

5.0

5.1

INTRODUCTION

The Arithmetic Processor (ARP) is a programmable unit capable of per-
forming very high speed fixed point arithmetic operations. The speed
of the ARP results from the use of pipelining techniques, overlapped

move and arithmetic operations, and the inclusion of a very fast 128

word Temporary Register File. A1l arithmetic operations may involve

integers, scaled fractions, or (to a limited extend) a combination of
integer and scaled fraction operands.

ORGANIZATION OF THE ARP.

Figure 5.1 provides a general block diagram of the ARP. Those elements
of the ARP which are shown in black in Figure 5.1 are common to all
processors. These elements are discussed in Section 2.6. The elements
which are unique to the ARP are shown in red in Figure 5.1. These
elements are the Arithmetic Unit and the Temporary Register File.

The heart of the ARP is the Arithmetic Unit which is supported by a
Temporary Register File that provides 128 words of high-speed local
storage (25 nanosecond cycle time). The Arithmetic Unit communicates
with the DATA MULTIBUS via a Bus Store Register S and a Bus Load
Register L.

A block diagram of the Arithmetic Unit and Temporary Register File is
presented in Figure 5.2.

Two distinct types of operations take place in the Arithmetic Unit.
These are arithmetic operations and move operations. ‘The Arithmetic
Unit is designed to execute an arithmetic instruction of the general

- form:

R = +(A+B)*CxE
in 175 nanoseconds.

5-1

HOST
INTERFACE

STATUS MULTIBUS <z
COP

CONTRO%LER

DATA MULTIBUS

M STATUS
WORD
PAUSE |
COUNTER

t STATUS
{ ENABLE

ARITHMETIC

ARP

CONTROLLER AND
INSTRUCTION
DECODER

UNIT

PROGRAM
COUNTER

TEMPORARY
REGISTER
FILE

PROGRAM
MEMORY
80 x 1024

ADDRESS/CONTROL MULTIBUS

CoP HIC

FIGURE 5.1 ARP BLOCK DIAGRAM

DATA MULTIBUS

l 7, N
S L
JL AN
ARP INTERNAL BUS
N
Ve A W \
B C D
J R T(n)
SUM #1
,(____,
W
MULTIPLY }5--"-"'-" SCALE,
ROUND,
OUT-0F-RANGE
2 N 4
p E A

' 3{ - SUM #2

F;_J

FIGURE 5.2 BLOCK DIAGRAM OF THE ARITHMETIC UNIT AND

TEMPORARY REGISTER FILE

5-3

5.1.1

5.1.2

5.1.2.1

Data movement between the Arithmetic Unit and the MULTIBUS, between
the Arithmetic Unit and the Temporary Register File, and between
registers within the Arithmetic Unit itself is handled by data move
instructions. Data move operations and arithmetic operations are
overlapped (i.e., performed concurrently) within the Arithmetic
Unit. These operations will be discussed in detail in subsequent
sections.

PROCESSOR ADDRESS
The processor address for the ARP is @3.

PROCESSOR STATUS WORD

0 P N 1] 11] ¥ v i v v
RiIoj0}p 9 @ }|A}PYOE @0 0§ @ @ | PAUSE CNT
EJE|JE

I 3 [| 3 i . $ [
16 14 13 12 11 10 9 8 7 6 6 4 3 2 1 0
BIT(S) DESCRIPTION
@-2 Remaining PAUSE count
3-7 UNASSIGNED
8 ARP is present when set
9 ARP 1is active when set
19-12 UNASSIGNED
13* Negative out-of-range error on some instruction
14* Positive out-of-range error on some instruction
15* Out-of-range error (one of the above two conditions)

*Once set these bits remain set until cleared by a READ operation.

The ARP Processor Status Word (PSW) contains information on the current
status of the ARP. The PSW is a read-only register.

OUT-OF-RANGE ERRORS

Three out-of-range error signals are generated in the Arithmetic Unit
of the ARP. These are:

a.) The Negative Out-of-Range Error (NOE)
b.) The Positive Out-of-Range Error (POE),
and c.) The Out-of-Range Error (ORE).

5.1.3

5.1.4

The NOE signal is generated if the result of an arithmetic instruction

is a negative number which requires more than 16 bits for its two's-
complement, binary representation. Similarly, the POE signal is
generated if the result of an arithmetic instruction is a positive number
which requires more than 16 bits for its two's-complement, binary repre-
sentation. The ORE signal is generated if either an NOE or a POE
condition occurs.

