
Advanced RiSe Machines

ARM710 RISe Processor

DATA SHEET

ARM710 Data Sheet

ARM710 RISe Processor
ARM710 is a general purpose 32-bit microprocessor with 8kByte cache, write buffer and Memory
Management Unit (MMU) combined in a single chip. The ARM710 offers high level RISC performance, yet
its fully static design ensures minimal power consumption - making it ideal for portable, low cost systems.

The innovative MMU supports a conventional two-level page-table structure and a number of extensions
which make it ideal for embedded control, UNIX and Object Oriented systems. This results in a high
instruction throughput and impressive real-time interrupt response from a small and cost-effective chip.

r=-1
~ EJ 8kByte

Cache

MMU
·ARM7

• High performance RISC

Write
Buffer

25 MIPS sustained @ 33 MHz (33 MIPS peak)

• Memory Management Unit (MMU)
support for virtual memory systems

• 8 kByte of instruction & data cache

• Write Buffer - enhancing performance

CPU

EJ
• Fast sub microsecond interrupt response

for real-time applications

• Excellent high-level language support

• Big and Little Endian operating modes

• IEEE 1149.1 Boundary Scan

• Fully static operation -low power consumption • 144 Thin Quad Flat Pack (TQFP) package
ideal for power sensitive applications

• Low power CMOS process
(1.5mA/MHz @ 3.3V)

Applications:

• Personal computer devices, eg PDAs
• High performance real time control systems
• Portable telecommunications
• Data communications equipment
• Consumer products
• Automotive

• 3 V and SV operation

..J Order this document r--------ARM __ ! ARM 001 0024C ~ Advanced RiSe MdctHnes

ARM710 Data Sheet

Change Log:

Issue Date By Change

A July 93 TP Unified Frame version created.
B Sept 93 PM Corrected TOC.
C July 94 EH General corrections.

© Copyright Advanced RISC Machines Ltd (ARM), 1994. All rights reserved

ARM, the ARM Powered logo, B1acldCE, and ICE brea1cer are trademarks of Advanced RISC Machines Ltd.

Neither the whole nor any part of the information contained in. or the product described in, this data sheet may be adapted or reproduced in any material
form except with the prior written permission of the copyright holder.

The product described in this datasheet is subject to continuous developments and improvements. All particulars of the product and its use contained in
this datasheet are given by ARM in good faith. However, all warranties implied or expressed, including but not limited to implied warranties or
merchantability, or fitness for purpose, are excluded.

This datasheet is intended only to assist the reader in the use of the product. ARM Ltd shaIl not be liable for any loss or damage arising from the use of
any information in this datasheet, or any error or omission in such information. or any incorrect use of the product.

Document No: ARM DDI 0024 C

Issued: July 1994

ii

Table of Contents

1.0 Introduction 1
1.1 Block Diagram 3
1.2 Functional Diagram 4

2.0 Signal Description 5

3.0 Programmer's Model 9
3.1 Register Configuration 9
3.2 Operating Mode Selection 10
3.3 Registers 11
3.4 Exceptions 14
3.5 Reset 18

4.0 Instruction Set 19
4.1 Instruction Set Summary 19
4.2 The Condition Field 20
4.3 Branch and Branch with link (B, BL) 21
4.4 Data processing 23
4.5 PSR Transfer (MRS, MSR) 30
4.6 Multiply and Multiply-Accumulate (MUL, MLA) 34
4.7 Single data transfer (LDR, STR) 36
4.8 Block Data Transfer (LDM, STM) 42
4.9 Single data swap (SWP) 49
4.10 Software interrupt (SWI) 51
4.11 Coprocessor Instructions on ARM710 53
4.12 Coprocessor data operations (CDP) 53
4.13 Coprocessor data transfers (LOC, STq 55
4.14 Coprocessor register transfers (MRC, MCR) 58
4.15 Undefined instruction 60
4.16 Instruction Set Examples 61
4.17 Instruction Speed Summary 64

5.0 Configuration 67
5.1 Internal Coprocessor Instructions 67
5.2 Registers 67

6.0 Instruction and Data Cache (lDC) 71
6.1 Cacheable Bit 71
6.2 IDC Operation 71
6.3 IDC validity 71
6.4 Read-Lock-Write 72
6.5 IDC Enable/Disable and Reset 72

7.0 Write Buffer (WB) 73
7.1 Bufferable bit 73
7.2 Write Buffer Operation 73

8.0 Coprocessors 75

9.0 Memory Management Unit (MMU) 77
9.1 MMU Program Accessible Registers 77
9.2 Address Translation 78

iii

ARM710 Data Sheet

9.3 Translation Process 79
9.4 Level One Descriptor 80
9.5 Page Table Descriptor 80
9.6 Section Descriptor 80
9.7 Translating Section References 82
9.8 Level Two Descriptor 83
9.9 Translating Small Page References 84
9.10 Translating Large Page References 85
9.11 MMU Faults and CPU Aborts 86
9.12 Fault Address & Fault Status Registers (FAR & FSR) 86
9.13 Domain Access Control 88
9.14 Fault Checking Sequence 89
9.15 External Aborts 91
9.16 Interaction of the MMU, !DC and Write Buffer 91
9.17 Effect of Reset 92

10.0 Bus Interface 93
10.1 Asynchronous Mode 93
10.2 Synchronous Mode 93
10.3 ARM710 Cycle Speed 93
10.4 Cycle Types 94
10.5 Memory Access 94
10.6 Read/Write 94
lD.7 Byte/Word 94
10.8 Maximum Sequential Length 94
10.9 Memory Access Types 97
1O.lD Unbuffered Writes / Uncacheable Reads 97
10.11 Buffered Write 97
10.12 Linefetch 97
10.13 Translation fetches 98
10.14 Read - lock -write 99
10.15 Use of the nWAIT pin 100
10.16 ARM710 Cycle Type Summary 101

11.0 Boundary Scan Test Interface 103
11.1 Overview 103
11.2 Reset 104
11.3 Pullup Resistors 104
11.4 Instruction Register 104
11.5 Public Instructions 104
11.6 Test Data Registers 108
11.7 Boundary Scan Interface Signals 111

12.0 DC Parameters 115
12.1 Absolute Maximum Ratings 115
12.2 DC Operating Conditions 115
12.3 DC Characteristics 116

iv

Table of Contents

13.0 AC Parameters 117
13.1 Test Conditions 117
13.2 Relationship between FCLK & MCLK in Synchronous Mode 117
13.3 Main Bus Signals 119

14.0 Physical Details 123

15.0 Pinout 125

16.0 Appendix - Backward Compatibility 127

v

ARM710 Data Sheet

vi

Introduction

1.0 Introduction

ARM710 is a general purpose 32-bit microprocessor with 8kByte cache, enlarged write buffer and Memory
Management Unit (MMU) combined in a single chip. The CPU within ARM710 is the ARM7. The ARM710
is software compatible with the ARM processor family and can be used with ARM support chips.

The ARM710 architecture is based on 'Reduced Instruction Set Computer' (RISC) principles, and the
instruction set and related decode mechanism are greatly simplified compared with microprogrammed
'Complex Instruction Set Computers' (CISC).

The on-chip mixed data and instruction cache together with the write buffer substantially raise the average
execution speed and reduce the average amount of memory bandwidth required by the processor. This
allows the external memory to support additional processors or Direct Memory Access (DMA) channels
with minimal performance loss.

The MMU supports a conventional two-level page-table structure and a number of extensions which make
it ideal for embedded control, UNIX and Object Oriented systems.

The instruction set comprises ten basic instruction types:

• Two of these make use of the on-chip arithmetic logic unit, barrel shifter and multiplier to perform
high-speed operations on the data in a bank of 31 registers, each 32 bits wide;

• Three classes of instruction control data transfer between memory and the registers, one optimised
for flexibility of addressing, another for rapid context switching and the third for swapping data;

• Two instructions control the flow and privilege level of execution; and

• Three types are dedicated to the control of external coprocessors which allow the functionality of
the instruction set to be extended off-chip in an open and uniform way.

The ARM instruction set is a good target for compilers of many different high-level languages. Where
required for critical code segments, assembly code programming is also straightforward, unlike some RISC
processors which depend on sophisticated compiler technology to manage complicated instruction
interdependencies.

The memory interface has been designed to allow the performance potential to be realised without
incurring high costs in the memory system. Speed-critical control signals are pipelined to allow system
control functions to be implemented in standard low-power logic, and these control signals permit the
exploitation of paged mode access offered by industry standard DRAMs.

ARM710 is a fully static part and has been designed to minimise its power requirements. This makes it ideal
for portable applications where both these features are essential.

Datasheet Notation:

Ox
BOLD
binary

- marks a Hexadecimal quantity
- external signals are shown in bold capital letters
- where it is not clear that a quantity is binary it is followed by the word binary

1

ARM710 Data Sheet

ARM710 is a variant of the ARM700, differing from that device in the following respects:

• no external coprocessor bus interface

• dedicated chip test port added

• device packaging

ARM710 is an enhanced and updated ARM610, differing from that device in the following respects:

• cache size increased from 4kB to 8kB

• increased maximum clock frequency

• improved write buffer

• enlarged Translation Lookaside Buffer (TLB) in MMU

2

Introduction

1.1 Block Diagram

ABE A[31:0] nR/W rUJ/W LOCK ALE TCK TO! TMS nTRSl' TOO nWArf MCLK SnA FCLK nRESET

'"JA'\d_dr_eS_s_B_uff_e-;r::!...---!I:;:*:;=;:;:'A;:;!:;:~=::;t=t:.I_---.~
MSE

nMREQ

SEQ

MMU

Write
Buffer

OBE 0[31:0]

8 kByte
Cache

Internal Data Bus

ARM7
CPU

ABORT

nIRQ

nFIQ

TESTOtIT[2:O]

L.!::==TESTIN[16:0]

COPROC
L!::=~>I #15

Figure 1: ARM710 Block Diagram

3

ARM710 Data Sheet

1.2 Functional Diagram

SnA

FCLK
Clocks MCLK

nWAIT

C
nlRQ

Interrupts nFIQ

nRESET

ABE

DBE
Bus

Controls ALE

MSE

C
VDD

Power
VSS

4

A[31 :0) J
J

nRW

] nBW

LOCK

ARM710
nMREQ

] SEQ

4
ABORT

Figure 2: Functional Diagram

Address
Bus

Data
Bus

Control
Bus

Memory
Interface

Chip
Test

Signal Description

2.0 Signal Description

A[31:0]

ABE

ABORT

ALE

0[31:0]

DBE

FCLK

LOCK

MCLK

MSE

nBW

nFIQ

OCZ Address Bus. This bus signals the address requested for memory accesses. Normally it
changes during MCLK HIGH.

IC Address bus enable. When this input is LOW, the address bus A[31:0], nRW, nBW and
LOCK are put into a high impedance state (Note 1).

IC Exteinal. abort. Allows the memory system to tell the processor that a requested access has
failed. Only monitored when ARM710 is accessing external memory.

IC Address latch enable. This input is used to control transparent latches on the address bus
A[31:0], nBW, nRW &t LOCK. Normally these signals change during MCLK HIGH, but
they may be held by driving ALE LOW. See Section 13.2.1: Tald Measurement on page
118.

ICOCZ Data bus. These are bi-directional signal paths used for data transfers between the proces­
sor and exteinal. memory. For read operations (when nRW is LOW), the input data must
be valid before the falling edge of MCLK. For write operations (when nRW is HIGH), the
output data will become valid while MCLK is LOW. At high clock frequencies the data
may not become valid until just after the MCLK rising edge (see Section 13.3: Main Bus
Signals on page 119).

IC Data bus enable. When this input is LOW, the data bus, D[31:0] is put into a high imped­
ance state (Note 1). The drivers will always be high impedance except during write opera­
tions, and DBE must be driven HIGH in systems which do not require the data bus for
DMA or similar activities.

ICK Fast clock input. When the ARM710 CPU is accessing the cache or performing an inter­
nal cycle, it is clocked with the Fast Oock, FCLK.

OCZ Locked operation. LOCK is driven HIGH, to signal a "locked" memory access sequence,
and the memory manager should wait until LOCK goes LOW before allowing another
device to access the memory. LOCK changes while MCLK is HIGH and remains HIGH
during the locked memory sequence. LOCK is latched by ALE.

ICK Memory clock input. This clock times all ARM710 memory accesses. The LOW or HIGH
period of MCLK may be stretched for slow peripherals; alternatively, the n W AIT input
may be used with a free-running MCLK to achieve similar effects.

IC Memory request! sequential enable. When this input is LOW, the nMREQ and SEQ out­
puts are put into a high impedance state (Note 1).

OCZ Not byte / word. An output signal used by the processor to indicate to the exteinal. mem­
ory system when a data transfer of a byte length is required. nBW is HIGH for word
transfers and LOW for byte transfers, and is valid for both read and write operations. The
signal changes while MCLK is HIGH. nBW is latched by ALE.

IC Not fast interrupt request. If FIQs are enabled, the processor will respond to a LOW level
on this input by taking the FIQ interrupt exception. This is an asynchronous, level-sensi­
tive input, and must be held LOW until a suitable response is received from the processor.

Table 1: Signal Descriptions

5

ARM710 Data Sheet

Name I '1'.\ pe I Description

nIRQ

nMREQ

nRESET

nRW

nTRST

nWAlT

SEQ

SnA

TEST
IN[16:0]

TEST
OUT[2:0]

TCK

TDI

TOO

TMS

VDD

VSS

6

Ie

ocz

Ie

ocz

Ie

Ie

ocz

Ie

Ie

ocz

Ie
Ie
ocz

Ie

Not interrupt request. As nFIQ, but with lower priority. May be taken LOW asynchro­
nously to interrupt the processor when the IRQ enable is active.

Not memory request. A pipelined signal that changes while MCLK is LOW to indicate
whether or not in the following cycle, the processor will be accessing external memory.
When nMREQ is LOW, the processor will be accessing external memory

Not reset. This is a level sensitive input which is used to start the processor from a known
address. A LOW level will cause the current instruction to terminate abnormally, and the
on-chip cache, MMU, and write buffer to be disabled. When nRESET is driven HIGH, the
processor will re-start from address O. nRESET must remain LOW for at least 2 full FCLK
cycles or 5 full MCLK cycles which ever is greater. While nRESET is LOW the processor
will perform idle cycles with incrementing addresses and n WAIT must be HIGH.

Not read/write. When HIGH this signal indicates a processor write operation; when
LOW, a read. The signal changes while MCLK is HIGH. nRW is latched by ALE.

Test interface reset. Note this signal does NOT have an internal pullup resistor. This signal
must be pulsed or driven LOW to achieve normal device operation, in addition to the nor­
mal device reset (nRESET).

Not wait. When LOW this allows extra MCLK cycles to be inserted in memory accesses. It
must change during the LOW phase of the MCLK cycle to be extended.

Sequential address. This signal is the inverse of nMREQ, and is provided for compatibil­
ity with existing ARM memory systems.

Synchronous / not Asynchronous. This signal determines the bus interface mode and
should be wired HIGH or LOW depending on the desired relationship between FCLK
and MCLK in the application. See Chapter 10.0: Bus Interface.

Test bus input. This bus is used for off-board testing of the device. When the device is fit­
ted to a circuit all these signals must be tied LOW.

Test bus output. This bus is used for off-board testing of the device. When the device is fit­
ted to a circuit and all the TESTIN[16:0] signals are driven LOW, these three outputs will
be driven LOW. Note that these signals may not be tristated, except via the JTAG test port.

Test interface reference Oock. This times all the transfers on the JTAG test interface.

Test interface data input. Note this signal does not have an internal pullup resistor.

Test interface data output. Note this signal does not have an internal pullup resistor.

Test interface mode select. Note this signal does not have an internal pullup resistor.

Positive supply. 15 pins are allocated to VDD in the 144 PQFP package.

Ground supply. 15 pins are allocated to VSS in the 144 PQFP package.

Table 1: Signal Descriptions

Signal Description

Notes:

1. When output pads are placed in the high impedance state for long periods, care must be taken to
ensure that they do not float to an undefined logic level, as this can dissipate power, especially in
the pads.

Key to Signal Types: IC - Input, CMOS threshold
OCZ - Output, CMOS levels, tri-stateable
ICOCZ - Input/ output tri-stateable, CMOS thresholds
ICK - Clock input, CMOS levels

7

ARM710 Data Sheet

8

Programmer's Model

3.0 Programmer's Model

ARM710 supports a variety of operating configurations. Some are controlled by register bits and are known
as the register configurations. Others may be controlled by software and these are known as operating modes.

3.1 Register Configuration

The ARM710 processor provides 3 register configuration settings which may be changed while the
processor is running and which are discussed below.

3.1.1 Big and Little Endian (the bigend bit)

The bigend bit in the Control Register sets whether the ARM710 treats words in memory as being stored in
Big Endian or Little Endian format. See Chapter 5.0: Configuration for more information on the Control
Register. Memory is viewed as a linear collection of bytes numbered upwards from zero. Bytes 0 to 3 hold
the first stored word, bytes 4 to 7 the second and so on.

In the Little Endian scheme the lowest numbered byte in a word is considered to be the least significant byte
of the word and the highest numbered byte is the most significant. Byte 0 of the memory system should be
connected to data lines 7 through 0 (D[7:01) in this scheme.

Higher Address

t I
Lower Address

Little Endian

31 24 23 16 15 8 7 0 Word Address

11 10 9 8

7 6 5 4

3 2 1 o

• Least significant byte is at lowest address

• Word is addressed by byte address of least significant byte

Figure 3: Little Endian addresses of bytes within words

8

4

o

In the Big Endian scheme the most significant byte of a word is stored at the lowest numbered byte and the
least significant byte is stored at the highest numbered byte. Byte 0 of the memory system should therefore
be connected to data lines 31 through 24 (D[31:24l). Load and store are the only instructions affected by the
endian-ness: see Section 4.7: Single data transfer (LDR, STR) on page 36 for more details.

9

ARM710 Data Sheet

Big Endian

Higher Address 31 24 23 16 15 8 7 0 Word Address

t I

8 9 10

4 5 6

0 1 2

11

7

3

Lower Address

• Most significant byte is at lowest address

• Word is addressed by byte address of most significant byte

Figure 4: Big Endian addresses of bytes within words

3.1.2 Configuration Bits for Backward Compatibility

8

4

a

The other two configuration bits, prog32 and data32, are used for backward compatibility with earlier ARM
processors (see 16.0: Appendix - Backward Compatibility) but should normally be set to 1. This configuration
extends the address space to 32 bits, introduces major changes in the programmer's model as described
below, and provides support for running existing 26 bit programs in the 32 bit environment. This mode is
recommended for compatibility with future ARM processors and all new code should be written to use
only the 32 bit operating modes.

Because the original ARM instruction set has been modified to accommodate 32 bit operation there are
certain additional restrictions which programmers must be aware of. These are indicated in the text by the
words shall and shall not. Reference should also be made to the ARM Application Notes "Rules for ARM Code
Writers" and "Notes for ARM Code Writers", available from your supplier.

3.2 Operating Mode Selection

ARM710 has a 32 bit data bus and a 32 bit address bus. The processor supports byte (8 bit) and word (32 bit)
data tyoes, where words must be aligned to four byte boundaries. Instructions are exactly one word, and
data operations (eg ADD) are only performed on word quantities. Load and store operations can transfer
either bytes or words.

10

Programmer's Model

ARM710 supports six modes of operation:

(1) User mode (usr): the normal program execution state

(2) FIQ mode (fiq): designed to support a data transfer or channel process

(3) IRQ mode (irq): used for general purpose interrupt handling

(4) Supervisor mode (svc): a protected mode for the operating system

(5) Abort mode (abt): entered after a data or instruction prefetch abort

(6) Undefined mode (und): entered when an undefined instruction is executed

Mode changes may be made under software control or may be brought about by external interrupts or
exception processing. Most application programs will execute in User mode. The other modes, known as
privileged modes, will be entered to service interrupts or exceptions or to access protected resources.

3.3 Registers

The processor has a total of 37 registers made up of 31 general 32 bit registers and 6 status registers. At any
one time 16 general registers (RO to R15) and one or two status registers are visible to the programmer. The
visible registers depend on the processor mode. The other registers, known as the banked registers, are
switched in to support IRQ, FIQ, Supervisor, Abort and Undefined mode processing. Figure 5: Register
Organisation shows how the registers are arranged, with the banked registers shaded.

In all modes 16 registers, RO to R15, are directly accessible. All registers except R15 are general purpose and
may be used to hold data or address values. Register R15 holds the Program Counter (PC). When R15 is
read, bits [1:0] are zero and bits [31:2] contain the Pc. A seventeenth register (the CPSR - Current Program
Status Register) is also accessible. It contains condition code flags and the current mode bits and may be
thought of as an extension to the Pc.

R14 is used as the subroutine link register and receives a copy of R15 when a Branch and Link instruction
is executed. It may be treated as a general purpose register at all other times. R14_svc, R14_irq, R14_fiq,
R14_abt and R14_und are used similarly to hold the return values of R15 when interrupts and exceptions
arise, or when Branch and Link instructions are executed within interrupt or exception routines.

11

ARM710 Data Sheet

General Registers and Program Counter Modes

User32 FlQ32 Supervlsor32 Abort32 IRQ32 Undefined32

RO RO RO RO RO RO

Rl Rl Rl Rl Rl Rl

R2 R2 R2 R2 R2 R2

R3 R3 R3 R3 R3 R3

R4 R4 R4 R4 R4 R4

AS R5 AS AS R5 AS

R6 R6 R6 R6 R6 R6

R7 R7 R7 R7 R7 R7

RS ... RS_fiq RS AS RS RS

R9 R9..;.fiq R9 R9 R9 R9

Rl0 Rl0.::.flq Rl0 Rl0 Rl0 Rl0

Rll R1Uiq Rll Rll All Rll

R12 Rl2.::.flq R12 R12 R12 A12

R13 R13_flq R13_svc A13J1bt ··A13.::.1rq R13;.;und

R14 R14_flq A14..;.8VC A14_abt R14_irq ... R14_und

R15 (PC) R15(PC) R15(PC) R15(PC) R15(PC) R15(PC)

Program Status Registers

CPSR CPSR

SPSR.:;1Iq

CPSR ~~
SPSR.;svc ~ ~

CPSR
....

SPSR.:;und

Figure 5: Register Organisation

FIQ mode has seven banked registers mapped to RS-14 (RS_fiq-R14_fiq). Many FIQ programs will not need
to save any registers. User mode, IRQ mode, Supervisor mode, Abort mode and Undefined mode each have
two banked registers mapped to R13 and R14. The two banked registers allow these modes to each have a
private stack pointer and link register. Supervisor, IRQ, Abort and Undefined mode programs which
require more than these two banked registers are expected to save some or all of the caller's registers (RO to
R12) on their respective stacks. They are then free to use these registers which they will restore before
returning to the caller. In addition there are also five SPSRs (Saved Program Status Registers) which are
loaded with the CPSR when an exception occurs. There is one SPSR for each privileged mode.

12

Programmer's Model

flags

It
control

II

31 30 29 28 27 8 7 6 5 4 3 2 0

N Z I c I V I F M4 M3 M2 M1 MO

I~ Overflow L Mode bits
Carry I Borrow I Extend FlO disable
Zero IROdisable
Negative I Less Than

Figure 6: Format of the Program Status Registers (PSRs)

The format of the Program Status Registers is shown in Figure 6: Format of the Program Status Registers
(PSRs). The N, Z, C and V bits are the condition code flags. The condition code flags in the CPSR may be
changed as a result of arithmetic and logical operations in the processor and may be tested by all
instructions to determine if the instruction is to be executed.

The I and F bits are the interrupt disable bits. The I bit disables IRQ interrupts when it is set and the F bit
disables FIQ interrupts when it is set. The MO, M1, M2, M3 and M4 bits (M[4:0]) are the mode bits, and these
determine the mode in which the processor operates. The interpretation of the mode bits is shown in Table
2: The Mode Bits. Not all bit combinations define a valid processor mode. Only those explicitly described
shall be used. The user should be aware that if any illegal value is programmed into the mode bits, M[4:0],
the processor will enter an unrecoverable state. If this occurs, reset should be applied.

