United States Patent [

Hassett et al.

US005301267A
{111 Patent Number: 5,301,267

{451 Date of Patent: Apr. 5, 1994

[54] INTELLIGENT FONT RENDERING
CO-PROCESSOR

[75] Inventors: Christopher R. Hassett; Harry J.
Collins, both of Cupertino; John W.
Nogrady, Santa Clara, all of Calif.

[73] Assignee: Adobe Systems Incorporated,
Mountain View, Calif.

[21] Appl. No.: 767,259

[22] Filed: Sep. 27, 1991

[51] Int.CLS GOGF 15/62

[52] Us. Q. 395/150; 395/151;
395/142; 345/144

[58] Field of Search 395/150, 151, 142, 143;
340/730, 731, 735, 750, 751, 799; 345/144

[56] References Cited
U.S. PATENT DOCUMENTS

5,042,075 8/1991 Sato 382/47
5,050,103 9/1991 Schiller et al.ccconn.n. 364/521

OTHER PUBLICATIONS

Interpress—the Source Book; Steven J. Harrington et al;
1988; pp. 64-71, 227-229, 239-241.

Primary Examiner—Gary V. Harkcom
Assistant Examiner—Joseph Feild
Attorney, Agent, or Firm—Roger S. Borovoy

{571 ABSTRACT

The present invention provides an apparatus and
method for converting font outlines to rasterized bit

maps. The method accesses stored outline data repre-
senting the object in a first coordinate space and trans-
forms the outline data to corresponding data represent-
ing the object in a second coordinate space, maintaining
regional relationship information in both coordinate
spaces, through a non-linear transformation expressed
as a plurality of linear transformation matrices, to gen-
erate a bit map suitable for displaying the object.

The present invention includes an apparatus to analyze
Bezier curves and subdivide them as necessary until
each portion is sufficiently flat to be approximated as a
straight line, and then to calculate where line segments
cross pixel midlines in order to fill the outline and gen-
erate the bit map.

From another perspective, the method takes an outline
of an object in a first coordinate space, scales the outline
to a second coordinate space, identifies the coordinates
of one or more select points in the second coordinate
space and compares those coordinates with desired
coordinates in the second coordinate space, calculates
the difference in device space for the desired versus the
actual coordinate in the second coordinate space, de-
rives a plurality of piecewise linear transformation ma-
trices to approximate a non-linear transformation, ap-
plies an appropriate linear transformation matrix to map
essentially any point on the outline in the first coordi-
nate space to corresponding coordinates in the second
coordinate space, and fills and stores the outline of the
object in a form suitable for display on a raster device.

9 Claims, 20 Drawing Sheets

13-] sYSTEM
OFONAL 1 11 MEMORY
MEMORY
134 RoM OR RAM
TYPE 1
FONT PROGRAMS
138~ BITMAP CACHE OR
FRAME BUFFER
DESTINATION
| ~10 L~12 | FOR BITMAPS
CONTROLLING [13C~_ PAGE
CO-PROCESSOR MICRO- DESCRIPTION
PROCESSOR INTERPRETER
AND OPERATING
SYSTEM
' \ d
16
15 14
pispLay [PRINTER |
CONTROLLER INTERFACE
(FOR VIDEO (FOR PRINTER
SYSTEMS) SYSTEMS)

U.S. Patent Apr. 5, 1994 Sheet 1 of 20 5,301,267

- 13~ SYSTEM
%",;r,'\%QL 11 MEMORY
MEMORY 194
ROM OR RAM
TYPE 1
FONT PROGRAMS
13
B~{BITMAP CACHE OR
FRAME BUFFER
DESTINATION
10 L~12 | FOR BITMAPS
CONTROLLING [13C~_ PAGE
CO-PROCESSOR MICRO- DESCRIPTION
PROCESSOR INTERPRETER
AND OPERATING
SYSTEM
g \ 4
16
15 14
DISPLAY - PRINTER [
CONTROLLER INTERFACE
(FOR VIDEO (FOR PRINTER
SYSTEMS) SYSTEMS)

FIG. 1

U.S. Patent Apr. 5, 1994 Sheet 2 of 20 5,301,267

INTERFACE 24

10 .
posesmoes e !
| 31 .
! 1
t }
! BACK CHANNEL | . :
| INTERFACE |~ |
!

t] |
| 27 I
: 4 |
| 1
! I
1 I
E _-21 22 23 1
: — WAIT— SEZIER fe— WAIT— !
! MICRO- CSCAN '
|| MACHINE | peiens | MAGHINE UNIT |
: AND —» —LINES — '
; YLINES -R ;
1 y H
: 28 26 29 !
: / :
t I
i i
I]
1 1
1 i
! FRONT CHANNEL '
I :
1 }
| |
| t
1

U.S. Patent Apr. 5, 1994 Sheet 3 of 20 5,301,267

t]
' :
! 1
! 2/ 110 32y %24/ 109 |!
: / !
! 102 !
! / \
1
' 104 REGISTER| |STEMLIST l
! ROM ___L_\ FILE RAM i
| CONAS :
! ‘ 1
« | [SEQUENCER|_-101 S / :
]
i 105 106 107 3
|
! Ml —"d | 108 |
! RA S FLAGS , | !
]
! FUNCTIONS BLOCK ;
! 1
! I
]
: SN :
! !
1 v :
‘. ... /...__l
21 Y i
, TO BEZIER TO/FROM
GENERATOR MEMORY SYSTEM
FIG. 3
Lo 2 i3 4
0 A1 o, 2 i3 o\ 4
nofe——e—1 |
P esi12 Pl
e B
: i
-100 100 200 300 400 500 600 700

FIG. 4A

U.S. Patent Apr. 5, 1994 Sheet 4 of 20 5,301,267

' 135B—
134A\.§l,134 135\15’;./135;\
. =5 -
10 3.55 3.65
136 137 | |
138 “-139

LOWER LOWER
BOUND BOUND

FiG.4B

STEM AND/OR
HINT COORDINATES
INCS

MAP TO
COORDINATES
INDS

APPLY HINTS
IF ANY

y

CALCULATE 115
DIFFERENCES: -
DS'-DS

DERIVE
TRANSFORMATION
MATRIX LIST

MAP CS—>DS' APPLY |~ 116
MATRIX LIST TO ANY
DESIRED POINT

LINEARIZE L~ 117
OUTLINE

FILL AND 1
RASTERIZE 118

FIG.5

Sheet 5 of 20 5,301,267

Apr. 5, 1994

U.S. Patent

123

P T s epp——

21

2 3 4 5 6 7 8 9 10 11 12 13 14

T Y Y T T Y T M Y v v r
1]) 1 [L] 1] 1] . . L L] L [] [[]
PRy S T Y 4 PR TN DY TR TP YTy TN R L PR e [y I SR Py P cotacdealof o
¥ H : 1 ¥ + v- . ¥ P =~ ' 4 v b= TRl
] ‘ . [}] ' ' ’ 1 1 ¢ » ' * .
] [l [}] [} 1 1] ' [] +] 1 [}
[+ ' I3 1 ']] ') » [} + ['
(Al R R B e e S abt REI D I o - by fecr- A SR cmemfecpachay
] [l } +]]] ' [} ' ' ¢ ‘ [} '
. . ' ' 3 Il . . :) ' ' 3 : L
 pog a S—— v T T T T T ¥ T T T T
-+ bl e - v '] ’] t] ']] '
cebackodaato o ¢ QN SRS Py RS T N MY | S RpNS JIPI I B I -t deedaataabao
‘ []) t ‘ [}]] [' [] ¥]]
] [} [' I] + '] i '] 1]
: 11] 1 ’ 1 h] 1 1 ' ' 1 1 ' 1
) ' [:] [} ' [' 1 ' I} ')]]
L -B--1--r-F--F--r-4--1--Fx--f-<b-F-A- M-y} Rt oAtk EETY PR P e
]] :] ' ' ' ']] 1] ' ’ [+]
A . H M A A i M N A s M N L i
1 . [[] w []] [» [] . . [13 4
' [& '] v ' ' [v] + 1 1 +
[SHUES WU Ny S SR ' adenbochadas PN - ——be DI PRy FrEgEy PN S
1 [l ’] - ' + + ’] ‘.) 1] .
]] ‘ [l] 1 |]) 3 |] 1
T Y Y T ¥ v v Y v Y T T T v
[) 1] 1]) L 1} L + f [} L] . t 1 L])
Yo a -bha EER TS [SN S Y VT E Rl ek ld Bl mhavh cdawtanbha N N P R S -
[IaE S 1 r {--f- H 4 i + k h 0 t 4
I '] . ¢ +]]] + | 1 '] .
]] + [' [b '] ’ 1 +]] '
]] [} ‘ ’ [) 1] [} '] ’] . ‘
| i--d-cr-}h--$--r- LR PP EETED DECTY T THN AP DI R S cpecfoqe-fpoara redempachaqen
¢ 1]) [}] ¢ . 1 [']] [}]]
I 3) I 1 I ' 1 3 i 4 ‘ Il ! !
T Y T T T T T T T T T T T T T
]] 1} t [}] ' [' ' 1 ' : ‘ '
i.?l Y X Iy e Aowbedendactafboa--t -2 EER RPN P B R R e LR dendenbnaheda
i + ']) | ' [' ¥ ' ' [l] [
| [}) +]] 3 +]] ‘ [} [}] |
}} ' i .] 1 + 1] v 1 ' '] ‘

] 1 ' [i] ‘]] [' [' 3)
- -f--r-- LT T 7= ﬁuu.ll ~r--fF-a--t-4-1 EEE RN BN T cep==peqe-t--¢~ ==qeepenb-qe-
1] ' 1 ' ' ' ‘ ' *] ‘ ' ' [

M A A i M i i M 4 A .
1 " + 0 . 0 0 0 0 +] " 0 SI_I (4]
Il s 1]]]] ’ [} + 1) ’ [o
T TIET CRT TP TERT TR R R Ll ot L S ||+ ER SRR LT B EY ERT cdoetantmn - - o .
. 1 g. [: [’ . ' .] ’ L ol sadi
1 [[[]] + +] 1 [[2 3
¥ T W Y Y T o T Y T g T M
' 1 1 3 ' [1] 1 . 1 [o
(U PN i W T]NpRy [v cepeddecdaclobndaa L B CEY T 28 - «bo adecpa-ta e ol =da
B [0 Rt i [t Gk S BN SRS RS R S N
1) 1 . [3 1} [}) L} . L} L 1] 13
1) ' [}]]]]]] . [l 1
] ' + .)] []]] [} ')
TN e Y LR X TR -
' [}]]] ' 13 1 B ' 1 1 I3 ' ']
[s ' 1 1 L I 3 1 ! 1 I Il . Il It
T Y T T T T ¥ =T T T T T T T T T
i ' i]] + + + []] ' ¥]]]
R VRS [Ny QN KV IUpU; QUINY ST N QU IR SRy pRyuy SR EPr IOy NP NS S S N AP S SR - deedeabochaaa
| 1 [] 4 + ¥ 1 [] [)) [t ’ t
) [‘] [|] [[} |) [[]] [
' s] ']] 1 ' 1 ¢ '] ' ']]
] [] [1 ' ‘ I} [] ’ [] [} [l)
L (3ha AR L S LEE TITEE CET TEY PYCTS ERY T PP ST TN T DTS- PN SO S (A P Er Ly TR Sus SIS s Jpaps Spws e
M 4 2 M 4 N " M " 4 H N " N M ¢
» o o - - . > » > « . o > . 1
o N 0 0 T O N~ & o O N © 0 ™ o~
[o o | L L B I
[t | i

125{

126<

127{

1

FIG. 6a

5,301,267

133

Sheet 6 of 20

Apr. 5, 1994

U.S. Patent

r T T Y ¥ Y v
1 + L] 1 + s 1) L}
P . PR PR SRS R S TTUY YEGU NpUps JPRY UUpNY SOV TP PR SRR SRR S
[4 " i h t--t-= n. -4
t 13 L] 4) L L}) [

' ' ' 1 + ' ' 3]]]
L] L ’ L 1 ’ 1] . U 1 1]
L Y S [P EQURL O EOTY PR CTSR-SUps RpRA PRu AN SP N
'] ' ' . t ' ' ' 1 1
[l L] L} [} i}] L]) k) [}
T T T T T T T T T
. . . 1 4) ']]] +
= R Joadan POy g PIOPY A SR Ry U] [T PN ST
3 i ' I \ y ' ¥]
[[' ' \] ' ' ' '
' + ' ’ ' + A t ') + ' I |
[} 13 1) [] [} 3 4 1 1 1 1
W (. B R R at GOT T SRUL e PR ISy Moy o § Rl e R B R S R e all it LTy Iy
. ' ')) ’ ’ t ' ']] :] '
A H M H i A M i i N i i A i H
[] [[+ [[] . i + 1 ’ t 1 [[

' ' '] '] ' .] ‘) 1 ' ' 1
A RO S0 (-G S T P R, R T PR DOUTY T NIy SRpl-Gpis Ny SN NSO PUN-Gup R
» ' ' ' + ' 1 ' ' ' . 1} + ' '

i ’ ' ’ '] 1 ‘ 4 1 3 » ' ' + + '

Y T T v ¥ T T T T T T v T Y T T T T
' ' s * 1} ' 1 ' ' I) '] ' i ' ')
FULTON DRI G T QUPC TN J PR TN Iy DA NN WINCION ORI A SUNE U NN TN SR B -

0 ¢ 1 el ¢ 1 v i 0 t 4 3 { t ¢
']] . ' '] ' ' 1 ’ ' ' ' ‘ ' '

] ¥] + ']] ' . '] ' ') [l] v
1]) 1 t i J 4 13 Ll L] L] t 1 13 . 1 1
PEMTY EETRY TELEY PR CUT-TIS TSP AP (R Rupe RPQs. Sy JU S DU B D ek T Lor! Tt Hyw RN PP DS S
t \ ' '] § '] '] 1 . : ' ' '] 1
! I : 1 : : ') ' ' : . H : ' ' ' '

T -1 T ¥ Y T T T T T T T T T T T T T
‘] ‘ i '] 1 '] 1 ' '] + ' +] '
cdemdeat . Bl oL dianl PR T TR LI r TP pur JNQRSpu NON-Sugn Sy SUou TN NUNSIpN REGRIE M-S R
' n I v] 1] 1 ' ' ¥ N " ' 1] + 1
) [} »]]] ' v ' ' 1 ' ') i v]