PROCESSOR STATUS ENABLE

E E E L) 1 L] L L] 1)) L)] J L) L]

OjyP|IN}P @ 0 0 9 0 9 0 0 90 90 0 P

R O O |] Y A i A ' [1 3 1 (1 U]

5 14 13 12 11 10 9 8 7 8 b 4 3 2 1 0

BIT DESCRIPTION

g-12 UNASSIGNED

13 Enable the NOE signal from the Arithmetic Unit to the AER
Tine in the STATUS MULTIBUS.

14 Enable the POE signal from the Arithmetic Unit to the AER
Tine in the STATUS MULTIBUS.

15 Enable the ORE signal from the Arithmetic Unit to the AER

Tine in the STATUS MULTIBUS.

The Processor Status Enable Register (PSE) is a write-only register.
This register has the same address as the ARP Processor Status Word.

PROGRAM MEMORY

The ARP program memory contains 1,024 words. Each 80-bit instruction word
is divided into five 16-bit fields. An ARP instruction is normally

loaded as a sequence of five 16-bit words (one per field) from the

host processor. However, each field is individually addressable and can
be accessed from the host processor for a READ or WRITE operation.

5-5

5.2

5.2.1

THE ARP INSTRUCTION SET
ARP INSTRUCTION WORD FORMAT

The ARP instruction word format is:

w PAUSE) ¥ [1 v)) ¥ | 1§ 1)
COUNT i ARITHMETIC SUBINSTRUCTION @
% t $ + + t } t $ } $
MOVP SUBINSTRUCTION
—t— ettt
MOV1 SUBINSTRUCTION
i # ot + + et + 4 ¢ } } 1
MOV2 SUBINSTRUCTION
. MOV3 SUBINSTRUCTION . L
16 14 13 12 11 10 9 8 7 8 6 4 3 2 1 4

Within this format, certain bits are unused.

FIELD P

FIELD 1
FIELD 2
FIELD 3

FIELD 4

Each of these unused bits

is denoted by an "X" in the following diagram.

1]] | ¥ v L L v T ¥ 1
x] . .]x . s x| FIEDD
L e L 1] L L4
X1 FIELD 1
: ¥ L :) 4 Y ? : ; ? $
FIELD 2
[y ;] v : : ¥ ¥ L ; t v
X FIELD 3
| B L fpromnect } s} $ Emamn e e
FIELD 4
ry 2 2 A (] A i 1 [Y 4 4) 2 -
186 14 13 12 11 10 9 8 7 8 3 4 3 2 1 [}
The unused bits cannot be set and are always read back as a @.

5-6

s

5.2.2 MICROPROGRAMMING ARP INSTRUCTIONS

The ARP can be micro-programmed; that is, the ARP instruction can contain
one or more of the following:

< ARITHMETIC > subinstruction
< MOV® > subinstruction

< MOV1 > subinstruction

< MOV2 > subinstruction

< MOV3 > subinstruction

< PAUSE > subinstruction

The general form of an ARP instruction is:

<ARITHMETIC> <MOV@> <MOV1> <MOV2> <MOV3> <PAUSE>

Examples of ARP instructions:

IA (A+B)*C; MOV@ T@,A; MOV1 S,R; MOV2 R,T6,D

FA (A)*C+E; MOVP T1,A; MOV2 T2,B,D; MOV3 R,E; PAUSE 2
5.2.3 ARP ARITHMETIC SUBINSTRUCTION

A block diagram of the Arithmetic Unit in the ARP is shown in Figure 5.2.
This Arithmetic Unit performs operations of the quasi-general form:

R = = (A+B)*CxE

For the sake of convenience, this quasi-general form of the arithmetic
subinstruction is used in various places in this manual. The precise
description of the allowed arithmetic expressions which can be evaluated
in the Arithmetic Unit of the ARP is contained in the Backus-Naur Form
(BNF) definition of the arithmetic subinstruction presented in Figure 5.3.

