requests.

3.2 The Major Problem

3.2.1 Introduction

There appears to be only one substantial problem which may prevent
agreement being reached on a Pascal standard. This is the problem of
adjustable array parameters.

In the de facto definition of Pascal, a parameter of a procedure
must have a specific type which in the case of an array will include a
specification of the bounds of the array. This is viewed by many
people as an unacceptable restriction in a language that is being
proposed for international standardisation. As a result of the comments
received on the document ISO/TC97/SC5 N462, the U.K. Pascal group resolved
to introduce into the draft a minimal facility which would address the
problem. The U.K. solution provided for var-parameters but not value
parameters and also excluded packed arrays. The proposal from the U.K.
has received objections on two counts:

(a) it is a change to the language - in particular, more work should
be done on the details of such a feature before it is added to the
language.

(b) the feature is too restrictive - value parameters and/or packed
arrays should also be allowed.

To clarify matters the arguments which support the three positions will
be presented separately.

32.2 1In favour of the Draft Proposal

1. There is great demand for the feature to be added to the language,
and those making the demands have not specified any particular syntax
or semantics. Those supporting the addition include Prof. Hoare and
Prof. Wirth.

2. In the interests of portability the feature should be required in
any implementation of a Pascal processor.

3. There are no technical difficulties with implementing the feature
in the Draft Proposal since all the "run-time" operations that are
required already exist.

4, Requiring value adjustable array parameters has an impact on the
procedure calling mechanism - the amount of space required by a
procedure cannot always be determined at compile-time. There is concern
that there may be existing implementations which rely on such a
determination at compile-time and which would therefore be destroyed

by the introduction of value adjustable array parameters.

5. Requiring packed adjustable array parameters places increased over-
heads on an implementation which packs multidimensional arrays. Such
overheads may result in a reduction in the extent to which a packing
request is heeded.

6. If action is not taken at this time a number of vendors will surely
introduce incompatible extensions to fulfill this obvious need. Such
action would effectively prevent future standardisation of this feature.

7. Of all the requests for extensions received during the comment
period on ISO/TC97/SC5 N462, this is the only one which adds to the
functionality of the language. All the other requests addressed
issues of convenience and/or efficiency.

3.2.3 1In favour of a less restrictive proposal

1. All the above arguments are accepted apart from 4 and 5.

2. Those in favour of value adjustable array parameters claim that
no existing implementations will be embarassed and claim (correctly)
that there are no technical problems.

3. Those in favour of packing fall into two distinct groups:

(a) those who believe that there are no implementation problems and
that in the interests of generality the restriction should be
removed.

(b) those who wish to use string constants as actual parameters.
They appear to need both value (since a constant is not permitted
as an actual var-parameter) and packed (since the Draft Proposal
specifies that string constants are of a packed type). An
alternative solution to this problem is to change the specification
so that the type of string constant is context dependent (as is
the case for set-constructors) in which case a string constant
could also be a constant of an unpacked type. The same proposal
also requires that those operators which apply to packed
character arrays also apply to unpacked character arrays. This
has the considerable merit of removing the only case in which

AT# SMIN TYISYd

06T “¥ITWILJ IS

9/ 39Y

the prefix "packed" is used for reasons other than storage
reduction.

3.2.4 1In favour of the feature being optional

This is a view expressed by the U,S.A. Pascal committee (X3J9).

1. A language designer must not add to a language any feature that

is not very well understood, that has not been implemented, or that

has not been used in real programs. The proposed adjustable array
parameter feature is just such a feature. This feature should be widely
implemented and used before it is incorporated into a standard for
Pascal.

2. By placing the proposal in an appendix entitled "Recommended
Extension" we derive the benefit of having the opportunity to
implement the feature before casting it in concrete.

3. Implementors who add a feature which performs this function are
required to comply with the recommended extension. This will make
compatability with any future extended Pascal more likely without
foregoing the possibility of learning more about the feature in the
interim.

3.2.5 The Probable Outcome

There is considerable pressure from several ISO member bodies (the
U.K. excepted) to remove the restrictions which the Draft Proposal
incorporates relating to adjustable array parameters. The prcbable
conclusion will be to permit value but prohibit packed and at the same
time introduce the changes described above relating to the operations
etc, available for character arrays. Unfortunately the proposal from
the U.S.A. for removal of the feature to an appendix is likely to be
opposed strongly by one or more member bodies. This view is based on
the comments received from other ISO member bodies since the April X3J9
meeting., The strength of support for removal of the restrictions is
unlikely to be compatible everywhere with a willingness to accept less
than is contained in the Draft Proposal. One possible solution would
be for X3J9 to accept the feature as part of the language. At this
stage this does not seem likely since the X3J9 position was taken for
largely non-technical reasons. This observation is justified as
follows:

1. X3J9 is requesting changes to the existing de facto definition
while objecting to this extension.

2. X3J9 is currently soliciting extemsion proposals - it is unlikely
that any such proposals will be acceptable by their criteria in
3.2.4. 1 above.

3. To promote portability and improve the probability of agreement

in a future standard, the extension must be implemented as specified

in the appendix. An implementor may only experiment with an alternative
if the recommended extension is also implemented. This adds no new
freedom to the implementor since language extensions are not prohibited
by the Draft Proposal!

4, X3J9 also supports the removal of some of the restrictions
mentioned earlier.

3.3 Conclusions

The meeting of ISO/TC97/SCS5/WG4(Pascal) to be held in June 1980
will be a crucial one. There is pressure within the United States to
move on to consideration of extensions - this is being delayed by the
current activities. In the United Kingdom there is a government
funded project to create a validating mechanism for Pascal. This
clearly needs a standard to validate against. Significant progress
is required on this project by April 1981!

A negative vote by any member body on the second Draft Proposal,
later this year, will probably terminate the internaional standardisation
effort because it will introduce delays which are unacceptable to one
or more member bodies who will have little alternative but to produce
national standards instead.

There is a real danger that one of more ISO member bodies will
find the removal of adjustable array parameters to an appendix as
unacceptable as the United States finds their inclusion in the body
of the standard.

Ne/T “MIATWI 43S AT# SMAN TYISYd

L0 30Yd

27 June 1980
MEMO

To: ISO/TC97/SC5/WG4
Re: U. S. concerns on Pascal Standardization With Respect to the
Conformant-array Extensions

The Joint X3J9/IEEE Pascal Standards Committee has resolved to
express its concern that the issue of conformant array parameters
may significantly delay the acceptance of the draft proposed
standard for Pascal as an international standard. The committee
is anxious to explore any option which will lead to a solution of
the conflict over this issue acceptable to all member bodies of
SC5.

As you know, the US member body of ISO TC97/SC 5 voted against the
acceptance of the first draft proposal, on the grounds that the
conformant array feature should be described in an appendix to the
standard. This position was a compromise offered in the hope that
it would be acceptable to the other member bodies of SC 5 and
thereby an international consensus could be quickly achieved. The
position did not, in fact, reflect the true sentiment of the JPC,
as expressed in a number of formal and informal votes, which was
that a conformant array feature should not be included in the
current standard for Pascal. In the beginning there was no
proposal available to evaluate technically, and the committee’s
view was based on strategic considerations. These were that the
introduction of a new and largely untried feature at such a late
date would introduce technical problems which could not be
resolved in time to avoid delaying the acceptance of the standard.
This has in fact turned out to be the case, since the first
proposal for a conformant array feature was sufficiently
technically flawed to justify its replacement by a quite different
proposal. There are still major technical objections to the
latter so that the view of the JPC on conformant arrays remains
unchanged, although it is now based on technical considerations.
These are described in the attachment (which was accepted
unanimously) .

U. 8. concerns on Pascal Standardization

This committee understands and shares the view that the conformant
array feature attempts to solve a significant technical deficiency
in Pascal. However, it feels that the technical objections should
be resolved before such a feature is included in an International
or American National Standard. The committee believes that this
leaves two possible courses of action if a failure to agree on an
International standard is to be avoided. The first is that a
major international effort through the Working Group must be
mounted to prepare a technically sound proposal. The committee
believes that this is 1likely to require yet another complete
revision of the proposed feature. Sufficient time must be made
available for such work to be completed and properly evaluated.
The second approach is that we should proceed as quickly as
possible to standardize the language at a level at which it has
been widely used for a number of years.

It is clear that the second offers the quickest route to a
standard and we strongly recommend that it be adopted. However,
we further recommend that the effort identified 1in the first
approach be simultaneously initiated and that an acceptable
conformant array proposal should be defined and included in a
subsequent standard for Pascal as soon as possible.

Yours sincerely,

D. T. Jones
International Representative
Joint ANSI/X3J9 - IEEE Pascal Committee

Enclosure

AT4 QMIN TYISYd

NIAGUILAIR

nanT

andd

o/

Attachment: Conformant Array Ad hoc Task Group Final Report
U.S. Objections to Conformant Array Extension

1.0 Overview and general problems

The U.S. Joint Pascal Committee (X3J9) created an ad hoc
task group to investigate the conformant array extension
appearing in JPC/80-161 (Working draft/6) (6.6.3.1). This
report together with JPC international liaison David Jones”
cover letter to the international working group (WG4) is the
result of the task group”s investigation. Contributing
members of the task group included Bob Dietrich, Hellmut
Golde, Steve Hiebert, Ruth Higgins, Al Hoffman ,Leslie
Klein, Bob Lange, Jim Miner, Bill Price, Sam Roberts, Tom
Rudkin, Larry Weber (chairperson), and Tom Wilcox.

1.1 Lack of implementation experience

The current proposal has no widely known implementations.
Various portions of the extension have been implemented in
different compilers, but the group of features proposed here
have never been combined together, except on paper.
Furthermore, the implementations of the various parts of the
extension have not (of course!) been in the context of the
proposed standard. Since this is a new feature to the
language, the introduction of this extension in the standard
document is especially distressing.

1.2 Large change to text of standard

The conformant-array extension requires a large amount of
text 1in the standard in order to describe it. Moreover, it
requires modifications to sections outside of section 6.6.3
on parameters. In other words, the extension interacts --
at least in its description -- with many other parts of the
language. For example, in section 6.7.1 the alternative
"bound-identifier" has to be added

This means that the extension is major, with wide impact on
the language. This is especially unfortunate in view of the
fact that it only provides a single capability =-- that of
array parameters with adjustable bounds. A broader
capability, might not require a significantly larger
description.

1.3 Conformant-array concept not defined

It is of the essence of the Pascal 1language, and its
principal distinguishing characteristic, that it is "based
on certain fundamental concepts clearly and naturally
reflected by the language" (page 1, section 0, forward to
the Draft ISO/DP 7185). It is difficult, at best, to

identify a fundamental concept that this extension is to
support. The best approximation yet suggested 1is the
adjustability of the bounds of a scalar-type used as the
index-type of an array-type under certain circumstances of
parameter usage. Inasmuch as this concept is founded on at
least five identifiable concepts, it is difficult to see how
it may be considered fundamental.

This absence of fundamental underlying abstraction is
foreign to the nature of the language. This absence leads
inexorably to wuser confusion and to language-designer
confusion. The user is not provided a concept on which to
base his understanding; the designer, likewise, is given no
guidance in his language design. Since user experience is
lacking, no evidence exists from which to draw any
conclusions with respect to the lack of user
understandability. However, the lack of gquidance to the
language designer is quite nicely evident from the volume of
technical objection: the most acute examples are the
dilemmas of packing and of value-parameters.

2.0 Problems with existing proposal
2.1 Set of types that may have to conform is unrestricted

The conformant-array extension provides no way to identify,
at the point of declaration, the array types that may have
to conform to some conformant-array parameter.
Consequently, an implementation must ensure, a priori, that
ALL array types can be handled correctly by the
implementation of the conformant-array parameter extension.
Hence, a user may have to endure severe implementation
inefficiencies even though he does not use the
conformant-array parameter extension. For example, an
implementation of packed conformant-array parameters (an
almost irresistible evolution of the present extension) may
make many of the possible forms of data packing totally
impractical. A solution that is integrated with the type
naming mechanism would alleviate this problem.

2.2 Structural Compatibility

One of the fundamental clarifying decisions made in
developing the draft standard from Jensen and Wirth was the
rejection of so-called "structural type-compatibility"” in
favor of the more natural "name compatibility" (or a
variation thereon). Such decisions have had a profound
effect on the resulting language; it is important that such
principles be applied consistently throughout the language.

Unfortunately, two areas of the existing (Jensen and Wirth)
language resisted consistent application of "name
compatibility": set-types and string-types. Both of these

ATH# QMIN IYACHA

AIqUIILAIQ

nogT

9Yd

m

N~
w

problems are directly attributable to the existence of
inadequately typed value designators (i.e., character-string
constants and set-constructors). It was deemed necessary to
violate "name compatibility" in these two cases in order to
avoid introducing new (and incompatible) language features.

The conformant-array extensions introduced in N510 and in DP
7185 both violate the underlying principle of
"name-compatibility"; we have seen no attempt to Jjustify
this violation. This is inexcusable in the absence of
problems of upward-compatibility, very simply because
conformant-arrays are an extension.

One practical effect of this unnatural regression to
stuctural-compatibility, as discussed elsewhere in more
detail, is the difficulty encountered in extending the
conformant-array capability to allow multi-dimensional
packed arrays.

2.3 Parameter List Congruency

In the comments from the French member body (p.3, 6.6.3.6),
they note that "the parameter lists (x,y:t) and (x:t, y:t)
seem to be not congruent" and that this is the only part of
the 1language where these two notations are not entirely
equivalent. It is a correct observation that these are not
congruent. However, given the current form of the
conformant-array proposal, this surprising and aesthetically
unpleasant inconsistency 1is absolutely necessary. If the
two parameter list forms were congruent (as in N510), then
the following example would be a legal program fragment:

type t = integer;
proc pl(var f1,£f2: arrayl[i..j: t] of u);
begin fl:= f2 end; {end - pl}

proc p2 (proc fp(var fl: array[il..jl:t] of u;
var £2: arrayl[i2..j2:t] of u));
var a: array([l..2] of u;
b: array([l..3] of u;

begin fp(a,b) end; {end - p2}
begin p2(pl) end;

It is impossible to know at compile time that the assignment
(fl:= f£f2) 1is an error. To remove the necessity of this
run-time check, a seemingly unrelated aspect of the language
had to be altered. The alteration has been recognized as
undesirable and the reason for it was certainly not obvious.
It took some time to detect the effect of
conformant-array-schemas on parameter-list congruency. In
addition, there may be other apparently unrelated aspects

that, as yet, have not been discovered.
2.4 Need to name a conformant array schema

There is no construct to allow the use of an identifier to
denote a conformant array schema:

TYPE varray = array[i..j: integer] of integer;

PROCEDURE p(var param: varray); '

The lack of this construct makes the proposed conformant
array schema weaker, due to considerations of consistency
and user convenience.

Before proceeding, it must be noted that the naming
cgnstruct above must be accompanied some means of
distinguishing the array bounds "[i..j]" for each individual
usage. it is not clear that the currently proposed
conformant array extension allows such a capability: this
1s a general problem in itself as well as a limitation on
extensability (see section 3.5).

The first objection to the proposed conformant array
egtension is the bulkiness of the construct. The parameter
l}st of a procedure or function is frequently placed on one
l%ne. The use of a conformant array schema makes this
virtually impossible when more than one parameter exists.
This and the added user cost of retyping the schema become
sigpificant when the same schema is used over and over
again, as, say, in a library of mathematical routines.

When one conformant array uses another, in the following
manner, the lack of an identifier becomes a clear oversight
in the language:

procedure p(var a: array[lowa..higha: atype]
of arecord;
var b,c: array[xlow..xhigh: integer;
clow..chigh: color] of
array [lowa2..higha2: atype]
of arecord);

Here it is desireable that the type of "a" in the type of
the components of "b" and "c" to be the same.

The unfortunate consequence of adding the inadequately
conceived conformant array schema to Pascal is a reduction
in the prime desirabilities of convenience of usage and
clarity of the printed program.

Ne6T “43AWILd IS AT# SMAN 1YISYd

INYd

Q3

The lack of an identifier construct for conformant array
schemas results in wuser, 1language, and implementation
inconsistencies. Except for procedure and function
parameters, the conformant array schema 1is the only
construct in the parameter list that is not a single word.
To new students of the language, it will always appear
inconsistent. And, since the parsing of conformant array
schemas is so different from other
parameter-type-identifiers, it becomes an exception case,
resulting in added complexity in the compiler.

The proposed conformant array schema is also shortsighted in
that it does not permit the use of a conformant array schema
as a part of a record, to be passed as a parameter. For
example, many programs make use of dynamic "strings"
implemented as records, i.e.

type string = record
length: 0..80;
chars: array([l..80] of char
end;

for a dynamic "string" of maximum length 80. Supposing it
were necessary to write a string-handling routine to handle
records with differing maximum lengths, one could, with the
help of a schema label, construct the following:

type natural = 1..maxint;
dynamicarray = arrayl[i..j: natural] of char;
string = record
length: integer;
chars: dynamicarray
end;

procedure concat (var a,b,c: string);

This concise construct is absolutely unimplementable under
the current proposal. On the other hand, the above type of
construct could lead to some interesting extensions (not
that they should be dealt with here).

Finally, note that making a change to a conformant array
schema, used all over a program, is much more involved than
changing the definition of a single conformant array schema
identifier.

2.4 separator ";"

The abbreviated form for contained conformant-array-schemata
introduces the <character ";" as an abbreviation for the
sequence "]" "of" "array" "[" (6.6.3.1), thus allowing the
form

array[u..v:Tl; Jj..k:T2] of T3
to be equivalent to
arraylu..v:T1l] of array[j..k:T2] of T3 .

This conflicts with the use of the character "," to express
a similar equivalence for array types (6.4.3.2), where

array [T4, T5] of Té6
is equivalent to
array [T4] of array [T5] of Té6

One might therefore argue that for uniformity and possibly
as an aid 1in compiler error recovery, the character ","
should be used in the conformant-array extension.

However, there is unresolved disagreement as to whether the
separator should be a comma or a semicolon. The existence
of this disagreement demonstrates that the nature of the
object to be separated is not well understood nor well
specified.

2.5 Required Runtime checking of types

The proposed scheme specifies that the type of the formal
parameter is the same as the type of the actual parameter.
This presents serious difficulties when a conformant
parameter is further used as an actual parameter, as
illustrated in the following example.

program example;

type arraytype = array[l..10] of integer;

var

a : arraytype;

b : array[l..10] of integer;
c : arrayll..l1l] of integer;
procedure simplearray (var a:arraytype);

begin end;
procedure fancyarray(var a:array[m..n:integer]

of integer);

begin
simplearry(a)

end;
begin {main program}

fancyarray(a); legal

fancyarray (b); illegal - name incompatible}

gancyarray(c); illegal- structure incompatible}
end.

NRRT “HIATWIL43S AT# SMAN TYISYd

Y4

18

Another illustration of runtime type checking is shown in
the following example.

type
natural = 0..maxint;
procedure pl(var b:array[i..j:natural] of u);
begin end;
procedure p2(var a:arrayli..j:integer] of u);
begin pl(a) end;

In this example, the passing of the variable "a" to "pl" may
or may not be wvalid, depending on the actual parameter
passed to "p2"

This problem is not addressed by the UK Member Body comments
on DP 7815.

3.0 Limitations of existing proposal

The following items are brief descriptions of features that
could someday be considered as possible extensions to the
language. An evaluation and rationale for their
desirability has not been completed at this time. The
process of including these is impacted by the current
definition of the conformant array extension. It is felt
that unifying fundamental abstractions must be developed to
cover the total set of any newly defined features.

3.1 Leading index types

Only leading index types of conformant-array-schemata are
adjustable. Thus,

array[j..k:T1l] of array[T2] of T3
is acceptable, while

array[T2] of arrayl[j..k:T1l] of T3
is not (6.6.3.1). This introduces an asymmetry into the
definition. While a relaxation of this restriction does not
offer any additional functionality, it would allow a more
natural expression of certain relationships between index
types.

