ﬂ\wxmm%\/ Users Group Q @

?ﬁ‘?. ’P.h. “ﬁlllhvhm\ .\Jnmu«.?.no fcu 3\’6&1@03 SRGYLYG
z T - el '..II..,.“. n..,.\b“ - ;..i i..x.ll.'ﬁ‘lﬂ.":": s

A

PﬂSCRl N&WS

" v

Al

e

Pascal News 23a is a supplement, to plug the
lengthesing gap between US originating 23 and 24.Readers
will note that its contents are guite different from those
ot previous editions. There is a shift of emphasis fron
matters of concern at leading edge University level, to
those of concern to producers and users of inexpensive
standardised products.

That shift has been wholly dictated by the content
of material submitted for publication. Whether it is a
tenporary side-step or a permanent change, will also be
Jecided by contributors (to future editions). PUG(UK)
1s the servant of you the subscribers and as such, will
publish material originating from any section of the user
conmunity.

Ue are all indebted to each contributor but Tony
Heyes's gewerosity in offering his Bibliography suite of
prograns fer refineneat through the medium of PN is
particularly appreciated. Constructive critigues are
welcomne,

There is a widening of the user base and an overdue
Jeploysent of resources to that ewd, evidenced by the
complenentary nature of articles from widely differing
sources. Read on and judje for yourselves. Although you
will find that 23a is pitched at quite a Jifferent level
fron that of your usual expectations of PN, I sincerely
hope that you will welcome it as a stop-gap until 24
becones available from Rick, Andy, and Co.

The following is offered as an illustration of the
scene which prompted the production of a supplement.

Intrigued by advertising which referred to “ mere
husans “,1 went along to the personal computer show at
the Barbican on September 12th.

Inagive the disappointment at failing to find anything
innovative or even mildly interesting. Discovered that with
a single exception, exhibitors d4id not know whether
standard Pascal was imnplenented on the machines offered
to the public. More than one of those asked, replied
* fes, it"s called UDLS or something like that “. At one
stand, sponsored by British Petroleum, ithe Department of

Trade and Industey, the Council for Educational Technology,

@i others, an “expert’ merely looked blank and suggested
that I ask someone else. “Someone Else’ replied “ Ue are
only interested in things for use in Education". At the

National Computing Centre stand, another expert, when
asked if his stand offered any information about standard
Pascal and its implementation or use in a microcomputer
environnent, replied " No, there is no demand ", deftly
followed by " Can I help you sir 7" to someowe standing
behind me. In some instances, the initial answer was
“Yes", followed by misrepresentative flannel when a
denonstration was requested.

Met a guy who holds a powerful position in the
largest education authority in Britain. He believes that
BASIC is an “appropriate" language for the “mass" of
young people who “won‘t bother" to become seriously
interested in the techwmology. I should adnit at this point,
that had ay first experience of a perception of machine
intelligence been through the medium of BASIC (or COBOL,
FORTRAN, etc.), I might easily have joined the ranks of
those who either “won’t bother* or are suitably
unimpressed by obscure combinations of hunches, guesses,
and a dash of perceptual skill which only occasionally
fail.

And now for something different --

1. To those of you who requested supply of back numbers,
1 regret that I still havent found a solution to
the very high direct and indirect costs of swall
nunbers of reprints. Even when you are willing to
cover all costs, there remains the burden of sawual
labour and time. Any ideas?

2. PLEASE, if you must use purchase orders, include
include subscription with it. Otherwise there will
be a Jdrowning in paperwork.

3. I still havn“t resolved the problem of how to service
subscribers to PUG(USA). Unfortunately, if they are
serviced out of local funds, the EFFECT (whatever
the intention) is subsidisation of more prosperous
PUG(USA) by barely solvewt PUG(UK) and a detrimental
effect on local service.

In a similar vein, escalating costs necessitate
an increase in the wumbers of subscribers, or, an
increase in subscription cost for “83. It is
suggested that a subscription of 25 Pouwnids per
anum for firms and institutions, with a personal
subscription of half that amount, would be equitable,

Uery Late lews : 232d October '82

Recedved a call from /lndy iiickel yeoterday evening.
Anpareentdy there has been another change of US
editor. This accounts foxr the delay 4n producing PR24.
The good news 4s :
(a) That production of 24 4is now progressing again.
(4) That 7 wild recedve a number of copies of lack
Looswes of Plle IL you did not receive any editions
prion to 22/23, please let me have details plus a
large stamped addressed envelope for each copy
you azrze due.
Wwdth any dluck we may end up with a few osurplus
cppies, 290 Af you woudd Like to make purchases
(20272y no more than one copy of each edition
allowed) please also let me know.
J hope we can now satiofy everyone who was
dioa, rointed by the very patchy coverage of
oubocnibens that resulted from the 1587 attempt
to servdice Cuuropean sulbscrdibers directdy from
({SH.
Remembier the new address and telephone number for
/‘:'!";(./lk) Ao
f.U. Box 52,
Pdinnex,
ddlesex. HAS 37C
Il"'/ .

Tel: 07 866 3876

There aren't any agreed procedures and deadlines (‘P*)
~01 dncluding Ziropean srdgdnating materdial 4An future
ediiions, but 4! you have materdiad you would dike o
pullish pleace send it we 4090 ao po.;»ou:l.e Lo the UX
addresss JE jfor any reason J can't have it dncluded
in the next editdion, the opidion La still there o
aroduce further X ouppdements,

From iydreless ordd.

a4

Re2raduced with PRALLLLD Daredington's pernissdion

I.T.and M.I.S.S.

One of the aims of Information
Technology Year and the Microclectronics
Education Programme is to involve
schoolchildren in the use of
microcomputers and related electronic
devices. There are the M.E.P., the Micros
in Schools Scheme, exhibitions and events
throughout the year and beyond. It is,
perhaps, fortunate that Mr Callaghan
happened to be watching television on the
evening the programme “Now the Chips
are Down" was broadcast and was spurred
into action then, or we would probably
find the propagands even more frenetic
than that now being put out by the
enctgeticMrBaket,theprophctoﬂ'l‘.

Information Technology is & curiously
diffuse name for a Year. The official
definition, “the acquisition, processing,
storage, dissemination and use of vocal,
pictoris], textual and numerical
information by a microelectronics-based
combination of computing and
telecommunications’’ appears to
encompass most of the activities of the
average person, except cating and one or
two other processes, although the use of a
computer is not often considered essential
to the more basic of these.

So far as its involvement of
schoolchildren is concerned, the publicity
is decidedly shrill, the Minister’s aim
being to have & computer in every
secondary school by the end of the year
and even to think about providing themn
for primary schools.

There can be no argument that young
people must be aware of computers and
how to use them, but it does seem possible
that the present blaze of publicity tends to
obscure, the point that computers are a
means, not an end. There is also the
quauonofhowthemmmwbeund
in schools.

According to the fifth edition of the
Coacise Oxford Dictionary (now,
admittedly, modified), a computer is “a
calculstor — an electronic calculsting
machine” - an unfortunate description,
taken too literally by at least some of those
responsible for introducing youngsters to

computing, with the result that the school
micro is often given to the senior maths
teacher to guard with his life, presumably
on the grounds that computers are
electronically mathematical and possess no
relevance to any other subject.

In other schools, the computer is treated
a8 8 kind of totem, and the pupils are '
taught “Computer Studies”. As a subject,
computing (meaning programming) is a
nnguhrlyemptyonc,un!mthepupd
learning it intends to become a
programmer. A computer is an aid to the
process in which it is used — in this
instance, leartiing — and an element of
transparency to the user rather than an
obscuring of the subject by undue
attention to the computer must be the aim.

Clearly, an overnight transformation,
sfter which every teacher would be using a
micro as to the manner born, is hardly
feasible. But, until the school micro (or
one of its terminals or even a micro owned
by a pupil or teacher) can be used
naturally, as is a dictionary or pocket
calculator or a video recorder, it will
dominate the learning process. Utmost
priority should be given to teachers from
all disciplines, from home economics to
athletics, to use the computer as an aid,
nthenhlnuldnmon,lothnpupdo
who are not to specialize in science or
engineering can see that it is of advantage
to them to be at case with computers, but
no more than that.,

The Inner London Education Authority
is aware of these problems and is educating
teachers in the use of computers so that,
evmthoughthaemybeonlyonemo

!hatuendenceaplentytlmeduauon
authorities in other areas are cither
hypnotized or revolted by the new
equipment and, accordingly, either
enshrine it or pass it to the school
computer fanatic o impress people with,

In short, a computer is a useful tool, but
that is all it is: it can help or it can
dangerously hinder learning, and only the
education of teachers in its patural use as
an aid can decide which.

. .

— ™

Pr OPascal is a nativecode Pascal compiler for Z80-based microcomputers. It is designed to run under

CP/M or CDOS, in a memory area of at least 48K RAM. The minimum disc storage required is two 120K drives.

Pro Pascal was produced by Prospero Software of London, England, and released in October 1981. The range of machines on which
it is currently running includes:~
Apple + Softcard, Clenlo Conqueror, Comart Communicator, Cromemco, Digico Prince, Feltron Compulady, Gemini,
Hewlett-Packard 125, Kontron Psi-80, Nascom 3, NEC PC8000, North Star Horizon & Advantage, Pet + Softbox,
RML 380Z, Sharp MZ80B, Superbrain, TeleVideo, Vector MZ, Xerox 820, Zilog MCZ

Pro Pascal is a complete implementation of the recently published BSI/ISO Standard for Pascal, with just two restrictions: conformant
array parameters are not included, and files may not be defined within structured- or pointer-types. A number of important extensions
have been added to the language, making Pro Pascal suitable for a wide range of applications in the professional, business, scientific or

procedure/function declarations (fully recursive)

value, VAR, procedural and functional parameters
Standard procedures

reset, rewrite, get, put

read, readln, write, writeln, page

new, dispose, pack, unpack
Standard functions:

abs, sgr, trunc, round, ord, chr

pred, succ, odd, eof, eoln
sin, cos, exp, In, sqrt, arctan

educational sectors.
Standard features Extensions
Data types: Data types:
integer range -2147483647 to +2147483647 string[n] dynamic-length strings
(4 bytes) (1to0 255 bytes)
real 7-digit precision, range E -38 to E + 38 longreal 16-digit precision, range
(4 bytes) E -308 to E + 308 (8 bytes)
char ASCII 128-character set (1 byte) Statements:
boolean false, true (1 byte)
enumerated upto 256 constants (1 byte) CASE... OTHERWISE
subranges including 1- and 2-byte integers Additional procedures:
arrays any number of dimensions delete, insert, str (string handling)
records including variant records assign, close, erase (CP/M file interface)
sets up to 128 elements (16 bytes) update, seek (random-access file handling)
pointers (2 bytes) chain, putcomm, getcomm (program chaining)
files text and non-text move (assignment without type checking)
Statements: Additional functions:
assignment concat, copy, length, pos (string handling)
procedurecall fstat (does this CP/M file exist?)
GOTO (including jumps out of blocks) cstat (has'a key been pressed?)
compound (BEGIN ... END) memavail (how much dynamic storage left?)
gASEI HEN...ELSE... rand (random number generator)
REPEAT ... UNTIL ... : .
WHILE...DO... SEGMENT (as well as PROGRAM)
FOR ... TO/DOWNTO...DO... COMMON (as well as VAR)
WITH...DO... EXTERNAL (as well as FORWARD)
Operators: Lexical enhancements:
arithmetic + — * / DIV MOD Source file insérts ({$ I filename})
logical AND OR NOT Identifiers containing underscore (___)
comparison { = > (= > D= Hex constants (e.g. 01 FFH)
set + — * IN [...] Longreal constants (e.g. 1.0D0)
Procedures and functions:

Trademarks
Advantage, North Star: North Star Computers

Softicard: Mi R C Products
Superbrain: Intertec Deta Systems
TeleVideo: TeleVideo Systems

Z80: Ziog Corporation

Date :

Pascal lUsers Group (UX),
PO Box 52,

Pinnex,

Middlesex. HAS5 3FE

UK,

Tel: 01 866 3876

Annual calendar year osulocription :
7982 . £9-000
71983 : Individuals - £12=50 .
Inestitutions= £25-00 .,

llame Y
Address :
Phone 2

Computenr oystem :
Special dinteresids:

L gl

Please enter me as suboscrilber Lor / / years.
J enclose £)
J attach :

for publication 4in Pascal News (oz
Supplements to PN).

DIVISION OF INFORMATION TECHNOLOGY & COMPUTING
Department of Industry

P | NATIONAL PHYSICAL LABORATORY

% Teddington Middiesex TW11 OLW

Tolex 262344 Teleg Bushylab Teddi
Telephone 01-977 3222 ext 3976

Your reference
ir Nick Hughes
Fiscal Users Group (UK) Our reference
Chetlandtel
Aall Date 13 May 1982

“hetland SE2 9PF

Zvar Nick

cangratulations for getting PUG(UK) off the ground again. I enclose
1 contribution, labels for those having enquired about the Pascal
validation suite, and a notice about the Standard. Could you ask FUG
“o change their policy statement on the back cover to refer to IS0
7135 rather than Jensen and Wirth?

“ancerning the question of the transmission of Pascal via the CET
telesoftware system, I now understand that this is possible.

Tours sincerely
Yot a/@/

ZRIAN WICHMANN

- '| -
Pascal - an effective language Standard

B A Wichmann, 6/5/82

Article formed the baslis of piece in
Computer Weekiy by Philip Hunter, 11th Feb 19° >, pagel4

Over the last few years. the programming language Pascal 1.5 grown in popularity
very greatly. it is widely used for teaching In Universities. is available on most
micro-processors and main-frames as well. In fact. Pascal is one of the few
languages that form a bridge between microprocessor systems and the
main-frame world.

