
A DESCRIPTION OF THE RIKKE 1 SYSTEM

by

J~rgenStaunstrup

DAIMI PB-29

May 1974

Institute of Mathematics University of Aarhus

DEPARTMENT OF COMPUTER SCIENCE

Ny Munkegade - 8000 Aarhus C - Denmark
Phone 06-128355

'== r- F""""' I--
f:=

[
H

~ [
I tnli 1 ~ ::cr ---r

d:l '""""' bl

Wrr
r 1

r-H

Contents

Foreword

1. o. Introduction

1.1. Historical Notes

1. 2. General Design Criteria and Constraints

2. o. The RIKKE 1 system

2. 1. The Register Group

2.2. Counter A

2.3. Bus Transport

2.4. Working Registers

Page

iii

2

5

6

8

10

12

2.4. 1. Microinstruction Format and a Few Exampl es 14

2.5. The Bus Sh ifter

2.6. Bus Masks

2.7. Postshift Masks

2.8. The Ari thmetical and Logical Unit

2.9. The Local Registers

2. 10. The Accumulator Shifter

2. 11. The Variable Width Shifter

2. 12. Doubl e Sh ifter

2. 12. 1. Two exampl es using the shifters

2. 13. The Common Shifter Standard Group

2. 14. Loading Masks

2. 15. The Parity Generator

2. 16. The Bit Encoder

19

24

28

35

38

40

46

48

50

54

56

60

60

2.17. Input Ports

2. 18. Output Ports

2. 19. The Bus Structure

2.20. The Control Unit

2. 20. 1. Microinstruction Sequencing

2.20.2. The Control Unit Arithmetical Logical Unit

2. 20. 3. Return Jump Stacks A and B

2. 20. 4. The Save Address Regi ster

2. 20. 5. The Microinstruction Address Bus

2. 20. 6. Control Store Loading

2.21. Control Panel Switches KA and KB

2. 22. Internal FI ags KC and KD

2. 23. The Conditions and Condition Selector

2. 24. Short and Long Cycl e

2.25. The Real. Time Clock

2.26. Auxiliary Facilities

2. 26. 1. Counter B

2. 26. 2. Main Memory

2.27. An Alternate View of the Working Registers

2.28. An Alternate View of the Postshift Masks

3. o. Microinstruction Specification and Execution

3. 1. Microinstruction Format .

3. 2. Microinstruction Execution

3.2. 1. Exampl e of how to use Clock Pul se 1
and Clock Pul se 2

3.3. Comprehensive Tabl es of Microoperations for

ii.

61

64

67

69

70

72

77

80

81

83

84

84

86

90

91

92

92

93

96

99

102

102

110

112

Individual Functional Units 113

Tabl es of Microoperations 114

Tabl e of Fi rst Occurrance of Abbreviations and Symbol s 1 21

List of Figures 125

List of Tables 127

References 1 29

iii

Foreword

It is the purpose of this document to give an introductory (yet reasonably

detai led) description of the RIKKE 1 System. The bus structure, the

registers and functional units attached to it, and the control which can

be exercised on these components are discussed. The document is not a

reference manual. Rather, it is written entirely from the pedagogical

point of view, with the system described in a modular fashion. Examples

are introduced after each component is added to the basic bus structure.

The examples are written in the RIKKE 1 microassembly language (see

[8J). The examp les are del iberately kept simp Ie so the reader wi II not

spend time learning a complicated or clever algorithm but wi II learn the

control mechanisms of the particular components involved. Thus, many

of the examples are II con trived ll and do not perform any particular

"useful" data transformations. It is hoped that this approach enhances

the reader's understanding and underscores the overall simplicity and

homogeneity of the structure and its components.

The present description is a modification of a similar one, describing

another sl ightly different system called MATHILDA (DAIMI PB-13),

written by Bruce D. Shriver.

For more detailed information the reader is referred to [9J.

A Description of the RIKKE 1 System

by

J~rgen Staunstrup

1. O. Introduction

RIKKE 1 is a dynamically microprogrammable processor which has been

designed to be used as a tool in emulation-oriented and processor design

research. For the sake of compl eteness we wi II di scuss bri efl y a short

history of the unit and then some of the criteria which served as a basis

for its design.

1.1. Historical Notes

In the spring of 1971 the Department of Computer Sc i ence of the Un iver­

sity of Aarhus was considering the purchase of a standard minicomputer

to act as a controller for a variety of peripherals and to simulate a me­

dium speed batch terminal to the Computer Center's large system. A

group of people were, at this time, working on the design of an integra­

ted software and hardware description language called BPL [1 J. To

support this group and to make the use of such a minicomputer more

flexible, it was decided to design and construct a microprogrammable

minicomputer within the department itself.

The design was started and compl eted during the summer of 1971. The

resulting machine, RIKKE 0 [2J, was constructed and began running

in early 1972. In the meantime a number of projects were proposed which

were considered not to be compatibl e with that design. Among these were

various projects in numerical analysi s [3, 4 J in wh ich it was found that

the word size and bus width of the RIKKE 0 (16 bit) was too short to

obtain an efficient implementation of even standard arithmetic operations

on numbers. It was then suggested that a microprogrammed functional

unit with a wider data path and special features could be attached to

.:~.~''k-~ jjjjWfbIf-,-j'J7Ti!if .;._~¥~--o_ ~, --'" ~ -~~~~~~~~'..--~

2

RIKKE 0 as an I/O device, or "functional unit", together with a wider

memory, for use with these projects. A proposal was made to the Danish

Research Council to obtain a grant to design and construct such a func­

ional unit. A grant was made i June 1972 in which funds were awarded

for hardware and a memory (32K, 64 bit wide, 1.4 \-ls access time). The

manpower for the construction of the un it was, in part, granted by the

Research Council; two staff engineers and one staff technician were

provided by the Department. The design was started in May 1972 and

completed during the summer of 1972. The construction of the resulting

machine, MATHILDA, is due to be completed summer 1974.

The motivation for building the MATHILDA instead of purchasing a com­

mercially available machine can be summarized as follows. First, there

were (as far as we knew) no commercially available dynamically

microprogrammable processors at the time we started our efforts which:

(a) were in the price range we could afford, (b) were designed for or

supported user written microcode or (c) offered a reasonable experi­

mental and growth ori ented structure. We fel t that we had the in-house

capabil ity to design and construct the machine. The avai I abil ity of LSI

circuits and convenient mounting techniques and our experience with

RIKKE 0' supported this view.

It was also decided that the new design for MATHILDE outdated the de­

sign of RIKKE 0, and with only minor modifications and additions could

be used in the construction of a 16-bit machine, RIKKE 1,which is the

subject of this description. Design criteria with respect to construc­

tion supported this view, these wi II be described in the next section.

1. 2. General Design Criteria and Constraints

The RIKKE-O machine is intended to be a research oriented machine.

Its main design criteria then, within the money and timing constraints

on the project, was to provide a machine on which a large variety of

experiments related to processor and emulator design and evaluation

could be performed. We attempted to use the "top-down" design approach

.. .---;..--",,,,..,.~ - _., -0 -17~ff.- ~jn.:..-iii: -. .""".~.~--=-~'::;;':~_~~/e'- __ ';-=-~~$:--:;:;:~~~~~,,,~'''~ -- "" ... -.~~-- .. - -"~"'~ ~_.J,;'>jffi<WW_"'"",~_~~~IIl·~~?'_,.

which quite frequently was tempered by th~ "forces from below", see

Rosin [5J. Therefore, we tried to let various application-oriented

and software ideas be reflected in the design.

3

Two general software concepts had a reasonabl e impact on design. The

one being the ability to multiprogram virtual machines and the other

being the concept that virtual machines would be defined through several

layers, (e. g., R. Dorin [6 J). The effect of these ideas is apparent in

the design of the control unit, especially with respect to the capabilities

of addressing. Many addressing features known on the virtual I evel are

present here on the micro level.

Another criterion was to have a clean and consistent way of dealing

with timing probl ems. We decided not to force the speed; rather we

would have a slower machine than obtainable with the componemtry at

hand, and thus one, hopefull y, with a reduced set of timing idiosyncra­

sies. It was also decided to be able to control all elements of the system

from an immediate control or a residual control capabil ity, or some com­

bination of both. The residual control was made homogeneous to the user

by having a reasonably "standard control register group" where ever

such control was provided.

Another design criterion dealt with the actual construction of the unit.

It had been decided, prior to the obtaining of the grant from the Danish

Research Council, to construct additional RIKKE's by other funding.

It became apparent, during the design phase of MATHILDA, that the

machine would be reasonably complex and that several features of

MATHILDA included or extended similar features on RIKKE O. Because

of the complexity of the design, the limited funds and manpower available,

and the fact that we wished to design, construct, and test the machine

within 1 year, it was decided that the additional RIKKE's (now called

RIKKE l's) should be modeled after the MATHILDA System. Thus, one

design criterion was to ensure a modularity in the hardware design. This

would enable an economy in print-layout and construction to be achieved.

As an exampl e, the bus structure is I aid out on one print board, 8-bits

--" ,;,-,~_",-'-"~ vA, X77FW5wcp.'s '-_fiq_I~'? ?~7~ _~-:¥-~.k..--,.;:;:'''''_>'-'"~~~''''''''#~-~Z_~~''~;--''h. , <>,_,<::~~..;,u.~::-;-:;-~-",,:;~:;. -~,-:-::-,."",.=;;;. __ ~~~~~~~~,,":

wide. Two of these boards, interconnected, comprise one RIKKE 1 bus

structure with all registers, shifters, etc. Four of these RIKKE 1

boards, interconnected, give the MATHILDA bus structure. (For a

description of the MATHILDA see Shriver [7]).

4

,,"-.<-~,;':"--4-.~_;,: ,Xi.· 1lIiiNi!iiii7A- ~tc: -'jj;it! Or j' <- be ~_-" - ." -_~~ "-,,-~,-":~~,,~:-,_,o-,,~ -~,",,-~',Mo~~~~.ii'~~';"'~~~-"~_~~L:;;:;...h.;i-~~';'~':'-"; :--_,"'::: --;:;..-_~~;;-;;,,::::;:;;;:~- '-01:'~' ~:_:;;;;-;d~~j,j;~7'~c~~~£

2. o. The RIKKE 1 System

RIKKE 1, as has been stated earl ier, is a microprogrammed controlled

bus structure. The major el ements of the system are shown in Fi gure

2. 1. and are the:

1) bus structure.

2) control unit.

3) auxiliary facilities.

4) I/O.

5) Memory.

In the following sections we will describe each of these systems inde­

pendent! y and give exampl es of thei r uti I ization.

Figure 2. 1.

RIKKE 1 System

Control Unit

Control Instruction
Store Sequencing

Functional Unit
or Register

System Counters
L

2
v .

Control Panel -.
Bus Shifter Ul

Switches
w
0

CO

~nternar Switches
Functional Un! t

or Register

Auxiliary Facilities

Bus Structure

";"<Ii'~~ NZilF5iRiN ,1 5WNl~ ••. ';#- • .;.~f~_, __ ~~'·_"~ ·",:-:~~--;:::-~~-----;-?~~~~",-,:",~,,;:&~;,~~,~~---::Af~::'--;-~~:;":.:.-;<,~i';

5

2. 1. The Regi ster Group

We begin by introducing a fundamental building block which is used in

the various control mechanisms of the system, viz, a Register Group

RG*, as shown in Figure 2.2. A RG is a set of 16 or 256 registers.

The width of the registers and the number of registers in a specific

6

RG will be stated when it is introduced. The element of a particular RG,

which is to be used as a source or destination for the transfer of infor­

mation, is pointed to by the RG address register. This register is called

the Register Group Pointer, RGP, as shown in Figure 2.2.

Pointer
Source

L +1 -1 C

Information Source

Figure 2. 2.

Typical Register Group

Load

Register
Group

Destination

*) After a particular system element is first introduced, an abbre­
viation for its name is given which, for the sake of brevity, is
then used in the text; see the "Tables of First Occurrance of
Abbreviations and Symbols", beginning on page 121, for the page
of first occurrance.

- ~.P NiIiff- Sf ,- ps;;;;ijf -~~~-~~~~""%t"- ~tfq';i·:W~~~,k#::-,-,<-"·

There are four microoperations associated with an RGP. They are

marked L, +1, -1, and C in Figure 2.2. and all subsequent figures.

Tabl e 2. 1.

Microoperations for the control of an RG

Symbol ic Notation Microoperation

L RGP:=Pointer Source Load the RGP from the Pointer Source

+1 RGP + 1 Increment RGP by 1

-1 RGP - 1 Decrement RGP by 1

C RGPC CI ear (i. e., set to zero) RGP
------_ .. ---------- ---------- - -----------

7

The symbol ic notation RGP + 1, RGP - 1, etc. is the notation which is

used with our microassembler, and all of our examples will be shown

using this notation. The abbreviation 'RG' will often be replaced by the

abbreviation of the name of the functional unit with which that particular

RG is associated. Not all of the RGP's will have the microoperation

RGP:=Pointer Source

associated with them. For those RGP's which do have this microopera­

tion it will be seen that the Pointer Source data itself can usually be

selected to come from any of four different sources.

There is one additional microoperation required for the control of an

RG; namely the function labelled "load" in Figure 2.2. If the loading of

an RG can be initiated by a microoperation it will be indicated by an "L"

on such a diagram.

-\,,~~~j>i_ "5:15iUiiiMfWG W,N - in "'1 o..,wtitfi ilii- "-'~~~-"'o~ "--::~~~~~_':i«"':"'''~~_.~~~'::::r:;;-_''~~~¥d..-,. ,,-.OoJ'-';'1- ",'~ ~~:..-,,:--.;,;-,-".:::-~;:.:,w-.cJ..._~_~~~~.

8

2. 2. Counter A

We will, from time to time, give small segments of microcode to illustra­

te the use of a device and its control. In order to make these exampl es

clearer and also to give a more real istic view of how such a code is ac­

tually written we introduce the system counter, Counter A, CA. CA is

a 16-bi t wide counter as shown in Figure 2.3.

Figure 2.3.

Counter A, CA

..

+1 -1 C

L

o

CM 00 so L +1-1 C

Sel.

CA has four microoperations associated with it as shown in the box la­

belled 'CAl in this Figure. These microoperations are given in Tabl e

2.2.

''''~~~~''£'~~4'-'''~' W~-'~iiiiffi3 xu- -'y- '1- -~v "~_o:;~Y~;.-,~~~~-~, ~~"';""~';:~~ __ -~~-it_'~·.~-----='-~~- -~. __ >_"-;:,)-_~ ... -""~_~-----::~-~~,~_,,,,,~jQ::-'-lfr"'-;-~::;"_'-:;::::;-~~'::'~~;:;:;:;-'"'~~~""f-#-*~~j.;jw.r":',

Table 2.2.

Microoperations for control of CA

Symbolic Notation Microoperation

Load CA from either CM, 00, S8, or

CA:=CM I 00 I SB I CAS
CAS. Note the use of "I" to mean "or"

L in the symbol ic notation for this micro-
operation.

+1 CA+ 1 Increment CA by 1

-1 CA - 1 Decrement CA by 1

C CAC Clear (i. e., set to zero) CA
-- ---- --_._--- ----- -------- -- ---- - --- - .. __ ... _---

Both the box labelled "Selector" in Figure 2.3. and the explanation of

the microoperation "L" in Table 2.2. state that CA can be loaded from

one of four possible sources:

1) Immediate d.ta within the Current Microinstruction, CM,

2) A 16-bit Output Register, 00 (discussed in Section

2.18.),

3) Bits 0 through lS of the Shifted Bus, S8 (discussed in

Section 2. S), and

4) From an element of a 16-bit wide, 16 element RG called

the Counter A Save Regi sters, CAS.

Thus the microoperation

CA:=37

loads CA with the constant 37 from a data field within the CM. While

the microoperation

CA:=CAS

loads CA with the ccmtents of the element of CAS which is pointed to by

the CAS Pointer, CASP. Notice that the CAS can be loaded with the

contents of CA thus _"owing one to save the current value of CA. The

four microoper~tions associated with the CAS and CASP are in Table

2.3.

9

"~~~;;-~*'_... ,1 Ii ,- RTF.1ii - D,-'Qjfjj tbt -~~-;,;;,,~~-' --~_~_~~~~---;:m--:,~~~",,-;o~.;.';-=-~ ,,---:-~~-_,_T,~~~;j~j£::-;;;~;;,,;i--;,~~~~j.:- fijr"'~'''-jWjnzr5T353f'iJiiiBf±tiW''~,'

10

Table 2.3.

Microoperations for control of CAS and CASP

Symbol ic Notation Microoperation

L CAS:=CA
Load the el ement of CAS pointed to by
CASP with CA

+1 CASP + 1 Increment the CASP by 1

-1 CASP - 1 Decrement the CASP by 1

C CASPC CI ear (i. e., set to zero) CASP
---- -- -- -------------_ .. _- _ .. -

We can test to see if CA contains zero. We wi II demonstrate the use of

this condition and the microoperations in Tabl es 2.2. and 2.3. in sub­

sequent exampl es.

2. 3. Bus Transport

Having introduced some elementary notions we will now examine in some

detail the bus structure, the registers and functional units attached to

it, and the control which can be exercised on these components. We

will construct the bus structure in a modular fashion - hopefully to

enhance the reader's understanding and to underscore the overall sim­

pi icity and homogeneity of the structure and its components.

Let us introduce the concept of a bus transport by considering a sub­

system of the bus structure consisting of the Working Registers A, WA,

Working Registers B, WB, and the Bus Shifter, BS, as shown in Fi­

gure 2.4. The exact nature of WA, WB and BS is not important to us

here.

,-~~-;-'q~_ '.;ti -, E I 'Ii - -$7 -st'- -1iIla- -.zi'i1i~~;o~->~.-);..,,--;--,',~--~;:;< __ ,~~~-:-"';';:"'-:;"~~"?A~fiif ... r·::.",::e,,,,;}-:-:';' .• :- ~"'~<A1'-(';~~P:;::~';" -~'';:;;~;W-f-:;::;--;:::-~~-:'-.,-''f"w..:.i;,..:..~~~~~~~liiIi~

11

Figure 2.4.

Sub-system of the Bus Structure

Shifted Bus

Working H L

2 Registers A u
ill
ill

(J)

Working H
If)

::J
Registers B m

The BUS is a 16-bit wide data path. The input to the BUS (its SOURCE)

is obtained from a bus selector which has eight inputs, two of which are

shown here. i. e., WA and WB. The particular input which is selected

as the SOURCE for bus transport may be shifted a specified amount in

the BS. The output of the BS, call ed the Shifted Bus, SB, can then be

stored in at least one of seven possible 16-bit destinations (called Bus

Destinations, BD, or DESTINATION). Two such BD's are shown in

Figure 2.4. i. e., WA and WB. We will in this report specify bus trans­

port information as we do in our microassembl er, viz,

DESTINATION:=SOURCE, BS Specification.

If the BS Specification field is empty, i. e., the BS is not to be used

(no shift occurs) then the bus transport is given by

DESTINATION:=SOURCE.

~~~;-&'i¥-t-- TJiiljjtJKf -t In 7UP:; - ~...4.-~-~~~~~~~-<~uFi.:~~~ii-"-';:::~--]"'J~'t-';:,"-~,,. ... ·-;.'l;:.;"';::::;:::-.. -a-"i'<~~~,," ___ .,;~ii;:~-'Si.<-;i>'o"iI~~W3(CTPI ~i "T-_*~ 



As an example, the bus transport WB:=WA has the obvious meaning of 

a register to register transfer from WA to WB. If a SOURCE is chosen 

to be transported but not stored in any of the BD's, the bus transport 

information is written 

SOURCE, BS Specification 
,. 

or 

SOURCE 

as is appropriate. The SOURCE may be stored in destinations other 

than BD's during a bus transport. We will learn what functional units 

or regi sters can serve as these "other destinations" as this report 

develops. If the SOURCE is to be stored in more than one destination, 

the DESTINATION portion of the bus transport specification is written 

as a I ist of destinations separated by commas, i. e. , 

LIST:=SOURCE, BS Specification 

or 

LIST:=SOURCE 

where 

LIST::=d1 , ••• , d n • 

The value of n and the units which can serve as destinations, d 1 , will 

be discussed later. 

2.4. Working Registers 

WA and WB, introduced in the previous section, are not single regis­

ters but each is a 16-bit wide, 256 element RG. Figure 2.5. shows WA; 

WB, not shown, is identical. 

12 

The first thing we wish to point out in this figure is that the WA Pointer, 

WAP, is a mechanism identical to CA except that it is 8-bit wide and 

not 16-bit wide. (Note the dashed-I ine box in Figure 2.5.). Therefore, 

WAP not only points to which element of WA can be used as a SOURCE 

':--~.i'>?~.:;.---, --.' "._,.;t~~_h<~ ---:':_oMlJ""~~i4W~ii.liiltt-:J: 



13 

for bus transport (or used as a BO), but also can be stored in an RG 

I 
+1-1 C 

L 

Figure 2.5. 

Working Registers, A, WA 

Sel. 

eM OD 58 WAP5 
~ 

Shifted Bus 
58(0:15) 

I 

L +1-1 C 

256 
Working 

Registers 
WA 

Bus 
Selector 

called the WAP Save registers, WAPS. This is identical to CA being 

saved. Also, as indicated in the box labelled "Selector" in Figure 

2.5. the WAP can be loaded from any of four sources: 

1) immediate data from the CM 

2) the least significant 8-bits from 00 *) 

3) the least significant 8-bits of the SB, *) and 

4) an el ement of WAPS. 

This is identical to the loading of CA. Thus the microoperations WAP:= 

37 and WAP:=WAPS have well defined analogous meanings. 

The WA (and WB) registers are not loaded by a microoperation but rat­

her as a result of being chosen as a BO in a bus transport specification; 

thus the loading of these registers is shown by the function "BO Load" 

on Figure 2. 5. Th is notation wi II be used in all subsequent drawings. 

*) WB is different with respect to 2) and :l in the sense that 
loading of WBP takes place from the most significant 8-bits 
of 00 and SB. 

~~~l\ • .ti·,- T .. ]j'jiiijIif--o..1"i"9-1i-:.i'~-~_- ~,~~~f·-:-"twji7iiir~~~\~~-~~·.\{~'~,_,~,-:;;';:.,;;f~~}'::tWii-t"i~* '# i~~ ~~~~~-H'-·&X--::--t¢i.ffr-&rfrisr'ftt~ 


There are 8 microoperations shown in Figure 2.5. ass()ciated with the

use of WA. These are I isted along with the corresponding microopera­

tions for WB in symbol ic form in Table 2.4. The actual microoperation

descriptions can be extracted from the previous tables and are not

repeated here.

Tabl e 2.4.

Microoperations for control of WA and WB

WAP:=CMI 000-7\ SB(Y7\ WAPS WBP:=CM I oDs-151 SB8-15 I WBPS

WAP + 1 WBP + 1

WAP - 1 WBP - 1

WAPC WBPC

WAPS:=WAP WBPS:=WBP

WAPSP + 1 WBPSP + 1

WAPSP - 1 WBPSP - 1

WAPSPC WBPSPC

2. 4. 1. Microinstruction Format and a Few Exampl es

In order to present a few exampl es we will introduce the microinstruc­

tion format which we use in our microassembl er. The format of a mi­

croinstruction is:

"A: bus transport; microoperations and data; microinstruc­

tion sequencing. ",

where

a) "A" is a symbol ic name for the address of the microinstruction,

b) "Bus transport" is a field giving the bus transport information as

expl ained previousl y in Section 2.3. ,

14

:~~:"~t __ 5JiLiijJ FWSY;U y'" i trW iihl_~~_~ :;.~"'~~_c ,-~ ~~~#-#~~~~\:;:o~-'~ ___ --_~~,,~ii,;~~-_~,,} ~---_ .Ccc-;"'-, ~~ ,_ ... ,,;--,~qh""""",,~ ·-·'~~.· .. <l"> ~~~ji'~l!i~rii"""' __ iflifiWiii;':--

c} "microoperations and data" is a field of up to 7 microoperations

and immediate data to be executed or used during this microin­

struction {the exact combination of microinstructions and data

which can be included in this field and precise details of the ti­

ming of microoperations are given in Section 3. o.}.

d} "microinstruction sequencing" information will be written in the

form

if c then At, el se At

which is to mean: if a particular selected condition c is true then

choose address At as the address of the next microinstruction

el se choose At .

I t is not necessary or appropriate at this point to list all of the condi­

tions which are testabl e by the system nor how At and At are functions

of the address of the current microinstruction, A. These matters wi II

15

be dealt with in Section 2.20. 1. However, conditions and address

functions wi II be introduced as needed for exampl es. If no condition is to

be considered, i. e., if At = At , the sequencing information will mere­

ly be written At {and not "if c then A else A II where c is an arbitra­

ry condition}.

Thus, the microinstruction labelled A ,

A: WA:=WB; WBP + 1; A + 1

means: load the el ement of WA pointed to by WAP from the el ement of WB

which is pointed to by WBP without shifting it during the bus transport;

Then increment WBP by 1; then obtain the next microinstruction from

A + 1 . The action associated with every microoperation specified in a

microinstruction is completed before the next microinstruction is execu­

ted. For example, in the above microinstruction if WBP had been set

to 9 before the beginning of the execution of this instruction, then WB9

would be the SOURCE for the bus transport. At the end of execution of

the instruction, the WBP woul d be set to 10. If, in the next microin­

struction WB were again sel ected as the SOURCE, then the contents of

WB 1 0 would be gated onto the BUS.

,;;~---- ~ c ;"-"tt..----. ·-M~f . ~mT ~-. ~-IRfi' ~sr -~--~;.-~~_::~-'"~- ~~-.M;~~~~-~~~~~;"';:-;'-,c,"'ii:_;!';-_';:':'ir:-~jo- __ :"-<';',., - '.i", ... ,~-j':'-"Ajliiiie'-~~o"#"";;;·1¥;-:-"~~~:;:;.-_-;:~~~i;Jii'·liilliliiMillii>,

16

In order to give an example of a microinstruction using conditional

branching, we establ ish the following convention for the testing of

conditions which will be used in all of our examples (unless stated ex­

plicitly otherwise): all conditions which arise as a result of bus trans­

port and microoperation execution specified by a particular microin­

struction, M, are testable in the next microinstruction to be executed

after M is executed. This means that all the conditions available or

changed during the execution of microinstruction M are "saved". These

"saved" conditions are those tested in the next instruction to be execu­

ted. Therefore, our microinstruction can be thought of being executed

in the following sequential way:

(a) save the conditions of the previous microinstruction

(b) execute bus transport

(c) execute microoperat ions

(d) execute microinstruction sequencing based on saved

conditions.

Let us introduce the notation that bit 15 of the WA input to the bus se-

I ector is testabl e, that is, bit 15 of the element of WA which is pointed

to by WAP. If we wish, for example, to test bit 15 of WA7, and if it is

set to 1, jump to the microinstruction label I ed BITON, el se continue

with the next microinstruction, we could write,

A-1:

A

A+1:

We could not write

A

WAP:=7

if WA(15) then BI TON el se A+l

WAP:=7; if WA(15) then BITON else A+l ,

according to our current convention. It is possible to conditionally

repeat the same i'nstruction. Let us give an exampl e of this. Assume

there is at least one register in WA which contains bit 15 set to 1, the

following four microinstructions will: search WA starting with register

o and transfer the first register of WA encountered with bit 15 set to 1

to register 0 of WB; then, store the address of the WA register which

was transferred in register 0 of WAPS; and then continue with the next

micro i nst ruct ion.

WAPC, WAPSPC, WBPC •

LOOP: WAP + 1; if WA(15) then SAVE el se LOOP.

SAVE: WAP - 1.

WB:=WA; WAPS:=WAP. •
We have introduced some standard defaults in this example:

a) If the bus transport field is empty it means that an unspecified

source is selected for bus transport but is not stored anywhere.

b) If the microoperations field is empty it means that no microope­

rations are to be exectuted during this particular microinstruc­

tion.

c) An empty microinstruction sequencing field implies the next mi­

croinstruction to be executed is that in A + 1 if the address of the

current microinstruction is A. If you wish to use comments these

must start with ". II (period).

d) Any instruction sequence shown is assumed to be located sequen­

tially in control store and the symbolic address name is used on­

ly when needed in the microinstruction sequencing field of some

other instruction.

e) The symbol. will be used to indicate the end of the group of mi­

croinstructions in the example.

The symbol ic names HERE-1, HERE, and HERE+1 are used often in

17

the microinstruction sequencing field to mean A-1, A, and A+1 assuming

the address of the current microinstruction is A. As an example, the

instruction labelled LOOP above could have been written

WAP+1; if WA(15) then HERE+1 else HERE .•

.:.~'~~,r ill EFT Vli(r , - @j~~~...i'-~-~::~ _--li;Q,,_~~-~ir~·-.,-~~;SJ'("-~~~~.,;;_co;o.."';~-=:"':;"~_~'~~'.t~::-~"~~~-';:>;'----:;;'--~'b~r:w."F'-·~T·rj[Wi.iI!iilM:f

Through the use of CA the assumpt ion that at I east one regi ster of WA

contains bit 15 set to 1 is not required. CA can be used to control the

number of elements of WA we will search. If we establish a routine la­

belled NONE which handles the situation when no element of WA con­

tains bi t 15 set to 1, then the code to perform the same task as rei ated

above is,

WAPC, V'lAPSC, WBPC.

CA:=255; TEST.

WAP+ 1, CA-1; if CA then NONE el se HERE + 1.

~---TEST:; if WA(15) then HERE+1 else HERE-1.

WB:=wA; WAPS:=WAP .•

18

The final example in this section uses the capabil ity of loading CA from

the SB. In the previous example CA was loaded with N-1 where

N(2~N~256) is the number of registers of WA to be searched. Let us

suppose that this number is in register 0 of V\B and furthermore that you

wish to save it in register 0 of CAS because it may be written over if a

transfer is made to WB. A poss ibl e code segment is,

WAPC, WAPSPC, WBPC.

WB ; CASPC, CA:=SB.

CAS:=CA; TEST.

WAP+1; if CA then NONE el se HERE+l.

4--=rEST:; CA-l; if WA(15) then HERE+1 else HERE-1.

WB:=WA; WAPS:=WAP .•

If the ~ address is HERE+l we will onl y write, from now on, if c

then At . Thus, the fourth instruction of the above example would be

written

WAP+1; if CA then NONE ••

-,~#.%, 1 ~ 7'3 ,.tlil jiiFifTf55?Ff'ffi3W5f -~!.i-~-~c;in:;ajj-Q.i"~F~;:'~ci;"';-~;""~~~;·'-;-~.,-.;;-~?iiiff'i- -?S~".,.~~~~';F. h -'. iflfL!ilili>i,.'Ij?TW3i.,e.,.-ii

2. 5. The Bus Shifter

The Bus Shifter, BS, introduced in Figure 2.4. and shown in more

detail in Figure 2.6. is a 16-bit wide right cycl ic shifter which can

be set to shift n bits, O~n~ 1 S. There exists a dedicated bit in each mi­

croinstruction to control the BS which indicates whether or not the

19

BS should be used (enabled) during the current bus transport. If the BS

is not enabl ed, no shift will occur.

