Advanced Computer Design

AOS System User’s Manual

AOS System User's Manual

TABLE OF CONTENTS

SECTION PAGE
I INTRODUCTI ON [] L] L) L J * L] ® ® [] L] . - L L] L] Ld L] L] * L ® L 1
0 Scope of this Manual ¢« o« « o o o o o o o s o o o o o o 1

1 Notation and Terminology « « o o o o s o o o o o o o o 2

2 System 0rganizationN .« « o« o« o o o o ¢ o o o o o o o 3

3 Command and Data OVELIVIEW =« o ¢ o o o o o o o o o o o 4

0 Prompt Lines * * [] L] ® L[] L] L] L J *® * L L L] L4 L] L L] * 4

1 File Names L] L) [) [* [] * [] L L] L) L] L) L] L] . L[] L) L] * 4

2 Data Pr ompts L [] [] L] * L] * L [] ® L] L] [L] . L[] [] L] L 5

4 Key Commands L] L] * [* L] * [] [] ® L) * L] * L] L] L] L] L) [® 6

0 Accept and ESCAPe o « o o o o o o o o o o o o o o o 6

1l Console End Of File « o o o o o o o o o o o o o = @ 6

2 Cursor Movement « « o o o o ¢ o o o o o o o o o o o 6

3 User Interrupt Commands « o o o o o o ¢ ¢ o s o o o 6

0 blonitor Trap * [L] L] L] L] * [] * L] L L] L * L 2 * * [] 6

1 Stop and Start [] * [] [] L] [] * [] L] * L] L] L [] * L] [) 7

2 Console Output Flush ¢« ¢ ¢ ¢ o o o o o o ¢ o o o 7

3 Keyboard Type-ahead Fl Sh ¢ o o e o o e o o o o 7

4 Dl Sk Type L] L] [) L 4 [) L L J L L] L] L J L] L L J * L L] * * 8

II OPERATING SYSTEM [] Ld L] L] e ® L] [] . . L] L [4 L] L L) L L . L 9 |

0 Error Handling . « o o o o o o o o o « o o o o o o « 10
0 Execution Errors e ® ® ® e o o o ® o o o o o o o e 10
1 Stack OVerflow « « o o o o s o o o o o o = o o o o 11~
2 Floppy Disk ELrOrS o« o o o o o o o o o o o o o o o 12
3 Disk Swapping ® o o o e o o o o o o o e o e o o .o 13

1 File System * . L L] L J L] L] *® [] L 2 L J * L J L] . [] ° [[] * [14
O OVerVIew o« o o o o o o o o o o o o o o o o o « o o 14
1 Syntax Overview . « ¢ o ¢ o o o o o o o o. 6 o« o » 15
2 Physj-cal Units L J [] [] L] - L] L 4 L] L J [] 0 [] L L] L] e e . 16

0 Syntax OVELView . « o o o o o o o o o o o o o o 17
1 I/o DeVices * [] [L] [] £] [] L ‘. L 4 [[] * .'_,. . . L [] 18
0 Serial DeVices e © o o o o o o o o o e o o

1 Block-structured DevicesS . « « s o o o » o« o 18

3 L°glcal VOlumeS ‘o e ® [L [L [. o e [e e o . . 19
0O Syntax OVeIView « o o e« o o o o o o o o o o o o 20

1 Block-structured (Dlsk) Volumes « « o« o ¢ o & o 21

2 Disk Volume USAge o« o o o o o o o o o o o o o o 21

3 System VOlumes [2 * .. * L] L L J L J L] * [] L2 L ® e . 21

4 Prefixed VOlumeS @ e e o e e e e o o ° e o o o 22

5 DiSk Directories (L] L] L] L L ® L4 L] L] e e * * [] L] 22

0 Duplicate Directories . . o« o o o ¢ ¢ o o o 22

A0S System User's Manual

11 VQPERATING SYSTEM (continued)

1 F

4
5.
6
2 L

BsWw-=OWn &u»h)pac

ilé syétém (continﬁea)ﬁ

DlSk Flles e e, 0 o o o o _»o‘jv-,‘,o" e e o e o
0. . Syntax OVeIrView o« « o« e 0o s o o o o
‘1 File Attrlbutes e o o e e o s e
0 File Type o« o o . o o o o

0 File Type Asszgnment o o o o

1l UCSD Pascal FileS ¢ « ¢ ¢ o

.0, Text FileS o v o o o o o o

.1 Code FileS o« v o o o o o &

2 Data FileS & o « o o o o o &

3 Restrlctlons Imposed by Types

l File Date e o o o o . o o o
‘2 size and Lecatlon Attrlbutes o« o

2 File Suffixgs ., .\ .‘ L] L) L L] L] * L] *

3 File TitleS « o o o o o o &«

0 System File Titles . « « o o + &
1l Other Reserved Tltles e o o » =
2 User Flle Titles « . . e o o o
3, Tltles with Non—block-structured

e e ©® o o ¢ o o s o

Volume

4 File Length and File Length Specifiers

Syntax Speclflcatlon e o. e s o o o o o
File Conventions and Applications . .

0 File Name Prompt Conventions . . .

0 Input Pr ompts [] * * *® * L J L] ® L)

1l Output Prompts .« ¢ o« ¢ ¢ o ¢ o o

1 File Access from User Programs . .
ibrary System .« o« ¢ ¢ ¢ o o o o o ¢ o o
System Library « « o o o o o o o o o o
Intrinsics Library « « o« o o o o o o o
Program Library o« o o o « o o o o o o
User LiDrary o o o o o ¢ o ¢ o o o o o
Library Configuration Examples
ystem Conflguratlon e o o e o o o o o
Operating System Lzbrarles e o o o o
I/0 System Configuration . « ¢ « « ¢ &
Terminal Configuration « ¢ « o o o o+ &
System Shell e o o o o o
~Execution Error and Breakpoz nt Process
Performance Optlmlzatlons « o o o o o

ii

L] [] [] L] L] L]

* [] L] [] L] L] L] L] L] [L] L] * []

[] L] ® L] [] * L] * L] L] []

e o ¢ o o o e ¢ e o 0 e o o & &6 & & ¢ & o ¢ & o

e o o o o

Ui e o o o

e o ¢ o o e 6 ¢ o o o ¢ o o o

e o e o e o o

L] L] [] L] * L] * L] [) L] L] L] L] ° L]

® © e o o

e e o & e o

A0S System User's Manual

ITI OPERATING SYSTEM (continued)

4 Commands and Operation . . .

0
1

)

Bootstrapping the System . . .
The Work File o« o o o o o o o

0 Work File Manipulation .

1 Work File Effects on System
Syntax Errors and Editor Invocation

System State Flow Diagram . .

I1/0 Redirection Options- .=, .-

0 Execution Option Lists l."a
1 Output Redirection Options’ -
2 Input Redirection Options .,
3 T-File Options . . ¢« ¢ 4 &
4 Prefix Options . . «'% .« &*
5 Library Options . . . o & o’
6 System I/0O Redirection: .- i-
System Commands . o« o o o o o
0 Clear SCreen . « o o o o
1 C(Ompile e o o o o o o e ,,‘:
2 E(dit e o o o e s o o ; o e
3 F(ile e o o o o o o “o; ‘o‘i ."'i“‘.”
4 H(alt e o © o o o o o o"k (0"""0
5 I(nitialize . ® oh ‘o .’o o‘ T‘0': ;
6 M(emory o ¢ o o o o o o o o
7 R(un . ° . ° 3 e e o o‘:‘ o' 'y
8 S(ubmit L] * * L] * * L 2 * * *
9 U(Ser restart e o [. L o“ .
0 X(ecute « ¢ ¢ ¢ o ¢ o o o o

* L) * L
R
¢’ @ e W
L] L] * L]
L d L]
.
* o ¢ o
“t
- " ~oE
~ na
LIRCI A
e o &
. . SF <
o o o o
L) e ®
‘e o e o
R I
e o o o
a3 b
L] L] L] L
v el 3
o e ¢ o
-
P -
S A
e o o e
e o o o
LR 5
]
e o ° o
. e -
e P
e o o @
» - - .
F T Y !
e o7 8 e
Ea Do v
L M
o o v o
o ow
e ¢ ot e
e o o o
yoo
] e [
e o o o
: R -
‘e o "o &
* e o o

L]
4,

FE S

e'e 6 @ o o o o

9 e e o e

¥

I3
0" 9

it e e ece o e

e o6 o ¢ ¢ o o o 0 o 9 @&

e e o o o

e o o & 8 o @ o o o o o

e .o & 0 ‘0 e . @

e o & o ¢ ¢ o o o ¥

. e &

e e & & © o o o

AQOS System

‘II]. THE FILE HANDLER
10 Filer Prompts
;l” File Naming Conventions
: 0 General Syntax . .
1 Wildcards « « « « &
2 Filer Commands

0 'Command Summary . .

0° Work File Commands
1l Disk File & Volume
2° Disk Volume Commands
3 Disk Media Commands

1 B(ad blocks scan .
2 "C(hange ¢« ¢ ¢ o o &
3 vD(ate .. L] 01) .k []
4 E(xtended llst o .
5 ’ G(et ’ .‘ L 2 * \,,0 . i J L J
6 K(runch « « o o o &
7 " L(ist dlrectory o .
3 ’ M(ake L] L] * L] ® .’ []
9 N(ew L 2 .’ .” .« [] [] L]
10 P(refix volume . .
ll Q(uit L] L ® * L *® *
12 R(emove « ¢ ¢ ¢ o o
13 S{ave o o ¢ ¢ ¢ ¢ o
14 T(ransfer . « « o« o«
15 V(olumes online . .

16 W(hat is workfile?
17 X{amine bad blocks
18 Z(ero directory . .

3 Reg¢overing Lost Files

4 Recovering Lost Directories

iv

[)
®
®
L
L J
L]
L]
L]
.
L
[
®
[]
[]
L]
L]
L]
°©

L L] ® L]
* ® L] L]
[] L] ® .
® ® L 4 ®
L] L] L J L]
[] ' L] L L]
L] [) ® o
* L) * L]
Commands
L * L]
o ® *
® *® L] *
L] * L] ®
L * L] L]
® * * L]
o L] * L]
® * ® ®
* L] [] []
* ® [] []
[] [* L]
® L] [] L)
[] L] ® ®
* * L] L]
* ® [] L]
[] ® [] L]
® L 2 ® ®
* Ll [] ®
L] L J L] L]
* L J L J L]
[] * * ®
. ®

User's Manual

L] [) [] [) L) [] [] *® L2 L] L] L] ® L] L] * L] L]

e © & & & © & & @& O O 95 ¢ © ¢ & o o

L] L [] L] [] [] L] * L] . L] L] [] L L] L] L] L]

e ©& o o o

L] L] L ® L] L] L] [] * [] L L] L] L] [] L] L] L]

® €& & o o & ¢ e ©° & ¢ & ¢ & O ¢ o

e & o o o

[] L] * L] L]

L] L] L] [] L] [] [] L [] L] L] [] L] L] L] [] [] L]

L] L] L] [] L] L] L[] L] L] L] L] L] L L] L] L] L] L]

L] L] * .] L] * . L L] L] [] * L] L L] - L]

* L] L] * °

e & ¢ o & ¢ & 06 O & & & O & & & o o

IV THE ADVANCED SYSTEM EDITOR

NoOONTibbWDRO

0 Basic ConceptsS =« « o o o o o o o o' o o o
Prompt LiN€S « « o o o o ¢ ¢ ¢ o o o &
Commands L] L] [] L] *® * L L L] L d [] [2 .. . ®
File Name PromptS . o« o o o o o o o o
The Edit Environment . . « ¢« ¢ ¢ o o o
The File Window =« o« o o ¢ o o o o o &
The File BUffer L] L] L] * L[] L] . L 4 [] L J '
The CULSOL ¢ « o o o o o o o o o 2 o o
BaCkup Files e e © o ® o o 6. e o o o o,

1l Using the EAitor . ¢ o« « ¢ o o 7o .6 o o

CONONTVIEREWNDHO

A0S System User's Manual

Entering the Editor

Repeat Factors . « « ¢ ¢ ¢ o o o o o
DireCtion e * * . L] L] L] .. .~ .h .“ L] L :0
Markers o+ o« o o o o o o o s o o o o o
Moving The CULSOr .« & & o o o o -0 &
The Copy Buffer . ¢« ¢ ¢« o ¢ ¢ o o« o o
Entering Strings in F(ind and R(eplace
NeSted Editing . [L) . o‘ . o. o_,o_’?, o,.“o: L]
Change LOGging « « o o o o ¢ o o o o o
User~defined Functions . . « o o o o &«

v

L

49

o efe‘e e

e @ ® e e e o o e o o

i B N
‘o 870 @6 0 @ @
oo . o
) d o AT

4

-

. g
o 7ot
PR

&

e e
2y P

e o o o o 870”0

L] * o L] L] L] L[] L] L] L]

e o o' 6 & o &' 0 by

Fou

e e

e‘s h et e’ B e @

L] L L] L] L] L] L] L] L] []

e & ¢ 6 o & o o o o

.10£f
106

107

107

108
110
111

111

112
113

114

114
115
116
116
118
120
121
123
126

128

. AOS System User's Manual

IV THE ADVANCED SYSTEM EDITOR (continued)

2 Commands e o & o & 8 © o o ® » »

0 Command SUMMALY o o o o o o o
' Moving Commands . ¢ « o o o
Text-Changing Commands . .
Pattern Matching Commands .
Formatting Commands
Buffer Managing Commands .
Function Defining Commands
Miscellaneous Commands . .

OB WNHO

A(djust .
B(eginLine
Clopy .« «
D(elete
"E(dit .
F(ind .
‘G(etch
‘0 <GetAg
"I{nsert’
J{ump .
10 'K(olumn
11 L(ineEnd
12 M(argin
13 N(ext" .
14 O(pposite
15 'P(age .
16 Quit .
17 <record>
18 Ri{eplace
19 S(et . .
20 <takeup>
*21 "T{obisk
22 U(ptop .
*23 "Vierify
24 "W(otdMove’
*25 "eX(cthange
26 Z(ap ® [] L]

in>

Wo N W

¢ o e o o o

age

0“0 6°e 0 0 o o ¢ Hje e 0 0 9o o Qe o o o
®© 0670 ¢ 0 00 6 6 0 0 &6 ¢ 6 0 6 8 06 ¢ 6 ¢ o & 0 o 0
o 080700 6 8 06 6 6 88 6 @ & & © & 6 O &6 ® & 6 o o o o
e 80 6 & a6 & 6 @6 ¢ 6 ¢ 06 6 ¢ 8 & 06 & 6 0 ¢ o & o o
e 6 0 6 ¢ 66 ¢ ¢ & o 6 ¢ 6 06 06 0 & 6 & & o 0 o o o 0
e 600 6 6706 6 06 & 6 0 & 0 6 @ 6 6 & 6 © © & o 8 o o
e e°e 68 8 € 6 6 6 ¢ 0 6 @ 0 6 6 6 2 6 6 6 & 6 0 o @
* L] L] *® . ® [)] [] [] L] * [] * [] L] L] ® [] L) [] [] L [] * [[]

e o 000 60 0 o o o o e o o e ¢ e e o e ¢ & o

e o6 @ & 066 o o o o o

3 Sample Edit Session . .

4 Problems e o o o o o o

vi

L] L] L] L] [) L] L] ° L] L] L] L] L] ® L] L] L] L] [} L] L] ® L] L] [] L] L[]

[] L L] L] L] . L] e

[] L] ® L] L] L] [] L] . *® L] [] L] L] [] * L] L] L] L L] L] L] ° L] L] .

L] L] L] L] L] [] L] L] e L] L] L] L 3 [] L] L] L] L] [] L *] * L] L L) °

¢ & 6 & o o o o

e © & ® & o & o © & O & 6 & o & & 6 & 5 o 0 ¢ o o 0 o

e @ @ & 0 e & o6 & o6 & & © 6 O 6 5 5 o ¢ & O o & o 9

L] [] L] L] L] L] L L]

L] L] L] [] L] L[] L] [] L] e [] L] L] L] L] ® L] [] L] L] L] L L] L] L] L] L]

e & o & & & & ¢ & & & 6 O & 6 & O & o O & © & & o s o

L] * [] L] L] L] L] L]

L] [] L] [o L] L] L] L] [) L] L L] [] [] L L] L] L] L] L] [] L] L] L] [] L]

L] [] L] L] [] L] L] -

e & e o & ¢ 6 © & 6 ¢ ¢ O ¢ ° © & O & & O ¢ & & o s o

e & e ¢ ¢ o O ° © 6 ¢ © & & O & & & O & & & o ¢ o o o

L L] L] L] L] [] L] o

135

135
135
136
136
136
136
136
137

138
139
140
142
143
144
146
147
148
150
151
152
153
155
156
157
158
160
161
163
168
169
170
171
172,
173

176

177
183

AOS System User's Manual

V. COMPILER o o o o o o o o o o o o o o o o o & d e w oi-. 187

0 IntroduCtion L] L] L L . * L[] L] L] L d L] L ; L] L4 L] L]) L "; * [) 187

1 Using the Compiler . . . e o o o o s s o o e« o o 188
0 Setting Up Input and Output FileS v o o o o « o o o 188
1 Console DiSPlay e o o o o o o o o o o o o o o o o o 189
2 Syntax Error Handling « o« « o o o o o o o« o o o o« o 190

2 Compiler ProblemS « « o o o o o o o o o o« o« o o o o o 191

« o 1901
192
e o 192

0 Syntax Errors and the Editor . . « ¢« ¢ ¢ ¢ &
1 Insufficient MEMOILY o« o ¢ o ¢ ¢ o o s o o-0-0
2 Insufficient Space on Volume . . « ¢ « + o &

iee *
L]
L]

Kmog

VI COMMAND FILE INTERPRETER o o o o o o o o o o ol 193

L
L]
.

.« o 193
193
194

0 S(ubmiﬁfing Command Files e o o o o s e-.0_s"
0 Command File Execution =« ¢ o« ¢ o, 0 ¢ o o @
1 Reserved Command File Names o v

‘e o @8 v . ¢
L]
L]

L]
L]
e
[]
2]
N J
L[]
L]
L]

1 Command LAanNgUage .« o« o o o o o s o o o o o oue o-o o 194
0 CommandS « « « o o o o o o o o o o o o-0-0 o-o o 195

0 Immediate CommandS .« « o o o o o oo s-o s-s o 195

1 Deferred Commands e o o o o o o o.e e-e »re o 197

l Targets L] * L] [) L [J L] [] L * ‘. * »’. 5 [) ’ L L] . “ L] L 197

2 Parameters and Variables . + +» o » v » o o . v o 198

3 TeXt Llnes * L J . [] * e [) * [] * ; L] . L] L] [IR] ;L. ® 198

2 Example eXeC Programs « o o o o o o o o o o i?‘ » o o 200

VII SYSTEM MONITOR .+ « o o o o o o o o o o o 3 2%hee 5°0 o 203

e e o 203
204

0 Entering The Monitor . « ¢« o o ¢ o & .
e s-e o 207

1 Monitor Commands . . &« o o o o o o o ’E -
2 HDT Examples e o o . :0 o o o : : .. .:'(‘. . o

vii

VIII

AOS System

UTILITIES o ¢ o o ¢ o o o

0

~ 0 Disk Management

Bootstrap Copier
0 Using Booter . .

Disk Copying . .
0 Using Backup .

Disk Format Conversion

0 Using Mapper . .

Disk Formatting . .
0 Using Format

®

User's }

1 Reformatting Bad Blocks

Fast Bad Blocks Scanning
- 0 Using Bad.Blocks

Hard Disk Management

0 Using Drive.Con .

' Changing Volume Size -
0 Using Change.Dir

1 Data Recovery . . . « .

0
1

2

_Using Markdupdir . .

Using Copydupdir . .
Using Recover . . .

2 Library Management "o ®

ﬁO u81ng L1bnazy~ IE. o
J» U31ng Llhmap R A

3. Termznal Conflguratlon

b GDmOXY B;ndlng ,:,1
0. 031ngaBLnden e

“

'1 USLng Setup o« o :’.

b .Using Ad#aﬁcédTSYStem Setup
4 System 1/0 Configuration

0 PFields in Setup .

0 Using Drvr.Info . .

viii

[]

e o

e @ 8. 3 S

* o

L 4

L)

209
209

210
210

211
211

213
213

215
215
216

217
217

219
219

223
223

224
224
225
225
227

227
230

232

234
236

237
238

243

248
248

AOS System User's Manual

VIII UTILITIES (continued)

5 Line-Oriented Text Editor .

1

0 Entering YALOE . . . & e o s o o o e o o
1 Entering Commands and Text e o o o o s o
0 Command ArgumentsS . « ¢ ¢ o o o o o o o
1 Command Strings o« « « o o o o o o o o o
2 Text Strings . ¢ o o o o o o o o o o &
2 The Text Buffer . . ¢« ¢« ¢ ¢ o ¢ o ¢ o o o
3 The Cursor * L] [) L] [] L] L] L] * * * L J L] .. L] L)
4 Special Commands « o« o o o o o o ¢ o o o o
5 1Input/Output Commands . « o« « o o o o o o
6 Cursor Moving CommandS o+ « o o o o« o o o o
7 Text Changing Commands « « '« o « o o o o &
8 Other COmmandS e ¢ ¢ o o o © 6 o @ o e o o
9 Command SUMMALY « o o o o o o o o o o o o
6 Byte-level File Editor L] [] * [] * . {.* * . L] L
0 USing PatCh * [) [] [] *® [] L J L] [) L) * L d * * L]
7 Printer SPOOler . o« o o o o o o o o o o o o o
0 USing Printer L] L] L L J L] L] L] * * L] L] * .~. *
8 Calculator * L] [] * L] L] L] L] L4 L] L] L] L] L] * ." ®
0 USing Calc [* L L] L] ° L] . L] L) L] L * ® L]
9 Bootstrap Creation . . ¢« ¢ o ¢ ¢ o o o o o o
0 Using Make.BOOt =« « o o o o o o o o o o &
APPENDICES [] [) L L d L] * L J L] [] L[] L) L] L] L J L] [] L] ® * ['.‘ L d
Appendix A: Standard I/0 ResSultsS v o oo o o o o
Appendix B: Standard Execution Errors . . « « o o
Appendix C: Standard I/O0 Unit Assignffents - .. .
Appendix D: Compiler Syntax ErroOrS . “e=/é <é o iece- o
Appendix E: ASCII Character Set . ¢« ¢ o o o o o
Appendix F: Terminal Configurations .il. iite o e e
Appendix Fl: ADM 3-A Terminal ® ¢ o o o o o o o o o
Appendix F2: SOROC IQ-120 Terminal . idfe % "o 0 7d &
Appendix F3: ZENITH Z-19 Terminal o -eifie o Te-leice o o
Appendix F4: DEC VT-100 Terminal . « ¢ o ¢ o o o o
S . R PSS S A
LTI ot o~ ::; :.,.. i."" ““;

INDEX . &

ix

‘e o7 o

.
o

o o é‘e 8 o o

[) L] [] L) . L] [] L] L] L] L] L] L]

L] [] L] L] [] [] [] []] L] L] L] L

e ¢ & o 8 & o o o
T H

L] L] . L] *® L] L] L] L] . L] [] []

251

251
251
252
252
252
253
253
253
254
256
259
260
263

264
264

270
270

272
272

274
274

277

277
279
281
283
287
289
291
293
295
297

301

Introduction

1. INTRODUCTION

1.0 Scope of this Manual

This is the reference manual for the UCSD Pascal Advanced Operating
System, version 1.0, running on the PDQ-3 Computer System. Users
are assumed to be familiar with the UCSD Pascal system; if this is
not the case, the following book is recommended:

Beginner's Guide for the UCSD Pascal System
Kenneth L. Bowles
Byte Books (McGraw-Hill), Peterborough, New Hampshire, 1979.

Other documents related to the PDQ-3 Computer System include:
PDQ-3 Hardware User's Manual - Describes the physical charac-

teristics of the computer.

AOS Programmer's Manual - Describes the Pascal language imple-
mentation used with the Advanced Operating System.

AOS Library User's Manual - Describes the 1library modules a-
vailable with the Advanced Operating System.

AOS Architecture Guide - Provides details of the system soft-
ware to experienced programmers. (Available in the indeter-
minate future.)

PDQ-3 Subsystem Documents -~ Describes the physical character-

istics and operating procedures for the various hardware
subsystems available with the PDQ-3.

Page 1

PDQ-3 System User's Manual

Thig:.section describes the notation and terminology used in this
mgaual to. describe various system concepts.

e

<
B Y v

A varlant of Backus-Naur form (BNF) is used as a notation for
describing the form of system constructs. Meta-words are words
which represent a class of words; they are delimited by angular
brackets ("<" and ">"). Thus, the words "trout", "salmon", and
ftuna”. are acceptable substitutions for the meta-word "<fish>";
here is:an expression describing the substitution:

<fish> ::= trout | salmon | tuna

The. symbol "::=" indicates that the meta-word on the left-hand side
may be :substituted with an item from the right-hand side. The
vertical bar "I|" separates possible choices for substitution; the
example above indicates that "trout", "salmon", or "tuna" may be
subﬁtlxuted for <£1sh>.

An item enclosed in square brackets may be optionally substituted
into a textual expression; for instance, "[microlcomputer” repre-
sents the text strings "computer®” and "microcomputer”

An.item: enclosed in curly brackets may be substituted zero or more
fimes:- into 'a textual expressxon. The followzng expression repre=-
sents responses to jokes possessing varying degrees of humor:

. ~<joke response> ::= {ha}l
In many::instances, the notation described above is used informally

to describe the form required by a language construct. Here are
some typxcal examples:

FERE T U & S Sty
»sraar(<p:ogees statement> [<gxd> [,<stacksize> [,<priority>1ll)
~ LCONCATR (<string);:{ ,<string>}) - .-
The syntax for Pascal's IF statement is:

IF <Boolean expression> THEN <statement> [ELSE <statement>]

Page 2

Introduction

L2 -

The Advanced Operating System is a superset of the UCSD~"PaBéal
system, which was designed as an interactive, single-user sysfeff
for program development and execution., The system has been
extended with multiprocessing capabilities, an asynchronous 1/0
system, I/O redirection facilities, and a programming 1library
system. It is especially well suited as a program development- and
runtime environment for large realtime and multiuser appllcations;
The minimal hardware configuration required to use the system is”a
CRT terminal and a mass storage device (typically one or- mere
floppy disk drives).

The system consists of the following parts:

- Provides an interactive command interpretéf
to control the rest of the system, and run—time support for
the execution of Pascal programs. : *“‘f

- Automates repetxtlve tasks: by feedlng
the system a predefined sequence of system commands to
execute, ‘ R D

File Handler - Provides disk file management.

Editor - A screen-oriented editor used to create and maintain
source files containing Pascal programs. It also provrdes
text editing features for basic word processing tasks.: a0

- A fast, one-pass compiler which produces ei-
ther executable Pascal programs or library. routines.,

System Monitor - Allows the user to examine ~and modlfy the
contents of memory. LT e t%*“A =1y S e

5 f.gti‘ ; . ,?.")'F &t
Printer Spooler - A utility program whlch allows text flle
printing to proceed concurrently with:normal system operation.

Utility Programs - Various programs »'which aid - program. dével-
opment.

Page 3

PDQ-3 System User's Manual

1.3 Command and Data Qverview

This. seCtlon describes various operations performed with the PDQ-3
system; ~ these include action commands which invoke system parts,
and data prompts which supply input to the system parts.

Prompt lines are a commonly used method of displaying the commands
available to the wuser in various parts of the system. Here are
some examples of prompt lines found in the system:

‘Command: X(ecute, S(ubmit, R(un, F(ile, E(dit, C(omp [1.0]
Filer- G(et, S(ave, W(hat, N(ew, L(dir, R(em, C(hng, T(rans [1.0]

Responses consist of a single character; a carriage return is not
required to complete the command. Command characters are capi-
talized and separated from the command abbreviation with a left
parenthesis. Prompt .. .es displaying al) . ktetic character commands
accept both lower and upper case characters. With some prompt
lines, typing a "?" redisplays the prompt line with a different set
ﬂof commands,, This is done to accommodate wide prompt 1lines on
.narrow screens. Prompt lines are usually referred to as "prompts";
“thus, | ‘the prompt line for the operating system is called the
'system ptompt®, and for the file handler, the "filer prompt”.

Many . system parts display a version number in their prompt lines;
it .is usually delimited by square brackets.

l.3.1 File Names

Software development on the UCSD Pascal system largely consists of
manlpulatlng files;. hence, flle name prompts appear rather fre-
quently.? Because of“ﬁhls, users who understand the file system
£;qd .the _system easier to use, as many aspects of the file naming
conventlons ﬁnvolve $&mpllfy1ng the specification of a file name;
“it” i8 ‘therefore ~“worthwhile to study chapter 2 (section 2.1 - the
file system) and the sections describing file name prompts for the
various system.

Page 4

Introduction

1.3.2 Data Prompts

Data prompts are used to obtain input data needed by syétéh;ﬁaitéﬁ
They usually appear in the form of questions; for instance:,

Compile what file?
Are you sure you want to crunch DISKl: ?
Bad blocks scan for how many blocks?

Responses to data prompts usually come in one of two forms: ~a
single character response to a "yes/no" question (such as the
second example), or an input data response requiring a string ‘of
input characters terminated by a carriage return.

An affirmative response to a "yes/no" question is 1nd1cated by
typing "y" or "Y", Negative responses generally are indicatedi by
typing "N" or "n"; however, some system parts (such as the filer)
interpret characters other than the affirmative ones as neqatlve
responses,

Input data responses are usually file names, but can be other 1tems
such as the system date or an integer value, These - responses
almost always require a carriage return to be typed after theé- 1n§ht
data. The backspace key erases mistakes in the typed input, - and
the rubout (or delete) character deletes all of the typed 1nput.

Most system prompts requiring input data recognize "escape® inputs
that cause the initial system command to abort. For instance,
typing only a carriage return after the compiler prompt:

Compile what file?