3.2 The lack of packing

The conformant-array extension, as defined in Working

Draft/6, restricts the allowable actual parameters to arrays
not having the attribute "packed". This restriction
eliminates the direct use of conformant arrays for string
handling under the current limitation that the only arrays
of char-type that may be compared, written to files or
declared as constants are those arrays having the attribute
"packed". This particular problem could be corrected by
removing the "packed" restriction on string type although
care would still be required on the part of the programmer
to use only arrays with lower bounds of one and run-time
checks would be required to ensure this care had been taken.
Even if this string-type problem were resolved, the lack of
orthogonality contradicts the Jensen-Wirth Report in which
the obvious intent is that packed and unpacked arrays be
generally equivalent except for the possible differences in
storage requirements.

3.3 Value conformant-arrays

Introduction of a value parameter as part of the
conformant-array extension is a natural addition, and there
seem to be good reasons to consider this aspect of the
conformant-array parameter. However, if this feature were
to be added to the extension, then this 1is the first
instance of a case where the size of the activation record
is not known during compilation. The unknown size of the
activation record causes a problem in an implementation that
relies on knowing the activation record size 1in order to
handle activation stack overflow. This is not to say that
efficient implementations are impossible, but the two
situations must be treated efficiently by compilers.

3.4 Conformant-arrays and bounds limitations

The conformant-array extension is not sufficiently general
nor extensible: it does not provide the ability to fix
either the lower or wupper bound of a given index
specification. Nor does it allow the user to equate the
extent of one 1index specification with the extent of
another, be it within the same conformant-array parameter or
a different conformant-array parameter. This deficiency
results 1in increased time and space complexity and hinders
compiler optimization. Moreover, it requires an author to
either validate one or more conditions cor trust the caller.
The former introduces further deterioration of efficiency
while the latter 1is inconsistent with the strongly-typed
nature of Pascal. In addition, this lack in the
conformant-array extension 1is in conflict with one of its
primary uses: the construction of independent array
manipulation routines. For example, possible uses of
conformant-array parameters include general matrix
multiplication and inversion routines where one would like
to place restrictions on the bounds and interrelationship

AT# SMIN TYISYd

NAGWNITNA IS

NORT

Ny

70

between index types of the actual parameters.
3.5 Conformant scalar-types
The conformant-array extension addresses only the role of a
scalar-type as an index-type of an array-type parameter. It
ignores the many other roles where it is desirable to
conform a scalar-type parameter. A few such roles where
such conformance might be desirable are:

1. as the type of a parameter;

2. as the base type of a set;

3. as the component type of an array:;

4. as the type of a field;

5. as the index-type of an array used as the type of a
field.

A A AR TARATA AR A RAR AT R RS

TO: National Bureau of Standards

FROM: David Jones
X3J9 International Liaison

SUBJECT: Report by A.M. Addyman

The Joint ANSI/X3J9 -~ IEEE Pascal Standards Committee (JPC)
has received a copy of a report, "The Pascal Standard : Progress
and Problems," written by A.M. Addyman of the University of
Manchester. This report, hereafter referred to as JPC/80-164,
presents an interpretation of the current impasse in the Pascal
standardization effort with which JPC does not agree. I have
been charged, as the JPC International Liaison, to present the
committee”s point of view.

The primary issue over which Mr. Addyman and the committee
disagree is discussed in sections 3.2.5 and 3.3 of JPC/80-164,
although JPC takes issue with remarks in other sections. Before
addressing the comments specifically, however, I shall present a
summary of JPC”s point of view.

The true sentiment of the committee is that a conformant
array parameter feature should not be included in the version of
Pascal being standardized through the current effort. This view
has been repeatedly documented, by both formal and informal
resolutions passed either unanimously or by large majorities,
beginning with the first time JPC became aware that the BSI group
was considering the introduction of this feature. 1Initially, the
opposition was based on strategic grounds (i.e., there was no
proposal to formally evaluate). These were that the delay
introduced by requiring a technical evaluation prior to
acceptance of the feature would substantially postpone the
adoption of a standard. The JPC does believe that the conformant
array extension attempts to solve a real problem that will have
to be eventually solved, and that finding such a solution is a
matter of urgency.

The pessimism of JPC was justified in that the initial
proposal offered by BSI was so flawed that it was withdrawn and
replaced by an entirely new proposal at the Experts Group Meeting
in Turin in November 1979. It is the position of JPC that this
second proposal still contains technical errors and deficiencies
sufficiently grave that yet another complete revision of the
proposal will probably be required before an acceptable solution

to the problem is found. Consequently, the strategic objections
remain, but are now substantiated by technical considerations.

Nevertheless, when the committee voted in April, 1980 to
recommend that the U.S. position should be to disapprove the
draft proposal identifying conformant array parameters as being
the only issue, it only required that this feature be removed to
an appendix so that its implementation could be made optional.
This represented a major compromise which, from the JPC point of
view, was far from the real sentiment requiring that the feature
be removed entirely from the proposal.

JPC is convinced that it is in the best interests of the
Pascal User Community that any revision or extension to the
language be supported by sound technical grounds, and that it is
better to take the time to do it correctly or to accept a
standard without conformant array parameters than to accept a
technically inadequate proposal merely because it is timely to do
so.

As far as the actual comments in JPC/80-164 are concerned,
the remark in section 3.3.2 on support by Professors Hoare and
Wirth should be qualified by the results of the discussions
members of JPC had with them before and during the April meeting,
of which Mr. Addyman was aware. Both indicated that the U. S.
compromise was preferable to delaying the standard, and Professor
Hoare himself was the source of this method of introducing this
extension. The substitution of the word "standardizer" for
"designer" in 3.2.4, paragraph 1, line 1, would accurately
reflect the U. S. position. Without the substitution, it does
not. Thus 3.2.5, paragraph 2, is also misleading. The use of
the term "(correctly)"™ in 3.2.3, paragraph 2, is difficult to
substantiate. The JPC is particularly at odds with the position
that non-technical reasons were the justification for its
disapproval. We cannot assume Mr. Addyman is referring to our
strategic reasons because these reasons have a technical basis.
Even in the beginning, the basic issues were technical although
they could not yet be identified. Consequently, Mr. Addyman’s
remark must be construed as implying a political basis for the
JPC”s position. This is certainly not the case and we disagree
with Mr. Addyman’s justification for his point of view as
expressed in 3.2.5, paragraphs numbered 1 to 4. The following
numbered paragraphs discuss our corresponding disagreement:

1. There have been many changes to the de facto
definition of Pascal which have not been regarded as
extensions and have been the subject of wide
implementation and use. This does not apply to the
feature in question, reflecting consistency in JPC’s
position in this regard.

2. It is a subjective opinion that the criteria
of 3.2.4, item 1, would preclude other extensions. It
is stated quite clearly within the proposed standard
that implementation dependent features are allowed, and
that by implication a user is free to provide one or
more versions of any given feature. By this means, an
extension could become widely implemented before
acceptance in a standard. 1In particular, an Appendix
could be created for such a feature for the reasons in
3.2.4, paragraph 2, of JPC/80-164.

3. The JPC would prefer that the conformant-array
extension be removed entirely from this standard for
technical reasons. However, we recognized the claims
of the other member bodies that they require this
capability in the language. Therefore, the JPC
proposed that the extension be in an appendix to
address our concerns and we proposed that if the
extension were implemented, it was to be implemented in
the format specified to encourage acceptance by the
other member countries. Since it is our preference to
remove the extension entirely, it would be consistent
with our position to soften the wording from a
requirement to a recommendation.

4. JPC does indeed support the removal of these
restrictions, but feels that the technical issues
raised by doing so would introduce an unjustifiable
delay into the standardization process.

Addressing section 3.3, it is the view of JPC that the
position taken by Mr. Addyman (i.e., a negative vote would
terminate the standardization process) is unduly pessimistic. 1In
addition, this statement represents unwarranted pressure on the
U.S. and the other two countries which voted against the
conformant array extension due to significant technical
deficiencies.

6T# SMIN TYISYd

uTauLal 1ae

nNoRT

—er

Implementation Notes

Editor's comments

Well, it was bound to happen. My section of issue #17 got scrambled.
The right half of page 88 shouldn’t have appeared at all, the Zilog Z-80
reports became recursive, and the machine-dependent section was all out
of sequence. My sincerest apologies go to Arthur Sale, whose letter on
the Burroughs B670@/7700 implementation was dropped completely, and to
my co-editor Greg Marshall, whose hard work on the One-Purpose Coupon
went without credit. Things should be straightened out with this issue
(I hope).

Just to add to the overall confusion, I’ve changed my address and phone
number within Tektronix. This move is not intended to make it more
difficult to reach me. Mail to my old address will be forwarded for the
next few years, and if my phone rings more than four times now, the
secretary (Edie) should answer (theoretically). Here’s my new address
and phone:

Bob Dietrich

MS 92-134

Tektronix, Inc. phone: (583) 645-6464 ext 1727
P.0. Box 500

Beaverton, Oregon 97877

U.S.A.

For those of you that are still trying to convince other people that
Pascal has ‘arrived’, I put together this short list of companies. It
consists solely of those companies that both manufacture processors and
have announced a version of Pascal on one or more of their products.
Hopefully I have not left out anyone. Due to my own lack of information
only U.S. companies are listed.

American Microsystems

Basic Timesharing

Control Data Corporation
Data General

Digital Equipment Corporation
General Automation
Hewlett—Packard

Honeywe 11

IBM

Intel

Motorola

National Semiconductor

Texas Instruments

Three Rivers Computer

Varian division of Sperry Univac
Western Digital

Zilog

Of course, this list does not include the many more companies that
supply Pascals for the xyz computer. Often (and why not?) these
companies do a much better job than the companies that actually build
the processors. You can draw your own conclusions from this list.

Validation Suite Reports

The University of Tasmania

Postal Address: Box 252C, G.P.O., Hobart, Tasmania, Australia 7001
Telephone: 23 0561. Cables ‘Tasuni’ Telex: 58150 UNTAS

IN REPLY PLEASE QUOTE:

FILE NO.

IF TELEPHONING OR CALLING

ASK FOR

14th March, 1980

The Editor,
Pascal News.
Validation Suite Report

This report to readers of Pascal News is intended to let everyone know of our
intentions and plans. The demand for the validation package and response to
it has almost swamped our capability of replying.

The current version 2.2 of the Validation Suite has been distributed to about
150 organizations or individuals, not counting the several thousands reached
via Pascal News. As an indicator, the distribution list of our US distributor
Rich Cichelli, is enclosed. Some suppliers are using the Validatiom Suite
results in their advertising, and many are using it as a development tool.

I have received a number of comparative reports, and have noticed a healthy
competition to achieve 100% on the conformance/deviance tests.

We have almost completed an update to Version 2.3, which will correct the

known errors in Version 2.2, and will include a few tests which were accidently
omitted in the first release. Unfortunately, even with the greatest care we
could muster, several erroneous programs slipped through into the release of
2.2, and a few had features which caused them to fail on some processors for
unrelated reasons. Version 2.3 is the response to such problems. However,

it is still derived from the version of the Draft Standard printed in Pascal
News and IEEE Computer, and known in ISO circles as ISO/TC97/SC5-N462.

nesT “MIAWILAAS 5T4 SHIN T¥ISYd

1Y

S8

As soon as this is tested and released, we begin work on updating the whole
package to the ISO Draft Standard now being circulated for voting. I estimate
that this will take us about 2-3 months, for completely checking over 300
programs is non-trivial, and the insertions will require to be carefully
drafted. The sources of change are primarily due to:

(1) areas in the earlier draft standards that were poorly drafted
now being more precisely defined,

(ii) areas in the draft standard which have been altered, usually
because N462 contained some mistake or ill-conceived change,

(iii) field experience with the package showing us weak spots in its
attack strategies on compilers.

I should like to thank all those who have sent Brian, Rich or me copies of
their results, or better still concise summaries and comments for the future.
Your praise and criticisms help sustain us through a quite difficult piece

of software engineering. Indeed we now realize that we should perhaps have
written ourselves more tools at the start to carry through what I think to

be a most significant piece of change in the software industry, and I am very
much aware just how many contributions have gone up to make this effort.

May I simply continue to urge readers of Pascal News to keep on pushing the
view that "correct is right" (with apologies to T.H.White), and to refuse

to accept second-best.
M,/ (M——/

Arthur Sale,

Professor of Information Science

PASCAL VALIDATION SUITE USERS

Oregon Software Inc.
Portland, Orezcn 27201

Systems Engineering Labs
Ft. Lauderdale, Fla 33310

General Automation Inc.
Anaheim, Calif 92805

Honeywell PMSC
Phoenix, Arizcra 85029

Rational Data Systems Inc.
Hew York City, NY 10019 Santa Barbara, Calif 93106
Texas Instruments

Dallas, Texas 75222

Advanced Ccmputer Techniques
Arlington, Virginia 22209

Prime Computer
Framingham, Mass 01701

National Semiconductor Corporation
Santa Clara, Calif 95051

Hewlett Packard Boeing Co.
Palo Alto, Calif 94304 Seattle, Washington 98124

University of California at Santa Barbara

Terak Corporation
Scottsdale, Arizona 85254

University of VWaterloo
YWaterloo, Ontario, Canada

Sperry Univac
Blue Bell, Pa. 19424

Perkin Elmer Corporation
Tinton Falls, NJ 07724

Boston Systems Office Ine:
Waltham, Mass 02154

Intel Corporation
Santa Clara, Calif 95051

Genaral Research Corporation

“Santa Barbara, Calif 93111

University of Minnesota
Minneapolis, Minn 55455

University of California at San Diego

La Jolla, Calif 92093

Intermetrics Inc.
Cambridge, Mass 02138

University of British Columbia
Vancouver, British Columbia, Canada

Comshare Inc.
Ann Arbor, Michigan 48104

OCLC Inc.
Columbus, Ohio 43212

TRW CS&S
San Diego, Calif 92121

Medical Data Consultants
San Bernardino, Calif 92408

University of California at San Francisco

San Francisco, Calif 94143

Timeshare
Hanover, NH 03755

Fairchild Camera & Instrument Corp.
Mountainview, Calif 94042

NCR Corporation
Copenhagen, Denmark

Process Computer Systems
Saline, Mich 48176

Vrije Universiteit
Amsterdam, The Netherlands

Scientific Computer Services
Glenview, I11 60025

Virginia Polytechnical Institute & State University

Blacksburg, Va 24061

Digital Equipment Corporation
Tewksbury, Mass 01876

Philips Labcrzzories
Briarcliff Manor, NY 10510

Honeywell MNi2-3187
Minneapolis, #inn 55408

RCA-MSRD 127-302
#oorestown, NJ 08057

Boeing Co.
Seattle, Washington 98124

David Intersimone
Granada Hills, Calif 91344

Burroughs Corporation
Goleta, Calif 93017

Business Application Systems Inc.
Raleigh, NC 27607

University of VWaterloo
Waterloo, Ontario, Canada N2L 3Gl

Language Resources
Boulder, Colorado 80302

Jet Propulsion Lab
Pasadena, Calif 91103

Michigan State University
East Lansing, Mich 48824

Ng6T “NAWILA IS 5T4 CHIN THISHd

98 39vd

Beckman Instruments
Fullerton, Calif 92635

University of California
Los Alamos, NM 87545

Ford Motor Co.
Dearborn, Mich 48121

Online Systems Inc.
Pittsburgh, Pa. 15229

Data General Corp.
Westboro, Mass 01581

Northrop Research & Technology Center
Palos Verdes, Calif 90274

Motorola Microsystems
Mesa, Arizona 85202

TRW DSSG
Redondo Beach, Calif 90278

GTE Automatic Electric Laboratories Inc
Northiake, I11 60164

Tektronix Inc.
Beaverton, Oregon 97077

Enertec Inc.
Lansdale, Pa. 19446

Arthur A. Collins Inc.
Dallas, Texas 75240

RCA Laborateries
Princeton, NJ 08540

Renaissance Systems Inc.
San Diego, Calif 92121

University o7 Wwestern Ontario
London, Ontario Canada N6A 5B9

Perkin Elmar Computer Systems Division
Tinton Falls, NJ 07724

Burroughs Ccrp.
Pasadena, Calif 91109

University of Michigan
Ann Arbor, Mich 48109

Whitesmiths Ltd
Mew York, NY 10024

Sperry Univac
St. Paul, Minn 55116

University of Guelph
Guelph, Ontario, Canada N1G 2W1

MacDonald Dettwiler & Associates
Richmond, British Columbia, Canada V6X 2Z9

The Medlab Co.
Salt Lake City, Utah 84115

University of I11inois
Urbana, I11 61801

University of Scranton
Scranton, Pa. 18510

BTI Computer Systems Iac.
Sunnyvale, Calif 94086

Modcomp
Ft. Lauderdale, Fla 33310

California Software Products Inc.
Santa Ana, Calif 92701

Control Data Corp.
La Jolla, Calif 92037

Jet Propulsion Laboratory
Pasadena, Calif 91103

California State University & Colleges

Los Angeles, Calif 90036

Computer Sales & Leasing
Denver, Colorado 80222

GTE Sylvania
Mountain View, Calif 94042

Amherst College
Amherst, Mass 01002

Gould Inc.
Andover, Mass 01810

Technical Analysis Corp.
Atlanta, Georgia 30342

University of Alabama in Birmingham

Birmingham, Alabama 35294

NASA
Hampton, Virginia 23601

Carnegie Mellon University
Pittsburgh, Pa. 15213

Digital Technology Inc.
Champaign, I11 61820

System Development Corp.
Santa Monica, Calif 90406

IBM Corp.
San Jose, Calif 95150

RUMIT
Trondheim, Norway

University of Iowa
Iowa City, lowa 52244

Bobs Software Systems
Austin, Texas 78745

General Electric Co.
Fairfield, Conn 06431

Viking Computer Corp
Lexington, Mass 02173

Cogitronics Corp.
Portland, Ore 97229

Hestern Michigan University
Kalamazoo, Mich 49008

Sperry Division Headquarters
Great Neck, NY 11020

Lambda Technology
New York, MY 10017

Rhintek Inc.
Columbia, Mc. 2104

Tymshare Inc.
Cupertino, Calif 95014

Motorola Inc.
Austin, Texas 78721

Stanford Linear Accelerator Center

Stanford, Calif 94305

Centre de Calcul EPFL
Lausanne Switzerland

Sperry Univac
Blue Bell, Pa. 19424

Procter & Gamble Co.
Cincinnati, Ohio 45201

Compagnie Belge Burroughs
Herstal Belgium

GENRAD Futuredata
Los Angeles, Calif 90045

Wayne Catlett
Santa Ana, Calif 92707

Western Digital Corp.
Newport Beach, Calif 92663

Three Rivers Computer Corp.
Pittsburgh, Pa. 15213

Singer-Librascape
Glendale, Calif 91201

Computer Translation Inc.
Provo, Utah 84602

NCR Corp.
San Diego, Calif 92127

Westinghouse Electric Corp.
Pittsburgh, Pa. 15238

Chemical Systems Division
Sunnyvale, Calif 94086

NeRT “¥IGWALA3S 5T SHIN T¥ISHd

ANV

L8

THE PASCAL VALIDATION PROJECT

University of Tasmania

GPO Box 252C,
HOBART, Tasmaniaj; 7001

Validation Newsletter No 1

1980 March 28

Some time ago you acquired a version of the Pascal Validation Suite, either from
us or from Rich Cichelli in the USA or from Brian Wichmann in the UK. If your
version is up to date, you should have Version 2.2.

To briefly explain our numbering system for versions, the first digit identifies
a major break in the evolution. Thus Version 1 related to the pre-1979 work
derived from the Pascal User Manual and Report, and Version 2 is the completely
revised package produced after receipt of the first public draft of a Pascal
Standard (ISO/TC97/SC5 N462, known as Working Draft 3). The second number
relates to a revision level within that major version.

