




CHAIRMAN'S MESSAGE - A SIGDA Business Meeting at ACM 1972 

A small group of SIGDA members and. interested parties met on 
Monday evening August 14th at the National ACM 72 Conference. I have reviewed 
the present status of SIGDA. 

The financial status as reported was felt to be at a turning point. 
SIGDA's membership is stable and is growing (approximately 320 now). This was 
the first year in which SIGDA directly co-sponsored the DA Workshop (although 
$700 seed money was borrowed from Headquarters-ACM) M. J. Galey, Chairman 
of the 1973 DA Workshop indicates that approximately $1100 will be returned 
to SIGDA from the 1972 DA Workshop. This results in an approximate net return 
of $900. Unfortunately for the 1973 DA Workshop, our share of the seed is 
$1100 and again we will have to borrow $700 from ACM-Headquarters. This increase 
is because only SIGDA and IEEE Computer Society will be sponsors versus the 
previously three sponsors. 

An inexpensive brochure on SIGDA, designed by John Rini, is 
scheduled to be printed in the next few weeks. The text is provided inside 
the front cover of the newsletter. 

Headquarters-ACM has requested no deficit spending during our 
fiscal year, July 1, 1972 to June 30, 1973. Further, Hq-ACM has requested 
that SIG/SICs on a per member basis support one person in headquarters to 
handle SIG/SIC business. This may cost us an additional 30¢ per person. 
Instead of an increase in dues at this time (now $3 & $5) which would 
coincide with ACM's increase, I indicated that SIGDA will hold off on an 
increase. The additional $100 thus needed will be obtained from reduced 
expenditures and projected profits from DA Workshops as well as the assumed 
growth. It was felt that, given another 100 members, SIGDA would be able 
to publish three to four good Newsletters a year. Your efforts to get 
additional members in SIGDA are encouraged. 

I indicated that the present officers' terms run through June 1973 
and that I plan to have new officers introduced at the 1973 DA Workshop in 
June in Portland, Oregon. 

In the past year, emphasis has been to let people know about SIGDA 
and the area of Design Automation outside of SIGDA. That is, to give DA 
and SIGDA exposure. That we have done with an increased number of technical 
sessions sponsored by SIGDA (SJCC 1972 and ACM 1972), and with a technical 
meeting and literature distributed at the DA Workshop 1972. This emphasis 
will continue and already we are planning a joint session with SIGGRAPH at 
ACM 73. Technical meetings at conferences will continue. 

Obviously, the next thing to do is to push up the technical level of 
the newsletter. In order to meet the needs of different disciplines and 
the major areas of interest, I have asked Steve Krosner to be Chief Editor 
of the Newsletter. Steve has contributed to SIGDA as the representative to 
the 1972 DA Workshop Committee and as SIGDA session organizer at ACM 71 and 
ACM 72. He has a background in the development of digital computer design 
verification systems and is presently involved in supporting the marketing 
of special automated manufacturing systems for IBM. Walt Samek, who had 
previously asked to be relieved as Editor, has accepted the position of 
Associate Editor. Walt's background also ties development or design auto­
mation with manufacturing, but instead of the electronic computer area, 
Walt with Combustion Engineering of Windsor, Connecticut, represents the 
mechanical, metal fabrication, and piping areas of design automation. 
Jerry Paskusz and Larry Margol remain on as members of the Editorial Board. 

Between Steve and Walt and, of course, you - the members, we 
should be able to greatly "up" the newsletter. Remember, the deadline for 
the January 1973 Newletter issue is December 15, 1972. Send Steve Krasner 
your DA article reviews and other tidbits early. 

Professor Steve Szyenda has agreed to actively represent SIGDA on 
the DA Workshop 73 Committee. The full committee is listed elsewhere in 
this newsletter. For those of you who attended the 1972 DA Workshop in 
Dallas, Steve welcomes your comments, both good and bad, about the Workshop. 
It is my desire to make the professional organizations which sponsor the 
Workshop more visible at the Workshop. Plan now to attend on June 25-27,1973, 
in Portland, Oregon. 

If you are planning to attend the 1972 Fall Joint Computer Con­
ference, remember that SIGDA will be having a meeting on one of the evenings. 
Larry Margol is arranging for a technical presentation at the meeting so 
check the coming events for information. 

The business of SIGDA was finally exhausted and six hungry DA 
enthusiasts headed for one of Boston's fine seafood restaurants. 



HELP! HELP! HELP! 

Chuck has asked the Newsletter staff to continue trying to 
increase the technical level of the Newsletter. We can't 
do this alone. We need your help. 

. 
This issue contains our second technical paper. If you 
have a short paper of interest, send it along. 

Read any good books lately? Why not write a short review 
for us? 

Tending a course in DA? How about sending us a bibliography 
to publish. 

Suggestions for improvement, modifications, or just conunents? 
Drop us a note. 

As Chuck said, SIGDA is growing---Let's keep the Newsletter growing also:! 

