
PASCAL USERS GROUP

Pascal News
Communications about the Programming Language Pascal by Pascalers

• Pascal Standards: Progress Report

.• Status Report on Version 3.0

• WRITENUM - A Routine to Output Real Numbers

• TREEPRINT - A Package to Print Trees on Character Printers

• Three Proposals for Extending Pascal

• Announcements

Number

24
JANUARY 83

POLICY: PASCAL NEWS (Jan. 83)

• Pascal News is the official but informal publication of the User's Group.

Purpose: The Pascal User's Group (PUG) promotes the use of the programming language Pascal as
well as the ideas behind Pascal through the vehicle of Pascal News. PUG is intentionally de­
signed to be non political, and as such, it is not an "entity" which takes stands on issues or .
support causes or other efforts however well-intentioned. Informality is our guiding principle;
there are no officers or meetings of PUG.

The increasing availability of Pascal makes it a viable alternative for software production and
justifies its further use. We all strive to make using Pascal a respectable activity.

Membership: Anyone can join PUG, particularly the Pascal user, teacher, maintainer, implementor, distrib­
utor, or just plain fan. Memberships from libraries are also encouraged. See the ALL-PUR­
POSE COUPON for details.

• Pascal News is produced 3 or 4 times during a year; usually in March, June, September, and December.

• ALL THE NEWS THAT'S FIT, WE PRINT. Please send material (brevity is a virtue) for Pascal News single­
spaced and camera-ready (use dark ribbon and 15.5 cm lines!)

• Remember: ALL LETTERS TO US WILL BE PRINTED UNLESS THEY CONTAIN A REQUEST TO THE
CONTRARY.

• Pascal News is divided into flexible sections:

POLICY - explains the way we do things (ALL-PURPOSE COUPON, etc.)

EDITOR'S CONTRIBUTION - passes along the opinion and point of view of the editor together with changes
in the mechanics of PUG operation, etc. '

HERE AND THERE WITH PASCAL - presents news from people, conference announcements and reports,
new books and articles (including reviews), notices of Pascal in the news, history, membership rosters, etc.

APPLICATIONS - presents and documents source programs written in Pascal for various algorithms, and
software tools for a Pascal environment; news of significant applications programs. Also critiques regarding
program/algorithm certification, performance, standards conformance, style, output convenience, and general
design.

ARTICLES - contains formal, submitted contributions (such as Pascal philosophy, use of Pascal as a teaching
tool, use of Pascal at different computer installations, how to promote Pascal, etc.).

OPEN FORUM FOR MEMBERS - contains short, informal correspondence among members which is of
interest to the readership of Pascal News.

IMPLEMENTATION NOTES - reports news of Pascal implementations: contacts for maintainers, implemen­
tors, distributors, and documentors of various implementations as well as where to send bug reports. Qualitative
and quantitative descriptions and comparisons of various implementations are publicized. Sections contain
information about Portable Pascals, Pascal Variants, Feature-Implementation Notes, and Machine-Dependent
Implementations.

Pascal News
Communications about the Programming Language Pascal b) Pascalers

JANUARY 1983

2 COMPILERS NOTES

APPLICATIONS
3 A Pascal Bibliography By Tony Hayes

PASCAL STANDARDS
20 Pascal Standards: Progress Report By Jim Miner

Number 24

20 Status Report on Version 3.0 of the Pascal Test Suite By B.A. Wickmann

. ANNOUNCEMENTS
23 Distribution of the Edison System
23 Pascal Chosen as Sil
23 Pascal: A Problem Solving Approach
24 Modula-2

ARTICLES
25 WRITENUM - A Routine to Output Real Numbers

By Doug Grover and Ned Freed
27 TREEPRINT - A Package to Print Trees on any Character Printer

By Ned Freed and Kevin Carosso
32 Three Proposals for Extending Pascal By R.D. Tennent
32 The Where-Clause: A Proposed Extension to Pascal By R.D. Tennent
34 Proposals for Improved Exception Handling in Pascal By R.D. Tennent
37 The Definition Block: A Proposed Extension to Pascal By R.D. Tennent

40 OPEN FORUM

42 IMPLENATION NOTES COUPON

45 SUBSCRIPTION COUPON

47 LICENSE APPLICATION

Hello

This is Pascal News and my nameis Char­
lie Gaffney. Much has happened since I re­
ceived my March #22-23 Issue. I am the pub­
lisher of USUS News. USUS is the UCSD p­
System User Society. The p-system was de­
veloped to bring Pascal to micro computers.
Our USUS News was modeled on Pascal
News. We have a lot of information in USUS
but it was a chore to read because of bad orig­
inal and photo copy material used for printing.

I sought a typesetter and found we could
typeset and print for only 10% increase in
cost. This is a small premium cost to have a
readable newsletter. We typeset in August and
received many compliments so far.

I thought of our model Pascal News and
called Rick Shaw to explain our (USUS) im­
provement and ask if he needed help.

But Rick had his own story to tell. The
work at Pascal Users Group was not per­
formed by a group but by one man, Rick Shaw.
He was hard pressed to keep up with the busi­
ness of PUG.

An offer had been made by the "Journal
of Pascal & Ada" to take all pending articles
and publish them.

I made a counter offer to maintain PUG
as it is under new management. Rick thought
that was a nice idea, but the problems would
persist and PUG would fail either now or later.
After three phone calls Rick decided to let me
try.

The News will be typeset and I hope you
approve of our new appearance. The articles

2

you submit may be in any format because they
will now be typeset. It is possible to enlarge
the program listings if they are submitted in a
narrow formatof 15.5 cm wide.

Business
I have decided to pay a small business to

update:
1. the member list
2. new and renew members
3. banking records
Membership costs have gone up but if

you pay for two years the third year is free.
Back issues have tied up a great deal of

money. We have articles and programs just
waiting for you. Buy a set. Buy a complete set.
Buy a set for your friends.

A little about me
I am an electrician, and I work for Chev­

rolet in Parma, Ohio. I have no college edu­
cation and no formal computer training. My
experience with computers involved the pur­
chase of a Western Digital microengine, 16 bit
computer. The computer uses p-code as de­
fined by UCSD p-System and directly imple­
ments the code without an interpreter. Pascal
News and USUS News, and 25 text books,
have been my teachers. I thank them and each
of you.