With the release of Version 2.0, and its subsequent rapid evolution through 2.1
to 2.2, we have achieved a relatively stable product. It is by now quite well
known that in the 350+ programs of the package there are a small set which are
incorrect (they do not test what they ought to, or have a syntax error, or a
convention error), and there is a small set which are not as well-designed as
they might be (failing for reasons which are unrelated to their purpose).
Accordingly, while I was on sabbatical leave from“the University of Tasmania in
1979/80, Brian Wichmann and staff at the National Physical Laboratories in
England produced a new version 2.3 which attempts to correct these errors, and
which adds a number of new tests together with old ones which were omitted from
version 2 but were in version 1.

We will not distribute this version,-and it will remain purely an internal
revision level. Of necessity, the first production of a new level must be
tested before release, and our testing of version 2.3 yields many issues which
would have to be clarified before we could distribute it with the confidence
in its quality that you are entitled to expect.

Even more cogently, we consider the revision of the vaiidation package to conform
to the new Draft Proposal (DP7185) to be even more important than tidying up the
loose ends of an obsolete version level, and accordingly oue efforts are now
going into producing that version as soon as possible. It will be known as
Version 3.0, and will take us at least two or three months to complete.

In this way we think we can avoid delays in the production of 3.0 and minimize
the circulation of spurious tests and those which are relevant to N462 but not
to DP7185 (or worse, reversed inthe two versions...)

While undertaking the major revision required to produce the new version, we shall
also attempt to simplify some aspects of testing. Since Version 3.0 will be

a major revision, we shall issue it complete (i.e. not an update issue), but we
intend in future to include a "last revision level" in the header of each test

to facilitate identifying the latest changes.

Department of Information Science

Thank you for your support of our effort; we have over 150 subscribers now and

the activity is certainly paying off in terms of quality of software and
convenience to users. Best wishes for your future work.

AU T Shle—

Professor A.H.J. Sale

The University of Tasmania

Postal Address: Box 252C, G.P.0., Hobart, Tasmania, Australia 7001

Telephone: 23 0561. Cables ‘Tasuni® Telex: 58150 UNTAS

IN REPLY PLEASE QUOTE:
FILE NO.
IF TELEPHONING OR CALLING

ASK FOR

11th March, 1980

Mr. P. Pickelmann,
Computing Centre,
University of Michigan,
1075 Beal Avenue,

Ann Arbor, Michigan
U.S.A. 48109

Dear Paul,

Tﬁank you for your letter, which I have just read after returning to
Tasganla from study leave in USA and Europe. I was very excited to read it
as it seems a very thorough piece of work, and just the sort of thing we
hoped the package would do. -

3

I have taken the liberty of sending a copy of your report to Pascal
News for reprinting; if you want if kept private please write to Rick Shaw
and say so, or send revisions. I have also sent a copy to the AAEC
(Jeff Tobias) as he has told me that his field test version passes all

confo;mance and practically all deviance tests! (or at least the correct
tests).

I do not think that a tape with all three tests would be of great use
to me at present as we are about to shift up one sub-level in the tests,
and a new version level is three months away (to conform to the new Draft
Standard). I think I can glean all I need from your very comprehcnsive
Teport.

On your "Distribution problems', etc:

1. Charset : will investigate.

6T# SMIN T¥ISYd

N26T “H3AWALA3S

88 A9vd

2. Printfiles: the distributed skeleton program will readily paginate;
I will not put coatrol characters in for the few installations that
want them, at the expense of making 99% of installations strip them
off. The printed version was printed by a slight modification of the
skeleton.

Errors in test programs : will investigate; most have been reported
frequently (sigh; complete correctness of 350+ programs too much for us;
and flaws like 6.2.1-7 slip through.)

Specific suggestions

Clock would be less standard than processtime. The name of a non-
standard function is irrelevant; processtime is ‘deliberately chosen

so as not to be in anyone's system (except ours) and to return results
in standard metric units (seconds). Consequently inadvertent rubbish
results are unlikely.

The suggestion about [l mod bitsperword] illustrates only poor quality
compilation techniques. Our compiler and the ICL 1900 one should realize
that the result is in the range 0..(bitsperword-1) anyway. Consequently I
would prefer to keep the algorithm transparent rather than introduce
extraneous varizbles whose whole purpose is to optimize less-than-perfect
implementations. (As a matter of interest, I have been musing over a version
with very large sets here; our implementation will handle them too.)

6.3.1 § 6.4.5-5 are slips; our compiler has full significance, and all
the others I used for testing had 10 or 12 or 16 characters up to release.
We also forgot to run the full package with our STANDARD switch set to
enable the compiler to report these.

6.8.3.5-4 Perhaps maxint is a bit severe? We are seeking implementations
which allow 'virtual infinity' of case, to show quality. (Our compiler will
handle maxint of course, but I wouldn't condemn a compiler that had a hash-
table algorithm with packed one-word records and hence was limited to less
than maxint values as the key.)

LOOP. Agree. Didn't realize that anyone was foolish enough to use
loop-exit until talking with IBM implementors.

For-loops: you are tackling things which were left out of Version 2
because I could not resolve them in advance of the Draft Standard (or at
least tried to influence the Standard first).

VERSION indication is a good idea, which we had already noted, but not
in so clear a form. Thanks.

Finally, can you send me your size in shirts? We have a free gift to
validators who do good work for Pascal...

Yours sincerely,

Arthur Sale,

Information Science Department

IBM_370

THE UNIVERSITY OF MICHIGAN
COMPUTING CENTER
1075 BEAL AVENUE

ANN ARBOR, MICHIGAN 48109

January 22, 1980

Pascal Support

Department of Information Science
University of Tasmania

Box 252C, G.P.O.

Hobart 7000

Tasmania

Australia

Dear Sirs:

Here is a copy of my first version of a Validation
Report for three IBM 360/370 compilers, and some comments
ans suggestions on the suite. I'll send another version after
I finish adapting Release 3 of the Stony Brook compiler for
MTS, which should fix several of the problems.

If you are interested, I could send a tape with the
results for all three compilers.

Sincerely,

Foucl_

Paul Pickelmann

PP:kls

Enclosure

Dear Readers of Pascal News,

I am sending thess reports to News to show an example {a good one) of the
flood of information I am receiving on validation. See the report by me
also in the Hews.

Arthur Sale

GT# SMIAN THISYd

IESUEIPEN

nogT

EOLK

68

ZISCARL_VAIIDATICN_ SUITE EEPORT

scal BProcesscr Identificaticn

ru

Ccrruter: IRM 360/370, Amdahl 476 ...

Amda:l 47C/VY7 used for tests

Prccessors:

RAEC - Pascaly/&000 (MTS version) Version 1.2/F79
SIBR ~ Stony EBrcck Corpiler (MTS versicn) Release 2.1/CT126
UBC - 7niversity of British Colunmbia Version Aug. 16/79

Test Conditions

Tester: Paul Eickelmann (Uriversity of Michigan)
Nate: Januvary 1980

Version: 2.2

A_Ncte on a Eit cf Arbiquity

Ey: it is

Parameter J parareter of any kind (value, var,
procedure, or function) of a procedure
or functicn.

Prccedure Parameter A parareter of a prccedure or function
which is a procedure or function.

The "Pascal Validation Suite" is a set of 318 Pascal prograns
desigred to test 2 corpiler fcr corpliance with the draft Pascal
starndard. 1A full listing cf the suite alcng with Arther Sale's
delightful intrcdvction is in Pascal Kews,16 (Octcber 1979 arrived
Jar.3C). The results of running tke 3 Pascal ccmpilers available
cn KTS are surzerize? belcw. 2 full report is in UNSP:PASCAL.NEWS.

Version 2.2 of the suite was used. This ccrresgonds to the version
cf the draft ir Fascal Kews, 14 (Jan.79). There are at least twvo
newer drafts aczd a new versicn of the suite is comming.

If the number cf tests failed seems disapcinting, note that the
designers tcck care to test thcse things which have changed from
one definiticn cf Pascal tc the next, as well as those {(mostly
errcrs) which are hard to deal with.

Test Type itests Failed/Passed
RREC STER DEC

Coformance 13¢ 17,122 26,113 21,118
Leviance gy 337 61 35/ 59 41/ 53
ErrorHandling 46 23, 23 22,7 24 24,/ 22
Izplpentaticn 1t 17 14 0/ 15 1/ 14
Cuality 23 S/ 13 47 19 3/ 15
Fxtensions 1 i/ 0 1/ 0 iy 0
Ccst £1€.98 $10.20 $38.75

AT# SMIN TYISYA

IS

nesT

06 A9Vd

Conforrance Tests

AA®C STBR UBC

Nunter of tests passed = 122 113 118
Nuzter of tests failed = 17 26 21

L I)
]
PR SESHY N
mb s
[V Ry
DY

L& ON G e e

Details of failed_ tests:

AAEC
Only the first eight characters of identifers and reserved words

are used. Some lcnger identifers look like reserved words.
Failed 6.1.2-2 and 6.2-1

nBC

Tprer and lcwer letters are ccnsidered distinct in identifers.
Pailed 6.1.3-2

STER
latels are compared as strings so leading zeros are significant.
Pailed 6.1.6-2

AAEC

In “(*...}"™ and "({...*)" the starting and ending delimiters don't
match but are considered thke entire conmment, which is what later
versions of the draft stardard regquire.

Pailed 6.1.8-3Z

STER
The program-pararceters part of the program-heading is not optional.
Failed 6.2.1-6, €.6.3.2-1, 6.6.3.3-1, and 6.6.6.5-1

AAEC, STIER, DEC

vYrhen declaraticn for a type which is the dcmain of a pointer tyge
aprears after the declataticn cf the poirter tyre and there is a
mcre glokal type with the sare name, the more glotral type is used
for the iomaln cf the pcirter instead of the lccally declared type.
Failed 6.2.2-3 .

STER, WEC

Assignment tc 2 function identifer is mnot permitted from within
nested procedures and functicns

railed G.2.2-8.

STER

Tte cardinality of sutrances must be less than Maxint. Programss
%ill rtun as lc:a as these are never assigned a value greater than
Min (suttype) +¥axint.

Pailed 6.4.2.2-2 (errcr tessage, but Tuns)

STER
The tag-field is required in varient records.
Failed 6.48.3.3-1

AAEC

Empty record declarations containing a semicolon produce syntax
eITOorsS.

Failed 6.4.3.3-1

RAEC

The tag-field zay not redefine an identifer elsewhere in the
declaration part.

Failed 6.4.3.3-4

STER

Case constants cutside the tag-field subrange are not allowved,
which is what later versicns cf the draft standard require
methinks.

Failed 6.4.3.3-1C

AAEC, STBR, DEC
pointers are not allowed within files.
Failed 6.4.2.5-1

RAEC
Null and length cne lines have a blank aprended wher written.
Pailed 6.4.3.5-2

STER, UBC
Null lines are rerlaced bty length cne lines when written.
Pailed 6.4.3.5-2, 6.4.3.5-3

STEBER

To solve the "interactive file problem” fa is undefined until
eof is checkea

Pailed 6.4.3.5-2, 6.€.5.2-4

There is a bug vbere an ecf check is need when it shouldn't be.
railed 6.4.3.5-

UBC
Tke end-of-line character is <ol not *' !
Failed 6.4.3.5-2

"BC

Local files (thcse other than program parareters) are not really

local. They rust be provided by the user and all f£iles with the

sare name use the sare file.

Fajiled 6.4.3.5-2, 6.4.3.5-3, 6.5.3.4-1, 6.6.3.1-3, 6.6.5.2-3
6.6.5.2-3, 6.9.4-1%

GT# QMIN 1YISYd

LRVl [f i e [N

nocT

Nt

]

AAEC
Peset does nct dc¢ an implicit vwriteln (except with output)
Tailed 6.4.3.5-3

STEF

kssignment tc 2 var parameter vhose type is an alis for the type
of the value z2ssigned gives an error message and causes the
cerriler tc prcgram interupt.

Failed 6.4.5-1

BREC, UBC
Pecords may nct contain files.
Failed 6.5.1-1

STER, 7W2C

Anr actual parameter of scre type for a var parameter which is a
sukrange of that type is nct allcwed. This is what the draft
standard requires; the test is in error.

Failed 6.6.3.1-1

AAEC, STBR, ODEC
Test has errcr. A parameter is included xith a procedure parameter.
Pailed 6.6.3.1-%

AAFC, STBR

The syntax for the nar-list cf rrocedure parameters is diferent.
OBC

Full specification({par-list)of procedure parameters is not allowed.
Failed 6.6.3.1-5, 6.€6.3.4-2

AAEC, URC
Cann't have prccedure parareters with procedure pararmeters.
Failed 6.6.3.4-2

STEE, UEC

If the ¥TS-file which is used for a local file is not enmpty and
the first thing done is reset, the file is not eampty and eof is
not true.

Pailed 6.6.5.2-3

STER
Fof used with file being writtemn causes an error.
Failed 6.6.5.2-F

STER

Test 6.6.6.2~3 requires tcc nmuch precisica of real functions.
nBC

The experessicn Arctan{0)=0 yeilds false even thcugh Arctan (0)
veilds 9.

Failed 6.6.6.2-3

STER

ord returns different values when applied to variables of a
suktype and it's basetype which have the same value. Specifically
ord {(min(subtvyrpe))=0.

Failed €.6.6.4~1

STER
The expersion "p * {. .)" causes a run error.
“ailed 6.7.2.4-:

UBC

The expersion "(.(,1.) <= RY causes a rum error.

Pailed 6.7.2.5-Z

AA¥FC

In a2 fcr loop the assignmert is dcne before the secord experession
is evaluated.

railed 6.8.3.¢%-1

AAREC,STBR,URBC

Extreme valuse in £cr loops cause problems. UBC infinite loogps,
LAEC and STBF cause run €rrors.

Failed 6.8.3.%-7

AAEC

Real nunbers are ccnverted diferently at ccmpile time than at run
tire.)

Fajled 6.9.2-3.

AAEC,STBR,URC

The fcrmating cf reals when the £ield width given is too small
is wrong. Test is likely wrong, as the draft standard is not
clear. This section is changed in later drafts.

Failed 6.9.4-4

UBC
Strings are left justified, not rigkt justified as the should be.
Failed 6.9.4-€

AAEC,TEC

' TEYT' instead of '"TRUT ' is used when writing lkooleans. This
ray be changed in later versicns cf the standard.

Failed 6.9.4-7

STER

Due to a bug, local files which are not global may not be used.
Pelease 3 will fix this and many other problems with files.
Failed 6.9.4-1%

NST “M3AKI143S 6T4 SMIN TYISYd

A0Yd

76

AAEC STER
¥urter of deviaticns detected = 61 59
Yurter cf urdets=cted extensicns = 1 y
¥urter of deviaticns not detected = 32 31
Failed Tests
ARATEC
6.1.2-1, €.1.7-7, 6.1.7-8, 6.1.7-11, 6.2.1-5,
6.2.2-9, 6.3-58, 6.4.1-2, 6.4.1-3, 6.4.5-2,
6.4.5-13, €.4.5-4, 6.4.5-5, 6.6.2-5, 6.6.3.5~2
6.€.3.6-3, 6.6.3.6-4, 6.6.3.€-5, 6.8.2.4-2, 6.8.2.4-3
6.8.3.9-2, 6.£.3.5-3, 6.8.3.9-4, 6.€.3.5~-%, 6.8.3.9~1
6.8.3.9-16,6.€6.3.5-19
STER
6.1.7-5, 6.1.7-§, 6.10-1, 6.10-3, 6.2.1~5,
6.3-2, 6.3-3, €.3-14, 6.3~-5, 6.4.3.2-5
6.4.5-12, 6.4.5-3, 6.4.5-4, 6.4.5-5, 6.6.1-6,
6.€.6.3-4, €.7.2.2-9, 6.8.2.4-2, 6.8.2.4-3, 6.8.2.4-4
6.€.3.9-2, €6.8.3.9-3, 6.8.3.9-4, 6.8.3.9-S, 6.8.3.9-1
6.8.3.9-19
gBC
6. 1.7-5, £.1.7-¢, 6.10-1, 6.10-3, 6.2.1-%,
€.2-2, €.3-2, 6.3-4, 6.3-5, 6.4.1-3,
6.4.3.1-2, €.4,3.2-5, 6.4.5-3, 6.4.5~5, 6.4.5-10,
€.4.5-13, 6.€.2-5, 6.6.3.5-2, 6.6.3.6-2, 6.6.3.6-3
6.€.3.6-5, €.7.2.2-9, 6.8.2.4-2, 6.8.2.4-3, 6.8.2.4-1U
6.8.3.9-3, 6.8.2.%-4, 6.8.3.9-9, 6.8.3.9-11,6.8.3.9~1
6.€.3.%-16,6.€.2.9=-19,

dJndetected _extensions

AAZC
6.2%.4-9

6.1.5-€, 6.8.3.5-12,6.5.4-9, 6.5.4-12

6.1.5-€, 6.9.4-9, 6.9.4-12

Details of deviations not detected

LAFC
¥il is not reserved.
Failed 6.1.2-1

STFE,UEC
packed ard
Failed 6.1.

unracked arrays are ccnsidered equivalent.
7-5

JEC
53
3
38
6.2.2~4,
6.4.5-3,
r 6.6.3.€6~2,
r 6.8.2.4-4,
3,6.8.3.9-14,
6.2.2-4,
s 6.4.4-2,
6.6.2-5,

, 6.8.3.5-10,
4,6.8.3.9-16,
6.2.2~u,
6.4.3.1-1,
6.4.5-11,

, 6.6.3.€6-4,
e 6.8.3.9-2,
3,6.8.3.9-14,

STER, UEC

Strings are ccrratiable with arrays of length n, not just those
witk index 1..rn.

Failed 5.1.7-6, €.4.3.2-%

AREC
trings are cczratiatle with arrays of suktrange of char.
FPailed 6.1.7-7 203 6.1.7-8

AAEC
Null strings are accerted.
Failed €.1.7-11

AAEC,STER,TRC
Declared but unused latels are allcwed.
Pailed 6.2.1-%

AAEC,STER,UBC
Witk in a scope a global name may te used then redefined.
Failed 6.2.2-4

AAEC

FTurction identifers may be assigned to outside the bounds (text)

of the function.
Failed 6.2.2-9

STER,UEC

"+" (but not "-") may be used on things cf type CHAR, string, and

scalars, not just integers and reals.
Failed 5.3-2, €.3-3, €.3-4, 6.3-5, and 6.7.2.2-9

RAEC
A name may te used in it's cwn definitior e.g. "const ten=ten;*
railed €.3-€, and 6.4.1-2

AAFC,UBC

A glotal name may be used within a record which redefines that
name.

Failed 6.4.1-3

usc
Allcws packed anything not just (direct) structures.
Failed 6.4.32.1-1, and 6.4.3.1-2

STEE
Pointers to undeclared types may be used, but not dereferenced.
Failed 6.4.4-2

uBC
Ccrparisons are allowed between diferent tyres.
railed 6.4.5-1C and 6.4.5-11

AAFC,STER,UBC

The P4 definition of type equivalence rather than the stricter
currernt definiticn.

Failed 6.4.5-2, €.4.5-4(RAFC,STBR), 6.4.5-5, 6.4.5-13

EAFC
A ccapatible tyre is allcwed as a var paraneter.
Tailed 6.4.5-2

ST# SMIN TYISYd

HIAGWINAIS

nesT

A

43

STES
Missing POPWARL rrocedures go undetected.
Failed 5.6.1-6

RREC,STIER,NBC
Yissing assiguzect to a furcticn identifer goes undetected.
Tailed 6.6.2-%

AAEC

Actual function paramaters returning types compatibtle with the
forral functico rarameter are allowed.