«es aborts the compller and returns control to the system promﬁt
An immediate carriage return is generally accepted thzoughout the
system as an escape; however, in some cases_a carrlage return has
another meaning, so a different method of ° “escape 'is "requifed.
These exceptions are descrlbed in the approprlate Sectidhs of tbzs
manual. o

Page 5

PDQ-3 System User's Manual

1.4 Key Commands

This section describes some key commands used throughout the
system,. 7 Key command definitions are described in section 8.3
~#terminal configuration). Key command definitions for some common
- terminals are listed in Appendix F.

Two key commands are used for terminating input data and commands:

the accept key and the escape key. Accept is used in the -editor;

it is denoted in this manual by the metasymbols <accept> and <etx>.
. Escape is used throughout the system to abort commands; it is
- denoted by the metasymbols <escape> and <esc>. Key command usage
<vts described in appropriate sections of the manual.

t‘?wmmznﬁnf.mls

f“The "end of file"™ key is used to terminate character sequences read
‘from the keyboard by a program or system part which uses the
-console as an input file; it is denoted by the metasymbol <eof>.
"See section 3.2.14 and the Programmer's Manual for more details.

SR

Some system parts depend on the user's ability to move the cursor
across the screen., Cursor movement is performed with the termin-
al's space bar (denoted as <space>), backspace key (denoted as
" Kbackspace> cr <bs>), and the vector keys (i.e. <left>, <right>,
<up>, and <down> keys).

naexlm:m:cmam

fwMost key commands are synchronous with respect to system operation
(i.e., they are not executed until the system reads them after
issuing an input prompt). User interrupt commands, on the other
-‘hand, fare -executed-immediately after being typed. This section
describes-the user interrupt commands.

“"NOTE: <~ iUsef-:interrapt. command processing may be suspended from
within a program, See Appendix D of the Programmer's Manual.

l.4.3.0 Monitor Trap

The monitor key interrupts the currently executing user or system
program and passes control to the system monitor (described in
chapter 7); program execution may be resumed from the monitor. The
monitor key is defined to be <control-P>.

Page 6

Introduction

l.4.3.1 Stop and Start

The stop and start keys suspend and resume console output,. -Once
console output is suspended with the stop key, typing any Key other
than the start key "single-steps"™ the output; specifically,:it
allows one character to be written to the screen before resuspend-
ing output. The stop key is defined to be <control-S>. The start
key is defined to be both <control-S> and <control=-Q>. v

l1.4.3.2 Console Qutput Flush

The flush key causes the system to discard all console output until
either the flush key is retyped or a keyboard read operation.is
initiated. A practical example of the £flush command is the
interruption of the filer command T(ransfer when it is transferring
text files to the console. Typing the flush key causes the 1I/0
system to discard all characters written to the console, thus
speeding up the transfer. When the transfer is complete, the filer
attempts to restore its prompt line; it displays the prompt line
then waits for another command from the Kkeyboard. Since screen
output is still being flushed when the prompt line is displayed,
the prompt line doesn't appear. The keyboard read cancels . flush-
ing; typing <space> causes the prompt line to reappear, and normal

system operation is resumed. The flush Kkey is defined to be
{control-F>,

1.4.3.3 Keyboard Type-ahead Elush

The keyboard type-ahead flush key removes all characters queued in
the type-ahead buffer; it is defined to be <contrcl-X>,

The type-ahead buffer is used to hold keyboard input that is

entered before an input prompt is displayed. Input prompts -always

read characters queued in the type-ahead buffer before reading

input from the keyboard. The type-ahead buffer is filled.in one.-of
two ways: S S N
: : : St L S LB Pios W&

1) By typing keys when the system -is-not. -waiting .for:-an sinput
response. The input is queued in-the.type-ahead.buffer. -,

2) By the command file interpreter,-as it-queues:commands:and
data for future execution, ‘

The type-ahead buffer holds a maximum of 32 characters. When it is
full, subsequent keyboard input is ignored.

Page 7

PDQ-3 System User's Manual

l.4.3.4 Disk Type

The disk type key allows on-the-=fly reconfiguration of the software
controlling the floppy disk drives. Users can specify whether a
drive reads single-sided, double-sided, DEC format, or Western

Digital format disks. The disk type key also controls the
generation of floppy disk error messages (see section 2,0.2).

NOTE - Double-sided floppy disks require double-sided disk drives.

NOTE - Switching between single and double density floppy disks is
performed automatically by the system.

When the system 1is bootstrapped, all floppy disk drives are
configured for single-sided PDQ-3 format floppy disks (unless
specified otherwise -~ see section 2.4.0), with error messages
disabled. Floppy drives are reconfigured by typing <control-D>,
followed by the two character sequence:

<drive number><command>
where
*0" or "1" or "2" or "3"
"s" or "S" for single-sided disks
"d"® or "D" for double-sided disks
"f" or "F" for Western Digital format
("flipped”) disks
"i" or "I" for DEC format
("interleaved") disks
"n" or "N" enables floppy disk
error messages ("noisy")

{drive number> ::

H =
<command> HEE

NOTE - The "f®", "i", and "n" commands are toggles (i.e. they
switch the current state to its opposite). Their values are all
reset when either the "s" or the "d" commands are issued.,

NOTE - The Mapper wutility (section 8.0.2.0) performs explicit
remapping of floppy disks between PDQ, WD, and DEC formats. This
capability may seem redundant in 1light of the disk type key's
ability to read all of these disk formats; however, disk accesses
to WD and DEC disks are considerably slower than disk accesses to
PDQ disks because of the translation which takes place in the disk
drivers. Thus, while the disk type key is wuseful f£for occasional
communications with WD and DEC disks, it is more efficient in the
long run to remap frequently-used disks than to disk-type them
every time they are used.

Page 8

Operating System
1l. IHE OPERATING SYSTEM

The operating system initiates the execution of other system parts,
and user programs, implements the file system and I/0 subsystems,.
reports hardware and software errors, and provides runtime support
for Pascal programs, o

Section 2.0 describes the actions performed in response to various
kinds of system errors. Section 2,1 describes the file system,
which includes file naming conventions and the I/0 device organiza=
tion, System commands and operation are described in section 2,2,
Details on the Pascal runtime support routines are contained in the
Programmer's Manual and the Library User's Manual.

Page 9

PDQ-3 System User's Manual

¢ 2a@~Error Handling

This section describes the system's response to hardware or
software errors. Execution errors are caused either by incorrect
programs or explicit interruption of programs; they are described
in section 2.0.0. Stack overflows occur when a program uses up all
‘available system memory, and are described in section 2.0.1. Error
messages generated by the £floppy disk drives are described in
section 2.0.2. The effects of removing disk volumes during system
operation (known as "disk swapping") are described in section
2.0030)

»Wheh an execution error is detected during program execution, the
‘program is suspended, and the operating system prints a diagnostic

message on the console. The message consists of a description of

the error and the location in the program c¢ode where the error
occurred,

The error description is usually a textual message (e.g. "Invalid
Index"™). Occasionally, the operating system is wunable to obtain
the message; in these cases, only the execution error number is
printed. A table of execution error numbers and their correspond-
ing messages is presented in Appendix B.

When the execution error is a user I/0 error, a description of the
I/0 error is printed adjacent to the execution error message; as
with execution errors, . the unavailability of I/0 error messages
causes the I/0 error number to be printed. A table of 1I/0 error

numbers and their corresponding messages is displayed in Appendix
A,

The error location 1is specified in terms of the code file
structure; the displayed "Segment" name, the "P" number, and the
“I" number represent the code segment name, procedure number within
the segment, and procedure~relative byte offset of the instruction
causing the error. This information should be used in conjunction
with a source program listing to pinpoint the error in the source
program. The locations of procedure <calls 1leading up to the
execution error may be obtained by changing the "Error List Length”
field using the Setup utility described in section 8.3.1. Program
listings, code segments, and procedure numbers are described in the
Programmer's Manual.

Once an execution error has occurred, two choices are available to
the user. "Typing <space> to continue”, as is prompted on the
console, aborts the currently executing program. Typing <escape>
causes the system to resume execution of the program, the results
of which are somewhat unpredictable and dependent upon the nature
of the execution error.

NOTE - When the standard exception handler is installed in the

system, execution errors are processed as described above, Execu=-
tion errors may be processed differently when a custom exception

Page 10

Operating System

handler is installed. See section 2.3.4 and the Programmerds
Manual for details.,

2.0.1 Stack Qverflow

Stack overflows occur when a program's code and data use up all of
the memory in the system; the program is terminated, and the
following message appears on the screen: -

STK OFLOW

NOTE - Stack overflows are not always detected by the processor or
operating system; when this happens, the system stops without
printing any error messages, and must be rebooted. In other cases,
the system halts after displaying the stack overflow message. See
the Architecture Guide and Programmer's Manual for more informa-
tion. '

Page 11

PDQ-3 System User's Manual

2.0.2 Eloppy Disk Exrors

The software controlling the floppy disk drives may be directed to
i'ssue error messages to the console whenever the hardware indicates
that a disk operation caused a transient error (see section
1.4.3.4). This section describes the format of floppy disk error
messages.

NOTE -~ This section contains references to the hardware interface
of the PDQ-3 disk controller, See the Hardware User's Manual for
details. ,

Here is an example of a disk error message and a description of its
format:

"Flop_42 (01] 01 Fc-94 Fs-30 T-01 S-19 Dc-01 Ds-01
C-0000 A-0012F8 Vs-001A

42 - High order byte of the disk select register. Low nibble

is the disk number (1,2,4,8). High order nibble is

density (4=single).

The retry number. It indicates the number of times the

operation has been attempted without success.

01 - The system I/0 result indicating the error condition (see
Appendix A).

o1

Fe¢ - The command that was issued to the FDC when the failure
occurred.

Fs - The FDC status register indicating the error condition.

T - The FDC track register.

S - The FDC sector register.

Dc - The DMA command register,

Ds - The DMA status register.

C - The DMA count register (negative number of bytes left in

S the current I/0 operation).

‘A~ = The DMA address register (a byte address).

'Vs - = The starting virtual sector (a zero-based logical sector

number) .,

Page 12

Operating System

2.0.3 Disk Swapping

This section describes the effects of removing disk volumes from
the floppy drives during system operation., Floppy disks are often
exchanged during system operation in order to retrieve files from
offline volumes, or to copy disk volumes onto backup disks; the
system accommodates this by keeping track of the online disk
volumes. However, disk swapping during program execution can be
hazardous; if a system or user program requires a code segment from
a disk wvolume, and the disk volume is no longer mounted in its
original drive, the system crashes.

This situation is remedied both at the program 1level and at the
system level, ‘

First, the file handler and disk=-copying utility programs do not
contain segment procedures; their code remains resident in memory
at all times during execution., User programs must do the same in
order to survive random disk swapping.

Second, the operating system attempts to protect itself from
crashes caused by removing the system disk during program execu-
tion. Normally, if the system disk is removed or replaced, it must
be remounted in the proper drive before the program terminates; in
fact, many of the wutility programs issue explicit prompts to
remount the system disk before terminating. However, if the system
determines that the system volume has been removed or replaced, the
following message app:.is after the prog: . terminates:

Replace <system volume name)>:

The system waits until the proper disk is remounted, and then
redisplays the system prompt as if nothing wunusual had occurred.
The method used to detect a disk swap is to monitor all disk
directory accesses during program execution; if a directory access
is not performed on the system's disk drive after the disk has been
swapped, program termination halts the system with an unrecoverable
execution error instead of displaying the prompt shown above.

Page 13

PDQ-3 System User's Manual

2.l Eile System
2.1.0 Qverview

In the most abstract sense, a file is merely a sequence of data. A
file system exists in order to adapt this abstract definition of a
file to the requirements and constraints of a given hardware and
software environment. The file system described herein has the
following outstanding characteristics:

1) Files may be accessed from Pascal programs with standard
Pascal file operators.

2) Files possess types to aid the user in identifying the
contents of files and to increase system reliability by
preventing invalid operations on files.

3) The file system implements high 1level concepts such as
removable disk volumes and device-independent file I/0.

4) The disk file implementation is both time and space-efficient
on relatively low performance floppy disk drives.

The following sections comprise a complete user-oriented spec-
ification of the file system. Section 2.1.1 presents an overview
of file name syntax, Sections 2.1.2 through 2.1.4 describe the
syntax and semantics of the file system hierarchy, starting with
the lowest levels of device I/0 and culminating with file attri-
butes. Section 2.1.5 contains the definitive syntax specification
of a file name., Section 2.1.6 describes some system-wide conven-
tions that apply to the file system.

References to file naming conventions and file system terminology
throughout this manual (and the Programmer's Manual) refer either
implicitly or explicitly to the information presented in this
section.

NOTE - In order to present a consistent file system description,
this section defines a number of terms intended to describe parts
of the file system. New terms are underlined and followed by
either an immediate definition or a reference to a defining
section; subsequent occurrences of the defined term are not
underlined.

Page 14

Operating System

2.1.1 Syntax Qverview

(file designator)

T CFile idd

—(vo lume 1d)

A valid £ile designator (informally referred to as f£ile name)
consists of a volume identifier and a f£file Jidentifier. Volume
identifiers are described in section 2.1.3. File identifiers are

described in section 2.1.4. The complete syntax for a file
designator is presented in section 2.1.5.

Page 15

PDQ-3 System User's Manual

2.1.2 Physical Units

Physical units correspond to 1I/0 devices; they are addressed by
their assigned physical unit number. I/O devices are defined to be
either gerial devices or block-structured deviceg (described in
section 2.1.2.1). A gerial unit is a physical unit assigned to a
serial device., A block=-structured unit (informally referred to as

a disk upnit) is a physical unit assigned to a block-structured
-device,

All physical units may be used as files.

NOTE - The device assignments discussed in this manual are the
standard device assignments for the PDQ-3., The mapping between
physical wunit numbers and devices may be defined by the user.
Appendix C contains a list of the PDQ-3 Computer System's standard
device assignments., Section 2.3.1 describes how device assignments
can be modified.

Unit Number device description unit attribute
0 system clock serial
1 screen and keyboard serial
with echo
2 screen and keyboard serial
without echo
3 keyboard type-ahead serial
4 disk drive 0 block-structured
5 disk drive 1 block=-structured
6 printer serial
7 remote port input serial
8 remote port output serial
9 - 12 disks 2 - 5 block-structured
13 , remote port 1 input serial
14 remote port 1 output serial
15 remote port 2 input serial
16 remote port 2 output serial
17 remote port 3 input serial
18 remote port 3 output serial
19 remote port 4 input serial
20 remote port 4 output serial
21 fast screen output serial
22 standard input serial
23 standard output - serial
24 null input and output serial
25-28 disks 6-9 block-structured

Page 16

Operating System

221.2.0 Syntax Overview

<unit number>

#<number>: -

The metasymbol <number> may be any positive integer representing ‘a
unit number.

Page 17

PDQ-3 System User's Manual

2.1.2.1 1/0 Devices

170 devices assumed to be connected to the system include disks,
terminals, printers, and remote ports. An I/0 device is in one of
‘two states: online or offline. A device is online if it acknowl-
edges status requests from the system and- is available for 1I/0
operations.

2.1.2.1.0 Serial Devices

A serial device either produces or consumes a sequence of data.
Serial devices used with the system include terminals, printers,
and remote ports, The software controlling these devices makes
some assumptions about the structure of the data sequences handled;
in particular, default I/0 to serial devices expects human-readable
data known as text files. Section 2.1.4.1.0.1.0 provides an
overview of text files. Details concerning alternate modes of
serial I/0 can be found in the Programmer's Manual and Architecture
Guide.

2.1.2.1.1 Block=gtructured Deviceg

A block=-structured device is organized into a fixed number of 512
byte storage areas known as blocks. Blocks are randomly accessible
by block number. These devices are usually implemented as fixed or
removable disks.

NOTE - Large-capacity (e.g. hard) disks are often partitioned into

a number of 1logical disk devices. Management of hard disks is
performed by the Drive.Con utility described in section 8.0.5.0.

Page 18

Operating System

2.1.3 Logical Volumes

Loaical volumes correspond to physzcal units; they are addressed by
their aSSLgned volume name (described in section 2.1.5). A serial
volume is a logical volume assigned to a serial unit. A Dblogk~
structured wolume 1is a logical volume assigned to a block-struc-
tured unit. Serial volume name assignments are permanent and may
not be changed by the wuser; serial volumes are functionally
equivalent to their assigned serial units. Volume name assignments
to block-structured units are dynamic and controlled by the user; a
block-structured volume is addressable if and only if it resides on
an online block=-structured unit. Block-structured volumes are
described in section 2.1.3.1.

All serial volumes may be used as files, Block-structured volumes
should never be addressed as files except when using the file
handler to create, examine, and copy entire block-structured
volumes., '

Volume Name Assxgned Phys. Unit volume attribute
CLOCK: 0 serial
CONSOLE: 1 serial
SYSTERM: 2 serial
KEYBUFR: 3 serial
<vol name> 4 block=-structured
<vol name> 5 block=-structured
PRINTER: 6 serial
REMIN: 7 serial
REMOUT: 8 serial
<vol names> 9 - 12 block-structured
REMIN1: 13 serial
REMOUT1: 14 serial
REMIN2: 15 serial
REMOUT2: _ 16 serial
REMIN3: 17 serial
REMOUT3: 18 serial
REMIN4: 19 serial
REMOUT4: 20 serial
FASTCON: 21 serial
STANIN: 22 serial
STANOUT: 23 serial
BUCKET: 24 serial
<vol names> 25 - 28 block=-structured

Page 19

PDQ-3 System User's Manual

2.1.3.0 Syntax Qverview

{volume id> :
#{number>:

<volume name):

#

\

.
.

The volume identifier may either be the gystem volume "*" (section
2.1.3.3), a unit number, or a volume name, File designators
containing either empty volume identifiers or ":" specify the
prefixed volume, which is described in section 2.1.3.4.

Page 20

Operating System

2:.1.3.1 Block-gstructured (Disk) Volumes

Block-structured volumes (informally referred to as disk volumes)
correspond to mass storage devices; the typical case is a floppy
disk. A disk volume contains a collection of disk files (described
in section 2.1.4). Information describing the files is centralized
in a reserved area of the disk known as the disk i
(described in section 2,1.3.5). A disk directory contains the
volume name which identifies the disk volume, A disk volume |is
online if it resides on an online disk unit; it is addressed by its
volume name. Disk volumes may also be addressed by specifying the
physical unit containing the disk volume; e.g. a disk volume named
"SYSTEM" on unit 4 can be addressed either as "SYSTEM:" or "#4:".

Block-structured units and disk volumes represent two distinct ways
of treating disk storage. Disk volumes are implemented on block-
structured units; however, they contain a directory and volume
name, and are designed to contain a number of disk files.
Block-structured units are "bare” disks and have no directory or
volume name; they can contain only one file and are addressed by
their physical unit number. Section 2.1.4.3.2 describes other
differences between disk volumes and block-structured units,

Details concerning the implementation of disk directories and disk
files may be found in the Architecture Guide.

2.1.3.2 Disk Volume Usage

Because disk volumes may be referenced by volume name, the system
has problems operating when two disk volumes with the same volume
name are online., This situation should be avoided as much as
possible. When this 1is unavoidable, all file designators should
avoid using volume names as volume identifiers; instead, the
physical wunit numbers must be used to unambiguously specify files
on online volumes.

Disk volume names should always be used in conjunction with a file
identifier specifying a disk file on the volume. The only
exceptions occur when using the file handler to <create, examine,
and copy entire disk volumes. Using a disk volume name as a file
exposes the volume's disk directory to accidental overwriting by
file write operations, thus threatening access to the volume's disk
files. ’

2.1.3.3 System Volumes

The system volume is the disk volume from which the system was
bootstrapped (see section 2.4.0); it contains the operating system
and usually the code files for the rest of the system parts. The
system volume may be specified independently of its assigned volume
name by using the volume identifiers "*" or "*:",

Page 21

PDQ-3 System User's Manual

Prefixed volumes are used in conjunction with disk file desig-
nators. Normally, a disk file designator includes a volume
identifier to indicate the volume on which the disk file resides in
addition to the disk file identifier itself. Disk file designators
lacking a volume identifier are assumed to reside on the prefixed
volume; thus, file naming can be simplified by specifying the most
frequently accessed disk volume as the prefixed volume. The entire
prefixed volume can be addressed with the file designator ":".

The default prefixed volume is the system volume, The P(refix
command (in the file handler) and the prefix redirection options
(section 2.4.4.4) are used to specify volumes as the prefixed
volume; they designate a user-specified volume identifier as the
prefixed volume name. If the volume identifier matches the name of
an online volume, the volume becomes the prefixed volume. The
volume identifier can also specify an offline disk volume; when the
volume comes online, it becomes the prefixed volume., If the volume
identifier specifies a disk unit (as opposed to a volume name),
whichever disk volume is mounted in the specified unit becomes the
prefixed volume.

2.1.3.5 Disk Directoriesg

Disk directories are stored on a disk volume along with disk files.
Directories contain the volume name and up to 77 directory entries.
A directory entry contains the name, location, and attributes of a
disk file on the volume. The file names in a directory must be
unique in order to specify a file unambiguously; an existing file
is automatically deleted if another file with the same name is
entered in the directory. Disk file names are described in section
2.1.4. For more information concerning multiple files with the
same name, consult the Programmer's Manual for a description of
file operators.

NOTE - When the file system attempts to add a file to a volume
containing a full directory, it prints the error message:

No room on vol

This is somewhat misleading, as the same message 1is used to
indicate a lack of disk space.

2.1.3.5.0 Duplicate Directories

A disk volume may be marked so that the system maintains two disk
directories on a disk volume; the second directory is called a
duplicate directory and exists as a copy of the main directory. If
unforeseen circumstances cause the destruction of the main direc-
tory, it can be restored using the information in the backup
directory. The only cost of duplicate directory usage is a slight
increase in overhead due to the necessity of updating an extra disk
directory during file manipulation., The insurance provided gene-

Page 22

Operating System

rally outweighs any losses in performance. The wutility programs
Markdupdir and Copydupdir are used to create duplicate directories
and restore deceased main directories (see section 8,1).

Page 23

PDQ-3 System User's Manual

2.1.4 Disk Files

Disk files are stored in an integral number of contiguous blocks on
a disk and contain either programs or data, File attributes
provide useful information about the structure and history of a
disk file; they are described in section 2.l1.4.1l. File names are
the most important attribute of a disk file; they uniquely ldentlfy
a disk file within a directory. File names are described in
sections 2.1.4.2 and 2.l1.4.3. File length directives control the
amount of disk space allocated to a disk file; they are descrlbed
in section 2.1.4.4.

2.1.4.0 Syntax Qverview

(file id>

(titled Y >

e SUf £ 1 X >—d e [#] et

[m]—

0]

File titles distinguish the files in a directory; they are
described in section 2.1.4.3. File guffixes allow the system and
user to determine the contents of a disk file; they are closely
related to file types. File suffixes are described in section
2.1.4.2, The syntactic items delimited by square brackets are
. Length specifiers serve as directives to the
file system to determine the amount of disk space to allocate to a
newly created disk file; they are described in section 2.1.4.4.

Disk files' attributes are used by the system to manipulate tha
Z:ie and by thc user to Jdetermine the contents and history of the
file. From the user's point of view, the prominent file attributes
are file type and file date. File types are described in section
2.1.4.1.0. File dates are described in section 2.,1.4.1.1. The
remaining file attributes visible to the wuscer are £ile length,

starting block, and Dbytes—-in-last-block; these are described in
section 2.1.4.1.2.

2.1.4.1.0 File Iype

All disk files have an attribute called the file type. File types
enable both system and user to determine the contents of a disk
file, regardless of its file name. Text file and g¢code file are
file types used by the system; files of these types are described
in section 2.1.4.1.0.1. Files not containing text or code are
assigned the type data f£ile; these are described in section

Page 24

Operating System

2.1.4.1.0.2., System restrictions imposed by file types are des-
cribed in section 2.1.4.1.0.3.

2.1.4.1.0,0 File Type Assignment

When a file is created, the system assigns a file type correspon-
ding to the suffix; subsequent file name changes do not affect the
assigned file type.

2.1.4.1.0.1 UCSD Pascal Files

The two file types described in this section are used to identify
files containing specific internal structures; the structures are
required (and assumed to be present and correct) by the system
parts that operate on typed files. The internal structures of the
file types are described in the Architecture Guide.

Text files are usually created and maintained by the editor; they
can also be created by user programs. Text £files contain human-
readable text that represents either program source files, program
data, or written documents suitable for word processing. Serial
devices used to display data for human scrutiny (e.g. consoles and
printers) recognize text file conventions on output; thus, text
files written to serial units or volumes appear as they do in the
editor.

2.1.4.1.0.1.1 Code Files

Code files are created by the compiler and manipulated by the
operating system and system utilities., Code files contain a
mixture of P-code and execution information used by the CPU and
operating system.

Attempts to edit a code file with the editor or display a code file
on the printer or console will fail; the system misinterprets the
code file format as text file information and spews forth a melange
of audio/visual garbage for your entertainment. Code files are
best examined and modified with the Patch and Libmap utility
programs described in chapter 8.

2.1.4.1.0.2 Data Fileg

Data files are created by programs and may have any internal
representation, Except for being constrained to lie within an
integral number of disk blocks, data files have no defined internal
structure whatsoever; they match the Pascal language's definition
of a file as a sequence of arbitrarily structured items.

Page 25

PDQ-3 System User's Manual

2.1.4.1.0.3 System Restrictions Imposed by EFile Types

The editor does not accept files other than text files for editing.
It uses the current suffix of a disk file name to guess its file
type. This method of checking is sufficient for all practical
purposes; however, it can be subverted by changing the suffix of an
existing file name or using the file prompt conventions described
in section 2.1.6.0.

2.1.4.1.1 File Date

The current system date is assigned to a file when it is created or
modified (where "modified" is defined as the replacement of an old
file by a new file of the same name).

2.1.4.1.2 Size and Location Attributes

The length field indicates the number of blocks allocated to a disk
file. The starting block field indicates the absolute block number
of the first block of the disk file (block 0 is the first absolute
disk block). The bytes-in-last-block field indicates the number of
bytes in the last block of the file. This field is always set to
512 for text and code files, because they are created with
block-oriented file operators; only data files have interesting
values in this field.

Page 26

Operating System

2.1.4.2 File Suffixes

File suffixes are separated from file titles by a period. File
suffixes treated specially by the system are shown in the following
table., A file created with one of these suffixes is assigned the
corresponding file type; otherwise, the file is designated a data
file,

Suffix File Type System Uses

. TEXT text file text file identifier
.CODE code file code file identifier

« BACK text file editor backup text file
«BAD data file damaged area of disk

All ,BACK files are created by the system editor. They are
discussed in section 4.0.7. .BAD files are created by the filer
X(amine command. They are discussed in section 3.2.17.

File titles uniquely identify disk files within a directory. The.
system reserves some titles for its own use; these are called
system titles. All other valid file titles are user titles.

System files contain code and data used for system operation; they
are identified by the file title "SYSTEM.<system part name>", The
following table shows all system file titles and their contents:

System File Title File Type Contents

SYSTEM.COMPILER ‘code compiler

SYSTEM.DRIVERS code system I/0 drivers
SYSTEM,.DRVINFO code I/0 drivers information
SYSTEM, EDITOR code editor

SYSTEM.FILER code file handler

SYSTEM. INTRINS code contains intrinsic routines
SYSTEM.LIBRARY code contains user library routines
SYSTEM.LST.TEXT text default program listing file
SYSTEM, MISCINFO data terminal configuration info
SYSTEM,. PASCAL code operating system

SYSTEM, SHELL code system prompt line processor
SYSTEM.STARTUP code user-defined bootstrap program
SYSTEM, SWAPDISK data memory swapped while compiling
SYSTEM, SYNTAX data compiler syntax error text
SYSTEM.WRK, TEXT text work text file

SYSTEM.WRK, CODE code work code file

All code files except for the operating system, intrinsics,
drivers, and 1library are executable code files and can be invoked
from the system prompt with the X(ecute command (see section

Page 27

PDQ-3 System User's Manual

2.1.6). SYSTEM.MISCINFO may be examined and modified with the
Setup and the ASS utilities (section 8.3). Users may add their own
operating system extensions to the SYSTEM.INTRINS or their own
library routines to SYSTEM.LIBRARY using the Library utility
(section 8.2.0). The library system is described in section 2.2,

The SYSTEM.DRIVERS file <contains the code for all system I/0
drivers. The SYSTEM.DRVINFO file <contains the mapping between
physical wunit numbers and the drivers contained in the SYSTEM
.DRIVERS file. These files are modified by the Library and
Drvr.Info utilities described in sections 8.2.0 and 8.4, System
I/0 drivers are discussed in section 2.3.1.

SYSTEM.SHELL is the program which the system automatically executes
at system bootstrap time. It performs all system prompt line
command processing. Replacement of the system shell by a user-de-
fined program is discussed in section 2.3.3.

SYSTEM.STARTUP is a user-defined program which the system shell
executes during the system bootstrap before displaying the welcome
message or system prompt. It 1is used for turnkey applications
programs which do not require other parts of the system.

While bootstrapping, the system searches for SYSTEM.MISCINFO,
SYSTEM.PASCAL, SYSTEM.DRVINFO, SYSTEM.INTRINS, and SYSTEM.DRIVERS
on the system volume only. To locate the other system parts, the
system searches the system volume and then all other online disk
units (ordered by increasing unit numbers) for a disk volume
containing the system titles.

Work files (SYSTEM.WRK.TEXT and SYSTEM.WRK.CODE) exist to speed up
interactive program development; various system parts are automati-
cally invoked when a work file exists, Work files are described in
section 2.4.1.

SYSTEM.SWAPDISK is used by the compiler to save memory during the
compilation of large programs. If the following conditions hold:

1) A 4-block file named SYSTEM.SWAPDISK resides on the same
volume as SYSTEM,COMPILER.

2) An "include" file directive is being processed; therefore, a
disk directory must be read in order to open the "include"
file.

3) There is insufficient memory to read the directory, but the
program's symbol table occupies more than 4K bytes.