Charlie

Compilers Notes


~~~~~~~~~ 

A Pascal Bibliography 
By Tony Reyes 

Blind Mobility Research Unit, 
Department of Psychology, 
U ni versity of Nottingham 

England 

Introduction 

The Pascal Bibliography is a package of programs 
written in standard Pascal and should therefore be eas­
ily transported. It enables users to store references and 
to retrieve them either by AUTHOR name or by KEY­
WORD; or logical combinations of AUTHORS and 
KEYWORDS. The bibliography is designed for human 
use; it uses very explicit prompts. 

Design Philosophy 

The bibliography consists of a collection ofITEMS. 
Each ITEM takes the form of:-

One line devoted to AUTHOR or ADDRESSEE 
names. 

Two lines devoted to TITLE or ADDRESS. 
Two lines devoted to LOCATION. 
DATE ITEM NUMBER. 
Two lines devoted to KEYWORDS. 

For example:-

HEYES A.D.,FERRIS A.J.,ORLOWSKI R.J. 
COMPARISON BETWEEN TWO METHODS 

OF RESPONSE FOR 
AUDITORY LOCALISATION IN THE AZI-

MUTHPLANE. 
J. ACOST. SOC. AMER., 58; 1336-1339 

1975 260 
DEAFNESS,LOCALISATION ,AUDITORY 

DISPLAYS 
STEREOPHONIC SOUNDS,KINAESTHESIS 

If ITEMS are addresses the convention is to store 
the address on the two lines of title. 

For example:-

BLOGGSJ.B. 
Mr.J .B.Bloggs\ 13 Fishpond Rd.}. Beeston, 
Nottingham\NG7 2RD\ U.K. 
Tel 0602-251234 

1980 27 
ADDRESS,CIRCULATION LIST,XMAS 

CARD 

Note the use of the backslash [\I to indicate the 
start of a new line. Note also that additional information 

Applications 

such as the telephone number can be stored on the lo­
cation lines. Note, finally, the date has little meaning in 
this context. 

Items may be located by running the program "bibout". 

Items may be APPENDED or CHANGED by running 
the program "bibin". 

Both programs are well supplied with prompts and are 
very simple to use. 

Since additions and changes require that the cur­
rent DICTIONARY be recompiled and this takes time, 
the actual changes take place during the night. The in­
structions to implement the changes reside in a PEND­
ING TRAY until the night time run. The user will re­
main unaware of this slight restriction unless he tries 
to locate an ITEM during the day on which the ITEM 
was loaded. 

Method of Use 

The following assumed the use of the UNIX op­
erating system. Login with your user name, give your 
password, respond to the first system prompt "%" with 
"cd bib", ie. change directory to "bib". In answer to 
the next system prompt, "%", you may select anyone 
of the programs from within the package. 

These are:-

a) "bibbin" to enter new items orto change 
an ITEM. 

b) "bibout" to search the bibliography for 
an ITEM. 

c) "outdict" to produce a hard copy of the 
current DICTIONARY. 

d) "cat scratch Ipr" to output a hard copy of the 
SCRATCH FILE. 

NEW USERS SHOULD ASK IF THEY MAY 
HAVE ACCESS TO AN ESTABLISHED BIB­
LIOGRAPHY AND THEN TRY USING "bi­
bout" TO LOCATE ITEMS OF INTEREST. 

To logout respond to the system prompt" %" by typing 
"control Z". 

The Programs 

a) "bibin" 
The opening prompt allows the selection of one 
of the following options:-
APPEND 

3 



The prompts should be sufficiently explicit, but 
note:-

(1) Authors and keywords should be separated by 
commas. Since they areused in the dictionary 
they should not spill over the end of a line. 
They can be any length but only the first 20 
characters are significant. 

(2) The terminal will probably be set to produce 
lower case letters. The program will automat­
ically convert them to upper case. If you wish 
to override this, begin each line of text with 
a backslash [\] . 

(3) The date must be a single integer e.g. 1980. 
(4) If addresses are to be stored use the two title 

lines, close pack but indicate new lines with 
a backslash [\] . 

(5) A personal local storage reference may be 
kept on the second location line. It should be 
enclosed in square brackets; e.g. [BM760] 
means that a copy of this ITEM is in the BM 
library, entry number 760. 

CHANGE 
Answer the prompts but please take note of the 
following:-

1) You must know in advance the ITEM number 
of the ITEMS you require to change. 

2) You have to retrieve the ITEMS from the bib­
liography so CHANGE is relatively slow; be 
patient. It saves time, if you are changing more 
than one ITEM to make the changes in nu­
merical order of ITEM number. 

3) You retrieve the ITEM to be changed from the 
bibliography, the changed ITEM goes into the 
PENDING TRAY. If you change the same 
ITEM more than once in a single day only the 
last version will survive. 

SPECIAL FACILITY 
This option moves the contents of the SCRATCH 
file into the PENDING tray. It can be used for mov­
ing ITEMS from one bibliography to another. Since 
SCRATCH is a text file, ITEMS may be changed 
using an editor and then loaded back into the PEND­
ING tray. (Clever stuff!!). 

b)-"bibout" 

4 

The computer will count the ITEMS in the bibliog­
raphy and then offer the option of producing a 
HARD COpy of the dictionary or doing a SEARCH 
for ITEMS. 

SEARCH 
You may either search by NUMBER or, more 
usually by using the DICTIONARY. 
You may opt to send the results either to the TER­
MINAL or to the SCRATCH FILE for subse­
quent printing. 
SEARCH by NUMBER 
The search is terminated by asking to search for 
item number zero [0]. 
A block of ITEMS may be searched for by asking 
to search for item number minus one [ -1]. You 
will then be asked for the lowest and the highest 
item numbers ofthe block. 
SEARCH by DICTIONARY 
You will be asked for a word i.e. an AUTHOR 

name or a KEYWORD. The computer will look 
this uJlinthe DICTIONARY and list the ITEM 
numbers of all ITEMS containing this word in 
their AUTHOR or KEYWORD string. If you are 
doing a single word search answer the next prompt 
will a full stop [.], and then the instruction to 
LOOK UP. If, however, it is a multiple word 
search give the next word. Once again the corre­
sponding ITEM number list will be printed out. 
The answer to the prompt" AND, OR or NOT" 
enables you to combine the current ITEM number 
list with the previous ITEM number list. For 
instance:-

AND Only numbers present in both lists are 
retained. 

OR All numbers from both lists are 
retained. 

NOT Numbers present in the current list are 
deleted from the previous list. 

A new current list is printed out showing the results 
of the selection. The search sequence may be con­
tinued for any number of logical combinations of 
words. At any time a search for the ITEMS in the 
current list may be initiated by giving· a full stop 
[.]. After which you may either LOOK UP the se­
lected ITEMS or, if you have made a mistake in your 
list combinations simply RESTART. There is one 
special word, namely ***, this word will match all 
the dictionary. 

c) "outdict" 
No prompts and no option, simply type "outdict" 
in answer to the system prompt "%" to obtain a hard 
copy of the current DICTIONARY. 
Note, you must have first prepared a copy of the 
DICTIONARY by running the appropriate HARD 
COpy option of "bibout". 

d) "opr scratch" 
This program is run to obtain the printed output from 
"bibout", provided the option had been chosen to 
send the output to the SCRATCH FILE. 
No prompts and no options, simply type "opr 
scratch" in answer to the system prompt "%" to 
obtain a: liar a copy of the contents of die SCRATCH 
FILE. 
N.B. If you would like to list the SCRATCH FILE 
to the terminal to check the contents then run "cat 
scratch". 

Acknowledgements 

I gratefully acknowledge the encouragement and 
support I have received from Roger Henry and Chris 
Blunsdon. 

The bibliography was originally intended for use 
by the members of the BLIND MOBILITY RE­
SEARCH UNIT it is however available to any mem­
bers ofthe Pascal Users Group. Would anyone wishing 
to take up this offer please contact Tony Heyes to ar­
range medium of transportation. 

NOTES FORIMPLEMENTORS 

The following notes outline the steps the imple­

Applications 



menter should take in order to establish a new bibli­
ography. After this groundwork, the user can use the 
shell commands bibin, bibaut, and autdiet to build and 
manipulate the bibliography. 

1. The bibliography system requires 6 workfiles named 
bl to b6. The recommended practice is for the user 
to devote a directory to the bibliography, say 'user/ 
bib'. The workfiles can be created easily using the 
cat command. E.g 

cat> bl Z 
File b3 requires a link named scratch. This can be 
created by the command -

In b3 scratch 

2. b6 is used as a temporary scratch file during the 
overnight run. It grows to be as large as b 1. If there 
is insufficient room on the user's disc b6 may be 
coerced on to another disc. 

3. The bib directory must contain the following shell 
commands:-

bibin 
bibout 
bibupdate 
outdict 

Bibin.out bl b2 b3 b4 b5 
Bibout.out bl b2 b3 b4 b5 
Bibupdate.out bl b2 b3 b4 b5 b6 
(lpr b4;rm b4; > b4)& 

4. Finally, an entry must be made in the UNIX table 
'crontab' so that bibupdate will be executed during 
the night. 

program Bibin(input,output,bank,dict,scratch,dlist,PendingTray); 
(* To ADD, CHANGE or REIIOVE items. 
instructions left in a PendingTray file 'pending', 
actual changes made by running "Bibupdate.p" *) 
(* wr i t ten by Tony Heyes. Blind nobH i ty Research Uni t, 
Department of Psychology. The University, 
Nottingham, U.K. *) 

label 10; 

canst LineLn = 70; 
RowLn = 20; 
HiTag = 10000; 
1l0nDate = -1066; 

type string = packed array [1 •• LineLn1 of char; 
itef.1 = record 

authors,titlel,title2, 
placel,place2 : string; 
date : integer; 
keyl,key2 : string 

end; 
word = packed array [1 •• 201 of char; 
row array [l •• RowLnl of integer; 
(jic ::; record 

nar.le 
numbers 
cont 

end; 
Tagltc[1 = record 

\-/ord; 
[O\"'i 

boolean 

tag inte<]er; 
entry : i tera 

end; 

var er.lpty, entry : i tera; 
bank : file of item; 
PendingTray,.Ter,lpPendingTray f He of TagIten; 
dlist,scratch : text; 
diet : file of uic; 
Tag Entry : Taglten: 
ch,AppendOption,Chan<)eOptlon,HainOption,HelpOption, 

Special Option : chuc; Ichge : boolenn; 
a,n,nn,count : integer; 

procedure InlCh~r (var ch : char); 
(* to read the first character of a word typed into the terminal *) 
begin 

ch : = input"'; 
while not Cch in ['A' •• 'Z','a' •• 'z']) do 

Applications 

begin (* skips along until first ch~racter found *) 
get <input) ; 
if eoln (input) 

then 
begin 

writeln; 
write('ERROR: character required •••• ') 

end; 
ch := input· 

end; 
while not eoln(input) do 

get <input) 
(* skips over rest of line *) 

end; (* of InlChar *) 

procedure Inllnt (var int : integer); 
(* to read an integer and not cause a fatal error if a 

character is given *) 
var ch : chari 

a,OrdZero : integer; 
NegFounU : boolean; 

begin 
repeat (* skips alons until integer is found *) 

get (input) : 
if eoln (input) 

then 
begin 

\vriteln; 
vrite('ERROR: digit required ') 

end; 
cll := input" 

until ch in [1_','+','0' •• '9']; 
if ch='-' 

then 
begin 

NegFound := true; 
get (input) ; 
ch :~ input" 

encl 
else 

begin 
t1egFound := false; 
if ch='+' 

end; 
a := 0; 

then 
begin 

get(input) ; 
ch := input· 

end 

OrdZero := ord('O'); 
repeat 

a := 10*a+ord(ch)-OrdZero; 
get(input) ; 
ch := input· 

until not (ch in ['0' .. '9'1); 
while not eoln(input) do (* skips over rest of line *) 

get(input); 
if NegFound 

then 
int := -a 
else 

int := a 
end; (* of Inllnt *) 

procedure VDUinString(var str : string); 
(* to input from terminal *) 

var i,n : integer; 
ch : char; 
AllCaps : boolean; 

begin 
n := 0; 
AllCaps : = true; 
repeat 

n :;::;:: n+l; 
read (ch) ; 
if (n=l) and (ch=' ') 

then 
n := 0; 

if (n=l) and (ch='\') 
then 

begin (* defeat automatic shift with '\' *) 
AIICaps :;::;:: false; 
n := a 

eno; 
if nOO 

then 
begin 

if AllCal's 
then 

if ch in [' a' •• ' z' 1 

5 



then 
ch := chr(ord(ch)-32); 

str[nl := ch 
end 

until eoln(input); 
for i:=n+l to'LineLn do 

strfi] := , I 

end; (* of VDUinString *) 

procedure ScratchInStr(var str 
(* input from file scratch *) 
var n,i : integer; 

ch : char; 
begin 

if not eof(scratch) 
then 

begin 
n := 0; 
repeat 

read(scratch,ch) ; 

string); 

until (ch=':') or (eof(scratch»; 
while (not ~oln(scratch» do 

begin 

end 

read(scratch,ch) ; 
n := n+l; 
strlnl := chI 

end; 
if n+l<=LineLn 

then 
for i:=n+l to LineLn do 

strfi] := , I; 

enG; (* of ScratchInStr *) 

function ScratHoldsItems : boolean; 
(* to inspect the SCnl\TCH FILE and check that ITEf.lS are complete *) 

var cQunt,LineNo : integer; 
FaultFound,HeadingCrror,NegFound boolean; 

procedure ChcckLinei 
v~r CharCount : integer; 

LineTooLong,BadLine boolean; 
begin 

LineNo := LineNo + 1; 
CharCount := 1; 
D~dLine := false; 
LineTooLong ;= false; 
"et (scratch) ; 
while (not eoln(scratch» and (CharCount < LineLn + 9 ) do 

begin 
geUscratch) ; 
CharCount := CharCount + 1; 
if (CharCount = 9) and (scratch" <> ': ') then 

BadLine := true; 
end; 

if CharCount < 9 then BadLine := true; 
while not coln(scratch) do 

begin 
gct(scratch) ; 
if scratch" <> ' , then LineTooLong := true 

end; 
if BadLine then 

begin 
FaultFound := true; 
\vTi-teln.C -' L-in-e-~-.,.Line!1G -; -4-,' -bacl---li-n-e '_1_;" mis-sin-g--. ') 

end; 
if LineTooLong then 

begin 
FaultFound := true; 
writeln( 'Line' ,Lineno 4,' overflow.') 

end 
end; (* of CheckLine *) 

cegin 
LineNo := 0; 
HeadingError := false; 
FaultFound := false; 
lJegFound := false; 
writeln; 
"riteln( 'SCRATCH FILE CHECK in progress. '); 

writeln; 
while not eof(scratch) and ,not HeadingError do 

begin 
repeat 

get (scratch) ; 
if not eof(scratch) then 
if eoln(scratch) then Linello := LineNo + 1 

until (eof(scratch» or (scratch" = '-'I; 
if scratch" = ,-, then llegFound := true; 
Linello := LineNo + 1; 
if eof(scratch) then 

6 

begin 
if not NegFound then (* no ITEHS present *) 

begin 
HeadingCrror := true; 
writeln( 'SCnATCH does not contain ITEIiS. ') 

end 
end 
else 
begin 

while not eoln(scratch) do get(scratch); 
for count := 1 to 5 do CheckLine; 
Linello ,= Linetlo + 1; 
get (scratch) ; 
while (not eoln(scratch» and 

not (Gcratch" in [' 1' .• '9' 1) do get (scratch) ; 
while (not eoln(scratch» and 

not (scratch~ = I I) ~o get (scratch) ; 
while (not eoln(scratch» and 

not (scratch" in ['1' •. '9'1) do get(scratch); 
if eoln(scratch) then 

begin (* two numbers not present *) 
FaultFound := true; 
writcln('Line ' ,Linetl0 : 4, 

two integers not found. I) 

end 
else 
while not eoln(scr"tch) 00 get(serateh); 

for count := 1 to 2 do CheekLine; 
end 

end; 
if FaultFound then 

begin 
\,/riteln.; 
writeln( 'Errors in SCF:l\TCII use editor to correct, 

then try again.'); 
writeln; 
ScratHoldsItens := false 

end 
else if not HeadingError then ScratEoldsItems := true; 

reset (scratch) 
end; (* of ScratlloldsItems *) 

procedure empt; (* to empty an ITEr,\ *) 

var NoChar : string; 
a integer; 
eh : char; 

begin 
110Charl 11 : = ' '; 
NoChar [21 : = ' '; 
NoCharl31 := , '; 
for a:=4 to LineLn do 

NoCharlal : = '.'; 
with empty do 

begin 

for 

authors := tlaChar; 
titlel := tloChar; 
title2 := 1I0Char; 
placel := NoChar; 
plaee2 := 1l0Char; 
date := NonDate; 
keyl := NoChar; 
key2 := tloChar 

end; 
a:=2-to· 9 do 

begin 
case " of 

2: eh := , , ; 
3: ch := Ie' ; 
4 : ch := IIi'l' ; 

5 : ch := 'pi; 
6: ch p;; 't t; 
7 : eh := 'y' ; 
8: ch := 

, , ; 
9: ch := 

end; (* of case *) 
ehlpty.authors[al := ch 

enc 
end; (* of erLlpt *) 

Froeedure OutRecord(entry : iter,1; n 
(* to write to the terminal *) 
var a : integer; 
begin 

for a:=l to 7 do 
"rite('---------I'); 

writeln; 
with entry do 

begin 
writeln(authors); 
writeln(titlell ; 
writeln(title2) ; 

intege rl ; 

Applications 



wr iteln Cplacell ; 
writelnCplace2); 
writelnCdate:8, , 
writelnCkeyll; 
writelnCkey2) 

end 
end; C* of OutRecord *) 

Item number :',n :5); 

procedure GetReferenceCn : integer); 
C· to count through bank to find an ITEN *) 
begin 

if n<count 
then 

begin 
resetCbank); 
count ,:= 1 

end; 
while Ccount < n) and Cnot eofCbank» do 

begin 
count := count+l; 
getCbank) 

end; 
if eof Cbank) 

then 
begin 

writeln; 
writelnC' You have only got',count -I,' Itens. '); 
writeln; 
goto 10 

encJ. 
else 

OutRecordCbank',n) 
end; C* of GetReference *) 

procedure changeCvar entry: itetl; m 
C* to change the mth. ITEll *) 
var line: integer; 

DlIOption,LineOption char; 
str : string; 

begin 
\>/riteln; 
writeln; 
repeat 

integer); 

~lriteC'Do you >!ish to DELE~'E or r:ODU'Y 
I nl Cha r C DJ.lOpti on) 

until DllOption in ['O','d','H','m' )"; 
if DllOption in C 'D', 'd'] 

then 
begin 

etlpt; 
entry := empty 

end 
else 

begin 
writeln; 

'); 

writelnC'You may REPLACE a line,'); 
writelnC'move to the NEXT line,'); 
>!ritelnC'or SKIP to the end of the item. '); 
write In; 
line := 0; 
repeat 

line := line+l; 

with entry do 
case line 

I: str 
2: str 
3: str 
4: str 
5: str 
6: 

of 
:= 
:= 
:= 
:= 
:= 

authors; 
titlel; 
title2; 
placel; 
place2; 

7: str := keyl; 
8: str := key2 

end; (* of case *) 

if line<>6 
then 

begin 
writeln; 
>!ritelnCstr) ; 
writelnCoutput); 
repeat 

writeC'REPLACE, NEXT line' or SKIP to end •••• '); 
InlCharCLineOption) 

until LineOptio~ in ['R','r','U','n','S','s']; 
writeln; 
if LineOption in ['R','r'] 

then 

Applications 

begin 
\/ritelnC'Type replacenent line : '); 
writeln; 
VDUinString(str); 
with entry do 

end 
else 

case line of 
1: authors := str; 
2: titlel := atr; 
3: title2 := str; 
4: placel := str; 
5: place2 := atr; 
7: keyl := str; 
8: key2 := str 

end; (* of case *) 

end 

begin 
IIritelnC'Date ',entry.date :4); 
writeln; 
repeat 

write('REPLACE, NEXT line or SKIP to end •••• '); 
InlCharCLineOption) 

until LineOption in ['R','r','N','n','S','s'); 
if LineOption in ['R','r'] 

then 
begin 
>!ritelnC'Type replacement date '); 
write(': I): 
InlInt(entry.date) 

end; 
end 

until CCline=8) or CLineOption in ['S','s']»; 
end; 

writeln; 
writeln('Modified item reads '); 
writeln; 
OutRecordCentry,m) ; 
writeln; 

end; C* of change *) 

begin (* UllIN PROGRAI! *) 
count := lIiTag; 
n := 1; 
resetCPendingTray) ; 
rewriteCTempPendingTray) ; 
while not eofCPendingTray) do 

begin C* copy do~m e::isting contents of file 
'PendingTray' *) 

TempPendingTray' := PendingTray'; 
put (TempPendingTray) ; 
get CPendingTray) 

end; 
rewriteCPendingTray) ; 
resetCTempPendingTray) ; 
while not eof CTer..pPendingTray) do 

begin C* copy back 'PendingTray' and count contents *) 
pendingTray' := Ter.lpPendin<jTray·; 
putCPendingTray) ; 
getCTempPendingTray) ; 
n := n+l 

end; 
re\lriteCTempPendingTray) ; 

repeat 
writeln; 
repeat 

,·/rite C 'Do you wish to I,PPEND, to CIIAl1GE, '); 
writelnC "to usc the SPECIIIL facility, '); 
>!riteC'or to FIOISII •••• '); 
InlChar C!!ai,nOption) 

untillIaino.ption in ['A','a','C','c','S','s','F','f'); 

C* f.!ainOption= S is a special facility, 
used for loading from 'scratch' to 'PendingTray' *) 

case HainOption of 
'II' ,'a': C* TO liP PEND *) 

begin 
\-Triteln: 
repeat 

writeC'Do you need help 
[YES or NO] •••• '); 

InlCharCHelpOption) 
until HelpOption in ['Y','y','N' ,'n']; 
if HelpOption in ['Y','y'] 

writeln; 

then 
begin 

writelnC '1IOTES.'); 
writeC'Ca) Authors and keywords separated'); 
writeln(' by a comma .,-.'); 
writeC'(b) To remove the automatic conversion to '); 
writelnC'upper case letters'); 
write(' begin a line of text with'); 
writelnC' a backslash "'".'); 

7 



write('(c) Date must be a single integer number'), 
writeln(' ego 1980.'), 
write('(d) If addresses are to be entered use the two'); 
writeln(' title lines,'), 
write(' close pack but indicate new'), 
writeln(' lines with a backslash "'".'), 
write('(e) A personal local storage reference'), 
writeln(' may be kept on the 2nd. location line'), 
write(' but should be enclosed in square brackets;'), 
writeln(' for example: [e"360].') 

end, 
repeat 

writeln, 
writeln( 'Ile" iter.t:- '), 
wdteln, 
for aIel to 7 do 

write('---------I'); 
writeln, 
"ith entry do 

begin 
\,/riteln( 'Line of author names, or name of addressee:' ); 

VOUinString(authors), 
writeln('First line of title or address I'), 
VOUinString(titlel) ; 
writeln('Second line of title or address :'); 
VDUinString(title2) , 
IH iteln (' First line of reference location :'), 
VOUinString(placcl), 
writeln('Second line of reference location :'), 
VDUinString(place2) , 
writeln('Oate - just the year - I'), 
InlInt(t;ate); 
writeln( 'First line of keyvlords : '); 
VDUinString(keyl), 
writeln('Second line of keywords I'), 
VDUinString(key2), 

cnd; 
\lritcln; 
OutRccordCcntry,n) ; 
repeat 

~Iriteln, 

repeat 
write( 'Do you wish to make a change [YES or nO) •••• ' ), 

InlChar(ChangeOption) 
until ChangeOption in [·'Y','y','/i','n'), 
if changeOption in ['Y','y'] 

then 
change (entry ,n) 

until ChangeOption in ['N','ri'], 
if entry. date <> llonOate 

then 
begin 
TagEntry.tag := HiTag; 
TagEntry.entry := entry, 
PendingTray· := TagEntry; 
put(PendingTray); 
n := n+l 

end 
else 

begin 
"riteln; 
writeln( 'Iter.l withcJrawn.'), 
writeln 

~ ______ ~--.end; _ " 

\'lriteln; 
repeat 

write( 'Do you· wish to appenc r.lore iter.ls [YES or 1;0] • ••• '); 

Ie', Ie': 

writeln; 

InlChar(l\ppendOption) 
until Appen~option in ['Y','y','u','n']; 

until AppenoOption in ['ll',' n' ] 
end; (* of Append option *) 

(* TO CIIMIGE *) 

begin; 
writeln; 
repeat 

>lrite('Oo you nee6 help [YES or 1:0] '); 
InlChar(lIelpOpticn) 

until UelpOption in ['Y','y','u','n'], 
if llelpOption in ['Y' ,'y'] 

then 
begin 

writeln( 'You I IUS'!' knml the I'l'Er·; IIlJllBEr:S of the ITEHS you>lish to 
change.' ); 

writeln( 'If you 00 ·not, leave this prograr" anci run ·"bibout" to 
fino them.' ); 

writeln( 'Changes "0 not take placc ir.lt.1ediately, they stay in the 
PEI,OIllG' ); 

writeln( 'tray until the "ulJdatc" prograrLl iu run. I); 

8 

writeln( 'If an U'EI1 is changed r.lore than once only the last 
version nurvives.' 

cnd; 
repeat 

10: writeln; 
chge := false; 

writeln( 'Type 0 if no I'l'Ef.l needs changing, otherwise 
type'), 

write('the ITEH riumber.~. '); 
InlIrit (nn) ; 
if nn<O 

then 
begin 

writeln; 
writeln('No negative numbered ITEHS') 

