application note
—powerful adaptec
—Chip set simplifies
—disk controller design

G. Venkatesh
A oolicati T

August 1984

q adaptec,inc.

580 Cottonwood Drive, Milpitas, CA 95035 e (408) 946-8600

Additional copies of this application note, or other Adaptec literature, may be obtained from:

Adaptec, Inc.
Literature Department
580 Cottonwood Drive
Milpitas, CA 95035

The information in this document is subject to change without notice.

No part of this document may be copied or reproduced in any form or by any means without prior written consent of
Adaptec, Inc.

ADAPTEC, INC., 580 Cottonwood Drive, Milpitas, California 95035
Copyright 1984

TABLE OF
CONTENTS

1.0

2.0

3.0

4.0

5.0
6.0

7.0

Introduction

Data Buffering and Transferring .

2.1 Port A Transfer .

2.2 Port B Transfer . .
2.3 Data Transfer Overview .
2.4 RAM Buffer Interface

Data Formatting and Sequencing
3.1 Drive Interface .

3.2 Register Overview .
Support Processor .

4.1 Processor Interface. e
4.2 Disk Control and Status Monitoring .

4.3 Host Bus Access (Registers 50 and 51)

4.4 RAM Buffer Access (Register 70) .
Serial Data Encoding/Decoding .
Summary.

Appendices .

7.1 Flowcharts. ..

7.2 Sample Routines
7.3 Programming 8-Bit ECC Correction
7.4 Typical VCO/PLL Schematic .

7.5 Other Microprocessor Interfaces

ADAPTEC APPLICATION NOTE |

O oo W

13

14

17

17
18
21
21

23
27

29

29
34
45
46
48

1.0

INTRODUCTION

To take advantage of the advances in CPU technology, designers need a high performance
rigid disk controller that can effectively break the I/O bottleneck. Unlike disk controllers
in the past, new implementations have to be flexible and powerful. In fact, today’s design
must be capable of being an intelligent I/O subsystem, instead of being a drain on the
host CPU. In addition, the disk controllers need to be easily adaptable to recent enhance-
ments in the Winchester disk drive technology.

To be flexible, a controller design must be capable of not only handling the slower drive
interfaces such as the ST506 and SA1000, but also enhancements like the ST412HP
(High Performance) and other high performance interfaces like ESDI and SMD. In addi-
tion, the controller must be able to meet not only the original specifications but also
various deviations from them. The controller therefore has to deal with variations in track
density, track formatting, data transfer rates, sector sizes and many other things.

The Adaptec disk controller chip set provides the major portion of the hardware necessary
to build a high performance rigid disk controller. Three custom LSI circuits make up the
set: a single chip controller, an encoder-decoder chip, and a buffer controller. The AIC-
100 disk controller chip handles high-speed sequencing of the data, leaving slower drive-
control operations to an inexpensive support microprocessor. This approach enables the
use of the same chip set with all of the industry-standard disk interfaces (ST506, SA1000,
ESDI, SMD and ST412HP).

The AIC-250 LSI encoder-decoder circuit along with a data separator forms all that is
necessary for NRZ (non return-to-zero) to MFM (modified frequency modulation) con-
version and back. The data separator includes the phase locked loop and the voltage
controlled oscillator that are necessary to separate the data from the clock during an
MFM read data operation. The chip also performs the address mark generation, address
mark detection, and write precompensation functions.

In most systems with shared DMA channels, adequate cycle times are not available to
transfer data to and from the disk every 800 nsecs per byte (10 Mbits/sec designs) or
every 1.6 usecs per byte (5 Mbits/sec designs). Without some protection built into the
board, even a slow Winchester (§ST506) could overrun the DMA with some regularity.
The AIC-300 dual ported buffer controller can address up to 64K Bytes of RAM buffer
in a true dual-ported buffer configuration that guarantees non-interleaved disk formatting
and no host overruns. In addition, the chip greatly simplifies the implementation of the
popular SCSI (Small Computer System Interface) bus.

A typical controller block diagram is shown in Figure 1.

By partitioning the function between the different chips, the Adaptec disk controller
solution addresses many major growth areas in the disk drive market. Some of the
extremely important parameters are:

= Number of Head Selection Lines: To give way to the demand for increased number
of heads in the next generation of drives, this is controlled by a low cost support
processor.

® Seek Commands: To handle a variety of requirements from step-pulse line for seek
control (in ST506 type interfaces) to structured serial output commands (such as direct
addressing in ESDI type interfaces), this function is again best handled by the support
processor.

ADAPTEC APPLICATION NOTE l 1

PROM

| DISK

DRIVE
——» CONTROL
-— MICROPROCESSOR > 110

[e—DI|SK

DRIVE
HOST STATUS
BUS
CONTROL
y

BUFFER DISK
<« CONTROL e [—DRME
AIC-300 DATA

DISK
CONTROL
CHIP
A AIC-100
HOST
BUS ~—n] RAM VCO
DATA

Figure 1. Typical Controller Block Diagram

= Hard or Soft Sector Formatting: The new combination of fixed and removeable
drives require hard sector recognition, a function that is handled by the AIC-100
controller chip. A requirement for digital data processing in graphics and sound extends
sector lengths to as much as a full track, also supported by the AIC-100.

s Placement of Encoding or Decoding Functions: Drive manufacturers have taken
different approaches to the handling of data. Some drive interfaces require MFM data
while others require NRZ data. By separating the NRZ from/to MFM conversions to the
AIC-250 ENDEC chip, the AIC-100 disk controller can be used in a variety of controller
designs.

s Error Detection and Correction: All data correction should be transparent to the
host, so as not to waste valuable processing time. The AIC-100 controller chip offers the
best placement for this function.

= Data Buffer Control: This function can be easily yet economically handled by using
the AIC-300 buffer controller to convert inexpensive RAM into a truly dual ported FIFO.
The size of the buffer can be based on the application, up to a maximum of 64K bytes.

This Application Note discusses the use of the Adaptec disk controller chip set in design-
ing a high performance Winchester disk controller.

Section 2 describes the data transfer between the host and the controller. The perfor-
mance benefits of using the AIC-300 dual port controller will be discussed.

Section 3 describes the use of the AIC-100 disk controller chip in performing the
formatting and high speed sequencing functions.

Section 4 discusses the use of a support processor in monitoring the operations of the
AIC-100 and the AIC-300. In addition, the implementation of some popular drive inter-
faces will also be described.

Section 5 deals with the encoding/decoding of the serial data. Here, the use of the AIC-
250 ENDEC chip in the NRZ from/to MFM conversion will be discussed.

2 I POWERFUL ADAPTEC CHIP SET
SIMPLIFIES DISK CONTROLLER DESIGN

Section 6 is a summary, and sums up this Application Note.

Section 7 is the Appendix, and gives some additional detail on the use of the Adaptec
chips in the design of a high performance controller.

ADAPTEC APPLICATION NOTE I 3

2.0

DATA BUFFERING AND TRANSFERRING

2.1 PORT A TRANSFER

The effectiveness of a controller design is based on its ability to transfer data to and from
the disk as fast as physically possible, and as accurately through Error Detection and
Correction (EDAC). Since the drive is continuously spinning during a read or write opera-
tion, a byte has to be transferred from/to the AIC-100 disk controller chip every 800
nsec (10 MHz operation) or every 1.6 usecs (5 MHz operation). The AIC-100 chip either
indicates the availability of a byte (during disk read) or requests a byte (during disk
write), once every byte time through a signal output on the CLKB line (pin 3). This is
shown in Figure 2.

Je—400 NS]

CIKA
ACT00) l | l I | J | L

PCI L]

(AIC-100)

D0-D7
(AIC-100)

I: 1.6 pS *I

Figure 2a. AIC-300 Port A Data Byte Transfer Timing—5 MHz

je—400 Ns |

CIKA
(AICT100) I I I S L | I

Cle —_[- L_J

(AIC-100)
DO-D7
(AIC-100) %"
je——800 NS———]
Figure 2b. AIC-300 Port A Data Byte Transfer Timing—10 MHz

This data byte is transferred between the AIC-100 and the RAM buffer and is called a
Port A transfer. The appropriate address in the RAM is generated by the AIC-300 buffer
controller chip, from a set of pointer registers present in the chip. The interface between
the AIC-100 disk controller chip and the AIC-300 buffer controller chip necessary to
accomplish this transfer is very simple, and is shown in Figure 3.

ADAPTEC APPLICATION NOTE | 5

6

DO-D7

ADDR MS WE

(PIN 15) CIK
AIC-300
(PIN 14) PORT A REQ

DATA BUS

POWERFUL ADAPTEC CHIP SET

AIC-100

CLKA (PIN 2)

CIKB (PIN 3)

DO-D7 (PINS 1619, 22-25)

Figure 3. Porr A Transfer Interface

2.2 PORT B TRANSFER

BOE

LO

PORT B REQ

PORT B ACK

LATCH OUT

BUS OUT EN

BUS IN EN

The data transfer between the RAM buffer and the host is initiated and controlled by

the AIC-300 buffer controller chip, and is referred to as the Port B transfer. The AIC-300
generates the necessary request signal (Port B Req), RAM buffer address and control
signals, and the host bus latch control signals. This is shown in Figure 4. The buffer con-
troller uses the Port B Request (pin 39) to initiate the transfer which is completed after

a Port B Acknowledge is received (sampled at pin 38).

- {PN39

—_— »PN3

- {PN37)

-« J(PIN 3¢)

-« 1(PIN 35}

RAM
WE NS
WE MS

AIC-300

Figure 4. Port B Transfer Interface

SIMPLIFIES DISK CONTROLLER DESIGN

The relationship between the different control signals during a Port B transfer are shown
in Figure 5.