«so then the operating system swaps a section of the symbol table
out to the file SYSTEM.SWAPDISK, reads the directory into the
resulting section of memory, opens the "include" file, and swaps
the symbol table back into memory. See section 5.2.,1 for nmore
information.

The default program 1listing file SYSTEM.LST.TEXT is described in
the Programmer's Manual.

Page 28

Operating System

The file names X.CODE, PROFILE,TEXT, S$SEXEC,TEXT, and USERLIB.TEXT
are reserved for system use in addition to the system file titles
enumerated in section 2.,1.4.3.0. The S(ubmit command processor
(chapter 6) is called X.CODE. The PROFILE.TEXT and SEXEC,TEXT
files are used by the command processor as defaults in certain
operations. The USERLIB.TEXT contains a list of user library file
names. It is discussed in section 2.2.3.

User files may have any valid file title other than the reserved
system file titles.

2.1.4.3.3 File Titles with Non-block-structured Volumes

The file system allows the use of serial volume identifiers in
conjunction with non-empty file titles (i.e. Console:.Text) even-
though serial volumes have no directories. 1In this case, the file
title is ignored. This convention allows a system part to append a

standard file suffix to a file prompt response without first having
to determine whether or not the suffix is appropriate. '

When a disk file is created and made available for subsequent I/0
operations, the file system must determine three things: whether
the volume specified has an available directory entry for the new
file, how much disk space to allocate for the new file, and whether
the required disk space is available on the disk. When the 1I/0
operations are complete, the system releases any disk space that
was allocated to but not used by the file; however, while the file
is available for I/0, the system reserves all of its allocated disk
space for growing room. '

Files created without a length specifier are allocated the 1largest
free space on the volume in order to minimize the possibility of
growing files running out of disk space. This causes problems when
a program attempts to create a number of new files on a disk volume
having only one free space available. Although the number of
blocks in the free space might easily contain all of the completed
files, the first file created is allocated all of the available
disk space, thus preventing the creation of other files.

File 1length specifiers change the file system's disk space alloca-
tion strategy in order to avoid problems such as the one described
above. The value of the length specifier is treated as an estimate
of the eventual maximum size (in blocks) of the file. The file
system then allocates the specified amount of disk space for the
file in the first free space 1large enough to contain it, For

Page 29

PDQ-3 System User's Manual

example, the file specifier "[101]" allocates 10 blocks of disk
space in the first 10-block chunk of free disk space.

The file length specifier "([*]" is useful when <creating multiple
files on a single disk; it allocates either half of the largest
space on the disk or the second 1largest space, whichever is
largest.

The file length specifiers "[0]" and "[]" are equivalent to a null
length specifier; they allocate the largest space available.

If a growing file reaches the end of its initially allocated space,
one of two things occurs., If the disk space immediately following
the allocated space is used by an existing file, the file system
reports a system error; otherwise, the space is part of a free
space and the file's allocated disk size is extended into the free
space.

Length specifiers may appear in any file designator; however, they
are ignored by all file operators other than the file creation
operator.

Free spaces are created on disk volumes as a consequence of normal

disk file creation and destruction, Disk free space 1is managed
with the K(runch command described in chapter 3.

Page 30

Operating System

(file designator)

CFile idd T

e (VO lume 14>

{volume 14>

#{number>: 7y >

{volume Name) s

*

{(file id>

<title> - -

b—(suffixdmt [#]—

s [1)] e

€l

All spaces and control characters are ignored, and all lower case
alphabetic characters are mapped into their upper case equivalents,
The following characters should not be used in a file designator:
*s®, "=", "?2", and ",". These characters are treated specially by
the file handler's file name prompts (see chapter 3 for more
details).

The volume identifier may specify a physical wunit by its unit
number ("#<number>:"), a logical volume by its volume name ("<vol
name>:"), the system volume ("*:", "*"), or the prefixed volume (
null, ":"). The volume name may contain any printable characters
except "#" and ":", and has a maximum length of seven characters.

The file identifier consists of a title followed by an optional
suffix and terminated by an optional length specifier. The title
and suffix may contain any printable characters except "["; their
combined maximum length is fifteen characters. A disk file's
directory entry consists of the concatenation of title and suffix;
this entry must be matched exactly by a file designator's title and
suffix in order to locate the disk file.

The file length specifier is delimited by square brackets. The
symbol "m" shown as one of the length specifier options denotes a
positive integer,

Page 31

PDQ-3 System User's Manual

Examples of valid file designators are:

SYSTEM.WRK.CODE []

FOON. TEXT
SYSTEM.COMPILER
FLOPPY:SCRUB.BUB.FOTO(10]

%*

*3

$#12:
PRINTER:
DATA

Page 32

Operating System

This section describes some system-wide conventions for £file name
prompts. Programs developed by users should take advantage of
these conventions in order to be consistent with the rest of the
system.

File name prompts accept file names for one of two purposes:
locating an existing file to use as an input file, or creating a
new file to use as an output file. These operations are imple-
mented with the UCSD Pascal file operators; see the Programmer's
Manual for details and examples.

Input file prompts appearing in the system are one of two kinds:
type checking prompts, and general prompts.

Type checking prompts enforce a weak form of file type checking
(see section 2,1.4.1.0) by expecting only the volume identifier and
file title for input, appending the input with the suffix cor-
responding to the desired type, and opening the input file with the
resulting file designator. It is assumed that the file suffix is a
true indication of the file type; therefore, the file designator
should successfully locate the user's input file only if the user's
file is of the correct type. . Type checking prompts provide a
conventionalized "out": a suffix is not appended if the 1last
character in the input is a period (the period is removed)., For
example, the X(ecute command accepts the file name "SYSTEM.EDITOR."
as a valid input text file name identifying the file "SYSTEM
.EDITOR" rather than trying to X(ecute "SYSTEM.EDITOR..CODE".

General prompts are the more forgiving of the two; they accept any
input as a valid file designator and blithely proceed to open the
file, If the file system indicates the file was not opened
successfully, the proper suffix is appended to the input and the
operation is retried. A variation of general prompts is used by
the compiler's "include" file mechanism (described in the Program-
mer's Manual).

2;1‘54ﬂ41 Qutput Prompts

Output prompts appearing in the system are one of two kinds: good,
and bad.

Good prompts expect only the desired file title, concatenate the
correct file suffix, and create the output file. Examples of good
prompts include the compiler code file prompt and the editor's
output file prompt.

Bad prompts accept any file specification and create the file. Bad

Page 33

PDQ-3 System User's Manual

prompts have a nasty habit of creating data files (instead of files
with the expected type), because users accustomed to good prompts
naively type only a file title as the output file name.

2.1.6.1 File Access from User Programs

This section exists solely to stress that all file system features
and all file prompt conventions described in the previous section
are implemented with the language available to the user; no tricks
are involved., This implies that wuser programs can take f£full
advantage of the file system and prompt conventions for their own
prompts.

Page 34

Operating System

The library system is a collection of pre-programmed routines
available for use by user programs., Groups of related routines are
packaged as units, identified by wunit names of up to eight
characters. Units are are maintained in files called libraries.
There are four libraries in the 1library system, each with a
different function. They include the system library (section
2.2.0), intrinsics library (section 2.2.1), the program library
(section 2.2.2), and the the user library (section 2.2.3). Sample
library system configurations are presented in section 2,2.4. A
program-level description of units appears in section 3.2 of the
Programmer's Manual.

A program must import a unit (with the USES statement) before it
may call any of the routines contained within the unit. The
compiler and the operating system must be able to 1locate each
imported unit in the library system.

At compile time, the compiler searches for each unit imported by
the program. The intrinsics library is searched first. If the
unit is not found there, the search is continued in the program
library, then in the system 1library, and finally in the user
library. This ordering is called the library search path. If a
unit is found on the library search path, the compiler uses it in
compiling the program, and a record of its use is imbedded in the
program's code file; otherwise, a compile error occurs.

At program load time, the operating system searches the 1library
system for each unit imported by a program. If an imported unit
cannot be found on the library search path, a diagnostic message,
"<unit name> not found", is displayed. If a unit is found, a check
is made to determine if the unit has been modified since the
program was compiled. If the unit's current yversion number does
not match the version number required by the program, a diagnostic
message, "<unit name> is wrong version", is displayed. An addi-
tional check is made to determine whether the dynamic variable
allocation mechanisms used in the unit conflict with the mechanisms
used by other units. If there is a conflict, a diagnostic message,
"<unit name> uses wrong heap", is displayed. If all imported units
are found, the program and its units are loaded and executed.

A program requiring an obsolete version of a unit may be "updated"”
by recompiling the program source. An alternate solution is
presented in section 2,.2.2. Unit version numbers and dynamic
variable allocation mechanisms are described in the Programmer's
Manual.

Libraries are maintained using the Library utility described in
section 8.2.0. They may be examined using the Libmap utility
described in section 8.2.1.

NOTE - More than one copy of a unit may exist in the library

system. The first copy found in a library search is used. All
other copies are ignored.

Page 35

PDQ-3 System User's Manual

NOTE - A unit may be stored in a library either with or without its
interface text (described in the Programmer's Manual). A unit's
interface text must be present if the unit 1is imported during a
program compilation. It need not be present if the unit exists
solely for runtime importation. The Library utility can remove
interface texts from library files, thereby saving disk space.

2.2.0 System Library

The system library is contained in the SYSTEM.LIBRARY file. It may
reside on any online volume. The system determines and fixes its
location when the system is bootstrapped or reinitialized. The
system library contains both user-defined units and system-related
units. They are loaded into memory at program load time, and are
unloaded when the program terminates,

The system 1library should contain wunits that are stable and
reliable. Because of the relatively high overhead incurred in
using the Library utility to replace units in the system 1library,
the user library (section 2.2,3) should be used to maintain units
requiring frequent modification.

2.2.1 Intrinsics Library

The intrinsics library is contained in the SYSTEM.INTRINS file on
the system volume, Units residing in the intrinsics library are
treated as user-defined extensions to the operating system. They
are loaded into memory at system bootstrap time, and are resident
throughout the life of the system. Intrinsic units may allocate

data and start tasks that also exist throughout the life of the
system,

Since intrinsic units are located at the beginning of the 1library
search path and are permanently resident in memory, programs that
use them are compiled and loaded very quickly.

Further information on the intrinsic 1library 1is presented 1in
section 2.3.0.2.

WARNING =~ Introduction of faulty units into the intrinsics library
may result in an unbootable system disk.

NOTE - All units imported by intrinsic units must themselves be
intrinsic units.,

"NOTE - The intrinsics 1library should always contain the PROGOPS
unit.

NOTE - The system should be rebooted whenever the intrinsics
library is modified.

Page 36

Operating System

2.2.2 Program Library

The program library is contained in the current program's code
file., Units found in the program library are loaded into memory at
program load time, and are unloaded when the program terminates,

A unit installed in a program library is 'informally referred to as
a "private copy" of the unit. Maintaining private copies of
imported units assures that when a code file is transferred to
another disk volume, all of its imported units are transferred as
wello

Since the program library is searched second in a library search,
programs that maintain private copies of imported units are
compiled and 1loaded faster than programs that use units found in
the system and user libraries.

Recompilation of a program requiring an obsolete version of a unit
may be avoided by installing a copy of the obsolete version in the
program library. Assuming that the current version of the unit |is
not installed in the intrinsics library, the obsolete version will
be found in the program library during a library search.

A program library is constructed by either the compiler (in the
case of inline units -~ see the Programmer's Manual for details) or
the Library utility.

2.2.3 User Library

Thne user library consists of a collectioa . 1individual 1library
files and code files, They are listed by name (including any
'.CODE' suffix) in the user library text file. The user library is
searched by searching each file named in the user library text
file. File names that cannot be opened are ignored., The default
name of the user 1library text file is *USERLIB.TEXT; it may be
changed using the "L=" and "PL=" 1library redirection options
(section 2.4.4.5). User library units are loaded into memory at
program load time, and are unloaded when the program terminates.

The user library should contain units that are frequently updated.
Since the 1library may consist of individual code files, units may
be compiled directly into the library by naming the unit's code
file in the user library text file. This is valuable during unit
development since each execution of a program that imports a unit
(i.e. a unit test suite) uses the current copy of the unit; no
further binding is required. Note that this flexibility carries a
time penalty since the user library is at the end of the library
search path.

The user library text file is maintained by the system editor.

Page 37

PDQ-3 System User's Manual

2.2.4 Library Configuration Examples

The library system may be configured in a number of ways. Some
configurations involve tradeoffs of dedicated memory space, program
load times, disk space economy, and functionality. Other configur-
ations provide unique capabilities. Sample configurations are
presented in sections 2.2.4.0 and 2.2.4.1.

2.2.4.0 Resource Tradeoffs

Several system utilities (e.g. Library, Patch, Drive.Con, etc)
make heavy use of units, particularly the PROGOPS, SCCNTRL,
PATTERNMATCH, NUMCON, SPOOLER, DIRINFO, SYSINFO, and APPPROCS
units. Various tradeoffs are made in placing these units in one
library instead of another..

The library configuration on the Pascal system release disk appears
as follows: :

SYSTEM,INTRINS SYSTEM.LIBRARY

PROGOPS ' COMMANDIO
SYSUTIL
SPOOLER

The rest of the units reside in the program libraries contained in
each utility's code file. Although the 1logistical advantages of
program library usage are realized, the utility code files occupy
much more disk space than is necessary.

Disk usage can be reduced by using the Library program to copy each
unit to either the intrinsics library or the system library, then
to remove each copy of the unit from the utilities' code files., 1If
the units are placed in the intrinsics library, they occupy memory
space during system operation, but the utility programs are loaded
even faster, If the units are placed in the system library,
utility programs are loaded somewhat slower, but disk space is
still liberated.

NOTE - The PROGOPS unit must reside in the intrinsics library.

2.2.4.]1 Unique Capabilities

Certain units have properties that manifest themselves as operating
system extensions when these units are installed in the intrinsics
library. The SPOOLER unit is a good example.

The SPOOLER unit accepts a 1list of text files and prints the
contents of each file on a printer. When the SPOOLER unit is
imported by a program, and it is installed in the system library, a
program library, or the user library, it is resident in memory only
until the program terminates. The operating system prevents
program termination until the SPOOLER unit is no longer active.

Thus, all printing must be complete before another program may be
executed.

Page 38

Operating System

When the SPOOLER unit is installed in the intrinsics library, it is
said to be imported by the operating system; the operating system
may not terminate until the SPOOLER 1is inactive. Programs that
import the wunit, however, may terminate while the SPOOLER is

active. Thus, other programs may execute while printing is in
progress,

Page 39

PDQ-3 System User's Manual

2.3 System Configuration

Many aspects of the Advanced Operating System may be customized or
configured by the user. Users may configure the system to access
new devices by installing either pre-existing or user-programmed
device drivers (section 2.3.1)., The system may be configured to
operate with various terminals by installing either pre-existing or
user-defined terminal information files (section 2.3.2). The
system user interface may be customized by modifying the prompt
line processor (section 2.3.3) or the execution error and break-
point processors (section 2.3.4). Various performance optimiza-
tions may also be applied (section 2.3.5).

2.3.0 Qperating System Libraries

Many operating system customizations involve changes in units
resident in gperating system libraries. These libraries include
the system support library, the drivers library, and the intrinsics
library. (The intrinsics 1library is also a part of the library
system described in section 2.,2)., These libraries contain routines
used to control program execution, provide both high- and low-level
I/0, and miscellaneous system functions.

All operating system libraries must reside on the system disk.
Units are loaded from these libraries in order to boot the system.
All operating system libraries are maintained using the Library
utility described in section 8.2.0.

2.3.0.0 System Support Library

The system support library is contained in the SYSTEM.PASCAL file.
It contains major parts of the operating system including the
system GOTOXY procedure, the execution error and breakpoint pro-
cessors, and overlays that implement floating point 1/0, transcen-

dental function evaluation, extended precision integer arithmetic,
and extended memory management.,

Most of the units contained in this 1library are memory-resident
throughout the execution of the Pascal system. The system overlays
are not memory-resident unless they are called by a running program
(see section 2.3.5). The GOTOXY, execution error, and breakpoint
proce?sors may be replaced by the user (see sections 2.3.2 and
2.3.3).

243.0.]1 Drivers Library

The system drivers library is contained in the SYSTEM.DRIVERS file.
It contains I/0 driver units used by the system in communicating
with system devices. I/0 driver units are discussed in section-
2-3010 N i

NOTE - System I/0 drivers may also reside 1in the intrinsics
library. See section 2.3.0.2 for details.

Page 40

Operating System

2.3.0.2 Intrinsics Library

The intrinsics library is contained in the SYSTEM.INTRINS file. It
contains routines common to both the operating system and user
programs, Each unit contained in the intrinsics library is loaded
and initialized when the system is bootstrapped.

This library must contain the PROGOPS unit., It may also contain
user units. Such units are treated as extensions to the operating
system. See section 2.2.1 for details.

NOTE - System 1I/0 drivers may reside in the intrinsics 1library
instead of the drivers library. Such drivers may be imported both
by operating system units and by user programs.

14g ._, . o

Physical units (section 2.1.2) correspond to I/0 devices., Communi-
cation with I/0 devices is performed by routines organized into 1/Q

units and installed in the drivers 1library (section 2.3.
0.1). The system may be configured to access new devices by
installing I/0 drivers capable of communicating with those devices.

I/0 driver units for several standard devices exist in the
ALL.DRIVERS library file. A partial list of devices supported in
this 1library includes the DEC RL-02 hard disk, DEC RX-02 floppy
disk, DEC TM-1ll magnetic tape, PRIAM hard disk, 5 1/4" Winchesters,
DEC DLV-11 serial port, DEC LPV-1ll parallel printer, PDQ-3 console,
PDQ-3 system clock, and the PDQ-3 floppy driver. Instructions for
programming drivers not contained in this library are provided in
Programmer's Manual.

The Pascal system is configqured to access a new device by
installing the device's I/0 driver unit in the driver library and
specifying its physical unit number in the SYSTEM.DRVINFO file.
The I/0 driver wunit is installed in the driver library using the
Library utility.

New physical unit numbers may be assigned without regard to device
type or function starting at 29 and continuing through 63. Since
unit numbers between 0 and 28 are in common use in many programs,
devices assigned to these numbers should be functionally compatible
with currently assigned devices, A table of existing devices may
be found in section 2.1.2.

Most 1I/0 drivers are capable of communicating with several devices
of the same type (i.e. a floppy driver communicates with several
floppy disk drives). Some I/0 drivers may partition a single
physical device into many logical devices. Each device with which
an I/0 driver communicates is identified by a logical device
pumber. Each driver maintains its own list of valid logical device
numbers, usually beginning with 0. One physical unit number may be
allocated for each logical device number recognized by an 1I/0

Page 41

PDQ-3 System User's Manual

driver.

The correspondence between a physical unit number and a logical
device number of an I/0 driver is established using the Drvr.Info
utility (section 8.4.0). This mapping is maintained in the
SYSTEM.DRVINFO file.

WARNING - Using the Drvr.Info utility to establish a correspondence
to an I/0 driver not installed in the driver library renders a disk
unbootable.

2.3.2 Terminal Configuration

The Pascal system may be used with any terminal that accepts screen
formatting commands and generates Kkeyboard sequences containing
either 1 or 2 characters. The configuration process proceeds 1in
three steps: :

1) Create a SYSTEM.MISCINFO file containing screen formatting
commands used by system utilities, This is done wusing the
Setup utility described in section 8.3.1.

2) Construct the GOTOXY procedure appropriate for the terminal.
This process is described in section 8.3.0.

3) Add to the SYSTEM.MISCINFO file the additional information
necessary to use the system editor. This is done using the
ASS utility described in section 8.3.2.

NOTE - The SYSTEM.STARTUP program on the AOS release disk attempts
to create a work disk containing the correct terminal configuration
for the system terminal. The procedures described above should
only be necessary if the system terminal 1is one for which no
configuration has been provided.

2.3.3 System Shell

A shell is a program the performs user interface functions and is
capable of starting programs in response to user commands., The
SYSTEM.SHELL program, located on the system disk, performs all
system—level user interface and program invocation processing. It
displays the bootstrap welcome message (section 2.4.0) and the
system prompt line. The shell program invokes system programs and
user programs in response to the commands described in section 2.4.

The system shell 1is executed when the system is bootstrapped or
reinitialized. The standard shell immediately checks for the
existence of the SYSTEM.STARTUP program on the system disk. 1If
this program exists, the shell executes it before displaying the
system prompt line. If a startup program does not exist, the shell
prints a welcome message and checks for the existence of the
PROFILE.TEXT command file on the system disk. If the profile
exists, it is S(ubmitted to the command interpreter (see chapter
7). Otherwise, the system prompt line is displayed. The shell

Page 42

Operating System

implements program chaining, workfile execution, and system program
execution,

The standard shell may be replaced by a user-programmed shell
simply by replacing the SYSTEM.SHELL file on the system disk and
either rebooting or reinitializing the system. Details on program-
ming shells are provided in the Programmer's Manual.

The system execution error and breakpoint handlers are programmed
-as units and installed in the system support 1library. The
execution error processor is contained in the EXCEPTION unit, and
the breakpoint processor is contained in the HALTUNIT unit. The
execution error processor is responsible for notifying the user of
an execution error (section 2.0.0). The breakpoint processor
implements the HALT intrinsic described in the Programmer's Manual.
Custom execution error and breakpoint processing may be provided by
reprogramming and replacing these units. Further details are
provided in the Programmer's Manual.

System performance may be improved substantially by judicious
organization of the system files., While some of the optimizations
presented in this section result from reduced compute time, most of
the optimizations involve minimizing the amount of time spent
waiting for the completion of disk I/0O. Most disk I/O time is
spent waiting for the disk read head to become positioned over the
desired disk file; there is a direct relationship between the
distance the disk read head must travel and the duration of a disk
I/0. Since accesses to the bootstrap volume's directory accompany
most disk operations, files <closest to the volume's directory
(located in blocks 2=-5) are accessed in the shortest amount of
time,

The system bootstrap accesses the system support 1library, the
drivers 1library, the intrinsics 1library, and the SYSTEM.DRVINFO
file. The time required to bootstrap the system is minimized when
these files occupy the blocks closest to the bootstrap volume's
directory. 1In addition, the drivers library should be ordered so
that the driver unit most frequently mentioned in the SYSTEM
.DRVINFO file is at the top of the Library utility display.
Subsequent entries should appear in decreasing frequency of usage.
This reduces the compute time necessary to bootstrap the system,

Before displaying the system prompt, the system shell 1loads two
overlays from the intrinsics library. For speedy display of the
system prompt after program termination, the SYSTEM.SHELL file
should be " located close to the SYSTEM.INTRINS file on the boot
disk. Program load time is reduced when the SYSTEM.SHELL and
SYSTEM.INTRINS are located close to the bootstrap volume's directo-
LY.

Page 43

PDQ-3 System User's Manual

The system support library contains overlays that may be 1loaded
automatically when a program is executed. Program load time is
reduced when the system support library is in close proximity to
the intrinsics library and system shell. Note that these overlays,
which include the LONGINTS, HEAPOPS, TRANSCEND, and PASCALIO units,
may be installed in the intrinsics library instead of the system
support library. This causes the overlays to be memory-resident
throughout system execution, thus reducing program load time even
further,

The recommended ordering of system files on the bootstrap disk is:

SYSTEM.MISCINFO
SYSTEM,.DRVINFO
SYSTEM. INTRINS
SYSTEM. SHELL
SYSTEM,DRIVERS
SYSTEM.PASCAL
SYSTEM.FILER
SYSTEM.EDITOR
SYSTEM,COMPILER
SYSTEM,. LIBRARY
SYSTEM. SYNTAX

Page 44

Operating System

2.4 Commands and Operation

This section describes the operating system commands and operation.
Section 2.4.0 explains how to start the system. Work files are
described in section 2.4.1., The system's state flow is described
in section 2.4.,3. Automated invocation of system parts is describ-
ed in sections 2.4.1.1 and 2.4.2. Section 2.4.4 describes all
commands available in the system prompt.

2.4.0 Bootstrapping the System

This section describes how to bootstrap the UCSD Pascal system on
the PDQ-3. Bootstrapping starts by applying power to the PDQ-3 and
ends when the system prompt line is displayed.

The UCSD Pascal system may be bootstrapped from either a floppy
disk drive or a hard disk drive, depending on the system hardware
configuration, The following steps are taken to bootstrap the
system:

1) Both the system console and the PDQ-3 must be powered-up, and
the system console must be connected to the PDQ-3. The PDQ-3
Hardware User's Manual and the system console operator's
manual should be consulted for instructions on first time
operation.

2) A '#' should appear on the system console screen when the
PDQ-3 RESET button is depressed. This is the system monitor
prompt. It indicates that the PDQ-3 1is ready to accept
commands., (The system monitor is described in chapter 7).

3) The bootstrap command may be issued from the system console,
A bootstrap command consists of two digits followed by 'R'.
The first digit indicates the type of bootstrap device, 1If
the system is configured with a hard disk drive, '0' indicates
a hard disk drive, and 'l' indicates a floppy disk drive. 1If
the system has no hard disk drives, the first digit should be
‘o', The PDQ-3 Hardware User's Manual may be consulted for
the exact meaning of this digit for a given hardware configur-
ation, The second digit is the bootstrap drive number (0 for
hard disk drive 0 or the left floppy drive, 1 for hard disk
drive 1 or the right floppy drive).

The system automatically distinguishes between floppies re-
corded in single~ and double~density formats, The floppy
drives are normally configured for single-sided operation at
system bootstrap time. They may be configured for double-
sided operation by adding 4 to the second digit. Note that
PDQ-3 system software is distributed on single-sided media
only. Attempts to access single-sided disks (or double-sided
disks recorded on only one side) in double-sided mode result
in fatal errors. The floppy drives may be reconfigured during
system operation by using the disk type key described in
section 1.4.3.4.

Page 45

PDQ-3 System User's Manual

Examples of bootstrap commands are given below. The hardware
configuration is assumed to contain two floppy drives and a
hard disk drive.

Command Meaning
R Boot from hard drive 0 (floppies
configured single-sided)
4R Boot from hard drive 0 (floppies
configured for double-sided)
10R Boot from floppy drive 0 (floppies
configured for single-sided)
15R Boot from floppy drive 1 (floppies

configured for double-sided)

NOTE - Leading zeroes in the bootstrap command may be omitted.
The system bootstrap is complete when the welcome message is
displayed in the center of the console screen:

Welcome SYSTEM: to

ACD's U.C.S.D. Pascal Version AOS 1.0

Current date is 30-May-82
The system volume name, version, and current system date are
displayed in the welcome message. The system prompt 1line then
appears across the top of the console screen.
NOTE - The reserved file names PROFILE.TEXT (chapter 7) and
SYSTEM.STARTUP (section 2.1.4.3.0) affect the behavior of the
system at system bootstrap time.
NOTE - 1If the welcome message or system prompt seem to be on the
wrong part of the screen, the system may need to be reconfigured
for use with the system console. See section 2.3.2.
NOTE - The system may be rebooted either by pressing the RESET

button or using the monitor key to reenter the system monitor. A
bootstrap command may then be issued.

Page 46

Operating System

2.4.0.0 Bootstrap Failure

Bootstrap failure may result from several causes. Both system
hardware malfunctions and corrupted system software should always
be suspected in cases of bootstrap failure. More common causes
include:

Symptom Possible Cause

Disk reads data, but An attempt has been made to bootstrap
stops abruptly with the Pascal system on a PDQ-3 system
no message for which the software has not been

configured. Consult the factory.

An attempt has been made to bootstrap
a single~-sided floppy disk with the
drives configured for double~sided
operation,

An attempt has been made to bootstrap
a disk that does not contain a
SYSTEM, SHELL file.

An error message An attempt has been made to bootstrap

"Fatal I/O Error" a single-sided floppy disk with the

appears drives configured for double-sided
operation,

An error message An attempt has been made to bootstrap

"Need xxxxxxxx" a disk that either does not contain

appears a SYSTEM.DRVINFO, SYSTEM.DRIVERS,

SYSTEM,PASCAL and SYSTEM,INTRINS file
or those files have been corrupted.

The drivers library does not contain

all drivers enumerated in the
SYSTEM.DRVINFO file.

Page 47

PDQ-3 System User's Manual

2:4.1 The Work File

The work file is a special file which is used as a "scratch" or
"work™ area for the development of programs and documents. It
simplifies program development by reducing the number of commands
required to edit, compile, and execute a program. However, the
work file is temporary by nature, and thus susceptible to impromptu
removal by certain system actions; therefore, the work file
contents may be saved in a named disk file.

Work file operations are described in section 2.4.1.0. The effects
of a work file on system operation are described in section
204.1.1‘0

2.4.1.0 Work Pile Manipulation

The filer commands N(ew, G(et, and S(ave are work file commands.
G(et and N(ew create new work files; if a work file already exists,
it is removed. N(ew creates an empty work file. G(et creates a
work file <containing a copy of the contents of a named disk file.
S(ave saves the contents of the work file as a named disk file.

The work file consists of two parts: the work text file, and the
work code file. The work text file is modified with the editor;
the editor command U(pdate saves the results of an edit session as
the work text file., The work code file may be modified as a result
of compiling a program; the compiler's output may be the new work
code file. The text and code parts of the work file exist
separately; thus, the work file may contain a text file, a code
file, or both text and code files; in the latter case, the code
file is always a direct translation of the current work text file.
The work code file 1is removed whenever the work text file is
updated.

When the work file is updated, it is written to a disk £file named
SYSTEM.WRK. The work text file is named SYSTEM.WRK.TEXT. The work
code file is named SYSTEM.WRK.CODE. These files are always written
to the system volume.

More information concerning work file manipulation may be found in
the sections describing the commands and system parts mentioned in
this section.

2.4.1.1 Work Eile Effects on System Behavior

The editor, and compiler normally request the name of an input
file; however, if a suitable work file exists (e.g. work text file
for the editor), these system parts proceed automatically using the
work file as input.

The system command R{(un executes the current work file. If only a
work text file exists, the R(un command invokes the compiler to
compile the work text file into the work code file. The new work
code file is then executed. All this takes place without requiring

Page 48

Operating System

the user's attention (though rapturous awe is suggested).