end; 
if nn > 0 

then 
begin 
vlriteln; 
GetReference(nn), 
if not eof(bank) 
then 
begin 
entry := bank·, 
repeat 
writeln; 
repeat 

write( 'Do you wish to change this item [YES or nO} •••• '); 
InlChar(ChilngeOption) 

until ChangeOption in ['Y','y','N','n']; 
if ChangeOption in ('Y.',' y') 
then 
begin 

change (entry ,nn) ; 
chge := true 

end 
until ChangeOption in ['r",'n'); 
TagEntry.tag := nn; 
TagEntry.entry := entry, 
if chge 
then 

begin 
PendingTray· := TagEntry; 
put (PendingTray) ; 
n := n+1 

end 
end 

en(~; 

writeln; 
until nn = 0 

end; (* of Change option *) 

'S', '5': (* To r:love frot.l text file 'scratch' to 'PendingTrar' *) 

begin 
"lritein; 
write('This option moves th~ contents of the '); 
writeln( 'SCRl.TCII file into the PENOItlG tray.'); 
IHite('It can be used to copy selected ITEHS from one'); 
writeln(' bibliography to another. '), 
"rite( 'OR, it can be used to reinstate ITEI1S '), 
"riteln( 'which have been changed by the editor.'), 
writeln; 

._fJlP'",~j;; __ 
writeln, 

write('Oo you wish these items to be APPENOEO, REINSTATED or 
NO ACTIOIl •••• ') ; 

InlChar(Specia10ption) 
until SpecialOption in ['A','a','N','n','R','r ' ]; 
if SpecialOption in ['A','a','R','r'] 

then 
begin 

reset (scratch) , 
writeln, 

(* now check that scratch holds ITEI·IS in 
the correct form *) 

if (not eof(scratch» and 
ScratlloldsItems 

then 
begin 

while not eof(scratch) do 
begin 
with entry do 
begin 
ScratchInStr(authQrs), 
ScratchInStr(titlel), 
ScratchInStr(title2); 

. ScratchInStr(placel); 
ScratchInStr(place2); 
read(scra,tch,date); 

. Applications 



repeat 
read(scratch,ch) 

until ch ~ ':'; 
readln(scratch,TagEntry.tag); 

writeln(n,' Dated ',date,' Item number ·,TagEntry.tag); 
ScratchInStr(keyl); 
ScratchInStr(key2); 

end 

end; 
if SpecialOption in ['A','a') then 
TagEntry.tag := HiTagl 
TagEntry.entry :5 entry; 
PendingTray" := TagEntry; 
put(pendingTray); 
n := n+1; 
if not eof(scratch) 
then 
get (scratch) 

end; 
rewrite (scratch) 

end 

end; (* of Special option *) 

IF'., I fl: begin 
writeln; 
writeln('Number of ITEHS now in Pending 

Tray =' ,n-l :5); 
writeln 

end 
end (* of case "HainOption" *) 

until HainOption in ['F',' f') 
end. (* end of program Dibin.p *) 

program Bibout <input ,output ,bank ,dict,scratch.dlist,PendingTray) ;. 
(* To call down items from the bibliography *) 
(* written by Tony Heyes, Blind !-Iobility Research Unit, 
Department of Psychology, The University. 
Nottingham. U.K.. *) . 

label 10; 

canot LineLn = 70; 

type 

RowLn = 20; 
HiTag = 10000; 
LinesPerPage = 64 
VDULineoPerPage = 24; 

string = packed array [l •• LineLn) of char; 
item = record 

authors.titlel,title2. 
placel,place2 : strin9; 
date integer; 
keyl.key2 : string 

end; 
word = packed array [1 •• 20) of char; 
row array [l •• RowLn) of integer; 
die = record 

name 
numbers 
cont 

end; 
link = "DicLine; 
DicLine = record 

val 
ne:.:t 

end; 

word; 
IO\tI; 

boolean 

integer; 
link 

var FileAssigned : boolean; 
bank. PemlingTray : file of iter.l; 
dlist',l'.dcircssFile,scratch : text; 
dict :. file of die; 
FirstLink,SecondLink.ThirdLink,pll,here : link; 
low,high,n,llumSoFar, 
Linello,AddLinello ,count ,TopItef.l. HFroI:lDict .lluml1 integer; 
dev ice,FileStyle .llainOpt .llDOption, Logicr.ction char; 

procedure InlChar (var ch : char); 
(* to read the first character of a word typed into the terminal *) 
begin 

ch := input"; 
while not (ch in [·A·· •• ·Z·.·a· •• ·z·)) do 

begin 
(* skips along until first character found *) 

get<inl'ut) ; 
if eoln(inl'ut) 

then 
begin 

Applications 

writeln; 
write( • ERROR: character required •••• .) 

end; 
ch := input" 

end; 
IIhile not eoln <input) do 

get <input) 
(* skips over reot of line *) 

end; (* of InlChar *) 

procedure InlInt (var f text; var int : integer); 
(* to read an integer and not cauoe a fatal .rror if a char~cter 

is given *) 

v~r ch : char; 
a,OrdZcro : integer; 
tlcgFound : boolean; 

"esir. 
repeat (* skips along until integer io found *) 

get(f) ; 
if eoln(f) 

then 
uegin 

writeln; 
write( 'ERROR: digit required •••• .) 

end; 
ch : = f" 

until ch in [1_','+',10' •• '9 1]; 
if Ch='_' 

tt.en 
begin 

11eground := true; 
get(f) ; 
ch : = f" 

end 
eloe 

begin 
llegFound := false; 
if ch='+' 

en,,; 
a := 0; 

then 
uegin 

cnu 

get(f) ; 
ch := f" 

OrcZero :a ord('O'); 
repeat 

a := 10*a+ord(ch)-OrdZero; 
get (f) ; 
ch := f" 

until not (ch in ('0' •• '9')); 
while not eoln(f) do (* skips over rest of line *) 

get(f) ; 
if NegFound 

then 
int := -a 

else 
int := a 

end; (* of InlInt *) 

procedure SkipToEndOfPage(PageLines 
var where 

begin 
while LineNo < PageLines do 

begin 
writeln(where); 
Linello : ~ Linello+l 

end; 
LineNo := 0 

end; (* of Sk ipToEncJOfPage *) 

integer; 
text) ; 

procedure GetRef(n : integer; destination: char); 

var a ,CharCount. LineInQuestion, 110fComr.las. HordLength 
line: strinc;; 
DoubleSpace.InBnickets.KeepUextCap. 
something,KeepAllCaps.wooPs : boolean; 
ch,LastCh : char; 

begin 
if n<count 

then 
begin 

reset(bank); 
count := 1 

end-; 
while (count < n) and (not eof(bank1) do 

begin 
count· := count+l; 
get (bank) 

end; 
if eof (bank) 

integer; 

9 



then 
begin 

writeln; 

end 
else 

writeln(' You have only got',count -1,' Items.'); 
writeln; 
goto 10 

with bank' do 
begin 

case destination of 
'T' " t': (* Output to terminal *) 

begin 
if (VDULinesPerPage-LineNo < 9) 
then 

SkipToEndOfPage(VDULinesPerPage,output); 
for a:=l to 7 do . 

write('---------I'); 
writeln; 
wri~eln(authors); 
wdteln(titlel) ; 
writeln(title2); 
writeln(place!) ; 
writeln(place2) ; 
writeln(date:8;' Item number :',n :5); 
writeln(keyl); 
writeln(key2) ; 
LineNo := LineHo + 9 

end; (* of 'T' *) 
'I',' i': (* Output to scratch file *) 

begin 
if LinesPerPage-LineNo < 9 
then 
SkipToEndOfPage(LinesPerPage,scratch); 

for a:=l to 7 do 
write(scratch,'---------I'); 

writeln(scratch,'---------') ; 
writeln(scratch, 'Ilames :' ,authors); 
writeln(scratch, 'Details:' ,titlel) ; 
writeln(scratch,' 1',title2); 
writeln(scratch,' :' ,place!) ; 
writeln(scratch,' 1',place2); 
writeln(scratch,dateI14,' Item numberl',n :5); 
writeln(scratch, 'Keywords:' ,key!); 
writeln(scratch,' :',key2); 
Linello 1= LineNo + 9 

end; (* of 'I' *) 
'E' ,'e'l (* Output to scratch file in envelope label format. 

Only for addresses. *) 
begir. 

writeln(AddressPile); 
AddLinello := AddLineNo +1; 
woops := true; 
for LineInQuestion:=l to 2 do 

begin 
DoubleSpace 1= false; 
LastCh := ':'; (* initail value *) 
CharCount := 0; 
writeln(AddressFile); 
AddLinello := AddLineNo +1; 
write(AddressPile,' '); 
if LineInQuestion=l 
then 
line := titlel 

- .. - ....... - ... - ····in:se-······· 

10 

line := title2; 
while (CharCount(LineLn) and not DoubleSpace do 

begin 
CharCount := CharCount+l; 
ch 1= line[CharCount); 
if ch='\' 
then 

begin 
woops :.- false; 
writeln(AddressFile); 
AddLineNo :- AddLineNo +1; 
.write(AddressFile,' ') 

end 
else 
write(AddressFile,ch); 

DoubleSpace :- (ch-' ') and (LastCh=' 'I; 
LastCh :" ch 

end 
end; 

while (AddLinetlo mod 8) <> 0 do 
begin 
writeln(AddressFile); 
AddLineNo := AddLinello + 1 

end; 
if woops 
then 
begin 

writeln; 
writeln; 

write('An attempt to output a reference'); 
writeln(' in address format.'); 
·writeln; 
writeln; 

write( 'Addresses must be close-packed on the two' ); 
writeln(' title lines.'); 

writeln( 'Use the backs lash "\" as line separator.' ); 
writeln; 
rewrite(scratch); 
FileAssigned :- false; 
goto 10 

end 
end; (* of ·'E' *) 

'R','r': (* Output in format for wordprocessor NROFF *) 
begin (* firstly the author line *) 

writeln(scratch,'.nr'); 
(* this is an NROFF macro *) 
write(scratch,'\:'); 

(* bold lettering command *) 
DoubleSpace :m false; 
KeepAllCaps := false; 
woops := false; 
LastCh := ':'; (* initial value *) 
CharCount :- 0; 
NOfComtlas :. 0; 
if authors[l)='\' 
then 
begin 

KeepAllCaps := true; 
CharCount I- CharCount+l 

end; 
while (CharCount<LineLn) 

and not DoubleSpace do 
begin 

CharCount :. CharCount+l; 
ch :- authors[CharCount); 
if ch-',' 
then 

NOfCommas := NOfCommas+l; 
DoubleSpace := (ch=' ') and (LastCh=' 'I; 
LastCh :m ch 

end; 
DoubleSpace := false; 
LastCh ,= 'I'; 
CharCount := 0; 
while (CharCount<LineLn) and not DoubleSpace do 

begin 
CharCount :" CharCount+l; 
ch := authors[CharCount); 
if (ch in ['A' •• 'Z') and (LastCh in ['A' •• 'Z') 

and not KeepAllCaps 
then 
write(scratch,chr«ord(ch)+32») 

else 
if ch= I,' 

then 
begin 
if IlOfCommas=l 

then 
write(scratch,' & ') 

else 
write(scratch,', 'I; 

. NOfCotill!rall"··' "·~oll!mall-l 
end 

else 
write(scratch,ch); 

DoubleSpace := (ch" , ') and (LastCh=' 'I; 
LastCh := ch 

end; 
writeln(scratch,'(',date : 4,')\:'); 
for LinelnQuestion :=1 to 4 do 
begin (* title and place lines *) 

KeepNextCap := true; 
KeepAllCaps := false; 
case LineInQuestiori of 
1: line := titlel; 
2: begin 

line :-·title2; 
KeepNextCap := false 

end; 
3. line := placel; 
4: begin 

line := place2; 
CharCount := 0; 
InBrackets :. false; 
repeat 
CharCount :- CharCount+l; 
if line [Cha.rCount) =' I' 
then 

Applications 



InBrackets := true; 
if InBrackets 
then 
if line(CharCount)=')' 
then 
begin 

line(CharCount) := , '; 
InBrackets := false 

end; 
if InBrackets 
then 
line(CharCount) := ' , 

until CharCount=LineLn 
end 

enc; (* of case LinelnQuestion *) 
CharCount := LineLn; 
repeat 
CharCount := CharCount-l 

until (CharCount=l) or (line(CharCount)<>' '); 
if CharCount<LineLn 
then 

line(CharCount+lI := '!'; (* a silly character • 
(* placed at the end of the character stirns *) 

liordLength : = 0; 
if CharCount>l 
then 

repeat 
CharCount := CharCount-l; 
if line(CharCount)<>' , 

then 
begin 
if line(CharCount) in ['A' •• 'Z'] 
then 
llordLength := l-lorelLength+l 

end 
else 

begin 
if not OiordLength in (2,3) 
then 
line[CharCount) := '-'; 
(* another silly char fills up spaces 
before words which keep caps. *) 

HordLength := 0 
end 

until CharCount=l; 
CharCount := 0; 
something := false; 
if linell) ='\' 

then 
begin 

Applications 

KeepAIICaps := true; 
CharCount := CharCount+l 

end; 
ch := ':'; (* initial value *) 
while (CharCount < LineLn) and 

(line[CharCount+l) <> 'I') do 
begin 
CharCount := CharCount+l; 
LastCh := ch; 
ch := line(CharCount); 
if not «LastCh in (' -, " ') anel 

(ch in ['--',' ')) 
then 
begin 

1f (ch in ('A' •• 'Z') anel not KeepHextCap 
then 
ch : = chr «orel (ch) +32» ; 

if ch in ('A' •• 'Z') 
then 

KeepHextCap := false; 
if ch='\' 
then 

woops := true; (* its an address *) 
if Ch='-' 
then 
begin 

ch := I I; 

if (LinelnQuestion in (3,4) 
then 

KeepNextCap := true 
end; 

if (ch in ['1' •• '9') 
then 
KeepNextCap := false; 

if (ch<>' ') anel (ch<>'! ') 
then 
something := true; 

if something 
then 
write(scratch,ch) 

end 

end; 
if something 

then 
wr iteln (scratch) 

end; 
if woops 
then 

begin 
wr iteln; 
writeln; 
write('An attempt to output addresses in'); 
writeln(' reference format.'); 
writeln; 
writeln; 
rewrite(AddressFile); 
FileAssigned := false; 

goto 10 
end 

enel (* of 'R' *) 

end (* of case deStination *) 
end 

enel; (* of GetRef *) 

procedure Re~1ind (var ptr 

var p,q,pt: link; 
begin 

p := ptr; 
pt := nil; 
while p<>nil do 

begin 

link) ; 

n:w(q); " 
q .val := p .val; 
q" .next := pt; 
pt := q; 
p := p".next 

end: 
ptr := pt 

end; (* of RelHnd *) 

proceelure GetDict(m : integer; var ptr 

var a : integer; 
p : link; 
OldEn try : die; 
more : boolean: 

begin 
if m < HiTag 

then 
begin 

reset (dict) ; 
a := 1; 
while a<m do 

begin 
OlelEntry := diet"; 
get (diet) ; 
if OldCntry.cont=false 

then 
a := a+1 

end; 
writeln: 
write1n(dict".name) ; 
ptr := nil; 
repeat 

for a:=l to RowLn do 
if dict".numbers[a)<>O 

then 
begin 

new(p) ; 

link) ; 

p".val := dict".numbers(a); 
p" .next := pte; 

end 

ptr := p 
end: 

more := dict".cont; 
get(dict); 

until not more; 
Rellind(ptr) 

else 
begin 

end 

ptr := nil; 
for a:=Topltem downto 1 dO 

begin 
new(p); 

end 

p" .va1 := a; 
p" .next := ptr; 
ptr := p 

end; (* of GetDict *) 

11 



procedure join(var pI :link; p2 link; which char) ; 

var continue boolean; 
q,qp,ptl,pt2,pt3 : link; 

begin 
ptl := pI; 
pt2 := p2; 
continue := (ptl<>nil) and (pt2<>nil); 
c;p :- nil; 
case which of 

'A' ,'a': (* AllD *) 
begin 

while continue do 
begin 

end 

if ptl A• val>pt2 A • val 
then 

begin 
pt3 :e ptl; 
ptl := pt2; 
pt.2 I;' pt3 

end; 
if pt2 A.val>ptl A.val 

then 
begin 
pti :- ptlA.next; 
continue := ptl<>nil 

end 
else 

if ptl A.val*pt2A.val 
then 
begin 

new(q); 
qA.val :_ ptlA.val; 
qA. next :- qp; 
qp :- q; 
ptl := ptlA.next; 
pt2 := pt2 A.next; 
continue := (ptl<>nil) and 

(pt2<>nil) 
end 

end; (* of MID *) 
'0', '0': (* OR *) 

12 

begin 
begin 

while continue do 
begin 

if ptl A.val>pt2 A.val 
then 
begin 

pt3 := pU; 
pU :- pt2; 
pt2 := pt3 

.end, 
if pU A • val<pt2 A • val 

then 
begin 

new(q) ; 
qA.val := ptIA.val; 
qA. next := qp; 
qp := q; 
ptl := ptlA.next; 
continue :- ptl<>nil 

end ""-"" -cIse~~-"----
if ptl A.val=pt2 A.val 
then 
begin 

new(q); 
q-.val := ptlA.val; 
qA. next :m qp; 
qp := q; 
pU :=" pUA.next; 
pt2 := pt2-.next; 
continue" : - (pUOnill and 

(pt20nil) 
end 

end; 
if pU=nil 

then 
pU := pt2; 

while ptl<>nil do 
begin 

new(q) ; 
qA. val := pU A ;val; 
qA.next := qp; 
qp :- q; 
ptl := ptlA.next 

end 
end 

end; (* of OR *) 

'N', 'n': (* NOT *) 

begin 
while continue do 

begin" 
if ptl A.val>pt2A.val 

then 
begin 
pt2 := pt2 A.next; 
continue := pt2<>nil 

end 
else 

if ptl A.val<pt2 A.val 
then 
begin 

new(q); 
qA.val := "ptlA.val; 
q .... "next :e qPJ 
qp := q; 
ptl := pUA.nex"t; 
continue"" := pUonil 

end 
else 

if" ptl A.val=pt2A.val 
then 
begin 
ptl := ptIA.next; 
pt2 := pt2 A.next; 
continue := (pUOnil) and 

(pt20nil) 
end 

end; 
while pU<>niI do 

begin 
new(q) ; 
qA. val := ptlA.val; 
qA. next := qp; 
qp := q; 
pU := ptl A .next 

end 
end (* of NOT *) 

end; (* of case *) 
Remnd(qp) ; 
pI := qp 

end; (* of join *) 

procedure OutList(ptr link; var aa integer); 

var p : link; 
begin 

p := ptr; 
aa :- 0; 
writeln; 
while pOnil do 

begin 
aa := aa+l; 
if aa mod 13 - 0 

then 
writeln(pA.val" ¢5) 

else 
write(pA.val :5); 

p := pA. next 
end; 

writeln; 
writeln 

-enaT-- -f"-of-OliELTst -"Y-

procedure DictList(var where 
(* TO LIST DICTIONARY *) 

const NoOfLines = 64; 

text) ; 

1"/ordsPerLine = 4; (* Change constants to suit page size *) 
(* See also line 700 *) 

type list - array! 1 •• 3841 of \lord; 

var nurn,i : integer; 
OldEn try die; 
UordList : list; 

begin 
reset(dict); 
rewrite (dlist) ; 
i := 0; 
while not eof(dict) do 

begin 
for nurn:=l to 1I00fLines*HordsPerLine do 

begin 
OldEntry := dictA; 
while (dictA.cont;'~rue)and(not eof(dict» do 

get(dict); 
if not eof (dict) 

then 

Applications 



begin 
1'I0rdListlnum) ,= OldEntry. name.; 
get (diet) 

end 
else 

1I0rdList Inurn) ,= '; 
end; 

for num, =1 to lJoOfLines do 
wr iteln (where,liordList Inurn) ,110rdList INoOfLines+num) , 

~lordListl 2*!loOfLines+num) , 
WordListI3*NoOfLines+num); 

(* Extent this list for more words per line *) 
i ,= i+NoOfLines*HordsPerLine 

end; 
writeln; 
write('Dictionary written to file.'); 
writeln(' To obtain a hard copy run "outdict".'); 
(* 'outdict' simply prints out the file 'dlist'. *) 

writeln 
end; (* of DictList *) 

Frocedure TwoCols (var F,G 

const rows = 8~ 

TwiceRows = 16; 
cols = 40; 

type ChLink = "chstack; 
chstack c record 

text); 

ch , char; 
next , ChLink 

end; 
lines = arrayll •• TwiceRows) of ChLink; 

var pt,here, ChLink; 
lin,StartLin , lines; 
LineNo,CharHo , integer; 
ch , char; 

Frocedure reverse(var ptr 

var p,q,pt , ChLink; 
begin 

p ,= ptr; 
pt := nil; 
while p <> nil do 

begin 
n~w(q) ; " 
Cj .ch ,= p .ch; 
q".next ',= pt; 
pt ,= q; 
p ,= p".next 

end; 
ptr ,= pt 

end; (*of reverse· *) 

begin 
reset(F); 
if not eof(F) 

then 
begin 

page(G); 
writeln; 

ChLink); 

writeln( 'Output in two column "Xerox" label format.'); 
writeln 

end; 
while not eof(F) do 

begin 
mark(here); 
for LineNo ,= 1 to 2*rows do 

begin 
StartLinlLineNo) ,= nil; 
if not eof(F) then 
while not eoln(F) do 

begin 
read(F,ch) ; 
new(linILineNo) ; 
linILineNo)".ch ,= Chi 
linILineNo)".ne~t'= StartLinILineNo); 
StartLinlLinello) ,= linlLinelJo) 

end; 
if not eof (F) 

then 
readln(F); 

reverse(StartLin[LineUo) ; 
end; 

for LineHo ,= 1 to rows do 
begin 

CharNo := 0; 
pt ,= StartLin[Linello); 

Applications 

while (pt <> nil) and (Charl:o < cols) do 
begin 

write(G,pt".ch) ; 
pt := pt".next; 
Charllo := Char No + 1 

end; 
pt := StartLinlLineNo + rows); 
if ".,t <> nil 

then 
while CharNo < cols do 

begin 
write(G,' '); 
CharHo := ChurNo +1 

encl; 
while pt <> nil rio 

begin 
ch :e pt".ch; 
write(G,ch) ; 
pt := pt".next 

end, 
writeln(G) 

end; 
release(here); 

end 
end; (* of TwoCols *) 

procedure GetFromDict(var Firstl'lord,NumUords integer); 

var 
ch,action,option , char; 
n,ChCount,PointertJum,NumberFound 
name,signame : word; 
AIICaps , boolean; 

begin 
writeln; 
AIICaps :e true; 
ChCount :e 0; 
write('Enter word required or I.) •••• 
repeat 

reud(ch) 
until ch<>' '; 
if che '\' 

then 
begin 

AIICaps ,= false; 
read(ch) 

end; 
if ch='.' 

then 
begin (* "action" *) 

while not eoln(input) do 
get(input) ; 

repeat 
writeln; 

integer; 

'l; 

writeln( 'Do you wish to LOOK UP the selected string, 
'to RESTART the' ); 

"rit.e (' selection or to QUIT the dictionary 
InlChar(action) 

until action in [IL', '1', 'R' ,.' r', 'Q', 'q'] 
end 

else 
begin (* word *) 

action := 'u'; 
repeat 

ChCount := ChC.ount + I; 
if ChCount > 1 

then 
read(ch) ; 

if AIICaps and (ch in I'a' •• 'z') 
then 

name [ChCount) := chr(ord(ch)-32) 
else 

nar.le IChCount) : = ch 
until eoln(input) or (ChCount 20); 
if not eoln(input) 

then 
readln; 

for n:=ChCount+l to 20 do 
name In) ,= 

end; 
if action in ['L','l') 

then 
Firstl'lord := -1 (* look up *) 

else 
if action in I'R','r') 

then 
Firstl'lord :e -2 (* restart 

else 
if action in I'Q' ,'q') 

then 
FirstUord := 0 (* quit *) 

else 

*) 

13 

I); 



if name='*** 
(* special word *) 

then 
begin 

writeln; 
writeln('*** ALL ITENS ***'); 
writeln; 
repeat 
write('Is this correct (YES or NO) '); 
InlChar(option) 

until option in r'yl ,Iy' ,IIJI ,Inl); 

end 
else 

if option in ('Y','y') 
then 

Firstl'1ord := HiTag 
else 

GetFromDict (Firstl:ord, lIuml"lords) 

begin (* a real word *) 
reset(dict); 
NumberFound := 0; 
PointerNum := 0; 
writeln; 
signarne := • '; 
while (nar.le >= signame) and not eof (dict) do 

begin 
if name=signame 

then 
begin 
writeln(dict".naJ!le) ; 
NumberFound := NumberFound+l 

end; 
while (dict".cont=true) tio 
get(dict); 

if (PointerNum > 0) and not eof(dict) 
then 
get(dict) ; 

PointerNum := PointerNum+l; 
for n:=l to ChCount do 

signame(n) := dict" .name(n); 
for n:=ChCount+l to 20 do 
signame(n) := ' '; 

end; 
writeln; 
if NumberFound=O 

then 
begin 

writeln( 'I~ord not found in your dictionary; try again.' ); 
writeln; 
GetFromDict (Firstl'lord, NumWords) 

end 
else 
begin 

repeat 
if NumberFound = 1 
then 

write( "Is this word correct (YES or NO) •••• ') 
else 

write( 'Are ALL these words required (YES or NO) •••• ' ); 
InlChar (option) 

end 
end; (* of GetFromDict *) 

begin (* flAIl! PROGRAH *) 
rewrite(scratch); 
rewrite (AddressFile') ; 
reset(bank) ; 
count := HiTag; 
LineNo := 0; 
AddLineNo := 0; 
FileAssigned := false; 
~lriteln; 

until option in (lyl,'yl,'ul,ln~]; 
if option in ('Y' ,'y') 
then 
begin 
- -F-i-l'&tll"or-EJ. -:-=-Pci-nte ~litlm- -­

NumberFound; 
lIumllords := llumberFound 

end 
elsc 
GetFromDict (First~:ord, NUJ,Hords) 

end 

writeln('To retrieve ITEHS from the BIDLIOGRAPHY.'); 
(* TO SEARCII BY AUTHORS and KEn/ORDS *) 

writeln; 
reset (dlist) ; 
if dlist" " ,., 

then 
InlInt(dlist,Topltem) 

else 

14 

begin 
Topltem :- 0; 
writeln( 'Counting, please wait-.'); 
writeln; 
writeln; 
while not eof(bank) do 

begin 
Topltem := Topltem +1; 
get(bank) 

end; 
rewrite(dlist); 
writeln(dlist,'·',Topltem 5); 
writeln(dlist); 
writeln(dlist); 

writeln(dlist,'Your DICTIONARY must first be compiled by running'); 

writeln(dlist,' the lIARD COpy option of "bibout".'); 
writeln(dlist) ; 
writeln(dlist) 

end; 
writeln( 'The BIBLIOGRAPHY currently holds' ,TopItem,' ITEMS.'); 
repeat 

writeln; 
10: repeat 

)<riteln( 'Do you wish to Obtain a lIARD COPY of the current dictionary,' 
write( 'to SEARCI! for items or to FINISII • ••• '); 
InlChar WainOpt) 

until flainOpt in [' H' , I hi, • S· , IS' , I F"' , If' ] ; 

writeln; 
if l-lainOpt in ('II', 'h') 

then 
begin 

DictList(dlist); 
HainOpt := 'F' 

end; 
if l-:ainOpt in ('S', 's') 

then 
begin 

repeat 
writeln; 
writeln( 'Do you wish to search by item NUI·IBER'); 
write ('or by use of the DICTIONARY ') ; 
InlChar <llDOption) 

until IIDOptt"on in ('N', 'n', 'D', 'd'); 
writeln; 
repeat 

writeln; 
write( 'Output to TElU-iIIIAL or to scratch FILE. ••• '); 
InlChar(device) 

until device in [ITI,'tl,IF','f',IS','SI); 
writeln; 
i~ devicc in ('T','t') 

then 
FileStyle := 'T'J 

if (device in ('F','f','S','s') and not FileAssigned 
then 

repeat 
writeln('Is the desired output'); 
write( 'an ITEl·. list,'); 
writeln(' "the full item being given" '); 
write( 'a REFERENCE list,'); 
writeln(' "only the reference part being given" , 
write('or an address list suitable'); 
write(' for ENVELOPE addressing •••• '); 
lnl-GhaHFil-eSt-y-l-4H-;-
FileAssigned :- true 

until FileStyle in ['I','i','R",'r','E','e ' ], 
if FileStyle in ('R','r') 

then 
begin 

writeln(scratch,'.hy 0'); (* llROFF commands *) 
writeln(scratch,'.na'); 
writeln(scratch,'.sp 2'); 
writeln(scratch,'.de nr'); 
writeln(scratch,' .sp') ; 
writeln(scratch,'.ne 6'); 
writeln(scratch,'.ti -5'); 
writeln(scratch,' •• '); 
writeln(scratch,'.ne 10'); 
writeln(scratch,'\:References.\:'); 
writeln(scratch,' .sp 2'); 
writeln(scratch,'.in +5') 

end; . 
writeln; 
case llDOption of 

I D' , I d I : beg in 
writeln( 'ilords are lookeo' up in '); 
writeln('the dictionary and a list of reference numbers' ); 
