
~~10 
-

SOFTWARE REFERENCE MANUAL 

----=----------------------------------
----=; --=?--: =----------------==--== ---- --==---=--== ------------

APPLIED DYNAMICS INTERNATIONAL 
3800 STONE SCHOOL ROAD I ANN ARBOR, Ml 48104 I PH. 313-973-1300 I TLX. 230238 



TABLE OF CONTENTS PAGE 

TERMS AND SYNTAX CONVENTIONS 2 

THE AD-10 EXECUTIVE ................... 3 

RSX-11 OVERVIEW ............. ~ ........ . 4 

ADX OPE~ATING PROCEDURES .............. 5 

AD-10 EXECUTIVE COMMANDS .............. 6-23 

AT .... 6 
ATTACH .. 7 
BREAK 7 
CLEAR . . . . . ..... 8 
CONSOLE ..... 9 
CONTINUE 9 
DETACH •• 10 
DISPLAY ~ .. 10-11 
DUMP e: •• . . . . ..... 12 
EXIT ...... 12 
FLOATING .. 13 
FRACTION 13 
HALT ... 13 
HISTORY ...... 14 
IDENTIFY ... 15 
INIT 15 
LOAD 16 
MODIFY 17 
RESTORE ........ 17 
RUN . ' •· . . ... 18 
SAVE 18 
SET 19 
STEP .... 19 
TEST . . 20 
TRACE ..... . " 21 
UN TRACE ..... 22 
ZERO .. . . 22 
@ ...... 23 

23 ........ 23 

SUMMARY OF ADX COMMANDS ............... 24-25 

ADX-1 



ADX 

DEC 

RSX-11 

UIC 

MCR> 

ADX> 

INFILE, 
OUTFILE 

@ 

I 

< > 

[ ] 

CR 

CONTROL-Z 
CTRL-Z 

CONTROL-U 
CTRL-U 

RUBOUT 

CONTROL-S 
CTRL-S 

CONTROL-Q 
CTRL-Q 

TERMS AND SYNTAX CONVENTIONS 
-------~-----~-----------~--

NAME OF THE AD-10 EXECUTIVE PROGRAM 

DIGITAL EQUIPMENT CORPORATION, MAKERS OF THE PDP-11 COMPUTER 

DEC'S REALTIME OPERATING SYSTEM EXECUTIVE FOR THE PDP-11 

THE RSX-11 USER IDENTIFICATION CODE (REF. CHAPTER 3 
OF THE RSX-11 OPERATOR'S PROCEDURES MANUAL) 

PROMPT GENERATED BY THE RSX-11 MONITOR CONSOLE ROUTINE 

PROMPT GENERATED BY THE AD-10 EXECUTIVE 

TERMS USED TO INDICATE WHERE THE INPUT SPECIFIED 
BY AN ADX COMMAND STRING IS TO COME FROM, OR WHERE THE 
OUTPUT GENERATED IS TO GO. 

INDIRECT FILE SPECIFIER (REF. CHAPTER 5 OF THE RSX-11 
OPERATOR'S PROCEDURES MANUAL) 

ADX COMMAND STRING SWITCH DELIMITER 

ADX COMMAND STRING SWITCH VALUE DELIMITER 

ANGLE BRACKETS ARE USED TO ENCLOSE THE NAME OF A 
SYNTACTIC ELEMENT OR CLASS OF ELEMENTS IN COMMAND 
STRING EXAMPLES 

BRACKETS ARE USED TO ENCLOSE OPTIONAL SYNTACTIC ELEMENTS 
IN COMMAND STRING EXAMPLES. 

CARRIAGE RETURN (RETURN) 

CHARACTER GENERATED BY SIMULTANEOUSLY DEPRESSING THE 
"CONTROL" AND THE "Z" KEYS. USED TO EXIT FROM ADX 
(AND RETURN TO MCR) WITHOUT AFFECTING THE AD-10. 

"CONTROL" AND "U" KEYS. USED TO DELETE A LINE. 

USED TO DELETE A CHARACTER. 

"CONTROL" AND "S" KEYS. USED TO STOP THE OUTPUT WHEN 
THE DISPLAY IS SCROLLING. 

"CONTROL" AND "Q" KEYS. USED TO RESTART THE OUTPUT 
AFTER THE DISPLAY SCROLLING HAS BEEN STOPPED. 

ADX-2 



THE AD-10 EXECUTIVE 

THE AD-10 EXECUTIVE (ADX) IS A SOFTWARE TOOL WHICH RUNS UNDER DEC'S RSX-11 
OPERATING SYSTEM ON THE PDP-11 COMPUTER AND ALLOWS THE USER TO CONTROL 
AND MONITOR THE OPERATION OF THE AD-10. ADX ALLOWS THE USER TO START 
AND STOP THE AD-10, AS WELL AS TO STEP IT FOR A SPECIFIED NUMBER OF 
INSTRUCTION CYCLES. IT PERMITS SPECIFIC AD-10 REGISTERS, PROGRAM MEMORY 
LOCATIONS, AND DATA MEMORY LOCATIONS TO BE READ OR WRITTEN AS REQUIRED. 
USING ADX, SPECIFIED SECTIONS OF PROGRAM MEMORY OR DATA MEMORY CAN BE 
SAVED IN PDP-11 COMPUTER SYSTEM FILES AND CAN LATER BE RELOADED, AS CAN 
LOAD MODULES CREATED BY THE PDP-11/AD-10 CROSS ASSEMBLER. IN ADDITION, ADX 
DEBUGGING COMMANDS ALLOW THE USER TO INSERT BREAKPOINTS IN AD-10 PROGRAMS, 
TO LOG OR INSERT INTERNAL MULTIBUS DATA AT SPECIFIED POINTS IN AD-10 
PROGRAMS, AND TO TRACE THE AD-10 PROGRAM FLOW. THE USER COMMANDS MAY 
COME FROM THE TERMINAL OR FROM AN INDIRECT COMMAND FILE, AND THEY USE 
STANDARD RSX-11 COMMAND STRING SYNTAX CONVENTIONS. 

THE ADX COMMANDS ARE ORGANIZED INTO SIX BASIC CATEGORIES: 

1. INFORMATIONAL COMMANDS (IDENTIFY,FRACTION,FLOATING) 

THESE COMMANDS HAVE NO EFFECT UPON THE AD-10 SYSTEM. THEY MERELY 
PROVIDE THE USER WITH THE SPECIFIED INFORMATION. 

2. AD-10 START/STOP COMMANDS (CONTINUE,RUN,STEP,HALT,EXIT) 

THIS GROUP OF COMMANDS EITHER STARTS OR STOPS THE AD-10 PROGRAM. 

3. AD-10 WRITE COMMANDS (INIT,LOAD,SET,CLEAR,MODIFY,ZERO) 

THESE COMMANDS DO SOMETHING "TO" THE AD-10, CHANGING THE 
CONTENTS OF AD-10 REGISTERS, PROGRAM MEMORY LOCATIONS, OR DATA 
MEMORY LOCATIONS. 

4. AD-10 READ COMMANDS (SAVE,DISPLAY,DUMP,HISTORY,TEST) 

THESE COMMANDS GET DATA "FROM" THE AD-10, ENABLING THE USER TO LOOK AT 
(AND/OR SAVE IN A FILE) THE CURRENT VALUES OF AD-10 REGISTERS, PROGRAM 

MEMORY LOCATIONS, AND DATA MEMORY LOCATIONS. 

5. AD-10 DEBUGGING COMMANDS (AT,BREAK,RESTORE,TRACE,UNTRACE) 

THIS GROUP OF COMMANDS ENABLES THE USER TO DYNAMICALLY CHECKOUT THE 
AD-10 PROGRAM. THEY PROVIDE THE USER WITH INFORMATION OR CONTROL 
AT THE SPECIFIED POINTS WITHIN THE AD-10 PROGRAM. 

6. AD-10 CONSOLE COMMANDS (ATTACH,DETACH,CONSOLE) 

THIS GROUP OF COMMANDS ALLOWS THE USER TO CONTROL THE ACCESS AND 
USE OF THE VARIOUS CONSOLES. THE USER CAN RESERVE AND FREE CONSOLES 
FOR HIS EXCLUSIVE USE AND SWITCH FROM ONE CONSOLE TO ANOTHER. 

ADX-3 



RSX-11 OVERVIEW 

RSX-11 IS DEC'S REALTIME, MULTIPROGRAMMING OPERATING SYSTEM EXECUTIVE FOR 
THE PDP-11 SERIES OF COMPUTERS. THE RSX-11 EXECUTIVE ALONE USES ABOUT BK 
WORDS OF MEMORY AND REQUIRES THAT THERE BE AT LEAST ONE FILE-STRUCTURED 
DEVICE IN THE SYSTEM. IT PROVIDES THE NECESSARY CONTROL FOR SHARING SYSTEM 
RESOURCES AMONG ANY NUMBER OF USER-PREPARED "TASKS" (PROGRAMS). THESE 
USER TASKS ARE USUALLY CREATED AS FOLLOWS: 

1. THE USER WRITES A SOURCE PROGRAM AND PUTS IT INTO A FILE ON A 
SYSTEM FILE-STRUCTURED DEVICE USING THE LINE TEXT EDITOR (EDI). 

2. THE APPROPRIATE TRANSLATOR ROUTINE IS THEN USED TO COMPILE 
(FOR) OR ASSEMBLE (MAC) THE SOURCE PROGRAM, CREATING 

AN OBJECT FILE OF HIS PROGRAM. 

3. THIS OBJECT FILE, ALONG WITH ANY OTHERS WHICH MAY BE 
REQUIRED FOR THIS TASK AND WHICH WERE CREATED 
SEPARATELY, ARE THEN SUBMITTED TO THE TASK BUILDER ROUTINE 
(TKB) WHICH LINKS THEM TOGETHER AND CREATES A "TASK 
IMAGE FILE". 

4. THIS TASK IMAGE FILE MAY THEN BE "INSTALLED" (INS) 
INTO THE SYSTEM (MEANING ESSENTIALLY THAT THE TASK'S NAME, 
SIZE, AND LOCATION ARE MADE KNOWN TO THE SYSTEM, BUT 
THAT THE TASK IS STILL DORMANT) . 

5. ONCE INSTALLED, THE TASK MAY BE EXECUTED BY A USER COMMAND 
(RUN) OR BY ANOTHER TASK. 

THE COMMANDS TO PERFORM THESE FUNCTIONS ARE GIVEN BY THE USER TO THE 
MONITOR CONSOLE ROUTINE (MCR) WITHIN THE RSX-11 EXECUTIVE. THE 
SYSTEM TASKS (EDITOR,MACR0-11 ASSEMBLER,FORTRAN-IV COMPILER,TASK 
BUILDER, PERIPHERAL INTERCHANGE PROGRAM, ETC.) ARE INVOKED BY TYPING, 
IN RESPONSE TO THE "MCR>" PROMPT, THEIR THREE CHARACTER TASK NAME 
(EDI,MAC,FOR,TKB,PIP,ETC.) FOLLOWED BY A CARRIAGE RETURN. USER PROGRAMS 
ARE GENERALLY STARTED BY THE "RUN <TASKNAME>" COMMAND. 

NOTICE THAT ADX IS CONSTRUCTED TO APPEAR AS ANOTHER RSX-11 SYSTEM TASK. 

SUCCESFUL OPERATION OF AN AD~lO SYSTEM IS GREATLY ENHANCED BY THE USER'S 
UNDERSTANDING OF THE RSX-11 OPERATING SYSTEM AND ITS CAPABILITIES. THE 
USER SHOULD REFER TO DEC'S RSX-11 OPERATOR'S PROCEDURES MANUAL FOR 
A MORE THOROUGH DESCRIPTION OF THE OPERATING SYSTEM AND THE MCR COMMANDS. 
THE RSX-11 UTILITIES PROCEDURES MANUAL CONTAINS DESCRIPTIONS OF THE 
SYSTEM UTILITY PROGRAMS, AND THE PDP-11 FORTRAN REFERENCE MANUAL AND 
THE IAS/RSX-11 MACR0-11 REFERENCE MANUAL CONTAIN DESCRIPTIONS OF THESE 
PROGRAMS. 

ADX-4 



ADX OPERATING PROCEDURES 

ADX IS SUPPLIED AS AN INSTALLED TASK ON THE RSX-11 SYSTEM DEVICE. IT IS 
NECESSARY THAT THE HYBRID DRIVER (HY) BE LOADED IN THE RSX-11 SYSTEM FOR 
ADX TO COMMUNICATE WITH THE AD-10. ADX IS LOADED AND RUN AS ARE OTHER 
RSX-ll·SYSTEM PROGRAMS, BY TYPING (IN RESPONSE TO THE MCR PROMPT) 

MCR>ADX [<COMMAND STRING>] <CARRIAGE RETURN> 

THE COMMAND STRING IS OPTIONAL HERE. IF THE COMMAND STRING IS NOT ENTERED 
WITH THE MCR COMMAND, ADX WILL RESPOND WITH ITS OWN PROMPT 

MCR>ADX <CR> 
ADX> 

THE GENERAL FORMAT OF THE ADX COMMAND STRING IS DEFINED AS FOLLOWS 

@<FILE SPECIFICATION> 
OR, <COMMAND> [<SWITCHES> AND/OR <OTHER PARAMETERS>] 

THE FIRST FORM INDICATES THAT THE COMMAND STRING(S) WILL COME FROM THE 
SPECIFIED COMMAND FILE. THE SECOND FORM CONSISTS OF THE APPROPRIATE 
ADX COMMAND AND ITS RELATED SWITCHES AND/OR OPTIONAL PARAMETERS, AS 
DEFINED IN THE FOLLOWING PAGES OF THIS USER'S GUIDE. IF THE INDIRECT 
COMMAND FILE FORMAT IS USED ON THE SAME LINE AS THE MCR PROMPT, CONTROL 
WILL RETURN TO MCR AFTER PROCESSING THE ADX COMMANDS IN THE FILE : 

MCR>ADX @SY:FILE.CMD;3 <CR> 
MCR> 

IF THE INDIRECT COMMAND FILE IS SPECIFIED AFTER THE ADX PROMPT, CONTROL 
WILL REMAIN WITH ADX FOLLOWING COMMAND FILE PROCESSING : 

MCR>ADX <CR> 
ADX>@FILE <CR> 
ADX> 

NOTICE IN THIS CASE THAT THE EQUIVALENT COMMAND FILE HAS BEEN SPECIFIED, 
USING DEFAULT COMMAND FILE VALUES FOR THE DEVICE ("SY:"), THE UIC 
NUMBER (THE DEFAULT IS THE CURRENT UIC NUMBER) , THE FILE EXTENSION 
(".CMD"), AND THE MOST RECENT VERSION NUMBER (ASSUMING HERE THAT ";3" 
IS THE MOST RECENT VERSION). 

IF THE USER ISSUES AN ADX COMMAND WHICH REQUIRES ADDITIONAL SPECIFIERS 
(SWITCHES AND/OR FILENAMES AND/OR OTHER PARAMETERS), ADX WILL PROMPT FOR 
THE REQUIRED SPECIFIERS : 

MCR>ADX <CR> 
ADX>DISPLAY <CR> 
DIS> [OUTFILE=] [/SW [ [,] ... [ [,]/SW]]] <CR> 

TO EXIT FROM THIS INTERNAL COMMAND PROMPT MODE, SIMPLY TYPE A NULL LINE 
ADX>DISPLAY <CR> 
DIS><CR> 
ADX> 

TO EXIT FROM ADX WITHOUT AFFECTING THE AD~lO, SIMPLY TYPE <CONTROL-Z> 
ADX><CONTROL-Z> 
MCR> 

ADX-5 



PROTOTYPE: 

DESCRIPTION: 
----..,..- ........ -.-...~ 

SWITCHES: 

EXAMPLE: 
..- ... ~ ... -- ..... 

AT 

AT /PM:PROC:ADDR [,OUTFILE/SW] [=INFILE/SW] 

AN "AT-POINT" IS A POINT IN PROGRAM EXECUTION AT WHICH 
THE USER WISHES TO LOG AND/OR INSERT MULTIBUS DATA. "AT'' 
SETS AN "AT-POINT" FOR PROCESSOR "PROC" AT PROGRAM MEMORY 
ADDRESS "ADDR". WHEN A "RUN" OR "CONTINUE" COMMAND IS 
ISSUED WITH "AT-POINTS" SET, THE AD-10 IS SINGLE STEPPED, 
AND ADX MONITORS THE SPECIFIED PROCESSOR'S PROGRAM COUNTER. 
WHEN THE PROCESSOR'S PROGRAM COUNTER REACHES THE "AT-POINT'' 
ADDRESS, DATA IS LOGGED FROM THE DATA MULTIBUS TO THE 
"OUTFILE" (IF SPECIFIED) AND PLACED ON THE DA~A MULTIBUS 
FROM THE "INFILE" (IF SPECIFIED). EITHER THE "OUTFILE" OR 
THE "INFILE" (OR BOTH) MUST BE SPECIFIED. THE DEFAULT 
EXTENSION IS .DAT FOR BOTH "OUTFILE" AND "INFILE". 

/DR - FILE IS DIRECT ACCESS (DEFAULT) 
/LO - FILE IS FORMATTED SEQUENTIAL (FOR OUTFILE ONLY) 
/RE - DATA VALUES ARE REALS (DEFAULT) 
/IN - DATA VALUES ARE DECIMAL INTEGERS 
/OC - DATA VALUES ARE OCTAL INTEGERS 
/FI - SPECIFIES DATA ON "FIRST" MULTIBUS TRANSACTION (DEFAULT) 
/SE - SPECIFIES DATA ON "SECOND" MULTIBUS TRANSACTION 
/DO - SPECIFIES DATA ON "DOUBLE" MULTIBUS TRANSACTIONS 

(I.E., "FIRST" AND "SECOND" TRANSACTIONS) 
/TR - TRACE AT POINTS 
(THE FOLLOWING SWITCHES MAY BE USED IN PLACE OF /PM:PROC) 
/MAP - PROGRAM MEMORY [/PM:l] 
/DEP PROGRAM MEMORY [/PM:2] 
/ARP PROGRAM MEMORY [/PM:3] 
/NIP PROGRAM MEMORY [/PM:4] 
/COP PROGRAM MEMORY [/PM:7] 

ADX>AT/PM:3:4,TI:/LO 
ADX>BREAK/ARP:5 
ADX>INIT 
ADX>CONTINUE 
0.12497 
*** BREAKPOINT AT ARP: 5 *** 
ADX>RESTORE 
*** BREAKPOINT AT ARP: 5 RESTORED 
ADX>RESTORE 
*** BREAKPOINT AT ARP: 4 RESTORED 
ADX> 

NOTE: A COMBINED TOTAL OF TEN "AT-POINTS" AND/OR "BREAKPOINTS" CAN BE 
SET. IF AN "AT-POINT" HAS BOTH AN "INFILE" AND AN "OUTFILE", 
THEN IT COUNTS AS TWO "AT-POINTS". ADX WILL NOT PERMIT BOTH AN 
"AT-POINT" AND A "BREAK-POINT" AT THE SAME LOCATION. EXECUTION 
CAN BE PREMATURELY HALTED BY CONDITIONS SET IN THE AD-10 HALT MASK 
REGISTER. (I.E. HLTO, HLTl, .•• ) 

ADX-6 



PROTOTYPE: 

DESCRIPTION: 
------·----
SWITCHES: 

EXAMPLE: 

PROTOTYPE: 

DESCRIPTION: 

EXAMPLE: 

ATTACH 

ATTACH [CONSOLE #] 

GIVES USER EXCLUSIVE ACCESS TO SPECIFIED CONSOLE. IF NO 
CONSOLE # IS GIVEN, THE COMMAND DEFAULTS TO 0. 

(NONE) 

ADX>ATT 0 
ADX> 

BREAK 

BREAK /PM:PROC:ADDR [, ... [,/PM:PROC:ADDR]] 

A BREAKPOINT SIGNIFIES A POINT IN PROGRAM EXECUTION AT 
WHICH THE USER WISHES TO HALT. "BREAK" SETS A BREAKPOINT 
FOR PROCESSOR "PROC" AT PROGRAM MEMORY ADDRESS "ADDR". 
WHEN A "RUN" OR "CONTINUE" COMMAND IS ISSUED WITH 
BREAKPOINTS SET, THE AD-10 IS SINGLE STEPPED AND ADX 
MONITORS THE SPECIFIED PROCESSOR'S PROGRAM COUNTER. 
WHEN THE PROCESSOR'S PROGRAM COUNTER REACHES THE SPECIFIED 
BREAKPOINT ADDRESS, THE AD-10 IS HALTED AND CONTROL IS 
RETURNED TO THE USER. NOTE THAT /PM:PROC CAN BE ABBREVIATED 
AS SHOWN BELOW: 

/MAP - PROGRAM MEMORY [/PM:l] 
/DEP - PROGRAM MEMORY [/PM:2] 
/ARP - PROGRAM MEMORY [/PM:3] 
/NIP - PROGRAM MEMORY [/PM:4] 
/COP - PROGRAM MEMORY [/PM:7] 

ADX>HALT 
ADX>BREAK/PM:7:3 
ADX>; THAT SET THE BREAKPOINT AT LOCATION 3 IN THE COP ... 
ADX>CONTINUE 

*** BREAKPOINT AT COP: 3 *** 
ADX>RESTORE 

*** BREAKPOINT AT COP: 3 RESTORED 
ADX> 

NOTE: A COMBINED TOTAL OF TEN "AT-POINTS" AND/OR "BREAKPOINTS" CAN BE 
SET. IF AN "AT-POINT" HAS BOTH AN "INFILE" AND AN "OUTFILE", 
THEN IT COUNTS AS TWO "AT-POINTS". ADX WILL NOT PERMIT BOTH AN 
"AT-POINT" AND A "BREAK-POINT'" AT THE SAME LOCATION. EXECUTION 
CAN BE PREMATURELY HALTED BY CONDITIONS SET IN THE AD-10 HALT MASK 
REG I STER • ( I . E . H LT 0 , H LT 1 , . . . ) 

ADX-7 



PROTOTYPE: 

DESCRIPTION: 

SWITCHES: 
--------

EXAMPLE: 

CLEAR 

CLEAR [/SW:BIT:BIT: ..• [[,]/SW:BIT:BIT: ••• ]] 

CLEARS THE SPECIFIED BITS IN THE HIC-11 REGISTER AS 
SPECIFIED BY "/SW". IF THE SAME SWITCH IS USED MORE THAN 
ONCE IN THE COMMAND LINE, A"," MUST SEPARATE EACH 
SUCCESSIVE REFERENCE OF THAT SWITCH. 

/RIC -

/CSR -

/TCR -

/HMR -

REMOTE INTERFACE CONTROL REGISTER 

ENB - INTERRUPT ENABLE BIT (BIT 6) 

CONTROL STATUS REGISTER 

ENB - INTERRUPT ENABLE 

TEST CONTROL REGISTER 

TST - TEST/RUN MODE 

HALT MASK REGISTER 

HLO - HALT 0 (BIT 1) 
HLl - HALT 1 (BIT 2) 

BIT 

BIT (BIT 6) 

(BIT 4) 

TCC - TEST CYCLE COMPLETE (BIT 4) 
RCZ - RUN COUNT ZERO (BIT 7) 
CER - ADDRESS CONTENTION ERROR (BIT 10) 
DER - DATA CONTENTION ERROR (BIT 11) 
TER - TIMING ERROR: DATA MEMORY (BIT 12) 
PER - PARITY ERROR: DATA MEMORY (BIT 13) 
AER - ARITHMETIC ERROR (BIT 14) 
ERR - ERROR ("OR" OF ALL ERRORS) (BIT 15) 

/IMR - INTERRUPT MASK REGISTER 

(SAME BITS AS /HMR ABOVE) 

ADX>DISPLAY/CSR 

CSR HAS VALUE 100 
ADX>CLEAR/CSR:ENB 
ADX>; THAT CLEARED THE ENB BIT IN THE CSR 
ADX>DISPLAY/CSR 

CSR HAS VALUE 0 
ADX> 

ADX-8 



PROTOTYPE: 

DESCRIPTION: 

SWITCHES: 

EXAMPLE: 

PROTOTYPE: 

DESCRIPTION: 

SWITCHES: 

EXAMPLE: 

CONSOLE 

CONSOLE [CONSOLE #] 

ALLOWS USER TO SWITCH FROM ONE CONSOLE TO ANOTHER 
CONSOLE. CONSOLE # DEFAULTS TO 0 WHEN NOT SPECIFIED. 
THE CONSOLE SELECTED MUST BE ATTACHED. 

(NONE) 

ADX>ATT 0 
ADX>ATT 1 
ADX>CONSOLE 0 

WORK WITH CONSOLE 0 

ADX>CONSOLE 1 

WORK WITH CONSOLE 1 

ADX> 

CONTINUE 

CONTINUE 

STARTS THE AD-10 FROM ITS CURRENT STATE. 

(NONE) 

ADX>INIT 
ADX>; THAT INITIALIZED THE AD-10 
ADX>CONTINUE 
ADX>; THAT STARTED THE ADlO 
ADX>HALT 
ADX>; THAT STOPPED THE AD-10 
ADX>CONTINUE 
ADX>; THAT RESTARTED THE AD-10 FROM THE HALT POINT 
ADX> 

ADX-9 



PROTOTYPE: 

DESCRIPTION: 

SWITCHES: 

EXAMPLE: 

PROTOTYPE: 

DESCRIPTION: 

SWITCHES: 

DETACH 

DETACH [CONSOLE #] 

FREES THE SPECIFIED CONSOLE FOR GENERAL USE. CONSOLE 
# DEFAULTS TO 0 IF NOT GIVEN IN COMMAND. 

(NONE) 

ADX>DE 0 
ADX> 

DISPLAY 

DISPLAY [OUTFILE=] [/SW [ [,] ••. [ [,]/SW]]] 

DISPLAYS THE REGISTER(S) AND/OR MEMORY LOCATION(S) 
SPECIFIED BY "/SW" TO THE "OUTFILE" (OR "TI:" BY DEFAULT). 
MULTIPLE REFERENCES TO THE SAME SWITCH MUST BE SEPARATED BY 
A ",". THE DEFAULT EXTENSION IS .LST FOR OUTFILE. 

/TCR - TEST CONTROL REGISTER 
/TSH - TEST/SHUTDOWN/HISTORY COUNTERS 
/TBS - TEST BLOCK ADDRESS REGISTERS 
/TAS - TEST ADDRESS REGISTERS 
/TDS - TEST DATA REGISTERS 
/SCS - SHUTDOWN/RESTART CONDITION REGISTERS 
/SDS - SHUTDOWN/RESTART DATA REGISTERS 
/CSR - CONTROL STATUS REGISTERS 
/EHS - ERROR HALT STATUS REGISTER 
/HMR - HALT MASK REGISTER 
/IMR - INTERRUPT MASK REGISTER 
/RCR - RUN COUNT REGISTER 
/BAR - BLOCK ADDRESS REGISTER 
/RIC - REMOTE INTERFACE CONTROL REGISTER 
/PCS - PROGRAM COUNTERS 
/PSS - PROCESSOR STATUS REGISTERS 
/HBS - HISTORY BLOCK ADDRESS REGISTERS 
/HAS - HISTORY ADDRESS REGISTERS 
/HOS - HISTORY DATA REGISTERS 
/PM:PROC - PROGRAM MEMORY 
(THE FOLLOWING 5 SWITCHES CAN BE USED IN PLACE OF /PM:PROC) 
/MAP - PROGRAM MEMORY [/PM:l] 
/DEP - PROGRAM MEMORY [/PM:2] 
/ARP - PROGRAM MEMORY [/PM:3] 
/NIP - PROGRAM MEMORY [/PM:4] 
/COP - PROGRAM MEMORY [/PM:7] 
/DM:PAGE - DATA MEMORY 
/BW - BUS WINDOW 

ADX-10 



EXAMPLE: 
-- ... --..,..-

/GR - COP'S GENERAL REGISTERS 
/IR - MAP'S INDEX REGISTERS 
/XR - DEP'S X REGISTERS 
/TR - ARP'S TEMPORARY REGISTERS 
/RR - ARP'S RESULT REGISTER 
/FR - NIP'S "F" REGISTERS 
/DR - NIP'S "D" REGISTER 
/HI - EQUIVALENT TO "/HA/HB/HD" 
/TE - EQUIVALENT TO "/TA/TB/TD" 
/DP - DATA MEMORY PAGES 
/DL - WORDS/PAGE LIMIT 
/PF - PROGRAM MEMORY FIELDS 
/PL - PROGRAM MEMORY WORD LIMIT 
/AC - NUMBER OF AD-10 CONSOLES 

NOTE: SPECIFIC REGISTERS OR LOCATIONS CAN BE SPECIFIED BY 
APPENDING ":N" OR ":N:M" TO A SWITCH FOR ONE OR A RANGE 
OF REGISTERS OR LOCATIONS. ONLY THE FIRST TWO CHARACTERS 
OF THE SWITCH ARE REQUIRED. 

ADX>; DISPLAY ARP PM LOCATIONS 0-7 
ADX>DISPLAY/ARP::7 

ARP 0 ** 0 36000 0 0 0 
ARP 1 ** 0 104000 0 0 0 
ARP 2 ** 0 110000 100400 0 0 
ARP 3 ** 104 0 0 0 0 
ARP 4 ** 0 0 0 0 40377 
ARP 5 ** 0 140204 40400 140377 40604 
ARP 6 ** 0 0 0 0 0 
ARP 7 ** 0 0 0 0 0 
ADX> 

ADX-11 



DUMP 

PROTOTYPE: DUMP [OUTFILE] 
---------
DESCRIPTION: DUMPS ALL HIC-11 REGISTERS TO "OUTFILE" ("TI:" BY DEFAULT) • 
--------..--- THE DEFAULT EXTENSION IS .LST FOR OUTFILE. 
SWITCHES: (NONE) 
--------
EXAMPLE: ADX>DUMP 
-------

RIC: 0 
CSR: 100000 
EHS: 10042 
HMR: 40 
!MR: 0 
RCR: 77373 
PCS: 0 0 0 0 0 0 41 
PSS: 0 0 0 0 0 0 7776 
HBS: 0 100021 20000 20000 20000 20000 20000 20000 

20000 120035 20000 120021 20000 20000 20000 20000 
HAS: 0 252 0 0 0 0 0 0 

0 212 0 251 0 0 0 0 
HOS: 0 177777 0 0 0 0 0 0 

0 0 0 177777 0 0 0 0 
TCR: 100000 
TSH: 60 
TBS: 172073 1062 63146 10020 20012 1 2026 30021 

50105 120052 62567 101040 10005 43114 12 24145 
TAS: 110166 31442 62106 0 120042 110001 10022 10420 

2005 121030 33163 20002 445 43045 2052 64403 
TDS: 3115 70643 156 421 20040 20 10120 10423 

10004 252 70525 21040 20001 62166 100312 10027 
SCS: 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 
SOS: 177777 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 
BAR: 3420 
ADX> 

EXIT 

PROTOTYPE: EXIT 
---------
DESCRIPTION: EXITS FROM THE AD-10 EXECUTIVE AFTER HALTING THE AD-10. 
----------- NOTE: TO EXIT FROM THE EXECUTIVE WITHOUT HALTING THE 

AD-10, SIMPLY TYPE <CONTROL Z>. 

SWITCHES: · (NONE) 
--------
EXAMPLE: ADX>EXIT ___ ..,.. ___ 

MCR> 

ADX-12 



PROTOTYPE: 

DESCRIPTION: 

SWITCHES: 

EXAMPLE: 

PROTOTYPE: 

DESCRIPTION: 

SWITCHES: 

EXAMPLE: 

FLOATING 

FLOATING [OCTAL SCALED FRACTION] 

THE 16 BIT OCTAL REPRESENTATION OF A SCALED FRACTION 
IS CONVERTED AND PRINTED AS A FLOATING POINT NUMBER. 

(NONE) 

ADX>FLOATING 10000 
FLOATING: 0.12500 
ADX>FLOATING 170000 
FLOATING:-0.125 
ADX>FLOATING 40065 
FLOATING: 0.50162 
ADX> 

FRACTION 

FRACTION [FLOATING POINT NUMBER] 

THE FLOATING POINT REPRESENTATION OF A SCALED FRACTION 
IS CONVERTED AND PRINTED AS A 16 BIT OCTAL SCALED 
FRACTION. 

(NONE) 

ADX>FRACTION -.5 
OCTAL: 140000 

ADX>FRACTION .5 
OCTAL: 40000 

ADX>FRACTION 0.50162 
QC T AL : 4 0 0 6 5 

ADX> 

HALT 

PROTOTYPE: HALT 

DESCRIPTION: 

SWITCHES: 

EXAMPLE: 

HALTS THE AD-10. 

(NONE) 

ADX>HALT 
ADX>CONTINUE 
ADX>; THAT RESUMES EXECUTION FROM THE HALT POINT 
ADX> 

ADX-13 



PROTOTYPE: 

DESCRIPTION: 

SWITCHES: 

EXAMPLE: 

HISTORY 

HISTORY [OUTFILE] 

DISPLAYS THE DATA IN THE HISTORY BUFFER REGISTERS TO 
"OUTFILE" ("TI:" BY DEFAULT) IN AN EASILY READABLE FORMAT, 
DISPLAYING THE ADDRESS AND DATA BUS VALUES FOR EACH REGISTER, 
AS WELL AS WHAT HAPPENED: WHETHER A DM PARITY ERROR OCCURRED, 
IF THIS WAS A READ OR WRITEJ THE STATUS OF THE MULTIBUS 
CONTROL LINES, AND WHETHER ANY OTHER ERRORS OCCURRED. 
THE DEFAULT EXTENSION IS .LST FOR OUTFILE. 

(NONE) 

ADX>HISTORY 

DRCCCAPTDC 
DATA BUS l/OOOEEEEE 

R# ADDR BUS OCTAL FLOATING 6W210RRRRR 
0 0000000 0 0.00000 .......... 
1 0010652 177777 -0.00003 lW • .••••.• 
2 0000000 0 0.00000 ••• R • ••••• 
3 0000000 ,0 0.00000 ••• R • • • ••• 
4 0000000 0 0.00000 ••• R ••• E • • 
5 0000000 0 0.00000 . • . R. • •... 
6 0000000 0 0.00000 ••• R • ••••• 
7 0000000 0 0.00000 ••• R • ••••• 
8 0000000 0 0.00000 ••• R • ••••• 
9 0016612 0 0.00000 • W.R • ••.•• 

10 0000000 0 0.00000 ••• R • •• • •• 
11 0010651 177777 -0.00003 • W.R.·· •••• 
12 0000000 0 0.00000 ••• R • ••••• 
13 0000000 0 0.00000 •• • R • • • ••• 
14 0000000 0 0.00000 ••• R • ••••• 
15 0000000 0 0.00000 • • • R • • • • • • 
ADX> 

ADX-14 



PROTOTYPE: 

DESCRIPTION: 

SWITCHES: 

EXAMPLE: 

IDENTIFY 

IDENTIFY 

DISPLAYS THE CURRENT VERSION NUMBER OF THE EXECUTIVE. 

(NONE) 

MCR>ADX 
ADX>IDENTIFY 
*** AD-10 EXECUTIVE ijERE (26-SEP-78) *** 
ADX> 

!NIT 

PROTOTYPE: !NIT 

DESCRIPTION: 

SWITCHES: 

EXAMPLE: 

INITlALIZES THE AD-10 (I.E., SETS THE "INT" BIT IN THE HIC 
CSR REGISTER) .. 

(NONE) 

ADX>: INITIALIZE EVERYTHING FOR A STARTUP .•• 
ADX>INIT 
ADX>: NOW START THE AD-10 .•. 
ADX>CONTINUE 
ADX> 

ADX-15 



PROTOTYPE: 

DESCRIPTION: 

SWITCHES: 

EXAMPLE: 

LOAD 

LOAD [LOADFILE[/SW] [, ••. [,LOADFILE[/SW]]]] 

THE SPECIFIED FILES ARE LOADED INTO SPECIFIED LOCATIONS 
IN AD-10 PROGRAM AND/OR DATA MEMORY. THERE ARE BASICALLY 
TWO TYPES OF FILES WHICH MAY BE LOADED INTO THE AD-10: 
LOAD MODULES AND DIRECT ACCESS FUNCTION DATA FILES. LOAD 
MODULES ARE CREATED BY THE CROSS-ASSEMBLER OR BY THE 
"SAVE" COMMAND AND ARE LOADED INTO AD-10 PROGRAM MEMORY. 
DIRECT ACCESS FUNCTION DATA FILES CAN BE CREATED ON 
THE HOST COMPUTER AND ARE LOADED !~TO THE AD-10 MEMORY. 

/MO - THE FILE rs A LOAD MODULE GENERATED BY THE ASSEMBLER 
OR BY THE "SAVE" COMMAND (DEFAULT FILE TYPE). 
THE LOAD MODULE CONTAINS ALL NECESSARY INFORMATION 
FOR THE LOADER ROUTINE REGARDING WHERE IT IS TO BE 
LOADED AND THE DATA'S FORMAT. NO OTHER SWITCHES ARE 
NECESSARY WITH "/MO". DEFAULT EXTENSION IS .MOD. 

/AL:PAGE:WORD - SPECIFIES A DIRECT ACCESS DATA FILE TO BE 
LOADED INTO DATA MEMORY IN THE "ALIGNED" 
MODE STARTING AT THE SPECIFIED ADDRESS 
(I.E., THE FIRST DATA VALUE IS LOADED AT 
ADDRESS "PAGE:WORD", THE SECOND DATA VALUE 
IS LOADED AT ADDRESS "PAGE+l:WORD", THE 
THIRD DATA VALUE IS LOADED AT ADDRESS 
"PAGE:WORD+l, .•. ETC.). EACH RECORD OF 
THE FILE CONTAINS A TWO WORD DATA VALUE 
WHICH IS CONVERTED TO SCALED FRACTION FORMAT 
PRIOR TO LOADING UNLESS OTHERWISE SPECIFIED 
BY A "/IN" OR "/RI" SWITCH. DEFAULT EXT IS .DAT 

/UN:PAGE:WORD - SAME AS /AL EXCEPT THAT THE DATA rs· LOADED 
IN THE "UNALIGNED" MODE {I.E., SUCCESSIVE 
DATA VALUES ARE LOADED INTO SUCCESSIVE 
MEMORY LOCATIONS STARTING AT "PAGE:WORD" 
AS FOLLOWS: "PAGE:WORD","PAGE:WORD+l", 
"PAGE:WORD+2", .•. ETC.). DEFAULT EXTENSION IS .DAT 

/IN - USED WITH "/AL" OR "/UN" TO INDICATE THAT EACH 
RECORD OF THE FILE CONTAINS A ONE WORD DATA VALUE 
WHICH IS TO BE LOADED DIRECTLY INTO THE AD-10. 

/RI - USED WITH "/AL" OR "/UN" TO INDICATE THAT EACH 
RECORD OF THE FILE CONTAINS A TWO WORD REAL VALUE 
WHICH IS TO BE CONVERTED TO INTEGER PRIOR TO LOADING. 

/RS - USED WITH "/AL" OR "/UN" TO INDICATE THAT EACH 
RECORD OF THE FILE CONTAINS A TWO WORD REAL VALUE 
WHICH IS TO BE CONVERTED TO SCALED FRACTION FORMAT 
PRIOR TO LOADING (DEFAULT). 

ADX>; BRING IN ARP LOAD MODULE ... 
ADX>LOAD ARP.SAV/MO 
ADX>; LOAD DATA MEMORY 
ADX>LOAD A.DAT;l/AL:O:O, B.DAT;3/UN:2:0/RI, C.DAT/UN:3:0/IN 
ADX> 

ADX-16 



PROTOTYPE: 

DESCRIPTION: 

SWITCHES: 

EXAMPLE: 

PROTOTYPE: 

DESCRIPTION: 

EXAMPLE: 

MODIFY 

MODIFY [/SW [ [,] ... [ [,]/SW]] [=INFILE]] 

THE REGISTERS AND/OR MEMORY LOCATIONS DENOTED BY THE 
SPECIFIED SWITCHES ARE DISPLAYED ONE AT A TIME, ALLOWING 
THE USER TO MODIFY THE CURRENT VALUE OR LEAVE IT UNCHANGED 
BY SIMPLY TYPING A CARRIAGE RETURN. INPUT VALUES CAN COME 
FROM THE USER AT "TI:" (BY DEFAULT) OR FROM THE "INFILE" 
(IF SPECIFIED). THE DEFAULT EXTENSION IS .LST FOR INFILE. 

THE SAME AS FOR THE "DISPLAY" COMMAND. 

ADX>MODIFY/COP::3 
COP 0 ** 6427 137673 

I o,o 
COP 1 ** 42412 43530 

I 
COP 2 ** 73435 157473 

I o,o 
COP 3 ** 7421 · 155126 

I 
ADX>DIS/PM:7::2 
COP : 0 ** 0 0 0 0 0 
COP : 1 ** 42412 43530 0 0 0 
COP : 2 ** 0 0 0 0 0 
ADX> 

RESTORE 

RESTORE [/PM:PROC:ADDR [, ... [,/PM:PROC:ADDR]]] 

RESTORE DELETES THE SPECIFIED LIST OF "BREAKPOINTS" AND/OR 
"AT-POINTS". IF NO LIST IS SPECIFIED, THE LAST "BREAKPOINT" 
OR "AT-POINT" WHICH THE USER HAS SET IS DELETED. NOTE THAT 
/PM:PROC CAN BE ABBREVIATED THE SAME AS WAS SHOWN FOR THE 
"AT" AND "BREAK" COMMANDS .. 

ADX>; INSERT AN AT POINT IN ARP PROGRAM 
ADX>AT/PM:3:3,TI:/LO 
ADX>; INSERT A BREAKPOINT IN COP PROGRAM 
ADX>BREAK/COP:5 
ADX>; INITIALIZE THE AD-10 
ADX>INIT 
ADX>; START THE AD-10 
ADX>CONTINUE 
0.72535 
*** BREAKPOINT AT COP: 5 *** 
ADX>: RESTORE THE BREAK AND AT POINTS 
ADX>RESTORE/PM:3:3,/COP:5 
*** BREAKPOINT AT ARP: 3 RESTORED 
*** BREAKPOINT AT COP: 5 RESTORED 
ADX> 

ADX-17 



PROTOTYPE: 

DESCRIPTION: 

SWITCHES: 

EXAMPLE: 

PROTOTYPE: 

DESCRIPTION: 

SWITCHES: 

EXAMPLE: 

RUN 

RUN [LOADFILE[/SW] [, •.. [,LOADFILE[/SW]]]] 

THE AD-10 IS INITIALIZED (SEE "!NIT"), THE LOADFILES ARE 
LOADED (IF SPECIFIED, SEE "LOAD"), AND THE AD-10 
IS STARTED. 

THE SAME AS FOR THE "LOAD" COMMAND. 

ADX>; INITIALIZE THINGS 
ADX>INIT 
ADX>;LOAD THE PROGRAMS AND DATA, AND BEGIN EXECUTION 
ADX>RUN ADlO.SAV/MO, A./AL:O:O, B.;2/UN:2:0/RI, C.DAT/UN:3:0/IN 
ADX> 

SAVE 

SAVE OUTFILE [/DA] [=/SW [ [,] •.• [ [,]/SW]]] 

THE SPECIFIED DATA AND/OR PROGRAM MEMORY LOCATIONS ARE 
WRITTEN TO THE "OUTFILE" IN AD-10 ASSEMBLER LOAD MODULE 
FORMAT (WITH A DEFAULT EXT OF .MOD) • "OUTFILE" CAN THEN 
BE LOADED USING THE "LOAD" COMMAND (I.E. LOAD OUTFILE/MO). 
IF /DA IS SPECIFIED, THE LOCATIONS ARE "DISASSEMBLED" AND 
WRITTEN TO THE "OUTFILE" IN AD-10 ASSEMBLER SOURCE FORMAT 
(WITH A DEFAULT FILE EXT OF .ASM) . 

/PM:PROC - SAVE THE PROGRAM MEMORY OF PROCESSOR "PROC". 
/DM:PAGE - SAVE THE SPECIFIED "PAGE" OF DATA MEMORY. 
(THE 
/MAP 
/DEP 
/ARP 
/NIP 
/COP 
/DA 

FOLLOWING 5 SWITCHES MAY BE USED 
- PROGRAM MEMORY [/PM:l] 
- PROGRAM MEMORY [/PM:2] 
- PROGRAM MEMORY [/PM:3] 
- PROGRAM MEMORY [/PM:4] 
- PROGRAM MEMORY [/PM:7] 
- DISASSEMBLE (PRODUCE AD-10 

IN PLACE OF /PM:PROC) 

ASSEMBLER SOURCE) 

NOTE: A LOCATION OR RANGE OF LOCATIONS CAN BE SPECIFIED 
BY APPENDING ":N" OR ":N:M" TO THE SWITCH SPECIFICATION. 

ADX>HALT 
ADX>; SAVE LOCATIONS 0-17 OF COP PM IN FILE COP.SAV 
ADX>SAVE COP.SAV=/COP::l7 
ADX>; SAVE PAGES 2,3,4 OF DATA MEMORY IN FILE DM24UN.SAV 
ADX>SAVE DM24UN.SAV=/DM:2:4 
ADX> 

ADX-18 



PROTOTYPE: 

DESCRIPTION: 

SWITCHES: 

EXAMPLE: 

PROTOTYPE: 

DESCRIPTION: 

SWITCHES: 

EXAMPLE: 

SET 

SET [/SW:BIT:BIT: ... [ [ ,]/SW:BIT:BIT: ... ] ] 

SETS THE SPECIFIED BITS IN THE HIC-11 REGISTER DENOTED 
BY THE "/SW". IF THE SAME SWITCH IS USED MORE THAN ONCE 
IN THE COMMAND LINE, A "," MUST SEPARATE EACH SUCCESSIVE 
REFERENCE OF THAT SWITCH. 

THE SAME AS FOR THE "CLEAR" COMMAND. 

ADX>DISPLAY/RIC 

RIC HAS VALUE 0 
ADX>SET/RIC:ENB 
ADX>: THAT SET THE INTERRUPT ENABLE BIT IN THE RIC (BIT 6) 
ADX>DISPLAY/RIC 

RIC HAS VALUE 100 
ADX> 

STEP 

STEP [ [#]N] 

THE AD-10 IS STEPPED N+l INSTRUCTION CYCLES ( WHERE 
O<=N<=l77777 (OCTAL), BUT ONLY O<=N<=32767 (DECIMAL) ) . 
IF "N~ IS NOT SPECIFIED, A SINGLE STEP IS PERFORMED (I.E., 
N=O IS ASSUMED). "N" MAY BE SPECIFIED IN EITHER DECIMAL 
INTEGER (DEFAULT) OR OCTAL (BY PRECEEDING N WITH "#"). 

(NONE) 

ADX>INIT 
ADX>DIS/PCS:7 

PCS( 7) HAS VALUE 0 
ADX>STEP #12 
ADX>DIS/PCS:7 

PCS( 7) HAS VALUE 13 
ADX> 

ADX-19 



PROTOTYPE: 

DESCRIPTION: 

SWITCHES: 

EXAMPLE: 

TEST 

TEST [OUTFILE] 

DISPLAYS THE DATA IN THE TEST BUFFER REGISTERS TO "OUTFILE" 
("TI:" BY DEFAULT) IN THE SAME FORMAT AS "HISTORY". 
THE DEFAULT EXTENSION IS .LST FOR OUTFILE. 