The bottom 28 bits of a PSR (incorporating I, F and M[4:0]) are known collectively as the control bits. These
will change when an exception arises and in addition can be manipulated by software when the processor
is in a privileged mode. Unused bits in the PSRs are reserved and their state shall be preserved when
changing the flag or control bits. Programs shall not rely on specific values from the reserved bits when
checking the PSR status, since they may read as one or zero in future processors.

M[4:0] I Mode I Accessible register set

10000 User PC,R14 .. RO CPSR

10001 FIQ PC, R14_fiq .. R8_fiq, R7 .. RO CPSR, SPSR_fiq

10010 IRQ PC,R14_irq .. R13_irq,R12 .. RO CPSR, SPSR_irq

10011 Supervisor PC,R14_svc .. R13_svc,R12 .. RO CPSR, SPSR_svc

10111 Abon PC,R14_abt..R13_abt,R12 .. RO CPSR, SPSR_abt

11011 Undefined PC,R14_und .. R13_und,R12 .. RO CPSR, SPSR_und

Table 2: The Mode Bits

13

ARM710 Data Sheet

3.4 Exceptions

Exceptions arise whenever there is a need for the normal flow of program execution to be broken, so that
(for example) the processor can be diverted to handle an interrupt from a peripheral. The processor state
just prior to handling the exception must be preserved so that the original program can be resumed when
the exception routine has completed. Many exceptions may arise at the same time.

ARM710 handles exceptions by making use of the banked registers to save state. The old PC and CPSR
contents are copied into the appropriate R14 and SPSR and the PC and mode bits in the CPSR bits are forced
to a value which depends on the exception. Interrupt disable flags are set where required to prevent
otherwise unmanageable nestings of exceptions. In the case of a re-entrant interrupt handler, R14 and the
SPSR should be saved onto a stack in main memory before re-enabling the interrupt; when transferring the
SPSR register to and from a stack, it is important to transfer the whole 32 bit value, and not just the flag or
control fields. When multiple exceptions arise simultaneously, a fixed priority determines the order in
which they are handled. This is listed later in Section 3.4.7: Exception Priorities on page 17.

3.4.1 FIQ

The FIQ (Fast Interrupt reQuest) exception is externally generated by taking the nFIQ input LOW. This
input can except asynchronous transitions, and is delayed by one clock cycle for synchronisation before it
can affect the processor execution flow. FIQ is designed to support a data transfer or channel process, and
has sufficient private registers to remove the need for register saving in such applications (thus minimising
the overhead of context switching). The FIQ exception may be disabled by setting the F flag in the CPSR
(but note that this is not possible from User mode). If the F flag is clear, ARM710 checks for a LOW level on
the output of the FIQ synchroniser at the end of each instruction.

When a FIQ is detected, ARM710:

(1) Saves the address of the next instruction to be executed plus 4 in R14_fiq; saves CPSR in SPSR_fiq

(2) Forces M[4:0]=10001 (FIQ mode) and sets the F and I bits in the CPSR

(3) Forces the PC to fetch the next instruction from address OxIC

To return normally from FIQ, use SUBS PC, R14_fiq,#4 which will restore both the PC (from R14) and the
CPSR (from SPSR_fiq) and resume execution of the interrupted code.

3.4.2 IRQ

The IRQ (Interrupt ReQuest) exception is a normal interrupt caused by a LOW level on the nIRQ input. It
has a lower priority than FIQ, and is masked out when a FIQ sequence is entered. Its effect may be masked
out at any time by setting the I bit in the CPSR (but note that this is not possible from User mode). If the I
flag is clear, ARM710 checks for a LOW level on the output of the IRQ synchroniser at the end of each
instruction. When an IRQ is detected, ARM71O:

14

Programmer's Model

(1) Saves the address of the next instruction to be executed plus 4 in R14_irq; saves CPSR in SPSR_irq

(2) Forces M[4:0]=10010 (IRQ mode) and sets the I bit in the CPSR

(3) Forces the PC to fetch the next instruction from address Ox18

To return normally from m.Q, use SUBS PC,R14_irq,#4 which will restore both the PC and the CPSR and
resume execution of the interrupted code.

3.4.3 Abort

An abort can be signalled by either the internal Memory Management Unit or from the external ABORT
input. ABORT indicates that the current memory access cannot be completed. For instance, in a virtual
memory system the data corresponding to the current address may have been moved out of memory onto
a disc, and considerable processor activity may be required to recover the data before the access can be
performed successfully. ARM710 checks for aborts during memory access cycles. When successfully
aborted ARM710 will respond in one of two ways:

(1) If the abort occurred during an instruction prefetch (a Prefetch Abort), the prefetched instruction is
marked as invalid but the abort exception does not occur immediately. If the instruction is not
executed, for example as a result of a branch being taken while it is in the pipeline, no abort will
occur. An abort will take place if the instruction reaches the head of the pipeline and is about to be
executed.

(2) If the abort occurred during a data access (a Data Abort), the action depends on the instruction type.

(a) Single data transfer instructions (LOR, STR) will write back modified base registers and the Abort
handler must be aware of this.

(b) The swap instruction (SWP) is aborted as though it had not executed, though externally the read
access may take place.

(c) Block data transfer instructions (LOM, STM) complete, and if write-back is set, the base is updated.
If the instruction would normally have overwritten the base with data (Le. LOM with the base in
the transfer list), this overwriting is prevented. All register overwriting is prevented after the Abort
is indicated, which means in particular that R15 (which is always last to be transferred) is preserved
in an aborted LOM instruction.

When either a prefetch or data abort occurs, ARM710:

(1) Saves the address of the aborted instruction plus 4 (for prefetch aborts) or 8 (for data aborts) in
R14_abt; saves CPSR in SPSR_abt.

(2) Forces M[4:0]=10111 (Abort mode) and sets the I bit in the CPSR

(3) Forces the PC to fetch the next instruction from either address OxOC (prefetch abort) or address Ox10
(data abort).

To return after fixing the reason for the abort, use SUBS PC,R14_abt,#4 (for a prefetch abort) or SUBS
PC,R14_abt,#8 (for a data abort). This will restore both the PC and the CPSR and retry the aborted
instruction.

15

ARM710 Data Sheet

The abort mechanism allows a demand paged virtual memory system to be implemented when suitable
memory management software is available. The processor is allowed to generate arbitrary addresses, and
when the data at an address is unavailable the MMU signals an abort. The processor traps into system
software which must work out the cause of the abort, make the requested data available, and retry the
aborted instruction. The application program needs no knowledge of the amount of memory available to
it, nor is its state in any way affected by the abort.

Note that there are restrictions on the use of the external abort signal. See Chapter 9.0: Memory Management
Unit (MMU).

3.4.4 Software interrupt

The software interrupt instruction (SWI) is used for getting into Supervisor mode, usually to request a
particular supervisor function. When a SWI is executed, ARM71O:

(1) Saves the address of the SWI instruction plus 4 in R14_svc; saves CPSR in SPSR_svc

(2) Forces M[4:0]=10011 (Supervisor mode) and sets the I bit in the CPSR

(3) Forces the PC to fetch the next instruction from address Ox08

To return from a SWI, use MOVS PC,R14_svc. This will restore the PC and CPSR and return to the
instruction following the SWI.

3.4.5 Undefined instruction trap

When the ARM710 comes across an instruction which it cannot handle (see Chapter 4.0: Instruction Set), it
will take the undefined instruction trap. This includes all coprocessor instructions, except MCR and MRC
operations which access the internal control coprocessor.

The trap may be used for software emulation of a coprocessor in a system which does not have the
coprocessor hardware, or for general purpose instruction set extension by software emulation.

When ARM710 takes the undefined instruction trap it:

(1) Saves the address of the Undefined or coprocessor instruction plus 4 in R14_und; saves CPSR in
SPSR_und.

(2) Forces M[4:0]=llOll (Undefined mode) and sets the I bit in the CPSR

(3) Forces the PC to fetch the next instruction from address Ox04

To return from this trap after emulating the failed instruction, use MOVS PC,R14_und. This will restore the
CPSR and return to the instruction follOWing the undefined instruction.

16

Programmer's Model

3.4.6 Vector Summary

Address I Exception I Mode on entry

OxOOOOOOOO Reset Supervisor

OXOOOOOO04 Undefined instruction Undefined

OxOOOOOOO8 Software interrupt Supervisor

OxOOOOOOOC Abort (prefetch) Abort

OxOOOOOO10 Abort (data) Abort

OxOOOOOO14 - reserved --

OxOOOOOO18 IRQ IRQ

OxOOOOOO1C FIQ FIQ

Table 3: Vector Summary

These are byte addresses, and will normally contain a branch instruction pointing to the relevant routine.

The FIQ routine might reside at OxIC onwards, and thereby avoid the need for (and execution time of) a
branch instruction.

3.4.7 Exception Priorities

When multiple exceptions arise at the same time, a fixed priority system determines the order in which they
will be handled:

(1) Reset (highest priority)

(2) Data abort

(3) FIQ

(4) IRQ

(5) Pre fetch abort

(6) Undefined Instruction, Software interrupt (lowest priority)

Note that not all exceptions can occur at once. Undefined instruction and software interrupt are mutually
exclusive since they each correspond to particular (non-overlapping) decodings of the current instruction.

If a data abort occurs at the same time as a FIQ, and FIQs are enabled (Le. the F flag in the CPSR is clear),
ARM710 will enter the data abort handler and then immediately proceed to the FIQ vector. A normal return
from FIQ will cause the data abort handler to resume execution. Placing data abort at a higher priority than
FIQ is necessary to ensure that the transfer error does not escape detection; the time for this exception entry
should be added to worst case FIQ latency calculations.

17

ARM710 Data Sheet

3.4.8 Interrupt Latencies

Calculating the worst case interrupt latency for the ARM710 is quite complex due to the cache, MMU and
write buffer and is dependant on the configuration of the whole system. Please see Application Note -
Calculating the ARM710 Interrupt Latency.

3.5 Reset

When the nRESET signal goes LOW, ARM710 abandons the executing instruction and then performs idle
cycles from incrementing word addresses.

When nRESET goes mGH again, ARM710 does the following:

(1) Overwrites Rl4_svc and SPSR_svc by copying the current values of the PC and CPSR into them.
The value of the saved PC and CPSR is not defined.

(2) Forces M[4:0]=10011 (Supervisor mode) and sets the I and F bits in the CPSR.

(3) Forces the PC to fetch the next instruction from address OxOO

At the end of the reset sequence, the MMU is disabled and the TLB is flushed, so forces "flat" translation
(i.e. the physical address is the virtual address, and there is no permission checking); alignment faults are
also disabled; the cache is disabled and flushed; the write buffer is disabled and flushed; the ARM7 CPU
core is put into 26 bit data and address mode and little-endian mode.

18

Instruction Set - Summary

4.0 Instruction Set

4.1 Instruction Set Summary

A summary of the ARM710 instruction set is shown in Figure 7: Instruction Set Summary.

Note: some instruction codes are not defined but do not cause the Undefined instruction trap to be taken,
for instance a Multiply instruction with bit 6 changed to a 1. These instructions shall not be used,
as their action may change in future ARM implementations.

31 28 27 26 25 24 23 22 21 20 19 16 15 12 II 8 7 5 4 3

Cond 00 II Opcode S Rn Rd Operand 2

Cond o 0 000 0 A S Rd Rn Rs 1 0 0 1

Cond 000 , 0 B 00 Rn Rd 0000 100 ,

Cond o 1 II P U B W L Rn Rd offset

Cond o 1 1 XXXXXXXXXXXXXXXXXXXX 1

Cond '00 P U S W L Rn Register List

Cond '0' L offset

Cond , , 0 P U N W L Rn CRd CPt offset

Cond , , , 0 CPOpc CRn CRd CPt CP 0

Cond , , , 0 CPOpc L CRn Rd CPt CP ,
Cond , , , , ignored by processor

Figure 7: Instruction Set Summary

o

Rm

Rm

XXXX

CRm

CRm

Data Processing
PSR Transfer

Multiply

Single Data Swap

Single Data Transfer

Undefined

Block Data Transfer

Branch

Coproc Data Transfer

Coproc Data Operation

Coproc Register Transfer

Software Interrupt

19

ARM710 Data Sheet

4.2 The Condition Field
31 28 27

Cond

Condition field
0000 .. EQ • Z set (equal)
0001 • NE • Z dear (not equal)
0010 = CS • C set (unsigned hi!tler or same)
0011 "cc· C clear (unsigned kwier)
0100 .. MI· N set (negative)
0101 .. PL· N dear (positive or zero)
0110 .. VS • V set (overflow)
0111 .. VC • V clear (no overflow)
1000 • HI • C set and Z clear (unsigned hi!tler)
1001 .. LS· C clearorZ set (unsigned lower orsarne)
1010= GE· N set and V set, or N clear and V clear (graal8ror equaJ)
1011 .. LT • N set and V clear, or N dear and V set (less than)
1100 =GT· Z dear, and either N let and V set or N ciearand V clear (graaterthan)
1101 .. LE· Z set, or N set and V clear, or N ciearand V set (less than or equal)
1110 .. AL· always
1111 =NV·never

Figure 8: Condition Codes

o

All ARM710 instructions are conditionally executed, which means that their execution mayor may not take
place depending on the values of the N, 2, C and V flags in the CPSR. The condition encoding is shown in
Figure 8: Condition Codes.

If the always (AL) condition is specified, the instruction will be executed irrespective of the flags. The never
(NY) class of condition codes shall not be used as they will be redefined in future variants of the ARM
architecture. If a NOP is required, MOV RO,RO should be used. The assembler treats the absence of a
condition code as though always had been specified.

The other condition codes have meanings as detailed in Figure 8: Condition Codes, for instance code 0000
(EQual) causes the instruction to be executed only if the 2 flag is set. This would correspond to the case
where a compare (CMP) instruction had found the two operands to be equal. If the two operands were
different, the compare instruction would have cleared the 2 flag and the instruction will not be executed.

20

Instruction Set - B, BL

4.3 Branch and Branch with link (B, BL)

The instruction is only executed if the condition is true. The various conditions are defined at the beginning
of this chapter. The instruction encoding is shown in Figure 9: Branch Instructions.

Branch instructions contain a signed 2's complement 24 bit offset. This is shifted left two bits, sign extended
to 32 bits, and added to the Pc. The instruction can therefore specify a branch of + / - 32Mbytes. The branch
offset must take account of the prefetch operation, which causes the PC to be 2 words (8 bytes) ahead of the
current instruction.

31 28 27 25 24 23 o

Cond offset

L Link bit
O. Branch
1 • Branch with Link

Condition field

Figure 9: Branch Instructions

Branches beyond + / - 32Mbytes must use an offset or absolute destination which has been previously
loaded into a register. In this case the PC should be manually saved in R14 if a Branch with Link type
operation is required.

4.3.1 The link bit

Branch with Link (BL) writes the old PC into the link register (R14) of the current bank. The PC value
written into R14 is adjusted to allow for the prefetch, and contains the address of the instruction following
the branch and link instruction. Note that the CPSR is not saved with the Pc.

To return from a routine called by Branch with Link use MOV PC,R14 if the link register is still valid or
LDM Rn!,{ .. PC} if the link register has been saved onto a stack pointed to by Rn.

4.3.2 Instruction Cycle Times

Branch and Branch with Link instructions take 3 instruction fetches. For more information see Section 4.17:
Instruction Speed Summary on page 64.

4.3.3 Assembler syntax

B{L}{cond} <expression>

{L} is used to request the Branch with Link form of the instruction. If absent, R14 will not be affected by the
instruction.

{cond} is a two-character mnemonic as shown in Figure 8: Condition Codes (EQ, NE, VS etc). If absent then
AL (ALways) will be used.

21

ARM710 Data Sheet

<expression> is the destination. The assembler calculates the offset.

Items in {} are optional. Items in <> must be present.

4.3.4 Examples

here BAL
B

CMP
BEQ

BL

ADDS
BLCC

22

here
there

Rl,#O
fred

sub+ROM

Rl,#1
sub

assembles to OxEAFFFFFE (note effect of PC offset)
ALways condition used as default

compare Rl with zero and branch to fred if Rl
was zero otherwise continue to next instruction

call subroutine at computed address

add 1 to register 1, setting CPSR flags on the
result then call subroutine if the C flag is clear,
which will be the case unless R1 held OxFFFFFFFF

Instruction Set - Data processing

4.4 Data processing

The instruction is only executed if the condition is true, defined at the beginning of this chapter. The
instruction encoding is shown in Figure 10: Data Processing Instructions.

The instruction produces a result by performing a specified arithmetic or logical operation on one or two
operands. The first operand is always a register (Rn). The second operand may be a shifted register (Rm) or
a rotated 8 bit immediate value (lrnrn) according to the value of the I bit in the instruction. The condition
codes in the CPSR may be preserved or updated as a result of this instruction, according to the value of the
S bit in the instruction. Certain operations (TST, TEQ, CMP, CMN) do not write the result to Rd. They are
used only to perform tests and to set the condition codes on the result and always have the S bit set. The
instructions and their effects are listed in Table 4: ARM Data Processing Instructions.

31 28 27 26 25 24 21 20 19 16 15 12 II o

Cond 00 II I OpCode I S I Rn I Rd I Operand 2

D I Destination ... 's .. '-r-------'
1st operand register
Set condition codes

o • do not ahar condition codes
1 • oat condition codes

Operation Code
0000 • AND - Rd:. Opl AND Op2
0001 • EOR· Rd:. Opl EOR 0p2
0010. SUB - Rd:. Opl • Op2
0011 • RSB - Ad:. Op2 • Opl
0100. ADD· Rd:. Opl + Op2
0101 • ACe - Ad:= Opl + Op2 + C
0110. sec -Rd:. Opl ·Op2 + C·l
0111. RSC- Rd:a0p2-Opl + C·l
1000 • TST •• ot cond~ion codes on Opl AND Op2
1001 • TEO· sot condition codes on Qpl EOR Op2
1010 • CMP ••• , cond~ion cod .. on Opl • 0p2
1011 • CMN ·.ot cond~ codes on Opl + 0p2
1100 • ORR - Rd:. Opl OR 0p2
1101 • MOV - Rd:. Op2
1110. BIC- Rd:.Opl AND NOTOp2
1111.MVN·Rd:.NOTOp2

Immediate Operand
11 o. operand 2 is a register

Shift

I 2nd operand register
shift applied to Rm

1 • operand 2 ia an immediate value
8 7

Imm

I Unsigned 8 bit Immediate value

shift applied to Imm

Condition field

Figure 10: Data Processing Instructions

23

ARM710 Data Sheet

4.4.1 CPSR flags

The data processing operations may be classified as logical or arithmetic. The logical operations (AND,
EaR, TST, TEQ, ORR, MOV, BIC, MVN) perform the logical action on all corresponding bits of the operand
or operands to produce the result. If the S bit is set (and Rd is not R15, see below) the V flag in the CPSR will
be unaffected, the C flag will be set to the carry out from the barrel shifter (or preserved when the shift
operation is LSL #0), the Z flag will be set if and only if the result is all zeros, and the N flag will be set to
the logical value of bit 31 of the result.

Assembler I I \\1' . OpCnde Actinn
nemnllll'

AND 0000 operand 1 AND operand2

EOR 0001 operandI EOR operand2

SUB 0010 operand 1 - operand2

RSB 0011 operand2 - operand 1

ADD 0100 operand 1 + operand2

ADC 0101 operand 1 + operand2 + carry

SBC 0110 operand 1 - operand2 + carry - 1

RSC 0111 operand2 - operand 1 + carry - 1

TST 1000 as AND, but result is not written

TEQ 1001 as EOR, but result is not written

CMP 1010 as SUB, but result is not written

CMN 1011 as ADD, but result is not written

ORR 1100 operandI OR operand2

MOV 1101 operand2 (operandI is ignored)

BIC 1110 operandI AND NOT operand2 (Bit clear)

MVN 1111 NOT operand2 (operandI is ignored)

Table 4: ARM Data Processing Instructions

The arithmetic operations (SUB, RSB, ADD, ADC, SBC, RSC, CMP, CMN) treat each operand as a 32 bit
integer (either unsigned or 2's complement signed, the two are equivalent). If the S bit is set (and Rd is not
R15) the V flag in the CPSR will be set if an overflow occurs into bit 31 of the result; this may be ignored if
the operands were considered unsigned, but warns of a possible error if the operands were 2's complement
signed. The C flag will be set to the carry out of bit 31 of the ALU, the Z flag will be set if and only if the
result was zero, and the N flag will be set to the value of bit 31 of the result (indicating a negative result if
the operands are considered to be 2's complement signed).

24

Instruction Set - Shifts

4.4.2 Shifts

When the second operand is specified to be a shifted register, the operation of the barrel shifter is controlled
by the Shift field in the instruction. This field indicates the type of shift to be performed (logical left or right,
arithmetic right or rotate right). The amount by which the register should be shifted may be contained in
an immediate field in the instruction, or in the bottom byte of another register (other than R15). The
encoding for the different shift types is shown in Figure 11: ARM Shift Operations.

11 7 6 5 4

Shift type
00 = logical left
01 = logical right
10 = a~thmetic right
11 = rotate right

Shift amount
5 bit unsigned integer

11 8 7 6 5 4

Rs

Figure 11: ARM Shift Operations

Instruction specified shift amount

Shift type
00 = logical left
01 = logical right
10 = arithmetic right
11 = rotate right

Shift register
Shift amount specHied in
bottom byte of Rs

When the shift amount is specified in the instruction, it is contained in a 5 bit field which may take any value
from 0 to 31. A logical shift left (LSL) takes the contents of Rm and moves each bit by the specified amount
to a more significant position. The least significant bits of the result are filled with zeros, and the high bits
of Rm which do not map into the result are discarded, except that the least significant discarded bit becomes
the shifter carry output which may be latched into the C bit of the CPSR when the ALU operation is in the
logical class (see above). For example, the effect of LSL #5 is shown in Figure 12: Logical Shift Left.

31 27 26 o

contents of Rm

value of operand 2 o 0 0 O· 0 I
Figure 12: Logical Shift Left

Note that LSL #0 is a special case, where the shifter carry out is the old value of the CPSR C flag. The
contents of Rm are used directly as the second operand.

A logical shift right (LSR) is similar, but the contents of Rm are moved to less significant positions in the
result. LSR #5 has the effect shown in Figure 13: Logical Shift Right.

25

ARM710 Data Sheet

31 S 4 0

contents of Rm

~
100000 value of operand 2

Figure 13: Logical Shift Right

The form of the shift field which might be expected to correspond to LSR #0 is used to encode LSR #32,
which has a zero result with bit 31 of Rm as the carry output. Logical shift right zero is redundant as it is
the same as logical shift left zero, so the assembler will convert LSR #0 (and ASR #0 and ROR #0) into LSL
#0, and allow LSR #32 to be specified.

An arithmetic shift right (ASR) is similar to logical shift right, except that the high bits are filled with bit 31
of Rm instead of zeros. This preserves the sign in 2's complement notation. For example, ASR #5 is shown
in Figure 14: Arithmetic Shift Right.

flO S 4

contents of Rm

~ ~.~

I value of operand 2 I
Figure 14: Arithmetic Shift Right

The form of the shift field which might be expected to give ASR #0 is used to encode ASR #32. Bit 31 of Rm
is again used as the carry output, and each bit of operand 2 is also equal to bit 31 of Rm. The result is
therefore all ones or all zeros, according to the value of bit 31 of Rm.

Rotate right (ROR) operations reuse the bits which 'overshoot' in a logical shift right operation by
reintroducing them at the high end of the result, in place of the zeros used to fill the high end in logical right
operations. For example, ROR #5 is shown in Figure 15: Rotate Right.

26

Instruction Set - Shifts

31 5 4 0

contents of Rm

~carryout
value of operand 2

Figure 15: Rotate Right

The form of the shift field which might be expected to give ROR #0 is used to encode a special function of
the barrel shifter, rotate right extended (RRX). This is a rotate right by one bit position of the 33 bit quantity
formed by appending the CPSR C flag to the most significant end of the contents of Rm as shown in Figure
16: Rotate Right Extended.

