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Abstract

A dynamically microprogrammable processor called MATHILDA
is described. MATHILDA has been designed to be used as a tool in
emulator and processor design research. It has a very general micro-
instruction sequencing scheme, sophisticated masking and shifting
capability, high speed local storage, a 64-bit wide bus structure, a
horizontally encoded microinstruction, and other features which make
it reasonably well suited for this purpose. Also, hardware modifi-

cation is relatively easily undertaken to enhance the experimental

nature of the machine.
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Foreword

It is the purpose of this document to give én introductory (yet
reasonably detailed) description of the MATHILDA System. The bus
structure, the registers and functional units attached to it, and the
control which can be exercised on these components are discussed,
The document is not a reference manual, Rather, it is written en-
tirely from the pedagogical point of view, with the system described
in a modular fashion, Examples are introduced after each component
is added to the basic bus structure, Thé examples are written in an
imaginary (syntatically sugared) microassembly language. The ex-
amples are deliberately kept simple so the reader will not spend time
learning a complicated or clever algorithm but will learn the control.
mechanisms of the particular components involved, Thus, many of the
examples are ''"contrived! and do not perform any particular Yuseful"
data transformations. It is hoped that this approach enhances the
reader's understanding and underscores the overall simplicity and

homogeneity of the structure and its components,



A Description of the MATHILDA System
by
B. D. Shriver

1.0 Introduction

MATHILDA is a dynamically microprogrammable processor
which has been designed to be used as a tool in emulation-oriented
and processor design research. For the sake of completeness we
will discuss briefly a short history of the unit and then some of the

~criteria which served as a basis for its design.

1.1 Historical Notes

In the spring of 1971 the Department of Computer Science of the
University of Aarhus was considering the purchase of a standard mini-
computer to act as a controller for a variety of peripherals and to
simulate a medium speed batch terminal to the Computer Center's
large system. A group of people were, at this time, working on the
design of an integrated software and hardware description language called
BPL (1 '. To support this group and to make the use of such a mini-
computer more flexible, it was decided to designh and construct a

microprogrammable minicomputer within the department itself.

The design was started and completed during the summer of 1971,
The resulting machine, RIKKE-0 [2] , was constructed and began run-
ning in early 1972. In the meantime a number of projects were pro-
posed which were considered not to be compatible with that design.
Among these were various projects in numerical analysis [3, 4] in which
it was found that the word size and bus width of the RIKKE-0 (16-bit)
was too short to obtain an efficient implementation of even standard
arithmetic operations on numbers, It was then suggested that a micro-
programmed functional unit with a wide# data path and special features
could be attached to RIKKE=-0 as an 1/O device, or "functional unit",
together with a wider memory, for use with these projects. A proposal
was made to the Danish Research Council to obtain a grant to design
and construct such a functional unit. A grant was made in June 1972

in which funds were awarded for hardware and a memory (32K, 64-bit

* This work is supported by the Danish Research Council, Grant 511-1546
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wide, 1.4 .s access time). The manpower for the construction of
the unit was, in part, granted by the Research Council; two staff
engineers and one staff technician were provided by the Department.
The design was started in May 1972 and completed during the summer
of 1972, The construction of the resulting machine, MATHILDA, is
due to be completed in June 1973,

The motivation for building the MATHILDA instead of purchas-
ing a commercially available machine can be summarized as follows.
First, there were (to the author's knowledge) no commercially avail-
able dynamically microprogrammable processors at the time we started
our efforts which: (a) were in the price range we could afford, (b) were de~
signed for or supported user written microcode or (c) offered a
reasonable experimental and growth oriented structure. We felt that
we had the in-house capability to design and construct the machine.
The availability of LLSI éircuits and convenient mounting techniques

and our experience with RIKKE-0 supported this view.

1.2 General Design Criteria and Constraints

The MATHILDA machine is intended to be a research oriented
machine. Its main design criteria then, within the money and timing
constraints on the project, was to provide a machine on which a large
variety of experiments related to processor and emulator design and
evaluation could be perforrﬁed. We attempted to use the "top-down!' de-
sign approach which quite frequently was tempered by the "forces from
below!, see Rosin [5] . We, therefore, tried to have various appli-

cation-oriented and software ideas be reflected in the design.

Two general software concepts had a reasonable impact on de-
sign. The one being the ability to multiprogram virtual machines and
the other being the concept that virtual machines would be defined
through several layers, (e.g., R. Dorin [6]). The effect of these
ideas is apparent in the design of the control unit, especially with
respect to the capabilities of addressing. Many addressing features

known on the virtual level are present here on the micro level.

Another criterion was to have a clean and consistent way of

dealing with timing problems. We decided not to force the speed,



rather we would have a slower machine than obtainable with the com-
ponetry at hand, and thus one, hopefully, with a reduced set of timing
idiosyncrasies. It was also decided to be able to control all elements
of the sysiem from an immediate control.or a residual control capabi-
lity, or some combination of both. The residual control was made

" homogeneous to the user by having a reasonably '"'standard control

| register group' whereever such control was provided.

Another design criterion dealt with the actual construction of
the unit., It had been decided, prior to the obtaining of the grant from
the Danish Research Council, to construct additional RIKKE!'!s by
other funding. It became apparent, during the design phase of
MATHILDA, that the machine would be reasonably complex and that
several features of MATHIL DA included or extended similar features
~on RIKKE-0. Because of the comple}(ity of the design, the limited
funds and manpower available, and the fact that we wished to design,
construct, and test the machine within 1 year, it was decided that the
additional RIKKE's (now called RIKKE-1's) should be modeled after
the MATHILDA System. Thus, one design cfiter‘ion was to ensure a
modularity in the hardware design. This would enable an economy in
print-iay out and construction to be achieved. As an example, the
bus structure is laid out on one print board, 8-bits wide. Two of
these boards, interconnected, comprise one RIKKE-1 bus structure
with all registers, shifters, etc. Four of these RIKKE-1 boards,

interconnected, give the MATHIL DA bus structure.



2.0 The MATHILDA System

MATHILDA, as has been stated earlier, is a microprogrammed

controlled bus structure. The majér elements of the system are shown
in Figure 2.1 and are the: 1) bus structure, 2) control unit, and 3)
auxiliary facilities. In the following sections we will describe each

of these systems independently and give examples of their utilization.

Control Unit

Control instruction

Store Sequencing } l

Functional unit
or Register
®

Status Registers [ [ ]

[ Snooper Registers J Functional unit
or Register

Auxiliary Facilities

[ System Counters l

- ] Bus Shifter l

Bus Selector

Bus Structure

MATHIL DA System
Figure 2.1

2.1 The Register Group

—

We begin by introducing a fundamental building block which is
used in the various control mechanisms of the system, viz, a Register
Group, RG* , as shown inFigoure 2.2. ARG is a set of 16 or 256 re-
gisters. The width of the registef‘s and the number of registers in a
specific RG will be stated when it is introduced. The element of a par-
ticular RG, which is to be used as a source or destination for the trans-
fer of information, is pointed to by the RG address register. This
register is called the Register Group Pointer, RGP, as shown in.

Figure 2. 2.

*) After a particular system element is first introduced, an abbrevia-
tion for its name is given which, for the sake of brevity, is then
used in the text, see the "Tables of First Occurrance of Abbrevia-~
tions and Symbols'', beginning on page 115, for the page of first
occurrance.
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Figure 2.2

There are four microoperations associated with an RGP. They are
marked L, +1, -1, and C in Figure 2.2 and all subsequent figures and

are explained below in Table 2.1,

Symbolic Notation Microoperation

L | RGP := Pointer Source | LLoad the RGP from the Pointer Source

+1 | RGP + 1» Increment RGP by 1
-1} RGP -1 Decrement RGP by 1
C RGPC Clear (i.e., set to zero) RGP

Table 2.1

Microoperations for the control of an RG

The symbolic notation RGP+1, RGP-1, etc. is the notation which is used
with our microassembier, and all of our examples will be shown using
this notation. The abbreviation 'RG' will often be reptaced by the abbre-
viation of the name of the functional unit with which that particular RG
is associated. Not all of the RGP's will have the microoperation

RGP := Pointer Source

associated with them , For those RGP!'s which do have this micro-



operation it will be seen that the Pointer Source data itself can usually
be selected to come from any of four different sources. o

There is one additional microoperation required for the control
of an RG; namely the function labelled "Load" in Figure 2.2. If the
‘loading of an RG can be initiated by a microoperation it will be indicated

by an "LL" on such a diagram.

2.2 Counter A

We will, from time to time, give small segments of microcode to
illustrate the use of a device and its control. In order to make these
examples clearer and also to give a more realistic view of how such a
code is actually written we introduce the system counter, Counter A, CA,

CA is a 16-bit wide counter as shown in Figure 2. 3.

+1 -1C

f it

CAS
s Pointerg

CA
Save Registers

15, Q

CM sB EX CAS L +1-1C

Sel —=d Selector CA

Counter A, CA
Figure 2.3

CA has four microoperations associated with it as shown in the box

labelled 'CA! in this Figure. These microoperations are given in

Table 2. 2.



Symbolic Notation Microoperation

Load CA from either CM, EX,
SB, or CAS. Note the use of

L | CA:=CM|EX|SB| CAS "|" to mean "or" in the symbo-
lic notation for this microopera-
tion.

+1 | CA +1 Increment C Aby 1

-1 | CA -1 ~ Decrement CA by 1

C | CAC Clear (i.e., set to zero) CA

Table 2,2

Microoperations for control of CA

Both the box labelled "Selector' in Figure 2.3 and the explanation of
the microoperation '"L'" in Table 2. 2 state that CA can be loaded from
one of four possible sources:

1) immediate data within the Current Microinstruction, CM,
2) a 16-bit External Register, EX (discussed in Section 2. 20. 5),
3) bits O through 15 of the Shifted Bus, SB (discussed in Section 2, 5),
and 4) from an element of a 16-bit wide, 16 element RG called the
Counter A Save Registers, CAS.
Thus the microoperation

CA := 37
loads CA with the constant 37 from a data field within the CM. While the
microoperation

CA :=CAsS
loads CA with the contents of the element of CAS which is pointed to by
the CAS Pointer, CASP. Notice that the CAS can be loaded with the con-
tents of CA thus allowing one to save the current value of CA. The four

microoperations associated with the CAS and CASP are in Table 2. 3.

a

Symbolic Notation | o Microoperation
L CAS = CA L_oad the element of CAS pointed to by
CASP with CA
+1 CASP + 1 Increment the CASP by 1
-1 CASP -1 Decrement the CASP by 1
® CASPC Clear (i.e., set to zero) CASP
Table 2.3

Microoperations for control of CAS and CASP




We can test to see if CA contains zero. We will demonstrate the use
of this condition and the microoperations in Tables 2.2 and 2.3 in sub-

sequent examples.

2.3 Bus Transport

Having introduced some elementary notions we will now examine
in some detail the bus structure, the registers and functional units at-
tached to it, and the control which can be exercised on these components.
We will construct the bus structure in a modular fashion - hopefully to
enhance the reader's understanding and to underscore the overall sim-

plicity and homogeneity of the structure and its components.

Let us introduce the concept of a bus transport by considering
a sub-system of the bus structure consisting of the Working Registers A,
WA , Working Registers B, WB, and the Bus Shifter, BS, as shown
in Figure 2.4, The exact nature of WA, WB, and BS 'is not inportant

to us here.

- Shifted Bus
Working g Bus Shifter
Registers A S
0
) Bus
0]
Working g
Registers B )

Sub-system of the Bus Structure

Figure 2.4

The BUS is a 64-bit wide data path. The input to the BUS (its

SOURCE) is obtained from a bus selector which has eight inputs, two



of which are shown here, i.e., WA and WB. The particular input which
is selected as the SOURCE for bus transport may be shifted a specified
amount in the BS. The output of the BS, called the Shifted Bus, SB, can
then be stored in at least one of seven possible 64-bit destinations
(called Bus Destinations, BD, or DESTINATION). Two such BD's are
shownin Figure 2.4, i.e., WA and WB. We will in this report specify
bus transport information as we do in our microassembler, viz,

DESTINATION := SOURCE, BS Specification.
If the BS Specification field is empty, i.e., the BS is not to be used (no
shift occurs) then the bus transport is given by

DESTINATION := SOURCE.
As an example, the bus transport WB := WA has the obvious meaning of
a register to register transfer from WA to WB. If a SOURCE is chosen
to be transported but not stored in any of the BD's, the bus transport in-
formation is written

SOURCE, BS Specification
or |

SOURCE
as is appropriate. The SOURCE may be stored in destinations other
than BD's during a bus transport. We will learn what functional units
or registers can serve as these "other destinations" as this report
develops. If the SOURCE is to be stored in more than one destina-
tion, the DESTINATION portion of the bus transport specification is
written as a list of destinations separated by commas, i.e.,

LISST := SOURCE, BS Specification
or

LIST := SOURCE
where

LIST::=d;,. . .,d,. The value of n and the units which can

serve as destinations, d;, will be discussed later.

W

2.4 Working Registers

WA and WB, introduced in the previous section, are not single re-
gisters but each is a 64-bit wide, 256 element RG. Figure 2.5 shows

WA; WB, not shown, is identical.

The first thing we wish to point out in this figure is that the WA Pointer,

WAP, is a mechanism identical to CA except that it is 8-bits wide and



10

not 16-bits wide. (Note the dashed- line box in Figure 2.5.) Therefore,
WAP not only points to which element of WA can be used as a SOURCE

for bus transport (or used as a BD), but also can be stored in an RG

"— T-IC—— T o T o o ——l

WAPS )
| , Pointer T

1

WA
Pointer
| Save
Registers

Q

| CM EX SB WAPS
Sel Selector WA
t Pointer o _l
L—— —_— — — R - e ] iBD Load
256
Shifted Bus Working Bus
SB8(0:63) Regisiers Selector
WA
Q

Working Registers, A, WA
Figure 2.5

called the WAP Save registers, WAPS. This is identical to CA being
saved. Also, as indicated in the box labelled "Selector" in Figure 2.5
the WAP can be loaded from any of four sources: 1) immediate data from
the CM, 2) the least significant 8-bits from EX, 3) the least significant
8-bits of the SB, and 4) an element of WAPS. This is identical to the
loading of CA. Thus the microoperations WAP := 37 and WA := WAPS

have well defined analogous meanings.

The WA (and WB) registers are not loaded by a microoperation but rather
as a result of being chosen as a BD in a bus transport specification; thus
the loading of these registers is shown by the function "BD Load" on Fi-
gure 2.5. This notation will be used in all subsequent drawings. There
are 8 microoperations shown in Figure 2.5 associated with the use of WA.
These are listed along with the corresponding microoperations for WB in
symbolic form in Table 2. 4. The actual microoperation descriptions can be

extracted form the previous tables and are not repeated here.



WAP := CM| EX| SB |WAPS

WBP := CM| EX|SB| WBPS

WAP + 1 WBP + 1
<

WAP 21 WBP - 1

WAPC WBPC

wAPSs := wAP

WBPS := WBP

11

2.4.1

WAPSP + 1 WBPSP + 1

WAPSP -1 WBPSP - 1

WAPSPC WBPSPC
Table 2. 4

Microoperations for control of WA and wB

Microinstruction Format and a Few Examples

In order to present a few examples we will introduce the micro-

instruction format which we use in our imaginary microassembler. The

format of a microinstruction is:

where

‘ y -
A: bus transport; microoperations and data; microinstruction

sequencing. " s
a) "A" is a symbolic name for the address of the microinstruc-
tion,
b) '"bus transport' is a field giving the bus transport informa-
tion as explained previously in Section 2. 3,
c) "microoperations and data' is a field of up to 7 micro-
operations and immediate data to be executed or used during
this microinstruction (the exact combination of microin-
structions and data which can be inciuded in this field and
precise details of the timing of microoperations are given
in Section 3, 0), "
d) "microinstruction sequencing! information will be written in
the form

if ¢ then At else Af

which is to mean: if a par*t;icu!ar selected condition is true then
choose address At as the address of the next microinstructi on

else choose Af.
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It is not necessary or appropriate at this point to list all of the con-
ditions which are testable by the system nor how At and Af are func-

tions of the address of the current microinstruction, n. These mat-

ters will be dealt with in Section 2.20.1. However, conditions and address
functions will be introduced as needed for examples. If no condition

is to be considered, i.e., if At = Af, the sequencing information will
merely be written At (and not "if ¢ then At else At"where c is an

arbitrary condition).

Thus, the microinstruction labelled n,

n: WA:=WB; WBP+1; n+1..
means: load the element of WA pointed to by WAP from the element of
WB which is pointed to by WBP without shifting it during the bus
transport;, then increment WBP by 1, then obtain the next microin-
struction from n+1. The action associated with every microopera-
tion specified in a microinstruction is completed before the next
microinstruction is executed. For example, in the above microin-
struction if WBP had been set to 9 before the beginning of the execu-
tion 6f this instruction, then WB9 would be the SOURCE for the bus
transport. At the end of execution of the instruction, the WBP would
be set to 10.  If, in the next microinstruction WB were again selected
as the SOURCE, then the contents of WB10 would be gated onto the
BUS.

In order to give an example of a microinstruction using condi-
tional branching, we establish the if ollowing convention for the test-
ing of conditions which will be used in all of our examples (unless
stated explicitly otherwise): all conditions which arise as a result of
bus transport and microoperation execution specified by a particular
microinstruction, M, are testable in the next microinstruction to be
executed after M is executed. This means that all‘ the conditions avail-
able or changed during the execution of microinstruction M are ""saved!!.
These '"'saved' conditions are those tested in the next instruction to
be executed. Therefore, our microinstruction can be thought of be~
ing executed in the following sequential way:

(a) save the conditions of the previoué microinstruction
(b) execute bus transport

(c) execute microoperations
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(d) execute microinstruction sequencing based on saved
conditions.
Let us introduce the notion thét bit 63 of the WA input tc the bus se-
lector is testable, that is, bit 63 of the element of WA which is pointed
to by WAP. If we wish, for example, to test bit 63 of WA7, and if it
is set to 1, jump to the microinstruction labelled BITON, else continue

with the next microinstruction, we could write,

n-1: WAP:=7
n : ;if WA(63)=1 then BITON else n+1.
!

We could not write

n :  WAP:=7; if WA(63)=1 then BITON else n+l.
according to our current convention. It is possible to conditionally
execute the same nstruction. L.et us dgive an example of this. Assume
there is at least one register in WA which contains bit 63 set . to 1,
the folloWing four microinstructions will: search WA starting with
register 0 and transfer the first register of WA encountered with bit
63 set to 1 to register 0 of WB; then, store the address of the WA
register which was tr'ansfer‘r'edv in register 0 of WAPS; and then con-

tinue with the next microinstruction.

; WAPC, WAPSPC, WBPC.