(NONE) 

ADX>HALT 
ADX>TEST 

DRCCCAPTDC 
DATA BUS l/OOOEEEEE 

R# ADDR BUS OCTAL FLOATING 6W210RRRRR 
0 1035566 3115 0.04922 . W. RM •• E .. 
1 0431042 70643 0.88779 •••••• EE •• 
2 1463106 156 0.00336 •.• R. EE .• E 
3 0010000 421 0.00833 .••• M .•.•. 
4 0005042 20040 0.25098 1 •• R .. E ... 
5 0000401 20 0.00049 ••••••• E •• 
6 1013022 10120 0.12744 ••••••• E •• 
7 0010420 10423 0.13339 ... RM .. E .. 
8 0042405 10004 0.12512 •••• M •••• E 
9 0025030 252 0.00519 .W.R .• E •.. 

10 1273563 70525 0.88541 .•. R .. EE. E 
11 0420002 21040 0.26660 . W .••• E ..• 
12 0002445 20001 0.25003 • • • • M • •• • • 
13 1446045 62166 0.78485 ••••• E ••• E 
14 0005052 100312 -0.99384 •••••••• "E 
15 2062403 10027 0.12570 •.• R.EE.E. 
ADX> 

ADX-20 



PROTOTYPE: 

DESCRIPTION: 

SWITCHES: 
----~ .... --
EXAMPLE: 
-------

T# ADDR BUS 

F 0000000 
s 0000000 

F 0043530 
s 0000000 

F 0000000 
s 0000000 

F 0000000 
s 0000000 

F 0266537 
s 0000000 

TRACE 

TRACE [OUTFILE] 

TRACE THE EXECUTION OF THE AD-10 WITH A PRINTED LOG 
TO "OUTFILE" (OR "TI:" BY DEFAULT), DISPLAYING THE 
BUS TRANSACTIONS FOR EACH HALF OF THE INSTRUCTION CYCLE, 
AND THE PROCESSOR PROGRAM COUNTERS AND STATUS WORDS 
FOR EACH INSTRUCTION CYCLE. EXECUTION CAN BE PREMATURELY 
HALTED BY CONDITIONS SET IN THE AD-10 HALT MASK REGISTER (I.E. 
HLTO, HLTl, ... ). THE DEFAULT EXTENSION IS .LST FOR OUTFILE. 

(NONE) 

ADX>HALT 
ADX>BREAK/PM:7:5 
ADX>TRACE 
ADX>INIT 
ADX>CONTINUE 

DRCCCAPTDC COP MA:P DEP ARP NIP 
DATA BUS l/OOOEEEEE F-PC F-PC F-PC F-PC F-PC 

OCTAL FLOATING 6W210RRRRR S-PS S-PS S-PS S-PS S-PS 

0 0.00000 .......... 1 0 0 0 0 
0 0.00000 .......... 1400 140400 400 400 400 

0 0.00000 • w •••••••• 2 0 0 0 0 
0 0.00000 .......... 141400 140400 1400 400 400 

0 0.00000 •• • •• E •• • • 3 0 1 0 0 
157473 -0.25601 .......... 41400 140400 141406 400 400 

0 0.00000 .......... 4 0 1 0 0 
0 0.00000 .......... 41400 140400 41405 400 400 

0 0.00000 • w •••.•••• 5 537 1 0 0 
0 0.00000 .......... 141400 140400 41404 400 400 

*** BREAKPOINT AT 7: 5 *** 
ADX> 

ADX-21 



PROTOTYPE: 

DESCRIPTION: 

SWITCHES: 

EXAMPLE: 

PROTOTYPE: 

DESCRIPTION: 

SWITCHES: 

EXAMPLE: 

UN TRACE 

UN TRACE 

TURNS OFF TRACE MODE. 

(NONE) 

ADX>; AD-10 CURRENTLY IN TRACE MODE •.• 
ADX>HALT 
ADX>UNTRACE 
ADX>CONTINUE 
ADX>; WILL RESUME EXECUTION WITHOUT TRACE .•. 
ADX> 

ZERO 

ZERO [/SW[ [,] •.. [ [,]/SW]]] [=MASK] 

ZEROS AD-10 PROGRAM MEMORYS, DATA MEMORY, AND PROGRAM 
COUNTERS. IF THE OCTAL MASK IS SPECIFIED, THE LOCATIONS 
WILL BE LOADED WITH THIS VALUE INSTEAD OF ZERO. 

THE SAME AS FOR THE "DISPLAY" COMMAND, EXCEPT THAT ":PAGE" 
IS NOT REQUIRED FOLLOWING '' /DM" (I.E., "/DM" WILL ZERO ALL 
DATA MEMORY), AND ":PROC" IS NOT REQUIRED FOLLOWING 
"/PM" (I.E., "/PM" WILL ZERO ALL PROGRAM MEMORY). 

ADX>HALT 
ADX>ZERO/PM:3:0:2 
ADX>DISPLAY/PM:3:0:2,/RR 

ARP 
ARP : 
ARP : 

0 ** 
1 ** 
2 ** 

RR HAS VALUE 0 
ADX>ZERO/RR=l77777 
ADX>DISPLAY/RR 

RR HAS VALUE 177777 
ADX> 

0 
0 
0 

ADX-22 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 



PROTOTYPE: 

DESCRIPTION: 

SWITCHES: 

EXAMPLE: 

PROTOTYPE: 

DESCRJPTION: 

SWITCHES: 

EXAMPLE: 

PROTOTYPE: 

DESCRIPTION: 

SWITCHES: 

EXAMPLE: 

@ 

@INF ILE 

SPECIFIES AN INDIRECT COMMAND FILE (DEFAULT EXT IS .CMD). 

(NONE) 

MCR>ADX 
ADX>@COMFIL 
ADX>; THAT EXECUTED THE ADX COMMANDS IN 
ADX>; THE FILE COMFIL.CMD 
ADX> 

[COMMENT] 

SPECIFIES A COMMENT, WHICH IS NOT ECHOED TO THE TERMINAL 
WHEN ENCOUNTERED IN A COMMAND FILE. ADX IGNORES 
THE LINE. 

(NONE) 

ADX>; THIS IS A NON-ECHO COMMENT 
AOX> 

[COMMENT] 

SPECIFIES A COMMENT, WHICH IS ECHOED TO THE TERMINAL WHEN 
ENCOUNTERED (E.G.,AS IN A COMMAND FILE), BUT IGNORED 
BY ADX. THE "!" MUST BE FOLLOWED BY AT LEAST ONE BLANK. 

(NONE) 

ADX>! THIS IS AN ECHO COMMENT (! BECOMES A BLANK) 
THIS IS AN ECHO COMMENT (! BECOMES A BLANK) 

ADX> 

ADX...-23 



SUMMARY OF ADX COMMANDS 

AT /PM:PROC:ADDR [,OUTFILE/SW] [=INFILE/SW] 

ATTACH [CONSOLE #] 

BREAK /PM:PROC:ADDR [, .•• [,/PM:PROC:ADDR]] 

CLEAR [/SW:BIT:BIT: .•• [[,]/SW:BIT:BIT: ... ]] 

CONSOLE [CONSOLE #] 

CONTINUE 

DETACH [CONSOLE #] 

* DISPLAY [OUTFILE=] [/SW [ [,] ... [ [,]/SW]]] 

DUMP [OUTFILE] 

EXIT 

* FLOATING [OCTAL SCALED FRACTION] 

* FRACTION [FLOATING POINT NUMBER] 

HALT 

HISTORY [OUTFILE] 

IDENTIFY 

!NIT 

LOAD [LOADFILE[/SW] [, .•. [,LOADFILE[/SW]]]] 

*MODIFY [/SW[[,] •.. [[,]/SW]] [=INFILE]] 

RESTORE [/PM:PROC:ADDR [, ... [,/PM:PROC:ADDR]]] 

RUN [LOADFILE [/SW] [, .•. [, LOADFILE [/SW] ] ] ] 

* SA VE 0 UT FILE [ /DA] [ =/SW [ [ , ] . . . [ [ ,. ] /SW] ] ] 

SET [/SW: BIT : BIT : •.• [ [ , ] /SW: BIT : BIT : ... ] ] 

STEP [ [#]N] 

ADX-24 



* NOTE 

SUMMARY OF ADX COMMANDS {CONT.) 

TEST 

TRACE 

UNTRACE 

* ZERO 

@ 

[OUTFILE] 

[OUTFILE] 

[/SW[ [ ,] ... [ [,]/SW]]] [~MASK] 

INDIRECT FILE SPECIFIER 
COMMENT SPECIFIER {NON-ECHO) 
COMMENT SPECIFIER {ECHO) 

{ONLY THE UNDERLINED PORTIONS OF THE COMMANDS ARE REQUIRED) . 

IF THE STARRED COMMANDS ARE NOT FOLLOWED BY A COMMAND STRING, 
ADX WILL PROMPT THE USER FOR A COMMAND STRING OF THE FORM 
SHOWN. TO EXIT FROM THIS INTERNAL COMMAND PROMPT MODE, SIMPLY 
TYPE A NULL LINE. THE "SAVE" COMMAND REQUIRES THE "OUTFILE" 
TO ALSO BE SPECIFIED TO GET THE INTERNAL COMMAND PROMPT. 

ADX-25 





A 
AAA 

AAAAA 
AAAAAAA 

AAAAAAAAA 
AAAAAAAAAAA 

AAAAAAAAAAAAA 
AAAAAAAAAAAAAAA 

AAAAAAAAAAAAAAAAA 

sssssssssss 
ssssssssssss 
ssssssssssss 
ssssssss 
ssssssssss 

ssssssss 
ssssssssssss 
ssssssssssss 
sssssssssss 

MMMM MMMM 
MMMMM MMMMM 
MMMMMM MMMMMM 
MMMMMMM MMMMMMM 
MMMMMMMM MMMMMMMM 
MMMMMMMMMMMMMMMMM 
MMMM MMMMMMM MMMM 
MMMM MMMMM MMMM 
MMMM MMM MMMM 

THE 
AD-10 I PDP-11 
CROSS-ASSEMBLER 
USER'S MANUAL 





TABLE OF CONTENTS 

GENERAL INFORMATION 

TERMS AND CONVENTIONS ...... . 
THE CROSS-ASSEMBLER PROGRAM 
THE ASSEMBLY LANGUAGE 
NUMERIC CONSTANTS 
SYMBOLS ......... . 

STANDARD SYMBOLS 
VARIABLE SYMBOLS 
PREDEFINED SYMBOLS 

ASSEMBLER EXPRESSIONS 
DESCRIPTION 
EVALUATION 

ASSEMBLY STATEMENTS 

GENERAL STATEMENT 
LABELS 

FORMAT 

OPCODES 
OPERANDS 
COMMENTS 
MICROCODING 

ASSEMBLER DIRECTIVES 

.... 

PROGRAM SECTION DIRECTIVES 
. DAT 
.ARP 
.COP 
.DEP 
.MAP 

CONTROL DIRECTIVES 
.ORG 
.INCLUDE 
.OCTAL 
.DECIMAL 

DATA 

. END 

DIRECTIVES 
.EQU 
.WORD 
.DEFINE 
.DEFAULT 
.UNDEFINE 
.BLKWD 

LISTING DIRECTIVES 
.TITLE 
.PAGE 
.SPACE 
.PRON 
. PROFF 

...... 

.... 

.. 

.. 

.... 

••• 1J 

, . 
' .. . ' . . . . ..... 

.. 

PAGE 

3 
4 
4 
5 
5-6 
6 
6 
6 
7-8 
7-8 
8 

9-11 

9 
9 
10 
10 
10 
1 1 

12-14 

12 
12 
12 
12 
12 
12 

12 
12 
12 
12 
12 
12 

13 
13 
13 
13 
13 
13 
13 

14 
14 
14 
14 
14 
14 



MACROFILES .•.••....•.•....••....•••.•.•..•...•• 14-16 
GENERAL DESCRIPTION .................... 14 
USING MACROFILES ....................... 15-16 

OPERATING PROCEDURES ........................... 17-18 

ERROR MESSAGES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-21 
COMMAND LINE ERROR MESSAGES . . . . . . . . . . . . 19 
LISTING ERROR MESSAGES ................. 20 
TIMING DIAGRAM ERROR MESSAGES .... ~ ..... 21 

LISTING AND TIMING DIAGRAM FORMATS ............. 22 

OBJECT MODULE FORMAT······················~···· 23 

AN EXAMPLE OF AN ASSEMBLER PROGRAM ............. 24-32 
DISCUSSION . . • . . . . . . . . . . . . . . . . . . . . . . . . . . 24-25 
SOURCE LISTING (SINE.ASM) .............. 26 
ASSEMBLER LISTING OUTPUT (SINE.LST) .... 27-31 

SINE.LST PAGE 1 ...... 27 

SINE.LST PAGE 2 ...... 28 

SINE.LST PAGE 3 ...... 29 

SINE. LST PAGE 4 ...... 30 

SINE.LST PAGE 5 . . . . . . 31 

OBJECT MODULE (SINE.MOD) . . . . . . . ........ 32 

ASM-2 



ASM 

DEC 

RSX-11 

MCR> 

ASM> 

ADX> 

@ 

I 

< > 

[ ] 

CR 

CONTROL-Z 
CTRL-Z 

CONTROL-U 
CTRL-U 

RUBOUT 

CONTROL-S 
CTRL-..S 

CONTROL ... Q 
CTRL-Q 

<SPACE> 

<TAB> 

II 

$ 

' ' 
TOKEN 

TERMS AND CONVENTIONS 
NAME OF THE AD-10 I PDP-11 CROSS-ASSEMBLER PROGRAM 

DIGITAL EQUIPMENT CORPORATION, MAKERS OF THE PDP-11 COMPUTER 

DEC'S REAL-TIME OPERATING SYSTEM EXECUTIVE FOR THE PDP-11 

PROMPT GENERATED BY THE RSX-11 MONITOR CONSOLE ROUTINE 

PROMPT GENERATED BY THE ASSEMBLER 

PROMPT GENERATED BY THE AD-10 EXECUTIVE PROGRAM 

INDIRECT FILE SPECIFIER (REF. CHAPTER 6 OF THE RSX-11M 
OPERATOR'S PROCEDURES MANUAL) 

ASM COMMAND STRING SWITCH DELIMITER 

ASM COMMAND STRING SWITCH VALUE DELIMITER, ALSO 
PAGE:WORD DELIMITER (E.G., '0:4095') 

ANGLE BRACKETS ARE USED TO ENCLOSE THE NAME OF A 
SYNTACTIC ELEMENT OR CLASS OF ELEMENTS 

BRACKETS ARE USED TO ENCLOSE OPTIONAL SYNTACTIC ELEMENTS 
IN COMMAND STRING EXAMPLES. 

CARRIAGE RETURN (RETURN) 

EOF CHARACTER GENERATED BY SIMULTANEOUSLY DEPRESSING 
THE "CONTROL" AND THE "Z" KEYS. USED TO EXIT FROM ASM 
AND RETURN TO MCR. 

"CONTROL" AND "U" KEYS. USED TO DELETE A LINE. 

USED TO DELETE A CHARACTER. 

"CONTROL" AND "S" KEYS. USED TO TEMPORARILY STOP THE 
OUTPUT TO THE TERMINAL WHEN THE DISPLAY IS SCROLLING. 

"CONTROL" AND "Q" KEYS. USED TO RESTART THE OUTPUT 
AFTER CONTROL-S HAS BEEN TYPED. 

COMMENT DELIMITER 

SEPARATOR BETWEEN SYNTACTIC ELEMENTS IN A STATEMENT 

SEPARATOR BETWEEN SYNTACTIC ELEMENTS IN A STATEMENT 

SEPARATOR BETWEEN OPERANDS 

SEPARATOR BETWEEN OPCODE/OPERAND GROUPS 

FIRST CHARACTER IN VARIABLE SYMBOL NAME 

FIRST CHARACTER IN PREDEFINED SYMBOL NAME 

TITLE DELIMITERS, ALSO VALUE DELIMITERS 

A TERM REFERRING TO A SYNTACTIC ELEMENT WITHIN AN 
ASSEMBLER STATEMENT (E.G., A SYMBOL, ARITHMETIC OPER-
ATOR, OPCODE, ETC.) ASM-3 



THE CROSS-ASSEMBLER PROGRAM 

THE AD-10/PDP-11 CROSS-ASSEMBLER PROGRAM (OR "ASSEMBLER") 
PROCESSES THE AD-10 ASSEMBLY LANGUAGE SOURCE STATEMENTS FROM A 
SOURCE FILE ON THE PDP-11 HOST COMPUTER. THIS PROCESSING INVOLVES 
THE TRANSLATION OF THE SOURCE STATEMENTS INTO AD-10 MACHINE LANGUAGE, 
THE ASSIGNMENT OF STORAGE LOCATIONS (AD-10 PROGRAM MEMORY, DATA MEMORY, 
OR REGISTERS), AND THE PERFORMANCE OF AUXILIARY FUNCTIONS AS 
DESIGNATED BY THE PROGRAMMER. THE OUTPUT FROM THE ASSEMBLER CONSISTS 
OF AN OBJECT FILE AND A LISTING FILE. THE OBJECT FILE CONTAINS THE 
AD-10 MACHINE LANGUAGE TRANSLATION OF THE SOURCE PROGRAM, IN A FORM 
WHICH MAY THEN BE LOADED INTO THE AD-10 AND RUN USING THE AD-10 EXEC­
UTIVE PROGRAM (ADX). THE LISTING FILE CONSISTS OF A LISTING OF THE 
SOURCE STATEMENTS WITH THE GENERATED OBJECT CODE AND ANY ERRORS 
DETECTED AND AN OPTIONAL MULTIBUS TIMING DIAGRAM. THE PROGRAMMER CAN 
CONTROL THE FORMAT AND CONTENT OF THE LISTING VIA THE APPROPRIATE 
ASSEMBLER DIRECTIVES. POTENTIAL OR ACTUAL ERRORS INVOLVING ASSEMBLY 
LANGUAGE SYNTAX OR USAGE ARE DETECTED BY THE ASSEMBLER AND ARE 
INCLUDED IN THE LISTING. THE ASSEMBLER ALSO CHECKS FOR ERRORS IN THE 
TIMING RELATIONSHIPS OF THE VARIOUS AD-10 PROCESSORS' MULTIBUS 
ACCESSES AND INDICATES POTENTIAL PROBLEMS ON THE LISTING OR ON THE 
TIMING DIAGRAM. 

THE ASSEMBLY LANGUAGE 

THE AD-10 ASSEMBLY LANGUAGE CONSISTS OF A COLLECTION OF 
MNEMONIC SYMBOLS WHICH REPRESENT : 

1. AD-10 MACHINE LANGUAGE INSTRUCTIONS 
2. AD-10 ASSEMBLER DIRECTIVES 

ALL VALID AD-10 MACHINE LANGUAGE INSTRUCTIONS HAVE CORRESPONDING 
MNEMONIC SYMBOLS WHICH GENERATE THE APPROPRIATE MACHINE LANGUAGE CODE 
FOR EACH AD-10 PROCES~OR. REFER TO THE APPROPRIATE AD-10 PROCESSOR 
MANUAL FOR DESCRIPTIONS OF THE INSTRUCTIONS. 

ASSEMBLER DIRECTIVES (OR "PSEUDO-OP'S") SPECIFY AUXILIARY FUNCTIONS 
WHICH THE PROGRAMMER REQUESTS THE ASSEMBLER TO PERFORM. THEY GENERALLY 
RESULT IN NO MACHINE LANGUAGE CODE BEING GENERATED. THEY ALLOW 
THE PROGRAMMER TO REPRESENT NUMERIC DATA AS DECIMAL, OCTAL, BINARY, 
HEXADECIMAL, OR SCALED FRACTIONS, TO ASSIGN THESE NUMERIC VALUES TO 
SYMBOLIC NAMES, TO DEFINE DATA AND DATA STORAGE LOCATIONS, TO 
IDENTIFY THE PROCESSOR TO WHICH A SECTION OF CODE BELONGS AND 
THE LOCATION OF THAT CODE IN ITS PROGRAM MEMORY, TO CONTROL THE 
LISTING'S FORMAT, TO INCLUDE ANOTHER SOURCE FILE IN THE CURRENT 
ASSEMBLY, AND SEVERAL OTHER RELATED FUNCTIONS. 

ASM-4 



NUMERIC CONSTANTS 

THE FOLLOWING METHODS FOR SPECIFYING NUMERIC CONSTANTS ARE AVAILABLE 
IN THE ASSEMBLER : 

N WHERE, "N" IS A NUMBER IN THE CURRENT RADIX 
(AS SET BY THE .OCTAL OR .DECIMAL DIRECTIVES) 

O'N' OCTAL VALUE "N" (E.G., 0'177777' ) 

B'N' BINARY VALUE "N" (E.G., B'01010101' 

S'N' SCALED FRACTION VALUE "N" (E.G., S'-0.0325' ) 

D'N' DECIMAL VALUE "N" (E.G., D'198') 

NUMERIC CONSTANTS ARE STORED AS 32-BIT TWO'S COMPLEMENT INTEGER VAL­
UES. THE ASSEMBLER USES 32-BIT TWO'S COMPLEMENT ARITHMETIC FOR ITS 
EXPRESSION EVALUATION. HOWEVER, WHEN CALCULATING THE NUMERIC VALUE TO 
BE USED IN AN IMMEDIATE INSTRUCTION (E.G., LFI X), ONLY THE LOW-ORDER 
16 BITS FROM THE EXPRESSION EVALUATION WILL EVENTUALLY BE USED. ALSO, 
IN AN ADDRESS CALCULATION, THE EXPRESSION FOR THE PAGE ADDRESS MUST 
EVALUATE TO A NUMBER IN THE RANGE 0-63 DECIMAL, WHILE THE EXPRESSION 
REPRESENTING THE WORD ADDRESS MUST EVALUATE TO A NUMBER IN THE RANGE 
0-4095 DECIMAL (18-BIT ADDRESSING). SEE PAGE 8 FOR A DESCRIPTION OF 
ADDRESS SPECIFICATION EXPRESSIONS. NOTE FURTHER THAT SCALED FRACTION 
CONSTANTS SHOULD NOT BE USED IN ARITHMETIC EXPRESSIONS, AS THE EX­
PRESSION MAY NOT BE EVALUATED CORRECTLY BY THE ASSEMBLER. 

SYMBOLS 

A SYMBOL IS THE NAME WHICH IS ASSOCIATED WITH A NUMERIC VALUE. 
THIS VALUE MAY SIMPLY REPRESENT A NUMBER OR A BIT-PATTERN, AS IN 

WRITE 
DAC02 

. EQU 

.EQU 
B'011' 
2 

THE SYMBOLS "WRITE" AND "DAC02" ARE EXPLICITLY DEFINED HERE TO HAVE 
THE VALUES 3 AND 2, RESPECTIVELY. SYMBOLS MAY ALSO BE ASSOCIATED 
WITH MEMORY LOCATIONS, AS IN : 

.COP 

.ORG 100 
DSTART PAUSE 1 

COP CODE 
LOCATION = 100 
WAIT TWO CYCLES 

HERE, THE SYMBOL "DSTART" HAS THE VALUE 100 (OCTAL). AS USED IN THESE 
EXAMPLES, A SYMBOL IS ALSO A "LABEL", SINCE IT APPEARS IN THE LABEL 
FIELD OF THE STATEMENT (I.E., IT STARTS IN COLUMN 1). THESE SAME 
SYMBOLS, HOWEVER, MAY THEN BE USED IN SUBSEQUENT REFERENCES TO THE 
NUMERIC VALUES WHICH THESE SYMBOLS REPRESENT 

.COP 

.ORG 200 
PFI WRITE,DAC02 
JMP DSTART 

COP CODE 
LOCATION = 200 
UPDATE DAC 112 
GOTO LOCATION 100 

ASM-5 



SYMBOLS MAY CONSIST OF 1-6 ALPHANUMERIC CHARACTERS (OR "II" OR "$" 
AS DESCRIBED BELOW). SYMBOLS LONGER THAN 6 CHARACTERS WILL BE TRUN­
CATED WITHOUT WARNING! THE SYMBOL MUST BEGIN WITH AN ALPHABETIC 
CHARACTER (A-Z) (OR "#" OR "$" IN SPECIAL CASES). THERE ARE THREE 
TYPES OF SYMBOLS : STANDARD, VARIABLE, !ND PREDEFINED. 

STANDARD SYMBOLS CAN BE DEFINED ONLY ONCE, AND REPRESENT 
ONE FIXED VALUE THROUGHOUT AN ASSEMBLY. 

1ST CHARACTER 
2ND - 6TH CHARACTERS 
EXAMPLES : 

A-Z 
A-Z, 0-9 
ARPOO,XO,K12345,REG12,SIN60 

VARIABLE SYMBOLS CAN BE DEFINED MORE THAN ONCE DURING AN 
---------------- ASSEMBLY, AND MAY BE USED TO REPRESENT 

DIFFERENT VALUES AT DIFFERENT POINTS 
WITHIN THE PROGRAM. 

1ST CHARACTER 
2ND - 6TH CHARACTERS 
EXAMPLES ; 

PREDEFINED SYMBOLS 

II 
A-Z, 0-9 
llAA,#XPTR,#FVAL,#TEMPO 

ARE RECOGNIZED BY THE ASSEMBLER AS HAVING 
CERTAIN PREDEFINED VALUES WHICH MAY NOT BE 
CHANGED (I.E., THE USER CANNOT REDEFINE 
THESE SYMBOLS!). THE PREDEFINED SYMBOLS ARE: 

PREDEFINED PROCESSOR SYMBOLS 

$MAP 
$DEP 
$ARP 
$COP 

. EQU 

.EQU 

. EQU 

.EQU 

1 
2 
3 
7 

PREDEFINED ARP REGISTER SYMBOLS 

A, B, C, D, E, R, S, L, K 

OTHER PREDEFINED SYMBOLS 

ALL PROCESSOR INSTRUCTIONS (E.G., LFI, MOVO, NOP, PAUSE, 
START, ETC.), AND ALSO THE SYMBOLS : EQ, NE, GT, GE, LT, 
LE, DF, MC, NDF, AND, OR, '*' 

NOTE THE ASSEMBLER WILL FLAG ALL ILLEGAL USES OF PREDEFINED 
SYMBOLS AS SYNTAX ERRORS. 

ASM-6 



ASSEMBLER EXPRESSIONS 

THERE ARE A NUMBER OF ELEMENTS WHICH CAN MAKE UP AN ASSEMBLER EXPRESSION. 
THESE ELEMENTS OF AN ASSEMBLER EXPRESSION ARE AS FOLLOWS : 

1. A <FACTOR> IS THE BASIC ELEMENT OF AN ASSEMBLER EXPRESSION, 
CONSISTING OF : 

2. A 

A) A <NUMERIC CONSTANT> (E.G., 123, D'189', 0'100377'), 

B) A <SYMBOL> , WHICH HAS A NUMERIC VALUE ASSOCIATED 
WITH IT (E.G., #OUTO, $ARP, X), 

C) THE ASTERISK CHARACTER ('*'),WHICH HAS A NUMERIC 
VALUE EQUAL TO THAT OF THE LOCATION COUNTER, 

D) OR AN <ADDRESS CONSTANT> WHICH CAN BE ENCLOSED IN 
PARENTHESES (E.G., (PAGEO:WORD0+2), OR (X+Y)). 

<TERM> CONSISTS OF THE FOLLOWING : 

A) A SINGLE <FACTOR> (E.G., #OUTO), 

B) ANOTHER <TERM> MULTIPLIED BY A <FACTOR> 
(E.G., 110 UT 0 * 1 2 3 ) , 

C) OR ANOTHER <TERM> DIVIDED BY A <FACTOR> 
(E.G., (#OUT0*123)/456). 

3. AN <EXPRESSION> IS COMPOSED OF <TERMS> AND OTHER 
<EXPRESSIONS> AS FOLLOWS : 

A) A SINGLE <TERM> (E.G., X*Y/(Z*2)), 

B) ANOTHER <EXPRESSION> PLUS A <TERM> 
(E.G. , ( X *YI ( Z * 2)) + (BB/ AA)) , 

C) ANOTHER <EXPRESSION> MINUS A <TERM> 
(E.G. , ( ( X *YI ( Z * 2) ) + (BB/ AA)) -1 ) , 

D) OR A <TERM> PRECEDED BY EITHER A PLUS SIGN ('+') 
OR A MINUS SIGN ('-'),WHERE THESE BINARY 
OPERATORS INDICATE EITHER A POSITIVE OR A NEGATIVE 
VALUE OF THE ENTIRE <EXPRESSION> (E.G., +(X*Y/(Z*2)), 
OR -(X*Y/(Z*2))). 

ASM-7 



ASSEMBLER EXPRESSIONS (CONT.) 

4. AN <ADDRESS CONSTANT> CONSISTS OF 

A) AN <EXPRESSION> (SEE ITEM #3 ON PREVIOUS PAGE), 

B) OR A DATA MEMORY <ADDRESS> , AS SPECIFIED BELOW. 

5. AN <ADDRESS> SPECIFIES A DATA MEMORY LOCATION AS FOLLOWS 

A) UNALIGNED DATA MEMORY ADDRESSES ARE REPRESENTED 
BY AN <EXPRESSION> REPRESENTING A PAGE ADDRESS, 
FOLLOWED BY A COLON(':'), FOLLOWED BY ANOTHER 
<EXPRESSION> REPRESENTING THE WORD ADDRESS WITHIN 
THE PAGE (E.G., (PAG0+2):(4095-(Y*2))). 

B) ALIGNED DATA MEMORY ADDRESSES ARE REPRESENTED 
BY AN <EXPRESSION> REPRESENTING A PAGE ADDRESS, 
FOLLOWED BY TWO COLONS ('::'),FOLLOWED BY ANOTHER 
<EXPRESSION> REPRESENTING THE WORD ADDRESS WITHIN 
THE PAGE (E.G., (PAG2+INDX):: (BASE+N)). 

EXPRESSION EVALUATION 

ARITHMETIC OPERATIONS WITHIN EXPRESSIONS ARE EVALUATED IN A SIMILAR 
MANNER TO THOSE IN FORTRAN EXPRESSIONS, WITH MULTIPLICATION AND DIVISION 
OPERATIONS BEING EVALUATED BEFORE ADDITION AND SUBTRACTION, UNLESS 
PARENTHESES SPECIFICALLY INDICATE A DIFFERENT ORDER. NO EXPONENTIATION 
IS PERMITTED. THE PERMISSIBLE OPERATORS ARE, IN ORDER OF PRECEDENCE : 

1. * AND I 
2. + AND -

FOR EXAMPLE, EACH OF THE FOLLOWING EXPRESSIONS IS EQUIVALENT 

**X/Y*Z-AA+BB/CC 

(((((*)*X)/Y)*Z)-AA)+(BB/CC) 

HERE THE FIRST ASTERISK IN THE EXPRESSION REPRESENTS THE CURRENT 
VALUE OF THE LOCATION COUNTER. ALL ARITHMETIC OPERATIONS ARE PERFORMED 
USING TWO'S COMPLEMENT 32-BIT INTEGER ARITHMETIC. THAT IS, AN EXPRES­
SION IS EVALUATED BY OPERATING ON THE 32-BIT BINARY VALUES WHICH 
REPRESENT THE VARIOUS FACTORS IN AN EXPRESSION. ONLY THE LOW-ORDER 
16 BITS WILL EVENTUALLY BE USED FOR THE VALUE IN AN IMMEDIATE 
INSTRUCTION. ALSO NOTE THAT SCALED FRACTION CONSTANTS WILL NOT BE 
INTERPRETED AS SCALED FRACTIONS IN ARITHMETIC OPERATIONS. 

ASM-8 



GENERAL ASSEMBLER STATEMENT FORMAT 

THE GENERAL FORM OF AN ASSEMBLY LANGUAGE STATEMENT IS AS FOLLOWS, 
WHERE THE BRACKETS INDICATE OPTIONAL ITEMS : 

[LABEL] OPCODE [OPERANDS] [[;OPCODE [OPERANDS]] ... ] [!COMMENTS] 

THE FOLLOWING CONVENTIONS MUST BE FOLLOWED WHEN WRITING AN AD-10 
ASSEMBLY LANGUAGE STATEMENT : 

1. THE LABEL FIELD MUST BEGIN IN COLUMN 1. 

2. THE OTHER ITEMS MAY BEGIN IN COLUMNS 2-120. THE ASSEMBLER 
WILL ACCEPT STATEMENTS CONTAINING UP TO 120 CHARACTERS, BUT 
ONLY THE FIRST 72 CHARACTERS PF A LINE WILL BE PRINTED ON 
THE LISTING. 

3. IF NECESSARY, AN ASSEMBLER STATEMENT CAN BE CONTINUED ON 
SUCCESSIVE LINES, USING COLUMNS 2-120. 

3. OPCODE/OPERAND SETS MUST BE SEPARATED BY 

4. OPERANDS MUST BE SEPARATED BY",". 

5. COMMENTS MUST BE PRECEDED BY "!". 

" . " ' . 

6. SPACES OR TABS MAY BE INSERTED BETWEEN ITEMS AS 
DESIRED, BUT MAY NOT APPEAR WITHIN A LABEL, AN 
OPCODE, OR AN OPERAND. 

EXAMPLES OF ASSEMBLER STATEMENTS ARE : 

ARP10 MOVO S,R; MOV1 R,TEMPO ! PUT BUS DATA INTO TEMP REG. 

BEGIN START $DEP,$ARP 

PFI WRITE,DAC02 

PAUSE 3 WAIT THREE INSTRUCTION CYCLES 

TW05 .EQU 40 2**5 = 32 

.PAGE 

(NOTE: THESE STATEMENTS DO NOT CONSTITUTE A MEANINGFUL AD-10 PROGRAM.) 

LABELS 

A LABEL CAN BE ANY STANDARD SYMBOL OR VARIABLE SYMBOL AS DEFINED IN THE 
"SYMBOLS" SECTION OF THIS MANUAL. THE LABEL MUST BEGIN IN COLUMN ONE ( 1) 
OF THE ASSEMBLER STATEMENT. SHOULD THE PROGRAMMER INADVERTENTLY USE ONE 
OF THE PREDEFINED SYMBOLS AS A LABEL, THE ASSEMBLER WILL FLAG THAT STATE­
MENT AS A SYNTAX ERROR. 

ASM-9 



OPCODES 

AN OPCODE IS THE MNEMONIC REPRESENTATION OF AN AD-10 INSTRUCTION 
OR AN ASSEMBLER DIRECTIVE. THE OPCODE ENTRY IS MANDATORY (UNLESS THE 
LINE IS SIMPLY A COMMENT). THERE MUST BE AT LEAST ONE SPACE BETWEEN 
THE LABEL (IF PRESENT) AND THE OPCODE. SOME EXAMPLES OF. OPCODES ARE : 

LFI 
PAUSE 
MOVO 
RUIF 
START 
.EQU 
.UNDEFINE 

OPERANDS 

AN OPERAND IS AN ASSEMBLER EXPRESSION WHICH IDENTIFIES AND DESCRIBES 
THE DATA TO BE ACTED UPON BY THE OPCODE PORTION OF AN INSTRUCTION. IN 
THE CASE OF THE ARITHMETIC PROCESSOR IT ALSO INDICATES PART OF THE 
OPERATION TO BE PERFORMED. DEPENDING UPON THE NEEDS OF THE PARTICULAR 
INSTRUCTION, ONE OPERAND, SEVERAL OPERANDS, OR NONE MAY BE REQUIRED. WHEN 
MORE THAN ONE OPERAND IS USED, THEY MUST BE SEPARATED BY COMMAS (","). 
BLANKS MAY BE USED BETWEEN OPERANDS IN A LIST, BUT NOT WITHIN AN 
INDIVIDUAL OPERAND. EXAMPLES OF OPERANDS ARE 

S,R 
1 
$ARP,$MAP,$DEP 

COMMENTS 

(AS IN: 
(AS IN: 
(AS IN: 

MOVO S,R) 
A .EQU 1) 
START $ARP,$MAP,$DEP) 

COMMENTS PROVIDE DESCRIPTIVE INFORMATION ABOUT THE PROGRAM WHICH THE 
PROGRAMMER WISHES TO INCLUDE IN THE LISTING. THEY HELP TO DOCUMENT THE 
PROGRAM. THE COMMENT MUST BEGIN WITH AN EXCLAMATION POINT CHARACTER 
("!"). THE ASSEMBLER SIMPLY IGNORES ALL CHARACTERS TO THE RIGHT OF THE 
EXCLAMATION POINT. THE COMMENT MAY START IN ANY COLUMN, AND IT MAY 
CONSIST OF ANY LEGAL ASCII CHARACTERS. AN EXAMPLE OF A COMMENT IS 

! ***************** THIS IS A COMMENT ***************** 

ASM-10 



MICROCODING 

IN ALL AD-10 PROCESSORS IT IS POSSIBLE TO MICROCODE MORE THAN 
ONE OPERATION IN PARALLEL. SINCE A SINGLE OPCODE FOR EACH COMBINATION 
OF OPERATIONS WOULD BE OVERWHELMING, THE SEPARATE OPERATIONS TO BE 
MICROCODED MAY ALL BE SPECIFIED ON THE SAME LINE, THUS CLARIFYING THE 
OPERATION. TO MICROCODE AN INSTRUCTION SEVERAL OPCODE/OPERAND 
GROUPS ARE COMBINED (UP TO A MAXIMUM OF SIX IN THE ARP). THESE 
SUB-INSTRUCTIONS MUST BE SEPARATED BY A SEMICOLON (";"). THE ASSEMBLER 
WILL COMBINE THE SUB-INSTRUCTIONS INTO ONE MICROCODED INSTRUCTION, IF 
THE COMBINATION IS LEGAL. SOME EXAMPLES OF LEGAL MICROCODED INSTRUC­
TIONS ARE : 

MOVO T2,B; MOV1 T3,L; MOV2 T4,D; MOV3 R,TEMPO; PAUSE 1 

RAID AAA,BBB ; PAUSE 3 

SOME GENERAL COMMENTS REGARDING MICROCODING : 

1. THE SUB-INSTRUCTIONS WHICH CAN BE LEGALLY COMBINED ARE 
DEFINED FOR EACH PROCESSOR IN THE AD-10 REFERENCE MANUAL. 

2. FOR SOME PROCESSORS THE ORDER IN WHICH THE SUB-INSTRUCTIONS 
MAY BE MICROCODED IS FIXED (E.G., IN THE ARP, THE "MOVE" 
INSTRUCTIONS MUST BE CODED IN ORDER : "MOVO" FIRST, THEN 
"MOV1", THEN "MOV2", AND THEN "MOV3"). IN GENERAL, IF A 
"PAUSE" SUB-INSTRUCTION IS MICROCODED, IT MUST TERMINATE THE 
INSTRUCTION. REFER TO THE AD-10 REFERENCE MANUAL FOR FURTHER 
DETAILS. 

3. THE LAST SUB-INSTRUCTION IN A MICROCODED INSTRUCTION MUST 
NOT TERMINATE WITH A ";"UNLESS IT IS TO BE CONTINUED ON THE 
NEXT LINE. FOR EXAMPLE : 

MOVO S,R; MOV1 R,TO; 
MOV2 S,R; MOV3 R,T1; PAUSE 3 

THE ABOVE STATEMENTS ARE EQUIVALENT TO THE SINGLE STATEMENT 

MOVO S,R; MOV1 R,TO; MOV2 S,R; MOV3 R,T1; PAUSE 3 

4. A COMMENT CANNOT BE MICROCODED WITHIN A SUB-INSTRUCTION. FOR 
EXAMPLE, THE FOLLOWING WILL RESULT IN EVERYTHING AFTER 
THE FIRST"!" BEING TREATED AS A COMMENT : 

MOVO S,R ! GET DATA ; MOV1 R,T ! SAVE IT 

THE ABOVE STATEMENT IS EQUIVALENT TO : 

MOVO S, R 

ASM-11 



PROGRAM SECTION PlREGTIVES 
------------~-------------

THE AD-10 CROSS-ASSEMB~ER ACCEPTS INSTRUCTIONS FOR ALL AD-10 PROCESSORS 
AND DATA VALUES FOR AD~10 DATA MEMORY FROM THE SAME SOURCE FILE 
ON THE PDP-11 SYSTEM. THIS G~OUP 0F PROGRAM SECTION DIRECTIVES ENABLES 
THE PROGRAMMER TO IQENTlFY FOR THE ASSEMBLER THE PROGRAM MEMORY 
SECTION OR DATA MEMORY SECTION INTO WHICH THE INSTRUCTIONS OR DATA 
FOLLOWING THE DIRECTIVE SHOULD BE PUT. THE DEFAULT PROGRAM SECTION IS 
" . DAT" . 

.ARP ARP PROGRAM SECTION 

.COP COP PROGRAM SECTION 

.DEP DEP PROGRAM SECTION 

.MAP MAP PROGRAM SECTION 

.DAT DATA MEMORY SECTION 

CONTROL DIRECTIVES 
~~--~~----~~~--~--

THIS GROUP OF A$SEMBL~R DIRECTIVES PERFORMS A VARIETY OF ASSEMBLY 
CONTROL FUNCTIONS . 

• ORG N 

. INCLUDE <FILESPEC> 

.OCTAL 

. DECIMAL 

.END 

SETS THE LOCATION COUNTER FOR THE 
CURRENT PROCESSOR OR FOR DATA MEMORY 
TO THE VALUE "N" (DEFAULT ORIGIN IS 0) . 

COPIES THE SPECIFIED SOURCE FILE 
INTO THE ASSEMBLER SOURCE STREAM 
(NORMALLY U$ED FOR MACROFILES). 

TELLS ASSEMeLER TO INTERPRET ALL 
NUM~RIC CONSTANTS AS OCTAL VALUES 
(THIS IS THE DEFAULT SETTING) . 

TELLS ASSEMBLER TO INTERPRET ALL 
NUMERIC CONSTANTS AS DECIMAL VALUES. 

IDENTIFIES THE END OF THE ASSEMBLY 
(MUST TERMINATE THE USER'S PROG~AM). 

ASM-12 



DATA DIRECTIVES 

THESE ASSEMBLER DIRECTIVES ASSIGN VALUES TO SYMBOLS, DEFINE CONSTANTS, 
AND RESERVE STORAGE SPACE . 

LABEL . EQU <EXPRESSION> 

[LABEL] . WORD <EXPRESSION 
LIST> 

LABEL 

LABEL 

LABEL 

.DEFINE <EXPRESSION 
LIST> 

.DEFAULT <EXPRESSION 
LIST> 

.UNDEFINE 

[LABEL] . BLKWD N 

ASSIGNS THE VALUE OF THE EXPRESSION 
TO THE SPECIFIED LABEL/SYMBOL. 

ASSIGNS THE VALUES OF THE EXPRESSIONS 
TO LOCATIONS IN THE CURRENT PROGRAM 
OR DATA MEMORY SECTION, STARTING WITH 
THE CURRENT LOCATION. 

ASSIGNS A LIST OF EXPRESSIONS 
TO AN 'ARRAY' OF SYMBOLS 
(THE ASSEMBLER APPENDS 0,1,2, ... 
AS REQUIRED TO THE LABEL, AND 
DOES THE EQUIVALENT OF MULTIPLE 
".EQU'S"). THE NUMBER OF 
CHARACTERS IN THE LABEL MUST 
REMAIN AT 6 OR LESS INCLUDING 
THE APPENDED DECIMAL DIGITS. 

ASSIGNS THE DEFAULT VALUES IN THE LIST 
TO THE GROUP OF SYMBOLS IF THEY ARE 
CURRENTLY UNDEFINED (SIMILAR TO .DEFINE). 

MARKS ALL ".DEFINE'D" SYMBOLS WHICH 
BEGIN WITH THE SPECIFIED SYMBOL'S NAME 
AS UNDEFINED. 

RESERVES STORAGE SPACE FOR A 
BLOCK OF DATA OR PROGRAM MEMORY 
LOCATIONS BY INCREMENTING THE 
CURRENT LOCATION COUNTER IN THE 
CURRENT PROGRAM SECTION BY "N" 
LOCATIONS. 

ASM-13 



LISTING DIRECTIVES 
~----------~-~--~-

THESE ASSEMBLER DIRECTIVES CONTROL THE FORMAT OF THE ASSEMBLY LISTING. 

.TITLE 'XXX ... XXX' 

.PAGE 

. SPACE N 

. PRON 

. PROFF 

MACROFILES 

SPECIFIES THE TITLE, ENCLOSED IN 
QUOTES, WHICH WILL APPEAR AT THE 
TOP OF SUCCESSIVE PAGES OF THE 
LISTING. ".TITLE" ALSO DOES A FORM 
FEED PRIOR TO PRINTING THE TITLE. 

FORCES THE ASSEMBLER TO BEGIN A NEW 
PAGE IN THE LISTING . 

FORCES THE ASSEMBLER TO INSERT "N" 
BLANK LINES IN THE LISTING. IF THIS 
FORCES THE LISTING TO A NEW PAGE, NO 
FURTHER BLANK LINES ARE INSERTED. 

INCREMENTS THE PRINT LEVEL COUNTER (PLC) • 
IF THE PLC IS >= O, THE FOLLOWING SOURCE 
LINES ARE PRINTED, OTHERWISE THE PRINTING 
REMAINS DISABLED. 

DECREMENTS THE PRINT LEVEL COUNTER . 

A MACROFILE IS AN AD-10 ASSEMBLY LANGUAGE APPLICATION ROUTINE IN 
SOURCE FORM WHICH CAN BE INCLUDED IN A USER APPLICATION PROGRAM 
WITH USER SPECIFIED INPUT/OUTPUT PARAMETERS OR ARGUMENTS. A 
MACROFILE IS SIMILIAR TO A SUBROUTINE IN A HIGH LEVEL LANGUAGE, 
WITH THE EXCEPTION THAT EACH ''CALL" TO A MACROFILE INCLUDES ANOTHER 
COPY OF THE MACROFILE CODE, WITH THE USER SPECIFIED ARGUMENTS, IN 
THE USER PROGRAM, 

THE AD-10 MACROFILE LIBRARY CONTAINS ROUTINES WHICH SUPPORT ALL 
PHASES OF MULTIVARIABLE FWNCTION GENERATION APPLICATIONS, INCLUDING 
DATA INPUT AND OUTPUT, DATA TRANSFERS WITHIN THE AD-10, BINARY AND 
SHIFT SEARCH SCHEMES (USED TO DETERMINE THE LOCATION OF INPUT 
VARIABLES IN THE DOMAIN OF THE FUNCTION), POINTER CALCULATIONS, AND 
LINEAR INTERPOLATION FOR 1,2,3,4, AND 5 VARIABLES. IN ADDITION, 
A NUMBER OF SUPPORT ROUTINES ARE INCLUDED TO PERFORM SUCH 
CALCULATIONS AS SIN'S AND COS'S, FORWARD AND INVERSE RESOLUTION, 
"SGN" FUNCTION, ETC •.. ROUT~NES WHICH PERFORM GENERAL CALCULATIONS 
SUCH AS THESE ARE CONSTANTLY BEING ADDED TO THE MACROFILE LIBRARY 
AS THEY PROVE USEFUL IN USER APPLICATIONS. THE CONVENTIONS USED 
IN WRITING MACROFILES AND IN PASSING ARGUMENTS TO MACROFILES ARE 
VERY SIMPLE, THUS USERS ~AN EASILY WRITE THEIR OWN SPECIAL 
PURPOSE MACROFILES TO AUGMENT THOSE PROVIDED IN THE LIBRARY~ 

REFER TO THE MACROFILE LIBRARY USER'S MANUAL (MFLIB) FOR A COMPLETE 
DESCRIPTION OF ALL AVAILABLE MACROFILE ROUTINES AND HOW TO USE THEM. 