Untll recently, there has been one drawback to Pascal as a general purpose
software tool. The definition of the language was not very precise and In
consequence, the portabllity of Pascal programs was problematic. The British
Standards Institution(BS) set up a group under Dr Tony Addyman to produce a
standard definition of the language. This was later superseded by an I1SO group
aiso under Tony Addyman. Last October. ISO agreed to the standardization of
Pascal, and after editorial work on the document, BS| published the Standard
in February of this year (BS 6192),

What does this mean for users of Pascal? The portability of Pascal programs
should be much improved provided suppliers implement the Standard and users
write their programs to conform to the Standard. One might think that the position
with Pascal 1s no different from that of COBOL or FORTRAN and yet portability
problems arise with these languages. There are several reasons for believing that
Pascal Is different:

1. The Pascal standard Is more comprehensive than that of
COBOL or FORTRAN. For instance. the COBOL and FORTRAN
standards do not require that an invalid program is rejected
by a compiler. The Standard for these languages is just a
definition of a language rather than a set of requirements for
a complier. This is clearly not very satisfactory since we all
write Incorrect programs on occasions.

2. The Pascal Standard is simple and devoid of a multitude of
options. If the language has lots of options. then program
portability is reduced because a program may not be valid
without a specific option. COBOL has a large number of options
and FORTRAN 77 has two major leveis (essentlally distinct
languages) whereas Standard Pascal has Just one option,
aftecting only one part of the language. This option Is to allow
procedures 10 handle arrays whose size varies from call to call.
This option, level 1 Pascal. would aliow Pascal programs to
call FORTRAN routines In many systems.

3. The Pascal test suite is more searching than that of COBOL
and FORTRAN. This s lally & ¢« quence of the
definition of the language. The Nationat Physical Laboratory has
been collaborating with the University of Tasmania on the
construction of this suite for over two years. About 400 coples
of the test suite have been soid worldwide. A new version of
this suite has recently been Issued to correspond to the new
ISO Standard. Unlike the COBOL and FORTRAN test suites. the
one for Pascal includes iIncorrect programs which must be
rejected: ones to examine the error-handling capablilty of a
complier. and the °“quality* of an Impiementation. The quality
tests indicate If there iy any smail limit to the complexity of

-2 -

programs that a system can handie and also assesses the
accuracy of real arithmetic.

All the major components t0 make Pascal a good Standard are now available,
that is. a Standard definition and tests to verity conformance of a compiler to
the Standard.

~ Standard and tests to check conformance to the Standard are not alone
quite sufficient. The test procedures must be-used and results made known to
those using Pascal compilers. This can be achieved by independent testing of
compilers which is currently being investigated by BSI (Hemei Hempstead). BS|
have a weaith of expedience with testing other goods but this is their first venture
Into computer software. For this reason. both NPL and NCC are assisting 88!
in this important development.

The last step in this process is to encourage users to request a Standard
compiler from the suppliers and for suppliers to meet that demand. As a
contribution” 10 this last step. NPL held a conference on this topic with its
collaborators. Professor Arthur Sale from the University of Tasmania addressed
the conference making it an internationali event. The other key speakers were
John Charter from BSI who described how a validation service run by BS! would
work, Professor Jim Weish from UMIST who described how the Standard can be
Implemented and Lyndon Morgan from NCC who described a guide written to
support the test procedures. Also Barry Byrne, from ICL explained how the
provision of a standard complier for Pascal is advantageous in both marketing
and for Internal use. Mr Ken Thompson from the European Commission explained
the usefuiness of international standards within the Community and some of the
problems in their effective exploitation.

This program contains five errors, often
undetected by compilers. Can you spot them?

program test;
const
nil = ‘0*,;
begin
if nil # 0’ then
writeln(°‘WROMG', +nil, .123)
else
writeln(°‘RIGHT')
end.

Try it on your system and see how mAny erroxs
are detected.

*ITBTP ® moTTO3 IS jutod Twwyoep ®

‘ubys ® AOT1OF Fouuwd TIU

. ‘(sTenbe 0u) <> sw USIITZA BT §

*(PIOA DEATESEX ® ST 3IT) ISTITIUSDY UT Ew Pesn eq Jouuwd TU
‘ze3ewered Sv IndINO UTEIUCO Isnm weaboxd

‘e
i/
't
‘T
‘T

s10123

The corrected progras is:

program test{output);
const
nill = '0*;
begin
if n1ll <> '0' then
writeln(‘WRONG', nill, 0.123)
else
writeln(°'RIGHT')
end.

Although this test is only an illustration, it does show the wide
ranging capabilites of current compilers. The results of compilers
tested so far can be summarised thus:

Compiler Errors Accuracy of Recovery from

detected error messages last error
A L] 3 4
B 2.5 2 3
c 2 2 2
D 1 2 1
E 2.5 3 2
F 3.5 3 3
G 4.5 4 3
H 5 4 y
I 3.5 1 2

All the marks are out of 5. The half marked for detecting an error
indicates that the error message was confusing enough for it to be
unclear. if the error was properly detected. Naturally, the last two
columns are subjective.

June 1982 ,a~ “PASCAL PROCESSOR VALIDATION PROCEDURE"
by

DAVID BLYTH, Standardisation Office,
Introduction National Computing Centre
Few Pascal users can be unaware of the recent publication
of the British Standard for the language which will
shortly be adopted internationally. Many users have heard
of the suite of validation programs, developed by the
University of Tasmania and the National Physical
Laboratory, which can be used to check on the standard-
conformance of an implementation. This suite is readily
available and any user who has a copy can use it to test
his own compiler or interpreter. For those brave users
who undertake such testing this article presents a brief
guide to the steps involved and draws upon experience
gained at NCC in a joint NPL/NCC/BSI project to develop
and document the validation procedures.

The Pascal Standard and Validation Suite

The Pascal standard defines the language itself and the
manner in which Pascal programs are to be handled by an
implementation. The validation suite contains over 400
test programs whose purpose is to check whether or not an
implementation accepts the language as defined in the
standaxrd and whether or not programs which are accepted
behave as the standard says they should. The standard and
the validation suite have been developed in parallel with
the result that the suite will provide an exceptionally
strenucus test of any implementation. An implementation
which performs well under test can be used with confidence
in its conformance and reliability.

The suite contains eight types of test program which
invest igate respectively, conformance, deviance,
implementation-defined features, implementation-dependent
features, error handling conformance arrays, quality and
extens ions. These classes of tests are quite distinct and
are used in characteristic ways.

Conformance Tests

Conformance test programs attempt to check that an

impl ementation provides those features required by the
standard and that it does so in the manner vhich the
standard specifies. These programs are all correct
standard Pascal. If the implementation conforms to the
standard these programs all compile and execute. If a
conformance test program fails then it is an indication
that the implementation does not conform to the
standard.

2.2 Deviance Tests

Deviance test programs check whether

(1) the implementation provides an extension of
Pascal;

1

(ii) the implementation fails to check or limit in an
appropriate manner some feature of Pascal;

(iii) the implementation incorporates some common
error.

No deviance test program is standa d Pascal. Each such
program contains exactly oné such eviation. When a
deviance test is run the results are inspected for
evidence that the implementation does in fact detect the
deviation. If it does not then the implementation does
not conform with the standard.

Implementation-Defined Features

The standard defines an implementation-defined feature
as one which may differ between implementations but
which is defined for any particular processor. A
conforming implementation must be accompanied by a
document that provides a definition of all its
implementation-defined features. The test programs for
implementation-defined features are intended to show how
these features are handled in any particular :
implementation. If they aren't handled in the manner
claimed then the implementation does not conform.

Implementation-Dependent Features

An implementation-dependent feature may differ between
implementations and is not necessarily defined for any
particular implementation. Here the implementor can
either state in his documentation that use of such
features is not reported or else have the implementation
issue some diagnostic for which such a use is
encountered. The test programs in this area are
designed to determine the behaviour of the
implementation. The implementation conforms only if it
behaves as claimed or reports implementation-dependent
usages.

Error-Handling

An error is defined, in section 3.1 of the standard, to
be a violation by a program of the requirements of the
standard that the implementation is not obliged to
detect. An implementation only fails to conform in
respect of error-handling if it fails to process an
error in the manner claimed in the documentation. The
error-handling tests each present the implementation
with one error with the aim of determining exactly what
the implementation does with it.

Conformant Arrays

An implementation may conform with the standard at
level-0 or at level-1l. In plain terms it can either
have conformant arrays or it can't. If conformant
arrays are provided then all of the features specified
for them must be provided according to the standard.

2

The conformant array tests are a collection of
conformance, deviance, implementation-defined,
implementation-dependent, error-handling and quality
tests designed to test the conformant array features in
isolation.

Quality

Many aspects of an implementation are beyond the scope
of the standard, but it is still useful to investigate
them. Quality tests explore these areas and
investigate:

(i) the limits on the size and compiexity of programs
imposed by the implementation
(ii) the amount of store needed to perform certain
~ well-defined tasks
(iii) the acturacy of real arithmetic
(iv) the meahingfulness of diagnostics for common types
of error
(v) the speed of the code produced.

Quality tests often throw up some surprising results!

Extensions

Many implementations offer extensions to the standard.
The extension tests see whether common extensions (eq

those approved by PUG) are implemented.

Together the test programs provide.a very thorough test
of an implementation.

3 Using the Validation Suite

3.1

Distribution Format

The validation suite is distributed on 9 track magnetic
tape with characteristics as follows:

Recording density : 800 or 1600 bpi
Recording mode s+ NRZI or PE
Character code :+ ISO 646 or EBCDIC
1200 bytes/block, 80 characters/record.

A purchaser of the tape can specify which density,
recording mode and character code he wants.

There are 49 files on the tape. Three of these contain
documentation. The rest contain the validation
programs. .

3.4

Media Conversion

Users whose machines have tape drives should experience
no significant problems in reading the distribution
tape. Their only concern will be with lexical
conversion if necessary.

Users with floppy disc based systems need to do a media
transciption to get the suite in a form in which they
can use it. This conversion can be tricky, and is
almost always done on an ad hoc basis for the particular
system concerned.

Lexical Conversion

There are two character sets to consider when using the
suite - the one used to encode the test programs, and
the one used to represent "char-type” values on the
target computer.

Roughly speaking any consistent set of lexical
substitutions can be made, but some may render specific
lexical test programs, and some programs which test the
char type, irrelevant in validation.

Care is needed to ensure that lexical conversion is
consistent throughout. This is particularly important
if media conversion affects character code
representations.

Integrity Checking

Following media and lexical conversion it is advisable
to check that no corruption has occurred. For this
purpose a program called the Checktext program is
supplied. It produces a 96-bit binary check pattern
using an algorithm originally developed for use in data
transmission (CCITT Rec. V.41)]

The Checktext program operates on a standardised
internal representation of the progam and will not be
affected by legal lexical substitutions. Certain parts
of the program may need customisation for use on
particular systems and the source code is marked to show
where such changes should be made.

The results of the Checktext program should be compared
with standard results contained in the User Guide to the

suite (supplied with the distribution tape) and if there is

any discrepancy then transcription has introduced errors.

4
4.1

Checking Validation Suite Assumptions

A validation suite must necessary make certain
assumptions about the nature of the implementations
which it will be used to test. The Pascal validation
suite assumes that

* text files

* character-strings
* the real-type

* local files

are all implemented, also that

lines up to 72 characters long can be accepted
lines up to 72 characters long may be output

the value of maxint is > 32,000

the relative precision for reals is < 0.001

the characters need to encode the test programs are
all accepted as distinct by the implementation

* the "largest” procedure in the test suite is
acceptedby the implementation (except for certain
quality test procedures).

* * % * »

A further implicit assumption is that the real arithmetic
system is susceptible to investigation by certain types of
method.

The validation suite contains a program called the “Check
Assumptions” program which enables the user to determine
whether or mot the implementation violates any of the
assumptions listed above.

Planning and Running the Tests
Planning is Important

Test ing an implementation is not just a matter of running
all the test programs, The test suite is large and on some
machines it is not possible to run all the tests without
breaking tbe suite into batches. Further more close
attention must be paid to ensure that the behaviour of the
implementation is accurately recorded throughout the test
procedure. Finally provision must be made to make it easy
to re-run any particular test after preliminary
interpretation of test results.

Choice of the method of working can have a marked effect on
the overall time taken to run the tests. There are two
areas to consider. First some method must be chosen to
extract test programs from the files which contain them,
Second the organisation of the jobs which run the test
programs must be decided. The User Guide illustrates three
approaches for each of these methods which will cover most
cases on a wide range of machines.

Some programs may prove to be rogues on certain
implementations. There is no way of knowing in advance
which programs will behave in this way for any given
implementation. The user should take care so that such
programs do not cause the loss of accumulated test
results.

In any event some programs will n¢ :d re-running because the
results on the first run may have .een inconclusive. The
circumstances in which a re-run ir need are given in the
Guide.

Reporting Results

It is desirable to adhere to a standard form of presentation
when reporting the results of a validation. This offers two
main advantages.

First, when a formal validation is being done, a standardised
format redutes the risk of hidden bias and provides a concise
statement of how an implementation has performed under test.

Second the user community can more closely monitor the extent
of conformance with the standard.

The Guide specifies ten section headings for the standardised
report:

Processor Identification

Test Conditions

Conformance Test Results

Deviance Test Results

Error-Handling Test Results
Implementation Defined Test Results
Implementation-Dependent Test Results
Level 1 Test Results

Quality Test Results

Extension Test Results

OCOVWDMNOUL bW~

[y

Guidance on the content and presentation of these sections is
included and a sample validation report is included as an
Appendix.

Practical Use

The present article offers only a brief sketch of the
validation procedure. At first sight it may look somewhat
daunting. In practice the key is attention to detail.

The User Guide gives fairly detailed advice on
transcription and test job organisation,and will be found
helpful by most people undertaking tests of
implementations. Once transcription and organisation have
been sorted out the tests usually run smoothly. Carrying
out a full test is a rewarding exercise which offers many
lessons to language implementors. It is hoped that users
and implementors alike will use the test suite and help to
promote rapid practical standardisation of Pascal.

6

5

UNIVERSI1 £ NOTTINGHAM

University Park,
Tel. 0602~56101 Ext. 3187 Nottingham.

NG7 2RD.

BLIND MOBILITY RESEARCH UNIT
26th. April 1982.

Dear Nick,

Please find enclosed an up to date version of my
Pascal Bibliography. Naturally I would not expect any of the
readers of Pascal News to have enough spare time to type up these
programs so0 I will gladly let them have tapes in return for
postage and administrative costs.

