ESTERLY
e [,
M —

SOFTWARE REFERENCE MANUAL

APPLIED DYNAMICS INTERNATIONAL
3800 STONE SCHOOL ROAD / ANN ARBOR, MI 48104 / PH. 313-973-1300 / TLX. 230238

TABLE OF CONTENTS

. ——— - ————— o ————

TERMS AND SYNTAX CONVENTIONScce0e
THE AD-10 EXECUTIVE ...c.cocecencsnsnss
RSX=11 OVERVIEW ..ceeeecosennasasaasons
ADX OPERATING PROCEDURES;.

AD-lO EXECUTIVE COMMANDS R EEEREEEEREEEREEEE)

AT teeeececgosinmssonse

CATTACH vevernneooeanens
BREAK tivevevennsocnnans
CLEBAR tevvevrnsconnnens
CONSOLE i eeeeeneennene
CONTINUE tvveennncecnns
DETACH vvveeeccoononens
DISPLAY tuivieeesnccenns
DUMP 4evernceoocecnnans
EXIT oeveceooensoconans
FLOATING teeeeeceennnes
FRACTION ©+eveeeeecnnnns
HALT ¢vverveecccencanes
HISTORY vveveeenn e
IDENTIFY ©vveeeerenanns
INIT tvenenecoeononnons
LOAD v eeveeeecnnenonns
MODIFY ©eveeecnnccnnnss
RESTORE ...vv... ceeoees
RUN teeeereneonoeacannes
SAVE vt eeveeeecasennnns
SET vevenerncnonnes ceeee
STEP tivereeeeonsennnns
TEST teeereeenencnnnnen
TRACE tivveeenaoncnnscons
UNTRACE vt evieeevonnonnne
ZERO +eeeveeeannnnnnnns

@ ® @ 00 06006009000 00000000
. .

1 @ @ 9 06 0 0000000000000 o0
! ® ® e 0 0000 0000000000000 .

SUMMARY OF ADX COMMANDS ¢t veewonecncsss

ADX-1

PAGE

TERMS AND SYNTAX CONVENTIONS

—— - ———————— ———————— ———— - — " —

ADX NAME OF THE AD-10 EXECUTIVE PROGRAM
DEC ‘ DIGITAL EQUIPMENT CORPORATION, MAKERS OF THE PDP-11 COMPUTER
RSX-11 DEC'S REALTIME OPERATING SYSTEM EXECUTIVE FOR THE PDP-11
UIC THE RSX-11 USER IDENTIFICATION CODE (REF. CHAPTER 3
- OF THE RSX-11 OPERATOR'S PROCEDURES MANUAL)
MCR> PROMPT GENERATED BY THE RSX-11 MONITOR CONSOLE ROUTINE
ADX> PROMPT GENERATED BY THE AD-10 EXECUTIVE
INFILE, TERMS USED TO INDICATE WHERE THE INPUT SPECIFIED
OUTFILE BY AN ADX COMMAND STRING IS TO COME FROM, OR WHERE THE

OUTPUT GENERATED IS TO GO.

@ INDIRECT FILE SPECIFIER (REF. CHAPTER 5 OF THE RSX-11
OPERATOR'S PROCEDURES MANUAL)

/ ADX COMMAND STRING SWITCH DELIMITER

: ADX COMMAND STRING SWITCH VALUE DELIMITER

< > ANGLE BRACKETS ARE USED TO ENCLOSE THE NAME OF A
SYNTACTIC ELEMENT OR CLASS OF ELEMENTS IN COMMAND
STRING EXAMPLES

[] BRACKETS ARE USED TO ENCLOSE OPTIONAL SYNTACTIC ELEMENTS
IN COMMAND STRING EXAMPLES.

CR CARRIAGE RETURN (RETURN)

CONTROL-Z CHARACTER GENERATED BY SIMULTANEOUSLY DEPRESSING THE

CTRL-2 "CONTROL" AND THE "Z" KEYS. USED TO EXIT FROM ADX
(AND RETURN TO MCR) WITHOUT AFFECTING THE AD-10.

CONTROL-U "CONTROL" AND "U" KEYS. USED TO DELETE A LINE,

CTRL-U

RUBOUT USED TO DELETE A CHARACTER.

CONTROL-S "CONTROL" AND "S" KEYS. USED TO STOP THE OUTPUT WHEN

CTRL-S THE DISPLAY IS SCROLLING.

CONTROL-Q "CONTROL" AND "Q" KEYS. USED TO RESTART THE OUTPUT

CTRL-Q AFTER THE DISPLAY SCROLLING HAS BEEN STOPPED.

*

ADX-2

THE AD-10 EXECUTIVE

THE AD-10 EXECUTIVE (ADX) IS A SOFTWARE TOOL WHICH RUNS UNDER DEC'S RSX-11
OPERATING SYSTEM ON THE PDP-11 COMPUTER AND ALLOWS THE USER TO CONTROL

AND MONITOR THE OPERATION OF THE AD-10. ADX ALLOWS THE USER TO START

AND STOP THE AD-10, AS WELL AS TO STEP IT FOR A SPECIFIED NUMBER OF
INSTRUCTION CYCLES. IT PERMITS SPECIFIC AD-10 REGISTERS, PROGRAM MEMORY
LOCATIONS, AND DATA MEMORY LOCATIONS TO BE READ OR WRITTEN AS REQUIRED.
USING ADX, SPECIFIED SECTIONS OF PROGRAM MEMORY OR DATA MEMORY CAN BE
SAVED IN PDP-11 COMPUTER SYSTEM FILES AND CAN LATER BE RELOADED, AS CAN
LOAD MODULES CREATED BY THE PDP-11/AD-10 CROSS ASSEMBLER. IN ADDITION, ADX
DEBUGGING COMMANDS ALLOW THE USER TO INSERT BREAKPOINTS IN AD-10 PROGRAMS,
TO LOG OR INSERT INTERNAL MULTIBUS DATA AT SPECIFIED POINTS IN AD-10
PROGRAMS, AND TO TRACE THE AD-10 PROGRAM FLOW. THE USER COMMANDS MAY

COME FROM THE TERMINAL OR FROM AN INDIRECT COMMAND FILE, AND THEY USE
STANDARD RSX-11 COMMAND STRING SYNTAX CONVENTIONS.

THE ADX COMMANDS ARE ORGANIZED INTO SIX BASIC CATEGORIES:

1, INFORMATIONAL COMMANDS (IDENTIFY,FRACTION,FLOATING)
THESE COMMANDS HAVE NO EFFECT UPON THE AD-10 SYSTEM. THEY MERELY
PROVIDE THE USER WITH THE SPECIFIED INFORMATION.

2. AD-10 START/STOP COMMANDS (CONTINUE,RUN,STEP,HALT,EXIT)

———— . ——— o ———— — ot —— o——

THIS GROUP OF COMMANDS EITHER STARTS OR STOPS THE AD-10 PROGRAM.

3. AD-10 WRITE COMMANDS (INIT,LOAD,SET,CLEAR,MODIFY,ZERO)
THESE COMMANDS DO SOMETHING "TO" THE AD-10, CHANGING THE
CONTENTS OF AD-10 REGISTERS, PROGRAM MEMORY LOCATIONS, OR DATA
MEMCRY LOCATIONS.

4. AD-10 READ COMMANDS (SAVE,DISPLAY,DUMP,HISTORY,TEST)
THESE COMMANDS GET DATA "FROM" THE AD-10, ENABLING THE USER TO LOOK AT
(AND/OR SAVE IN A FILE) THE CURRENT VALUES OF AD-10 REGISTERS, PROGRAM
MEMORY LOCATIONS, AND DATA MEMORY LOCATIONS.

5. AD-10 DEBUGGING COMMANDS (AT,BREAK,RESTORE,TRACE,UNTRACE)
THIS GROUP OF COMMANDS ENABLES THE USER TO DYNAMICALLY CHECKOUT THE
AD-10 PROGRAM. THEY PROVIDE THE USER WITH INFORMATION OR CONTROL
AT THE SPECIFIED POINTS WITHIN THE AD-10 PROGRAM.

6. AD-10 CONSOLE COMMANDS (ATTACH,DETACH,CONSOLE)

——— —— —— ~ ——— - ——— - — ——————

THIS GROUP OF COMMANDS ALLOWS THE USER TO CONTROL THE ACCESS AND
USE OF THE VARIOUS CONSOLES. THE USER CAN RESERVE AND FREE CONSOLES
FOR HIS EXCLUSIVE USE AND SWITCH FROM ONE CONSOLE TO ANOTHER.

ADX-3

RSX-11 OVERVIEW

——— ———— o — ———— ———

RSX-11 IS DEC'S REALTIME, MULTIPROGRAMMING OPERATING SYSTEM EXECUTIVE FOR
THE PDP-11 SERIES OF COMPUTERS. THE RSX-11 EXECUTIVE ALONE USES ABOUT 8K
WORDS OF MEMORY AND REQUIRES THAT THERE BE AT LEAST ONE FILE-STRUCTURED
DEVICE IN THE SYSTEM. IT PROVIDES THE NECESSARY CONTROIL FOR SHARING SYSTEM
RESOURCES AMONG ANY NUMBER OF USER-PREPARED "TASKS" (PROGRAMS). THESE

USER TASKS ARE USUALLY CREATED AS FOLLOWS:

1. THE USER WRITES A SOURCE PROGRAM AND PUTS IT INTO A FILE ON A
SYSTEM FILE-STRUCTURED DEVICE USING THE LINE TEXT EDITOR (EDI).

2. THE APPROPRIATE TRANSLATOR ROUTINE IS THEN USED TO COMPILE
(FOR) OR ASSEMBLE (MAC) THE SOURCE PROGRAM, CREATING
AN OBJECT FILE OF HIS PROGRAM.

3. THIS OBJECT FILE, ALONG WITH ANY OTHERS WHICH MAY BE
REQUIRED FOR THIS TASK AND WHICH WERE CREATED
SEPARATELY, ARE THEN SUBMITTED TO THE TASK BUILDER ROUTINE
(TKB) WHICH LINKS THEM TOGETHER AND CREATES A "TASK
IMAGE FILE".

4, THIS TASK IMAGE FILE MAY THEN BE "INSTALLED" (INS)
INTO THE SYSTEM (MEANING ESSENTIALLY THAT THE TASK'S NAME,
SIZE, AND LOCATION ARE MADE KNOWN TO THE SYSTEM, BUT
THAT THE TASK IS STILL DORMANT).

5. ONCE INSTALLED, THE TASK MAY BE EXECUTED BY A USER COMMAND
(RUN) OR BY ANOTHER TASK.

THE COMMANDS TO PERFORM THESE FUNCTIONS ARE GIVEN BY THE USER TO THE
MONITOR CONSOLE ROUTINE (MCR) WITHIN THE RSX-11 EXECUTIVE. THE

SYSTEM TASKS (EDITOR,MACRO-11 ASSEMBLER,FORTRAN-IV COMPILER,TASK
BUILDER, PERIPHERAL INTERCHANGE PROGRAM, ETC.) ARE INVOKED BY TYPING,
IN RESPONSE TO THE "MCR>" PROMPT, THEIR THREE CHARACTER TASK NAME

(EDI ,MAC,FOR,TKB,PIP,ETC.) FOLLOWED BY A CARRIAGE RETURN. USER PROGRAMS
ARE GENERALLY STARTED BY THE "RUN <TASKNAME>" COMMAND.

NOTICE THAT ADX IS CONSTRUCTED TO APPEAR AS ANOTHER RSX-11 SYSTEM TASK.

SUCCESFUL OPERATION OF AN AD-10 SYSTEM IS GREATLY ENHANCED BY THE USER'S
UNDERSTANDING OF THE RSX-11 OPERATING SYSTEM AND ITS CAPABILITIES. THE
USER SHOULD REFER TO DEC'S RSX-11 OPERATOR'S PROCEDURES MANUAL FOR

A MORE THOROUGH DESCRIPTION OF THE OPERATING SYSTEM AND THE MCR COMMANDS.
THE RSX-11 UTILITIES PROCEDURES MANUAL CONTAINS DESCRIPTIONS OF THE
SYSTEM UTILITY PROGRAMS, AND THE PDP-11 FORTRAN REFERENCE MANUAL AND

THE IAS/RSX-11 MACRO-11 REFERENCE MANUAL CONTAIN DESCRIPTIONS OF THESE
PROGRAMS .

ADX-4

ADX OPERATING PROCEDURES

ADX IS SUPPLIED AS AN INSTALLED TASK ON THE RSX-11 SYSTEM DEVICE. 1IT IS
NECESSARY THAT THE HYBRID DRIVER (HY) BE LOADED IN THE RSX-11 SYSTEM FOR
ADX TO COMMUNICATE WITH THE AD-10. ADX IS LOADED AND RUN AS ARE OTHER
RSX-11 "SYSTEM PROGRAMS, BY TYPING (IN RESPONSE TO THE MCR PROMPT) :

MCR>ADX [<COMMAND STRING>] <CARRIAGE RETURN>

THE COMMAND STRING IS OPTIONAL HERE. IF THE COMMAND STRING IS NOT ENTERED
WITH THE MCR COMMAND, ADX WILL RESPOND WITH ITS OWN PROMPT :

MCR>ADX <CR>

ADX>
THE GENERAL FORMAT OF THE ADX COMMAND STRING IS DEFINED AS FOLLOWS :

@<FILE SPECIFICATION>
OR, <COMMAND> [<SWITCHES> AND/OR <OTHER PARAMETERS>]

THE FIRST FORM INDICATES THAT THE COMMAND STRING(S) WILL COME FROM THE
SPECIFIED COMMAND FILE. THE SECOND FORM CONSISTS OF THE APPROPRIATE
ADX COMMAND AND ITS RELATED SWITCHES AND/OR OPTIONAL PARAMETERS, AS
DEFINED IN THE FOLLOWING PAGES OF THIS USER'S GUIDE. IF THE INDIRECT
COMMAND FILE FORMAT IS USED ON THE SAME LINE AS THE MCR PROMPT, CONTROL
WILL RETURN TO MCR AFTER PROCESSING THE ADX COMMANDS IN THE FILE :

MCR>ADX @SY:FILE.CMD;3 <CR>

MCR>
IF THE INDIRECT COMMAND FILE IS SPECIFIED AFTER THE ADX PROMPT, CONTROL
WILL REMAIN WITH ADX FOLLOWING COMMAND FILE PROCESSING :

MCR>ADX <CR>

ADX>@FILE <CR>

ADX> ‘
NOTICE IN THIS CASE THAT THE EQUIVALENT COMMAND FILE HAS BEEN SPECIFIED,
USING DEFAULT COMMAND FILE VALUES FOR THE DEVICE ("SY:"), THE UIC
NUMBER (THE DEFAULT IS THE CURRENT UIC NUMBER), THE FILE EXTENSION
(".CMD"), AND THE MOST RECENT VERSION NUMBER (ASSUMING HERE THAT ";3"
IS THE MOST RECENT VERSION).

IF THE USER ISSUES AN ADX COMMAND WHICH REQUIRES ADDITIONAL SPECIFIERS
(SWITCHES AND/OR FILENAMES AND/OR OTHER PARAMETERS), ADX WILL PROMPT FOR
THE REQUIRED SPECIFIERS :
MCR>ADX <CR>
ADX>DISPLAY <CR>
DIS> [OUTFILE=] [/SW[[,]...[[,1/SW]]1] <CR>
TO EXIT FROM THIS INTERNAL COMMAND PROMPT MODE, SIMPLY TYPE A NULL LINE :
ADX>DISPLAY <CR> ~
DIS><CR>
ADX>
TO EXIT FROM ADX WITHOUT AFFECTING THE AD-10, SIMPLY TYPE <CONTROL-Z> :
ADX><CONTROL-Z>
MCR>

ADX-5

- AT

PROTOTYPE: AT /PM:PROC:ADDR [,OUTFILE/SW] [=INFILE/SW]

—— o

DESCRIPTION: AN "AT-POINT" IS A POINT IN PROGRAM EXECUTION AT WHICH

e ——— THE USER WISHES TO LOG AND/OR INSERT MULTIBUS DATA. "AT"
SETS AN "AT-POINT" FOR PROCESSOR "PROC" AT PROGRAM MEMORY
ADDRESS "ADDR". WHEN A "RUN" OR "CONTINUE" COMMAND IS
ISSUED WITH "AT-POINTS" SET, THE AD-10 IS SINGLE STEPPED,
AND ADX MONITORS THE SPECIFIED PROCESSOR'S PROGRAM COUNTER,
WHEN THE PROCESSOR'S PROGRAM COUNTER REACHES THE "AT-POINT"
ADDRESS, DATA IS LOGGED FROM THE DATA MULTIBUS TO THE
"QUTFILE" (IF SPECIFIED) AND PLACED ON THE DATA MULTIBUS
FROM THE "INFILE" (IF SPECIFIED). EITHER THE "OUTFILE" OR
THE "INFILE" (OR BOTH) MUST BE SPECIFIED. THE DEFAULT
EXTENSION IS .DAT FOR BOTH "OUTFILE" AND "INFILE".

SWITCHES: /DR - FILE IS DIRECT ACCESS (DEFAULT)
——————— = ~/LO - FILE IS FORMATTED SEQUENTIAL (FOR OUTFILE ONLY)
/RE - DATA VALUES ARE REALS (DEFAULT)
/IN - DATA VALUES ARE DECIMAL INTEGERS
/OC - DATA VALUES ARE OCTAL INTEGERS
/FI - SPECIFIES DATA ON "FIRST" MULTIBUS TRANSACTION (DEFAULT)
/SE -~ SPECIFIES DATA ON "SECOND" MULTIBUS TRANSACTION
/DO - SPECIFIES DATA ON "DOUBLE" MULTIBUS TRANSACTIONS
(I.E., "FIRST" AND "SECOND" TRANSACTIONS)
/TR - TRACE AT POINTS
(THE FOLLOWING SWITCHES MAY BE USED IN PLACE OF /PM:PROC)
/MAP - PROGRAM MEMORY [/PM:1]
/DEP - PROGRAM MEMORY [/PM:2]
/ARP - PROGRAM MEMORY [/PM:3]
/NIP - PROGRAM MEMORY [/PM:4]
/COP - PROGRAM MEMORY [/PM:7]

EXAMPLE: ADX>AT/PM:3:4,TI:/LO

——————— ADX>BREAK/ARP:5
ADX>INIT
ADX>CONTINUE
0.12497
%% BREAKPOINT AT ARP: 5 **%
ADX>RESTORE
*** BREAKPOINT AT ARP: 5 RESTORED
ADX>RESTORE
*** BREAKPOINT AT ARP: 4 RESTORED
ADX>

NOTE: A COMBINED TOTAL OF TEN "AT-POINTS" AND/OR "BREAKPOINTS" CAN BE
—-——— SET. IF AN "AT-POINT" HAS BOTH AN "INFILE" AND AN "OUTFILE",
THEN IT COUNTS AS TWO "AT-POINTS". ADX WILL NOT PERMIT BOTH AN
"AT-POINT" AND A "BREAK-POINT" AT THE SAME LOCATION. EXECUTION
CAN BE PREMATURELY HALTED BY CONDITIONS SET IN THE AD-10 HALT MASK
"REGISTER. (I.E. HLTO, HLT1l, ...)

ADX-6

PROTOTYPE:

- ——————— —

——— ————

PROTOTYPE:

EXAMPLE :

ATTACH

ATTACH [CONSOLE #]

GIVES USER EXCLUSIVE ACCESS TO SPECIFIED CONSOLE. IF NO
CONSOLE # IS GIVEN, THE COMMAND DEFAULTS TO 0.

(NONE)

ADX>ATT O
ADX>

BREAK /PM:PROC:ADDR [,...[,/PM:PROC:ADDR]]

A BREAKPOINT SIGNIFIES A POINT IN PROGRAM EXECUTION AT

WHICH THE USER WISHES TO HALT. "BREAK" SETS A BREAKPOINT
FOR PROCESSOR "PROC" AT PROGRAM MEMORY ADDRESS "ADDR".

WHEN A "RUN" OR "CONTINUE" COMMAND IS ISSUED WITH
BREAKPOINTS SET, THE AD-10 IS SINGLE STEPPED AND ADX
MONITORS THE SPECIFIED PROCESSOR'S PROGRAM COUNTER.

WHEN THE PROCESSOR'S PROGRAM COUNTER REACHES THE SPECIFIED
BREAKPOINT ADDRESS, THE AD-10 IS HALTED AND CONTROL IS
RETURNED TO THE USER. NOTE THAT /PM:PROC CAN BE ABBREVIATED
AS SHOWN BELOW:

/MAP - PROGRAM MEMORY [/PM:1]
/DEP - PROGRAM MEMORY [/PM:2]
/ARP - PROGRAM MEMORY [/PM:3]
/NIP - PROGRAM MEMORY [/PM:4]
/COP - PROGRAM MEMORY [/PM:7]

ADX>HALT

ADX>BREAK/PM:7:3

ADX>; THAT SET THE BREAKPOINT AT LOCATION 3 IN THE COP ...
ADX>CONTINUE

**%* BREAKPOINT AT COP: 3 **x*
ADX>RESTORE

*** BREAKPOINT AT COP: 3 RESTORED
ADX>

NOTE: A COMBINED TOTAL OF TEN "AT-POINTS" AND/OR "BREAKPOINTS" CAN BE

—-———- SET.

IF AN "AT-POINT" HAS BOTH AN "INFILE" AND AN "OUTFILE",

THEN IT COUNTS AS TWO "AT-POINTS". ADX WILL NOT PERMIT BOTH AN
"AT-POINT" AND A "BREAK-POINT'" AT THE SAME LOCATION. EXECUTION
CAN BE PREMATURELY HALTED BY CONDITIONS SET IN THE AD-10 HALT MASK
REGISTER. (I.E. HLTO,HLT1, ...)

ADX~7

—— v ——

PROTOTYPE: CLEAR [/SW:BIT:BIT:...[[,]/SW:BIT:BIT:...]]

DESCRIPTION: CLEARS THE SPECIFIED BITS IN THE HIC-11 REGISTER AS

----------- SPECIFIED BY "/SW". 1IF THE SAME SWITCH IS USED MORE THAN
ONCE IN THE COMMAND LINE, A "," MUST SEPARATE EACH

SUCCESSIVE REFERENCE OF THAT SWITCH.

SWITCHES: /RIC - REMOTE INTERFACE CONTROL REGISTER
———————— ENB - INTERRUPT ENABLE BIT (BIT 6)
/CSR - CONTROL STATUS REGISTER
ENB - INTERRUPT ENABLE BIT (BIT 6)
/TCR - TEST CONTROL REGISTER
TST - TEST/RUN MODE BIT (BIT 4)
- HALT MASK REGISTER

/HMR

HLO - HALT 0 (BIT 1)

HL1 - HALT 1 (BIT 2)

TCC - TEST CYCLE COMPLETE (BIT 4)

RCZ - RUN COUNT ZERO (BIT 7)

CER - ADDRESS CONTENTION ERROR (BIT 10)
DER - DATA CONTENTION ERROR (BIT 11)

TER - TIMING ERROR: DATA MEMORY (BIT 12)
PER - PARITY ERROR: DATA MEMORY (BIT 13)
AER - ARITHMETIC ERROR (BIT 14)

ERR - ERROR ("OR" OF ALL ERRORS) (BIT 15)

/IMR - INTERRUPT MASK REGISTER
(SAME BITS AS /HMR ABOVE)

EXAMPLE: ADX>DISPLAY/CSR
CSR HAS VALUE 100
ADX>CLEAR/CSR:ENB
ADX>; THAT CLEARED THE ENB BIT IN THE CSR
ADX>DISPLAY/CSR

CSR HAS VALUE 0
ADX>

ADX-8

CONSOLE

PROTOTYPE: CONSOLE [CONSOLE #]

DESCRIPTION: ALLOWS USER TO SWITCH FROM ONE CONSOLE TO ANOTHER
——————————— CONSOLE. CONSOLE # DEFAULTS TO 0 WHEN NOT SPECIFIED.
THE CONSOLE SELECTED MUST BE ATTACHED.

SWITCHES : (NONE)
EXAMPLE : ADX>ATT 0
——————— ADX>ATT 1

ADX>CONSOLE 0

) WORK WITH CONSOLE 0

ADX>CONSOLE 1

. WORK WITH CONSOLE 1

ADX>

CONTINUE

PROTOTYPE: CONTINUE

DESCRIPTION: STARTS THE AD-10 FROM ITS CURRENT STATE.

SWITCHES: (NONE)

—————— ———

EXAMPLE: ADX>INIT
——————— ADX>; THAT INITIALIZED THE AD-10
ADX>CONTINUE
ADX>; THAT STARTED THE AD10
ADX>HALT
ADX>; THAT STOPPED THE AD-10
ADX>CONTINUE
ADX>; THAT RESTARTED THE AD-10 FROM THE HALT POINT
ADX>

ADX-9

PROTOTYPE:

—— ———————

—— . ———— o —— -

PROTOTYPE:

—— s s - e s —

DETACH

DETACH [CONSOLE #]

FREES THE SPECIFIED CONSOLE FOR GENERAL USE. CONSOLE
DEFAULTS TO 0 IF NOT GIVEN IN COMMAND.

(NONE)

ADX>DE O
ADX>

DISPLAY

——— — g

DISPLAY [OUTFILE=]

DISPLAYS THE REGISTER(S) AND/OR MEMORY LOCATION (S)
SPECIFIED BY "/SW" TO THE "OUTFILE" (OR "TI:" BY DEFAULT).
MULTIPLE REFERENCES TO THE SAME SWITCH MUST BE SEPARATED BY
A ","., THE DEFAULT EXTENSION IS .LST FOR OUTFILE.

/TCR - TEST CONTROL REGISTER

/TSH - TEST/SHUTDOWN/HISTORY COUNTERS
/TBS - TEST BLOCK ADDRESS REGISTERS

/TAS - TEST ADDRESS REGISTERS

/TDS - TEST DATA REGISTERS

/SCS - SHUTDOWN/RESTART CONDITION REGISTERS
/SDS - SHUTDOWN/RESTART DATA REGISTERS
/CSR - CONTROL STATUS REGISTERS

/EHS - ERROR HALT STATUS REGISTER

/HMR - HALT MASK REGISTER

/IMR - INTERRUPT MASK REGISTER

/RCR - RUN COUNT REGISTER

/BAR - BLOCK ADDRESS REGISTER

/RIC - REMOTE INTERFACE CONTROL REGISTER
/PCS - PROGRAM COUNTERS

/PSS - PROCESSOR STATUS REGISTERS

/HBS - HISTORY BLOCK ADDRESS REGISTERS
/HAS - HISTORY ADDRESS REGISTERS

/HDS - HISTORY DATA REGISTERS

/PM:PROC - PROGRAM MEMORY

(THE FOLLOWING 5 SWITCHES CAN BE USED IN PLACE OF /PM:PROC)

/MAP - PROGRAM MEMORY [/PM:1]

/DEP - PROGRAM MEMORY [/PM:2]
/ARP - PROGRAM MEMORY [/PM:3]
/NIP - PROGRAM MEMORY [/PM:4]
/COP - PROGRAM MEMORY [/PM:7]
/DM:PAGE - DATA MEMORY

/BW - BUS WINDOW

ADX-10

/GR - COP'S GENERAL REGISTERS
/IR - MAP'S INDEX REGISTERS

/XR - DEP'S X REGISTERS

/TR - ARP'S TEMPORARY REGISTERS
/RR - ARP'S RESULT REGISTER
/JFR - NIP'S "F" REGISTERS

/DR - NIP'S "D" REGISTER
/HI - EQUIVALENT TO "/HA/HB/HD"
/TE - EQUIVALENT TO "/TA/TB/TD"

/DP - DATA MEMORY PAGES
/DL - WORDS/PAGE LIMIT

/PF - PROGRAM MEMORY FIELDS
/PL - PROGRAM MEMORY WORD LIMIT
/AC - NUMBER OF AD-10 CONSOLES

NOTE: SPECIFIC REGISTERS OR LOCATIONS CAN BE SPECIFIED BY
APPENDING ":N" OR ":N:M" TO A SWITCH FOR ONE OR A RANGE
OF REGISTERS OR LOCATIONS. ONLY THE FIRST TWO CHARACTERS
OF THE SWITCH ARE REQUIRED.

EXAMPLE: ADX>; DISPLAY ARP PM LOCATIONS 0-7

——————- ADX>DISPLAY/ARP::7
ARP : Q ** 0 36000 0 0 0
ARP : 1 *x* 0 104000 0 0 0
ARP 2 *x 0 110000 100400 0 0
ARP : 3 ** 104 0 0 0 0
ARP : 4 ** 0 0 0 0 40377
ARP : 5 ** 0 140204 40400 140377 40604
ARP : 6 ** 0 0 0 0 0
ARP : 7 ** -0 0 0 0 0
ADX>

ADX-11

PROTOTYPE:

—— - —— v ——

——

PROTOTYPE:

—— e e oy e

DUMP

DUMP [OUTFILE]

DUMPS ALL HIC-11 REGISTERS TO "OUTFILE" ("TI:" BY DEFAULT).
THE DEFAULT EXTENSION IS .LST FOR OUTFILE.

(NONE)
ADX>DUMP
RIC: 0
CSR: 100000
EHS: 10042
HMR: 40
IMR: 0
RCR: 77373
PCS: 0
PSS: 0
HBS: 0
20000
HAS : 0
0
HDS: 0
0
TCR: 100000
TSH: 60
TBS: 172073
50105
TAS: 110166
2005
TDS: 3115
10004
SCS: 0
0
SDS: 177777
0
BAR: 3420
ADX>
EXIT
EXIT

EXITS FROM THE AD-10 EXECUTIVE AFTER HALTING THE AD-10.

0

0
100021
120035
252
212
177777
0

1062
120052
31442
121030
70643
252

COoOOCOoO

0
0
20000
20000
0

0
0
0

63146
62567
62106
33163

156
70525

0
0
0
0

0 0
0 0
20000 20000
120021 20000

0

251

0

177777
10020 20012
101040 10005

0 120042
20002 445
421 20040
21040 20001
0 0

0 0

0 0

0 0

[N ol oNol

20000
20000

[N eNwN o)

1
43114
110001
43045
20
62166
0

0
0
0

41
7776
20000
20000

[Nl oNe]

2026
12
10022
2052
10120
100312
0

0
0
0

NOTE: TO EXIT FROM THE EXECUTIVE WITHOUT HALTING THE
AD-10, SIMPLY TYPE <CONTROL 2Z>.

" (NONE)

ADX>EXIT

MCR>

ADX-12

20000

20000

COOCO

30021

24145
10420
64403
10423
10027

COoOOoOOoO

PROTOTYPE:

—— o ——— o ———

PROTOTYPE:

—— . — —— ——

- — o ———

—— e

PROTOTYPE:

- e o e - ——

————— o ——

FLOATING

FLOATING [OCTAL SCALED FRACTION]

THE 16 BIT OCTAL REPRESENTATION OF A SCALED FRACTION
IS CONVERTED AND PRINTED AS A FLOATING POINT NUMBER.

(NONE)

ADX>FLOATING 10000
FLOATING: 0.12500
ADX>FLOATING 170000
FLOATING:-0.125
ADX>FLOATING 40065
FLOATING: 0.50162
ADX>

FRACTION

FRACTION [FLOATING POINT NUMBER]

THE FLOATING POINT REPRESENTATION QF A SCALED FRACTION
IS CONVERTED AND PRINTED AS A 16 BIT OCTAL SCALED
FRACTION.

(NONE)

ADX>FRACTION -.5
OCTAL: 140000

ADX>FRACTION .5
OCTAL: 40000

ADX>FRACTION 0.50162
OCTAL: 40065

ADX>

HALT

HALT

QALTS THE AD-10.
(NONE)

ADX>HALT
ADX>CONTINUE

ADX>; THAT RESUMES EXECUTION FROM THE HALT POINT
ADX> :

ADX-13

HISTORY

——— ————

PROTOTYPE: HISTORY [OUTFILE]
DESCRIPTION: DISPLAYS THE DATA IN THE HISTORY BUFFER REGISTERS TO
——————————— "OUTFILE" ("TI:" BY DEFAULT) IN AN EASILY READABLE FORMAT,
DISPLAYING THE ADDRESS AND DATA BUS VALUES FOR EACH REGISTER,
AS WELL AS WHAT HAPPENED: WHETHER A DM PARITY ERROR OCCURRED,
IF THIS WAS A READ OR WRITE, THE STATUS OF THE MULTIBUS
CONTROL LINES, AND WHETHER ANY OTHER ERRORS OCCURRED.
THE DEFAULT EXTENSION IS .LST FOR OUTFILE.
SWITCHES: (NONE)
EXAMPLE: ADX>HISTORY
DRCCCAPTDC
DATA BUS 1/000EEEEE
R# ADDR BUS OCTAL FLOATING 6W210RRRRR
0 0000000 ‘ 0 0.00000 ..ciece.n
1 0010652 177777 -0.00003 1W........
2 0000000 0 0.00000 ...R......
3 0000000 .0 0.00000 ...R......
4 0000000 0 0.00000 ...R...E..
5 0000000 0 0.00000 ...R..uecn..
6 0000000 0 0.00000 ...R......
7 0000000 0 0.00000 ...R......
8 0000000 0 0.00000 ...R......
9 0016612 0 0.00000 .W.R......
10 0000000 0 0.00000 ...R.c....
11 0010651 177777 -0.00003 .W.R......
12 0000000 0 0.00000 ...R.c....
13 0000000 0 0.00000 ...R......
14 0000000 0 0.00000 ...Ree....
15 0000000 0 0.00000 ...Ree.e...
ADX>

ADX-14

PROTOTYPE:

e —— — o ————

o ——— —————— o o -

———— v —

PROTOTYPE:

o " ————

—— i — ————

o —rr ———

——

IDENTIFY

- — ————— >

IDENTIFY

-

DISPLAYS THE CURRENT VERSION NUMBER OF THE EXECUTIVE.

(NONE)

MCR>ADX
ADX>IDENTIFY

*** AD-10 EXECUTIVE HERE

ADX>

INIT

—— vy —

INIT

INITIALIZES THE AD- 10 (I. E.y

CSR REGISTER).

(NONE)

ADX>;
ADX>INIT

ADX>; NOW START THE AD-10

ADX>CONTINUE
ADX>

ADX-15

(26-SEP-78) ***

SETS THE "INT"

INITIALIZE EVERYTHING FOR A STARTUP .

BIT IN THE HIC

PROTOTYPE:

—— e -

SWITCHES:

—— e o ———

EXAMPLE:

LOAD

LOAD [LOADFILE[/SW] [,...[,LOADFILE[/SW]]]]

THE SPECIFIED FILES ARE LOADED INTO SPECIFIED LOCATIONS
IN AD-10 PROGRAM AND/OR DATA MEMORY. THERE ARE BASICALLY
TWO TYPES OF FILES WHICH MAY BE LOADED INTO THE AD-10:
LOAD MODULES AND DIRECT ACCESS FUNCTION DATA FILES. LOAD
MODULES ARE CREATED BY THE CROSS-ASSEMBLER OR BY THE
"SAVE" COMMAND AND ARE LOADED INTO AD-10 PROGRAM MEMORY.
DIRECT ACCESS FUNCTION DATA FILES CAN BE CREATED ON

THE HOST COMPUTER AND ARE LOADED INTO THE AD-10 MEMORY.

/MO - THE FILE IS A LOAD MODULE GENERATED BY THE ASSEMBLER
OR BY THE "SAVE" COMMAND (DEFAULT FILE TYPE).
THE LOAD MODULE CONTAINS ALL NECESSARY INFORMATION
FOR THE LOADER ROUTINE REGARDING WHERE IT IS TO BE
LOADED AND THE DATA'S FORMAT. NO OTHER SWITCHES ARE
NECESSARY WITH "/MO". DEFAULT EXTENSION IS .MOD.
/AL:PAGE:WORD - SPECIFIES A DIRECT ACCESS DATA FILE TO BE
LOADED INTO DATA MEMORY IN THE "ALIGNED"
MODE STARTING AT THE SPECIFIED ADDRESS
(I.E., THE FIRST DATA VALUE IS LOADED AT
ADDRESS "PAGE:WORD", THE SECOND DATA VALUE
IS LOADED AT ADDRESS "PAGE+1:WORD", THE
THIRD DATA VALUE IS LOADED AT ADDRESS
"PAGE:WORD+1, ...ETC.). EACH RECORD OF
THE FILE CONTAINS A TWO WORD DATA VALUE
WHICH IS CONVERTED TO SCALED FRACTION FORMAT
PRIOR TO LOADING UNLESS OTHERWISE SPECIFIED
BY A "/IN" OR "/RI" SWITCH. DEFAULT EXT IS .DAT
/UN:PAGE:WORD - SAME AS /AL EXCEPT THAT THE DATA IS LOADED
IN THE "UNALIGNED" MODE (I.E., SUCCESSIVE
DATA VALUES ARE LOADED INTO SUCCESSIVE
MEMORY LOCATIONS STARTING AT "PAGE:WORD"
AS FOLLOWS: "PAGE:WORD","PAGE:WORD+1",
, "PAGE :WORD+2",...ETC.). DEFAULT EXTENSION IS .DAT
/IN - USED WITH "/AL"™ OR "/UN" TO INDICATE THAT EACH
RECORD OF THE FILE CONTAINS A ONE WORD DATA VALUE
WHICH IS TO BE LOADED DIRECTLY INTO THE AD-10.
/RI - USED WITH "/AL" OR "/UN" TO INDICATE THAT EACH
RECORD OF THE FILE CONTAINS A TWO WORD REAL VALUE
WHICH IS TO BE CONVERTED TO INTEGER PRIOR TO LOADING.
/RS - USED WITH "/AL" OR "/UN" TO INDICATE THAT EACH
RECORD OF THE FILE CONTAINS A TWO WORD REAL VALUE
WHICH IS TO BE CONVERTED TO SCALED FRACTION FORMAT
PRIOR TO LOADING (DEFAULT).

ADX>; BRING IN ARP LOAD MODULE ...

ADX>LOAD ARP.SAV/MO

ADX>; LOAD DATA MEMORY

ADX>LOAD A.DAT;1/AL:0:0, B.DAT;3/UN:2:0/RI, C.DAT/UN:3:0/IN
ADX>

ADX-16

PROTOTYPE:

—— o —— - —— —

SWITCHES:

- — e —

EXAMPLE:

—— —— -

PROTOTYPE:

—— e —————

DESCRIPTION:

—— o ——

-

MODIFY

— o —

MODIFY [/SW[[,]...[[,]1/SW]] [=INFILE]]

THE REGISTERS AND/OR MEMORY LOCATIONS DENOTED BY THE
SPECIFIED SWITCHES ARE DISPLAYED ONE AT A TIME, ALLOWING
THE USER TO MODIFY THE CURRENT VALUE OR LEAVE IT UNCHANGED
BY SIMPLY TYPING A CARRIAGE RETURN. INPUT VALUES CAN COME
FROM THE USER AT "TI:" (BY DEFAULT) OR FROM THE "INFILE"
(IF SPECIFIED). THE DEFAULT EXTENSION IS .LST FOR INFILE.

THE SAME AS FOR THE "DISPLAY" COMMAND.

ADX>MODIFY/COP: :3

COP : Q *=* 6427 137673
/ 0,0
COP : 1 ** 42412 43530
/
COP : 2 ** 73435 157473
/0,0
COP : 3 k% 7421 155126
. / ,
ADX>DIS/PM:7::2
COP : 0 ** 0 0 0 0 0
COP : 1 ** 42412 43530 0 0 0
COP : 2 ** 0 0 0 0 0
ADX>
RESTORE

——— o —— —

RESTORE [/PM:PROC:ADDR [,...[,/PM:PROC:ADDR]]]

RESTORE DELETES THE SPECIFIED LIST OF "BREAKPOINTS" AND/OR
"AT-POINTS". IF NO LIST IS SPECIFIED, THE LAST "BREAKPOINT"
OR "AT-POINT" WHICH THE USER HAS SET IS DELETED. NOTE THAT
/PM:PROC CAN BE ABBREVIATED THE SAME AS WAS SHOWN FOR THE
"AT" AND "BREAK" COMMANDS.

ADX>; INSERT AN AT POINT IN ARP PROGRAM
ADX>AT/PM:3:3,TI:/LO

ADX>; INSERT A BREAKPOINT IN COP PROGRAM
ADX>BREAK/COP:5

ADX>; INITIALIZE THE AD-10

ADX>INIT

ADX>; START THE AD-10

ADX>CONTINUE

0.72535

*** BREAKPOINT AT COP: 5 **%%

ADX>; RESTORE THE BREAK AND AT POINTS
ADX>RESTORE/PM:3:3,/COP:5

*** BREAKPOINT AT ARP: 3 RESTORED

**%* BREAKPOINT AT COP: 5 RESTORED

ADX>

ADX-17

RUN

PROTOTYPE: RUN [LOADFILE[/SW] lro..[,LOADFILE[/SW]]]]

- — - ———

DESCRIPTION: THE AD-10 IS INITiALIZED (SEE "INIT“); THE LOADFILES ARE
——————————— LOADED (IF SPECIFIED, SEE "LOAD"), AND THE AD-10

IS STARTED.
SWITCHES: THE SAME AS FOR THE "LOAD" COMMAND.
EXAMPLE: ADX>; INITIALIZE THINGS
——————— ADX>INIT

ADX>;LOAD THE PROGRAMS AND DATA, AND BEGIN EXECUTION
ADX>RUN AD10.SAV/MO, A./AL:0:0, B.;2/UN:2:0/RI, C.DAT/UN:3:0/IN
ADX>

SAVE

PROTOTYPE: SAVE'OUTFILE[/DA][=/SW[[,]-..[[,]/SW]]]

DESCRIPTION: THE SPECIFIED DATA AND/OR PROGRAM MEMORY LOCATIONS ARE
——————————— WRITTEN TO THE "OUTFILE" IN AD-10 ASSEMBLER LOAD MODULE
- FORMAT (WITH A DEFAULT EXT OF .MOD). "OUTFILE" CAN THEN
BE LOADED USING THE "LOAD" COMMAND (I.E. LOAD OUTFILE/MO).
IF /DA IS SPECIFIED, THE LOCATIONS ARE "DISASSEMBLED" AND
WRITTEN TO THE "OUTFILE" IN AD-10 ASSEMBLER SOURCE FORMAT
(WITH A DEFAULT FILE EXT OF .ASM).

SWITCHES: /PM:PROC - SAVE THE PROGRAM MEMORY OF PROCESSOR "PROC".
———————— /DM:PAGE - SAVE THE SPECIFIED "PAGE" OF DATA MEMORY.
(THE FOLLOWING 5 SWITCHES MAY BE USED IN PLACE OF /PM:PROC)

/MAP - PROGRAM MEMORY [/PM:1]
/DEP - PROGRAM MEMORY [/PM:2]
/ARP - PROGRAM MEMORY [/PM:3]
/NIP - PROGRAM MEMORY [/PM:4]
/COP - - PROGRAM MEMORY [/PM:7]
/DA - DISASSEMBLE (PRODUCE AD-10 ASSEMBLER SOURCE)

NOTE: A LOCATION OR RANGE OF LOCATIONS CAN BE SPECIFIED
BY APPENDING ":N" OR ":N:M" TO THE SWITCH SPECIFICATION.

EXAMPLE: ADX>HALT

——————— ADX>; SAVE LOCATIONS 0-17 OF COP PM IN FILE COP.SAV
ADX>SAVE COP.SAV=/COP::17 ‘
ADX>; SAVE PAGES 2,3,4 OF DATA MEMORY IN FILE DM24UN.SAV
ADX>SAVE DM24UN.SAV=/DM:2:4
ADX> o

ADX-18

PROTOTYPE:

—— e —— o —

T ——

—— s "

——

PROTOTYPE:

—— e ———— ——

—— = ——— ——

—— v —————

—————

SET

SET [/SW:BIT:BIT:...[[,]1/SW:BIT:BIT:...]]

SETS THE SPECIFIED BITS IN THE HIC-11 REGISTER DENOTED
BY THE "/SW". 1IF THE SAME SWITCH IS USED MORE THAN ONCE
IN THE COMMAND LINE, A "," MUST SEPARATE EACH SUCCESSIVE
REFERENCE OF THAT SWITCH.

THE SAME AS FOR THE "CLEAR" COMMAND.