ASM-14 



USING MACROFILES 

A MACROFILE IS AN AD-10 ASSEMBLY LANGUAGE APPLICATION PROGRAM. IT 
CONTAINS ITS OWN COP CONTROL PROGRAM AS WELL AS PROGRAMS FOR ALL AD-10 
PROCESSORS REQUIRED TO PERFORM THE DESIRED TASK. ARGUMENTS ARE PASSED 
TO AND FROM MACROFILES USING SYMBOLS WHICH BEGIN WITH A "#". THESE "II" 
SYMBOLS STAND FOR EITHER A TEMPORARY REGISTER NUMBER, A CONSTANT, OR A 
MEMORY ADDRESS. THE ONLY DIFFERENCE BETWEEN A "II" SYMBOL AND AN ORDINARY 
SYMBOL IS THAT THE AD-10 ASSEMBLER ALLOWS A SYMBOL WHICH BEGINS WITH "II" 
TO BE DEFINED MORE THAN ONCE. THIS ALLOWS THE USER TO CALL THE SAME 
MACROFILE MORE THAN ONCE AND TO CHANGE THE ARGUMENTS AS NECESSARY. 
IF A MACROFILE ARGUMENT DOES NOT CHANGE FROM ONE CALL TO THE NEXT 
IT IS NOT NECESSARY TO DEFINE THAT ARGUMENT MORE THAN ONCE. HOWEVER, 
BE AWARE THAT IN SOME CASES THE SAME SYMBOLIC ARGUMENT IS USED BY 
SEVERAL MACROFILES. 

SINCE BOTH THE AD-10 PROCESSORS AND THE DATA MEMORY REQUIRE PIPELINED 
PROGRAMMING TO REALIZE FULL SPEED EFFICIENT OPERATION, MOST MACROFILES 
PERFORM THE SAME TASK FOR SEVERAL SETS OF INPUTS. BECAUSE OF THIS, THE 
NAMING CONVENTION FOR MACROFILE ARGUMENTS IS TO END EACH ARGUMENT WITH 
A NUMBER TO IDENTIFY EACH ARGUMENT SET. 

FOR EXAMPLE, SUPPOSE "#IN" IS THE INPUT AND "#OUT" IS THE OUTPUT OF A 
MACROFILE CALLED "COMPUTE", AND THE CALCULATIONS ARE PERFORMED FOR 3 
SETS OF ARGUMENTS. THE FOLLOWING STATEMENTS WOULD BE REQUIRED TO DEFINE 
THE 3 SETS OF ARGUMENTS AND TO "CALL" THE MACROFILE: 

#IN 0 .EQU <VALUE1> 
III N 1 .EQU <VALUE2> 
llIN2 .EQU <VALUE 3> 
110 UT 0 .EQU <VALUE4> 
110 UT 1 .EQU <VALUE5> 
#OUT 2 .EQU <VALUE6> 

.INCLUDE COMPUTE ! "CALLS" MACROFILE 

THE AD-10 ASSEMBLER'S ".DEFINE" DIRECTIVE DOES THE EQUIVALENT OF 
MULTIPLE ".EQU" SYMBOL DEFINITIONS AND ALLOWS THE ARGUMENTS TO 
MACROFILES TO BE DEFINED MORE SIMPLY AS FOLLOWS : 

#IN .DEFINE <VALUE1>,<VALUE2>,<VALUE3> 
#OUT .DEFINE <VALUE4>,<VALUE5>,<VALUE6> 

. INCLUDE COMPUTE ! "CALLS" MACROFILE 

SOME MACROFILES MUST DEFINE THEIR OWN INTERNAL SYMBOLS FOR ADDRESS 
CALCULATIONS OR FOR TEMPORARY STORAGE LOCATIONS; WHENEVER A MACROFILE 
DOES DEFINE A SYMBOL INTERNALLY, THE SYMBOL ALWAYS BEGINS WITH "1111", 
THUS INTERNAL SYMBOLS SHOULD NEVER CONFLICT WITH USER SYMBOLS OR OTHER 
MACROFILE ARGUMENTS. 

ASM-15 



USING MACROFILES (CONT.) 

THE GENERAL FORMAT FOR MACROFILES IN AD-10 ASSEMBLY LANGUAGE NOTATION 
IS AS FOLLOWS: 

.PROFF 

.PROFF 

.PAGE 

PRECEDE WITH A ".PRON" TO PRINT CODE 
PRECEDE WITH ANOTHER ".PRON" TO PRINT DESCRIPTION 
STARTING AT THE TOP OF THE NEXT PAGE 

DESCRIPTION OF MACROFILE 

.PRON 

.COP 
!'********************************** 
! COP CONTROL PROGRAM 
!*********************************** 
! PROGRAMS FOR ANY OTHER PROCESSORS 
!*********************************** 

.COP 

.PRON ! END OF MACROFILE 

THE USER MUST SPECIFY ONE .PRON IN THE PROGRAM PRIOR TO INCLUDING A 
MACROFILE FOR THE MACROFILE CODE TO BE PRINTED IN THE PROGRAM LISTING. 
A DETAILED DESCRIPTION OF THE MACROFILE AND ITS ARGUMENTS CAN ALSO 
BE PRINTED BY USING A SECOND ".PRON", HOWEVER THIS IS NOT RECOMMENDED 
SINCE SOME OF THE DESCRIPTIONS ARE QUITE LONG AND THE SAME INFORMATION 
IS CONTAINED IN THIS MANUAL. NOTICE THAT MACROFILES END WITH A ".COP" 
DIRECTIVE, THUS A MACROFILE CAN BE FOLLOWED WITH COP CODE WITHOUT 
ISSUING ANOTHER ".COP'' DIRECTIVE. 

THERE ARE A FEW RULES WHICH MUST BE FOLLOWED WHEN INCLUDING MACROFILES 
TO AVOID CONFLICTS AND ERRONEOUS RESULTS AT RUNTIME : 

1) UPON ENTRY TO A MACROFILE ALL AD-10 PROCESSORS MUST BE STOPPED 
AND MUST NOT BE IN THE MIDDLE OF A "PAUSE" INSTRUCTION. 
(NOTE: PROCESSOR(S) NOT USED BY A MACROFILE COULD POSSIBLY 
BE PROGRAMMED TO PERFORM- SOME INTERNAL OPERATIONS IN PARALLEL 
WITH THE MACROFILE, BUT THIS IS NOT RECOMMENDED.) 

2) ALSO UPON ENTRY A READ FROM MEMORY AND/OR THE IOCC MUST 
NOT BE IN PROGRESS, AS THE DATA MIGHT CONFLICT WITH DATA 
THE MACROFILE PUTS ON THE MULTIBUS. 

3) THE USER SHOULD TAKE CARE PRIOR TO AND/OR FOLLOWING ANY 
MACROFILE WHICH ACCESSES DATA MEMORY TO AVOID A MEMORY 
PAGE CONFLICT. IF IN DOUBT, A "PAUSE 2" INSTRUCTION PRIOR 

.TO AND/OR FOLLOWING SUCH A MACROFILE WILL AVOID ANY POSSI­
BILITY OF A MEMORY PAGE CONFLICT (FOR THE WORST CASE 
SITUATION). 

4) ALL UNUSED MACROFILE ARGUMENTS MUST BE DEFINED SO AS NOT TO 
CONFLICT WITH THE USED ARGUMENTS. FOR EXAMPLE, IF A TRANSFER 
MACROFILE IS USED TO TRANSFER 6 VALUES TO MEMORY, WHEN IT 
HAS THE CAPABILITY TO TRANSFER 8 VALUES, THE 2 UNUSED MEMORY 
ADDRESSES MUST BE DEFINED SUCH THAT THEY DO NOT CAUSE A 
MEMORY ACCESS ERROR. THE INDIVIDUAL MACROFILE DESCRIPTIONS 
SUGGEST RECOMMENDED DEFINITIONS FOR UNUSED ARGUMENTS. 

ASM-16 



OPERATING PROCEDURES 

ASM IS SUPPLIED AS AN INSTALLED TASK ON THE RSX-11 SYSTEM DEVICE. 
ASM IS THEN LOADED AND RUN AS ARE OTHER RSX-11 SYSTEM PROGRAMS, BY 
TYPING (IN RESPONSE TO THE MCR PROMPT) : 

MCR>ASM [<COMMAND STRING>] <CR> 
OR, MCR>RUN $ASM <CR> 
OR, MCR>RUN ... ASM <CR> 

THE COMMAND STRING IS OPTIONAL HERE. IF THE COMMAND STRING IS NOT ENTERED 
WITH THE MCR COMMAND, ASM WILL RESPOND WITH ITS OWN PROMPT 

MCR>ASM <CR> 
ASM><COMMAND STRING> <CR> 

THE GENERAL FORMAT OF THE ASM COMMAND STRING IS DEFINED AS FOLLOWS 

@<FILE SPECIFICATION> 
OR, [<OBJECT>J,[<LISTING>]=<SOURCE>[l<SWITCHES>J 

THE FIRST FORM INDICATES THAT THE COMMAND STRING(S) WILL COME FROM THE 
SPECIFIED COMMAND FILE. THE SECOND FORM CONSISTS OF THE APPROPRIATE 
ASM COMMAND STRING WITH THE OPTIONAL SWITCHES. IF THE INDIRECT COMMAND 
FILE FORMAT IS USED ON THE SAME LINE AS THE MCR PROMPT, CONTROL WILL 
RETURN TO MCR AFTER PROCESSING THE ASM COMMANDS IN THE FILE : 

MCR>ASM @DKO:FILE.CMD;3 <CR> 
MCR> 

IF THE INDIRECT COMMAND FILE IS SPECIFIED AFTER THE ASM PROMPT, CONTROL 
WILL REMAIN WITH ASM FOLLOWING COMMAND FILE PROCESSING : 

MCR>ASM <CR> 
ASM>@FILE <CR> 
ASM> 

THE AVAILABLE SWITCHES ARE AS FOLLOWS (DEFAULTS ARE UNDERLINED) 

/LI:SRC:SYM:CRF:TIM 

/NL:SRC:SYM:CRF:TIM 

/SY:N 

/CR:N 

/NI 

IDENTIFIES WHAT ITEMS ARE TO BE 
INCLUDED IN THE LISTING (SOURCE, 
SYMBOL TABLE, CROSS REFERENCE, 
AND/OR TIMING DIAGRAM). 

IDENTIFIES WHAT ITEMS ARE NOT TO 
BE INCLUDED IN THE LISTING . 

SETS THE SIZE OF THE SYMBOL TABLE 
T 0 " N" ( DEC IM AL ) (DEFAULT IS 5 0 0 
SYMBOLS). THE MAXIMUM SIZE IS 1000 
SYMBOLS, WITHOUT REBUILDING ASM. 

SETS THE SIZE OF THE CROSS-REFERENCE 
TABLE TO "N" (DECIMAL) (DEFAULT IS 1000). 

IGNORE ALL ".INCLUDE'S" IN THE 
SOURCE CODE. 

A~M-17 



OPERATING PROCEDURES (CONT.) 

/ID 

/PG:N 

PRINTS THE ASSEMBLER VERSION NUMBER 
ON THE CONSOLE TERMINAL. 

SETS THE LISTING SIZE TO "N" LINES 
PER PAGE (DEFAULT IS 58). 

THE DEFAULT SWITCH SETTINGS ARE AS FOLLOWS : 

/LI:SRC:SYM /NL:CRF:TIM /SY:500 /CR:1000 /PG:58 

THE ASSEMBLER USES A FILE FOR THE SYMBOL TABLE AND ONE FOR THE 
CROSS-REFERENCE TABLE. EACH SYMBOL REQUIRES 8 WORDS OF FILESPACE, 
AND EACH CROSS-REFERENCE REQUIRES 2 WO~DS OF FILESPACE. THE SWITCHES 
MAY BE PUT ANYWHERE IN THE COMMAND LINE, BUT A GOOD PRACTICE TO FOLLOW 
IS ro PUT /LI, /NL, AND /PG ON THE LISTING FILE; TO PUT /SY, /CR, 
AND /NI ON THE SOURCE FILE; AND TO USE /ID AS A SINGLE COMMAND TO ASM. 

ASM WILL APPEND THE FOLLOWING DEFAULT EXTENSIONS TO THE FILENAMES, IF 
NO EXTENSION IS SPECIFIED BY THE USER : 

FILE 

OBJECT FILE 

LISTING FILE 

SOURCE FILE 

DEFAULT EXTENSION 

.MOD 

.LST 

.ASM 

AN EXAMPLE SEQUENCE OF COMMANDS TO ASSEMBLE AND RUN AN AD-10 PROGRAM 
IS AS FOLLOWS : 

MCR>ASM <CR> 
ASM>/ID <CR> 
AD-10 ASSEMBLER --- UL107 

ASM>TEST,TEST/LI:TIM=TEST/SY:700/NI <CR> 
ASM><CONTROL-Z> 
MCR>ADX <CR> 
ADX>; NOW THE AD-10 EXECUTIVE CAN BE USED TO RUN THE <CR> 
ADX>; OBJECT PROGRAM <CR> 
ADX>RUN TEST/MO <CR> 

THIS EXAMPLE ASSUMES THAT THE SOURCE CODE IS IN A FILE "TEST.ASM". 
THE OBJECT CODE WILL BE PUT INTO A FILE CALLED "TEST.MOD" AND THE 
LISTING WILL BE PUT INTO ANOTHER FILE CALLED "TEST.LST". THE LISTING 
WILL INCLUDE THE SOURCE CODE, THE SYMBOL TABLE, AND A BUS TIMING 
DIAGRAM. THE SIZE OF THE SYMBOL TABLE HAS BEEN INCREASED TO 700 
SYMBOLS TO ALLOW FOR A LARGER NUMBER OF SYMBOLS, AND ALL ".INCLUDE" 
STATEMENTS IN THE SOURCE CODE WILL BE IGNORED. THE /NL SWITCH IS 
NORMALLY USED ONLY FOR DEBUGGING THE PROGRAM'S MULTIBUS TIMING (MACRO­
FILES ARE ASSUMED ERROR-FREE ... ).THE OBJECT PROGRAM IS THEN 
LOADED INTO THE AD-10 AND RUN VIA THE AD-10 EXECUTIVE (ADX). 

ASM-18 



COMMAND LINE ERROR MESSAGES 

ASM I/O ERROR BAD INDIRECT FILE 

ASM SYNTAX ERROR COMMAND LINE SYNTAX PROBLEM 

ASM INPUT FILE ???? MISSING INPUT FILESPEC 

ASM INVALID LIST OPTION /LI: XXX "XXX" IS BAD 

ASM INVALID NOLIST OPTION /NL:XXX "XXX" IS BAD 

ASM INVALID SYMBOL TABLE SIZE /SY:N "N" IS BAD 

ASM INVALID CROSS-REFERENCE SIZE /CR:N "N" IS BAD 

ASM INVALID PAGE SIZE /PG:N "N" IS BAD 

THE FOLLOWING MESSAGES SHOULD NEVER APPEAR. THEY INDICATE THAT SOMETHING 
IS WRONG WITH THE ASSEMBLER OR WITH THE FILE SYSTEM : 

ASM STACK OVERFLOW - PASS 7 

ASM TOKENS DO NOT MATCH <T7> <T1> <STMT> 

ASM-19 



LISTING ERROR MESSAGES 

ALL OF THE APPROPRIATE ERROR MESSAGES WILL BE PRINTED ON THE FIRST PAGE 
OF THE ASSEMBLY LISTING. IF NONE ARE PRINTED, NO ERRORS WERE DETECTED. 
THE STATEMENT(S) IN THE LISTING WITH ERRORS WILL ALSO BE FLAGGED WITH 
AN "E" NEXT TO THE STATEMENT NUMBER ON THE LISTING. 

101 ** 
102 
103 
104 
105 
106 
107 
108 
109 

201 
202 
203 * 
204 ** 
205 ** 

301 ** 
302 
303 
304 
305 
306 
307 
308 
309 
310 
311 
312 
313 
314 
315 
316 

401 
402 
403 
404 ** 

501 ** 
502 

STACK OVERFLOW -- CHECKING ABORTED 
TOO MANY INCLUDES 
ILLEGAL CHARACTER IN OCTAL FIELD 
NO PRODUCTION APPLICABLE (SYNTAX) 
ILLEGAL CHARACTER 
STRING NOT TERMINATED BY. ' 
ILLEGAL CONSTANT 
CONSTANT NOT TERMINATED BY ' 
ILLEGAL SYMBOL PAIR (SYNTAX) 

SYMBOL TOO LONG TO DEFINE 
DUPLICATE SYMBOL 
SYMBOL TABLE OVERFLOW I OH DARN 
STACK OVERFLOW - PASS 2 
CROSS REFERENCE TABLE OVERFLOW 

STACK OVERFLOW - PASS 3 
INVALID MICRO-INSTRUCTION IN COP 
COP INSTRUCTION HAS INVALID OPERAND(S) 
INVALID MICRO-INSTRUCTION IN DEP 
DEP INSTRUCTION HAS INVALID OPERAND(S) 
INVALID MICRO-INSTRUCTION IN ARP 
INVALID IA STATEMENT IN ARP 
INVALID ARP EXPRESSION 
ARP MOV HAS INVALID OPERAND(S) 
EXPRESSION LIST TOO LONG 
SYMBOL NOT DEFINED 
PAGE ADDRESS OUT OF RANGE 
WORD ADDRESS OUT OF RANGE 
MAP STATEMENT HAS INVALID OPERAND(S) 
INVALID PAUSE COUNT 
INVALID SCRATCH REGISTER 

ILLEGAL PROCESSOR FOR TIMING 
ILLEGAL NON-LINEAR COP CODE 
PROCESSORS ACTIVE AT JUMP 
STACK OVERFLOW - PASS 4 

STACK OVERFLOW - PASS 5 
INSTRUCTION NOT USED IN TIMING 

* TOO MANY SYMBOLS : INCREASE SYMBOL TABLE SIZE ( RE-ASSEMBLE 
USING "/SY:N" SWITCH, WITH 500<N<=1000 ) 

** THESE ERROR MESSAGES SHOULD NEVER BE SEEN ! 

ASM-20 



TIMING DIAGRAM ERROR MESSAGES 

THE FOLLOWING MNEMONIC ERROR MESSAGES ARE PRINTED IN THE 'COMMENTS' 
COLUMN OF THE MULTIBUS TIMING DIAGRAM, AND INDICATE POSSIBLE PROGRAMMING 
ERRORS. IN SOME INSTANCES (SEE THE FIRST COP INSTRUCTION IN THE EXAMPLE 
PROGRAM AT THE END OF THIS MANUAL) A TIMING ERROR WON'T REALLY EXIST 
BECAUSE OF THE WAY IN WHICH A PARTICULAR INSTRUCTION HAS BEEN USED : 

DCF DATA CONTENTION DURING FIRST MULTIBUS CYCLE 
DCS DATA CONTENTION DURING SECOND MULTIBUS CYCLE 
ACF ADDRESS CONTENTION DURING FIRST MULTIBUS CYCLE 
ACS ADDRESS CONTENTION DURING SECOND MULTIBUS CYCLE 
NSOF NO SOURCE DURING FIRST MULTIBUS CYCLE 
NSOS NO SOURCE DURING SECOND MULTIBUS CYCLE 
NSIF NO SINK DURING FIRST MULTIBUS CYCLE 
NSIS NO SINK DURING SECOND MULTIBUS CYCLE 

NOTE THE TERM "SOURCE" REFERS TO AN INSTRUCTION WHICH 
PUTS A DATA VALUE OR AN ADDRESS VALUE ONTO THE 
MULTIBUS. 

THE TERM "SINK" REFERS TO AN INSTRUCTION WHICH TAKES 
A DATA VALUE OR ADDRESS VALUE OFF OF THE MULTIBUS. 

ASM-21 



LISTING AND TIMING DIAGRAM FORMATS 

THE FOLLOWING DIAGRAMS INDICATE THE FORMAT OF THE 132-COLUMN ASSEMBLER 
LISTING, INCLUDING THE SOURCE AND OBJECT LISTING, THE MULTIBUS TIMING 
DIAGRAMS (BOTH DATA AND ADDRESS), AND THE SYMBOL TABLE AND CROSS-REFER­
ENCES. THE "/LI:TIM" SWITCH MUST BE SPECIFIED TO GET THE TIMING 
INFORMATION, AND THE "/LI:CRF" SWITCH MUST BE SPECIFIED TO GET THE 
CROSS-REFERENCE INFORMATION. 

<---------------------------- 13? COLUMNS -----------------------------> 

USER-DEFINED PROGRAM TITLE ASM VERSION DATE TIME PAGE 

LOCATION OBJECT CODE LINE # SOURCE STATEMENTS 
. . . . . . . . . ................ . . . . . . . . .............................. . 

. . . . . . . . . . . . . . . . . ................. . . . . . . . . .............................. . 

DATA/ADDR MULTIBUS TIMING INFORMATION ASM VERSION DATE TIME PAGE 

CURRENT 
STATEMENT 1ST SOURCE 1ST SINK 2ND SOURCE 2ND SINK 
FOR EACH FOR EACH FOR EACH FOR EACH FOR EACH 

TIME PROCESSOR PROCESSOR PROCESSOR PROCESSOR PROCESSOR COMMENTS 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ......... . . . . . . . . . ........ 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...... . 

SYMBOL TABLE 

PROCESSOR 
WHERE 

SYMBOL VALUE DEFINED 
. . . . . . . . . . . . ....... . 

. . . . . . . . . . . . . . . . . . . . . . . . . . 

STATEMENT 
NUMBER OF 
DEFINITION 

. . . . . . . . . . . . 

ASM VERSION DATE TIME PAGE 

ALL REFERENCES 
TO THE SYMBOL (/LI:CRF OPTION) . ................................ . 

. . .................................. 
ASM-22 



OBJECT MODULE FORMAT 

THE OBJECT MODULE IS IN A FORMAT WHICH ALLOWS IT TO BE LOADED INTO THE 
AD-10 BY THE AD-10 EXECUTIVE PROGRAM (ADX). THE FORMAT IS AS FOLLOWS : 

1. A HEADER, FOLLOWED BY 
2. THE CODE (INSTRUCTIONS OR DATA), FOLLOWED BY 
3. OTHER HEADER/CODE MODULES (IF MORE THAN ONE PROGRAM 

SECTION WAS SPECIFIED IN THE ASSEMBLY), FOLLOWED BY 
4. < END>. 

THE HEADER FORMAT TAKES TWO FORMS : 

1. FOR A PROCESSOR PROGRAM SECTION THE HEADER IS : 

<PROCESSOR> <STARTING LOCATION> <NUMBER OF LOCATIONS> 

WHERE, <PROCESSOR> = < ARP>, < COP>, < DEP>, < MAP> 
<STARTING LOCATION> = 0-1777 
<NUMBER OF LOCATIONS> = 0-2000 

2. FOR A DATA MEMORY SECTION THE HEADER IS : 

< DAT> <PAGE> <STARTING LOCATION> <NUMBER OF LOCATIONS> 

WHERE, <PAGE> = 0-77 
<STARTING LOCATION> = 0-7777 
<NUMBER OF LOCATIONS> = 0-10000 

THE FORTRAN FORMAT WHICH IS USED TO WRITE BOTH HEADERS IS AS FOLLOWS 

FORMAT (A4,4X,06,1X,06,1X,06) 

THE OCTAL CODE FOLLOWS THE HEADER, ORGANIZED AS 10 DATA VALUES PER 
LINE AS FOLLOWS : 

<111 > <112 > <113 > <114> <115> <116 > <117 > <118> <119 > <1110> 
<1111> <1112> <llN> 

NOTE : EACH DATA VALUE WILL REPRESENT ONE 16-BIT FIELD OF A PROCESSOR 
INSTRUCTION, OR ONE 16-BIT DATA MEMORY WORD. 

THE FORTRAN FORMAT WHICH IS USED TO WRITE THE DATA VALUES IS 

FORMAT (10(1X,06)) 

A SAMPLE PROGRAM OBJECT MODULE IS AS FOLLOWS 

COP 0 21 
22 210 6 10401 0 40040 22 400 0 40020 

0 10401 0 130002 0 40040 0 10401 0 1 0401 
0 10401 0 40020 10 10401 0 30005 0 10400 
0 130000 0 20000 

ARP 0 10 
0 130200 0 0 0 0 110000 0 0 0 
0 0 0 0 0 106 0 0 0 0 
0 0 0 0 60400 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 

END 

ASM-23 



AN EXAMPLE ASSEMBLER PROGRAM 

THE EXAMPLE AD-10 PROGRAM ON THE FOLLOWING PAGES SHOULD 
HELP TO CLARIFY THE INFORMATION WHICH HAS BEEN PRESENTED 
IN THIS MANUAL. AT THE END OF THE DISCUSSION IS PRESENTED 
THE SEQUENCE OF COMMANDS TO ASM WHICH WERE USED TO ASSEMBLE 
THE SOURCE FILE FOR THIS PROGRAM, THE LISTING OF WHICH IS 
INCLUDED. FOLLOWING THE SOURCE LISTING IS THE OUTPUT OF 
THE ASSEMBLER. FOLLOWING THE LISTING OUTPUT OF THE 
ASSEMBLER IS A COPY OF THE OBJECT MODULE WHICH WAS 
GENERATED FOR THIS PROGRAM. 

PROGRAM DESCRIPTION 

THIS AD-10 PROGRAM (SINE.ASM) READS AN INPUT VALUE FROM ADC CHANNEL 0 
AND USES THIS VALUE TO DETERMINE THE DATA MEMORY LOCATIONS TO USE 
FOR DOING A TABLE-LOOKUP IN A TABLE OF FUNCTION DATA VALUES FOR THE 
FUNCTION SIN(X). THE TABLE OF DATA VALUES MAY BE CREATED BY THE 
FOLLOWING FORTRAN PROGRAM : 

C SIN.FTN 
c 
C PROGRAM TO CREATE A FUNCTION DATA FILE 
C (SIN.DAT) FOR THE FUNCTION Y=SIN(X) 
c 

c 

CALL ASSIGN (1,'SIN.DAT',7) 
DEFINE FILE 1 (513,2,U,IREC) 

DO · 1 0 0 I = 1 , 5 1 3 
Y= SIN ( CCI-257)/256.) * 3.14159) 
WR IT E ( 1 'I) Y 

100 CONTINUE 
c 

CALL CLOSE(1) 
END 

THIS FORTRAN PROGRAM CREATES A DATA FILE (SIN.DAT) WHICH CONTAINS 
513 FUNCTION DATA VALUES FROM SIN(-PI) TO SIN(+PI), AND WHICH MAY 
BE LOADED INTO THE AD-10 DATA MEMORY VIA ADX. THE AD-10 PROGRAM 
WILL CALCULATE A BREAKPOINT VALUE TO USE AS AN INDEX INTO THIS TA­
BLE BASED UPON THE VALUE IT READS FROM THE ADC (-1.0 TO +1.0). IT 
WILL THEN INTERPOLATE BETWEEN FUNCTION VALUES TO CALCULATE THE OUT­
PUT VALUE FOR THE CURRENT ADC INPUT. THIS FUNCTION VALUE IS THEN 
SENT TO DAC CHANNEL 8 (OCTAL 010). THE DAC WILL BE UPDATED TO 
A NEW VALUE EVERY 12.5 MICROSECONDS, AS THIS IS THE TIME RE-
QUIRED FOR A COMPLETE PROGRAM LOOP. THUS, WHEN A (-1.0 TO +1.0) 
RAMP FUNCTION IS INPUT TO THE ADC, A SINEWAVE FUNCTION WILL BE 
GENERATED AT THE DAG'S OUTPUT. 

THE FOLLOWING PAGE CONTAINS A BRIEF DISCUSSION OF THIS PROGRAM. 

ASM-24 



AN EXAMPLE ASSEMBLER PROGRAM (CONT.) 

AS YOU STUDY THIS EXAMPLE, THERE ARE SEVERAL COMMENTS WHICH CAN BE 
MADE REGARDING THIS PROGRAM AND AD-10 PROGRAMMING TECHNIQUES IN GENERAL. 
THE PROGRAM BEGINS WITH A HEADER, BRIEFLY DESCRIBING THE ALGORITHM. 
FOLLOWING THE HEADER IS THE SYMBOL DEFINITION SECTION. NOTICE THAT 
ALL NUMERIC CONSTANTS WILL BE INTERPRETED AS DECIMAL NUMBERS. BECAUSE 
NO PROGRAM SECTION DIRECTIVE IS GIVEN, THESE SYMBOLS WILL APPEAR IN 
THE "DAT" PROGRAM SECTION IN THE SYMBOL TABLE LISTING, SINCE ".DAT" IS 
THE DEFAULT PROGRAM SECTION. SINCE THE COP IS THE PROCESSOR WHICH 
USUALLY CONTROLS THE OTHER PROCESSORS, IT IS A GOOD IDEA TO ALWAYS MAKE 
".COP" THE FIRST PROGRAM SECTION AFTER THE DATA MEMORY SECTION. EXCEPT 
FOR PROVIDING CONSISTENCY FROM PROGRAM TO PROGRAM, THE ORDER OF THE 
PROGRAM SECTIONS IS NOT IMPORTANT (BE AWARE THAT UPON RETURNING FROM 
A MACROFILE THE PROGRAM SECTION WILL BE ".COP"). 

NOTICE THE USE OF COMMENTS IN THIS PROGRAM. NOT ONLY DO THEY DESCRIBE 
WHAT THE INSTRUCTIONS ARE DOING, BUT THEY ALSO INCLUDE PRECALCULATED 
TIMING INFORMATION. YOU MUST CALCULATE THIS INFORMATION IN ORDER TO 
INSURE THAT THE PROCESSORS WILL COMMUNICATE WITH EACH OTHER AT THE 
CORRECT TIMES, SO INCLUDE IT IN THE SOURCE CODE AS COMMENTS. IF YOU 
HAVE MISCALCULATED THE TIMING SOMEWHERE, A COMPARISON OF THESE EX­
PECTED TIMES (WHICH ARE INSTRUCTION CYCLES, UNITS OF 100 NSEC) WITH 
THE TIMES ON THE ADDRESS OR DATA MULTIBUS TIMING DIAGRAMS WILL QUICKLY 
LOCATE THE ERROR. 

NOTICE HOW THE PROCESSORS INTERACT IN THIS PROGRAM. AFTER THE INITIAL 
10 MICROSECOND DELAY (6.4 MICROSEC FROM THE PAUSE INSTRUCTION, AND 3.6 
MICROSEC FROM THE RFR INSTRUCTION AND ITS DELAY), THE COP TELLS THE 
IOCC TO PUT THE ADC VALUE ONTO THE MULTIBUS. THE DATA IS NOT PRESENT ON 
THE BUS FOR 5 MORE INSTRUCTION CYCLES, AT WHICH TIME THE ARP SINKS IT 
TO USE IN ITS CALCULATION OF THE FUNCTION VALUE INDEX. NOTICE HOW THE 
DEP ALSO SENDS CONSTANTS TO THE ARP AT THE APPROPRIATE TIMES FOR USE IN 
THE ARP'S INDEX CALCULATION, AND SEE HOW THE ARP RETURNS THE INDEX VALUE 
TO THE DEP SO THAT IT MAY BE PUT INTO THE MAP/DEP "I" REGISTER AND USED 
BY THE MAP TO READ THE APPROPRIATE FUNCTION VALUE. AFTER THE 5 CYCLE DELAY 
TO READ THE PAIR OF VALUES FROM DATA MEMORY, THE ARP WILL SINK THE VALUES 
FROM THE MULTIBUS. THE ARP WILL THEN SOURCE THE FUNCTION VALUE ONTO THE 
MULTIBUS AT THE APPROPRIATE TIME SO THAT IT WILL BE THERE WHEN THE COP 
TELLS THE IOCC TO WRITE THE VALUE ON THE MULTIBUS TO DAC CHANNEL 010. 

THE ASSEMBLER'S DATA MULTIBUS TIMING DIAGRAM FOR THIS PROGRAM SHOWS AN 
"NSOF", OR "NO SOURCE DURING FIRST MULTIBUS CYCLE", ERROR OCCURRING 
ON THE INITIAL COP STATEMENT (PFI 3,ADC). THIS, HOWEVER, IS NOT REALLY 
AN ERROR CONDITION HERE, BECAUSE THIS PFI INSTRUCTION IS NOT INTENDED 
TO TELL THE IOCC TO TAKE THE DATA OFF OF THE MULTIBUS, BUT MERELY TO 
SEND THE COMMAND WHICH INITIATES ADC CONVERSION. 

THE FOLLOWING COMMANDS WERE USED TO CREATE THE SINE FUNCTION DATA (THE 
FORTRAN PROGRAM WAS IN FILE SIN.FTN), ASSEMBLE SINE.ASM, AND LOAD AND 
RUN THE PROGRAM 

MCR>FOR 
MCR>TKB 
MCR>RUN 
TTO 
MCR>ASM 
MCR>ADX 
MCR>ADX 
MGR> 

SIN,SIN=SIN <CR> 
SIN,SIN/SH:SIN <CR> 
SIN <CR> 

STOP 
SINE,SINE/LI:TIM:CRF/PG:60:SINE 
LOAD SIN.DAT/AL:O:O <CR> 
RUN SINE/MO <CR> 

ASM-25 

<CR> 



AD-10 SINEWAVE PROGRAM (SINE.ASM) 

1) READS "X" FROM AN ADC CHANNEL. 
2) PERFORMS A SHIFT SEARCH AND DELTA CALCULATION ON "X". 
3) INTERPOLATES FOR A ONE VARIABLE FUNCTION SIN(X). 
4) SETS DAC = SIN(X) 
5) REPEATS STEPS 1) THROUGH 4) EVERY 12.5 MICRO-SECONDS. 

ADC 
DAC 
NBPS 
T 
x 
I 
SIN 

BEGIN 

. DECIMAL 

.EQU 0 

.EQU 8 

.EQU 513 

. DEFINE O, 1,2 

. EQU 3 

.EQU 0 

.EQU 0::0 

.COP 
PF I 3,ADC 
PAUSE 63 

CONSTANTS WILL BE DECIMAL NUMBERS . 
USE ADC CHANNEL 0 
USE DAC CHANNEL 8 
NUMBER OF BREAKPOINTS FOR SINE FUNCTION. 
ARP TEMPORARY REGISTERS . 
ARP REGISTER FOR INPUT VARIABLE "X" . 
MAP/DEP BREAKPOINT INDEX REGISTER. 
DATA MEMORY ADDRESS OF SINE FUNCTION DATA. 

! 0 ·INITIATE ADC CONVERSION. 
! 1 WAIT 10 MICRO-SECONDS 

RFR !65 FOR CONVERSION TO COMPLETE. 
GIF 2,ADC ! 101 READ CONVERTED VALUE. 
NOP '1 02 
START $DEP 103 
START $ARP 104 
PAUSE 3 105 
START $MAP STOP $DEP 109 
NOP 11 0 
STOP $MAP 1 1 1 
PAUSE 5 112 
PFI 3,DAC 1 1 8 SET DAC = SIN(X) 
STOP $ARP 11 9 
HLT 0 120 HALT (MAYBE). 
LPC $DEP,O 121 RESET PROGRAM COUNTERS. 
LPC $MAP,O 122 
LPC $ARP,O 123 
JMP BEGIN 124 GO DO IT AGAIN ... 

.DEP 
l,.SI 32768/(NBPS-1) !104 SEND CONSTANTS FOR 
LSI (NBPS-1)/2 ! 1 05 SHIFT SEARCH AND DELTA 
LSI 32768/((NBPS-1)/2) PAUSE 2 ! 1 06 CALCULATION IN ARP. 
SIS I !109 STORE BP INDEX. 

.MAP 
RAID SIN,I PAUSE 1 ! 11 0 READ FUNCTION VALUES. 

.ARP 
MOVO MOV1 MOV2 S,B,R ; MOV3 R,TO ! 1 05 
MOVO S,A,R MOV1 R,X MOV2 S,C,D,R;MOV3 R,T1 ! 1 06 

FA (A-B)*C+D; MOVO MOV1 MOV2 S,R MOV3 R,T2 ! 1 07 
MOVO T 1, B MOV1 T2,C MOV2 MOV3 R,A,L ! 1 08 

IA (A-B)*C MOVO MOV1 MOV2 MOV3 •109 
MOVO T 1, C MOV1 X,A MOV2 MOV3 R,B 11 0 

IA (A-B)*C MOVO MOV1 MOV2 MOV3 1 1 1 
MOVO MOV1 MOV3 R,C PAUSE 2 11 2 
MOVO S,B,D MOV1 MOV2 S,A MOV3 11 5 

FA (A-B)*C+D; MOVO MOV1 MOV2 MOV3 11 6 
MOVO MOV1 MOV2 MOV3 . 11 7 
MOVO MOV1 R,L MOV2 PAUSE ! 11 8 

.END 
ASM ... 26 



AD-10 ASSEMBLER --- UL107 13-JUL-77 09:50:59 PAGE 

LOCATION OBJECT CODE LINE# SOURCE STATEMENT 

1 AD-10 SINEWAVE PROGRAM (SINE.ASM) 
2 
3 j~ READS flX" FROM AN ADC CHANNEL. 
4 PERFORMS A SHIFT SEARCH AND DELTA CAL~ULATION ON "X". 
5 3) INTERPOLATES FOR A ONE VARIABLE FUNCTION SIN(X). 
6 4) SETS DAC = SIN(X) 
7 5) REPEATS STEPS 1) THROUGH 4) EVERY 12.5 MICRO-SECONDS. 
8 
9 . DECIMAL CONSTANTS WILL BE DECIMAL NUMBERS. 

0000000 10 ADC .EQU 0 USE ADC CHANNEL 0 
0000010 11 DAC .EQU 8 USE DAC CHANNEL 8 
0001001 12 NBPS .EQU 513 NUMBER OF BREAKPOINTS FOR SINE FUNCTION. 

13 T . DEFINE 0, 1, 2 ARP TEMPORARY REGISTERS. 
0000003 14 x . EQU 3 ARP REGISTER FOR INPUT VARIABLE "X" . 
0000000 15 I . EQU 0 MAP/DEP BREAKPOINT INDEX REGISTER. 
0000000 16 SIN . EQU D:: 0 DATA MEMORY ADDRESS OF SINE FUNCTION DATA. 

17 
18 .COP 

0000000 000000 100600 19 BEGIN PFI 3,ADC !O INITIATE ADC CONVERSION. 
0.000001 000000 000077 20 PAUSE 63 ! 1 WAIT 10 MICRO-SECONDS 
0000002 000000 011400 21 RFR !65 FOR CONVERSION TO COMPLETE. 
0000003 000000 106400 22 GIF 2,ADC ! 101 READ CONVERTED VALUE. 
0000004 000000 000000 23 NOP ! 102 
0000005 000000 040010 24 START $DEP !103 

)::::o 
0000006 000000 040040 25 START $ARP ! 104 

(./') 0000007 000000 000003 26 PAUSE 3 ! 105 
~ 0000010 000000 04-0006 27 START $MAP STOP $DEP ! 109 
I 0000011 0000-00 000000 28 NOP ! 110 N 

'-J 0000012 000000 040001 29 STOP $MAP ! 111 
DOOOO 1 3 000000 000005 30 PAUSE 5 ! 112 
0000014 000000 100610 31 PFI 3,DAC ! 118 SET DAC = SIN(X) 
0000015 000000 040020 32 STOP $ARP ! 119 
0000016 000000 -010400 33 HLT 0 ! 120 HALT (MAYBE). 
0000017 000000 120000 34 LPC $DEP,O ! 121 RESET PROGRAM COUNTERS. 
0000020 000000 110DOO 35 LPC $MAP,O ! 122 
0000021 000000 130000 36 LPC $ARP,O !123 
0000022 000000 020000 37 JMP BEGIN !124 GO DO IT AGAIN ... 

38 
39 • DEP 

0000000 140001 000100 40 LSI 32768/(NBPS-1) 1104 SEND CONSTANTS FOR 
0000001 140001 000400 41 LSI (NBPS-1)/2 ! 105 SHIFT SEARCH AND DELTA 
000-0002 142001 000200 42 LSI 32768/((NBPS-1)/2) PAUSE 2 ! 106 CALCULATION IN ARP. 
0000003 OOODOO 003400 43 SIS I !109 STORE BP INDEX. 

