INTCODE

documentation:

henrik andersen

kurt jensen

barae s. kirk



CONTENTS

INTCODE

store and registers
instruction formats
instructioncodes
executeoperations

R
. e o
UTWw N H

.

ASSEMBLER

syntax - informal description

"syntax - formal description

structure of assembler

output from assembler

workingtables

labeldeclarations and labelreferences
switch- instruction

errormessages from assembler

RO WW -

MDD
~N AW N

LOADER

input ,
structure of the loader

the use of globals G,504~511
system '

errormessages from loader

WWWWwwWwWwW
* [ ) L] L] [ ] »®
FWNHP

EMULATOR

ordrecyclus

initialization of WA and WB
mainstore '

read and write

finish (X22)

RS
[ ] * [ ) L ] [ ] e
Ul &R



INTCODE

STORE_AND_REGISTERS

The intcode—machine is designed as a tool to help implementing
BCPL on a new machine,

The intcode-~machine has a store consisting of equal sized
locations addressed by consecutive integers,

When emulated at a 16 bit machine as RIKKE it is natural to
-use two different instructionformats., Long format uses two
consecutive words, while short format only uses one.,.

The choice between these formats is automatically made by
the assembler,

The intcode-machine has 6 different 16 bit registers:

A accumulator This register can be loaded frbm’store.
B auxiliary When A is loaded the old content of A is
accumulator  moved to B.

All operations invoiving,two operands are
performed with these taken from B and A
(result in A).

program Points to next instruction to be executed,
counter
D address 7 Keeps the effective (resulting) address.
P run-time Points to the bottom element of run-time
stack stack., Is used to reference elements on
this stack (local variables),
G global Points to first element in globalvector.

Is used to reference elements in global-
vector,.



Each instruction consits of six fields as follows:

instruction codé: 3 bits giving 8 possibilities

address field:. 9 or 16 bit (depending of long or short
format). In both cases the field is
interpreted as a nonnegative integer.

P-bit ~ iff set P-register is added to the address.
G-bit iff set G-register is added to the address.
I-bit ' iff set the address, D, should be replaced

by loc(D) (indirect addressing).
This is done after possible adding of P
and G. ' '

L-bit iff set long instructionformat is used.

The effective address is calculated in 4 steps:

1, D:= addressfield (depending on L-bit)
2., pPossible adding of P-register
3. possible adding of G-register

4, possible indirectness

5 1Y m:z'u 0 9 8 o
SHORT: code|P|G|I|¢ address
LONG: code|P|G|T |1 garbage
address




INSTRUCTITONCODES

—_——===ss pg-mpactmnpamipaina-drnp gt —_—_———asas==c

code mnemonic description : conments

000 Load Bi=A; A= This is not a "normal"
- load~instruction,
- It loads the effective ad-
dress and not the content
of this address.

001 Store loc(D):= A
010 Add A :=A + D )
011 Jump C := D Unconditional jump to
absolute address D,
100 Jjump if if A=0 then C:= Conditional jump to ab-
True : solute address D,
101  jump if if A#40O then C:=
False
110 ¥ loc(P+D):= P Recursive function call,
loc(P+D+l):= C The current stack frame is
P:= P+D specified by D and the
C:= A entry point is given in A,
The first two cells of the
new stack frame are set to
hold return 1link information.,
111 eXecute Allows auxiliary operations to

be executed. The operation
is specified by D modulu 32
(1ast five bits).



Figure showing the effect of a

BEFORE :

K-instruction

dataarea n+2

Ketwurn Hress

datavrea n+d

Retumrm RAdotress

i

HFTER:

Hdatamea n

HAalaaree n+3

A

[=)

WW@ n+2

Retwn Bdlolress

18 7

Hateasea nvd

Redurn  Horess

1K ]

dataenea n

’Peg,, A




EXECUTEOPERATIONS

X2
X3

X4

X5
X6
X7
X8
X9
X10
X11
X12
X13
X1h
X15
X16

X17

X18
X19
X20

X21

X22

description conments

A:= loc(A)

A:= =A

A:= not A

C:= 100§P+l) Return from current routine or function,

P:= loc(P) Result of function is left in A.