ADX>DISPLAY/RIC

RIC HAS VALUE 0
ADX>SET/RIC:ENB -
ADX>; THAT SET THE INTERRUPT ENABLE BIT IN THE RIC (BIT 6)
ADX>DISPLAY/RIC

RIC HAS VALUE 100
ADX>

STEP

STEP [[#]N]

THE AD-10 IS STEPPED N+1 INSTRUCTION CYCLES (WHERE

0<=N<=177777 (OCTAL), BUT ONLY 0<=N<=32767 (DECIMAL)).
IF "N" IS NOT SPECIFIED, A SINGLE STEP IS PERFORMED (I.E.,

N=0 IS ASSUMED). "N" MAY BE SPECIFIED IN EITHER DECIMAL
INTEGER (DEFAULT) OR OCTAL (BY PRECEEDING N WITH "#").
(NONE)

ADX>INIT

ADX>DIS/PCS:7
PCS(7) HAS VALUE 0
ADX>STEP #12
ADX>DIS/PCS:7

PCS(7) HAS VALUE 13
ADX>

ADX-19

TEST

————

PROTOTYPE : TEST [OUTFILE]
DESCRIPTION: DISPLAYS THE DATA IN THE TEST BUFFER REGISTERS TO "OUTFILE"
----------- ("TI:" BY DEFAULT) IN THE SAME FORMAT AS "HISTORY".
THE DEFAULT EXTENSION IS .LST FOR OUTFILE.
SWITCHES: (NONE)
EXAMPLE: ADX>HALT
——————— ADX>TEST
DRCCCAPTDC
DATA BUS 1/000EEEEE
R# ADDR BUS OCTAL FLOATING 6W210RRRRR
0 1035566 3115 0.04922 .W.RM..E..
1 0431042 70643 0.88779 EE.
2 1463106 156 0.00336 ...R.EE..E
3 0010000 421 0.00833M.....
4 0005042 20040 0.25098 1..R..E..
5 0000401 20 0.00049 E..
6 1013022 10120 0.12744 E..
7 0010420 10423 0.13339 ...RM..E..
8 0042405 10004 0.12512M....E
9 0025030 252 0.00519 .W.R..E...
10 1273563 70525 0.88541 ...R..EE.E
11 0420002 21040 0.26660 .W....E...
12 0002445 20001 0.25003M.....
13 1446045 62166 0.78485 E...E
14 0005052 100312 -0.99384E
15 2062403 10027 0.12570 .R.EE.E.
ADX>

ADX-20

PROTOTYPE: TRACE [OUTFILE]
DESCRIPTION: TRACE THE EXECUTION OF THE AD-10 WITH A PRINTED LOG
——————————— TO "OUTFILE" (OR "TI:" BY DEFAULT), DISPLAYING THE
BUS TRANSACTIONS FOR EACH HALF OF THE INSTRUCTION CYCLE,
- AND THE PROCESSOR PROGRAM COUNTERS AND STATUS WORDS
- FOR EACH INSTRUCTION CYCLE. EXECUTION CAN BE PREMATURELY
HALTED BY CONDITIONS SET IN THE AD-10 HALT MASK REGISTER (I.E.
HLTO, HLT1, ...). THE DEFAULT EXTENSION IS .LST FOR OUTFILE.
SWITCHES: (NONE)
EXAMPLE: 'ADX>HALT
——————— ADX>BREAK/PM:7:5
ADX>TRACE
ADX>INIT
ADX>CONTINUE
DRCCCAPTDC COoP MAP DEP ARP NIP
DATA BUS 1/000EEEEE F-PC F-PC F-PC F-PC F-PC
T# ADDR BUS OCTAL FLOATING 6W210RRRRR 5-PS S5-PS S5-PS S-PS S-PS
F 0000000 0 0.00000 1 0 0 0 0
S 0000000 0 0.000000... 1400 140400 400 400 400
F 0043530 0 0.00000 .W........ 2 0 0 0 0
S (0000000 0 0.000000... 141400 140400 1400 400 400
F 0000000 0 0.00000E.... 3 0 1 0 0
S 0000000 157473 -0.25601 41400 140400 141406 400 400
F 0000000 0 0.00000 ..cveunvnn 4 0 1 0 0
S 0000000 0 0.00000o 41400 140400 41405 400 400
F 0266537 0 0.00000 .W........ 5 537 1 0 0
S 0000000 0 0.00000 cee.s. 141400 140400 41404 400 400

*** BREAKPOINT AT 7: 5 ***
ADX>

ADX-21

PROTOTYPE:

—— - ————
———— —————— ————
—— o —————

PROTOTYPE:

—— . ———

—— —————

UNTRACE

——— o ——

UNTRACE

TURNS OFF TRACE MODE.

(NONE).

ADX>; AD-10 CURRENTLY IN TRACE MODE ...

ADX>HALT

ADX>UNTRACE

ADX>CONTINUE

ADX>; WILL RESUME EXECUTION WITHOUT TRACE ...
ADX> :
ZERO

ZERO [/sW[[,]...[[,1/8W]1] [=MASK]

ZEROS AD-10 PROGRAM MEMORYS, DATA MEMORY, AND PROGRAM
COUNTERS. IF THE OCTAL MASK IS SPECIFIED, THE LOCATIONS

" WILL BE LOADED WITH THIS VALUE INSTEAD OF ZERO.

THE SAME AS FOR THE "DISPLAY" COMMAND, EXCEPT THAT " :PAGE"
IS NOT REQUIRED FOLLOWING "/DM" (I.E., "/DM" WILL ZERO ALL
DATA MEMORY), AND ":PROC" IS NOT REQUIRED FOLLOWING

"/PM" (I.E., "/PM" WILL ZERO ALL PROGRAM MEMORY).

ADX>HALT
ADX>ZERO/PM:3:0:2
ADX>DISPLAY/PM:3:0:2,/RR

- ARP : 0 ** 0 0 0 0 0
ARP : 1 *=* 0 0 0 0 0
ARP : 2 ** 0 0 0 0 0
RR HAS VALUE 0
ADX>ZERO/RR=177777
ADX>DISPLAY/RR

RR HAS VALUE 177777
ADX>

ADX-22

PROTOTYPE:

——— - —— -

—— e —— o ——
—— .t —

—— - ——

PROTOTYPE :

—— o —— — ——

—— o —_— o —— — v

—— - — o

——— —— ——

———— o - —

DESCRIPTION:

—— o —

—— o ——

e

@INFILE

SPECIFIES AN INDIRECT COMMAND FILE (DEFAULT EXT IS .CMD).
(NONE)

MCR>ADX

ADX>@COMFIL

ADX>; THAT EXECUTED THE ADX COMMANDS IN
ADX>; THE FILE COMFIL,CMD

ADX>

~e

[COMMENT]

~e

SPECIFIES A COMMENT, WHICH IS NOT ECHOED TO THE TERMINAL
WHEN ENCOUNTERED IN A COMMAND FILE. ADX IGNORES
THE LINE.

(NONE)

ADX>; THIS IS A NON-ECHO COMMENT
ADX> |

! [COMMENT]

-

SPECIFIES A COMMENT, WHICH IS ECHOED TO THE TERMINAL WHEN
ENCOUNTERED (E.G.,AS IN A COMMAND FILE), BUT IGNORED
BY ADX. THE "!" MUST BE FOLLOWED BY AT LEAST ONE BLANK.

(NONE)

ADX>! THIS IS AN ECHO COMMENT (! BECOMES A BLANK)
THIS IS AN ECHO COMMENT (! BECOMES A BLANK)
ADX>

ADX~23

SUMMARY OF ADX COMMANDS

————— ——— o —— t——— o — T —— - —

AT /PM:PROC:ADDR [,OUTFILE/SW] [=INFILE/SW]
;TTACH [CONSOLE #]

BREAK /PMQPROC:AbDR [,...0,/PM:PROC:ADDR]]
CLEAR [/SW:BIT:BIT:...[[,]/SW:BIT:BIT:...]]
CONSOLE [CONSOLE #]

CONTINUE

DETACH [CONSOLE #]

BISPLAY [OUTFILE=] [/SWI[[,]...[[,]1/SW]]]
BUMP [OUTFILE]

EXIT

;LOATING [OCTAL SCALED FRACTION]
FRACTION [FLOATING POINT NUMBER]

Q;LT

IBISTORY [OUTFILE]

;BENTIFY

INIT

LOAD [LOADFILE[/SW] [,...[,LOADFILE[/SW]]]]
QODIFY [/swll,]...[[,1/SW]] [=INFILE]]

RESTORE [/PM:PROC:ADDR [,...[,/PM:PROC:ADDR]]]

RUN [LOADFILE([/SW] [,...[,LOADFILE[/SW]]]]
;AVE OUTFILE[/DA]l [=/SW[[,]...[[,1/SW]]]

;ET [/SW:BIT:BIT:...[[,]/SW:BIT:BIT:...]]
STEP [[#]N]

-

ADX-24

* NOTE

——

2]

SUMMARY OF ADX COMMANDS (CONT.)

————— o

TEST
TRACE
UNTRACE

* ZERO

e D |

[OUTFILE]

[OUTFILE]

L/SWIL,1...0[[,1/SW]]1] [=MASK]

INDIRECT FILE SPECIFIER
COMMENT SPECIFIER (NON-ECHO)
COMMENT SPECIFIER (ECHO)

(ONLY THE UNDERLINED PORTIONS OF THE COMMANDS ARE REQUIRED).

IF THE STARRED COMMANDS ARE NOT FOLLOWED BY A COMMAND STRING,
ADX WILL PROMPT THE USER FOR A COMMAND STRING OF THE FORM
SHOWN. TO EXIT FROM THIS INTERNAL COMMAND PROMPT MODE, SIMPLY
TYPE A NULL LINE. THE "SAVE" COMMAND REQUIRES THE "OUTFILE"
TO ALSO BE SPECIFIED TO GET THE INTERNAL COMMAND PROMPT.

ADX-25

A
AAA
AAAAA
AAAAAAA
AAAAAAAAA
AAAAAAAAAAA
AAAAAAAAAAAAA
AAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAA

SSSSSSSSSSS
S3SSSSSSSSSS
SSSSSSSSSSSS
SSSSSSSS

SSSSSSSSSS

SSSSSSSS
SSSSSSSSSSSS
SS3SS3SSSSSS
S3SSSSSSSSS

MMMM MMMM
MMMMM MMMMM
MMMMMM MMMMMM
MMMMMMM MMMMMMM
MMMMMMMM MMMMMMMM
MMMMMMMMMMMMMMMMM

MMMM MMMMMMM MMMM
MMMM MMMMM MMMM
MMMM MMM MMMM

THE

AD-10 / PDP-11
CROSS~ASSEMBLER
USER'S MANUAL

"TABLE OF CONTENTS PAGE

GENERAL INFORMATION e R 3-8
TERMS AND CONVENTIONS &vvvuvvnrnnens veer 3
THE CROSS-ASSEMBLER PROGRAMveuenn. 4
THE ASSEMBLY LANGUAGE e 4
NUMERIC CONSTANTS +vvevvnvnneeneenennns .. 5
SYMBOLS '+t eetoeeeennenenecnennenonneens 5-6

STANDARD SYMBOLS +vvvvvuernennn. 6
VARIABLE SYMBOLS &vvvvvuvnennnns 6
PREDEFINED SYMBOLS +.vvveveennn. 6
 ASSEMBLER EXPRESSIONS e 7-8
DESCRIPTION &uvvnvvuneenneenneennns 7-8
EVALUATION +.vevunnn.. e 8

ASSEMBLY STATEMENTS vvvvvvrnennnnenennennennens 9-11
GENERAL STATEMENT FORMAT e 9
LABELS v teetetnensneenennenenneenenenns 9
OPCODES v vvvvnneennnns e 10
OPERANDS evetnetn e enennenennennennens 10
COMMENTS voveeveeeneneenennnnnns ceeee... 10
MICROCODING vvvvvvnennennennennannennns 11

ASSEMBLER DIRECTIVES +uvvvvennennennennnennennns 12-14
PROGRAM SECTION DIRECTIVES +.vevvuvn.. .12

)% e . 12
BRP ittt ittt ittt 12
COP tteeveneenenennnns e 12
)20 S 12
MAP veieeieiieineneennnns e 12
CONTROL DIRECTIVES e etbaeseesisena 12
VORG veveevnennnnn e 12
CINCLUDE tvvvvevevnrnnenennnnnns 12
VOCTAL v veeeeneeenennnnns vev. 12
JDECIMAL wuvuvennnnnnn e 12
CEND e e .12
DATA DIRECTIVES tuvvvvnernernennennenns .. 13
CEQU e ceeeee.. 13
JWORD v vveieiiennnnnnn e .. 13
CDEFINE vevvenvenenenennennennns 13
JDEFAULT vvvvveeeenennennenannns 13
CUNDEFINE ovvevneneenennnnnns 13
CBLEWD t v veeeeenenenennennennnn 13
LISTING DIRECTIVES &vvvenenennnnn Cereess 14
CTITLE veeemeennnnnens e .. 14
PAGE vvvuernennn. e e 14
SPACE v vvvevrnennernnenneennanns 14
123:0) | A e teeentereenes 14
13:10) 2 ce. 14

ACSM-1

MACROFILES '+ et veesveesee e seeesessnesneeenannnns 14-16

GENERAL DESCRIPTION +vverevncoonennennns 14
USING MACROFILES it vvveeveneeonnnnnnnns 15-16
OPERATING PROCEDURES vt ivitvevvrenoeronanensenes 17-18
ERROR MESSAGES 4t vttt eesesesossnosenonansennsas 19-21
COMMAND LINE ERROR MESSAGES v eveevnenn 19
LISTING ERROR MESSAGES +vvvvvvneeennenns 20
TIMING DIAGRAM ERROR MESSAGES +.veuvenn. 21
LISTING AND TIMING DIAGRAM FORMATS vvvvveuennnnn 22
OBJECT MODULE FORMAT vt vv it e eervenenceneenonnnns 23
AN EXAMPLE OF AN ASSEMBLER PROGRAM ..v'veveeonnnn 24-32
DISCUSSION ittt eeoesesoeseanenssnnanens 2425
SOURCE LISTING (SINE.ASM) tivrivnnnnnnnn 26
ASSEMBLER LISTING OUTPUT (SINE.LST) 27-31
SINE.LST PAGE 1 27
SINE.LST PAGE 2 28
SINE.LST PAGE 3 29
SINE.LST PAGE 4 30
SINE.LST PAGE 5 31
OBJECT MODULE (SINE.MOD) v evvvenaeens 32

ASM-2

TERMS AND CONVENTIONS

ASM NAME OF THE AD-10 / PDP-11 CROSS~ASSEMBLER PROGRAM

DEC DIGITAL EQUIPMENT CORPORATION, MAKERS OF THE PDP-11 COMPUTER
RSX~11 DEC'S REAL-TIME OPERATING SYSTEM EXECUTIVE FOR THE PDP-11
"MCR> - PROMPT GENERATED BY THE RSX-11 MONITOR CONSOLE ROUTINE

ASM> PROMPT GENERATED BY THE ASSEMBLER

ADX> PROMPT GENERATED BY THE AD-10 EXECUTIVE PROGRAM

@ » INDIRECT FILE SPECIFIER (REF. CHAPTER 6 OF THE RSX-11M

OPERATOR'S PROCEDURES MANUAL)
/ ASM COMMAND STRING SWITCH DELIMITER

ASM COMMAND STRING SWITCH VALUE DELIMITER, ALSO
PAGE:WORD DELIMITER (E.G., '0:4095"')

<> 'ANGLE BRACKETS ARE USED TO ENCLOSE THE NAME OF A
SYNTACTIC ELEMENT OR CLASS OF ELEMENTS
[] BRACKETS ARE USED TO ENCLOSE OPTIONAL SYNTACTIC ELEMENTS
IN COMMAND STRING EXAMPLES.
CR CARRIAGE RETURN (RETURN)
CONTROL~Z EOF CHARACTER GENERATED BY SIMULTANEOUSLY DEPRESSING
CTRL-Z THE "CONTROL" AND THE "Z" KEYS. USED TO EXIT FROM ASM
AND RETURN TO MCR.
CONTROL-U "CONTROL" AND "U" KEYS. USED TO DELETE A LINE.
CTRL~-U
"RUBOUT USED TO DELETE A CHARACTER.
CONTROL-S "CONTROL"™ AND "S" KEYS. USED TO TEMPORARILY STOP THE
CTRL-8 | OUTPUT TO THE TERMINAL WHEN THE DISPLAY IS SCROLLING.
CONTROL-Q "CONTROL" AND "Q" KEYS. USED TO RESTART THE OUTPUT
CTRL-Q AFTER CONTROL-S HAS BEEN TYPED.
! COMMENT DELIMITER
<SPACE> SEPARATOR BETWEEN SYNTACTIC ELEMENTS IN A STATEMENT
<TAB> SEPARATOR BETWEEN SYNTACTIC ELEMENTS IN A STATEMENT
, SEPARATOR BETWEEN OPERANDS

H SEPARATOR BETWEEN OPCODE/OPERAND GROUPS

i FIRST CHARACTER IN VARIABLE SYMBOL NAME

$: v FIRST CHARACTER IN PREDEFINED SYMBOL NAME

v - TITLE DELIMITERS, ALSO VALUE DELIMITERS

TOKEN A TERM REFERRING TO A SYNTACTIC ELEMENT WITHIN AN

ASSEMBLER STATEMENT (E.G., A SYMBOL, ARITHMETIC OPER-
ATOR, OPCODE, ETC.) . .

THE CROSS-ASSEMBLER PROGRAM

- — - ————— - — - A - —— -

THE AD-10/PDP-11 CROSS-ASSEMBLER PROGRAM (OR "ASSEMBLER")
PROCESSES THE AD-10 ASSEMBLY LANGUAGE SOURCE STATEMENTS FROM A
SOURCE FILE ON THE PDP-11 HOST COMPUTER. THIS PROCESSING INVOLVES
THE TRANSLATION OF THE SOURCE STATEMENTS INTO AD-10 MACHINE LANGUAGE,
THE ASSIGNMENT OF STORAGE LOCATIONS (AD-10 PROGRAM MEMORY, DATA MEMORY,
OR REGISTERS), AND THE PERFORMANCE OF AUXILIARY FUNCTIONS AS
DESIGNATED BY THE PROGRAMMER. THE OUTPUT FROM THE ASSEMBLER CONSISTS
OF AN OBJECT FILE AND A LISTING FILE. THE OBJECT FILE CONTAINS THE
AD-10 MACHINE LANGUAGE TRANSLATION OF THE SOURCE PROGRAM, IN A FORM
WHICH MAY THEN BE LOADED INTO THE AD-10 AND RUN USING THE AD-10 EXEC-
UTIVE PROGRAM (ADX). THE LISTING FILE CONSISTS OF A LISTING OF THE
SOURCE STATEMENTS WITH THE GENERATED OBJECT CODE AND ANY ERRORS
DETECTED AND AN OPTIONAL MULTIBUS TIMING DIAGRAM. THE PROGRAMMER CAN
CONTROL THE FORMAT AND CONTENT OF THE LISTING VIA THE APPROPRIATE
ASSEMBLER DIRECTIVES. POTENTIAL OR ACTUAL ERRORS INVOLVING ASSEMBLY
LANGUAGE SYNTAX OR USAGE ARE DETECTED BY THE ASSEMBLER AND ARE
INCLUDED IN THE LISTING. THE ASSEMBLER ALSO CHECKS FOR ERRORS IN THE
TIMING RELATIONSHIPS OF THE VARIOUS AD-10 PROCESSORS' MULTIBUS
ACCESSES AND INDICATES POTENTIAL PROBLEMS ON THE LISTING OR ON THE
TIMING DIAGRAM.

THE ASSEMBLY LANGUAGE

- - —— - - - - -

THE AD-10 ASSEMBLY LANGUAGE CONSISTS OF A COLLECTION OF
MNEMONIC SYMBOLS WHICH REPRESENT :

1. AD-10 MACHINE LANGUAGE INSTRUCTIONS
2. AD-10 ASSEMBLER DIRECTIVES

ALL VALID AD-10 MACHINE LANGUAGE INSTRUCTIONS HAVE CORRESPONDING
MNEMONIC SYMBOLS WHICH GENERATE THE APPROPRIATE MACHINE LANGUAGE CODE
FOR EACH AD-10 PROCESSOR. REFER TO THE APPROPRIATE AD-10 PROCESSOR
MANUAL FOR DESCRIPTIONS OF THE INSTRUCTIONS.

ASSEMBLER DIRECTIVES (OR "PSEUDO-OP'S") SPECIFY AUXILIARY FUNCTIONS
WHICH THE PROGRAMMER REQUESTS THE ASSEMBLER TO PERFORM. THEY GENERALLY
RESULT IN NO MACHINE LANGUAGE CODE BEING GENERATED. THEY ALLOW

THE PROGRAMMER TO REPRESENT NUMERIC DATA AS DECIMAL, OCTAL, BINARY,
HEXADECIMAL, OR SCALED FRACTIONS, TO ASSIGN THESE NUMERIC VALUES TO
SYMBOLIC NAMES, TO DEFINE DATA AND DATA STORAGE LOCATIONS, TO

IDENTIFY THE PROCESSOR TO WHICH A SECTION OF CODE BELONGS AND

THE LOCATION OF THAT CODE IN ITS PROGRAM MEMORY, TO CONTROL THE
LISTING'S FORMAT, TO INCLUDE ANOTHER SOURCE FILE IN THE CURRENT
ASSEMBLY, AND SEVERAL OTHER RELATED FUNCTIONS.

ASM-4

NUMERIC CONSTANTS

THE FOLLOWING METHODS FOR SPECIFYING NUMERIC CONSTANTS ARE AVAILABLE
IN THE ASSEMBLER :

N WHERE, "N" IS A NUMBER IN THE CURRENT RADIX
(AS SET BY THE .OCTAL OR .DECIMAL DIRECTIVES)

O'N" OCTAL VALUE "N" (E.G., O"177777')

B'N' BINARY VALUE "N" (E.G., B'01010101"')

S'N! SCALED FRACTION VALUE "N" (E.G., S'-0.0325')

D'N' DECIMAL VALUE "N" (E.G., D'198")

NUMERIC CONSTANTS ARE STORED AS 32-BIT TWO'S COMPLEMENT INTEGER VAL-
-UES. THE ASSEMBLER USES 32-BIT TWO'S COMPLEMENT ARITHMETIC FOR ITS
EXPRESSION EVALUATION. HOWEVER, WHEN CALCULATING THE NUMERIC VALUE TO
- BE USED IN AN IMMEDIATE INSTRUCTION (E.G., LFI X), ONLY THE LOW-ORDER
16 BITS FROM THE EXPRESSION EVALUATION WILL EVENTUALLY BE USED. ALSO,
IN AN ADDRESS CALCULATION, THE EXPRESSION FOR THE PAGE ADDRESS MUST
EVALUATE TO A NUMBER IN THE RANGE 0-63 DECIMAL, WHILE THE EXPRESSION
REPRESENTING THE WORD ADDRESS MUST EVALUATE TO A NUMBER IN THE RANGE
0-4095 DECIMAL (18-BIT ADDRESSING). SEE PAGE 8§ FOR A DESCRIPTION OF
ADDRESS SPECIFICATION EXPRESSIONS. NOTE FURTHER THAT SCALED FRACTION
CONSTANTS SHOULD NOT BE USED IN ARITHMETIC EXPRESSIONS, AS THE EX-
PRESSION MAY NOT BE EVALUATED CORRECTLY BY THE ASSEMBLER.

SYMBOLS

A SYMBOL IS THE NAME WHICH IS ASSOCIATED WITH A NUMERIC VALUE.
THIS VALUE MAY SIMPLY REPRESENT A NUMBER OR A BIT-PATTERN, AS IN

WRITE .EQU B'011!
DACO2 .EQU 2

THE SYMBOLS "WRITE"™ AND "DACO2" ARE EXPLICITLY DEFINED HERE TO HAVE
THE VALUES 3 AND 2, RESPECTIVELY. SYMBOLS MAY ALSO BE ASSOCIATED
WITH MEMORY LOCATIONS, AS IN :

.COP ! COP CODE
.ORG 100 ! LOCATION = 100
DSTART PAUSE 1 ! WAIT TWO CYCLES

HERE, THE SYMBOL "DSTART" HAS THE VALUE 100 (OCTAL). AS USED IN THESE
EXAMPLES, A SYMBOL IS ALSO A "LABEL", SINCE IT APPEARS IN THE LABEL
FIELD OF THE STATEMENT (I.E., IT STARTS IN COLUMN 1). THESE SAME
SYMBOLS, HOWEVER, MAY THEN BE USED IN SUBSEQUENT REFERENCES TO THE
NUMERIC VALUES WHICH THESE SYMBOLS REPRESENT

.COP ! COP CODE

.ORG 200 ! LOCATION = 200
PFI WRITE,DACO02 ! UPDATE DAC #2

JMP DSTART ! GOTO LOCATION 100

ASM-5

SYMBOLS MAY CONSIST OF 1-6 ALPHANUMERIC CHARACTERS (OR "#" OR "§"
AS DESCRIBED BELOW). SYMBOLS LONGER THAN 6 CHARACTERS WILL BE TRUN-
CATED WITHOUT WARNING! THE SYMBOL MUST BEGIN WITH AN ALPHABETIC
CHARACTER (A-Z) (OR "#" OR "$" IN SPECIAL CASES). THERE ARE THREE
TYPES OF SYMBOLS : STANDARD, VARIABLE, AND PREDEFINED.

STANDARD SYMBOLS CAN BE DEFINED ONLY ONCE, AND REPRESENT
---------------- ONE FIXED VALUE THROUGHOUT AN ASSEMBLY.

1ST CHARACTER A-Z

2ND - 6TH CHARACTERS A-Z, 0-9 ‘
EXAMPLES : ARP00,X0,K12345,REG12,SIN6O

VARIABLE SYMBOLS CAN BE DEFINED MORE THAN ONCE DURING AN

---------------- ASSEMBLY, AND MAY BE USED TO REPRESENT
DIFFERENT VALUES AT DIFFERENT POINTS
WITHIN THE PROGRAM.

1ST CHARACTER #
2ND - 6TH CHARACTERS A-Z, 0-9
EXAMPLES : #AA, #XPTR, #F VAL, #TEMPO

PREDEFINED SYMBOLS ARE RECOGNIZED BY THE ASSEMBLER AS HAVING

———————————— --—--- CERTAIN PREDEFINED VALUES WHICH MAY NOT BE
CHANGED (I.E., THE USER CANNOT REDEFINE
THESE SYMBOLS!). THE PREDEFINED SYMBOLS ARE:

PREDEFINED PROCESSOR SYMBOLS

- — . - —— A - - - W - -

$MAP .EQU 1
$DEP .EQU 2
$ARP LEQU 3
$CoP -EQU 7

PREDEF INED ARP REGISTER SYMBOLS

- - M —— - — - g - -

- e - ——— - - - - -

ALL PROCESSOR INSTRUCTIONS (E.G., LFI, MOVO, NOP, PAUSE,
START, ETC.), AND ALSO THE SYMBOLS : EQ, NE, GT, GE, LT,
LE, DF, MC, NDF, AND, OR, '¥',

NOTE : THE ASSEMBLER WILL FLAG ALL ILLEGAL USES OF PREDEFINED
—-—=- SYMBOLS AS SYNTAX ERRORS.

ASM-6

ASSEMBLER EXPRESSIONS

THERE ARE A NUMBER OF ELEMENTS WHICH CAN MAKE UP AN ASSEMBLER EXPRESSION.
THESE ELEMENTS OF AN ASSEMBLER EXPRESSION ARE AS FOLLOWS :

1. A <FACTOR> IS THE BASIC ELEMENT OF AN ASSEMBLER EXPRESSION,
CONSISTING OF

A) A <NUMERIC CONSTANT> (E.G., 123, D'189', 0'100377"),

B) A <SYMBOL> , WHICH HAS A NUMERIC VALUE ASSOCIATED
WITH IT (E.G., #OUTO, $ARP, X),

C) THE ASTERISK CHARACTER ('*'), WHICH HAS A NUMERIC
VALUE EQUAL TO THAT OF THE LOCATION COUNTER,

D) OR AN <ADDRESS CONSTANT> WHICH CAN BE ENCLOSED IN
PARENTHESES (E.G., (PAGEO:WORDO+2), OR (X+Y)).

2. A <TERM> CONSISTS OF THE FOLLOWING :
A) A SINGLE <FACTOR> (E.G., #0UTO),

B) ANOTHER <TERM> MULTIPLIED BY A <FACTOR>
(E.G., #0UTO%*123),

C) OR ANOTHER <TERM> DIVIDED BY A <FACTOR>
(E.G., (#0UTO*123)/456).

3. AN <EXPRESSION> IS COMPOSED OF <TERMS> AND OTHER
<EXPRESSIONS> AS FOLLOWS :

A) A SINGLE <TERM> (E.G., X¥*Y/(Z%2)),

B) ANOTHER <EXPRESSION> PLUS A <TERM>
(E.G., (X*Y/(Z*2))+(BB/AA)),

C) ANOTHER <EXPRESSION> MINUS A <TERM>
(E.G., ((X*Y/(Z*2))+(BB/AA))-1),

D) OR A <TERM> PRECEDED BY EITHER A PLUS SIGN ('+')
OR A MINUS SIGN ('-'), WHERE THESE BINARY
OPERATORS INDICATE EITHER A POSITIVE OR A NEGATIVE

VALUE OF THE ENTIRE <EXPRESSION> (E.G., +(X*Y/(Z%*2)),
OR -(X¥Y/(Z%¥2))). :

ASM-7

ASSEMBLER EXPRESSIONS (CONT.)

- - — - - G - — - ——— -

4, AN <ADDRESS CONSTANT> CONSISTS OF
A) AN <EXPRESSION> (SEE ITEM #3 ON PREVIOUS PAGE),
B) OR A DATA MEMORY <ADDRESS> , AS SPECIFIED BELOW.

5. AN <ADDRESS> SPECIFIES A DATA MEMORY LOCATION AS FOLLOWS :

A) UNALIGNED DATA MEMORY ADDRESSES ARE REPRESENTED
BY AN <EXPRESSION> REPRESENTING A PAGE ADDRESS,
FOLLOWED BY A COLON (':'), FOLLOWED BY ANOTHER
<EXPRESSION> REPRESENTING THE WORD ADDRESS WITHIN
THE PAGE (E.G., (PAGO+2):(4095-(Y*2))).

B) ALIGNED DATA MEMORY ADDRESSES ARE REPRESENTED
BY AN <EXPRESSION> REPRESENTING A PAGE ADDRESS,
FOLLOWED BY TWO COLONS ('::'), FOLLOWED BY ANOTHER
<EXPRESSION> REPRESENTING THE WORD ADDRESS WITHIN
THE PAGE (E.G., (PAG2+INDX)::(BASE+N)).

EXPRESSION EVALUATION

ARITHMETIC OPERATIONS WITHIN EXPRESSIONS ARE EVALUATED IN A SIMILAR
MANNER TO THOSE IN FORTRAN EXPRESSIONS, WITH MULTIPLICATION AND DIVISION
OPERATIONS BEING EVALUATED BEFORE ADDITION AND SUBTRACTION, UNLESS
PARENTHESES SPECIFICALLY INDICATE A DIFFERENT ORDER. NO EXPONENTIATION
IS PERMITTED. THE PERMISSIBLE OPERATORS ARE, IN ORDER OF PRECEDENCE

1. ¥ AND /
2. + AND -

FOR EXAMPLE, EACH OF THE FOLLOWING EXPRESSIONS IS EQUIVALENT
¥¥X/Y*Z-AA+BB/CC
(CCC(*)*X)/Y)*Z)~AA)+(BB/CC)

HERE THE FIRST ASTERISK IN THE EXPRESSION REPRESENTS THE CURRENT
VALUE OF THE LOCATION COUNTER. ALL ARITHMETIC OPERATIONS ARE PERFORMED
USING TWO'S COMPLEMENT 32-BIT INTEGER ARITHMETIC. THAT IS, AN EXPRES-
SION IS EVALUATED BY OPERATING ON THE 32-BIT BINARY VALUES WHICH
REPRESENT THE VARIOUS FACTORS IN AN EXPRESSION. ONLY THE LOW-ORDER

16 BITS WILL EVENTUALLY BE USED FOR THE VALUE IN AN IMMEDIATE
INSTRUCTION. ALSO NOTE THAT SCALED FRACTION CONSTANTS WILL NOT BE
INTERPRETED AS SCALED FRACTIONS IN ARITHMETIC OPERATIONS.

ASM-8

GENERAL ASSEMBLER STATEMENT FORMAT

THE GENERAL FORM OF AN ASSEMBLY LANGUAGE STATEMENT IS AS FOLLOWS,
WHERE THE BRACKETS INDICATE OPTIONAL ITEMS :

[(LABEL] OPCODE [OPERANDS] [[;OPCODE [OPERANDS]]...] [!COMMENTS]
THE FOLLOWING CONVENTIONS MUST BE FOLLOWED WHEN WRITING AN AD-10
ASSEMBLY LANGUAGE STATEMENT
1. THE LABEL FIELD MUST BEGIN IN COLUMN 1.
2. THE OTHER ITEMS MAY BEGIN IN COLUMNS 2-120. THE ASSEMBLER
WILL ACCEPT STATEMENTS CONTAINING UP TO 120 CHARACTERS, BUT
ONLY THE FIRST 72 CHARACTERS OF A LINE WILL BE PRINTED ON
THE LISTING.

3. IF NECESSARY, AN ASSEMBLER STATEMENT CAN BE CONTINUED ON
SUCCESSIVE LINES, USING COLUMNS 2-120.

3. OPCODE/OPERAND SETS MUST BE SEPARATED BY ";".
4. OPERANDS MUST BE SEPARATED BY ",".

5. COMMENTS MUST BE PRECEDED BY "!I",

6. SPACES OR TABS MAY BE INSERTED BETWEEN ITEMS AS

DESIRED, BUT MAY NOT APPEAR WITHIN A LABEL, AN
OPCODE, OR AN OPERAND.

EXAMPLES OF ASSEMBLER STATEMENTS ARE :

ARP10 MOVO S,R; MOV1 R,TEMPO ! PUT BUS DATA INTO TEMP REG.
BEGIN START $DEP, $ARP

PFI WRITE,DACO2

PAUSE 3 ! WAIT THREE INSTRUCTION CYCLES
TWO5 .EQU 4o ! 2%%5 = 32

.PAGE

(NOTE: THESE STATEMENTS DO NOT CONSTITUTE A MEANINGFUL AD-10 PROGRAM.)

LABELS

A LABEL CAN BE ANY STANDARD SYMBOL OR VARIABLE SYMBOL AS DEFINED IN THE
"SYMBOLS" SECTION OF THIS MANUAL. THE LABEL MUST BEGIN IN COLUMN ONE (1)
OF THE ASSEMBLER STATEMENT. SHOULD THE PROGRAMMER INADVERTENTLY USE ONE
OF THE PREDEFINED SYMBOLS AS A LABEL, THE ASSEMBLER WILL FLAG THAT STATE-
MENT AS A SYNTAX ERROR.

ASM-9

OPCODES

- - — - -

AN OPCODE IS THE MNEMONIC REPRESENTATION OF AN AD-10 INSTRUCTION
OR AN ASSEMBLER DIRECTIVE. THE OPCODE ENTRY IS MANDATORY (UNLESS THE
LINE IS SIMPLY A COMMENT). THERE MUST BE AT LEAST ONE SPACE BETWEEN
THE LABEL (IF PRESENT) AND THE OPCODE. SOME EXAMPLES OF OPCODES ARE

LFI

PAUSE
MOVO

RUIF
START
.EQU
.UNDEFINE

OPERANDS

AN OPERAND IS AN ASSEMBLER EXPRESSION WHICH IDENTIFIES AND DESCRIBES

THE DATA TO BE ACTED UPON BY THE OPCODE PORTION OF AN INSTRUCTION. IN

THE CASE OF THE ARITHMETIC PROCESSOR IT ALSO INDICATES PART OF THE
OPERATION TO BE PERFORMED. DEPENDING UPON THE NEEDS OF THE PARTICULAR
INSTRUCTION, ONE OPERAND, SEVERAL OPERANDS, OR NONE MAY BE REQUIRED. WHEN
MORE THAN ONE OPERAND IS USED, THEY MUST BE SEPARATED BY COMMAS (",").
BLANKS MAY BE USED BETWEEN OPERANDS IN A LIST, BUT NOT WITHIN AN
INDIVIDUAL OPERAND. EXAMPLES OF OPERANDS ARE :

S, R (AS IN: MOVO S,R)
1 (AS IN: A .EQU 1)
$ARP,$MAP, $DEP (AS IN: START $ARP, $MAP, $DEP)

COMMENTS

COMMENTS PROVIDE DESCRIPTIVE INFORMATION ABOUT THE PROGRAM WHICH THE
PROGRAMMER WISHES TO INCLUDE IN THE LISTING. THEY HELP TO DOCUMENT THE
PROGRAM. THE COMMENT MUST BEGIN WITH AN EXCLAMATION POINT CHARACTER
("1"), THE ASSEMBLER SIMPLY IGNORES ALL CHARACTERS TO THE RIGHT OF THE
EXCLAMATION POINT. THE COMMENT MAY START IN ANY COLUMN, AND IT MAY
CONSIST OF ANY LEGAL ASCII CHARACTERS. AN EXAMPLE OF A COMMENT IS

| REXRXXXXXRXXXXRREX THIS TS A COMMENT ¥¥EXXXEEXXXXAXXXXHX

ASM-10

MICROCODING

IN ALL AD-10 PROCESSORS IT IS POSSIBLE TO MICROCODE MORE THAN
ONE OPERATION IN PARALLEL. SINCE A SINGLE OPCODE FOR EACH COMBINATION
OF OPERATIONS WOULD BE OVERWHELMING, THE SEPARATE OPERATIONS TO BE
MICROCODED MAY ALL BE SPECIFIED ON THE SAME LINE, THUS CLARIFYING THE
OPERATION. TO MICROCODE AN INSTRUCTION SEVERAL OPCODE/OPERAND
GROUPS ARE COMBINED (UP TO A MAXIMUM OF SIX IN THE ARP). THESE
SUB-INSTRUCTIONS MUST BE SEPARATED BY A SEMICOLON (";"). THE ASSEMBLER
WILL COMBINE THE SUB-INSTRUCTIONS INTO ONE MICROCODED INSTRUCTION, IF
THE COMBINATION IS LEGAL. SOME EXAMPLES OF LEGAL MICROCODED INSTRUC-
TIONS ARE

MOVO T2,B; MOV1 T3,L; MOV2 T4,D; MOV3 R,TEMPO; PAUSE 1
RAID AAA,BBB ; PAUSE 3

SOME GENERAL COMMENTS REGARDING MICROCODING :

1. THE SUB-INSTRUCTIONS WHICH CAN BE LEGALLY COMBINED ARE
DEFINED FOR EACH PROCESSOR IN THE AD-10 REFERENCE MANUAL.

2. FOR SOME PROCESSORS THE ORDER IN WHICH THE SUB-INSTRUCTIONS
MAY BE MICROCODED IS FIXED (E.G., IN THE ARP, THE "MOVE"
INSTRUCTIONS MUST BE CODED IN ORDER : "MOVO"™ FIRST, THEN
"MOV1", THEN "MOV2", AND THEN "MOV3"). IN GENERAL, IF A
"PAUSE" SUB-INSTRUCTION IS MICROCODED, IT MUST TERMINATE THE
INSTRUCTION. REFER TO THE AD-10 REFERENCE MANUAL FOR FURTHER
DETAILS.

3. THE LAST SUB~INSTRUCTION IN A MICROCODED INSTRUCTION MUST
NOT TERMINATE WITH A ";" UNLESS IT IS TO BE CONTINUED ON THE
NEXT LINE. FOR EXAMPLE

MOVO S,R; MOV1 R,TO;
MOV2 S,R; MOV3 R,T1; PAUSE 3

THE ABOVE STATEMENTS ARE EQUIVALENT TO THE SINGLE STATEMENT
MOVO S,R; MOV1 R,TO; MOV2 S,R; MOV3 R,T1; PAUSE 3
4. A COMMENT CANNOT BE MICROCODED WITHIN A SUB-INSTRUCTION. FOR
EXAMPLE, THE FOLLOWING WILL RESULT IN EVERYTHING AFTER
THE FIRST "!" BEING TREATED AS A COMMENT
MOVO S,R ! GET DATA ; MOV1 R,T ! SAVE IT
THE ABOVE STATEMENT IS EQUIVALENT TO :

MOVO S,R

ASM-11

PROGRAM SECTION DIREQTIVES

—— e - —— - —— - — - -

THE AD-10 CROSS-ASSEMBLER ACCEPTS INSTRUCTIONS FOR ALL AD-10 PROCESSORS
AND DATA VALUES FOR AD-10 DATA MEMORY FROM THE SAME SQURCE FILE

ON THE PDP~11 SYSTEM. THIS GROUP OF PROGRAM SECTION DIRECTIVES ENABLES
THE PROGRAMMER TQ IDENTIFY FOR THE ASSEMBLER THE PROGRAM MEMORY

SECTION OR DATA MEMORY SECTION INTO WHICH THE INSTRUCTIONS OR DATA

FOLLOWING THE DIRECTIVE SHOULD BE PUT. THE DEFAULT PROGRAM SECTION IS
" .DAT".

. ARP ARP PROGRAM SECTION
.COP = COP PROGRAM SECTION
.DEP ~ DEP PROGRAM SECTION
.MAP MAP PROGRAM SECTION
.DAT DATA MEMORY SECTION

CONTROL DIRECTIVES

- - " - - - - —

THIS GROUP OF ASSEMBLER DIRECTIVES PERFORMS A VARIETY OF ASSEMBLY
CONTROL FUNCTIONS

.ORG N o SETS THE LOCATION COUNTER FOR THE
~ CURRENT PROCESSOR OR FOR DATA MEMORY
TO THE VALUE "N" (DEFAULT ORIGIN IS 0).

. INCLUDE <FILESPECY> COPIES THE SPECIFIED SOURCE FILE
' R o INTO THE ASSEMBLER SOURCE STREAM
(NORMALLY USED FOR MACROFILES).

.OCTAL TELLS ASSEMBLER TO INTERPRET ALL
NUMERIC CONSTANTS AS OCTAL VALUES
(THIS IS THE DEFAULT SETTING).

.DECIMAL ‘ TELLS ASSEMBLER TO INTERPRET ALL
: NUMERIC CONSTANTS AS DECIMAL VALUES.

.END ' : IDENTIFIES THE END OF THE ASSEMBLY
(MUST TERMINATE THE USER'S PROGRAM).

ASM-12

DATA DIRECTIVES

THESE ASSEMBLER DIRECTIVES ASSIGN VALUES TO SYMBOLS, DEFINE CONSTANTS,
AND RESERVE STORAGE SPACE.

LABEL .EQU <EXPRESSION> ASSIGNS THE VALUE OF THE EXPRESSION
TO THE SPECIFIED LABEL/SYMBOL.

[LABEL] .WORD <EXPRESSION ASSIGNS THE VALUES OF THE EXPRESSIONS
LIST> TO LOCATIONS IN THE CURRENT PROGRAM
OR DATA MEMORY SECTION, STARTING WITH
- THE CURRENT LOCATION.

LABEL .DEFINE <EXPRESSION ASSIGNS A LIST OF EXPRESSIONS
LIST> TO AN 'ARRAY' OF SYMBOLS

(THE ASSEMBLER APPENDS 0,1,2,...
AS REQUIRED TO THE LABEL, AND
DOES THE EQUIVALENT OF MULTIPLE
" EQU'S"). THE NUMBER OF
CHARACTERS IN THE LABEL MUST
REMAIN AT 6 OR LESS INCLUDING
THE APPENDED DECIMAL DIGITS.

LABEL .DEFAULT <EXPRESSION ASSIGNS THE DEFAULT VALUES IN THE LIST
LIST> TO THE GROUP OF SYMBOLS IF THEY ARE
CURRENTLY UNDEFINED (SIMILAR TO .DEFINE).

LABEL . UNDEFINE MARKS ALL ".DEFINE'D" SYMBOLS WHICH
BEGIN WITH THE SPECIFIED SYMBOL'S NAME
AS UNDEFINED.

[LABEL] .BLKWD N RESERVES STORAGE SPACE FOR A
BLOCK OF DATA OR PROGRAM MEMORY
LOCATIONS BY INCREMENTING THE
CURRENT LOCATION COUNTER IN THE
CURRENT PROGRAM SECTION BY "N"
LOCATIONS.

ASM-13

LISTING DIRECTIVES

THESE ASSEMBLER DIRECTIVES CONTROL THE FORMAT OF THE ASSEMBLY LISTING.

LTITLE 'XXX...XXX' SPECIFIES THE TITLE, ENCLOSED IN
QUOTES, WHICH WILL APPEAR AT THE
TOP OF SUCCESSIVE PAGES OF THE
LISTING. ".TITLE"™ ALSO DOES A FORM
FEED PRIOR TO PRINTING THE TITLE.

. PAGE FORCES THE ASSEMBLER TO BEGIN A NEW
' PAGE IN THE LISTING.

.SPACE N - FORCES THE ASSEMBLER TO INSERT "N"
’ ‘ BLANK LINES IN THE LISTING. IF THIS
FORCES THE LISTING TO A NEW PAGE, NO
FURTHER BLANK LINES ARE INSERTED.

. PRON | ‘ INCREMENTS THE PRINT LEVEL COUNTER (PLC),
: IF THE PLC IS >= 0, THE FOLLOWING SOURCE
LINES ARE PRINTED, OTHERWISE THE PRINTING

REMAINS DISABLED.

. PROFF | DECREMENTS THE PRINT LEVEL COUNTER.

MACROFILES

- - - -

A MACROFILE IS AN AD-10 ASSEMBLY LANGUAGE APPLICATION ROUTINE IN
SOURCE FORM WHICH CAN BE INCLUDED IN A USER APPLICATION PROGRAM
WITH USER SPECIFIED INPUT/OUTPUT PARAMETERS OR ARGUMENTS. A
MACROFILE IS SIMILIAR TO A SUBROUTINE IN A HIGH LEVEL LANGUAGE,
WITH THE EXCEPTION THAT EACH "CALL" TO A MACROFILE INCLUDES ANOTHER

COPY OF THE MACROFILE CODE, WITH THE USER SPECIFIED ARGUMENTS, IN
THE USER PROGRAM,

THE AD-10 MACROFILE LIBRARY CONTAINS ROUTINES WHICH SUPPORT ALL
PHASES OF MULTIVARIABLE FUNCTION GENERATION APPLICATIONS, INCLUDING
DATA INPUT AND OUTPUT, DATA TRANSFERS WITHIN THE AD-10, BINARY AND
SHIFT SEARCH SCHEMES (USED TO DETERMINE THE LOCATION OF INPUT
VARIABLES IN THE DOMAIN OF THE FUNCTION), POINTER CALCULATIONS, AND
LINEAR INTERPOLATION FOR 1,2,3,4, AND 5 VARIABLES. 1IN ADDITION,

A NUMBER OF SUPPORT ROUTINES ARE INCLUDED TO PERFORM SUCH
CALCULATIONS AS SIN'S AND COS'S, FORWARD AND INVERSE RESOLUTION,
"SGN" FUNCTION, ETC... ROUTINES WHICH PERFORM GENERAL CALCULATIONS
SUCH AS THESE ARE CONSTANTLY BEING ADDED TO THE MACROFILE LIBRARY
AS THEY PROVE USEFUL IN USER APPLICATIONS. THE CONVENTIONS USED

IN WRITING MACROFILES AND IN PASSING ARGUMENTS TO MACROFILES ARE
VERY SIMPLE, THUS USERS CAN EASILY WRITE THEIR OWN SPECIAL

PURPOSE MACROFILES TO AUGMENT THOSE PROVIDED IN THE LIBRARY.

