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Foreword

It is the purpose of this document to give an introductory (yet reasonably
detailed) description of the RIKKE 1 System. The bus structure, the
registers and functional units attached to it, and the control which can
be exercised on these components are discussed. The document is not a
reference manual. Rather, it is written entirely from the pedagogical
point of view, with the system described in a modular fashion. Examples
are introduced after each component is added to the basic bus structure.
The examples are written in the RIKKE 1 microassembly language (see
[8]). The examples are deliberately kept simple so the reader will not
spend time learning a complicated or clever algorithm but will learn the
control mechanisms of the particular components involved. Thus, many
of the examples are ''contrived" and do not perform any particular
Nyseful' data transformations. It is hoped that this approach enhances
the reader's understanding and underscores the overall simplicity and

homogeneity of the structure and its components.
The present description is a modification of a similar one, describing
another slightly different system called MATHILDA (DAIMI PB-13),

written by Bruce D. Shriver.

For more detailed information the reader is referred to [9].



A Description of the RIKKE 1 System
by

Jérgen Staunstrup

1. 0. Introduction

RIKKE 1 is a dynamically microprogrammable processor which has been
designed to be used as a tool in emulation-oriented and processor design
research. For the sake of completeness we will discuss briefly a short

history of the unit and then some of the criteria which served as a basis

for its design.

1. 1. Historical Notes

In the spring of 1971 the Department of Computer Science of the Univer-
sity of Aarhus was considering the purchase of a standard minicomputer
to act as a controller for a variety of peripherals and to simulate a me-
dium speed batch terminal to the Computer Center!s large system. A
group of people were, at this time, working on the design of an integra-
ted software and hardware description language called BPL [1 ] To
support this group and to make the use of such a minicomputer more
flexible, it was decided to design and construct a microprogrammable

minicomputer within the department itself.

The design was started and completed during the summer of 1971. The
resulting machine, RIKKE 0 [2], was constructed and began running

in early 1972. In the meantime a number of projects were proposed which
were considered not to be compatible with that design. Among these were
various projects in numerical analysis [3, 4] in which it was found that
the word size and bus width of the RIKKE 0 (16 bit) was too short to
obtain an efficient implementation of even standard arithmetic operations
on numbers. It was then suggested that a microprogrammed functional

unit with a wider data path and special features could be attached to




RIKKE 0 as an 1/O device, or "functional unit", together with a wider
memory, for use with these projects. A proposal was made to the Danish
Research Council to obtain a grant to design and construct such a func-
jional unit. A grant was made i June 1972 in which funds were awarded
for hardware and a memory (32K, 64 bit widé, 1.4 us access time). The
manpower for the construction of the unit was, in part, granted by the
Research Council; two staff engineers and one staff technician were
provided by the Department. The design was started in May 1972 and
completed during the summer of 1972. The construction of the resulting

machine, MATHILDA, is due to be completed summer 1974,

The motivation for building the MATHILDA instead of purchasing a com-
mercially available machine can be summarized as follows. First, there
were ( as far as we knew ) no commercially available dynamically
microprogrammable processors at the time we started our efforts which:
(a) were in the price range we could afford, (b) were designed for or
supported user written microcode or (c) offered a reasonable expér‘i—
mental and growth oriented structure. We felt that we had the in-house
capability to design and construct the machine. The availability of LLSI
circuits and convenient mounting techniques and our experience with

RIKKE 0 supported this view.

It was also decided that the new design for MATHIL.DE outdated the de-
sign of RIKKE 0, and with only minor modifications and additions could
be used in the construction of a 16-bit machine, RIKKE 1,which is the
subject of this description. Design criteria with respect to construc-

tion supported this view, these will be described in the next section.

1.2. General Design Criteria and Constraints

The RIKKE-0 machine is intended to be a research oriented machine.
Its main design criteria then,> within the money and timing constraints
on the project, was to provide a machine on which a large variety of
experiments related to processor and emulator design and evaluation

could be performed. We attempted to use the '"top—down!" design approach




which quite frequently was tempered by the "forces from below', see
Rosin [5] Therefore, we tried to let various application-oriented

and software ideas be reflected in the design.

Two genheral software concepts had a reasonable impact on design. The
one being the ability to multiprogram virtual machines and the other
being the concept that virtual machines would be defined through several
Iayer*s,' (e.‘g'. ,' R. Dorin [6]). The effect of these ideas is apparent in
the design of the control unit,' especially with respect to the capabilities
of addressing. Many addressing features known on the virtual level are

present here on the micro level.

Another criterion was to have a clean and consistent way of dealing

with timing problems. We decided not to force the speed; rather we
would have a slower machine than obtainable with the componemtry at
hand, and thus one, hopefully, with a reduced set of timing idiosyncra-
sies. It was also decided to be able to control all elements of the system
from an immediate control or a residual control capability, or some com-
bination of both. The residual control was made homogeneous to the user
by having a reasonably !"'standard control register group'" where ever

such control was provided.

Another design criterion dealt with the actual construction of the unit.

It had been decided, prior to the obtaining of the grant from the Danish
Research Council, to construct additional RIKKE's by other funding.

It became apparent, during the design phase of MATHILDA, that the
machine would be reasonably complex and that several features of
MATHILDA included or extended similar features on RIKKE 0. Because
of the complexity of the design, the limited funds and manpower available,
and the fact that we wished to design, construct, and test the machine
within 1 year, it was decided that the additional RIKKE's (now called
RIKKE 1!'s) should be modeled after the MATHILDA System. Thus, one
design criterion was to ensure a modularity in the hardware design. This
would enable an economy in print-lay out and construction to be achieved.

As an example, the bus structure is laid out on one print board, 8-bits




wide. Two of these boards, interconnected, comprise one RIKKE 1 bus
structure with all registers, shifters, etc. Four of these RIKKE 1
boards, interconnected, give the MATHILDA bus structure. (For a

description of the MATHILDA see Shriver [7]).
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2.0. The RIKKE 1 System

RIKKE 1, as has been stated earlier, is a microprogrammed controlled
bus structure. The major elements of the system are shown in Figure

2. 1. and are the:

1) bus structure.

2) control unit.

3) auxiliary facilities.
4) 1/0.

5) Memory.

In the following sections we will describe each of these systems inde-

pendently and give examples of their utilization.

Figure 2. 1.
RIKKE 1 System
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2. 1. The Register Group

We begin by introducing a fundamental building block which is used in

the various control mechanisms of the system, viz, a Register Group
RG*, as shown in Figure 2.2. A RGis a set of 16 or 256 registers.

The width of the registers and the number of registers in a specific

RG will be stated when it is introduced. The element of a particular RG,
which is to be used as a source or destination for the transfer of infor-
mation, is pointed to by the RG address r‘egister‘.v This register is called

the Register Group Pointer, RGP, as shown in Figure 2. 2.

Figure 2. 2.
Typical Register Group

L+ 11 C
Pointer RG
Source Pointer
Load
Information Source ——» Register t—> Destination
Group

*) After a particular system element is first introduced, an abbre-
viation for its name is given which, for the sake of brevity, is
then used in the text; see the "Tables of First Occurrance of
Abbreviations and Symbols'", beginning on page 121, for the page
of first occurrance. ‘




There are four microoperations associated with an RGP. They are

marked L_,‘ +1, -1, and C in Figure 2. 2. and all subsequent figures.

Table 2. 1.

Microoperations for ihe control of an RG

Symbolic Notation Microoperation

L RGP:=Pointer Source L.oad the RGP from the Pointer Sour‘ce'

+1| RGP + 1 Increment RGP by 1
-1] RGP -1 Decrement RGP by 1
C | RGPC Clear (i.e., set to zero) RGP

The symbolic notation RGP + 1, RGP - 1, etc. is the notation which is
used with our microassembler, and all of our examples will be shown
using this notation. The abbreviation 'RG! will often be replaced by the
abbreviation of the name of the functional unit with which that particular

RG is associated. Not all of the RGP!s will have the microoperation
RGP:=Pointer Source

associated with them. For those RGP!s which do have this microopera-
tion it will be seen that the Pointer Source data itself can usually be

selected to come from any of four different sources.

There is one additional microoperation required for the control of an
RG; namely the function labelled "load" in Figure 2. 2. If the loading of

an RG can be initiated by a microoperation it will be indicated by an "L."

on such a diagram.




2. 2. Counter A

We will, from time to time, give small segments of microcode to illustra-
te the use of a device and its contr'ol.‘ In order to make these examples
clearer and also to give a more realistic view of how such a code is ac-
tually written we introduce the system counter, Counter A, CA. CA is

a 16-bit wide counter as shown in Figure 2. 3.

Figure 2. 3.
Counter A, CA

+1 -1 C
'
CAS
3 Pointer ,
L
')

CA
Save Registers

L5 )
CM OD SB CASs L H-1C
S B IRER
Sel. —» Selector CA

15 o

CA has four microoperations associated with it as shown in the box la-

belled ICA! in this Figure. These microoperations are given in Table
2. 2.




Table 2. 2.

Microoperations for control of CA

Symbolic Notation : -Microoperation

Load CA from either CM, OD, SB, or

CAS. Note the use of ""|!" to mean "or"
L CA:=CM|OD|SB,CAS in the symbolic notation for this micro-
' operation.

+1] CA+ 1 Increment CA by 1
-1] CA-1 Decrement CA by 1
C | CAC | Clear (i.e., set to zero) CA

Both the box labelled "Selector! in Figure 2. 3. and the explanation of
the microoperation """ in Table 2. 2. state that CA can be loaded from

one of four possible sources:

1) Immediate data within the Current Microinstruction, CM,

2) A 16-bit Output Register, OD (discussed in Section
2.18.),

3) Bits 0 through 15 of the Shifted Bus, SB (discussed in
Section 2. 5), and

4) From an element of a 16-bit wide, 16 element RG called

the Counter A Save Registers, CAS.

Thus the microoperation
CA:=37

loads CA with the constant 37 from a data field within the CM. While

the microoperation
CA:=CAS

loads CA with the contents of the element of CAS which is pointed to by
the CAS Pointer, CASP. Notice that the CAS can be loaded with the

contents of CA thus allowing one to save the current value of CA. The

four microoperations associated with the CAS and CASP are in Table

2. 3.

e
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Table 2. 3.
Microoperations for control of CAS and CASP

Symbolic Notation Microoperation

L.oad the element of CAS pointed to by

L | CAS:=CA CASP with CA

+1] CASP + 1 Increment the CASP by 1
-1] CASP -1 Decrement the CASP by 1
C | CASPC Clear (i.e., set to zero) CASP

We can test to see if CA contains zero. We will demonstrate the use of
this condition and the microoperations in Tables 2. 2. and 2. 3. in sub-

sequent examples.

2. 3. Bus Transport

Having introduced some elementary notions we will now examine in some
detail the bus structure, the registers and functional units attached to
it, and the control which can be exercised on these components. We
will construct the bus structure in a modular fashion - hopefully to
enhance the reader'!s understanding and to underscore the overall sim-

plicity and homogeneity of the structure and its components.

L.et us introduce the concept of a bus transport by considering a sub-
system of the bus structure consisting of the Working Registers A, WA,
Working Registers B, WB, and the Bus Shifter, BS, as shown in Fi-

gure 2. 4. The exact nature of WA, WB and BS is not important to us

here.
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Figure 2. 4.
Sub-system of the Bus Structure

Shifted Bus
Bus Shifter

Working 5
Registers A o
)

° Bus
)
Working g
Registers B m

The BUS is a 16-bit wide data path. The input to the BUS (its SOURCE)
is obtained from a bus selector which has eight inputs, two of which are
shown here. i.e., WA and WB. The particular input which is selected
as the SOURCE for bus transport may be shifted a specified amount in
the BS. The output of the BS, called the Shifted Bus, SB, can then be
stored in at least one of seven possible 16-bit destinations (called Bus
Destinations, BD, or DESTINATION). Two such BD's are shown in
Figure 2. 4. i.e., WA and WB. We will in this report specify bus trans-

port information as we do in our microassembler, viz,
DESTINATION:=SOURCE, BS Specification.

If the BS Specification field is empty, i.e., the BS is not to be used

(no shift occurs) then the bus transport is given by

DESTINATION:=SOURCE.
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As an example, the bus transport WB:=WA has the obvious meaning of
a register to register transfer from WA to WB. If a SOURCE is chosen
to be transported but not stored in any of the BD!s, the bus transport

information is written

SOURCE, BS Specification
or
SOURCE

as is appropriate. The SOURCE may be stored in destinations other
than BD!s during a bus transport. We will learn what functional units
or registers can serve as these '"other destinations!' as this report
develops. If the SOURCE is to be stored in more than one destination,
the DESTINATION portion of the bus transport specification is written

as a list of destinations separated by commas, i.e.,

LIST:=SOURCE, BS Specification
or

LIST:=SOURCE
where

LIST::=dy, ..., d; .

The value of n and the units which can serve as destinations, d; , will

be discussed later.

2. 4. Working Registers

WA and WB, introduced in the previous section, are not single regis-
ters but each is a 16-bit wide, 256 element RG. Figure 2. 5. shows WA,

WB, not shown, is identical.

The first thing we wish to point out in this figure is that the WA Pointer,
WAP, is a mechanism identical to CA except that it is 8-bit wide and

not 16-bit wide. (Note the dashed-line box in Figure 2. 5.). Therefore,
WAP not only points to which element of WA can be used as a SOURCE
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for bus transport (or used as a BD), but also can be stored in an RG

Figure 2. 5.
Working Registers, A, WA

~ |
H+H-1C
l WAPS
5 Pointer o [N
| wa
Pointer l
Save
Registers
| 7 o
CM OD sB WAPS I
I Sel WA
Pointer o _J
- - T . __ | ?D Load

256

Shifted Bus Working Bus
SB(0:15) Registers Selector

WA

called the WAP Save registers, WAPS. This is identical to CA being
saved. Also, as indicated in the box labelled "Selector" in Figure

2. 5. the WAP can be loaded from any of four sources:

1) immediate data from the CM
2) the least significant 8-bits from OD *)
3) the least significant 8-bits of the SB, *) and

4) an element of WAPS.

This is identical to the loading of CA. Thus the microoperations WAP:=
37 and WAP:=WAPS have well defined analogous meanings.

The WA (and WB) registers are not loaded by a microoperation but rat-
her as a result of being chosen as a BD in a bus transport specification;
thus the loading of these registers is shown by the function "BD L.oad"

on Figure 2. 5. This notation will be used in all subsequent drawings.

*) WB is different with respect to2)and 3 in the sense that
loading of WBP takes place from the most significant 8-bits
of OD and SB.

oS T S
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There are 8 microoperations shown in Figure 2. 5. associated with the
use of WA. These are listed along with the corresponding microopera-
tions for WB in symbolic form in Table 2. 4. The actual microoperation
descriptions can be extracted from the previous tables and are not

repeated here.

Table 2. 4.