44 
45 .MAP 

0000000 000071 000000 000000 46 RAID SIN,I PAUSE 1 ! 11 0 READ FUNCTION VALUES. 
47 
48 .ARP 

0000000 000000 000000 000000 110200 040200 49 MOVO MOV1 MOV2 S,B,R ; MOV3 R,TO ! 105 
0000001 000000 120200 040203 106200 040201 50 MOVO S,A,R MOV1 R,X MOV2 S,C,D,R;MOV3 R,T1 ! 106 
0000002 000236 000000 00000-0 100200 040202 51 FA (A-B)*C+D; MOVO MOV1 MOV2 S,R MOV3 R,T2 ! 107 
0000003 000000 150001 144002 000000 060400 52 MOVO T 1, B MOV1 T2, C MOV2 MOV3 R,A,L ! 108 
0000004 003036 000000 000000 000000 000000 53 IA (A-B)*C MOVO MOV1 MOV2 MOV3 ! 1 09 
0000005 000000 144001 160003 000000 050000 54 MOVO T 1, C MOV1 X,A MOV2 MOV3 R,B ! 110 
0000006 003036 000000 000000 000000 000000 55 IA (A-B)*C MOVO MOV1 MOV2 MOV3 ! 111 
0000007 020000 000000 000000 000000 044000 56 MOVO MOV1 MOV3 R,C PAUSE 2 ! 112 



):::o 
V> 
3: 
I 

N 
00 

LOCATION 

0000010 
0000011 
0000012 
0000013 

OBJECT CODE 

000000 112000 
000236 000000 
000000 000000 
010000 000000 

LINE# 

000000 120000 000000 57 
000000 000000 000000 58 
000000 000000 000000 59 
040400 000000 000000 60 

61 

AD-10 ASSEMBLER --- UL107 1 3-JUL-77 09:50:59 PAGE 2 

SOURCE STATEMENT 

MOVO S,B,D MOV1 MOV2 S,A MOV3 115 
FA (A-B)*C+D; MOVO MOV1 MOV2 MOV3 116 

MOVO MOV1 MOV2 MOV3 117 
MOVO MOV1 R,L MOV2 PAUSE 118 

.END 



DATA MULTIBUS TIMING INFORMATION AD-10 ASSEMBLER --- UL107 13-JUL-77 09:50:59 PAGE 3 

CURRENT STMT FIRST SOURCE FIRST SINK SECOND SOURCE SECOND SINK 
TIME COP MAP DEP ARP COP MAP DEP ARP COP MAP DEP ARP COP MAP DEP ARP COP MAP DEP ARP ' COMMENT(S) 

0 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 20 0 0 0 0 0 0 0 19 0 0 0 0 0 0 0 0 0 0 0 NSOF 

65 21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
100 22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
101 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
102 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
103 25 0 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
104 26 0 41 49 0 0 0 0 0 0 0 0 0 0 40 0 0 0 0 49 
105 26 0 42 50 22 0 0 0 0 0 0 50 0 0 41 0 0 0 0 50 
106 26 0 0 51 0 0 0 0 0 0 0 0 0 0 42 0 0 0 0 51 
107 26 0 -0 52 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
108 27 0 43 53 0 0 0 0 0 0 0 0 0 0 0 52 0 0 43 0 
109 28 46 0 54 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
110 29 0 0 55 0 0 0 0 0 Q 0 0 0 0 0 0 0 0 0 0 1 

111 30 0 0 56 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
112 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
11 3 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
114 30 0 0 57 0 46 0 0 0 0 0 57 0 46 0 0 0 0 0 57 
115 30 0 0 58 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
116 30 0 0 59 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
117 31 0 0 60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
118 32 0 0 0 0 0 0 60 31 0 0 0 0 0 0 0 0 0 0 0 
119 33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
120 34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
121 35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

)::o 122 36 0 0 0 0 0 0 0 0 0 0 0 o, 0 0 0 0 0 0 0 <.n 
3: 123 37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
I 

N 

"° 



ADDRESS MULTIBUS TIMING INFORMATION AD-10 ASSEMBLER --- UL107 13-JUL-77 09:50:59 PAGE 4 

CURRENT STMT FIRST SOURCE FIRST SINK SECOND SOURCE SECOND SINK 
TIME COP MAP DEP ARP COP MA-P DEP ARP COP MAP DEP ARP COP MAP DEP ARP COP MAP DEP ARP COMMENT(S) 

0 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 20 0 0 0 19 0 0 0 19 0 0 0 0 0 0 0 0 0 0 0 

65 21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
100 22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
101 23 0 0 0 22 0 0 0 22 0 0 0 0 0 0 0 0 0 0 0 
102 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
103 25 0 40 0 24 0 0 0 0 0 24 0 0 0 0 0 0 0 0 0 
104 26 0 41 49 25 0 0 0 0 0 0 25 0 0 0 0 0 0 0 0 
105 26 0 42 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
106 26 0 0 51 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
107 26 0 0 52 0 0 0 0 0 0 0 0 -f 0 0 0 0 0 0 0 0 
108 27 0 43 53 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
109 28 46 0 54 27 0 0 0 0 27 27 0 0 0 0 0 0 0 0 0 
110 29 0 0 55 0 46 0 0 0 46 0 0 0 46 0 0 0 46 0 0 
111 30 0 0 56 29 0 0 0 0 29 0 0 0 0 0 0 0 0 0 0 
112 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
113 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
114 30 0 0 57 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
115 30 0 0 58 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
11 6 30 0 0 59 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

):::o 
117 31 0 0 60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (/') 

::s: 118 32 0 0 0 31 0 0 0 31 0 0 0 0 0 0 0 0 0 0 0 
I 11 9 33 0 0 0 32 0 0 0 0 0 0 32 0 0 0 0 0 0 0 0 w 

0 120 34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
121 35 0 0 0 34 0 0 0 0 0 34 0 0 0 0 0 0 0 0 0 
122 36 0 0 0 35 0 0 0 0 35 0 0 0 0 0 0 0 0 0 0 
123 37 0 0 0 36 0 0 0 0 0 0 36 0 0 0 0 0 0 0 0 



SYMBOL TABLE AD-10 ASSEMBLER --- UL107 13-JUL-77 09:50:59 PAGE 5 

SYMBOL VALUE PROC STMT REFERENCES 

ADC 0000000 DAT 10 19 22 
BEGIN 0000000 COP 19 37 
DAC 0000010 DAT 11 31 
I 0000000 DAT 15 43 46 
NBPS 0001001 DAT 12 40 41 42 
SIN 00000-00 DAT 16 46 
TO 0000000 DAT 13 49 
T1 0000001 DAT 13 50 52 54 
T2 0000002 DAT 13 51 52 
x 0000003 DAT 14 50 54 



THIS IS A LISTING OF THE LOAD MODULE (SINE.MOD) FOR THIS PROGRAM 

COP 0 23 
0 100600 0 77 0 11400 0 106400 0 0 
0 40010 0 40040 0 3 0 40006 0 0 
0 40001 0 5 0 100610 0 40020 0 10400 
0 120000 0 110000 0 130000 0 20000 

MAP 0 1 
71 0 O· 

DEP 0 4 
140001 100 140001 400 142001 200 0 3400 
ARP 0 14 

0 0 0 110200 40200 0 120200 40203 106200 40201 
236 0 0 100200 40202 0 150001 144002 0 60400 

3036 0 0 0 0 0 144001 160003 0 50000 
3036 0 0 0 0 20000 0 0 0 44000 

0 112000 0 120000 0 236 0 0 0 0 
0 0 0 0 0 10000 0 40400 0 0 

END 

ASM-32 



DDDDDDDD IIIII A GGGGG 
DDDDDDDDDD III II AAA GGGGGGGGG 
DDDDPDDDDDD III AAAAA GGGGGGGGGGG 
DDDDDDDDDDDD II! AAAAAAA GGGGG 
DDDDDDDDDDDD III AAAAAAAAA GGGGG GGGGG THE 
DDDDDPDDDDDD III AAAAAAAAAAA GGGGG GGGGG AD-10 
DDDDI?DDDDDD III AAAAAAAAAAAAA GGGGGGGGGGG DIAGNOSTIC 
DDDDDDDDD'D II III AAAAAAAAAAAAAAA GGGGGGGGG PACKAGE 
DDDDDDDD II III AAAAAAAAAAAAAAAAA GGGGG 





TABLE OF CONTENTS PAGE 

INTRODUCTION .•.•.•....•........•.•........•..•.....•.. ··. 3 

XX D P O_ VE R VI E W . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 

PROGRAM NAMING CONVENTIONS .....•...............•....... 5 

OPERATING PROCEDURES ...•...•.....•..................... 5-8 

SWITCH SETTINGS ........ , ....................... 5 
RUNNING AN XXDP PROGRAM •.........••...•...•.... 6 
SIGNIFICANT CORE LOCATIONS ..................... 7 
ERROR REPORTING ...•............................ 8 
EXECUTION TIMES ................................ 8 

DATA MEMORY DIAGNOSTICS . . . . . . . . . ~ . . . . . . . . . . . . . . . . . . . . .. 9-13 

ME01 
ME02 
ME03 
ME05 
ME23 
ME30 

ARP DIAGNOSTICS 

17 BIT ROTATE TEST ..................... 9 
ALTERNATING PATTERN TEST ......•.. , ..... 10 
MARCHING PATTERN TEST .................. 10 
GALLOPING PATTERN TEST ...•............. 11 
PARITY TEST ........................... . 
PROCESSOR TEMPORARY REGISTER TEST 

12 
1 3 

13-14 

AR06 PM INCREMENTING PATTERN TEST ........... 13 
AR14 DATA PATH TEST ......................... 14 
AR 15 ARITHMETIC FUNCTION TEST . . . . . . . . . . . . . . . 14 

COP DIAGNOSTICS ............ - .......................... . 15-17 

C011 PM INCREMENTING PATTERN TEST .. , ........ 15 
C021 INSTRUCTION TEST, LOAD IMMEDIATE ....... 15 
C022 CONDITION BIT TEST ..................... 16 
C024 GENERAL REGISTER TEST .•..•......•...•.. 16 
C025 HALTO AND HALT1 TEST .....•...•......... 17 
C026 PC AND RUN TEST ........................ 17 

DEP DIAGNOSTICS 18-20 

DE08 PM INCREMENTING PATTERN TEST ........... 18 
DE17 X AND I REGISTER TESTS ...•........•.... 19 
DE18 INSTRUCTION TEST, SPECIAL •............. 19 
DE 19 INSTRUCTION TEST, REG. TO REG .......... 20 
DE20 INSTRUCTION TEST, COMPARE & COMPARE MOD. 20 

DIAG-1 



TABLE OF CONTENTS PAGE 

MAP DIAGNOSTICS ........................................ 21-22 

MA07 PM INCREMENTING PATTERN TEST ........... 21 
MA09 INSTRUCTION TEST, NON-INDEXED .•........ 21 
MA 10 INSTRUCTION TEST, INDEXED .............. 22 
MA31 INSTRUCTION TEST, INDEXED/SINGLE REG ... 22 

IOCC DIAGNOSTICS ....................................... 23-24 

I027 BUFFER & ADC/DAC LOOP TEST ............. 23 
1028 ADC/DAC LOOP TEST ................... ~ .. 24 

HIC DIAGNOSTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .... ~ . . 24-25 

HI12 HIC REGISTER BIT WALK TEST···•········· 24 
HI13 HIC PROGRAM COUNTER EXERCISER TEST ..... 25 
HI32 HIC SHUTDOWN REGISTER TEST .......•..... 25 

DIAG-2 



INTRODUCTION 

THE AD-10 PIAGNOSTIC PAGKAGE CONSISTS OF A GROUP OF PROGRAMS DESIGNED 
TO aE USED TO CHECK FOR (OR TO VERIFY) AD-10 COMPUTE~ SYSTEM BARDWARE 
PROBLEMS. THE DIAGNOSTIC PROGRAMS ARE WRITTEN lN PDP-11 MACRO ASSEMBLY 
~ANGUAGE AND ARE DESIGNED TO BE PART OF DEC'S XXDP DIAGNOSTIC PACKAGE. 
THE DIAGNOSTIC ROUTINES ARE ORGANIZED INTO THE FOLLOWING CATEGORIE§ : 

A. AD-10 DATA MEMORY DIAGNOSTICS (ME01,ME02,ME03,ME05,ME23,ME30). 

8. AD-10 PROCESSOR DIAGNOSTICS (ARP: AR06,AR14,AR15; 
--------------------------~ coP: co11,co21,co22,co24,co25, 

C026; 

C. IOCC DIAGNOSTICS (I027,I028). 

DEP: DE08,DE17,DE18,DE19,DE20; 
MAP: MA07,MA09,MA10,MA31). 

D. HIC DIAGNOSTICS (HI12,HI13,HI32) 

p!AG-3 



XXDP OVERVIEW 
-.,.~~--------.-

PEC'S XXDP ("XX DIAGNOSTIC PACKAGE") IS THEIR COLLECTION OF DIAGNOSTIC 
ROUTINES ON FILE-ORIENTED MEDIA. THE "XX" IS REPLACED BY DEC'S CODE FOR 
THE PARTICULAR DEVICE (E.G., "RK'' FOR RK05 DISK DRIVE). XXDP PROVIDES A 
COMPACT MEANS FOR STORING THE NUMEROUS DIAGNOSTIC PROGRAMS. IT ALLOWS 
THE USER TO LOAD AND RUN A DIAGNOSTIC PROGRAM UNDER KEYBOARD CONTROL 
VlA THE XXDP MONI~OR. THIS MONITOR ROUTINE ALSO PROVIDES THE MEANS FOR 
UPDATING AND MODIFYING PROGRAMS, AND ALLOWS THE USER TO "CHAIN" A SERIES 
OF PROGRAMS TOGETHER, SO THAT WHEN ONE IS FINISHED THE NEXT ONE WILL 
BEGIN EXECUTION. THE BASIC XXDP MONITOR COMMANDS ARE : 

F 
D 
D/F 
OIL 
DILIF 
R COPY 
R FILE 

L FILE 

s 
C FILE 

C FILEIQV 

SETS CONSOLE FILL COUNT (FOR LA30 TERMINAL) 
PRINTS DIRECTORY ON CONSOLE 
PRINTS SHORT DIRECTORY ON CONSOLE 
PRINTS DIRECTORY ON LINE PRINTER 
PRINTS SHORT DIRECTORY ON LINE PRINTER 
~UNS COPY PROGRAM (TO MAKE A COPY OF THE XXDP DISK) 
RUNS ANY OTHER PROGRAM ON THE DISK 
(THE PROGRAM IS IN THE SPECIFIED FILE) 
LOADS ANY PROGRAM ON THE DISK 
(FROM THE SPECIFIED FILE) 
STARTS THE LOADED PROGRAM 
RUNS A CHAIN OF PROGRAMS 
(THE CHAIN PARAMETERS ARE SPECIFIED IN THE FILE) 
RUNS A CHAIN IN "QUICK VERIFY" MODE 

WHEN THE XXDP MONITOR IS BOOTED , IT WILL INDICATE A RESTART ADDRESS 
FOR USE AFTER ERROR (OR USER) HALTS. 

THE XXDP PACKAGE CONTAINS TWO UPDATE PROGRAMS CALLED UPD1.BIN (4K) AND 
UPD2.BIN (8K). THESE PROGRAMS ARE USED TO ADD, DELETE, RENAME, OR 
PATCH PROGRAMS ON THE XXDP PACKAGE AND TO PROVIDE FILE MAINTENANCE 
SERVICES. UPD1-BIN IS A SUBSET OF UPD2.BIN . 

REFER TO DEC'S XXDP MANUAL FOR FURTHER INFORMATION . 

NOTE IF AN EARLIER VERSION OF DEC'S XXDP WAS USED TO CREATE THE 
AD-10 DIAGNOSTIC PACKAGE, THE MONITOR WILL NOT ACCEPT AS MANY 
COMMANDS AS INDICATED ABOVE. THE AVAILABLE COMMANDS WILL BE : 

ID 
IDIF 
IDIL 
IR 
FILE 

PRINTS FULL DIRECTORY ON TERMINAL 
PRINTS SHORT DIRECTORY ON TERMINAL 
PRINTS FULL DIRECTORY ON LINE PRINTER 
TO RUN DISK COPY PROGRAM 
TO RUN A PROGRAM IN THE SPECIFIED FILE 

DIAG-4 



PROGRAM NAMING CONVENTIONS 

THE CONVENTlONS USED IN NAMING THE AD-10 DIAGNOSTICS ARE SOMEWHAT 
DIFFERENT FROM THE DEC CONVENTIONS. AD-10 DIAGNOSTIC PROGRAM NAMES 
ARE FORMEP BY A TWO CHARACTER TEST-TYPE DESIGNATION, FOLLOWED BY A 
TWO CHARACTER NUMERIC SEQUENCE NUMBER (E.G., "AR06"). THIS FOUR CHAR-
ACTER CORE IS FOLLOWED BY A SINGLE CHARACTER VERSION INDICATION (E.G., "A"). 
THE PROGRAM FILENAMES ALL HAVE THE XXDP STANDARD ".BIC" EXTENSION. 
THEREFORE, AN OPERATIONAL VERSION OF "AR06" WILL BE FOUND IN THE XXDP 
DIRECTORY AS "AR06A.BIC" . THE TEST-TYPE DESIGNATIONS ARE AS FOLLOWS : 

AR ARP (ARITHMETIC PROCESSOR) 
CO COP (CONTROL PROCESSOR) 
DE DEP (DECISION PROCESSOR) 
MA MAP (MEMORY ADDRESS PROCESSOR) 
HI HIC (HOST INTERFACE CONTROLLER) 
IO IOCC (I/O CHANNEL CONTRO~LER) 
ME AD-10 DATA MEMORY 

SWITCH SETTINGS 

SWR BIT 

15 (100000) 
14 (40000) 
13 (20000) 
12 (10000) 
11 (4000) 
10 (2000) 
9 (1000) 
8 (400) 
7 (200) 

"SET" CONDITION ___ .,.. ___ ..,. ___ ..,. ____ _ 

HALT ON ERROR (NOT RSX-11 VERSION) 
SCOPE LOOP ON ERROR (NOT ALL DIAGNOSTICS * ) 
SUPPRESS ERROR MESSAGE PRINTOUT 

TERMINATE AFTER CURRENT PROGRAM LOOP 
LONG ERROR PRINTOUT (DUMPS HISTORY REGISTERS) 
QUICK EXIT FROM LONG LOOP PROGRAMS 

USE INTERNAL DAC/ADC TABLE FOR IOCC TESTS 

* A SCOPE LOOP ON ERROR IS ONLY ALLOWED IN THOSE DIAGNOSTICS WHICH 
DO NOT PERMIT THE AD-10 TO RUN FREELY. THE FOLLOWI~G TESTS DO 
PERMIT A SCOPE LOOP ON ERROR : 

ME01 
ME02 
ME03 
ME05 
AR06 
MA07 
DE08 
co 11 

DIAG-5 



RUNNING A PROGRAM 

1. BOOT THE XXDP DEVICE TO GET THE XXDP MONITOR 
UP AND RUNNING . 

2. GET A DIRECTORY, IF NECESSARY, TO FIND OUT WHAT THE 
P~OGRAM NAMES ARE : 

• ID ( 0 R "ID IF" , 0 R "ID /L" , 0 R "/ D /LI F" ) 
(THE"·" IS THE MONITOR'S PROMPT CHARACTER) 

3. SET THE PDP-11 CONSOLE SWITCHES TO THE APPROPRIATE 
SWITCH SETTINGS (SEE PRECEDING TABLE). 

4. SELECT THE DESIRED DIAGNOSTIC PROGRAM (E.G., "DE17A.BIC" 
FOR A TEST OF THE DEP'S X AND I REGISTERS ), AND TYPE 
"R XXXX:X" TO RUN THE PROGRAM, WHERE "XXXXX" IS THE 
PROGRAM NAME AND VERSION, BUT NOT THE EXTENSION (NOTE 
THAT FOR THE EARLIER VERSION OF XXDP JUST "XXXXX" 
IS SUFFICIENT) : 

E.G. ' .R DE17A <CR> (OR, .DE17A <CR> ) 

AD10 DEP INDEX REGISTER TEST 
THE FOLLOWING AD-10 PROCESSORS ARE PRESENT 
MAP 000001 
DEP 000002 
ARP 000003 
COP 000007 
PRESS CONTINUE WHEN READY 

PRESS THE CONTINUE SWITCH ON THE PDP-11 TO START THE TEST. 
THE PROGRAM WILL PRINT THE "PRESS CONTINUE WHEN READY" 
MESSAGE AGAIN WHEN THE TEST IS COMPLETE. IF BIT 13 OF 
THE SWITCH REGISTER IS NOT SET AND NO ERROR MESSAGES WERE 
PRINTED, NO AD-10 ERRORS WERE DETECTEO. 

5. IF AN ERROR HALT OCCURS, THE MONITOR MAY BE RESTARTED 
AT THE ADDRESS SPECIFIED WHEN IT BOOTED, THE 
AD-10 DIAGNOSTIC PROGRAM CAN CONTINUE (IF THE USER 
MANUALLY PRESSES THE CONTINUE SWITCH ON THE PDP-11), 
OR THE DIAGNOSTIC CAN BE RESTARTED AT LOCATION 200. 

DIAG-6 



SIGNIFICANT CORE LOCATIONS 
-~~~---------~------------

THE USER MAY WANT TO EXAMINE AND/OR CHANGE THE TEST-RELATED CONSTANTS 
IN THESE SPECIFIED LOCATIONS : 

PAT~220 

NPAT:222 

ITR:224 

BACK:226 

BRD=230 

MOD:232 

WIN=236 

WRD=236 

WINC:240 

WRDC:242 

MEMORY TEST PATTERN 

ERROR COUNT FOR THIS ITERATION 

NUMBER OF ITERATIONS TO RUN THIS TEST 

MEMORY BACKGROUND PATTERN 

* BOARD NUMBER TO BE TESTED 

* STARTING MODULE NUMBER FOR THIS TEST 

* STARTING WINDOW NUMBER FOR THIS TEST 

* STARTING WORD NUMBER FOR THIS TEST 

* NUMBER OF WINDOWS TO BE TESTED 

* NUMBER OF WORDS TO BE TESTED 

DEV=1112 OUTPUT DEVICE CSR LOCATION 
(CONSOLE TERMINAL IS 177564, 

LINE PRINTER IS 177514) 

* NOTE THESE LOCATIONS APPLY TO MEMORY TESTS ONLY. 

DIAG-7 



ERROR REPORTING 

ERROR MESSAGES ARE PRINTED BY EACH TEST, ACCORDING TO THE CONSOLE 
SWITCH SETTINGS. SEE THE TEST DESCRIPTIONS FOR FURTHER INFORMATION. 
IF SWITCH 10 IS SET, THE AD-10 HISTORY REGISTERS WILL BE DUMPED ALONG 
WITH ANY ERROR MESSAGE, IN THE FOLLOWING FORMAT : 

HBOO HB01 HB02 HB03 
HB04 HB05 HB06 HB07 
HB10 HB 11 HB12 HB13 
HB14 HB15 HB16 HB17 

HAOO HA01 HA02 HA03 
HA04 HA05 HA06 HA07 
HA10 HA 11 HA12 HA13 
HA14 HA15 HA16 HA17 

HDOO HD01 HD02 HD03 
HD04 HD05 HD06 HD07 
HD10 HD 11 HD12 HD13 
HD14 HD15 HD16 HD17 

EXECUTION TIMES 

MOST TESTS WILL RUN ANYWHERE FROM 1 TO 3 MINUTES, BUT DE19, DE20, ME23, 
AND C026 WILL TAKE AT LEAST 5 MINUTES PER PASS. 

DIAG-8 



DESCRIPTION 

ERROR MESSAGE 

ME01 

AD-10 DATA MEMORY 17-BIT ROTATE TEST. 

THIS MEMORY TEST FILLS 4K OF DATA MEMORY AT A 
TIME, AND READS BACK THE SAME 4K FOR VERIFICA­
TION. CONSECUTIVE LOCATIONS ARE LOADED WITH A 
PATTERN WHICH ROTATES AS A 17-BIT WORD AS 
FOLLOWS 

AD-10 PDP-11 
LOCATION PATTERN CARRY BIT 
~- ... -~--..- ---------------- ----~------

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 
1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
2 1011111111111111 1 
3 1101111111111111 1 
4 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 

(ETC. ) 
1 3 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 
14 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 
1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 
16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 
17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 

(ETC.) 

AD10 MEMORY ERROR 

WBA CURRENT WORD BLOCK ADDRESS CONTENTS 
LOC LOCATION IN ERROR 
SENT EXPECTED DATA PATTERN 
REC RECEIVED DATA PATTERN 

DIAG-9 



DESCRIPTION 

ERROR MESSAGE 
---..--- .. ----~.,.-

DESCRIPTION 

ERROR MESSAGE 
--..--~-~"'9--.,,.- ... 

AD-10 DATA MEMORY ALTERNATING PATTERN TEST. 

THIS MEMORY TEST FILLS 4K OF DATA MEMORY AT 
A TIME, THEN READS BACK THE SAME 4K FOR VERIFI­
CATION. CONSECUTIVE LOCATIONS ARE LOADED WITH 
A 16 BIT ALTERNATING PATTERN AS FOLLOWS 

LOCATION 

0 
1 
2 
3 

(ETC.) 

PATTERN 

1010101010101010 
0101010101010101 
1010101010101010 
0101010101010101 

THE STARTING PATTERN IS COMPLEMENTED AFTER 
EACH ITERATION SO THAT ALL BITS IN EACH 
LOCATION WILL BE CHECKED. 

AD10 MEMORY ERROR 

WBA CURRENT WORD BLOCK ADDRESS CONTENTS 
LOC LOCATION IN ERROR 
SENT EXPECTED DATA PATTERN 
REC RECEIVED DATA PATTERN 

ME03 

AD-10 DATA MEMORY MARCHING PATTERN TEST. 

THIS IS A BASIC TEST OF A MEMORY TO PROVIDE 
REASONABLE ASSURANCE THAT IT IS FUNCTIONAL, 
I.E., THAT THE ADDRESSING IS OPERATIONAL AND 
THAT EACH LOCATION CAN BE READ AND WRITTEN TO 
THE ALL-ZERO STATE. FIRST, A 256 WORD "WINDOW" 
IS FILLED WITH A "BACKGROUND" PATTERN. THEN, 
STARTING AT THE SPECIFIED STARTING WINDOW 
ADDRESS AND PROCEDING SEQUENTIALLY, THE BACK­
GROUND PATTERN IS READ AND THE SPECIFIED PATTERN 
IS WRITTEN. THIS PROCEDURE CONTINUES TO 
THE LAST LOCATION, AT WHICH POINT THE PATTERN 
IS COMPLEMENTED AND THE ADDRESS IS SEQUENTIALLY 
REDUCED UNTIL THE FIRST LOCATION IS REACHED. 
THE BACKGROUND PATTERN IS THEN COMPLEMENTED, AND 
THE SEQUENCE IS REPEATED. THE TEST WILL BE DONE 
FOR UP TO 16 WINDOWS OF 256 WORDS (4K). 
THIS TEST BY NO MEANS CHECKS EVERYTHING (OR ALL 
INTERACTIONS) BUT DOES PROVIDE REASONABLE 
ASSURANCE THAT NO DEFECTIVE ELEMENTS ARE 
PRESENT. 

AD10 MEMORY ERROR 

WBA CURRENT WORD BLOCK ADDRESS CONTENTS 
LOC MEMORY LOCATION IN ERROR 
SENT EXPECTED DATA PATTERN 
REC RECEIVED DATA PATTERN 

DIAG-10 



DESCRIPTION 

E~ROR MESSAGE 

ME05 

AD-10 DATA MEMORY GALLOPING PATTERN TEST. 

THIS TEST CHECKS ALL POSSIBLE ADDRESS TRAN­
SITIONS. ALL LOCATIONS WITHIN THE STARTING 
256 WORD WINDOW ARE WRITTEN TO THE BACKGROUND 
PATTERN. A TEST PATTERN IS THEN WRITTEN TO A 
"LOAD WORD". THE SEQUENCE "READ THE LOAD WORD, 
READ ANOTHER WORD" IS PERFORMED UNTIL THE ENTIRE 
WINDOW HAS BEEN CHECKED. THE LOAD WORD. IS THEN 
RESET, A NEW LOAD WORD IS CHOSEN, AND THE 
SEQUENCE IS REPEATED. THIS PROCESS CONTINUES 
UNTIL ALL 256 WORDS HAVE BEEN LOAD WORDS. 
THE BACKGROUND PATTERN IS THEN COMPLEMENTED 
AND THE ENTIRE PROCEDURE IS REPEATED FOR THIS 
WINDOW. WHEN FINISHED WITH THIS WINDOW, REPEAT 
FOR EACH WINDOW . 

AD10 MEMORY ERROR 

WBA CURRENT WORD BLOCK ADDRESS CONTENTS 
LOC LOCATION ADDRESS WITHIN THE WINDOW 
SENT EXPECTED DATA PATTERN 
REC RECEIVED DATA PATTERN 

DIAG-11 



DE!)CRIPTION 
----..,.---...-----

ME23 

AD-10 DATA MEMORY PARITY TEST. 

THIS TEST CHECKS EACH WORD OF MEMORY FOR 
CORRECT PARITY GENERATION. A DECREMENTING 
DATA PATTERN IS USED. 

ERROR MESSAGE DATA ERROR 

ADDR 
OFFSET 
SENT 
REC 

CURRENT MEMORY ADDRESS WITHIN THE PAGE 
OCTAL OFFSET * 
EXPECTED DATA PATTERN 
RECEIVED DATA PATTERN 

* OFFSET FROM THE START OF THE HISTORY DATA 
REGISTER TO THE CURRENT DATA VALUE. THE 
FOLLOWING TABLE CORRELATES THE OFFSET 
WITH THE PAGE NUMBER 

ERROR MESSAGE 

IF DATA IS EVEN 

22 --> 0 
20 --> 1 
16 --> 2 
14 --> 3 
12 --> 4 
10 --> 5 

6 --> 6 
4 --> 7 

PARITY ERROR 

ADDR 
OFFSET 
FLAG 
MBUS PARITY 

IF DATA IS ODD 
--------------

(AS ABOVE) 
(AS ABOVE) 

22 
20 
16 
1 4 
12 
10 

6 
4 

--> 1 
--> 0 
--> 3 
--> 2 
--> 5 
--> 4 
--> 7 
--> 6 

CURRENT PARITY BIT-PATTERN 
CURRENT MULTIBUS ADDRESS VALUE 
( BIT 15 IS THE PARITY BIT ) 
( BIT 13 IS THE PARITY ERROR BIT 

DIAG-12 



DESCRIPTION 

ERROR MESSAGE ---T_,..._.._ ... ___ _ 

DESCRIPTION 

ERROR MESSAGE 
---~-.-.-.--,......,.,...--: 

ME30 

PROCESSOR TEMPORARY REGISTER MEMORY TEST. 

FOR EACH PROCESSOR PRESENT IN THE AD-10, THE 
TEMPORARY REGISTER STORAGE IS TESTED USING AN 
INCREMENTING MEMORY TEST. THIS CHECKS DATA 
READ/WRITE THROUGH THE HIC FOR ALL FIELD 5 
MEMORY LOCATIONS. THE REGISTERS TESTED ARE 

COP GENERAL REGISTERS 
ARP T REGISTERS 
MAP I REGISTER 
DEP X REGISTERS 

AD10 MEMORY ERROR 

WBA WORD BLOCK ADDRESS (PROCESSOR) 
LOC LOCATION WITHIN THE WINDOW 
SENT EXPECTED DATA PATTERN 
REC RECEIVED DATA PATTERN 

AR06 

ARP PROGRAM MEMORY INCREMENTING PATTERN TEST. 

THIS PROGRAM PERFORMS AN INCREMENTING PATTERN 
TEST ON THE FIVE FIELDS OF THE ARP PROGRAM 
MEMORY AS FOLLOWS (FOR EACH FIELD) : 

ARP 
LOCATION 

0 
1 
2 
3 
4 

1020 
1021 
1022 
1023 

(ETC.) 

PATTERN 

0000000000000000 
0000000000000001 
0000000000000010 
0000000000000011 
0000000000000100 

0000001111111100 
0000001111111101 
0000001111111110 
0000001111111111 

AFTER EACH ITERATION THE STARTING PATTERN IS 
INCREMENTED BY 200 (OCTAL), SO THAT ALL BITS 
IN EACH LOCATION WILL BE THOROUGHLY CHECKED 
AFTER 1000 ITERATIONS. 

AD10 MEMORY ERROR 

WBA CURRENT WORD BLOCK ADDRESS CONTENTS 
LOC LOCATION WITHIN THE FIELD 
SENT EXPECTED DATA PATTERN 
REC RECEIVED DATA PATTERN 

nT Ar,- 11 



DESCRIPTION 
-----.---~- ... 

ERROR MESSAGE 
_..,.,._~------,---..,. 

DESCRIPTION 

ERROR MESSAGE 

AR14 

ARP DATA PATH TEST. 

THIS TEST EXERCISES THE FOUR ARP DATA PATHS 
A ROTATING DATA PATTERN. THE DATA PATHS ARE 

1 . S ( B) -> A S:A P:S Q=P R=Q 

2. S ( B) -> B S=B P=S Q=P R=Q 

3. S(B) -> c S=1 P=S*C Q=P R=Q 

4. S(B) -> D S:O P:S Q=P+E R=Q 

ARP PATH ERROR 

PATH 

ARITH 

SENT 
REC 

AR15 

1 = REGISTER A PATH 
2 = REGISTER B PATH 
3 = REGISTER C PATH 
4 = REGISTER D PATH 

0 = FRACTIONAL ARITHMETIC 
1000 = FRACTIONAL * 2 
2000 = FRACTIONAL I 2 
3000 = INTEGER 
EXPECTED DATA PATTERN 
RECEIVED DATA PATTERN 

ARP ARITHMETIC INSTRUCTION TEST. 

R -> L 

R -> L 

R -> L 

R -> L 

WITH 

(=A) 

(=B) 

(=C) 

( =D) 

THIS TEST CHECKS EACH OF THE FOUR SETS OF ARITH­
METIC INSTRUCTIONS IN THE ARP, WHILE THE OTHER 
THREE ARE NOT IN USE. THIS CHECK IS DONE WITH A 
STATIC SET OF DATA CONSTANTS. THE TESTS ARE 

1. EXERCISE S, WITH: P=S, Q=P, R=Q 
WHERE, S:1,0,B,-B,A,A+1,A+B,A-B 

2. EXERCISE P, WITH: S=1, Q=P, R=Q 
WHERE, P:O,S,-S,S*C,-S*C, 

S*ABS(C),-S*ABS(C) 

3. EXERCISE Q, WITH: S=1, P=S, R=Q 
WHERE, Q=P,P+E,P-E 

ARP INST ERROR 

XXXX (NOT USED) 
INST OCTAL CODE FOR ARP ARITHMETIC INSTRUCTION 
SENT EXPECTED DATA PATTERN 
REC RECEIVED DATA PATTERN 

DIAG-14 



DESCRIPTION 
-- .. ----.--r- ... 

E;RROR MESSAGE 

DESCRIPTION 

ERROR MESSAGE 

co 11 

COP PROGRAM MEMORY INCREMENTING PATTERN TEST. 

THIS PROGRAM PERFORMS AN INCREMENTING PATTERN 
TEST ON THE 1024 WORD, 2 FIELD COP PROGRAM 
MEMORY AS FOLLOWS (FOR EACH FIELD) : 

COP 
LOCATION 

0 
1 
2 
3 
4 

1020 
1021 
1022 
1023 

(ETC.) 

PATTERN 

0000000000000000 
0000000000000001 
0000000000000010 
0000000000000011 
0000000000000100 

0000001111111100 
0000001111111101 
0000001111111110 
0000001111111111 

AFTER EACH ITERATION THE STARTING PATTERN IS 
INCREMENTED BY 200 (OCTAL), SO THAT ALL BITS 
IN EACH LOCATION WILL BE THOROUGHLY CHECKED 
AFTER 1000 (OCTAL) ITERATIONS. 

AD10 MEMORY ERROR 

WBA CURRENT WORD BLOCK ADDRESS CONTENTS 
LOC LOCATION WITHIN THE FIELD 
SENT EXPECTED DATA PATTERN 
REC RECEIVED DATA PATTERN 

C021 

COP LOAD IMMEDIATE INSTRUCTION TEST. 

THIS TEST EXERCISES THE LOAD FIRST, LOAD SECOND, 
AND LOAD DOUBLE INSTRUCTIONS USING A ROTATING 
DATA PATTERN. THE COP PLACES THE CURRENT DATA 
PATTERN ON THE AD-10 MULTIBUS USING "LOAD IMM" 
INSTRUCTIONS. THE PDP-11 CHECKS FOR THIS 
DATA IN THE AD-10 HISTORY REGISTERS. 

INST ERROR 

TYPE 1 = LOAD DOUBLE 
2 = LOAD DOUBLE 
3 = LOAD SECOND 
4 = LOAD FIRST 

XXXX (NOT USED) 
SENT EXPECTED DATA PATTERN 
REC RECEIVED DATA PATTERN 

OIAG-15 



DESCRIPTION --- ............. _,_ __ 

ERROR MESSAGE 

ERROR MESSAGE -- .... -·,.. ... -_.,.._,,_ .. _ 

DESCRIPTION 
~----"-~.---

ERROR MESSAGE 

C022 

COP CONDITION BIT AND CONDITIONAL JUMP TEST. 

THIS PROGRAM TESTS THE SETTING AND CLEARING 
OF THE CBIT, AND THE PROPER DETECTION OF THE 
CBIT WITH A CONDITIONAL JUMP. A COP PROGRAM 
LOOP CONSISTING OF CBIT SET/CLEAR AND CONDITION­
AL JUMPS IS EXECUTED. IF AN ERROR OCCURS, THE 
COP PLACES PREDETERMINED DATA ONTO THE AD-10 
MULTIBUS, WHICH IS DETECTED BY THE PDP-11 IN 
THE HISTORY REGISTERS. 

TESTS: 1. CBIT SET/CLEAR 
2. BUS CONDITIONAL CBIT SET/CLEAR 
3. JUMP AND CONDITIONAL JUMP 

INST ERROR 

TYPE 
TEST 
DATA 
ERROR FLAG 

DATA CHECK INDEX 
TEST TABLE INDEX 
WORKING TEST DATA PATTERN 
EXPECTED DATA PATTERN 

JMP 0 ERROR, RC NOT -1 RC = XXXX 

( WHERE, XXXX IS THE CURRENT RUN COUNTER VALUE ) 

THIS ERROR MEANS THAT THE COP "JMP" INSTRUCTION 
FAILED. 

C024 

COP GENERAL REGISTER TEST. 

INST ERROR 

TYPE TEST TABLE INDEX 
REG REGISTER NUMBER 
SENT EXPECTED DATA PATTERN 
REC RECEIVED DATA PATTERN 

DIAG-16 



DESCRIPTION -.... - ............. ~ . ..,--

ERROR MESSAGE 
--..-91!11!------.,...~~ 

ERROR MESSAGE 
---~ .... ~..------...,, 

DESCRIPTION 

ERROR MESSAGE 
-~ .. 4!"'1"~ ... ...,1'9~~..,,.~~ 

ERROR ·MESSAGE 
...-.----..,..-- .... -~,... .. 

ERROR MESSAG~ ...... ~- .... ,...~---.,.-~ 

C025 

COP HALTO AND HALT1 TEST. 

C025 TESTS THE VARIOUS COMBINATIONS OF THE 
HALT MASK IN COMBINATION WITH THE HALTO AND 
HALT1 INSTRUCTIONS. THE PAUSE INSTRUCTION 
IS ALSO CHECKED. 

HALT ERROR 

TYPE 
RC RUN COUNTER VALUE 
EPC EXPECTED PROGRAM COUNTER 
PC RECEIVED PROGRAM COUNTER 

PAl)SE ERROR 

EXRC EXPECTED RUN COUNTER VALUE 
RC ACTUAL RUN COUNTER VALUE 
PAUSE PAUSE COUNT FOR THIS RUN 
xx xx (NOT USED) 

C026 

COP PROGRAM COUNTER AND RUN TEST. 

1. TESTS THE LOADING AND READING OF 
PROCESSOR PC'S (INCLUDING THE COP) 
THROUGH THE HIC. 

2. TESTS THE LOADING OF PROCESSOR PC'S THROUGH 
COP PROGRAMMING. 

3. CHECKS PROPER PC INCREMENTING WHEN THE 
PROCESSOR IS RUNNING. 

HIC PC LOAD ERROR (TEST 1 MESSAGE) 

PRO PROCESSOR NUMBER 
EPC EXPECTED PC 
PC ACTUAL PC 
xx xx (NOT USED) 

COP PC LOAD ERROR (TEST 2 MESSAGE) 

PRO PROCESSOR NUMBER 
EPC EXPECTED PC 
PC ACTUAL PC 
xx xx (NOT USED) 

PC RUN ERROR (TEST 3 MESSAGE) 

PRO PROCESSOR NUMBER 
EPC EXPECTED PC 
PC ACTUAL PC 
xx xx (NOT USED) 

DIAG-17 



DESCRIPTlON 

ERROR MESSAGE 
-- .... ~- ..... .,..,-~--.,..-

DE08 

DEP PROGRAM MEMORY INCREMENTING PATTERN TEST. 

THIS PROGRAM PERFORMS AN INCREMENTING PATTERN 
TEST ON THE 1024 WORD, 2 FIELD DEP PROGRAM 
MEMORY AS FOLLOWS (FOR EACH FIELD) : 

DEP 
LOCATION 

0 
1 
2 
3 
4 

1020 
1 021 
1022 
1023 

(ETC. ) 

PATTERN 

0000000000000000 
0000000000000001 
0000000000000010 
0000000000000011 
0000000000000100 

0000001111111100 
0000001111111101 
0000001111111110 
0000001111111111 

AFTER EACH ITERATION THE STARTING PATTERN IS 
INCREMENTED BY 200 (OCTAL), SO THAT ALL BITS 
IN EACH LOCATION WILL BE THOROUGHLY CHECKED 
AFTER 1000 (OCTAL) ITERATIONS. 

AD10 MEMORY ERROR 

WBA CURRENT WORD BLOCK ADDRESS CONTENTS 
LOC LOCATION WITHIN THE FIELD 
SENT EXPECTED DATA PATTERN 
REC RECEIVED DATA PATTERN 

DIAG-18 



DESCRIPTION 
..... ..,.--.., ... ,.... .... ..-- .... 

ERROR MESSAGE 

DESCRIPTION 

ERROR MESSAGE 

DE17 

DEP X AND I REGISTER TEST. 

THIS TEST LOADS ALL DEP X AND I REGISTER 
LOCATIONS (USING AD10 PROGRAMMING) WITH A DATA 
PATTERN. THE PATTERN IS ROTATED AND CHECKED. 
THIS CHECKS THESE INSTRUCTIONS : 

LIF 
LIS 
LXF 
LXS 
SIF 
SIS 
SXF 
sxs 
SSI 

ALSO TESTS THE DATA HOLDING ABILITY OF 
THE X AND I REGISTER LOCATIONS. 

INST ERROR 

TYPE 

REG 
SENT 
REC 

DE18 

0 = I REGISTER, LOAD 
24 = I REGISTER, LOAD 
50 = x REGISTER, LOAD 
74 = X REGISTER, LOAD 
REGISTER NUMBER 
EXPECTED DATA PATTERN 
RECEIVED DATA PATTERN 

DEP SPECIAL INSTRUCTION TEST. 

1ST 
2ND 
1ST 
2ND 

DE18 TESTS THE DEP SPECIAL INSTRUCTIONS FOR A 
SINGLE DATA POINT. INSTRUCTIONS TESTED ARE : 

LFI 
LSI 
LDI 

LF I 100000 
LS I 100000 

INST ERROR 

TYPE 0 = LOAD 2ND, LOAD 1ST 
1 = LOAD DOUBLE 
2 = LOAD 2**15 (100000) 

XXXX (NOT USED) 
SENT EXPECTED DATA PATTERN 
REC RECEIVED DATA PATTERN 

DIAG-19 



DESC~IPTIC{N 
..,- ... -- ... .,.., ... -~ 

ERROR MESSAGE 

DESCRIPTION 
---~-,------

ERROR MES~J\.GE 

DE19 

DEP REGISTER TO REGISTER INSTRUCTION TEST . 

DE19 TESTS THE X & I INTRA-REGISTER TRANSFER 
INSTRUCTIONS WITH A ROTATING DATA PATTERN, 
USING COP AND DEP PROGRAMMING. 

INST ERROR 

TYPE 0 = I TO I TRANSFER 
20 = I TO x TRANSFER 
40 = x TO x TRANSFER 
60 = X TO I TRANSFER 

REGS LOW BYTE ..;. SOURCE REGISTER 
HIGH BYTE = DESTINATION REGISTER 

SENT 
REC 

EXPECTED DATA PATTERN 
RECEIVED DATA PATTERN 

DE20 

DEP COMPARE AND COMPARE & MODIFY INSTRUCTION 
TEST. 

THIS TEST CHECKS THE COMPARE INSTRUCTION AND THE 
COMPARE AND MODIFY INSTRUCTION FOR ALL REGISTERS 
AND FOR VARIOUS DATA VALUES. THE CONDITION 
INSTRUCTION IS ALSO CHECKED, USING 2**15 -> DM(1). 

INST ERROR 

TYPE 

REG/DATA 

SENT 
REC 

0 = CMM TEST, BOTH 1ST AND 2ND 
1 = CMP TEST, BOTH 1ST AND 2ND 

LOW BYTE = INDEXED REGISTER 
HIGH BYTE = X REGISTER USED 

IN COMPARISON 
EXPECTED DATA PATTERN 
RECEIVED DATA PATTERN 

DIAG-20 



DESCRIPTION 

ERROR MESSAGE 

DESCRIPTION 

ERROR MESSAGE 
,.._,,..._..,.,....,_.,..,.,..._...,,.... .... 

MA07 

MAP PROGRAM MEMORY INCREMENTING PATTERN TEST. 

MA07 PERFORMS AN INCREMENTING PATTERN TEST 
ON THE 1024 WORD, 3 FIELD MAP PROGRAM MEMORY 
AS FOLLOWS (FOR EACH FIELD) 

MAP 
LOCATION 

0 
1 
2 
3 
4 

1020 
1021 
1022 
1023 

(ETC. ) 

PATTERN 

0000000000000000 
0000000000000001 
0000000000000010 
0000000000000011 
0000000000000100 

0000001111111100 
0000001111111101 
0000001111111110 
0000001111111111 

AFTER EACH ITERATION THE STARTING PATTERN IS 
INCREMENTED BY 200 (OCTAL), SO THAT ALL BITS 
IN EACH LOCATION WILL BE THOROUGHLY CHECKED 
AFTER 1000 (OCTAL) ITERATIONS. 

AD10 MEMORY ERROR 

WBA CURRENT WORD BLOCK ADDRESS 
LOC LOCATION WITHIN THE FIELD 
SENT EXPECTED DATA PATTERN 
REC RECEIVED DATA PATTERN 

MA09 

MAP NON-INDEXED INSTRUCTION TEST. 

MA09 CHECKS ALL NON-INDEXED OPCODES WITH WAIT 
COUNTS. A ROTATING PATTERN ADDRESS IS EXERCISED 
WITH EACH OPCODE, AND WAIT COUNTS 0-7 ARE EXER­
CISED WITH EACH OPCODE. 

MAP INST ERROR 

SENT1 
ADDR1 
SENT2 
ADDR2 

EXPECTED PATTERN ON HI ADDRESS MULTIBUS 
ACTUAL PATTERN ON HI ADDRESS MULTIBUS 
EXPECTED PATTERN ON LOW ADDRESS MULTIBUS 
ACTUAL PATTERN ON LOW ADDRESS MULTIBUS 

DIAG-21 



DESCRIPTION 

ERROR MESSAGE 
--.r--------.---.-, 

PESCRIPTION 

MA10 

MAP INDEXED INSTRUCTION TEST. 

MA10 CHECKS ALL INDEXED OPCODES WITH WAIT 
COUNTS. A ROTATING PATTERN ADDRESS IS EXERCISED 
WITH EACH OPCODE, AS ARE WAIT COUNTS 0-7. 
EACH INPEX REGISTER IS USED AND CONTAINS 
ITS OWN ADD~ESS. 

MAP INST ERROR 

SENT1 
ADDR1 
SENT2 
ADDR2 

MA31 

EXPECTED PATTERN ON HI ADDRESS MULTIBUS 
ACTUAL PATTERN ON HI ADDRESS MULTIBUS 
EXPECTED PATTERN ON LOW ADDRESS MULTIBUS 
ACTUAL PATTERN ON LOW ADDRESS MULTIBUS 

MAP SINGLE INDEX REGISTER INSTRUCTION TEST. 

MA31 CHECKS ALL INDEXED OPCODES WITH WAIT 
COUNTS 0-7 AND A ROTATING 19-BIT ADDRESS PAT­
TERN. A SINGLE INDEX REGISTER IS USED. THE 
REGISTER'S CONTENTS ARE POWERS OF 2 (1 'S BIT 
WAGK). 

E~RQR MESSAG~ MAP INST ERROR 
--·~--~- .... -... ..,.....---

SENT1 
ADDR1 
SENT2 
ADDR2 

EXPECTED PATTERN ON HI ADDRESS MULTIBUS 
ACTUAL PATTERN ON HI ADDRESS MULTIBUS 
EXPECTED PATTERN ON LOW ADDRESS MULTIBUS 
ACTUAL PATTERN ON LOW ADDRESS MULTIBUS 

DIAG-22 



DESCRIPTION: 

ERROR MESSAGE 

ERROR MESSAGE 

I027 

IOCC BUFFER AND ADC/DAC LOOP TEST. 

1. TESTS IOCC LOAD BUFFER AND READ BUFFER 
INSTRUCTIONS : 

A. PFB, PIBL, PIBH, GIB 
B. A POWERS OF 2 BIT PATTERN TESTS 

THE BUFFER BIT INTEGRITY. 

2. race DAC/ADC LOOP TEST 
A. TESTS PFI, GIF. 
B. A POWERS OF 2 BIT PATTERN IS SENT 

TO A DAC AND READ FROM AN ADC. 

THIS TEST IS CHAINABLE ONLY IF THE DAC/ADC 
TABLE IS ASSEMBLED INTO THE TEST CORRECTLY. 
THERE IS NO KEYBOARD INPUT IN CHAIN MODE. 

ADC TOLERANCE IS 20 (OCTAL) BY DEFAULT (1 LSB). 
THIS VALUE IS AT SYMBOL 999$ IN THIS TEST (SEE 
THE LISTING FOR THE PDP-11 LOCATION). 

ADC READ ERROR 

TYPE 0 = 1ST READ IN HISTORY REGISTER 
1 = 2ND READ IN HISTORY REGISTER 

DAC/ADC THE OCTAL DAC/ADC PAIR ADDRESSES (BYTES) 
SENT EXPECTED DATA PATTERN 
REC RECEIVED DATA PATTERN 

BUFFER ERROR 

TYPE 
XXXX (NOT USED) 
SENT EXPECTED DATA PATTERN 
REC RECEIVED DATA PATTERN 

DIAG-23 



DESGRIPTlON 

I028 

IOCC APC/DAC LOOP TEST. 

. EACH DAC/ADC PAiR IS LOOP TESTED FOR EVERY 
POSSIBL~ LEGAL BIT COMBINATION. 

THIS T~ST IS CHAINABL~ ONLY IF THE DAC/ADC 
TABLE IS ASSEMBLED INTO THE TEST. THERE IS 
NO KEYSOARD INPUT IN CHAIN MODE. 

ADC TQ~ERANCE IS 20 (OCTAL) BY DEFAULT (1 LSB). 
THIS VALUE IS AT SYMBOL 999$ IN THIS TEST (SEE 
THE LISTING FOR THE PDP-11 LOCATION). 

E~ROR M~~SAGE ADC READ ERROR 

TYPE 
DAC/ADC THE OCTAL DAC/ADC PAIR ADDRESSES (BYTES) 
SENT EXPECTED DATA PATTERN 
REC RECEIVED DATA PATTERN 

. ERROR MESSAGE auFFER ERROR 

DESC~IPTION 

TYPE 
XXXX (NOT USED) 
SENT EXPECTED DATA PATTERN 
REC RECEIVED DATA PATTERN 

HI12 

HIC AND COP BIT WALK TEST. 

A Brr WALK OF 1'S AND O'S IS PERFORMED ON 
ALL PERMISSI~LE HIC AND COP REGISTERS. 
(READ/WRITE BITS ONLY). 

ERROR MES$AGE AD10 HIC REG ERROR 

ADDR HIC ADDRESS AT WHICH ERROR OCCURRED 
MASKED ORIGINAL PATTERN BEFORE MASK 
SE~t EXPECTED DATA PATTERN 
REC RECEIVED DATA PATTERN 

OIAG~24 



DESCRIPTlON 
---- ....... -.. ,.,. .. ,.,~ 

ERROR M~SSAGE 
... -"-!'r--iir------~~-

DESCRIPTION 
. --.,-~ ... ,...-~-.- ... 