1 1 1 ' + ' 1 ' ' ' ' ¢ ') '
‘] 1] [I 1 TS) ' ' 1 ' ' '

PEATY IS P N B R R il R e R S e R e o b TR LT SEGUNGN JRNFLpS N o Fo<fF-q--
' ' :] 1} '] 1] ' ' '] ' ' Il [l '
H H A M H s A 1 M A H H " " s A H A
[]] [[] ») [[} 1 1} [. [] * L}] . 1)

') [' '] ' . ' I} ' . ' ' 1) ']
B E L R e R R ok CLT Xy Sy SN WS - R YRS NEpE RS S [S N
i ' + ' + ' I . 1 ') o] ' ' ' ']

I)] ¢ s 3] ' +) i ' ')] I} ’

Y T v v T T T T Y Y T N T v Y o] Y Y
’ ' ’]] '] ' ' '] - I} ' + * ’ ’ ’
RPN NSy S TN R TN U VIR RN BN N ST TN ORI I DR | KUY UGS PR PP N . W S IO Y
) [4 v + Y] ‘" ¥ A i 1} .f i ¥ i " v I
1] 4) 13) 1 L] 1] [} » T L} . + L . L} L]

.] v] ' '] '] '] ') ' + ']
. 1 ' " ' ' ' ' ' 1 " ' ' ' ' ' '
b hd ELTEE AEETE SEILE LEEEE) XF t Rl Tt TELRY PRI NES SN DU Nl pas M. KN QUPI.Ip WROUn R N (R S N am
] ' ' + ' ' ') ' ’ | ' ' '] ' 1
N) 4 M i N M L N : ! M L I N H |
¥ T ' ' v y v 4 ’ T T v ’ ’ - " '

' ‘ ’ ' ' ') ' 1 ' 11 1 ' ' ' ' +
B R R b LET LT Sepeuy Py qivl Sipr ol PR NP [RPUY A KT R WEY AU (RN QU RPN SO PRN-PI NP N
) v] »)) ' + ' ' 1]]] 1 1 ' "

' 1 1 1 +] ' '] ' + ']) ’] '

1 ' i ' ' ' 1 ' ' ' ' ' ' | 1 t

1} i] 3 ' ’ ' s ' ') i ' 1 ' 1
LR b ST TR LT EE B e S E Y P Aar DLtk R Jgts i I U ERT, [T TR R N utﬁl.ﬁ-‘luvnn.»u cepen

l) ' 1 ' 1 ' ' ' ' ' ' 1 ')]

e M 4 M M H M M M H M M
O~ © 1 $ M N +~ O O O N © O < ™ 1’
Lol I D R

FIG. 6B

2 3 4 5 6 7 8 9 10 11 12 13 14

1

Apr. 5, 1994 Sheet 7 of 20 5,301,267

U.S. Patent

r ¥ v T T T T T T ¥
H + .] 1 '] ' ' .
e RO QRN SO N Y TPHDR NN JRORY D I N IO SR R S

F ==~ 1 1 + ¥ | ¥ 1--F-- -4
t i ' ' .]] .] "

Y 3]] 1]] 1 1
H] ' 13 ‘ '] 1 ¢
- - - -a Rt Dt e tbEhl Lo [EF £ SHpL N PP pigr Sy
H t '] [t ' 1 ' 1
L : ! h . :)) .
T T T T T T T T T
I ' t ' 3] '])
- 4 Nl Dl L) XU Epuy GIpN UPIg M- RN NI RPN RS,
" ' [h ') ']
) []] ' . [}]
. ‘' . ' + ‘ ' 1 ' ’) . 11
[' ' I _a []] v]
r-t-F-t--6-4--1 —epes - 1 SR DR ST T FIE P TP AP RPN R S
1 1]])]] ' '] 1 I
M A A o i i i A M A . 5 N H
] 0 " 0 v " 0] 0 " 1 3 0 ")
'] ' ‘]] . [] '] v 1]]
.- [PPSR DUPR-SPUYS HD R IS PR B R O o CrT Ty Ny SUph EpNs NyNp-SIN SUpE-ENNN SN S-S
. 2 ' ' 1 ' ' v ' ﬁ ' .] [] '
[[¢) 1] 1 i + Il ' ') * '
Y Y v T T T T T T v v T Y v 2
’ ' ']] [*]) ' 1}]] ' 1
[0 QUOrTRURY R TN IO IO ISP B SN RNV, NI TN RNy QU TP S SN R S B G S
b-g-d -1 + y 1 3 ¢ 1 - 1 1 + 1
) 1]) » L] 1 + + » L 1] t L} [1
]]]]) '] 1)] ‘ v]] 1 "
’ 3] ' [* 3 . + v 1 ’ '] ['
coqrodecrefoqertecprrdeagecleaqe-dans ERT R SEE TN PP EI U It S Ny D EuPUP QPP M SR
1] v] ' ' +] \ ' 1l . 1 1 I '
3 I i 3 ' i : I s ! Il i 3 ' I ! '
T T ¥ T T T T T T T ¥ T T T T T T
]) '] ' ') ’] ' 1 t] ' + ' ‘

PR ITY EETTE TR TR BN ST N S Py i NP NS PUpR Uy LD QU (NG RN (R A R SUN R PN G A N SN S
" 4 ﬁ I 1 ' " ¥ 1 " i " N I [[]]
[} [[} +] 3 \ [t +] 1 \ \ ' |]

’ * ' 1 ' . + ¢ ' ' : 11 11 '

' ’ [|] []] [I3 [sl] ‘
R R —--4--F fF-d-cpo-t--f-b-Fed-et--b-d--fop-tenf-p--f-q--
1 ' ’ + ' ']] 1 ' + 1 '

H A i i s H A A A A L i i
0]] * I 0 " 0 "] " 0 0 0
' '] ' 1 1 ‘] ' + ' '] .
-t |arl+vvbll A [I SRRt TUCERSy PANIP N SUgryRpRy IS GNP U RN -G R
[1 + . ' + . ' ' v i 1 I} ' .

[[} +)] ' ' '))))] ' +
Y v M T Y T v T + T T T T r T
] « ' ' 1] ' H] 1} ' + ‘]]

[LAPUE Py RN NN wteadecbahadaa S) N By [N S cedecpo Lo hoda.

s D B8 R doobodeefoetocbed doofodogoobeot o

1 [} 1] [} 1] L 1 + L] * 13 t . 1}

]] 1 ' ’]] 1] 1] 1

L .) 1 1 [l 1]] 1 . 1 .
cqredeep-faqectaan-d b - - = e a-- PR QIR PN [R . S S D aa

1] ' 1] ' +]]) . 1 . [}

n 1 " " e " ' . N 4 " 4 "

T Y ' ’ y " ¥ T ’ ' v ’ "

] +] ' 1 H ' ']] : ’ []
[EPPES DR N TR I G b o e o . [SEpIIPINS DU U R P PR P SR DR T
¥ ¥ "] " v t ¥ ¥ ' [' ¥ [

1 » t '] \ 1] 1 ’]) + [
14 ’ 1 ' 1 ' ' ' 11 1] '

‘ [) | 4 ‘] ' 1 ' 1 '
PEY T L0 PR REEEY cqm=fecpedeagoctade. R R R T ELI L e
] 1 1 ' '] [1]])
O M © VW ¢ O N »» O O O M © O ¥ M N 1’
Lo o T

FIG. 7

2 3 4 5 6 7 8 9 10 11 12 13 14

1

U.S. Patent | Apr. 5, 1994 Sheet 8 of 20 5,301,267

P1, ~206
207 P3 208
oob
PO / -205
FIG. 8a
210 P3 212
P1
FiG. 8b
P2 __-203
B1__-216 B2, _-217

P1, 202

FIG. 9

...

3 CONTROL
§ BEZIER UNIT & §
| GNEAND | supnivision aND [BEZIER REDUCTION | CONTROL
DATAPATH FLAG .
—_—
_-223
222
/T_LINE DATA

BEZIER POINTS
TO/FROM STACK CONTROL
y y
| 224
BEZIER STACK MACHINE

(SYSTEM MEMORY INTERFACE)
(FRONT AND BACK CHANNEL)

it Rt Rttt Ll T T T PSPPI

S RO,

Juaged 'S’

[\>]
N

0Z JO 6 1994S $661 ‘S "ady

LITT0E’S

U.S. Patent Apr. 5, 1994 Sheet 10 of 20 5,301,267

INITIAL BEZIER ASSERT
C DLE Mﬁg&'gﬁ:@ﬁh‘s ENDERBEZIER STALL)

STACK
COUNT =0

BEGIN SUBDIVISION
B AND FLATNESS TEST

X & Y AXIS DONE IN PARALLEL
INPUTS:
BEZIER FLATNESS FACTOR BEZIER

SUBDIVISION X COORDINATE POINTS SUBDIVISION Y
AXIS OUTPUTS: AXIS
X FLAT (TRUE/FALSE)
Y FLAT (TRUE/FALSE)
SUBDIVIDED COORDINATES

FLAT
MERGE

TO
FIG. 11B

FiG.11A

U.S. Patent Apr. 5, 1994 Sheet 11 of 20 5,301,267

FROM
FIG. 11A (CSCAN STALL ACTIVE)
FLATTENED
OR STACK

FULL?
STACK GIVE dx AND dy
TALL) POINTS TO CSCAN 1

DECREMENT
STACK COUNTER

ENBERBEZIER
MOVE POINTS B1, B2 STALL)
AND B3 ON STACK DLE)
INCREMENT

STACK COUNTER

(UNSTACK

STALL)
GOTOB

GET BEZIER
FROM STACK

‘ GOTOB)

FIG.11B

U.S. Patent Apr. 5, 1994

START BEZIER
SUBDIVISION AND
FLATNESS TEST
INPUTS:

COORDINATE POINTS
BEZIERCURVE TRUE/FALSE

IS THE
INPUT DATAA
LINE S%GMENT

ETURN FROM BEZIE
SUBDIVISION AND
FLATNESS TEST

Sheet 12 of 20

OUTPUTS:
LINE SEGMENT (dx, dy)

RETURN FROM BEZIE
SUBDIVISION AND
FLATNESS TEST

S1 STATE

82 STATE

83 STATE

OUTPUTS:

BEZIER FLAT (TRUE/FALSE)
LINE SEGMENT (dx, dy)

2 SMALLER BEZIERS

FROM SUBDIVISION

FiG.12

5,301,267

YLINE DATA

PENSTATE

R
'--——— e e e e R e U
)
]
304
1
L\ DxDp XCROSSa _
XLINE DATA XFRAGT XCROSSLOCATION
XCROSS 2 XCROSSEDFIRST
305
LINE DyDp CROSS YCROSSa STRUCT CSCAN1 .
GENERATOR [YFRACT GENERATOR [YCROSSLOCATION '] G?\%’?;E«Sgnﬂ%n
306 YCROSS2 YCROSSEDFIRST
PENSTATEa
PENSTATED
\ \ \
301 302 303
1
FIG. 13

t

DATA

CONTROL

661 ‘s "1dy JudRdg ‘SN

0T JO €1 39934§

LI9T'10€’S

)

XLINEDATA[16.8]

31\0 304
| X DIMENSION DDA 2021 o
3 215y \ {
E llllllT'lll'T'Tllllllll E
DxDp REGISTER
Yoo
312 :
SUM[23:22]
2-23 |

lllllllllll'll.lllllllll
OVERFLOW
REGISTER XFRACT REGISTER
\
314
4 /
XCROSS XFRACT]0.8]

LOOP-
COUNTER
[15.0]

FiG. 14

a1t YLINEDATA(16.8]
305
| Y DIMENSION DDA 20 21 28
215—y YW ¢
ll‘llll'li['llllllf'll’
DyDp REGISTER
\
313
SUM[23:22] -
23
SUM[21:0] 5\

20 })
llllllllllFl’llITlllllll
OVERFLOW
REGISTER YFRACT REGISTER
\
315
Y 4
YCROSS YFRACTI[0.8]

i b b D D D g

p661 ‘s "1dy Jujed ‘S'n

02 Jo I 3394S

LIT'T0E"S

U.S. Patent Apr. 5, 1994 Sheet 15 of 20 5,301,267

<+«— XFRACT —>

''''' 20| 24 26| 26 20
2
—+

(322.2) vz

-t

[
RAL

YFRACT

FiG. 15B

5,301,267

Sheet 16 of 20

Apr. 5, 1994

U.S. Patent

+
'
1
Il
-4 -1
wde
-
-

A-4-F-

4
|
-t
i
il
~4fb-- -tk
de
1
]

A=k

-1

-4k -

<
|
|
T
1

-4

g

4=k

- 4=t -

-k

2

FIG. 16

U.S. Patent Apr. 5, 1994 Sheet 17 of 20 5,301,267

bl

333 .

- 4 - PO

4

- 4-F

FIG. 18A

U.S. Patent

Apr. 5, 1994 Sheet 18 of 20
U 2
i LA LTI
[
FIG. 18B

FIG. 18C

5,301,267

U.S. Patent Apr. 5, 1994 Sheet 19 of 20 5,301,267

FIG. 18D

FIG. 19

DATA[31:0] [;— 220
' 381 (15l (14} (3} [12)f (11} [10] [(8] 386
COLORIN [R—\ ' /R PIXELCOLOR
;ZJ /q 385 3g9 |
| 382 383 34y 390 391
z1[0 ‘
z1[1]] FILLFLAG
| [15:12) 21[2 Q
[[11:8] z1[3
_[31:28] : z1[3:0] 388
L [27:24
387
ml [61, G @ ﬂ m] o
392 393
394
L [7:4
L [3:0 Rc
| [23:20 | 397
1918 305 FIG. 20

p661 ‘ “1dy ueq ‘SN

0T J0 0T 199Y4S

LITT10E’S

5,301,267

1

INTELLIGENT FONT RENDERING
CO-PROCESSOR

FIELD OF THE INVENTION

The device of this invention is 2 control device for
high performance, high quality display devices used in
typesetters, image-setters, color printers, laser printers
and video displays. The device is preferably a single
chip. The control device is useful in interpreting font
outlines, including rendering hints, and translating hints
and outlines to provide rasterized bit maps of characters
filled with black, white or other colors or patterns.

