PASCAL USERS GRGUP

Pascal News

NUMBER 20
COMMUNICATIONS ABOUT THE PROGRAMMING LANGUAGE PascaL BY PASCALERS

DECEMBER, 1580

18 5.1

IRecommendedy

Policy

POLICY: PASCAL NEWS (15-Sep-80)

*

*

Pascal News is the official but informal publication of the User's Group.

Pascal News contains all we (the editors) know about Pascal; we use it as

‘the vehicle to answer all inquiries because our physical energy and

resources for answering individual requests are finite. As PUG grows, we
unfortunately succumb to the reality of:

1. Having to insist that people who need to know "about Pascal" join PUG
and read Pascal News - that is why we spend time to produce it!

2. Refusing to return phone calls or answer letters full of questions - we

will pass the questions on to the readership of Pascal News. Please
understand what the collective effect of individual inquiries has at the
"concentrators" (our phones and mailboxes). We are trying honestly to say:

"We cannot promise more that we can do."

Pascal News is produced 3 or 4 times during a year; usually in March, June,
September, and December.

ALL THE NEWS THAT'S FIT, WE PRINT. Please send material (brevity is a
virtue) for Pascal News single-spaced and camera-ready (use dark ribbon and

18.5 cm lines!)

Remember: ALL LETTERS TO US WILL BE PRINTED UNLESS THEY CONTAIN A REQUEST
TO THE CONTRARY.

Pascal News is divided into flexible sections:

POLICY - explains the way we do things (ALL-PURPOSE COUPON, etc.)

EDITOR'S CONTRIBUTION - passes along the opinion and point of view of the
editor together with changes in the mechanics of PUG operation, etc.

HERE AND THERE WITH PASCAL - presents news from people, conference
announcements and reports, new books and articles (including reviews),
notices of Pascal in the news, history, membership rosters, etc.

APPLICATIONS - presents and documents source programs written in Pascal
for various algorithms, and software tools for a Pascal environment; news
of significant applications programs. Also critiques regarding
program/algorithm certification, performance, standards conformance,
style, output convenience, and general design.

ARTICLES - contains formal, submitted contributions (such as Pascal
philosophy, use of Pascal as a teaching tool, use of Pascdl at different
computer installations, how to promote Pascal, etc.).

OPEN FORUM FOR MEMBERS - contains short, informal correspondence among
members which is of interest to the readership of Pascal News.

IMPLEMENTATION NOTES - reports news of Pascal implementations: contacts
for maintainers, implementors, distributors, and documentors of various
implementations as well as where to send bug reports. Qualitative and
quantitative descriptions and comparisons of various implementations are
publicized. Sections contain information about Portable Pascals, Pascal
Variants, Feature-Implementation Notes, and Machine-Dependent
Implementations.

------ ALL-PURPUSE COUPON - - = - - = (15-Sep-80)

Pascal User's Group, c/o Rick Shaw
. P.0. Box 888524
Atlanta, Georgia 30338 USA

NoTe

Membership fee and All Purpose Coupon is sent to your Regional
Representative. '

SEE THE PoLICY SECTION ON THE REVERSE SIDE FOR PRICES AND
ALTERNATE ADDRESS if you are 1located in the European or
Australasian Regions. -

Membership and Renewal are the same price.

Note the discounts below, for multi-year subscription and renewal.
The U. S. Postal Service does not forward Pascal News.

USA Europe Aust
[]1year $10. £6. A$ 8.
Enter me as a new member for:
: [] 2 years $18. £10. A$ 15.
Renew my subscription for:
[] 3 years $25. £14. A$ 20.

Send Back Issue(s) ! !

My new address/phone is listed below

Enclosed please find a contribution, idea, article or opinion
which is submitted for publication in the Pascal News.

Comments:
! $!
! ENCLOSED. PLEASE FIND: A$!
! £ . !
! CHECK no. !
|- |

NAME

ADDRESS

PHONE

COMPUTER

DATE

JOINING PASCAL USER'S GROUP?

Membership is open to anyone: Particularly the Pascal user, teacher,
maintainer, implementor, distributor, or just plain fan.

Please enclose the proper prepayment (check payable to "Pascal User's
Group"); we will not bill you.

Please do not send us purchase orders; we cannot endure the paper work!

When you join PUG any time within a year: January 1 to December 31, you
will receive all issues of Pascal News for that year.

We produce Pascal News as a means s toward the end of promoting Pascal and
communicating news of events surrounding Pascal to persons interested in
Pascal. We are simply interested in the news ourselves and prefer to share
it through Pascal News. We desire to minimize paperwork, because we have
other work to do.

American Region (North and South America): Send $10.00 per year to the

address on the reverse side. International telephone: 1-404-252-2600.
European Region (Europe, North Africa, Western and Central Asia): Join

through PUG (UK). Send £5.00 per year to: Pascal Users Group, c/o Computer
Studies Group, Mathematics Department, The University, Southampton S09 5NH,
United Kingdom; or pay by direct transfer into our Post Giro account

(28 513 4000); International telephone: 44-703-559122 x700.
Australasian Region (Australia, East Asia - incl. Japan): PUG(AUS). Send

$AlU.UO per year to: Pascal Users Group, c/o Arthur Sale, Department of
Information Science, University of Tasmania, Box 252C GPO, Hobart, Tasmania
7001, Australia. International telephone: 61-02-23 0561 x435

PUG(USA) produces Pascal News and keeps all mailing addresses on a common
list. Regional representatives collect memberships from their regions as a
service, and they reprint and distribute Pascal News using a proof copy and
mailing labels sent from PUG(USA). Persons in the Australasian and European
Regions must join through their regional representatives. People in other
places can join through PUG(USA). '

RENEWING?

Please renew early (béfore November and please write us a line or two to
tell us what you are doing with Pascal, and tell us what you think of PUG
and Pascal News. Renewing for more than one year saves us time.

ORDERING BACK ISSUES OR EXTRA ISSUES?

Qur unusual policy of automatically sending all issues of Pascal News to
anyone who joins within a year means that- we eliminate many requests for
backissues ahead of time, and we don't have to reprint important .information
in every issue--especially about Pascal implementations!

Issues 1 .. 8 (January, 1974 - May 1977) are out of print.’

(A few copies of issue 8 remain at PUG(UK) available for £2 each.)

Issues 9 .. 12 (September, 1977 - June, 1978) are available from PUG(USA)
all for $15.00 and from PUG(AUS) all for $A15.00

Issues 13 .. 16 are available from PUG(UK) all for £10; from PUG(AUS) all
for $A15.00; and from PUG(USA) all for $15.00. .

Extra single copies of new issues (current academic year) are: $5.00 each
- PUG(USA); £3 each - PUG(UK); and $A5.00 each - PUG(AUS).

SENDING MATERIAL FOR PUBLICATION?

Your experiences with Pascal (teaching and otherwise), ideas, letters,
opinions, notices, news, articles, conference announcements, reports,
implementation information, applications, etc. are welcome. Please send

material single-spaced and in camera-ready (use a dark ribbon and lines 18.5
cm. wide) form.

All letters will be printed unless they contain a request to the contrary.

PASCAL NEWS #20 DECEMBER, 1980

Editor’s Contribution

RENEWING

This is the last issue of the year. (Bet you thought it
would never get herel!) So if you have not renewed yet,
RENEW NOW !!! Tt is easy to tell if you need to renew,
because all you have to do is 1look at your mailing
label. (Except in the Australasian Region.) If the
number in square brackets says 80 (ie. " [80] ") then

this is your last issue. This number is the year your
subscription expires.

THIS ISSUE

This issue contains the full text of the "Second Draft"
of the proposed ISO Pascal Standard. I hope it is the
last one we publish; because it is the last one! Andy
Mickel (remember Andy?!) was present at the X3J9
meeting in Huntsville, and has also been doing plenty of
long distance politicing for this standard. He asked if
he could write a guest editorial and the text follows.

i

m UNIVERSITY OF MINNESOTA University Computer Center

WIN CITIES 227 Experimental Engineering Building
™ 208 Union Street S.E.
Minneapolis, Minnesota 55455

1981-01-08

This special issue of Pascal News presents the second draft proposal.of the ¥SO
Pascal Standard now out for public comment and voting_by the appropriate national
bodies. More formally this document is known as (revised) DP7185.1.

[Alice Droogan, ISO TC97/SC5 Secretariat said to send all comment to; o
Joint Pascal Committee, c/o Larry B. Weber, IBM, General Products Division,
555 Bailey Avenue, San Jose, CA 95150 USA. See also bottom of page 69,
Pascal News #18] :

PASCAL NEKS #20 DECEMBER, 1980

As was reported by Jim Miner on page 74 of Pascal News #19, the first draft
received 11 yes and 4 no votes. Most of the people I know associated with
ISO Pascal Standards activities (including myself) expect unanimous approval
on this draft. There are several things I can say about this:

1. The ISO Pascal standard is badly needed now and is overdue, but it
will have set speed records in approval.

2. Even though the draft standard is imperfect (and always will be) the
realization among those experts from the ISO Working Group is that
extra time spent on the draft in an effort to perfect it has reached
the point of diminishing returns.

~ 3. This draft can be expected to be very close to the final standard.

Pascal users will at last benefit from a single standard when it
will be adopted by the national standards groups in ISO member
countries (such as in the USA by ANSI/IEEE/NBS and the Federal Govt.).

| What I wrote two years ago in an editorial in Pascal News #14 which introduced
the third BSI working draft of a Pascal Standard still applies:

Pascal Standards should be given special consideration (in other words,
there are not necessarily applicable precedents found in the standards
processes of other languages). The Pascal Standards process has been a
model phenomenon in Computer Science history.

First and foremost Pascal was designed by a single person (Niklaus Wirth)
and is not a committee-designed Tanguage. Pascal Standards Committees
have so far rightly refrained from adding committee-designed features.
Secondly, Pascal is the first major programming language standardized
outside the United States. As I've said before, it has European origins
but to be more accurate, Pascal is truly international. I think that's
wonderful and neat!

Pascal is in very wide use (even though there are dozens of programmers ignorant
of its impact and uses). Its design goals mentioned in my Pascal News #14
editorial have been met” and exceeded (even though there are plenty of computing
people who deny this).

Finally, let me reiterate the implications of an imperfect Pascal standard. In

the time given, with the people involved, and with the resources we've had,
it's a remarkable achievement. (Thank you, Tony Addyman!) And it is still
imperfect. But now the existence of a finished standard is more important
thatn spending any more time. '

In spite of the attitude of many of us technical people, you can't always
fix certain things--technical problems don't always have clean solutions.
not clear in some cases that solutions can be attained. In other words, if

you put enough constraints on a problem, it could be the case that the set of
solutions is empty.

’

Therefore, regarding the conformant-array feature I am happy; after having
listened to the large volume of discussion, I know that it is equivalent in
quality to any alternative. To repeat a familiar refrain, if there had been
a natural solution, Niklaus would have incorporated it in the first place.

He's said so himself. .

PASCAL NEWS #20 DECEMBER, 1980

.

> k& american national standards institute, inc - 1430 broadway, new york, n.y. 10018 - (212) 354-3300

Cable: Standards, New York International Telex: 42 42 96 ANS| Ul

January 21, 1981

Dear Mr. Shaw:

Enclosed please find second draft proposal ISO/DP 7185 - Specification
for the Computer Programming Language - Pascal. This document is being
circulated to 97/5 committee members for voting on by March 31, 1981.

Comments on the document are welcome and will be considered but must be
in written form and must be received by March 31, 1981. ©Please address
all comments to ANSI's X3J9 Chairman:

Dr. Carol Sledge

On-Line Systems, Inc.

115 Evergreen Heights Drive
Pittsburgh, PA 15229

Comments should be clearly marked with the name, address and telephone
number of the commentor, the section and subsection to which the
comment applies, and a rationale or explanation for any proposed text
changes. Specific proposed text changes are the most desirable form
for comments, but general changes or criticisms, or questions, are
also welcome. .

Sincerely,

Alice Droogan
Secretariat ISO/TC 97/SC 5

AD/MAC
Encl.

PASCAL NEWS #20 DELEMDBER, 130U

ISO/TC 97/8C 5 N
January 1981

DF7185 SPECIFICATION FOR THE COMPUTER FROGRAMMING LANGUAGE Fascal

CONTENTS . Faze
Foreword i
0. Introduction 2
i. Scorpe of this standard 2
2. References 2
3. Definitions =
4, Definitional Conventions 3
5. Campliance 4
5.1 Processaors 4
5.2 Frosrams S
. Regquirements &
é.1 Lexical Tokens &
6.2 Blocksy score: a;tlvatxons by
£.3 Canstant-definitions i1
t.4 Tyre—-definitions. 12
£.9 Declarations and denotations of variables 24
&.4 Procedure and function declarations 28
4.7 Expressions _ 45
6.8 Statements , ' 51
&£.9 Input and outeput . S5
6.10 Programs &5
&.11 Hardware rerpresentation &7
AFPENDICES

A. Collected syntax ‘ &%
B. Index : 77
C. Required Ident1f1ers 23
TABLES

i. Metalanguase symbols 3
2. Dyadic arithmetic orerations 47
3. Maonadic arithmetic orerations 47
4. . Set orerations S48
5. Retlational operations 43
b, Alternative symbols A8
Foreword

The lansuage Fascal was designed by Frofessor Niklaus Wirth to satisfy

two
(a)

(b)

principal aims:

to make available a language suitable for teaching pProgramming as
a systematic discipline based on certain fundamental conceprts
clearly and naturally reflected by the lansuase.

to define a language whose imrlementations could be hoth reliable
and efficient on then available compruters.

PASCAL NEWS- #20 DECEMBER, 1980

Second Draft Frorosal

Howevers it has become arrarent that Pasrcal has attributes which o
far bevond these orisinal sgoals. It is now being increasingly used
commercially in the writing of both system and arplicatiaon software.
This standard 1is primarily & consequence of the arowins commercial
interest in Pascal and the need to promote the PQPtabI]lty of Pascal
programs between data processing systems.

In draftine this standard the continued stability of Fascal has been a
prime ob.ective. Howevery arart from rchanges to clarify the
srecifications two majar chanses have been introduced:

(a) the syntax used to srpecify procedural and functional pParameters
has been changed to require the use of a procedire or function
heading: as arrProrriate (see 46.4.2.1). This change was introduced
to overcome a language insecurity;

{(b) a fifth kind of rFarameters the canformant array pParameter, has
been introduced (see ¢&.46.2.7). With this kind of rarameter: the
resuired bounds of the index—-tyrpe of an actual parameter are not
fixed» but are restricted to a srecified ranse of values,

O. INTRODUCTION

The aprendices are included for the convenience of the reader of this
standard, They do not form a rart of the requirements of this
standard.

1. SCOPE OF THIS STANDARD

1.1 This standard srpecifies the semantics and syntax of the computer
Prosramming lansuage Pascal by specifying requirements faor a eprocessor
and for a conforming Pprogram. Two levels of compliance are defined for
both Processors and Programs. '

1.2 This standard does not specify ‘

(a) the size or complexity of a Prosram and its data that will exceed
the caracity of any specific data rprocessing system or the
caracity of a particular Processors

(b) the minimal reaquirements of & data erocessing svystem that 1is
carable of supporting an impPlementation of a processar for
Pascals

(c) the method of activatins the eprogram-block or the set of commands
used ta control the environment in which a Fascal eprogram 1is
transformed and executed; :

(d) the mechanism by which Prosrams written in Pascal are transformed
for use by & data Processing systems’

(e) the method for rerporting errors or warningss;

(f) the tyrposrarhical representation of a program Published for human
reading,

2. REFERENCES

None.

N

FPASULAL NEWS #ZU ULLODER, 190U -

Second Draft Frorosal

3. DEFINITIDNS

error. A violation by a erogram of the reguirements of this
standard whose detection by a processar is optional.

W
-

2.2 implementation—-defined. Fossibly differing between rrocessorsy but
defined for any rarticular pProcessor.

2.3 implementation-derendent. Fossihly differing between Processors
and not necessarily defined for any particular pProcessor.

3.4 processor. A compilery intereretersy or other mechanism which

accerts the prosram as input and either executes it, Prerares it
for executions ar both.

4. DEFINITIONAL CONVENTIONS

The metalanguage wused in this standard to specify the syntax of the
constructs is based on Backus-Naur Form. The notation has been
modified from the orisinal to rpermit greater convenience of
descrirption and to allow for iterative eproductions to replace
recursive ones. Table 1 lists the meanings of the various
meta-symbols. Further specification of the constructs 1is aiven . by
Prose andsy in some rasesy by equivalent Program frasments. Any
identifier that is defined in clause & as the identifier of a
predeclared or predefined entity shall denote that entity by its
occurrence in such & program fragment. In all other resepectsy any such
prosram fragment is bound by any pertinent requirement of this
standard.

Table 1. Metalanguase symbols

e e e e e s B St O B o (e S e S S oot o G2 S " St fani, St} Dot ot At o S S Sid S, S S . M S o S e B S (e o S S Pt St Sty et e W S Pk e it o S ot s

Meta-symbol Meaning
= ' shéll ke defined to be

> shall have as an alternative definition

alternatively

. end of definition

[x1] 0 or 1 instance of x

{x3 ‘ O or more instances of x
(xiy) aroupring: either of % or v
“xyz" the terminal symbol xvz

meta—-identifier a non—terminal symbol

D o ot it s oo} S > M S — T — S S S b o S S M e o o o S St b e Pt S St S St S e SO S Pt ot S S o S S e S, o et S0 S S S

]
ot

PASCAL NEWS #20 DECEMBER, 1880

Second Draft Frorosal

A meta-identifier shall be a sequence of letters and hyrhens besinning
with a letter.

A sequence of terminal and non-terminal symbhols in a eproduction
implies the concatenation of the text that they ultimalely rerpresent.
Within &.1 this concatenation is direct; no characters may intervene.
In all other parts of this standard the concatenation i3 in accordance
with the rules set out in &4.1.

The characters required to form Fascal programs are those implicitly
required to form the tokens and serarators defiped in 4.1,

Use of the words ofsy ins containina and closest—containins when
expressing a relationship between terminal or non-terminal symbols
shall have the following meanings. '

the x of a v: refers to the x occurring directly in a eroduction
definlng v.

the x in a vi¢ is synponymous with "the x of a v".

a vy vcontaining an x: refers to any x directly or indirectly
derived from v.

the v closest-containing an x: that vy which conta1ns an x but does
not contain another y containing that x.

These syntactic «conventions are used in clause & to specify certain
syntactic requirements and also the contexts within which certain
semantic specifications arpPly.

- 5. COMPLIANCE

NOTE. There are two levels of Lomprliance — level O and level 1.
Level O does not include conformant array pParameters. Level 1 does
include conformant array rarameters. '

5.1 Processors ‘

A Processor camplvins wlth the requirements of this standard shall:

(a) if it complies at level 0Oy accert all the features of the lansuase
specified in clause &, except for 4£.46.3.46(e)y 6.46.3.7 and &.6,.3.8y
with the meanings defined in clause &3

(b) if it complies at level 1, accert all. the features of the lansuage
srpecified in clause & with the meanings defined in rclause 43

{c) not resuire the inclusion of substitute or additional lansuage
elements in a rProsram in order to accomplish a feature aof the
tansuage that is specified in clause 63

(d) be accompanied by a document that eprovides a definition of all
implementation—-defined features:

(e) detect any violation by a prosram of the requirements of this
standard that is not designated an errors

(f) treat each wviolation that is designated an error in at least one
of the following ways:

(g)

()
(1)

2.2

PASCAL NEWS #20 peieriben, 156U

Second Draft Frorosal

1) there shall be a statement in an accompanying document that the
error is not rerported;

2) the processor shall have repaorted a prior warning that an
occurrence of that error was rossibles

Z) the processor shall rerort the error during epreraration of the

~program for executions

4) the processor shall rerort the error during execution of the
Pprograms and terminate execution of the Prosram.

be accaompranied by a document that serparately describes any
features accepted by the pProcessor that are not sepecified in
clause &. Such extensions shall be described as beinza ‘extensions
to Pascal specified by IS07125: 198-7.

be able to Process inm & manner similar to that sepecified for
errors any use of any such extensions

be able to process in & manner similar to that specified for
errors any use of an imrplementation—-dependent feature.

Frosrams

A program comrlyins with the reauirements of this standard shall:

(a)
(b)
()

if it complies at level 0O, use only those features of the lansuase
specified in clause &» exceprt for &.4.2.6(e)y &&6.%5.7 and 60603083
if it complies at level 1, use only those features of the lansuage
specified in clause &3

not rely on any rarticular interrretation of
implementation—-derendent features. '

NOTE. The results produced by the pProcessing of a comrlying
Pproaram by different complying processors are not required to he
the same.

