
-

-
-

-
-

-
-

DEP

DECISION PROCESSOR

CHAPTER 6

,.

6 . 0 I NT RO DU CTI 0 N

The DEP executes compprison and modification instructions involving
two 128 word register files within the DEP. One of these register
files is shared with the MAP and is used by the MAP for indexed
addressing. This allows the DEP, through a logical decision process,
to cause the MAP to access data from arrays stored in DATA MEMORY
in a very efficient manner.

6 .1 ORGANIZATION OF THE DEP

Figure 6.1 provides a general block diagram of the DEP. That part
of Figure 6.1 which is in black is comnon to all processors and is
described in Section 2.6. The elements in Figure 6.1 which are in red
are those which are unique to the DEP.

The DEP is physically located on the same circuit card assembly which
contains the Memory Address Processor (MAP). The I Register File shown
in Figure 6.1 is shared between the DEP and the MAP in the sense that
this file may be accessed by either processor. These operations of
MAP and DEP are transparent and fully overlapped. See Chapter 7 for
more information on this subject.

In Figure 6.1 a connection is shown in red from the Control Processor (COP)
to the Processor Status Enable Register via the DATA MULTIBUS. A
similar connection is shown from the COP to the Program Counter through
the ADDRESS/CONTROL MULTIBUS. The contents of the Processor Status
Enable Register and the Program Counter can be modified by COP program
instructions when the AD 10 is in the run mode.

Sections 6.2.3 through 6.2.7 contain diagrams showing the parts of
the DEP which are involved with each of the categories of DEP instructions.

6.1 .1 Processor Address

The processor address for the DEP is 02.

6-1

r r~ -, r (r r r (r

HOST
INTERFACE ~ STATUS MULTIBUS ~ CONTROLLER
liil_C_) '"' ' I COP]

~ Ji. I' i ~DATA MULTIBUS
~

~ -~ "- "I ' ~ -·-=> _, STATUS ~
\ STATUS I CP l ~ ~

; -) WORD ~ ENABLE T DEP DATA BUS
I COMPARE)-' I'- ,,

~) I' I I'

~ r-- PAUSE ~ ~ ~
COUNTER ~ I C BIT) - X REGISTER

FILE ' ~ DEP
CONTROLLER AND "' 16 x 128 I REGISTER

-J I NSTRUC1 ION 7 FILE ../ ~ ,,
" DECODER , 16 x 128 ~ 7

MAP

°'I / ...,
")

PROGRAM
COUNTER ..,,. It
I ~. _, PROGRAM ' :r MEMORY ~ ADDER

7
32 x 1024

~

~ '
- - -~---

~ • ADDRESS/CONTROL MULTIBUS ·- - -
' It -=>

(coPJ HIC

FIGURE 6. l DEP BLOCK DIAGRAM

6. 1 . 2

6 .1. 3

6. l .4

,.

Processor Status Word

I CMP ICBii 0 : 0 : 0 : 0 I A I p I 0 ~: 0 0 0 I PA~SE ~NT]
15 14 13 12 11 10 9 8 6 5 4 2 0

BIT

0-2
3-7
8
9

10-13
14

15*

DESCRIPTION

Remaining Pause Count
Unassigned
DEP is present when set
DEP is active when set
Unassigned
Condition Bit indicates the result of the last compare
instruction.
If a compare instruction has been performed, this bit is set.

* Once set, this bit remains set until cleared by a READ operation.

The DEP Processor Status Word (PSW) contains information on the current
status of the DEP. The PSW is a read-~ register.

Processor Status Enable

1 5 1 4 1 3 1 2 11 1 0 9 8 7 6 5 4 3 2 0

BIT DESCRIPTION -
0-13 Unassigned
14 Enables the condition CBIT+-0 to the AER line.
15 Enables the condition CBIT~l to the AER line.

The Processor Status Enable Register (PSE) is a write-only register.
This register has the same address as the DEP Processor Status Word.

Program Memory

The DEP program memory contains 1 ,024 words. Each 32-bit instruction
word is divided into two 16-bi t fields. A DEP instruction is normally
loaded as a sequence of two 16-bit words (one per field) from the
host processor. However, each field is individually addressable and
can be accessed from the host processor for a READ or WRITE operation.

6-3

1'

6.2 THE DEP INSTRUCTION SET

6.2.l DEP Instruction Word Format

6.2.2

The DEP instruction word format is:

15 14 13 12 11 10 9 8 6 5 4 3 2 0

'

FI ELD fl

_FIELD 1

The bits labelled 11 X11 in the above diagram are unused. The unused bits
cannot be set and are always read as a 0.

The categories of DEP instructions are:

COMPARE Instructions
LOAD IMMEDIATE DATA Instructions
LOAD CONDITION Instructions
LOAD/STORE REGISTER Instructions
MOVE REGISTER Instructions
PAUSE/NOP Instructions

Microprogramming DEP Instructions

Figure 6.2 provides a summary of the DEP instruction set. This
summary has been organized into several groupings of instructions
to indicate as clearly as possible the microprogramming possibilities
which exist.

A DEP instruction can consist of any of the following:

a.) <A> <PAUSE>
b.) <PAUSE>
c.) <C> <D> <PAUSE>
d.) <C> <E> <PAUSE> (See Note 1.)

e.) <CC>< DC>< PAUSE>
f.) <CC><EC><PAUSE> (See Note 2.)