5-7

< ARITHMETIC INSTRUCTION >

ARITHMETIC SUBINSTRUCTION BNF AND BIT PATTERNS
< OP CODE > _+ (AB)*CtE
Quasi-General Form
L] ¥ | { L t i i |4 ¥ ¥ i
9 g ,p , 0 |p | ARITHMETIC SUBINSTRUCTION . g |FIELD §
16 14 13 12 11\10\ 9 8 7 6 5 4 3 2 1 0\
~ ~ \\
~ N
~N N
5 ~ ~ N R
BACKUS-NAUR FORM (BNF) S0 9 8 7 6 5 4,3 2]
< ARITHMETIC SUBINSTRUCTION > :: = FA < EXPRESSION > |@ ¢
| FASL < EXPRESSION > ¢ 1
| FASR < EXPRESSION > 1 9
| IA < EXPRESSION > |1 1
| noopt (X=0,1) X XX 8]0 X 9]X X X
< EXPRESSION > :: = |< PRODUCT > + Eft g 1
| < PRODUCT > - Et+ T 1
|< PRODUCT > + D p 1
| < PRODUCT > -. D 11
|< PRODUCT > /N
< PRODUCT > :: = | + <SUM> *C | < SUM > *C ' g 9 1
| - <sumM> *C | p 1
| + <suM> *MctTt | < sum > *Mc 10 1
| - <SUM> *MC » 1T 17
| + <Sum> | <SUM > 1.9 0
| - <SUM> | | 11 ¢
| 9 {'m 1 g)
g o9
<SUM > ::= | (A+B) P11
| (A-B) 111
| (A) 1 91
| (A+1) g 9 1
| (B) p 1P
| (-B) 11 ¢
| 1 , /A
o (See also next page) -y

FIGURE 5.3 DEFINITION OF THE ARITHMETIC SUBINSTRUCTION

N

o

T On a no op or on an operation which yields @, R] 75 € .

Tt Since D is automatically moved to E during the M@ subinterval

of each instruction cycle, a move of a data word to E via a MOV1,
MOV2, or MOV3 subinstruction must be microprogrammed with any

arithmetic subinstruction which specifies E as an operand.

Tt Mc = |C]

EXAMPLES WITH BIT PATTERNS

< ARITHMETIC INSTRUCTION >

FA -(A+B)*C-D
IA (A)+E
FASR (A)*C+D

BIT PATTERN (BITS 1@-1)

gg 11 p11 @11
11 91 1g8 101
19 081 @01 101

FIGURE 5.3 (CONTINUED) DEFINITION OF THE ARITHMETIC SUBINSTRUCTION

PPN

(,M & :

A1l arithmetic operations are performed in two's-complement, fixed _
point format. The Arithmetic Unit has two computational modes. These
are the scaled fraction mode and the integer mode.

In the scaled fraction mode, each operand must 1ie in range -1.0 to

+ (1.0-271%) and the result, R, of the computation is a 16-bit number
which also lies in this range. The format for a scaled fraction word
is: '

Sign 15-Bit Fraction

Binary______________.___;(
Point
e—— 16-8it Word =————3]

In the integer mode at least one of the operands must be an integer
in the range 215 o +(215 - 1). The format for an integer word is:

Sign 15-Bit Integer | o

_ $;\\\\‘\~ Binary
[16-8it tord —_— Point

- The integer mode allows all the operands to be integers and also allows
certain mixed operations involving both integer and scaled-fraction

operands. If all the operands are integers, the result, R, of the
computation is an integer in the range -2'° to +(2'°-1). For the

allowable computations involving a mixture of integers and scaled-fraction
operands, the result, R, is a scaled fraction in the range -1.0 + (1.0 -271%).

There are three arithmetic sub-instructions which pertain to the scaled-
fraction mode. These are designated by the symbols FA, FASL, and FASR
in the BNF description of the arithmetic subinstruction (Figure 5.3).
There is one arithmetic subinstruction, designated by the symbol |

IA, which pertains to the integer mode.

As part of the precise definition of each of these four arithmetic
subinstructions, a diagram is provided which specifies the word length
and word format at each step through the flow of operations in the
Arithmetic Unit. The basic form of these diagrams is shown in Figure
5.4, and thus to the diagram included as part of each arithmetic
subinstruction definition:

[l e

r-*)>

—

FIGURE 5.4

SUM #1

17 bits

MULTIPLY

C

L

WORD EXTENSION
& SIGN LOGIC

17 bits

F

34 bits
4

PRODUCT BUFFER

33 l bits

SUM #2

C, =fCl, =1

33 l bits

SCALE,
ROUNDOFF,
OUT OF RANGE
DETECTION.

16lb1‘ts

RESULT REGISTER

5-11

SPECIFICATION OF WORD LENGTHS IN THE ARITHMETIC UNIT

%%

The Term < PRODUCT > in Figure 5.3 defines the possible
outputs of the MULTIPLY operation in the Arithmetic Unit.