10

11

od (3:0) .~-.I 01

em 12 (3:0] 100

",I.

"

l_. __ .

Figure 2.6.

Bus Shifter, BS

,'l"OJ --f bssg
register
group

<;<1.
;3

bus (15:0' J . bu, 'h'"", .~ -'sb (15:0) 'l15 or

If we wish to use the BS, the amount of shift can be sel ected from one

of three possible sources as shown in the box labelled "Shift Control" in

Figure 2.6., i. e., from

~~.. _ iWif'W ~~'$:l~J? .. .;;,..,.,:,;.~-~,_~~)fil!-u_a'-_- .~'c,i=~~R-:""'~~·-<;~·-"J.G"'-P<~..n~il~,~a:il __ 3iiZjjr·uy~

1) a data field in the CM,

2) the least significant 4 bits of the OD register,

3) an element of a 4-bit wide 16 element RG called

the BSSG.

20

Which of these four sources is used is determined by BSS. This is loa­

ded from CMS3(0: 1). Bydefaul t BSS:=CM, and you are advised to reset

the BSS if you change it. The bus transport specification

WA:=WB

means: take the el ement of WB pointed to by the WBP and store it in the

element of WA pointed to by the WAP without shifting is. While the bus

transport specification

WA:=WB,-t 3

means: take the el ement of WB pointed to by the WBP, shift it 3 bits right

cycl ic and then store it in the element of WA pointed to by WAP, assuming

that the BSS is set to select CM as the datasource. This will be assumed

to be the standard setting of BSS in the following. l

A 16-bit left cyclic shifter and a 16-bit right cyclic shifter are related

by the expression

where

Ics = 16 - rcs

Ics is the amount of left cycl ic shift and

rcsis the amount of right cyclic shift.

We can therefore write as a notational convenience

WB:=WA,'- 5

to mean the same th ing as

WB:=WA, -t 11

,,~~< If ,,-rWEt Tn Q7ir J.toWNi--;,?~,,~~~·w~ -~- W-~~·ri' • .;'¢F~~~~",~~~;'~.;d~"-:~t,,;;,-,",~·' -:;;::-;:-,~;,-,.~;"-~",-~(:~c~~~~~",",-"-,,,~~ii;i---;lifit;'~j:"ii'_6i1f-~_

21

'SX-

thus using ~(Ieft shift) or -+(right shift) whichever makes the understand­

ing of the processing cl earer. The m icroassembl er wi II do the proper

computation and insert the correct amount for right shifting in the data­

field.

The BS specification in the bus transport field of the microinstruction

is given by

[:} CM I oo{ \' I BSSG

The BSS-selector chooses from which source the shifter-control data is

to be taken, whether or not you indicate the source in the actual micro-

instruction.You can load BSS by the microoperation BSS:=CM 100 I BSSG.

Having seen how the BS is controlled and how we specify this control,

let us turn our attention to the BS register group Pointer, B~P. We

see in Figure 2.6. that the data whi ch can be loaded into the BSP can

also be loaded into an additional register called the BS Savel register,

BSS1. If, for example, we know in advance the address of a particular

register in the BSSG, which we will want to use as shift data (e. g. ,

some highly used shift constant), we can store this pointer in BSSl by

loading BSS1 from the CM,

BSS1:=CM.

Whenever we wish to use this stored pointer we can load it into the BSP

by executing

BSP:=BSS1.

Now notice in Figure 2.6. that the BSP not only points to the element

of the BSSG which can be chosen as data for the shift control unit, but

also can be stored in a register called the BS Save2 register, BSS2.

Suppose we are pointing at a particular element of the BSSG for the

current shift control data and in the next microinstruction we wish to

have register 9 of the BSSG to be used as shift data, but we do not

wish to loose the pointer to our current control data. The following mi­

croinstruction achieves this,

•;.,"-~~--=»t. tvW mrrsw FVWiltr ilrAt'; .. _~~-;:o..;,~-_~ ~~-;.o;,';"~-h~~~-1t_ ~";;;,#~:;-~-:"'/;;::~;~H'-~:::-::-:=-:-~':: ~<'f ;;!I;i~..,..·h

BSS2:=BSP, BSP:=9 .•

Thus at some later time if we execute

BSP:=BSS2

the pointer information which had been saved in BSS2 would be resto­

red.

A 16 element RG with the two Save re!;:dsters and Pointer as shown in

Figure 2.7. is a fundamental control element in the system and will

22

be used with many devices in the subsequent sections. It will be refer­

red to as a Standard Group (SG) and will be noted on drawings as such,

i. e., it will not be expl icitly be drawn out each time as it was in Figure

2.6. Each SG will, however, be given a name closely associated with

the particular functional unit to which it is connected as, for example,

in the current discussion the SG associated with the BS is called the

BSSG.

Figure 2.7.

Typical Standard Group

L L

Sel.

Sourc Selector

* The width of the registers depends on the particular selector involved.

~~:h":,!~'W~lB-. fiW· j_~IfifT1iM' .,~--.,. ... -~-~·~~;;-,ic~ ~~-:~~~~.lh:~~·~-~.,",M"'''';'',;,":.j'~''~ ;f,~"~=--:::~ji;-",c&->;';'-~~,,,"".,o.'-~~F-<~_~k."--4-0';~s.;! .. ,:;li~-L-]-_ .'oMMjp;~·;~-t.'ltn-~~.·.

Table 2.5, below, lists the seven microoperations associated with the

BS in their symbolic form; their meanings should be obvious from pre­

vious tables and the text. Note that the BSSG is loaded with the least

significant 4 bits of the SB i. e., SB(0:3).

Table 2.5.

Microoperations for control of the BS

BSP:=CM I 00 I BSS 1 I BSS2

BSP+l

BSP-l

BSPC
I

BSSl :=CM 100 I BSSll BSS2

I

BSS2:=BSP I
I

BSSG:=SB
- ____ I -

Let us assume the following information to be in WBP and WBP+l:

WBP-+hs VVB Adr 817 wA Adr o

WBP+l-+· 1S 1 L shift
Of "0 4 3[)ata 0

We wish to take a given WB register (WB Adr), shift it a given amount

(L Shift Data), and store it in a given WA register (WA Adr).

23

The following code wi II: Load the BSSG with the L shift Data, Save the

current WBP, load WBP with the WB Adr, Load WAP with the WA Adr,

transfer the WB register pointed to by WB Adr to the register pointed to

by WA-adr shifting it left cycl ic by the amount L shift Data during trans­

port, restore the old WBP, and then continue.

~~,~";:S:.1!iI'- nn'TWWZ35Wt9&i27t-~ 70 '--gm-It .:_~:-~- o-,;....",..,:.~~~, k+.w, -~ ~~~~~,:,:;;"~~-~~~_+ .. __ ~_~:;ii;-=~{«.,;-;.;.-,J.t::t.~;..-;~-~
-._"-;,,-,~.;,,,,,,--,,,,,...;;_~~;:.;._ ~\:::;:::;;-.I.~~~_;,~-=:;:;~_~~~iij'~-;ili:iiilt(.p:i;Z-

WB

WB

WB

WA:=WBI~

2. 6. Bus Masks

WAP:=SB, WBP + 1 .

BSSG:=SB, WBP - 1 .

WBP:=SB, WBPS:=WBP f BSS:=BSSG.

WBP:=WBPS.

BSS:=CM. •

Let us now expand the initial bus structure given in Figure 2.4. by

adding the Bus Masks, BM, as shown in Figure 2.8.

Figure 2.8.

Expanded Bus Structure

Shifted Bus

Bus Masks

Working
Registers A

Working
Registers B

24

The BM allow one to specify wh ich bi ts of the SOURCE (i. e., the parti­

cuI ar input to the bus sel ector wh ich has been sel ected for bus trans­

port) are actually to be transported. A mask is a string of 16-bits. If

bit i (05:i5:15) of a mask is a 1, then bit i of the SOURCE is to be trans­

mitted; if bit i of the mask is a 0, then the value ° is to be transmitted.

Since the BM are not an input to the bus sel ector but affect the trans­

mi ssion of the SOURCE, they are shown connected to the bus sel ector

with the symbol o(which we will interpret to mean "mask") and not

by the symbol) (which means "input"). WARNING!l! When the Bus-

mask is loaded it is the inverted SB which is, loaded into BM •

... ~_,.~~._-5 wfFWWT7W _ .an • fFFZE3737 -.. ~:;-'-,~~~~~~-_~~'-r>~.- ~~,.;:";;"",,,:-:;;':;;-,,i~;-..... -,*::;:~,,,,,~~~i;,~-i"~~;;l:;)l-<!' ,,_,_,- -rO'''~",,-....;s-<-;.. < ... :::" ;:,~¥.;" ''::<;'''-.!~.''~~~j~.; ..

The SOURCE is masked during every bus transport by the mask which

is specified to be

where

MA V MB

MA = an el ement of a 16-bit wide, 16 el ement RG

call ed the Mask A regi sters,

MB = an el ement of a 16-bit wide, 16 el ement RG

call ed the Mask B registers,

v = logical Iljnclusive orll.

MA and MB are shown in Fi gure 2.9. Upon dead start, the system is

5G
56
00

eM

Sel.

Figure 2.9.

Bus Masks, MA and MB

L +1 -1 C

5B(0:15)

Bus
Mask Registers

MA

Bus
Mask Registers

MB

Bus Sel ector

MB

such that the llno mask ll , i. e., 15 II s, is in regi ster 0 of MA and the

llbus cl ear mask ll , i. e., 16 O's, is in register 1 of MA. We wi II assume

this to be the case throughout normal operation of the system. One can

25

-s;~-:;j i .~ ww 75i?1i7375fffl %3'iJTFK5 ";.: ~·"'-:;..r~ ~-~~~~~iikP:..re; - :&:.~~"'~,l!:oi--,-~~ ,,~,"'.-:< ,~-;. .~-»» Jrd ,. --~ __ .w-~~.< -':'-"i-1;,-:;;;;;=:::~~;-S' .~. ,,..jJlltdliiidiil1t5d';:tp -:."

26

then look upon the pointer MAP as a switch for the use of the bus masks:

If MAP = 0 then the BUS is not masked, if MAP = 1 then the BUS is

masked by the mask specified by MB. This is, of cource, not the only

interpretation of the use of the BM but it is a convenient one and one

which we will normally employ unless otherwise stated.

As an example, with no sensible applications, assume we are represen­

ting very small floating point numbers in the following sign magnitude

format,

b~b!xponentlll~019 coeffi~ient 01

l 4sign of coefficient
si gn of exponent

Suppose the. following 4 masks are available in the first 4 registers of

MB.

MBO 1 0 o :

MB1 0 1 f---tl 0 ~ .0 .

MB2 0 ~ .0 1 04 to

MB3 0 • • 0 1 4 .1 i

15 14 10 9 o

The following code will decompose a floating point number found in the

register of WA pointed to by WAP and store the information as follows,

1) sign of the exponent in bit 15 of WBO

2) magnitude of the exponent in WB1(15:12)

3) sign of coefficient in bit 15 of WB2

4) magnitude of the coefficient in WB3(15:6)

MAPC.

MAP+1, MBPC, WBPC.

WB:=WA MBP+1, WBP+1.

WB:=WA, +- MBP+1, WBP+1.

WB:=WA, +- 5 ; MBP+1, WBP+1.

WB:=WA, +- 6 ; •
It is suggested by this example that when one is decomposing formatted

information (e. g., a virtual machine instruction) one may wish to co­

ordinate the use of the BS with the use of the BM. Let us therefore

suppose the sh ift constants 0, 15, 11, and 10 to be stored in the fi rst

4 registers of the BSSG. The above decomposition and storage could

be written as the following 3 microoperations:

; CA:=3, MAPC, BSS:=BSSG.

27

; BSPC, WBPC, MBPC, MAP+1.

WB:=WA ; BSP+1, WBP+1, MBP+1, CA-l; if CA

; BSS:=CM.

lc1 _,vi
then HERE el se HERE0\(.

•
The MA Pointer (MAP) and the MB Pointer (MBP) both of which were

used in the above examples are loadable either separately or together;

thus we can execute the microoperations

MAP:=CMI 001 SBI SG,

MBP:=CMI 001 SBI SG, or

MAP, MBP:=CMI 001 5BI SG .

The name of the SG associated with the BM is the Bus Mask Pointer

(BMP) Standard Group. The following table I ists the microoperations

associated with MA, MB, and BMP.

~.~'~"~~i¥. - -03:_,-_r ZP------liiFf -lYE -. $ -'liiiiii4 ""-'-~~~"';""""4-~ ~. ~~~::-:::f~~-$",-~~~j",:~fu",~,P:_~-.0'!7""-;'>-;':':~·k~.,,"';~~~.~';_~,,_;:;_,- ,~~;,,""-<;\~ -'1IihRk '0 ' ••.• -.-, !iii it'"' f~.~

Table 2.6.

Microoperations for control of the BM

MAP+l

MAP-l

MAPC

MAP:=CM I 00 I SB I SG

MBP+l

MBP-l

MBPC

MBP:=CMI 001 SBI SG

MAP, MBP:=CMI 001 SBI SG

BMP:=SB

BMPP:=CMI 001 BMPsll BMPS2

BMPP+l

BMPP-l

BMPPC

BMPsl:=CMI 001 BMPsll BMPS2

BMPS2:=BMPP

2.7. Postshift Masks

The Bus Masks, as described in the previous section, are appl ied to

the SOURCE as it is gated onto the BUS and thus before the SOURCE

28

is shifted in the BS. There is also a possibility of masking the SOURCE

after it has been shifted by using the Postshift Masks, PM, as shown in

Fi gure 2. 10.

~"'~*.·li; Oi T -Wt r 'U77WF3WW75WJTjj'ffiii>' ;.:; ~-?..-i~ -.c~~_~","""lii.~~>i~-~>~ __ -.~,:;...~ ;',4~-:;-,~-G";:;;:-:T-:-::=;' ~_,.-~;"-:i~-i--,.':;""~'~Z::-;,:.~;"':~-,o-: o~ Q 4i$Wvl\i.Ii.tiih~htli<~-

Figure 2. 10.

Expanded Bus Structure

Bus Masks

Working
Registers A

Working
Registers B

L

£
u
III

III
(/)

til
:J

en

Shifted Bus

Postshift Masks I---------..

Bus

29

One of the purposes of the Av1 is to appl y a mask to the output of the BS

which wi II mask off the unwanted IIcycl ic" bi ts and repl ace them wi th 0' s

thereby simul ating a logical shift. As an exampl e, if the bus transport

WB:=WA, ... 2

is executed with the postshift mask

l~14 .1~~ol

applied to the output of the BS, then we have taken a WA register, shif­

ted it 2 bits left logical, and stored it in a WB register. Similarly, the

bus transport

WB:=WA, -+ 6

wi th the mask

0000001 4----- ~-ll
5 10 9 0

applied to the output of the BS means a WA register is shifted 6 bits

right logical and then stored in a WB register. The output of the BS

is masked during every bus transport by the mask which is specified

to be

where,

PAY PG

PA = an element of a 16 bit wide, 16 element RG

called the Postshift Mask A registers,

PG = a functional unit called the Postshift mask

Generator,

V logical "inclusive or".

PA and PG are shown in Figure 2. 11. This is quite similar to the BM

where PG now takes the pi ace of MB.

WARNING!!! As with the BM, when PA is loaded from the bus, it is the

inve'~ted bus which is loaded.

CM

5G
58
00
CM

L +1-1 C

Figure 2. 11.

Postshift Masks, PA and PG

Sel.

8U5(0: 15)

eM 00 Undef SG

Postshift
Mask Registers

PA

Post shift Mask Generator, PG

Bus Shifter

30

~-~- ~z,:,~*'-iIi ~ ijj'-~ Ri -tli1I7**e r -~~_ ~>iIf -"iredf-'-AA ~~1ltii; -. ,,~ jljf-.-.,.. ~'l!li--.l'~f~~:-·;-~~-i~~~=!~~"~~_~-·-M iniiiMl!tr '-iH. '-•• Im-,.

31

The PG is a 32 word ROM which can be addressed through PGS. The

contents of the ROM is

Table 2.7.

Tabl e representing the READ-ONL Y-MEMORY

containing the 32 Masks for the PG

�-----------~I---------------------------------I
1 PG-DATA I MASK SELECTED IN I lsns15
1 DEC elNARY I POSTSHIFT MASK GENERATOR 1
1----1-------1---------------------------------1
1 o I 00000 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I... PG.-.O, PG.O
1 1 I 00001 1 o 1 1 1 1 1 1 1 1 1 111 1 1 1 I
1 2 I 00010 1 0 o 1 1 1 1 1 1 111 1 1 111 I
1 3 I 00011 1 0 0 0 1 1 1 1 1 111 1 1 111 1
I 4 I 00100 I 0 0 0 0 1 1 1 1 1 1 1 1 1 1 111
1 5 1 00101 1 o a 0 0 o 1 1 1 1 1 111 1 111
I 6 I 00110 I o 0 o 0 o 011 1 1 111 111 I
1 7 I 00111 1 0 0 0 0 o 0 0 1 1 1 1 1 1 1 1 1 I \ PG-m
1 8 I 01000 I 0 0 0 0 o 0 0 0 111 1 1 1 1 1 I
I 9 1 01001 1 o 0 o 0 o 0 0 0 0 1 1 111 111
1 10 1 01010 1 o 0 0 0 o 0 0 0 0 0 1 1 1 1 1 1 I
1 11 1 01011 1 0 0 0 0 o 0 0 0 0 0 011 1 1 1 1
1 12 1 01100 I o 0 o 0 o 0 0 0 o 0 001 111 1
1 13 I 01101 1 0 0 o 0 o 0 0 0 0 0 0 0 0 1 111
1 14 I 01110 1 o 0 o 0 o 0 0 0 000000111
1 15 I 01111 1 0 0 0 0 o 0 0 0 0 0 0 0 0 001

~

1 16 I 10000 1 o 0 o 0 o a 0 0 o 0 000 0 001 PG 16, PG.16
1 17 I 10001 I 1 0 o 0 o 0 0 0 000 0 0 0 0 0 {
1 18 I 10010 I 1 1 0 0 o 0 0 0 0 0 000 0 001
1 19 1 10011 1 1 1 1 0 0000000 o 0 o 0 0 I
1 20 1 10100 I 1 111 o 0 0 0 0 0 000 0 0 0 1
1 21 I 10101 1 1 1 1 1 1 0 0 0 000 0 0 0 0 0 I
I 22 I 10110 1 1 1 1 1 1 1 0 0 o 0 000 000 1
1 23 I 10111 1 1 1 111110000000001
I 24 1 11000 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 > PG .. n
1 25 I 11001 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 001
1 26 I 11010 1 1 1 1 1 1 1 1 1 110 000 001
1 27 1 11011 1 1 1 1 1 1 1 1 1 111 0 0 000 1
1 28 I 11100 1 1 1 1 1 1 1 1 1 1 1 1 1 0 000 I
1 29 1 11101 I 1 1 1 1 1 1 1 1 111 1 1 0 0 0 I
1 30 1 11110 1 1 1 1 1 1 1 1 1 1 1 1 1 1 100 1
I 31 1 11111 I 1 1 1 1 1 1 111 1 1 1 1 1 1 0 ~
1----1-------1---------------------------------1

The PG can generate the 32 masks required to view the BS as both a

logical and cycl ic shifter. As is seen from Figure 2. 11. the postshift

mask generation data can come from oneof three sources, eM\ OD I SG.

',~.~-_tc.-1'RQij FJJWFTF7i7'ND5t-" 7. 7R7J5 "*" ... ~:::~_*j;g;;e.~~~-.-~--~~1r-~- ~¥-~~~~.~> =-;:-:;-:..:'7:·h,.;::~t~M~~ .. -;:~..i.---:-::~~"';:-:-:::--;;;;-::r~;:--w~~~la--Ua-If - bI,';-

32

Which particular source is to be used as data for the mask generation

is determined by the contents of a 2-bit Postshift mask Generator Selec­

tion register (PGS) as shown in this figure and in Table 2.8. below.

Table 2.8.

Source of Data for Postshift Mask Generation

Contents of PGS Source of DATA

00 CM

01 OD

10 (undef)*

11 SG
---------- -"--------

If, what we will assume as standard, the PGS has been set to point to

the CM as the data source, then the PG data are specified in the "rr.i­

crooperations and data" field of the microinstruction in the following

symbol ic way,

where,

PG "arrow" n

n = the number of 0' s to be generated and the "arrow"

(.... \-+) indicates from which di rection they shaul d be

generated; 0 ~ n ~ 16.

Thus, the previous two exampl es could have been written (assuming PGS

and BSS points to the CM as the data sources).

WB:=WA, 2; PG+-2

WB:=WA, -7 6;' PG-76

Upon dead start, the system is sU,ch that the mask of all l's is in regis­

ter 0 of PA, and the mask of all O's is in register 1 of PA. This is

identical to the situation in MA. We will assume this to be the case

*) At the moment undefined

- _;;-~~d· nillit 'Y"iF fXUR8iis:-~~"'"·<""",-,,~ ~'--.¥~~&;w:>tr'fr>j: "'-&$1ifijir >jjj;::J.i&.-_~"';-:::::-~~"""'-4---"'_;"'" -_~,.~~. r¥-~~:.~~....,-.>4~e·..;;.,~"~;:;;..,,·;.,,, ... ,-;:~'(lf*(gj._·ft1in~ij'~~>!i!M"h{

throughout normal operation of the system. One can then look upon the

pointer PAP as a swi tch for the use of the Postshift mask Generator:

if PAP = 0 then the mask generator is not used, if PAP = 1 then the

postshift mask which is to be applied will be that generated by the mask

generator. This is, of course, not the only interpretation of the use of

the postshift masks, but it is a convenient one and one which we shall

normally employ unless otherwise stated.

Table 2.9. is a list of the microoperations associated with the PM. The

first half of this table deals with PA. The second half of this table

deals with the PG. The name of the SG associated with the PG control

is the Postshift Mask Generator SG (PGSG). Note, the name of the SG

associated with the PA pointer is the Postshift AB Pointer (PABP). It

is not di scussed here but in Section 2.28.

Table 2.9.

Microoperations for the control of the PM

Operations associated with PA

PA :=BUS

PAP:=CM 100 I SB I SG

PAP +1

PAP -1

PAPC

Operations associated with PG and PGSG

PGS:=CM

PGS +1

PGS -1

PGSG:=SB

PGP. :=CM 100 I PGS 1 IPGS2

PGP+1

PGP -1

PGPC

PGS 1 :=CM I 00 I PGS 1 I PGS2

PGS2:=PGP

33

;~i$~,_~.;;.,i-::-;ih;--il" 9if;. If - ----7iZi.' tilm n ~$jjKT i f.- ~""~+,~~~_~,,,_~_~~--~-< ___ ~;'~~~~';'l-':- ~-~,,~,~~_""'-~~,.,LC,;~~~ ~ ;'-~:"";-'i~~-C-","",,~'A<:;:T_<._·. ;;~"'-i-);~:~-' ~~~::-~-.~_~~~-

34

Let us extend the example of Section 2.5. in which we emulated a virtual

machine instruction which performed a register to register transfer com­

bined with left/rigth cycl ic shifting. As shown below, if we use the PG

we can execute an instruction which will take a given WB register

(WB Adr), shift it left/right logical or cyclic (Shift & Mask Data), and

then store it in a WA register (WA Adr). If the data for the instruction

is in the current WB register pointed at by WBP in the form

I

WBP -7 WB Adr WA Adr
I

15 e 7 01

0 0 Mask Lshift
Data Data

WBP+l -7

15 11 10 4,3 0

a possibl e code sequence woul d be:

WB,

WB, -74

WB

WB

WAP:=SB, WBP+l.

PG SG:=SB.

BSSG:=SB, WBP-l.

WBP:=SB, WBPS:=WBP.

PAP+l, PGS:= SG-. If SS: ': Sc;.

WA:=WB;r- ; ~y WB~_:.:=.YV6PSJ .. !* -..
~.".~- .. '" ~...-""~" , -'. ~,,~-

; pAPC./ PGS:= eM. ~s S"" en -
-,-----.-'''~<,." ''

Note well, there are two important assumptions in this example. The

first is that MAP = 0 upon entry to this code, i. e., a bus mask is not

appl ied to the source, and the second is that PAP = 0 upon entry to this

code, i. e., no postshift masking occurs. Indeed, we will make these

assumptions in all examples which follow (unl ess stated expl icitl y other­

wise). They can be summarized as follows: bus transport normally oc­

curs in an unmasked fashion; if a particul ar code segment requi res the

use of am asking facility it is responsible for leaving the system in this

normal state after such masking occurs.

--,;·,,;>~,~ .. ~~si#- r- W WZP"i37lM-s -1-.. -·$c"<>-.~~-;"'-""i:"'c-·~",-·.~--iN'_~.~;;'#-~~~_--if:*"'"'--~:'~~""'~<;~~-:;:';;~.;i~:-----~·~iliY-'~~_L_A.5,_~.~o-$\,;··;,,_~~>--;:-;~~~tw"'Mililiil_'fj~'f'Q-."

2.8. The Arithmetical and Logical Unit

We wi II now a:ld additional computational capabil ity to the bus structure

in addition to the shifting and masking al ready encountered by introdu­

cing the Arithmetical and Logical Unit (AL). The AL, shown in Figure

2.12., is a functional unit with 2 inputs which, for the moment we will

call AandB.

Figure 2. 12.

Arithmetical Logical Unit, AL

Sel. Bus Selector

35

6 bits are required to control the AL: 5 bits to select one of the 32 ope­

rations I isted in Tabl e 2.10. which this unit can execute on A and B

and 1 bit which specifies the carry-in bit into the AL for any arithmetic

operations.

~"",.-""",{-.... #s iii --. r !f $3 . 1IiFT J J r ill on j'. >e""" -'- ~",,·---"=et~ _j:." -~~jo~-::;:-~~':'~ ~4-r:-~~iai.-~~~::~1..}-l't~:~-:--:--

Table 2.10.

AL Functions

ARITHMETIC

A

AVB

AVB

minus 1 *
A + (MB)

(AVB) + (MB)

A-B-1

(MB)-l

A + (MB)

A+B

AVB + (MB)

(MB)-l

A+A

(AVB)+A

(AVB)+A

A-l

LOGICAL

A

A!\B

A!\B

all O's

AVB

B

AfB
A!\B

AVB

A=B
B

A!\B

all l's

AVB

AVB

A

36

* in 2's complement; the arithmetic operations are shown with the carry­

in set to o. If the carry-in is 1, then the AL Function is F+1 where F

is the specified arithmetic function. The logical functions are not affec­

ted by the carry-in.

;;";:~..l;*&-:Fw-rr.zrp .- ~-'~W5T-'~ -k = __ N- j --~'S>.<.k~~.,."",,",';'o_-~_ ,~_- __ '"-~->?-~~~~:-;-iiili:i~~,~~""'M'~'_C'",,_;,,.N;,i':,'h'~i" __ ~::-,;~,._".-:..>~-uj;....s",:,--, -,¥,;'--~-<--,;,,:c;;::;-~,~·~~.j.·ii>i1~'

37

The 6 control bits which specify the current operation for the AL are the

contents of the AL Function and Carry-in register, ALF, which can be

loaded, ALF:=CMlooISBISG, or set to the arithmetic addition operation

A + B and other standard settings. The SG associated with the ALF

is called the AL Standard Group (ALSG). The microoperations associated

with the ALare given in table 2. 11.

Table 2. 11-

Microoperations for control of the AL

ALF:=CM 100 I SB I SG

SET ALF +

SET ALF-

SET ALF B

SET ALF A - 1

ALSG:=SB

ALP:=CMIOOIALS1IALS2

ALP +1

ALP -1

ALPC

ALS 1 :=CM 100 I ALS 1 I ALS2

ALS2:=ALP

If the ALF is to be loaded with an operation specification from the CM,

we will note this symbolically merely by writing the required function

in the symbol ic form which appears in Tabl e 2.10. in the ALF assignment

statement, i. e. ,

ALF:=A + B

ALF:=A 1\ B

etc.

The AL is always running. If the ALF is changed in a microinstruction,

then the result of the newly computed function is available for bus trans-

.·~-'t--'~--.~;:.i5iii~ 17jIiTT'iQ'r,,-~,"*~-".jJ.J~,· ~_~~~~~~.A~d~~-;~~!:W-~~::--'C-~~-;-'~;~'i:5$~~--i~lii.i~,",,~~~,-.....;.io~~'" i'1nil%J4 .- a ·1-":tCiiistir.idijl!iiil~

port in the very next microoperation. Thus the microinstructions

ALF:=all 1 s, PAP +1.

WA:=AL; PG ~ 9, PAP -1 . •
will put a string of 71's in the WA register pointed to by WAP. The

1's will be least significant bits, bo, justified.

There are many testable conditions concerning the operation of the AL.

A few of these are

Symbol ic Notation Condition

AL resul t of AL operation all 1's

AL(O) bit 0 of the result of the AL operation

AL(15) bit 15 of the resul t of the AL operation

ALOV AI overflow (equivalent to a carry-out

during addition and a borrow-in during

subtraction)

Before giving examples of the control of the AL let us first discuss the

nature of its inputs, A and S.

2.9. The Local Registers

38

The Local Registers, LR, serve as the A input to the AL in the context

of the AL Functions shown in Table 2.10. The LR, shown in Figure 2. 13,

are 4 16-bit wide registers which have independent input and output

pointers. The input pointer, LRIP, points to a LR which can be used

as a SO for the current bus transport. The output pointer, LROP,

points to a LR which can be used as either the A input to the AL or as

the SOURCE for the current bus transport.

-,-.~~:ft" ~iiiif*i5 F iWTiZPiP 5_7.-- ~l'-j~-~_~ __ ~'~~~~~~~~~_~~~~~'-,",~-,,-. ::".-·.:;~~~c4r~_ -~~l_t_J~~"~ __ ~<_~_,;,~~"" ~:t~". tit "iWIi iii' Iiif lit T)~

39

Figure 2. 13.

Local Regi sters, LR

L +1 -1 C L +1 -1 C

OS(v:v+ll

BO Load

LRO

LR1
1--...----' Bus Sel ector

LR2
A Input of AL

LR3
o

Both the LR input pointer, LRIP, and the LR output pointer, LROP,

are incrementable, decrementable, clearable, and loadable with two

bits from the Doubl e Shifter, DS(V:V+l) , see Section 2. 12. The uti I ity

of this last feature will be demonstrated with examples when the Double

Shifter is introduced. Tabl e 2. 12. gives the microoperations associated

with the control of the LR.

--o:~~~~ .. ~~11J "IFWJZ fJIilKjf7$ TiKTii-'-'C-W-S Ci*,",,~·~-:·"o_oJ~'''- ~,--~ __ ,.~,><r", ... ",!",~J;.~~~~~.,~~.,:,~.,_=:=;-------- ------;-,;~::;;;:;:::;;_~~"".~~-4-~';__·~ __ >--'!¥r~-'<-'"' . <"",~~:irt, iJ~jf:rS!P-_~I"-*~~~i

Table 2.12.

