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Firmware Development Systems, a Survey 

Peter Kornerup 

Abstract: 

Selected firmware development systems are investigated, with special 
emphasis on the environment in which the firmware is existing during 
testing and final installation. In particular the RIKKE/MATHILDA 
system is described. Development systems for user 
microprogrammable processors, as well as for dedicated control 
systems (custom-designed) are surveyed and classified. Particular 
problem areas are illustrated and discussed. 





1. Introduction 

Although microprogramming as a technology for the implementation of the 
control of a computer has existed for almost as long as the electronic computer 
itself, the tools available for development, debugging and verification of 
firmware have not in general reached the state of equivalent tools available for 
software. 

The firmware development was for a long time intimately connected with the 
design of the processor, as was the debugging of the microprograms with the 
debugging of the processor hardware. With diode matrices, or most other 
discrete read-only memory technology for storing the microprogram, it does not 
seem reasonable to debug the host processor by special microprograms, before 
the microprogram realizing the target architecture is "loaded", in particular since 
the latter anyway was going to be the only "program" ever to run on the host. 

With exchangeable or re-writeable control stores the situation is quite different. 
The interest in emulating other target architectures than the original target 
machine, or in general to support a variety of applications on the same host, 
creates a need for development and debugging tools. 

A firmware development system may consist of tools for programming, loading, 
testing (simulation/debugging), verification and installation of firmware. 

The history of firmware development tools seems to be parallel to that of 
ordinary program construction tools. It is interesting to notice, that although 
most early microprogrammable hosts had horrible architectures, complicated 
instruction sets and tricky timing, how primitive tools were used, and how 
slowly the tools have evolved. One reason for this may be the fact that most 
pieces of firmware are of a very limited size, and of a very simple structure. 
The simple and modular structure of an interpreter in general makes the 
construction of such a piece of firmware a reasonably comprehensible task. 

The most essential tool for firmware development is some sort of translator, 
assembler or compiler, which to a varying degree can relieve the programmer of 
the burden of the detailed task of expressing the program in terms of field 
encodings of the primitive operations. Besides introducing symbolic opcodes 
and labelling, microassemblers most often furthermore are used to "hide away" 
certain peculiarities of the underlying architecture. E.g. assemblers were often 
used to handle the ackward addressing and instruction allocation caused by the 
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early technique of conditional sequencing, where a jump address is formed by 
concatenation of litteral fields from the microinstructions, with flagbits from 
processor status. In this paper we will not discuss the pros and cons of high 
level languages for microprograming. Although the languages available do play 
a crucial role in the process of firmware development, we will try to concentrate 
on the environment where the firmware is going to exist during its development 
and after its completion. 

If there is an area in which firmware engineering is different from software 
engineering, it is to be found in the environment in which programs are tested 
and installed. In systems which allow user microprogramming it is intentionally 
such that the existence of a piece of firmware, and its invocation, is supposed 
to be transparent to the ordinary programmer of the (software) system. In a 
multi-interpreter system it is the task of the system to load and invoke the 
appropriate pieces of firmware, whenever the user initiates the execution of a 
piece of software. The fact that the operating system executes by means of 
one (firmware) interpreter, a particular compiler possibly runs on another, and 
the code generated is intended to execute on a third, has to be transparent to 
the user who calls upon the system to compile and execute his source program. 

The protection and integrity of ordinary user programs are secured through the 
system, which also provides an ·environment of facilities to call upon. This 
environment has been created through interpretation on top of the hardware, 
which allows the system to monitor and supervise the user program. In 
contrast, the microprogram has to execute in an environment which provides 
little or no protection, where in general the available support is very limited, and 
communication with the "user" (i.e. the firmware-programmer) is either 
restricted to lights and switches or may be severely hampered by the layers of 
system above the firmware (unless of course specific tools are available, e.g. a 
firmware debugger). Also I/O in general may be complicated, either because it 
has to be handled at a very low level, or because it has to go through the 
ordinary system I/O routines (i.e. calls have to "go upwards"). 