Finally as a self taught programmer I would appreciate
comments from readers particularly if anyone finds an example of

where I have failed to make use of the facilities available
withia the lanaquage.

THE UNIVERSITY OF NOTTINGHAM

BLIND MOSBILITY RESEARCH UNIT

Programme Lesders
Protessor C. I. HOWARTH
L

DEPARTMENT OF PSYCHOLOGY
UNIVERBITY PARK
NOTTINGHAM NO7 2R0

Tolophone (0602) 88101

Deg N2
Phe ot wdoed 8 Bikod.pp b

E.xw,r etk o e el £

(rnk %) A (% o %) b M depac
phedasd Th e FiRic Hoaw L epectd
U fed e

T

—

A Pascal Bibliography.
by Tony Heyes
Blind Mobility Research Unit,
Department of Psychology,
University of Nottingham.
England.

Introduction.

The Pascal Bibliography is a package of programs written in
standard Pascal and should therefore be easily transported. It
enables users to store references and to retrieve them either by
AUTHOR name or by KEYWORD; or logical combinations of AUTHORS and
KEYWORDS. The bibliography is designed for human use; it uses
very explicit prompts.

Design Rhilosophy.

The bibliography consists of a collection of ITEMS. Each
ITEM takes the form of :-

One line devoted to AUTHOR or ADDRESSEE names.
Two lines devoted to TITLE or ADDRESS.

Two lines devoted to LOCATION.

DATE ITEM NUMBER.

Two lines devoted to KEYWORDS.

For example:-

HEYES A.D.,FERRIS A.J.,ORLOWSKI R.J.
COMPARISON BETWEEN TWO METHODS OF RESPONSE FOR

AUDITORY LOCALISATIOM IN THE AZIMUTH PLANE.
J. ACOST. SOC. AMER., 58; 1336-1339

1975 260
DEAFNESS, LOCALISATION,AUDITORY DISPLAYS
STEREOPHONIC SOUNDS,KINAESTHESIS

If ITEMS are addresses the convention is to store the
address on the two lines of title.

i~

I

For example: -

BL.OGGS J.B.

Mr.J.B.Bloggs,\13 Pishpond Rd.,\Beeston,
Hottingham.\NG7 2RD.\U.K.

Tel 0602-251234

1980 27
ADDRESS,CIRCULATION LIST,XMAS CARD

Note the use of the backslash (\] to indicate the start of a
new line. Note also that additional information such as the
telephone number can be stored on the location 1lines. Note,
finally, the date has little meaning in this context.

Items may be located by running the program “bibout”.
Items may be APPENDED or CHANGED by running the program "bibin®,

Both programs are well supplied with prompts and are very simple
to use.

Since additions and changes require that the current
DICTIONARY be recompiled and this takes time, the actual changes
take place during the night. The instructions to implement the
changes reside in a PENDING TRAY until the night time run. The
user will remain unaware of this slight restriction unless he

tries to locate an ITEM during the day on which the ITEM was
loaded.

liethod of Use.

The following assumes the use of the UNIX operating system.
Login with your user name, give your password, respond to the
first systen prompt "t" with “cd bib", ie. change directory to
"bib", In answer to the next system prompt, "S" , you may select

any one of the programs from within the package.
These are =z~

a) "bibin" to enter new items or to change
an ITEM.

to search the bibliography for
an ITEHN,

to produce a hard copy of the
current DICTIONARY.

d) “cat sScratch 1lpr" to output a hard copy of the

) SCRATCH FPILE.

b} “"bibout"®

c) “outdict"

NEW USERS SHOULD ASK IF THEY MAY HAVE ACCESS
TO AN ESTABLISHED BIBLIOGRAPHY AND THEN TRY
USING "bibout® TO LOCATE ITEMS OF INTEREST.

To logout respond to the system prompt "%" by typing "control z°.

The Programs.

a)

"bibin*
The opening prompt allows the selection of one of the
following options :-

APPEND

The prompts should be sufficiently explicit, but note :-
(1) Authors and keywords should be separated by commas.
Since they are used in the dictionary they should not spill
over the end of a line. They ocan be any ‘léngth but only
the first 20 characters are significant.
(2) The terminal will probably be set to produce lower case
letters. The program will automatically convert them to
upper case. If you wish to override this, begin each 1line
of text with a backslash [\].
(3) The date must be a single integer e.g. 1980.
(4) If addresses are to be stored use the two title lines,
Cclose pack but indecate new lines with a backslash [\].
(5) A personal local storage reference may be kept on the
second location line. It should be enclosed in square
brackets; e.g. [BM760] means that a copy of this ITEMN is in
the BM library, entry number 760.

CHAMGE

Answer the prompts but please take note of the following:-
1) You must know in advance the ITEM number of the ITEWS
you require to change,
2) You have to retrieve the ITEMS from the bibliography so
CHANGE 1is relatively slow; be patient. It saves time, if
Yyou are changing more than one ITEM to make the changes in
numerical order of ITEM number.
3) You retrieve the ITEM to be changed from the
bibliography, the changed ITEM goes into the PENDING TRAY.
If you change the same ITEM more than once in a single day
only the last version will survive.

SPECIAL FACILITY

This option moves the contents of the SCRATCH file into the
PENDING tray. It can be used for moving ITEMS from one
bibliography to another. Since SCRATCH is a text file, ITEMS
may be changed using an editor and then loaded back into the
PENDING tray. (Clever stuffll).

-3 -

b)

c)

"bibout"
The computer will count the ITEMS in the bibliography and then

offer the option of producing a HARD COPY of the dictionary or
doing a SEARCH for TTEMS.

SEARCH
You may either search by NUMBER or, more usually by using the
DICTIONARY.
You may opt to send the results either to the TERMINAL or to
the SCRATCH FILE for subsjquent printing.
SEARCH by NUMBER
The search is terminated by asking to search for item number
zero [0].
A block of ITEMS my be seached for by asking to search for
item number minus one [(~1]. You will then be asked for the
lowest and the highest item numbers of the block.
SEARCH by DICTIONARY
You will be asked'for a word i.e. an AUTHOR name or a KEYWORD.
The computer will look this up in the DICTIONARY and list the
ITEM numbers of all ITEMS containing this word in their AUTHOR
or KEYWORD string. If you are doing a single word search
answer the next prompt with a full stop (.], and then the
instruction to 'LOOK UP. 1If, however, it is a multiple word
search give tne next word. Once again the corresponding ITEM
number list will be printed out.
The answer to the prompt "AND, OR, or NOT" enables you to
combine the current ITEM number list with the previous ITEM
number list. Por instance:-

AND oOnly numbers present in both lists are

retained.
OR All numbers from both lists are retained.
NOT Numbers present in the current list are
deleted from the previous list.

A new current list is printed out showing the results of the
selection. The search sequence may be continued for any
number of logiacl combinations of words. At any time a search
for the ITEMS in the current list may be initiated by giving a
full stop {.]). After which you may either LOOK UP the
selected ITEMS or, if you have made a mistake in your list
combinations simply RESTART. There is one special word,
namely ***, this word will match all the dictionary.

"outdict"”

No prompts and no option, simply type "outdict” in answer to
the system prompt “8" to obtain a hard copy of the current
DICTIONARY.

Note, you must have first prepared a copy of the DICTIONARY by
running the appropiate HARD COPY option of "bibout".

d) "opr scratch"

This program is run to obtain the printed output from
*bibout®, provided the option had been chosen to send the
output to the SCRATCH FILE.

No prompts and no options, simply type "opr scratch®™ in answer
to the system prompt "%* to obtain a hard copy of the contents
of the SCRATCH FILE.

N.B. If you would 1like to 1list the SCRATCH PFILE to the
terminal to check the contents then run “cat scratch®.

Acknowledgements.

I gratefully acknowledge the encouragement and support I
have recieved from Roger Henry and Chris Blunsdon.

The bibliography was originally intended for use by the
members of the BLIND MOBILITY RESEARCH UNIT it is however
avajlable to any members of the Pascal Users Group. Would anyone
wishing to take up this offer please contact Tony Heyes to
arrange medium of transportation.

12

by

Apr 25 18:12 1982: adh Bibin.p (written Apr 19 09:55 1982) Page 1

NOTES JIMPLEMENTORS
kR program Bibin(input,output,bank,dict,scratch,dlist,PendingTray);

The following notes outline the steps the inplementer should take ;‘ To ADD, CBANGE or REMOVE items, *Dending®
in order to establish a new bibliography. After this groundwork, nstructions left in a PendingTray file ‘pen g,
the user can use the shell commands bibin , bibout , and gutdict 75t“311°h°n9:s made by ‘“"“123 dalb:fg::e':) N onit
to build d manipu the bibl . written by Tony Heyes, Blind Mo Yy Resear. nit,
o build an pulate Lography Department of Psychology, The University,
1. The bibliography system requires 6 workfiles named bl to Nottingham, U.K. *)
bé. The recommended practice is for the user to devote a label 10
directory to the bibliography, say ‘user/bib‘. The abe H
workf iles can be created easily using the cat command. E.g const LineLn = 70;
cat > bl ~z RowLn = 20;
HiTag = 10000;
File b3 requires a link named scratch. This can be created NonDate = ~-1066;
by the command -
type string = packed array {(l..LineLnl of char;
in b3 scratch item = record
authors,titlel , title2,
2. b6 is used as a temporary scratch file during the placel,place2 : string;
overnight run. It grows to be as large as bl. If there is date : integer;
insufficient room on the user's disc b6 may be coerced on dfeyl.keyZ : string
to another disc. end;
word = packed array [1..20] of char;
3. The bib directory must contain the following shell row = array [l..RowLn] of integer;
commands :- dic = record
nanme : word;
bibin Bibin.out bl b2 b3 b4 bS numbers : row;
cont : boolean
bibout Bibout.out bl b2 b3 b4 b5 end;
TagItem = record
bibupdate Bibupdate.out bl b2 b3 b4 b5 b6 ‘ tag : integer;
entry : item
outdict (1pr bd;rm bd; >bd)s end;
4. Finally, an entry must be made in the UNIX table var empty,entry : item;
'crontab' so that bibupdate will be executed during the bank.: file of item;
night. PendingTray,TempPendingTray : file of Taglten;

dlist,scratch : text:

dict : file of dic;

TagEntry : Taglten;
ch,AppendOption,ChangeOption,MainOption,lielpOption,SpecialOption : char;
chge : boolean;

a,n,nn,count : integer;

procedure InlChar (var ch : char);
< (* to read the first character of a word typed into the terminal *)
begin
ch := input”;
while not (ch in [*A*..'2','a'..'z']) do
begin (* akips along until first character found *)
get{input);
if eoln(input)
then
begin

Apr 25 18:12 1982: adh Bibin.p (written Apr 19 09:55 1982) Page 2

writeln;
write('ERROR: character required ')
end;
ch := input”
end;
while not eoln(input) do (* gkips over rest of line)
get (dnput)
end; (* of InlChar *)

procedure Inllnt (var int : integer);
(* to read an integer and not cause a fatal error if a character is given *)
var ch : char;
a,0rdZero : integer;
NegFound : boolean:t
begin
repeat (* skips along until integer is found *)
get(input);
if eoln(input)
then
begin
writeln;
write('ERROR: digit required ')
end;
ch := input”
until ch in [*=','+','0'..'9');
if che'~?
then
begin
NegPound := true;
get(input);
ch := input”
end
else
begin
NegFound := false;
if chw'+?
then
begin
get(input);
ch := input”®
end
end;
a := 0;
Ordzero := ord('0');
repeat
a i= l0*at+ord(ch) ~Ordzero;
get(input);
ch := jnput”
until not (ch in ('0'..'9']));
while not eoln(input) do (* skips over rest of line %)
get(input);
if NegFound
then
int = -a

: ¥
Apr 25 18:12 1982: adh Bibin.p (written Apr 19 09:55 1982)

else
int := a
end; (* of InlInt *)

procedure VDUinString(var str : string);
(* to input from terminal *)

var i,n : integer;
ch : char;
AllCaps : boolean;
begin
n = 0;
AllCaps := true;
repeat
n = n+l;
read(ch);
if (n=1) and (ch=*)
then
n = 0;
if (n=1) and (ch='\")
then .
begin (* defeat automatic shift with '\' =)
AllCaps := false;
n =0
end;
if n¢>0
then
begin
if AllCaps
then
if ch in ('a'..'2"')
then
ch = chrlord(ch)~32);
strinl := ch
cne
until eoln(input);
for i:=1+l to LineLn do
strli] = * ?
end; (* of VDUinString *)

procedure ScratchInStr(var str : string);
(* input from file scratch *)
var n,i : integer;
ch : char;
begin
if not eof(scratch)
then
begin
n = 0;
repeat
" read(scratch,ch);
until (ch=':') or (eof(scratch));
while (not eoln(scratch)) do
begin