31

~\
I

Register specified shift amount

o

contents of Rm

value of operand 2

Figure 16: Rotate Right Extended

Only the least significant byte of the contents of Rs is used to determine the shift amount. Rs can be any
general register other than R15.

If this byte is zero, the unchanged contents of Rm will be used as the second operand, and the old value of
the CPSR C flag will be passed on as the shifter carry output.

If the byte has a value between 1 and 31, the shifted result will exactly match that of an instruction specified
shift with the same value and shift operation.

If the value in the byte is 32 or more, the result will be a logical extension of the shift described above:

(1) LSL by 32 has result zero, carry out equal to bit 0 of Rm.

(2) LSL by more than 32 has result zero, carry out zero.

(3) LSR by 32 has result zero, carry out equal to bit 31 of Rm.

(4) LSR by more than 32 has result zero, carry out zero.

(5) ASR by 32 or more has result filled with and carry out equal to bit 31 of Rm.

27

ARM710 Data Sheet

(6) ROR by 32 has result equal to Rm, carry out equal to bit 31 of Rm.

(7) ROR by n where n is greater than 32 will give the same result and carry out as ROR by n-32;
therefore repeatedly subtract 32 from n until the amount is in the range 1 to 32 and see above.

Note that the zero in bit 7 of an instruction with a register controlled shift is compulsory; a one in this bit
will cause the instruction to be a multiply or undefined instruction.

4.4.3 Immediate operand rotates

The immediate operand rotate field is a 4 bit unsigned integer which specifies a shift operation on the 8 bit
immediate value. This value is zero extended to 32 bits, and then subject to a rotate right by twice the value
in the rotate field. This enables many common constants to be generated, for example all powers of 2.

4.4.4 Writing to R15

When Rd is a register other than R15, the condition code flags in the CPSR may be updated from the ALU
flags as described above.

When Rd is R15 and the S flag in the instruction is not set the result of the operation is placed in R15 and
the CPSR is unaffected.

When Rd is R15 and the S flag is set the result of the operation is placed in R15 and the SPSR corresponding
to the current mode is moved to the CPSR. This allows state changes which atomically restore both PC and
CPSR. This form of instruction shall not be used in User mode.

4.4.5 Using R15 as an operand

If R15 (the PC) is used as an operand in a data processing instruction the register is used directly.

The PC value will be the address of the instruction, plus 8 or 12 bytes due to instruction prefetching. If the
shift amount is specified in the instruction, the PC will be 8 bytes ahead. If a register is used to specify the
shift amount the PC will be 12 bytes ahead.

4.4.6 TEQ, TST, CMP & CMN opcodes

These instructions do not write the result of their operation but do set flags in the CPSR. An assembler shall
always set the S flag for these instructions even if it is not specified in the mnemonic.

The TEQP form of the instruction used in earlier processors shall not be used in the 32 bit modes, the PSR
transfer operations should be used instead. If used in these modes, its effect is to move SPSR_ <mode> to
CPSR if the processor is in a privileged mode and to do nothing if in User mode.

4.4.7 Instruction Cycle TlDles

Data Processing instructions vary in the number of incremental cycles taken as follows:

28

Normal Data Processing 1 instruction fetch

Data Processing with register specified shift

Data Processing with PC written

1 instruction fetch + 1 internal cycle

3 instruction fetches

Instruction Set - TEQ, TST, CMP & CMN

Data Processing with register specified shift and PC written

3 instruction fetches and 1 internal cycle

See Section 4.17: Instruction Speed Summary on page 64 for more information.

4.4.8 Assembler syntax

(1) MOV,MVN - single operand instructions

<opcode>{condHS} Rd,<Op2>

(2) CMP,CMN,TEQ,TST - instructions which do not produce a result.

<opcode>{cond} Rn,<Op2>

(3) AND,EOR,SUB,RSB,ADD,ADC,SBC,RSC,ORR,BIC

<opcode>{condHS} Rd,Rn,<Op2>

where <Op2> is Rm{,<shift>} or,<#expression>

{cond} - two-character condition mnemonic, see Figure 8: Condition Codes

{S} - set condition codes if S present (implied for CMP, CMN, TEQ, TST).

Rd, Rn and Rm are expressions evaluating to a register number.

H <#expression> is used, the assembler will attempt to generate a shifted immediate 8-bit field to match the
expression. H this is impossible, it will give an error.

<shift> is <shiftname> <register> or <shiftname> #expression, or RRX (rotate right one bit with extend).

<shiftname>s are: ASL, LSL, LSR, ASR, ROR. (ASL is a synonym for LSL, they assemble to the same code.)

4.4.9 Examples

ADDEQ R2,R4,RS

TEQS R4,#3

SUB R4,RS,R7,LSR R2

MOV PC,R14

MOVS PC,R14

if the Z flag is set make R2:=R4+RS

test R4 for equality with 3
(the S is in fact redundant as the
assembler inserts it automatically)

logical right shift R7 by the number in
the bottom byte of R2, subtract result
from RS, and put the answer into R4

return from subroutine

return from exception and restore CPSR
from SPSRJIlode

29

ARM710 Data Sheet

4.5 PSR Transfer (MRS, MSR)

The instruction is only executed if the condition is true. The various conditions are defined at the beginning
of this chapter .

. The MRS and MSR instructions are formed from a subset of the Data Processing operations and are
implemented using the TEQ, TST, CMN and CMP instructions without the S flag set. The encoding is
shown in Figure 17: PSR Transfer.

These instructions allow access to the CPSR and SPSR registers. The MRS instruction allows the contents of
the CPSR or SPSR_ <mode> to be moved to a general register. The MSR instruction allows the contents of a
general register to be moved to the CPSR or SPSR_ <mode> register.

The MSR instruction also allows an immediate value or register contents to be transferred to the condition
code flags (N,z,C and V) of CPSR or SPSR-<mode> without affecting the control bits. In this case, the top
four bits of the specified register contents or 32 bit immediate value are written to the top four bits of the
relevant PSR.

4.5.1 Operand restrictions

In User mode, the control bits of the CPSR are protected from change, so only the condition code flags of
the CPSR can be changed. In other (privileged) modes the entire CPSR can be changed.

The SPSR register which is accessed depends on the mode at the time of execution. For example, only
SPSR-fiq is accessible when the processor is in FIQ mode.

R15 shall not be specified as the source or destination register.

A further restriction is that no attempt shall be made to access an SPSR in User mode, since no such register
exists.

30

31

I

Instruction Set - MRS, MSR

MRS (transfer PSR contents to a register)
28 27 23 22 21

Cond I 00010 ,~, 001111

I
L

MSR (transfer register contents to PSR)
23 22 21

00010 1010011111

L

000000000000

Destination register

Source PSR
O.CPSR
1 • SPSR_<cummt mode>

Condition field

12 11

00000000

Source register

Destination PSR
O-CPSR
1 • SPSR_ <current mode>

Condition field

4 3

1

o

Rm

MSR (transfer register contents or immediate value to PSR flag bits only)

1010001111 Source operand

Destination PSR
O.CPSA
1 = SPSR_ <current mode:>

Immediate Operand
11 0"" Source operand is a register

00000000

j
Source register

1 • Source operand is an immediate value
8 7

Imm

I Unsigned 8 bit immediate value

shift applied to Imm

Condition field

Figure 17: PSR Transfer

31

ARM710 Data Sheet

4.5.2 Reserved bits

Only eleven bits of the PSR are defined in ARM710 (N,Z,C,V,I,F & M[4:0]); the remaining bits (PSR[27:8,5])
are reserved for use in future versions of the processor. To ensure the maximum compatibility between
ARM710 programs and future processors, the following rules should be observed:

(1) The reserved bits shall be preserved when changing the value in a PSR.

(2) Programs shall not rely on specific values from the reserved bits when checking the PSR status,
since they may read as one or zero in future processors.

A read-modify-write strategy should therefore be used when altering the control bits of any PSR register;
this involves transferring the appropriate PSR register to a general register using the MRS instruction,
chang4lg only the relevant bits and then transferring the modified value back to the PSR register using the
MSR instruction.

e.g. The following sequence performs a mode change:

MRS

Erc
ORR

MSR

RO,CPSR
RO,RO,#OxlF
RO,RO,#new_mode
CPSR,RO

take a copy of the CPSR
clear the mode bits
select new mode
write back the modified CPSR

When the aim is simply to change the condition code flags in a PSR, a value can be written directly to the
flag bits without disturbing the control bits. e.g. The following instruction sets the N,Z,C & V flags:

MSR CPSR_flg,#OxFOOOOOOO ; set all the flags regardless of
their previous state (does not

i affect any control bits)

No attempt shall be made to write an 8 bit immediate value into the whole PSR since such an operation
cannot preserve the reserved bits.

4.5.3 Instruction Cycle Times

PSR Transfers take 1 instruction fetch. For more information see Section 4.17: Instruction Speed Summary on
page 64.

4.5.4 Assembler syntax

(1) MRS - transfer PSR contents to a register

MRS{cond} Rd,<psr>

(2) MSR - transfer register contents to PSR

MSR{cond} <psr>,Rm

(3) MSR - transfer register contents to PSR flag bits only

MSR{cond} <psrf>,Rm

The most significant four bits of the register contents are written to the N,z,C & V flags respectively.

32

Instruction Set - MRS, MSR

(4) MSR - transfer immediate value to PSR flag bits only

MSR{cond} <psrf>,<#expression>

The expression should symbolise a 32 bit value of which the most significant four bits are written
to the N,Z,C & V flags respectively.

{cond} - two-character condition mnemonic, see Figure 8: Condition Codes

Rd and Rm are expressions evaluating to a register number other than R15

<psr> is CPSR, CPSR_all, SPSR or SPSR_all. (CPSR and CPSR_all are synonyms as are SPSR and SPSR_all)

Where <#expression> is used, the assembler will attempt to generate a shifted immediate 8-bit field to
match the expression. If this is impossible, it will give an error.

4.5.5 Examples

In User mode the instructions behave as follows:

MSR CPSR_all,Rm CPSR[31:28] <- Rm[31:28]
MSR CPSR_flg, Rm CPSR [31: 28] <- Rm[31: 28]

MSR CPSR_flg,#OxAOOOOOOO CPSR[31:28] <- OxA
(i. e. set N,Ci clear Z, V)

MRS Rd,CPSR Rd[31:0] <- CPSR[31: 0]

In privileged modes the instructions behave as follows:

MSR CPSR_all,Rm CPSR[31:0] <- Rm[31: 0]
MSR CPSR_flg, Rm CPSR[31: 28] <- Rm[31: 28]

MSR CPSR_flg,#Ox50000000 CPSR[31: 28] <- Ox5
(i.e. set Z,Vi clear N,C)

MRS Rd,CPSR Rd[31:0] <- CPSR[31: 0]

MSR SPSR_all, Rm SPSR_<rnode>[31:0] <- Rm[31:0]
MSR SPSR_flg, Rm SPSR_<rnode> [31:28] <- Rm[31: 28]

MSR SPSR_flg,#OxCOOOOOOO SPSR_<rnode> [31:28] <- OxC
(i. e. set N,Zi clear C,V)

MRS Rd,SPSR Rd[31:0] <- SPSR_<rnode> [31: 0]

33

ARM710 Data Sheet

4.6 Multiply and Multiply-Accumulate (MUL, MLA)

The instruction is only executed if the condition is true. The various conditions are defined at the beginning
of this chapter. The instruction encoding is shown in Figure 18: Multiply Instructions.

The multiply and multiply-accumulate instructions use a 2 bit Booth's algorithm to perform integer
multiplication. They give the least significant 32 bits of the product of two 32 bit operands, and may be used
to synthesize higher precision multiplications.

31 28 27

I Cond
, 0 0 000

22 21 20 19

olAlsl Ad

I

16 15 12 11 8 7

I An I As o 0 Am

II Iu:'~~~
Operand registers
Destination register
Set condition code

o = do not alter condition codes
1 = set condition codes

Accumulate
o = multiply only
1 = multiply and accumulate

Condition Field

Figure 18: Multiply Instructions

o

The multiply form of the instruction gives Rd:=Rm"Rs. Rn is ignored, and should be set to zero for
compatibility with possible future upgrades to the instruction set.

The multiply-accumulate form gives Rd:=Rm"Rs+Rn, which can save an explicit ADD instruction in some
circumstances.

Both forms of the instruction work on operands which may be considered as signed (2's complement) or
unsigned integers.

34

Instruction Set - MUL, MLA

4.6.1 Operand Restrictions

Due to the way multiplication was implemented, certain combinations of operand registers should be
avoided. (The assembler will issue a warning if these restrictions are overlooked.)

The destination register (Rd) should not be the same as the operand register (Rm), as Rd is used to hold
intermediate values and Rm is used repeatedly during multiply. A MUL will give a zero result if RM=Rd,
and an MLA will give a meaningless result. R15 shall not be used as an operand or as the destination
register.

All other register combinations will give correct results, and Rd, Rn and Rs may use the same register when
required.

4.6.2 CPSR flags

Setting the CPSR flags is optional, and is controlled by the 5 bit in the instruction. The N (Negative) and Z
(Zero) flags are set correctly on the result (N is made equal to bit 31 of the result, and Z is set if and only if
the result is zero). The C (Carry) flag is set to a meaningless value and the V (oVerflow) flag is unaffected.

4.6.3 Instruction Cycle Times

The Multiply instructions take 1 instruction fetch and m internal cycles. For more information see section
4.17 Instruction Speed Summary on page 64.

m is the number of cycles required by the multiply algorithm, which is determined by the contents of
Rs. Multiplication by any number between 2"(2m-3) and 2"(2m-1J-1 takes 1S+mI cycles for
1 <m> 16. Multiplication by 0 or 1 takes 15+11 cycles, and multiplication by any number greater than
or equal to 2"(29) takes 15+161 cycles. The maximum time for any multiply is thus 15+161 cycles.

4.6.4 Assembler syntax

MUL{condHS} Rd,Rm,Rs

MLA{condHS} Rd,Rm,Rs,Rn

{cond} - two-character condition mnemonic, see Figure 8: Condition Codes

{S} - set condition codes if 5 present

Rd, Rm, Rs and Rn are expressions evaluating to a register number other than R15.

4.6.5 Examples

MUL
MLAEQS

Rl,R2,R3
Rl,R2,R3,R4

Rl:=R2*R3
conditionally Rl:=R2*R3+R4,
setting condition codes

35

ARM710 Data Sheet

4.7 Single data transfer (LDR, STR)

The instruction is only executed if the condition is true. The various conditions are defined at the beginning
of this chapter. The instruction encoding is shown in Figure 19: Single Data Transfer Instructions .

. The single data transfer instructions are used to load or store single bytes or words of data. The memory
address used in the transfer is calculated by adding an offset to or subtracting an offset from a base register.
The result of this calculation may be written back into the base register if 'auto-indexing' is required.

36

31 28 27 26 25 24 23 22 21 20 19 16 IS 12 II

Offset

D r SourcalDtlstl_ roglalor

Base register
LoadlStore bit

0= Store to rnamary
1 • Load from rnamary

Write-back bit
O. no wrn.bacI<
1 = WIlle address InIo base

BytelWord bit
0= 1I8nsIer wad quanIIIy
1 =1I8I1IIer byte quantity

UplDown bit
0= daWn; subtract aIIset from base
1 • up; add oIIset to base

Pre/Post Indexing bit
o • past; add oIIset eIIer IntnsIer
1 = pre; add oIIset befara Inmoler

Immediate offset
II o. oIIset is an __ value

Immediate offset

Unsigned 12 bit immediate offset
II h oIIsst is a ragIsIar

Shift

o

shift applied to Rm

Condition field

Figure 19: Single Data Transfer Instructions

Offset register

Instruction Set - LDR, STR

4.7.1 Offsets and auto-indexing

The offset from the base may be either a 12 bit unsigned binary immediate value in the instruction, or a
second register (possibly shifted in some way). The offset may be added to (U=I) or subtracted from (U=O)
the base register Rn. The offset modification may be performed either before (pre-indexed, P=I) or after
(post-indexed, p=o) the base is used as the transfer address.

The W bit gives optional auto increment and decrement addressing modes. The modified base value may
be written back into the base (W=I), or the old base value may be kept (W=O). In the case of post-indexed
addressing, the write back bit is redundant and is always set to zero, since the old base value can be retained
by setting the offset to zero. Therefore post-indexed data transfers always write back the modified base. The
only use of the W bit in a post-indexed data transfer is in privileged mode code, where setting the W bit
forces non-privileged mode for the transfer, allowing the operating system to generate a user address in a
system where the memory management hardware makes suitable use of this hardware.

4.7.2 Shifted register offset

The 8 shift control bits are described in the data processing instructions section. However, the register
specified shift amounts are not available in this instruction class. See Section 4.4.2: Shifts on page 25.

4.7.3 Bytes and words

This instruction class may be used to transfer a byte (B=I) or a word (B=O) between an ARM710 register and
memory.

The action of LOR(B) and STR(B) instructions is influenced by the 3 instruction fetches. For more
information see Section 4.17: Instruction Speed Summary on page 64. The two possible configurations are
described below.

Little Endian Configuration

A byte load (LORB) expects the data on data bus inputs 7 through 0 if the supplied address is on a word
boundary, on data bus inputs 15 through 8 if it is a word address plus one byte, and so on. The selected byte
is placed in the bottom 8 bits of the destination register, and the remaining bits of the register are filled with
zeros. Please see Figure 4: Big Endian addresses of bytes within words.

A byte store (STRB) repeats the bottom 8 bits of the source register four times across data bus outputs 31
through o. The external memory system should activate the appropriate byte subsystem to store the data.

A word load (LOR) will normally use a word aligned address. However, an address offset from a word
boundary will cause the data to be rotated into the register so that the addressed byte occupies bits 0 to 7.
This means that half-words accessed at offsets 0 and 2 from the word boundary will be correctly loaded into
bits 0 through 15 of the register. Two shift operations are then required to clear or to sign extend the upper
16 bits. This is illustrated in Figure 20: Little Endian Offset Addressing.

37

ARM710 Data Sheet

memory register

A ~

A+3 24 24
B ~

A+2 16 16
C ~

A+1 8 8
~ 0

A 0 0

LOR from word aligned address

A
A+3 24

B
A+2 16

C
A+1 8

0
A 0

LOR from address offset by 2

Figure 20: Little Endian Offset Addressing

A word store (STR) should generate a word aligned address. The word presented to the data bus is not
affected if the address is not word aligned. That is, bit 31 of the register being stored always appears on data
bus output 31.

Big Endian Configuration

A byte load (LORB) expects the data on data bus inputs 31 through 24 if the supplied address is on a word
boundary, on data bus inputs 23 through 16 if it is a word address plus one byte, and so on. The selected
byte is placed in the bottom 8 bits of the destination register and the remaining bits of the register are filled
with zeros. Please see Figure 4: Big Endian addresses o/bytes within words.

A byte store (STRB) repeats the bottom 8 bits of the source register four times across data bus outputs 31
through O. The external memory system should activate the appropriate byte subsystem to store the data.

A word load (LOR) should generate a word aligned address. An address offset of 0 or 2 from a word
boundary will cause the data to be rotated into the register so that the addressed byte occupies bits 31
through 24. This means that half-words accessed at these offsets will be correctly loaded into bits 16 through
31 of the register. A shift operation is then required to move (and optionally sign extend) the data into the
bottom 16 bits. An address offset of 1 or 3 from a word boundary will cause the data to be rotated into the
register so that the addressed byte occupies bits 15 through 8.

38

Instruction Set - LDR, STR

A word store (STR) should generate a word aligned address. The word presented to the data bus is not
affected if the address is not word aligned. That is, bit 31 of the register being stored always appears on data
bus output 31.

4.7.4 Use of R15

Write-back shall not be specified if R15 is specified as the base register (Rn). When using R15 as the base
register you must remember it contains an address 8 bytes on from the address of the current instruction.

R15 shall not be specified as the register offset (Rm).

When R15 is the source register (Rd) of a register store (STR) instruction, the stored value will be address
of the instruction plus 12.

4.7.5 Restriction on the use of base register

When configured for late aborts, the following example code is difficult to unwind as the base register, Rn,
gets updated before the abort handler starts. Sometimes it may be impossible to calculate the initial value.

For example:

LDR RO, [Rl] ,Rl

Therefore a post-indexed LOR I STR where Rm is the same register as Rn shall not be used.

4.7.6 Data Aborts

A transfer to or from a legal address may cause problems for a memory management system. For instance,
in a system which uses virtual memory the required data may be absent from main memory. The memory
manager can signal a problem by taking the processor ABORT input HIGH whereupon the Oata Abort trap
will be taken. It is up to the system software to resolve the cause of the problem, then the instruction can be
restarted and the original program continued.

4.7.7 Instruction Cycle Times

Normal LOR instructions take 1 instruction fetch, 1 data read and 1 internal cycle and LOR PC take 3 in­
struction fetches, 1 data read and 1 internal cycle. For more information see Section 4.17: Instruction Speed
Summary on page 64.

STR instructions take 1 instruction fetch and 1 data write incremental cycles to execute.

4.7.8 Assembler syntax

<LDR I STR>{condHB}{T} Rd,<Address>

LOR - load from memory into a register

STR - store from a register into memory

39

ARM710 Data Sheet

{cond} - two-character condition mnemonic, see Figure 8: Condition Codes

{B} - if B is present then byte transfer, otherwise word transfer

{T} - if T is present the W bit will be set in a post-indexed instruction, forcing non-privileged mode for the
transfer cycle. T is not allowed when a pre-indexed addressing mode is specified or implied.

Rd is an expression evaluating to a valid register number.

<Address> can be:

(i) An expression which generates an address:

<expression>

The assembler will attempt to generate an instruction using the PC as a base and a corrected
immediate offset to address the location given by evaluating the expression. This will be a PC
relative, pre-indexed address. If the address is out of range, an error will be generated.

(ii) A pre-indexed addressing specification:

[Rn) offset of zero

[Rn,<#expression>]{1} offset of <expression> bytes

[Rn,{+I-}Rm{,<shift>}]{1} offset of + / - contents of index register, shifted by <shift>

(iii) A post-indexed addressing specification:

[Rn),<#expression> offset of <expression> bytes

[Rn],{+I-}Rm{,<shift>} offset of +/- contents of index register, shifted as by <shift>.

Rn and Rm are expressions evaluating to a register number. If Rn is R15 then the assembler will subtract 8
from the offset value to allow for ARM710 pipelining. In this case base write-back shall not be specified.

<shift> is a general shift operation (see section on data processing instructions) but note that the shift
amount may not be specified by a register.

{I} writes back the base register (set the W bit) if ! is present.

4.7.9 Examples

STR Rl, [R2, R4] !

STR Rl, [R2] ,R4

LDR Rl, [R2,#16]

LDR Rl, [R2,R3,LSL#2]

40

store Rl at R2+R4 (both of which are
registers) and write back address to R2

store Rl at R2 and write back
R2+R4 to R2

load Rl from contents of R2+16
Don't write back

load Rl from contents of R2+R3*4

LDREQB R1, [R6, #5]

STR Rl,PLACE

PLACE

Instruction Set - LOR, STR

conditionally load byte at R6+5 into
R1 bits 0 to 7, filling bits 8 to 31
with zeros

generate PC relative offset to address
PLACE

41

ARM710 Data Sheet

4.8 Block Data Transfer (LDM, STM)

The instruction is only executed if the condition is true. The various conditions are defined at the beginning
of this chapter. The instruction encoding is shown in Figure 21: Block Data Transfer Instructions.

Block data transfer instructions are used to load (LOM) or store (STM) any subset of the currently visible
registers. They support all possible stacking modes, maintaining full or empty stacks which can grow up or
down memory, and are very efficient instructions for saving or restoring context, or for moving large blocks
of data around main memory.

4.8.1 The Register List

The instruction can cause the transfer of any registers in the current bank (and non-user mode programs
can also transfer to and from the user bank, see below). The register list is a 16 bit field in the instruction,
with each bit corresponding to a register. A 1 in bit 0 of the register field will cause RO to be transferred, a
o will cause it not to be transferred; similarly bit 1 controls the transfer of R1, and so on.