ERROR MESSAGE 
_..,. __ ~.,.-- .... -.,..-~ 

HI13 

HIC PROCESSOR BOARD PROGRAM COUNTER EXERCISER 
AND HISTORY REGISTER/TEST REGISTER TESTS. 

EACH PROCESSOR BOARD PROGRAM COUNTER HAS ALL 
VALUES (0-1777) WRITTEN TO IT AND VERIFIED. 
ALL PROCESSORS MUST BE PRESENT FOR THIS TEST. 
ALSO, THE TEST REGISTER IS LOADED, THE AD10 
IS RUN FOR EIGHT INSTRUCTIONS, AND THE HISTORY 
REGISTER'S CONTENTS CHECKED AGAINST THE ORIGINAL 
TEST REGISTER'S CONTENTS. 

AD10 HIC REG ERROR 

TEST 
HIST 
OFFSET 

xx xx 

HI32 

TEST REGISTER DATA 
HISTORY REGISTER DATA 
THE OFFSET INTO THE HISTORY REGISTER 
DATA FOR THIS COMPARISON 
(NOT USED) 

HIC SHUTDOWN REGISTER TEST . 

MAP AND COP PROGRAMS ARE USED TO FILL THE 
MULTIBUS PIPELINE. THE DATA COMES FROM EIGHT 
PAGES OF DATA MEMORY AND THE COP GENERAL 
REGISTERS. WHEN THE AD-10 IS STOPPED, THE 
SHUTDOWN REGISTERS ARE LOADED WITH THE PIPE­
LINE DATA. THESE REGISTERS ARE THEN READ AND 
CHECKED. EACH DATA VALUE IS INCREMENTED 
UNTIL ALL BIT PATTERNS ARE TESTED IN EACH 
SHUTDOWN REGISTER. 

SHUT DOWN ERROR 

REG ADDR 
xx xx 
EXPECTED 
RECEIVED 

HIC ADDRESS OF SHUTDOWN REGISTER 
(NOT USED) 
EXPECTED DATA PATTERN 
RECEIVED DATA PATTERN 

DIAG-25 





APPLIED DYNAMICS INTERNATIONAL 
3800 STONE SCHOOL ROAD 
ANN ARBOR, MICHIGAN 48104 
313-973-1300 

HHHHB HHHHH LLLL IIIII 
HHHHH HHHHH LLLL IIIII 
HHHHH HHHHH LLLL III 
HHHHHHHHHHHH LLLL III 
HHHHHHHHHHijH LLLL III 
HHHHHHHHHHHH LLLL III 
HHHHH HHHHH LLLL III 
HHHHH HHHHH LLLLLLLLL II III 
HHHHH HHHHH LLLLLLLLL IIIII 

BBBBBBBBBB 
BBBBBBBBBBB 

BBBBBBBBBB 
BBBBBBBBB 
BBBBBBB 
BBBBBBBBB THE HIC-11 
BBBBBBBBBB COMMUNICATION 

BBBBBBBBBBB SUBROUTINE LIBRARY 
BBBBBBBBBB DE1478 





TABLE OF CONTENTS PAGE 

I~TROOUCTION , ...••..•.•••.••.•..•••••.• 2 

USING HIC LIBRARY SUBROUTINES ...•..••.• 3-4 

ARGUMENTS AND CALLING CONVENTIONS •..•.• 5 

SUBROUTINE DESCRIPTIONS ••.•.••.... ~ .... 6-11 

AD-10 CONTROL ...•..•.•....•..•. 6 
AD-10 CONSOLE COMMANDS···•····· 6 
HIC READ/WRITE • . . . . . . . • • . . . . • . . 7 
DATA MEMORY READ/WRITE .••••..•• 8 
PROGRAM MEMORY READ/WRITE .•.... 8 
BUS WINDOW READ/WRITE .....•...• 9 
SINGLE REGISTER READ/W~ITE ..•.. 9 
REGISTER GROUP READ/WRITE .•...• 10-11 
READ/WRITE NIP 18 BIT REGISTERS 11 

HLIB-1 



INTRODUCTION 

THE HIC-11 COMMUNICATION SUBROUTINE LIBRARY (HIC.OLB) PROVIDES THE 
MEANS FOR USER PROGRAMS WRITTEN IN FORTRAN OR MACR0-11 TO COMMUNICATE 
WITH TH~ AQ~lO COMPUTER. THE AD-10 EXECUTIVE (ADX) USES THESE HIC 
LIBRARY ROUTINES TO ACCESS AND CONTROL THE AD-10. THE HIC LIBRARY IS 
AN OBJECT LlBRARY AND NEEDS TO BE LINKED TO THE USER'S OBJECT PROGRAM 
AT TASK BUILD TIME. IT CONSISTS OF A GROUP OF FORTRAN SUBROUTINES, FROM 
WHICH ~HE TASK BUILDER WILL SELECT THE ONES WHICH ARE CALLED BY THE 
USE~'S ~ROGRAM AND WILL INCLUDE THEM IN THE RESULTING RSX-11 TASK. THESE 
SUBROUTINES ENABLE THE USER'S PROGRAM TO DO THE FOLLOWING: 

1. ATTACH AD-10 CONSOLES FOR EXCLUSIVE USE (MANDATORY FOR 
ACCESS TO THE AD-10), SWITCH FROM ONE CONSOLE TO ANOTHER, 
ANO DETACH CONSOLES (ATT10,CON10,DET10), 

2. INITIALIZE THE AD-10 AND HIC REGISTERS (INTHIC,INIT10), 

3. START THE AD-10 (RUNlO), 

4. STOP THE AD-10 (HLTlO), 

5. PUT THE AD-10 INTO TEST MODE (TESTlO), 

6. DETERMINE IF THE A0-10 IS RUNNING (BUSYlO), 

7. READ FROM OR WRITE TO HIC REGISTERS (RHICR,WHICR,RHICRS, 
WHICRS) , 

8, READ FROM OR WRITE TO AD-10 DATA MEMORY (RPM,WPM,RDMS,WDMS), 

9. READ FROM OR WRITE TO AD-10 PROGRAM MEMORY FOR EACH AD-10 
PROCESSOR (RPM,WPM,RPMS,WPMS), 

10. READ FROM OR WRITE TO THE 256-WORD BUS WINDOW (RBW,WBW, 
RBWS , WBWS) , 

ll, READ FROM OR WRITE TO INDIVIDUAL HIC AND AD-10 REGISTERS 
(RTCR,WTCR,RTSH,WTSH,RRIC,WRIC,RCSR,WCSR,REHS,WEHS,RHMR, 

WHMR,RIMR,WIMR,RRCR,WRCR,RBAR,WBAR,RRR,WRR), 

12. READ FROM OR WRITE TO EITHER A SINGLE REGISTER IN A REGISTER 
GROUP, OR TO THE ENTIRE REGISTER GROUP (RTB,WTB,RTBS,WTBS, 
RTA,WTA,RTAS,WTAS,RTD,WTD,RTDS,WTDS,RPC,WPC,RPCS,WPCS,RSC, 
WSC,RSCS,WSCS,RSD,WSD,RSDS,WSDS,RHB,WHB,RHBS,WHBS,RHA,WHA, 
RHAS,WHAS,RHD,WHD,RHDS,WHDS,RGR,WGR,RGRS,WGRS,RIR,WIR,RIRS, 
WIRS,RXR,WXR,RXRS,WXRS,RTR,WTR,RTRS,WTRS). 

HLIB-2 



USING HIC LIBRARY SUBRO~TINES 

THE PROGRAM PREPARATION STEPS INVOLVED IN USING THE HIC LIBRARY ROUTINES 
TO COMMUNICATE WITH OR CONTROL THE AD-10 ARE AS FOLLOWS 

1. DEFINE THE PROBLEM AND DO THE "PAPER CODING" FOR THE SOURCE 
LANGUAGE BEING USED (FORTRAN OR MACR0-11). 

2. USE THE TEXT EDITOR (EDI) TO CREATE A SOURCE FILE. 

3. COMPILE (FORTRAN) OR ASSEMBLE (MACR0-11) THE SOURCE FILE TO 
CREATE AN OBJECT FILE. 

4. TASK BUILD (TKB) THE OBJECT FILE ALONG WITH THE HIC-11 COMMUN­
ICATION SUBROUTINE LIBRARY ( [l,l]HIC.OLB ) , TO CREATE A TASK 
IMAGE FILE WHICH CAN BE RUN UNDER RSX-llM. 

THE HIC LlBRARY SUBROUTINES INTERFACE TO THE THE AD-10 THROUGH THE HYBRID 
DRIVER (HY), WHICH MUST BE LOADED IN THE RSX-llM SYSTEM PRIOR TO RUNNING 
THE ANY TASK WHICH CALLS THESE SUBROUTINES. TO ALLOW THE HYBRID DRIVER 
TO ACCESS THE AD-10 INTERFACE "WNDWS=l" MUST BE SPECIFIED AS AN OPTION TO 
THE TASK~UILDER. PRIOR TO ANY COMMUNICATION WITH THE AD-10, THE USER TASK 
MUST SUCESSIFULLY "ATTACH" THE AD-10 CONSOLE OF INTEREST BY CALLING THE 
arc LIBRARY ROUTINE "ATTlO". THE FOLLOWING DIAGRAM INDICATES THE GENERAL 
TASK STRUCTURE: 

•••••••••• 'I •• 

: FORTRAN 
: PROGRAM . . . ~ ........... . 

HIC 

: MACR0-11 
: PROGRAM . . . ........... . 

: LIBRARY :<--------~>: HYBRID 
: ROUTINES : DRIVER 

HIC 
:<--------->: LIBRARY 

: ROUTINES . . .. ' .......... . . . . ........... . 

• • • • . • ! ...... . 

: AD-10 
: ·COMPUTER . . ............. 

HLIB-3 

. . . ........... . 



USING HIC LIBRARY SUBROUTINES (CONT.) 

THE FOLLOWING EXAMPLE SHOWS THE BASIC CONSOLE COMMANDS FOR TASKBUILDING 
AND RUNNING A FORTRAN OR MACR0-11 PROGRAM WHICH CALLS HIC LIBRARY 
SUBROUTINES : 

MCR>TKB <CR> 
TKB>PROG,PROG/SH=PROG,[l,l)HIC/LB <CR> 
'l'KB>/ <CR> 
ENTER OPTIONS: 
TKB>WNDWS=l 
TKB>// <CR> 

MCR>RUN PROG <CR> 

NOTE "<CR>" INDICATES CARRIAGE RETURN (RETURN}. 
THROUGHOUT THIS MANUAL ANGLE BRACKETS ("<" AND ">"} ARE USED TO 
ENCLOSE THE NAME OF A SYNTACTIC ELEMENT OR CLASS OF ~LEMENTS. 

HLIB-4 



ARGUMENTS AND CALLING CONVENTIONS 

ALL ARGUMENTS FOR THE HIC LISRARY SUBROUTINES ARE TYPE INTEGER*2 , EX­
CEPT FOR THE FUNCTION SUBPROGRAM BUSYlO(I), WHERE THE SINGLE ARGUMENT IS 
TYPE LOGICAL*l • THE ARGUMENT "IE" IN MOST ROUTINES CONTAINS THE ERROR 
CODE UPON RETURNING FROM THE ROUTINE, WHERE IE=O INDICATES SUCCESS 
AND lE=l INDICATES AN ERROR CONDITION. 

WHEN CALLING THE SUBROUTINES FROM FORTRAN, SIMPLY FOLLOW THE STANDARD 
FORTRAN PROCEDURES : 

CALL <HIC LIBRARY SUBROUTINE NAME> (<ARGUMENT LIST>) 

SAMPLE FORTRAN CALLS ARE INCLUDED IN THE INDIVIDUAL ROUTINE DESCRIPTIONS. 

THE ONLY EXCEPTION IS THE FUNCTION SUBPROGRAM BUSYlO{I), WHICH RETURNS 
A LOGICAL VALUE {.TRUE. OR .FALSE., DEPENDING UPON WHETHER OR NOT THE 
AD-10 IS CURRENTLY RUNNING}. A SAMPLE "CALL" TO THIS FUNCTION SUB­
PROGRAM WOULD BE AS FOLLOWS 

LOGICAL*l BUSYlO,I 
IF (BUSYlO{I)) GOTO 100 
.. ~ 

100 

WHEN CALLING A HIC LIBRARY SUBROUTINE FROM MACR0-11, THE USER MUST DO 
THE FOLLOWING : 

1. CREATE A TABLE CONTAINING THE ADDRESSES OF THE ARGUMENTS 

TABLE: .BYTE 
.WORD 
.WORD 

.WORD 

O, <COUNT OF THE NUMBER OF ARGUMENTS> 
<ADDRESS OF ARGUMENT #1> 
<ADDRESS OF ARGUMENT #2> 

<ADDRESS OF ARGUMENT #N> 

2. THEN, THE CALL TO THE SUBROUTINE IS MADE AS FOLLOWS 

<SAVE REGISTERS RO-RS> 
I 

MOV #TABLE,R5 
JSR PC, <HIC LIBRARY SUBROUTINE NAME> 
; 
<RESTORE REGISTERS RO-RS> 

NOTE UPON RETURNING FROM FUNCTION SUBPROGRAM BUSYlO, 
REGISTER RO WILL CONTAIN THE LOGICAL RESULT {AS WILL 
THE ARGUMENT, WHICH STILL MUST BE SPECIFIED) : 

RO = 0 
RO NONZERO 

IMPLIES .FALSE. 
IMPLIES .TRUE. 

HLIB-5 



ROUTINE NAME(S): ATTlO, DETlO, CONlO 

CAL~ SEQUENCE(S): CALL ATTlO(IC,!L,IEFN,IE) 
-----r---,~----r CALL CONlO(iC,IE) 

CALL DE'rlO(JE) 

DESCRIPTION: ATTACH AD-10 CONSOLE FOR EXCLUSIVE USE (AND SELECT CONSOLE) 
-------~--- SEL~CT AD-10 CONSOLE (IN A MULTI-CONSOLE SYSTEM) 

DETACH AD-10 CONSOLE CURRENTLY SELECTED 

INPUT VARIABLES: IC ~ CONSO~E # 
---------~----- IL ~ LOGICAL UNIT # 

IEFN = EVENT FLAG # 

OUTPUT VARIABLES: IE = ERROR WORD 
= 0 NORMAtLY 
~ 1 FOR ILLEGAL ARGUMENT 

ROUTINE NAME(S): HLTlO, INTHIC, INITlO, RUNlO, TESTlO 
-----~------ .... --r 

CALL SEQU~NCE(S): CALL HLTlO{IE) 
---~-----------~ CAL~ INTHIC(IE) 

CALL INIT10 (IE) 
CALL RUNlO (IE) 
CAL!.,. TESTlO(IE) 

DESCRIPTlON: HALT THE AD-10 
----------- INITIALIZE ALL HIC REGISTERS WHICH AL~OW WRITE ACCESS 

INITlALIZE THE AD..,.10 
RUN THE AD-10 
PUT THE AD-10 IN TEST MODE 

INPUT VARIABLES: NONE 

OUTPUT VARIABLES: IE = 0 NORMALLY 
-------~~-~-~--- ~ 1 IF AD..,.10 POWER IS DOWN 

HLIB..,.6 



ROUTINE NAME(S}: RHICR, WHICR, RHICRS, WHICRS 

CALL SEQUENCE(S}: CALL RHICR(REG,IDATAl,IE} 
---------------- CALL WHICR(REG,IDATA2,IE) 

DESCRIPTION: 

INPUT VARIABLES: 

CALL RHICRS(REG,IARYl,ICNT,IE} 
CALL WHICRS(REG,IARY2,ICNT,IE} 

READ FROM OR WRITE TO HIC REGISTER(S} 

REG 
IDATA2 
IARY2 
ICNT 

= HIC REGISTER NUMBER (0-255) 
= DATA WORD TO WRITE 
= ARRAY OF DATA WORDS TO WRITE 
= NUMBER OF REGISTERS TO READ OR WRITE 

(STARTING WITH "REG"} (1-256} 

OUTPUT VARIABLES: IDATAl = DATA WORD TO READ 
---------------- IARYl = ARRAY OF DATA WORDS READ 

IE = ERROR WORD 
= 0 NORMALLY 
= 1 FOR ILLEGAL ARGUMENT VALUE 

ROUTINE NAME(S}: BUSYlO(I} 

CALL SEQUENCE(S}: LOGICAL*l BUSYlO,I,BUSY 
---------------- BUSY=BUSYlO(I} 

DESCRIPTION: FUNCTION SUBPROGRAM WHICH RETURNS : 

.TRUE. 

.FALSE. 

INPUT VARIABLES: NONE 
--,.....-~---.----.-.,---

IF AD-10 IS BUSY (RUN BIT IN CSR IS SET) 
IF AD-10 IS NOT BUSY 
(RUNBIT IN CSR IS NOT SET} 

OOTPUT VARIABLES: I = .TRUE. OR .FALSE. (THE SAME AS THE FUNCTION VALUE} 

HLIB-7 



ROUTINE NAME(S}: ROM, WDM, RDMS, WDMS 

CALL SEQUENCE(S): CALL RDM(PAGADR,WRDADR,IDATAl,IE} 
---------------- CA~L WDM(PAGADR,WRDADR,IDATA2,IE} 

CALL RDMS(PAGADR,WRDADR,IARYl,ICNT,IE} 
CALL WDMS(PAGADR,WRDADR,IARY2,ICNT,IE} 

DESCRIPTION: READ OR WRITE A SINGLE DATA MEMORY LOCATION 
----------- OR A GROUP OF LOCATIONS 

INPUT VARIABLES: PAGADR = MEMORY PAGE ADDRESS (0-63} 
-----iir----- ..... ...,-i--- WRDADR = MEMORY WORD ADDRESS (0-4095} 

IDATA2 = DATA WORD TO WRITE 
IARY2 :;:: ARRAY OF DATA WORDS TO WRITE 
ICNT = NUMBER OF DATA MEMORY WORDS TO READ Q~ 

(STARTING WITH THE SPECIFIED ADDRESS} 

OUTPUT VARIABLES: I DAT Al = DATA WORD READ 
----,.-- ...... --------- IARYl = ARRAY OF DATA WORDS READ 

IE = ERROR WORD 
= 0 NORMALLY 
= 1 FOR ILLEGAL ARGUMENT(S) 

ROUTINE NAME(S): RPM, WPM, RPMS, WPMS 

CALL SEQUENCE(S}: CALL RPM(PROC,FLDNUM,WRDADR,IDATAl,IE} 
---------------- CALL WPM(PROC,FLDNUM,WRDADR,IDATA2,IE} 

DESCRIPTION: 

INPUT VARIABLES: 

CALL RPMS(PROC,FLDNUM,WRDADR,IARYl,ICNT,IE) 
CALL WPMS(PROC,FLDNUM,WRDADR,IARY2,ICNT,IE) 

READ FROM OR WRITE TO AD-10 PROGRAM MEMORY 

= AD-10 PROCESSOR NUMBER (l-7) 

WRITE 

--------.-...----~-

PROC 
FLDNUM = FIELD NUMBER IN PROCESSOR MEMORY WO~D 

(FROM 0 TO THE MAXIMUM FOR THAT PROCESSOR, 

WRDADR 
IDATA2 
IARY2 
ICNT 

OR FIELD 5 FOR REGISTER ACCESS) 
= PROGRAM MEMORY WORD ADDRESS (0-1023) 
= DATA WORD TO WRITE 
= ARRAY OF DATA WORDS TO WRITE 
= NUMBER OF WORDS TO REAP OR WRITE TO 

FIELD "FLDNUM" OF PROGRAM MEMORY WORDS 
(STARTING WITH "WRDADR") (1-1024) 

OUTPUT VARIABLES: IDATAl = DATA WORD READ 
--------------~- IARYl = ARRAY OF DATA WORDS READ 

IE = ERROR WORD 
= 0 NORMALLY 
= 1 FOR ILLEGAL ARGUMENT(S) 

HLIB-8 



ROUTINE NAME(S): RBW, WBW, RBWS, WBWS 

CALL SEQUENCE(S): CALL RBW(IADDR,IDATAl,IE) 
---------------- CALL WBW(IADDR,IDATA2,IE) 

DESCRIPTION: 

INPUT VARIABLES: 

CALL RBWS(IADDR,IARYl,ICNT,IE) 
CALL WBWS(IADDR,IARY2,ICNT,IE) 

READ FROM OR WRITE TO BUS WINDOW LOCATION(S) 

IADDR 
IDATA2 
IARY2 
ICNT 

= BUS WINDOW LOCATION (0-255) 
= DATA WORD TO WRITE 
= ARRAY OF DATA WORDS TO WRITE 
= NUMBER OF BUS WINDOW LOCATIONS TO READ 

OR WRITE (STARTING WITH LOCATION "IADDR") 
(1-256) 

DATA WORD READ OUTPUT VARIABLES: IDATAl = 
---------------- IARYl = ARRAY OF DATA WORDS READ 

= ERROR WORD IE 
= 0 NORMALLY 
= 1 FOR ILLEGAL ARGUMENT(S) 

ROUTINE NAME(S): R***, W*** 

CALL SEQUENCE(S): R***(IDATAl) 
---------------- W***(IDATA2) 

DESCRIPTION: 

MNEMONIC 
------~-

TCR 
TSH 
RIC 
CSR 
EHS 
HMR 
!MR 
RCR 
BAR 
RR 
DR 

READ FROM OR WRITE TO REGISTER *** 

WHERE, *** CAN BE ANY OF THE FOLLOWING MNEMONICS: 

REGISTER 

TEST CONTROL REGISTER 
TEST/SHUTDOWN/HISTORY COUNTERS (READ ONLY) 
REMOTE INTERFACE CONTROL REGISTER 
CONTROL STATUS REGISTER 
ERROR AND HALT STATUS REGISTER 
HALT MASK REGISTER 
INTERRUPT MASK REGISTER 
RUN COUNT REGISTER 
BUS WINDOW BLOCK ADDRESS REGISTER 
ARP "R" (RESULT) REGISTER 
NIP "D" REGISTER 

INPUT VARIABLES: IDATA2 = DATA WORD TO WRITE 

OUTPUT VARIABLES: IDATAl = DATA WORD READ 

HLIB-9 



ROUTINE NAME(S): R**, W**, R**S, W**S 

CALL SEQUENCE(S): CALL R**(N,IDATAl,IE) 
---------------- CALL W**(N,IDATA2,IE) 

DESCRIPTION: 

MNEMON!C 

• 

• 

TB 
TA 
TD 
PC 
J;>S 
SC 
SD 
HB 
HA 
00 

INPUT VARIABLES: 
-----------.-.:,,_--.,... • 

OUTPUT VARIABLES: 

CALL R**S ( IARYl) 
CALL W**S ( IARY2) 

READ FROM OR WRITE TO THE REGISTERS IN REGISTER 
GROUP : ** 

WHERE, ** CAN BE ANY OF THE FOLLOWING MNEMONICS: 

N 

REGISTER GROUP 

TEST BLOCK ADDRESS 
TEST ADDRESS AND CONTROL 
TEST DATA 
PROCESSOR PROGRAM COUNTERS 
PROCESSOR STATUS WORDS 
SHUTDOWN/RESTART CONDITIONS 
SHUTDOWN/RESTART DATA 
HISTORY BLOCK ADDRESS 
HISTORY ADDRESS/ERROR 
HISTORY DATA 

= REGISTER NUMBER IN GROUP 

REGISTER 
NUMBERS 

(0-15) 
(0-15) 
(0-15) 
(1-7) 
(1-7) 
(0-15) 
(0-15) 
(0-15) 
(0-15) 
(0-15) 

(ALL REGISTERS ARE NUMBERED STARTING 
WITH 0 EXCEPT FOR PC'S AND PS'S WHICH 
ARE NUMBERED FROM 1 TO 7) 

IDATA2 = DATA WORD TO WRITE , 
IARY2 = 

I DAT Al = 
IARYl = 
IE = 

= 
= 

ARRAY OF DATA WORDS TO WRITE 

DATA WORD READ 
ARRAY OF DATA WORDS READ 
ERROR WORD 
0 NORMALLY 
l FOR REGISTER NUMBER OUT OF RANGE 

HLIB-10 



ROUTINE NAME(S): R**, W**, R**S, W**S 

CALL SEQUENCE(S): CALL R**(N,IDATAl,IE) 
---------------- CALL W**(N,IDATA2,IE) 

DESCRIPTION: 

MNEMONIC 

GR 
IR 
XR 
TR 

INPUT VARIABLES: 

CALL R**S(N,IARYl,ICNT,IE) 
CALL W**S(N,IARY2,ICNT,IE) 

READ FROM OR WRITE TO THE REGISTERS IN REGISTER 
GROUP : ** 

WHERE, ** CAN BE ANY OF THE FOLLOWING MNEMONICS: 

N 
IDATA2 
ICNT 
IARY2 

REGISTER GROUP 

COP GENERAL REGISTER 
MAP/DEP "I" REGISTER 
DEP "X" REGISTER 
ARP "T~ REGISTER 

REGISTER # 

(0-127) 
(0-127) 
(0-127) 
(0-127) 

= TEMPORARY REGISTER ADDRESS (0-127) 
•i = DATA WORD TO WRITE 

= THE NUMBER OF TEMPORARY REGISTERS 
- DESIRED TEMPORARY REGISTER VALUES 

OUTPUT VARIABLES: IARYl = AN ARRAY WHICH WILL RECEIVE THE 
---------------- TEMPORARY REGISTER VALUES 

IDATAl = DATA WORD READ 
IE = ERROR WORD 

= 0 NORMALLY 
= 1 FOR ILLEGAL ARGUMENT(S) 

ROUTINE NAME(S): RFR, WFR, RFRS, WFRS 

CALL SEQUENCE(S): CALL RFR(FLDNUM,REG,IDATAl,IE) 
---------------- CALL WFR(FLDNUM,REG,IDATA2,IE) 

DESCRIPTION: 

INPUT VARIABLES: 
-~-...-----"";"'--~-~-

CALL RFRS(FLDNUM,REG,IARYl,ICNT,IE) 
CALL WFRS(FLDNUM,REG,IARY2,ICNT,IE) 

READ FROM OR WRITE TO THE 48 BIT NIP REGISTERS 

FLDNUM 
REG 
IDATA2 
IARY2 
ICNT 

= 1 (LOW) , 2 (MIDDLE) , OR 3 (HIGH 16 BIT WORD) 
= REGISTER NUMBER (0-1023 DECIMAL) 
= 16 BIT DATA WORD TO WRITE 
= ARRAY OF 16 BIT DATA WORDS TO WRITE 
= NUMBER OF 16 BIT DATA WORDS TO READ OR WRITE 

STARTING WITH REGISTER "REG" (1-1024) 

16 BIT DATA WORD READ OUTPUT VARIABLES: IDATAl = 
--------~------- IARYl = ARRAY OF 16 BIT DATA WORDS READ 

= ERROR WORD IE 
= 0 NORMALLY 
= 1 FOR ILLEGAL ARGUMENT(S) 

HLIB-11 





MMMM MMMM FFFFFFFFFF LLLL IIII BBBBBBBB 
MMMMM MMMMM FFFFFFFFFF LLLL IIII BBBBBBBBBB 
MMMMMMMMMMMM FFFFFFFFFF LLLL IIII BBBB BBB BB 
MMMMMMMMMMMM FFFF LLLL IIII BBBB BB BBB 
MMMMMMMMMMMM FFFFFFFF LLLL IIII BBBBBBBBB THE 
MMMM MM MMMM FFFFFFFF LLLL IIII BBBBBBBBB AD-10 
MMMM MMMM FFFFFFFF LLLL IIII BBBB BBB BB MACROFILE 
MMMM MMMM FFFF LLLLLLLLLL IIII BBBB BBBBB LIBRARY 
MMMM MMMM FFFF LLLLLLLLLL IIII BBBBBBBBBB USER'S MANUAL 
MMMM MMMM FFFF LLLLLLLLLL IIII BBBBBBBB 





AD-10 DOCUMENTATION UPDATES 

MANUAL NAME: AD 10 SOFTWARE REFERENCE MANUAL CHAPTER 5 MFLIB 

DATE: 

UPDATES: 

3-FEB-78 

1) THE EXAMPLE AD-10 PROGRAM "BENCH.ASM" HAS AN ERROR ON 
THE BOTTOM OF PAGE 57. THE SYMBOL "UPDATE" SHOULD BE 
DEFINED TO HAVE A VALUE OF 1 INSTEAD OF 3, AS FOLLOWS: 

UPDATE .EQU 1 

2) THE FORTRAN PROGRAM "FUNDAT.FTN" ASSOCIATED WITH THE 
EXAMPLE AD-10 PROGRAM HAS SEVERAL ERRORS. THE ARGUMENT 
TO THE "SIN" FUNCTION AND "COS" FUNCTION ON PAGES 64 AND 
65 SHOULD INCLUDE A FACTOR OF "PI" (3.14159) AS FOLLOWS: 

FS = SIN(A2(I)*3.14159) 

AND THE NUMBER OF RECORDS IN THE FILES "Fl4.DAT" AND 
"FIS.DAT" DEFINED ON PAGES 63 AND 64 SHOULD BE 252 
(NOT 336), THUS THE FILE DEFINITIONS SHOULD READ: 

DEFINE FILE 1(252,2,U,NREC) 

3) THE TRANSFER MACROFILES WHICH ACCESS THE IOCC ALLOW 
THE USER TO SPECIFY THE I/O OPCODE. THESE OPCODES ARE 
DEFINED IN SECTION 4.2.5.3.2 OF THE AD-10 REFERENCE 
MANUAL AND ARE REFERRED TO AS nI/O DEVICE CONTROL BITS". 

4) THE DEFINITION OF THE TERM "FUNCTION DATA" ON PAGE 1 
ALSO ATTEMPTS TO DESCRIBE HOW THE FUNCTION DATA ARRAYS 
MUST BE ORDERED IN SEQUENTIAL PDP-11 DATA FILES. THE 
FOLLOWING SHOULD FURTHER CLARIFY FUNCTION DATA ORDERING: 

FUNCTION DATA MUST BE ORDERED INTO A LINEAR ARRAY IN 
THE PDP-11, PRIOR TO LOADING INTO THE AD-10. THE ORDER OF 
INDEXING IN THIS ARRAY IS DETERMINED BY THE ORDER OF 
LISTING OF THE VARIABLES IN THE FUNCTIONAL NOTATION. 
THUS FOR Fl(X,Y,Z) THE DATA ARRAY WOULD BEGIN WITH: 
Fl(Xl,Yl,Zl), Fl(X2,Yl,Zl), Fl(X3,Yl,Zl), ... AND AFTER 
INDEXING "X" FOR ALL BREAKPOINTS, "Y" IS INCREMENTED AND 
"X" IS AGAIN INDEXED THROUGH ALL BREAKPOINTS AS FOLLOWS: 
Fl(Xl,Y2,Zl) I Fl(X2,Y2,Zl) I Fl(X3,Y2,Zl) I ••• AFTER ALL 
VALUES OF "Y" HAVE BEEN INDEXED, "Z" IS THEN INCREMENTED 
AND THE PROCESS IS REPEATED. IT IS ASSUMED THAT IF THE 
SAME SET OF VARIABLES OCCUR IN MORE THAN ONE FUNCTION, 
THESE WILL BE LISTED IN THE SAME ORDER IN ALL FUNCTIONS, 
SUCH AS Fl(X,Y,Z) I F2(X,Y,Z) I F3(X,Y,Z) I ETC ... , so THAT 
THE SAME POINTER CALCULATION CAN BE USED FOR ALL SUCH 
FUNCTIONS. 



5) THE MANUAL SHOULD CONTAIN A SECTION ON CALLING THE 
MACROFILES AS SUBROUTINES. IN GENERAL, ANY MACROFILE 
CAN BE CALLED AS A SUBROUTINE AS LONG AS ALL "IMMEDIATE 
DATA" AND "IMMEDIATE ADDRESSES" WHICH ARE BUILT INTO 
THE AD-10 INSTRUCTIONS DO NOT NEED TO CHANGE FROM ONE 
CALL TO THE NEXT. THE PROCEDURE IS AS FOLLOWS: 

A) SWAP INPUT QUANTITIES INTO THE REGISTERS WHICH WERE 
ASSEMBLED AS THE INPUT REGISTERS FOR THE MACROFILE. 

B) LOAD PROGRAM COUNTERS FOR ALL PROCESSORS USED IN THE 
MACROFILE TO THE STARTING LOCATIONS FOR THESE 
PROCESSORS IN THE MACROFILE SUBROUTINE. 

LPC $ARP,SUBARP 
LPC $DEP,SUBDEP 
LPC $MAP,SUBMAP 

C) SETUP THE RETURN ADDRESS FOR THE COP IN A GENERAL 
REGISTER AND JUMP TO THE SUBROUTINE: 

RETADR 

D) FOLLOW 
TO THE 

SUBADR 

SUBARP 

SUBDEP 

SUBMAP 

LFI 
SGRF 
JMP 
LPC 
LPC 
LPC 

RETADR 
RETREG 
SUBADR 
$ARP,NEXTA 
$DEP,NEXTD 
$MAP,NEXTM 

THE SUBROUTINE WITH A 
ADDRESS SETUP IN STEP 

. COP 

.EQU * 

.ARP 

.EQU * 

.DEP 

.EQU * 

.MAP 

.EQU * 

.INCLUDE MACROFILE 
LGRF RETREG ! LOAD 
JPM ! JUMP 

RESTORE PC'S FOR 
PROCESSORS USED IN 
THE SUBROUTINE. 

COP PROGRAM TO RETURN 
c) ' I.E . 

RETURN ADDR TO MULTIBUS 
TO THE ADDR ON MULTIBUS· 

E) SWAP RESULTS FROM OUTPUT REGISTERS WHICH WERE 
ASSEMBLED AS THE OUTPUT REGISTERS FOR THE MACROFILE 
TO THE DESIRED LOCATIONS. 



PREFACE 

A MACROFILE IS AN AD-10 ASSEMBLY LANGUAGE APPLICATION ROUTINE IN 
SOURCE FORM WHICH CAN BE INCLUDED IN A USER APPLICATION PROGRAM 
WITH USER-SPECIFIED INPUT/OUTPUT PARAMETERS OR ARGUMENTS. A 
MACROFILE IS SIMILAR TO A SUBROUTINE IN A HIGH LEVEL LANGUAGE, 
WITH THE EXCEPTION THAT EACH "CALL" TO A MACROFILE INCLUDES ANOTHER 
COPY OF THE MACROFILE CODE, WITH THE USER-SPECIFIED ARGUMENTS IN 
THE USER PROGRAM. 

THE AD-10 MACROFILE LIBRARY CONTAINS ROUTINES WHICH SUPPORT ALL 
PHASES OF MULTIVARIABLE FUNCTION GENERATION APPLICATIONS, INCLUDING 
DATA INPUT AND OUTPUT, DATA TRANSFERS WITHIN THE AD-10, BINARY AND 
SHIFT SEARCH SCHEMES (I.E. TO DETERMINE THE LOCATION OF INPUT 
VARIABLES IN THE DOMAIN OF THE FUNCTION), FUNCTION DATA POINTER 
CALCULATIONS, AND LINEAR INTERPOLATION FOR 1,2,3,4, AND 5 VARIABLE 
FUNCTIONS. ALSO SEVERAL SUPPORT ROUTINES ARE INCLUDED TO PERFORM 
CALCULATIONS OF SIN'S AND COS'S, FORWARD AND INVERSE RESOLUTION, 
"SGN" FUNCTION, ETC ... ROUTINES WHICH PERFORM GENERAL CALCULATIONS 
$UCH AS THESE ARE CONSTANTLY BEING ADDED TO THE MACROFILE LIBRARY 
AS THEY PROVE USEFUL IN USER APPLICATIONS. THE CONVENTIONS USED 
IN WRITING MACROFILES AND IN PASSING ARGUMENTS TO MACROFILES ARE 
VERY SIMPLE, THUS USERS CAN EASILY WRITE THEIR OWN SPECIAL PURPOSE 
MACROFILES TO AUGMENT THOSE PROVIDED IN THE LIBRARY. 

MFLIB-1 



TABLE OF CONTENTS 

TERMS USED IN THIS MANUAL ................................... . 
MACROFILE CALL SEQUENCE AND CONVENTIONS ..................... . 
MVFG MACROFILES •••••••••••••••••••••••••••••••••••••••••••••• 

BREAKPOINT INDEX AND DELTA CALCULATIONS ................ . 
FUNCTION DATA INDEXING ................................. . 
INTERPOLATION ALGORITHM .....................•........... 

TRANSFER MACROFILES •.•.• • ..•.•.•...••••.••.••.••.•...•••.•..• 
GENERAL APPLICATIONS MACROFILES ............................. . 
DETAILED DESCRIPTIONS OF MACROFILES .•...........•........ 

BD.6 
SD.6 

PT2.3 
PT3.3 
PT4.3 
PT5.3 

FI 1. 3 
FI2.3 
FI3.3 
FI4.3 
FI5.3 

TRMA.8 
TRMC.8 
TRMX.8 
TRMI.8 
TRME. 8 
TRAM.8 
TRCM.8 
TRXM.8 
TRIM.8 
TREM.8 
TRCA.8 
TRCX.8 
TRCI. 8 
TRCE.8 
TRAC.8 
TRXC.8 
TRIC.8 
TREC.8 

TREXM.8 
TRAEM.8 

LOADA.8 
LOADC.8 
LOADX.8 
LOADI.8 
LOADM.8 

SGN.2 
CTR.3 
IRS.3 

BINARY SEARCH AND DELTA COMPUTATION ............ 
SHIFT SEARCH AND DELTA COMPUTATION ...........•. 

FUNCTION POINTER COMPUTATION (3 OF 2) .•....••.. 
FUNCTION POINTER COMPUTATION (3 OF 3 ) .......... 
FUNCTION POINTER COMPUTATION (3 OF 4) ... ~ ...... 
FUNCTION POINTER COMPUTATION (3 OF 5 ) .......... 

FUNCTION INTERPOLATION (3 OF 1 ) •••••••••••••••• 
FUNCTION INTERPOLATION (3 OF 2 ) ..•..••.....•.•. 
FUNCTION INTERPOLATION (3 OF 3 ) ................ 
FUNCTION INTERPOLATION (3 OF 4 ) ................ 
FUNCTION INTERPOLATION (3 OF1 5 ) ................ 

TRANSFER FROM MEMORY TO ARP ••••• , •••••••••••••• 
TRANSFER FROM MEMORY TO c 0 p •.•••.••..•..••.•••. 
TRANSFER FROM MEMORY TO DEP "X" ................ 
TRANSFER FROM MEMORY TO DEP "!" ................ 
TRANSFER FROM MEMORY TO EXTERNAL I OC C ..•..•..•. 
TRANSFER FROM ARP TO M EM 0 RY •••••••••••••••••••. 
TRANSFER FROM COP TO M EM 0 RY .................... 
TRANSFER FROM DEP "X" TO MEMORY ................ 
TRANSFER FROM DEP "I" TO MEMORY ................ 
TRANSFER FROM EXTERNAL IOCC TO MEMORY~········· 

'TRANSFER FROM COP TO ARP .•••••••••••••••••• • • • • 
TRANSFER FROM COP TO DEP "X" ................... 
TRANSFER FROM COP TO DEP "I" ................... 
TRANSFER FROM COP TO EXTERNAL I OC C ••••••••••••• 
TRANSFER FROM ARP TO c 0 p .••••.••.••.•..••••.•.. 
TRANSFER FROM DEP "X" TO c 0 p •.••.••.••.•.•••••• 
TRANSFER FROM DEP "I" TO c 0 p ••••••••••••••••••• 
TRANSFER FROM EXTERNAL IOCC TO c 0 p .•••••••••••• 
TRANSFER FROM IOCC TO DEP "X" AND MEMORY ..•.... 
TRANSFER FROM ARP TO IOCC AND MEMORY ........... 

LOAD IMMEDIATE DATA INTO ARP "T" REG'S ......... 
LOAD IMMEDIATE DATA INTO COP REG Is ............. 
LOAD IMMEDIATE DATA INTO DEP "X" REG Is ......... 
LOAD IMMEDIATE DATA INTO DEP "I" REG'S ........• 
LOAD IMMEDIATE DATA INTO MEMORY ••••.••••••••••• 

COMPUTE HSGN" FUNCTIONS ....................... . 
COORDINATE TRANSFORMATIONS .................... . 
INVERSE RESOLUTIONS ........................•.•. 

PAGE 

3 
4 .. 5 
6 
7 
8-9 
10-11 
1 1 
12 
12-53 

13-15 
16-18 

18 
19 
20 
21 

22 
23 
24 
25 
26 

27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
37 
38 
38 
39 
39 
40 
40 
41 
42 

43 
43 
44 
44 
45 

46 
47-48 
49-53 

EXAMPLE AD-10 MVFG PROBLEM USING MACROFILES ..............•.. -. 54-67 
SUMMARY OF MACROFILES .................•...................... 68-70 

MFLIB-2 



MULTIVARIANT FUNCTION 

FUNCTION DATA 

FUNCTION DATA PAIR 

FUNCTION DATA POINTER * 

BREAKPOINTS 

BREAKPOINT TABLE 

BREAKPOINT INTERVAL 

BREAKPOINT INDEX * 

DELTA 

VARIABLE SET 

TERMS USED IN THIS MANUAL 

A CONTINUOUS FUNCTION OF ONE OR 
MORE VARIABLES WHICH WILL BE DEFINED 
AT DISCRETE VALUES OF THE VARIABLE(S). 

AN ARRAY OF DISCRETE VALUES OF A 
FUNCTION ORDERED SUCH THAT THE VALUES 
FOR THE FIRST VARIABLE VARY MOST 
RAPIDLY AND THE VALUES FOR THE LAST 
VARIABLE VARY MOST SLOWLY. 

TWO ADJACENT FUNCTION DATA VALUES 
BETWEEN WHICH A LINEAR INTERPOLATION 
WILL BE PERFORMED. 

A POINTER TO THE FIRST FUNCTION DATA 
PAIR TO BE USED IN THE INTERPOLATION 
ALGORITHM. THIS POINTER IS A FUNCTION 
OF THE BREAKPOINT INDICES FOR ALL 
VARIABLES IN THE VARIABLE SET. 

THE DISCRETE VALUES OF AN INPUT 
VARIABLE AT WHICH A FUNCTION OF THAT 
VARIABLE IS DEFINED. 

AN ARRAY OF BREAKPOINTS IN ASCENDING 
ORDER FOR A PARTICULAR VARIABLE. 

THE INTERVAL BETWEEN THE TWO ADJACENT 
BREAKPOINTS BETWEEN WHICH THE VALUE OF 
THE INPUT VARIABLE FALLS. 

THE POINTER TO THE FIRST BREAKPOINT 
TABLE ENTRY WHICH IS LESS THAN OR 
EQUAL TO THE CURRENT VALUE OF THE INPUT 
VARIABLE (I.E. THE LOWER BREAKPOINT OF 
THE BREAKPOINT INTERVAL). 

THE FRACTIONAL VALUE (BETWEEN 0 AND 1.0) 
CORRESPONDING TO THE POSITION OF A 
VARIABLE IN A BREAKPOINT INTERVAL. 

V - B(I) 
DELTA = 

B(I+1) - B(I) 

A COLLECTION OF VARIABLES WHICH 
WILL BE USED AS THE ARGUMENT LIST 
FOR ONE OR MORE FUNCTIONS. 

* NOTE: THESE POINTERS AND/OR INDEX VALUES BEGIN WITH THE VALUE 0. 

MFLIB-3 



MACROFILE CALL SEQUENCE AND CONVENTIONS 

A MACROFILE IS AN AD-10 ASSEMBLY LANGUAGE APPLICATION ROUTINE IN SOURCE 
FORM WHICH CAN BE INCLUDED IN A USER APPLICATION PROGRAM WITH USER­
SPECIF IED INPUT/OUTPUT PARAMETERS OR ARGUMENTS. ARGUMENTS ARE PASSED 
TO AND FROM MACROFILES USING SYMBOLS WHICH BEGIN WITH A "#". THESE "#" 
SYMBOLS STAND FOR EITHER A TEMPORARY REGISTER NUMBER, A CONSTANT, OR A 
MEMORY ADDRESS. THE ONLY DIFFERENCE BETWEEN A "II" SYMBOL AND AN ORDINARY 
SYMBOL IS THAT THE AD-10 ASSEMBLER ALLOWS A SYMBOL WHICH BEGINS WITH "II" 
TO BE DEFINED MORE THAN ONCE. THIS ALLOWS THE USER TO CALL THE SAME 
MACROFILE MORE THAN ONCE AND TO CHANGE THE ARGUMENTS AS NECESSARY. 
IF A MACROFILE ARGUMENT DOES NOT CHANGE FROM ONE CALL TO THE NEXT 
IT IS NOT NECESSARY TO DEFINE THAT ARGUMENT MORE THAN ONCE. HOWEVER, 
BE AWARE THAT IN SOME CASES THE SAME SYMBOLIC ARGUMENT IS USED BY 
SEVERAL MACROFILES. 

SINCE THE AD-10 PROCESSORS AND DATA MEMORY BOTH REQUIRE PIPELINED 
PROGRAMMING TO REALIZE FULL SPEED AND EFFICIENT OPERATION, MOST MACROFILES 
PERFORM THE SAME TASK FOR SEVERAL SETS OF INPUTS. BECAUSE OF THIS, THE 
NAMING CONVENTION FOR MACROFILE ARGUMENTS IS TO END EACH ARGUMENT WITH 
A NUMBER TO IDENTIFY EACH ARGUMENT SET. 

FOR EXAMPLE, SUPPOSE "#IN" IS THE INPUT AND "#OUT" IS THE OUTPUT OF A 
MACROFILE CALLED "COMPUTE", AND THE CALCULATIONS ARE PERFORMED FOR 3 
SETS OF ARGUMENTS. THE FOLLOWING STATEMENTS WOULD BE REQUIRED TO DEFINE 
THE 3 SETS OF ARGUMENTS AND TO "CALL" THE MACROFILE: 

III N 0 
II IN 1 
llIN2 
#OUT 0 
#OUT 1 
!IOUT2 

.EQU <VALUE1> 

.EQU <VALUE2> 

.EQU <VALUE3> 

.EQU <VALUE4> 

.EQU <VALUE5> 

.EQU <VALUE6> 

.INCLUDE COMPUTE ! "CALLS" MACROFILE 

THE AD-10 ASSEMBLER HAS A ".DEFINE" DIRECTIVE WHICH DOES THE EQUIVALENT 
OF MULTIPLE ".EQU" SYMBOL DEFINITIONS AND ALLOWS THE ARGUMENTS TO 
MACROFILES TO BE DEFINED MORE SIMPLY AS FOLLOWS: 

#IN .DEFINE <VALUE1>,<VALUE2>,<VALUE3> 
/!OUT / . DEFINE <VALUE 4 >,<VALUE 5 >,<VALUE 6 > 

.INCLUDE COMPUTE ! "CALLS" MACROFILE 

SOME MACROFILES MUST DEFINE THEIR OWN INTERNAL SYMBOLS FOR ADDRESS 
CALCULATIONS OR FOR TEMPORARY STORAGE LOCATIONS. WHENEVER A MACROFILE 
DOES DEFINE A SYMBOL INTERNALLY, THE SYMBOL ALWAYS BEGINS W~TH "/!#", 
THUS INTERNAL SYMBOLS SHOULD NEVER CONFLICT WITH USER SYMBOLS OR OTHER 
MACROFILE ARGUMENTS. 