NOTE - Typing R(un when no work file exists invokes the compiler,
which then prompts for the name of an input file.

A formal specification of system behavior with respect to work
files is presented in section 2.4.3.

When the compiler detects a syntax error in a source file, the user
is given the choice of continuing compilation, aborting compila-
tion, or fixing the error by invoking the editor. If the latter
choice is made, the system automatically enters the editor and
displays the name of the work file. Responding with a <carriage
return> informs the editor that the file name is correct. It then
allows the user to jump to the site of the compilation error. If
the source file being compiled is not the work file, the editor
displays its input file prompt; it is necessary £for the wuser to
type the <correct file name in order to pinpoint the error in the
text.

' . . . L

This section presents a formal description of all system states
along with the actions required to reach them. Words enclosed in
parentheses denote conditions that must be satisfied if the ensuing
state path is traversed. The 1list below the diagram contains
system action descriptors, system conditions, and definitions

relevant to the state diagram. The state flow diagram is on the
next page.

Page 49

PDQ-3 System User's Manual

Sysboot B~
—(startup) —™—Sysprog ——"
!——JProfileﬁq-—SYSp:og >

Getcmd —= -

—(I)—=—Sysinit -

——4stattupr—-——5ysprog—J

—(H)——Syshalt *

——(M)——Memory —
—(C)—»—Componly)

———(e:ror)—q-—-Sysptog-J
—(F,E,X,U,S)—s»—Sysprog -
(R}t (has code)—»—Sysprog —

——(no code)—-——Comp&go——-]

(error)—=—Sysprog ——
l—(others)—»—Clearscreen

Note: "(error)—»—Sysprog"” sequénce invokes the editor.

Descriptor
Sysboot
Sysinit
Syshalt
Getcmd

Clearscreen

Sysprog
Componly
Comp&go
Memory
(startup)
(profile)
(<letter>)
(others)
(has code)
(no code)
(error)

Definition

system bootstrap

system reinitialization

system halt

system prompt displayed

console display cleared

system/user program invocation

invoke compiler only

invoke compiler and run work file
available memory space is reported
SYSTEM.STARTUP code file on system volume
PROFILE.TEXT command file on system volume
system prompt command received
non-command character received

work code file exists

work file is text only

compiler syntax error

Page 50

Operating System

2.4.4 1/0 Redirection Qptions

In general, a program accepts input and produces output. A program
may receive data from several sources, including the gtandard
input, the file system, or system devices. It may send data to
several destinations, including the standard output, the file
system, or system devices., 1In addition, routines provided by the
library system may be used during a program's execution. 1I/O
redirection options are used to modify accesses to the standard
input, standard output, file system, and library system without
modifying the program itself. They are specified by the user at
program execution time, '

File System

I

Standard Input Standard Output
(keyboard) ""”'{‘¥ Program — f——m (screen) P

Library System

An Jjnput sStream is used to satisfy read requests to the standard
input. The default input stream consists of characters read from
the system console keyboard. JInput redirection options may desig-
nate disk files and/or serial volumes as input streams which
supercede the existing input stream., When an input redirection
option specifies more than one file, the resulting input stream
consists of the concatenation of all of the specified files (i.e.
when one file is exhausted, input is taken from the next file).
When an input stream is exhausted, input requests are satisfied by
the original input stream.

Input Stream A Program

‘Standard Input
Input Stream B

Input Stream x

|

Prior Streams

Page 51

PDQ-3 System User's Manual

An output stream is used to satisfy write requests to the standard
output. The default output stream consists of the system console
screen. Qutput redirection options may designate disk files and/or
serial volumes as output streams which supercede the existing
output stream. When an output redirection option specifies more
than one file, the resulting output stream consists of the first
file, followed by the next file, etc., When one file 1is £filled,
output continues to the next file. When an output stream is full,
output operations are performed on the original output stream.
Note that data read from the standard input is normally echoed to
the standard output by the system.

Program »4 Output Stream A
Standard Output

OQutput Stream B

Output Stream x

Prior Streams

A t-file is used to generate a copy of an input stream or an output
stream. T-files connected to the standard input receive a copy of
all data read from the input stream. T-files connected to the
standard output receive a copy of all data written to the output
stream. JI-£file options designate disk files and serial volumes as
t-files., When a t-file option specifies more than one t-file for a
given stream, all t-files receive copies of the same data in
parallel.

Standard Input - Program s Standard Output
—= Input T-=File L Output T-File
-— Input T-File o Output T=File

etc. etc.

The file system prefix indicates the default volume during accesses
to the file system in cases when no volume name is specified (see
section 2.1.3.4). Prefix options specify a new file system prefix.
The wuser library contains a list of library file names which the
operating system may open while preparing a program for execution
(see section 2.2.3). Library options specify a new user library

Page 52

Operating System
file name.,

2.4.4.0 Execution Option Lists

An execution option list is a sequence of I/0 redirection options
and/or a program name., It may contain input redirection options,
output redirection options, t-file options, prefix options, library
options, and/or a program name, Execution option lists are used as
arguments in the invocation of a program (e.g. with the prompt
line X(ecute command, the Chain intrinsic, and the ProgCall and
ProgSetup intrinsics -- see the Library User's Manual for details).

I/0 redirection options are specified by an option identifier and a
list of file names, volume names, and literal strings. A list may
contain a single blank at the beginning (to separate it from the
option identifier). List elements are separated by either commas
or semi-colons, and the list is terminated by one or more blanks.
Literals are delimited by '"'s, and imbedded commas are converted
into carriage returns., A '"' may be specified inside a literal by
temt, Literals are useful only in input redirection 1lists; they
are ignored elsewhere. In cases where an option identifier list
occurs more than once in an execution option list, the associated
file name lists are concatenated, separated by commas.

Examples of execution option lists:
p= #5:
prose p=#5: o=foon.text,*foon.text i=script.text to=#1l:
*System.shell, pi=inp.text po=bucket: ti=script.text;remout:
Syntax for execution option lists:
<execution-option-list> ::= [<program-name>](<option-list>]
{program—-name> ::= UCSD Pascal program name (without .Code)
<option-list> ::= <redir-option>{{" "}<redir-option>}
<redir-option> ::= <option-name>=[" "]<file-list>
<file~list> ::= <file-name>{<file-delim><file-name>}
<file-name> ::= UCSD Pascal file name

<file-delim> ::= , |

-

<option-name> ::= 0 | I | TO i TI | P | L |
o | PI | PTO | PTI | PP | PL

Page 53

PDQ-3 System User's Manual

The following table 1lists each redirection option. Options are
listed in the order in which they are processed before program
execution.

Option Name Redirection Option
P, PP Prefix volume (section 2.4.4.4)
L, PL User library name (section 2.4.4.5)
I, PI Input redirection (section 2.4.4.2)
TI, PTI T-file on input (section 2.4.4.3)
0, PO Output redirection (section 2.4.4.1)
TO, PTO T-file on output (section 2.4.4.3)

2.4.4.1 Output Redirection Qptions

The O= and PO= redirection options accept lists containing file
names and volume identifiers. At program execution time, each file
is opened for output. The resulting output stream consists of all
files that were successfully opened; files that could not be opened
are ignored. All files comprising the output stream are closed
after the program terminates.

The O= and PO= options each create an output stream. The stream
specified by the O= option is created before the stream specified
by the PO= option. Thus, the stream created by the PO= option
supercedes the stream created by the O= option.

Bxample‘of output redirection option use:

O=Foon,Text, #10:Farkle,.Text PO=Freep.Text[5],
3CharactersTooLong

An output stream consisting of the files Foon.Text and #10:Farkle
.Text is constructed as a result of the O= option. Next, an output
stream consisting of the file Freep.Text is constructed (3Charac-
tersTooLong cannot be opened, so it is ignored). The first five
blocks of program output are written to Freep.Text, then output is
directed to Foon.Text, and then to Farkle.Text, If Farkle.Text
becomes full, the output stream existing before the creation of the
O= stream is used. This is normally the system console screen
unless the standard output was redirected prior to program execu-
tion (see section 2.4.4.5).

NOTE - A serial volume cannot be filled. Therefore, files
following a serial volume in the output stream will never be used.
Output to the BUCKET: serial volume is thrown away. This volume
may be used to execute a program without viewing its output.

NOTE - Programs normally write to the pre-declared file variable,
OUTPUT, in order to write to the standard output. The same effect
may be achieved by writing to the STANOUT: serial volume. Output
redirection may be performed only on programs that write to either
the pre-declared file variable, OUTPUT, or to the STANOUT: serial
volume, Note that including the STANOUT: serial volume 1in an
output stream has no effect. See the Programmer's Manual for

Page 54

Operating System
details.

2.4.4.2 Input Redirection Options

The I= and PI= redirection options accept 1lists containing file
names, volume identifiers, and 1literals, At program execution
time, each file is opened for input. Temporary files containing
literals are also created. The resulting input stream consists of
all files that were successfully opened; files that could not be
opened are ignored. All files comprising the input stream are
closed after the program terminates.

The I= and PI= options each create an input stream., The stream
specified by the I= option is created before the stream specified
by the PI= option. Thus, the stream c¢reated by the PI= option
supercedes the stream created by the I= option.,

Example of input redirection option use:
I=Krap.Text PI="FirstlInp,",Kook.Text,"5",Kreep.Text

An input stream consisting of the contents of the Krap.Text file is
created as a result of the I= option, Next, an input stream
consisting of the 1literal "FirstlInp<cr>", the contents of Kook
.Text, the literal "5", and the contents of Kreep.Text is created.
When the input stream constructed for the PI= option is exhausted,
the contents of Krap.Text is used. If Krap.Text is exhausted, the
input stream existing before the creation of the I= stream is used.
This is normally the system console keyboard unless the standard
input Yas redirected prior to program execution (see section
2.4.4.5 L J

Files comprising an input stream may be generated by a program, by
a t-file option (section 2,.4.4.3), or by the system editor.

NOTE - A serial volume cannot be depleted. Therefore, files
following a serial volume in the input stream will never be used.
Reads from the BUCKET: serial volume return <eof>, This volume may
be used to provide a constant null input.

NOTE - Programs normally read from the pre-declared file variables,
INPUT and KEYBOARD, in order to read from the standard input. The
same effect may be achieved by reading from the STANIN: serial
volume, Input redirection may be performed only on programs that
read from either the pre-declared file variables, INPUT and
KEYBOARD, or from the STANIN: serial volume. Note that including
the STANIN: serial volume in an input stream has no effect. See
the Programmer's Manual for details.

2.4.4.3 T-File Options
The TI=, TO=, PTI=, and PTO= t-file options accept lists containing

file names and volume identifiers. At program execution time, each
file is opened for output; files that could not be opened are

Page 55

PDQ-3 System User's Manual

ignored. All t-files are closed after the program terminates,

The TI= and PTI= options create t-files attached to the standard
input. The TI= option is processed before the PTI= option. The
TO= and PTO= options «create t-files attached to the standard
output., The TO= option is processed before the PTO= option.

Example of t-file option use:
TI=Script.Text TO=Printer:,Copy.Text

All data read from the standard input 1is copied to the file
Script.Text. This copy may be used to <c¢reate an input stream
(using the 1I= option) in order to duplicate the current input
stream for subsequent executions of the current program or for
later analysis. All data written to the standard output is written
both to Printer: and to Copy.Text. Note that this includes all
data read from the standard input and echoed to the standard
output. Therefore, output t-files contain an exact record of
program execution,

NOTE - Note that naming the STANOUT: serial volume as a t-file has
no effect.

WARNING - When a t-file is full, the program is interrupted with
I/0 execution error 8 ("No room on vol"), A serial volume cannot
be filled.

2.4.4.4 Prefix Options

The P= and PP= prefix options set the file system prefix to a
specified volume identifier (similar to the P(refix command in the
Filer =-- see section 3.2,10). The volume identifier may contain up
to seven characters; a trailing ':' is optional. The PP= option
sets the file system prefix only for the duration of the program
execution. The prefix then reverts back to its original value,
The P= option sets the prefix permanently. When both the P= and
PP= options are used, the prefix is determined by the PP= option
during program execution, and by the P= option thereafter.

Example of prefix option use:
~ P=#10: PP=*
NOTE - An execution option list may contain a P= option without

containing a program name. In this case, the file system prefix is
set according to the P= option and no program is executed.

2.4.4.5 Library Qptions

The L= and PL= library options set the user library name (section
2.2.3) to a specified file identifier. The file identifier may
contain up to 23 characters; a trailing '.Text' suffix must be
supplied if the user library is a text file. The PL= option sets

Page 56

Operating System

the user 1library name only for the duration of the program
execution, The 1library name then reverts back to its original
value. The L= option sets the library name permanently. When both
the L= and PL= options are used, the library name is determined by
the PL= option during program execution, and by the L= option
thereafter. ~

Example of library option use:
L=MyLib.Text PL=#10:0therLib.Text

NOTE - An execution dption list may contain a L= option without
containing a program name. In this case, the user library name is
set according to the L= option and no program is executed.

2.4.4.5 System I/Q Redirection

With the exception of the L= and P=, all redirection options act
only during the execution of a single program. Since the system
prompt 1line processor (*System.Shell, see section 2,3.3) is itself
a program, I/0 redirection may be applied to a series of programs

by re-executing the prompt 1line processor using redirection op-
tions.

For example, three programs could be executed sequentially with
preprogrammed input and a copy of the output going to both the
console and the printer. This is performed using the following
execution option list:

*System.Shell., I="xRichProg,",RichInp.Text,
*xJoelProg, ",JoellInp.Text,"H" TO=Printer:

The system command processor, *System.Shell, is re-executed. The
Printer: is opened as an output t-file. The input 'xRichProg<cr>'
invokes the e(Xecute command and executes the RichProg program.
The input stream is then provided by the RichInp.Text file, The
JoelProg program is then executed in a similar fashion. Finally,
the command processor execution is terminated by invoking the H(alt
command. Note that 1in this example the contents of the RichInp
.Text and JoellInp.Text files must correspond exactly with the
respective program input requirements; otherwise, the intended
input stream for the next program is affected. A safer way of
calling these programs is:

*System.Shell. I="xRichProg I=RichInp.Text;Console:,
xJoelProg I=Joellnp.Text;Console:, H"
TO=Printer:

In this case, if the RichInp.Text file provides more data than

RichProg requires, the excess data is ignored. If it does not
provide enough data, additional data is accepted from Console:.

Page 57

PDQ-3 System User's Manual

2.4.5 System Commands

This section describes the commands available from the system
prompt. Commands are either completely specified herein or have a
partial specification and a reference to another chapter in the
manual.

The system prompt line has the following form:

Command: X(ecute, S(ubmit, R(un, F(ile, E(dit, C(omp,
M(emory, H(alt, ? (1.0l

The system's release version is enclosed in brackets at the end of
the promptline. Typing "?" displays the remaining commands:

Command: U(ser restart, I(nitialize

Typing "?" again displays the original prompt line.

Page 58

Operating System

2.4.5.0 Clear Screep

All non-command characters are defined as clear screen commands in

the system prompt; typing them clears the screen of all characters
and redisplays the system prompt.

Page 59

PDQ-3 System User's Manual

2.4.5.]1 C(ompile

Executes the program SYSTEM.COMPILER. The compiler translates a
Pascal source program into a code file. If the £file *SYSTEM.WRK

.CODE does not already exist, the resulting code file becomes the
new work code file.

If a work text file is present, it is used as the source file;
otherwise, the compiler prompts for the source and code file names.
Both file prompts expect only the wvolume and file title to be
typed; the file suffixes are automatically appended. The code file
prompt has some unique features, Typing <return> names the code
file *SYSTEM.WRK.CODE[*] and it becomes the new work code file.
Each occurance of the "$" wildcard is replaced by the name of the
source file (without its volume designator).

Compiler operation is described in chapter 5.

Page 60

Operating System

224.5.2 E(dit

Executes the program SYSTEM.EDITOR.

The editor creates and modi-
fies text files.

If a work text file is present, it is used

as the default input
file.

Otherwise, the editor prompts for the name of an input file.

Editor commands are described in chapter 4.

Page 61

PDQ-3 System User's Manual
2.4.3.3 E(ile

- Executes the program SYSTEM.FILER. The file handler 1is wused to
manage disk files and disk volumes,

NOTE - Once the filer prompt appears, the system disk may be
removed or replaced with another disk volume; however, it must be
remounted before leaving the filer,

Filer commands are described in chapter 3.

Page 62

Operating System
2:.4.5.4 H(alt

Stops the system and shuts down all I/O devices. The only way to
restart the system is to reboot (see chapter 7 and section 2.4.0).

Page 63

PDQ-3 System User's Manual

Causes the system to reinitialize all of 1its state information.
This involves termination of all nested shells and initialization
of all online I/0 devices and system data structures. System
programs are searched for and located on online disk volumes. 1If
the code file SYSTEM.STARTUP exists on the system volume, it is
executed before the system prompt appears. SYSTEM.STARTUP is
described in section 2.1.4.3.0

Page 64

Operating System

224.5.6 M(emory

Reports the amount of free memory left over after memory has been
allocated for the global data of the most recently executed
program. The greatest amount of memory is reported immediately

after the system has booted or been reinitialized, when no program
globals are allocated.

Page 65

PDQ-3 System User's Manual

2.4.5.7 R{un

Executes the work code file. 1If the work code file does not exist,
the compiler is automatically invoked. The behavior of the R(un

command with respect to work files is described in sections 2.4.1.1
and 2.4.3.

Page 66

Operating System

2.4.5.8 S{ubmit

Executes the program X.CODE on the system volume. X.CODE is
assumed to contain the command file interpreter program, which is
used to process command files.

Command file specification and operation are described in chapter
7.

Page 67

PDQ-3 System User's Manual

2.4.5.9 U(gser restart

Reexecutes the last program. This command does not work immediate-
ly after system bootstrap or reinitialization.

Page 68

Operating System

2.4.5.10 X(ecute

Executes the specified code file.

X(ecute prompts for an execution option list (section 2.4.4.0)
containing a code file name, The file suffix ".CODE" is automati-
cally appended to the file name.

Page 69

PDQ-3 System Reference Manual

Page 70

File Handler

1Il. IHE FILE HANDLER

The file handler (referred to as the "filer") manages work files,
disk files, disk volumes, and disk media. The file system is
closely tied to filer operation, and should be thoroughly under-
stood before using the filer; the file system 1is described 1in
Chapter 2, Section 3.0 describes the filer's prompting peculiari-
ties. Section 3.1 describes the file naming conventions that apply
to filer prompts, and introduces the "wildcard" concept; wildcards
allow a single file designator to specify several disk files, and
thus a single filer operation to manipulate several files at once.
Section 3.2 describes the filer commands; the command summary
groups the commands by their function, while the alphabetically
ordered list describes each command in detail. Sections 3.3 and
3.5 describe methods for recovering inadvertently removed disk
files and directories.,

3.0 Filer Prompts
The filer's promptline has the following form:

Filer: G(et,S(ave,W(hat,N(ew,L(dir,R(em,C(hng,T(rans,D(ate,
Q(uit(l1.0]

The remaining commands are displayed by typing "?":

Filer: B(ad-blks,E(xt-dir,K(rnch,M(ake,P(refix,V(ols,X(amine,
Z(eroll.0]

Typing "?" again causes the original promptline to reappear.

In the filer, responding to "yes/no" questions with any character
other than "Y" or "y" constitutes a negative response. Typing
<escape> as a response to any data prompt aborts the current
command and returns control to the filer prompt.

Many filer commands require one or two file names. Whenever a
filer command requests a file name, the user may specify as many
files as desired by separating each file name with commas and
terminating the list with a carriage -_turn. Commands operating on
single files read the names from the list and operate on them one
at a time until there are none left., Commands requiring two file
names (e.g., C(hange and T(ransfer) take them from the list in
pairs until one or none remain; if one file name remains, the filer
prompts for the second. 1If an error occurs while operating on the
list (such as an invalid file name), the remainder of the 1list is
not processed,

Page 71

PDQ-3 System Reference Manual
3.1 File Naming Conventions
3.1.0 General Syntax

The £filer accepts standard syntax for file names (see section
2.1.5). All filer commands except for G(et and S(ave require
complete file names, including file identifier suffixes; G(et and
S(ave automatically append file suffixes to the specified file
title.

The "$" character is treated specially when used in a file name; it
is applicable only to filer commands which operate on pairs of file
names., When used in the second file name, a "$" represents the
file identifier in the first file name. For example:

Transfer what file? *BUCKS.TEXT,#5:§

«es transfers the file "BUCKS.TEXT" on the system volume to the
disk volume mounted in disk unit 5. The filer substitutes the
string "BUCKS.TEXT" for the "$" character.

Volume identifiers normally require a trailing ":" character to
differentiate them from file identifiers; however, filer prompts
accept volume identifiers of the form "#<number>". This feature
applies only to volume identification and not to disk file
designation.

d.1.1 HWildcards

The characters "=" and "?" are treated specially when used in a
file name; they are called "wildcard" characters because of their
ability to make a single file designator specify many disk files.
Wildcard characters are used in conjunction with partially speci-
fied file identifiers in order to match a subset of all the file
names in a given directory. For example, a file designator
containing the file identifier "SYS=TEXT" notifies the filer to
perform the requested operation on all files whose names begin with
the string "SYS" and end with the string "TEXT".

Wildcard file identifiers are constrained to match this form:
<string>=<string>

The metasymbol <string> represents a sequence of valid file
identifier characters. Either or both strings may be empty; thus,
"=<string>", "<string>=", and "=" are valid wildcard forms., In the
last case, where both strings are empty, the filer acts on every
disk file in the specified volume's directory.

The character "?" may be used in place of "=" as a wildcard. n2n
is functionally equivalent to "="; however, for each file that
matches the wildcard specification, the filer issues a verification
prompt before performing the requested operation.

Page 72

File Handler

Here are some examples of the use of wildcards:

Transfer what file? #4:SYSTEM.=,ALTDISK:=,.CODE
This response transfers all system files to the online volume named
"ALTDISK"; in addition, the system files appear as code files on
ALTDISK. For instance, SYSTEM.FILER becomes FILER.CODE.

Remove what file? *?
This response generates a series of prompts of the form:

"Remove <file name>?"

coe where <file name> is the name of a disk file on the system

volume. The number of prompts generated equals the number of disk
files on the system volume. For each prompt, typing "y" or "Y"
removes the named file; typing any other key except <escape>
preserves the file and generates the prompt for the next disk file;
typing <escape> aborts the entire R(emove command.
WARNING - In some cases, wildcards may fail to match valid file

names, Section 3.2.,14.2 describes some other problems associated
with the use of wildcards,

3.2 Filer Commands

Section 3.2.0 organizes the filer commands by function and is
useful as an overview and cross reference. Sections 3.2.1 through
3.2.18 describe each command in detail; the commands are arranged
in alphabetical order.

3.2.0 Filer Command Summary

Q(uit - leave the file handler and return to the system prompt.

Work files are described in section 2.2.1. These filer commands
manipulate work files:

G(et - Create a new work file (containing the contents of an
: existing file).

S(ave - Save the work file contents in a disk file.
N(ew - Create a new work file (empty).

W(hat - Display the name and status of the work file.

Page 73

PDQ-3 System Reference Manual

322.0.1 Digk File & Volume Commands

Disk volumes and files are described in section 2.1. These filer
commands manipulate disk files and volumes:

C(hange - Change the name of an existing disk file or volume.

T(ransfer - Transfer a disk file to another 1location on its
disk wvolume or to another wolume. Transfer an entire
disk volume to another disk volume.

R(emove - Remove a disk file,

M(ake = Create a disk file.,

3.2.0.2 Disk Volume Commands

These commands manipﬁlate disk volumes only:
L(dir - List the contents of a disk directory.
E(xt-dir - List the complete contents of a disk directory.
D(ate - Change the system date.

K(runch - Remove all free disk space between existing disk
files.

P(refix - Change the current prefixed volume name.
V(olumes - Display the volume names of all online volumes.

Z(ero - Initialize a disk volume by removing all existing file
entries.,

3.2.0.23 Disk Media Commands
These commands check for and repair damaged areas of disk media.

B(ad blocks - scan a block=-structured unit for damaged disk
blocks.

X(amine - Examine and attempt to repair damaged disk blocks.

Page 74

File Handler

3.2.1 B(ad blocks scan

Scans a disk for blocks that do not store information reliably.

The filer prompts for the volume to be scanned. Then it prompts:
Scan for <total blocks on volume> blocks? (Y/N)

Typing 'Y' begins a block-by-block scan of the entire volume;
typing 'N' generates the prompt:

Scan for how many blocks?
Typing a number between 1 and the total number of blocks on the
volume begins a block-by-block scan starting at block 0 and
continuing for the number of blocks specified.
During the scan, each block of the named disk is checked for
problems. If the block is bad, a warning message containing the
block number is printed out.

Bad blocks are either repaired or permanently marked bad with the
X (amine command.

Scanning for bad blocks is performed much more conveniently with
the utility program Bad.Blocks (section 8.0.4).

Page 75

PDQ-3 System Reference Manual

3.2.2 C(hange
Changes the name of a disk file or disk volume.

This command requires two file names: the name to be changed, and
the new name. The first is separated from the second by either a
{return> or a comma.

When changing the name of a disk file, a volume identifier or
length specifier in the second file name is ignored. A file name
is not changed if the new name exceeds 15 characters; instead, an
error message is printed.

Wildcard specifications are legal with this command., If a wildcard
character is used in the first file name, then it must be used 1in
the second; the strings matched by the first wildcard are substitu-.
ted for the second wildcard.
Example of changing a disk file name:

Change what file? DUMP:=,BACK,=,TEXT

This response changes all backup files on the disk volume named
DUMP to text files.

When changing the name of a disk volume, a file identifier in the
second file name is illegal. A volume name is not changed if the
new name exceeds 7 characters; instead, an error message is
printed.
Example of changing a disk's volume name:

Change what file? #4,WORK:

This response changes the name of the disk volume mounted in drive
4 to "WORK".

Page 76

File Handler

3.2.3 D(ate

Displays the current system date, and allows the date to be
changed.

Prompt: Date Set: <l..31>-<Jan..Dec>-<00,..99>
Today is 30-Feb-81
New date?

New date entries have the following form:
[<new day>[-<new month>[-<new year>l]]l<return>

Typing <return> preserves the current date, The metasymbol <new
day> is an integer between 1 and 31. <new month> is the first
three characters of the month's name (extras are ignored). <new
year> is an integer between 0 and 99, denoting the last 2 digits of
a year in this century.

NOTE - "/" may be used as an alternate character to the "-"
delimiter shown above.

The current date is saved in the system's information file and is
displayed in the welcome message and the D(ate command. When disk
files are created or modified, the system assigns the current
system date to the file; file dates are displayed by the directory
listing commands L(dir and E(xt-dir.

Page 77

PDQ-3 System Reference Manual

3.2.4 E(xtended list
Lists a disk directory in more detail than the L(dir command.

All files and unused areas are listed; the fields displayed (in
order) are: file name, file 1length (in blocks), date of file
creation or last modification, starting block address (relative to
disk), number of valid bytes in the last block of the file, and
file type. Only the block length and starting address fields apply
to unused areas of disk.

This command is identical to the L(ist directory command with
respect to listing options and wildcards.

Example of an extended directory listing:

STUFF:

WONIT.TEXT 4 15-Jan-81 10 512 Textfile
DIRT.CODE 6 10-Jan-81 14 512 Codefile
< UNUSED > 12 20

SINS3A.TEXT 48 5-Jan-81 32 512 Textfile
UROSE.CODE 33 24-May-80 80 512 Codefile
CROSS3.CODE 35 26~=Nov-80 113 512 Codefile
KANT.TEXT 32 12-May-81 148 512 Codefile
SELL.DATA 16 15-Jan-81 180 314 Datafile
< UNUSED > 298 196

7/7 files<listed/in=-dir>, 184 blocks used, 310 unused,
298 in largest

Page 78

File Handler

3.2.3 G(et

Assigns a new work file. The work file initially contains a copy
of the contents of the specified text file.

If a work file exists, but is not saved, this prompt appears:

Throw away current workfile?
Typing "y" proceeds with the command, removing the current workfile
and its backup. Typing any other character aborts G(et, preserving
the current work file.
The following prompt appears:

Get what file?
The file name does not require a suffix; it is appended by the G(et
command. The file name designates a text and/or code file as the
work file.
NOTE - G(et does not create a work file. If the work file
SYSTEM.WRK exists, it is removed. The specified disk files become
the source of the new work file.

Work files are described in section 2.4.1.,

Page 79

PDQ-3 System Reference Manual

3.2.6 Klrunch

Merges all unused disk space into a single contiguous unused area.
This is done by moving all disk files to one end of the disk or the
other, depending on the "starting block"™ of the crunch. The
starting block is specified by the user. Files preceding the
starting block are moved to the beginning of the disk; files
following the starting block are moved to the end of the disk. The
E(xt-dir command is useful in determining the starting block of a
file. Note that starting a crunch at the end of the disk moves all
- files to the beginning of the disk.

Before crunching a disk volume, be sure to perform a B(ad blocks
scan; files can be lost by writing them on top of unmarked bad
blocks on the disk. If found, bad blocks must either be fixed or
marked with the X(amine c¢ommand before crunching the disk; the
K(runch command carefully avoids disk blocks already marked as
"bad".

NOTE - 1If the SYSTEM,PASCAL, SYSTEM,INTRINS, SYSTEM.DRIVERS, or
SYSTEM.SHELL files are moved while K(runching the system disk, the
system must be rebooted after the K(runch.

WARNING - Nothing must happen to the system while a crunch is in
progress. Interrupting a disk crunch may ruin the contents of a

disk volume; therefore, the following steps should be taken while
crunching:

1) Do not type ahead any system commands during a crunch.
2) Do not disturb any of the online disk volumes.

3) As much as is possible, prevent accidental power-down of the
system,

Example of using K(runch:
Crunch what vol? #5

The user has specified the crunching of the disk volume in drive 5,
generating the following prompt:

From end of disk, block <last block> ? (Y¥/N)

A 'Y' response initiates the crunch from the end of the disk. An
'N' response generates the following prompt:

Starting at block # ?