BACKGROUND

Rendering an image on a raster display requlms the
formation of the raster image at some point in the print-
ing process. In the case of characters, a raster bit map of
each needed character can be stored in memory and
then simply copied from memory to a printer input
buffer whenever that character is required. A complete
set of characters can be maintained in memory, but this
requires storing each particular character in every
needed point size and resolution, which can use up large
quantities of memory. Alternatively, a set of characters
can be encoded in some way, then converted into a bit
map for a particular size character at a particular resolu-
tion appropriate for a selected display device. Charac-
ters which will be reused can be stored in cache mem-
ory to facilitate faster printing. A typical printing job
requires a full set of lower case characters and many but
not all capital letters at a single size and resolution. Thus
bit maps of each of these characters can be generated
and held in cache memory for the duration of the job,
after which the cache memory can be flushed and filled
with characters needed for the next job. Typical printer
memory can accommodate a small number of fonts,
enough for a simple job. When a job calls for a large
number of fonts and/or point sizes, the capacity of
cache memory may be exceeded, requiring some char-
acter bit maps to be generated multiple times.

In a preferred embodiment, the device is used to
convert PostScript ® Type 1 font outlines to bit maps.
PostScript was developed by Adobe Systems Inc.
(hereinafter *Adobe”), the assignee of the subject in-
vention. The PostScript system was developed to com-
municate high-level graphic information to digital laser
printers. It is a flexible, compact and powerful language
for rendering characters from stored outline fonts, for
expressing graphic regions and for performing general
programming tasks. The preferred embodiment of the
device of this invention is described in the context of a
PostScript printer, typesetter or image-setter.

The PostScript hnguagc, use and applications are
thoroughly described in a number of books published
by Adobe, including POSTSCRIPT LANGUAGE
REFERENCE MANUAL (Second Edition, 1990) and
POSTSCRIPT LANGUAGE PROGRAM DESIGN
(1988), each of which is incorporated herein by refer-
ence. PostScript and related page description languages
are useful with typesetters, image-setters, color printers
and high throughput printers as well as high-resolution
video or other display devices.

The present invention is useful in many currently
available printing environments. Outline fonts are used
in conjunction with many typesetting and printing com-
binations, using Apple ® Macintosh®, IBM ® PC,
Sun ® and other UNIX-based computers with one or

10

15

20

25

30

35

40

45

50

55

65

2

more of several marking (printing) or display devices.
Current software includes Adobe’s PostScript and
ATM ™ software and hardware, and outline font pro-
grams from Bitstream and Compugraphic. Page de-
scription languages used to control printers include
Adobe’s PostScript language, Hewlett Packard’s PCL,
Canon’s LIPS, NEC’s NPDL and other languages by
Kyocera and Xerox.

Printers, video display and other such devices are
sometimes called marking devices or marking engines.
A raster image processor (RIP) associated with a mark-
ing engine converts input information and commands
into a rasterized (bit-mapped) region suitable for display
on the associated output device. Commercially avail-
able devices include the Apple LaserWriter®, the
Linotronic ® 100 and 300, the Adobe Atlas RIP, the
Emerald RIP and Hewlett-Packard DeskWriter T™M
and LaserJet TM. A marking engine generally prints
characters from stored bit maps by simply transferring
the pattern of bits from memory to the output device.
This requires a bit map of the character in the correct
size and resolution.

The main advantage of outline fonts over bit mapped
fonts is also the main disadvantage. An outline font can
be used to generate a bit map for a character of any size
from a single outline font. This provides flexibility and
compact storage, but costs time in preparing each re-
quired bit map and incurs the added burden of ensuring
that all bit map renditions have aesthetic appeal. A bit
mapped font can be specifically edited to produce Optl-
mal results, but only for a specific size. Additional sizes
require additional bit maps. Bit mapped fonts have tra-
ditionally enjoyed a speed advantage as well in that the
bit map can be printed directly. The trade-off is speed
vs. storage capacity requirements.

Essentially all programs using outline fonts must con-
vert outline information into a bit map before printing a
character on a raster printer. In a typical application,
outlines are defined in a high resolution coordinate
system, generally called character space. In order to
print on a marking engine, the outline must be scaled to
the required size and mapped to a coordinate system
appropriate for the marking engine. The second coordi-
nate space is generally called device space. The outline
in device space is filled with a series of pixels to approxi-
mate the original outline. Characters may be adjusted or
“hinted” in either character space or device space to
improve alignment of the final character on the device
space pixel grid.

Previous methods of converting character outlines to
scaled character bit maps were software based, which
allowed flexibility but significantly limited the speed at
which character bit maps could be generated. The limi-
tations of software based renderers become particularly
acute for printing jobs which require a large number of
different fonts or sizes, since each character at each size
in each font must be available to the marking engine as
a bit map. If a required character is not available in the
required size and font, then the corresponding outline
must be adjusted and converted. The limitations of
software-based renderers are also significant in printing
foreign languages such as Japanese which use a large
number of characters with only limited repetition. Each
time a character bit map is not available in cache mem-
ory, a new bit map must be generated. The bit map is
usually stored, displacing a previously stored character
bit map if the available memory is full.

5,301,267

3

The problem of scaling outlines to produce bit maps
has been a challenge for many years. Many of the prob-
lems of analyzing outlines to produce bit maps at an
arbitrary scale have been solved in the Adobe ATM
product. The methods used in ATM are described in
U.S. patent application Ser. Nos. 388,336 and 388,339
by Paxton et al. and U.S. patent application Ser. Nos.
539,222 and 552,788 by Byron et al., all assigned to
Adobe and all incorporated herein by reference. Some
of the methods described therein, such as analyzing
outlines, identifying crosses and tracing paths have been
improved and form the basis for the present invention.

SUMMARY OF THE INVENTION

The present invention provides an apparatus and
method for converting font outlines to rasterized bit
maps. One method for displaying rasterized objects
begins by accessing outline data, representing the object
in a first coordinate space, from computer memory or
storage, then transforms the outline data to correspond-
ing data representing the object in a second coordinate
space, where regional relationship information in the
outline data in the first coordinate space is maintained in
the second coordinate space. This method includes: a)
transforming the outline data of an object from the
representation in a first coordinate space to an initial
representation in a second coordinate space using a
linear transformation; b) applying the regional relation-
ship data primarily to the representation of the object in
the second coordinate space to derive a non-linear
transformation expressed as a plurality of linear trans-
formation matrices; c) applying the non-linear transfor-
mation to outline data of the object in first coordinate
space to derive a second representation in second coor-
dinate space; d) converting the second representation of
the outline data of the object in the second coordinate
space to raster data describing the object in a form
suitable for display; and e) storing the raster data or
displaying the object on a raster device.

From another perspective, the method scales an out-
line of an object in a first coordinate space to a second
coordinate space, after first accessing outline informa-
tion from storage. It then identifies the coordinates of
one or more select points at first coordinates in the
second coordinate space and compares those coordi-
nates with desired or preselected coordinates in the
second coordinate space, measuring the difference in
the second coordinate space for the desired versus the
actual coordinates. The method then derives a non-lin-
ear transformation approximated by a plurality of piece-
wise linear transformation matrices and applies an ap-
propriate linear transformation matrix to convert the
outline from first coordinate space directly to adjusted
second coordinate space. Finally, the method fills and
stores the outline of the object in a form suitable for
display on a raster device and may display the outline.

To convert curved outlines to straight line segments
suitable for calculating the desired bit map, this inven-
tion includes a method using four parallel adders for
each dimension to perform a midpoint subdivision and
flatness test on a Bezier curve, which is defined by a
first set of control points. The control points are nor-
malized using a first control point as a reference. The
Bezier curve is divided approximately at its midpoint
into second and third Bezier curves and is tested for
flatness by determining whether the distance between
each internal control point and the closest endpoint is
within § the net endpoint-to-endpoint distance plus a

10

20

25

30

35

40

45

50

55

60

65

4

flatness factor, which, for example, might be one-half
the width of a pixel.

Once the outline has been reduced to a series of line
segments, each line segment is examined to see whether
and where it crosses midlines between pixel centers.
Subdividing the pixel into subunits facilitates calculat-
ing the final bit maps. The apparatus of the invention
offers several advantages over the prior art use of soft-
ware by simplifying scaling and subdividing line seg-
ments. The scaled segments which cross midlines are
tested to see in what subdivision of the pixel the cross
occurred, and the information about these crosses is
compiled and correlated to effect center fill of the out-
lined image, with both dropout and collision control.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates generally how the apparatus of this
invention is connected to other components of a graph-
ics processing system.

FIG. 2 illustrates the major functional blocks of the
coprocessor of the invention.

FIG. 3 illustrates the major functional blocks of the
micromachine.

FIGS. 4a and 4b illustrate transformation and map-
ping of coordinates.

FIG. § illustrates a flow chart showing the major
steps of the current method.

FIGS. 6a, 6b and 7 illustrate mapping a character into
device space and hinted device space.

FIGS. 8s and 8b illustrate representative Bezier
curves and control points.

FIG. 9 illustrates subdividing a Bezier curve.

. FIG. 10 illustrates the major functional blocks of the
Bezier and state machine.

FIGS. 11a and 115 illustrate the major steps in the
method of subdividing Bezier curves and calculating
flatness.

FIG. 12 illustrates the major steps in the method of
determining flatness.

FIG. 13 illustrates the major functional blocks of the
Cscan unit.

FIG. 14 illustrates line generating DDAs.

FIGS. 15q and 15b illustrate crosses and subdivided
pixels.

FIG. 16 illustrates a tile structure of pixels.

FIG. 17 illustrates a close up of the tile structure of
FIG. 16.

FIGS. 184, 18b, 18¢ and 184 illustrate details of drop-
out conditions.

FIG. 19 illustrates overtracing.

FIG. 20 illustrates a hardware fill and dropout detec-
tion circuit.

DETAILED DESCRIPTION OF THE
INVENTION

The method and apparatus of this invention is partic-
ularly useful for converting character outlines into bit-
maps suitable for display on a raster printing or display
device. Outlines are generally defined at a very high
resolution in character space, frequently set to be 1000
pixels high for each character. A character outline may
be defined as a series of lines and curves starting at a
certain point on a pixel grid. See generally ADOBE
TYPE 1 FONT FORMAT (the “Black Book”, 1990).
The outline generally must be transformed to display
space, which generally has units equal to the maximum
resolution available on a selected display device. The

3,301,267

5

outline is scaled to a requested size, rendered as a bit
map and displayed on the selected display device.

The apparatus of this invention is designed for incor-
poration in a single chip co-processor to be used in
conjunction with 2 microprocessor in a raster printer
controller. For convenience, the preferred embodiment
of the present invention will be referred to as the font
rendering co-processor hereinafter called the “FRC”.
Referring to FIG. 1, co-processor 10 is connected to
main bus 16 of a printing or display device, and thereby
connected to controlling microprocessor 12 and system
memory 13. Co-processor 10 can be connected to and
can use optional private cache memory 11 or it can
contain internal memory or use system memory 13 for
storing intermediate and final values. The apparatus
may include a display controller 15 (for video systems)
and/or printer interface 14 (for printer systems) to drive
appropriate output devices, which are well known to
one skilled in the art. ,

Referring to FIG. 2, the main elements of co-proces-
sor 10 are micromachine 21, Bezier and stack machine
22 and Cscan unit 23, each of which are connected via
front channel bus 26 to each other and to front channel
interface 24, which in turn is connected to main bus 16
(shown in FIG. 1) via line 30. Each of units 21, 22 and
23 also are connected via back channel bus 27 to each
other and to back channel interface 25, which in turn is
connected to optional private memory 11 (shown in
FIG. 1) via line 31. Micromachine 21 and Bezier and
stack machine 22 are connected together through pipe-
line 28. Similarly, Bezier and stack machine 22 and
Cscan unit 23 are connected together through pipeline
29. The operation of each unit and the information
passed along each pipeline are described in detail below.
Each of the buses and channels in FIG. 2 can be modi-
fied under program control so that if one bus fails or
does not function properly, co-processor 10 can be
reconfigured to use alternative interconnections be-
tween the units.

The primary function of co-processor 10 is to intelli-
gently render Type 1 font programs into device specific
raster bit maps. The process of rendering a Type 1 font
program can be broken into three main areas: 1)
“hinted” transformation of Bezier control points; 2)
linearization of a character outline; and 3) intelligent
filling of an outline, These steps are implemented by
micromachine 21, Bezier and stack machine 22 and
CScan unit-23.

Micromachine 21

Micromachine 21 implements the first step of inter-
preting the hints in a Type 1 font program and applying
those hints to convert a Type 1 font program into a
stream of intelligently transformed Bezier control
points. Hints, described in more detail below, are essen-
tially directions from the type designer encoded with a
font or character that suggest, for example: keeping
certain features of equal or similar widths; setting x-
heights to fall within a certain range at large point sizes
and within a more limited range at smaller point sizes;
and other factors or parameters that aid in maintaining
the general characteristics of a font over a wide range of
scaled sizes.

Referring to FIG. 3, the main components of mi-
cromachine 21, subsystem 110 and datapath 109, are
shown. Subsystem 110 is a collection of logic circuits
which implement the first stage of hinting of the Type 1
font program. Subsystem 110 includes sequencer 101

5

10

15

20

25

35

40

45

55

60

65

6

which controls and coordinates the operations of sub-
system 110. The major blocks of subsystem 110 are
generally known and understood in the industry. Se-
quencer 101 performs the functions of a generic micro-
processor, including branching, branching to subrou-
tines and branching on condition. The instructions for
sequencer 101 are contained in ROM 102, holding, for
example, 896 words in the preferred implementation
where a microinstruction word is 58 bits wide. Subsys-
tem 110 includes RAM 103 holding, for example, 128
words of microinstruction RAM, loadable under the
control of a ROM-resident program. Having RAM 103
on board and connected to sequencer 101 aliows se-
quencer 101 to execute software that does not have to
be resident in coprocessor 10 unless and until required.
The complexity of the Type 1 programming language
and its continuing evolution favor incorporating this
form of flexibility.

Sequencer 101 controls a series of logic elements and
storage areas in datapath 109 by exchanging control
signals and flags over buses 104 and 105, respectively.
Datapath 109.inciudes register file 106, StemList RAM
107 and functions block 108. Functions block 108 in-
cludes: logical functions; one or more adder/subtrac-
tors; status flags; a 24X24 bit multiplier and a fixed
point divider. Functions block 108 carries out renderer-
specific operations, such as stem search operations such
as Width and Center, functions that have been specifi-
cally implemented in the FRC to accelerate the render-
ing process. ’

To generate a bit map at a specific size, an outline
must generally be scaled to the correct size when dis-
played on the marking engine. In addition, it is helpful
to identify certain features and align similar features on
pixel boundaries with balanced feature dimensions. The
method to distort outlines should be simple and fast,
preferably implemented both in software and hardware.