Steve Krasner 

HELP! HELP! HELP! 

REPORTS OF TECHNICAL MEETINGS 

SIGDA Technical Meeting Held at 1972 SJCC 

A joint meeting between SIGGRAPH and SIGDA was held at the SJCC on Tuesday 
evening, May 17th. The meeting was organized by SIGDA and was well attended 
by over forty-five persons. 

Bill Sass of IBM-Kingston, New York, talked on "Computer Graphics in DA". 
Bill's experience since the birth of graphic displays was apparent when 
he reminiscenced with an individual from UNIVAC about a forerunner to 
UNIVAC'S first display. The applications that Bill discussed included 
logic input, simulation, test generation, diagnostics, imbedding of inter­
connection in printed circuit card design, and circuit design. 

Although somewhere between Hq-ACM and the hotel management the slide 
projector and screen were lost, Bill w~s able to amply and verbally describe 
his talk very well. This could have proven embarassing for Bill since he 
was trying to show the need for graphic displays in design automation. 

An interesting point brought out in the discussion following was that in many 
specific application areas, graphic devices can be tailored to that application 
as the design aid. A display with maximum capability is required because of 
the lack of clear specifications. 

Project LOGOS Reported in DA Workshop 1972 

Over seventy-five persons attended a 
at the DA Workshop in Dallas, Texas. 
Chuck Rose from Case Western Re.serve 
Project LOGOS. 

SIGDA technical meeting held on June 27th 
John Henne arranged to have Professor 

University talk on their efforts on 

LOGOS is intended to be an automated design environment in which designers of 
interactive display terminais through a combination of algorithms can perform 
a total design of the operating systems and hardware of a data processing 
system. 

Reference is made to an article by C. Rose and J. Barden in the March 1972 
issue of the SIGDA Newsletter as well as Proceedings of COMPCON 1972 Conference 
(September 12-14,1972), where a series of fine papers were presented. 



COMING EVENTS 

SIGDA Meeting at FJCC 

Mr. Larry Margol, the Vice-Chairman of SIGDA, will conduct the meeting. 
Mr. R. P. Larsen of North American Rockwell will speak on DA of custom MOS 
devices. He will discuss a design automation system used for high volume 
custom MOS devices. This system has been evolving at North American Rock­
well Microelectronics for several years, and has been actively used in the 
design process over this interval. Of particular interest, will be a 
layout program which automatically defines masks starting from logic equations. 
Also included will be a discussion of Interactive editing of designs that 
require manual intervention. 

10th DA Workshop 1973 

Sheraton Portland Hotel 
Portland, Oregon 
June 25-27, 1973 

Design automation is taken to mean the use of computers as tools which aid 
the design process and is often extended to include areas sqch as testing, 
simulation and certain portions of manufacturing. Typical examples of Design 
Automation involve the application of one or more functions to a given 
design area. 

In addition to the topics traditionally covered in DAWs of the past, the 
following topics are being added. 

Design Automation for LSI (special problems, areas of changing 
emphasis, •••• ) 

Circuit Design Automation (tolerence studies, simulation, 
optimization techniques, •.•• ) 

Software Design Automation (can DA techniques be applied to 
software systems? At what level? 
In what areas, •••• ) 

Computer Aided Manufacturing (Since we designed it by computer 
can we build it by computer?) 

We are especially interested in soliciting papers on these topics for they 
seem to be areas where the next big payoff will occur. 

Requirements: 

If you plan to submit a paper, you should send three copies to the program 
chairman no later than January 2, 1973. (Rough Drafts are acceptable.) 

Notification of acceptance will be sent to you during the first week of 
February 1973. After notification of acceptance, you will receive detailed 
instructions on the format to be observed in typing the final copy. To 
insure the availability of the Proceedings at the Workshop, your final 
manuscript will be due April 23, 1973. 

Final papers should be no longer than 5000 words, and the presentation should 
be limited to 20 minutes. Projection equipment for 35rnrn slides and vuegraph 
(overhead projector) foils will be available for every talk. Please indicate 
what, if any, additional audio-visual aids you require. 



Topics of Interest: 

Design Areas 

Manufacturing Process 
Architecture 
Mechanical 
L S I 
Electronic 
Firmware 
Software 
Total Systems 

Functions 

Partitioning 
Packaging Placement 

Analysis 
Simulation 

Wiring 

Design Verification 
Testing/Quality Control 
Interactive System 
Design Language 
Change Control 
Theory 

Sponsors 

ACM (Association for Computing Machinery) Special 

Interest Group of Design Automation 

IEEE (Institute of Electrical and Electronics 
Engineers)Computer Society 

Roug.h drafts are to be sent to the Program Chairman:. 

R. B. Hitchcock 
IBM Watson Research.Center 
P. o. Box 218 
Yorktown Heights, New York 10598 

Accompanying the draft should be the full name, address and telephone number 
of the principal author, with whom all further direct communications will be 
conducted. 