PASCAL NEWS #20 : ~ DECEMBER, 1980

S+ REGUIREMENTS
4,1 Lexical tokens

NDTE. The syntax given inm this sub-clause (4.1) describes the
formation of lexical tokens from characters and the separation of
these tokens» and therefore does not adhere to the same rules as
the syntax in the rest of this standard.

&.1.1 General.: The lexical tokens used to construct Fascal prosrams
shall be classified into special-symbolssy identifiers:, directives)
unsigned-numbersy labels and character—strings. The rerresentation of
any letter (urPrer~case or Jlower-case:y differences of fonty etc)
occurring anvywhere outside of a character—-string (see &.1.7) shall be
insignificant in that occurrence to the meaning of the Prosram.

]EttE‘P = llall : Ub'l : llcll : I(dll { HeM:llfll : "9“ : llhll : (lilt
1

:llJ u : Ilkll : H] " : “"l":
an(: NOH : ilP,ll : lqu ! Npll ; ”S“:“t“ : Ilull : ”V I: [

1 wll : ll).(ll : (ly-ll : llzll
digit = lioll:lll‘l:llzllzllaﬂ:tl4ll:"5(l:llé'_ll=l|7ll:Ilall:ll?ll
6.1.2 Special-symbols. The special-symbols are tokens having spenial

meanings and shall be used to delimit the syntactic units of the
lansuase. -

specia]_sy“lbo1 = ll+ll:ll_ll:ll*ll:“/”;ll:l(:ll<ll;ﬂ>ll:ll[ll:ll]ll:
" iHwru L T T T T O £ O O LN ¥ A A 1 § (nun) "0t
s t 4 1 L t 1]) 1 1]
HoM M= s ot word-symbol .
word-symbol = Yand"i"array'"i"begin"i"case" | "const" i "div"!

"do"i"downto"i"else"i"end" " file" " for"i
"function"i"aoto"i"if"1"in"t"label" {"mod"!
"mil"t"not"i"of" ! "or" i "Packed" | "Procedure"|
"program"i"recaord" ! "rereat"i"set" | "then"!
"to"i"type't"until"{"var" i "while" ! "with" .

6.1.3 Identifiers. Identifiers may be of any lensth. All characters
af an identifier shall be significant. No identifier shall have the
same srelling as any word-symbol. .

identifier = letter {letter | disit} .

Examples:
X time readinteser WG4 AlterHeatSetting
InquirelWaorkstationTransformation
InauireWorkstationIdentification

é6.1.4 Directives. A directive shall occyr only in a
procedure—declaration or function-declaration. The directive forward
shall be the only required directive (see 4.4.1 and &.4.2). Other
implementation—-derendent directives may be provided. No directive
shall have the same srpelling as any ward-symbol.

directive = letter {letter | disit}) .

NOTE. On many processors the directive external is used to srecify
that the procedure-block or function~blgck corresponding to that
procedure-headins or function-headins is external to the
prosram—block. Usually it is in a library in a form to be input

PASCAL NEWS #20 ’ DECEMBER, 13sU

Second Draft Frorosal

tor or that has been produced by, the Frocessor.

&.1.5 Numbers. An unsigned-inteser shall denote in decimal notation a
value of inteser—-type (see 4£.4.2.2), An unsigned-real shall denote in
decimal notation a value of real-tyre (see 4.4.2.2). The letter "e"
preceding. a scale factor shall mean ‘times ten to the rower of’. The
value denoted by an unsigned—integer shall be in the closed interval O
to maxint (see 4£.4.2.2 and 46.7.2.2).

digit—-sequence = digit {disit) .
unsianed—integer = digit-sesuence .
unsisned—-real =
unsigned-integer "." digit—-sequence ["e" scale-factorl |
unsisned—inteser "e" scale—factor .
unsisned-number = unsigned-inteser | unsisned-real .
scale-factor = signed-integer .
Sign = 'ﬂ*ll : W u .
signed—-inteser = [signl] unsigned—-intesger .
signed-real = [sianl] unsigned-real .
sigsned-number = signed-inteser | sisned-real .

Examprles:
1e10 1 +100 -0.1 Se~-3 87 .35E+5

&.1.6 Labels. Labels shall be digit-seaquences and shall be
distinsuished by their apparent integral valuess that shall be in the
closed interval O to 9999.

label = digit—-sequence .

é6.1.7 Character—-strings. A character-string containins a single
string—element shall denote a value of char~-type (see é.4.2.2). A
character-string containins more than one strins-element shall denote
a value of a strins-type (see 64.4.3.2) with the same number of
components as the character—string contains strins—elements. If the
strine of characters 1is to contain an arostrorhey» this apostrorhe
shall be denoted by an arostrorhe—-image. Each strins-character shall
denote an implementation—defined value of char-tvre.

character—-string = """ strings-element
{string—element} "*"

string-element = arostrorhe—-imase | strins-character

arpostrorhe-image = "/ /"

string-character =
one-of-a-set-of-imeplementation-defined-characters

Examples:
IAI s
‘Pascal’ 'THIS IS A STRINGY

1 1 472

“e

PASCAL NEWS #20 DECEMBER, 1980

Second Draft Prorosal

4$.1.8 Token separators. The construct

“{" any-sequence-of-characters—and-serparations-of-lines—-not-—
containins-risht-brace "2}"

shall be a comment if the "{" does not occur within a character-strinag
or within a comment. The substitution of a space for & comment shall
not alter the meanins of a program.

Comments, srpaces (excert in character-strings)s and the separation of
consecutive lines shall be considered to be token serarators. Zero or
more token serarators may occur between any two consecutive tokensy or
before the first token of a prosram text. There shall be at least one
serarator between any pPair of consecutive tokens made upP of
identifiers,» word-symbols» labels or unsisned—-numbers. No serparators
shall occur within tokens.

PASCAL NEWS #20 DECEMBER, 1980

&.2 Blocks, scope and activations

£.2.1 Block. A block closest-containing a label-declaration—-part in
which a label occurs shall closest—contain exactly one statement in
which that label occurs. The occurrence of a label in the
label-declaration-part of a block shall be its defining-rpoint as &
label for the resion which is the block.

block = label-declaration—-rart
constant-definition—-rart
type-definition—-rart
variable-declaration—-prart
procedure-and-function—-declaration—rart
statement—-rPart .

label-declaration-part = ["label" Tlabel {"+" labell ":"1] .
constant-definition—rart = ["const" -constant-definition "3"
{constant—definition "5">1
type~definition-part = [“type" type—definition "3"
{type-definition "3"21 .
variable-declaration—-part = ["var" variable-declaration "3"
fvariable-declaration "3$"21 .

procedure—and—-function-declaration—-prart =

] s 1Y,

{(procedure—-declaration | function-declaration) L

The statement-rart shall specify the alsorithmic actions to be
executed upon an activation of the block.

statement-Part = compound-statement .
All ‘variables <contained by an activations except for those listed as

program—rarameterss shall be totally-undefined at the commencement of
that activation.

4.2.2 Scare

6.2.2.1 Each identifier or label contained by the prosram—-block shall
have a defining-rFoint.

6.2.2.2 Each definins—point shall have a region that is a part of the
rrosram texts and a scorpe that 1is a rpart or all of that
resion.

&£.2.2.3 The region of each defining—-roint is defined elsewhere (see

.21 6.2.2.100 4.3y L4401y &.4.2.%0 L4020 I
£.3.3.3y bbby 602y L6320y 6.8.3.10).,

6.2.2.4 The scorpe of each definins-rpoint shall be 1its region
(including all regions enclosed by that region) subiect to
&.2.2.5 and 4.2.2.6.

$.2.2.5 When an 1identifier or label that has a defining—-roint for
resgsion A has a further definins-point for some region B
enclosed by Ay then region B and all regions enclosed by B
shall be excluded from the score of , the defining-rpoint for
resion A. '

$.,2.2.& The field-identifier of the field-specifier of a
field-desianator (see &.5.3.3) shall be one of the
field-identifiers associated with a compPonent of the
recard-tyre Possessed by the record-variable of the
field-desianator.

PASCAL NEWS #20 DECEMBER, 1980

Second Draft Frorosal

4.2.2.7 The score of a definins—roint of an identifier ur label shall
include no other definins-epoint of the same identifier or

' label. ,

£&.2.2.8 Within the scope of a defining-rpoint of an identifier or
labels» all occurrences of that identifier or label shall be
designated arplied occurrencesy exceprt for an cccurrence that
constituted the defining—roint of that identifier or label:
such an occurrence shall be desisnated a definine occurrence.
No occurrence outside that scorpe shall be an arprlied
gccurrence.

6.2.2.9 The definine-proint of an idzntifier or label <shall precede
all applied occurrences of that identifier or latel contained
by the prosram-block with one exception» namely that a
type—-identifier may have an applied occurrence in the
domain-tyre of any new—pointer-tyres contained by the
tyre—-definition—-rPart that contains the definins-point of the
tyre—identifier.

6.2.2.10 Identifiers that dernote reauired constants: tveecss procedures
and functions shall be used as if their definins—points have
a reaion enclosing the Program.

6.2.2.11 Whatever an identifier or label denotes at its definins—point
shall be denoted at all aprlied occurrences of that
identifier or label.

6.2.3 Activations

&.2.3.1. A procedure-identifier or function-identifier havins a
definine-roint for a resion which is a block: within the
procedure—and—-function—-declaration-prart of- that block shall be
designated local to that block.

6.2.3.2. The activation of a blozk shall contain

(a) for the statement-rart of the block, an alsorithm: the completion
of which shall terminate the activation (gee alsa 6.3.2.4)%

{b) for each label in a statement, having a defining—-roint in the
label-declaration—-rPart of the block:s a erosram—point in the
algorithm of the activation of that statement:

(c) for each wvariable-identifier havinse a defining-point for the
region which 1is the blocky a wvariable possessing the type
associated with the variable-identifier;

(d) for each procedure—identifier local to the blocksy a Procedure with
the formal parameters associated withy and the procedure-block
corresponding tor the Procedure-identifier’ and

(e) for each function—-identifier Jlocal to the block» a function with
the formal parameters associated withy the function-block
caorresronding to and the type Possessed by, the
function-identifier. :

&£.2.3.3. The activation of a procedure or function shall be the
activation of the block of its erocedure-block or function-block,
respectivelys and shall be desisnated within:

(a) the activation containing the procedure or function; and

(b) all activations that that containing activation is within.

10

PASCAL NEWS #20 DECEMBER, 13U

Second Draft Frorosal

NOTE. An activation of a block B can only be within activations of
blocks rontaining E. Thus an activation is mot within another
activation of the same block.

Within an activation: an arpplied occurrence of a label or
variable-identifier: or of a procedure-identifier or
function—-identifier local to the block of the activations shall denote
the corresponding pProgram—points variables rerocedurer or function:
respectivelyy of that activation.

&.2.2.4. A procedure—-statement or function—desisnator contained in the
alsorithm of an activation and that specifies the =zctivation of a
block shall be desisnated the activation—-roint of that activation of
the block. '

4.2.3.5. The alsorithmsy eProsram—pointsy variables» rrocedures and
functionsy if anysr shall exist wuntil the termination of the
activation.

&.3 Constant—-definitions. A rconstant—definition shall introduce an
identifier to denate a value.

constant—definition = identdfieﬁ "=" constant .
constant = [sign] (unsigned-number | constant-identifier)

i character-string .
constant-identifier = identifier .

The occurrence of an “identifier in a constant-definition of a

constant—-definition—-rart of a block shall constitute its
defining—-roint for the resion that is the block. The constant shall
not «contain an aprlied occurrence of the identifier in the

constant-definition. Each applied occurrence of that identifier shall
be a constant—-identifier and shall denote the value dernoted by the
constant of the constant—definition. A constant-identifier in a
constant containing an occurrence of a sian shall have been defined to
denote a value of real-tyre or of inteser-tvre.

PASCAL NEWS #20 DECEMBER, 1980

&4 Type-definitions

6.4.1 General. A tyrpe-definition shall introduce an identifier to
denote a tyre. Tyre shall be an attribute that is rossesszed by every
“value and every variable. Each occurrence of a new—type shall denote a
type that is distinct from any other new—type.

tyre—~definition = identifier "=" type-denoter .

tyre-denaoter = type-identifier | new—-tyre
]

new—-tyre = new-ordinal-tyepe | new-structured-tyee |
new-rointer-tyre

The occdrrence of an identifier in a type-definition of a
tyrpe—-definition—-rart of a block shall constitute -its definins—roint
for the resion that 1is the block. Each arplied occurrence of that
identifier shall be a tyre-identifier and shall denote the same tvyre
as that which 1is denoted by 1its type-denoter. Excurt for arrlied
occurrences as the daomain—-tyre of a new—rointer—tyre, the tyrpe—-denoter
shall not contain an applied occurrence of the identifier in the
tyre—definition.

Tvprpes shall be classified as simepler structured or pointer types. The
required tyres shall be denoted by predefined type-identifiers (see
£.4.2.2 and 6.4.3.5).

simple-type-identifier = type—-identifier .
structured—-type—identifier = type—-identifier .
pointer—tyrpe—identifier = tyre—identifier . '
type—-identifier = identifier .

A tyrpe-identifier <shall be considered as a simplie-type-identifier, a
structured-tyre—identifier, or a rPointer—tyre-identifier: accordine to
the tyre that it denotes.

&.4.2 Simple—-typPes

6.4.2.1 General. A simple—type shall determine an ordered set of
values. The values of each ordinal-tyre shall have integer ordinal
numbers, An ordinal-tyere~identifier shall denote an ordinal-tyre.

simple-type = ordinal-tyre | real-tyre .
ordinal-type = new-ordinal-tyre |
integer-tyre | Boolean—-tyre | char-tvee |
prdinal-tyre~identifier .
1

new-ordinal-tyre = enumerated-type | subranse-tvyre .
ordinal-type—identifier = identifier .

" 6.4.2.2 Required simrle-types. The following tyres shall exist:

intesepr-tyre The required integer-type-identifier inteser shall
denote the integer—tyrpe. The values shall be a subset
of the whole numbers, denoted as specified in é.1.5 by
the signed-integer values (see also &.7.2.2). The
ordinal number of a value of integer-tyre shall be the
value itself.

real—-type) The required real—-tyre—identifier real shall denote the
real—-tvyre. The values shal]l be an
implementation—defined subset of the eal numbers
denoted as specified in é.1.5 by the signed-real
values.

PASCAL NEWS #20 prooiiben, iJoU

Second Draft Frorosal

Boolean-tvre The required FEoolean—-tvype—identifier [Roalean shatll
denote the FBEoolean—-type. The wvalues shall be the
enumeration of truth wvalues denoted Ly the resquired
constant-identifiers false and trues such that false is
the epredecessor of true. The ordinal numbers of the
truth values denoted by false and - true shall be the
inteser values O and 1 resepectively.

char—-tyre The reguired char—tyre—identifier char thall denote the
char—type. The values shall be the snumeration of a set
of implementation-defined charactersy some pPossibly
without grarhic representations. The or.Jdinal numbers of
the «character wvalues shall be values o1 integser—tyre:s
that are implementation—defined: anid that are
determined by marpeping the character values on to
consecutive non—negative inteser values starting at
zero. The mapping shall be order wreseprvins. The
following relations shall hold: :

(a) The subset of «character wvalues rerresenting the
digits O to ¥ shall be numerically ordered and
rontiguaus.

(b)Y The subset of character values reprresenting the
urrer—-case letters A to Zy if avaiiables shall be
alrphabetically ordered but not necessarily contisuous.

(c) The subset of character wvalues rerresenting the
lower—-case letters a to z» if availables shall be
alrhabetically ordered but not necessarily contisuous.

(d) The orderins relationship between any two character
values shall be the same as hetween their ordinal
numbers. ' '

NOTE. Operators arplicable to the required simele-tyres are
specified in &.7.2.

6.4.2.3 Enumerated-types. An enumerated-type shall determine an
ordered set of values by enumeration of the identifiers that denote
those values. The ordering of these values shall be determined by
the sequence in which their identifiers are enumerated; i.e. if x
grecedes y then x is less than y. The ordinal number of a value that
is of an enumerated-tyre shall be determined by marrine all the values
of the type as their identifiers occur in the identifier—list of the
enumerated-tyre on to consecutive non-nesative values of inteser—type
startine from zero. '

enumerated-tyre = "(" identifier-list ")"
identifier-list = identifier { "»" identifier } .

The occurrence of an identifier in the identifier—-list of an

—
)

PASCAL NEWS #20 DECEMBER, 1980

Sercond Draft Frorosal

enumerated-typre shall constitute its defining—-roint as a
constant-identifier for the resion which is the block
- closest-containing the enumerated-tyre.

Examples:
(redsyellowsrgsreensblueytartan)
(clubydiamondsheart)sraide)
(marriedsdivorcediswidowedsrsingle).
(scanning:foundynotpresent)
(BusyiInterrurtEnablesParityErroryOutDfPareryLineBreak)

6.4.2.4 Subranse-types. The definition of a tyre as a subrange of an
ordinal-tyre shall include identification of the smallest. and the
largest wvalue in the subrange. The first constant of & subranse-tyepe
shall specify the smallest values and this shall be less than or eaual
to the largest value which shall be specified by the other constant of
the subrangse—-tyre. Both constants shall be of the same ordinal-typre:
and that ordinal-type shall be desiagnated the -host ¢type of the
subrange-tyre.

subrange-tyre = constant ".." constant

Examples:
1..100
-10..+10
red..sreen
IOI..I9I

6.4.3 Structured-types
¢$.4.3.1 General. A new-structured-tyre shall be <classified as an
arrav—-tvyrey record-tyrey set—-tyre or file-type according to the
unracked-structured-tyre closest—-contained by the new-structured-tyre.
A comronent of a value of a structured-type shall be a value.
structured-tyre = new—structured-tyre |
structured-tyre~identifier .
unracked-structured-tyre = array-tvre | record-tyrpe | set-type |
file-type . '
new-structured—-tyre = ["pPacked"] unpacked-structured-type

The occurrence of the token rpacked in a nmew-structured—-tvyre shall
designate the tyrpe denoted thereby as packed. The desisnation of a
structured-type as pracked shall indicate to the rrocessor that
data-storase of values should be ecornomisedy even if this causes
orerations ony or accesses to components ofs variables Possessing the
tyre to be less efficient in terms of srace or time.

The designation of a structured-tyre as packed shall affect the
representation in data-storase of that structured-tyre only; that is
if a component is itself structured, the component’s rerresentation in
data-storage shall be packed only if the ¢type of the component 1is
desisnated packed.

14

PASCAL NEWS #20 DECEMBER, 1980

Second DOraft Froprasal

NOTE. The wavs in which the treatment of entities of a type 1is
affected by whether or not the type is designated packed are
specified in &4.4.2.2y L£.4.5) £.46.3.3 Ab6.2.8 06,54 and 40741,

6.4.2.2 Array—-tyres. An array—tyepe shall be structured as a marpring
from each value specified hy its index—type onto a distinct component.
Each comeronent shall have the tyepe denoted by the type—-denoter of the
comronent—tyrpe of the array—-tvre. ‘

array-type = "array" "[" index—tyre { "+" index—type 3 "1I" "of"

comPonent—-tyrPe .
index—tyre = ordinal-tyvere
component-tyre = tyre-denoter

|

Examples:

array [1..100] of real
array [Baoleanl of colour

An array-type that specifies a sequence of two or more index—tyres
shall be an abbreviated notation for an arrav—tyere specified to have
as its index—type the first index—-tyre in the sequence; and to have a
component—-tyrpe that 1is an array-tvyre specifying the sequence of
index—-tvrpes without the first and specifyina the same component—-tyre
as the original specification. The component-tyere thus rconstructed
shall be designated packed if and only if the orisinal array-tyre is
designated packed. The abbtreviated form and the full form shall be
equivalent.

NOTE. Each of the following two exameples thus contains different
ways of exrressing its array—-tyre.

Example 1.
array[Booleanl of arrav[1..10] of arraylsizel of real
arrayl[Booleanl] of arrav[1..10ssizel] of real
arrav[Booleansl..101sizel] of real
array[Boolean»1..101 of arravlsizel of real

Example 2. _
packed arrayl[1..10+1..8] of Boolean
packed arrayl[1..10] of packed arravy[1..8] of Boolean

Let 1 denote a value of the index-type; let vI[il denote a value of
that component of the array—-tyre that corresponds to the wvalue i by
the structure of the arrav-tyepe: let the smallest and larsest values
specified by the index—type be denoted by m and nj and let k =
(ord(n)-ord(m)+1) denote the number of values specified by the
index-type. Then the values of the array-tvyre shall be the distinct
k-tuprles of the form:
(vimly ... 2vInl)

NOTE. A value of an array-tyre does not therefore exist unless all

of its component values are defined. If the comporent-type has c
valuet, then it follows that the cardinality of the set of values

15

PASCAL NEWS #20 DECEMBER, 1980

Second Draft Froeosal

of the array-tyrpe 16 ¢ raised to the power k.