PORT B REQ | L

(AIC-300)

BIE
(AIC-300) l]

PORT B ACK | 1
(HOST)

DATA
(HOST LATCH)

Figure 5a. AIC-300 Port B Data Transfer—Host to Buffer

DATA
(BUFFER)

LO I l

(AIC-300)

PORT B REQ] L
(AIC-300)

BOE
(AIC-300) 1]

PORT B ACK |]

(HOST)

Figure 5b. AIC-300 Port B Data Transfer—Buffer to Host

ADAPTEC APPLICATION NOTE | 7

2.3 DATA TRANSFER OVERVIEW

In a controller design, the AIC-300 provides all the necessary signals to interface to the
host and the disk controller chip. The buffer controller also generates the necessary
control signals to access the buffer, alternating between Port A and Port B transfers.
While the Port A transfer is synchronous in nature (at the data transfer frequency), the
Port B transfer is asynchronous and is based on a Req/Ack handshake with the host.
Figure 6 shows the timing overview.

[«—400 NS—>|
ClK | J 1 1 |] |] L 1]
DO-D7
A B B A B
54 1 BYTE TIME |
Figure 6a. Dual Port Buffer Timing Overview—5 MHz
=400 NS—>|
CLK L1 | 1] L] l] | J l |
DO-D7
A B A B A B A

je———1 BYTE TIME——>]
Figure 6b. Dual Port Buffer Timing Overview—10 MHz

Thus during any data transfer operation, even though the access to the buffer is inter-
leaved between Port A and Port B, the AIC-100 disk controller chip should stay one
sector ahead of the host. This is necessary to keep error detection and correction trans-
parent to the host. The AIC-300 has an internal stop pointer which is used to prevent
overruns. An overview of the buffer operation is shown in Figure 7.

8 | POWERFUL ADAPTEC CHIP SET
SIMPLIFIES DISK CONTROLLER DESIGN

1K

<——FROM DISK
(PORT A)

STOP 512

TO HOST <+——
(PORT B)

Figure 7. Buffer Operation Overview

Thus during a read operation, while data is being transferred into the buffer from the
drive (Port A transfer), at the same time, the previous sector can be transferred to the
host (Port B transfer). The stop pointer is set to the end of the sector being transferred
to the host, and prevents an overrun. At the conclusion of a successful sector read, the
stop pointer can be updated to point to the end of this sector. Now this sector can also
be transferred to the host, while yet another sector is read in.

2.4 RAM BUFFER INTERFACE

As mentioned earlier, the buffer controller is capable of managing up to a 64K byte
buffer. The chip provides the address, memory select and read/write lines necessary to
perform this function. There are two distinct modes of RAM interface: equal to or less
than 1K bytes (up to 10 address lines), and greater than 1K bytes (up to 16 address lines).

In the 10 bit or less addressing mode, two special lines supply A8 and A9 address lines.
An example is shown in Figure 8.

ADAPTEC APPLICATION NOTE | 9

10

7438 1373
<(E Q D
DRIVER LATCH

DATA 8/
BUS [

L5240

ClK

DATA
TO/FROM DEVICE

E
RCVR

DATA 8
BUS

<}
-}
Dc

A 5
d sox
A8
354 &
34 AIC-300 A(0-7)
o ET
22 B REQ MS
BACK wm
CIK AREQ

DATA

A9 ©-7
A8

AO-7) 2 ?e(A %;14
CE

WE

FROM
DEVICE

Figure 8. 10-Bit Addressing Application Example

7438

In the 16 bit addressing mode (greater than 10), the higher order address lines (A8-A15)
and the lower order address lines (AO-A7) are multiplexed coming out of the chip, on
pins AO to A7. In this mode, the two special lines supply the strobes SDP and SHP used
to demultiplex these signals during a disk transfer (port A) and a host transfer (port B)
respectively. An example is shown in Figure 9.

QGE

DRIVER]

[

15240

15373 DATA
8, TO/FROM DEVICE
QD -
LATCH
Cik

E
RCVR

VIAIA

15374
——D Q
- CLKOH]
CIK
10 |
716 SHP DATA
Yy e LS374 ©-7
o BOE 8
35oEE D @ 7 A8-15)
3] AIC-300
39
B REQ
38 A0-7)
B ACK A
AREQ CIK WE
L2 L°J
14 15
CIK
FROM
AREQ | DEVICE

Figure 9. 16-Bit Addressing Application Example

POWERFUL ADAPTEC CHIP SET
SIMPLIFIES DISK CONTROLLER DESIGN

Internal to the AIC-300 are two sets of pointer registers used to generate the RAM
addresses. These are the Read Address Pointer (RAP) and the Write Address Pointer
(WAP). The actual register used depends on which port is selected and the direction of
the data transfer, and is controlled by the value of the ROP/WOP (Read Operation/Write
Operation) bit in the DMA control register (Reg 53, bit 4). In addition to this, another
pair of registers called the Stop Pointer (SP) is used to control data transfers between the
host and the buffer. The different possibilities are shown in Table 1.

Table 1. Buffer Address Generation

ROP/WOP Source for Address Direction of Transfer
Read Disk

1 WAP Disk to Buffer

1 RAP Buffer to Host (RAP < SP)
Write Disk

0 RAP Buffer to Disk

0 WAP Host to Buffer (WAP < SP)

ADAPTEC APPLICATION NOTE I 11

3.0

DATA FORMATTING AND SEQUENCING

3.1 DRIVE INTERFACE

The AIC-100 Winchester disk controller chip handles all the data formatting and se-
quencing necessary to interface with the drive.

During a write operation, parallel data is transferred into the chip from the RAM buffer.
This data is passed through a 32 bit shift register before it is output as serial data in the
NRZ format. During this time, a 4 byte ECC is also computed. After the entire sector is
written to the drive, the ECC bytes are also output in a serial fashion.

During a read operation, NRZ data is read into the controller chip and byte parallel data
is transferred to the RAM buffer. Error checking is also performed at this time, using the
four ECC bytes stored at the end of the sector. If there is an error, the support processor
usually initiates retries to determine if the error is correctable. If the error is determined
to be correctable, the error syndrome information found in the AIC-100 chip is used to
correct the data in the buffer. This process is transparent to the host.

The serial data is synchronized through a read reference clock that is input to the AIC-
100 chip. The disk controller chip has the necessary logic to look for index mark and
sector mark (on hard sectored drives), in addition to generating the Read Gate and Write
Gate signals. The disk controller also controls the writing of the address mark during a
write operation, and looks at when the address mark is detected during a read operation.
Figure 10 shows the necessary drive interface lines.

NRZ

WAM/AMD

RD/REF CLK

DRIVE

AIC-100 RG INTERFACE

WG

INDEX

SECTOR |

SYSCLK

13

Figure 10. AIC-100 Drive Interface Signals

ADAPTEC APPLICATION NOTE | 13

14|

3.2 REGISTER OVERVIEW

Internally, the AIC-100 disk controller is made up of 17 registers, used to control the
high speed sequencing functions. The slower functions such as seek, head selection, drive
selection, and drive status monitoring are handled by an external support microprocessor
and some 1/O port logic. This is described in the following section.

In addition to the 17 internal registers, the AIC-100 chip also decodes accesses to 5
external register addresses which can be used to simplify controller design. The registers
can be grouped by function as follows:

Stored Value Registers

Command Ste-up Registers

Command Register, Register 78
Status/Execution Register, Register 79
External Registers

Table 2 shows the registers in each group and their function.

The operation of the AIC-100 chip revolves around two of these registers: the command
register (Reg 78), and the status register (Reg 79). These registers have to be set up and
monitored by the support microprocessor for all data sequencing operations.

POWERFUL ADAPTEC CHIP SET
SIMPLIFIES DISK CONTROLLER DESIGN

Table 2.

Register Title R=Read/W=Write Function
STORED VALUE REGISTERS

72 ECC Bits 0-16 “OR”ed and 17-23 R Syndrome bits.

73 ECC Bits 24-31 R Error bits.

DO Gap Length w Bit control.

EO Cylinder Byte R/W ID field byte.

El Head Byte R/W ID field byte.

E2 Sector Byte R/W ID field byte.

E3 Flag Byte R/W

COMMAND SET-UP REGISTERS

71 ECC Control w Correction control.

74 ECC Polynomial w Low order bits.

77 ECC Polynomial w High order bits.

7A Operation Modifier R/W Operation control.

7E Special I/0 R Input and data transfer bits.

7F POP Stack R LIFO stack read.

7F Clock Control w CLKA control.

A4 Search Bit w Enables search.

Cc4 Sector Length A Sector data field length.

COMMAND REGISTER

78 Operation Command w Controls the sequencing of the

controller chip.
STATUS/EXECUTION REGISTERS
79 Chip Status R Used to monitor chip status.
79 Start Execution w Used to start chip execution.
EXTERNAL REGISTERS

50 Host Data Transfer R/W Allows processor to R/W data
directly from the host.

51 Host Data Transfer R/W Exactly like Register 50.

70 Buffer Data Transfer R/W Allows processor to R/W data
directly from the buffer.

6E External Line Control R/W Causes the pins designated
RD6E and WR6E to be
activated by the processor.

6F External Line Control R/W Same as above, but for pins

RD6F and WR6F.

ADAPTEC APPLICATION NOTE | 1 5

4.0

SUPPORT PROCESSOR

4.1 PROCESSOR INTERFACE

The AIC-100 chip and the AIC-300 chip are setup and monitored by a support processor.
The interface to the support microprocessor is through a multiplexed address/data bus as
is found in the Intel 8085 family of microprocessors. This can however be easily adapted
to other processors, such as the Z80, through the use of minimal external logic. Some
examples of this are shown in Appendix 7.5. For the rest of this controller design applica-
tion note, an Intel 8085 is used. The basic interface between the 8085 and the Adaptec
chips is shown in Figure 11.