< PRODUCT > may be viewed as specifying the multiplication of
< SUM > by one of the following: +C, -C, +|C|, -|C|, +1.0,
-1.0, or P.- The selection of the appropriate input to
MULTIPLY is one of the functions performed by the block
labelled "Word Extension and Sign Logic".

In two's-complement format, the most positive number which can
be represented with a given number of bits is one LSB

(Teast significant bit) smaller than the magnitude of the most
negative number which can be represented with that number of
bits. This poses a problem if one wishes to compute -C or

|C| when C takes on its most negative value. This problem
is solved by converting operand C from a 16-bit number to a \
17-bit number by extending the sign bit of C. This extension
makes it possible to represent any value in the range -2.0

to (2.0 -27*%) 1in scaled fraction format or any value in the
range -2*% to +(2%%-1) in integer format. Clearly, this is
adequate to handle -1.p < C < +1.p or -2'° &« C «+2'°.

This word extension of operand C is performed by the block
labelled "Word Extension and Sign Logic".

The MULTIPLY unit is a true 17-bit by 17-bit multiplier which
produces a 34-bit product. However, consideration of the worst-
case situation (for the possible range of each of the input
operands) shows that all possible MULTIPLY outputs can be
expressed with 33-bits (i.e., the two MSB's will always be

the same). Therefore, in transferring the output of MULTIPLY
to the PRODUCT BUFFER, the MSB is dropped and the PRODUCT

BUFFER holds a 33-bit word.

Since D is automatically moved to E during the M@ subinterval
of each instruction cycle, a MOVI, MOV2, or MOV3 subinstruction
which moves a data word into E must be microprogrammed with

any arithmetic subinstruction which explicitly specifies E

as an operand.

5-12

5.2.3.1

FRACTION ARITHMETIC SUBINSTRUCTIONS

The three arithmetic subinstructions which have scaled-fraction operands
and produce a scaled-fraction result are the following:

FA Fraction Arithmetic

FASL Fraction Arithmetic Shifted Left

FASR Fraction Arithmetic Shifted Right
5-13

Y Lo
i
H

Y ilmta

FA < EXPRESSION >

FRACTIONAL ARITHMETIC

¢ L] 1 i l ¥ vV L] ¥ 1
olo, 0, 0fofo 0] | , jewsin, | [[rEng
18 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
OPERATION:

Py < (Ag + B¢>*C¢
IF ROUND (P#E;) < + 1.9 -271°

~THEN IF ROUND (P]iE]) > -1.0

THEN Ry 55 < [ROUND (P]iE])]

ELSE R].75 <« -1.p

“1s
ELSE R1.75 < + 1.0 -2

WHERE [ROUND (P]tE])] DENOTES THE LOW ORDER 16-BITS OF ROUND (P]iE]).

ERROR CONDITIONS:
Positive Qut-of-Range Error (POE), if ROUND (P]iE1) > + 1.9 -2715
Negative Out-of-Range Error (NOE), if ROUND (P]iET) < -1.9

Out-of-Range Error (ORE) , if either POE or NOE occurs.

DESCRIPTION:

The arithmetic operations defined by < EXPRESSION > are performed. -
Figure 5.5 shows the word length and word format at each step through
the flow of operations in the Arithmetic Unit.

EXAMPLE :
- FA(A+B)*MC

5-14

s

WORD EXTENSION
8 & SIGN LOGIC
8 [ES{S|.[15 bits]
<
MULTIPLY
Is} |.[15 bits] :
x [EsTs] . [15 bity +c, |c|, 1.0
[ES[sT T 1.([30 bits |
PRODUCT BUFFER (PB)
[sT [1.[30 bits 1
SUM #2
LsT T 1.130bits]
+ESJES]S | . |15 bits] {ﬁj
Lsl 1]-[30 bits |
SCALE NOTE: A1l words are in two's-
l 5] '] [30 FTTe] complement format;
’ S = sign bit;
X 1.0 ES = extended sign bit
Lst | .[30 pits]
ROUNDOFF
[sT |].[15 bits].]14 bitg
I'sT T].1]15 bits]
+
st | |.]15 bitg
0UT OF RANGE DETECTION
ALL
EsT T 1 .115 bitg] YES AL TKE 2 Dl
[I B | !
] t i]
RESULT REGISTER R RESULT REGISTER R
[5 bity : If the sign bit