6-4

FIELD 0 FIELD 1

PAGE GROUP ~~MNM& ~~MN~&
~~~~~~moo~~~~MN~& ~~~~~MmOO~~~~MNM& 

6-9 , CMM (A) 1 0 x x 0 0 0 X X + I N D E X + + I N c R E M E N T + 

6-10 CMP (A) 0 1 x x 0 0 0 X X + I N D E X + + I N c R E M. E N T + 

6-13 LOI (B) 1 1 x x 0 0 0 x x 0 0 0 0 0 1 1 + I M M E D I A T E DAT A+ 
6-14 LFI (B) 1 1 x x 0 0 0 x x 0 0 0 0 0 1 0 + I M M E D I A T E D A T A + 
6-15 LSI (B) 1 1 x x 0 0 0 x x 0 0 0 0 0 0 1 + I M M E D I A T E DAT A+ 
6-25 LIF ( C) 0 0 x x 0 0 0 X X +S 0 U R C E+ 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 : 
6-21 LTCF (C) 0 0 x x 0 0 0 x x 010 0 010 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 : 
6-33 LXF ( C) 0 0 x x 0 0 0 X X +S 0 U R C E+ 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
6-29 SIF (C) 0 0 x x 0 0 0 X X +DESTINATION+ 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 ; 
6-37 SXF (C) 0 0 x x 0 0 0 X X +DESTINATION+ 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 : 
6-19 LCF (CC) x x 010 0 0f 0 0 0 

; 

0 0 x x 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 
6-26 LI FC (CC) 0 0 x x 0 0 0 X X +S 0 U R C E+ 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 
6-34 LXFC (CC) 0 0 x x 0 0 0 X X +S 0 U R C E+ 1 1 1 ·0 0 0 0 0 1 0 0 0 0 0 0 0 
6-30 SIFC (CC) 0 0 x x 0 0 0 X X +DESTINATION+ 0 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 
6-38 SXFC (CC) 0 0 x x 0 0 0 X X +DESTINATION+ 1 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 
6-27 LIS ( D) 0 0 x x 0 0 0 x x 0 0 0 0 0 0 0 ~ 0 0 0 1 1 0 1 0 +S 0 U R C E+ 
6-22 LTCS ( D) 0 0 x x 0 0 0 x x 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0J0 0 0(0 0 0 
6-35 LXS ( D) 00 xx 0 0 0 x x 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 +S 0 U R C E+ 
6-31 SIS ( D) 0 0 x x 0 0 0 x x 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 +DESTINATION+ 
6-39 sxs ( D) 0 0 x x 0 0 0 x x 0 0 0 0 0 0 0 0 ~ 0 0 1 0 1 1 0 +DESTINATION+ 
6-20 LCS (DC) 0 0 x x 0 0 0 x x 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 010 0 0f 0 0 0 
6-28 USC (DC) 0 0 x x 0 0 0 x x 0 0 0 0 0 0 0 ~ ·~ 0 0 1 1 0 1 1 +S 0 U R C E+ 
6-36 LXSC (DC) . ~ 0 x x 0 0 0 x x 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 +S 0 U R C E+ 
6-32 SISC (DC) 0 0 x x 0 0 0 x x 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 +DESTINATION+ 
6-40 sxsc (DC) 0 0 x x 0 0 0 x x 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 +DESTINATION+ 
6-43 MII (E) 0 0 x x 0 0 0 X X +S 0 U R C E+ 0 0 0 0 0 1 0 1 0 +DESTINATION+ 
6-45 MIX (E) 0 0 x x 0 0 0 X X +S 0 U R C E+ 0 0 0 0 1 0 0 1 0 +DESTINATION+ 
6-47 MXI (E) 0 0 x x 0 0 0 X X +S 0 U R C E+ 0 0 0 0 0 1 1 0 0 +DESTINATION+ 
6-49 MXX (E) 0 0 x x 0 0 0 X X ~s 0 U R C E+ 0 0 0 0 1 0 1 0 0 +DESTINATION+ 
6-44 MII C (EC) 0 0 x x 0 0 0 X X +S 0 U R C E+ 0 0 0 0 0 1 0 1 1 +DESTINATION+ 
6-46 MIXC (EC) 0 0 x x 0 0 0 X X +S 0 U R C E+ 0 0 0 0 1 0 0 1 1 +DESTINATION+ 
6-48 MXIC (EC) 0 0 x x 0 0 0 X X +S 0 U R C E+ 0 0 0 0 0 1 1 0 1 +DESTINATION+ 
6-50 MXXC (EC) 0 0 x x 0 0 0 X X +S 0 U R C E+ 0 0 0 0 1 0 1 0 1 +DESTINATION+ 
6-54 NOP 0 0 x x 0 0 0 x x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
6-53 PAUSE 0 0 x x +d+ x x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

~~MNM&mOO~~W~MN~~ ~~MNM&mOO~~~~MNM& 
M~~MMM ·~M~MMM 

FIGURE 6.2 DECISION PROCESSOR INSTRUCTION SET 

6-5 



Note 1. If the instruction from group C is a register Load instruction, 

the source register for the Move instruction must be the same 
numerical address as the source register for the Load instruction. 
Thus, 

LIFns; MIXns,nf 

and 

LXFns; MIXns,mf 

are both valid microprogrammed instructions. If the instruction 

from group C is a register store instruction, the source 
register for the Move instruction must have the same numerical 
address as the destination register for the Store instruction. 

Note 2. The comments of Note l app1y with each of the instructions 
from groups C and E replaced by their counterparts from 
group CC and EC respectively. 

6-6 



1' 

6.2.3 COMPARE INSTRUCTIONS 

The DEP has two COMPARE instructions. That part o~ the DEP which is 
involved in COMPARE operations is shown below. 

CONTROLLER AND 
INSTRUCTION DECODER 

DATA MULTI BUS 

X REGISTER 
FILE 

INDEX n 

INCREMENT 

The COMPARE Instructions are: 

CMM 

CMP 

Compare and Modify 

Compare 

6-7 
. :) 



;' 

CMM n,k 

COMPARE AND MODIFY 

15 14 13 12 11 10 9 8 7 6. 5 4 3 

OPERATION: 

CP_ 25 +- DM0 

THEN I1(INDEX) +- I0(INDEX)+INCREMENT; CBIT +- 0 
ELSE IF INCREMENT i 0 

THEN r1(INDEX) +- 10(INDEX)-INCREMENT; CBIT + 1 

ELSE r1(INDEX) +- I0(INDEX)-l; CBIT +- 1 

ERROR CONDITION(S): 
CBIT if enabled to the AER line. 

DE SC RI PTI ON: 

0 

!
FIELD ~. 

_FIELD 1 

The contents of the DATA MULTIBUS FIRST are saved in register CP. The 
contents of the specified X register are then compared with the contents 
of CP. If X register is greater than or equal to CP, the I register is 
incremented by INCREMENT; otherwise, it is decremented. If INCREMENT 
is zero, this instruction will increment by zero or decrement by one. 

EXAMPLE: 

CMM Xl ,8 

6-9 



1' 

CMP n,k 

COMPARE 

15 14 13 12 11 10 9 6 4 3 

OPERATION: 
CP _25 + DM

0 

IF CP_ 25 ~ X~(INDEX) 

THEN I1(INDEX) ++INCREMENT; CBIT + 0 

ELSE I1(INDEX) + - INCREMENT; CBIT + 1 

ERROR CONDITION(S): 
CBIT if enabled to the AER line. 

DESCRIPTION: 

0 

}rELD 0 

]FI ELD 1 

The contents of the DATA MULTIBUS FIRST are saved in register CP. 
The contents of the specified X register are then compared with the 
contents of CP. If X register is greater than or equal to CP, the 
I register is loaded with INCREMENT; otherwise it is loaded with 

·-INCREMENT. 

EXAMPLE: 

CMP X4,32 

6-10 



6.2.4 LOAD IMMEDIATE DATA INSTRUCTIONS 

The DEP has three LOAD IMMEDIATE DATA instructions. That part of the 
DEP which is involved with these instructions is shown below. 

DATA MULTIBUS 

IMMEDIATE 
DATA 

CONTROLLER AND 
INSTRUCTION DECODER 

The instructions are often used to load registers in the various 
register files (i.e. , the I and X_ Register Fil es in DEP, the Temporary 
Register File in ARP, and the General Register File in COP). 

The LOAD IMMEDIATE DATA Instructions are: 

LDI Load Double Immediate 
LFI Load First Immediate 
LSI Load Second Immediate 

6-11 



1' 

LOI k 

LOAD DOUBLE IMMEDIATE 

16 14 13 12 11 10 8 4 0 

OPERATION: 
DM1 + IMMEDIATE DATA 

DM1 .S + IMMEDIATE DATA 

ERROR CONDITION(S): 
BUS CONFLICT (DATA), if there is other data on the OM in the 
above specified BUS cycle. 

DESCRIPTION: 
The immediate data is placed on the DATA MULTIBUS FIRST and SECOND. 

EXAMPLE: 

LOI DATA 

6-13 



LFI k 

LOAD FIRST IMMEDIATE 

16 14 13 12 11 10 9 6 4 0 

OPERATION: 
DM1 + IMMEDIATE DATA 

ERROR CONDITION(S): 

BUS CONFLICT (DATA), if there is other data on the DM in the 
above specified BUS~cycle. 

DESCRIPTION: 
The immediate data is placed on the DATA MULTIBUS FIRST. 

EXAMPLE: 

LFI DATA 

6-14 



LSI k 

LOAD SECOND IMMEDIATE 

0 0 ~ 0 0 0 0 0 0 0 0 0 0 FIELD 0 
,___,_ __ +--+----t--f---f I f---+--+----+--+-----+--+--...-~ 

IMMEDIATE DATA k FIELD 1 
16 14 13 12 11 10 4 0 

OPERATION: 
DM1.5 + IMMEDIATE DATA 

ERROR CONDITION(S): 
BUS CONFLICT (DATA), if there is other data on the OM in the 
above specified BUS cycle. 

DESCRIPTION: 
The immediate data are placed on the DATA MULTIBUS SECOND. 

EXAMPLE: 

LSI DATA 

6-15 



6.2.5 LOAD CONDITION INSTRUCTIONS 

The DEP has four LOAD CONDITION instructions. These four instructions 
are bit 1oad instructions (i.e., they only affect bit 15 of the DATA 
MULTIBUS). The part of the DEP involved in these instructions is shown 
below. 

DATA MULTIBUS 

CBIT 

CONTROLLER AND 
INSTRUCTION DECODER 

The LOAD CONDITION Instructions are: 

LCF Load Condition First 
LCS Load Condition Second 
LTCF Load True Condition First 
LTCS Load True Condition Second 

6-17 



• 

LCF 

LOAD CONDITION FIRST 

Yl 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

l l 0 0 0 0 1 0 0 0 0 0 0 
1 6 1 4 1 3 1 2 11 1 0 8 4 

OPERATION: 
IF CBIT IS TRUE 

THEN DM
1 

(15) + l 

ERROR CONDITION(S): 

BUS CONFLICT (DATA), if there is other data on the OM in 
the above specified BUC cycle. 

DESCRIPTION: 

0 FIELD 0 

0 FIELD 1 
0 

If the condition bit is true, bit 15 of the DATA MULTIBUS FIRST is set. 

EXAMPLE: 

. 
LCF 

6-19 



LCS 

LOAD CONDITION SECOND 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 FIELD 0 