Referring to FIG. 5, the general steps of transforming
and adjusting an outline are to first map at least some
points to coordinates in device space, identify any ad-
Jjustments that need to be made, e.g. to keep stem widths
similar in size or to keep features aligned on pixel
boundaries, then derive a transformation matrix which
will achieve the needed distortions. The transformation
matrix can then be applied to key points in the character
outline data to convert the outline into device space.
Prior art methods require two steps to achieve the
transformation while the current method saves a step.
The scaled and adjusted outline is then linearized, step
117, filled and rasterized, step 118, and prepared for
display on a raster device or printer. The current
method calculates and uses differences in device space,
step 115, and then transforms original outline data to
hinted device space, step 116, neither of which has been
done before.

Transforming Outline Data—Background

Referring to FIGS. 4a, 4b, 6a, 6b and 7, the shape of
a character can be modified in one or more particular
axes, for example, the X axis. It is desirable to align
certain features with pixel boundaries in display space
and to give features dimensions that include full pixels,
when possible.

Referring to FIG. 6a, outline 121 shows a direct
transformation of outline data from character space to
device space using only scaling. To display this particu-
lar outline at the scaled point size requires making many
choices well known to one skilled in the art, for example

5,301,267

7

whether or not to display pixels 128 through 129, at
(x,y) coordinates (3,1) through (3,7), or pixel 130, at
(12,13). Outline 121 includes a serif feature including
line segments 131 and 132 and this feature may not be
displayable below a certain point size or resolution.
Referring to FIGS. 6B and 7, outline 121 has been dis-
torted in hinted device space to outline 133, generally
maintaining the dimensions of the original outline but
using whole pixels when possible. FIG. 7 is a compound
drawing showing how outline 133 is much easier to
display on the pixel grid than is outline 121.

A typical character includes one or more regions,
such as vertical or horizontal stems, that should be
balanced in any rendered bit map, both within a charac-
ter and between characters in a font. Examples of verti-
cal stems are the uprights in an “H”, “B” or “P”, e.g.
stem 122 in FIG. 6q, as well as the vertical extreme of a
bowl of a “B” or “P”, e.g. stem 124 in FIG. 6a. Note a
“B” has two bowls and thus may have two or three
vertical stems. Referring to FIG. 64, stems 125 and 127
are horizontal stems. It is generally desireable to bal-
ance both vertical and horizontal stems. A lower case
““0” in one type face may be even and circular and may
call for equal horizontal and vertical stems while an-
other “0” may narrow at the top and bottom and may
call for equal horizontal stems with a different dimen-
sion from equal vertical stems. Type designers and users
also make use of counters, which are generally specific
spaces which affect the shape or design of a character.
Vertical counter 123 and horizontal counter 126 are
two examples.

A character can be divided into zones, each of which
may include a vertical stem or a space between or out-
side stems. Distorting each zone by compression or
expansion allows scaling the character while retaining
balance between various zones to produce a satisfactory
rendering of the character. A typical scaling process
may include both compression and expansion of zones.
For example, if an important zone when scaled is less
than a pixel wide, it might be expanded to be one pixel
wide (along with corresponding zones of equal signifi-
cance) and the intervening zones might be compressed
to balance the rendering. Referring to FIG. 4a, zones 1
and 3 represent important features, such as the uprights
of an “H” or the upright and bowl of a “P”), whereas
zones 0, 2, and 4 are essentially background and will be
distorted as a result of any manipulations performed on
zones 1 and 3. Thus zones 1 and 3 can be considered
distortion zones and zones 0, 2 and 4 can be considered
compensation zones. Choosing which distortions to
apply is based on type design considerations and display
characteristics such as display resolution and character
size. Methods of specifying distortions are known to
those skilled in the art. One method of specification is
hinting, used in the Type 1 font description and de-
scribed in detail below.

- Deriving the Transformation Matrix

Since the character outline will be transformed from
character space to device space to produce the device
specific rendering, it seems logical to use the same trans-
formation to achieve any required distortion. A desired
series of distortions is implemented through a transfor-
mation matrix. Transformation matrix operations can be
separated into zonal areas using a list of matrices, one
for each zone. Together, these matrices represent a
piecewise transformation matrix for converting coordi-
nates in character space to coordinates in device space.

10

15

20

25

30

35

40

45

50

55

60

65

8

Referring to FIG. 44, zones 0, 1, 2, 3 and 4 correspond
to matrices M0, M1, M2, M3, and M4 (the matrices are
not shown) and modified zones 0', 1', 2', 3, and 4, corre-
spond to matrices M0’, M1', M2', M3, and M4'. Zones
0 and 4 extend to the end of the space defined for the
character. For all points between a zone’s edges, the
corresponding matrix is applied to transform points in
character space to device space. Points that share edges
with two zones can be assigned randomly to one zone
or the other or can be assigned to a zone by a rule, for
example, always use the zone to the left.

The transformation matrix for each zone is identical
in the simple case of no distortion. By way of example,
zones 1 and 3 are distorted by compressing them by
50% through a simple, linear transformation, the new
matrices for these zones would be:

M1'=M1%0.5
M3 =M3%0.5

where

MZ is the matrix for points in zone Z in a first coordi-
nate space and

MZ’ is the matrix for points in zone Z in a second coor-
dinate space.

Referring to FIGS. 4a and 64, zone 1 of FIG. 44 corre-

sponds to stem 122, the upright stem of the “P”, zone 2

of FIG. 4a corresponds to counter 123, zone 3 corre-

sponds to stem 124, the bowl of the “P”, and zones 0

and 4 correspond to the left and right bearings, respec-

tively, that separate the “P” from adjacent characters.

The values in FIG. 4a are selected for illustration and

for ease of calculation and do not correspond exactly to

the dimensions of FIG. 6a.

Optimal rasterization often requires not only scaling,
but also alignment of zones to pixel columns in device
space, for example, to fall on pixel boundaries. For
example, zones 1 and 3 can be compressed by 50%
solely by moving the rightmost edge. This is equivalent
to shrinking the width of each stroke in a character,
effectively making a thinner character, known to typog-
raphers as a lighter weight. This type of compression is
often necessary simply to set major stroke widths equal
to an integral number of pixels. Compare FIG. 6a, with
unadjusted stroke widths of approximately 2.4 pixels, to
FIG. 6b, with stroke widths compressed to two pixels.
Referring to FIG. 4a:

original modified

zone |

CS, 200 CS,' 200 (not moved)

CSp41 300 CSp4 1’ 250 (width has been compressed by 50%)
where:

n: edge “n”, left edge of zone

n <+ 1: right edge of zone

CS,: Character space edge “n” (unadjusted)
CSy': Adjusted (hinted) character space edge “n”

The left edge CS,’ of zone 2 shifts with the right edge
CSn4+1’ of zone 1 as zone 1 is compressed, expanding
zone 2 by 50 units, but the right edge of zone 2 stays
fixed, for an adjusted width of 250 units.

zone 2
CS»

300 CS," 250 (shares edge with zone 1)

3,301,267

9
~continued
zone 2 .
CSp.41 500 CSp1" 500 (shares edge with zone 3)

If points in device space need to be adjusted to meet
typographic design criteria, the complete transforma-
tion matrix generally will be non-linear. Here, zone 2
becomes larger by 259 while zone 1 becomes smaller
by 50%, so the zones must use different matrices.

The compensation factor (Cp) provides the scaling
factor needed to distort a zone. Cris simply the ratio of
the adjusted width of a zone divided by the original
width of zone. The ratio of the compensation factor is
shown below:

deltaCS + (CSpy1 — CSp)

Gy = —odificd width

i width (CSn+1 TC.-S'n)
For example, for zone 2:
A2l = 300—%5530_350%(;—300 =125

Prior art methods of implementing zonal transforma-
tions may generate discontinuities as an abrupt change
* in transformation matrix values transitioning from zone
to zone, for example, in going from zone 1 to zone 2.
Simply setting Cy=1.25 and scaling up zone 2 by 25%
would transform the left edge of zone 2 to
250*1.25=312.5; and would transform the right edge of
zone 2 to 500*1.25=625. These are not the desired
values. These discontinuities may produce a noticeable
effect at each edge. To eliminate these discontinuities,
the transformation matrix can be modified to include a
translation factor:

X[Z}=(x~CSp)*Cr+ CSy’ Eqn. 1
where:

x==point x in zone Z

(x—CS,)=Normalizes original point x in current

zone Z as a “width”

Cr=Compensation Factor, amount zone is distorted

CS,’=Translation factor, restoration to new coordi-

nate space
For zone 2, this becomes:

x'[2]=(x—300)*Cr+250

The transformation of the right edge of zone 2 becomes
(500—300)*1.25+-250=500, precisely the value de-
sired.

This process is repeated in a similar manner, calculat-
ing Crand offset translation for each zone, to yield a
piecewise, generally non-linear transformation matrix,
[Sx,Sy].

The above example shows the conversion of the orig-
inal coordinate data in character space (CS) to a new
coordinate space called hinted character space (CS’). In
the prior art ATM method, these distortions were first
made in device space (the actual target of all character
modifications) then backed into character space
through an inverse transformation matrix (that is, a
transformation matrix that “undoes” the device space
transformation matrix) to create the CS’ coordinate
data. Converting the CS’ data points to hinted device
space (DS') requires applying the final transformation

5

10

15

20

25

30

35

45

50

55

60

65

10
matrix [Sy, §,] to the original coordinate data [Cx,, Cy,]
in CS.
CS [CxoCp] — CS
[Cx1,0n)

[Cxn,Cyal ‘

CS (5.S) — DS

The DS’ data points then can be filled using prior art
methods or the methods described below. The filled
outline can be stored or displayed directly.

The Current Method

The present invention combines compensation trans-
formation and device space transformation to allow
higher throughput and streamlined operation. This
method distorts an object outline by creating a series of
transformation matrices applied on a zonal basis. This
method is sometimes referred to as a piecewise-nonlin-
ear transformation using a transformation matrix list to
emulate the operation of a nonlinear transformation
function.

Transforming Qutline Data and Deriving the
Transformation Matrix

The FRC implements zonal distortions in a slightly
different yet mathematically identical manner. In con-
trast to the above example, the FRC does not track
either the final width of a zone, e.g. 113 for zone 1 and
114 for zone 2 in FIG. 4q, or a zone’s new right edge
(300-+250 for zone 1), but tracks the delta of change
(112 or —50 units for both zones 1 and 2). Making a
zone smaller is treated as a negative value. This change
makes the calculation of the Cysimpler:

delta
original width
~50/100 = —0.5 for zone 1
+50/200 = 0.25

Cr =

for zone 2

The equation for transformation becomes:

xcs'[Z)
xps’(Z]

= (x—CS)* 10+ Ch+ CSy
57% (x — CS) * (1.0 + Cp + CSy' * §f
(x — CSy) * (¢ + Cf) + DSy’

]

For zone 2:
¥ Cs{2}=(x— 300)*(1.0+-Cp+250
¥ p{2]=(x—300)*(Sy+ C)+ DS’y

The equation includes a new factor, Syor scale factor
for the f dimension (x or y). These equations can_be
simplified.

The distorted width of the zone in device space (the
DS’ width) can be divided by the unhinted character
space width (CS width) to produce the combined de-
vice space transformation/compensation factor value.
The equation to fully transform a coordinate becomes:

o = DSniv’ — DSi) Eqn.2
e = CSar1 — C5)

5,301,267

11

which can be restated as:

(deltaDSp 4.1 — deltaDS,)

& = CSns1 = CS)
= S+ Cf
xcs[Z] = (xcs — CSp)* Cr+ CSy
xpslZ] = xcs'* S
= (xcs — CSp)* Cr* Sp+ CSy' * 57
= (xcs — CSp) * Cre + DSy
Simplified:
% DSIZ]=xCs*Cpe+(DS'n— CSn*Cpe) Eqn. 3
The constant term is set equal to K:
K=DS'n—CSy*Cre Eqn. 4

where:

Cf:: Composite compensation factor

Sr. Scale factor, e.g. Syin the x direction

C'r Cr—S¢

Since only one level of transformation operation is
required, the number of multiplications performed by
the rendered has been decreased.

This method can be implemented using the following
pseudocode. . '

PseudoProcedure CreateMap #Repeat for each axis,
typically x and y

n=1 # initialize index
K[0] = deltaDS’[0] #Of¥set factor
Cfel0] = Sf #Compound compensation factor

for n = NumberOfEdges
#Calculate Transformation Mapping

(deltaDS'[n + 1] — del_laDS'[n])
(CS[n + 1} — CS[n])

Kin] = DS'[n} — Cfc{n] * Csln]
next n

Kln} = deltaDS'[n]

Cfeln] = &

Cfeln] = Sf +

Applying the Transformation to the Outline Data

The compensation matrices and the device space
matrices can be combined and applied to the original
outline data to derive the desired final transformation in
a single step. Prior art distortions transform characters
from CS to CS’, hinted character space, and subse-
quently into hinted device space DS’. Many mathemati-
cal steps (and significant time) can be avoided if hinting
stays in device space. The present invention bypasses
the CS’' coordinate system to simplify operations. The
new compensation factors include the actual device
space transformation in addition to the distortion fac-
tors.

CS [Cxe.Cw] — DS
[Cx1,Cy1)

* » =

[Cxn.Cyn)

10

15

20

25

30

35

45

65

12

The DS’ data points then can be filled methods or the
methods described below. The filled outline can be
stored or displayed directly.

Hinting

The rasterization process can be deliberately dis-
torted to improve the appearance and/or legibility of
characters being generated. Specific information can be
included in the font data to direct or guide a renderer to
make adjustments and corrections in the scaling and
rasterization of the final bit map and produce a more
optimal result. One such process is referred to as hinting
and the data generally included in the font outline is
referred to as hints. Hints are typically applied in device
space but can also be applied in character space before
scaling the outline data.

The process of hinting involves identifying certain
common characteristics of classes of objects and defin-
ing a series of processes to maintain the aesthetic nature
(and, in the case of fonts, legibility) of the object being
rendered, even at extremely large or small sizes. Basic
hinting methods and applications are described at
length along with the Type 1 font encoding specifica-
tion in ADOBE TYPE 1 FONT FORMAT (the “Black
Book”, 1990), incorporated herein by reference. The
FRC implements these operations in a novel manner.