AIC-100

AIC-300

26-21,19,18

CHIP —] CS
DECODE

Figure 11. Support Processor Interface

The support processor is used to maintain “loose” synchronization with what is happen-
ing in real-time on the disk through the OP command and Sequencer Status registers in
the AIC-100 (Reg 78 and Reg 79). Based on the operation, the processor also sets up the
registers in the AIC-300 to control the data transfer to and from the buffer.

The sequence of the actual steps that have to be followed with the AIC-100 and the

AIC-300 for a READ, WRITE, and FORMAT disk operation is shown in the form of
flow charts in Appendix 7.1. The actual source code is shown in Appendix 7.2.

ADAPTEC APPLICATION NOTE I 17

4.2 DISK CONTROL AND STATUS MONITORING

An important function of the support processor is the management of the low speed
drive interface function. By designating this operation to the support processor, the
Adaptec chip set can be easily adapted to a variety of drive interfaces and drive types.

In the case of a ST506/412 interface, the support processor has to perform the
following functions:

Recalibrate to Track 000.

Monitoring Drive Ready and Write Fault.
Selecting the appropriate drive and head.
Seeking to the desired cylinder.

This can be easily accomplished through the use of I/O ports and firmware. The AIC-100
chip internally decodes accesses to addresses 6E and 6F. A read or write to these two
addresses cause the appropriate pin (pin 4, 5, 6, or 7) on the AIC-100 chip to be asserted.
Thus by placing external I/O ports at addresses 6E and 6F, and using this feature of the
AIC-100 chip, the designer can eliminate external decode logic. An example of this
implementation for a ST506/412 or a ST412HP interface is shown in Figure 12.

Since the support processor is used for drive control, a variation in hardware and a change
in the firmware enables the Adaptec chip set to be used for other drive interfaces. An
example of the implementation for an SMD interface is shown in Figure 13.

1 8 l POWERFUL ADAPTEC CHIP SET
SIMPLIFIES DISK CONTROLLER DESIGN

MICRO BUS

l——
o
244
le———

| ————

AD (0-7)
RD, WR

AIC-100 Wo6E

L

F—————

-

“FOR ST412HP .
“"FOR CONTROL OF MORE THAN 8 HEADS

Figure 12. ST5 06/41 2 and ST412HP Interface

READY
FAULT

TRKO

SEEK COMP

DIR IN

STEP

HD SEL O

HD SEL 1

HD SEL 2°*

RED WR CT/HD SEL 3
DR1

DR 2

DR 3
DR 4~

RECOVERY MODE

ADAPTEC APPLICATION NOTE | 19

INDEX

AD (0-7)

RD, WR

AIC-100

W6F

SECTOR

MICRO BUS

244

l«—— FAULT

l«———— SEEK ERROR

[=——— ON CVLINDER

[~<—— UNIT READY

e—— WRITE PROTECTED

e BUSY

373

———— UNIT SEL TAG
———— UNIT SEL O
— UNIT SEL 1
——» TAG 1
— TAG 2
—— TAG 3
—— BIT 8

b BIT 9@

373

—— BITO
—— BIT1
——— BT 2
—— BIT 3
—— BT 4
——— BT 5
——» BT 6

—— BIT7

210

A

X

SECTOR

INDEX

20 POWERFUL ADAPTEC CHIP SET
SIMPLIFIES DISK CONTROLLER DESIGN

Figure 13. SMD Drive Interface

4.3 HOST BUS ACCESS (REGISTERS 50 AND 51)

In the design of intelligent controllers, a popular host interface used is the SCSI (Small
Computer System Interface), previously known as the SASI. Adaptec chip set based
designs ease the implementation of the SCSI, since a majority of the functionality
needed for this is inherent in the overall architecture and, in particular, in the AIC-300
chip.

While the AIC-300 buffer controller chip can handle data transfers between the host bus
and the buffer, it may sometimes be necessary for the support processor to directly access
the host data bus. This is the case in an SCSI implementation during the transfer of the
Command Data Block (CDB) and message bytes. This can be accomplished by the
support processor through an access to Register 50 or 51.

An access to either register is decoded by both the AIC-100 and the AIC-300. The AIC-
100 chip internally bridges the support processor data bus and the RAM buffer data bus,
thus offering a data path to host latch and receivers. The AIC-300 chip asserts the control
signals necessary to access the host bus. During a read, the BIE line from the AIC-300 is
asserted. During a write, the LO line will be first asserted, followed by the BOE line. This
allows the data to be latched first before being enabled onto the host data bus. During a
read or a write to Register 50 or 51, the data is passed through the AIC-100. An example
is shown in Figure 14,

7438 LS373

-
DRIVER

DATA BUS

AIC-100

AD (0-7)
RD, WR,
ALE

RAM

ADDR MS WE
A A

8

%
o

5
AN

ogv

e
ADDR MS WE
771© AD (0-7)
RD, WR MICRO BUS
ALE
BOE AIC-300

AD (0-7). RD, WR, ALE

35 BIE

8085

Figure 14. Host Bus Access

4.4 RAM BUFFER ACCESS (REGISTER 70)
During the process of transferring data between the disk and the host, the support

processor has to sometimes have access to the sector data. This is especially necessary
during a read operation if a correctable ECC error is encountered. Using the error

ADAPTEC APPLICATION NOTE | 21

22|

syndrome information found in the AIC-100 chip, the support processor first calculates
an error mask and a displacement. The algorithm necessary for this is shown in
Appendix 7.3.

After that, the actual data stored in the buffer has to be read, modified, and written back.
This is done through an access to Register 70.

Here again the AIC-100 decodes an access to Register 70 and bridges the processor data
bus and the buffer data bus. This allows the transfer of data between the support
processor and the RAM.

The AIC-300 decodes an access to Register 70 and asserts memory select and read/write
to the RAM. The address selected is the contents of the WAP registers if the ROP/WOP

bit (Reg 53, bit 4) is set (Read Disk) and the contents of the RAP registers if the ROP/

WOP bit is reset (Write Disk). This path is shown in Figure 15.

D0-D7

ADDR MS WE
A

ADDR MS WE

AD (0-7
AIC-300 RD(, WI%

ALE

MICRO BUS

AD (0-7), RD, WR, ALE

8085

Figure 15. RAM Buffer Access

POWERFUL ADAPTEC CHIP SET
SIMPLIFIES DISK CONTROLLER DESIGN

5.0

SERIAL DATA ENCODING/DECODING

The AIC-100 controller chip converts parallel data to NRZ serial data and back. In drive
interfaces, such as SMD and ESDI, serial data is written to, and read from, the drive
interface in NRZ format. However, in drive interfaces like the ST506/412, SA1000, and
the ST412HP, the data is transferred in MFM format. In this case, the main difference is
the transfer rate, shown in Table 3.

Table 3. MEFM Transfer Rates

Interface Transfer Rate
SA1000 4.34 Mbits/s
ST506/412 5.0 Mbits/s
ST412HP 10.0 Mbits/s

The AIC-250 Encoder/Decoder chip (ENDEC) contains a major portion of the logic
necessary to convert data in the NRZ format to/from MFM format. In addition, the chip
provides the logic necessary for address mark detection and writing. The chip also has the
necessary circuitry for write precompensation which is necessary to compensate for
certain bit patterns.

During a read disk operation, an external VCO/PLL is required to separate the data from
the clock before it can be converted to NRZ data. A typical VCO/PLL circuit is shown in
Appendix 7.4.

An example of the ENDEC interface circuit is shown in Figure 16.
The AIC-250 simplifies ST506/412 and ST412HP interface Winchester disk controller
designs due to the fact that it needs very few external passive components, unlike other

implementations which require costly delay lines. A typical configuration of the ENDEC
for a 5 MHz data rate is shown in Figure 17.

ADAPTEC APPLICATION NOTE |23

24|

" 10

AIC-100

13

27

28 =

26 =

15

14

SECTOR (HARD SECTOR DRIVE)

SYSCLK FROM
8085 PIN 37

INDEX
T3 RESET
EWC
Y y
14 9
NRZ N} , MV
> WR DATA
WAM/AMD
2 13 J«—— READ DATA
RD/REF . AC.250 15 < _SEP DATA
WG P 10 f<TFVCO
SEP
RG
> 21 20 J«EK
16 15
RAW DATA CLAMP
Y ¥
VCO/PLL

Figure 16. NRZ To/From MFM Conversion

POWERFUL ADAPTEC CHIP SET
SIMPLIFIES DISK CONTROLLER DESIGN

+5v

+READ DATA

10 pF

Y
o

o

i 10 MHz
47K
PULL UP 10 ‘;F_"_{ D s
Q 250 ns Tl |
LS123
1 12
S
D Q
1L
= LS74
c oY 7w
R
w0 PULL UP "
B ns READ DATA
PULL UP 15123
V20 AIC-250
0AuF -

T ENDEC

V15

(10-12 ns PRECOMP)
V10
8| Vo
+5VvV
2200
10002
— AN T MFMI
7438 50 pF T

Figure 17. External Component Requirement at 5 MHz Data

ADAPTEC APPLICATION NOTE | 25

6.0

SUMMARY

As with all growing technologies, 5%’ Winchester drives will undoubtedly move beyond
the capacity of today’s units. Thus a designer who is designing a controller board today
must consider the needs of tomorrow. To that end, by cleverly partitioning features
among various chips in the Adaptec family, and by putting the burden of slow speed disk
control and status monitoring on the support processor, future design issues can also be
addressed. All of this of course being accomplished without sacrificing performance

or increasing cost.