is 1, R = -1.0

If the sign bit
is 0,
R = +1.0 - 2719

FIGURE 5.5 FRACTIONAL ARITHMETIC (FA)
5-15

FASR < EXPRESSION >

FRACTIONAL ARITHMETIC SHIFTED RIGHT

' L) o i i ' i T ¥ I

p1olo 1 . EXPRESSION ., | g |FIELD @

16 14 13 12 11 10 9 8 7 6 6 4 3 2 1 o

OPERATION:
P] <« * (AﬂiBQ,)*C(a
IF ROUND ((Py2E;)/2) < + 1.9 -27'F
THEN IF ROUND ((Py#E;)/2) > -1.¢
THEN Ry ¢ < ,[ROUND ((Py2E;)/2)]
ELSE Ry 75 < - 1.0
ELSE Ry 55 « + 1.p -27%8
WHERE [ROUND((Py%E,)/2)] DENOTES THE LOW ORDER 16-BITS OF ROUND ((P:E,)/2).

ERROR CONDITIONS:
Positive Qut-of-Range Error (POE), if ROUND ((P]tET)/Z) > +1.0 =271

Negative Out-of-Range Error (NOE), if ROUND ((PyE;)/2) < -1.p
Out-of-Range Error (ORE), if either POE or NOE occurs. .

DESCRIPTION:

The arithmetic operationsvdefined by < EXPRESSION > are performed.
Figure 5.6 shows the word length and word format at each step through
the flow of operations in the Arithmetic Unit.

EXAMPLE :
FASR (A-B)+E

5-16

]

Su

0. o
+[]) . [15 bits

putng

1

=

1

WORD EXTENSION

& SIGN LOGIC
LL§1]. G5 bicy [E5T5]. [T5 575

h

MULTIPLY
{s] |- {15 bits)
x ESTs] . [18 bity +¢, =|c|, #1.0

I
tesTsT T 1. {30 bits |

PRODUCT BUFFER (PB)
tst 1 1.([30 bits 1

T T ———

Ls] T.].[|30 bits]
+[ES]ES|S | . [15 bits t ~f%|
Lst T 1.[30 bits |
SCALE NOTE% A]]tw?rds ire in two's-
- compliement format;
S . 130 bits
F l I J L' J S = sign bit;
X 0.5 ES = extended sign bit
[s] 1.[31 bits J

TROUNDOFF
[ST][5 bits].[1sbity

[S l‘j . |15 bits)

IsT].]15 bitg

OUT OF RANGE DETECTION

~a
[ST 1 .[15 bitg)

RESULT REGISTER

If the sign bit
is 1, R = -1.0

If the sign bit
is 0, _
R=+1.0 - 2

RESULT REGISTER R

3 I TR

R

15

FIGURES .6 FRACTIONAL ARITHMETIC SHIFTED RIGHT (FASR)
5-17

Pt

FASL < EXPRESSION >

FRACTIONAL ARITHMETIC SHIFTED LEFT

plej1, @ . ,EXPRESSION , | | p |FIELD @

186 14 13 12 1 10 9 8 7] 6 4 3 2 1 0

OPERATION:
P] « & (AgtBﬂ)*CQ
IF ROUND ((P.liE)*Z)é-lf 1.9 2715
THEN IF ROUND ((P]iE])*Z) > -1.0

THEN R].75 < [ROUND ((P]iE])*Z)]

ELSE R « -1.p"

1.75

ELSE R « +1.p -271°

1.75
WHERE [ROUND((P]iE])*Z)] DENOTES THE LOW ORDER 16-BITS OF ROUND ((P]tE])*Z)

* ERROR CONDITIONS:
Positive Out-of-Range Error (POE) jif ROUND ((P]iE])*Z) >+ (1.9 - 2715)

Negative Out-of-Range Error (NOE),if ROUND ((P]iEj)*Z) < - 1.9

Out-of-Range Error (ORE), if either POE or NOE occurs.