A:= B * A

A= BA/ A Integer division

A:= B rem A Rest after integer division.

A:= B + A

A:= B - A

A:= B = A

A:= B £ A

Ai= B < A These operations yields a boolean
result (true or false)

A:= B 2> A

A:= B > A

A:= B A

A:= B lshift A B is shifted A times logical left

A:= B rshift A B is shifted A times logical right
"B 1lshift A" is equivalent to "B rshift

A:= B A A

A= Bv A

A:= B #.A

A:= B = A

_finish

—-AN



X23

X224
X25
X26

X27

switch

selectinput

input

selectoutput

output

This operation switches between a set of
labels while it tests A against a set
of conditions. ‘

The data'following X23 is used in the follo=-
wing waye

X273

n
label.default
condition,.l
label.l.
condition,.?
label.2

LR R N )

conditione.n
labeln

n is a nonnegative integer.
Label,default, label.l .... label.n are
labelvalues,.

Condition.l +.¢e... condition.n are integers.

The above peace of code is equivalent tos

condition.l goto label.l
condition.n goto label.n

if A
if A

W

if A = condition.n goto label.n
goto label.default

selects‘inputdevicé according to A
input data to A from selected inputdevice
selects outputdevice according to A

output data from A to selected outputdevice

i g o



ASSEMBLER

SYNTAX ~ INFORMAL DESCRIPTION

Input to the assembler is a program written in intcode (symbolic
intcode using mnemonics), ’

A program is a sequence of one ore more segments each consisting
of a sequence of intcode-instructions terminated by a special
Z-instruction, '

Instructions can be of 6 different kinds:

executable instructions such as load, store etc,
pseudoinstruction places data in dataarea
pseudoinstruction places. character values in
dataarea (packed two and two)

G-instruction : pseudoinstruction initializes the globalvec-
~tor (only with labelvalues)

pseudoinstruction - list and nolist
pseudoinstruction terminates a segment

normal-instruc.
D=instruction:
C=instruction:

L TR Y'Y

L-instruction:
Z-instruction:

A normal-instruction consits of

ag label

b) dinstructioncode

c) IPG-bits

d) address

where IPG-~bits are mnemonics for
I - indirect addressing
P «~ add P-register to address ,
G - add G-register to address

Address can be either an absolut address (integer) or a label.

b) and d) are always present while a) and c) can be omited.

D-instruction: places datavalue in memorycell in dataarea.

When an integer is prefixed by D this integer is
placed in the next cell in dataarea,

When a labelnumber is prefixed by DL the value
of this labelnumber is placed in the next cell
in dataarea.



C—-instruction:

G-—instruction:

L-instruction:

Z=-instruction:

is used to pack charactervalues in dataarea.
Each character value is prefixed by a C.

‘The charactervalues are packed left to right,

two in each cell,.

If the left half of a cell has been filled and
the next instruction is not a C~instruction
without a labeldeclaration the right half will
be padded with zeros.

is used to initialize element. of globalvector
with the value of a labelnumber,

The format is : G <gloablnumber) L {labelnumber)

is either an ¥ or a N.

Y yes) starts listing of codetext on outputfile
N (no) stops listing of codetext on outputfile

terminates a segment and cannot be used anywhere
else,

Lo



SYNTAX -~ FORMAL DESCRIPTION

peforipm g fere e st st g am s e e e e el

The syntax is now described in BIIF.

Underlined symbols are terminals,. _
{n,m} menas an integer in the closed interval [n,m]

Everywhere in the sourcetext [ can be inserted -~ then this charac-—
ter and the following until the next lineshift are skipped.
This can be used as comment- or continuation facility.