ADAPTEC APPLICATION NOTE |27

7.0

APPENDICES

7.1 FLOWCHARTS

In order to read or write data from/to the peripheral, the support processor has to loosely
control the operation of the AIC-100 Winchester disk controller chip and the AIC-300
dual ported buffer controller chip. The flowcharts necessary to set up and monitor these
two chips are as follows:

s AIC-100 = AIC-300
o Soft Sector Format o Read Disk (Single and Multi Block)
o Soft Sector Read/Write o Write Disk (Single and Multi Block)

(Single and Multi Block)

ADAPTEC APPLICATION NOTE |29

30|

78

[LOAD CHSF

'

LOAD GAP 1 AND
GAP 3 LENGTH

!

LOAD BLOCK COUNTER
80,=256; 00,=128

| E0-€3

DO

C4

LOAD OP CMD WITH 10,=
WRITE GAP 1 AND ID

78

!

SET B5 IN 7A FOR
&Cy, PATTERN

'

[tomsiart 15, |

——

| READ STATUS |

LOAD OP CMD
11,=WRITE DATA

——

| READ STATUS

]

LOAD OP CMD
13,=FORMAT TO B’I_AC())C[:?IES
END OF TRACK

[

79 (

READ STATUS |

WRITE 4E
UNTIL INDEX

POWERFUL ADAPTEC CHIP SET

R79 B4

SIMPLIFIES DISK CONTROLLER DESIGN

STOPPED

7A

78

79

SET UP

WAIT FOR
INDEX

L WRITE ID

VARIABLE
SECTOR
LENGTH
ROUTINE

LOAD CHSF

| E0-E3

LOAD OP CMD
12,=WRITE ID

78

—

READ STATUS

| »

AIC-100 Soft Sector Format

WRITE
DATA

SEARCH ID EQUAL

FOUND

VARIABLE

ROUTINE

NO DATA AM

:

SECTOR LENGTH

L

SET UP

TIMEQUT
IF READ

LOAD CHS EQ E2

!

LOAD BLOCK COUNTER | | 4
80,=256; 00,,=128

= RESTART

Y

LOAD OP CMD 78
08,,=READ 09,,=WRITE

" e

LOAD START

05,, 79

]

READ STATUS 79 D

»] NOT
FOUND

TIMEOUT

STOPPED?

MULTI
BLOCK
TRANSFER

SPECIFIED
RETRY
PROCESS,

1. TO SEARCH DATA:
A) SETRA4 TO 03

B) SET R7A B4
LOAD NEXT CHS EO-£2 2. TO VERIFY:
A) SETR7A B5
LOAD OP CMD -
14,,=STOP

STOPPED?

YES

IN WRITE MODE.

AIC-100 Soft Sector Read/Write (Single and Multi Block)

NOTE: ECC BRANCH IS SKIPPED

READ
DATA
OR

WRITE
DATA

ADAPTEC APPLICATION NOTE l 31

32|

CLEAR ALL
POINTERS
REG 50-0 COMMON
y —READ
STEPS
SET ROP
REG 53 BT 4

START DATA XFER
FROM PERIPHERAL
TO BUFFER

SET SP=(WAP-1)

y

START DMA
SET RL
REG 53 BIT 3

Single Block

POWERFUL ADAPTEC CHIP SET
SIMPLIFIES DISK CONTROLLER DESIGN

DO COMMON
READ STEPS

START DATA
XFER FROM
DEVICE

1

No TXFERTO HOSTTO |
MAKE ROOM FOR |
L NEXTBLOCK |

YES

SET SP=(WAP-1)

CLEAR
READ LATCH

END

NO

Multi Block

AIC-300 Read Disk

CLEAR ALL
POINTERS
REG 59=0

v

RESET ROP

REG 53 BIT 4
COMMON
! — WRITE

SET 5P TO END OF STEPS
BLOCK ADDR
REG 5E & 5F

Y

SET WL
REG 53 BIT 2

START DATA
XFER TO
PERIPHERAL

END

Single Block

DO COMMON
> WRITE BLOCK
STEPS

HAS

IS
UFFER SPACE
AVAILABLE FOR
EXT BLOCK

A BLOCK

SET SP
TO END ADDR
OF NEXT BLOCK
REG 5E & 5F

MORE
BLOCKS TO
XFER

WAIT FOR
PERIPHERAL TO END

END

Multi Block

AIC-300 Write Disk

ADAPTEC APPLICATION NOTE |33

34|

7.2 SAMPLE ROUTINES

POWER ON
RESET

/

IDLE LOOP
»] CHECK FOR

COMMAND

COMMAND
DECODE

In order to control the operation of the disk controller, the support processor has to
execute firmware that loosely synchronizes the Adaptec chip set. This section gives
sample routines necessary to accomplish some basic functions. These can be modified
to meet the specific design requirement. The following flowchart gives an overview of
the disk control operation.

SEEK

FORMAT READ WRITE

Y
IMBEDDED SEEK
IN READ OR
WRITE CMDS.

ECCIF
NECESSARY

ONE OR
MULTI

RECAL

BLOCK

/ /

Y

GOOD OR
ERROR

POWERFUL ADAPTEC

CHIP SET

FINAL
STATUS

Disk Controller Operation Overview

SIMPLIFIES DISK CONTROLLER DESIGN

The following is a breakdown of the main functional sections in the disk controller
operation.

u Power On Reset: Initialize all known parameters for both host and drive interfaces.
Clear or set appropriate flags to indicate unknown parameters (i.e., dirve not
formatted). Some initial command may be necessary from the host in order to fully
specify all drive or host parameters.

m Idle Loop: Constantly check the host interface for incoming commands. Do any
other housekeeping or checking necessary to remain active and alert to the host or drive
interface. Seek complete on one of the drives may be checked here.

= Command Decode: Check for incoming commands from the host for correct
formats, lengths, and zero check unused fields. Save the host 1.D. and the logical unit
number of the active unit. Possibly separate command types here and do the seek, if
necessary. Jump to the routine to execute the command.

m The Commands: Start and stop command execution, ensure data transfers to or
from the host, check I.D. and data fields for validity, and maintain proper positioning on
the drive. Please refer to the sample routine listings that follow this text for guidelines.

s Final Status: Report to the host upon completion of each command. Report proper
completion or error conditions. Clean up host and drive interfaces, internal flags, etc.,
and return to the idle loop.

Some typical error conditions are as follows:

Drive Errors Controller Errors System Error

NO INDEX SIGNAL LD. ERROR INVALID COMMAND
NO SEEK COMPLETE UNCORRECTABLE DATA ERROR ILLEGAL BLOCK ADDRESS
WRITE FAULT 1.D. ADDRESS MARK NOT FOUND VOLUME OVERFLOW
DRIVE NOT READY DATA ADDRESS MARK NOT FOUND BAD ARGUMENT
TRACK 00 NOT FOUND RECORD NOT FOUND INVALID LUN

SEEK ERROR

CORRECTABLE DATA ERROR

INTERLEAVE ERROR

UNFORMATTED DRIVE

SELF TEST ERROR

DEFECTIVE TRACK

Following are some sample routines for AIC-300 and AIC-100 chips. These routines show
how to program normal disk functions. Error routines are left to the user to define. The
drive interface defined here may also be different for some users. The chip registers are
defined by their locations for easy understanding without having to refer to the equate
list.

ADAPTEC APPLICATION NOTE I 35

kkhkkhkkhkhkhkhkhkhhhhkhhhhhkhhkhkdhdhhhhhhrhhkhhkhkkhkkdhhhhhkkhkhkhkdhkk
* SYSTEM EQUATES *
khkkhkkhkhkhhhkhkhkhhhkhkhhkhhkhkhhhhhdhkhhkhkhhhhdhkhkhkhhdhhhhdhrhkdhkdhkd
BUFFER CHIP
N RS53 EQU 4053H ;DMA control register
R54 EQU 4054H ;BUFFER capacity
R59 EQU 4059H ;RESET
R5A EQU 405aH ;RAP register
R5C EQU 4@5CH ;WAP register
RSE EQU 40 5SEH ;STOP register
SERDES CHIP

R79 EQU 4070H ;BUFFER I/0 DATA
R71 EQU 4071H ;ECC control register
R72 EQU 4072H ;ECC low byte
R73 EQU 4873H ;ECC high byte
R74 EQU 4074H ;ECC poly byte FORWARD
R77 EQU 4977H ;ECC poly byte RECIPROCAL
R78 EQU 4978H ;BRANCH CONTROL register
R79 EQU 4079H ;START register
R7A EQU 40 72H ;OPERATION CONTROL register
R7F EQU 407FH ;PUSH/POP I.D. stack/CLOCK DIVIDE
REQ EQU 40EGH ;CYLINDER area
RE1 EQU 4GEL1H sHEAD area
RE2 EQU 40E2H ;SECTOR area
RE3 EQU 48E3H ;FLAG area
RC4 EQU 40C4H ;DATA field length
RA4 EQU 40A4H ;SEARCH OPERATION cell
RD@ EQU 49DGH ;GAP length cell
ECCOFF EQU 7 ; ECC HARDWARE OFFSET
khkhkhkhkhkhkkhkhkhkkhhhhhkkhkkhhkkhkhhkhkhkrhdhhkhkhkhhkhkhhhkhhkhhhkhhhhhhhhd
* RESET BUFFER AND SERDES CHIPS *
hkhkkhkhhhkhkhkhkhkhhhhkhhhkhkhkhkkhhkkhkhkhkhkhkhkrhhkhhkhkkhkhkhhhbhhkhhkkhk
RESET: DI ;disable interrupts

MVI A,20H ;reset serdes

STA R71 ;send to serdes

MVI A,00H ;RESET OFF

STA R71 ;send to serdes

STA R71 ;and again

MVI Aa,l ;reset...