Microoperations for control of WA and WB
WAP:=CM| OD,_, | SBo-, | WAPS WBP:=CM| ODy-5 | SBeys| WBPS
WAP + 1 WBP + 1
WAP - 1 WBP - 1
WAPC wBPC
WAPS:=WAP WBPS:=WBP
WAPSP + 1 WBPSP + 1
WAPSP - 1 WBPSP - 1
WAPSPC WBPSPC

2.4.1. Microinstruction Format and a Few Examples

In order to present a few examples we will introduce the microinstruc-
tion format which we use in our microassembler. The format of a mi-

croinstruction is:

"A: bus transport; microoperations and data; microinstruc-

tion sequencing. !,

where
a) "All is a symbolic name for the address of the microinstruction,
b) "Bus transport!" is a field giving the bus transport information as

explained previously in Section 2. 3.,

e A e 7S 3 v, G e D e e R e e T O S T R N R e e R
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c) "microoperations and data'" is a field of up to 7 microoperations
and immediate data to be executed or used during this microin-
struction (the exact combination of microinstructions and data
which can be included in this field and precise details of the ti-

ming of microoperations are given in Section 3. 0.).

d) "microinstruction sequencing' information will be written in the

form
if c then A, else A;

which is to mean: if a particular selected condition c is true then
choose address A, as the address of the next microinstruction

else choose A, .

It is not necessary or appropriate at this point to list all of the condi-
tions which are testable by the system nor how A, and A; are functions
of the address of the current microinstruction, A. These matters will

be dealt with in Section 2. 20. 1. However, conditions and address
functions will be introduced as needed for examples. If no condition is to
be considered, i.e., if A, = A; , the sequencing information will mere-
ly be written A, (and not "if ¢ then A else A " where c is an arbitra-

ry condition).

Thus, the microinstruction labelled A,
A: WA:=WB; WBP + 1; A+ 1.

means: load the element of WA pointed to by WAP from the element of WB
which is pointed to by WBP without shifting it during the bus transport;
Then increment WBP by 1; then obtain the next microinstruction from
A+ 1. The action associated with every microoperation specified in a
microinstruction is completed before the next microinstruction is execu-
ted. For example, in the above microinstruction if WBP had been set

to 9 before the beginning of the execution of this instruction, then WB9
would be the SOURCE for the bus transport. At the end of execution of
the instruction, the WBP would be set to 10. If, in the next microin-
struction WB were again selected as the SOURCE, then the contents of
WB10 would be gated onto the BUS.
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In ordeb to give an example of a micr‘oi‘nstr‘uct‘i'oh»using conditional
branching, we establish the following éonvention for the testing of
conditions which will be used in all of our examples (unless stated ex-
plicitly otherwise): _e_a_l_l conditions which arise as a result of bus trans-
port and microoperation execution specified by a particular microin-
struction, M, are testable in the next mi‘cr‘éinst‘r‘uction to be executed
after M is executed. This means that all thé conditions available or
changed during the execution of microinstruction M are '"'saved!'. These
"'saved!' conditions are those tested in the next instruction to be exécu—
ted. Therefore, our microinstruction can be thought of being executed

in the following sequential way:

(a) save the conditions of the previous microinstruction
(b) execute bus transport

(c) execute microoperations

(d) execute microinstruction sequencing based on saved

conditions.

Let us introduce the notation that bit 15 of .’the‘ WA input to the bus se-
lector is testable, that is, bit 15 of the élement of WA which is pointed
to by WAP. If we wish, for example, to _tesf bit 15 of WA7, and if it is
set to 1, jump to the microinstruction labelled BITON, else continue

with the next microinstruction, we could write,

A-1: 5 WAP:=7 _ _
A : ; if WA(15) then BITON else A+1

We could not wri'te
A : ; WAP:=7; if WA(15) then BITON else A+1 ,

according to our ci.urr‘ent convention. It is possible to conditionally
pepeaf the same instruction. Let us give an example of this. Assume
there is at _IeaSt one register in WA which contains bit 15 set to 1, the
following four microinstructions will: sear*ch"WA starting with register

0 and transfer the first register of WA encountered with bit 15 set to 1

to register 0 of wB; t‘hen, store the address of the WA register which
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was transferred in register 0 of WAPS; and then continue with the next

microinstruction.

WAPC, WAPSPC, WBPC .
LOOP: ; WAP + 1; if WA(15)  then SAVE else LOOP .
SAVE: ; WAP - 1.

WB:=WA ; WAPS:=WAP. | [

-

We have introduced some standard defaults in this example:

a) If the bus transport field is empty it means that an unspecified

source is selected for bus transport but is not stored anywhere.

b) If the microoperations field is empty it means that no microope-
rations are to be exectuted during this particular microinstruc-

tion.

c) An empty microinstruction sequencing field implies the next mi-
croinstruction to be executed is that in A+ 1 if the address of the
current microinstruction is A . If you wish to use comments these

must start with ". " (period).

d) Any instruction sequence shown is assumed to be located sequen-
tially in control store and the symbolic address name is used on-
ly when needed in the microinstruction sequencing field of some

other instruction.

e) The symbol B will be used to indicate the end of the group of mi-

croinstructions in the example.

The symbolic names HERE-1, HERE, and HERE+1 are used often in
the microinstruction sequencing field to mean A-1, A, and A+1 assuming
the address of the current microinstruction is A . As an example, the

instruction labelled LOOP above could have been written

;5 WAP+1; if WA(15) then HERE+1 else HERE. B

?
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Through the use of CA the assumption that at least one register of WA
contains bit 15 set to 1 is not required. CA can be used to control the
number of elements of WA we will search. If we establish a routine la-
belled NONE which handles the situation when no element of WA con-
tains bit 15 set to 1, then the code to perform the same task as related

above is,

; WAPC, WAPSC, WBPC.
; CA:=255; TEST.
| ; WAP+1, CA-1; if CA  then NONE else HERE + 1.
#H-—_TEST:; if WA(15)  then HERE+1 else HERE-1.
WB:=WA ; WAPS:=WAP. B

The final example in this section uses the capability of loading CA from
the SB. In the previous example CA was loaded with N-1 where
N(2<N=<256) is the number of registers of WA to be searched. Let us
suppose that this number is in register 0 of WB and furthermore that you
wish to save it in register 0 of CAS because it may be written over if a

transfer is made to WB. A possible code segment is,

; WAPC, WAPSPC, WBPC.
wB : CASPC, CA:=SB.
; CAS:=CA; TEST.
; WAP+1; if CA  then NONE else HERE+1.
& TEST:; CA-1; if WA(15) then HERE+1 else HERE-1.
wB:=WA ; WAPS:=WAP. B

If the A; address is HERE+1 we will only write, from now on, if c
then A, . Thus, the fourth instruction of the above example would be

written

; WAP+1; if CA then NONE. N
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2.5. The Bus Shifter

The Bus Shifter, BS, introduced in Figure 2. 4. and shown in more
detail in Figure 2.6, is a 16-bit wide right cyclic shifter which can
be set to shift n bits, 0sn<15. There exists a dedicated bit in each mi-
croinstruction to control the BS which indicates whether or not the
BS should be used (enabled) during the current bus transport. If the BS

is not enabled, no shift will occur.

Figure 2. 6.
Bus Shifter, BS

| ]
l:!ssl J | bss2 ‘|

o 5 register N 5 register .
10 ! 1
: L1
od (30) __la bsp
y s register N
cm 2 (3:0) oo |
|
§ bssg
sb (30) ____| register

group

4+ s cm  od undef.

| 4 - 4 13 (T) (3.-10) l -

00 01 10 1
sel.__ bss shifter

3
s 9 enable control
bus (15:0)—{ bus shifier F—=sb (15:0)
15 — 0

If we wish to use the BS, the amount of shift can be selected from one

of three possible sources as shown in the box labelled "Shift Control! in

Figure 2.6., i.e., from
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1) a data field in the CM,

2) the least significant 4 bits of the OD register,

3) an element of a 4-bit wide 16 element RG called
the BSSG.

Which of these four sources is used is determined by BSS. This is loa-
ded from CM 'S3(0:1). By default BSS:=CM, and you are advised to reset

the BSS if you change it. The bus transport specification
WA:=WB

means: take the element of WB pointed to by the WBP and store it in the
element of WA pointed to by the WAP without shifting is. While the bus

transpbrt spécification
WA:=wWB,+ 3

means: take the element of WB pointed to by the WBP, shift it 3 bits right
cyclic and then store it in the element of WA pointed to by WAP, assuming

that the BSS is set to select CM as the datasource. This will be assumed

S ——

to be the standard setting of BSS in the following.,
A 16-bit left cyclic shifter and a 16-bit right cyclic shifter are related
by the expression
lcs = 16 - rcs
where

Ics is the amount of left cyclic shift and

rcsis the amount of right cyclic shift.
We can therefore write as a notational convenience
WB:=WA, « 5
to mean the same thing as

WB:=WA, - 11
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thus using «(left shift) or #(right shift) whichever makes the understand-
ing of the processing clearer. The microassembler will do the proper
computation and insert the correct amount for right shifting in the data-

field.

The BS specification in the bus transport field of the microinstruction

is given by

(71 eMm| OD{ N|Bsse

The BSS-selector chooses from which source the shifter-control data is
to be taken, whether or not you indicate the source in the actual micro-
instruction.You can load BSS by the microoperation BSS:=CM| 0D |BsSSG.

Having seen how the BS is controlled and how we specify this control,
let us turn our attention to the BS register group Pointer, BSP. We
see in Figure 2. 6. that the data which can be loaded into the BSP can
also be loaded into an additional register called the BS Savel register,
BSS1. If, for example, we know in advance the address of a particular
register in the BSSG, which we will want to use as shift data (e. g.,
some highly used shift constant), we can store this pointer in BSS1 by
loading BSS1 from the CM,

BSS1:=CM.

Whenever we wish to use this stored pointer we can load it into the BSP

by executing
BSP:=BSS1.

Now notice in Figure 2. 6. that the BSP not only points to the element
of the BSSG which can be chosen as data for the shift control unit, but
also can be stored in a register called the BS Save2 register, BSS2.
Suppose we are pointing‘ at a particular element of the BSSG for the
current shift control data and in the next microinstruction we wish to
have register 9 of the BSSG to be used as shift data, but we do not
wish to loose the pointer to our current control data. The following mi-

croinstruction achieves this,

S R . Bae i i B R B e A L AR it e AT SRR P I o SRR L iR e o R e e
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. BSS2:=BSP, BSP:=9. B

9

Thus at some later time if we execute
BSP:=BSS2

the pointer information which had been saved in BSS2 would be resto-

red.

A 16 element RG with the two Save registers and Pointer as shown in
Figure 2. 7. is a fundamental control element in the system and will

be used with many devices in the subsequent sections.‘ It will be refer-
red to as a Standard Group (SG) and will be noted on drawings as such,
i.e., it will not be explicitly be drawn out each time as it was in Figure
2. 6. Each SG will, however, be given a name closely associated with
the particular functional unit to which it is connected as, for example,

in the current discussion the SG associated with the BS is called the

BSSG.

Figure 2.7.
Typical Standard Group

1 L
Save 2
,Register,

Save 1
, Register,

0
o

OD — Pointer

CM —

Selector

3 ol

[~

16
So e—p A — Selector
urc Registers ele

* The width of the registers depends on the particular selector involved.

o
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Table 2.5, below, lists the seven microoperations associated with the
BS in their symbolic form; their meanings should be obvious from pre-
vious tables and the text. Note that the BSSG is loaded with the least
significant 4 bits of the SB i.e. , SB(0:3).

Table 2. 5.

Microoperations for control of the BS

BSP:=CM|OD|BSS1|BSS2

BSP+1

BSP-1

BSPC

BSS1:=CM|OD|BSS1|BSS2

BSS2:=BSP

BSSG:=SB

L_et us assume the following information to be in WBP and WBP+1:

wBP+|;s WB Adr 4|, WA Adr o

L shift
Pata o

WBP+1-+ O¢————H0

15

We wish to take a given WB register (WB Adr), shift it a given amount
(L Shift Data), and store it in a given WA register (WA Adr).

The following code will: LLoad the BSSG with the L shift Data, Save the
current WBP, load WBP with the WB Adr, Load WAP with the WA Adr,
transfer the WB register pointed to by WB Adr to the register pointed to
by WA-adr shifting it left cyclic by the amount L. shift Data during trans-

port, restore the old WBP, and then continue.

e PR e e eSS . e e e
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WB ; WAP:=SB, WBP + 1 .
wB ; BSSG:=SB, WBP - 1 .
wB ; WBP:=SB, WBPS:=WBP , BSS:=BSSG.
WA:=WB, « ; WBP:=WBPS .

; BSS:=CM. o

2.6. Bus Masks

L et us now expand the initial bus structure given in Figure 2. 4. by

adding the Bus Masks, BM, as shown in Figure 2. 8.

Figure 2. 8.

Expanded Bus Structure

Shifted Bus

Bus Masks ——4
>

C Bus Shifter
Q
0
- 3}
Working 3 Bus
Registers A )]
n
3
m
Working

Registers B

The BM allow one to specify which bits of the SOURCE (i. e., the parti-
cular input to the bus selector which has been selected for bus trans-
port) are actually to be transported. A mask is a string of 16-bits. If
bit i (0<i<15) of a mask is a 1, then bit i of the SOURCE is to be trans-
mitted; if bit i of the mask is a 0, then the value 0 is to be transmitted.
Since the BM are not an input to the bus selector but affect the trans-
mission of the SOURCE, they are shown connected to the bus selector
with the symbol ————o(which we will interpret to mean "mask!") and not

by the symbol ——> (which means "input'"). WARNING!!! When the Bus-

mask is loaded it is the inverted SB which is.loaded into BM.
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The SOURCE is masked during every bus transport by the mask which

is specified to be
MA VvV MB
where

MA = an element of a 16-bit wide, 16 element RG

called the Mask A registers,

MB = an element of a 16-bit wide, 16 element RG
called the Mask B registers,
v = logical "inclusive or'",

MA and MB are shown in Figure 2.9. Upon dead start, the system is

Figure 2. 9.
Bus Masks, MA and MB

0
e

se & LHa-C
o] 8 MA

° s Pointer o BD Load
CcM 0] J,

Bus. MA
Mask Registers

15 o

LH-1C
: I MA VF;}-—Q Bus Selector
MB

s Pointer o

Bus
Mi
SB(0:15) ——» Mask Registers B

s o

such that the '""no mask", i.e., 15 I's, is in register 0 of MA and the
"bus clear mask", i.e., 16 O's, is in register 1 of MA. We will assume

this to be the case throughout normal operation of the system. One can
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then look upon the pointer MAP as a switch for the use of the bus masks:
If MAP = 0 then the BUS is not masked, if MAP = 1 then the BUS is
masked by the mask specified by MB. This is, of cource, not the only

interpretation of the use of the BM but it is a convenient one and one

which we will normally employ unless otherwise stated.

As an example, with no sensible applications, assume we are represen-

ting very small floating point numbers in the following sign magnitude

format,

L sh 4 ©XPONent, | |, coefficient

L Lesign of coefficient
sign of exponent

Suppose the following 4 masks are available in the first 4 registers of

MB.

MBO 110« »0

MB1 O |1¢e—r1 | 0 | »0

MB2 O |¢<—30]|1 | O&——O0

MB3 |0 |e—|O0|1e— P

15 1la 0 9 o

The following code will decompose a floating point number found in the

register of WA pointed to by WAP and store the information as follows,

1)
2)
3)
4)

sign of the exponent in bit 15 of WBO
magnitude of the exponent in WB1(15:12)
sign of coefficient in bit 15 of WB2
magnitude of the coefficient in WB3(15:6)
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s MAPC.
; MAP+1, MBPC, WBPC.
WB:=WA ; MBP+1, WBP+1.