REFER TO THE MACROFILE LIBRARY USER'S MANUAL (MFLIB) FOR A COMPLETE
DESCRIPTION OF ALL AVAILABLE MACROFILE ROUTINES AND HOW TO USE THEM.

ASM-14

USING MACROFILES

A MACROFILE IS AN AD-10 ASSEMBLY LANGUAGE APPLICATION PROGRAM. IT
CONTAINS ITS OWN COP CONTROL PROGRAM AS WELL AS PROGRAMS FOR ALL AD-10
PROCESSORS REQUIRED TO PERFORM THE DESIRED TASK. ARGUMENTS ARE PASSED
TO AND FROM MACROFILES USING SYMBOLS WHICH BEGIN WITH A "#". THESE "#"
SYMBOLS STAND FOR EITHER A TEMPORARY REGISTER NUMBER, A CONSTANT, OR A
MEMORY ADDRESS. THE ONLY DIFFERENCE BETWEEN A "#" SYMBOL AND AN ORDINARY
SYMBOL IS THAT THE AD-10 ASSEMBLER ALLOWS A SYMBOL WHICH BEGINS WITH "#"
TO BE DEFINED MORE THAN ONCE. THIS ALLOWS THE USER TO CALL THE SAME
MACROFILE MORE THAN ONCE AND TO CHANGE THE ARGUMENTS AS NECESSARY.

IF A MACROFILE ARGUMENT DOES NOT CHANGE FROM ONE CALL TO THE NEXT

IT IS NOT NECESSARY TO DEFINE THAT ARGUMENT MORE THAN ONCE. HOWEVER,

BE AWARE THAT IN SOME CASES THE SAME SYMBOLIC ARGUMENT IS USED BY
SEVERAL MACROFILES.

SINCE BOTH THE AD-10 PROCESSORS AND THE DATA MEMORY REQUIRE PIPELINED
PROGRAMMING TO REALIZE FULL SPEED EFFICIENT OPERATION, MOST MACROFILES
PERFORM THE SAME TASK FOR SEVERAL SETS OF INPUTS. BECAUSE OF THIS, THE
NAMING CONVENTION FOR MACROFILE ARGUMENTS IS TO END EACH ARGUMENT WITH
A NUMBER TO IDENTIFY EACH ARGUMENT SET.

FOR EXAMPLE, SUPPOSE "#IN" IS THE INPUT AND "#OUT" IS THE OUTPUT OF A
MACROFILE CALLED "COMPUTE"™, AND THE CALCULATIONS ARE PERFORMED FOR 3
SETS OF ARGUMENTS. THE FOLLOWING STATEMENTS WOULD BE REQUIRED TO DEFINE
THE 3 SETS OF ARGUMENTS AND TO "CALL"™ THE MACROFILE:

#INO .EQU <VALUE 1>
#INT .EQU <VALUEZ2>
#IN2 .EQU <VALUE3>
#OUTO .EQU <VALUEY4>
#OUT1 .EQU <VALUES5>
#0UT2 .EQU <VALUE6>
. INCLUDE COMPUTE ! "CALLS"™ MACROFILE

THE AD-10 ASSEMBLER'S ".DEFINE"™ DIRECTIVE DOES THE EQUIVALENT OF
MULTIPLE ".EQU" SYMBOL DEFINITIONS AND ALLOWS THE ARGUMENTS TO
MACROFILES TO BE DEFINED MORE SIMPLY AS FOLLOWS :

#IN .DEFINE <VALUE1>,<VALUE2>,<VALUE3>
#OUT .DEFINE <VALUE4>,<VALUE5>,<VALUE6>
.INCLUDE COMPUTE ! "CALLS" MACROFILE

SOME MACROFILES MUST DEFINE THEIR OWN INTERNAL SYMBOLS FOR ADDRESS
CALCULATIONS OR FOR TEMPORARY STORAGE LOCATIONS; WHENEVER A MACROFILE
DOES DEFINE A SYMBOL INTERNALLY, THE SYMBOL ALWAYS BEGINS WITH "##",
THUS INTERNAL SYMBOLS SHOULD NEVER CONFLICT WITH USER SYMBOLS OR OTHER
MACROFILE ARGUMENTS.

ASM-15

USING MACROFILES (CONT.)

—— . ——— ———u = w— —n ——

THE GENERAL FORMAT FOR MACROFILES IN AD-10 ASSEMBLY LANGUAGE NOTATION
IS AS FOLLOWS:

. PROFF !fPRECEDE WITH A ".PRON" TO PRINT CODE
.PROFF ! PRECEDE WITH ANOTHER ".PRON" TO PRINT DESCRIPTION
. PAGE ! STARTING AT THE TOP OF THE NEXT PAGE ’

] ;

! DESCRIPTION QF MACROFILE
1

.PRON
. COP
TRFRREERR AR R AR R RRRRRERRRRRRRRXRRRXR

! COP CONTROL PROGRAM
PR RERRRRRRERRRR AR RN RRRRRRRRRRRRRR XX

! PROGRAMS FOR ANY OTHER PROCESSORS
TRERXXXXXXXRBAXRRFAXFRXREXRRREEREXXXX
.COP
. PRON 1 END OF MACROFILE

THE USER MUST SPECIFY ONE .PRON IN THE PROGRAM PRIOR TO INCLUDING A
MACROFILE FOR THE MACROFILE CODE TO BE PRINTED IN THE PROGRAM LISTING.
A DETAILED DESCRIPTION OF THE MACROFILE AND ITS ARGUMENTS CAN ALSO

BE PRINTED BY USING A SECOND ".PRON", HOWEVER THIS IS NOT RECOMMENDED
SINCE SOME OF THE DESCRIPTIONS ARE QUITE LONG AND THE SAME INFORMATION
IS CONTAINED IN THIS MANUAL. NOTICE THAT MACROFILES END WITH A ".COP"
DIRECTIVE, THUS A MACROFILE CAN BE FOLLOWED WITH COP CODE WITHOUT
ISSUING ANOTHER ".COP" DIRECTIVE.

THERE ARE A FEW RULES WHICH MUST BE FOLLOWED WHEN INCLUDING MACROFILES
TO AVOID CONFLICTS AND ERRONEOUS RESULTS AT RUNTIME

1) UPON ENTRY TO A MACROFILE ALL AD-10 PROCESSORS MUST BE STOPPED
AND MUST NOT BE IN THE MIDDLE OF A "PAUSE"™ INSTRUCTION.
(NOTE: PROCESSOR(S) NOT USED BY A MACROFILE COULD POSSIBLY
BE PROGRAMMED TO PERFORM SOME INTERNAL OPERATIONS IN PARALLEL
WITH THE MACROFILE, BUT THIS IS NOT RECOMMENDED.)

2) ALSO UPON ENTRY A READ FROM MEMORY AND/OR THE IOCC MUST
NOT BE IN PROGRESS, AS THE DATA MIGHT CONFLICT WITH DATA
THE MACROFILE PUTS ON THE MULTIBUS.

3) THE USER SHOULD TAKE CARE PRIOR TO AND/OR FOLLOWING ANY
MACROFILE WHICH ACCESSES DATA MEMORY TO AVOID A MEMORY
PAGE CONFLICT. IF IN DOUBT, A "PAUSE 2" INSTRUCTION PRIOR
.TO AND/OR FOLLOWING SUCH A MACROFILE WILL AVOID ANY POSSI-
BILITY OF A MEMORY PAGE CONFLICT (FOR THE WORST CASE
SITUATION).

4) ALL UNUSED MACROFILE ARGUMENTS MUST BE DEFINED SO AS NOT TO
CONFLICT WITH THE USED ARGUMENTS. FOR EXAMPLE, IF A TRANSFER
MACROFILE IS USED TO TRANSFER 6 VALUES TO MEMORY, WHEN IT
HAS THE CAPABILITY TO TRANSFER 8 VALUES, THE 2 UNUSED MEMORY
ADDRESSES MUST BE DEFINED SUCH THAT THEY DO NOT CAUSE A
MEMORY ACCESS ERROR. THE INDIVIDUAL MACROFILE DESCRIPTIONS
SUGGEST RECOMMENDED DEFINITIONS FOR UNUSED ARGUMENTS.

ASM-16

OPERATING PROCEDURES

ASM IS SUPPLIED AS AN INSTALLED TASK ON THE RSX-11 SYSTEM DEVICE.
ASM IS THEN LOADED AND RUN AS ARE OTHER RSX-11 SYSTEM PROGRAMS, BY
TYPING (IN RESPONSE TO THE MCR PROMPT)

MCR>ASM [<COMMAND STRING)] <CR>
OR, MCR>RUN $ASM <CR>
OR, MCR>RUN ...ASM <CR>

THE COMMAND STRING IS OPTIONAL HERE. IF THE COMMAND STRING IS NOT ENTERED
WITH THE MCR COMMAND, ASM WILL RESPOND WITH ITS OWN PROMPT :

MCR>ASM <CR>
ASM><COMMAND STRING> <CR>

THE GENERAL FORMAT OF THE ASM COMMAND STRING IS DEFINED AS FOLLOWS :

@<FILE SPECIFICATION>
OR, [<OBJECT>],[<KLISTING>]1=<SOURCE>[/<SWITCHES>]

THE FIRST FORM INDICATES THAT THE COMMAND STRING(S) WILL COME FROM THE
SPECIFIED COMMAND FILE. THE SECOND FORM CONSISTS OF THE APPROPRIATE
ASM COMMAND STRING WITH THE OPTIONAL SWITCHES. IF THE INDIRECT COMMAND
FILE FORMAT IS USED ON THE SAME LINE AS THE MCR PROMPT, CONTROL WILL
RETURN TO MCR AFTER PROCESSING THE ASM COMMANDS IN THE FILE :

MCR>ASM @DKO:FILE.CMD;3 <CR>
MCR>

IF THE INDIRECT COMMAND FILE IS SPECIFIED AFTER THE ASM PROMPT, CONTROL
WILL REMAIN WITH ASM FOLLOWING COMMAND FILE PROCESSING :

MCR>ASM <CR>
ASM>@FILE <CR>
ASM>

THE AVAILABLE SWITCHES ARE AS FOLLOWS (DEFAULTS ARE UNDERLINED)

/LI:SRC:SYM:CRF:TIM IDENTIFIES WHAT ITEMS ARE TO BE
------ INCLUDED IN THE LISTING (SOURCE,
SYMBOL TABLE, CROSS REFERENCE,
AND/OR TIMING DIAGRAM).

/NL:SRC:SYM:CRF:TIM IDENTIFIES WHAT ITEMS ARE NOT TO
N BE INCLUDED IN THE LISTING '

/SY:N SETS THE SIZE OF THE SYMBOL TABLE
TO "N" (DECIMAL) (DEFAULT IS 500
SYMBOLS). THE MAXIMUM SIZE IS 1000
SYMBOLS, WITHOUT REBUILDING ASM.

/CR:N SETS THE SIZE OF THE CROSS-REFERENCE
TABLE TO "N" (DECIMAL) (DEFAULT IS 1000).

/NI | . IGNORE ALL ".INCLUDE'S"™ IN THE
| SOURCE CODE. o

ASM-17

OPERATING PROCEDURES (CONT.)

/1D PRINTS THE ASSEMBLER VERSION NUMBER
ON THE CONSOLE TERMINAL.

/PG:N ' SETS THE LISTING SIZE TO "N"™ LINES
PER PAGE (DEFAULT IS 58).

THE DEFAULT SWITCH SETTINGS ARE AS FOLLOWS :
/LI:SRC:SYM /NL:CRF:TIM /SY:500 /CR:1000 /PG:58

THE ASSEMBLER USES A FILE FOR THE SYMBOL TABLE AND ONE FOR THE
CROSS-REFERENCE TABLE. EACH SYMBOL REQUIRES 8 WORDS OF FILESPACE,

AND EACH CROSS-REFERENCE REQUIRES 2 WORDS OF FILESPACE. THE SWITCHES
MAY BE PUT ANYWHERE IN THE COMMAND LINE, BUT A GOOD PRACTICE TO FOLLOW
IS TO PUT /LI, /NL, AND /PG ON THE LISTING FILE; TO PUT /SY, /CR,

AND /NI ON THE SOURCE FILE; AND TO USE /ID AS A SINGLE COMMAND TO ASM.

ASM WILL APPEND THE FOLLOWING DEFAULT EXTENSIONS TO THE FILENAMES, IF
NO EXTENSION IS SPECIFIED BY THE USER

FILE DEFAULT EXTENSION
OBJECT FILE .MOD
LISTING FILE - .LST
SOURCE FILE . ASM

AN EXAMPLE SEQUENCE OF COMMANDS TO ASSEMBLE AND RUN AN AD-10 PROGRAM
IS AS FOLLOWS :

MCR>ASM <CR>
ASM>/7ID <CR>
AD-10 ASSEMBLER ~--- UL107

ASM>TEST,TEST/LI:TIM=TEST/SY:700/NI <CR>

ASM><CONTROL=-Z>

MCR>ADX <CR>

ADX>; NOW THE AD-10 EXECUTIVE CAN BE USED TO RUN THE <CR>
ADX>; OBJECT PROGRAM <CR>

ADX>RUN TEST/MO <CR>

THIS EXAMPLE ASSUMES THAT THE SOURCE CODE IS IN A FILE "TEST.ASM".

THE OBJECT CODE WILL BE PUT INTO A FILE CALLED "TEST.MOD"™ AND THE
LISTING WILL BE PUT INTO ANOTHER FILE CALLED "TEST.LST". THE LISTING
WILL INCLUDE THE SOURCE CODE, THE SYMBOL TABLE, AND A BUS TIMING
DIAGRAM. THE SIZE OF THE SYMBOL TABLE HAS BEEN INCREASED TO 700
SYMBOLS TO ALLOW FOR A LARGER NUMBER OF SYMBOLS, AND ALL ".INCLUDE"
STATEMENTS IN THE SOURCE CODE WILL BE IGNORED. THE /NL SWITCH IS
NORMALLY USED ONLY FOR DEBUGGING THE PROGRAM'S MULTIBUS TIMING (MACRO-
FILES ARE ASSUMED ERROR-FREE ...). THE OBJECT PROGRAM IS THEN

LOADED INTO THE AD-10 AND RUN VIA THE AD-10 EXECUTIVE (ADX).

ASM-18

COMMAND LINE ERROR MESSAGES

ASM -- I/0 ERROR BAD INDIRECT FILE

ASM -~ SYNTAX ERROR COMMAND LINE SYNTAX PROBLEM
ASM -~ INPUT FILE ??7% MISSING INPUT FILESPEC

ASM -- INVALID LIST OPTION /LT : XXX "XXX" IS BAD
ASM -- INVALID NOLIST OPTION /NL: XXX "XXX" IS BAD
ASM -~ INVALID SYMBOL TABLE SIZE /SY:N "N" IS BAD
ASM -- INVALID CROSS-REFERENCE SIZE /CR:N "N" IS BAD
ASM -~ INVALID PAGE SIZE /PG:N "N" IS BAD

THE FOLLOWING MESSAGES SHOULD NEVER APPEAR. THEY INDICATE THAT SOMETHING
IS WRONG WITH THE ASSEMBLER OR WITH THE FILE SYSTEM

ASM -- STACK OVERFLOW - PASS 7

ASM -- TOKENS DO NOT MATCH <TT7> <T1> <STMT>

ASM-19

LISTING ERROR MESSAGES

ALL OF THE APPROPRIATE ERROR MESSAGES WILL BE PRINTED ON THE FIRST PAGE
OF THE ASSEMBLY LISTING. IF NONE ARE PRINTED, NO ERRORS WERE DETECTED.
THE STATEMENT(S) IN THE LISTING WITH ERRORS WILL ALSO BE FLAGGED WITH
AN "E"™ NEXT TO THE STATEMENT NUMBER ON THE LISTING.

101 ** STACK OVERFLOW -- CHECKING ABORTED

102 TOO MANY INCLUDES

103 ILLEGAL CHARACTER IN OCTAL FIELD
104 NO PRODUCTION APPLICABLE (SYNTAX)
105 ILLEGAL CHARACTER

106 - STRING NOT TERMINATED BY '

107 ILLEGAL CONSTANT

108 CONSTANT NOT TERMINATED BY '

109 ILLEGAL SYMBOL PAIR (SYNTAX)

201 SYMBOL TOO LONG TO DEFINE

202 DUPLICATE SYMBOL

203 ¥ SYMBOL TABLE OVERFLOW / OH DARN !
204 ** STACK OVERFLOW - PASS 2
205 ** CROSS REFERENCE TABLE OVERFLOW

301 ** STACK OVERFLOW - PASS 3

302 INVALID MICRO-INSTRUCTION IN COP

303 COP INSTRUCTION HAS INVALID OPERAND(S)
304 INVALID MICRO-INSTRUCTION IN DEP

305 DEP INSTRUCTION HAS INVALID OPERAND(S)
306 INVALID MICRO-INSTRUCTION IN ARP

307 INVALID TA STATEMENT IN ARP

308 INVALID ARP EXPRESSION

309 ARP MOV HAS INVALID OPERAND(S)

310 EXPRESSION LIST TOO LONG

311 SYMBOL NOT DEFINED

312 PAGE ADDRESS OUT OF RANGE

313 WORD ADDRESS OUT OF RANGE

314 MAP STATEMENT HAS INVALID OPERAND(S)
315 INVALID PAUSE COUNT

316 INVALID SCRATCH REGISTER

401 ILLEGAL PROCESSOR FOR TIMING

402 ILLEGAL NON-LINEAR COP CODE

403 PROCESSORS ACTIVE AT JUMP

404 *¥ STACK OVERFLOW - PASS 4

501 ¥** STACK OVERFLOW - PASS 5
502 INSTRUCTION NOT USED IN TIMING

¥ TOO MANY SYMBOLS : INCREASE SYMBOL TABLE SIZE (RE-ASSEMBLE
' ' USING "/SY:N" SWITCH, WITH 500<N<=1000)

¥* THESE ERROR MESSAGES SHOULD NEVER BE SEEN !

ASM-20

TIMING DIAGRAM ERROR MESSAGES

THE FOLLOWING MNEMONIC ERROR MESSAGES ARE PRINTED IN THE 'COMMENTS'
COLUMN OF THE MULTIBUS TIMING DIAGRAM, AND INDICATE POSSIBLE PROGRAMMING
ERRORS. IN SOME INSTANCES (SEE THE FIRST COP INSTRUCTION IN THE EXAMPLE
PROGRAM AT THE END OF THIS MANUAL) A TIMING ERROR WON'T REALLY EXIST
BECAUSE OF THE WAY IN WHICH A PARTICULAR INSTRUCTION HAS BEEN USED :

DCF DATA CONTENTION DURING FIRST MULTIBUS CYCLE

DCS DATA CONTENTION DURING SECOND MULTIBUS CYCLE
ACF 'ADDRESS CONTENTION DURING FIRST MULTIBUS CYCLE
ACS ADDRESS CONTENTION DURING SECOND MULTIBUS CYCLE

NSOF NO SOURCE DURING FIRST MULTIBUS CYCLE
NSOS NO SOURCE DURING SECOND MULTIBUS CYCLE
NSIF NO SINK DURING FIRST MULTIBUS CYCLE
NSIS NO SINK DURING SECOND MULTIBUS CYCLE

NOTE : THE TERM "SOURCE"™ REFERS TO AN INSTRUCTION WHICH
———— PUTS A DATA VALUE OR AN ADDRESS VALUE ONTO THE
MULTIBUS.

THE TERM "SINK" REFERS TO AN INSTRUCTION WHICH TAKES
A DATA VALUE OR ADDRESS VALUE OFF OF THE MULTIBUS.

ASM-21

LISTING AND TIMING DIAGRAM FORMATS

THE FOLLOWING DIAGRAMS INDICATE THE FORMAT OF THE 132-COLUMN ASSEMBLER
LISTING, INCLUDING THE SOURCE AND OBJECT LISTING, THE MULTIBUS TIMING
DIAGRAMS (BOTH DATA AND ADDRESS), AND THE SYMBOL TABLE AND CROSS-REFER-
ENCES. THE "/LI:TIM"™ SWITCH MUST BE SPECIFIED TO GET THE TIMING

INFORMATION, AND THE "/LI:CRF" SWITCH MUST BE SPECIFIED TO GET THE
CROSS-REFERENCE INFORMATION.

e e o 132 COLUMNS =mm-mmmmmmmmmommmmmmemmeeme >
USER-DEFINED PROGRAM TITLE ASM VERSION DATE TIME PAGE
LOCATION OBJECT CODE LINE # SOURCE STATEMENTS

oooooooooooooooooooooooooooooooo

. . .
ooo

DATA/ADDR MULTIBUS TIMING INFORMATION ASM VERSION DATE TIME PAGE

CURRENT

STATEMENT 1ST SOURCE 1ST SINK 2ND SOURCE 2ND SINK
FOR EACH FOR EACH FOR EACH FOR EACH FOR EACH
TIME PROCESSOR PROCESSOR PROCESSOR PROCESSOR PROCESSOR COMMENTS

oo

. - .
oo

SYMBOL TABLE ASM VERSION DATE TIME PAGE
PROCESSOR STATEMENT
WHERE NUMBER OF ALL REFERENCES

SYMBOL VALUE DEFINED DEFINITION TO THE SYMBOL (/LI:CRF OPTION)

oooooooooooooooooooo

.
oo

OBJECT MODULE FORMAT

THE OBJECT MODULE IS IN A FORMAT WHICH ALLOWS IT TO BE LOADED INTO THE
AD-10 BY THE AD-10 EXECUTIVE PROGRAM (ADX). THE FORMAT IS AS FOLLOWS :

1. A HEADER, FOLLOWED BY
2. THE CODE (INSTRUCTIONS OR DATA), FOLLOWED BY
3. OTHER HEADER/CODE MODULES (IF MORE THAN ONE PROGRAM
SECTION WAS SPECIFIED IN THE ASSEMBLY), FOLLOWED BY
4. < END>.
THE HEADER FORMAT TAKES TWO FORMS :

1. FOR A PROCESSOR PROGRAM SECTION THE HEADER IS
<PROCESSOR> <STARTING LOCATION> <NUMBER OF LOCATIONS>
WHERE, <PROCESSOR> = < ARP>, < COP>, < DEP>, < MAP>
<STARTING LOCATION> = 0-1777
<NUMBER OF LOCATIONS> = 0-2000
2. FOR A DATA MEMORY SECTION THE HEADER IS
< DAT> <PAGE> <STARTING LOCATION> <NUMBER OF LOCATIONS>
WHERE, <PAGE> = 0-77
<STARTING LOCATION> = 0=T777
<NUMBER OF LOCATIONS> = 0-10000
THE FORTRAN FORMAT WHICH IS USED TO WRITE BOTH HEADERS IS AS FOLLOWS :
FORMAT (A4, 4X,06,1X,06,1X,06)

THE OCTAL CODE FOLLOWS THE HEADER, ORGANIZED AS 10 DATA VALUES PER
LINE AS FOLLOWS :

<HT1> <#2> <K#3> <#U> LK#BE> LK#6> K#T> <#8> <K#9> <#10>
<H11> <#F12> ... <#ND

NOTE : EACH DATA VALUE WILL REPRESENT ONE 16-BIT FIELD OF A PROCESSOR
-———— INSTRUCTION, OR ONE 16-BIT DATA MEMORY WORD.

THE FORTRAN FORMAT WHICH IS USED TO WRITE THE DATA VALUES IS
FORMAT (10(1X,06))

A SAMPLE PROGRAM OBJECT MODULE IS AS FOLLOWS :

COP 0 21
22 210 6 10401 0 4oo040 22 400 0 40020
0 10401 0 130002 0 4oo040 0 10401 0 10401
0 10401 0 40020 10 10401 0 30005 0 10400
0 130000 0 20000
ARP 0 10
0 130200 0 0 0 0 110000 0 0 0
0 0 0 0 0 106 0 0 0 0
0 0 0 0 60400 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
END

ASM-23

AN EXAMPLE ASSEMBLER PROGRAM

THE EXAMPLE AD-10 PROGRAM ON THE FOLLOWING PAGES SHOULD
HELP TO CLARIFY THE INFORMATION WHICH HAS BEEN PRESENTED

IN THIS MANUAL. AT THE END OF THE DISCUSSION IS PRESENTED
THE SEQUENCE OF COMMANDS TO ASM WHICH WERE USED TO ASSEMBLE
THE SOURCE FILE FOR THIS PROGRAM, THE LISTING OF WHICH IS
INCLUDED. FOLLOWING THE SOURCE LISTING IS THE OUTPUT OF
THE ASSEMBLER. FOLLOWING THE LISTING OUTPUT OF THE
ASSEMBLER IS A COPY OF THE OBJECT MODULE WHICH WAS
GENERATED FOR THIS PROGRAM.

PROGRAM DESCRIPTION

THIS AD-10 PROGRAM (SINE.ASM) READS AN INPUT VALUE FROM ADC CHANNEL O
AND USES THIS VALUE TO DETERMINE THE DATA MEMORY LOCATIONS TO USE

FOR DOING A TABLE-LOOKUP IN A TABLE OF FUNCTION DATA VALUES FOR THE
FUNCTION SIN(X). THE TABLE OF DATA VALUES MAY BE CREATED BY THE
FOLLOWING FORTRAN PROGRAM :

C SIN.FTN
c
C PROGRAM TO CREATE A FUNCTION DATA FILE
C (SIN.DAT) FOR THE FUNCTION Y=SIN(X)
c
CALL ASSIGN (1,'SIN.DAT',T7)
DEFINE FILE 1 (513,2,U,IREC)
c
DO 100 I=1,513
Y= SIN (((I-257)/256.) * 3.14159)
WRITE (1'I) Y
100 CONTINUE
c

CALL CLOSE(1)
END

THIS FORTRAN PROGRAM CREATES A DATA FILE (SIN.DAT) WHICH CONTAINS
513 FUNCTION DATA VALUES FROM SIN(-PI) TO SIN(+PI), AND WHICH MAY
BE LOADED INTO THE AD-10 DATA MEMORY VIA ADX. THE AD-10 PROGRAM
WILL CALCULATE A BREAKPOINT VALUE TO USE AS AN INDEX INTO THIS TA-
BLE BASED UPON THE VALUE IT READS FROM THE ADC (-1.0 TO +1.0). IT
WILL THEN INTERPOLATE BETWEEN FUNCTION VALUES TO CALCULATE THE OUT-
PUT VALUE FOR THE CURRENT ADC INPUT. THIS FUNCTION VALUE IS THEN
SENT TO DAC CHANNEL 8 (OCTAL 010). THE DAC WILL BE UPDATED TO

A NEW VALUE EVERY 12.5 MICROSECONDS, AS THIS IS THE TIME RE-
QUIRED FOR A COMPLETE PROGRAM LOOP. THUS, WHEN A (-1.0 TO +1.0)
RAMP FUNCTION IS INPUT TO THE ADC, A SINEWAVE FUNCTION WILL BE
GENERATED AT THE DAC'S OUTPUT.

THE FOLLOWING PAGE CONTAINS A BRIEF DISCUSSION OF THIS PROGRAM.

ASM-24

AN EXAMPLE ASSEMBLER PROGRAM (CONT.)
AS YOU STUDY THIS EXAMPLE, THERE ARE SEVERAL COMMENTS WHICH CAN BE
MADE REGARDING THIS PROGRAM AND AD-10 PROGRAMMING TECHNIQUES IN- GENERAL.
THE PROGRAM BEGINS WITH A HEADER, BRIEFLY DESCRIBING THE ALGORITHM.
FOLLOWING THE HEADER IS THE SYMBOL DEFINITION SECTION. NOTICE THAT
ALL NUMERIC CONSTANTS WILL BE INTERPRETED AS DECIMAL NUMBERS. BECAUSE
NO PROGRAM SECTION DIRECTIVE IS GIVEN, THESE SYMBOLS WILL APPEAR IN
THE "DAT" PROGRAM SECTION IN THE SYMBOL TABLE LISTING, SINCE ".DAT" IS
THE DEFAULT PROGRAM SECTION. SINCE THE COP IS THE PROCESSOR WHICH
USUALLY CONTROLS THE OTHER PROCESSORS, IT IS A GOOD IDEA TO ALWAYS MAKE
".COP"™ THE FIRST PROGRAM SECTION AFTER THE DATA MEMORY SECTION. EXCEPT
FOR PROVIDING CONSISTENCY FROM PROGRAM TO PROGRAM, THE ORDER OF THE
PROGRAM SECTIONS IS NOT IMPORTANT (BE AWARE THAT UPON RETURNING FROM
A MACROFILE THE PROGRAM SECTION WILL BE ".COP").

NOTICE THE USE OF COMMENTS IN THIS PROGRAM. NOT ONLY DO THEY DESCRIBE
WHAT THE INSTRUCTIONS ARE DOING, BUT THEY ALSO INCLUDE PRECALCULATED
TIMING INFORMATION. YOU MUST CALCULATE THIS INFORMATION IN ORDER TO
INSURE THAT THE PROCESSORS WILL COMMUNICATE WITH EACH OTHER AT THE
CORRECT TIMES, SO INCLUDE IT IN THE SOURCE CODE AS COMMENTS. IF YOU
HAVE MISCALCULATED THE TIMING SOMEWHERE, A COMPARISON OF THESE EX-
PECTED TIMES (WHICH ARE INSTRUCTION CYCLES, UNITS OF 100 NSEC) WITH

THE TIMES ON THE ADDRESS OR DATA MULTIBUS TIMING DIAGRAMS WILL QUICKLY
LOCATE THE ERROR.

NOTICE HOW THE PROCESSORS INTERACT IN THIS PROGRAM. AFTER THE INITIAL

10 MICROSECOND DELAY (6.4 MICROSEC FROM THE PAUSE INSTRUCTION, AND 3.6
MICROSEC FROM THE RFR INSTRUCTION AND ITS DELAY), THE COP TELLS THE

I0CC TO PUT THE ADC VALUE ONTO THE MULTIBUS. THE DATA IS NOT PRESENT ON
THE BUS FOR 5 MORE INSTRUCTION CYCLES, AT WHICH TIME THE ARP SINKS IT

TO USE IN ITS CALCULATION OF THE FUNCTION VALUE INDEX. NOTICE HOW THE

DEP ALSO SENDS CONSTANTS TO THE ARP AT THE APPROPRIATE TIMES FOR USE IN
THE ARP'S INDEX CALCULATION, AND SEE HOW THE ARP RETURNS THE INDEX VALUE
TO THE DEP SO THAT IT MAY BE PUT INTO THE MAP/DEP "I" REGISTER AND USED
BY THE MAP TO READ THE APPROPRIATE FUNCTION VALUE. AFTER THE 5 CYCLE DELAY
TO READ THE PAIR OF VALUES FROM DATA MEMORY, THE ARP WILL SINK THE VALUES
FROM THE MULTIBUS. THE ARP WILL THEN SOURCE THE FUNCTION VALUE ONTO THE
MULTIBUS AT THE APPROPRIATE TIME SO THAT IT WILL BE THERE WHEN THE COP
TELLS THE IOCC TO WRITE THE VALUE ON THE MULTIBUS TO DAC CHANNEL 010.

THE ASSEMBLER'S DATA MULTIBUS TIMING DIAGRAM FOR THIS PROGRAM SHOWS AN
"NSOF", OR "NO SOURCE DURING FIRST MULTIBUS CYCLE"™, ERROR OCCURRING

ON THE INITIAL COP STATEMENT (PFI 3,ADC). THIS, HOWEVER, IS NOT REALLY
AN ERROR CONDITION HERE, BECAUSE THIS PFI INSTRUCTION IS NOT INTENDED
TO TELL THE IOCC TO TAKE THE DATA OFF OF THE MULTIBUS, BUT MERELY TO
SEND THE COMMAND WHICH INITIATES ADC CONVERSION.

THE FOLLOWING COMMANDS WERE USED TO CREATE THE SINE FUNCTION DATA (THE
FORTRAN PROGRAM WAS IN FILE SIN.FTN), ASSEMBLE SINE.ASM, AND LOAD AND
RUN THE PROGRAM :

MCR>FOR SIN,SIN=SIN <CR>

MCR>TKB SIN,SIN/SH=SIN <CR>

MCR>RUN SIN <CR>

TTO -- STOP

MCR>ASM SINE,SINE/LI:TIM:CRF/PG:60=SINE <CR>
MCR>ADX LOAD SIN.DAT/AL:0:0 <CR>

MCR>ADX RUN SINE/MO <CR>

MCR>

ASM-25

AD-10 SINEWAVE PROGRAM (SINE.ASM)

!

!

! 1) READS "X" FROM AN ADC CHANNEL.

! 2) PERFORMS A SHIFT SEARCH AND DELTA CALCULATION ON "X",

! 3) INTERPOLATES FOR A ONE VARIABLE FUNCTION SIN(X).

! U4) SETS DAC = SIN(X)

E 5) REPEATS STEPS 1) THROUGH 4) EVERY 12. 5 MICRO-SECONDS.
.DECIMAL CONSTANTS WILL BE DECIMAL NUMBERS.

ADC .EQU 0 ! USE ADC CHANNEL O

DAC .EQU 8 ! USE DAC CHANNEL 8

NBPS .EQU 513 NUMBER OF BREAKPOINTS FOR SINE FUNCTION.

!
]
!
!
T - .DEFINE 0,1,2 ! ARP TEMPORARY REGISTERS.
!
!
!

X .EQU 3 ARP REGISTER FOR INPUT VARIABLE "X".
I LEQU 0 MAP/DEP BREAKPOINT INDEX REGISTER.
SIN .EQU 0::0 DATA MEMORY ADDRESS OF SINE FUNCTION DATA.
]
.COP
BEGIN PFI 3, ADC '0 . INITIATE ADC CONVERSION.
PAUSE 63 o WAIT 10 MICRO-SECONDS
RFR 165 FOR CONVERSION TO COMPLETE.
GIF 2,ADC 1101 READ CONVERTED VALUE.
NOP 1102
START $DEP 1103
START $ARP ' 1104
PAUSE 3 1105
START ¢$MAP ; STOP $DEP 1109
NOP 1110
STOP $MAP 1111
PAUSE 5 1112
PF1I 3,DAC 1118 SET DAC = SIN(X)
STOP $ARP 1119
HLT 0 1120 HALT (MAYBE).
LPC $DEP, 0 1121 RESET PROGRAM COUNTERS.
LPC $MAP, O 1122
LPC $ARP, 0 1123 '
JMP BEGIN 1124 GO DO IT AGAIN...
9
.DEP
LSI 32768/(NBPS-1) 1104 SEND CONSTANTS FOR
LSI (NBPS-1)/2 1105 SHIFT SEARCH AND DELTA
LSI 32768/ ((NBPS-1)/2) ; PAUSE 2 !106 CALCULATION IN ARP.
SIS I 1109 STORE BP INDEX.
] -
.MAP ,
RAID SIN,I ; PAUSE 1 1110 READ FUNCTION VALUES.
1
.ARP
MOVO : MOV ; MOV2 S,B,R ; MOV3 R,TO 1105
MOVO S,A,R ; MOV1 R,X ; MoOv2 s,C,D,R;MOV3 R,T1 1106
FA (A-B)¥*C+D; MOVO ;. MOV1 ; MOV2 S,R ; MOV3 R,T2 1107
MOVO T1,B ; MOV1 T2,C ; MOV2 ; MOV3 R,A,L 1108
IA (A-B)*C ; MOVO ; MOV1 ; MOV2 ; MOV3 1109
MOVO T1,C ; MOV1 X,A ; MOv2 ; MOV3 R,B 1110
IA (A-B)*C ; MOVO ; MOV ; MOV2 ; MOV3 1111
MOVO 5 MOV1 ; MOV3 R,C ; PAUSE 2 1112
MOVO S,B,D ; MOV1 ; MOV2 S,A ; MOV3 1115
FA (A-B)¥C+D; MOVO ; MOV1 : MOV2 ; MOV3 1116
MOVO : MOV1 ;. MOov2 ; MOV3 1117
MOVO ; MOV1 R,L 5 MOv2 ; PAUSE 1 1118
.END

ASM-26

LE-WSY

AD-10 ASSEMBLER =--- UL107 13-JUL-77 09:50:59 PAGE 1

LOCATION OBJECT CODE : , LINE# SOURCE STATEMENT
1 1 AD-10 SINEWAVE PROGRAM (SINE.ASM)
21
31 13 READS nx" FROM AN ADC CHANNEL,
§ 1t 2) PERFORMS A SHIFT SEARCH AND DELTA CALCULATION ON "X".
5 1 3) INTERPOLATES FOR A ONE VARIABLE FUNCTION SIN(X).
6 ! 4) SETS DAC = SIN(X)
7 1 5) REPEATS STEPS 1) THROUGH %) EVERY 12.5 MICRO-SECONDS.
8 !
9 .DECIMAL ! CONSTANTS WILL BE DECIMAL NUMBERS.
0000000 10 ADC .EQU 0 ! USE ADC CHANNEL 0
0000010 11 DAC .EQU 8 ! USE DAC CHANNEL 8
0001001 12 NBPS .EQU 513 ! NUMBER OF BREAKPOINTS FOR SINE FUNCTION.
13T .DEFINE 0,1,2 ! ARP TEMPORARY REGISTERS.
0000003 1 X JEQU 3 ! ARP REGISTER FOR INPUT VARIABLE "X",
0000000 15 1 LEQU 0 ! MAP/DEP BREAKPOINT INDEX REGISTER.
0000000 16 SIN .EQU 0::0 ! DATA MEMORY ADDRESS OF SINE FUNCTION DATA.
17 1
18 .COP
00006000 000000 100600 19 BEGIN PFI 3, ADC 10 INITIATE ADC CONVERSION.
0000001 000000 000077 20 PAUSE 63 N WAIT 10 MICRO-SECONDS
0000002 000000 011400 21 RFR 165 FOR CONVERSION TO COMPLETE.
0000003 000000 106400 22 GIF 2, ADC 1101 READ CONVERTED VALUE.
0000004 000000 000000 23 NOP 1102
0000005 000000 040010 24 START $DEP 1103
0000006 000000 040040 25 START $ARP 1104
10000007 000000 000003 26 PAUSE 3 1105
0000010 000000 040006 27 START $MAP ; STOP $DEP 1109
0000011 000000 000000 28 NOP 1110
0000012 000060 040001 29 STOP $MAP 1111
0000013 000000 000005 30 PAUSE 5 1112
0000014 000000 100610 31 PFI 3,DAC 1118 SET DAC = SIN(X)
0000015 000000 040020 32 STOP $ARP 119 _
0000016 000000 010400 33 HLT 0 1120, HALT (MAYBE).
0000017 000000 120000 34 LPC $DEP, 0 1121 RESET PROGRAM COUNTERS.
0000020 000000 110000 35 LPC $MAP, O 1122
0000021 000000 130000 36 LPC $ARP, 0 1123
0000022 000000 020000 37 JMP BEGIN 112} GO DO IT AGAIN...
) 38 ! .
39 .DEP
0000000 140001 000100 40 LSI 32768/ (NBPS-1) 1104 SEND CONSTANTS FOR
0000001 140001 000400 41 LSI (NBPS-1)/2 1105 SHIFT SEARCH AND DELTA
0000002 142001 000200 42 LSI 32768/((NBPS-1)/2) ; PAUSE 2 1106 CALCULATION IN ARP.
0000003~ 000000 003400 43 SIS 1 1109 STORE BP INDEX.
yy
45 . MAP
0000000 000071 000000 000000 46 RAID ~SIN,I ; PAUSE 1 £110 READ FUNCTION VALUES.
47 1
48 . ARP
0000000 000000 00C0D0 000000 110200 040200 19 MOVO ; MOV ; MOV2 S,B,R ; MOV3 R,TO 1105
0000001 000000 120200 040203 106200 040207 50 MOVO S,A,R ; MOV1 R,X ; MOV2 S,C,D,R;MOV3 R,T1 1106
0000002 000236 000000 000000 100200 040202 51 FA (A-B)¥C+D; MOVO i MOV1 ; MOV2 S,R ; MOV3 R,T2 1107
0000003 000000 150001 144002 000000 060400 52 MOVO T1,B ; MOVi T2,C ; MOV2 ; MOV3 R,A,L 1108
0000004 003036 000000 000000 000000 000000 53 IA (A-B)*C ; MOVO ; MOV1 ; Mov2 ; MOV3 1109
0000005 000000 144001 160003 000000 050000 54 MOVO T1,C ; MOV1 X,A ; MOV2 ; MOV3 R,B 1110
0000006 003036 000000 000000 000000 000000 55 IA (A-B)*C ; MOVO ; MoV ; MOv2 ; MOV3 1111
0000007 020000 600000 000000 000000 044000 56 MOVO i MOV1 ; MOV3 R,C ; PAUSE 2 1112

82-WSY

LOCATION

0000010
0000011
0000012
0000013

OBJECT CODE

000000 112000 000000 120000 000000
000236 000000 000000 000000 000000
000000 000000 000000 000000 000000
010000 000000 040400 000000 000000

AD-10 ASSEMBLER

LINE# SOURCE STATEMENT

57
58
59
60
61

FA (A-B)*C+

.END

MOVO S,B,D
D; MOVO

MOVO

MOVO

’
’
’
]

--- UL107

MOV1
MOV 1
MOV1
MOV1 R,L

13-JUL-77

MOV2 S, A
MOV2
MovV2
MOV2

09:50:59

’
?

I

MOV3
MOV3
MOV3
PAUSE 1

PAGE

2

1115
1116
117
1118

3

PAGE

09:50:59

SECOND SINK

13-JUL-77

AD-10 ASSEMBLER =--- UL107

DATA MULTIBUS TIMING INFORMATION

SECOND SOURCE
COP MAP DEP

FIRST SINK

COP MAP

FIRST SOURCE

COP MAP

CURRENT STMT
COP MAP DEP

DEP ARP ! COMMENT(S)

MAP

Ccop

ARP !

ARP

DEP

DEP ARP

!
4

ARP

TIME !