0 0 0 0 l 0 0 0 0 0 0 0 FIELD 1 
16 14 13 12 11 10 9 8 6 4 0 

OPERATION: 
IF CBIT IS TRUE 

THEN DM1.5(15) + 1 

ERROR CONDITION(S): 

BUS CONFLICT(DATA), if there is other data on the 'OM in the 
above specified BUS cycle. 

DESCRIPTION: 
If the condition bit is true, bit 15 of the DATA MULTIBUS SECOND is set. 

EXAMPLE: 

LCS 

6-20 



LTCF 

LOAD TRUE CONDITION FIRST 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

l 1 1 1 0 0 0 0 0 0 0 0 0 0 0 
1 6 1 4 1 3 1 2 11 1 0 9 6 4 3 

OPERATION: 

DM1 (15) + 1 

ERROR CONDITION(S): 
BUS CONFLICT (DATA), if there is other data on the OM in 
the above specified BUS cycle. 

DESCRIPTION: 
Bit 15 of the DATA MULTIBUS is set. 

EXAMPLE: 

LTCF 

6-21 

0 FIELD 0 

0 FIELD 1 
0 



LTCS 

LOAD TRUE CONDITION SECOND 

0 0 0 0 0 0 ~ 0 0 0 ~ 0 0 0 ~ 

0 0 0 0 0 0 0 0 0 0 0 
1 6 1 4 1 3 1 2 11 1 0 9 6 4 

OPERATION: 
DMl. 5 ( 15) + l 

ERROR CONDITION(S): 
BUS CONFLICT (DATA)~ if there is other data on the OM in 
the above specified BUS cycle. 

DESCRIPTION: 
Bit 15 of the DATA MULTIBUS SECOND is set. 

EXAMPLE: 

LTCS 

6-22 

0 FIELD 0 

0 FIELD 1 
0 



1' 

6.2.6 LOAD/STORE REGISTER INSTRUCTIONS 

The DEP has sixteen LOAD/STORE REGISTER instructions. The LOAD 
instructions are used to load data from an I register or an X register 
to the DATA MULTIBUS. Similarly, the STORE instructions are used 
to store data obtained from the DATA MULTIBUS into an I or an X 
register. That part of the DEP which is involved with these instructions 
is shown below. 

DATA MULTI BUS 

CONTROLLER AND 
INSTRUCTION DECODER 

X REGISTER 
FILE 

REGISTER ADDRESS & R/W CONTROL 

The LOAD/STORE instructions for the I registers are: 

LIF .Load I First 

LIFC Load I First Conditionally 
LIS Load I Second 
LISC Load I Second Conditionally 

SIF Store I First 
SIFC Store I First Conditionally 
SIS Store I Second 

SISC Store I Second Conditionally 

6-23 

I REGISTER 
fILE 



The LOAD/STORE instructions for the X registers are: 

LXF Load X First 
LXFC Load i First Conditionally 
LXS Load X Second 
LXSC Load X Second Conditionally 
SXF Store X First 
SXFC Store X First Conditionally 
sxs Store X Second 
sxsc Store X Second Conditionally 

6-24 



LIF nf 

LOAD I FIRST 

0 

l 0 0 
16 14 13 12 11 10 9 

OPERATION: 

DM1 + I0(SOURCE) 

ERROR CONDITION(S): 

SOURCE n 

0 
6 

FIELD 0 

~ FIELD 1 
0 

BUS CONFLICT (DATA), if there is other data on the OM in the 
above specified BUS cycle. 

DESCRIPTION: 

The contents of the specified I registerare placed on the DATA 
MULTIBUS FIRST. 

EXAMPLE: 

LIF I4 

6-25 



LOAD I FIRST CONDITIONALLY 

0 0 0 0 0 0 W SOURCE n FIELD 0 

l 0 0 0 0 0 FIELD 1 
16 14 13 12 11 10 9 4 0 

OPERATION: 
IF CBIT rs TRUE 

THEN DM1 + I~(SOURCE) 

ERROR CONDITION(S): 
BUS CONFLICT (DATA), if there is other data on the OM in the 
above specified BUS cycle. 

DE SC RI PT ION: 

.If the condition bit is true, the contents of the specified I 
register are placed on the DATA MULTIBUS FIRST. 

EXAMPLE: 

LIFC I4 

6-26 



1• 

LOAD I SECOND 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 l l 0 l 0 
t SO RCE ns 

1 6 1 4 1 3 , 2 , , 1 0 9 6 4 

OPERATION: 

DMl.5 + r. 5(SOURCE) 

ERROR CONDITION(S): 

. BUS CONFLICT ( DATA), if there is other data on the OM 
in the above specified BUS cycle. 

DE SC RI PTI ON: 

0 0 FIELD 

FIELD 
0 

The contents of the specified I register are pl aced on the DATA 
MULTIBUS SECOND. 

EXAMPLE: 

LIS 14 

6-27 

0 

1 



LOAD I SECOND CONDITIONALLY 

0 0 0 0 0 0 0 0 0 

0 0 0 0 1 0 1 SOURCE n s 
1 6 1 4 1 3 1 2 11 1 0 8 6 4 3 

OPERATION: 
IF CBIT IS TRUE 

THEN DMl.S + I. 5(SOURCE) 

ERROR CONDITION(S): 
BUS CONFLICT (DATA), if there is other data on the OM in 
the above specified BUS cycle. 

DESCRIPTION: 

FIELD 1 
0 

If the condition bit is true, the contents of the specified I register 
are placed on the DATA MULTIBUS SECOND. 

EXAMPLE: 

LISC I4 

6-28 



SIF nf 

STORE I FIRST 

0 0 0 0 0 0 0 0 0 DESTINATION n FIELD 0 

0 1 l 1 0 0 0 0 0 0 0 0 0 0 0 0 FIELD 1 
1 6 1 4 1 3 1 2 11 1 0 9 6 0 

OPERATION: 

I .S(DESTINATION) + DM0 

ERROR CONDITION(S): 
None 

DESCRIPTION: 
The specified I register is loaded with the data on the DATA MULTIBUS 
FIRST. 

EXAMPLE: 

SIF I4 

6-29 



SI FC n f 

STORE I FIRST CONDITIONALLY 

0 0 0 0 0 0 0 0 0 

~ 1 0 0 0 0 
1 6 1 4 1 3 1 2 11 1 0 . 7 

OPERATION: 
IF CBIT IS TRUE 

THEN I. 5(DESTINATION) + DM0 

ERROR CONDITION(S): 
None 

DESCRIPTION: 

I 
0 

6 4 0 

FIELD 0 

FIELD 1 

If the condition bit is true, the specified I registeris loaded with 
the data on the DATA MUL T.IBUS FIRST. 

EXAMPLE: 

SIFC 14 

6-30 



1' 

SIS ns 

STORE I SECOND 

0 0 0 0 0 I 0_ I 0 I 0 I 1_ 0 0 0 0 

0 0 0 0 0 1 0 
1 6 1 4 1 3 1 2 11 1 0 6 4 2 

OPERATION: 

Il (DESTINATION) + OM .s· 

ERROR CONDITION(S): 
None . 

DESCRIPTION: 
The specified I register is loaded with the data on the 
DATA MULTIBUS SECOND. 

EXAMPLE: 

SIS I4 

6-31 

0 FIELD 0 

FIELD 1 
0 



;' 

SISC n s 

STORE I SECOND CONDITIONALLY 

0 0 0 0 0 1 1 1 
. DESTINATION n 

s FIELD 1 
15 14 13 12 11 10 9 4 2 0 

OPERATION: 
IF CBIT IS TRUE 

THEN 11 (DESTINATION) + DM_ 5 

ERROR CONDITION(S): 
None 

DESCRIPTION: 
If the condition bit is true, the specified I register is loaded 
with the data on the DATA MULTIBUS SECOND. 

EXAMPLE: 

srsc I4 

6-32 



LOAD X FIRST 

0 0 0 0 SOURCE n FIELD 0 

l 1 0 0 0 0 0 0 0 ~ 0 FIELD 1 
15 14 13 12 11 10 9 8 6 4 3 

OPERATOR: 
DM1 + x0(SOURCE) 

ERROR CONDITION(S): 
BUS CONFLICT (DATA), if there is other data on the DM in 
in the above specified BUS cycle. 

DESCRIPTION: 

0 

The contents of the specified X register are placed on the DATA 
MULTI BUS FIRST. 

EXAMPLE: 

LXF X4 

6-33 



LOAD X FIRST CONDITIONALLY 

0 0 0 0 0 0 0 0 0 SOURCE n 
' t I 

1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 
1 5 1 4 1 3 1 2 l 1 1 0 6 4 0 

OPERATION: 
IF CBIT IS TRUE 

THEN DM1 + x0(SOURCE) 

ERROR CONDITION(S): 
BUS CONFLICT (DATA), if there is other data on the OM in the 
above specified BUS cycle. 

DESCRIPTION: 

FIELD 0 

FIELD 1 

If the condition bit is true, the contents of the specified X register 
are placed on the DATA MULTIBUS FIRST. 

EXAMPLE: 

LXFC X4 

6-34 



1' 

LXS n
5 

LOAD X SECOND 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 FIELD 0 
1----1---~~---f--+~+---1--~--ir---t---t----r---r--r----r---, 

0 0 0 0 1 0 0 SOURCE n5 FI ELD 1 
1 6 1 4 1 3 1 2 1 l 1 0 9 8 6 4 3 . 

OPERATION: 

. DMl. 5 + x. 5(SOURCE) 

ERROR CONDITION(S): 
BUS CONFLICT (DATA), if there is other data on the DM 
in the above specified BUS cycle. 

DESCRIPTION: 

0 

The contents of the specified X register are placed on the DATA 
MULTIBUS SECOND. 

EXAMPLE: 

LXS X4 

6-35 



LXSC n
5 

LOAD X SECOND CONDITIONALLY 

0 0, 0 0 I 0 I 0 I 0 I 0 I 0 0 0 0 0 0 0 

0 0 0 0 1 1 1 0 1 SOURCE ns 
1 6 1 4 1 3 1 2 11 1 0 8 4 

OPERATION: 
IF CBIT IS TRUE 

THEN DM1 .S + x. 5(SOURCE) 

ERROR CONDITION(S): 
BUS CONFLICT (DATA), if there is other data on the OM 
in the above specified BUS cycle. 

DESCRIPTION: 

0 FIELD 0 

FIELD 1 
0 

If the condition bit is true, the contents of the specified X register 
are placed on the DATA MULTIBUS SECOND. 

EXAMPLE: 

LXSC X4 

6-36 



SXF n f 

STORE X FIRST 

0 0 0 0 ·0 0 0 0 0 DE TINATION n FIELD 0 

0 1 0 0 I 0 I 0 0 0 0 0 0 0 0 0. FIELD 1 
1 6 1 4 , 3 , 2 11 1 0 8 4 0 

OPERATION: 
x. 5(DESTINATION) + DM0 

ERROR CONDITION(S): 
None 

DESCRIPTION: 
The specified X register is loaded with the data on the DATA MULTIBUS 
FIRST. 

EXAMPLE: 

SXF X4 

6-37 



SXFC n f 

STORE X FIRST CONDITIONALLY 

DESTINATION n 

0 1 

FIELD 0 

~ FIELD 1 
'---'---..J---L---'---L---'----Jl---l---JL----L.~""--~---'----A---..._ __ 

15 14 13 12 11 10 6 4 0 

OPERATION: 
IF CB IT IS TRUE 

THEN x_ 5(DESTINATION) + DM0 

ERROR CONDITION(S): 
None 

. DESCRIPTION: 
If the condition bit is true, the specified X register is loaded 
with the data on the DATA MULTIBUS FIRST. 

EXAMPLE: 

SXFC X4 

6-38 



SXS n
5 

STORE X SECOND 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 1 1 0 DESTINATION ns 
1 6 1 4 1 3 1 2 11 1 0 9 8 6 4 0 

OPERATION: 
x1 (DESTINATION) + DM.S 

ERROR CONDITION(S): 
None 

DES CRI PTI ON : 
The specified X registeris loaded with the data on the DATA 
MULTIBUS SECOND. 

EXAMPLE: 

SXS X4 

6-39 

FIELD 0 

FIELD 1 



;' 

STORE X SECOND CONDITIONALLY 

0 0 0 0 0 0 0 

0 0 0 0 1 0 
1 5 1 4 , 3 1 2 11 1 0 9 