STA R59 ;BUFFER CHIP

XRA A ;RESET OFF

STA R59

MVI A,42H

ouT @80H ;INITIALIZE PORTS

JMP IDLE ;GO TO IDLE LOOP
khkhkhkhhkhkhkhkhhhhhkhhhkhkhhkhhhhhkhkdhhhdhkkdhhkhkkkdhkkhkhkhhkkhhkddk
* FORMAT ENTIRE DRIVE ROUTINE *
hkhkkkhkhkkhhkhhhhhkhhhhkhhhhkdhkhhhhhhhhkhhhkhhkhkhhkhhhdkkhhkkkdhkk
FORMAT: MVI B, 00 ;clear flag

MVI A,40H

STA R53 ;ENABLE INITIATOR

CALL GETDRV ;SELECT THE DRIVE

CALL RECAL ;recal drive
CLRLA: XRA A ;zero out

STA REG ;eylinder...

STA RE1 ;head...

STA RE2 ;sector...

STA RE3 ;and flag

MVI A,QFFH

STA RC4 ;SET 256 BYTE SECTORS

MVI A,20H ;supress xfer on

STA R7A ;send to op control reg
NEWTRK: MVI c,32 ;32 sectors per track

MVI A,BEH ;jgap 1

STA RDG ;store in serdes

MVI A,10H ;set up value...

STA R78 ; for branch register

LXI H,R79 ;point H/L at start register

MVI M, 15H ;write start value
BRACT@: MOV A,M ;get status

ANI 2¢H ;test branch active bit

JZ BRACTY ;loop til branch active OR INDEX

MVI A,11H sWRITE I.D. branch value

STA R78 ;save in branch register

ANI 40H ;test xfer active

z;(;l POWERFUL ADAPTEC CHIP SET
SIMPLIFIES DISK CONTROLLER DESIGN

Jz
MVI
STA
DCR
JZ
MVI
STA
CALL
JMP
LSTSEC: MVI
STA
LSTWT@. MOV
ANI
Jz

USERS MUST DEFINE THEIR OWN

XFACT®
A,@CH
RD@

C
LSTSEC
A, 12H
R78
INCLA
BRACT@
A,13H
R78
A,M
164
LSTWT®

;loop til it is

igap 3

;save in serdes

;decrement sector counter

;if last sector, jump out

;otherwise, use 12...

;as branch

;GET NEXT SECTOR/STORE NEW C,H,S,F
;and loop back to branch active check
;stop value

;send to branch register

;get SERDES status

jtest the stopped bit

;loop till stopped AT INDEX

ROUTINES INCLA AND BUMP.

INCLA IS INTERNAL HOUSEKEEPING ROUTINE TO KEEP TRACK

OF CYLINDER AND HEAD UNTIL ENTIRE DISK IS FORMATTED.
IT ALSO STORES NEW C,H,S,F IN RE§ - RE3.

BUMP WILL SELECT A NEW HEAD AND SEEK, WHEN NECESSARY.

;if not done, loop back
;if done, zero out...
;supress bit

;and jump to idle loop

dhkhkhkhkhkhdkkkhhkhhkhkhhhkhhhhhhhdhkhkhkhhhkhhhhkhhhhhk kb rkhkhk k&

READ ONE OR MULTIPLE BLOCKS ROUTINE *

Fkdkhkhkhhkhkhhkhhkdhhkkhhhkhhhkhhhhkhkhkhhkhhhkkhhdhhhkkkhkdhkhhrkhkkk

CALL INCLA
CALL BUMP
JNC NEWTRK
FMDONE: XRA A
STA R7A
JMp IDLE
*
READ: XRA A
MoV D,A
STA R59
MVI A,0D0H
STA R53
CALL GETDRV
LDA NBLKS
MOV C,A
LDA cYL
STA REG
STA DESTRK
LDA HEAD
STA RE1
STA DESTHD
CALL SEEK
Jc BADCMD
XRA a
sTa RE3
LDA SECT
STA RE2
RDRENT: MVI A,08H
STA R78
LXI H,R79
MVI E, 83
LDA R7A
RDSTRT: MVI M, @5H
RDDLY: MOV A,M
MoV B,A
ANI 201
JNZ RDDAM
MoV A,B
ANI 10H
Jz RDDLY
MoV A,B
ANI g4H
JINZ RDIDER
LDA R7A
ANI g1
Jz RDSTRT
DCR E
JNZ RDSTRT
JMP SEEKER
RDDAM: MVI B,9
ANA A
IM RDXFLP
LDA R79
ANA A
M RDXFLP
DCR B
JNZ AMNACT
JIMP DAMERR

szexo out...

;CLEAR FOR MSB STOP POINTER
;jreset ALL POINTERS on BUFFER CHIP
;set READ OPERATION

;send to BUFFER CHIP

;select drive

;GET BLOCK COUNT

;save in C

;GET CYLINDER

;INTO SERDES

;save as desired track

;GET HEAD

;INTO SERDES

;save as desired head

;do the seek

ion error, halt

;2zero out..

;FLAG

;get sector

;INTO SERDES

;stuff @8

;into branch register

;point H/L at start register
;3 revs to find i.d.

;dummy read to clear index passed
;START SERDES

;iget status

;save a copy in B

;check branch active

;branch active = GOOD I.D.-READ DATA
irecover status

;check stopped bit

;if not stopped, loop back up
;if stopped, get new copy
;look for ecc error

;if ecc blown, jump to error routine
;if not ecc stop, get op ctl
;test index passed

;if not passed, loop back

;if passed, drop rev counter
;TRY AGAIN

;if zero, ERROR

;CLEAR COUNTER

;TEST FOR DATA TRANSFER ACTIVE

; INSURE NO HANG IF NO DATA A.M.
JWAIT FOR DATA TRANSFER
;NO DATA A.M. FOUND

ADAPTEC APPLICATION NOTE |5;]’

RDXFLP: MVI A,S ;USE @5
STA R78 ;as branch
RDNXT: DCR C ;DECREMENT COUNTER
JZ RDBR2 ;1f zero, get out
CALL INCLA ;GET NEXT SECTOR
RDBR2: MOV A,M ;get status
MoV B,A ;save a copy in B
ANI 30H ;test branch active and stopped bits
JZ RDBR2 ;loop till branch active or stopped
MVI A,08H ;get the next branch address into A
STA R78 ;and save in branch register
MOV A,B ;now recover status
ANI @5H ;test for ecc or compare error
JINZ RDDAER ;jump out on error
LDA R53 ;DATA IS GOOD
ANI g8H ;CHECK READ LATCH
JZ RD4 ;NOT ON - FIRST SECTOR
LDA R53
ANI 20H ;CHECK DMA DONE
JINZ RD2 ;DMA IS DONE ~ SEND NEXT SECTOR
MVI 1FH
STA R79 ;DMA NOT DONE - STOP SERDES
RD1: LDA R53
ANI 20H
JZ RD1 ;WAIT FOR DMA DONE
INR A ;BUMP IT
CPI 4 ;INSURE NOT OVER 3
JINZ RD3
XRA A ;BACK TO @
RD3: MOV D,A ;SAVE 1IT
STA RSF ;PUT IT IN STOP HIGH
RD4: MVI A,0FFH
STA R5E ;SET STOP LOW = FF
MVI A,0D8H
STA R53 ;SET READ LATCH AND START DMA
MOV A,C ;CHECK BLOCK COUNT
ANA A
JZ STOPRD ;DONE
. MP RDRENT ;GO READ NEXT SECTOR
STOPRD: MVI A,14H ;stop location...
STA R78 ;into branch register
STOPBR: MOV A,M ;GET STATUS
ANI 16H ;look at stopped bit
Jz STOPBR ;loop till it is
MOV A,M ;get status again
ANI g4H ;test ecc error bit
JNZ RDDAER ;if set, jump to ecc retry routine
STOPl: LDA R53 ;GET STATUS
ANI 20H
JZ STOP1 sWAIT FOR DMA DONE
XRA A
STA R53 ;TURN OFF READ LATCH
CALL KILSER ;STOP SERDES
JIMP IDLE ;otherwise, back to idle loop
dhkkkhkkhkhhkrhhhkhkhkkkhkkhkhhhrkrhhkkhkkhhkhrhhokddhdhkkhdhhhhkhkhk
* WRITE ONE OR MULTIPLE BLOCKS ROUTINE *
kkhkkhkhkhkhhkkdhhhkhhhkhkhhkhkhhkhkkhkhkhhhkhhkhhhhhkhkhhhkrhkddkrhhhhhkki
WRITE: XRA A jzero out...
MOV D,2 ;CLEAR FOR MSB STOP POINTER
STA R59 ;BUFFER CHIP RESET
CALL GETDRV ;select drive
LDA NBLKS ;GET BLOCK COUNT |
MOV C,A ;save in C
LDA CYL ;GET CYLINDER
STA RE® ; INTO SERDES
STA DESTRK ;save as desired track
LDA HEAD ;GET HEAD
STA RE1 ;INTO SERDES
STA DESTHD ;save as desired head
CALL SEEK ;do the seek
JC BADCMD ;on error, halt
XRA A ;zero out...
STA R59 ;buffer pointers
XRA A ;zero out..
STA RE3 ;FLAG
LDA SECT ;jget sector
STA RE2 ; INTO SERDES
WRRENT: MVI A, 09H ;stuff 69 (start address)...
STA R78 ;into branch register

:;i;l POWERFUL ADAPTEC CHIP SET
SIMPLIFIES DISK CONTROLLER DESIGN

WD1l:

WD2:

WRSTRT:

WRDLY :

WRDAM:

WRXFLP:

WRNXT:

WRBR2:

STOPWR:

WRSTBR:

LXI

MoV

MOV

JMP
MVI
STA
MOV
ANI

XRA
STA
CALL
JImMp

H,R79
E, 83
R7A
A,D

A

4

WD1

A .
D,A
RSF
A,0FFH
RSE
A,0C4H
R53
RS53
20H
WD2
M,@5H

A,M
B,A
20H
WRDAM
A,B
10H
WRRENT
R7A

g1
WRDLY
E
WRDLY
SEEKER
A,M
B,A
10H
WRRENT
aA,B
40H
WRDAM

A,05H
R78

A
WRELAG

Cc
STOPWR
INCLA
D,99H

A,M
B,A
36H
WRBR2
a,D
R78
A,B
104
WRRENT
WRDAM
A,l4H
R78
A,M
10H
WRSTBR
a

R53
KILSER
IDLE

;point H/L at start register

;3 revs to find i.d. .