writeln( 'containing the given word is sho~m on the terminal.' ); 
>lritcln; 
>lrite( 'The special "word", (***) \>ill match with all the >lords' ); 

Applications 



writeln(' in the diction~ry.'); 
writeln; 
"rite('Logical combination of '); 
"riteln( 'author ancJ keywords continue until you wish' ); 
writeln('to terminatecJ the search.'); 
"riteln; 
writeln( 'To terminate a search ans~ler the prompt with a full 

stop [.).' ); 
writeln; 

repeat 
writeln; 
writeln( 'Ne~1 sequence.'); 
writelnl 
liumSoFar : = 0; 
m~rk(here); 

GetFromDict WFromDict,NumHl ; 
if llFromDict > 0 (* a real worcJ *) 
then 
begin 
GetDict (t;Fror.lDict,FirstLink) ; 
if UumH > 1 
then 

repeat 
llFromDict := llFror.lDict + 1; 
GetDict WFromDict ,SecondLink) ; 
join(FirstLink,SecondLink,'O'); 
num~1 : = NumH - 1 

until NumH = 1; 
OutList(FirstLink,NumSoFar); 
while NFromDict > 0 do 

begin 
GetFromDict WFromDict, Numtll ; 
if NFromDict > 0 (* a real word *) 

then 
begin 
GetDict(NFromDict,SecondLink); 
if Num~1 > 1 
then 
repeat 

NFromDict := llFromDict + 1; 
GetDict <NFrot:1Dict,ThirdLink); 
jOin(SecondLink,ThirdLink,'O'); 
Numl1 : = NumH - 1 

until lIuml1 = 1; 
OutList(SecondLink,llumSoFar); 
repe.at 

write ( 'AIID, OR or I:OT ••••• ? ' ); 
InlChar(LogicAction) 

until LogicAction in ['AI,ta','O', 
'0', tu' ,'n']; 

join(FirstLink,SecondLink, 
LogicAction); 

OutList(FirstLink,lIumSoFar) 
end 

end; 
if (O:umSoFar > 0) and !llFromDict -1) ) 

then (* look up *) 
begin 

\Olriteln; 
writeln('Search in progress for',UumSoFar :8, , Items'); 

\·/ritcln: 
ptl := FirstLink; 
while ptl<>nil do 

begin 
GctRef(ptl".val,FileStyle) ; 
ptl. : = ptl". ne>:t 

end; 
if FileStyle in ['I','i','R','r', 

'E', Ie'] 

then 
begin 
l;riteln; 

writeln( 'ITCllS written to SCRATCH FILE.' ); 
writeln 

writeln; 

end 

end; 
release(here) 

end: 

until UFromDict=O (* quit *) 
end; 

'N','n' : begin (* TO SEARCII BY NUI-lBER *) 

writeln( 'ITEHS may be called by number.'); 
writeln( 'A whole block of ITEJ.1S may be called;'); 
write('to do this answer this prompt with'); 
writeln(' minus one [-1).'); 
writeln; 
writeln( 'To quit: answer prompt with a zero (0). ' ); 

repeat 
writeln; 

write ('Number of ITEH to be referenced..... '); 

Applications 

InlInt<input,n) ; 
writeln, 
if n = -1 
then 

begin 
writelnl 
writeln('To output a block of 

ITEIIS.')I 
writeln( 'Give the LOH ITEll number ,then the IIIGH number.' ); 

write( 'LOU number '); 
InlInt(input,low); 
write('llIGH number '); 
InlI~t(input,high) ; 
if (l0~1=0) or (high=O) 
then 
begin (* an escape *) 

10" := 1/ 
high : = 0; 
n := 0 

end;. 
if low <= high 

then 
begin 
writeln; 
writeln('Search in progress'); 
writeln; 

end 
else 

for n:=low to high do 
GetRef(n,FileStyle) 

encJ 

if n > 0 
then 
begin 

\Trite!n; 
writeln('Search in progress.'); 
writeln; 
Getnef(n,FileStyle) 

end 
until ncO 

end 
end (* of case llDOption *) 

end 
until ~lainOpt in ['F','f'); 
if FileStyle in ['R','r') 

then 
begin 

writeln(scratch,'.in -5'); 
writeln; 

writeln( 'The output file' 'scratch" contains the references and 
the' ); 

writeln('instructions for the word processing program 
.Inroff".'); 

writeln; 
writeln( 'An atter.lpt has been made to reintroduce lower case 

letters.' ); 
writeln('To obtain your output run "nroff scratch" 'I, 

writeln; 
writeln( 'If all is not well edit scratch and run "nroff 

scratch" again. I ) 

writeln; 
writeln( 'Hhen all is correct get the hard copy output 

by') I 
writeln('running "nroff scratch Ilpr' '. '); 
writeln 

end; 
if FileStyle in ['E', 'e') 

then 
TwoCols(AddressFile,scratch); 

writeln; 
writeln; 
writeln('FINISHED.'); 
writeln 

end. (* of progrQr.1 Dibout.p *) 

Program Bibupdate(input,output,bank,dict,scratch, 
dlist,PendingTray,TempBank); 

(* A non-interactive program ~Ihich moves the contents of 
'PendingTray' to the bibliography. Clever systems run this program 
at night .• 
TempBank is made external because it grows to be as large as bank. 
Diagnostics are written to 'scratch'. 
~Iritten by Tony Heyes, Blind Hobility Research Unit, 
Department of Psychology, The University, 
Nottingham, U.K.. *) 

const LineLn = 70; 
RowLn = 20; 

15 



type 

heilp = 200; 
HiTag = 10000; 
stack = 50; 
1I0nDate -1066; 

string = packed array [l •• LineLn] of char; 
item = record 

authors,titlel,title2, 
placel,place2 : stiing; 
date integer; 
keyl,key2 : string 

cnd; 
"ord = packed array [1 •• 20] of char; 
row = array [l •• RowLn] of iritcger; 
Taglten = record 

'tag: integer; 
entry : i ten 

eneJ; 
point = "CoreTaglter.l; 
CoreTagltcn = record 

'!'agEntry 
next 

cnd; 
dic record 

name 
nUr:luerG 
cont 

cnc1; 
link "dentry; 
dentry = record 

dline 
next 

end; 

word; 
[0\,1; 

boolean 

die; 
link 

Taglten; 
point 

var bank,TempDank,addition: file of item; 
LastOne : item; 
PendingTray,correction : file of Tagltenl 
first,here,p,pt,newp : link; 
efirst,now,ept,e,enewp : point; 
dlist,scratch : text; 
TempDict,dict : file of dic; 
GotFromCore,dlistOK,InitialBuild,continue,move,same boolean; 

n,Topltem,m,corr,reps,add,OldTotal : integer; 

procedure FromCore; 

var p : link; 
beqin 

writeln(scratch,' Fromcore'); 
rew'rite(cict) ; 
GotFromCore := true; 
p: := first; 
~lhile p<>nil do 

begin 

end 

dict" := p".dline; 
put (dict) ; 
p := p".next 

enti; (* of FrcmCore *) 

Frocedure build(entry : itel.1in : integer); 
(* TO BUILD THE; DIC'l.'IOIIARY *) 

V~[ str : strin9; 
"'~--lTewrnt-ry';nrar:fitr'i~:drcT"~'~ 

l,let,line,i :, integer; 
Gul!le, space ,AlreaoyI1aCi, tlorc.Founcl, Lastl~orc.; 

bcgin 
for line:=l to 3 do 

begin 
case line of 

1: str := entry. authors; 
2: str := entry.keyl; 
3: str. := entry.key2 

cndJ 
1 := 0; 
let := 0; 
if not «str[l]=' ')and(str[2]=' '» 

then 
repeat ('* not empty line *) 

let := let+l; 

boolean; 

LastHorc := «(str[lct]=' ') and 
(str£let+l] =' 

or (Iet=LineLn-l»; 

16 

17ordFouncl := «str [let] =',') or Last17ord); 
'if not tlorclFound 

then 
begin, 

1 := 1+1; 
if (1=1) and (str[let]=' ') then 

1 := 0 

'» 

else 
begin 

end 

else 
begin 
if 1<21 then 

NewEntry.name[l] := str[let] 
end 

for i:=l+l to 20 do 
IJewEntry .name [i] : = , '; 
(* fill up ~Iith spaces *) 

if InitialBuild 
then 
begin (* first entry *) 

llewEntry.numbers'[1] := n; 
for i:=2 to RowLn do 
newEnt~y.numbers[i] := 0; 

lIewEntry.cont := false; 
ne.tlp) ; 
p".dline := NewEntry; 
p .... next := nil; 
first := p; 
1 := 0; 
InitialBuild := false 

end 
else 
begin 
OldEntry := first".dline; 
'pt := first; 

(* mOve pt past all words before the ne>l entry *) 
while (pt".next<>nil) and 
We>lEntry.name>=pt".next".dline.narne) do 
pt := pt".next; 

'OldEntry := pt".dline; 
~ame : = OldEn try • nane=Uc\tlEntry. name; 
space ':= OldEntry.numbers[RowLn] =0; 
AlreadyJlad := false; 
if sar.ie then 

begin 
i := RO\,/Ln; 
while OldEntry.numbers[i] = 0 do 

i := i-I; 
if OldEntry.numbers[i] = n then 

AlreadyJlad := true 
cncl; 

if not'AlreadyHad then 
begin (* if keyword has author name only 
i one dic\if (same and (not space» 

then 
begin 

(* new entry already in dict but no space in the string *) 
OldEntry.eont := true; 
pt".dline := OldEn try 

end; 
if same and space 
then 
begin 

(* new entry already in dict AND space in the number string *) 
i p= 0; 

(* a new >lord for the 

enti 
until Lastl:ord 

repeat 
i :K i+1 

until OldEntry.numbers[i]=O; 
OldEntry.numbers[i] := n; 

_ .. p,l:" .dline : = OldEntry 
end 

else 
begin 

dictionary OR a repeat of an old \lord *) 
EewEntry.numbers[l] := n; 
lIeWEntry.cont := false; 
for i:=2 to P.owLn do 
~ewEntry.numbers[i] := 0; 

ne>l(ne>tp) ; 
nellp".dlille := lle>tEntry; 
if l:e>tEntry .name<first" .dline. name 
then 
begin (* ne" head of the list *) 
new~A.next := first; 
first := ne~lp; 

end 
alse 

end 

begin (* slot entry into list *) 
ne>tp" .ne,:t := pt" .next; 
pt" .next := nel-Ip 

end 

end; (* of Al readyIJad *) 

1 := 0 
end 

Applications 



end 
end; (* of build *) 

procedure merge; 
(* to merge dict in core uith existing dict on file *) 

var continue: boolean; 
j,jj : integer; 
NewEntry : die; 

begin 
writeln(scratch,' Merge'); 
rewrite(TempDictl; 
reset (dictl ; 

(* copy to scratch with additions *) 
pt := first; 
continue := (not eof(dictl) and (pt".nextc>nil); 
while contin'uE: do 

begin 
if dict".nameCpt".dline.name 

then 
begin 

TempDict" := dict"; 
put (TempDictl ; 
get(dictl; 
continue := not eof(dict) 

end; 
if dict".name>pt".dline.name 

then 
begin 

TempDict" := pt".dline; 
put (TempDict) ; 
pt := pt".next; 
continue := ptC>nil 

end; 
if dict".name=pt".dline.name 

then 

end; 

begin 
dictA.cont := true; 
TempDict A := dict~; 
put (TempDictl ; 
get(dictl; 
continue := not eof(dict) 

end 

while not eof(dictl do 
begin 

Te~pDict" := dict"; 
put (Ter.lpDict) ; 
get(dict) 

enu; 
while ptC>nil do 

begin 
TempDict A := ptA.dline; 
put (TeT.lpDict) ; 
pt := pt" .next 

end; 

rewrite(dict); 
reset(TempDictl; 

(* copy back to dict and squeeze *l 
while not eof (TempDict) do 

begin 
NewEntry := TempDict"; 
if (NewEntry.numbers[RowLnJ>Ol or (NewEntry.cont=falsel 

then 
begin 

dict" := NewEntry; 
put (dict) ; 
get (TempDict) 

end 
else 

begin 
get(TempDictl; 
if not eof(TempDictl 

then 
begin 

for j:=2 to RowLn do 
if NewEntry.numbers[jJ=O 
then 
begin 

llewEntry.numbers[jJ := TempDict".numbers[lJ; 
for jj:=l to RouLn-l do 
TempDict".numbers[jjJ := TempDict".numbers[jj+lJ 

TempDict" .numbers [Ro"LnJ := 0 
end; 

if TempDict".numbers[lJ=O 
then 
begin 

flewEntry.cont := false: 
get(TempDict) ; 
dict'" : = tlevlEntry; 

Applications 

end 
end; 

re"r ite (TempDict) 
end; (* of merge *) 

begin (* HAlt! PROGRlI/-j *) 
reset(PendingTray) ; 
reset(bankl; 
dlistOK := false; 
rewrite(scratch) ; 
writeln(scratchl; 

end 

put(dictl 
end 

else 
begin 
dict" := llewEntry; 
put (dict) 

end 

"riteln(scratch,'No new additions. 0); 
\;riteln(scratchl; 
GotFromCorc := false; 
cor[ := 0: 
reps := 0; 
add : = 0; 
Topltem := 0; 
reset(dlistl; 
if dlist" = 0-0 then dlistOK := true; 
if eof(PendingTrayl 

then 
begin 
if not dlistOK then 

while not eof(bankl do 
begin 

end 
else 
begin 

Toplter.l : = Topltem + 1; 
get(bankl 

end 

(* divide PendingTray into corrections and additions *l 
re\V'[ ite (cor [ection) ; 
rewrite(additionsl; 
rewrite(dictl; 
rewrite(scratchl; 
dlistOK := false; 
while not eof(PendingTrayl db 

if PendingTray".tagCUiTag 
then 

be<]in 
write(correction,PendingTray"l; 
corr := corr+l; 
get(PendingTrayl 

end 
else 

begin 
write(addition,PendingTray".entry) ; 
add := add+li 
ge t(PendingTrayl 

end; 
reset(correction) ; 
''lriteln(scratch, 'Corrections' ,corr :5,' Additions' ,add: 5); 

while not eof(correction) do 
begin 

(* order correction into core in batches of 'stack' *) 
\lritcln(scratch,'To deal with corrections'): 
r.wrk (nov1) ; 
n := 1; 
ne\·de) : 
eA.TagEntry := correction A

: 

e A .next := nil; 
efirst := e; 
get (cor rectionl ; 
while (not eof(correctionll and (nCstackl do 

be'Jin 
n := n+l; 
nevIC encvlp) : 
en6wpA.TagEntry := correctionA: 
if correction".tascefirst".TagEntry.tag 

then 
begin (* nc;} head of list *l 
encwp".next := efirst; 
efirst := cnewp 

end 
else 

begin 
(* ~ove pointer cpt to correct place, slot in new item *l 

ept := efirst: 
while (ept" .nextC>nill and 
(correction".tag>=ept".next".TagEntry.tagl 

17 



do 
ept := eptA.next; 

if correctionA.tag=eptA.TagEntry.tag 
then 
eptA.TagEntry := correctionA 

(* replace ~,ith later correction, this is "hy iter.ls are sorted in 
this "ay *) 

else 
begin 
enewpA.ne~t :e cptA.next; 
cptA.next := ene"p 

end 
end; 

get (cor rection) 
end; (* n=ot.ck or eof(correction) *) 

write(scratch,'Corrections processed in I); 

vriteln(scratch, 'this batch ',n :5): 
(* firot batch of it.er"s from 'correction' nOl-I in core and ordered *) 

(* now re~d bank to TempDank making changes from core. 
Iter.lo are labelled for later extraction by lOaking the 

date = nonDate. 
Replacer,lent itci.ls are passed to join additions. *) 

vrite(scratch,'Copy bank to Ter.lpDank •••• '); 
rewrite(TempDank) ; 
reset(bank) ; 
OldTotal := 0; 
ept := efirst; 
while not eof(bankl ~o 

begin 
Old~otal := Old~otal+l; 
if (cpt<>nill and (eptA.TagEntry.tag=OldTotall 

then (* ve have found one to correct *1 
begir. 
if eptA.TagEntry.entry.date<>NonDate 

then (* ie. it is not empty *) 
begin 

(* Replacer.lent iter.l vritten to addition file *1 
write(addition,ept".TagEntry.entryl; 
reps := reps+l 

end; 
bankA.date := HonDate, 
vrite(TempDank,bank"l: 
gct<bankl; 

(* lIaking the date = 1l0nDate "ill rer.love the item IIhen 
the last batch of corrections are processed *1 

end; 

ept := cpt".next; 
end 

else 
begin 

write(TempBank,bank"l; 
get (bank) 

end 

release (no,,1 ; 
writeln(scratch,' O.K.'I; 

(* read TempBank back to bank *) 
write(scratch,'Copy TempBank to bank ••••• ,; 

rewrite(bank); 
reset (TempDank I : 
"hile not eof (Ter.,pBankl do 

if eof(correction) and (TempBank".date=tlonDate) 
then 

getfTempB-ank) (* renove-s corrected items *) 

else 
bcgin 

'"' it e (bank, TeIOpDank" I , 
get(Ter,lpDankl; 

end: (* of reading buc~~ to bank *) 
\vriteln(scratch,' O.K. I); 
rewrite (TeupDank) 

crJd: (* return for uore corrections *) 

[cur i tc (cor rcction) ; 
rC.Gct(addition) ; 
while not eof(adGitionl do 

begin 
(* or~er ~dditions alpllabcticully into core in batclles of 'stack' *) 

\;ritcln(scratcll,'To cleul wittl additions.'); 

18 

if reps>O 
then 

writeln(scratch,'TheGc include ',reps :5, 
, replaccr.:ents. I) ; 

j"ark (no\·/) ; 
n := 1; 
nev/Cc) ; 
eA.TagEntry.entry := addition A

: 

cA.ncxt := nil; 
efirst := e; 
get(additionl, 

while not eof(additionl and (n<stack) do 
begin 

n := n+1; 
nell(enewpl; 
ene"p".TagEntry.entry := additionAl 
lOove := «enewp".TagEntry.entry.authors 

> efirst".TagEntry.entry.authors) or 
«ene"p".TagEntry.entry.authors 
= efirst".TagEntry.entry.authors) and 
(enewp".TagEntry.entry.date 
> efirst".TagEntry.entry.date»); 

if not move 
then (* nel·' head of list *1 

begin 
enewpA.next := efirst; 
efirst := cnewp 

end 
else 

begin 
(* move pointer ept to correct place, slot in new item *1 

ept := efirst; 
while (eptA.next<>nil) and 

«additionA.authors 
> ept".next".TagCntry.entry.authors) O~ 
«addition".authors 
= ept".next".TagEntry.entry.authors) and 
(ac1c1ition ..... oate 
> ept".next".TagEntry.entry.datelll do 

ept := cpt".next; 
enewpA.next := cptft.next; 
ept".next := ene"p 

cnci; 
get (additionl 

end; (* n=stack or eof(additionl *1 
~riteln(scratch,'Additions processed in this batch ',n :5); 

(* no\"! read bank to TempBank naking Cldditions f.rom core *) 
"rite(scratch,'Copy bank to TempDank •••• '1; 
reset(bunk) ; 
rewrite(Te@pBank) ; 
ept := efirst; 
continue := (not eof(bankll and (ept<>nill; 
>lhile continue do 

begin 
if «bank".authors < ept".TagEntry.entry.authorsl or 

«bonk".authors = ept".TaSCntry.entry.authors) and 
(bank".date < ept".TagEntry.entry.datelll 
then 

begin 
write(TerapBank,bank A

) ; 

get (1.>l1nkl ; 
continue := not eof(bank) 

end 
else 

begin 
IIrite(TempEank,ept".TagEntry.entry) ; 
ept := ept".next; 
continue := ept<>nil 

end 
end; (* of the merging of the core and the file *) 

while not eof(bankl do 
1.>egin 

"rite (Ter.lpEank,bank"1 ; 
get(bank) 

e-nti-; 
while ept<>nil do 

begin 
write(TelOpEank,ept".TagEntry.entryl; 
ept := ept".next 

end; 
LastOne := bank"; 

(* assigned to give LastOne a starting value *j 
writeln(scratch,' O.K.'); 

(* now copy back to bank *1 
write(scratch,'Copy TempBank to bank ••••• ); 
reaet(TempBankl; 
rewrite(bank) ; 
release (now) : 
"hile not eof(TempBankl do 

begin 
salOe := «TempBank".authors=LastOne.authorsl 

and (TempBank".titlel=LastOne.titlell 
and (TempBank".title2=LastOne.title21 
and (TempDank".date=LastOne.datell; 

if not same 
then 

write(bank,TempBank"l; (* rejects duplicates *1 
LastOne := TempBank"; 
ge t(TempBank I 

end; 

Applications 



writeln (scratch,' O.K.'); 
rewrite(TempBank) 

enel; (* return for nore additions *) 
entl; (* of dependence on PendingTray *) 

(* TO BUILD TilE DIC~'IO!lI.RY *) 
reset(bank); 
reset(dct); 
reurite(addition) ; 
rewrite(PendingTray); 
if eof (diet) 

then 
begin 

n := 0; 
InitialBuild := true; 
r:: := 0; 
r.lark (here); 
writeln(scratch,'To build dictionary'); 
while not eo[(bank) do 

begin 
Ii := n+1; 
r.l := r.l+l; 
bulldCbank" ,n); 
get(bank); 
if m=heap 

Applications 

then 
begin 

if not GotFromCore 

end; 

then 
FroroCore 

else 
merge; 

release (here); 
mark(here); 
InitialBuild := true; 
rn := 0 

end 

if not GotFromCore 
then 

Fror.lCore 
else 

merge; 
release (here) ; 

enC:; 
if n > 0 then ToplteI.1 := n; 
if not dlistOK then 

begin 
rewrite(dlist) ; 
>lriteln(dlist,' - ',Topltem : 5); 
\;riteln(dlist) ; 
write(dliut, '!)ICTIOIlAHY I"ust be compiled by running'); 
>lriteln(dliut,'the HAHD COPY option of "bibout' '.'); 
writ.cln(c:!list) ; 

enti 
eO('. (* of prograr.1 Dibupdate.p *) 

19 



kxd!l'~ qJat.caI!I'~. qJat.caI!I'~ qJat.caI!I'~ qJat.caI!I'~ qJat.caI!I'~ ~ 

Pascal Standards: Progress Report 
By Jim Miner 

1982-06-10 

ISO Standard 

The technical work on the ISO standard is com­
plete. The final six-month vote on the first Draft Inter­
national Standard (DIS 7185) closes later this year; we 
expect the standard to be approved. DIS 7185 is iden­
tical to the new British Standard approved by the Brit­
ish Standards Institution (BSI) on 1981-09-15, together 
with a French translation produced by AFNOR and 
French Pascalers. The English version should be. avail­
able from your national standards organization- (e.g., 
AFNOR, ANSI, BSI, DIN), although when I called 
ANSI in June 1982 they had not yet received it from 
BSI. In any case, the document "BS 6192: 1982" 
(price: £ 18) can be ordered from British Standards In­
stitution, 2 Part Street, London WIA 2BS, United 
Kingdom (Telephone 01-629-9000; Telex 266933). Or, 
you can wait for the next edition of A Practical Intro­
duction to Pascal by Ian Wilson and Tony Addyman. 
Tony tells me that it is due out later this year and that 
it will include the BSI standard in a second section. The 
French standard, "NFZ 65.300" (price unknown), can 
be ordered from Association Francaise de N ormalisa­
tion, Tour Europe, Cedex 7, 92080 Paris La Defense, 
France. 

u.S. Standards 

The public comment period on the draft proposed 
American National Standard (dpANS) is over, and 
X3J9 is preparing its responses to comments received. 
As expected, X3J9 refuses to include conformantarray 
parameters in the first ANSI standard. Except for this, 
the draft appears to be very similar in content to the 
ISO draft. 

The IEEE, on 1981-09-17, adopted an early version 
of the ANSI draft. This has several technical deficien-

cies and differences from the ANSI and ISO/BSI doc­
uments, and therefore will almost certainly change. 

Validation Suite 

Several persons have submitted comments on the 
new Validation Suite (version 3.0) to Arthur Sale and 
Brian Wichmann. A few errors in the Suite were un­
covered, and Brian has issued the "Status Report" 
printed below. Also included are some useful (unpub­
lished) appendices to the BSI standard that Brian sent 
along. 

Future Standards 

With the current round of standards achieving ap­
proval, several committees are deciding what exten­
sions to include in subsequent standards. Both the 
French and the U.S. committees are quite interested in 
pursuing extensions. The (ISO) Working Group 4 at­
tempted at its meeting in October 1981 to define pro­
cedures for international coordination, but no agree­
ment has been reached. This is unfortunate because 
lack of coordination, but no agreement has been 
reached. This is unfortunate because lack of coordi­
nation now may mean that international standardiza­
tion of extensions will be based more on political than 
technical considerations. This reminds me of Niklaus 
Wirth's characterization of formal standardization as 
"time-consuming and politics-infested." 

I hope to print in future issues of Pascal News 
some ofthe extensions being considered by the U.S. 
committee (JPC). And I hope that members of other 
national bodies will do the same. Perhaps in this way 
you, the users of Pascal, will have a real chance to try 
out and comment on these proposals before they appear 
in a standard. 

Status Report on Version 3.0 of the 
Pascal Test Suite 

By B.A. Wichmann 
82-4-1 

The test suite was issued on the 8th January 1982. 
As a result, a large number of comments have been re­
ceived. We hope to issue a new version in about four 
months: Arthur Sale is handling the additions while I 
am amending the existing tests. 

Report on 3.0 

At NPL, we keep a record of all agreed comments. 
Each one is classified (somewhat arbitrarily) as a Bug, 

20 

Defect, Typo or Remark. The current count is 25 bugs 
(20 of which are ofa less serious nature), 27 defects, 20 
typos and 10 remarks. Please write in with your com­
ments since it is an invaluable aid in improving the 
suite. 

Rather than give a detailed report on each test for 
which improvements will be made, the list for which 
test output should be ignored is: 6.4.3.3-5, 6.5.1-1, 
6.6.6.1-1, 6.6.6.5-1, 6.9.3.5.1-1 and (for safety) all of 

Pascal Standards 



section 6.6.3.7. Most of the other reports reflect inac­
curacies in the comment describing the test or the pos­
sibility of one error masking another. Currently, com­
plete testing is awkward due to the absence of compilers 
which adhere completely to the Standard. 

Listing Errors 

The listing sent to WG4 members and those that 
obtain the suite from NPL should note the following 
errors: 

Page no. Test no. 
92 6.1.8-3 

290 6. 1 .9-6 

lin~ no. error 
11 "A" missing in 

19 
"DEVIATES" 

~ should be commercial 
at sign 

297 

299 

6.7.2.3-4 

6.8.2.3-2 5-16 

"A" missing in 
"IMPLEMENTATION" 

lines missing, 
see below for text 

Index section 6.8.3.10 is misplaced. 

The missing text on Page 299: 
5 {V3.0: New test. } 
6 
7 program t6p8p2p3d2(output); 
8 var 
9 string: packed array[1 .. 3] of char; 

10 i : integer; 
11 function sideeffect(c : char) : integer; 