NSOF

e mms e Eme eme @me Gme eme mee Gy Gme Gms emt M gt Bms Gme Gnp Gme @0 Gmt @m0 Gmd Gnr SO Ses @me Weo

000000090100000007000000000
T 1N w0

OO0 O0OODOO0OO0OOOCOMOOOODOCOO0OODODOODODOOOO
=

[ejeoloNolojoojooojoleoRojololofoofoojoJoloRoRo o]

efejolojojofojojojojolojojojeJojlofojolojojololojoNo e

o e @i eme Bme ame Bme Gmi mb Gmi Rl Mes Gmi GRS Grd Gme Smi my Ems 0 GRS @0 Eee Ges Mme Gme Gme Sms

[eJoReoRoRoRoloRolojoolifolefooloolofoNoloNeNoNoNoNo)
wn
OO0 OQCOO~TNOOOOODODOOQOOOOOCOOO0
= 3
QOO COOCODOODODOOOO0OOVWOOOOCOOOO0O

=

[eeoRejojojofoRojojasjojolojofooofoofoRoloNololoNo e

4 @mt ems Gmp mme et e s @ne ERe Gme me En Gme met Gme @RS mes Gee Mo Mes @ee W @ee Sme W eme ame

[eleojolofoNolojojojoojoloooololodelololoNoNeoRoRo
w w

[eJoRoloNololojolojojojofolooolooRooRojlooRoRoNo ol

[eNeNeolleloNoRoleololeNoNolaga Yol el a el RNl NN i)

(el JeojoloNofoloo oo oo loRa v oo loRaNo koo Ro o Neo Ko
. - (28]

o mme i eme eme s Gme ems Gme Gms Bme Gme Ges mee @mt Gre et wme Gme S Ame Gme G=¢ Gme @=s @m0 @m0 4ms

[eJoRoooojolojolojoolololooNofololojoloolaNo NN el
e

[ejeojolofolofojolojoojololofeofolofoojoNooNe oo No)

[*FejoNoloNolojeololofoloNololoRollc o oo o oo oo Ra)

=

COO0OO0COOOONODODOOOODOOOOOOOOOOO
o

o @ne mme me @me mme Gme mme Gmt Eee Gre me Hmt Sms Gme Gne BRI Gms Gme MNY @ne Gme Gms Gme Gme @me e e

COO0OQOQOOONO—ANIMINOVOO~-VNOOOOCOOOO
YO Rt NTaRTaRTaNTo e [faRTaRToRte)]

200“000000000000000
=

ASM-29

u

PAGE

13-JUL-TT 09:50:59

AD-10 ASSEMBLER --- UL107

ADDRESS MULTIBUS TIMING INFORMATION

SECOND SINK

SECOND SOURCE
COP MAP DEP

FIRST SINK

COP MAP DEP

FIRST SOURCE

CURRENT STMT

COMMENT (3)

MAP DEP ARP

' COP

ARP

ARP

1
H

MAP DEP ARP ! COP MAP DEP ARP

COP

TIME !

ame e Gms Gms ams ems Gme mea mme Bme Gne e @rs mes Gms Gne b Gmi Ml @mt Sml @mt @me mmt Gmt e s e

[sjeojojojojoojojafojojojofojojojeooolojoojoleloNa]

[eNeololojoNoRoNolaooloololooolojooloojoNoojeoNo]

COO0OO00O0O0OO0OODVDOOOVWOOOODODDOOODOOOOO
=g

[sjeleloloRololofolojololoolololooloNolloo o oo o Ne)

e e Bmb et wme ey Eme ame eme Gvs me Gmi mme Gvs aws ==t met Ems mmd Bme mmt Gmd Sme Gms Gme e Sme e

[ejoNeojajojoNololoojooloNolojolojolojolololoNojofoNe)]

[ejoojojeololololvliaojololoojololoofooloololofojoNe]

OO0 ODO0OOQOCOOOWODODOOODOOOOODOOOO
=

[sjajeolojolslololololololofojoNoleoloNoolofo oo oo Ne]

. s mme ams mee my Gms mme Wt e et e mm Gme mme s e B Bes e e el ame ame e ame eme mms

000000050000000000000020006
[eV) o ™M

[ojojojoNoRob JololololololeoloNaolloJojojlelofoloNo ks ool
[QV] N ™

=

(o)}

[aV)

QOO OCONODOODOODODOOOOOOCODOODO-—0O0O0ODOOO
— a

™

Ome Gme Gmt Gme Gme Gmp ERE Gms Bmi e R Bme Gn0 Sme Gme Gme @R ENe @m0 SRC @ne MRS me Gne S0 @b s Eme

[ejololooloNololoecloololojoolooofolojoloNoRojloNe)
[eNeojoRoNolsRoleolooloRoloNoololojojololajofoNoioloNe)]

[eNoNojoRoolofoNoNololoNoliteJolo oo oo o looNoNoloNe
' =

090020”50000709000000
— N [aVH eV} N o

s e ame e ams mee Gmt ems e ame Gmt mme Wt eme mme Gms Me mes mme Gme Sme Gmt mms eme emt ewi e m-s

QO QOO0OO0O O ~(NMITINOVOO-0ANDODOOOOOO
I Ta N IoNTaNToRToNTo R} [TaRTeRTaRNe}

000000012003000000000000000
= = = =

[eNoNojojolojololojolololcfoNolooRoloojojoooNoNe o]
=

ASM-30

LE=WSY

SYMBOL TABLE

SYMBOL

ADC
BEGIN
DAC

I
NBPS
SIN
TO

T1

T2

X

VALUE

0000000
0000000
0000010
0000000
0001001
0000000
6000000
0000001
0000002
00000603

PROC

DAT
cop
DAT
DAT
DAT
DAT

DAT

DAT
DAT
DAT

STMT REFERENCES

10
19
11
15
12
16
13
13
13
14

19
37
31
43
40
46
49
50
51
50

22

46
LA

52
52
54

42

54

AD-10 ASSEMBLER --- UL107

13-JUL-T7

09:50:59

PAGE

5

THIS IS A LISTING OF THE LOAD MODULE (SINE.MOD) FOR THIS PROGRAM

COP 0 23
0 100600 0 7 0 11400 0 106400 0 0
0 40010 0 40040 0 3 0 40006 0 0
0 40001 0 5 0 100610 0 40020 0 10400
0 120000 0 110000 0 130000 0 20000
MAP 0 1
11 -0 0
DEP 0 4y
140001 100 140001 400 142001 200 0 3400
ARP 0 14
0 0 0 110200 40200 0 120200 40203 106200 40201
236 0 0 100200 40202 0 150001 144002 0 60400
3036 0 0 0 0 0 144001 160003 0 50000
3036 0 0 0 0 20000 0 0 0 44000
0 112000 0 120000 0 236 0 0 0 0
0 0 0 0 0 10000 0 4ou00 0 0
END

ASM-32

DDDDDDDD ITIII
DDDDDDDDDD IIIII
DDDDDDDDDDD III
DDDDDDDDDDDD III
DDDDDDDDDDDD III
DDDDDDDDDDDD - ITI
DDDDDDDDDDD ~ III
DDDDDDDDDD

-DDDDDDDD ITIII

TITIT

A
AAA
AAAAA
AAAAAAA
AAAAAAAAA
AAAAAAAAAAA
AAAAAAAAAAAAA
AAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAA

GGGGG
GGGGGGGGG
GGGGGGGGGGG

GGGGG

GGGGG GGGGG

GGGGG GGGGG

GGGGGGGGGGG

GGGGGGGGG
GGGGG

THE
AD-10
DIAGNOSTIC

PACKAGE

TABLE OF CONTENTS ' ‘ PAGE

INTRODUCTION '« s e e aeeenneeenneeenneeeneeaneeennseenneens 3
XXDP OVERVIEW evvuvunrvnnrennnnn. it ee e i
PROGRAM NAMING CONVENTIONS +vvvvunvenennennnennn. R .5
OPERATING PROCEDURES .+ uvvvvunevnnneenneenneeenneennneen 5-8
SWITCH SETTINGS e e 5
RUNNING AN XXDP PROGRAM e ienenneanens 6
SIGNIFICANT CORE LOCATIONS vovuvevnneeenneennnns 7
ERROR REPORTING «vvvevevmnneernneeennnneeannnens 8
EXECUTION TIMES «uvvvvuneennnennneanneeennenns .. 8
DATA MEMORY DIAGNOSTICS +..ve.... e e 9-13
MEO1T 17 BIT ROTATE TEST “vvernneneennnnnn. .. 9
MEO2 =~ ALTERNATING PATTERN TEST +........ e 10
MEO3 MARCHING PATTERN TEST +uvveeruennneennnn. 10
MEO5 ~ GALLOPING PATTERN TEST wvveerunnneennnn. 11
ME23 PARITY TEST wvvvnvunnneennneeennnneeannns 12
ME30 PROCESSOR TEMPORARY REGISTER TEST 13
ARP DIAGNOSTICS +uuvvevneennneennneenneenneeonnennn. cee. 13-10
ARO6 PM INCREMENTING PATTERN TEST +uvvvennn.. 13
ART4 DATA PATH TEST t'vuurennrennneennneennns 154
AR15 ARITHMETIC FUNCTION TEST tuvuvennnennnn. 14
COP DIAGNOSTICS +uuuvennnn.. e 15-17
CO11 PM INCREMENTING PATTERN TEST ...evvonn.. 15
co21 INSTRUCTION TEST, LOAD IMMEDIATE 15
C022 CONDITION BIT TEST et 16
CO24 GENERAL REGISTER TEST ..veevn.. e . 16
C025 HALTO AND HALT1 TEST R T
CO26 PC AND RUN TEST 4uvvvuneenneennneennenens 17
DEP DIAGNOSTICS v vevvneeenneeennesnneannesanneenneenn. 18-20
DEO8 PM INCREMENTING PATTERN TEST +.evvennn.. 18
DE17 X AND I REGISTER TESTS wueeveunnnnn. vev.. 19
DE18 INSTRUCTION TEST, SPECIAL vvvueuveennn.. 19
DE19 INSTRUCTION TEST, REG. TO REG. weeeun... 20

DE20 INSTRUCTION TEST, COMPARE & COMPARE MOD, 20

DIAG-1

TABLE OF CONTENTS

- - —-—— - - —-——— - -

MAP DIAGNOSTICS

oo

MAOT PM INCREMENTING PATTERN TEST
MAO9 INSTRUCTION TEST, NON-INDEXED
MA10 INSTRUCTION TEST, INDEXEDcccveeeo..
MA31 INSTRUCTION TEST, INDEXED/SINGLE REG.

IOCC DIAGNOSTICS

ooooooooooooooooooooooooooooooooooooooo

I027 BUFFER & ADC/DAC LOOP TEST

ooooooooooooo

1028 ADC/DAC LOOP TEST vvvvenenennns P L.
HIC DIAGNOSTICS f e et ee et e ettt .
HI12 HIC REGISTER BIT WALK TEST ..veivev.. .
HI13 HIC PROGRAM COUNTER EXERCISER TEST
HI32 HIC SHUTDOWN REGISTER TEST .vvuvuvuvnnnn

DIAG-2

PAGE

21-22

21
21
22
22

23-24

INTRODUCTION

- - ——— -

THE AD-10 DIAGNOSTIC PACKAGE CONSISTS OF A GROUP OF PROGRAMS DESIGNED

- TO BE USED TO CHECK FOR (OR TO VERIFY) AD-10 COMPUTER SYSTEM HARDWARE

PROBLEMS. THE DIAGNOSTIC PROGRAMS ARE WRITTEN IN PDP-11 MACRO ASSEMBLY
[LANGUAGE AND ARE DESIGNED TO BE PART OF DEC'3 XXDP DIAGNOSTIC PACKAGE

THE DIAGNOSTIC ROUTINES ARE ORGANIZED INTO THE FOLLOWING CATEGORIES

A, AD-10 DATA MEMORY DIAGNOSTICS (MEO1 MEOZ MEO3 MEO5,ME23,ME30).

B. AD-10 PROCESSOR DIAGNOSTICS (ARP:

DEP:
MAP:

C. IOCC DIAGNOSTICS (I1027,1028).

- — - - - - w—

——— ey - ——— - ——— -

DIAG-3

ARO6,AR14,AR15;
€011,€021,C022,C024,C025,
C026;
DE08,DE17,DE18,DE19,DE20;
MAOT,MAO9,MA10,MA31) .

- XXDP OVERVIEW

- - ————— - - —

DEC'S XXDP ("XX DIAGNOSTIC PACKAGE") IS THEIR COLLECTION OF DIAGNOSTIC

- ROYTINES ON FILE-ORIENTED MEDIA. THE "XX"™ IS REPLACED BY DEC'S CODE FOR
THE PARTICULAR DEVICE (E.G., "RK" FOR RKO5 DISK DRIVE). XXDP PROVIDES A
COMPACT MEANS FOR STORING THE NUMEROUS DIAGNOSTIC PROGRAMS. IT ALLOWS
THE USER TO LOAD AND RUN A DIAGNOSTIC PROGRAM UNDER KEYBOARD CONTROL

VIA THE XXDP MONITOR. THIS MONITOR ROUTINE ALSO PROVIDES THE MEANS FOR
UPDATING AND MODIFYING PROGRAMS, AND ALLOWS THE USER TO "CHAIN" A SERIES
OF PROGRAMS TOGETHER, SO THAT WHEN ONE IS FINISHED THE NEXT ONE WILL
BEGIN EXECUTION. THE BASIC XXDP MONITOR COMMANDS ARE :

Foo SETS CONSOLE FILL COUNT (FOR LA30 TERMINAL)
D PRINTS DIRECTORY ON CONSOLE

D/F PRINTS SHORT DIRECTORY ON CONSOLE
- D/L PRINTS DIRECTORY ON LINE PRINTER

D/L/F -PRINTS SHORT DIRECTORY ON LINE PRINTER

R COPY RUNS COPY PROGRAM (TO MAKE A COPY OF THE XXDP DISK)
R FILE RUNS ANY OTHER PROGRAM ON THE DISK .

(THE PROGRAM IS IN THE SPECIFIED FILE)
L FILE LOADS ANY PROGRAM ON THE DISK

(FROM THE SPECIFIED FILE)
S STARTS THE LOADED PROGRAM
C FILE ~ RUNS A CHAIN OF PROGRAMS

(THE CHAIN PARAMETERS ARE SPECIFIED IN THE FILE)

FILE/QV RUNS A CHAIN IN "QUICK VERIFY" MODE

(@]

WHEN THE XXDP MONITOR IS BOOTED , 1T WILL INDICATE A RESTART ADDRESS
FOR USE AFTER ERROR (OR USER) HALTS.

THE XXDP PACKAGE CONTAINS TWO UPDATE PROGRAMS CALLED UPD1.BIN (4K) AND
UPD2.BIN (8K). THESE PROGRAMS ARE USED TO ADD, DELETE, RENAME, OR
PATCH PROGRAMS ON THE XXDP PACKAGE AND TO PROVIDE FILE MAINTENANCE
SERVICES. UPD1,BIN IS A SUBSET OF UPD2.BIN

REFER TO DEC'S XXDP MANUAL FOR FURTHER INFORMATION

NOTE : IF AN EARLIER VERSION OF DEC'S XXDP WAS USED TO CREATE THE :
———— AD-10 DIAGNOSTIC PACKAGE, THE MONITOR WILL NOT ACCEPT AS MANY
COMMANDS AS INDICATED ABOVE. THE AVAILABLE COMMANDS WILL BE

/D PRINTS FULL DIRECTORY ON TERMINAL
/D/F - PRINTS SHORT DIRECTORY ON TERMINAL
/D/L PRINTS FULL DIRECTORY ON LINE PRINTER
/R ‘ TO RUN DISK COPY PROGRAM

FILE TO RUN A PROGRAM IN THE SPECIFIED FILE

DIAG-4

PROGRAM NAMING CONVENTIONS

- — - - — - — - — - —— - - -

THE CONVENTIONS USED IN NAMING THE AD-10 DIAGNOSTICS ARE SOMEWHAT

DIFFERENT FROM THE DEC CONVENTIONS. AD-10 DIAGNOSTIC PROGRAM NAMES

ARE FORMED BY A TWO CHARACTER TEST-TYPE DESIGNATION, FOLLOWED BY A

TWO CHARACTER NUMERIC SEQUENCE NUMBER (E.G., "AR06"). THIS FOUR CHAR-

ACTER CORE IS FOLLOWED BY A SINGLE CHARACTER VERSION INDICATION (E.G., "A").
THE PROGRAM FILENAMES ALL HAVE THE XXDP STANDARD ".BIC"™ EXTENSION.
THEREFORE, AN OPERATIONAL VERSION OF "ARO6" WILL BE FOUND IN THE XXDP
DIRECTORY AS "ARO6A.BIC" . THE TEST-TYPE DESIGNATIONS ARE AS FOLLOWS :

AR ARP (ARITHMETIC PROCESSOR)

Cco COP (CONTROL PROCESSOR)

DE DEP (DECISION PROCESSOR)

MA - MAP (MEMORY ADDRESS PROCESSOR)
HI HIC (HOST INTERFACE CONTROLLER)
I0 IOCC (I/0 CHANNEL CONTROLLER)

ME AD-10 DATA MEMORY

SWITCH SETTINGS

SWR BIT "SET" CONDITION
15 (100000) HALT ON ERROR (NOT RSX-11 VERSION)
14 (40000) SCOPE LOOP ON ERROR (NOT ALL DIAGNOSTICS *)
13 (20000) SUPPRESS ERROR MESSAGE PRINTOUT
12 (10000) - ,
11 (4000) TERMINATE AFTER CURRENT PROGRAM LOOP
10 (2000) LONG ERROR PRINTOUT (DUMPS HISTORY REGISTERS)
9 (1000) QUICK EXIT FROM LONG LOOP PROGRAMS
8 (400) - |
7 (200) USE INTERNAL DAC/ADC TABLE FOR IOCC TESTS

* A SCOPE LOOP ON ERROR IS ONLY ALLOWED IN THOSE DIAGNOSTICS WHICH
DO NOT PERMIT THE AD-10 TO RUN FREELY. THE FOLLOWING TESTS DO
PERMIT A SCOPE LOOP ON ERROR

MEO1

MEO2

MEO3

MEO05

ARO6

MAOT :
DEO08

co11

DIAG-5

RUNNING A PROGRAM

- —— - — g - —— -

. BOOT THE XXDP DEVICE TO GET THE XXDP MONITOR

UP AND RUNNING .

GET A DIRECTORY, IF NECESSARY, TO FIND OUT WHAT THE
PROGRAM NAMES ARE

/D (OR "/D/F", OR "/D/L", OR "/D/L/F")
(THE "." IS THE MONITOR'S PROMPT CHARACTER)

SET THE PDP-11 CONSOLE SWITCHES TO THE APPROPRIATE
SWITCH SETTINGS (SEE PRECEDING TABLE).

SELECT THE DESIRED DIAGNOSTIC PROGRAM (E.G., "DE17A.BIC"
FOR A TEST OF THE DEP'S X AND I REGISTERS), AND TYPE

"R XXXXX" TO RUN THE PROGRAM, WHERE "XXXXX" IS THE
PROGRAM NAME AND VERSION, BUT NOT THE EXTENSION (NOTE
THAT FOR THE EARLIER VERSION OF XXDP JUST "XXXXX"

IS SUFFICIENT)

E.G., .R DE1TA <CR> (OR, .DE1TA <CR>)

AD10 DEP INDEX REGISTER TEST
THE FOLLOWING AD-10 PROCESSORS ARE PRESENT

MAP 000001
DEP 000002
ARP 000003
COP 000007

PRESS CONTINUE WHEN READY

PRESS THE CONTINUE SWITCH ON THE PDP-11 TO START THE TEST.

THE PROGRAM WILL PRINT THE "PRESS CONTINUE WHEN READY"
MESSAGE AGAIN WHEN THE TEST IS COMPLETE. IF BIT 13 OF

‘THE SWITCH REGISTER IS NOT SET AND NO ERROR MESSAGES WERE

PRINTED, NO AD-10 ERRORS WERE DETECTED.

IF AN ERROR HALT OCCURS, THE MONITOR MAY BE RESTARTED

. AT THE ADDRESS SPECIFIED WHEN IT BOOTED, THE

AD-10 DIAGNOSTIC PROGRAM CAN CONTINUE (IF THE USER
MANUALLY PRESSES THE CONTINUE SWITCH ON THE PDP-11),
OR THE DIAGNOSTIC CAN BE RESTARTED AT LOCATION 200.

DIAG-6

SIGNIFICANT CORE LOCATIONS

—— o —————— - - - —— - - - — - -

THE USER MAY WANT TO EXAMINE AND/OR CHANGE THE TEST- RELATED CONSTANTS
IN THESE SPECIFIED LOCATIONS

PAT=220 MEMORY TEST PATTERN
NPAT=222 ERROR COUNT FOR THIS ITERATION
ITR=224 NUMBER OF ITERATIONS TO RUN THIS TEST
BACK=226 MEMORY BACKGROUND PATTERN |
BRD=230 * BOARD NUMBER TO BE TESTED
MOD=232 * STARTING MODULE NUMBER FOR THIS TEST
WIN=236 ¥ STARTING WINDOW NUMBER FOR THIS TEST
WRD=236 * STARTING WORD NUMBER FOR THIS TEST
WINC=240 ¥ NUMBER OF WINDOWS TO BE TESTED
WRDC=242 ¥ NUMBER OF WORDS TO BE TESTED
DEV$1112 OUTPUT DEVICE CSR LOCATION

(CONSOLE TERMINAL IS 177564,
’ LINE PRINTER IS 177514)

¥ NOTE : THESE LOCATIONS APPLY TO MEMORY TESTS ONLY.

DIAG-7

ERROR MESSAGES ARE PRINTED BY EACH TEST, ACCORDING TO THE CONSOLE

SWITCH SETTINGS.

WITH ANY ERROR MESSAGE, IN THE FOLLOWING FORMAT :

HBOO
HBO4
HB10
HB14

HAOQO
HAOH
HA10
HA14

HDOO
HDOY
HD10
HD 14

MOST TESTS WILL RUN ANYWHERE FROM 1 TO 3 MINUTES,
AND CO26 WILL TAKE AT LEAST 5 MINUTES PER PASS.

ERROR REPORTING

SEE THE TEST DESCRIPTIONS FOR FURTHER INFORMATION.
IF SWITCH 10 IS SET, THE AD-10 HISTORY REGISTERS WILL BE DUMPED ALONG

HBO1
HBO5
HB 11
HB 15

HAO1
HAO5
HA 11
HA15

HDO1
HDO5
HD 11
HD15

EXECUTION TIMES

- ———— . ——

HBO2
HBO6
HB12
HB16

HAO2
HAOQ6
HA12
HA16

HDO2
HDO6
HD12
HD16

HBO3
HBO7
HB13
HB17

HAO3

HAOT
HA13
HA1T

HDO3
HDO7
HD13
HD17

DIAG-8

BUT DE19,

DE20,

ME23,

MEO1

- -

- DESCRIPTION : AD-10 DATA MEMORY 17-BIT ROTATE TEST.

THIS MEMORY TEST FILLS 4K OF DATA MEMORY AT A
TIME, AND READS BACK THE SAME 4K FOR VERIFICA-
TION. CONSECUTIVE LOCATIONS ARE LOADED WITH A
PATTERN WHICH ROTATES AS A 17-BIT WORD AS
FOLLOWS :

AD-10 PDP-11
LOCATION PATTERN CARRY BIT

- an - - - - e e e - - - - - - —— - - -

(ETC.)

(ETC.)

ERROR MESSAGE ; AD10 MEMORY ERROR

- - - - -

WBA CURRENT WORD BLOCK ADDRESS CONTENTS

LOC LOCATION IN ERROR
SENT EXPECTED DATA PATTERN
REC RECEIVED DATA PATTERN

DIAG-9

DESCRIPTION :

ERROR MESSAG

- - - - —— - g

DESCRIPTION

- - - —-——

ERROR MESSAGE

- —— - —— -

AD-10 DATA MEMORY ALTERNATING PATTERN TEST.

THIS MEMORY TEST FILLS 4K OF DATA MEMORY AT

A TIME, THEN READS BACK THE SAME 4K FOR VERIFI-
CATION. CONSECUTIVE LOCATIONS ARE LOADED WITH

A 16 BIT ALTERNATING PATTERN AS FOLLOWS :

LOCATION PATTERN
0 1010101010101010
1 0101010101010101
2 1010101010101010
3 0101010101010101
(ETC.)

THE STARTING PATTERN IS COMPLEMENTED AFTER
EACH ITERATION SO THAT ALL BITS IN EACH
LOCATION WILL BE CHECKED.

AD10 MEMORY ERROR

WBA CURRENT WORD BLOCK ADDRESS CONTENTS
LOC LOCATION IN ERROR

SENT EXPECTED DATA PATTERN

REC RECEIVED DATA PATTERN

MEO3

AD-10 DATA MEMORY MARCHING PATTERN TEST.

THIS IS A BASIC TEST OF A MEMORY TO PROVIDE
REASONABLE ASSURANCE THAT IT IS FUNCTIONAL,
I.E., THAT THE ADDRESSING IS OPERATIONAL AND
THAT EACH LOCATION CAN BE READ AND WRITTEN TO
THE ALL-ZERO STATE. FIRST, A 256 WORD "WINDOW"
IS FILLED WITH A "BACKGROUND"™ PATTERN. THEN,
STARTING AT THE SPECIFIED STARTING WINDOW
ADDRESS AND PROCEDING SEQUENTIALLY, THE BACK-
GROUND PATTERN IS READ AND THE SPECIFIED PATTERN
IS WRITTEN. THIS PROCEDURE CONTINUES TO

THE LAST LOCATION, AT WHICH POINT THE PATTERN

IS COMPLEMENTED AND THE ADDRESS IS SEQUENTIALLY
REDUCED UNTIL THE FIRST LOCATION IS REACHED.

THE BACKGROUND PATTERN IS THEN COMPLEMENTED, AND
THE SEQUENCE IS REPEATED, THE TEST WILL BE DONE
FOR UP TO 16 WINDOWS OF 256 WORDS (4K).

THIS TEST BY NO MEANS CHECKS EVERYTHING (OR ALL
INTERACTIONS) BUT DOES PROVIDE REASONABLE
ASSURANCE THAT NO DEFECTIVE ELEMENTS ARE
PRESENT.

AD10 MEMORY ERROR

WBA CURRENT WORD BLOCK ADDRESS CONTENTS
LOC MEMORY LOCATION IN ERROR

SENT EXPECTED DATA PATTERN

REC RECEIVED DATA PATTERN

DIAG-10

DESCRIPTION

-------- -

ERROR MESSAGE

- - - - -

“MEO5

AD-10 DATA MEMORY GALLOPING PATTERN TEST.

THIS TEST CHECKS ALL POSSIBLE ADDRESS TRAN-
SITIONS. ALL LOCATIONS WITHIN THE STARTING
256 WORD WINDOW ARE WRITTEN TO THE BACKGROUND
PATTERN., A TEST PATTERN IS THEN WRITTEN TO A
"LOAD WORD". THE SEQUENCE "READ THE LOAD WORD,

. READ ANOTHER WORD"™ IS PERFORMED UNTIL THE ENTIRE

WINDOW HAS BEEN CHECKED. THE LOAD WORD IS THEN
RESET, A NEW LOAD WORD IS CHOSEN, AND THE
SEQUENCE IS REPEATED. THIS PROCESS CONTINUES
UNTIL ALL 256 WORDS HAVE BEEN LOAD WORDS.

THE BACKGROUND PATTERN IS THEN COMPLEMENTED
AND THE ENTIRE PROCEDURE IS REPEATED FOR THIS

"WINDOW. WHEN FINISHED WITH THIS WINDOW, REPEAT

FOR EACH WINDOW

AD10 MEMORY ERROR

WBA CURRENT WORD BLOCK ADDRESS CONTENTS
LOC LOCATION ADDRESS WITHIN THE WINDOW
SENT EXPECTED DATA PATTERN
REC RECEIVED DATA PATTERN

DIAG-11

ME23

DESCRIPTION : AD-10 DATA MEMORY PARITY TEST.
THIS TEST CHECKS EACH WORD OF MEMORY FOR
CORRECT PARITY GENERATION. A DECREMENTING
DATA PATTERN IS USED.

ERROR MESSAGE : DATA ERROR
ADDR "CURRENT MEMORY ADDRESS WITHIN THE PAGE
OFFSET OCTAL OFFSET #
SENT EXPECTED DATA PATTERN
REC RECEIVED DATA PATTERN

* OFFSET FROM THE START OF THE HISTORY DATA
REGISTER TO THE CURRENT DATA VALUE. THE
FOLLOWING TABLE CORRELATES THE OFFSET
WITH THE PAGE NUMBER :

IF DATA IS EVEN IF DATA IS ODD

22 --> 0 22 -=> 1
20 --> 1 20 --> 0
16 -=> 2 16 --> 3
14 -=>3 4 -=-> 2
12 -=> 4 12 ==> 5
10 -=> 5 10 -=> 4

6 -=> 6 6 --> 7

b -->17 4 -=> 06

ERROR MESSAGE : PARITY ERROR

ADDR (AS ABOVE)

OFFSET (AS ABOVE)

FLAG CURRENT PARITY BIT-PATTERN
MBUS PARITY CURRENT MULTIBUS ADDRESS VALUE

(BIT 15 IS THE PARITY BIT)
(BIT 13 IS THE PARITY ERROR BIT)

DIAG-12

ME30

- —

DESCRIPTION : PROCESSOR TEMPORARY REGISTER MEMORY TEST.
FOR EACH PROCESSOR PRESENT IN THE AD-10, THE -
TEMPORARY REGISTER STORAGE IS TESTED USING AN
INCREMENTING MEMORY TEST. THIS CHECKS DATA '
READ/WRITE THROUGH THE HIC FOR ALL FIELD 5
MEMORY LOCATIONS. THE REGISTERS TESTED ARE

COoP GENERAL REGISTERS
ARP T REGISTERS

MAP I REGISTER

DEP X REGISTERS

ERROR MESSAGE : AD10 MEMORY ERROR

- ———— - -

WBA WORD BLOCK ADDRESS (PROCESSOR) -
LOC LOCATION WITHIN THE WINDOW
SENT EXPECTED DATA PATTERN
REC RECEIVED DATA PATTERN
ARO6
DESCRIPTION : ARP PROGRAM MEMORY INCREMENTING PATTERN TEST.

—— e . - — -

THIS PROGRAM PERFORMS AN INCREMENTING PATTERN
TEST ON THE FIVE FIELDS OF THE ARP PROGRAM
MEMORY AS FOLLOWS (FOR EACH FIELD)

ARP
LOCATION PATTERN
0 0000000000000000
1 0000000000000001
2 0000000000000010
3 0000000000000011
4 -~ 0000000000000100
(ETC.)

1020 0000001111111100

1021 0000001111111101

1022 0000001111111110

1023 000000111111 1111

AFTER EACH ITERATION THE STARTING PATTERN IS
INCREMENTED BY 200 (OCTAL), SO THAT ALL BITS
IN EACH LOCATION WILL BE THOROUGHLY CHECKED
AFTER 1000 ITERATIONS.

ERROR MESSAGE : AD10 MEMORY ERROR

——— - - - -

WBA CURRENT WORD BLOCK ADDRESS CONTENTS
L.OC LOCATION WITHIN THE FIELD

SENT EXPECTED DATA PATTERN

REC RECEIVED DATA PATTERN

NTAG-11R

AR1Y

DESCRIPTION : ARP DATA PATH TEST.

- e - ———-— - -

THIS TEST EXERCISES THE FOUR ARP DATA PATHS WITH
A ROTATING DATA PATTERN. THE DATA PATHS ARE

1. S(B) => A S=A P=S Q=P R=Q R -> L (=34)

2. S(B) ->

w

S=B P=S Q=P R=Q R -> L (=B)
3. S(B) =>

(@]

S=1 P=S*C Q=P R=Q R -> L (=C)

4, s(B) ->D S=0 P=S Q=P+E R=Q R => L (=D)

ERROR MESSAGE : ARP PATH ERROR

-—— . - - - - — -

PATH 1 = REGISTER A PATH
2 = REGISTER B PATH
3 = REGISTER C PATH
4 = REGISTER D PATH
ARITH 0 = FRACTIONAL ARITHMETIC
1000 = FRACTIONAL * 2
2000 = FRACTIONAL / 2
3000 = INTEGER
SENT EXPECTED DATA PATTERN
REC RECEIVED DATA PATTERN
AR15
DESCRIPTION : ARP ARITHMETIC INSTRUCTION TEST.

- - . -

THIS TEST CHECKS EACH OF THE FOUR SETS OF ARITH-
METIC INSTRUCTIONS IN THE ARP, WHILE THE OTHER
THREE ARE NOT IN USE. THIS CHECK IS DONE WITH A
STATIC SET OF DATA CONSTANTS. THE TESTS ARE

1. EXERCISE S, WITH: P=S, Q=P, R=Q
WHERE, S=1,0,B,-B,A,A+1,A+B, A-B

2. EXERCISE P, WITH: S=1, Q=P, R=Q
WHERE, P=0,S,-S,S¥*C,-S*C,
S*ABS(C),-S*ABS(C)
3. EXERCISE Q, WITH: S=1, P=S, R=Q
WHERE, Q=P,P+E,P-E

ERROR MESSAGE : ARP INST ERROR

XXXX (NOT USED)

INST OCTAL CODE FOR ARP ARITHMETIC INSTRUCTION
SENT EXPECTED DATA PATTERN

REC RECEIVED DATA PATTERN

DIAG-14

DESCRIPTION

- o - ——

ERROR MESSAGE

- —————— - " ——

DESCRIPTION :

- — - ————— -

ERRQR MESSAGE

——— . —— - —

-

COoM

COP PROGRAM MEMORY INCREMENTING PATTERN TEST.

THIS PROGRAM PERFORMS AN INCREMENTING PATTERN
TEST ON THE 1024 WORD, 2 FIELD COP PROGRAM
MEMORY AS FOLLOWS (FOR EACH FIELD) :

CoP
LOCATION PATTERN
0 0000000000000000
1 0000000000000001
2 0000000000000010
3 0000000000000011
4 0000000000000100
(ETC.)

1020 0000001111111100

1021 0000001111111101

1022 0000001111111110

1023 00000011111111 11

AFTER EACH ITERATION THE STARTING PATTERN IS
INCREMENTED BY 200 (OCTAL), SO THAT ALL BITS
IN EACH LOCATION WILL BE THOROUGHLY CHECKED
AFTER 1000 (OCTAL) ITERATIONS.

AD10 MEMORY ERROR

WBA CURRENT WORD BLOCK ADDRESS CONTENTS
LoC LOCATION WITHIN THE FIELD

SENT EXPECTED DATA PATTERN

REC RECEIVED DATA PATTERN

coa2t

COP LOAD IMMEDIATE INSTRUCTION TEST.

THIS TEST EXERCISES THE LOAD FIRST, LOAD SECOND,
AND LOAD DOUBLE INSTRUCTIONS USING A ROTATING
DATA PATTERN. THE COP PLACES THE CURRENT DATA
PATTERN ON THE AD-10 MULTIBUS USING "LOAD IMM"
INSTRUCTIONS. THE PDP-11 CHECKS FOR THIS

DATA IN THE AD-10 HISTORY REGISTERS.

INST ERROR
TYPE 1 = LOAD DOUBLE
2 = LOAD DOUBLE
3 = LOAD SECOND
4 = LOAD FIRST
XXXX (NOT USED)
SENT EXPECTED DATA PATTERN
REC RECEIVED DATA PATTERN

DIAG-15

DESCRIPTION :

—— e nn ., S = -

ERROR MESSAGE

- - - - -

ERROR MESSAGE

—— e - — - - -

DESCRIPTION :

—— - - - -

ERROR MESSAGE

- - - - -

co22

COP CONDITION BIT AND CONDITIONAL JUMP TEST.

THIS PROGRAM TESTS THE SETTING AND CLEARING

OF THE CBIT, AND THE PROPER DETECTION OF THE
CBIT WITH A CONDITIONAL JUMP. A COP PROGRAM

LOOP CONSISTING OF CBIT SET/CLEAR AND CONDITION-
AL JUMPS IS EXECUTED. IF AN ERROR OCCURS, THE
COP PLACES PREDETERMINED DATA ONTO THE AD-10
MULTIBUS, WHICH IS DETECTED BY THE PDP-11 IN

THE HISTORY REGISTERS.

TESTS: 1. CBIT SET/CLEAR
2. BUS CONDITIONAL CBIT SET/CLEAR
3. JUMP AND CONDITIONAL JUMP

INST ERROR

TYPE DATA CHECK INDEX

TEST TEST TABLE INDEX

DATA WORKING TEST DATA PATTERN
ERROR FLAG EXPECTED DATA PATTERN

JMP 0 ERROR, RC NOT -1 RC

XXXX
(WHERE, XXXX IS THE CURRENT RUN COUNTER VALUE)

THIS ERROR MEANS THAT THE COP "JMP"™ INSTRUCTION
FAILED.

co24

- -

COP GENERAL REGISTER TEST.

INST ERROR

TYPE TEST TABLE INDEX

REG REGISTER NUMBER

SENT EXPECTED DATA PATTERN
REC RECEIVED DATA PATTERN

DIAG-16

DESCRIPTION

- - — o a- -

ERROR MESSAGE

- - —g—— s —

ERROR MESSAGE

DESCRIPTIQN

fom > - -

 ERROR MESSAGE

ERROR MESSAGE

- - - -

'ERROR MESSAGE

- g —— - o o -

-
.

»
.

c025

COP HALTO AND HALT1 TEST.

C025 TESTS THE VARIOUS COMBINATIONS OF THE
HALT MASK IN COMBINATION WITH THE HALTO AND
HALT1 INSTRUCTIONS. THE PAUSE INSTRUCTION
IS ALSO CHECKED.

HALT ERROR
TYPE -
- RC RUN COUNTER VALUE
EPC EXPECTED PROGRAM COUNTER
PC RECEIVED PROGRAM COUNTER

PAUSE ERROR

EXRC EXPECTED RUN COUNTER VALUE
RC ACTUAL RUN COUNTER VALUE
PAUSE PAUSE COUNT FOR THIS RUN
XXXX (NOT USED)

€026

COP PROGRAM COUNTER AND RUN TEST.

1. TESTS THE LOADING AND READING OF
PROCESSOR PC'S (INCLUDING THE COP)
THROUGH THE HIC.

2. TESTS THE LOADING OF PROCESSOR PC'S THROUGH
COP PROGRAMMING.

3. CHECKS PROPER PC INCREMENTING WHEN THE
PROCESSOR IS RUNNING.

HIC PC LOAD ERROR (TEST 1 MESSAGE)
PRO PROCESSOR NUMBER

EPC EXPECTED PC

PC ACTUAL PC

XXXX (NOT USED)

COP PC LOAD ERROR (TEST 2 MESSAGE)
PRO PROCESSOR NUMBER

EPC EXPECTED PC

PC ACTUAL PC

XXXX (NOT USED)

PC RUN ERROR (TEST 3 MESSAGE)
PRO PROCESSOR NUMBER

EPC EXPECTED PC

PC ACTUAL PC

XXXX (NOT USED)

DIAG-17

DESCRIPTION :

- - —— - -

ERROR MESSAGE

- om - —— - -

*
.

DEO8

DEP PROGRAM MEMORY INCREMENTING PATTERN TEST.

THIS PROGRAM PERFORMS AN INCREMENTING PATTERN
TEST ON THE 1024 WORD, 2 FIELD DEP PROGRAM
MEMORY AS FOLLOWS (FOR EACH FIELD)

DEP
LOCATION PATTERN
0 0000000000000000
1 : 0000000000000001
2 0000000000000010
3 0000000000000011
4 0000000000000100
(ETC.)

1020 0000001111111100

1021 0000001111111101

1022 0000001111111110

1023 00000011111 111 11

AFTER EACH ITERATION THE STARTING PATTERN IS
INCREMENTED BY 200 (OCTAL), SO THAT ALL BITS
IN EACH LOCATION WILL BE THOROUGHLY CHECKED
AFTER 1000 (OCTAL) ITERATIONS.

AD10 MEMORY ERROR

WBA CURRENT WORD BLOCK ADDRESS CONTENTS
LOC LOCATION WITHIN THE FIELD

SENT EXPECTED DATA PATTERN

REC RECEIVED DATA PATTERN

DIAG-18

DE17

DESCRIPTION : DEP X AND I REGISTER TEST.
THIS TEST LOADS ALL DEP X AND I REGISTER
LOCATIONS (USING AD10 PROGRAMMING) WITH A DATA
PATTERN. THE PATTERN IS ROTATED AND CHECKED.
THIS CHECKS THESE INSTRUCTIONS

LIF
LIS
LXF
LXS
SIF
SIS
SXF

- SXS
- SSI

ALSO TESTS THE DATA HOLDING ABILITY OF
THE X AND I REGISTER LOCATIONS.

ERROR MESSAGE : INST ERROR

- ——————

TYPE 0 = I REGISTER, LOAD 13T
24 = I REGISTER, LOAD 2ND
50 = X REGISTER, LOAD 18T
74 = X REGISTER, LOAD 2ND
REG REGISTER NUMBER '
SENT EXPECTED DATA PATTERN
REC RECEIVED DATA PATTERN
DE18
DESCRIPTION : DEP SPECIAL INSTRUCTION TEST.

o o . - -

DE18 TESTS THE DEP SPECIAL INSTRUCTIONS FOR A
SINGLE DATA POINT. INSTRUCTIONS TESTED ARE

LFI
LSI
LDI

LFI 100000
LSI 100000

ERROR MESSAGE : INST ERROR

- -

TYPE 0 = LOAD 2ND, LOAD 1ST
1 = LOAD DOUBLE
2 = LOAD 2%¥¥15 (100000)

XXXX (NOT USED)
SENT EXPECTED DATA PATTERN
REC RECEIVED DATA PATTERN

DIAG-19

DESCRIPTION :

- - - -

ERROR MESSAGE

DESCRIPTION :

—— e - - - ——

ERROR MESSAGE

- e o -

DE19

DEP REGISTER TO REGISTER INSTRUCTION TEST.

DE19 TESTS THE X & I INTRA-REGISTER TRANSFER
INSTRUCTIONS WITH A ROTATING DATA PATTERN,
USING COP AND DEP PROGRAMMING.

INST ERROR
TYPE 0 = I TO I TRANSFER
20 = I TO X TRANSFER
40 = X TO X TRANSFER
60 = X TO I TRANSFER
REGS LOW BYTE = SOURCE REGISTER
HIGH BYTE = DESTINATION REGISTER
SENT EXPECTED DATA PATTERN
REC RECEIVED DATA PATTERN
DE20

DEP COMPARE AND COMPARE & MODIFY INSTRUCTION
TEST.

THIS TEST CHECKS THE COMPARE INSTRUCTION AND THE
COMPARE AND MODIFY INSTRUCTION FOR ALL REGISTERS
AND FOR VARIOUS DATA VALUES. THE CONDITION

INSTRUCTION IS ALSO CHECKED, USING 2%¥¥15 -> DM(1).

INST ERROR

TYPE 0 CMM TEST, BOTH 1ST AND 2ND
1 CMP TEST, BOTH 13T AND 2ND
REG/DATA LOW BYTE = INDEXED REGISTER
HIGH BYTE = X REGISTER USED
IN COMPARISON
SENT EXPECTED DATA PATTERN
REC RECEIVED DATA PATTERN

DIAG-20

DESCRIPTION :

ERROR MESSAGE

- — - - -~

DESCRIPTION

—— - — g - - —

.
.

ERROR MESSAGE :

- - - = ——

MAOT

- - -

MAP PROGRAM MEMORY INCREMENTING PATTERN TEST.

MAOT7 PERFORMS AN INCREMENTING PATTERN TEST
ON THE 1024 WORD, 3 FIELD MAP PROGRAM MEMORY
AS FOLLOWS (FOR EACH FIELD)

MAP
LOCATION PATTERN
0 0000000000000000
1 0000000000000001
2 0000000000000010
3 0000000000000011
4 0000000000000100
(ETC.)

1020 0000001111111100

1021 0000001111111101

1022 0000001111111110

1023 0000001111111111

AFTER EACH ITERATION THE STARTING PATTERN IS
INCREMENTED BY 200 (OCTAL), SO THAT ALL BITS
IN EACH LOCATION WILL BE THOROUGHLY CHECKED
AFTER 1000 (OCTAL) ITERATIONS.

AD10 MEMORY ERROR

WBA CURRENT WORD BLOCK ADDRESS
LOC - LOCATION WITHIN THE FIELD
SENT EXPECTED DATA PATTERN

REC RECEIVED DATA PATTERN

MAQ9

MAP NON-INDEXED INSTRUCTION TEST.

MAO9 CHECKS ALL NON-INDEXED OPCODES WITH WAIT
COUNTS. A ROTATING PATTERN ADDRESS IS EXERCISED
WITH EACH OPCODE, AND WAIT COUNTS 0-7 ARE EXER-
CISED WITH EACH OPCODE.

MAP INST ERROR

SENT1 EXPECTED PATTERN ON HI ADDRESS MULTIBUS
ADDR1 ACTUAL PATTERN ON HI ADDRESS MULTIBUS
SENT2 EXPECTED PATTERN ON LOW ADDRESS MULTIBUS
ADDR2 ACTUAL PATTERN ON LOW ADDRESS MULTIBUS

DIAG-21

DESCRIPTION =«

- -

ERROR MESSAGE

——p - - -

DESCRIPTIO

. ———— - -

ERROR MESSAGE

- - ——— -y - -——

MA10

MAP INDEXED INSTRUCTION TEST.

MA10 CHECKS ALL INDEXED OPCODES WITH WAIT

" COUNTS. A ROTATING PATTERN ADDRESS IS EXERCISED

WITH EACH OPCODE, AS ARE WAIT COUNTS 0-7.
EACH INDEX REGISTER IS USED AND CONTAINS
ITS OWN ADDRESS.

: MAP INST ERROR

SENT1 EXPECTED PATTERN ON HI ADDRESS MULTIBUS
ADDR1 ACTUAL PATTERN ON HI ADDRESS MULTIBUS
SENT2 EXPECTED PATTERN ON LOW ADDRESS MULTIBUS

- ADDR2 -~ ACTUAL PATTERN ON LOW ADDRESS MULTIBUS

MA31

- ———

MAP SINGLE INDEX REGISTER INSTRUCTION TEST.

MA31 CHECKS ALL INDEXED OPCODES WITH WAIT
COUNTS 0-7 AND A ROTATING 19-BIT ADDRESS PAT-
TERN. A SINGLE INDEX REGISTER IS USED. THE
REGISTER'S CONTENTS ARE POWERS OF 2 (1'S BIT
WALK) .

: MAP INST ERROR

SENT1 EXPECTED PATTERN ON HI ADDRESS MULTIBUS

ADDR1 ACTUAL PATTERN ON HI ADDRESS MULTIBUS
SENT2 EXPECTED PATTERN ON LOW ADDRESS MULTIBUS
ADDR2 ACTUAL PATTERN ON LOW ADDRESS MULTIBUS

DIAG-22

DESCRIPTION:

——— - — -

ERROR MESSAGE

- —— - - - - -

ERROR MESSAGE

- - — o —

I027

I0CC BUFFER AND ADC/DAC LOOP TEST.

1. TESTS IOCC LOAD BUFFER AND READ BUFFER
INSTRUCTIONS : -
A. PFB, PIBL, PIBH, GIB
B. A POWERS OF 2 BIT PATTERN TESTS
THE BUFFER BIT INTEGRITY.

2. IOCC DAC/ADC LOOP TEST
A. TESTS PFI, GIF.
B. A POWERS OF 2 BIT PATTERN IS SENT
TO A DAC AND READ FROM AN ADC.

THIS TEST IS CHAINABLE ONLY IF THE DAC/ADC
TABLE IS ASSEMBLED INTO THE TEST CORRECTLY.
THERE IS NO KEYBOARD INPUT IN CHAIN MODE.

ADC TOLERANCE IS 20 (OCTAL) BY DEFAULT (1 LSB).
THIS VALUE IS AT SYMBOL 999$ IN THIS TEST (SEE
THE LISTING FOR THE PDP-11 LOCATION).

ADC READ ERROR

TYPE 0 1ST READ IN HISTORY REGISTER
: 1 2ND READ IN HISTORY REGISTER
DAC/ADC THE OCTAL DAC/ADC PAIR ADDRESSES (BYTES)
SENT EXPECTED DATA PATTERN
REC RECEIVED DATA PATTERN

" un

BUFFER ERROR

TYPE -
XXXX (NOT USED)
SENT EXPECTED DATA PATTERN

REC RECEIVED DATA PATTERN

DIAG-23

" DESCRIPTION ;

L e o o e o o

ERROR MESSAGE

—— g - = o ——

" ERROR MESSAGE

ot e o it o oy e

DESGRIPTION

-P—u—-,-—vva-v—#v

ERROR MESSAGE

W ——— -

1028

- —

-I0CC ADC/DAC LOOP TEST.
~EACH DAC/ADC PAIR IS LOOP TESTED FOR EVERY

POSSIBLE LEGAL BIT COMBINATION.

