
Acorn
Springboard

Powered by Acorn's innovative ARM RISC processor, the Springboard
coprocessor board turns your PC into a 'very powerful' workstation,
albeit minus the stunning graphics. Such numbercrunching power

doesn't come cheap, however, as Dick Pountain discovered.

The Acorn Springboard is a coprocessor
board for IBM PC compatibles, powered by
an Acorn ARM RISC processor. It contains
either 1 or 4Mbytes of memory and
communicates with the host PC through
Acorn's 'Tube' parallel interface, originally
developed on the BBC Micro. The
Springboard is a selfcontained computer and
can run programs quite independently of the
host PC; this enables dual tasking, where the
user runs an application on the PC while the
Springboard runs its own program in the
background. On the other hand, the
Springboard Interface Software permits the
board to swap data with the host PC using
fast block transfers, to make DOS interrupt
calls and use the host disks and filing system.

The 8MHz ARM processor is one of the
fastest microprocessors available today,
capable of sustaining 4MIPS (million
instructions per second). Adding a
Springboard to a PC or AT gives you a
workstation with computing power, for
suitable tasks, that rivals that of a VAX
minicomputer. The sort of tasks that Acorn
has in mind for the Springboard are mainly
numbercrunching ones, especially for
scientists and engineers; a Fortran compiler
is available, as is a Lisp interpreter complete
with the Reduce 4 Symbolic Maths system,
which until now has been too much for a
micro to handle. The Springboard contains a
fast external bus connector which can take
addon 'podules', and the first two podules to
be released will be a very fast floatingpoint
coprocessor and an IEEE parallel interface
for data capture and instrument

control, which further reinforces this
orientation toward the laboratory.

One thing to be clear about right from the
start is that the Springboard will not turn your
PC into an Acorn Archimedes, for the simple
reason that it lacks the Archimedes' graphics.
The Springboard relies entirely on the host
PC for screen I/O, and the Acorn VIDC chip
which is responsible for the Archimedes'
graphic displays is not even present on the
board. Nor is it likely that graphics ability will
be added as a podule, because the
Archimedes attains its superb graphics
performance thanks to the close coupling of
its various components, and the

podule interface is not fast enough to support
the required level of VIDC/ MEMC
communication. If you need the graphics, buy
an Archimedes; Springboard is for CPU
power only.

Hardware
The Springboard is a full length card which
occupies a single PC slot. It contains a
jumper block that allows alteration of the
addresses of the I/O ports through which it
will appear to the PC, a facility which I tested
immediately because my external hard disk
occupies the default port used by
Springboard at 300hex. To inform the
software of the new I/O address it is merely
necessary to alter the

118 PCW JANUARY 1988

contents of a text file, ARMREG.DAT, from
300 to 308, or whatever. This faecility allows
up to four Springboards to be fitted in a single
PC, all of which could run different programs
simultaneously.

The board I tested was the 4Mbytes
version, and its memory comes in the
increasingly familiar form of four SIMM
modules filled with nine 1Megabit chips each
(parity checking is included, hence the extra
one), and mounted in angled plastic grooves
to reduce the board area consumed. The rest
of the neatly laid out board contains the ARM
itself, the Acorn MEMC memory controller
chip which translates all the addresses fed to
the ARM, and the Acorn IOC chip which
controls the podule interface, a Tube chip
and four hefty EPROMs containing interface
software. Rather surprisingly, the EPROM
does not contain Basic V, which comes
separately on disk and is RAMresident.

Across the very middle of the card runs a
96pin female connector which is the podule
bus. The podules will be piggybacked boards
which occupy a second PC slot adjacent to
the Springboard, both for reasons of
mechanical rigidity and to draw their power
directly from the PC bus. I was not supplied
with any podules for review, but I do have the
specifications of the floating point and IEEE
podules.

