

CHAIRMAN'S MESSAGE - A SIGDA Business Meeting at ACM 1972

A small group of SIGDA members and. interested parties met on
Monday evening August 14th at the National ACM 72 Conference. I have reviewed
the present status of SIGDA.

The financial status as reported was felt to be at a turning point.
SIGDA's membership is stable and is growing (approximately 320 now). This was
the first year in which SIGDA directly co-sponsored the DA Workshop (although
$700 seed money was borrowed from Headquarters-ACM) M. J. Galey, Chairman
of the 1973 DA Workshop indicates that approximately $1100 will be returned
to SIGDA from the 1972 DA Workshop. This results in an approximate net return
of $900. Unfortunately for the 1973 DA Workshop, our share of the seed is
$1100 and again we will have to borrow $700 from ACM-Headquarters. This increase
is because only SIGDA and IEEE Computer Society will be sponsors versus the
previously three sponsors.

An inexpensive brochure on SIGDA, designed by John Rini, is
scheduled to be printed in the next few weeks. The text is provided inside
the front cover of the newsletter.

Headquarters-ACM has requested no deficit spending during our
fiscal year, July 1, 1972 to June 30, 1973. Further, Hq-ACM has requested
that SIG/SICs on a per member basis support one person in headquarters to
handle SIG/SIC business. This may cost us an additional 30¢ per person.
Instead of an increase in dues at this time (now $3 & $5) which would
coincide with ACM's increase, I indicated that SIGDA will hold off on an
increase. The additional $100 thus needed will be obtained from reduced
expenditures and projected profits from DA Workshops as well as the assumed
growth. It was felt that, given another 100 members, SIGDA would be able
to publish three to four good Newsletters a year. Your efforts to get
additional members in SIGDA are encouraged.

I indicated that the present officers' terms run through June 1973
and that I plan to have new officers introduced at the 1973 DA Workshop in
June in Portland, Oregon.

In the past year, emphasis has been to let people know about SIGDA
and the area of Design Automation outside of SIGDA. That is, to give DA
and SIGDA exposure. That we have done with an increased number of technical
sessions sponsored by SIGDA (SJCC 1972 and ACM 1972), and with a technical
meeting and literature distributed at the DA Workshop 1972. This emphasis
will continue and already we are planning a joint session with SIGGRAPH at
ACM 73. Technical meetings at conferences will continue.

Obviously, the next thing to do is to push up the technical level of
the newsletter. In order to meet the needs of different disciplines and
the major areas of interest, I have asked Steve Krosner to be Chief Editor
of the Newsletter. Steve has contributed to SIGDA as the representative to
the 1972 DA Workshop Committee and as SIGDA session organizer at ACM 71 and
ACM 72. He has a background in the development of digital computer design
verification systems and is presently involved in supporting the marketing
of special automated manufacturing systems for IBM. Walt Samek, who had
previously asked to be relieved as Editor, has accepted the position of
Associate Editor. Walt's background also ties development or design auto­
mation with manufacturing, but instead of the electronic computer area,
Walt with Combustion Engineering of Windsor, Connecticut, represents the
mechanical, metal fabrication, and piping areas of design automation.
Jerry Paskusz and Larry Margol remain on as members of the Editorial Board.

Between Steve and Walt and, of course, you - the members, we
should be able to greatly "up" the newsletter. Remember, the deadline for
the January 1973 Newletter issue is December 15, 1972. Send Steve Krasner
your DA article reviews and other tidbits early.

Professor Steve Szyenda has agreed to actively represent SIGDA on
the DA Workshop 73 Committee. The full committee is listed elsewhere in
this newsletter. For those of you who attended the 1972 DA Workshop in
Dallas, Steve welcomes your comments, both good and bad, about the Workshop.
It is my desire to make the professional organizations which sponsor the
Workshop more visible at the Workshop. Plan now to attend on June 25-27,1973,
in Portland, Oregon.

If you are planning to attend the 1972 Fall Joint Computer Con­
ference, remember that SIGDA will be having a meeting on one of the evenings.
Larry Margol is arranging for a technical presentation at the meeting so
check the coming events for information.

The business of SIGDA was finally exhausted and six hungry DA
enthusiasts headed for one of Boston's fine seafood restaurants.

HELP! HELP! HELP!

Chuck has asked the Newsletter staff to continue trying to
increase the technical level of the Newsletter. We can't
do this alone. We need your help.

.
This issue contains our second technical paper. If you
have a short paper of interest, send it along.

Read any good books lately? Why not write a short review
for us?

Tending a course in DA? How about sending us a bibliography
to publish.

Suggestions for improvement, modifications, or just conunents?
Drop us a note.

As Chuck said, SIGDA is growing---Let's keep the Newsletter growing also:!

Steve Krasner

HELP! HELP! HELP!

REPORTS OF TECHNICAL MEETINGS

SIGDA Technical Meeting Held at 1972 SJCC

A joint meeting between SIGGRAPH and SIGDA was held at the SJCC on Tuesday
evening, May 17th. The meeting was organized by SIGDA and was well attended
by over forty-five persons.

Bill Sass of IBM-Kingston, New York, talked on "Computer Graphics in DA".
Bill's experience since the birth of graphic displays was apparent when
he reminiscenced with an individual from UNIVAC about a forerunner to
UNIVAC'S first display. The applications that Bill discussed included
logic input, simulation, test generation, diagnostics, imbedding of inter­
connection in printed circuit card design, and circuit design.

Although somewhere between Hq-ACM and the hotel management the slide
projector and screen were lost, Bill w~s able to amply and verbally describe
his talk very well. This could have proven embarassing for Bill since he
was trying to show the need for graphic displays in design automation.

An interesting point brought out in the discussion following was that in many
specific application areas, graphic devices can be tailored to that application
as the design aid. A display with maximum capability is required because of
the lack of clear specifications.