DESCRIPTION:

The drithmetic'operations defined by -< EXPRESSION > are performed.
Figure 5.7 shows the word length and word format at each step through
the flow of operations in the Arithmetic Unit. '

EXAMPLE :
FASL -(B)*MC+D

5-18

B

WORD EXTENSION

& SIGN LOGIC

1ESTS]. [15 bits]

MULTEPLY I‘
(st]-[15 bits)) ¢
x[EsTs . [15 bits) xc, #|c|, 1.0
{Es[sT T 7.([30 bits }

PRODUCT BUFFER (PB)
(st [].[30 bits]

SUM #2
S . 130 bit
[sT T 7.130bits] Y
+[ESTEsIS] . [15 bits) t Lf]
Us] 1 §.[30 bits 1
S — |
SCALE | NOTE: Al1 words are in two's-
l,Sl l A]'[30 T J complement format;
S = sign bit;
% 2.0 ES = extended sign bit
i ST T T 1. (29 bits |
SR
A e
ROUNDOFF
ST T T 1.[5 bits].]13 bity
ST T T7. (15 bitg
+
ST T T].115 bitg
Baxmscnrm BRI

QUT OF RANGE DETECTION

M
B4 1T 1. .[1s ity
[}] [} !
L] l*l]
RESULT REGISTER R RESULT REGISTER R
(] [obity ¢ the sign bit
T is 1, R = -1.0

If the sign bit
is 0,
R = +1.0 - 2719

FIGURES.7 FRACTIONAL ARITHMETIC SHIFTED LEFT (FASL) ’
5-19 ‘

5.2.3.2

INTEGER ARITHMETIC SUBINSTRUCTION.

The arithmetic subinstruction which deals with integer operands and
produces an integer result or which deals with mixed (i.e., scaled
fraction/integer) operands and produces a scaled fraction result is

the following:

IA Integer Arithmetic

5-21

e

IA < EXPRESSION >

INTEGER ARITHMETIC (INTEGER OPERANDS ONLY)

4 ¥ 1 I 1

pie,e,0{011, 1 . %XPRFSSIPN P
15 14 13 12 1M 10 9 8 7 8 6 4 3 0
OPERATION
P+ i(AQ Bg) Cg
IF (P]iEl) < o+ 21
| THEN IF (P,2E;) > -2'°

THEN R].75 < [(P]iE])]
15
ELSE R].75 « =2

15
ELSE R].75 « + 277 -]

WHERE [(P]iE])] DENOTES THE LOW-ORDER 16-BITS OF (PIiE]).

ERROR CONDITIONS:

Positive Out-of-Range Error (POE), if (P *E,) > +21% .
Negative Qut-of-Range Error (NOE), if (P +E]) < - 215
Out-of-Range Error (ORE), if either POE or NOE occurs.

DESCRIPTION

1#

FIELD @

The ar1thmet1c operations defined by < EXPRESSION > are performed
Figure 5.8 shows the word length and word format at each step through
the flow of operations in the Arithmetic Unit.

EXAMPLE:
IA (A)*C+D .

5-22

”Mﬂﬂiaﬂﬁ

e
[s]15-bits |.

WORD EXTENSION
& SIGN LOGIC

: [ST15 bits].

§[S 116 bits l.

BT T 5.

[s]16 bits

x |S |16 bits

lEs [s [32 bits .

PRODUCT BUFFER (PB

IS |32 bits

NOTE: A1l words are in
two's-complement format.

S = sign bit.
ES = extended sign
bit.

ls [32 bits |
+ [17 ES bits |S] 15 bits). | , :%j

s [32 bits].

QUT OF RANGE DETECTION
A s R et AP R,

17 bits

15 bits

'
'
|
[}
'

RESULT REGISTER (R) ,
[sT15 bits]. |

§ RESULT REGISTER

bit

sign
- _215

bit
-1

FIGURE 5.8 INTEGER ARITHMETIC (IA)
5-23

IA < EXPRESSION >

INTEGER ARITHMETIC (MIXED INTEGER/SCALED FRACTION OPERANDS)

T ! o | T 1 T T T T T
210 , U] l'@ {1 . 1 : lEXPBESS%ON : . . g |FIELD @
16 14 13 12 1 10 9 8 7 8 [4 3 2 1 0}
OPERATION:
Py < ¢ (AﬂiBﬂ) Cg
IF (P]iE]) < +1.p =215
THEN IF (P]iE]) > -1.0.
THEN R].75 + [(P]iE])]

ELSE R1'75 <~ - 1.0

ELSE R « +1.p-21

1.75
WHERE [(P]iEi)] DENOTES THE LOW-ORDER 16-BITS OF (P]iE]) :

ERROR CONDITIONS:
Positive Out-of-Range Error (POE), if (P]iE]) > +1.p-271°

Negative Out-of-Range Error (NOE), if (Py2E;) < - 1.0
Out-of-Range Error (ORE), if either POE or NOE occurs.