Page 3

Apr 25 18:12 1982: adh Bibin.p (written Apr 19 09:55 1982) Page 4 Apr 25 18:12 1982: adh Bibin.p (written Apr 19 09:55 1982) Page 5

read(scratch,ch); writeln;
n := n+l; while not eof(scratch) and not HeadingError do
strln] := ch; begin
end; repeat
if n+l<sLineLn ’ get(scratch);
then if not eof(scratch) then
for i:=n+l to LineLn do if eoln(scratch) then LineNo := Lineno + 1
strli) = * v, until (eof(scratch)) or (scratch™ = '-');
end if scratch”™ = ™' then NegFound := true;
end; (* of ScratchInStr *) ' LineNo := LineNo + 1;
if eof(scratch) then
function ScratHoldsItems : boolean; begin
{* to inspect the SCRATCH FILE and check that ITEMS are complete *) if not NegFound then (* no ITEMS present *)
var count,LineNo : integer; begin
FaultFound,HeadingError,NegFound : boolean; HeadingError := true;
procedure CheckLine; writeln('SCRATCH does not contain ITEMS.')
var CharCount : integer; end
LineTooLong,BadLine : boolean;) end
begin .) else
LineNo := LineNo + 1; begin
CharCount := 1; vhile not eoln(scratch) do get(scratch);
BadLine := false; for count := 1 to 5 do CheckLine; :
LineTooLong := false; LineNo := LineNo + 1;
get(scratch);) get(scratch);
while (not eoln(scratch)) and (CharCount < LineLn + 9) do while (not eoln(scratch)) and
begin) not (scratch”™ in [*1'..'9')) do get{scratch);
get{scratch); . while (not eoln(scratch)) and
CharCount := CharCount + 1; not (scratch”™ = ' ') do get(scratch);
if (CharCount = 9) and (scratch® <> ':') then BadLine := true; while (not eoln(scratch)) and -
end; not (scratch™ in ['1'..'9']) do get(scratch);
if CharCount < 9 then BadLine := true; if eoln(scratch) then
while not eoln(scratch) do ' begin (* two numbers not present *)
begin FaultFound := true;
get{scratch); writeln('Line',LineNo : 4,' two integers not found.*)
if scratch™ <> ' ' then LineTooLong := true end
end; else
if BadLine then while not eoln(scratch) do get(scratch);
begin for count := 1 to 2 do CheckLine;
FaultFound i= true; end.
wreiteln('Line’,LineNo : 4,' bad line '':'' missing."') end;
end; if FaultFound then
if LineTooLong then begin
begin writeln;
FaultFound = true; writeln('Errors in SCRATCH use editor to correct, then try again.':
writeln('Line’,LineNo : 4,' overflow.') writeln; ’
end ScratHoldsItems := false
end; (* of CheckLine *) end
begin) else if not HeadingError then ScratHoldsItems := true;
LineNo := 0; reset(scratch)
HeadingError := false; end; (* of ScratHoldsItems *)
FaultFound := false;
llegFound := false; procedure empt; (* to empty an ITEM *)
writeln; var NoChar : string;

writeln('SCRATCH FILE CHECK in progress,'); a : integer;

Sl

Apr 25 18:12 1982: adh Bibin.p (written Apr 19 09:55 1982)

ch : char;
begin
NoChar([l] = * ¢;
NoCharl[2] := ' *;
NoChar(3] := ' 1;
for a:=4 to Lineln do
NoChar [a] := Y,';
with empty do
begin
authors := NoChar;
titlel := NoChar;
title2 := NoChar;
placel := NoChar;
place2 := NoChar;
date := NonDate;
keyl := NoChar;
key2 := NoChar

end;
for a:=2 to 9 do
begin
case a of

2: ch = ', %;

3: ch := 'e';

4: ch := 'm';

S5: ch := 'p';

6: ch = 't';

73 ch 1= 'yt

8: ch := '

9: ch = * !
end; (* of case *)
empty.authors{a) 1= ch

end
end; (* of enpt *)

procedure OutRecord(entry : item; n : integer);
(* to write to the terminal *)
var a : integer;
begin
for a:=1 to 7 do
write('=s——————- I1');
writeln;
with entry do
begin
vriteln(authors);
writeln(titlel);
writeln(title2);
writeln(placel);
writeln(place2);
writeln(date:8," Item number :',n :5);
writeln(keyl);
writeln(key2)
end '
end; {(* of OutRecord *)

Apr 25 18:12 1982: adh Bibin.p (written Apr 19 09:55 1vs2)

procedure GetReference(n : integer)j
(* to count through bank to find an ITEM *)
begin
if n<count
then
begin
reset (bank);
count 3= 1
end;
while (count < n) and (not eof(bank)) do
begin
count := count+l;
get(bank)
end;
if eof(bank)
then
begin
writeln;
writeln(' You have only got',count -1,' Items.');
writeln;
goto 10
end
else
OutRecord(bank”,n)
end; (* of GetReference *)

procedure change(var entry : item; m 1 integer);
(* to change the mth. ITEM %)
var line : integer;
DMOption,LineOption : char;
str : string;
begin
writeln;
writeln;
repeat
write('Do you wish to DELETE or MODIFY ')
InlChar (DMOption) .
until DMOption in ('D','d','"','m*);
if DMOption in {'D','d’]
then
begin
empt 3
entry := empty
end
else
begin
vwriteln;
writeln('You may REPLACE a line,');
vwriteln('move to the MEXT line,');
writeln{'or SKIP to the end of the item. ');
writeln;
line := 0;
repeat
line := line+l;

Page 7

pr 25 18:12 1982: adh Bibin.p

(written Apr 19 09:55 1982) Page 8

with entry do
case line of
1: str =
2: str :=
3: str :=
4: str :=
5: str :=
6: ;
7: str :=
8: str := key2
end; (* of case *)
if line<>6
then
begin
writeln;
writeln(str);
writeln(output);
repeat
write('REPLACE, NEXT line or SKIP to end
InlChar (LineOption)
until LineOption in ['R','r','N','n','s','s'];
writeln;
if LineOption in ['R','r')
then
begin
writeln('Type replacement line
writeln;
VDUinString{str);
with entry do
case line of
1l: authors
2: titlel
3: title2
4: placel := str;
5: place2 := str;
7: keyl := str;
8: key2 := str
end; (* of case *)
end

authors;
titlel;
title2;
placel;
place2;

keyl;

1Y)

1= gtr;
:= 8tr;
= Str;

end
else
begin
vriteln('Date
writeln;
repeat
write('REPLACE, NEXT line
InlChar(LineOption)
until LineOption in ['R','r*','N','n','S','s'];
if LineOption in ['R','r']
then
begin
writeln('Type replacement date ');
write(': ');
Inlint(entry.date)

‘yentry.date :4);

or SKIP to end

Ll

Apr 25 18:12 1982: adh Bibin.p (written Apr 19 09:55 1982)
end;
end
until ((line=8) or (LineOption in ['S','s'1));
end;

writeln;

writeln('Modified item reads :) ;

writeln;

OutRecord(entry,m) ;

writeln;

end; (* of change *)
begin (* MAIN PROGRAM *)
count := HiTag;
n = 1;
reset (PendingTray) j
rewrite (TempPendingTray) ;
while not eof (PendingTray) do
begin
TempPendingTray” := PendingTray”;
put (TempPendingTray) ;
get(PendingTray)
end;
rewrite(PendingTray);
reset (TempPendingTray) ;
while not eof (TempPendingTray) do
begin (* copy back 'PendingTray' and count contents *)
PendingTray” := TempPendingTray";
put (PendingTray) ;
get (TempPendingTray) ;
n := n+l
end;
rewrite(TempPendingTray) ;

repeat

writeln;

repeat
vwrite('Do you wish to APPEND, to CHANGE, ');
writeln('to use the SPECIAL facility, ');
write('or to FINISH ');
InlChar(MainOption)

until MainOption in [*A',‘*a','C','c','S','s','F','f'];

(* HMainOption~ S
used

is a special facility,
for loading from ‘'scratch’ to 'PendingTray’ *)

case MainOption of
'A','a': (* TO APPEND *)
begin

writeln;

repeat
write('Do you need help [YES or NOI
InlChar(HelpOption)

until HelpOption in ['Y','y','N',*n'];

if HelpOption in ('Y','y’']

')’

sene

(* copy down existing contents of file ‘PendingTray’

Page 9

*)

I);

Apr 25 18:12 1982: adh Bibin.p (written Apr 19 09:55 1982) Page 11

25 18:12 1982: adh Bibin.p (written Apr 19 09:55 1982) Page 10
then _ until ChangeOption in ['Y','y’,'N','n');
begin if ChangeOption in ['Y','y')
then
riteln
:riteln:'NOTBs.'); change (entry,n)

write(® (a) Authors and keywords separated');
writeln(’ by a comma “,".');

write("(b) To remove the automatic conversion to ');
writeln('upper case letters');

write(® begin a line of text with');

writeln(' a backslash "\".');

write(® (c) Date must be a siﬁgle integer number');
writeln(' eqg. 1980.');

write(®(d) If addresses are to be entered use the two');
writeln(' title lines;');

write(*® close pack but indicate new');

writeln(' lines with a backslash "\".');

write(®(e) A personal local storage .reference');
writeln(' may be kept on the 2nd. location line');

write(*® but should be enclosed in square brackets;');
writeln(' for example: [BM3601.')
end;
repeat
writeln; ‘
writeln('New item:~ ');
writeln; .
for a:=1 to 7 do
write('s=—eremea I');
writeln) .
with entry do
begin

writeln('Line of author names, or name of addressee :');

VDUinString(authors);

writeln('First line of title or address :');

vVDUinString(titlel);

until ChangeOption in ('N','n'};
if entry.date <> NonDate

then
begin

TagEntry.tag := HiTag;
TagEntry.entry := entry;
PendingTray” := TagEntry;
put (PendingTray) ;

n := n+l

end
else
begin

writeln;

writeln('Item withdrawn.');

writeln
end;
writeln;
repeat

write('Do you wish to append more items [YES or NO) ');
InlChar (AppendOption)
until AppendOption in ['Y','y','N','n');
until AppendOption in ['N',!In’)
end; (* of Append option *)

'C','c': (* TO CHANGE *)
begin;
writeln;

repeat

write('Do you need help (YES or NO) ');
InlChar(HelpOption) :

writeln('Second line of title or address :');
VDUinString(title2);

until HelpOption in {'Y','y','N','n'];
if HelpOption in ('Y','y']

writeln{'First line of reference location :'); then
VDUinString (placel); begin
writeln('Second line of reference location :');
VDUinString{place2);

writeln('Date ~ just the year - ')
InlInt(date);

writeln('Pirst line of keywords 1');
VDUinString(keyl);

writeln;

writeln('You MUST know the ITEM NUMBERS of the ITEMS you wish to change.');
writeln('If you do not, leave this program and run "bibout” to find them.');
writeln(‘Changes do not take place immediately, they stay in the PENDING'),
writeln('tray until the “update" program is run.');

writeln('If an ITEM is changed more than once only the last version su:vives.?

writeln('Second line of keywords :'); end;
VDUinString(key2); repeat .
end; 10: writeln;
writeln; . chge := false;) .
OutRecord(entry,n); writeln('Type 0 if no ITEM needs changing, otherwise type');
repeat write('the ITEM number... ');
writeln; InlInt(nn);
repeat if nn<o
write(*Do you wish to make a change [YES or NO] ') . then
InlChar (ChangeOption) begin

/8

Apr 25 18:12 1982: adh Bibin.p (written Apr 19 09:55 1982) Page 12

writeln;
writeln('No negative numbered ITEMS')
end;
ifon >0
then
begin
writeln;
GetReference(nn);
if not eof (bank)
then
begin
entry := bank”;
repeat
writeln;
repeat
write('Do you wish to change this item [YES or NO} N
InlChar (ChangeOption)
until ChangeOption in ['Y','y!,'N','n'}}
if ChangeOption in ('Y','y']
then
begin
change(entry,nn)
chge := true
end
until ChangeOption in ['N‘','n'];
TagEntry.tag := nn;
TagEntry.entry := entry;
if chge
then
begin
PendingTray” := TagEntry;
put (PendingTray)
n t= n+l
end
end
end;
writeln;
until nn = 0
end; (* of Change option *)
'S','s': (* To move from text file ‘'scratch' to 'PendingTray' *)
begin
writeln;
write('This option moves the contents of the ');
writeln('SCRATCH file into the PENDING tray.');
write('It can be used to copy selected ITEHLS from one');
writeln(' bibliography to another.');
write('OR, it can be used to reinstate ITENS ');
writeln('which have been changed by the editor.");
writeln;
repeat
writeln;
vrite('Do you wish these items to be APPENDED, REINSTATED or HNO ACTIOH ..ss ');
InlChar (SpecialOption)

T

Apr 25 18:12 1982: adh Bibin.p (written Apr 19 09:55 1982) Page 13

until SpecialOption in [('A','a','N','n','R','r'];
if Specialoption in ['A','a’,'R','r'])

then
begin
reset (scratch);
writeln;

(* now check that scratch holds ITBMS in
the correct form ¥)
if (not eof(scratch)) and
ScratHoldsltems
then
begin
while not eof(scratch) deo
begin
with entry do
begin
ScratchInStr(authors);
ScratchInStr(titlel);
ScratchInStr(title2);
ScratchInStr(placel);
ScratchInStr(place2);
read(acratch,date)
repeat
read(scratch,ch)
until ch = ':*;
readln(scratch,TagEntry.tag);
writeln(n,' Dated ',date,' Item number °',TagEntry.tag);
ScratchInStr(keyl);
ScratchInStr{key2);
end;
if SpecialOption in ['A’',’a'] then
TagEntry.tag t= HiTag;
TagEntry.entry := entry;
PendingTray”™ := TagEntry;
put (PendingTray);
n := n+l;
if not eof(scratch)
then
get(scratch)
end;
rewvrite(scratch)
end
end
end; (* of Special option *)
'F','f': begin
writeln;.
writeln('Number of ITEMS now in Pending Tray =',n-1
writeln
. end
cend (* of case "MainOption®" *)
until MainOption in ('F*','f']}
cnd. (* end of program Bibin.p =)