Hinting commands include stem hinting commands
hstem, vstem, hstem3 and vstem3. In accordance with
the distortion methods described earlier, a stem is analo-
gous to a distortion zone. The areas between stems,
called counters in typographical terms, become the
compensation zones. The program designer or type
designer can choose certain rules to control the place-
ment of the edges of a stem for optimal rendering and
the width of the stem for consistent stroke color. These
methods result in distortions that are then used to create
the distortion matrix list. The Type 1 font specification
includes additional zones specified by the BlueValues| }
and OtherBlues[] arrays, which allow coordination
with the placement of the stem zones to ensure proper
character height rendering at small sizes, as discussed
below. The term height includes both ascenders above
the X-height and other typographic top zones, as well
as descenders below the baseline and other typographic
bottom zones. The following methods are used to con-
trol the width and edge placement of stems. The exam-
ples are in terms of X-coordinates and widths, but cor-
responding adjustments in Y-coordinates and height are
made in an analogous manner.

Width

The width of the stem in character space is repre-
sented by Widthcs. The width after transformation to
device space is represented by Widthps, generally with
a fractional value. Widthps can be represented as i.ff,
where i represents the integer portion of the width and
T represents the fractional portion. Subsequent pro-
cessing is made easier if there are a minimal number of
points exactly on certain thresholds, such as coincident
with a pixel center. The width can be adjusted around
selected threshold points, where the threshold points
are set by design to achieve visually acceptable, or,
better yet, optimal, renderings. For example, the values
of the width can be restricted to a specified range deter-
mined by a lower boundary (0.625) and an upper bound-
ary (0.900). FIG. 4b illustrates one width evaluation and
shows adjustment of width 136 by delta,qr; 137 to bring
the width of the stems into the range between Lower-

5,301,267

13
Bound 138 and UpperBound 139. One can use the fol-
lowing rules for adjusting the width by deltayign to
keep all widths between the specified boundaries:

if (0.625 < ff = 0.900) m)

deltaggn = 0.0
if (0.5 = ff = 0.625) @
deltayigry = 0.625 — 0.
if (. > 0.900) (€))
delta gy = 0.900 — 0.7
if (ff < 0.5) (O]
deltaigry = (0.900 — 1) — 0.
These examples illustrate the four width adjustment
rules:
10.75 — 10.75, deltayign = 0.0 (rule 1)
9.55 — 9.625, deltayigry = +0.075 (rule 2)
4.97 — 4.900, deltayidrs = —0.07 (rule 3)
9.45 - 8.9, delta,igry = —0.55 (rule 4)

This adjustment to the Widthps can be turned into

5

10

20

14

One method of evaluating the delta terms is provided
in the following pseudocode: ‘
PseudoProcedure SetDelta
For n=1 to NMax

DSn=CSn * Sf #scale edges

DSn+1=CSn+1 * Sf

Adjust widths:

StemWidth=DSn41—DSn

HintedStemWidth =round(StemWidth)

#Alternatively, hintedStemWidth can be selec-
tively defined for a stem '

if HintedStemWidth is even, CenterOffset=0,

else CenterOffset=0.5

fError_w=HintedStemWidth — StemWidth

Adjust centers:

StemCenter=(DSn+1+DSn)/2

HintedStemCenter = round(StemCenter) + Center-

Offset

fError _c=HintedStemCenter — StemCenter

DS'n=DSn_{Error_w/2+4fError_c/2

DS'n+1=DSn+1+fError_w/2+fError_c/2

After performing both the Width and Centering ad-
justments; the stem has been fully hinted. A set of ad-
justment errors is associated with each edge of each

movement of edges by apportioning the total deltaviarh 25 hinted stem. These adjustment errors must now be

between each edge. Add $ of the delta,igsn to the greater
edge (rightmost edge, often referred to as the next or to
edge) and subtract § the deltayigr from the lower edge
(the leftmost edge, often referred to as the first or from
edge). A negative delta,x value means the stem be-
comes thinner and thus the left edge must be moved to
the right (made larger numerically) and the right edge
must be moved left (made smaller). Referring to FIG.
4), the stem between left edge 134 and right edge 135
has a width 136 of 2.55. This width value does not have
a fractional part between LowerBound 138 and Upper-
Bound 139 and so must be adjusted. Applying rule 2,
width 136 is adjusted to 2.625, equivaient to moving
right edge 135 to position 135A, giving delta,idn
137=0.075. Deltayia is apportioned between the edges
by subtracting 0.075/2 from left edge 134, moving it to
position 134A, and adding 0.075/2 to right edge 135,
moving it to position 135B.

Centering

It is important to represent features by whole pixels
whenever possible and to select, where possible, where
the edges of a stem fall. For small features, or for char-
acters at small point sizes, positioning the center of the
stem can control the location of the edges. The rule is
very simple: 1) if the rounded width of the stem is even,

move the center to the pixel boundary closest to it; and

2) if the rounded width of the stem is odd, move the
center to the nearest 4 pixel boundary. In general, width
hinting is performed before centering. Below are a few
examples of centering.

Widthps = 5.73, Center = 4.3

(EVEN) Center — 4.0 (deltaenser = —0.3)
Widthps = 8.90, Center = 11.6

{ODD) Center — 11.5 (deltacenter = —0.1)
Widthps = 3.8, Center = 7.65

(EVEN) Center — 8.0 (deltaenser = +0.35)
Widthps = 6.6875, Center = 9.3

(ODD) Center — 9.5 (deltacenser = +0.2)

The deltacenrer value is applied to both edges equal
essence shifting both edges in the same direction to
align both of them.

30

35

40

45

50

55

65

changed into the transformation matrix list that is used
to distort the outline data.

Referring to FIG. 4¢, assume that zones 1 and 3 are
stem areas to be adjusted to dimensions 1' and 3'. The
zones are specified by the following vstem commands in
standard Type 1 font format:

200 100 vstem 500 100 vstem (a vstem beginning at unit
200, delta 100 units to the
next edge, then a vstem
beginning at unit 500, with
delta of 100 units).

The device space transformation shall be, for exam-
ple, a scale factor of 0.08333, which corresponds to a 10
point character on a 600 dpi raster device. The edge
pairs become:

[DS Widthps
{200, 300] [16.667, 25.0] [8.333]
{500, 600] (41.667, 50.0] [8.333]

The first step is to adjust the width of each stem.
Since the value 8.333 is covered by width adjacent rule
4, above:

8.333—7.900 (deltayidy=—0.433)

the deltayigm is apportioned to the stem edges as fol-
lows:

Zone 1
16.667 — (—0.433/2) = 16.667 + 0.217 = 16.883
25.0 + (—0.433/2) = 24995 — 0.217 = 24.783

Zone 3
41.667 — (—0.433/2) = 41.667 -+ 0.217 = 41.883
50.0 + (—0.433/2) = 50.9 — 0.217 = 49.783

The width of 7.900 rounds up to 8.0, an even number.
The current center of the stems are 20.833 for zone 1
and 45.833 for zone 3. Stems with an even width are
moved to the nearest pixel boundary, thus:

35,301,267

15
20.833-21.0 (deltacenser=+0.167)

45.833—46.0 (deltacenser=30 0.167)

Since repositioning the center is accomplished by
shifting both edges by the same amount, add the delta,.
enter value to both edges of the zone:

Zone 1
16.883 + +0.167 = 17.050
24.783 4+ 4-0.167 = 24.95

Zone 3
41.883 + +0.167 = 42.050
49.783 + 4-0.167 = 49.950

This completes hinting the stem. The final locations
of the stem edges are the DS’ coordinates. These coor-
dinates are the final hinted position of the stem. To
create the transformation matrices that will distort the
outline data, such that the character space coordinates
will map to the new hinted device space coordinate
plan, all the manipulated edges and the amount of dis-
tortion incurred in the hinting are listed.

For Scale factor = 0.0833
Zone Cs DS © D§’ net deltapn,s
1 200 16.667 17.050 +0.383
2 300 25.0 24.950 —0.050
3 500 41.667 42.050 +0.383
4 600 50.0 49.950 —0.050

This gives 4 edges (200, 300, 500, 600) and 5 zones
(<200, 200300, 300—500, 500—600, >600). The
equatijons follow the format, equivalent to substituting
Equation 4 into Equation 3:

X[Z}=Cp*x+K
to construct matrix lists:

zone 0 (x < 200)
Cre = Sx = 0.0833
K = deltaDS'[0] = 0

zone 1 (200 < x < 300)

_ (24950 — 17.050)
Cre = 600 = 200) = 0.078125
K = 17.050 — 0.078125 * 200 = 1.250

zone 2 (300 < x < 500)
(42.05 — 24.950) _
Cr = G0 =300 = 0.0855
K = 24.950 — 0.0855 * 300 = —0.70

zone 3 (500 < x < 600)
(4995 — 4205 _

©0 —500) ~ = 0.07900
K = 42.05 — 0.07900 * 500 = 2.550

Cr=

zone 4 (600 < x)
Cf: = 0.0833
K = deltaDS’[4] = —0.0500

Note that the boundary zones 0 and 4 are calculated
differently. Since there are no adjustments to these
regions the scale factor should be unchanged. However
it may be necessary to compensate for any shift in an
edge shared with an adjacent zone. This is accom-
plished by introducing a shift equal to the difference
between the DS edge position and the DS’ edge posi-
tion.

5

10

15

20

25

30

35

45

50

55

65

16
FRC Hinting
" The basic mechanisms for interpreting hints and gen-
erating the matrices list explained above are imple-
mented in the FRC using the specialized hardware
clements. These allow the FRC to vastly outperform
software or general purpose processing devices. The

following commands use and return the following pa-
rameters: :

WIDTH fWidthps, lower Bnd, upper Bnd, fError,,

The WIDTH command implements the stem width
adjustment necessary for the first step of hinting a stem.
The variable fWidthps contains the unhinted device
space width of the stem. The IowerBnd and upperBnd
are the threshold constants (in the above example, 0.625
and 0.900, respectively). fErrory, is provided to hold the
deviation result of the WIDTH command.

CENTER fWidthps, fCenterps, fERror,

The CENTER command implements the centering
operation performed in the second step of hinting a
stem. The fWidthps variable provides the hinted width
of the stem in device space so that the even/oddness of
the stem can be determined. The variable fCenterps is
the unhinted, device space center of the stem. fError,
will hold the adjustment that is to be made to the center
point for proper edge positioning.

More Hinting

The description to this point covers a method for
distorting contour data points using a transformation
matrix list, and using this method for stem hinting. Al-
most any distortion to the contour data is possible using
transformation lists. The methods outlined above show
how the sub-pixel manipulations of stem hinting can be
transformed into a list of transformation matrices which
produce the desired hinting results. Essentially any
desired manipulation of the device space coordinate
data can be effected through the use of matrices lists.

Character hinting can be used not only to fix stems
but also for positioning stems to control the white space
or gaps between stems (known as counters) or to adjust
the height and/or width of the character body to con-
form with the rendering of other characters in the font
at a particular size or range of sizes. Device space ma-
nipulation after the stem hinting operation can be used
to achieve these goals. Two major hinting schemes
useful in achieving these goals use BlueValues and
FamilyBlues, as described in sections 5.2 and 5.5 et seq.
of the BLACK BOOK.

Height Control

Subtleties of font details may not be displayable
below certain point sizes. At such sizes it may be neces-
sary to homogenize specific features of a font. Heights
of characters (such as the height of an ‘e’ and ‘0’) may be
slightly different in a full sized character yet indistin-
guishable at small sizes so the heights of such characters
can be constrained at smaller sizes. The BlueValue]]
and OtherBlues|] arrays in the Type 1 font dictionary
provide information for detecting when these opera-
tions may be required and what height the characters
should conform to. When appropriate, stem edges are
adjusted via deltapeign: (analogous to deltaygm, de-
scribed above) in creating the transformation matrices.

5,301,267

17
Height control is performed before stem hinting to
enable comparison of unhinted device space heights.

Counter Control -

At times it is necessary not only to control the size of $

stems, but also the spacing between stems (the count-
ers). Both the prior art method and the current method
use two types of correction to control counters: stem
spacing and global coloring.

Stem spacing uses the vstem3 and hstem3 commands
to adjust characters with three stem counters (such as
vstems in a lowercase m). First the stems are hinted in
the normal manner, then each counter is compared with
its pre-hinted width. The counter closest to the “ideal”
width becomes the control counter and the stems
bounding the control counter are not changed. The
other counter is modified by moving both edges of
remaining stem, which is the outermost stem adjacent to
the counter to be modified. Moving both edges of the
outermost stem maintains the hinted stem width.

Global coloring provides 4 more exhaustive method
of stem and counter control. To facilitate the recogni-
tion of counters (and to prioritize their importance),
special data which specifies stem paths is included in a
Type 1 font program. A stem path is a sequence of stems
from which the counters between the stems are to be
controlled. A character can have many stem paths, and
cach stem path can have many stems. The presentation
of the stem path data infers a hierarchy, that is, the first
stem path is considered the most important, with subse-
quent stem paths being of lesser importance. A method
of global coloring is described below in text, then in
pseudocode.

At times it may be necessary to limit the amount of 3
allowed distortion in order to maintain other character
features such as overall width, height, etc. This is some-
times referred to as a “pixel budget.” When only stems
are being controlled, distortions can be compensated for
in the counters. Controlling both stems and counters
may leave no compensation zones, in which case it is
preferable to control only stems. Control over counters
must therefore take into account any stem hinting plus
the overall distortion to fixed character parameters.

The method of adjusting counters is analogous to
other hinting methods so far described: counter sizes are
adjusted using device space pixel manipulation of stem
edges. When a counter is expanded or contracted, all
the stems above or below it must be shifted. The actual
method used to determine how to adjust counters and
how to prioritize adjustments can be complex. Basi-
cally, it utilizes a three step process, grouping, regroup-
ing and adjusting.

First, one identifies groups of counters that fall within
some threshold. of each other’s size. Each counter is
tentatively set in a group and averaged and rounded to
a common, integer size. Counter order is readily deter-
mined from the stem path. Counters are grouped geo-
graphically, considering counters in order as a potential

1

2

4

5

10

5

5

30

5

18

The regrouping step apportions any required size
adjustments among a group of counters. After grouping
and adjusting counters, if the overall size of the charac-
ter body would be distorted too much, groups can be
regrouped and size adjustments reapportioned to mini-
mize size distortions while trying to maximize compli-
ance of counters with global coloring hints. Groups
then are identified that result in adjustments that fall
within distortion thresholds for a given character. Some
objects may have a nondistortion threshold, sometimes
referred to as the expansion factor. Characters of a size
greater than this threshold should not have counters
adjusted.