12 begin 
13 string[i]:= c; 
14 i:=i+1; 
15 sideeffect:= i 
16 end; 

The new version 

The major changes will be as follows: 

a) removal of bugs/defects/typos; 

b) use of local files rather than program parame­
ters in 54 tests; 

c) seven programs changed to remove the use of 
type real(which is unnecessary); 

d) complete rewrite of the conformant array tests 
(which were to an earlier version of the standard); 

e) alteration of initial comments to permit their use 
in a package for automatic production of a test report; 

f) the inclusion of "pretests" for each error han­
dling test to guard against the failure of an error han­
dling test for the wrong reason; 

g) additional tests where these are necessary, es­
pecially non-text file handling. 

The Standard 

This was published by BSI in February. It can be 
obtained from national standards bodies, and BSI can 
quote special rates for orders in quantity. 

Two Appendices 

Enclosed is a copy of two appendices which can 
usefully be added to the Standard. Also enclosed is a 

Pascal Standards 

list of section numbers from which each error listed in 
Appendix D originates. 

Index to errors listed in Appendix D 

Error number 1 - Section 6.5.3.2 
Error number 2 - Section 6.5.3.3 
Error number 3 - Section 6.5.4 
Error number 4 - Section 6.5.4 
Error number 5 - Section 6.5.4 
Error number 6 - Section 6.5.5 
Errornumber 7 - Section 6.6.3.2 
Error number .8 - Section 6.6.3.2 
Error number 9 - Section 6.6.5.2 
Error number 10 - Section 6.6.5.2 
Error number 11 - Section 6.6.5.2 
Error number 12 - Section 6.6.5.2 
Error number 13 - Section 6.6.5.2 
Error number 14 - Section 6.6.5.2 
Error number 15 - Section 6.6.5.2 
Error number 16 - Section 6.6.5.2 
Error number 17 - Section 6.6.5.2 
Error number 18 - Section 6.6.5.2 
Error number 19 - Section 6.6.5.3 
Error number 20 - Section 6.6.5.3 
Error number 21 - Section 6.6.5.3 
Error number 22 - Section 6.6.5.3 
Error number 23 - Section 6.6.5.3 
Error number 24 - Section 6.6.5.3 
Error number 25 - Section 6.6.5.3 
Error number 26 - Section 6.6.5.4 
Error number 27 - Section 6.6.5.4 
Error number 28- Section 6.6.5.4 
Error number 29 - Section 6.6.5.4 
Error number 30 - Section 6.6.5.4 
Error number 31 - Section 6.6.5.4 
Error number 32 - Section 6.6.6.2 
Error number 33 - Section 6.6.6.2 
Errornumber 34 - Section 6.6.6.2 
Error number 35 - Section 6.6.6.3 
Error number 36 - Section 6.6.6.3 
Error number 37 - Section 6.6.6.4 
Error number 38 - Section 6.§.6.4 
Error number 39 - Section 6.6.6.4 
Error number 40 - Section 6.6.6.5 
Error number 41 - Section 6.6.6.5 
Error number 42 - Section 6.6.6.5 
Error number 43 - Section 6.7.1 
Error number 44 - Section 6.7.2.2 
Error number 45 - Section 6.7.2.2 
Error number 46 - Section 6.7.2.2 
Error number 47 - Section 6.7.2.2 
Error number 48 - Section 6.7.3 
Error number 49 - Section 6.4.6 
Error number 50 - Section 6.4.6 
Error number 51 - Section 6.8.3.5 
Error number 52 - Section 6.8.3.9 
Error number 53 - Section 6.8.3.9 
Error number 54 - Section 6.9.1 
Error number 55 - Section 6.9.1 
Error number 56 - Section 6.9.1 
Error number 57 - Section 6.9.1 
Error number 58 - Section 6.9.3.1 
Error number 59 - Section 6.6.3.8 

21 



Appendix E to BS 6192 

The BSI/ISO standard for Pascal includes an ap­
pendix D listing all the errors mentioned in the main 
document. This is very convenient for our work on 
compiler validation since a complying processor is re­
quired to state what action is taken for each of these 
errors. Therefore, we are producing a similar appendix 
for the implementation-defined features of Pascal. Ap­
pendix D does not indicate the section in the main text 
for each error listed. This is indicated in this appendix 
by means of section numbers in comment brackets. 

Implementation-Defined 

E.O A complying processor is required to provide a 
definition of all the implementation-defined features of 
the language. To facilitate the production of this defi­
nition, all the implementation-defined aspects in clause 
6 are described again in this appendix {5.1 (d)} 

E.l The value of each char-type corresponding to each 
allowed string-character. {6.1. 7} 

E.2 The subset of the real numbers denoted as speci­
fied by signed-real. {6.4.2.2 (b)} 

E.3 The values of char-type. {6.4.2.2 (d)} 

E.4 The ordinal numbers of each value of char-type. 
{6.4.2.2 (d)} 

E.5 The point at which the file operations rewrite, put, 
reset and get are performed. {6.6.5.2} 

E.6 The value ofmaxint. {6.7.2.2} 

E.7 The accuracy of the approximation ofthe real op­
erations and functions to the mathematical result. 
{6.7.2.2} 

E.8 The default value of TotalWidth for integer type. 
{ 6.9.3.l} 

E.9 The default value of TotalWidth for real-type. 
{6.9.3.l} 

E.lO The default value of TotalWidth for Boolean­
type. {6.9.3.l} 

E.ll The value of ExpDigits. {6.9.3.4.l} 

E.12 The value of the exponent character ('e' or 'E'). 
{6,9.3A.l} 

E.13 The case of each character of 'True' and 'False' 
for output. {6.9.3.5} 

22 

E.14 The effect of the procedure page. {6.9.5} 

E.15 The binding of a file-type program parameter. 
{6.l0} 

Appendix F to BS 6192 

The BSIIISO standard for Pascal includes an ap­
pendix D listing all the erros mentioned in the main doc­
ument. This is very convenient for our work on com­
piler validation since a complying processor is required 
to state what action is taken for each of these errors. 
Therefore, we are producing a similar appendix for the 
implementation-dependent features of Pascal. Appen­
dixD does not indicate the section in the main text for 
each error listed. This is indicated in this appendix by 
means of section numbers in comment brackets. 

Implementation.Dependent 

F.O A complying processor is required to provide doc­
umentation concerning the implementation-dependent 
features of the language. To facilitate the production of 
such documentation, all the implementation-dependent 
aspects specified in clause 6 are described again in this 
appendix. {5.l (i and f)} 

F.l The order of evaluation of the index-expressions 
of an indexed variable. {6.5.3.2} 

F.2 The order of evaluation of expressions of a mem­
ber-designator. {6. 7 .l} 

F.3 The order of evaluation of the member-designators 
of a set constructor. {6.7.l} 

P.4 The order of evaluation of the operands of a dyadic 
operator. {6. 7.2.l} 

F.5 The order of evaluation, accessing and binding of 
the actual parameters of a function-designator. {6. 7 .3} 

F.6 The order of accessing the variable and evaluating 
the expression of an assignment statement. {6.8.2.2} 

F. 7 The order of evaluation, accessing and binding of 
the actual-parameters of a procedure-statement. 
{6.8.2.3} 
F.8 The effect of inspecting a textfile to which the page 
procedure was applied during generation. {6.9.5} 

F.9 The bindirig of the variables denoted by the pro­
gram parameters to entities external to the program. 
{6.1O} 

Pascal Standards 



DISTRIBUTION OF THE EDISON SYSTEM 

The Edison system is a portable software system 
that supports the development of programs written in 
the programming language Edison - a Pascal-like lan­
guage that supports program modularity and concur­
rent execution on micoprocessors. 

The Edison system includes an operating system, 
an Edison compiler, a screen editor, a text formatter, 
a print program, and a PDP 11 assembler written in the 
Edison language. 

These programs can all be edited and recompiled 
ona PDP 11123 microcomputer with 28 K words of 
memory, a VT 100 terminal, and a dual drive for 8-inch 
floppy disks. 

The Edison compiler generates portable code whic.h 
is interpreted by an assembly language kernel of 1800 
words. The software can be moved to other 16-bit mi­
crocomputers with similar peripherals by rewriting the 
kernel. 

The software is simple enough to be studied in de­
tail at all levels of programming. It is described in a 
book entitled "Programming a Personal Computer" 
which includes the Edison language report and the pro­
gram text of the kernel, the operating system, and the 
compiler. 

For more information on the availability of the 
Edison system and the book, please write to: 

Per Brinch Hansen 
University of Southern California 

Computer Science Department 
University Park 

Los Angeles, Calif. 90007 

PASCAL CHOSEN AS SIL 

The Languages group has completed its study and 
has recommended PASCAL as the Cray Research Sys­
tems Implementation Language (SIL). The SIL will be 
used to code the new Cray FORTRAN compiler and 
will likely be used for other Cray software products. 
The study investigated a number of languages, includ­
ing PASCAL, C, FORTRAN (both CFT and CIVIC), 
and some other user-developed languages. 

The first part of the study, completed in August, 
was apaper stating general requirements and assessing 
the suitability of the candidate languages. The choices 
were narrowed to two - PASCAL and C. FORTRAN 
did not have features considered necessary for systems 
programming. The other user-developed languages 
would encounter programmer resistance' and raised 
maintenance concerns. 

The second part of the study, recently completed, 
compared C and PASCAL. Code was written in both 
and compiled with existing compilers. PASCAL was 
chosen over C for three main reasons: 

• Code generation: Existing and planned PAS­
CAL compilers were designed for the CRAY-l; C was 
not. Major changes would be required to improve the 
C code generator to an acceptable level. 

• Availability: PASCAL is available now on the 
AMDAHL and the CRAY -1 and a preliminary version 

Announcements 

of the University of Manchester compiler should be 
ready by the middle of 1982. C is running at Bell Labs, 
but licensing and cost have not been worked out. 

• Language Proliferation: Most sites use (or would 
use) PASCAL; C does not have this demand. There is 
considerable field resistance to forcing sites to bring up 
another language processor merely to assemble the 
system. 

If you have questions or are interested in copies of 
the SIL reports, please call Field Liaison/Support. 

PASCAL: A PROBLEM SOLVING APPROACH 

The computer language PASCAL was invented in 
1971 by Niklaus Wirth to teach programming as a sys­
tematicdiscipline. Although not quite as widespread as 
the BASIC language, PASCAL has been adapted for 
use on most computers. PASCAL is easy to learn and 
use to detect common programming mistakes. 

The new version of PASCAL, UCSD PASCAL@>, 
has been developed for the Apple, TRS-80, LSI-ll, and 
other microcomputers. Its power and ease of use have 
made it one of the most popular languages among the 
computer cognoscenti. Now this important computer 
language is available to all programmers in a new book 
by Elliot B. Koffman, PASCAL: A PROBLEM SOLV­
ING APPROACH (Addison-Wesley; $14.95 trade pa· 
perback). Unlike IDost computer programming books, 
which simply teach the programming syntax, PASCAL: 
A PROBLEM SOLVING APPROACH emphasizes the 
structured, step-by-step design of computer programs. 
Both beginning programmers and those experienced in 
other languages such as BASIC will learn good pro­
gramming techniques, good problem solving skills, the 
principles of "GOTO-free" or structured program­
ming, and UCSD PASCAL. 

An extensive market research survey conducted 
by Addison-Wesley has shown that UCSD PASCAL is 
quickly becoming one of the most popular microcom­
puter languages. With this book any programmer can 
learn to make full use of this powerful language. Some 
important features of PASCAL: A PROBELM SOLV­
ING APPROACH by Elliot B. Koffman include: 

• Appeals to both beginning and experienced 
programmerS . 

• Stresses business oriented programs 
• Complete coverage of all features of standard 

and UCSD PASCAL, including arrays, strings, 
sets, sequential and random access files 

• Program style displays discuss important issues 
of programming style 

• Display boxes summarize the syntactic form of 
each new language feature introduced 

• Self-check exercises with selected answers in­
tegrated with the text 

• Chapter summaries and discussions of common 
programming errors 

• Additional programming problems at the end of 
each chapter 

• Appendices include: the differences between 
standard and UCSD PASCAL, special identi­
fiers and operators of PASCAL, using UCSD 
PASCAL, snytax diagrams of PASCAL 
statements 

23 



ABOUT THE AUTOR 

Elliot 'B. Koffman is a Professor of Computer and 
lnforination Sciences at Temple UniversitY,Philadel­
phia. Dr. Koffman has organized and taught numerous 
seminars on computer language e<;lucation acros,s the 
nation. Dr. Koffman received his Bachelor's and Mas­
ter's degrees from,the Massachusetts lnstitute of Tech­
nology and earned his Ph.D. from Case Institute of 
Technology in 1967 .. 

With Dr. Frank L. Friedman, Associate Professor 
of Computer and Information Sciences at Temple Uni­
versity, Dr. Koffman has co-authored three other com­
puter language bdoks: PROBLEM SOLVING AND 
STRUCTURED PROGRAMMING IN FORTRAN 
(Addision-Wesley, 1979), PROBLEM SOLVING AND 
STRUCTURED PROGRAMMING IN BASIC (Addi­
son-Wesley, 1979), and PROBLEM SOLVING AND 
STRUCTURED PROGRAMMING IN PASCAL (Ad­
dison-Wesley, 1980). These three titles have sold over 
300,000 copies combined. ' 

MODULA-2 

Modula-2 (M2) (like Pascal and MODULA) was 
developed at the ETH~Zurich under direction of Nik­
laus Wirth (Institut fur Informatik). 

1980: Fieldtest of M2 
1981: Release ofM2 
1981: Production use ofM2 

M2 is a general purpose (system) programmfng language. 

• Structured, modular, portable, readable, efficient, 
machine independent, flexible language. 

FEATURES: 

Modern syntax, 
Module-structure, 
Separate compilation, 
Full type checking at compiling time, 
Automatic version control and compatibility check, 
Recursion, 
Signed and unsigned integers, 
Dynamic arrays (strings), 
Procedures as variables or types, 

--Keal~iime(infefriipts~-DMA,-processes, priorities, sig-
nals ... ) 

Type transfer functions, 
CPU and device regjster access, 
Direct operating system calls, 
Optimized machine code generation, 
Multiprogramming: low-level facilities for specification 

of quasi':concurrent processes, 
Dynamic creation of processes, 
Fast interprocess communication and control with or 

without scheduler interactions, 
Overlays, 
Interactive linker, 
Stand-alone programs, 
Cross~reference generator, ' 
Run time tests: array index bound, case index test, 
. stack, heap, 
Source code level debugger (procedure trace, process 

window, data window, source text window, core 

24 

window), 
all features of Pascal (block structure, type concept), 

except those that can be expressed in M2 itself,' 
and more. 

Unsupported Features: 
Gotosllabels, 
Device or file input/output, 
(Input/output) data conversion, 
Heap (storage) - management, 
Any process scheduling concept, 
Mathematical/trisonometric functions, 
Sets greater than the specific wordsize. 

Currently supported (micro)processors: . 
• All PDP-Il1LSI-ll with or without EISIFISIFPUI 
MMU options 
• M 68000 
., M 6809 

• Lilith 
• All other processors with advanced architecture via 
the portable M-Code compiler 
Currently supported operating systems: 
• RT11SJ, RTllFB (V4.0, V3B) 
• Unix 

Release of Modula-2 compilers 

The design of the programming language Modula-
2, started in 1977, was followed by implementation ef­
forts of various compilers. A version designed for PDP-
11 computer and its RT11 operating system was re­
leased in summer 1980. The following compilers were 
released on April 1, 1981. They will be distributed under 
licensing agreement with the purpose of protecting the 
language from arbitrary changes and extensions. 

Operating Compiler 
Computer System' Code source 

PDP(LSI)-ll RT-ll PDP-ll Modula-2 
PDP(LSI)-ll UNIX PDP-ll Modula-2 
CDC-Cyber PDP-ll Pascal6000 
CDC-Cyber M6809 Pascal6000 
CDC-Cyber· M68000Pascal6000 
- Any - - Any - M-Code Modula-2 

The compilers were designed at the Institut fur In­
focmatik-ef-ET-H,·the-Computation-€enter-of-E-T-H-and 
the Australian Atomic Energy Commission. The com­
pilers are distributed on Mag-Tape only; 

The fee for each compiler is Sfr. 350 (A$ 150 for 
M2UNDQ. The intentiori in distributing compilers for 
Modula-2 is to provide a modern tool for programming 
and thereby to advance the state of software engineer­
ing. The above fee must not be regarded as a price for 
the compiler, but rather as a handling charge and cov­
erage of documentation, tape, package and postage. 

If you wish to receive a compiler, request a license 
agreement:· . 
Institut fur Informatik 
ETH-Zentrum 
CH-8092 Zurick 
or for the UNIX implementation: 
Departement of Computer Science attn. Dr. J. Tobias 
University of New South Wales P. O. Box'! 
Kensington, N.S.W. 2033 'Australia 

Announcements 



WRITENUM - A routine to output real numbers 
By Doug Grover & Ned Freed 

Harvey Mudd College 
Claremont, Calif; 91711 

Comments: Enclosed please find two articles for 
publication in P.N. The first, WRITENUM, is a new 
article. The second, TREEPRINT, is a re-draft of an 
article submitted last year. One change and one bug 
fix have been made. 

A common problem encountered when writing 
utilities in standard Pascal is output of real numbers. 
Frequently it is desireable to output reals to a string and 
not to a file. Some Pascal implementations allow I/O to 
strings but this is a nonstandard feature. In addition, 
the standard output produced by WRITE and WRITE­
LN is not flexible enough for many user applications. 

For good readability, it is not enough to simply 
print out a number in scientific notation. First of all, it 
should be possible to constrain the modulus of the ex­
ponent to multiples of an integer. For example, the 
many calculators implement a mode called "engineer­
ing" notation where all exponents must be multiples of 
three. This is handy when converting output to SI units. 
For additional flexibility, we require that any multiple 
may be selected. An additional feature of modulus ex­
ponents is that for a given modulus N; up to Ndigits 
will appear in front of the decimal point. This makes 
values very readable when they appear in tabular form 
(more so than when they just appear in the correct 
columns). 

Second, certain numbers should be handled in a 
special fashion. Numbers in the range [0.1, 1.0) should 
appear in the form O.XXXXXX, instead of obeying the 
rules for modular exponents. This increases readability 
greatly. Numbers with more zeros after the decimal 
point should be converted to exponential form - it be­
comes difficult for the reader to keep track of where the 
point is. 

Third, if a real can be printed as an integer, expo­
nential format should be avoided. The point where in­
teger format stops and exponential format takes over 
should be an adjustable parameter, as it may differ from 
application to application. 

Finally, a facility for rounding numbers to a re­
quired number of digits should be provided. This facil­
ity should even extend to 0 digit accuracy, where only 
the magnitude is printed. The determination of whether 
a number is an integer should be based on the ,r<)Unded 
result. 

It is our belief that the usual concerns of columnar 
output are secondary to these considerations. If exact 
columns are necessary, they can be added as an after­
thought. Left and right justification are trivial once the 
number is converted to a string of characters. 

It is difficult to write a routine to satisfy these cri­
teria in standard Pascal. A standard method of initially 
shifting and rounding the number to the desired· accu­
racy fails because the Pascal ROUND function returns 
an integer which can cause machine overflow. While 

Articles 

this can be overcome by initially truncating leading dig­
its, the entire process of rounding introduces errors in 
the least significant bits of the mantissa. It is necessary 
to first convert the number into a string of digits, and 
then round the string. The string is then further manip­
ulated to remove leading and trailing zeroes and place 
the decimal point in the proper position. 

. Another problem occurs with the initial determi­
nation of the exponent. Using the integer part of the 
common logarithm can fail since most machine imple­
mentations of LN are not accurate enough. The prob­
lem occurs when a number, neglecting its exponent, is 
close to 10 (e.g. 9999999.0). This can cause the number 
to be normalized to the wrong range. 

We presellt a routine, WRITENUM, which we be­
lieve solves all these problems. It is vaguely based on 
a similar routine presented in Jensen and Wirth. It is 
entirely written in standard Pascal, with only two im­
plementation dependent constants, the maximum num­
ber of digits allowed in a real and the natural log of 10. 
The log can be coded as an operation and the maximum 
number of digits can be set to 100 or so if portability is 
a problem. 

WRITENUMuses an external function (STRING­
ADD) to perform its output. This method can be changed 
to straightforward string operations or even direct out­
put statements via WRITE. In the listing, WRITENUM 
is imbedded in a small test program designed to dem­
onstrate its features. 
program test (input,output); 

(0 

A driver and test routine for the WRITENUM real n~mber Qut~ut .routine 
0) 

type 
real type = real: 

var 
a : re~ltype; C. sample number .) 
b : integer; (0 desired digits of aoouraoy 0) 
c : integer; (. desired exponent modulus .) 
d : integer; (0 desired digits in integers 0) 

prooedure stringadd (0 sample routine to handle output of. WRITENUM 0) 
(x : char); 

begin write (x); end: 

(* 
WRITENUM - a routine to output real numbers in. 
exponential format. 

Written by Doug Grover and Ned Freed, I-Feb-82 

This routine takes a real number and outputs it in ex-' 
ponential format as a stream of ASCII characters. The 
number of significant digits may be set as desired and 
WRITENUM will round the output to that degree of 
accuracy. In addition, the modulus of the exponent may 