LOOP: ; WAP +1 ; if WA(63) =1 then SAVE eise LOOP.
SAVE: y WAP -1,
WB := WA ; WAPS = WAP, [ |

We have introduced some standard defaults in this example:

a) If the bus transport field is empty it means that an unspeci-
fied source is selected for bus transport but is not stored anywhere.

b) If the microoperations field is empty it means that no mi-
crooperations are to be executed during this particular microinstruc-
tion. V

c) An empty micr‘oinstr‘uction'sé'quencing field implies the next
microinstruction to be executed is that in n+1 if the address of the
current microinstruction is n. If the microinstruction sequencing.
field is empty the specification "; microinstruction sequencing. ! is
replaced by " . ", '
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d) The instruction sequence shown is assumed to be located sequen-
tially in control store and the symbolic address name is used only when n
needed in the microinstruction sequencing field. .

e) The symbol B will be used to indicate the end of the group of mi-

croinstructions in the example.

The symbolic names HERE-1, HERE, and HERE+! are used often
in the microinstruction sequencing field to mean A-1 , A, and A+l assuming
the address of the current microinstruction is A. As an example, the
instruction labelled LOOP above could have been written

; WAP+1 ; if WA(63) =1 then HERE+l else HERE. B

Through the use of CA the assumption that at least one register
of WA contains bit 63 set to 1 is not required. CA can be used to con-
trol the number of elements of WA we will search. If we establish a
routine labelled NONE which handles the situation when no element of WA
contains bit 63 set to 1, then the code to perform the same task as related
above is,

; WAPC, WAPSPC, WBPC.

; CA = 255 ; HERE+2.

; WAP+1, CA-1 ; if CA =0 then NONE else HERE+! .
; if WA(63) =1 then HERE+] else HERE-1.

WB:=WA ; WAPS = WAP. 8

The final example in this section uses the capability of loading
CA from the SB. In the previous example CA was loaded with N-1 where
N (2<N<256) is the number of registers of WA to be searched. Let us
suppose that this number is in register 0 of WB and furthermore that
you wish to save it in register 0 of CAS because it may be written over
if a transfer is made to WB. A possible code segment is,

; WARC, WAPSPC, WBPC.
ws ; CASPC, CA = SB.
' . CAS := CA ; HERE+2.
; WAP+1 ; if CA =0 then NONE else HERE+] .
; CA-1 ; if WA(63) =1 then HERE+1 else HERE-1.

WB:=WA ; WAPS := WAP. & '

If the A address is HERE+1 we will only write, from now on,
if c then A, . Thus, the fourth instruction of the above example
would be written

. WAP+1; if CA=0 then NONE . @



15

2.5 The Bus Shifter
The Bus Shifter, BS, introduced in Figure 2.4 and shown in

more detail in Figure 2.6 is a 64-bit wide right cyclic shifter which can
be set to shift n bits, 0=n=63. There exists a dedicated bit in each
rﬁicroinstr‘uction to control the BS which indicates whether or not the
BS should be used (enabled) during the current bus transport. If the

BS is not enabled, no shift will occur.

[ |0
Save 1 o Save 2
Sel. L Register, . Register
¢ L+ -1C
g BN
EX  —ae § B3
CM o] J’) Pointer . li_
8s
. Register
SB(0:5) ——edd Group
o

CM EX BE BSSG

i

Sel. —el Shifter
Control
Enable
. Shifted Bus
Bus(O.GE))—---L53 Bus Shifter _ . " "5B(0:63)

-+
Right Cyclic Shift
Bus Shifier, BS

Figure 2.6

If we wish to use the BS, the amount of shift can be selected from
one of four possible sources as shown in the box labelied "Shift Con-
trol!" in Figure 2.6, i.e., from 1) a data field in the CM, 2) the least
significant 6 bits of the EX register, 3) the output of the Bit Encoder,
BE (discussed in Section 2.16),and 4) an element of a 6-bit wide 16
element RG called the BSSG. The blis transport specification
WA:=WB
means: take the element of WB pointed to by the WBP and store it in
the element of WA pointed to by the WAP without shifting it. While
the bus transport specification
WA:=WB, » 3
means: take the element of WB pointed to by the WBFR, shift it 3 bits
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right cyclic and then store it in the element of WA pointed to by WAP,

A 64-bit left cyclic shifter and a 64-bit right cyclic shifter are
related by the expression
lcs = 64 - rcs
where
Ics is the amount of left cyclic shift and
rcs is the amount of right cyclic shift.
We can therefore write as a notational convenience
WB = WA, + 24
to mean the same thing as
WB = WA, -+ 40
thus using +(left shift) or #(right shift) whichever makes the understan-
ding of the processing clearer. The microassembler will make the above

computation and insert the correct amount for left shifting.

The BS specification in the bus transport field of the microinstruc-

tion is given by
{7} cmlEX|BE|BSSG

where the microassembler makes the above computation only if the first
alternative is selected as the source of BS control. The useof ¢ 11 2

are dummy when used with the three other alternatives.

Having seen how the BS is controlled and how we specify this con-
trol, let us turn our attention to the BS register group Pointer, BSP.
We see in Figure 2.6 that the data which can be loaded into the BSP can
also be loaded into an additional register called the BS Savel register,
BSS1. If, for example, we know in advance the address of a particular
register fo the BSSG, which we will want to use as shift data (e.g., some
highly used shift constant), we can store this pointer in BSS1 by loading
BSS1 from the CM,

. BSS! :=CM.
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Whenever we wish to use this stored pointer we can load it into the
- BSP by executing !

BSP:=BSS1.
Now notice in Figure 2.6 that the BSP not only points to the element
of the BSRG which can be chosen as data for the shift control unit,
but also can be stored in a register called the BS Save 2 register,
BSS2. Suppose we are pointing to a particular element of the BSsG
for the current shift control data and in the next microinstruction we
wish to have register 9 of the BSSG to be used as shift data, but
we do not wish to loose the pointer to our current control data. The
following microinstruction achieves this,

; BSS2:=BSP, BSP:=9. B
‘Thus at some later time if we execute

BSP:=BSS2 |
the pointer information which had been saved in BSS2 would be
restored.

A 16 element RG with the two Save registers and Pointer as
shown in Figure 2.7 is a fundamental control element in the system
and will be used with many devices in the subsequent sections. It will
be referred to as a Standard Group (SG) and will be noted on drawings
as such, i.e., it will not be explicitly be drawn out each time as it
was in Figure 2.6. Each SG will, however, be given a name closely
associated with the particular functional unit to which it is connected
as, for example, in the current discussion the SG associated with
the BS is called the BSSG.

[ 1 L
Save 1 Save 2
Register Register

L+ -1 C

Pointer

3

m
X
Selector

16
Registers

Source Selector

o

* The width of the registers
depends on the particular selector involved.

Typical Standard Group
Figure 2.7
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Table 2.5, below, lists the seven microoperations associated with
the BS in their symbolic fo;ﬂm;' their meanings should be obvious
from previous tables and the text. Note that the BSSG is loaded
with the least significant 6 bits of the SB i.e., SB(0:5).

BSP:=CM|EX|BSS1 |BSS2

BSP+1

BSP-1

BSPC

BSS1:=CM[EX [BSS1 'BSSZ

BSS2:=BSP

BSSG:=SB

Table 2.5

Microoperations for control of the BS

Examp!ei
Let us assume the following information to be in the regis-

ter of WB to which we are currently pointing:

WA wB L shft

0€—>0
63 22 |51 AIr |1 Adr |, Data

We wish to take a given WB register (WB Adr ), shift it a given
amount (_shft Data), and store it in a given WA register (WA Adr.).
The following code will: load the BSSG with the Lshft Data, Save
the current WBP, load WBP with the WB Adr , load WAP with the
WA Adr , transfer the WB register‘\ pointed to by WB Adr . to the
register pointed to by WA Adr shifting it left cyclic by the amount

L shft Data during transport, restore the old WBP, and then continue.

WB, +14 ; WAP:=SB.
wB ; BSSG:=SB, WBPS:=WBP.
WB, +6 ; WBP:=SB. '

WA:=WB, +BSSG ; WBP:=WBPS.



2.6 Bus Masks
Let us now expand the initial bus structure given in Figure
2.4 by adding the Bus Masks (BM) as shown in Figure 2.8.

Shifted Bus

Bus Masks —0

Bus Shifter

Working
Registers A

Buys

Bus Selector

Working
Registers B

Expanded Bus Structure

Figure 2.8

The BM allow one to specify which bits of the SOURCE (i.e. , the
particular input to the bus selector which has been selected for bus
transport) are actually to be transported. A mask is a string of
64-bits. If bit i (0<i=63) of a mask is a 1, then bit i of the SOURCE
is to be transmitted; if bit i of the mask is a 0, then the value 0 is
to bev transmitted. Since the BM are not an input to the bus selec~
tor but affect the transmission of the SOURCE, they are shown
connected to the bus selector with the symbol —o (which we will
interpret to mean '"mask!'') and not by the symbol —— (which means

"input").

The SOURCE is masked during every bus transport by the
mask which is specified to be ‘ '
MA v MB

19
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where,

MA = an element of a 64-bit wide, 16 element RG called
the Mask A registers,

MB

an element of a 64-bit wide, 16 element RG called
the Mask B registers,

\ = logical "inclusive or'",

MA and MB are shown in Figure 2.9. Upon dead start, the system is

Sel.
L+l -1 C
o] & L1
EXad ©
sB- 3 MA
s " Pointer . BD L.oad
Mask Registers MA
MA
lea. o
L +1 ;1 C
i 444 :
MB . MA V MB [—0Bus Selector
i
Pointer 80D Load
SB(0:63) Mask Registers MB
MB
ol

Bus Masks, MA and MB
Figure 2.9

such that the "no mask!', i.e., 64 l's, is in register 0 of MA and
the "bus clear mask", i.e.,64 O's, is in register 1 of MA, We will
assume this to be the case throughout normal operation of the system.
One can then look upon the pointer MAP as a switch for the use of
the bus masks: if MAP = 0 then the BUS is not masked, if MAP = 1
then the BUS is masked by the mask specified by MB. This is, of
course, not the only interpretation of the use of the BM but it is a
convenient one and one which we will normally employ unless other-
wise stated,

As an example, assume we are representing floating peint

numbers in the following sign magnitude format,
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a3l a2 EXPONENL 44l 4, |4 COEfficient g

L L sign of coefficient

sign of exponent
Suppose the following 4 masks are available in the first 4 regis-
ters of MB.

MBO 110 € —>
MB1 Ojle——31 |0 |¢— >0
MB2 Ok——>30| 1 |0¢ 30
MB3 Ol<———~—-——)- 0|1« >1
63l &2 48l 4748 )

The following code will decompose a floating point number found in
the register of WA pointed to by WAP and store the information as
follows,

a) sign of the exponent in bit 63 of WBO0

b) magnitude of the exponent shifted 1 in WBI

c) sign of coefficient in bit 63 of WB2

d) magnitude of the cbefficierit shifted 16 in WB3.

; MAPC.

; MAP+1, MBPC, WBPC.
WB:=WA ; MBP+1, WBP+ .
WB:=WA, « | ; MBP+1, WBP+I.
WB:=WA, « 15 ; MBP+1, WBP+1.
WB:=WA, « 16 : s

It is suggested by this example that when one is decomposing formatted
information (e.g., a virtual machine instruction) one may wish to co-
ordinate the use of the BS with the use of the BM. L_et us therefore
suppose the shift constants 0 , 63, 49, and 48 to be stored in the first
4 registers of the BSSG. The above decomposition and storage could
be written as the following 3 microoperations.

; CA:=3, MAPC.

; BSPC, WBPC, MBPC, MAP+1.
WB:=WA, +BSSG; BSP+1, WBP+1, MBP+1,CA-1; if CA#0 then HERE.
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The MA Pointer (MAP) and the MB Pointer (MBP) both of which were
used in the above examples are loadable either separately or together;

thus we can execute the microoperations

MAP := CM| EX|SB|SG,
MBP := CM|EX|SB|SG, or
MAP, MBP :

CM| EX|sSB|SG.

It

The name of the SG associated with the BM is the Bus Mask Pointer
(BMP) Standard Group. The following table lists the microoperations
associated with MA, MB, and BMP.

MAP+1 MBP+1
MAP-1 MBP-1
MAPC MBPC

MAP:=CM|EX |SB|SG | MBP:=CM|EX|SB|SG

MAP, MBP:=CM|EX|SB|SG

BMP:=SB

BMPP:=CM| EX |BMPSI | BMPS2
BMPP+1

BMPP-1

BMPPC

BMPSI1 :=CM|EX|BMPSI! | BMPS2
BMPS2:=BMPP

Table 2.6

Microoperations for control of the BM
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2.7 Postshift Masks

The Bus Masks, as described in the previous section, are
applied to the SOURC‘E aé it is gated onto the BUS and thus before
the SOURCE is shifted in the BS. There is also a possibility of masking
the SOURCE after it has been shifted by using the Postshift Masks
(PM) as shownin Figure 2.10.

Shifted Bus

Bus Masks —C ~*1 Postshift Masks
[ \c
)
? Bus Shifter

Working )l ©

| Registers A 0}

2 Bus
[11]

Working

Registers B

Expanded Bus Structure

Flgure 2.10

One of the purposes of the PM is to apply a mask to the output of the
BS which will mask off the unwanted "cyclic" bits and replace them with
0's thereby simulating a logical shift. As an example, if the bus trans-
port

WB:=WA, « 2

is executed with the postshift mask

!} «———> 100
e >~ |

applied to the output of the BS, then we have taken a WA register, shifted
it 2 bits left logical, and stored it in a WB register. Similarly, the bus .

transport



wB:=WA, + 6

with the mask

0000001 «—> 1

=l 58 87 fo}
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applied to the output of the BS means a WA register is shifted 6 bits

right logical and then stored in a WB register. The output of the BS

is masked during every bus transport by the mask which is specified

to be
where,
PA =
PG =
Vv =

PA YV PG

the Postshift Mask A registers,

logical "inclusive or'",

an element of a 64-bit wide, 16 element RG called

a functional unit called the Postshift mask Generator,

PA and PG are shown in Figure 2.11. This is quite similar to the BM

where PG now takes the place of MB.

CM —of

}—=© Bus Shifter

Sel.
-1
CM 5 L+ C
EX - © RER
s8 - ¢ pp_A
SGd 0 a ointer . II
Postshift
Bus(0:63) ————e= Mask Registers PA
PA
| (=] Q
PA V PG
L+t -1C CM EX BE SG
PG Sel. PG Control . R PG
Register . Source Selector Postshift Mask Generator, PG

Postshift Masks, PA and PG

Fiqure 2.11
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The PG is a functional unit which can generate a string of |
0's (0 < j < 64) starting from either the least significant bit (by) po~
si‘tion or the most significant bit (bgz ) position. The remaining k
bits; j+k = 64, are set to 1. The PG can generate the 128 masks re-
quired to view the BS as both a logical and cyclic shifter. As is seen
from Figure 2.11 the postshift mask generation data can come from
one of four sources, CM|EX|BE|SG. Which particular source is to be
be used as data for the mask fgeneration is determined by the contents
of a 2-bit Postshift mask Generator Selection register (PGS) as shown

in this figure and in Table 2.7 below.

Contents of PGS | Source of DATA

00 CM
01 - EX
10 BE
1 | SG

Table 2.7

Source of Data for Postshift Mask Generation

If, in some previous microinstruction, the PGS has been set to point to
the CM as the data source, then the PG data are specified in the "'mi-
crooperations and data'' field of the microinstruction in the following sym-
bolic way,

PG "arrow' n
where,

n = the number of O's to be generated and the "arrow!'! (¢« | )
indicates from which direction they should be generated; 0=n<64.

Thus, the previous two examples could have been written (assuming PGS
points to the CM as the data source)

WB:=WA, « 2; PG+~2

and WB:=WA, -+ 6; PG 6
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Upon dead start, the system is such that the mask of all 1's is in re-
gister 0 of PA, and the mask of all 0's is in register 1 of PA. This is
" identical to the situation in MA. We will assume this to be the case
throughout normal operation of the system. One can then look upon the
pointer PAP as a switch for the use of the Postshift mask Generator:
if PAP = 0 then the mask generator is not used, if PAP =1 then the post~
shift mask ‘which is to be applied will be that generated by the mask
generator. This is, of course, not the only interpretation of the use of
the postshift masks, but it is a convenient one and one which we shall
norrﬁally employ unless otherwise stated.

Table 2.8 is a list of the microop erations associated with the PM.
The first half of this table deals with PA. The second half of this table
deals with the PG. The name of the SG associated with the PG control
is the Postshift mask Generator SG (PGSG). Note, the name of the SG
associated with the PA pointer is the Postshift AB Pointer (PABP). it

is not discussed here but in Section 2. 25,

Operations associated with PA

PA := BUS

PAP := CM|EX|SB|SG
PAP +1

PAP -1

PAPC

Operations associated with PG and PGSG

PGS := CM
PGS +1

PGS -1

PGSG := SB

PGP := CM|EX|PGS! |PGS2
PGP +1 "

PGP -1

PGPC

PGS1 := CM|EX| PGSl | PGS2
PGS2 := PGP

Table 2.8

Microoperations for the control of the PM
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Let us extend the example of Section 2.6 in which we emulated a virtual
machine instruction which performed a register to register transfer
combined with left/right cyclic shifting. As shown below, if we use the
PG we can execute an instruction which will take a given WB register
(WB Adr), shift it left/right logical or cyclic (Shift & Mask Data), and
then store it in a WA register (WA Adr). If the data for the instruction

is in the current WB register pointed at by WBP in the form

0 &0 WA waB Mask Shift
Adr Adr Data Data
8 21120 1 8 o

3412

a possible code sequence would be,

wB, -+ 21 ; WAP:=SB.

wB ; BSSG: =SB, WBPS:=WBP.

wB, + 6 ; PGSG:=SB,

wsB, + 13 ; WBP:=SB, PAP+1, PGS:='SG!.
WA:=WB, « RG ; WBP:=WBPS, PAPC. 8

Note well, there are two important assumptions in this example. The
first is that MAP = 0 upon entry to this code, i.e., a bus mask is not
applied to the source, and the second is that PAP = 0 upon entry to

this code, i.e., no postshift masking occurs. Indeed, we will make
these assumptions in all examples which follow (unless stated explicitly
otherwise). They can be summarized as follows: bus transport normal-
ly occurs in an unmasked fashion; if a particular code segment requires
the use of a masking facility it is responsible for leaving the system in

this normal state after such masking occurs.
N
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2.8 The Arithmetical and L.ogical Unit
We will nhow add additional computa'"tional capability to the bus

structure in addition to the shifting and masking already encountered
by introducing the Arithmetical and Logical unit (AL). The AL, shown
in Figure 2.12, is a functional unit with 2 inputs which, for the moment

we will call A and B.