ACM '73 

Plans include an interface session with SIGGRAPH on the use of graphics in 
design automation and a general SIGDA session. If you are interested in 
participating, drop a note to either Chuck Radke or Steve Krosner with 
your ideas. 

TECHNICAL PAPER 

Modular Requirements for Digital Logic Simulation at a Predefined 
Functional Level 

Prepared By: Mr. c. w. Hemming and Mr. s. A. Szygenda 

j! 



Simulation of digital logic provides a 
viable technique for development and 
diagnosis of digital systems. Simu­
lation models currently employed are 
discussed with a summary of structure 
and timing techniques. A methodology 
for functional simulation in conjunction 
with gate level simulation is discussed, 
presenting a representative set of pre­
defined functions, and introducing a 
measure for predefined function perfor­
mance. Errors in design detectable at 
the functional level are categorized. 

Key words and Phrases: Logic Design, 
Digital Simulation, Functional Simula­
tion, Fault Simulation, Diagnosis of 
digital systems. 
CR Categories: 4.9, 6.1, 6.3, 8.1 

NEEDS FOR SIMULATION OF DIGITAL LOGIC 

Design Verification 

The value of simulation in the role 
of design verification has been re­
peatedly demonstrated. Design Verifica­
tion is accepted by most to mean that 
the logic correctly performs the function 
the designer intended, including detec­
tion of races and hazards, within the 
limits of the simulator. Occasionally, a 
subset of the design verification problem 
is considered, where timing, race, and 
hazard analysis are not performed; this 
is called logic verification. 

The economic value of adequate de­
sign verification has become more and 
more apparent in the past few years for 
several reasons: two of these reasons 
stand out. 

The first is the trend to widen use 
of asynchronous design (23). Since digi­
tal systems are being designed which are 
both faster and cheaper, design becomes 
more difficult to accomplish; and, indeed, 
design errors in large asynchronous 
stems (such as hazards) may not be 
found until many units have been built 
and sold. Additionally, it has been sug­
gested that asynchronous machines are 
more easily diagnosed and repaired than 
clocked systems (3,4). 

The second reason emphasized is the 
demands of highly integrated systems. 
Since the development of a prototype of 
an integrated module requires that masks 
be made, chips cut, etc., it is an ex­
tremely expensive process; and repeated 
iterations, to correct design defects, 
are pro~ibitive. Consequently, the rate 
of integration of complex systems, es­
pecially highly asynchronous ones, has 
been slow. A simulator capable of alle­
viating these problems, TEGAS system, has 
been described by Szygenda, et. al. (19, 
20) • 

Diagnosis 
Once the validity of a design has 

been established, the manufacturer is 
confronted with a set of problems still 
not well understood. These include how 
one can verify that a machine is cor­
rectly assembled, how the machine can be 
correctly repaired if it is not assembled 
properly, and how to repair a machine 
that fails. 

Much work has been done on diagnosis 
of combinat~onal logic, with substantial 
success (16, 26). Sequential diagnosis 
is still rather primitive; consequently, 
the need for simulation to aid in diag­
nostic development. Two major objectives 
of the diagnostician are to 1) determine 
if a machine is functioning correctly, 
and, if not 2) isolate the error to the 
smallest replaceable (repairable) unit in 
the system. Although the problem of 
generation of an economically viable test 
set for the general sequential system is 
not solved, the use of simulation has 
aided the theory, and has provided insight 
to reasonably sized test sets for many 
individual modules. Indeed, for these 
reasons, the origins of simulation are 
closely intertwined with diagnosis (1, 
15' 16 ' 17) . 

It might be argued that since tech­
nology already allows building a complete 
processor on a chip, the only valid con­
cern is fault detection. Such an argu­
ment is incorrect for the following 
reasons. 

1) A large number of digital 
systems that will be in service for many 
years to come are not built that way 
(.IBM/3 60 , for example) . 

2) The economics of building large 
scale general purpose computers with 
multiple small processors is not estab­
lished. 

3) Development of reliable systems, 
even if completely integrated, can be sub­
stantially enhanced by simulation. 

4) Adoption of a standard function 
set such as on logic cards, is a common 
and useful technique expected to endure. 
New designs are currently being imple­
mented with established functional 
modules. 

When one considers design verifica­
tion and diagnosis in depth, it becomes 
clear that simulation can be used effec­
tively to enhance t!hese efforts. The 
next section of this paper will be 
devoted to a discussion of techniques and 
implementations used in digital simula­
tors. The remaining sections are 
concerned with module specifications and 
a functional partition to be used in an 
element level simulation environment as 
described next. 