Typing any Dblock number between 1 and the last block of the disk
initiates a crunch which moves all files preceeding that block to
the beginning of the disk, and all files following that block to
the end of the disk.

Page 80

File Handler

3.2.7 L(ist directory

Lists all, or some subset of, the files in the disk directory of
the specified disk volume. The directory listing may be displayed
on the console or written to a file.

The list command displays this data prompt:
Dir listing of what vol?
Responses have the following form:
[<volume id>(file identifierll(,[<file name>]]

The optional volume field specifies the disk volume whose directory
is to be listed; its default value is the current prefixed volume.
When the optional file identifier is used, the directory 1listing
contains only the files whose names match the given file identifier
(wildcards are used here to designate a group of similar file
names) .

The optional file name field specifies the name of the file to
which the directory listing is to be written; its default value
sends the listing to the standard output,

The directory 1listing consists of a list of file entries followed
by some disk status information., A file entry contains a file's
name, length (in blocks), and last date of access. (The E(xt-dir
command displays more file information.) The status information
includes the number of files listed versus the total number in the
directory, the number of blocks used by existing disk files, the
total number of unused blocks, and the number of contiguous blocks
in the largest unused space.

The most common use of this command is to 1list an entire disk
directory to the console; when the listing is too long to fit on
the screen, the following prompt appears after a screenful of file
entries:

Type <space> to continue

Typing <space> causes the rest of the listing to be displayed.
Typing <escape> aborts the listing command.

NOTE - When listing a directory to a file contained on the volume

being 1listed, the list file appears as a very large temporary file
(date = 100).

Page 81

PDQ-3 System Reference Manual

Some examples of directory listing responses:
Dir listing of what vol? ,
g;éoiisting of what vol? :
eees list the directory of the prefixed volume.
Dir listing of what vol? *SYSTEM=
eee lists all of the system files on the system volume.
Dir listing of what vol? #4:=,TEXT,MYDISK:DLIST.TEXT
eee lists all of the text files on the disk volume in drive 4 and
writes the listing to the text file "DLIST.TEXT" on the online disk
volume "MYDISK".

An example of a directory listing:

STUFF:

WONIT.TEXT 4 15-Jan-81
DRATIT, TEXT 48 5-Jan-81
SPOSE.CODE 33 24-May-80
UROSE3 .CODE 35 26=Nov-80
CONT. TEXT 16 15-Jan-81
KARS.TEXT 18 S=Jan=-81
SIMPLE, TEXT 8 3-May-81

7/7 files<listed/in=-dir>, 172 blocks used, 322 unused,
280 in largest area

Page 82

File Handler

2.2.8 M(ake

Creates a disk file with the specified file name.

File length specifiers are extremely useful in conjunction with
this command; they specify the length of the file to be created,
and indirectly determine the location of the file on the disk.

Sections 3.3 and 3.4 describe applications of this command, which

include the recovery of lost files and the manipulation of existing
disk files and free spaces,

Some restrictions exist with respect to the creation of text files.,
A text file must be created with an even number of blocks and
contain a minimum of four blocks., Text files specifying a 1length
of 1less than four blocks are not accepted, and odd block lengths
are rounded down to the closest even number.
Wildcards are not allowed.
Example of using the Make command:

Make what file? *STUFFI(7]

«ss CcCreates the data file "STUFF" in the first
unused 7-block area on the system volume,

Page 83

PDQ-3 System Reference Manual

3.2.9 N(ew

Creates a new work file. The new work file is empty.

If a work file exists, but has not been saved, this prompt appears:
Throw away currea. workfile?

Typing "y" or "Y" removes the work file; typing any other character

aborts the command.

NOTE - If the work file SYSTEM.WRK exists, it is removed. Backups
of the work file (i.e. SYSTEM.WRK.BACK) are unaffected by N(ew,
and must be manually removed.

Page 84

File Handler

3.2.10 P(refix volume
Changes the current file system prefix to the volume specified.
This prompt is displayed:

Prefix titles by what vol?

A valid response contains a volume identifier; any associated file
identifier is ignored. The volume specified need not be online.

If the volume identifier contains a unit number, the prefixed
volume is set to the name of the volume in the specified disk
drive, If no volume is online in the disk unit, the prefixed
volume is set to the unit number itself, and the prefixed volume is
defined to be whatever disk volume is mounted in that unit.

The current prefixed volume can be determined by responding to the
data prompt with ":" (this actually sets the new prefixed volume to
the current prefixed volume).

NOTE - The prefixed volume may be set at the system prompt using
the 'P=' redirection option (see section 2,.4.4.4).

Page 85

PDQ-3 System Reference Manual
322211 Quit
Exits the filer and returns control to the system prompt.

NOTE - The system disk should be remounted in the proper disk drive
before typing Q(uit.

Page 86

File Handler

3.2.12 R(emove

Removes files from the directory.

The specified files are removed from the disk; the disk space they
occupied is marked as unused space, and their directory entry is
erased and made available for future files. Length specifiers are
ignored in file names, and wildcards are allowed.

Before completing the removal of files, the filer displays this
prompt:

Update directory?

Responding with a "y" or "Y" causes all of the files to be removed.
Typing any other character aborts the command and preserves all the
files.

NOTE - SYSTEM.WRK.TEXT and/or SYSTEM.WRK,CODE should be removed
only by the N(ew command; using R(emove to remove them fails to
update the system's work file state variables and may result in
confusing system behavior.

NOTE - When a disk file is removed, its data is not destroyed; only
the directory entry that locates and protects the file's data is
removed., Thus, inadvertently removed disk files may be recovered
without harm if immediate actions are taken. See section 3.3 for
more information,

NOTE - R(emove does not remove files whose date contains a year of

100, These are temporary files and may be removed only by
reinitializing the system.

Page 87

PDQ-3 System Reference Manual

3.2.13 S(ave
Saves the work file contents in a disk file.

If the work file originates from a disk file other than SYSTEM.WRK,
this prompt appears:

Save as <file name)>?

Typing "y" or "Y" writes the work file contents to the disk file

named by the prompt. Typing any other character generates the
prompt described below.

If the work file has not been saved (or the user "fell through”
from the above prompt), this prompt appears:

Save as what file?

The specified file name must not contain a file suffix or length
specifier; the appropriate suffix (.TEXT or .CODE) is automatically
appended to the file name response. Wildcards are not allowed.

NOTE - If the work file contents are saved on the system volume,
the file SYSTEM.WRK is C(hanged to the specified file name; the
resulting disk file becomes the source of the work file. If the
work file contents are saved on a different volume, SYSTEM.WRK is
T(ransferred to the volume with the specified file name; the source
of the work file remains in the file SYSTEM.WRK.

NOTE =~ S(ave only saves the most current version of the text file.
If SYSTEM.WRK.BACK exists, it retains the name SYSTEM.WRK.BACK and

remains on the system volume as is, no matter what volume the work
file is saved on.

Page 88

File Handler

3.2.14 T(ransfer

Copies the specified disk file or disk volume to the specified
destination.

This command requires two file names: the source file and the
destination file. The pair of names may be separated by either a
comma or <return>, Complete file names must be provided. Length
specifiers are ignored in the source file name, but are recognized
in the destination file name as a means of controlling the location
of the destination file., Wildcards are allowed.

T(ransfer is used for the following tasks:
1) Copying disk files onto different disk volumes.

2) Copying entire disk volumes onto different disks (though the
Backup utility does a better job of it).

3) Transferring files to and from the console, printer, or remote
device.

4) Moving disk files to. other locations on the same disk volume.

Transfers from serial units are allowed if the device can generate
data; generally, only the console is used in this fashion. Files
originating from a serial device are terminated by the transmission
of an end-of-file flag; this is done from the terminal by typing
<eof>,

Length specifiers are useful for controlling the location of disk
files written to the destination volume, For instance, if a
25-block unused area is at the front of a volume, and a 25-block
disk file 1is to be transferred to the volume, the file can be
written directly to the unused space by adding the length specifier
"[25]1" to the destination file name. Without the length specifier,
the filer writes the file into the largest available free space on
the destination volume.

NOTE - See section 3.2.14.2 for problems with T(ransfer.

Page 89

PDQ-3 System Reference Manual

Examples of disk file transfers:
Transfer what file? *system.=,#5:§

coe transfers copies of all system files on the system volume to
the disk volume mounted in unit 5.

Transfer what file? stuff.text, stuff.text[25]

eee transfers the file "STUFF.TEXT" to an unused area of disk
containing at least 25 contiguous blocks.

Transfer what file? WORK:,BACKUP:
cee copies the entire disk volume "WORK" onto the disk volume
"BACKUP", destroying BACKUP's existing contents., When the transfer
is complete, two identical disk volumes named "WORK" are online.
Section 3.2.14.1 discusses volume to volume transfers.
Transfer what file? DOCUMENT.TEXT,PRINTER:

ees prints the text file "DOCUMENT.TEXT" on the printer.

Page 90

File Handler

3.2.14.0 Single=drive Transfers

Filer operations involving two distinct disk volumes are easily
performed with a system having two disk drives online; however,
they can also be performed using a single online disk drive.

Example of a single~drive transfer:
Transfer what file? WORK:IMPORTANT.TEXT
To where? BACKUP:$

The disk volume "WORK" must not be removed until the following
prompt appears:

Put in BACKUP:
Type <space> to continue

At this point, the disk volume "WORK" should be removed from the
drive and replaced with the disk volume "BACKUP", and then <space>
should be typed. Transfers of large files or entire disk volumes
generate a series of prompts having the form:

Put in <volume name>:
Type <space> to continue

«es Where <volume name> alternates between the name of the source
and destination volumes until the transfer is complete. Transfer-
ring entire disk volumes in this fashion is a tedious process, as
the filer can only buffer as much data as it can fit in memory; the
user must suffer through numerous disk swappings.

NOTE - Failure to mount the correct disk volume after a volume

prompt jeopardizes the successful transfer of files; keep the disk
volumes straight!

Page 091

PDQ-3 System Reference Manual

3.2.14.1 Yolume-to=Volume Transfers

A disk volume may be copied onto another disk volume by specifying
volume names for the source and destination files. Volumes may be
copied using either one disk drive or two.

Example of a volume-to-volume transfer:

Transfer what file? #4:
To where? #5:

If the source volume contains a directory, this command generates
the following prompt:

Transfer <number of blocks on source volume> blocks ? (¥/N)

Typing '¥' indicates that the entire source disk is to be
transferred to the destination disk; the <escape> Kkey aborts the
transfer. Typing 'N' indicates that the destination disk media
contains fewer blocks than the source disk, and the following
prompt is generated:

Transfer how many blocks ?

Entering 0 aborts the transfer. Typing a number between 1 and
<number of blocks on source volume> causes only the specified
number of blocks to be transferred.

Once the transfer length has been established, the destination disk
is checked for the existence of a directory. If a directory

already exists, the transfer is verified before the destination is
overwritten:

Destroy <Volume name> ?

Typing 'Y' proceeds with the transfer; typing any other character
aborts the transfer,

NOTE - 1If the source disk contains files beyond the last block of
the transfer, those files must be removed from the copy of the
directory on the destination disk. 1In addition, the directory on
the destination disk may list unused space beyond the end of the
physical medium. The Change.Dir wutility (described in section
8.0.6) should be used to align the directory with the size of the
media containing it.

Page 92

File Handler

3.2.14.2 Transfer Problems and HWarnings
WARNING - Unless entire disk volumes are being transferred, the
destination's file identifier must not be omitted; otherwise, the
directory of the destination volume may be destroyed. Transfers to
a destination disk volume are verified with the prompt:

Destroy <volume name> ?
Typing "y" or "Y" commences the disk transfer, and overwrites the
existing directory; typing any other character aborts the transfer
and spares the directory.
Example of directory destruction:

Transfer what file? MYDISK:DIR.WHAM,CODE,VICTIM:

WARNING - The = wildcard should not be used in file names when
transferring files to different locations on the same disk volume;
the results are unpredictable.
Example of bad wildcards:

Transfer what file? =,=
WARNING - Two volumes with the same name must not be on line at the

same time, File commands involving these two volumes may have
unpredictable results.

Page 93

PDQ-3 System Reference Manual

322,15 V(olumes online

Lists all volumes currently online along with their assigned unit
numbers.,

A typical volume display is:

Vols on~line:

0 CLOCK

1 CONSOLE:

2 SYSTERM:

3 KEYBUFR:

4 $# MYDISK:

9 §# PRIAM:
10 # SYSMAN:
11 # WORKDSK:
12 # BACK:

21 FASTCON:

22 STANIN:

23 STANOUT:

24 BUCKET:

25 # DOC:
Root vol is - PRIAM:
Prefix is - SYSMAN:

Online disk volumes are indicated by "#". The current system
volume (Root vol) and prefixed volume are displayed at the bottom.

NOTE - The presence of a disk volume name in the 1list indicates
that the volume 1is online. On the other hand, the presence of a
serial volume name merely indicates that the system supports the
corresponding device; the device itself may be online or offline.

Page ' 94

File Handler

3.2.16 W(hat is workfile?

Identifies the name of the current work file. If the work file is
not saved, it is so specified.

Page 95

PDQ-3 System Reference Manual

3.2.17 X(amine bad blocks

Attempts to physically recover suspected bad blocks, and mark
unrecoverable blocks as unusable.

Example of using X(amine:
Examine blocks on what volume?

After specifying a volume name or unit number, the following prompt
appears:

Block=-range?

The user enters the block number(s) of suspected bad blocks
(section 3.2.1 describes one method of detecting them). Block
number ranges have the following form:

<block number>([~<block number>l]

When the optional part is used, all blocks between the two block
numbers specified are examined.

If any files are in the specified block range, the following prompt
appears:

File(s) endangered:
<file name>
Fix them?

Typing "Y" starts the repair process on the specified blocks;
typing any other character aborts the command. When completed,
X(amine returns one of these messages:

Block <block number> may be ok

eee indicating that the block is probably fixed, or ...
Block <block number> is bad

eee 1indicating that the block is a hopeless case. X(amine offers
the user the option of marking hopelessly bad blocks as files of
type "bad". These files are not shifted by the K(runch command;

their presence prevents regular files from being written over bad
areas of the disk.

WARNING - A "fixed"™ block may contain garbage as data; the fixing
process can only ensure the integrity of subsequent write oper-
ations to the fixed block. Block repair is done by reading up a
block, writing it out, and reading it up again. If the two read
operations bring in identical data without raising any 1/0 errors,
the block 1is considered fixed ("may be ok"); otherwise, the block
is declared bad. ‘

NOTE - A bad block may be permanently £fixed wusing the Format
utility (section 8.0.3) to reformat the track containing the bad

Page 96

File Handler

block. Be sure to use media appropriate for density and number of
sides on the floppies being used (e.g. use double-sided disks only
in double sided drives). This is a common cause of apparent bad
blocks.

Page 97

PDQ-3 System Reference Manual

3.2.18 Z(ero directory

Writes an empty directory on the specified disk.

Z(ero is wused to build new disk volumes on either brand new disks
or obsolete disk volumes., If an old volume resides on the disk,

some of its volume information is assumed to be applicable to the
new disk volume; the prompt sequence is changed accordingly.

3.2.18.0 New Disks
The following prompt appears:
Zero dir of what vol?

The volume identifier of the disk to be zeroced is specified. The
next prompt is:

Duplicate dir ?
If a duplicate directory is desired, "Y" should be typed: typing
any other character will not allocate the duplicate directory. The
next prompt is:

$# of blocks on the disk ?
Any positive integer may be entered. A single density disk has 494
blocks; a double density disk has 988 blocks; a double sided double
‘density disk has 1976 blocks; see section 8,0.5.0 for the number of
blocks contained an a hard disk volume. The next prompt is:

New vol name?

Any valid volume name may be entered. The response is verified by
the next prompt:

{volume name> correct?

Typing "Y" zeroes the disk; typing any other character aborts the
command., In both cases, control returns to the filer prompt.

NOTE - Brand-new disks should be formatted with the Format utility
(section 8.0.3) before being Z(eroed.

3.2.18.1 Recycling Qld Yolumes
If the disk specified for zeroing contains an existing disk volume,
the following changes occur to the prompt sequence defined in the
previous section. Before the duplicate directory prompt, the Z(ero
command is verified with the prompt:

Destroy <current volume named>?
Typing "y" continues the prompt sequence; typing any other char-
acter aborts the command.

Page 98

File Handler

Instead of requesting the number of blocks on the disk, the filer
assumes that the new disk volume has the same number of blocks as
its ancestor, and prompts:

. Are there <block number> blks on the disk ? (¥/N)

oo where <block number> is the number of blocks in the obsolete
disk volume. Typing "y" or "Y" uses the existing value for the new
volume; ¢typing any other character generates the block number
prompt described in the previous section.

NOTE - The number of blocks on the volume may be changed without
_z(eroing the disk by using the Change.Dir utility (section 8.0.6).

Page 99

PDQ-3 System Reference Manual

3.3 Recovering Lost Files

Files may be lost by explicit removal or by creation of a new file
having the same name as an existing file; in both cases, the
directory entry for the existing file 1is erased, and the file
‘appears to be permanently lost., This is not always true. This
section describes a method for recreating removed files.

When a disk file is removed, the file itself is still on the disk;
only its associated directory entry is erased. However, the disk
space occupied by the removed file is marked as unused space; any
subsequent activity involving data written to the disk may over-
wri:. the file's contents. Therefore, the probability of recover-
ing a lost file is directly related to the disk activity occurring
between the removal of the file and the discovery by the user of
its nonexistence.

The E(xtended directory list command displays both files and unused
areas on a disk volume., The object of this method is to determine
which area marked as unused space on the disk contains the missing
file, and then to use the M(ake command to create dummy files of
various sizes until the position and size of one of the dummy files
coincides with the missing file (see section 2.1.4.4 for a
description of file space allocation directives). If this stage is
reached, recovery consists of removing any other dummy files
created during the hunt, and changing the name of the coincident
dummy file to the name of the missing file.

NOTE -~ PFiles created with M(ake do not write over the data in the
missing file; they are merely directory entries associating a file
name with a group of blocks on the disk.

File recovery 1is easiest when the file's size and location are
known beforehand; the following example is a demonstration of this
case. The process becomes more difficult when some of the
parameters are unknowns; several iterations of creation and removal

of dummy files may be necessary before the missing file is located
and contained.

Of the various file types, it is easiest to verify the capture of
text files; dummy text files viewed in the editor immediately
reveal their contents. Data and code files are comparatively
difficult to capture; verification of their contents requires a
knowledge of their underlying structure and the wutility programs
Patch, Library, and Libmap (described in chapter 8). Data file
structures must be known by the user, Code file structures are
described in the Architecture Guide.

NOTE - For the recovery of several lost files or in the case of a
thrashed directory, the Recover utility is most useful (section
8.1.2). .

Page 100

File Handler

Example of recovering a lost text file:

Here is a pre-accident directory listing:

STUFF:

WASTE . TEXT 4 15-Jan-81
DICE,TEXT 18 15-Jan-81
< UNUSED > 48

SPOSE.CODE 33 24-May-80
UROSE3 ,CODE 35 26-Nov-80
COLOR.DATA 32 5-Jan=-81
< UNUSED > 10

KIN.TEXT 16 15-Jan-81
SONS . TEXT 18 S5-~Jan-81
< UNUSED > 270

224

512
512

512
512
314

512
512

Textfile
Textfile

Codefile
Codefile
Datafile

Textfile
Textfile

7/7 files<listed/in-dir>, 166 blocks used, 328 unused

The

valuable

file

KIN.TEXT

is

now

accidentally removed by the

creation of a new file KIN,TEXT; fortunately,

enough to

current situation:

STUFF:
WASTE , TEXT
DICE.TEXT

< UNUSED >
SPOSE.CODE
UROSE3,CODE
COLOR.DATA
< UNUSED >
SONS.TEXT
KIN.TEXT

< UNUSED >
7/7 files<listed/in-dir>, 166 blocks used, 328 unused

18
48
33
35
32
26
18
16
254

4 15-Jan-81

15-Jan-81

24-May-80
26-Nov-80
5-Jan-81

5-Jan-81
15-Jan-81

Page 101

10
14
32
80
113
148
180
206
224
230

512
512

512
512
314

512
512

the

Textfile
Textfile

Codefile
Codefile
Datafile

Textfile
Textfile

user
remember the location of the old KIN,TEXT.

is alert
Here is the

PDQ-3 System Reference Manual

The dummy £files are created with the M(ake command. DUMMY1
.TEXT(18] £fills the 18=block unused area at the front of the disk.
DUMMY2.TEXT({10] £fills the first 10 blocks of the 26-block unused
area that contains the missing file. DUMMY3.TEXT(16] £f£ills the
last 16 blocks of the 26-block area, and coincides with the old
copy of KIN.TEXT. The directory now appears as:

STUFF:

WASTE.TEXT 4 15-Jan-81 10 512 Textfile
DICE.TEXT 18 15-Jan-81 14 512 Textfile
DUMMY1,TEXT 48 S5-Jan=-81 32 512 Textfile
SPOSE.CODE 33 24-May-80 80 512 Codefile
UROSE3 .CODE 35 26=Nov=-80 113 512 Codefile
COLOR.DATA 32 S5=-Jan-81 148 314 Datafile
DUMMY2,TEXT 10 15-Jan-81 180 512 Textfile
DUMMY3.TEXT 16 15-Jan-81 190 512 Textfile
SONS . TEXT 18 5-Jan-81 206 512 Textfile
KIN.TEXT 16 15-Jan-81 224 512 Textfile
< UNUSED > 254 230

10/10 files<listed/in-dir>, 240 blocks used, 254 unused

The file has been recovered; only cleanup remains. DUMMY1l.TEXT and
DUMMY2,TEXT have served their purpose as free space fillers; they
are removed. The new copy of KIN.TEXT is saved under a different
name, and DUMMY3.TEXT is changed to KIN,TEXT.

STUFF:

WASTE.TEXT 4 15=-Jan-81 10 512 Textfile
DICE.TEXT 18 15-Jan-81 14 512 Textfile
< UMUSED > - 48 32 :
SPOSE.CODE 33 24-May-80 80 512 Codefile
UROSE3 .CODE 35 26~Nov-80 113 512 Codefile
COLOR.DATA 32 5-Jan=-81 148 314 Datafile
< UNUSED > 10 180

KIN,TEXT 16 15-Jan-81 190 512 Textfile
SONS. TEXT 18 5-Jan=-81 206 512 Textfile
SAVEKIN, TEXT 16 15-Jan-81 224 512 Textfile
< UNUSED > 254 230

10/10 files<listed/in-dir>, 182 blocks used, 312 unused

NOTE - The number of valid bytes in the last block of a file is
always recovered as 512, If the actual number of valid bytes
differs from 512 (e.g. as in COLOR.DATA), the correct number of
bytes may be recovered by writing a program which wuses the
DChangeEnd routine in the Dirinfo unit (see Library Users Manual
for details).

Page 102

File Handler

The 1loss of a disk directory is a much more serious setback than
the loss of a single disk £file. The best protection against
directory mishaps is to maintain duplicate directories on all disk
volumes., When a disk volume loses its primary directory, but has a
duplicate directory, the Copydupdir utility (section 8.1.1) re-
places its deceased primary directory with a copy of the duplicate
directory; the volume is then restored.

WARNING - Primary disk directories are stored on blocks 2-5 of a
disk volume, while duplicate directories are stored on blocks 6-9;
unfortunately, this implies that some accidents may simultaneously
wipe out both directories., The Recover utility (section 8,1.2) is
valuable in recovering 1lost directories. Another method is to
Z(ero the directory, and then use the method described in the
previous section for fishing the files from the disk; needless to
say, this is a tedious and not necessarily rewarding task. The
best protection for a disk volume is to maintain a copy of the
volume on a separate disk.

Page 103

PDQ-3 System Reference !llanual

IV, IHE ADVANCED SYSTEM EDITOR

The Advanced System Editor (ASE) is a screen-oriented text editor.
Based on the UCSD Pascal L2 large-file editor, ASE provides
powerful text-editing capabilities while maintaining the friendly
user interface of its predecessors.,

ASE capabilities include:

=£] it - ASE 1is restricted only by disk space in the
size of text files that may be edited.
‘User~-defined Functions - ASE supports up to eight user-defined

functions. A function key can be "taught" to execute a series
of commands when it is typed. ASE also includes facilities
for maintaining function key definitions.

Terminal Interface - Any terminal key or sequence of keys can be
mapped to any editor command; also, a number of keys can be
mapped to the same command. The utility program ASS (Advanced
System Setup) facilitates editing of the key definitions for
ASE commands to suit users' terminals and personal tastes,

- Facilities are provided for implementing change
control of text files., At the end of an edit session, the
editor (optionally) requests a description of the changes made
during the session, and enters the description with the
current date into a change log maintained in the file. ASE
ensures the security of 'change control by maintaining a
revision number which indicates the number of times the file
has been edited.

- The Exchange command can draw vertical and
horizontal character vectors 1in either direction, allowing
painless creation of diagrammatic figures and simplified
editing of columns of data.

Nested Editing - ASE can be -invoked recursively, allowing the
user to suspend the current edit session, edit another file,
and then return to the suspended edit session. Disk space
permitting, nested editing is permitted to a depth of 6 files.

System Interface - ASE's scope of operation extends beyond edit-
ing a single text file. System interfaces with the compiler
and work file are preserved; however, the user has the option
of controlling these interactions. When requested, ASE gene-
rates a menu-style 1list of all text files on a disk volume,
allowing the wuser to select a file for editing without
invoking the filer. New files may be created on any volume,
and files may be edited from one volume to another. Also
provided 1is the ability to chain together a series of edit
sessions without leaving the editor. Together, these features
enhance system performance and usability.

Page 104

Advanced System Editor

This chapter 1is organized into six sections: JIntroduction, Basic
Concepts, Using the Editor, Commands, Sample Edit Session, and
Broblems. Introduction presents an overview of ASE along with
information needed to use the manual. Basic Concepts describes the
basic editing concepts, some of which are unique to ASE. Using the
Editor describes editor features. (Commands describes the editor
commands. Sample Edit Session provides basic instruction in editor
operation. Problems presents bug report forms.

NOTE - The following meta-words denote nonalphabetic edit commands
peculiar to the ASE: {GetAgain>, <home>, , <Coll>, <Dir-
Change>, <record>, and <takeup>. References to these keys appear
throughout this chapter, along with some less commonly used
references that are (hopefully) self-explanatory. Definitions of
keys for these commands are described in section 4.2.0,

Page 105

PDQ-3 System Reference Manual

4.0 Basic Concepts
The editor is used to create and modify text files.

Prompt lines in the weditor are similar to filer and operating
system prompts; they are described in section 4.0.0. Editor

and the keys defined to invoke them are described in
section 4.0.1. File prompts and the editor's file naming conven-
tions are described in section 4.0.2.

Text files may contain either programs or documents; and, as these
have different formatting conventions, the editor's mode of opera-
tion (known as the "environment®") may be changed to suit either
program development or word processing. Editor environments are
described in section 4.0.3.

Two constraints imposed on the task of editing large text files are
the size of the terminal screen for viewing text and the amount of
memory available for containing the file. Section 4.0.4 describes
the file window, which utilizes the screen as a "sliding window"
through which sections of the file may be viewed. Section 4.0.5
describes the operation of the £ile buffer, which provides a
virtual editing buffer in which the most recently viewed text is
present in memory while the rest of the file is automatically
stored on disk.

The gursor that appears on the terminal screen is the center of
action for all editing commands; it is described in section 4.0.6.

Because the text file itself is modified by the actions of the file
buffer, a separate copy of the file is created at the start of an
edit session; this provides the ability to restore the original
file contents when an edit session is exited or interrupted by dire
circumstances. The copied file is called a backup file; backup
files are described in section 4.0.7.

Although the novice user 1is encouraged to seek introductory
tutorial material elsewhere, section 4.3 consists of a simple
sample edit session as an example of use.

Page 106

Advanced System Editor

4.0.0 Prompt Lipnes

Editor prompts display either a prompt 1line of available edit
commands or a command line (generated by invoking a prompt 1line
command) displaying the available subcommands. Many editor prompts
display the current direction (described in section 4.1.2) 1in the
leftmost character of the prompt. Prompt lines normally appear
across the top of the screen, but may disappear when an edit
command causes the file window to scroll upwards; depending on the
command, typing either <etx> or another command redisplays the
prompt.

The main editor prompt appears initially as:

>Edit: A(djust C(opy D(elete F(ind I(nsert J(ump R(eplace
Q(uit eX(change ?

The remaining commands and the titles of the function key defini-
tions are displayed on the prompt by typing "?":

>Edit: B(eginLine L(ineEnd G(etch K(olumn P(age O(ppositePage
S(et V(erify ?

>Edit: T(oDisk N(ext M(argin Z(ap W(ordMove U(ptop E(dit
<record> <takeup> ?

>Edit: <home> <arrows,tab,space,cr,bs> "%, ">", "=" ?

>Edit: <£fl>=takeupl <f2>=takeup2 <£3>=takeup3 <f4>=takeups
<f5>=takeup5 ?

>Edit: <f£6>=takeup6 <f7>=takeup7 <£8>=03-Oct-81 ?

4.0.1 Commands

ASE commands are «classified as primary or secondary: primary
commands are displayed on the main prompt'line; secondary commands
are the commands displayed on a primary command's prompt'line.

Secondary commands are always invoked by typing their editor-de-
fined keys. Typing the first letter of an alphabetic command (e.g.
"U" in the U(pdate option of the Q(uit command) invokes the
subcommand; both lower and upper case letters are recognized.

Unlike secondary commands, primary commands may be defined by the
user to be invoked by any key or Kkey sequence; additionally, a
single command may possess a number of key definitions (see section
8.3.2 for details). Despite this flexibility, key definitions for
primary commands tend to follow the conventions used by secondary
commands (and in the rest of the system); for instance, 1lower and
upper case letters are usually defined as keys for the alphabetic
primary commands.