Stem edges are repositioned as needed to achieve the
desired counter size. The resulting new set of “shifts”,
beyond the shifts for hinting the stems, is used to gener-
ate the list of matrices.

Prior to controlling the counters, the stems must be
hinted. The data specifying counters is expressed as a
series of stems (the stem paths). These stems are hinted
in the standard manner (Width, Centering), then the
counters between the stems are adjusted. Each reposi-
tioned stem is stored in the resident StemList memory
and marked with a “locked” flag. Subsequent hstem/v-
stem commands that affect a stem currently in the
StemList need not be hinted, ensuring that counter
control is properly reflected on all subsequent stem
renderings.

One implementation of these steps is set out in the
following pseudocode.

PseudoProcedure GlobalColor
read PathCounter{i = 0 to Max] from hints or memory
fori = 0 to Max
Calculate width adjustments
Calculate center adjustments
next i :
PixelBudget = Ef * PathLengthDS' #Ef = Expansion factor

- (e.g. 0.75)

40

5

50

5

group, but not including a non-adjacent counter even if 60

identical in size to a counter in the current group. By
traversing each stem path in order, the most important
counters can be considered in groups and in hierarchical
priority levels. The total dimension of all counters,
using the group widths, is calculated and compared to
the space available, generally within a predetermined
threshold. The threshold may vary with the scaled
point size.

6

5

#PathLengthDS’ = Size of Counter Path
j=k=0
fori = 0to Max # Collect CounterGroup]j]
GroupWidth[j] = WidthOfCounter[i)
GroupMin[j] = GroupMax[j] = WidthOfCounter(i]
#Initialize
if WidthOfCounter[i] —~ GroupWidthl[j)
AllowedWidthVariation
if (WidthOfCounter[i] < GroupMin(j])
GroupMin[j] = WidthOfCounter[i]
if (WidthOfCounter[i} > GroupMax[j])
GroupMax[j] = WidthOfCounter[i]
CounterGroup [j, k] = i #compile array of stems in

<

group
else
Calculate the pseudo-mean of the group
GroupWidth{j} = (GroupMin[i] + GroupMax[j]) / 2
JMax = j
i=i+Lk=0
next i
CounterSum = 0
while CounterSum — PixelBudget = Tolerance
adjust counters as needed to set total to PixelBudget
for j = 0 to JMax
#calculate CounterSum = sum of all adjusted counter
widths
CounterSum = CounterSum +GroupWidth[j]*size
(CounterGroup [j, k])
next j
if CounterSum > PixelBudget, Sign = —1; else Sign = +1
#readjust GroupWidth[j}'s, starting with maximum value
for j = j to JMax
GroupWidth[j] = GroupWidth[j] + Sign
#Groups of counters can have different thresholds
of allowable dimensions
Calculate CounterSum

If CounterSum — PixelBudget = Tolerance,

5,301,267

19

-continued

next j, restarting loop if necessary to further
decrement GroupWidths :
else regroup : subdivide largest group and collect

counter groups again 5

#CounterSum is within Tolerance of PixelBudget,
calculate transformation matrix using final counter
width values

The current method of counter control is an improve-
ment over the global coloring used in the ATM soft-
ware renderer. The ATM software method groups
counters non-geographically, that is, a “group” of
counters need not be sequential but can be spread
throughout the character body. The current method
implements a geographical grouping of counter data.
For fonts such as Kanji, geographical counter grouping
gives a more desirous result, since counter groups also
become visual groups (that is, a group of counters that
are close together). One method of counter control is
described in U.S. Pat. No. 5,050,103, entitled “Method
for Displaying Kanji Characters”, assigned to Adobe.

Another difference between the two methods is the
current method of calculating group boundaries and
average counter size. Counters are grouped until the
difference between two sequential counters is greater
than a certain threshold. At this point the average
counter size for the group is calculated by taking the
average of the smallest and largest counter in the group.
The calculation of this difference is necessary to mini-
mize the processing time required for counter control
and the complexity of the method. The methods for
performing adjustments (i.e. splitting groups, pixel bud-
geting, etc.) are very similar and only differ in methods
of implementation.

EXAMPLE

Referring to FIGS. 6z and 7, outlines 121 and 133
show a Helvetica Medium uppercase ‘P’ in unhinted DS
and in hinted, then overlapped DS, respectively. The
example which follows assumes a 1000 1000 CS di-
mension, scaled to approximately 5.9 point at 300 dpi
resolution. The drawings include a serif, the small, gen-
erally horizontal feature including line segments 131
and 132, for purposes of illustrating certain aspects of
the current invention, but the following example per-
tains to the original character, with no serif.

Type 1 format hint data:
20-21 hstem 303 83 hstem 635 83 hstem 0 97 vstem 436
100 vstem

Referring to FIG. 64, 0 97 vstem is vertical stem 122,
436 100 vstem is vertical stem 124, 303 83 hstem is hori-
zontal stem 127 and 635 83 hstem is horizontal stem 125.

10

15

20

25

30

35

45

50

20

Creation of the transformation list:
Horizontal

zone 0: y < —1 (below the character baseline)
Cfe—y = Sy = 0.0245833
K[0] = deltaDS[0] = 0

zonel -1 <y<20

Cre—y = (0.8125 — 0.1875)/(20 — (—1)) = 0.02976
K[1] = 0.1875 — (0.02976 * —1) = 0.2172

{etc.} .

zone 5: 635 < y < 718
Cre—y = (17.45 — 15.55)/(718 ~ 635) = 0.02289
K[5] = 15.55 — (~0.02289 * 635) = +1.01374

.zone 6: y > 718
Cre—y = Sy = 0.0245833
K[6] = deltaDS'[n} = -0.2008

The complete values for horizontal and vertical
Cfe—y, Cro—x and K are:

" Horizontal

Zone CS DS DS NetDelta Cfo-y K

0 00245833 0

1 -1 —0025 0.1875 02121 00297643 02172
2 2 04917 0.81252 03209 00238073 0.3364
3 303 74487 7.54999 0.101253 0.0228917 0.6138
4 386 94892 9.45001 —0.03915 00244979 = —0.0062
5 635 1561 1555 —00604 00228917 101374
6 718 17651 1745 —02008 00245833 —0.2008
Venical_

Zone CS DS DS NetDelta Cfo-x K

0024583 0.

1 0 0 0.05001 0.05 0.019587 005

2 97 2.38458 1.94999 —0.4 0026844 -0.654
3 43 107183 1105 033 0.019 2.7659
4 536 131766 1295 —02 0024583 —0.227

Bezier and Stack Machine
Background

As is well known in the art, a line segment is repre-
sented by 2 points each with an x axis and y axis compo-
nent. For purposes of this disclosure, the origin is desig-
nated Po (the “current” point) and the destination point
is designated P3. The distance (delta) between the points
is defined by P3—Pg. For line and curve equations and
algorithms in general, see William M. Newman and
Robert F. Sproull, PRINCIPLES OF INTERAC-
TIVE COMPUTER GRAPHICS (second edition),
McGraw-Hill, New York. pp. 309-31, (1979), incorpo-
rated herein by reference.

As illustrated in FIGS. 84, 85 and 9, a cubic Bezier
curve is represented by four points, designated for pur-
poses of this disclosure as Pg, Py, P2and P3, each with an

Hinting data: (Note: hinted edge positions are for
centerwidth adjustments only)

(e DS Widthps Centerps deltayigy, deltacenser DS’

Horizontal Edges

(~1,20) (—0.02458, 0.51625 0.2335 +0.1088 402665 (0.1675, 0.8125)
0.492)

(303, 386) (7.45, 9.49) 2.0404 8.47 —0.1404 400311 (7.55, 9.45)

(635, 718) (15.61, 17.65) 2.0404 16.63 —0.1404 —0.1306 (15.55, 17.45)

Vertical Edges

.97 (0, 2.38458) 2.3485 1.192 —0.4846 —0.19229 (0.05, 1.950)

(436, 536) (10.7183, 13.17) 2.45833 11.94415 —0.5583 +0.05252 (11.05, 12.95)

5,301,267

21

x axis and y axis component. Each of these points serves
a function in defining a Bezier curve and will be re-
ferred to in the generic sense in this specification. At
least two of the four points, origin Pgand destination P3,
are endpoints which must lic on the curve. The other
two points, P; and P, are control points. The position
of control points P and P; in relation to Py and P;
determines the shape of the curve. When the control
points are sufficiently close to the endpoints or to the
Bezier curve, the Bezier curve can be approximated as
a straight line with origin Pg and destination P3. FIGS.
8 and 9 illustrate several Bezier curves. Referring to
FIGS. 84, 8b and 9, origin endpoints Pp (201, 205 and
209) and respective destination endpoints P3 (204, 208
and 212) lic at the ends of their respective curves, and
control points P; (202, 206 and 210) and P> (203, 207 and
211) lie outside of and determine the shape of their
respective curves. See generally Brian A. Barsky, Rich-
ard H. Bartels, and John C. Beatty, AN INTRODUC-
TION TO SPLINES FOR USE IN COMPUTER
GRAPHICS AND GEOMETRIC MODELING,
Morgan Kaufmann Publishers, Inc., Los Altos, Calif.
Pp- 211-45 (1987), incorporated herein by reference.

Subdivision is a known method used for reducing a
Bezier curve to a series of line segments, thus approxi-
mating the curve by one or more line segments. Mid-
point subdivision divides the original Bezier into two
smaller Bezier curves. Each of the two smaller Bezier
curves may be subdivided again, producing even
smaller Bezier curves. Every subdivision moves the
control points P; and P; closer to the actual curve.
Eventually, the contro! points will converge and lie on
the curve (as a single dot), or be close enough to the
curve so that the curve may be approximated by a
straight line.

A flatness test is a method for determining if the
Bezier curve is sufficiently small so that the curve may
be approximated by a straight line. Typical prior art
tests use the distance formula to measure the distance of
control points P; and P; in relation to both points Pgpand
Pi. Although a flatness test is not necessary, since a
Bezier curve could be reduced to a single dot, it is gen-
erally faster to approximate the Bezier curve with a
straight line when it has become sufficiently small in
order to end the recursive subdivision process as soon as
possible.

Referring to FIG. 9, subdividing the Bezier curve
defined by points P, P;, P2 and P3 yields two smaller
Bezier curves, the first with endpoints designated Ao,
A3, and the second with end-points designated Bg and
Bj, and respective control points Aj, A, and B, B,.
The following is the general formula for midpoint sub-
division of a cubic Bezier:

Ao=Fp

A1=3(Po+Py)
Ar=3(Po+2P+ Py)
A3=§(Py+3P;+3Py+ P3)
Bo={(Po+3P1+3P2+Fy)
By=4(P1+2P+P3)
Bai(Pa+Py)

By=P3

10

15

25

30

35

22

FIG. 9 illustrates a subdivided Bezier curve with
endpoints 201 and 204, the first division at midpoint 213
(destination A3 and also origin Bg). The resulting two
smaller curves have endpoints and Apand A3 and end-
points B and B;. One method of dividing at midpoint
219 (destination point G3 and origin Ho) and the result-
ing curve with endpoints and control points Go-G3
(201, 220, 221 and 219).

Implementation

Referring to FIG. 10, Bezier and stack machine 22 is
comprised of Subdivision and Flatness Test Datapath
222, Bezier Reduction state machine 223 and Bezier
Stack Machine 224. Bezier and stack machine 22 ac-
cepts a set of scaled coordinate points as input from
micromachine 21 (FIG. 2), processes the data based on
the graphic operation (line segment or Bezier curve),
and outputs the delta x and delta y value as a vector for
a line segment or a series of delta x and delta y values for
a Bezier curve to Cscan unit 23. Bezier and stack ma-
chine 22 is composed of Bezier Unit and Bezier reduc-
tion state machine 223, which in turn includes a Bezier
X axis unit and a Bezier Y axis unit, and Bezier stack
machine 224, which in turn includes a stacker and an
unstacker.

The Bezier X axis unit and the Bezier Y axis unit in
223 execute in parallel. For convenience, the subse-
quent discussion refers to the abbreviated name Bezier
unit 223 where the operations are identical for both the
Bezier X and Y axis Units.

Bezier unit 223 processes input consisting of line seg-
ments by the one step operation of subtracting the cur-
rent point (Pg) from the destination point (P3), then
passing the resulting delta value, essentially a vector, to
Cscan unit 23 (FIG. 2). Bezier unit 223 can then accept
another job.

Processing input consisting of a Bezier curve is more
complex. Referring to FIGS. 10, 114, 115 and 12 and

40 using the method outlined in those figures, Bezier unit

45

$5

65

223 initiates the multi-step operations of the midpoint
subdivision and flatness test. The midpoint subdivision
and flatness test implemented in Bezier unit 223 has
been optimized for hardware implementation, Both of
these tasks are performed in parallel, and the math has
been reduced to adds, subtracts, and shifts (power-of-
two multiply and divide). Because the tests of subdivi-
sion and flatness are executed in parallel, the following
decision is made at the end of the subdivision and flat-
ness test as to the next operation:

If the Bezier curve has passed the flatness test in both
the x and y axis, the results from the subdivision are
ignored and the Bezier curve is considered to be ap-
proximated by a straight line. Delta x and delta y values
are passed to Cscan unit 23 as XLineData and
YLineData. At this point Bezier and stack machine 22
checks to see if any Bezier control points have been
stacked as a result of a prior subdivision. If the stack is
not empty, the unstacker unit unstacks the Bezier data,
and the subdivision and flatness test operations are per-
formed again. If the stack is empty, Bezier and stack
machine 22 has finished processing the original Bezier
curve and waits for micromachine 21 (FIG. 2) to pro-
vide new data.

If the Bezier curve fails the flatness test in one or both
axes, the results from the subdivision are used and the
Bezier is divided into two smaller Bezier curves (P’ and
P” or A and B in FIG. 9). Still referring to FIG. 10,

5,301,267

23

because Bezier unit 223 only processes one Bezier curve
at a time, the second of the two smaller Bezier curves
(P"”) is written to a stack by Bezier stack machine 224.
To conserve space, the stacked points are normalized
(Po" is subtracted out from other points). This allows stacking only three
points in each oxis (P1”, P" and P3") instead of four points;
Po” is zero. With the second Bezier curve stacked,
Bezier unit 223 is ready to execute the subdivision and
flatness test of the first of the two smaller Bezier curves
).