Inte~nal Structures 

Two structures dominate simulation 
efforts. The majority of the simulators 
reported are compiled. A com~iled simu­
lator translates the description of the 
system to be simulated into code, 
executable by the host computer. Thus 
the AND instruction of the host machine 
would normally be generated to simulate 
an AND gate. Where fault simulation is 
to be performed, additional codes are 
generated for the allowable faults. A 
fault is defined as a physical defect in 
the system, causing it to operate incor­
rectly. A failure is a manifestation of 
the. fault. A stuck-at-"0" (short to 
ground, say) on the c line of Figure 1 
would result in E being "l", consequently 
F becomes "l." Inputs A and Blose any 
control. 

A typical compiled output for the 
following three gate system (using a 
hypothetical instruction set for clarity) 
is shown below. · 

A 

B 

c 

Figure 1 Example Digital Circuit 

The code generated for the circuit 
shown in Figure 1 is as follows: 

AND gate CLEAR I Clear Accumulator 
LOAD A 
AND B 
STORE D I D is the AND of 

A and B 
CLEAR 

Inverter LOAD c 
COMP I Accumulator con-

tains E now 
OR D 

OR gate STORE F I F is the logical 
output 

Note that both the inverter and the 
AND gate must be evaluated prior to eval­
uating the OR gate, forcing an ordering 
on the compiled code. This ordering 
requires that every input to a gate be 
determined (evaluated) before that gate 
is evaluated. The process by which the 
spatial relationship of the logic ele­
ments is determined and the resultant 
ordering imposed on the compiled code is 
called leveling. 

Table driven simulators exhibit a 
somewhat different structure. A set of 
routines representing the various allowed 
functions is provided. The input system 

description is translated to tables which 
carry such information as 1) type of 
function (routines to be called), 2) logi­
cal interconnection of this function (its 
inputs and outputs), and 3) additional 
information such as propagation time, 
faults, etc. Excellent descriptions of 
table driven structure are given by 
Ulrich (22, 23). 

The simulators discussed in the lit­
erature appear in relative agreement on 
the following attributes of the various 
structures. Compiled simulators are 
assumed to be faster, allow more elements 
per simulation run (if elements are 
elementary gates), and are generally 
difficult to implement or change; and, 
since a spatial ordering is imposed, do 
not consider timing. T.able driven simu­
lators allow relatively complete timing 
analysis (and consequently hazard 
analysis), can be written in a high level 
language, and are assumed to be somewhat 
slower and restricted in element count. 
Fault simulation is the process of simu­
lating the behavior under fault condi­
tions. A class of well defined faults 
is stuck-at-"l" (S-A-1) and stuck-at-
"O" (S-A-0) faults. 

Techniques have been developed to 
increase the operating speed of both 
table driven and compiled simulators. 
The technique known as stimulus bypassing 
(6,8) is associated with compiled simu­
lators. A preliminary section of code is 
associated with each function for which 
stimulus bypassing might be effective. 
If the output of the function is not 
going to change for the current inputs, 
the section of code associated with the 
function is not executed (bypassed) . For 
example, an RS flip-flop with both in­
puts zero could be bypassed (8). The 
timing gains due to stimulus bypassing 
have not been reported. 

A different concept, known as selec­
tive trace (20, 23), is associated with 
table driven structures. Selective trace 
is based on the observation that if a 
gate's output does not change when evalu­
ated, then the fan-out of this gate is 
unaffected by the excitation that caused 
evaluation of the current gate. Hence 
the current gate's output is not followed. 
This procedure has been reported to yield 
an 88% improvement in running time (22), 
and results with TEGAS2 have indicated an 
order of magnitude savings. 

Zero Delay Simulation 

Zero delay simulation is based on 
the Huffman model of sequential cir­
cuits. A detailed and readable descrip­
tion of the Huffman model may be found 
in Miller (14). The essentials of the 
Huffman model are presented in Figure 2. 

The system is evaluated in "passes." 
A pass consists of applying the current 



values of the primary and secondary in­
put vectors to the combinational logic, 
producing the new values of the primary 
and secondary output vectors. The sec­
ondary input vector is updated to 
correspond to the secondary output 
vectors, and the combinational logic 
reevaluated. The process is continued 
until a stable condition occurs. 

A race occurs, in this model, if 
two or more secondary outputs change 
together. A critical race occurs if a 
race may cause an incorrect state to be 
assumed as the stable state. Of course, 
races in sequential networks are normally 
due to various delay conditions present 
in the system, which are not accounted 
for in the Huffman model, since timing 
is not considered. Leveling requires an 
element be evaluated after every input to 
that element is evaluated as previously 
discussed, but within the context of a 
pass as discussed above (25). 

A· number of simulators have been 
implemented using the zero delay 
but most do no race analysis. A 
historical importance (17, 18). 

model, 
major 
Other 

zero delay simulators.have been reported, 
and are summarized in Table 1. 
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Delay Models 

A serious shortcoming of zero delay 
simulators is that the Huffman model is 
an inaccurate representation of digital 
systems, particularly asynchronous ones. 
The major inaccuracy is the strong de­
pendence of a simulated system's operation 
on both local and global timing. The 
distinction between these is not absolute, 
but rather depends on temporal distances 
through which feedback lines must propa­
gate for system stability to occur. If 
timing could be taken into account, a far 
more accurate prediction of races can be 
made, hazards could be detected, and 
spikes could be detected. A spike is the 
condition where 1 module's inputs are 
changed faster ti:.m the propagation delay 
of the module. 