Any subset of the registers, or all the registers, may be specified. The only restriction is that the register list
should not be empty.

Whenever R15 is stored to memory the stored value is the address of the STM instruction plus 12.

31 28 27 25 24 23 22 21 20 19 16 15

Cond

4.8.2 Addressing Modes

Rn Register list

Base register
LoadlStore bit

o • SIOnIto memolY
1 - Load lram memolY

Write-back bit
0= no write-back
1 = write address Into base

PSR " force user bit
O. do nat load PSR or force uoer mode
1 = load PSR or 10"", uoer mode

UplDownblt
o = doWn; sublrac1 oIIae1ln>m base
1 = up; add oIfset to base

P~=~:~~~~~r
1 = pra; add oIIaet before transfer

Condition field

Figure 21: Block Data Transfer Instructions

o

I

The transfer addresses are determined by the contents of the base register (Rn), the pre/post bit (P) and the
up / down bit (U). The registers are transferred in the order lowest to highest, so R15 (if in the list) will
always be transferred last. The lowest register also gets transferred to/from the lowest memory address. By

42

Instruction Set - LDM, STM

way of illustration, consider the transfer of Rl, R5 and R7 in the case where Rn=OxlOOO and write back of
the modified base is required (W=l). Figures 22, 23, 24 and 25 show the sequence of register transfers, the
addresses used, and the value of Rn after the instruction has completed.

In all cases, had write back of the modified base not been required (W=O), Rn would have retained its initial
value of OxlOOO unless it was also in the transfer list of a load multiple register instruction, when it would
have been overwritten with the loaded value.

4.8.3 Address Alignment

The address should normally be a word aligned quantity and non-word aligned addresses do not affect the
instruction. However, the bottom 2 bits of the address will appear on A[1:0] and might be interpreted by
the memory system.

Ox100C Ox100C

An~
~-------I

Ox1000 A1 Ox1000

OxOFF4 OxOFF4

1 2

Ox100C An~ Ox100C
A7

AS AS
A1 Ox1000 A1 Ox1000

OxOFF4 OxOFF4

3 4

Figure 22: Post-increment addressing

43

ARM710 Data Sheet

44

Ox100C

R1
Rn-+- Ox1000

OxOFF4

1 2

R5
Ox100C Rn-+- R7

1----=R~5---I

R1 R1
Ox1000

OxOFF4

3 4

Figure 23: Pre-increment addressing

Rn-+-
1-------1

1

R5
R1

3

Ox100C

Ox1000

OxOFF4

Ox100C

Ox1000

OxOFF4

R1

2

R7
R5
R1

Rn-+-

4

Figure 24: Post-decrement addressing

Ox100C

Ox1000

OxOFF4

Ox100C

Ox1000

OxOFF4

Ox100C

Ox1000

OxOFF4

Ox100C

Ox1000

OxOFF4

Instruction Set - LDM, STM

Ox100C Ox100C

Rn Ox1000 Ox1000

OxOFF4 R1 OxOFF4

1 2

Ox100C Ox100C

Ox1000 Ox1000
R7

RS RS
R1 OxOFF4 Rn R1 OxOFF4

3 4

Figure 25: Pre-decrement addressing

4.8.4 Use of the S bit

When the S bit is set in a LDM/STM instruction its meaning depends on whether or not R15 is in the transfer
list and on the type of instruction. The S bit should only be set if the instruction is to execute in a privileged
mode.

LDM with R15 in transfer list and S bit set (Mode changes)

If the instruction is a LDM then SPSR_ <mode> is transferred to CPSR at the same time as R15 is loaded.

STM with R15 in transfer list and S bit set (User bank transfer)

The registers transferred are taken from the User bank rather than the bank corresponding to the current
mode. This is useful for saving the user state on process switches. Base write-back shall not be used when
this mechanism is employed.

R15 not in list and S bit set (User bank transfer)

For both LDM and STM instructions, the User bank registers are transferred rather than the register bank
corresponding to the current mode. This is useful for saving the user state on process switches. Base write­
back shall not be used when this mechanism is employed.

When the instruction is LDM, care must be taken not to read from a banked register during the following
cycle (inserting a dummy instruction such as MOV RO, RO after the LDM will ensure safety).

45

ARM710 Data Sheet

4.8.5 Use of R15 as the base

R15 shall not be used as the base register in any LDM or STM instruction.

4.8.6 Inclusion of the base in the register list

When write-back is specified, the base is written back at the end of the second cycle of the instruction.
During a STM, the first register is written out at the start of the second cycle. A STM which includes storing
the base, with the base as the first register to be stored, will therefore store the unchanged value, whereas
with the base second or later in the transfer order, will store the modified value. A LDM will always
overwrite the updated base if the base is in the list.

4.8.7 Data Aborts

Some legal addresses may be unacceptable to a memory management system, and the memory manager
can indicate a problem with an address by taking the ABORT signal HIGH. This can happen on any
transfer during a multiple register load or store, and must be recoverable if ARM710 is to be used in a
virtual memory system.

Aborts during STM instructions

If the abort occurs during a store multiple instruction, ARM710 takes little action until the instruction
completes, whereupon it enters the data abort trap. The memory manager is responsible for preventing
erroneous writes to the memory. The only change to the internal state of the processor will be the
modification of the base register if write-back was specified, and this must be reversed by software (and the
cause of the abort resolved) before the instruction may be retried.

Aborts during LDM instructions

When ARM710 detects a data abort during a load multiple instruction, it modifies the operation of the
instruction to ensure that recovery is possible.

(i) Overwriting of registers stops when the abort happens. The aborting load will not take place but
earlier ones may have overwritten registers. The PC is always the last register to be written and so
will always be preserved.

(ii) The base register is restored, to its modified value if write-back was requested. This ensures
recoverability in the case where the base register is also in the transfer list, and may have been
overwritten before the abort occurred.

The data abort trap is taken when the load multiple has completed, and the system software must undo any
base modification (and resolve the cause of the abort) before restarting the instruction.

4.8.8 Instruction Cycle Times

Normal LDM instructions take 1 instruction fetch, n data reads and 1 internal cycle and LDM PC takes 3
instruction fetches, n data reads and 1 internal cycle. For more information see Section 4.17: Instruction Speed
Summary on page 64.

STM instructions take 1 instruction fetch, n data reads and 1 internal cycle to execute.
n is the number of words transferred.

46

Instruction Set - LDM, STM

4.8.9 Assembler syntax

<LDM I STM>{cond}<FD I ED I FA I EA I IA I IB I DA I DB> Rn{!},<Rlist>{ A}

{cond} - two character condition mnemonic, see Figure 8: Condition Codes

Rn is an expression evaluating to a valid register number

<Rlist> is a list of registers and register ranges enclosed in {} (eg {RO,R2-R7,RIO}).

{I} if present requests write-back (W=l), otherwise W=O

{A} if present set S bit to load the CPSR along with the PC, or force transfer of user bank when in privileged
mode

Addressing mode names

There are different assembler mnemonics for each of the addressing modes, depending on whether the
instruction is being used to support stacks or for other purposes. The equivalences between the names and
the values of the bits in the instruction are shown in the following table:

name I stack I other I L bit I I' bit I U bit

pre-increment load LDMED LDMIB 1

post-increment load LDMFD LDMIA o
pre-decrement load LDMEA LDMDB 1 o
post-decrement load LDMFA LDMDA 1 o 0

pre-increment store STMFA STMID 0

post-increment store STMEA STMIA 0 o 1

pre-decrement store STMFD STMDB 0 1 0

post-decrement store STMED STMDA 0 o 0

Table 5: Addressing Mode Names

FD, ED, FA, EA define pre/post indexing and the up / down bit by reference to the form of stack required.
The F and E refer to a "full" or "empty" stack, i.e. whether a pre-index has to be done (full) before storing
to the stack. The A and D refer to whether the stack is ascending or descending. If ascending, a STM will go
up and LDM down, if descending, vice-versa.

lA, IB, DA, DB allow control when LDM/STM are not being used for stacks and simply mean Increment
After, Increment Before, Decrement After, Decrement Before.

47

ARM710 Data Sheet

4.8.10 Examples

LDMFD

STMIA

LDMFD
LDMFD

STMFD

SP!, {RO,Rl,R2}

RO, {RO-R15}

SP1,{R15}
SP1,{R15}"

R13, {RO-R14}"

unstack 3 registers

save all registers

R15 <- (SP),CPSR unchanged
R15 <- (SP), CPSR <- SPSR_mode (allowed

only in privileged modes)
Save user mode regs on stack (allowed

only in privileged modes)

These instructions may be used to save state on subroutine entry, and restore it efficiently on return to the
calling routine:

STMED

BL

LDMED

48

SP I, {RO-R3, R14}

somewhere

SP! , {RO-R3, R15}

save RO to R3 to use as workspace
and R14 for returning

this nested call will overwrite R14

restore workspace and return

Instruction Set - SWP

4.9 Single data swap (SWP)

31 28 27 23 22 21 20 19

Cond 00010

I I l

16 15 12 11 g 7 4 3

Rn Rd I 0000 1001 Rm

'1--
~ Source register

Destination register

Base register
ByteJWord bit

o = swap word quantity
1 = swap byte quantity

Condition field

Figure 26: Swap Instruction

o

The instruction is only executed if the condition is true. The various conditions are defined at the beginning
of this chapter. The instruction encoding is shown in Figure 26: Swap Instruction.

The data swap instruction is used to swap a byte or word quantity between a register and external memory.
This instruction is implemented as a memory read followed by a memory write which are "locked"
together (the processor cannot be interrupted until both operations have completed, and the memory
manager is warned to treat them as inseparable). This class of instruction is particularly useful for
implementing software semaphores.

The swap address is determined by the contents of the base register (Rn). The processor first reads the
contents of the swap address. Then it writes the contents of the source register (Rm) to the swap address,
and stores the old memory contents in the destination register (Rd). The same register may be specified as
both the source and destination.

The LOCK output goes HIGH for the duration of the read and write operations to signal to the external
memory manager that they are locked together, and should be allowed to complete without interruption.
This is important in multi-processor systems where the swap instruction is the only indivisible instruction
which may be used to implement semaphores; control of the memory must not be removed from a
processor while it is performing a locked operation.

4.9.1 Bytes and words

This instruction class may be used to swap a byte (B=l) or a word (B=O) between an ARM710 register and
memory. The SWP instruction is implemented as a LDR followed by a STR and the action of these is as
described in the section on single data transfers. In particular, the description of Big and Little Endian
configuration applies to the SWP instruction.

4.9.2 Use of R15

R15 shall not be used as an operand (Rd, Rn or Rs) in a SWP instruction.

49

ARM710 Data Sheet

4.9.3 Data Aborts

If the address used for the swap is unacceptable to a memory management system, the memory manager
can flag the problem by driving ABORT HIGH. This can happen on either the read or the write cycle (or
both), and in either case, the Data Abort trap will be taken. It is up to the system software to resolve the
cause of the problem, then the instruction can be restarted and the original program continued.

4.9.4 Instruction Cycle Times

Swap instructions take 1 instruction fetch, 1 data read, 1 data write and 1 internal cycle. For more
information see Section 4.17: Instruction Speed Summary on page 64.

4.9.5 Assembler syntax

<SWP>{condHB} Rd,Rm,[Rn1

{cond} - two-character condition mnemonic, see Figure 8: Condition Codes

{B} - if B is present then byte transfer, otherwise word transfer

Rd,Rm,Rn are expressions evaluating to valid register numbers

4.9.6 Examples

SWP

SWPB

SWPEQ

50

RO,Rl, [R2j

R2, R3, [R4j

RO,RO, [Rl]

load RO with the word addressed by R2, and
store Rl at R2

load R2 wi th the byte addressed by R4, and
store bits 0 to 7 of R3 at R4

conditionally swap the contents of the
word addressed by Rl with RO

Instruction Set - SWI

4.10 Software interrupt (SWI)

o

Comment field (ignored by Processor)

Condition field

Figure 27: Software Interrupt Instruction

The instruction is only executed if the condition is true. The various conditions are defined at the beginning
of this chapter. The instruction encoding is shown in Figure 27: Software Interrupt Instruction.

The software interrupt instruction is used to enter Supervisor mode in a controlled manner. The instruction
causes the software interrupt trap to be taken, which effects the mode change. The PC is then forced to a
fixed value (OX08) and the CPSR is saved in SPSR_svc. If the SWI vector address is suitably protected (by
external memory management hardware) from modification by the user, a fully protected operating system
may be constructed.

4.10.1 Return from the supervisor

The PC is saved in R14_svc upon entering the software interrupt trap, with the PC adjusted to point to the
word after the SWI instruction. MOVS PC,R14_svc will return to the calling program and restore the CPSR.

Note that the link mechanism is not re-entrant, so if the supervisor code wishes to use software interrupts
within itself it must first save a copy of the return address and SPSR.

4.10.2 Comment field

The bottom 24 bits of the instruction are ignored by the processor, and may be used to communicate
information to the supervisor code. For instance, the supervisor may look at this field and use it to index
into an array of entry points for routines which perform the various supervisor functions.

4.10.3 Instruction Cycle Times

Software interrupt instructions take 3 instruction fetches. For more information see Section 4.17: Instruction
Speed Summary on page 64.

4.10.4 Assembler syntax

SWI{cond} <expression>

{cond} - two character condition mnemonic, see Figure B: Condition Codes

<expression> is evaluated and placed in the comment field (which is ignored by ARM710).

51

ARM710 Data Sheet

4.10.5 Examples

SWI
SWI
SWINE

ReadC
WriteI+"k"
o

get next character from read stream
output a "k" to the write stream
conditionally call supervisor
with 0 in comment field

The above examples assume that suitable supervisor code exists, for instance:

Ox08 B supervisor

EntryTable

Zero
ReadC
WriteI

DCD ZeroRtn
DCD ReadCRtn
DCD WriteIRtn

EQU 0
EQU 256
EQU 512

SWI entry point

addresses of supervisor routines

Supervisor

52

SWI has routine required in bits 8-23 and data (if any) in bits 0-7.
Assumes R13_svc points to a suitable stack

STMFD
LDR
BIC
MOV
ADR
LDR

WriteIRtn

LDMFD

R13, {RO-R2, R14}
RO, [R14, #-4]
RO,RO,#OxFFOOOOOO
R1,RO,LSR#8
R2,EntryTable
R15, [R2,R1,LSL#2]

R13,{RO-R2,R15}A

save work registers and return address
get SWI instruction
clear top 8 bits
get routine offset
get start address of entry table
branch to appropriate routine

enter with character in RO bits 0-7

restore workspace and return
restoring processor mode and flags

Instruction Set - COP

4.11 Coprocessor Instructions on ARM710

The ARM710, unlike some other ARM processors, does not have an external coprocessor interface. The
ARM710 only supports a single on chip coprocessor, #15, which is used to program the on-chip control reg­
isters. This only supports the Coprocessor Register Transfer instructions (MRC and MCR).

All other coprocessor instructions will cause the ARM710 to take the undefined instruction trap. These
coprocessor instructions can be emulated in software by the undefined trap handler. Even though external
coprocessors cannot be connected to ARM710, the coprocessor instructions are still described here in full
for completeness. Any external coprocessor referred to will be a software emulation.

4.12 Coprocessor data operations (CDP)

Use of the COP instruction on the ARM710 will cause an undefined instruction trap to be taken, which may
be used to emulate the coprocessor instruction.

The instruction is only executed if the condition is true. The various conditions are defined at the beginning
of this chapter. The instruction encoding is shown in Figure 28: Coprocessor Data Operation Instruction.

This class of instruction is used to tell a coprocessor to perform some internal operation. No result is
communicated back to the ARM710, and it will not wait for the operation to complete. The coprocessor
could contain a queue of such instructions awaiting execution, and their execution can overlap other
activity, allowing the coprocessor and the ARM710 to perform independent tasks in parallel.

31 28 27 24 23 20 19

Cond 1110 I CP Ope CRn

16 15 12 11 8 7 5 4 3 o

I CRd CP# CRm

L Coprocessor operand register
Coprocessor information
Coprocessor number
Coprocessor destination register
Coprocessor operand,register
Coprocessor operation code
Condition field

Figure 28: Coprocessor Data Operation Instruction

4.12.1 The Coprocessor fields

Only bit 4 and bits 24 to 31 are significant to the processor. The remaining bits are used by coprocessors.
The above field names are used by convention, and particular coprocessors may redefine the use of all fields
except CP# as appropriate. The CP# field is used to contain an identifying number (in the range 0 to 15) for
each coprocessor, and a coprocessor will ignore any instruction which does not contain its number in the
CP#field.

53

ARM710 Data Sheet

The conventional interpretation of the instruction is that the coprocessor should perform an operation
specified in the CP Ope field (and possibly in the CP field) on the contents of CRn and CRm, and place the
result in CRd.

4.12.2 Instruction Cycle TImes

All CDP instructions are emulated in software: the number of cycles taken will depend on the coprocessor
support software.

4.12.3 Assembler syntax

CDP{cond} p#,<expressionl>,cd,cn,cm{,<expression2>}

{cond} - two character condition mnemonic, see Figure 8: Condition Codes

p# - the unique number of the required coprocessor

<expression1> - evaluated to a constant and placed in the CP Ope field

cd, en and em evaluate to the valid coprocessor register numbers CRd, CRn and CRm respectively

<expression2> - where present is evaluated to a constant and placed in the CP field

4.12.4 Examples

CDP

CDPEQ

54

p1,10,c1,c2,c3

p2,5,c1,c2,c3,2

request coproc 1 to do operation 10
on CR2 and CR3, and put the result in CR1

if Z flag is set request coproc 2 to do
operation 5 (type 2) on CR2 and CR3,
and put the result in CR1

Instruction Set - LDC, STC

4.13 Coprocessor data transfers (LDC, STC)

Use of the LDC or STC instruction on the ARM710 will cause an undefined instruction trap to be taken,
which may be used to emulate the coprocessor instruction.

The instruction is only executed if the condition is true. The various conditions are defined at the beginning
of this chapter. The instruction encoding is shown in Figure 29: Coprocessor Data Transfer Instructions.

This class of instruction is used to load (LDC) or store (STC) a subset of a coprocessors's registers directly
to memory. The processor is responsible for supplying the memory address, and the coprocessor supplies
or accepts the data and controls the number of words transferred.