With the advent of bit-slice technology, history has repeated itself. This 
technology may be used to architecture "ordinary" microprogrammable 
processors, i.e. intended to realize a .target architecture through interpretation. 
However, microprogrammed bit-sliced control units may be used directly in 
various controllers, requiring complicated sequencing. For such purposes the 
"firmware level" becomes "the applications level", and the firmware host will in 
general be designed more or less from scratch for each application. This is 
almost the same situation as the one faced in the desing of the early 
microprogrammed processors, except for the fact that the "building blocks" of 
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the hardware design today are LSI circuits, whose level of functionality assures 
more homogeneity across designs. 

In either of these situations, the firmware of such control units will most often 
be fixed in ROM storage. Design, development, testing and verification of the 
firmware will have to take place in some way or other external to the final 
system, where the firmware is going to reside. Since the firmware host 
architecture changes from one application to the next, support systems will 
have to be parameterizable to amortize their cost, and reduce the time needed 
to create support for the individual design situation. 

In the rest of this paper we will discuss firmware development and test systems, 
based on actual systems. First we will treat user-microprogram mabie systems, 
where apparently most progress has been made. One particular sytem, the 
RIKKE-MATHILDA system at Aarhus will be described to some depth, as it has 
not been reported on before. A sample of other development systems will then 
be surveyed, to illustrate complementary facilities. 

Systems to aid in firmware development for "custom-designed" hosts, in 
particular ROM based controller applications, will be summarized in short. The 
tools reported on in this area seem so far only to be quite limited in scope and 
complexity, but we will try to see what can be learned from the systems 
available for user microprogrammable systems. 

2. The RIKKE-MATHILDA System 

The microprogramming lab facilities at Aarhus consist of two (almost identical) 
microprogrammable processors RIKKE and MATHILDA, which are intimately 
connected, sharing one memory system WS (Wide Store). Both processors 
have the same architectural structure, but differ in the bit-width of their 
data paths and registers. MATHILDA has a width of 64 bits, and can be 
considered a powerful functional unit of RIKKE (usually M runs as a slave of R), 
and has as such no liD devices connected. RIKKE has a 16 bit data path and 16 
bit wide registers. Attached to RIKKE is a private storage system MS (32K, 16 
bit), a variety of standard liD devices (CRT, lineprinter, papertape liD and disk 
controller), and a high-speed file transmission link to the departmental DEC10 
system. The common storage WS has 4 ports, each of which has a 
block-transfer capability. It is organized as two 16K banks of width 64 bits, 
however it is possible to write selectively into any combination of 16 bit fields of 
a storage word, leaving the contents of the remaining fields unchanged. RIKKE 
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and MATHILDA may hence view WS as 128K-16 bit or 32K-64 bit respectively, 
and may communicate through WS, as well as through direct 16 bit 
connections (with busy/done flags). The disk-system is also connected to one 
of the WS ports, acting as a data-channel, but transfers can only be initiated 
from RIKKE. 

The architecture of RIKKE and MATHILDA [10] is organized around a single 
data path connecting storage and functional resources, including two 256 word 
local storages (scratchpad registers), registers with shift capability, and an ALU 
where one operand comes from a 4 word storage. The data path itself contains 
a barrel shifter and various masking facilities. Control of the resources is either 
immediate (from microinstruction) or residual, and in the latter case originating 
from various sources, including small dedicated 16 word" register groups". 

Control store is 64 bit wide (2K in RIKKE, 1K in MATHILDA), and permits 
pre-fetch of instructions. The processor operates with a polyphase clock and 
fixed cycle length. The execution of the instruction can be divided in four 
steps: data path transfer, c1ock1 microoperations (mops), c1ock2 mops and 
sequencing. Due to the amount of parallelism (up to 6 mops may be specified 
in one instruction), the class-division of mops, and in particular the possibilities 
for residual control, makes very tight coding possible (and often used). With 
proper "set-up" many loops used in coding of arithmetic instructions (e.g. 
multiplication and division) are "one-liners", i.e. instructions that loop on 
themselves. Residual control is also useful in the decoding of instructions, but 
in general it complicates the firmware development process, and the 
environment in which the firmware is to exist. Sequencing is quite powerful, 
and includes the possibility of self-relative addressing, indexing (case-branch) 
and two 16 level return jump stacks. The "state-vector" of MATHILDA contains 
approx. 8000 bits, not counting the two local stores (32K bits) and control store 
(64K bits). Hence the only feasible way to realize a context switch is to have 
each piece of firmware establish its own environment" on top of" the standard 
environment used by all firmware (and in particular the I/O nucleus in RIKKE 
[12]). There are no hardware facilities to protect any piece of firmware and its 
resources from a "bad" piece of firmware, not even control store is protected. 