SET SET
CM EX SB SG l1 A}B B8
Sel. —» Selector Function and AL ——e= Bus Selector
: | carry-in o e °

Arithmetical Logical Unit, AL
Figure 2.12

6 bits are required to control the AL.: 5 bits to select one of the 32
operations listed in Table 2.9 which this unit can execute on A and B
and 1 bit which specifies the carry-in bit into the AL for any arithmetic

operations.



ARITHMETIC LOGICAL
A A

AV B ANB
AV B AAB
minus 1% all O's
A+ (AAB) AVEB
(AVB)+(AAB) B
A-B-1 A=B
(ANB)-1 AND
A + (AAB) AV B
A+B AEB
AVB + (A\B) B
(ArB)-1 AAB
A+ A | all 1's
(AVB) + A AVEB
(AVB) +A | AV B
A-1 A

* in 2's complement; the arithmetic operations
are shown with the carry-in set to 0. If the
carry-in is 1, then the AL Function is F+1 where
F is the specified arithmetic function. The logi-
cal functions are not affected by the carry-in.

Table 2.9
AL Functions
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The 6 control bits which specify the current operation for the AL are
the contents of the AL Function and Carry-in register (ALF) which

can be loaded, ALF := CM|EX|SB|SG, set to the arithmetic addition
operation A+B and set to the logical function B. The SG associated with
the ALF is called the AL Standard Group (ALSG). The microoperations

associated with the AL are given in Table 2.10.

ALF :=CM EX SB SG

SET ALF +

SET ALF B

ALSG := SB

ALP := CM|EX|ALS! | ALS2
ALP +1

ALP -1

ALPC _
ALS! := CM|EX|ALS1|ALS2
ALS2 := ALP

Table 2.10

Microoperations for control of the AL

If the ALF is to be loaded with an operation specifiéation from the CM,
we will note this symbolically merely by writing the required function
in the symbolic form which appears in Table 2.9 in the ALF assignment

statement, i.e.,

ALF := A+B,
ALF := AAB
etc.

The AL is always running. If the ALF is changed in 1 microinstruction,
then the result of the newly computed f’.unction is available for bus trans—
pdrt in the very next microoperation. Thus the microinstructions

y ALF :=all 1's, PAP +1, PGS := !CM!,
WA = AL ; PG~ 48, PAP -1. B
will put a string of 16 1's in the WA register pointed to by WAP. The

-1's will be least significant bit, by, justified.
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There are many testable conditions concerning the operation of
the AL.. A few of these are '

Symbolic Notation ‘ - Condition
AL result of AL operation all O's
AL (0) bit 0 of the result of the AL operation
AL (63) bit 63 of the result of the AL operation
ALOV AL overflow (equivalent to a carry-out

during addition and a borrow-in during
subtraction)

Before giving examples of the control of the AL let us first discuss

the nature of its inputs, A and B.

2.9 The Local Registers

The Local Registers, LR, serve as the A input to the AL in the
context of the AL Functions shown in Table 2.9. The LR, shown in
Figure 2.13, are 4 64-bit wide registers which have independent input
and output pointers. The input pointer, LRIP, points to a LR which
can be used as a BD for the current bus transport. The output pointer,
LROP, points to a LR which can be used as either the A input to the
AL or as the SOURCE for the current bus transport.

L +1 -1 C L +1-1C
DS(V:iv+1) Input Output
Pointer ¢ | , Pointer

BD Load

LRO

’ LRI
sB(0:63) ____| Bus Selector

LR2
b—w= A Input of AL

LR3

lea o

Local Registers, LR

Figure 2.13
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Both the LR input pointer, L RIP, and the LR output pointer,
LROP, are incrementable, decrementable, clearable, and loadable
with two bits from the Double Shifter, DS(V:V+1), see Section 2.12.
The utility of this last feature will be demonstrated with examples
when the Double Shifter is introduced. Table 2.11 gives the micro-

operations associated with the control of the LR.

LRIPC

LRIP + 1

LRIP - 1

LRIP := DS(V:\V+1)
LROPC

LROP + 1
LROP - 1
LROP := DS(V:\+1)
LRPC

LRP + 1

LRP -1

LRP := DS(V:V+1)

Table 2.11

Microoperations for control of the LR

The last four microoperations allow for the clearing, incrementing,

decrementing, and loading of both the IP and the OP simultaneously.

2.10 The Accumulator Shifter

The Accumulator Shifter, AS, serves as the B input to the AL

~in the context of the AL functions showh in Table 2.9. The AS. can
serve as a bus DESTINATION: but to be read, its contents must be

gated through the AL with the ALF set to AS. The AS, shown in Figure
2.14, is a 1-bit shifter which can shift left, shift right, be loaded, or

remain idle during the execution of any given microinstruction.



CM sSB EX SG

Shifter Control

Sel. Selector

c l_oad/sr\m
AS(63)S AS(63) Accumulator
2 Registery Selector 63 Shifter °

L+1 -1C 0123 4567 \
l AS(V)sS } bo ~bs 3

s Register Selector

AS(0)
Selector

01234567

AS(V)

ISource AS(63) AS(0)
no. input Input
0 o 4}
1 1 1
2 AS(0) AS(63)
3 AS(63) BUS(63) |
4 CR sB(63)
5 DS(Vv+1) | DS(V+)
6 AS(V) AS(V)
7 VS(V) VS(V)

Accumulator Shifter, AS

Figure 2.14

There are 2 interesting features of this shifter: a) its variable width
characteristic andv b) its connection to other elements of the system.
The features are discussed in the following:

" a) Although the shifter is 64-bits wide it may, in conjunction
with either the BM or PM, be viewed as being m-bits wide (1=m =64).
This is accomplished by having each of the 64 bits of the AS input to
a selector (labeled the by,-b,, selector in Figure 2.14). The output
of this selector (called the variable bit, V) can then be a possible in-
put into either the left or right end‘of the shifter, depending upon
what particular type of shift one requires. When the AS is selected
as a source for bus transport by gating it through the AL‘,Méfter‘ the
desired shift has occurred, the bits not considered to be a part of
the shifter must be masked off. This can be done either by using the
BM or the PM. The width of the shifter is then determined by the con-
tents of the AS(V) Selection register, AS(V)S, as shown in the above

figure and the use of an approprjate mask.

33
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The AS(V)S can be loaded by the following microoperation
AS(V)S := CM [EX|SB|SG.

Thus, for example, if we wish to consider the AS as a 48 bit left

cyclic shifter, we would execute the microoperation
AS(V)S := 47

while making sure that AS(V) be used as the input to bit AS(0)
during the shift operation. Subsequent use of the AS as a source

could be accompanied by use of the PG masking off bits b —bsgs €. g-

; SET ALF AS.
WA := AL; PG*16 . B

b) In Figure 2.14 it is seen that bits AS(0) and AS(63) can
be filled by 1 of a variety of sources dur'i'ng a shift operation.
Which source is to be used to fill the vacated bit position is deter-
mined by the contents of the AS(0) and AS(63) Source selection re-
gisters, AS(0)S and AS(63)S respectively. An examination of the
table in Figure 2. 14 shows that the AS can be considered a logical
shifter, a 1's fill shifter, a cyclic shifter, and a right arithmetic
shifter. It can also be connected to another 1 bit shifter, called
the variable width shifter, VS, to yield a long variable width shift-
er. It can be connected to a 2 -bit shifter called the Double
Shifter, DS, so it can be used in the merging of 2 bit streams into
1 or the diverging of 1 bit stream into Z It can also be connected
to the BUS, SB, and an entry in a condition register, CR. These
latter inputs are of an experimental nature and uses will be demon-

strated in later examples.

Thus to use the AS,one must load the AS(V)S to set the width
of the shifter and must load either the AS(0)S or AS(63)S to point
to the source to be used as the input into the vacated bit position,
i.e., one must set what the type of shift is, e.g,, logical, 1's fill,
long, etc. That both of these operations need not -be done each

time the shifter is used, but only when one is '"changing'" the width
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or type of shifvter‘ is obvious. Table 2 12 lists the microoperation's -.
associated with the control of theA S. Note the AS can be set to a »
logical left, ASLL, or logical right, ASLR, shift.

AS(0)S := CM|EX|SB|SG
AS(63)S:= CM|EX|SB|SG
AS(V)S :=CM|EX|SB|SG

ASLL ( = AS(0)SC)
ASLR (= AS(63)SC)
AS(V)sC
AS(V)S+1
AS(V)sS-1

Table 2.12

Microoperations for control of the AS

There are 2 bits in each microinstruction which control the
operation of the AS: shift left, AS+, shift right, AS -, load, i.e.,
AS: = SB(0:63), or be idle. When the AS is to be shifted, the opera-
tion is put in the '"microoperation and data'" field of the microinstruc-
tion; when the AS is to be loaded, the operation is specified in the
"bus transport!! field of the microinstruction. As an example, the

microinstruction
WA := AL; AS*+.

stores the output of the AL in a WA register and then shifts the AS

left, while the microinstruction C o >

LR , AS:=WB; WBP + 1.

stores a WB in both the AS and a LR and then increments the WB
pointer. 1If the AS is not employed during a given microinstruction,

it does not appear in the specification of that microinstruction.
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Having introduced the AL and its inputs, LR and AS, we now have

knowledge of the expanded bus structure as shown in Figure 2.15.

Bus Masks ——0O

Working o .
Registers A ostshift Masks

Bus Shifter

Working
Registers B

Bus Selector

Local Registers

Arithmetic
Logical Unit

Accumulator
Shifter

Expanded Bus Structure

Figure 2.15

Let us now give a few examples using these resources to demon-

strate the use of their associated microoperations.

Example 1) L_et us consider WA as a stack as shown below.

WA

stack pointer —> op
(WAP) a

€3 Q
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We wish to take two operands, a and b, and an arithmetical or logical
operator, op, from the stack and place a v0p b on the new top of stack.

The following microinstruction sequence does this.

WA y ALF =SB, WAP +1, LRPC.
LR := WA ; WAP +1.

AS = WA .

WA = AL . 0

Example 2) Let us again consider WA as a stack.

WA

stack pointer —s= shiftspec
(WAP)

a

We wish to treat the AS as a left shifter whose characteristics are given
by shiftspec. We wish to shift a n-times and return the result to the new
top of stack after removing shiftspec and a. Let us assume shiftspec to

have the following format:

pgmsk Lwidth L type
14 <] 3 9Q

,0 B n
8.3 2 Q 15

where type = encoding found in the table of Figure 2.14 for

logical, cyclic, etc. shift,

width = width of shifter -1, 1 = width of shifter < 64
pgmsk = PG mask specification,
n = number of shifts -1, 1 = number of shifts = 64

The following microinstructions execute the desired operation.
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WA ; AS(0)s :=sB.
WA, -+ 3 ; AS(V)S := SB.
WA, + 9 ; PGSG := SB.
WA, + 15 y CA =35B, WAP +1,
AS := WA  ; PGS := SG, PAP +1, SET ALF AS.
; CA -1, AS+; if CA # 0 then HERE.
WA :=AL ; PAP -1. @

2.11 The Variable Width Shifter
The Variable Width Shifter, VS, is a shifter functionally identical
to the AS. The reason one is called the Accumulator Shifter is that not

only does it serve as an input to the AL, but also it will serve as the ac-
cumulator required in the realization of the basic arithmetic operations
(e.g. multiplication). The VS can be a SOURCE or DESTINATION for

a bus transport. It is shown in Figure 2,16,

CM sB EX SG

Shifter Control
Selector

[ *L.oad/Shifl
VvS(63)S VvS(63) Variable Width
Register Selector g3 Shifter

L+l -1C C123345 87 .
| Vvs(V)s } be -bg

vsS(0)
Selector

01234567

sRegister Selector vs(v)

Source | VS(63) VsS(0)

no. Input input

[4 [ [

1 1 1 A

2 vS(0) vé"(aa)
3 VS(63) BUS(62)
4 CR SB(62)
5 Ds(V) Ds(Vv)

6 VS(V) VS(V)

7 AS(V) AS(V)

Variable Width Shifter, VS

Figure 2.16
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The microoperations associated with the VS are identical to those as-

sociated with the AS and are listed below in Table 2.13.

VS(0)S := CM|EX| SB|SG

VS(63)S := CM|EX|SB|SG

VS(V)S := CM|EX|SB|SG

VSLL (= vs(0)sc)
VSLR (= vs(63)sC)
V/S(V)sSC

VS(V)S +1

VS(V)S -1

Table 2.13

Microoperations for control of the VS

One of the important features of the AS and VS, as seen from the
tables in Figures 2.1 4 and 2.1 6, is that they can be connected together.
This allows, for example, the AS and VS to be viewed as a ''long" shif~-

ter when coupled together. The microinstructions,

3 AS(63)S := VS(V), VS(63)S := AS(V).
; AS(V)sSC, Vvs(Vv)scC.

connect the AS and VS together so that they can be viewed as a right

cyclic 128-bit shifter as shown below.

AS " vs

Just as with the AS, there are 2 bits in each microinstruction which control
the operation of the VS: shift left, VS «, shift right, VS -+, load, i.e.,
VS :=5B(0:63), or remain idle,
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'~ Assuming the previous AS/VS connection has been made, subsequent

execution of the microoperations

AS 4, VS

shifts this 128-bit shifter 1 bit right cyclic. Other ""long shifters', e.g.

left logical, right logical, right arithmetic, etc., result from appro-

priate set up sequences.

2.12 Double Shifter

The Double Shifter, DS, is a shifter with functional characteristics

similar to those of the AS and VS, except that it shifts 2 bits at a time

and not 1. Bits DS(0) and DS(1) require input during a left shift and DS(62)
and DS(63) require input during a right shift. The DS is shown in Figure
2.17. The DS can be a SOURCE for or a DESTINATION of a bus trans-

port.

CM S EX - SG

Sel Shifter Control
Selector

ix_oad/smn

I{

Ds(0:1)S
Register |

DS(0:1)

oy Double Shifter Selector

L+ -1C Q1234587
‘DS(V)S } ! be =be 5

Register Selector

012345867

DS(V:V+1)

inputs Inputs

Source DsS(63) DS(62) os(1) DS(0)

0 0 4} 0 4

1 1 1 1 1

2 DS(1) DS(0) 1 Ds(63) DS(62)

3 DS(63) DS(63) BUS(63) BUS(62)

4 CR CR SB(63) SB(62)

5 DS(V+1) DSs(V) DS(V+1) Ds(v)

6 AS(V) VS(V) AS(V) VS(V)

7 BUS(1) BUS(0) spare spare

Double Shifter, DS

Eigqure 2.17
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The microoperations which are associated with the DS are directly

comparable to those for the AS or VS and are shown in Table 2.1 4.

DS(0:1)S := CM|EX| SB|SG

DS(62:63)S := CM|EX| SB|SG

DS(V)S := CM|EX| SB|SG]|

DSLL (= DS(0:1)SC)

DSLR (= DS(62:63)SC)

DS(V)sC

DS(V)S +1

DS(V)S -1

Table 2.14

Microoperations for control of the DS

There are 2 bits in each microinstruction which control the operation of
the DS: shift left, DS «, shift right, DS +, load, i.e., DS := SB(0:63),

or remain idle,.

2.12.1 Two examples using the shifters
The AS, VS, and DS are collectively referred to as the '"Shifters"

whereas the Bus Shifters are not included in this term. The expanded bus

structure is shown in Figure 2.18.
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Bus Masks

Working
Registers A

Working
Registers B

Local Registers

Postshift Masks

Bus

%

Bus Shifter

Arithmetic
Logical Unit

Bus Selector

Accumulator
Shifter

Variable
Shifter

Double
Shifter

Example 1)

Suppose we wish to count the number of bits which are set to 1

Expanded Bus Structure

Figure 2.18
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in the WA register pointed to by WAP and leave this number in the same

cell. The following algorithm will do this

a)

b)
c)
d)

e)

f)

Load the LLR with the following constants

Clear the AS (considered here as an accumulator)

LRO :=0
LR1 =1
LR2 :=1
LR3 := 2

Set the AL to addition
Transfer the data to the DS

Do the following 32 times and then do (f)

i) if DS(0:1
if DS(0:1
if DS(0:1
if DS(0:1

ii) shift DS

e
.~ 0o0=—0

wWom

then accumulate LRO + AS
then accumulate LR1 + AS
then accumulate LR2 + AS
then accumulate LR3 + AS

Store the accumulated result which is in AS
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The following microinstruction sequence accomplishes this. It is assumed
the PG data source is the CM.
DS = WA ; ALF ¢
AS, LR = AL; ALF :

all O's, LRPC.
all 1's, LRP +1, PAP +1.

LR := AL ; PG #63, LRIP +1, ps(Vv)sC, PAP -1.

LR := LR ; ALF := LR + AS, LRIP +1.

LR := LR, « 1; CA := 31, LROP := DS.

AS := AL : CA -1, DS+ 1, LROP :=DS; if CA # 0 then
HERE,

WA := AL . @

The subset of the bus which is-used during the counting loop instruction
(AS := AL) is shown in Figure 2.19. This may help in understanding the

algorithm and code.

DS(0:1)

Local Registers

Arithmetic
Logical Unit

Accumulator
Shifter

Bus Selector

Double
Shifter

Counting Loop for Counting Number of Bits set tol in a Word

Figure 2.19

Example 22

Consider the contents of the current WA register as a string of

64 bits. It is desired to pack all of the even numbered bits (by, bs, etc.)
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in the left 32 bits of the current WB register and then odd numbered bits

(b, bs, etc.) in the right 32 bits of this register so that the result ap-

pears as

Because the DS, AS, and VS can be connected as shown below,

+1
ps  |josivi) AS

DS(V) VS

one can accomplish the stated requirement in the following way:

- 3 ALF :=all 0's, LRPC,
AS, VS := AL ; AS(63) := DS(V+1), vS(63) := DS(V), DS(V)scC.
DS := WA ;y CA:= 31,
3 CA-1, AS 4, VS +, DS +; if CAL0 then HERE.
LR :=VS, + 32 ; ALF := LR V AS.
wB = AL . B
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2.13 The Common Shifter Standard Group
The Shifter Control Selector shown in Figures 2.14, 2.16, and

2.17 is the same selector. This is, perhaps, made a bit clearer in Fi-

gure 2. 20,

CM SB EX SG

Shifter Control

Selector

LC Load/Shift
AS(63)S AS(63) Accumu lator AS(0) | I AS(O)S ‘___‘

, Register o Selector a Shifter 0 Selector Register |
L+t -1C
AS(V)S ) by ~be 3

1 _ Registercl Selector AS(V)
» Load/Shif! l{_ i:
< 5(63)5 VS(63) Var«able Width Vvs(0) | I Vvs(0)s l —
Register - Selector Shifter o Selector Register,
L+l -1 C
v

VS(VIS Do =B 3 vS(v)

s Register, Selector

Load/Shih

D$(62 63)S] DS(62:63 Double Ds(0:1) DS(O 1 )s

Register Selector Shifter Q Selector Regisler o
4

L+l -1C
Ds(vis o ~bg DS(V:v+1)

. Register Selector

AS, VS, and DS Control
Figure 2.20

The SG which is associated with this selector is called the (Common
Shifter SG. Various shifter control data can be stored in this SG for
various shifter interconnections and then used in environment prologues.