Any type desisnated rpaczked and denoted by an array—-tyre having as its
index-tyre a denotation of a subranse—-tyre srecifying a smallest value
of 1» and having as its component—-tyre a denotation of the char—types
shall be designated a strina-type.

The rcorrespondence of character—-strinags to values of strins—-types is
obtained by relating the individual characters of the
chararter-string, taken in left to riseht ordersy to the components of
the values of the strina-tyepe in order of increasing index.

NOTE. The values of a strins—tyre pPossess additional eprroperties
whichy allow writing them to textfiles (see 6.9.4.7) and define
their use with relational-orerators (see &£.7.2.3).

&£.4.2.3 Record*types. The structure and values of & record-type shall
be the structure and values of the field-list of the record-tyre.

record~-type -= "record" field-list Yend" .
field-list = .
[(fixed-rart ["3" variant-erart 1 | variant-rart) [("3"1]1 .

fixed-part = record-section ¢ "3" record-section 2} .

record-section = identifier-list ":" tyre-denoter .

variant-rart = "case" variant-selector "of"

. variant { "i" variant > .

variant-selector = [tag—-field ":%"] tas—-type

tag-field = identifier

variant = rcase-constant-list ":" "(" field-list ")"

tag-type = ordinal-tyre—identifier .

case-constant-list = case—-constant { "»" case-constant 2} .

case—-constant = constant
A field-list which «contains neither a fixed—-part nor a variant-part
shall have no components: shall define a single null valuey and shall
be desisnated empty.

The occurrence of an identifier in the identifier-list of a
record-section of a fixed-part of a field-list shall «constitute 1its
defining-roint as a field-identifier for the —region which is the
record-type closest-containing the field-listy and shall associate the
field-identifier with a distinct comeponents which shall be designated
a field: of the record-tyre and of the field-list. That comPronent
shall have the tyre denoted by the tyre—denoter of the record-section.

The field=-list closest—containing a variant-part shall have a distinct
component which shall have the values and structure defined by the
variant-rart.

Let Vi denote the wvalue of the 1i-th compornent of a non-empty

field-list havins m components; then the wvalues of the field-list
shall be distinct m—-turles of the form

14

PASUAL NEWS #ZU ST JLUVLIDLIN, 4AJOU

Second Draft Frorposal

(Viy V29 v V).

NOTE. If the tvyre of the i-th component has Fi valuesy then the
cardinality of the set of values of the field-list shall te
(F1 ¥ F2 % ... ¥ Fm).

A tag—type shall denote the type denoted. by the
ordinal-type-identifier of the tas-tvepe. A rcase-constant shall denote
the value denoted by the constant of the case-constant.

The type of each case-constant in the case-constant—list of a wvariant
of a variant-part shall bte compatible with the {as—-tyre of the
variant-selector of the variant-rart. The values deroted by all
case-constants of a type that 1is reauired to ke compatible with a
given tag-tyepe shall be distinct and the set thereof shall be equal to
the set of values specified by the tas—-type. The values denoted by
the rcase-constants of the case-constant-list of a variant shall be
designated as carresponding to the variant.

With each wvariant-part shall be associated a tyre designated the
selectar~type Possessed by the variant-rpart. If the variant-selector
of the variant-part contains a tas—-field) or if the case~constant-list
of each variant of the variant-part contains only one «case-constant:
then the selector—-tyre shall be denoted by the tas—tvyre), and each
variant of the variant-part shall be associated with those values
specified by the selector—type denoted by the case-constants of the
case-constant-list of the variant. Dtherwisey the selector-type
possessed by the variant-rart shall be a new ordinal-tyre constructed
such that there is exactly one value of the tvyrpe for each wvariant of
the wvariant-rpart: and no others: and each variant shall be associated
with a distinct value of that tyre.

Each variant-rart shall have a component which shall be desisnated the
selector of the variant-rart, and which shall rossess the
selector-tyre of the variant-rart. If the variant—-selector of the
variant-part contains a tag-—-fieldy then the occurrence of an
identifier in the tas-field shall constitute the definina—roint of the
identifier as a field-identifier for the region which 1is the
record-type closest—containing the variant-rpart, and shall assorciate
the field-identifier with the selector of the variant-eart. The
selector shall be designated a field of the record-tyre if and only if
it is associated with a field—-identifier.

Each wvariant of & variant-eart shall denote a distinct component of
the variant-rart; the component shall have the values and structure
of the field-list of the variants and shall be associated with those
values specified by the selector-type rPossessed by the variant—-rart
which are associated with the variant. The value of the selector of"
the variant-rart stall cause the associated variant and component of
the variant-rpart to be in a state that shall be desisnated active.

The values of a variant-part shall be the distinct Pairs

(ky» Xk

17

PASCAL NEWS #20 DECEMBER, 1980

Second Draft Propogal

where k represents a value of the selector of the variant-rart:, and Xk
is a 'wvalue of the field-list of the active wvariant of the
variant-rart.

NOTES

1. If there are n values specified by the selector—typey and 1if
the field-list of the variant associated with the i-th value has
Ti valuesy thern the cardinality of the set of wvalues of the
variant-part is (T1 + T2 + ... + Tn), There is no component of a
value of a variant-part correseponding to any non—-active variant of
the variant-rart.

2. Restrictions rlaced on the use of fields of a record-variable
pertaining to variant—-parts are specified in &.9.23.32y &.4.3.3 and
£.6.5.3.

Examples:

recard
year ¢ 0,.2000;
month ¢ 1..125
day ¢ 1..31

end

recaord '
namey firstname & string;
age ! 0..99;
case married ¢ Boolean of
true ! (Spousesname & string);
false: ()
end

record
Xty & reals
area ! realj
case share of
triangle @ _
(side % real; :
inclinationy anslels angle? : angle);
rectangle @
(sidely side2 ! reals
skew ¢ ansle):
circle 3
, (diameter & real);
end

£.4,.2.4 Set-tyres. A set-tyre shall determine the set of values that
is structured as the powerset of its base-type. Thus each value of a
set-type shall be a set whose members shall be uniaue values of the
“base—tyre. ' '

set-type = "set" "of" base-tyre

PASCAL NEWS #20 S DUCLEMDER, 130U

Second Draft Frorosal

base-tyre = ordinal-tyre

NOTE. Operators applicable to values of set—-types are specified in
&L.7.2.4.

Examrles:
set of char
set of (cluby diamond) heart, sepade)

NOTE. If the base-type of a set-type has b values then the
cardinality of the set of values is & raised to the pPower b.

For every ordinal—-type S, there exists an unrpacked set desiganated the
unracked canonical set—of-T +tvyrpe and there exists a racked set type
desianated the rpacked canonical set-of-T type. If 5 is a subranse—type
then T is the host tyre of S35 otherwise T is S. Each value of the typre
get of S is aleo a value of the unracked canonical set-of-T tyrer and
each value of the tvyre Packed set of & is also a value of the racked
canonical set-of-T type.

6.4.3.5 File-types.

NDOTE. A file-type describes sequences of values of the specified
compronent—-tyrey tosether with a current rposition in each seguence
and a mode which indicates whether the seaqyence 1s beina inspected
or senerated. :

file—tyre = "file" "of" component-tyre .

A tyrpe-denoter shall not be rpermissible as the comronent—-tyre of a
file-tyre if it denotes either a file-tvyre or a structured-typre
havins any component whose tyrpe-denoter 1is not pPermissible as the
comronent-tyre of a file-type. '

Examples:
file of real
file of vector

A file~type shall define implicitly a tyre desianated a sequence-type
having exactly those valuesy which <shall be desisnated sequences:
defined by the followins five rules.

NOTE. The notation x™y represents the concatenation of seauences X
and vy. The exprlicit representation of sequences (e.a. S(c))s of
concatenation of sequencess of the first, last and rest selectors,
and of sequence equality 1is not rart of the Fascal lansuase.
Thege notations are used to define file wvaluess belows and . the
redquired file orerations in 4.4.5.2 and &.4.4.5.

(a) S() shall be a wvalue of the sequence-type 89' and shall be
designated the empty sequence. The empty seauence shall have no
components.

19

PASCAL NEWS #20 DECEMBER, 1980 .

Second Draft Frorosal

(b) Let .c be a value of the specified component-tyres and let x be a
valye of the sequence-tyre S. Then 5(c) shall be & sequence of
type Sy consisting of the sinsle component wvalue <¢» and. S(g)™x
shall also be a sesuences distinct from S()y of type S.

(c) Let <+ S+ - and % be as in (b)s; let y denote the sequence S{c)~us
and let z denote the sesuence x~S(c)3 then the notation vy.first
shall denote r« (i.e.» the first component value of ¥)s v.rest
shall denote x (i.e.s» the sequence obtained from ¥ by deleting the
first component)y and z.last <shall denote == (i.e.» the last
component value of z). '

" (d) Let x and v each be & non—emPty sequence of type S3 then % = vy
shall be true if and only if both (x.first = v.first) and (x.rest
= y,rest) are true. If x is the empty sequences then % = vy shall
be true if and only if v is also the emprty sequence.

(e) Let x» vy and z be sequences of typa S35 then x7{v™~z) = {(w~y)}~z,
S()~“x = x»r and x~&() = x shall be true.

A file—-type also shall define implicitly a type designated a mode—-tyee
having exactly two wvalues which are Jdesignated Inspection and
Generation. .

NOTE. The explicit denotation of these values is not part of the
Pascal lansuage.

A file-tyre shall be structured as three comranents. Two of these
componentss designated f.L and f.R+ shall be af the implicit
sequence-tyre. The third component, designated f.My shall be of the
implicit mode~-tvre.

let f.L and f.R each be a single value of the seauence—-tyre; let f.M
be a sinsle value of the mode-~type; then each value of the file-type
shall be a distinct trirle of the form ' ’

(f.L+ f.Ry f.M)

where f.R shall be the empty sequence if f.M is the value Generation.
The wvaluey fy of the file—typre shall be desisnated emwty if and only
if f.L“f.R is the emprty sequence.

NOTE. The two components) f.L and f.R:y of a value of the file—tyre
may be considered to represent the sinsle seguepnce f.L~f.R
together with a current pPosition in that sequence. If f.R 1is
non—-emprty» then f.R.first may be considered the current comronent
as determined by the c¢urrent position? otherwisey the current
position is designated the end-of-file position.

There shall be a file-type that 1is denoted by the reauired
structured—-tyre—-identifier text. The structure of the type denoted by
text shall define an additional sequence-type whose values shall be
designated lines. A line shall be a segquence x™~S(e)y where % 1is a

20

PASCAL NEWS #20 - DECEMBER, 1380

Second Draft Prorosal

sequernce of components having the char-tyrey and e rerpresents a
special comeponent valuey which shall be designated an end-of-lines and
which shall be indistirnsuishable from the char value space excert by
the resuired function eoln (4.4.6.5) and by the required procedures
reset (&£.6.5.2)) writeln (4.9.5): and page (&.%.6). If x is a 1line
then no component of x other than x.last shall be an end-of-line. This
definition shall not be construed to determine the underlvinsg
representationy if anys of an end-of-line component wused by a
PrOCessor.

A line-sequences z» shall be either the emrty sequence or the sequence
X~y where X is a line and ¥ 1s a line-sequence.

Every value t of the tyre denoted by text shall satisfy one of the
followins two rules.

(a) If t.M Inspections then t.L~t.R shall he a line—sequence.

fl

(b)Y If t.M = Generation: then t.L”t.R shall be x™y whaere x 1is a
line-sequence and y 1is a sequence of components havins the
char—-typre.

NOTE. In rule (b)y v may be <considereds» especially if it s
norn-emprtyy to be a partial line which is being senerated. Such a
partial line cannot occur durins insepection of a file. Also» ¥y
does not correspond to t.R since t.R is the emprty sequence if t.M
= Generation,

A variable that rossesses the tyre denoted by the required
structured-type-identifier text shall be designated a textfile.

NOTE. A1l resquired rrocedures and functions arrlicable to a
variable of tyre file of <char are apPrlicable to textfiles.
Additional required erocedures and functions: arplicable only to
textfiles» are defined in 4.4.6.5 and 4.%9.

6,4.4 Pointer—tyres. The values of a rainter—tvype shall consist of a
single nil-valuey and a set of identifyins-values each identifying a
distinct variable rPossessing the domain—tyre of the pointer-tyrpe. The
set of identifyips-values shall be dynamicy, in that the variables and
the values identifying thems may be created and destroved durins the
execution of the prosram. Identifying-values and the variables
identifjed by them shall be created only by the resuired procedure new
(see 46.4.5.3).

NOTE. Since the nil-value is not an identifyings-value it does not
identify a variable. :

The token nil shall denote the nil-value in all pointer—tyres.
pointer—tyre = new—-pointer-type | Pointer—tQPe-identifier .

new-pointer-tyre = "*" domain—tvyre .
domain-type = type-identifier .

21

PASCAL NEWS #20 DECEMBER, 1980

Second Draft Frorposal

NOTE. The token nil does not have a sinale tyrpes but assumes a
suitable pPointer-tyre to satisfy the assignment—-comepatibility
ruless aqr the comepatibility rules for oreratorss if Possible.

£.4.5 Compatible tyres. Types T1 and T2 shall he designated

compatible if any of the four statements that follow is true.

(a) T1 and T2 are the same tvyre. A .

(b) T1 is a subranse of T2y or T2 is a subranae of Tl+ or both T1 and

- T2 are subranses of the same hast tyre.

(c) Tl and T2 are set-tyrpes of compatible base-tyres: and either hoth
T1 .and T2 are designated packed or neither Tl nor T2 is designated
packed.)

(d) T1 and T2 are string—-tyres with the same number of comronents.

b.4.6 Assisnment-compatibility. A value of type T2 shall be
designated assisnment—-comratible with a tyre T1 if any of the five
statements that follow is true.

(a) T1 and T2 are the same type which is neither a file—tyre nor a
structured-tyrpe with a file component- (this rule is tao be
interrreted recursively).

(b T1 is the real-tyre and T2 is the integer-typre.

(c) T1 and T2 are comratible ordinal-tyres and the value of type TZ is
in the closed interval specified by the tyre T1.

(d) Ti and T2 are comepatible set-types and all the members of the
value of type T2 are 1in the closed interval srecified by the
base-typre of T1. ,

(e) TL and T2 are compatible strins-tvres.

At any rlace where the rule of assignment-compatibility is used:

(a) It shall be an error if T!1 and TZ are compatible ordinal-tyrpes and
the wvalue of type T2 is not in the closed interval specified by
the tyre T1.

(b) It shall be an error if T1 and T2 are compatible set-types and any
member of the value of tyrpe T2 1is not in the «closed interval
specified by the base-type of the type Ti. ‘

6.4.7 Examrle of a type-definition-rart

type :
natural = O.,.maxint:
count = integer;
range = integer:

colour = (red» vellows» greens bhlue);s
sex = (maley female):
vear = 1900..1999;
share = (triangle, rectangley wcircle);
Ppunchedcard = array[1..801 of char;
charsequence = file of char;
polar = record

r ! reals;

theta ¢ ansle

end;

k3
]

PASCAL NEWS #20 DECEMDBER, 130U

Second Draft Frorosal

indextyre = 1..1imit}J
vector = array [indextypel of reals
rerson = ~pPersondetailss
rersondetails =
record
namey firstname ! charsequence:s
age ! inteser;s
married ! Boolean}
fathery» child: siblins & Persony
.case s ! sex of

male @
(enlistedibearded : Boolean);
female :
(mothersprogrammer ¢ Boolean) .
end;s
FileGUfInteser = file of integer:
NIOTES

1. In the above exameple counts range and integer dernote the same
tyre. The types denoted by vear and natural are compatible with»
but not the same as» the tyre denoted by ranse» count and inteser.

2. Types occurring in exXamprles in the remainder of this standard
should be assumed to have been declared as specified in ¢.4.7.

PASCAL NEWS #20 DECEMBER, 1980

4.3 Declarations and denotations of variables

6.5.1 Variable-declarations. A variahle 1is an entity to which a
(current) value may be attributed (see &4.8.2.2). Each identifier 1in
the identifier-list of & variable~declaration shall denote a distinct
variable Possessine the type dencoted by the type-denoter of the

variable~declaration.
variable~declaration = identifier-list ":'" type-denoter .

The occurrence of an identifier in the identifier—-list of a
variable-declaration of the variable-deizlaration-rart of a block shall
constitute 1its defining—roint as a variable—-identifier for the resion
that 1is the black. The structure of a variable Prossessing a
structured—-type shall be the structure of the structured-tyre. A use
of a variahle—~acrcess shall be an accessy at the time of the wuse» to
the wvariable thereby denoted. A variable—access:y according to whether
it is an entire-variable;, a companent—-variable: an
identified-variables or a buffer-variabley shall denote either a
declared variable» or a component of a variable: a variable which 1is
identified by a rpointer wvalue (see &.4.4)y or & buffer—variable,
resrectively.

variable~access = entire~-variable | comeranent—variable |

identified-variable | buffer-variahle .

An assigning-reference to a variable shall occur if any of the six

statements that follow is true.

(a) The variable is denoted by the wvariahle—access of an
assigsnment-statement.

(b)) The wvariable 1is dJdenoted by an actual variable rarameter in a
function—-desisnator or pProcedure—-statement.

(c) The variable is denoted by an actual rarameter in a
procedure-statement that sepecifies the activation of the resuired
procedure read or the required FProcedure readln.

(d) The variable occurs as the control-variable of a for-statement.

(e) A procedure-statement or a function—-desigsnator contains a
rrocedure—-identifier associated with a procedure-tlock containing
an assiganins—-reference to the variable.

(f) A pProcedure-statement or a function-desisnator contains a
fupction—identifier associated with a function-block containins
an assigning-reference to the variable.

Example of a variable—-declaration—-part

var
XrYsrZmaxi reals
irdt integer;
ks 0.,93
P»ayr$ Boaleans
operatori: (Plusy minusy times);:
a: arrayl0..43] of real;
¢t colours
f: file of chars
huelshue2: set of colour;
P1)P2: persans
memlym2 ¥ arravyl[1..10:1..10] of reals;
coord ¢ polars
rooltarFe & arravyl1..4]1 of FileDflnteger:s

PASCAL NEWS #20 DECEMBER, 1980

Gecond Draft Prorosal

date ' record
month ¢ 1,.12%
vear : integer
end;

NOTE. Variables occurring in examples in the remainder of this
standard should be assumed to have been declared as srpecified in

6.5.1.
$.5.2 Entire—variab]es.

entire-variable = variable-identifier .
variable-identifier = identifier .

¢£.5.3 Component—-variables
&.5.3.1 General. A component of a variable shall be a variable., A

component-variable shall denote a component of a variable. A
references assignins-reference or access to a comronent of a variable
shall constitute a reference assisnins—-reference or access:

respectivelys to the variable. The value, if any: of the component of
a variable shall be the same component of the values» if anys of the

variable.
comPonent-variable = indexed—-variable | field-desisnatar .,

6.5.3.2 Indexed-variables. A comronent of a variable Prossessing an
array-type shall be denoted by an indexed-variable.

indexed-variable =
array~-variable "[" index—exprression
{ "' index—-expression } "1"
array-variable = variable-access .
index—expPression = expression .

An array-variable "shall be a variable-access that denotes a variable
Possessing an array—-type. For an indexed-variable closest-containing a
sinsle index-expression: the value of the index—expression shall be
assisnment-comratible with the index-tyre of the array-type. The
component denoted by the indexed-variable shall be the component that
corresponds to the value of the index-expression by the marping of the
tyre pPossessed by the array-variable (see 6.4.2.2).

Examples:

al12]

ali+J]

mlk]
If the array-variable is itself an indexed-variable an abbreviation
may be used. In the abbreviated form» a sinsle comma shall replace the

sequence "J" "[" that oc-urs in the full form. The abbreviated form
and the full form shall be equivalent.

25

PASCAL NEWS #20 - DECEMBER, 1880

Second Draft Frorosal

Examples:

mfklC1]
mlks1]

NOTE. The two examrles dernote the same rcomponent variable.

6.5.3.2 Field-designators. A field-designator either shall denote
that component of the record-variable of the field-desisnator which is
associated with the field-identifier of the field-specifier of the
field-designators by the record-type pPossessed by the record-variables
or shall " denote the variable denoted by the
field—-desisnator—identifier (see ¢.8.2.10) of the field—designator. A
record—-variable shall be a variable—access that denotes a variable
pPossessing & record-tyre.