Project LOGOS Reported in DA Workshop 1972

Over seventy-five persons attended a
at the DA Workshop in Dallas, Texas.
Chuck Rose from Case Western Re.serve
Project LOGOS.

SIGDA technical meeting held on June 27th
John Henne arranged to have Professor

University talk on their efforts on

LOGOS is intended to be an automated design environment in which designers of
interactive display terminais through a combination of algorithms can perform
a total design of the operating systems and hardware of a data processing
system.

Reference is made to an article by C. Rose and J. Barden in the March 1972
issue of the SIGDA Newsletter as well as Proceedings of COMPCON 1972 Conference
(September 12-14,1972), where a series of fine papers were presented.

COMING EVENTS

SIGDA Meeting at FJCC

Mr. Larry Margol, the Vice-Chairman of SIGDA, will conduct the meeting.
Mr. R. P. Larsen of North American Rockwell will speak on DA of custom MOS
devices. He will discuss a design automation system used for high volume
custom MOS devices. This system has been evolving at North American Rock­
well Microelectronics for several years, and has been actively used in the
design process over this interval. Of particular interest, will be a
layout program which automatically defines masks starting from logic equations.
Also included will be a discussion of Interactive editing of designs that
require manual intervention.

10th DA Workshop 1973

Sheraton Portland Hotel
Portland, Oregon
June 25-27, 1973

Design automation is taken to mean the use of computers as tools which aid
the design process and is often extended to include areas sqch as testing,
simulation and certain portions of manufacturing. Typical examples of Design
Automation involve the application of one or more functions to a given
design area.

In addition to the topics traditionally covered in DAWs of the past, the
following topics are being added.

Design Automation for LSI (special problems, areas of changing
emphasis, ••••)

Circuit Design Automation (tolerence studies, simulation,
optimization techniques, •.••)

Software Design Automation (can DA techniques be applied to
software systems? At what level?
In what areas, ••••)

Computer Aided Manufacturing (Since we designed it by computer
can we build it by computer?)

We are especially interested in soliciting papers on these topics for they
seem to be areas where the next big payoff will occur.

Requirements:

If you plan to submit a paper, you should send three copies to the program
chairman no later than January 2, 1973. (Rough Drafts are acceptable.)

Notification of acceptance will be sent to you during the first week of
February 1973. After notification of acceptance, you will receive detailed
instructions on the format to be observed in typing the final copy. To
insure the availability of the Proceedings at the Workshop, your final
manuscript will be due April 23, 1973.

Final papers should be no longer than 5000 words, and the presentation should
be limited to 20 minutes. Projection equipment for 35rnrn slides and vuegraph
(overhead projector) foils will be available for every talk. Please indicate
what, if any, additional audio-visual aids you require.

Topics of Interest:

Design Areas

Manufacturing Process
Architecture
Mechanical
L S I
Electronic
Firmware
Software
Total Systems

Functions

Partitioning
Packaging Placement

Analysis
Simulation

Wiring

Design Verification
Testing/Quality Control
Interactive System
Design Language
Change Control
Theory

Sponsors

ACM (Association for Computing Machinery) Special

Interest Group of Design Automation

IEEE (Institute of Electrical and Electronics
Engineers)Computer Society

Roug.h drafts are to be sent to the Program Chairman:.

R. B. Hitchcock
IBM Watson Research.Center
P. o. Box 218
Yorktown Heights, New York 10598

Accompanying the draft should be the full name, address and telephone number
of the principal author, with whom all further direct communications will be
conducted.

ACM '73

Plans include an interface session with SIGGRAPH on the use of graphics in
design automation and a general SIGDA session. If you are interested in
participating, drop a note to either Chuck Radke or Steve Krosner with
your ideas.

TECHNICAL PAPER

Modular Requirements for Digital Logic Simulation at a Predefined
Functional Level

Prepared By: Mr. c. w. Hemming and Mr. s. A. Szygenda

j!

Simulation of digital logic provides a
viable technique for development and
diagnosis of digital systems. Simu­
lation models currently employed are
discussed with a summary of structure
and timing techniques. A methodology
for functional simulation in conjunction
with gate level simulation is discussed,
presenting a representative set of pre­
defined functions, and introducing a
measure for predefined function perfor­
mance. Errors in design detectable at
the functional level are categorized.

Key words and Phrases: Logic Design,
Digital Simulation, Functional Simula­
tion, Fault Simulation, Diagnosis of
digital systems.
CR Categories: 4.9, 6.1, 6.3, 8.1

NEEDS FOR SIMULATION OF DIGITAL LOGIC

Design Verification

The value of simulation in the role
of design verification has been re­
peatedly demonstrated. Design Verifica­
tion is accepted by most to mean that
the logic correctly performs the function
the designer intended, including detec­
tion of races and hazards, within the
limits of the simulator. Occasionally, a
subset of the design verification problem
is considered, where timing, race, and
hazard analysis are not performed; this
is called logic verification.

The economic value of adequate de­
sign verification has become more and
more apparent in the past few years for
several reasons: two of these reasons
stand out.

The first is the trend to widen use
of asynchronous design (23). Since digi­
tal systems are being designed which are
both faster and cheaper, design becomes
more difficult to accomplish; and, indeed,
design errors in large asynchronous
stems (such as hazards) may not be
found until many units have been built
and sold. Additionally, it has been sug­
gested that asynchronous machines are
more easily diagnosed and repaired than
clocked systems (3,4).