The microoperations associated with the CS SG are shown in Table 2.15.
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CSP := CM|EX|S1|S2
CSP +1 '
CSP -1

CSPC ;
CSS1 := CM|EX|S1|S2
CSS2 :=CSP

CsSsG :=5B

Table 2.15

Microoperations for controi of the CS SG

In addition there are several microoperations which allow control of the
AS, VS, and DS to be executed in parallel. These are shown in Table
2.16, '

Notation Micﬁco‘per‘ation
CsLL Set AS, VS, DS to logical left shift
CSLR Set AS, VS, DS to logical right shift

CS(0)S:=CM|EX|SB|SG |Load AS(0), V5(0), and DS(0:1) Source
register from CM|EX|SB|SG

CS(63)S:=CM| EX|SB|SG |[Load AS(63), VS(63), and DS(62:63)
Source register from CM|EX| SB|SG

CS(V)S:=CM| EX|SB|SG [Load AS(V), VS(V), and DS(V) Selection
register from CM|EX|SB|SG

Cs(v)sc “|Clear AS(V), VS(V), and DS(V) Selector
register

Table 2.16

Parallel CS Micr'00per~ations_

2.14 Loading Masks

Associated with WA there is a SG'of loading masks called Loading
Masks A, LA. Associated with WB there is a SG of loading masks called
Loading Masks B, LB. In what follows we will describe only LA; LB is

identical in function. The purpose of the loading masks, LA and LB, is
to be able to specify which bit positions in a working register WA can be
loaded as the result of WA being chosen as the DESTINATION of a bus
transport while leaving the nonspecified bits unchanged. As an example,

if the loading mask
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00...... 00 111111
63 6.5 0

were pointed at by the LA pointer, LAP, then, when the bus transport
WA := AL

is executed, bits SB(0:5) would be gated into the WA register pointed
to by WAP in bit positions b, through bs respectively while bits by
through bg would not change their value. When WA is selected as a
SOURCE for bus transport the mask LA acts in thelfollowing fashion:
if bit i (0< i< 63) of the mask is al, then bit i of WA is transmitted.

If bit i of the mask is a 0, then bit i which is transmitted is indeterminate.

The relationship between the loading masks and the working registers is
represented by the symbol —-@ ‘where the script £ in the mask nota-
tion_.® indicates the special nature of these masks. Figure 2.21 shows

the expanded bus structure with the loading masksy added.

Shifted Bus

:q Bus Masks }'—(]
-—-‘4 L
Loading Masks A Working

Registers A

Postshift Masks

i I———- Q3
Loading Masks B Working
: Registers B

Arithmetic
Logical Unit

Bus Shifter j

Bus

Bus Selector

Accumulator ) nt
Shifter

Variable Width
Shifter

1 Doubte .
Shifter

Expanded Bus Structure

Figure 2. 21
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Figure 2.22 shows a more detailed sketch of LA; LB, not shown, is

identical.
i g
LA Savel LA Save 2
Register Register,
Sel,
C L+ -1C
S .
° X
EX -~ 2 LA
cm—| » Pointer l L

Loading Mask Inhibit Lines of

Registers A . Working Registers WA

SB(0:63) —

63 o

Loading Mask Registers A, LA

Figure 2.22

- There are 7 microoperations shown in Figure 2. 22 associated with the
use of LA. These are listed along with the corresponding microopera-

tions for LB in symbolic form in Table 2.17.

LA := SB(0:63) LB := SB(0:63)
LAP := CM|EX|S1|S2 | LBP := CM|EX|S1|S2
LAP +1 LBP +1
LAP -1 LBP -1
LAPC LBPC
LAS! := CM|EX|SI1|S2| LBSI := CM|EX|S1|S2
LAS2 := LAP LBS2 := LBP
Table 2.17

Microoperations for control of LA and LB
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Upon the dead start, the system is such that the '"full load!" and
"full read out' mask, i.e., 84 1's is in register 0 of LA and register
0 of LB. We will assume this to be the case throughout normal operation
of the system. One can then look upon the pointers LAP and LLBP as se-
lection switch for the use of the loading masks. If LAP = 0 then no load-
ing mask is applied to WA, if LAP # O then WA is masked by the mask
specified by LAP; a similar statement can be made for LBP. This is, of
course, not the only interpretation of the ’use of the loading masks, but
it is a convenient one and one which we will normally employ unless other-

wise stated.

As an example, supbose we wish to place the high order 48 bits of
the output of the DS into the least 48 bits of WBO leaving the high order
16 bits the same. If the mask

63 48 47

is in LB9, the following microinstruction sequence accomplishes this:

y LBP =9, WBPC.
wB :=DS, »16; LBPC. R

This mask could have been generated by use of the PG and AL.. The code,

; ALF :=alll's, LBP := 9,
y PGS :=CM, PAP +1,
AL y PG+ 16, LB :=35SB, PAP -1, B

generates the mask and stores it in LB9. It should be reasonably obvious
now how the loading masks can be used to store the result of various da-
ta transformations as they are determined, e.g., in the implementation of
signed-magnitude arithmetic, the magnitude of the exponent, its sign, the
magnitude of the coefficient and its sign can be stored in a given word

as they are obtained.
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We will henceforth assume in all examplies (unless explicitly
stated otherwise) that LAP = 0 and LBP =0, i.e., that no loading masks
are applied to either set of working registers. If a particular code seg-
ment uses the loading mask facility it is responsible for leaving the sy-
stem operating in this fashion. The treatment of the loading masks then
becomes quite identical with that of the bus masks and postshift masks as

stated In Section 2.7.

2.15 The Parity Generator

The parity gen'er'atc'»r' is a circuit which determines the parity of the
64 bits which composé the bus transport. It posts the result of this eva-
luation as a testable condition, the bus parity, BP, condition. If BP =1,
the BUS is odd parity; if BP =0, the BUS is of even parity. This condi-
tion can be used, obviously, in any processing wherein parity infohmation
is viable, e. g., in communicating with devices which transmit words of a
particular parity. The parity generator functions during each bus trans-
port and has no microoperations associated with it. Since its input is the
BUS, we show it attached to the bus structure as shown in Figure 2, 23.

Note, however, no output is shown ‘as its only output is the BP condition.

Shifted Bus

] l Bus Masks i,__( )
.__I i }—- (]
L.oading Masks A Working
Registers A

—"'ll_oadmg Masks B ‘————@ Working : ‘.
Registers B Postshift Masks |

©
] Bus Shifter '
Local Registers H

;3 .
I Bus
®
5

Arithmetical 1]

Logical Unit

Accumulator Parity

Shifter Generator

Variable Width
Shifter

Double
Shifter

Expanded Bus Structure

Figure 2.23
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2.16 The Bit Encoder
Let us label the bits of the BUS in the following way:

bas bas -« . by by

Let us scan this string of bits from the right to the left, i.e., starting
with bit by and finishing with bit bga . LSB will denote the value of
the subscript of the first, nonzero bit encountered while MSB will de-
note the value of the subscript of the last nonzero bit encountered in this

string. This can be shown as

0 a#—»0 l&anntl 0 0

bes . e o bk Q..bj ',"bo

bt

MSB=k LSB=j

where k = j. If k = j there are, of course, no bits between b, and jb;;
if k> j, the k-j-1 bits between b, and b; may be any arbitrary string
of (k-j-1) O's and 1's. If the BUS = 0, then a condition is set true and
LSB and MSB are set to 0. '

There is, on the MATHILDA System, a functional unit called the
Bit Encoder, BE, which, during every bus transport, encodes the MSB
and LSB associated with the BUS. The BE, shown in Figure 2.24, can

also manipulate these quantities.
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L
BUS(0:63) '
LsB _j
Sel. Encoder LS8, a ISLSB" o)
{ L{ isa1 :
[o] ¥ . 5
2 F ti - Lo
EX e o | anetion Function and Condition Generation Control Ports
19 Selection o
SB . 2 - and
SG o L?) g Condition Selector
-
b MsB L
v Encoder ‘| e, MSB; MSB, |

Bit Encoder, BE

Fligure 2.24

During each bus transport an "L .SB encoder!' and an ""MSB encoder!
determines the LSB and MSB associated with the current BUS, The result
of these encodings can be loaded into the LSBl and MSB; registers

shown in Figure 2,24, A load of the LSB; register causes the old con-
tents of the LSB; register to be moved to the LSBz register, Similarly,

a load of the MSB; register causes the old contents of the MSB1 register
to be moved to the MSB: register, The contents of the LLSB; and IL_SB; re-
gisters can be interchanged and the contents of the MSB; and MSB; regi-~

sters can be interchanged, g

The BE can compute 16 different functions with the variables LSB;, L.SB2,
MSB;, and MSB52. These functions are given in Table 2. 18 where L; =
MSB;-L.SB:, i =1, 2,
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Function

LSB,

LSB,~1

MSB,

MSB; +1

Ly

AL, = L_l—-L_g

LSB,-LSB,

MSB,-MSB,

5]+

[ ] = integer
part of

Table 2.18

Bit Encoder Functions

Whichvpar'ticu!ar function is to be the output of the BE is determined

by the contents of the BE Function Selection register
BEF := CM|EX|SB|SG.

When the BEF is loaded from the CM we will note this symboliéal!y
merely by writing the required function in the symbolic form in Table
2.18, e.qg.,

BEF := LSB,.

The output of the BE can be used to control many devices in the system.

It may, for éxample, be used to control the BS (see Section 2.5), it may
vbe loaded into Counter B to control a process (see Section 2.23.1), or it
may be used to generate a Postshift mask using the PG (see Section 2.7).
There are only 6 bits of output from the BE. When it is used to generate

a postshift mask using the PG, the direction from which the mask is to be
generated must be specified in advance by use of either of the microopera-

tions
BEPGL or BEPGM,
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The first microoperation willi cause a mask to be generated from b,
(the Least significant end of the SB} whereas the second microopera-
tion will cause a mask to be generated from bg; (the Most significant

end of the SB).

The microoperations which control the BE are given in Table 2.19.
Note the SG associated with the BEF is called the BE SG.

Notation Microoperation
BEL Load LSB, :=L.SB and then LSB, :=L.SB encoding
BEM Load - MSB, :=MSB, and then MSB, :=MSB encoding
BELM Load BEL l_oad and BEM L.dad '
BELI Interchange LLSB; and LLSB,
BEMI Interchange MSB, and MSB,
BELMI BEL ! and BEMI
BEF:=CM|EX|SB|SG Load BE Function register from
CM|EX|SB|sSG
SET BEF LLSB; Set BEF to LSB,
. BEPGL Set PG to generate from b, if BE is
control input
BEPGM Set PG to generate from bgz; if BE is
control input
BESG := SB
BEP := CM|EX|S1|S2
BEP +1
BEP -1
BEPC
BES! := CM|EX|S1|S2
BES2 := BEP
Table 2.19

Microoperations for control of BE

Example 1
We wish to take the contents of the WA register pointed to by WAP
and shift it left so that its MSB before the shift is shifted to bit position

bes. The result of this operation is to be placed back in WA.‘ The contents
of WA is shown below,
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WA befor‘e shift 0 01 10 0

t

MSB
WA after shift 1»W\M1 0 «—»0
- MSB

The following microinstructions accomplish this.

DS := WA, BEM Load, BEF 1= MSB, +1,
WA :=DS, « BE. B

Note in.this example that the DS is merely used as temporary storage.

Examgl'e 2
Consider the example of Section 2.12.1 in which we counted the

number of bits which were set to1 in a given 64-bit WA register. In-
stead of doing the counting 2-bits at a time in a loop which is exercised

32 times, we could still count 2-bits at a time, butonly count

[(Mss, _LsB, )} £ 1
2

times, provided we shift the data LSB, places to the right before coun-

ting. The following microoperations accomplish this,

DS := WA ; BELM Load, BEF :=LSB,.
DS := DS, *BE ; BEF :=[ (MSB, -LSB, )/2] +1.°
;y CB (=BE .

y ALF :=all 0's, LRPC.
AS, LR (= AL ; ALF :=alll's, LRP +1, PAP +1.

LR := AL ; PG263, LRIP +1, DS(V)SC, PAP -1,

LR := LR ; ALF := LR + AS, LRIP +1,

LR:=LR, ¢ ; CB -1, LROP :=DS.

AS := AL ; CB =1, DS+ 1, LROP := DS; if CB# 0 then HERE
WA := AL . =

Note that this code is only 2 instructions longer than the code on page 43.
Counter B, CB, used in this example can be loaded from the BE (see
Section 2.23.1).



2,16, 1 Bit Encoder Conditions

There are conditions associated with each of the BE functions,
These are listed below along side the entries of Table 2.‘18 as a mat-

ter of convenience,

Function Conditions
LSB,; LSB, = all O's |
LSB,-1 LSB1-1 = all 0's
MSB, MSB,; = all 1's
MSB.+1 MSB,+1 = all 1's
L, MSB,=L.SB, (i.e., L1=0)
Al =l 5-L, Lz =L, sign (Lo-L4), Ly =0
LSB.-LSB, LSB; = LSB,, sign (LSB:-L.58B,)
MSB.-MSB, MSB; = MSB,, sign (MSB:-MSB;,)

F } +1
2
[ ] 2= integer
part of

same as above

Table 2,20

———

Bit Encoder Functions and Conditions

The important thing to understand about the conditions is that all of
them are avialable for testing irrespective of which particular BE
function is specified, The LLSB and MSB encoding process vyields a
testable condition which indicates whether bits beo through bgs are
all zero; this condition is noted 'BUS = 0!, Thus we can write, for
example,

if BUS =0 then A: else A:.

And, as a last condition on BE, we can test BE(0), i.e,, bit 0 of the
BE output, ‘
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Example

Suppose we wish to test if there is only one bit set to1 in a par-

ticular piece of data, say the contents of the VS, we could write

VS ; BELM Load.
if L,=0 then ONEBIT.

where ONEBIT is the address of the next microinstruction to execute

if exactly one bit is set to 1.

Since the BE has as its inputs encodings from information on the
BUS, we show it attached to the bus structure as shown in Figure 2.25.
Note that the output of the BE is shown going to various '"control ports'

in accordance with the prior discussion.

Shifted Bus

.
h‘-‘ Loading Masks A }———-—-@ Worr
orking

Registers A

_-‘ Loading Masks B I.____C]_________.___,
ading Masks Working i P it Mask
1 ostshift Masks

Registers B

Bus Shifter

Local Registers
Arithmetical
Logical Unit

Accumulator i Parity
Shifter Generator
) Variable Width .
—E—‘ ContPOl por!s
Double
Shifter
 —

Expanded Bus Structure

Bus Selector

Bus

Figure 2.25
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2.17 Input Ports
There are two input ports through which external devices may

be connected to the bus selector. They are called Input Port A, IA,
and Input Port B, IB. Up to 16 devices can be connected to each of
these 'input ports. 1A is shown in Figure 2, 26; IB, not shown, is iden-

tical.

Sel.

M L C+
s8
EX0

EX1

Device
sRegistery

Setector

s Reset et Devices
] Cond.

Dat
fr.:,r: ""‘Lz Device, Buffer l""

Device.

Activate
Device

gt

Device Selector

18 Devicey | o input Port A

Device Selector

i of Bus Selector
— =
——
Data 5
Devi f l’-"
from - vice,s Buffer N

Deviceg

Input Port A, 1A
Flgure 2.26

The particular device which is selected to be read is pointed to by a
Device Register. There are two conditions associated with a selected
device: a) data available; IADA, and b) data condition, IADC. All de-
vices must be able to set the first condition. The éecond cond‘ition can’
be set by devices which can transmit two different sorts of information,

for example control information and data. When a device is read, both
the 1ADA and IADC conditions are reset. The microoperations associated

with the control of IA and IB are given in Table 2. 21.



Notation Microoperation

1AA ' Activate Port, i.e., read IA

IAD:=CM| EX0| SB| EXI1 Load IA Device Register from
CM|EXO|SB|EX1*

1ADC Clear |A Device Register

IAD +1 Increment IA Device Register
IBA Activate Port, i.e., read IB

IBD:=CM| EX0|SB| EXI Load iB Device Register from
CM|EXO0|SB|EXI*

IBDC Clear IB Device Register
1BD +1 Increment IB Device Register
Table 2. 21

Microoperations for control of |A and IB

As an example, if we Wish to read a piece of data from device 9 on IA -

and store it in AS, we can write the following classical wait loop:
y 1AD =9,

: 1AA; if IADA then HERE + 1 else HERE.
AS :=1A. B

The expanded bus structure can now be shown as Figure 2. 27.

* See Section 2. 20.5 for a description of EXO0 and EX1.,
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2.18 Output Ports

There are four output ports through which output to external de-
vices may occur. They are called Output Ports A, B, C, and D; OA,
OB, OC, and OD respectively. They are identical in operation with thé
exception that OA and OB are loaded from the SB and can be selected
as bus DESTINATIONS whereas OC and OD are loaded from the BUS
and cannot be selected as bus DESTINATIONS, but must be loaded by
a microoperation. OA is shown in Figure 2.28; OB, OC, and OD, not
shown, are identical.

CM

sB
EXO0

- EX1

Device
h Register

%

Set Reset

Data to
Device, Buffer Deviceg

Deviceg

Activate
Device

pU—

Device Selector

Set Reset

Device s

‘ Output Port A |~ g ; fer Data to
Register Device,: B o Device,s

Output Port A, OA

Figure 2. 28

The particular device which is selected for output is pointed to by a
Device register. There is a condition associated with a selected de-
vice: space available, OASA. The microoperations associated with the
control of OA and OC are shown in Table 2.22. The microoperations
for OB are identical to those for OA and the microoperations for OD
are identical to those for OC
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Notation Microoperation

OAA Activate Port, |l.e., write OA

OAD:=CM| EXO0|SB| EX! | Load OA Device Register from
, CM|EXO0|SB|EXI

OADC Clear OA Device Register
OCA Activate Port, i.e., write OC

OCDx=CM|EXO0|SB|EX! |Load OC Device Register from
CM| EXO0|sSB|EXI ‘

ocCDC Clear OC Device Register
oC:=BUS Load OC from BUS(0:63)
Table 2.22

Microoperations for control of OA and OC

As an example, suppose we wish to write out the output of the AL onto

device 13 of output port C. We could then write,

AL ; OC.:=BUS, OCD :=13.
; If OCSA then HERE+1 else HERE.
; OCA. @

There is one additional feature associated with the ''activate' micro-
operation. Recall that on the input ports it is possible to test a data
condition which is set by a device. Analogous with this, it is possible
on output to write out an extra bit in addition to the data. The device
can, for example, treat this extra bit as a data condition. The micro-
operations for output port activate are now given by

OAAI1 activate with additional bit set to 1

OAAO activate with additional bit set to O

OAA activate with additional bit undefined.