Microoperations for control of the LR

LRIPC

LRIP + 1

LRIP - 1

LRI P:=DS(V:V+1)

LROPC

LROP + 1

LROP - 1

LROP:=DS(V:V+1)

LRPC

LRP + 1

LRP - 1

LRP:=DS(V:V+1)

The last four microoperations allow for the clearing, incrementing,

decrementing, and loading of both the IP and the OP simul taneousl y.

2. 10. The Accumul ator Shifter

The Accumulator Shifter, AS, serves as the B input to the AL in the

context of the AL functions shown in Table 2.10. The AS can serve as

40

a bus DESTINATION; but to be read, its contents must be gated through

the AL with the ALF set to B. The AS, shown in Figure 2. 14., is a

1-bit shifter which can shift left, shift right, be loaded, or remain idle

during the execution of any given microinstruction.

d=~"-_'~=4~ iil- w -, p-e' -I .- ii-s" i-~'o, ~~_r.i-: .• !,~ ~"' ~;~~:.~1~~~~"..,1>v~_~,.;:_,i-~<""""~'¥<'.· .~",_;i,~4~>~"'o ~~~-·_c

Figure 2. 14.

Accumulator Shifter, AS

eM OD 58 SG

Sel.

L C Load/Shift L C

Source AS(15) AS(O)
nco Input Input

Q Q 0
1 1 1
2 I AS(O) AS(15)
3 AS(15) BUS(15)
4 Undef SB(15)
5 DS(V+1) DS(V+1)
6 AS(V) AS(V)
7 VS(V) VS(V)

There are 2 interesting features of thi s shifter:

a) its variable width characteristic and

b) its connection to other el ements of the system.

The features are discussed in the following:

a) Although the shifter is 16-bits wide it may, in connection with eit­

her the 8M or PM, be viewed as being m-bits wide (1 ~ m ~ 16). This

41

is accompl i shed by having each of the 16 bi ts of the AS input to a sel ec­

tor (I abel I ed the bo - ~5 sel ector in Fi gure 2. 14). The output of this

sel ector (call ed the variabl e bit, V) can then be a possibl e input into

either the I eft or right end of the shifter, depending upon what particu­

lar type of shift one requires. When the AS is selected as a source

for bus transport by gating it through the AL, after the desired shift

, .. ~~_:<:..".<t.-:""_~J-~_- Ii -.;;p,r,.V . T- - t ;jWF;:-t-~~~_~j,-"._;~,, ___ } __ .;..~~~~~:.fqHiTja:.,~¥-,,*,.1i'.~~"""~";;';~-;-;: ~;....---~.;;;:-~~~~~~;-,';:"..::';:',; -~l:o,~..,,'j>i~r-_'-'~~~~

42

has occurred, the bits not consi dered to be a part of the shifter must

be masked off. This can be done either by using the BM or the Av1. The

width of the shifter is then determined by the contents of the AS(V)

Selection register, AS(V)S, as shown in the above figure and the use of

of an appropriate mask.

The AS(V)S can be loaded by the following microoperation

AS(V)s:=cMI 001 SBI SG.

Thus, for exampl e, if we wi sh to consider the AS as a 12 bit I eft cyc­

I ic shifter, we would execute the microoperation

AS(V)S:=ll

while making sure that AS(V) be used as the input to bit AS(O) during

the shift operation. Subsequent use of the AS as a source could be ac­

compani ed by use of the PG masking off bits b15 - b12 , e. g.

SET ALF B .

WA:=AL; P~4 •
b) In Figure 2. 14. it is seen that bits AS(O) and AS(15) can be filled by

one ofavarietyofsourcesduringashift operation. Which source is to

be used to fi II the vacated bit position is determined by the contents of

the AS(O) and AS(15) source selection registers, AS(O)S and AS(15)S

respectivel y. An examination of the tabl e in Figure 2. 14. shows that the

AS can be considered a logical shifter, a 1 IS fill shifter, a cycl ic shif­

ter, and a right arithmetic shifter. It can al so be connected to another

1 bit shifter, call ed the vari abl e width shifter, VS, to yi eld a long vari ab­

I e width shifter. I t can be connected to a 2-bit shifter call ed the Ooubl e

Shifter, OS, so it can be used in the merging of 2 bit streams into 1 or

the diverging of 1 bit stream into 2. I t can al so be connected to the BUS and

SB. These I atter input is of an experimental nature and uses wi II be

demonstrated in later exampl es.

~W..,.;.;,i,.~:;i-!&T7J.2iIINg;zs:z;qg; WifloMiirTaz S: .''#,**l.~:-' --;::", . .<.,;:-""-::--:,,,--,0 Ae~ ~-~"1" ~~,i.·,,;~~_~~'tM ifi'~r~-> .~~j ._..,-",~.r-~~""" , __ '.-. -

Thus to use the AS, one must load the AS(V)S to set the width of the

shifter and must load either the AS(O)S or AS(lS)S to point to the

source to be used as the input into the vacated bit position, i. e., one

must set what the type of shift is, e. g., logical, l's fill, long, etc.

That both of these operations need not be done each time the shifter is

used, but only when one is "changing" the width or type of shifter is

obvious. Table 2. 13. I ists the microoperations associated with the

control of the AS. Note the AS can be set to a logical I eft, ASLL, or

logical right, ASLR, shift.

Table 2. 13.

Microoperations for control of the AS

AS(O)S :=cMloDISBISG

AS(lS)S:=CM I OD I SB I SG

AS(V)S :=CM I OD I SB I SG

ASLL (== AS(O)SC)

ASLR (== AS(lS)SC)

AS(V)SC

AS(V)S+l

AS(V)S-l

There are 2 bits in each microinstruction which control the operation

of the AS: shift left, AS<-, shift right, A5-?, load, i. e., AS:=SB(O:lS),

or be idle. When the AS is to be shifted, the operation is put in the

"microoperation and data" fi el d of the microinstruction; when the AS is

to be loaded, the operation is specified in the "bus transport" field of

the microinstruction. As an example, the microinstruction

WA:=AL; AS<- .

stores the output of the AL in a WA register and then shifts the AS I eft,

while the microinstruction

LR, AS:=WB; WBP + 1 •

43

~~.> &dbi . ~'IJij' WE j(-IM iJili fR~""~ ~~~~~-~iai'_C·ifi:F;;)ii~-=-:~_~-·~~~~_~:--~~-'_·- ~~_-~!'l;' ~~--~~~"--'~--;::-~4iP~~~~._1_'Wtf jrihJi-;~

stores a WB in both the AS and a LR and then increments the WB poin­

ter. If the AS is not employed during a given microinstruction, it does

not appear in the specification of that microinstruction.

Having introduced the AL and its inputs, LR and AS, we now have

knowl edge of the expanded bus structure as shown in Fi gure 2. 1 S.

Bus Masks

Working
Registers A

Working
Register B

Fi gure 2. 1 S.

Expanded Bus Structure

'-
2
u
Q)

Q)

Ul
Ul
::J
aJ

Postshift Masks

Let us now give a few exampl es using these resources to demonstrate

the use of their associated microoperations.

44

-;.=",.-~.,;.-,:,t-';"'-~;I:"";~t iJIiij-z'§FrTT5RF't $I .. ~,,"' ':;:-:::.,;,;'~~-";;'~~>. -,- ""'~';'" ,~;;?-. ~~",,-:;,-~ ";"""~'>'-"'"':-&_"'t>-_~;Z~~_~"'o,- , ~ .. '.b-.-;-;:- ~;-. ' ;;,«#,~~~~~~.-,--,,::;-:-::,,-<--- ;'-';i'<!--.:ilt~.~~;=;'~5K-_---;-

Example 1

Let us consider WA as a stack as shown below

WA

Stack pointer • op
(WAP)

a

b

15 0

We wish to take two operands, a and b, and an arithmetical or logical

operator, op, from the stack and pi ace a op b on the new top of stack.

The following microinstruction sequence does this.

WA ALF:=SB, WAP - 1, LRPC.

LR :=WA; WAP - 1 •

AS:=WA.

WA:=AL.

Example 2

Let us again consider WA as a stack.

WA

Stack pointer • shiftspec
(WAP)

a

15 0

45

- '"~:-:::::;"=---:<-';~~~,""~", -;-4;",'l~·' ~""¥~i~~~~,,,,~;;@V-4~~-'"

We wish to treat the AS as a I eft shifter whose characteri stics are gi­

ven by shiftspec. We wish to shift a n-times and return the result to

the new top of stack after removing shiftspec and a. Let us assume

shiftspec to have the following format.

where

11:-~-~J~~k7j:Width 312 type o I

type = encoding found in the table of Figure 2.14

for logical, cycl ic, etc. shift,

width = width of shifter - 1, 1 ::; width of shifter::; 16

pgmsk = PG mask specification,

n = number of shifts - 1, 1::; number of shifts::; 16

The following microinstructions execute the desired operation.

WA AS(O)S:=SB.

WA, -7 3; AS(V)S:=SB.

WA, -7 7; PGSG:=SB.

WA, -712; CA:=SB, WAP + 1.
/.

46

AS :=WA; PGS:=SG, PAP + 1, SET ALF B.
~"

A9- ; if CA then HERE+l else HERE. cg -I

WA:=AL; PAP-1, PGS:=CM. •
2. 11. The Variable Width Shifter

The Variable Width Shifter, VS, is a shifter functionally identical to

the AS. The reason one is called the Accumulator Shifter is that not

only does it serve as an input to the AL, but al so it wi II serve as the

accumulator required in the real ization of the basic arithmetic opera­

tions (e. g. mul tipl ication). The VS can be a SOURCE or DESTINA­

TION for a bus transport. It is shown in Figure 2. 16.

---=-'-~~ at ~ ali r lXi1 5iW55Tii"-':"~:"';~~-"'-;-~~:cn, ~~~~~~~--"m.i=?:;iit-'itIl~~-",}.;;;~,;,;.,_~;~~;-:~~:- ~~-'_:"'~~~.<4-... ~.!,~".,,~_;-:-;;-~:~-~;\.f-_~",,_'-<-_.;_~~~~iii*~-ii"_ailliifb"iJil'_'>~r.~-

Fi gure 2. 16.
-i. ~ Variable Width Shifter, VS

eM 00 58 SG

Sel.

Source VS(1S) vs(o)
no. Input Input

a a a
1 1 1
2 VS(O) VS(1S)
3 VS(1S) BUS(14)
4 Undef SB(14)

I

5 DS(V) DS(V)
6 VS(V) VS(V)
7 AS(V) AS(V)

The microoperations associated with the VS are identical to those as­

sociated with the AS and are I isted below in Tabl e 2. 14.

Table 2. 14.

Microoperations for control of the VS

VS(O)S :=CM\ ODI s81 SG

VS(1 S)S:=CM 100 I S8 I SG

VS(V)S :=CMI 001 S8 I SG

VSLL (== VS(O)SC)

VSLR (== VS(1 5) SC)

VS(V)SC

VS(V)S +
VS(V)S -

47

"-""~~~.;~;~ all.M q--'W ~iI»I! - -i7.>. -rt'" ~="'- - ~-.o::-_&~ .. ,-" -+"ffl ~..j *",,,,"7 =~~-~...i.,~.u~~~""_",~~,,,,-,,. .. -o~,,,", .. ;;""·1'.'::~f'·-;;-- ,~-, >fC_~,~~_~".:,..~~_, --->---:"~-.I.'~""'~NF'~ti~<.fo~~':-

48

One of the important features of the AS and VS, as seen from the tabl es

in Figures 2. 14. and 2. 16., is that they can be connected together. Thi s

allows, for example, the AS and VS to be viewed as a "long" shifter

when coupled together. The microinstructions,

AS(15):=7, VS(15) :=7.

AS(V)SC, VS(V)SC. •
connect the AS and VS together so that they can be viewed as a right

cycl ic 32-bit shifter as shown below.

r--~AS -oH;---VS---:1
Just as with the AS, there are 2 bits in each microinstruction which

control the operation of the VS: shift I eft, VS , shift right, VS-7,

load, i.e., VS:=SB(0:15), or remain idle.

Assuming the previous AS/VS connection has been made, subsequent

execution of the microoperations

AS-7, VS-7

shifts this 32-bit shifter 1 bit right cyclic. Other "long shifters", e. g.

left logical, right logical, right arithmetic, etc., result from appro­

priate set up sequences.

2. 12. Doubl e Shifter

The Double Shifter, DS, is a shifter with functional characteristics

similar to those of the AS and VS, except that it shifts 2 bits at a time

and not 1. Bits DS(O) and DS(1) require input during a I eft shift and

DS(14) and DS(15) require input during a right shift. The DS is shown

in Figure 2.17. The DS can be a SOURCE for or a DESTINATION of a

bus transport •

• _j.':~ -", _FFREt TiKR'~f:li(d_-;i)~j~~'~ .• ~~-=..--., 'tift~~~~~?""_~:::='-~""'--;:;:'-=-~-N~4iifiiiri$~'-~~~""';';¥~:'-cl,~"'M*fle.TIl 'f "fOe&!

Figure 2. 17.

Double Shifter, OS

eM 00 SB SG

Source
Inputs Inputs

05(15) 05(14) 05(1) 05(0)

0 0 0 0 0
1 1 1 1 1
2 05(1) 05(0) 05(15) 05(14)
3 05(15) 05(15) BUS(15) BUS(14)
4 Undef Undef SB(15) SB(14)
5 OS(V+I) OS(V) OS(V+l) DS(V)
6 AS(V) VS(V) AS(V) VS(V)
7 BUS(I) BUS(O) Undef Undcf

--

The microoperations which are associated with the OS are directly

comparabl e to those for the AS or VS and are shown in Tabl e 2. 15.

Table 2.15.

Microoperations for control of the OS

DS(O:l)S :=cMI 001 s81 SG

OS(14: 15)S:=CM I 00 I S8 I SG

DS(V)S :=cMI ODI s81 SG

DSLL

DSLR

OS(V)SC

DS(V)S + 1

DS(V)S - 1

(== DS(O:1)SC)

(== DS(14:15)SC)

49

The bo - ~5 selector specifies two bits OS(V:V+1) as output, these may

be used in coupling the shifters, or as input to the LRIP and LROP­

pointers.

;::t,,-~_~~ ~£ijij:::ijjq3CFFSZ - ifF? fttiIW--~ ':#6-t'-.s;i,."" _~_"'"'" ,"'-;;::~~~_~~~~:s~~~"""_. ,.o,_",-.~~::--",,,--,,,.---·

50

There are 2 bits in each microinstruction which control the operation of

the OS: shift left, OS<-, shift right, OS~, load i. e., OS:=SB(0:15), or

remain idle.

2. 12. 1. Two exampl es using the shifters

The AS, VS, and OS are coil ectivel y referred to as the "Shifters"

whereas the Bus Shifters are not included in this term. The expanded

bus structure is shown in Figure 2. 18.

Bus Masks

Working
Registers A

Working
Registers B

Variable
Shifter

Double
Shifter

Figure 2. 18.

Expanded Bus Structure

L

2
u
Q)

Q)
11l
Ul
:J

OJ

Shifted Bus

Postshift Masks

Bus

--:;:::;~~,;i.~M~·- -en.tiijjEWRF" AlT-} ii" 'P t Ta -L~~~~r-,;.it -~.~_ -~-'~~~~~_" ~~4~~--,§§;.:..~~M"-N_:~o~: '-_ .,;.._::_,:,.~~,{~--~; ?;_: _~-:-=-~+-::::i,-- :::::'"'~*.- '~~_~~)O",«-__ ;;:~..;c~_;&,~p:.,,~~-·4-· '-'] n.PStrf:ar •• n-ii<j';

Example

Suppose we wish to count the number of bits which are set to 1 in the

WA register pointed to by WAP and leave this number in the same cell.

The following algorithm will do this

a) Load the LR wi th the foil owi ng constants

LRO:=O

LR1:= 1

LR2:=1

LR2:=2

b) Clear the AS {considered here as an accumulator}

c) Set the AL to addition

d) Transfer the data to the OS

e) 00 the following 8 times and then do f)

i) if OS{O:1) == 00 then accumulate LRO + AS in AS

if OS{O:1) == 01 then accumulate LR1 + AS in AS

if OS{O;1) == 10 then accumulate LR2 + AS in AS

if OS{ 0: 1) == 11 then accumul ate LR3 + AS in AS

i i) shift OS-7

f) Store the accumulated result which is in AS

The following microinstruction sequence accompl ishes this. It is assu­

med the PG data source is the CM.

OS :=WA ALF:=all 0 s, LRPC.

AS, LR:=AL; ALF:=A+1; LRIP+1.

LR :=AL LRP+1,. CA=7.

LR :=LR LRP+1, DS(V)SC.

I(LR :=A~, ALF:=A+B, LROP:=DS.
~

AS :=AL CA - 1, OS -72. LROP:=DS;

if CA then HERE+l el se HERE

WA:=AL

LRO:=O

LR1:=1

LR2:=1

LR3:=2

•

51

-".-~,-~~~;;.~~. --A<~~' :·£:jfm_Y~~ .. ~rr: .. &w.~~

52

The subset of the bus which is used during the counting loop instruction

(AS:=AL) is shown in Figure 2. 19. This may help in understanding the

algorithm and code.

Figure 2. 19.

Counting Loop for Counting Number of Bits set to 1 in a Word

Example 2

Double
Shifter

I...

E
u
Ql

Qi
1Il
III
::J

CD

Consider the contents of the current WA regi ster as a string of 16 bits.

It is desired to pack all of the even numbered bits (bo , b2 , etc.) in the

left8bitsof the current WB register and the odd numbered bits

(~, b 3 , etc.) in the right 8 bits of this register so that the result ap­

pears as

l-b~: I:>s b 3 ~ ~4" ... b4 b2 bo

--~~ilt:"",·,··-m snR~ b r jQ -"1 ., ... ~~~.\f.:.~~ ~ti., .,.otiJ~_~·-x .• ~fj ... a"'#}~~-~~-"'-:''''~~~'·

53

Because the OS, AS, and VS can be connected as shown below,

OS
DS(V+1)

AS

OS(V)
VS

one can accompl ish the stated requirement in the following way:

ALF:=all 0 s, LRPC.

AS, VS:=AL; AS(15):=5, VS(15) :=5, OS(V)SC.

OS :=WA CA:=7.

CA - 1, AS~, VS~, OS~; if CAAhen HERE+1

else HERE.

LR :=VS, ~8 ; ALF:=A V B.

WB:=AL •

...,. ~~:.~ -..-i-fl-tp"5'ffi5F" -- -"-;;tihib h#"_·~._ --:::::-:r::-:----=-:-.<{ -< :'~h--- "-"-'"*~';;~~¥~~~tt~.-.. ,

2. 13. The Common Shifter Standard Group

The Shifter Control Selector shown in Figures 2.14., 2.16. and 2. 17.

is the same selector. This is, perhaps, made a bit clearer in Figure

2.20.

Figure 2. 20.

AS, VS, and DS Control

eM 00 58 SG

Sel.

L e L e

L e Load!,-" .itt L e

54

The SG which is associated with this selector is called the Common

Shifter SG. Various shifter control data can be stored in this SG for

various shifter interconnections and then used in environment prologues.

The microoperations associated with the CS SG are shown in Table

2. 16.

....:'.,!-:~(~ - y-" WWWWR5WNf -,.-. int2irl7'k '-'--:- ,~, ~~;:" :j;~",~~{,-,"~~,-~~-~;"",.,.,~~~~~-~~-=

Tabl e 2. 16.

Microoperations for control of the CS SG

CSP :=cMI 001 sll S2

CSP + 1

CSP - 1

CSPC

CSS1 :=cMI 001 Sll S2

CSS2:=CSP

CSSG:=SB

in addition there are several microoperations which allow control of

the AS, VS, and OS to be executed in parall el. These are shown in

Table 2. 17.

Table 2. 17.

Parallel CS Microoperations

CSLL

CSLR

Notation

CS(O)S :=CMI 001 SBI SG

CS(15)S:=CM 100 I SB I SG

CS(V)S :=CM 100 I SB I SG

CS(V)SC

Microoperation

Set AS, VS, OS to logical I eft shift

Set AS, VS, OS to logical right shift

Load AS(O), VS(O), and OS(O:1) Source

register from CMloOISBISG

Load AS(15), VS(15), and OS(14: 15)

Source regi ster from CM I 00 I SB I SG

Load AS(V) , VS(V) , and OS(V) Sel ec­

tion register from CMloOISBISG

Clear AS(V), VS(V) , and OS(V) Selec­

tor register

-;"~,,-;i,;..q~c~-~;t 11 ---ww -T • 5f -r -u- E'illrtilli-'Ii"'i!rQjJIi!';·~';'~~,~",-,"_;;_~, -~_. -..... ~i.-~~,~~3W~2'~;¥~~;;~~,.4;~~<~~;;::~-,~_0<-·-

55

2. 14. Loading Masks

Associated with WA there is a SG of loading masks called Loading

Masks, A, LA. Associated with WB there is a SG of loading masks cal­

led Loading Masks B, LB. In what follows we will describe only LA;

LB is identical in function. The purpose of the loading masks, LA and

LB, is to be able t~ specify which bit positions in a working register

WA can be loaded as the resul t of WA being chosen as the DESTINA­

TION of a bus transport while leaving the nonspecified bits unchanged.

As an exampl e, if the loading mask

I .. ~ 0~-1 -1-1-1~~1
15 65 01

were pointed at by the LA pointer, LAP, then, when the bus transport

13-
W~:=AL

is execLJ:S.ed, bits SB(0:5) would be gated into the WA register pointed

to by W~P in bit positions bo through bs respectively while bits b6

through b15 would not change their value. When WA is selected as a

SOURCE for bus transport the mask LA acts in the following fashion:

if bit i (O:S:; i:s:; 15) of the mask is a 1, then bit i of WA is transmitted.

If bit i of the mask is a 0, then bit i which is transmitted is indetermi­

nate.

As an example if the loading mask

l:5 0 09 J 1 11 11 0 I
were pointed at by the LA pointer, LAP, then, when the bus transport

WB:=WA

is executed, bits 5B(0:5) would be gated into the WB register pointed

to by WBP in bit positions bo through bs respectively while b 6 through

~5 woul d be indeterminate.

56

;:d~~~~1J- ,"., iii 'W 7 at'. ! p -'_Si~-#>-~g~~<'_ ... ·-~_~ ~ jijif~~~~$-if'i;:--~~~~-ii~~;~~"'-<~~~-S;.-L-- - ,;'~~""ni-~~i~:¥,,~~,,;f- _.t ·.]~Hjjii2?it1'fm~-6-':-·'·

The relationship between the loading masks and the working registers

is represented by the symbol --® where the script 9-- in the mask

notation --@ indicates the special nature of these masks. Figure

2.21. shows the expanded bus structure with the loading masks added.

Figure 2.21.

Expanded Bus Structure

Shifted Bus

6us Masks

Loading Masks A t----+---m,.--=:-;--,---::--,
Working

Registers A

L cad i ng Ma sk 5 B J--------+--...,--=---:--,-----,
Working

Registers B

Local Registers

Arithmetic
Logical Unit

Accumulator
Shifter

Variable Width
Shifter

Double
Shifter

Postshift Masks '----

Bus

Figure 2.22. shows a more detailed sketch of LA; LB, not shown, is

identical.

57

~--:,,--~ __ --. jjij.iji "1 ctfj#'f-·~j-'~'-~t./'p~~,.;lr-'--_· ~ ... ~~~-,"",,~-~~-'-:)I,,~-~*),~~~~~ ~-:;-;;--;;"':-= ,,~ ___ ;~·~~,o..;; ------w~-'--,;"~~.~ i-,-.,~._,-~;; ~-,...c:,,;;:~~~~~,;

Sel.

Fi gure 2. 22.

Loading Mask Registers A, LA

L L

.., 58(0:15)
Loading Mask
Registers A

Inhibit Lines of
Working Registers WA

58

There are 7 microoperations shown in Figure 2.22. associated with the

use of LA. These are listed along with the corresponding microopera­

tions for LB in symbolic form in Table 2. l8.

Table 2.18.

Microoperations for control of LA and LB

LA :=5B I LB :=5B

LAP :=CMI 0011511 S2 LBP :=CMI003151 I 52

LAP + 1

LAP - 1

LBP+ 1

LBP -

LAPC ILBPC

LA51:=CMI 0011 511 52 LB51:=CM!0031 511 52

LA52:=LAP

NB! 001 means 00(0:3)

003 means 00(8: 11)

LB52:=LBP

Upon the dead start, the system is such that the "full load" and "full

read out" mask, i. e., 16 l's is in register 0 of LA and register 0 of

LB. We will assume this to be the case throughout normal operation

of the system. One can then look upon the pointers LAP and LBP as

59

sel ection swi tch for the use of the loading masks. If LAP=O then no

loading mask is applied to WA, if LAP r 0 then WA is masked by the

mask specified by LAP; similar statement can be made for LBP. This

is, of course, not the only interpretation of the use of the loading

masks, but it is a convenient one and one which we will normally employ

unless otherwise stated. When you load LA (or LB) from 5B you actu­

all y get -, 5B (i. e. the inverted 5B) into LA (or LB).

As an example, suppose we wish to place the high order 13 bits of the

output of the D5 into the I east 13 bits of WBO I eaving the hi gh order 3

bi ts the same. If the mask

l5~~- • ~3 11" ---~7]

is in LB9,the following microinstruction sequence accomplishes this:

LBP:=9, WBPC

WB:=D5, --;3; LBPC. •
This mask could have been generated by use of the PG and AL. The

code, {remember that we have to generate the inverted mask}

AL

ALF:=all 1 s, LBP:=9

PGS:=CM, PAP + 1.

PG"13, LB:=5B, PAP-1. •
generates the mask and stores it in LB9. It should be reasonably ob­

vious now how the loading masks can be used to store the resul t of

various data transformations as they are determined, e. g., in the im­

plementation of signed-magnitude arithmetic, the magnitude of the ex­

ponent, its sign, the magnitude of the coefficient and its sign can be

stored in a given word as they are obtained.

id:~",;~;.;<-- -~"---8;i2Ii!iJ It ali:! IT • -._-'"'j ZWTlSf._ ~~->d-;..i:"";:--~~-<:~-_'..:'.;ioo,;,.~ ~;;'_~~~~4R4.~,~':,"i. --~..:jo';:";.,,.J;..~~_.,:;_-.--~>.;-:--;;:;_; ,.;;:L-. c,;_~:;,,&;;;~; •. ~~-~'iC_-h. :M4,£~~;;>--4-;*,,"~¥f.F£riWzii~j3='-ffli~-~

We will henceforth assume in all examples (unless explicitly stated ot­

herwise) that LAP = ° and LBP = 0, i. e., that no loading masks are

appl i ed to either set of working regi sters. If a particul ar code segment

uses the loading mask facility it is responsible for leaving the system

operating in this fashion. The treatment of the loading masks then be­

comes quite identical with that of the bus masks and postshift masks as

stated in Section 2.7.

2. 15. The Parity Generator

60

The parity generator is a circuit which determines the parity of the 16

bits which compose the bus transport. It posts the resul t of thi s eval ua­

tion as a testabl e condition, the bus parity, BP, condition. If BP = 1,

the BUS is odd parity; if BP = 0, the BUS is of even parity. This condi­

tion can be used, obviously, in any processing wherein parity informa­

tion is variable, e. g., in communicating with devices which transmit

words of a particular parity. The parity generator functions during

each bus transport and has no microoperations associated with it. Sin­

ce its input is the BUS, we show it attached to the bus structure.

2. 16. The Bit Encoder

The RIKKE 1 is prepared for a Bit-encoder, BE, but this is not im­

plemented. In those places where BE has been used the value will be

undefined. For a detailed description se Shriver [7J.

-----:-~-::r.;,.:i~ ;:,;;::;~~~-W7ifL fa 1 i r-~--~ ·ii!f::ai;.,-~:~-~:~-,,~>,o,,:. ~:'~j;_-- ~. -~,.;..r_-~R~-;;:4~~~~~~"';;;~.e"ll;>i<<!&;" "' __ ",--_;->~~- -;::;-::----- '" ~~~~"'~_ .. -',::.,,_'-'7"-,_' ~;<"',' ~-~{,;~~.~-<~_$r:::~~~~"~-

2. 17. Input Ports

There are two input ports through which external devices may be con,..

nected to the bus selector. They are called Input Port A, lA, and In­

put Port B, lB. Up to 16 devices can be connected to each of these

input ports. IA is shown in Figure 2.23.; IB, not shown, is identical.

Undef

58
OD
eM

Sel.

Device

Figure 2.23.

Input Port A, IA

Data
from
Deviceo

,,; t-I -----,

Data
from

Deviceo

Devic€tf.
Input Port A
of Bus Selector

The particular device which is selected by the lAD register to be read

is pointed to by a Device Register. There are two conditions associa­

ted with a selected device:

a) Data available, I ADA, and

b) Mark-bi t set . IADM

All devices must be able to set the first condition. The second condi­

tion can be set by devices which can t,~ansmit two different sorts of

information, for exampl e control data and information. When a device

61

----=.,~~_~--iIIiW:if§l T -WT?Nik_;'-iiii-I~1IiI ijiir>,*",,*- -=~'~?:"~~',,",""-+~"-';'~-~
/_"'~~~~~~"';;:;;:~~:::;:-;-_~\-~-"';-4~%.~,:-><!h::,,,--'_~_~~W~-~tfiii;ti::::-;-

is activated the IADA condition is reset. The microoperations associa­

ted with the control of IA and IB are given in Table 2.19.

Table 2. 19.

Microoperations for control of IA and IB

IAA Activate Port, i. e., read IA

IAD:=CM 100 I SB *)

IADC

Load IA Device Register from CM\ODlsB

Ci'ec.r IA Device Register

lAD + 1 Increment IA Device Register

lAD - 1 Decrement IA Device Regi ster

IBA Activate Port, i. e., read IB

IBD:=CM 100 I SB*)

IBDC

Load IB Device Register from CMloDI SB

Clear IB Device Register

IBD + 1 Increment IB Device Register

IBD - 1 Decrement IB Device Register

As an example, if we wish to read a piece of data from device 9 on IB

and store it in AS, we can write the following cI assical wait loop:

IBD:=9, IBA.

AS:=IB; if IBDA then HERE+l else HERE. •

The expanded bus structure can now be shown as Figure 2.24.

*) The val ue of the fourth input is undefined

62

..... ,,~ Fa I.~- W fPTWZW§5¥iIfT7E&6iiw f "'(t· iiGm -¥$ '" ~~~".,.~. ~ ___ .~"'-h~~~~z-,*,~:tiS~"_~3-~~~:~-;::;;~_'-~;:+;-'- - ~-o..~~- .,_>fi·::ri.:~'{-'';';~~·"#~;:-''''~;'';;~~-NT , iii ~Titeni&ti tiIiP.:;:-

Figure 2. 24.