Failed 6.6.3.5-2

AAEC,NBC

Actual and £crwal prccedure rarameters may have parameters which
are ccrpatible, ret just the same.

rTajled 6.6.3.6-2, and 6.€.2.€-3

STER
Trunc and Round with integer arguments get by.
Failed 6.6.6.3-4

BRAEC,STER,UOPC

Gotc's are allcwed between then and else parts of if statements and
between cases in a case statement. A later draft alowed this, but
it locks like it's out of the current one, which is too bad at
least in the case of the case staterents.

Failed 6.8.2.4-2, and 6.8.Z.4-3

AREC,STER,TRBC

Gotc's are allcwed into structured statements. See the test for
scre interesting implicaticns cf this and the definition in the
draft.

Failed 6.8.2.4-4

STEF
Peal case selectcrs get by (when the case constants are reals).
Pailed 6.8.3.5-1C

geC
Conponents of records are allowed as fcr loop variables.
Failed 6.8.3.9-11

ARFC,STER,NEBC
Nor-local variatles are allowed as fcr lccp variatles.

tssignments tc fcr loop variables inside the locp are alloved.

Nested@ fcr lccps with the same variable are allcewed. In STER
thisz dcesn't cause infinite lccps, since at the tcp of the locp
thte variable cets the value it would have if not changed.
Failed 6.8.3.6-2, 6.8.3.5-3, 6.8.3.9-4, 6.8.3.9-9, 6.8.3.9-14,
6.€8.3.9-16, and €.8.3.9-1¢

STEE,NEC

Output mav te used even if it dcesn't aprear in the program header.
Tailad 6.10-1

STER,TIBC

Urite may be used without specifing a file even when output

has been declared.
Failed 6.10-3

Netails_of extersicns not detected

STE&,UEC
te! for 'E!' i
Failed 6.1.5-

s a2llowed in real constamts. Later drafts allow this.
€

STER

Subkranges in case lists are nct flaged as extemsicns. (Version

2s cf the ccariler dcesn't allecw them thcugh).
Failed 6.8.3.5-12

RREC,STBR,URBC

Zero and negitive field widths are alloved. Later drafts may
allow this.

Failed 6.9.4-8,

STER, TBC

Write vworks with unpacked arrays of char, not just packed ones.
vailed 6.9.4-12

Tests_failed fcr ncn-ccnfcrrance

mBC
Fully specified rarameter lists are not allowed.
Failed 6.6.3.5-Z, 6.6.3.6-2, 6.6.3.6-3, 6.6.3.6~4, and 6.6.3.6-5

AAEC
Procedure paTrameters may have cnly value parameters.
Failed 6.6.3.6-3, and 6.6.3.€6~4

AREC,UBC
Locp is a reserved word.
*ailed €.8.3.9-¢, 6.8.3.9-13, and 6.8.3.9-14

AT4 QMIAN YISV

fumAnm e

AnFT

ELYYE

"

AAEC STBE UBC

Nurter of errcrzs detected 22

Nunher of err not detected

non
L)%
[IWPY)
N
£~

AREC

6.2.1-7, 6.4.2.3-5 ,6.4.3.2-€, 6.4.3.3-7, 6.4.3.3-8, 6.4.3.3-12,
6.4.6-7, €.53.£-8, 6.6.2-€, 6.6.5.2-6, 6.6.5.2-7, 6.6.5.3-3,
6.€.5.3-4, €.€.5.3-5, 6.€.5.3-€, 6.6.5.3-7, 6.6.5.3-8, 6.6.5.3-9,
6.7.2.2-6, 6.7.2.4-1, 6.8.3.S-5, 6.8.3.9-€, 6.8.3.9-17

STER

6.2.1-7, 6.4.3.3-5, 6.4.3.3-6, 6.4.3.3-7, 6.4.3.3-8, 6.U4.6-7,
€.4.6-8, 6.6.2-6, €.6.5.2-2, 6.€.5.2-6, 6.6.5.2-7, 6.€.5.3-3,
6.6.5.3-4, 6.6.5.3-5, 6.€.5.3-€, 6.6£.5.3-7, 6.6.5.3-8, 6.€6.5.3-9,
6.7.2.4-1, 5.8.3.9-5, 6.8.2.9~-€, 6.8.3.9-17

nBC

6.2.1-17, 6.4.3.3-5, 6.4.3.3-6, 6.4.3.3-7, 6.4.3.3-8, 6.4.3.3-12,
6.6.2-6, £6.6.5.2-6, 6.6.5.2-7, 6.6.5.3-3, 6.6.5.3-4, 6.6.5.3-5,
6.€.5.3-6, 6.6.5.3-7, 6.€.5.2-9, 6.6.5.3-¢, 6.6.6.3-2, 6.6.6.3-3,
6.7.2.2-6, €.7.2.2-7, 6.7.2.4-1, 6.8.3.9-5, 6.8.3.9-6, 6.8.3.5-17

Details_of failed tests:

AAEC,STER,NEC

Ose of undefined variables is not detected.

railed 6.2.1-7, 6.4.3.3-€, €.4.3.3~-7, €.4.3.3-8, 6.6.2-6,
6.8.3.9-5 F.€.3.S-6€

AAEC ,

Use of an null record causes an operation exception.

STER

Tse of a null record is ccnsidered an inccmpatibtle assignment.
pBC

Dse of a null record which is therefor an undefined variabin is
not detected.
Fails €.4.3.3-12

AAFC,STER,NTBC
Varient errors are undetected
Pailed 6.4.3.3-C

AAEC,STER,UEBC

Set assignments cut of range are nct detected. Conments in
6.7.2.4-1 say scrething akcut "operations on overlaping sets"
but I cann't fird sectionm €.7.2.4!

Tailed €.4.6-7(AR%C,STBR), 6.4.6=-8 (AAEC,STBR), 6.7.2.4-1

STER
Get with eof true is nct detected.
Pailed 6.6.5.2-2

LRAFC,STBR,UBC

Put while P2 is a parameter tc a prccedure is nct detected. The
test has a value parapmeter and this ray not be an error unless it
is a var par.

railed 6.6.5.2~¢

AAEC,STIBR,NBC

T3 being changeé while it is in use bty a with statement is not
detected.

vailed 6.6.5.2-7

AAEC,STBR,URBC

NDisrose does nctting so it dces not detect things which may not
be disposed, nil, undefined, or active variables.

Pailed 6.6.5.3-32, 6.€.5.3-4, 6.6.5.3-5, and 6.6.5.3-6

AAFC,STIBR,URC

Records created vith the varient form of new have the same size
as cthers. Viclations cf the restrictions on use of these are
not detected.

Pailed 6.6.5.3-7, 6.6.5.3-8, and 6.6.5.3-9

nBC
Trunc and rcund dc not detect values greater than waxint.
Failed 6.6.6.3-2, and 6.€£.€6.3-3

AAFC,UBC

Results of (scre) ovperatiorns which are outside -maxint..maxint
are not detected.

Failed 6.7.2.2-€, 6.7.2.2-7(UEC)

AAEC,STIER,NEC

As with 6.8.3.S-19, no errcrs for nested fcr locps with the same
variable. AAFC,URC go intc irnfinite loors

Tailed 6.8.3.%-17

fT# SMIN 1YISYd

“HAGWIIAAS

nosT

YA

GR

Quality Measurercent

AAEC STER UEC

n = 18 23 18

Numkter of tests zu
1y hapdled = 5 4 3

Nucter incorrectzl

AATFC
5.2.2-1, 6.1.3-3, 6.1.8-4, 6.8.3.4=5, 6.6.1-7, 6.8.3.5-2,
6.£.3.9-18

STEF

6.1.8-4, 6.8.3.2-5, 6.8.3.5-2, 6.8.3.5-8,

6.1.8-14, €.4.3.2-4, 6.8.3.5-2

, €.€6.6.2-7, 6.6.€6.2-8, 6.€6.6.2-S, 6.6.6.2-10

Details of failed tests:

AQEC

Ro warning is given for lorg identifers, and only the first eight
characters are used.

Failed S.2.2-1, €.1.3-3

AAEC,STER,TEC
¥o warning is given for a (shcrt) ccoment with a rissing "}".
Failed 6.1.8-4

STER, UBC

Array(.integer.) confusses the compiler and causes an obscure
tkings at run-tirze.

Failed 6.84.3.2-4

ARREC

(-1 pod bitsperwcrd .) is nct dcne correctly. %orked when
changed to {(.t.) where t was O..titsminust.

Failed 6.4.3.4=-C

AAEC
Procedure nesting is limited to 6 levels (main,PF1..P5).
Failed 6.6.1-7

AAREC,STER,URC

Ho warning is given fcr an irpcssitle case, one whcse label is
outside the sutrange of the selector. This maybe an error in
later drafts.

Failed 6.8.3.%-2

Irrlerantaticn-Terendence

AAEC STER UEC

¥urker of tests zun = 15 15 15
Nurkter incorrectly handled = 1 0 1

Tesits Incorrectly Randlegd

AAEC

There was an integer cverflow evaluation trunc((a+b)-a) which
shculd have returned 16.

Failed 6.6.€.2-11

IBC
Set of char shculd work, kut dcesn't always
Failed 6.4.3.4-2

Test €.4.2.2-7
RAEC,STER,TBC

Maxint = 2,147,483,647
Test 6.4.3.4-2"
ARAEC,UBC

Set af char is allowed.
nac

Set of char is allcwed and shculd wecrk, tut the test fails.

Test 6.4.3.u-4

AREC

Sets of 0..100C are allowed. Range is 0..2047.

STER

Sets of 0..100C are allowed. Any subrange with 2048 or fewer
merkers can ke the tase type fcr a set. Set constructor works
only cn scalars and sutranges, not integers.

UBC

Sets c¢f 0..100C not allowed. Pase types may have upto 256
merkters. Set ccnstructor only works with numbers in 0..255.

Test €.6.6.2-11

RAFC

There is an integer overflow in trunc(expr=16.0), cnly with this
prograc {?7?7).

STER

Beta=15, T=6, Fnd=0, ¥grd=1, Machep=-S5, Negexp=-6, Iexp=7,
¥inexp=-65, maxexp=63, eps=9.53674316e~-037, epsneg=5.960u6u448e-08,
xmin=%5,.397€C53%e-7¢,xmax=7.237C0515e+75

TBC

Beta=16, T=16,End=0, Ngrd=1, Machep=-13,Negexp=-14,Iexp=7,
¥inexp=-65, maxexr=63, ers=2,220446CSe-1€, epsneg=1.38777878e-17,
xpin=5.39760523%e-175, xrax=7.2370C55€e+75

Tests 6.7.2.3-2, €.7.2.3-3
EAEC,URC
Boclean experessions are fully evaluated. UBC Las option to use

N35T “¥3AWILd3S T4 SMIN TYISYd

A9Yd

96

partial evaluatica.
STER

MacCarthy evaluaticn of tcclean experessions is used.

Tests 6.8.2.2-1, €.8.2.2-2

RAEC,UBC

Tests shov selection tefore evaluation.
STEF

First test shcws selecticn befcre evaluatioc, second evaluation
befcre selectica.

Tests 6.9.4.5, 6.%.4-11

AATFC

Default field widths for integers 12, reals 24, bocleans 5.
Expcnents have 2 digits.

STEFR

Default field widths for integers 12, reals 14, tooleans 6.
Zxpcnents have 2 digits.

uBC

Default field widths for integers 10, reals 22, booleans 10.
Expcnents have 2 digits.

Test €.6.6.1-1

AAFC,UBC

o standard prccedures ray used as procedure paranmeters.
STBR

Only Sin, Cos, Exp, Ln, Sgrt, and Arctan may be used as procedure
parameters.

Test 6.10-2

AAEC,STBR

Rewrite{cuttut) is not allowed.
UBC

Revwrite (output) is allowed.

Test €.11-1, €6.11-2, 6.11-3
LAFC,STER,TBC
These subistute symbols are allowed and nc others
"(*N 'l*) " for "}ll "‘"
n (." ".) ” fcr "[n "]II
lla" for ","

STER

There is a lieit cn the size of any one rrocedure which is about
200 statements. 7This could te easily increased, tut this is the
cnly prograr kicsn to exceed it.

railed 6.8.3.5-F

Details_of tesis not run

RREC, UBC
These tests used upper case identifers declared in lower case and
had *e? in real constants.

6.€.6.2-6, £€.6.8.2-7, 6.6.6.2-8, 6.6.6.2-S, 6.6.6.2-10

Results_of Tests

Test 6.1.3-3

AAEC

only the first 8 characters ocf an identifer are used.

STER,TUBC

Tests reports mcre than 20 characters of identifers used. STBR
uses all characters, UBC uses 32.

Test 6.4.3.3-9

BAAEC,STER,UEC

The tag-field in records is not checked. Test reports ‘exact
correlation’

Test €.4.3.4-5

Measures the tire for Warshall's algorithr cn a 80x80 nmatrix.
Ooriginal uses array(.0..7%.) cf array(.0..4.) of set of 0..15.
Modified uses array{.0..7¢.) cf set of 0..79.

Original Bcdified
ime (sec) size{wocrds/rits) tire(sec) size(words/bits)
AREC 5.087 £02/16064 c.021 388/,12416
STER 0.060 400,12800 €.020 310/ 9920
necC 0.089 €70/21440 0.03% 562,17984

Test 6.7.2.2-4

BAEC,STER,TBC

NDiv and mod with negative crerands are as in the latest draft.

4 div B = Trunc (A/B), and mcd returns the remainder of div, that
is it has the same sign as the quotient.

Test 6.8.3.9-18

AAEC

After a for locp the loor variable may have a value which is out
of range.

STEF,URBC

After a for locp the loop variable has value of the finial
exrression.

Test #*** (All)
The total ccst cf running all 218 progrars was:
AREC 216.98

STRE $10.20 dcne Conmpile ané Fxecute, several corgilations per run

UBC $38.7% dcne with LCAINGC

SMIAN TYISYA

ATH#

NIAFWILIAIR

NORT

aNYHA

/IR

Burroughs B6700

PASCAL VALIDATION SUITE REPORT

Pascal Processor Identification

Computer:

Processor:

Test Conditions

Tester:

Date:

Burroughs B6700

B6700 Pascal version 3.0.001
(University of Tasmania compiler)

R.A. Freak (implementation/maintenance team member)

March 1980

Validation Suite Version: 2.2

Conformance Tests

Number of tests passed: 137

Number of tests failed: 1

Deviance Test

Details of failed tests:

Test 6.4.3.5-1 fails because a file of pointers
or a file of sets is not permitted.

Number of deviations correctly detected: 83

Number of tests showing true extensions:

2 (2 actual extensions)

Number of tests not detecting.erroneous deviations: 9 (5 basic causes)

Number of tests-failed: 0

Details of extensions:

Test 6.1.5-6 shows that the lower case e may be used
in real numbers (for example 1.602e-20). This feature
has been included in the new draft standard.

Test 6.10-1 shows that the file parameters in the
program heading are ignored in B6700 Pascal.

Error Handling

Number of errors

Number of errors

Details of deviations not detected:

Test 6.1.2-1 shows that nil may be redefined.

Tests 6.2.2-4, 6.3-6 and 6.4.1-3 show that a common
scope error was not detected by the compiler.

Tests 6.8.2.4-2, 6.8.2.4-3 and 6.4.2.4-4 show that

a goto between branches of a statement is permitted.
Test 6.9.4-9 shows that integers may be written with
a negative format.

Test 6.10-3 shows that the file output may be
redefined at the program level.

correctly detected: 33

not detected: 13 (4 basic causes)

Details of errors not detected: The errors not detected
fall into a number of categories -

Tests 6.4.3.3-5, 6.4.3.3-6, 6.4.3.3-7 and 6.4.3.3-8
indicate that no checking is performed on the tag
field of variant records.

Tests 6.6.5.2-1 and 6.6.5.2-7 indicate that a file
buffer variable can be altered illegally and a put
may be performed on an input file.

Tests 6.6.5.3-3, 6.6.5.3-4, 6.6.5.3-5 and 6.6.5.3-6
fail because dispose always returns a nil pointer in
B670C Pascal and no check is performed on the pointer
parameter.

Tests 6.6.5.3-7, 6.6.5.3-8 and 6.6.5.3-9 fail because
ne checks are inserted to check pointers after they
have been assigned a value using the variant form of new.

Implementationdefined

Number of tests run: 15

Number of tests

incorrectly handled: c

HTH SMIN TYISYd

N96T “¥IqWILd3S

A9Yd

86

Details of implementation-dependence:

Test 6.4.2.2-7 shows maxint to be 549755813887.

Tests 6.4.3.4-2 and 6.4.3.4-4 show that large sets
are allowed. The maximum set size is 65536 elements.
A set of char is permitted.

Test 6.6.6.1-1 shows that some standard functions
can be passed as parameters. Those which use in-line
code cannot be passed as parameters.

Test 6.6.6.2-11 details some machine characteristics
regarding number formats.

Tests 6.7.2.3-2 and 6.7.2.3-3 show that boolean expres-
sions are fully evaluated.

Tests 6.8.2.2-1 and 6.8.2.2-2 show that a variable is
selected before the expression is evaluated in an
assignment statement.

Tests 6.9.4-5 and 6.9.4-11 show that the default size

for an exponent field on output is 23 for a real number

it is 15; for a boolean 5 and the size varies for integers
according to the value being written.

Test 6.10-2 indicates that a rewrite onthe standard file
output is permissible.

Tests 6.11-1, 6.11-2 and 6.11-3 show that the alternative
comment delimiters have been implemented, as have the
alternative pointer symbols. No other equivalent symbols
have been implemented.

Quality Measurement

Number of tests run: 23

Number of tests incorrectly handled: 0

Results of tests:

Test 5.2.2-1 shows that identifiers are distinguished
over their whole length.

Test 6.1.3-3 shows that more than 20 significant
characters may appear in an identifier, in fact, the
number of characters in a line is allowed.

A warning is produced if a semicolon is detected in
a comment (test 6.1.8-4).

Tests 6.2.1-8, 6.2.1-9 and 6.5.1-2 indicate that large

lists of declarations may be made in each block.

An array with an integer indextype is not permitted
(test 6.4.3.2-4).

Test 6.4.3.3-9 shows that variant fields of a record
occupy the same space, using the declared order.

Test 6.4.3.4-5 (Warshall's algorithm) took 0.63830u4
secs CPU on the Burroughs B6700 and 158 bytes.

Tests 6.6.1-7, 6.8.3.9-20 and 6.8.3.10-7 show that
procedures, for statements and with statements may
each be nested to a depth greater than 15.

Tests 6.6.6.2-6, 6.6.6.2-7, 6.6.6.2-8, 6.6.6.2-9 and
6.6.6.2-10, tested the sqrt, atan, exp, sin/cos and

1n functions and all tests were successfully completed,

without any significant errors in the values.

Test 6.7.2.2-4 shows that div has been implemented
consistently for negative operands, returning trunc.
mod returns for the remainder of div.

Test 6.8.3.5-2 shows that case constants must be of
the same type as the case-index, if the case-index is

a subrange, and a warning is given for case constants
which cannot be reached.

Test 6.8.3.5-8 shows that a large case statement
(256 selections) is permissible.

Test 6.8.3.9-18 indicates that range checking is
always used in a case statement after a for statement
to check the for variable.

Test 6.9.4-10 shows that file buffers are flushed at
the end of a block and test 6.9.3-14 indicates that
recursive I/0 using the same file is allowed.

Number of tests run: 1

Test 6.8.3.5-14 shows that the otherwise clause in a
case statement has been implemented according to the
accepted convention.