The occurrence of a record-variable in a field-designator shall
constitute the definina-point of the field-identifiers associated with
components of the record-tyre Possessed by the record-variabley for
the region that is the field-specifier of the field-desisnator.

field-designator = record-variable "." field-specifier 1
field-designator-identifier .

record-variable = variable-access

field-specifier = field-identifier .

field-identifier = identifier

ExampPples:
p2~.mother
coord.theta

An access to a component of a variant of a variant—rart: where the
selector of the variant-part is not a fields shall attritute to the
selector that value specified by its type which is associated with the
variant. :

It shall be an error unless'a variant is active for the entirety of
each reference and access to each component of the variant. :

When a variant becomes not actives all of its components shall become
totally—-undefined.

NOTE. If the selector of a variant-epart 1is wundefined, then no
varijant of the variant-part is active.

6.5.4 Identified-variables. An identified-variable shall denote the
variable (if any) identified by the value of the epointer-variable of
the identified-variable (see 6.4.4 and &.4.5.3).

identified-variable = pointer-variable "~"
pointer-variable = variable-access .

A variableé created by the required pProcedure new (see 6.6;5.3) shall

26

PASCAL NEWS #20 DECEMBER, 1380

Second Draft Prorosal -

be accessible wuntil the termination of the activation of the
frogram~block or wuntil the variable 1is made inaccessible (see the
reauired pracedure disroser 6.6.5.3).

. 'NDTE. The accessibility of the wvariable also derends on the
evistence of a pointer-variable which has attributed to it the
corresponding identifying value.

& pointer-variable shall be a variable-access that denotes a wvariable
POSSESSing a pointer—-typre. It shall be an error 1f the
reinter—variable of an identified-variable either denotes a nil-value
or 1is undefined. It shall be an error to remove from its pointer—-typre
the identifying-value of an identified variable (see £.4.5.3) when a
reference to the identified variable exists.

Examrles®
PI™
rl™~.father™
pi~.sibling”™.father”

6£.5.5 Buffer-variables. A file-variable shall be a variable—access

that dJdenates a variable pPossessinsg a file—-tyre. A huffer-variable
shall denote a variable associated with the variable denoted by the
file-variable of the buffer-variable, A buffer-variable associated
with & textfile shall possess the char—tyres otherwise a
buffer—variable shall prossess the compPonent-type of the file-type
possessed by the file-variable of the buffer-variable. '

buffer~-variable = file-variable "“~"
file-variable = variable-access .

Examplest
input”
pooltarel2]”

It shall be an error to alter the value of a file-variable f when a
reference to the buffer-variable f* exists. A reference or access to a
buffer—variable shall constitute a reference or access, respectively,
to the associated file-variable.

PASCAL NEWS #20 DECEMBER, 1980

&.&r Procedure and function declarations

&.6.1 Frocedure~-deciarations. A pProcedure—-declaration shall associate
an identifier with a procedure~block so that it can be activated by a
procedure~statement. Activation of the procedure shall activate the
procedure-block,

procedure-~declaration =
procedure—-heading ";" directive |
procedure—-identification "3" Procedure-block |
procedure-heading ";" procedure-block .
rrocedure-heading =
"procedure" identifier [formal-earameter-list 1 .
procedure—-identification = :
"“erocedure' procedure—identifier .
procedure—identifier = identifier .
procedure-block = block .

The occurrence of a formal—-parameter—1list in & procedure—heading of a

procedure—-declaration shall define the formal pParameters of the
procedure-blocky if any, associated with the identifier of the
procedure—-heading to be those of the formal-parameter-list.

The occurrence of an identifier in the Procedure-heading of a
procedure-declaration shall constitute 1its definins—roint as a
procedure—identifier for the region that is the block
closest-cantaining the the procedure-declaration.

Each identifier having a defining-point as a Procedure-identifier in a
procedure~heading of a ePprocedure—-declaration closest-rontaining the
directive "forward" shall have exactly one of 1its corresronding
occurrences in a procedure—-identification of a Procedure—declaration:
and that shall be in the same procedure—and-function-declaration-part.

The occurrence of a procedure-block in a procedure-declaration
associates the procedure-block with the identifier in the
procedure-heading, or with the procedure-identifier in the
procedure~identification» of the procedure-declaratian.

Examrle of a procedure—and-function—-declaration-part:

procedure readinteser (var f: texts var xi inteser);
var
iinatural;s
besin
while f~ = * * do get(f)}
{The file buffer contains the first non-space char’
i 2= 03
while f* in [‘0’..’9’] da begin
i t= (10 * i) + (opd(f™) = ord(‘0Q’));}
get(f)
ends : :
{The file buffer contains a non—-digit)
X &= i
{0f course if there are no disitsy x is zerol
ends :

PASCAL NEWS #20 ' DECEMBER, 1980

Second Draft Frorosal

erocedure AddVectors(var A»B)C! arravllow..hishi: naturall of real)s
var
i ' naturals
besin
for i ¢= low to hisgh do A[i] i= BCLil + CCi]
end { of AddVectors 23

procedure b1sect(funct10n f(x ¢ real) 2 reals
asbt reals
var result: real)s
{This procedure attemrts to find a zero of f(x) in (ask) by
the method of bisection. It is assumed that the procedure is
called with suitable values of a and b such that
(f(a)<0) and (f(b)>0)
- The estimate is returned in the last Parameter.}
const
Ers = 1le—-103
var ,
midroint: reals
begin
{The invariant P is true by -a]lxns assumption’
midroint &= ai
while abs(a-b) > EPs*abs(a) do besin
midroint t= (a+b)/2%
if f{midroint) < O then a = midroint
- else b i=midpoint :
{Which re-establishes the invariant:?
P = (f(a)<0) and (f(b)>0)
and reduces the interval (a:»b) pProvided that the value
4 of midroint is distinct from both a and b.}
ends
{P tosether thh the loop exit condition assures that a zero
is contained in a small sub-interval. Return the midrpoint as
the zero.}
result = midPpaint
ends

29

PASCAL NEWS #20 DECEMBER, 1380

Second Draft Frorosal

procedure FreparefForAppendins(var fi: FileUfInteger):
{This Procedure takes a file in an arbitrary state and sets
it up in & condition for arrending data to its end. Zimeler
conditioning is only rossible if assumptions are made about the
initial state of the file.2
var '
LoralCopy ¢ FileldflInteger:

procedure CopyFiles(var fromrinto * FilelfInteger);
begin
reset(from)} rewrite(into)l:
while not eof(from) dao begin
into™ i= from”;
put(into)s; get(fram)
end;
end { of CorpyFiles 1%

besin {of body of PrerareForArrendingl}
CopyFiles(fsLocalCory);
CoryFiles(LozalCoprysf)

end { of PrerpareFarArrending 13

&.6.2 Function-declarations. A function-declaration shall associate
an ldentifier with a function-block so that it can be activated by a
function—-desisnator. Activation of the function shall activate the
function—-block. :

function—-declaration = _
function—-headins "3;" directive |
function—-identification """ function-block |
function-heading ";" function-block .
function-heading =
VYfunction" identifier [formal—-parameter—listl
"1 result-tyre .
function-identification =
"function" function-identifier .
function—-identifier = identifier
result tyre = simple~type—-identifier |
pointer—type-identifier ,
function—-block = blaock .

The occurrence of a formal-rparameter~list in a function-headins of a
function—-declaration shall define the formal parameters of the
function-blocky if any» agsociated with the identifier of the
function—headinsg to be those of the formal-rarameter—-list. The
fupnction-block shall contain at least one assigrment-statement that
attributes a value to the function-identifier (see é.83.Z2.2). The value
af the function shall be the last value attributed to the
function-identifier. It shall be an error if the function is undefined
urpon completion of the algorithm of an activation of the
functiop-block. ‘

PASCAL NEWS #20 , DECEMBER, 138U

Second Draft Frorosal

The occurrence of an identifier in the function—heading of a

function-declaration shall constitute . its definins—-point as a
function—-identifier pPossessins the tyrpe deroted by the result-type for
the: resion that isg the block closest-rcontaining the the

function-declaration.

Each identifier having a defining-point as & function—identifier in
the function—-heading of a function-declaration closest-containing the
directive “"forward" shall have exactly one of 1its correspondins
occurrences in a function-identification of a function-declaration:
and that shall be in the same procedure-and-function-declaration—-rart.

The occurrence of a function-block in a function—declaration
associates the function-block with the identifier in the
function—-heading, or with the function—identifier in the

function-identification: of the function—declaration.
Example of a pracedure—and—function-declaration—-rart

function Sart(xireal): reals ‘
{This function computes the square root of x (x>0)
using Newton’s method.} .
var '
old:new?! real;
begin
new 1= X3
rereat
old i= new’
new i= (o0ld + x/014d)%0.5;
until abs(new-o0ld) < Ers*news’
{Erps beins a global constant?}
- Sart = new
end { of Sart };

PASCAL NEWS #20 DECEMBER, 1980

Second Draft Frorosal

function max(a: vector): real;
{This function finds the larsest component of the value of a.}
var ’
largestsofar: reals
fence: indextyres
besin
larsestsafar i= allls
{Establishes larsestsofar = max(alll)}
faor fence 3= 2 to limit do begin
if largsestsofar < alfencel then largestsofar = alfencel
{Re-establishins largestsofar = max(alll, talfencel)l
end;
{S0 now larsgestsofar = max(allly ... »allimitl)>
-max := largestsaofar '
end { of max 13

function GCDO(msn: naturall)i pnatural:s
besin } ‘

, if n=0 then GCD = m else GCZD := GCDO(nym mod n)3
end; :

{This examrle of the use of forward demonstrates how mutual recursion
is helpful in reading a rarenthesized expression and converting it to
some internal form?

function ReadOrerand : formula’ forward;

function ReadExpression ¢ formulas
var
this ¢ formulas
beagin
this := Readllperand;
while IsOrerator(nextsym) do
this = MakeFormula(thisy Readlrerators ReadOrperand):
ReadExpression = this
end;

function ReadOperand { ¢ formula 3
besin
if IsOpen(nextsym) then
begin
SkirSymbols
Readlrperand := ReadExrression?
{nextsym should be a close>
SkipSymbo)l
end
else ReadOperand != ReadElement
end;

&.6.2 Parameters

$.6.3.1 General. The identifier—]ist in a
value-pardmeter—specification shall be a list of value rparameters. The

3

| 4]

PASCAL NEWS #20 - DEULEFBER, 190U

Second Draft Frorosal

identifier~-list in a variable-rarameter-sepecification shall be a list
of variable parameters.

formal-parameter—-list =
(" farmal—-parameter—-section
{v3" formal-parameter—section} ")" .
formal-rarameter-section >
value-parameter—specification |
‘variable—-parameter-specification |
procedural-parameter—specification 1
functional-rarameter—-sprecification .

NOTE. There is also a syntax rule for formal-rarameter—-section in
b.4.3.7 :
value-rarameter—srecification =
identifier~list "i" type-identifier .
variable-parameter-specification =
"var" identifier—list ":" type—-identifier .
rrocedural—-parameter—-specification =
procedure—-heading .
functional-rarameter—sprecification =

function-headins .

An identifier that is defined to be a prarameter-identifier for the
resion which is the formal-parameter-list of a pProcedure-heading shall
be desisnated a formal eparameter of the block of the procedure-block:
if anys associated with the identifier of the Procedure—-headins. An
identifier that is defined to be a rarameter—-identifier for the resion
which 1is the formal-rarameter-list of a function—headins shall be
designated a formal parameter of the block of the function-block: if
anys associated with the identifier of the function-headinsg,

The occurrence of an identifier in the identifier—list of a
value-parameter—specification or a variable-rarameter-specification
shall «constitute its defining-point as a Farameter—identifier for the
region that is the formal-parameter-list closest-containing it amd its
definins-proint as the associated variable—identifier for the resion
that is the block: if any» of which it is a farmal Parameter.

The accurrence of the identifier of a Procedure—-headins in a
procedural—-parameter—-sprecification shall constitute its definine—-point
as a rarameter—identifier for the region that is the
formal-rParameter—-list closest-containing it and its defining-point as
the associated rrocedure-identifier for the region that is the Ublack,
if anys» of which it is a formal parameter.

The occurrence of the identifier of a function-heading in a
functional-rarameter—-srecification shall constitute its definins—-point
as a parameter—identifier for the region that is the
formal-rarameter—list closest-containing it and its definins—-roint as
the associated function—identifier for the resion that is the block:
if any, of* which it is a formal pParameter.

33

PASCAL NEWS #20 DECEMBER, 1980

Second Draft Prorosal

NDTE. If the formal-parameter-list is contained in a
procedural-rarameter—-srecification or a
functional-earameter—-srecification: there 1is no copresrondins

~procedure-block or function—-block.

L.6.3.2 Value parameters. The formal eparameter and its associated
variable-idaentifier shall denote the same wvariable. The farmal
parameter shall rossess the tyrpe dernoted by the tyee—~identifier of the
value-parameter—-specification. The actual-parameter (see A.7.2 and
£.8.2.3) shall be an exrression whose value 1is assignment—compatible
with the tyre rFossessed by the formal parameter. The current value of
the expression shall be attributed uron activation of the block to the
variable that is denoted by the formal rarameter.

£.6.3.3 Variable rarameters. The actual-parameter shall be a
variable-access. The actual-rparameters (see &.7.3 and L.3.2.3)
corresrponding to formal Parameters that occur in a single

variable-rarameter—sprecification shall all possess the same type. The
tyrpe rpossessed by the actual-rparameters shall be the same as that
denoted by the type—-identifier, and the formal parameters shall also
rpossess that type. The actual-rarameter shall be accessed before the
activation of the block: and this access shall establish a reference
to the wvariable thereby accessed during the entire activation of the
blocks; the «corresponding formal pParameter and its associated
-variable-identifier shall denaote the referenced variable during the
activation.

An actual variable parameter shall not denote a field which 1is the
selector of & variant-rart. An actual variable parameter 'shall not
denote a component of a variable that rossesses & type that Iis
designated packed.

é6.6,.3.4 Procedural parameters. The actual-parameter (see &4.7.3 and
6.8.2.3) shall be a-procedure-identifier that has a definins-point
caontained by the rprogram-block. The procedure denoted by the
actual-rarameter and the procedure denoted by the formal parameter
shall have congruous formal-rarameter—lists (see 4.646.3.4) if either
has a farmal-rarameter-list. The formal parameter and 1its associated
procedure-~identifier .shall denote the actual parameter during the
entire activation of the block.

&.6.3.5 Functional parameters. The actual-parameter (see 64.7.2 and
6$.8.2.3) shall be a function—-identifier that has a definins-roint
contained by the Prosram-block. The function denoted by the
actual-rarameter and the function denoted by the formal parameter

shall have the same result-tyre and shall have consruous
formal-pParameter—lists (see . &.6.2.4) if either has a
formal-pParameter-list. The formal parameter and its associated

function—-identifier shall denote the actual parameter during the
entire activation of the block.

&.6.3.4 Parameter list consruity. Two formal-parameter—lists shall be

34

PASCAL NEWS #20 UroolibeR, 420U

Second Lraft Prorosal

congruous if they contain the same number of formal-parameter-sections

and if the formal-parameter—-sections in corresponding positions match.

Two formal-Parameter-sections shall match if any of the statements

that follow is true.

(a) They are both value-parameter—specifications containings the same
number of parameters and the tyrpe—identifier in each
value-parameter—specification denotes the same tyrpe.

(b)) They are both wvariable-rarameter-srpecifications containing the
same number of rerameters and the tyee-identifier in each
variable-parameter—srepecification dernotes the same trre.

(c) They are both procedural—-rarameter~specifications and the
formal-parameter—lists of the erocedure-headinss thereof are
CONBrUOUS.

(d) They are both functional-rParameter—-srecifications: the
formal-parameter—-lists of the functior-headings thereof are
consruousy and the type-identifiers of the result-types of the
function—headings therepf denote the same tvre.

{e) They are both conformant—-arrav-rarameter—-specifications
containing the same number of parameters and equivalent
conformant—-array—schemas. Two conformant—-array-schemas shall be
esuivalent if all of the four statements which fallow are true.
(1) There is a single index—-type-specifiecation in each
conformant-arravy—schema.

(2) The ordinal-tyre—identifier in each index-type-~specification
denotes the same tyre.

(3) Either the (component) conformant—array-schemas of the
conformant—-array~schemas are eguivalent or the tyrpe-identifiers
of the conformant—array—-schemas denote the same tyre.

(4) Either both conformant—array-schamas are
packed-conformant-array-schemas or both are
unracked-conformant—-array-schemas.

NOTES
1. The abbreviated conformant-array-schema and its corresrondins
full form are esuivalent (see 4.4.3.7)

2, The contents of (e) above do not arrly to léVGl Q.
6$.,6.3.7 Conformant array rarameters.
NOTE. This clause does noat aéply to level 0.

The occurrence of an identifier in the identifier—1list of a
canformant—array—-parameter-srecification shall constitute its
definins-rPoint as a rparameter-identifier for the region that is the
farmal-prarameter-list closest—containins it and its definins-rPoint as
the associated variable-identifier for the r691on that is the blocky
if anys of which it is a formal Parameter. ‘

The occurrence of an identifier in an index-tyre-specification shall
constitute its definins-roint as a bound-identifier for the region
that is the formal-rarameter-list closest-containins it and for the
region that 1is the blocks if any, whose formal rarameters are

PASCAL NEWS #20 v DECEMBER, 1330

Second Draft Frorosal

specified by that formal-rparameter—-list,

formal-rarameter-section >
canformant—array—-rarameter-specification
conformant-array—-rarameter—-srecification =
Yvar' identifier—-list ":" canformant—arrav—schema: .
cornformant—-arravy—-schema = ’
(racked-conformant—arrav—-schema |
unrpacked-conformant-array—-schema)
packed-conformant-array-schema =
"“packed" "“arrav" "[" index-type-sepecification "1"
"of" type—identifier
unparked—-conformant~arrav—schema =
“Yarray" "[" index—-type-specification
{ "3" index—type-srecification > "1V "of"
{ type—identifier | conformant—-array-schema)
index~type~srecification = ‘
identifier ".." identifier
"i" ordinal-tyre~identifier .
bound—identifier = identifier .
factor > bound-identifier .

NOTE. There is also a syntax rule for formal-parameter—-section 1in
£.6.3.1. There is also a syntax rule for factor in 4.7.1.

If a conformant-array-schema contains a conformant—-arrav-schemar then
an abbreviated form of definition may be wused. In the ahbreviated
form» & sinsle semi-colen shall rerplace the sequence "1" “of" “array"
"[" that occurs in the full form. The abbreviated form and the full
form shall be egquivalent.

Examrles:
arraylu..vé T1J of arravld..k?! T2] of T3
arraylu,.ve Tl d..k? T21 of T3

During the entire activation of the blocks, the first bound-identifier
of an index~tyre—-srecification shall denote the smallest value
specified by the corresponding index—tyre (see é.4.3.23) pPossessed by
each actual-parametery and the second bound-identifier of the
index—-type-specification shall denote the largest value specified by
that index-type.

The actual-parameters (see &.7.3 and 4.8.2.3) correspondins to formal
parameters that occur in a single
conformant—-array-parameter—-specification shall all pPossess the same
tyre. The tyre pPossessed by the actual-rarameters shall be confarmable
(see &.6.3.8) with the conformant-array-schemay and the formal
parameters shall Possess an array—type which shall be distinct from
any pther typey and which shall have a component-tyre that shall be
that denoted by the tyre-identifier contained by the
conformant-array-schema . in the
conformant—-array—-rarameter—-specification amd which shall have the
index—typet of the type pPossessed by the actual-parameters that

36

PASCAL NEWS #20 UCLEMDBER, 120U

Second Draft Frorasal

correspond (see 4.46.3.8) to the index-tyre-srecifications contained by
the conformant—-array-schema in the
conformant-array-rarameter-specification.

NOTE. The tyrpe of the formal rarameter can not be a string—-tyre
(see 4£.4,2.2) because it i not dernoted by an array—-tvyre.

The actual—-parameter shall he either &a wvariahble—-access ar an
expression that is not a factor that is not a variable—access. If the
actual-parameter 1is an expressions the value of the exrression shall.
be attributed before activation of the block te an auxiliary wvariable
which the eprosram does not otherwise contain. The tyre Paossessed by
this variable shall be the same as that rossessed by the expression.
This wvariabley or the actual-rarameter if it 1is denoted by a
variable—accessy shall be accessed before the activation of the block:
and this access shall establish a reference to the variable thereby
accessed during the entire activation of the bhlocks the «correspondins
formal parameter and its associated variable-identifier shall
rerresent the referenced variabhle during the activation.

NOTE. In wusing &an array variable A as an arctual parameter
corresponding to a formal parameter that occurs in a
conformant—-array-rarameter-specification the use of an auxiliary
variable is ensured by enclosing the variabtle—-access A iIn
rarentheses.