The hardware has evolved over a long period, starting with the construction of 
RIKKE in 1972-73, as a prototype of the MATHILDA design. With some design 
changes MATHILDA was constructed and became available early 76, together 
with WS. Later the disk system and the block-transfer capability on WS has 
been added, just as a number of minor updates on RIKKE and additions to 
MATHILDA have been made. 
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It was at an early stage decided to use the language BCPL [16] as the vehicle 
for systems programming on RIKKE, and a firmware interpreter for a-code (an 
intermediate language for BCPL) was implemented on RIKKE late 1973 [24]. 
Supported by the I/O Nucleus [12]. the RIKKE as was developed (based on 
the Oxford as [21]) into a versatile single user operating system with a 
sophisticated file system. A variety of other firmware interpreters have been 
developed for experimental purposes, including lately a "twin-interpreter" 
supporting pure concurrency in Concurrent Pascal, running on the combination 
RIKKE-MATHILDA-WS. A Pascal-supporting interpreter on RIKKE, utilizing 
MATH I LOA as a functional unit for non-standard arithmetic [11], is about to be 
completed. Experiments with migration of operating system functions have 
been performed in connection with the disk-drivers [23], with primitives for a 
relational database system [2], and a string search operator in the editor. 

Except for some very first hardware test programs, a" firmware for RIKKE and 
MATHILDA has been developed using the microassembler MARIA (existing in 
two versions) and in most cases debugged on the (batch) simulators for RIKKE 
and MATHILDA. Assemblers and simulators are implemented in BCPL, 
originally in 1973 on a CDC 6400, but later transferred to the departmental 
DEC10 System [22], as we" as to a number of other installations to be used as a 
teaching and research tool in other departments. 

The MARIA microassembler provides the same sort of facilities that are usually 
found in ordinary assemblers,but does not contain macrofacilities. Datapath 
transfer is specified as an assignment with a possible shift specification. The 
list of mops is free format, and their ordering is immaterial. Since some mops 
may be represented in anyone of two or three fields, the assembler also has the 
task of "shuffling" around with such mops to make the whole list fit. Mops 
which specify load-actions with a source selection are specified as assignments, 
which are then represented as a combination of the load action and a setting of 
the proper source selection bits of the instruction. Also if the source is 
specified as the current microinstruction, i.e. as a literal, that constant is 
assembled into the proper field (and that field is marked as non-executable). 
The third part of the microinstruction specifies the sequencing part in the form 
of an if-then-else construction, with suitable defaults if not "a" the power" is 
needed. The hardware provides the conditional selection among two 
address-computations (rather than addresses), whose binary specification is 
quite tricky and sometimes interrelated. A task of the assembler is to cover up 
such details, and, as in general, to detect resource conflicts. 

A particular feature which the MARIA assembler provides is the possibility of 
environment initialization, which is not only available for initialization of 



6 

simulator resources (e.g. registers), but also provides initialization of resources 
in the physical processors. This is realized by supplying the source with "value" 
pseudoinstructions, which causes the assembler to append to the load file 
additional "initialization records", one for each resource whose initialization has 
been specified. Each record consists of an identification of the resource, and 
the necessary data. For each such record, the systems loads a small 
microprogram (usually only a few instructions) and supplies it with the data to 
initialize the resource (or part of it). Thus the user simply specifies how he 
wants the environment to look when his microprogram is initiated, and does not 
have to worry about doing it. And it is specified exactly the same way whether 
the microprogram source is to be assembled for the simulator or for the physical 
machine. 