THIS TEST IS CHAINABLE ONLY IF THE DAC/ADC
TABLE IS ASSEMBLED INTO THE TEST, THERE IS

- NO KEYBOARD INPUT IN CHAIN MODE.

ADC TQLERANCE IS 20 (OCTAL) BY DEFAULT (1 LSB).
THIS VALUE IS AT SYMBOL 999$ IN THIS TEST (SEE
THE LISTING FOR THE PDP-11 LOCATION).

ADC -READ ERROR

TYPE -

DAC/ADC THE OCTAL DAC/ADC PAIR ADDRESSES (BYTES)
SENT EXPECTED DATA PATTERN -
REC RECEIVED DATA PATTERN

BUFFER ERROR

TYPE -

XXXX (NOT USED)

SENT EXPECTED DATA PATTERN
REC RECEIVED DATA PATTERN

CHIT2

q-—-i—-
HIC AND COP BIT WALK TEST.

A BIT WALK OF 1'S AND 0'S IS PERFORMED ON
ALL PERMISSIBLE HIC AND COP REGISTERS.
(READ/WRITE BITS ONLY).

AD10 HIC REG ERROR
ADDR HIC ADDRESS AT WHICH ERROR OCCURRED
MASKED ORIGINAL PATTERN BEFQRE MASK

SENT =~ EXPECTED DATA PATTERN
REC RECEIVED DATA PATTERN

DIAG-24

.

DESCRIPTION :

——————— > o———

ERROR MESSAGE

DESCRIPTION

| e -

ERROR MESSAGE

- — - - —— =

HI13

HIC PROCESSOR BOARD PROGRAM COUNTER EXERCISER
AND HISTORY REGISTER/TEST REGISTER TESTS.

EACH PROCESSOR BOARD PROGRAM COUNTER HAS ALL
VALUES (0-1777) WRITTEN TO IT AND VERIFIED.
ALL PROCESSORS MUST BE PRESENT FOR THIS TEST.
ALSO, THE TEST REGISTER IS LOADED, THE AD10

IS RUN FOR EIGHT INSTRUCTIONS, AND THE HISTORY

 REGISTER'S CONTENTS CHECKED AGAINST THE ORIGINAL

TEST REGISTER'S CONTENTS.

AD10 HIC REG ERROR

TEST TEST REGISTER DATA

HIST HISTORY REGISTER DATA

OFFSET THE OFFSET INTO THE HISTORY REGISTER
DATA FOR THIS COMPARISON

XXXX (NOT USED)

HI32

HIC SHUTDOWN REGISTER TEST.

MAP AND COP PROGRAMS ARE USED TO FILL THE
MULTIBUS PIPELINE. THE DATA COMES FROM EIGHT
PAGES OF DATA MEMORY AND THE COP GENERAL
REGISTERS. WHEN THE AD-10 IS STOPPED, THE
SHUTDOWN REGISTERS ARE LOADED WITH THE PIPE-
LINE DATA. THESE REGISTERS ARE THEN READ AND
CHECKED. EACH DATA VALUE IS INCREMENTED
UNTIL ALL BIT PATTERNS ARE TESTED IN EACH
SHUTDOWN REGISTER.

SHUT DOWN ERROR

REG ADDR HIC ADDRESS OF SHUTDOWN REGISTER
XXXX (NOT USED)

EXPECTED EXPECTED DATA PATTERN

RECEIVED RECEIVED DATA PATTERN

DIAG-25

APPLIED DYNAMICS INTERNATIONAL

3800 STONE SCHOOL ROAD
ANN ARBOR, MICHIGAN 48104

313-973-1300

HHHHH HHHHH
'HHHHH HHHHH
HHHHH HHHHH

HHHHHHHHHHHH
HHHHHHHHHHHEH
HHHHHHHHHHHH
HHHHH HHHHH
HHHHH HHHHH
HHHHH HHHHH

LLLL IIIII
LLLL IIIIT
LLLL IIT
LLLL III
LLLL ITI
LLLL III
LLLL : ITI

LLLLLLLLL IIIII
LLLLLLLLL IITIII

BEBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBB
BBBBBBBEBB
BBBBBBB
BEBBBBBBB
BBBBBBBBBB
BBBBBBBBBBB
BEBBBBBBBB

THE HIC-11
COMMUNICATION
SUBROUTINE LIBRARY
DE1478

TABLE OF CONTENTS PAGE

—— — —— —————————— ——— ————

INTRODUCTION 4evvveveernrennnnnnneneeees 2
USING HIC LIBRARY SUBROUTINES 3-4
ARGUMENTS AND CALLING CONVENTIONS 5
SUBROUTINE DESCRIPTIONS ..eeveeeennnces.

AD-10 CONTROL .evvevovencaconnns
AD-10 CONSOLE COMMANDSc..
HIC READ/WRITE ...cieeencaccoancs
DATA MEMORY READ/WRITE°
PROGRAM MEMORY READ/WRITE
BUS WINDOW READ/WRITE
SINGLE REGISTER READ/WRITE
REGISTER GROUP READ/WRITE 10-11
READ/WRITE NIP 18 BIT REGISTERS 11

(Ve Vol¢c oo JEN le) W o) (<))

HLIB-1

INTRODUCTION

——— e —— ——————

THE HIC-11 COMMUNICATION SUBROUTINE LIBRARY (HIC.OLB) PROVIDES THE

MEANS FOR USER PROGRAMS WRITTEN IN FORTRAN OR MACRO-11 TO COMMUNICATE
WITH THE AD-10 COMPUTER. THE AD-10 EXECUTIVE (ADX) USES THESE HIC
LIBRARY ROUTINES TO ACCESS AND CONTROL THE AD-10. THE HIC LIBRARY IS

AN OBJECT LIBRARY AND NEEDS TO BE LINKED TO THE USER'S OBJECT PROGRAM
AT TASK BUILD TIME. IT CONSISTS OF A GROUP OF FORTRAN SUBROUTINES, FROM
WHICH THE TASK BUILDER WILL SELECT THE ONES WHICH ARE CALLED BY THE
USER'S PROGRAM AND WILL INCLUDE THEM IN THE RESULTING RSX-11 TASK. THESE
SUBROUTINES ENABLE THE USER'S PROGRAM TO DO THE FOLLOWING:

1. ATTACH AD-10 CONSOLES FOR EXCLUSIVE USE (MANDATORY FOR
ACCESS TO THE AD-10), SWITCH FROM ONE CONSOLE TO ANOTHER,
AND DETACH CONSOLES (ATT10,CON10,DET10),

2. INITIALIZE THE AD-10 AND HIC REGISTERS (INTHIC,INIT10),

3. START THE AD-10 (RUN10),

4. STOP THE AD-10 (HLT10),

5. PUT THE AD-10 INTO TEST MODE (TEST10),

6. DETERMINE IF THE AD-10 IS RUNNING (BUSY10),

7. READ FROM OR WRITE TO HIC REGISTERS (RHICR,WHICR,RHICRS,
WHICRS),

8, READ FROM OR WRITE TO AD-10 DATA MEMORY (RPM,WPM,RDMS,WDMS),

9. READ FROM OR WRITE TO AD-10 PROGRAM MEMORY FOR EACH AD-10
PROCESSOR (RPM,WPM,RPMS,WPMS) ,

10. READ FROM OR WRITE TO THE 256-WORD BUS WINDOW (RBW,WBW,
- RBWS ,WBWS) ,

11. READ FROM OR WRITE TO INDIVIDUAL HIC AND AD-10 REGISTERS
‘ (RTCR,WTCR,RTSH,WTSH,RRIC,WRIC,RCSR,WCSR,REHS ,WEHS ,RHMR,
WHMR,RIMR,WIMR,RRCR,WRCR,RBAR,WBAR,RRR,WRR),

12. READ FROM OR WRITE TO EITHER A SINGLE REGISTER IN A REGISTER
GROUP, OR TO THE ENTIRE REGISTER GROUP (RTB,WTB,RTBS,WTBS,

- RTA,WTA,RTAS,WTAS,RTD,WTD,RTDS ,WTDS ,RPC,WPC,RPCS ,WPCS,RSC,
WSC,RSCS ,,WSCS,RSD,WSD,RSDS ,WSDS ,RHB ,WHB, RHBS ,WHBS ,RHA ,WHA,
RHAS ,WHAS, RHD,WHD ,RHDS ,WHDS , RGR,WGR ,RGRS ,WGRS ,RIR,WIR,RIRS,
WIRS,RXR,WXR,RXRS,WXRS,RTR,WTR,RTRS ,WTRS) .

HLIB-2

USING HIC LIBRARY SUBROUTINES

————— —————— ———— 1 i W g o

THE PROGRAM PREPARATION STEPS INVOLVED IN USING THE HIC LIBRARY ROUTINES
TO COMMUNICATE WITH OR CONTROL THE AD-10 ARE AS FOLLOWS :

1. DEFINE THE PROBLEM AND DO THE "PAPER CODING" FOR THE SOURCE
LANGUAGE BEING USED (FORTRAN OR MACRO-11).

2, USE THE TEXT EDITOR (EDI) TO CREATE A SOURCE FILE.

3. COMPILE (FORTRAN) OR ASSEMBLE (MACRO-11) THE SOURCE FILE TO
CREATE AN OBJECT FILE.

4. TASK BUILD (TKB) THE OBJECT FILE ALONG WITH THE HIC-11 COMMUN-
- ICATION SUBROUTINE LIBRARY ([1,1]HIC.OLB), TO CREATE A TASK
- IMAGE FILE WHICH CAN BE RUN UNDER RSX-11M.

THE HIC LIBRARY SUBROUTINES INTERFACE TO THE THE AD-10 THROUGH THE HYBRID
DRIVER (HY), WHICH MUST BE LOADED IN THE RSX-11M SYSTEM PRIOR TO RUNNING
THE ANY TASK WHICH CALLS THESE SUBROUTINES. TO ALLOW THE HYBRID DRIVER

TO ACCESS THE AD-10 INTERFACE "WNDWS=1" MUST BE SPECIFIED AS AN OPTION TO
THE TASKBUILDER. PRIOR TO ANY COMMUNICATION WITH THE AD-10, THE USER TASK
MUST SUCESSIFULLY "ATTACH" THE AD-10 CONSOLE OF INTEREST BY CALLING THE
HIC LIBRARY ROUTINE "ATT10". THE FOLLOWING DIAGRAM INDICATES THE GENERAL
- TASK STRUCTURE:

: FORTRAN : : MACRO-11 :
s PROGRAM : : PROGRAM :
¢ HIC : H : : HIC :
: LIBRARY e ->: HYBRID t{===m—===~~=>: LIBRARY :
: ROUTINES : : DRIVER : : ROUTINES
® @ 9 9 0 0 0 0 0 sl;...... e & & © & & ¢ & & o o o
!

oob-co!-o-o-’o

: AD-10 :

:- COMPUTER :

HLIB-3

USING HIC LIBRARY SUBROUTINES (CONT.)

- ————— =~ ——— - — o ——— " - ——————

THE FOLLOWING EXAMPLE SHOWS THE BASIC CONSOLE COMMANDS FOR TASKBUILDING
AND RUNNING A FORTRAN OR MACRO-11 PROGRAM WHICH CALLS HIC LIBRARY
SUBROUTINES :

MCR>TKB <CR>
TKB>PROG, PROG/SH=PROG, [1,1]HIC/LB <CR>
TKB>/ <CR>

ENTER OPTIONS:

TKB>WNDWS=1

TKB>// <CR>

MCR>RUN PROG <CR>

NOTE : "<CR>" INDICATES CARRIAGE RETURN (RETURN).
———- THROUGHOUT THIS MANUAL ANGLE BRACKETS ("<" AND ">") ARE USED TO
ENCLOSE THE NAME OF A SYNTACTIC ELEMENT OR CLASS OF ELEMENTS.

HLIB-4

ARGUMENTS AND CALLING CONVENTIONS

. —— i ——— ——————— ——— ———— " ————— - {——— —

ALL ARGUMENTS FOR THE HIC LIBRARY SUBROUTINES ARE TYPE INTEGER*2 , EX-
CEPT FOR THE FUNCTION SUBPROGRAM BUSY10(I), WHERE THE SINGLE ARGUMENT IS
TYPE LOGICAL*1 . THE ARGUMENT "IE" IN MOST ROUTINES CONTAINS THE ERROR
CODE UPON RETURNING FROM THE ROUTINE, WHERE IE=0 INDICATES SUCCESS

AND TIE=1 INDICATES AN ERROR CONDITION.

WHEN CALLING THE SUBROUTINES FROM FORTRAN SIMPLY FOLLOW THE STANDARD
FORTRAN PROCEDURES :

CALL <HIC LIBRARY SUBROUTINE NAME> (<ARGUMENT LIST))
SAMPLE FORTRAN CALLS ARE INCLUDED IN THE INDIVIDUAL ROUTINE DESCRIPTIONS.

- THE ONLY EXCEPTION IS THE FUNCTION -SUBPROGRAM BUSY10(I), WHICH RETURNS
A LOGICAL VALUE (.TRUE. OR .FALSE., DEPENDING UPON WHETHER OR NOT THE
AD-10 IS CURRENTLY RUNNING). A SAMPLE "CALL" TO THIS FUNCTION SUB-
PROGRAM WOULD BE AS FOLLOWS : ‘ :

LOGICAL*1 BUSY10,I
IF (BUSY10(I)) GOTO 100

LRI

100 .o

WHEN CALLING A HIC LIBRARY SUBROUTINE FROM MACRO-11, THE USER MUST DO
THE FOLLOWING :

1. CREATE A TABLE CONTAINING THE ADDRESSES OF THE ARGUMENTS

TABLE: .BYTE 0, <COUNT OF THE NUMBER OF ARGUMENTS>
.WORD <ADDRESS OF ARGUMENT #1>
.WORD <ADDRESS OF ARGUMENT #2>

e o o

.WORD = <ADDRESS OF ARGUMENT #N>
2. THEN, THE CALL TO THE SUBROUTINE IS MADE AS FOLLOWS :

<SAVE REGISTERS RO-R5>

MOV #TABLE ,R5
JSR PC, <HIC LIBRARY SUBROUTINE NAME>

<RESTORE REGISTERS RO-R5>
» NOTE : UPON RETURNING FROM FUNCTION SUBPROGRAM BUSY10,
——— REGISTER RO WILL CONTAIN THE LOGICAL RESULT (AS WILL
THE ARGUMENT, WHICH STILL MUST BE SPECIFIED) :

RO =0 IMPLIES .FALSE.
RO NONZERO IMPLIES .TRUE.

HLIB-5

ROUTINE NAME (S)

————— - —— g ———

CALL SEQUENCE(S)

DESCRIPTION:

—— - — -

INPUT VARIABLES:

— o - ——— > — o -

OUTPUT VARIABLES:

——— o o - — oy ——

ROUTINE NAME(S)

CALL SEQUENCE (S) :

o e o o o e e o o

DESCRIPTION:

——— - — — - —

INPUT VARIABLES:

o

OUTPUT VARIABLES:

BT T T ——

IE

ATT1O0,

DET10, CON10

CALL ATT10(IC,IL,IEFN,IE)
CALL CON10(IC,IE)

ATTACH
SELECT

H
sl
nu 1

i

HLT1O0,.

CALL DET10(IE)

AD-10 CONSOLE FOR EXCLUSIVE USE (AND SELECT CONSOLE)
AD-10 CONSOLE (IN A MULTI-CONSOLE SYSTEM)
AD-10 CONSOQLE CURRENTLY SELECTED -

CONSOLE #
LOGICAL UNIT #
EVENT FLAG #

ERROR WORD

0 NORMALLY
1 FOR ILLEGAL ARGUMENT

INTHIC, INIT10, RUN10O, TESTI10

CALL HLT10(IE)
CALL INTHIC (IE)

'CALL INIT10(IE)

CALL RUN10 (IE)

"CALL TEST10 (1IE)

HALT THE AD-10

INITIALIZE ALL HIC REGISTERS WHICH ALLOW WRITE ACCESS
INITIALIZE THE AD-10

RUN THE AD-10

PUT THE AD-10 IN TEST MODE

NONE-

0
1

n

NORMALLY
IF AD-10 POWER IS DOWN

HLIB~6

ROUTINE NAME(S): RHICR, WHICR, RHICRS, WHICRS

——— o . ot o e o s

CALL SEQUENCE(S): CALL RHICR(REG,IDATA]l, IE)
———————————————— CALL WHICR (REG,IDATA2,IE)

CALL RHICRS (REG,IARY1,ICNT,IE)
CALL WHICRS (REG,IARY2,ICNT,IE)

DESCRIPTION: READ FROM OR WRITE TO HIC REGISTER(S)

——— o ——o——y ———

INPUT VARIABLES: REG HIC REGISTER NUMBER (0-255)

——————— e ——— IDATA2 = DATA WORD TO WRITE
IARY2 = ARRAY OF DATA WORDS TO WRITE
ICNT = NUMBER OF REGISTERS TO READ OR WRITE

(STARTING WITH "REG") (1-256)

OUTPUT VARIABLES: IDATAl
———————————————— IARY1
IE

DATA WORD TO READ

ARRAY OF DATA WORDS READ
ERROR WORD

0 NORMALLY

1 FOR ILLEGAL ARGUMENT VALUE

W nu

ROUTINE NAME (S): BUSY1lO0(I)

——— s " —— ————— ——

CALL SEQUENCE(S): LOGICAL*1 BUSY10,I,BUSY
——=—-——e——=—--—- BUSY=BUSY10(I)

DESCRIPTION: FUNCTION SUBPROGRAM WHICH RETURNS

——— - o - —

. TRUE. IF AD-10 IS BUSY (RUN BIT IN CSR IS SET)
.FALSE. IF AD-10 IS NOT BUSY
(RUNBIT IN CSR IS NOT SET)

INPUT VARIABLES: NONE

s — o — ———) —— -

OUTPUT VARIABLES: I = .TRUE. OR .FALSE. (THE SAME AS THE FUNCTION VALUE)

—— o —— e —————————

HLIB-7

ROUTINE NAME (S) :

———— —————— —————

—— —— o ——— g — o o o i o opm

——— - ———

INPUT VARIABLES:

= o o o s oy o —

OUTPUT VARIABLES:

—— o e > o

ROUTINE NAME(S) :

—— o e e =t . —

CALL SEQUENCE (S) :

—— i s s o — o

INPUT VARIABLES: .

——— -

OUTPUT VARIABLES:

e ——— . o —— —

RDM, WDM, RDMS, WDMS
CALL RDM (PAGADR,WRDADR,IDATAl,IE)
' CALL WDM(PAGADR,WRDADR,IDATA2,IE)
~ CALL RDMS (PAGADR,WRDADR,IARY1,ICNT,IE)
CALL WDMS (PAGADR ,WRDADR,IARY2,ICNT,IE)
READ OR WRITE A SINGLE DATA MEMORY LOCATION
OR A GROUP OF LOCATIONS
PAGADR = MEMORY PAGE ADDRESS (0-63)
WRDADR = MEMORY WORD ADDRESS (0-4095)
IDATA2 = DATA WORD TO WRITE
IARY2 = ARRAY OF DATA WORDS TO WRITE
ICNT = NUMBER OF DATA MEMORY WORDS TO READ OR WRITE
(STARTING WITH THE SPECIFIED ADDRESS)
IDATAl = DATA WORD READ
IARY1l = ARRAY OF DATA WORDS READ
1E = ERROR WORD
= 0 NORMALLY
= 1 FOR ILLEGAL ARGUMENT (S)
RPM, WPM, RPMS, WPMS
CALL RPM (PROC,FLDNUM,WRDADR, IDATAL, IE)
CALL WPM(PROC,FLDNUM,WRDADR,IDATA2,IE)
CALL RPMS (PROC,FLDNUM,WRDADR,IARY1,ICNT, IE)
CALL WPMS (PROC,FLDNUM,WRDADR, IARY2,ICNT, IE)
READ FROM OR WRITE TO AD-10 PROGRAM MEMORY
PROC = AD-10 PROCESSOR NUMBER (1-7)
'FLDNUM = FIELD NUMBER IN PROCESSOR MEMORY WORD
‘ (FROM 0 TO THE MAXIMUM FOR THAT PROCESSOR,
OR FIELD 5 FOR REGISTER ACCESS)
WRDADR = PROGRAM MEMORY WORD ADDRESS (0-1023)
IDATA2 = DATA WORD TO WRITE
IARY2 = ARRAY OF DATA WORDS TO WRITE
ICNT = NUMBER OF WORDS TO READ OR WRITE TO
FIELD "FLDNUM" OF PROGRAM MEMORY WORDS
(STARTING WITH "WRDADR") (1-1024)
IDATA]l = DATA WORD READ
IARY1 ARRAY OF DATA WORDS READ
1E ERROR WORD

0 NORMALLY
1 FOR ILLEGAL ARGUMENT (S)

wnn

HLIB-8

ROUTINE NAME(S): RBW, WBW, RBWS, WBWS

—— e —— —— —————— -

CALL SEQUENCE(S): CALL RBW(IADDR,IDATAL, IE)
———————————————— CALL WBW(IADDR,IDATA2,IE)

CALL RBWS (IADDR,IARY1,ICNT,IE)
CALL WBWS (IADDR,IARY2,ICNT,IE)

DESCRIPTION: READ FROM OR WRITE TO BUS WINDOW LOCATION (S)

—_—— o — —— o ——

INPUT VARIABLES: IADDR BUS WINDOW LOCATION (0-255)

--------------- IDATA2 = DATA WORD TO WRITE
IARY2 = ARRAY OF DATA WORDS TO WRITE
ICNT = NUMBER OF BUS WINDOW LOCATIONS TO READ

OR WRITE (STARTING WITH LOCATION "IADDR")
(1-256)

OUTPUT VARIABLES: IDATAl DATA WORD READ

———————————————— IARYl = ARRAY OF DATA WORDS READ
- IE = ERROR WORD
= (0 NORMALLY
= 1 FOR ILLEGAL ARGUMENT(S)
ROUTINE NAME (S): R*** (Q*xxx%

CALL SEQUENCE (S): R*** (IDATAL)
e W*** (IDATA2)

DESCRIPTION: READ FROM OR WRITE TO REGISTER : * k%

WHERE, *** CAN BE ANY OF THE FOLLOWING MNEMONICS:

MNEMONIC REGISTER
TCR» TEST CONTROL REGISTER
TSH TEST/SHUTDOWN/HISTORY COUNTERS (READ ONLY)
RIC REMOTE INTERFACE CONTROL REGISTER
CSR CONTROL STATUS REGISTER
EHS ERROR AND HALT STATUS REGISTER
HMR HALT MASK REGISTER
IMR INTERRUPT MASK REGISTER
RCR RUN COUNT REGISTER
BAR BUS WINDOW BLOCK ADDRESS REGISTER
RR ARP "R" (RESULT) REGISTER
DR NIP "D" REGISTER

INPUT VARIABLES. IDATA2

———— v ——————— — - o

DATA WORD TO WRITE

OUTPUT VARIABLES: IDATAl

—— o —— . — — o ——

DATA WORD READ

HLIB-9

ROUTINE NAME (S): R¥**,6 W¥*,6K R**g QWk*g

e T S I——

CALL SEQUENCE (S): CALL R** (N,IDATAl,IE)
———————— —~———=—— CALL W** (N,IDATA2,IE)

CALL R**S(IARY1)
CALL W**S(IARY2)

DESCRIPTION: READ FROM OR WRITE TO THE REGISTERS IN REGISTER
——————————— GROUP : **

WHERE, ** CAN BE ANY OF THE FOLLOWING MNEMONICS:

REGISTER

MNEMONIC REGISTER GROUP NUMBERS
B TEST BLOCK ADDRESS (0-15)
TA TEST ADDRESS AND CONTROL (0-15)
D : TEST DATA (0-15)
PC PROCESSOR PROGRAM COUNTERS (1-7)
PS v PROCESSOR STATUS WORDS (1-7)

e SC SHUTDOWN/RESTART CONDITIONS (0-15)
SD SHUTDOWN/RESTART DATA (0-15)
HB HISTORY BLOCK ADDRESS (0-15)
HA HISTORY ADDRESS/ERROR (0-15)
HD HISTORY DATA (0-15)

INPUT VARIABLES: N = REGISTER NUMBER IN GROUP

e ' (ALL REGISTERS ARE NUMBERED STARTING
WITH 0 EXCEPT FOR PC'S AND PS'S WHICH
ARE NUMBERED FROM 1 TO 7)

DATA WORD TO WRITE '

ARRAY OF DATA WORDS TO WRITE

IDATA2
IARY2

ou

OUTPUT VARIABLES: IDATAl DATA WORD READ

———————————————— IARYl = ARRAY OF DATA WORDS READ
1E = ERROR WORD
= 0. NORMALLY

1 FOR REGISTER NUMBER OUT OF RANGE

HLIB-10

ROUTINE NAME (S): R**, W**,6K R**g5, W**g

——— ———— - ——————

CALL SEQUENCE(S): CALL R** (N,IDATAL,IE)
———————————————— CALL W** (N,IDATA2,IE)

CALL R**S(N,IARY1l,ICNT,IE)
CALL W**S(N,IARY2,ICNT,IE)

DESCRIPTION: READ FROM OR WRITE TO THE REGISTERS IN REGISTER
——————————— GROUP : **

WHERE, ** CAN BE ANY OF THE FOLLOWING MNEMONICS:

MNEMONIC REGISTER GROUP REGISTER #
GR COP GENERAL REGISTER (0-127)
IR MAP/DEP "I" REGISTER (0-127)
XR DEP "X" REGISTER (0-127)
TR ARP "T" REGISTER (0-127)

INPUT VARIABLES: N TEMPORARY REGISTER ADDRESS (0- 127)

e ——— IDATA2 = DATA WORD TO WRITE
ICNT = THE NUMBER OF TEMPORARY REGISTERS
IARY2 = DESIRED TEMPORARY REGISTER VALUES

OUTPUT VARIABLES: IARY1l = AN ARRAY WHICH WILL RECEIVE 'I‘HE'f .
———————————————— TEMPORARY REGISTER VALUES

IDATAL = DATA WORD READ '
IE = ERROR WORD .
= 0 NORMALLY
= 1 FOR ILLEGAL ARGUMENT (S)
ROUTINE NAME(S): RFR, WFR, RFRS, WFRS

———— . —————— — o —

CALL SEQUENCE(S): CALL RFR(FLDNUM,REG,IDATAl,IE)
———————————————— CALL WFR(FLDNUM,REG,IDATA2,IE)

CALL RFRS(FLDNUM,REG,IARY1,ICNT,IE)
CALL WFRS{FLDNUM,REG,IARY2,ICNT,IE)

DESCRIPTION: READ FROM OR WRITE TO THE 48 BIT NIP REGISTERS

—— - —————

INPUT VARIABLES: FLDNUM l (LOW), 2 (MIDDLE), OR 3 (HIGH 16 BIT WORD)

e e REG = REGISTER NUMBER (0-1023 DECIMAL)
IDATA2 = 16 BIT DATA WORD TO WRITE
IARY2 = ARRAY OF 16 BIT DATA WORDS TO WRITE
ICNT = NUMBER OF 16 BIT DATA WORDS TO READ OR WRITE

STARTING WITH REGISTER "REG" (1-1024)

OUTPUT VARIABLES: IDATAl
———————————————— IARY1
IE

16 BIT DATA WORD READ

ARRAY OF 16 BIT DATA WORDS READ
ERROR WORD

0 NORMALLY

1 FOR ILLEGAL ARGUMENT (S)

HLIB-11

MMMM - MMMM
MMMMM MMMMM
MMMMMMMMMMMM
MMMMMMMMMMMM
MMMMMMMMMMMM
MMMM MM MMMM
MMMM MMMM
MMMM MMMM
MMMM MMMM
MMMM MMMM

FFFFFFFFFF
FFFFFFFFFF
FFFFFFFFFF
FFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFF

FFFF

FFFF

LLLL
LLLL
LLLL
LLLL
LLLL
LLLL
LLLL
LLLLLLLLLL
LLLLLLLLLL
LLLLLLLLLL

ITII
ITII
ITII
ITITI
IIII
ITII
ITII
ITII
IIII
ITII

BBBBBBBB
BBBBBBBBBB
BBBB BBBBB
BBBB BBBBB
BBBBBBBBB
BBBBBBBBB
BBBB BBBBB
BBBB BBBBB
BBBBBBBBBB
BBBBBBBB

THE

AD-10
MACROFILE
LIBRARY
USER'S MANUAL

AD-10 DOCUMENTATION UPDATES

MANUAL NAME: AD 10 SOFTWARE REFERENCE MANUAL CHAPTER 5 MFLIB

—— - — - —— . ——

DATE: 3-FEB-78

UPDATES: 1) THE EXAMPLE AD-10 PROGRAM "BENCH.ASM" HAS AN ERROR ON
——————— THE BOTTOM OF PAGE 57. THE SYMBOL "UPDATE" SHOULD BE
DEFINED TO HAVE A VALUE OF 1 INSTEAD OF 3, AS FOLLOWS:

UPDATE .EQU 1

2) THE FORTRAN PROGRAM "FUNDAT.FTN" ASSOCIATED WITH THE
EXAMPLE AD-10 PROGRAM HAS SEVERAL ERRORS. THE ARGUMENT
TO THE "SIN" FUNCTION AND "COS" FUNCTION ON PAGES 64 AND
65 SHOULD INCLUDE A FACTOR OF "PI" (3.14159) AS FOLLOWS:

FS = SIN(A2(I)*3.14159)

AND THE NUMBER OF RECORDS IN THE FILES "F14.DAT" AND
"F15.DAT" DEFINED ON PAGES 63 AND 64 SHOULD BE 252
(NOT 336), THUS THE FILE DEFINITIONS SHOULD READ:

DEFINE FILE 1(252,2,U,NREC)

3) THE TRANSFER MACROFILES WHICH ACCESS THE IOCC ALLOW
THE USER TO SPECIFY THE I/O OPCODE. THESE OPCODES ARE
DEFINED IN SECTION 4.2.5.3.2 OF THE AD-10 REFERENCE
MANUAL AND ARE REFERRED TO AS "I/O DEVICE CONTROL BITS".

4) THE DEFINITION OF THE TERM "FUNCTION DATA" ON PAGE 1
ALSO ATTEMPTS TO DESCRIBE HOW THE FUNCTION DATA ARRAYS
MUST BE ORDERED IN SEQUENTIAL PDP-11 DATA FILES. THE
FOLLOWING SHOULD FURTHER CLARIFY FUNCTION DATA ORDERING:

FUNCTION DATA MUST BE ORDERED INTO A LINEAR ARRAY IN

THE PDP-11, PRIOR TO LOADING INTO THE AD-10. THE ORDER OF
INDEXING IN THIS ARRAY IS DETERMINED BY THE ORDER OF
LISTING OF THE VARIABLES IN THE FUNCTIONAL NOTATION.
THUS FOR F1(X,Y,Z) THE DATA ARRAY WOULD BEGIN WITH:
Fl1(x1i,vy1,z1), F1(X2,Y1,21), F1(X3,Y1,Z1),... AND AFTER
INDEXING "X" FOR ALL BREAKPOINTS, "Y" IS INCREMENTED AND
"X" IS AGAIN INDEXED THROUGH ALL BREAKPOINTS AS FOLLOWS:
F1(xX1,y2,z1), F1(X2,Y2,21), F1(X3,Y2,Z1), ... AFTER ALL
VALUES OF "Y" HAVE BEEN INDEXED, "Z" IS THEN INCREMENTED
AND THE PROCESS IS REPEATED. IT IS ASSUMED THAT IF THE
SAME SET OF VARIABLES OCCUR IN MORE THAN ONE FUNCTION,
THESE WILL BE LISTED IN THE SAME ORDER IN ALL FUNCTIONS,
SUCH AS F1(X,Y,Z2), F2(X,Y,2), F3(X,Y¥,Z), ETC..., SO THAT
THE SAME POINTER CALCULATION CAN BE USED FOR ALL SUCH
FUNCTIONS.

5) THE MANUAL SHOULD CONTAIN A SECTION ON CALLING THE
MACROFILES AS SUBROUTINES. 1IN GENERAL, ANY MACROFILE
CAN BE CALLED AS A SUBROUTINE AS LONG AS ALL "IMMEDIATE
DATA" AND "IMMEDIATE ADDRESSES" WHICH ARE BUILT INTO
THE AD-10 INSTRUCTIONS DO NOT NEED TO CHANGE FROM ONE
CALL TO THE NEXT. THE PROCEDURE IS AS FOLLOWS:

A) SWAP INPUT QUANTITIES INTO THE REGISTERS WHICH WERE
ASSEMBLED AS THE INPUT REGISTERS FOR THE MACROFILE.

B) LOAD PROGRAM COUNTERS FOR ALL PROCESSORS USED IN THE
MACROFILE TO THE STARTING LOCATIONS FOR THESE
PROCESSORS IN THE MACROFILE SUBROUTINE.

LPC $ARP,SUBARP
LPC S$DEP,SUBDEP
LPC $MAP,SUBMAP

C) SETUP THE RETURN ADDRESS FOR THE COP IN A GENERAL
REGISTER AND JUMP TO THE SUBROUTINE:

LFI RETADR
SGRF RETREG
JMP SUBADR

RETADR LPC S$ARP,NEXTA ! RESTORE PC'S FOR
LPC S$DEP,NEXTD ! PROCESSORS USED IN
LPC SMAP,NEXTM ! THE SUBROUTINE.

D) FOLLOW THE SUBROUTINE WITH A COP PROGRAM TO RETURN
TO THE ADDRESS SETUP IN STEP C), I.E.

.COP
SUBADR .EQU *
.ARP
SUBARP .EQU *
.DEP
SUBDEP .EQU *
.MAP
SUBMAP .EQU *
. INCLUDE MACROFILE
LGRF RETREG ! LOAD RETURN ADDR TO MULTIBUS
JPM ! JUMP TO THE ADDR ON MULTIBUS -

E) SWAP RESULTS FROM OUTPUT REGISTERS WHICH WERE
ASSEMBLED AS THE OUTPUT REGISTERS FOR THE MACROFILE
TO THE DESIRED LOCATIONS.

PREFACE

A MACROFILE IS AN AD-10 ASSEMBLY LANGUAGE APPLICATION ROUTINE IN
SOURCE FORM WHICH CAN BE INCLUDED IN A USER APPLICATION PROGRAM
WITH USER-SPECIFIED INPUT/OUTPUT PARAMETERS OR ARGUMENTS. A
MACROFILE IS SIMILAR TO A SUBROUTINE IN A HIGH LEVEL LANGUAGE,
WITH THE EXCEPTION THAT EACH "CALL"™ TO A MACROFILE INCLUDES ANOTHER
COPY OF THE MACROFILE CODE, WITH THE USER-SPECIFIED ARGUMENTS IN
THE USER PROGRAM.

THE AD~10 MACROFILE LIBRARY CONTAINS ROUTINES WHICH SUPPORT ALL
PHASES OF MULTIVARIABLE FUNCTION GENERATION APPLICATIONS, INCLUDING
DATA INPUT AND OUTPUT, DATA TRANSFERS WITHIN THE AD-10, BINARY AND
SHIFT SEARCH SCHEMES (I.E. TO DETERMINE THE LOCATION OF INPUT
VARIABLES IN THE DOMAIN OF THE FUNCTION), FUNCTION DATA POINTER
CALCULATIONS, AND LINEAR INTERPOLATION FOR 1,2,3,4, AND 5 VARIABLE
FUNCTIONS. - ALSO SEVERAL SUPPORT ROUTINES ARE INCLUDED TO PERFORM
CALCULATIONS OF SIN'S AND COS'S, FORWARD AND INVERSE RESOLUTION,
"SGN"™ FUNCTION, ETC... ROUTINES WHICH PERFORM GENERAL CALCULATIONS
SUCH AS THESE ARE CONSTANTLY BEING ADDED TO THE MACROFILE LIBRARY
AS THEY PROVE USEFUL IN USER APPLICATIONS. THE CONVENTIONS USED

IN WRITING MACROFILES AND IN PASSING ARGUMENTS TO MACROFILES ARE
VERY SIMPLE, THUS USERS CAN EASILY WRITE THEIR OWN SPECIAL PURPOSE
MACROFILES TO AUGMENT THOSE PROVIDED IN THE LIBRARY.

MFLIB-1

TABLE OF CONTENTS PAGE

TERMS USED IN THIS MANUAL . v ev et eneenennennennenneneenans 3
MACROFILE CALL SEQUENCE AND CONVENTIONS +'vvvrvuernnnenenennnn 4-5
MVFG MACROF ILES .\t tteteseenenneensnenneneneneeoaneananaooans . 6
BREAKPOINT INDEX AND DELTA CALCULATIONS ...e.vevven.. ceeee T
FUNCTION DATA INDEXING .. e vvusuneneenenneenennennennonnns 8-9
INTERPOLATION ALGORITHM . .veveeneennennennns e 10-11
TRANSFER MACROFILES ot vei e enenneneneneonannnnns e neran 11
GENERAL APPLICATIONS MACROFILESo osososoinnina i 12
DETAILED DESCRIPTIONS OF MACROFILES vevvvwnnns e 12-53
BD.6 BINARY SEARCH AND DELTA COMPUTATION............ 13-15
SD.6 SHIFT SEARCH AND DELTA COMPUTATION........... .. 16-18
PT2.3 FUNCTION POINTER COMPUTATION (3 OF 2)...... s, 18
PT3.3 FUNCTION POINTER COMPUTATION (3 OF 3).......... 19
PTL.3 FUNCTION POINTER COMPUTATION (3 OF L) 20
PT5.3 FUNCTION POINTER COMPUTATION (3 OF 5).......... 21
FI1.3 FUNCTION INTERPOLATION (3 OF 1) .. vnrnnnnns 22
FI2.3 FUNCTION INTERPOLATION (3 OF 2) .. vunrnnnnnn 23
FI3.3 FUNCTION INTERPOLATION (3 OF 3) . .uu'vuvrnnnnnns 24
FIU.3 FUNCTION INTERPOLATION (3 OF L) ..\ uunennnnnnn. 25
FI5.3 FUNCTION INTERPOLATION (3 OF 5) .. vveunnnnnns 26
TRMA.8 TRANSFER FROM MEMORY TO ARP..... e ceeee. 27
TRMC.8 TRANSFER FROM MEMORY TO COP.vrvuernnenennnnnnn 28
TRMX.8 TRANSFER FROM MEMORY TO DEP "X" .. ©.''vvuueneenenn 29
TRMI.8 TRANSFER FROM MEMORY TO DEP "IM©.''eueueunnn. 30
TRME.8 TRANSFER FROM MEMORY TO EXTERNAL I0OCC.......... 31
TRAM.8 TRANSFER FROM ARP TO MEMORY +evvrvnrenrenennens 32
TRCM.8 TRANSFER FROM COP TO MEMORY o\ vvvevnernnnnnnnns 33
TRXM.8 TRANSFER FROM DEP "X" TO MEMORYvevevueunnn. 34
TRIM.8 TRANSFER FROM DEP "I" TO MEMORY .. vvvvuuernnnnnn. 35
TREM.8 TRANSFER FROM EXTERNAL IOCC TO MEMORY.u.vv.ewo.. 36
TRCA.8 'TRANSFER FROM COP TO ARP .'vvurenrnneenensnnennnens 37
TRCX.8 TRANSFER FROM COP TO DEP "MXM . reenennenenen, 37
TRCI.8 TRANSFER FROM COP TO DEP MIM. .. 'uuiuueennnnnennnn 38
TRCE.8 TRANSFER FROM COP TO EXTERNAL IOCC.uveuvunwnnn. 38
TRAC.8 TRANSFER FROM ARP TO COP.vvveerneennenennnnnns 39
TRXC.8 TRANSFER FROM DEP "X" TO COP.uvvrvrrenrnennnnsns 39
TRIC.8 TRANSFER FROM DEP "I" TO COP.uvierrevnrnenennens 40
TREC.8 TRANSFER FROM EXTERNAL IOCC TO COP.....veeunn.. 40
TREXM.8 TRANSFER FROM IOCC TO DEP "X" AND MEMORY....... 41
TRAEM.8 TRANSFER FROM ARP TO IOCC AND MEMORY........... 42
LOADA.8 LOAD IMMEDIATE DATA INTO ARP "T" REG'S......... 43
" LOADC.8 LOAD IMMEDIATE DATA INTO COP REG'S......0veeun. 43
LOADX.8 LOAD IMMEDIATE DATA INTO DEP "X" REG'S........ . 44
LOADI.8 LOAD IMMEDIATE DATA INTO DEP "I" REG'S......... ul
LOADM.8 LOAD IMMEDIATE DATA INTO MEMORYeevnun.. 45
SGN.2 COMPUTE M"SGN" FUNCTIONSviiterereeneeennnns 46
CTR.3 COORDINATE TRANSFORMATIONS .. oo oesmennnnns 4748
IRS.3 INVERSE RESOLUTIONS ,t vtiieeenrnneennennns 49-53
EXAMPLE AD-10 MVFG PROBLEM USING MACROFILESv'vvrnnrennnn. 54-67
SUMMARY OF MACROF ILESttt teeeeeeeeeeensoaseeassscscanss 68-70

MFLIB-2

MULTIVARIANT FUNCTION

FUNCTION DATA

FUNCTION DATA PAIR

FUNCTION DATA POINTER *

BREAKPOINTS

BREAKPOINT TABLE

BREAKPOINT INTERVAL

BREAKPOINT INDEX ¥

DELTA

VARIABLE SET

TERMS USED IN THIS MANUAL

A CONTINUOUS FUNCTION OF ONE OR
MORE VARIABLES WHICH WILL BE DEFINED
AT DISCRETE VALUES OF THE VARIABLE(S).

AN ARRAY OF DISCRETE VALUES OF A

- FUNCTION ORDERED SUCH THAT THE VALUES

FOR THE FIRST VARIABLE VARY MOST
RAPIDLY AND THE VALUES FOR THE LAST
VARIABLE VARY MOST SLOWLY.

TWO ADJACENT FUNCTION DATA VALUES
BETWEEN WHICH A LINEAR INTERPOLATION
WILL BE PERFORMED.

A POINTER TO THE FIRST FUNCTION DATA
PAIR TO BE USED IN THE INTERPOLATION
ALGORITHM. THIS POINTER IS A FUNCTION
OF THE BREAKPOINT INDICES FOR ALL
VARIABLES IN THE VARIABLE SET.

THE DISCRETE VALUES OF AN INPUT
VARIABLE AT WHICH A FUNCTION OF THAT
VARIABLE IS DEFINED.

AN ARRAY OF BREAKPOINTS IN ASCENDING
ORDER FOR A PARTICULAR VARIABLE.

THE INTERVAL BETWEEN THE TWO ADJACENT
BREAKPOINTS BETWEEN WHICH THE VALUE OF
THE INPUT VARIABLE FALLS.

THE POINTER TO THE FIRST BREAKPOINT
TABLE ENTRY WHICH IS LESS THAN OR

EQUAL TO THE CURRENT VALUE OF THE INPUT
VARIABLE (I.E. THE LOWER BREAKPOINT OF
THE BREAKPOINT INTERVAL).

THE FRACTIONAL VALUE (BETWEEN O AND 1.0)
CORRESPONDING TO THE POSITION OF A
VARIABLE IN A BREAKPOINT INTERVAL.

B(I+1) - B(I)

A COLLECTION OF VARIABLES WHICH
WILL BE USED AS THE ARGUMENT LIST
FOR ONE OR MORE FUNCTIONS.

¥ NOTE: THESE POINTERS AND/OR INDEX VALUES BEGIN WITH THE VALUE O.

MFLIB-3

MACROFILE CALL SEQUENCE AND CONVENTIONS

- — - — - ——— - ————— - G —— - " - —————— - -

A MACROFILE IS AN AD-10 ASSEMBLY LANGUAGE APPLICATION ROUTINE IN SOURCE
FORM WHICH CAN BE INCLUDED IN A USER APPLICATION PROGRAM WITH USER-
SPECIFIED INPUT/OUTPUT PARAMETERS OR ARGUMENTS. ARGUMENTS ARE PASSED

TO AND FROM MACROFILES USING SYMBOLS WHICH BEGIN WITH A "#". THESE "#"
SYMBOLS STAND FOR EITHER A TEMPORARY REGISTER NUMBER, A CONSTANT, OR A
MEMORY ADDRESS. THE ONLY DIFFERENCE BETWEEN A "#" SYMBOL AND AN ORDINARY
SYMBOL IS THAT THE AD-10 ASSEMBLER ALLOWS A SYMBOL WHICH BEGINS WITH "#"
TO BE DEFINED MORE THAN ONCE. THIS ALLOWS THE USER TO CALL THE SAME
MACROFILE MORE THAN ONCE AND TO CHANGE THE ARGUMENTS AS NECESSARY.

IF A MACROFILE ARGUMENT DOES NOT CHANGE FROM ONE CALL TO THE NEXT

IT IS NOT NECESSARY TO DEFINE THAT ARGUMENT MORE THAN ONCE. HOWEVER,

BE AWARE THAT IN SOME CASES THE SAME SYMBOLIC ARGUMENT IS USED BY
SEVERAL MACROFILES.

SINCE THE AD-10 PROCESSORS AND DATA MEMORY BOTH REQUIRE PIPELINED
PROGRAMMING TO REALIZE FULL SPEED AND EFFICIENT OPERATION, MOST MACROFILES
PERFORM THE SAME TASK FOR SEVERAL SETS OF INPUTS. BECAUSE OF THIS, THE
NAMING CONVENTION FOR MACROFILE ARGUMENTS IS TO END EACH ARGUMENT WITH

A NUMBER TO IDENTIFY EACH ARGUMENT SET.