Each label can only be declared once.
Fach referenced label must be declared,

- +
{program) ::= <{segment >
<segment) 3= (instructionka—instruc)

{instruction) ::= <normal-instruc>{
| {D-instruction) |
<C=instruction>
< G-instructiond
{L-instruction)

{labelpart>{instruccode) <IPG-bi§><hddres§>
{labelpart)> D <data)

{labelpart)> C {charvalue)

{skip G<globaly L<label)

{L-instruction) <skip>(ll§)

{Z-instructiony ::= <skip> 2 <skip>

<normal-instruc)

]

{D-instruction) ::

{C=instruction)

]

{G-instruction}

{labelpart) t1= {skip) (<labe£><ﬁelim>;.
<{skip} 1= (igligl §)*

{delim) $i= (ﬁgljgl $)*

{labeld tr= {1,500}

{IPG-bity Ciis (;‘g]g)*

{address) ::= {0, 64K-1] l L <label)>

I

{instruccode) (L]s|a]z|z|e|x|x)



<{data> = {-32K , 32K~ 1} | L <label)>
- <charvalue> = {0,255} ‘
<globald = {o,511}



STRUCTURE OF ASSEMBLER

The program is devided into 3 parts

asshead keeps all global and manifest declarations
assproc keeps all procedures

assmain keeps the main program

assproc and assmain uses asshead by a get-directive

For information about the procedures in assproc please see
the comments in the BCPL-listing.

assmain has this structure:

declarations and initialdizations

read()
newsegment: more initialization - ﬁresentation
——»>$(mainloop

»switchon ch into

case L:

goto instruction

LIC I )

case X:

case $,*n,xs:
case D:

F> goto endcase
case C:

‘case G:

case Y:

case N:
_J

case Z: goto newsegment

Loorp
SWITCH

default: goto endcase

instruction:

p.enndcase:

-——4F$)mainloop repeat



If an L,S, +e.., X is recognized it is a normal-instruction.
After This letfer has been recornized these instructions are
handled together in "instructioa®.

"instruction” has this structure:

instruction: listing on output
instrucl: read()

—p switchon ch into

$(switch2

case I1:

case P: goto endcase2
case G:

‘endcase2: ‘ goto instrucl

default: test ch = L -

then
5 addres specified as a
= labelvalue
»
w .
or
$( address specified-as an
absolute address
check if address is a X23
instruction (see page 2.16)
L $)switch2

case S,xn,*s: handles insignificant characters. These are
skipped.,




case D:

case D:

SWITCH

case C:

case C:

case Y:
case G:

case G:

handles D-instructions, The structure is:

read()

—p switchon ch into

$(switchl

case L: data is specified as a labelvalue
goto endcase (see bottom page 2.5)
default: data specified as an

integer value
goto endcase

-—1>$)switchl

handles C-instructions, The structure is:

read()
collect first charvalue

collect second charvalue (if any)

pack these togethef'and put them in
dataarea

goto endcase (see bottom of page 2.5)

and case N: handles L-instructions and is very simple.,
handles G-=instructions., The structure is:

read()

céllect globalnumber

check if "L" is present.

collect labelnumber

call insertref to update pointerchain

goto endcase (see bottom of page 2.5)

2.7



case 7Z:

handles Z-instructions. This signals the end of a segment.

The structure is:

case Z:

default:

check if any referenced label still is undeclared
unless error do dump segmentblock (seé page 2,9)

test. "more segments"

then goto newsegment

or  $( mark 1-0
mark 1-0
closeall()
finish

$)

handles labeldeclarations (or illegal sourcetext

characters). The structure is:

default:

SWITCH

while ch = tal

$ .
collect labelnumber (declaration)
update dectabarea (sece page 2.13)

$)

r—pswitchon ch into

$(sw

case D: }- declaration-address in dataarea
case C:

case L:
declaration~address in codearea

s 200

case X:

the chained cells in dectabarea are all set to
point to the declaration address (see page 2.13)

goto endcase (see bottom of page 2,5)

case G, Z, Y, N: dllegal labeldeclaration
goto endcase

default: illegal sourcetext character
goto endcase

L—»3)sw



QUTPUT_OIF ASSEMBLER

The assembler translates each segment as a,unit; Listing of. ,
sourcetext and errormessages will be on file output (according
to the Pseudoinstructions Y and N).