31 28 27 25 24 23 22 21 20 19 16 15

Rn CRd

L

12 11 8 7 o

CPt Offset

~~~I ~I ______ ~----~ 

Unsigned 8 bit Immediate offset 
Coprocessor number 
Coprocessor source/destination register 
Base register 
LoadlStore bit 

0= store to memory 
1 = I..oad from memory 

Write-back bit 
O.no_ 
1 • _ address IntD base 

Transfer length 
UpJDown bit 

o = doWn; sub1racl oIIset tram base 
1 • up; add oIIset to base 

Pre/Post indexina bit 
o. POSt add offset after'iansfer 
1 • pre; add offset befOre 1ransfer 

Condition field 

Figure 29: Coprocessor Data Transfer Instructions 

4.13.1 The Coprocessor fields 

The CP# field is used to identify the coprocessor which is required to supply or accept the data, and a 
coprocessor will only respond if its number matches the contents of this field. 

The CRd field and the N bit contain information for the coprocessor which may be interpreted in different 
ways by different coprocessors, but by convention CRd is the register to be transferred (or the first register 
where more than one is to be transferred), and the N bit is used to choose one of two transfer length options. 
For instance N=O could select the transfer of a single register, and N=l could select the transfer of all the 
registers for context switching. 

55 



ARM710 Data Sheet 

4.13.2 Addressing modes 

The processor is responsible for providing the address used by the memory system for the transfer, and the 
addressing modes available are a subset of those used in single data transfer instructions. Note, however, 
that for coprocessor data transfers the immediate offsets are 8 bits wide and specify word offsets, whereas 
for single data transfers they are 12 bits wide and specify byte offsets. 

The 8 bit unsigned immediate offset is shifted left 2 bits and either added to (U=1) or subtracted from (U=O) 
the base register (Rn); this calculation may be performed either before (P=l) or after (p=O) the base is used 
as the transfer address. The modified base value may be overwritten back into the base register (if W=l), or 
the old value of the base may be preserved (W=O). Note that post-indexed addressing modes require 
explicit setting of the W bit, unlike LOR and STR which always write-back when post-indexed. 

The value of the base register, modified by the offset in a pre-indexed instruction, is used as the address for 
the transfer of the first word. The second word (if more than one is transferred) will go to or come from an 
address one word (4 bytes) higher than the first transfer, and the address will be incremented by one word 
for each subsequent transfer. 

4.13.3 Address Alignment 

The base address should normally be a word aligned quantity. The bottom 2 bits of the address will appear 
on A[1:0] and might be interpreted by the memory system. 

4.13.4 Use of R15 

If Rn is R1S, the value used will be the address of the instruction plus 8 bytes. Base write-back to R1S shall 
not be specified. 

4.13.5 Data aborts 

If the address is legal but the memory manager generates an abort, the data trap will be taken. The write­
back of the modified base will take place, but all other processor state will be preserved. The coprocessor is 
partly responsible for ensuring that the data transfer can be restarted after the cause of the abort has been 
resolved, and must ensure that any subsequent actions it undertakes can be repeated when the instruction 
is retried. 

4.13.6 Instruction Cycle TlDles 

All LOC instructions are emulated in software: the number of cycles taken will depend on the coproceSsor 
support software. 

4.13.7 Assembler syntax 

<LDC I STC>{condHL} p#,cd,<Address> 

LDC - load from memory to coprocessor 

STC - store from coprocessor to memory 

56 



Instruction Set - LDC, STC 

{L} - when present perform long transfer (N=l), otherwise perform short transfer (N=O) 

{cond} - two character condition mnemonic, see Figure 8: Condition Codes 

p# - the unique number of the required coprocessor 

cd is an expression evaluating to a valid coprocessor register number that is placed in the CRd field 

<Address> can be: 

(i) An expression which generates an address: 

<expression> 

The assembler will attempt to generate an instruction using the PC as a base and a corrected 
immediate offset to address the location given by evaluating the expression. This will be a PC 
relative, pre-indexed address. If the address is out of range, an error will be generated. 

(ii) A pre-indexed addressing specification: 

[Rn] offset of zero 

[Rn,<#expression> H!} offset of <expression> bytes 

(iii) A post-indexed addressing specification: 

[Rn],<#expression> offset of <expression> bytes 

Rn is an expression evaluating to a valid processor register number. Note, if Rn is R15 then the assembler 
will subtract 8 from the offset value to allow for processor pipelining. 

I!} write back the base register (set the W bit) if! is present 

4.13.8 Examples 

LDC 

STCEQL 

pl,c2,table 

p2,c3, [R5,#24]! 

load c2 of coproc 1 from address table, 
using a PC relative address. 
conditionally store c3 of coproc 2 into 
an address 24 bytes up from R5, write this 
address back to R5, and use long transfer 
option (probably to store multiple words) 

Note that though the address offset is expressed in bytes, the instruction offset field is in words. The 
assembler will adjust the offset appropriately. 

57 



ARM710 Data Sheet 

4.14 Coprocessor register transfers (MRC, MCR) 

Use of the MRC or MCR instruction on the ARM710 to a coprocessor other than number 15 will cause an 
undefined instruction trap to be taken, which may be used to emulate the coprocessor instruction. 

The instruction is only executed if the condition is true. The various conditions are defined at the beginning 
of this chapter. The instruction encoding is shown in Figure 30: Coprocessor Register Transfer Instructions. 

This class of instruction is used to communicate information directly between ARM710 and a coprocessor. 
An example of a coprocessor to processor register transfer (MRC) instruction would be a FIX of a floating 
point value held in a coprocessor, where the floating point number is converted into a 32 bit integer within 
the coprocessor, and the result is then transferred to a processor register. A FLOAT of a 32 bit value in a 
processor register into a floating point value within the coprocessor illustrates the use of a processor register 
to coprocessor transfer (MCR). 

An important use of this instruction is to communicate control information directly from the coprocessor 
into the processor CPSR flags. As an example, the result of a comparison of two floating point values within 
a coprocessor can be moved to the CPSR to control the subsequent flow of execution. 

Note the ARM710 has an internal coprocessor (#15) for control of on-chip functions. Accesses to this 
coprocessor are performed by coprocessor register transfers. 

31 28 27 24 23 21 20 19 16 15 12 11 8 7 5 4 3 0 

Cond 1110 Icp Ope I L I CRn Rd CPt CP 111 CRm 

L Coprocessor operand register 
Coprocessor information 
Coprocessor number 
ARM source/destination register 
Coprocessor source/destination register 
LoadlStore bit 

0= Stare to Co-Proc:essor 
1 • Load from Co-Processor 

Coprocessor operation mode 
Condition field 

Figure 30: Coprocessor Register Transfer Instructions 

4.14.1 The Coprocessor fields 

The CPt field is used, as for all coprocessor instructions, to specify which coprocessor is being called upon. 
The CP Opc, CRn, CP and CRm fields are used only by the coprocessor, and the interpretation presented 
here is derived from convention only. Other interpretations are allowed where the coprocessor 
functionality is incompatible with this one. The conventional interpretation is that the CP Opc and CP fields 
specify the operation the coprocessor is required to perform, CRn is the coprocessor register which is the 

58 



Instruction Set - MRC, MCR 

source or destination of the transferred information, and CRm is a second coprocessor register which may 
be involved in some way which depends on the particular operation specified. 

4.14.2 Transfers to R15 

When a coprocessor register transfer to ARM710 has R15 as the destination, bits 31, 30, 29 and 28 of the 
transferred word are copied into the N, Z, C and V flags respectively. The other bits of the transferred word 
are ignored, and the PC and other CPSR bits are unaffected by the transfer. 

4.14.3 Transfers from R15 

A coprocessor register transfer from ARM710 with R15 as the source register will store the PC+ 12. 

4.14.4 Instruction Cycle Times 

Access to the internal configuration register takes 3 internal cycles. All other MRC instructions default to 
software emulation, and the number of cycles taken will depend on the coprocessor support software. 

4.14.5 Assembler syntax 

<MeR I MRC>{cond} p#,<expressionl>,Rd,cn,cm{,<expression2>} 

MRC - move from coprocessor to ARM710 register (L=1) 

MCR - move from ARM710 register to coprocessor (L=O) 

{cond} - two character condition mnemonic, see Figure 8: Condition Codes 

p# - the unique number of the required coprocessor 

<expression1> - evaluated to a constant and placed in the CP Opc field 

Rd is an expression evaluating to a valid ARM710 register number 

en and cm are expressions evaluating to the valid coprocessor register numbers CRn and CRm respectively 

<expression2> - where present is evaluated to a constant and placed in the CP field 

4.14.6 Examples 

MRC 2,5,R3,c5,c6 

MCR 6,O,R4,c6 

MRCEQ 3,9,R3,c5,c6,2 

request coproc 2 to perform operation 5 
on c5 and c6, and transfer the (single 
32 bit word) result back to R3 

request coproc 6 to perform operation 0 
on R4 and place the result in c6 

conditionally request coproc 3 to perform 
operation 9 (type 2) on c5 and c6, and 
transfer tqe result back to R3 

59 



ARM710 Data Sheet 

4.15 Undefined instruction 

31 28 27 25 24 5 4 3 0 

Cond 011 xxxxxxxxxxxxxxxxxxx 

Figure 31: Undefined Instruction 

The instruction is only executed if the condition is true. The various conditions are defined at the beginning 
of this chapter. The instruction format is shown in Figure 31: Undefined Instruction. 

If the condition is true, the undefined instruction trap will be taken. 

Note that the undefined instruction mechanism involves offering this instruction to any coprocessors which 
may be present, and all coprocessors must refuse to accept it by driving CPA and CPB HIGH. 

4.15.1 Assembler syntax 

At present the assembler has no mnemonics for generating this instruction. If it is adopted in the future for 
some specified use, suitable mnemonics will be added to the assembler. Until such time, this instruction 
shall not be used. 

60 



Instruction Set - Examples 

4.16 Instruction Set Examples 

The following examples show ways in which the basic ARM710 instructions can combine to give efficient 
code. None of these methods saves a great deal of execution time (although they may save some), mostly 
they just save code. 

4.16.1 Using the conditional instructions 

(1) using conditionals for logical OR 

CMP 
BEQ 
CMP 
BEQ 

Rn,#p 
Label 
Rm,#q 
Label 

can be replaced by 

CMP 
CMPNE 
BEQ 

Rn,#p 
Rm,#q 
Label 

(2) absolute value 

TEQ 
RSBMI 

Rn,#O 
Rn,Rn,#O 

(3) multiplication by 4,5 or 6 (run time) 

MOV 
CMP 
ADDCS 
ADDHI 

Rc,Ra,LSL#2 
Rb,#5 
RC,Rc,Ra 
Rc,Rc,Ra 

(4) combining discrete and range tests 

TEQ 
CMPNE 
MOVLS 

Rc,#127 
Rc,#" "-1 
Rc,#"." 

(5) division and remainder 

if Rn=p OR Rm=q THEN GOTO Label 

if condition not satisfied try other test 

test sign 
and 2's complement if necessary 

multiply by 4 
test value 
complete multiply by 5 
complete multiply by 6 

discrete test 
range test 
IF Rc<=" " OR Rc=ASCII(127) 
THEN Rc:="." 

A number of divide routines for specific applications are provided in source form as part of the ANSI C 
library provided with the ARM Cross Development Toolkit, available from your supplier. A short general 
pupose divide routine follows. 

61 



ARM710 Data Sheet 

MOV Rcnt,#l 
Div1 CMP Rb,#Ox80OOOOOO 

CMPCC Rb,Ra 
MOVCC Rb, Rb, ASL#1 
MOVCC Rcnt,Rcnt,ASL#l 
BCC Div1 
MOV Rc,#O 

Div2 CMP Ra,Rb 
SUBCS Ra,Ra,Rb 
ADDCS RC,Rc,Rcnt 
MOVS Rcnt,Rcnt,LSR#l 
MOVNE Rb,Rb,LSR#1 
BNE Div2 

enter with numbers in Raand Rb 

bit to control the division 
move Rb until greater than Ra 

test for possible subtraction 
subtract if ok 
put relevant bit into result 
shift control bit 
halve unless finished 

divide result in Rc 
remainder in Ra 

4.16.2 Pseudo random binary sequence generator 

It is often necessary to generate (pseudo-) random numbers and the most efficient algorithms are based on 
shift generators with exclusive-OR feedback rather like a cyclic redundancy check generator. Unfortunately 
the sequence of a 32 bit generator needs more than one feedback tap to be maximal length (Le. 2A32-1 cycles 
before repetition), so this example uses a 33 bit register with taps at bits 33 and 20. The basic algorithm is 
newbit:=bit 33 eor bit 20, shift left the 33 bit number and put in newbit at the bottom; this operation is 
performed for all the newbits needed (Le. 32 bits). The entire operation can be done in 5 S cycles: 

TST 
MOVS 
ADC 
EOR 
EOR 

Rb, Rb, LSR#1 
RC,Ra,RRX 
Rb,Rb,Rb 
Rc,Rc,Ra,LSL#12 
Ra,Rc,Rc,LSR#20 

enter with seed in Ra (32 bits), 
Rb (1 bit in Rb lsb), uses Rc 

; top bit into carry 
33 bit rotate right 
carry into lsb of Rb 
(involved! ) 
(similarly involved!) 

new seed in Ra, Rb as before 

4.16.3 Multiplication by constant using the barrel shifter 

(1) Multiplication by 2An (1,2,4,8,16,32 .. ) 

MOV Ra, Rb, LSL in 

(2) Multiplication by 2An+l (3,5,9,17 .. ) 

ADD Ra,Ra,Ra,LSL in 

62 



Instruction Set - Examples 

(3) Multiplication by 2l\n-l (3,7,15 .. ) 

RSB Ra,Ra,Ra,LSL #n 

(4) Multiplication by 6 

ADD 
MOV 

Ra,Ra,Ra,LSL #1 
Ra,Ra,LSL#l 

(5) Multiply by 10 and add in extra number 

ADD 
ADD 

Ra,Ra,Ra,LSL#2 
Ra,Rc,Ra,LSL#l 

multiply by 3 
and then by 2 

multiply by 5 
multiply by 2 and add in next digit 

(6) General recursive method for Rb:= Ra"C, C a constant: 

(a) If C even, say C = 21\n"D, Dodd: 

D=l: 
D<>l: 

MOV 
{Rb 

Rb,Ra,LSL #n 
:= Ra*D} 

MOV Rb,Rb,LSL #n 

(b) If C MOD 4 = I, say C = 2I\n"D+ I, Dodd, n> 1: 

D=l: 
D<>l: 

ADD Rb,Ra,Ra,LSL #n 
{Rb := Ra*D} 
ADD Rb,Ra,Rb,LSL #n 

(c) If C MOD 4 = 3, say C = 2I\n*D-l, Dodd, n>l: 

D=l: 
D<>l: 

RSB Rb,Ra,Ra,LSL #n 
{Rb .- Ra*D} 
RSB Rb,Ra,Rb,LSL #n 

This is not quite optimal, but close. An example of its non-optimality is multiply by 45 which is done by: 

RSB 
RSB 
ADD 

rather than by: 

ADD 
ADD 

Rb,Ra,Ra,LSL#2 
Rb,Ra,Rb,LSL#2 
Rb,Ra,Rb,LSL# 2 

Rb,Ra,Ra,LSL#3 
Rb,Rb,Rb,LSL#2 

multiply by 3 
multiply by 4*3-1 = 11 
multiply by 4*11+1 = 45 

multiply by 9 
multiply by 5*9 = 45 

63 



ARM710 Data Sheet 

4.16.4 Loading a word from an unknown alignment 

BIe Rb,Ra,#3 
LOMIA Rb, {Rd,Rc} 
AND Rb,Ra,#3 
MOVS Rb,Rb,LSL#3 
MOVNE Rd,Rd,LSR Rb 

RSBNE Rb,Rb,#32 
ORRNE Rd,Rd,Rc,LSL Rb 

4.16.5 Loading a halfword (Little Endian) 

LOR 
MOV 
MOV 

Ra, [Rb, #2] 
Ra,Ra,LSL #16 
Ra, Ra, LSR #16 

4.16.6 Loading a halfword (Big Endian) 

LOR 
MOV 

Ra, [Rb,#2] 
Ra,Ra,LSR #16 

4.17 Instruction Speed Summary 

enter with address in Ra (32 bits) 
uses Rb, Rc; result in Rd. 
Note d must be less than c e.g. 0,1 

get word aligned address 
get 64 bits containing answer 
correction factor in bytes 
... now in bits and test if aligned 
produce bottom of result word 
(if not aligned) 
get other shift amount 
combine two halves to get result 

Get halfword to bits 15:0 
move to top 
and back to bottom 
use ASR to get sign extended version 

Get halfword to bits 31:16 
and back to bottom 
use ASR to get sign extended version 

Due to the pipelined architecture of the CPU, instructions overlap considerably. In a typical cycle one 
instruction may be using the data path while the next is being decoded and the one after that is being 
fetched. For this reason the following table presents the incremental number of cycles required by an 
instruction, rather than the total number of cycles for which the instruction uses part of the processor. 
Elapsed time (in cycles) for a routine may be calculated from these figures which are shown in Table 6: ARM 
Instruction Speed Summary. These figures assume that the instruction is actually executed. Unexecuted 
instructions take one instruction fetch cycle. 

64 



Instruction Set - Examples 

Instructicm I Cycle cuunt 

Data Processing - normal 
with register specified shift 
with PC written 
with register specified shift & PC written 

MSR,MRS 

LDR-normal 
if the destination is the PC 

STR 

LDM-normal 
if the destination is the PC 

STM 

1 instruction fetch 
1 instruction fetch and 1 internal cycle 
3 instruction fetches 
3 instruction fetches and 1 internal cycle 
1 instruction fetch 
1 instruction fetch, 1 data read and 1 internal cycle 
3 instruction fetches, 1 data read and 1 internal cycle 
1 instruction fetch and 1 data write 
1 instruction fetch, n data reads and 1 internal cycle 
3 instruction fetches, n data reads and 1 internal cycle 
1 instruction fetch and n data writes 

SWP 1 instruction fetch, 1 data read, 1 data write and 1 internal cycle 
B,BL 3 instruction fetches 
SWI, trap 3 instruction fetches 
MUL,MLA 1 instruction fetch and m internal cycles 
CDP the undefined instruction trap will be taken 
LDC the undefined instruction trap will be taken 
STC the undefined instruction trap will be taken 
MCR 1 instruction fetch and 3 internal cycles for cop roc 15 
MRC 1 instruction fetch and 3 internal cycles for coproc 15 

Table 6: ARM Instruction Speed Summary 

Where: 

n is the number of words transferred. 

m is the number of cycles required by the multiply algorithm, which is determined by the contents of 
Rs. Multiplication by any number between 2A(2m-3) and 2A(2m-1)-1 takes 15+mI cycles for 1 <m> 16. 
Multiplication by 0 or 1 takes 15+11 cycles, and multiplication by any number greater than or equal 
to 2A(29) takes 15+161 cycles. The maximum time for any multiply is thus 15+161 cycles. 

The time taken for: 

• an internal cycle - will always be one FCLK cycle 

• an instruction fetch and data read - will be FCLK if a cache hit occurs, otherwise a full memory 
access is performed. 

• a data write - will be FCLK if the write buffer (if enabled) has available space, otherwise the write 
will be delayed until the write buffer has free space. If the write buffer is not enabled a full memory 
access is always performed. 

• Co-processor cycles - all coprocessor operations except MCR or MRC to registers 0 to 7 on 
coprocessor #15 (used for internal control) will cause the undefined instruction trap to be taken. 

• memory accesses - can be found in the Bus Interface section. 

65 



ARM710 Data Sheet 

66 



Configuration 

5.0 Configuration 

The operation and configuration of ARM710 is controlled both directly via coprocessor instructions and 
indirectly via the Memory Management Page tables. The coprocessor instructions manipulate a number of 
on-chip registers which control the configuration of the Cache, write buffer, MMU and a number of other 
configuration options. 

To ensure backwards compatibility of future CPUs, all reserved or unused bits in registers and coprocessor 
instructions should be programmed to '0'. Invalid registers must not be read/written. The following bits 
shall be programmed to '0': 

Register 1 bits[31:11] 

Register 2 bits[13:0] 

Register 5 bits[31:0] 

Register 6 bits[11:0] 

Register 7 bits[31:0] 

Note: The grey areas in the register and translation diagrams are reserved and should be programmed 0 
for future compatibility. 

5.1 Internal Coprocessor Instructions 

The on-chip registers may be read using MRC instructions and written using MCR instructions. These 
operations are only allowed in non-user modes and the undefined instruction trap will be taken if accesses 
are attempted in user mode. 

31 28 27 

Cond 
CRn 
Rd 
n 

24 23 21 20 19 16 15 12 11 8 7 543 

Rd 

- ARM condition codes 
- ARM710 Register 
- ARM Register 
- 1 MRC register read 

o MCR register write 

Figure 32: Format of Internal Coprocessor Instructions MRC and MCR 

5.2 Registers 

o 

ARM710 contains registers which control the cache and MMU operation. These registers are accessed using 
CPRT instructions to Coprocessor #15 with the processor in a privileged mode. Only some of registers 0-7 
are valid: an access to an invalid register will cause neither the access nor an undefined instruction trap, and 
therefore should never be carried out; an access to any of the registers 8-15 will cause the undefined 
instruction trap to be taken. 

67 



ARM710 Data Sheet 

Register I Register Reads I Register Writes 

0 ID Register Reserved 

1 Reserved Control 

2 Reserved Translation Table Base 

3 Reserved Domain Access Control 

4 Reserved Reserved 

5 Fault Status FlushTLB 

6 Fault Address PurgeTLB 

7 Reserved FlushIDC 

8-15 Reserved Reserved 

Table 7: Cache & MMU control registers 

5.2.1 Register 0 ID 

Register 0 is a read-only identity register that returns the ARM Ltd code for this chip: Ox4100710x. 

31 24 23 16 15 4 3 0 

41 00 710 I Revision 

5.2.2 Register 1 Control 

Register 1 is write only and contains control bits. All bits in this register are forced LOW by reset. 

31 30 29 28 27 26 11 10 9 8 7 6 5 4 3 2 1 0 

101010101010101010101010101010101010101010 101 RI s IB 111DI P Iwlc IAIMI 
MBitO 

A Bit 1 

68 

Enable/disable 
o - on-chip Memory Management Unit turned off 
1 - on-chip Memory Management Unit turned on. 

Address Fault EnablelDisable 
o - alignment fault disabled 
1 - alignment fault enabled 



Configuration 

CBit2 

WBit3 

PBit4 

D BitS 

B Bit 7 

S Bit 8 

Cache EnablelDisable 
o -Instruction / data cache turned off 
1 - Instruction / data cache turned on 

Write buffer Enable/Disable 
o -Write buffer turned off 
1- Write buffer turned on 

ARM 32/26 Bit Program Space 
o -26 bit Program Space selected 
1 - 32 bit Program Space selected 

ARM 32/26 Bit Data Space 
0- 26 bit Data Space selected 
1 - 32 bit Data Space selected 

Big/Little Endian 
o -Little-endian operation 
1 - Big-endian operation 

System 
This bit controls the ARM710 permission system. Refer to Section 9.6: Section Descriptor on 

page 80. 

R Bit 9 ROM 
This bit controls the ARM710 permission system. Refer to Section 9.6: Section Descriptor on 

page 80. 

5.2.3 Register 2 Translation Table Base 

Register 2 is a write-only register which holds the base of the currently active Level One page table. 

31 14 13 o 

Translation Table Base 

5.2.4 Register 3 Domain Access Control 

Register 3 is a write-only register which holds the current access control for domains 0 to 15. See Section 9.13: 
Domain Access Control on page 88 for the access permission definitions and other details. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 o 

69 



ARM710 Data Sheet 

5.2.5 Register 4 Reserved 

Register 4 is Reserved. Accessing this register has no effect, but should never be attempted. 

5.2.6 Register 5 

Read: Fault Status 
Reading register 5 returns the status of the last data fault. It is not updated for a prefetch fault. See Chapter 
9.0: Memory Management Unit (MMU) for more details. Note that only the bottom 12 bits are returned. The 
upper 20 bits will be the last value on the internal data bus, and therefore will have no meaning. Bits 11:8 
are always returned as zero. 

31 12 11 8 7 4 3 o 

Status 

Write: Translation Lookaside Buffer Flush 
Writing Register 5 flushes the TLB. (The data written is discarded). 

5.2.7 Register 6 

Read: Fault Address 
Reading register 6 returns the virtual address of the last data fault. 

31 o 

Fault Address 

Write: TLB Purge 
Writing Register 6 purges the TLB; the data is treated as an address and the TLB is searched for a 
corresponding page table descriptor. If a match is found, the corresponding entry is marked as invalid. This 
allows the page table descriptors in main memory to be updated and invalid entries in the on-chip TLB to 
be purged without requiring the entire TLB to be flushed. 

31 14 13 o 

Purge Address 

5.2.8 Register 7 IDe Flush 

Register 7 is a write-only register. The data written to this register is discarded and the IDe is flushed. 

5.2.9 Registers 8 -15 Reserved 

Accessing any of these registers will cause the undefined instruction trap to be taken. 

70 



Instruction and Data Cache (IDC) 

6.0 Instruction and Data Cache (IDC) 

ARM710 contains a 8kByte mixed instruction and data cache. The IDC has 256 lines of 32 bytes (8 words), 
arranged as a 4 way set associative cache, and uses the virtual addresses generated by the processor core. 
The IDC is always reloaded a line at a time (8 words). It may be enabled or disabled via the ARM710 Control 
Register and is disabled on nRESET. The operation of the cache is further controlled the Cacheable, or C, bit 
stored in the Memory Management Page Table (see Chapter 9.0: Memory Management Unit (MMU).). For this 