FOR EXAMPLE, SUPPOSE "#IN" IS THE INPUT AND "#OUT" IS THE OUTPUT OF A
MACROFILE CALLED "COMPUTE", AND THE CALCULATIONS ARE PERFORMED FOR 3
SETS OF ARGUMENTS. THE FOLLOWING STATEMENTS WOULD BE REQUIRED TO DEFINE
THE 3 SETS OF ARGUMENTS AND TO "CALL"™ THE MACROFILE:

#INO .EQU <VALUE1>
#IN1 .EQU <VALUEZ2>
#IN2 .EQU <VALUE3>
#OUTO .EQU <VALUE4>
#0UT1 .EQU <VALUE5>
#0UT2 .EQU <VALUE®6>
.INCLUDE COMPUTE ! "CALLS" MACROFILE

THE AD-10 ASSEMBLER HAS A " .DEFINE" DIRECTIVE WHICH DOES THE EQUIVALENT
OF MULTIPLE ".,EQU"™ SYMBOL DEFINITIONS AND ALLOWS THE ARGUMENTS TO
MACROFILES TO BE DEFINED MORE SIMPLY AS FOLLOWS:

#IN .DEFINE <VALUE1>,<VALUE2>,<VALUE3>
#OUT” .DEFINE <VALUE4>,<VALUE5>,<VALUE6>
.INCLUDE COMPUTE ! "CALLS"™ MACROFILE

SOME MACROFILES MUST DEFINE THEIR OWN INTERNAL SYMBOLS FOR ADDRESS
CALCULATIONS OR FOR TEMPORARY STORAGE LOCATIONS. WHENEVER A MACROFILE
DOES DEFINE A SYMBOL INTERNALLY, THE SYMBOL ALWAYS BEGINS WITH "##",
THUS INTERNAL SYMBOLS SHOULD NEVER CONFLICT WITH USER SYMBOLS OR OTHER
MACROFILE ARGUMENTS.

MFLIB-4

THE GENERAL FORMAT FOR MACROFILES IN AD-10 ASSEMBLY LANGUAGE NOTATION
IS AS FOLLOWS:

. PROFF ! PRECEDE WITH A ".PRON" TO PRINT CODE

.PROFF ! PRECEDE WITH ANOTHER ".PRON" TO PRINT DESCRIPTION
. PAGE ! STARTING AT THE TOP OF THE NEXT PAGE

!
! DESCRIPTION OF MACROFILE
!

.PRON

.COP
TERXRERRXRRAXRXRRERRAR AR R R EREXRRREREX

1

! COP CONTROL PROGRAM

! ,
!***********************************
!

! PROGRAMS FOR ANY OTHER PROCESSORS
]
!***********************************

.COP
. PRON ! END OF MACROFILE**¥%¥%%

THE USER MUST SPECIFY ONE .PRON IN THE PROGRAM PRIOR TO INCLUDING A
MACROFILE FOR THE MACROFILE CODE TO BE PRINTED IN THE PROGRAM LISTING.
A DETAILED DESCRIPTION OF THE MACROFILE AND ITS ARGUMENTS CAN ALSO

BE PRINTED BY USING A SECOND ".PRON", HOWEVER THIS IS NOT RECOMMENDED
SINCE SOME OF THE DESCRIPTIONS ARE QUITE LONG AND THE SAME INFORMATION
IS CONTAINED IN THIS MANUAL. NOTICE THAT MACROFILES END WITH A ".COP"
DIRECTIVE, THUS A MACROFILE CAN BE FOLLOWED WITH COP CODE WITHOUT
ISSUING ANOTHER ".COP"™ DIRECTIVE.

THERE ARE A FEW RULES WHICH MUST BE FOLLOWED WHEN INCLUDING MACROFILES
TO AVOID CONFLICTS AND ERRONEOUS RESULTS AT RUNTIME.

1) UPON ENTRY TO A MACROFILE ALL AD-10 PROCESSORS MUST BE STOPPED
AND MUST NOT BE IN THE MIDDLE OF A "PAUSE" INSTRUCTION.
(NOTE: PROCESSOR(S) NOT USED BY A MACROFILE COULD POSSIBLY BE
PROGRAMMED TO PERFORM SOME INTERNAL OPERATIONS IN PARALLEL
WITH A MACROFILE, HOWEVER THIS IS NOT RECOMMENDED).

2) ALSO UPON ENTRY A READ FROM MEMORY AND/OR THE IOCC MUST
NOT BE IN PROGRESS AS THE DATA MIGHT CONFLICT WITH DATA
THE MACROFILE PUTS ON THE MULTIBUS.

3) THE USER SHOULD TAKE CARE PRIOR AND/OR FOLLOWING ANY
MACROFILE WHICH ACCESSES DATA MEMORY TO AVOID A MEMORY
PAGE CONFLICT. IF IN DOUBT, A "PAUSE 2" INSTRUCTION
PRIOR TO AND/OR FOLLOWING SUCH A MACROFILE WILL AVOID
ANY POSSIBILITY OF A MEMORY PAGE CONFLICT (FOR THE WORST
CASE SITUATION).

4) ALL UNUSED MACROFILE ARGUMENTS MUST BE DEFINED SO AS NOT TO
CONFLICT WITH THE USED ARGUMENTS. FOR EXAMPLE, IF A TRANSFER
MACROFILE IS USED TO TRANSFER 6 VALUES TO MEMORY, WHEN IT
HAS THE CAPABILITY TO TRANSFER 8 VALUES, THE 2 UNUSED MEMORY
ADDRESSES MUST BE DEFINED SUCH THAT THEY DO NOT CAUSE A
MEMORY ACCESS ERROR. THE INDIVIDUAL MACROFILE DESCRIPTIONS
SUGGEST RECOMMENDED DEFINITIONS FOR UNUSED ARGUMENTS.

MFLIB-5

MVFG MACROFILES

—— - - - ——— - - - -

THE MVFG MACROFILES ARE A SET OF ROUTINES WHICH SUPPORT ALL PHASES
OF MULTIVARIANT FUNCTION GENERATION ON THE AD-10. THESE MACROFILES
ALLOW FOR EITHER EQUALLY OR NON-EQUALLY SPACED BREAKPOINTS AND CAN
INTERPOLATE FOR FUNCTIONS OF FROM 1 TO 5 VARIABLES. AN OUTLINE OF THE
OVERALL FUNCTION GENERATION PROBLEM IS PROBABLY THE EASIEST WAY TO
ILLUSTRATE HOW THE APPLICATION OF MULTIVARIANT FUNCTION GENERATION IS
SUBDIVIDED AND ROUTINES ASSIGNED TO THE VARIOUS AREAS.

THE MVFG MACROFILES WERE WRITTEN WITH THE RUN TIME FUNCTION
GENERATION PROBLEM DIVIDED INTO THE FOLLOWING THREE TASKS:

1) LOCATE EACH VARIABLE IN ITS BREAKPOINT TABLE (EITHER EQUALLY
OR NON-EQUALLY SPACED BREAKPOINTS) AND COMPUTE THE CORRESPONDING
"DELTA" QUANTITY.

2) COMPUTE THE FUNCTION DATA POINTER FOR EACH VARIABLE SET OF
WHICH A FUNCTION IS TO BE GENERATED.

3) INTERPOLATE FOR THE VALUE OF EACH FUNCTION USING THE FUNCTION
DATA PAIRS POINTED TO BY OFFSETS FROM THE FUNCTION DATA
POINTER FROM 2) AND THE DELTA QUANTITIES FROM 1). ONLY STEP 3)

NEED BE REPEATED TO GENERATE MULTIPLE FUNCTIONS OF THE SAME
VARIABLE SET.

THE ABOVE STEPS ARE SUPPORTED BY THE THE FOLLOWING MACROFILES:

STEP MVFG SUBROUTINE(S)

1) BD.6 , SD.6

2) PT2.3, PT3.3, PT4.3, PT5.3

3) FI1.3, FI2.3, FI3.3, FI4.3, FI5.3

AS AN AID TO UNDERSTANDING HOW TO USE THESE ROUTINES, IT WILL BE
HELPFUL TO FIRST DISCUSS THE SEARCH SCHEMES, DELTA CALCULATION, FUNCTION
DATA INDEXING, AND INTERPOLATION ALGORITHM USED BY THE MVFG MACROFILES.

MFLIB-6

BREAKPOINT INDEX AND DELTA CALCULATIONS

THERE ARE TWO TECHNIQUES SUPPORTED BY THE MACROFILES TO DETERMINE
THE BREAKPOINT INDEX AND DELTA VALUE ASSOCIATED WITH EACH INPUT
VARIABLE: A BINARY SEARCH AND DELTA CALCULATION MACROFILE (BD.6)
AND A SHIFT SEARCH AND DELTA CALCULATION MACROFILE (SD.6).

THE BINARY SEARCH TECHNIQUE REQUIRES THAT A TABLE OF BREAKPOINTS
BE STORED IN AD-10 DATA MEMORY. THE BINARY SEARCH MACROFILE
ALLOWS UP TO 33 BREAKPOINTS TO BE SPECIFIED (32 IN THE TABLE
PLUS AN ASSUMED +1.0 UPPER BREAKPOINT). IF FEWER THAN 33
BREAKPOINTS ARE DESIRED, THE LOWER END OF THE BREAKPOINT
TABLE IS SIMPLY PADDED WITH -1.0 ENTRIES. THE MAIN REASON
FOR THE CHOICE OF THE BINARY SEARCH IS THAT IT IS EFFICIENT
(ONLY 5 COMPARISONS ARE REQUIRED TO DETERMINE THE BREAKPOINT
INDEX FOR 33 BREAKPOINTS) AND THE EXECUTION TIME OF THE
MACROFILE IS FIXED, WHICH IS IMPORTANT IF A UNIFORM TIME
FRAME IS TO BE MAINTAINED. ASSOCIATED WITH EACH BREAKPOINT
TABLE THE USER MUST PRECOMPUTE TWO ARRAYS OF "S"™ AND "G"

DATA VALUES WHICH ARE USED IN THE CALCULATION OF THE DELTA
QUANTITY "DV":

B(I+1)-B(I)
THIS CALCULATION IS PERFORMED IN TWO STEPS AS FOLLOWS:

R
DV

(V-B(I))*3(I)
2%¥R*G (1)

WHERE S(I)
G(I)

INTEGER(.5/(B(I+1)-B(I))) + 1
.5/(S(I)*(B(I+1)-B(I)))

THE SHIFT SEARCH SCHEME ALLOWS (2¥*N)+1 BREAKPOINTS (N=2,15) WHICH

ARE EQUALLY SPACED OVER THE RANGE FROM -1.0 TO +1.0 . THE BASIC
TECHNIQUE USED BY THE MACROFILE IS TO EXTRACT THE BREAKPOINT INDEX "I"
FROM THE HIGH ORDER BITS OF THE INPUT VARIABLE, USE "I" TO COMPUTE THE
CORRESPONDING BREAKPOINT VALUE, AND THEN COMPUTE THE DELTA VALUE USING
THE INPUT VARIABLE, THE BREAKPOINT VALUE, AND THE FIXED SPACING BETWEEN
BREAKPOINTS. 1IN SUMMARY, THE SHIFT SEARCH AND DELTA CALCULATION ARE
PERFORMED AS FOLLOWS:

LET THE NUMBER OF BREAKPOINTS = (2%*N)+1

I = (V-2%%(-N)) * 2¥¥(-16+N) SCALED FRACTION CALCULATION
B(I) = I ¥ 2%*%(16-N) INTEGER CALCULATION
DV = (V-B(I)) * 2%*¥(N-1) INTEGER CALCULATION

THE SHIFT SEARCH AND DELTA CALCULATION HAVE THE ADVANTAGE OF BEING ABOUT

3 TIMES FASTER THAN THE 33 BREAKPOINT BINARY SEARCH TECHNIQUE REGARDLESS Ol
HOW MANY BREAKPOINTS THE USER WISHES TO USE. THE EXECUTION TIME OF THE
SHIFT SEARCH MACROFILE IS ALSO FIXED FOR ANY NUMBER OF BREAKPOINTS.

MFLIB-7

FUNCTION DATA INDEXING

THE FOLLOWING TABLE SHOWS HOW FUNCTION DATA POINTERS ARE COMPUTED
BASED ON THE NUMBER OF VARIABLES IN THE VARIABLE SET, THE LENGTH OF THE
BREAKPOINT TABLE FOR EACH VARIABLE, AND THE CURRENT BREAKPOINT INDICES
FOR EACH VARIABLE. IT ALSO ILLUSTRATES HOW THE ADDRESSES OF FUNCTION
DATA PAIRS ARE COMPUTED BASED ON OFFSETS FROM THE FUNCTION DATA POINTER.

M

IK

NIK

ISETM

"~ BASE

OPAIRI

OPAIRO

NUMBER OF VARIABLES IN THE VARIABLE SET.

BREAKPOINT INDEX FOR THE K'TH VARIABLE
IN THE VARIABLE SET.

NUMBER OF BREAKPOINTS FOR THE K'TH VARIABLE
IN THE VARIABLE SET.

FUNCTION DATA POINTER FOR A SET OF "M" VARIABLES
(COMPUTED BY THE "PT..." MACROFILES).

BASE ADDRESS OF THE FUNCTION DATA.

OFFSET OF FUNCTION DATA PAIR "I"™ FROM THE POINTER
"ISETM". THE FUNCTION DATA PAIRS ARE ADDRESSED FOR
INTERPOLATION BY A MAP "RAID OPAIRI,I" INSTRUCTION;
THE FIXED PART OF THE ADDRESS, "OPAIRI", IS BUILT
INTO THE MAP INSTRUCTION AND THE VARTABLE PART OF
THE ADDRESS, THE FUNCTION DATA POINTER "ISETM", IS
COMPUTED AT RUN TIME AND IS STORED IN A MAP "IV
INDEX REGISTER.

"FUNCTION DATA POINTER" AND "FUNCTION DATA PAIRS"

—— = —— . TS S - B D D . . D e S A G . o - . wNh WP R W G - G G W W - - -

2

!
!
! OPAIRO
! OPAIR1

I0 + I1*NIO

o = oy - o - ———_ " = =" —— S " — " - 1 — -

3

OPAIR1
OPAIRZ2

]
!
! OPAIRO
1
1
! OPAIR3

n . nn

IO + I1¥NIO + I2*NIO*NI1

BASE

BASE + NIO

BASE + NIO*NI?

BASE + NIO*NI1 + NIO

- - - - - ——— D S — - - - — - D D G T S G ——— D —— D W G - - —— -

4

OPAIRO
OPAIR1
OPAIR2
OPAIR3
OPAIRY
OPAIR5
OPAIR6
OPAIRT

2 ud Sem tam tus Cad CUD tum ¢um s

nounouonounn N

I0 + I1%¥NIO + I2*NIO¥NI1 + I3*NIO*NI1*NI2

BASE

BASE + NIO

BASE + NIO*NI1 ‘

BASE + NIO*NI1 + NIO

BASE + NIO*NI1*¥NI2

BASE + NIO*NI1¥NI2 + NIO

BASE + NIO*NI1*¥NI2 + NIO*NIt

BASE + NIO*NI1*¥NI2 + NIO*NI1 + NIO

MFL.IB-8

THE USER SHOULD BE AWARE OF A FEW TRICKS WHICH ALLOW MORE FLEXIBLE
USE OF THE "PT..." AND "FI..." MACROFILES. NOTICE THAT THE EQUATION
FOR THE FUNCTION DATA POINTER HAS AN ADDED TERM EACH TIME THE NUMBER
OF VARIABLES INCREASES BY ONE. BY SETTING THE APPROPRIATE "NI"
VARIABLE(S) EQUAL TO 0, IT IS POSSIBLE FOR EXAMPLE TO USE THE PT4.3
MACROFILE TO GENERATE A FUNCTION DATA POINTER FOR A 3 OR 2 VARIABLE
SET. THIS ALLOWS THE USER TO MAKE FULL USE OF THE CAPABILITY OF THE
PT4.3 MACROFILE EVEN IF THE APPLICATION DOES NOT REQUIRE 3 POINTERS
FOR SETS OF 4 VARIABLES.

THE SAME TECHNIQUE ALSO CAN BE USED WITH THE "FI..." INTERPOLATION
MACROFILES. NOTICE THAT THE ADDRESSES OF THE FUNCTION DATA PAIRS ARE
SUCH THAT IF THE NUMBER OF BREAKPOINTS (I.E. THE "NI" VARIABLE) FOR

THE LAST VARIABLE WERE SET TO 0, THEN FOR EXAMPLE IN THE CASE OF M=4

THE LAST 4 PAIR ADDRESSES WOULD BE THE SAME AS FOR THE FIRST 4 PAIRS.
THIS ALLOWS FOR EXAMPLE USING THE FI4.3 MACROFILE TO INTERPOLATE FOR A
FUNCTION OF 3, 2 OR EVEN 1 VARIABLE BY SETTING THE APPROPRIATE "NI"
ARGUMENT (S) EQUAL 0. 1IN THE CASE OF THE 4 VARIABLE INTERPOLATION IF
NI2=0, THEN THE RESULTING FUNCTION VALUE WILL BE THE LINEAR INTERPOLATION
FOR A 3 VARIABLE FUNCTION OF THE FIRST 3 VARIABLES. IF NI1 AND NIZ2 ARE
BOTH SET TO O, THEN THE RESULT WILL BE A 2 VARIABLE FUNCTION OF THE
FIRST 2 VARIABLES. NOTE THAT THE CORRESPONDING DELTA VALUES FOR THE
UNUSED VARIABLES WILL NOT AFFECT THE INTERPOLATION, AND THUS CAN HAVE
ANY VALUE. THE REASON THIS TECHNIQUE WORKS, IN GENERAL TERMS, IS THAT
THE FINAL INTERPOLATIONS ARE BETWEEN THE SAME TWO FUNCTION VALUES. REFER
TO THE FOLLOWING SECTION DESCRIBING THE FUNCTION INTERPOLATION ALGORITHM
FOR MORE DETAILS.

MFLIB-9

INTERPOLATION ALGORITHM

THE ALGORITHM USES A SCHEME WHICH REDUCES THE INTERPOLATION FOR
FUNCTIONS OF ANY NUMBER OF VARIABLES TO A SEQUENCE OF CALCULATIONS
OF THE FORM:

FO + (F1 - FO)*DELTA
WHERE [FO,F1] IS A "FUNCTION DATA PAIR", AS REFERRED TO IN THE PREVIOUS
DISCUSSION OF FUNCTION DATA INDEXING. TO DESCRIBE THE ALGORITHM, THE
FOLLOWING TERMS WILL BE USED:

X REPRESENTS: THE CURRENT VALUE OF THE
INDEPENDENT VARIABLE.

X(I) REPRESENTS: THE I'TH BREAKPOINT VALUE FOR
FOR THE VARIABLE X.

F(000) REPRESENTS: F(X(I),Y(J),Z(K))
F(111) REPRESENTS: F(X(I+1),Y(J+1),Z(K+1))
F(101) REPRESENTS: F(X(I+1),Y(J),Z(K+1))

D(X) REPRESENTS: =ceeceemcee——-
X(I+1)=X(I)

INTERPOLATION FOR A FUNCTION OF ONE VARIABLE IS GIVEN BY THE FOLLOWING:
F(X) = F(0) + (F(1) - F(0)) * D(X)

INTERPOLATION FOR A FUNCTION OF 2 VARIABLES CAN BE REPRESENTED BY
USING AN INTERMEDIATE FUNCTION "H" AS FOLLOWS:

H(0) = F(00) + (F(10) - F(00)) * D(X)
H(1) = F(01) + (F(11) = F(01)) * D(X)
F(X,Y) = H(0) + (H(1) - H(0)) * D(Y)

THE GENERAL FORM OF THE INTERPOLATION FOR A 3 VARIABLE FUNCTION IS:

G(JK) = F(O0JK) + (F(1JK) - F(OJK)) *¥ D(X) ; J=0,1 ; K=0,1
CH(I) = G(OI) + (G(1I) - G(OI)) * D(Y) 5 1=0,1
F(X,Y,Z) = H(0) + (H(1) - H(0)) * D(Z)

“OR IN MORE EXPANDED FORM:

G(00) = F(000) + (F(100) - F(000)) * D(X)
G(10) = F(010) + (F(110) - F(010)) * D(X)
G(01) = F(001) + (F(101) - F(001)) * D(X)
G(11) = F(011) + (F(111) - F(011)) * D(X)
H(0) = G(00) + (G(10) - G(00)) * D(Y)
H(1) = G(01) + (G(11) - G(01)) * D(Y)
F(X,Y,Z) = H(0) + (H(1) - H(0)) * D(Z)

MFLIB-10

THE EXTENSION OF THE INTERPOLATION TECHNIQUE ILLUSTRATED TO A
FUNCTION OF AN ARBITRARY NUMBER OF VARIABLES SHOULD BE QUITE
CLEAR. AMONG THE ADVANTAGES OF THIS INTERPOLATION ALGORITHM ARE:

1) THE BREAKPOINT INDICES AND DELTA QUANTITIES ARE COMPUTED JUST
ONCE FOR EACH INPUT VARIABLE AND USED FOR ANY FUNCTION OF THAT
VARIABLE.

2) THE FORMULA ALWAYS USES PAIRS OF FUNCTION VALUES WHICH ARE
ADJACENT IN THE FUNCTION DATA ARRAY. NOTE: ADJACENT FUNCTION
VALUES ARE STORED IN DIFFERENT PAGES OF AD-10 DATA MEMORY
SO A PAIR CAN BE ACCESSED AT FULL MULTIBUS SPEED USING
A MAP "RAID" INSTRUCTION.

3) COMPARED TO OTHER ALGORITHMS, THE OVERALL ARITHMETIC OPERATION
COUNT IS SMALL AND THE MULTIPLICATION COUNT IS MINIMIZED FOR A
WIDE VARIETY OF FUNCTION MIXES.

4) TEMPORARY STORAGE CAN BE EFFICIENTLY ORGANIZED.

. 5) THE ALGORITHM IS IDEALLY SUITED TO GENERALIZATION FOR THE
e GENERATION OF FUNCTIONS OF AN ARBITRARY NUMBER OF
VARIABLES.

TRANSFER MACROFILES

THE TRANSFER MACROFILES TRANSFER DATA BETWEEN PROCESSORS AND DATA
MEMORY, BETWEEN THE COP AND THE OTHER PROCESSORS, AND FROM THE
EXTERNAL IOCC TO THE AD-10. THERE IS ALSO A GROUP OF "LOAD" MACROFILES
WHICH TRANSFER IMMEDIATE DATA (I.E. DATA IMBEDDED IN A PROGRAM MEMORY
INSTRUCTION) TO THE VARIOUS PROCESSORS AND MEMORY. THE NAMING
CONVENTIONS FOR THESE MACROFILES ARE AS FOLLOWS:

TR<SOURCE><DESTINATION>.8
LOAD<DESTINATION>.8

<SOURCE> OR <DESTINATION> MEANING
A ARP TEMPRORARY REGISTER
C COP GENERAL REGISTER
X DEP "X" REGISTER
I MAP/DEP "I" REGISTER
E EXTERNAL IOCC
M DATA MEMORY

THUS, MACROFILE "TRMA.8" TRANSFERS 8 DATA VALUES FROM MEMORY TO ARP

TEMPORARY REGISTERS, AND MACROFILE "LOADI.8" TRANSFERS 8 IMMEDIATE DATA
VALUES TO MAP/DEP "I" REGISTERS.

MFLIB-11

GENERAL APPLICATIONS MACROFILES

- - - — D . ————- I WD G WD R S - - ———

THE AD-10 IS NOT A GENERAL PURPOSE DIGITAL COMPUTER, HOWEVER THERE ARE
A NUMBER A GENERAL CALCULATIONS INVOLVED IN SIMULATION APPLICATIONS
BESIDES MULTIVARIANT FUNCTION GENERATION, WHICH THE AD-10 CAN PERFORM
VERY EFFECTIVELY. IN GENERAL, THE AD-10 CAN PERFORM MOST OF THE
ALGEBRAIC CALCULATIONS WHICH IN THE PAST WERE ASSIGNED TO AN ANALOG
COMPUTER IN A HYBRID SIMULATION, ASSUMING THE CALCULATIONS ARE PROPERLY
SCALED (I.E. NORMALIZED AS THEY WOULD ALSO NEED TO BE FOR AN ANALOG
COMPUTER IMPLEMENTATION). THE MACROFILE LIBRARY CONTAINS SEVERAL
MACROFILES WHICH PERFORM GENERAL CALCULATIONS, SUCH AS: COMPUTING

THE "SGN" FUNCTION, PERFORMING VECTOR COORDINATE TRANSFORMATIONS,
CONVERTING FROM RECTANGULAR TO THE POLAR COORDINATE SYSTEM, ETC...
AD-10 USERS MAY FIND IN THEIR OWN APPLICATIONS BLOCKS OF GENERAL
CALCULATIONS WHICH CAN BE IMPLEMENTED EFFECTIVELY AS MACROFILES. THIS
AREA OF THE MACROFILE LIBRARY IS CONSTANTLY GROWING AS EACH NEW AD-10
APPLICATION PROBLEM GENERATES NEW IDEAS FOR GENERAL CALCULATIONS WHICH

CAN BE PERFORMED ON THE AD-10 AND WHICH ARE SUITABLE TO IMPLEMENT IN
MODULAR ROUTINES.

DETAILED DESCRIPTIONS OF MACROFILES

- . e D - - - - - - 5 S G W . —

THE FOLLOWING SECTION OF THIS MANUAL CONTAINS A DETAILED DESCRIPTION OF
EACH MACROFILE IN THE AD-10 MACROFILE LIBRARY. THE FIRST PAGE OF

EACH DESCRIPTION BRIEFLY EXPLAINS WHAT THE MACROFILE COMPUTES, DEFINES
THE REQUIRED ARGUMENTS, INDICATES THE INSTRUCTION COUNTS FOR THE VARIOUS
AD-10 PROCESSORS AND THE EXECUTION TIME, AND IN SOME CASES WARNS THE
USER OF POSSIBLE ERROR CONDITIONS. IF FURTHER INFORMATION IS NECESSARY
TO USE THE MACROFILE OR TO EXPLAIN MORE FULLY WHAT CALCULATIONS ARE
PERFORMED, THEN THE DESCRIPTION IS CONTINUED ON SUCCESSIVE PAGES. MOST
OF THE INFORMATION IN THIS SECTION OF THE MANUAL WAS EXTRACTED FROM THE
COMMENT HEADER AT THE BEGINNING OF THE SOURCE CODE OF EACH MACROFILE.

MFLIB-12

BD.6 MACROFILE

THIS MACROFILE ACCEPTS 6 INPUT VARIABLES IN DEP "X"
REGISTERS AND COMPUTES THE CORRESPONDING BREAKPOINT
TABLE INDICES, WHICH ARE RETURNED IN THE MAP/DEP

"I" REGISTERS WITH THE SAME NUMBERS AS THE INPUT
VARIABLE "X" REGISTERS. IT ALSO COMPUTES THE DELTA
VALUE ASSOCIATED WITH EACH INPUT VARIABLE AND RETURNS
THE RESULT IN THE SPECIFIED ARP "T" REGISTERS. UP TO

33 BREAKPOINTS CAN BE SPECIFIED FOR EACH INPUT VARIABLE
(+1 CAN SERVE AS THE UNDERSTOOD 33'RD BREAKPOINT). THE
CALCULATIONS PERFORMED BY THIS MACROFILE ARE AS FOLOWS:

1) BINARY SEARCH FOR I'S SUCH THAT:
BJ(I) <= VJ < BJ(I+1) ; J=0,5

2) DELTA COMPUTATION USING I'S FROM 1) FOR J=0,5
RJ (VI - BJ(I))*3J(I)
#DVJ 2¥RJ*¥GJ(I) = [VI-BJ(I)] / [BJ(I+1)-BJI(I)]

USER DEFINED MACRO ARGUMENTS:

—— - ———— - - - — - - - - - —— -

USED IN
CODE FOR SYMBOLS MEANING
MAP,DEP #VO, #V1, #V2, #V3, #VL, #V5 INPUT VARIABLES
AND OUTPUT INDICES
(REG. NUMBERS)
COP #NVO, #NV1, #NV2, #NV3, #NVL, #NV5 BREAKPOINT TABLE
LENGTHS (NOT COUNT-
ING ASSUMED +1)
ARP #DVO, #DV1,#DV2, #DV3, #DV4, #DV5 DELTA VALUES
(REG. NUMBERS)
DAT #ORG ' ORIGIN OF
, _ BREAKPOINT
DATA BLOCK
ARP TO,T1,T2 SCRATCH REGISTERS
AD-10 PROCESSOR
COP ARP DEP MAP
INSTRUCTION COUNTS: 13 22 43 ug9
EXECUTION TIME: 6.0 MICRO-SEC.

POSSIBLE ERRORS: -AN ADDRESS ERROR COULD OCCUR DUE TO A MEMORY ACCESS
--------------- DURING THE INSTRUCTION PRIOR TO THIS MACROFILE.

MFLIB-13

REQUIRED DATA:

- - — - ———— = -

BD.6 MACROFILE (CONT.)

THE "B" BREAKPOINT DATA ARRAYS AND THE ASSOCIATED

"S" AND "G" DATA VALUES MUST BE LOCATED IN DATA MEMORY

AS SHOWN IN THE FOLLOWING SPECIALLY FORMATTED BLOCK

WHICH IS 96 WORDS WIDE BY 6 PAGES HIGH. THE BASE ADDRESS
OF THIS DATA BLOCK (#0RG) IS ONE OF THE USER SPECIFIED
INPUTS TO THIS MACROFILE.

PAGE mmeeccccccc e ———————
5 ! G1 ! G3 ! B5 !
4 ! st ' B3 ' G5 !

——————————————————————

——————————————————————
——————————————————————

0 32 64 WORD (DECIMAL)

"B" BREAKPOINT DATA:

BJ(I) ; I=0,N SHOULD BE RIGHT JUSTIFIED WITH

LOW ORDER UNUSED BREAKPOINTS SET TO -1. THE

BREAKPOINT TABLE LENGTH IS N+1 AND SHOULD NOT
COUNT THE ASSUMED UPPER +1 BREAKPOINT.

"S" AND "G" DATA VALUES:

SJ(I) = INTEGER(.5/(BJ(I+1)-BJ(I)) + 1 ; J=0,5

GJ(I) .5/(SJ(I)*(BJ(I+1)-BJI(I)) ; d=0,5

n

(NOTE: IT IS NOT NECESSARY TO CALCULATE AND STORE
AN "3S" OR "G" VALUE FOR THE HIGHEST BREAKPOINT
AND "S"™ AND "G" VALUES FOR UNUSED BREAKPOINTS
SHOULD BE SET TO 0)

SYMBOLS DEFINED AND USED IN MACRO FILE:

USED IN
CODE FOR

. — - —— - ———— - - - -

SYMBOLS MEANING

##BO, ##B1, ##B2, ##B3, ##B4, ##BS BREAKPOINT TABLES

#HSO, ##S1, ##3S2, ##S3, ##SH, ##S5 DELTA CALCULATION
#HIGO, ##G1, ##G2, ##G3, ##GU4, ##G5 SCALING CONSTANTS

##PAG, ##WRD "PAGE" AND "WORD"

CORRESPONDING TO
#fORG

MFLIB-14

SPECIAL PROGRAMMING CONSIDERATIONS

- —— - - -

IF THE USER DOES NOT NEED TO USE ALL 6 INPUTS FOR THIS MACROFILE, THERE
ARE SOME RECOMMENDED ARGUMENT AND DATA DEFINITIONS:

1)

2)

THE.V$",AND’"G" TABLES FOR THE UNUSED INPUTS TO THIS MACROFILE
SHOULD BE LOADED WITH ALL 0'S TO AVOID THE POSSIBILITY OF AN
ARITHMETIC OVERFLOW IN THE ARP DURING THE DELTA CALCULATION.

‘THEv“B"’ARRAYS FOR UNUSED INPUTS SHOULD BE LOADED WITH ALL

~1.0'S (SCALED FRACTIONS) AND THE CORRESPONDING "#NV" INPUT
SET TO 1 (INTEGER). THIS WILL RESULT IN A BREAKPOINT INDEX

- VALUE OF O FOLLOWING THE BINARY SEARCH.

AN ALTERNATIVE IS TO SIMPLY SET THE CORRESPONDING "#NV" INPUTS
TO 32 (WITHOUT LOADING ANYTHING IN THE UNUSED "B" ARRAYS). THIS
WILL RESULT IN A BREAKPOINT INDEX REGISTER VALUE IN THE RANGE

0 TO 31,

THE REASON FOR THESE RECOMMENDATIONS IS TO AVOID ADDRESS CONFLICTS
WHICH COULD OCCUR BETWEEN USED AND UNUSED PARTS OF THE MACROFILE.

MFLIB-15

SD.6 MACROFILE

—— - - -

THIS MACROFILE ACCEPTS 6 INPUT VARIABLES IN DEP "X"
REGISTERS AND COMPUTES THE CORRESPONDING BREAKPOINT
INDICES, WHICH ARE RETURNED IN THE MAP/DEP "I" REGISTERS
WITH THE SAME NUMBERS AS THE INPUT "X" REGISTERS. THIS
ROUTINE ALLOWS (2¥¥*N)+1 EQUALLY SPACED BREAKPOINTS (FOR
N=2,15) OVER THE RANGE -1.0 TO +1.0. IT ALSO COMPUTES THE
DELTA VALUE ASSOCIATED WITH EACH INPUT VARIABLE AND
RETURNS THE RESULT IN THE SPECIFIED ARP "T" REGISTERS.

USER DEFINED MACRO ARGUMENTS:

o ——— e - e .

USED IN
CODE FOR SYMBOLS MEANING
DEP #VO,#V1,#V2,#V3, #VL, #V5 INPUT VARIABLES
AND OUTPUT INDICES
(REG. NUMBERS)
COP #NBPS NUMBER OF

BREAKPOINTS

(MUST SATISIFY:
#NBPS = (2%¥N)+1
FOR 2 <= N <= 15)

ARP #DVO, #DV1, #DV2, #DV3, #DV4, #DV5 DELTA VALUES
(REG. NUMBER)

ARP TO,T1,T2
AD-10 PROCESSOR
COP ARP DEP MAP
INSTRUCTION COUNTS: 6 22 13 0
EXECUTION TIME: 2.3 MICRO-SEC.

T — - — . . A W . - - W e =

IF THE USER WISHES TO USE THIS MACROFILE, BUT THE INPUT VARIABLES ARE NOT
DEFINED OVER THE ENTIRE RANGE -1.0 TO +1.0, THERE ARE SEVERAL POSSIBLE
WAYS THAT THIS MACROFILE CAN STILL BE USED:

1) SUCH VARIABLES CAN BE TRANSLATED IN THE NEGATIVE DIRECTION SO
THAT THE SMALLEST VALUE THE VARIABLES TAKE ON ARE TRANSLATED TO
-1.0 . THE OUTPUT BREAKPOINT INDICES FROM THE MACROFILE WILL

HAVE A VALUE OF 0 WHEN THE CORRESPONDING INPUT VARIABLES TAKE
ON THEIR SMALLEST VALUE.

MFLIB-16

2)

3)

4)

THE RESULTING INDICES FROM THIS MACROFILE CAN BE TRANSLATED SUCH THAT
THE INDICES CORRESPONDING TO THE SMALLEST VALUE OF THE INPUT

VARIABLE ARE EQUAL TO 0. THIS CAN BE DONE IN THE DEP PROCESSOR

USING THE "CMM" INSTRUCTION, I.E.

.DEP :
LFI S'-1.0" !'-1.0 WILL FORCE CMM TO ADD K TO I REG.
CMM IREG,-64 'ADD -64 TO THE CONTENTS OF IREG

THE BASE ADDRESS(ES) OF THE FUNCTION(S) ASSOCIATED WITH THE

INPUT VARIABLE CAN BE "FUDGED" (I.E. TRANSLATED IN THE NEGATIVE
DIRECTION) TO ACCOUNT FOR THE INDEX VALUE NOT STARTING AT 0. THIS
TECHNIQUE WILL ONLY WORK IF THE RESULTING TRANSLATED BASE ADDRESS
IS A POSITIVE NUMBER. REFER TO THE SECTION OF THIS MANUAL ON
"FUNCTION DATA INDEXING" FOR A DETAILED DESCRIPTION OF THE INDEX
CALCULATIONS.

THE USER CAN STORE FUNCTION VALUES FOR THE ENTIRE -1.0 TO

+1.0 RANGE OF THE INPUT VARIABLE, EVEN THOUGH THE INPUT VARIABLE
WILL NOT TRAVERSE THIS ENTIRE RANGE. THIS IS THE EASIEST SOLUTION,
ASSUMING MEMORY REQUIREMENTS ARE NOT TIGHT.

CALCULATIONS PERFORMED:

-—— s - ———— - - - - — - e .

2)

I = (V - 2%%¥(=-N))*((2%¥*¥(N-16)) + 2%¥¥(N-16)

THIS CALCULATION, DONE IN THE FRACTIONAL ARITHMETIC
MODE, USES THE ROUNDOFF CHARACTERISTICS OF THE ARP
AND DETERMINES THE BREAKPOINT INDEX "I" FROM THE
HIGH ORDER BITS OF THE INPUT VARIABLE "V". THE
CALCULATION RESULTS IN:

nn FOR "V" IN THE RANGE:
0 -1.0 <= V. < =1.0+2.0/(2%%N)
1 ~1.042.0/(2%*N) <= V < =1.0+4.0/(2%%N)
2 -1.0+4.0/(2%*N) <= V < =1.0+6.0/(2%%N)
3 Vv <

-1.0+46.0/(2%%¥N) <= -1.0+8.0/(2%%N)

.

2¥EN 1.0-2.0/(2%*N) <= V < 1.0

(NOTE: I IS COMPUTED AS A SCALED FRACTION BUT IS
VIEWED AS AN INTEGER)

B(I) = (I - 2%*(N-16)) * 2%¥(16-N)

THIS CALCULATION, WHICH IS DONE IN THE INTEGER
ARITHMETIC MODE, USES THE INDEX VALUE "I" TO
COMPUTE THE CORRESPONDING BREAKPOINT VALUE B(I).
IN THIS CALCULATION "I" IS VIEWED AS A SCALED
FRACTION. NOTE, THE INTEGER VALUE 2¥¥*(16-N)

IS EQUIVALENT TO THE SCALED FRACTION 2¥¥(1-N).

MFLIB-17

DV = ((V - B(I)) * 2%%(N-1)

THIS CALCULATION, WHICH IS DONE IN THE INTEGER
ARITHMETIC MODE, USES THE INPUT VARIABLE "V" AND
THE BREAKPOINT VALUE "B(I)" TO COMPUTE THE DELTA
VALUE "DV"., NOTE THAT:

B(I) <=V AND O <= DV < 1.0
AND ALSO NOTE THAT THE INTEGER VALUE 2%¥¥(N-1) IS
EQUIVALENT TO THE SCALED FRACTION 2%¥*(N-16).

PT2.3 MACROFILE

DESCRIPTION: COMPUTE FUNCTION DATA POINTERS FOR 2 VARIABLE FUNCTIONS.

- - — - ———

POINTER CALCULATIONS:

#IS0 = #I0 + #NIO*#JO
#IS1 = #I1 + #NI1*¥#J1
#IS2 = #I2 + #NI2*#J2

USER DEFINED MACRO ARGUMENTS:

—— - ———— — - o — — - - -

USED IN
CODE FOR SYMBOLS MEANING
DEP #I0,#JO,#11,#J1,#12,#J2 BREAKPOINT TABLE
INDICES
(REG. NUMBERS)
DEP #NIO,#NI1,#NI2 BREAKPOINT TABLE
LENGTHS
DEP #1S0,#IS1,#IS2 FUNCTION DATA
INDICES FOR EACH
VARIABLE SET
(REG. NUMBERS)
ARP TO,T1 SCRATCH REGISTERS
AD-10 PROCESSOR
COP ARP DEP MAP
INSTRUCTION COUNTS: 4 8 8 0
EXECUTION TIME: 1.1 MICRO-SEC.

-—— e —— - —— -

MFLIB-18

PT3.3 MACROFILE

- ——— - - - ——-—

DESCRIPTION: COMPUTE FUNCTION DATA POINTERS FOR 3 VARIABLE FUNCTIONS.

- - - - - o

POINTER CALCULATIONS:

#IS0 = #I0 + #NIO¥#JO + #NIO¥#NJO*#KO
#IS1 = #I1 + #NI1*¥#J1 + #NIV¥ENJIT*#K1
#I82 = #I2 + #INI2*#J2 + #NI2¥#NJ2¥*#K2

USER DEFINED MACRO ARGUMENTS:

e —— - - - " e - —

USED IN
CODE FOR SYMBOLS MEANING
DEP #I0,#J0,#KO0,#I1,#J1,#K1,#I2,#J2,#K2 BREAKPOINT TABLE
| INDICES
(REG. NUMBERS)
DEP #NIO, #NJO,#NI1,#NJ1,#NI2, #NJ2 BREAKPOINT TABLE
LENGTHS
DEP #1350, #1S1,#IS2 FUNCTION DATA
INDICES FOR EACH
VARIABLE SET
(REG. NUMBERS)
ARP TO,T1 SCRATCH REGISTERS
AD-10 PROCESSOR
COP ARP DEP MAP
INSTRUCTION COUNTS: 0 11 11 0
EXECUTION TIME: | 1.4 MICRO-SEC.

- . - - - -

MFLIB-19

PT4.3 MACROFILE

—— - —— . —— - — - -

DESCRIPTION: COMPUTE FUNCTION DATA POINTERS FOR 4 VARIABLE FUNCTIONS.

POINTER CALCULATIONS:

#IS0 = #I0 + #NIO¥#JO + #NIO*#NJO*#KO + #NIO*#NJO*#NKO*#LO
#IS1 = #I1 + #NIT1¥#J1 + #NIT1*FNJT1*¥#K1 + #NI1¥ENJ1¥ENKT¥HL 1
#1S2 = #I2 + #NI2*#J2 + #NI2¥#NJ2*#K2 + #NI2*#NJ2*¥#NK2*#L2

USER DEFINED MACRO ARGUMENTS:

—— - —————— - —— - ——————— " ——— o —

USED IN
CODE FOR -SYMBOLS MEANING
DEP #10,#J0, #K0, #LO BREAKPOINT TABLE
FI1, 431,431, #L1 INDICES
#12,#J2,#K2, #L2 (REG. NUMBERS)
DEP #NIO, #NJO, #NKO BREAKPOINT TABLE
NI, #NJ1, #NK1 LENGTHS
INI2, #NJ2, #NK2
DEP #ISO, #IS1,#IS2 FUNCTION DATA
INDICES FOR EACH
VARIABLE SET
(REG. NUMBERS)
ARP TO,T1 SCRATCH REGISTERS
AD-10 PROCESSOR
COP ARP DEP MAP
INSTRUCTION COUNTS: 13 14 14 0
EXECUTION TIME: 1.7 MICRO-SEC.

-—— - ——— - - —-—

MFLIB-20

PT5.3 MACROFILE

DESCRIPTION: COMPUTE FUNCTION DATA POINTERS FOR 5 VARIABLE FUNCTIONS.

- - - -

POINTER CALCULATIONS:

#IS0 = #I0 + #NIO*#JO + #NIO¥#NJO*#KO + #NIO*#NJO*#NKO¥#LO +
#NIO*#NJO*#NKO*#NLO*#MO

#IS1T = #I1 + #NIT¥#J1 + #NIT1¥#NJ1¥4KT + #NIT*¥#NJ1¥#NKI¥4FL1 +
#NIT*#NJ1¥#NKT*¥#NL 1%#M 1

#IS2 = #I2 + #NI2%#J2 + #NI2¥#NJ2¥#K2 + #NI2*#NJ2*#NK2*#L2 +

#NI2¥FNJ2*¥#NK2*¥#NL2*¥#M2
USER DEFINED MACRO ARGUMENTS:

——— e — - — - " = - - - =

USED IN |
CODE FOR SYMBOLS MEANING
DEP #10,#J0,#K0, #L0, #MO BREAKPOINT TABLE
FI1,#31,#J1,#L1, #M1 INDICES
#I12,#J2,#K2,#L2, #M2 (REG. NUMBERS)
DEP #NIO, #NJO, #NKO, #NLO BREAKPOINT TABLE
#NIT,#NJI1, #NK1, #NL1 LENGTHS
#NI2,#NJ2, #NK2, #NL2
DEP #IS0,#IS1, #1852 N - FUNCTION DATA
| | INDICES FOR EACH
VARIABLE SET
(REG. NUMBERS)
ARP TO,T1 ~ SCRATCH REGISTERS
AD-10 PROCESSOR | ‘
COP ARP DEP MAP
INSTRUCTION COUNTS: 16 17 17 0
EXECUTION TIME: 2.0 MICRO-SEC.

MFLIB-21

FI1.3 MACROFILE

FO(X0) , F1(X1) , F2(X2)

USER DEFINED MACRO ARGUMENTS:

USED IN
CODE FOR SYMBOLS MEANING
ARP #DX0, #DX1,#DX2 DELTA VALUES
(REG. NUMBERS)
ARP #FO, #F 1, #F 2 FUNCTION VALUES
| (REG. NUMBERS)
MAP #AFO, #AF 1, #AF 2 FUNCTION DATA
| ADDRESS ORIGINS
MAP #IFO, #IF 1, #IF 2 FUNCTION DATA
INDICES

INSTRUCTION COUNTS:

(REG. NUMBERS)

AD-10 PROCESSOR
COP ARP DEP MAP

- -—— —— -——

3 6 0 3

1.1 MICRO-SEC.

-ADDRESS ERROR DUE TO ILLEGAL FUNCTION DATA
ORIGINS AND/OR INDICES.