574 SMIN T¥ISHd

“WATNALAIS

nest

9vd

66

Data General Eclipse
PASCAL VALIDATION SUITE REPORT
Pi Pr sor T ificati
Computer : Data General Eclipse S/130
Processor: Medical Data Consultants BLAISE
(PASCAL P4 v4 DEC 1979)
Test Conditions
Tester: Ted C. Park
Date: April, 1980

Validation Suite Version: 2.2

14 ts

1. The overall quality and completeness of the validation programs
is excellent.

2. The orthagonality of the programs is poor. Oftentimes many things
are checked in one test. For instance, my compiler supports
TRUNC but not ROUND. Since these are checked in the same test,
this causes problems.

3. The skeleton program seems like a good idea but in actual practice
it did me very little good. I wonder if it's really helpful
to anyone else.

4. The skeleton program requires a "dummy" terminating program at the
end of the validation suite. There is none.

5. The first line of program 6.8.3.4-1 is missing a comma.

6. Program 6.6.1-6 is missing a semicolon on the next to the last statement.

Y P t

MDC "BLAISE" is based on PASCAL-P4 which is a known subset of

PASCAL as described in Jensen and Wirth. It was not clear at the
outset how a subset compiler would react to the validation programs.
All the programs were submitted to the compiler and although many were

invalid due to the known design restrictions, I am pleased to report
that the compiler either accepted each program or printed appropriate
diagnostic messages in every case. No program caused any system
failure or crash either at compile or run time.

The known design constraints of PASCAL-P4 (See PASCAL NEWS #11,
Page 70) are listed below.

NIL is a predeclared constant

FORWARD is a reserved word

Only the alternate form of comment delimiters are allowed
No MAXINT

No TEXT

No ROUND

No PAGE

No DISPOSE

No REWRITE

No RESET

No PACK

No UNPACK

The program heading is not required

Every variant record must have a tag field

No user declared files or associated features (BLAISE does not
support GET or PUT)

No output of BOOLEANS

No output of REALs in fixed notation

No formal parameter functions or procedures

No subrange set constructors

64 character ASCII character set which implies upper case letters
only.

No literal text strings longer than 16 characters.

8 character limit on identifier lengths.

Since the upper case only and 16 character literal string length
restrictions applied universally to almost all programs, they were all

adjusted accordingly. Other than that, no changes were made to any of
the programs. The results are reported below.

Conformance Tests

Number of tests attempted: 139
NMumber of tests invalid due to known design restrictions: 31
Number of tests passed: 102
Number of tests failed: 6

6T# SMIN TYISYd

NQAT “NIAWALA IS

Q0T 39Yd

Details of Failed Tests

Test 6.1.5-2 failed because 1oﬁg REALs are not accepted by the
compiler, however, a warning message was issued.

Test 6.4.5-4 fails because similar records are treated as identical.
Test 6.4.5-5 fails because similar pointers are treated as identical.

)) 6.2- . . . ; dentifi ;
Test 6.2.2-3 failed due to a scoping error. g‘;s:trgq gli eg.falls because assignment to the function identifier is

Test 6.4.3.5-4 failed because no end of line was inserted at 6.6.6.4-6 fails because SUCC and PRED are allowed for REALs
final buffer flush. .6.6. .

Test 6.8.2.4-1 failed because non-local GOTOs are not allowed. g‘:igagiz.iézzgpgm?ecause the unary plus 1s alloved for @

Test 6.8.3.5-4 failed because of the large table generated for a Test 6.8.2.4-2 fails because j

.8.2.4- jumps between branches of an IF
sparse CASE statement. statement are allowed.
Test 6.8.3.9-1 failed because the index of a FOR statement was

set up before the final expression of the FOR statement was Test 6.8.2.4-3 fails because jumps between branches of a CASE

statement are allowed.

evaluated.
Test 6.8.3.9-2 fails because assignment to the FOR index is
s allowed.
ance Tes
Test 6.8.3.9-3 fails because assignment to the FOR index is allowed.
Nurber of tests attempted: %4 Test 6.8.3.9-4 fails because assignment to the FOR index is allowed.
Number of tests invalid due to known design restrictions: 21 Test 6.8.3.9-9 fails because a non-local variable is allowed as a
Number of tests passed: 50 FOR index.
Mumber of tests failed: 2 gg;tigég}f&-lll fails because a global variable is allowed as a
: . Test 6.8.3.9-16 fails because the FOR index can be read.
Details of Failed Tests

TEST 6.8.3.9-19 fails because nested FORs with the same index

Test 6.1.7-8 failed because any character may be assigned to an are not detected.

element whose type is subrange of CHAR.

Test 6.9.4-9 fails because zero and negative field widths allowed

Test 6.2.2-4 fails to detect the scope overlap. are for integer output.

Test 6.3-5 fails because it.allows a signed character constant. Test 6.9.4-12 fails because output of non-packed arrays is allowed.

Test 6.3-6 fails because it allows a constant to be used in its
own declaration.

Error Handling Tests
Test 6.4:1-3 fails because it allows a type to be used in its own
declaration. Total tests attempted: 46

Test 6.4.5-2 fails because subranges of the same host are treated

as identical. Number of tests invalid due to known design restrictions: 13

Test 6.4.5-3 fails because similar arrays are treated as identical. Number of tests passed: 8

* Number of tests passed only if "DEBUG" option selected: 11

6T# SMIN T4ISYd

NATWIALAIS

nogT

NYd

101

Number of tests failed: 14

Detail £ Failed T
N\
Test 6.2.1-7 local values are not undefined prior to definition.

Test 6.4.3.3-5 other variants do not cease to exist when tag field
changed.

Test 6.4.3.3-6 variants are not undefined prior to definition.

Test 6.4.3.3-12 empty field is not flagged as undefined prior to
definition.

Test 6.4.6-4 out of range not detected on integer assignment.

Test 6.4.6-5 out of range not detected on integer parameter passing.
Test 6.4.6-6 out of range not detected on integer array index.

Test 6.4.6-7 out of range not detected on set assignment.

Test 6.4.6-8 out of range not detected on set parameter passing.

Test 6.5.3.2-1 out of range not detected on twe dimensional integer
array index.

Test 6.5.4-1 pointer equals NIL not detected at use.

Test 6.5.4-2 pointer undefined not detected at use.

Test 6.6.2-6 function having no value assigned to it as undetected.
Test 6.6.5.3-7 assignment compatibility of records not checked.
Test 6.6.5.3-8 assignment compatibility of records not checked.
Test 6.6.5.3-9 assignment compatibility of records not checked.
Test 6.6.6.4-4 SUCC function applied to last value not detected.
Test 6.6.6.4-5 PRED function applied to first value not detected.
Test 6.6.6.4-7 character out of range not detected.

Test 6.7.2.2-3 divide by zero not detected.

Test 6.7.2.2-8 mod by zero not detected.

Test 6.7.2.4-1 out of range SET values not detected.

Test 6.8.3.9-5 undefined FOR indexed after loop not detected.
Test 6.8.3.9-6 undefined FOR index after zero pass loop not detected.

Test 6.8.3.9-17 nested FOR using same index not detected.

] jon-Defined T

Test 6.4.2.2-7 no MAXINT

Test 6.4.3.4-2 SET of CHAR allowed

Test 6.4.3.4-4 SET base-type size 0...63

Test 6.6.6.1-1 functions not allowed as parameters
Test 6.6.6.2-11 all floating-point tests OK

Test 6.7.2.3-2 (A AND B) fully evaluated

Test 6.7.2.3-3 (A OR B) fully evaluated

Test 6.8.2.2-1 left side of array assignment evaluated before
right side

Test 6.8.2.2-2 left side of pointer assignment evaluated before
right side

Test 6.9.4-5 two digits written for exponent

Test 6.9.4-11 IFW=10 RFW=20 BFW not allowed

Test 6.10-2 rewrite not allowed

Test 6.11-1 {} not allowed for comments

Test 6.11-2 equivalent symbols for ~ : ; : = [] not allowed

Test 6.11-3 equivalent symbols for < > <= >= <> not allowed

Quality Tests

Test 6.2.2-1 identifiers not distinquished past 8 characters

Test 6.1.3-3 identifier significance is 8 characters

S5T# SMIN TYISYd

NRT “MITWILL3S

A9V

[4\

Test 6.1.8-4 no help in locating unclosed comment
Test 6.2.1-8 >= 50 types allowed
Test 6.2.1-9 >= 50 labels allowed
Test 6.4.3.2-4 integer not allowed as index type

Test 6.4.3.3-9 reverse allocation of listed vars

Test 6.4.3.4-5 1.4 seconds - 916 bytes vs. .8 seconds — 143 bytes

Test 6.5.1-2 long declaration lists allowed

Test 6.6.1-7 procedures may be nested only 10 deep
Test 6.6.6.2-6 SQRT is OK

Test 6.6.6.2-7 ARCTAN is OK

Test 6.6.6.2-8 EXP is OK

Test 6.6.6.2-9 SIN and COS are OK

Test 6.6.6.2-10 LN is OK

Test 6.7.2.2-4 DIV is OK — MOD returns remainder
Test 6.8.3.5-2 impossible branch of CASE not detected
Test 6.8.3.5-8 >= 256 CASES allowed

Test 6.8.3.9-18 FOR index is just bumped along without checking
Test 6.8.3.9-20 >= 15 nested FORs allowed

Test 6.8.3.10-7 >= 15 nested WITHs allowed

Test 6.8.4-10 output is not flushed at end of job

Test 6.9.4-14 recursive I/0 allowed

Extension Tests

Test 6.8.3.5-14 'OTHERWISE' extension not implemented

P: 1 Validation t
Pascal Processor Identificatjon
Computer: VAX 11/780
Processor: VAX 11 Pascal V1.8-1

Test Conditions

Time: 1980 01 21

Test runs carried out by S. Matwin and B. Silverman
Test annotation and analysis by S. Matwin
Validation Suite version: 2.2

nfor Tests

Number of tests passed: 127
Number of tests failed: 12, 8 basic causes

Details of fajled tests:

Test 6.4.3.3-1 shows that empty record is not implemented.

Test 6.4.3.3-4 shows that the processor does not allow tag field
redefinition

Tests 6.4.3.5-1 and 6.5.1-1 show that the function EXP does not pass
accuracy test

Test 6.8.3.5-4 shows that case label range is limited to 1008

Test 6.8.3.9-7 shows that MAXINT is too big as an extreme value in a
for statement, leads to overflow

Test 6.8.4-3, 6.9.4-4, 6.9.4-7, and 6.9.5-1 fail with a component of
a packed structure as an actual variable parameter. This will
happen in any compiler, written in Pascal, as the parameters
of READ will be variable. On the other hand the Standard prohibits
’the use of components of variables of any packed type as actual
variable parameters’

Test 6.9.4-15 shows that WRITE without the file parameter refers to a
locally defined file

Deviance Tests

Number of deviations correctly detected: 67
Number of tests not detecting erroneous deviations: 24
(& basic causes)

Details of deviations not detected:

Test 6.1.2-1 shows that the reserved word nil may be redefined

Test 6.1.5-6 shows that the processor allows small letter ’e’ as an
exponent indicator (which is sometimes claimed to be an extension)

Tests 6.2.2-4 and 6.3-6 show that in some circumstances the processor
does not detect the use of an identifier prior to its definition

5T# SMIN TYISYd

NO5T “UIGWI 43S

Yd

€01

Tests 6.4.5-2 thru 6.4.5-5 and 6.4.5-13 show that the processor requires
the compatibility of the types of formal and actual parameters,
rather than type identity

Test 6.6.2-5 shows that the processor does not check the occurrence of
at least one assignment to the function name in the function block

Tests 6.8.2.4-2 thru 6.8.2.4-4 show that the processor allows jumps
between branches of an if and a case statement

Tests 6.8.3.9-2 thru 6.8.3.9-5, 6.8.3.9-13 thru 6.8.3.9-16 and 6.8.3.9-19
show that the processor omits some restrictions imposed on a for
statement. The processor prohibits neither the assignment to the
control] variable nor the use of that variable after the completion
of the loop. Other deviations of that class are

- control variable can be a formal parameter or a global
variable .

- reading into a control variable is allowed

- non-local control variable combined with recursion leads
to an infinitely looping program

r in

Number of errors correctly detected: 13
Number of errors not detected: 31

reor: {*]

Tests 6.2.1-7 and 6.4.3.3-12 show that the undefined values are not
detected by the processor

Tests 6.4.3.3-5 thru 6.4.3.3-8 show that the existence of a particular
variant in a record variable is not tested by the processor

Tests 6.4.6-4 thru 6.4.6-8, 6.5.3.2-1 and 6.7.2.4-1 show that the
processor tests only the static compatibility, without checking the
appropriateness of the actual value during run-time (unlike, e.g.,
Zurich Pascal-2 compiler)

Test 6.6.2-6 show that there is no dynamic checking of the fact whether
the name is assigned to the function name

Tests 6.6.2.5-6 and 6.6.5.2-7 show that the parameter called by value
can be changed inside the procedure in case of a buffer variable

Tests 6.6.5-3 and 6.6.5-4 show that the procedure DISPOSE does not check
correctness of its parameter

Tests 6.6.5.3-5 and 6.6.5.3-6 show that both an actual variable parameter
and an element of a record-variable-list of a with statement can
be referred to by a pointer parameter of DISPOSE

Tests 6.6.5.3-7 thru 6.6.5.3-9 show that the restrictions on the variable,
created by the second form of NEW, are not implemented

Tests 6.6.6-4 and 6.6.6-5 show that SUCC and PRED can produce values
from beyond the enumeration type

Test 6.6.6.4-7 shows that the function CHR does not check the correctness
of its parameter

Tests 6.8.3.5-5 and 6.8.3.6-6 show that there is no dynamic checking of
the value of the case selector

Test 6.8.3.9-17 shows that two nested for statements can use the same
control variable

Inol ion def

Number of tests run: 16
Number of tests incorrectly handled: 1

f th ntat ion-de,

Test 6.4.2.2-7 shows MAXINT to be 2147483647
Tests 6.4.3.4-2 and 6.4.3.4-4 show that set of CHAR is allowed, that the
negative elements in a set are not allowed, and that elements must
not exceed 255
Tests 6.6.6.1-1 fails because formal functions are implemented following
the Revised Report rather than the Standard
Tests 6.7.2.3-2 and 6.7.2.3-3 show that Boolean expressions are fully
evaluated
Tests 6.8.2.2-1 and 6.8.2.2-2 show that selection precedes evaluation
in the binding order
Tests 6.9.4-5 and 6.9.4-11 show that the default fields are:
- 18 for integer
- 16 for Boolean
- 16 for real
Test 6.18-2 shows that REWRITE on the standard file OUTPUT is possible
Tests 6.11-1 thru 6.11-3 show that only alternate comment delimiters
(and no other equivalent symbols) are permitted

Quality Measurement

Number of tests run: 23
Number of tests incorrectly handled: 1

Details of results

Tests 5.2.2-1 and 6.1.3-3 show that there is no other limit on the length
of the identifiers than the length of the line, although only the
first 15 characters are significant

Test 6.18-4 shows that in case of an unclosed comment the text is
swallowed without any diagnostics

Tests 6.1.2-8 and 6.1.2-9 show that large type— and label-lists are
allowed

Test 6.4.3.2-4 shows that INTEGER is not allowed as an index type

Test 6.4.3.3-9 shows that fields in a record are stored in the order of
their appearance in the field list

Test 6.4.3.4-5 (Karshall’s algorithm) took 129 milliseconds of CPU time

Tests 6.6.6.2-6 thru 6.6.6.2-10 were completed with some errors, requiring
separate analysis

Test 6.7.2.2-4 shows that div and mod have been implemented consistently
for negative operands: quotient = trunc(asb), mod returns remainder
of dj

Test 6.8.3.5-2 shows that ’impossible’ paths through case statements are
not signalled by the processor

Test 6.8.3.5-8 shows that a large number of case labels is allowed

Test 6.8.3.9-18 shows that the value of the control variable after the
completion of a for loop is in the range of its type (and is equal

S5T# SMAN TYISYd

NeRT “NIAWILA IS

hOT F9Wd

to the final value)

Tests 6.8.3.9-28 and 6.8.3.10-7 show that for and with statements can be
nested to a depth exceeding 15

Test 6.9.4-18 shows that flushing of the buffer of the output file occurs
at the end of the program

Test 6.9.4-14 shows that recursive 1/0 using the same file is not
possible

Extensions
Number of tests run: 1

Test 6.8.3-14 shows that gtherwise clause is implemented, although
one statement (rather than a sequence of them) is permitted

between gtherwise and end

IBM_370

PASCAL VALIDATION SUITE REPORT

Pascal Processor Identification

Computer: IBM 370/158

Processor: Stony Brook Pascal/360
(Developed at SUNY Stony Brook
Dept. of Computer Science)
Release 3.2 CMS version

Test Conditions
Tester: Charles Hill (MTS Philips Labs)
(Member of original implementation team)

Date: March 1980
Validation Suite Version: 2.2

Principal Deviations:

- Files use fixed length records, even for text files.

- Compiler does not permit untagged variants

~ No run-time checking of tags on access to variant records

- FOR loop control variables can be altered

- PACKED and non-PACKED structures are indistinguishable

- Compiler uses structural equivalence rather than name
equivalence of types

- Syntax for specifying the types of the parameters of
procedural/functional parameters differs from
the standard

- DISPOSE is not implemented

Main Extensions

- Case labels may be a subrange

~ OTHERWISE clause in CASE statement

-~ Linkage to FORTRAN or machine language programs

- External compilation with type checking across module
boundaries

Problems with the Validation Suite

Some syntax errors and invalid tests were discovered in the
test programs; these are documented 1later on. The following
minor violations of the assumptions made by the skeleton
were found:

- Test 6.9.4-12 has a comment that begins "{This ..."
causing the skeleton to mistake this comment for a header.

- The header for 6.8.3.4-1 is missing a comma.

- The expected delimiter "999" did not appear in the

6T# SMIN THISYd

RERUEIVEN

nentT

yd

S0T

program file; the termination logic has to be altered
slightly anyway.
- The "END." for test 6.6.1-7 does not begin in column 1.

Conformance Tests

Number of tests passed: 113

Number of invalid tests: 3

Number of tests failed: 22 (14 causes)

Number of irrelevant tests: 3

Number of tests detecting bugs in compiler: 6

Invalid tests

6.4.3.5-1 PTRTOI, meant as a type, declared as a variable.
6.6.3.1-1 contains an actual VAR parameter non-identical in
type to the formal parameter. The compiler passed this test
when the error was corrected.

6.9.4-7 TRUE is written in a field of 5; when read back,
the program expects it to be written left justified, in
contrast to the standard which says that values should be
written right justified.

Irrelevant tests

6.1.3-2,6.4.2.2-6 Compiler uses upper case only.

6.6.6.5-1 not a test program.
Tests detecting bugs in compiler

6.2.2-3 When typing a pointer to a type NODE, the compiler
uses a definition of NODE from an outer block rather than a
new definition of NODE appearing later on in the same block.
6.4.3.3-3 causes a bad instruction to be generated.

6.4.5-1 produces an irrelevant error message relating to
file assignment.

§.6.5.2-3 blew up on a RESET to an un-initialized internal
file using Release 3.1. The test passes using Release 3.2.
6.7.2.4-3 blew up on the expression A * [] = [].

Details of Failed Tests

.6.1.6—2 Labels compared for equality as strings rather than
integers and thus 1labels "6" and "0006" are considered
distinct.

6.2.1-6,6.6.3.2-1,6.6.3.3-1 Compiler expects at least one
parameter in the program heading.

6.2.2-8 Compiler does not allow assignment to the value of
a function within an inner block of that function.

6.4.2.2-2 The maximum cardinality of a subrange is
restricted to the value of MAXINT; compiler:.gives a warning
and runs correctly, but only because the subrange is
subsequently treated as equivalent to type INTEGER.
6.4.3.3-1 Untagged variants are not permitted.

6.4.3.3-10 Case constants outside the tag field subrange
are not allowed.

6.4.3.5-2,6.9.1-1 Implementation uses fixed length records,
even for text files; an empty line thus results in a record
of blanks, rather than a single line-marker character.