2. 19 The Bus Structure

With the introduction of the output ports in the previous section
we have completed a description of (with only very minor modifications)
the MATHILDA Bus Structure, the registers and functional units attached
to it, and the control which can be exercised on these components, The

Bus Structure is now shown in Figure 2, 29,
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Let us summarize some of the information with respect to bus SOURCESs
and DESTINATIONs, We have the following SOURCEs and DESTINA-

TIONS for a bus transport:
SOURCESs for Bus Transport

a)

WA
wB
LR
AL
VS
DS
1A
=]
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b) DESTINATIONS for 64-bit LLoad of SB with BD L oad

MA
MB
WA
wB
LR
OA
oB

c) Shifters which can load 64-bit SB via dedicated bits in
every microinstruction

AS
VS
Ds

Thus in the bus transport specification
LIST := SOURCE,

the LIST can consist of 1 destination from (b) above and any or all of

the shifters, i.e.,

BD, [, As] [,vs] I,DS] := SOURCE,
where the [ | indicates the option of inclusion in the LIST,

Recall that the SB can be loaded into LA and L.B by execution of
appropriate microoperations and the BUS can be loaded into PA, PB,
OC, and OD by execution of appropriate microoperations. Also, a sub-
field of the SB (always a contiguous string starting with bit bg) can
be loaded into various SG's and control ports throughout the system by
executing the appropriate microoperation. Thus, many parallel loads

of both the BUS and the SB may occur in any given microinstruction.

There are three important restrictions on the above bus transport spe-
cifications:

a) the specifications WA := WA or WB := WB are not allowed,
b) the specification LR := LR is only meaningful when LRIP # LROP,
c) one cannot use a mask (MA, MB, PA, LA, LB) and load the regi-

ster containing that mask in the same microinstruction.
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2.20 The Control Unit

' The control unit of the MATHILDA system, shown in Figure 2.1

- on page 4, consists of (1) a control store and (2) a microinstruction se-
quencing capability. The random access control store consists of up

to 4,096 words of 64-bit wide, 80 nanosecond monolithic storage. The
microinstruction sequencing is described below.

2.20.1 Microinstruction Sequencing

The microinstruction sequencing hardware is a physical embodi-
ment of the "if c then A, else A," clause we have been using in our
microprogramming examples. This is accomplished in the following
way. The addresses A; and A, are selected from 8 possible aa-
dress sources. LLet A be the address of the current microinstruc-
tion and let B be data which is specified in the current microinstruc-
tion. The 8 possible address sources, which are explained in more
detail shortly, are listed in Table 2. 23.

Notation Interpretation

A-1 Current address - 1

A Current address

A+l Current address + 1

AL(A,B) i A function of A and B as computed by an

arithmetical logical unit

RA + B The contents of the top of a return jump
stack, RA, added to B

RB+B The contents of the top of a return jump
stack, RB, added to B.

SA The contents of the Save Address register,
SA
EX The contents of the External register, EX
Table 2. 23

Microinstruction Address Sources

These address sources are realized by providing a microinstruction

address bus which is shown in a limited form in Figure 2. 30.
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One can see from this figure how the "if, then, else''-clause is rea-
lized. There are 3-bits in each microinstruction which specify one of
the 8 address sources of Table 2. 23 to be used as the true branch ad-
dress, denoted A, . There are 3-bits in each microinstruction which
specify one of the 8 address sources of Table 2. 23 to be used as the
false branch address, denoted A;. There are 7 bits in each microin.
struction used to specify 1 of 128 conditions which are testable in the
system; the selected condition is denoted c. The state of the selected
condition ¢ determines which source, A; or A;, will be used to se~
lect the next microinstruction address source. If c=1 then A; will be
used to select the address of the next microinstruction; if c=0, then A;
will be used for this purpose. When a microinstruction address is selec-
ted, it is loaded into the Control Store Address Buffer so it can be used
to fetch the microinstruction, and ft is also loaded into the Current Ad-
dress register so that it can be used in the next address computation,

if required. The contents of the Current Address register has been used
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.~

in previous examples under the symbolic name HERE. The "Force 0
Address' capability, the Interrupt Recovery Address register, and
the Status Registers shown in Figure 2. 30 will be discussed in later
sections. Let us now discuss the address sources in detail.

The address sources A-1, A, and A+1 are straight forward and
need not be dealt with. It should be mentioned; however, that Control
Store addresses are interpreted modulo the size of the Control Store.
2.20.2 The Control Unit Arithmetical Logical Unit _

The Control Unit Arithmetical Logical Unit, CUAL, is function-

ally identical to the arithmetical logical unit which is connected to the
MATHILDA bus structure except that it is 1 2-bits wide and not 64-bits
wide. The CUAL functions are identical to those of the AL  and are
given in Table 2.9. The "A input" to these computations is the the ad=.
dress of the current microinstruction and the "B input" is data Speéi—
fied in the current microinstruction. The CUAL is shown as in Figure
2,31.

Current Microinstruction Address

SET SET
T +LB T
) Microinstruction
CUAL e
CM -
Function CQAL Address Selector
L__car‘r'y—in (c or c)
B
r o

Data from Microinstruction

Figure 2. 31

Control Unit Arithmetical Logical Unit
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First, note that the CUAL Function register can only be loaded from the
CM, i.e., CUALF := CM. One can set the CUALF to add A and B, i.e.,
SET CUALF + and also to the logical function B, i.e., SET CUALF B.
These are the only three microoperations associated with the CUAL.. On-
ly 5 bits are used to specify the function; the carry-in, when required, is
specified in another way. L et ¢ denote the selected condition used to con-
trol the address selection and let C be its negation. There is a bit in each
microinstruction, called the Carry-Input Selection Bit, CISB, which is

used to determine the carry-in as shown in Table 2. 24.

cisB Carry-in

0 €

Table 2. 24

Carry-in Selection

Example 1) Suppose the CUALF is set to A+B; this is a relative
jump. If CISB =0, the specification
if c then CUAL else HERE
can be interpreted to mean:
if c then HERE + B else HERE.
Whereas, if CISB =1, the specification can be interpreted to mean:
if c then HERE + B + 1 else HERE.

Example 2) Suppose the CUALF is set to B; this is an absolute jump.

This is a logical function and not affected by the carry-in,
if c then CUAL else CUAL
can be interpreted to mean:

if c then B else B.

In our microassembler, the specification of the CISB will be given
implicitly. If one chooses the CUAL output as microinstruction ad-

dress source, we write

CUAL. + Carry-in.,
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Choice of this specification as either an A; or A, will dictate the
setting of the CISB.

For the first interpretation of Example 1 to be valid the specification
would have to be written
if ¢ then CUAL else HERE
whereas if we meant the second interpretation we would have to write
if ¢ then CUAL +1 else HERE.
It should be obvious that the specification
if ¢ then CUAL +1 else CUAL +1
is an example of a microinstruction sequencing specification which is
imcompatible with the specification capability described above. Indeed
if one wished to choose the address specification CUAL + 1 irrespective

of condition, one merely need write

CUAL + 1 _
in the microinstruction sequencing field of the microinstruction. This
would have the same effect as writing, for example,
if TRUE then CUAL+ else CUAL | |,
where TRUE is a manifest system constant set to 1. There is also

a manifest system constant,FALSE which always has the value 0.

In order to complete the discussion .of the CUAL we must discuss
the specification of the data B. There are 2 6-bit fields in the micro-
instruction which we shall call T andt. T andt are input into a func-
tion box which makes the computations shown in Table 2.25. There
are 2 bits in every microinstruction, called the B-Input Selection
Bits, BISB, which determine which of these computations will be used

as the B data, if required, in the current address computation.

BISB B data
00 0
o1 Tt
10 ' tsignt
1" TO
Table 2.25

B data Selection
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The notation tsignt means the 12 address bits are given by

Eblb kit t; b4 t,

i.e., in.'sign extended" form. With the CUALF set to A+B and BISB=10
we then have a relative addressing capability of +32. The notations Tt

and TO denote concatenation.

In our microassembler, the specification of the BISB will be given
implicitly One specifies the B value explicitly as a decimal number in the
address specification and this will dictate the setting of the BISB.

We will hence forth write the CUAL specifications as

CUAL (A, B) + Carry-in. ,
Both CU and A are redundant information since this is written in the
microinstruction sequencing field of the microinstruction and we will
use the shorter form

AL (B)+ Carry-in
where B is a signed integer, -2048=B=<2048, when combined in an
arithmetic function with A, but may obviously lie in the fntervai

0=B=4095 when used for absolute jumps,

Example 1) If the CUALF is set to A+B and BISB=10, then the
specification
if ¢ then AL(-18).
can be interpreted to mean
if ¢ then HERE-18 else HERE+!.

Example 2) If the CUALF is set to A+B and BISB=10, then the
specification
if ¢ then AL(12) else AL(12)+1
can be interpreted to mean
if ¢ then HERE+12 else HERE+1 3
thus givirgaconditiona‘l branch to one of two sequen-

tially located microinstructions.

2.20. 3 Return Jump Stacks A and B

There are two return jump stacks associated with the microin-
struction addressing facility. They are called RA and RB. Each is a
12-bit wide, 16 element RG. RA is shown in Figure 2. 32; RB, not

shown, is identical.
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The microoperations associated with RA are shown in Table 2. 26.

The instructions for RB are identical.

Notation Microoperation
+1 A(L) RA Increment RAP and then Load RA with
the address at the current microinstruction
-1 RA 1t Decrement RAP
c RAPC . Clear the RAP

Table 2.26

Microoperations for control of RA

Whenever the top of the RA stack is used in the computation of the ad-
dress A the next microoperation, the microoperation RA 1 is executed,
i.e., the stack pointer is automatically maintained any time something
is added to the stack or whenever the stack is used in an address com-
putation. The use of RA is specified by writing

RA + B + carry-in.
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This is seen immediately from Figure 2.32,' The B data and the carry-in
‘selection are exactly the same as those specified for the CUAL." The spbe-
cification RA+1 or RB+1 will be interpreted to mean B=0 and the carry-in=1,
Example 1) Suppose we are in a routine at step n and wish to jump
to a routine at step ntm. At step j of the secdnd routine we
wish to return to n+l. Assuming the CUALF := A+B we could write

n: JRA | ; AL(m).

i 5 yRA+H.
Example 2) It should be noted that the availability of 2 return jump
stacks may facilitate the implementation of coroutines. For example,
the microinstruction

n: yRA yRB+1.
stores the current address in one stack while simultaneously using
the other stack as a source in the computation of the address of the

next microinstruction.

Example 3) A conditional return entry point.can be obtained by
using the specification
if ¢ then RA+B+1 else RA+B.

An important point must be raised here. It was stated on
page 12: "The action associated with every microoperation speci-
fied in a microinstruction is completed before the next microin-
struction is executed." There is only one exception to this rule
and it is the action associated with the microoperation RA! (and
RB! obviously). It was not important at the time the rule was ih—
troduced, but it is important now. The action associated with
RA! and RB! require 2 microinstruction cycles to be completed
and not 1 microinstruction cycle. Thus, if one loads RA in a given
microinstruction, RA cannot be used as an address source in the |
very next microinstruction executed. The same is, of course, true

for RB. (This is discussed further in Section 3.2.1.)
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2,320,»‘4 The Save Address Register
The Save Address register, SA, is shown in Figure 2,33,

111

SB(0:11)— SA Microinstruction

11 0 Address Selector

The Save Address Register, SA

Figure 2,33

- The microoperations associated with this register are shown in Table
2,27,

SA = SB
SA +1
SA -1
SAC

Table 2, 27

Microoperations for control of SA"-

SA provides a data path between the bus structure of MATHILDA and the
control unit which controls the transactions on this str'uctur‘e.‘ It can be
used, for example, during the loading of control store and recovering from
an interrupt (see Sections 2. 20. 8 and 2. 20. 6 respectively).

2.20.5 The External Register

The External Register, EX, is a 16-bit wide right cyclic shifter
which shifts 4 bits at a time. EX is loaded from an external device. If, for
example, MATHILDA is to be connected as an input/output device to another
processor, then the EX register provides one form of communications area
for data sent to MATHILDA, The 16- bits of the EX register can be thought
as consisting of four 4-bit bytes as shown in Figure 2, 34,

L 4

VI

External Microinstruction
Device 15 Ex31g 11 EX2 al7 E>§1 2la EX0 ol Address Selector

The External Register, EX
Figure 2,34
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The microoperations associated with EX are shown in Table 2,'28.'

Notation Microoperations

- EX L.oad L.oad the External register
EX *4 Shift the External register 4 bits right cyclic

Table 2 28

Microoperations for control of EX

EX can not only be used as a possible source for the address of the
‘next microinstruction, but it can also be used as data for many of the
control registers in the system, e, g,v, CA. When EX i's to be used as
the source of a microinstruction address, the right most 12-bits are
used, i, e,, bytes EX2, EX1, and EXO, In fact, in all circumstances
(except in conjunction with the Device Registers of the input/output
ports) the datumfrom the EX is always considered to be a contiguous
string of bits of the required width starting with bg ..'For example if
EX is designated as the control source for the BS, the bits EX(0:5) are
used to specify the shift amount, When EX is used as a data source for
the loading of input/output port Device Registers (IAD, IBD, OAD, 0OBD,
OCD, and ODD) both bytes EX1 and EXO are considered data; not conti-

guous data, but 2 separate 4-bit data items,

2.20,6 The Force 0 Address Capability

There are 4 conditions which if they occur during the execution of

any microinstruction will disregard the address computation specified in
the microinstruction sequencing portion of the microinstruction and fetch
the next microinstruction from Control Store address 0. These conditions
are listed in Table 2. 29. '

)

Force 0 Address 'Cbnditions

External Signal

Real Time Clock Overflow
RA Overflow

RB Overflow

Table 2,29

bl'—'or'ce 0 Address Conditions
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An external device may be connected to the External Signal condition

to interrupt the operation of MATHILDA. A Real Time Clock, RTC,
(Section 2.22), is available in the system which can count up to 60 sec.
The overflow of the RTC causes the next microinstruction address to 0.
If either RA or RB overflow, i.e., we have stacked more than 16 ad-
dresses, we will also force the address to 0. This Capabiii'ty is shown

in the foﬂowihg way:

INTON INTOFF
External — o w
Real Time Clock __| o H
RA Overflow — v L
RB Overflow it u? 2 .
{_—l €)
Current Address
! )
Selected - Control Store
Address Address Buffer
L)
' Interrupt Recov-| Status
ery Address Registers

The Force 0 Address Capability
Figure 2.35

Whenever a Force 0 Address Condition arises the following occurs:
both the Control Store Address Buffer and the Current Address re-
gister are cleared, i.e., set to zero; the selected address is loaded
into the Interrupt Recovery Address register, IRA; and the interrupt

facility is turned off. The IRA contains the address of the microinstruc-
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tion which would have been executed had the interrupt not occurred..
The contents of the IRA can be gated onto the BUS through the Status
Registers explained in Section 2.23. 3. The IRA can then be used in
conjunction with the SA facility previously described to restore the
continuation address. The interrupt capability can be turned off ahd
on by executing the microoperations INTOFF and INTON respective-

ly.

2.20,7 The Microinstruction Address Bus

Having géined insight into the nature of the various address sources
which can be used during microinstruction sequencing, we can Nnow pre-
sent a more detailed picture of the microinétruction address bus and it
is shown as Figure 2, 36, Because the number of control elements is

small, they are also shown on this figure,

The microoperations associated with the control unit are brought to-
gether, for convenience, in Table 2, 30, All but the last microoperations
have been explained in previous sections, The CS L.oad operation is dis=

cussed next,

|sA:=sB

SA +1

SA -1

SAC
CUALF := CM
SET CUALF B
SET CUALF +
RA 1

RA !

RAPC

|IRB 1

RB !

RBPC

EX Load

EX 4

INT ON
INTOFF

CS Load

Table 2, 30,

—_— e 2

Microoperations associated with the Control Unit
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2, 20,'8 Control Store Loading

Control Store has, of course, both an address buffer and a data

buffer, as shown below,

Cs

Address Buffer‘Q

Ccs
Data Buffer .

63

Control Store, CS

(4096 words)

The CS Address Buffer is loaded from the Microinstruction Address Se-

lector as shown in Figure 2, 30, The CS Data Buffer is actually Device
number 15 associated with Output Port A, OA, Let A be the address of the

current microinstruction, The microoperation CS Load, if executed in the

current microinstruction, can be interpreted as follows:

CS L.oad =

Example

L.oad the contents of the CS Data Buffer into
the CS storage location pointed to by the CS
Address Buffer and then choose A+1 as the

address of the next micr*oinstr'uc.tion.'