The simplest technique employed to 
represent timing is to assign a constant 
delay of one time increment to each ele­
ment in the system. Such ~ model is 
known as an unit delay model. A nice 
feature of the unit delay model is that 
the same leveling techniques discussed in 
the zero delay case may be used, except 
the procedure is time dependent rather 
than space dependent. In an actual imple­
mentation any differences in combinational 
logic disappear if hazard analysis is not 
done. For sequential, however, the tech­
nique is far more powerful than a Huffman 
model, since races can be analyzed to some 
extent (accurate race analysis cannot be 
performed since in reality all elements 
do not switch with unit delay.) However, 
spike analysis cannot be performed. 

The next stage in refinement of the 
model is the association of a representa­
tive delay with each element or element 
type in the system. Such a simulator 
implements an assignable delay model. 
Whereas compiled simulators are typically 
zero delay, assignable delay simulators 
are normally table driven. Since each 
element has an associated delay, the 
ability to accurately model races and 
hazards is greatly enhanced, and spikes 
may be detected. Techniques to minimize 
the scheduling overhead have been imple­
mented in the TEGAS 2 system (29). 

Another feature of some simulators 
is 3 valued simulation (11,20). Three­
valued simulations allow the association 
of an unknown state with element outputs. 
Table 1 presents a summary of major simu­
lators described in open literature. 

Primary 
Inputs ___ ... 

---'*'ombinational 
Logic 

delay 
elements 

Primary Outputs 

Figure 2. The Huffman Model of a 
Digital System 

Limitations of Gate Level Simulators 

As is evident from Table 1 and the 
preceding discussion, gate level simu­
lators have constraints imposed in terms 
of the maximum number of gates which can 
be simulated, the validity of the model 
(particularly as regards timing consid­
erations) , and the requirement that 
MSI-LSI functional models be expanded 
to gate level representations for des­
cription of the system. 

FUNCTIONAL SIMULATION 

Past work in functional simulation 
has been rather infertile in terms of 
functions above flip-flops, with minor 
exceptions (including the extensions to 
the TEGAS2 system) . 

The earlier digital simulators 
mentioned the use of functional "macros" 
which were groups of code, inserted in 
the compilation, to simulate the func­
tional element. The most complex 
function mentioned is the flipflop (8). 
Also, certain packaged elements were 
added to some implementations of the 
Seshu simulators. 

Later, specific efforts were made 
by Chang and Manning (3,4) and by Cohen 
(6) to delineate systems oriented toward 
functional simulation. 

Chang and Manning's work requires 
that systems be partitioned into well 
defined sections and described in terms 
of 1) multioutput combinational net­
works, 2) sequential circuits, and 3) 
register bus systems. Combinational 



networks are minimized by a Quine-McClus­
key algorithm and simulated at the gate 
level. Sequential circuits are simulated 
by storing the flow table. Register-bus 
systems are simulated by storing the flow 
table. Register-bus systems are simu­
lated by host machine memory data trans­
fers. There is no discussion of spikes, 
race, or hazard analysis, fault insertion 
or timing in the model. The system has 
not, apparently, been implemented. 

The second system was discussed by 
Cohen. The logic considered is restricted 
to zero delay combinational logic, which 
is quite restrictive. 

It is desirable at this point to 
summarize the status of digital system 
simulation. Gate level simulators ap­
parently have the potential now to 
accurate timing modeling, race and hazard 
analysis, parallel fault simulation, and 
efficient activity monitoring to avoid 
simulating needlessly. Functional simu­
lation, on the other hand, has been 
limited to minor extensions of gate level 
simulation, with little consideration of 
variable length modules, techniques for 
handling general case functions not pre­
viously defined, or the effect of faults 
in the system. Speed and storage improve­
ment due to functional extensions have 
received no analysis except for the stor­
age analysis of Cohen's (6) table lookup. 
A thorough treatment of functional simu­
lation along with synthesis and analysis 
of techniques which could be used for 
functional simulation has been considered 
by Hemming (27) • 

REQUIREMENTS FOR COMPLETE SYSTEM 
SIMULATION 

In this section, the problems associ­
ated with using functional simulation for 
design verification are discussed, and the 
desirability of functional simulation is 
presented, along with the functions selec­
ted and the properties of these functions. 

MSI-LSI Considerations 

The current tendency in digital de­
sign is to buy as much of the system 
prefabricated as possible. Indeed, this 
has been the philosophy for a long time; 
until recently, though, the biggest 
practical prefabricated unit was on the 
order of a master-slave JK flip-flop, with 
several per package. Now however, dual 
100-bit shift registers may be purchased, 
as well as many other complex functions. 