~-ADDRESS ERROR DUE TO A CONFLICTING MEMORY

REFERENCE DURING ONE OF THE 3 INSTRUCTIONS PRIOR
TO THIS MACRO FILE.

SUGGESTED DEFINITIONS OF UNUSED ARGUMENTS:

- —————— - — - —— . = -

- — - - . = - —— — —— - - -

IF THE USER DOES NOT NEED TO USE ALL 3 ARGUMENT SETS, THE FOLLOWING
GUIDELINES SHOULD BE FOLLOWED TO AVOID MEMORY PAGE ADDRESS CONFLICTS:

1) THE UNUSED "#AF" FUNCTION DATA ADDRESS ORIGINS SHOULD BE
DEFINED TO ADDRESS WORD O OF A DIFFERENT PAGE FROM THOSE
PAGES OCCUPIED BY THE FUNCTION DATA FOR THE USED INPUTS.

2) THE UNUSED "#IF" FUNCTION DATA INDEX REGISTERS SHOULD
CONTAIN O (OR A KNOWN REASONABLE VALUE WHICH WHEN ADDED
TO THE CORRESPONDING "#AF" ADDRESS AT RUN TIME DOES NOT
CAUSE AN ADDRESS CONFLICT).

3) DEFINE BREAKPOINT TABLE LENGTHS FOR UNUSED INPUTS TO BE O.

MFLIB-22

FI2.3 MACROFILE

- . o - - o

DESCRIPTION: INTERPOLATION FOR 2 VARIABLE FUNCTIONS.

—— - - g - -

FO(X0,Y0) , F1(X1,Y1) , F2(X2,Y2)
USER DEFINED MACRO ARGUMENTS:

- - o - - - W - -

USED IN
CODE FOR SYMBOLS MEANING
ARP {#DXO, #DYO #DX1,#DY1, #DX2, #DY2 DELTA VALUES
~ (REG. NUMBERS)
ARP #FO, #F 1, #F2 FUNCTION VALUES
(REG. NUMBERS)
MAP #AF O, ##AF 1, #AF 2 FUNCTION DATA
- _ADDRESS ORIGINS
MAP #NXO, #NX1, #NX2 BREAKPOINT TABLE
o o "LENGTHS
MAP #IFO, #IF1, #IF2 FUNCTION DATA
‘ INDICES
(REG. NUMBERS)
ARP TO - T2 - SCRATCH REGISTERS
AD-10 PROCESSOR
COP ARP DEP MAP
INSTRUCTION COUNTS: 7 16 0 6
EXECUTION TIME: 2.1 MICRO-SEC.
POSSIBLE ERRORS: -ADDRESS ERROR DUE TO ILLEGAL FUNCTION DATA

--------------- : ORIGINS AND/OR INDICES.

~-ADDRESS ERROR DUE TO A CONFLICTING MEMORY
REFERENCE DURING ONE OF THE 3 INSTRUCTIONS PRIOR
TO THIS MACRO FILE.

SUGGESTED DEFINITIONS OF UNUSED ARGUMENTS'
1) THE UNUSED "#AF" 'FUNCTION DATA ADDRESS ORIGINS SHOULD BE
DEFINED TO ADDRESS WORD O OF A DIFFERENT PAGE FROM THOSE
PAGES OCCUPIED BY THE FUNCTION DATA FOR THE USED INPUTS.

2) THE UNUSED "#IF" FUNCTION DATA INDEX REGISTERS SHOULD
CONTAIN O (OR A KNOWN REASONABLE VALUE WHICH WHEN ADDED
-TO THE CORRESPONDING "#AF" ADDRESS AT RUN TIME DOES NOT
CAUSE AN ADDRESS CONFLICT).

3) DEFINE BREAKPOINT TABLE LENGTHS FOR UNUSED INPUTS TO BE O.

MFLIB-23

FI3.3 MACROFILE

- - - ———— - -

DESCRIPTION: INTERPOLATION FOR 3 VARIABLE FUNCTIONS.

FO(X0,Y0,20) , F1(X1,Y1,21) , F2(X2,Y2,22)
USER DEFINED MACRO ARGUMENTS:

- ——— - — - - - - —— - - -——

USED IN | o
CODE FOR SYMBOLS MEANING
ARP #DXO0, #DYO, #DZ0, #DX1, #DY1, #DZ1, DELTA VALUES
| #DX2, #DY2, #DZ2 (REG. NUMBERS)
ARP #FO, #F 1, #F2 ~ FUNCTION VALUES
(REG. NUMBERS)
MAP #AF O, #AF 1, #AF 2 FUNCTION DATA
ADDRESS ORIGINS
MAP ENXO, #NYO, #NX1, #NY 1, #NX2, #NY2 BREAKPOINT TABLE
LENGTHS
MAP #IFO, #IF 1, #IF2 FUNCTION DATA
INDICES
(REG. NUMBERS)
ARP TO - T5 SCRATCH REGISTERS
AD-10 PROCESSOR
COP ARP DEP MAP
INSTRUCTION COUNTS: 7 31 0o 12
EXECUTION TIME: '3.6 MICRO-SEC.
POSSIBLE ERRORS: -ADDRESS ERROR DUE TO ILLEGAL FUNCTION DATA

............... ORIGINS AND/OR INDICES.

~-ADDRESS ERROR DUE TO A CONFLICTING MEMORY
REFERENCE DURING ONE OF THE 3 INSTRUCTIONS PRIOR
TO THIS MACRO FILE.

SUGGESTED DEFINITIONS OF UNUSED ARGUMENTS:
1) THE UNUSED "#AF" FUNCTION DATA ADDRESS ORIGINS SHOULD BE
- DEFINED TO ADDRESS WORD O OF A DIFFERENT PAGE FROM THOSE
PAGES OCCUPIED BY THE FUNCTION DATA FOR THE USED INPUTS.

2) THE UNUSED "#IF" FUNCTION DATA INDEX REGISTERS SHOULD
‘CONTAIN O (OR A KNOWN REASONABLE VALUE WHICH WHEN ADDED
TO THE CORRESPONDING "#AF" ADDRESS AT RUN TIME DOES NOT
CAUSE AN ADDRESS CONFLICT).

3) DEFINE BREAKPOINT TABLE LENGTHS FOR UNUSED INPUTS TO BE O.

MFLIB-24

FI4.3 MACROFILE

- - —————— - - - . = .

DESCRIPTION: INTERPOLATION FOR 4 VARIABLE FUNCTIONS.

FO(VO,W0,X0,Y0)
F1(V1,W1,X1,Y1)
F2(V2,W2,X2,Y2)

USER DEFINED MACRO ARGUMENTS:

- = D B T e W WS G S W R G S W A G W -

USED IN
CODE FOR SYMBOLS MEANING
ARP #DVO, #DWO, #DX0, #DYO | DELTA VALUES
#DV1, #DW1, #DX1, #DY 1 | (REG. NUMBERS)
#DV2, #DW2, #DX2, #DY2
ARP #FO, #F 1, #F 2 FUNCTION VALUES
(REG. NUMBERS)
MAP #AFO, #AF 1, #AF 2 FUNCTION DATA
| ADDRESS ORIGINS
MAP #NVO, #NWO, #NXO BREAKPOINT TABLE
FNVT, #NW1, #NX1 LENGTHS
#NV2, #NW2, #NX2 |
MAP #IFO, #IF 1, #IF2 | FUNCTION DATA
| INDICES
(REG. NUMBERS)
ARP TO - T8 = SCRATCH REGISTERS
AD-10 PROCESSOR
COP ARP DEP MAP
INSTRUCTION COUNTS: 5 58 0o 24
EXECUTION TIME: 6.3 MICRO-SEC.
POSSIBLE ERRORS: -ADDRESS ERROR DUE TO ILLEGAL FUNCTION DATA
i e ORIGINS AND/OR INDICES.
-ADDRESS ERROR DUE TO A CONFLICTING MEMORY
REFERENCE DURING ONE OF THE 3 INSTRUCTIONS PRIOR
TO THIS MACRO FILE.
NOTE: 1) THE UNUSED "#AF" FUNCTION DATA ADDRESS ORIGINS SHOULD BE
DEFINED TO ADDRESS WORD O OF A DIFFERENT PAGE FROM THOSE
PAGES OCCUPIED BY THE FUNCTION DATA FOR THE USED INPUTS.
2) THE UNUSED "#IF" FUNCTION DATA INDEX REGISTERS SHOULD
CONTAIN O (OR A KNOWN REASONABLE VALUE WHICH WHEN ADDED
TO THE CORRESPONDING "#AF" ADDRESS AT RUN TIME DOES NOT
CAUSE AN ADDRESS CONFLICT).
3)

DEFINE BREAKPOINT TABLE LENGTHS FOR UNUSED INPUTS TO BE O.

MFLIB-25

FI5.3 MACROFILE

- —— - -————— .- - - -

DESCRIPTION:v INTERPOLATION FOR 5 VARIABLE FUNCTIONS.

-—— - — o

FO(VO0,W0,X0,Y0,Z0)
F1(V1,W1,X1,Y1,21)
F2(V2,W2,X2,Y2,22)

USER DEFINED MACRO ARGUMENTS:

- e - - —— - - ————— - - —— -

USED IN | |
CODE FOR SYMBOLS MEANING
ARP #DVO, #DWO, #DX0, #DYO, #DZ0 ~ DELTA VALUES
#DV1,#DW1, #DX1,#DY 1, #DZ1 (REG. NUMBERS)
#DV2, #DW2, #DX2, #DY2, #DZ2
ARP #FO, #F1,#F2 FUNCTION VALUES
| ' (REG. NUMBERS)
MAP #AFO,#AF1,#AF2 FUNCTION DATA
ADDRESS ORIGINS
MAP ~ #NVO, #NWO, #NXO0, #NYO ' BREAKPOINT TABLE
#NVT, #NW1T, #NX1, #NY 1 LENGTHS
#NV2, #NW2, #NX2, #NY2 |
MAP #IFO, #IF 1, #IF2 FUNCTION DATA
, INDICES
(REG. NUMBERS)
ARP TO - T11 | | SCRATCH REGISTERS
AD-10 PROCESSOR
COP ARP DEP MAP
INSTRUCTION COUNTS: 5 109 0 48
EXECUTION TIME: 11.4 MICRO-SEC.
POSSIBLE ERRORS: -ADDRESS ERROR DUE TO ILLEGAL FUNCTION DATA

_______________ ORIGINS AND/OR INDICES.

-ADDRESS ERROR DUE TO A CONFLICTING MEMORY
REFERENCE DURING ONE OF THE 3 INSTRUCTIONS PRIOR
TO THIS MACRO FILE.

NOTE: 1) THE UNUSED "#AF" FUNCTION DATA ADDRESS ORIGINS SHOULD BE
DEFINED TO ADDRESS WORD O OF A DIFFERENT PAGE FROM THOSE
PAGES OCCUPIED BY THE FUNCTION DATA FOR THE USED INPUTS.

2) THE UNUSED "#IF" FUNCTION DATA INDEX REGISTERS SHOULD
CONTAIN O (OR A KNOWN REASONABLE VALUE WHICH WHEN ADDED
TO THE CORRESPONDING "#AF" ADDRESS AT RUN TIME DOES NOT
CAUSE AN ADDRESS CONFLICT).

3) DEFINE BREAKPOINT TABLE LENGTHS FOR UNUSED INPUTS TO BE O.

MFLIB-26

TRMA.8 MACROFILE

e . - - - —— -

DESCRIPTION: TRANSFER 8 DATA VALUES FROM MEMORY TO ARP "T" REGISTERS

- — - o

USER DEFINED MACRO ARGUMENTS:

—— - B G - —— - - —

USED IN
CODE FOR SYMBOLS MEANING
ARP #ATRO, #ATR1, ..., #ATRT ARP "T" REGISTER
, | NUMBERS
MAP #DMO, #DM1, . .., #DMT | MEMORY ADDRESSES
(TO BE ACCESSED
IN SUCCESSIVE
INSTRUCTIONS)
AD-10 PROCESSOR
COP ARP DEP MAP
INSTRUCTION COUNTS: 39 0 8
EXECUTION TIME: 1.4 MICRO-SEC.
POSSIBLE ERRORS: -ADDRESS ERROR DUE TO A CONFLICTING MEMORY
--------------- REFERENCE DURING ONE OF THE 3 INSTRUCTIONS PRIOR

TO THIS MACRO FILE.

MFLIB-27

TRMC. 8 MACROFILE

- — - o - e .

- - an - -

——— - — D G — D o - - W=

USED IN
CODE FOR SYMBOLS MEANING
COP #CGRO, #CGR1, . . . , #CGRT COP GENERAL
REGISTER NUMBERS
MAP #DMO, #DM1, . . ., #DMT MEMORY ADDRESSES
(TO BE ACCESSED
IN SUCCESSIVE
INSTRUCTIONS)
AD-10 PROCESSOR
COP ARP DEP MAP
INSTRUCTION COUNTS: 10 0 0 8
EXECUTION TIME: 1.4 MICRO-SEC.
POSSIBLE ERRORS: -ADDRESS ERROR DUE TO A CONFLICTING MEMORY

--------------- REFERENCE DURING ONE OF THE 3 INSTRUCTIONS PRIOR
TO THIS MACRO FILE.

MFLIB-28

TRMX.8 MACROFILE

- e . W - — -

-—— -

- — - - —— - - > G - - - -

USED 1IN
CODE FOR SYMBOLS MEANING
DEP #DXRO, #DXR1, ..., #DXRT DEP "X" REGISTER
; NUMBERS
MAP #DMO, #DM1, ..., #DMT MEMORY ADDRESSES
~ (TO BE ACCESSED
IN SUCCESSIVE
INSTRUCTIONS)
AD-10 PROCESSOR
COP ARP DEP MAP
INSTRUCTION COUNTS: 3 0 9 8
EXECUTION TIME: 1.4 MICRO-SEC.
POSSIBLE ERRORS: -ADDRESS ERROR DUE TO A CONFLICTING MEMORY

--------------- REFERENCE DURING ONE OF THE 3 INSTRUCTIONS PRIOR
TO THIS MACRO FILE.

MFLIB-29

TRMI.8 MACROFILE

- e - - o = -

DESCRIPTION: TRANSFER 8 DATA VALUES FROM MEMORY TO DEP "I" REGISTERS

USER DEFINED MACRO ARGUMENTS:

- - —— - - S R WS e -

USED IN |
CODE FOR SYMBOLS MEANING
DEP #DIRO, #DIR1,...,#DIRT DEP "I" REGISTER
NUMBERS
MAP #DMO, #DM1, ..., #DM7 'MEMORY ADDRESSES
(TO BE ACCESSED
IN SUCCESSIVE
INSTRUCTIONS)
AD-10 PROCESSOR
COP ARP DEP MAP
INSTRUCTION COUNTS: 3 0o 9 8
EXECUTION TIME: 1.4 MICRO-SEC.
POSSIBLE ERRORS: ~ -ADDRESS ERROR DUE TO A CONFLICTING MEMORY
-------------- - 'REFERENCE DURING ONE OF THE 3 INSTRUCTIONS PRIOR

TO THIS MACRO FILE.

MFLIB-30

TRME.8 MACROFILE

- e - — . - — - — - -

- — - -

- A . - - . - - - - W .

USED IN

CODE FOR SYMBOLS MEANING
COP #10C0, #10C1, ..., #I0CT I0CC CHANNEL
| NUMBERS
MAP #DMO, #DM1, ..., #DMT | MEMORY ADDRESSES
| (EACH SUCCESSIVE U4
TO BE ACCESSED
IN SUCCESSIVE
INSTRUCTIONS)
cop #OP ~ 10 OPCODE
AD-10 PROCESSOR
COP ARP DEP MAP
INSTRUCTION COUNTS: 12 0 0 8
EXECUTION TIME: 1.8 MICRO-SEC.
POSSIBLE ERRORS: -ADDRESS ERROR DUE TO A CONFLICTING MEMORY

e REFERENCE DURING ONE OF THE 3 INSTRUCTIONS PRIOR
TO THIS MACRO FILE.

. MFLIB-31

TRAM.8 MACROFILE

——— i ——— - - - . - - - -

DESCRIPTION: TRANSFER 8 DATA VALUES FROM ARP "T" REGISTERS TO MEMORY

—— - - -

- - - - G - - G W . - - -

USED IN
CODE FOR =~ SYMBOLS MEANING
ARP #ATRO, #ATR1, ..., #ATRY ARP "T" REGISTER
‘ NUMBERS
MAP #DMO, #DM1, ..., #DMT7 MEMORY ADDRESSES
: ' : (TO BE ACCESSED
IN SUCCESSIVE
INSTRUCTIONS)
AD-10 PROCESSOR
’ COP ARP DEP MAP
INSTRUCTION COUNTS: | 3 8 0 8
EXECUTION TIME: 1.0 MICRO-SEC.
POSSIBLE ERRORS: -ADDRESS ERROR DUE TO A CONFLICTING MEMORY

--------------- REFERENCE DURING ONE OF THE 3 INSTRUCTIONS PRIOR
' TO THIS MACRO FILE. ‘

-ADDRESS ERROR DUE TO A CONFLICTING MEMORY

REFERENCE DURING ONE OF THE 3 INSTRUCTIONS
FOLLOWING THIS MACRO FILE.

MFLIB-32

TRCM,8 MACROFILE

- —— > o -

—— - - - - -

. . ——— - WD A . o D A e o -

USED IN
CODE FOR SYMBOLS MEANING
COP #CGRO, #CGR1, ..., #CGRT COP GENERAL
REGISTER NUMBERS
MAP #DMO, #DM1, ..., #DM7 ~ MEMORY ADDRESSES
| | (TO BE ACCESSED
IN SUCCESSIVE
INSTRUCTIONS)
AD-10 PROCESSOR
COP ARP DEP MAP
INSTRUCTION COUNTS: 10 0o 0 8
EXECUTION TIME: 1.0 MICRO-SEC.
POSSIBLE ERRORS: -ADDRESS ERROR DUE TO A CONFLICTING MEMORY

——————————————— REFERENCE DURING ONE OF THE 3 INSTRUCTIONS PRIOR
' TO THIS MACRO FILE.

-ADDRESS ERROR DUE TO A CONFLICTING MEMORY
REFERENCE DURING ONE OF THE 3 INSTRUCTIONS
FOLLOWING THIS MACRO FILE.

MFLIB-33

TRXM.8 MACROFILE

- ————— —— - - - - -

DESCRIPTION: TRANSFER 8 DATA VALUES FROM DEP "X" REGISTERS TO MEMORY

- . - ——— - -

- - - WD W G A D D D NS W WP - -

USED IN
CODE FOR SYMBOLS MEANING
DEP #DXRO, #DXR1, ..., #DXRT DEP "X" REGISTER
NUMBERS
MAP #DMO, #DM1, ..., #DM7T MEMORY ADDRESSES
(TO BE ACCESSED
IN SUCCESSIVE
INSTRUCTIONS)
AD-10 PROCESSOR
COP ARP DEP MAP
INSTRUCTION COUNTS: 3 0 8 8
EXECUTION TIME: 1.0 MICRO-SEC.

POSSIBLE ERRORS: -ADDRESS ERROR DUE TO A CONFLICTING MEMORY

--------------- REFERENCE DURING ONE OF THE 3 INSTRUCTIONS PRIOR
TO THIS MACRO FILE.

-ADDRESS ERROR DUE TO A CONFLICTING MEMORY

REFERENCE DURING ONE OF THE 3 INSTRUCTIONS
FOLLOWING THIS MACRO FILE.

MFLIB-34

TRIM.8 MACROFILE

- — - —— ———— — -

DESCRIPTION: TRANSFER 8 DATA VALUES FROM DEP "I" REGISTERS TO MEMORY

- - - -

USER DEFINED MACRO ARGUMENTS:

- e . A WD D S L G . e D D W e - -

USED IN
CODE FOR SYMBOLS MEANING
DEP #DIRO, #DIR1, ..., #DIRT DEP "I" REGISTER .
NUMBERS
MAP #DMO, #DM1, . .., #DMT MEMORY ADDRESSES
‘ : (TO BE ACCESSED
IN SUCCESSIVE
INSTRUCTIONS)
AD-10 PROCESSOR
COP ARP DEP MAP
INSTRUCTION COUNTS: 3 0 8 8
EXECUTION TIME: 1.0 MICRO-SEC.
POSSIBLE ERRORS: -ADDRESS ERROR DUE TO A CONFLICTING MEMORY

--------------- REFERENCE DURING ONE OF THE 3 INSTRUCTIONS PRIOR
TO THIS MACRO FILE.

-ADDRESS ERROR DUE TO A CONFLICTING MEMORY
REFERENCE DURING ONE OF THE 3 INSTRUCTIONS
FOLLOWING THIS MACRO FILE.

MFLIB-35

~ TREM.8 MACROFILE

DESCRIPTION: TRANSFER 8 DATA VALUES FROM EXTERNAL IOCC TO MEMORY

- um an = . - -

USER DEFINED MACRO ARGUMENTS:

- o - — W T e G D W ue T WD WS D P -

'USED IN
CODE FOR SYMBOLS

MEANING

COP #10C0O,#I10C1,...,#I0C7 I0CC CHANNEL
v , : NUMBERS
MAP #DMO, #DM1, ..., #DMT MEMORY ADDRESSES
_ (EACH SUCCESSIVE U4
TO BE ACCESSED
IN SUCCESSIVE
INSTRUCTIONS)
COP #OP I0 OPCODE
AD-10 PROCESSOR
COP ARP DEP MAP
INSTRUCTION COUNTS: 12 0 0 8
EXECUTION TIME: 1.8 MiCRo-SEc.
POSSIBLE ERRORS: ~-ADDRESS ERROR DUEkTO A CONFLICTING MEMORY
...... ————m— e REFERENCE DURING ONE OF THE 3 INSTRUCTIONS

FOLLOWING THIS MACRO FILE.

MFLIB-36

TRCA.8 MACROFILE

- - - - . - ——

DESCRIPTION: TRANSFER 8 DATA VALUES FROM COP REG'S TO ARP "T" REG'S

- - - —— - -

————— - —— - - e . - - e -

USED IN
CODE FOR SYMBOLS MEANING
ARP #ATRO, #ATR1, ..., #ATR7 ARP "T" REGISTER
NUMBERS
coP #CGRO, #CGR1, ..., #CGRT COP GENERAL
REGISTER NUMBERS
AD-10 PROCESSOR
COP ARP DEP MAP
INSTRUCTION COUNTS: 9 8 o 0
EXECUTION TIME: .9 MICRO-SEC.

—— o -

TRCX.8 MACROFILE

- - - —— . -~

DESCRIPTION: TRANSFER 8 DATA VALUES FROM COP REG'S TO DEP "X" REG'S

-—— . - ————— -

—— - — - —— — - — o o - - w- - -

USED IN |
CODE FOR SYMBOLS | MEANING
DEP #DXRO, #DXR1, ..., #DXRT DEP "X" REGISTER
NUMBERS
COP #CGRO, #CGR1, ..., #CGRT COP GENERAL
REGISTER NUMBERS
AD-10 PROCESSOR
COP ARP DEP MAP
INSTRUCTION COUNTS: 9 0 8 0
EXECUTION TIME: .9 MICRO-SEC.

MFLIB-37

TRCI.8 MACROFILE

—— e - - WS ww -

DESCRIPTION: TRANSFER 8 DATA VALUES FROM COP REG'S TO DEP "I" REG'S

- . D ——— WP D 4o W S S W —— o - -

USED IN
CODE FOR SYMBOLS MEANING
DEP #DIRO, #DIR1,...,#DIRT ' DEP "I" REGISTER
NUMBERS
COP #CGRO, #CGR1, ..., #CGRT COP GENERAL
REGISTER NUMBERS
AD-10 PROCESSOR
COP ARP DEP MAP
INSTRUCTION COUNTS: 9 0 8 0
EXECUTION TIME: .9 MICRO-SEC.

TRCE.8 MACROFILE

-—— - ——— = o -

DESCRIPTION: TRANSFER 8 DATA VALUES FROM COP REG'S TO EXTERNAL IOCC

-—— . - - - - -

. . - - - - - 0 W G = Y - . W - -

USED IN
CODE FOR SYMBOLS MEANING
coP #CGRO, #CGR1, . .. , #CGRT | COP GENERAL
REGISTER NUMBERS
cop #10C0, #10C1, ..., #10CT EXTERNAL IOCC
CHANNEL NUMBERS
cop #op | 10 OPCODE
AD-10 PROCESSOR
COP ARP DEP MAP
INSTRUCTION COUNTS: 8 0 0 0
EXECUTION TIME: .8 MICRO-SEC.

-------------- MFLIB-38

TRAC.8 MACROFILE

-—— - ———— — - - v— -

DESCRIPTION: TRANSFER 8 DATA VALUES FROM ARP "T" REG'S TO COP REG'S

- - o - - -

- ——— . — - - wm W - ——— e -

USED IN
CODE FOR SYMBOLS MEANING
ARP #ATRO, #ATR1, ..., #ATRT ARP "T" REGISTER
NUMBERS
CoP #CGRO, #CGR1, ..., #CGR7 COP GENERAL
REGISTER NUMBERS
AD-10 PROCESSOR
COP ARP DEP MAP
INSTRUCTION COUNTS: 10 8 0 0
EXECUTION TIME: 1.0 MICRO-SEC.

- ——— - - -

TRXC.8 MACROFILE

- - - - —— -

DESCRIPTION: TRANSFER 8 DATA VALUES FROM DEP "X" REG'S TO COP REG'S

- ———— - ————

- - - - - - - ————— - .- -

USED IN v
CODE FOR SYMBOLS MEANING
DEP #DXRO, #DXR1, ..., #DXR7 DEP "X" REGISTER
NUMBERS
COP #CGRO, #CGR1, ..., #CGR7 : COP GENERAL
: REGISTER NUMBERS
AD-10 PROCESSOR
COP ARP - DEP MAP
INSTRUCTION COUNTS: 10 0 8 0
EXECUTION TIME: 1.0 MICRO-SEC.

—— - ——— - - -

MFLIB-39

TRIC.8 MACROFILE

- ——— - ———————— -

DESCRIPTION; TRANSFER 8 DATA VALUES FROM DEP "I" REG'S TO COP REG'S

- - —— - - - D - = — - — — - - -

USED IN
CODE FOR SYMBOLS | MEANING
DEP #DIRO, #DIR1, ..., #DIRT | 'DEP "I" REGISTER
| NUMBERS
COoP #CGRO, #CGR1, ..., #CGRT COP GENERAL
| : REGISTER NUMBERS
AD-10 PROCESSOR
COP ARP DEP MAP
INSTRUCTION COUNTS: 10 0 8 0
EXECUTION TIME: 1.0 MICRO-SEC.

TREC.8 MACROF ILE

- A . . ws o

DESCRIPTION: TRANSFER 8 DATA VALUES FROM EXTERNAL IOCC TO COP REG'S

- - - - -

USER DEFINED MACRO ARGUMENTS:

- e e ——— - — - ——— - - -

USED 1IN
CODE FOR SYMBOLS MEANING
cop #CGRO, #CGR1, ..., #CGRT COP GENERAL
REGISTER NUMBERS
CoP #10C0,#I0C1,...,#I0CT EXTERNAL IOCC
| CHANNEL NUMBERS
COP #OP 10 OPCODE
AD-10 PROCESSOR
COP ARP DEP MAP
INSTRUCTION COUNTS: 13 0 0 0
EXECUTION TIME: 1.3 MICRO-SEC.

- - - —— - ———— -

MFLIB-40

TREXM.8 MACROFILE

- ———— - - —— -

DESCRIPTION: TRANSFER 8 DATA VALUES FROM IOCC TO DEP "X" REG'S AND
----------- MEMORY . | ‘

USER DEFINED MACRO ARGUMENTS:

- ———— - ——— - —— - - —— v - - ——

USED IN
CODE FOR SYMBOLS MEANING
DEP #DXRO, #DXR1, ..., #DXRT "DEP "X" REGISTER
‘ NUMBERS
MAP #DMO, #DM1, . .., #DMT " MEMORY ADDRESSES
coP #10C0,#10C1,...,#I0CT EXTERNAL IOCC
| CHANNEL NUMBERS
cop #OP 10 OPCODE
AD-10 PROCESSOR
COP ARP DEP MAP
INSTRUCTION COUNTS: 10 0 8 9
EXECUTION TIME: 1.8 MICRO-SEC.
POSSIBLE ERRORS: -ADDRESS ERROR DUE TO A CONFLICTING MEMORY

--------------- REFERENCE DURING ONE OF THE 3 INSTRUCTIONS
FOLLOWING THIS MACRO FILE.

- MFLIB-41

~ TRAEM.8 MACROFILE

. . - - - - -

DESCRIPTION: TRANSFER 8 DATA VALUES FROM ARP "T" REG'S TO EXTERNAL
----------- I0CC AND MEMORY

USER DEFINED MACRO ARGUMENTS:

———----———--,-—- - - - -

USED IN
CODE FOR SYMBOLS MEANING
ARP #ATRO, #ATR1, ..., #ATR7 ARP "T" REGISTER
| | NUMBERS
coPp #10C0, #10C1,...,#10CT EXTERNAL I0CC
- CHANNEL NUMBERS
MAP #DMO, #DM1, ..., #DMT | MEMORY ADDRESSES
COoP ~#0P 10 OPCODE
AD-10 PROCESSOR
COP ARP DEP MAP
INSTRUCTION COUNTS: % 8 0 8
EXECUTION TIME: 1.0 MICRO-SEC.
POSSIBLE ERRORS: -ADDRESS ERROR DUE TO A CONFLICTING MEMORY

—————————————— - REFERENCE DURING ONE OF THE 3 INSTRUCTIONS PRIOR.
' TO THIS MACRO FILE.

-ADDRESS ERROR DUE TO A CONFLICTING MEMORY

REFERENCE DURING ONE OF THE 3 INSTRUCTIONS
FOLLOWING THIS MACRO FILE. '

MFLIB-42

LOADA.8 MACROFILE

- -] - o= e —— e

DESCRIPTION: LOAD IMMEDIATE DATA INTO ARP "T" REGISTERS

—————— - . =~

o . W - - - - . - - -

USED IN ~
CODE FOR SYMBOLS MEANING
ARP = #ATRO, #ATR1, ..., #ATR7 ARP "T" REGISTER
| NUMBERS
DAT #IDATO, #IDAT1, ..., #IDATT IMMEDIATE DATA
AD-10 PROCESSOR
COP - ARP DEP MAP
INSTRUCTION COUNTS: 10 9 0 0
EXECUTION TIME: 1.0 MICRO-SEC.

LOADC.8 MACROFILE

- - — e - - - -

DESCRIPTION: LOAD IMMEDIATE DATA INTO COP GENERAL REGISTERS

-y mn - - - - -

- ——— P WO S M . - — - = =

USED 1IN
CODE FOR SYMBOLS " MEANING
COP #CGRO, #CGR1, ..., #CGRT COP "X" REGISTER
NUMBERS
DAT #IDATO, #IDAT1,...,#IDATT IMMEDIATE DATA
AD-10 PROCESSOR
COP ARP DEP MAP
INSTRUCTION COUNTS: 10 0 8 0
EXECUTION TIME: 1.0 MICRO-SEC.

————— - - - -

MFLIB-43

LOADX.8 MACROFILE

DESCRIPTION: LOAD IMMEDIATE DATA INTO DEP "X" REGISTERS

- - — - A WS . . W e . - ———

USED IN
CODE FOR SYMBOLS ‘ MEANING
DEP #DXRO, #DXR1, ..., #DXRT DEP "X" REGISTER
NUMBERS
DAT #IDATO, #IDAT1,...,#IDAT7 . IMMEDIATE DATA
AD-10 PROCESSOR
COP ARP DEP MAP
INSTRUCTION COUNTS: 10 0 9 0
EXECUTION TIME: | 1.0 MICRO-SEC.

- - - - ———— -

LOADI.8 MACROFILE

——— - —— - ——— w—s = - -

DESCRIPTION: LOAD IMMEDIATE DATA INTO DEP "I" REGISTERS

USER DEFINED MACRO ARGUMENTS:

- - e e . - — - — -

USED IN
CODE FOR SYMBOLS MEANING |
DEP #DIRO, #DIR1, ..., #DIRT DEP "I" REGISTER
NUMBERS
DAT #IDATO, #IDAT1, ..., #IDATY IMMEDIATE DATA
AD-10 PROCESSOR
COP ARP DEP MAP
INSTRUCTION COUNTS: 10 0 9 0
EXECUTION TIME: 1.0 MICRO-SEC.

-—— - —— ——————— —

MFL1B-44

LOADM.8 MACROFILE

- n . - — o —— - -——

DESCRIPTION: LOAD IMMEDIATE DATA INTO MEMORY

- - — - —

- - - - - ——— - — - -

USED IN
CODE FOR SYMBOLS MEANING
MAP #DMO, #DM1, ..., #DMT7 ‘ MEMORY ADDRESSES
(TO BE ACCESSED
IN SUCCESSIVE
INSTRUCTIONS)
DAT #IDATO,#IDAT1,...,#IDATT IMMEDIATE DATA
AD-10 PROCESSOR
COP ARP DEP MAP
INSTRUCTION COUNTS: 10 0 0 9
EXECUTION TIME: 1.0 MICRO-SEC.
POSSIBLE ERRORS: -ADDRESS ERROR DUE TO A CONFLICTING MEMORY

——————————————— REFERENCE DURING ONE OF THE 3 INSTRUCTIONS PRIOR
TO THIS MACRO FILE.

-ADDRESS ERROR DUE TO A CONFLICTING MEMORY

REFERENCE DURING ONE OF THE 3 INSTRUCTIONS
FOLLOWING THIS MACRO FILE.

MFLIB-45

SGN.2 MACROFILE

——— - ——— - ———— -

DESCRIPTION: COMPUTES "SGN" FUNCTION

#SGNX = SGN(X) = 1 (INTEGER)
= -1 (INTEGER)
#SGNY = SGN(Y) = (AS ABOVE)

USER DEFINED MACRO ARGUMENTS:

e - — S D D W W R e - - e

USED IN
CODE FOR SYMBOLS
ARP #X, #Y
ARP #SGNX, #SGNY
ARP TO,T1
AD-10 PROCESSOR
COP ARP DEP MAP
INSTRUCTION COUNTS: 5 7 0 0

- ——— - - - —— - -

.8 MICRO-SEC.

MFLIB-46

.
’

HEE

X
X

MEANING

INPUT ARGUMENTS
(REG. NUMBERS)

RESULTS
(REG. NUMBERS)

SCRATCH REGISTERS

DESCRIPTION:

- — e o - - -

CTR.3 MACROFILE

- A o - —— - = - -

PERFORMS COORDINATE TRANSFORMATIONS FOR 3 VECTORS.

XPI
YPT

" n

-1.0 <= AI < 1.0 ; UNIT AI

XI*COS(AI) + YI*SIN(AI)
-XI*SIN(AI) + YI¥*COS(AI)

180 DEGREES

NOTE: THIS MACROFILE CAN BE USED TO ROTATE 3
INDEPENDENT VECTORS EACH THROUGH A SEPARATE ANGLE.
IT CAN ALSO BE USED TO ROTATE ONE VECTOR THROUGH 3
SEPARATE ANGLES BY SPECIFING THE INPUT TO THE SECOND
ROTATION AS THE OUTPUT OF THE FIRST AND THE INPUT TO
THE THIRD ROTATION AS THE OUTPUT OF THE SECOND
TRANSFORMATION (SEE EXAMPLE ON NEXT PAGE).

USER DEFINED MACRO ARGUMENTS:

——— - ——— - — -

- —— - - -

6

USED IN
CODE FOR SYMBOLS
ARP #XO0, #X 1, #X2,#Y0,#Y1, #Y2
ARP #AO, #A1, ##A2
ARP #XPO, #XP1, #XP2,#YPO, #YP1, #YP2
ARP #SINO, #SIN1, #SIN2
#C0S0, #C0OS 1, #C0S2
MAP #SIN, #COS
ARP TO,T1,T2
DEP 10,I1,12
| AD-10 PROCESSOR
COP ARP DEP MAP
INSTRUCTION COUNTS: 13 31 3
EXECUTION TIME: 3.2 MICRO-SEC.

- = - - -

-

MFLIB-47

MEANING
INPUT COMPONENTS
(REG. NUMBERS)

ROTATION ANGLES
(REG. NUMBERS)

OUTPUT COMPONENTS
(REG. NUMBERS)

OUTPUT SIN'S AND
- CO0S'S (REG NUMBERS)

ORIGINS OF SIN AND
COS FUNCTION DATA
TABLES. EACH TABLE
HAS 513 DATA VALUES
FOR EQUAL SPACED
BREAKPOINTS OVER
THE RANGE:

-180 TO +180 DEG.

SCRATCH REGISTERS

SCRATCH REGISTERS

- . - - P - ——— -

EXAMPLE:

SUPPOSE WE HAVE A VECTOR WITH 3 ORTHOGONAL COMPONENTS [X,Y,Z] AND WE
WISH TO PERFORM A 3 ANGLE COORDINATE TRANSFORMATION THROUGH THE ANGLES
AXY, AXZ, AND AYZ (I.E. ANGLES IN THE X-Y, X-Z, AND Y-Z PLANES). THE
ARGUMENTS TO THIS MACROFILE WOULD BE DEFINED AS FOLLOWS:

#X .DEFINE X ,TXO,TYO
#Y .DEFINE Y ,Z ,TXT
#A .DEFINE AXY,AXZ,AYZ

IF THE 3 VECTOR COMPONENTS OF THE RESULT ARE TO BE [XX,YY,ZZ], THEN THE
OUTPUTS OF THE MACROFILE WOULD BE DEFINED AS FOLLOWS: '

#XP .DEFINE TXO,TX1,YY
#YP .DEFINE TYO,XX ,ZZ

THE EQUATIONS SOLVED WITH THESE ARGUMENT DEFINITIONS ARE:

TX0 = #XPO = Y¥*SIN(AXY) + X¥COS(AXY)

TYO0 = #YPO = Y*COS(AXY) - X¥SIN(AXY)

TX1 = #XP1 = Z*SIN(AXZ) + TXO¥*COS(AXZ)
XX = #fYP1 = Z¥COS(AXZ) - TXO¥*SIN(AXZ)
YY = #XP2 = TX1*3SIN(AYZ) + TYO*COS(AYZ)
ZZ = #YP2 = TX1¥COS(AYZ) - TYO*SIN(AYZ)

MFLIB-48

IRS.3 MACROFILE

—— . — - - - -

DESCRIPTION: INVERSE RESOLUTION

-——— -~ — -

/!
/! INPUTS: XI,YI ; 1=0,2
/ 1
/]
/ !
RI / 'Yl
/ 1
/]
/ ! OUTPUTS: AI (RADIANS/PI) ; 1I=0,2
/ AI ! SIN(AI),COS(AI) ; I1=0,2
£ ! RI ; 1=0,2
XI HRI = RI/2 . I1=0,2
USER DEFINED MACRO ARGUMENTS
USED IN
CODE FOR SYMBOLS MEANING
ARP #X0, #Y0, #X1,#Y 1, #X2, #Y2 INPUTS
MAP #IRORG ORIGIN OF FUNCTION
. DATA TABLES
ARP #AO, #A1, #A2 OUTPUT ANGLES
(UNIT A = 180 DEG.)
ARP #SINO, #SIN1, #SIN2 OUTPUT SIN'S
#C0S0, #C0S1, #C0S2 AND COS'S
ARP #RO, #R1,#R2 OUTPUT VECTORS
ARP #HRO, #HR 1, #HR2 OUTPUT VECTORS
DIVIDED BY 2
ARP TO-TY ‘ SCRATCH REGISTERS
MAP/DEP IX0-IX11 SCRATCH "I"™ AND "X"

REGISTERS

NOTE: THE #A, #SIN, #COS, #R, AND #HR OUTPUT REGISTERS ARE USED
INTERNALLY BY THIS MACROFILE FOR INTERMEDIATE RESULTS, THUS THEY

MUST BE UNIQUE REGISTERS. FOR EXAMPLE, #AO MUST NOT BE THE SAME ARP
REGISTER AS #3INO.

AD-10 PROCESSOR
COP ARP DEP MAP

- - - — - —— -——

INSTRUCTION COUNTS: 12 102 32 33

- ——— - — - —— - -

EXECUTION TIME: 11.5 MICRO-SEC.

MFLIB-49

IRS.3 MACROFILE (CONT.)

PAGE ==mmmmmemm e mee e e e
5 G P FCN (EVEN) !
v o+ B v Fen (opD) 1
3 o G 1 ' FSC (EVEN) !
2+ B 1 Fsc (obDy 1
o Gt 1 FDV (EVEN) !
o + B v FDpV (0DD) 1t
o T T yste 1T 273 WORD (DECIMAL)
#IRORG

THE DATA ARRAYS ARE DEFINED AS FOLLOWS:

B(0) = =-1.0

B(I) = 1.0-2%%(1-1) ; 1I=1,16

G(I) = 2%¥] ; I=0,14

G(15) = (2%%15)-1

FDV(V) = 1.0/(V-1.0) ; V= -1,0TO O

FSC(SC) = SC/SQRT(1.0-2¥!1SC!+2%3C¥*2) , 3SC= -1.0 TO 1.0

FCN(CN) = ARCTAN((1/CN)+1) ; CN = -1.0 TO 0.0
ARCTAN((1/CN)-1) ; CN = 0.0 TO 1.0

(NOTE: "FDV", "FSC", AND "FCN" REQUIRE 513 EQUALLY SPACED VALUES
OVER THE RANGE SPECIFIED).

A FORTRAN PROGRAM WHICH GENERATES ALL DATA ARRAYS REQUIRED BY THIS
MACROFILE IS SUPPLIED WITH THE MACROFILE LIBRARY. THE FOLLOWING
IS AN EXAMPLE "ADX" COMMAND FILE TO LOAD THIS DATA FOR #IRORG=0

LOAD B.DAT/UN:0:0/IN
LOAD G.DAT/UN:1:0/IN
LOAD B.DAT/UN:2:0/IN
LOAD G.DAT/UN:3:0/IN
LOAD B.DAT/UN:4:0/IN
LOAD G.DAT/UN:5:0/IN

LOAD FDV.DAT/AL:0:17/RS
LOAD FSC.DAT/AL:2:17/RS
LOAD FCN.DAT/AL:4:17/RS

MFLIB-50

IRS.3 MACROFILE (CONT.)

—— D o - - - - -

- ——— - — - — - - — - —

1) COMPUTE

A)

B)

C)

D)

E)

F)

RE-SCALE RANGE OF DENOMINATOR OF DIVIDE
U = =I1X1-1Y141 (-1.0 <= U < 1.0)

PERFORM BINARY SEARCH ON U USING TABLE
"B(I)" TO GET "I" SUCH THAT:

B(I) <= U < B(I+1) ; 1=0,15
B(O) = "'100 ’
B(I) = 1.0-2%%(I-1) ; 1I=1,16
G(I) = 2%¥] ; I=0,14
G(15) = 2%%15-1

SCALE DENOMINATOR OF DIVIDE BY SHIFTING
"g" LEFT SO THAT THE MOST SIGNIFICANT
DIGIT IS NEXT TO THE DECIMAL POINT:

\' [U - B(I+1)] * G(I)
SDIXY 4+ Y] *® G(I) + 1
(=1.0 <= V <= 0)

Hn

THIS PRESERVES 1 LSB ACCURACY IN THE DIVISION
CALCULATION.

PERFORM SHIFT SEARCH AND DELTA
CALCULATION ON V AND PERFORM LINEAR
INTERPOLATION ON DIVIDE FUNCTION:
FDV(V) = 1 / (V-1)

MULTIPLY "X" AND "Y" NUMBERATORS
TIMES THE DIVIDE FUNCTION:

WY = Y*FDV(V) ; WX = XX*FDV(V)

NOTE: IF !X!+!Y!=0, THEN XX = 2¥¥(-15)
ELSE XX = X

FINISH SCALING OF DIVISIONS:

SN = =WY*G(I) ; CN = -WX*G(I)

MFLIB-5]

IRS.3 MACROFILE (CONT.)

- - — - - - — " - —— - o —— -

2) COMPUTE SIN(A), COS(A), AND THE ANGLE "A"™ AS
FUNCTIONS OF "SN", "CN", AND "Yy".

A) PERFORM SHIFT SEARCH AND DELTA
CALCULATION ON "SN"™ AND"CN".