;dummy read to clear ‘index passed
;GET MSB STOP POINTER VALUE

;BUMP IT

;INSURE NOT OVER 3

;BACK TO @
;SAVE VALUE)
;SET STOP POINTER HIGH

;STOP POINTER LOW = FF

;SET WRITE LATCH - START DMA
;GET STATUS

sWAIT FOR DMA DONE
;DATA IS IN BUFFER - START SERDES

;get status

;save a copy in B

;check branch active

;if branch active, jump
srecover status

;check stopped bit

;if stopped, re-enter

;if not stopped, get op ctl
;test index passed

7if not passed, loop back
;1f passed, drop rev counter
7 TRY AGAIN

;if zero, find out why

;get status

;save a copy in B

;stopped ?2?

;if stopped, re-enter to re-start
srecover status

jtransfer active ??

;if no, loop back

juse @05...
;as branch
szero out...
;write flag

;decrement counter

;if zero, get out

7GET NEXT SECTOR

;next branch (@9) into D to tighten code

;get status

- ;save a copy in B

;test branch active and stoped bits
iloop till branch active or stopped
;get the next branch address into A
;and save in branch register

;now recover status

;check stopped bit

ire-enter if stopped

;jotherwise, loop back up

;STOP LOCATION

;into branch register

;get status

;look at stopped bit

;loop till it is

;TURN OFF WRITE LATCH

;STOP SERDES
;jotherwise, back to idle loop

ADAPTEC APPLICATION NOTE

39

40|

DOHEAD: LDA
RAL
RAL
RAL
RAL
ANI
MOV
IN
ANI

POWERFUL ADAPTEC CHIP SET

SIMPLIFIES DISK CONTROLLER DESIGN

DESTHD

30H
B,A
82H
@CFH

kkkkhkhhhkhhkhhkhhkhkhhkhhhhhhhhhkhkkhkhkhhkkhhhkhhkhhhkkhkkhkk

b RECAL ROUTINE DOES A ONE-STEP-AT-~ *
* A~TIME RECAL WHILE LOOKING FOR THE *
* TRACK @ SIGNAL. *
* NOTE: USERS INTERFACE MAY BE DIFFERENT THAN *
* SHOWN BELOW FOR PIN ASSIGNMENTS FOR *
* STATUS, SEEK PULSES AND SEEK DIRECTION. *
hhkkhkhkhkhkhkkdhkhhhdddhbkhkhkhkhhkhdhdbhhhdhhrhhhhkhhrhkhhkk
RECAL: PUSH PSW ;temp save A/PSW
MVI A,01H ;select drive 1, direction=out
ouT 82H ;send to port
RDYCK1l: IN 83H ;get status
ANI @8H ;test ready
Jz RDYCK1 ;loop till ready
TROGCK: IN 83H ;get status
ANI G2H ;test trk @
JINZ RET@ ;1f track @, get out
MVI A,41H ;step pulse
ouT 82H ;send it
MVI A,01H sun-step
ouT 82H ;send it
SKCPLP: IN 83H ;get drive status
ANI @1H ;look at seek complete
Jz SKCPLP ;loop till seek complete
JMP TROGCK ;then check for track @0
RET@: XRA A ;zero out
STA CURTRK jcurrent track
POP PSW ;recover A/PSW
RET ;return
khkhkhhkhhAkhkhkkhkhhkhkhkhkhkhkhkhkkhkkkdkhhkhdhdhhhhhrhhhhkhrkkhkhhkhrhhhhd
* SEEK TO TRACK AND HEAD IN DESTRK AND DESTHD, *
* WHICH CONTAIN CYLINDER AND HEAD, RESPECTIVELY. *
* USER TO SET THESE UP FROM COMMAND DATA. *
khkhkkhkhkhhhkhkhkhkhkhkhkdhhkhkhhkhkhkhkhkrhkkhkhkhkhkhkhhhkhkhkhkhdhhkhkhkhkhkhkhkrkhkhhk
SEEK: PUSH PSW ;temp save A/PSW
PUSH B ;temp save B/C
LDA CURTRK ;get current track
MOV B,A ;save in B
LDA DESTRK ;get destination track
MOV C,A ;save in C
CMP B ;compare them
Jz DOHEAD ;if they are the same, jump around
Jc GOOoUT ;if desired is less than current, jump
GOIN: MOV A,C ;get destination track
SUB B ;subtract smaller current track
MOV Cc,A ;put result in C
IN 82H ;get control port
ORI 80H ;set dir in
JIMP DOSEEK ;and jump to common code
GOOUT: MOV A,B ;get current track
SUB C ;subtract smaller destination track
MoV Cc,A ;jput result in C
IN 82H ;get control port
ANI 7FH ;set dir out
DOSEEK: OUT 82H ;set up direction
SEEKLP: ORI 40H ;set step pulse
ouT 82H ;send it
ANI gBFH ;un-step
ouT 82H ;send it
WTSKCl: IN 83H ;get drive status
ANI G1H ;look at seek complete
Jz WTSKC1 ;loop till seek complete
DCR C ;drop seek counter
JINZ SEEKLP ;loop till C=0
LDA DESTRK ;get derired track
STA CURTRK ;jsave as current track

NOTE: USERS INTERFACE MAY BE DIFFERENT THAN SHOWN BELOW
FOR DRIVE AND HEAD SELECTION.

;get desired head

;shift left...

;to put head number...
;in correct position...
;to send to 1/0 port

;zap any garbage

;save in B

;get current control port
;jclear head select

ORA B ;OR in head

ouT 82H joutput result

POP PSW ;recover A/PSW

RET ;and return
kdkdkkkkhkhkhkkhkhkhkhkhkhkhkhkhkhhkhkkhhbhdhhkhkhkhhhbhrhdbhhdhhhkhhkdhhkhhkkhkhkhkkhk
* SELECT DRIVE ROUTINE *
khkhkhkhkhkhkhhhhkkdkhkdhhkhhkdhhhhhhkhkhhkhhhhhhhhkhhhkhkhkhhhhkhhhhkkdkkkikk
GETDRV: PUSH PSW ;temp save A/PSW

IN 82H ;get current port value

ANI @FCH ;zap select bits

ORI g1 ;select drive

ouT 82H ;send it out

POP PSW ;recover A/PSW

RET ;and return

hkhkkkhkhkkhkhkhhhkhkhkhkhdhhhhhkhhkhkhkhhkkhkhkhhkhhhhhhkkhkhkhbhhkhhhhkhkhhhhkhhkkhkhhkhhkd

* STOPS THE SERDES AND THEN RETURNS *
khkkhkhkkhkhkkhkhhkhhkhhkhkhhhkkhdkhkkhkhbhkhhkhhhhhhhhkhkhhhhhkhhkhhkhkdhhkhhhbhkhkhkhkhkhhhd
KILSER: PUSH PSW ;temp save A/PSW

MVI A,1FH ;then load the stop location..

STA R79 ;to the start register to halt serdes
HLCKLP: LDA R79 ;get serdes status

ANI 16H ;check the stopped bit

Jz HLCKLP ;loop till halted

POP PSW ;if stopped, recover A/PSW

RET ;and then return
hhkkkkhkhkhkkkkhkhkhkkhkhkhkhhkhhkhkhkhkhkhhhkdhhrhhhkhhhhkhhhhhhhhhhkhhhhhhhhhhkhkhhdhd
* ROUTINE READS THE SYNDROME INTO ECCl *
hhkkkhkhkhkhdkthkkhkhhkdhhhkhhkhkkhbhdhhhhhkhhhhkhhhhhhhkhkbhkhkhkkhhkhdhhhhhkhkrhkkih i
RDSYND: MVI A,0B4H ;DISABLE FEEDBACK

STA R71 ; TO SERDES

LXI H,R73 ;point H/L at serdes ecc register

LXI D,ECCl ;point D/E at ram to save syndrome

MOV A,M ;get msb of syndrome

STAX D ;save in ram

INX D ;bump ram pointer

MVI C,083 ;three more bytes to do
BYTLOP: MVI B,@8 ;8 bits per byte

MVI A,06H ;inhibit feedback and shift value
SHFT: STA R71 ;force shift of syndrome

DCR B ;subtract 1 from bit counter

INZ SHFET ;loop 8 times (1 byte)

MOV A,M ;load the next byte of the syndrome

STAX D ;save it in ram

INX D ;and bump ram pointer

DCR Cc ;drop byte count

INZ BYTLOP ;loop 3 times
khkhkkhkkhkhkhkhkkhkkkhkhkkdkkhkhkdhhhkkhkhhkhhkhrhkkhhhrhdkhdhkhkhkhhhkkkhkdhkhkx
* ATTEMPT TO CORRECT ECC ERROR *
khkkhkkhkkhkkhkhkhkhkhkhkhhkhhkhkhkkdkhkhkdhhkhkkkhkhhkdhhhhhdhhrhohhhhkhhkhhokkhkkdhx
FIXIT: MVI A,08H ;CLEAR ECC COMMAND