WB:=WA, « 1 ; MBP+1, WBP+I.
WB:=WA, « 5; MBP+1, WBP+1.
WB:=WA, ¢ 6 ; |

It is suggested by this example that when one is decomposing formatted
information (e.g., a virtual machine instruction) one may wish to co-
ordinate the use of the BS with the use of the BM. Let us therefore
suppose the shift constants 0, 15, 11, and 10 to be stored in the first
4 registers of the BSSG. The above decomposition and storage could

be written as the following 3 microoperations:

; CA:=3, MAPC, BSS:=BSSG.
; BSPC, WBPC, MBPC, MAP+1. !

WB:=WA ; BSP+1, WBP+1, MBP+1, CA-1; if CA then HERE else HERF)(
; BSS:=CM. ]

The MA Pointer (MAP) and the MB Pointer (MBP) both of which were
used in the above examples are loadable either separately or together;

thus we can execute the microoperations

MAP:=CM| OD| SB| SG,
MBP:=CM| OD| SB| SG, or
MAP, MBP:=CM|OD|SB| SG .

The name of the SG associated with the BM is the Bus Mask Pointer
(BMP) Standard Group. The following table lists the microoperations
associated with MA, MB, and BMP.
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Table 2. 6.

Microoperations for control of the BM

MAP+1 MBP+1
MAP-1 MBP-1
MAPC MBPC

MAP:=CM|OD | SB| SG | MBP:=CM| OD| SB| SG

MAP, MBP:=CM|OD| SB| SG

BMP:=SB

BMPP:=CM| OD | BMPS1| BMPS2
BMPP+1

BMPP-1

BMPPC

BMPS1:=CM| OD| BMPS1| BMPS2
BMPS2:=BMPP

2.7. Postshift Masks

The Bus Masks, as described in the previous section, are applied to
the SOURCE as it is gated onto the BUS and thus before the SOURCE
is shifted in the BS. There is also a possibility of masking the SOURCE

after it has been shifted by using the Postshift Masks, PM, as shown in
Figure 2. 10.
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Figure 2. 10.

Expanded Bus Structure

Shifted Bus
Bus Masks . —Q Postshift Masks 1
8 \‘
Q
9 .
- o Bus Shifter
Working 3
Registers A 0} M
9 Bus
m
Working
Registers B

One of the purposes of the PM is to apply a mask to the output of the BS
which will mask off the unwanted '"cyclic! bits and replace them with 0O!s

thereby simulating a logical shift. As an example, if the bus transport
WB:=WA, « 2

is executed with the postshift mask

151¢ »1 0290

applied to the output of the BS, then we have taken a WA register, shif-
ted it 2 bits left logical, and stored it in a WB register. Similarly, the

bus transport

WB:=WA, + 6

with the mask

0000001 <——————mn1
L5 10 9 0
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applied to the output of the BS means a WA register is shifted 6 bits
right logical and then stored in a WB register. The output of the BS
is masked during every bus transport by the mask which is specified

to be
PA V PG

where,

PA = an element of a 16 bit wide, 16 element RG

called the Postshift Mask A registers,

PG = a functional unit called the Postshift mask
Generator,
vV = logical "inclusive or!.

PA and PG are shown in Figure 2. 11. This is quite similar to the BM
where PG now takes the place of MB.

WARNING!!! As with the BM, when PA is loaded from the bus, it is the

inverted bus which is loaded.

Figure 2. 11.
Postshift Masks, PA and PG

PA
5 Pointer o

Selector

Postshift
Bus(0:15) > Mask Registers

15 o

L+H-1C CM OD Undef SG

I PA v PG I-——oBus Shifter
PG Sel. PG Control . PG
CMm Register ,, Source Selector }——OI Postshift Mask Generator, PG I—
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1<n<15

I
I

Table 2. 7.
Table representing the READ-ONL. Y-MEMORY
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Which particular source is to be used as data for the mask generation
is determined by the contents of a 2-bit Postshift mask Generator Selec-

tion register (PGS) as shown in this figure and in Table 2.8. below.

Table 2.8.

Source of Data for Postshift Mask Generation

Contents of PGS | Source of DATA

00 CM
01 oD
10 (undef)*
11 SG

If, what we will assume as standard, the PGS has been set to point to
the CM as the data source, then the PG data are specified in the "mi-
crooperations and data' field of the microinstruction in the following

symbolic way,
PG "arrow' n
where,

n = the number of 0!'s to be generated and the "arrow!
('—l-*) indicates from which direction they should be

genebated; 0<n<16.

Thus, the previous two examples could have been written (assuming PGS

and BSS points to the CM as the data sources).

WB:=WA, < 2; PG-2
wB:=WA, - 6; PG~6

Upon dead start, the system is such that the mask of all 1!'s is in regis-
ter 0 of PA, and the mask of all 0's is in register 1 of PA. This is

identical to the situation in MA. We will assume this to be the case

*) At the moment undefined
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throughout normal operation of the system. One can then look upon the
pointer PAP as a switch for the use of the Postshift mask Generator:

if PAP = 0 then the mask generator is not used, if PAP = _l then the
postshift mask which is to be applied will be that generated by the mask
generator. This is, of course, not the only interpretation of the use of
the postshift masks, but it is a convenient one and one which we shall

normally employ unless otherwise stated.

Table 2.9. is a list of the microoperations associated with the PM. The
first half of this table deals with PA. The second half of this table
deals with the PG. The name of the SG associated with the PG control
is the Postshift Mask Generator SG (PGSG). Note, the name of the SG
associated with the PA pointer is the Postshift AB Pointer (PABP). It

is not discussed here but in Section 2.28.

Table 2.9.

Microoperations for the control of the PM

Operations associated with PA

PA :=BUS
PAP:=CM|OD|SB|sSG
PAP +1
PAP -1
PAPC

Operations associated with PG and PGSG

PGS:=CM

PGS +1

PGS -1

PGSG:=SB

PGP :=CM|OD|PGS1|PGS2
PGP +1

PGP -1

PGPC
PGS1:=CM|OD|PGS1|PGS2
PGS2:=PGP

e
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L et us extend the example of Section 2.5. in which we emulated a virtual
machine instruction which performed a register to register transfer com-
bined with left/rigth cyclic shifting. As shown below, if we use the PG
we can execute an instruction which will take a given WB register )
(WB Adr), shift it left/right logical or cyclic (Shift & Mask Data), and
then store it in a WA register (WA Adr). If the data for the instruction

is in the current WB register pointed at by WBP in the form

wBP - wB Adr WA Adr
15 s|7 )

Mask | Lshift
WBP+1 | 0ew0 | P3°< | SN

15 11|10 43 o

a possible code sequence would be:

wB, ; WAP:=SB, WBP+1.

wWB, -4 ; PG SG:=sB.

wB ; BSSG:=SB, WBP-1.

wB ; WBP:=SB, WBPS:=WBP.

; PAP+1, PGS:= 5G.. §FSi:=S&
WA=WBS ; B ,WBP:=WBPS, & _
; PAPC] PGS:= CM . 155.= €/ =

Note well, there are two important assumptions in this example. The
first is that MAP = 0 upon entry to this code, i.e., a bus mask is not
applied to the source, and the second is that PAP = 0 upon entry to this
code, i.e., no postshift masking occurs. Indeed, we will make these
assumptions in all examples which follow (unless stated explicitly other-
wise). They can be summarized as follows: bus transport normally oc-
curs in an unmasked fashion; if a particular code segment requires the

use of amaskingfacility it is responsible for leaving the system in this

normal state after such masking occurs.
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2.8. The Arithmetical and L.ogical Unit

We will now add additional computational capability to the bus structure
in addition to the shifting and masking already encountered by introdu-
cing the Arithmetical and LogicalUnit (AL). The AL, shown in Figure
2.12., is a functional unit with 2 inputs which; for the moment we will
call A and B.

Figure 2. 12.
Arithmetical LLogical Unit, AL

SET SET -
A-B A-1 A
15 . ]
ET|SET
AL l—o Bus Selector
o

CM OD sSB SG

Function and
carry-in o

Selector

6 bits are required to control the ALL: 5 bits to select one of the 32 ope~
rations listed in Table 2.10. which this unit can execute on A and B

and 1 bit which specifies the carry-in bit into the AL for any arithmetic

operations.

PSS — R S ST AR e e
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Table 2.10.
AL Functions
, ARITHMETIC LOGICAL

A A
AV B AANB
AV B AAB
minus 1* all O's
A + (AAB) AVEB
(AvB) + (AAB) B
A-B-1 A%fB
(AAB)-1 AAB
A + (AAB) AV B
A+B A=B
AVB + (AAB) B
(AAB)-1 AANB
A+ A all 1!s
(AVB)+A AV B
(AVB)+A AV B
A-1 A

*in 2's complement; the arithmetic operations are shown with the carry-
in set to 0. If the carry-in is 1, then the AL Function is F+1 where F
is the specified arithmetic function. The logical functions are not affec-

ted by the carry-in.
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The 6 control bits which specify the current operat'ion for the AL. are the
contents of the ALL Function and Carry-in register, ALF, which can be
loaded, ALF:=CM|OD|SB|SG, or set to the arithmetic addition operation
A + B and other standard settings. The SG associated with the ALF

is called the AL Standard Group (AL SG). The microoperations associated

with the AL are given in table 2. 11.

Table 2. 11.

Microoperations for control of the AL

ALF:=CM|OD|sB|sG

SET ALF +

SET ALF -

SET ALF B

SET ALF A - 1

AL SG:=SB
ALP:=CM|OD|ALS1|ALS2
ALP +1

ALP -1

ALPC
ALS1:=CM|OD|ALS1|ALS2
AL S2:=ALP

If the ALF is to be loaded with an operation specification from the CM,
we will note this symbolically merely by writing the required function

in the symbolic form which appears in Table 2.10. in the AL F assignment

statement, i.e.,

ALF:=A + B
ALF:=A A B

etc.

The AL is always running. If the ALLF is changed in a microinstruction,

then the result of the newly computed function is available for bus trans-
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port in the very next microoperation. Thus the microinstructions

; ALF:=all 1 s, PAP +1,
WA:=AL; PG~ 9, PAP -1 . n

will put a string of 7 1's in the WA register pointed to by WAP. The

1's will be least significant bits, by, justified.

There are many testable conditions concerning the operation of the AL.

A few of these are

Symbolic Notation

Condition

AL

AL (0)
AL (15)
AL OV

result of AL operation all 1!s

bit 0 of the result of the AL operation

bit 15 of the result of the AL operation
Al overflow (equivalent to a carry-out
during addition and a borrow-in during

subtraction)

Before giving examples

of the control of the AL let us first discuss the

nature of its inputs, A and B.

2.9. The L ocal Registers

The Local Registers, LR, serve as the A input to the AL in the context

of the AL. Functions shown in Table 2.10. The LLR, shown in Figure 2. 13,

are 4 16-bit wide registers which have independent input and output

pointers. The input pointer, LRIP, points to a LR which can be used

as a BD for the current bus transport. The output pointer, LROP,

points to a LR which can be used as either the A input to the AL or as

the SOURCE for the current bus transport.

B e P B S PO S e e
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Figure 2. 13.
L.ocal Registers, LR

L+#-1C |I +£ 11 f
Input OQutput
DS(V:V+1) [ A
1 Pointer T, Pointer
BD Load
v
L.RO
LR1
SB(0:15) —» » Bus Selector
LR2
L— A Input of AL
> LR3
15 o

Both the LR input pointer, LRIP, and the LR output pointer, LROP,
are incrementable, decrementable, clearable, and loadable with two
bits from the Double Shifter, DS(V:V+1), see Section 2. 12. The utility
of this last feature will be demonstrated with examples when the Double
Shifter is introduced. Table 2. 12. gives the microoperations associated
with the control of the LR.
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Table 2. 12.

Microoperations for control of the LR

LRIPC
LRIP + 1
LRIP - 1
LRIP:=DS(V:V+1)
LROPC
LROP + 1
LROP - 1
LROP:=DS(V:V+1)
LRPC

LRP + 1

LRP -1
LRP:=DS(V:V+1)

The last four microoperations allow for the clearing, incrementing,

decrementing, and loading of both the IP and the OP simultaneously.

2.10. The Accumulator Shifter

The Accumulator Shifter, AS, serves as the B input to the AL in the
context of the AL functions shown in Table 2.10. The AS can serve as

a bus DESTINATION; but to be read, its contents must be gated through
the AL with the ALF set to B. The AS, shown in Figure 2.14., is a
1-bit shifter which can shift left, shift right, be loaded, or remain idle

during the execution of any given microinstruction.

e




Figure 2. 14,

Accumulator Shifter, AS

41

CM OD sB

SG

Shifter Control

aRegistery

Selector

Sel. Selector
L C Load/Shift L
AS(15)s AS(15) Accumulator AS(0) As(0)s
eRegistero Selector s Shifter o Selector |, Register,
LH-1C 01234887 01234567
AS(V)S bo- byg

AS(V)

Source | AS(15) AS(0)
nc. Input Input
0 0 0
1 1 1
2 AS(0) AS(15)
3 AS(15) BUS(15)
4 Undef sB(15)
5 DS(V+1) | DS(V+1)
6 AS(V) AS(V)
7 VvS(V) VS(Vv)

There are 2 interesting features of this shifter:

a)

b)

its variable width characteristic and

The features are discussed in the following:

a) Although the shifter is 16-bits wide it may, in connection

its connection to other elements of the system.

with eit-

her the BM or PM, be viewed as being m-bits wide (1 < m < 16). This

is accomplished by having each of the 16 bits of the AS input to a selec~

tor (labelled the by — bg selector in Figure 2. 14). The output of this

selector (called the variable bit, V) can then be a possible input into

either the left or right end of the shifter, depending upon what particu-

lar type of shift one requires. When the AS is selected as a source

for bus transport by gating it through the AL, after the desired shift

S Bt e AOAb S 5 i v AT

S R R e o Rk

e T
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has occurred, the bits not consi dered to be a part of the shifter must
be masked off. This can be done either by using the BM or the PM. The
width of the shifter is then determined by the contents of the AS(V)
Selection register, AS(V)S, as shown in the above figure and the use of

of an appropriate mask.

The AS(V)S can be loaded by the following microoperation
AS(V)S:=CM|OD| SB| SG.

Thus, for example, if we wish to consider the AS as a 12 bit left cyc-

lic shifter, we would execute the microoperation
AS(V)S:=11

while making sure that AS(V) be used as the input to bit AS(0) during
the shift operation. Subsequent use of the AS as a source could be ac-

companied by use of the PG masking off bits b;s - b,;, e.g.

; SET ALF B .
WA:=AL; PG-4 n

b) In Figure 2. 14. it is seen that bits AS(0) and AS(15) can be filled by
one of avariety of sources duringashift operation. Which source is to

be used to fill the vacated bit position is determined by the contents of

the AS(0) and AS(15) source selection registers, AS(0)S and AS(15)S
respectively. An examination of the table in Figure 2. 14. shows that the
AS can be considered a logical shifter, a 1's fill shifter, a cyclic shif-
ter, and a right arithmetic shifter. It can also be connected to another

1 bit shifter, called the variable width shifter, VS, to yield a long variab-
le width shifter. It can be connected to a 2-bit shifter called the Double
Shifter, DS, so it can be used in the merging of 2 bit streams into 1 or
the diverging of 1 bit stream into 2. It can also be connected to the BUS and

SB. These latter input is of an experimental nature and uses will be

demonstrated in later examples.




43

Thus to use the AS, one must load the AS(V)S to set the width of the
shifter and must load either the AS(0)S or AS(15)S to point to the
source to be used as the input into the vacated bit position, i.e., one
must set what the type of shift is, e.g., logical, 1!s filf, long, etc.
That both of these operations need not be done each time the shifter is
used, but only when one is '"changing' the width or type of shifter is
obvious. Table 2. 13. lists the microoperations associated with the
control of the AS. Note the AS can be set to a logical left, ASLL, or
logical right, ASL.R, shift.