OPERATION: 
IF CBIT IS TRUE 

THEN x,(oESTINATION) 

ERROR CONDITION(S): 
None 

DESCRIPTION: 

0 0 0 

1 
8 

+ DM. 5 

~ 0 

4 3 0 

FIELD 0 

FIELD 1 

If the condition bit is true, the specified X register is loaded 
with the data on the DATA MULTIBUS SECOND. . 

EXAMPLE: 

SXSC X4 

6-40 



6.2.7 MOVE REGISTER INSTRUCTIONS 

The DEP has eight MOVE instructions which are used to transfer the 
contents of one I or X register to another I or X register. These 
data transfers take place via the internal DEP Data Bus (DEP DB). 
That part of the DEP involved in these internal MOVE instructions 
is shown below. 

DEP DATA BUS 
~\ i\ 

I CBIT 1 
~ ,, ,, 

CONTROLLER AND X REGISTER I REGISTER 
INSTRUCTION DECODER FILE FILE 

I~ If\-

REGISTER ADDRESSES AND R/W CONTROL 

The DEP MOVE instructions are: 

MI I Move I to I 
MI IC Move I to I Conditionally 
MIX Move I to x 
MIXC Move I to X Conditionally 

MXI Move X to I 
MXIC Move X to I Conditionally 
MXX Move I to X 
MXXC Move I to X Conditionally 

c:. /11 



1' 

MOVE I (nf) to I (n ) s 

0 0 0 0 0 0 

0 1J 0 0 0 1 
1 5 1 4 1 3 1 2 11 1 0 

OPERATION: 
r1 (DESTINATION) + 

ERROR CONDITION(S): 
None 

DESCRIPTION: 

0 0 rl-
0 1 0 

9 8 

r0(SOURCE) 

SOURCE n 

DESTINATION n 
6 4 0 

FIELD. 0 

FIELD' 1 

The contents of the source I register are placed in the destination 
I register. 

EXAMPLE: 

MII 14' 15 

6-43 



1' 

MOVE I(nf) to I(ns) CONDITIONALLY 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 l 
, 6 , 4 , 3 , 2 11 1 0 

OPERATION: 
IF CBIT IS TRUE 

. THEN I1 (DESTINATION) + r0(SOURCE) 

ERROR CONDITION(S): 
None 

DESCRIPTION: 

4 0 

FIELD 0 

FIELD 1 

If the condition bit is true, the contents of the source ~ register 
are placed in the destination I register. 

EXAMPLE: 

. 
MIIC I4,I5 

6-44 



0 0 0 0 0 

0 0 0 ~ 1 
, 5 1 4 1 3 1 2 11 

OPERATION: 
x1 (DEST! NATI ON) 

ERROR CONDITION(S): 
None 

DESCRIPTION: 

0 0 0 0 
t-

0 0 0 
1 0 9 8 

+ r0(SOURCE) 

SOURCE n f . 

6 4 0 

FIELD 0 

FIELD 1 

The contents of the so~rce I register are placed in the destination 
X register. 

EXAMPLE: 

. 
MIX I4,X5 

6-45 



MIXC nf4 

MOVE I(nf) to X(ns) CONDITIONALLY 

0 0 0 0 0 0 0 0 SOURCE nf FIELD 
I-

0 0 0 0 1 0 0 1 DESTINATION n FIELD 
, 5 1 4 , 3 1 2 11 1 0 8 4 0 

OPERATION: 
IF CBIT IS TRUE 

THEN X1(DESTINATION) + r0(SOURCE) 

ERROR CONDITION(S): 
None 

DESCRIPTION: 
If the condition bit is true, the contents of the source I register 
are placed in the destination X.register. 

EXAMPLE: 

MIXC I4,X5 

6-46 

0 

1 



MX I nf 1..!!s 

MOVE X(nf) to I ( n ) 
s 

0 0 0 0 0 0 0 0 0 SOURCE nf FIELD 0 

0 0 0 0 0 1 0 0 DESTINATION ns FIELD 1 
1 6 1 4 1 3 1 2 11 1 0 9 4 0 

OPERATION: 

11 (DESTINATION) + x0(SOURCE) 

ERROR CONDITlON(S): 

None 

DESCRl PTI ON: 

The contents of the source X register a re pl aced in the des ti nation l 
register. 

EXAMPLE: 

MXl X4, 15 

6-47 



1' 

MOVE X(nf) to I(ns) CONDITIONALLY 

0 ~ I Y3 I 0 I 0 I 0 0 I 0 
~ 0 0 0 0 1 1 0 1 
16 14 13 12 11 10 8 6 

OPERATION: 
IF CBIT IS TRUE 

THEN r1(DESTINATION) + x
0

(SOURCE) 

ERROR CONDITION(S): 
None 

DESCRIPTION: 

DESTINATION n 
4 0 

FIELD 0 

FIELD 1 

If the condition bit is true, the contents of the source X register 
are placed in the destination I register. 

EXAMPLE: 

MXIC X4,I5 

6-48 



. 1' 

MXX nf 2.!:!s 

MOVE X(nf)· to X ( n 
5 

) 

0 0 0 0 0 0· 0 0 

0 0 0 0 0 1 0 
1 6 1 4 1 3 1 2 11 1 0 9 

OPERATION: 
X1 (DESTINATION) + Xf1(SOURCE) 

ERROR CONDITION($): 
None 

DESCRIPTION: 

0 SOURCE nf 

0 DESTINATION n
5 

4 3 0 

FIELD 0 

FIELD 1 

The contents of the source X register are placed in the destination 
X register. 

EXAMPLE: 

MXX X4,X5 

6-49 



MXXC n f1Bs 

MOVE X(nf) to X(ns) CONDITIONALLY 

0 0 0 0 0 
16 14 13 12 11 10 9 

OPERATION: 
IF CBIT IS TRUE 

THEN x1(DESTINATION) + x
0

(SOURCE) 

ERROR CONDITION(S): 
None 

DESCRIPTION: 

SOURCE nf 

DESTINf TION n§ 

4 3 0 

FIELD 0 

FIELD 1 

If the condition bit is true, the contents of the source X register 
are placed in the destination X register. 

EXAMPLE: 

MXXC X4,X5 

6-50 



6.2.8 PAUSE/NOP INSTRUCTIONS 

The PAUSE instruction may be microprogrammed with any other DEP 
instruction or it may 'be issued as a stand-alone instruction. 
The NOP instruction is only used as a stand-alone instruction. 
The NOP and PAUSE instructions are defined below. 

6-51 



• 

PAUSE d 

PAUSE FOR d INSTRUCTION CYCLES 

15 14 13 12 11 10 9 8 6 4 2 0 

OPERATION: 
None 

ERROR CONDITION(S): 
None 

DESCRIPTION: 
Suspend execution for d instruction cycles following the PAUSE 
instruction. This has the same effect as (d+l) NOP's. 

EXAMPLE: 

PAUSE 6 

6-53 



NOP 

NO OPERATION 

0 0 0 . Ill 0 0 0 0 0 0 0 0 ~ 0 ~ 0 FIELD 0 

0 0 0 ~ 0 0 0 0 0 0 0 0 0 0 0 0 FIELD 1 
1 6 1 4 1 3 1 2 11 1 0 9 4 0 

OPERATION: 
None 

ERROR CONDITION(S): 
None 

DESCRIPTION: 
Suspends execution for one instruction cycle. 

EXAMPLE: 
NOP 

6-54 



7. THE MEMORY ADDRESS PROCESSOR 

7.0 INTRODUCTION 

The MEMORY ADDRESS PROCESSOR (MAP) initiates Data Memory read/write 
operations and may be viewed as the AD 10 Data Memory controller. The 
MAP has instructions to perform both direct addressing and indexed 
addressing as well as instructions for two types of address mapping, 
aligned and unaligned. The MAP is only concerned with addressing Data 
Memory and has no control over the corresponding data to be written 
to or read from Data Memory. 

7.1 ORGANIZATION OF THE MAP 

A block diagram of the MAP is shown in Figure 7.1. That part of Figure 
7.1 which is in black is common to all processors and is described 
in Section 2.6. The elements in Figure 7.1 which are in red are 

,. those which are specific to the MAP. A more detailed diagram of key 
MAP elements is presented !_~ . Figure 7. 2 . 

. . 
Data.Memory read/write· 9pe_ra.tions may be ei.ther indexed or non-indexed. 
The I regi'ster file and ·.the. adder are involved in indexed address 

, ~~ 

operations. Indexed address operation.s"aire discussed in Section 7 .2.J. l. 

The MAP is physically located on the same circuit card assembly which 
contains the Decision Processor {DEP). The I register file, shown 
in Figures 7.1 and 7.2, is shared between MAP and DEP in the sense that 
it may be accessed by either processor. The MAP is limited to read­
only access to the I register file. The DEP may perform either read 
or write operations on the I register file. See Chapter 6 for more 
information in this regard. NOTE: It is possible for a given register 
i ri the I register fi 1 e to be accessed by both MAP· and DEP in one 
in~t.l1b!~.;i-Or.:r;ycle. In this event, the register read operation required 
by MAP is performed before the register operation specified by the DEP 
instruction a·nd no conflict occurs. 

7-1 



p 

p 

MAP CONTROLLER 
AND 

INSTRUCTION DECODER ADDER 

I 

a ~ . • . .. . • .. . .. . • .. ••• ·I 0 I rn bits I 
... ·······················+I Eslsfis bits I -----,...-

n 4 REGISTER 
FILE 

J • 
LE~ SUM ( ~? 

ARITHMETIC ~ 
OVERFLOW ' ERROR? .., 

HE+, 
PAGE HIGH ERROR 

DETERMINATION 

COMPARE WITH ·· · 
USER-SPECIFIED. .. 

UPPER PAGE BOUNDARY 

/ 

FIGURE 7. 2 

1 Sl 18 bi ts I 
I I 
I I 
"' -"""" - ~ 

~l 

ADDR. 

NON-INDEXED ADDRESS: ADDR = a 

INDEXED ADDRESS: ADDR = a +I(n) 

ADDRESS 
. . ALIGNMENT 

.. ;. NETWORK 

PAGE 
ADDRESS 

WORD 
ADDRESS 

ADDRESS/CONTROL MULTIBUS 

MAP INSTRUCTION ADDRESS OPERATIONS 

7-3 

• 



The MAP instructions allow the address output to the Data Memory to 
be either 11 al igned 11 or "unal igned 11

• If the MAP instruction calls for 
an una 1 i gned address read or write operation, the address specified 
as part of the MAP instruction or the computed indexed address is 
output directly to the Data Memory via the ADDRESS MULTIBUS as 
described in Section 7.2.3.2. Thus, an unaligned addressing operation 
may be viewed as an absolute addressing operation. If an aligned 
address read or write operation is specified, the address output from 
the MAP to Data Memory is obtained as the result of an operation per­
formed by the address alignment-network (see Figure 7.1) on the address 
specified as part of the MAP instruction or on the computed indexed 
address. The opera ti on performed by the address ail i gnment network. 
is described in Section 7.2.3.3. 

Connections from the COP to the Processor Status Enable Register via 