Jun 26 15:20 1982: adh Bibout.p (written 23 11:58 1982) Page 2
Jun 26 15:20 1982: adh Bibout.p . (written Jun 23 11:58 1982) Page 1 : Pa out.p (written Jun age

writeln
program B ibout (input,output,bank.dict,scratch,dlist,PendingTray); wi:t:%'éRROR: character required ')
(* To call down items from the bibliography *) end;
(* written by Tony Heyes, Blind Mobility Research Unit, ch := input”
Department of Psychology, The University, end;
Nottingham, U.K.. *) while not eoln(input) do (* skips over rest of line *)
get(input)
label 10; end; (* of InlChar *)
const LineLn = 70: procedure InlInt (var f : text; var int : integer);
Rovkln = 20; (* to read an integer and not cause a fatal error if a character is given
HiTag = 10000;
LinesPerPage = 64 ; var ch : char;
VDULinesPerPage = 24; a,0rdZero : integer;
NegFound : boolean;
type string = packed array [l..LineLn] of char; .begin
item = record repeat (* skips along until integer is found *)
authors,titlel,title2, get(f);
placel ,place2 : string; if eoln(f)
date : integer; then
keyl ,key2 : string begin
endp writeln;
word = packed array [1..20) of char; write('ERROR: digit required ')
row = array (l..RowLn] of integer; end; .
dic = record ch = £°
name : words; until ch in ['=',%4°,%0'..'9'];
numbers : row; if ch=!'-'
cont : boolean then
end; begin
link = “DicLine; NegFound := true;
DicLine = record get(£);
val : integer; ch 1= £°
next s link end
end; else
begin
var FileAssigned : boolean; NegFound := false;
bank,PendingTray : file of item;) if che'+?
dlist, AddressFile,scratch : text; then
dict : file of dic; begin
FirstLink,SecondLink,ThirdLink,ptl,here : link; ‘get(f);
low,high,n,lumSoFar, ch = £°
LineNo,AddLinello,count,TopItem,NFromDict,NumW : integer; end
device,FileStyle,MainOpt,NDOption,LogicAction : char; end;
=
procedure InlChar (var ch : char); grQZeSA t= 0rd('0');
(* to read the first character of a word typed into the terminal *) repeat
begin a := l0*a+oréd{(ch)=-OrdZero;
ch := input®; get(£f);
while not (ch in ('A'..'2','a'..'2']) do ch 1= £°
begin ’ ' until not (ch in ['0°'..'9'));
(* skips along until first character found *) while not eoln(f) do (* gkips over rest of line *)
get(input); get(£);
if eoln(input) if Keglound
then

then
begin

—— S,

un 26 15:20 1982: adh Bibout,p (written Jun 23 11:58 1982) Page 3

int := -2
else
int 1= a
nd; (* of InlInt *)

rocedure SkipToEndOfPage (PageLines : integer;
svar where : text);
w:gin
while LineNo < PageLines do

begin
writeln(where);
Linello := LineMo+l
end;
LineNo := 0
nd; (* of SkipToEndOfPage *)

rocedure GetRef(n : integer; destination : char);

ir a,CharCount ,LineInQuestion,NOfComnas,tordLength : integer;
line : string;
DoubleSpace ,InBrackets,KeepNextCap,
something,KeepAllCaps,woops : boolean;
ch,LastCh : char;
‘Gin
if n<count
then
begin
reset (bank) ;
count := 1
ena;
while (count < n) and (not eof(bank)) do
begin
count := count+l;
get(bank)
end;
it eof(bank)
then
begin
uriteln;
writeln(' You have only got',count -1,' Itens.');
writeln;
goto 10
ehd
clue
with bank” do
begin
case destination of
'T','t': (* Output to terminal *)
begin
if (VDULinesPerPage~LineNo < 9)
then

SkipToEndOfPage (VDULinesPerPagc,output) ;

for a:=1 to 7 do
write('meecmecaae Il),

X4

Jun 26 15:20 1982: adh Bibout.p (written Jun 23 11:58 198z, Page 4

writeln;
writeln(authors);
writeln(titlel);
writeln(title2);
writeln(placel);
writeln(place2);
writeln{(date:8,"* Item number :',n :5);
writeln(keyl);
writeln(key2);
LineNo := LineNo + 9

end; (* of 'T' %)

'I','i's (* Output to scratch file *)

begin

if LinesPerPage-LineNo < 9
then

SkipToEndOfPage(LinesPerPage,scratch) ;
for a:=1 to 7 do

write(scratch,'<—~cwee-- I');
writeln(scratch,'~——-—-ee-= s

writeln(scratch, 'Names s ',authors);
writeln{scratch,'Details :',titlel);
writeln(scratch,® s',title2);
writeln(scratch,’ :',placel);
writeln(scratch,' :',place2);
vriteln(scratch,date:14," Item number:',n :5)
writeln(scratch,'Keywords:',keyl);
writeln(scratch,® :*,key2);

LineNo := LinelNo + 9
end; (* of 'I' *)
'E',"e': (* Output to scratch file in envelope label format.
Only for addresses. *)
begin
vwriteln(AddressFile);
AddLinelo := AddLinelNo +1;
woops := true;
for LineInQuestion:=1 to 2 do
begin)
DoubleSpace := false;
LastCh := ':'; (* initail value *)
CharCount := 0;
writeln(Addressrile),
AddLinelo := AddLinelo +1;
write(AddreasFile,' ')y
if LineInQuestionsl
then
line := titlel
else
line := title2;
while (CharCount<LineLn) and not DoubleSpace uc
begin
CharCount := CharCount+l;
ch := linel(CharCount];
Wf ch=t\'
then

6 15:20 1982: adh Bibout.p (written Jun 23 11:58 1982) Page 5

begin
woops := false;
writeln(AddressFile);
AddLineNo := AddLineNo +1;
write(AddressFile,' ')
end
else
write(AddressFile,ch);
DoubleSpace := (ch=' ') and (LastCh=' ');
LastCh := ch o
end
end;
while (AddLineNo mod 8) <> 0 do
begin
writeln(AddressFile);
AddLineNo := AddLineMo + 1
end; i
if woops '
then
begin
writeln;
writeln;
vrite('An attempt to output a reference');
writeln(' in address format.');
writeln;
writeln;
write('Aduresses must be close-packed on the two');
writeln(' title‘lines.');
writeln('Use the backslash "\" as line separator.');
writeln;
rewrite(scratch);
FileAssigned := false;
goto 10
end
end; (* of 'E' *)
'R','r's (* Qutput in format for wordprocessor NROFF *)
begin (* firstly the author line *)
writeln(scratch,'.nr');
(* this is an NROFF macro *)
write(scratch,'\:'); (* bold lettering command *)
DoubleSpace := falsge;
KeepAllCaps := false;
woops 1= false;
LastCh = '3,
CharCount := 0;
NOfConmas := 0;
if authorsil)='\"
then
begin
KeepAllCaps := true;
CharCount := CharCount+l
end;
while (CharCount<LineLn) and not DoubleSpace uo
begin

(* initial value *)

Jun 26 15:20 1982: adh Bibout.p (written Jun 23 11:58 1982) Page 6

CharCount := CharCount+l;
ch := authors(CharCountl;
if ch=',?
then
NOfCommas := NOfCommas+l;
DoubleSpace := (ch=' ') and (LastCh=' ');
LastCh := ch
end;
DoubleSpace := false;
LastCh := ':';
CharCount := 0;
while (CharCount<LineLn) and not DoubleSpace do
begin’
CharCount := CharCount+l;
ch := authors(CharCountl];
if (ch in ['A'..'2']) and (LastCh in ('A'..'Z'))
and not KeepAllCaps
then
write(scratch,chr((ord(ch)+32)))
else
if ch=',*
then
begin
if NOfCommas=l
then
‘write(scratch,*' & ')
else
write(scratch,', ');
NOfComuas := NOfComnas-1
end
else
write(scratch,ch);
DoubleSpace := (ch=' ') and (LastCh=' *);
LastCh := ch
end;
writeln(scratch,'(’',date : 4,')\1');
for LineInQuestion :=1 to 4 do
begin (* title and place lines *)
KeepNextCap := true;
KeepAllCaps := false;
case LineInQuestion of
1: line := titlel;
2: begin
line := title2;
KeepNextCap := false
end;
3: ‘line := placel;
4: begin
line := place2;
CharCount := 0;
InBrackets := false;
repeat
CharCount := CharCount+l;
if linelCharCountl="'{*

22

:20 1982: adh Bibout.p (written Jun 23 11:58 1982) Page 7 Jun 26 15:20 1982: adh Bibout.p (written Jun 23 11:58 1982) Page 8
then ch = 's'; (* initial value *)
InBrackets = truej while (CharCount < LineLn) and
if InBrackets (linel(CharCount+l] <> '1') do
then begin
if linelCharCountl=']") CharCount := CharCount+l;
then LastCh := ch; B
begin ch := linelCl rCountl;
linelCharCount] := ' '; if not ((Last.n in {*~',' ']) and
InBrackets := false (ch in (*~',* *]))
end; then
if InBrackets begin
then _ if (ch in {'A'..'2']) and not KeepNextCap
linelCharCount) := * °* then
until CharCount=LinelLn ch := chr((ord{ch)+32));
end if ch in [('A'..'2']
end; (* of case LineInQuestion *) then
CharCount := Lineln; KeepNextCap := false;
repeat if ch='\'
CharCount := CharCount-1 then :
until (CharCount=1) or (line(CharCountl<>' '); woops := true; (* its an address *)
if CharCount<LineLn if ch='"*
then then
linelCharCount+l] = 'J'; (* a silly character *; begin
(* placed at the end of the character stirng *) ch = ' 'y
WordLength i= 0; if (LineInQuestion in (3,4])
if CharCount>1 then
then KeepNextCap := true
repeat end;
CharCount := CharCount-1; if (ch in ['1'..79'))
if line{CharCount]<>' then
then KeepNextCap := false;
begin R if (ch<>' *) and (ch<>'t?)
if linelCharCount] in (‘'A'..'2'] then
then sonething := true;
WiordLength := WordLength+l if something
end then
else : write(scratch,ch)
begin end
if not (WordLength in [2,31) end;
then if something
linelCharCount) = *~'; then
(* another silly char fills up spaces writeln(scratch)
before words which keep caps. *) end;
WordLength := 0 if woops
end : then
until CharCount=1; begin
CharCount := 0; writeln;
something := false; writeln;
if linelll="\" write('An attempt to output addresses in');
then writeln(' reference format.');
begin . writeln;
KeepAllCaps := true; writeln;
CharCount := CharCount+l rewrite(AddressFile);

ends fileAssigned := false;

i

Jun 26 15320 °1982: adh Bibout.p (written Jun 23 11:58 1982)

goto 10
end
end (* of 'R' %)
end (* of case destination *)
end
end; (* of GetRef *)

procedure ReWind(var ptr : 1link);

var p,q.pt : link;

begin
p = ptr;
pt := nil;
while p<>nil do
begin
new(q) ;
q”.val := p“.val;
qQ”.next := pt;
pt := q;
here := p;
P := p~.next;
dispose (here)
end;
ptr := pt
end; (* of ReWind w)

procedure GetDict(m : integer; var ptr : 1link);

var a : integer;
P ¢ link;
OldEntry : dic;
more z boolean;
begin
if m < HiTag
then
begin
reset(dict);
a = 1;
while a<m do
begin
OldEntry := dict”;
get(dict);
if OldEntry.cont=false
then
a = a+l
end;
writeln;
writeln(dict”.name);
ptr := nil;
repeat
for a:=1 to RowLn do
if dict”.numbersfal<>0
then
begin

Page 9 Jun 26 15:20 1982: adh Bibout.p (written Jun 23 1l:._ £982)

new(p) 3
p~.val := dict”.numberslal;
p~.next := ptr;
ptr :=p
end;
more := dict”.cont;
get(dict);
until not more;

ReWind(ptr)
end
else
begin
ptr := nil;
for a:%TopItem downto 1 do
begin
new(p) ;
p*.val := a;
p".next := ptr;
ptr :=p
end
end

end; (* of GetDict *)

procedure join(var pl :link; p2 : link; which : char);

var continue : boolean;
q,9p.ptl,pt2,pt3 : link;
begin
ptl := pl;
pt2 := p2;
continue := (pti<>nil) and (pt2<>nil);
gp := nil;
case which of
‘A','a': (* AND *)
begin
while continue do
begin
if ptl”.val>pt2”.val
then
begin
pt3 := ptl;
ptl := pt2;
pt2 := pt3
end;
if pt2”.val>ptl”.val
then
begin
ptl := ptl”.next;
continue := ptl<>nil
) end
else
if ptl”®.val=pt2”.val
then
begin

Page 10

n 26 15:20 1982: adh Bibout.p (written Jun 23 11:58 1982) Page 11

new(q);

q”.val := ptl”.val;

q”.next := gp;

qp = q;

ptl := ptl”.next;

pt2 := pt2”.next;

continue := (ptl<>nil) and (pt2<>nil)

end
end
end; (* of AND *)
'0','0': (* OR *)
begin
begin
while continue do
begin
if ptl”.vald>pt2”.val
then
begin
pt3 := ptl;
ptl := pt2;
pt2 := pt3
end;
if ptl”.val<pt2”.val
then
begin
new(q) ;
q”.val := ptl-.val;
q”.next := gp;
qp = q;
ptl := ptl®.next;
continue := ptl<>nil
end
else
if ptl”.val=pt2”.val
then
begin
new(q) s
q®.val 1= ptl®,.val;
g”.next := gp;
ap := q;
ptl := ptl”.next;
pt2 := pt2”.next;
continue := (ptl<>nil) and (pt2<>nil)
end
end;
if ptl=nil
then
ptl := pt2;
while ptl<>nil do
begin
nev(q) ;

g".val := ptl-,val;
q”.next := gp;
qp = q;

S¢

Jun 26 15:20 1982: adh Bibout.p (written Jun 23 11:58 1982) Page 12

ptl := ptl®.next
end
end
end; (* of OR *)
'N','n': (* NOT *)
begin
while continue do
begin
if ptl”.val>pt2”.val
then
begin
pt2 := pt2-.next;
continue := pt2<>nil
end
else
if ptl”.val<pt2”.val
then
begin
new(q) ;
g”.val := ptl®,val;
g".next := gp;
qp = q;
ptl := ptl”.next;
continue := ptl<>nil
end
else
if ptl®.val=pt2”~.val
then
begin
ptl := ptl”.next;
pt2 := pt2”.next:;
continue := (ptl<>nil) and (pt2<>nil)
end
end;
while ptl<>nil do
begin
new(q);
g*.val 1= ptl®,val;
q”.next := gp;
qp = 4;
ptl := ptl”.next
end
end (* of NOT *)
enu; (* of case *)
Retlina(gp) ;
Pl := gp
end; (* of join *)

procedure OutList(ptr : link; var aa : integer);

Jun 26 15320 1982: adh Bibout.p (written Jun 23 11:58 1982) Page 13

writeln;
while p<>nil do
begin
aa := aa+l;
if aamod 13 = 0
then
wtiteln(p”.val :5)
else
write(p®.val 35);
P := p".next
end;
writelm;
writeln
end; (* of OutList *)

procedure DictList(var where : text);
(* T0 LIST DICTIONARY *)

const NoOfLines = 64;
WordsPerLine = 4; (* Change constants to suit page size *)
(* See also line 700 *)

type list = arrayl(l..384) of word;

var num,i : integer;
OldEntry : dic;
WordList : list;
begin
reset(dict);
rewrite(dlist);
i s= Q3
while not eof(dict) do
begin
for nums=1 to NoOfLines*WordsPerLine do
begin
OldEntry := dict”;
while (dict”.cont=true)and(not eof(dict)) do
get(dict);
if not eof(dict)

then
begin
WiordList[num) := OldEntry.name;
get(dict) ‘

end

e

Pordlistinum) = 0

* =l vt NoifLines do
' -"rf.wU:dest(numl,WOtdList(NoOfLines+numl,
riL:tt(2'noO[Lincs+numl,wordLiBt[3*NoOfLines+numl);
st 11t for more words per line)
*CordrPerline