STA R71 ;TO SERDES

MVI A,@4H ;RESET OFF

STA R71

LXI H,ECC1+3 ;H/L = FIRST SYNDROME BYTE

MVI C,084 ; TO ENTER 4 BYTES
NXTBYT: MVI B, 08 ;8 BITS PER BYTE

MOV D,M ;GET BYTE TO LOAD
SHFBYT: MOV A,D ;BYTE TO LOAD IN A

RAR ;LSB BIT TO CARRY

MOV D,A ;SAVE SHIFTED BYTE

RAL ;LSB BIT TO BIT @

ANI g1 ;ONLY ONE BIT

ORI g6H ;ADD SHIFT COMMAND

STA R71 ;STUFF BIT VIA ECC CONTROL REG

DCR B ;sDECREMENT BIT COUNT

JINZ SHFBYT ;LOOP 8 TIMES

DCX H ;TO NEXT HIGHER SYNDROME BYTE

DCR C ;DECREMENT BYTE COUNT

JINZ NXTBYT ;LOOP 4 TIMES
STFRCP: LXI H,REVERS ;POINT TO REVERSE POLYNOMIAL

CALL LDPOLY s INTO POLYNOMIAL REGISTERS
FIGLEN: LHLD ABLKSZ ;GET CURRENT BLOCK SIZE

PUSH H ;MOVE POINTER

POP B ;INTO B/C

MVI 2,08 ;NUMBER OF BITS PER BYTE

CALL MULT ;NUMBER OF BITS PER BLOCK

LXI H,3CH ;4 ECC + 2 GAP BYTES TIMES 8

DAD B ;H/L = TOTAL BITS PER BLOCK

ADAPTEC APPLICATION NOTE | “1

42|

SHLD
XCHG
MVI
STA
LXI
SHETST: MVI
STA
DCX
MOV
ANA

MOV
ORA
JNZ
JMP
GOTDIS: CALL
LHLD
DAD
LXI
DAD
LXI
DAD
JNC
SHLD
MoV
RR3LOP: MOV
ANA
RAR
MoV
MOV
RAR
MoV
DCR
JNZ
MOV
ANI
MOV
XCHG
CALL
LHLD
DCX
DAD
CORECT: LDA
MOV
MVI
LDA
ANI
INR
MoV
RRXLP: DCR

MOV
ANA
RAR
MoV
Mov
RAR
MoV
MOV
ANI
MOV
JMP
MASKOK: MOV
CALL
MOV
MOV
CALL
MOV
LDA
ANI
STA
PUSH
LHLD
SHLD
POP
SHLD
LDA
XRA
STA
INX

TEMP

A,00
R71
H,R72
A,@82H
R71

D

A,M

a
GOTDIS
A,E

D
SHFTST
ECCERR
COMPD
TEMP

D

D, -ECCOEF
D
D,-32
D
FIXED
TEMP1

POWERFUL ADAPTEC CHIP SET
SIMPLIFIES DISK CONTROLLER DESIGN

; SAVE TOTAL BIT COUNT
+PUT IN D/E

;DISABLE ECC SHIFTS

;TO ECC CONTROL REG

;H/L = ERROR TEST REG

;TO SHIFT ECC

;TO CONTROL REG

;DECREMENT BIT COUNT

;GET ERROR INDICATOR

;TEST FOR ZERO

;@ = ERROR FOUND

;LSB BIT COUNTER

;CHECK FOR ZERO

;NON ZERO = SHIFT AGAIN
;DONE HERE = HARD ERROR

;D/E = MINUS COUNT

;H/L = TOTAL BIT COUNT
;TOTAL BITS MINUS COUNT DOWN
; ECC HARDWARE OFFSET

; SUBTRACT HARDWARE OFFSET
;FIRST 32 = ECC OR GAP

; SUBTRACT 32

;ERROR IN ECC = DATA O.K.
;SAVE COUNT

;TO DIVIDE BYTE ADDRESS BY 8
;HIGH BYTE OF BIT COUNT
;CLEAR CARRY

;LSB BIT TO CARRY

;SAVE ROTATED VALUE

;GET LOW BYTE

;CARRY TO BIT 7

;SAVE SHIFTED LOW BYTE
;DECREMENT SHIFT COUNTER
;LOOP 3 TIMES

;HIGH BYTE OF SHIFTED ADDRESS
;CLEAR 3 HIGH BITS

;SAVE IT IN H

;SHIFTED ADDRESS TO D/E

;D/E = MINUS ADDRESS

;UPPER WRITE LIMIT POINTER (WAP)
;LAST DATA BYTE

;SUBTRACT POINTER FROM TOP OF DATA
;GET ERROR MASK DATA

;D = ERROR MASK

;CLEAR E

;BIT COUNT = ERROR OFFSET IN 2 BYTES
;ONLY 3 BITS

;PLUS ONE = SHIFT COUNT

;B = SHIFT COUNT

;DECREMENT SHIFT COUNT

;@ = MASK SHIFTED TO PROPER BITS
;GET HIGH BYTE OF MASK
;CLEAR CARRY

;BIT ZERO TO CARRY

;RESTORE SHIFTED COPY

;GET LOW BYTE

;CARRY TO BIT 7

;RESTORE LOW BYTE

;RESTORE HIGH BYTE

;CLEAR BIT 7

;SAVE HIGH BYTE

;LOOP AGAIN

;GET LOW BYTE OF MASK

;SWAP END FOR END

;SAVE IN E

;GET HIGH BYTE

;SWAP END FOR END

;SAVE IN D

;CURRENT DMA CONTROL BYTE
;KILL READ LATCH

;SAVE ERROR POINTER

;GET CURRENT WAP

;SAVE IN MEMORY

;RESTORE ERROR POINTER
;PUT IN WAP

;GET DATA FROM BUFFER
;CORRECT LOW BYTE
;CORRECTED BYTE TO BUFFER
;POINTER TO HIGH BYTE

SHLD R5C ; PUT IN WAP

LDA R70 ;GET DATA FROM BUFFER

XRA D ; CORRECT HIGH BYTE

STA R7¢ ;CORRECTED BYTE TO BUFFER

LHLD TEMP ; RECOVER SAVED WAP

SHLD R5C ; RESTORE WAP
FIXED: LXI F, FORWRD ;H/L = FORWARD POLYNOMIAL

CALL LDPOLY ; RELOAD FORWARD POLYNOMIAL

MVI A,00 ; STANDARD ECC COMMAND

STA R71 ;TO ECC CONTROL REG

RET
khkdkhkhkhkkkhkhkkkhkhkhkkdhhdhhkhkhkdhhkhrhbkhhkhkhhhhdhhhhbhkhkhkrhkdhkhrhkhrhhkkkkk
* LOAD ECC POLYNOMIAL *
khkhhhhkkhkkkhkhhkhdkhkhhhhhhkhhhkhhkhhdhhkhhhhhkdhkhkkkhkhkhhkhkhhhkhkhkkkhid
LDPOLY: PUSH PSW ;H/L = POLY CONSTANT

PUSH B ; SAVE B/C

PUSH D ; SAVE D/E

MVI B, 04 ; TO LOAD 4 BYTES

LXI D,R74 ;D/E = FIRST POLY REG

CALL MOVBYT ;LOAD POLYNOMIAL

POP D

POP B

POP PSW

RET
khkhkhkhkhkhkhkhkkhkhhkhkhhkhkhhhhkhkhkhkhhhhkhkhkkhkkkhkkhkhhhhkdhhkrhbhbhkhhhkitrhrd
* COMPLEMENT THE D REGISTER *
khkhkkkhkhkkhkkhkhhkhhkhhkhkhkhhhkhkhkhkhhkhhhhkhkhkhhkhdhrhkhhbhhhdhhhdhhdhhs
COMPD: PUSH PSW

MOV A,D

CMA

MOV D,A

MOV AE

INX D ; TWO'S COMPLEMENT

POP PSW

RET
kkhhkdkhkhkhkdhdhhkhkdkhhkhhhhhkhkhhkhhhhhhkhkhhkhhhhkhbhdhhhhhkhhkhkrhkkkdk
* MULTIPLY A BY B/C *
khkkhhkhkhkhkhhkhkhkhkhkhhhkhkhhkhhhkhhhkhkhhkhhkkkhkhkhkhhhkhhhhhhhhhkhkhkhkkhkhkk
MULT: PUSH H

ANA A ;CLEAR CARRY
SHFTA: RAR ;SHIFT MULTIPLIER

LNC SHFTB $GO IF NO BIT

DAD B ; ACCUMULATE FINAL VALUE

RC ; RETURN IF OVERFLOW
SHETB: PUSH PSW : SAVE MULTIPLIER

MOV a,C 3 SHIFT MULTIPLICAND

RAL

MOV C,a

MOV A,B

RAL

MOV B,A

POP PSW ;s RESTORE MULTIPLIER

ANA A "#CHECK "IF DONE

JNZ SHFTA ;CONTINUE IF NOT

MOV B,H ;RESULTS TO B/C

MOV Cc,L

POP H

RET
khkhkkhkhkkhkhkhkkhkhhhkhhhhhkhhhhkhhkhhhhhkhhkhkhkhhhkhkkhkhbkhhhkhhkhkkkkhki®
* MIRROR SWAPS ACCUMULATOR END FOR END *
khkkkkkhkhkhkhkhkhkhkhkhkhkhhhkhhkhkhhhkhhhhhhkhkhkhhhkhhkhkhkkkhkkhkhkhkhkkhkhkhkhkhhkkk
MIRROR: PUSH H ;SAVE H/L

PUSH D ;SAVE D/E

MVI H,8 ;sBIT COUNT = 8

MOV D,A ; START VALUE INTO D
MIRLOP: MOV A,D ;GET INITIAL DATA

RAR ;BIT @ TO CARRY

MoV D,A ;SAVE SHIFTED VALUE

MOV - ALE :§GET ' RESULTING VALUE .