While it is possible to model such a 
device at the gate level, or develop a 
flow table for such a device, the absurd­
ity of imposing such requirements on the 
designer are apparent, especially when one 

considers the size of the flow table for 
even 36 bit counters. From a design 
verification viewpoint, the desired logi­
cal model would be a software package 
which evaluates the specified function 
and provides the appropriate outputs at 
the correct times. 

Clearly, the advent of medium and 
large scale integrated circuits technol­
ogies imposes demands on system simu­
lators previously unconsidered. Thus 
one of the requirements of functional 
simulation is to provide means for 
rationally describing systems composed 
of such functional modules. The tech­
niques to be described are effective in 
this respect. 

Artificial Boundary Problem 

With the introduction of ~im~ng 
into the individual model, it is imprac­
tical, for the general case, to localize 
the activity of a network such that the 
network is logically partitioned under 
every input vector and for every simu­
lation interval. Consequently, the 
incorporation of individual element 
timing in the system emphasizes the 
requirement for retaining the complete 
system description throughout the sim­
ulation pass. Paging techniques, as 
discussed by Szygenda (20) , have pre­
sented a feasible solution. However, 
by incorporating the functions to be 
described, the total paging require­
ments can be reduced through increased 
storage efficiency, yielding improved 
simulation speeds. 

Description of Systems and Systems 
Perspective 

A major consideration in using a 
computer system is generating a complete 
error free description of the simulated 
system to the simulator. Experience has 
shown that with the TEGAS2 system, about 
2*n cards are required to describe an 
n gate system, with n in the 100-500 
gate range. Hence, effort required to 
produce a correct description of large 
system is considerable, and the time de­
voted to preprocessor checking is expen­
sive. Indeed, it might well be argued 
that difficulty in producing correct 
descriptions could inhibit experimenta­
tion with the design, resulting in a 
poorer design. These considerations 
alone give impetus to a study of func­
tional simulation strategies. With 
these considerations, we next discuss a 
set of functions and the implications of 
the selected functions. 



PREDEFINED MODULES FOR SYSTEM SIMULATION 

A number of.factors are important 
when the basic decisions are made about 
a functional module set. In view of the 
desire for the best results most econ­
omically obtained, the fundamental con­
siderations include such constraints as: 

1) Accuracy of representation of 
the physical function which is 
being modeled 

2) Storage requirements 
3) Execution time 
4) General applicability to 

digital systems 
5) Ease of use 

However, other factors are of importance 
when considerations of fault insertion 
and test pattern generation are intro­
duced. Optimization of a procedure for 
design verification can result in a 
system unsuitable for fault insertion, 
particularly where sequential circuits 
are concerned. The consequences of such 
conflicting requirements are considered 
later. 

The Normal Fundamental Mode Model 

There are two broad categories of 
sequential circuits, so called funda­
mental mode and pulse mode {12). The 
mechanisms used to evaluate the models 
are sufficiently different that incor­
porating both modes in one model is 
unrealistic. The model adopted is the 
normal fundamental mode model, discussed 
by Unger {21) • This constraint allows 
one input change only, and only when 
memory elements are stable; so an input 
that changes from 0 1 cannot change 
from 1 O until the system is stable. 
The requirement that only one input 
change at a time is often unnecessary, 
and when this requirement is dropped the 
model is called the fundamental mode 
model. 

To illustrate the differences be­
tween fundamental mode and pulse mode, 
the following example is helpful. Con­
sider the circuit in Figure 3. 

Analysis of this circuit produces 
the state transition maps shown in Fig­
ure 4. The X's shown in the figure 
denote states which cause oscillation 
to occur and are illegal. The important 
thing to note is that the state {A,B,C, 
D) = {1,1,0,l) is illegal in fundamental 
mode, but not in pulse mode and other 
differences appear, Consequently, tables 
generated for this circuit would be 
different depending on the mode of simu­
lation desired, Similarly, the evalu­
ation equations would be different. If 
the illegal input conditions are detected 
and evaluation stopped unless the inputs 
are valid, the system could be evaluated 
as in equations (1) and (2) for pulse 
mode: 

If 

c DA+ CB {l} 

D (2) 

A 

I' 
I 

Figure 3. Mode Representation Example 

{A) 

Pulse mode 
transition map 

AB 
CD 00 01 11 10 

00 x x x x 

01 01 01 10 10 

11 x 01 x 10 

10 10 01 01 10 

{B) 

Fundamental mode 
transition map 

AB 
CD 00 01 11 10 

00 x 01 x 10 

01 01 01 x 10 

11 x 01 x 10 

10 10 01 x 10 

Figure 4. Transition Maps for Mode 
Representation Example. 



however, for fundamental mode, the evalu­
ation would use equations (3) and (4). 

c A + CB (3) 

D (4) 

The critical factor is the duration 
of the input changes. As a result of 
the requirement to differentiate between 
modes in the development of the modules 
which follow, the normal fundamental 
mode model is the basis for considera­
tion of timing in the system. Also, the 
procedure to convert gate level repre­
sentations to tables is dependent on 
this requirement. 