B) COMPUTE THE SIGN OF "Y", I.E. SGN(Y).
C) PERFORM THE LINEAR INTERPOLATION ON

FUNCTIONS "FSC" AND "FCN"™ WHICH ARE
DEFINED AS FOLLOWS:

sC
FSC(SC) = mmmmmmm e
SQRT(1-2%1SC1+2%SC*¥2)
FCN(CN) = ARCTAN((1/CN)=1) ; CN >= 0
= ARCTAN((1/CN)+1) ; CN <= 0
SIN(A) = FSC(SN)
COS(A) = FSC(CN)

A = SGN(Y)*FCN(CN)

3) COMPUTE: R
HR

X*¥COS(A) + Y¥SIN(A)
[X*¥COS(A) + Y*XIN(A)]1/2

Hn

(NOTE: THE CALCULATION OF "R" WILL OVERANGE AND RETURN R=1.0- 2**(15)
IF X AND Y ARE SUCH THAT: SQRT(X¥¥2 + Y¥*¥2) > 1.0)

RANGES OF MAJOR VARIABLES FOR THE CALCULATIONS PERFORMED:

- - - —— - = - - - AR G D D W . G ——— g W S = - —— - — "

I IX1+1Y! U = =1X1-1Y141 B(I) G(I)
0 1 TO 2 -1 TO O -1.0 1
1 2%*(-1) TO 1 0 TO 1-2%%(-1) 0 2
2 2%%(-2) TO 2%¥(-1) 1-2%%(-1) TO 1-2%¥(-2) 1-2%%(-1) 2¥%%2
3 2%%(-3) TO 2%%¥(-2) 1-2%%(-2) TO 1-2%%*(-3) 1-2%%(-2) 2%%3
4 2%%(_L4) TO 2%%(-3) 1-2%%(-3) TO 1-2%%(-4) 1-2%%(-3) 2%%Y
5 2%%¥(.5) TO 2*%(-4) 1-2%%(-4) TO 1-2%%(-5) 1-2%%(-4) 2%%5
6 2%*(-6) TO 2%¥(-5) 1-2%%(_5) TO 1-2%%¥(-6) 1-2%%(-5) 2¥%6
T 2%¥%¥(_T7) TO 2%*(-6) 1-2%¥%(-6) TO 1-2%%(-7) 1-2%%(-6) 2%%7
8 2%*%(_8) TO 2%¥%(-7) 1-2%%(-7) TO 1-2%%(-8) 1-2%%(-7) 2%%3
9 2%¥%¥(-9) TO 2¥%(-8) 1-2%¥%(-8) TO 1-2%¥(-9) 1-2%%(-8) 2%%9
10 2%*¥(-10) TO 2%¥(-9) 1-2%%(-9) TO 1-2%**¥(-10) 1-2%*(-9) 2%¥%10
11 2%¥%¥(-11) TO 2%¥(-10) 1-2%**¥(-10) TO 1-2¥*¥(-11) 1-2%¥¥(-10) 2%¥*1
12 2%%¥(-12) TO 2%¥%¥(-11) 1-2%%(-11) TO 1-2¥¥(-12) 1-2%¥%¥(-11) 2%¥12
13 2%%(-13) TO 2¥¥(-12) 1-2%%(-12) TO 1-2¥¥(_13) 1-2¥¥(-12) 2%¥%¥13
T4 2%*¥(-14) TO 2¥*(-13) 1-2%%(-13) TO 1-2%¥¥(-14) 1-2¥%¥(-13) 2%¥%1}
15 2%*¥(-15) TO 2%*(-14) 1-2%¥%¥(-14) TO 1.0 1-2%%(-14) 32767
16 1-2%%(-15)

NOTE: IF !X!+!Y! = O THEN -!X!-!Y!+1 WILL OVERANGE AND ROUND DOWN TO
1-2%%(-15), THEREFORE X=Y=0 IS EQUIVALENT TO EITHER X OR Y = 1 LSB.

MFLIB-52

IRS,3 MACROFILE (CONT.)

- — —— AT WP R AR P . e . -

SYMBOLS DEFINED AND USED IN MACROFILE:

T . - WP P . Gw - W D " . . - WP R D W o

USED IN.
CODE FOR

- - - —— -

ARP
 ARP.
ARP
ARP
ARP
ARP
ARP

MAP/DEP

MAP

SYMBOLS
X0, HAMS T, HHMX2
HIMYO, #MY 1, #HMY2
HIXXO, XX 1, #HXX2
HIGO, 4G 1, #H4G2
FHUO, #H#UT, U2
HIVO, #4V1, V2

##DVO, ##DV1, ##DV2

##SGNO, ##3GN 1, ##3SGN2

#CNO, #ECNT, ##CN2
##SNO, ##SN1, ##SN2
##DCNO, ##DCN1, ##DCN2
##DSNO, #4#DSN1, ##DSN2
HIFCNO, ##FCN1, ##FCN2
#HIXUO, ##IXUT, ##IXU2
##IVO, #HFIVI, #41V2

##ICNO, ##ICN1, ##ICN2
##ISNO, ##ISN1, ##ISN2

##PAG, ##WRD

MFLIB-53

MEANING

1X1 VALUES

'Y! VALUES

"XX" VALUES

"G(I)" VALUES

"y" VALUES

"y VALUES

DELTA "V" VALUES
WSGN" VALUES

"CN" VALUES

"SN" VALUES

DELTA "CN" VALUES
DELTA "SN" VALUES
"FCN" VALUES

mgn, mym o wCN"_ AND
"SN" VALUES IN THE
"X" REGISTERS AND
INDEX VALUES IN THE
"I" REGISTERS.
"PAGE" AND "WORD"

CORRESPONDING TO
#IRORG.

EXAMPLE AD-10 MVFG PROGRAM USING MACROFILES

- - - D =S D D R W T - G P D - - —— - - - - -

THE FOLLOWING EXAMPLE ILLUSTRATES HOW THE AD-10 MACROFILES ARE USED
TO PROGRAM A TYPICAL MULTIVARIABLE FUNCTION GENERATION APPLICATION.

FIRST, THE GENERAL PROCEDURE WHICH SHOULD BE FOLLOWED TO PROGRAM MOST
MVFG PROBLEMS IS OUTLINED BELOW:

1) LIST VARIABLES WHICH WILL BE USED AS ARGUMENTS OF FUNCTIONS
TO BE GENERATED. ALL FUNCTIONS OF A PARTICULAR VARIABLE
MUST BE DEFINED AT THE SAME SET OF BREAKPOINTS FOR THAT
VARIABLE. IF THIS CONDITION IS NOT POSSIBLE TO MEET FOR
A PARTICULAR VARIABLE, THEN CONSIDER EACH REFERENCE OF THAT
VARIABLE WHICH REQUIRES A DIFFERENT BREAKPOINT SET AS A
SEPARATE VARIABLE. ‘

2) DETERMINE THE BREAKPOINTS FOR EACH VARIABLE AND DECIDE
WHICH SEARCH SCHEME WILL BE USED FOR EACH. THE BINARY SEARCH
MACROFILE (BD.6) ALLOWS FROM 2 TO 33 BREAKPOINTS TO BE SPACED
AT THE USERS DISCRETION; THE SHIFT SEARCH SCHEME ALLOWS

(2%%N)+1 BREAKPOINTS (N=2,15) WHICH ARE EQUALLY SPACED FROM
"1.0 TO +1.0 .

3) LIST ALL UNIQUE VARIABLE SETS WHICH WILL BE USED AS FUNCTION
ARGUMENTS. EACH VARIABLE SET OF 2 OR MORE VARIABLES WILL
REQUIRE A FUNCTION DATA POINTER CALCULATION USING ONE OF
THE "PT?.3" MACROFILES.

4) LAYOUT AD-10 DATA MEMORY MAP DEFINING WHERE IN THE MEMORY
THE VARIOUS ARRAYS OF FUNCTION DATA AND BREAKPOINT DATA
TABLES ARE TO BE STORED.

5) WRITE AD-10 PROGRAM USING THE MVFG MACROFILES. THE GENERAL
FORMAT FOR A FUNCTION GENERATION PROGRAM IS AS FOLLOWS:
[A] TRANSFER INPUT VARIABLES TO "DEP" USING THE
APPROPRIATE "TR.." MACROFILES. ’

[B] PERFORM BINARY OR SHIFT SEARCH AND DELTA CALCULATION
ON ALL INPUT VARIABLES USING APPROPRIATE MACROFILES.

~[c] PERFORM FUNCTION DATA POINTER CALCULATION USING THE
APPROPRIATE "PT..." MACROFILES.

(D] PERFORM FUNCTION INTERPOLATIONS USING THE "FI..."
MACROFILES.

[(E] TRANSFER RESULTS FROM ARP TO DESIRED DESTINATION
USING THE APPROPRIATE "TR..." MACROFILE.

6) ORGANIZE THE FUNCTION DATA SUCH THAT IT IS CONSISTENT
WITH THE NUMBER OF BREAKPOINTS FOR EACH VARIABLE IN THE
CORRESPONDING VARIABLE SET FOR THAT FUNCTION. ORDER THE
FUNCTION DATA IN A LINEAR ARRAY SUCH THAT THE VALUES FOR
CHANGES IN THE FIRST VARIABLE ARE ENTERED FIRST AND VALUES
FOR CHANGES IN THE LAST VARIABLE ARE ENTERED LAST. NOTE THAT
THIS IS CONSISTENT WITH THE NORMAL INTERNAL STORAGE OF MULTI-
DIMENSIONED ARRAYS IN FORTRAN.

7) PLACE FUNCTION DATA AND BREAKPOINT DATA INTO DIRECT ACCESS FILES
FOR LOADING INTO THE AD-10 DATA MEMORY USING "ADX".

MFLIB-54

EXAMPLE (CONT.)

-—— - . e " e - -

IS THE AD-10 PORTION OF A HYBRID SIMULATION OF THE LONGITUDINAL FLIGHT
EQUATIONS FOR AN AIRCRAFT. THE AD-10 ACCEPTS THREE INPUTS FROM THE

ANALOG COMPUTER: A (ANGLE OF ATTACK), H (ALTITUDE), AND V (VELOCITY).

THE AD-10 THEN COMPUTES M (MACH NUMBER) AS A FUNCTION OF "H" AND "V" AND
THEN GENERATES FIVE AERODYNAMIC COEFFICIENTS WHICH ARE FUNCTIONS OF

"A", "M", AND "H" ; THESE COEFFICIENTS CONSIST OF THREE FUNCTIONS OF 3
VARIABLES AND 2 FUNCTIONS OF 2 VARIABLES. THE AD-10 WILL ALSO BE CALLED
UPON TO GENERATE THE SINE AND COSINE OF THE ANGLE "A" AND FINALLY WILL
OUTPUT THE 7 INTERPOLATED FUNCTION VALUES ON DAC'S TO THE ANALOG COMPUTER.

THE PROBLEM CAN BE SUMMARIZED AS FOLLOWS:
INPUTS: AH,V
COMPUTES: M=2 ¥V *F6 (H)

F11(A1,M,H), F12(A1,M,H), F13(A1,M,H), F14(M,H), F15(M,H),
F8(A2), F9(A2)

NOTE: A1 AND A2 ARE THE SAME VARIABLE (A4), BUT A
DIFFERENT SET OF BREAKPOINTS IS USED FOR EACH.

OUTPUTS: F11, F12, F13, F14, F15, F8, F9
BREAKPOINTS: ALL VARIABLES WILL HAVE UNEQUALLY SPACED BREAKPOINTS.

A1 HAS 16 BREAKPOINTS
A2 HAS 33 BREAKPOINTS
M HAS 21 BREAKPOINTS
H HAS 12 BREAKPOINTS

DATA FILES: A FORTRAN PROGRAM WAS USED TO GENERATE THE FUNCTION DATA
USING ANALYTIC APPROXIMATIONS OF TYPICAL AREODYNAMIC
FUNCTIONS, AND IT ALSO GENERATES THE BREAKPOINT DATA
FILES. A LISTING OF THIS PROGRAM IS INCLUDED IN THIS
EXAMPLE. :

MFLIB-55

' EXAMPLE (CONT.)
AD-10 PROGRAM USING MACROFILES

- D D . S - G D T G T D D D W ——— - WS

THE FOLLOWING IS A LISTING OF THE AD-10 SOURCE PROGRAM FOR THIS

EXAMPLE PROBLEM. THIS PROGRAM IS HEAVILY COMMENTED FOR THE SAKE OF
CLEARLY PRESENTING THIS EXAMPLE (COMMENT LINES BEGIN WITH A "!"). THE
TOTAL NUMBER OF ASSEMBLER INSTRUCTIONS IS ROUGHLY 150 LINES, OF WHICH
ONLY ABOUT 30 ARE ACTUAL AD-10 MACHINE INSTRUCTIONS AND THE REST CONSIST.
OF SYMBOL DEFINITIONS, ASSEMBLER DIRECTIVES, AND MACROFILE CALLS (I.E.

", INCLUDE"™ DIRECTIVES). WHEN THIS PROGRAM WAS ASSEMBLED WITH THE
MACROFILES INCLUDED IN THE SOURCE CODE LINE COUNT, THE ASSEMBLER PRODUCED
APPROXIMATELY 1500 LINES OF OUTPUT IN THE LISTING. THUS, FOR THIS EXAMPLE
THE USER ONLY HAD TO WRITE 10 PERCENT OF THE TOTAL SOURCE CODE ASSEMBLED,
AND MOST OF THAT CONSISTED OF SYMBOL DEFINITIONS. MOST TYPICAL MVFG
PROBLEMS CAN BE PROGRAMMED ON THE AD-10 IN A SIMILIAR FASHION USING
MACROFILES. THIS DRAMATICALLY ILLUSTRATES THE POWER OF THE AD-10
MACROFILE LIBRARY.

!***
AD-10 FUNCTION GENERATION BENCHMARK PROBLEM (BENCH.ASM)

INPUTS = A,H,V |

COMPUTES: M=2%V*F6(H)

F11(A1,M,H), F12(A1,M,H), F13(A1,M,H), F14(M,H), F15(M,H),
F8(A2), F9(A2)

NOTE: A1 AND A2 ARE THE SAME VARIABLE (A), BUT A
DIFFERENT SET OF BREAKPOINTS IS USED FOR EACH.

OUTPUTS: F11, F12, F13, F14, F15, F8, F8

D s CED D G S D U e CuD CuD G (em e Ve sum

EAXEAXE I XX R EE RS SRR 222l R XA R 2 R 2 2 2

. PRON o !PRINT MACROFILE CODE
.DECIMAL

DEFINE ARP TEMPORARY REGISTERS

.ARP
T .DEFINE 0,1,2,3,4,5,6,7,8,9,10,11,12,13, 14,15
1
! DEFINE ARP REGISTERS FOR DELTA QUANTITIES
! ' v
DELA1 .EQU 16

DELA2 .EQU 17
DELM .EQU 18
DELH .EQU 19

MFLIB-56

EXAMPLE (CONT.)
AD-10 PROGRAM USING MACROFILES

——— . —— 0 - R D . W wn . - D - - - -
.

! DEFINE ARP REGISTERS FOR FUNCTION VALUES
[] - -

F11 .EQU 20
F12 .EQU 21
F13 .EQU 22
F14 .EQU 23
F15 .EQU 21
F6 .EQU 25
F8 .EQU 26
F9 .EQU 27
]
! DEFINE MAP/DEP REGISTERS FOR INPUT VARIABLES
]

.DEP
AIDEP .EQU 0
A2DEP .EQU 1
MDEP .EQU 2
HDEP .EQU 3
VDEP .EQU 4

! DEFINE MAP FUNCTION DATA INDEX REGISTERS FOR EACH VARIABLE SET
!

.MAP
TAMH .EQU 5 ! INDEX FOR A1,M,H SET
IMH .EQU 6 ! INDEX FOR M,H SET

A

! DEFINE NUMBER OF BREAKPOINTS FOR EACH VARIABLE
!

NBPA1 .EQU 16

NBPA2 .EQU 33

NBPM .EQU 21

NBPH .EQU 12
! .
! DEFINE MAPPING BETWEEN INPUT/OUTPUT VARIABLES AND I/O PORTS
!
.COP
ADC .DEFINE 0,1,2,3,4
DAC .DEFINE 5,6,7,8,9,10,11,12,13, 14,15
AIN .EQU ADCO
HIN .EQU ADC 1
VIN .EQU ADC?2

F110UT .EQU DACO
F120UT .EQU DAC1
F130UT .EQU DAC2
F140UT .EQU DAC3
F1500T .EQU DACH
F80OUT .EQU DACS5
F9OUT .EQU DAC6
!

! DEFINE I/0O COMMANDS
]

SET .EQU

0
INIT -EQU 1
READ .EQU 2
WRITE .EQU 2
UPDATE .EQU 3

MFLIB-57

. PAGE

EXAMPLE (CONT.) o
AD-10 PROGRAM USING MACROFILES

AD-10 DATA MEMORY MAP FOR THIS PROGRAM

tam
|
|
|
]
|
|
|
[
[}
|
|
|
1
|
-t Sum tm oum sam sem s e oem

DEFINE MEMORY

CuD D CaD s oum Sum =D s SS G CAD LD CwD e Sum VaB Cemw Gup Owuw OuD CuS Cu® S
-

AMEM
MMEM
HMEM
VMEM
F11MEM
F12MEM
F13MEM
F14MEM
F15MEM
FEMEM
F8MEM
F9MEM
DRAIN
FAUCET
!

.MAP
<EQU
.EQU
.EQU
.EQU
.EQU
.EQU
LEQU
.EQU
.EQU
.EQU
.EQU
.EQU
.EQu
.EQU

OVl EFUWN 20NN -2Wwo

63
DR

)
(o}

1
|
|
1
|
1
|
|
|
|
]
|
|
|
]
1
|
1
|
[}
1
|
1
|
]
1
|
1
|
1
1
|
|
]
1
|
1
1
i
|
|
|
[
1
[
|
i
|
1
|
i
1
1
|
]
1
1

(ODD) ! !
'

(EVEN) ! !

Y T
(0DD) ! F9 (ODD) ! ! I/0

b oo
(EVEN) ! F9 (EVEN) ! ! DATA

. o
(ODD) ! F8 (ODD) ! 1 BUFFER

e o
(EVEN) ! F8 (EVEN) ! !

2112 3397

4136 7635

WORD ADDRESS

ADDRESSES FOR INPUT/OUTPUT QUANTITIES

+3999
: 3999
:3999
:3999
:3998
:3998
:3998
:3998
:3998
$3997
: 3998
:3997

: 4095
AIN

! PAGE:WORD

(UNALIGNED ADDRESS)

A PLACE TO DUMP THINGS
A PLACE TO READ GARBAGE DATA

i DEFINE FUNCTION DATA BASE ADDRESSES

1

AF 11
AF12
AF13
AF 14
AF15
AF6
AF8
AF9
!

.EQU
.EQU
.EQU
.EQU
.EQU
.EQU
.EQU
.EQU

NOENMNOENMO

PAGE: :WORD

(ALIGNED ADDRESS)

i - DEFINE ORIGIN OF BREAKPOINT DATA TABLES

!
BPORG

.EQU

0:

. PAGE

4000

MFLIB-58

BP
DATA

TABLES

o tum

7640 (OCTAL)

EXAMPLE (CONT.)
AD-10 PROGRAM USING MACROFILES

- o ———— - - - — W -~ - ., - o

PREERRE R R R RN R R R RN R R R MR R R RN R R R RE R R X R RN RARRRARERXRRRRRXRRRRRRR RN RN

INITIALIZATION CODE (ONLY EXECUTED ONCE)

LOAD IOCC GROUP CODES O AND 1 IN COP GENERAL REGISTERS 0 AND 1
!

#CGR .DEFINE 0,1,1
#IDAT .DEFINE 0,1,1

1, 1,1
y 1y [N
. INCLUDE DK1:[

1,1,1
1,1,1,1,1
1, 1]LOADC. 8
!
! SETUP A GROUP OF 3 ADC CHANNELS
!
#10C .DEFINE AIN,HIN,VIN,VIN,VIN,VIN,VIN,VIN
#CGR .DEFINE 0,0,0,0,0,0,0,0 |
#OP .EQU 0 ! SET GROUP CODE INTO I/O CHANNEL
.INCLUDE DK1:[1,1]TRCE.8
1
! SETUP A GROUP OF 7 DAC CHANNELS
1
#I10C .DEFINE F110UT,F120UT,F130UT,F140UT,F150UT,F80UT,F90UT,F90UT
#CGR .DEFINE 1,1,1,1,1,1,1,1
.INCLUDE DK1:[1,1]TRCE.8

. PAGE
!
PR R R R R R R R R R R R R R R R R R RN R R R R KRR R R AR R RRRAXRRR XXX RRRRRRARRRRARRRNNRR

!
START OF FUNCTION GENERATION LOOP

!
1
!
! DEFINE PROGRAM COUNTERS AT BEGINNING OF PROGRAM LOOP
!

.ARP
ARPOO .EQU * 'INITIAL ARP PC
.DEP
DEPOO .EQU * IINITIAL DEP PC
.MAP
MAPOO .EQU * IINITIAL MAP PC
\ |
COP0O0 PFI INIT,O ! INITIATE A CONVERSION (10 MS)
RFR ! AND FORCE A MEMORY REFRESH
PAUSE 63 ! WAIT FOR ADC'S TO CONVERT

1
! READ CONVERTED VALUES AND TRANSFER THEM INTO MEMORY
]
#10C .DEFINE AIN,HIN,VIN,VIN,VIN,VIN,VIN,VIN
#DM .DEFINE AMEM,HMEM,VMEM,DRAIN,DRAIN,DRAIN,DRAIN,DRAIN
#OP .EQU READ
.INCLUDE DK1:[1,1]TREM.8
!
HLT 0 ! HALT (MAYBE) TO LOOK AT OR MODIFY INPUTS
!
! TRANSFER VALUES OF INPUT VARIABLES FROM MEMORY TO DEP "X" REGISTERS
1
#DXR .DEFINE A1DEP,HDEP,VDEP,127,127,A2DEP, 127,127
#DM .DEFINE AMEM,HMEM, VMEM,FAUCET,FAUCET, AMEM,FAUCET,FAUCET
.INCLUDE DK1:[1,1]TRMX.8

MFLIB-59

EXAMPLE (CONT.)
AD-10 PROGRAM USING MACROFILES

! PERFORM BINARY SEARCH AND DELTA COMPUTATION ON H

!

#V
#INV
#DV
#ORG

1

.DEFINE 127, 127,HDEP, 127,127,127 |

.DEFINE 32,32,NBPH-1,32,32,32 ITUNUSED #NV'S SET TO 32
.DEFINE 127, 127,DELH, 127,127,127

.EQU BPORG

.INCLUDE DK1:[1,1]BD.6

i COMPUTE MACH NUMBER M = 2 *¥ V * F6(H)

.COP

START $MAP

PAUSE 3

START $ARP, $DEP

PAUSE 4

STOP $ARP, $MAP, $DEP

.ARP

MOVO S,B,D = ; MOV2 S,A ; MOV3 DELH,C

FA (A-B)*C4D !INTERPOLATE FOR F6(H)
MOVO S, A ; MOV3 R,C,F6

FASL (A)*C ; MOV3 F6,L ICOMPUTE M=2¥%V*F6(H)
MOV3 R,L : PAUSE 1 IDUMP M TO MULTIBUS

.MAP

RAID AF6 ,HDEP ; PAUSE 7

wuUs F 6MEM 'WRITE F6 SENT FROM ARP TO MEMORY
Wwus MMEM ; PAUSE 1 !WRITE M SENT FROM ARP TO MEMORY
.DEP |

PAUSE 0

LXF VDEP ; PAUSE 3 ISEND OUT V TO ARP

SXS MDEP IGRAB M SENT FROM ARP

! DO BINARY SEARCH AND DELTA COMPUTATION FOR A1,M,H, AND A2 THIS TIME

!

#V
#INV
#DV
#ORG

e sem sam tum

#I
#J
#K
#NI
#NJ
#IS

.DEFINE A1DEP,MDEP,HDEP,A2DEP, 127, 127

.DEFINE NBPA1-1,NBPM-1,NBPH-1,NBPA2-1,32,32 !UNUSED #NV'S = 32
.DEFINE DELA1,DELM,DELH,DELA2, 127,127

.EQU BPORG |

.INCLUDE DK1:[1,11BD.6

COMPUTE FUNCTION DATA POINTERS FOR THE TWO VARIABLE SETS:

IAMH FOR "A1,M,H" SET
IMH FOR "M,H" SET

.DEFINE A1DEP,MDEP, 127

.DEFINE MDEP,HDEP, 127

.DEFINE HDEP, 127,127

.DEFINE NBPA1,NBPM,O0

.DEFINE NBPM,0,0 ! SET #NJ1=0 TO GENERATE 2 VAR. POINTER
.DEFINE IAMH,IMH, 127

.INCLUDE DK1:[1,1IPT3.3

MFLIB-60

!

#DX
#DY
#DZ
#E

#AF
#NX
#NY
#1IF

EXAMPLE (CONT.)
AD-10 PROGRAM USING MACROFILES

INTERPOLATE FOR 3 VARIABLE FUNCTIONS:
F11(A1,M,H), F12(A1,M,H), F13(A1,M,H)

.DEFINE DELA1,DELA1,DELA1
.DEFINE DELM,DELM,DELM
.DEFINE DELH,DELH,DELH
.DEFINE F11,F12,F13
.DEFINE AF11,AF12,AF13
.DEFINE NBPA1,NBPA1,NBPA1
.DEFINE NBPM,NBPM, NBPM
.DEFINE IAMH,IAMH,IAMH
.INCLUDE DK1:[1,1]FI3.3

1
! DO INTERPOLATION FOR 2 VARIABLE FUNCTIONS:
! F14(M,H), F15(M,H)

!
#DX
#DY
#F

#N X
##AF
#IF

!
#DX
#F
#AF
#1IF

.DEFINE DELM,DELM, 127
.DEFINE DELH,DELH, 127

.DEFINE F14,F15,127

.DEFINE NBPM,NBPM,O0

.DEFINE AF14,AF15,AF6 ! DUMMY UP ADDR AND INDEX FOR UNUSED
.DEFINE IMH,IMH,HDEP ! INPUT TO AVOID ADDR ERRORS
.INCLUDE DK1:[1,1]FI2.3 |

fNTERPOLATE FOR 1 VARIABLE FUNCTIONS:
F8(A2), F9(A2)

.DEFINE DELA2,DELA2, 127

.DEFINE F8,F9,127

.DEFINE AF8,AF9,AF6 ! DUMMY UP ADDR AND INDEX FOR UNUSED
.DEFINE A2DEP,A2DEP,HDEP ! INPUT TO AVOID ADDR ERRORS
.INCLUDE DK1:[1,11FI1.3

! TRANSFER RESULTS FROM ARP REGISTERS TO DAC'S AND MEMORY

!
#ATR
#I10C
#DM
#OP

.DEFINE F11,F12,F13,F14,F15,F8,F9,F9

.DEFINE F110UT,F120UT,F130UT,F140UT,F150UT,F80UT,F90UT,F90UT
.DEFINE F11MEM,F12MEM,F13MEM,F 14MEM, F15MEM, F8MEM, FOMEM, DRAIN
.EQU WRITE |

.INCLUDE DK1:[1, 1]JTRAEM. 8

PFI UPDATE, 1 ! UPDATE GROUP 1 DAC'S SIMULTANEQUSLY
LPC $DEP,DEPOO ! RESET PC'S

LPC $ARP, ARPOO

LPC $MAP,MAPOO

HLT 1 ‘ ! HALT (MAYBE) TO LOOK AT RESULTS

JMP COPOO ! GO DO IT AGAIN

.END

MFLIB-61

, EXAMPLE (CONT.)
FORTRAN PROGRAM TO GENERATE DATA FILES

- S h D WD D - . - — - WD D S G SE S D D G S D WD D GED S W L M WS D W

FUNDAT.FTN

aaQ

REAL CLAMH(21,12),3(12),Q(21,
(1),(

REAL M(21),CLAM(21),

REAL BH(33),SH(32),GH(32)
REAL BA1(33),SA1(32),GA1(32)
REAL BA2(33),SA2(32),GA2(32)
REAL BM(33),SM(32),GM(32)

DATA RHO0,A0/0. 002377 1116. 4/
DATA M/.0,.0, 2 ,.7 8,.85,.9 .95,1.,1.05,1.10,1.15,1.2
,1.3,1.4.1.55, 7 1.85,
DATA CLAM/2.5, 2 5,2.51,2. su 2.64,2.73,2. 88 3.0,3.19,3.4,3.59
1,3.6,3.48,3.36,3.25,3.05,2.87,2.625,2.41,2.21,2.02/
DATA H/1.,1.,.8617,.7385,.6292,.5328,.4481,.37u1,.3o99,.2u62
1,.1936,.1522/
DATﬁ A1/-.5,-.2,-.15,-.1,-.05,0.,.05,.1,.15,.2,.25,.3,.35, .4
1,.45,.5/
DATA S/1.,1.,1.0176,1.0363,1.056,1.0768,1.0989,1.1225,1. 1476
1,1.1533,1.1533,1.1533/ |
DATA F11MAX,F12MAX,F13MAX,F14MAX,F15MAX, F6MAX
1/0.7265,155.67, 45. 324 2.518, 453 42,0/
DATA BH/22%*21.,0.,. .3,.4,7.5,.6..7,.8,.9,1.0/
APROX1:1.0—(2.**(—15))
DO 10 I=1,33
A2(I)=(I-17)/32.
10 CONTINUE
DO 50 J=1,21
DO 50 K=1,12 | .
CLAMH(J,K) = CLAM(J) * (1. - .1%H(K)*M(J)*M(J))
Q(J,K) = .5*RHOO¥AO*AO*H (K)*(M(J)/S(K))*¥(M(J)/S(K))
50 CONTINUE
CALL ASSIGN(6,'TI:',3)
C .
C GENERATE DATA FILE FOR F11 (LIFT FUNCTION)
CALL ASSIGN(1,'F11.DAT;1',9) ,
DEFINE FILE 1(4032,2,U,NREC)
NREC=1
DO 100 K=1,12
DO 100 J=1,21
DO 100 I=1,16
CL = A1(I)*CLAMH(J,K)
IF (CL.LT.1.1) F1 = CL |
IF (CL.GE.1.1) F1 = CL - 2.%(CL-1.1)*¥(CL-1.1)
IF (CL.LE.-1.1) F1 = CL + 2.%(CL+1.1)%(CL+1.1)
F11 = .5*¥RHOO¥*AO0*H (K)*(M(J)/S(K))*F1
CALL MINMAX(NREC,RMIN,RMAX,F11)
FS = F11/F11MAX
IF (FS.GT.APROX1) FS=zAPROXT
IF (FS.LT.-1.0) FS==1.0
WRITE(1'NREC) FS
100 CONTINUE
CALL CLOSE(1)
NFUN=11

MFLIB-62

EXAMPLE. (CONT.)
FORTRAN PROGRAM TO GENERATE DATA FILES

o A S S S = . T P GE W W G A . A S e W e Y

WRITE(6,9100) NFUN,RMIN,RMAX
9100 FORMAT(1X,'F',12," MIN = 'G14.7,' MAX = ',G14.7)
C ,
C GENERATE DATA FILE FOR F12 (DRAG FUNCTION)
CALL ASSIGN(1,'F12.DAT;1',9)
DEFINE FILE 1(4032,2,U,NREC)
NREC=1
DO 200 K=1,12
DO 200 J=1,21
DO 200 I=1,16
CL = A1(I)¥CLAMH(J,K)
F2 = (.007 + .0O5%CL¥CL)*CLAM(J)
F12 = Q(J,K)¥F2
CALL MINMAX(NREC,RMIN,RMAX,F12)
FS = F12/F12MAX
IF (FS.GT.APROX1) FS=APROX1
IF (FS.LT.-1.0) FS=-1.0
WRITE(1'NREC) FS
200 CONTINUE
CALL CLOSE(1)
NFUN=z=12 ‘
WRITE(6,9100) NFUN,RMIN,RMAX

C .
C GENERATE DATA FILE FOR F13 (PITCHING MOMENT FUNCTION)
CALL ASSIGN(1,'F13.DAT;1',9)
DEFINE FILE 1(4032,2,U,NREC)
NREC=1
DO 300 K=1,12
DO 300 J=1,21
DO 300 I=1,16
CL A1(I)*¥CLAMH(J,K)
F3 = =.1¥(1.+.5%¥M(J))*CL
F13 = Q(J,K)*F3
CALL MINMAX(NREC,RMIN,RMAX,F13)
FS = F13/F13MAX
IF (FS.GT.APROX1) FS=APROX1
IF (FS.LT.-1.0) FS=-1.0
WRITE(1'NREC) FS
300 CONTINUE
CALL CLOSE(1)
NFUN=13
WRITE(6,9100) NFUN,RMIN,RMAX

c
C GENERATE DATA FILE FOR F14 (PITCH DAMPING FUNCTION)
CALL ASSIGN(1,'F14.DAT;1',9)
DEFINE FILE 1(336,2,U,NREC)
NREC=1
DO 400 K=1,12
DO 400 J=1,21
F14 = - (RHOO¥AO/4.)*H(K)*(M(J)/S(K))*CLAM(J)
CALL MINMAX(NREC,RMIN,RMAX,F14)
FS = F14/F1U4MAX
IF (FS.GT.APROX1) FS=APROXT
IF (FS.LT.-1.0) FS=-1.0
WRITE(1'NREC) FS
400 CONTINUE

MFLIB-63

C
C

500

C
C

600

C
C

800

EXAMPLE (CONT.)
FORTRAN PROGRAM TO GENERATE DATA FILES

- — e e - - -

CALL CLOSE(1)
NFUN=14

- — —n s - - =D W M - - - -

WRITE(6,9100) NFUN,RMIN, RMAX

GENERATE DATA FILE FOR F15 (PITCH CONTROL FUNCTION)
CALL ASSIGN(1,'F15.DAT;1',9)
DEFINE FILE 1(336,2,U,NREC)

NREC=1
DO 500 K=1,12
DO 500 J=1,21

F15 = -.15%Q(J,K)¥CLAMH(J,K)
CALL MINMAX(NREC,RMIN,RMAX,F15)

FS = F15/F15MAX

IF (FS.GT.APROX1) FS=APROX1
IF (FS.LT.-1.0) F3=-1.0

WRITE(1'NREC) FS
CONTINUE

CALL CLOSE(1)
NFUN=15

WRITE(6,9100) NFUN,RMIN,RMAX

GENERATE DATA FILE FOR F6

(INVERSE SPEED OF SOUND RATIO)

CALL ASSIGN(1,'F6.DAT;1',8)
DEFINE FILE 1(12 2,U, NREC)

NREC=1
DO 600 K=1,12
F6 = .8957%3S(K)

CALL MINMAX(NREC,RMIN,RMAX,F6)

FS = F6/F6MAX
WRITE(1'NREC) F3
CONTINUE

CALL CLOSE(1)
NFUN=6

WRITE(6,9100) NFUN,RMIN,RMAX

GENERATE DATA FILE FOR F8 (COS(ALPHA))
CALL ASSIGN(1,'F8.DAT;1',8)
DEFINE FILE 1(33,2,U,NREC)

NREC=1
DO 800 I=1,33
FS = COS(A2(I))

CALL MINMAX(NREC,RMIN,RMAX,FS)
IF (FS.GT.APROX1) FS=APROX1
IF (FS.LT.-1.0) FS3=-1.0

WRITE(1'NREC) F3
CONTINUE

CALL CLOSE(1)
NFUN=8

WRITE(6,9100) NFUN,RMIN,RMAX

MFLIB-64

EXAMPLE (CONT.)
FORTRAN PROGRAM TO GENERATE DATA FILES

—— - —— ————— —— - — - —— - - - W ——

C
C GENERATE DATA FILE FOR F9 (SIN(ALPHA))
CALL ASSIGN(1,'F9.DAT;1',8)
DEFINE FILE 1(33,2,U,NREC)
NREC=1
DO 900 I=1,33
FS = SIN(A2(I))
CALL MINMAX(NREC,RMIN, RMAX,FS)
IF (FS.GT.APROX1) FS=APROXT
IF (FS.LT.-1.0) FS=-1.0
WRITE(1'NREC) FS
900 CONTINUE
CALL CLOSE(1)
NF UN=9
WRITE(6,9100) NFUN,RMIN,RMAX
c
C NOW FOR THE BREAKPOINT DATA FILES
DO 1000 I=1,33
BA1(I) = -1.0
IF (I.GT.17) BAT(I)=2.*A1(I-17)
BA2(I)=2.%A2(I)
BM(I) = -1.0 '
IF (I.GT.13) BM(I)=M(I-12)/2.0
1000 CONTINUE

CALL ASSIGN(1,'BH.DAT;1',8)

CALL ASSIGN(2,'SH.DAT;1',8)

CALL ASSIGN(3,'GH.DAT;1',8)

CALL BSGOUT(BH, 12)

CALL ASSIGN(1,'BA1.DAT;1',9)
CALL ASSIGN(2,'SA1.DAT;1',9)
CALL ASSIGN(3,'GA1.DAT;1',9)
CALL BSGOUT(BAT,16)

CALL ASSIGN(1,'BA2.DAT;1',9)
CALL ASSIGN(2,'SA2.DAT;1',9)
CALL ASSIGN(3,'GA2.DAT;1',9)
CALL BSGOUT (BA2,33)

CALL ASSIGN(1,'BM.DAT;1',8
CALL ASSIGN(2,'SM.DAT;1',8
CALL ASSIGN(3,'GM.DAT;1',8
CALL BSGOUT(BM,21)

END

)
)
)

MFLIB-65

EXAMPLE (CONT.)
FORTRAN PROGRAM TO GENERATE DATA FILES

---————q--p-—p-—-—-——--q-——--———----p—n—q-—

SUBROUTINE MINMAX(NREC RMIN, RMAX FS)
IF (NREC.EQ.1) RMIN=FS

IF (NREC.EQ.1) RMAX=FS

IF (FS.LT.RMIN) RMIN=F3

IF (FS.GT.RMAX) RMAX=FS

RETURN

END

SUBROUTINE BSGOUT (B, NBPS)
DIMENSION B(33),35(32),G(32)
- DEFINE FILE 1(32,2,U,NREC)
DEFINE FILE 2(32,2,U,NREC)
DEFINE FILE 3(32,2,U,NREC)
DO 100 I=1,32
, S(I)=0
100 G(I)=0
ISTART=34-NBPS
DO 200 I=ISTART, 32
DIFF = B(I+1)-B(I)
S(I) INT(.5/DIFF)+1
200 G(I) = .5/(S(1)¥DIFF)
DO 300 I=1,32
WRITE(1'I)B(I)
WRITE(2'I)S(I)
300 WRITE(3'I)G(I)
CALL CLOSE(1)
CALL CLOSE(2)
CALL CLOSE(3)
RETURN
END

LI} I 1

MFLIB-66

EXAMPLE (CONT.)
ADX COMMAND FILE TO LOAD AND RUN

- - ——— = T - - WP G uS WeY W G -

. BENCH.CMD

. LOAD AD-10 PROGRAM:

LOAD BENCH.MOD

! LOAD FUNCTION DATA FILES:

LOAD F11.DAT/AL:0:0/RS
LOAD F12.DAT/AL:2:0/RS
LOAD F13.DAT/AL:4:0/RS
LOAD F14.DAT/AL:0:3740/RS
LOAD F15.DAT/AL:2:3740/RS
LOAD F6.DAT/AL:4:3740/RS
LOAD F8.DAT/AL:0:4136/RS
LOAD F9.DAT/AL:2:4136/RS

’ .
; LOAD BREAKPOINT DATA FILES:

ﬂOAD BA1.DAT/UN:0:7640/RS, SA1.DAT/UN:1:7640/RI,

LOAD BM.DAT/UN:3:7640/RS, SM.DAT/UN:4:7640/RI,
LOAD SH.DAT/UN:0:7700/RI, BH.DAT/UN:1:7700/RS,

LOAD SA2.DAT/UN:3:7700/RI, BA2.DAT/UN:4:7700/RS3,

. INITIALIZE AND START THE AD-10:

INIT
CONTINUE

MFLIB-67

PROBLEM

- - - -

GA1.DAT/UN:2:7640/RS
GM.DAT/UN;5:7640/RS
GH.DAT/UN:2:7T700/RS
GA2.DAT/UN:5:7T00/RS

- - — -

SD.6

PT2.3

PT3.3

PT4.3

PT5.3

FI1.3

FI2.3

INPUTS
#VO-#V5
#NVO-#NV5
#ORG
TO-T2

#VO-#V5
#fNBPS
TO-T2

#10,#J0
#I1,#31
#12,#J2
FNIO-#NI2
TO-T2

#10,#J0, #KO
FT1,#31, #K1
#12,#J2, #K2
TO-T2

#10,#J0, #K0, #L0
FI1,#31,#K1, #L1
#I2,#J2,#K2, #L2
#NIO, #NJO, #NKO

NI, #NJT, #NK T

INI2, #NJ2, #NK2

TO,T1

#10,#J0,#K0, #L.0, #M0O
FT1, 41, #K1,#L1, #M1
#I2,#32,#K2,#L2, M2
#NIO, #NJO, #NKO, #NLO
#NIT,#NJ1, #NK1, #NL 1
#NI2, #NJ2, #NK2, #NL2
TO-T1

#DX0-#DX2
#AF O-#AF 2
#IFO-#IF2

#DX0, #DYO
#DX1,#DY1
#DX2, #DY2
#NXO-#NX2
#AF O-#AF 2
#IFO-#IF2
TO-T2

SUMMARY OF MACROFILE
INPUTS, OUTPUTS, INSTRUCTION COUNTS, AND EXECUTION TIMES

B G . - . . - . - P o . P GE W WD = W W D WS G G G NS R MR TR D WD WA} S GEP R P R D W D D WD W e W e

OUTPUTS

- o -—— -

#VO-#V5
#DVO-DV5

#VO-#V5
#DVO~#DV5

#I30~-#IS2

#IS0-#IS2

#IS0-#I52

#IS0-#IS2

#FO0~#F 2

#FO-#F 2

MFLIB-68

INSTRUCTIONS
COP ARP DEP MAP

-amem Emmman e e -

13 22 43 49

10 11 1M 0

13 14 14 0

16 17 17 0

EXECUTION
TIME

(MICRO-SEC)

- - ——— -

EXECUTION
INSTRUCTIONS ~ TIME

TITLE INPUTS OUTPUTS COP ARP DEP MAP (MICRO-SEC)
FI3.3 #DXO,#DYO, #DZ0 #FO-#F2 5 31 0 12 3.6

#DX1, #DY1, #DZ 1

#DX2, #DY2, #DZ2

#NXO0, #NYO

FNXT, #NY 1

INX2, #NY2

#AF O-#AF 2

#IFO-#IF2

T0-T5

FIL.3 #DVO,#DWO, #DX0, #DY0 #FO-#F2 5 58 0 24U 6.3
#DV1, #DW1, #DX1, #DY 1
#DV2, #DW2, #DX2, #DY2
#NVO, #NWO, #NXO
ENVT, #NWT, #NX1
#NV2, #NW2, #NX2
#AF O-#AF 2
#IFO-#IF2
T0-T8

FI5.3 #DVO,#DWO, #DX0, #DYO0,#DZ0 #FO0-#F2 5109 0 48 11.4
#DV1, #DW1, #DX1, #DY1, #DZ 1
#DV2, #DW2, #DX2, #DY2, #DZ2
NVO, #NWO, #NXO0, #NYO
ANV, #NWT, #NX1, #NY 1
#NV2, #NW2, #NX2, #NY2
#AF O-#AF 2
#IFO-#IF2
TO-T11

TRMA. #DMO-#DM7 ' #ATRO-#ATR7 3 9 0

TRMC. #DMO-#DM7 #CGRO-#CGR7 10 0
TRMX. #DMO-#DMT #DXRO-#DXR7 -3 0

TRMI. #fDMO-#DM7 #DIRO-#DIRT 3 0

c© 0o oo o o
o O v O
co O © o o
_—
=

TRME. #DMO-#DMT #I0CO-#I0OCT 12 0

#fOP
TRAM. #ATRO-#ATRY #DMO-#DMT 3 8 0
TRCM. #CGRO-#CGR7 #DMO-#DMT 10 0 0
TRXM. #DXRO-#DXR7 #DMO-#DMT 3 0

TRIM. #DIRO-#DIRT #DMO-#DMT 3 0

O ©o © o
o o
co © o o @
—
o

TREM. #I0CO-#I0CT #DMO-#DMT 12 0

#fOP

MFLIB-69

EXECUTION
INSTRUCTIONS TIME

TITLE INPUTS OUTPUTS COP ARP DEP MAP (MICRO-SEC)
TRCA.8 #CGRO-#CGRT #ATRO-#ATR7T 9 8 0 O .9
TRCX.8 {#CGRO-#CGRT #DXRO-#DXR7 9 O 8 O .9
TRCI.8 #CGRO-#CGR7 #DIRO-#DIR7T 9 0 8 0O .9
TRCE.8 #CGRO-#CGR7 #I0CO-#I0C7T 8 0 0 O .8
#OP
TRAC.8 #ATRO-#ATR7Y #CGRO-#CGR7 10 8 0 O 1.0
TRXC.8 {#DXRO-#DXR7 #CGRO-#CGRT 10 0 8 0 1.0
TRIC.8 #DIRO-#DIRT #CGRO-#CGR7 10 0 8 0 1.0
TREC.8 #CGRO-#CGRT #10C0-#I0C7 13 0 0 O 1.3
#0OP
TREXM.8 #I0CO-#I0C7 #DXRO-#DXR7 10 0 8 9 1.8
#OP #DMO-#DMT
TRAEM.8 #ATRO-#ATRT #10CO-#I0C7 10 8 0 8 1.0
#OP » #DMO-#DMT
LOADA.8 #IDATO-#IDAT7 #ATRO-#ATR7 10 9 0 O 1.0
LOADC.8 #IDATO-#IDATT #CGRO-#CGR7 10 0 8 O 1.0
LOADX.8 #IDATO-#IDATT #DXRO-#DXR7 10 0 9 1.0
LOADI.8 #IDATO-#IDAT7 #DIRO-#DIR7 10 0 9 O 1.0
LOADM.8 #IDATO-#IDATT #DMO-#DM7 10 O O 9 1.0
SGN.2 #X, #Y #SGNX,#SGNY 5 7 0 O .8
CTR.3 #X0,#Y0,#A0 #XPO,#YPO 13 31 3 6 3.2
#SINO, #C0SO
#X1,#Y 1, #A1 #XP1,#YP1
#SIN1, #COS 1
#X2,#Y2, #A2 #XP2, #YP2
#SIN2,#C0S2
#SIN, #COS
TO,T1,T2
10,I1,I2
IRS.3 #X0,#YO0 #A0 12 102 32 33 11.5
#SINO, #COSO
#RO, #HRO
#X1, #Y1 #A1
#SIN1,#COS1
#R1, #HR 1
#X2, #Y2 #A2
#SIN2, #COS2
#R2, #HR2

MFLIB-70