MFLIB-4 



THE GENERAL FORMAT FOR MACROFILES IN AD-10 ASSEMBLY LANGUAGE NOTATION 
IS AS FOLLOWS: 

.PROFF 

.PROFF 
.. PAGE 

PRECEDE WITH A ".PRON" TO PRINT CODE 
PRECEDE WITH ANOTHER ".PRON" TO PRINT DESCRIPTION 
STARTING AT THE TOP OF THE NEXT PAGE 

DESCRIPTION OF MACROFILE 

.PRON 

.COP 
*********************************** 

COP CONTROL PROGRAM 

*********************************** 

PROGRAMS FOR ANY OTHER PROCESSORS 

*********************************** 
.COP 
.PRON ! END OF MACROFILE******* 

THE USER MUST SPECIFY ONE .PRON IN THE PROGRAM PRIOR TO INCLUDING A 
MACROFILE FOR THE MACROFILE CODE TO BE PRINTED IN THE PROGRAM LISTING. 
A DETAILED DESCRIPTION OF THE MACROFILE AND ITS ARGUMENTS CAN ALSO 
BE PRINTED BY USING A SECOND ".PRON", HOWEVER THIS IS NOT RECOMMENDED 
SINCE SOME OF THE DESCRIPTIONS ARE QUITE LONG AND THE SAME INFORMATION 
IS CONTAINED IN THIS MANUAL. NOTICE THAT MACROFILES END WITH A ".COP" 
DIRECTIVE, THUS A MACROFILE CAN BE FOLLOWED WITH COP CODE WITHOUT 
ISSUING ANOTHER ".COP" DIRECTIVE. 

THERE ARE A FEW RULES WHICH MUST BE FOLLOWED WHEN INCLUDING MACROFILES 
TO AVOID CONFLICTS AND ERRONEOUS RESULTS AT RUNTIME. 

1) UPON ENTRY TO A MACROFILE ALL AD-10 PROCESSORS MUST BE STOPPED 
AND MUST NOT BE IN THE MIDDLE OF A "PAUSE" INSTRUCTION. 
(NOTE: PROCESSOR(S) NOT USED BY A MACROFILE COULD POSSIBLY BE 

PROGRAMMED TO PERFORM SOME INTERNAL OPERATIONS IN PARALLEL 
WITH A MACROFILE, HOWEVER THIS IS NOT RECOMMENDED). 

2) ALSO UPON ENTRY A READ FROM MEMORY AND/OR THE IOCC MUST 
NOT BE IN PROGRESS AS THE DATA MIGHT CONFLICT WITH DATA 
THE MACROFILE PUTS ON THE MULTIBUS. 

3) THE USER SHOULD TAKE CARE PRIOR AND/OR FOLLOWING ANY 
MACROFILE WHICH ACCESSES DATA MEMORY TO AVOID A MEMORY 
PAGE CONFLICT. IF IN DOUBT, A "PAUSE 2" INSTRUCTION 
PRIOR TO AND/OR FOLLOWING SUCH A MACROFILE WILL AVOID 
ANY POSSIBILITY OF A MEMORY PAGE CONFLICT (FOR THE WORST 
CASE SITUATION). 

4) ALL UNUSED MACROFILE ARGUMENTS MUST BE DEFINED SO AS NOT TO 
CONFLICT WITH THE USED ARGUMENTS. FOR EXAMPLE, IF A TRANSFER 
MACROFILE IS USED TO TRANSFER 6 VALUES TO MEMORY, WHEN IT 
HAS THE CAPABILITY TO TRANSFER 8 VALUES, THE 2 UNUSED MEMORY 
ADDRESSES MUST BE DEFINED SUCH THAT THEY DO NOT CAUSE A 
MEMORY ACCESS ERROR. THE INDIVIDUAL MACROFILE DESCRIPTIONS 
SUGGEST RECOMMENDED DEFINITIONS FOR UNUSED ARGUMENTS. 

MFLIB-5 



MVFG MACROF ILES 

THE MVFG MACROFILES ARE A SET OF ROUTINES WHICH SUPPORT ALL PHASES 
OF MULTIVARIANT FUNCTION GENERATION ON THE AD-10. THESE MACROFILES 
ALLOW FOR EITHER EQUALLY OR NON-EQUALLY SPACED BREAKPOINTS AND CAN 
INTERPOLATE FOR FUNCTIONS OF FROM 1 TO 5 VARIABLES. AN OUTLINE OF THE 
OVERALL FUNCTION GENERATION PROBLEM IS PROBABLY THE EASIEST WAY TO 
ILLUSTRATE HOW THE APPLICATION OF MULTIVARIANT FUNCTION GENERATION IS 
SUBDIVIDED AND ROUTINES ASSIGNED TO THE VARIOUS AREAS. 

THE MVFG MACROFILES WERE WRITTEN WITH THE RUN TIME FUNCTION 
GENERATION PROBLEM DIVIDED INTO THE FOLLOWING THREE TASKS: 

1) LOCATE EACH VARIABLE IN ITS BREAKPOINT TABLE (EITHER EQUALLY 
OR NON-EQUALLY SPACED BREAKPOINTS) AND COMPUTE THE CORRESPONDING 
"DELTA" QUANTITY. 

2) COMPUTE THE FUNCTION DATA POINTER FOR EACH VARIABLE SET OF 
WHICH A FUNCTION IS TO BE GENERATED. 

3) INTERPOLATE FOR THE VALUE OF EACH FUNCTION USING THE FUNCTION 
DATA PAIRS POINTED TO BY OFFSETS FROM THE FUNCTION DATA 
POINTER FROM 2) AND THE DELTA QUANTITIES FROM 1). ONLY STEP 3) 
NEED BE REPEATED TO GENERATE MULTIPLE FUNCTIONS OF THE SAME 
VARIABLE SET. 

THE ABOVE STEPS ARE SUPPORTED BY THE THE FOLLOWING MACROFILES: 

STEP MVFG SUBROUTINE(S) 

1) BD.6 , SD.6 
2 ) PT 2 . 3 , PT 3 . 3 , PT 4 . 3 , PT 5 . 3 
3) FI1.3, FI2.3, FI3.3, FI4.3, FI5.3 

AS AN AID TO UNDERSTANDING HOW TO USE THESE ROUTINES, IT WILL BE 
HELPFUL TO FIRST DISCUSS THE SEARCH SCHEMES, DELTA CALCULATION, FUNCTION 
DATA INDEXING, AND INTERPOLATION ALGORITHM USED BY THE MVFG MACROFILES. 

MFLIB-6 



BREAKPOINT INDEX AND DELTA CALCULATIONS 

THERE ARE TWO TECHNIQUES SUPPORTED BY THE MACROFILES TO DETERMINE 
THE BREAKPOINT INDEX AND DELTA VALUE ASSOCIATED WITH EACH INPUT 
VARIABLE: A BINARY SEARCH AND DELTA CALCULATION MACROFILE (BD.6) 
AND A SHIFT SEARCH AND DELTA CALCULATION MACROFILE (SD.6). 

THE BINARY SEARCH TECHNIQUE REQUIRES THAT A TABLE OF BREAKPOINTS 
BE STORED IN AD-10 DATA MEMORY. THE BINARY SEARCH MACROFILE 
ALLOWS UP TO 33 BREAKPOINTS TO BE SPECIFIED (32 IN THE TABLE 
PLUS AN ASSUMED +1.0 UPPER BREAKPOINT). IF FEWER THAN 33 
BREAKPOINTS ARE DESIRED, THE LOWER END OF THE BREAKPOINT 
TABLE IS SIMPLY PADDED WITH -1.0 ENTRIES. THE MAIN REASON 
FOR THE CHOICE OF THE BINARY SEARCH IS THAT IT IS EFFICIENT 
(ONLY 5 COMPARISONS ARE REQUIRED TO DETERMINE THE BREAKPOINT 
INDEX FOR 33 BREAKPOINTS) AND THE EXECUTION TIME OF THE 
MACROFILE IS FIXED, WHICH IS IMPbRTANT IF A UNIFORM TIME 
FRAME IS TO BE MAINTAINED. ASSOCIATED WITH EACH BREAKPOINT 
TABLE THE USER MUST PRECOMPUTE TWO ARRAYS OF "S" AND "G" 
DATA VALUES WHICH ARE USED IN THE CALCULATION OF THE DELTA 
QUANTITY "DV": 

V-B (I) 
DV = 

B(I+1)-B(I) 

THIS CALCULATION IS PERFORMED IN TWO STEPS AS FOLLOWS: 

WHERE 

R = (V-B(I))*S(I) 
DV = 2*R*G(I) 

S(I) = INTEGER(.5/(B(I+1)-B(I))) + 
G(I) = .5/(S(I)*(B(I+1)-B(I))) 

THE SHIFT SEARCH SCHEME ALLOWS (2**N)+1 BREAKPOINTS (N=2,15) WHICH 
ARE EQUALLY SPACED OVER THE RANGE FROM -1.0 TO +1.0. THE BASIC 
TECHNIQUE USED BY THE MACROFILE IS TO EXTRACT THE BREAKPOINT INDEX "I" 
FROM THE HIGH ORDER BITS OF THE INPUT VARIABLE, USE "I" TO COMPUTE THE 
CORRESPONDING BREAKPOINT VALUE, AND THEN COMPUTE THE DELTA VALUE USING 
THE INPUT VARIABLE, THE BREAKPOINT VALUE, AND THE FIXED SPACING BETWEEN 
BREAKPOINTS. IN SUMMARY, THE SHIFT SEARCH AND DELTA CALCULATION ARE 
PERFORMED AS FOLLOWS: 

LET THE NUMBER OF BREAKPOINTS = (2**N)+1 

I = (V-2**(-N)) * 2**(-16+N) SCALED FRACTION CALCULATION 

B(I) = I * 2**(16-N) INTEGER CALCULATION 

DV = (V-B(I)) * 2**(N-1) INTEGER CALCULATION 

THE SHIFT SEARCH AND DELTA CALCULATION HAVE THE ADVANTAGE OF BEING ABOUT 
3 TIMES FASTER THAN THE 33 BREAKPOINT BINARY SEARCH TECHNIQUE REGARDLESS 01 
HOW MANY BREAKPOINTS THE USER WISHES TO USE. THE EXECUTION TIME OF THE 
SHIFT SEARCH MACROFILE IS ALSO FIXED FOR ANY NUMBER OF BREAKPOINTS. 

MFLIB-7 



FUNCTION DATA INDEXING 

THE FOLLOWING ~ABLE SHOWS HOW FUNCTION DATA POINTERS ARE COMPUTED 
BASED ON THE NUMBER OF VARIABLES IN THE VARIABLE SET, THE LENGTH OF THE 
BREAKPOINT TABLE FOR EACH VARIABLE, AND THE CURRENT BREAKPOINT INDICES 
FOR EACH VARIABLE. IT ALSD ILLUSTRATES HOW THE ADDRESSES OF FUNCTION 
DATA PAIRS ARE COMPUTED BASED ON OFFSETS FROM THE FUNCTION DATA POINTER. 

M 

IK 

NIK 

ISETM 

BASE 

OPAIRI 

NUMBER OF VARIABLES IN THE VARIABLE SET. 

BREAKPOINT INDEX FOR THE K'TH VARIABLE 
IN THE VARIABLE SET. 

NUMBER OF BREAKPOINTS FOR THE K'TH VARIABLE 
IN THE VARIABLE SET. 

FUNCTION DATA POINTER FOR A SET OF "M" VARIABLES 
( COM PUT ED BY THE "PT ... " MAC ROF ILES) . 

BASE ADDRESS OF THE FUNCTION DATA. 

OFFSET OF FUNCTION DATA PAIR "I" FROM THE POINTER 
"ISETM". THE FUNCTION DATA PAIRS ARE ADDRESSED FOR 
INTERPOLATION BY A MAP "RAID OPAIRI,I" INSTRUCTION; 
THE FIXED PART OF THE ADDRESS, "OPAIRI", IS BUILT 
INTO THE MAP INSTRUCTION AND THE VARIABLE PART OF 
THE ADDRESS, THE FUNCTION DATA POINTER "ISETM", IS 
COMPUTED AT RUN TIME AND IS STORED IN A MAP "I" 
INDEX REGISTER. 

M "FUNCTION DATA POINTER" AND "FUNCTION DATA PAIRS" 
------!-----~-~---------------~----------~--------------------------

1 !SETO = IO 

! OPAIRO = BASE 
-------~---~--·----~------------------------------------------------

2 ! ISET1 =IO+ I1*NIO 
! 
! OPAIRO = BASE 
! OPAIR1 = BASE + NIO 

---~-------~-~~-~------~----------------------------~--~--~------~~-
3 ISET2 = IO + I1*NIO + I2*NIO*NI1 

OPAIRO = BASE 
OPAJR1 = BASE + NIO 
OPAIR2 = BASE + NIO*NI1 
OPAIR3 = BASE + NIO*NI1 + NIO 

----------------~------------------------------~---------~---~-----~ 
4 ;ISET4 = IO + I1*NIO + I2*NIO*NI1 + I3*NIO*NI1*NI2 

OPAIRO = BASE 
OPAIR1 = BASE + NIO 
OPAIR2 = BASE + NI O*N I 1 
OPAIR3 = BASE + NIO*NI1 + NIO 
OPAIR4 = BASE + NI O*NI 1 *NI2 
OPAIR5 ::; BASE + NIO*NI 1 *NI2 + NIO 
OPAIR6 = BKSE + NI O*N I 1*NI2 + NIO*NI1 
OPAIR7 :::; BASE + NIO*NI1*NI2 + NIO*NI1 + NIO 

MFLIB-8 



THE USER SHOULD BE AWARE OF A FEW TRICKS WHICH ALLOW MORE FLEXIBLE 
USE OF THE "PT ..• " AND "FI. .. " MACROFILES. NOTICE THAT THE EQUATION 
FOR THE FUNCTION DATA POINTER HAS AN ADDED TERM EACH TIME THE NUMBER 
OF VARIABLES INCREASES BY ONE. BY SETTING THE APPROPRIATE "NI" 
VARIABLE(S) EQUAL TO O, IT IS POSSIBLE FOR EXAMPLE TO USE THE PT4.3 
MACROFILE TO GENERATE A FUNCTION DATA POINTER FOR A 3 OR 2 VARIABLE 
SET. THIS ALLOWS THE USER TO MAKE FULL USE OF THE CAPABILITY OF THE 
PT4.3 MACROFILE EVEN IF THE APPLICATION DOES NOT REQUIRE 3 POINTERS 
FOR SETS OF 4 VARIABLES. 

THE SAME TECHNIQUE ALSO CAN BE USED WITH THE "FI. .. " INTERPOLATION 
MACROFILES. NOTICE THAT THE ADDRESSES OF THE FUNCTION DATA PAIRS ARE 
SUCH THAT IF THE NUMBER OF BREAKPOINTS (I.E. THE "NI" VARIABLE) FOR 
THE LAST VARIABLE WERE SET TO O, THEN FOR EXAMPLE IN THE CASE OF M:4 
THE LAST 4 PAIR ADDRESSES WOULD BE THE SAME AS FOR THE FIRST 4 PAIRS. 
THIS ALLOWS FOR EXAMPLE USING THE FI4.3 MACROFILE TO INTERPOLATE FOR A 
FUNCTION OF 3, 2 OR EVEN 1 VARIABLE BY SETTING THE APPROPRIATE "NI" 
ARGUMENT(S) EQUAL 0. IN THE CASE OF THE 4 VARIABLE INTERPOLATION IF 
NI2=0, THEN THE RESULTING FUNCTION VALUE WILL BE THE LINEAR INTERPOLATION 
FOR A 3 VARIABLE FUNCTION OF THE FIRST 3 VARIABLES. IF NI1 AND NI2 ARE 
BOTH SET TO O, THEN THE RESULT WILL BE A 2 VARIABLE FUNCTION OF THE 
FIRST 2 VARIABLES. NOTE THAT THE CORRESPONDING DELTA VALUES FOR THE 
UNUSED VARIABLES WILL NOT AFFECT THE INTERPOLATION, AND THUS CAN HAVE 
ANY VALUE. THE REASON THIS TECHNIQUE WORKS, IN GENERAL TERMS, IS THAT 
THE FINAL INTERPOLATIONS ARE BETWEEN THE SAME TWO FUNCTION VALUES. REFER 
TO THE FOLLOWING SECTION DESCRIBING THE FUNCTION INTERPOLATION ALGORITHM 
FOR MORE DETAILS. 

MFLIB-9 



INTERPOLATION ALGORITHM 

THE ALGORITHM USES A SCHEME WHICH REDUCES THE INTERPOLATION FOR 
FUNCTIONS OF ANY NUMBER OF VARIABLES TO A SEQUENCE OF CALCULATIONS 
OF THE FORM: 

FO + (F1 - FO)*DELTA 

WHERE [FO,F1] IS A "FUNCTION DATA PAIR", AS REFERRED TO IN THE PREVIOUS 
DISCUSSION OF FUNCTION DATA INDEXING. TO DESCRIBE THE ALGORITHM, THE 
FOLLOWING TERMS WILL BE USED: 

x REPRESENTS: THE CURRENT VALUE OF THE 
INDEPENDENT VARIABLE. 

X(I) REPRESENTS: THE I'TH BREAKPOINT VALUE FOR 
FOR THE VARIABLE X. 

F(OOO) REPRESENTS: F(X(I) ,Y(J) ,Z(K)) 
F(111) REPRESENTS: F(X(I+1) ,Y(J+1) ,Z(K+1 )) 
F(101) REPRESENTS: F(X(I+1) ,Y(J) ,Z(K+1 )) 

X-X (I) 
D(X) REPRESENTS: -------------X(I+1)-X(I) 

INTERPOLATION FOR A FUNCTION OF ONE VARIABLE IS GIVEN BY THE FOLLOWING: 

F(X) = F(O) + (F(1) - F(O)) * D(X) 

INTERPOLATION FOR A FUNCTION OF 2 VARIABLES CAN BE REPRESENTED BY 
USING AN INTERMEDIATE FUNCTION "H" AS FOLLOWS: 

H(O) = F(OO) + (F(10) - F(OO)) * D(X) 
H(1) = F(01) + (F(11) - F(01)) * D(X) 

F(X,Y) = H(O) + (H(1) - H(O)) * D(Y) 

THE GENERAL FORM OF THE INTERPOLATION FOR A 3 VARIABLE FUNCTION IS: 

G(JK) = F(OJK) + (F(1JK) - F(OJK)) * D(X) J=0,1; K:0,1 

H(I) = G(OI) + (G(1I) G(OI)) * D(Y) I :0, 1 

F(X,Y,Z) = H(O) + (H(1) - H(O)) * D(Z) 

OR IN MORE EXPANDED FORM: 

G(OO) = F(OOO) + (F(100) - F(OOO)) * D(X) 
G ( 10) = F(010) + (F(110) - F(010)) * D(X) 
G ( 01) = F(001) + (F(101) - F ( 001 ) ) * D(X) 
G ( 11 ) = F(011) + (F(111) - F(011)) * D(X) 

H(O) = G(OO) + (G(10) - G(OO)) * D(Y) 
H ( 1 ) = G(01) + (G(11) G(01 )) * D(Y) 

F(X,Y,Z) = H(O) + (H(1) - H(O)) * D(Z) 

MFLIB-10 



THE EXTENSION OF THE INTERPOLATION TECHNIQUE ILLUSTRATED TO A 
FUNCTION OF AN ARBITRARY NUMBER OF VARIABLES SHOULD BE QUITE 
CLEAR. AMONG THE ADVANTAGES OF THIS INTERPOLATION ALGORITHM ARE: 

1) THE BREAKPOINT INDICES AND DELTA QUANTITIES ARE COMPUTED JUST 
ONCE FOR EACH INPUT VARIABLE AND USED FOR ANY FUNCTION OF THAT 
VARIABLE. 

2) THE FORMULA ALWAYS USES PAIRS OF FUNCTION VALUES WHICH ARE 
ADJACENT IN THE FUNCTION DATA ARRAY. NOTE: ADJACENT FUNCTION 
VALUES ARE STORED IN DIFFERENT PAGES OF AD-10 DATA MEMORY 
SO A PAIR CAN BE ACCESSED AT FULL MULTIBUS SPEED USING 
A MAP "RAID" INSTRUCTION. 

3) COMPARED TO OTHER ALGORITHMS, THE OVERALL ARITHMETIC OPERATION 
COUNT IS SMALL AND THE MULTIPLICATION COUNT IS MINIMIZED FOR A 
WIDE VARIETY OF FUNCTION MIXES~ 

4) TEMPORARY STORAGE CAN BE EFFICIENTLY ORGANIZED. 

5) THE ALGORITHM IS IDEALLY SUITED TO GENERALIZATION FOR THE 
GENERATION OF FUNCTIONS OF AN ARBITRARY NUMBER OF 
VARIABLES. 

TRANSFER MACROFILES 

THE TRANSFER MACROFILES TRANSFER DATA BETWEEN PROCESSORS AND DATA 
MEMORY, BETWEEN THE COP AND THE OTHER PROCESSORS, AND FROM THE 
EXTERNAL IOCC TO THE AD-10. THERE IS ALSO A GROUP OF "LOAD" MACROFILES 
WHICH TRANSFER IMMEDIATE DATA (I.E. DATA IMBEDDED IN A PROGRAM MEMORY 
INSTRUCTION) TO THE VARIOUS PROCESSORS AND MEMORY. THE NAMING 
CONVENTIONS FOR THESE MACROFILES ARE AS FOLLOWS: · 

TR<SOURCE><DESTINATION>.8 
LOAD<DESTINATION>.8 

<SOURCE> OR <DESTINATION> 

A 
c 
x 
I 
E 
M 

MEANING 

ARP TEMPRORARY REGISTER 
COP GENERAL REGISTER 
DEP "X" REGISTER 
MAP/DEP "I" REGISTER 
EXTERNAL IOCC 
DATA MEMORY 

THUS, MACROFILE "TRMA.8" TRANSFERS 8 DATA VALUES FROM MEMORY TO ARP 
TEMPORARY REGISTERS, AND MACROFILE "LOADI.8" TRANSFERS 8 IMMEDIATE DATA 
VALUES TO MAP/DEP "I" REGISTERS . 

.. ' 

'i 

MFLIB-11 



GENERAL APPLICATIONS MACROFILES 

THE AD-10 IS NOT A GENERAL PURPOSE DIGITAL COMPUTER, HOWEVER THERE ARE 
A NUMBER A GENERAL CALCULATIONS INVOLVED IN SIMULATION APPLICATIONS 
BESIDES MULTIVARIANT FUNCTION GENERATION, WHICH THE AD-10 CAN PERFORM 
VERY EFFECTIVELY. IN GENERAL, THE AD-10 CAN PERFORM MOST OF THE 
ALGEBRAIC CALCULATIONS WHICH IN THE PAST WERE ASSIGNED TO AN ANALOG 
COMPUTER IN A HYBRID SIMULATION, ASSUMING THE CALCULATIONS ARE PROPERLY 
SCALED (I.E. NORMALIZED AS THEY WOULD ALSO NEED TO BE FOR AN ANALOG 
COMPUTER IMPLEMENTATION). THE MACROFILE LIBRARY CONTAINS SEVERAL 
MACROFILES WHICH PERFORM GENERAL CALCULATIONS, SUCH AS: COMPUTING 
THE ''SGN" FUNCTION, PERFORMING VECTOR COORDINATE TRANSFORMATIONS, 
CONVERTING FROM RECTANGULAR TO THE POLAR COORDINATE SYSTEM, ETC •.. 
AD-10 USERS MAY FIND IN THEIR OWN APPLICATIONS BLOCKS OF GENERAL 
CALCULATIONS WHICH CAN BE IMPLEMENTED EFFECTIVELY AS MACROFILES. THIS 
AREA OF THE MACROFILE LIBRARY IS CONSTANTLY GROWING AS EACH NEW AD-10 
APPLICATION PROBLEM GENERATES NEW IDEAS FOR GENERAL CALCULATIONS WHICH 
CAN BE PERFORMED ON THE AD-10 AND WHICH ARE SUITABLE TO IMPLEMENT IN 
MODULAR ROUTINES. 

DETAILED DESCRIPTIONS OF MACROFILES 

THE FOLLOWING SECTION OF THIS MANUAL CONTAINS A DETAILED DESCRIPTION OF 
EACH MACROFILE IN THE AD-10 MACROFILE LIBRARY. THE FIRST PAGE OF 
EACH DESCRIPTION BRIEFLY EXPLAINS WHAT THE MACROFILE COMPUTES, DEFINES 
THE REQUIRED ARGUMENTS, INDICATES THE INSTRUCTION COUNTS FOR THE VARIOUS 
AD-10 PROCESSORS AND THE EXECUTION TIME, AND IN SOME CASES WARNS THE 
USER OF POSSIBLE ERROR CONDITIONS. IF FURTHER INFORMATION IS NECESSARY 
TO USE THE MACROFILE OR TO EXPLAIN MORE FULLY WHAT CALCULATIONS ARE 
PERFORMED, THEN THE DESCRIPTION IS CONTINUED ON SUCCESSIVE PAGES. MOST 
OF THE INFORMATION IN THIS SECTION OF THE MANUAL WAS EXTRACTED FROM THE 
COMMENT HEADER AT THE BEGINNING OF THE SOURCE CODE OF EACH MACROFILE. 

MFLIB-12 



BD.6 MACROFILE 

DESCRIPTION: BINARY SEARCH AND DELTA COMPUTATION 

THIS MACROFILE ACCEPTS 6 INPUT VARIABLES IN DEP "X" 
REGISTERS AND COMPUTES THE CORRESPONDING BREAKPOINT 
TABLE INDICES, WHICH ARE RETURNED IN THE MAP/DEP 
"I" REGISTERS WITH THE SAME NUMBERS AS THE INPUT 
VARIABLE "X" REGISTERS. IT ALSO COMPUTES THE DELTA 
VALUE ASSOCIATED WITH EACH INPUT VARIABLE AND RETURNS 
THE RESULT IN THE SPECIFIED ARP "T" REGISTERS. UP TO 
33 BREAKPOINTS CAN BE SPECIFIED FOR EACH INPUT VARIABLE 
( +1 CAN SERVE AS THE UNDERSTOOD 33'RD BREAKPOINT). THE 
CALCULATIONS PERFORMED BY THIS MACROFILE ARE AS FOLOWS: 

1) BINARY SEARCH FOR I'S SUCH THAT: 
BJ(I) <=VJ< BJ(I+1) ; J=0,5 

2) DELTA COMPUTATION USING I'S FROM 1) FOR J:0,5 : 
RJ = (VI - BJ(I))*SJ(I) 
#DVJ = 2*RJ*GJ(I) = [VI-BJ(I)] I [BJ(I+1)-BJ(I)] 

USER DEFINED MACRO ARGUMENTS: 

USED IN 
CODE FOR 

MAP,DEP 

COP 

ARP 

DAT 

ARP 

SYMBOLS 

#VO,#V1,#V2,#V3,#V4,#V5 

#NVO,#NV1,#NV2,#NV3,#NV4,#NV5 

#DVO,#DV1,#DV2,#DV3,#DV4,#DV5 

#ORG 

TO,T1,T2 

AD-10 PROCESSOR 
COP ARP DEP MAP 

INSTRUCTION COUNTS: 13 22 43 49 

EXECUTION TIME: 6.0 MICRO-SEC. 

MEANING 

INPUT VARIABLES 
AND OUTPUT INDICES 
(REG. NUMBERS) 

BREAKPOINT TABLE 
LENGTHS (NOT COUNT­
ING ASSUMED +1) 

DELTA VALUES 
(REG. NUMBERS) 

ORIGIN OF 
BREAKPOINT 
DATA BLOCK 

SCRATCH REGISTERS 

POSSIBLE ERRORS: -AN ADDRESS ERROR COULD OCCUR DUE TO A MEMORY ACCESS 
DURING THE INSTRUCTION PRIOR TO THIS MACROFILE. 

MFLIB-13 



BD.6 MACROFILE (CONT.) 

REQUIRED DATA: THE "B" BREAKPOINT DATA ARRAYS AND THE ASSOCIATED 
------------- "S" AND "G" DATA VALUES MUST BE LOCATED IN DATA MEMORY 

AS SHOWN IN THE FOLLOWING SPECIALLY FORMATTED BLOCK 
WHICH IS 96 WORDS WIDE BY 6 PAGES HIGH. THE BASE ADDRESS 
OF THIS DATA BLOCK (#ORG) IS ONE OF THE USER SPECIFIED 
INPUTS TO THIS MACROFILE. 

PAGE 
5 

4 

3 

2 

0 

0 
#ORG 

G1 

S1 

B1 

GO 

so 

BO 

G3 

B3 

S3 

G2 

B2 

S2 

32 64 

"B" BREAKPOINT DATA: 

B5 

G5 

S5 

B4 

G4 

S4 

WORD (DECIMAL) 

BJ(I) ; I:O,N SHOULD BE RIGHT JUSTIFIED WITH 
LOW ORDER UNUSED BREAKPOINTS SET TO -1. THE 
BREAKPOINT TABLE LENGTH IS N+1 AND SHOULD NOT 
COUNT THE ASSUMED UPPER +1 BREAKPOINT. 

"S" AND "G" DATA VALUES: 

SJ(I) = INTEGER(.5/(BJ(I+1)-BJ(I)) + 1 

GJ(I) = .5/(SJ(I)*(BJ(I+1)-BJ(I)) 

J:0,5 

J:0,5 

(NOTE: IT IS NOT NECESSARY TO CALCULATE AND STORE 
AN "S" OR "G" VALUE FOR THE HIGHEST BREAKPOINT 
AND "S" AND "G" VALUES FOR UNUSED BREAKPOINTS 
SHOULD BE SET TO 0) 

SYMBOLS DEFINED AND USED IN MACRO FILE: 

USED IN 
CODE FOR 

MAP 

MAP 

MAP 

SYMBOLS 
-------
##BO, ##B 1, ##B2, 

##SO, ##S 1, ##S2, 
##GO, ##G 1, ##G2, 

##PAG,##WRD 

MEANING 
-------

##B3' ##B4, #1185 BREAKPOINT TABLES 

##S3, ##S4, ##S5 DELTA CALCULATION 
##G 3, ##G4, ##G5 SCALING CONSTANTS 

"PAGE" AND "WORD" 
CORRESPONDING TO 
#ORG 

MFLIB-14 



SPECIAL PROGRAMM~NG CONSIDERATIONS: 
--------~------~---~~-------------

IF THE. USER POE~ NOT NEED TO USE ALL 6 INPUTS FOR THIS MACROFILE, THERE 
ARE SOME RECOMMENDED ARGUMENT AND DATA DEFINITIONS: 

1 ). THE •1 S'' AND "G" TABLES FOR THE UNUSED IN PUTS TO TH IS MACROF ILE 
SHOULD BE LOADED WITH ALL O'S TO AVOID THE POSSIBILITY OF AN 
AR~THMETlC OVERFLOW IN THE ARP DURING THE DELTA CALCULATION. 

2) THE "B" ARRAYS FOR UNUSED INPUTS SHOULD BE LOADED WITH ALL 
... 1.ors (!$CALED FRACTIONS) AND THE CORRESPONDING "#NV" INPUT 
SET TO 1 (INTEGER). THIS WILL RESULT IN A BREAKPOINT INDEX 
VA~UE OF 0 FOLLOWING THE BINARY SEARCH. 

AN A~TERNATIVE IS TO SIMPLY SET THE c'oRRESPONDING "#NV" INPUTS 
TO 32. (W~THOUT LOADING ANYTHING IN THE UNUSED "B" ARRAYS). THIS 
WILL RESU~T IN A BREAKPOINT INDEX REGISTER VALUE IN THE RANGE 
0 TO ~ 1 • 

THE REASON FOR TH~SE RECOMMENDATIONS IS TO AVOID ADDRESS CONFLICTS 
WHICH COULD OCCUR B~TWEEN USED AND UNUSED PARTS OF THE MACROFILE. 

MFLIB-15 



SD.6 MACROFILE 

DESCRIPTION: SHIFT SEARCH AND DELTA COMPUTATION FOR: 

THIS MACROFILE ACCEPTS 6 INPUT VARIABLES IN DEP "X" 
REGISTERS AND COMPUTES THE CORRESPONDING BREAKPOINT 
INDICES, WHICH ARE RETURNED IN THE MAP/DEP "I" REGISTERS 
WITH THE SAME NUMBERS AS THE INPUT "X" REGISTERS, THIS 
ROUTINE ALLOWS (2**N)+1 EQUALLY SPACED BREAKPOINTS (FOR 
N=2,15) OVER THE RANGE -1.0 TO +1.0. IT ALSO COMPUTES THE 
DELTA VALUE ASSOCIATED WITH EACH INPUT VARIABLE AND 
RETURNS THE RESULT IN THE SPECIFIED ARP "T" REGISTERS. 

USER DEFINED MACRO ARGUMENTS: 
---~-------~~-----~------~-~ 

USED IN 
CODE FOR 

DEP 

COP 

ARP 

SYMBOLS 

#VO,#V1,#V2,#V3,#V4,#V5 

#NBPS 

#DVO,#DV1,#DV2,#DV3,#DV4,#DV5 

ARP TO,T1,T2 

AD-10 PROCESSOR 
COP ARP DEP MAP 

INSTRUCTION COUNTS: 6 22 13 0 

EXECUTION TIME: 2.3 MICRO-SEC. 

SPECIAL PROGRAMMING CONSIDERATIONS: 

MEANING 

INPUT VARIABLES 
AND OUTPUT INDICES 
(REG. NUMBERS) 

NUMBER OF 
BREAKPOINTS 
(MUST SATISIFY: 
#NBPS = (2**N)+1 
FOR 2 <= N <= 15 ) 

DELTA VALUES 
(REG. NUMBER) 

IF THE USER WISHES TO USE THIS MACROFILE, BUT THE INPUT VARIABLES ARE NOT 
DEFINED OVER THE ENTIRE RANGE -1.0 TO +1.0, THERE ARE SEVERAL POSSIBLE 
WAYS THAT THIS MACROFILE CAN STILL BE USED: 

1) SUCH VARIABLES CAN BE TRANSLATED IN THE NEGATIVE DIRECTION SO 
THAT THE SMALLEST VALUE THE VARIABLES TAKE ON ARE TRANSLATED TO 
-1.0. THE OUTPUT BREAKPOINT INDICES FROM THE MACROFILE WILL 
HAVE A VALUE OF 0 WHEN THE CORRESPONDING INPUT VARIABLES TAKE 
ON THEIR SMALLEST VALUE. 

MFLIB-16 



2) THE RESULTING INDICES FROM THIS MACROFILE CAN BE TRANSLATED SUCH THAT 
THE INDICES CORRESPONDING TO THE SMALLEST VALUE OF THE INPUT 
VARIABLE ARE EQUAL TO 0. THIS CAN BE DONE IN THE DEP PROCESSOR 
USING THE "CMM" INSTRUCTION, I.E . 

. DEP 
LFI S'-1.0' 
CMM IREG,-64 

!-1.0 WILL FORCE CMM TO ADD K TO I REG. 
!ADD -64 TO THE CONTENTS OF IREG 

3) THE BASE ADDRESS(ES) OF THE FUNCTION(S) ASSOCIATED WITH THE 
INPUT VARIABLE CAN BE "FUDGED" (I.E. TRANSLATED IN THE NEGATIVE 
DIRECTION) TO ACCOUNT FOR THE INDEX VALUE NOT STARTING AT 0. THIS 
TECHNIQUE WILL ONLY WORK IF THE RESULTING TRANSLATED BASE ADDRESS 
IS A POSITIVE NUMBER. REFER TO THE SECTION OF THIS MANUAL ON 
"FUNCTION DATA INDEXING" FOR A DETAILED DESCRIPTION OF THE INDEX 
CALCULATIONS. 

4) THE USER CAN STORE FUNCTION VALUES FOR THE ENTIRE -1.0 TO 
+1.0 RANGE OF THE INPUT VARIABLE, EVEN THOUGH THE INPUT VARIABLE 
WILL NOT TRAVERSE THIS ENTIRE RANGE. THIS ·rs THE EASIEST SOLUTION, 
ASSUMING MEMORY REQUIREMENTS ARE NOT TIGHT. 

CALCULATIONS PERFORMED: 

1) I = (V - 2**(-N))*((2**(N-16)) + 2**(N-16) 

THIS CALCULATION, DONE IN THE FRACTIONAL ARITHMETIC 
MODE, USES THE ROUNDOFF CHARACTERISTICS OF THE ARP 
AND DETERMINES THE BREAKPOINT INDEX "I" FROM THE 
HIGH ORDER BITS OF THE INPUT VARIABLE "V". THE 
CALCULATION RESULTS IN: 

"I" FOR "V" IN THE RANGE: 

0 -1. 0 
1 -1.0+2.0/(2**N) 
2 -1.0+4.0/(2**N) 
3 -1.0+6.0/(2**N) 

. . 
2**N 1.0-2.0/(2**N) 

<= v 
<= v 
<= v 
<= v 

<= v 

< -1.0+2.0/(2**N) 
< -1.0+4.0/(2**N) 
< -1.0+6.0/(2**N) 
< -1.0+8.0/(2**N) 

< 1. 0 

(NOTE: I IS COMPUTED AS A SCALED FRACTION BUT IS 
VIEWED AS AN INTEGER) 

2) B(I) = (I - 2**(N-16)) * 2**(16-N) 

THIS CALCULATION, WHICH IS DONE IN THE INTEGER 
ARITHMETIC MODE, USES THE INDEX VALUE "I" TO 
COMPUTE THE CORRESPONDING BREAKPOINT VALUE B(I). 
IN THIS CALCULATION "I" IS VIEWED AS A SCALED 
FRACTION. NOTE, THE INTEGER VALUE 2**(16-N) 
IS EQUIVALENT TO THE SCALED FRACTION 2**(1-N). 

MFLIB-17 



3) DV = ((V - B(I)) * 2**(N-1) 

THIS CALCULATION, WHICH IS DONE IN THE INTEGER 
ARITHMETIC MODE, USES THE INPUT VARIABLE "V" AND 
THE BREAKPOINT VALUE "B (I)" TO COMPUTE THE DELTA 
VALUE "DV". NOTE THAT: 

B(I) <= V AND 0 <= DV < 1.0 
AND ALSO NOTE THAT THE INTEGER VALUE 2**(N-1) IS 
EQUIVALENT TO THE SCALED FRACTION 2**(N-16). 

PT2.3 MACROFILE 

DESCRIPTION: COMPUTE FUNCTION DATA POINTERS FOR 2 VARIABLE FUNCTIONS. 

POINTER CALCULATIONS: 

#ISO = #IO + #NIO*#JO 
#IS1 = #I1 + #NI1*#J1 
#IS2 = #I2 + #NI2*#J2 

USER DEFINED MACRO ARGUMENTS: 

USED IN 
CODE FOR 

DEP 

DEP 

DEP 

ARP 

SYMBOLS 

#IO,#JO,#I1,#J1,#I2,#J2 

#NI 0, #NI 1 , !IN I 2 

#ISO, #IS 1, #IS2 

TO,T1 

AD-10 PROCESSOR 
COP ARP DEP MAP 

INSTRUCTION COUNTS: 4 8 8 0 

EXECUTION TIME: 1. 1 MICRO-SEC. 

MFLIB-18 

MEANING 

BREAKPOINT TABLE 
INDICES 
(REG. NUMBERS) 

BREAKPOINT TABLE 
LENGTHS 

FUNCTION DATA 
INDICES FOR EACH 
VARIABLE SET 
(REG. NUMBERS) 

SCRATCH REGISTERS 



PT3.3 MACROFILE 

DESCRIPTION: COMPUTE FUNCTION DATA POINTERS FOR 3 VARIABLE FUNCTIONS. 

POINTER CALCULATIONS: 

#ISO = #IO + #NIO*#JO + #NIO*#NJO*#KO 
#IS1 = #I1 + #NI1*#J1 + #NI1*#NJ1*#K1 
#IS2 = #I2 + #NI2*#J2 + #NI2*#NJ2*#K2 

USER DEFINED MACRO ARGUMENTS: 

USED IN 
CODE FOR 
...... ._~---~ 

DEP 

DEP 

DEP 

ARP 

SYMBOLS MEANING 

#IO,#JO,#KO,#I1,#J1,#K1,#I2,#J2,#K2 BREAKPOINT TABLE 
INDICES 
(REG. NUMBERS) 

#NIO,#NJO,#NI1,#NJ1,#NI2,#NJ2 BREAKPOINT TABLE 
LENGTHS 

#ISO,#IS1,#IS2 FUNCTION DATA 
INDICES FOR EACH 
VARIABLE SET 
(REG. NUMBERS) 

TO,T1 SCRATCH REGISTERS 

AD-10 PROCESSOR 
COP ARP DEP MAP 

INSTRUCTION COUNTS: 10 1 1 1 1 0 

EXECUTION TIME: 1. 4 MICRO-SEC. 

MFLIB-19 



PT4. 3 MACROFILE 

DESCRIPTION: COMPUTE FUNCTION DATA POINTERS FOR 4 VARIABLE FUNCTIONS. 

POINTER CALCULATIONS: 

#ISO = #IO + #NIO*#JO + #NIO*#NJO*#KO + #NIO*#NJO*#NKO*#LO 
#IS1 = #I1 + #NI1*#J1 + #NI1*#NJ1*#K1 + #NI1*#NJ1*#NK1*#L1 
#IS2 = #I2 + #NI2*#J2 + #NI2*#NJ2*#K2 + #NI2*#NJ2*#NK2*#L2 

USER DEFINED MACRO ARGUMENTS: 

USED IN 
CODE FOR 

DEP 

DEP 

DEP 

ARP 

,SYMBOLS 

#I 0 , II J 0 , # K 0 , # L 0 
#I 1, #J 1, #J 1, #L 1 
#I2, #J2, #K2, #L2 

#NIO, #NJO, #NKO 
#NI 1 , #NJ 1 , #N K 1 
#NI2, #NJ2, #NK2 

II I S 0 , III S 1 , III S 2 

T 0, T 1 

AD-10 PROCESSOR 
COP ARP DEP MAP 

INSTRUCTION COUNTS: 13 14 14 0 

EXECUTION TIME: 1.7 MICRO-SEC. 

MFLIB-20 

MEANING 

BREAKPOINT TABLE 
INDICES 
(REG. NUMBERS) 

BREAKPOINT TABLE 
LENGTHS 

FUNCTION DATA 
INDICES FOR EACH 
VARIABLE SET 
(REG. NUMBERS) 

SCRATCH REGISTERS 



PT5.3 MACROFILE 

DESCRIPTION: COMPUTE FUNCTION DATA POINTERS FOR 5 VARIABLE FUNCTIONS. 

POINTER CALCULATIONS: 

#ISO = #IO + II N I 0 *II J 0 + II N I 0 *II N J 0 *II K 0 

/IIS1 = #I1 + #NI1*#J1 + # N I 1 *II N J 1 *II K 1 

#IS2 = III 2 + #NI2*#J2 + #NI2*#NJ2*#K2 

USER DEFINED MACRO ARGUMENTS: 

USED IN 
CODE FOR 

DEP 

DEP 

DEP 

ARP 

SYMBOLS 

#IO,#JO,#KO,#LO,#MO 
#I 1 , II J 1 , II J 1 , II L 1 , II M 1 
#I2,#J2,#K2,#L2,#M2 

#NIO,#NJO,#NKO,#NLO 
#NI1,#NJ1,#NK1,#NL1 
llNI2,#NJ2,#NK2,llNL2 

II I S 0 , #I S 1 , II I S 2 

TO,T1 

+ #NIO*llNJO*#NKO*llLO + 
#NIO*llNJO*llNKO*#NLO*#MO 

+ #NI1*#NJ1*#NK1*#L1 + 
#NI1*#NJ1*#NK1*#NL1*#M1 

+ #NI2*#NJ2*#NK2*#L2 + 
#NI2*#NJ2*#NK2*#NL2*#M2 

MEANING 

BREAKPOINT TABLE 
INDICES 
(REG. NUMBERS) 

BREAKPOINT TABLE 
LENGTHS 

FUNCTION DATA 
INDICES FOR EACH 
VARIABLE SET 
(REG. NUMBERS) 

SCRATCH REGISTERS 

AD-10 PROCESSOR 
COP ARP DEP MAP 

INSTRUCTION COUNTS: 16 17 17 0 

EXECUTION TIME: 2.0 MICRO-SEC. 

MFLIB-21 



FI 1. 3 MACROFILE 

DESCRIPTION: INTERPOLATION FOR 1 VARIABLE FUNCTIONS. 

FO(XO) , F1(X1) , F2(X2) 

USER DEFINED MACRO ARGUMENTS: 

USED IN 
CODE ,FOR SYMBOLS 
------...-- ----~---

ARP #DXO, llDX 1 , llDX2 

ARP /IF 0, #F 1 , /IF 2 

MAP II AF 0, II AF 1 , II AF 2 

MAP II I F 0 , II I F 1 , II I F 2 

AD-10 PROCESSOR 
COP ARP DEP MAP 

INSTRUCTION COUNTS: 3 6 0 3 

EXECUTION TIME: 1.1 MICRO-SEC. 

MEANING 
-~-----

DELTA VALUES 
(REG. NUMBERS) 

FUNCTION VALUES 
(REG. NUMBERS) 

FUNCTION DATA 
ADDRESS ORIGINS 

FUNCTION DATA 
INDICES 
(REG. NUMBERS) 

POSSIBLE ERRORS: -ADDRESS ERROR DUE TO ILLEGAL FUNCTION DATA 
ORIGINS AND/OR INDICES. 

-ADDRESS ERROR DUE TO A CONFLICTING MEMORY 
REFERENCE DURING ONE OF THE 3 INSTRUCTIONS PRIOR 
TO THIS MACRO FILE. 

SUGGESTED DEFINITIONS OF UNUSED ARGUMENTS: 

IF THE USER DOES NOT NEED TO USE ALL 3 ARGUMENT SETS, THE FOLLOWING 
GUIDELINES SHOULD BE FOLLOWED TO AVOID MEMORY PAGE ADDRESS CONFLICTS: 

1) THE UNUSED "#AF" FUNCTION DATA ADDRESS ORIGINS SHOULD BE 
DEFINED TO ADDRESS WORD 0 OF A DIFFERENT PAGE FROM THOSE 
PAGES OCCUPIED BY THE FUNCTION DATA FOR THE USED INPUTS. 

2) THE UNUSED "#IF" FUNCTION DATA INDEX REGISTERS SHOULD 
CONTAIN 0 (OR A KNOWN REASONABLE VALUE WHICH WHEN ADDED 
TO THE CORRESPONDING "#AF" ADDRESS AT RUN TIME DOES NOT 
CAUSE AN ADDRESS CONFLICT). 

3) DEFINE BREAKPOINT TABLE LENGTHS FOR UNUSED INPUTS TO BE 0. 

MFLIB-22 



FI2.3 MACROFILE 

DESCRIPTION: INTERPOLATION FOR 2 VARIABLE FUNCTIONS. 