Table 2. 13.

Microoperations for control of the AS

AS(0)s :=CM|OD|sB|sG
AS(15)s:=CM|OD|sSB|sS6G
AS(V)s :=CM|0OD|sB|s6G
ASLL (= As(o)scC)
ASLR (= As(15)SC)
AS(V)sc

AS(V)S+1

AS(V)S-1

There are 2 bits in each microinstruction which control the operation
of the AS: shift left, AS—, shift right, AS~, load, i.e., AS:=SB(0:15),
or be idle. When the AS is to be shifted, the operation is put in the
"microoperation and data' field of the microinstruction; when the AS is
to be loaded, the operation is specified in the '"bus transport!" field of

the microinstruction. As an example, the microinstruction
WA:=AL ; AS— .

stores the output of the AL. in a WA register and then shifts the AS left,

while the microinstruction

LR, AS:=WB; WBP + 1.
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stores a WB in both the AS and a LLR and then increments the WB poin-
ter. If the AS is not employed during a given microinstruction, it does

not appear in the specification of that microinstruction.

Having introduced the AL and its inputs, LR and AS, we now have

knowledge of the expanded bus structure as shown in Figure 2. 15.

Figure 2. 15.

Expanded Bus Structure

Bus Masks —Q

Working .
Registers A Postshift Masks
hi

Working ‘5 Bus Shifter
Register B 0
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o
- (0]
Local Registers » %’
11}

!

Arithmetic
L_ogical Unit

Accumulator
" Shifter

L et us now give a few examples using these resources to demonstrate

the use of their associated microoperations.
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Example 1

Let us consider WA as a stack as shown below

WA
Stack pointer —» op
(WAP)
a
b
15 o

We wish to take two operands, a and b, and an arithmetical or logical
operator, op, from the stack and place a op b on the new top of stack.

The following microinstruction sequence does this.

WA ; ALF:=SB, WAP - 1, LRPC.
LR:=WA; WAP -1 .

AS :=WA.

WA:=AL .

Example 2

Let us again consider WA as a stack.

WA

Stack pointer —————» shiftspec
(WAP)

a

15 o

AL Al T F B e R T R e e R R A R A
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We wish to treat the AS as a |eft shifter whose characteristics are gi-
ven by shiftspec. We wish to shift a n-times and return the result to
the new top of stack after removing shiftspec and a. L et us assume

shiftspec to have the following format.

15 N s npgnsk,, gwidth 4 - type,

where

encoding found in the table of Figure 2. 14

type =
for logical, cyclic, etc. shift,
- width = width of shifter - 1, 1 < width of shifter < 16

pgmsk = PG mask specification,

3
]

number of shifts - 1, 1 < number of shifts < 16

The following microinstructions execute the desired operation.

WA ; AS(0)S:=SB.

WA, > 3; AS(V)S:=SB.

WA, - 7; PGSG:=SB.

WA, »12; CA:=SB, WAP + 1.

AS:=WA; PGS:=SG, PAP + 1, SET ALF B. e
; ASE ; [?f CA then HERE+1 else HERE. ) <G

WA:=AL ; PAP-1, PGS:=CM. "

2.11. The Variable Width Shifter

The Variable Width Shifter, VS, is a shifter functionally identical to
the AS. The reason one is called the Accumulator Shifter is that not
only does it serve as an input to the AL, but also it will serve as the
accumul ator required in the realization of the basic arithmetic opera-
tions (e. g. multiplication). The VS can be a SOURCE or DESTINA-
TION for a bus transport. It is shown in Figure 2. 16.

R
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Figure 2. 16.
Variable Width Shifter, VS

CM OD sB SG

Shifter Control

Sel. Selector

L C Load/Shift L cC

Vs(15)s.
. Registery,

VsS(15)
Selector

Variable Width
18 Shifter

vs(o)
Selector

gReglster-‘J

L4+-1C 01234567

Vvs(V)s
sRegister

bo-byg
Selector

VsS(V)

Source Vs(15) Vvs(o)
no. | Input Input
0 0 [4
1 1 1
2 Vvs(0) Vvs(15)
3 VS(15) BUS(14)
4 Undef SsB(14)
5 DS(V) DS(V)
6 Vs(v) VS(Vv)
7 AS(V) AS(V)

The microoperations associated with the VS are identical to those as-
sociated with the AS and are listed below in Table 2. 14.

Table 2. 14.

Microoperations for control of the VS

VS(0)S :=CM|OD|SB|SG
. VS(15)S:=CM|OD|SB|sSG
VS(V)S :=CM|OD|SB|SG
VSLL (= vs(0)sC)
VSLR (= vs(15)sC)
VS(V)sC

VS(V)S + 1

VS(V)S - 1

S PR ST SR Py T E T R R s b R R R R P R e e
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One of the important features of the AS and VS, as seen from the tables
in Figures 2. 14. and 2. 16., is that they can be connected together. This
allows, for example, the AS and VS to be viewed as a ""long" shifter

when coupled together. The microinstructions,

; AS(15):=7, VS(15):=7.
; AS(V)sc, VSs(Vv)sc. [ |

connect the AS and VS together so that they can be viewed as a right

cyclic 32-bit shifter as shown below.

- AS o—*1:s VS o

Just as with the AS, there are 2 bits in each microinstruction which
control the operation of the VS: shift left, VS, shift right, VS-,
load, i.e., VS:=SB(0:15), or remain idle.

Assuming the previous AS/VS connection has been made, subsequent

execution of the microoperations
AS~>, VS~

shifts this 32-bit shifter 1 bit right cyclic. Other 'long shifters', e.g.
left logical, right logical, right arithmetic, etc., result from appro-

priate set up sequences.

2.12. Double Shifter

The Double Shifter, DS, is a shifter with functional characteristics
similar to those of the AS and VS, except that it shifts 2 bits at a time
and not 1. Bits DS(0) and DS(1) require input during a left shift and
DS(14) and DS(15) require input during a right shift. The DS is shown
in Figure 2. 17. The DS can be a SOURCE for or a DESTINATION of a

bus transport.
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Figure 2.17.
Double Shifter, DS

CM OD sSB sG

Shifter Control

Sel Selector

Load/Shift L
) 11

DS(14:15)
Selector

Ds(0:1)
Selector

Ds(o:1)s
. Registery

Double Shiiter
s

o

DS(14:15)S]
|, Register,

LH-1C 0l 2 34567 0l 23458 7
DS(V)S bo=byg
,Register Selector DS(v:v+1)
Inputs Inputs
Source | pg(1s) DS(14) Ds(1) DS(0)
o o 0 o [4
1 1 1 1 1
2 Ds(1) Ds(o) DS(15) DS(14)
3 DS(15) DS(15) BUS(15) BUS(14)
4 Undef Undef sB(15) s(14)
5 DS(V+1) Ds(V) DS(Vv+1) Ds(v)
6 AS(V) VS(Vv) AS(V) Vs(v)
7 BuUS(1) Busl(o) Undef Undef

The microoperations which are associated with the DS are directly

comparablé to those for the AS or VS and are shown in Table 2. 15.

Table 2. 15.

Microoperations for control of the DS

DS(0:1)S :=CM|OD|SB|SG
DS(14:15)S:=CM|OD| SB| SG
DS(V)S :=CM|OD|sSB|sG

DSLL ( = DS(0:1)SC)
DSLR (= Ds(14:15)S0)
DS(V)sC

DS(V)S + 1

DS(V)S - 1

The by — b5 selector specifies two bits DS(V:V+1) as output, these may
be used in coupling the shifters, or as input to the LRIP and LROP-

pointers.
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There are 2 bits in each microinstruction which control the operation of
the DS: shift left, DS«, shift right, DS-, load i.e., DS:=SB(0:15), or

remain idle.

2.12.1. Two examples using the shifters

The AS, VS, and DS are collectively referred to as the ""Shifters!"
whereas the Bus Shifters are not included in this term. The expanded

bus structure is shown in Figure 2. 18,

Figure 2. 18.
Expanded Bus Structure
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Example 1

Suppose we wish to count the humber of bits which are set to 1 in the
WA register pointed to by WAP and leave this number in the same cell.

The following algorithm will do this

a) L.oad the LR with the following constants

I_RE'O:=O
LR1:=1
LR2:=1
LR2:=2

b) Clear the AS (considered here as an accumulator)
c) Set the AL to addition
d) Transfer the data to the DS

e) Do the following 8 times and then do f)

i) ifDS(0:1) = 00 then accumulate LRO + AS in AS
if DS(0:1) = 01 then accumulate LR1 + AS in AS
if DS(0:1) = 10 then accumulate LR2 + AS in AS
if DS(0:1) = 11 then accumulate LR3 + AS in AS

ii) shift DS~

f) Store the accumulated result which is in AS

The following microinstruction sequence accomplishes this. It is assu-

med the PG data source is the CM.

DS:=WA ; ALF:=all 0 s, LRPC.

AS, LR:=AL; ALF:=A+1; LRIP+1. LRO0:=0

LR:=AL ; LRP+1, CA=7. LR1:=1

LR:=LR ; LRP+1, DS(V)SC. LR2:=1
7 LR :=Aé'(, ; ALF:=A+B, LROP:=DS. LR3:=2
, )

AS :=AL ; CA-1, DS »2. LROP:=DS;

if CA then HERE+1 else HERE
WA:=AL . ]
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The subset of the bus which is used during the counting loop instruction
(AS:=AL) is shown in Figure 2. 19. This may help in understanding the

algorithm and code.

Figure 2. 19.
Counting L.oop for Counting Number of Bits set to 1 in a Word

DS(0:1)

L.ocal Registers

Arithmetic
L ogical Unit
4

Accumulator
Shifter

Bus Selector

Double
Shifter

Example 2

Consider the contents of the current WA register as a string of 16 bits.
It is desired to pack all of the even numbered bits (by, by, etc.) in the
left 8bits of the current WB register and the odd numbered bits

(b1 , bs, etc.) in the right 8 bits of this register so that the result ap-

pears as

bys ++--. bs by by | bl ..... by by bg
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Because the DS, AS, and VS can be connected as shown below,

DS DS(V+1)’ : AS

DS(V)

VS

one can accomplish the stated requirement in the following way:

AL F:=all 0 s, LRPC.

AS, VS:=AL; AS(15):=5, VS(15):=5, DS(V)SC.

DS :=WA ; CA:=7.

CA - 1, AS>, VS-, DS-; if CA then HERE+1
else HERE.

LR:=VS, »8; ALF:=AV B.

wB:=AL. . ’ n

-

“-e
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2.13. The Common Shifter Standard Group

The Shifter Control Selector shown in Figures 2. 14., 2.16. and 2. 17.
is the same selector. This is, perhaps, made a bit clearer in Figure

2. 20.

Figure 2. 20.
AS, VS, and DS Control
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Load/Shift

L C

AS(15)S AS(15) Accumulator AS(0) AS(O)S
Register Selector Shifter Seleclor‘ Reglster‘o
LH-1C

AS(V)S ~bs
,Register , Selectcr

[} Load/ :.ift

L
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DS(15:15) DS(14:15) Double Ds(0:1) DS(O 1)s
, Register Selector Shifter Selector Register o

LH-1C
DS(V)s bo - bys
,Register Selector

AS(V)

1

The SG which is associated with this selector is called the Common
Shifter SG. Various shifter control data can be stored in this SG for

various shifter interconnections and then used in environment prologues.

The microoperations associated with the CS SG are shown in Table

2.16.

L e SRR AR ER RS B Sha R A A R S Bl e L M AR PRSNGSR e
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Table 2. 16.

Microoperations for control of the CS SG

CsP :=CM|OD|s1|s2
CSP + 1

CSP - 1

CcsPC
CsSS1:=CM|0OD|S1|s2
CSS2:=CSP
CSSG:=SB

in addition there are several microoperations which allow control of

the AS, VS, and DS to be executed in parallel. These are shown in

Table 2. 17.
Table 2. 17.
Parallel CS Microoperations
Notation Microoperation
csLL Set AS, VS, DS to logical left shift
CSLR Set AS, VS, DS to logical right shift

CS(0)S :=CM|0OD|sSB|SG |Load AS(0), VS(0), and DS(0:1) Source
register from CM|OD|SB|SG
CS(15)S:=CM|OD | SB|SG |Load AS(15), VS(15), and DS(14:15)
Source register from CM|OD|SB|SG
CS(V)S :=CM|OD|SB|SG |Load AS(V), VS(V), and DS(V) Selec-
tion register from CM|0D|SB| SG
cs(v)sc Clear AS(V), VS(V), and DS(V) Selec-

tor register
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2.14. Loading Masks

Associated with WA there is a SG of loading masks called LLoading
Masks, A, LA. Associated with WB there is a SG of loading masks cal-
led Loading Masks B, LB. In what follows we will describe only LA;
LB is identical in function. The purpose of the loading masks, LA and
LB, is to be able to specify which bit positions in a working register
WA can be loaded a;s the result of WA being chosen as the DESTINA-
TION of a bus transport while leaving the nonspecified bits unchanged.

As an example, if the loading mask

O..covvvvnn 00 111111
65

were pointed at by the LA pointer, L AP, then, when the bus transport

[#

WH:=AL

is executed, bits SB(0:5) would be gated into the WA register pointed
to by WIBP in bit positions by through by respectively while bits bg
through b, would not change their value. When WA is selected as a
SOURCE for bus transport the mask LLA acts in the following fashion:
if biti (0< i< 15) of the mask is a 1, then bit i of WA is transmitted.
If bit i of the mask is a 0, then bit i which is transmitted is indetermi-

nate.

As an example if the loading mask

1

IR 0Q 111111

were pointed at by the LA pointer, LAP, then, when the bus transport

WwWB:=WA

is executed, bits SB(0:5) would be gated into the WB register pointed
to by WBP in bit positions by through bs respectively while by through

b,s would be indeterminate.
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The relationship between the loading masks and the working registers
@ where the script 9/ in the mask

@ indicates the special nature of these masks. Figure

is represented by the symbol

notation
2. 21. shows the expanded bus structure with the loading masks added.

Figure 2. 21.
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Figure 2. 22. shows a more detailed sketch of LA; LB, not shown, is

identical.
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Figure 2. 22.
I_oading Mask Registers A, LA
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Selector
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There are 7 microoperations shown in Figure 2. 22. associated with the

use of LA. These are listed along with the corresponding microopera-

tions for LB in symbolic form in Table 2. 18.

NB!

Table 2.18.
Microoperations for control of LA and LB

LA :=SB
LAP :=CM|OD1|sS1|S2
LAP + 1

LAP - 1

LAPC
LAS1:=CM|OD1|S1|S2
LAS2:=L AP

LB :=SB
LBP :=CM|OD3|s1|Ss2
LBP + 1

LBP -1

LBPC
LBS1:=CM|0OD3|s1|S2
LBS2:=LBP

OD1 means OD(0:3)
OD3 means OD(8:11)
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Upon the dead start, the system is such that the ""full load!" and '"full
read out!"" mask, i.e., 16 1!s is in register 0 of LA and register 0 of
LB. We will assume this to be the case throughout normal operation

of the system. One can then look upon the pointers LAP and LBP as
selection switch for the use of the loading masks. If LAP=0 then no
loading mask is applied to WA, if LAP 74 0 then WA is masked by the
mask specified by LAP; similar statement can be made for LBP. This
is, of course, not fhe only interpretation of the use of the loading
masks, but it is a convenient one and one which we will normally employ
unless otherwise stated. When you load LLA (or LLB) from SB you actu-—

ally get = SB (i. e. the inverted SB) into LA (or LB).