6.6.3.1-5,6.6.3.4-2 A different syntax is used for
declaring the parameter types of formal procedure/function
parameters - only the types of the parameters are expected.
6.6.6.2-3, which tests the real-valued standard arithmetic
functions, failed on the accuracy tests for EXP and SQRT.
6.6.6.4-1 Compiler computés ORD(x) with respect to the
declared subrange to which x belongs, rather than with
respect to the underlying base type.

6.8.3.9-7 When using values near MAXINT in a FOR 1loop,
compiler gave an INTEGER OVERFLOW run error.

6.9.4-4 The second width specifier for formatting reals is
not implemented.

6.9.4-6 The width specifier for strings must be a constant
in the current implementation.

Deviance

Number of tests passed: 54

Number of tests showing deviance: 34 (17 causes)
Number of tests failed: 5

Number of tests detecting bugs: 3

Details of tests showing deviance

6.1.7-5,6.9.4-12 because PACKED and UNPACKED structures are
treated as equivalent; i.e., the compiler makes no
distinction between the two even for storage requirements.
6.1.7-6,6.4.3.2-5 Strings are compatible with all arrays of
CHAR provided the lengths match.

6.2.1-5 If an identifier is declared as a label no error is
produced if it is not subsequently referenced in a GOTO.
6.2.2-4 Use of a type 1identifier is permitted according to
its definition in an outer block despite its redefinition in
an inner block.

6.3-2,3,4,5, 6.7.2.2-9 shows signed constants of
inappropriate types (e.g. strings) are allowed.

6.4.3.3-11, which tries to assign a value to an empty field
in a record, blows up during semantic analysis (PASS 2 of
the compiler).

6.4.5-3 (and 6.4.5-13, which 1is identical), 6.4.5-4,5 fail
because the compiler uses structural equivalence rather than
name equivalence of types.

6.4.4-2 The compiler fails to flag references to a pointer
variable that points to a record type that is never defined.

6.6.1-6 Shows that compiler does not catch the lack of a
subsequent full declaration for a procedure declared to be
FORWARD (the program is allowed to run, even though that
routine is actually called!); this is a bug. This test, as
supplied, contained a missing semicolon.

6.6.2-5 Compiler does not detect the lack of an assignment
of a value to a function within the function block.

6.6.6.3.4 Integer arguments to TRUNC and ROUND are
permitted. (Such arguments are coerced to real as they would
be in any other instance where reals are expected).

T4 SMIN TYISYd

NITUILA3S

neaT

QT 29vd

6.8.2.4-2,3,4 show the compiler allows jumps into IF and
ELSE parts, and into CASE branches.

6.8.3.5—19 Compiler allows real CASE labels with a
corresponding REAL CASE selector; test executes correctly.
6.8.}.9—2,3,4,14,16, 6.8.3.9-9,19 Show that there are
practically no restrictions on FOR loop control variables:
they can be assigned to or read in within (or outside) the
loop body, and declared in any block. However, altering
gontro% variables do not affect the number of 1loop
lterations; an altered value is retained only throughout the
iteration in which it is changed, since the compiler uses a
hidden temporary variable as the true control variable.
6.9.4-9 Shows the compiler treats negative field widths
just as positive field widths that are too small - it uses
the smallest actual width possible.

6.19-1 OUTPUT is not required to be listed 1in the program
heading when output is directed to that file in the program.
6.10-3 Shows OUTPUT can be redefined as a variable within
the program block.

6.8.3.5-12 shows compiler allows ranges as case labels.

Tests showing bugs in compiler
6.4.3.3-11, 6.4.4-2, 6.6.1-6 (described above)

Tests showing extensions
6.8.3.5-12,13, 6.8.3.9-10 show ranges are allowed as case
labels, and that this extension is implemented safely.

Tests failed
6.6.3.5-2, 6.6.3.6-2,3,4,5 all failed because the compiler

expects a different syntax for declaring the parameter types
of formal procedure/function parameters.

Comments on passed tests

6.1.5-4 Decimal point not followed by a digit in a real
number flagged as an error, but the program is allowed to
run because no ambiguity is present in the case tested by
the program.

6.1.7-11 A null string is flagged, but the program is
allowed to run with a blank substituted.

6.}.3—5 Nested comments are permitted if the alternate
delimiter symbols are used.

6.9.4-8 When real format is used to output an integer, the
error is flagged but the program is allowed to run.

Error handling tests

Number of tests passed: 25
Number of tests failed: 23
. Number of invalid tests: 1

Details of failed tests
6.2.1-7 No error message is given when an undefined

variable is used.

6.4.3.3-5,6 show no run-time check on tag values is
performed when referencing variants.

6.4.3.3-7,8 failed because the compiler does not allow
untagged variants.

6.4.6-7,8, 6.7.2.4-1 show the compiler does not complain
when the value of the expression in a set assignment lies
outside the subrange to which the variable belongs (but is
within the underlying base type).

6.6.2-6 Shows no check is made whether a function receives
a value.

6.6.5.2-2 No EOF error given. This test fails because the
implementation uses fixed length records for text files, and
thus short lines are padded with blanks.

6.6.5.2-6,7 No error is given if a file component variable
is an actual parameter to a procedure that does I/0 to the
file and thus alters the file component.

6.6.5.3-3,4 fail because DISPOSE is not implemented; no
check is made on the validity of its arguments. Similarly,
6.6.5.3-6 shows no error 1is given when a pointer wused in
selection of a WITH control variable is disposed.

6.6.5.3-5 would fail if the test program were valid; the
parameter A should be a VAR parameter.

6.6.5.3-7,8 show that no error is given if a variable
returned by NEW containing tagged variants is used 1in its
entirety.

6.8.3.5-5,6 When the value of a case selector <> any of the
labels, no error message is given.

6.8.3.9-5,6,17 show that a FOR loop control variable is
accessible outside the 1loop. After normal execution of the
loop, it has the final value of the range. No error is given
for nested FOR loops using the same control variable; the
program iterates the expected number of times.

Implementation defined tests

Number of tests run: 15
Number of tests detecting bugs: 1

Details of Implementation dependence
6.4.2.2-7 shows MAXINT = 2147483647.
6.4.3.4-2 shows sets of CHAR are allowed.
6.4.3.4-4 shows the maximum set cardinality > 1000.
6.6.6.1-1, 1in which ODD appears as an actual function
parameter, does not compile. The real-valued arithmetic

functions are the only standard functions able to be passed
in this way.

6.6.6.2-11 ran to completion, but some inconsistencies
occured (i.e., XMIN <> BETA**MINEXP).

6.7.2.3-2,3 show short circuit evaluation of expressions is
performed.

6.8.2.2-1 shows selection is performed before evaluation in
AlI] := SIDEEFFECT(I). By contrast, test 6.8.2.2-2 shows

NOGT “YITWI 43S T4 SMIN YISV

40T 34

evaluation occurs before selection in P@ := SIDEEFFECT(P).
6.9.4-5 shows 2 digit exponents in output of real numbers.
6.9.4-11 detected a bug in RELEASES 3.0, 3.1. It shows the
default field widths to be:
integer: 12
boolean: 14
real: 9

in contrast to the User manual and earlier releases, in
which these formats are 12, 6, 14, respectively. This bug
has been repaired in RELEASE 3.2.

6.10-2 shows REWRITE(OUTPUT) is not allowed.

6.11-1 shows the alternate comment convention is allowed;
the delimiters must be pairwise matched, thus allowing code
sections to be commented out.

6.11-2,3 show equivalent symbols %, .=, GT, LT, GE, LE, NE,
are not allowed. @ is wused instead of the EBCDIC
translation of up-arrow.

Quality tests

Number of tests run: 22
Number of tests detecting bugs in compiler: 6
Number of tests not performed: 1

5.2.2-1, 6.1.3-3 show identifiers are distinquished over
their whole length, but the compiler gives no indication the
programs do not conform (i.e., contain identifiers with > 8
character significance). The compiler permits identifiers of
up to 256 characters.

6:.1.8-4 Shows compiler gives no indication of unclosed
comments.

6.2.1-8,9, 6.5.1-2, 6.6.1-7, 6.8.3.9-20, 6.8.3.10-7 show a
large number of 1label and type declarations, deeply nested
(>15 levels) procedures, FOR loops, and WITH statements are
permitted. However, test 6.8.3.5-8, which contains a heavily
populated CASE statement, caused a compile time data
structure to overflow at case 152.

6.7.2.2-4 shows DIV and MOD are implemented consistently,
and that MOD yields the remainder of DIV.

6.9.4-10 shows that the output buffer is flushed at the end
of the program.

6.8.3.5-2 shows the compiler does not detect that a case
label, while contained in the underlying type, lies outside
the subrange to which the selector belongs.

6.4.3.3.9 shows the ordering of the representation of
variant fields is the same as the order of declaration.

6.6.6.2-6,7,8,9,10, which test the standard real-valued
arithmetic functions, gave a mean relative error between
E-06 and and E-07 in the interval tests. The special
argument tests gave fairly good results. Most identity tests
gave zero, as required; those that did not were within E-06
relative to the arguments.

6.8.3.9-18 shows the value of a FOR statement control

variable after normal termination of the 1loop is the
specified upper limit.
6.9.4-14 shows "recursive" I/0 is allowed.

Test not performed

6.4.3.4-5 could not be run because timing is currently not
implemented in the CMS version.

Tests demonstrating compiler bugs

6.4.3.2-4 shows compiler accepts an array with an index
type of INTEGER, but the resulting program does not run
correctly.

6.6.6.2-6,7,8,9,10 all crashed at run-time using Release
3.1. The bug has been fixed in Release 3.2.

Extensions
Number of tests run: 1

Test 6.8.3.5-14 did not compile; the compiler supports the
OTHERWISE extension to the CASE statement but OTHERWISE
<{statement> replaces END rather than preceding it as in the
proposed standard extension.

5T4 SMIN TYISYd

095T “¥3AWILA3S

80T 39¥d

Univac_ 1100

PASCAL VALIDIATION SUITE REPORT

Authored by:
I.E. Johnson, E.N. Miya, S.K. Skedzieleweski

Pascal Processor Identification

Computer: Univac 1100/81
Processor: University of Wisconsin Pascal version 3.0 release A

Test Conditions

Testers: I.E. Johnson, E.N. Miya.
Date: April 198¢C
Validation Suite Version: 2.2

General Introduction to the UW Implementation

The UW Pascal compiler has been developed by Prof. Charles N.
Fischer. The first work was done using the P4 compiler from
Trondheim, then the NOSC Pascal compiler written by Mike Ball was
used, and now all development is done using the UW Pascal com-
piler.

There are two UW Pascal compilers; one produces relocatable code
and has external compilation features, while the other is a
"load-and-go" compiler, which 1is cheaper for small programs.
Most tests were run on the "load-and-go" version. Both compilers
are l-pass and do local, but not global optimization. The UW
compiler is tenacious and will try to execute a program contain-
ing compile-time errors. This causes problems when running the
Validation Suite, since programs that are designed to fail at
compile time will appear to have executed.

Conformance Tests

Number of Tests Passed: 123
Number of Tests Failed: 16

Details of Failed Tests

Test 6.4.3.5-1 failed on the declaration of an external
file of pointers (only internal files of pointers are
permitted).

Tests 6.4.3.5-2, 6.4.3.5-3 and 6.9.1-1 failed due to an
operating system "feature" which returns extra blanks at
the end of a line. This problem affects EOLN detection.

Test 6.5.1-1 failed because the implementation prohibits

The research described in this paper was carried out at the Jet Propulsion
Laboratory, California Institute of Technology, under NASA Contract NAS7-100.

files that contain files.

Tests 6.6.3.1-5 and 6.6.3.4-2 failed because the current
version of this implementation prohibits passing standard
functions and procedures as parameters.

Test 6.6.5.3-1 failed to assign an already locked tag

field in a variant record, but the standard disallows
such an assignment! (Error in test?)

Test 6.6.5.4-1 failed to pack because of a subscript out
of range. MACC notified.

Test 6.6.6.2-3 failed a nine-digit exp comparison.
Univac uses 8 digit floating point.

Test 6.6.6.5-2 failed test of ODD function (error with
negative numbers).

Test 6.8.2.4-1 failed because non-local GOTO statements
are not allowed by this implementation.

Test 6.8.3.4-1 failed to compile the "dangling else"”
statement, giving an erroneous syntax error.

Tests 6.9.4-1 and 6.9.4-4 failed do unrecoverable I/0 er-
ror. Problem referred to MACC.

Test 6.9.4-7 failed to write boolean correctly. Uw
right-justifies each boolean in its field; the proposed
ISO standard requires left-justification.

Extensions

Number of Tests Run: 1

Details of Tests

Test 6.8.3.5-14 shows that an OTHERWISE clause has been
implemented in the case stetement.

Deviance Tests

Number of Deviations Correctly Handled: 77
Number of Deviations Incorrectly Handled: 14
Number of Tests Showing True Extensions: 2

Details of Extensions

Test 6.1.5-6 shows that a lower case e may be wused in
real numbers.

AT# SMIAN TYISYd

RECIIEIREN

noaT

60T 79vd

Test 6.1.7-11 shows that a null string is accepted by
this implementation.

Details of Incorrect Deviations

Tests 6.2.2-4, 6.3-6, 6.4.1-3 show errors in name scope.
Global values of constants are used even though'a local
definition follows; this should cause a compile-time er-
ror.

Tests 6.4.5-3, 6.4.5-5 and 6.4.5-13 show that the imple-
mentation considers types that resolve to the same type
to be "equivalent" and can be passed interchangeably to a
procedure.

Test 6.6.2-5 shows a function declaration without an as-
signment to the function identifier.

Test 6.8.3.9-4 the for-loop control variable can be modi-
fied by a procedure called within the loop. No error
found by implementation.

Tests 6.8.3.9-9, 6.8.3.9-13 and 6.8.3.9-14 show that a
non-local variable can be used as a for-loop control
variable.

Test 6.9.4-9 shows that a negative field width parameter
in a write statement is accepted. It is mapped to zero.

Test 6.10-1 shows that the implementation substitutes the
default file OUTPUT in the program header. No error mes-
sage.

Test 6.10-4 -shows that the implementation substitutes the
existence of the program statement. We know that the
compiler searched first but found source text (error
correction).

Tests 6.1.8-5 and 6.6.3.1-4 appear to execute; this oc-
cured after the error corrector made the obvious changes.

Test 6.6.2-6 shows the implementation does not detect
that a function identifier has not been assigned a value
within the function. The function should be wundefined.
The quality of the test could be improved by writing the
value of CIRCLERADIUS.

Test 6.6.5.2-2 again runs into the EOLN problem.

Test 6.6.5.2-6 shows that the implementation fails to
detect the change in value of a buffer variable when used
as a global variable while its dereferenced value is
passed as a value parameter. This sould not cause an er-
ror, and none was flagged. However, when the char was
changed to a var parameter no error was detected, either.

Test 6.6.5.2-7 shows that the implementation fails to
detect the change in a file pointer while the file
pointer is in use in a with statement. This is noted in
the implementation notes.

Test 6.6.5.3-5 shows the implementation failed to detect
a dispose error; but again, the parameter was passed by
value, not by reference! (Error in test)

Tests 6.6.5.3-7 and 6.6.5.3-9 show that the implementa-
tion failed to detect an error in the use of a pointer
variable that was allocated with explicit tag values.

Tests 6.6.6.3-2 and 6.6.6.3-3 show that trunc or round of
some real values. 2**36 does not cause a run time error
or warning. In those cases, the value returned was nega-
tive. Error reported to MACC.

Tests 6.7.2.2-6 and 6.7.2.2-7 show that the implementa-
tion failed to detect integer overflow.

Tests 6.8.3.9-5 and 6.8.3.9-6 show that the implementa-
tion does not invalidate the value of a for-loop control
variable after the execution of the for-loop. Value of
the variable is equal to the last value in the loop.
These tests could be improved by writing the value of m.

6T# SMIN TYISYd

036T “HAAWALd3S

Error Handling

Implementation Defined
Number of Errors Correctly Detected: 29

Number of Tests Run: 15
Number of Error Not Detected: 17

Number of Tests Incorrectly Handled: 0
Details of Errors Not Detected Y

Details of Implementation Definitions

Tests 6.2.1-7, 6.4.3.3-6, 6.4.3.3-7, .6.?.3.3—8 . and
§.4.3.3-12 show that Fhe use of an.uninit1allzed v§r1ab§e Test 6.4.2.2-7 shows maxint equals 34359738367
is not detected. Variant record fields are not invali- (2%%35-1) .

dated when the tag changes. 6.4.3.3-12 incorrectly
printed "PASS"™ when it should have printed "ERROR NOT

Test 6.4.3.4-2 shows that a set of char is allowed.
DETECTED"

A9Yd

ot

Test 6.4.3.4-4 shows that 144 elements are allowed in a
set, and that all ordinals must be >= 0 and <= 143.

Test 6.6.6.1-1 shows that neither declared nor standard
functions and procedures (nor Assembler routines) be
passed as parameters.

Test 6.6.6.2-11 details a number of machine characteris-
tics such as

XMIN = Smallest Positive Floating Pt # 1.4693679E-39

"

XMAX = Largest Positive Floating Pt # = 1.7014118E+38

Tests 6.7.2.3-2 and 6.7.2.3-3 show that boolean expres-
sions are fully evaluated.

Tests 6.8.2.2-1 and 6.8.2.2-2 show that expressions are
evaluated before variable selection in assignment state-
ments.

Test 6.9.4-5 shows that the output format for the ex-
ponent part of real number is 2 digits. Test 6.9.4-11
shows that the implementation defined default values are:

integers : 12 characters

boolean : 12 characters

reals : 12 characters

Test 6.10-2 shows that a rewrite to the standard file
output is not permitted.

Tests 6.11-1, 6.11-2, and 6.11-3 show that the alterna-
tive comment delimiter symbols have been implemented;
all other alternative symbols and notations have not been
implemented. In addition, it 1is interesting that the
compiler's error correction correctly substituted "[" for
"(." and ":=" for "%=" as well as a number of faulty sub-
stitutions.

Quality Measurement

Number of Tests Runs: 23

Number of Tests Incorrectly Handled: 2

Results of Tests

Test 5.2.2-1 shows that the implementation was unable to
distinguish wvery long identifiers (27 characters). Test
6.1.3-3 shows that the implementation uses up to 20 char-
acters in distinguishing identifiers.

Test 6.1.8-4 shows that the implementation can detect the
presence of possible unclosed comments (with a warning).
Statements enclosed by such comments are not compiled.

Tests 6.2.1-8, 6.2.1-9 , and 6.5.1-2 show that large
lists of declarations may be made in a block (Types, la-
bels, and var).

Test 6.4.3.2-4 attempts to declare an array index range
of ™integer". The declaration seems to be accepted, but
when the array is accessed (All[maxint]), an internal er-
ror occurs.

Test 6.4.3.3-9 shows that the variant fields of a record
occupy the same space, using the declared order.

Test 6.4.3.4-5 (Warshall's algorithm) took 0.1356 seconds
CPU time and 730 unpacked (36-bit) words on a Univac
1100/81.

Test 6.6.1-7 shows that procedures may not be nested to a
depth greater than 7 due to implementation restriction.
An anomolous error message occurred when the fifteenth
procedure declaration was encountered; the message "Logi-
cal end of program reached before physical end" was is-
sued at that time, but a message at the end of the pro-
gram said "parse stack overflow".

Tests 6.6.6.2-6, 6.6.6.2-7, 6.6.6.2-8, 6.6.6.2-9, and
6.6.6.2-10 tested the sqrt, atan, exp, sin/cos, and 1ln
functions. All tests ran, however, typical implmentation
answers (which use the Univac standard assembler
routines) were slightly smaller than Suite computed. Er-
ror typically occurred around the 8th digit (Univac
floating-point precision limit).