The floating point unit eschews the better
known coprocessors like the Motorola 68881,
Intel 80387 or Weitek in favour of AT&T's
WE32206 Math Acceleration Unit. This part
was designed to complement AT&T's 32bit
Unix engine, the 32200, and looks like a very
serious device indeed. Fabricated in 1 micron
CMOS, it performs single (32bit), double (
64bit) and doubleextended (80bit) maths to
ANSI/IEEE standard with onchip support for
trig functions and square root. It uses a 32bit
bidirectional data bus to communicate with its
ARM host, and can be clocked at up to
24MHz.

The IEEE488 interface podule from
Intelligent Interfaces Ltd is developed from
one it produces for the BBC Micro, and can
control up to 14 IEEE test and measurement
devices, plotter or printers. It can transfer
data at 250k per second and may be
programmed in highlevel languages such as
Basic, Pascal, C and Fortran in addition to
Assembler.

Software
The Springboard interface software has been
designed to be as nearly as possible
transparent to the PC user, and it succeeds
to a large extent. You can edit files, and
compile and run programs on the ARM in an
environment which looks very much like
PCDOS v 2.0, rather than less familiar Acorn
operating systems.

Part of the interface software lives in ROM
on the Springboard itself. The rest takes the
form of a hefty TSR (
terminateandstayresident) program which
runs on the PC host, called ARMINIT.EXE
and a frontend command interpreter called
ARM.EXE. This takes up 131k of memory
and so it is not worth using Springboard with
much less than a full 640k PC if you plan to
run large PC applications too. ARMINIT loads
itself and resets the ARM, reporting on its
success as it does so; then it goes to sleep
until summoned. The only small problem I
found here is that the ARM will only initialise
properly if ARMINIT is run from the directory
in which the ARM files are stored (probably
ARMREG.DAT is the important one); it
doesn't like PATH specifications and hangs
the PC if invoked from another directory.

To wake up the Springboard you type ARM
at the PCDOS prompt, whereupon the screen
clears and the prompt changes from your
normal prompt to A*>. You are now talking to
the Springboard's ARM rather than the PC's
8088. However, if you type DIR, a directory
listing appears as usual, and what's more it is
the listing of the directory you were in when
you typed ARM. The file system has 'crossed
over' from the PC to the ARM address space.
This means for example that you could use a
PCbased text editor to prepare program
code, then type ARM to perform the switch
and compile the resulting file with the ARM C
Compiler, without any copying or conversion
of files at all. The frontend program maintains
its own default drive and directory which may
be different from that set in DOS.

When you type EXIT to leave the
Springboard, you are returned to DOS
exactly as you left it. I mean exactly, for the
interface software actually buffers the original
screen and restores it so that you see the
word ARM you typed to leave it. When you
type ARM again the A*> screen is similarly
restored exactly as when you left it. A
seemingly trivial detail like this has a powerful
effect on the ease of use of the software,
because it creates the concrete illusion of
switching between two real

'places', with which you can become familiar,
rather than between two abstract 'modes'; it
is precisely the same illusion that makes
SideKick and other popup software so
effective. Which reminds me: to my great
surprise and pleasure, I was able to pop up
SideKick while running the ARM without any
trouble; this is quite a testament to the '
hygiene' of the interrupt handling in ARM.
EXE.

I said that the Springboard screen would be
exactly as you left it, but in fact there may
have been some activity while you were
away, because any program running on the
ARM continues to run when you return to
DOS. When you have launched an ARM
program from the A*> prompt, you can exit
back to DOS without waiting for it to
terminate by pressing the CtrlEsc keys,
leaving the program running. The converse is
not true; a DOS program cannot be running
when you activate the ARM because you
need to be at the DOS prompt to do it, and
nor does CtrlEsc interrupt DOS programs. It
is possible to write DOS programs that can
communicate with Springboard programs, but
more of that later. The point is that the
Springboard cannot be invoked from inside
standard DOS applications. I had a problem
with the CtrlEsc command, in that it wouldn't
work while I had Borland's SuperKey loaded (
in whatever order). However, I've had trouble
with several other applications and
SuperKey, which appears to be rather
badlybehaved, and so don't feel inclined to
put much blame on Acorn.