reason, in order to use the IOC, the MMU must be enabled. The two functions may however be enabled 
simultaneously, with a single write to the Control Register. 

6.1 Cacheable Bit 

The Cacheable bit determines whether data being read may be placed in the IDC and used for subsequent 
read operations. Typically main memory will be marked as Cacheable to improve system performance, and 
I/O space as Non-cacheable to stop the data being stored in ARM710's cache. For example if the processor 
is polling a hardware flag in I/O space, it is important that the processor is forced to read data from the 
external peripheral, and not a copy of initial data held in the cache. The Cacheable bit can be configured for 
both pages and sections. 

6.2 IDC Operation 

In the ARM710 the cache will be searched regardless of the state of the C bit, only reads that miss the cache 
will be affected. 

6.2.1 Cacheable Reads C = 1 

A linefetch of 8 words will be performed and it will be randomly placed in a cache bank. 

6.2.2 Uncacheable Reads C = 0 

An external memory access will be performed and the cache will not be written. 

6.3 IDC validity 

The IOC operates with virtual addresses, so care must be taken to ensure that its contents remain consistent 
with the virtual to physical mappings performed by the Memory Management Unit. If the Memory 
Mappings are changed, the IDC validity must be ensured. 

6.3.1 Software IDC Flush 

The entire IDC may be marked as invalid by writing to the ARM710 IDC Flush Register (Register 7). The 
cache will be flushed immediately the register is written, but note that the following two instruction fetches 
may come from the cache before the register is written. 

71 



ARM710 Data Sheet 

6.3.2 Doubly mapped space 

Since the cache works with virtual addresses, it is assumed that every virtual address maps to a different 
physical address. If the same physical location is accessed by more than one virtual address, the cache 
cannot maintain consistency, since each virtual address will have a separate entry in the cache, and only 
one entry will be updated on a processor write operation. To avoid any cache inconsistencies, both doubly­
mapped virtual addresses should be marked as uncacheable. 

6.4 Read-Lock-Write 

The IDC treats the Read-Locked-Write instruction as a special case. The read phase always forces a read of 
external memory, regardless of whether the data is contained in the cache. The write phase is treated as a 
normal write operation (and if the data is already in the cache, the cache will be updated). Externally the 
two phases are flagged as indivisible by asserting the LOCK signal. 

6.S IDC EnablelDisable and Reset 

The IDC is automatically disabled and flushed on nRESET. Once enabled, cacheable read accesses will 
cause lines to be placed in the cache. 

6.5.1 To enable the IDC 

To enable the IDC, make sure that the MMU is enabled first by setting bit 0 in Control Register, then enable 
the IDC by setting bit 2 in Control Register. The MMU and IDe may be enabled simultaneously with a 
single control register write. 

6.5.2 To disable the IDe 

To disable the IDC clear bit 2 in the Control Register and perform a flush by writing to the flush register. 

72 



Write Buffer (WB) 

7.0 Write Buffer (WB) 

The ARM710 write buffer is provided to improve system performance. It can buffer up to 8 words of data, 
and 4 independent addresses. It may be enabled or disabled via the W bit (bit 3) in the ARM710 Control 
Register and the buffer is disabled and flushed on reset. The operation of the write buffer is further 
controlled by one bit, B, or Bufferable, which is stored in the Memory Management Page Tables. For this 
reason, in order to use the write buffer, the MMU must be enabled. The two functions may however be 
enabled simultaneously, with a single write to the Control Register. For a write to use the write buffer, both 
the W bit in the Control Register, and the B bit in the corresponding page table must be set. It is not possible 
to abort buffered writes externally; the abort pin will be ignored. 

7.1 Bufferable bit 

This bit controls whether a write operation mayor may not use the write buffer. Typically main memory 
will be bufferable and I/O space unbufferable. The Bufferable bit can be configured for both pages and 
sections. 

7.2 Write Buffer Operation 

When the CPU performs a write operation, the translation entry for that address is inspected and the state 
of the B bit determines the subsequent action. If the write buffer is disabled via the ARM710 Control 
Register, bufferable writes are treated in the same way as unbuffered writes. 

7.2.1 Bufferable Write 

If the write buffer is enabled and the processor performs a write to a bufferable area, the data is placed in 
the write buffer at FCLK speeds and the CPU continues execution. The write buffer then performs the 
external write in parallel. If however the write buffer is full (either because there are already 8 words of data 
in the buffer, or because there is no slot for the new address) then the processor is stalled until there is 
sufficient space in the buffer. 

7.2.2 Unbufferable Writes 

If the write buffer is disabled or the CPU performs a write to an unbufferable area, the processor is stalled 
until the write buffer empties and the write completes externally, which may require synchronisation and 
several external clock cycles. 

7.2.3 Read-Lock-Write 

The write phase of a read-lock-write sequence is treated as an Unbuffered write, even if it is marked as 
buffered. 

Note: A single write requires one address slot and one data slot in the write buffer; a sequential write of 
n words requires one address slot and n data slots. The total of 8 data slots in the buffer may be 
used as required. So for instance there could be 3 non-sequential writes and one sequential write of 
5 words in the buffer, and the processor could continue as normal: a 5th write or an 6th word in the 
4th write would stall the processor until the first write had completed. 

73 



ARM7'tO Data Sheet 

7.2.4 To enable the Write Buffer 

To enable the write buffer, ensure the MMU is enabled by setting bit 0 in the Control Register, then enable 
the write buffer by setting bit 3 in the Control Register. The MMU and write buffer may be enabled 
simultaneously with a single write to the Control Register. 

7.2.5 To disable the Write Buffer 

To disable the write buffer, clear bit 3 in the Control Register. 

Note: Any writes already in the write buffer will complete normally. 

74 



Coprocessors 

8.0 Coprocessors 

ARM710 has no external coprocessor bus, so it is not possible to add external coprocessors to this device. If 
this is required, then the ARM700 should be used. 

ARM710 still has an internal coprocessor designated #15 for internal control of the device. All coprocessor 
operations except MCR or MRC to registers 0 to 7 on coprocessor #15 will cause the undefined instruction 
trap to be taken. 

75 



ARM710 Data Sheet 

76 



Memory Management Unit (MMU) 

9.0 Memory Management Unit (MMU) 

The MMU performs two primary functions: it translates virtual addresses into physical addresses, and it 
controls memory access permissions. The MMU hardware required to perform these functions consists of 
a Translation Look-aside Buffer (TLB), access control logic, and translation table walking logic. 

The MMU supports memory accesses based on Sections or Pages. Sections are comprised of 1MB blocks of 
memory. Two different page sizes are supported: Small Pages consist of 4kB blocks of memory and Large 
Pages consist of 64kB blocks of memory. (Large Pages are supported to allow mapping of a large region of 
memory while using only a single entry in the TLB). Additional access control mechanisms are extended 
within Small Pages to lkB Sub-Pages and within Large Pages to 16kB Sub-Pages. 

The MMU also supports the concept of domains - areas of memory that can be defined to possess individual 
access rights. The Domain Access Control Register is used to specify access rights for up to 16 separate 
domains. 

The TLB caches 64 translated entries. During most memory accesses, the TLB provides the translation 
information to the access control logic. 

If the TLB contains a translated entry for the virtual address, the access control logic determines whether 
access is permitted. If access is permitted, the MMU outputs the appropriate physical address 
corresponding to the virtual address. If access is not permitted, the MMU signals the CPU to abort. 

If the TLB misses (it does not contain a translated entry for the virtual address), the translation table walk 
hardware is invoked to retrieve the translation information from a translation table in physical memory. 
Once retrieved, the translation information is placed into the TLB, possibly overwriting an existing value. 
The entry to be overwritten is chosen by cycling sequentially through the TLB locations. 

When the MMU is turned off (as happens on reset), the virtual address is output directly onto the physical 
address bus. 

9.1 MMU Program Accessible Registers 

The ARM710 Processor provides several 32-bit registers which determine the operation of the MMU. The 
format for these registers is shown in Figure 33: MMU Register Summary. A brief description of the registers 
is provided below. Each register will be discussed in more detail within the section that describes its use. 

Data is written to and read from the MMU's registers using the ARM CPU's MRC and MCR coprocessor 
instructions. 

The Translation Table Base Register holds the physical address of the base of the translation table 
maintained in main memory. Note that this base must reside on a 16kB boundary. 

The Domain Access Control Register consists of sixteen 2-bit fields, each of which defines the 
access permissions for one of the sixteen Domains (DI5-DO). 

77 



ARM710 Data Sheet 

Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 write 

2 write 

3 write 

5 read 

5 write 

6 read 

6 write 

001 010101 , .. Control 
. lORiS BI1IDIp wlCIAIM 

Translation Table Base I I I I I I Domain Access Control 
15 14 13 12 11 10 I 9 I 8 I 7 I 6 I 5 4 

.. , 
Fault Status 

., . 
1010 010 , 

Flush TLB 

Fault Address 

Purge Address I 

Figure 33: MMU Register Summary 

Note: The registers not shown are reserved and should not be used. 

.. 

3 I 2 1 I 0 

Domain Status 

The Fault Status Register indicates the domain and type of access being attempted when an abort 
occurred. Bits 7:4 specify which of the sixteen domains (D15-DO) was being accessed when a fault 
occurred. Bits 3:1 indicate the type of access being attempted. The encoding of these bits is different 
for internal and external faults (as indicated by bit 0 in the register) and is shown in Table 11: Priority 
Encoding of Fault Status. A write to this register flushes the TLB. 

The Fault Address Register holds the virtual address of the access which was attempted when a 
fault occurred. A write to this register causes the data written to be treated as an address and, if it 
is found in the TLB, the entry is marked as invalid. (This operation is known as a TLB purge). The 
Fault Status Register and Fault Address Register are only updated for data faults, not for prefetch 
faults. 

9.2 Address Translation 

The MMU translates virtual addresses generated by the CPU into physical addresses to access external 
memory, and also derives and checks the access permission. Translation information, which consists of 
both the address translation data and the access permission data, resides in a translation table located in 
physical memory. The MMU provides the logic needed to traverse this translation table, obtain the 
translated address, and check the access permission. 

There are three routes by which the address translation (and hence permission check) takes place. The route 
taken depends on whether the address in question has been marked as a section-mapped access or a page­
mapped access; and there are two sizes of page-mapped access (large pages and small pages). However, 
the translation process always starts out in the same way, as described below, with a Level One fetch. A 
section-mapped access only requires a Level One fetch, but a page-mapped access also requires a Level Two 
fetch. 

78 



Memory Management Unit (MMU~ 

9.3 Translation Process 

9.3.1 Translation Table Base 

The translation process is initiated when the on-chip TLB does not contain an entry for the requested virtual 
address. The Translation Table Base (TTB) Register points to the base of a table in physical memory which 
contains Section and/or Page descriptors. The 14 low-order bits of the TTB Register are set to zero as 
illustrated in Figure 34: Translation Table Base Register; the table must reside on a 16kB boundary. 

31 14 13 o 

Translation Table Base 

Figure 34: Translation Table Base Register 

9.3.2 Level One Fetch 

Bits 31:14 of the Translation Table Base register are concatenated with bits 31:20 of the virtual address to 
produce a 3D-bit address as illustrated in Figure 35: Accessing the Translation Table First Level Descriptors. This 
address selects a four-byte translation table entry which is a First Level Descriptor for either a Section or a 
Page (bin of the descriptor returned specifies whether it is for a Section or Page). 

Virtual Address 
31 20 19 0 

I Table Index I Section Index ] 
I 

Translation Table Base 
31 14 13 0 

I Translation Base I I 

/ V 18 
1)-

i / 
31 ,Ir 14 13 210 

rl Translation Base I Table Index 1 01 oJ 

First Level Descriptor 
31 0 

~ I 

Figure 35: Accessing the Translation Table First Level Descriptors 

79 



ARM710 Data Sheet 

9.4 Level One Descriptor 

The Level One Descriptor returned is either a Page Table Descriptor or a Section Descriptor, and its format 
varies accordingly. The following figure illustrates the format of Level One Descriptors. 

31 20 19 12111098 5 4 3 2 1 0 
.. . 

:. .. .. . .. 0 0 

Page Table Base Address : Domain 1 0 1 

I lAP 
... 

CIB Section Base Address Domain 1 1 0 

1 1 

Figure 36: Level One Descriptors 

Fault 

Page 

Section 

Reserved 

The two least significant bits indicate the descriptor type and validity, and are interpreted as shown below. 

\ alut' I 1\ It'allill~ I Notes 

o 0 Invalid Generates a Section Translation Fault 

o 1 Page Indicates that this is a Page Descriptor 

1 0 Section Indicates that this is a Section Descriptor 

1 1 Reserved Reserved for future use 

Table 8: Interpreting Level One Descriptor Bits [1:0] 

9.5 Page Table Descriptor 

Bits 3:2 are always written as o. 

Bit 4 should be written to 1 for backward compatibility. 
Bits 8:5 specify one of the sixteen possible domains (held in the Domain Access Control Register) that 
contain the primary access controls. 

Bits 31:10 form the base for referencing the Page Table Entry. (The page table index for the entry is derived 
from the virtual address as illustrated in Figure 39: Small Page Translation). 

If a Page Table Descriptor is returned from the Level One fetch, a Level Two fetch is initiated as described 
below. 

80 



Memory Management Unit (MMU) 

9.6 Section Descriptor 

Bits 3:2 (C, &: B) control the cache- and write-buffer-related functions as follows: 

C - Cacheable: indicates that data at this address will be placed in the cache (if the cache is enabled). 

B - Bufferable: indicates that data at this address will be written through the write buffer (if the write buffer 
is enabled). 

Bit 4 should be written to 1 for backward compatibility. 

Bits 8:5 specify one of the sixteen possible domains (held in the Domain Access Control Register) that 
contain the primary access controls. 

Bits 11:10 (AP) specify the access permissions for this section and are interpreted as shown in Table 9: 
Interpreting Access Permission (AP) Bits. Their interpretation is dependent upon the setting of the 5 and R bits 
(control register bits 8 and 9). Note that the Domain Access Control specifies the primary access control; the 
AP bits only have an effect in client mode. Refer to section on access permissions. 

00 0 0 No Access No Access Any access generates a permission fault 

00 0 Read Only No Access Supervisor read only permitted 

00 0 1 Read Only Read Only Any write generates a permission fault 

00 1 Reserved 

01 x x ReadIWrite No Access Access allowed only in Supervisor mode 

10 x x ReadIWrite Read Only Writes in User mode cause permission fault 

11 x x ReadIWrite ReadlWrite All access types permitted in both modes. 

xx Reserved 

Table 9: Interpreting Access Permission (AP) Bits 

Bits 19:12 are always written as O. 

Bits 31:20 form the corresponding bits of the physical address for the 1MByte section. 

81 



ARM710 Data Sheet 

9.7 Translating Section References 

Figure 37: Section Translation illustrates the complete Section translation sequence. Note that the access 
permissions contained in the Level One Descriptor must be checked before the physical address is 
generated. The sequence for checking access permissions is described below. 

Virtual Address 

31 20 19 o 

I Table Index 
1 

Section Index 
1 

I 

Translation Table Base 
31 14 13 0 

1 
Translation Base 

1 1 

V 18 
12 

/ / 
/ 

31 
, 

14 13 '. 2 1 0 

r-1 Translation Base 
1 

Table Index 
1 0 1 0 1 

First Level Descriptor 

31 20 19 12 11 10 9 8 5 4 3 2 1 0 

~ Section Base Address I I API I Domain I IclBltlol 

/12 
20 

/ Physical Address 
/ 

+ 
/ 

31 r 20 19 0 

r Section Base Address I Section Index J 

Figure 37: Section Translation 

82 



Memory Management Unit (MMU) 

9.8 Level Two Descriptor 

If the Level One fetch returns a Page Table Descriptor, this provides the base address of the page table to 
be used. The page table is then accessed as described in Figure 39: Small Page Translation, and a Page Table 
Entry, or Level Two Descriptor, is returned. This in turn may define either a Small Page or a Large Page 
access. The figure below shows the format of Level Two Descriptors. 

31 20 19 16 15 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 

Large Page Base Address I ap3 ap2 apl apO C B 0 1 

Small Page Base Address ap3 ap2 apl apO C B 1 0 

1 1 

Figure 38: Page Table Entry (Level Two descriptor) 

Fault 

Large Page 

Small Page 

Reserved 

The two least significant bits indicate the page size and validity, and are interpreted as follows. 

Yalne I I\leaning I Noles 

00 Invalid Generates a Page Translation Fault 

01 Large Page Indicates that this is a 64 kB Page 

10 Small Page Indicates that this is a 4 kB Page 

1 1 Reserved Reserved for future use 

Table 10: Interpreting Page Table Entry Bits 1:0 

Bit 2 B - Bufferable: indicates that data at this address will be written through the write buffer (if the write 
buffer is enabled). 

Bit 3 C - Cacheable: indicates that data at this address will be placed in the IDC (if the cache is enabled). 

Bits 11:4 specify the access permissions (ap3 - apO) for the four sub-pages and interpretation of these bits is 
described earlier in Table 8: Interpreting Level One Descriptor Bits [1:0J. 

For large pages, bits 15:12 are programmed as O. 

Bits 31:12 (small pages) or bits 31:16 (large pages) are used to form the corresponding bits of the physical 
address - the physical pa~e number. (The page index is derived from the virtual address as illustrated in 
Figure 39: Small Page Translation and Figure 40: Large Page Translation). 

83 



ARM710 Data Sheet 

9.9 Translating Small Page References 

Figure 39: Small Page Translation illustrates the complete translation sequence for a 4kB Small Page. Page 
translation involves one additional step beyond that of a section translation: the Level One descriptor is the 
Page Table descriptor, and this is used to point to the Level Two descriptor, or Page Table Entry. (Note that 
the access permissions are now contained in the Level Two descriptor and must be checked before the 
physical address is generated. The sequence for checking access permissions is described later). 

Virtual Address 
31 20 19 12 11 o 

I 
Table Index I L2 Table Index 

I 
Page Index 

I 12 

l 8/ 
I / 

/ 
12/ / 

/ 
Translation Table Base 

31 14 13 0 

1 
Translation Base 

I 1 

/ V 18 

• 31 ,r 14 13 2 1 0 

i1 Translation Base 
I 

Table Index 
1 0 10 1 

First Level Descriptor 
31 10 9 8 5 4 2 1 0 

~ Page Table Base Address 1 .·1 Domain 1 .1 10 11 1 

31 ,r 10 9 • 210 

rl Page Table Base Address 
1 

L2 Table Index 
1 0 10 1 

Second Level Descriptor 
31 12 11 W 9 8 7 654 3 2 1 0 ., Page Base Address 1 ap3\ ap2 1 apl 1 apO \ C I Bill 0 \ 

I 

Physical Address 

• 31 12 11 0 

I 
Page Base Address I Page Index 

I 

Figure 39: Small Page Translation 

84 



Memory Management Unit (MMU) 

9.10 Translating Large Page References 

Figure 40: Large Page Translation illustrates the complete translation sequence for a 64 kB Large Page. Note 
that since the upper four bits of the Page Index and low-order four bits of the Page Table index overlap, 
each Page Table Entry for a Large Page must be duplicated 16 times (in consecutive memory locations) in 
the Page Table. 

Virtual Address 
31 20 19 16 15 12 11 o 

I Table Index I L2 Table ~dex I Page Index I 12 

I 8/ 
I L 

/ 
12/ / 

/ 
Translation Table Base 

31 14 13 0 

I Translation Base I I 
/ 

/18 

t_ 31 1 14 13 2 1 0 

-1 Translation Base 
1 

Table Index 
1 0 1 0 1 

First Level Descriptor 
31 10 9 8 5 4 2 1 0 

~ Page Table Base Address I J Domain J I 1 0 11 1 

31 l' 10 9 • 2 1 0 

~ Page Table Base Address I L2 Table Index 10 10 1 

Second Level Descriptor 
31 16 15 12 11 10 9 8 7 6 5 4 3 2 1 0 

~ Page Base Address 
I I ap3 1 ap2\ ap1 I apO I c I B I 0 111 

Physical Address ,r • 31 16 15 0 

I Page Base Address 
I 

Page Index 
I 

Figure 40: Large Page Translation 

85 



ARM710 Data Sheet 

9.11 MMU Faults and CPU Aborts 

The MMU generates four types of faults: 

Alignment Fault 
Translation Fault 
Domain Fault 
Permission Fault 

In addition, an external abort may be raised on external data access. 

The access control mechanisms of the MMU detect the conditions that produce these faults. If a fault is 
detected as the result of a memory access, the MMU will abort the access and signal the fault condition to 
the CPU. The MMU is also capable of retaining status and address information about the abort. The CPU 
recognises two types of abort: data aborts and prefetch aborts, and these are treated differently by the 
MMU. 

If the MMU detects an access violation, it will do so before the external memory access takes place, and it 
will therefore inhibit the access. External aborts will not necessarily inhibit the external access, as described 
in the section on external aborts. 

9.12 Fault Address & Fault Status Registers (FAR & FSR) 

Aborts resulting from data accesses (data aborts) are acted upon by the CPU immediately, and the MMU 
places an encoded 4 bit value FS[3:0), along with the 4 bit encoded Domain number, in the Fault Status 
Register (FSR). In addition, the virtual processor address which caused the data abort is latched into the 
Fault Address Register (FAR). If an access violation simultaneously generates more than one source of 
abort, they are encoded in the priority given in Table 11: Priority Encoding oj Fault Status. 

CPU instructions on the other hand are prefetched, so a prefetch abort simply flags the instruction as it 
enters the instruction pipeline. Only when (and if) the instruction is executed does it cause an abort; an 
abort is not acted upon if the instruction is not used (i.e. it is branched around). Because instruction prefetch 
aborts mayor may not be acted upon, the MMU status information is not preserved for the resulting CPU 
abort; for a prefetch abort, the MMU does not update the FSR or FAR. 

The sections that follow describe the various access permissions and controls supported by the MMU and 
detail how these are interpreted to generate faults. 

86 



Memory Management Unit (MMU) 

SOlllTI' I<SI_~2101 nomainl3:0 I F,\I{ 

----------------------
Highesr Bus Error (linefetch) Section 0100 valid valid 

Page 0110 valid valid 

Bus Error (other) Section 1000 valid valid 

Page 1010 valid valid 

Alignment ooxl x valid 

Bus Error (translation) levell 1100 x valid 

level2 1110 valid valid 

Translation Section 0101 Note 2 valid 

Page 0111 valid valid 

Domain Section 1001 valid valid 

Page 1011 valid valid 

Permission Section 1101 valid valid 

Lowesr Page 1111 valid valid 

Table 11: Priority Encoding of Fault Status 

x is undefined, and may read as 0 or 1 

Notes: 

(1) Any abort masked by the priority encoding may be regenerated by fixing the primary abort and 
restarting the instruction. 

(2) In fact this register will contain bits[8:5] of the Levell entry which are undefined, but would encode 
the domain in a valid entry. 

87 



ARM710 Data Sheet 

9.13 Domain Access Control 

MMU accesses are primarily controlled via domains. There are 16 domains, and each has a 2-bit field to 