The simulators perform faithful simulations of the processors, but only crude 
simulations of I/O, since they do not attempt to simulate timings of the devices. 
The simulators operate in "batch mode", and devices are simulated by files. 
The RIKKE simulator only provides simulation of some of the early physi.cal 
devices, as most user microprograms utilize the I/O nucleus. As the only 
"device" with which MATHILDA can communicate is RIKKE, corresponding 
files are provided, however there is no possibility to run the simulators of RIKKE 
and MATHILDA in parallel. The simulators provide a tracing of the user 
microprogram program counter as the default. All other output from simulators 
has to be specified in the source program to the assembler by means of 
"display" pseudo-instructions. The range of a display statement is the (static) 
interval from its occurrence in the source, until the next one is encountered. 
The display pseudo-instruction does not immediately specify what is to be 
dumped on output, it only references a "table" pseudo-instruction. In this way 
it is fairly easy to insert and delete the display statements in appropriate places. 
The table definitions, containing the details 'of which resources are to be 
dumped, then have to appear only once, and can be collected in one place. 

An interactive simulator for the MATH I LDA processor has been implemented 
(,>n a Multics system but has so far not been transported to Aarhus, as the 
implementation heavily relies on the Multics file system (segments). 

As the assembler/simulator system is available on the DEC10 System, 
microprograms are developed in a standard time sharing environment, and are 
normally tested on the appropriate simulator before the a.ssembled code is 
transferred (through the transmission link) to the file system on RIKKE. Initially 
files were "transmitted" on paper tape, but it has never been found necessary to 
move the assembler to the RIKKE system, as it is physically located next door 
to the DEC10 system. 
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With the two interconnected microprogrammable processors available, basically 
three different modes of operation are at the programmer's disposal. He can 
implement a piece of firmware to run on RIKKE, under the support of the OS, 
but will to a large extent have to obey to the rules of the system. Or he can 
choose to implement his firmware on MATHILDA, in which case he can have 
an almost "naked" machine, but still with powerful support available from 
RIKKE. Finally both machines can be integrated in one system, either as two 
truly parallel processors, or MATHILDA as a functional unit of RIKKE. 

The philosophy of the RIM system is to let the firmware programmer construct 
in BCPL (the system language) the environment in which the firmware is to 
exist. A few standard routines available allows the user on RIKKE to load and 
execute microcode in RIKKE, as well as in MATHILDA, and to communicate 
with the microcode. 

The primitives for the control of microcode in "RIKKE are provided by the 
following three BCPL functions: 

SetupRikkeCS 
LoadRikkeCS 
CaliRikkeCS 

the first of which just initializes a table, used by the control store allocation 
(recall that it is a single-user system). LoadRikkeCS takes a filename as 
parameter (assumed to be a file containing assembled microcode) and performs 
the specified resource initializations and loading of microcode into control store. 
It returns (as the value of the function) entrypoint information if the call was 
successful, otherwise an error condition. 

When microcode has been successfully loaded into RIKKE control store, it can 
be repeatedly invoked by calls of the form: 

res: = CaliRikkeCS (entry,p), 

where entry is a variable initialized by LoadRikkeCS to contain the entrypoint. 
The parameter p is supposed to be the name of an array (a BCPL vector) which 
is the communication area (in WS) between the BCPL level and micro level. 
When the microcode gets control through this call, the address of this area is 
found in a particular register (LR), and the contents of the two first locations 
have been transferred to two other registers (DS and VS). Upon completion of 
the user microcode, it just executes a particular "return from subroutine" jump, 
and whatever is in the register DS is delivered as the value of the CaliRikkeCS 
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function call to the BCPL level. Of course, nothing prevents the microcode 
from accessing other parts of the communications vector, nor to interpret it in 
any way it wants, e.g. to use its contents as pointers to other data. The 
transfer to and from registers is just provided to facilitate the implementation of 
firmware routines with a minimal need for parameter transfer. 