be set. This means that the exponent field may be con~ 
strained to be an integer multiple of any number. So­
called "engineering" format (modulus 3) and "scien-

.25 



tific" format (modulus 1) may both be generated. The 
exponent field is output only for non~Zero exponents. 
Determination if a number will fit into a integer field 
occurs after the number is rounded. For the special case 
of a number in the range [0.1, 1.0), the numbers are 
output in the more natural O.xxxxxx format. For the 
special case of an integer mantissa and a non-zero ex­
ponent, the numbers are output in the more natural 
xxxxxx.OExxx format. 

Note: 1) The value for the modulus can force up to that 
value of digits in front of the decimal point. 

*) 

2) The precision of the output has a upper limit 
on the number of digits that can be output. 
This limit is selectable as a constant in the 
procedure. 

procedure wrltenum (I outputs a number I) 
(x realtyp.!: 

int.",er; 
integer; 
integer); 

(I the n~mber to process for output I) 
(I the number or digits of accuracy I) 
(I the modulus of the exponent I) 
(I the number of digits for integer ou~put I) 

oonst 
di·gitmax 20; (I maximum I of allowed digits I) 
zero 0.0; (. zero .) 
one 1.0; (lone I) 
ten • 10.0; (I ten I) 
lnoften 2.,0258209299_0_6; (I natural· log of ten I) 

var 
p integer; (I decimal point position I) 
e inteser; (I exponent I) 
xl inteser; (I counting variable I) 

diSit :. array [0 •• digltmax] of 1nteger; (I diS its in number I) 

function tenof (I compute 10 raised to a power I) 
(e : integer) : reeltype; 

v.r 
i : integer; (. bit counter I) 
t : realtype; (. result .) 

besin (I tenof .) 
i :. 6; 
t ; . 1; 
while e > 63 do begin 

t : = t • 1. OE32; 
e : = e - 32; 
end; 

repeat 
if odd(e) then 

0 t : = t 
1 t : = t 
2 t : = t 
3 t : = t 
4 t : = t 
5 t : = t 
end; 

e:=ediv2; 

• • • • 
• • 

clse i 
1.0El; 
1. OE2; 
1.0£4; 
1. OE8; 
1. OE 16; 
1. OE32; 

----r-7.-IIVCT"-MT,-·- -­
until e • 0; 
tenor :;: t; . 
end= (I tenof .) 

begin (. writenum .) 

of 

(. fix n, r, and t to be 1n range .) 
if n > disitmax then n :. digitmax 
if r > digitmax then r :. disitmax 
if i > digitmax then i := disitmax 

(' special ca.e x = 0 .) 
if x • zero then stringadd ('0') 
else besln 

if x < zero then besin 
stringadd ('-'); 
x : = -x; 
end; 

(I determine expOnent and adjust number I) 
e :. trunc (In (x) I lnoften); 
if e > 0 ihen x :. x I tenof (e) 
else x := x I tenof (-e); 
if x < one then begin 

e :. pred (e); 
x : = x * ten; 
end; 

1* put digits In array *) 
digltr0·) :" 0; 
xl ; •. ]; 

26 

while x'l < n dO hegin 
dlgltlxl) :" trunc (x); 
".:- lie - dfg.It:I"ll)*.ten; 
1'1 ,. SI,1CC (xll; . 
end; 

(* round the array representation of number *) 
dlgitfn] :" round Ix); 
while (n > P) and (digit In] " U) do begin 

n ,= pred (n); 
dlglt[n] ,= succ (digit In' ); 
end; 

(* eliminate tralllnq .eroes *) 
while ·(n > P) and (digit[n] " ~) do n ,= Fred (n)·/ 

1* han"le rounding of all digits (all 9's) *) 
if n = A then begin 

n := 1; 
dlglt[n] ,= 1; 
e :- succ (E"); 
end; 

(* determine if Integer output is possible *) 
If In <= succ (e» an" (e < I) then begin 

p :- succ (.); 
e := PI; 
end 

else begin 

(* allow ~.x form~t - a special c~se *) 
If e " -1 thenbe~ln 

e := II; 
p ;= 91; 
strlngadd ('P'); 
stringac:ld ('.'); 
end 

(* fix decimal point for modulus e"ponent *) 
.. lse b".D In 

p :- e' moq r; 
If (e < A) and (p <> P) then p ,= r + p; 
e := e - Pi 
P ,= sueI' (p); 
end; 

end; 

(- output digits from array *) 
x.I :. 1; 

while n < p do begin 
n := aucc (n): 
dislt[n] := 0; 
end; 

repeat 
Itrlngadd ( chr (digit[xl] + ord('O'»); 
xl := succ (xl); 

untU xl > p; . 
if P < n then begtn 

string add ('.'); 
repeat 

st~lngadd ( chr (dlgit[.l] +,ord('O'»); 
x1 := suco (x1); 
uritil xl > n; 

end; 

(. output exponent .) 
if e <> 0 then begin 

(' output .optional '.0' for integer mahti.sa .) 
if p >. n then begin 

atrins~dd (,.,.); 
strlngadd ('O'l; 
end; 

(. output exponent flag and sisn .) 
stringadd ('E'); 
if e < 0 then begin 
'·-'Tr-fiigadd(T':'-·fr;~ - . 

e := -I: 
end'; 

C* put exponent into arrey') 
x 1 : = 0, 
repe'at 

x1 := S\.ICC (x1.); 
dlgit[xl] :. e mod 10; 
e:=edlv10: 

until e= 0; 

(. output exponent magnitude from array') 
repeat 

otr!ngadd ( chr (dlgit[xl] + ord ('O'l»; 
x1 := pred (xl); 

untilil. 0; 
end; 

end; 
end;· (. writenum I) 

begin (. test .) 
repeat 

wrlteln 
('Input I. accurate d1S!ts, exponent modulus, integer dlgi~s'); 

readln (a.b,c,d); 
wri" ('N·umber 10 - ['); 
wr1tenum (a,b,c,d): 
writeln (']'): 

untU false; 
end. (. teat .) 

Articles 



TREEPRINT - A Package to Print Trees 
on any Character Printer 

By Ned Freed & Kevin Carosso 
Mathematics Department 

Harvey Mudd College 
Claremont, Calif. 91711 

One of the problems facing a programmer who 
deals with complex linked data structures in Pascal is 
the inability to display such a structure in a graphical 
form. Usually it is too much to ask a system debugging 
tool to even understand records and pointers, let alone 
display a structure using them in the way it would ap­
pear in a good textbook. Likewise very few operating 
systems have a package of routines to display struc­
tures automatically. Pascal has a tremendous advantage 
over many languages in its ability to support definable 
types and structures. If the environment is incapable 
of dealing with these features, they become far less 
useful. 

This lack became apparent to us in the process of 
writing an algebraic expression parser which produced 
internal N-ary trees. There was no way at the time un­
der our operating system debugger (VAX/VMS) to get 
at the data structure we were generating. When the rou­
tines produced an incorrect tree we had no way of find­
ing the specific error. 

Our frustration led to the development of TREE­
PRINT. Starting with the algorithm of Jean Vaucher 
[1], we designed a general-purpose tool capable of dis­
playing any N-ary tree on any character output device. 
The trees are displayed in a pleasant visual form and in 
the manner in which they would appear if drawn by 
hand. We feel that TREEPRINT is of general use -
hence its presentation here. 

The structure of TREEPRINT is that of an inde­
pendent collection of subroutines that any program can 
call. Unfortunately standard Pascal does not support 
this form, while our Pascal environment does. How­
ever, building TREEPRINT directly into a program 
should present no difficulty. 

TREEPRINT requires no knowledge of the format 
of the data structure it is printing. It has even been used 
to print a tabular linked structure within a FORTRAN 
program! In order to allow this, two procedures are 
passed in the call to TREE PRINT. One is used to 
"walk" the tree, the other to print identifying labels for 
a given node. Other parameters are values such as the 
size of the nodes, the width of the page, etc. One of the 
advantages of this calling mechanism is that a single 
version of TREEPRINT can be used to display wildly 
different structures, even when they are within the 
same program. 

One of the major features of TREEPRINT is its 
ability to span pages. A tree that is too wide to fit on 
one page is printed out in "stripes" which are taped 
together edge-to-edge after printing. In addition trees 
may optionally be printed either upside-down or re­
versed from left-to-right. 

Articles 

The method used by TREEPRINT is detailed in 
Vaucher's work [ 1]. In its current implementation ad­
ditional support for N-ary structures has been added, 

. as well as full connecting-arc printing and the reversal 
features. Basically, TREEPRINT walks the inputtree 
and constructs an analogous structure of its own which 
indicates the positions of every node. The new struc­
ture is linked along the left edge and across the page 
from left-to-right. Once this structure is completed, 
TREE PRINT walks the new structures and prints it out 
in order. Once printout is finished, the generated struc­
ture is DISPOSE' d of. 

Recursive structure are handled in TREE PRINT 
by checking each node with its ancestors. If it appears 
somewhere else in the diagram, no lower nodes are 
printed. This prevents fatal infinite loops that might 
otherwise occur. 

The only problem in TREEPRINT at present is a 
feature ofthe POSITION routine which centers a node 
above its sons. This tends to make the trees generated 
wider than necessary. This is largely a matter of taste 
- some minor changes would remove this. 

The listing of TREE PRINT which follows· should 
serve to document the method of calling the routine. 
The functions of the user-supplied procedures are also 
detailed. 

References 

[1] Vaucher, Jean, "Pretty-Printing of Trees." Soft­
ware-Practice and Experience, Vol. 10, pp. 553-561 
(1980). 

[2] Myers, Brad, Displaying Data Structures for In­
teractive Debugging, Palo Alto: Xerox PARC CSL-
80-7 (1980). 

[3] Sweet, Richard, Empirical Estimates of Program 
Entropy, Appendix B·- "Implementation descrip­
tion", Palo Alto: Xerox PARC CSL-78-3 (1978). 

module TREEPRINT (input,output); 

(* 
TREEPRINT '- A routine to print N-ary trees on 

any character printer. This routine takes as input 
an arbitrary N-ary tree, some interface routines, 
and assorted printer parameters and writes a pic­
torial representation of that tree to a file. The tree 
is nicely formatted and is divided into vertical 
stripes that can be taped together after printing. 
Options exist to print the tree backwards or upside 
down if desired. 
The algorithm for TREEPRINT originally ap­
peared in "Pretty-Printing of Trees", by Jean G. 

27 



Vaucher, Software-Practice and 'Experience, Vol. 
10, 553-~61(1980). The ,algoritp.mu~ed here has' , 
been modified to support N -ary tree structures and 
to have more sophisticated pr,interfort'nat control. 
Aside from a common method df c()nstructing an 
ancillary data structure arid some vatiablenames, 
they are now very dissimiliar. 

TREEPRINT was written by Ned Freed and Kevin 
Carosso, 5-Feb-81. It may be freely distributed, 
copied and modified provided that this note and the 
above reference are included. TREE PRINT may 
not be distributed for any fee other than cost of 
duplication. 

Revision history: 

1-Sep-81 Fixed a problem in the output step 
that caused simple structures 

, printed upside down to lose some 
connections'./nf ' 

1 ~ Dec-81 ' Added code to check for recursive 
references, and stop Position ,so 
that Treeprint doe,S not hang in an ' 
infinite loop. Inf, 

INPUT - The call to TREE PRINT is: 
TREEPRINT(TREE,TREEFILE,PAGESIZE; 

VERTKEYLENGTH, 
HORIKEYLENGTH, 
PRINTKEY, 
LOWERNODE) 

where the parameters are:, 

TREE --" The root of the tree to be printed. The 
nodes of the tree, are of arbitrary type, as 
TREEPRINT does notread them itself but 
calls procedure LOWERNODE to do so. 
In a modular environment this should pres­
ent no problems. If TREEPRINT is to be 
installed directly in a program TREE will 
have to be ,changed to, agree.in type with 
the actual tree's nodes. 

TREEFILE - A file variable of type text. The 
tree is- written into this file. 

- --PAGESIZK~Tne-sizeonfie-pageonoutpuffep~ 
resented as an integer counlofthe number 
of available columns. The maximum page 
size is 512. Any size greater than 512 will 
be changed to 512. 

28 

LOWERNODE - A user procedure TREE­
PRINT calls to walk the user's tree. The 
format for the call is described below along 

, with the functions 'LOWERNODE must 
perform. 

PRINTKEY - A user procedure TREEPRINT 
,calls to print out a single line of a keyword 
description of some node in the user's tree. 

, The description may: be multi~line and of 
any width. The call format is' described 
below. 

VERTKEYLENGTH - The number of lines of 
a description printed by PRINTKEY. This 
must be a constant over all nodes. If 

, VERTKEYLENGTHis negative, its ab­
solute,value is used as the" key length and 
the whole tree is inverted on the vertical 

',,' axis." 
HORIKEYLENGTH - The number of charac­

ters in a single line .of a description printed 
by PRINTKEY. This must be a constant. 
If negative the absolute value of HORI­
KEYLENGTH is used and the whole tree 
is inverted from left to right. 

CALLS TO USER PROCEDURES - The calls to 
user-supplied procedures have the following format 
and function: 

PRINTKEY , ' 
(LINENUMBER,LINELENGTH,NODE) 

, LINENPMBER - The line of the node descrip­
tion to print. This varies from 1 to VERT­
KEYL,ENGTH. Since TREEPRINT op­
erate s on a line-at-a-time basis, 
P~INTKEY must be able to break up the 
output in a similar fashion. ' 

LINELENGTH -:- The length ~fthe 'line. 
PRINTKEY must output this many char­
acters to TREEFILE - no more, no less. 

NODE- The node of the user's tree to derive 
, , information from. ' 

, 
LOWERNODE (NODE,SONNUMBER) 

SONNUMBER - The sub-node to return. A gen­
eral N-ary tree will have N of them. 

NODE - The node of the user's tree to derive 
the information from. " , 

LOWERNODE, on return should equal NIL if 
that node does not exist, NODE if the 
SONNUMBER is illegal,and otherwise a 
valid sub-node. The condition that LOW­
ERNODE returns NODE when N is ex­
ceeded must be strictly adhered to,' as 
TREEPRINT uses this to know where to 
stop. LOWERNODE is used to hide the 
interface between TREEPRINT and the 
user's tree so that no format details of the 
tree need to resident in TREEPRINT. ' ' 

OUTPUT - All output is directed ,toTREEFILE. 
There are no error conditions or messages. 

*) 

(* The declaration of the user's node type. If type 
checking is a problem this should be, changed to 
match the t,ype for the actual,nodes in a tree. *) 

type 
nodeptr,. "inteter; 

procedure treeprint (tree: nodeptr; 'var tre'efile : text; 
pagesize. vertkeylength., hor1keylength 
integer; procedure pr.lritkey; function 
lowernode : nodeptr); 

type 
, -, 

reflin" • "iink; 
11 nk '. record 

next: refltnk; 
pnode : nodeptr-; 
pos : integer; 

Articles 



var 

end: 

lstem 
ustem 

refhead = "'head; 
head = record 

boolean; 
boolean: 

next: refhead; 
first: reflink; 

end; 

maxposition, minposition, width, w, charp : Integer; 
startposition. beginposition. endposition : Integer; 
pagewidth, P. i. j, stemlength. vertnodelength : integer; 
endloop : boolean; 
line: packed array [1 •. 512] of char; 
L. oldL : reflink; 
lines. slines, H, D : refhead; 

procedure cout (c : char); 

CI Cout places a character in the line buffer at the 
current character position. The pointer charp is 
incremented by this action to reflect the change. I) 

begin (. Cout .) 
charp := charp + 1; 
line[charp] := c; 

end; (. Cout .) 

procedure cdump; 

(I Cdump dumps all characters that have accumulated in 
the line buffer. No characters are omitted and no 
cr-If is appended. I) 

begin (. Cdump .) 
if charp > 0 then for charp := , to charp do 

write (treefile,line[charp]); 
charp := 0; 

end; (. Cdump .) 

procedure ctrimj 

(I Ctrim dumps all characters that have accumulated in 
the line buffer with trailing spaces removed. A 
WRITELN is used to end the line .• ) 

begin (. Ctrim .) 
while (charp > 0) and (linelcharp] = ' ') do 

charp := charp - ': 
if charp > 0 then for charp := 1 to charp do 

write (treefile,line[charp]); 
charp := 0; 
writeln (treefile): 

end; (I Ctrim I) 

function checkref CN: nodeptr; currentref 
boolean: 

reflink) 

var 

(I Checkref is a function which checks whether a pointer 
into the user's data structure has already been used 
somewhere else in the tree. If -so, Position should not 
examine lower nodes for this pointer -- they have 
already been taken care of elsewhere. This will prevent 
certain types of recursive references from getting 
Position into an infinite loop. This does, however, 
require a lot of time •• ) 

H : refhead; 
L : reflink; 
goon : boolean; 

begin (0 Checkref 0) 

H : = lines; 
goon : = true; 
while (H <> nil) and goon do 
begin 

L := H ..... first; 
while (L <> nil) and goon do 
begin 

end; 

if (L <> current ref) and (LA.pnode 
goon := false; 

L := LA.next; 

H := H .... next; 
end; 
checkref := goon; 

end; CI Checkref I) 

N) then 

function position (N : nodeptr; var H 
: reflink; 

refhead; pos integer) 

(I Position is a recursive function that positions all the 
nodes of the tree on the print page. In doing so, it 
constructs an auxiliary data structure that is connected 
by line number along the edge and position from left to 
right. In addition, it stores some of the original tree 
connections for arc printing. I) 

Articles 

var 
over. lastover. nodecount 
Nlower : nodeptr; 
L. left, right: reflink; 
need right : boolean; 

integer; 

begin (. Position .) 
if N = nil then (. Be defensive about illegal nodes .• ) 
position := nil 
else 
begin (* create a new node in our tree. I) 

new (L); 
pOSition ._ L; 
L .... pnode := N; 
L .... ustem := false; 
if H = nil then 
begin (I A new line has been reach~d. I) 

new (H); 
H .... next ._ nil; 
L .... next ._ nil; 

end 
else 
begin (. Shift position if conflicting. 0) 

L ..... next := H~.first; 

end: 

if H ..... first .... pos < pos + 2 then 
pos := HA.firstA.pos - 2; 

HA.first := L' 
nodecount := 0; 
if checkref (N,L) then 
begin 

over := ,. 
repeat (I Count the number of lower nodes. I) 

Nlower := lowernode CN,~ver); 
if «Nlower<> N) and (Nlower <> nil)) then 

nodecount := nodecount + 1; 
over := over + l' 

until Nlower = N; 
end; 
if nodecount > 0 then 
begin (I There are lower nodes. loop to position. I) 

L .... lstem := true: 
lastover := nodecQunt - ': 
nodecount := over; 
over := - lastover; 
needright := true; 
repeat (* Recursively evaluate lower positions. I) 

repeat (. Find one that is non-nil •• ) 
if nodecount > ° then 

Nlower ._ lowernode (N,nodecount) 
else 

Nlower ._ N' 
nodecount := nodecount - 1; 

until Nlower <> nil; 
if Nlower <> N then 
begin 

left := 
pOSition (Nlower, H ..... next. pas + over); 

if need right then 

end; 

begin 
right : = left; 
needright := false; 

end 
else left .... ustem := true; 
over := over + 2; 

until (over> lastover) or (nodecount <= 0); 
pos := (left ..... pos + right ..... pos) div 2; 

end 
el se 

L .... lstem := false; 
if pas> maxposition then max position := pos 
el se 

if pas < minposition then minp~sition := pos; 
LA.pOS ._ pos; 

end; (. if N = nil .) 
end; (* Position 0) 

begin (0 Treeprint .) 

(* Initialize various variables. I) 

lines: = nil; 
minposition ._ 0; 
max position ._ 0; 
charp := 0; 

(I Do various width and length calculations. I) 

if pagesize > 512 then pagesize := 512; 
width := abs (horikeylength) + 4; 
stemlength := abs (vertkeylength) + 1; 
vertnodelength := 3 labs (vertkeylength) + 4; 
if (width mod 2) = 0 then width := width + 1; 
pagewidth := pagesize div width; 

(I Construct our data structure and compute positions .• ) 

oldL := position (tree.lines,O); 

(I If the horizontal reverse option 15 selected, reverse 

29 



every node on every line of the data structure. It is 
also necessary to switch around the states of the USTEM 
flags t,hat tell who connects above a gtven node. *) 

if horikeylength < 0 then 
begin 

H := lines; 
while H <> nil do 
begin 

H".first".pos := maxposition -
HA.flrstA.pos + mlnpositlon; 

if H".first".ustem then 
begin 

end 
else 

H".first".ustem := false; 
endloop := true; 

endloop := false: 
L := nil; 
while H".first".next <> nil do 
begin 

end; 

HA.flrstA.nextA.pos := maxposition -
HA.flrstA.nextA.pos + mlnposition; 

if H".first".next".ustem theo 
begin 

end 
else 

if not end loop then 
begin 

end; 

Hft.firstA.nextA.ustem ._ false; 
end loop : = true: 

if endloop then 
begin 

end; 

HA.firstA.nextA.ustem ._ true; 
endloop := false; 

oldL := H".first".next; 
HA.firstA.next := L; 
L := H".first; 
H".first := oldL; 

HA.firstA.next := L; 
H := H .... next; 

end: 
end; 

(* If the vertical reverse option Is selected, reverse the 
entire tree on the vertical axis by flipping all the 
head nodes along the edge. Arc reversal is handled in 
the actual arc generation routines. They will scan the 
previous line of info instead of the current one. *) 

slines := lines; 
if vertkeylength < 0 then 
begin 

end; 

H := n11; 
while lines".n~xt <> nil do 
begin 

end; 

D := linesA~nexti 
linesA.next := H; 
H := lines; 
lines := D; 

linesA.next := H; 

(I Break up entire width into pages and loop over each •• ) 

startposition := minposition; 
while start position <= maxposition do 
begin 

page (treefile); 
H := lines; 
while H <> nil do 
begin (I Loop over all lines possible. *) 

oldL := H".first; 

30 

repeat (I Find a node on current strip. I) 
end loop : = true: 
if oldL <> nil then 

if oldL".pos < startposition then 
begin (. Reject this node •• ) 

oldL := oldL".next; 
endloop := false; 

end; 
until endloop; 
for i := 1 to vertnadelength do 
begin (. Loop for each print line in a node •• ) 

L := oldL; 
p := startposltion; 
while (p < startposition + page~idth) .nd 

(L <> nil) do 
begin (I Scan -for nodes we need to draw. I) 

if L".pos = p then 
begin (. Found node at current position .• ) 

if (i <= stemlength) then 
begin (. Draw upper stem part of node •• ) 

for w := 1 to (width div 2) do 
cout (I I); 

if «vertkeylength < 0) and L".lstem) 

end 
else 

or «vertkeylength >= 0) and 
(H <> .lines» then cout ( ••• ) 

else oout (I I); 
for w := 1 to (width div 2) do 

cout (I I): 

end 
el se 
if (vertnodelength - i) < stemlength then 
begin (. Draw lower stem part of node •• ) 

end 
else 

for w := 1 to (width div 2) do 
CQut (' I); 

if «vertkeylength >= 0) and L".lstem) 
or «vertkeylength < 0) and 
(H <> .lines» then cout ( ••• ) 

else cout (' '); 
for w := 1 to (width div 2) do 

cout (' '); 

if (i >= stemlength + 2) 
and (i <= stemlength • 2) then 

el se 

begin (. Print node identifier, .) 
cout (' I' ) ; 

end 

cout (' '): 
cdumpi 
printkey (i - stemlength - 1. 

abs (horikeylength), L".pnode); 
cout (' I); 
cout ("'); 

for w:= 1 to width do cout ('I'); 
L := L .... next; 

for w := , to width do cout (I I); 

P : = P + 1; 
end; 
ctrim; 

end; (I for I) 