the DATA MULTIBUS and from the COP to the Program Counter via the 
ADDRESS/CONTROL MULTIBUS are shown in red in Figure 7.1. These 
connections indicate that the Processor Status Enable Register and the 
Program Counter can.)2~ changed by instructions in a COP program when 
the AD 10 is in th~ Rb'N mode. 

7.1.1 . Processor Address 

7 .1. 2 

'. 

The. Proc~ssor add\·t1ss for the MAP ·.ts .. ~1. 

Processor Status Word 

1 ~ 1 ~ 1 u 0 > : 01 A 1 p 10 : 0 : 0 : 0 : 01 PA~S E ~NT 1 
15 14 13 12 11 10 9 8 7 6 6 4 3 2 0 

BIT DESCRIPTION 

~-2 Remaining PAUSE count. 
-3-7 Unassigned 

/8 MAP is present when set. 
'g MAP is active when set. 
10-12:1 . .:::::. . _,_ Unassigned 
13* __ -Page Low Error. Set if the page address is a negative number. 
14* Page High Error. Set if the page address exceeds the 

·programmer specified upper page boundary or if an arithmetic 

15* 
overflow occurs on the computation of an indexed address. 
Page Error. Set if either PLE or PHE occurs. 

7-4 



* Once set, these bits remain set until cleared by a read operation. 

The MAP Processor Status Word (PSW) contains information on the current 
status of the MAP. The PSW is a read-only register. 

7.1.3 Processor Status Enable 

7 .1.4 

E E E T T -"" -.- ,- I T T T --.- T 

UPPER MEMORY PAGE p p p 0 0 0 0 0 0 0 BOUNDARY 
H L ..... . . _. -" __I_ . . 

16 14 13 12 11 10 9 B 7 6 5 4 3 2 0 

BIT DESCRIPTION 

0-5 Upper memory page boundary. User specified upper page in 
Data Memory. Since there is no hardware protection in the 
Data Memory to indicate that a page addressed is not 
physically present, this allows the user to protect him/her 
self. NOTE: The upper memory page boundary should be 
specified in any instruction which set bit 14, since the 
hardware does not provide a default setting for these bits. 

6-12 Unassigned. 
13 Enable the PLE line to the AER line. 
14 Enable the PHE line to the AER line. 
15 Enab 1 e error on above two conditions (i.e. , PE} to the AER 

line . 

. . 
The Procesi~r Status -Enable Registef (PSE) is a write-only register. 
This. regi.ster has the sa~e .addres_s __ .,as. the .MAP Processor Status Word. 

Program Memory 

The MAP program memory contains 1 ,024 words. Each 48-bit instruction 
word is divided into three 16-bit fields. A MAP instruction is normally 
loaded as a sequence of three 16-bit words (one per field) from the 
host processor. However, each field is individually addressable and 
can be accessed from the host processor for a read/write opera ti on. 

/ 

7-5 



7. 2 THE MAP INST RUCH\)~ ~ET 

7.2.1 Map Instruction Word Format 

T.2 .2 ·· 

The MAP instruction word format is: 

I ~ ! x ! x ! x : x ! x : x : x I x i x i x i x ~ x ! ~At ;OUNTI 

16 14 13 12 11 10 9 8 7 8 6 4 3 2 0 

FIELD 0 I 
FIELD 1 

FIELD 2: 

The bits labelled "X 11 in the above diagram are unused. The unused bits 
cannot be set and are always read as a 0. 

Figure 7.3 provides a summary of the MAP instruction set. 

In each MAP read or write instruction, bits 0 and 1 of Field 1 are 
appended to Field 2 to form the address portion of the instruction. 
The format for this address information is: 

MSB LSB 

I' I • I. 
•1 0: 15 

' I I 

1FIELD ----------- FIELD 2 ------------__,. 
I 1 

. Bits 8 through 14 of Field 1 are used to specify the address of the 
register in the I register file which contains the index to be used in 

:_ ~ read or write instruction which involves indexed addressing. 
/ 

MaJ;LJJl('".:tr1f.~ion Microprogramming 

The only microprogramming allowed in a MAP instruction is that of a 
PAUSE instruction with a read instruction or a write instruction. 

7-6 



7.2.3 Read/Write Instructions 

7.2.3.l 

. 'I 

Figure 7.2 shows details of that part of the MAP which determines the 
page and word addresses to be transmitted via the ADDRESS/CONTROL 
MULTIBUS to Data Memory in a read or write operation. 

Every read and write instruction specifies an 18-bit address "a" to 
be used in determining the actual address to be transmitted to Data 

. Memory. In addition, the instruction also specifies whether or not 
the address "a" is to be indexed and/or aligned. 

Indexed Addressing 

An indexed address is obtained by adding the contents of one of the 
128 registers in the I register file to the address 11a 11 specified in the 
read or write instruction. An instruction which involves an indexed 
address contains a. 7-bi t number "n 11 which specifies the register in the 
I register file which is to be used. 

/'"''·· 

The adder shown in Figure -~~7 is us.ed to compute indexed addresses. 
~oth. the ad~ress 11 f ifnd the contents o.f the s~eci fi ed I register 
are t_reated as i n1 · fi[s _.i.~ two' s.-compl ement format by. the adder .. 
This -al lows the i '\ \~jxep ad~ress to "lJe· anywhere in th~ range 

;., / .• •. ·· . · ... i:;.,.. . 

[a - 32,768] to [a v 1~2,767]. Dependfffg-;bn the specified address ''.a::* 
and the contents of the specified I register, it is possible for the 
computed indexed address to be a negative number. Since all valid 
Data Memory addresses are non-negative, a computed indexed address 
which is a negative number represents an error situation. The output 
of the adder is checked to detennine whether or not the computed indexed 
address is negative. If it is negative, a Page Low Error (PLE) 
condition is generated. (See Figure 7.2). 

*/ NOTE: The address 11a" is a positive integer. See Figure 7. 2. 

7-7 



FIELD ""0 · .. :, FIELD 1 FIELD 2 

PAGE LO t:d'" MN r-IS. LO t:d'"·M N r-IS, LO t:d'" MN r-IQ 
r-lr-l.-tr-1.-t.-tmoo~~LO~MN.-t& r-lr-1.-t.-tr-lr-lmOO~~~~MNr-1& .-t.-tr-lr-lr-lr-lmOO~~LOt:d'"MNr-1& 

7-25 RAD x x x x xx x x 0 0 0 1 1 0 0 0 x 0 0 0 0 0 0 0 x x x x x X D A T·A MEMORY ADDR.-+' 
7-26 RAF x x x x x x x x 0 ·0 0 0 1 0 0 0 x~0000 .. 0 0 x x x x x X D A T A M E M 0 R Y ADDR.+ 

' 7-28 RAID .. 
7-29 ~. 

RAIF ~ 

x x x x x x x x 0 0 1 1 1 0 0 0 X + I N D E X + X X x x x X D A T A MEMORY ADDR.+ 
x x x x x x x x 0 0 1 0 1 0 0 0' X + I N D E X + X X x x x X D A T A M E M 0 R Y ADDR.+ 

7-30 RAIS v x x x x x x x x 0 0 1 1 0 0 0 0 X + I N D E X + X X x x x X D A T A M E M 0 R Y ADDR.+ 
7-27 RAS! .'.' x x x x x x x x 0 0 0 1 0 0 0 0 x 0 0 0 0 0 0 0 x x x x x X DA T A M E M 0 R Y ADDR.+ 
7-11 RUD x x x x x x x x 1 0 0 1 1 0 0 0 x 0 0 0 0 0 0 0 x x x x x X D A T A M E M 0 R Y A D D R . + 
7-12 RUF x x x x x x x x 1 0 0 0 1 0 0 0 x 0 0 0 0 0 0 0 x x x x x X D A T A M E M 0 R Y ADDR.+ 
7-14 RUID x x x x x x x x 1 0 1 1 1 0 0 0. X .~ I N D E X + X X x x x X D A T A M E M 0 R Y A D D R . + 
7-15 RUIF x x x x x x x x 1 0 1 0 1 0 0 0 "X +INDEX+XX xx x X D A T A M E M 0 R Y ADDR.+ 
7-16 RUIS x x x x x x x x 1 0 1 1 0 0 0 0: X + I /N D E X + X X x x x X D A T A M E M 0 R Y ADDR.+ 
7-13 RUS x x x x x x x x 1 0 0 1 0 0 0 0 x 0 ·0 0 0 0 0 0 x x x x x X D A T A M E M 0 R Y A D D R . + 

'-I 
7-31 WAD I 

CX> x x x x xx x x 0 1 0 1 1 0 0 .0· ·x 0 0 0 0 0 0 0 x x x x x X DA T A M E M 0 R Y A D D R . + 
7-32 WAF x x x x x x x x 0 1 0 0 1 0 0 ' x 0 0 0 0 0 0 0 x x x x x X D A TA M E M 0 R Y A D D R . + 
7-34 WAID x x x x x x x x 0 1 1 1 1 0 0.;;0 X +. I N D E X + X X x x x X D A T A M E M 0 R Y A D D R . + 
7-35 WAIF x x x x x x x x 0 1 1 0 1 0 0 ?0 _X + I N D E X + X X x x x X D A T A M E M 0 R Y A D D R . + 
7-36 WAIS x x x x x x x x 0 1 1 1 0 0 0 0 X+INDEX+XX x x x X D A T A M E M 0 R Y A D D R . + 
7-33 WAS x x x x x x x x 0 1 0 1 0 0 0 0 x 0 0 0 0 ~,.0 0 x x x x x X D A T A M E M 0 R Y A D D R . + 
7-17 WUD x x x x x x x x 1 1 0 1 1 0 0 0 x 0 0 0 0 0 0 0 x x x x x X DA T A M E M 0 R Y A D D R . + 
7-18 WUF x x x x x x x x 1 1 0 0 1 0 0 ~f x 0 0 0 0 0 0 0 x x x x x X D A T A M E M 0 R Y A D D R . + 
7-20 WUID x x x x x x x x 1 1 1 1 1 0 0 0 X + I N D E X + X X x x x X D A T A M E M 0 R Y ADDR.+ 
7-21 WUIF x x x x x x x x 1 1 1 0 1 0 0 0 X + I N D E X + X X x x x X D A T A M E M 0 R Y ADDR.+ 
7-22 WUIS x x x x x x x x 1 1 1 1 0 0 0 0 X+INDEX+XX x x x X D A T A M E M 0 R ·Y ADDR.+ 

. 7-19 wus x x x x x x x x 1 1 0 1 0 0 ~ 0 x 0 0 0 0 0 0 0 x x x x x X D A T A MEMORY A D D R . + 
7-40 NOP x x x x x x x x 0 0 0 0 0 0 0 0 x 0 0 0 0 0 0 0 x x x x x x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
7-39 PAUSE x x x x x x x x 0 0 0 0 0 + d -+- x 0 0 0 0 0 0 0 x x x x x x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

-
~~MNr-t&mro~~LO~MNr-1& LO~MN.-i&moo~~LO~MN.-i& LOt:d'"MNr-t&moo~~LO~MNr-1& 