These routines are straightforward to use whenever a particular software level 
function is to be migrated into firmware. Notice that the communications 
vector is inside the address space of the BCPL program (which is at most 64K, 
16 bit or 16K 64 bit of WS), but the firmware routine called upon may access 
WS beyond this space, or it may access MS (the 16 bit storage accessible only 
by RIKKE). 

If the firmware called upon is an interpreter for another virtual machine, its 
address space may be disjoint from that of the BCPL program. The interpreter 
and the BCPL program may communicate as coroutines, since the interpreter 
may call back and request a service from the BCPL level system, in the 
following way. The interpreter returns to the BCPL level with a "result" 
(contents of OS), which specifies what service is wanted (and possibly 
parameters in the communications vector) and after the BCPL level has 
performed the requested action, it calls upon the interpreter again (possibly 
returning results of the action in the communication area). 

The routines provided for loading and calling upon firmware in MATHILDA are 
basically equivalent, except for the differences caused by the asynchronous 
operation of the caller and callee: 

SetupMatCS 
LoadMatCS 
CaliMatCS 
Matldle 
InMat64 

The setup and ·Ioading is completely equivalent to the RIKKE routines, but 
CaliMatCS differs in that it only invokes MATHILDA (assumed idle) and then 
immediately returns to the BCPL system (i.e. it does not wait for a result), 
allowing RIKKE to continue operation. The communications area consists of 64 
bit words, i.e. they have to be handled by the BCPL system as four 16 bit 
words. The Matldle function allows testing MATHILDA for completion, in 
which case InMat64 can read the contents of OS, and the communications area 
may be interpreted safely by the BCPL system. Notice that since operation of 
RIKKE and MATHILDA is asynchronous, any communication through the 
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shared memory WS has to be carefully programmed to assure mutual exclusion 
of access to shared data. 

A set of extra facilities are provided for the debugging of firmware in 
MATHILDA, in the form of some "snooping" routines which may be loaded into 
control store along with the user microcode. By means of an interactive 
program in the BCPL system it is possible to read and change the contents of 
MATHILDA resources, and invoke the user microcode. However, it is not a 
normal debugger, as the microcode is not changed, and no breakpoints can be 
set. If the user wants such possibilities, he will have to modify the code 
appropriately himself, which can be performed interactively for simple 
modifications. 

In summary, the philosophy of the system is to program the setup and 
invocation of firmware routines in BCPL, utilizing a few primitives of the 
system. When implementing an extensive firmware system, individual modules 
may be tested in an environment programmed in BCPL, and gradually modules 
may be migrated down into firmware. The system is a purely experimental 
system, and is only used occasionally (but sometimes heavily) for "real" 
applications which may benefit from special functionality or efficiency 
established through firmware. The facilities have evolved gradually according 
to needs in the (small) user community, but never following a specific plan. 
The system functions mostly as a testbed for ideas and experiments. 

3. Other User Microprogrammable Systems 

A number of commercially available processor architectures are realized through 
firmware interpreters located in writable control stores, e.g. recent IBM 
processors and DEC processors. In most cases the vendors have chosen not to 
support user-microprogramming, and the flexibility achieved through WCS 
solutions is only used for ease of maintenance and technical updating, i.e. to 
help the vendor and not the user. Even in the case of the B1700/18oo, initial 
vendor support for user-microprogramming was very limited, and hard to get 
at. Obviously tools must have been available at Burroughs at the release of the 
B1700 systems, but it was initially impossible for buyers to get documentation 
on e.g. microassemblers and system, and users had to learn parts of the system 
by reading listings. The B1700 line was probably not intended for user 
microprogramming outside Burroughs' own development groups, and only 
pressure from universities and research labs made the tools available to the 
general user community. 
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The 8170011800 is an example of what might be called a self-supporting 
system, i.e. tools are available on the system itself. Although examples of 
higher-level languages for firmware development on the 81700 have been 
reported (e.g. [13]), the standard tool for program construction is the assembly 
language MIL, which contains "syntactically sugared" representations of the 
(vertical) microinstructions, and has macrofacilities. In the 81700 System at 
Utah [14] a set of macroextensions is available (SMACK) which extends MIL 
providing some standard pseudo-instructions, but also debug statements for 
tracing, and statements for interfacing to the operating system MCP, in 
particular the file system, through the control store resident GISMO nucleus. 
The 81700 system is built around the philosophy that compilers create 
"codefiles", which contain not only compiled code, but also necessary 
information that the proper interpreter can be invoked when the execution of a 
piece of software is requested. If a user wants to execute a piece of firmware, 
it has to look to the system as an interpreter, and the invocation of the 
microcode has to take place as if some compiler had delivered a codefile 
requesting the usage of the microcode as an interpreter of some target code. 