The second reason emphasized is the
demands of highly integrated systems.
Since the development of a prototype of
an integrated module requires that masks
be made, chips cut, etc., it is an ex­
tremely expensive process; and repeated
iterations, to correct design defects,
are pro~ibitive. Consequently, the rate
of integration of complex systems, es­
pecially highly asynchronous ones, has
been slow. A simulator capable of alle­
viating these problems, TEGAS system, has
been described by Szygenda, et. al. (19,
20) •

Diagnosis
Once the validity of a design has

been established, the manufacturer is
confronted with a set of problems still
not well understood. These include how
one can verify that a machine is cor­
rectly assembled, how the machine can be
correctly repaired if it is not assembled
properly, and how to repair a machine
that fails.

Much work has been done on diagnosis
of combinat~onal logic, with substantial
success (16, 26). Sequential diagnosis
is still rather primitive; consequently,
the need for simulation to aid in diag­
nostic development. Two major objectives
of the diagnostician are to 1) determine
if a machine is functioning correctly,
and, if not 2) isolate the error to the
smallest replaceable (repairable) unit in
the system. Although the problem of
generation of an economically viable test
set for the general sequential system is
not solved, the use of simulation has
aided the theory, and has provided insight
to reasonably sized test sets for many
individual modules. Indeed, for these
reasons, the origins of simulation are
closely intertwined with diagnosis (1,
15' 16 ' 17) .

It might be argued that since tech­
nology already allows building a complete
processor on a chip, the only valid con­
cern is fault detection. Such an argu­
ment is incorrect for the following
reasons.

1) A large number of digital
systems that will be in service for many
years to come are not built that way
(.IBM/3 60 , for example) .

2) The economics of building large
scale general purpose computers with
multiple small processors is not estab­
lished.

3) Development of reliable systems,
even if completely integrated, can be sub­
stantially enhanced by simulation.

4) Adoption of a standard function
set such as on logic cards, is a common
and useful technique expected to endure.
New designs are currently being imple­
mented with established functional
modules.

When one considers design verifica­
tion and diagnosis in depth, it becomes
clear that simulation can be used effec­
tively to enhance t!hese efforts. The
next section of this paper will be
devoted to a discussion of techniques and
implementations used in digital simula­
tors. The remaining sections are
concerned with module specifications and
a functional partition to be used in an
element level simulation environment as
described next.

Inte~nal Structures

Two structures dominate simulation
efforts. The majority of the simulators
reported are compiled. A com~iled simu­
lator translates the description of the
system to be simulated into code,
executable by the host computer. Thus
the AND instruction of the host machine
would normally be generated to simulate
an AND gate. Where fault simulation is
to be performed, additional codes are
generated for the allowable faults. A
fault is defined as a physical defect in
the system, causing it to operate incor­
rectly. A failure is a manifestation of
the. fault. A stuck-at-"0" (short to
ground, say) on the c line of Figure 1
would result in E being "l", consequently
F becomes "l." Inputs A and Blose any
control.

A typical compiled output for the
following three gate system (using a
hypothetical instruction set for clarity)
is shown below. ·

A

B

c

Figure 1 Example Digital Circuit

The code generated for the circuit
shown in Figure 1 is as follows:

AND gate CLEAR I Clear Accumulator
LOAD A
AND B
STORE D I D is the AND of

A and B
CLEAR

Inverter LOAD c
COMP I Accumulator con-

tains E now
OR D

OR gate STORE F I F is the logical
output

Note that both the inverter and the
AND gate must be evaluated prior to eval­
uating the OR gate, forcing an ordering
on the compiled code. This ordering
requires that every input to a gate be
determined (evaluated) before that gate
is evaluated. The process by which the
spatial relationship of the logic ele­
ments is determined and the resultant
ordering imposed on the compiled code is
called leveling.

Table driven simulators exhibit a
somewhat different structure. A set of
routines representing the various allowed
functions is provided. The input system

description is translated to tables which
carry such information as 1) type of
function (routines to be called), 2) logi­
cal interconnection of this function (its
inputs and outputs), and 3) additional
information such as propagation time,
faults, etc. Excellent descriptions of
table driven structure are given by
Ulrich (22, 23).

The simulators discussed in the lit­
erature appear in relative agreement on
the following attributes of the various
structures. Compiled simulators are
assumed to be faster, allow more elements
per simulation run (if elements are
elementary gates), and are generally
difficult to implement or change; and,
since a spatial ordering is imposed, do
not consider timing. T.able driven simu­
lators allow relatively complete timing
analysis (and consequently hazard
analysis), can be written in a high level
language, and are assumed to be somewhat
slower and restricted in element count.
Fault simulation is the process of simu­
lating the behavior under fault condi­
tions. A class of well defined faults
is stuck-at-"l" (S-A-1) and stuck-at-
"O" (S-A-0) faults.

Techniques have been developed to
increase the operating speed of both
table driven and compiled simulators.
The technique known as stimulus bypassing
(6,8) is associated with compiled simu­
lators. A preliminary section of code is
associated with each function for which
stimulus bypassing might be effective.
If the output of the function is not
going to change for the current inputs,
the section of code associated with the
function is not executed (bypassed) . For
example, an RS flip-flop with both in­
puts zero could be bypassed (8). The
timing gains due to stimulus bypassing
have not been reported.

A different concept, known as selec­
tive trace (20, 23), is associated with
table driven structures. Selective trace
is based on the observation that if a
gate's output does not change when evalu­
ated, then the fan-out of this gate is
unaffected by the excitation that caused
evaluation of the current gate. Hence
the current gate's output is not followed.
This procedure has been reported to yield
an 88% improvement in running time (22),
and results with TEGAS2 have indicated an
order of magnitude savings.

Zero Delay Simulation

Zero delay simulation is based on
the Huffman model of sequential cir­
cuits. A detailed and readable descrip­
tion of the Huffman model may be found
in Miller (14). The essentials of the
Huffman model are presented in Figure 2.