...... ....... ...... r-1 ...... r-1 r-1 · r-1 r-1 r-1 r-1 ""'"' r-1 ....... ...... ...... ...... ...... ---

FIGURE 7.3 MEMORY ADDRESS PROCESSOR INSTRUCTION SET 



7.2.3.2 

: 
' 9 

The output of th~ 1~tj~r is also checked to determine if an arithmetic 
overflow has occu, 1f 1d 7n the computation of an indexed address. Because 
of the modulo 2

19 wr\~paround which occurs in an arithmetic overflow 
situation, the resulting page address could lie within the range of 
valid page addresses (i.e., between page 0 and the user specified upper 
memory page boundary). This is clearly an error situation as the 
indexed address is trying to call for a memory page whose address is 
greater than 63. Thus, a Page High Error (PHE) condition is generated 
if an arithmetic overflow occurs in the adder. 

Unaligned Read/Write Instructions 

In Figu~e 7.2, the output of the adder is labelled ADDR. For non­
indexed read or write operations: 

ADDR + a 

For indexed read or write instructions: 

ADDR + a + I(n) 

-If.the read or write instru~tion specifies an-unaligned address, the 
address·2.lignment netwqr·k simply outputs .ADDR to the ADDRESS/CONTROL 
MULTI BUS as fo 11 ows: · ...... 

. ~. ;:.~ -· .. J 

AM1 (14:19) + ADDR0(12:17) (PAGE ADDRESS) 

AM1(0:11) + ADDR0{0:11) (WORD ADDRESS) 

The operation of the address alignment network for an unaligned read 
or write 

4 3 

: : 
' 8 ' 7 

instruction is illustrated in the following diagram: 

2· 0 ....• 
I 

: 
HS ' 6 '4 ' 3 ' 2 

, ,, 10 9 8 7 

• I 

1 ' 
1 0 9 8 7 

8 6 . 4 3 

8 6 4 3 
: : I 

2 , 0 
-. -- .. -·-··· ··~- ~-·-·. ----· ·----· 



The unaligned read/write instructions are: . 

RUD a READ UNALIGNED DOUBLE 
RUF a READ UNALIGNED FIRST 
RUS a READ UNALIGNED SECOND 
RUID a ,n READ UNALIGNED INDEXED DOUBLE 
RUIF a,n READ UNAU GNED INDEXED FIRST 
RUIS a,n READ UNALIGNED INDEXED SECOND 
WUD a WRITE UNALIGNED DOUBLE 
WUF a WRITE UNALIGNED FIRST 
WUS a WRITE UNALIGNED SECOND 
WUID a,n WRITE UNALIGNED INDEXED DOUBLE 
WUIF ·a ,n WRITE UNALIGNED INDEXED FIRST 
WUIS a,n WRITE UNALIGNED INDEXED SECOND 

.. 

"::.~~ ... ;._ 

7-10 



: \ 

RUD a 

READ UNALIGNED DOUBLE 

0 0 0 0 0· 0 {.J 0 1 0 0 1 1 0 0 ~ FIELD 0 

0 0 0 0 0 0 0 0 0 0 (.J -~ 0 0 HI a FIELD 1 

LO ADDRESS a FIELD 2 
16 14 13 12 11 10 9 8 6 ·6 4 3 2 0 

OPERATION: 
AM1 + UNALIGNED(ADDRESS) 

AMl.S + UNALIGNED(ADDRESS+l) 

DM5 + MEM1 (ADDRESS) 

DM5 . 5 + MEM1. 5 (ADDRESS+l) 

ERROR CONDITION ( S} : 

1. Memory page accessed too soon after previous access. 

2. BUS conflict (ADDRESS,DATA), if there is other data on the AM or the 
DM in the above specified BUS cycles.. 

3. Page address overrange if en~bled to AER line . 

. . ,. , 

DESCRIPTION: 
·An address pair is s·ent out on the-ADDRE~S MULTIBUS to Data Memory.* 

After a delay, data will appear on.;.the DATA MULTIBUS. 

*This instruction is included primarily for maintenance purposes; 
a memory page access error will occur if ADDRESS is not the las:t 
address of a memory page. 

EXAMPLE: 

RUD FUNl 

/. 

7-11 



. ' 

0 

1. Memory page accessed too soon after previous access. 

2 •. BUS conflict (ADDRESS,DATA), if there is other data on the AM or the 
OM in the above specified BUS cycles. 

3~ Page address ov~rrange if enabled to AER line.· 

DESCRIPTION: 

The address is sent out on the ADDRESS MULTI BUS to Data Memory. 
After a delay, data appears on th,e DATA MULTIBUS . 

. . 
EXAMPLE: 

.... 

RUF FUNl 
.• 

7-12 



RUS a 

READ UNALIGNED. SECOND 

0 0 0 0 1 0 0 1 0 0 0 FIELD 0 

0 0 0 .0 0 0 HI a FIELD 1 

LO ADDRESS a FIELD 2 
1 6 1 4 1 3 1 2 11 1 0 9 8 7 6 4 3 2 0 

OPERATION: 

AMl.S + UNALIGNED(ADDRESS) 

DM5• 5 + MEM1 ./S (ADDRESS} 

ERROR CONDITION(S): 

1. Memory page accessed too soon after previous access. 

2. BUS conflict (ADDRESS, DATA), if there is other data on the AM or the 
DM in the above specified BUS cycles. 

3. Page address overrange if enabled to AER line. 

'DESCRIPTION: 

The address is s~.t, out on the ADDRESS MULTI BUS to Data Memory. 
After a delay, J/~ta wi 11 appear on the DATA MULTIBUS. 

'%. ........... ' 

.. 
EXAMPLE: 

. -. 

. 
RUS FUNl 

/ 

7-13 



. ' 

RUID a,n 

READ UNALIGNED INDEXED DOUBLE 

0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 FIELD 0 

INDEX n 

LO ADDRESS a 
16 14 13 12 11 10 9 8 6 6 4 3 

OPERATION: 
AM1 + UNALIGNED(ADDRESS+l~(INDEX)) 

AM1.5 + UNALIGNED(ADDRESS+I0(INDEX)+l) 

DM5 + MEM1(ADDRESS+I0(INDEX)) 

DM5.5 + MEM1 _5(ADDRESS+I0(INDEX)+l) 

ERROR CONDITION(S): 
1. Memory page accessed too soon after previous access. 

0 

FIELD 1 

FIELD 2 · 

2. BUS conflict (ADDRESS,DATA), if there is other data on the AM or the 
DM in the above specified BUS cycles. · 

~- Page address overrange/underrange if enabled to AER line . 
. --· ~-. ' ' 

.. 
DESCRIPTJON: 

The address is obtained by adding, the given address with the specified 
INDEX register. An add.ress ·pair-·'.-ts.~ .. sent out on the ADDRESS MULTlRUS 
Data Memory.* After a delay, data will appear on .the DATA MULTIBUS. 

*This instruction is included primarily for maintenance purposes; 
a memory page access error wi 11 occur if the indexed address ; s 
not the last address of a memory' page . 

EXAMPLE: 

/ RUID FUNl, 16 

7-14 



RUIF a,n 

READ UNALIGNED IN~ ~~D FIRST 

........... --.--........ --..--..!!"""'~· .......... --.......... ,..... ...................... --..--...--..-..... 
of \I 

I ~ 0 0 0 0 1 0 l 0 1 0 0 0 FIELD 0 

IN EX n ~ 0 0 0 0 0 HI a FIELD 1 

LO ADDRESS a FIELD 2 
16 14 1.3 12 11 10 9 8 6 6 4 3 0 

OPERATION: 
AM1 + UNALIGNED(ADDRESS+I

0
( INDEX)) 

DM5 + MEM1(ADDRESS+I0(INDEX)) 

ERROR CONDITION ( S): 
1. Memory page accessed too soon after previous access. 

2. BUS conflict (ADDRESS,DATA), if there is other data.on theAM or the 
DM in the above specified· BUS cycles. 

3. Page address overrange/underrange if enabled to AER line . 

. DESCRIPTION: 
The address sent out on the ADDRESS MULTI BUS to Data Memory 
is obtained by adding the given.address to the contents of 
the specified INDEX reg-ister. After a delay, data will appear 
on the DATA MULTI BUS •. 

EXAMPLE: 

. 
RUIF FUN2, 19 

7-15 



. \ 

RUIS a,n 

· READ UNALIGNED INDEXED SECOND 

0 ' • 
., • 0 0 0 1 ~ 1 1 0 

0 INDEX n ~ 0 0 0 0 
LO ADDRESS a 

_, 5 1 4 1 3 1 2 11 1 0 9 8 6 6 4 3 2 0 

OPERATION: 

AMl.5 + UNALIGNED(ADDRESS+I0(INDEX)) 

DM5.5 + MEM1 • 5(ADDRESS+10 (INDEX)) 

ERROR CONDITION(S): 

1. Memory page accessed too soon after previous access. 

2. BUS conflict (ADDRESS,DATA), if there is other data on the AM or the 
DM in the above specified BUS cycles. _ 

3. Page address overrange/underrange if enabled to AER line. 

, DESCRIPTION: 

The address sen,vaut OD the ADDRESS MULTI BUS to _Data Memory is 
obtained by ackRng~ the ·9i ven address to the contents of the 
specifie·d INDEX register. After.a delay, data will appear on the 
DATA-MULTIBUS. 1 

• __ •• • · 

EXAMPLE: 

. 
RUIS A, I4 

/ 

7-16 



. ' 

WUD a 

WRITE UNALIGNED DOUBLE 

1 1 1 0 0 0 FIELD ~ 

0 0 HI a FIELD 1 

LO ADDRESS a FIELD 2 

16 14 13 1.2 11 10 9 8 6 6 4 . 3 2 0 

OPERATION: 
AM1 + UNALIGNED(ADDRESS) 

AMl.5 + UNALIGNED(ADDRESS+l) 

MEM5 (ADDRESS) + DM1 

MEM5. 5(ADDRESS+1) + DMl.S 

ERROR CONDITION ( S) : 

1. Memory page accessed too soon after previous access. 

2. BUS conflict (ADDRESS, DATA), if there is other data on the AM or the 
DM in the above specified BUS cycles. 

3. Page address overrange if enabled to AER line . 
. . 

DESCRf PTI0N: 
. An address pair is sent out on ·:tne,· AQ~RES.S MULTIBUS to Data Memorv. 

Data Memory takes the data pair frriln'.'the DATA MULTIBUS, and, a.fter a 
delay, stores the data at the specified addresses.* 

*This instruction is included primarily for maintenance purposes; 
a memory page access error wil 1 occur if ADDRESS is not the 1 ast 
address of a memory page . 

EXAMPLE: 

. 
· WUD FUNl 

/ 

7-17 



-".,'•' 
/ 

WUF a 

WRITE UNALIGNED FIR~~T 

,,......, 
0 0 0 0 " ' 0 0 1 1 0 0 1 0 0 0 FIELD 0 

0 0· 0 0 0 0 0 0 0 0 {J fa_ HI a FIELD 1 

FIELD 2 
1 6 1 4 1 3 1 2 11 1 0 9 8 7 6 6 4 3 2 0 

OPERATION: 

AM1 + UNALIGNED(ADDRESS) 

MEM5(ADDRESS) + DM1 

ERROR CONDITION(S): 

1. Memory p_age accessed too soon· after previous access. 

2. BUS conflict (ADDRESS, DATA), if there is other data on the AM or the 
OM in the above specified.BUS cycles. . 

3. Page address overrange if enabled to AER line • 

. DESCRIPTION: 