To save space and to accommodate a finite stack area,
the number of elements on the stack is set to a maxi-
mum. In the current co-processor implementation, the
stack depth is set at sixteen (384 bytes). If a Bezier curve
fails the flatness test and the stack is full, the Bezier
curve is treated as though it passed the flatness test and
is thus approximated by a line segment.

The prior art midpoint subdivision method has been
optimized for use by the FRC as described below. Note
that point Py is set equal to zero points P1-P3 have been
normalized by reference to Pg, which simplifies some of
the math. Division by two (a power-of-two divide) is
easily implemented in hardware as a single downshift
(notated as >).

TEMP={(P\+P))=((P1+ F2) >1)
Ag=FPo=0

Ay=1(Po+P1)=§(P1)=(P >1)
A2=4(A)+ TEMP)=((4}+ TEMP) >1)
A3=Bo=4A2+B1)=((42+B1)>1)
By=¥(By+ TEMP)=((B2+TEMP)>1)
By=§(Py+FP3)=((Py+P3)>1)

Bi=P;

The flatness test in the FRC is optimized for hard-
ware implementation. The test requires only simple
adds and shifts (power-of-two multiply and divide) as
opposed to a distance formula requiring non-power-of-
two multiplies and square root operations. Referring to
FIG. 9, the flatness test evaluates the position of control
points P and P, (202 and 203) in relation to destination
endpoint 204 (P3). When the normalized coordinate of
202 is 4 the normalized coordinate of 204 (plus a flatness
factor) and the normalized coordinate of 203 is § the
normalized coordinate of 204 (plus a flatness factor), the
Bezier curve is considered flat.

FlatCy=FF—ABS(P;—(3*Py))=F-
F—ABS(Ps—((Pi<1)+Fy))

FlatCy=FF—ABS(P3—(3/2%Py))=F-
F—ABS(P3—((F2>1)+P2)

where ABS is the Absolute Value function and FF is a
FlatnessFactor (tolerance) passed to Bezier and stack
machine 22 by micromachine 21.

Referring to FIG. 12, the following steps constitute
midpoint subdivision and the flatness test of Bezier
curve P to give two subdivided curves:

Step 1

Normalize Points, with reference to Pg. RP, is a tem-
porary point.

5

10

20

25

30

35

40

45

55

60

65

24
RP3=P3—Py
RPy=P3~Py
RP\ =P —PFy
RPy=0
Step 2

Stage 1 of subdivision and flatness test.
TEMP,=((RP)+RP))> i)
BaRPy+RP;3
Bi=RPy
A=(RP >1)
A)=RPg
TEMPc=((RPy<1)+RP,

TEMPp=(RP,>1)+RPy)

Step 3
Stage 2 of subdivision and flatness test.

Bi((TEMPy+ By)>1)
A(TEMP\+A1)>1)
TEMPc=RPy—TEMPc

TEMPp=RP3— TEMPp

Step 4
Stage 3 of subdivision and flatness test.

A3=Bo=((B1+B2)>1)
FlatCy = FlatnessFactor+-/— TEMP¢

FlatCy=FlatnessFactor+/—~ TEMPp

In determining FlatC;, if TEMPc is less than zero,
then addition is performed. If TEMPc is zero or
greater, then a subtraction is performed. The same ap-
plies to TEMPp. This is the equivalent of having:

FlatCy=FlatnessFactor~ABS(TEMPC)

FlatCy = FlatnessFactor— ABS(TEMPp)

Thus in four steps (clock cycles) it can be determined
if the Bezier curve is flat or requires further subdivisions
using the two new Bezier curves. The need for four
steps is based on using Bezier units with four adder/sub-
tractor units. Increasing the number of adder/subtrac-
tor units would decrease the number of steps required to
execute the subdivision and flatness test. Conversely,
decreasing the number of adder/subtractor units would
increase the number of steps required to execute the
subdivision and flatness test. One skilled in the art will
recognize how to modify the present teaching to imple-
ment the method in other configurations.

5,301,267

25
Based on the above method, flatness is determined if
both FlatC; and FlatC; are greater than zero. If either is
negative or zero, the Bezier curve has failed the flatness
test and must be subdivided further. Similar tests are
performed in the Y dimension and all four flatness tests
must be satisfied before the curve is considered flat.

Cscan Unit 23

Referring to FIG. 13, Cscan unit 23 combines the
outline of a character, which is a series of connected
line segments in the form of vectors, with fill logic to
select which pixels will be displayed in the character bit
map. Cscan unit 23 includes three principal units, line
generator 301, cross generator 302 and structure (Struct
CSCAN1) address and data generator (SADG) 303.

Line generator 301 converts a line described by the
end points (0,0) and XLineData, YLineData) into a
series of mid-line cross events. Cross generator 302
converts the series of identified mid-line crosses into a
series of mid-line crosses with the exact location of the
cross specified. SADG 303 converts the mid-line
crosses and location specifications passed to it by cross
generator 302 into a series of memory accesses that
form the CScan Tile Data Structure. The CScan Tile
Data Structure is subsequently processed by the
CScan2 fill process to produce the bit map that forms
the character.

Line Generator 301

Line generator 301 receives descriptions of lines from
Bezier and stack machine 22 (FIG. 2). Each incoming
line is normalized, described simply by its relative end-
ing point (XLineData on input 304, YLineData on input
305). XLineData and YLineData are the X and Y coor-
dinates of point P3 passed from Bezier and stack ma-
chine 22. Additionally, Bezier and stack machine 22
passes a signal on line 306 that specifies whether the line
is to be rendered black (PenState=DDOWN) or white
(PenState=UP). White lines are used to connect bodies
made up of closed paths of black lines. The PenState
information is not used by line generator 301 and is
merely passed on to cross generator 302.

The (XLineData, YLineData) coordinate is pres-
ented in the form of a 24-bit signed number with a preci-
sion of [16.8] (meaning the coordinate can range from
—32768 to 32767, a 15 bit signed integer with a frac-
tional component resolved to 1/256th, 8 fraction bits, of
a device coordinate). The notation [i.ff] indicates that
the number is a signed i bit number with i integer bits
and f¥ fractional bits. Line generator 301 processes this
data in a two step process using DDAs which are well
known in the art:

i) Scale the data and loop count so that the increment,
Dp, traveled during each loop (each clock cycle) is
between § and 1 device space coordinate in magni-
tude.

This step happens only once per line.

ii) Process an increment, Dp, with the line generating
DDAs (described below) and present. DxDp, DyDp,
XCross, YCross, XFract, and YFract to cross genera-
tor 302 if necessary. This process happens many
times, depending on the magnitude of the line being
generated.

Typical prior art methods divide a line into a fixed
number of segments, requiring the same number of
divisions and calculations, no matter whether a line
crosses many pixels or only a fraction of one. The pres-
ent method of scaling guarantees that a cross or absence

20

25

30

35

40

45

50

55

65

26
of a cross within the line segment will be identified
within a maximum of two iterations of line generator
301, resulting in faster processing.

Line Generating DDAs

Digital differential analyzers (DDAs) have been used
for many years to convert a differential equation for a
line or curve into incremental units, for example, a bit
map. See generally, William M. Newman and Robert F.
Sproull (1979), PRINCIPLES OF INTERACTIVE
COMPUTER GRAPHICS (second edition), McGraw-
Hill, New York. pp. 22-28, incorporated herein by
reference.

Referring to FIG. 14, line generator 301 includes line
generating DDA 310 and 311 for X and Y components,
respectively, and XFract register 314 and YFract regis-
ter 315 for accumulating and holding cumulative error
terms. In this configuration, the XLineData becomes
the differential variable DxDp where “p” is the para-
metric variable that will be incremented as the DDA
processes the line. Similarly, YLineData becomes
DyDp. Since the weighting of the DxDp and DyDp
variables are [16.8] and the weighting of the registered
fractional values XFract and YFract are [1.23], a loop
count of 215 will process the entire line. Each iteration
of the loop is processed in a single clock cycle. After
each iteration, the fractional values XFract and YFract
represent the sub-pixel location of the end of that itera-
tion, and the XCross and YCross variables represent the
occurrence and sign of a mid-line cross in the X and/or
Y directions, respectively. This information as well as
DxDp, DyDp, and PenState are passed to cross genera-
tor 302.

Scaling Circuit

It is desirable to process every line in a minimum
number of clock cycles so line generator 301 imple-
ments a data and loop count scaling circuit. In the pre-
ferred implementation, the maximum is set to 215,
which allows a 16 bit signed integer portion. The design
choice accommodates a line up to 32767 bits long,
which corresponds to an approximately 9.1 inch line at
3600 dpi resolution. Referring to FIG. 14, prior to load-
ing the XLineData and YLineData into the DxDp reg-
ister 312 and DyDp register 313, a shifting circuit (not
shown) shifts XLineData and YLineData up together as
much as possible without losing significant data, but not
more than 15 bits, and shifts the loop count down by the
same amount. In other words, leading zeros are re-
moved from the larger of XLineData and YLineData.
This assures that each iteration processed by DDAs 310
and 311 will evaluate a line segment of somewhere
between § and 1 device space coordinate units. This is
optimal from a performance perspective because each
iteration produces no more than one XCross and one
YCross, while guaranteeing a cross will be identified
within a maximum of two iterations.

Most line segments from Bezier and stack machine 22
(FIG. 2) will be greater than about § pixel in length,
since the flatness test is based on the dimension of the
pixels. Some line segments, however, may be quite
short, for example, where the original character con-
tains detailed, linear or angular features such as the serif
composed in part of edges 131 and 132 in FIG. 6a. If a
line segment does not include any crosses, the scaling
unit will not subdivide the segment at all and line gener-
ator 301 (FIG. 13) will determine in a single iteration
that there is no cross. In such a case, XFract and YFract

5,301,267

27
values are updated to reflect the current position of the
last line segment, and no cross is passed to cross genera-
tor 302 (FIG. 13).

Cross Generator 302

Referring to FIG. 13, at essentially each iteration and
for each dimension, line generator 301 passes a signal to
cross generator 302, indicating that a midline cross
occurred, along with a signal indicating the direction

(positive or negative) of the cross, the DnDp value of 10

the line being generated, and the NFract fractional pixel
value of the end of the line segment associated with the
iteration, where n=x or y and N=X or Y. Pixels are
subdivided into a number of subunits, the exact number
being a design choice made considering higher resolu-
tion versus storage requirements. The current imple-
mentation utilizes eight subdivisions in each of x and y

15

dimensions. Cross generator 302 determines the exact

location of the cross (in each dimension) using a unique
sub-division method.

Referring to FIG. 154, short line vector 321 repre-
sents typical information passed from line generator 301
(FIG. 13). Given DxDp, DyDp, XFract, and YFract
from DDASs 310 and 311 (FIG. 14), cross generator 302
(FIG. 13) determines the zone (Z—N0—Z~N7) in
which cross point 322 actually occurs. This is accom-
plished using a subdivision method described by the
following pseudo-program:

Current XFract = XFract
Current YFract = YFract
Current DxDp = DxDp
Current DyDp = DyDp

Loop until desired resolution is obtained
NewDaDp = CurrentDxDp/2
NewDyDp = CurrentDyDp/2

NewXFract = CurrentXFract — NewDxDp
NewYFract = CurrentYFract — NewDyDp
CurrentDxDp = NewDzxDp
CurrentDyDp = NewDyDp

if (NewY(or X)Fract crosses back over Y (or X) midline)
CurrentYFract = CurrentYFract
CurrentXFract = CurrentXFract
else
CurrentYFract = NewYFract
CurrentXFract = NewXFract
zone = CurrentXFract (or CurrentYFract) truncated to
desired resolution

Line segment 321 is divided in half at 322.1, which
has crossed the X axis, so the lower portion is divided at
322.2. This follows a cross, so the intervening portion is
subdivided at 322.3. This did not result in a cross so the
subsequent divided segment is further divided at 322.4.
This gives a cross and the resolution is satisfactory so no
further subdivision is required. There is no XCross in
this segment but the values of XFract and YFract are
maintained as a starting point for the next line segment
to be processed.

Referring to FIG. 155, which includes the same zones
marked in FIG. 154, line vector 325 illustrates the oc-
currence of both an XCross at cross point 327 and a

20

25

30

35

45

50

55

YCross at cross point 326. An “XCross” is a crossing of 60

the vertical Y axis while travelling in an X direction. A
YCross crosses the horizontal X axis while travelling in
the Y direction. Cross generator 302 (FIG. 13) also
evaluates which midline cross happened first by exam-
ining the zone at which a particular midline is crossed
and seeing if the midline of the orthogonal direction has
yet been crossed. Since the XCross at cross point 327 in
zone Z-Y§ is closer to the origin of line vector 325, the

65

28
YCross at cross point 326 has not yet occurred, there-
fore the XCross happened first. Conversely, looking at
the YCross at cross point 326 in zone Z-X3, the XCross
has already occurred, therefore the YCross must have
happened after the XCross. The order of crosses is
stored.

Structure Address and Data Generator (SADG) 303

SADG 303 (FIG. 13) receives cross and location data
and builds a two dimensional data structure in a mem-
ory array that can later be used by the CScan2 process
to generate the object’s bit map. SADG 303 creates a
data structure, called the tile structure, with an X di-
mension, Y dimension, and Z dimension. SADG 303
stores, for x and y dimensions, whether there was a
cross. To maximize storage efficiency, if there are any
crosses adjacent to a given pixel, the x or y dimension,
polarity and zone of each cross in & variable depth struc-
ture, effectively in a Z dimension. The tile structure can
be of any desired dimension, typically equal to the
buffer capacity of the FRC. Each tile is divided into
zones, as illustrated in FIG. 15z and in FIG. 17.

Representative cross combinations (irrespective of
zones) are illustrated in FIG. 16. For each type of cross,
SADG 303 (FIG. 13) determines the appropriate X and
Y zone values to store in the Z dimension, including
direction and order of each cross. Line segment 321 in
tile cell A1 includes a Positive YCross and no other
crosses. The line segment in tile B1 includes a Negative
YCross. Line segment 54 includes a positive XYCross,
in the order X followed by Y. The line segment in tile
B2 includes a positive YXCross, where the YCross
precedes the XCross. Line segment 325 in tile A3 in-
cludes a negative XYCross.