If one or more segments is correct the assembler will deliver a
file which will be accepted as input to the intcode-loader.

This file will have the following format,

segmentblock for first correct segment

s 00

segment block for last correct segment

mark 1-0
mark 1-0

where segmentblock is

mark 1-0

mark O-~1

‘'size of codearea

size of dataarea ;
number of globals to dinitialize
number of referenced labels
sumcheck

picture of codearea
picture of dataarea
globaltabel

labeltabel

mark 1-0 is 1111111111111100
mark O-1  dis 0000000000000011



Instructions are separated in two areas:
codearea keeps all normal instructions
dataarea keeps D-instructions and C-instructions

all other instructions are pseudoinstructions which
.do not need any space in mainstore.

‘

Sumcheck is the sum of all words in the following four tabels
(codearea,dataarea,globaltabel and labeltabel).

Codearea and dataarea is simply a picture of these two areas.
For problems about labelreferences and labeldeclarations
please see page 2.13.

Globaltabel keeps information about which elements cof the global-
vector should be initialized.

The format of globaltabel is:

1, globalno
1., value
2., globalno
2., value

n. globalno
n. value

where n = "number of globals to initialize",

Tor each i between 1 and n i. globalno keeps the number of
the global which should be intialized; and i. value gives

a value which is put into the globalvector, This value is

part of a pointerchain between labelreferences which later on
by the loader will be altered to an absolut mainstore address.



Labeltabel keeps information about labeldeclarations and
label-references.

The format is:

"1l. labeldec
1. labelref
2. labeldec
2., labelref

ne labeldec
n. labelref

n = "number of referenced labels",

For each referenced label there are two corresponding words
in the tabel (i. labeldec and i. labelref) from which all
nescessary information about use of this label can be extracted.

i.labeldec gives the place (in dataarea or codearea) where this
label is declared.,

i.,labelref is head of a one-way list which gives the places
(in dataarea, codearea or globalvector) where this label is
referenced, The list is terminated by a special mark
(1111111111111101).

The number of the label is insignificant: and is not given in
the output of the assembler.



o bl

WORKINGTABLES

—e e,

The assembler has 7 tables to keep information about a segment,

Codearea keeps all+ normal-instructions. Cpointer points to the
first empty word.

Dataarea keeps all D-instructions and C-instructions., Cpointer
points to the first empty word, :

Globarea keeps informatioh about all initialized globals.

The index corresponds to the globalnumber.,

The value is part of a list connecting all places (in codearea,
dataarea and globarea) where this particular label is referen-
ced. '

Dectabarea and Reftabareca keeps information about declaration
and referencing of labels., The index corresponds to the label-
number. For detailed information see page .

Decarea and Refarea do exactly the same as Dectabarea and Reftab-
area, but the former (dectabarea and reftabarea) is handling
userdefined labels, while decarea and refarea handles assembler
generated labels (see p 2.16),Lpointer points to the first free
labelname in decarea and refarea,

When a correct segment is fineshed the following is dumped:

codearea , as "picture of codearea®
dataarea as "picture of dataarea"
cpointer as "size of codearea"
‘dpointer as "size of dataarea®

Globarea is scanned and for each initialized global its number
and its value is dumped as part of M"globaltabel',

The number of such globals is dumped as "number of globals to
initialize". '

Dectabarea and reftabarea is scanned and for each referenced
label, i , dectabarea.,i and reftabarea,i is dumped as part of
labeltabel,

The used part of decarea and refarea are dumped as part of
labeltabel in the same manner as for dectabarea and reftabarea,

The number of referenced labels in reftabarea and refarea is .
dumped as "number of referenced labels",