The address is sent out on the ADDRESS MULTIBUS to Data Memory. 
Data Memory takes tne data on the·.DATA MULTIBUS and, after a delay, 
stores the data at the sped fied ·address. . .. .. . ' ~ 

EXAMPLE: 

WUF FUNl 

,/ 

........ ::1 ...;:,. .. ~. 

7-18 



WUS a 

WRITE UNALIGNED SECOND 

1 5 1 4 1 3 1 ·2 1 1 1 0 9 8 8 5 4 3 2 0 

OPERATION: 

AM1• S + UNALIGNED( ADDRESS) 

MEM5• 5 (ADDRESS) + DM1 • S 

ERROR CONDITION(S): 

1. Memory page accessed too soon after previous access. 

2. BUS conflict (ADDRESS, DATA), if there is other data on the AM or the 
DM in the above specified BUS cycles. 

3. Page address overrange if .enabled to AER line. 

-DESCRIPTION: 

The address is sent to Data Memory on the ADDRESS MULTI BUS. Data 
Memory takes the . .Aata orr··the DATA MULTIBUS, and, after a delay, 
stores the dat~0,;at the specified· a.ddress·. 

EXAMPLE: 

. 
WUS FUNl 

7-19 



- '~., : .. 

WUID a ,n 

WRITE UNALIGNED INDEXED DOUBLE 

0 0 0 0 0 0 0 0 1 1 1 l 1 0 

0 INDEX n 0 0 0 0 0 0 

LO ADDRESS a 
1 6 1 4 1 3 1 2 11 1 0 9 8 6 6 4 3 2 0 

OPERATION: 
AM1 + UNALIGNED(ADDRESS+I0(INDEX)) 

AMl.S + UNALIGNED(ADDRESS+I0(INOEX)+l) 

MEM5(ADDRESS+I0(INDEX)) +. DM1 
MEMs.s(ADDRESS+I0(INDEX)+l) + DMl.5 

ERROR CONDITION(S): II 

1. Memory page accessed too soon after previous access. 

2. BUS conflict (ADDRESS, DATA), if there is other data on the AM or the 
DM in the above specified BUS cycles. · 

3. Page address overrange/underrange if enabled to AER line. 

DESCRIPTION·:"· 
The address sent out· ·on . the ADDRESS MUt n BUS to DATA MEMORY is 

. obtai ri'ed by adding tf)~ ·:·9i ven adctr:~·s s to the .contents of the 
. specified INDEX register. DATA MEMORY takes the data pair on 
the DATA MULTIBUS, and, after a delay, stores the data at the 
specified addresses.* 

*This instruction is included primarily for maintenance purposes; 
a memory page access error wi 11 occur if the indexed address is not 
the last a·ddress of a memory page. 

EXAMPLE: 

/ WUID FUNl, 17 
. 

. .......... ;:IC..:::;.. . r. 

7...:20 



WUIF a,n 

WRITE DNALIGNED INtF if D FIRST 
;A. ti-1 

0 0 0 0 '1r.' f\. /J 0 0 1 1 1 0 1 0 0 9J FIELD 0 

0 INDEX n 0 0 0 0 0 0 HI a FIELD 1 

LO ADDRESS a FIELD 2 
.16 14 13 12 11 10 9 8 7 6 6 4 3 0 

OPERATION: 

AM1 + UNALIGNED(ADDRESS+I0(INDEX)). 

MEM5 (ADDRESS + 10 (I~OEX)) + DM1 

ERROR CONOITION(S)~ 

1. Memory page accessed too soon after previous access. 

2. BUS conflict (ADDRESS, DATA), if there is other data on the AM or the 
DM in the above specified BUS cycles. 

3. Page address overrange/underrange if enabled to AER line. · 

/ DESCRIPTION: 

The address sent out on the ADDRESS MULTIBUS to Data Memory is 
obtained by adding the ~iven address to the contents of ·the specified. 
·INDEX register. Data Memory takes the data on the DATA MULTI BUS, 
and, -after a delay, s.tor.cs the data at .the specified address .• 

EXAMPLE: 

. 
WU! F FUNl , 18 

7-21 



- ' 

WUIS a,n 

WRITE UNALIGNED INDEXED SECOND 

0 0 0 0 0 0 0 0 1 1 

0 INDEX n ·0 0 
LO ADDRESS a 

1 6 1 4 1 3 1 2 11 1 0 9 8 7 6 

OPERATION: 

AM1 .S + UNALIGNED(ADDRESS+I0( INDEX)) 

MEMs.s(ADDRESS + 10 (INDEX)) + DMl.5 

ERROR CONDITION( S): 

1 1 0 0 0 

0 0 0 0 HI a 

6 4 3 2 

1. Memory page accessed too soon after previous access. 

0 FIELD 0 

FIELD 1 

FIELD 2 
0 

2. BUS conflict (ADDRESS, DATA) if there is other data on the AM or the 
' . DM in the above specified BUS cycles. 

3~ Page address overrange/underrange if enabled to AER line. 

/DESCRIPTION: 

The address s~nt out on the ADDRESS MULTI BUS to Data Memory is 
obtained by adding the gi_ ven .address to the contents of the 
s.pecified INDEX~jster ... Data Memory takes the data on the 
DATA MULTIBUS ,~~n<t, .after a delay, stores the data at the 
speci-fi ed addreis, ·~. · 

'·i..:~~ 
:.. ::.t - ,_;._ 

EXAMPLE: 

WUIS FUNl , 15 

/ 

7-22 



7.2.3.3 Aligned Read/Write Instructions 

In general, an address alignment network is a hardware device which 
maps the program address space into the physical address space of the 
memory. The purpose of an address alignment network in the AD 10 is to 
allow data transfers to or from Data Memory to be performed for a specific 
type of application in such a way as to take maximum advantage (from 
the standpoint of data transfer rate) of the overlapped page architecture 
of the Data Memory. 

The address alignment network in MAP is designed to map a linear 
array in program address space into Data Memory such that any pair of 
words with consecutive addresses (i.e., addresses ADDR and ADDR+l) in 
program address space will be located in adjacent pages in Data Memory. 

If a MAP read or write instruction specifies an aligned address, the 
address alignment network takes the program address, ADDR, (see Figure 
7.2) and converts it to a Data Memory address which it outputs to the 
ADDRESS/CONTROL MULTIBUS. The conversion performed by the address 
a 1 i gnment ne.twork on ADDR is: 

.. 
AM1 ( 14: 19) .. ~ .. ADDR0 (0, 13·: 17) (PAGE ADDRESS) 

AM1 ( 0: l1 } + · ·.·ADDR
0
· ( l 'tl2).~ ~r( WORD ADDRESS) 

The operation of the address alignment network for an aligned read or 
write instruction is illustrated in the diagram below. 

ADDRESS FROM ADDER (FIGURE 7.2) 
1 6 1 4 , 2 , , , 0 9 8 7 8 6 4 3 2 

\ 
...., _____ ,.,_ ____________________________________ ..... , 

', \ 

)~_._~:.~:._._~_Ro~fo~o~_ss~: .......... ~:-·~:_._~~ 
~--- I t 1 , 1 o _____ !__ _ . ~ . ____ L ___ --~-----rs -·~-- ----~ _____ 2-... --~~---.. --- _o _J 

I I I 

I : : : 
I I 

i 
19 18 17 18 16 14 13 12 11 10 9 8 7 8 6 4 3 2 1 0 

---·-··~-------

7-23 



The aligned address r~ad/write instructions are: 

RAD a READ -~ ,;tijnNED DOUBLE 
RAF a READ 1 rnu,).ED FIRST 
RAS a READ ~}r,~ED SECOND 
RAID a ,n READ AL rnNED INDEXED DOUBLE 
RAIF a ,n READ ALIGNED INDEXED FIRST 
RAIS a,n READ ALIGNED INDEXED SECOND 
WAD a WRITE ALIGNED DOUBLE 
WAF a WRITE ALIGNErr FIRST 
WAS a WRITE ALIGNED SECOND' 
WAID a,n WRITE ALIGNED INDEXED DOUBLE 
WAIF a,n WRITE ALIGNED INDEXED FIRST 
WAIS a,n WRITE ALIGNED INDEXED SECOND 

.. 

\ . 

/ 

7-24 



·RAo a 

READ ALIGNED DOUBLE 

LO ADDRESS a 

16 14 13 12 11 10 9 B 

OPERATION: 

AM1 + ALIGNED(ADDRESS) 

AMl.S + ALIGNED(ADDRESS+l) 

DM5 +· MEM1(ADDRESS) 

DM5 ~ 5 + MEM1. 5(ADDRESS+l) 

ERROR CONDITION(S): 

6 

1 ·~ 0 0FIELD ~ 

0 0 HI a FIELD 1 

FIELD 2 
4 3 2 0 

l. Memory page accessed too soon after previ'ous access. 

2. BUS con.fl i ct (ADDRESS ,DATA), if there is other data on the AM qr the 
DM in the:above specified BUS cycles. 

3. Page address overrange, if enabled to AER. line • 

. . 
DESCR~PTION: . _4:(-''".· ... _ 

A pair. of addresse~\ ·is sent on.Jh~_ ADDnESS MULTIBUS to Data Memory. 
After a delay, th~r data: will app.ea,r,. g~ the DATA MULTI BUS. 

·' ·····-

EXAMPLE: 

. 
RAD FUNl !GET TWO FUNCTION VALUES 

/ 

7-25 



RAF a 

READ ALIGNED FIRST 

~ 

0 

1 6 1 4 1 3 1 2 11 1 0 9 

OPERATION: 
AM1 + ALIGNED(ADDRESS) 
DMs + MEM1(ADDRESS) 

ERROR CONDITION( S): 

FIELD 0 

FIELD 1 

FIELD 2 

8 6 6 4 3 2 0 

1. Memory page accessed too soon after previous access. 

2. BUS conflict (ADDRESS ,DATA), if there is other data on the AM or the 
DM in the above specified BUS cycles. 

3. Page address overrange if enabled tri AER line. 

DESCRIPTION: 

The address is sent on the ADDRESS MULTIBUS to Data Memory~ After 
a delay, the data will appear on the DATA MULTIBUS. 

EXAMPLE: 

... 
RA~~ FUNl ! GET DATA. -POINT 

/ 

7-26 



RAS a 
. .(';,,;_ 

READ ALIGNED SECOND 

,, ~i' 

0 0 0 0 ~ > 9' 0 0 0 0 l 0 0 0 0 FIELD 0 
tr 

~ 0 0 0 0 0 0 0 0 0 ~. ~ HI a FIELD l 

LO FIELD 2 
1 6 1 4 1 3 1 2 11 1 0 9 8 7 6 6 4 3 2 0 

OPERATION: 

AMl .5 + ALIGNED( ADDRESS) 

DM5.5 + MEM1.5{ADDRESS). 

ERROR CONDITION(S): 
1. Memory pag·e accessed too soon after previous access. 

2. BUS conflict (ADDRESS ,DATA) , if there is other data on the AM or the 
DM in the above specified BUS cycles. 

3~ Page address overrange· if enabled ~o AER line. 

DESCRIPTION: 
The address is sent out on the ADDRESS MULTIBUS to Data Memory. 
After a delay, data will appear on the DATA MULTIBUS . 

. EXAMPLE: 
' . 

. 
RAS fUNl !GET DATA VALUE 

/ 

7•27 



. ·\ 

RAID a,n 

READ ALIGNED INDEXED DOUBLE 

0 0 0 

0 

0 0 0 0 

INDEX n 

0 0 0 1 1 1 

0 0 0 0 0 
LO ADDRESS a 

0 0 0 FIELD 0 

0 .HI a FIELD 1 

FIELD 2 

16 14 13 12 11 10 9 8 6 4 3 2 0 

OPERATION: 

AM1 . + ALIGNED(ADDRE_SS+I.(a(INDEX)) 