Requirements of a Predefined Function Set 

The criteria for selection of a set of 
functions is as follows: 

1) Completeness 
2. Broad applicability 
3) Function delay time 
4) Fault propagation 

The first requirement is complete­
ness, by which we mean that any arbit­
rary digital function may be constructed 
from AND gates, OR gates and INVERTERS 
(12). These essential functions, then, 
become the base for a complete set. 
Next, we consider the additional func­
tions desired for broad application. 

When the applicability and ease of 
use of the function set are considered, 
we depart from the realm of mathematical· 
completeness and enter the domain of 
engineering judgment. Within this con­
text, broad applicability may be 
interpreted as follows: 

a) the set represents the major 
physical functional types found in 
digital systems, except main memory; 

b) the functions are not con­
strained to implementation on a par­
ticular computer; 

c) the functions produce a con­
tribution improving overall system 
simulation beyond the level attained 
with gate level simulation. 
The first consideration, tha.t the major 
function types be represented, requires 
further clarification. Recall that the 
objective is to represent the logical 
characteristics of the function per­
formed, not necessarily the implementa­
tion of the function itself (for the 
implementation, a gate level description 
would be correct). Consequently, the 
difference between ripple carry, carry 

lookahead, conditional sum, and the 
various other methods of implementing 
an· adder are not considered logically 
significant at the adder terminals, 
except as follows: 

1) propagational delay; 
2) occurrence of multiple trans­

itions on the outputs 
3) propagation of faults. 

Non-logical characteristics, such as the 
voltage levels required for a zero, are 
not considered here. 

With the preceding considerations, 
a study of general machine character­
istics was performed to identify suit­
able extensions to this set, and the 
following set of functions was developed. 
Combinational: Adder, Decoder, Encoder, 
Shifter, And, Or, Inverter. 
Sequential: Counter, Register 

Since the table driven structure is 
adopted as the internal representaton 
of these functions, a separate propaga­
tion delay may be associated with each 
occurrence of a function in the simula­
ted system, retaining the first logical 
property, propagation delay. The delay 
is assumed to be the same for every out­
put, such that all outputs are updated 
after the defined delay time for the 
function. If it is necessary to associ­
ate separate delays with each output, a 
tabular technique could be used; alter­
nately, that function could be simulated 
at the gate level. 

The second logical property, notice­
able at the pins, is multiple transitions 
prior to stability. This is actually 
hazard analysis, and is implementation 
dependent; consequently, it is not 
included in these functions. A proce­
dure has been developed for building a 
tabular description of a gate level 
function which detects multiple outputs 
(27). 

The second requirement, for broad 
applicability of functions, was a degree 
of machine independence. Since the 
vast majority of processors are binary, 
the primary problem is associated with 
word length. Three factors are of con­
cern; the word length of the hose (the 
machine performing the simulation) , the 
word length of the simulated machine, 
and the relationship of the two. 

A basic· function length of 4 was 
selected. Implementation of these 
functions requires a host machine word 
length of at least 8 bits. This allows 
automatic transfers from one machine to 
another, irrespective of simulated 
machine or host machine word length 
(with an 8 or more bit host). 

The selection of a basic 4 bit 
function requires that a technique be 
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Figure 5. User View of Predefined Functions 

adopted to provide longer lengths. The 
method developed is defined as linear 
concantenation. Linear concantenation 
is the process of extending a function 
by repeating its basic length; no other 
parameter is changed. Additionally, 
linear concantenation requires that the 
relationship between the number of in­
puts and the number of outputs be linear. 

Since the encoder and decoder do 
not satisfy the linear relationship re­
quired, linear concantenation cannot be 
used. By supplying decoders with 2 to 6 
inputs, a set of output counts can be 
covered. That is, every output count 
from 4 to 64 is available, directly or 
indirectly, by selecting one of these 
functional encoders or decoders. 

Finally, the requirement to repre­
sent individual flip-flops, the require­
ments of fault insertion, and the 
preservation of complex timing make it 
necessary to add individual gates to· 
the set. The elementary gates types 
provided in TEGAS2 as shown in Table 2, 
fill out the set. 

In summary, a set of functions has 
been defined which represents a signi­
ficant portion of the identifiable 
functions in general purpose computers. 

Propagation delay may be. modeled due to 
the simulator structure assumed. 
Variations in word length have been 
considered, and the process of linear 
concantenation allows indefinite 
extension of applicable functions. 
Combined with the elementary gates 
from TEGAS2, complete digital systems 
may be representated within the limits 
of the number of elements which can 
be handled, wich is limited by the 
host memory size. 