Jun 26 15:20 1982: adh Bibout.p (written Jun 23 11:5s 1982) Page 14

write('Dictionary written to file.');)
wpiteln(' To obtain a hard copy run "outdict®.V);

(* ‘outdict' simply prints out the file 'dlist'. #)
writeln

end; (* of DictList *)
procedure TwoCols (var P,G : text);

const rows = 8;
TwiceRows = 16;
cols = 40;

type ChLink = “chstack;
chstack = pecord
ch : char;
next : ChLink
end;

lines = arrayll..TwiceRows]! of ChLinkj

var pt.here : ChLink;
lin,StartLin : lines;
LineNo,CharNo : integer;
ch ¢ char;

procedure reverse(var ptr : ChLink);

var p,q,pt,dump : ChLink;

begin
p = ptr;
pt := nil,
while p <> nil do
begin
new(q) ;
q".ch 1= p®.ch;
q".next 1= pt,
Pt = q;
dump := p;
p := p“.next;
! dispose (dump)
end;
ptr := pt
end; (* of reverse *)
begin
reset(F);
if not eof (F)
then
begin
page(G) ;
writeln;
writeln('Output in two column °®'Xerox'' label format.');
writeln
end;

while not eof (F) do

un 26 15:20 1982: adh Bibout.p (written Jun 23 11:58 1982)

begin
(* mark(here) ¥*)
for LineNo := 1 to 2*rows do
begin
StartLin{LineNo) := nil;
if not eof(F) then
while not eoln(F) do
begin
read(F,ch);
new(lin(LineNol);
lin(LineNo]l “.ch := ch;
lin(LineNo] “.next := StartLin[LineNo);

StartLin{LineNo] := lin{Linelo)
end;
if not eof(F)
then
readln(F);
reverse(StartLiniLineNol);
end;

for LineNo := 1 to rows do
begin

CharlNo := 0;

pt := StartLin{LineNol;

while (pt <> nil) and (CharNo < cols) do

begin

write(G,pt”.ch);
here := pt;
pt := pt”.next;
dispose (here);
CharNo := CharNo + 1

end;
pt := StartLinl(LineNo + rowsl;
if pt <> nil
then
while CharNo < cols do
begin
write(G,' ');
CharNo := CharNo +1
end;
while pt <> nil do
begin

ch t= pt”.chy
write(G,ch);
here := pt;
pt := pt®.next;
dispose (here)
end;
writeln(G)
end;
(* release(here) *)
end
nd; (* of TwoCols *)

Page 15

Jun 26 15:20 1982: adh Biboyt.p (written Jun 23 11:58 1982)

procedure GetFromDict(var FirstWord,NumWords : integer);

var
ch,action,option : char;
n,ChCount,PointerNum,NumberFound : integer,
name,signame : word;
AllCaps : boolean;
begin
writeln;
AllCaps := true;
ChCount := 0;
write('Enter word required or [.]);
repeat
read(ch)
until ch<>!' *;
if ch="'\'
then
begin
AllCaps := false;
read(ch)
end;
if ch=',"*
then
begin (* *®action” *)
while not eoln(input) do
get(input))
repeat
writeln;

writeln('Do you wish to LOOK UP the selected string, tc :!.:

write('selection or to QUIT the dictionary .
InlChar(action)
until action in ['L*,'1','R*,'c','C',"'y"!
end
else
begin (* word *)
action 1= 'W',
repeat
ChCount := ChCount + 1;
if ChCount > 1
then
read(ch);
if AllCaps and (ch in [(‘'a'..'z'}))
then
name [ChCount] 1= chr(ord(ch)=-32)
else
name [ChCount]) := ch
until eoln(input) or (ChCount = 20);
if not eoln(input)
then
readln;
for n:=ChCount+l to 20 do
name(n) = * ¢
end;
if action in [('L','1"]

Page 16

un 26 15:20 19 82: adh Bibout.p (written Jun 23 11:58 1982) Page 17

then
PirstWord := -1 (* look up *)
else
if action in ['R',°r"]
then
PirstWord := -2 (* restart *)
else
if actionm in ('Q','q’]
then
PirastWord := 0 (* quit *)
else

if nanég=’es*
(* special word *)
then
begin
writeln;
writeln(*®*+ ALL ITEMS ##4');
writeln;
repeat
write('Is this correct ({YES or NO)
InlChar(option) '
until option in [°Y’,'y*,'N’,'n’];
if option in [°'Y','y*].
then
PirstWord := BiTag
else
GetPrombict (FirstWord, Numilords)
end
else
begin (* a real word *)
reset(dict);
HumberFound := 0;
Pointerlum := 0O;
writeln;
signame := * 's

')

while (name >= gigname) and not eof(dict) do

begin
if name=gigname
then
begin
vriteln(dict”.nane);
HumberPound := NumberFound+l
end;
while (dict”.cont=true) do
get(dict);
if (PointerRum > 0) and not eof(dict)
then
get(dict);
PointerNum := PointerRum+l;
for n:=1 to ChCount do
signameln] := dict”.nameln};
for n:=ChCount+l to 20 do
signane(n} = * *;
end;

Jun 26 15:20 1982: adh Bibout.p (written Jun 23 11:58 1982) Page 18

writeln;

if NumberFound=0
then
begin

writeln(*Word not found in your dictionary; try again.');

writeln;
GetFromDict (PirstWord, NumWords)
end
else
begin
repeat
if NumberFdund = 1
then
write('Is this word correct (YES or NOI ')
else
write(°‘Are ALL these words required ({YES or NO!
InlChar{option)

until option in ['Y','y*,'N','n’]),

if option in ['Y*','y']
then
begin

PirstWord := PointerNum -~ NumberPound;

NumWords := NumberFound
end
else

GetFromDict (FinstWord, NumWords)

end
end
end; (* of GetFromDict *)

begin (* MAIN PROGRAM *)
rewrite(scratch);
rewrite(AddressFile);
reset(bank) ;
count := HiTag;
LineNo := 0;
AddLinelNo := 0;
PileAssigned := false;
writeln;
writeln('To retrieve ITENS from the BIBLIOGRAPRY.');
(* TO SEARCH BY AUTHORS and KEYWORDS *)
writelng :
reget (dlist);
if dlist”™ = ¢~
then
InlInt(dlist,Toplten)
else
begin
Toplten := 0;
writeln('Counting, please wait.');
writeln;
writeln;
vhile not eof (bank) do
begin

28

26 15:20 1982z adh Bibout.p (written Jun 23 11:58 1982) Page 19

Topltem := TopItem +1;
get(bank)
end;
rewrite(dlist);
writeln(dlist,'~',TopItem : 5);
writeln(dlist);
writeln(dlist);
writeln(dlist, 'Your DICTIONARY must first be compiled by running');
writeln(dlist,' the HARD COPY option of ''bibout'',*);
writeln(dlist);
writeln(dlist)
end;
riteln('The BEIBLIOGRAPHY currently holds *,TopItem,’ ITEMS.');
epeat
writeln;
10: repeat

writeln{ 'Do you wish to obtain a HARD COPY of the current dictionary,') ;

write('to SEARCH for items or to FINISH ');
InlChar(MainOpt)
until MainOpt in ['H','h','S','s','F','£'];
writeln;
if MainOpt in ['H','h']}
then
begin
DictList(dlist);
HainOpt := 'p¢
end;
if MainOpt in ['S*,'s'}
then
begin
repeat
writeln; .
writeln('Do you wish to search by item HUMBER');
write('or by use of the DICTIONARY ');
InlChar (NDOption)
until NDOption in [°'N','n','D','d'];
writeln;
repeat
vriteln;
write('Output to TERNINAL or to scratch FILE ')}
InlChar(device)
until device in ['T','t','F','£','S','s']);
writeln;
if device in ['T','t'] *
then
FileStyle := 'T';)
if (device in [*F','f','S','s']) and not FileAssigned
then
repeat
writeln('ls the desired output');
write('an ITEM list,');
writeln(' ‘''the full item being given'' ');
write('a REFERENCE list,');

writeln(' ‘‘only the reference part beiny given'' ');

Jun 26 15:20 1982: adh Bibout.p (written Jun 23 11:58 1982)

write('or an address list suitable');
write(' for ENVELOPE addressing ');
InlChar(FileStyle);
FileAssigned := true

until FileStyle in ['I','i','R','c','E','e’');

if FileStyle in ('R',‘'r']
then
begin

writeln(scratch,'.hy 0'); (* NROFF commands *)

writeln(scratch,'.na');
writeln(scratch,'.sp 2');
writeln(scratch,'.de nr');
writeln(scratch,'.sp’');
writeln(scratch,'.ne 6°');
writeln(scratch,'.ti ~5'});
writeln(scratch,'..');
writeln(scratch,'.ne 10');
writeln(scratch,'\:References.\:');
writeln(scratch,'.sp 2');
writeln(scratch,'.in +5')
end;
writeln;
case NDOption of
'D','d' : begin
writeln('Words are looked up in ');
writeln('the dictionary and a list of reference numbers');
writeln('containing the given word is shown on the terminal.')
writeln;
write('The special "word", [***] will match with all the words'
writeln(' in the dictionary.*');
writeln;
write('Logical combination of *);
writeln(‘author and keywords continue until you wish'); -
writeln('to terminated the search.');

writeln;
writeln('To terminate a search answer the prompt with a full stop {(.).');
writeln;

repeat

writeln;

writeln('New sequence.');

writeln;

NumSoFar := 0;
(* mark(here) *)
GetFromDict (NFromDict ,Num¥) ;
if NFromDict > 0 (* a real word *)
then
begin
GetDict (NFromDict ,FirstLink);
if NumW > 1
then
repeat
NFromDict 1= NFromDict + 1;
GetDict (NFromDict,SecondLink) ;
join(FirstLink,SecondLink, '0');

Page 20

);

Jun 26 15:20 1982: adh Bibout.p

(written Jun 23 11:58 1982) Page 21

Num¥W := NumW -~ 1
until NumW = 1;
OutList(FirstLink,NumSoFar);
while NFromDict > 0 do
begin
GetFromDict (NFromDict , NumW) ;
if NFromDict > 0 (* a real word *)
then
begin
GetDict (NFromDict,SecondLink) ;
if Numw > 1
then
repeat
NFromDict := NFromDict + 1;
GetDict (NPromDict ,ThirdLink) ;
join(SecondLink,ThirdLink,'0');
NumW := NumW - 1
until NumW = 1;
OutList (SecondLink,NumSoFar) ;
repeat

write('AND, OR or NOT ? ')

1]
InlChar(LogicAction)
until LégicAction in [*A','a','0',%o’,
'N','n');

join(FirstLink, SecondLink,LogicAction) §

OutList(PirstLink,NumSoFar)
end
end;)
if ((NumSoFar > 0) and (NFromDict = ~1))
then (* look up *)
begin
writeln;

writeln('Search in progress for',NumSoFar :8, ' Items');

writeln;
ptl := PirstLink;
while ptl<>nil do
begin
GetRef (ptl~.val,FileStyle);
here := ptl;
ptl := ptl”.next;
dispose (here)
end;]
if FileStyle in ['I',*i','R','r','E*,'e']
then
begin
writelns;

writeln('ITEMS written to SCRATCH FILE.');

writeln
end;
(* release(here) *)
end;

end

until NPFromDict=0 (* quit *)

end;

Jun 26 15:20 1982: adh Bibout.p (written Jun 23 11:58 1982) Page 22

'N','n' : begin (* TO SEARCH BY NUMBER *)
writeln;
writeln('ITEMS may be called-by number.');
writeln('A whole block of ITEMS may be called;');
write('to do this answer this prompt with');
writeln(' minus one [(-1}).');

writeln;

writeln('To quit: answer prompt with a zero (0], *);
repeat
writeln;

write('Number of ITEM to be referenced..... ');
InliInt(input,n);
writeln;
if n=-1
then
begin
writeln;
writeln('To output a block of ITEMS.'});
writeln('Give the LOW ITEM number ,then the HIGH number.');
write('LOW number ');
InlInt(input,low); ,
write('HIGH number '); -
InlInt(input,high);
if (low=0) or (high=0)
then
begin (* an‘escape *)
low := 1;
high := 0;
n 1= 0
end;
if low <= high
then
begin
writeln;
writeln('Search in progress');
writeln;
for n:=low to high do
GetRef (n,FileStyle)
end
end
else
ifn>0
then
begin
writeln;
writeln('Search in progress.');
writeln;
GetRef (n,FileStyle)
end
until n=0
end
end (* of case NDOption *)
end
until tainOpt in ('F','£'];

0

Jun 26 15:20 1982: adh Bibout.p (written Jun 23 11:58 1982) Page 23

if FileStyle in ('R','r']

then
begin
writeln(scratch,'.in -5');
writeln;
writeln('The output file '‘’scratch'' contains the references and the');
writeln(finstructions for the word processing program '‘'nroff''.');
wr iteln;
writeln('An attempt has been made to reintroduce lower case letters.');
wr iteln('To obtain your output run, '‘’nroff scratch'' ');
wr iteln;
writeln('If all is not well edit scratch and run '‘'nroff scratch'' again.'
writeln;
wr iteln('When all is correct get the hard copy output by '};
wr iteln('running '‘*nroff scratch (lpr''. *);
wr iteln
end;
if FileStyle in ['E','e"']
then
TwoCo 1ls(AddressFile,scratch) ;
writeln;
writeln;
writeln('FINISHED.');
writeln

:nd. (* of program Bibout.p *)

1%

T

(written Jun 24 09:19 1982)

Jun 26 15:24 1982: adh Bibupdate.p Page 1

program Bibupdate(input,output,bank,dict,scraten,
dlist,PendingTray,TempBank) ;

(* A non-interactive program which moves the contents of ‘'PendingTray"

to the bibliography. Clever systems run this program at night,

TempBank is made external because it grows to be as large as bank.