Page 107

PDQ-3 System Reference Manual

NOTE - A common practice which violates this convention involves
the G(etch command; "g" is mapped to G(etch, but "G" is mapped to
the related (nonalphabetic) command <GetAgain>.

Keys and key sequences are classified as printing or nonprinting:
printing keys (e.g. " " .. """ in the ASCII character set) print
a character on the screen when typed; nonprinting keys (e.g. key
sequences and function keys) are used to invoke actions rather than
print characters. Depending on the context, printing keys are used
either to invoke commands or insert characters; for instance,
typing "j" invokes the J(ump command from the editor prompt, but
inserts the letter "j" in the text while using the I(nsert command.
Nonprinting keys are used to define commands that must be nonprint-
ing (e.qg. <etx> and <record>); they are also used for non-
alphabetic commands such as <takeup>. '

The eX(change command has a feature which requires nonprinting key
definitions for the more commonly used editor commands. Any editor
command may be invoked within eX(change, but non-printing key
definitions are required to distinguish editor commands from the
text normally dealt with. I(nsert and D(elete are the most wuseful
commands inside eX(change, and therefore should have nonprinting
keys along with their standard alphabetic definitions.

4.0.2 File Name Prompts

File name prompts appear in the E(dit and C(opy F(rom file
commands. The editor accepts file names with or without file
suffixes; the suffix ".TEXT" is automatically appended if it is not
supplied. Along with the standard syntax for file names, the
editor accepts special syntax for specifying menu selection of
files (4.0.2.0), specification of source and destination files
(4,0.2.1), and control over the automatic definition of user-de-
fined functions (4.0.2.2).

4.0.2.0 Pile Menus

An occurrence of the character "?" in a file name causes the editor
to produce a menu of all text files on the specified disk volume.
The syntax for a menu-select file name is:

<menu specification> ::= [<partial file specification>]?

Typing a volume identifier followed by "?" (e.g. "MYDISK:?")
causes all text files on the specified volume to be displayed for
selection. If the file name contains part of a file title (e.g.
"MYDISK:CHAP?"), the menu only displays .text files whose names
match the "wildcard" file title (e.g. "CHAP12,TEXT" and "CHAPTER.
TEXT") .

Page 108

Advanced System Editor

The menu displays this prompt line at the top of the screen:
Select 'a'..'u'(file), <sp>(specify), ?(more info)

A file is selected by typing its associated menu character (the
range of character choices is displayed in the menu prompt). If
more than 21 files exist, the prompt shown above is extended with
the phrase "or <ret> (next page)"; selecting a file then consists
of selecting a page of the menu and choosing a file from the
currently displayed page. Selecting a file redisplays the original
file prompt with the selected file name already typed in; only a
<cr> (and posi_kly a marker specification) is required to complete
the file prompt with the selected file name. Typing <space> also
redisplays the original file prompt, but without adding a file
name; a file must then be specified by typing its name. Typing "?2"
displays the first text line of each file on the menu. A standard
practice of ASE users is to maintain a one line description at the
front of each text file; the menu option "?" allows easy viewing of
these descriptions.

The following is an example of a text file menu:

Select: 'a'..'g'(file), <sp>(specify), ?(more info)

ASE-DOC:
a ASE3 10 .com command summary
**b ASE4 196 .com commands
¢ APXA 22 .com sample session
d APXB 22 .com configuration
e APXC 12 .com problem reporting
f ASE2 78 .com usage
g ASEl 62 .com title, ToC, intro, baysicks

62 files, 3954 free blocks (194 contiguous; "**" too big).

As shown in the example, the specified volume name is followed by a
list of the titles of all text files on the volume. The size (in
blocks) of each text file is also displayed. A description of the
displayed volume's free space situation appears at the bottom of
the screen., Files too large to edit given the current free space
on the volume are marked with "**"; the volume free space
description is then extended as shown to describe the meaning of
kR, "too big" implies that the volume does not have enough disk
space to contain both the new file and its backup file,

ASE allows you to specify both the name of the file to be edited
and the name of the file to be created by the edit session; among
other things, this allows files to be edited from one disk volume
to another. The file to be edited is called the source file. The
file to be created is called the destination file.

Page 109

PDQ-3 System Reference Manual

The syntax for specifying source and destination files is:

<files specification> ::= [<source file>] [,<dest file>]

The metasymbol <source file> indicate the volume and name of the
existing file to be edited. The metasymbol <dest file> indicate
the volume and name of the file to be created by the edit session.
If a destination file is not specified, the existing file is named
"¢source file title>.BACK" (thus becoming the backup file); the
destination file is named "<source file title>.TEXT" and is created
on the same volume., If a source file 1is not specified, a new
(empty) text file is created as specified by the destination file
name. If neither source nor destination is specified, a new work
file (named *SYSTEM.WRK.TEXT) is created.

NOTE - A destination file may be specified after a source file name
has been selected from the file menu.

4.0.2.2 Automated Punction Definition

The editor has the ability to automatically define function Kkeys
(section 4.1.9) within a text file each time the file is edited.
The file marker "“SPROFILE" (section 4.1.3) is defined as the
default automatic function definition marker; its presence in a
text file causes the editor to automatically "take up" a function
definition starting from the marker's location in the file.

Automatic definition may be prevented by specifying a marker name
after the file name - the syntax is:

<file specification> ::= <filename>[=[<markername>]]

If the "=" is not followed by a marker name, automatic definition
is not performed; otherwise, the editor is directed to "take up" a
function definition from the text file location determined by the
specified marker. The following examples apply to a text file
named :MYFILE.TEXT“ which contains the markers "$PROFILE" and
"MARK1":

== "myfile=Sprofile” and "myfile" both specify automatic function
definition from "S$PROFILE".

-- "myfile=" ignores any existing "S$PROFILE"; no automatic func=-
tion definition is performed.

-- "myfile=markl®” specifies automatic function definition from
"MARK1".
4.0.3 The EJit Environment

Edit commands affect text; the edit environment affects the
behavior of edit commands. Environment parameter values are saved

Page 110

Advanced System Editor

within text files; unless changed, they <control not only the
current edit session, but all future edit sessions on the current
text file. The most important parameters are "auto-indent"®,
"filling"”, and ™margins”", Auto-indent is used to facilitate the
entry of program text., Margins and filling are used for processing
documents; in particular, £illing allows the justification of
paragraphs of text within the current margins.

The edit environment 1is described in more detail in section
4,2,19.,3 (the Set Environment command).

4.0.4 The Pile Window

The editor allows the entire console screen to be used much like a
chalkboard; any text displayed on the screen may be directly
accessed and modified. At the beginning of an edit session, the
editor displays the start of the file in the upper left <corner of
the screen. Most text files contain more 1lines than can be
displayed on the console at once; therefore, when the user moves to
a section of text that is above or below the section currently
displayed, the screen is updated by shifting some of the existing
text off of the screen to make room for the display of previously
hidden lines of text. The screen may be thought of as a "window"
sliding over the text file being edited; the entire text file is
accessible using the edit commands, but only the section of text
currently being changed can be viewed through the window.

mmmm

The file buffer serves as intermediary between the file window and
the text file: the file window slides across the contents of the
file buffer, and the file buffer slides across the contents of the
text file. Text files larger than the file buffer overflow onto
the disk; thus, during an edit session involving a large file, the
contents of the file are split into three sections: text between
the front of the file and the front of the file buffer (stored on
disk), text in the file buffer (stored in memory), and text between
the end of the file buffer and the end of the file (also stored on
disk). The disk areas containing the ends of the text file are
called gstacks; the Jleft stack holds the text preceding the file
buffer, while the right stack holds the text following the file

The editor treates the contents of a text file as a sequence of
"pages". The file buffer contains a number of pages, as do the
stacks. The file buffer slides across the file in integral numbers
of pages; thus, "moving"” the file buffer in a given direction
consists of writing pages from the trailing edge of the file buffer
to the adjacent stack, shifting the current contents of the buffer
into the resulting space, and reading pages into the leading edge
of the buffer from its adjacent stack. This process 1is called
"paging”.

NOTE - Paging can be a time-consuming activity on systems with slow

Page 111

PDQ-3 System Reference Manual

disks. Experienced ASE users adapt their editing habits to the
file buffer and buffer managing commands so as to minimize the
amount of time spent in unnecessary paging (see below for details).

ASE has a number of commands which either affect or are affected by
paging and the file buffer. The simplest method of moving the file
buffer is by moving the cursor through the file. As the cursor
moves through the contents of the file buffer, lines of text appear
and disappear from the file window; when the end of the file buffer
is reached, the message "Paging..." (or sometimes "Moving") is
displayed, and the file window movement is momentarily delayed
until the new pages are installed in the file buffer. The ability
of the cursor to cause automatic paging is controlled by the value
of the environment parameter "Auto Buffer". J(umping to a marker
may cause paging; when it does, the message "Moving..." |is
displayed.

The F(ind and R(eplace commands always notify the user that the end
of the file buffer has been encountered while searching for target
strings:

End of Buffer encountered, Get more from disk? (Y/N)

Typing "Y" continues the search, with paging done automatically;
typing "N" terminates the command without paging.

The D(elete and 2Z(ap commands are restricted in range to the file
buffer; they do not have the ability to page the file buffer.

The N(ext command explicitly slides the file buffer across the
file. When the environment parameter "Auto Buffer" is set False, .
N(ext provides the only way to move the file buffer. Because N(ext
reads in as many pages as possible in the specified direction, it
can occasionally reduce the amount of paging performed while making
a single long pass through the file. The tradeoff involved is the
time spent making one disk access in N(ext versus the time spent
making a number of disk accesses while auto-paging.

The T(oDisk command complements N(ext - it throws all of the pages
in the specified direction out of the file buffer, T(oDisk is used
to empty the file buffer when an excess of text insertion commands
fills it to capacity. When the buffer becomes full, the I(nsert
command may automatically write part of the file buffer out to
disk; when it does, editing is suspended while a series of dots
appears on the current line. The screen is redisplayed and normal
editing resumes when paging is completed.

4.0.6 The Cursor

If the screen can be considered a chalkboard (section 4.0.4), the
cursor then serves as eraser, chalk, and pointer. All action takes '
place around the cursor; it represents the user's exact position in
the file, and it can be moved to any position within the text file.
The file window automatically follows the cursor; any command which
moves the cursor off the current window recenters the window to

Page 112

Advanced System Editor

display the text adjacent to the cursor.

NOTE - The cursor is never really "at" a character position; it is
between the character where it appears and the immediately preced-
ing character, This convention is important; it affects the
I(nsert and D(elete commands.

4.0.7 Backup Eiles

Every edit session involves a source file and a destination file
(4.0.2.1). At the start of a session, the contents of the source
file (if any) are copied to the destination file. During the edit
session, the editor manipulates the contents of the destination
file; the source file is untouched, protecting its contents from
loss of data due to system crashes or user errors. The untouched
file is called a backup file.

If an edit session specifes the same file name for source and
destination files, the source file is renamed "<file title>.BACK",
thus becoming the backup file. For instance, editing the work file
"SYSTEM.WRK.TEXT" creates the backup file "SYSTEM.WRK.,BACK", A
backup file is created only if the edited file is updated; exiting
an edit session automatically restores the original file name of
the source file.

Paage 113

PDQ-3 System Reference Manual

4,1 Using the Editor

This chapter describes editing features and some basic editor
commands., Editor invocation is described in section 4.1.0; editor
termination 1is described in the Q(uit command (section 4.2.16).
Commands which move the cursor are described in section 4.1.4; the
remaining commands are presented in section 4.2. Basic editing
features are presented in sections 4.1.1 - 4.1.3 and 4.1.5 - 4.1.6.
Advanced features are described in sections 4.1.7 - 4.1.9.

4.1.0 Entering fthe Editor

The editor is invoked by typing "E" (for E(dit) from the system
prompt line. A prompt with the following form appears on the top
of the screen while the editor starts up:

ASE 0.7n

When the editor finishes its initialization, the following prompt
appears:

Edit: [ASE 0.7nl
?2<cr> Looks, <cr> Creates, <esc> Exits or Filename:

Typing "?<cr>" displays a menu of the files available for editing
on the prefixed volume (see section 4.0.2.0 for details). Typing
<esc> exits the editor and redisplays the system prompt. Typing
<cr> creates a new work file and enters the editor; the new file's
default name is SYSTEM.WRK.TEXT. An existing file is edited by
typing its file name; section 4.0.2 describes the file name
conventions for this prompt.

NOTE - If the work file exists when the editor is first invoked,
the work file name is automatically entered into the file name
prompt; it can be removed by typing .

If the editor doesn't have enough disk space to edit the specified
file, it prints an error message on the screen and terminates the
edit session. If this happens, remove all the old backup files,
K(runch the disk volume, and try again; this usually creates enough
disk space to edit the file.

If enough disk space exists, the editor displays the following
message while it is creating the backup file:

Copying to <dest name>

NOTE - Copying takes a few moments when editing large files on
systems with slow disks.

When copying is completed, the editor normally positions the file

window and file buffer at the front of the text file, placing the
cursor on the first line of text. 1In some situations, however, the

Page 114

Advanced System Editor

editor behaves differently.
Here are some other ways an edit session can begin:

-- If automatic function key definition is specified (4.0.2.2),
the editor automatically jumps to the appropriate marker and
takes up a function definition for function key <f1>, leaving
the cursor at the end of the text form (see section 4.1.9 for
details). The taken-up function definition may invoke itself
(by the use of "|x", see 4.1.9.2), automatically stepping the
editor through a series of edit commands. (All this is
exciting to watch if you've never seen it work before -- or
have forgotten about it!)

-- If the specified file contains the marker "SLAST", the editor
automatically invokes the J(ump M(arker command to the marker
"SLAST"., Type <cr> to jump to the marker., Type <esc> to exit
the command and start the edit session normally. SLAST allows
you to return to the last place you were editing. See section
4,1.3 and the Q(uit command (section 4.,2.16) for more details
on "SLAST".

-- If you are resuming a suspended edit session after nested
editing, the edit session may begin with an automatic J(ump
M(arker command to the editor-defined marker S$CURSOR; this
allows you to return to the last place you were editing (even
if SLAST is not set).

-- If the editor is automatically invoked by the compiler because
of a syntax error, the edit session always begins with an
automatic J(ump M(arker command to the magic marker "S$SYNTAX".
Typing <cr> jumps to the text causing the syntax error and
displays a syntax error message at the top of the screen.
Typing <esc> exits the command and starts the edit session
normally. Throughout the current edit session, you can jump
to S$SYNTAX and have the syntax error message redisplayed at
the top of the screen,

4.1.]1 Repeat Factors

Most commands accept repeat factors. A repeat factor is specified
by typing a positive integer before typing the command character;
the digits of the integer are not printed on the screen, but the
integer is internally recorded by the editor for the subsequent
command, A repeat factor specifies that a command is to be
repeated the number of times determined by the preceding factor.
For example, typing "2<down>" causes the <down> command to be
executed twice, moving the cursor down two 1lines. The default
repeat factor wvalue is 1. A slash ("/") typed before the command
indicates that the command is to be repeated until a text file
boundary 1is reached., Commands accepting repeat factors are noted
as such in section 4.2,

Page 115

PDQ-3 System Reference Manual

4.1.2 Direction

The editor maintains an environment parameter named "direction".
Direction affects commands that move the cursor; for example,
typing the space bar normally moves the cursor left-to-right across
a line of text, and down when crossing text lines. After changing
the direction, the space bar exhibits the opposite behavior. The
current direction is indicated by the leftmost character of editor
prompts: ">" denotes forward direction, "<" denotes backwards
direction. The default direction is forwards. Commands affected
by direction are noted as such in their descriptions,

Direction commands can be executed unless their key definitions
conflict with an enclosing command invocation (e.g. typing "<" in
I(nsert inserts "<" in the text rather than changing the direc-
tion). The following keys are usually defined to change direction:

*<" or *," or "-" Chaa e the current direction to backward
">" or "." or "+" Change the current direction to forward
4.1.3 Markers

Markers are arbitrary cursor positions in a text file which are
easily accessible from anywhere within the file. Markers do not
appear in the text itself; the only way to locate a marker is to
J(ump to it. Markers are specified by name; names may contain up
to eight characters, and are case-insensitive (e.g. the marker
names "STUFF" and "stuff” denote the same marker).

NOTE - A file can contain up to 26 user-defined markers.,

The S(et M(arker command creates a marker at the current cursor
position. Setting a marker to an existing marker name replaces the
old marker setting. J(ump M(arker moves the «cursor to the
specified marker. Existing marker names can be displayed with the
S(et E(nvironment and J(ump M(arker commands and can be deleted
with the S(et D(eleteMarkers command.

The editor reserves the following marker names for its own use:

$CURSOR
SEQUAL

These markers are used to implement the "equals" command
(described in section 4.1.4) and Q(uit B(ackup.

SLAST

If this marker is set by the user, the editor resets it to the
last cursor position at the end of every edit session. Its
presence in a file causes the editor to automatically set up
(but not invoke) a J(ump M(arker to "SLAST" at the beginning
of an edit session. See section 4.1.0 and the Q(uit command
(section 4.2.16) for details.

Page 116

Advanced System Editor

$LOG

If this marker is set by the user, the editor automatically
prompts for a log entry at the end of each edit session, and
then writes the 1log entry into the file at the marker
position. See section 4.,1.8 for details.

SPROFILE

The presence of this marker in a file causes the editor to
automatically take up a function key definition from the
marker's position at the beginning of an edit session. See
section 4.1.9 for details,

$SYNTAX

The editor creates this marker after being invoked by the
compiler because of a syntax error., See section 4.1.0 for
details.

S$TAG
This marker is set with the S(et T(ag command and jumped to
with the J(ump T(ag command. It is used as a fast-access,

temporary file marker., See the S(et and J(ump commands for
more details.

Paace 117

PDQ-3 System Reference Manual

4.1.4 Moving The Cursor

This section describes the nonalphabetic cursor-moving commands.
The remaining commands are described in section 4.2.

The cursor commands are described in the following table:

Direction insensitive commands-

<down> Moves cursor down

<up> Moves cursor up

<cright> Moves cursor right

<left> Moves cursor left

B(eginLine Moves cursor to first character on line

L(ineEnd Moves cursor to end of line

<home> Moves cursor to upper left corner of
the screen

= Moves to "=" pointer

Direction sensitive commands-

{space> Moves direction
<backspace> Moves opposite direction
<tab> , Moves cursor to the next tab stop:;

tab stops are initially set every

8th column, but can be changed in

the S(et E(nvironment command
{return> Moves to the beginning of the next line
W(ordMove Moves to start of next word

Repeat factors can be used with any of the above commands.

The cursor's column position is preserved by the <up> and <down>
commands. When the cursor is moved outside the current text (in
the blank space either before or after a 1line), 1its behavior
depends on the current command.

At the outermost editor prompt, the cursor is treated as though it
were immediately after the 1last character or before the first
character in a 1line; if the cursor lies outside the current text
when a command is invoked, it automatically jumps back to its
actual position,

In some editor commands (such as eX(change), cursor movement is not
limited to the current text.

The "equals” command is executed by typing "=". Equals saves the
current cursor position and moves the cursor to the beginning of
the last section of text which was I(nserted, F(ound, or R(eplaced;
typing "=" again returns the cursor to its original position. For
instance, text to be deleted by the Z(ap command can be verified by
typing "=="; the cursor is moved to the equals marker (one Z(ap
boundary), back to the original cursor position (the other Z(ap

boundary), and then the text is deleted with Z(ap. Equals is not
affected by direction.

Page 118

Advanced System Editor

NOTE - The reserved marker "SEQUAL" is reset after an I(nsert,
D(elete, F(ind, C(opy, or R(eplace command. The reserved marker
"SCURSOR" is used to save the current cursor position.

Pama 119

PDQ-~3 System Reference Manual

4.1.5 The Copy Buffer

The editor maintains a copy of the most recently I(nserted or
D(eleted text in a magic place called the copy buffer. The
contents of the copy buffer can be inserted into the text with the
C(opy B(uffer command. The copy buffer is used to move or
duplicate sections of text within the file, The content of the
copy buffer is always maintained, even across nested E(dit and
Q(uit options, as long as you do not exit from ASE back to the
Command prompt.

The contents of the copy buffer are changed by the following
commands: :

-- D(elete fills the copy buffer with the deleted text, regard-
less of whether the deletion 1is accepted (terminated with
<etx>) or escaped (terminated with <esc>).

-~ I(nsert fills the copy buffer with the inserted text. If you
a001dentally type <escape> during I(nsert, the text you typed
in can be restored by C(opy B(uffer,

-=- Z(ap saves the deleted text in the copy buffer.

NOTE - Storage for the copy buffer is taken directly from the text
buffer, and therefore may be too small to contain a copy of the
text. Whenever a Z(ap, I(nsert, or D(elete command changes more
text than can fit in the copy buffer, the user is warned that the
text cannot be copied and is asked (with a "yes/no" prompt) to
verify acceptance of the command. Usually, forcing extraneous text
from the buffer to the disk by wuse of T(oDisk will provide
sufficient room.

Page 120

Advanced System Editor

4.1.6 Entering Strings in F(ind and R(eplace

The F(ind and R(eplace commands operate on character strings. This
section describes the features unique to these commands, including:
syntax for specifying character strings (4.1.6.0), editor variables
containing function definitions and the current search and replace
strings (4.1.6.1), and an environment parameter which affects the
editor's method of searching for character strings (described in
section 4.1.6.2). More details on this topic can be found in the
descriptions of the F(ind, R(eplace, and S(et E(nvironment commands
(sections 4.2.6, 4.2.18, and 4.2.19 respectively).

4.1.6.0 String Syntax

Strings can contain any characters (including nonprinting char-
acters); they are delimited by two occurrences of the same
character, For example, "/I'm a string/", ".8.", and "*randy*"
represent the strings "I'm a string", "8", and "randy", respec-
tively. Delimiting characters may be any non-alphanumeric char-
acter except <space> or <Kesc>,

NOTE - Carriage returns are valid in strings; when they are typed,
the screen 1is erased to make room for the entry of search strings
consisting of a number of text lines.

NOTE - This is one of the few places in the system where a <return>
is not required at the end of the data typed in; the command is
executed immediately after the closing delimiter of the last string
parameter is typed. Also, the editor does not allow backspacing
over a delimiter.

Ml&ximlaﬂamﬂ

The editor provides two string variables for saving the last string
arguments entered in the F(ind and R(eplace commands. It also
allows function definitions to be used as string variables.,

String variables provided by the editor are the search and replace
strings. Their values are updated only by a delimited string which
is a search or replace argument, The search string (named
"<{search>") 1is set by both F(ind and R(eplace; the replacement
string (named "<replace>") is set only by R(eplace. The string
values of these variables can be used in subsequent F(inds and
R(eplaces by using the letter "S" or "s" to denote the contents of
the search string and the 1letter "R"™ or "r" to denote the
replacement string., For example, in F(ind, typing "R" finds an
occurrence of the contents of the <replace> variable in the text
file. 1In R(eplace, typing "sr" replaces an occurrence of <search>
with the contents of <replace>, while typing ".match.s" replaces an
occurrence of the string "match" with the contents of <search>.

" The current values of <search> and <replace> can be examined with

the S(et E(nvironment command. No wvalues are displayed if the
variables have not been assigned values during the edit session.

Page 121

PDQ-3 System Reference Manual

Using an unassigned string variable results in the following error
message:

ERROR: No old pattern. Type <spacebar> to continue.

The editor also accepts the digits "1® through "8" as string
variable names. These variables contain the corresponding function
key definitions (<£f1>..<£8>); typing the variable name 1is an
abbreviated form of typing the function definition as a string
argument. (Note that the function keys themselves cannot be
invoked while entering string arguments.)

Ll...ﬁ..z_s.eamhun.des

F(ind and R(eplace have a number of methods for locating strings in
a text file: Case insensitive mode, Token mode, and Literal mode.
Case 1insensitive mode is used with the other two search modes; it
indicates that lower and upper case alphabetic characters are to be
considered equivalent while looking for occurrences of the search
string. In Literal mode, the editor searches for any occurrences
of the search string. In Token mode, it searches for an isolated
occurrence, which is defined as a string delimited by spaces or
other punctuation. For example, in the string "now is the time for
blisters®, a Literal mode search £finds two occurrences of the
search string "is", while Token mode finds only one.

Token mode ignores spaces within strings; thus, the two strings
".se" and ", , ." are equivalent. '

Token and Literal modes are determined by an environment parameter;
its name 1is "Token def", which is short for "Token default mode",
When this parameter is set true, all searches default to Token
mode; when set false, they default to Literal mode. The initial
parameter value is true, but can be changed by the user with the
S(et E(nvironment command.

Case insensitive mode is not determined by an environment para-
meter; searches always default to -case-sensitive searches, and
case~insensitive searches must be explicitly specified.

The current default search mode can be overridden in F(ind and
R(eplace by using the 1letters "C"/"c" (force Case insensitive
mode), "L"/"1" (force Literal mode), and "T"/"t" (force Token
mode) . These must appear outside of the string parameters; here
are some examples of search mode override:

"l.foon." (find the literal string "foon");

"r/foon//yeen/" (replace tokens of "foon" with the string
"yeen");

",bad,L,good," (replace literal "bad" with the string "good");

"lc.a..Z."” (replace all occurrences of the letters "a" and I

Page 122

Advanced System Editor

with the letter "Z").

Pace 123

PDQ-3 System Reference Manual

4.1.7 Negted Editing

Nested editing allows the user to suspend the current edit session,
edit another file, and later return to the suspended edit session
at the point of suspension.

A nested edit session is invoked with the E(dit command which
appears on the editor prompt line. When invoked, the fileprompt is
issued, and, if successfully negotiated, E(dit writes the file from
the current edit session out to disk in a temporary file (see the
E(dit command (section 4.2.5) for details). The new edit session
proceeds normally, but when it is finished, the Q(uit menu is
augmented by a list of the suspended edit sessions. Q(uit A(nother
creates a new edit session at the current nesting level. E(xit and
A(nother restore the previously suspended edit session by reading
its temporary £file back into the editor; while this occurs, the
following message is displayed:

Restoring <file name> (from <temp file name>)

Editing then proceeds at the point where it was suspended by the
nested E(dit invocation. The actions performed by nested editing
are nearly equivalent to having the wuser manually terminate the
current session, enter the editor with a new file, terminate the
new session, and reenter the editor with the original file. Nested
editing reduces the number of keystrokes required to edit both
files and alleviates the need to remember the name of the original
file.

In nested edit sessions, the E(dit and Q(uit commands list the
files involved in suspended edit sessions:

Files being edited (most recent first):
2. *CREATEDl.TEXT
1. STUFF,TEXT STUFF.BACK

The numbers on the left-hand side of the list indicate the nesting
level of the associated file. If a suspended file has a backup
file, the backup file name appears on the right.

Files created in nested edit sessions are named "CREATED<n>,TEXT"
instead of the work file title; <n> ranges from 1 to the number of
created files.

All files suspended by nested edit sessions are named "name.ASE!",
These file names are usually temporary, i.e. they disappear as
suspended edit sessions are restored. However, if the editor is
aborted during a nested session (by running out of disk room, for
instance), the suspended edit sessions are never restored; they
appear as a series of disk files with the file suffix ".ASE!". 1If
you want to save the suspended edit sessions, use the filer to

change all file names with suffix ".ASE!"™ to have the suffix
" . TEXT".

NOTE - Though many levels of nesting are allowed, it is rarely
attempted because of disk space constraints; nested editing uses

Page 124

Advanced System Editor

large amounts of disk space. Consider the case of a nested editing
session with the file FOON,TEXT:

Initially, only the <file FOON.TEXT exists. Entering "FOON
<cr>" in an edit session changes its name to FOON.BACK and
creates a working copy, FOON,TEXT, on disk. Entering a nested
edit session saves the working copy as FOON,ASE!. Restoring
the edit session makes a working FOON,TEXT from the FOON,ASE!
on disk. Updating the edit session removes FOON.ASE! and
saves the working copy as FOON,TEXT, leaving the original
source file as FOON.BACK.

Page 125

PDQ-3 System Reference llanual

4.1.8 Change Logging

Change logging is used to maintain a history of the changes made to
a file; it provides version control for oft-modified program
sources, and can be an invaluable aid for programs maintained by
more than one person.

A change 1log consists of a series of text lines (called "log
entries”) kept at a fixed location in a text file. The front of a
file is wusually chosen as a 1logging site because of its high
visibility. A log entry is only constrained to lie entirely on a
single line; however, a standard formatting convention is:

<log entry> ::= <date> <initials> <comment>

As displayed, a 1log entry consists of the entry date followed by
the logger's initials and a description of the changes made to the
file.

Example of a change log:

01-Apr-81 RG Deleted all program sources... April fools!
29-Mar-81 BD Overhauled doodad for optimal performance.
16-Feb=-81 BD Completely reorganized entire thingamajig.
29=Jan=-81 BD All night fixing bug #84.

23-Jan-81 BD Spent six long hours fixing bug #83.

Change 1logs maintained in program source files must be "commented
out” in order to hide them from the language translator; this may
restrict the use of some characters in a log entry.

Example of a commented-out change log in a Pascal source file:

{
29~-Jan-81 BD All night fixing bug #84.

23-Jan-81 BD Spent six long hours fixing bug #83.
}

A change log is started by setting the reserved marker name "SLOG"
at the desired logging site in a file. When a file is updated at
the end of an edit session, the editor checks for the presence of
"S$LOG"; if found, the following prompt appears:

Log Entry? (y/n)

Typing "N" terminates the edit session without 1logging an entry;
"Y" generates the following prompt (the cursor position is under-
lined):

Entry: 0l-Apr-81 _

The user may now type in the desired 1log entry. Note that the
current system date is already typed in by the editor; if desired,
it can be erased with backspaces or . The 1log entry is
terminated by typing <crd. Typing <esc> while entering the log
entry aborts logging and restores the edit session.

Page 126

Advanced System Editor

When the log entry is completed, the editor automatically jumps to
the marker "SLOG", inserts the log entry text, and finishes the
edit session. This has the effect of entering the most recent 1log
entry at the front of the change log; thus maintaining chronologi-
cally ord::ed log entries.