Expanded Bus Structure

Shifted Bus

Bus Masks

Loading Masks A ~ Working

Registers A

Loading Masks B ~t--...,.,.:-:------.
Working

Registers B

Variable Width
Shifter

Double
Shifter

Device Input Port A

Device Input Port B

.1

.1

'-
.2
u
~

Q;
Ul
00
~

In

63

Postshift Masks 1-1---,"""

Bus

~-;.fti 'Tit· ~-t rig" ($'1''' -f~~~, ~_~~-~_j,i"~~a-~~~~~~i:~~~".,.~,~ ... ~-.::iW)f -'i'~,f~A~_-Niilimilf'-:i-"-5~3i;;_W5W:~

2. 18. Output Ports

There are four output ports through which output to external devices

may occur. They are called Output Ports A, B, C, and 0; OA,

08, OC, and 00 respectively. They are identical in operation with

64

the exception that OA and 08 are loaded from the SB and can be selec­

ted as bus DESTINATIONS whereas OC and 00 are loaded from the

BUS and cannot be selected as bus DESTINATIONS, but must be loaded

by a microoperation. OA is shown in Figure 2.25; OB, OC, and 00, not

shown, are identical.

Undef
SB
00
eM

15

Figure 2. 25.

Output Port A, OA

Sel.

Deviceo

I ~ond: I
L

S
U
QJ

Acti.vate --1 ~
Device ~lo Deviceo Buffer ~Datato

n Deviceo

Output Port A
Register

QJ
u
>
QJ

0

J I Set Reset
I I Devic"ls

Data to
Devic"ls

The particular device which is selected for output is pointed to by a

device register. There is a condition associated with a selected de­

vice: space available, OASA. The microoperations associated with the

control of OA and OC are shown in Table 2.20. The microoperations

for OB are identical to those for OA and the microoperations for 00

are identical to those for OC.

,;;-;~~~~;," ";")'~'.; ~~~37RtiiL t_~I: .H6!i-:"'"~

Table 2.20.

Microoperations for control of OA and OC

OAA

OAR

OAD:=CM \ OD \ SB

OADC

OAD + 1

OAD - 1

OCA

OCR

OCD:=CM \ OD \ SB

OCDC

OCD + 1

OCD - 1

Activate Port, i. e. write OA

Reset condition on OA, selected device

Load OA register from CM\OD\SB

Clear OA Device Register

Increment OA Device Register

Decrement OA Device Register

Activate Port, i. e. write OC

Reset condition on OC, selected Device

Load OC register from CM\OD\SB

Clear OC Device Register

Increment OC Device Register

Decrement OC Device Register

Table 2.21.

Microoperations for loading of OC and OD

OC:=BUS Load Output port C from the Bus

OD:=BUS Load Output port C from the Bus

As an exampl e, suppose we wi sh to wri te out the output of the AL onto

device 13 of output port C. We could then write,

AL; OC:=BUS, OCD:=13.

if OCSA then HERE+1 else HERE.

OCA. •

65

There is one additional feature associated with the "activate" microope­

tion. Recall that on the input ports it is possible to test a mark bit which

is set by a device. Analogous with this, it is possible on output to write

out an extra mark bit in addition to the data. The device can, for examp­

le, treat this extra bit as a selector between two different modes of ope­

rations. The microoperations for output port activate are now given by

---=-,:;:~~;~,:<~ic.,~+i,~-~jTq- 5ZT5WfW~ it@r-"- ~-"- __ '" _ xY:i"C.J;%.' ,-,,~_ ->, :~~~~-i<'~~"'~:/~'

OAAl activate with mark bit set to 1

OAAO activate with mark bit set to 0

OAA activate with mark bit undefined.

Special purpose output Port D.

66

The Output Port 0 is dedicated for control, so far we have used the mnemonic

00 in a lot of the selectors (f. ex. in the BS standard group). This means

that all these units can be controlled from Output Port D.

Notice that since the port has been dedicated, all operations on ODD, as

well the operations ODA and ODR, has no effect. The only operation left

with an effect is

OD:=BUS

which will save the information on the Bus for subsequent use through one

of the sel ectors.

2. 19. The Bus Structure

With the introduction of the output ports in the previous section we

have completed a description of (with only very minor modifications)

the RIKKE-1 Bus Structure, the registers and functional units attached

to it, and the control which can be exercised on these components. The

Bus Structure is now shown in Figure 2.26.

Loading Masks A

Loading Masks B

Figure 2.26.

RIKKE-1 Bus Structure

Shifted Bus

Bus Masks

Working
Registers A

Working
Registers B

VariabJe Width
Shifter

Double
Shifter

Postshift Masks

L

2
u

Bus ~

Qi
UJ
Ul
~

m

Output Port C

Device Input Port A 1'1
Output Port 0

Device Input Port B ·1

Output Port A 1------. Device

Output Port B 1-_____ .. Device

t_~""ic~-*,~. R '-eM _ - liIliiMi i;'!:'_'_li."". ,,""-~.~~,*,-<' -"--~~: ,.,-:;;t ~~-, 4.~.~a~ -*J4;£~,~-,-",,_:;;,~.~~~;-' ';","~';""-_,~;~';;'·k,::.._,. ___ ,,~-.-

Device

Device

67

--
Let us summarize some of the information with respect to bus SOUR­

CE s and DESTINATION s. We have the following SOURCE sand

DESTINATIONs for a bus transport:

a) SOURCEs for Bus Transport

WA

WB

LR

AL

VS

DS

IA

IB

b) DESTINATIONS for 16-bit Load of SB with BD Load

MA
MB

WA

WB

LR

OA

OB

c) Shifters which can load 16-bit SB via dedicated bits

in every microinstruction

AS

VS

DS

Thus in the bus transport specification

LIST:=SOURCE,

the LIST can consist of at most 1 destination from (b) above and any list

of the shifters, i. e. ,

68

,_:;;;.~~.=.;. ~?WlW.F 1 'FW5VTff w" ~-;"'r~-:~:;--::;;·""-='."'=-=-~ ¥~.-~~_';"'('~~~~~E-;:·:<lJifM::: .'~~·_~""o.:-_,~f",,-1iJ,.L ' -.:. ~'.--:-~"':]·tic,*",;.~-;:-~ --,,~-:;;;~~·:Uh.i:Ai Yt~ir ___ th.i1_"tp d'.t'

69

BOb [, AS] [, VS] [, OS]:=SOURCE,

where the [] indicates the option of inclusion in the LIST.

Recall that the inverted SB can be loaded into LA and LB by execution of

appropriate microoperations and, the inverted BUS can be loaded into

PA, PB and the BUS into OC and 00 by execution of appropriate micro­

operations. Also, a subfield of the SB (normally a conti~uous string

starting with bit bo) can be loaded into various SG's and control ports

throughout the system by execution the appropriate microoperation. Thus,

many parall el loads of both the BUS and the SB may occur in any given

microinstruction.

There are three important restrictions on the above bus transport spe­

cifications:

a) the specifications WA:=WA or WB:=WB are not allowed,

b) the specification LR:=LR is only defined when LRIP f LROP,

c) one cannot use a mask (MA, MB, PA, LA, LB) and load the regi­

ster containing that mask in the same microinstruction.

d) it is not possibl e to shift in one of the shifters (AS, VS and OS)

while loading the same shifter (these operations are mutually

exclusive).

On the other hand the timing allows you shifting in one of the shifters AS,

VS and OS whil e using it as the source of bustransport. This wi II not affect

the transport, the shift will only change the old content of the shifter.

(The shift takes place after the transport).

2.20. The Control Unit

The control unit of the RIKKE-1 system, shown in Figure 2. 1. on page

5, consists of (1) a control store and (2) a microinstruction sequencing

capabi Ii ty. The random access control store consi sts of up to 4. 096

words of 64-bit wide, 80 nanosecond monol ithic storage. The microin­

struction sequencing is described below.

,~I>-~~ --5 215IJ2-___..__'ntx-". r-~ - a--w --"ei'&t'_-.-_:~ .. ,,:..:~.,~=~ ~·.~J'~~~-S-~~~~~~""':H..i'-i-C-o"~;~.:

70

2. 20. 1. Microinstruction Sequencing

The microinstruction sequencing hardware is a physical embodiment of

the "if c then At el se At " clause we have been using in our micropro­

gramming examples. This is accomplished in the following way. The

addresses At and Af are sel ected from B possibl e address sources. Let

A be the address of the current microinstruction and let B be data

which is specified in the current microinstruction. The B possible ad­

dress sources, which are explained in more detail shortly, are listed

in Tabl e 2.22.

Table 2.22.

Microinstruction Address Sources

A - 1 Current address - 1

A Current address

A + 1 Current address + 1

AL(A, B) A function of A and B as computed by an arithmetical
logical unit

RA+ B The contents of the top of a return jump stack, RA,
added to B

RB + B The contents of the top of a return jump stack, RB,
added to B.

SA The contents of the save address register, SA

. spare input (val ue is 4095)

These address sources are real ized by providing a microinstruction

address bus which is shown in a I imited form in Figure 2.27.

!

, ---:-.4-~:""'A-~ $;6rar ---'v ... -r~~~~~,~-;..';!~~ ~...,,- ~~~~~~~~~;'::; .• =~,_-;:~~,>-~j;:..-~ ~W:""'it'irl_'1--~;;';(i,,,::;::-~:'" ~ii-91~~~-~jjjr§it';,tGiiiif.JWq["'l!I!:~

Figure 2.27.

Microinstruction Address Bus (Prel iminary)

B

carry
;n

L

" u Current Address .
-~-- gj'~ r-- Return Jump- ~

1 Stack A 0 "0

-~ ~ Control Store

111 c;~~-f I ! -I Address Buffer

c
.~

u
~

5B(0:11)

One can see from this figure how the "if, then, else"-clause is reali­

zed. There are 3-bits in each microinstruction which specify one of

the 8 address sources of Tabl e 2.22. to be used as the true branch

address, denoted ~. There are 3-bits in each microinstruction which

specify one of the 8 address sources of Table 2. 22. to be used as the

fal se branch address, denoted At. There are 7 bits in each microin­

struction used to specify 1 of 128 conditions which are testable in the

system; the sel ected condition is denoted c. The state of the sel ected

condition c determines which source, At or A r , will be used to select

the next microinstruction address source. If c = then At will be used

to sel ect the address of the next microinstruction; if c = 0, then At will

be used for this purpose. When a microinstruction address is selected,

71

--t.:"'<~;<U!i-~,wi!iil'M' - ~ -ww;- W5fF+~$Hk'·,,·~:0.~. ~~-.~~~~;i" ~~t'" j;_--f6--~~Ii~_'<ji;~~"",~"",,,-,,- >--':":'~,~_'A~~~~·-~\~~~~. ~~~!i·lI~q~.itt"(l_rlrt.·-

it is loaded into the Control Store Address Buffer so it can be used to

fetch the microinstruction, and it is also loaded into the Current Ad­

dress register so that it can be used in the next address computation,

if requi red. The contents of the Current Address regi ster has been

used in previous exampl es under the symbol ic name HERE.

72

The address sources A - 1, A, and A + 1 are straight forward and need

not be dealt with. It should be mentioned, however, that Control Store

addresses are interpreted modulo the size of the Control Store. At the

current version of RIKKE-l the Control Store is 512 words, this implies

that only the first 9 bits of the address are significant.

2.20.2. The Control Unit Arithmetical Logical Unit

The Control Unit Arithmetical Logical Unit, CUAL, is functionally iden­

tical to the arithmetical logical unit which is connected to the RIKKE-l

bus structure except that it is 12-bits wide and not 16-bits wide. The

CUAL functions are identical to those of the AL and are given in Table

2. 10.The "A input" to these computations is the address of the current

microinstruction and the "B input" is data specified in the current mi­

croinstruction. The CUAL is shown as in Figure 2.28.

'-;.~;;:o.·<r·"f-"T 1. . F F"ift,Uifiii-- ~--->~~;~~ M~~~~"k : -~" ~ 50 _'tQN'"~~.!i,~*'~'''~''''''.''' --? -~;#~·~...a __ ~~~~'''$"n.~~~~~~'''''-,*~'MlsniIiQ utM)zri ... ;;.

CM
F4(4:0)

Figure 2.28.

Control Unit Arithmetical Logical Unit

SET SET
L A+B B

Current Microinstruction Address

A

,....----.. ..11 CUAL I ... Microinstruction.
.11 0 [Address Selector

•
carry-in (c or c)

B
Data from Microinstruction

73

First, note that the CUAL Function register can only be loaded from the

CM, J. e., CUALF:=CM. One can set the CUALF to add A and B, i. e.,

SCUALF + and also to the logical function B, i. e. , SCUALF B.

These are the only three microoperations associated with the CUAL.

Cnly 5 bits are used to specify the function; the carry-in, when requi­

red, is specified in another way. Let c denote the selected condition

used to control the address selection and let c be its negation. There

is a bit in each microinstruction, called the Carry-Input Sel ection Bit,

CISB, which is used to determine the carry-in as shown in Table 2.23.

Tabl e 2. 23.

Carry-in Selection

CISB Carry-in

0 c

1 c
------- -.------

----:;.~~u~-_!i.l~iiiQ BE WfiIiiE5-'ljtU!!J 7 -,-- .- Z737iif75ij;'- ~:""""~H~~~,,",';' ~-_~-'O-S:- -~~;...~#~->i~:.c~_'.;"¥~~i:cio.~~-;:~p;''''"'l,~,:.~",.:-_s~-_¥:::;;-:-;:=---~-

Example

Suppose the CUALF is set to A + B; this is a relative jump. If C)SB=O

the specification

if c then CUAL el se HERE

can be interpreted to mean:

if c then HERE + B else HERE.

Whereas, if CISB = 1, the specification can be interpreted to mean:

if c then HERE + B + 1 el se HERE.

Example 2:

Suppose the CUALF is set to B; this is an absolute jump. This is a lo­

gical function and not affected by the carry-in.

if c then CUAL el se CUAL

can be interpreted to mean:

if c then B else B.

In our microassembler, the specification of the CISB will be given im­

pi icitly. If one chooses the CUAL output as microinstruction address

source, we write

CUAL + Carry-in.

74

Choice of this specification as either an At, or At will dictate the setting

of the C)SB.

j~;~.;'";:~""jit WFW -, m- F wce· !{t" -""Jt,,","v- ~"'~~-":4 .. ~.:-!'~-~ .-.,-- ~~~~i'Jl;~~.::~~",,~",.,~~~-''''''-'';;';'- ------; _.~X_". "..,;~~~~:;:~::;",--:~~~~::-- -iiWi-~:;;--i\liii--ffij:jiijfiltf5iiii ,-'pi:-;;;

For the fi rst interpretation of Exampl e 1 to be val id the specification

would have to be written

if c then CUAL el se HERE

whereas if we meant the second interpretation we would have to write

if c then CUAL + 1 el se HERE.

It should be obvious that the specification

if c then CUAL + 1 el se CUAL +

is an exampl e of a microinstruction sequencing specification which is

imcompatible with the specification capabil ity described above. Indeed

75

if one wished to choose the address specification CUAL + 1 irrespective

of condition, one merely need write

CUAL + 1

in the microinstruction sequencing field of the microinstruction. This

woul d have the same effect as writing, for exampl e,

if TRUE then CUAL + 1 el se CUAL.

where TRUE is a manifest system constant set to 1. There is also a

manifest system constant, FALSE which always has the value O.

In order to complete the discussion of the CUAL we must discuss the

specification of the data B. There are two 6-bit fields in the microinstruc­

tion which we shall call T and t . T and t are input into a function box

which makes the computations shown in Tabl e 2. 24. There are 2 bits in

every microinstruction, called the B-Input Selection Bits, BISB, which

determine which of these computations will be used as the B data, if re­

quired, in the current address computation.

,>,,~,"~~~~;iI:' ·ditf ~T lJliiii51iiiili'llmrr!i'iFf ·1--..... -.~:;;.~"'"';-f:o.,--"~"" ~v-.~¥. ~'...:o' __ "$$G:~-*~~~~~"""_::o,o.W~'~-7i.";'!~,...,,, 'Z.~-"~·-'l~s~"-,~_-,~,,~-y~';"",,",;;,,.,;L~·i'¥~."i'[i;l·~-.

Table 2.24.

B data Selection

BISB B data

00 0

01 t . t
sign

10 TO

1 1 Tt

The notation t. t means the 12 address bits are given by sign

It; t5 t5 It; It; It; t5 t4 t3 t:a t1 to ,

i. e., in IIsign extended" form. With the CUALF set to A + Band

BISB = 01 we then have a relative addressing capability of ± 32. The

notations Tt and TO denote concatenation.

In our microassembler, the specification of the BISB will be given im­

pi icitly. One specifies the B value expl icitly as a decimal number in

the address specification and this will dictate the setting of the BISB.

We will hence forth write the CUAL specifications as

CUAL (A, B) + Carry-in.

76

Both CU and A are redundant information since this is written in the

microinstruction sequencing field of the microinstruction and we will use

the shorter form

AL(B) + Carry-in

where B is a signed integer, -2048 s B s 2048, when combined in an

arithmetic function with A, but may obviously lie in the interval

o s B s 4095 when used for absol ute jumps.

~,,-;:;"-~-~ir~.m*)."f7iV_r·~ .-r -.,5_' jj'; "-"&l'a"_~.-_~~;-!,"-",';..",f'~: ~p..:<~~~i.~~~~~~~';;_-.-~_~~~.oO-~-::~~:Ki~~-.r-:;".;.;,.,: >i;.'-':~~~~'L"":~""'O-..,.~;O:~:~-t,,-"';~~~~~.~'-";.1J?i'ii!nLCf~~i!'I:"",

Example

If the CUALF is set to A + Band BISB = 01, then the specification

if c then AL(-18).

can be interpreted to mean

if c then HERE-18 el se HERE + 1.

Example 2

If the CUALF is set to A + Band BISB = 01, then the specification

if c then AL(12) el se AL(12) + 1

can be interpreted to mean

ifc then HERE + 12 el se HERE + 13

thus giving a conditional branch to one of two sequentially located mi­

croinstruct ions.

2. 20. 3. Return Jump Stacks A and B

There are two return jump stacks associated with the microinstruction

addressing facil ity. They are call ed RA and RB. Each is a 12-bit wide,

16 el ement RG. RA is shown in Fi gure 2. 29. RB, not shown, is i dent i­

cal.

77

_ ~:;ti."!, ,,,,,,~ . b WrWWTJ1 t"f' -':' __ il:~~~::;,","'-=i-'-:"'~_ .~~~~~U-:i--.~~~;', ... ~<;o-~...,,-~~~-,-~,· ,,_~-~;"'~~Eil!i~:;:::;:~£-F>~~$.'~- ~i(ilffiii!'*'llif~ist\irt:-r:b-"ffl~:lia_:"

Figure 2.29.

Return Jump Stack A, RA

Microinstruction Address Selector

B

Data from Microinstruction

The microoperations associated with RA are shown in Table 2. 25. The

instructions for RB are identical

Table 2.25.

Microoperations for control of RA

Notation Microoperation
on fig. 2.29. map

+ 1 1\ (L) RA t Increment RAP and then load RA with the
address of the current microinstruction.

- 1 RA t Decrement RAP

c RAPC Clear the RAP
------_. ----

Whenever the top of the RA stack is used in the computation of the ad­

dress of the next microoperation, the microoperation RAt is executed,

i. e., the stack pointer is automatically maintained any time something

is added to the stack or whenever the stack is used in an address com­

putation. The use of RA is specified by writing

RA + B + Carry-in.

78

--;-:-~~~..;i -_II K5VTPWiWWWTPifiGi7Q? ~7-,;i';"~'~':"~~~-_=i:-::-;_~:':;;'~ ,<~~.:,.~..j,.~~~~- §~""~~;~~"''--''''-:CV~_ ""~ ~,~. ",".-:-:-;-::::- ~~.~-:r~~~:~:;:~-. .:.-::-~.-i;~1#--,~,,~,;~.) : t, [Ctl ff :~iI£""

79

This is seen immediately from Figure 2.29. The B data and the Carry­

in selection are exactly the same as those specified for the CUAL. The

specification RA + 1 or RB + 1 wi II be interpreted to mean B = 0 and the

carry- in = 1.

Example 1

Suppose we are in a routine at step n and wish to jump to a routine at

step n + m. At step j of the second routine wi sh to return to n + 1.

Assuming the CUALF:=A + B we could write

n: RAt. AL(m)

m:

j: RA + 1.

Example 2

It should be noted that the availability of 2 return jump stacks may faci­

I i tate the impl ementation of coroutines. For exampl e, the microinstruc­

tion

n: RA t. RB + 1.

stores the current address in one stack while simultaneously using the

other stack as a source in the computation of the address of the next

microinstruction.

Example 3

A conditional return entry point can be obtained by using the specifica­

tion

if c then RA + B + 1 else RA + B.

~""''"8· "G3 IT .',. <~-1-"" rio;.Ji:~~",,-.;...~_>-:;-~-:-~. ~~: ~.;,;~:; • ..".c-=.>'-~;:~.-..i.,*,-~~·i'iiii:¥t.'Ui,;~<;:;:-.,~wp~::,-------:·_c "~~~·~;.";- ... 4;:"-~.<-·-""~~i,,,s-¥."~~1;')jjr'dt'ilJ.t !'il!blffir~~.

2.20.4. The Save Address Register

The Save Address register, SA, is shown in Figure 2.30.

Figure 2. 30.

The Save Address Register, SA

L +1 -1 C

i ~ ~ l r-. Microinstruction
SB(0: 11) ·111 SA 0 Address Sel ector

The microoperations associated with this register are shown in Table

2.26.

Table 2.26.

Microoperations for control of SA

SA:=SB

SA + 1

SA - 1

SAC

SA provides a data path between the bus structure of RIKKE-1 and the

control unit which control s the transactions on this structure. I t can be

used, for exampl e, during the loading ()f control store. (See Section

2. 20.6.).

80

,~:~;:.--~~,-;;-!. lwar iii ltC;'::~"'i4io~::';"'-<J~~, ~,".M~g-i%-~":: -°ii;--i:-:'-;,:p-ri~'";"~-. __ ",~"-",,".-,,,~b_~~_:"'~~~~~' -~t~':''''''~''';:;..o;"",,~<..:~~~ i?'f-i,,-tjifwMli-jf-" tlIn'rMiiili~ Ez. ..

2.20.5. The Microinstruction Address Bus

Having gained insight into the nature of the various address sources

which can be used during microinstruction sequencing, we can now

present a more detai I ed picture of the microinstruction address bus

81

and it is shown as Figure 2.32. Because the number of control elements

is small, they are al so shown on this fi gure.

The microoperations associated with the control unit are brought toget­

her, for convenience, in Table. 2. 27. All but the last microoperations

have been explained in previous sections. The CS Load operation is

di scussed next.

Table 2.27.

Microoperations associated with the Control Unit

SA:=SB

SA + 1

SA-

SAC

CUALF:=CM

SCUALF B

S CUALF +
RA t

RA ~

RAPC

RB t

RB ~

RBPC

CS Load

LCC

-:-;~~~" l'!il:,?TR =5f1'NUFY~,,~~-~i:;i. -~,~~X4;£':--ii«1~if~-;'-'~~;";""';~'?":-Ch"_';;---'-<""-'..:'---;~4~~~~~:Wj;~;;';;'~'~.1t"ijr~~'~l&r'liI'''Mit''''-'i:1ce.;'i~',.i:",i

82

Figure 2.31.

Microinstruction Address Bus (Detailed)

)II

~.-H -1

1 L
Adder

0

Tt
B H +1 r t _ t

Adder
BISB

Sign
SET SET

TO ~ AlB i * CM Function l J Arithmetical

~ L rl Current AddressJ

~~
l Logical Unit £

f u •
+1 IU -.
Jr J..

III
~

RA H Return Jump ~ • Pointer Stack A Jr L

" l }- " J Control Store J Adder 4
-1 c L Address Buffer

r$~
-.1 0

+1 IU u
0

~ J 1:
RB Y Return Jump I ~

c
Pointer Stack B .. 0

L

I ~
u

Adder i
CSB T J elSB

Carry-in
Selector L

~ SBlo:l1)

~ ~ i1 f ~ £
6'-' u •

Save Address ~ :;::-. " -g III
c

8 2
~ " -.t. -.t - c

0
External

J-~r
...., U External

Device -

RB I-
RA

Selector I
A, A,

the address selector bits are decoded to determine if RA or RS are selected.

T4~~]if T -'JIiSijI -rW: > ~-"',,"'_:""'.="'«}..:..-':~~~> ~_.~",:L_-~=at~-.. ..;".~...,..,.._,~"-., ;-:;:~;..";,;.;,~",,, ·,"~,~'~-"-:"'lS-' >~S;.tMEMl~r:~-WA~D!I' -

2.20.6. Control Store Loading

Control Store has both an address and a data buffer, as shown below

in figure 2.32.

Figure 2.32.

Control Store

t CS 1 115
CS

a I llAddress Buffero Data Buffer

63 a
Control Store

CS
(4096 words)

83

The CS Address Buffer is loaded from the Microinstruction Address Se­

lector as shown in Fig. 2.32. The CS Data Buffer is actually Device no. 0

associated with Output Port B.

Since the Output-Port is only 16 bits wide and the Control Store is 64

bits wide, the loading of 1 Control Store word takes at least 4 microope­

rations. Associated with theControl Store is a Loading counter, LC. The

LC indi cates whether the next word loaded shoul d be di rected to bi t 0-15

16-31, 32-47 or 48-63 of the Control Store word pointed to by CS Ad'dress

Buffer. The load counter is automatically increased when the CS Load

microoperation i s executed. Furthermore one can clear the LC by the

microoperation LCC.

Let A be the address of the current microinstruction.

The mi crooperation CS Load, if executed in the current microinstruction,

can be interpreted as follows

4tJ;;;., _:;;~',,,,,,:.';"'~;;-~~';=:-~~*_:;'~i-~?~~,,-~;;'<~'-~::~j;-,.,~J-,,-.:.-~" -- ;:-':::;:-;j~th-i";~~",,,>~:-~, ~~i~~~-'~,~lf"S1i~t.~:fI$Tfljr'!iiii£,~

CS Load ~

Load the content of the CS Data Buffer into the bits indicated

by LC of the Control Store Location pointed to by the CS

address Buffer. Increment LC and then choose A + 1 as the

address of the next microinstruction.

Example

Load the contents of WA 1 - WA4 into the CS storage Location specified

by the rightmost 12 bi ts of WAO

WAPC, 080:=0, CA:=3.

SA:=SB, WAP+1

LOAD: OB:=WA; if OSSA then HERE+1 el se HERE.

OBA;

CS Load; SA.

WAP+1, CA-1, if CA then HERE+1

else LOAD.

2. 21. Control Panel Swi tches KA and KB

•

84

KA and KB are two switches on the control panel which can be set/reset

by the operator and tested as any other condition in the microinstruction

condi tion part.

2.22. Internal Flags KC and KD

KC and KD are two flip-flop's which can be loaded, reset and tested in

the microoperation. Fig. 2 .. 33. shows KC, KD not shown is identical.

--:~,-~~":;':"i-:"~ .. "",,,-~~WP.Filt -JII-WC v,w,;t&'t tidjC---f-~k~"'-'''''''':::_-:C.;,,-' ,~~",.>,j~ '-~< -,0-~~::-~~~_:;;;;::=::~.~_~ b~;,;~;.r~ ~,<...- ~;_:

Figure 2.33.

Internal Flag KC

L Set C

Selected
KC condition

KC and KD can be tested as any other condition in the microinstruction

condition part.

The microoperations associated with KC and KD are

Tabl e 2.28.

Microoperations for KC and KD

KCC clear KC

SET KC I set KC

85

KC:=SC load KC with selected condition

KDC cl ear KD

SET KD set KD

KD:=SC load KC with selected condition

;-"'~h',"';. < -~lIt_ ,iii~' ~- jfijjSlr'titt· _-'~. Hilt Jt",s~,",,~~::',,~; .;7",,",,,~_ ~ -"If§.J~-4Z~~j..~~~~-~\i:~.:!c:'''''';:~:'~'''-il~~-:;;~':;-> -'~-':-;-':;'--~--';"~~w~_'=~_.~~","~->'~~_'~w..-~ 'itilfj-~~i-f~-~~;-s, ~-

2.23. The Conditions and Condition Selector

There is the possibil ity of testing 128 conditions in the system. At this

writing there have been 100 specified, leaving a reasonable amount of

expandabil ity in the system. The conditions and their symbol ic notation

are given in Tabl e 2.29.

The conditions in this table are grouped according to the functional unit

with which they are associated. For convenience, the units are listed

in alphabetical order.

86

;·~~r"'~'4' II W "WII }t>if:t~,,-~~~;.,i.~~' _~< __ "'~~i;-s~"""~~'~;"""''''''~'''---S' ;O<C"_o "'-~-~~'-";.~~~'.:li<¥.:~~:Isii·'~"""idiijftj'C5?"I---r-~i·,:-nf __ ljj;~,·

87

Table 2.29.

Condition List

Unit Symbolic
Condition

Notation

AL all bits AL(O: 15h=1

ALOV AI carry-out bit

AL AL(O) bit 0 of AL input to bus selector

AL(15) bit 15 of AL input to bus selector

TWOOV 2 1s complement overflow

AS(O) bit 0 of the AS

AS AS(V) the variable bit of the AS

AS(15) bit 150ftheAS

BP BP BUS parity, BP=l => odd parity

BUS BUS BUS(O: 15) == 0

CA is CA zero

CA(3) bit 3 of CA

CA(4) bit40fCA
CA CA(5) bit 5 of CA

CA(6) bit 6 of CA

C ASP OV CASP == 1111 (CASP overflow)

CB is CB zero

CB(3) bit 3 of CB

CB(4) bit 4 of CB
CB CB(5) bit 5 of CBJ

CB(6) bit 6 of CB

CBSPOV CBSP == 1111 (CBSP overflow)

RAPOV RAP@lll 1 (RAP overflow)

RAPUN RAP == 0000 (RAP underflow)

CU RBPOV RBPa.::Y111 (RBP overflow) I ~_I
RBPUN RBP == 0000 (RSP underflow)

CUALOV CUAL overflow

• -",-,;,i.-,.i;_~'<~1 55" BiiL$ti ji,t'f'C §"·l';:*!I,,,,~.,,.~~~~-;~ -·~~t-~c" ;'~ C~;,;;;~ ."" '~h" ,~~~;~~~{-•• "<"j,,;;.::._~~~,ya.,-; ,,~~.,;..,,;cJ-·.-_-- -~'~~~~-='~'.; ~'~-·~~1.~:;'''''·,",'$-",~~lr.~T~~-~

88

UNIT
Symbolic

Condition
I Notation

OS(j), j=O, .. ,1.5 the indi cated bi t of the OS
DS

DS(j), j=V, V+1 the variable bits of the DS

IADA data available on IA

1ADfv1 mark bit IA
I

IBDA data avai I abl e on IB

IBOM mark bit 18
I/O OASA space available on OA

I

OBSA space avai labl e on 08
I
I

OCSA space available on OC

ODSA space available on OD

KA KA KA button set

KB KB KB button set

KC KC KC flag set I
I

KD KD KD flag set

LR(O) bi t 0 of LR input to bus selector
LR LR(15) bit 15 of LR input to bus selector

SS(O) bi t 0 of the shifted bus

SS(l) bi t 1 of the shifted bus
SS SS(14) bi t 14 of the shifted bus

S8(15) bi t 15 of the shifted bus

TRUE a binary one
System

: FALSE a binary zero

VS(O) bi t 0 of VS input to bus selector

VS VS(V) the variable bit of the VS

VS(15) bit 15 of the VS
!