DESCRIPTION:

The arithmetic operation$ defined by < EXPRESSION > are performed.
The following mixed mode operations between integer (I) and scaled-
fraction (F) operands are legal:

a.) +(F£F)*IxF
b.) +(I+I)*F+F

Figure 5.9 shows the word length and word format at each step through
the flow of operations in the Arithmetic Unit for a.). The word Tength
and word format is the same for b.) as for a.) from the output of
MULTIPLY onward.

EXAMPLE :
IA -(-B)*C-D

5-24

" WORD EXTENSION |
& SIGN LOGIC

bits | [ES [5 [15 bits]. f§

+C, ilC], +1 ——

tES |S |17 bits .
s —— NOTE: A1l words are 1in
two's-complement fo'rmat.

PRODUCT BUFFER (PB S = sign bit.

[g |17 bits ‘ 115 f ES = extended sign bit|

e
[s {17 bits | . [15

+ [17 ES bits{S| . |15 . 3

[STi7 bits] . [15

OUT Q£ RANGE DETECTION

i
17 bits . |15 bits

BRESULT REGISTER (R)E

) If the sign bit is
#l. R = -1.0

‘Z&SJMHJL* mef
IIEIHII!I A

RESULT REGISTER

.

1t the sign bit is

0, v1.0 - 2713

FIGURE 5.9 INTEGER ARITHMETIC (IA) MIXED MODE CASE

5.2.4

ARP MOV SUBINSTRUCTIONS

The ARP has an internal data bus (see Figure 5.2) which interconnects
the operand registers A,B,C,D, and E, the Result Register R, the Bus
Store Register S, the Bus Load Register L, and the 128 registers

T(n) in the Temporary Register File. Up to four data move operations
may be made via this internal data bus per instruction cycle. During
each of the four internal data move intervals, one data word may be
moved from a specified source register (SR) to one or more specified
destination registers (DR's). Each data move operation is specified
by a MOV subinstruction.

Four of the five fields in the ARP instruction word are used to specify
the four possible data move operations which may be performed as part
of an ARP instruction.

Note: If E is an operand in the Arithmetic subinstruction of an ARP
instruction, then data must be moved to E by means of a MOV1, MOVZ,
or MOV3 subinstruction which is microprogrammed as part of that ARP
instruction.

EXAMPLE:
FA (A+B)*C+E; MOV1 S,E

5-26

MOV FIELD FORMAT

5.2.4.1
The general format of a MOV field in the ARP’instructioh word is:
K—SR—>- DR's -3
T 1 | 4 I i ¥
AB Cc D E LR o FIELD §
[} 1 3 [} 3 1 2 i i 1 1 1
16 14 1 12 11 10 9 8 7 6 6 4 3 2 1 0
('
1o
L
L v
k g1 0
SR = SOURCE REGISTER
R Pl DR = DESTINATION REGISTER
S 110 k = CONSTANT HARDWIRED IN THE ARP
T(n) 111 '
BIT(S) DESCRIPTION
-6 Specify the address, n, of one of the 128 registers,
: T(n), in the Temporary Register File.
7 Specifies R or T(n) as a destination depending on the SR
selected in accordance with the following table:
SR DR IMPLIED MOVE
R T(n) T(n) « R
S R R « S
T(n) R R <« T(n)
8 Specifies the Bus Load Register L as a DR.
9 Specifies E as a DR.
10 Specifies D as a DR.
11 Specifies C as a DR.
12 Specifies B as a DR.
13 Specifies A as a DR.
14,15 Specify the SR according to the above table.

5-27

The no-op format for a MOV field in the ARP instruction word is:

[SR—f DR's % n 3
L]]]] 1 T T 1 1 T T 1 T
X X118, 0 9o 0 p P BfX X, X, X, X, X, x|FIELD @
16 14 13 12 T 10 9 8 7 8 2 1 o
X =0,

5.2.4.2 THE MOV INSTRUCTION
The four ARP MOV instructions are:

MOV® Move in subinterval M@
MOVI Move in subinterval MI]
MOV2 Move in subinterval M2
MOV3 Move in subinterval M3

5-28

¥

MOV@ SR, DR[,...[,DR]]

o fa,e. c.0. p,0 R . ., n, . |[FIELD D
16 14 13 12 11 10 9 8 7 [} 5 4 3 2 1 o]
OPERATION:
DR 555 DR pgserosDR o5 < SRy

Note: Timing Relationship to the DATA MULTIBUS:
If the SR is S, then:

DR .»DR <« S

.25 .25 /]

“is equivalent to:

DR.ZS""’DR.ZS < DM¢

ERROR CONDITION(S):
None

DESCRIPTION:

Move the contents of the source register, SR, to a list of destination
registers. See paragraph 5.2.4.1 for the definition of the field format.