(I Select the proper line to obtain arc info from. I) 

if vertkeylength >= 0 then 
begin 

end 

if H".next <> nil 
then L ._ H".next".first 
else L := nil; 

else L := HA.first; 

p := startposltion; 
while (p < startposition + pagewidth) and (L <> nil) do 
begin 

endposition := LA.pos; 
beginposition := L".pos; 
if L". ustem then 

while (L".next <> nil) and L",ustem do 
begin 

L := t .... next; 
endpositlon ._ LA.pos; 

end; 
L := LA.next; 
if (beginposition < startposition + pagewidth) 

and (endposition >= startposition) then 
begin (. Found an arc we should draw •• ) 

while p < beginpo.ition do 
begin (0 Space over to proper position. 0) 

for w := 1 to width do cout (. '); 
p : = p + 1; 

end; 
if beginposition = endposition then 
begin (. Case of one node directly below. 0) 

for w := 1 to (width div 2) do cout (. '); 
if (H <> slines) or (vertkeylength >= 0) 
then cout( I.') 

end 
else 

else oout(' I.): 
for w := 1 to (width div 2) do cout (. '); 
p : = p + '; 

begin (. Normal multi-segment arc. then •• ) 
if P = beginposition then 
begin (I Begin with a half segment. I) 

for w := 1 to (width div 2) do 

end; 

cout (' '): 
for w := (width div 2) to width-1 do 

cout (' I'); 
p • _ p + 1; 

while (p endposition) and 
(p < startposition + pagewidth) dO 

begin (0 Connect to the end segment. 0) 

for w:= 1 to width do oout ("'); 
p : = p + 1; 

end; 
if p < startposition + pagewidth then 
begin (I Draw end seg~ent of the arc .• ) 

for w := (width div 2) to width-1 do 
oout (,II.'); 

Articles 



end; 
end; 

end; 
end; 
ctrim; 

fo~ w := 1 to (width div 2) do 
cout (' '); 

p : = p + 1; 

(I We have now flnlshed an entlre 11ne of tree, I) 

H ._ H".next; 
end; (I whlle H<>nll I) 

(I Start up on a new page of materlal, I) 

startposltlon := startposltlon + pagewldth; 
end; (I whlle startposltlon <= maxposltlon I) 

Articles 

(I All output is finished, It is now tlme to close out our extra 
dati structure, I) 

while 11nes <) nl1 do 
begln (I Collect a 11ne of stuff and dlspose, I) 

H := 11nes",next; 

end: 

whl1e 11nes",flrst <> n11 do 
begln (I Kl11 a node, I) 

end; 

L := lines",flrst",next; 
dlspose (llnes",flrst); 
11nes",flrst := L; 

dlspose (11nes); 
11nes := H; 

end; (I Treeprlnt I) 

end, (I Of module TREEPRINT I) 

31 



Three Proposals for Extending Pascal 
By R.D. Tennent 

Computing and Information Science 
Queen's University 

Kingston, Canada, K7L3N6 

These three proposals have been submitted to the 
American Pascal Extensions Task Group and to the 
Canadian Pascal Working Group for consideration as 
extensions to ISO Pascal. The three proposals deal with 
separate issues and could be combined without 
difficulty. 

The terminology and syntactic notation are those 
of the ISO Pascal standard. References ate given only 
for the examples. References for and further explana­
tion of the concepts may be found in the autor's Prin­
ciples of Programming Languages, Prentice-Hall In­
ternational, London (1981). 

The Where-Clause: A Proposed 
Extension to Pascal 

By R.D. Tennent 
Computing and Information Science 

Queen's University 
Kingston, Canada, K7L3N6 

613-547-2645 

1. Introduction 

A common and justified criticism of Pascal is that 
large programs are difficult to read. This is in part be­
cause the block bodies in a program must occur in a 
"bottom-up" order. The main program body (i.e., the 
highest-level code) appears at the very end of the pro­
gram. In general, high-level code always follows the 
code for the lower-level procedures that it uses. The 
first code encountered in reading a program is that for 
a procedure at the lowest level of abstraction. 

A further difficulty is that type, constant and var­
iable declarations in a block can be separated from their 
uses by the code for procedure definitions in that block 
and code for all lower-level contained blocks. In large 
programs, the definition of an identifier can be tens of 
pages away from the code in which it is used. 

2. The Where-Clause 

The defects described above can be corrected in 
a very straightforward way: allow a procedure-and­
function-declaration-part to follow the statement-se­
quence of the statement-part ofa block. This is termed 
a where-clause. 
block = label-declaration-part 

constant-definition-part 

type-definition-part 

variable-declaration-part 

proced ure-and- function-declara t ion-part 

statement-part 

statement-part "begin" 

32 

statement-sequence 

[where-clause 1 

"end" 

where-clause = "where" procedure-and-function-declaration-part 

The procedure-and-function-declaration-part of a 
where-clause is to be interpreted exactly as if it were 
placed immediately following the usual procedure-and­
function-declaration-part of the enclosing block, ex­
cept that the rule of forward-declaration before use is 
enforced. More formally, if DJ and D2 are definitions 
and S is a statement-sequence, then a block ofthe form 

Dl 
begin 

S 

where 

shall be equivalent to 

Dl 
procedure I; begin Send; 

D2 
begin I end 

where I is any identifier not used in the original block. 

Example 1 Partition sort, after Wirth's i\lgorithms + Data 

Structures = Programs, program 2.10. 

procedure QuickSort; 

procedure Sort (left ,right : index); forward; 

[sorts i\[left .. rightJ} 

begin [QuickSort} 

Articles 



Example 2 

Sort(l,n) 

where' 

proCedure Sort{ (left,right': index) l; 

var i ,j :index; 

procedure Partition; forward; 

{partiticincomputes i>j and permutes A[left •• right] 'so 

that A[j+l •• i-l] = x, A[left •• i-l] ~X~A[j+l •• right]} 

begin {Sort} 

Partition; 

if left<j then Sort(left,j); 

if i<right then Sort (i ,right) 

where 

procedure Partition; 

var x: item; 
procedure Exchange(var p,q: item); forward; 

{Exchange swaps the values in p and q} 

begin {partition} 

i := left; j:= right; 

x : = A [(left + right) div 2]; 

repeat 

while A[i] <x do i := i+1; 

while A[j] >x do j := j-l; 

if i~j then 

begin 

Exchange(A[i],A[j] ); 

i := i+l; 

j := j-l 

end 

until i>j 

where 

procedure Exchange{ (var p,q : item) l; 

var w: item; 

begin w:= p; p:= q; q := wend {Exchange}; 

end {partition}; 

end {Sort}; 

end {QuickSort}; 

PLIO compiler, after Wirth's Algorithms + Data Structures 

= Programs, program 5.6. 

program PLO (input, output); 

label 99; 

const .~.{global constants} ••• ; 

type ••• {globaltypes} ••• ; 

var ••• {global variables} ••• ; 

procedure Error(n: integer); forward; 

procedure Getsym; forWard; 

procedUre Block(lev,tx: integer; fsys: symset); forward 

pcocedure Interpret; forward; 

begin {Main Program} 

••• {initialization of global variables} ••• 

Getsym; 

Block(O ,a, [period) +declt>eg sys+statbeg sys); 

if sym i perIod then Error(9);. 

Articles 

if err=O then' Interpret else write('ERRORS IN "PLIO PROGRAM'); 

,9!j: writeln 

where 

procedure Error{ (n : integer) l; 

begin writeln(' ****', ' ':ce-l, 

procedure Getsym; 

var i,j,k: integer; 

procedure Getch; forward; 

begin {Getsym} 

while ch =' , do Getch; 

••• {rest of Getsym} ••• 

where 

procedure Getch; 

begin {Getch} ••• end {Getch}; 

end {Getsyml; 

n :2) end {Error}; 

procedure Block{ (lev,tx: integer; fsys: symset) l; 

••• {declarations for Block} ••• ; 

begin {Block} 

••• {code for Block) ••• 

where 

••• {definitions of procedures used in Block} ••• 

end {Block}; 

procedure Interpret; 

••• {declarations for Interpret} ••• ; 

begin {Interpret} 

••• {code for Interpret} ••• 

where 

••• {definitions of procedures used in Interix"et} ••• 

end {Interpret}; 

end {Main Program}. 

3. Implementation 

The where-clause may be implemented in essen­
tially the same way that forward declarations in stand­
ard Pascal are implemented. The possibility of placing 
procedure definitions after their uses exists in many 
other languages, including FORTRAN, PLiI and Ada. 
The idea of the where-clause is due to P.J. Landin. 

4. Summary 

The proposed where-clause would provide two 
significant improvements in program readability. Firstly, 
it would allow a programmer to organize nested pro­
cedures in a top-down way that is often more natural 
to read than the bottom-up organization currentlypos­
sible in Pascal. Secondly, it would allow declarations 
of identifiers and their uses to be much closer together 
than is currently possible. These advantages become 
more and more apparent and significan,t as program size 
and structural complexity increase. 

The only costs associated with this proposal are 
that it would be necessary to add a new reserved word 
("where") and to increase very slightly compiler size 
in order to parse the new clause. . . ' 

33 



Proposals for Improved Exception-Handling 
in Pascal 

By R.D. Tennent 
Computing and Information Science 

Queen's University 
Kingston, Canada, K7L3N6 

613-547-2645 

1. Introduction 

A test that indicates that an alternative computa­
tional approach must be followed and that cannot be 
efficiently or conviently tested before starting the com­
putation containing the test is known as an exceptional 
condition. The alternative computation is known as the 
exception-handler. An example of an exceptional con­
dition is overflow of a primitive numerical operation. 
Usually it is impractical to test for overflow before at­
tempting the operation, but if an overflow occurs, an 
alternative computational path must be followed. An 
exception is not necessarily an "error". 

The facilities for exception-handling in standard 
Pascal are not quite adequate. We shall describe what 
is currently possible, and propose relatively modest 
extensions to improve exception-handling for (i) pro­
grammer-defined procedures, (ii) language-defined 
("required") procedures, and (iii) primitive operations. 

2. Programmer-Defined Procedures 

The scheme in Example 1 illustrates the most ap­
propriate method available in standard Pascal for ex­
ception-handling. The advantages of the scheme are as 
follows. 

(i) Code for exception-handling is separate from the 
code for the unexceptional cases. 

(ii) It· is possible to pass information to an exception 
handler by using the parameter-list of the procedure. 

(iii) Although gotos are used, both the jumps and their 
destinations are at the ends of blocks only. 

(iv) It is possible to invoke exception handlers defined 
in any enclosing block. 

Example 1 Using procedures 

exception-handling. 

label 999; 

procedure ExceptionHandler( ... ); 

begin 

and goto 

... {computation for exceptional cases} ... ; 

goto 999 

end; 

begin {computation for unexceptional cases} 

••• If ... {test for exceptional condition} .. 

then ExceptionHandler( ... ); 

999: end 

34 

statements for 

If an exceptional condition must be tested in a 
called procedure that is defined outside the block in 
which the exception-handler is defined, then the ex­
ception-handler may be passed to it as a procedural 
parameter, as in Example 2. 
Example 2 Using an exception-handling parameter. 

procedure External( ... ; procedure· Error( ... »; 
begin 

... if ... {test for error} ... 

then Error ( ... ) ; 

end; 

label 999; 

procedure ExceptionHandler( ... ); 

begin 

... {computation for exceptional cases} ... ; 

goto 999 

end; 

begin {computation for unexceptional cases} 

External ( ... , ExceptionHandler); 

999: end 

We conclude that well-structured exception-han­
dling in programmer-defined procedures is possible in 
standard Pascal. However, the current language does 
not provide specialized constructs to encourage this 
approach. It would be desirable to avoid use oflabel 
declarations, goto statements and numeric labels. This 
is the same design philosophy that led to the inclusion 
of the if-then-else, case, while; repeat and for control 
structures in Pascal. 

We propose to extend Pascal by providing exits, 
which are similar to conventional procedures, but al­
ways" return" to the end of the block in which they are 
defined (rather than to their calls). Example 3 shows 
how the exception-handling schemes of Examples 1 
and 2 can be expressed using exits. Exits may be im­
plemented in the same way that the combination of non­
local jumps and procedures is in Pascal, except that a 
dynamic "return-link" is not needed. The concept of 
block-exiting procedures is due to P.J. Landin . 
procedure-and-function-declaration-part 

{ ( procedure-declaration 

function-declaration 

I exit-declaration) ";" 

Articles 



exit-declaration = exit-heading ";" [block) 

exit-heading = "exit" identifier [formal-parameter-list) 

formal-parameter-section > 

value-parameter-specification 

variable-parameter-specification 

proced ural-parameter-specification 

functional-parameter-specification 

exit-parameter-specification 

exit-parameter-specification = exit-heading 

simple-statement empty-statement 

assig nment-statement 

procedure-statement 

exit-statement 

goto-statement 

exit-statement = exit-identifier [actual-parameter-list) 

actual-parameter expression I variable-access 

procedure-identifier 

function-identifier 

exit-identifier 

Example 3 Using exits for exception-handling. 

procedure External( ••• ; exit Error( ••• »; 
begin 

••• if ••• (test for error} ••• 

then Error( ••• ); 

end; 

exit ExceptionHandler( ••• ); 

begin 

••• (computation for exceptional cases} ••• ; 

end; 

begin (computation for unexceptional cases) 

end 

Example 4 

••• if ••• (test for exceptional condition) •• 

then ExceptionHandler( ••• ); 

••• External( •••• ExceptionHandler); 

Sift. after Wirth's Algorithms + 

Programs. program 2.7. 

procedure Sift(l,r: index); 

var i,j: index; x: item; 

exit Sifted; 

begin ali) := x end (Sifted); 
begin (Sift) 

i:= 1; j:= 2*i; x:= ali); 

while jy do 

begin 

if j<r then 

if a[j»a[j+l) then j:= j+l; 

if x~a[j) then Sifted; 

Articles 

Structures 

ali) := a[j); i := j; j:= 2*i 

end; 

a[i) := x 

end (Sift); 

Example 5 PLIO compiler. after Wirth's Algorithms + Data Structures 

= Programs. program 5.6. 

program PLO (input. output); 

exi t Incom plete; 

begin writeln('PROGRAM INCOMPLETE.') end (Incomplete); 

exi t TooLong; 

begin writeln('PROGRAM TOO LONG.') end (TooLong}; 

••• if eof(input) then Incomplete; 

••• if ex> cxmax then TooLong; 

begin (main program) 

end. 

Example 6 Hash table look-up. after Knuth's "Structured 

programming with go to statements". Computing 

Surveys. 6. pp. 261-301. Example 3a. 

var i: l •• m; 

exit Insert; 

begin 

Ali) := x; 8[i) := 1; count:= count+l; 

if count=m then HashTableFull 

end (Insert); 

begin 

i := hash(x); 

while AU) i x do 

begin 

1f A[i) =0 then Insert; 

if i>l then i := i-I else i:= m; 

end; 

8[i) :=8[i)+1 

end 

3. Required Procedures 

Exception-handling is not an issue for most of the 
"required" procedures and functions in Pascal. Any 
possible failure condition can easily be tested before 
calling them. The only required procedure for which 
this is not true is Read(f,x) when f is a text file and x is 
an arithmetic variable. If there is a syntactic error in 
reading a signed-integer or signed-number from the file, 
the Pascal standard specifies that the execution is in 
error, and most implementations handle this by abort­
ing program execution. This is a serious design error 
because it is essential that user-oriented software be 
able to recover gracefully from trivial input errors. 

We propose adding the following required procedures to Pascal: 

procedure ReadInteger(var f: text; var i: integer; 

exit IllegalSyntax); 

procedure ReadReal(var f: text; var r: real; 

exit IllegalSyntax); 

35 



(An alternative approach would be to add a single re­
quired procedure ReadNumber(f,x,IllegaISyntax) 
whose second parameter may be either integer or real.) 
It is not impossible to define procedures similar to these 
in Pascal, but, for real numbers at least, the code is too 
formidable and machine-dependent for this to be a 
practical solution. See program 1.3 in Wirth's Algo­
rithms + Data Structures = Programs. It is also pos­
sible to use Read to do the conversion after first check­
ing the syntax of the input, using a temporary file as a 
buffer for the characters that are checked. But on most 
implementations the overhead of file creation would 
make this approach too inefficient. 

Example 7 Handling exceptions when reading numbers. 

procedure ReadSpeed(var s: speed; .exit Failure); 

var count: 0 .. 4; {Retry llP to four times; then call Failure.) 

exit TryAgain; 

begin 

if count=4 then Failure; count := count+l; 

writeln(output. 'Incorrect syntax for signed-number. Try again.');. 

ReadReal(input, s, TryAgain) 

end {TryAgain}; 

begin {Read Speed} 

. count ~== 0; 

writeln(output, 'Enter the speed as a signed:-number.'); 

ReadReal(input, s, TryAgain) 

end {ReadSpeed); 

4. Primitive Operations 

Floating-point overflow and underflow are the only 
failure conditions for primitive operations that cannot 
reasonably be tested before applying the operations. As 
in the preceding section, it would be possible to add 
required functions with exception-handling parame­
ters, such as 

product(x,y,ovflow,unflow) 

But such functions would be so much less convenient 
to use than the usual infix operators that this solution 
is impractical. 

We propose adopting the following rule: an over­
flow or underflow shall result in calling an exit called 
'Ovflow' or a procedure called 'Unflow', respectively. 
If, in the case of an underflowing operation, Unflow 
allows control to return, theri the result of the operation 
is taken to be zero. If the overflowing or undetftowing 
operation does not occur in the scope of a programmer-

36 

defined Ovflow or Unflow exception-handler, then the 
effect shall be equivalent to calling 

exit Ovflow; 
begin {Aborts program execution} end; . 

or 

procedure U nftow; 
begin {null} end; 

respectively. The symbols 'Ovflow' and 'Unflow' shall 
be reserved in the sense that they are allowed orily as 
the identifier of a (parameterless) exit7heading or pro­
cedure-heading, respectively, or as a corresponding ac­
tual-parameter. Note that defining Ovflow,or Unflow 
affects only operations in the scope of the definition, 
and not necessarily in procedures called in that scope. 

Example 8 Handling overflow and underflow. 

procedure P( ... ; exit OVflow); 

procedure Unflow; 

begin writeln('Underflow in \X"ocedure P') end; 

begin 

••• {Overflow here irivokes parameter OVflow. 

Underflow here prints a ';'essage but computation 

continues using a result of zero.} ... 

end {pI; 

5. Summary 

Three proposals have been made to improve ex­
ception-handling in Pascal. 

(i) The exit concept has been proposed to permit well­
structured exception-handling without the use oflabels 
and gotos. 

(ii) Additional required procedures for reading num­
bers from text files have been proposed to permit re­
covery from syntax errors in input files. 

(iii) Conventions for handling numerical overflow and 
underflow have been proposed to permit recovery from 
machine traps while still allowing use of infix notation 
for arithmetic operations. 

These relatively modest extensions would seem to be 
both necessary and sufficient to provide adequate ex­
ception-handling in Pascal. The very complex and 
poorly-designed exception-handling facilities in lan­
guages such as PLiI and Ada are neither necessary nor 
desirable, and should not be imitated in Pascal. 

Articles 



The Definition Block: A Proposed 
Extension to Pascal 

By R.D. Tennent 
Computing and Information Science 

Queen's University 
Kingston, Canada, K7L3N6 

613-547-2645 

1. Introduction 

It is widely recognized that the block structuring 
facilities currently available in Pascal are inadequate to 
allow secure abstraction' from data representations. 
Some rather complex proposals for extending Pascal 
have been made and several newer languages have ad-
dressed this issue. . 

The present proposal is notable for its compatibil­
ity with the concepts of Pascal. Rather than introducing 
new concepts having possibly complex interactions 
with the existing language, the facilities proposed are 
just straightforward generalizations of the '. block, re­
cord· alld procedure structures already present in the 
language .. 

It will be convenient to assume the existence of a 
variable initialization facility; however, its design does 
not significantly affect this proposal. We start with the 
following syntax; the only new feature is an initializa­
tion-part. 

block definitions-part 

statement-part 

definitions-part = definitions 

definitions = label-declaration-part 

constant-definition-part 

type-definition-part 

variable-declaration-part 

initialization-part 

procedure-and-function-declaration-part 

initialization-part ["ini tial" block ";"] 

Example 1 A block with an initialization part. 

type natnum = O •• maxint;' 

var 

count: array[index]of natnum; 

tota1count: natnum; 

initial 

var i: i nd ex; 

begin 

for i :=0 to n do count[i] :=0; 

tota1count := 0 

end {initial}; 

pe-ocedure Tabulate (x: index); 

begin 

if x> n then error (x); 

count[xl := count [x] +1 

tota1count:= tota1count+1 

Articles 

end {Tota1count}; 

function Frequency(x: index): real; 

begin 

if x> n then error (x); 

Frequency:= count [x]/totalcount 

end {Frequency}; 

begin 

••• Tabulate(w) ••• Frequency(w) ••• 

end; 

The definitions-part of the block in Example I'de­
fines the representation of a histogram. This is correctly 
accessed in the statement-part of the block by using 
procedure Tabulate and function Frequency. However, 
identifiers 'count' and 'totalcount' are also accessible 
in the body of the block, and this is undesirable. But 
Pascal does not allow identifier visibility to be con­
trolled as required (except by using procedural param­
eters in a rather complex and unreadable way). 

2. The Definition Block 

The concept used in Pascal to control visibility of 
identifiers is the block. Identifiers defined in the defi­
nitions-part of a block can only be. used within that 
block. The present proposal is based on the observation 