WA(O) bit 0 of WA input to bus selector

WA(15) bi t 15 of WA input to bus selector
WA

WAPOV WAP := 11111111 (WAP overflow)

WAPSPOV WASP := 11111111 (WAPSP overflow

__ ~.,-c-"'F"--i",,'" i. in ?1 Td It '~ - "'--~~ .. "''''-<:: -::'-~$i-* ~-.. ~-."";-;;,,E-~'"~~~~_~~;;"-~'#'~<:~.-_-~~ ::.,----=--------::-;-:;:;-~- i·,;"~~'--2,-=-i'~~·'--o~"';<1;~-flt-~i 1jr~- 'ii;'ifiijn.l7;fit*r __ ft~·

89

Unit
Symbolic

Condition
Notation

WB , WB(O) bit 0 of WB input to bus selector

WB(15) bi t 15 of WB input to bus sel ector
WB

WBPOV WBP == 11111111 (WBP overflow)

WBPSPOV WBPSP == 11111111 (WBPSP overf!ow

All 128 conditions are input into a condition selector. There are 7 bits in

each microinstruction, called the Condition Selection Bits, CSB, which

select a particular condition. The selected condition is input into

a) The At-Ar address selector (Section 2.20.1.),

b) The carry-in selector (Section 2.20.2.)

---::;--_~ii<-~~;-cl.fo ~ • _i .-~ ?"-~.,,a..~z;:_,?_~~~, ~~_~~"""'~4~~~~~~·'~-';:"'-v,,---=,,.,~;"'t,,\;-;Y---=-=-::-:--~;-~-~';~~,,-~ ... ~~~ -~~ihW >?';f~"'i'i!tiIWifji~F-i f"--ifii_'.

2.24. Short and Long eycl e

It is obviously important to know when one can test a condition. The

system can execute microinstructions in two different cycle times: a

"short" cycle time and a IIlongll cycle time. The difference in these two

cycles as it relates to the testing of conditions can easily be stated:

Long cycle

When the machine is operating in long cycle mode ill conditions

which arise as a result of bus transport and microoperation

execution are testable in the ~ microinstruction in which they

arise.

short cycle

When the machine is operating in short cycle mode ill conditions

which arise as a result of bus transport and microoperation

execution are testable in the next microinstruction to be

executed.

Thus if we are in long cycle and we write

WA:=WB; W,AP + 1; if BUS then RA+1. •
we are testing whether or not if the current bus transport (WA:=WB)

is such that BUS == O. Whereas, in short cycle, this microinstruction

would moon we are testing the previous bus transport's condition. In

order to test WA:=WB we would have to write 2 microinstructions,

W/!>(=WB; W,AP + 1.

; if BUS then RA+l. •
Thus, a microinstruction can be throught of being executed in the fol­

lowing sequential way:

90

-·~·'!!'2-.l'_--'ff IF • F_3jjii:71>F]iiiiif7iBiif~,:~~;'.:;'~;:,..o* ~_. _~~~~.j;~~~~~~~:;""~"'A·..:t~: <--=-':;-~--~:L-,-",,£"?-t~-?~d;4~",,~~~JSf!&.-;;-"f;Sb'M~ffit_llrnr[olE' if" trilla:

Short cycl e:

a) Microinstruction fetch and saving of conditions

b) Bus-Transport

c) Execution of microoperations

d) Calculation of the address of next microinstruction

based on saved conditions.

Long cycl e:

a) Microinstruction fetch

b) Bus-transport

c) Execution of microoperations

d) Calculation of the address of next microinstruction

based on the actual state of machine (new values of

conditions).

The difference between short and long cycl e is that step d) is del ayed

in long cycle to wait for conditions affected by b) and c).

91

The above mentioned steps may be considered as being executed sequenti­

ally, (this implies that one step is completely finished before the next is

entered) similarily each of the steps may be broken up in a number of se­

quential steps (each of which is completed before the next is initiated),

these wi II be described in section 3. 2.

NB! At the current version of RIKKE-1 it is not yet possible to switch

between short and long cycle. The RIKKE-1 is meanwhile operating in

short cycl e.

2.25. The Real Time Clock

The RIKKE-1 will be supplied with a Real Time Clock, but this is not

yet designed.

'...:,.<"~,!,,,,~~ liiif _. lI! Its.ff ""!fie Mif<7VC ,j-",.".~,.;,<>..;'",,,;_ ?-;::;;~ ~' ___ l~':~~"it"-~T.-&ii aa Q!IJi:~~~~~;'<·bj~>,.""'.l-~:,"~':::·-;:·

92

2.26. Auxiliary Facilities

The auxiliary facilities associated with the RIKKE-1 system as shown in

Figure 2. 1. i. e., the system counters and main storage will now be

discussed.

2. 26. 1. Counter B

The system has 2 counters associated with it: Counter A, CA, has been

introduced in Section 2. 2., Counter B, CB, introduced here is shown in

Fi gure 2. 34.

Figure 2.34.

Counter B, CB

+1-1 C

L

o

L +1 -1 C

Sel.

A comparison of this figure with Figure 2.3. which shows CA reveals

that CB is identical with CA except that CA can be loaded from the 00

register which is not the case with CB, i. e., we have

and

*) Undef.

CA:=CM I SB 100 I CAS

CB:=CM I SB I * I CBS

-- ~_$c."",_.*;~-- ~ If7iWR II hiAtt -0-1' ii - i!i!iJ.f'~ii:iii.-,,':'€j:>-~~"':,-, .-"';;;"i'-~":" ~"'_ ~ik" ~~~,';t~i_~~~j'!""~l:2'~~~~if .. j.;i;~-fC_.! --;'" ._~.,_"-s~~l;-•• :_'i,,;:::,_~,~ :;:..---,'-~;",.,::,,-:.~=j~9iiij_~,

I

The microoperations associated with CB, CBS, and CBSP are given in

Tabl e 2.30. These are, of course, apart from the above difference,

identical to those associated with CA and merely shown here for con­

venience.

Tabel 2.30.

Microoperations for control of CB, CBS, and CBSP

CB:=CM I SB I * I CBS

CB + 1

CB - 1

CBS

CBS:=CB

CBSP + 1

CBSP - 1

CBSPC
-

I should be quite obvious that CA and CB are not connected in any way

whatsoever and may be used independent of one another. One may count

up in CA whi I e counting down in CM, for exampl e,

CA + 1, CB - 1 . •
2. 26. 2. Main Memory

The RIKKE 1 has a memory of up to 64K 16 bits words called MS. The

addressing is provided through a main storage pointer, MSA.

*) Undefined.

,-~,~o~""'*"tri; 'tVE77T 'iBiWn.-it'SWF-I'w-;zWS'f- 1iiI';'-~~~~-~,,~ ~_,,=""$

~

93

11

OD (0:3) --J 01

OM F2 ~oo

so.
Sl

1-

Figure 2.35.

Main Storage Address

L

L

MSASG
RegIster
Group

5<,
Sl

CMODSBi

Main ~orage

"

The reading of Main Memory is going to take place from Input Port A,

(device indifferent), and writing through Output Port A, (device indif­

ferent), al though the assembl er wi II recogn i ze MSW as OAA and MSR

as IAA.

94

The microoperations associated with MSA, MSASG and MSAP are given

in table 2.31 .

.;~~'#.~' 'Ijp FRP 7E tM'Tij2_-·-_-¥~iff~_~_~-d;_.-4·~ -~ w",,",,"~,,,:,~...;~~ i-2i't~"-~""_~.;.i"-: .. *_"~~~'t.:;",,-,"·~-·

95

Table 2.31.

MSA:=CM 1 OD 1 SB 1 MSPSG

MSA + 1

MSA - 1

MSAC

. MSASG:=MSA

MSAP:=CM 1 OD 1 S 1 1 S2

MSAP + 1

MSAP - 1

MSAPC

MSAS2:=MSAP

MSAS1 :=cMI OD 1 sll S2

MSR

MSW

}
The assembl er recog-
n i zes these as synonyms
for IAA and OAA

It is possible to check the content of MSA against the actual physical size

of main storage. The condition MSAOR is a 1 if the content of MSA is

greater than the actual size of main storage, el se O. Furthermore it is

possible to test if MSA is busy (i. e. main store is using MSA) , this condi­

tion is named MSAB.

Example

Assume we want to store the contents of the WA-register pointed to by

WAP in the main storage location pointed to by the AS. We can write

this as

ALF:=B if MSAB then HERE else HERE+1

AL MSA:=SB.

OA:=WA; MSW. •

oi~~~".j· -fu'C W 0 rW- s -1Iii4fF7W-"- IT .HiAhdiiit. <,~~~,-_'.c".;~ ~¥;*~;; ~&~~_~~~-:'~-;;,£'?-_~':-;.~:.':O;~~'-i'~:;-~~,,; ~~---- -:;-h~~~.:.,.,",;-·,~"",;'--~;:;:';~"'~#,'~?Jfktrltlfiili!ltf@rr'~_-t.':'i<t1;':

96

2.27. An AI ternate View of the Working Registers

The description of WA which was given in Section 2.4. introduced WA

as a 256 element RG. In Figure 2.5. the address pointer, WAP, was shown

to be 8-bits wide so that the WA registers could be addressed as 256

contiguous registers. In fact, the address pointer actually consists of

two 4-bit pointers which had been "coupled" together to give the 8-bit

wide pointer described in Section. 2.4. Figure 2.36. shows WA with

its two 4 -bit pointers called the Group and Unit pointer; WB, not shown,

is identical.

Figure 2. 36.

Working Registers A, WA (Detail ed)

Sel.

Shifted Bus
58(0:15)

+1 -1 C

256
Working Registers,

wA

WAuS

Bus
Selector

When the microoperation CPL A is executed, the Group and Unit poin­

ters are connected together to give the 8-bit wide pointer, WAP.

After the microoperation UNCPL A is executed, the Group and

Unit pointers function as independent pointers. The low order 4-bits

of the 8-bi t address requi red to specify a particul ar regi ster are given

by the WA Unit pointer, WAU; high order 4-bits of the address are

.' ~~~~-" ... i'6 @ ~f MfIti _'ii~' - --fill. ~_.,._~-~ ... ~-.. ,,~;\,:.o.~",*,- _,~~, _"~-<~~;;-;¥:1i-O--~'--}1itoilU'~~_:~_-:;';-~~~"i>'-~;';::~>-'

given by the WA Group pointer, WAG. Thus, WA can be consi dered to

be 16 RG's, each RG having 16 registers.

97

The microoperations associated with the WAU and WAG pointers are given

in Table 2.32. (The similar microoperations for WB are also shown.)

Table 2.32.

Microoperations for control of the WAU/WBU and WAG/WBG pointer

WAU:=CMloo I 5803 1 WAU5 WBU:=CM 1008 - 11 I 5B8- 11 1 WBU5

WAU + 1 WBU + 1

WAU - 1 WBU - 1

WAUC WBUC

WAG:=CM 1004-7 I 5B~ I WAGS WBG:=CM I 001~J.5 \ 5B1 :o1-15\ WBGP

WAG + 1 WBG + 1

WAG - 1 WBG - 1

WAGC WBGC
- - -----_._--- ---- ------ .-

If we wanted to point to the 9th unit of group 3 and then transfer its

contents to the OS, we could write, assuming the pointers are uncoupled,

WAG:=3, WAU:=9.

OS:=WA. •
The microoperations associated with WAP in Table 2.4. can now be given

their appropriate

2.32.

meaning in terms of the microoperations in Table

WAP + 1 ::=WAU + 1

WAP - 1 ::=WAU - 1

WAPC

WAP

::=WAUC and WAGC

:=CM 100 I SB I WAP5: :=W AU:=CM 100 I SB I W AU5

and CMlooISBIWAGS.

>_ «,"~::4""""=~ mWZZ7r-'Wf? tnWr.'= 'fist-"'''-''-i-<~~<_~~-

98

Let us now turn our attention to the pointer save capabi lity shown in

Figure 2.36. When WA is considered as 16 groups of 16 registers, the

WAU and WAG pointers may be saved independent of one another. The

microoperat ions associ ated with thi s faci I ity are given in Tabl e 2.33,.

Table 2.33.

Microoperations for control of WAUS and WAGS

WAUS:=WAU

WAUSP + 1

WAUSP - 1

WAUSPC

WAGS:=WAG

WAGSP + 1

WAGSP - 1

WAGS PC
-- -------- ---- ----- ------_ .. _-

As an example, suppose we are in group 3 and wish to work in group 8.

Before working in group 8 we want to save the unit which we are pointing

to in group 3. This is done by executing

WAUS:=WAU, WAG:=8 •

The microoperations associated with WAPS in table 2.4. can now be given

their appropriate meaning in terms of the microoperations in Table 2.33.

Thus we have,

WAPS:=WAP::=WAUS:=WAU and WAGS:=WAG

WAPSP + 1 ::=WAUSP + 1 and WAGSP + 1

WAPSP - 1 ::=WAUSP - 1 and WAGSP-

WAPSPC : :=WAUSPC and WAGSPC.

;:,~~~: ;.-- RRGR-(mww-am>_, 11 .--___)ifF+' ;;$c'-;~~;~.~

99

There are a few addi tional condit ions which can now be added to Table

2.29.

Table 2.34.

Additional WA and WB Conditions

Unit Symbolic
Condition

Notat ion

W,.\UOV WAU == 1111 (WAU overflow)

WAGOV WAG == 1111 (WAG overflow)

WA WAUSPOV WAUSP == 1111 (WAUSP overflow)

WAGSPOV WAGSP == 1111 (WAGSP overflow)

WACS WACS = 1 => WAU and WAG are coupled

WBUOV WBU == 1111 (WBU overflow)

WBG == 1111 (WBG overflow)
i

WBGOV

WB WBUSPOV WBUSP == 1111 (WBUSP overflow)

WBGSPOV WBGSP == 1111 (WBGSP overflow)

WBCS WBCS = 1 => WBU and WBG are coupled
- - ----

Thus we can deal with WA or WB as either 256 contiguous registers or

16 groups of 16 registers. We can switch back and forth between either

interpretation in a relatively straightforward way.

2.28. An Alternate View of the Postshift Masks

The description of the Postshift Masks which was given in Section 2.7.

was structured to make the Postshift Masks look as much I ike the Bus

Masks as possible, to enchance the understanding of this unit. In fact,

the output of the BS is masked during every bus transport by the mask

which is specified to be

PA V PB V PG

where

PA = an element of a 16 bit wide, 16 element RG called

the Postshift Mask A registers

~=«~ .. ifj;t it - 1i'GiiiW?3<BiW."f_t...@(~*'-""~~' ~~-.~~Y-~-F-:'" ;f __ -:"it:-n&&oii::i..~~~::":"';-,' ;O-ic.:';~j<_~~;c~..le'"F¥-";;;~~ ')iiRtiH1J1Ji (Jitiliii'trJ " "it--

PB = an element of a 16-bit wide, 16 element RG called

the Postshift Mask B registers

PG = the Postshift Mask Generator

v = logical "inclusive or".

In section 2.7. we had introduced the mask to be PAVPG; here we had

merely assumed all elements of PB to contain all O's. The actual situa­

tion is shown more clearly in Figure 2.37.

CM

SG
S8
OD
CM

L +1 -1 C

Sel.

Fi gure 2. 37.

Postshift Masks, PA, PB, and PG

L +1 -1 C

BUS(O:lS)