An actual-parameter that is a variable-access shalf not denote a
component of a variable that pPossesses a tyepe that is desisnated
packed.

If the actual-pParameter is an expression whose value is denoted by a
variable~access that closest-containg an identifier which has a
defining-occurrence in the identifier-list. of a
conformant-array-parameter—-specifications then

{a) that identifier shall be contained by an indexed-variable
contained by the exrression: and

(b) the factor closest-containing the indexed-variable shall
closest—contain at least as many index—-exPressions as the
canformant-array~parameter-— spec1f1uat10n contains
index—-type-sprecifications.

NOTE. This ensures that the tyee of the expression and the
anonymous variable will always be known and thaty as a
consequencey the activation record of a procedure can be pf a
fixed size.

6$.6.3.5 Conformability.
NOTE. This clause does not arrly to level O.

Given a type denoted by an arrav-tyre <closest-containine a single
index—tvypey and a conformant-array-schema closest-containina a single
index-typé-specification: then the index-type and the

37

PASCAL NEWS #20 DECEMBER, 1980

Second Draft Prorosal

index-type—srecification shall be desisnpated as «corresponding, Given
two conformant—-array-schemas closest-containing a single
index—-type-~specification: then the.two index—-type-specificatiaons shall
be desianated as correspondins. Let Tl be an arrav—tyrpe with a single
index—typre and et T2 be the tyre denoted by the
ordinal-tyre-identifier of the index—tyre—specification of a
-conformant-array-schema closest—containing a single
index—-type—-specification» then T1 shall be confeoermable with the
conformant—-array-schema if all the followins four statements are true.

(a) The index—-tyrpe of Tl is compatible with TZ.

(b) The smallest and largest values specified by the index—tyre of TI
lie within the closed interval srecified by TZ.

(c) The comronent-tyre of T1 denotes the same tyrpe as that which 1is
is denaoted by the type—identifier of the conformant—array—schema:
or is confaormable +to the conformant—array-schema in the

_ conformant-arrav-schema. :

(d) Either T1 is . not desiganated racked and the
confarmant-array-schema 1is an unracked-conformant-array—schema:
or Tl is desisnated packed and the conformant—-array—-schema is a
racked-conformant—-array—-schema ~.

NDOTE. The abbreviated and full forms of a confarmant—array-schema
are equivalent (see ¢.4.3.7). The abbtreviated and full forms of
an array-typre are equivalent (see 4.4.3.2).

It shall be an error if the smallest or larsest value s#ecified by the
index—tyre of T1 lies outside the closed interval specified by TZ.

&.6.4 Required procedures and functions

é$.6.4.1 General. Required procedures and functions shall be
predeclared. The required procedures and functions shall be as
specified in 4.6.5 and &.6.6 respectively.

NOTE. Reauired procedures and functions do not necessarily fol]ow
the rules given elsewhere for procedures and functions.

6.6.5 Resuired procedures .
6,6.5.1 General. The reauired procedures shall be file handlins
proceduresy dynamic allocation procedures and transfer rrocedures,

&.6,5.2 File handling procedures. Excert for the arplication of
rewrite or reset to the eprosram parameters denoted by inrut or outeut:
the effects of arrlying each of the file handling Procedures rewrite:
puts reset and get to a file-variable f shall bLe defined by
rpre—assertions and rost-assertions about fy its components f.Ly» f.R»
and f.M» and about the associated buffer-variable f~. The use of the
variable fO within an assertion shall be considered to represent the
state or valuey as arprorriatey of f prior to the oreration: and
similarly for fO™ and f*» while f (within an assertion) shall denote
the variable after the oreration.

It shall be an error if the stated pre—assertion does not hold
immediately prior to any use of the defined oreration. It shall be an

PASCAL NEWS #20 DECEMDER, 130U

Second Draft Frorosal

error If any variable explicitly denoted in an assertion of equality
is undefined. The post—-assertion shall hold erior to the next
subsequent access to the filey its camronents:y or its associated
buffer-variable. The post-assertions imply corresponding activities on
the external entities» if anys to which the file-variakles are bound.
These .activitiesy and the rpoint at which they are actually rerformed:

shall be imeplementation-defined.

rewrite(f) pre-assertion: true.
post—assertian: (f.LL = f.R = S(})) and
(f.M = Generation) and
(f~ is totally-undefined).

= Generation) and
is not undefined) and

= S()) and

is not undefined).

= Generation) and

= (fO.L~S(f0O™))) and

= S5()) and

is totally-undefined).

put(f) pre-assertion:

o=

~

s & DOO
mr.x_zu

post—assertiont

IS AN AN A~
—H — h o Th —h h

>a =

reset(f) pre—assertion:

= (fO.L~fO.R~X)) and
= Inspection) and
f.R = S() then (f™ is
totally-undefined)

else (f* = f.R.first)),

Th
un
post-assertion: (f
(f
(f
(i

where» 1if f is of the type denoted by the
required structured-tyrpe-identifier text
and if fO.L~*fO.R 1is not empty and if
(fO.L~”fO.R)Y.last 1is not designated an
end-of-liner then X shall be a sequence
having an end-of-line comronent as its
only components otherwise X = S().

get(f) pre-assertion: (fO.M = Insrection) and
(neither fO.L nor fO.R are undefined) and
(fO.R <> €()).,

Inspection) and

rpost—assertion: (f.M = :
(f.L = (fO.L™S(fO.R.first))) and
(f.R = fO.R.rest) and
(if f.R ='S() then (f~ is
totally-undefined)
else (f*~ = f,R.first)).

When the file-variable f rossesses a‘type other than that denoted by
:efr’ the required Procedures read and write shall he defined as
ollows.

3%

PASCAL NEWS #20 DECEMBER, 1980

Secand Draft Frorosal

read Read(fsviy..vrvn) where vi...vn denote variable—-accesses
shall be equivalent to v

beain read(fsvi)s ... §3 read(fsvn) end

Read(fsv) where v denotes a variable—access shall be
equivalent to '

begin v (= f*; get(f) end

NOTE. The variable-access is not a variable parameter.
Consesuently it may be a component of a packed structure and the
value of the buffer—variable need only be assignment-compatible
with it. '

Write(fielv...ren)s» where el...en denote expressions shall be
esquivalent to

begin write(fsel)y ... § write(f,en) end
‘Write(fie)sr where e denotes an expression shall be egquivalent to
begin f~ i= ej put(f) end

NOTES. 1. The resuired rprocedures ready writer readiny writeln
and rpager as arplied to textfiles), are described in &.9.

2. Since the definitions of read and write include the use of get
and put, the imrlementation-defined aspects of their
post-assertions also arply. o

6.,6.5.3 Dynamic allocation procedures

new(p) shall create a new variable that is.
~ totally-undefined, shall create a new
identifying-value of the rointer—-tvre associated

with p» that identifies the new variable, and

shall attribute this identifyins-value to the.

variable denoted by the variable—-access pP. The

created variable shall rpossess the tvee that is

the domain-tyre of the rpaointer—tyre rPassessed by

P,
new(rPiclse,arcn) shall create a new variahble that is
totally-undefined, shall create a new

identifying-value of the pointer—tyre associated
with Py that identifies the new variabley and
shall attribute this identifying-value to the
variable denoted by the variable-access p. The
created variable shall pPossess the record-type
that 1is the domain-tyre of the rpointer—type
possesed by r and shall have nested variants that
corresrond to the case-constants rcly...rcn. The

40

“PASCAL NEWS #ZU vrioilben, 150U

Secand Draft FProrosal

case—constants shall be listed 1in arder of
increasins nesting of the variant-parts. Any
variant not specified shall be at a deerer level
of nesting than that sepecified by on. It shall be
an epror if a variant of a variant-rart within the
new variable becomes active and a different
variant of the variant-rart 1s one of the
specified variants.

disrose(q) shall remove the identifying-value denoted by the
exeression a from the pointer—tyre of 9. It shall
be an error if the identifvine—~value had been
created using the form new(pPscls...rcn).

dispose(arkls...tkm)shall remove the identifyins-value denaoted by the
expPression « from the pointer—tyepe of 4q. The
case-canstants kly...»km shall be listed in order
of increasing nesting of the variant-parts. It
shall be an error if the variable had been created
using the form new(pscls...rcn) and m is less than
n. It shall be an error if the wvariants 1in the
variable identified by /8 are different from those
specified by the case-constants kls...»km.

NOTE. The removal of an identifyins-yalue from the pointer-type to
which it belongs renders the identified variable inaccessihle (see
£.5.4) and makes undefined all variables and functions that have
that value attributed (see 6.8.2.2).

It shall be an error if 9 has a nil-value or is wundefined.

It shall be an error if a variable created using the second form of
new is accessed by the identified-variable of the variable-access of a
factor, of an assisnment-statements or of an actual-rParameter.

6.6.5.4 Transfer procedures. Let a be a variable Possessing a type
that can be denoted by ‘

array [s1] of T

lat z be a variable Possessing a type that can be denoted by

Facked array [s2] of T» ‘

and u and v be the smallest and larsest values of the tyrpe s2;y then
the statement Pack(ajrirz) shall be eauivalent to '

begin
k 3= 1%
for J t= u to v do
begin
z[J] = alkl]:
if J <> v then k = succ(k)
end
end

41

PASCAL NEWS #20 : DECEMBER, 1980

Secend Draft Prorosal

and the statement unrpack(zrari) shall be esguivalent to

begin
k t= 13
for J = u to v do
begin
alkl i= 2[J13
if Jd <> v then k i= succ(k)
end : ,
end

where J and k denote auxiliary variables which the progsram does not
otherwise contain. The tyre rPossessed by J shall be sy the tyre
possessed by k shall be s1y» and i shall be an expression whose value
shall be assignment—-compatible with si.

6.,6.6 Reaquired functions _
b&.6.6.1 General, The required functions shall be arithmetic functions:
transfer functions» ordinal functions and Boolean functions.

6.6.6.2 Arithmetic functions. For the following arithmetic functions:
the exprression x shall be either of real-tyre or inteser—tyre. For the
functions abs and sary the tyre of the result shall be the same as the
type of the rarameter,» x. For the remaining arithmetic functionss the
result shall alwavs be of real-tyre, '

abs(x) : shall compute the absolute value of x.
sar(x) shall comrute the square of x. It shall be an error if
' such a value does not exist.

sip(x) shall compute the sine of %) where x is in radians.

cos(x) shall compute the cosine of x» where x is in radians.

expix) shall compute the value of the base of natural lesarithms
raised to the power x.

Tnlx) shall «compute the natural logarithm of x+ if %X is sreater
than zero. It shall be an error if x is not sgreater than

: zero.
sartix) . shall compute the non—-nesative saquare root of x: if x 1is

not negative. It shall be an error if x is nesative.
arctan(x) shall compute the princieal wvaluey in ravians:» of the
arctangent of x. :

L.6.4.2 Transfer functions

trunc(x) From the exrression x that shall be of real-tyrpe:» this
function shall return a result of inteser—-tyre, The value
of trunc(x) shall be such that if x 1is pPositive or zero
then {=x=-trunc(x)<{1l; otherwise —1<{x—trunc(x)<=0. It shall
be an error if such a value does not exist.
Examrlesti :
trunc(3.5) vields 3
trunc(-3.35) vields -3

round(x) From the expression x that shall be of real-types» this
function shall return a resglt of inteser—type. If X is
positive or zero» round(x) shall be equivalent to

42

PASCAL NEWS #20 DECEMBER, 136U

‘Eecond Draft Frorposal

trunc(x+0.5)y otherwise round(x) shall bhe esuivalent to
trunc(x-0.5).

It shall be an error if such a value does not exist.
Examrles:

round(3.5) vields 4

round(-3.5) vields -4

6.6.6.4 Ordinal functions
ord(x) Fram the exepressian x that shall be of an erdinal-tyre» this
furction shall return a result of inteser—type that shall be
the ordinal number (see &.4.2.2 and &.4.2.3) of the value of
' the exeression X.
chr(x) From the expression x that sha]l he of integer—tyepe,» this
functign. shall return a result of char-tyepe which shall be
the value whose ordinal number is equal to the value of the
expressiaon % if such a character value exists. It shall be an
~9rror if such a character value does not exist.

- For any value: chy of chér—type' the following shall be true:d
chr(ord(ch})) = ch

succ(x) From the exepression x that shall bhe of an ordinal-tyresy this
function shall return & result that shall be of the same tvyre
as that of the exeression (see &4.7.1). The function shall
vield a value whose ordinal number is one greater than that
of the exrression x» if such a value exists. It shall be an
error 1if such a value does not exist.

pred(x) From the expression x that shall be of an ordinal-tyees this
function shall return a result that shall be of the same tvyre
as that of the exeression (see 4.7.1). The function shall
vield a value whose ordinal number is one less than that of
the exepression x» if such a value exists. It shall be an
error if such a value does not exist.

4.46.6.5 Boolean functions

odd(x) From the expression x that shall be of inteser-tyres this
function shall be eguivalent to the expression
(abs(x) mod 2 = 1).

eof(f) The Pparameter f shall be a file-variables; 1if the
actual-rarameter—-list is omitted) the function shall be
arplied to the reguired textfile inpPut (see 6.10). When
eof(f) is activated: it shall be an error if f 1is
undefined; otherwise the function shall vield the value
¥r?e if f.R is the empty sequence (see 4.4.3.5)y otherwise
alse.

eoln(f) The parameter f shall be a textfiles if the
actual-parameter—list is omitteds the function shall be
arrlied to the resuired textfile input (see 4.10). When
eoln(f) is activatedy it shall hbe an error if f 1is
undefined or if eof(f) 1is truej otherwise the function
shall vield-the value true if f.R.first is an end-of-line

43

PASCAL NEWS #20 DECEMBER, 1980

Second Draft FProrosal

component (see &.4.3.3)y otherwise false.

PASCAL NEWS #20 DECEMBER, 133U

6.7 ExpPressions
&.7.1 General. An exerescion shall denote a value unless & variable
derioted by a variable-access contained by the expression is undefined
at the time of its wuser in which case that use shall be an errar. The
use of a variable-access as a factor shall denote the valuesy 1f any,
attributed to the variable accessed thereby. Orerator precedences
shall be according to four «classes of orperators as follows. The
orerator not shall have the hishest eprecedencer followed by the
multipiyins-oreratorsy then the adding-orperators and signsy» and
finally, with the lowest precedence:r the relational-operators.
Segsuences of two aor more orperators of the same pPrecedence -shall hbe
left assgciative. :

unsisned-constant = unsisned-number | character—strins |

: constant—identifier { "nil"

" factor » variable-accesg | unsisned-constant |
function—-designator | set-constructor |
n(% gxpression ")" 1 "not" factor .

NOTE. There is also a syntax rule for factor in 4.4.32.7

set-constructor = """ [member—designator
{ “4+¥ member—desisnator » 1 "1"
member—-designator = exrression ["..'" exepression] .

term = factor { multieplyine—-orerator factor > .
simple—expPression = [sisn] term { addins—orerator term 2 .
exPression =

simple-exmpression [relational-orperator simple-exrression 1 .

Any factor whose type 1is S where £ is a subrange of T» shall be
treated as of tyee T. Similarly: any factor whose tyre 1is set of S
shall be treated as of the unracked canonical set-of-T tyrpe» and any
factor whose tyre is packed set of . & shall be treated as of the
canonical racked set-of-T tvyre.’ :

NOTE. Consesuently an exprression that consists of a single factor
of tyre S shall itself be of type Ty and an expPression that
caonsists of a single factor of tyrpe set of S shall itself be of
tyre set of Ty and an exepression that consists of a single factor
of tyre packed set of S shall itself be of tvepe packed set of T.

A set-constructor shall denote a value of a set-type. The
set-constructor [] shall denote that value in every set-tyre that
containg no members. A set-constructor containing one or more
member—designators shall denote either a -value of the unracked
canonical set—of-T ¢type ory» 1if the context so requires,; the epacked
canonical set—-of-T tvypeyr where T is the type of every expression of
each member-designator of the set-constructor. The tvyrPe T shall be an
ordinal-type. The value depoted by the set—-constructor shall contain
zero or more members each of which shall be dernoted by at least one
member—designator of the set-constructor.

The member—desisnator x» where X is an exeressions shall denote the
member that shall have the value x. The member-desisnator x..y: where
X and y are expressions» shall denote zero or more members that shall
have the values of the base-type in the closed interval from the value
of x to the value of v.

NOTE. The member-desisnator x..y denotes no members if the value

PASCAL NEWS #20 DECEMBER, 1880

Second Draft Frorosal
of x is sreater than the value of v.

Examrles are as follows!?

(a) Factorst X
15
(x+y+2)
sin(x+y)
[lredscrareenl
[1:5+410..19,231
not P '

(b) Termss) X*y
i/Z(1-1)
(x <= y) and (y < 2)

(c) Simple expressions:

P or g
X+y
-
huel + hue2
i*®j + 1
(d) Expressions? X = 1.5
P <= q
P =9q and r
(i < J) = (j < k)
¢ in huel
- 6,7.2 Operators
4.7.2.1 General
multiplying—oreratgor = "#" | N/" | Udiv" | Ymod" | "and" .
adding-orerator = "+" | t-n | Hgpw
relational-operataor =
N:N ’ ll<>ll = |I<|l : Il>l) : ll<=‘l : H>=ll : llinll .

A factory or a term: or a simple—-expression shall be designated an
orerand. The aorder of evaluation of the orperands of a dvadic orerator
shall be implementation-derendent.

NOTE, This means: for example, that the orperands may be evaluated
in textual orders» or in reverse order» or in pParallel or they may
not both be evaluated,

446

FAOULAL NCEWO LU o vl ULy AJUY

Second Draft Frorosal

&.7.2.2 Arithmetic orerators. The types of opPerands and results foz
-

dvadic and monadic orerations shall be as shown in tables 2 and 3
respectively.

Table 2. Dvadic arithmetic orerations

e k> S — — s S — ——— — — S o —— — — b " " —" S — {s oo St oot S P, 0 S S S St SO e St St G i S St o S S o S, P A o e . i A i S S e e e et

orerator oreratian tyre aof orPerands tyrpe of result
+ addition integer—tyre Yinteger—-typre
or real-type Yif hoth
- subtraction integer-tyre Jorperands are
or real—-type Jof integer—tyre
* multiplication integer-tyre Jotherwise
or real—-tyre Jreal-typre
/ divisian integer—tyre real—-type
or real-type .
div division with integer-tyre inteser-tyre

truncation

mod modulao " intesger—-typre inteser—tyre

T o ot Gt o St e . St g . o S o S S — S " W b G S o S S G P G b e bt ot B ok et S Y. P S B S i P? St S S Bt S S S S e S| T P S e W S . (o P i S

Table 3. Monadic arithmetic operations

Yt o o et St o e St T Y ot o T T s S S o e M G W S0 Hon B B S S e S S e G i 0 ot P T St el s o S T o B S S e S e o O o S S P e S S

orerator orperation tyre of orerand type of result

+ identity inteser-tyre inteser-tyre
real—-type real-type

- sign~inversion integer—-typa integer-typre

real-type real~-type

W o et e e e e S M P A o ot a0 (e G WD o O | Wt) M VD W et M B W B S o M e G (St > S ot e S P g M e S S SO e S A SUAS o o) -, Fore i, S S, S W S At S e S

NOTE. The symbols +s» ~ and % are also used as set orperators (see
£.7.2.4).

A term of the form %/vy shall be an error if v is zero» otherwise the
value of x/y shall be the result of dividins x by vy.

A term of the form i div J shall be an error if J is zoros» otherwise
the value of i div J shall be such that

abs(i) —~ abs(J) < abs((i div J) ¥ Jj) <= abs(i)

where the value shall be zero if abs(i)<abs(j)s» otherwise the sisn aof
the value shall be rPositive if i and J have the same sisn and nesative
if i and J have different sisns.

A term'of the form 1 mod J shall be an error if J is zero or negsative:
otherwise the value of i mod J shall be that value of (i-(k#j)) far
intesral k& such that 0 <= 4{i mod J < J.

47

PASCAL NEWS #20 DECEMBER, 1980

Secohd Draft Frorposal

NOTE. Only for i >= O does the relation
(1 div J) # J + i mod J = 1§
hold.

The required constant—identifier maxint shall denote. an
implementation-defined value of 1nteser type. This value shall satisfy
the following conditions:

(a) A1l intesral values in the closed interval from —-maxint to +maxint
shall be values of the inteser-type.

(b) Any monadic oreration eperformed on an inteser wvalue in this
interval shall be correctly performed according to the
mathematical rules for integer arithmetic. :

(¢c) Any dvadic 1inteser opreration on two inteser values in this same
interval shall be correctly rerformed according to the
mathematical rules for integer arithmetic» provided that the
result is also in this interval.