The ARM command can also take
command line parameters which make it
even easier to set off a Springboard program.
Typing ARM E MYPROG at DOS causes an
ARM program called MYPROG to be run on
the Springboard but then exits immediately
back to DOS; it's like launching a background
task. ARM X MYPROG means exit back to
DOS only when the ARM application
MYPROG terminates. When an ARM
application is running 'in background' it
cannot do any I/O at all, either to screen or
disk. I/O calls are suspended until you switch
back to the ARM side of the fence, hence any
application which needs to do screen or disk
I/O is better launched with ARM X. However,
a pure numbercrunching program can happily
churn along in background with ARM E and
will only print its result when you switch back.
ARM R resets the ARM, the ARM I initialises
the interface software without resetting the
ARM and can be used to run multiple
Springboards in one PC (by altering the port
address in ARMREG.DAT).

The frontend program ARM.EXE which
produces the A*> prompt supports 38
commands in all, and they are by no means
all exact copies of their DOS equivalents,

JANUARY 1988 PCW 119

CHECKOUT
some being lifted straight from Acorn's ADFS.
However, the main housekeeping ones DIR,
CHDIR, MKDIR, RMDIR, and RENAME are
the same and a DOS user will feel at home
very quickly. Some of the commands perform
operations which have no equivalent in DOS.
For instance, CACHE <filename> <runname>
loads an application into high memory and
leaves it resident, after which it can be
invoked without disk aceess by typing
<runname>. With 4Mbytes of memory you
can cache both the C compiler and the TWIN
editor (and more besides) which speeds up
the development cycle splendidly. Some of
the other A*> commands are to do with
debugging, and under DOS would be part of
the DEBUG program.

To prevent confusion between executable
files for the 8088 and those for the ARM, the
file extension .AXE (by analogy with .EXE) is
used for most ARM programs; there is no
equivalent of a .COM file for the ARM. There
is, though, a seeond kind of executable file
called .AXH which contains a header that
specifies its load and execute addresses,
whereas .AXE files always load and execute
at 8000hex.

Programmers' interface
Acorn has devoted as much effort to
smoothing the program interface between
Springboard and the PC as it has to the user
interface. Programs written for the
Springboard alone using C, Fortran or Basic
V can use the PC host's disks and screen via
the normal commands, just as if the PC were
a terminal. All the PCW Benchmarks run
exactly as published.

Writing programs which communicate
between the two processors cannot be quite
so transparent for fundamental reasons;
when working with a coprocessor it is
impossible to disguise the fact that there are
two separate memory spaces, and that the
operations of two independent CPUs need to
be synchronised. The solution chosen by
Acorn is effected through BIOS software
interrupts, which is a very good solution given
that this is a level at which IBM PC
programmers commonly work.

The new PC BIOS interrupt 64H has 14
functions, which are called by the usual
PCDOS convention of putting the function
number in the 8088 AX register and then
issuing the interrupt. Incidentally, this
interrupt-driven interface means that it is not
necessary (though it may sometimes be
preferable) to write Assembler programs to
drive the Springboard. Many modern PC
languages, including Turbo Pascal, C and
Modula 2, have the ability to issue software
in-

terrupts without machine code.
Several of the new funetions are to do with

initialising and resetting the ARM, connecting
the ARM to the host keyboard and screen,
and passing commands to the executive
firmware. For example, ARMCCE (function 4)
connects the keyboard, inserts a command
string into the keyboard buffer, and exits
when the ARM program has read the buffer.
The similar ARMCCAE (function 7) does the
same but only exits when the ARM program
terminates. ARMSERV (function 8) checks to
see if the ARM program has requested a
DOS service, and tries to satisfy the request.
An ARMSERV request can fail because a
DOS call is already being served or because
the Tube is currently being read from.
ARMPOLL and ARMEXEC (functions 9 and
10) are to do with running programs on the
ARM; ARMPOLL checks whether the
Springboard is waiting to do I/O and
ARMEXEC is like the DOS EXEC function
except that it loads and runs a program on
the ARM instead of the 8088.