As an example, suppose we wish to place the high order 13 bits of the
output of the DS into the least 13 bits of WBO leaving the high order 3

bits the same. If the mask

150 ?3 IL 1 0

is in LB9, the following microinstruction sequence accomplishes this:

; LBP:=9, WBPC
WB:=DS, -3; LBPC. [ ]

This mask could have been generated by use of the PG and AL.. The

code, (remember that we have to generate the inverted mask)

ALF:=all 1 s, LBP:=9
; PGS:=CM, PAP + 1.
AL ; PG+13, LB:=SB, PAP-1. m

-

generates the mask and stores it in LLB9. It should be reasonably ob-
vious now how the loading masks can be used to store the result of
various data transformations as they are determined, e.g., in the im-
plementation of signed-magnitude arithmetic, the magnitude of the ex-
ponent, its sign, the magnitude of the coefficient and its sign can be

stored in a given word as they are obtained.

B L e LU A AW RS




60

We will henceforth assume in all examples (unless explicitly stated ot-
herwise) that LAP = 0 and LBP = 0, i.e., that no loading masks are
applied to either set of working registers. If a particular code segment
uses the loading mask facility it is responsible for leaving the system
operating in this fashion. The treatment of the loading masks then be-
comes quite identical with that of the bus masks and postshift masks as

stated in Section 2.7.

2.15. The Parity Generator

The parity generator is a circuit which determines the parity of the 16
bits which compose the bus transport. It posts the result of this evalua-
tion as a testable condition, the bus parity, BP, condition. IfBP =1,
the BUS is odd parity; if BP = 0, the BUS is of even parity. This condi-
tion can be used, obviously, in any processing wherein parity informa-
tion is variable, e.g., in communicating with devices which transn;nit
words of a particular parity. The parity generator functions during

each bus transport and has no microoperations associated with it. Sin-

ce its input is the BUS, we show it attached to the bus structure.

2.16. The Bit Encoder

The RIKKE 1 is prepared for a Bit-encoder, BE, but this is not im-
plemented. In those places where BE has been used the value will be

undefined. For a detailed description se Shriver [7].

R R A B R I W A B
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2.17. Input Ports

There are two input ports through which external devices may be con-
nected to the bus selector. They are called Input Port A, 1A, and In-
put Port B, IB. Up to 16 devices can be connected to each of these

input ports. lA is shown in Figure 2.23.; IB, not shown, is identical.

Figure 2.23.
Input Port A, 1A
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Device

3Fleg_ijterol

Selector

Data
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Deviceg
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Device

Device Selector

Input Port A
of Bus Selector

Deviceg

Device Selector

Data
from
Devicey

The particular device which is selected by the IAD register to be read
is pointed to by a Device Register. There are two conditions associa-

ted with a selected device:

a) Data available, 1ADA, and
b) Mark-bit set , 1ADM

All devices must be able to set the first condition. The second condi-
tion can be set by devices which can transmit two different sorts of

information, for example control data and information. When a device

SR e R e e T et SR A BRI E e e AR e =
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is activated the IADA condition is reset. The microoperations associa-

ted with the control of lA and IB are given in Table 2.19.

Table 2. 19.

Microoperations for control of 1A and IB
1AA I Activate Port, i.e., :r‘ead 1A
IAD:=CM|OD|SB*) | Load IA Device Register from CM|OD|SB
1ADC Ciear |A Device Register
IAD + 1 Increment 1A Device Régister‘
1AD - 1 Decrement 1A Device Register
IBA Activate Porf, i.e., read IB
IBD:=CM|OD| SB¥) Load IB Device Register from CM|OD|sB
IBDC Clear IB Device Register
IBD + 1 Increment IB Device Register
IBD -1 Decrement IB Device Register

As an example, if we wish to read a piece of data from device 9 on IB

and store it in AS, we can write the following classical wait loop:

; 1BD:=9, IBA.
AS:=1B; if IBDA then HERE+1 else HERE. ]

The expanded bus structure can now be shown as Figure 2. 24,

*) The value of the fourth input is undefined
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Figure 2. 24.
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2. 18. Output Ports

There are four output ports through which output to external devices '
may occur. They are called Output Ports A, B, C, and D§ OA,

OB, OC, and OD respectively. They are identical in operation with

the exception that OA and OB are loaded from the SB and can be selec-
ted as bus DESTINATIONS whereas OC and OD are loaded from the
BUS and cannot be selected as bus DESTINATIONS, but must be loaded
by a microoperation. OA is shown in Figure 2.25; OB, OC, and OD, not

shown, are identical.

Figure 2. 25,
Output Port A, OA
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0
Set Reset .
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Output Port A . | Data to
is Register ° 15 Devices Buffer o[ " Devices

The particular device which is selected for output is pointed to by a
device register. There is a condition associated with a selected de-
vice: space available, OASA. The microoperations associated with the

control of OA and OC are shown in Table 2.20. The microoperations

for OB are identical to those for OA and the microoperations for OD
are identical to those for OC.
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Table 2.20.
Microoperations for control of OA and OC
OAA Activate Port, i.e. write OA
OAR Reset condition on OA, selected device
OAD:=CM|OD|SB | Load OA register from CM|OD|SB
OADC Clear OA Device Register
OAD + 1 Increment OA Device Register
OAD -1 Decrement OA Device Register
OCA Activate Port, i.e. write OC
OCR Reset condition on OC, selected Device
OCD:=CM|OD|SB | Load OC register from CM|OD|SB
oCDC Clear OC Device Register
OCD + 1 Increment OC Device Register
OoCD -1 Decrement OC Device Register
Table 2.21.
Microoperations for loading of OC and OD
oC:=BUS L.oad Output port C from the Bus
OoD:=BUS LLoad Output port C from the Bus

As an example, suppose we wish to write out the output of the AL onto

device 13 of output port C. We could then write,

AL; OC:=BUS, OCD:=13.
; if OCSA then HERE+1 else HERE .
; OCA. ]

There is one additional feature associated with the "activate'!" microope-
tion. Recall that on the input ports it is possible to test a mark bit which
is set by a device. Analogous with this, it is possible on output to write
out an extra mark bit in addition to the data. The device can, for examp-
le, treat this extra bit as a selector between two different modes of ope-

rations. The microoperations for output port activate are now given by
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OAA1 activate with mark bit set to 1
OAAO activate with mark bit set to 0
OAA activate with mark bit undefined.

Special purpose output Port D.

The Output Port D is dedicated for control, so far we have used the mnemonic
OD in a lot of the selectors (f. ex. in the BS standard group). This means

that all these units can be controlled from Output Port D.

Notice that since the port has been dedicated, all operations on ODD, as
well the operations ODA and ODR, has no effect. The only operation left

with an effect is
OD:=BUS

which will save the information on the Bus for subsequent use through one

of the selectors.
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2.19. The Bus Structure

With the introduction of the output ports in the previous section we
have completed a description of (with only very minor modifications)
the RIKKE-1 Bus Structure, the registers and functional units attached
to it, and the control which can be exercised on these components. The

Bus Structure is now shown in Figure 2. 26.

Figure 2. 26,
RIKKE-1 Bus Structure
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Let us summarize some of the information with respect to bus SOUR-

CE sand DESTINATION s. We have the following SOURCE s and
DESTINATIONSs for a bus transport:

a) = SOURCESs for Bus Transport

WA
wB
LR
AL
\V2=
DS
1A
B

b) DESTINATIONS for 16-bit Load of SB with BD Load

MA
MB
WA
wB
LR
OA
oB

c) Shifters which can load 16-bit SB via dedicated bits

in every microinstruction

AS
VS
DS

Thus in the bus transport specification
LIST:=SOURCE,

the LIST can consist of at most 1 destination from (b) above and any list

of the shifters, i.e.,
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BD, [,AS][,VS][,DS]:=SOURCE,

where the [ ] indicates the option of inclusion in the LIST.

Recall that the inverted SB can be loaded into LA and LB by execution of
appropriate microoperations and, the inverted BUS can be loaded into
PA, PB and the BUS into OC and OD by execution of appropriate micro-
operations. Also, a subfield of the SB (nbrmally a contiquous string
starting with bit bgy) can be loaded into various SG's and control ports
throughout the system by execution the appropriate microoperation. Thus,

many parallel loads of both the BUS and the SB may occur in any given

microinstruction.

There are three important restrictions on the above bus transport spe-

cifications:

a) the specifications WA:=WA or WB:=WB are not allowed,
b) the specification LR:=LR is only defined when LRIP # LROP,

c) one cannot use a mask (MA, MB, PA, LA, LB) and load the regi-

ster containing that mask in the same microinstruction.

d) it is not possible to shift in one of the shifters (AS, VS and DS)
while loading the same shifter (these operations are mutually

exclusive).

On the other hand the timing allows you shifting in one of the shifters AS,
VS and DS while using it as the source of bustransport., This will not affect
the transport, the shift will only change the old content of the shifter.

(The shift takes place after the transport).

2.20. The Control Unit

The control unit of the RIKKE-1 system, shown in Figure 2. 1. on page
5, consists of (1) a control store and (2) a microinstruction sequencing
capability. The random access control store consists of up to 4. 096

words of 64-bit wide, 80 nanosecond monolithic storage. The microin-

struction sequencing is described below.

o R R et SRl S
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2. 20. 1. Microinstruction Sequencing

The microinstruction sequencing hardware is a physical embodiment of
the "if c then A, else A;'"" clause we have been using in our micropro-
gramming examples. This is accomplished in the following way. The
addresses A, and A; are selected from 8 possible address sources. Let
A be the address of the current microinstruction and let B be data

which is specified ih the current micr*oinstr‘ucti‘on. The 8 possible ad-

dress sources, which are explained in more detail shortly, are listed

in Table 2. 22.
Table 2. 22.

Microinstruction Address Sources

A-1 Current address - 1

A Current address

A+ 1 Current address + 1

AL (A, B) A function of A and B as computed by an arithmetical
logical unit

RA + B The contents of the top of a return jump Stack, RA,
added to B

RB + B The contents of the top of a return jump stack, RB,
added to B.

SA The contents of the save address register, SA

N . spare input (value is 4095)

These address sources are realized by providing a microinstruction

address bus which is shown in a limited form in Figure 2. 27.




Figure 2. 27.

Microinstruction Address Bus (Preliminary)
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One can see from this figure how the "if, then, else''-clause is reali-
zed. There are 3-bits in each microinstruction which specify one of
the 8 address sources of Table 2.22. to be used as the true branch
address, denoted A,. There are 3-bits in each microinstruction which
specify one of the 8 address <ources of Table 2. 22. to be used as the
false branch address, denoted A;. There are 7 bits in each microin-
struction used to specify 1 of 128 conditions which are testable in the
system; the selected condition is denoted c. The state of the selected
condition c determines which source, A; or A;, will be used to select
the next microinstruction address source. If c = 1 then A; will be used

to select the address of the next microinstruction; if c = 0, then A; will

be used for this purpose. When a microinstruction address is selected,
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it is loaded into the Control Store Address Buffer so it can be used to
fetch the microinstruction, and it is also loaded into the Current Ad-

dress register so that it can be used in the next address computation,

if required. The contents of the Current Address register has been

used in previous examples under the symbolic namé HERE.

The address sources A - 1, A, and A + 1 are straight forward and need
not be dealt with. It should be mentioned, however, that Control Store
addresses are interpreted modulo the size of the Control Store. At the
current version of RIKKE-1 the Control Store is 512 words, this implies

that only the first 9 bits of the address are significant.

2.20.2. The Control Unit Arithmetical L.ogical Unit

The Control Unit Arithmetical Logical Unit, CUAL, is functionally iden-
tical to the arithmetical logical unit which is connected to the RIKKE-1
bus structure except that it is 12-bits wide and not 16-bits wide. The
CUAL functions are identical to those of the ALL and are given in Table
2. 10.The "A input!" to these computations is the address of the current
microinstruction and the "B input" is data specified in the current mi-

croinstruction. The CUAL is shown as in Figure 2.28.

S e G PSR S S A TEGRp e [ SERCh [P TSE SRR L e P
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Figure 2.28,
Control Unit Arithmetical L.ogical Unit

Current Microinstruction Address

SETSET A
L AIB Fj[ l
CM CUAL Microinstruction
F4(4:0) ’14 Function ° b1 CUAL o Address Selector
T L carry-in (c or <)
B

Data from Microinstruction

First, note that the CUAL Function register can only be loaded from the
CM, .i.e., CUALF:=CM. One can set the CUALF to add A and B, i.e.,
SCUALF + and also to the logical function B, I.e., SCUALF B.
These are the only three microoperations associated with the CUAL..
Cnly 5 bits are used to specify the function; the carry-in, when requi-
r‘ed', is specified in another way. L.et c denote the selected condition
used to control the address selection and let ¢ be its negation. There

is a bit in each microinstruction, called the Carry-Input Selection Bit,

CISB, which is used to determine the carry-in as shown in Table 2. 23.

Table 2. 23.

Carry-in Selection

cisB Carry-in

0
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Example 1

Suppose the CUALF is set to A + B; this is a relative jump. If CISB=0

the specification
if ¢ then CUAL else HERE
can be interpreted to mean:

if c then HERE + B else HERE.

Whereas, if CISB = 1, the specification can be interpreted to mean:

if c then HERE + B + 1 else HERE.

Example 2:

Suppose the CUALF is set to B; this is an absolute jump. This is a lo-

gical function and not affected by the carry-in.
if ¢ then CUAL. else CUAL
can be interpreted to mean:

if c then B else B.

In our microassembler, the specification of the CISB will be given im-
plicitly. 1If one chooses the CUAL output as microinstruction address

source, we write

CUAL + Carry-in.

Choice of this specification as either an A, or A; will dictate the setting
of the CISB.
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For the first interpretation of Example 1 to be valid the specification

would have to be written
if ¢ then CUAL else HERE
whereas if we meant the second interpretation we would have to write

if ¢ then CUAL + 1 else HERE.

It should be obvious that the specification
if c then CUAL + 1 else CUAL. + 1

is an example of a microinstruction sequencing specification which is
imcompatible with the specification capability described above. Indeed
if one wished to choose the address specification CUAL. + 1 irrespective

of condition, one merely need write
CUAL + 1

in the microinstruction sequencing field of the microinstruction. This

would have the same effect as writing, for example,
if TRUE then CUAL + 1 else CUAL..

where TRUE is a manifest system constant set to 1. There is also a

manifest system constant, FALSE which always has the value 0.

In order to complete the discussion of the CUAL. we must discuss the
specification of the data B. There are two 6-bit fields in the microinstruc-
tion which we shall call Tandt. T and t are input into a function box
which makes the computations shown in Table 2. 24. There are 2 bits in

- every microinstruction, called the B-Input Selection Bits, BISB, which
determine which of these computations will be used as the B data, if re-

quired, in the current address computation.
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Table 2. 24.

B data Selection
BISB B data
(o]0 0
01 t .t

sign
10 TO
11 Tt

The notation tsignt means the 12 address bits are given by

&5t &5 b5 5t tg t3 b 4 o,

i.e., in "sign extended'" form. With the CUALF set to A + B and
BISB = 01 we then have a relative addressing capability of £ 32. The

notations Tt and TO denote concatenation.