{(d) Any relational oreration on two integser values in this same
interval shall be correctly performed accordins to the
mathematical rules for inteser arithmetic.

The results of the real arithmetic orerators and functions shall be
arproximations to the corresronding mathematical results. The accuracy
aof this arproximation shall be imelementation—-defined.

It shall be an error if an inteser oreration or function is not
rerformed according to the mathematical rules for integer arithmetic.

6.7.2.3 Boolean orperatars. Orperands and results for‘Boolean operations
shall be of Boolean—~tyee. Boolean orFerators or: and and not shall
denote resrectively the losical orperations of disdunctions condunction
~and nesation.

Boolean—-expression = exFpression .

A Boolean-exrression shall be an expression that denotes a value of
Boglean-type.

4.7.2.4 Set orperators. The types of orFerands and results for set
orerations shall be as shown in table 4.

Table 4. Set orerations

orperator operation type of operands type of result
+ set union))
Ya)
- gset difference Ycanonical Ysame as the
Jset—of-T type Jorerands
* set intersection))

——" o — — — T —— U S G- S S —— — — —— — —— T—— o o S - f— N " P ot S Tt S’ S S - T S T T S S S S S S 3 e T — —— o —— T -

PASCAL NEWS #20 proriiben, 190U

Second Draft FProrosal

é4,7.2.5 Relational orerators. The types of operands and results for
retational operations shall be as shown in table 5. ~

Table 5. Relational orerations

— e T . (o o S T~ — — — — ———— — Do— " W — —— ——— —o— o — — —— —— — —— . Vot T e it Vi S O S S St St 1 it P e e St e S

— — —— o — i ——— ————— " T — — — ———_—— — — {— — o b oot b T T S S S i b S S S e W . e e i S St Ve e L e O St .

= <> any simele, Boolean—-tyre
pointer or strins-tyre
or canonical set—-of-T tyre

< > any simele or strins—tyee Boolean—tyre

<£= >= any simele or string-type Boolean—-tyre
or canonical set-aof-T tyere

in left operandtany ordinal tyrpe T Boolean—tyre
risht orerand:
a canonical set-of-T tvrpe (see 46.7.1)

- S S Y] (O . S i o S, I S S D D S W0y M oot M W I e Ve et o et S e S S S S S Yo SO St W B S O SO o e o b S S P S et S T S S Pt S

The orerands of =, <>y <» > >=) and <= shall be either of compatible
tyresy the same canonical set-of-T tyres» or one orerand shall be of
real-tyre and the other shall be of integer-tyre. '

The operators =, <>y <» > shall stand for "egual to", “not eaual to":
"less than" and "greater than" respectively. '

Excert when arrlied to setss the orerators <= and »= shall stand for
“less than or esual to" and "sreater than or esual to" respectively.

Where u and v denote simPle-expPressions of a set-typey» u <= v shall
denote the inclusion of u in v and u >= v shall denote the inclusion
of v in u. '

NOTE. Since the Boolean-tyre is an ordinal-tyre with false less
than truey» then if p and 5 are orerands of Boolearn-typey P = g
denotes their equivalence and P <= 9 means P implies q.

When the relational orerators =, <> » < , >, <=, >= are used ¢to
compare orerands of compatiple string-types (see 4.4.3.2), they denote
lexicograprhic relations defined below. Lexicosrarhic ordering imPoses
a total ordering on values of a strins—type. If si and s2 are two

values of compatible strins—-types then:
sl = s2 iff for all i in [1..n]: si1fil = s2[i]

sl < 52 iff there exists a P in [1..n1:
(for @11 1 in [1..p-13% si[i] = s2[i]) and silP] ¢ s2[pr]

49

PASCAL NEWS #20 - DECEMBER, 1980

Second Draft Prorposal

The orerator in shall vield the value true if the value of the orerand
of ordinal-tyre 1s a member of the value of the set-type» otherwise it
shall vield the value false,

4.7.3 Function desisnators. A function-desisnator shall vield the
value of the function denoted by the function—-identifier of the
function-desisnator. The function-desianator shall specify the
activation of the function. If the function has any formal Parameters
the function—-desisnator shall contain a list of actual-parameters that
shall be bound to their corresponding formal parameters defined in the
function—declaration. The correspondence shall be established by the
rasitions aof the pParameters in the lists of actual and formal
rarameters respectively. The number of actual-parameters shall be
equal to the number_ of formal rarameters. The types of the
actual-rarameters shall correspond to the tyepes of the formal
parameters as srecified by 6.4.3. The order of evaluations accessins
and bindineg of the actual-parameters shall be
implementation—derendent. :

function-desisnator = function-identifier :
‘ B [actual-rParameter-list 1 .
actual-parameter-list = '
"(" actual-parameter { "»" actual-parameter 3 ")
actual-prarameter = expression { variable-access |
procedure—identifier !

function—identifier .

ExampPles: Sum(aré3)
GCD(147yk)
sin(x+y)
eof(f)
ord(f™)

A le W el WS Bl Vg

FHAOLAL LY moy

Ao Statements
AuE.1 Gereral. Statements shall denote alsorithmic actions: and shall
be execulable. They may be prefixed by a label.

A lahe!l ocrurring in & statement S shall be designated as Prefixins $,
and shall be allowed to occur in & soto—-statement 3 (see 4L.2.2.4) if
and only if any of the following three conditions is satisfied.

(a) & rcontains G,
(b)Y S is a statement of a statement—-sequence containine G.
(c) & is a statement of the statement—sequence of the
compound-statement of the statement—part of a block containinag G,
statement = [labkel ":i" 1 (simple-statement |
structured-statement) .

NOTE. A apto-statement within a block may refer to a label in an
enclosing Elock, provided that the label prefives a
simple-statement or structured-statement at the outermost Tevel of
nesting of the hblock.

[xx]

2 Simeple-statements
b S General. A simrle-statement shall bhe a statement not
containing a statement.. An empty—-statement shall contain no symbol and
shall dennote no action.

»

o~ O

simple—ctatement =
empty—-statement | assignment-statement |
procedure-statement | soto-statement .

emety-statament = .
ALB.2.2 Assianment—-statements. An assianment-statement shall
attritiute the value of the expression of the assignment—-statement
either to +the variable denoted by the wvariable—access of the
assigrnment—statement: or to the function—identifier of the

assisnment-statement; the wvalue shall be assignment—compatible with
the tvyre Possessed by the wvariahle or function—-identifier. The
function-blorck associated (4.4.2) with the function—identifier of an
assignment—-statement shall rcontain the assignment-statement.

assignment-statement =
(variahble—acrcess | function—-identifier) "i=" exepression .

The decisiomn as to the order of accessing the variable and evaluating
the expression shall be implementation—derendent: the access shall
establish a reference to the variable durine the remaining execution
of the assiganment—statement.

The state of a variabkle or function when the variable or function does
not have attribtuted to it a value specified by its tyepe shall be
desianated undefined. If a variable possesses a structured-—tyresy the
state of the variable when every rcomponent of the variable is
totally-undefined shall be designated totally—undefined.
Totally—undefined shall te synonymous with undefined if the variable

does nnt rPossess a structured-type.

Examples: P

, y+z
P (1=

I

=
»
-

i) and (i<100)

PASCAL NEWS #20 DECEMBER, 1980

Second Draft PEOPosa]

i = sqr(k) — (i%*Jj)
huel = [bluessucc(c)]
pi1~.mother = true

6£.2.2.2 Procedure-statements. A procedure-statement shall sepecify the
activation of the block of the procedure-block associated with the
procedure—identifier of the pProcedure—statement. If the rrocedure has
any formal parameters the pProcedure-statement shall contain an
actual—-parameter-lists which is list of actual—-parameters that shall
be bound to their correspondins formal rarameters defined in the
procedure~declaration. The caorresrondence shall be estahbhlished by the
positions of the rparameters in the 1lists of actwual and formal
rparameters respectively. The number of actual-erarameters shall be

equal to the number of formal prarameters. The types of the
actual-parameters shall <correspond to the types of the formal
parameters as specified by 4.4&.3. The order of evaluationy accessing
and - bindins of the actual—rarameters shall be

implementation-derendent.

procedure-statement = procedure~identifier
[actual-parameter—list 1 .

Examples: printheading
transpose(asnsm)
bisect(fctsy—1.0:+1.0x)
AddVectors(ml11y(ml23) sy (mlk1))

£.8.2.4 Goto-statements. A soto-statement shall indicate that further

Processing is to continue at the program—raint denoted by the label in

the 9goto—-statement and shall cause the termination of all activations

exrceprt

(a) . the activation containing the proaram—-epoint and

(b) any activation containing the activation-point of an activation
required by these excertions not to be terminated.

goto-statement = "goto" label .

structured-statement = .
compound-statement | conditional—-statement!
repetitive—-statement | with-statement
statement—-sequence = statement { "3;" statement } .

The execution of a statement—-seaquence specifies the execution of the
statements of the statement-seauence in textual orders exceprt as
modified by execution of a gsoto-statement.

4£,8.3.2 Compound-statements. 'A comround—statement shéll specify
execution of the statement—sequence of the compound-statement.

compound-statement = "besin" statement-sequence "end" .

an
]

PASCAL NEWS #20 DECEMBER, 1980

Second Draft FProrosal

Example: besin =z = x § X i= y; y i= z end

6.83.3.3 Conditional-statements.

conditional-statement = if-statement | case—-statement .

6.8.2.4 If—-statements

if-statement = "if'" Boolean—expression "then" statement
[else-part 1 .
else—rart = "else" statement

If the Boolean-expression of the if-statement vields the value true:
the statement of the if-statement shall be executed. If the
Boolean—expression yields the value false» the statement of the
if-statement shall not be executed and the statement of the else-part
(if any) shall be executed.

An if-statement without an else-part shall not be followed by the.
token else. - :

NOTE. An else-rpart is thus paired with the nearest pPrecedins
otherwise unpaired then. . : .

Examplest
if X < 1.5 then 2z = x+y else z = 1.5
if P1 <> nil then r1 3= p1~, father

if J = 0 then }
if i = 0 then writeln(’indefinite’)
else writeln(’infinite’)
- else writeln(i /7 J)

6.8.3.5 Case-statements. The values denoted by the case-constants of
the case-constant-lists of the case-list-elements of a case-statement
shall be distinct and of the same ordinal-tyre as the expression of
the case~index of the case—-statement. On erxecution of the
case-statement the case-index shall be evaluated. That value shall
then specify execution of the statement of the -ase-list-element
closest-containing the case~-constant denotins that value. One of the
case-constants shall be esual to the value of the case-index uPon
entry to the case-statement.

It shall be an error if none of the case-constants is equal to the
value of the case-index upon entry to the case-statement. ‘

NDTF,‘Casefconstants are not the same aé'statement labels.

353

PASCAL NEWS #20 DECEMBER, 1980

Second Draft FProposal

case-statement =

"case" case—-index "of"

case~list-element {(";" case-list-element > ("3"] "end"
case—list-element = case-constant-list ":" statement
case—index = expression :

Examprle:

case orerator of

Plus: X 8= X+vyj§
-minpus: X i= X-y3
times: x = x¥#y
end g

6.8.3.64. Repetitive-statements. Reretitive-statements <shall specify
that certain statements are to be executed rereatediy.

repetitive-statement = rereat-statement | ’
while-statement | for—-statement .

4£.8.3.7 Repeat-statements

repeat-statement = "rereat" statement—-sequence
"until" Boolean—exepression .

The statement-sequence of the repeat-statement shall be repeatedly
executed (excert as modified by the execution of a soto-statement)
until the Boolean—-exrression of the repeat—-statement yields the wvalue
true on completion of the statement-seaquence. The statement—-sequence
shall be executed at least oncey+ because the Boolean—-exepression 1is
evaluated after execution of the statement—-sequence. '
Example:
repeat k = i mod J3;
i = 43
Jd =
until 4 = O
6.8.3.8 While-statements
while-statement = “while" Boolean-expression "do" statement .
The while—stafement
while b do body

shall be esuivalent to

5S4

PASCAL NEWS #20 pelefiben, 130U

Second Draft Frorosal

beain

if b then
rereat
body :
until not (b)

end

Examprles:

while 1:0 do
bkegin if odd{i) then z &=
i s= 1 div 23
Moi= sqr(x)
d

M
*
ped
-

en

while not eof(f) do
beain pProcess(f™)Y; aet(f)
end

LL.E.2.7 For—statements. The for—-statement shall specify that the
statement of the for-statement is to be repeatedly executed while a
proaression of values is attributed to a variable that 1is desionated
the contraol—-variable of the for—statement.

for—-statement = "for" control-variable "i=" initial-value
: { "to" | Ydownto") fipnal-value "dog" statement .
control-variahbhle = entire-variable .
initial-value = expression .
final—-value = expPression .

The rontrol-variable shall be an entire—-variable whose identifier is
declared in the variable—declaration—-part of the block
closest—containing the for—statement. The control—-variable shall
Frassess an ordinal—-tyepesy and the initial-value amnd final-value shall

be of a type compPatible with this type. The statement of a

for—-statement shall not contain an assisning—reference (see &.5.1) to
the control-variable of the for—statement. The valwe of the

“final-value shall hbe assignment—-compatible with the contrel-variable

when the ipitial—-value is assigned to the control—-variable. After a
far—-statement is executed (other than being Teft by a aeoto-statement
leading out of it) the control-variable shall be urdefined. Apart from
the restricltions imposed hy these requirementss the for—statement

for v = el to eZ do body

shall be esuivalent to

o

PASCAL NEWS #20 DECEMBER, 1980

Secaond Draft Frorosal

beein
temel 1w @l
temp2 t= eZ}
if templ <= temrZ then
besin
v = temprl;
body;
while v <> temr2Z do
besin
v i= succ{v);
body
end
end
end

and the for—statemént
for v i= el downto e2 do body
shall be equivalent to

besin
temprl = e}
temp2 1= e2}
if temrl >= temp2 then
besin
v = tempPl;
body?y
while v <> tempP2 do
besin
v i= pred(v)}
body ‘
end
end
end

where templ and temrp2 denote auxiliary variables that the eprosram does
not otherwise contain» and that rossess the tyre pPossessed by the
variable v 1if that ¢tyre is not a subranse-tyrpe; otherwise the host
tyre of the type pPossessed by the variable v. :

Examprles:

for i = 2 to 43 do
if glil > max then max = alil

56

PASCAL NEWS #2200 DULEUVLEHDLR, 120U

Secaond Draft Frorasal

for J 3 to 10 do
besin
¥ = H
for k t=1 to 10 do
X 3= x + milirkI*m2Lk»dds
mCiryd] 3= K
end

for 1!= 1 to 10 do
for 4 '= 1 to 1-1 do
mfilCd) = 0.0

for ¢ := blue downto red do a(c)
4£.8.3,10 With—-statements

with—-statement =
"with" record-variable-list "do"
statement .

record-variable-list =
record-variable { "»" record-variable J

A with-statement shall specify the execution of the statement of the
with-statement. The occurrence of a record-variable as the only
record-variable in the record-variable-list of a with-statement shall
canstitute a defining-point of each of the field-identifiers
associated with components of the record-tyre rProssessed by the
record-variable as a field-desigsnator—~identifier for the resion which
is the statement of the with-statement; each arplied occurrence of a
field-designator—identifier shall denote that coaomponent of the
record-variable which 1is associated with the field—-identifier by the
record-tyrpe. The record-variable shall be accessed before the
statement of the with-statement 1is executed, and that access shall
establish a reference to the variable during the entire execution of
the statement of the with-statement.

The statement
with vi,vZy ...»vn do s
shall be esguivalent to

with vl do
with v2 do

with vn do s

57

PASCAL NEWS #20 ' DECEMBER, 1980

Second Draft Frorosal

Examplet

with date do

if month = 12 then
besin month != 1} vear i= year + 1
end

else month = month+l

shall be equivalent to

if date.month = 12 then

begin date.month := 1} date.vear = date.vear+l

else date.month i= date.month+1

PASCAL NEWS #0 DELeriben, 130U

&.9 Input and ocutrut o ‘
£.9.1 fGeneral. Textfiles (see 64.4.3.5) that are identified in the

program-parameters (see &.10) to a Pascal rprogsram shall Provide
legible inrFut and outrut,

&.9.2 The rrocedure read. The svyntax of the rParameter list of read
when arrlied to & textfile €hall be!

read-rarameter—list = :
w(urfilg-variable "+"1 variable—access
{"y" varighle-accessry")"

If the file-variable is omitted: the procedure shall ke applied to the
required textfile input.

The followins resuirements shall arrly for the Frocedure read (where f
denotes a textfile and vi...vn denote variable—accesses possessing the
char-type {or a subranse of char-tyee)y the inteser-tyre (or a
subrange of inteaer—-tyre)y» or the real-typel:

(a) read(fsviy..orvn) shall be eauivalent to
beain read(fsvi): ... 3 read(fsivn) -end

(b If v is a variable-acress possessing the char—type (or subranse
thereof)s read(fsv) shall be equivalent to :

begin v i= f~}y set(f) end

NOTE. The variable—-access is not a variable rarameter.
Consequently it may be & comrponent of a packed structure and the
value of the buffer-variable need only be assigrment-comratible
with it. '

(c) If v is a variable-access rossessing the integer—tyrpe (or subranse
thereof)s, read(fsv) sehall cause the readins from f of a sequence
of characters, Precedins spaces and end—of-lines shall be skipred.
It shall be an error if the rest of the sequence does not form a
gigned—-inteser accordins to the syntax of ¢.1.5. The value of the
signed-inteser thus read shall be assisnment-compatible with the
tvyre rossessed by vy and shall be attributed to v. FReading shall
cease as soon,as the buffer-variable f* does not have attributed
to it a character contained by the longest sequence available that
forms a sisned—inteser.

(d) If v 1is a wvariable—access pPossessing the real—-tvee, read(fiv)
- shall cause the reading from f of a sequence of characters.
Preceding sraces and end-af-lines shall be skirped. It shall be an
error if the rest of the sequence does not form a sisned-number
according to the syntax of &.1.5. The value denoted by the number
thus read shall be attributed to the wvariable v. FKeading shall
cease .as soon as the buffer—-variable f~ does not have attributed
to it a character contained by the lonsest sequence available that
forms a sisned—-number.

(e) Whern read 1is apprlied to fy» it shall be an error if the
buffer—variable f* is undefined or the Frre-assertions for set do
not hold (see 6.4.3.5).

59

PASCAL NEWS #20 DECEMBER, 1980

Second Oraft Frorposal

H5.2.2 The eprocedure readln. The syntax of the parameter list of readln
shall be:

readlrn—parameter—list =
["(" (file-variable | variable-arcrcess)
{"+»" variable—access} ")"1 .

Readln shall only be applied to textfiles. If the file-variable or the
entire readln-rarameter-list 1is omittedsy the Procedure shall be
arplied to the reauired textfile inrPput.

readin(fivis..crvn) shall be eguivalent to
besin read(fsvis...»vn): readin(f) end
readln(f) shall be equivalent to
begin while not ealn(f) do set(f); set(f) end
NOTE. The effect of readln is to Prlace the current file
raosition Just past the end of the current line in the
textfile. Unless this is the end-of-file position,» the current

file rosition is therefore at the start of the next line.

6.9.4 The procedure write. The syntax of the rarameter list of write
when aprrlied to a textfile shall be:

write-parameter—list =
"("[file-variable "»"] write—-parameter
{"y" write-rarameterr")"
write-parameter =
expression [":" expression [":" expression 1 1 .

I1f the file-variable is omitteds the Procedure shall be arrlied to the
required textfile outrput. When write is aprlied to a textfile f, it
shall be an error if f is updefined or f.M = Insrection (see 4.4.3.3).
An aprlication of write to a textfile f shall cause the
buffer-variable f~ to become undefined.

6.9.4.1 Multirle parameters. Write(fsrlyr...rPn) shall be equivalent to

begin write(fyel1)s ... 3 write(f,pn) end
where f denotes a textfiles .and Plsy...1Pn denote write-parameters.

6.9.4.2 Write-rparameters. The write—-parameters P shall have the
following forms: - _

e:TotalWidth:FracDigits e:TotalWidth e
~where e is an expression whose value is to be written on the file f

and may be of inteser-tyrpe» real-tyre,» char-tyre)» Boolean-tyre or a
string—-tyrds and where TotalWidth and FracDisits are exrPrressions of

&0

PASCAL NEWS #20 beplehMbenr, 130U

Second Draft Frorosal

inteser-type whose values are the field-width parameters. The values
of TotalWidth and FracDisits shall be sreater than or egual to onej it
shall be an error if either value is less than one.