that it is not essential to the block conceptthat the bod­
ies of blocks be statements. For example, in several 
programming Janguages block bodies are expressions. 
We propose to add to Pascal a form of block whose 
body consists of definitions and may be used wherever 
a conventional set of definitions is usable: 

definitions = 1abe1-dec1aration-part 

constant-definition-part 

type-definition-part 

variable-dec1aration-part 

initialization-part 

procedure-and-function-dec1aration~part 

definition-block 

definition-block = "pe-ivate" pl"ivate-definitions-part 

"within" public-defini tions-part 

private-definitions-part = definitions 

public-definitions-part = definitions 

Example '2' A definition-block. 

private 

type. natnum O.;maxint; 

var 

37 



count: array[index]of natnum; 

totalcount: natnum; 

initial 

var i: index; 

begin 

for i:= 0 to n do count[i] := 0; 

totalcount := 0 

end {initial}; 

within 

procedure Tabulate(x: index); 

begin 

if x> n then error (x) ; 

count[x] := count[x] +1 

totalcount := totalcount + 1 

end (Totalcount l; 

function Frequency(x: index): real; 

begin 

if x> n then error (x) ; 

Frequency := count [x] /totalcount 

end {Frequency}; 

If the definition-block in Example 2 were used as 
the definitions-part of a conventional block, then iden­
tifiers 'Tabulate' and 'Frequency' would be accessible 
as usual in the statement-part, whereas identifiers 'nat­
num', 'count' and 'tota1count' could be used only 
within the definition-block itself. Definition-blocks thus 
provide control over identifier visibility for definitions 
in essentially the same way that conventional blocks do 
for statements. It is simpler, more readable and more 
convenient than other approaches to scope control, 
such as lists of "exported" identifiers or "tags" on in­
dividual definitions. The concept ofthe definition-block 
is due to P.J. Landin. 

The implementation of definition blocks is very 
simple. A compiler must ensure that the definitions of 
the private part are not visible outside of the definition­
block, but are visible in the public part. The externally­
visible effects of the definition-block are those of the 
public part alone. However, at run-time, the activation 
record created by elaborating the private part must be 
retained with the activation record for the public part. 
This is because procedures defined in the public part 
may refer to variables declared in the private part. 

3. Generalized Records 

Although the definition-block is the basis of this 
proposal, it is of rather limited utility by itself. Two sim­
ple generalizations of Pascal concepts will allow cre­
ation and naming of multiple instances of activation 
records from definitions, and parameterization of 
definitions. 

The most convenient way of providing mUltiple in­
stances in Pascal is to take advantage of the similarity 
between activation records (created by elaborating def­
initions) and values of record-types. We propose gen­
eralizing record-types as follows: 

record-type = "record" (field-list I definitions) "end" 

The use of definitions in place of a conventional field­
list allows records to have components that are con­
stants, types and procedures, as well as variables. Most 
importantly, if the definitions part of a record-type is a 
definition-block, there can be variable components that 
38 

are private but are indirectly accessible via public pro­
cedure components. 
Example 3 A block that uses a generalized record type. 

var MaleWeights, FemaleWeights: 

record 

begin 

private 

type natnum = O •• maxint; 

var 

count: array[index]of natnum; 

totalcount:natnum; 

initial 

within 

procedure Tabulate(x: index); 

function Frequency(x: index): real; 

... Male Weights. Tabulate (mw) ••• Male Weights .Frequency(mw) ... 

••• with Femaleweights do 

begin ••• Tabulate (fw) ••• Frequency( fw) ... end ... 

end; 

In Example 3, two histograms are created by de­
claring variables MaleWeights and FemaleWeights, us­
ing a record-type containing the definition-block of Ex­
ample 2 instead of a field-list. Each variable is allocated 
a separate storage area for its variable components 
within the activation record for the block. It is also pos­
sible to define a name for the new type in the usual way. 

Example 4 Naming a generalized record-type. 

type Weight Histogram = record 

pl"ivate 

within 

end; 

var MaleWeights, FemaleWeights: WeightHistogram; 

procedure Print Weight Frequencies(var wh: weightHistogram); 

...wh.Frequency(w) ... 

begin 

...Print Weight Frequencies(MaleWeights) ... 

... Print WeightFrequencies( FemaleWeights) ... 

end 

In Example 4, the type-identifier has been used to 
specify the type of a formal var parameter. Value pa­
rameters (and assignment) of generalized record-types 
would be possible but are not recommended (cf. file­
types in standard Pascal). 

4. Classes 
It is desirable to be able to parameterize definitions 

or to create more than one new-type from the same set 
of definitions. For these purposes we propose adding 
a form of "procedure" whose definition body and calls 
are generalized record-types. These are termed classes, 
after the similar concept in SIMULA. 

definitions = 

label-declaration-part 

constant-definition-part 

class-definition-part 

Articles 



t ype-defini tion-part 

variable-declaration-part 

initialization-part 

proced ure-and- function-declar a tion-:part 

definition-block 

class-definition-part = ( class-definition ";" } 

class-definition = class-heading. ";" "record" definitions "end" 

class-heading = "class" identifier (formal-parameter-list] 

record-type "record" (field-list I definitions) "end" 

class-identifier (actual-parameter-list] 

Example 5 Definition and use of a class. 

class Histogram(n: index; procedure error(x: index»; 

record 

private 

Articles 

type natnum 

var 

O •• maxint; 

initial 

within 

procedure Tabulate(x: index); 

function Frequency(x: index): real; 

end (Histogram}; 

var 

MaleWeight, FemaleWeight: Histogram(nw,WeightError); 

MaleHeight, FemaleHeight: Histogram( nh,HeightError); 

begin ••• end; 

When a class is called, the actual parameters are 
evaluated, the formal-parameters are bound, and a new 
type is created. The definitions in the body are elabo­
rated when the type is used in a variable declaration. 

5. Summary 

Flexible, convenient and easily-implemented fa­
cilities to control identifier visibility in definitions and 
abstract from data representations can be added to Pas­
cal simply by generalizing the blocks, records and pro­
cedures already present in the language. 

39 



Dear Mr. Cichelli, 
I am enclosing a check for $5.00 to cover costs for 

the mailing of issues 20 and 21, which I have not 
received. 

. I suspe~t it is th~ fault of our local post office, 
WhICh has faded to delIver several other pieces of mail 
recently, and has returned them to the sender. 

If $5.00 is insufficient for two issues, please let me 
know, as I value PN quite highly. I consider it a model 
along with Dr. Dobbs, against which to measure othe; 
compu~er~relat~dpublicat~ons. In particular, I am ap­
precIatIve of a Journal WhICh does not condescend or 
patronize its readers. There is a sense of dignity and 
scientifi~ humility. in the editorial approach which is 
apparently contagIOUS, affecting those who write to 
you, and those who publish articles. . 

I would very much like to have the software tools 
available on magnetic tape; and would support a price 
in the lOO dollar range. Currently, I have access to an 
IBM370, and can accept either EBCDIC or ASCII in­
put tapes in a wide variety of BPI values, labeled or 
unlabeled. I suspect that any format you set up will in­
clude an acceptable version for this application. 

I am currently employed by CTB/McGraw-Hill in 
Monterey, Calif., where I have recently instituted a 
software tools special interest group, whose purpose is 
t~ exami~e the daily operations of the company, whether 
dIrectly In DP or not, and to design, develop and test 
a set of software tools for practical use by any division 
?f the co~pan'y. Though these tools will likely be orig­
Inally wntten In PLlI, Fortran or Cobol, (our principal 
languages), there is sufficient interest in the projects 
that we may see a number ofthem re-written in Pascal. 
I will.try to keep you informed of our progress, and to 
submIt any tested tools for your consideration. 

Thanks again for a wonderful publication. 
Charles FrankIe 

607 2nd St. 
Pacific Grove CA 93950 

Dear Rick, 
I want to complain about an item in Pascal News 

#22-23 on page 38, which I think should not have been 
published. This is a function in the Applications section 
named OPTIONS which is an altered version of a func­
tion I wrote named OPTION used to return control­
statement option settings. 

40 

My objections are as follows: 
1. The code is copyright University of Minnesota, 

but no on~ asked our permission to publish it. 
2. The code IS for the CDC-6000 Pascal implemen­

tation only - it is of insignificant interest to the 
Pascal community at large. 

3. The co~e is publi~he~ without any explanation 
of how It relates In tIme and space to anything 
else in the universe! 

4. The code is a perfect example of bad Pascal pro­
grammi.ng (my own) which I not only find em­
barrassIng, .but also goes against the philosophy 
of the ApplIcations section, which is to publish 
only good examples. 

5. The code is in the wrong character set. It is in 

un-reconverted CDC 63 SCIENTIFIC, which 
prints - for pointers and t for quotes (the cor­
,rect characters would.be l' ~nd ;: respectively. 

SpIke Leonard of SandIa NatIOnal Laboratories 
(an AT&T subsidiary) at Livermore, California sub­
mit!ed the ext.ended version to accept l-lO-cha;acter 
optIOn names Instead of I-character option names and 
to return equivalenced parameter values (in CDC op­
erating-system terminology). Unfortunately.my name 
is more prominent than his in the comments and should 
be the other way around. I regret that Spike didn't send 
us here in Minnesota this extended version for inclusion 
into the CDC-6000 Pascal compiler system that we 
maintain. The first time I ever saw the code was in Pas­
cal News #22-23! Also, I realize I am listed as co-editor 
of the Applications section, but Richard Cichellithe 
other co-editor has actually done nearly all of the ~ork 
on the section since Pascal News #16. 

I called Spike and had a good talk with him and 
of course he was trying to help the Pascal cause. 'I en­
close the original code so that readers can discern 
Spike's contribution. Perhaps this all goes to show me 
that I ~houldn't have written bad code to begin with! 

RICk, I want to congratulate you on the fine job you 
have done in keeping Pascal News alive during the last 
2. diffi~ult years in t~e face C?f many obstacles: your full­
tIme Job, the ever-IncreaSIng number of subscribers 
the dwindling amount of volunteer help, the lack of sup~ 
port of your organization, and the difficulties caused by 
the collapse ofPUG(Europe) in the UK which is only 
now being resolved. I could not have done as well as 
you have done if I had continued as editor - as you 
know, I was on the verge of collapse. 

In issues # 17-23 which you have edited the sub­
~tal1:tive information about applications, com'piler val­
IdatIOn SUIte reports, correspondence from subscri­
bers, and drafts of the ISO Pascal Standard continues. 
I think that's important, and I realize that you haven't 
been able to keep up detailed information on news tid­
bits as you would have liked to do. 

I wish you good luck in finding a successor. Like 
I wrote in my farewell, Pascal News may not last past 
1982. 

Sincerely, 
Andy 

( "" 
" 

OPTION - RETURN CONTROL STATEMENT OPTION SETTING. 
COPYRIGHT (C) UNIVERSITY OF MINNESOTA - 1978. 

" A. B. MICKEL. 77/06/02. 

" ") 
SEE THE PASCLIB WRITEUP FOR EXTERNAL DOCUMENTATION. 

FUNCTION OPTION(NAME: CHAR; VAR S: SETTING): BOOLEAN; 

CONST 
CSADDRESS = 70B ("CONTROL STATEMENT ADDRESS"); 

TYPE 
CSIMAGEP = RECORD CASE BOOLEAN OF 

FALSE: (A: INTEGER); 
TRUE: (P: "LOWCORE) 

END; 
LOWCORE = PACKED ARRAY[I •• 80j OF CHAR; 

VAR 
CSIMAGE: CSIMAGEP; 
I: INTEGER ("INDEX IN CSIMAGE"); 
FOUND: BOOLEAN; 

BEGIN ("OPTION") 
FOUND := FALSE; 

Open Forum 



S.SWITCH :- FALSE; S.SIZE:- 0; 
CSIlIAGE.A :- CSADDRESS; 
I :- I (.SKIP PROGRAM NA~E AND PARAMETERS •• ); 

WHILE CSIlIAGE.P"[I) IN ['A' •• 'Z', '0' •• '9', ' ') DO 
1:-1+1; 

IF NOT (CSIlIAGE.P" [I) IN [')', '.' J) THEN 
I :- I + I (.SKIP SLASH IF FIRST DELIMITER •• ); 

WHILE NOT (CSIlIAGE.P"[I) IN ['/" ')', '.') DO 
I :. I + I; 

IF CSlHAGE.P" [I) • 'I' THEN (.CRACK OPTIONS •• ) 
REPEAT I :. I + I; 

IF CSlHAGE.P"[I) - NA~E TKEN 
BEGIN FOUND :- TRUE; 
I :- 1 + I; 
S.SWlTCH :- CSlHAGE.P"[I) IN ['+', -, '.'); 
IF S.SWITCH THEN S.ONOFF :- CSIlIAGE.P"[I) 
ELSE 

WHILE CSIlIAGE.P"[I) IN ['0' •• '9') DO 
BEGIN S.SIZE :- S.SIZE • 10 

I :. I + I 
END 

+ ORD(CSIlIAGE.P"[I) - ORD('O'); 

END 
ELSE WHILE NOT (CSlHAGE.r[Ij IN [',', ')', '. 'J) DO 

I :- I + 1. 
UNTIL (CSlHAGE.P" [I) IN [')', '.')) OR FOUND; 

OPTION :. FOUND 
END (.OPTION.); 

Open Forum 41 



42 



IMPLEMENTATION NOTES ONE PURPOSE COUPON 

O. DATE 

1. IMPLEMENTOR/MAINTAINER/DISTRIBUTOR (* Give a person. address and phone number. *' 

2. MACHINE/SYSTEM CONFIGURATION (* Any known limits on the configuration or support software required. e.g. 

operating system. *' 

3. DISTRIBUTION (* Who to ask. how it comes. in what options. and at what price. *' 

4. DOCUMENTATION (* What is available and where. *' 

5. MAINTENANCE (*Is it unmaintained. fully maintained. etc? *' 

6. STANDARD (* How does it measure up to standard Pascal? Is it a subset? Extended? How. *' 

7. MEASUREMENTS (* Of its speed or space. *' 

8. RELIABILITY r Any information about field use or sites installed. *' 

9. DEVELOPMENT METHOD (* How was it developed and what was it written in? *' 

10. LIBRARY SUPPORT (* Any other support for compiler in the form of linkages to other languages. source libraries. etc. *' 

43 



44 

(FOLD HERE) 

Bob Dietrich 
M.S. 92-134 
Tektronix, Inc. 
P.O. Box 500 
Beaverton, Oregon 97077 
U.S.A. 

(FOLD HERE) 

NOTE: Pascal News publishes all the checklists it 
gets. Implementors should send us their checklists 
for their products so the thousands of committed 
Pascalers can judge them for their merit. Otherwise 
we must rely on rumors. 

Please feel free to use additional sheets of paper~ 

PLACE 

POSTAGE 

HERE 

IMPLEMENTATION NOTES ONE PURPOSE COUPON 



New Subscription 
ReNew 
Back Issue 

______ COUPON _____ _ 

Pascal News 
2903 Huntington Road 
Cleveland, Ohio 44120 

** Note ** 

• We will not accept purchase orders . 
• Make checks payable to: "Pascal Users Group", drawn on a U.S. bank in U.S. dollars. 
• Note the discounts below, for multi-year subscription and renewal. 
• The U.S. Postal Service does not forward Pascal News. 

USA UK Europe 

D Enter me as a new member for: 1 year $20 £12 DM40 

D Renew my subscription for: 3 years $40 £24 DM80 

I o 1 o 2 I o 3 
I· 2~-is D Send Back Issue Set(s) 9-12 13-16 17-20 

• Issues 1 .. 8 (January, 1974 - May 1977) are out of print. 

(Jan. 83) 

Aust. 

A$16 

A$32 

• Issues 9 .. 12, 13 .. 16, & 17 .. 20, 21 are available from PUG(USA) all for $15.00 a set, and from 
PUG(AUS) all for $A 15.00 a set. 

D My new address/phone is listed below 

DEnclosed please find a contribution, idea, article or opinion which is submitted for publication in the Pascal 
News. 

D Comments: __________________________________________________________ ___ 

ENCLOSED PLEASE FIND: 

CHECK no. 

NAME 

ADDRESS 

PHONE 

COMPUTER 

DATE 

45 



JOINING PASCAL·USER GROUP? 

• Membership is open to anyone: Particularly the Pascal user, teacher, maintainer, implementor, distributor, 
or just plain fan. 

• Please enclose the proper prepayment (check payable to "Pascal User's Group"); we will not bill you. 

• Please do not send us purchase orders; we cannot endure the paper work! 

• When you join PUG any time within a year: January 1 to December 31, you will receive al/ issues Pascal 
News for that year. 

• We produce Pascal News as a means toward the end of promoting Pascal and communicating news of 
events surrounding Pascal to persons interested in Pascal. We are simply interested in the news ourselves 
and prefer to share it through Pascal News. We desire to minimize paperwork, because we have other work 
to do. 

• American Region (North and South America) Join through PUG(USA). 

• European Region: join through PUG(UK) : Pascal Users Group, % Shetlandtel, Walls, Shetland, ZE2 9PF, 
United Kingdom. 

• Australasian Region (Australia, East Asia - incl. India & Japan): PUG(AUS). Pascal Users Group, % Arthur 
Sales, Department of Information Science, University of Tasmania, Box 252C GPO, Hobart, Tasmania 7001 , 
Australia. International telephone: 61-02-202374 

RENEWING? 

• Please renew early (before November) and please write us a line or two to tell us what you are doing with 
Pascal, and tell us what you think of PUG and Pascal News. Renewing for more than one year saves us 
time. 

ORDERING BACK ISSUES OR EXTRA ISSUES? 

• Back issues will have a price rise to $25 on July 83 

• Our unusual policy of automatically sending all issues of Pascal News to anyone who joins within a year 
means that we eliminate many requests for backissues ahead of time, and we don't have to reprint important 
information in every issue - especially about Pascal implementations! 

• Issues 1 .. 8 (January, 1974 - May 1977) are out of print. 

• Issues 9 .. 12, 13 .. 16, & 17 .. 20, 21 .. 23 are available from PUG(USA) all for $15.00 a set, and from 
PUG(AUS) all for $A 15.00 a set. 

• Extra single copies of new issues (current academic year) are: $10 each -PUG(USA); and $A10.00 each 
- PUG(AUS). 

SENDING MATERIAL FOR PUBLICATION? 

• Your experiences with Pascal (teaching and otherwise), ideas, letters, opinions, notices, news, articles, con­
ference announcements, reports, implementation information, applications, etc. are welcome. Please send 
material single-spaced and in camera-ready (use a dark ribbon and lines 15.5 cm. wide) form. 

• All letters will be printed unless they contain a request to the contrary. 

46 



APPLICATION FOR LICENSE TO USE VALIDATION SUITE FOR PASCAL 

Name and address of reqestor: 

(Company name if requestor is a company) : 

Phone Number: 

Name and address to which information should 

be addressed (write" as above" if the same) 

Signature of requestor: 

Date: 

In making this application, which should be signed by a responsible person in the case of a company, the re­

questor agrees that: 

a) The Validation Suite is recognized as being the copyrighted, proprietary property 

of R A. Freak and A. H. J. Sale, and 

b) The requestor will not distribute or otherwise make available machine-readable 

copies of the Validation Suite, modified or unmodified, to any third party 

without written permission of the copyright holders. 

In return, the copyright holders grant full permission to use the programs and documentation contained in the 

Validation Suite for the purpose of compiler validation, acceptance tests, benchmarking, preparation of com­

parative reports and similar purposes, and to make available the listings of the results of compilation and ex­

ecution of the programs to third parties in the course of the above activities. In such documents, reference 

shall be made to the original copyright notice and its source. 

Distribution Charge: $50.00 

Make checks payable to ANP AIRI in US dollars drawn on a US bank. 

Remittance must accompany application. 

Source Code Delivery Medium Specification: 

) 800 bpi, 9-track, NRZI, odd parity, 600' magnetic tape 

( ) 1600 bpi, 9-track, PE, odd parity, 600' magnetic tape 

) ANSI-STANDARD 

a) Select Character Code Set: 
( ) ASCII () EBCDIC 

Mail Request to: 

ANPAIRI 
P.O. Box 598 
Easton, Pa. 18042 
USA 
Attn: R J. Cichelli 

b) Each logical record is an 80 character card image. Select block size in logical records per block. 

( ) 40 ( ) 20 ( ) 10 

) Special DEC System Alternates: 

) RSX-IAS PIP Format (requires ANSI MAGtape RSX SYSGEN) 

( ) DOS-RSTS FLX Format 

Office Use Only 

Signed 

Date 

Richard J. Cichelli 

On behalf of A.H.J. Sale and RA.Freak 
47 



48 



Facts about Pascal, THE PROGRAMMING LANGUAGE: 

Pascal is a small, practical, and general-purpose (but not all-purpose) programming language possessing 
algorithmic and data structures to aid systematic programming. Pascal was intended to be easy to learn and 
read by humans, and efficient to translate by computers. 

Pascal has met these goals and is being used successfully for: 

• teaching programming concepts 
• developing reliable "production" software 
• implementing software efficiently on today's machines 
• writing portable software 

Pascal implementations exist for more than 105 different computer systems, and this number increases every 
month. The "Implementation Notes" section of Pascal News describes how to obtain them. 

The standard reference and tutorial manual for Pascal is: 

Pasca/- User Manual and Report (Second, study edition) 
by Kathleen Jensen and Niklaus Wirth. 
Springer-Verlag Publishers: New York, Heidelberg, Berlin 
1978 (corrected printing), 167 pages, paperback, $7.90. 

Introductory textbooks about Pascal are described in the "Here and There" section of Pascal News. 

The programming language, Pascal, was named after the mathematician and religious fanatic Blaise Pascal 
(1623-1662). Pascal is not an acronym. 

Remember, Pascal User's Group is each individual member's group. We currently have more than 3500 active 
members in more than 41 countries. This year Pascal News is averaging more than 100 pages per issue. 



Return to: 

PASCAL NEWS 
2903 Huntington Rd. 
Cleveland, Ohio 44120 
Return postage guaranteed 
Address Correction requested 

BULK RATE 
U.S. POSTAGE 

PAID 
CLEVELAND, OHIO 

Permit No. 2324 