NOTE - The editor also maintains a revision number in each text
file indicating the number of times the file has been updated. The
revision number can be viewed with the S(et E(nvironment command,

- PDQ=-3 System Reference Manual

4.1.9 User-defined Functions

A user-defined function 1is a <character sequence (known as a
function defipition) that is assigned to a console key (known as a
function key):; typing the function key causes the editor to treat
the characters in the function definition as keyboard input. For
instance, assume that a function definition contains the character
string "istuff<etx>"; typing this function Kkey from the editor
prompt causes the characters to be treated as if they were typed in
from the console. The first character ("i") invokes the I(nsert
command; the character sequence "stuff" is entered as text; the
<etx> character completes the command. The net result is that the
word "stuff" is inserted into the text each time the function Kkey
is typed. Function keys and definitions are described in section
401.9000

Functions can be defined by one of three methods: recording,
taking up a text form, or specification. A function is recorded
when sequences of commands and data are saved in the <function's
definition as they are executed by the editor; recording is
described in section 4.1.9.1. Text forms are textual representa-
tions of function definitions stored in a text file; they are used
to save functions across edit sessions (in a terminal-independent
fashion). Text forms can be taken up from the text into a function
definition, or created by copying an existing function definition.
Text forms and text form conversion are described in section
4.,1.9.2. The environment command "U(ser def key" reads a series of
Keystrokes typed from the keyboard into a function definition; this
direct specification of functions is described in the S(et E(nvi-
ronment U(serkeys command (section 4.2.19.3.0.1).

4.1.9.0 Function Definitions

The editor provides eight user-defined functions; they are named
function keys one through eight and are denoted by the symbols
<£1>,<£2>,...,<£8> on the main editor prompt 1line., Here is a
sample (obtained by repeatedly typing "2") of the prompt 1line
displaying some of the function keys:

<f5>=takeup5 <f6>=recorded <f7>=taken up <£8>=02-Apr-81

The current status of each function is displayed on the prompt
line:

<function status> ::= <default> | taken up I
recorded | <user-defined>

The functions <£1> .. <K£f7> are initially defined to take up a text
form as their definition: e.g. the default definition for function
<£5> consists of "<takeup><f5>" and the prompt line entry displays
its status as “"takeupS5". Function <£f8> is initially defined to
contain the current system date; typing <£8> in the I(nsert command
inserts the date in the format displayed in its prompt line entry.

Functions taken up from a text form display the status "taken up”.

Page 128°

Advanced System Editor

Recorded functions display the status "recorded". Unfortunately,
specified functions lack status, and therefore do not change the
function's originally displayed status. Users can specify their
own function status with the "keyname" feature included in the text
form notation (see section 4.1.9.2 for details).

Active function definitions are stored in the editor's data space;
they are preserved between editor invocations, but not across
editor sessions, Text forms are used to permanently define
functions (see section 4.1.9.2 for details). The literal character
sequence stored in a function definition can be viewed and modified
with the S(et E(nvironment U(serkeys command (section 4.2.19.3.
0.1).

Repeat factors can be applied to function keys invoked from the
editor prompt; for example, typing "3<f1>" causes <f1> to be
executed three times. Repeat factors can be applied to functions
invoked within editor commands only if nonprinting alternate
definitions for the digits have been created (see section 8.3.2).

Function definitions are allowed to contain invocations of other
functions; i.e., <£1> = "3<£2><f3>"., Functions may also take up
any function key; for example, <f1> can be defined as "<takeup>
<£1>" so that it takes up a new definition when typed.

NOTE - Section 8.3.2 describes the designation of terminal keys as
function keys.

4.1.9.1 Function Recording

Recording a function key is accomplished with the <record> command
(see the <record> command (section 4.2,17) for details). The
<record> command must be followed by one of the function keys.
After the function key is typed, the <record> command "disappears”";
however, subsequent editor commands and data are recorded as the
function key's definition. Recording is stopped by typing the
{record> key again. For example, typing "<record><fl>istuff<cetx>
<record>" assigns the function definition "istuff<etx>" to function
key <£1>.

NOTE - Function keys may be defined at any point 1in the -editor;
definition is not restricted to start or end at the editor prompt.

The editor indicates that it is recording a function key by
replacing the "?" normally displayed on the right side of the
editor prompt with "<N>", where N indicates the number of the
function key being recorded.

WARNING - As the <record> command may be invoked virtually anyplace
in the editor, accidentally typing <record> will seem to lock the
keyboard while it waits for a function Kkey (or <escape>) to be
typed. This may occur at places where the <record> prompt doesn't
appear; for instance, I(nsert, eX(change, D(elete, Q(uit, y/n, ...

Page 129

PDQ-3 System Reference Manual

4,1.9.2 Function Text Formsg

Function definitions may be permanently stored in a text file as
text forms. Text forms are a textual representation of the
commands and data of a function definition -- alphabetic characters
are represented 1literally, while commands and nonprinting charac=-
ters are represented in encoded form. For instance, an occurrence
of the letter "a" in a function definition appears as the character
"a"™ in the corresponding text form, while the <etx> command appears
in the text form encoded as the character sequence "le",.

Encoding the commands and nonprinting characters has the following
advantages:

-~ Text forms are terminal-independent, thus ensuring that text
files and their embedded function definitions are completely
portable.

-- Encoded commands are represented by mnemonic character se-
quences, enabling text forms to be understood by users
familiar with text form notation. Text <form notation lends
itself to direct manipulation of text forms in order to create
and nodify function definitions.

Two editor commands are used to shift function definitions between
their active-but-volatile phase as invokable function keys and
their passive-but-permanent phase as text forms. The C(opy <spe-
cialkey> command writes function key definitions to text forms.
The <takeup> command reads text forms into function Kkey defini-
tions. Details concerning these commands may be found in the
command descriptions in section 4,2.

The marker name "SPROFILE"™ is reserved for automated function
definition at the beginning of an edit session; details are given
below.

The following expressions describe the syntax for text forms.
<text-form> ::= { <ch> | <EncodedKey> | <newline> } "|" .
<ch> ::= <all-printing-characters-except=-"1">
<newline> ::= <text-form-continued-on-next-text-line>

<EncodedKey> ::= "|" <key>

<key> ::= 1" x | s <ch> | £ <digit> |
: 1 I £ 1 v I 4 I n I e |
b | h | & 1 & | "<" | ">" |

e I 1 1 g I = 1 * |

" <string-of-ASCII-printing-except-'"'> "
' <string-of-ASCII-printing-except=""'"> '
"{" <string-of-ASCII-printing~except="}"> "}"

<digit> ::= ol 112131 415161718129

Page 130

Advanced System Editor

Definitions for the encoded <Kkey>s are as follows.

Key Meaning

i The character "I" is placed in the text.
(i.e. "II"™ ::= a single "I")
X Execute function. The key is automatically invoked
after being taken up.
s Set space. The following character replaces " " as

the character denoting <space> (e.g. "Is=-" sets "-"
to denote <space> in the definition, while
subsequent " " characters become insignificant).
"£1" denotes <£f1>; "f8" denotes <£8>.
<left-arrow>

<right-arrow>

{up-arrow>

<down-arrow>

{return>

<etx>

<backspace>

<home>

<tab>

{esc>

insert character (used in eX(change)

delete character (used in eX(change)

<coll>

Getch

{GetAgain>

<takeup>

Comment (e.g. "I1{ no effect on text forml").
User-defined keyname, The function status
displayed on the prompt line is replaced with the
delimited character string. Keynames longer"
than 11 characters are truncated.

Alternate user-defined keyname.

-k MAHDAV=-CDU0DD QLSRN HM

The following is an example of a text form using "Is" and comments.
I1{ add 'hot stuff' }ls- i |{insert} hot-stuff le I,

.es translates to the function key definition "ihot stuff<etx>";
when invoked, the function inserts the string "hot stuff" into the
text. Note that the space character is redefined to be "-", The
remaining spaces in the text form are ignored when the text form is
translated, but the occurrence of "-" is replaced with " ",

Page 131

PDQ-3 System Reference Manual

Example of text form using user-defined keyname.
The text form: |"CenterLine"aclel.

e« translates to the function key definition "ac<etx>"; when
invoked, it <centers the text 1line under the cursor between the
current margins (using the A(djust C(enter command). Also, it
changes the function status displayed on the editor prompt. For
example, taking up this text form into <£5> changes part of the
editor prompt to:

<£5>=CenterLine
Example of text form using "Ix":
The text form: Ixifarklelel.
.ee translates to the function key definition "ifarkle<etx>" with
the usual result; however, it is automatically invoked after it |is
taken up. Because the <takeup> command leaves the cursor at the

end of a text form, this text form appears after being taken up as:
Ixifarklelel.farkle

Page 132

Advanced System Editor

Example of a well documented, nontrivial text form.

The text form:

(*
- = = UCSD Pascal Include File Consumer - - -

Input assertion: All include file directives
in the text have the following form (leading
blanks in file name are ignored):

{$I <filename>}

Output assertion: The text file contains
text specified by an embedded include file
directives. Consumed include file

directives are neutralized, and appear in the
text as comments with the following form:

{ <filename>}

I"IncludeFile” | { Key name on prompt line }
Is=- |{ set space to "=-" 1}
£f1 .{sI. l{ £ind include directive }
d 2 lb le | { delete directive specifier "SI" }
d Ig} I! 1{ file name into copy buffer }
I* ¢ I1£2 I { take up copy buffer into f£2 }
2b | { move cursor to next line }
c £ If2 In 1{ copy file contents into text }
I { '

I
*)

end of definition }

oo is used to merge a Pascal source file and all of its
specified "include" files into one (large) text file. (The symbols
"(*" and "*)" shown in the example are not part of the text form;
they exist merely to "comment out"™ the text £form in the Pascal
source program.) As shown, the function only processes one
directive at a time; however, typing "/<fn>" while editing the
source file copies all of the "include" files.

Page 133

PDQ-3 System Reference Manual

With the information provided so far, it is almost possible for
users to embed text forms in a given text file so that each edit
session involving the £file automatically defines a group of
predefined commands. What is lacking is a means of automating the
process of taking up text forms into function keys; the editor
reserves the marker name "$PROFILE" for this purpose. When a file
is first entered, and the marker "SPROFILE" is present, the command
sequence "jm$PROFILE<cr><takeup><f1>" 1is automatically executed.
The marker is assumed to be set at the front of a text form; this
function definition is automatically taken up. Other function keys
can then be taken up by initially defining <f1>'s text form to have
the following format:

IRI*IESI*|I£41*|£31*I1£21*|£11.
| {function5}1.,
I {functiondl}|,
| {function3}|.
| {function2l}l.
I {functionll}l.

In this example, the marker "S$PROFILE" is assumed to be set at the
start of the first text form, This text form is automatically
executed after being taken up; its sole purpose is to define all
desired function Kkeys from the subsequent text forms in the file
(in this case, <f1>'s last deed is to redefine itself to something
more useful).

NOTE - Section 4.1.0 describes the interactions of $PROFILE with
the other automated editing options. Section 4.0.2.2 describes how
automated takeup can be overridden or redirected to another ma:ker
in the file by using the editor's extended file name syntax.

Page 134

‘Advanced System Editor

4.2 Commands

Section 4.2.0 contains a command overview; the commands are grouped
according to their function. Sections 4.2.1 through 4.2.26 des-
cribe each command in detail; the commands are alphabetically
ordered.

4.2.0 Command Summary

4.2.0.0 Moving Commands

<down> cursor down

<up> cursor up

<right> cursor right

<left> cursor left

<space> cursor in direction

<backspace> cursor in reverse direction

<tab> cursor to next tab stop in direction
<return> cursor to next line in direction

" backward direction

ny" forward direction

= cursor alternates between current position and
start of last I(nserted/F(ound/R(eplaced/=d text

<home>: Move cursor to the upper left-hand corner of the screen.
U(ptop: Move the screen window so that the line containing the
cursor is at _

the top.
W(ordMove: Move cursor to the beginning of the next word.
B(eginLine: Move cursor to the beginning of the current line.

L(ineEnd: Move cursor to the end of the current line.

J(ump: Jump to marker or the beginning or end of the file
buffer.

N(ext: Move cursor to the beginning or end of the file,

O(ppositePage: Move cursor one screen padge in the opposite
direction,

P(age: Move cursor one screen page in the current direction.

Page 135

PDQ-3 System Reference lNanual

4.2.0.1 Text Changing Commands
I(nsert: Insert text.
D(elete: Delete text.
eX(change: Exchange text.

Clopy: Copies text from copy buffer, another file, or
a function text form into the file.

Z(ap: Delete all text between last found/replaced/inserted/=d
text and the current cursor position.

4.2.0.2 Pattern Matching Commands
F(ind: Pind character string patterns in text.

R(eplace: Locate string patterns in text and replace with a
substitute pattern.

G(etch: Find the next occurrence on this screen of the specified
character.

<GetAgain>: Finds the next occurrence of the last G(etched
character,

4.2.0.3 Formatting Commands
A(djust: Adjust indentation of the current line.
K(olumn: Adjust indentation of a column of text.
M(argin: Adjust all text between two blank lines to the current

margin settings.

4.2.0.4 Buffer Managing Commands -
N(ext: Extend the file buffer in the specified direction.

T(oDisk: Write part of the file buffer out to disk.

<record>: Record subsequent editor commands in a function
definition,

<takeup>: Read in a function definition from the text.

Page 136

Advanced System Editor

4.2.0.6 Miscellaneous Commands

S(et: Set M(arkers to J(ump to, D(elete markers, or enter
E(nvironment to change parameters.

V(erify: Redisplay screen with the cursor centered.

E(dit: Save the state of the current edit session and start a
new edit session.

Q(uit: Leave the current edit session.

Page 137

PDQ-3 System Reference llanual

4,2.1 A(djust
Prompt:

>Adjust: [<n>] <arrows> L(just R(just C(enter Z(ero
{<etx>,<esc> line}

The <n> delimited b .quare brackets displays the "adjust factor".
The adjust factor indicates the number of columns by which the
current line has been adjusted.

A(djust changes the indentation of a text line. The <right> and
<left> commands move the entire line on which the cursor is located
one space right or 1left, respectively. The <Tab> key moves the
line right to the next tabstop. <Space> and <BackSpace> also move
the line forwards and backwards respectively. The adjust factor is
incremented or decremented as appropriate.

"%2" sets the adjust factor to zero, thus preserving the current
indentation of all adjusted lines. "L" and "R" left-justify and
right=-justify lines to the current margin settings. "C" <centers
lines between the margins. Margins are described in the S(et
E(nvironment command. The adjust factor is incremented or decre
ented automatically.

A series of lines may be adjusted by adjusting one line the desired
amount and then using the <up> and <down> commands to adjust
adjacent lines by the same amount. Note that horizontal commands
can be intermixed with vertical commands to allow cumulative
horizontal offset changes on successive line adjusts; thus, typing
"A <left> <left> <down> <left> <down>" moves the current 1line two
spaces to the 1left, while the two lines below it are moved three
spaces to the left. Reversing the vertical direction automatically
resets the adjust factor to that of any modifications done on the
last line.

NOTE - While the A(djust command itself does not accept repeat
factors, the moving commands used within A(djust do accept repeat
factors.

Typing <etx> finishes the command; the cursor is 1left at the
beginning of the 1last 1line adjusted. Typing <esc> exits the
command, restoring the original indentation of the current line.
If a number of 1lines have been adjusted, only the last line is
restored.

Page 138

Advanced System Editor

4.2.2 B(eginLine

Repeat factors are allowed.

Moves the cursor to the beginning of the current 1line. When
preceded by a repeat factor <n>, B(eginLine moves the cursor to the
beginning of the <n - 1>th line from the current line.

Page 139

PDQ-3 System Reference Manual

4.2.3 C(opy
Prompt:

>Copy: B(uffer F(rom file <specialkey> <esc>

4.2.3.0 C(opy B(uffer
Repeat factors are allowed (before the C(opy).

Typing "B" copies text from the copy buffer. The copy buffer
contents are copied into the text, starting at the cursor location
prior to invoking C(opy. The cursor is left at the £front of the
copied text. The "=" pointer is set to the tail of the copied
text.

The copy buffer is described in section 4.1.5.

4.2.3.1 C(opy <specialkey>

Typing a function Kkey copies the text form of the specified
function definition into the text file at the current cursor
position, and leaves the cursor at the end of the text <form. The
"=" pointer 1is set to the start of the text form. This allows
recorded function definitions to be saved in the text file for
future editing sessions. The <takeup> command reads up function
definitions from text forms.

See section 4.1.9 for more details on special function keys,
function definitions, and text forms.

Page 140

Advanced System Editor

4.2.3.2 C(opy E(rom file
Prompt:
>Copy: from what filelmarker,markerl]?

Typing "F" copies portions of text from another text file. The
section of copied text is inserted into the current text file
starting at the cursor 1location prior to invoking C(opy. The
cursor is left at the end of the copied text. The "=" pointer is
set to the front of the text.

Any text file may be specified; the file suffix ".TEXT" is
optional. Typing <esc> or only a <return> exits the command.

File names containing the editor's wild card character "?" generate
a file menu (described 1in section 4.0.2.0) displaying all text
files on the specified volume. Typing a letter corresponding to
one of the displayed file names specifies the file for copying;
typing <space> redisplays the original prompt; typing "2" displays
the first line of text in each of the files displayed.

The marker specification (including the square brackets) is option-
al, and is used to copy selected portions of another £file. The
markers specified must be present in the other file. The text
copied is that which lies between the first and the second markers
specified, For example, "ourfilelyourmark,mymark]" indicates that
all text between the markers "YOURMARK" and "MYMARK" in ' the file
"OURFILE.TEXT" should be copied.

Partial marker specifications are allowed; an empty marker field
indicates one end of the file as the delimiter of the copied text.
For example, "[,MYMARKI"™ indicates that all text between the front
of the file and the marker "MYMARK" should be copied, while
" [YOURMARK, 1" indicates that all text between the marker "YOURMARK"
and the end of the file should be copied. Markers are described in
the S(et M(arker command.

C(opy F(rom file does not alter the contents of the file being
copied.

Page 141

PDQ-3 System Reference lanual

4.2.4 D(elete
Prompt:
>Delete: < > <Moving commands> {<etx> to delete, <esc> to abort}

The cursor is considered to be positioned at the first character to
be deleted. Before entering D(elete, the cursor position is
recorded; it is called the "anchor". As the cursor is moved away
from the anchor using the moving commands, text 1in its path
disappears. As the cursor is moved back toward the anchor, the
previously deleted text is restored.

The cursor movement commands B(eginLine, L(ineEnd, G(etch, <Get-
Again>, and <arrow>s all are provided as subcommands within the
D(elete command.

To accept the deletion, type <etx>; to escape, type <esc>., The "="
pointer is set to the anchor position irrespective of whether <etx>
or <esc> is used.

The copy buffer is filled with the text between the cursor and the
anchor when <esc> or <etx> is issued, If there is insufficient
room in the text buffer for a copy of the text, a yes/no prompt is
issued to verify before deleting.

NOTE - While the D(elete command itself does not accept repeat

factors, the moving commands used within D(elete do accept repeat
factors.

-Example of using D(elete:

Here is the text before deleting:

This sentence of the text is to remain the same. This
sentence is £o be modified by the delete command.

The cursor is positioned before the 1letter "t"™ in the second
occurrence of the word "to". Enter D(elete by typing "DwW<etx>".
The text and cursor position now appear as follows:

This sentence of the text is to remain the same. This
sentence is modified by the delete command.

Page 142

Advanced System Editor

4.2.5 E(dit
Prompt:

>nested Edit: [ASE n.mal
?2<cr> Looks, <cr> Creates, <esc> Exits or Filename:

The state of the current text file is saved and the editor 1is re-
invoked. Typing <esc> to the ensuing file prompt returns the user
to the current text file; the remaining options are described in
section 4.1.0.

Nested editing is described in section 4.1.7.

Page 143

PDQ-3 System Reference llanual

4.2.6 E(ind

Repeat factors are allowed.

Prompt:

>Find[<n>]: L(it C(ase <target> =>
ggiﬁéi<n>]: T(ok C(ase <target> =>

ces depending on the value of the Token default environment
parameter. The metasymbol <n> denotes the repeat £factor value
passed to F(ind.

F(ind finds the <n>th occurrence of the target string in the text,
starting at the current cursor position and moving in the direction

displayed. If the repeat factor is "/", the last occurrence is
found.

See section 4.1.6.0 for details on specifying search strings.

Typing <esc> while entering the target string or search options
exits the F(ind command.

After a successful F(ind, the "=" marker ($EQUAL) is set at the
first character of the last found string pattern, and the cursor is
left at the character following the string.

If the editor reaches the end of the text buffer while looking for
a target string, it displays the following prompt:

End of Buffer encountered. Get more from disk? (Y/N)

Typing "Y" causes the editor to continue searching for the target;
any subsequent paging is done automatically. Typing "N" or
<escape> exits the F(ind command, leaving the cursor at its

original position (or after the last found target occurrence on
multiple searches).

NOTE - On searches for multiple occurrences of a target string, if
the editor doesn't find an occurrence of the target and the last
found string is no longer in the text buffer (because of paging),
the cursor is not left at the last found string; it's left near the
end of the file.

If the specified number of target occurrences is not found, the
following prompt appears:

ERROR: Pattern not in the file. Press <spacebar> to continue.

See section 4.1.6 for more details on using F(ind.

Page 144

Advanced System Editor

Example of using F(ind:

We will attempt to find "rutabaga". The cursor is located at the
start of the line,

- e wm w wm e e m m e m e om e wm om W m w e m e e e e e e = o=

This sentence rutabaga contains an out-of place word.

The F(ind command is invoked with an argument of "rutabaga"
>Find(1l]: L(it C(ase <target> =>/rutabaga/

The cursor is moved to this position:

Page 145

PDQ-3 System Reference !Manual

4.2.7 G(etch
Repeat Factors are allowed.

G(etch finds an occurrence of the subsequently typed character on
the screen, starting at the current cursor position and moving in
the direction displayed. 1If the character occurrence is found, the
cursor is positioned under it; otherwise, the bell is beeped.
/G(etch will find the last occurrence of the character on the
screen.

NOTE G(etch and <GetAgain> will not move the cursor off the
current window while searching for a target character.

NOTE - G(etch and <GetAgain> are allowed within other commands
(e.g. D(elete).

Function Kkey macro writers will £ind the U(ptop command to be
useful for getting a full screen "in front" of the G(etch.

Page 146

Advanced System Editor

4.2.7.0 <GetAgain>
The <GetAgain> command (not displayed on the promptline) £finds
another occurrence of the character specified by the previous
G(etch invocation.

NOTE - G(etch and <GetAgain> will not move the <cursor off the
current window while searching for a target character,

NOTE - G(etch and <GetAgain> are allowed within other commands
(e.g. Di(elete).

Function key macro writers will find the U(ptop command to be
useful for getting a full screen "in front" of the <GetAgain>.

Page 147

PDQ-3 System Reference Manual

4.2.8 I(nsert
Prompt:

>Insert: Text{<bs> a char, a line!}
[<etx> accepts, <esc> escapesl]

Characters (including <return>) are inserted into the text as they
are typed in, with <tab>s being expanded to the necessary number of
<{space>s. Any nonprinting characters that are typed are echoed
with a definable character, usually "?". Text may be changed while
it it is being inserted - typing <backspace> removes the last
inserted character, typing removes the current 1line of
inserted text, and typing <Coll> puts the cursor in column 1. Text
preceding the inserted text cannot be removed. This means that
 and <Coll> may not be able to go back as far as the previous
line or column 1, so they just back up to the beginning of the
insertion.

To accept the insertion, type <etx>; to escape, type <esc>. The
"=" pointer is set to the beginning of the insertion.

If an insertion is aborted with <esc>, the inserted text 1is saved
in the copy buffer, in case one accidentally escapes from a long
insertion. This implies that the "no room to put in copy buffer”

message may appear, not only when typing <etx> to accept the
insertion, but when escaping as well.

Occasionally, there will be insufficient room in the buffer for an
" insertion. This may be known before any text is actually typed, or
after many characters. In these circumstances, the editor will
force some text to disk causing a pause and some momentary "..."s
to appear on the screen at the cursor position,

I(nsert is affected by the following environment parameters:
Auto-indent, Filling, and Margins. These control the text margins
as successive lines of text are inserted. See the S(et E(nvi-
ronment command (section 4.2.19.3) for more details.

Example of using I(nsert:

Here is the text before inserting:

‘'This sentence of the text is to remain the same.

The cursor is positioned over the letter "t" in the word "to".

Enter I(nsert by typing "I", then type "not <etx>". The text and
cursor position now appear as follows:

This sentence of the text is not f£o remain the same.

Advanced System Editor

4.2.8.0 Using Auto-indent

If Auto-indent is True, a <return> causes the next line to have the
same level of indentation as the immediately preceding line. If
False, the indentation level for a new line is always zero (unless
Filling is True). When Auto-indent is True, indentation levels are
changed by using the <space> and <backspace> keys immediately
following a <return>.

Example of Auto-indent:

Line 1 Original indentation
Line 2 <ret> maintains current indentation level
Line 3 <ret><space><space> indents by two
Line 4 <ret> maintains current indentation level
Line 5 <ret><back space><back space> unindents by two

4.2.8.]1 Using Eilling

If Filling is True, all words inserted are forced to 1lie between
the 1left and right margins. The editor does this by automatically
inserting a <return> between words whenever the right margin would
have been exceeded, and by indenting to the left margin before

every new line. Any character strings delimited by spaces or by a
space and hyphen are considered words.

A paragraph 1is a series of text lines delimited by blank lines.
Filling automatically adjusts the right margins of the remainder of
a paragraph that has text inserted into it; however, any line
beginning with a command character 1is not touched and it is
considered to terminate the paragraph. Command characters are
described in section 4.2.12.0.

The margins of a filled paragraph may be readjusted by using the
M(argin command.

Filling with AutoIndent is often a useful mode,

WARNING - Filling without AutoIndent (fondly referred to as "munch"
mode by previous victims) should be used cauciously when editing a
text £file containing both filled and unfilled text. Failure to
either disable Filling or enable AutolIndent before I(nserting into
text with a different format (e.q. program source or stylish
tables) will radically alter the contents of the text file 1in an
unpleasant fashion.

NOTE - Operating in munch mode is not really necessary, as the
M(argin command is valid in all of the four possible modes.

Page 149

PDQ-3 System Reference Manual

4.2.9 J(ump

Prompt:

>Jump: B(eginning E(nd M(arker T(ag <esc>

Typing "B" or "E" moves the cursor to the beginning or end of the
current file buffer. Typing "T" jumps to the tag marker "STAG";
the tag marker is usually created with the S(et T(ag command.
4.2.9.0 J(ump M(arker

Prompt:

Jump to what marker?

Typing <esc> or only a <return> escapes the command.

Typing a marker name followed by a <return> moves the cursor to
that marker's 1location in the file. Typing <esc> anywhere in the
marker name escapes the command.,

If the specified marker does not exist, the following prompt is
displayed:

ERROR: Not there. Press <space-~bar> to continue.

Typing "?<return>" displays a menu of all current marker names in
the file. Markers outside of the file buffer are preceded by "<"
or ™", "<" indicates markers in text on the left stack; ">"
indicates markers in text on the right stack. A marker from the
menu is selected by typing its associated letter.

Markers associate user-defined names with arbitrary cursor posi-
tions in the text file. See section 4.1.3 for more details.

Markers are removed with the S(et D(eleteMarkers command and
examined with the S(et E(nvironment command.

Page 150

Advanced System Editor

4.2.10 K(olumn
Prompt:
Kolumn: <vector keys> <etx>

Adjusts the indentati. of text to the right of the cursor.
Operates over multiple lines as does A(djust,

All characters between the cursor and the end of the current text
line may be moved with the <left> or <right> commands. Typing
<left> moves text to the left; characters are deleted as they move
past the cursor. Typing <right> moves text to the right; blanks
are inserted past the cursor to fill the space created.

The <up> and <down> commands apply the same adjustment to adjacent
lines of text. Vertical and horizontal cursor movements may be
intermixed; the editor maintains a cumulative adjust factor as a
series of text lines is moved.

Typing <etx> finishes the command. K(olumn does not recognize
<esc>.

WARNING - Careless use of the K(olumn command can irretrievably
delete valuable portions of one or more text lines.

Example of using K(olumn:

Here is the cursor and text before K(olumn:

sturdy column - this
sturdy column is
sturdy column a
sturdy column rather
sturdy column shaky
sturdy column column

Type "K5<left>4<down><left><down><etx>". The text and cursor posi-
tion now appear as follows: :

sturdy column this
sturdy column is
sturdy column a
sturdy column rather
sturdy column shaky
sturdy column gcolumn

Page 151

PDQ-3 System Reference Manual
4.2.11 L{ineEnd
Repeat factors are allowed.

Moves the cursor to the end of the current line. When preceded by

a non-zero repeat factor <n>, L(ineEnd moves the cursor to the end
of the <n - 1>th line from the current line.

Page 152

Advanced System Editor

4.2.12 M(argin

M(argin (also known as M(unch) reorganizes the paragraph of text
surrounding the cursor so that its text 1lines lie within the
current margins. A paragraph is defined as a series of text 1lines
delimited by either blank 1lines or a 1line beginning with the
command character (see S(et E(nvironment (section 4.2.19.3)).

M(argin proceeds automatically when the editor environment 1is set
for word processing; 1in particular, when Filling is set True and
Auto-indent is set False ("munch™ mode). Otherwise, the following
prompt first appears:

Margin: Are you sure? (y/n)
Typing "Y" starts M(argin; typing "N" exits to the editor prompt.

The text format produced is similar to the filled format described
in the I(nsert command (using Filling). M(argin 1indents to the
paragraph margin on the first 1line of the paragraph, inserts a
{return> between words whenever the right margin would be exceeded,
and indents to the 1left margin before every new line. Any
character strings delimited by spaces or by a space and hyphen are
considered words. '

Margin values are set with the S(et E(nvironment command.