Notes:

1. Since there is an automatic move from D to E during the M@
subinterval, E is not a valid destination in a MOV@ subinstruction.

2. The Bus Load Register L is not a valid destination in a MOVD
subinstruction.

EXAMPLE :
MOV® R,B,T(n)

5-29

MOV1 SR, DR[,...[,DR]]

SR —f————OR"s —————)

1 Al 3),] 2 1 3 i rl] 1
16 14 13 12 11 10 9 8 7 ;] 5 4 3
OPERATION:
DR.5, DR.S""’ DR.5 < SR.25

‘Notes: Timing Relationships to the DATA MULTIBUS:

1. If the SR is S, ‘then:

..,DR <« 5.25

is equivalent to:

DR ge.sDR g < DMy -

2. If L is a DR, then:

DR"5,...,L.5 < SR.25
is equivalent to:
,DR.S,...,DM]-Q <~ SR‘25

ERROR CONDITION:
If L is a DR, BUS conflict (DATA).

DESCRIPTION:

FIELD @

Move the contents of the source register, SR, to a list of destination
registers. See paragraph 5.2.4.1 for definition of the field format.

EXAMPLE:
MOV1 T(n), D.L

5-30

MOV2 SR, DR[,...[,DR]]

f&——SR =3¢ DR's 3
4 1] | | | 1] IR/ I | ¥ |] 1 FIELDQ
1 Al BA Cx Dl El gl T Y L ln 1 1 1
16 14 13 12 1 10 9 8 7 [[4 3 2 1 o]
OPERATION:
DR 755 DR 755-.-50R 75 < SR g

Note: Timing Relationship to the DATA MULTIBUS:
If the SR is S, then:

DR ,DR « S

L7527 TS .5

is equivalent to:

DR ,_,...,DR « DM

.75 75

ERROR CONDITION(S):
None

DESCRIPTION:

Move the contents of the source register, SR, to a list of destination ,
registers. See paragraph 5.2.4.1 for the ‘definition of the field format.

Note: The Bus Load Register L is not a valid destination in a MOV2
subinstruction.

EXAMPLE:
MOV2 S,B,D,R

5-31

MOV3 SR, DR[,...[,DR]]

j6— SR —¥——————DR's 3}

T T T T 1 1 IR/ T T T T T T

a® e b My FIELD D
16 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
OPERATION: ,

DR],DR],...,DR1 “ SR.75

"Notes: Timing Relationships to the DATA MULTIBUS .
1. 1If the SR is S, then:

..y,DR1 < 3‘75

1 .5
2. If L is a DR, then:

R SR:75

is equivalent to:

...,DM < SR

1.5 .75

- ERROR CONDITION:
If L is a DR, BUS conflict (DATA).

DESCRIPTION:

Move the contents of the source register, SR, to a list of destination
registers. See paragraph 5.2.4.1 for the definition of the field format.

EXAMPLE ;
MOV3 R,E

5-32

5.2.5

PAUSE/NOP INSTRUCTIONS

The PAUSE instruction may be microprogrammed with any other

ARP instruction or it may be issued as a stand-alone instruction.
The NOP instruction is only used as a stand-alone instruction.
The NOP and PAUSE instructions are defined below.

5-33

PAUSE d

PAUSE FOR d INSTRUCTION CYCLES

OPERATION:
None

ERROR CONDITIONS:
None

DESCRIPTION:

FIELD @

Suspend execution for d instruction cycles following the PAUSE
instruction. This has the same effect as (d+1) NOP's.

EXAMPLE:

PAUSE 6

5~35

£

A

top

NO OPERATION

FIELD @
p , a2 .0 .VG L2 .0 ,0,0,0,0,0,0,0,0, @‘ Through FIELD 4

OPERATION:
None

ERROR CONDITIONS:
None'

DESCRIPTION:
Suspends execution for one instruction cycle.

EXAMPLE :
NOP

5-34