The system is evaluated in "passes."
A pass consists of applying the current

values of the primary and secondary in­
put vectors to the combinational logic,
producing the new values of the primary
and secondary output vectors. The sec­
ondary input vector is updated to
correspond to the secondary output
vectors, and the combinational logic
reevaluated. The process is continued
until a stable condition occurs.

A race occurs, in this model, if
two or more secondary outputs change
together. A critical race occurs if a
race may cause an incorrect state to be
assumed as the stable state. Of course,
races in sequential networks are normally
due to various delay conditions present
in the system, which are not accounted
for in the Huffman model, since timing
is not considered. Leveling requires an
element be evaluated after every input to
that element is evaluated as previously
discussed, but within the context of a
pass as discussed above (25).

A· number of simulators have been
implemented using the zero delay
but most do no race analysis. A
historical importance (17, 18).

model,
major
Other

zero delay simulators.have been reported,
and are summarized in Table 1.

1··11'····
~J1 11llltor Sdf'rth·~ l1~pll"'-r:~:.•;·l 1'·~'

i r11r er i .~"dr

EJ!.:'! 12'2.!. b_1.l:., pr_!-" n

f1n1lt
f.:1•, ll«t ion

Auto
r,~u 1 t
_(1:2.!:E .. t.

i,,,'.",•r1! r;111\r.c: p.:.u:

~:··'-1J.· ~i0_1.y_. rl-~!=~-_r~ }_i_ '::. :rs..::i~·-S !.::.!.~t.;:! f.'''·

Sc3hu •
fiurnan 62 Compiled

Se:nhu
1604

Uldch

S•tut'n""
Hardie I
Suhoclc.1•

1107
Tetter

Chang •
Mannina

••Y•
Jephsoa,
et. al.

Ulrich

Ir ever

C_ohea

Lamp­
'Walfotd

64 Coinrllod

67 Compiled.

67 Compiled

68 CoapUed

Table
6' Driven

t1ble
69 Driven

Hardware •
69 Software

Table
69 Driven

70 Compiled

10 Coiapiled

Table
70 Driven

Ssygeada
r.ouse. ' Table
Thoap•oa. 10 Drhe11

Parallel v ..

z Parallel Yu

A No Ho

Z Parallel Mo

Farallel Yee

l.oYol

llo Ho

z Ho llo

Hot

Race
Only No

P..4C8

Only Ho

tfo Ho

Nou 3 No

Ho

No No

JOO

8,000
Not• z.

10,000

No Kota l l,000

Yea Notes

Hot
Clear Clear Jlo No

Predict
36,000

I. No Ho No Jfota 4

Yea Ho Ho No

DaductiYa
Method Tu No

A 1'H Tea Tu T•• 5,000

l min.
per 10
failure• Ho

Ho

Tes

Stimulus
2 clocka bypau on

Yes

Tu

Tu

/u.c •.aero onlJ Yem

.li5 wiec
component No

Ho

Ko, but

Yea

Ho

clul input• Yu

Tea Tea

Tea Ho

Tea Tea

Stimulua C.:ite
bypass Only

Yea Tu

Toa Toa

rrin.idlv l< h:udr.tic
pro;:r.1;-: .ti:,. 1r.o) :itr:
(ault:: in r.cqu,·r,t.f .11.
lo&lc, l>;; c•:;1erntJnc
its o'Jn tu>l vectors

Ii stt.:itcgicH for test
V<!ctora, a;. at.c-v&

Macro el<".m.:onts can be
defined. Cl31r.s to 25X
h"?roveomcnt v1th
selective trace

Instruction bypass
require& hand hveUnc­
Funct lonal mac roe

No functionsl­
hn zemory

Wired Ah'DS ' ORS

3 -.alued

Claims 7X improvement

Functional for cc=bina ...
tlonal 1;1nly;uble lookup

IDuractive an4 batch

Abbrevi•tiona: A, usignable de.by; z. zerc delay; U, unit delay.
gote 1: Checks that propili:; 3 tio":l occu":."s ihnilcs\ thot~ R~~~ipf;,c:r t;:; aot conaider overhead for table tlriwea.
Note 2; The equ.atioa ttH·d to calculate t a va ue n
N t 3 • Determines illegal input conditio~&; no r•ce ha&ard. 4
N:t: 4; Input change. shorter thao a urtaio -.1D11lWll duration aH aot. 1ropaga1.e •
Not• 5: Moc .. deUo.ed vithio tbi• vork.

Table 1. Digital Simulator System-Summary.

0

...
0

Delay Models

A serious shortcoming of zero delay
simulators is that the Huffman model is
an inaccurate representation of digital
systems, particularly asynchronous ones.
The major inaccuracy is the strong de­
pendence of a simulated system's operation
on both local and global timing. The
distinction between these is not absolute,
but rather depends on temporal distances
through which feedback lines must propa­
gate for system stability to occur. If
timing could be taken into account, a far
more accurate prediction of races can be
made, hazards could be detected, and
spikes could be detected. A spike is the
condition where 1 module's inputs are
changed faster ti:.m the propagation delay
of the module.

The simplest technique employed to
represent timing is to assign a constant
delay of one time increment to each ele­
ment in the system. Such ~ model is
known as an unit delay model. A nice
feature of the unit delay model is that
the same leveling techniques discussed in
the zero delay case may be used, except
the procedure is time dependent rather
than space dependent. In an actual imple­
mentation any differences in combinational
logic disappear if hazard analysis is not
done. For sequential, however, the tech­
nique is far more powerful than a Huffman
model, since races can be analyzed to some
extent (accurate race analysis cannot be
performed since in reality all elements
do not switch with unit delay.) However,
spike analysis cannot be performed.