RAL “;LSB 'BIT INTO LOW END SHIETING HIGHER

MOV E,A ;SAVE RESULTS IN E

DCR H ;DECREMENT BIT COUNTER

INZ MIRLOP ;CONTINUE UNTIL DONE

MoV AE ;PUT RESULTS IN A

POP D

POP H

RET

ADAPTEC APPLICATION NOTE |43

44|

FORWRD: DB 09,00,09,00 ;FORWARD ECC POLYNOMIAL
REVERS: DB 00,00,00,00 - ;REVERSE ECC POLYNOMIAL

**********i********ﬁ*********i*************;*************

* RAM ASSIGNMENTS *
hkkhkhkhhhhhhkkhkkhhhkhdkhkhkhhhhhhkhhhkhkhkkkhhhkkkkkdkhk hkkkk kkkk

CURTRK: DB G0H jcurrent track
DESTRK: DB @0H ;jdestination track
DESTHD: DB goH ;destination head
ERRTYP: DB g0H ;error type
RDFLAG: DB goH ;read flag
WRFLAG: DB 00H ;write flag
CYL: DB @0H ; INPUT CYLINDER
HEAD: DB @oH ;INPUT HEAD
SECT: DB 00H ;INPUT SECTOR
NBLKS: DB GOH ;INPUT NUMBER OF BLOCKS
TEMP: DB g0H ; TEMPORARY STOGAGE
TEMPl: DB BOH ; TEMPORARY STORAGE
ECCl: DS 4 sECC location
ABLKSZ: DS 2 ;BLOCK SIZE

END

POWERFUL ADAPTEC CHIP SET
SIMPLIFIES DISK CONTROLLER DESIGN

7.3 PROGRAMMING 8-BIT ECC CORRECTION

After each read date operation, a read error may have occurred. This may be determined
by reading Register 79. If bit 2 is set, an error did occur and the following procedure is
employed to determine if the error is correctable. Note that the majority of read errors
are soft (i.e., caused by noise) and that the correction algorithm is time consuming. It is
recommended that the record be re-read before attempting correction.

The general flow of the algorithm for 8-bit correction is as follows:

1.
2.

Off-load the 32-bit syndrome into local RAM.

Shift the syndrome back into the ECC register in reverse order, swapping the syn-
drome end for end.

Change the ECC polynomial from forward to reciprocal.

Shift the ECC until all bits except the high order (24-31) bits are zero (correctable) or
the number of shifts are greater than the number of bits in the record (uncorrectable).

If correctable, the number of shifts represent the displacement of the error from the
end of the record (the last bit of the ECC). The error pattern is located in bits 24-31
of the ECC register. This pattern is exclusive ORed with the appropriate bits in
memory to correct the error.

Detailed Programming Steps

—

11.

12.

13.

14.
15.

@ 0 0N kWD =

After a read error is detected, disable feedback by setting R71 = 04y.
Store contents of R73 in RAM (x).

Shift ECC 8 times by setting R71 = 06y eight times.

Store contents of R73 in RAM (x +1).

Shift ECC 8 times by setting R71 = 06y eight times.

Store contents of R73 in RAM (x +2).

Shift ECC 8 times by setting R71 = 06y eight times.

Store contents of R73 in RAM (x + 3).

Clear ECC and disable feedback by setting R71 to 08 and then 04.

Right rotate location RAM (x + 3) and test if carry is set (i.e., test bit 0):
If set, then load R71 = 07y.

If not set, then load R71 = 06y.

Repeat operation 7 more times to load entire byte.

Repeat step 10 for RAM locations x + 2, x + 1, and x until all 32 bits of the syn-
drome are loaded into the ECC in reverse order.

Load R74 = 00y and R77 = 01y to enable the remprocal polynomial and disable
the forward polynomial.

Compute record length in bits:
of bits per data field = ECC + Data+ AM and SYNC
For a 256 byte record length in bits = 4 * 8 + 256 * 8 +2 % 8 = 2096

Enable feedback by setting R71 = 00y.

Shift ECC once by setting R71 = 02y and increment a software counter.

ADAPTEC APPLICATION NOTE | 45

16. Test to see if the software counter is greater than the record length:
If yes, the error is uncorrectable. Re-enable the forward polynomial and end
operation.

17. Test to see if R72 =00y:
If yes, go to step 18.
If no, go to step 15.

18. Subtract hardware offset of 7 from the shift count. If a correctable error is located
within the ECC or the SYNC and AM bytes (the shift count < =32), the data field
is good and no further action is required. Subtract 32 from the shift count.

19. The bit displacement (shift count) must now be converted to a byte offset by right
shifting the count 3 times. The value of the shift count equals the bit displacement
from end of the record.

20. R73 is the mirror image of the error pattern. Form the error mask data (2 bytes) by
R73 concatinating with a zero byte.

21. Get the shift count (E#) for error mask data by extracting the lower 3 bits from the
shift count obtained in step 18.

22. Right shift the error mask data with MSB (bit 15) set to zero. Repeat E#—1 times
more.

23. Mirror the error mask data byte by byte.

7.4 TYPICAL VCO/PLL SCHEMATIC (DATA SEPARATOR CIRCUIT)

In this section, a typical data separator circuit is shown. This circuit is used in the data
encode/decode portion of the disk controller design. During a read operation, the AIC-
250 chip receives data in the MFM format. In this format, both clock and data informa-
tion are encoded together. The data separator is used to obtain separate data and separate
clock, from the MFM encoded raw data.

This schematic is commonly used by Adaptec and other disk controller manufacturers.
The user has the choice of using this or any other design.

46| POWERFUL ADAPTEC CHIP SET
SIMPLIFIES DISK CONTROLLER DESIGN

L1
4,7ph NOTE: SEPARATE +12V
u19 DL1

GROUND PLANE
bLY | cgtl Lo
EP6700-15 4,7uF $ $.01 F

+ RAW DATA »—4
74L5240

7415240 R11 SR10
150 <€ 150«
1% | 1%
P 7406 R25
S 392, 1%
2 5 3N.4 A Q2
D Q VAA—4
U22 Vo4 R26 LN
‘le 5 (208, 392, 1% R23
cop \—— 100 o !
_1_Dc — . 1974s74] | | ca4 b AAA 2N
2 — 11374500 10pF | ga3q R30€ R29
12ju13 511 511 100 . F o
10 10 (x| 1965 19 Rz7 %) 0068u
12[s7]9 12[s e oL 8 8.25K, 1%)
N DaQ D Q iy ® NN—4¢ Qaha 2N3904 I5e
— u21 74574 R28 J R18
T -1 u22 s 7406 8.25K, 1% Cc20.L R24
1Y4c a 1iea 11\,10 A . 150pF 680 has
R R 7 u14 c25 9
13T 74574 13 7406 10pF
+ RG »»
2R7 2R6 RS 390pF I
| 21.3KS1.3K < 137 R22
1% §1% 1% 330
¢ TP7
+CLAMP ¢
R35
r«zvv-—>+5v
1K +5V
@ 1’ I R33
4 10 2.2K
TP8
21pSa |2 1215802 ®—» + SEP DATA
PO u1s u16 +5V
3 Cr A CR R36
4 2.2K
1 .
|_2 s s I74s74 137 7437;1
b a . . +1F VFO
10 8 3 UZJ 6 +5V
E@ cefP— R32
74S00 190 74574 108 a) 2.2K
12 5Sa |2 2158ql° s » + SEP CLOCK
uis u1ie
11 3
CR CR
13]’74574 1I
L2
CR2 CR3 47 un
_ o 2l ver h sv (YT -
+SYSCLK » 79L05 l
l c1a _ c15
d eo +[4.7uF O1uF
22uF +I 4,7uF 3 g H ; M
v
—5V GENERATED GROUND

Typical VCO/PLL Schematic

ADAPTEC APPLICATION NOTE | 47

48|

7.5 OTHER MICROPROCESSOR INTERFACES

The Adaptec chip set is intended for use in a system with a multiplexed address/data bus,

such as is found in the Intel 8085 family of microprocessors. The NSC 800 can also be
very easily used since, in the Z80 emulation mode, the external interface is through an
Intel 8085 type multiplexed address/data bus.

Other microprocessors, however, can be easily adapted for use in the disk controller
design as the support processor. The basic design involves multiplexing the address and
data busses, through external latches, and generating an Address Latch Enable signal
(ALE). In addition to this, a separate read and write control signal is required. The
following schematic shows the use of a Motorola MC6809 as the support processor in
the design of the disk controller.

6809

Q RIW E

A8-15)

7

DECODE

A(0-7) ,
7

D (0-7)

244

Z.
4

245

POWERFUL ADAPTEC CHIP SET
SIMPLIFIES DISK CONTROLLER DESIGN

L/

MC6809 Based Support Processor Interface

CS AD (0-7)

AIC-100

CS AD (0-7)

AIC-300

In the case of the 6809, as can be seen from the figure, the Eqyr and Qgur signals are
used to generate the ALE signal. The generation of RD and WR is fairly simple also. The
timing relationships for these signals are shown below.

For | r L—
QOUT —r—_l—
ALE | L |

RD OR WR | [
MC6809 Interface Timing Relationship

In the case of a Z80 microprocessor, the interface is fairly similar. The lower order
address and data lines have to be multiplexed in a similar fashion. However, separate
RD and WR signals are already available, coming out of the processor chip. The ALE
signal can be derived from the IORQ signal which is generated by the Z80 during input
or output cycles (IN or OUT class of instructions).

ADAPTEC APPLICATION NOTE |49