Diagnostics are written to ‘*scratch'.

Written by Tony Heyes, Blind Mobility Research 'nit,

Department of Psychology, The University,

Nottingham, U.K.. *)

LineLn = 70;
RowLn = 20;
heap = 200;
HiTag = 10000;
stack = 50;
NonDate = ~1066;

const

type string = packed array [l..LineLn] of char;
item = record
authors,titlel ,title2,
placel ,place2 : string;
date : integer;
keyl ,key2 : string
end;
word = packed array [1..20) of char;
row = array [(l..RowLn) of integer;
TagItem = record
tag : integer;
entry : item
end;
point = “CoreTagltem;
CoreTaglten = record
TagEntry : Tagltem;
next : point
end;
dic = record
name 1 word;
numbers t row;
cont : boolean
end;
link = “dentry;
dentry = record
dline : dic;
next : link
end;
var bank,TenpBank ,addition : file of iten;

LastOne : item;

PendingTray,correction : file of Tagltem;

first,here,p,pt,newp : link;

efirst,now,ept,e,enewp : point;

dlist,scratch : text;

TenpDict ,dict : file of dic;
GotFromCore,dlistOl,InitialBuild,continue,move,same : boolean;

Jun 26 15:24 198z: adh Bibupdate.p (written Jun 24 09:19 1982) Page 2

n,Topltem ,m,corr,reps,add,0ldTotal : integer;
proceuure FromCore;

var p ¢ link;
begin
writeln(scratch,' Fromcore');
rewrite(dict);
GotFromCore := true;
p := first;
while p<>nil do
begin
dict” := p~.dline;
put (dict);
here := p;
p := p".next;
dispose (here)
end
end; (* of FromCore *)

procedure build(entry : itemjn : integer);
(* TO BUILD THE DICTIONARY *)

var str : string;
NewEntry,OldEntry : dic;
1l,let,line,i : integer;
same,space ,AlreadyHad,WordFound,LastWord , : boolean;
begin
for line:=1 to 3 do
begin
case line of
l: str := entry.authors;
2: str := entry.keyl;
3: str := entry.key2
end;
1 := O;
let := 0;
if not ((str[ll=' ')and(str(2]=' '))
then
repeat (* not empty line *)
let := let+l;
LastWord := (((strlletl=' ') and (strilet+l]=' '))
or (let=LineLn-1});
WordFound i» ((str{letl)e',') or LastWord);
if not WordFound

then
begin
1l = 1+1;
if (1=1) and (strl{let]l=' ') then
1l := 0
else
begin

if 1<21 then
NewEntry.name{l) := strllet])

)
vun 26 15:24 1982: adh Bibupdate.p (written Jun 24 09:19 1982) Page 3

end
end
else
begin
for i:=1+1 to 20 do
NewEntry.name[i) := ' ',
(* £ill up with spaces *)
if InitialBuild
then
begin (* first entry *)
NewEntry.numbers{l] := n;
for i:=2 to RowLn do
NewEntry.numbers(il := Q;
NewEntry.cont := false;
new(p);
p~.dline := NewEntry;
P~ .next := nil;
first := p;
1 :=0;
InitialBuild := false
end
else
begin
0ldEntry := first®.dline;
pt := first;

(* move pt past all words befdre the new entry *)
while (pt”.next<>nil) and
(NewEntry.name>=pt” .next”.dline.name) do

pt := pt”.next;
0l1dEntry := pt®.dline;
same := OldEntry.name=NewEntry.name;
space := OldEntry.numbers[RowLnl=0;
AlreadyHad := false;
if same then
begin
i := RowLn;
while OldEntry.numbers(i) = 0 do
1 = i-1
if OldEntry.numbers(i] = n then
AlreadyHad := true
end;
if not AlreadyHad then
begin (* if keyword has author name only one dic
if (same and (not space)) an~TAy
then
begin
(* new entry already in dict but no space in the string *)
OldEntry.cont := true;
pt”.dline := OldEntry
end;
if same and space
then
begin
(* new entry already in dict AND space in the number string *)

N
™M

Jin 26 15:24 1982: adh Bibupdate.p (written Jun 24 09:19 1982) Page 4

i 1= 03
repeat
i 1= i+1
until OldEntry.numbers(i}=0;
OldEntry.numbers(i] := n;
pt”.dline := OldEntry
end
else
begin
(* a nmew word for the dictionary OR a repeat of an old word *)
NewEntry.numbersil] := n;
NewEntry.cont := false;
for i:=2 to RowLn do
NewEntry.numbers{il]l := 0;
new(newp) ;
newp” .dline := NewEntry;
if NewEntry.name<first”.dline.name
then
begin (* new head of the list *)
newp”.next := first;
first := newp;
end
else
begin‘ (* slot entry into list *)
newp”.next := pt”.next;
pt”.next := newp

end
end
end; (* of AlreadyHad *)
1l :=0

end
end
until LastWord
end
vna; (* of builad *)

i rocedure merge;
(* to merge dict in core with existing dict on file *)

vat cuntinue : boolean;
¢33 1 integer;
HewEntry s dic;
vegin
vriteln(scratch,’
rewrite(TempDict) ;
reset(dict);
(* copy to scratch with additions *)
pt := first;
continue := (not eof(dict)) and (pt”.next<>nil);
while continue do
begin
if dict”.name<pt”.dline.name
then
begin

Merge');

e

Jun 26 15:24 1982: adh Bibupdate.p (written Jun 24 09:19 1982)

TempDict” := dict”;
put (TempDict);
get(dict);
continue := not eof(dict)

end;

if dict”.name>pt”.dline.name
then

begin
TempDict™ :e pt®.dline;
put (TempDict) ;
here := pt;
pt := pt”.next;
dispose (here);
continue := pt<>nil

end;

if dict”.name=pt”.dline.name
then
) begin

dict”.cont := true;
TempDict” := dict”;
put (TempDict) ;
get(dict);
continue := not eof(dict)

end
end;
while not eof(dict) do
begin

Tempbict” := dict”;
put (TempDict) ;
get(dict)

end;

while pt<>nil do

begin
TempDict”™ := pt~.dline;
put (TempDict) ;
here := pt;
pt := pt”.next;
dispose (here)

end;

rewrite(dict);
reset(TempDict) ;
(* copy back to dict and squeeze *)
while not eof(TempDict) do
begin
MNewEntry := TempDict”;
if (NewEntry.numbers{RowLn]l>0) or (NewEntry.cont=false)
then
begin
dict” := NewEntry;
put (dict) ;
get(TempDict)
end
else

Page §

\

Jun 26 15:24 16 ﬁadh Bibupdate.p (written Jun 24 09:19 1982)

Page 6

begin
get(TempDict);
if not eof (TempDict)
then
begin)
for j:=2 to RowLn do
if NewEntry.numbers{3]=0
then
begin
NewEntry.numbers(j] := TempDict”.numbers(l}})
for jji=1 to RowLn-1 do
TempDict”.numbers{jj} := TempDict”.numbers[}j+1]
TempDict” .numbers[RowLn) := 0
end;
if TempDict”.numbers(l)=C
then
begin
NewEntry.cont := false;
get(TempDict);
dict™ := NewEntry;
put (dict)
end
else
begin
dict” := NewEntry;
put (dict)
end
. end
end
end;
rewrite(TenpDict)
end; (* of merge *)

begin (* MAIN PROGRAM %)
reset (Pend ingTray) ;
reset(bank);
dlistOK i1= false;
rewrite(scratch);
writeln(scratch);
writeln(scratch,'’o new additions.');
writeln(scratch);
GotFromCore := false;
corr := 0;
reps := 0;
add := 0;
Toplten 1= 0;
reset(dlist);
if dlist™ = '~' then dlistOK := true;
if cof (PendingTray)
then
begin
if not dlistOK then
vhile not eof(bank) do
begin

26 15:24 1982: adh Bibupdate.p

(written Jun 24 09:. .982) Page 7

TopItem := TopItem + 1;

get(bank)
end
end
else
begin

(* divide PendingTray into corrections and additions *)
rewrite(correction);
rewrite(additions);
rewrite(dict);
rewrite(scratch);
dlistOK := false;
while not eof (PendingTray) do
if PendingTray”.tag<HiTag

then
begin
write(correction,PendingTray”) ;
corr = corr+l;
get(PendingTray)
end
else
begin
write(addition,PendingTray”.entry);
add := add+l;
get(PendingTray)
end;

reset(correction);
writeln(scratch,'Corrections ',corr :5,' Additions ',add:5);
while not eof(correction) do
begin
(* order correotion into core in batches of 'stack®' #)
writeln(scratch,'To deal with corrections');
(* mark{now) *)
n :=1;
new(e) ;
e”,TagEntry := correction”;
e”.next := nil;
efirst := e;
get(correction);
while (not eof(correction)) and (n<stack) do
begin
n := n+l;
new(enewp) ;
enewp”.TagEntry := correction”;
if correction”.tag<efirst”.TagEntry.tag
then
begin (* new head of list #*)
enewp” .next := efirst;
efirst := enewp
end
else
begin
(* move'pointer ept to correct place, slot in new item *)

<4

‘un 26 15:24 1982: adh Bibupdate.p (written Jun 24 09:19 1982) Page 8

ept := efirst;
while (ept”.next<>nil) and
) (correction”.tag>=ept”.next”.TagEntry.tad)
do
ept := ept”.next;
if correction”.tag=ept”.TagEntry.tag
then
ept”.TagEntry := correction”
(* replace with later correction, this is why items are sorted in this way *)
else
begin
enevp” .next := ept”.next;
ept”.next := enewp
end
end;
get(correction)
end; (* n=stack or eof(correction) *)
write(scratch,'Corrections processed in ');
writeln(scratch,'this batch ',n :5);
(*» first batch of items from ‘correction' now in core and ordered *)

(* now read bank to TempBank making changes from core.
Items are labelled for later extraction by making the date = NonDate.
Replacement itens are passed to join additions. *)
write(scratch,'Copy bank to TempBank');
rewrite(TempBank) ;
reset(bank) ;
01dTotal := 0;
ept := efirst;
while not eof (bank) do
begin
0ldTotal := OldTotal+l;
if (ept<>nil) and (ept”.TagEntry.tag=0ldTotal)
then (* we have found one to correct *)
begin
if ept”.TagEntry.entry.date<>NonDate
then (* je. it is not empty *)
begin
(* Replacement item written to addition file *%)
write(addition,ept”,TagEntry.entry);
reps := reps+l
end;
bank”.date := NonDate;
write(TempBank,bank”) ;
get{bank) ;
(* Haking the date = NonDate will remove the item when
the last batch of corrections are processed *)
now := epts;
ept := ept”.next;
dispose (now)
end
else
begin
write(TempBank,bank”);

S¢

1

)
Jun 26 15:24 1982: adh Bibupdate.p (written Jun 24 09:19 1982)

get{bank)
end
end;
(* release(now) ¥*)
writeln(scratch,® 0.K.');

(* read TempBank back to bank *)
write(scratch, *Copy TempBahk to bunk");
rewrite(bank) ;
reset (TempBank) ;
while not eof (TempBank) do

Page 9

if eof(correction) and (TempBank”.date=NonDate)

then

get(TempBank) (* removes corrected jitems *)

else
begin
write(bank,TempBank”) ;
get(TempBank) ;
end; (* of reading back to bank ¥)
writeln(scratch,' 0.K.');
rewrite(TempBank)
end; (* return for more corrections *)

rewrite(correction);

reset (addition);

while not eof(addition) do
begin

(* order additions alphabetically into core in batches of ‘*stack’

writeln(scratch,'To deal with additions.');
if reps>0
then
writeln(scratch,*These include ',reps :5,
' replacenents.');
(* mark(now) *)
n := 1;
new(e);
e”.TagEntry.entry := addition”;
e”.next := nil;
efirst := e;
get(addition);
while not eof (addition) and (n<stack) dc
begin
n = n+l,
nev(enewp) ;
enewp” .TagEntry.entry := addition”;
move := ((enewp”.TagEntry.entry.authors
> efirst”.TagEntry.entry.authors)
((enewp” .TagEntry.entry.authors
= efirst”.TagEntry.entry.authors)
(enewp” .TagEntry.entry.date
> efirst” .TagEntry.entry.date)));
if not move
then (* new head of list *)
begin

or

and

*)

Jun 26 15:24 1982: adh Bibupdate.p

(written Jun 24 09:19 1982) Page 10

enewp”.next := efirst;
efirst := enewp
end
else
begin
(* move pointer ept to correct place, slot in new item *)
ept := efirst;
while (ept”.next<>nil) and
((addition".authors
> ept“.next‘.TagEntry.entry.authors) or
((addition” .authors
= ept”.next” .TagEntry.entry.authors) and
(addition”.date
> ept”.next" .TagEntty.entry.date))) do
ept i= ept”.next;
enewp .next := ept +next;
ept”.next := enewp.
end;
get(addition)
end; (* n=stack or eof(addition) *)
writeln(scratch,'Additions processed in this batch ',n 15);
(* now read bank to TempBank making additions from core *)
write(scratch,'Copy bank to TempBank «...');
reset(bank) ;
rewrite(TempBank) ;
ept := efirst;

continue := (not eof(bank)) and (épt<>n11);
while continue do
begin

if ((bank”.authors < ept” .TagEntry.entty.authozs) or
((bank”.authors = ept”.TagEntry.entry.authors) and
(bank”.date < ept”.TagEntry.entry.date)))
then
begin
write(TempBank,bank”);
get(bank) ;
continue := not eof (bank)
end
else
begin
write(TempBank,ept”.TagEntry.entry) ;
now := ept;
ept := ept”.next;
dispose (now);
continue := ept<>nil
end
end; (* of the merging of the core and the file %)
while not eof (bank) do
begin
write(TempBank,bank”) ;
get(bank)
end;
while ept<>nil do