The next stage in refinement of the
model is the association of a representa­
tive delay with each element or element
type in the system. Such a simulator
implements an assignable delay model.
Whereas compiled simulators are typically
zero delay, assignable delay simulators
are normally table driven. Since each
element has an associated delay, the
ability to accurately model races and
hazards is greatly enhanced, and spikes
may be detected. Techniques to minimize
the scheduling overhead have been imple­
mented in the TEGAS 2 system (29).

Another feature of some simulators
is 3 valued simulation (11,20). Three­
valued simulations allow the association
of an unknown state with element outputs.
Table 1 presents a summary of major simu­
lators described in open literature.

Primary
Inputs ___ ...

---'*'ombinational
Logic

delay
elements

Primary Outputs

Figure 2. The Huffman Model of a
Digital System

Limitations of Gate Level Simulators

As is evident from Table 1 and the
preceding discussion, gate level simu­
lators have constraints imposed in terms
of the maximum number of gates which can
be simulated, the validity of the model
(particularly as regards timing consid­
erations) , and the requirement that
MSI-LSI functional models be expanded
to gate level representations for des­
cription of the system.

FUNCTIONAL SIMULATION

Past work in functional simulation
has been rather infertile in terms of
functions above flip-flops, with minor
exceptions (including the extensions to
the TEGAS2 system) .

The earlier digital simulators
mentioned the use of functional "macros"
which were groups of code, inserted in
the compilation, to simulate the func­
tional element. The most complex
function mentioned is the flipflop (8).
Also, certain packaged elements were
added to some implementations of the
Seshu simulators.

Later, specific efforts were made
by Chang and Manning (3,4) and by Cohen
(6) to delineate systems oriented toward
functional simulation.

Chang and Manning's work requires
that systems be partitioned into well
defined sections and described in terms
of 1) multioutput combinational net­
works, 2) sequential circuits, and 3)
register bus systems. Combinational

networks are minimized by a Quine-McClus­
key algorithm and simulated at the gate
level. Sequential circuits are simulated
by storing the flow table. Register-bus
systems are simulated by storing the flow
table. Register-bus systems are simu­
lated by host machine memory data trans­
fers. There is no discussion of spikes,
race, or hazard analysis, fault insertion
or timing in the model. The system has
not, apparently, been implemented.

The second system was discussed by
Cohen. The logic considered is restricted
to zero delay combinational logic, which
is quite restrictive.

It is desirable at this point to
summarize the status of digital system
simulation. Gate level simulators ap­
parently have the potential now to
accurate timing modeling, race and hazard
analysis, parallel fault simulation, and
efficient activity monitoring to avoid
simulating needlessly. Functional simu­
lation, on the other hand, has been
limited to minor extensions of gate level
simulation, with little consideration of
variable length modules, techniques for
handling general case functions not pre­
viously defined, or the effect of faults
in the system. Speed and storage improve­
ment due to functional extensions have
received no analysis except for the stor­
age analysis of Cohen's (6) table lookup.
A thorough treatment of functional simu­
lation along with synthesis and analysis
of techniques which could be used for
functional simulation has been considered
by Hemming (27) •

REQUIREMENTS FOR COMPLETE SYSTEM
SIMULATION

In this section, the problems associ­
ated with using functional simulation for
design verification are discussed, and the
desirability of functional simulation is
presented, along with the functions selec­
ted and the properties of these functions.

MSI-LSI Considerations

The current tendency in digital de­
sign is to buy as much of the system
prefabricated as possible. Indeed, this
has been the philosophy for a long time;
until recently, though, the biggest
practical prefabricated unit was on the
order of a master-slave JK flip-flop, with
several per package. Now however, dual
100-bit shift registers may be purchased,
as well as many other complex functions.

While it is possible to model such a
device at the gate level, or develop a
flow table for such a device, the absurd­
ity of imposing such requirements on the
designer are apparent, especially when one

considers the size of the flow table for
even 36 bit counters. From a design
verification viewpoint, the desired logi­
cal model would be a software package
which evaluates the specified function
and provides the appropriate outputs at
the correct times.

Clearly, the advent of medium and
large scale integrated circuits technol­
ogies imposes demands on system simu­
lators previously unconsidered. Thus
one of the requirements of functional
simulation is to provide means for
rationally describing systems composed
of such functional modules. The tech­
niques to be described are effective in
this respect.

Artificial Boundary Problem

With the introduction of ~im~ng
into the individual model, it is imprac­
tical, for the general case, to localize
the activity of a network such that the
network is logically partitioned under
every input vector and for every simu­
lation interval. Consequently, the
incorporation of individual element
timing in the system emphasizes the
requirement for retaining the complete
system description throughout the sim­
ulation pass. Paging techniques, as
discussed by Szygenda (20) , have pre­
sented a feasible solution. However,
by incorporating the functions to be
described, the total paging require­
ments can be reduced through increased
storage efficiency, yielding improved
simulation speeds.

Description of Systems and Systems
Perspective

A major consideration in using a
computer system is generating a complete
error free description of the simulated
system to the simulator. Experience has
shown that with the TEGAS2 system, about
2*n cards are required to describe an
n gate system, with n in the 100-500
gate range. Hence, effort required to
produce a correct description of large
system is considerable, and the time de­
voted to preprocessor checking is expen­
sive. Indeed, it might well be argued
that difficulty in producing correct
descriptions could inhibit experimenta­
tion with the design, resulting in a
poorer design. These considerations
alone give impetus to a study of func­
tional simulation strategies. With
these considerations, we next discuss a
set of functions and the implications of
the selected functions.

PREDEFINED MODULES FOR SYSTEM SIMULATION

A number of.factors are important
when the basic decisions are made about
a functional module set. In view of the
desire for the best results most econ­
omically obtained, the fundamental con­
siderations include such constraints as:

1) Accuracy of representation of
the physical function which is
being modeled

2) Storage requirements
3) Execution time
4) General applicability to

digital systems
5) Ease of use

However, other factors are of importance
when considerations of fault insertion
and test pattern generation are intro­
duced. Optimization of a procedure for
design verification can result in a
system unsuitable for fault insertion,
particularly where sequential circuits
are concerned. The consequences of such
conflicting requirements are considered
later.