Lot

LABELDECLARATILIONS AND LABELRCI.RNECES

When a labeldeclaration is met it is nescessary to know whether

it is preceding an instruction placed in codearea or an instruc-—
tion placed in dataarea., Since multiple labels (many labels prece-
ding the same® instruction can ocoour) it is mescessary to chain
these declarations together until the instruction is reached,

When a label is met it is placed in a chain starting'at the simple
variable labelstart (the chain is kept in dectabarea),

When the type of the instruction (COdearea'or dataarea) is known
the assembler works its way through this chain and puts a pointer
to the declarationplace into each element of this chain,

Labelreferences can be met in codearea, dataarea or globarea,
Insertref inserts +the address,where the labeled was referenced,
in a one-way-chain starting at reftabarea.labelnumber and chaining
all references to this labelnumber,

The first 2 bit in the words in this pointerchain indicates in
which area the address is:

bit 15
1 : codearea (bit 14-0 determines address)
0 : iff bit 14 = dataarea (bit 13-0 determines

1
O globarea address)
The pointerchain linking the labelreferences is kept in the cells

in codearea, dataarea and globalarea where the intcode-loader
shall put the final address (main store address).

As an endmark of such a chain is used mark (1111111111111101),
Before start of a segment all cells in dectabarea and reftabarea

are initialized to this mark.

See figures at page 2,14 and 2.15



LRBEISTHRT

[ HMERK

EN by

PECTRBERER

CODERRER

LBRBELSTRRT LABEL STRRT
1 MRRK ]
DECTRBHRER DECTHBRRER
3l2 MAR K O
r—
78 MARK ) HARK
COPERRER CoDE RRER
CPOINTER  —» CPOINTER —a»
(@) (b)

<— CPOINTER

(Q

This page and the next shows how labels are handled,.

The corresponding instructions could be:

G206L312 G312L78 DL78 JL78 78 312 X4 TL78 JLT78 eeeses

just before the declaration of label 78

both labeldeclaration has been read and chained

the instruction type is knowvn and pointers from dectabarea

to the address of declaration is made.,

the final picture handed

to the loader (including reftabarea)



PECTAR

500

312

78

REFTHB

3l2

78

CODERREN

0
Jd L78
X4
T L 78
CPD INTER
DRTRRREH ’
9]
< < DL 78
-« DL 78
VPOINTER
 GLOBRREH
MBRK “— G312/, 78
> MARK

<— G 2Zog L 32

(L)



PR

SWITCH- INSTRUCTION

Instruction X23 is a switch instruction. Accerding to the intcode
discription it should be used as follows: ‘

X223

Dn

DL label.default
D cond,l '
DL label.l

D cond.2

DL label.2

D cond.n
DL, 1abel.n

For the semantic explanation of this please see atvpage l.6.

It is important to know that X23 is a normal-instruction and
therefore kept in codearea., Its data (Dn e.ee.... DL label.n)
is D-instructions and hence kept in dataarea, It is nescessary
to tell the X23-instruction where its data is,

Hence the above peace of code by the assembler is altered to:

kept in _{ X23

codearea DL nn < please notice:
nn:gn el default this DL-instruction
label.defaul is created by the
D cond.l
D label.l assembler and kept
kept in abel. : in codearea :

dataarea

L3I B AN Y

D cond.n
D label.n

where nn is a new label generated by the assembler,

By this reason no segment can have more than loo X23-instructions.



ERRORMESSAGES IFFROM ASSEMBLER

S T S N T T E S s

ADDRESS MISSING .

'~ ADDRESS NEG OR TOO BIG

BAD LABELDECLARATION
BAD LABELREFERENCE

C - BAD NUMBER

C - MISSING NUMBER
CODEAREA TOO BIG‘
DATAAREA TOO BIG

DL; BAD‘LABELNO

DL- MISSING LABELNO
DOUBLEDLECLARATION

D - MISSING NUMBER

D -~ NUMBER TOO BIG

ENDOFSTREAM REACHED
G - BAD GLOBALNO
G - BAD LABELNO

G - L MISSING

]
1

MISSING GLOBALNO

MISSING LABELNO

0
|

normal-instruction has no address
field .