Jun 26 15:24 1982: adh Bibupdate.p

(written Jun 24 09:19 1982) Page 11

begin
write(TempBank,ept”.TagEntry.entry) ;
now := ept;
ept := ept”.next;
dispose {(now)
end;
LastOne := bank”;
(* assigned to give LastOne a starting value *)
writeln(scratch,' 0.K.');

(* now copy back to bank *)
write(scratch, 'Copy TempBank to bank');
reset (TempBank) ;
rewrite(bank) ;
(* release(now) *)
while not eof (TempBank) do
* begin
same := ((TempBank”.authors=LastOne.authors)
and (TempBank”.titlel=LastOne.titlel)
and (TempBank‘.titleZ-LastOne.titlpZ)
and (TempBank”.date=LastOne.date))}
if not same
then
write(bank,TempBank”) ;
LastOne := TempBank®;
get{(TempBank)
end;
writeln(scratch,' 0.K.');
rewrite(TempBank)
end; .(* return for more additions *)
end; (* of dependence on PendingTray *)

(* TO BUILD THE DICTIONARY *)
reset (bank) ;
reget(dict);
rewrite(addition);
rewrite(PendingTray) ;
if eof(dict)

then
begin
n = 0;
InitialBuild := true;
m = 0;

(* mark(here) *)
vriteln(scratch,'To build dictionary');
while not eof (bank) do
begin
n := n+l;
n = m+l;
build(bank”,n);
get(bank);
it w=heap
then

(* rejects duplicates

3b

Jun 26 15:24 19bs: adh Bibupdate.p
(written Jun 24 09:19 1982) Page 12

begin)
if not GotFromCore
then
PromCore
else
merges
(* release(here) *)
(% mark(here) *)
InitialBuild := true;
m o= 0
end
end;
if not GotFromCore
then
FromCore
else
merge;
(* release(here) *)
end ;
if n > 0 then TopItem 1= n)
if not dlistOK then
begin
rewrite(dlist);
writeln(dlist,'™ ',Topltem : 5);
writeln(dlist);
write (d1ist,'DICTIONARY must be compfled by running ');
writeln(dlist,’'the BARD COPY option of '‘bibout'’.’);
writeln(dlist);
end
end. (* of program Bibupdate.p *)

LS

:

PASCAL

LIMITED
r l
18 Darley Road
Mick Hughes Manchester M16 0DQ
PUG ‘UK Tel: 061- 881 30iI
c/o Shetlandtel and 061- 941 1687
TIALLS
L Shetland 2
ZE2 9PF
2nd Anril 1022
Dear Nick

After our ‘phone conversation the other week, I was rather more relieved to
feel that here in the UK there are other Pascalers at work and that PIICIY
is viable again. The gap has heen too long, and I wish you well {in trying
to get it going again. I shall try and do what T can and narticulsrly with
public domain software, but at the moment, T don’t have a great deal of
time to spare, nor any teleconms equipment to plug into my computer,

I enclose a cheque for 9 pounds for subacription. O0On the question ot back
numbers, I have copies of 12-16, and any subsequent or previous {asues
would be very welcome. I would have thought that for 17-2t which you
already have, 1t would be worth while putting a note in the next issue to
see how many people want them, and then have your printer print adequate
copies in total. Much better than spending your time collating evervonesr’
needs and doing individual photocopies of hite and pfeces. PTerhaps {if
other people were sble to lend you some of the older copies, the same could
be done. 1I°’d certainly lend you 12-16 1f you like. After all, {ts the
information that matters, not whether the issue is an original or not
unless we have any collectors among us. Anyway, mark me down for any back
issues you can get your hands on, please.

I am now using Pro-Pascal from Prospero Software as my major programmine
tool, as well of course as Wordstar to compose programs and write letters.
The hardware i{s OEM kit from Sirton Computers in Purley, by the name of
Midas and 1s in essence an Integrand 10-slot S100 case with PSU, Ithaca
I1EEE S100 cards (MPU~80,FDC~2,64KDR and VIO boards) giving 64k and 4Mhz
ZBOA with CP/M, plus 2*YE~DATA 174D 1Mb drives. The printer is a Nume (a
luxury really), and a Volker-Craig VC404 completes the outfit,

I will try and compose a critique of Pro-Pascal as soon as possible, bhut
version 1.4 1s due out soon with 8 byte longreals among other goodies. T
have written to Charles Foster of Pascal/Z l!lser Group askine {f he or his
contributors would permit the di{stribution of any of their Pascal sourcea
to PUGUK members appropriately modified to BS A192, or if indeed there 1is
any other Public Pascal around in the States. I think we ousht to he
prepared to reciorocate on this, don’t vou?

In converting from programming mainly on maintrames in Fortran and having a
nodding acquaintance with Cobol, Basic and other languagpes, there are times
when even Standard Pascal has fts limitations. Therefore, Tve thoucht of
two ways of improving the language. As PUGC may have some influence with

the powers that be, I’ve taken the liberty of including the suggestions -~
by all nmeans put them in a news-letter if you 1ike. I don’t believe in
trying €o persuade compiler-writers to sugment their compilers as their job
is to implement the standard. If the language is to grow, and 1if .any such
need is {dentified, then 1t’s the standard that must mature. Now BS 6192
is publfshed, it will be some time before any further thought is applied teo
the subject 1 expect, if ever, so perhaps now is the time to see if anyone
is interested.

Anyway, the best of luck

John R Logsdon

Tongue~in~cheek Pascal Language enhancements.

a) Structured constants.
Program make-up to be for example:

PROGRAM example;
CONST dnehundred=100;
ssessescsccsvecces CtC
TYPE
scalartype=(coffee, jam,bread,tea,biscult,suicide);

extype=RECORD
a:integer;
b,c:char;
d:array{0..3] of integer;
f:scalartype;
giset of scalartype;
h:array{1,.20] of char
FND:
Qesessscessesccses €tC
TABLE exl:extvpe~
onehundred, “a’,chr(20),(0,25,50,75), jam,
{coffee,tea,bread],’cholesterol’;

VAR exvar:extype;displayl:char;

REGIN
exvar:=exl;
displayl:=exl.h[4];

sebscscssasesssncesses eLC

Note the use 6f the "chr’ function to set up unprintable characters,
the absence of any delimiter other than those already used in Pascal
and the access of a constant array element. There is no reason why
‘ord’ should not also he included so that portability is enhanced.
This syntax follows closely on that of Pascal as it is and involves no
amhiguity in type declaration implicit where structured constants are
declared in the constant section as in some implementations. ' Pointers
declared in the corresponding type declaration mav be set to whatever
ifternal value represents nil, however they are named.and uncompleted
arrays of char initialized to spaces.

Such a feature will provide genuine structured read-only constants
without the ugly initiation presently necessary in Pascal. In fact,
in practice it is easier to put records for initialisation in a
paranmeter file and read them in, which does. not seem an elegant
solution, For micros with resticted memory, initialising a record
from constants needs up to two copies of every element - one dvnamic
and one in the constant area, which is rather wasteful of space.

38

b) Type-change function.
Syntax to be, for etample:
PROGRAM another;
CONST seevecsvesvesevcass €tC

TYPE score=(tiret,second,third, fou'rih) H
fruit=(apples,pears,oranges,grapes):

VAR thisscore:score;thisfruit:fruit;
BECGIN
{calculate thisscore somehow}

thisfruit:=fruit(thisscore);
eesessscetsscsnsvsnsscncs EtC

This facility will provide a logical completion to the buflt=-in
functions ‘ord’,’chr’ and provide a much more .readable alternative to
the use of variant records. Although there is no reason why the method
should not he available for records if the matching of record lengths
were entirely the programmers responsihility, there is an objection in
that the internal representation of variables will be machine-~
dependent. I envisage this type~change function purely for scalar
varisbles between scalars and perhaps for pointers between pointers.
It 1s of course really a mechanism to cause the compiler not to check
types.

(This facility ts similar to one available in AAEC Pascal 80N0 for the
I8V 160/370 series, and attributed to Kludgeamus)

If any readers have any conments for or against, perhaps PUG can help to
alr views?

b%

(RELIARILITY BY DeESIGN)

Name: Mr P A E Herring
Address: MAPAC
17 Market Square
Leighton Buzzard
Bedfordshire
LU7 7EU

Phone: 0525.378237
Systems Used
(1) Apple (II) UCSD Pascal.

(i1) To be delivered December 1982: Burroughs B21-5 (384 K Byte).
Pascal ISO draft 5.

Special Interests

Business systems. Partjicularly rapid access td unsorted data items. Data
base management systems.

Information Plesse

We would be interested in knowing of a Pascal compiler to interim IS0 standard
or UCSD for Burroughs B1955 with 0.5M Byte working store. Manufacturer does
not support Pascal for.

Robinson Systems
Engineering Limited

Lion House, St Mary's Street,
Painswick. GL6 6QR
Telephone: (0452) 813699
VAT Registration: 302 3124 28

With Compliments .

PS.v. Cam P Bamad o POSL fur e Yeéns (L 1)
2. Doy oney o debiludy the Dustsl, ‘P Uninct
Wion of Mrsumn ? (it ut)

2. Plos snd o vicgpt & Plosg nets o adbes, !
. ' ' nre Gy A

DIVISION OF INFORMATION TECHNOLOGY & COMPUTING
Depariment of Industry

NATIONAL PHYSICAL LABORATORY
Teddington Middlesex TW11 OLW

Telex 262344 Telograme Bushyleb Tedd!
Telephone 01-977 3222 ext 3977

Your reference
Our teferance

Dse LY. '8’1

Dear Pascal User

Please find enclosed details regarding Version 3.1 of the Pascal Validation
Suite which was released on the first of October 1982. Should you wish to
receive a copy of the suite, please fill in the enclosed application form
for a licence and send it together with youlremittance to:

Dr 2 J Ciechanowicz

Division of Information Technology & Computing
National Physical Laboratory

Teddington

Middlesex TW11 OLW England

On receipt of the form and remittance we will gend a magnetic tape
containing the suite,

The cost of the package is £100 sterling (+15% VAT for UK users) and
cheques should be made payable to "The National Physical Laboratory"
quoting our reference number NPS 2/01.

Yours sincerely

Z J CIECHANOWICZ
2 Gaadarawney

PS When requesting the suite please supply the tape format you require:
i.e. 1600/800 b.p.i.
180, DIC code

We generally write our tapes with fixed longth blocks, 15 records per block,
80 characters per record.

@E U Council for Educational Technology

3 Devonshire Street, London WIN 2BA Tesphene: 01-636 4186 Chairman: Professor] C West, CBE Dirsctor: G Hubbard

Mr N Hughes The Burleigh Centre
Pascal Users' Group (UK) Wellfield Road
Shetlandtel HATFIELD

WALLS Berts. AL10 0Bz

Shetl. ZE2 9PP
etland Tel: Hatfield 74497

18th December 1981

Dear Nick

CET TELESOFTWARE PROJECT

Thank you for your letter of 6th December.

I think you must have got the wrong impression from my letter of+ 3rd December.
We certainly do not want to see a different telesoftware format for PASCAL.

As I understand it, the only problem with the current format is the TAB
character which lies outside the PRESTEL character set. You may be interested
in our recent extensions to the format (copy enclosed) which overcome this.

As far as including PASCAL programs in our library is concerned, all I am
saying is that we need to learn how to walk before we can run. We are keen to
include programs in languages other than BASIC, including PASCAL, but need to
be sure there are people who can receive them on our system and will f£ind them
useful, before putting them up.

If you know of PASCAL programs which will run on the micros most used in
education, ie. 380Z, Apple, Pet, Acorn and TRS 80, I would be interested in
receiving details.

Yours sincerely

(s hoannlss

Chris Knowles
Telesoftware Project Manager

Enc,

COUNCIL FOR EDUCATIONAL TECHNOLOGY FOR THE UNITBD KINGDOM é

National Physical Laboratory
Teddington

Middiesex TW11 OLW
Telephone 01 - 977 3222
Telex 262344

Pascal Compiler Validation Suite

NPL issued version 3.1 of the above suite of test programs on 1 October 1982,
These programs permit a user to check the compliance of a Pascal compiler and
run-time system with the ISO standard for Pascal (ISCG 7185, also ES 6162). The
new suite is an extensive revision of version 3.0 and the work has been under-
taken in conjunction with Professor A.E.J. Sale of the University of Tasmania.
Subsequent revisions to the test suite are likely to be of a minor nature.

The Eritish Standaras Institution will shortly be launching a pilot validation
service based upon the test suite together with other material.

The test suite consists of about 17 300 1lines of Pascal programs plus
additional comments on each cf the 553 test programs. The programs themselves
are divided into a number of classes as follows:

182 programs checking that the features of the Standard are available;

157 programs checking that illegal constructs are rejected by a compiler;

82 programs checking the error-detection capability of a Fascal system;

60 programs checking the gquality of an implementation;

40 programs checking for Level 1 Pascal ('conformant arrays');

16 programs checking the variations permitted by the Standard;

13 programs checking for features defined for each implementation;

3 programs checking for extensions.
An application form for a licence to use the suite is on the other side of this

notice.

E.A. Wichmann,
Z.dJ. Ciechanowicz, extension 3977,
For ESI, J. Hatton-Smooker, telephone Qd4l2 3111

APPLICATION FCR LICENCE TO USE VALIDATION SUITE FOR PASCAL

Name and address of requester .
(company name if requester is
a company)

Mame and address to which
information should be sent
(write 'as above' if the same)

Signature of requester

Date

In making this application, which should bte signed by a responsible person in
the case of a company, the reauester agrees that:

(a) the copyright subsisting in the validation suite is recognizeg as
being the property of the Eritish Standards Institution and A.H.J. Sale;

(t) the requester will not distribute machine-readable copies of the
validation suite, modified or unmodified, to any third party without
permission, nor make copies available to third parties.

In return, the copyright holders grant full permission to use the programs and
documentation contained in the validation suite for the purpcse of compiler
validation, acceptance tests, benchmarking, preparation of comparative reports,
and similar purposes, and the provision of 1listings of the results of
compilation and execution of the programs to third parties in the ccurse of the
above activities. In such documents, reference shall be made to the original
copyright notice and the source.

CFFICE Signed
USE

ONLY Cn behalf of A.H.J. Sale and
the British Standards Institution

FINIS