eM 00 Undef SG

Postshift
Mask Registers

PA

15

Postshift
Mask Registers

PB

Postshift Masks Generator, PG

PA

PG
~~~-.---

Eus 
Shifter 

100 

The most important thing to note from this diagram is that the PA/pB 

structure is indeed the same as the MA/MB structure (see Figure 2.9. ). 

~~ ... ~_.~_l·j .. WRiiFJTif?JFf$lf -Uli '-'1'iW~"'~~~"~~~;' .~~'--4~~~~~~~~;",:ci~-~~;>4.· . .o. ... ~~~~;-~~~O:,,"~~- "'"eFFWJFneim,,-



The microoperations associated with PB are then 

Table 2.35. 

Microoperations for control of PB 

PB:=BUS 

PBP:=CM ! 00 ! SB ! SG 

PBP + 1 

PBP - 1 

PBPC 

101 

The name of the SG associated with the PA pointer and the PB pointer is 

the Postshift AB Pointer, PABP. The microoperations associated with 

this SG are given in Table 2.36, 

Table 2.36. 

Microoperations for control of PABP 

PABP:=SB 

PABPP:=CM! 00 ! S 1 ! S2 

PABPP + 1 
...: 

PABPP - 1 
I 

PABPPC 

PABPS1:=CM!00!Sl!S2 

PABPS2:=PSBPP 

We will assume that all elements of PB contain all O's so that the effective 

mask isPA V PGand all of out previous standardizations for the use of 

this facility are still valid. 

~~--"'-"~--~';;~;,:'-M5R"l--"j -jtpp?f15Fii?rs:r i§t-~,,~--~-~-;;.,:;;:::;------ ---<~:-c-_:;:;-;;;;_:;-:-:-:-:i",~~;,;;,-,;,,:t''--'''=;;'~~AA;'''=-



102 

3. O. Microinstruct ion Specificat ion and Execut ion 

We wi II in this sect ion discuss the microinstruct ion format, the manner 

in which the instruction is executed, and then give a comprehensive table 

of all microoperat ions. 

3.1. Microinstruct ion Format 

Mi croinstruct ions are 64-bits wi de. There are 4 major fiel ds in a mi cro­

instruct ion. These fiel ds specify 

(a) bus transport 

(b) mi crooperat ions and data 

(c) microinstruction sequencing 

(d) control of AS, VS, and OS 

These fields are shown below with their sub-fields named and their 

actual bit location in the microinstruction. 

(a) bus transport (7 bits) 

SSE BO SOURCE 

22 2l 19 18 16 

1 3 3 

-------- -

Lsus Shifter Enable Bit 

(b) microoperations and data (35 bits) 

mops mops/data mops/data mops/data 
63 57 56 47 46 ~ 38 29 

7 10 8 10 
- - -------

mops microoperations 

I 
, 

I 

-----;.---::;,;-e-_~~.,-';,~-ili .-_ % S t ltr:lij.---'ltjjtT.3W!i_+,,-i-,~' ''-'4¥:~- ~~_-·_~~!"" ... _~~-jr"~~~,:;.-~~~_¥i._-4'-:;:£ -_;;~";~-.,- >" ------:-~---:-~ ~ _ _'"~~:_~-..,p..,.,.;:.;.,o-~ ~.i~~¢.aJt_cnli R°;t;1 ~~_" 



103 

(c) microinstruct ion sequencing (16 bits) 

BISB CISB Condition Af At 
Select ion 

1!:' 14 13 12 6 5 3 2 0 

2 1 7 3 3 

1 r-"l ........ \1- in c:::.P I pr-t i r.n hi t c:::. 

B-input selection bits 

(d) AS, VS, and OS control (6 bits) 

AS VS OS I 
28 27 26 26 24 23 1 

2 2 2 
I 

I - --

~ J 

Shift/Load Control for the Shifters 

Let us discuss each of these in more detail. 

;-.;.;.f--<,.P=-..;.;;~...." c < IT. I" -r f lin -"w>-~-4B.~";-;~?-,~_,.,,,_o..~ ~. ~~·;"'-'i:');·~~~~~!:;:t_,j.-_·"_i'-~_*;G.~·~:>",,,,~,<- ;~~:':'-:":>~'4 ... ~.v~~-"~"-::-:.;~"i!i.fijJ@'¢·'- 5T -I" rr"!h:",;\,·::-



(A) The Bus Transport Field 

Table 3.1. shows the correspondence between the symbol ic notation 

for SOURCE 5 and BO s and their binary representations. 

Table 3. 1. 

Symbol ic and Binary Notat ion for SOURCE sand BO s 

SOURCE BO ! 

! 

I 

Symbol ic Binary Symbolic Binary 
I 

Notation Notation Notation Notat ion 
i 

no i 
LR 000 

dest inat ion 
000 

AL 001 MA 001 

VS 010 MB 010 

OS 011 LR 011 

WA 100 WA 100 

WB 101 WB 101 

lA ~ 110 OA~ 110 

IB 111 OB 1 1 1 

104 

If the BS Enable bit = 0, no BS occurs; if the SS Enable bit = 1 a BS 

Shift occurs. The control source for BS control is given in the micro­

operations and data field as in seen in (B) below. Thus the specification 

SSE SO SOURCE 

0 101 011 

is the binary representat ion of our bus transport specificat ion 

WB:=OS. 

-. ';Jo-~;;,,",, .. :-~.;~~- .. ,,~_ :l-",,-~~~~_0:~~~~'Hi:1:1i" 1iG-,-" 



We will show this symbol ically as 

BSE BD SOURCE 

0 WB DS 

as we have no need of binary representat ions in th i s report. 

(B) The Microoperat ions and Data Fiel d 

The microoperations and data field can be considered to be made up of 

the following fields: F 1 , Sl' ~,F2' ~,F3' S,~, F4 as shown 
2 3 .., 4 

in Figure 3. 1. 

Figure 3. 1. 

Microoperat ion and Data Fiel d 

[712\1\7111 7 \2\11 7 

[Fl I 51 I ~ I F2 I ~ I F3 I 53 I ~ I F4 I 
63 57 56 55 54 53 47 46 4D 3333 3726 ~ :;e 

mop Sel. M mop M mop Sel. M mop 

0 data 0 dataBS 0 data 
I 

105 

~A"-"~~,q ""iI -w jim? .. ~ _ -.riilif ?, . r: ;~~ .<2-.~·,~, ;0--"'.0,.£" :;~~r;;;~iji';;~ 'tftn:r:ijiii:fjMiirJl.I;jf.lt~;-



106 

The following comments should assist in understanding this diagram. 

B.1) Field F1 always specifies a microoperation (1 of 128 mops). 

if M = 1 
D2 

then F2 specifies a microoperat ion (1 of 128 mops). 

of M then F3 specifies a microoperat ion (1 of 128 mops). I D = 1 3 

Of M 1-
D4 

then F4 specifies a microoperat ion (1 of 128 mops). 

Therefore up to 4 microoperations may be specified in this field; for 

example, 

BSP + 1, WBP + 1, MBP + 1, CA - 1; 

B.2) We have seen that many microoperat ions concern the loading of a 

register from various sources, e. g. 

MAP:=CM I OD I SB I SG • 

Such a microoperation must be places either in field F1 or F3 • If it 

is placed in F1 then the 2 selection bits Sl specify which source will 

be used. If the source specified is the CM then ~ is set to 0 and F2 

is used as data (similarly ~ and F4 are used wi1h F 3 ). For example 
4 

MAp:=7 

could be symbol ically represented 

I M:;:~ I :~ I ~21 :2-l 
Thus one sees that there can be at most 2 microoperations of this type 

in a microinstruction. 

:·--~"'h""'" $" MrWEffl -T- Us J t-~li!yit51"(j --~"",~-c~::,~, ~ .... ~d.\~~i:j",~~_~-=§_;ii~~~r'--'A"~Ac'I",<;.-" ~f;:'~>i?'~<;;~"'~::"'~~~ii!I";ij.n(_liU1Slf*"'Ii_rtIj~ 



107 

B.3) Figure 3.1. also shows that if the BS control data is to be taken 

from the CM then F3 is used as data. If the BS has been enabled, the 

control source is selected via BSS. Thus the specification 

WA:=AL, BS ~ 3 

coul d be symbol icall y represented 

M 
V' 

D~ 
F3 BSE BD SOURCE 

" 
D 3 1 WA DS 

v 

B.4) All of the possible microoperations are not available in each field 

Fl , F2 , F 3 , and F4 • The microoperations which can be specified in 

each field are given in Section 3.3., the Comprehensive Tables of Micro­

operations for Individual Functional Lhits. 

C) The Microinstruct ion Seguencing Fiel d 

Table 3.2. shows the correspondence between the symbolic notation for 

At and Af and their binary representations. 

Table 3.2. 

Symbol ic and Binary Notat ions for At and Af 

At and At 

Symbol ic Binary 
Notation Notation 

000 
I 

I 

AL 001 

RB 010 

RA 011 

SA 100 

A-l 101 

A+l 110 

A 1 11 

"'it. WWWiiniNv'QIiiNfiWr IX g- If'i%-lla5-~~~-~''-~~~· ~:.-=-==-",,'~~,~~~~~-~~·~-iI;--'_-~tr.~.i>' :;_,;"~.c.,,..,.,,.. -- - -------:;;-;-~~~ •• -> -""'1"~-':':-."'~*-,;2·-~sfKi*O'tlifl$.r n_-~,"" 



A simil ar tabl e can be given for the symbol ic and binary notat ions for 

the conditions but is not given here because of its length. Tables 2.23. 

and 2.24. present this information for the CISB (Carry-in selection 

bit) and BISB (B-input selection bits) respectively. We will give all of 

our examples symbol ically. 

Example 

if BUS == 0 then HERE. coul d be represented 

BISB CISB 
Condition 

At At Selection 

0 BUS A+1 A 

Example 2 

If ALOV then RA + 12. could be represented 

BISB CISB 
Condition 

At At Selection 

t 
sign 

t ALOV A+l RA:~J 
- - - -_ .. _------ -~ ~--

108 

However, this is incomplete and immediately raises the question where 

do T and t come from? That is easily answered. T is always the least 

significant 6 bits of F3 and t is always the least significant 6 bits of 

F 4 • BISB tells us, of course, how we will combine T and t (i.e., 0, Tt, 

t. t, or TO, see Section 2.20.2). Thus, the complete specification 
sign 

would be 

v 
M F4 BISB CISB Condition 

A At D4 Selection 
IV 

D 12 t . t ALOV A+1 RA+B sign 
v 

,_.~,;c_-;,~~.--",. •• ,# n-"~/-<'~~·>:";--,"",·-;;.,<:,* _~""-~~,-;.;;~".,,, ='-4'~~ c=~ Y4c-;;k~~~;:,-:~os>"", ........ -;..:;~-r~ ~_,:~-~-:-:-~:.c~~:8"_<~~,->;',,- ~ ~;)j;~~"*",~~~0ikbi.ii).~¥ 



109 

0) AS, VS, and DS Control Field 

The dedicated bits for shifter control are interpreted as shown in Table 

3.3. 

Table 3.3. 

Shift/Load Control Bits 

Binary 
Shift/Load Control 

Notation 

00 Do Nothing 

01 Shift Right 

10 Shift Left 

1 1 Load 

Thus, the specification 

AS -7, VS <-, DS <-

could be represented symbol ically as 

I-A: r~~-r~j 
The binary representation 

AS VS OS 

01 10 10 

does not interest us here. The specification 

AS, LR:=AL; DS..- . 

~"_~~~ hi\T;- IT 7 Fn"-" TiFurn-jtl.Vt~~ .. ~,";~-,,,,;~~ ~,,:~,;~/:~~~_--o~-t*iili*-.- 't~,~-.c-:;;~_",~_~~;:,;;.::-;::'-::-;:-~:;;:- __ <to~-:;-;t;-:-.~~~;.""~,,,,¢-.~,_~~·t;;~iT~~lrt¢l--'_·v--',i 



110 

woul d be given by 

AS VS OS ~SE BO SOURCE BISB CISB Condition Af At 
Selection .. ~ 

L <- LR AL 0 TRUE A+l A+1 
-------- ------ --------

3.2. Microinstruct ion Execut ion 

As introduced in Section 2.4 . and then explained in more detail in Sec-

tion 2.24. the machine has both a long cycle and a short cycle. The 

result of that discussion, which is repeated here for convenience is that 

mi croinstruct ions can be thought of being executed in the following se­

quential way: 

Short cycl e: 

a) Microinstruction fetch and saving of condi tions 

b) Bus-Transport 

c) Execution of microoperations 

d) Calculation of the address of next microinstruction based 

on saved conditions. 

Long cycle: 

a) Microinstruction fetch 

b) Bus-Transport 

c) Execution of microoperations 

d) Calculation of the address of next microinstruction based 

on the actual state of machine (new value of conditions). 

The difference between short and long cycl e is that step d) is del ayed in 

long cycle to wait for conditions affected by b) and c). 

The above mentioned steps may be considered as being executed sequenti­

ally, (this implies that one step is completely finished before the next is 

entered), similarily each of the steps may be broken up in a number of 

sequential steps (each of which is completed before the next is initiated). 

,~-,;~_~_ - .~7 - till M:l!lff tflif -ir' 1i-~tt·F"-~~:""-~='>-~"'--' ',-'_:-~-i::;; -4';: .... ---:-~-;::.=.-- '""-"'?4-"~-=-q.--'->.", "'~¢~-~.~ ~~,-, ,------:::::----::-~:;_..;::_4<h ... ,,~-'"" .. ,-,,;.:;."".,~"""":..i<~,,-_t<~"'~~~1iji_ittj,.-~\ 



B) Bustransport 

0) The SOURCE issei ected. 

1) The information of the SOURCE is masked by the BUS­

masks and gated onto the BUS. 

2) The BUS is shifted by the Bus-Shifter if this is enabled. 

3) The output of BS is masked byt he Postshiftmask to yield 

the shifted Bus S8. 

4) Loading of SB into the sel ected destination. 

C) Execl...ltion of microoperations 

0) Execute microoperations with C p = 1 • 

1) Execute load/shift operations in AS, VS and DS. 

2) Execute microoperations with C p = 2 . 

D) Address calculation 

0) Choose the sel ected condi tion and name it c (in 

short cycl e a saved value, in long cycl e the new state). 

1) Select the carry-in and B-input into the CUAL, and the 

RA and RB adders. 

2) Compute the resul t in the adders. 

3) Sel ect the next address using ~ if c = 1 or Ar if c = o. 

1 1 1 

'I) Z/ R!l:,&--d leg ha.:. ~ ~_~f.c-IIL r7 Ik :j'lL~ct- !k4( k/V? U?-ed" 
f/.. .fl At< ~~t ~ ~tVreL ,;k- f?r",d'I/t'& a.-.d ~~ ..:.4-,,-~ 

Notice that fonflicts can occur between actions that take pi ace wi thin the 

same of the above mentioned sequenti al steps, and of course es;:>eci all y 

in those cases where more than one action refers to the same unit (ex. : 

count and clear of the same register) in which case the resul t is undefined. 

Another source of confl icts is the case where an action in one step infl u­

ences the information which is being gated onto some datapath, and the 

information is used (e. g. loaded) in a I ater step. On the other hand if no 

actions refer to the source nor to the datapath itself, the information 

on the path can be assumed to be stabl e in all the following steps. 

*) The microoperations are divided into two classes those with Cp=l and 
those with Cp=2. This defines exactly when the microoperation is 
in i ti ated. 

,,_~_;. '-MGS[§ijijiWYUi"'lI filW?IF r - r W~'-_~_~--"':_~~~t-:<~----:---- .~--~~'~/" ~~:;:;_-k,,~~*.cM~·~~~~-49-~_""';:--;;~~·~:~~~:-~--;:--- ;,"-.~~':-~!:::~~4,-,"'4~'rii;-;-~~i;~- '~_"MdiiiB~~ 



112 

AI though many confl icts are resol ved by the sequenti al nature of the tim ing 

some wi II remain and wi II resul t in undefined si tuations some of which 

wi II be I isted below: 

a) WA:=WA and WB:=WB gives an undefined resul t. 

b) LR:=LR and LRIP=LROP gives an undefined result. 

c) Loading of a mask (MA, MB, PA, PB) in a bustransport 

where the same mask is being applied. 

3. 2. 1. Exampl e of how to use Clock Pulse 1 and Clock Pul se 2 

Recall that the RG is a basic building element used in the system. A very 

common operation is to load an RG and then change its pointer (e. g. this 

was done quite frequently in our examples). Often, one also wished to 

save the address of the current el ement pointed to before the pointer is 

changed. I t was decided that this capabil ity should be allowed in one 

microinstruction and, furthermore, every RG in the system should be 

treated in the same uniform way. 

Example 

The microinstruction 

AS:=WA; WAPS:=WAP, WAP + 1 . • 
means: take the element of WA pointed to by WAP and store it in the AS; 

then store the WAP in the WAPS registers and then increment WAP by 1. 

I t means thi s because the BD load and the m icrooperation bot occur before 

the microoperation WAP + 1 in the above mentioned sequential scheme. 

Thus, every RG in the system can be looked at in the following way: 

a) it can be loaded or used as a source. 

b) its current pointer can be saved, if it has a save capability. 

c) its pointer can be changed after a) and b). 

all with one micro instruction. 

~ r~~-~--~7'if Fi "~;--,.-t7TTG Ri-~ - _e·ri.,*,p'fWll(· __ "<,-_.:<-·_-,",,~~~,,,.~~::,,~_ ~..., .... , ~~,.,.,~"...A;'"_~..,g~1'~~~~ ~:--,--~:;"-:-. .c..;;-:-'~:'-:::-:-



113 

3.3. Comprehensive Tabl es of Microoperations for Individual Functional 

Units 

The following tabl es (presented in alphabetical order based on the abbre­

viations associated with the functional unit) show which microoperations 

can appear in which fields and at which clock pulse these microoperations 

are in i t i at ed. 

Some particular points perhaps should be recalled and emphasized 

here: 

a} use of these tabl es wi II show what space and time confl icts arise 

in the construction of a microinstruction. The reader is encou­

raged to review some of the examples of the earlier sections by 

constructing symbolic microinstructions similar to those presented 

in Section 3. 1. 

b) t comes from field F4 , so if it is being used, for e~<ample in 

absolute addressing, a microinstruction should not be specified 

in F3 . 

c) T comes from field F3 , so if T is being used, for example in 

absolute addressing, a microinstruction should not be specified 

in F3 . 

d) Data for the SS, if the CM is the control source, comes from 

F3 • 

e) Data for the PG, if the CM is the ocntrol source, comes from 

F3 . 

--:..;:.-=--~:~~~·-.,-."",.;<-;'t;;.-;-·-~;~",e,-"*'<t,1Ii.i!iJililil~{iiljJ"~~?iti1«~-,}· 



Mle PQap£RA TI ONS FOR. IL 

I HIC~OOPER'TION I Fl I Sl I F2 I F3 I S3 I F4 I CP I I 
1------------- ---1---- - 1----1-- - -- I --- -- I - ---1---- - I - ---1--- - - ---- -- -- -- --- - --- -- -- ---- --- ----- --- - --------1 
I .Ln= I 76 I ++ I I I I I 2 I LO.o 'LF FROM CM/OD/SB/SG I 
1------------- ---r ---- - I --- - 1-- --- 1--- - - 1 - --- I ----- 1 ---- 1 --- --------- ---- -- ------------ -- --- ---------- ---- - I 
1 'LPe I I 1 63 I I I 2 I CLE.R .lSG PDINTE~ i 
1-------- ---- ---1-----1---- I ----- I --- --I - --- I ---- - I --- - 1--- --- ------ --- --- -- -- -- -- ---- -- -- -------- - -- ---- - I 
I 'LP+ 1 ! I· I I 61 I. I I 2 I INCREMENT 'LP I 
1----------------r ----- I ---- I -- --- I --- - - 1- --- I ---- - I ---- I - -- -------- - - -- --- ---- -------- --- ----- ------- -----1 
I .l.-l I I 1 1 62 I I I 2 I OECREHENT 'LP I 
1----- -------- --- I -- ---1 -- - - I ----- I --- - - I ----1---- - I ----1--- -- -- ---- --- -- ----- ----- ---- -- --- -- --- --- -- -- -- - I 
I 'LP'= I I I I 60 I ++ I I 2 I LO.O 'lSG PCINTER Ff<OH CM/OO/$1IS2 I 
1----------------1-----1----1 -- --- I --- - - I - --- I ----- I ---- I --- - -------- ---- ------ ---------- --- ---------- ----- I 
I 'l5G'=SB I I I 97 I I 1 I 1 1 LO.O 'LSG FRO~ SB(5'01 I 
1----- --- --------1 -- --- 1 -- --1-----1--- - - 1- ---1---- - I ----I - -- -------- ---- ------ ----- ------ --- ---------- ----- I 
I AlSll= J I I 72 I 64 I ++ I I 2 I LOAD ALSG SAVE! FK.OH eM/QO/St/52 I 
1------------- ---I -----1----1-----1--- - - I - --- I ---- - I ----1----- ----- -- --------- --------- -- -"--- ----- ----- - -- I 

l-!m!:!!..~--- ___ I_EL I-- -- I-- --- I --- --I- ---I -----! __ L I -!"Q~U~§LE!!Q.!u~L - -------- -- ------- --- ----- ---! 
I SET'LFB I I I 74 I I I I 2 I SET 'LF TO B 1 
1---------------1 ----- I -- -- 1-- --- I ----- I - --- I ----- I ----I --- --------------- -- -- -------- --- ------ --- --- ----- I 
I SETALF+1 I I I 91 I I I I 2 I SET 'LF TO '+1 I 
1---------------- I - ----1--- - 1-- --- 1-----I - --- I ----- I ----1----------------------- ---.--- ----- ------ --- ------ I 
I SH'LF+ I I I 73 I I I I 1 I SET ALF TO A+S I 
1 ---------------1 -----I ---- 1 -- --- 1--- -- 1 - --- 1 ----- I ---- 1 ----- ------ ------- ------------ -------------------- I 
I SETALF- I I I 90 I I I I 2 1 SET ALF TO A-I I 
1------------- ---I ----- I -- -- I -- ---1--- - -I - --- I ---- - I ----1--------------------- - c --------- ------- ---------- - I 

MICRODPERA TIONS FOR AS 

I HICROOPERATION I Fl 1 Sl I F2 1 F3 I S3 I F~ I CP I I 
1------------- --- I -- --- I ----1----- I --- - -I - ---I ----- I ----1--------------------- --------- ------- -- -----------1 
I ASlL I I I I I I 79 I 2 I SET THE AS TO LOGICAL LEFT ·SHIFT I 
1----------------! ---- - I --- - 1-----1-----I - --- I ----- I ---- I - -- ----------------------------- ------- --------- --1 
I ASLR I I I I I I 80 I 2 I SET THE AS TO LOGICAL RIGHT SHIFT I 
1----------------I ----- I ----1----- 1-----1 - ---1---- - I ----1 ------------ --- ------- -------- -- ------ ------------ I 
I AS(VISe I I I I 67 I I I 2 I CLEAR AS(VIS 1 
1----------------1---- - 1----1----- I --- - - I - --- I ---- - I ----I --------------- ------- --- ----- -- ------------------I 
I 'S(VIS+l I I I I 65 I I I 2 I INCREMENT AS(VIS I 
1----------------1 ----- I -- --1----- 1--- -- I ---- I ----- I ----1----------------------------------- -- ---------- --- I 
I AS(Y)S-1 I I I I 66 I I I 2 I DECREMENT AS(VIS I 
I ------------- ---I ----- I ----1-----1---- - 1----I -----1 ----I ------------ ------------------ -- --- --------------- I 
I AS(YIS'= I 79 I ++ I I I 1 78 1 2 I LOAD AS(VIS FROM CM/OO/SB/SG I 
1---------------- I ---- - 1---- 1-- --- 1--- - - 1- ---1-----1 ----1 ---------------------- -------- -- ----- ----- -------- I 
I AS(OI$'= I 77 1 ++ I 1 I I 76 1 2 I LOAD ASCOlS FROM CM/OD/SB/SG 1 
1 ------------- --- I -----1----1----- 1--- --1- --- I -----1 ----I - ------ -------------------------------------------1 
I AS(15IS'= I 78 1 ++ 1 I I I 77 1 2 I LOAD AS(151S FROM CM/OD/SS/SG I 
1----------------1 ---- - I ----1-----1-----1---- I -----1----1 ------------------------------ -- --- ------------ ---1 

MICROOPERA TIONS FOR BS 

I MICROePERATIO" I Fl 1 Sl 1 F2 I F3 I S3 I F~ I CP 1 1 
1----------------1-----1----1----- 1--- - -I - ---I ----- 1 ---- I ----------------------- ------------ --- ------------1 
I IlS.C I 97 I I I I I I 2 I CLEAR BSSG POINTER I 1---------------I ----- I -- --1----- I --- -- I ---- I -----1----I --------------------- -- ------- -- - ----- ------- -----1 
I BSP+l I 95 I I I I I I 2 I INCREMENT SSP 
1---------------1 ----- I ---- 1----- 1---- - 1---- I -----1----I - ----------------------------- -- ---------- --- ----- I 
I 9SP-l I 96 I I I I I I 2 I DECREMENT asp I 
1---- ---------- I ----- I ----1-- ---1--- - - 1- --- I -- --- I - --- I - -- - - --------- -- - - - - -- - - ------ ----- - - - -- - -------- - I 
I BSP'= I 94 I ++ I I I I I 2 I LOAD BSSG P(INTER FROM eM/00/511S2 I 
I ----------------1-----1----1----- I ---- - 1- --- I -- -- - 1----I --- -------- ----------- --- - ------ ---------- --- ----- I 
I ~SSG.=SB I I I I I I 105 I 1 I LOAD BSSG FROM sa 1 
I --------------1-----1----1----- 1--- - - I - --- I ----- I ----1-------------------------- ---- -- --- ------- -------- i 
I 9S$11= I 98 I ++ I I I I I 2 1 LOAD ass! FRO!'" eM/DO/S1/52 J. 

1---------------1 -----1 --- - 1-----1--- - -I - --- I ----- I ----1----------------- ------ - ------ -- - - -- - -- --- --- ----- I 
I BSS2,=I!SP I I I I 106 1 I I 1 I LOAD aSS2 FRO~ asp . I 
1--------- ---- ---I -----I -- -- I -- ---1-----1- --- I ----- I ---- I --- ------------------ - -------- -- --- ----- ----- -----" 
I 9S5' = I 1Dq I I 56 I 120 I ++ I I 2 I LOAD ass FR C~ S3 
I -------------I ----- I ---- I -----1---- - I - --- I ---- - I ---- I - -- --------------- -- --- ----.---- --- -- -- - ----- -----1 

HICROOPER'TIONS FOR CS 

I MICROOPER.TION I Fl I Sl I F2 I F3 I S3 I F4 I CP I I 
1---------------I ----- I -- --1-- --- I --- --I - --- I -----1----I - -- ------- -------------- ------ -- ----------------- - I 
I CSlL I I I I I I 86 I 2 I SET AS ,os AND VS TO lOGIC'L LEF T SHIFT 
1----------------1 -----1----1-----1-----1- --- I ----- I ----1--------------- ------- - --- ---- -- --- --- ------------ I 
I CSLR I I I I I I 87 I 2 I SET AS,DS AND VS TO LOGICAL RIGHT SHIFT I 
I --------------- I -----1----1-----1--- --1- --- I ----- I ----1- ---------- ------------------- -- ------------------ I 
I CS'C 1 I I I 7~ I I I 2 I CLEAR CSP 1 
1- ---------------1 -----I -- --1----- 1----- I - --- I ----- I ----I - -------------- -------------- - ------------- -- -----1 
I CSP+ 1 1 I I I 72 I 1 I 2 I INCREMENT CSP I 
1----------------1 ---- - 1----1----- 1 --- - - I - ---1---- - I ----1------------ - -- --- --- ----.---- -- ------- -----------1 
I CSP-l I I I I 73 I 1 I 2 I DECREMENT CSP I 
1------------ ---I -----1--- - 1-----1-----1 - --- I ----- I ----I - ---- ---------- ------- ---- ---- -------------------- I 
I CSP.= 1 I I I 71 I ++ I I 2 I LOAD CSP FROM CM/ClO/SlIS2 1 
1- --------------- I -----I - -- - I -- - -- I --- - - 1---- I -----I - -- - I - ~- -------- - - -- - ----- - - - -- - --- -------- - - - - - ------- I 
I CSSG,=SB I I I 98 I I I I 1 I LOAD csse FROM SS I 
1---------------1 -----1-- --1----- I -----1- --- I ---- I ----I - -- -------------------- --------- ------ ------------ i 

1-~§~H=---------i-----i----i--Z~-I--ZlLi-!!-!-----f--£_i-bQ!Q-!<~~LEBQ!L!<H!QQL~!!~L----------------------f 
I CS52'=CSP 1 122 I I I 104 I I I 1 I LOAD CSS2 FROH CSP I 
1 ---------------1 -----1----1-----1-----I - ---1 ----- I ----1 - -- ------------------- -------- -- ------------------ I 
I CS(VISC I I I I 76 I I I 2 I CLEAR AS(VIS,VS(VIS AND OS(V+1IVIS I 1---------------I ---- - I -- --1----- 1---- - I - - -- I ---- - I --- - I - -------------- - -- - ----------- -- ----- - - --- -------- I 
I CS(VIS'= I 91 I ++ I I I 1 I 2 I LOAD AS(VIS,VS(VIS,DS(V+lIVIS FROM CH/OD/SB/SG I 
1----------- ----1-----1----1----- I --- --I ---- I -----I ----1-------------------- ---------- --------- ----- ------ I 
I CS(OIS'= I 89 I ++ I I I I I 2 I LOAD AS(0IS,VS(OSI,OS(1I0IS FROM CM/OD/SB/SG I 
1---------------1 ----- I ---- I -- --- I -----1 ----I -----1 ----I --- ------------ --------------- -- ----- ------------- I 
I CS(151S'= I 90 I ++ I I I I I 2 I LOAD AS(15)S,VSC15IS.0S(1511~IS FROM CH/ODISB/SG I 1---------------1 -----1---- I -- ---I-----I ---- I -----1 ----I --- -------------------- --------------------------- I 

11 4 

--:~<ih& -r- JRiiI7F~~~f#~"'!",~"'~,~-->"JIf'~~,,;j¥~-in 17 '.' frji(iiiliiI5'Nt~~~~~.:~-l."'-,-,"'''-;4~'''--'-~~~f;.(~~.*~· r ;La. -IlT t :--



11 5 

HICP')OPFPA lIOW; FO~ 8M 

I MICROQP[RATIOf'.; I Ft I 51 I F2 I F3 I $3 I F4 I CP I I 
1- - --- ---- --- ---- I - - ---1-- --1----- I --- - - I - --- I -- -- - I - --- I - -- ------------ --- -------- ---- -- --- -- - - - -- -- ------1 
I "MPPC I I I I 54 I I I 2 I CLEAR SMPP I 
I ------------- ---I ---- - 1-- -- 1-- --- 1--- - -I ----1-----1----1 --------------- -------- --- --------------- --------- I 
I ~M~P+l I I r I 52 I I I 2 I INCRE""ENT BMPP I 
1-------- ------- - 1-----1-- - - I -- --- 1--- - - I - ---1---- - I - -- -1--- -- - ------ --- -- - - -- - - -- - --- - -- -- - --- - - - - - -- ---- - I 
I RM'P-1 I I I I 53 I I I 2 I DECREMENT BMPP I 

I SHPPI= I I I I 51 I ++ I I 2 I LOAD 8MPP FROM CH/00/$1I52 I 
1----------------1 -----1-- --1-----1-----1 ---- I -----1----1 ------------------------ ------ -------------------- I 
I RHQStl= I I I 67 I 55 I ++ I I 2 I LOAD BMPS1 FROM eM/00/S1/S2 1 
1----------------1 -----1----1-- --- 1--- - -I - ---I ---- - I ----I --- --------------------------- -- --- --------------- I 
I RMOS21=BMPP I 120 I I I I I I 1 I LOAD BMPS2 FROM 8MPP I 
1----------------1 ----- I -- -- 1-- --- 1--- - -I - ---1---- - 1----1------------------------------ -- ------------------1 
I RHP,zSB I I I % I I I I 1 I LOAO BMP WITH SB(310) 1 
1-- ------ --------I ----- I -- -- I -- --- 1--- - - I - ---1-----1---- I - -- ---- --- -- - -- ----- -- - - -- - ------ -- ---- -- -- ------- I 
I f'1A o C I 67 I I 66 I I I 67 I 2 I CLEAR HAP I 
1- ------------ ---1-----1----1----- 1--- - - 1- ---1-----1----1 -------------------------------- ---------- --------1 
I MAP+ 1 I 65 I I 64 I 1 I 65 I 2 I INCREMENT MAP I 
1--------- -------1 -----1-- --1-- --- I -----1 - ---I -----1----1 - ----------------- -------- ---- -- - ------ ----------- 1 
I MAD-l I 6f:: I I 65 I I I &6 I 2 I DECREMENT HAP 1 
1-- -- --------- --- I ---- -1-- --1-- - -- 1--- - - I - --- I ---- - I - ---1- -- --- - ---- - --- - -- --- - - -- - ---- -- - ---- - --- - -- - ----- I 
I HAPI:::: I 6i. I ++ I I I I &it I 2 I LOAD HAP FROM CM/DD/S8 I 
1----- ---- ---- ---1---- - I -- -- I -- --- I --- - - 1- --- 1 - --- - 1----1- -- ---- ------ -- - -- --- - - - - - ---- -- --- - -- - --- - -- -- ---1 
1 HBPC I 71 I I I 50 I I 71 I 2 I CLEAR MBP I 

1 MBP+1 1 69 I I I 48 I I 69 I 2 I INCREMENT M6P I 
1----- ----------- I -- ---1-- -- I -- --- 1--- - - I - --- I - ---- I ----1--- - ------ ----- - -- --- - - - -- ---- -- ----- -- - -- --- -- --- 1 
I H8D-l I 70 I I I 4<3 I I 70 I 2 I DECREMENT Hep I 
1--------- ---- ---1---- - I - - -- I -- --- I --- - - I - ---1----- I - ---1- -- -- -- ---- ---- --- - - -- - - ------ -- --- -- - - ------- ----I 
I MBPI: I 68 I ++ I I I I 68 I 2 I LOAD Mep F"ROH CH/DD/S8 I 
1-- ------- ---- --- I ---- - I -- --1----- I --- - - 1- --- I ----- I ---- I - -- -------- - --- --- ---- - -- - ---- ----- - -- --- --------- I 

MICROOPfR~TIONS FOR ct. 