Test 6.7.2.2-4 The inscrutable message "inconsistent
division into negative operands" appears. We think it
means that I MOD 2 is NOT equal to I - I div 2 * 2,
Problem reported to MACC.

Test 6.8.3.5-2 shows that case constants must be in the
same range as the case-index.

Test 6.8.3.5-8 shows that a very large case statement is
not permissible (>=256 selections). A semantic stack
overflow occurred after 109 labels.

Test 6.8.3.5-18 shows the undefined state is the previous
state at the end of the for-loop. The range is checked.

Test 6.8.3.9-20 shows for-loops may be nested to a depth
of 6.

Test 6.8.3.10-7 shows with-loops may be nested to a depth
of 7.

Test 6.9.4-10 shows that the output buffer is flushed at
the end of a program.

N9RT “HIAWT L3S 6HT# SMIN TYISYHd

3944

it

Test 6.9.4-14 shows that recursive I/O is permitted using
the same file.

Concluding Comments

The general breakdown of errors is as follows:

1/0

T 7 These problems are intimately tied to the EXEC 1100 operat-
ing system and its penchant to pad blanks on the end of a
line. There is no plan to try to correct this problem.
Does an external file of pointers make sense!

Changes in the standard
Jensen and Wirth (second edition) was used as the standard
for development of this compiler. Since there are
discrepencies between it and the 1ISO proposed standard,
several deviations occured. The compiler will be brought
into conformance on most of these errors when some standard
is adopted.

Restrictions
Some restrictions will be kept, even after a standard is
adopted. GOTO's out of procedures will probably never be
implemented, but STOP and ABORT statements have been added
to the language to alleviate the problem.

Several previously unknown bugs were found by running the
validation suite. Professor Fischer has been notified, and
corrections should be included in the next release of the
compilers.

One area that should be emphasized is the clarity of the diagnos-
tics produced by the compiler. All diagnostics are self-
explanatory, even to the extent of saying "NOT YOUR FAULT" when
an internal compiler error is detected. A complete scalar walk-
back is produced whenever a fatal error occurs. The compiler at-
tempts error correction and generally does a very good job of
getting the program into execution.

The relocatable compiler has extensive external compilation
features. A program compiled using these facilities receives the
same compile-time diagnostics as if it were compiled in one
piece.

Machine—dependent Implementations
Burroughs B6700/7700 (Tasmania)

UNIVERSITY OF SOUTHAMPTON

Faculty of Mathematical Studies

Southampton, SO95NH. Telex 47661. Tel 0703 559122 Ext

1979 November 6
Dear Bob,

Here is the latest information on the Pascal implementation
for the Burroughs B6700/7700 series, as developed at the
University of Tasmania. It still exists, and has been
distributed quite widely. A new manual has just been
produced which sets new standards of excellence for us,
and is available presumably to subscribers who have

paid our annual fee (to cover postage, etc).

We have been working on the compiler to make it conform to
the draft Standard (a moving target at present), and I
believe the current version includes the procedural
parameter feature now that this seems to have stabilized.
It is pleasing to note that our attitude towards checks

is paying off, as shown when we recently uncovered three
different usages in the P4 compiler where undefined values
of variables were tested against well-defined values.

No doubt these bugs are now widely distributed through the
Pascal community!

Enquiries should not be addressed to me here (where I am

on leave), but rather to Pascal Support, Dept of Information
Science, University of Tasmania, Box 252C GPO, Hobart,
Tasmania 7001. Don't forget the airmail stamp.

e

Best wishes,

Professors: H.B. Griffiths, S.A. (Pure i P.T. Land (Applied i
J.W. Craggs (Engineering Mathematics), D.W. Barron (Computer Studies). T.M.F. Smith (Statistics).

0367 “HIqWILA3S AT# SMIN TYISYd

¢IT 399

Postal Address: Box 252C, G.P.O., Hobart, Tasmania, Australia 7001
Telephone: 23 0561. Cables ‘Tasuni’ Telex: 58150 UNTAS

IN REPLY PLEASE QUOTE:

FILE NO

IF TELEPHONING OR CALLING

ASK FOR

15th April, 1980

Mr. R. Shaw,

Digital Equipment Corp.,

5775 Peachtree-Dunwoody Road,
Atlanta, Georgia.

U.S.A.

Dear Rick,

I have recently updated the B6700/7700 Pascal compiler to level 3,0,001.
This compiler conforms to the Working Draft Standard, as published in Pascal
News #14, fairly well. A copy of the updated Pascal Validation Suite Report

concerning this compiler is enclosed.

We are in the process of distributing this compiler to all those
installations which are currently using our Pascal system. The distribution

should be complete by the time you receive/publish this letter.

We are also producing an updated Pascal Reference Mamual to reflect the
new compiler. The manual has just econe to the printers and we will distribute
copies to users of our Pascal System when it returns. Allow a month or so.

Enclosed is an updated checklist describing the new compiler.

Yours sincerely,

oy

Roy A. Freak,

Information Science Department

The University of Tasmania

Burroughs B6700/B7700 (Tasmania)

CHECKLIST

0.

-

DATE/VERSION April 1980 Version 3.0.001

IMPLEMENTOR/DISTRIBUTOR/MAINTAINER
R.A. Freak & A.H.J. Sale;

GT# QMIN TWAIYA

Pascal Support,

Department of Information Science,
University of Tasmania,

Box 252C, GPO.,

HOBART, Tasmania 7001

Australia.

phone (002) 230561 ext 435
MACHINE Burroughs Model III B6700, B7700
SYSTEM CONFIGURATION

Burroughs MCP version II.8 (and later versions). Minimal system

to operate is not known, but there is not likely to be any B6700

LY B Ve A Wi W e [}

that small. Storage demands are low and little else is critical.

nocT

DISTRIBUTION
Usually supplied on a 9-track PE tape but other forms on both 7
and 9-track tapes are available. An annual fee of $A100 is

charged to cover mailing (air mail), processing and maintenance.

DOCUMENTATION Available documentation:
R80-4: Pascal Reference Manual (similar to Burroughs Algol Manual)
A Pascal language card
A Pascal System card
Pascal Validation Suite Report for B6700/B7700 Pascal.

MAINTENANCE
To be maintained for teaching within the university as well as
larger aims. Reported bugs will be fixed as soon as possible,
with patch notices being sent to users. Duration of support not
yet determined; several other developments are pending. Each
installation is issued with a supply of FTR-forms similar to those
used by Burroughs for use in corresponding with us, and we will

attempt to do a professional job in maintaining the system.

The compiler has been stable in code for some time, reflecting
its basic integrity. However, new features are added from time
to time, and notified to users as patches or as a new version
release. The department accepts FTR notices and will attempt
to fix those which warrant such attention. Some modifications
have taken place as a result of user feedback. The compiler
was especially designed not to generate dangerous code to the
MCP, and no system crashes have been attributed to it since the

first few months of testing, 3 years ago, and then only three.

STANDARD

The compiler conforms fairly well to the Pascal Standard as
published in Pascal News #l4. We intend to update the compiler
when a Pascal standard is accepted by ISO. The compiler performs
better than most during testing by the Pascal Validation Suite.
Briefly, the following restrictions and extensions apply:
Restrictions: Program heading; reserved word program is synom-
ymous with procedure; file parameters are ignored after program

heading.

Extensions: otherwise in case statement. Various reserved words,

character set transliterations. Burroughs comment facility.
File attributes in declaration. Format declarations and record
oriented i/o available. Extensive Burroughs-compatible compiler
options (Pascal control comment option mode not implemented).

Ability to link in externally compiled subprograms.

MEASUREMENT

Compiles about 20% slower than Fortran or Algol, but in about
2/3 their space (for test programs about 4-5K words on average
instead of 8-10K). Elapsed compilation times similar, though

Pascal slower. Speed should be improved by eventual tuning.

Executes at the same speed as Fortran and Algol (code is similar
and optimal) and takes generally longer elapsed residence time
primarily due to MCP intervention to create new segments for
record structures (not present in Fortran/Algol). Elapsed

residence time about 20% greater than equivalent Algol.

9.

10.

11.

RELIABILITY

Excellent. Since the early testing three years ago, no system
crashes have been attributed to Pascal. The compiler is now
in use at 28 sites throughout the world. It has been in use
since 76/10 at University of Tasmania. First released to out-

side sites in 77/4.

DEVELOPMENT METHOD

Compiler which generates B6700/B7700 code files which are
directly executed by the B6700 MCP. Written in B6700 Algol with
two intrinsics written in Espol. Hand-coded using Pascal-P as

a guide/model. All other paths offered much more difficulty due
to special nature of machine/system. Person-month details not
kept, but project proceeds in fits and starts as teaching and
other activities intervene. Project has been undertaken largely
by two people: Professor A.H.J. Sale and R.A. Freak with some
support from T.S. McDermott.

LIBRARY SUPPORT

With release 3.0.001 of the Pascal compiler, the system has the
ability to link in externally compiled subprograms written in
another language. There is no facility available for separately
compiling Pascal subprograms (not standard) so the only method
of binding involves a Pascal host and a subprogram written in
another language. The system contains an extended set of pre-

defined mathematical functionms.

HT# SMIN TYISYd

N96T “¥I9WILdIS

3944

wil

CDC 6000 (Zuerich-Minnesota)

The new distributer for Pascal-6009 for East Asia and Australia is now:

Pascal Coordinator

University Computing Centre: H@8
Universziity of Sydney

Sydney, N.S.W. 2006 Australia
Phone: 61-82-232 3491

Tony Gerber 1s finishing his studies and passed the responsibilities on
to Brian Rowsuwell.

DEC LSI-11_(SofTech)

The UCSD version of Pascal is available from SofTech for $358 (includes
operating system, compiler, editor, etc.). A FORTRAN that compiles to
P-code is also available. For more information and processors that are
supported, contact:

SofTech Microsystems
9434 Black Mountain Road
San Diego, California 92126

DEC_VAX 11/780

UNIVERSITY OF WASHINGTON
DEPARTMENT OF COMPUTER SCIENCE

VAX-11 Pascal Compiler for the UNIX/32V Operating System

The Pascal compiler for the Digital Equipment VAX-11 computer,
VAX-11 Pascal, has recently been modified to execute under the
UNIX/32V operating system, version 1. The compiler, .VAX-ll
Pascal/Unix, will be distributed by the University ?f Wash{ngton,
Department of Computer Science (UW), on a sublicense basis, subject to
the following conditions.

1. A1l right, title, and interest in VAX-11 Pascal/Unix are the
property of Digital Equipment Corporation (DEC).

2. Requestors for VAX-11 Pascal/Unix must have a license for the VMS
version of VAX-11 Pascal from DEC. An object code license is
required for the VAX-11 Pascal/Unix object code, a source code
license for the VAX-11 Pascal/Unix source code.

3. The VAX-11 Pascal/Unix system will be distributed for a copy charge
of US $ 50.00, payable to the University of Washington.
Distribution will be on magnetic tape provided by UW. Please send
your request, together with a check or purchase order, to

Department of Computer Science
University of Washington

Mail Stop FR-35

Seattle, WA 98195

Further information can be obtained by contacting
Professor Hellmut Golde (206) 543-9264

4. Requestors must sign the sublicense agreement attached to this
announcement and return it to UW with the order. Please use the
proper site identification so that the VMS 1license can be
verified.

5. UW welcomes comments, suggestions and bug reports from wusers.
Although no regular maintenance will be provided by either DEC or
UW, a best effort will be made by UW to correct bugs for subsequent
releases of VAX-11 Pascal/Unix. Any updated versions will require
an additional copy fee.

The VAX-11 Pascal/Unix compiler does not implement all features
of VAX-11 Pascal. However, the VAX-11 Pascal manuals available from
DEC are sufficient to use VAX-11 Pascal/Unix. The following features
are not currently supported by VAX-11 Pascal/Unix:

1. Value initialization.

2. %Include directive.

3. Calls to VMS library routines and system services. However, calls
to the C library and Unix services are available.

4, The VMS debugger, and hence the DEBUG option. However, wusers may
use the Unix absolute interactive debugger, adb(1l).

5. The library functions/procedures DATE, TIME, and CLOCK.

6. Standard functions/procedures as procedure parameters.

HTH# SMIN TYISHd

R ECUEIEEN

nesT

39Vd

SIT

In addition, a few restrictions are imposed wunder VAX-11
Pascal/Unix, as follows:

1. Since procedure linking is done by the Unix loader, all procedure
names on nesting level 1 (main program level) and all external
procedure names must differ in their first 7 characters. These
names should not contain the character “$’.

2. The command language interface is different to conform with Unix.

3. Only standard Unix sequential files are supported. Hence the OPEN
statement is limited to the form

OPEN(<file variable>,<unix file name>,<file history>)

The specifications of <record access mode>, <record type>, and
{carriage control> are ignored. Also, TFORTRAN type carriage
control is not available. The VMS procedure FIND has not been
implemented.

Beyond these restrictions, every effort has been made to make the
two compilers compatible. There are some minor differences in
expressions using library procedures and in input-output conversions,
due to different algorithms.

Hewlett Packard HP 1000

Hewlett Packard now distributes a version of Pascal for their HP 1000
system. For details, contact a sales office.

IBM_Series/1 (Massey U.)

IBM Series/1 Pascal

Pascal has been implemented at Massey University, Palmerston North, New Zealand
for the IBM Series/1.

Hardware Requirements

Ability to support a 64K byte user partition using the R.P.S. operating system.

Major Restrictions

1. Files may not be declared. Four standard files are made
available. These may be used as input or output files
or (non standardly) as direct I1/0 files.

2. Some standard functions are not implemented - in particular
the mathematical functions SIN, COS etc. However, selected
functions may easily be implemented if required.

3. Limited to 16 bit sets, although some built in routines to
handle 48 bit sets are available.

Structure
The compiler is based on the P4 portable Pascal compiler written by:
Authors: Urs Ammann, Kesav Nori and Christian Jacobi
Address: Institut fuer Informatik
Eidg. Technische Hochschule

Ch-8096
Zuerich.

It runs in two passes, (production of the P4 code and conversion of the P4 code

to Series/l code), and employs several storage overlays (not overlays as implemented
in R.P.S.). All of the compiler, except the special environment (small assembler
program) in which it runs, is written in Pascal. It can compile the main body of

the first pass (3700+ lines of Pascal) in about ten minutes,

Availabilit

The compiling system will be made available to any non-profit organisation, for the

cost of the distribution, from:

Computer Centre
Massey University
Palmerston North
New Zealand.

6T# SMIN TVISYd

NIAGUINAIR

NQRT

anudia

nTT

Support

Although no support for the system can be provided by the Computer Centre, rough

implementation notes and advice are available from the author:

N. S. James
Computing Centre
University of Otago
P.0. Box 56

Dunedin

New Zealand.

16 January 1980

IBM_370 (StonyBrook)

From the release note accompanying Release 3.0 :

vevvee. Release 3.0 of the Stony Brook Pascal 378 compiler completes
the implementation of Pascal files (for the production version), as well

as correcting a few errors reported in Release 2. All further
maintenance will he relative to Release 3.8, so it should be installed
immediately. If you have presently a Release 2 or Relesse 1

distriibution tape, please return it to:

Ms. Patricia Merson

Department of Computer Science

SUNY at Stony Brook

Stony Brook, New York 11794
el Fairly detailed internal documentation for Pass Z and Pass 3 of
the Stony Brook compiler is now available on request from Ms. Merson.
If you plan to perform any modifications of the compiler itself, you
should obtain these documents. Pass 1 internal documentation has not
yet been produced."

{ Machine-dependent details concerning internal versus external files
follows.}

IBM 570, lOéX. 43xx ‘Im, 1BM PASCAL/VS

Pascal/VS is a compiler for a superset of the proposed ISO standard
Pascal language, operating under 0S/VS1, 0S/VS2, and VM/CMS. The compil-
er was designed with the objective of producing reliable and efficient
code for production applications. Pascal/VS is an Extended Support IUP
(Installed User Program), program number 5796-PNQ.

The following information was supplied by David Pickens, IBM Corporation.
VERSION/DATE
Release 1.0, June 1980
DISTRIBUTOR and MAINTAINER
IBM Corporation
IMPLEMENTORS
Pascal/VS was implemented by J. David Pickens and Larry B. Weber at
the IBM Santa Teresa Laboratory in San Jose, California. Others
worked on the project for short periods of time. The comments and
suggestions of internal users throughout IBM have had a significant
influence in shaping the final product.
MACHINE and SYSTEM CONFIGURATION
Pascal/VS runs on System/370 including all models of the 370, 303x
and 43xx computers providing one of the following operating system
environments:
VM/CMs
0S/VS2 (MVS) TSO
0S/VS2 (MVS) Batch
0S/VS1 Batch
Under CMS, Pascal/VS requires a virtual machine of 768K to compile a

program. Execution of a compiled program can be performed in a 256K
CMS machine.

The compiler requires a 512K region for compilation under 0S/VS2 and
0S/VS1l. A compiled and 1link-edited program can execute in a 128K
region.

DISTRIBUTION

The compiler and documentation may be ordered through a local IBM
data processing branch office.

T4 SMIN TYISVd

5

S ECIEIPES

nogT

EULE]

/1T

The basic material of the order consists of one copy each of the
Pascal/VS Language Reference Manual (SH20-6168) and the Pascal/VS
Programmer's Guide (SH20-6162). The machine-readable material con-
sists of source code, program load modules, and catalogued proce-
dures. When ordering the basic material, specify one of the
following numbers

User/
Specify Track Volume
Number Density Description Requirements
9029 9/1600 Mag tape None/DTR
9031 9/6250 Mag tape None/DTR

Monthly charges for this licensed Installed User Program will not be
waived. The designated machine type is System/370.

Type Program Number/ AAS Monthly Charge
5796 PNQ $235.00 (in the USA)

Monthly charges shown above are provided for information and are
subject to change in accordance with the terms of the Agreement for
IBM Licensed Programs (Z120-2800).

DOCUMENTATION

The Pascal/VS documentation consists of:

Document Name Order Number Price
Pascal/VS Language Reference (164pp) SH20-6168 $14.50
Pascal/VS Programmer's Guide (l44pp) SH20-6162 $12.50
Pascal/VS Reference Summary (16pp) GX20-2365 no charge
Pascal/VS Availability Notice G320-6387 no charge

The Reference manual describes the Pascal/VS language. The Program-
mer's Guide describes how to use the compiler in the 0S/VS1, 0S/VS2
and VM/CMS environments.

The documentation may be ordered through your local IBM branch
office.

MAINTENANCE

IBM will service this product through one central location known as
Central Service.

Central Service will be provided until otherwise notified. Users
will be given a minimum of six months notice prior to the discontin-
uance of Central Service.

During the Central Service period, IBM, through the program
sponsor(s) will, without additional charge, respond to an error in
the current unaltered release of the compiler by issuing known error
correction information to the customer reporting the problem and/or
issuing corrected code or notice of availability of corrected code.

However, IBM does not guarantee service results or represent or war-
rant that all errors will be corrected.

Any on-site program service or assistance will be provided at a
charge.