FO(XO,YO) , F1(X1,Y1) , F2(X2,Y2) 

USER DEFINED MACRO ARGUMENTS: 

USED IN 
CODE FOR 

ARP 

ARP 

MAP 

MAP 

MAP 

ARP 

SYMBOLS 

#DXO,#DYO,#DX1,#DY1,#DX2,#DY2 

llF 0 , # F 1 , # F 2 

#AF 0 , #AF 1 , II AF 2 

#NXO,#NX1 ,#NX2 

#IF 0, #IF 1 , #IF 2 

TO - T2 

AD-10 PROCESSOR 
COP ARP DEP MAP 

INSTRUCTION COUNTS: 7 16 0 6 

EXECUTION TIME: 2. 1 MICRO-SEC. 

MEANING 

DELTA VALUES 
(REG. NUMBERS) 

FUNCTION VALUES 
(REG. NUMBERS) 

FUNCTION DATA 
ADDRESS ORIGINS 

BREAKPOINT TABLE 
LENGTHS 

FUNCTION DATA 
INDICES 
(REG. NUMBERS) 

SCRATCH REGISTERS 

POSSIBLE ERRORS: -ADDRESS ERROR DUE TO ILLEGAL FUNCTION DATA 
ORIGINS AND/OR INDICES. 

-ADDRESS ERROR DUE TO A CONFLICTING MEMORY 
REFERENCE DURING ONE OF THE 3 INSTRUCTIONS PRIOR 
TO THIS MACRO FILE. · 

SUGGESTED DEFINITIONS OF UNUSED ARGUMENTS: 
-~~------~-------~-----~-----------~---~-

1) THE UNUSED "#AF" FUNCTION DATA ADDRESS ORIGINS SHOULD BE 
DEFINED TO ADDRESS WORD 0 OF A DIFFERENT PAGE FROM THOSE 
PAGES OCCUPIED BY THE FUNCTION DATA FOR THE USED INPUTS. 

2) THE UNUSED "#IF" FUNCTION DATA INDEX REGISTERS SHOULD 
CONTAIN 0 (OR A KNOWN REASONABLE VALUE WHICH WHEN ADDED 
T-0 THE CORRESPONDING "#AF" ADDRESS AT RUN TIME DOES NOT 
CAUSE AN ADDRESS CONFLICT). 

3) DEFINE BREAKPOINT TABLE LENGTHS FOR UNUSED INPUTS TO BE 0. 

MFLIB-23 



FI3.3 MACROFILE 

DESCRIPTION: INTERPOLATION FOR 3 VARIABLE FUNCTIONS. 

FO(XO,YO,ZO) , F1(X1,Y1,Z1) , F2(X2,Y2,Z2) 

USER DEFINED MACRO ARGUMENTS: 

USED IN 
CODE FOR 

ARP 

ARP 

MAP 

MAP 

MAP 

ARP 

SYMBOLS 

#DXO,#DYO,#DZO,#DX1,#DY1,#DZ1, 
#DX 2 , llD Y 2 , llD Z 2 

llF 0 , # F 1 , # F 2 

II AF 0 , #AF 1 , #AF 2 

#NXO,#NYO,#NX1,#NY1,#NX2,#NY2 

#IFO,#IF1 ,#IF2 

TO - T5 

AD-10 PROCESSOR 
COP ARP DEP MAP 

MEANING 

DELTA VALUES 
(REG. NUMBERS) 

FUNCTION VALUES 
(REG. NUMBERS) 

FUNCTION DATA 
ADDRESS ORIGINS 

BREAKPOINT TABLE 
LENGTHS 

FUNCTION DATA 
INDICES 
(REG. NUMBERS) 

SCRATCH REGISTERS 

INSTRUCTION COUNTS: 7 31 0 12 

EXECUTION TIME: 

POSSIBLE ERRORS: 

3.6 MICRO-SEC. 

-ADDRESS ERROR DUE TO ILLEGAL FUNCTION DATA 
ORIGINS AND/OR INDICES. 

-ADDRESS ERROR DUE TO A.CONFLICTING MEMORY 
REFERENCE DURING ONE OF THE 3 INSTRUCTIONS PRIOR 
TO THIS MACRO FILE. 

SUGGESTED DEFINITIONS OF UNUSED ARGUMENTS: 

1) THE UNUSED "#AF" FUNCTION DATA ADDRESS ORIGINS SHOULD BE 
DEFINED TO ADDRESS WORD 0 OF A DIFFERENT PAGE FROM THOSE 
PAGES OCCUPIED BY THE FUNCTION DATA FOR THE USED INPUTS. 

2 ) THE UNUSED " II IF " FUN CT I 0 N DAT A INDEX REGISTERS SH 0 UL D 
CONTAIN 0 (OR A KNOWN REASONABLE VALUE WHICH WHEN ADDED 
TO THE CORRESPONDING "#AF" ADDRESS AT RUN TIME DOES NOT 
CAUSE AN ADDRESS CONFLICT). 

3) DEFINE BREAKPOINT TABLE LENGTHS FOR UNUSED INPUTS TO BE 0. 

MFLIB-24 



FI4.3 MACROFILE 

DESCRIPTION: INTERPOLATION FOR 4 VARIABLE FUNCTIONS. 

FO(VO,WO,XO,YO) 
F1 (V1 ,W1 ,X1, Y1) 
F2(V2,W2,X2,Y2) 

USER DEFINED MACRO ARGUMENTS: 

USED IN 
CODE FOR SYMBOLS MEANING 

ARP 

ARP 

MAP 

MAP 

MAP 

ARP 

#DVO,#DWO,#DXO,#DYO 
#DV1,#DW1,#DX1,#DY1 
#DV2,#DW2,#DX2,#DY2 

IJF 0 , # F 1 , # F 2 

#AFO, #AF 1, #AF2 

#NVO,#NWO,#NXO 
#NV1, #NW1, #NX1 
#NV2, #NW2, #NX2 

#IFO, #IF 1, #IF2 

TO - T8 
AD-10 PROCESSOR 

COP ARP DEP MAP __ ...,. 

DELTA VALUES 
(REG. NUMBERS) 

FUNCTION VALUES 
(REG. NUMBERS) 

FUNCTION DATA 
ADDRESS ORIGINS 

BREAKPOINT TABLE 
LENGTHS 

FUNCTION DATA 
INDICES 
(REG. NUMBERS) 

SCRATCH REGISTERS 

INSTRUCTION COUNTS: 5 58 0 24 

EXECUTION TIME: 

POSSIBLE ERRORS: 

6.3 MICRO-SEC. 

-ADDRESS ERROR DUE TO ILLEGAL FUNCTION DATA 
ORIGINS AND/OR lNDICES. 

-ADDRESS ERROR DUE TO A CONFLICTING MEMORY 
REFERENCE DURING ONE OF THE 3 INSTRUCTIONS PRIOR 
TO THIS MACRO FILE. 

NOTE: 1) THE UNUSED "#AF" FUNCTION DATA ADDRESS ORIGINS SHOULD BE 
DEFINED TO ADDRESS WORD 0 OF A DIFFERENT PAGE FROM THOSE 
PAGES OCCUPIED BY THE FUNCTION DATA FOR THE USED INPUTS. 

2) THE UNUSED "#IF" FUNCTION DATA INDEX REGISTERS SHOULD 
CONTAIN 0 (OR A KNOWN REASONABLE VALUE WHICH WHEN ADDED 
TO THE CORRESPONDING "#AF" ADDRESS AT RUN TIME DOES NOT 
CAUSE AN ADDRESS CONFLICT). 

3) DEFINE BREAKPOINT TABLE LENGTHS FOR UNUSED INPUTS TO BE 0. 

MFLIB .. 25 



FI5.3 MACROFILE 

DESCRIPTION: INTERPOLATION FOR 5 VARIABLE FUNCTIONS. 

FO(VO,WO,XO,YO,ZO) 
F1(V1,W1,X1,Y1,Z1) 
F2(V2,W2,X2,Y2,Z2) 

USER DEFINED MACRO ARGUMENTS: 

USED IN 
CODE FOR SYMBOLS MEANING 

ARP 

ARP 

MAP 

MAP 

MAP 

ARP 

#DVO,#DWO,#DXO,#DYO,#DZO 
#DV1,#DW1,#DX1,#DY1,#DZ1 
#DV2,#DW2,#DX2,#DY2,#DZ2 

# F 0 , llF 1 , llF 2 

#AFO, #AF 1, #AF2 

#NVO,#NWO,#NXO,#NYO 
# N V 1 , #NW 1 , /IN X 1 , # N Y 1 
#NV2,#NW2,#NX2,#NY2 

#IF 0 , #IF 1 , III F 2 

TO - T11 
AD-10 PROCESSOR 

COP ARP DEP MAP 

DELTA VALUES 
'(REG. NUMBERS) 

FUNCTION VALUES 
(REG. NUMBERS) 

FUNCTION DATA 
ADDRESS ORIGINS 

BREAKPOINT TABLE 
LENGTHS 

FUNCTION DATA 
INDICES 
(REG. NUMBERS) 

SCRATCH REGISTERS 

INSTRUCTION COUNTS: 5 109 0 48 

EXECUTION TIME: 

POSSIBLE ERRORS: 

11.4 MICRO-SEC. 

-ADDRESS ERROR DUE TO ILLEGAL FUNCTION DATA 
ORIGINS AND/OR INDICES. 

-ADDRESS ERROR DUE TO A CONFLICTING MEMORY 
REFERENCE DURING ONE OF THE 3 INSTRUCTIONS PRIOR 
TO THIS MACRO FILE. 

N 0 TE : 1 ) THE UNUSED " II AF" FUN CT I 0 N DAT A ADD R ES S 0 R I GINS SH 0 UL D BE 
DEFINED TO ADDRESS WORD 0 OF A DIFFERENT PAGE FROM THOSE 
PAGES OCCUPIED BY THE FUNCTION DATA FOR THE USED INPUTS. 

2) THE UNUSED "#IF" FUNCTION DATA INDEX REGISTERS SHOULD 
CONTAIN 0 (OR A KNOWN REASONABLE VALUE WHICH WHEN ADDED 
TO THE CORRESPONDING "#AF" ADDRESS AT RUN TIME DOES NOT 
CAUSE AN ADDRESS CONFLICT). 

3) DEFINE BREAKPOINT TABLE LENGTHS FOR UNUSED INPUTS TO BE 0. 

MFLIB-26 



TRMA.8 MACROFILE 
----------------

DESCRIPTION: TRANSFER 8 DATA VALUES FROM'MEMORY TO ARP "T" REGISTERS 

USER DEFINED MACRO ARGUMENTS: 
-~~-- .. -~~~---~---~~-~--~~---
USED IN 
CODE FOR 

ARP 

MAP 

SYMBOLS 

#ATRO,#ATR1, ... ,#ATR7 

#DMO,#bM1, ... ,#DM7 

AD-10 PROCESSOR 
COP ARP DEP MAP 

INSTRUCTION COUNTS: 3 9 0 8 

EXECUTION TIME: 1.4 MICRO-SEC. 

MEANING 
.......... - ... _ ..... 
ARP "T" REGISTER 
NUMBERS 

MEMORY ADDRESSES 
(TO BE ACCESSED 
IN SUCCESSIVE 
INSTRUCTIONS) 

POSSIBLE ERRORS: -ADDRESS ERROR DUE TO A CONFLICTING MEMORY 
REFERENCE DURING ONE OF THE 3 INSTRUCTIONS PRIOR 
TO THIS MACRO FILE. 

MFLIB•27 



TRMC.8 MACROFILE 

DESCRIPTION: TRANSFER 8 DATA VALUES FROM MEMORY TO COP REGISTERS 

USER DEFINED MACRO ARGUMENTS: 

USED IN 
CODE FOR SYMBOLS MEANING 

COP #CGRO,#CGR1, ... ,#CGR7 COP GENERAL 
REGISTER NUMBERS 

MAP #DMO,#DM1, ... ,#DM7 MEMORY ADDRESSES 
(TO BE ACCESSED 

INSTRUCTION COUNTS: 

EXECUTION TIME: 

POSSIBLE ERRORS: 

AD-10 PROCESSOR 
COP ARP DEP MAP 

10 0 0 8 

1.4 MICRO-SEC. 

IN SUCCESSIVE 
INSTRUCTIONS) 

-ADDRESS ERROR DUE TO A CONFLICTING MEMORY 
REFERENCE DURING ONE OF THE 3 INSTRUCTIONS PRIOR 
TO THIS MACRO FILE. 

MFLIB-28 



TRMX.8 MACROFILE 

DESCRIPTION: TRANSFER 8 DATA VALUES FROM MEMORY TO DEP "X" REGISTERS 

USER DEFINED MACRO ARGUMENTS: 

USED IN 
CODE FOR SYMBOLS MEANING 

DEP #DXRO,#DXR1, ..• ,#DXR7 DEP "X" REGISTER 
NUMBERS 

MAP #DMO,#DM1, ... ,#DM7 MEMORY ADDRESSES 
(TO BE ACCESSED 

IN SUCCESSIVE 
INSTRUCTIONS) 

INSTRUCTION COUNTS: 

EXECUTION TIME: 

POSSIBLE ERRORS: 

AD-10 PROCESSOR 
COP ARP DEP MAP 

3 0 9 8 

1.4 MICRO-SEC. 

-ADDRESS ERROR DUE TO A CONFLICTING MEMORY 
REFERENCE DURING ONE OF THE 3 INSTRUCTIONS PRIOR 
TO THIS MACRO FILE. 

MFLIB-29 



TRMI. 8 MACROFILE 
~---~~-----~~---

PESCRIPTION: TRANSFER 8 DATA VALUES FROM MEMORY TO DEP "I" REGISTERS 

USER DEFINED MACRO ARGUMENTS: 

USED IN 
CODE FOR SYMBOLS MEANING 

DEP llD I R 0 , # D I R 1 , • • • , # D I R 7 DEP "I" REGISTER 
NUMBERS 

MAP #DMO,#DM1, ... ,#DM7 MEMORY ADDRESSES 
(TO BE ACCESSED 

IN SUCCESSIVE 
INSTRUCTIONS) 

INSTRUCTION COUNTS: 

EXECUTION TIME: 

POSSIBLE ERRORS: 

AD-10 PROCESSOR 
COP ARP DEP MAP 

3 0 9 8 

1.4 MICRO-SEC. 

-ADDRESS ERROR DUE TO A CONFLICTING MEMORY 
REFERENCE DURING ONE OF THE 3 INSTRUCTIONS PRIOR 
TO THIS MACRO FILE. 

MFLIB-30 



TRME.8 MACROFILE 

DESCRIPTION: TRANSFER 8 DATA VALUES FROM MEMORY TO EXTERNAL IOCC 

USER DEFINED MACRO ARGUMENTS: 

USED IN 
CODE FOR SYMSOLS MEANING 

COP #IOCO,#IOC1, ... ,#IOC7 IOCC CHANNEL 
NUMBERS 

MAP #DMO,#DM1, ... ,#DM7 MEMORY ADDRESSES 
(EACH SUCCESSIVE 4 

COP #OP 

INSTRUCTION COUNTS: 

EXECUTION TIME: 

POSSIBLE ERRORS: 

AD-10 PROCESSOR 
COP ARP DEP MAP 

12 0 0 8 

1. 8 MICRO-SEC. 

TO BE ACCESSED 
IN SUCCESSIVE 
INSTRUCTIONS) 

IO OPCODE 

-ADDRESS ERROR DUE TO A CONFLICTING MEMORY 
REFERENCE DURING ONE OF THE 3 INSTRUCTIONS PRIOR 
TO THIS MACRO FILE. 

MFLIB-31 



TRAM.8 MACROFILE 

DESCRIPTION: TRANSFER 8 DATA VALUES FROM ARP "T" REGISTERS TO MEMORY 

USER DEFINED MACRO ARGUMENTS: 

USED IN 
CODE FOR SYMBOLS MEANING 

ARP #ATRO,#ATR1, ... ,#ATR7 ARP "T" REGISTER 
NUMBERS 

MAP #DMO,#DM1, ... ,#DM7 MEMORY ADDRESSES 
(TO BE ACCESSED 

IN SUCCESSIVE 
INSTRUCTIONS) 

INSTRUCTION COUNTS: 

EXECUTION TIME: 

POSSIBLE ERRORS: 

AD-10 PROCESSOR 
COP ARP DEP MAP 

3 8 0 8 

1.0 MICRO-SEC. 

-ADDRESS ERROR DUE TO A CONFLICTING MEMORY 
REFERENCE DURING ONE OF THE 3 INSTRUCTIONS PRIOR 
TO THIS MACRO FILE. 

-ADDRESS ERROR DUE TO A CONFLICTING MEMORY 
REFERENCE DURING ONE OF THE 3 INSTRUCTIONS 
FOLLOWING THIS MACRO FILE. 

MFLIB-32 



TRCM.8 MACROFILE 

DESCRIPTION: TRANSFER 8 DATA VALUES FROM COP REGISTERS TO MEMORY 

USER DEFINED MACRO ARGUMENTS: 

USED IN 
CODE FOR SYMBOLS MEANING 

COP #CGRO,#CGR1, ... ,#CGR7 COP GENERAL 
REGISTER NUMBERS 

MAP #DMO,#DM1, ... ,#DM7 MEMORY ADDRESSES 
(TO BE ACCESSED 

INSTRUCTION COUNTS: 

EXECUTION TIME: 
-~-~~--~.----- .... ~ 

POSSIBLE ERRORS: 

AD-10 PROCESSOR 
COP ARP DEP MAP 

10 0 0 8 

1.0 MICRO-SEC. 

IN SUCCESSIVE 
INSTRUCTIONS) 

-ADDRESS ERROR DUE TO A CONFLICTING MEMORY 
REFERENCE DURING ONE OF THE 3 INSTRUCTIONS PRIOR 
TO THIS MACRO FILE. 

-ADDRESS ERROR DUE TO A CONFLICTING MEMORY 
REFERENCE DURING ONE OF THE 3 INSTRUCTIONS 
FOLLOWING THIS MACRO FILE. 

MFLIB-33 



TRXM.8 MACROFILE 

DESCRIPTION: TRANSFER 8 DATA VALUES FROM DEP "X" REGISTERS TO MEMORY 

USER DEFINED MACRO ARGUMENTS: 
-----~-----------------~-~~-

USED IN 
CODE FOR SYMBOLS MEANING 

DEP #DXRO,#DXR1, •.. ,#DXR7 DEP "X" REGISTER 
NUMBERS 

MAP #DMOJ#DM1, ..• ,#DM7 MEMORY ADDRESSES 
(TO BE ACCESSED 

IN SUCCESSIVE 
INSTRUCTIONS) 

INSTRUCTION COUNTS: 

EXEC UT ION TIME: 

POSSIBLE ERRORS: 

AD-10 PROCESSOR 
COP ARP DEP MAP 

3 0 8 8 

1. 0 MICRO-SEC. 

-ADDRESS ERROR DUE TO A CONFLICTING MEMORY 
REFERENCE DURING ONE OF THE 3 INSTRUCTIONS PRIOR 
TO THIS MACRO FILE. 

-ADDRESS ERROR DUE TO A CONFLICTING MEMORY 
REFERENCE DURING ONE OF THE 3 INSTRUCTIONS 
FOLLOWING THIS MACRO FILE. 

MFLIB-34 



TRIM.8 MACROFILE 

DESCRIPTION: TRANSFER 8 DATA VALUES FROM DEP "I" REGISTERS TO MEMORY 

USER DEFINED MACRO ARGUMENTS: 
------~---------~--~~--~----

USED IN 
CODE FOR SXMBOLS MEANING 

DEP II D I R 0 , II D I R 1 , . . . , llD I R 7 DEP "I" REGISTER . 
NUMBERS 

MAP #DMO,llDM1, ... ,#DM7 MEMORY ADDRESSES 
(TO BE ACCESSED 

INSTRUCTION COUNTS: 

EXECUTION TIME: 

POSSIBLE ERRORS: 

AD-10 PROCESSOR 
COP ARP DEP MAP 

3 0 8 8 

1.0 MICRO-SEC. 

IN SUCCESSIVE 
INSTRUCTIONS) 

-ADDRESS ERROR DUE TO A CONFLICTING MEMORY 
REFERENCE DURING ONE OF THE 3 INSTRUCTIONS PRIOR 
TO THIS MACRO FILE. 

-ADDRESS ERROR DUE TO A CONFLICTING MEMORY 
REFERENCE DURING ONE OF THE 3 INSTRUCTIONS 
FOLLOWING THIS MACRO FILE~ 

MFLIB-35 



TREM. 8 MACROF ILE 

---~------------
DESCRIPTION: TRANSFER 8 DATA VALUES FROM EXTERNAL IOCC TO MEMORY 
-----,--- ...... -
USER DEFINED MACRO ARGUMENTS: 

. USED IN 
CODE F0!1 SYMBOLS MEANING 

COP #IOCO,#IOC1, ..• ,#!0C7 IOCC CHANNEL 
NUMBERS 

MAP #DMO,#DM1, •.. ,#DM7 MEMORY ADDRESSES 
(EACH SUCCESSIVE 4 

COP #OP 

INSTRUCTION COUNTS: 

EXECUTION TIME: 

POSSIBLE ERRORS: 
------~---.-9111!---

AD-10 PROCESSOR 
COP ARP DEP MAP 

12 0 0 8 

1.8 MICRO-SEC. 

TO BE ACCESSED 
IN SUCCESSIVE 
INSTRUCTIONS) 

IO OPCODE 

-ADDRESS ERROR DUE TO A CONFLICTING MEMORY 
REFERENCE DURING ONE OF THE 3 INSTRUCTIONS 
FOLLOWING THIS MACRO FILE. 

MFl,.IB-36 



TRCA.8 MACROFILE 

DESCRIPTION: TRANSFER 8 DATA VALUES FROM COP REG'S TO ARP "T" REG'S 

USER DEFINED MACRO ARGUMENTS: 

USED IN 
CODE FOR 

ARP 

COP 

SYMBOLS 

llATRO,llATR1, ... ,llATR7 

llCGRO, llCGR 1, ... , l/CGR7 

AD-10 PROCESSOR 
COP ARP ·DEP MAP 

INSTRUCTION COUNTS: 9 8 0 0 

EXECUTION TIME: .9 MICRO-SEC. 

TRCX.8 MACROFILE 

MEANING 

ARP "T" REGISTER 
NUMBERS 

COP GENERAL 
REGISTER NUMBERS 

DESCRIPTION: TRANSFER 8 DATA VALUES FROM GOP REG'S TO DEP "X" REG'S 

USER DEFINED MACRO ARGUMENTS: 

USED IN 
CODE FOR 

DEP 

COP 

SYMBOLS 

tlD X R 0 , II D X R 1 , . . . , II D X R 7 

llCGRO,llCGR1, ... ,llCGR7 

AD-10 PROCESSOR 
COP ARP DEP MAP 

INSTRUCTION COUNTS: 9 0 8 0 

EXECUTION TIME: .9 MICRO-SEC. 

MFLIB-37 

MEANING 

DEP "X" REGISTER 
NUMBERS 

COP GENERAL 
REGISTER NUMBERS 



TRCI.8 MACROFILE 

DESCRIPTION: TRANSFER 8 DATA VALUES FROM COP REG'S TO DEP "I" REG'S 

USER DEFINED MACRO ARGUMENTS: 
-------------~--~~~-~-------

USED IN 
CODE FOR 

DEP 

COP 

SYMBOLS 

llD I R 0 , # D I R 1 , • • • , llD I R 7 

#CGRO,#CGR1, •.. ,#CGR7 

AD-10 PROCESSOR 
COP ARP DEP MAP 

INSTRUCTION COUNTS: 9 0 8 0 

EXECUTION TIME: .9 MICRO-SEC. 

TRCE.8 MACROFILE 

MEANING 

DEP "I" REGISTER 
NUMBERS 

COP GENERAL 
REGISTER NUMBERS 

DESCRIPTION: TRANSFER 8 DATA VALUES FROM COP REG'S TO EXTERNAL IOCC 

USER DEFINED MACRO ARGUMENTS: 
--------~--~~-~~~~------~-~-

USED IN 
CODE FOR 

COP 

COP 

COP 

SYMBOLS 

#CGRO,#CGR1, •.• ,#CGR7 

#IOCO,#IOC1, ... ,#IOC7 

#OP 

AD-10 PROCESSOR 
COP ARP DEP MAP 

INSTRUCTION COUNTS: 8 0 0 0 

--------~--------~ 

EXECUTION TIME: .8 MICRO-SEC. 
MFLIB-38 

MEANING 

COP GENERAL 
REGISTER NUMBERS 

EXTERNAL IOCC 
CHANNEL NUMBERS 

IO OPCODE 



TRAC.8 MACROFILE , 

DESCRIPTION: TRANSFER 8 DATA VALUES FROM ARP "T" REG'S TO COP REG'S 

USER DEFINED MACRO ARGUMENTS: 

USED IN 
CODE FOR 

ARP 

COP 

SYMBOLS 

#ATRO,#ATR1, ... ,#ATR7 

#CGRO,#CGR1, ... ,#CGR7 

AD-10 PROCESSOR 
COP ARP DEP MAP 

INSTRUCTION COUNTS: 10 8 0 0 

EXECUTION TIME: 1.0 MICRO-SEC. 

TRXC.8 MACROFILE 

MEANING 

ARP "T" REGISTER 
NUMBERS 

COP GENERAL 
REGISTER NUMBERS 

DESCRIPTION: TRANSFER 8 DATA VALUES FROM DEP "X" REG'S TO COP REG'S 

USER DEFINED MACRO ARGUMENTS: 

USED IN 
CODE FOR 

DEP 

COP 

SYMBOLS 

#DXRO,#DXR1, ... ,#DXR7 

#CGRO,#CGR1, ... ,#CGR7 

AD-.10 PROCESSOR 
COP ARP · DEP MAP 

INSTRUCTION COUNTS: 10 0 8 0 

EXECUTION TIME: 1. 0 MICRO-SEC. 

MFLIB.-39 

MEANING 

DEP "X" REGISTER 
NUMBERS 

COP GENERAL 
REGISTER NUMBERS 



TRIC.8 MACROFILE 

DESCRIPTION: TRANSFER 8 DATA-VALUES FROM DEP "I" REG'S TO COP REG'S 

USER DEFINED MACRO ARGUMENTS: 

USED IN 
CODE FOR 

DEP 

COP 

SYMBOLS 

#DIRO,#DIR1, ..• ,#DIR7 

#CGRO,#CGR1, •.. ,#CGR7 

AD-10 PROCESSOR 
COP ARP DEP MAP 

INSTRUCTION COUNTS: 10 0 8 0 

EXECUTION TIME: 1.0 MICRO-SEC. 

TREC.8 MACROFILE 

MEANING 

DEP "I" REGISTER 
NUMBERS 

COP GENERAL 
REGISTER NUMBERS 

DESCRIPTION: TRANSFER 8 DATA VALUES FROM EXTERNAL IOCC TO COP REG'S 

USER DEFINED MACRO ARGUMENTS: 
--------~----~--~--~----~~~-

USED IN 
CODE FOR 

COP 

COP 

COP 

SYMBOLS 

II C GR 0 , II C GR 1 , . . . , II C GR 7 

II I 0 C 0 , II I 0 C 1 , . . . , III 0 C 7 

#OP 

AD-10 PROCESSOR 
COP ARP DEP MAP 

INSTRUCTION COUNTS: 13 0 0 0 
------~--~-~-~~---

EXECUTION TIME: 1.3 MICRO-SEC. 

MFLIB ... 40 

MEANING 

COP GENERAL 
REGISTER NUMBERS 

EXTERNAL IOCC 
CHANNEL NUMBERS 

IO OPCODE 



TREXM.8 MACROFILE. 

DESCRIPTION: TRANSFER 8 DATA VALUES FROM IOCC TO DEP "X" REG'S AND 
----------- MEMORY 

USER DEFINED MACRO ARGUMENTS: 

USED IN 
CODE FOR 

DEP 

MAP 

COP 

COP 

SYMBOLS 

#DXRO,#DXR1, ... ,#DXR7 

#DMO,#DM1, ... ,#DM7 

#IOCO, #IOC 1, ... , #IOC7 

#OP 

AD-10 PROCESSOR 
COP ARP DEP MAP 

INSTRUCTION COUNTS: 10 0 8 9 

EXECUTION TIME: 1. 8 MICRO-SEC. 

MEANING 

. DEP "X" REGISTER 
NUMBERS 

MEMORY ADDRESSES 

EXTERNAL IOCC 
CHANNEL NUMBERS 

IO OPCODE 

POSSIBLE ERRORS: -ADDRESS ERROR DUE TO A CONFLICTING MEMORY 
REFERENCE DURING ONE OF THE 3 INSTRUCTIONS 
FOLLOWING THIS MACRO FILE. 

MFLIB-41 



TRAEM.8 MACROFILE 

DESCRIPTION: TRANSFER 8 DATA VALUES FROM ARP "T" REG'S TO EXTERNAL 
----------- IOCC AND MEMORY 

USER DEFINED MACRO ARGUMENTS: 
----------------------------
USED IN 
CODE FOR SYMBOLS MEANING 

ARP #ATRO,#ATR1, ... ,#ATR7 ARP "T" REGISTER 
NUMBERS 

COP II I 0 C 0 , III 0 C 1 , • • • , II I 0 C 7 EXTERNAL IOCC 
CHANNEL NUMBERS 

MAP llDMO~#DM1, •.. ,#DM7 MEMORY ADDRESSES 

IO OPCODE COP #OP 

INSTRUCTION COUNTS: 
-~~-~-~-~-~-~-----

EXEC UT ION TIME: 

POSSIBLE ERRORS: 

AD-10 PROCESSOR 
COP ARP DEP MAP 

10 8 0 8 

1.0 MICRO-SEC. 

-ADDRESS ERROR DUE TO A CONFLICTING MEMORY 
REFERENCE DURING ONE OF THE 3 INSTRUCTIONS PRIOR 
TO THIS MACRO FILE. 

-ADDRESS ERROR DUE TO A CONFLICTING MEMORY 
REFERENCE DURING ONE OF THE 3 INSTRUCTIONS 
FOLLOWING THIS MACRO FILE. 

MFLIB-42 



LOADA.8 MACROFILE 

DESCRIPTION: LOAD IMMEDIATE DATA INTO ARP "T" REGISTERS 

USER DEF-INED MACRO ARGUMENTS: 

USED IN 
CODE FOR 

ARP 

DAT 

SYMBOLS 

#ATRO, #ATR 1, ... , #ATR7 

#IDATO,#IDAT1, ... ,#IDAT7 

AD-10 PROCESSOR 
COP ARP DEP MAP 

INSTRUCTION COUNTS: 10 9 0 0 

EXECUTION TIME: 1.0 MICRO-SEC. 

LOADC.8 MACROFILE 

MEANING 

ARP "T" REGISTER 
NUMBERS 

IMMEDIATE DATA 

DESCRIPTION: LOAD IMMEDIATE DATA INTO COP GENERAL REGISTERS 

USER DEFINED MACRO ARGUMENTS: 

USED IN 
CODE FOR 

COP 

DAT 

SYMBOLS 

#CGRO, #CGR 1, .•. , #CGR7 

#IDATO,#IDAT1, ... ,#IDAT7 

AD-10 PROCESSOR 
COP ARP DEP MAP 

INSTRUCTION COUNTS: 10 0 8 0 

EXECUTION TIME: 1.0 MICRO-SEC. 

MFLIB-43 

MEANING 

COP "X" REGISTER 
NUMBERS 

IMMEDIATE DATA 



LOADX.8 MACROFILE 
-----~-~---~----~ 

DESCRIPTION: LOAD IMMEDIATE DATA INTO DEP "X" REGISTERS 

USER DEFINED MACRO ARGUMENTS: 

USED IN 
CODE FOR 

DEP 

DAT 

SYMBOLS 

llD X R 0 , llD X R 1 , • • • , # D X R 7 

#IDATO,#IDAT1, ... ,#IDAT7 

AD .... 10 PROCESSOR 
COP ARP DEP MAP 

INSTRUCTION COUNTS: 10 0 9 0 

-----~-~~~----~---

EXECUTION TIME: 1.0 MICRO-SEC. 

LOADI.8 MACROFILE 

MEANING 

DEP "X" REGISTER 
NUMBERS 

IMMEDIATE DATA 

DESCRIPTION: LOAD IMMEDIATE DATA INTO DEP "I" REGISTERS 

USER DEFINED MACRO ARGUMENTS: 
--------~~------~---~~---~-~ 

USED IN 
CODE FOR 

DEP 

DAT 

SYMSOLS 

llD I R 0 , # D I R 1 , • • • , llD I R 7 

#IDATO,#IDAT1, ... ,#IDAT7 

AD-10 PROCESSOR 
COP ARP DEP MAP 

INSTRUCTION COUNTS: 10 0 9 0 

EXECUTION TIME: 1. 0 MICRO-SEC. 

MFLIB-44 

MEANING 

DEP "I" REGISTER 
NUMBERS 

IMMEDIATE DATA 



LOADM.8 MACROFILE 

DESCRIPTION: LOAD IMMEDIATE DATA INTO MEMORY 

USER DEFINED MACRO ARGUMENTS: 

USED IN 
CODE FOR SYMBOLS MEANING 

MAP II D M 0 , # D M 1 , • • • , flD M 7 MEMORY ADDRESSES 
(TO BE ACCESSED 

IN SUCCESSIVE 
INSTRUCTIONS) 

DAT #IDATO,#IDAT1, ... ,#IDAT7 IMMEDIATE DATA 

INSTRUCTION COUNTS: 

EXECUTION TIME: 

POSSIBLE ERRORS: 

AD-10 PROCESSOR 
COP ARP DEP MAP 

10 0 0 9 

1. 0 MICRO-SEC. 

-ADDRESS ERROR DUE TO A CONFLICTING MEMORY 
REFERENCE DURING ONE OF THE 3 INSTRUCTIONS PRIOR 
TO THIS MACRO FILE. 

-ADDRESS ERROR DUE TO A CONFLICTING MEMORY 
REFERENCE DURING ONE OF THE 3 INSTRUCTIONS 
FOLLOWING THIS MACRO FILE. 

MFLIB.,.45 



SGN.2 MACROFILE 
..---------~-----.. 

DESCRIPTION: COMPUTES "SGN" FUNCTION 
------------ llSGNX = SGN(X) = 1 (INTEGER) 

= -1 (INTEGER) 

llSGNY ::: SGN(Y) = (AS ABOVE) 

USER DEFINED MACRO ARGUMENTS: 
--~------~-~------~---------

USED IN 
CODE FOR 

ARP 

ARP 

ARP 

SYMBOLS 

llX, llY 

llSGNX,llSGNY 

TO,T1 

INSTRUCTION COUNTS: 

EXECUTION TIME: 

AD-10 PROCESSOR 
COP ARP DEP MAP 

5 7 0 0 

.8 MICRO-SEC. 

MFLIB-46 

x >= 
x < 

0 
0 

MEANING 

INPUT ARGUMENTS 
(REG. NUMBERS) 

RESULTS 
(REG. NUMBERS) 

SCRATCH REGISTERS 



CTR.3 MACROFILE 
- ... -, ..... --~-- ... -~--

DESCRIPTION: PERFORMS COORDINATE TRANSFORMATIONS FOR 3 VECTORS. 

XPI = XI*COS(AI) + YI*SIN(AI) 
YPI = -XI*SIN(AI) + YI*COS(AI) 

I=0,2 
I =0, 2 

-1.0 <=AI< 1.0 ; UNIT AI= 180 DEGREES 

NOTE: THIS MACROFILE CAN BE USED TO ROTATE 3 
INDEPENDENT VECTORS EACH THROUGH A SEPARATE ANGLE. 
IT CAN ALSO BE USED TO ROTATE ONE VECTOR THROUGH 3 
SEPARATE ANGLES BY SPECIFING THE INPUT TO THE SECOND 
ROTATION AS THE OUTPUT OF THE FIRST AND THE INPUT TO 
THE THIRD ROTATION AS THE OUTPUT OF THE SECOND 
TRANSFORMATION (SEE EXAMPLE ON NEXT PAGE). 

USER DEFINED MACRO ARGUMENTS: 
-~-~----~---~---~--~~~--~--~ 

USED IN 
CODE FOR 

ARP 

ARP 

ARP 

ARP 

MAP 

ARP 

DEP 

SYMBOLS 

flX 0, #X 1 , #X 2, #Y 0, #Y 1 , #Y 2 

#A 0 , #A 1 , #A 2 

#XPO,#XP1,#XP2,#YPO,#YP1,#YP2 

#SINO,#SIN1,#SIN2 
#COSO,#COS1,#COS2 

#SIN,#COS 

TO,T1,T2 

IO,I1,I2 

AD-10 PROCESSOR 
COP ARP DEP MAP 

INSTRUCTION COUNTS: 13 31 3 6 

EXECUTION TIME: 3.2 MICRO-SEC. 

MFLIB .... 47 

MEANING 

INPUT COMPONENTS 
(REG. NUMBERS) 

ROTATION ANGLES 
(REG. NUMBERS) 

OUTPUT COMPONENTS 
(REG. NUMBERS) 

OUTPUT SIN'S AND 
COS'S (REG NUMBERS) 

ORIGINS OF SIN AND 
COS FUNCTION DATA 
TABLES. EACH TABLE 
HAS 513 DATA VALUES 
FOR EQUAL SPACED 
BREAKPOINTS OVER 
THE RANGE: 
-180 TO +180 DEG. 

SCRATCH REGISTERS 

SCRATCH REGISTERS 



CTR.3 MACROFILE (CONT.) 

EXAMPLE: 

SUPPOSE WE HAVE A VECTOR WITH 3 ORTHOGONAL COMPONENTS [X,Y,Z] AND WE 
WISH TO PERFORM A 3 ANGLE COORDINATE TRANSFORMATION THROUGH THE ANGLES 
AXY, AXZ, AND AYZ (I.E. ANGLES IN THE X-Y, X-Z, AND Y-Z PLANES). THE 
ARGUMENTS TO THIS MACROFILE WOULD BE DEFINED AS FOLLOWS: 

#X .DEFINE X ,TXO,TYO 
#Y .DEFINE Y ,z ,TX1 
#A .DEFINE AXY,AXZ,AYZ 

IF THE 3 VECTOR COMPONENTS OF THE RESULT ARE TO BE [XX,YY,ZZ], THEN THE 
OUTPUTS OF rHE MACROFILE WOULD BE DEFINED AS FOLLOWS: 

#XP .DEFINE TXO,TX1,YY 
#YP .DEFINE TYO,XX ,zz 

THE EQUATIONS SOLVED WITH THESE ARGUMENT DEFINITIONS ARE: 

TXO = #XPO = Y*SIN(AXY) + X*COS(AXY) 
TYO = #YPO = Y*COS(AXY) X*SIN(AXY) 

TX1 = #XP1 = Z*SIN(AXZ) + TXO*COS(AXZ) 
XX = #YP1 = Z*COS(AXZ) TXO*SIN(AXZ) 

YY = #XP2 = TX1*SIN(AYZ) + TYO*COS(AYZ) 
ZZ = #YP2 = TX1*COS(AYZ) - TYO*SIN(AYZ) 

MFLIB-48 



' IRS.3 MACROFILE 

DESCRIPTION: INVERSE RESOLUTION 

I 
RI I 

I 
I 

I 
I AI 

I 
I 

I 

/! 

YI 

INPUTS: XI,YI I=0,2 

/----------! 

OUTPUTS: AI (RADIANS/PI 
SIN(AI),COS(AI) 
RI 

XI HRI = RI/2 

USER DEFINED MACRO ARGUMENTS 

USED IN 
CODE FOR SYMBOLS 
-------- ----- ... -

ARP #X 0, #Y 0, #X 1 , #Y 1 , #X 2, #Y 2 

MAP #IRORG 

ARP #AO, #A 1, #A2 

ARP #SINO,#SIN1,#SIN2 
#COSO,#COS1,#COS2 

ARP #RO,#R1,#R2 

ARP II H R 0 , llH R 1 , II H R 2 

ARP TO-T4 

MAP/DEP IXO-IX11 

I=0,2 
I=0,2 
I=0,2 
I=0,2 

MEANING 

INPUTS 

ORIGIN OF FUNCTION 
DATA TABLES 

OUTPUT ANGLES 
(UNIT A= 180 DEG.) 

OUTPUT SIN'S 
AND COS'S 

OUTPUT VECTORS 

OUTPUT VECTORS 
DIVIDED BY 2 

SCRATCH REGISTERS 

SCRATCH " I'' AND "X" 
REGISTERS 

NOTE: THE #A, #SIN, #COS, #R, AND #HR OUTPUT REGISTERS ARE USED 
INTERNALLY BY THIS MACROFILE FOR INTERMEDIATE RESULTS, THUS THEY 
MUST BE UNIQUE REGISTERS. FOR EXAMPLE, #AO MUST NOT BE THE SAME ARP 
REGISTER AS #SINO. 

INSTRUCTION COUNTS: 

EXECUTION TIME: 

AD-10 PROCESSOR 
COP ARP DEP MAP 

12 102 32 33 

11.5 MICRO-SEC. 

MFLIB-49 



IRS.3 MACROFILE (CONT.) 

MAP OF FUNCTION DATA REQUIRED BY THIS MACROFILE: 

PAGE 
5 

4 

3 

2 

1 

0 

0 
III RORG 

G 

B 

G 

B 

G 

B 

FCN (EVEN) 

FCN (ODD) 

FSC (EVEN) 

FSC (ODD) 

FDV (EVEN) 

FDV (ODD) 

15 16 17 

THE DATA ARRAYS ARE DEFINED AS FOLLOWS: 

B(O) = -1. 0 
B(I) = 1.0-2**(1-I) I:1, 16 

G (I) = 2**I I =0, 14 
G ( 15) = (2**15)-1 

FDV(V) = 1.0/(V-1.0) V = -1 . 0 TO 0 

FSC(SC) = SC/SQRT(1.0-2*!SC!+2*SC**2) 

FCN(CN) = ARCTAN((1/CN)+1) CN = -1. 0 
ARCTAN((1/CN)-1) CN = o.o 

273 WORD (DECIMAL) 

SC= -1 . 0 TO 1. 0 

TO 0.0 
TO 1 "0 

(NOTE: "FDV", "FSC", AND "FCN" REQUIRE 513 EQUALLY SPACED VALUES 
OVER THE RANGE SPECIFIED). 

A FORTRAN PROGRAM WHICH GENERATES ALL DATA ARRAYS REQUIRED BY THIS 
MACROFILE IS SUPPLIED WITH THE MACROFILE LIBRARY. THE FOLLOWING 
IS AN EXAMPLE "ADX" COMMAND FILE TO LOAD THIS DATA FOR llIRORG=O : 

LOAD B.DAT/UN:O:O/IN 
LOAD G.DAT/UN:1:0/IN 
LOAD B.DAT/UN:2:0/IN 
LOAD G.DAT/UN:3:0/IN 
LOAD B.DAT/UN:4:0/IN 
LOAD G.DAT/UN:5:0/IN 
LOAD FDV.DAT/AL:0:17/RS 
LOAD FSC.DAT/AL:2:17/RS 
LOAD FCN.DAT/AL:4:17/RS 

MFLIB-50 



IRS.3 MACROFILE (CONT.) 

CALCULATIONS PERFORMED: 

1) COMPUTE y x 
SN = CN = 

!X! + !Y! !X! + !Y! 

A) RE-SCALE RANGE OF DENOMINATOR OF DIVIDE 

U = -!X!-!Y!+1 ( -1 • 0 <= u < 1 • 0) 

B) PERFORM BINARY SEARCH ON U USING TABLE 
"B(I)" TO GET "I" SUCH THAT: 

B(I) <= u < 80+1) I=O, 15 

8(0) = -1. 0 
B(I) = 1.0-2**CI-1) I=1,16 

G(I) = 2**I I :0, 14 
G ( 15) = 2**15-1 

C) SCALE DENOMINATOR OF DIVIDE BY SHIFTING 
"U" LEFT SO THAT THE MOST SIGNIFICANT 
DIGIT IS NEXT TO THE DECIMAL POINT: 

V = [ U - B (I +1 ) ] * G (I ) 
= -[!X! + !Y!] * G(I) + 1 

( -1. 0 <= v <= 0) 

THIS PRESERVES 1 LSB ACCURACY IN THE DIVISION 
CALCULATION. 

D) PERFORM SHIFT SEARCH AND DELTA 
CALCULATION ON V AND PERFORM LINEAR 
INTERPOLATION ON DIVIDE FUNCTION: 

FDV(V) = 1 I (V-1) 

E) MULTIPLY "X" AND "Y" NUMBERATORS 
TIMES THE DIVIDE FUNCTION: 

WY = Y*FDV(V) WX = XX*FDV(V) 

NOTE: IF !X!+!Y!=O, THEN XX = 2**(-15) 
ELSE XX = X 

F) FINISH SCALING OF DIVISIONS: 

SN = -WY*G(I) CN = -WX*G(I) 

MFLIB-51 



IRS.3 MACROFILE (CONT.) 

CALCULATIONS PERFORMED (CONT.): 

2) COMPUTE SIN(A), COS(A), AND THE ANGLE "A" AS 
FUNCTlONS OF "SN", "CN", AND "Y". 

A) PERFORM SHIFT SEARCH AND DELTA 
CALCULATION ON "SN" AND"CN". 

B) COMPUTE THE SIGN OF "Y", I.E. SGN(Y). 

C) PERFORM THE LINEAR INTERPOLATION ON 
FUNCTIONS "FSC" AND "FCN" WHICH ARE 
DEFINED AS FOLLOWS: 

SC 
F SC (SC) = 

SQRT(1-2*!SC!+2*SC**2) 

FCN(CN) = ARCTAN((1/CN)-1) 
= ARCTAN((1/CN)+1) 

SIN(A) = FSC(SN) 

COS(A) = FSC(CN) 

A = SGN(Y)*FCN(CN) 

3) COMPUTE: R = X*COS(A) + Y*SIN(A) 
HR = [X*COS(A) + Y*XIN(A)]/2 

CN >= 0 
CN <= 0 

(NOTE: THE CALCULATION OF "R" WILL OVERANGE AND RETURN R=1.0-2**(-15) 
IF X ANDY ARE SUCH THAT: SQRT(X**2 + Y**2) > 1.0) 

RANGES OF MAJOR VARIABLES FOR THE CALCULATIONS PERFORMED: 

I 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
1 1 
12 
13 
14 
15 
16 

!X!+!Y! U = -!X!-!Y!+1 B(I) G(I) 
------~------------- --~-------~~-~---~----~- ------~--- ----~ 
1 
2**(-1) 
2**(-2) 
2**(-3) 
2**(-4) 
2**(-5) 
2**(-6) 
2**(-7) 
2**(-8) 
2**(-9) 
2**(-10) 
2**(-11) 
2**(-12) 
2**(-13) 
2**(-14) 
2**(-15) 

TO 2 
TO 1 
TO 2**(-1) 
TO 2**(-2) 
TO 2**(-3) 
TO 2**(-4) 
TO 2**(-5) 
TO 2-**(-6) 
TO 2**(-7) 
TO 2**(-8) 
TO 2**(-9) 
T·O 2 * * ( - 1 0 ) 
TO 2**(-11) 
TO 2**(-12) 
TO 2**(-13) 
TO 2**(-14) 

-1 TO 0 
0 TO 1-2**(-1) 
1-2**(-1) TO 1-2**(-2) 
1-2**(-2) TO 1-2**(-3) 
1-2**(-3) TO 1-2**(-4) 
1-2**(-4) TO 1-2**(-5) 
1-2**(-5) TO 1-2**(-6) 
1-2**(-6) TO 1-2**(-7) 
1-2**(-7) TO 1-2**(-8) 
1-2**(-8) TO 1-2**(-9) 
1-2**(-9) TO 1-2**(-10) 
1-2**(-10) TO 1-2**(-11) 
1-2**(-11) TO 1-2**(-12) 
1-2**(-12) TO 1-2**(-13) 
1-2**(-13) TO 1-2**(-14) 
1-2**(-14) TO 1.0 

-1. 0 
0 
1-2**(-1) 
1-2**(-2) 
1-2**(-3) 
1-2**(-4) 
1-2**(-5) 
1-2**(-6) 
1-2**(-7) 
1-2**(-8) 
1-2**(-9) 
1-2**(-10) 
1-2**(-11) 
1-2**(-12) 
1-2**(-13) 
1-2**(-14) 
1-2**(-15) 

1 
2 
2**2 
2**3 
2**4 
2**5 
2**6 
2**7 
2**8 
2**9 
2**10 
2** 11 
2**12 
2**13 
2**14 
32767 

NOTE: IF !X!+!Y! = 0 THEN -!X!-!Y!+1 WILL OVERANGE AND ROUND DOWN TO 
1-2**(-15), THEREFORE X=Y=O IS EQUIVALENT TO EITHER XOR Y = 1 LSB. 