Write(fse) shall be eauivalent to the form write(f,e:TotalWidth),
using a default wvalue for TotalWidth that derends on the tyepe of e}
for inteser—-tyvypres real-tyre and EBoolean-type the default values shall
be implementation-defined.

Write(fse:TotalWidthiFracDigits) shall be arprlicable aonly if e is of
real—-type (see &4&.9.4.5.2).

$.9.4.% Char-typPe., If e 1is of char-typey the default wvalue of
TotalWidth shall be one. The representation written on the file f
shall he: ‘

(TotalWidth - 1) spaces)
the character value of e.

£.9.4.4 Inteser-tyre. If e is of inteser-typey» the decimal
rerresentation of e shall be written on the file f. Assume a function

function IntegerSize (x & integer) ¢ integer 3
{ returns the number of disits, z» such that
10 to the power (z—-1) <= abs(x) < 10 to the Power z 2

and let IptDigits he the positive inteser defined by:

if e =20
then IntDisits = |
else IntDisits t= IntegerSize(e):

then the representation shall consist of:

(1) if TotalWidth >= IntDigits + 1 :
(TotalWidth - IntDisits ~ 1) spaces:
the sisn character: ’'=¢ if e < 0y otherwise a srace:
IntDigits digit-characters of the decimal
rerresentation of abs(e).

(2) If TotalWidth < IntDigits + 1:
if e < O the sign character -/, '
IntDigits digit-characters of the decimal
rerresentation of abs(e).

6£.9.4.5 Real-Type. If e is of real-tyres a deczimal representation of
the number e» rounded to the specified number of significant fisures
or decimal pPlaces, shall be written on the file f.

6£.9.4.5.1 The floatins-roint rerresentation.

Write(fye:TotalWidth) shall cause a floating- Pant representation of e
to be wnxtten. Assume functions

61

PASCAL NEWS #20 DECEMBER, 1980 -

Second Draft Prbposal

function TernPower (Int & inteser) : real 3

r

{ Returns 10.0 raised to the rower Int 2

function RealSize (vy ! real) ¢ inteser ;
{ Returns the values 2y such that
TenFower(z-1) <= abs(y) < TenPower(z) 3}

function Truncate (v & real 5 DecPlaces & integer)
real 3

{ Returns the value of y after truncation

to DecPlaces decimal rlaces 7

let ExpDisits be an implementation-defined value representing the
number of digit-characters written in an exponent;

let ActWidth be the pPositive inteaer defined by:
if TotallWidth >= ExrDigits + &

then ActWidth = TotalWidth

else ActWidth i= Explligits + &3

and let the non-nesative number eWritten and the inteser ExepValue be
defiried by: ‘

if e = 0.0
then begin eWritten = 0.03 ExprValue = 0 end
else
besin
eWritten = abs(e)s
ExpValue i= RealSize (eWritten) - 13
eWritten i= eWritten / TenPower (ExpValue) 3}

DecFlaces i= ActWidth-ExepDisits-5;
eWritten i= eWritten +
Q.5%TenPower(-Decrlaces)}
if eWritten >= 10.0
then
besin
eWritten @
ExpValue @
end;
eWritten = Truncate (eWritten:s DecPlaces)
end}’

= eWritten /7 10.03.
= EXxrValue + 1

then the floatins-point rerresentation of the value aof e shall consist
of:

the sian character.
(/=’ if (e < 0) and (eWritten > O0)y» otherwise a space)
the leading digit-character of the decimal
representation of eWritten
the character ‘.’ »
the next DecFlaces disit-characters
of the decimal rerpresentation of eWritten:

&2

PASCAL NEWS #20 _ DECEMBER, 13¢U

Second Draft Froposal

an implementation-defined exponent character
(either ‘e’ or 'E’):

the sisn of ExrValue
(=’ if ExpValue < 0O, otherwise “+’)

the ExpPDisits disit-characters of the deL1ma1
representation of ExepValue
(with leading zeros if the value resuires them).

&.9.4.5.2 The fixed—-point representation.

Write(fse:TotalWidthiFracDigits) shall cause a fixed—pPoint
representation of e to be written. Assume the function IntegerSize
described in clause 6 $.4.4, and the functions TenFower and Truncate

described in clause &.7.4.5.13
let eWrittern be the non-negative number defined by

if e = 0.0
then eWritten = 0.0
else
besin
eWritten = abs(e);
eWritten = eWritten + 0.5
#* TenFower (— FracDiagits);
eWritten != Truncate (eWritten: FracDigits)
end;

let IntDigits be the positive integer defined by:?

if trunc (eWritten) = 0
then IntDigits = 1
else IntDigitsi= InteserSize (truncl(eWritten))3

and let MinNumChars be the Positive integer defined by:

MinNumChars &= IntDigits + FracDigits + 13
if (e < 0.0) and (eWritten » 0)
then MinNumChars := MinNumChars + 13{’=’ required}

then the fixed-roint representation of the value of e shall consist
of:

if TotalWidth »>= MinNumChars:
(TotalWidth - MinNumChars) spaces:

the character ‘=’ if (e < 0) and (eWritten > 0)

the first IntDigits digit—-characters of the decimal representation
of the value of eWritten: .

the character ‘.7

the next FracDigits digit-characters of the decimal representation
of the value of eWritten.

NOTE. At least MinNumChars characters are written. If TotalWidth
is less than this value:, no initial spaces are written. '

&3

PASCAL NEWS #20 DECEMBER, 1980

Second Draft Frarosal

£.9.4.4 Boolean—tyre. If e is of Eoolean—tyrpe, & representation of the
word true or the word false (as arprorriate to the value of e) shall
be writtern on the file f. This shall be equivalent to writing the
apPropriate character—strinss ‘True’ or ‘False’ (see 6.9.4.7): where
the case of each letter is implementation—-defined, with a field-width
parameter of TotalWidth.

&.9.4,7 String-types. If the tyere of e 1is a string—tyrpe with n
componentsy the default value of TotalWidth shall be n. The
representation shall consist of: :

if TotalWidth » n»
(TotalWidth — n) sparces)
the first throush nth characters of the value of e in that order.

if 1 <= TotalWidth <= n
the first throush TotalWidthth characters in that order.

&.9.5 The procedure writeln. The syntax of the pParameter list of
writeln shall be:

writeln—-parameter—list =

("(" (file-variatle | write-rarameter)

"y " write-parameter2”")"]
Writeln shall only be applied to textfiles., If the file-variable or
the writeln—rarameter—list is omitteds the procedure shall be arrlied.
to the required textfile output.

writeln(fspPly...sPn) shall be eaquivalent to
besin writel(fspls..orpPnds writeln(f) end

Writeln shall be defined by a pre—assertion and a rost—assertion using
the notation of 4.46.5.2. :

pre—assertion: (fO is not yndefirned) and (fO.M = Generation).
rpost—assertion: (f.L = (fO.L~&(e))) and
S (f™ is totally~undefined) and
(f.R = S()) and (f.M = Generation):

where S(e) is the segquenrce consisting solely of the
end-of-line comrPonent defined in &¢.4.3.5.

NOTE. Nriteln(f) terminates the rartial line:y if anysy which is
beins generated. By the conventions of £.6.5.2 it is an error if
the pre—assertion is not true prior to writeln(f).

&.9.4 The procedure pPase. It shall be an error if the pre-assertion
required for writeln(f) (see &.9.2) does not hold eprior to the
activation of pase(f). If the actual-parameter—list is omitted the
procedure shall be arplied to the required textfile output. Page(f)
shall cawuse an implementation—-defined effect on the textfile fy such
that subséquent text written to f will be on a new page if the

&4

PASCAL NEWS #20 ypoeeipen, 430U

Second Draft Frorosal

textfile is printed on a suitable device,» shall rperfaorm an implicit
writeln(f) if f.L is not empty and if f.L.last is not the end-of-line
comronent (see 4.4.%.5)y and shall cause the buffer-variable f™ to
become totally—-undefined. The effect of inspectina a textfile to which
the rase Procedure was arrlied durins generation shall be
implementation—derendent.

46.10 Frosrams.

program = Frogram—heading "3i" Prosram—-block
program—heading =
"program” identifier ["(" program—-rarameters “J)" 1 .
prosram—parameters = identifier—-list .
" prosram-block = block .

The identifier of the prosram—heading shall be the prosram name which
shall have no sisgnificance within the eprogram. The identifiers
contained by the pProsram—parameters shall be distinct and shall be
designated prosram - parameters. Each program pParameter shall be
declared in the variable-declaration—-part of the blozk of the
program-block. The binding of the variables denoted bty the Prosram
rarameters to entities external to the Prosram shall be
implementation—-derendent» excert if the variable pPossesses a file-type
in which case the binding shall be implementation-defined.

NOTE. The external rerpresentatiaon of such external entities is not
defined by this standard» nor is any prorerty of a Fascal eprosram
derendent on such representation. »

The occurrence of the identifier input or the identifier outeput as a
program parameter shall constitute its definins—point for the resian
that 1is the progsram—-block as a variable-identifier of the required
tyre denoted by text. Such occurrence of the 1identifier 1input shall
cause the pPost-assertiaons of reset to holdy and of outeput, the
post—assertions of rewrite to holdy» prior to the first access to the
textfile or its associated buffer—-variable. The effect of the
arplication of the required pProcedure reset or the reguired pProcedure
rewrite to either of these textfiles shall be implementation-defined.

Examples:

praogram cory(fi,a);s
var frg: file of reals
begin reset(f); rewrite(s)s
while not eof(f) do
begin 8™ = f*; get(f); put(s)
end
end.

&5

PASCAL NEWS #20 DECEMBER, 1980

Second Draft Frorosal

program corpytext(inputsrouteput);
{This Proaram copies the characters and line structure of the
textfile input to the textfile outrput.’
var ché¢ char;
begin
while not eof do
begin
while not eoln do
begin read(ch); write(ch)
end:s . '
readlni writeln
end
end. -

&b

PASCAL NEWS #20 jrlefiben, 190U

Secand Oraft Prorosal

proaram tépétp3PIdZrevised(output)s

var slobhalones alobaltwo & inteser:

pracedure dummys$
begin
writeln(/faild...&.6.32.3-2")
end { of dummy 23

procedure el(procedure f(procedure ff; procedure 38)3
procedure 9}
var localtor @ integer;
procedure rs
begin
if slobalone = 1 then
begin
if (slobaltwo <» 2) or (localtor < 1) then
writeln(/faill...b6.4.3.3-2" :
end
else if globalone = 2 then

begin
if (slobaltwo <» 2) or (loczaltor <> 2) then

writeln(/failZ....6.3.3-2")
else
writeln(‘rass..b.46.3.32-2)
end
else
writeln(/fail3...L.6.3.3-2)3
globalone = globalone + 1
end { of r }i
- begin { of P }
alobaltwo = globaltwo + 15%
lJacaltor i= gslobaltwo;
if slabaltwo = 1 then
r{fsr)
else
f(a,r)
end { of p}%

prrocedure a({procedure f3 procedure 9);i
begin
f3
9
end { of g9};

begin
globalgne
globaltwo
p(a:dummy)
end.

] |!.

le
-8 v

6.11 Hardware rgpresgntation. The rerresentation for lexical tokens
and separators siven in é.1 constitutes a reference representation for

&7

'PASCAL NEWS #20 DECEMBER, 1980

Serond [raft Frorosal

prosram interchanse. A processor shall accert all the reference
symbols and all the alternative symbols exceprt for any symbol whose
representation contains a character not available in the character set
of the pProcessor. The reference symbols and the alternative symbols
are given in table é&.

Table &. Alternative symbols

‘Reference Symbol Alternative Zymbol
~ @ or ¢

{ (%

by *)

L (.

J)

— = L S e e e e o s o e Sy o S S S o S S S B . Y . S S o S g e o S o S o

NOTES. 1. The alternative comment delimiters are esuivalent to the
reference comment delimiters)» thus a comment may bezin with "{"
and close with "¥)"y or besin with "(#" and close with "}".

2. Far any other pPurpose than prosram interchanze, this
representation is not required» and so does not exclude the
existence of other alternative symbols.

PASCAL NEWS #0— UrLoibLin, 4J0U

APFENDIX A. COLLECTED SYNTAX

actual-rarameter = expression | variable—access |
]

procedure—identifier |
function—-identifier .

actual-parameter—list =
(" actual-rarameter { "3»" actual-parameter > ")" .

adding-operator = "+" § "=" 1§ "or" .
weesun

aprpostrophe—imase =

array-type = "array" "[" index-type { "' index—-type > "1" "of"
component-tyre .

array-variable = variable-access .

assianment-statement = .
(variable-access | function—-identifier) "i=" exrression .

base~tyre = ordinal-tvyre .
block = label-declaratior—-part
constant—-definition—pPart
tyrpe—-definition-part
variable—-declaration—rart
procedure-and-function—declaration—-rart
statement—-rart .
Boolean—-expPression = exeression .
bound—identifier = identifier .
buffer-variable = file-variable "™"
case-constant = constant .
case-constant-list = case-constant f "y" case-constant > .
case—index = exepression .
case-list-element = case-constant-list "i" statement .
case—-statement =
"case" case—-index "of"
case—-list-element {"3" case-lict-element > ["3"] "end" .

character—-string = """ strins-element
{string—-element)} "“’'v |

component—-type = tyrpe-denoter .
component-variable = indexed-variable ! field-designator .
compound-statement = “"besin" statement-sequence "end" .

conditiohal-statement = if-statement | case-statement .

&9

PASCAL NEWS #20 DECEMBER, 1980

Second Draft Frorosal

conformant-array—-rarameter—-specification =
“var' identifier—list ":" confarmant—-array—-schema
conformant—array-schema = .
(packed—conformant—array—-schema |
unracked-conformant—array-schema) .

constant = [sisnl] (unsigned-number | constant—-identifier)
i character-string .

constant-definition = identifier "=" rconstant .

n et
?

constant—definition-rPart = ["const" constant-definition
{constant—-definition "3"21]

constant-identifier = identifier .
control-variable = entire-variable .

digit = "OUULU RN NG gL T g o
digit-sequence = digit {digit}) .

directive = letter {letter | disitl .
doméin-type = type—identifier .

else-part = "else" statement .

i

empty—-statement .

variable—idenfifier .

entire—-variable

]

enumerated—-typre "(" identifier-list ")"

exPression =
simrPple—-expression [relational-orperator simple-exrression 1 .

factor = variable—-access | unsigned-constant | bound-identifier |

function-desianator | set-constructor |
(" expression ")" | "not" factor .

field-desisnator = record-variable "." field-specifier |
field-designator-identifier .

field—identifier = identifier .

field-list =
[(fixed-part ["3" variant-rart 1 | variant-eart) ["3"]1 1 .

field-srecifier = field-identifier .

70

PASCAL NEWS #Z0 velrliben, 130U

Second Draft Frorosal

file—type = "file" "of" component-type .
file-variatle = variable-access .
final-value = ex¥Pression .

r 1 n 9,

fixed-part = record—-section { ":" record-section + .

for—statement = "“for" control-variable "i=" initial-value
("to" | "downto") final-value "do" statement .

formal—-rarameter—list =
(" formal—-Parameter—-section
t"3Y formal—-rParameter—section) ") .

formal-parameter—-section =
value-parameter~gspecification !
variable-parameter~specification
procedural-rarameter—-specification |
functional-rarameter—specification |
conformant—array—-rarameter—-specification .
function-block = block .
function—declaration = .
function—heading "3" directive |
function—identification "3" function-block |
function-heading "i" function—block .

function—desisnator = function—identifier
L actua]—Parameter—1ist]l .

function-headina =
"function" identifier [formal-Parameter-list]
"' result-tyre .

function—identification = :
"function" function—identifier .

function—-identifier = identifier .

functional-parameter-specification =
function-teadins .

soto-statement = "goto" label .
identified-variable = pPointer-variable TPt
identifier = letter {letter ! digit} .

identifier-list =.identifier """ identifier 3} .

71

PASCAL NEWS #20 DECEMBER, 1980

Second Draft Froposal

if-statement = "if" Boolean—exeression "then"
[else-part 1 ..

index—expression = ewpression .

index—tyrpe = ordinal—tyre .

index~type—-specification
identifier ".." identifier
"1 ordinal-tyre-identifier .

indexed-variable = v
array-variable "[" index—-expPression
{ "y" index—-expression > "“1"

initial-value = expression .

label = digit—-sequence .

statement

label-dezlaration—-rart = ["label" label {"»" labell "3"1 .
letter = "ai"b i img et et i tg PRI
S R e R P R R R A i A B A T I A - L
member~desisnafor = exrression [".." e¥pPression J
multiprlying-operator = "¥" | "/" | "div" | "mod" | "and" .

new—ordinal-type = enumerated-tyepe | subrange—-tyre

new—prointer—type = """ domain—-tyre .

new—structured-tyre = ["packed"] unpacked-structured-tyvre .

new—-type = new-ordinal-type | new-structured-

new—pointer—-type .

ordinal—-type = new—ordinal-tyrpe |

inteser—tyre | Boolean—-tvrpe
ordinal—-type-identifier .
ordinal-tyre-identifier = identifier .

racked-conformant-array-schema =

type |

i char—type

"packed" "“array" "[" indewx—type-specification "1"

"of" type—identifier .

pointer—tyre = new—-pPointer—tyrpe | pPointer—type-identifier

pointer—typre-identifier = type—-identifier .

pointer-“variable = variable—access .

PASCAL NEWS #20 . ' - DECEMBER, 13U

Second Draft Frorosal

pro-edural—-parameter—-specification =
erocedure-heading .

procedure-and-function-declaration-rart =
{(procedure-declaration | function-declaration) "3"J} .

procedure—-block = block .
procedure—-declaration =
procedure—heading "3" directive |
1

procedure—identification "3" Pprocedure-block |
procedure—heading ";" procedure-block .

rrocedure—heading =
“procedure" identifier [formal-eparameter-list 1 .

procedure—-identification =
"erocedure" procedure—-identifier .

proceduyre—identifier = identifier .

Procedure-statement = eprocedure-identifier _ .
[actual-rarameter-list 1 .

prosram = program-headins "3" program—-block "." .
program—block = block .

Pprogram—-headins = :
"prosram" identifier ["(" prosram—Parameters ")" J .

Program—Parameters = identifier-list .
read-parameter—-list =

"("[file-variabkle "4+"] variable-access. =

{"+" variable—-access}"})}"
readln-parameter—~list =

("(" (file-variable | variable-access)

{"+" variable-access) ")"1] .
record-section = identifier-list ":" tyPe-denoteﬁ .
record-tyre = "record" field-list "end" .

record-variable = variable-access .

record-variable-list = -
record-variable { "4" record-variable) .

relational-oprerator =
]
[]

LU L l‘/\' >N : "{ " : ll'}l! : II<=|| : LR R 1]] u i N n

PASCAL NEWS #20 DECEMBER, 1980

Second Draft Froposal

repeat-statement = "rerpeat"” statement—sequence
: "until" Boolean-exrression .

repetitive-statement = rerpeat—-statement |
while-statement | for-statement .

result-type = simple-type—identifier |
pointer—type—identifier .

scale-factor = sisned-integer .

set-constructor = "[" [member—desisnator
<« "+" member—-desisnator > 1 "I"

set—type = "get" "of" base-tyre .

sign = "+" [M=N

sisned-inteser = [sisnl unsisned-inteser .

sianed-number = signed-inteser | signed-real .

sisned-real =~[sisn] unsigned-real .

simple—-expression = [sian 1 term { adding—-aorperator term) .

simple-statement =
empty—statement | assisnment—statement !
procedure-statement | soto-statement .

simple-tyre = ordinal—-tyrpe | real-tyre .

simple-type—identifier = type-identifier .
SPECia]"'SYmbO] = ||+_n=n__u;u*n:|l/n:n_=n=u,g_n:n:f.,u:U[u:u]‘u»:
" Hwru L R I O T A R I A T P R A 1] o ot
. [BERE SR | s] k] 1] (]) t
HEHMpIEI b =, Y word-symbo] .

statement = [label ":" 1 (simple-statement |
structured-statement) .

statement—-rart = compound-statement .

]

statement-sequence = statement { "4" statement 2 .~

string—-character = :
ong-of-a-set-of-implementation-defined-characters .

string-element = arostrorhe-image | string-character .