The Normal Fundamental Mode Model

There are two broad categories of
sequential circuits, so called funda­
mental mode and pulse mode {12). The
mechanisms used to evaluate the models
are sufficiently different that incor­
porating both modes in one model is
unrealistic. The model adopted is the
normal fundamental mode model, discussed
by Unger {21) • This constraint allows
one input change only, and only when
memory elements are stable; so an input
that changes from 0 1 cannot change
from 1 O until the system is stable.
The requirement that only one input
change at a time is often unnecessary,
and when this requirement is dropped the
model is called the fundamental mode
model.

To illustrate the differences be­
tween fundamental mode and pulse mode,
the following example is helpful. Con­
sider the circuit in Figure 3.

Analysis of this circuit produces
the state transition maps shown in Fig­
ure 4. The X's shown in the figure
denote states which cause oscillation
to occur and are illegal. The important
thing to note is that the state {A,B,C,
D) = {1,1,0,l) is illegal in fundamental
mode, but not in pulse mode and other
differences appear, Consequently, tables
generated for this circuit would be
different depending on the mode of simu­
lation desired, Similarly, the evalu­
ation equations would be different. If
the illegal input conditions are detected
and evaluation stopped unless the inputs
are valid, the system could be evaluated
as in equations (1) and (2) for pulse
mode:

If

c DA+ CB {l}

D (2)

A

I'
I

Figure 3. Mode Representation Example

{A)

Pulse mode
transition map

AB
CD 00 01 11 10

00 x x x x

01 01 01 10 10

11 x 01 x 10

10 10 01 01 10

{B)

Fundamental mode
transition map

AB
CD 00 01 11 10

00 x 01 x 10

01 01 01 x 10

11 x 01 x 10

10 10 01 x 10

Figure 4. Transition Maps for Mode
Representation Example.

however, for fundamental mode, the evalu­
ation would use equations (3) and (4).

c A + CB (3)

D (4)

The critical factor is the duration
of the input changes. As a result of
the requirement to differentiate between
modes in the development of the modules
which follow, the normal fundamental
mode model is the basis for considera­
tion of timing in the system. Also, the
procedure to convert gate level repre­
sentations to tables is dependent on
this requirement.

Requirements of a Predefined Function Set

The criteria for selection of a set of
functions is as follows:

1) Completeness
2. Broad applicability
3) Function delay time
4) Fault propagation

The first requirement is complete­
ness, by which we mean that any arbit­
rary digital function may be constructed
from AND gates, OR gates and INVERTERS
(12). These essential functions, then,
become the base for a complete set.
Next, we consider the additional func­
tions desired for broad application.

When the applicability and ease of
use of the function set are considered,
we depart from the realm of mathematical·
completeness and enter the domain of
engineering judgment. Within this con­
text, broad applicability may be
interpreted as follows:

a) the set represents the major
physical functional types found in
digital systems, except main memory;

b) the functions are not con­
strained to implementation on a par­
ticular computer;

c) the functions produce a con­
tribution improving overall system
simulation beyond the level attained
with gate level simulation.
The first consideration, tha.t the major
function types be represented, requires
further clarification. Recall that the
objective is to represent the logical
characteristics of the function per­
formed, not necessarily the implementa­
tion of the function itself (for the
implementation, a gate level description
would be correct). Consequently, the
difference between ripple carry, carry

lookahead, conditional sum, and the
various other methods of implementing
an· adder are not considered logically
significant at the adder terminals,
except as follows:

1) propagational delay;
2) occurrence of multiple trans­

itions on the outputs
3) propagation of faults.

Non-logical characteristics, such as the
voltage levels required for a zero, are
not considered here.

With the preceding considerations,
a study of general machine character­
istics was performed to identify suit­
able extensions to this set, and the
following set of functions was developed.
Combinational: Adder, Decoder, Encoder,
Shifter, And, Or, Inverter.
Sequential: Counter, Register

Since the table driven structure is
adopted as the internal representaton
of these functions, a separate propaga­
tion delay may be associated with each
occurrence of a function in the simula­
ted system, retaining the first logical
property, propagation delay. The delay
is assumed to be the same for every out­
put, such that all outputs are updated
after the defined delay time for the
function. If it is necessary to associ­
ate separate delays with each output, a
tabular technique could be used; alter­
nately, that function could be simulated
at the gate level.

The second logical property, notice­
able at the pins, is multiple transitions
prior to stability. This is actually
hazard analysis, and is implementation
dependent; consequently, it is not
included in these functions. A proce­
dure has been developed for building a
tabular description of a gate level
function which detects multiple outputs
(27).

The second requirement, for broad
applicability of functions, was a degree
of machine independence. Since the
vast majority of processors are binary,
the primary problem is associated with
word length. Three factors are of con­
cern; the word length of the hose (the
machine performing the simulation) , the
word length of the simulated machine,
and the relationship of the two.

A basic· function length of 4 was
selected. Implementation of these
functions requires a host machine word
length of at least 8 bits. This allows
automatic transfers from one machine to
another, irrespective of simulated
machine or host machine word length
(with an 8 or more bit host).

The selection of a basic 4 bit
function requires that a technique be

I A B A 1 2 n

~
1 2 n 2

·~·
1 2 n

Ai+l Ai

o~t ~Rm SHIFrER · right (left)
rotate

0 0 (logical)
i+l 1

Figure 5. User View of Predefined Functions

adopted to provide longer lengths. The
method developed is defined as linear
concantenation. Linear concantenation
is the process of extending a function
by repeating its basic length; no other
parameter is changed. Additionally,
linear concantenation requires that the
relationship between the number of in­
puts and the number of outputs be linear.