N-Input AND Gate N-Input OR with fault 
N-Input OR Insertion 
INVERTER N-Input NANO with fault 
Primary Input Insertion 
Primary Output N-Input NOR with fault 
N-Input NANO Insertion 
N-Input NOR Single Input INVERTER 
Printer with Fault Insertion 
Delay Bus Register 
N-Input Exclusive OR/l's Complement 3 Bit 
JK Clear FF;J,K Adder 
Clock,Clear Combinational Encoder 
JK FF; J,K,Clock Combinational Encoder 
SR FF;Clock,S,R Bus Builder 
T FF;ClockT Clock 
D FF;Clock, D JK FF;J,K,Clock 
N-Input AND with 

fault 
Insertion 

Clear, Set 
SR FF; S,R 0 (no clock) 

Table 2 Logical Types Available 
in TEGAS2 

... 



Functional Element Procedures 

Procedures for predefined elements 
been developed (27) • These reflect 
the 4 bit width previously discussed, 
and require a host machine with a mini­
mum 8 bit word width. These routines 
require an add instruction as well as a 
logical shift ieft and logical shift 
right in the host. 

When properties of the simulated 
machine exist in the host, it would be 
advisable to modify these if the simu­
lated machine is to be simulated often. 
Such modifications make the simulator 
more specialized, and, since generality 
is of .interest here, these modifications 
are not considered in depth. However, 
parallel fault insertion is very depen­
dent on width, and need be considered 
for the general case. 

Timing and Storage Requirements 

The timing and storage requirements 
for functional evaluation, using the 
functions presented, may be compared to 
a representative gate level implementa­
tion for the function. Using typical 
representations, this comparison is per­
formed analytically. The basic four bit 
functions are considered. Linear con­
cantenation would not change the result, 
since the procedures would be evaluated 
twice and the number of gates would 
double. 

Storage requirements are based on 
the count of the separate inputs and 
outputs required. For the gate level 
representation, this includes all inter­
nal variables. Functional representa­
tion, of course, has no explicit internal 
variables. 

Timing analysis is very dependent 
on fault insertion considerations and is 
not included in this paper. 

The modified improvement index (MII) 
defined as: 

MII = B D ( .1) 
Xe 

where A simulation time for the 
function description 

B simulation time for the 
gate level description 

C storage required for the 
functional description 

D storage required for the 
gate level description 

and the result is multiplied by 1/10 to 
reflect improvements due to selective 
trace. The average of the MII is 2.6, 
indicating potential improvements in 
storage requirements and simulation 
speed for functional simulation. 

CONCLUSIONS 

These methods provide a profitable 
extension to the gate level simulation 
strategy. The functions are complete, 
have broad application, model the basic 
elements of a digital system, and can 
model certain critical parameters such 
as delay and input error conditions. 
Several predefined functions have had 
preliminary testing in the TEGAS2 
system. A structural example network 
yielded a simulation time improvement of 
3, somewhat as expected from the modi­
fied improvement index, for a fault free 
simulation. Parallel fault simulation 
at the gate level imposes storage con­
siderations which deter functional 
simulation. A modified storage strategy 
is being investigated for TEGAS2 system. 

Finally, it is apparent that no 
predefined set will be adequate, in the 
general case, to define a system without 
resorting to elemen·tary gates at various 
points. The inclusion of all functions 
would be exorbitant and it really is not 
necessary. For special functions, such 
as the AB flip flop shown in Figure. 3, 
the actual simulation at the gate level 
would be performed. Alternately, table 
driven techniques (27) might be used. 
A second deficiency in the predefined 
set previously discussed is that the 
interconnection between functions are 
simple busses, and consequentially 
every output appears simultaneously 
after the specified module delay. In 
certain instances this model may not be 
adequate. For example, a carry com­
pletion adder has timing which is depen­
dent on the applied data. This problem 
may also be approached with table driven 
techniques. . 

The utilization of predefined 
functions capitalizes on the components 
of the host structure. Use of this 
knowledge can produce an increased im­
provement index with no loss of simulator 
generality, with a resultant faster and 
more powerful digital simulation system. 



A B c D MODIFIED 
COMPARATIVE FUNCTION GATE LEVEL FUNCTION GATE LEVEL IMPROVEMENT 
GATE LEVEL TIME TIME STORAGE STORAGE INDEX 

FUNCTION TYPE (1 bit/word) (B/A)*(D/C)*.l 

Adder Ripple carry 4 48 3 67 7.7 
adder 

Decoder direct boolean 3 16 2 8 2.0 
2input, 
4output 

Encoder direct boolean 3 8 2 6 .6 
4input 
2output 

Shifter single gates 3 3 1.2 I j 
(logical) 

And, Or direct boolean 4 16 3 12 1.6 

Inverter direct boolean 3 12 2 8 1.6 

Counter 4 flipflops 4 16 2 10 2.0 

Register 4 flip flops 2 16 2 10 4.0 

Table 4: Storage and ~ime Comparisons 
Functions and Equivalent Gate Representations. 

l 
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