LLoad the contents of WA 1 into the CS storage location specified

by the rightmost 12 bits of WAO,'

WA
OA := WA

;s WAPC, CAD := 15,

; SA = SB, WAP +1,

; if OASA then HERE +1 else HERE,
; OAA, |

CsS Load; SA.,

; continue ]

e

2,21 The Conditions, Condition Selector, and Condition Re&isters

There is the possibility of testing 128 conditions in the system, At

this writing there have been 100 specified, leaving a reasonable amount

of expandability in the system, The conditions and their symbolic nota-

tion are given in Table 2, 31,



The conditions in this table are grouped according to the functional

unit with which they are associated, For convenience, the units are

listed in alphabetical order,

Symbolic -
Unit Notation Condition
AL are bits AL(0:63) =0
AL OV AL carry-out and borrow=in bit
AL AL (0) bit 0 of AL input to bus selector
AL (63) bit 63 of AL input to bus selector
ONEOV 1's compiement overflow
TWOOV 2's complement overflow
AS(0) bit 0 of the AS
AS AS(V) the variable bit of the AS
AS(63) bit 63 of the AS
LSBI1 is LSB,; = 000000
MSB1 is MSB;, B 111111
L1 isLi1=0 (i,e., MSB,=L5SB,)
L2 isly, =0 (i.e, MSB,=LSB,)
LSB1 -1 is LSB;-1 = 000000
MS3 1+1 is MS3B,+1 = 111111
BE LSBD is (LSB,-L.SBz) =0
SGNLSBD sign of LSBD (SGNLSBD=0=LSBDz=0)
MSBD is (MSB,-MSB3) =0
SGNMSBD sign of MSBD (SGNMSBD=0=MSBD =0)
LD isL;-Lz =0
SGNLD sign of LD (SGNLD=0=L,2_5)
BEPGD BE postshift mask generator director
BEPGD=0=L., BEPGD=1=M
BE(0) bit 0 of the output of the BE
BP BP BUS parity, BP=1 = odd parity
BUS BUS BUS(0:63) =0
CA is CA zero
CA(3) bit 3 of CA
CA CA(4) bit 4 of CA
CA(5) bit 5 of CA
CA(6) bit 6 of CA
CASPOV CASP =1111 (CASP overflow)
cCB is CB zero
cB(3) bit 3 of CB
cB cB(4) bit 4 of CB
cB(5) bit 5 of CB
cB(e) bit 6 of CB
CBSPOV CBSP = 1111 (CBSP overflow)

(cont.)
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i Symbolic

Unit Notation Condition

CR CR output of condition save registers
EXDA data availabte on EX
RAP OV RAP = 1111 (RAP overflow)
RAPUN RAP = 0000 RAP underflow)

cu. RBP OV IRBP = 1111 (RBP overflow)
RBPUN RBP = 0000 (RAP underflow)
INT INT=12INTON, INT=0=3INTOFF
CUAL oV CUAL. overflow

DS DSl(i),i=0,...,15the indicated bit of the DS

‘ DS(j),j=V,V+1 |the variable bits of the DS
IADA data available on A
IADC data condition on [A
IBDA data available on IB

1/O IBDC data condition on IB
OASA space available on OA
OBSA space available on OB
OCsSA space available on OC
ODSA space available on OD

LR LR(0) bit 0 of LR input to bus selector
LR(63) bit 63 of LR input to bus selector

RTC RTCOV ‘Real Time Clock overflow toggle
sB(0) bit 0 of the shifted bus

sa sB(1) bit 1 of the shifted bus
sSB(62) bit 62 of the shifted bus
sB(63) bit 63 of the shifted bus

Svstem TRUE a binary one
Y FALSE a binary zero
: Vvs(0) bit 0 of the VS

VS VS(Vv) the variable bit of the VS
VvS(63) bit 63 of the VS
W A(O0) bit 0 of WA input to bus selector
WA(15) bit 15 of WA input to bus selector

WA WA(63) bit 63 of WA input to bus selector
W AP OV [WAP = 11111111 (WAP overflow)
WAPSP OV WAPSP = 11111111 (WAPSP overflow)
w3(0) bit 0 of WB input to bus selector
wB(15) bit 15 of WB input to bus selector

wB wB(63) bit 63 of WB input to bus selector
wW3P OV WBP =11111111 (WBP overfiow)
WBPSPOV WBPSP = 11111111 (WBPSP overflow)

Table 2, 31

*

Partial Listing of System Conditions

* See also Table 2,38
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All 128 conditions are input into a condition selector. There are 7
bits in each microinstruction, called the Condition Selection Bits,
CsB, which select a particular condition. The selected condition is
input into

a) the A, -A; address selector (Section 2.20.1),

b) the carry-in selector (Section 2. 20. 2), and

c) a SG called the Condition Save Registers, CR.
This is shown in Figure 2. 37.

¥ I‘-

i
CR Save 1 CR Save 2
LiRegister { [Register o

L+1-1C

[
2 !
Condition: _uoJ: Ex ] CR ]
Condition; e 1 cM (ﬁ [aPointer J L
Condition;: gz [y
16 Condition

Save

Registers,
A.-A: Selector cR
Carry-in Setection J

Condition Selector and Condition Registers

Condition
Selector

Condition 137 127

Figure 2, 37

It can be seen from this figure that we can save the state of any condition
as it arises and use it later when required. The microoperations associa-

ted with CR are given below in Table 2. 32.
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CR := SC

| CRP := CM|EX|S1]|S2

CRP +1

CRP -1

CRPC

CRS1 := CM|EX|S1]|S2

CRS2 := CRP

Table 2, 32

Microoperations for control of CR

In the loading microoperation CR := SC (Selected Condition), we can,
instead of using the notation SCyuse the symbolic notation given in Table

2.31. Thus, for example, if we wish to save the state of the ALOV con-

dition in an instruction we would write:

CR := ALOV

It should be obvious that since the SC goes to both the CR and the
A -A: selector that one cannot specify a condition in the microin-
struction sequencing field different from the SC in the CR := SC

microoperation within the same microinstruction. Thus
WA := WB; WAP +1, CR := BUS; if CA=0 then RA +1,
is not allowed, It would have to be written as 2 microinstructions:

WA := WB  ; WAP +1, CR := BUS,
; if CA = 0 then RA +1,

Statements of the following type are obviously allowed:

WB := DS; PG*3, AS +, CR := BP; if BP then HERE -1,
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2.21,1 Short and L.ong Cycle

It is obviously important to know when one can test a condition, The

system can execute microinstructions in two different cycle times: a
short" cycle time and a "long" cycle time. The difference in these two

cycles as it relates to the testing of conditions can be easily stated:

long cycle When the machine is operating in long cycle mode all
conditions which arise as a result of bus transport and
microoperation execution are testable in the same mi-

croinstruction in which they arise,

short cycle When the machine is operating in short cycle mode all
conditions which arise as a result of bus transport and
microoperation execution are testable in the next mi-

croinstruction to be executed.

Thus if we are in long cycle and we write
WA = WB; WAP +1; if BUS =0 then RA +1,

we are testing whether or not if the current bus transport (WA := WB)
is such that BUS =0, Whereas, in short cycle, this microinstruction
would mean we are testing the previous bus transport'!s condition, In

order to test WA := WB we would have to write 2 microinstructions,

WA := WB ; WAP +1,
if BUS = 0 then RA +1,

e

Thus, a microinstruction can be thought of being executed in the fol-

lowing sequential way:

Long cycle: a) execute bus transport
b) execute microoperations
c) execute microinstruction sequencing based on the

current conditions
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Short cycle: a) delay the conditions of the previous microinstruction

b) execute bus transport
c) execute microoperations
d) execute microinstruction sequencing based on the

delayed conditions from the previous microinstruction

It is obvious that all of the examples given previously have beén execu-
ted in the "short cycle" mode (see the discussion in Section 2.4.1).
This is, of course, the more difficult of two concepts; however, a rea-
der who has started the document from the beginning should now be in-

tuitively familiar with this concept.

2.22 The Real Time Clock

The Real Time Clock, RTC of the MATHILDA system is shown in
Figure 2, 38.

C se of EX as address source

Cloék Clear Conditions

i

CM——— Real Time Clock

Real Time Clock
Figure 2, 38

The clock can count up to 60 seconds. Whenever 60 seconds is reached
two things occur, provided the INTON microoperation has been executed:
1) a Real Time Clock overflow Toggle, RTCT, is turned on and the
clock is reset to O,
2) the next microinstruction to be executed is obtained from
control store-location 0.
The clock is cleared whenever the microoperation RTCC is executed’
or whenever the EX input is selected as the address source for the
address of the next microinstruction capability (see Section 2. 20. 6).
One does not need to have the RTC count up from O before it over-
flows. A base value can be loaded by execution of the instruction
RTC := CM.
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In the microassembler the data will be specified in seconds. Thus, 4

seconds will elapse between the execution of the microoperation
RTC := 56

and the turning on of the RTC overflow toggle. The RTC overflow

toggle can be turned off by executing the microoperation RTCT OFF.

2.23 Auxiliary Facilities

The auxiliary facilities associated with the MATHILDA systelbn as
shown in Figure 2.1, i.e., the system counters, status registers, and

snooper registers, will now be discussed.

2.23.1 Counter B
The system has 2 counters associated with it: Counter A, CA,
has been introduced in Section 2.2, Counter B, CB, introduced here

is shown in Figure 2, 39.

+ -1 C

cBs
Pointer 5

cB

Save Registers

Lis o

cM sB BE Llﬂ a1c
b

Sel. =i Selector

Counter B, CB

Figure 2.39
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A comparison of this figure with Figure 2, 3 which shows CA shows that
CB is identical with CA except that CA can be loaded from the EX regis-
ter whereas CB can be loaded from the oufput of the BE, i.e., we have
CA := CM‘ SB[ EX| CAS

and cB := cM| sB|BE| CcBS .
Note, the output of the BE is 6 bits, whereas CB is 16 bits wide, When-
ever BE is selected as input to CB the high order 10 bits of CB are set
to 0, The microoperations associated with CB, CBS, and CBSP are
given in Table 2.33. These are, of course, apart from the above dif-
ference,identical to those associated with CA and merely shown here

for convenience.

cB = cM|sB|BE |cas
cB + 1

cB -1

cac

CBS := CB

CBSP + 1

CBSP - 1

cBsPC

Table 2,33

Microoperations for control of CB, CBS, and CBSP

An example of the use of CB has been given as Example 2 in Section 2, 16,
It should be quite obvious that CA and CB are not connected in any way
whatsoever and may be used independent of one another, One may count
up in CA while counting down in CB, for example,

;CA+1,CB -1, .,
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2,32,2 The Snooper Store and Snooper Registers

The Snooper unit provides a facility for the gathering of data con-
cerning the operation of the system, The facility consists of (a) a
Snooper Store and (b) 16 Snooper Registers, The Snooper Store con-
sists of up to 4,096 words of 4-bit wide, 80 nanosecond monolithic stor-
age, It has the same number of words as the Control Store and is ad-
dressed in a cyclic fashion consistent with its size, The Snooper Regis-
ters are 32-bit wide registers which can be cleared and counted up. The
Snooper unit works in the following way: when the address of the next
microinstruction to be executed is sent to the Control Store Address
Buffer, it is also sent to the Snooper Store Address Buffer; at the same
time the microinstruction is fetched so that it can be executed, the con-
tents of its associated Snooper Store location is fetched; the contents
of the associated Snooper Store location identifies which of the 16
Snooper Registers is to be incremented during the execution of that par-
ticular microinstruction, Thus, during the execution of every microin-

struction, a specified Snooper Register is incremented,

The Snooper Store can be written and the Snooper Registers
read through the normal input/output facilities of the system, Snooper
Store is writeable so that different data gathering routines can be .
associated with the same segment of microcode without changing the
microcode, Snooper Store is loaded via OB, Device 1, If we load OB

with the following information

oB | 0<—0 Contents Address
163 16 |15 1211 o

then the execution of OBA when OBD is set to 1 will store OB(12:15) into
the Snooper Store location specified by OB(0:11),

The contents of any particular Snooper Register, SRi, i=0,,..,,15,
can be read through IB, Devices 1 through 8 of IB are associated with

the Snooper Registers as shown in Table 2, 34,
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Device | 1B(32:63) 1B(0:31)
1 SRO | SR
2 SR 2 SR 3
3 SR 4 SR 5
4 SR 6 | SR 7
5 SR 8 SR 9
6 SR 10 | SR 11
7 SR 12 SR 13
8 | SR 14 4 SR 15

Table 2, 34

IB Devices and the Snooper Registers

Thus, for example, if we wish to place the contents of SRB in bits 0
through 31 of LRO, we could write
, ; 1BD := 5, LRIPC, PAP+!.
LR := 1B, BS~+ 32 ; PG~ 32, PAP-1. B

A few points should be stated about this example. The IBA microopera-
tion was not used, nor were either of the conditions IBDA or IBDC
tested before input was made. This is explained as follows. The Snoo-
per Registers are '"dedicated" input devices, always available to be
read. The IBA microoperation when used with Devices 1-8 is used to
clear both of the Snooper Registers associated with the particular De-
vice number. |

There is also a tally of the total number of microinstructions
which have been executed in the system. Device 9 on IB is a 64-bit wide
Micro Instruction count register, MI, which is incremented everytime a
microinstruction is executed. It can be cleared by executing IBA when
IBD is set to 9. Thus the M| appears functionally identical to a Snooper

and is included in this section.
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2,23,3 The Status Registers

The Status facility establishes a data path between various con-
trol registers, address registers, and counters of the system and the
BUS. Just as with the Snooper facility, this is done through the normal
input facility of the system and, again, IB is used. Let us consider IS
to be made of eight 8-bit bytes labelled IBj where IBj = IB(0+j8:7+ j8),
i=0,. . .,7. For example, 1B Byte 2, 1B2 = 18(16:23), Table 2, 35
shows which system elements are associated with Deviées 10 and 11 on
IB.

Device 187 186 IB5 184 1IB3} 1B2 | IB1 | 1B0
10 CUF | BEF | wBP | WAP cB CA
11 CUALF| BE EX IRA SA
12 ‘ Spa‘r‘e

Table 2,35

‘Status Information

Devices 10, 11, and 12 on IB are the "Status Registers!" of the
system, Just as with the Snooper Registers, they are "dedicated"
input devices., The IBA microoperation and the IBDA and IBDC con-
ditions have no meaning when used with these devices, Suppose, for
example we wish to store the output of the BE in the AS = recall the
output of the BE had previously only been input to various control ports
in the system, The following instructions connect it to the BUS and
store it in the AS v

;IBD =11, PAP+1,
AS := 1B, BS+48 ;PG-56, PAP-1, @
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2,24 An Alternate View of the Working Registers

The description of WA which was given in Section 2, 4 introduced
WA as a 256 element RG, In Figure 2,5 the address pointer, WAP, was
shown to be 8-bits wide so that the WA registers could be addressed as

256 contiguous registers, In fact, the address pointer actually consists
of two 4-bit pointers which had been "coupled" together to give the 8-

bit wide pointer described in Section 2, 4, Figure 2,40 shows WA with
its two 4-bit pointers called the Group and Unit pointer; WB, not shown,

is identical,

+1 -1 C +1 -1 C

WAU Save
Pointer o

WAG Save
,__Pointer

L

WAG

Save

Regi-
sters

CM EX SB WAGS CM EX sB WAUS

Seiector

Sel. Selector Sei.

Uncouple

Couple

Couple
Switch

[

BD Load

256

Shifted Bus Working Registers, Bus

SB(0:63) WA Selector

VWork vy Registecs A, WA tDetaited)

When the microoperation COUPLE A is executed, the Group and Unit
pointers are connected together to give the 8-bit wide pointer, WAP,
After the microoperation UNCOUPLE A is executed, the Group and
Unit pointers function as independent pointers. The low order 4-bits
of the 8-bit address required to specify a particular register are given
by the WA Unit pointer, WAU; the high order 4-bits of the address are
given by the WA Group pointer, WAG, Thus, WA can be considered

to be 16 RG's, each RG having 16 registers,

The microoperations associated with the WAU and WAG pointers

are given in Table 2, 36, (The similar microoperations for wB are not

shown, )
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WAU := CM[Ex!SB WAUS

WAU + 1

WAU - 1

WAUIC

WAG := cM|EX |SB|WAGS

WAG + 1

WAG - 1

WAGC

Table 2, 36

re———iraitp
Microoperations for control of the WAU and WAG pointers

If we wanted to point to the 9th unit of group 3 and then transfer its
contents to the DS, we could write, assuming the pointers are uncoupled,
s WAG :=3, WAU :=9,
DS :=WA, |
The microoperations associated with WAP in Table 2, 4 can now be given
their appropriate meaning in terms of the microoperations in Table 2, 36,

Assuming WAU and WAG are coupled, we have

WAP + 1 ::= WAU + 1
WAP - 1 ::= WAU - 1
WAPC ::= WAUC and WAGC

WAP := CM |EX| SB| WAPS ::= WAU := CMI Exi sslwaus
and WAG := CM|EX| SB|WAGS .

L et us now turn our attention to the pointer save capability shown in
Figure 2,40, When WA is considered as 16 groups of 16 registers,
the WAU and WAG pointers may be saved independent of one another,

The microoperations associated with this facility are given in Table 2, 37.
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WAUS := WAU

WAUSP + 1

WAUSP - 1

WAUSPC

WAGS := WAG

WAGSP + 1

WAGSP - 1

WAGSPC

Table 2, 37
Microoperations for control of WAUS and WAGS

As an example, suppose we are in group 3 and wish to work in group 8.
Before working in group 8 we want to save the unit which we
are pointing to in group 3, This is done by executing
s WAUS :=WAU, WAG:=8, ,
The microoperations associated with WAPS in Table 2. 4 can now be
given their appropriate meaning in terms of the microoperations in
Table 2, 37, Thus we have,

WAPRPS :=WAP ;= WAUS :=WAU and WAGS := WAG
WAPSP + 1 1:= WAUSP + 1 and WAGSP + 1
WAPSP - 1 WALUISP - 1 and WAGSP -1
WAPSPC 1:= WAUSPC and WAGSPC.

it

[}

There are a few additional conditions which can now be added to
Table 2. 31, the partial listing of system conditions, These are given
below in Table 2, 38,
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Unit Symbolic Condition
notation
WAUOV WAU = 1111 (WAU overflow
WAGOV WAG = 1111 (WAG overflow)

WA WAUSP OV WAUSP = 1111 (WAUSP overflow)
WAGSP OV WAGSP = 1111 (WAGSP overflow)
WACS WACS = 1 2 WAU and WAG are coupled
wBUOV wBU = 1111 (WBU overflow)
WBGOV WBG = 1111 (WBG overflow)

wB WBUSP OV WBUSP = 1111 (WBUSP overflow)
WBGSP OV WBGSP = 1111 (WBGSP overflow)
WBCS WwWBCS = 1 = WBU and WBG are coupled

Table 2, 38

Additional WA and WB Conditions

Thus we can deal with WA or WB as either 256 contiguous registers ar
16 groups of 16 registers. We can switch back and forth between either

interpretation in a relatively straightforward way.

2.25 An Alternate View of the Postshift Masks

The description of the Postshift Masks which was given in Sec-
tion 2, 7 was structured to make the Postshift Masks look as much like
the Bus Masks as possible, to enhance the understanding of this unit,
In fact, the output of the BS is masked during every bus transport by
the mask which is specified to be

PA VPB VPG
where
PA = an element of a 64-bit wide, 16 element RG called
the Postshift Mask A r:egister‘s
PB = an element of a 64-bit wide, 16 element RG called
thé Postshift Mask B registers
PG = the Postshift Mask Generator

VV = logical "inclusive or",
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In Section 2,7 we had introduced the mask to be PAVPG; here we had
merely assumed all elements of PB to contain all 0's, The actual situa-

tion is shown more clearly in Figure 2, 41,

CcM N L+t -1C
EX Il
sB ] PA
= o s Pointer - .
] & *
Postshift
Mask Registers | ==
PA
= N
L+l -1C
PB
. Pointer - Lo =
PA V PB\ us
i { B8vPe l O chifter
Postshift .
BUS(0:63) memmd Mask Registers
PB
L+l -1C CM EX BE SG
| B N B
CM, PG Sel. PG Controt . 1 PG
;Register . Source Se!ectorH Postshift Mask Generator, PG |
Postshift Masks, PA, PB, and PG
Figure 2.41

The most important thing to note from this diagram is that the PA/PB
structure is indeed the same as the MA/MB structure (see Figure 2, 9),

The microoperations associated with PB are then

PB := BUS

PBP := CM|EX |SB|SG

PBP + 1

PBP -1

PBPC

Table 2, 39

Microoperations for control of PB
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The name of the SG associated with the PA pointer and the PB pointer
is the Postshift AB Pointer, PABP., The microoperations associated
with this SG are given in Table 2, 40,

PABP := SB

PABPP := cM]EX]|ST |S2

PABPP + 1

PABPP - 1

PABPPC

PABPSI := CM|EX| S1|S2.