define it. Two basic kinds of users are supported: Clients and Managers. Clients use a domain; Managers 
control the behaviour of the domain. The domains are defined in the Domain Access Control Register. 
Figure 41: Domain Access Control Register Format illustrates how the 32 bits of the register are allocated to 
define the sixteen 2-bit domains. 

31 30 29 28 27 26 2S 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

15 14 13 12 I 11 I 10 I 9 I 8 I 7 I 6 I 5 I 4 I 3 2 1 o 

Figure 41: Domain Access Control Register Format 

Table 12: Interpreting Access Bits in Domain Access Control Register defines how the bits within each domain 
are interpreted to specify the access permissions. 

88 

\allll~ I 1\ Iealli1Ig: I Notes 

00 

01 

10 

11 

No Access 

Client 

Reserved 

Manager 

Any access will generate a Domain Fault. 

Accesses are checked against the access permission bits in the Section or Page 
descriptor. 

Reserved. Currently behaves like the no access mode. 

Accesses are NOT checked against the access Permission bits so a Permission 
fault cannot be generated. 

Table 12: Interpreting Access Bits in Domain Access Control Register 



Memory Management Unit (MMU) 

9.14 Fault Checking Sequence 

The sequence by which the MMU checks for access faults is slightly different for Sections and Pages. The 
figure below illustrates the sequence for both types of accesses. The sections and figures that follow describe 
the conditions that generate each of the faults. 

Section 
Translation 

Fault 

Section 
Domain 

Fault 

Section 
Permission 

Fault 

Virtual Address 

Check Address Alignment 

get Level One Descriptor 

Section 

Figure 42: Sequence for Checking Faults 

Alignment 
Fault 

Page 
Transration 

Fault 

Page 
Domain 

Fault 

sub-Page 
Permission 

Fault 

89 



ARM710 Data Sheet 

9.14.1 Alignment Fault 

If Alignment Fault is enabled (bit 1 in Control Register set), the MMU will generate an alignment fault on 
any data word access the address of which is not word-aligned irrespective of whether the MMU is enabled 
or not; in other words, if either of virtual address bits [1:0] are not O. Alignment fault will not be generated 
on any instruction fetch, nor on any byte access. Note that if the access generates an alignment fault, the 
access sequence will abort without reference to further permission checks. 

9.14.2 Translation Fault 

There are two types of translation fault: section and page. 

(1) A Section Translation Fault is generated if the Level One descriptor is marked as invalid. This 
happens if bits[I:O] of the descriptor are both 0 or both 1. 

(2) A Page Translation Fault is generated if the Page Table Entry is marked as invalid. This happens if 
bits[I:O] of the entry are both 0 or both 1. 

9.14.3 Domain Fault 

There are two types of domain fault: section and page. In both cases the Level One descriptor holds the 4-
bit Domain field which selects one of the sixteen 2-bit domains in the Domain Access Control Register. The 
two bits of the specified domain are then checked for access permissions as detailed in Table 9: Interpreting 
Access Permission (AP) Bits. In the case of a section, the domain is checked once the Level One descriptor is 
returned, and in the case of a page, the domain is checked once the Page Table Entry is returned. 

If the specified access is either No Access (00) or Reserved (10) then either a Section Domain Fault or Page 
Domain Fault occurs. 

9.14.4 Permission Fault 

There are two types of permission fault: section and sub-page. Permission fault is checked at the same time 
as Domain fault. If the 2-bit domain field returns client (01), then the permission access check is invoked as 
follows: 

90 

section: 

If the Level One descriptor defines a section-mapped access, then the AP bits of the descriptor 
define whether or not the access is allowed according to Table 9: Interpreting Access Permission (AP) 
Bits. Their interpretation is dependent upon the setting of the S bit (Control Register bit 8). If the 
access is not allowed, then a Section Permission fault is generated. 

sub-page: 

If the Level One descriptor defines a page-mapped access, then the Level Two descriptor specifies 
four access permission fields (ap3 .. apO) each corresponding to one quarter of the page. Hence for 
small pages, ap3 is selected by the top IkB of the page, and apO is selected by the bottom IkB of the 
page; for large pages, ap3 is selected by the top I6kB of the page, and apO is selected by the bottom 
I6kB of the page. The selected AP bits are then interpreted in exactly the same way as for a section 
(see Table 9: Interpretillg Access Permission (AP) Bits), the only difference being that the fault 
generated is a sub-page permission fault. 



Memory Management Unit (MMU) 

9.15 External Aborts 

In addition to the MMU-generated aborts, ARM710 has an external abort pin which may be used to flag an 
error on an external memory access. However, not all accesses can be aborted in this way, so this pin must 
be used with great care. The following section describes the restrictions. 

The following accesses may be aborted and restarted safely. If any of the following are aborted the external 
access will cease on the next cycle. In the case of a read-lock-write sequence in which the read aborts, the 
write will not happen. 

Reads 

Unbuffered writes 

Level One descriptor fetch 

Level Two descriptor fetch 

read-lock-write sequence 

Cacheable reads (line fetches) 
A linefetch may be safely aborted on any word in the transfer. If an abort occurs during the linefetch then 
the cache will be purged, so it will not contain invalid data. If the abort happens on a word that has been 
requested by the ARM710, it will be aborted, otherwise the cache line will be purged but program flow will 
not be interrupted. The line is therefore purged under all circumstances. 

Buffered writes. 
Buffered writes cannot be externally aborted. Therefore, the system should be configured such that it does 
not do buffered writes to areas of memory which are capable of flagging an external abort. 

9.16 Interaction of the MMU, IDC and Write Buffer 

The MMU, IOC and WB may be enabled/disabled independently. However there are only five valid 
combinations. There are no hardware interlocks on these restrictions, so invalid combinations will cause 
undefined results. 

I\II\1U I IDe I \VB 

off off off 

on off off 

on on off 

on off on 

on on on 

Table 13: Valid MMU, IDC & Write Buffer Combinations 

The following procedures must be observed. 

91 



ARM710 Data Sheet 

To enable the MMU: 

(1) 
(2) 
(3) 

Program the Translation Table Base and Domain Access Control Registers 
Program Levell and Level 2 page tables as required 
Enable the MMU by setting bit 0 in the Control Register. 

Note: 

Care must be taken if the translated address differs from the untranslated address as the two instructions 
following the enabling of the MMU will have been fetched using "flat translation" and enabling the MMU 
may be considered as a branch with delayed execution. A similar situation occurs when the MMU 
is disabled. Consider the following code sequence: 

MOV 
MeR 
Fetch Flat 
Fetch Flat 
Fetch Translated 

To disable the MMU 

Rl, #Oxl 
lS,O,Rl,O,O 

(1) Disable the WB by clearing bit 3 in the Control Register. 
(2) Disable the IDC by clearing bit 2 in the Control Register. 
(3) Disable the MMU by clearing bit 0 in the Control Register. 

Note: 

Enable MMtJ 

If the MMU is enabled, then disabled and subsequently re-enabled the contents of the TLB will have been 
preserved. If these are now invalid, the TLB should be flushed before re-enabling the MMU. 

Disabling of all three functions may be done simultaneously. 

9.17 Effect of Reset 

See Section 3.5: Reset on page 18. 

92 



Bus Interface 

10.0 Bus Interface 

The ARM710 has two input clocks FCLK and MCLK. The bus interface is always controlled by MCLK. The 
core CPU switches between these two clocks according to the operation being carried out. For example, if 
the core CPU is reading data from the cache it will be clocked by FCLK whereas if the core CPU is reading 
data from uncached external memory then it will be clocked by MCLK. The ARM710 control logic ensures 
that the correct clock is used internally and switches between the two clocks automatically. At all times 
FCLK must be greater than or equal to MCLK in frequency. 

The ARM710 bus interface has two distinct modes of operation: synchronous and asynchronous, which are 
selected by tying SnA either ffiGH or LOW. The two modes differ in the relationship between FCLK and 
MCLK: 

• in asynchronous mode (SnA LOW) the clocks may be completely asynchronous and of unrelated 
frequency 

• in synchronous mode(SnA ffiGH) MCLK may only make transitions before the falling edge of 
FCLK. 

In systems where a satisfactory relationship exists between FCLK and MCLK, synchronization penalties 
can be avoided by selecting the synchronous mode of operation. 

10.1 Asynchronous Mode 

In this mode FCLK and MCLK may be completely asynchronous. This mode should be selected, by tying 
SnA LOW, when the two clocks are of unrelated frequency. There is a synchronisation penalty whenever 
the internal core clock switches between the two input clocks. This penalty is symmetric, and varies 
between nothing and a whole period of the clock to which the core is resynchronising. Thus when changing 
from FCLK to MCLK the average resynchronisation penalty is half a MCLK period, and similarly when 
changing from MCLK to FCLK it is half a FCLK period. 

10.2 Synchronous Mode 

In this mode, selected by tying SnA ffiGH, there is a tightly defined relationship between FCLK and 
MCLK. MCLK may only make transitions on the falling edge of FCLK. Some jitter between the two clocks 
is permitted, but MCLK must not be later than FCLK. Refer to Section 12.2: DC Operating Conditions on page 
115. 

10.3 ARM710 Cycle Speed 

The bus interface is controlled by MCLK, and all timing parameters are referenced with respect to this 
clock. The speed of the memory may be controlled in one of two ways. 

1) The LOW and ffiGH phases of the clock may be stretched 

2) n WAIT can be used to insert entire MCLK cycles into the access. When LOW, this signal maintains 
the LOW phase of the cycle by gating out MCLK. nW AIT may only change when MCLK is LOW. 
See Section 10.15: Use of the nWAlT pin on page 100. 

93 



ARM710 Data Sheet 

10.4 Cycle Types 

There are two basic cycle types performed by an ARM710. These are idle cycles and memory cycles. Idle 
cycles and memory cycles are combined to perform memory accesses. The two cycle types are differentiated 
by the signal nMREQ. (SEQ is the inverse of nMREQ, and is provided for backwards compatibility with 
earlier memory controllers). nMREQ HIGH indicates an idle cycle, and nMREQ LOW indicates a memory 
access. However, nMREQ is pipelined, and so its value determines what type the following cycle will be. 
nMREQ becomes valid during the LOW phase of the cycle before the one to which it refers. 

The address from ARM710 becomes valid during the HIGH phase of MCLK. It is also pipelined, and its 
value refers to the following memory access. 

10.5 Memory Access 

There are two types of memory access. These are non-sequential and sequential. The non-sequential cycles 
occur when a new memory access takes place. Sequential cycles occur when the cycle is of the same type 
as, and the address of is 1 word (4 bytes) greater than, the previous access. So for example, a single word 
access consists of a non-sequential access, and a two word access consists of a non-sequential access 
followed by a sequential access. 

Non-sequential accesses consist of an idle cycle followed by a memory cycle, and sequential accesses consist 
simply of a memory cycle. In the case of a non-sequential access, the address is valid throughout the idle 
cycle, allowing extra time for memory decoding. 

10.6 ReadIWrite 

Memory accesses may be read or write, differentiated by the signal nRW. This signal has the same timing 
as the address, so is likewise pipelined, and refers to the following cycle. In the case of a write, the 
ARM710 outputs data on the data bus during the memory cycle. It becomes valid during MCLK LOW, and 
is held until the end of the cycle. In the case of a read, then data is sampled at the end of the memory cycle. 
nRW may not change during a sequential access, so if a read from address A is followed immediately be a 
write to address (A+4), then the write to address (A+4) would be a non-sequential access. 

10.7 BytelWord 

Likewise, any memory access may be of a word or a byte quantity. These are differentiated by the signal 
nBW, which also has the same timing as the address, ie it becomes valid in the HIGH phase of MCLK in 
the cycle before the one to which it refers. nBW LOW indicates a byte access. Again, nBW may not change 
during sequential accesses. 

10.8 Maximum Sequential Length 

As explained above, the ARM710 will perform sequential memory accesses whenever the cycle is of the 
same type (ie byte/word, read/write) as the previous cycle, and the addresses are consecutive. However, 
sequential accesses are interrupted on a 256 word boundary. This is to allow the MMU to check the 
translation protection as the address crosses a sub-page boundary. If a sequential access is performed over 
a 256 word boundary, the access to word 256 is simply turned into a non-sequential access, and then further 
accesses continue sequentially as before. 

94 



MCLK 

A[31:0] 

nMREO 

nRW,nBW 

0[31:0] 
WRITE 

0[31:0] 
REAO 

MCLK 

A[31:0] 

nMREO 

nRW, nBW 

0[31:0] 
WRITE 

0[31:0] 
REAO 

Bus Interface 

~~--~><~~------------~----~-----------------

--~--~><~----------------------------~----~---
----------~------~(~ ____ ~)r----------------~---

--~----~----------<==>~~----~----~--

Figure 43: One word Read or Write 

------~><~-. ------------~------~------------~--
--------~----~(~ ____ .~x . )~------------
-------------------<==>---<==>--~------~-

Figure 44: Two Word Sequential Read or Write 

95 



ARM710 Data Sheet 

MCLK 

A[31:0] 

nMREQ 

nRW,nBW 

0[31:0] 
WRITE 

0[31:0] 
READ 

MCLK 

A[31:0] 

nMREQ 

nRW, nBW 

0[31:0] 
WRITE 

96 

_.-..;.._----'x i a1 Xa2 

__ .-..;.. __ ~)(~~i ______ .-..;.._~)(~~. __ .-..;.. _____ ~ __ 

--~------------~(~----~. )~--~----~~(~--~~>--

--~----------~CJ) CJ)~-----

Figure 45: Two Word Non-Sequential Unbuffered accesses 

__ ---.,.-_~X: a1 X a2 

-~-~)(~~. -------.,.---~)(~--------~----~--
--~----~------~(~----~)~----~:(~----~)~--~---

Figure 46: Two Word Non-Sequential Buffered Writes 



Bus Interface 

10.9 Memory Access Types 

ARM710 performs many different bus accesses, and all are constructed out of combinations of non­
sequential and sequential accesses. There may be any number of idle cycles between two other memory 
accesses. If a memory access is followed by an idle period on the bus (as opposed to another non-sequential 
access), then the address, and the signal nRW and nBW will remain at their previous value in order to avoid 
unnecessary bus transitions. 

The accesses performed by an ARM710 are: 

Unbuffered Write 

Uncached Read 

Buffered Write 

Linefetch 

Levell translation fetch 

Level 2 translation fetch 

Read-Lock-Write sequence 

10.10 Unbuffered Writes I Uncacheable Reads 

These are the most basic access types. Apart from the difference between read and write, they are the same. 
Each may consist of a single (LDR/STR) or multiple (LDM/STM) access. A multiple access consists of a 
non-sequential access followed by a sequential access. These cycles always reflect the type (ie read/write, 
byte/word) of the instruction requesting the cycle. 

10.11 Buffered Write 

The external bus cycle of a buffered write is identical to and indistinguishable from the bus cycle of an 
unbuffered write. These cycles always reflect the type (byte/word) of the instruction requesting the cycle. 
Note that if several write accesses are stored concurrently within the write buffer, then each access on the 
bus will start with a non-sequential access. 

10.12 Linefetch 

This access appears on the bus as a non-sequential access followed by seven sequential accesses. Note that 
linefetch accesses always start on an 8-word boundary, and are always word accesses. So if the instruction 
which caused the linefetch was a byte load instruction (eg LDRB), then the linefetch access will be a word 
access on the bus. Figure 47: Linefetch shows the start of a linefetch. 

MCLK 

A[31 :0] 

nMREQ 

0[31 :0] 
READ 

a a+4 a+8 a+16 

Figure 47: Linefetch 

97 



ARM710 Data Sheet 

A linefetch may be safely aborted on any word in the transfer. If an abort occurs during the linefetch then 
the cache will be purged, so it will not contain invalid data. If the abort happens on a word that has been 
requested by the ARM710, it will be aborted, otherwise the cache line will be purged but program flow will 
not be interrupted. The line is therefore purged under all circumstances. 

10.13 Translation fetches 

These accesses are required to obtain the translation data for an access. There are two types, Levell & Level 
2. A Levell access is required for a section-mapped memory location, and a Level 2 access is required for 
a page mapped memory location. A Level 2 access is always preceded by a Levell access. Note that these 
translation fetches are often immediately followed by a data access. In fact the translation fetch held up the 
data access because the translation was not contained in the Translation Lookaside Buffer (TLB). 
Translation fetches are always read word accesses. So if a byte or write (or both) access was not possible 
because the address was not contained in the TLB, then the access would be preceded by the translation 
fetch(es) which would always be word read accesses. 

MCLK 

A[31:0] 

nMREQ 

nRW 

0[31:0] 
READ 

0[31:0] 
WRITE 

MCLK 

A[31 :0] 

nMREQ 

nRW 

0[31 :0] 
READ 

0[31 :0] 
WRITE 

98 

Level 1 Address Level 2 Address PhYSical Address 

Page Table Descriptor Page Table Entry 
----.-G)>-----G)>--~-----

____ ~--------------~----------------~w~n~·t~e~D~m~a(~ __ ~>__ 

Figure 48: Translation Table-walking Sequence (write) For Page 

______ ---'x Level 1 Address Physical Address 

Section Descriptor 
--------------~G)~--~.------------------~--
____ ~ __________ ~ ___________ .~w~r~ite~D~a~t~a(~ __ ~)~--~--------

Figure 49: Translation Table-walking Sequence (write) For Section 



Bus Interface 

10.14 Read - lock -write 

The read-lock-write sequence is generated by a SWP instruction. On the bus it consists of a read access 
followed by a write access to the same address, and both are treated as non-sequential accesses. The cycle 
is differentiated by the LOCK signal. LOCK has the timing of address, ie it goes ffiGH in the ffiGH phase 
of MCLK at the start of the read access. However, it always goes LOW at the end of the write access. 

The read cycle will always be performed as a single non-sequential external read cycle, regardless of the 
contents of the cache. The write will be forced to be unbuffered, so that it can be aborted if necessary. The 
cache will be updated on the write. 

MCLK 

A[31:0] 

nMREQ 

LOCK 

nRW 

0[31 :0] 

MCLK 

A[31:0] 

nMREQ 

nWAIT 

0[31:0] 
Read 

0[31:0] 
Write 

____ ---'x address 

Figure 50: Read - Locked - Write 

____ -"x a x · a+4 X,-;...;· a;;,..+..;..8 ____ -'X'-__ 

il L... __ --I 

--------~------~(~-~><~-~><~----~>-

Figure 51: Use of n WAIT pin to stop ARM710 for 1 MCLK cycle 

99 



ARM710 Data Sheet 

10.15 Use of the n WAIT pin 

The n WAIT pin can be used to stretch memory accesses in whole cycle increments. n WAIT may only 
change during the LOW phase of MCLK and when low gates out MCLK high phases. nWAIT will not 
prevent changes in nMREQ, SEQ and a Write on D[31:0] during the phase in which it was taken LOW . 

. Changes in these signals will then be prevented until the MCLK ffiGH phase after nW AIT was raised. All 
other outputs cannot change from the time n WAIT goes LOW until the next MCLK ffiGH phase after 
nWAIT returns ffiGH. If ALE is being used to latch an address when nWAIT is taken LOW, the address 
and control signals will changes when ALE returns ffiGH regardless of the state of nWAIT. See Figure 51: 
Use of n WAlT pin to stop ARM710 for 1 MCLK cycle. 

100 



Bus Interface 

10.16 ARM710 Cycle Type Summary 

Linefetch r a i 
r a m 
r a+4 m d 
r a+8 m d 
r a+12 m d 
r a+16 m d 
r a+2O m d 
r a+24 m d 
r a+28 m d 
r a+28 i d 

Start r/w a 
r/w a m 

d 
Unc:acheable Read I 

Unbuffered Write Repeat r/w a+n m 
d 

End r/w old 

Buffered Write [

Start 

Repeat 

w a 
w a m 

d 

L w a+n m 
d 

Read phase r aL i 
r aL m 
r aL i d 
r aL i 

Write phase w aL 
- Unbuffered w aL m 

Read-Lock-Write w aL d 

Write phase aL 
-Aborted aL 

aL 

Table 14: Cycle Type Summary 

101 



ARM710 Data Sheet 

Key to Cycle Type Summary: 

r -Read (nRWLOW) 

r/w - applies equally to Read and Write 

w - Write (nRW HIGH) 

old - signal remains at previous value 

a - first Address 

a+n - next sequential address 

aL - Read-Lock-Write Address 

- Idle cycle (nMREQ HIGH) 

m - Memory cycle (nMREQ LOW) 

d - valid data on data bus 

Each line in Table 14: Cycle Type Summary shows the state of the bus interface during a single MCLK cycle. 
It illustrates the pipelining of nMREQ and the address. Each Operation Type section shows the sequence 
of cycles which make up that type of access, with each line down the diagram showing successive clock 
cycles. 

The Uncached Read / Unbuffered Write is shown in three sections. The start and end are always present, 
with the Repeat section repeated as many times as required when a multiple access is being performed. 

Buffered Writes are also of variable length and consist of the Start section plus as many consecutive Repeat 
sections as are necessary. 

A swap instruction consists of the Read phase, followed by one of the two possible Write phases. 

Activity on the memory interface is the succession of these access sequences. 

102 



Boundary ScanTest Interface 

11.0 Boundary Scan Test Interface 

The boundary-scan interface conforms to the IEEE Std. 1149.1- 1990, Standard Test Access Port and 
Boundary-Scan Architecture (please refer to this standard for an explanation of the terms used in this 
section and for a description of the TAP controller states.) 

11.1 Overview 

The boundary-scan interface provides a means of testing the core of the device when it is fitted to a circuit 
board, and a means of driving and sampling all the external pins of the device irrespective of the core state. 
This latter function permits testing of both the device's electrical connections to the circuit board, and (in 
conjunction with other devices on the circuit board having a similar interface) testing the integrity of the 
circuit board connections between devices. The interface intercepts all external connections within the 
device, and each such" cell" is then connected together to form a serial register (the boundary scan register). 
The whole interface is controlled via 5 dedicated pins: TOI, TMS, TCK, nTRST and TOO. Figure 52: Test 
Access Port (TAP) Controller Sate Transitions shows the state transitions that occur in the TAP controller. 

Figure 52: Test Access Port (TAP) Controller Sate Transitions 

103 



ARM710 Data Sheet 

11.2 Reset 

The boundary-scan interface includes a state-machine controller (the TAP controller). In order to force the 
TAP controller into the correct state after power-up of the device, a reset pulse must be applied to the 
nTRST pin. If the boundary scan interface is to be used, then nTRST must be driven LOW, and then HIGH 
again. If the boundary scan interface is not to be used, then the nTRST pin may be tied permanently LOW. 
Note that a clock on TCK is not necessary to reset the device. 

The action of reset (either a pulse or a DC level) is as follows: 

System mode is selected (Le. the boundary scan chain does not intercept any of the signals passing 
between the pads and the core). 

IDcode mode is selected. If TCK is pulsed, the contents of the ID register will be clocked out of 
TOO. 

11.3 Pullup Resistors 

The IEEE 1149.1 standard effectively requires that TOI, nTRST and TMS should have internal pullup 
resistors. In order to minimise static current draw, these resistors are not fitted to ARM710. Accordingly, the 
4 inputs to the test interface (the above 3 signals plus TCK) must all be driven to good logic levels to achieve 
normal circuit operation. 

11.4 Instruction Register 

The instruction register is 4 bits in length. 

There is no parity bit. The fixed value loaded into the instruction register during the CAPTURE-IR 
controller state is: 0001. 

11.5 Public Instructions 

The following public instructions are supported: 

Instruction 

EXTEST 
SAMPLE/PRELOAD 
CLAMP 
HIGHZ 
CLAMPZ 
INTEST 