I MICROOPER~TION I F1 I 51 I F2 I F3 I S3 I F4 I CP 1 I 
1----------------1 ----- 1-- --1-----1--- --1- ---I -----1----1 --- -------------------------- --------------------- I 
I eAe I 30 1 I I 34 I I 43 I 2 I CLEAR CA I 
J ----- ---- -------1 -----1---- 1-- --- 1-----1---- I -- ---1----1 ---------------------- ------------- ---------------1 
I CA3PC I I J 34 I I I 1 2 I CLEAR C~SP I 
1-- ----------- ---I -- ---I ----1----- I --- --1- ---I ----- 1----1 --------------- --- ---- - ---------------------------1 
1 CA')P+l 1 I r 32 I I r r 2 I INCREMENT CASP I 
I ------------- ---I ----- I ----1----- I --- - - 1- --- I ----- 1----1-------------------- --- ------- --------------------1 
I CA5P-1 I I I 33 I 1 I I 2 I OECREMENT CASP I 
I ------------- ---I ----- 1-- --1-----1---- - I - --- I -- ---I ----I - -------------------- -- ------- -------------------- I 
I CA5t=CA r I r 51 I I I I 1 I LOAD CA SAVE RG FROM CA 1 
1----------------1 -----1-- --1-- ---I --- --I - ---I -----1----1 ------------------------------ --------------------1 
I CA+1 I 33 I I I 32 I I 41 1 2 I INCREMENT CA I 
1------- - ---- --- I ----- 1-- - - 1----- 1--- - - 1---- I ----- I ----1--------------- ------ ------ --- -------- - ---------- - I 
I CA-1 I 34 I 1 I 33 I I 42 I 2 I OECREMENT CA I 
I----------------J-----I----I-----I-----I----I-----I----1--------------------------------------------------1 
1 CAI= I 32 I ++ I I I I 40 I 2 I LOAD CA FROM CM/OO/SS/CAS I 
1--------------"-1---- - I -- --1-----1---- - 1- ---1- - --- I ---- I - -- --------------- --- - - ---- - -- -- --- -- ---- - --- -----1 

MICR~OPFRATIONS FOR CB 

I MIC~OOPERATION I F1 1 51 I F2 I F3 I 53 I F4 I CP 1 
1----------------1 -----1---- 1-- --- 1-----1----1 -----1 ----I 
I cee 1 39 1 I 37 I I I 47 I 2 I CLEAR CB I 
1--------- ---- ---1---- - 1----1-- --- 1--- --1- --- I -- --- I ----1- -- --------- --- --------- -- --- - -- --------- - --- ----- I 

! _£~~~ £_---------! -- -- -! ----! -- --- ! --~ ~ -! ----! -----! --~-! -£~~~~_£~~~- ------------ -- ---- --------------------! 
I CBSP+1 I I I I 35 I I I 2 I INCREMENT CBSP r 
1---------------1-----1----1----- I --- - - 1- ---1---- - I ----I - -- - -------- --- -- -- -- - - - - - --- - -- ----- ----- --- -- --- I 
1 CB5P-1 I I I I 36 I I I 2 I OECREMENT CSSP I 
1-------- -------1-----1-- -- I -- --- 1--- - - I - --- I ---- - I ---- I - -- ---------- - - --- --- -- --- ---- ----- ------- ----- ---1 
I C8SIzCB I I I I 46 I I I 1 I LOAO C6 SAVE RG FROM C6 ! 

1---------------1 - ----I -- -- 1----- I --- --I - --- I -----1----I --- --------- --------- -----------------------------1 
1 C8+ 1 I 37 I J 35 I I I 45 I 2 I INCREMENT C 6 I 
1----------------1 -----1-- --1-- --- 1--- --J- ---1-----1----1 - ------ ----------------------- -- ------------------ I 
I C6-1 I 36 I I 36 I I I 46 I 2 I OECREMENT CB I 
1---------------- I - - --- 1- - -- I ----- 1--- - - I - ---1---- - I ----1- -------- -- - --- ------ -- -- ----- -- - -- --- - -- - - -- --- --1 
I G81= I 3& I ++ I I I I 44 I 2 I LOAD C8 FROM CM/sa/CBS I 
1 ----------------1 -----1-- --1-- --- 1---- - 1- --- I ----- I ----I --------------------------------------------------1 

I1ICROOPFRA TrONS FOR: OS 

I MI::ROCPfRATION I Fl I Sl I F2 I F3 I 33 I F4 I CP I 
I ------------- ---I -----1----1----- 1--- - - 1- --- I -- --- I ----I 
I OSLL I I I I I 1 84 I 2 I SET OS TO LOGICAL LEFT SHIFT 
1---------------- I -----1-- -- 1-- --- 1--- - -I - --- 1-----1----1 - ----------- ---------- -------
I OSLR I I I I I I &5 I 2 I SET OS TO LObI CAL RIGHT SHIFT I 
1----------------1 -----1 -- -- 1----- I --- - -I - ---1-----1----1 --- ----------------- --- ------- -- --- ---- ----------- I 
I [lS{V)SC I r I I 70 r I I 2 I CLEAR DS(V)S I 
1-------- -------1 -----1----1----- 1--- - - 1- --- I ---- - 1---- I - -------------- - -- ---- -- -------- --- ------------ ---I 
I D',(V)S+1 I I I I 68 I I I 2 I INCREMENT D5(VIS I 
1----- -----------1----- 1-- -- 1-----1--- - - I - ---I -----1 ----1- --------------------- ---- ------------------------ I 
I DS{VIS-1 I I I I 6q I I I 2 I DECREMENT DS{VIS 1 
1----------------1 -----1-- --1-- --- I ---- -1- --- I -----1 ----I ------- -------- -------- ------ - --------- --- --------1 
IOS(V)51= I 88 I ++ I I I I I 2 I LOAD O${V)S FROM CH/OO/SB/SG I 
1----------------I ----- J-- -- 1-----1---- -1- ---I -----1----1 ------------ -------------------------------------- 1 
I OS(15114)$I= r 87 I ++ I I I I I 2 I LOAD 0$(15'14)$ FROM CM/OD/Sd/SG I 
1---- - ---- ---- -- -1---- - I -- - -1-- --- 1--- - - I - ---1----- I ----1----- ------- --- --- - - - - - - - - ---- -- ------ - -- - ----- - --1 
IOS(110)SI= I 86 I ++ I I I I I 2 I LOAD 0$(110)$ FROM CM/OD/St3/SG I 
1-- --- -------- ---1---- - I -- -- 1----- 1--- - - I - --- I -- --- 1 - ---1- -- --------- - -- --- ---- - -- ----- --- -- ---- --- --- -- -- - I 

.. ,=-~_,~,"''',~;f--~ JiifjijifJR¥EZ57fEfrTRiJiilEi¥ --j"'3Fi It ~;_ *4-"'~(.';~_ - ~...,.t-"', ... ~i~~~-~-A=i-i~;;;,~ --_-:«-'.~ •. .,..,.~ __ .:._' 



116 

MICRDOPERA lIONS FOR INPUT 

I MICROOPERATION I Fl I 51 I F2 I F3 I 53 I F4 I CP I I 
1----------------1 -----1----1----- 1--- - -1- ---I -----1 ----I --- --------------------------- --------- ----------- I 
I lAA I 107 I I 86 I I I g8 I 2 I ACTIVATE PORT A I 
1---------------1 -----1----1-----1---- - 1- --- I -- --- I ----I -------------------------------- ------------------ I 
I lAoC I I I 108 I I I I 1 I CLEAR lAO I 
1-- - - ---- --- - -- - 1---- - I -- -- I -- --- I --- - - I - - -- I ---- - I ---- I - -- -- ------ - --- --- -- - - -- - --- - - --- -- -- - - - -- --- - - --- I 
I lA)+l I I I 107 I I I I 1 I INCREMENT IAO I 
1------------ - ---I -- --- I -- - - I -- --- I --- - - I - ---1----- I - --- I --- ---- ----- ---------- - ---- - -- -- - -- --- --- --- - -----1 
I IAJ-l I I I 115 I I I I 1 I DECREMENT lAO I 
1----------------1 -----1----1-- --- 1--- --1- --- I ---- - I ----I - -- ------------------- ---------------------------- I 
I lAOS::. I 11<3 I ++ I I I I I 1 I LOAD lAO FROM CM/CD/sa I 
1---------------1-----1----1-----1-----1----1-----1----1--------------------------------------------------1 
I IBA I 108 I I 87 I I I gg I 2 I ACTIVATE PORT B I 
1----------------I -----1----1-- --- 1--- - -1- ---I -----1 ----I ------------------------------ ----- ---------------1 
I I B'JC I I I 11 0 I I I I 1 I CLEAR IBO I 
1------------- ---I ----- I --- - 1----- I --- --1- --- I ----- 1--- - 1--- --- ------ --- --- - -- - - ---- -- - -- - -- -- -- --- -- - -----1 
I IB)+l I I I 109 I I I I 1 I INCREMENT IBO I 
I ----------------1 -----1-- -- 1-- --- 1--- --1- ---1-----1----1 --- --------------------------- --------------------1 
I 180-1 I I I 116 I I I I 1 I DECREMENT lAO I 
1----------------1-----1----1-----1-----1----1-----1----1--------------------------------------------------1 
I IBOt: I 118 I +. I I I I I 1 I LOAO IBO FROM CM/OD/S8 I 
1----------------1-----1----1-- --- 1--- --1----1-- ---I ----I - ----------------------------- -- ------------------1 

HICROQPERAT IONS FOR KC ANO KO 

I H1CROOPERATION I Fl I Sl I F2 I F3 I S3 I F4 1 CP I I 
1---------------1 ----- I ----1-- ---1--- --1- ---I ----- 1----1--- --------------------------- --------- ----------- I 
I KCC I I I 13 I I I I 1 I CL EAR KC I 
1----- -----------1 -----1----1-----1-----1- ---1---- - 1----1 - -- --------------------------- -------------------- I 
I KC'= I I I 11 I I I I 1 I LOAD KC ~ITH SELECTED CONDITION I 
1----------------1-----1----1-----1---- -1----1 -----1----1- -- ---- -------------- --------- -------------------- I 
I KDC I I I 6 I I I I 1 I CLEAR KO I 
1------------ ---I -----1-- -- 1-- --- I ---- -1- ---I -----1---- I --- ---- ---------------------- - --------- -----------1 
I KDI= I I I I I I 7 I 1 I LOAD KD WITH SELECTED CONDITION I 
1-- -- - --- ------- - I ----- I -- - - 1-- --- I --- - -1- - -- I ----- 1--- -1- -- -- ----- -- --- --- --- --- ------ -- --- ------ - -- - -----1 
I SETKC I I 2 I I I I 1 I SE T KC IE KC':l J 
1------------- ---1----- I --- - I -- - -- I --- - - 1- ---1---- - I - ---1- -- -------- ---- ------ -- - - - ----"- - -- - - - ---- -- - ---- - I 
I SET K 0 I I I I I I 5 I 1 I SE T KO IE KO': 1 I 
1--------- -------1----- 1-- --1----- 1---- -1- ---I -----1 ----I --- --------------------------- -------------------- I 

MICROQPfRATlaNS FOR LA 

I MIGROOPERATION I Fl I Sl I F2 I F3 I S3 I F4 I CP I I 
1----- ---- ---- ---1----- I -- --1-- - --1--- - - I - ---1----- I ---- I - -------------- ----- - - - ------- ----- ------- ---- -----1 
I LAPC I 30 I I I I I 34 I 2 1 CLEAR LAP 1 
1 -- -- ---- ----- ---1 ---- - 1----1-----1--- - - 1 - --- 1 -- --- 1 - ---1 - ---- -- --- - ---------- - --- ----- --------- -- --------- 1 
1 LAP+l I 28 1 1 26 I I I 32 I 2 I INCREMENT LAP I 
I ----------------I ----- I -- -- I ----- I --- - -I - --- I ----- I - ---I - -- ------------------ --------- -- ------- -- --- - -- --- I 
I L A"-l I 2g I I 27 I I I 33 I 2 I DECRE MENT LAP I 
I ----- ------- --- I -- -- - I -- --1-- ---1--- - - I - --- I ----- I ---- I - ----------- --------- --- ------ -- --- -- - ------ ------ 1 
I LAP,: I 27 I ++ I I I I I 2 I LOAD LAP FROM CM/OD/SI/S2 I 
I ----------------1- --- - 1---- I -- ---1--- - - I- --- I ----- I ---- I - -------------------- --------- ----------- ---- ----- I 
1 LAS1': I 31 I ++ I I I I 35 I 1 I LOAD LAS1 FROM CM/OO/Sl/S2 I 
1------------- ---1-----I----1----- I --- --1- --- I ---- - I --- - I --- ------------ --------------- -- - ------ ---------- - 1 
1 LAS2':lAP 1 I 1 I 45 I I I 1 I LOAD LAS2 FROM LAP 1 
I ----------------1 ---- - 1----1-----1--- -- I - --- I ---- - I ----1--- ------------------- -------- --------------- ----- I 
I lAl=~SB I I I I I I &0 I 1 I LOAD LA WITH INVERTED S8 I 
I - ---- -------- -~-1 ---- - 1--- - I ----- I --- - - 1 - --- I ----- I ---- I --------------- ------- - ------- -------- --- --------- I 

HICROOPERATIONS FOR LB 

I MICROOPERATION 1 F1 I Sl I F2 I F3 I S3 I F4 I CP I I 
1------------ ----1----- I -- - -1-- ---1--- - -1- --- I ----- I --- -1- -- ------- ------------ ---- ---- -- ------ ------ --- --- I 
I L8PC I I I I 30 I I 38 I 2 I CLEAR LBP 1 
1 - ------- - ---- --- I ---- - 1----1-- --- 1--- - - I - ---1-----1----1----- ------ - - ------------- ---- -------- - --- - -- ----- 1 
lLBo+1 I 11281281 13612IINCREMENTlBP I 
1----------------1---- - I -- --1-----1--- -- I---- I ----- I ----1--------------------- -- --- ---- ------- -- ------ -----1 
I LBP-1 I I I 29 I 2g I I 37 I 2 I DECREMENT LBP I 
1--------- --- ---- I -----1----1-----1--- - - I - --- I ----- I ---- I - -- -------- ----- ----- - -- ------ -------------------- I 
I lB()I= I I I I 27 r ++ I I 2 I LOAD LBP FROM CM/OO/S1/52 I 
1------------- ---1---- - I -- --1-- --- 1--- - - I - --- I -----1----1----------- - - --------- - --- -- -- -- ------ - -- ------ - --1 
I LS';11= I I I 30 I 31 I .... I I 2 I LOAD LBS! FROM CH/00/$1/$2 1 
1----------------1-----1---- 1-- ---1--- - - 1 - --- I ----- I ---- I - -- --------------- ---- -------- --------- -- ---- -----1 
I LBS2':lBP I 57 I I I I I III LOAD LBS2 FRO~ LBP I 
1---------------1-----1----I-----1--- -- I - --- I -- ---1--- - 1 - -- ------ ------ -- ---- - - --- ---- -- - ---- -- - - -------- - 1 
I LB':'SB I I I 50 I I 1 I 2 I LOAD lB WITH INVERTED SB I 
1---- ---- ---- - ---1-----1---- 1 -- ---1--- - - 1---- 1 ---- - 1----1--- - -------------- ------- -- --- ------- -- --- -- - -----1 

M1CROOPERA HaNS FOR LR 

I HICRoaPERATION I Fl I S1 I F2 1 F3 I $3 I Ft,. I CP I I 
1--------------1 -----1----1----- I ---- -1- --- I ----- I ----1--- -----------------------------------------------1 
I LRIPC I 75 I I I 1 I I 2 I CLEAR LR1P I 
1----- ---- --- ----1-----1-- - -1-- ---1--- - - 1 - --- I -----1----I - -- ------------------- - -- ----- -- --------- ---- ---- - I 
I LRIP+l I 73 I I I I I I 2 I INCREMENT LRIP I 
I ----------------1----- 1----1-- --- 1--- - - I - ---1----- I - -- -1- -------- --- --------- - -------- -- --- ---------- -----1 
I LRIP-1 I 74 I I I I I I 2 I DECREMENT LRIP 1 
1-------- ---- ---1-- --- I -- --1-- ---1--- - - I - --- I ---- -1- ---1- -- --------~ - -- ------ - -------- -- - ----- - ----------- I 
I lRIP'=D$ I 72 I I I I I I 2 I LOAD LRIP WITH DS(V+lIVI I 
1----------------1-----1----1-----1--- - -I - ---I -----1----1------------------ ------------ --------------------1 
I LROPC I I I I I I 75 I 2 1 CLEAR LROP 1 
1- ---------------1- --- -1-- --1-- - --1--- - - 1 - ---1-----1- ---1--- ---- ---- - ---- -- ------- -- - -- -- --- -- --- -------- -- I 
I lRQP+1 I I I I I I 73 I 2 I INCREMENT LROP 1 
I ----------------1---- - I -- --1-- --- 1--- - - I - --- I -- -- -1----1- -- -------- -- --- -- --- - - ------- -- --- --------- - - - ---I 
I L~OP-1 I I I I I I 74 I 2 I DECREMENT LRIP I 
I----------------! -----1----1-- ---1----- 1- --- I ----- I ----1--- --------------~'------------ --------------------.1. 
I LR,)PI:::[1S I I I I I I 72 I 2 I LOAD LROP WITH OS(V+1IV) 1 
1----------------1-----1----1-----1--- - - 1- --- I -- --- I ---- I --- ------------ ---------- ---- - -- - -- ------------ ---I 
I LRi>C I I I 71 I 59 I I I 2 I CLEAR BOTH lRIP AND LROP I 
1 - ---- ---- ------ - I ---- -1-- -- 1----- 1-----1- --- I -- -- - I ----1- -- ---- --------------- -------- -- ----- -- ----------- I 
I LRP+ 1 I I I 69 I 57 I I I 2 I INCREMENT BOTH LR1P AND LROP I 
1------------- ---1-----1----1-- --- 1--- -- I - --- I ---- -1--- - I - -- ------------ --- ---- -- ------ --- ----- - --- --- --- --1 
I L!:<P-i I 1 I 70 I 58 I I I 2 I DECREMENT 50TH L~IP An) L.~OP .i 

1--------- ----- --1-- ---1-- -- 1-----1--- - - I - --- I -----1 ----1- -- --------------- -- -- ---- - --- -- -- - -- -- -- ---- -- -- - I 
I LPo,:OS I I I 68 I 56 I I I 2 I LOAD LR1P AND LROP WITH DS(V+l1V) I 
1-------- -------- I -----1-- --1----- 1--- - - 1- --- I -----I ---- I - ----------- --- ------- -- -- ---- ----- -- -- ------ ----- 1 

,,"i~;."~~~ .... llh ~iJ2jP5jjjE?'QT';_KIli~1i'iijRRi.f~&,~"_--~,,d'""%+.~-_~ __ -, ~-,;;?~"" #:' 
~-.:;.~:"":'--'--;:""<.".~<,:i,~--



11 7 

MICRODPER.ATIONS FOR MS 

I MICROOPERATION I Fl I Sl I F2 I F3 I S3 I F4 I CP I I 
1-------------- - I ----- I - - -- 1----- 1--- --1- ---1----- I ----1 --- - -------------------------- -- ------------ - -----1 
I MSAC 1 43 I I 42 1 I I 50 I 2 I CL EAR HSA I 
1------------ ---1----- I -- --1----- I --- - - I - --- I -- -- - I ----1------------ ---- -- --- -- --- ---- -------- ---- --------1 
I MSAPC I 47 I I 1 I I I 2 I CLEAR MSAP 1 
1--------- -------I -----1-- -- I -- --- 1--- - - I - --- I ----- I ---- I - -- ------------------- --- ----- -- --------- ------ --- I 
I HSAP+l I 45 I I I I I I 2 I INCREMENT MSAP I 
1--------------I ----- I ----1----- 1 --- - - I - --- I ----- I --- -I - -- --------- ------ ------- ----- -- --- ---------- ----- I 
I HSAP-l I 46 I I I I I I 2 I DECREMENT HSAP I 
1-- -- - -----------1---- - I -- -- I -- --- I --- - - 1 - - -- I -- -- -1- --- I ------------ ------ --- - - --- - --- -- ------ ---- --------1 
I MSt\P 1= I Lt.~ I ++ I I I I I 2 I LOAD HSAP FROM CH/OO/S1/52 I 
1--------- -------1-----I -- --I -- ---1--- --1- --- I ---- -1 ----1------------------------------ -- --- -- -- -----------1 
I MSASGI;MSA I 58 I I I I I 61 1 1 I LOAD MSASG FROM "SA 1 
1---------------1 ----- 1 -- -- 1----- 1--- - - 1- --- I -----1----1------------ --------- --------- -- ------- -----------1 
I f'lS4.51J= I 48 I ++ I I I I 51 I 2 I LOAD MSASl FROM CM/OQ/::.l/SZ I 
1 - - --- ---- ---- --- I ---- - 1-- - - 1-- --- 1--- - - 1 - --- I - ---- I ----1 - -- - - -- --- -- --- - --- - - - - --- - --- -- --- --- - -- - --- ---- - I 
I MSA + 1 I 41 I I 40 1 I I 48 I 2 I INCREMENT MSA I 
1- ---- ---- ------- I - --- - I ---- 1----- 1--- - - I - --- I ----- I --- - 1- -- --------- ---- ----- - -------- -- ----------- -- -- --- I 
I MSA-l 14211411 II49121DECREMENTHSA I 
1- ---- ---- -------1-- - - - I ---- I -- --- 1--- - - 1 - --- I -----1--- - I - -- -- ------- --- ------- --- ----- -- ------------- -- --- I 
I MSA'= I LtD I ++ I I I I I 2 I LOAD M'SA FROM CM/OO/$tUSG 
1----------------1 -----1----1----- 1--- - - 1- --- I ----- I ----1 

MICROOPERA TIONS FDR OUTPUT 

1 MICROOPERATION I Fl 1 51 1 F2 I F3 1 53 I F4 I CP 1 I 
1---------------- I -- - --1-- - - I -- --- 1--- - -I - ---1---- - I ----1------------ --------- -- -- ----- -------- --- - ----- --- I 
I OAII. I 52 I ++ I I 102 I I 100 I 2 r ACTIVATE PORT A I 
1----------------1---- - I -- -- I -- - -- I ---- - 1- --- 1 -----1---- I - -- --------- ----------- ------ - -- --- ----- -- --- -----1 
I DA~C I I I I 109 I I 1 1 I CLEAR OAD I 
1----------------1----- I -- --1-----1--- - - I - --- I ----- I ----1--- --------- --- --- --- - ---- ---- ----- --------------- 1 
I OAO+1 I I I 1115 I I I 1 I INCREMENT OAO I 
1 --------------1 - ---- 1 -- --1-- --- I --- - - 1 - ---1 ----- I ---- 1 - -- ------------ --- --- - - - -- -- -- -- ----- -------- ----- I 
I OAD-l I I I I 116 I I I 1 1 DECREMENT OAD I 
1- ---- --- ----- ---1--- - - I -- --1----- 1 --- - - I - --- I -----1----1--- ---------- --------- ---- --- - ----------------- ---1 
lOAD'; I 1 I I 108 1 ++ I I 1 I LOAD OAO FROM CM/OO/Se I 
1---------------- I ----- I -- --1----- I --- - - I ---- I ----- I ---- I - ----------------------------- -------- ------- ----- I 
I OAR I I I 92 I I I I 2 I DEACTIVATE PORT A 1 
1-------- -------1 ----- I -- -- 1 -- --- I --- - - 1----1---- - I ----1--- - ------ -- --------- -- ------- -- --- -- ----- --- ---- - I 
I OOA I 53 I ++ I 88 I I I 101 I 2 I ACTIVATE PORT B I 
1--------------1 ---- - I -- - - I -- --- I --- -- I - --- I ---- - 1--- - I - -- ---- -------- ------ - -- - ----- --- --------- --- -----1 
I OBOC I I I 111 I I I 1 1 I CLEAR aBO I 
1---------------1---- - 1----1----- 1--- - - I - --- I -----1----I --- -- ------- --- - -- -- ---------- -------- - --- --- ---- - I 
I 000+1 I I I 117 I I I I 1 I INCREMENT oeD 1 
1------------ ---1-----1 -- --1-----1--- - - I - --- 1 -- --- I --- - I - ----------------- --- - --- ----- ----- --- - ------ -- --- I 
I 000-1 I I I 118 I I I I 1 I DECREMENT 000 I 
1------------- --- I -----1-- -- 1-- --- 1--- - -I - ---I -----1----1 --- --------------------
I O~ll::;: I I I I 110 I ++ I I 1 I LOAD aBC FROM eMIOD/SB 
1----------------1 ---- - 1-- -- 1-- --- 1--- - - I - --- I -----1----1 -----------------------
I 09~ I I I g3 I I I I 2 I DEACTIVI'lTE PORT B 1 
1-------------- - I ----- I -- -- I -- --- 1--- -- I - --- I ---- - I ----1- --- ------- - ------- ---------- - -------- ------------ I 
IOC4 1541++1 11031 110212IACTIliATEPORTC I 
1- - --- ---- ---- --- I ----- I -- -- 1-- --- 1--- -- I - --- I -- --- I ----1--- -- ----------- ---------- ---- -- --- -- -- ----------- I 
I OCOC I I I I 112 I I I 1 1 CLEAR OCO I 
1 ------------ --- I - - ---1----1-- --- 1 --- - - 1 - ---1 ----- I ----1 - -- --------- --- --- -- --- -- - -- - - -- ----- ------------- 1 
I OC)+ 1 I I I I 11 7 I I I 1 I INCREMENT oeD I 
1----------------1 ----- I -- --1-- --- 1---- -I - --- 1-----1----1 - -- ------------
I r'lCfJ-l I I I I 118 I I I 1 I DECREMENT oeD 
1------------- ---I - ----1----1-- --- I --- --1- ---1---- -1----1--- ------------
I oe')I= I I I I 111 I ++ I I 1 I LOAD oeD FROM CM/OD/S8 I 
1----------------1-----1----1-----1--- - -I - --- I ---- - I ---- I --- --- ------------ ----- -- - - - -- -- --- -- ---- - --- -- --- I 
IOCR 1 I I 94 I I I I 2 1 OECATIVATE PORT C 1 
1---------------1-----1 -- --1----- I --- -- I - --- I ----- I ----1 --- ---- -- -- - --- --- --- -- --- ---- -- --- ------------ --- 1 
10C';BUS I 1 I 112 I 1 1 I 1 I LOAD DC FROM BUS(15'0) I 
1 - - --------------1---- - I ----1-- - -- 1--- - - I - ---1---- - I ---- I - -- --- ---- -- - ------- -- - --- --- - -- - --- -- - ----------- I 
I MICROOPERUION I Fl I Sl I F2 I F3 I S3 I F4 I CP 1 I 
1- ---- ----------1----- I ----1-----1--- - - 1---- I -- --- I ----1--- ------------ - -- ----- -- - ---- ----- ------- ------- - I 
I OOA I 55 I ++ I 89 I I I 103 I 2 I ACTIVATE PORT 0 I 
1-------- ---- ---1-----1 -- - - I -- --- I --- - - 1- ---I ----- I ----1--- - --- ------ --------- --- - ---- --- ------ - ----- - - -- - I 
I OOOC I 1 I 113 I I I I 1 I CLEAR OCO I 
1- - --- -------_ ---1----- I - - -- I --- -- I --- - - I - --- I ---- - I ---- I - -- -- ------ ---- - ------ - ------- -- - ----- - -----------1 
I ODO+1 I I I 119 I I I I 1 1 INCREMENT 000 I 
1---------------- I ---- - I ---- I -- --- I --- -- I - ---1----- I ----1--- -------------------- -- - ---- -- --- -- ----- --- - - - -- I 
I OCQ-l I I 1 120 I I I I 1 I DECREMENT 000 I 
1-------------- I -----1----1----- I --- --1- --- I ----- I ----1------------ --- ------ --------- -- --- ---- ----------- I 
I 000'; I I I 1113 1 ++ I I 1 I LOAD 000 FROM CM/oose 1 
I ---------------- I -----I ----1-----1-----I - --- I ----- I ---- I - -- ------------ ------ - - -- ------- ------ ------------1 
I OOR I I I 95 I I I I 2 I DEACTIVATE PORT D I 
1-------------"--1-----1----1----- 1--- - - 1- --- I ----- I ---- I ------------------ ---- -------- -- ------- ------ -----1 
I OD';BUS I I I 114 I I 1 I 1 I LOAD 00 FROM BUS(t5'0) I 
1-- -- -----------I ----- I ----1-----1--- --1---- I ----- I ---- I --- ---- ----- -------------- ---- -- ------------------ I 

~k_-~~,~'_h~-fl~ r~- JiIii:K7.fff'lft c r ' j*~,~<,_"-~-<- "- 0,"';'--.,.5..> ~""',.-ii:, ."j:_o=~i-_·-'~~~~~""~~~-;~?,_,,!_,_,,,"~_>_,~. ;~~#.'h",;· 



MICPr)nprRATIONS FOR PM 

I MICROOPERATION I Fl I Sl I F2 I F3 I S3 I F4 I CP I I 
1- ---- ---- ---- ---1---- - I -- - - 1-- --- I --- -- I - - -- I -- --- I ---- I - -- ------------ - ----- - - --- - --- -- --- ---- ---- ---- -- - I 
I PABC I I I I 91 I I I 2 I CLEAR PA AND PB POINTER I 
1----------------1---- - I -- -- I ----- 1--- - - I - --- I ----- 1---- I - -- --- ------ --- --- -- - --- -- --- - -- --- ---- - -- --- ---- - I 
I PABPPC I I I I 95 I I I 2 I CLEAR PABPP I 
1----------------1 ----- I---- 1-- --- 1--- -- 1- ---1-----1----1 --- ------------------- - ------- -- ---------- --------1 
I PAdPP+l I I I I 93 I I I 2 I INCREMENT PABPP I 
1------------- ---I -----1----1-- --- 1--- --1- ---1-----1----1 - -- --------------------------- -- ---------- --------1 
r PA lPP-l I I I I 94 I r 1 2 I DECkEHENT PASPP J. 

1---------------1---- - 1-- - - I -- --- I --- - -I - - --1---- - I - ---1--- - -------- -- - --- - - -- - -- -- -- - -- --- --- - - ----- - --- - I 
I PAJJPP,= I I I 1 92 I ++ I I 2 I LOAD PABP? FROM CH/OO/S1/52 I 
1----- -----------1---- - I - - - - I ----- I --- - - I - --- I ---- - I ---- I - -- ------- --- -- --- --- - ---- ---- -- --- -- - ---- --- -- ---1 
I PA'lPSlI= I I I 84 I 96 I ++ I I 2 I LOAD PABP$l FROM CH/OO/S1/52 I 
1---- -------- ---1----- I -- -- I --- -- I --- - - 1- ---1-- -- - I ---- I --- ------------ ----- ---- ------ -- --- -- ---- - --- -- -- -! 
I PABPS2,=PABPP I 126 I I I I I I 1 I LOAD PABPS2 FROM PABPP I 
1------------ - ---I ----- I -- -- I -- - -- I --- - - 1----1----- I ----1--- - ------- - ----- ---- - --- - -- -- - - --- -- ------- -- ---- I 
I PA]PI=SB I I I 106 I I I I 1 I LOAD PAPP FROM SB I 
1- -------- ---- ---I - - -- - 1---- I -- --- 1--- - - I - --- I ----- 1--- - 1- ---- ------ - - -- -------- --- ---- -- - ----- ------ ----- - I 
I PAS+l I I I I 89 I I I 2 I INCREHENT PAP AND PBP I 
I - - --- -------- --- I -- --- I -- --1-- --- 1---- - I - ---1----- I - ---1--- - --- ---- ---- --- - -- ----- --- - --- ------ --- -- - -- --- I 
I PAI]-l I I I I 90 I I I 2 I OECREMENT PAP AND pap I 
1------- - --- - ---1----- I - - - - 1-- --- 1--- - - I - --- I ----- I ----1--- -- ------ - - -- --- --- - ---- --- --- --- --- ---- --- ----- I 
I PAPC I 102 I I I I I 94 I 2 1 CLEAR PA POINTER 1 
I - ---- ---- ---- ---1 ----- I -- - - 1----- 1--- - - I - --- I -- --- I ---- I - -- ---- ----- --- ------ - - --- ---- -- --- -- - --- - --- -- --- I 
r PAP .. ! r 100 I I I I I 92 I 2 I INCREMENT PAP 1 
1-- --------------1 ----- I---- 1----- 1--- --1- ---1-----1----1 --- ------ --------------------- -------------------- I 
I PAP-l I 101 I I I I I 93 I 2 I DECREMENT PAP I 
1---------------1 -----1----1----- I --- - -I - ---1-----1----1 --------------- -------- ------- --------------------1 

f -~~~! :----- ----! --~~-I-!!- f -- ---1--- --f ---- f ---- -f __ f_ f _~2 ~Q-~~_ ~2! ~!~~_E~2~ _f ~~2g~2~ -- - - ----- ------ -- -- - f 
I PAI=-BUS 1 I I I 107 I I I 1 I LOAD PA "ITH THE INVERTED BUS(1510) I 
1---- ---------- I ----- I -- --1----- I --- - - I - --- I ----- I ----1--- --------------- ------ ------ -- ------------- ---- - I 
I PBPC I 106 I I I I I 97 I 2 I CLEAR P8 POINTER I 
I ---------------- I -----1----1-- --- 1---- -1- ---I -----1----1 - ----------------------------- ------------ -------- I 
I PBP+! I 104 I I I I I 95 I 2 I INCREMENT pep I 
1----- -------- ---1 -- --- I -- - - I-- --- 1--- - - I - --- I -- --- I ----1- -- ----- ---- - -- --- ----- --- --- - -- ---------- --- ----- I 
I P8P-l I 105 I I I I I 96 I 2 I DECREMENT PBP I 
1----------------1 ----- I---- 1-- --- 1--- --1- --- 1 -----I----I ------------------------------ -------------------- I 
r PBP'= I 103 I ++ I I I I I 2 I LOAD PB POINTER F~aH CI'f/OO/SB I 
1------------- --- 1 ---- - I -- -- 1-- - -- 1--- - - 1- -- - 1 -- -- - 1 ----1--- - --- -- --- --- --- --- --- -- ---- -- ----- ----- --- ----- I 
I MIGROOPERATION I Fl I Sl I F2 I F3 I S3 I F4 I CP I I 
1- ---- ------- - --- I ----- I -- - - 1 -- --- 1--- - - 1 - --- 1 -- --- I - --- I - -- ----- -------- -------- - ---- - ----- --- - ---- -------1 
I PB': .... eus I I I I 114 I I I 1 I LOAO PB WITH THE INVERTED aUS<1SI0) I 
1 - -------- ------- I -----1-- --1----- 1--- - - 1- - -- I -- --- I ----1--- -- ------------- ----- ---- --- -- --------------- -- - I 
I PGP(: I I I I 87 I I I Z I CLEAR PGSG POINTER 1 
1- - ------ - ---- ---1 ---- - I -- - - I -- - -- I --- - - I - - -- I -- -- - I --- - I - -- -- -- ---- - --- --- -- - --- -- - --- -- - -- -- - ---- --- -- ---1 
I PG':>+l I I I I 85 I I I 2 I INCREMENT PGSG POINTER I 
I ----------------1 -----1---- 1----- 1--- - - I - --- I -----I----I ---------------- -------------- -------------------- I 
I PGP-l I III 86 I I I 2 I DECREMENT PGSG POINTER I 
1---------------I -- --- I -- --1----- I --- - - I - --- I -- --- I ---- 1 --- -------------- - --- - - - -- --- - -- - ----- ------ - -- -- - I 
I PGPI= I I I I 84 I ++ I I 2 I LOAD PGSG POINTER FROM eM/DO/S1/S2 I 
1------------- ---I ----- I ---- I -- - -- I --- - - 1- - -- I -- --- I ---- I --- -------- ------ - --- - - - -- ---- --------- ------ ---- - I 

ri -~~: :-----------i -----i -- -- i-- ~:-i --- --i ----i --~=-i --=-i -:: ~~~-~~:- --------------- -- -- ----- ---------- -- --- i 
! i -~~~~=~-------i -----i ---- i-= ~:-i -----i ----i -----i --=-i -:~~~-~ ~:~-~~~~ -:~--- --------- -- ------------------i 

I PG$ll= I I I 83 I 86 I ++ I I 2 I LOAD PGSl FROI1 eM/00/S1/S2 I 
I 1---------------I -----1--- - I ---- - I --- - - 1- --- I ----- I ----I - -- ------------------ - -- ---- -- ------- -- -- ---- ----- 1 Ui ~m~~~~~~~~~~~~ i ~~~~~! ~~~ ~ i ~~ ~~t~~ ~ ~!~ ~~~! ~~g~! ~~~~! ~~m~~m~~m~~:~~~~~ ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ ~ 1----- ---- -------I -- --- I ----1----- 1--- - - I - --- I ---- - 1----I - -- ------------ ------- -------- -------------------- I 