Documentation concerning errors in the compiler may be submitted to:

IBM Corporation

555 Bailey Avenue

P.0. Box 50020

San Jose, California 95150

Attn: Larry B. Weber
M48/D25

Telephone: (408) 463-3159 or

‘Tieline: 8-543-3159

Marketing Sponsor

IBM Corporation

DPD, Western Region

3424 Wilshire Boulevard

Los Angeles, California 90010
Attn: Keith J. Warltier
Telephone: (213) 736-4645 or
Tieline: 8-285-4645

STANDARD

Pascal/VS supports the currently proposed International Standards
Organization (ISO) standard and includes many important extensions.
Among the extensions are:

Entry and external procedures to provide separate compilation

"Include" facility to provide a means for inserting source from
a library into a program

Varying length character strings, string concatenation, and
string handling functions

Static variables

The "ASSERT" statement

"LEAVE" and "CONTINUE" statements for more flexible loop control
"OTHERWISE" clause on the CASE statement

Subranges permitted as CASE statement "labels"

Integer, real, and character constants may be expressed in
hexadecimal

614 SMIN T¥2SYd

0361 “MIGWILd IS

A9Yd

811

Various predeclared system-interface routines such as HALT, Weber was used; it was a one pass compiler written in PL/I (believe

CLOCK, DATETIME, RETCODE, etc. it or not!).
MEASUREMENTS The first bootstrap was completed in June, 1979. Since that time,
the compiler has been tested, enhanced, and modified to conform to
Under VM/CMS the compiler will compile a typical program of 1000 the proposed ISO standard.

lines at the approximate rates shown below:
LIBRARY SUPPORT

Host System Rate of compilation
370/158 10,000 lines per minute Pascal/VS supports separate compilation of routines and uses stand-
370/168 20,000 "o " ard 0S linkage conventions. A Pascal/VS program may call routines
3033 40,000 "o " written in FORTRAN, COBOL, and Assembler language.

If the compiler listing is suppressed, the performance improves by DEBUGGER SUPPORT

20 to 25 per cent.
Pascal/VS supports an interactive symbolic debugger which permits:
RELIABILITY
break points to be set
Prior to external release, the compiler was distributed to over 60

test sites within IBM. The first internal shipment of the compiler statement by statement walk-through of a procedure

was in July of 1979. All errors reported prior to the release of

the compiler have been corrected. variables to be displayed by name and in a form which correspond
to their type (pointers, field qualifiers and subscripts are

DEVELOPMENT METHOD allowed).

The compiler consists of two passes which run as two separate pro-

grams. The first pass is based on an extensively modified version

of the Pascal P4 compiler (authored by Urs Ammann, Kesav Nori, and

Christian Jacobi). The P4 compiler was re-targetted to produce

U-code instead of P-code as an intermediate language. U-code is an
enhanced version of P-code that was. designed by Richard L. Sites and
Daniel R. Perkins (Universal P-code Definition, U.C. San Diego,
UCsD/Cs-79/037, 1979). The compiler employs the error recovery
algorithm described in A Concurrent Pascal Compiler for
Minicomputers by Alfred C. Hartmann (Springer-Verlag, 1977).

The second pass of the compiler translates the U-code directly into
an 0S object deck. The translator performs local common subex-
pression elimination, local register optimization, dead store
removal, removal of redundant checking code, removal of cascading
jumps, and various peep-hole optimizations.

All but 5% of the execution library is written in Pascal/VS; the
remainder is in assembler language. I/0 and heap management is done
by calls: to Pascal procedures.

The compiler, writtem in Pascal/VS, is shipped with all run time
checking enabled. The compiler eliminates unnecessary range checks
by keeping track of the lower and upper bounds of expressions
involving subrange variables. The checking code in the compiler
costs only 7 to: 10% in performance.

The development of Pascal/VS began in January, 1979. To bootstrap
the compiler, an experimental Pascal compiler developed by Larry

NOGT “NAANILATS BT# SHIN T¥ISYd

27Yd

611

IBM_3033 (Metropolitan Life)

10.

IMPLEMENTATION CHECKLIST

Date 89/06/17
Implementor/Maintainer/Distributer
Taiwan Chang

Metropolitan Life Insurance Co.
20-Y

1 Madison Avenue

New York, New York 10010
(212) 578-7979

chine/ System confiquration 3833 VM/CMS

Distribution

Taiwan Chang

Metropolitan Life Insurance Co.
20-Y

1 Madison Avenue
New York, New York 10010
CMS tape, 1680 bpi

Documentation

Implementation guide, conversion guide

Maintenance
StonyBrook’s 0S Pascal Level III is not

converted yet.

Standard
Convertéd from StonyBrook’s 0S5 Pascal

Measurements
Reliability
MIT okay, local okay

Development method

XPL implementation

ibrar ort
CMS macros

Motorola 6800 (Dynasoft)

a P.O. BOX 51
WINDSOR JC 1., N.S.
s t CANADA BON 2VO

(902) 861-2202

Thank you for your inquiry about DYNASOFT PASCAL. I hope that
this will answer most of your questions and help you decide if
it will be a useful addition to your system.

DYNASOFT PASCAL was designed to make a practical subset of the
PASCAL language available to the users of relatively small
cassette-based 6800 and 6809 computers. Both versions occupy
slightly less than 8K bytes and require at least 12K of
continuous RAM beginning at $0020 to edit and compile programs
of reasonable size. The compiler will compile itself in 32K,
although the source code is not included in the package.

The 6800 version was designed for the SWIPC 6800 computer with
the SWTBUG™ monitor, but it can be adapted to run with most
other monitors with minor patching. The 6809 version is
completely self-contained with its own imbedded device drivers,
and is independent of any particular monitor. Both versions
include the compiler, p-code interpreter, and a line oriented
text editor, and are priced at $35.00. They are supplied on

a Kansas City Standard cassette in Motorola '"S1" format at 300
baud, and come with a 32 page user's manual.

The 6800 version is also available in ROM, intended for use
with the SWTBUG'™ monitor on the SWIPC MP-A2 processor board.
It occupies the 8K block at $C000 and is supplied in four
TMS2516 EPROM's. The price is $300.00. We do not keep a
stock of blank ROM's, so please allow 8 weeks for processing.

All orders should include $3.00 for postage and handling.
Payment can be made by postal money order, check, or VISA
account in either Canadian or U.S. funds.

Thank you again for your interest.

0Ll 5. Q™

Allan G. Jost, Ph.D.

ATH SMIN TWISYd

9967 “NIAWILAIS

0¢T 39%d

DATA TYPES:

ARTTHMETIC AND LOGICAL OPERATORS:

DYNASOFT PASCAL SUMMARY, RELEASE 1.0

INTEGER (16 bit)
CHAR (8 bit)
BOOLEAN

ARRAY (one dimensional)

+ - * DIV MOD

RELATIONAL OPERATORS:

= <> < > <=

LANGUAGE FEATURES:

PREDEFINED PROCEDURES AND FUNCTIONS:

CONST

TYPE

VAR
PROCEDURE
FUNCTION
IF-THEN-ELSE
BEGIN-END

scalar (user defined)

subrange
pointer

AND OR NOT

CASE-OF-OTHERWISE
FOR-TO/DOWNTO-DO
REPEAT-UNTIL
WHILE-DO

READ

WRITE

WRITELN

Machine-language subroutines with parameters
80 character identifiers (first 4 unique)
Absolute memory addressing using pointers

LINK to other programs

Full recursion

ODD SHL SHR FIND HALT LINK MOVL MOVR SETP

SUPERVISOR COMMANDS :

Load, Save, Edit, Compile, Go, Move, Quit

EDITOR COMMANDS :

New, Top, Bottom, Up, Down, Find, Print, Insert,

Kill, Replace, Quit

/‘; ﬂndy Mickel,

Motorola 6 TH —'—
]
H Eindhoven

Technische Hogeschool .

Den Dolech 2

Postbus 513
5600 MB Eindhoven

Telefoon (040) 47 9111

Telex 51163
edil:or a[: BSCaJ NQ\»‘ Ky
Uw kenmerk Ons kenmerk Datum Doorkiesnummer
1380 o3 19

Onderwerp

Dw nqhdy'

Enclosed you find checklists of kwo " Ragal implemtentations we
mode on Motorola mictocomputers : an M 680 aud an XC 6800,
which ir the experimentml uersion of the M&oo.

Te MbSoo 'Wplemmeaéjon has afrmo(y been in operation for
aboukt 2 years wow and clu.riuﬁ this period the :y:(:em Froved
b be odremely reliable avd stable. This system is informally knowm
as +the POMME Syskena (Pasoal on Motorla mictocompuber equlezuE)
The compiler generates o Kud of Peede which is quite different
from the Pocodes of the potable ?q--ccm‘o‘x(n,r aund the UCSD-code.
The compiler is wot a (P-COM[;!LQF derlvakive but s writtem froma
scrakchh, The code gemerated by the compiler i Interpreted withouk
the intervenemce of an optimizer, a linker or such. The interpreter |
3.5 Kbytes of machine code omd the compiler 1?.5 Kowtes of P.cade.
quzv\c'\ing on the Jco.%etimg of hRles on F‘oﬂoy disk tae compilakion
speed is bafwsan w00 amd 600 fnes per minude.

The [ax,\auaﬂz MW&J conbanus e proposed IO Pascal - stamdard
s a subsek. The only restriction is Res must be declased in e
oukerblock om(y (‘({(g PWWJ of procedunes amd fmchws ore
of course possible). The extensions include :

- a library facili!:y (on sousce level)

- in{erfaciv‘ﬁ wikh asstuloly lm.\gmﬂe routines

NRRT “YIAAWILAIS AT SMIN TYISYd

T 1Y

- absoiute address :Fec;_ﬁ;;a{:;m of variablas (4o allow wmewory - wapped L/or
without Hie need of a.,\::amblj code).

- Subromges amd CTHERWISE as labels m a case-statement, suoromger
also W dhe vau-iw«(:-—[:axe of recovds.

— F He progrowa conbamar @ fecord-type defiunition like

complex = RECORD re, im: real END

len the comdbrack comploc(_x,y) i G wPru‘riau of type complex provided
X ruad o e of @P‘t real.

- the so-calied ‘“bouudless' array paraweters.

— in addi€ion € AND awd OR the shovt-clrcuited CAND omd COR.

-~ random -acass files.

- iuberackive I/O’ via HRles input and output

TLL co'mp'dﬂ.r will leafjf seleck Hee wost compact rLPrxu,.,\&g_ﬂm of sets (up

s 16 bym) ﬂb«cﬂ. seks OF characters are pou'i.blz. Fuxtl«umme c

SET OF 0.7 fequimes only ome byte amd cow beaudifully e wsed to
Conamumicobe with pecipemls, due to b w‘mmj-mquzd /o

IF programs e rum with rundinee checks iackaded tiew tha detectw of ow

efror will resule i a :ym’bol{o ohm..P of e progras's stack, 'mclucl'ma idembifiers

ot vanables awmd procdluses, and Lnenndasr of He 2ror amd “currout "

prowdute codls. \bsiows errors not norwmally checked for will ke cletocted v case
the runtime drecks are tusmed on, 29. a :kuoleui:-FroJ mekhod to cleck changes
oF a combrolied variable i a for- statemant,

Th order to opeed up some of e cderical tasks of 4o ‘wmberpeter, souw
IC's wece added ko e procesror. Tha procersor lboard, howeves, s sl
compakivie Wil e ovginal Motosola. EXORciser bus. The addibions allow fov
o continuous check ou tade cuzrfow, o chack which, when cdouz i sofcwore,
i A Consuming adfor diffcut (the Pe and UCSD trateger am wisake!),

The PoMMe Systam normadly opratrs in @ rimﬁle-wer 2avironnaend Wbk amn
EXORCser or EXOREzrm amd a dual floppy disk drive. Ik 15, however, possitle &
wkerconneck up to 6 oF bthese systems to oo @ wnki wer ytem, showing
U diske space. Tha POMME system will Bazw guoravbes wakwal oxclusion ow R
aceess, am taz basir of individual Seckers.

One ofF *he prograwmms available on the POMME sytem i a coss-
compller for the XC Gfowvo. This compiler (reals and Ries are wuok y&f
'lmrlemud’.ed) generates relocatable wmachie code wlicth does wnot rRQUiRR. Oua

mtacpreter , rusbime package or operoting sytem to execute. The code
close to opbimal amd o achieve thir the compiler ooes wot comsist of @

.:&.,\3(., pass buk v a 3- pass coW\PJu" This Proess aetessoucly Slows
down compilakion , mainly becauwte all intermediate code s l:aPl: on a
n"PPj disk . Tae output of the cow.,oiizr wed not be apuk to aw oussewbler
buk execukable po sition iuolep&»deu(: code.

Al{:l«.ousb\ T hone writken all softwae of\ the POMME SYystew b o now
maintained amd olistribubed 'oy

EPOS (Efficient Tascal Oriebed Systems)
Generaal de Carislaan 60

5623 GL Einc“'\avev\

The Netherlands

tel. OWO - 445552

Some aranple prograwms wers fua ©or spaed comparisons. Pou@hlg speaking, tha
MELso System c,owxf'zb(z-r akt abouk & tines and exicukes ok about twice the
spead of UCSD -implewentabions on LSI-11 awd Z-%. We fal &vs prethy
}vv\prasxim for a 1 HHeta € L proxssor. The cross-complar for e XC 68000
is rmuch slower, & coM,pdzy at L\a,(f dae sP&d of LSI-mM amd 2-85 UCSD.
Execukion +imas, however, are about equal to DEC-10, half the spied of a
Burrouﬁhs B}?oo o @ qunr(au' of ta s ot CDC Cyber 43S Notice
dthat Lle XC6oco s only a prototype of the MbE8coo Fusning at hatf
the projected spad.

fually ¢ showd be nced that @ Compier for the MEIsg alowg te lives
of tie XC68oco implementokion Wil e awnilaide oom.

\k/:uw S'W\Ocu:dy

oy

-]LH van de SneFJciaewt
\EihdL\O\lf.u un;WS'\(;y of Tedano)og_y

Dq::’t. of Ha.&k@maﬁic.r
Marda 19, 1380

ATH# CMIN TWIQHA

nocT funauml e

04

777

Checklist Motorola. M 6800 (POMME Jystew\)
dake 1980, wmarch 19
weaindainer/ disksi butor EPOS
Generaal de Carislaan o
563 GL Eindhoven [The N&therla;«d&)
maintenance Rdly maintained

Standard contams J(:amolwo(-’ExaL asr a subsek

measurzmeaby foughly twice the sped of the UCSD-iwplementations
on LI-tn awd Z-% |

f&ﬁﬁ%i‘if:j 2 years in operakion, very stable and relicble

h{’f&ﬁj suppot. Sour Ubracwsr ‘wm (Pa..rcql
|[v~]=m3.q, to Asszmdy lomoguage routines

machone Metoroie. Mbsoco
PSSt

Cl’\eck{ix_é Ho&orola. XC 68000

date 1980, wmarch 19
maintaiver /[distributor EPOS

Gzneraa.f de Ca.r'nslaan o
5623 GL Eindhoven (Tue Netherlandls)

Ma.«'négnance ﬁAlly maunkained
standard conbams stomdard - Fascal as a submet with the excepkion
A Ana AN

thot feals en files am wot yet inmplemented

comFZla,'tiovt ouen mster lowr times

measusements the XCbfooo s a prototype of tue Mb830o funning ab
half the projected Speed, yeb oxecukion dimes are about
equa.l to DEC-io.

cross - Compilation time on a Mbfoo s about twice as long

as compilation times of UCSD-Ruscal ou WL-44 awd Z Ko

relfajoil'}éy nok nwuch experieue
fibrary | Suppot Sousce Ubraries in Pascal

Macking Motorola X 68000
crots- compilakion on Motorola. M 6800 (POHME .ryséz»«)

Zilog 780 (MetaTech)

(See the checklist in issue #17 under Inte]l 89838885 (MetaTech))

Zilog Z-80 (Digital Marketing)

This compiler runs under CP/M and is a Pascal-P descendant. The price
is $350.

Digital Marketing
2670 Cherry Lane
Walnut Creek, CA 99459

nN3ST “Y3ITWId3IS GT# SMIN TYI]MA

Y

¢l

Bill McLalughlin, editor, pres., treas.
John Ingram, executive vice president
Dorcas Edge,vice president, secretary

Zilog 7-80/ TRS-80 (People’s Software)

nonprofit

computer information exchange, inc.

BOX 158, SAN LUIS REY CA 92068 (714) 757-4849

TRS-80 COMPUTING
TRS-80 BULLETIN
(TRS-80 is Tandy Corp. trademark)

December 26, 1979

PRESS RELEASE:

TINY PASCAL COMPILER JUST $15

People's Software at nonprofit Computer Information Exchange is selling a
tiny Pascal compiler for $15.

Written in Basic, People's Pascal I runs on any 16K TRS-80 Level II
system. Compilers let computerists write fast, efficient machine code while
working with a higher-level language. Pascal is the structured language everyone
is talking about—and studying in college.

The People's Pascal I program development system comes on a tape with
14 programs, and 18 11x17" pages of documentation. Programs include editor/
compiler, interpreter, translator, run-time system and two demonstration
programs,

People’s Pascal I compiler produces P codes, which the translator
converts to Z-80 code, the TRS-80 native language. The user is given the option
of optimizing for either speed or memory efficiency. Programs written via
People's Pascal I run three times faster than those in Level II Basic—graphics is
eight times faster.

To produce object programs, the computerist must use the People's
Pascal I programs, plus Tandy T-Bug. Use of Tandy editor/assembler is optional.

The People's Pascal I program development system, with editor/compiler
and interpreter written in Basic, and its multiple parts, is not the ultimate in speed
and simplicity of .use.

People's Pascal II, at $23, is easier to use and faster operating. It is all
one machine-language program. Programs written in Pascal II do not execute quite
as fast as those in Pascal I because the system does not produce Z-80 object
programs of the user's source program,

Both Pascal I and II compile
systems work in an interpretive

user programs into P-codes. Both
mode, interpreting P-codes into Z-80 codes.

(more)

(PEOPLE'S PASCAL, add 1)

But Pascal I has a translator for creating Z-80 native-code programs, and Pascal
I does not. In Pascal I, all user programs must be interpreted each time they
are executed. Pascal Il is still said to be four to eight times faster than Level II
Basic.

Pascal I is only for 16K systems. Pascal II is for either 16K or 32K systems,

Pascal I has UCSD-like turtle graphics. Pascal I requires line numbers in the user
program, and Pascal II does not.

Dealer inquiriesare invited. Computerists wishing to buy direct should
include 50¢ for each tape ordered, and California residents should add 6 per cent
tax ($. 90 and $1. 38, respectively, on Pascal I and II). Computer Information
Exchange is at Box 158, San Luis Rey CA 92068.

Besides People's Pascal I and II, People's Pascal has three public-
domain program tapes :in Level I, and two in Level I, at $7.50 each (plus 50 cents
postage-handling, CA residents add 45 cents tax). The public domain tapes have
as many as 77 programs on them.

NOCT fumaiims 1=n

39V

w71

IMPLEMENTATION NOTES ONE PURPOSE COUPON

0. DATE

1. IMPLEMENTOR/MAINTAINER/DISTRIBUTOR (* Give a person, address and phone number. *)

2. MACHINE/SYSTEM CONFIGURATION (* Any known limits on the configuration or support software required, e.g.
operating system. *)

3. DISTRIBUTION (* Who to ask, how it comes, in what options, and at what price. *)

4. DOCUMENTATION (* What is available and where. *)

5. MAINTENANCE (* /s it unmaintained, fully maintained, etc? *)

6. STANDARD (* How does it measure up to standard Pascal? Is it a subset? Extended? How.*)

7. MEASUREMENTS (* Ofits speed or space. *)

8. RELIABILITY (* Any information about field use or sites installed. *)

9. DEVELOPMENT METHOD (* How was it developed and what was it written in? *)

10. LIBRARY SUPPORT (* Any other support for compiler in the form of linkages to other languages, source libraries, etc. *)

(FOLD HERE)

T T TR T OTT TR T TS TRt o e T e e e e e = e — = -

PLACE

POSTAGE

HERE

Bob Dietrich

MS. 92-134

Tektronix, Inc.

P.0. Box 500

Beaverton, Oregon 97077
US.A.

(FOLD HERE)

NOTE: Pascal News publishes all the checklists it
gets. Implementors should send us their checklists
for their products so the thousands of committed
Pascalers can judge them for their merit. Otherwise
we must rely on rumors. .

Please feel free to use additional sheets of paper.

IMPLEMENTATION NOTES ONE PURPOSE COUPON