IDCODE 
BYPASS 

Binary Code 

0000 
0011 
0101 
0111 
1001 
1100 
1110 
1111 

In the descriptions that follow, TDI and TMS are sampled on the rising edge of TCK and all output 
transitions on TOO occur as a result of the falling edge of TCK. 

104 





ARM710 Data Sheet 

11.5.4 HIGHZ (0111) 

The IDGHZ instruction connects a 1 bit shift register (the BYPASS register) between TOI and TDO. 

When the IDGHZ instruction is loaded into the instruction register, all outputs are placed in an inactive 
drive state. 

In the CAPTURE-DR state, a logic 0 is captured by the bypass register. In the SIDFT-DR state, test data is 
shifted into the bypass register via TDI and out via TOO after a delay of one TCK cycle. Note that the first 
bit shifted out will be a zero. The bypass register is not affected in the UPDATE-DR state. 

11.5.5 CLAMPZ (1001) 

The CLAMPZ instruction connects a 1 bit shift register (the BYPASS register) between TOI and TOO. 

When the CLAMPZ instruction is loaded into the instruction register, all outputs are placed in an inactive 
drive state, but the data supplied to the disabled output drivers is derived from the boundary-scan cells. 
The purpose of this instruction is to ensure, during production testing, that each output driver can be 
disabled when its data input is either a 0 or a 1. 

A guarding pattern (specified for this device at the end of this section) should be pre-loaded into the 
boundary-scan register using the SAMPLE/PRELOAD instruction prior to selecting the CLAMPZ 
instruction. 

In the CAPTURE-DR state, a logic 0 is captured by the bypass register. In the SIDFT-DR state, test data is 
shifted into the bypass register via TDI and out via TOO after a delay of one TCK cycle. Note that the first 
bit shifted out will be a zero. The bypass register is not affected in the UPDATE-DR state. 

11.5.6 INTEST (1100) 

The BS (boundary-scan) register is placed in test mode by the INTEST instruction. 

The INTEST instruction connects the BS register between TDI and TOO. 

When the instruction register is loaded with the INTEST instruction, all the boundary-scan cells are placed 
in their test mode of operation. 

In the CAPTURE-DR state, the complement of the data supplied to the core logic from input boundary-scan 
cells is captured, while the true value of the data that is output from the core logic to output boundary- scan 
cells is captured. Note that CAPTURE-DR captures the complemented value of the input cells for testability 
reasons. 

In the SIDFT -DR state, the previously captured test data is shifted out of the BS register via the TOO pin, 
whilst new test data is shifted in via the TDI pin to the BS register parallel input latch. In the UPDATE-DR 
state, the new test data is transferred into the BS register parallel output latch. Note that this data is applied 
immediately to the system logic and system pins. The first INTEST vector should be clocked into the 
boundary-scan register, using the SAMPLE/PRELOAD instruction, prior to selecting INTEST to ensure 
that known data is applied to the system logic. 

Single-step operation is possible using the INTEST instruction. 

106 



Boundary Scan Test Interface 

11.5.7 IDCODE (1110) 

The IOCODE instruction connects the device identification register (or 10 register) between TDI and TDO. 
The 10 register is a 32-bit register that allows the manufacturer, part number and version of a component 
to be determined through the TAP. 

When the instruction register is loaded with the IDCODE instruction, all the boundary-scan cells are placed 
in their normal (system) mode of operation. 

In the CAPTURE-DR state, the device identification code (specified at the end of this section) is captured 
by the ID register. In the SHIFT-DR state, the previously captured device identification code is shifted out 
of the ID register via the TDO pin, whilst data is shifted in via the TDI pin into the ID register. In the 
UPDATE-DR state, the ID register is unaffected. 

11.5.8 BYPASS (1111) 

The BYPASS instruction connects a 1 bit shift register (the BYPASS register) between TDI and IDO. 

When the BYPASS instruction is loaded into the instruction register, all the boundary-scan cells are placed 
in their normal (system) mode of operation. This instruction has no effect on the system pins. 

In the CAPTURE-DR state, a logic 0 is captured by the bypass register. In the SHIFT -DR state, test data is 
shifted into the bypass register via TDI and out via TDO after a delay of one TCK cycle. Note that the first 
bit shifted out will be a zero. The bypass register is not affected in the UPDATE-DR state. 

107 



ARM710 Data Sheet 

11.6 Test Data Registers 

Figure 53: Boundary Scan Block Diagram illustrates the structure of the boundary scan logic. 

BSINENCELL ---I 

BSINCELL 

BSOUTNENCELL 

ARM7 

Core Logic 

Device ID Register 

BSINCELL ) 

1--li>4- BSOUTCELL 

1-+1>-- BSOUTCELL 

I/O 
Cell 

TOO 

TDI 

TMS 

TCK 

nTRST 

11.6.1 Bypass Register 

TAP 
Controller nTDOEN 

Figure 53: Boundary Scan Block Diagram 

Purpose: This is a single bit register which can be selected as the path between TOI and TDO to allow the 
device to be bypassed during boundary-scan testing. 

Length: 1 bit 

Operating Mode: When the BYPASS instruction is the current instruction in the instruction register, serial 
data is transferred from TDI to TDO in the SHIFT -DR state with a delay of one TCK cycle. 

108 



Boundary Scan Test Interface 

There is no parallel output from the bypass register. 

A logic 0 is loaded from the parallel input of the bypass register in the CAPTURE-DR state. 

11.6.2 ARM710 Device Identification (lD) Code Register 

Purpose: This register is used to read the 32-bit device identification code. No programmable 
supplementary identification code is provided. 

Length: 32 bits 

The format of the ID register is as follows: 

31 28 27 12 11 1 0 

Part Number Manufacturer Identity 

Please contact your supplier for the correct Device Identification Code. 

Operating Mode: When the IDCODE instruction is current, the ID register is selected as the serial path 
between TOI and TOO. 

There is no parallel output from the ID register. 

The 32-bit device identification code is loaded into the ID register from its parallel inputs during the 
CAPTURE-DR state. 

11.6.3 ARM710 Boundary Scan (BS) Register 

Purpose: The BS register consists of a serially connected set of cells around the periphery of the device, at 
the interface between the core logic and the system input/ output pads. This register can be used to isolate 
the core logic from the pins and then apply tests to the core logic, or conversely to isolate the pins from the 
core logic and then drive or monitor the system pins. 

Operating modes: The BS register is selected as the register to be connected between TOI an~ TOO only 
during the SAMPLE/PRELOAD, EXTEST and INTEST instructions. Values in the BS register are used, but 
are not changed, during the CLAMP and CLAMPZ instructions. 

In the normal (system) mode of operation, straight-through connections between the core logic and pins are 
maintained and normal system operation is unaffected. 

In TEST mode (ie when either EXTEST or INTEST is the currently selected instruction), values can be 
applied to the core logic or output pins independently of the actual values on the input pins and core logic 
outputs respectively. On the ARM710 all of the boundary scan cells include an update register and thus all 
of the pins can be controlled in the above manner. Additional boundary-scan cells are interposed in the scan 
chain in order to control the enabling of tristateable buses. 

109 



ARM710 Data Sheet 

The correspondence between boundary-scan cells and system pins, system direction controls and system 
output enables is as shown in Table 16: Boundary Scan Signals & Pins. The cells are listed in the order in which 
they are connected in the boundary-scan register, starting with the cell closest to TDI. All boundary-scan 
register cells at input pins can apply tests to the on-chip core logic. 

The EXTEST guard values specified in Table 16: Boundary Scan Signals & Pins should be clocked into the 
boundary-scan register (using the SAMPLE/PRELOAD instruction) before the EXTEST instruction is 
selected, to ensure that known data is applied to the core logic during the test. The INTEST guard values 
shown in the table below should be clocked into the boundary-scan register (using the SAMPLE/ 
PRELOAD instruction) before the INTEST instruction is selected to ensure that all outputs are disabled. 
These guard values should also be used when new EXTEST or INTEST vectors are clocked into the 
boundary-scan register. 

The values stored in the BS register after power-up are not defined. Similarly, the values previously clocked 
into the BS register are not guaranteed to be maintained across a Boundary Scan reset (from forcing nTRST 
LOW or entering the Test Logic Reset state). 

11.6.4 Output Enable Boundary-scan Cells 

The boundary-scan register cells Nendout, Nabe, Ntbe, and Nrnse control the output drivers of tristate 
outputs as shown in the table below. In the case of OUTENO enable cells (Nendout, Ntbe), loading a 1 into 
the cell will place the associated drivers into the tristate state, while in the case of type INENI enable cells 
(Nabe, Nrnse), loading a 0 into the cell will tristate the associated drivers. 

To put all ARM710 tristate outputs into their high impedance state, a logic 1 should be clocked into the 
output enable boundary-scan cells Nendout and Ntbe, and a logic 0 should be clocked into Nabe and Nrnse. 
Alternatively, the HIGHZ instruction can be used. 

For example, if the on-chip core logic causes the drivers controlled by Nendout to be tristate, (ie by driving 
the signal nENDOUT HIGH), then a 1 will be observed on this cell if the SAMPLE/PRELOAD or INTEST 
instructions are active. 

11.6.5 Single-step Operation 

ARM710 is a static design and there is no minimum clock speed. It can therefore be single-stepped while 
the INTEST instruction is selected. This can be achieved by serialising a parallel stimulus and clocking the 
resulting serial vectors into the boundary-scan register. When the boundary-scan register is updated, new 
test stimuli are applied to the core logic inputs; the effect of these stimuli can then be observed on the core 
logic outputs by capturing them in the boundary-scan register. 

110 



Boundary Scan Test Interface 

11.7 Boundary Scan Interface Signals 

TCK 

TMS 
TDI 

TOO 

Data In 

Data Out 

TCK 

TOO 

Data Out 

nTRST 

TMS 

T bsoe 

T bsde 

I 

bscl-----<......----T bsch------.t 

Figure 54: Boundary Scan General Timing 

T bsoz 

T bsdz 

Figure 55: Boundary Scan Tri-state Timing 

~ 
T bsr 

I 1\ 
-Tbsrs T bsrh-

Figure 56: Boundary Scan Reset Timing 

111 



ARM710 Data Sheet 

s~ mhol I I'aramdl'r I '\Iin I 'I~ P I I\lax I Units I Notl'S 

Thscl TCK low period 50 ns 9 

Thsch TCK high period 50 ns 9 

Thsis TDI,TMS setup to [TCr] 10 ns 

Thsih TDI,TMS hold from [TCr] 10 ns 

Thsoh TDO hold time 5 ns 

Thsod TCf to TDO valid 40 ns 

Thsss 110 signal setup to [TCr] 5 ns 4 

Thssh 110 signal hold from [TCr] 20 ns 4 

Thsdh data output hold time 5 ns 5 

Thsdd TCf to data output valid 40 ns 

Thsoe TDO enable time 5 ns 1,2 

Thsoz TDO disable time 40 ns 1,3 

Thsde data output enable time 5 ns 5,6 

Thsdz data output disable time 40 ns 5,7 

Thsr Reset period 30 ns 

Thsrs tms setup to [TRr] 10 ns 9 

Thsrh tms hold from [TRr] 10 ns 9 

Table 15: ARM710 Boundary Scan Interface Timing 

Notes: 

1. Assumes a 25pF load on roo. Output timing derates at O.072ns/pF of extra load applied. 

2. TOO enable time applies when the TAP controller enters the Shift-DR or Shift-IR states. 

3. TOO disable time applies when the TAP controller leaves the Shift-DR or Shift-IR states. 

4. For correct data latching, the I/O signals (from the core and the pads) must be setup and held with 
respect to the rising edge of TCK in the CAPTURE-DR state of the SAMPLE/PRELOAD, INTEST 
and EXTEST instructions. 

5. Assumes that the data outputs are loaded with the AC test loads (see AC parameter specification). 

6. Data output enable time applies when the boundary scan logiC is used to enable the output drivers. 

7. Data output disable time applies when the boundary scan is used to disable the output drivers. 

8. TMS must be held high as nTRST is taken high at the end of the boundary-scan reset sequence. 
9. TCK may be stopped indefinitely in either the low or high phase. 

112 



I I (,II,lId 
Output (1I.lhlt 

\.tlm 
'\0 (lll'\.UHl' Pm I'Pl BS(llJ 

1\ I ... 

fromtdi 

I al2 A[I2) OUT Nabe 

2 al\ A[lI) OUT Nabe 

3 alO A[IO) OUT Nabe 

4 a09 A(09) OUT Nabe 

5 a08 A[OS) OUT Nabe 

6 a07 A(07) OUT Nabe 

7 a06 A(06) OUT Nabe 

8 aOs A[OS) OUT Nabe 

9 a04 A(04) OUT Nabe 

10 a03 A(03) OUT Nabe 

11 a02 A(02) OUT Nabe 

12 aOl A[OI) OUT Nabe 

13 aOO A[OO) OUT Nabe 

14 Nabe ABE INENI 0 

IS r1w LOCK OUT Nabe 

16 Nbw nBW OUT Nabe 

17 Nrw oRW OUT Nabe 

18 teslbus(7) TESTIN[IS) IN 0 

19 teslbus(6) TESTIN(14) IN 0 

20 teslbus[S) TESTIN[I3) IN 0 

21 testbus(3) TESTIN[lI) IN 0 

22 testbus(2) TESTIN(10) IN 0 

23 testbus(1) TESTIN(9) IN 0 

24 testbus[O) TESTIN(8) IN 0 

25 din31 0(31) IN 

26 dout3\ 0(31) OUT Nendoul 

27 din30 0(30) IN 

28 dout30 0(30) OUT Nendoul 

29 din29 0(29) IN 

30 dout29 0(29) OUT Nendoul 

31 din28 0(28) IN 

32 dout28 0[28] OUT Nendoul 

33 din27 0[27] IN 

34 dout27 0(27) OUT Nendoul 

34 din26 0(26) IN 

35 dout26 0(26) OUT Nendoul 

36 din2S O[lS) IN 

37 dout2S O[lS] OUT Nendoul 

38 din24 0(24) IN 

39 dout24 0[24] OUT Neodoul 

40 din23 0(23) IN 

41 dout23 0[23] OUT Nendoul 

42 din22 0[22] IN 

43 dout22 0(22) OUT Nendoul 

44 din21 0(21) IN 

45 dout21 0[21] OUT Nendoul 

Table 16: Boundary Scan Signals & Pins 

113 



ARM710 Data Sheet 

1 
Output (,.II.lhlt.·1 (.lMrd 

"IIUl' 
'0. Cdl '.1I11l' 1'111 1\ pt' BS «(.'11 I~' I :\ 

93 sNa SuA IN 

94 Nwait nWAIT IN 

95 melk MCLK IN 0 

96 felk FCLK IN 0 

97 abon ABORT IN 

98 Nreset nRESET IN 

99 teslin[16] TESTIN[16] IN 0 

100 testout[2] TESTOUT[2] OUT Ntbe 

101 testout[l] TESTOUT[I] OUT Ntbe 

102 teslOut[O] TESTOUT[O] OUT Ntbe 

103 Nirq nIRQ IN 

104 Nfiq nFIQ IN 

105 Ntbe OUTENO 

106 ale ALE IN 

107 a31 A[31] OUT Nabe 

108 a30 A[30] OUT Nabe 

109 a29 A[29] OUT Nabe 

llO a28 A[28] OUT Nabe 

111 a27 A[27] OUT Nabe 

ll2 a26 A[26] OUT Nabe 

ll3 a25 A[25] OUT Nabe 

ll4 a24 A[24] OUT Nabe 

1 
Output l.nahkl (.IMrd 

\ aim.' 
r\oo ("dl r\oIJIIC I';n 01\ p,o liS Cdl I' 'ox 

ll5 a23 A[23] OUT Nabe 

ll6 a22 A[22] OUT Nabe 

ll7 a21 A[21] OUT Nabe 

ll8 a20 A[20] OUT Nabe 

ll9 al9 A[19] OUT Nabe 

120 al8 A[18] OUT Nabe 

121 al7 A(17) OUT Nabe 

122 al6 A[16] OUT Nabe 

123 al5 A[15] OUT Nabe 

124 al4 A[14] OUT Nabe 

125 al3 A[13] OUT Nabe 

126 al2 A[12] OUT Nabe 

127 all A[ll) OUT Nabe 

128 alO A[IO) OUT Nabe 

129 a09 A[09] OUT Nabe 

130 a08 A[08] OUT Nabe 

131 a07 A[07] OUT Nabe 

132 a06 A[06] OUT Nabe 

133 a05 A[05] OUT Nabe 

134 a14 A(14) OUT Nabe 

135 al3 A[13] OUT Nabe 

to IDO 

Table 16: Boundary Scan Signals & Pins 

Key: IN Input pad 
OUT Output pad 
INEN1 Input enable active high 
OUTENO Output enable active low .. for Intest Extest/Clamp 

114 



DC Parameters 

12.0 DC Parameters 

..... Subject to Change ..... 

12.1 Absolute Maximum Ratings 

Symbol I "".met" I ~~n I ~~, I Unit, I Not, 

VDD Supply voltage VSS-O.3 VSS+7.0 V 1 

Vip Voltage applied to any pin VSS-O.3 VDD+0.3 V 1 

Ts Storage temperature -40 125 degC 1 

Table 17: ARM710 DC Maximum Ratings 

Note: 

These are stress ratings only. Exceeding the absolute maximum ratings may permanently damage the 
device. Operating the device at absolute maximum ratings for extended periods may affect device 
reliability. 

12.2 DC Operating Conditions 

Symbol I Parameter I Min I Typ I Max I Units I Notes 

VDD Supply voltage 2.7 3.0 - 5.0 5.5 V 

Vihc IC input I-llGH voltage .8xVDD VDD V 1,2 

Vile IC input LOW voltage 0.0 0.2xVDD V 1,2 

Vohc OCZ output HIGH voltage 0.9xVDD VDD V 1,2 

Vole OCZ output LOW voltage 0.0 O.1xVDD V 1,2 

Ta Ambient operating temperature 0 70 °C 

Table 18: ARM710 DC Operating Conditions 

Notes: 

(1) Voltages measured with respect to VSS. 

(2) IC - CMOS inputs (includes IC and ICOCZ pin types) 

(3) OCZ - Output, CMOS levels, tri-stateable 

115 



ARM710 Data Sheet 

12.3 DC Characteristics 

Symbol I Parametcr I Nom I . Units I Nutc 

IOD Static Supply current 20 JlA 

Isc Output short circuit current 100 rnA 

Ilu DC latch-up current >500 rnA 

lin IC input leakage current uA 

Ioh Output maR current (Vout = VDD-0.4V) rnA 

Iol Output LOW current (Vout = VSS+0.4V) rnA 

Cin Input capacitance pF 

ESD HMB model ESD 4 KV 2 

Table 19: ARM710 DC Characteristics 

Notes: 

(1) Nominal values shown are derived from transient analysis simulations. 

(2) ESD - 2 KV minimum 

116 



AC Parameters 

13.0 AC Parameters 

....... Subject to change ...... 

13.1 Test Conditions 

The AC timing diagrams presented in this section assume that the outputs of ARM710 have been loaded 
with the capacitive loads shown in the 'Test Load' column of the table below; these loads have been chosen 
as typical of the system in which ARM710 might be employed. The output pads of ARM710 are CMOS 
drivers which exhibit a propagation delay that increases linearly with the increase in load capacitance. An 
'Output derating' figure is given for each output pad, showing the approximate rate of increase of output 
time with increasing load capacitance. 

A[31:0] 50 0.072 

D[31: 0] 50 0.072 

nR/W 50 0.072 

nB/W 50 0.072 

LOCK 50 0.072 

nMREQ 50 0.072 

SEQ 50 0.072 

Table 20: ARM710 AC Test Conditions 

13.2 Relationship between FCLK & MCLK in Synchronous Mode 

Tfckl Tfckh 

FCLK 

1+------ Tfmh -----•• 

MCLK 

Figure 57: Clock Timing Relationship 

117 



ARM710 Data Sheet 

S I I I I) I 5V I 5V I JV I JV I u' I N ~ III )(l arallleter I\lin l\Iax I\lin 1\1ax mt (lte 

Tfeld FCLK LOW time 15 20 

Tfekh FCLK mGH time 15 20 

Tfmh FCLK - MCLK hold time 20 25 

Tmfs MCLK - FCLK setup 3 4 

Table 21: ARM710 FCLK and MCLK Synchronous Mode relationship 

NB: FLCK frequency must be strictly greater than or equal to MCLK at all times. 

Notes: 

ns 

ns 

ns 

ns 

(1) FCLK timings measured at 50% of Vdd. This applies to both synchronous and asynchronous 
operation. 

13.2.1 Tald Measurement 

Tald is the maximum delay allowed in the ALE input transition to guarantee the address will not change: 

MCLK 

ALE -------------+----.z Tald 

A[31 :0] --------~><~---------------------------
Figure 58: Tald Measurement 

118 



13.3 Main Bus Signals 

MCLK 

nMREQ, 
SEQ 

A[31:0) 
nBW,nRW 
LOCK 

0[31:0] (Out) 

0[31:0) (In) 

ABORT 

MCLK 

ALE 

ABE 

A[31:0) 
nBW,nRW 
LOCK 

OBE 

0[31:0] (Out) 

MSE 

nMREQ, 
SEQ 

AC Parameters 

Figure 59: ARM710 Main Bus Timing 

msz 

Figure 60: ARM710 Bus Enable Timing 

119 



ARM710 Data Sheet 

MCLK 

nWAlT 

nMREQ 
SEQ 

T 

A[31:0) 
nBW,nRW 
LOCK 

0[31:0) (Out) 

D[31:0) (In) 

ABORT 

Figure 61: ARM710 n W AIT Timing 

S I 1 I I 5V I 5V I 3V I 3V I I • )111 lCI I'linulleter 1\1' 1\ 1\1' 1\ Unit Note 
In IliX In IliX 

Tmckl MCLK LOW time 25 40 ns 

Tmcidl MCLK HIGH time 25 40 ns 

Tws nWAITsetup to MCLK 5 ns 

!\vh nWAIT hold from MCLK 5 ns 

Tale address latch enable 2 ns 3 

Tald address latch disable 

Tabe address bus enable 15 ns 2 

Tabz address bus disable 25 ns 

Taddr MCLK to address delay 25 ns 2 

Tab address hold time 5 ns 2 

Tab address hold time 5 ns 2 

Tdbe DBE to data enable 15 ns 2 

Tde MCLK to data enable 8 ns 2 

Tdbz DBE to data disable 25 ns 

Table 22: ARM710 Bus timing 

120 



AC Parameters 

I I "" I .,,, I n' I H' I I S~lIIhul I'arallwlt'r ~Iill ~I.IX ~Iill ~Iax lillil 1\ule 

Tdz MCLK to data disable 25 ns 

Tdout data out delay 32 ns 2 

Tdoh data out hold 5 ns 2 

Tdis data in setup 2 ns 

Tdih data in hold 10 ns 

Tabts ABORT setup time 10 ns 

Tabth ABORT hold time 5 ns 

Tmse nMREQ & SEQ enable 10 ns 

Tmsz nMREQ & SEQ disable 20 ns 

Tmsd nMREQ & SEQ delay 35 ns 

Tmsh nMREQ & SEQ hold 5 ns 

Table 22: ARM710 Bus timing 

Notes: 

(1) MCLK timings measured between clock edges at 50% of Vdd. 

(2) The timings of these buses are measured to TIL levels. 

(3) See 13.2.1 Tald Measurement. 

121 



ARM710 Data Sheet 

122 



14.0 Physical Details 

Pin 144 

Pin 1 

Pin 36 

Pin 37 

22.00 

20.00 

Pin 109 

ARM710 

Physical Details 

View from above 

Pin 108 

N 
Q 

b o 

Pin 73 
_--li.-

Pin 72 

0.5 typ 

~~ 
0.22 

Figure 62: ARM710 144 Pin TQFP Mechanical Dimensions in mm 

123 



ARM710 Data Sheet 

124 



Pinout 

15.0 Pinout 

Pin I Signal I "I) pl' Pin I Signal I"' ~ pl' Pin I Signal I "I) pc Pin I Signal I T~ pc 

1 MSE 37 0[24] i/o 73 LOCK o 109 A[26] o 

2 nMREQ 0 38 0[25] i/o 74 ABE 110 A[27] o 
3 SEQ 0 39 0[26] i/o 75 A[ 0] o 111 A[28] o 
4 OBE 40 Vssl 76 A[ 1] o 112 Vdd2 

5 Vss2 41 Vss2 77 A[ 2] o 133 Vss2 

6 Vdd2 42 Vdd2 78 Vss2 114 A[29] o 

7 O[ 0] i/o 43 0[27] i/o 79 Vdd2 115 A[30] o 

8 O[ 1] i/o 44 0[28] i/o 80 A[ 3] o 116 A[31] o 

9 O[ 2] i/o 45 0[29] i/o 81 A[ 4] o 117 ALE 
10 O[ 3] i/o 46 0[30] i/o 82 A[ 5] o 118 nle 
11 O[ 4] i/o 47 0[31] i/o 83 A[ 6] o 119 nle 
12 O[ 5] i/o 48 TOO 0 84 A[ 7] o 120 nle 
13 O[ 6] i/o 49 TOI 85 A[ 8] o 121 Vssl 

14 O[ 7] i/o 50 nTRST 86 A[ 9] o 122 Vddl 

15 O[ 8] i/o 51 Vddl 87 A[lO] o 123 TESTIN[ 7] 

16 Vss2 52 TMS 88 A[11] o 124 TESTIN[ 6] 

17 Vdd2 53 TCK 89 A[12] o 125 TESTIN[ 5] 

18 Vssl 54 nle 90 Vdd2 126 TESTIN[ 4] 

19 Vddl 55 nle 91 Vssl 127 TESTIN[ 3] 

20 O[ 9] i/o 56 nle 92 Vddl 128 TESTIN[ 2] 

21 0[10] i/o 57 nle 93 Vss2 129 TESTIN[ 1] 

22 0[11] i/o 58 nle 94 A[13] o 130 TESTIN[ 0] 

23 0[12] i/o 59 TESTIN[ 8] 95 A[14] o 131 nFIQ 

24 0[13] i/o 60 TESTIN[ 9] 96 A[l5] o 132 nIRQ 

25 0[14] i/o 61 Vddl 97 A[16] o 133 TESTOUT[O] o 

26 0[15] i/o 62 Vssl 98 A[17] o 134 TESTOUT[I] o 

27 0[16] i/o 63 TESTIN[10] 99 A[18] o 135 TESTOUT[2] o 

28 0[17] i/o 64 TESTIN[lI] 100 A[19] 136 TESTIN[l6] 

29 0[18] i/o 65 TESTIN[12] 101 A[20] o 137 nRESET 

30 0[19] i/o 66 TESTIN[13] 102 Vdd2 138 ABORT 

31 Vdd2 67 TESTIN[14] 103 Vss2 139 FCLK 

32 Vss2 68 TESTIN[15] 104 A[21] o 140 MCLK 

33 0[20] i/o 69 Vss2 105 A[22] o 141 Vdd2 

34 0[21] i/o 70 Vdd2 106 A[23] o 142 Vss2 

35 0[22] i/o 71 nRIW o 107 A[24] o 143 nWAIT 

36 0[23] i/o 72 nBIW o 108 A[25] o 144 SnA 

Table 23: Pinout - ARM710 in 144 pin Thin Quad Flat Pack 

125 



ARM710 Data Sheet 

126 



Appendix - Backward Compatibility 

16.0 Appendix - Backward Compatibility 

Two of the Control Register bits, prog32 and data32, allow one of three processor configurations to be 
selected as follows: 

(1) 26 bit program and data space - (prog32 LOW, data32 LOW). This configuration forces ARM710 to 
operate like the earlier ARM processors with 26 bit address space. The programmer's model for 
these processors applies, but the new instructions to access the CPSR and SPSR registers operate as 
detailed elsewhere in this document. In this configuration it is impossible to select a 32 bit operating 
mode, and all exceptions (including address exceptions) enter the exception handler in the 
appropriate 26 bit mode. 

(2) 26 bit program space and 32 bit data space - (prog32 LOW, data32 ffiGH). This is the same as the 
26 bit program and data space configuration, but with address exceptions disabled to allow data 
transfer operations to access the full 32 bit address space. 

(3) 32 bit program and data space - (prog32 ffiGH, data32 ffiGH). This configuration extends the 
address space to 32 bits, introduces major changes in the programmer's model as described below 
and provides support for running existing 26 bit programs in the 32 bit environment. 

The fourth processor configuration which is possible (26 bit data space and 32 bit program space) should 
not be selected. 

When configured for 26 bit program space, ARM710 is limited to operating in one of four modes known as 
the 26 bit modes. These modes correspond to the modes of the earlier ARM processors and are known as: 

User26 

FIQ26 

IRQ26 and 

Supervisor26. 

These are the normal operating modes in this configuration and the 26 bit modes are only provided for 
backwards compatibility to allow execution of programs originally written for earlier ARM processors. 

The differences between ARM710 and the earlier ARM processors are documented in an ARM Application 
Note 11 - "Differences between ARM6 and earlier ARM Processors" 

127 



ARM710 Data Sheet 

128 





Advanced RISC Machines, Ltd. 
Fulboum Road 
Cherry Hinton 
Cambridge CB1 4JN 
England 

011-44-223-400400 Phone 
011-44-223-400410 FAX 

Registered in England No: 2557590 

Advanced RISC Machines 
985 University Avenue 
Suite 5 
Los Gatos, CA 95030 
USA 

(408) 399-5199 Phone 
(408) 399-8854 FAX 

Advanced RISC Machines 
KSP Building, Third Floor 
3-2-1 Sakado, Takatsu-ku 
Kawasaki-shi, Kanagawa 
Japan 213 

011-81-44-8501301 Phone 
011-81-44-8501308 FAX 