Since the encoder and decoder do
not satisfy the linear relationship re­
quired, linear concantenation cannot be
used. By supplying decoders with 2 to 6
inputs, a set of output counts can be
covered. That is, every output count
from 4 to 64 is available, directly or
indirectly, by selecting one of these
functional encoders or decoders.

Finally, the requirement to repre­
sent individual flip-flops, the require­
ments of fault insertion, and the
preservation of complex timing make it
necessary to add individual gates to·
the set. The elementary gates types
provided in TEGAS2 as shown in Table 2,
fill out the set.

In summary, a set of functions has
been defined which represents a signi­
ficant portion of the identifiable
functions in general purpose computers.

Propagation delay may be. modeled due to
the simulator structure assumed.
Variations in word length have been
considered, and the process of linear
concantenation allows indefinite
extension of applicable functions.
Combined with the elementary gates
from TEGAS2, complete digital systems
may be representated within the limits
of the number of elements which can
be handled, wich is limited by the
host memory size.

N-Input AND Gate N-Input OR with fault
N-Input OR Insertion
INVERTER N-Input NANO with fault
Primary Input Insertion
Primary Output N-Input NOR with fault
N-Input NANO Insertion
N-Input NOR Single Input INVERTER
Printer with Fault Insertion
Delay Bus Register
N-Input Exclusive OR/l's Complement 3 Bit
JK Clear FF;J,K Adder
Clock,Clear Combinational Encoder
JK FF; J,K,Clock Combinational Encoder
SR FF;Clock,S,R Bus Builder
T FF;ClockT Clock
D FF;Clock, D JK FF;J,K,Clock
N-Input AND with

fault
Insertion

Clear, Set
SR FF; S,R 0 (no clock)

Table 2 Logical Types Available
in TEGAS2

...

Functional Element Procedures

Procedures for predefined elements
been developed (27) • These reflect
the 4 bit width previously discussed,
and require a host machine with a mini­
mum 8 bit word width. These routines
require an add instruction as well as a
logical shift ieft and logical shift
right in the host.

When properties of the simulated
machine exist in the host, it would be
advisable to modify these if the simu­
lated machine is to be simulated often.
Such modifications make the simulator
more specialized, and, since generality
is of .interest here, these modifications
are not considered in depth. However,
parallel fault insertion is very depen­
dent on width, and need be considered
for the general case.

Timing and Storage Requirements

The timing and storage requirements
for functional evaluation, using the
functions presented, may be compared to
a representative gate level implementa­
tion for the function. Using typical
representations, this comparison is per­
formed analytically. The basic four bit
functions are considered. Linear con­
cantenation would not change the result,
since the procedures would be evaluated
twice and the number of gates would
double.

Storage requirements are based on
the count of the separate inputs and
outputs required. For the gate level
representation, this includes all inter­
nal variables. Functional representa­
tion, of course, has no explicit internal
variables.

Timing analysis is very dependent
on fault insertion considerations and is
not included in this paper.

The modified improvement index (MII)
defined as:

MII = B D (.1)
Xe

where A simulation time for the
function description

B simulation time for the
gate level description

C storage required for the
functional description

D storage required for the
gate level description

and the result is multiplied by 1/10 to
reflect improvements due to selective
trace. The average of the MII is 2.6,
indicating potential improvements in
storage requirements and simulation
speed for functional simulation.

CONCLUSIONS

These methods provide a profitable
extension to the gate level simulation
strategy. The functions are complete,
have broad application, model the basic
elements of a digital system, and can
model certain critical parameters such
as delay and input error conditions.
Several predefined functions have had
preliminary testing in the TEGAS2
system. A structural example network
yielded a simulation time improvement of
3, somewhat as expected from the modi­
fied improvement index, for a fault free
simulation. Parallel fault simulation
at the gate level imposes storage con­
siderations which deter functional
simulation. A modified storage strategy
is being investigated for TEGAS2 system.

Finally, it is apparent that no
predefined set will be adequate, in the
general case, to define a system without
resorting to elemen·tary gates at various
points. The inclusion of all functions
would be exorbitant and it really is not
necessary. For special functions, such
as the AB flip flop shown in Figure. 3,
the actual simulation at the gate level
would be performed. Alternately, table
driven techniques (27) might be used.
A second deficiency in the predefined
set previously discussed is that the
interconnection between functions are
simple busses, and consequentially
every output appears simultaneously
after the specified module delay. In
certain instances this model may not be
adequate. For example, a carry com­
pletion adder has timing which is depen­
dent on the applied data. This problem
may also be approached with table driven
techniques. .

The utilization of predefined
functions capitalizes on the components
of the host structure. Use of this
knowledge can produce an increased im­
provement index with no loss of simulator
generality, with a resultant faster and
more powerful digital simulation system.

A B c D MODIFIED
COMPARATIVE FUNCTION GATE LEVEL FUNCTION GATE LEVEL IMPROVEMENT
GATE LEVEL TIME TIME STORAGE STORAGE INDEX

FUNCTION TYPE (1 bit/word) (B/A)*(D/C)*.l

Adder Ripple carry 4 48 3 67 7.7
adder

Decoder direct boolean 3 16 2 8 2.0
2input,
4output

Encoder direct boolean 3 8 2 6 .6
4input
2output

Shifter single gates 3 3 1.2 I j
(logical)

And, Or direct boolean 4 16 3 12 1.6

Inverter direct boolean 3 12 2 8 1.6

Counter 4 flipflops 4 16 2 10 2.0

Register 4 flip flops 2 16 2 10 4.0

Table 4: Storage and ~ime Comparisons
Functions and Equivalent Gate Representations.

l

REFERENCES

1. Armstrong, D. B. "On Finding a
Nearly Minimal Set of Fault Detec­
tion Tests for Combinational Logic
Nets." IEEE Trans. on Elec. Compu­
ters, vol, EC-15, no. 1, Feb. 1966,
pp. 66-73.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

Breuer, M. A. "Functional Partion­
ing and Simulation of Digital
Circuits." IEEE Trans. on Computers
vol. C-19, Nov., 1970, pp. 1038-46.