" normal instruction with address oute

side {0 , 64K~-1]}

labeldeclaration with labelnumber
outside {l 500%

labelreference with iabelnumber
outside {1,500%

C-=instruction with charvalue
outside {0,255}

C~instruction has no charvaiue

the segment needs too much codearea
the segment needs too much dataarea
DL-instruction with 1abelnumber

outside {1,500}

DL-instruction with "L" but no
specified labelnumber

labelnumber has been declared twice
D-instruction with no déta

D-instruction with specified data
outside {~-32K , 32K-1}

the end of source-text i1s reached
at dillegal point

G-instruction with globalnumber
outside {0,511}

G-instruction with labelnumber
outside {1,500} ‘

G-instruction with "L" missing

- Geinstruction with no specified

globalnumber

G-instruction with no specified
labelnumber



ILLEGAL CHARACTER

LABEL PSLEUDOINSTRUCTION
LABELNUMBER MISSING

LABEL UNDECLARED: nnn

TOO MANY SWITCHES

illegal character used in sourcetext

label is prefixing instruction which
is neither a normal-instruction,
D=instruction or C-~instruction

address field of normal-instruction
has an "L" but no specified label-
number

“labelnumber nnn has been referenced

but not declared (this errormessage
is at the very last of the source-
text-listing) :

the segment has more than 100 switch-
instructions (X23 -instructions)

PSR



LOADER

INPUT

The loader takes input from the assembler,

The syntax is described on pages 2.9 through 2,11 and page 2.13.

STRUCTURS_OF THE_LOADER

The loader has this structure:

declarations and initializations

pPresentation

initialization of cbase and dbase
newtape:

read until mark 1-0

while nextoninput = mark O-1 do
§(while

read header
read code into mainstore
read data into mainstore

read globaltable and do the
specified initializations

read labeltable to dinitialize
the unsolved references

read mark 1-0

sumcheck

§)while

if more tapes do goto mewtape

go()

(header = codesize, datasize, globalsize, tablesize and checksum



=g f——feaferp—p =P P p e e

To understand "go()" and "initialization of cbase and dbase"
you must know that the system uses the globals 504 through 511
for communikation of the following information:

\

G.511 wlimit
G.510 p0O -~variable (program's limits and

G.509 C entrypoint)

G.508 wlimit ,
G.507 PO }»—constant (systom's limits and
Ge506 C entrypoint)

G.505 C -~loader's entrypoint

G504 C -assembler's entrypoint

INITIALTZATION OIF CBASE AND DBASE takes G.508 as cbase(base of
codearea) and G.507 as dbase (base of dataarea)

GO() initializes G.511, G.510 and G.509 with the loaded program's
wlimit (obase-l), PO (dtop) and C (entryp01nt)

Having done this it calles finish (see page 4.5).



SYSTEM

The system includes the assembler, the loader, the error-
routine and a routine "system" to switch between loader and

assembler,

FREOR (written in intcode - entrypoint:limit) is called from
"error 1-5" in the emulator (see the last page in the emula-
torllstlng) to dump mainstore.,0 to mainstore.l5,

This pictures the registers (wa. 0-15) at the moment the error

arose (except wa.3=errorno).

"SYSTEM" is written in intcode according to this algoritme:

select(consoletable)

again:
writes("zN assembler:a or loader:l ?")

help:= input

test help='A' then goto G.50k
else

test help='L' then goto G.505

else goto again

(systems entrypoint is placed in G.506)



ERRORMESSAGES FROM TLOADER

OWERIFLOW

MISSING ENDMARK

BAD CHECKSUM

—_—__—ms===

code~ and dataarea too big .

the mark 1-0 expected after
the segment is missing

the checksum just calculated
differs from the checksum given
in the header



- Loop

EMULATOR

ORDRECYCLUS

——— e m e

Emulating one intcode~instruction the emulator goes round once
in the below mentioned cycle:

—» 1.