PABPS2 := PABPP

Table 2, 40

Microoperations for control of PABP

We will assume that all elements of PB contain all 0's so that the effective
mask is PAYPG and all of our previous standardizations for the use of

this facility are still valid,

3.0 Microinstruction Specification and Execution

We will in this section discuss the microinstruction format, the man-
ner in which the instruction is executed, an then give a comprehensive

table of all microoperations,

3.1 Microinstruction Format

Microinstructions .ar‘e 64-bits wide. There are 4 major fields in a
microinstruction, These fields specify
(a) bus transport
(b) microoperations and data
(c) microinstruction sequencing

(d) control of AS,VS, ‘and DS

These fields are shown below with their sub-fields named and their

actual bit location in the microinstruction,



(a)

bus transport (7 bits)

BS
22

21

BD

SOURCE
12 |18 16

3

3

LBUS Shifter Enable Bit

(b) microoperations and data (35 bits)

mo mo dat m dat m t
Ps _ | ps/da a | ops/data s | 56 ops/data o
7 10 8 10
mops = microoperations
(c) microinstruction sequencing (16 bits)
BISB cisB Condition Ar Ay
Selection
14 13 2 els 3|2 o
2 1 7 3] 3

T

Carry-in selection bits

l‘kﬂh_.—-) B-input selection bits

(d) AS, VS, and DS control (6 bits)

AS \VAS DS
28 27 |2 25 |24 =23
2 2 2
— _ J

Shift/l.oad Control for the Shifters

L et us discuss each of these in more detail.
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(A) The Bus Transport Field

Table 3. 1 shows the correspondence between the symbolic nota-

tion for SOURCE's and BD's and their binary represe‘ntations.yb

source || 80
Symbolic Binary | Symbolic | Binary
- Notation Notation Notation Notation
LR 000 no 000
destination
, AL 001 MA 001
’ VS 010 MB 010
Ds o1 LR 011
WA 100 WA 100
wBs 101 wB 101
1A 110 OA 110
1B (BB oB 1 1'
Table 3.1

Symbolic and Binary Notation for SOURCE's and BD's

If the BS Enable bit = 0, no BS occurs ; if the BS Enable bit = 1

»

a BS Shift occurs, The control . source for BS control is given in

the microoperations and data field as is seen in (B) below. Thus the
specification

BS BD SOURCE

o | 101 011

is the binary representation of our bus transport specification

wB = DS . We will show this symbolicalily as
BS BD SOURCE
wB DS

as we have no need of binary representations in this report.
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(B) The Microoperations and Data Field

The microoperations and data field can be considered to be made
- . M M M
up of the following fields: F,, S;, -D—z , Fa, D, Fa, Ss, 54 , F, as

shown in Figure 3.1 .

7 [2 1] 7 [1] 7 [2 1] 7 |
F1 Si g’a F2 E% F3 S3 gﬂ F4
63 57 56 55 54 53 47 46 4 39 38 37 36 35 20
mop Sel{ M mop M mop SelfM mop
D data D dataBS D data
Figure 3.1

Microoperation and Data Field

The following comments should assist in understanding this diagram.

B.1) Field F; always specifies a microoperation (1 of 128 mops).

if %2 = 1 then F, specifies a microoperation (1 of 128 mops).
|f' %‘- = 1 then F; specifies a microoperation (1 of 128 mops).
3

if = =1 then F, specifies a microoperation (1 of 128 mops).

Therefore up to 4 microoperations may be specified in this field; for

o

example,
;y BSP +1, WBP +1, MBP +1, CA -1;

B. 2) We have seen that many microoperations concern the loading of a

register from various sources, e.g.

MAP := CM|EX|SB]|SG.
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Such a microoperationmust be placed either in field F, or Fz. If it

is placed in Fy; then the 2 selection bits S, specify which source will

be used. If the source specified is the CM then %‘; is set to D and Fp

is used as data (similarly % and F, are used with F3). For example
4

MAP = 7

could be symbolically represented

MAP = | CM

0 Wiz

Thus one sees that there can be at most 2 microoperations of this type

in a microinstruction.

B. 3) Figure 3.1 also shows that if the BS controi data is to be taken
from the CM then F; is used as data. If the BS has been enabied, the

control source is selected via field S;. Thus the specification

WA := AL, BS - 3

could be symbolically représented

g‘; Fs |Ss BS

BD

SOURCE

3 |ICM BS

WA

Al

,LWM

B. 4) All of the possible microoperations are not ‘available in each field

F,, Fz, F3, andF_.

The microoperations which can be specified in each

field are given in Section 3.3, the Comprehensive Tables of Microopera-

tions for Individual Functional Units.

C) The Microinstruction Sequencing Field

Table 3.2 shows the correspondence between the symbolic notation -

for A, and A;

and their binary representations.
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A, and A,
Symbolic | Binary
Notation Notation

EX 000
AL 001
RB 010
RA 011
SA 100
A-1 101
A+l vl 10
A 111

Table 3.2

Symbolic and Binary Notations for A, and A,

A similar table can be given for the symbolic and binary notations for
the conditions but is not given here because of its length. Tables 2. 24
and 2. 25 present this information for the C1SB (Carry-in selection bit)
and BISB (B-input selection bits) respectively. We will give all of our

examples symbolically.

Example 1) If BUS = 0 then HERE. could be represented

Condition
BISB |CISB Selection At Ay
0 BUS A+1 A

Example 2) If ALOV then RA + 12. could be represented

Condition A, A,

BISB |CISB Selection

: ALOV | A+ |RA+B

t .
sign
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However, this is incomplete and immediately raises the question where

do T and t come from? That is easily answered. T is always the leasts

significant 6 bits of F3 and t is always the least significant 6 bits of F,.

BISB tells us, of course, how we will combine T and t (i.e., 0, Tt,

tsignt’ or TO, see Section 2.20. 2). Thus, the compleie specification would
be
M Condition
D, Fa BISB| CISB Selection Ar Ay
12 tsignt ALOV A+l | RA+B

D) AS, VS, And DS Control Field

The dedicated bits for shifter control are interpreted as shown in

Table 3.3.

Binary
Notation

Shift/L.oad Control

00
01
10
11

Do Nothing
Shift R ight
Shift Left
Load

Table 3.3

Shift/lL_oad Control Bits

Thus, the specification

AS 4+, VS +, DS«

could be represented symbolically as

AS | vs | DS
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The binary representation,

AS | VS| DS

0110|110

does not interest us here. The specification
AS, LR := AL ; DS «.

would be given by

AS | VS| DS | BS | BD | SOURCE |BISB |CISB |Condition | Ay | A,
Selection

L + LR AL 0 TRUE A+l | A+l

(M/\/y

3.2 Microinstruction Execution
As introduced in Section 2. 4.1 and then explained in more detail in

Section 2.21.1, the machine has both a long cycle and a short cycle. The
result of that discussion, which is repeated here for convenience is that

microinstructions can be thought of being executed in the following se-

quential way:

long cycle: a) execute bus transport
b) execute microoperation

c) execute microinstruction based on the current
conditions

short cycle: a) delay the conditions of the previous microin-
struction

b) execute bus transport
c) execute microoperations

d) execute microinstructions sequencing based
on the delayed conditions from the previous
microinstruction,




103

L.et us now examine each of the sequential steps in more detail.

A) Bus Transport

The following actions occur during this step:

0) if short cycle, delay the conditions of the previous microinstruc-
tions (this has been combined with Bus transport for convenience)

1) the SOURCE is selected
2) the SOURCE is masked by the BUS masks and gated onto the BUS
3) the BUS is shifted as required by the BUS Shifter

4) the output of the BS is masked by the Postshift masks to
vield the Shifted Bus, SB.

5) at this point, both the BUS and the SB are stable and can be
loaded into various destinations: call this time 1.

B) Microoperation Execution

The following actions occur during this step:

0) the microoperations are decoded and divided into two types,
those which can be executed at time 1 and those which can be
executed at time 2; this decoding is completed by time 1.

1) all SB, and BUS loads are executed together with AS, VS,
and DS operations and time 1 microoperations.

2) when time 1 microoperations are completed, time 2 microope-
rations are executed.

C) Microinstruction Sequencing

0) the condition specified by the condition selection bits is selec~
ted. In short cycle this can happen immediately upon the com-
pletion of B, above, as one is testing delayed conditions. In
long cycle this cannot happen immediately upon the completion
of B, above, but must wait until all conditions are stable and
can be tested. Thus, one sees that in long cycle the microin-
struction sequencing is delayed and hence its name,

1) select the carry-in and B-input into the CUAL and the RA and
RB adders,

2) select the next address using A; if c=1 or A, if c=0 unless a
force 0 address condition has arisen;

3) fetch microinstruction go to A, above.

3.2.1 Clock Pulse 1 and Clock Pulse 2
Recall that the RG is a basic building element used in the system.

A very common operation is to load an RG and then change its pointer
(e.g. this was done quite frequently in our examples). Often, one also

wished to save the address of the current element pointed to-before
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the pointer is changed. It was decided that this capability should be
allowed in one microinstruction and, furthermore, every RG in the

system should be treated in the same uniform way.

Example

The microinstruction
AS = WA ; WAPS := WAP, WAP +1.

means: take the element of WA pointed to by WAP and store it in the
AS ; then store the WAP in the WAPS registers and then increment
WAP by 1. It means this because the BD load and the microoperation
both occur at time 1 and the microoperation WAP +1 occurs at time 2.

Thus, every RG in the system can be looked at in the following way:

a) it can be loaded or used as a source
b) its current pointer can be saved, if it has a save capability

c) its pointer can be changed after a) and b);

all with one microoperation. The only excepﬁon to this rule, as noted in
Section 2.20. 3, is RA and RB because they are driven as hardware
stacks and not RG's; i.e., their address space is changed first and then

loaded (the inverse of the above) when RA | or RB | is executed.

Those microoperations which are exectited at time 1 are said to have
begun at Clock Pulse 1, Cp =1, while those which are executed at time 2
are said to have begun at Clock Pulse 2, Cp = 2, This notation is used in
Section 3.3 which follows. This notation, along with the description of mi-
croinstruction execution given in 3. 2 above, completely define what a
given microinstruction means. As an example

i

WB := AL, BS+ BE ; SET ALF +, WBU := 9

means: store the output of AL in WB register pointed to by WBP after
shifting it the amount specified by the BE; then change the ALF to AS + LR

and change the WBU to 9; then go to the next microinstruction.
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3.3 Comprehensive Tables of Microoperations for Individual Func-

tional Units

The following tables (presented in alphabetical order based on the
abbreviations associated with the functional unit) show which microope-
rations can appear in which fields and at which clock pulse these micro-

operations are inftiated. In these tables we use the following notation:

XX = EX}SB]SG.,
2Z = EX|S1 | S2

WU = EX|SB| WS
WG = EX|SB| WS.

Some particular points perhaps should be recailed and emphasized here:
a) use of these tables will show what space and time conflicts
arise in the construction of a microinstruction. The reader
is encouraged to review some of the examples of the earlier
sections by constru¢ting symbolic microinstructions similar

to those presented in Section 3.1.

b) t comes from field F,, so if it is being used, for example in
relative addressing, a microoperation should not be specified
inF,. ' ‘

c) T comes from field F3, so if T is being used, for example in
absolute addressing, a microinstruction should not be specified

inFs.

d) Selection bits which determine the BS control source al-

ways come from S;.
e) data for the BS, if the CM'is the control source, comes from Fj.

f) data for the PG, if the CM is the control source, comes from F.
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MICROOPERA | IONS F OfR Arithmetic Logical Unit, AL

[ 7 [21'7 7 I 7 [217] 7 ]

M M M
M F M M 4 .
o [ S Y 2 ol F3 SR F MICRCOPERATION
zZ
2 MIALP := CMID d d dd|Load the AL &G Pointer from CM|EX|S1|52
2 P ALP +1 increment AL SG Pointer
2 . plAate -1 i Decrement AL S G Polinter
2 pM | ALPC . Clear AL SG Pointer
ZZ Load the AL SG Savel register from
2 M| ALSY = M| ALST := CM D dddd|CMEX|STiS2
] Load the AL SG SaveZ register from
1 ALS2 1= ALP } the AL. G Pointer
M} ALSG := SB Load the AL SG with Sg2(0:5)
XX t.oad the AL Function register from
2 ALF = CM{D ddddddf . CMlIEX!sB i sG
2 Mi SET ALF + Sei AL Function t¢ LR + AS
2 M} SET ALF A Set AL Function to AS
MICROOPERA 1 IONS FOR Accumulator Shifter, AS
[ 7 Iz 1] 7 '] 7 1217 7 ]
- M o p « :
<, F1 st 5 F2 o F3 S3 5 Fa4 MICROOPERATION
XX L.oad the AS(0) Source register from
2 0)S 1= CcMID ddd Ml AS(0)5 :=  |CM EX|SB:SG
XX Load the AS{63) Source register from
2 | As(63)S = 1 ) ddd M| AS(63)S := [CMEX|SBSG
XX ] Load the AS(V) Selection register from
2 | AS(V)S := CMlD dddddd M| As(v)s ;= |CM'EX!SB|SG
2 M} ASLL Set the AS to a logical left shift
2 M} ASLR Set the AS to a logical right shift
2 M| AS(VISC Clear the AS{V) Selection register
2 M| AS(V)S +1 1 Increment the AS(V) Selection register
2 | M| AS(V)S -1 Decrement the AS(V) Selection register

MICROOPERATICNS FOR _Bit Encoder, BE

[ 7 1211 i P 7 [z2p] =~ ]

M M
F1 St &5 F2 F3 S F4 MICROOPERATION
2 23 R
2 EM LOAD Load results of MSB encoding into MSB,;
1 M | BEMI i MSB, and MSB, are interchanged
2 M! BEL LOAD | Load results of LLSB encoding into LSB,
1 M BEL.I LSB, and LS8, are interchanged
Load resuits of MGB encoding into M58, AND
2 | BELMLOAD M| BELM LOADY load results of LS8 encoding into LS8,
MSB, and MSB, are interchenged AND LS8,
1 I Ml SELMI and LS8, are interchanged
XX ) -
2 | BEF := Cm JO dddd ! Lioad BE Function register irom CM|EX|S8|S6
SET BEF ] Set the BEF to LS8,
2 IMILSB1 | ) (clear the BEF Function register)
Sets PG to generate from LS8 if BE is
1 M EPGL control input
Sets PG 10 generate from MSB if BE is
1 M| BEP GM control input
22|
2 M| BEP := =Y ) T dddl| Load BE pointer from CM|EX|S1 |S2
2 M| BEP +1 Increment BE pointer
2 M| BEP -1 Decrement BE pointer
2 M| BEPC Clear BE pointer
22
2 Ml BEST = m| BEST @ = cmiD dddd] Load BE Savei register from CM|EX|S1|S2
1 e s2a-nee Load BE SaveZl register from BE Pointer
R o Mlotec-sue L] Load BE_SG from SB(0: 3)




MICROOPERA T IONS FOR Bus Shifter, 85
[ 7 [z 7 Il 7 121 7 i
M N : M
. 3 = — SIE 4 MICROOPERAT ION
- F1 st 5 F2 o) F3 ) » 1 ATIOR
1yy THIS SELECTION IS REQUIRED WHENEVER
o D] dddddd[CM] THE BUS SHIFTER IS ENABLED *)
zZ
2| BSP := cMID dddd L.oad BS register group peinter from CMIEX|S1|S
2 | BSP +1 Increment BS SG Pointer
2 | 8BSP -1 Decrement BS SG Pointer
2 QsSekC Clear 89 3G Painier
227 o
2 | BSS!H -cmfo dddd Load 8BS Savel register from CMIEXiS! |83
M| BSS2:=BSP Load BS Save2 register from 8S Pginter
Ml BSSG:=S8 | Load BS SG from $8(0:5)
) “) vy = EX|BE, BS|SG
MICROOPERATIONS FOR __Counter A, CA
L 7 [2 T 7 P 7 [z 1] 7 ]
M M .
o F1 St 5 F2 o F3 S3 4 MICROOPERATION
TxXx )] i.oad CA from CM (16 bits), SB (16 bits), EX
CA := [cMbldcddddajpojddddddd ddj_M CA := (16 bits), or CAS {16 biis)
2 | CA+1 M| CA +1 M| CA +1 Increment CA
2 1 CA -1 M| CA =1 M{ CA -1 Decrement CA
2 | CAC M!{ CAC IM[ CAC Clear CA
2 M| CASP +1 _increment CAS Pointer
2 M| CASP -1 Decrement CAS Pointer
2 M| CASPC Ciear'CAS Pointer
1 CAS = CA Load CA Save RG from CA
MICROOPFRATIONS FOR _Counter B, CB
[ 7 [Z 177 T 7 Tzl 7 ]
M M M
1 = F =1 e 3 Fa :
CD F st 5 2 al 3 S Y MICROOPERATION
V1] Load CB from CM {16 bits), S8 (16 bits), BE
2 1cg:= CMID]dddddddlDj dddddddjdd M CB := {6 bits), or CBS {16 bits)
2 | CB +1 M| CB +1 Ml CB +1 Increment C8B
2 1CB -1 Mics -1 Mi CB -1 Decrement C8
2 | cBC Ml CBC Ml CBC Clear CB
2 M| CBSP +1 increment CBS Pointer
2 M{CBSP -1 Decrement CBS Pointer
2 M| CBSPC Clear CBS Pointer
1 Ml CBS (= CB Load CB Save RG from C8
- . +) when BE is selected as the source, the high
1 VV=SBIBECBS order 10 bits of CB are set to 0
I
MICROOPERATIONS FOR Condition Save Register, CR
[ 7 [z 7 T 7 1zT7] 7 ]
(M M M
cp F1 st 5 F2 IS F3 S3 5 Fa MICROOPERATION
. ZZ
2 M| CRP := CM™ D dddd] Load CR RG Pointer from CM|EX|S1[S2
2 CRP +1 Increment CR RG Pointer
2 ) M CRP -1 Decrement CR RG Pointer
2 M CRPC Clear CR RG Pointer
. 2z 4
2 Mt CRSI := M CRS! = CM (=] dddd| Load CR RG Savel buffer from CM|EX!S1 |S2
] {CRSZ:= CRP Load CR RG Savez buffer from CR RG Pointer
S| CR := SC M ‘CR;- SC M CR:= SC Load CR RG with the current Selected Condition
St = :s_gecial &oor kiida on short orflohg cycle
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MICROOPERATICNS FOR Common Shifters (AS, VS, DS) Standard Group and parallel