The rest of the functions are all to do with
data transfer between the two memory
spaces of the PC and Springboard. Data can
be transferred either a byte at a time or in
blocks, and in both directions. For byte
transfers the interface software maintains its
own standard input and output buffers, but for
block transfers the programmer must supply
buffers, passing their length and start
address in registers. Both synchronous and
asynchronous block transfers are supported.

In a synchronous block transfer both
programs, on the PC and the Springboard,
must cooperate. The PC issues an ARMBKR
(read) or ARMBKW (write) call and the ARM
must issue an OSFILE call. If either party is
not ready to transfer, the other will be forced
to wait until it is; the PC can use ARMPOLL
to see if the ARM is ready.

Asynchronous block transfers using
ARMBKGET and ARMBKPUT are more
passive affairs in which the PC alone
transfers data to or from the Springboard. A
program running on the Springboard is not
expected to do anything at all, and indeed
there need not even be a program running on
the ARM. This is the fastest way to transfer
data, and the calls always succeed.

On the Springboard side of the fence,
operating system services are called using
OSWORD calls reminiseent of those on the
BBC Micro. The ones of partieular interest
here are OSWORD 128 which requests a
DOS software interrupt, and OSWORD 129
which returns the address of a 64byte
parameter block in the PC for

those DOS calls, like the filing system ones,
that pass parameters in memory. OSFILE
saves or loads data to disk (or to the PC
memory), and as just mentioned is used to
fulfil the ARMs end of a synehronous block
transfer.

Performance
I was supplied with Fortran 77 and ARM C
compilers and a disk version of Basie V. This
latter looks identical to the language used on
the Archimedes, and the redundant graphics
commands simply do nothing. I ran the PCW
Benchmarks, apart from GrafScrn, in Basic V
and ARM C with the results shown on page
119. As you will see, the maths functions run
even faster than on the Archimedes (TrigLog
is twice as fast) while the screen I/O runs at
typical IBM PC speeds, exactly as you would
expect.
What I didn't expect, however, was the

extraordinarily fast time for Store H/D, which
must be pushing my old hard disk close to its
hardware limits; you can see how slow
BasicA (Store H/D=12.7 sees) really is at I/O.

Prices
Springboard 1Mbyte £1000
Springboard 2Mbyte £2000
C, Fortran, Pascal, Lisp,
Prolog £250 eaeh
Basic V £50

Conclusion
At £1-2000 the Springboard is not cheap, and
many people will immediately compare its
price unfavourably with that of the Acorn
Archimedes itself, which starts at £799. When
doing this comparison though, don't forget
that that Archimedes price buys only 512k of
memory, and that the price doesn't include a
monitor. A fairer comparison would perhaps
be with other fast coprocessor boards for the
IBM PC, such as the 80386, the 68020 and
the Transputer boards. The prices are
broadly similar or more expensive.
Viewed as a highperformance addon for a

PC, the Springboard works very well indeed.
The interface software is better thought out
than most I have seen in this field and makes
it quite straightforward to write PC programs
that use the ARM as an aceelerator. When
the floating point and IEEE podules are
released, the Spr ingboard w i l l tu rn a
PC or clone into a very powerful
workstation for scientific number-
crunching and laboratory control
applications.

Acorn Computers is on (0223) 245200.

Dick Pountain is a consultant editor to PCW,
and has just cowritten a book on occam
programming (see the review in this month's
Bibliofile). END

120 PCW JANUARY 1988

	Page 1
	Page 2
	Page 3