2.

3

7o
8.

9.

lo.

—11.

Ask whether the surrounding system wants control
(has issued an interrupt).

Read next instruction from mainstore to DS (doubleshifter).
Read address to AS (acumulatorshifter) and D.

Iff L-bit it set the address is found in the next

word in mainstore; else it is found in the last 9 bits

of the present word.

Iff P-bit is set add P to D and keep the result in AS
and D, : ' .

Iff G-bit is set add G to D and keep the result in AS
and D.° ' o

Iff I-bit is set read the mainstore address D and put
the content of this in AS and D.

Increment C (programcounter)
Decode instructioncode

According to this decoding jump to one of 8 possible
labels in the emulator,

Perform the desired operation

goto 1.

There is one exception from this scheme, The X23 (switch-instruc-
tion) is so long that it must be partioned into smaller sections.
Between each section the surrounding system has the possibility
to interrupt,

llFlag"

is used to indicate whether a switch-instruction is

interrupted. Iff flag is set control is passed from 1. directly
back to the part in the emulator handling X23-instructions,

‘et



INITIALIZATION OfF WA AND WB

— R N S T S e T s e o E s e

The first WB—group is initialized to:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12"13’ 14, -1

The second WB—group is initialized to.keep a table used by
the emulator when switching between the 32 possible X-instruc~
tionse. . ) .

O:l ERROR : address X1

1: address X2 address X3

2:| address X4 address X5

13: address X26 | address X27

14: ERROR ERROR

15:| ERROR ERROR

The addresses (controlstoreaddresses) are packed two and two.



The first WA-group keeps the intcode-machines six registers
and other vital information such as flags, limits etc,

O: BASE
1: WLIMIT
2: PO
3 ERROR
s FLAG
51 B
6: A
7 C
81 D
9 P
10: G
11:
12: INPUT
13: ouUTPuUT
14 Cs
153 LIMIT

BASE is the basisaddress in mainstore. All other addresses
is relative to BASE,

WLIMIT is the last word in mainstore where writting is permitted.

PO is the first word in the runtimestack (local variables).

FLAG indicates whether a X23-instruction was interrupted
(see page 4.1).

A, B, C, D, P and G are the intcode-machines six registers.
INPUT and OUTPUT keeps the selected input- and outputdevice,
CS is baseaddress in controlstore for the emulatorcode.

LIMIT is the last word in mainstore where access (reading) is
permitted, :

ERROR is a mailbox indicating where the errorroutine was called

BASE, PO, WLIMIT, LIMIT and C are initialized by the intcode~
loader. : '

INPUT and OUTPUT has standard initializations (see microcode
listing). ‘

CS is initialized by the system (at present it's always 0).

Anythings else dis dnitialized to O,

ol



MAINSTORE

When n segments are loaded the

BASE —»

codearea
segment 1

€¢4— LIMIT

codearea
segment 2

codearea
segment n

72

garbage

/////

‘-—WLIMIT

runtime
stack

<— PO

dataarea
segment n

dataarea
segment 2

dataarea
segment 1

global
vector

t— G

dump
areal

4—40

picture is:

G o



READ ARND WRITE

—_ e =R

The emulator uses two subroutines: read and write.

These routines simply initialize the reading (writing).
Then it returns control to the calling address without
waiting for the read (write) to finish.

Read tests: base <£ read-address < limit

Write tests: base = write-address < wlimit

If these cdnditions are not met the‘errorroutine is called,

p—fee e o e e L SLY g O e

X22 looks at G.511 to see if a program has'been loaded
(see page 3.2).

If so then it initializes wlimit,pO and C from G,511, G.510
and G.509 and starts programexecution.

Else it initializes wlimit, pO and C from G.508, G,507 and
G.506 and so leaves .control to "system',