~ In our microassembler, the specification of the BISB will be given im-

plicitly. One specifies the B value explicitly as a decimal number in

the address specification and this will dictate the setting of the BISB.

We will hence forth write the CUAL. specifications as
CUAL (A, B) + Carry-in.

Both CU and A are redundant information since this is writtenin the
microinstruction sequencing field of the microinstruction and we will use

the shorter form

AL (B) + Carry-in

‘where B is a signed integer, -2048 < B < 2048, when combined in an

arithmetic function with A, but may obviously lie in the interval

0 < B < 4095 when used for absolute jumps.




Example 1
If the CUALF is set to A + B and BISB = 01, then the specification
if ¢ then AL(-18).

can be interpreted to mean

if c then HERE-18 else HERE + 1.

Example 2

If the CUALF is set to A + B and .BISB = 01, then the specification
if c then AL.(12) else AL.(12) + 1

can be interpreted to mean
if c then HERE + 12 else HERE + 13

thus giving a conditional branch to one of two sequentially located mi-

croinstructions.

2.20.3. Return Jump Stacks A and B

There are two return jump stacks associated with the microinstruction
addressing facility. They are called RA and RB. Each is a 12-bit wide,
16 element RG. RA is shown in Figure 2. 29. RB, not shown, is identi-

cal.

77
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Figure 2. 29.
Return Jump Stack A, RA

3 Pointer

L)

A ——p

RA,
16 Registers

Adder Microinstruction Address Selector

T carry-in (c or ¢)

Data from Microinstruction

The microoperations associated with RA are shown in Table 2. 25. The

instructions for RB are identical

Table 2.25.

Microoperations for control of RA

Notation : :
on fig. 2.29. map Microoperation
+ 1A (L) RA | Increment RAP and then load RA with the
address of the current microinstruction.
-1 RA 1t Decrement RAP
c RAPC Clear the RAP

Whenever the top of the RA stack is used in the computation of the ad-
dress of the next microoperation, the microoperation RA? is executed,
i. e.‘, the stack pointer is automatically maintained any time something
is added to the stack or whenever the stack is used in an address com-

putation. The use of RA is specified by writing

RA + B + Carry-in.
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This is seen immediately from Figure 2. 29. The B data and the Carry-
in selection are exactly the same as those specified for the CUAL.. The
specification RA + 1 or RB + 1 will be interpreted to mean B = 0 and the

carry-in = 1.

Example 1

Suppose we are in a routine at step n and wish to jump to a routine at
step n + m. At step j of the second routine wish to return to n + 1.

Assuming the CUALF:=A + B we could write

n:  ; RA ; AL(m)

;s RA+ 1.

[
.o
-

Example 2

It should be noted that the availability of 2 return jump stacks may faci-
litate the implementation of coroutines. For example, the microinstruc-

tion
n: ; RA L ; RB + 1.

stores the current address in one stack while simultaneously using the
other stack as a source in the computation of the address of the next

microinstruction.

Example 3

A conditional return entry point can be obtained by using the specifica-

tion

if cthen RA + B + 1 else RA + B.
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2.20. 4. The Save Address Register

The Save Address register, SA, is shown in Figure 2.30.

Figure 2. 30.
The Save Address Register, SA

L+1-1C
. Microinstruction
sB(o:11) 11 SA o Address Selector

The microoperations associated with this register are shown in Table

2.26.

Table 2. 26.

Microoperations for control of SA

SA:=SB
SA + 1
SA -1
SAC

SA provides a data path between the bus structure of RIKKE-1 and the

control unit which controls the transactions on this structure. It can be

used, for example, during the loading of control store. (See Section

2.20.6.).
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2.20.5. The Microinstruction Address Bus

Having gained insight into the nature of the various address sources
which can be used during microinstruction sequencing, we can how
present a more detailed picture of the microinstruction address bus

and it is shown as Figure 2.32. Because the number of control elements

is small, they are also shown on this figure.

The microoperations associated with the control unit are brought toget-
her, for convenience, in Table. 2. 27. All but the last microoperations
have been explained in previous sections. The CS Load operation is

discussed next.

Table 2. 27.

Microoperations associated with the Control Unit

SA:=SB

SA + 1

SA -1

SAC
CUALF:=CM
S CUALF B
S CUALF +
RA 1t

RA |

RAPC

RB 1

RB |

RBPC

CS Load
LCC
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Figure 2.31.

Microinstruction Address Bus (Detailed)
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** the address selector bits are decoded to determine if RA or RB are selected.
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2,20,6. Control Store Loading .

Control Store has both an address and a data buffer, as shown below

in figure 2. 32.

Figure 2. 32.

Control Store

Cs Cs

nAddress Buffer, ;s Data Buffer

63 o
Control Store

Ccs
(4096 words)

The CS Address Buffer is loaded from the Microinstruction Address Se-
lector as shown in Fig, 2, 32. The CS Data Buffer is actually Device no. 0

associated with Output Port B.

Since the Output-Port is only 16 bits wide and the Control Store is 64

bits wide, the loading of 1 Control Store word takes at least 4 microope-
rations, Associated with theControl Store is a Loading counter, LC, The
LC indicates whether the next word loaded should be directed to bit 0-15
16-31, 32-47 or 48-63 of the Control Store word pointed to by CS Address
Buffer. The load counter is automatically increased when the CS Load
microoperation i s executed, Furthermore one can clear the LC by the

microoperation LLCC,
Let A be the address of the current microinstruction,

The mijcrooperation CS Load, if executed in the current microinstruction,

can be interpreted as follows
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CS Load =

Load the content of the CS Data Buffer into the bits indicated
by LC of the Control Store L.ocation pointed to by the CS
address Buffer. In crement LC and then choose A + 1 as the

address of the next microinstruction.

Example

Load the contents of WA1 - WA4 into the CS storage L.ocation specified
by the rightmost 12 bits of WAO

; WAPC, OBD:=0, CA:=3.
; SA: =SB, WAP+1
LOAD: OB:=WA ; if OBSA then HERE+1 else HERE.
; OBA;
; CS LLoad; SA.
; WAP+1, CA-1, if CA then HERE+1
else LOAD. ™

2.21. Control Panel Switches KA and KB

KA and KB are two switches on the control panel which can be set/reset
by the operator and tested as any other condition in the microinstruction

condition part.

2.22. Internal Flags KC and KD

KC and KD are two flip-flop!'s which can be loaded, reset and tested in

the microoperation. Fig. 2..-33. shows KC, KD not shown is identical.
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Figure 2. 33.
Internal Flag KC

Set C

111

condition ? KC

KC and KD can be tested as any other condition in the microinstruction

condition part.

The microoperations associated with KC and KD are

Table 2. 28.

Microoperations for KC and KD

KCC clear KC

SET KC set KC

KC:=SC load KC with selected condition

KDC clear KD

SET KD set KD

KD:=SC load KC with selected condition

e e R i S S
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2.23. The Conditions and Condition Selector

There is the possibility of testing 128 conditions in the system. At this
writing there have been 100 specified, leaving a reasonable amount of
expandability in the system. The conditions and their symbolic notation

are given in Table 2. 29.
The conditions in this table are grouped according to the functional unit

with which they are associated. For convenience, the units are listed

in alphabetical order.

R A AR TG
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Table 2. 29.
Condition List
Unit SymeIic Condition
Notation
AL all bits AL(0:15)=1
AL OV Al carry-out bit
AL AL (0) bit 0 of AL input to bus selector
AL (15) bit 15 of AL input to bus selector
TWOOV 2's complement overflow
AS(0) bit 0 of the AS
AS AS(V) the variable bit of the AS
AS(15) bit 15 of the AS
BP BP BUS parity, BP=1 = odd parity
BUS BUS BUS(0:15) =0
CA is CA zero
CA(3) bit 3 of CA
CA(4) bit 4 of CA
CA CA(5) bit 5 of CA
CA(6) bit 6 of CA .
CASPOV CASP =1111 (CASP overflow)
CcB is CB zero
cB(3) bit 3 of CB
cB(4) bit 4 of CB
cB cB(s) bit 5 of CB]
cB(6) bit 6 of CB
CcBSPOV CBSP =1111 (CBSP overflow)
RAPOV RAP@1 111 (RAP overflow)
RAPUN RAP = 0000 (RAP underflow) y,
cu 'RBPOV RBR(Z 111 (RBP overflow) ;f ; .
RBPUN RBP = 0000 (RBP underflow)
CUAL OV CUAL. overflow
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UNIT ﬁymbf’”c Condition
otation
DS(j), j=0,..,.15| the indicated bit of the DS
DS DS(j), j=V, V+1 | the variable bits of the DS
IADA data available on 1A
1ADDM mark bit 1A
IBDA data available on IB
1BDM mark bit IB
I/O OCASA space available on OA
OBSA space available on OB
OCSsA space available on OC
ODSA space available on OD
KA KA KA button set
KB KB KB button set
KC KC KC flag set
KD KD KD flag set
LR(0) bit 0 of LR input to bus selector
LR LR(15) bit 15 of LR input to bus selector
s3(0) bit 0 of the shifted bus
sB(1) bit 1 of the shifted bus
SB sB(14) bit 14 of the shifted bus
s8(15) bit 15 of the shifted bus
TRUE a binary one
System FALSE a binary zero
VvS(0) bit 0 of VS input to bus selector
\VIS vsiv) the variable bit of the VS
VvS(15) bit 15 of the VS
WA(0) bit 0 of WA input to bus selector
WA(15) bit 15 of WA input to bus selector
WA WAP OV WAP = 11111111 (WAP overflow)
WAPSPOV WASP =11111111 (WAPSP overflow
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. Symbolic .
Unit Notation Condition
wB wB(0) bit 0 of WB inputto bus selector
ws(15) bit 15 of WB input to bus selector
wB WBPOV WBP = 11111111 (WBP overflow)
WBPSPOV WBPSP = 11111111 (WBPSP overflow

All 128 conditions are input into a condition selector, There are 7 bits in
each microinstruction, called the Condition Selection Bits, CSB, which

select a particular condition, The selected condition is input into

a) The A,-A: address selector (Section 2. 20. 1. )y
b) The carry-in selector (Section 2, 20, 2.)

R e BT e R e




90

2.24, Short and L.ong Cycle

It is obviously important to know when one can test a condition. The
system can execute microinstructions in two different cycle times: a
""'short! cycle time and a "long" cycle time., The difference in these two

cycles as it relates to the testing of conditions can easily be stated:

Long cycle
When the machine is operating in long cycle mode all conditions

which arise as a result of bus transport and microoperation
execution are testable in the same microinstruction in which they

arise,

short cycle
When the machine is operating in short cycle mode all conditions

which arise as a result of bus transport and microoperation
execution are testable in the next microinstruction to be

executed.

Thus if we are in long cycle and we write
WA:=WB; WAP + 1; if BUS then RA+1. n

we are testing whether or not if the current bus transport (WA:=WB)
is such that BUS =0, Whereas, in short cycle, this microinstruction
would mean we are testing the previous bus transport!s condition, In

order to test WA:=WB we would have to write 2 microinstructions,

.

WA=WB ; WAP + 1,
if BUS then RA+1. : |

Thus, a microinstruction can be throught of being executed in the fol-

lowing sequential way:
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Short cycle:

a) Microinstruction fetch and saving of conditions

b) Bus-Transport

c) Execution of microoperations

d) Calculation of the address of next microinstruction

based on saved conditions.

Long cycle:
a) Microinstruction fetch
b) Bus-transport
c) Execution of microoperations
d) Calculation of the address of next microinstruction

based on the actual state of machine (new values of

conditions).

The difference between short and long cycle is that step d) is delayed

in long cycle to wait for conditions affected by b) and c).

The above mentioned steps may be considered as being executed sequenti-
ally, (this implies that one step is completely finished before the next is
entered) similarily each of the steps may be broken up in a number of se-
quential steps (each of which is completed before the next is initiated),

these will be described in section 3. 2.

NB! At the current version of RIKKE-1 it is not yet possible to switch
between short and long cycle. The RIKKE-1 is meanwhile operating in

short cycle.

2.25. The Real Time Clock

The RIKKE-1 will be supplied with a Real Time Clock, but this is not

yvet designed.

A, b
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2.26. Auxiliary Facilities

The auxiliary facilities associated with the RIKKE~-1 system as shown in
Figure 2. 1. i.e., the system counters and main storage will now be

discussed.

2.26.1. Counter B

The system has 2 counters associated with it: Counter A, CA, has been
introduced in Section 2. 2., Counter B, CB, introduced here is shown in

Figure 2. 34.

Figure 2. 34.
Counter B, CB
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A comparison of this figure with Figure 2. 3. which shows CA reveals
that CB is identical with CA except that CA can be loaded from the OD

register which is not the case with CB, i.e., we have

CA:=CM|SB|OD|CAS
and CcB:=CM|sB| * |cBs.

*) Undef.
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The microoperations associated with CB, CBS, and CBSP are given in
Table 2. 30. These are, of course, apart from the above difference,
identical to those associated with CA and merely shown here for con-

venience.

Tabel 2. 30.
Microoperations for control of CB, CBS, and CBSP

cB:=cM|sB| * |cas

CB + 1

CcB -1

CBs

CBs:=CB

cBsSP + 1

CBsP -1

cBsPC

I should be quite obvious that CA and CB are not connected in any way
whatsoever and may be used independent of one another. One may count

up in CA while counting down in CM, for example,

; CA+1, CB-1. - ]

2. 26. 2. Main Memory

The RIKKE 1 has a memory of up to 64K 16 bits words called MS. The

addressing is provided through a main storage pointer, MSA.

*) Undefined.

o i e R S L iR i DR A R e A v . R e R
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Figure 2. 35.
Main Storage Address

OD {0:3) o1
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T ALl
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1 Register )

Main Storage

The reading of Main Memory is going to take place from Input Port A,

(device indifferent), and writing through Output Port A, (device indif-
ferent), although the assembler will recognize MSW as OAA and MSR
as lAA.

The microoperations associated with MSA, MSASG and MSAP are given
in table 2. 31.
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Table 2. 31.

MSA:=CM|OD| SB|MSPSG

MSA + 1

MSA - 1

MSAC

MSASG:=MSA

MSAP:=CM|OD|sS1|S2

MSAP + 1

MSAP - 1

MSAPC

MSAS2:=MSAP

MSAS1:=CM|0D | S1|S2

MSR The assembler recog-
nizes these as synonyms
MSW for 1AA and OAA

It is possible to check the content of MSA against the actual physical size
of main storage. The condition MSAOR is a 1 if the content of MSA is
greater than the actual size of main storage, else 0. Furthermore it is
possible to test if MSA is busy (i. e. main store is using MSA), this condi-
tion is named MSAB.

Example

Assume we want to store the contents of the WA-register pointed to by
WAP in the main storage location pointed to by the AS. We can write

this as

’ ALF:=B ; if MSAB then HERE else HERE+1
AL ; MSA:=SB.
OA:=WA ; MSW. n
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2.27. An Alternate View of the Working Registers

The description of WA which was given in Section 2. 4. introduced WA

as a 256 element RG. In Figure 2.5. the address pointer, WAP, was shown
to be 8-bits wide so that the WA registers could be addressed as 256
contiguous registers. In fact, the address pointer actually consists of

two 4-bit pointers which had been '"coupled'" together to give the 8-bit

wide pointer described in Section. 2.4. Figure 2.36. shows WA with

its two 4 -bit pointers called the Group and Unit pointer; WB, not shown,

is identical.

Figure 2. 36.
Working Registers A, WA (Detailed)
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When the microoperation CPL A is executed, the Group and Unit poin-
ters are connected together to give the 8-bit wide pointer, WAP.