IPGSI= I I 11831++1 I 21 LOAOPGSWITH S3 I 
1--------------- I ----- I -- --1-- ---1--- - 1- --- I -----1----I --- ------------- -------------- ----------- ---- ----- I 

HICROOPERATIONS FO~ SA 

I MIC~OOPERATION I Fl I Sl 1 F2 I F3 I S3 I F4 I CP I I 
1--------------- I -- --- I -- -- 1----- 1--- --1- --- I ----- 1 ---- I - -- ------~----- --- ---- - ------ - -- ----- ------------- I 
I SAC 1 I III I 3 III CLEAR SAVE AODRESS I 
I -- --- ------- --- I - - --- I --- - 1----- 1--- - - 1- --- I ---- - 1--- - I - -- --------------- -- --- --- --- --- --- --- ------- ----- I 
I SA+1 I I I 1 I III 1 I INCREMENT SA 1 
1- --- - ------- ---- I ----- I --- - I -----1--- - - 1- --- I - - --- I ----1--- -- ---------- --- ---- --- ----- -- -------- -- --- ----- I 
I SA-l I I I 1 I I 2 I 1 1 DECREMENT SA I 

~ ~~~~:~~~~~~~~~~] ~~~~ ~ ~ ~~~~ ~ ~~ ~~~ ~ ~~~ ~ ~ ~ ~ ~~~ ~ ~~~~~ ~ 0 ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ ~~~ ~ 
M1CR00PERATIONS FOR CON.STORE 

I MICROOPERATION I Fl I 51 I F2 I F3 I $3 I Fit I CP I I 
1----- ---- ---- ---1 - - -- - I -- - - 1----- 1--- - - I- --- I -- --- I ---- I - -- - - -- -- -- - --------- - - - ------ -- - -- ------- ----- --- I 
I CS LOAD I I I 8 I III 1 I LOAD CONTROL STORE AND CHOOSE HERE+! AS NEXT I 
1----------------I - ----1----1-----1--- --1- ---I -----I----1 ------------------ --------------------------- ----- I 
I LCC I I I I 5 I I I 1 I CLEAR LC I 
1------------- ---I - --- - I -- -- 1----- 1--- - - I - --- I ---- - I ---- I - -- -------- ----- -- -- --- -- - --- - ------------------- - I 

HICR'1QPERA nONS FOR we 

I M1CROCPERATION 1 Fl I Sl I F2 I F3 I S3 I F4 I CP I I 
1- ---- --- ----- ---1--- --1-- -- I -- - -- 1--- - - I - --- I ---- - I ----1--- - - ------ - - -- --- -- - - - - ------ -- --- --- ---- -------- I 
I WC~S I I r I 4/t r I I 1 I LOAD WAGS AND WBGS I 
I ------------ ---- I -- ---1-- --1-- --- I --- - - I - --- I ----- I --- - I - -- -------- - ---- -- --- -- - ----- - -- --- -- -- ----- - -- ---1 
I WGUS I I I 49 III III LOAD "AUS AND "BUS I 
1--------- -------1---- - 1-- -- I -- --- 1--- - - 1- ---1-- -- - 1--- - 1------------ - -- --- --- - -- - ----- -- - ------ - - ---- -- --- I 
I WCU+l I I I I I I 28 I 2 I INCREHENT wAU AND WBU I 
1---------------- I -----1- -- - 1----- 1--- -- I - --- I ----- I - --- I - --- ------- - --------- -- - ------ -- -- ------------ - --- I 
I "CU-l I I I I I I 29 I 2 I DECREHENT "AU AND HBU I 
I ------- ---- - --- I --- -- 1 --- - 1----- 1--- -- I - --- I ----- I ---- I - -- --------- ------- ---- - --- -- - -- --- ---- - ----- -- ---1 

.,-_'""~.w=._=::"'t;._-:e*"-J I ~ -'W-XTT-£iRTritVllf<:".i~i:"'_c>._;;_"';::~"Z:'-'~ 41-1;:;' -~~:>~>:.~..,~~+-¥"""~~~;;;':>~-o...:_~·_~'~·"A .. _;;~'" 

118 



11 9 

MILRIJOPfRATIONS FOR. VS 

MICROOPERATION -1 Fl I 51 I F2 I F3 I 53 I F4 I CP I 

I VSLL I I I 76 I I I I 2 I SET VS TO L QGICAl LEFT SHIFT 
1----- -------- ---1 -----1----1-- --- 1--- --1- --- I ----- I ----I --- --------- --- _____________ _ 
I VSlR I 1 I 77 I I I I 2 I SET VS TO lOGICAL RIGHT SHIFT 
1----- -----------1 -----1----1----- 1--- -- 1- ---I ----- I ----I - -- ------___ _ 
I VSeV)SC I 8~ I I I I I 2 I CLEAR YS{V)S 

I vSrv)S+l I 83 I T I I I I 2 I INCREMENT VS(V)S 
I ------------- ---I -----1 -- - - 1-----1-----1- ---I -----1----1 - -- ---------------
I VS(V)$-l I 84 I I I I I I 2 I DECREMENT vS(tnS I 
1----------------1-----1-- -- 1-- --- 1-----1- --- I ---- - I ----I - -- --------- --- ----------------- ------------------1 
I VS(V}S'~ I 82 I ++ I I I I 83 I 2 I LOAD vsev)s FROM CH/OO/SB/SG 
1----- -----------1 - --- - I -- -- 1----- I --- - - I - --- I ---- -I ----I - ----------------------- ____ _ 
I VS(O)SI= I 80 I ++ I I I I 81 I 2 I LOAD V$(O)S FROM CM/QO/SB/SG I 
1---- - ---- ----- -- I ----- 1- - - - 1-- - -- 1--- - - I - ---1- - --- I - -- -1--- ------- -- - -- ------- - - ------ -- - -- --- - - ----- ----- I 
I VSC1S)SI= I 81 I ++ I I I I 62 I 2 I LOAD VS(15)S FROM CH/OD/S8/SG I 
1- ---- ---- ---- --- I -- -- - I -- --1----- 1--- - - 1- --- I ---- - I --- - 1--- -- ----- -- --- --------- ------ -- --- -- ------- - ----- I 

HICR"1QPERATIONS FOR WAU 

I MICROOPERATION 1 Fl 1 SI I F2 1 F3 I S3 I F4 I CP 1 I 
1----------------1 -----1----1-- --- I --- - - 1- --- 1 -----1 ----I - ----------------- --------------------- ----------- I 
1 wAUC I 19 I I I I I 18 I 2 1 CLEAR WAU POINTER I 
1---------------1 -----1----1-----1-----1- --- 1 ---- - 1----1 ------------ ----------- --- ------------------------ I 
1 wAUSPC 1 I I I I 1 21 1 2 I CLEAR WAUSG POINTER I 
1 - -------- -------1 - ----1-- -- I -- --- 1--- - - I - - -- I -- --- 1 ----1--- -------- -- ----- -- - - - ------- -- --- --- ---- ----- ---1 
I WAUSP+l I I I I I I 19 I 2 I INCREMENT WAUSP I 
1- --------------1-----1----1-----1--- --1---- I -----1----1 - ------------------------- ---- --------- ----------- I 
r WA'l$P-l I I I I I I 20 I 2 I DECREMENT WAUSP 1 
1----------------1-- ---1-- --1-- --- 1--- --1- --- I -----1----1 ------------------ --- - -------- --------- ----------- I 
I HAUSI:::WAU I I I I I I 58 I 1 I LOAD WAUS FROM WAU I 
1----- ---- ---- --- 1 -----1----1----- 1--- - - 1---- I -----1----1- -- --- ----- - ---- ----- - -------- ----- ---- ------ -- -- - I 
1WAU+1 I17! I I 1I1612IINCREI'1ENTHAU I 
1----- -------- --- I -- -- - 1-- - - 1-----1--- - - 1- --- I -----1----1 --- ---- --- ----- --- --- -- - ---- -- -- - -- -- ---- - --- -- ---I 
I WAJ-l I 18 1 I 1 I I 17 I 2 I DECREMENT WAU 1 
1---- - ----------- 1 -- --- I -- --1----- 1 --- - - I - --- I ----- 1 ---- I - -- ---- -------- --- -- - - -- ----- - -- - ----- -- - -- - - -- ---1 
I WAUI= I 16 I ++ I I I I I 2 I LOAD "'AU FROM CH/OO/SB/US I 
1---- - -------- --- I ----- I --- - 1-- - -- 1--- - - I - --- I ----- I ----1 - -- - --- ---- ---- ------- - -- - -- -- -- ----- - - -- - -------- I 

MICROOPERATIONS FOR WAG 

I MICROOPERATION I F1 I Sl I F2 I F3 I S3 I F4 I CP I I 
1----------------1----- 1----1-- --- 1---- -1- ---I -----1 ----I --- --------------------------- -------------------- 1 
I WAGC I I I I 1 9 I I I 2 I CLEAR WAG POINTER I 
1----------------1 ----- 1-- -- 1-- --- 1-----1- ---1-----1----1 ------------------------------ -- ------------ ------ I 

i -~ ~~ ~£------ ---f --~~ -f ---- f -- --- f --- --f ----t -----t --~- f -~~ ~~ ~- ~~~~~-~~!~! ~~-- -------- -- ------- ------ -- -- -f 
I WAGSP"'1 I 22 I I I I I I 2 I INCREMENT WAGS? I 
1----------------1 ----- I ----1----- 1 -----1- --- I ----- 1----1---- -------------------------- ------------ --------1 
I WAGSP-l I 23 I I 1 I I I 2 I DECREMENT WAGSP 1 
1---- ------------1 -----1----1----- 1 ---- -I - ---I -----1 ----1--- --------------------------- -------------------- I 
I WAGS.=WAG I 5& I I I I I I 1 I lOAD WAGS FROM WAG I 
1 -- -- --------- ---I - ----1----1-- --- I --- -- I - ---1---- - I --- - 1--- --- ------ - ---- ---- - ---- -- -- -- ------ - -- -- ---- --- I 
I WAG + 1 . I I I I 17 I I I 2 I INCREMENT WAG I 
1 ----------- -- - I ----- 1----1----- 1--- - - I - --- I ---- - I ----1--- ---- ------------- ---------- -- -- ----------- ----- I 
I WAG-l I I I 1 16 I I I 2 I OECREMENT WAG I 
1--------------1-- --- I -- --1----- I --- - - I - --- I -----1----I - -------------- ------ ----- ---- --------- --- --- -- --- I 
I WAG I = I I I I 16 I ... + I I 2 I LOAD WAG POINTER FROM CM/OO/SB/SG I 
1--------------- I -----1-- -- 1----- 1 --- - - I - - -- I ----- 1 ---- I ---------------------- -- - - ~--- -------- ------- ----- I 

MICROOPERATIONS FOR wA COUPLED 

I HICROOPERATION I F1 I S1 I F2 I F3 I S3 I FI.t I CP I I 
1----- ----------- I ----- I -- --1-- --- 1 ---- - I - --- I ----- I - --- I - -- -------- ------------ - -- -- -- --------- ----- - -- ---I 
I CPL A I I I 1 I I 5& I 1 I COUPLE WAU AN~ WAG I 
1 ------- ---- - ---1---- - 1---- 1-- --- 1 --- - - I - ---I ----- I ---- I - -- -- ------ -- - - -- - --- - - ------- - - ----- ----- --- -- -- - I 
I U":;Pl A I 1 I I I I 57 I 1 I UNCOUPLE WAU AND WAG 1 
1----- -------- --- I ----- I -- -- 1 -- --- I --- - - I - --- I ----- I ----1- -- - ----------- - -- --- - - - -- ---- -- - -- ------ - -------- 1 
I WAPC I 21 I I I I I I 2 I CLEAR WAU POINTER AND WAG POINTER I 
1-------------- I -----1----1-- --- 1--- -- I - --- I -- --- 1----1 - -- -- ------- --- - -- - - -- -- -- --- - ----- --- ---- --- -- -- - I 
I WAPSPC I I I I I I 24 I 2 I CLEAR WAP AND WAG 1 
1------------ ---- I -----1---- 1----- 1---- - I - - -- I ----- I ---- I - -- -- -- ------ -- --- -- - - - ------ - -- - - --- -- -- - - ---- --- I 
I WAPSP+l I I I I I I 22 I 2 I INCREMENT WAGSP AND WAU$P I 
1---------------1 -----1----1----- 1---- - 1- --- I -----1----1 - ---- ----------------------
I \.IAPSP-l I I I I I I 23 I 2 I DECREt'ENT WAGSP AND WAUSP 
1---------------1-----1----1-----1---- -1- ---1-----1 ----I _______________________ c __ _ 

I WAPSI=WAP I I I I I I 59 I 1 I LOAD WAGS AND WAUS FROM WAG AND WAU RESPECTIVELY I 
1-- --------------1---- - I -- -- I -- --- 1 --- - - I - --- I ----- I ---- I - -- -- ----- - - ---- -- --- - - - - -- -- - - - - ---- - --- -- -- -----1 
I WA~t= I 20 I ...... I I I ++ I I 2 I LOAD WAU FROM CH/OO/SB/US,WAG FROM CM/OQ/SB/GS I 
1----------------1 -----1----1 ----- I --- - -1- --- 1 ----- 1----1 --------------------- -- ------- ------------ --------1 

MICROOPERATIONS FOR wPU 

I MICROOPERATION I F1 I 51 I F2 I F3 I S3 I F4 I CP I 
1----------------1-----1-- -- 1----- 1 --- - - 1- --- 1 -----1 ----I 
I WBJC I I I 18 I I I 27 I 2 I CLEAR WBU PCINTEr< I 
1----- ---- -------1 -- --- j----1-- --- 1--- -- 1 - ---I ---- -I ----I - --------- -- ---------- - -- - ---- -------------------- I 
I WFtUSPC I I I 25 I I I I Z I CLEAR w8USG POINTER I 
1 -- --- --- ---- - --- I ---- - I -- - - 1 -- --- I --- - - I - --- I ---- - 1--- - 1 - -- -- -- - - ---- -- - -- -- - - - - - - - - - - -- - -- ---- - - - --- -- ---1 
I WBUSP+l I I I 23 I I I I 2 I I1~CREMENl WBUSP I 
1---- --------- -- - 1 - - -- - 1 -- - - 1----- I --- - - I - --- I ----- I ---- I - -- - --- -------- --- -- -- - - - - ---- -- -- ---- - - - - -- - --- -- I 
I h'9l)SP-1 I I I 24 1 I I I 2 I DECREMENT WBUSP r 
1- - -------------1----- I -- - - 1----- 1 --- - - I - --- I ----- I --- - 1 - -- ---- ---- - --- --- - -- - - --- - -- - -- - -- --- - - ----- ----- I 
I ;.jBUS t=wBU I I I 48 I I I I 1 I LOAD WBUS FROtt wau I 
1-------- - ---- --- I -----1---- 1-- --- I --- - - I - ---1---- - I - ---1 - -- ---- -------- ------ -- - - - -- -- -- --- ----- -- - - - ----- I 
IW8U+l I 11161 1I2512IINCREHENTWAU I 
1----- -------- --- I - -- -- I -- --1-- --- 1----- 1 - --- I ----- I ----1 - -- -------- --------- --- ------------- - -- -- -- - - ----- 1 
I "8U-l 1 I I 17 1 I I 2& I 2 1 DECREMENT WAU I 
1---------------- I -- --- I -- -- I -- --- I --- - -1- --- I ---- - I ----1- -- --------- --- --- --- - ------ - - -- - ----- --- -- - - -- ---1 

f -~~~~ =---------- f ----- f -- --f----- f __ 3 ~ -t -c~_ f ---- -f --~- f -~~~~-~~~ -~~ !~!~~-~~~~ -~ ~~~~~~ ~~ ~~---- ------- ----- f 

~. "-~:-'_'~-~-i"'~~-jjjiij§ij _.- W21WiU5EW" w-m&"-'; -¥u~;~-.;;;;;:-~:: ... _:=;:;_.::_;::_;. ~_;:-.;;o--;:-~:.-,~ :i1<-~_~.::::;~~~"'*~-~~~~~_-~~::,-·~;;,v.',c:,-,· _ _;..~,1:_"_,~;,--,~-';, 



120 

MICROQPfRA T IONS FOR 1411(, 

I HICROQPERATION I Fl I S1 I F2 I F3 I S3 I Fit I CP I 
1 ----------------1----- 1-- --1-- --- 1-----1----1 -----1 ----I 
I wBGe I I I Zl I I I I 2 I CLEAR WBG POINTER I 
1----- --- ----- ---1--- - - I ---- I -- --- I --- - - 1 - --- I ---- - I --- - 1 - -- -- ------ ------- -- - - - - --- --- ----- -- - - - -- --- -- - - - 1 
1 WAGSPC 1 1 I I 23 I I 1 2 1 CLEAR WSGSG POINTER I 
1-- -- - --- --------1---- - 1 - - - - 1-- --- 1 --- - - I - --- I -- -- - I ----1 - -- - - -- ------- - --- --- --- -- -- -- -- -- - -- - - - - - -- -- - --- 1 
1 HBGSP+1 1 I 1 I 21 I I 1 2 I INCREMENT HBGSP I 
1 --------- -------1---- - 1----1-----1--- - - I - --- I -- --- I - ---1 - -- ------- ----- --- --- -- --- --- - -- ----- -- - - ---- -- --- I 
I HBGSP-l I I 1 1 22 I I I 2 1 DECREMENT HBGSP 1 
1--------- --- - --- 1 --- --1----1----- 1--- - -1 - ---1-----1 ----1------------ -------- - - - - - ---- - -- ------- - ---- ------ I 
I WBGS ,=wBG I I I 1.2 1 I 1 1 1 LOAD WBGS FROM WBG I 
1------------- --~I --- - - I -- - -1----- 1--- - -1- --- I -- --- I ----1--- -------- ---- - -- --- --------- -- - -- --- - --- ----- ---1 
IW8G+l I 11191 I I I2IINCREHENTWBG I 
1-- --- ------ ----- I -----1----1----- 1--- - - I - --- 1 ----- I ---- I --------------------- - -- - - c- - - -- - -- ------- -- --- --- I 
I HBG-l I I I 20 I I I I 2 I DECREMENT HBG I 
1- ---- ----------- I ---- - 1----1-----1----- I - --- I ----- I ----1--- ------------ ------- - ------------ ---- -------- -- - I 

P ~!.:--- -------I __ ~2_ I-~ ~- I --- -- I---- -I- ---I ---- -f--Lf -~Q ~Q_~~L~Q!~!~!LE~Q~_Q~!QQ!~ §!~~- ---- -------- -- - f 
I1ICRQOPERATIONS FOR WB COUPLED 

I HICROOPERATION I Fl I SI I F2 I F3 I S3 1 H I CP I I 
1- --------------- I --- - - I ----1-----1--- - - I - --- I ----- I ----1-------------------- --- ------- -- ----- -- -- -- -- ----- I 
I CPL a I I I I 40 I I I 1 I COUPLE WB.U ANa HBG 1 
1- --- ----------- I -- -- - I -- --1-----1--- --1- ---1----- I - ---1- -- ------------ --- ------- ----- ----- --------------- I 
I UNCPL B I 1 I I 41 I 1 I 1 I UNCOUPLE WBU AND HBG I 
1----- -------- --- I ----- 1 -- - - 1-- --- 1--- - - I - --- I -- -- - I ----1--- ---- -------- --- -- ----- ----- -- --- ------- --- ----- I 
I HaPC I I I 22 I I I I 2 I CLEAR WBP POINTER AND HBG POINTER I 
I ----------------1----- I -- -- I ----- 1--- - - I - --- 1 ----- 1 ---- I ---------------- -------------- ----- --------------- I 
I HBPSPC I I I I 26 I I I 2 I CLEAR HBP AND HBG I 
I ---------------- I ----- I -- --1----- I --- - - I - ---1----- I ---- I --- --------- --- -------- -- ----- ------- -- -- ---- ----- I 
I HBPSP+l I I I I 24 I I I 2 I INCREMENT HaGSP AND HBUSP I 
1----- ---- -------1---- - 1----1----- 1--- - - I - --- I ---- - I ----1--- --------------- ------------ -- ------------- -- --- I 
I WBPSP-l I I I I 25 I I I 2 I DECREMENT waGSP AND HBUSP I 
1----- ------- --- I -- --- I -- - - 1-----1--- - - I - --- I ----- I ----1--- ------------- -- --- -- -----" - -- ----------- ------- I 
I HeI'S,=WBP I I I I 43 I I I 1 I LOAD HBUS AND H8GS FROM H8G AND H8U RESPECTIVELY I 
1---------------- I ----- I -- -- I -- ---1--- - - I - --- I -- --- I --- - 1------------ ------ --- -- --- --- - -- ------------ ------ I 
I w8PI= I 26 I ++ I I I ++ I I 2 1 LOAD weu FROM CH/OD/SB/US,WBG FROM CH/OD/SB/GS I 
1----------------1-----1---I -- --- I --- - - 1- --- I ----- I ----1------- ----- ------ - -- --- -- ---- -- ----- --- -- --- -- ---1 

HICROOPERATIONS FOR CUAl 

I MICROOPEPATION I Fl I SI I F2 I F3 I S3 I F4 I CP I 
1----------------1 ----- 1-- --1----- 1--- --1---- I -----1---- I 
I CUALfl= I 1 I I 1 I I I 1 I LOAD CUALF wITH DATA FROM F4 I 
1----------------1---- - I -- - - I -- --- I --- - - I - --- I ---- - 1 ---- 1 - -- ---- ---- - --- ------- - -- - ---- ----- ---- - -- ----- -- - 1 
I SCJALFB 1 1 I I I I I I 1 I SET CUALF TO B 1 
1---------------1 -----1--- - 1----- 1--- - -1- --- I ---- -1----1 --------------------- ----------------------------- 1 
I SCUALF+ I I I I 2 I I I 1 I SET CUAlF TO A+8 1 
1----- -------- --- I - - - -- I -- - - 1 -- --- 1--- - - I - ---1---- - I ----1 - --- --- ---- ---- --- ----- --- ---- - - - ------ ------ -- -- - 1 

HICF:OOPfRATIONS FOR R,Il. 

I MICROOPERATION I Fl lSI 1 F2 1 F3 I S3 1 H 1 CP I 1 
1 ----------------1-----1----1----- 1--- -- 1- --- 1 -----1----1 --- --------- ------------------ -------------------- 1 
I RAPC I I I "I I I I 1 I CLEAR RA POINIER 1 
1----- ----------- I --- - - 1- --- 1----- I --- - - 1- --- I ----- I ----1- -- ------ - ---- ----- -- - - -- --- - -- - ------ ------ -- --- I 
I RA-f' I I I 2 I I I I 1 I DECREMENT RA POINTER I 
1------------- ---1----- I --- - I -- --- 1 --- - - 1- --- I ---- - I ----1--- ------------ ------ -- ------- -- ------ ------- -----1 
I RA4- I 2 I I 3 I 3 I I I 1 I INCREMENT RA POINTER AND THEN LOAD RA I 
1----------------1---- - 1 -- -- I -- --- 1--- - - 1- --- I ----- 1 ---- I - ----------- --- --- --- --------- ------- - ---- --- -----1 

HICRODPERATIONS FOR RB 

I HICROOPERATIONI F1 I S1 I F2 I F3 1 S3 I H I CP I I 
I ---------------- I -- ---1---- 1----- 1--- --1---- I -- --- I ----1-------------------- ---------- -------------------- I 
I RBPC I 5 I I I I I I 1 I CLEAR RB POINTER I 
1---------------1 ----- I ---- I ----- 1--- - - I - --- I ----- I ----1------- ----------------------- --------- ----------- I 
I RB> I 3 I I I I I I 1 I DECREHENT RB POINTER I 
1--------------1---- - I -- -- I -- ---1--- - - I - --- I ----- I ---- I ------------------------------ ----- ---- ------ -----I 
I RB+ I .. I I 5 I "I I I 1 I INCREMENT RB POINTER AND THEN LOAD RB I 
1------------- --- I ----- I ---- 1-----1---- - 1- --- I ----- I ----I - ------------------------- ---- -- --- ------------ ---1 

-":,,.,,;. ,- uniilr~ raii ];~J'i~:, - -----~-::~,~.,. >""-k- ~~"-_:.~-,'--_;_P_"_~:iZ..~ ~:.~~~,;.._-H--~4:_4'~ __ ~~:~o;~ -~,~,;:::.---:;.:::,: -- ~:~:~;,,~~~~i~~~<'.~'"-~;;:"~e~":~,;;~~V~~~fi;¥0 



Tabl e of First Occurrance of Abbreviations and Symbols 

(not including conditions or microoperations) 

Abbreviation Interpretation Page 

At ,Ar 

AL 

ALF 

ALP 

ALSG 

ALSl 

ALS2 

AS 

BD 

BISB 

BM 

BMP 

BMPP 

BMPSl 

BMPS2 

BS 

BSP 

BSSG 

BSS 

BSSl 

BSS2 

BUS 

CA 

CAS 

CASP 

CB 

CBS 

CBSP 

Address Specifications 

Arithmetical Logical Unit 

AL Function and Carry-in Register 

ALRG Pointer 

AL Standard Group 

ALSG Savel Pointer 

ALSG Save2 Pointer 

Accumul ator Shifter 

Bus Destination 

B-Input Selection Bits 

Bus Masks 

Bus Mask Pointer Standard Group 

BMP Pointer 

BMP Savel Register 

BMP Save2 Register 

Bus Shifter 

BS Standard Group Pointer 

Bus Shifter Standard Group 

Bus Shifter Sel ection Register 

BS Savel Register 

BS Save2 Regi ster 

the BUS 

Counter A 

Counter A Save Registers 

Counter A Save Register Pointer 

Counter B 

Counter B Save Regsiters 

Counter B Save Register Pointer 

1S 

3S 

37 

37 

37 

37 

37 

40 

1 1 

76 

24 

27 

28 

28 

28 

10 

21 

20 

20 

21 

22 

10 

8 

9 

9 

92 

92 

93 

1 21 

.. ,~"-~~:'-~,~-iii!j~- 11 W zrr-- 1Zi-.r~ nrG3iiii-_" ,o.O~ •• .;..~~t: :~"* ~b~ ~-;..~~~~"""",~;,~~~,f.,.¥-,;, ',o,;~""""'_._"_,HI!i nlilii';n .11*", 



122 

Abbreviation Interpretation Page 

CISB Carry-in Selection Bit 74 

CS Common Shifter 54 

CSB Condition Selection Bits 89 

CSP CSSG Pointer 55 

CSSG Common Sh ifter Standard Group 54 

CSSl CSSG Savel Register 55 

CSS2 CSSG Save2 Register 55 

CU Control Unit 70 

CUAL Control Unit Arithmetical Logical Unit 72 

CUALF CUAL Function Register 73 

DESTINA-
TION Bus Destination, BD 1 1 

DS Doubl e Sh ifter 48 

IA Input Port A 61 

lAD IA Device Register 61 
I 

IB Input Port B 61 

IBD IB Device Register 62 

KA Control Panel Switch KA 84 

KB Control Panel Swi tch KB 84 

KC Internal Flag KC 84 

KD Internal Flag KD 84 

LA Loading Masks A 56 

LAP LA Pointer 56 

I LASl LA Savel Register 58 

I LAS2 LA Save 2 Register 58 

! LB Loading Masks B 56 

I LBP LB Pointer 58 

LBSl LB Save 1 Regi ster 58 

LBS2 LB Save2 Regi ster 58 

LR Local Registers 38 
--

""_~..A."""-~~ Jiijiif,- - ~, -. 7U"' ~~~Ai-,-""' ~,.~- ~ -~~<o_#.k.~~ '-13ii" d)f_-~~';;.;'-~~::;'-*""~"'"'_~;..:::A .. ~;::-_c::;::::-.;~~~:..:> .. ~w;;:;a;,;,.,<;Q!Wt:!iflW'-~-_ 'lW\t -"i'--'WfijflOi)i_lt5t 



Abbrevi ation 

LRIP 

LROP 

LRP 

MA 

MAP 

MB 

MBP 

MS 

MSA 

MSAP 

MSASG 

MSA Sl 

MSA S2 

OA 

OAD 

OB 

OBD 

oe 
oeD 
00 

ODD 

PA 

PABP 

PAP 

PB 

PBP 

PG 

PGP 

PGSG 

PGS 

PGSl 

PGS2 

PM 

Interpretation 

Local Registers Input Pointer 

Local Registers Output Pointer 

LRI P and LROP 

Mask A Registers 

MA Pointer 

Mask B Regi sters 

MB Pointer 

Main Store 

Main Store Address 

MSASG Pointer 

Main Store Address Standard Group 

MSASG Savel Register 

MSASG Save2 Register 

Output Port A 

OA Device Register 

Output Port B 

OB Device Register 

Output Port e 
oe Device Register 

Output Port 0 

00 Device Register 

Postshift Mask A Registers 

Postshift AB Pointer 

PA Pointer 

Postshift Mask B Registers 

PB Pointer 

Postshift Mask Generator 

PGSG Po inter 

Postshift Mask Generator Standard Group 

Postshift Mask Generation Sel ection Reg. 

PGSG Savel Register 

PGSG Save2 Regi ster 

Postshift Masks 

Page 

38 

38 

40 

25 

26 

25 

27 

93 

93 

94 

94 

95 

95 

64 

64 

64 

65 

64-

65 

64 

65 

30 

33 

33 

99 

100 

30 

33 

33 

32 

33 

33 

28 

123 



124 

Abbrevi at ion Interpretation Page 

RA Return Jump Stack A 77 

RAP Return Jump Stack A Pointer 78 

RB Return Jump Stack B 77 

RBP Return Jump Stack B Pointer 81 

RG Regi ster Group 6 

RGP Regi ster Group Pointer 6 

SA Save Address Regi ster 70 

SB Shifted Bus 10 

SG Standard Group 22 

"Shifters" AS, VS, and DS 50 

SOURCE the input to the BUS 11 

V The Variable Bit 41 

VS Variable Width Shifter 46 

WA Working Registers A 10 

WAG Working Registers A Group Pointer 97 

WAGS WAG Save Regi sters 97 

WAP WA Pointer 12 

I WAPS WA Pointer Save Regi sters i 13 
! 
II 

WAPSP WAPS Pointer 14 

WAU Working Registers A Unit Pointer 97 

WAUS WAU Save Regi sters 97 

WB Working Registers B 10 

WBP WB Pointer 14 

WBPS WB Pointer Save Regi sters 14 

WBPSP WBPS Pointer 14 



Figure no. 

2. 1. 

2.2. 

2.3. 

2. 4. 

2. 5. 

2. 6. 

2.7. 

2.8. 

2. 9. 

2. 10. 

2. 11. 

2. 12. 

2. 13. 

2. 14. 

2. 15. 

2. 16. 

2. 17. 

2. 18. 

2. 19. 

2.20. 

2. 21. 

2.22. 

2. 23. 

2. 24. 

2.25. 

2.26. 

2.27. 

2.28. 

2.29. 

2. 30. 

2. 31. 

2.32. 

List of Figures 

Title 

RIKKE 1 System 

Typical Register Group 

Counter A, CA 

Sub-system of the Bus Structure 

Working Registers, A, WA 

Bus Shifter, BS 

Typical Standard Group 

Expanded Bus Structure 

Bus Masks, MA and MB 

Expanded Bus Structure 

Postsh ift Masks, PA and PG 

Arithmetical Logical Unit, AL 

Local Registers, LR 

Accumulator Shifter, AS 

Expanded Bus Structure 

Variable Width Shifter, VS 

Doubl e Shifter, DS 

Expanded Bus Structure 

Counting Loop for Counting Number of Bit set 

to 1 in a Word 

AS, VS, and DS Control 

Expanded Bus Structure 

Loading Mask Registers A, LA 

Input Port A, IA 

Expanded Bus Structure 

Output Port A, OA 

RIKKE 1 Bus Structure 

Microinstruction Address Bus (Prel iminary) 

Control Unit Arithmetical Logical Unit 

Return Jump Stack A, RA 

The Save Address Regi ster, SA 

Microinstruction Address Bus (Detailed) 

Control Store 

Page 

5 

6 

8 

1 1 

13 

19 

22 

24 

25 

29 

30 

35 

39 

L~ 1 

44 

47 

49 

50 

52 

54 

57 

58 

61 

63 

64 

67 

71 

73 

78 

80 

82 

83 

1 25 



Figure no. 

2.33. 

2.34. 

2.35. 

2.36. 

2.37. 

3. 1. 

List of Figures 

(Continued) 

Title 

Internal Flag KC 

Counter B, CB 

Main Storage Address 

Working Regi sters A, WA (Detai led) 

Postshift Masks, PA, PB and PG 

Microoperation and Data Field 

126 

Page 

85 

92 

94 

96 

100 

105 



Tabl e no. 

2. 1. 

2.2. 

2. 3. 

2.4. 

2. 5. 

2. 6. 

2.7. 

2.8. 

2.9. 

2. 10. 

2. 11. 

2. 12. 

2. 13. 

2. 14. 

2. 15. 

2. 16. 

2. 17. 

2. 18. 

2. 19. 

2. 20. 

2. 21. 

2.22. 

2.23. 

2.24. 

2.25. 

2. 26. 

2. 27. 

2.28. 

2. 29. 

2.30. 

List of Tables 

Title 

Microoperations for the control of an RG 

Microoperations for the control of CA 

Microoperations for control of CAS and CASP 

Microoperations for control of WA and WB 

Microoperations for control of BS 

Microoperations for control of the BM 

Tabl e representing the READ-ONL Y-MEMORY 

containing the 32 Masks for the PG 

Source of Data for Postshift Mask Generation 

Microoperations for the control of PM 

AL Functions 

Microoperations for control of the AL 

Microoperations for control of the LR 

Microoperations for control of the AS 

Microoperations for control of the VS 

Microoperations for control of the OS 

Microoperations for control of CS SG 

Parallel CS Microoperations 

Microoperations for control of LA and LB 

Microoperations for control of IA and IB 

Microoperations for control of OA and OC 

Microoperations for loading of OC and 00 

Microinstruction Address Sources 

Carry-in Selection 

B data Sel ection 

Microoperations for control of RA 

Microoperations for control of SA 

Microoperations associated with the Control Unit 

Microoperations for KC and KD 

Condition List 

Microoperations for control of CB, CBS 

and CBSP 

Page 

7 

9 

10 

14 

23 

28 

31 

32 

33 

36 

37 

40 

43 

47 

49 

55 

55 

58 

62 

65 

65 

70 

73 

76 

78 

80 

81 

85 

87 

93 

127 



Tabl e no. 

2. 31. 

2.32. 

2.33. 

2.34. 

2. 35. 

2.36. 

List of Tables 

(Continued) 

Title 

Microoperations for MSA, MSASG, MSAP 

Microoperations for control of the WAU/WBU 

and WAG/WBG Pointer 

Microoperations for control of WAUS 

and WAGS 

Additional WA and WB Conditions 

Microoperations for control of PB 

Microoperations for control of PABP 

3. 1. Symbol ic and Binary Notation for SOURCE's 

3. 2. 

3. 3. 

and BOiS 

Symbol ic and Binary Notations for At and Ar 

Sh ift/Load Control Bits 

Page 

95 

97 

98 

99 

101 

101 

104 

107 

109 

128 



References 

[1 J "BPL - a hardware and software description language", 

by Ole Brun Madsen, RECAU, University of Aarhus, 

Aarhus, Denmark, 1972. 

[2J "KAROLINE, a network computer project", 

by Ole Brun Madsen, RECAU, University of Aarhus, 

Aarhus, Denmark, 1972. 

[3J "Microprogramming and Numerical Analysis", 

129 

by Bruce D. Shriver, IEEE Transactions on Electronic 

Computers, Special Issue on Microprogramming, July 1971. 

[4 J "A Small Group of Research Projects in Machine Design for 

Scientific Computation", by Bruce D. Shriver, Depart­

ment of Computer Science Report No. 14, University 

of Aarhus, Aarhus, Denmark, April 1973. 

[5J "The Significance of Microprogramming", 

by R. F. Rosin, to be presented at the International 

Computing Symposium 1973 in Davos, Switzerland. 

[6J "A Viable Host Machine for Research in Emulation", 

by Robert Dorin, Department of Computer Sci ence 

Report 39-72-mu, State University of New York at 

Buffalo Amherst, New York, 1972. 

[7J "A description of the Mathilda System", 

by Bruce D. Shriver, Department of Computer Science 

Report No. 13, University of Aarhus, 

Aarhus, Denmark, Apri I 1973. 

[8J "A Users Manual for the Simulated Rikke-Mathilda System on 

the CDC-6400", 

by Ejvind Lynning, Eric Kressel, Hans 01 e Sandberg 

Andersen, Ib Holm S¢rensen. 



130 

r 9J liThe RIKKE-l Reference Manual", 

by Eric Kressel and J~rgen Staunstrup, Department of 

Computer Science Manual No.7, University of Aarhus, Aarhus, 

Denmark, Apri I 1974. 



Micro 
Archives 
6-32 

Staunstrup, J~rgen. 
A description of the RIKKE 1 system / by 

J~rgen Staunstrup.-- Aarhus, Denmark: De­
partment of Computer Science, Institute of 
Mathematics, University of Aarhus, 1974. 

(DAIMI PB-29) 

1. Title. 