MFLIB-52 



IRS.3 MACRQFILE (CONT.) 

SYMBOLS DEFINED AND USED IN MACROFILE: 

USED IN . 
CODE FOR 

ARP 

ARP 

ARP 

ARP 

ARP 

SYMBOLS 

##MXO,##MS1,#IMX2 

##MYO,##MY1,##MY2 

##XXO,##XX1,##XX2 

##G 0, ##G 1 , ##G 2 

llllU 0, llllU 1 , ##U 2 

ARP ##VO,##V1,##V2 

ARP ##DVO,##DV1,##DV2 

ARP ##SGNO,##SGN1,##SGN2 

ARP ##CNO,##CN1,##CN2 

ARP ##SNO,##SN1,##SN2 

ARP ##DCNO,##DCN1,##DCN2 

ARP ##DSNO,##DSN1,##DSN2 

ARP ##FCNO,##FCN1,##FCN2 

MAP/DEP 

MAP 

##IXUO,##IXU1,##IXU2 
##IVO,##IV1,##IV2 
##ICNO,##ICN1,##ICN2 
##ISNO,##ISN1,##ISN2 

##PAG,##WRD 

MFLIB ... 53 

MEANING 

!X! VALUES 

!Y! VALUES 

''XX" VALUES 

"G(I)" VALUES 

"U" VALUES 

"V" VALUES 

DELTA "V" VALUES 

"SGN" VALUES 

"CN" VALUES 

"SN" VALUES 

DELTA "CN" VALUES 

DELTA "SN" VALUES 

"FCN" VALUES 

"U", "V", "CN", AND 
"SN" VALUES IN THE 
"X" REGISTERS AND 
INDEX VALUES IN THE 
"I" REGISTERS. 

"PAGE" AND "WORD" 
CORRESPONDING TO 
#IRORG. 



EXAMPLE AD-10 MVFG PROGRAM USING MACROFILES 

THE FOLLOWING EXAMPLE ILLUSTRATES HOW THE AD-10 MACROFILES ARE USED 
TO PROGRAM A TYPICAL MULTIVARIABLE FUNCTION GENERATION APPLICATION. 
FIRST, THE GENERAL PROCEDURE WHICH SHOULD BE FOLLOWED TO PROGRAM MOST 
MVFG PROBLEMS IS OUTLINED BELOW: 

1) LIST VARIABLES WHICH WILL BE USED AS ARGUMENTS OF FUNCTIONS 
TO BE GENERATED. ALL FUNCTIONS OF A PARTICULAR VARIABLE 
MUST BE DEFINED AT THE SAME SET OF BREAKPOINTS FOR THAT 
VARIABLE. IF THIS CONDITION IS NOT POSSIBLE TO MEET FOR 
A PARTICULAR VARIABLE, THEN CONSIDER EACH REFERENCE OF THAT 
VARIABLE WHICH REQUIRES A DIFFERENT BREAKPOINT SET AS A 
SEPARATE VARIABLE. 

2) DETERMINE THE BREAKPOINTS FOR EACH VARIABLE AND DECIDE 
WHICH SEARCH SCHEME WILL BE USED FOR EACH. THE BINARY SEARCH 
MACROFILE (BD.6) ALLOWS FROM 2 TO 33 BREAKPOINTS TO BE SPACED 
AT THE USERS DISCRETION; THE SHIFT SEARCH SCHEME ALLOWS 
(2**N)+1 BREAKPOINTS (N=2,15) WHICH ARE EQUALLY SPACED FROM 

-1.0 TO +1.0 . 

3) LIST ALL UNIQUE VARIABLE SETS WHICH WILL BE USED AS FUNCTION 
ARGUMENTS. EACH VARIABLE SET OF 2 OR MORE VARIABLES WILL 
REQUIRE A FUNCTION DATA POINTER CALCULATION USING ONE OF 
THE "PT?.3" MACROFILES. 

4) LAYOUT AD-10 DATA MEMORY MAP DEFINING WHERE IN THE MEMORY 
THE VARIOUS ARRAYS OF FUNCTION DATA AND BREAKPOINT DATA 
TABLES ARE TO BE STORED. 

5) WRITE AD-10 PROGRAM USING THE MVFG MACROFILES. THE GENERAL 
FORMAT FOR A FUNCTION GENERATION PROGRAM IS AS FOLLOWS: 

[AJ TRANSFER INPUT VARIABLES TO "DEP" USING THE 
APPROPRIATE "TR .. " MACROFILES. 

[BJ PERFORM BINARY OR SHIFT SEARCH AND DELTA CALCULATION 
ON ALL INPUT VARIABLES USING APPROPRIATE MACROFILES. 

[CJ PERFORM FUNCTION DATA POINTER CALCULATION USING THE 
APPROPRIATE "PT ... " MACROFILES. 

[DJ PERFORM FUNCTION INTERPOLATIONS USING THE "FI ... " 
MACROFILES. 

[EJ TRANSFER RESULTS FROM ARP TO DESIRED DESTINATION 
USING THE APPROPRIATE "TR ... " MACROFILE. 

6) ORGANIZE THE FUNCTION DATA SUCH THAT IT IS CONSISTENT 
WITH THE NUMBER OF BREAKPOINTS FOR EACH VARIABLE IN THE 
CORRESPONDING VARIABLE SET FOR THAT FUNCTION. ORDER THE 
FUNCTION DATA IN A LINEAR ARRAY SUCH THAT THE VALUES FOR 
CHANGES IN THE FIRST VARIABLE ARE ENTERED FIRST AND VALUES 
FOR CHANGES IN THE LAST VARIABLE ARE ENTERED LAST. NOTE THAT 
THIS IS CONSISTENT WITH THE NORMAL INTERNAL STORAGE OF MULTI­
DIMENSIONED ARRAYS IN FORTRAN. 

7) PLACE FUNCTION DATA AND BREAKPOINT DATA INTO DIRECT ACCESS FILES 
FOR LOADING INTO THE AD-10 DATA MEMORY USING "ADX". 

MFLIB-54 



EXAMPLE (CONT.) 

THE SPECIFIC FUNCTION GENERATION PROBLEM TO BE SOLVED IN THIS EXAMPLE 
IS THE AD-10 PORTION OF A HYBRID SIMULATION OF THE LONGITUDINAL FLIGHT 
EQUATIONS FOR AN AIRCRAFT. THE AD-10 ACCEPTS THREE INPUTS FROM THE 
ANALOG COMPUTER: . A (ANGLE OF ATTACK), H (ALTITUDE), AND V (VELOCITY). 
THE AD-10 THEN COMPUTES M (MACH NUMBER) AS A FUNCTION OF "H" AND "V" AND 
THEN GENERATES FIVE AERODYNAMIC COEFFICIENTS WHICH ARE FUNCTIONS OF 
"A", "M", AND "H" ; THESE COEFFICIENTS CONSIST OF THREE FUNCTIONS OF 3 
VARIABLES AND 2 FUNCTIONS OF 2 VARIABLES. THE AD-10 WILL ALSO BE CALLED 
UPON TO GENERATE THE SINE AND COSINE OF THE ANGLE "A" AND FINALLY WILL 
OUTPUT THE 7 INTERPOLATED FUNCTION VALUES ON DAC'S TO THE ANALOG COMPUTER. 

THE PROBLEM CAN BE SUMMARIZED AS FOLLOWS: 

INPUTS: 

COMPUTES: 

A,H,V 

M==2*V*F6 (H) 

F11(A1,M,H), F12(A1,M,H), F13(A1,M,H), F14(M,H), F15(M,H), 
F8(A2), F9(A2) 

NOTE: A1 AND A2 ARE THE SAME VARIABLE (A), BUT A 
DIFFERENT SET OF BREAKPOINTS IS USED FOR EACH. 

OUTPUTS: F11, F12, F13, F14, F15, F8, F9 

BREAKPOINTS: ALL VARIABLES WILL HAVE UNEQUALLY SPACED BREAKPOINTS. 

DATA FILES: 

A1 HAS 16 BREAKPOINTS 
A2 HAS 33 BREAKPOINTS 
M HAS 21 BREAKPOINTS 
H HAS 12 BREAKPOINTS 

A FORTRAN PROGRAM WAS USED TO GENERATE THE FUNCTION DATA 
USING ANALYTIC APPROXIMATIONS OF TYPICAL AREODYNAMIC 
FUNCTIONS, AND IT ALSO GENERATES THE BREAKPOINT DATA 
FILES. A LISTING OF THIS PROGRAM IS INCLUDED IN THIS 
EXAMPLE. 

MFLIB-55 



EXAMPLE (CONT.) 
AD-10 PROGRAM USING MACROFILES 
-~--~~~---~-----~---------~--~ 

THE FOLLOWING IS A LISTING OF THE AD-10 SOURCE PROGRAM FOR THIS 
EXAMPLE PROBLEM. THIS PROGRAM IS HEAVILY COMMENTED FOR THE SAKE OF 
CLEARLY PRESENTING TttIS EXAMPLE (COMMENT LINES BEGIN WITH A"!"). THE 
TOTAL NUMBER OF ASSEMBLER INSTRUCTIONS IS ROUGHLY 150 LINES, OF WHICH 
ONLY ABOUT 30 ARE ACTUAL AD-10 MACHINE INSTRUCTIONS AND THE REST CONSIST 
OF SYMBOL DEFINITIONS, ASSEMBLER DIRECTIVES, AND MACROFILE CALLS (I.E. 
".INCLUDE" DIRECTIVES). WHEN THIS PROGRAM WAS ASSEMBLED WITH THE 
MACROFILES INCLUDED IN THE SOURCE CODE LINE COUNT, THE ASSEMBLER PRODUCED 
APPROXIMATELY 1500 LINES OF OUTPUT IN THE LISTING. THUS, FOR THIS EXAMPLE 
THE USER ONLY HAD TO WRITE 10 PERCENT OF THE TOTAL SOURCE CODE ASSEMBLED, 
AND MOST OF THAT CONSISTED OF SYMBOL DEFINITIONS. MOST TYPICAL MVFG 
PROBLEMS CAN BE PROGRAMMED ON THE AD-10 IN A SIMILIAR FASHION USING 
MACROFILES. THIS DRAMATICALLY ILLUSTRATES THE POWER OF THE AD-10 
MACROFILE LIBRARY. 

*********************************************************************** 

AD-10 FUNCTION GENERATION BENCHMARK PROBLEM (BENCH.ASM) 

INPUTS:· A,H,V 

COMPUTES: M=2*V*F6(H) 

F11(A1,M,H), F12(A1,M,H), F13(A1,M,H), F14(M,H), F15(M,H), 
F8(A2), F9(A2) 

NOTE: A1 AND A2 ARE THE SAME VARIABLE (A), BUT A 
DIFFERENT SET OF BREAKPOINTS IS USED FOR EACH. 

OUTPUTS: F11, F12, F13, F14, F15, F8, F8 

*********************************************************************** 

.PRON 

.DECIMAL 
!PRINT MACROFILE CODE 

DEFINE ARP TEMPORARY REGISTERS 

.ARP 
T . DEFINE 0, 1 , 2, 3, 4, 5, 6, 7, 8, 9 , 1 0, 11 , 12, 1 3, 14, 15 

DEFINE ARP REGISTERS FOR DELTA QUANTITIES 

DELA1 
DELA2 
DELM 
DELH 

.EQU 

.EQU 

.EQU 

.EQU 

16 
17 
18 
19 

MFLIB-56 



EXAMPLE (CONT.) 
AD-10 PROGRAM USING MACROFILES 

DEFINE ARP REGISTERS FOR FUNCTION VALUES 

F 11 
F12 
F13 
F14 
F15 
F6 
F8 
F9 

. EQU 

.EQU 

.EQU 

.EQU 

.EQU 

.EQU 

. EQU 

.EQU 

20 
21 
22 
23 
24 
25 
26 
27 

DEFINE MAP/DEP REGISTERS FOR INPUT VARIABLES 

A1DEP 
A2DEP 
MDEP 
HDEP 
VDEP 

.DEP 

.EQU 

.EQU 

.EQU 

.EQU 

.EQU 

0 
1 
2 
3 
4 

DEFINE MAP FUNCTION DATA INDEX REGISTERS FOR EACH VARIABLE SET 

IAMH 
IMH 
.! 

.MAP 

.EQU 

.EQU 
5 
6 

INDEX FOR A1,M,H SET 
INDEX FOR M,H SET 

DEFINE NUMBER OF BREAKPOINTS FOR EACH VARIABLE 

NBPA1 
NBPA2 
NBPM 
NBPH 

.EQU 

.EQU 

.EQU 

. EQU 

16 
33 
21 
12 

DEFINE MAPPING BETWEEN INPUT/OUTPUT VARIABLES AND I/O PORTS 

0,1,2,3,4 ADC 
DAG 
AIN 
HIN 
VIN 

.COP 

.DEFINE 

.DEFINE 

. EQU 

.EQU 

.EQU 

.EQU 

.EQU 

5,6, 7' 8,9, 10, 11, 12, 13, 14, 15 
ADCO . 

F 110UT 
F 120UT 
F 130UT 
F140UT 
F150UT 
F80UT 
F90UT 

. EQU 

.EQU 

.EQU 

. EQU 

.EQU 

ADC 1 
ADC2 
DAGO 
DAC1 
DAC2 
DAC3 
DAC4 
DAC5 
DAC6 

DEFINE I/O COMMANDS 

SET . EQU 0 
INIT . EQU 1 
READ . EQU 2 
WRITE . EQU 2 
UPDATE .EQU 3 

MFLIB-57 



EXAMPLE (CONT.) 
AD-10 PROGRAM USING MACROFILES 

.PAGE 

AD-10 DATA MEMORY MAP FOR THIS PROGRAM 

PAGE 
---------~--------~------~---------~---~--------------~------~--

5 ! F13 (ODD) ! F6 (ODD) 
!-------------- --------------! 

4 ! F13 (EVEN) F6 (EVEN) ! 
!-------------- --------------!------------! 

3 F12 (ODD) F15 (ODD) ! F9 (ODD) 
!------------~- -~----~-------!---~---~----! 

2 F12 (EVEN) F15 (EVEN) ! F9 (EVEN) ! 
!-------------- ----~-------~-!------------! 

I/O 

DATA 

BP 

DATA 

! F11 (ODD) F14 (ODD) F8 (ODD) !BUFFER! TABLES 
!-------------- --------------!------------! 

0 ! F 11 (EVEN ) F 1 4 (EVEN ) ! F 8 (EVEN ) ! 

!-------------- --------------!------------!---!------!--------0 2016 2142 3397 4000 (DECIMAL) 
0 3740 4136 7635 7640 (OCTAL) 

WORD ADDRESS 

DEFINE MEMORY ADDRESSES FOR INPUT/OUTPUT QUANTITIES 

AMEM 
MMEM 
HMEM 
VMEM 
F 11 MEM 
F12MEM 
F13MEM 
F 14MEM 
F15MEM 
F6MEM 
F8MEM 
F9MEM 
DRAIN 
FAUCET 

.MAP 

.EQU 

.EQU 

.EQU 

.EQU 

.EQU 

.EQU 

.EQU 

.EQU 

.EQU 

.EQU 

.EQU 

.EQU 

.EQU 

. EQU 

0:3999 
3:3999 
1:3999 
2:3999 
0:3998 
1:3998 
2:3998 
3:3998 
4:3998 
1:3997 
5:3998 
0:3997 
63:4095 
DRAIN 

! PAGE:WORD (UNALIGNED ADDRESS) 

! A PLACE TO DUMP THINGS 
! A PLACE TO READ GARBAGE DATA 

DEFINE FUNCTION DATA BASE ADDRESSES 
! 
AF 11 
AF12 
AF13 
AF14 
AF15 
AF6 
AF8 
AF9 

.EQU 

.EQU 

.EQU 

.EQU 

.EQU 

.EQU 

.EQU 

.EQU 

0: : 0 
2: : 0 
4: : 0 
0::2016 
2::2016 
4::2016 
0::2142 
2::2142 

! PAGE::WORD (ALIGNED ADDR~SS) 

DEFINE ORIGIN OF BREAKPOINT DATA TABLES 

BPORG .EQU 0:4000 
.PAGE 

MFLIB-58 



EXAMPLE (CONT.) 
AD-10 PROGRAM USING MACROFILES 
--------------------~-~---~---!*********************************************************************** 

INITIALIZATION CODE (ONLY EXECUTED ONCE) 

LOAD IOCC GROUP CODES 0 AND 1 IN COP GENERAL REGISTERS 0 AND 1 

#CGR .DEFINE 0,1,1,1,1,1,1,1 
#IDAT .DEFINE 0,1,1,1,1,1,1,1 

.INCLUDE DK1:[1,1]LOADC.8 

SETUP A GROUP OF 3 ADC CHANNELS 

#IOC .DEFINE AIN,HIN,VIN,VIN,VIN,VIN,VIN,VIN 
#CGR .DEFINE O,O,O,O,O,O,O,O 
#OP .EQU 0 ! SET GROUP CODE INTO I/O CHANNEL 

.INCLUDE DK1:[1,1]TRCE.8 

SETUP A GROUP OF 7 DAC CHANNELS 

#IOC .DEFINE F110UT,F120UT,F130UT,F140UT,F150UT,F80UT,F90UT,F90UT 
#CGR .DEFINE 1,1,1,1,1,1,1,1 

.INCLUDE DK1:[1,1]TRCE.8 

.PAGE 
! 
!*********************************************************************** 

START OF FUNCTION GENERATION LOOP 

DEFINE PROGRAM COUNTERS AT BEGINNING OF PROGRAM LOOP 

. ARP 
ARPOO .EQU * !INITIAL ARP PC 

.DEP 
DEPOO .EQU * !INITIAL DEP PC 

.MAP 
MAPOO .EQU * !INITIAL MAP PC 

COPOO PFI INIT,O INITIATE A CONVERSION ( 1 0 MS) 
RFR ! AND FORCE A MEMORY REFRESH 
PAUSE 63 ! WAIT FOR ADC'S TO CONVERT 

READ CONVERTED VALUES AND TRANSFER THEM INTO MEMORY 

#IOC .DEFINE AIN,HIN,VIN,VIN,VIN,VIN,VIN,VIN 
#OM .DEFINE AMEM,HMEM,VMEM,DRAIN,DRAIN,DRAIN,DRAIN,DRAIN 
#OP .EQU READ 

. INCLUDE DK1: [ 1, 1]TREM.8 

HLT 0 ! HALT (MAYBE) TO LOOK AT OR MODIFY INPUTS 

TRANSFER VALUES OF INPUT VARIABLES FROM MEMORY TO DEP "X" REGISTERS 

#DXR .DEFINE A1DEP,HDEP,VDEP,127,127,A2DEP,127,127 
#OM .DEFINE AMEM,HMEM,VMEM,FAUCET,FAUCET,AMEM,FAUCET,FAUCET 

.INCLUDE DK1:[1,1]TRMX.8 

MFLIB-59 



EXAMPLE (CONT.) 
AD-10 PROGRAM USING MACROFILES 

PERFORM BINARY SEARCH AND DELTA COMPUTATION ON H 

#V 
#NV 
/IDV 
#ORG 

.DEFINE 127,127,HDEP,127,127,127 

.DEFINE 32,32,NBPH-1,32,32,32 !UNUSED #NV'S SET TO 32 

.DEFINE 127, 127,DELH, 127, 127, 127 

.EQU BPORG 

.INCLUDE DK1:[1,1]BD.6 

COMPUTE MACH NUMBER M = 2 * V * F6(H) 

.COP 
START 
PAUSE 
START 
PAUSE 
STOP 

.ARP 

$MAP 
3 
$ARP,$DEP 
4 
$ARP,$MAP,$DEP 

MOV2 S,A ; MOV3 DELH,C MOVO S,B,D 
FA (A-B)*C+D 
MOVO S,A 
FASL (A)*C 
MOV3 R,L 

!INTERPOLATE FOR F6(H) 
MOV3 R,C,F6 
MOV3 F6,L !COMPUTE M=2*V*F6(H) 

PAUSE 1 !DUMP M TO MULTIBUS 

.MAP 
RAID AF6, HDEP PAUSE 7 
wus F6MEM !WRITE F6 SENT FROM ARP TO MEMORY 
wus MMEM PAUSE !WRITE M SENT FROM ARP TO MEMORY 
.DEP 
PAUSE 0 
LXF VDEP PAUSE 3 !SEND OUT V TO ARP 
sxs MDEP !GRAB M SENT FROM ARP 

DO BINARY SEARCH AND DELTA COMPUTATION FOR A1,M,H, AND A2 THIS TIME 

#V .DEFINE A1DEP,MDEP,HDEP,A2DEP,127,127 
#NV .DEFINE NBPA1-1,NBPM-1,NBPH-1,NBPA2-1,32,32 !UNUSED #NV'S = 32 
#DV .DEFINE DELA1,DELM,DELH,DELA2,127~127 
#ORG .EQU BPORG 

.INCLUDE DK1:[1,1]BD.6 

COMPUTE FUNCTION DATA POINTERS FOR THE TWO VARIABLE SETS: 
IAMH FOR "A1,M,H" SET 
IMH FOR "M,H" SET 

#I .DEFINE A1DEP,MDEP,127 
#J .DEFINE MDEP,HDEP,127 
#K .DEFINE HDEP,127,127 
#NI .DEFINE NBPA1,NBPM,O 
#NJ .DEFINE NBPM,O,O SET #NJ1:0 TO GENERATE 2 VAR. POINTER 
#IS .DEFINE IAMH,IMH,127 

. INCLUDE DK1: [ 1, 1]PT3.3 

MFLIB-60 



EXAMPLE (CONT.) 
AD-10 PROGRAM USING MACROFILES 

INTERPOLATE FOR 3 VARIABLE FUNCTIONS: 
F11(A1,M,H), F12(A1,M,H), F13(A1,M,H) 

#DX .DEFINE DELA1,DELA1,DELA1 
#DY .DEFINE DELM,DELM,DELM 
#DZ . DEFINE DELH, DELH, DELH 
#F .DEFINE F11,F12,F13 
#AF .DEFINE AF11,AF12,AF13 
#NX .DEFINE NBPA1,NBPA1,NBPA1 
#NY .DEFINE NBPM,NBPM,NBPM 
#IF .DEFINE IAMH,IAMH,IAMH 

. INCLUDE DK1: [ 1, 1]FI3.3 

DO INTERPOLATION FOR 2 VARIABLE FUNCTIONS: 

#DX 
#DY 
#F 
#NX 
#AF 
#IF 

#DX 
#F 
#AF 
#IF 

F14(M,H), F15(M,H) 

.DEFINE DELM,DELM,127 

.DEFINE DELH,DELH,127 

.DEFINE F14,F15,127 

.DEFINE NBPM,NBPM,O 

.DEFINE AF14,AF15,AF6 

.DEFINE IMH,IMH,HDEP 

.INCLUDE DK1:[1,1]FI2.3 

DUMMY UP ADDR AND INDEX FOR UNUSED 
INPUT TO AVOID ADDR ERRORS 

INTERPOLATE FOR 1 VARIABLE FUNCTIONS: 
F8(A2), F9(A2) 

.DEFINE DELA2,DELA2,127 

.DEFINE F8,F9,127 

.DEFINE AF8,AF9,AF6 

.DEFINE A2DEP,A2DEP,HDEP 

.INCLUDE DK1:[1,1]FI1.3 

DUMMY UP ADDR AND INDEX FOR UNUSED 
INPUT TO AVOID ADDR ERRORS 

TRANSFER RESULTS FROM ARP REGISTERS TO DAC'S AND MEMORY 

#ATR .DEFINE F11,F12,F13,F14,F15,F8,F9,F9 
#IOC .DEFINE F110UT,F120UT,F130UT,F140UT,F150UT,F80UT,F90UT,F90UT 
#DM .DEFINE F11MEM,F12MEM,F13MEM,F14MEM,F15MEM,F8MEM,F9MEM,DRAIN 
#OP .EQU WRITE 

.INCLUDE DK1:[1,1]TRAEM.8 

PFI 
LPC 
LPC 
LPC 
HLT 
JMP 
.END 

UPDATE,1 
$DEP,DEPOO 
$ARP,ARPOO 
$MAP,MAPOO 
1 
COPOO 

UPDATE GROUP 1 DAC'S SIMULTANEOUSLY 
RESET PC'S 

HALT (MAYBE) TO LOOK AT RESULTS 
GO DO IT AGAIN 

MFLIB-61 



EXAMPLE (CONT.) 
FORTRAN PROGRAM TO GENERATE DATA FILES 

C FUNDAT.FTN 
c 

c 

c 

REAL CLAMH(21, 12) ,S(12) ,Q(21, 12) 
REAL M(21),CLAM(21),H(12),A1(16),A2(33) 

REAL BH(33),SH(32),GH(32) 
REAL BA1(33),SA1(32),GA1(32) 
REAL BA2(33),SA2(32),GA2(32) 
REAL BM(33),SM(32),GM(32) 

DATA RHOO,A0/0.002377,1116.4/ 
DA TA M/. 0, . 0, . 2, . 4, . 6, • 7, . 8, • 85, • 9, . 95, 1 . , 1 . 05, 1 . 10, 1 . 15, 1 • 2 
1 , 1 . 3, 1 . 4, 1 . 55 , 1 . 7, 1 . 85 , 2. 0 I 
DATA CLAM/2.5,2.5,2.51,2.54,2.64,2.73,2.88,3.0,3.19~3·4,3.59 
1 ,3.6,3.48,3.36,3.25,3.05,2.87,2.625,2.41,2.21,2.02/ 
DATA H/1., 1., .8617, .7385, .6292, .5328, .4481, .3741, .3099, .2462 
1, .1936, .1522/ 
DATA A1/-.5,-.2,-.15,-.1,-.05,0., .05, .1, .15, .2, .25, .3, .35, .4 
1, .45, .5/ 
DATA S/1., 1., 1.0176, 1.0363, 1.056, 1.0768, 1.0989, 1.1225, 1.1476 
1,1.1533,1.1533,1.1533/ 
DATA F11MAX,F12MAX,F13MAX,F14MAX,F15MAX,F6MAX 
1/0.7265,155.67,45.324,2.518,453.24,2.0/ 
DATA BH/22*-1. ,O., .1, .2, .3, .4, .5, .6, ~7, .8, .9, 1.0/ 
APROX1=1.0-(2.**(-15)) 
DO 10 I= 1 , 33 
A2(I)=(I-17)/32. 

10 CONTINUE 
DO 50 J=1,21 
DO 50 K=1,12 
CLAMH(J,K) = CLAM(J) * (1. - .1*H(K)*M(J)*M(J)) 
Q(J,K) = .5*RHOO*AO*AO*H(K)*(M(J)/S(K))*(M(J)/S(K)) 

· 50 CONTINUE 
CALL ASSIGN(6, 'TI:' ,3) 

c 
C GENERATE DATA FILE FOR F11 (LIFT FUNCTION) 

CALL ASSIGN(1,'F11.DAT;1',9) 
DEFINE FILE 1(4032,2,U,NREC) 
NREC=1 
DO 100 K=1, 12 
DO 100 J=1,21 
DO 100 I=1,16 
CL = A1(I)*CLAMH(J,K) 
IF (CL.LT.1.1) F1 =CL 
IF (CL.GE.1.1) F1 =CL - 2.*(CL-1.1)*(CL-1.1) 
IF (CL.LE.-1.1) F1 =CL+ 2.*(CL+1.1)*(CL+1.1) 
F11 = .5*RHOO*AO*H(K)*(M(J)/S(K))*F1 
CALL MINMAX(NREC,RMIN,RMAX,F11) 
FS = F 11/F11 MAX 
IF (FS.GT.APROX1) FS=APROX1 
IF (FS.LT.-1.0) FS=-1.0 
WRITE(1 'NREC) FS 

100 CONTINUE 
CALL CLOSE(1) 
NF UN= 11 

MFLIB..,62 



9100 
c 

EXAMPLE- (CONT.). 
FORTRAN PROGRAM TO GENERATE DATA FILES 

WRITE(6,9100) NFUN,RMIN,RMAX 
FORMAT(1X,'F',I2,' MIN= 'G14.7,' MAX = ',G14. 7) 

C GENERATE DATA FILE FOR F12 (DRAG FUNCTION) 
CALL ASSIGN(1,'F12.DAT;1' ,9) 

200 

c 

DEFINE FILE 1(4032,2,U,NREC) 
NREC=1 
DO 200 K=1, 12 
DO 200 J=1,21 
DO 200 I=1,16 
CL= A1(I)*CLAMH(J,K) 
F2 = (.007 + .05*CL*CL)*CLAM(J) 
F12 = Q(J,K)*F2 
CALL MINMAX(NREC,RMIN,RMAX,F12) 
FS = F12/F12MAX 
IF (FS.GT.APROX1) FS=APROX1 
IF (FS.LT.-1.0) FS=-1.0 
WRITE(1 'NREC) FS 
CONTINUE 
CALL CLOSE(1) 
NFUN=12 
WRITE(6,9100) NFUN,RMIN,RMAX 

C GENERATE DATA FILE FOR F13 (PITCHING MOMENT FUNCTION) 
CALL ASSIGN(1,'F13.DAT;1',9) 
DEFINE FILE 1(4032,2,U,NREC) 
NREC = 1 
DO 300 K=1, 12 
DO 300 J=1,21 
DO 300 I=1,16 
CL= A1(I)*CLAMH(J,K) 
F3 = -.1*(1.+.5*M(J))*CL 
F13 = Q(J,K)*F3 
CALL MINMAX(NREC,RMIN,RMAX,F13) 
FS = F13/F13MAX 
IF (FS.GT.APROX1) FS:APROX1 
IF (FS.LT.-1.0) FS=-1.0 
WRITE(1 'NREC) FS 

300 CONTINUE 

c 

CALL CLOSE(1) 
NF UN= 13 
WRITE(6,9100) NFUN,RMIN,RMAX 

C GENERATE DATA FILE FOR F14 (PITCH DAMPING FUNCTION) 
CALL ASSIGN(1,'F14.DAT;1',9) 
DEFINE FILE 1(336,2,U,NREC) 
NREC=1 
DO 4 0 0 K = 1 , 12 
DO 400 J=1,21 
F14 = -(RHOO*A0/4.)*H(K)*(M(J)/S(K))*CLAM(J) 
CALL MINMAX(NREC,RMIN,RMAX,F14) 
FS = F14/F14MAX 
IF (FS.GT.APROX1) FS=APROX1 
IF (FS.LT.-1.0) FS=-1.0 
WRITE ( 1 'NREC) FS 

400 CONTINUE 

MFLIB-63 



c 

EXAMPLE (CONT.) 
FORTRAN PROGRAM TO GENERATE DATA FILES 
------------~----------~-----~-~-~~~~-

CALL CLOSE(1) 
NF UN= 14 
WRITE(6,9100) NFUN,RMIN,RMAX 

C GENERATE DATA FILE FOR F15 (PITCH CONTROL FUNCTION) 
CALL ASSIGN(1,'F15.DAT;1' ,9) 
DEFINE FILE 1(336,2,U,NREC) 
NREC=1 
DO 500 K=1,12 
DO 500 J=1,21 
F15 = -.15*Q(J,K)*CLAMH(J,K) 
CALL MINMAX(NREC,RMIN,RMAX,F15) 
FS = F15/F15MAX 
IF (FS.GT.APROX1) FS:APROX1 
IF (FS.LT .-1.0) FS:-1.0 
WRITE(1 'NREC) FS 

500 CONTINUE 
CALL CLOSE(1) 
NFUN=15 
WRITE(6,9100) NFUN,RMIN,RMAX 

c 
C GENERATE DATA FILE FOR F6 (INVERSE SPEED OF SOUND RATIO) 

CALL ASSIGN(1,'F6.DAT;1',8) 
DEFINE FILE 1(12,2,U,NREC) 
NREC = 1 
DO 600 K=1,12 
F6 = .8957*S(K) 
CALL MINMAX(NREC,RMIN,RMAX,F6) 
FS = F6/F6MAX 
WRITE(1 'NREC) FS 

600 CONTINUE 

c 

CALL CLOSE(1) 
NFUN :6 
WRITE(6,9100) NFUN,RMIN,RMAX 

C GENERATE DATA FILE FOR F8 ( COS(ALPHA) ) 
CALL ASSIGN(1,'F8.DAT;1' ,8) 
DEFINE FILE 1(33,2,U,NREC) 
NREC=1 
DO 800 I=1,33 
FS = COS (A2(I)) 
CALL MINMAX(NREC,RMIN,RMAX,FS) 
IF (FS.GT.APROX1) FS=APROX1 
IF (FS.LT.-1.0) FS:-1.0 
WRITE(1 'NREC) FS 

800 CONTINUE 
CALL CLOSE(1) 
NF UN =H 
WRITE(6,9100) NFUN,RMIN,RMAX 

MFLIB-64 



EXAMPLE (CONT.) 
FORTRAN PROGRAM TO GENERATE DATA FILES 

c 
C GENERATE DATA FILE FOR F9 ( SIN(ALPHA) ) 

CALL ASSIGN(1,'F9.DAT;1' ,8) 
DEFINE FILE 1(33,2,U,NREC) 
NREC=1 
DO 900 I=1,33 
FS = SIN(A2(I)) 
CALL MINMAX(NREC,RMIN,RMAX,FS) 
IF (FS.GT.APROX1) FS=APROX1 
IF (FS.LT.-1.0) FS=-1.0 
WRITE(1 'NREC) FS 

900 CONTINUE 

c 

CALL CLOSE(1) 
NF UN =9 
WRITE(6,9100) NFUN,RMIN,RMAX 

C NOW FOR THE BREAKPOINT DATA FILES 
DO 1000 I=1,33 
BA 1 (I ) :;: -1 . 0 
IF (I.GT.17) BA1(I)=2.*A1(I-17) 
BA 2 (I ) = 2. * A2 (I ) 
BM(I) = -1.0 
IF (I.GT.13) BM(I)=M(I-12)/2.0 

1000 CONTINUE 
c 

CALL ASSIGN(1,'BH.DAT;1',8) 
CALL ASSIGN(2,'SH.DAT;1',8) 
CALL ASSIGN(3,'GH.DAT;1' ,8) 
CALL BSGOUT(BH,12) 
CALL ASSIGN(1,'BA1.DAT;1' ,9) 
CALL ASSIGN(2,'SA1.DAT;1',9) 
CALL ASSIGN(3,'GA1.DAT;1',9) 
CALL BSGOUT(BA1,16) 
CALL ASSIGN(1,'BA2.DAT;1' ,9) 
CALL ASSIGN(2,'SA2.DAT;1' ,9) 
CALL ASSIGN(3,'GA2.DAT;1',9) 
CALL BSGOUT(BA2,33) 
CALL ASSIGN(1,'BM.DAT;1',8) 
CALL ASSIGN(2,'SM.DAT;1' ,8) 
CALL ASSIGN(3,'GM.DAT;1',8) 
CALL BSGOUT(BM,21) 
END 

MFLIB ... 65 



EXAMPLE (CONT.) 
FORTRAN PROGRAM TO GENERATE DATA FILES 
--------------------------------------

SUBROUTINE MINMAX(NREC,RMIN,RMAX,FS) 
IF (NREC.EQ.1) RMIN=FS 
IF (NREC.EQ.1) RMAX:FS 
IF (FS.LT.RMIN) RMIN=FS 
IF (FS.GT.RMAX) RMAX:FS 
RETURN 
END 

SUBROUTINE BSGOUT(B,NBPS) 
DIMENSION B(33),S(32),G(32) 
DEFINE FILE 1(32,2,U,NREC) 
DEFINE FILE 2(32,2,U,NREC) 
DEFINE FILE 3(32,2,U,NREC) 
DO 100 I=1,32 
S(I)=O 

100 G(I):O 
ISTART:34-NBPS 
DO 200 I:ISTART,32 
DIFF: B(I+1)-B(I) 
S(I) = INT(.5/DIFF)+1 

200 G(I) = .5/(S(I)*DIFF) 
DO 300 I:1,32 
WRITE(1 'I)B(I) 
WRITE(2'I)S(I) 

300 WRITE(3'I)G(I) 
CALL CLOSE(1) 
CALL CLOSE(2) 
CALL CLOSE(3) 
RETURN 
END 

MFLIB-66 



EXAMPLE (CONT.) 
ADX COMMAND FILE TO LOAD AND RUN PROBLEM 

BENCH~CMD 

LOAD AD-10 PROGRAM: 

' LOAD BENCH.MOD 

LOAD FUNCTION DATA FILES: 

' LOAD F11.DAT/AL:O:O/RS 
LOAD F12.DAT/AL:2:0/RS 
LOAD F13.DAT/AL:4:0/RS 
LOAD F14.DAT/AL:0:3740/RS 
LOAD F15.DAT/AL:2:3740/RS 
LOAD F6.DAT/AL:4:3740/RS 
LOAD F8.DAT/AL:0:4136/RS 
LOAD F9.DAT/AL:2:4136/RS 

LOAD BREAKPOINT DATA FILES: 

' LOAD BA1.DAT/UN:0:7640/RS, SA1.DAT/UN:1:7640/RI, GA1.DAT/UN:2:7640/RS 
LOAD BM.DAT/UN:3:7640/RS, SM.DAT/UN:4:7640/RI, GM.DAT/UN;5:7640/RS 
LOAD SH.DAT/UN:0:7700/RI, BH.DAT/UN: 1:7700/R$, GH.DAT/UN:2:7700/RS 
LOAD SA2.DAT/UN:3:7700/RI, BA2.DAT/UN:4:7700/RS, GA2.DAT/UN:5:7700/RS 

INITIALIZE AND START THE AD-10: 

' INIT 
CONTINUE 

MFLIB-67 



SUMMARY OF MACROFILE 
INPUTS, OUTPUTS, INSTRUCTION COUNTS, AND EXECUTION TIMES 
----~---~--~----~-~-~~-----~~--------------~~---------~-

EXECUTION 
lNSTRUCTIONS TIME 

TITLE INPUTS OUTPUTS COP ARP DEP MAP (MICRO-SEC) 
-~----- ------ _..,_..,.. ___ 

........ ------
BD.6 llVO-llV5 llVO-llV5 13 22 43 49 6.0 

llNVO-llNV5 llDVO-DV5 
llORG 
TO-T2 

SD.6 llVO-llV5 #VO-#V5 6 22 13 0 2.3 
llNBPS llDVO-llDV5 
TO-T2 

PT2.3 llIO,llJO llISO-llIS2 4 8 8 0 1. 1 
llI1,llJ1 
llI2,#J2 
/IN I 0-llN I 2 
TO-T2 

PT3.3 llIO,llJO,llKO llISO-llIS2 10 1 1 1 1 0 1. 4 
II I 1 , II J 1 , llK 1 
#I2, #J2, #K2 
TO-T2 

PT4.3 #I 0, llJ 0, #K 0, /IL 0 llISO-llIS2 13 14 14 0 1. 7 
III 1 , #J 1 , llK 1 , #L 1 
#I 2, #J 2, #K2, #L2 
llNIO, #NJO, llNKO 
/IN I 1 , #NJ 1 , #N K 1 
llNI2,llNJ2,llNK2 
TO,T1 

PT5.3 #IO,#JO,#KO,llLO,llMO #ISO-#IS2 16 17 17 0 2.0 
III 1 , #J 1 , llK 1 , #L 1 , llM 1 
#I2,#J2,#K2,llL2,#M2 
llNIO,#NJO,llNKO,#NLO 
#NI1,#NJ1,#NK1,llNL1 
#NI2,#NJ2,#NK2,#NL2 
TO-T 1 

FI1.3 flDXO-flDX2 #FO-#F2 3 6 0 3 1. 1 
#AF 0-llAF 2 
llIF 0-#IF 2 

FI2.3 flDXO, #DYO /IF 0-llF 2 5 1 6 0 6 2. 1 
llDX 1 , llDY 1 
llDX2, llDY2 
#NXO-#NX2 
I/AF 0-llAF 2 
#IFO-/IIF2 
TO-T2 

MFL~B-68 



EXECUTION 
INSTRUCTIONS TIME 

TITLE INPUTS OUTPUTS COP ARP DEP MAP (MICRO-SEC) 
-.-.--~-- ----- ... ""'!It------ ---~ ...... - ... 

FI3.3 #DXO,#DYO,#DZO #FO-#F2 5 31 0 12 3.6 
llD X 1 , #DY 1 , #DZ 1 
#DX2, llDY2, #DZ 2 
#NXO,#NYO 
#NX1,#NY1 
#N X2, #NY2 
#AF 0-#AF 2 
llIFO-llIF2 
TO-T5 

FI4.3 #DVO,#DWO,#DXO,#DYO #FO-#F2 5 58 0 24 6.3 
#DV1,llDW1,#DX1,#DY1 
#DV2,#DW2,#DX2,#DY2 
#NVO,#NWO,#NXO 
#NV1, #NW1, #NX1 
#NV2,#NW2,#NX2 
#AF 0-#AF 2 
#IF 0-#IF 2 
TO-T8 

FI5.3 #DVO,#DWO,#DXO,#DYO,#DZO #F 0-#F 2 5 109 0 48 11. 4 
#DV1,#DW1,#DX1,#DY1,#DZ1 
#DV2,#DW2,#DX2,#DY2,#DZ2 
#NVO,#NWO,#NXO,#NYO 
#NV1,#NW1,#NX1,#NY1 
#NV2,#NW2,#NX2,#NY2 
#AF 0-#AF 2 
#IFO-#IF2 
T 0-T 11 

TRMA. 8 #DMO-#DM7 II AT R 0 - II AT R 7 3 9 0 8 1. 4 

TRMC.8 #DMO-#DM7 #CGRO-#CGR7 1 0 0 0 8 1. 4 

TRMX.8 #DMO-llDM7 #DX R 0-11DXR7 3 0 9 8 1. 4 

TRMI. 8 #DMO-llDM7 #DIRO-#DIR7 3 0 9 8 1. 4 

TRME.8 #DMO-#DM7 #IOCO-#IOC7 12 0 0 8 1. 8 
#OP 

TRAM.8 #ATRO-#ATR7 #DMO-#DM7 3 8 0 8 1. 0 

TRCM.8 #CGRO-#CGR7 llDMO-#DM7 1 0 0 0 8 1. 0 

TRXM.8 #DXRO-#DXR7 #DMO-lfDM7 3 0 8 8 1 . 0 

TRIM.8 #DIRO-#DIR7 llDMO-#DM7 3 0 8 8 1. 0 

TREM.8 #IOCO-#IOC7 llD M 0 - llD M 7 1 2 0 0 8 1. 8 
#OP 

MFLIB-69 



EXECUTION 
INSTRUCTIONS TIME 

TITLE INPUTS OUTPUTS COP ARP DEP MAP (MICRO-SEC) 
------- ------ ------- --,..------

TRCA.8 llCGRO-llCGR7 llATRO-llATR7 9 8 0 0 • 9 

TRCX.8 llCGRO-llCGR7 llDXRO-llDXR7 9 0 8 0 • 9 

TRCI. 8 II C GR 0-11 C GR 7 /ID I R 0- /ID I R 7 9 0 8 0 • 9 

TRCE.8 II C GR 0-11 C GR 7 II I 0 C 0-11I0 C 7 8 0 0 0 . 8 
llOP 

TRAC.8 II AT R 0-11ATR7 llCGR 0-llCGR 7 1 0 8 0 0 1. 0 

TRXC.8 #DXR 0-llDXR 7 llCGR 0-llCGR 7 1 0 0 8 0 1. 0 

TRIC.8 #DIRO-llDIR7 llCGR 0-llCGR 7 10 0 8 0 1. 0 

TREC.8 llCGRO-llCGR7 #IOC 0-llIOC 7 13 0 0 0 1. 3 
#OP 

TREXM.8 II I 0 C 0-11I0 C 7 /ID X R 0- llD X R 7 10 0 8 9 1. 8 
llOP /ID M 0- /ID M 7 

TRAEM.8 II AT R 0 - II AT R 7 II I 0 C 0-11 I OC 7 1 0 8 0 8 1. 0 
llOP llDM 0-llDM 7 

LOADA.8 #I DATO-III DAT? II AT R 0 - II AT R 7 10 9 0 0 1. 0 

LOADC.8 #IDATO-#IDAT7 #CGRO-llCGR7 10 0 8 0 1. 0 

LOADX.8 II I DAT 0-11 I DAT 7 llDXRO-llDXR7 1 0 0 9 0 1. 0 

LOADI.8 #IDATO-llIDAT7 II D I R 0-11 D I R 7 10 0 9 0 1..0 

LOADM.8 Ill DAT 0-111 DA T7 llD M 0- llD M 7 10 0 0 9 1. 0 

SGN.2 llX , llY llSGNX,llSGNY 5 7 0 0 • 8 

CTR.3 II X 0 , II Y 0 , II A 0 llXPO,llYPO 1 3 31 3 6 3.2 
II S IN 0 , II C 0 S 0 

#X1 ,llY1,#A1 llXP 1 , llY P 1 
II S IN 1 , II C 0 S 1 

llX2, llY2, llA2 II X P 2 , II Y P 2 
/ISIN2, llCOS2 

#SIN, #COS 
TO,T1,T2 
I0,11,12 

IRS.3 llXO,llYO #AO 12 102 32 33 11. 5 
llSINO,llCOSO 
llR 0, llH R 0 

llX 1 , llY 1 /IA 1 
II S I N 1 , II C 0 S 1 
llR 1 , llH R 1 

llX2, llY 2 #A2 
II S I N 2 , II C 0 S 2 
llR 2, llHR 2 

MFLIB-70 