AMl.S + ALIGNED(ADDRESS+I0(INDEX) +1) 

DM5 + MEM1(ADDRESS+I
0

(INDEX)) 

DM5•5 + MEM1•5(ADDRESS+I0(INDEX)+l) 

ERROR CONDITION(S): 

1. Memory page accessed too_ soon after previous access. 

2. BUS conflict (ADDRESS, DATA) , ; f there is other data on the AM or the 
DM ih the above specified BUS cycles. . 

3. Page address overra_nge/underrange if enab 1 ed to AER 1 i ne • 

. . 
DESCR~PnON: /'""'··· ... ·. . 

· The address seftt" O\J\fon the ADDRESS MULTI SUS to D_ata Memory is 
obtained by addf_ng· the ·:9; ven· addres .. s ~to the contents of the 
specified INDE~ r.E~gister. After a delay, data will appear on 
the DATA MUL TI~M1J 1 l 

~· ' 

EXAMPLE: 

. 
RAID FUNl , 10 !GET FUNCTION PAIR 

/ 

7-28 



RAIF a,n 

READ ALIGNED INDEXED FIRST 

0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 FIELD 0 

0 INDEX n 0 0 0 0 0 0 HI a FIELD 1 

LO ADORES a FIELD 2 

1 6 1 4 , 3 1 2 , 1 , 0 9 8 7 6 6 4 3 2 0 

OPERATION: 
AM 1 + ALIGNED(ADDRESS+I0(INDEX)) 

DM5 + MEM1(ADDRESS+I0(INDEX)) 

ERROR CONDITION(S): 
1. Memory page accessed too soon after previous access. 

2 .. BUS conflict (ADDRESS, DATA) , if there is other data on the AM or the 
OM in the above specified BUS cycles. 

3. Page address overrange/underrange if enabled to AER line. 

DESCRIPTION: 
The address sent out o~. the ADDRESS MULTI BUS to Data Memory is 
obtained by adding the ~fven address to the contents of 'the 
~pecified INDEX ~egister. · The address is sent out on the ADDRESS 
MULTIBUS to Data Memory .. Afte.r a delay, .dat~ will appear on. the 

. DATA MULTIBUS. ·, . . . 
... :·._ 

EXAMPLE: 

. 
RAIF FUNl , 12 !GET DATA VALUE 

7-29 



. RAIS a,n 

READ ALIGNED INDEXEp S'COND 

15 14 13 12 11 10 9 8 e 4 3 2 0 

OPERATION: 

AM1 .S + ALIGNED(ADDRESS+I
0

(INDEX)) 

DMs.5 + MEM1.s(ADDRESS+I0{INDEX)) 

ERROR CONDITION(S): 

1. Memory page accessed too soon after previous access. 

2. BUS conflict {ADDRESS, DATA), if there is other data on the AM or the 
DM in the above specified BUS cycles. . 

3. Page address overrange/underrange if enabled to AER line. 

DESCRIPTION:· 

The address sent out on .. the ADDRESS MULTIBUS to Data Memory is 
_obtained by adding the given address to the contents of the · 
specified INDEX rP.gi ster. After ·a de 1 ay, data wi 11 appear on the 
DATA ·MULTI BUS. 

EXAMPLE: 

. 
RAIS FUNl , 13 ! GET DATA VALUE· 

7-30 



. \ 

WAD a . 

WRITE ALIGNED DOUBLE 

0 

· 1. Memory page accessed too soon after previous access. 

2. BUS conflict (ADDRESS, DATA) , if there is other ·data on the AM or the 
OM in the above specified BUS cycles. 

3. Page address overrange if enabled to AER line. 

DESCRIPTION: ."" 

Ari .address pair i s..?..'·s.e~t- out o~ the ADDRESS MULTIBUS to Data Memory. 
·Data Memory tak~"'~'tne data pair on~ the DATA MULTIBUS, and, after a 
delay, stores tflf!" data.· at the· spe·e·f.fie.d addresses. 

EXAMPLE: 

. 
WAD FUNOUTl 

/ 

7-31 



WAF. a 

WRITE ALIGNED FIRST 

0 0 0 0 0 0 0 0 1 0 0 1 
· FIELD (.J 

0 0 0 0 0 0 0 
FIELD 1 

FIELD 2 

1 6 1 4 1 3 1 2 11 1 0 9 . 8 7 6 6 4 3 2 0 : 

OPERATION: 

A~l + ALIGNED(ADDRESS) 

MEM5(ADDRESS) + DM1 

ERROR CONDITION( S): 

1. Memory page accessed too soon after previous address. 

2. BUS conflict (ADDRESS, DATA), if there is other data on the AM or the 
OM in the above specified BUS cycles. 

3. Page address overrange if enabled to AER line. 

PESCRIPTION: 

The address is sent out to DATA MEMORY on the ADDRESS MULTIBUS. 
Data Memory takes the datq on the'.DATA MULTIBUS, and, after a delay, 
s.~ores t~~ data at the sper;ified addr:ess. 

EXAMPLE: 

. 
WAF FUN2 

/ 

7-32 



WAS a 

WRITE ALIGNED SECOND 

0 0 0 0,.,1 0 0 1 0 

0 0 0 ~ i' 0 0 0 0 
tr 

LO ADORE Sa 

fa ~ FIELD 0 
..... --ll---1-~.---+-__,t---+---t---t---t-~ 

HI a FIELD 1 

FIELD 2 
1 6 1 4 1 3 8 6 6 4 3 2 0 

OPERATION: 

AMl.S + ALIGNED{ADDRESS) 

MEM5•5(ADDRESS) + DM1 .S 

ERROR CONDITION(S): 

1. Memory page accessed too soon after previous access. 

2. 'BUS conflict (ADDRESS, DATA), if there is other data on the AM or the 
DM in the above specified BUS cycles. 

3~ Page address overrange. if enabled ·ta'AER line. 

DESCRIPTION: 

The address is sent out on the ADDRESS MULTI BUS to Data. Memory. 
Data. Memory takes the data on the, DATA MULTIBUS, and, after a delay, 
stores the data at the specified. address • 
. . 

EXAMP._LE: . 

. 
WAS FUNl 

/ 

7-33 



WAID a ,.n 

WRITE ALIGNED INDEXED DOUBLE· 

91 91 0 0 .9) . 0 0 0 1 1 1 1 0 0 0 FIELD 0 

INDEX n 0 0 ~ ~ ~ 0 HI a FIELD 1 

LO ADDRESS a FIELD 2 

16 14 13 12 11 10 9 8 7 8 6 4 3 2 0 

OPERATION: 
AM1 + ALIGNED(ADDRESS+I0(INDEX)) 

AMl.S + ALIGNED(ADDRESS+I~(INDEX)+l) 

· MEM5(ADDRESS+10 (INDEX)) + DM1 

MEM5.5(ADDRESS+I0(INDEX)+l) + DMl.S 

ERROR CONDITION(S): 
1. Memory page accessed too soon after previous ·access. 

2. BUS conflict (ADDRESS, DATA), if there is other. data on the AM or the 
OM in the above specified BUS cycles. 

3. Page address overr~~ge/underrange if enabled to AER line. 

DESCRJPTION: 
. ~he· address pai!;t'~~nt __ Q.Ut o~ th~_ADDRESS MULTIBUS. to Data Memory 

is obtained byiiddrng the given · .. address to the contents of the 
specified INDEX "re~i ster .· Data Memory takes the· data pair on the 
DATA MULTIBUS, ~n~1' after a delay, stores the data at the specified 
addresses. 

EXAMPLE: 

. 
WAID FUNl,16 

/ 

7-34 



. ·\ 

WAIF a,n 

WRITE ALIGNED INDEXED FIRST 

fl ' ~ 0 0 0 0 {2J {2J 1 1 {2J 1 {2J {2J {2J FIELD {2J 

1-0-t---J.-l--I~N~DE_x_..n_+--f---t'-0 +I _0-t-I _0-11-0-t-_0 1-0-t---tH _I a ... FIELD 1 
LO ADDRESS a . F I ELD 2 

16 14 13 12 1.1 10 9 8 e s 4 3 2, 0 

OPERATION: 

AM1 -+- ALIGNED(ADDRESS+I0(INDEX)) 

MEM5 (ADDRESS+I0(INDEX)) -+- DM1 

ERROR CONDITION{S): 

1. Memory page accessed too soon after preyious access. 

2. BUS conflict (ADDRESS, DATA), if there is other data on the AM or the 
OM in the above specified BUS cycles. 

3. Page address overrange/underran_ge if en ab 1 ed to AER 1 i ne. 

DESCRIPTION: 

The address sent out on.the ADDRESS MULTIBUS to Data Memory 
. j s obtai.ned by adding ths given- add_ress to the contents of 
the sped fi ed INO::X register. D.ata Memory, takes the data on the 
DATA. MULTIBUS, andh·a·fter a delay, stores the data at the specified 
·,address. · 

·····t,. 
.r; ~·;.':' • .... : 

EXAMPLE: 

. 
WAIF FUNl ,12 

/ 

7-35 



WAIS a,n 

WRITE ALIGNED INDEXEb SECOND 
.. .. ' 

~~w' 
ra· f,J {a {a 

IND: ~I~ 
{a ·{a {a l FI ELD 0 

llt-l~-i-~~-1-~~-+---+--t---~"-t ....... 

0 {a {a . 
.~n 

LO ADORE S a 

FIELD 1 

FIELD 2 
1 6·. 1 4 1 3 1 2 1 1 0 9 8 6 6 4 3 2 0 

OPERATION: 

AM1 .S + ALIGNED(ADDRESS+I0(INDEX)) 

MEM5•5(ADDRESS+I0{INDEX)) + DM1 .S 

ERROR CONDITION{ S): 

1. Memory page accessed too soon after previous access. 

~ 
··~· .. ; 

· 2. BUS conflict (ADDRESS, DATA), if there is other data on the AM or the · 
OM in the above specified BUS cycles. 

3. Page address overrange/underrange if enabled to AER line. 

DES CR I PT ION : 

The address sent out on the ADDRESS MULTIBUS to Data Memory is 
.obtained. by adding the given address to th~ contents of the 
specified INDEX ·re.gi ster. Data Memory takes the data on the 
DATA-MULTI BUS, and, ,:after a de 1 ay, star.es the data at the 

· specified address~ · · 

EXAMPLE:· 

. 
WAIS FUN3, 110 

/ 

. 
7-36 



7. 2. 4 PAUSE/NOP INSTRUCTIONS 

The PAUSE instruction may be microprogrammed with any other MAP 
instruction or it may be issued as a stand-alone instruction. The 
NOP instruction is only used as a stand-alone instruction. The 
NOP and PAUSE instructions are defined below. 

·, 

7-37 



PAUSE d 

PAUSE FOR d INSTRUCT ION CYCLES 
' ....... ·.,., 

~· ~ ~ ft}. ~~ ~ 

0 0 0 ~ 0 ,~, 
0 ~ ~ ~ ~ 'rl 

1 5 , 4 1 3 1 2 
1 1 ·"·~ 1 1f 

OPERATION: 
None 

ERROR CONDITION(S): 
None 

DESCRIPTION: 

d FIELD 0 

FIELD 1 

FIELD 2 

Suspend execution for d instruction cycles following the PAUSE 
instruction. This has the same effect as (d+l) NOP's. 

EXAMPLE: 

. 
RAD FUNl; PAUSE 4 !READ VALUES & WAIT FOR MEMORY 

.. 

. / 

7-39 



NdP 

NO OPERATION 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 ·0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 
1 6 1 4 1 3 1 2 11 1 0 9 8 6 6 

OPERATION: 
None 

ERROR CONDITION(S): 
None 

DESCRIPTION: 

Suspends execution for one instruction cycle. 

EXAMPLE: 
NOP 

.. 

. ; ~ ... ·~" .. -.: .. 

.... ·~ . .. ... .. ; 

/ 

7-40 

FIELD ~ 

FIELD 1 

FIELD 2 

I 
.1 