In tre Utah system the LOADER simulates the effect of a compiler, and creates 
such a codefile. It is possible to specify to the LOADER initializations of 
scratch pad registers, and the static data-area of the microprogram, together 
with file specifications. Notice that such initializations may differ from one 
invocation of some microcode, to another invocation of the same (shared) 
code. However if all invocations require some common scratchpad 
initializations, all codefiles must contain the proper data. 

The only firmware debugging tool which seems to be available at Utah is the 
tracing facility, which is a physical machine equivalent of the facilities found in 
non-interactive (batch-type) simulators. . 

One of the very early microprogrammable processors which was designed for 
and was marketed as a user microprogrammable system, is the Standard 
Computer Corporation MLP900, the basic component of the PRIM system [8] at 
the USC, Information Sciences Institute in Los Angeles. The MLP900 is 
running under the control of the PRIM system on a DEC10, and is accessible on 
the ARPA network. 

In the basic philosophy the PRIM system corresponds to the 
RIKKE-MATHILDA system, whenever the latter is used in the mode where 
RIKKE is initiating and controlling the execution of microcode in MATHILDA, 
and utilizing WS as a shared storage. The PRIM system is however a multiuser 
system and contains hardware and software to assure the protection of otner 
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users running under PRIM, as well as other processes running under the TENEX 
system on the DEC10. 

The TENEX system is based on a virtual memory system, and the MLP900 has 
been modified to contain an equivalent memory address translator, allowing a 
PRIM process in the DEC10 and its subordinate emulator in the MLP900 to 
share the same virtual memory. Also the MLP900 has been modified to be able 
to run in a priviledged state at the firmware level. A small resident firmware 
operating system in the MLP900 (the microvisor) is responsible for switching 
among emulators and handles service requests from emulators, as well as page 
faults, to be served by the MLP driver and TENEX on the DEC10. 

As seen from the user, the PRIM system acts as the interface to firmware under 
development, as well as to the emulator user. In its exec-state, the PRIM 
system allows the user to define the environment of an emulator (Le. its target 
machine), e.g. to associate target machine devices with DEC10 physical devices 
or files, to save target environments for later use, or to restore such 
environments. 

From the exec-state the user can enter the debug-state, which can operate as a 
target-independent system for debugging the emulator, as well as the target 
machine defined by the emulator. A particular feature is the possibility to 
associate with breakpoints "break-time programs" who are invoked at the 
breakpoint, thus allowing tracing and monitoring automatically. 

In the third state, the execute-state, control is in the emulator. The user 
terminal can only interact through "intervention characters" (e.g. a defined 
break), unless the terminal has been "mounted" as a device on the target 
machine. The TTY can act as one target input device only, but possibly as 
several output devices. 

Emulators are created outside the PRIM system, as well as target code may be 
compiled in the standard TENEX environment. In the exec-state the 
environment is defined, possibly including appropriate symbol tables for the 
debugger, in the form of tables to be used by the PRIM system. In particular 
tables describing completed emulators, make new target systems available as 
tools to be used by other users. 

Both the B1700/1800 and the PRIM systems have been organized to support 
the development of emulators, and to facilitate the inclusion of new target 
machines in the environment of the common user. In contrast other 
development systems have been reported where the systems are organized as 
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to allow the inclusion of new primitives, realized in firmware, to already existing 
target machines. Some such systems just utilizes previously un-assigned 
opcodes, allowing extensions to be added to the instruction set, and made 
available through modification of the target assembler [7]. The utilization of 
such added functionality is hampered by the fact that compilers have to be 
modified, to make the new facilities (or extra efficiency) available in high level 
languages. 