FIG. 17 illustrates a tile containing pixel 332 and
shows two adjacent pixels having centers 333 and 334.
Each pixel is divided into zones, as illustrated in FIG.
18q, identified as zones Z-Y1, etc. In FIG. 17, these
zones in the illustrated tile are zones 337 (Z-X4) through
335 (Z-X3) and zones 340 (Z-Y4) through 338 (Z-Y3).
The addressing into the tile structure is managed by two
pointers, TOX (Tile Offset X) and TOY (Tile Offset Y),
which can reference fractional pixel values. These
pointers are initialized at the start of each new charac-
ter.

Referring to FIG. 17, the stored zones for pixel 331
are calculated with reference to its pixel center 332. The
zones can be considered at multiple resolutions. In a low
resolution mode, crosses are recorded as taking place
simply as a Y cross (any place along the midline be-
tween pixel center 332 and 333) and/or as an X cross
(any place along the midline between pixel centers 332
and 334). In a high resolution mode, Y crosses are re-
corded with the zone 335 (Z-X3), 336 (Z-X2), ..., 337
(Z-X4) and X crosses are recorded with corresponding
zones 338 (Z-Y3), 339 (Z-Y2), . . ., 340 (Z-Y4). The
zones are numbered as shown to facilitate other calcula-
tions. After a cross has been stored, the TOX and TOY
pointers are updated to reflect the end point of the line
vector just processed.

Overtracing

An important feature of SADG 303 (FIG. 13) is its
ability to handle curves that trace over themselves in
the same zone. For example, referring to FIG. 19, one
portion of the outline may cross in one direction be-
tween two pixels centers and another portion of the

5,301,267

29
outline may cross in another direction between the same
pixel centers. The crosses may be in different pixel sub-
divisions, for example, crosses 360 and 361 or crosses
364 and 365, or may be in the same subdivision, for
example, crosses 362 and 363. Ordinarily, no pixels need
to be filled since a center point cannot exist between
two such overlapping crosses. However, in order to
provide dropout and collision correction in the CScan2
process, Cscan unit 23 (FIG. 2) not only stores cross

events at particular zones, it also stores the parity of 10

crosses at that zone and the direction (positive or nega-
tive) of the last cross within that zone.

CScan2 Fill Process

The CScan2 fill process is responsible for reading the
Tile Structure after it has been generated by Cscan unit
23 (FIG. 2), and turns it into a bit map rendering of the
desired character or object. The result of the CScan2
fill process is the desired bit map of the character. This
bit map can be stored in memory 13B, can be used di-
rectly to display the character on a raster monitor, or
can be used to print the character on a raster printing
device (such as a laser printer).

The CScan2 fill process is best described by the
pseudo program given below:

For Y = minimumTOY to maximumTOY
For X = minimumTOX to maximumTOX
read Tile Structure (X,Y)
mapBit (X,Y) = evenOddFill (TileStructure(X,Y))
if (dropOutCollisionFlag)
gosub dropOutCollisionFixup
Next X
Next Y

Bit (X,Y) is mapped if evenOddFill is true. The func-
tion evenOddFill essentially permits traditional center
point fill for a character. In scanning a row (for
X=minimumTOX to maximumTOX), evenOddFill is
false until TileStructure(X,Y) contains a single X cross,
in which case evenOddFill is set true, changing “color”
by displaying the current and subsequent pixels until
TileStructure(X,Y) contains a second single X cross,
when evenOddFill is set false. In a typical scan for a
figure where the outline is defined in a counter-clock-
wise direction, the first X cross encountered in a row
should be of “downward” polarity. Subsequent crosses
should alternate polarity for a simple character. The
function evenOddFill will switch states each time a
single X cross is encountered. The function evenOdd-
Fill sets dropOutCollisionFlag when it identifies a drop-
out or collision (a collision is nothing more than a drop-
out of a white pixel), which can te detected when the
parity of the cross data between two pixel centers is
even and non-zero. Each row should contain an even
number of crosses so by the end of each row, evenOdd-
Fill should be faise. If there is more than one cross
between two pixel centers and parity is balanced, a
dropout flag is set. Parity may be unbalanced if there
are more crosses of one direction than the other, e.g.
two down and one up. The simplest treatment is to
change the pixel display state as for a single cross, but
set a dropout flag where it is needed.

The evenOddFill function can be implemented using
the circuit shown in FIG. 20. By XORing together lines
which contain the flag for each pixel zone indicating
whether a cross occurs, the number of flags set gives the
pixel color directly and also indicates whether there is a
dropout condition. Data[31:0] input comprises XCross

15

20

25

30

35

45

50

55

60

65

30

information for 8 zones on lines [0] through[7], YCross
information on lines [8] through [15], XCrossSign infor-
mation on lines [16] through [23] and YCrossSign infor-
mation on lines [24}-[31]. Bus 380 distributes the data
throughout the circuit. Lines 8 through 15 are serially
XOR'd through gates 382, 383 through 384 to test for
crosses. The YCross and YCrossSign data is NOR'd
through gate 387 then NAND'd through 388. The
XCross and XCross Sign information is combined using
gates 392 through 397 to set dropout tests.

If evenOddFill detects sequential crosses of the same
polarity, it can be set to change states for filled interiors,
or to remain unchanged for empty interiors. The func-
tion evenOddFill can track winding numbers to keep
track of cross polarities. See U.S. patent application Ser.
No. 388,336, discussed above, incorporated herein by
reference, for a discussion of winding numbers and their
applications.

Routine dropOutCollisionFixup

Because center point fill sets to black only pixels
whose centers are within the contour outline, and sets
to white those pixels whose centers are outside the
contour outline, dropout and collision conditions occur.
When the dropOutCollisionFlag is set, the following
rules are used:

First, determine which dimension is experiencing the
dropout. If the parity of crosses between a pixel center
and the pixel below it is even and non-zero, an XDrop-
out has occurred. If the parity of crosses between a pixel
center and the pixel to its left is even and non-zero, a
YDropout has occurred. In some instances, both X and
Y dropouts occur.

To fix the dropout condition, set one of the two pixels
(corresponding to the two pixel centers with the drop-
out condition between them) to black. Decide which
pixel to set black using the following rules, applying
each rule to XDropout, as described, then to YDropout,
by analogy, until a decision can be made.

1) Dual dropout rule—If there are dual dropouts, the
choice of dropout pixels must be properly phased.
Referring to FIGS. 18c and 18d, this is done by
choosing the pixels that fall below (or above, accord-
ing to convention, since the specific rule is not criti-
cal) the actual dropout crosses. YDropout fixup will
only be employed when there is no XDropout be-
tween the same pixel and the one below it. Also
XDropout fixup will only be employed when there is
no YDropout between the same pixel and the one to
its right. This will assure that the “clumps” of pixels
shown FIG. 184 do not occur.

2) Defining feature rule—When an XDropout condition
occurs, look to the left and right for pixels that were
set using normal center-point fill rules. If one is
found, such as pixel 342 next to feature 341 (FIG.
18b), determine which row of pixels it is in, and use
that row for the XDropout fix pixel.

3) Majority coverage rule—If no defining feature is
found or there is a defining feature both above and
below the dropout row, look to see which row is
covered by a majority of the contour. For feature 350
(FIG. 18q), it is the row of pixels below the dropout.

4) If none of the above rules apply, arbitrarily select
either pixel to set. The selection should be consistent,
¢.g. always the top pixel.

To fix a collision, apply analogous rules starting with
a dual collision rule to decide which pixel to set white.

5,301,267

31

A general description of the device and method of the
present invention as well as a preferred embodiment of
the present invention has been set forth above. One
skilled in the art will be able to practice variations in the
methods described and make modifications to the appa-
ratus described, all of which fall within the scope of the
teachings of this invention, which should only be lim-
ited as set forth in the claims which follow.

What is claimed is:

1. A method for displaying rasterized objects com-
prising:

accessing outline data from a computer memory or

storage medium, said outline data representing said

object in a first coordinate space,

deriving from said outline data representing said ob-

ject in a first coordinate space the corresponding
data representing said object in a second coordi-
nate space, said outline data in said first coordinate
space possessing regional relationship information
for each of a plurality of regions, including the
steps of:

(a) transforming said regional relationship informa-
tion into said second coordinate space using a
linear transformation;

(b) deriving from the transformed regional rela-
tionship information for each of the plurality of
regions a non-linear transformation matrix ex-
pressed as a plurality of piecewise linear trans-
formation matrices, one for each of the regions;

(c) applying said non-linear transformation matrix
to said outline data representing said object in
said first coordinate space to derive a second
representation of said object in said second coor-
dinate space; :

(d) converting said second representation of said
object to raster data describing said object in a
form to be displayed on a display device; and

(e) displaying said second representation of said
object on a raster device.

2. A method for rasterizing an object defined by out-
line data representing said object in a first coordinate
space containing regional relationship information,
comprising:

accessing said outline data from a computer memory

or storage medium;

scaling said regional relationship information in said

first coordinate space to derive scaled regional

relationship information in a second coordinate
space;

on a region-by-region basis, identifying a plurality of

points, each defined by a pair of coordinates of said

scaled regional relationship information within a

region in said second coordinate space, wherein

one of the two coordinates of such pair of coordi-
nates does not coincide with a predetermined coor-
dinate in said second coordinate space;

for each such point having a non-coinciding coordi-

nate, measuring in the units of said second coordi-

nate space the distance in said second coordinate
space between said one coordinate of such point
and said predetermined coordinate;

deriving from a plurality of distances measured for a

plurality of said points, a non-linear transformation

matrix approximated by a plurality of piecewise

linear transformation matrices; .

applying said non-linear transformation matrix to said

outline data of said object in said first coordinate

10

15

25

30

35

45

50

60

65

32
space to convert said outline data to said second
coordinate space;

rasterizing the converted outline data to drive a form

of said object to be displayed on a raster device;
and :

displaying the rasterized form of said object on a

raster device.

3. The method of claim 2 wherein said outline data
defines stems and counters in a character and wherein at
least two points are identified, a first point lying on one
of said stems and a second point lying on one of said
counters, further comprising:

applying said regional relationship information in said

second coordinate space to adjust the coordinates
said first point on one of said stems in said first
coordinate space before identifying said first point
in said second coordinate space, and

applying said regional relationship information in said

second coordinate space to adjust the coordinates
of said second point on one of said counters in said
first coordinate space before identifying said sec-
ond point in said second coordinate space.

4. The method of claim 2 wherein said outline data
contains information defining counters, further com-
prising

after accessing said outline data containing informa-

tion defining counters and prior to applying said
non-linear transformation matrix to said outline
data,

grouping said counters with any adjacent counters of

approximately similar height;

rounding the average height of each group of count-

ers to an integer value;

summing the total height of all counters as rounded,

if the total height exceeds or does not fill the available

space, adjusting the height of one or more of said
groups of counters by changing the height of a
group of counters and repeating this step with one
or more additional groups of counters until the
total height of the groups of counters fills the avail-
able space.

5. The method of claim 2 wherein said outline data
contains information defining counters, further com-
prising

after accessing said outline data containing informa-

tion defining counters and prior to applying said
non-linear transformation matrix to said outline
data,

grouping said counters with any adjacent counters of

approximately similar width;

rounding the average width of each group of count-

ers to an integer value;

summing the total width of all counters as rounded,

if the total width exceeds or does not fill the available

space, adjusting the width of one or more of said
groups of counters

by changing the width of a group of counters and

repeating this step with one or more additional
groups of counters until the total width of the
groups of counters fills the available space.

6. The method of claim 2 wherein said outline data
contains information defining counters, further com-
prising

after accessing said outline data containing informa-

tion defining counters and prior to applying said
non-linear transformation matrix to said outline
data,

5,301,267

33

grouping said counters with any adjacent counters of

approximately similar height;

rounding the average height of each group of count-

ers to an integer value;

summing the total height of all counters as rounded

and if the total height exceeds or does not fill the
available space, adjusting the height of one or more
of said groups of counters by dividing a group of
counters into smaller groups and rounding the
average size of each divided group and repeating
this step until the total height of the averaged
groups fills the available space. .

7. The method of claim 2 wherein said outline data
contains information defining counters, further com-
prising

after accessing said outline data containing informa-

tion defining counters and prior to applying said
non-linear transformation matrix to said outline
data,

grouping said counters with any adjacent counters of

approximately similar width;

rounding the average width of each group of count-

ers to an integer value;

summing the total width of all counters as rounded

and if the total width exceeds or does not fill the
available space, adjusting the width of one or more
of said groups of counters by dividing a group of
counters into smaller groups and rounding the
average size of each divided group and repeating
this step until the total width of the averaged
groups fills the available space.

10

20

25

30

8. Apparatus for displaying rasterized objects com-

prising:

means for accessing outline data from a computer
memory or storage medium, said outline data rep-
resenting said object in a first coordinate space,

means for deriving from said outline data represent-
ing said object in a first coordinate space the corre-
sponding data representing said object in a second
coordinate space, said outline data in said first co-
ordinate space including regional relationship data
to be maintained in said second coordinate space,
including:

(a) means for transforming said regional relation-
ship information into said second coordinate
space using a linear transformation;

(b) means for deriving a non-linear transformation
matrix expressed as a plurality of linear transfor-

45

55

65

34

mation matrices using the transformed regional
relationship information;

(c) means for applying said non-linear transforma-
tion matrix to said outline data representing said
object in said first coordinate space to derive a
second representation of said object in said sec-
ond coordinate space;

(d) means for converting said second representa-
tion of said object to raster data describing said
object for display; and

(¢) means for displaying said second representation
of said object on a raster device.

9. Apparatus for rasterizing an object defined by
outline data representing said object in a first coordinate
space containing regional relationship information,
comprising:

means for accessing said outline data from a com-

puter memory or storage medium;

means for scaling said regional relationship informa-

tion in said first coordinate space to derive scaled

regional relationship information in a second coor-
dinate space;

means for identifying a plurality of points, each de-

fined by a pair of coordinates of said scaled re-

gional relationship information in the second coor-
dinate space, wherein one of the two coordinates of

said pair of coordinates does not coincide with a

predetermined coordinate in said second coordi-

nate space;

for each such point, means for measuring in the units

of said second coordinate space the distance in said

second coordinate space between said one coordi-
nate of such point and said predetermined coordi-
nate;

means for deriving from a plurality of such measured

distances a non-linear transformation matrix ap-

proximated by a plurality of piecewise linear trans-
formation matrices;

means for applying said non-linear transformation

matrix to said outline data of said object in said first

coordinate space to convert said outline data to
said second coordinate space;

means for rasterizing the converted outline data to

derive a form of said object for display on a raster

device; and

means for displaying said rasterized form of said ob-

ject on a raster device.
* ® x * %