options, CS

[ ? {2 1] 7 Il 7 12 1] ? i
M M M —
Cp F1 St Y F2 S F3 S3 5‘ 4 MICROOPERATION
zz ]
2 M| csp = ICM jO d ddd] Load the CS Pointer from CM!| EX |51 82
2 Ml CSP +t incrément the TS Pointer
2 M| CSP -1 Decrement the CS Pointer
2 M| CSPC i Clear the CS Pointer
ZZ
2 Ml CsSS1 = Ml CsSt = ICM (D dddd] Load the CS Savel register from CM|EX!S1|52
1 | CSS2:=CSP M| CSS2:=CSP Load the CS Savel register from the CS Polnter
1 M| CSSG = sB Load the C5 SG from SB0:5)
2 M CsLL Set AS,VS, and DS to logical left shift
2 M| CSLR Set AS,VS, and DS to logical right shift
. Clear AS, VS, and DS Variable Bit Selection
2 M| Cs(VISC register P
XX toad AS(0), VS(0)} and DS(0:1) Source register
2 | cs(0)s := CTM[D ddd from CM| EX| SB|SG
XX
i L.oad AS(63), VS(63}) and DS(62:63) Source re~
2 | Cs(83)s := CMJD ddd dister from CM|EX|5B|S6
XX Load AS(V), VS(V) and DS(V) Selection register
2 1 Cs(v)s := CM dddddd from CM|EX | 58! S6
MICROOFERATIONS FOR Control Unit, CU
[ 7 [ZT1 7 Tl 7 T2 7 ]
M M M
c 1 = F 3 F s3I Fa
o F s' 5 2 o) 3 Bl MICROOPERATION
1 M| SA =SB Load Save Address register from SB(0:11)
1 M| SA +1 Increment Save Address ‘
! M| SA -1 Decrement Save Address
1 M| SAC Clear Save Address
1 IM] CUALF := D} dddddjboad CU AL Function register withddddd
SET CUu
1 MALF + Set CU AL Function register to A+B
1 Ml RA Decrement RA Pointer
1* | RA M| RA . MiRA | Increment RA Pointer and then Load RA
1 Ml RAPC Clear RA Pointer
) RB Decrement RB Pointer
N EER M RB Mirs ¢ Increment RSB Pointer and then Load RSB
1 | RBPC i Clear R8 Pointer
1 M| EX Load L.oad the External register
1 M EX » 4 Shift the External register 4 bits right cyclic
Load control store and then choose A+l as the
! Ml CS Load address of the next microinstruction
1 INTON M} INTON M| INTON Ehable interrupt conditions to force 0 address
1 INTOFF M INTOFF M| INTOFF Disable interrupt conditions from forcingOadd_ress
1 SET CUALF B Set CUAL Function register to B
1 M} RTCT OFF Turn Real Time Clock overflow togglie off
*) requireé two microinstruction
cycles to complete this action
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MICROOFERATIONS FOR Double Shifter; DS
C 7 TrEra_ 77 Tl 7 “T77[ 7 ]
M ) 'M : M
1 b bt s3fd F4 -
F St Y F2 o F3 5 MlCQOOPERATTON
XX Load DS(0:1) Source register from
DS(0:1)S := | CMID ddd CM|EX|SB|SG .
xx| Load DS(62:63) Source register from
DS(62:63)5 := [ CMID ddd {CMIEX 5B|SG
XX i ] Load DS(V) Seleciion register from
DS(V)S := CM{D| dddddd CMiEX;SB|SG
Ml DSLL ) Set the DS to logical left shift
Ml DSLR Set the DS to logical right shift
M| DS(V)SC Clear DS{V) Selection register
fMj DS(V)S +1 Increment DS(V) Selection register
M| DS(V)S -1 Decrement DS(V) Selection register

MICROOPERATICONS FOR _ Input Port A, and Input Port B, 1A ard IB

| [2 10 7 '] 7 [ 217 7 ]
M M M
F1 4l Y F2 o F3 S3 B Fa MICROCOPERATION
EE] ]
1AD := CM ] D dddd N . Load |A Device register from CM!Exo|SBEE>(I
1AA M} 1AA M{ TAA Activate Port, i.e. read
M| 1ADC Clear IA Device register
Mi TAD +1 Increment 1A Device register
EE )
18D := CMID deag d I e Load IB Device register from CM[EXO|SB‘EX!
1BA := Ml IBA . gMosA _w__r_‘f\cnvate Port, i.e., read
18DC N " i Clear 1B Device register
IBD +1 Sl 1. Increment iB Device register




MICROOPERATIONS FOR

Loading Mask Registers A, LA
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L 7 211 7 1 7 1217 7 ]
M M M )
C F1 St F2 F3 S3 = F4 MICROOPERATION
p D [3Y 2\
p4 ’ » )
2 | Lap := CMD dddd Load LA Pointer from CM|EX|S1 | S2
2 1 LAP +1 M} LAP +1 M| LAP +1 increment LA Pointer
2 ] LAP 1 M] LAP -1 M| LAP -1 Decrement LA Pointer
2 | Lapc M LAPC Clear LA Pointer
22| ' .
2 | LaSt = CTMID dddd M LAST := Load LA Savel register fromCM] EX|S1|S2
1 M| LAS2: =LAP Load LA Save2 register from LA Pointer
1 M LA =S8 Load A from SB(0:63)
MICROOPERATIONS FOR _ | oading Mask Registers 8, LB
[ 7 [ 2] 7 ] 7 2 1] 7 J
1 M M| M
= = = s3k Fa
Cp 1 1St ) F2 ol F3 ] 51 MlCROOPERATION
2z |
2 MlLBD = CM D d d d d |Load LB Pointer from CM|EX|S1|S2
2 M| LBP +1 M LBP +1 MlLBP +1 Increment LB Pointer
2 M [LBP -1 M LBP -1 M LBP -1 Decrement LB Pointer
2 LBPC ‘MiLspPC jClear LB Pointer
p-4
2 M| LBSt := Ml LBS! := ICM D d d dd|Load LB Savel register from CM|EX|S1|{S2
1 LBS2:=LBP Load LB Save2 register from LB Pointer
1 M| LB := SB Load LB from SB(0:63)
Ml LPC Clear both LA Pointer and LLB Pointer
MICROOPERATIONS FOR __Local AL Registers, LR
L 7 12 '] 7 ['1 7 TzT1] 7 ]
c M M M
b F1 St D F2 i‘ 3 S3 E F4 MICROOPERAT ION
N LRIP :=
2 | Ds{\iv+) L.oad LR Input Pointer with DS(V:\v+1)
2 | LRIP +1 increment LR Input Pointer
2 | LRIP -1 Decrement LR input Pointer
2 | LRIPC Clear LR Input Pointer
LROP :=
2 M| DS(V:Vv+1) |Load LR Output Pointer with DS{V:V+1)
2 M| LROP +1 tncrement LR Output Pointer
2 M| LROP -1 Decrement LR Output Pointer
2 M} LROPC Clear LR Output Pointer
J LRP := LRP :=
2 M| DS(v:v+1) M DS(viv+1) Load both LRIP and LROP with DS(\/:\+1)
| 2 M] LRPC M| LRPC Clear both LRIP and LROP
2 LRP +1 M| LRP +1 Increment both LRIP and LROP
2 LRP -1 M LRP -1 Decrement both LRIP and LROP




MICROOPERATICNS FOR _Bys Mask Registers, MA and M8

L TzD{ 7 RN 7 12 1] 7 ]
’ Mi —__ M M a
cp F1 s' b F2 o F3 S3 B Fa4 MICROOPERATION
XX
2 | MAP := CcMID] dddd M MAP = ‘Load MA Pointer from CM|EX|SB|SG
2 | MAP +1 M| MAP +1 M1 MAP +1 Increment MA Pointer
2 | MAP -t M MaP -1 IM [ MAP -1 Decrement MA Pointer
2_|mapc M| MAPC M| MAPC Clear MA Pointer
XX
2 = CM] D addd MmimaP = Load MB Pointer from CM|EX|SB|SG
2 MBP +1 M| MBP +1 M IMBP +1 Increment MB Pointer
2 [ mBP -1 Ml MBP -1 MIMBP -1 Decrement MB Pointer
2 M| MBPC M| MBPC Clear MB Pointer
22
2 M| BMPP := CMm|D dd d d | l.oad BM Pointer SG Pointer from CM|EX|S1|S2
2 M | BMPP +1 Increment BMP S G Pointer
2 M| BMPP -1 Decrement BMP SG Pointer
2 M| BMPPC Clear BMP SG Pointer
ZZ i
2 M BmPst = |M| BMPst = [CM]D] d d dd]Load BMP SG Savel register from CM|EX|S1|S2
BMPS2Z := ’
1 BMPP Load BMP SG Save2 register from the BMPP
1 M] BMP := S8 Load BMP SG with $8(0;3)
MICROOPERATIONS FOR Output Ports A, 8, C and D, OA, OB, OC and OD
L 7 [z 1] 7 I 7 Tz1] 7 ]
M M M
< F1 s' 5 F2 ol F3 S3R Fa MICROOPERATION
EE
! M| OAD := CMD d d d d| Load OA Device register from CM|EX0|SB|EX!1
2 | 0AA d M{ OAA M| OAA Activate Port, i.e., write OA(0:63)d
1 M| OADC Clear OA Device register
EE
! M| OBD := CM]D d d d d| Load OB Device register from CM|EX0|SB|EX!
2| oBA d M osa M| oBA Activate Port, i.e., write OB(0:63)d
1 M OB8DC Clear OB Device register
EE]
1 M ocp:= cM]D dddd] Load OC Device register from CM|EX0|SB|EX!
2] ocAa o M OCA M OCA Activate Port, i.e., write OC(0:63)d
1 M OCDC Clear IC Device register
1 M| OC:=BUS Load OC from BUS(0:63)
’ EE
1 M| ODD := CM D dd d d|load OD Device register from CM|EX0| SB|EX1
2 | ODA d M| ODA M| ODA Activate Port, i.e,, write OD(0:63)d
1 M| ODDC Clear OD Device register
1 M| OD:=BUS Load OD from BUS(0:63)

111



MICROOPERATICNS FOR _Postshift Masks, PA, PB, and PG

[ 7 27 [ 7  Jz]] 7 ]
M M P M
c 1 R F ~ F s3ES Fa ;
o F =3 Y 2 o 3 Y MICROOPERATION
Mask Generator Control Source Selection re-
N PGS = dd gister is set to dd; dd = CM|EX|{BE|SG
2 PGS +1 M| PGS +1 increment PG Selection register
2 PGS -1 Ml PGS -1 Decrement PG Selection register
2 M| PGSC PGSC ' Clear PG Selection register
THIS DATAIS REQUIRED WHENEVER THE MASK
0 Diddddddd GENERATCOR CONTROL. IS USING CM AS DATA
22
2 PGP := CM{D dddd]Load PG SG Pointer from CM|EX|S! {52
2 PGP +1 Increment PG SG Pointer
2 M| PGP -1 Decrement PG SG Pointer
2 M| PGPC Ciear PG SG Pointer
2z .
2 M| PGS! := Ml PGSt ;= CMID] d d d d] Load PG Savel register from CM|EX|St]S2
1 PGS2:=PGP Load pG Save2 register irom PGP
1 M| PGSG =SB Load PG SG from SB(0:6)
XX \
2 | PAP := cM] D dddd Load PA Pointer from CM|EX|SB|RG
2 [ PAP +1 Ml PAP +1 Increment PA Pointer
2 PAPRP -1 ML PAP -1 Decrement PA Pointer
2 | PAPC M| paPC ‘Clear PA Pointer
1 M| PA:=BUS Load PA RG from BUS(0:63)
XX E
2 | PBP = cM]D dddd . Load P8 Pointer from CM!| EX|SB|SG |
2 | PBP +1 M| PBP +1 Increment PB Pointer \
2 | PEP -1 Ml PBe -1 Decrement P8 Pointer
2 | PBPC M| PBPC Clear PB Pointer ‘
[
1 M| PB:=BUS Load PB RG from BUS{0:63) d
| 2 M| PAB +1 Increment PA and PB Pointer
2 M PAB -1 Decrement PA and PB Pointer '
)
2 M| PABC Clear PA and PB Pointer
zz 3 Load PAB Pointers RG Pointer from
2 M| PABPP := [CM D dddd|CM{EX!SIIS2
2 M| PABPP +1 Increment PABP Pointer
2 M| PABPP -1 } Decrement PABP Pointer
2 M| PABPPC Cilear PABP Pointer
ZZ
2 PABPSI := (M| PABPS! := |CM D d ddd|lLoad PABP Savel register from CM|EX|S81!52
PABPS2 :=
1 PABPP it Load PABP Save2 register from PABP Pointer
S .S .50 AN URUNEE S SRR -
1 MDA =51 L oad PABP from SB(O:3)




MICROOFERATIONS O

Variable Widih Shifter;, VS

L)

7 S ) A ()
F1 s1 % F2 & F3 s3 % Fa MICROOPERATION
XX Load the VS(0) Source register from
VS(0)S := CM|D ddd M| vS(0)s := |CM|EX|SB|SG
XX Load the VS(63) Source register from
VS(63)S :=  |CMID ddd M| vs(e3)s := |cMmiEx|sB|SG
XX ) Load the VS(V) Selection register from
VS(V)S := cMmID}l ddddadd Ml VS(V)S = [CMIEX|SB|SG
‘M vSLL Set the VS to a logical left shift
M| VSLR Set the VS 1o a logical right shift
=iEe Clear the VS(V) Selection register
VS{VIS +1 Increment the VS({V) Selection register
VS(V)S -1 Decrement the VS(V) Selectiort register

MICROOPERATIONS FOR _Working Registers, WA

L 7 [z 7 1 7 12 '] 7 ]
Im M M
= = e S3 = Fa
Fi St Y F2 oY F3 ) MICROOPERAT ION
wu
WAU := cM D dddd Load WA Unit pointer from CM|EX|SB|US
WAU +1 | M| WAU +1 increment WA Unit pointer
WAU -1 Mi WAU -1 Decrement WA Unit pointer
WAUC M| WAUC Clear WA Unit pointer
WG |
M|WAG := CcMD) d d dd} Load WA Group pointer from CM|EX|SB|GS
AMIWAG +1 increment WA Group pointer
MIWAG -1 Decrement WA Group pointer-
M WAGC Clear WA Group pointer
wu e | Load WA Unit pointer from CM|EX|SB|US AND
WAP := cM D} dddd CM] D] d d d d| load WA Group pointer from CM|EX|SB|GS
WAPC Clear WA Unit pointer and WA Group pointer
} Couple WA UNit and Group pointers to form an
M{COUPLE A 8 bit counter
Uncouple WA Unit and Group pointers tc form two
M{UNCOURLE Al independent 4 bit counters

%

MICROOPERATIONS FOR WA Unit and Group Save Registers, WAUS and WAGS

L7 [ 2] 7 Il 7 L2 11] 7 1
F1 i3] I[% F2 IM F3 S3 g' Fa4 MICROOPERAT ION
MIWAUS: =WAU | Load WA Unit Save RG with WAU
MIWAUSP +1 Increment WA Unit Save RG pointer
. M WAU‘;:; -1 Decrement WA Unit Save RG pointer
IMwausPC Clear WA Unit Save RG pointer
WAGS: =WAG L.oad WA Group Save RG with WAG
WAGSP +1 increment WA Group Save RG pointer
WAGSP -1 Decrement WA Group Save RG pointer
WAGSPC Clear WA Group Save RG pointer
MWAPS:=WAP| i WAL and WAG respectively oS
M WAPSP +1 Increment WA Unit and WA Group Sdve pointers
1 - M WAPSE -1 Decrement WA Unit and WA Group Save pointers
M WAPSPé Ciear WA Unit and WA Group Save pointers




MICROOPERATIONS FOR Working Registers, B, WB

L K 2] ? | I [21'] 7
M lM M .
— =~ S3IE Fa >
Cp 1 St Q F2 (oY F3 Y MICROOPERATION
WL
2 M| wBl := CM dddd]| Load WB Unit pointer from CM|EX|SB|US
2 M | WwBU +1 M| wWBU +1 Increment WB Unit pointer
2 wiBy -1 M WBU -1 Decrement WB Unit pointer
2 M| wBuC wBucC Clear WB Unit pointer
WG
2 | WBG := ICM 1D | dddd Load WB Group pointer from CM|EX|SB|GS
2 M| WBG +1 increment WB Group pointer
2 M| WBG -1 Decrement WB Group pointer
2 Mi wBGC Clear WB Group pointer
WG wul 1 Load WE Unit pointer from CM|EX|SB|US AND
wBp := CM D dddd {cm{D d ddd]| ioad WB Group pointer from CM| EX|SB|GS
2. M| wBPC Clear WB Unit pointer and WB Group pointer
Couple WB Unit pointer &nd Group pointers to
1 M{COUPLE 8 form an S bif counter
Uncoupie WB Unit pointer and Group pointer to
1 M{UNCOURLE B form two independent 4 bit counters
MICROOPERATICNS FOR WB Unit and Group Save Registers, WBUS and WBGS
[ 7 [z ] 7 il 7 T2 ] 7 ]
M M M
= F = F SIE Fa !
Cp 1 St Y 2 o) 3 B MICROOPERAT ION
1 M| wBUS:=wBU Load WB Unit Save RG from WBU
1 M| WBUS +1 Increment WB Unit Save RG pointer
2 M| WBUS -1 Decrement WB LUinit Save RG pointer
| 2 wWBUSPC S _‘L_ X JClear WB Unit Save RG pointer
1 WBGS:=WBG Load W8 Group Save RG from WBG
2 M| WBGSP +1 Increment WB Group Save RG pointer
2 M} WBGSP -1 Decrement WB Group Save RG pointer
- @ |
2 M} WBGSPC Clear WB Group Save RG pointer
Load WB Unit and WB Group Save register with
1 M| WBPS:=WBH WBU and WBG respectively
2 M| WBPSP +1 Increment WB Unit and WB Group Save pointers
2 wBPsP -1 Decrement W8 Unit and WB Group Save pointers
2 M| WBPSPC Clear W8 Unit and WB Group Save pointers
MICROOFERA1 IONS FOR _Common WA and WB Operations, WC
C 7 T1=z171T_ 7 T 7 | NE L ]
M M| W M i
: = = s3E Fa e - ;
Cp F1 St oY F2 ]Q. F3 Y MIC—QOOPCRATIQ!\
2 | M] WCU +1 increment WA and WB Unit pointers
e R S ihind
2 M} WwCU -1 Decrement WA and WB Unit poiriters
1 Ml wcus i Load WA Unit Save RG and WB Unit Save RG
1 A L_oad WA Group Save RG and WB Group Save RG
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