After the microoperation UNCPL. A is executed, the Group and

Unit pointers function as independent pointers. The low order 4-bits
of the 8-bit address required to specify a particular register are given
by the WA Unit pointer, WAU; high order 4-bits of the address are
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given by the WA Group pointer, WAG. Thus, WA can be considered to
be 16 RG's, each RG having 16 registers.

The microoperations associated with the WAU and WAG pointers are given

in Table 2.32. (The similar microoperations for WB are also shown.)

Table 2. 32.
Microoperations for control of the WAU/WBU and WAG/WBG pointer

WAU:=CM|OD | SBy,;| WAUS WBU:=CM|ODg_,; | SBe, | WBUS
WAU + 1 wWBU + 1

WAU - 1 WBU - 1

WAUC wBuUC

WAG:=CM| OD,, | SB,,, | WAGS | WBG:=CM|OD, ;5 | SB, ;45 | WBGP

WAG + 1 wBG + 1
WAG - 1 wBG - 1
WAGC wBGC

If we wanted to point to the 9th unit of group 3 and then transfer its

contents to the DS, we could write, assuming the pointers are uncoupled,

, ; WAG:=3, WAU:=9,
DS:=WA. "

The microoperations associated with WAP in Table 2. 4. can now be given

their appropriate meaning in terms of the microoperations in Table
2.32.

WAP + 1::=WAU + 1

WAP - 1:=WAU - 1

WAPC ::=WAUC and WAGC

WAP :=CM|oD |sB|wAPS::=wAU:=CM|0OD |sB|WAUS
and CM|oD|sB|wAGs.

S e e S AR Sk A SRR e
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Let us now turn our attention to the pointer save capability shown in
Figure 2.36. When WA is considered as 16 groups of 16 registers, the
WAU and WAG pointers may be saved independent of one another. The

microoperations associated with this facility are given in Table 2.33.

Table 2.33.
Microoperations for control of WAUS and WAGS

WAUS:=WAU

WAUSP + 1

WAUSP - 1

WAUSPC

WAGS:=WAG

WAGSP + 1
WAGSP - 1
WAGSPC

As an example, suppose we are in group 3 and wish to work in group 8.

Before working in group 8 we want to save the unit which we are pointing

to in group 3. This is done by executing

; WAUS:=WAU, WAG:=8 .

The microoperations associated with WAPS in table 2. 4. can now be given
their appropriate meaning in terms of the microoperations in Table 2.33.

Thus we have,

WAPS:=WAP::=WAUS:=WAU and WAGS:=WAG
WAPSP + 1 (:=WAUSP + 1 and WAGSP + 1
WAPSP - 1 :=WAUSP - 1 and WAGSP - 1
WAPSPC 1:=WAUSPC and WAGSPC.
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There are a few additional conditions which can now be added to Table

2.29.
Table 2.34.
Additional WA and WB Conditions
. Symbolic L
Unit Notation Condition
WA LIOV WAU = 1111 (WAU overflow)
WAGOV WAG = 1111 (WAG overflow)
WA WAUSPOV WAUSP = 1111 (WAUSP overflow)
WAGSPOV WAGSP = 1111 (WAGSP overflow)
WACS WACS = 1 ® WAU and WAG are coupled
wBUOV wBU = 1111 (WBU overflow)
WBGOV WBG = 1111 (WBG overflow)
wB WBUSPOV WBUSP = 1111 (WBUSP overflow)
WBGSPOV WBGSP = 1111 (WBGSP overflow)
WBCS WBCS = 1 ® WBU and WBG are coupled

Thus we can deal with WA or WB as either 256 contiguous registers or
16 groups of 16 registers. We canh switch back and forth between either

interpretation in a relatively straightforward way.

2.28. An Alternate View of the Postshift Masks

The description of the Postshift Masks which was given in Section 2.7.
was structured to make the Postshift Masks look as much like the Bus
Masks as possible, to enchance the understanding of this unit. In fact,

the output of the BS is masked during every bus transport by the mask

which is specified to be
PA V PB YV PG

where

PA = an element of a 16 bit wide, 16 element RG called

the Postshift Mask A registers

o R AR L e R S S e o SRR A B R
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PB = an element of a 16-bit wide, 16 element RG called

the Postshift Mask B registers
PG = the Postshift Mask Generator

V = logical "inclusive or',

In section 2.7. we had introduced the mask to be PAVPG; here we had
merely assumed all elements of PB to contain all O's. The actual situa-

tion is shown more clearly in Figure 2, 37.

Figure 2. 37.
Postshift Masks, PA, PB, and PG

Sel.
H-1C
SG—x ¢ -
ig 4 PA
] 5 Pointer 4 L
CM " = ‘I'
Postshift
Mask Registers PA
15 o
L+ -1C
Lﬁ
., Pointer L Bus
= 1 ‘ PAV PBV PG ohifter
Postshift PE
BUS(0:15)— Mask Registers
PB
1 o
L+-1C CM OD Undef SG
PG Sel. PG Control . K N PG ~ PG
CcM lRegisterO Source Selector Postshift Masks Generator, —_

The most important thing to note from this diagram is that the PA/PB

structure is indeed the same as the MA/MB structure (see Figure 2.9.).
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The microoperations associated with PB are then

Table 2. 35.

Microoperations for control of PB

PB:=BUS

PBP:=CM|0D |SB|sG

PBP + 1

PBP - 1

PBPC

The name of the SG associated with the PA pointer and the PB pointer is
the Postshift AB Pointer, PABP. The microoperations associated with
this SG are given in Table 2.36,

Table 2. 36.

Microoperations for control of PABP

PABP:=SB

PABPP:=CM|0OD|s1|s2

PABPP + 1

PABPP - 1

PABPPC

PABPS1:=CM|0OD|s1]|s2

PABPS2:=PSBPP

We will assume that all elements of PB contain all O!'s so that the effective
mask is PA vV PG and all of out previous standardizations for the use of

this facility are still valid.
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3.0. Microinstruction Specification and Execution

We will in this section discuss the microinstruction format, the manner
in which the instruction is executed, and then give a comprehensive table

of all microoperations.

3.1. Microinstruction Format

Microinstructions are 64-bits wide. There are 4 major fields in a micro-

instruction. These fields specify

(a) bus transport

(b) microoperations and data
(c) microinstruction sequencing
(d) control of AS, VS, and DS

These fields are shown below with their sub-fields named and their

actual bit location in the microinstruction.

(a) bus transport (7 bits)

BSE BD SOURCE
22 a 19 18 16
1 3 3

L—Bus Shifter Enable Bit

(b) microoperations and data (35 bits)

mops _ mops/data mops/data mops/data
63 57 56 4 45 E2) 38

7 10 8 10

mops = microoperations

o mees maae e R R SR R S A e A A e T R R e A e M
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(c) microinstruction sequencing (16 bits)

BIisB cisB Condition A,. At
Selection
1= lg 13 12 6 5 3 2 o
2 1 7 3 3

L—> Ca{r'r'y—i_n selection bits

—— B-input selection bits

(d) As, VS, and DS control (6 bits)

AS AVAS) Ds

“ J

—~—

Shift/Load Control for the Shifters

Let us discuss each of these in more detail.
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(A) The Bus Transport Field

Table 3.1. shows the correspondence between the symbolic notation

for SOURCE s vand BD s and their binary representations.

Table 3.1.
Symbolic and Binary Notation for SOURCE s and BD s

SOURCE . BD
Symbolic Binary Symbolic Binary
Notation Notation Notation Notation

LR 000 destir:'noation 000
AL 001 MA 001
VS 010 MB 010
Ds 011 LR 011
WA 100 WA 100
wB 101 wB 101
1A = 110 OA ~ 110
B 111 oB 111

If the BS Enable bit = 0, no BS occurs; if the BS Enable bit = 1 a BS
Shift occurs. The control source for BS control is given in the micro-

operations and data field as in seen in (B) below. Thus the specification

BSE BD SOURCE

0 101 (O

is the binary representation of our bus transport specification

wB:=Ds .
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We will show this symbolically as

BSE BD SOURCE

° wB Ds

as we have no need of binary representations in this report.

(B) The Microoperations and Data Field

The microoperations and data field can be considered to be made up of
M M Fs, S M F, as shown

the following fields: F,, S, 52, Fs, -53, X 54,
in Figure 3.1.
Figure 3.1.
Microoperation and Data Field
7 2 1 7 1 7 2 1 7
M M M
F1 S1 D, F2 D, F3 S3 D, F4
63 57 56 55 54 53 o B B 2B I B B 2
mop Sel.{| M mop M mop Sel.| M mop
D data D dataBS D data
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The following comments should assist in understanding this diagram.

B.1) Field F, always specifies a microoperation (1 of 128 mops).

if %2 =1 then F, specifies a microoperation (1 of 128 mops).

..M . . .

if5 -4 then F,specifies a microoperation (1 of 128 mops).
3

. M —_ 1 h F- -f- . . ( 8 )

Ifb‘ = then F, specifies a microoperation (1 of 128 mops).

»

Therefore up to 4 microoperations may be specified in this field; for

example,

; BSP+1, WBP+ 1, MBP + 1, CA - 1;

B.2) We have seen that many microoperations concern the loading of a

register from various sources, e.gd.

MAP:=CM|OD|SB|SG .

Such a microoperation must be places either in field F, or F; . Ifit
is placed in F, then the 2 selection bits S, specify which source will

be used. If the source specified is the CM then -'\-S- is set to D and F,

2
is used as data (similarly % and F, are used with F;). For example
4
MAP:=7
could be symbolically represented
M
Py S D, Fa
MAP:= CM . D 7

Thus one sees that there can be at most 2 microoperations of this type

in a@a microinstruction.

S =
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B.3) Figure 3.1. also shows that if the BS control data is to be taken
from the CM then F, is used as data. If the BS has been enabled, the

control source is selected via BSS. Thus the specification
WA:=AL, BS - 3

could be symbolically represented

F BSE | BD SOURCE

M
Da
D| 3 1 WA DS

B. 4) All of the possible microoperations are not available in each field
F o, F

each field are given in Section 3. 3., the Comprehensive Tables of Micro-

- » F3, and F, . The microoperations which can be specified in

operations for Individual Functional Uhits.

C) The Microinstruction Sequencing Field

Table 3.2. shows the correspondence between the symbolic notation for

A, and A; and their binary representations.

Table 3. 2.
Symbolic and Binary Notations for A, and A,

A, and A,
Symbolic Binary
Notation Notation

000
AL 001
RB 010
RA 011
SA 100
A-1 , 101
A+l 110
A 111
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A similar table can be given for the symbolic and binary notations for
the conditions but is not given here because of its length. Tables 2. 23.
and 2. 24. present this information for the CISB (Carry-in selection
bit) and BISB (B-input selection bits) respectively. We will give all of

our examples symbolically.

Example 1

if BUS = 0 then HERE. could be represented

Condition
BISB cisB Selection A, At
0 BUS At+1 A

Example 2

If ALOV then RA + 12. could be represented

Condition
BISB cisB Selection A, At
t .t ALOV At+1 RA+B
sign

However, this is incomplete and immediately raises the question where
do T and t come from? That is easily answered. T is always the least
significant 6 bits of F, and t is always the least significant 6 bits of

F, . BISB tells us, of course, how we will combine T and t (i.e., 0, Tt,

tsignt , or TO, see Section 2.20.2). Thus, the complete specification
would be
M Condition
- F Bl
D, N SB ciss Selection A Ay
&
D 12 tSi gnt ALOV A+1 RA+B




109

D) AS, VS, and DS Control Field

The dedicated bits for shifter control are interpreted as shown in Table

3.3.
Table 3. 3.

Shift/L_oad Control Bits
Binary | shift/Load Control
Notation

00 Do Nothing

01 Shift Right

10 Shift Left

11 Load

Thus, the specification
AS >, VS -, DS «

could be represented symbolically as

AS VS DS

The binary representation

AS \VAS) Ds

01 10 10

does not interest us here. The specification

AS, LR:=AL; DS~ .

E |
:
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would be given by

AS | VS| DS BSE BD | SOURCE | BISB| CISB| Condition A,, A
Selection

L - LR AL 0 TRUE A+1| A+l

3.2. Microinstruction Execution

As introduced in Section 2.4 . and then explained in more detail in Sec-
tion 2. 24, the machine has both a long cycle and a short cycle. The
result of that discussion, which is repeated here for convenience is that
microinstructions can be thought of being executed in the following se-

quential way:

Short cycle:

a) “Microinstruction fetch and saving of conditions

b) Bus-Transport

c) Execution of microoperations

d) Calculation of the address of next microinstruction based

on saved conditions.

Long cycle:
a) Microinstruction fetch
b) Bus-Transport
c) Execution of microoperations
d) Calculation of the address of next microinstruction based

on the actual state of machine (new value of conditions).

The difference between short and long cycle is that step d) is delayed in

long cycle to wait for conditions affected by b) and c).

The above mentioned steps may be considered as being executed sequenti-
ally, (this implies that one step is completely finished before the next is
entered), similarily each of the steps may be broken up in a number of

sequential steps (each of which is completed before the next is initiated).

T




B) Bustransport

0) The SOURCE is selected.

1) The information of the SOURCE is masked by the BUS-
masks and gated onto the BUS.

2) The BUS is shifted by the Bus-Shifter if this is enabled.

3) The output of BS is masked byt he Postshiftmask to yield
the shifted Bus SB.

4) L.oading of SB into the selected destination.

C) Execution of microoperations

0) Execute microoperations with C, = 1.
1) Execute load/shift operations in AS, VS and DS.

2) Execute microoperations with C, = 2 .

D) Address calculation

0) Choose the selected condition and name it c (in
short cycle a saved value, in long cycle the new state).
1) Select the carry-in and B-input into the CUAL, and the
RA and RB adders.
2) Compute the result in the adders.
3) Select the next address using A, if ¢ =1or A, if c=0.

) If RRopid RE law becun scloclecd fli prrye fho stecl. Fhst wio tred
/ JZA« ,(A—M &‘Cé‘t«?}re//éa— /&aa/f/f/? il locir aibobsens
Notice that conflicts can occur between actions that take place within the

same of the above mentioned sequential steps, and of course especially
in those cases where more than one action refers tc the same unit (ex. :

count and clear of the same register) in which case the result is undefined.

Another source of conflicts is the case where an action in one step influ-
ences the information which is being gated onto some datapath, and the
information is used (e. g. loaded) in a later step. On the other hand if no
actions refer to the source nor to the datapath itself, the information

on the path can be assumed to be stable in all the following steps.

*) The microoperations are divided into two classes those with Cp=1 and
those with Cp=2. This defines exactly when the microoperation is
initiated.
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Although many conflicts are resolved by the sequential nature of the timing
some will remain and will result in undefined situations some of which

will be listed below:

a) WA:=WA and WB:=WB gives an undefined result.
b) LR:=LLR and LRIP=LROP gives an undefined result.
c) Loading of a mask (MA, MB, PA, PB) in a bustransport

where the same mask is being appli_ed.

3.2.1. Example of how to use Clock Pulse 1 and Clock Pulse 2

Recall that the RG is a basic building element used in the system. A very
common operation is to load an RG and then change its pointer (e. g. this
was done quite frequently in our examples). Often, one also wished to
save the address of the current element pointed to before the pointer is
changed. It was decided that this capability should be allowed in one
microinstruction and, furthermore, every RG in the system should be

treated in the same uniform way.