Another and more flexible approach has been reported in [9]. A CAL Data 135 
is used as the host of an .emulated PDP11/45, which supports the C-Ianguage 
and the UNIX operating system [18]. A few unassigned opcodes have been 
used to add the primitives necessary to load and call upon user developed 
firmware, and these primitives have been made available in C also. The system 
distinguishes between static (resident) and dynamic (overlaid) firmware, where 
user created microcode falls in the second category, and is referenced through 
the file system.' The system works much the same way as the RIKKE system 
does, and seems well suited to the migration of primitives into firmware. It has 
been used to improve the efficiency of C and UNIX by microcoding the 
function-enter and -exit operations. However it is not apparent that the system 
can be used to (and is intended to) support complete emulators and their target 
machines. 

The paper also contains a discussion of the objectives, and the tools which 
should be available in such a system. The author seems particularly concerned 
that it should be possible to "authorize" firmware through a validation routine, 
before it can be included and called upon. However it does not seem very likely 
that this process can be automated in the foreseable future, as the present state 
of affairs for "ordinary" systems programs (e.g. operating systems) may 
indicate. The work on verification of firmware may take us part of the way, but 
assuring that a microprogram is realizing the functionality it is supposed to is 
one thing, but to prove that it is harmless to its environment is quite different. 
Any proof or verification of a program is based upon some formal specification 
of the (virtual) machine on which it is supposed to run, and if the program is 
"correct" it is (of course) only accessing resources of the specified machine. 
But since the specified machine may not be-completely equivalent to the actual, 
and resources in general will be shared, interference from a harmful program (or 
user) may still occur, unless the whole system can be proven correct [16]. 
Some interesting work on verification of firmware, based on host and target 
machine descriptions in a hardware decription language ISPS, has been 
reported in [3]. 
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We may conclude this section on user microprogrammable system by 
concluding that (as illustrated particularly by the PRIM system) quite 
sophisticated systems do exist, however they have been developed mostly by 
users, and not by vendors. Even for the QM-1 [19] there seems to be a need 
for users to create their own development system [6]. Many systems which 
have been reported on are however at the other extreme, consisting only of 
assemblers/simulators, which is fine for teaching purposes, in particular when 
the simulator is interactive. But when the firmware is to be integrated in the 
system, the user is left with deadstarts, lights and switches. 

4. Dedicated Control Systems 

In this section we will restrict the discussion to the development of firmware for 
systems whose underlying hardware architecture changes from one system to 
the next, i.e. where the control unit is designed to fit a particular application. It 
might be a control unit of a bit-sliced processor, or that of a more general 
controller, where the firmware is to reside in ROM storage. 

By nature, some sort of cross support is needed when developing firmware for 
ROM based control. As demonstrated in the previous sections, cross support 
for firmware development may be very advantageous. During development, 
the read-only control store can be substituted by an equivalent writeable 
storage, which can be loaded from the supporting system. With suitable 
monitoring of the control unit under debugging, and possibly by some 
simulation of the environment of the unit, the development system can be 
utilized for debugging and testing of the firmware before it is being" cast" into 
its final ROM storage. Such systems have been commercially available for use 
with standard microprocessors, to develop software which is to end up in ROM 
storage for a particular fixed application. 

Lately such systems have also become available to be utilized in the 
development of firmware for bit-sliced control units, e.g. the Motorola Exorciser 
system modified to support systems built on the M2900 or M10800 series of 
components [20]. Besides a primitive facility for entering bitpatterns into the 
fields of the simulated control store words (in hexadecimal), the system 
described in [20] contains a debugger with facilities for executing the program 
with breakpoints. Displaying is limited to the contents of the current 
microinstruction, but the system under development may itself contain 
additional displays. The development system as described in [20] is obviously 
quite primitive, in particular with respect to the tools available for the 
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programming, but an improved system (MAZE29/S00) has been described in 
[1]. which allows for the definition and use of an assembly language, and 
source editing. 