Chang, H. Y., Manning, E.G., and
Metze, G. Fault Diagnosis of Digi­
tal Systems. 1970, John Wiley &
Sons, New York.

Chang, H. Y., and Manning,
"Functional Techniques for
Digital Fault Simulation."
of the First IEEE Computer
Conference, 1967.

E. G.
Efficient

Digest
Group

Chu, Y. Digital Computer Design
Fundamentals. 1962, McGraw Hill,
New York.

Cohen, D. J. Computer Based Fault
Analysis of Digital Systems. Re
search Report CSRR2020, University
of Waterloo, Dept. of Applied
Analysis and Computer Science,
Waterloo, Canada, 1970.

Gschwind, H. W. Design on Digital
Computers. 1967, Springer Verlag,
New York.

Hardie, F. H., and Suhockie, R. J.
"Design and Use of Fault Simulation
for Saturn Computer Design." IEEE
Trans. on Elec. Computers, vol. EC-
16, August 1967, pp. 412-29.

Hays, G. G. "Computer-Aided Design:
Simulation of Digital Design Logic."
IEEE Trans. on Computers, vol. C-18,
no. 1, January 1969, pp. 1-10.

Husson, s. s. "Microprogramming
Manual for the IBM System 360 Model
50 " IBM TR 00.1479-1, IBM Systems
De~elopment Division, Poughkeepsie,
New York, 1967.

Jephson, J. S.; McQuarrie, R. P.;
and Vogelsberg, R. E. "A Three­
Value Computer Design Verification
System." IBM System Journal, no.
3i 1969, pp. 178-80.

McCluskey, E. J. Introduction to
the Theory of Switching Circuits.
1965 McGraw-Hill, New York.

13. McKay, A.R. "Comment on Computer­
Aided Design: Simulation of
Digital Design Logic". IEEE Trans.
on Computers, September 1969,
p. 862.

14. Miller, R.E. Switching Theory

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

2 vols. 1965, John Wiley & Sons,
New York.

Poage, J.F. "Derivation of Optimal
Tests to Detect Faults in Combina­
tional Logic." Symposium on Mathe­
matical Automata, pp 483-528,
1962 Brooklyn Polytechnic Press,
Brooklyn.

Roth, J.P. "Diagnosis of Automata
Failures: A Calculus and a·Method.
IBM Journal, July 1966, pp 278-291~

Seshu1 S. "On an Improved Diagnosis
Program." IEEE Trans. on Elec.
Computers, vol. EC-14, February
19 6 5 I pp • 7 6 - 9 •

Seshu, s., and Freeman, D.N. "The
Diagnosis of Asynchronous Sequen­
tial switching Systems." IEEE
Trans. on Elec. Computers, August
1962, pp. 459-65.

Szygenda·, S.A.; Rouse, D.; and
Thompson, E. "A Model and Imple­
mentation of a Universal Time Delay
Simulator for Large Digital Nets."
AFIPS Proceedings of the SJCC. May
1970, pp. 207-16.

Szygenda, s. A., "TEGAS2 - Anatomr
of a General Purpose Test Generation
and Simulation System for Digital
Logic." Proceedings of the 9th
Annual Design Automation Workshop
June, 1972, Dallas, Texas.

Unger, S.H. Asynchronous Sequen­
tial Switching Circuits. 1969
John Wiley and Sons, New York.

Ulrich, E.G. "Exclusive Simulation
of Activity in Digital Networks."
Communications of the ACM,vol. 12,
no. 6, February 1969, pp. 102-110.

Ulrich, E. G. "T ime-Sequen ti al
Logical Simulation based on Cir­
cuit Delay and Selective Tracing
of Active Network Paths.: Pro­
ceedings of the 20th ACM Nat'Ional
Conference, August 1965.

Walford, R.B. "The Lamp System".
Proceedings of° Workshop on Fault
Detection and Diagnosis in Digital
Circuits and Systerns,Lehigh Univ.,
December, 1970.

REFERENCES (cont'd)

25. Yetter, I. H. "High Speed Fault
Simulation for Univac 1107 Computer
System." Proceedings of the 23rd
ACM National Conference, 1968, pp.
265-277.

26. Szygenda, s. A. and Goldbogen, .G.
C. Implementation and Extension
of Multi-Dimensional Path Sensi­
tizing in a Simulation and Diagnos­
tic system," Proceedings Seventh
Annual Allerton Conference on Cir­
cuit and System Theory, University
of Illinois, Monticello, Illinois,
October 1969.

27. Herruning, C. W. "Functional Simula­
tion Techniques for design verifi­
cation and fault insertion in
electronic digital systems."
Ph.D. Dissertation, CS/OR Center,
Institute of Technology, Southern
Methodist University, Dallas, Texas,
September 1971.

28. Szygenda, S. A., Hemming, C. W.,
and Hemphill, J. M. "Time Flow
Mechanisms for Use in Digital Lqgic
Simulation," Proceedings of the
Fifth Annual Conference on Appli­
cations of simulation," (ACM) New
York, N. Y., December, 1971.

29. Szygenda, S. A., et al., "Implemen­
tation of Synthesized Techniques
for a Comprehensive Digital Design,
Verification and Diagnosis System,"
Fifth International Conference on
System Sciences, University of
Hawaii, January, 1972.

l't

ij
14

Ii
1i