Example

The microinstruction
AS:=WA; WAPS:=WAP, WAP + 1. ]

means: take the element of WA pointed to by WAP and store it in the AS;
then store the WAP in the WAPS registers and then increment WAP by 1.
It means this because the BD load and the microoperation bot occur before
the microoperation WAP + 1 in the above mentioned sequential scheme.

Thus, every RG in the system can be looked at in the following way:

a) it can be loaded or used as a source.
b) its current pointer can be saved, if it has a save capability.
c) its pointer can be changed after a) and b).

all with one microijnstruction.
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3. 3. Comprehensive Tables of Microoperations for Individual Functional

Units

The following tables (presented in alphabetical order based on the abbre-
viations associated with the functional unit) show which microoperations
can appear in which fields and at which clock pulse these microoperations

are initiated.

Some particular points perhaps should be recalled and emphasized

here:

a) use of these tables will show what space and time conflicts arise
in the construction of a microinstruction. The reader is encou-
raged to review some of the examples of the earlier sections by
constructing symbolic microinstructions similar to those presented

in Section 3. 1.

b) t comes from field F, , so if it is being used, for example in
absolute addressing, a microinstruction should not be specified

in Fs .

c) T comes from field F; , so if T is being used, for example in

absolute addressing, a microinstruction should not be specified

in Fa.

d) Data for the BS, if the CM is the control source, comes from
Fa .

e) Data for the PG, if the CM is the ocntrol source, comes from

Fs .
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I------ —mmmmmm e I-=--- I--=-I----- I----- I--=-I--=== I----I--- ———e-- B e e 1
1 PGSC 1 1 1 821 I I 911 21 CLEAR PGS I
---------------- I--===J-===I=====I-====I====]====-I-===]=-- 1
/ 1 PGSG 3=SB I 1 I105 1 I I I 1 I LOAD PGSG FROM SB 1
I I----- I----I----- I---=- I--==I----=I----I- --- I
j 1 PGS11t 1 1 I 831 88 I #+ 1 I 2 I LOAD PGS1 FROM CM/0D/S1/S2 I
I S ot I----- I--=-I--=-- I----- I--=-I----- I---=I-=-== B e e eSS I
I PGS21=PGP 11251 1 I 11 I 11 LOAG PGSZ FROM PGP I
I-- --I-==--I-==-T=====T-====J-=~=I=--=I--==]=-- ot I
I PGS+l 1 1 1 801 1 I 89 I 2 I INCREMENT PGS I
I--—=-=-======—=[-===-I-===I====-I====-I-====-===T-===] === - - I
I PGS-1 1 1 I 811 1 I 90 I 21 DECREMENT PGS 1
O B S S S S G i G R 1
I PGS3= I 1 1 I 831 ++1 I 2 I LOAD PGS WITH S3 I
e e B B S e B e B I

MICROOPERATIONS FOR SA

I MICROOPERATION I F1 I S1 I F21 F3 I S3II F4ICPI 1
I-mm—mmmmm e I--mm- I-===I--==- I----- I--=-I----- e R 1
I sac 1 1 1 1 1 I 31 1 I CLEAR SAVE ADDRESS I
I I--=-- I--=-I---=- I----- I----I--==-I----I--- - B R I
I SA+1 I I 1 I 1 I 1 I 11 INCREMENT SA I
I R I----- I--=-I---== I----- R e S S e PR SRS SR I
I sa-1 1 1 1 I 1 I 21 11 DECREMENT SA I
I-- —=-====I====-I====]-====[=-===]--=-I-==--]-

I sA B I I I 11 I I I LOAD SA FROM SB(1130) I

I--—=====m=mmmem=l=mm==m===Te=m==Tmmm === mm =L === oo o o o e o e e e 1

MICROOPERATIONS FOR CON.STORE

I WICROOPERATION I Fi 1511 F2I F3T1S3I Fulcel I
e I----- I--=-I--=-= I----- I--=-I-=--= e I
I CS L0AD I 1 I 81 1 I I 1 I LOAD CONTROL STORE AND CHOOSE HERE+1 AS NEXT I
1-- 1 I--=-I----- I----- I----I----- e I
ILce 1 I I 1 51 I I 11 CLEAR LC I
s T S B B B B e S e I

MICRIOPERATIONS FOR WC

I MICROCPERATION I F1 I S1 I F2 I F3 1 S3I F4 ICPI

D e St et S S e s -

I I I 441 I I 1 I LOAD WAGS AND WBGS I
1

P

i G B e e it e R R




119

MICRONOPERATIONS FOR VS

1

F3 1 S31

I

F2

F1 1S11

MICROOPERATION I
R i S S B e B B

I vstL

1

Fe T CP I

1

1

I

I

1

76

I

1

I

2 I SET VS TO LOGICAL LEFT SHIFT

e S S B G T E T s v

I VSLR

I

I

I

I 771

I

I

R e |

2 1 SET VS TO LOGICAL RIGHT SHIFT
2 I CLEAR vVS(W)S

ettt CEEES CET SIS SIS SRS SR, Ju

I vswvrse

1

e mmmemmmemmemammcao]

1

-

I

2 1 INCREMENT VS(V)S

I

I VS(V)S+1

D e e e B B e e N

I vVS(v)s-1

I

B

2 I DECREMENT VS(V)S

I

I
1
1

2 I LOAD VS(V)S FRNM CM/00/SB/SG

I

83

I

I

I

I

I vs(v)ss

e S B B B s RS 0 E Ut

I 811

I

1

80 I ++ I

I

n
=
I
>
-

2 I LOAD VS(D)S FROM CM/00/SB/SG

]
]
U
-
'
]
i
i
-
1
1l
|
1
'
-
i
1
i
i
-
[l
1
1
|
|
-
i
]
1
|
-
]
'
'
'
—
'
i
]
|
'
—
1
'
1
|
1
]
i
i
1
1}
1
]
i
|
i
'
-

I
I

e memeemecemceceeooT

2 I LOAC VS(15)S FROM CM/0D/SB/SG

I 821

I
~I-===I=====I=---I===co-ceclecoon

81 1 ++ 1
—-=-I--=--I===-I-====]-=

I vS(15)s3
[-cmmmmm—

MICROOPERATIONS FOR WAU

1

F1 1S1I F21 F31IS31I F4e ICPI

I MICROOPERATION I

e T I e B B B Tt S T TR

I WAYC

I--

1

2 I CLEAR WAU POINTER
G e S S S S T B B e L e R PSS SR RS RS

I

2 I CLEAR WAUSG POINTER

I

I WAUSPC

ot B B S B B O e B TR

I WAUSP+1

2 I INCREMENT WAUSP

I

19

2 1 DECREMENT WAUSP

I

20
e S e e e B B LR R

1 1 LOAD WAUS FROM WAU

I

58

i
]
1
1
'
1
-

2 I INCREMENT WAU

1

I ety GEEEES CEDES CERTES CRETES SRS ST SN SN

I WAJ-1

16

-

I WAU+L

ccmercencanenmeanae=]

1

fecereceameccam——e—aa]

WAU

2 I DECREMENT

2 I LOAD WAU FROM CM/00D/SB/US

I-==============-l=====J===-J~====]-====I-===]-===c]=-==]==-

I

I

-

16 1 ++ I
e SRS EEEES ST S S S e T |

b¢

I waus

MIGROOPERATIONS FOR WAG

F4 I CP I

I F3 1IS31

F2

F1 IS11

I MICROOPERATION I

-
'
]
[l
]
]
i
]
1]
i
'
1
]
1
]
'
]
Il
'

1

2 I CLEAR WAG POINTER

1
R e L S S R B B e R EE Ry

I WAGC

WAGSP

CLEAR WAGSG POINTER

2 I INCREMENT

2

e S LT SIS S B

R
1
e e B e S S B S S e e S e LR DR RS ¢

i

pumssec

I

I

I I

I

22

I WAGSP+1

I

WAGSP
I--======—==e-——oJ=====J====To====T=====le ===l oo = [ o= oo oo oo o o eeeoooooooo ]

2 I DECREMENT

1

-

I WAGSP-1

1

D !

1 I LOAD WAGS FROM WAG

1
e B B B B S e s

I WAGSE=WAG

1
B

2 I INCREMENT WAG

I

I--—==-=========]=====]-===T-====[-===-J====[-====[===-]-==

I WAG+1

I
——---1

2 I DECREMENT WAG

I

1
I

2 I LOAD WAG POINTER FROM CM/00D/S8/SG

1
I---========-===--====]-===I~====]=====[-===]=====I-==-1

I

-

MICROOPERATIONS FOR WA COUPLED

F2 I F3 I S31I F4 ICPI

I~======mm======-==—==I-==-J-===-]-===-J====T=e==-Jo=--]--=-=

F1 IS11

I MICROOPERATION I

I

I-===m=mm===m====I=====J====T=====J=====L====Lammm =L mmm o= o= o o oo o e e oo ]
I
I

1

g g €
===I-====I-===J=====J=====T===o o= o Jmmmm o mm == oo oo o o o e e oo

2 I CLEAR WAU POINTER AND WAG POINTER

1 I COUPLE WAU ANO WAG
1 I UNCOUPLE WAU AND WAG
2 1 CLEAR WAP AND WAG

1
1

57

-
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1
|
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1
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'
1
1
i
]
]
i
]
1
]
1
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]
'
|
1
]
]
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]
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1
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]
]
!
]
]
i
'
'
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)
]
]
'
1
)
]
U
-
i
i
|
|
-
1
1
1]
]
1
-
1l
1]
'
1
-
fl
]
]
1
i
-
1
]
|
[l
U
-
'
'
]
U
-
1
'
1
'
U
-
|
'
)
1
1
]
]
Il
]
1l
U
-

I UNCPL A
I WAPSPC

I CPL A
[ .

©
Q
<
x
-

Il
U
-

1

WAGSP AND WAUSP
e e ST e S D B B Bt et e Ty

2 I INCREMENT

I WAPSP+1

I

HAGSP AND WAUSP
O S S e e B B oI

2 I DECREMENT

I

I WAPSP-1

1 I LOAD WAGS AND WAUS FROM WAG AND WAU RESPEGCTIVELY I

I
e it ST T B S e e O S TR e N RS |
I

I WAPS1=WAP

1

2 1 LOAD WAU FROM CM/0D/SB/US,WAG FROM CM/00/SB/GS

I I ++ 1

20 I ++ I

I

—
fl
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1]
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!
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MICROOPERATIONS FOR WBU

1

F4 I CP I
e S e Sl T S e ¢

F3 I S31

I

F2

F1 I S1 1

I MICROOPERATION I

1

2 I CLEAR WBU PCINTER
T e et T G S B B B et ¢

I

-

I WeJC

1
--1
I

WBUSP

S L S B B B e e

2 I CLEAR WBUSG POINTER

2 I INCREMENT

I

e i B B e e St ST T
I

-

I WRUSPC

I WBUSP+1

1

cermecmcccecccnccccccccaconmecanmncenna]

2 I DECREMENT WBUSP

1

I WBUSP-1

I-~—

1

1 1 LOAD WBUS FROM WBU
e S e e T B et T

I

I 4BUS$=WBU

I

B

WAU

2 1 INCREMENT

-====I-===-I====I-=-==]-====I-===] ~=-==I-=--I-

I WBU+1

I--

I

B |

WAU

2 1 DECREMENT

B R L e e

I WBu-1

LOAD WBU POINTER FROM CM/0D/SE/US

I

{ _kBu

Aoty

e oA Bs R
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MICROOPFRATIONS FOR WRG

I MICROOPERATION I F1 I S1 I F2 I F3 I S31I F4 ICPI I
O it CRUNES EEPRRS SRS SRS ST Immm =] === = e e e e e 1
I W8GC 1 I I 211 1 I I 2 I CLEAR WBG POINTER 1
I-mommommee ————e- I----- I--=-T---=- I---=- I--=-I----= Immm oL = mm = oo o e e e I
I WRGSPC I 1 I I 231 I I 2 I CLEAR WBGSG POINTER I
O I----- O I--mm- i St T e e T 1
I WB5SP+1 1 1 1 I 211 I I 2 I INCREMENT WBGSP 1
T--mmmmmm e I----- I-==-T---=- I----- I--=-I----- B e S I
I WBGSP-1 I I I I 221 I I 2 I OECREMENT WBGSP I
R I----- I-==-I----- Immm =T = mm=D = mmm L mmm o L o m o oo oo o o o e e I
I WBGS1=WBG I 1 1 I w21 I I 1 1 LOAD WBGS FROM W8G 1
B e E T I--=-I----- I----- I--=-I----- Tmmmm L == === o e e e e e e e i
I WEG+1 1 1 I 191 I I I 2 I INCREMENT WBG I
e ST B B e e B S B O P LR R PR R I
I Wes-1 I 1 I 201 I 2 I DECREMENT W8G 1

I
S SRS SO SO 3 Y

MICROOPERATIONS FOR W8 COUPLED

I MICROOPERATION I F1 I S1 I F2 I F3 I S3 I Fu I CP

I 1
T-m—mmmmmmmmmmeee I----- e e e . S e R 1
I cPL B I 1 1 I 401 I I 1 I COUPLE WBU AND WBG 1
et S e B e S B B B T T I
I UNCPL B I 1 1 I 411 1 I 1 I UNCOUPLE WBU AND WBG I
O e G I--=-I---=- I--==-I=-=-I--=== e B O P 1
1 WePC 1 1 1 221 1 1 I 2 1 CLEAR WBP POINTER AND W8G POINTER I
O e e e S S B B B T e I
1 WBPSPC I 1 1 1 261 1 I 21 CLEAR WBP AND WBG 1
D B s I--=-I-=--= I----- I-===T--=== Tmmm oL = mm = o o e o e e 1
I WBPSP+1 1 1 1 I 241 1 I 2 1 INCREMENT WEGSP AND WBUSP I

I

I
AND WBGS FROM WBG AND WBU RESPECTIVELY I
B e —mmmmomemeeee I

MICROOPERATIONS FOR CUAL

I MICROOPERATION I F1 I S1 I F2 I F3 I S3II F4 ICPI I
1 I I----1 I I

I 1 1 I 1

1 I i 1 1
I SCJALFB
et S S S e e R I
I SCUALF+ 1 1 1 1 21 I I 1 I SET CUALF TO A+B I
T--mmmmmmmmme e I=---- I----I----- I-=---I--=-T--==-I-=--I---

MICROOPERATIONS FOR RA

I MICROOPERATION I F1 I S1 I F2 I F3 1 S31 F4 ICPI I

---------------- I--—--I--=-1 I I I----1

I RAPC 1 1 1 1 1 1 I

---------------- I--=--I----1 1 I I 1

I RA* I 1 1 1 1 1

---------------- I--=--I--=-1I 1 1 I

I RAs 1 21 1 1 I I

R I----- I----1 I I I

MICROOPERATIONS FOR RB

I MICROOPERATION I F1 I S1 I F21 F3 I S3I F4 ICPI I

Tommmmmmmm e mee I----- I--=-I---=- I----- I----I--=--I---- - 1

1 RBPC I 51 1 1 I 1 I 1 I CLEAR RB POINTER I

--------------- I-=---I-==-T--==-J--==-I===-T===c=Jmmm-] o mme e == - --- I

I RB* I 31 1 I 1 I I 1 I DECREMENT RB POINTER I
--I--=-T--==-I-===-T====Je===ulemo-I~ e ———meee I

I R8s I W1 I 51 41 1 I 1 I INCREMENT RB POINTER AND THEN LOAD RB I

S e e e B il e Ty U S - 1
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