74

PASCAL NEWS #20 DECEMBER, 1580 -

Second Draft Frorosal

structured-statement = '

compound—-statement | rconditional-statement|
1

repetitive-statement | with-statement .

i

structured-type = new-structured-tyre |
: structured-type—-identifier .

structured-tyrpe—identifier = type-identifier .
subrange-tyre = constant ".." consfant .
tas—%ie!d = identifier .

taa-type = ordinal-type—identifier .

term = factor { multieplyins-orerator factor J .
tyre—-definition = identifier "=" typefdenoter .

tyPe—definition—Part'= ["type" type-definition "3;"
: {type—-definition "3"}1 .

tyre—denoter = type—identifier | new—-tyrpe .
type—identifier = identifier .
unracked—-conformant—-array-schema =

“"array" "[" index-tyre-specification

{ "3" ipndex—type-specification > "1" "of"

(type—-identifier | conformant—-array—schema) .

unpacked-structured—-tyre = arravy—tyre | record-tyre
file-tyre .

unsigned-constant = unsigned—-number | character—-string

constant—identifier "nmil" .
unsisned—-inteser = digit—-sequence .
unsianed-number = unsigsned—-inteser ! unsisned-real

unsigned-real =

set-tyre

1
i

unsigned-integer "." digit-sequence ["e" scale-factorl] |

unsigned—integer "e" scale—-faictor .

value—-prarameter-specification. =
identifier—list ":" type—identifier .

variable—access = entire-variable | component-variable

identified-variabie | buffer—variable

variabletdeclaration = identifier-list ":" type-denoter

!

75

PASCAL NEWS #20 DECEMBER, 13U

Second Draft Frorosal

variable-declaration-prart = ["var'" variabhle-declaration "3;"
{variable-declaration ":">1 .

variable—identifier = identifier .

variable-parameter—-specification =
’ "var" identifier—list ":" type-identifier

variant = case-constant-list "2 "(" field-list ")"

variant-rart = "“case" variant—-selector "aof"
variant € "3" variant 7 .

variant-selector = [tas—field "i"] tas-tyre .
while-statement = "while" Boolean—exrression "da" statement
‘with-statement =

"with" record—variable—]igt “do"

statement .

word-symbol = "and"!"array"l"besin"i"case"{"const " "div"i

"do"i"downto"i"else" i "end"i"file" ! "for"!
“function"i"saoto"i"if"i"in"i"label" | "mod"!
"mil" i "not" i Mof" i "or" i "Packed" | "rrozedure"!
"program"i{'record"!"rerpeat'!"set" ! "then"!
"to" i Mtype" i Muntil"i"var"i"while" I "with" .
write-rarameter = expression [":" expression [":" expPression 1 J

write—-parameter—-list =
"("Cfile-variable "+"1 write-parameter
{'"y" write-rarameter2")"

writeln-parameter—list =
["(" (file-variable | write-parameter)
{"y" write—-parameter'")"71 .

PASCAL NEWS #20
APFENDIX B. INDEX

access

actual

actual-parameter

actual—-parameter—-list
array-tyvee
array-variahble
assignins-reference
assisnment—-compatible
assignment—-statement
tase—-tyrpe

base—-types
block

body
Boolean—-expPression

Boolean~typre
buffer—-variable

case—-constants
char-type

character

character-string
closed

comeatible

o~ o DS s

[y |}

ih 0N

DELEFIDER,

'@.9.6

77

LN O NN R N O i Ny NS N N

& AT
&.5.3.
£.5.1
&.8.2.1
&.4.3.4
£.4.5
Lozl
£.4.1
Gubat

é‘l/:’l:--:l

bobL 3

6.8.2.
&bl
&.7.2.

ﬁ Oy T
CratTia ot

m-bJ>D~miﬂ»&@xg¢»@c>;,H_b»a{

T

—_ AR O g N L

N L

)
-

0 QO

0 h

.

Jon

oo o

02

LR SEAT RN

0

-3

190U

-
.
U]

.
|
.

oS oo

[

.73
Lok 3
R

L.7.3
L4032
GubLE
LS .E
/:‘IS-E:
b‘é‘lS
L9 2
é'.é'.z
/.:'.B-:z
L4 6

L£.4.2
&b 2
e
L.boE
6.8.{31
ChLELD
é‘uE:-:a

o>
o
INES NS

6.6«.5
6'14-2
6.4-"—.::
6.9.2

bbb
é'-/ -4
Ho1

o~
-
—

oo OO O
o SENPRS
TGN o EO RN

) I.'_-_‘; :—-s

N
‘-

R IR VY]

S

[N

.i‘
.5

IS

(N

= P
] o
C‘n‘i"-v..‘;-ui

- - -
é'-t:-".f-a."
Lol 5,0
A R aN R R

o~
~
—

AU

—) G

PR

DD O S N
~ . e
1 O O~ U D0

L.10
é" E:-S-'?
/:'0:5:13-7

Bo7 203
ICAP IR S
Lk S 2
Yl

H.B8.3.5
o202
HaDlS

LoP7.84.2

o~
=
0

P}

ININ
n
—

D

o~ DN N
NbHNLHN—~

BN N -
FJ

[
.

PASCAL NEWS #20 DECEMBER, 1980

Second Diraft Froeposal

comronent IR A.4.301 CI S
S I o400 b4 A
A.5.01 A3l NI IOr,
HVSUENE a2 [
b LA Lok 2.7 fk 5,2
Aub A0S LLEVRLE L.E203010
Ao, 2 Ao 5.5 LoDk

component—type TR S G425 AeDe S
ok 3.7 Lok 208

5

YR
.
—

compPponent—variahle b

comronent-variabies s

=l
components S W 4,301 403202
Ao 23 R e A.4.5
G.9.303 gt S A.S.3010
L. 4.7
compolund-statement | Lo, = IRC I |
LGELT,

(W]
.
-

conformant—array~schema b
CONSruoys. bbb,
constant . L2 i

(Y]
B b

o~ o~
R :\ o~

..'_l
NI

.
I
.
.
ESgO
-
RN R Y]
.
020N

>
ey
)

corresponding .1

oS oS
(8]

™~

.
[
L]

o

-

o~ O
«

'.

.

o)

-
[Ty
o~
»
™~
-
L&
-
a

N = =
o~
I e R, BTN N

o N
R

o~

DOON SRR Sy

o~
n
Lanll R IR Iy I ~ I N oA]
o~
™
Poaad Lol o = 1)
o~
o
]

&

n
o

definina—-point b

0
B
(]
[X3]
o~

i

oSN

- -

N0

- -

L

.

IS .
o~ SO T

-

N N SRR

[xalin)
B
-
DEX]
.
S D0 G0

N

[XX)
-
‘!

10

definition 4. 2. L4204
(:‘l " IE; ."-/:'-:3:17
dir\e‘:tive /_"I » :'l/:'-i 6-&'-:’.’

empty=gtatement b
gntira=variable b
enumerated-tyre b
error it

ORI PR

-
.
.-

b

HAD = N
| A B ;\j Ha
—

=
—

é'l4lé’

[= —

AR

o~
-
.
A
[y
KD]

o
N
T o) W o B RY O Oy B

>N
-
(e R B S |

bk 3 Aot D02
o653 b2 Aok b o
bbb 4 a3 La7.1

b7 .2.2 = P Ch.BL2.Y

\L‘.

6.9.4."

N,

-

,.
L
oS o
.

Xy]
.

/_"l.,.
exPression LS.
Eoa b
boala
/:‘Ié'l/:'l

- Lok 22
LabLS0 2 Aub S0
bbbl 2 Fabn b3
babiilD L£.7.1

SN S 5 W v S O I~

o~
.

~

LU A SO S ¥

Aa7.2. L7053 Lo, 2.02
ALE LD GoSL 2. L.9.4
:'n‘-)-4-

DELEFIDER, 1J0U.

ond Draft Frorosal

wer

PASCAL NEWS #20

v

i) __:. .,_ v ...V o 7 M 7 :a. 4 _._n... 4 < 5 i M~ ™GO
g _‘3.; < ,m4 ._:_1: TN L L B Y N) 7ﬁ7* 0.0
< Qunn < {9 9&6(QAT GORND B0 0 OGN e R 17c 279
G Ede 8 Gd $0dY $90Gddd U89 008 $99d99d S8 999 K99
-
PN o 0 00 0 /... _:: .4_ c»._ i __2 4 — o -~) - : 7 4 c ~ :.. o
.‘..M”..“.u.‘._..‘....._...m _......_)c:........._ :1..3:.?..__1/_:4 __.._1. 1..1..“ . _.h...“__lpunmo“ .._...__ .4 _.“au
A..7=._r.\..au A..U/“.I./. _._._é/_é_._...ﬁ._/._.fmﬁ.../.c. Z,o: -.756 c..D...Ldunmq“AHDA./,__tlé..:wl_/.wm
GGT00 GOGd TOIVGIIOITI0 00 VG990 DG00IV 90III00E0105D
~]
_...,... g — 4 4) Iy ™4 :.w — (N - M. N I O S VI o
s A A BRI ED S OA 0N DN TNTAON a0 E -G NEMEEG0 Ced o
Lﬂ/.au_mp“:mnw.cm:“ .._...:._J.L/mf._%ﬁ“..a.“é/u.;mrm .L&L%_ml_“/“rrﬂ,mc.“:.“ 3Au=..“4w.b.4u,r..F.. 4.0m9” L.nmm

R TRV BN VA BN T B G B AV B GV RN JU I BN U BV BUAN AN I I B S, S S U S P S

field-designator
field-identifier
formal—-pParameter—list
function-block
function-declaration
function—-designator
function—identifier
gsoto—-statement
imrPlementation—-defined
implemeptation-derendent

file-variable
for—statement

file-tyre
formal
function
functional
identifier
if-statement

factor
field
. identifier-list

79

DECEMBER, 1980

ond DOraft Froposal

e D

Py
S

PASCAL NEWS #20

N o~ i iy 23 ...721 3635 n—mn oo 1475 07

~

- - . .] - s e ® 5 s g - L
a0 QIR RGN o] — i~ :54:...5:125 2.424 _h2 2 NS O RN o] _.._...._ 364 N D
- @ 0= ™ 4 = g - = = u ® s ® 5 =& 5 W g =« s ® g ® 5 = & g4 =B g .U . ®
~ NS gENG RN 5 o4 02 >~ 1444:.L./7...._.u_ 4/..:? 777 =+ N ot DG QU OV ~ND
«- s ® 5 s g - - s ®& gy ® g = - a2 - - a8 w ® w X 3 w . -
R NN Ny} NIy ~J fc/.é/_/_,_/_(_é/._/_,r C/e ...L /._éb [JRNE I, BN & Iy Ny RSN NS NG I IR I

Iy ~ [§Y]
Mo 454 _ CAET T e e LTI ¢4 45L 4 HTEEW o -
o L é/L4LZ - MO S el SN DT S e i C] D 0 e 03 0 0 60) e v
e el R A S T T N Ny 2 U el A A N N N e S U A T TR
G GOGDGGET O MOV IGTAIOVCT VO GTICGI0 VG0 L $CG0AQ00FaQ

B]

.w..“_H.l ﬂk_:gﬁ“ 4 i W EOEMESY .4_4 :-.1, YUY vt (D _w.. _..A_S.Z.Lu . <t
u.,...u...___z;,C_AA,_J_L;LL.I 4»...“14_._5;.4: 7_-._624;12.4262:1.71...,_5;41.4“
4/.a..14é7.¢ 1“_‘__._...47. 1“44”5:.“&,0.7_..._1.....14&@_u,_/.5784.¢447_b=»./cé1c.w_;44 C.

N R AN BNV RN, TNS I, IV B RV BN, SN S YIS R TNy RN VY SV, JENY BN, NS QR BN Iy Lr_/ClC/O/.-lOlClO:C/OlC/G:C/CIC/.‘A._L.-LULqu_/uLua.n&./C

[
L a]
— +
Eal g
1] c .
ot @ o0} jo7] w
N - o [\ S)
aq > [> > D~
>+ @ <+~ [+ c vm
P =] [| a L mc o
oD - | — O — — 4 C L= D
o @ [, (& =] m [+ 1] ¥ Uy
> 0 — o U GG c E PR e TR
U @ O Lo o [o L] cCoDuyu
o+ 0 E £+ 1= @ W D o [- U WO
c c G T T =] 3 oL a I o] o0 Lo
it — (=R == = ja e [=] a o [+ S R W R

index—type

- 80

PASCAL NEWS #20

Second Draft Frorosal

procedure

procedure-block
procedure—declaration

Pprocedure—identifier .
Pprocedure-statement

prosram—Parameters
real-tyre

record—-tyrpe
record-variable

reference

region

resu]t-

same

scope
set-type

statement

~

el

o~ i

e S L e ¢ Rl a al ol el S el A e Y S e N v 'y Ny NIy S N s N N

DECEMBER, 1980

o~

0o~ U]

o~
(]

>
-
'~

L lEN g
e
o

CIRIRION BRI RGO R W I R o i B e B

o~ O

o~
RO R N SN Sy o N

o~
- L] -

>~
300 e 0N e

o~

(X3

Dol S

(]

oo o

oo
-
O

o~ o

aln.2
bbb B
-
SRR
H.5.3.3
b2 2

L BT 10

FRSTNC I
eiad
21
ALEL3
-é‘-l
lél'::':-7
lé’ll
16‘16.4
A]
.1.4
4.2.4
4.6
2.3 28
AL32
'éa.::jl.é.
LubLE
L] 1212
RS IRC
-4--:-‘.-1
7028
o1
.‘é‘-5|4
-Bt::::ol
LE.3.8

oo
i

A PPON PO

eSO

ay

oo
L] - L]

N o~

~ o~ o~
-
R m
L] - - - - - - -

Q0N ka

(R At K]
- - -

() L0

O P

LU e — 000

—)

[N OV IS N S I SN |

A

0 KD

(R LCR I S O I O}

o~ O
L - »

o~ DN O~

i

o~

o~

IR RAN R

L0
A2
vha b
7209
B
4,303
B=PRCHS !
S.E.3

o
.

oo~ O

o
e~

i

o~ o~

T

o~

L)

1)

DAY N

o~ N O
.

[s NS

. ™ .

x - r °

B3 > - >

oS oo
M

)

ol

[

o~

-1

TN R Sy

-~

o~

e

X

~

7

1

en

0 B2

" " e % g g

—
(]

!

[BROFS Y

IS

~

o~

(OO
~

(0 L b L

Ry o
0

L] . -
= 0100

= U] e
.y

D]
'

e

DECEMBER, 1980

ond [raft Frorosal

lEl:

.c:

PASCAL NEWS #20

~ N U .L o C. __La U~ 4y — URUNO N m
m.n.-.nu”/.u Ny - A /.u.. IO v ... g 4.... ?:.A /.__3 :J.w _”4_. Rm,l..«..uJ._ ...;-.:n,.-..;.“ _._..“ A
/...)4 4. 7.. u.l.. /.““Q“_xl_“ ...“H/.__/ .4#../..7.{./.._& .).4”_...:.._/“/.7 ., :1.. L..,/_.._ .H._ ,m., 1”
S N B R B O R B I S S . S
ST N0 4 o CN MmN o o) mw
qJ ST nw o ﬁh I R T 0D P00 O o U O S e 03 03 03 U 0 09 U U0 09 09 0 6 0
LT RN O e U T S D G 00 D% S U U5 08 0 0 U0 U G N O U G
GECdGd G G948 G9de Geidiidiiciiceiecidedas
U o v <t [N Te —t U] — 00N Q] DO I | ~ [
7.“_“_“ﬂh1_.__.(é _.._.,“_......_..a.wdu.U _LlcnuAu_w:..;..__..._:ul_r._dn_.—._-._.“_._.m_“7“14“.”..1....:..._.4’“

17474:.49 S - 1:&9: :Ccn.é7 A B (R R TRV XA v T N B N NS g v o

/C/C,Cé/ué/._.ﬁ_ﬁ*/.,_/..é/._/r_n?é/o/CIO/CL/C:C/C:OIC /C/ué/C:CLLIC/../._ééé/ClCIC

o
L
LT} = [n
a 4 L 1} w v
> Y el il c
n 4 aQ - 5} ©
LT w i o Lol N} g —
o o o c +] a O
> > a =) 2 c pa) ! + O
+ +~ e w — w | a w 7} 27} m E
1 | 2 o n @ -~ > =] fos — — + >
(1] oy A find —_—rtay u — Kl -t O 0 [T R V1
Pt ol] (1 = T c — | “— 4]] L1 O |
~ e = o O b Q] 1] LT} - e Kol s
. [[a0 E 0 x B4 + o o ' ' [
4 4= 4 = > M ®» [»] o > c Y] m T -~ O
n n wn un n + 4 + o > > >33

PASCAL NEWS #2U JLULIDLN,; 490U

AFTENDIX C. RERUIRED IDENTIFIERE
-

IDENTIFIER REFERENCE CLALSE(S)
abs &b AL
arctan bbb 2
Boolean .4.2.2
char LG22
chr Lubl b4
Z0s Lokl b2
dispose Lb.D03
eof bbb S
eoln LobAED
exP Lobobld
false L4202
gat &.6.5.2
inPut &.10
integer L.4.2.2
In Lob A2
.magint L&.7.2.2
new LLAUSLE
odd . Lol i b5
ord ‘ L.b G4
output 4,10
pack L.E.5.04
page H.RGE
Pred qobobL4
put L.b.5. 2
read AL 0908
readln £.9.03
real &.4.2.2
reset L5502
rewrite L LS 2
round L6063
sin bbb 2
sqr Lok b2
sart £.6.6.2
SUCC 6.6
text £.4.2.5
true L4202
trunc 60603
unrack 65.6.5.4
write .22 609401y AH.9.4,2
writeln £.9.5

IMPLEMENTATION. NOTES ONE PURPOSE COUPON

0. DATE

1. |MPLEMENTOR/MA|‘NTAINER/DISTRIBUTOR (* Give a person, address and phone numbér, *)

2. MACHINE/SYSTEM CONFIGURATION (* Any known limits on the configuration or support software required, e.g.

operating system. *)

3. DISTRIBUTION (* Who to ask, how it comes, in what options, and at what price. *)

4. DOCUMENTATION (* What is available and where. *)
5. MAINTENANCE (*/s it unmaintained, fully maintained, etc? *)

6. STANDARD (* How does it measure up to standard Pascal? Is it a subset? Extended? How.*j

7. MEASUREMENTS (* Of its speed or space..*)
8. RELIABILITY (* Any information about field use or sites installed. *)
9. DEVELOPMENT METHOD (* How was it developed and what was it written in? *)

10. LIBRARY SUPPORT (* Any other support for compiler in the form of linkages to other languages, source libraries, etc. *)

(FOLD HERE)

PLACE

POSTAGE

HERE

Bob Dietrich

M.S. 92-134

Tektronix, Inc.

P.0. Box 500

Beaverton, Oregon 97077
U.S.A.

(FOLD HERE)

NOTE: Pascal News publishes all the checklists it
gets. Implementors should send us their checklists
for their products so the thousands of committed
Pascalers can judge them for their merit. Otherwise
we must rely on rumors.

Please feel free to use additional sheets of paper.

IMPLEMENTATION NOTES ONE PURPOSE COUPON

POLICY: PASCAL USERS- GROUP ' (15-Sep-80)

A‘Purpose{_ i The Pascal User's Group (PUG) promotes the use of the programming

language -Pascal as well as the ideas behind Pascal through the
vehicle of Pascal News. PUG is intentionally designed to be non
. political, and as such, it is not an "entity" which takes stands on
- _issues or support causes or other efforts however well-intentioned.
Informality +is our gquiding principle; there:- are no officers or
meetings of PUG.

The increasing avéilébility of Pascal makes it a viable alternative
for software production and justifies its further use. We all
strive to make using Pascal a respectable activity.

Mémbérship:, Anyone can . join PUG, particularly the Pascal user, teacher,

- maintainer, implementor, distributor, or just plain fan.
- Memberships from libraries are also encouraged. See the
“ALL-PURPOSE COUPON for details.

Facts about Pascal, THE PROGRAMMING LANGUAGE:

Pascal is a small, practical, and general-purpose (but not all-purpose)

‘programming language possessing algorithmic and data structures to aid
- systematic programming. Pascal was intended to be easy to learn and read by
"humans, and efficient to translate by computers.

fPascal has met these goals and is being used successfully for:

teaching programming concepts

developing reliable "production" software
implementing software efficiently on today's machlnes
writing portable software

kK kXK

Pascal implementations exist for more than 105 different computer systems, and
this number increases every month. The "Implementation Notes" section of
Pascal News describes how to obtain them.

The standard reférence and tutorial manual for Pascal is:

Pascal - User Manual and Report (Second, study edition)
by Kathleen Jensen and Niklaus Wirth.

Springer-Verlag Publishers: New York, Heidelberg, Berlln
1978 (corrected printing), 167 pages, paperback, $7.90.

- Introductory textbooks about Pascal are described in the "Here and There"

section of Pascal News.

The programming language; Pascal, was named after the mathematician and
religious fanatic Blaise Pascal (1623-1662). Pascal is not an acronym.

Remember, Pascal User's Group is each individual member's group. We currently

- have more than 3500 active members in more than 41 countries. this year Pascal
.News is averaging more than 100 pages per issue.

Aoijod