The obvious problem with such "on-line" tools is the limited amount of 
knowledge the development system has on the system under construction. 
The minimal knowledge required, in a system as discussed above, is 
information on the structure of the control store, i.e. its width and length. 
During debugging, any reference to the (simulated) control store has to be 
checked against the set of defined breakpoints, to check for the break 
condition. If this is performed in software obviously this may cause problems in 
time-critical applications, but could possibly be avoided using a set of hardware 
comparators (e.g. a small associative memory). 

In order that the debugging system can inform the user on the state of the 
system, suitable probes may be connected to provide a feed-back of 
information. However such a solution does not seem more flexible than adding 
display-panels to the system under debugging. There will probably be major 
parts of the state vector of the system which will be inaccessible for 
interrogation, unless special-purpose display firmware is developed, loaded into 
control store, and called upon during debugging. And it does not seem very 
likely that such display firmware routines can be constructed automatically, 
even if the development system has a very detailed knowledge on the system 
under testing. The same problem arises with respect to interactive corrections 
of the state vector during debugging. 

The situation is very different with the firmware construction. Sophisticated 
assemblers and even possibly higher level languages can be generated 
automatically from syntactical and semantic' (architectural) descriptions, if 
sufficient computing power is available in the development system (e.g. [45)). 
But most often for cost-reasons" on-line" development systems are based on 
(dedicated) microprocessor systems, which only· provide little computing 
power, in particular due to very limited memory space. 

The most advanced development and test. systems have so far been pure 
"off-line" systems, based on simulation of the system under design, and 
implemented on medium to large scale computer systems. In [15) a 
microassembler and simulator generator system has been described. It does 
not use a hardware description language (HDL), but an ordinary programming 
language Simula, which is used to build descriptions of the hardware 
components, which in turn are used in a description of a system. Simula is a 
discrete event simulation language, and as such well suited for a proper 
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simulation of the system under design. The simulation could possibly even 
include the environment, with proper timing. With a library of component 
descriptions, the individual architecture design may be simulated, and can be 
checked out before physical construction. 

The use of "proper" hardware description languages in the field of 
microprogramming has been discussed in [5], based on experience with a 
particular language ISP', in automatic construction of simulators for host 
processors, to describe target architectures and microcomputer networks. Also 
the application of such languages for more general communication purposes, 
and in verification is discussed. 

There is no doubt that it is possible to create very sophisticated "off-line" 
systems, which (when properly parameterized) can provide excellent tools for 
the development, simulation/debugging and verification of firmware for a 
"custom-designed" control unit. 

5. Conclusions 

The most sophisticated firmware development systems have no doubt been 
constructed for the utilization of user microprogrammable host architectures. 
The most flexible systems seems to be the self-supporting (e.g. 81700, QM-1 
and RIKKE), which potentially are as well suited to support migration of 
primitives into firmware, as to support new target machines through 
interpretation. The cross-supported systems (e.g. PRIM and 
RIKKE/MATHILDA) are equally well suited for emulators, and provide 
interesting extra possibilities for utilizing the true parallelism. The tools which 
are or potentially may be available in development systems for both classes of 
systems, do not seem to make one sort of system preferable to the other. 

The most serious problem with improving the tools for user microprogrammable 
systems is to handle the problems of horizontal instructions and parallelism in 
compilation and verification of firmware. Another problem is in the protection 
of innocent users and systems against malevolent firmware (or programmers), 
where the hosts usually provide little or no facilities for protection or 
virtualization. 

The systems available to aid in firmware development for "custom-designed" 
control units are much less satisfactory. Only in pure" off-line" (simulation) 
systems can reasonable systems be generated, by means of formalized 
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descriptions, to fit a particular host design. Unfortunately such development 
system generators can only be implemented on quite powerful computing 
systems, which may be prohibitive for many development groups, considering 
the potential applications of bit-sliced control units. 

The more economically feasible (microprocessor based) "on-line" development 
systems have inherent limitations whe.n applied to such "custom-designed" 
control units. The programming part of the firmware development can easily 
be facilitated, but is seems difficult to provide full scale debugging facilities, as 
well as proper verification, in such systems. 
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