M(argin may take several seconds to reorganize long paragraphs of
text. The screen remains blank until the paragraph is finished;
the screen is then redisplayed.

WARNING - Inadvertently typing "M" when the edit environment is set
for word processing can ruin the contents of a text file containing
program sources, In situations requiring isolated sections of
formatted text in a program's source file, it 1is wise to leave
AutoIndent True in order to disable automatic M(unching,

Page 153

PDQ-3 System Reference ilanual

Example of using M(argin:

The paragraph before M(argin:

The Margin Command is executed

by typing "M" when

the cursor is in the paragraph to be margined.

The

Margin Command deals with

only one paragraph at a time

and realigns the text to the specification set in the
environment. '

A(uto indent False
F(illing True
L(eft margin 5
R(ight margin 60
P(ara margin 10
C(ommand ch .

The paragraph after M(argin:

The Margin Command is executed by typing "M" when
the cursor is in the paragraph to be margined. The
Margin Command deals with only one paragraph at a time
and realigns the text to the specification set in the
environment.

4.2.12.0 Command Characters

For purposes of formatting, a paragraph is defined as a series of
text lines delimited by blank lines; however, an arbitrary line of
text can be protected from M(argin if a command character appears
as the first non-blank character on the line. M(argin treats these
lines as though they were blank lines. The command character is
defined with the S(et E(nvironment command.

Command characters also affect the behavior of I(nsert when 1in
"munch" mode.

Page 154

Advanced System Editor

4.2.13 N(ext
Prompt:

Next: F(orwards, B(ackwards in the file;
S(tart, E(nd of the file. <esc>

S(tart moves the cursor to the front of the file. E(nd moves the
cursor to the end of the file.

F(orwards and B(ackwards slide the £file buffer across the text
file; F(orwards reads 1in text in front of the buffer, while
B(ackwards reads in text behind the buffer., The cursor position is
unchanged.

When the Auto Buffer environment parameter is False, these commands
are necessary for moving the file buffer to another part of the
file. When Auto Buffer 1is True, use of ©N(ext F(orwards or
B(ackwards is not required; however, judicious use can enhance
editor performance on some configurations by minimizing the amount
of paging performed as new sections of the text file are edited.

See section 4.0.5 for details on the file buffer and paging.

Page 155

PDQ-3 System Reference llanual

4.2.14 O(ppositePage
Repeat factors are allowed.

Displays the preceding screen of text if direction 1is forward;
otherwise, the following screen of text is displayed. The cursor
is left on the same line of the screen, but is moved to the start
of the line.

Page 156

Advanced System Editor

4.2.15 P(age

Repeat factors are allowed.

Displays the following screen of text if direction is forward
otherwise, the preceding screen of text is displayed. The cursor

is 1left on the same line of the screen, but is moved to the start
of the line. '

Page 157

PDQ-3 System Reference llanual

4.2.16 OCuit
Prompt:

Quit:
A(nother file (after Updating)
B(ackup and re-edit the same file
C(hange the name of the output file
E(xit (but workfile not updated)
R(eturn to the editor without doing anything
U(pdate the workfile and leave

Output File Name: <filename>
Backup File Name: <filename>

One of the five options is selected by typing "aA", "B", "C", "E",
"R", or "U"; all other characters are ignored.

E(xit -
The editor verifies the E(xit command with the following prompt:
Are you sure you want to exit? (Y¥(es, N(o or A(nother)

Typing "N" returns control to the editor without exiting; the
cursor is returned to the same position it occupied before "Q" was
typed.

Typing "Y" or "A" terminates the current edit session -- modifica-
tions made to the text are lost, as the text file is not saved on
the disk. A(nother reinvokes the editor after exiting the current
edit session. The contents of the copy buffer, function keys, and
search/replace strings are retained.

C(hange -

The displayed output file name is erased. The user can then change
the name of the output file by typing a new file name. The editor
appends the suffix ",TEXT" to the new file name only if was not
specified. Typing only <return> or typing <esc> within the file
name exits C(hange and restores the original file name. The Q(uit
prompt reappears after the C(hange command.

NOTE - C(hange only changes the output file's name; it cannot
change the volume to which the output file is written. Volume
identifiers in the new file name are therefore ignored. The name
change 1is not saved if R(eturn is used to restore the current edit
session.

R(eturn -

Returns to the editor without updating. The cursor is returned to
the same position it occupied before "Q" was typed. R(eturn is
often used after accidentally typing "Q".

Page 158

Advanced System Editor

A(nother -
U(pdate -

A(nother reinvokes the editor after completing the <current edit
session; the contents of the copy buffer, function keys, and
search/replace strings are retained for the new edit session.
U(pdate redisplays the system prompt after completing the current
edit session. When an edit session is completed, the text (and
environment information) 1is written to the destination file. If
the marker "SLAST" exists, it is set to the last cursor position.
The editor displays the following information on the screen while
completing an edit session:

Quit:

Writing allecececos®**

The workfile, <filename>, is <n> blocks long,
The backup file is <filename>

B(ackup -

The current edit session is completed as in U(pdate or A(nother;
the editor then starts a new edit session, automatically specifying
the just-updated file as the source file. B(ackup is popular with
people saddled with undependable hardware and/or electrical servi-
ce! The new edit session begins at the front of the file, with a
J(ump M(arker prompt to the previous cursor position ($SCURSOR).
Note that B(ackup is equivalent to typing "ga<name-of-dest-filed>=
<return>jm$cursor"”, except that a $LOG request is not issued.

When nested edit sessions exist, the editor lists the names of each
file being edited. A(nother reinvokes the editor for a new edit
session at the same level; E(xit and U(pdate restore the previous
level as the current edit session. See section 4.1.7 for details
on nested editing. ’

If a marker S$SLOG exists for a Q(uit A(nother or U(pdate command,
the user is requested to make an optional entry in a semi-automated
change log. The following prompt appears:

Log Entry? (y/n)

Typing <escape> restores the current edit session. See section
4.1.8 for more information on change logging.

NOTE - If the location of the marker $LOG is not within the current
text buffer, the logging prompt appears as:

The log is not in the edit buffer., Log Entry? (y/n)

This 1is nothing important =-- the only difference being some
automatic paging if a change is to be logged.

Page 159

PDQ-3 System Reference Manual

4.2.17 <record>
Prompt:
RecordSpecialKey: <specialkey 1l..8> <commands> OR <esc>

Record subsequent editor input as a definition for .a user-defined
function.

The <record> key command must be followed by typing one of the
function keys or <escape>. After the function key is typed, the
command "disappears"; however, subsequent editor commands and data
are recorded as the function key's definition. Recording is
terminated either by typing the <record> key again or by typing the
function key being recorded. The <record> command may be invoked
at any command 1level in the editor, but its prompt line appears
only when it is invoked from the editor prompt.

If a function key is being recorded when the prompt 1line changes,
the number of that key is shown in the upper right corner of the
screen as "<n>".

There is a limited buffer space reserved for remembering the
recorded or TakenUp function key definitions. If this buffer
overflows during function Kkey recording, the bell sounds and
recording stops. There may be no other notice that recording has
stopped until the prompt line changes and the absence of <n> in the
upper right corner of the screen is noted.

NOTE - As the <record> command may be invoked virtually anywhere in
the editor, accidentally typing <record> will seem to lock the
keyboard while it waits for a function key or <escape>. This may
occur at places where <record> prompt doesn't appear, such as
I(nsert, eX(change, D(elete, Q(uit, y/n, ...

See section 4.1.9 for details on user-defined functions.

Page 160

Advanced System Editor

4.2.18 R(eplace

Repeat factors are allowed.

Prompt:

>Replace(<n>]: L(it C(ase V(fy <targ> <sub> =>
or LK N

>Replace([<n>]: T(ok C(ase V(fy <targ> <sub> =>

coe depending on the value of the Token default environment
parameter. The metasymbol <n> denotes the repeat factor value
passed to R(eplace. - If no repeat factor is specified, then 1 is
assumed.

R(eplace replaces <n> occurrences of the target string in the text
with the <contents of the substitution string, starting at the
current cursor position and moving in the current direction, If
the repeat factor is "/", all occurrences of the target string
between the current cursor position and the file boundary are
replaced.

For detail on the specification of search and replace strings, see
section 4.1.6.

Typing <esc> while entering the search modes or string parameters
exits the R(eplace command.

The verify option ("V(fy") permits the examination of each occur-
rence of the target string prior to 1its replacement; it |is
specified (in the same fashion as the Token and Literal modes (see
section 4.1.6.2)) by typing the letter "V" within the prompt.

When V(erify mode is used, each occurrence of the target string
found in the text 1is displayed on the screen, and the following
prompt appears:

>Replace(<n>]l: <esc> aborts, 'R' replaces, ' ' doesn't

Typing an "R" replaces the string. Typing a <space> spares the
current target occurrence from replacement. The "R" or space
themselves may have repeat factors. {escape> terminates the
R(eplace command. The metasymbol <n> indicates the current value
of the repeat factor; it is counted down from its initial value as
strings are replaced. 1In V(erify mode, the repeat factor applies
to the number of times a target occurrence 1is replaced, not the
number of times it is found.

After a successful R(eplace, the "=" marker (SEQUAL) is set at the
first character of the last replaced string pattern, and the cursor
is left at the character following the string.

If the editor reaches the end of the text buffer while looking for
a target string, it displays the following prompt:

End of Buffer encountered., Get more from disk? (Y/N)

Page 161

PDQ-3 System Reference Manual

Typing "Y" causes the editor to continue searching for the target;
any subsequent paging is done automatically. Typing "N" or
<escape> exits the R(eplace command, 1leaving the <cursor at its
original position (or after the last replaced string occurrence on
multiple searches). :

NOTE - On replacements of multiple occurrences of a target string,
if the editor doesn't f£ind an occurrence of the target and the last
replaced string is no 1longer in the text buffer (because of
paging), the cursor is not left at the last replaced string; it's
left near the end of the file,

If the specified number of target occurrences is not found, the
following prompt appears:

ERROR: Pattern not in the file. Press <spacebar> to continue.

See section 4.1.6 for more.details on using R(eplace.

Example of using R(eplace:

We will attempt to make the sentence in this example more palatable

by replacing the string "yams". The cursor is located at the start
of the line.

The R(eplace command is invoked with a search string of "yams" and
a replacement string of "strawberries":

>Replacell]l: L(it C(ase V(fy <targ> <sub> =>.yams.,strawberries,

The string is replaced and the cursor is moved to this position:

Page 162

Advanced System Editor

4.2.19 S(et
Prompt:
>Set: E(nvironment M(arker T(ag D(eleteMarkers <esc>

Markers enable arbitrary cursor positions in a text file to be
easily accessible from anywhere within the file; they are jumped to
by using the J(ump M(arker command. The T(ag is a marker with a
predefined marker name, $TAG; it allows quick definition of and
access to a single position in the text. Marker setting 1is
described in section 4.2.19.0, Tag setting in 4.2.19.1, and marker
dele;ion in 4.2.19.2, Markers are described in detail in section
401. L

The editor's environment maintains text file information that is
stored separately from the text. The environment 1is wused to
display and/or modify editor variables which control the editor's
operation or aid the user in editing a text file. An overview of
the environment is presented in section 4.0.3. The environment is
described in detail in section 4.2.19.3.

4.2.19,0 S(et M(arker
Prompt:
Set what marker?

Marker names may contain up to eight characters, including embedded
blanks; they are terminated by typing <return>. Marker names are
case-insensitive; thus, the two marker names "S$LAST" and "slast"
denote the same marker. Setting a marker to an existing marker
name removes the o0ld marker setting.

A maximum of 26 user-defined markers 1is permitted in a file,
Attempting to create a new marker when the maximum number already
exists results in the following prompt:

ERROR: Marker Overflow. Press <spacebar> to continue,

The S(et D(eleteMarkers command removes unwanted markers. See
section 4.1.3 for more information on markers.

4.2.19.1 S(et I(ag

Defines the tag marker "S$TAG" to reside at the current cursor
position. This 1is a convenient abbreviation £for the command
"sm$tag<returnd>", The tag may be jumped to with the J(ump T(ag
command.

Page 163

PDQ-3 System Reference Manual

4.2.19.2 S(et D(eleteMarkers
Prompt:

>DeleteMarkers: 'A' .. 'L' [<etx> accepts, <esc> escapes]

A) STAG B) ? C) SEQUAL D) SCURSOR
E) 1 F) 2 G 3 H) 4
n 7 J) 8 K) 5 L) 6

The promptline is followed by a list of all existing marker names.
Each marker name is assigned a letter, Typing a letter within the
displayed range removes the corresponding marker from the file;
typing <etx> completes the command; typing <esc> exits the command,
preserving all markers.

4.2.19.3 S(et E(nvironment
Prompt:

>Environment: {options} <spacebar> to leave [ASE m.nal
A(uto indent True

F(illing False

L(eft margin 1

R(ight margin 80 Workfile: *SYSTEM,.WRK, TEXT
P(ara margin 6 Backup file: *SYSTEM.WRK.BACK

C(ommand ch .
S(et tabstops
T(oken deflt True
U(ser def key
B(uffer auto True

4 bytes used, 12284 available.
There are 0 pages in the left stack, and 0 pages in the right stack
You have 87 pages of room, and at most 1 pages worth in the buffer.

<search>= 'New Orleans', <replace>= 'Going North'

Markers:
MARKER-A MARKER-B MARKER-C DMARKER-D S$GLITCH

Created March 29, 1957; Last updated March 29, 1981 (Revision 24).

All environment values except the search and replace strings are
saved in the text file for future edit sessions.

"S(etTabStops" and "U(serkey" are not environment parameters, but
subcommands of S(et E(nvironment; they are described in section
4,2.19.3.0. Environment parameters are described in section 4.2.
19.3.1. Following the list of environment commands and parameters
is a description of the file buffer state. Stacks, pages, and the
file buffer are described in detail in section 4.0.5. If search
and replace string patterns have been generated by F(ind or
R(eplace, they are displayed next, followed by all current marker
names. The bottom line displays the creation date, last modified
date, and revision number of the current text £file; the revision

Page 164

Advanced System Editor

number is incremented after each editing session,

NOTE - On systems where the screen is not of sufficient size to
display the entire E(nvironment screen, the markers, resource
information, and revision number are displayed in a subsidiary
screen image accessible with the I(nfo subcommand of S(et E(nviron-
ment. This command is not displayed on the promptline unless it is
needed.

NOTE - Some of the values shown in this example are arbitrary; they
vary from file to file. However, the environment parameter values
displayed above are the editor's default values.

4.2.19,3.0 Environment Commands

The environment command "S(etTabStops" affects the behavior of the
<tab> command by changing the number and position of the tab stops
on the screen; it is described in section 4.2.19.3.0.0. The <tab>
command is described in section 4.1.4.

The environment command "U(serkey" displays and changes function
key definitions; it is described in section 4.2.19.3.0.1. User-
defined functions are described in section 4.1.9.

Prompt:

Set tabs:<right,left,space,tab> C(ol#
{N(o T(ab Z(eroAll D(efault} <etx,esc>

om———— Tomm———— Temm——— e e et To—m———- Toem———— T
Column # 1

The text from the current screen is displayed below the prompt to
aid the user in setting tabs to match any existing text formatting.
The current tab settings are displayed on the line of dashes. The
cursor moving commands accept repeat factors, but are not affected
by direction., Typing <tab> moves the cursor to the next displayed
tab stop. The column number of the <current cursor position 1is
maintained below the tab line. The C(ol# command moves the cursor
to a specified column number., T(ab sets a tab stop at the current
column, while N(o (or typing "=") clears the current column.,
Z(eroAll deletes all defined tab stops. D(efault restores the
default tabstop format (which is one tabstop every 8th column).

Typing <etx> completes the command; <esc> exits S(etTabStops
without affecting the original tabstop settings.

NOTE - Tab stop settings are stored in the text file, and thus are
saved across edit sessions, .

When setting repetitive tabstops, it is often convenient to use a

function key. With the cursor at the beginning of .the repetive
sequence {say every fifth position}, do the following:

Page 165

PDQ-3 System Reference MNanual

"Lrecord><fl>t {record>1l0<£fl1>"

This will set eleven tabstops every fifth column. The text form
for this is |{tabset 5}is=t===-- I

4.2.19.3.0.1 S(et E(nvironment U(serkey
Prompt:
Define Special Keys: <specialkey 1l..8> <etx>

A list of the current definitions for the eight user-defined
functions appears below the prompt. The function definitions 1in
this command always appear in absolute (as opposed to encoded) form
and can be used to view the terminal-dependent aspects of the
keyboard. Commands and data are displayed as literal character
sequences, with nonprinting characters represented by the decimal
representation of their integer value and delimited by parentheses.
For instance, a command may be mapped to a key generating an escape
character sequence; in this case, an occurrence of the command in a
function definition causes the key's entire character sequence to
be displayed.

Example of a function definition:
The string entered as:
" .foon<cr>noof<cr>foon,"
eee 1s displayed as:
"foon(13)noof(13) foon"

Note that the carriage returns are displayed in absolute form;
the integer value of the nonprinting <return> character is usally
13.

Typing a function key c¢lears the corresponding definition in
preparation for a new definition, and the following prompt appears:

Enter delimited string (e.g. /stuff/)

A function definition is entered by typing an arbitrary delimiting
character, the keys comprising the definition, and a second
occurrence of the delimiting character (the example in the previous
prompt uses "/" as a delimiter). The use of delimiters allows all
editor commands to appear in the definition (see search and replace
string specification in section 4.1.6).

NOTE - The function definitions described here are stored 1in the
editor during an edit session, but are not saved across edit
sessions. Functions may be saved as text forms with the C(opy
command, See section 4.1.9.2 for details.

Page 166

Advanced System Editor

4,2.19.3.]1 Environment Parameters

Environment parameters affect the behavior of some edit commands,
particularly I(nsert, M(argin, F(ind, and R(eplace (see the sec~-
tions describing these commands for more details). Parameter
values are changed in the environment by typing the parameter's
displayed command character.

The parameters are one of three types: Boolean, character, or
integer. Boolean parameters are changed merely by typing "t"
(True) or "f" (False), while character parameters are changed by
typing a character; neither of these types require a termination
character to complete the prompt. Integer parameters accept a
string of digits and are ter@inated by typing <space> or <return>,

A(uto indent

Affects I(nsert. It is a Boolean parameter with default value
"True”.

F(illing

Affects I(nsert and M(argin. It is a Boolean parameter with
default value "False",

L(eft margin
R(ight margin
P(ara margin

Affect I(nsert, M(argin, and A(djust. These are integer
parameters; values should be between 1 and 132. Default
values: L(eft - 1, R(ight - 80, P(ara - 6.

C(ommand ch
Affects I(nsert and M(argin. It is a character parameter with
default value ".". See the M(argin command (section 4.2.12)
for details on command characters.

T(oken def
Affects F(ind and R(eplace. It is a Boolean parameter with
default value "True". See section 4.1.6.2 for more infor-
mation.

B(uffer auto
Affects automatic paging of file buffer. It is a Boolean
parameter with default value "True". See section 4.1.6.2 for
more information, .

WARNING - F(illing True while A(utoIndent is False 1is known as
"munch" mode (see I(nsert command, section 4.2.8).

Page 167

PDQ-3 System Reference Hanual

4.2.20 <takeup>
Prompt:
>Takeup: <£1>..<£8> or C(opyBuffer <esc>

4.2.20.0 <takeup> <£1>,.<£8>

The text form starting at the current cursor position becomes the
function definition of the specified Kkey.

Text forms are function definitions encoded as legal text so they
may be stored in a text file. To activate a text form by
associating it with a function key, the cursor is moved to the
front of the text form and <takeup> is typed. The user is prompted
for the function key which is to be thus defined; after typing this
function key, the definition is loaded. The cursor is left at the
end of the text form and the "=" pointer is set to the point where
<takeup> was struck.

NOTE - Text forms must be wholely contained in the file buffer in
order to be taken up.

NOTE - If the cursor is not on a text form, text is taken up from
the file wuntil the character sequence "|." is read, or until the
internal buffer for holding function key definitions overflows.
Taking up plain text usually causes the following message to
appear: .

ERROR: Special key overflow. Press <spacebar> to continue.

See section 4.1.9 for details on user-defined functions.

4.2.20.]1 <takeup> ClopyBuffer
Typing "C" causes the following prompt to appear:
>Takeup from copy buffer: <£f1>..<£8> <esc>

The contents of the copy buffer are copied into the function
definition of the specified function Kkey.

NOTE - The text in the copy buffer is taken up literally, i.e.
text forms are not recognized.

See section 4.1.9 for details on user-defined functions.

Page 166§

Advanced System Editor

4.2.2) I(oDisk

Prompt:

>ToDisk: F(orwards or B{ackwards <esc>

Write part of the file buffer out to disk,

T(oDisk is used to empty the file buffer when it £fills up with
text; all text between the disk page which contains the current
cursor position and the specified end of the buffer is written out
to disk, thus creating some free space in the file buffer. It is
common practice to send unneeded text out to disk.

See section 4.0.5 for details on the file buffer and paging.

Page 169

PDQ-2 System Reference llanual

4.2.22 U(ptop

The screen is redisplayed, positioning the current text line at the
top of the screen.

U(ptop 1is wuseful when you wish to see as much as possible of the
text following a given cursor position., It is often useful after a
F(ind, or in function key definitions which use G(etch.

Page 170

Advanced System Editor

4.2.23 V(erify

Redisplay the text window and reposition the window so that the
cursor is centered on the screen.

NOTE - This command is especially useful in those rare situations
where one suspects that the editor is not displaying the screen or
the cursor correctly; V(erify causes a complete redisplay of the
screen and then repositions the cursor. If this feature is
frequently necessary, something is probably wrong with the editor;
please report the problem to the factory.

Page 171

PDQ-3 System Reference !anual

4.2.24 W(ordMove
Repeat factors are allowed.

Move the cursor in the current direction to the start of the next

word, Words are defined to be delimited by <blank>s and/or
{return>s.

WordMove will not move past an illegal character in the text. This
can often be used to advantage, as in the following sequence which
removes illegal characters from a file:
"/wx<DeleteCh><Etx>"
or as a text form:

|"EatBad"/wxlI<lel.

Page 172

Advanced System Editor

4.2.25 eX(change
Prompt:
[>] eXchange: Text <vector keys> {<etx>,<esc> CURRENT line}

Replaces characters in the text file with characters typed in,
starting from the current cursor position. Single characters may
be deleted from or inserted to the right of the cursor by the
subcommands <DeleteChar> and <InsertChar>,

eX(change may randge over any number of lines by using the vector
keys, <tab>, and <return>; these commands move the cursor without
affecting existing text. <Backspace> moves the «cursor right or
left (depending on the current direction), undoing any changes made
within the current line. This is similar to its effect in I(nsert.

Cursor movement and text entry are not constrained to lie within
existing text and may be used to extend lines either to the left
or to the right.

Typing <esc> aborts eX(change with no changes made to the original
text, while typing <etx> accepts the changes made to the file. The
cursor is 1left at the end of the exchanged text. If a number of
lines have been eX(changed, only the last line is restored.

eX(change discards any blanks on the end of any line through which
it passes,

Example of using eX(change:

Below is the original text (the cursor position is underlined):

Boy, I just love this rutabaga pie!
Pass the groatcakes, dear,

After typing "xdocumentation -<cr>such clever examples!!!l!i<etx>",
the sentence now appears as:

Boy, I just love this documentation =-
such clever examplesi!illlg

Page 173

PDQ-3 System Reference Manual

4.2.25.0 Commands in eX(change

Any editor command may be invoked during eX(change provided that
the kev which invokes the command generates a nonprinting character
(see section 8.3.2). For instance, if the editor is configured so
that the I(nsert command is invoked either by typing "I" or a
nonprinting <insertline> key, typing an "I" within eX(change
replaces the character after the cursor with the letter "I", but
typing the <insertline> key invokes the I(nsert command. When a
command which has been invoked from eX(change terminates, the user
returns to eX(change, as if the sequence had been "<etx><command>
X",

The nonprinting commands <InsertCh> and <DeleteCh> are valid only
within eX(change. <InsertCh> inserts a single blank character at
the current cursor position; <DeleteCh> deletes the character under
the cursor.

<Coll> is available as a subcommand of exchange. It causes the
cursor to be placed in column 1 of the current line.

The two most common commands to be entered are I(nsert and D(elete;
their use within eX(change allows fast 1localized editing with
minimum effort.

NOTE - Some terminals lack the requisite keys for defining the
nonprinting commands described above; in this case, prefixed key
sequences serve as acceptable substitute key definitions (see
section 8.3.2).

Page 174

Advanced System Editor

4.2.25.1 Paint Mode Exchange

Paint mode exchange is used to create diagrams containing vertical
and horizontal 1lines (boxes, for instance) and to edit columns of
characters., Normal cursor movement in eX(change is 1left-to-right;
paint mode allows the user to dynamically change the cursor
movement to up, down, left, or right.

Typing the <DirChange> key in eX(change generates the following
prompt:

Xchg Dir: <arrow> <esc>

\

eX(change mode returns after the vector key corresponding to the
desired painting direction is typed, with the new default direction
for cursor movement displayed in the stylish little box at the
front of the eX(change prompt line. Note that the cursor moving
commands override the default cursor direction; only the entering
of text is affected.
Example of paint mode:

This is the original text (the cursor position is underlined):

Page 175

PDQ-3 System Reference llanual

4.2.26 2(ap

Delete all text between the cursor position and the "=" pointer if
the "=" pointer is within the current text buffer.

NOTE - The "=" pointer is set by I(nsert, D(elete, F(ind, R(eplace,
and ‘<equals>; see section 4.1.4 for details. .

NOTE - The "=" command may be used to view the area to be 2zapped
(see section 4.1.4 for details).

NOTE - 2Z(ap 1is designed to be used following F(ind, R(eplace, or
I(nsert; it should be used with caution in other situations.

If many characters are to be Z(apped, a prompt is posted to verify
the operation. The results of a Z(ap are normally saved in the
copy buffer for possible later use; however, if a Z(ap deletes more
text than can fit in the buffer, the user is notified with a prompt
and asked to verify the command.

Page 176

Advanced System Editor

4.3 Sample Edit Session

The purpose of this section is to describe the actions performed in
a typical editing session; it 1is intended to aid users who are
unfamiliar with the UCSD text editor,

The following actions are illustrated:

-~ Starting an edit session and creating a new work £file for
editing.

-- Using basic cursor-moving and text-changing commands to enter
new text and change existing text.

-- Finishing the edit session by writing the text to a disk file.

NOTE - No attempt is made to completely describe the commands used
in the following examples; detailed command descriptions may be
found in sections 4.1 and 4.2,

NOTE - 1In the examples of console displays, the cursor is
represented by an "underline" character. Some of the promptlines
are truncated to fit in the document.

We begin at the beginning - here is the Pascal system prompt:
Command: E(dit, R(un, F(ile, C(omp, L(ink, S(ubmit, X(ecute

Typing "E" (for "E(dit") invokes the editor, which displays the
following prompt:

Edit: [ASE 0.7nl
?2<cr> Looks, <cr> Creates, <esc> Exits or Filename:

To create a new work file, <cr> is typed; the screen then appears
as follows:

>Edit: A(djust C(opy D(elete I(nsert J(ump R(eplace eX(change ?

The contents of the work file are displayed on the screen. The
edit prompt appears across the top 1line of the screen and the
cursor 1is positioned at the front of the file. Because new work
files are empty, the screen is blank.

Page 177

PDQ-3 System Reference llanual

In this example, the I(nsert command is used to add text to the
empty file. After typing "I" (for "I(nsert"), the editor prompt is
replaced with the command prompt for I(nsert:

>Insert: Text{<bs> a char, a line} [<etx> accepts, <esc>

Text may now be entered; the following character sequence is typed
in: "Now is the time<cr>for all good men<cr>to come to the aid<cr>
of the enemy." Each time the return key (<c¢r>) 1is pressed, the
cursor moves to the start of the next line. The screen then
appears as:

>Insert: Text{<bs> a char, a linel [<etx> accepts, <esc>
Now is the time

for all good men

to come to the aid

of the enemy._

Note that the I(nsert command is still active; the text entered so
far could be removed a character at a time by typing <bs>, a line
at a time by typing , or removed completely by typing <esc>;
however, <etx> 1is typed to complete the command. The screen then
appears as:

- - - - - o " - - - - - O > D W P - - - - - - -

>Edit: A(djust C(opy D(elete I(nsert J(ump R(eplace eX(change ?
Now is the time

for all good men

to come to the aid

of the enemy._

The entered text is now a part of the file, and may be modified
with the other editing commands.

Page 178

Advanced System Editor

Typing the <up> key twice moves the <cursor to the following
position:

>Edit: A(djust C(opy D(elete I(nsert J(ump R(eplace eX(change ?
Now is the time

for all good pen

to come to the aid

of the enemy.

The eX(change command is used to replace existing text with new
text; typing "X" (for "eX(change") replaces the editor prompt with
eX(change's command prompt:

(> eXchange: Text <vector keys> {<etx>,<esc> CURRENT line}
Now is the time

for -all good pen

to come to the aid

of the enemy.

Typing the character sequence "employees<etx>" exchanges "employ-
ees" for "men"; <etx> terminates the command. The screen now
appears as: ~

>Bdlt. A(djust C(opy D(elete I(nsert J(ump R(eplace eX(change ?
Now is the time

for all good employees_

to come to the aid

of the enemy.

Page 176

PDQ-3 System Reference l!lanual

Typing "B2<down>6<right>" moves the cursor to the beginning of the
current 1line (with the B(eginLine command), down two text lines,
and six columns to the right:

>Edit: A(djust C(opy D(elete I(nsert J(ump R(eplace eX(change ?
Now is the time

for all good employees

to come to the aid

of the_enemy.

Typing "I" invokes the I(nsert command once again; however, note
that part of the text line is temporarily moved to the right to
make room for any inserted text:

>Insert: Text{<bs> a char, a line} [<etx> accepts, <esc>
Now is the time

for all good employees

to come to the aid

of the_ enemy.

Typing "ir<etx> inserts the characters "ir"; the right-hand side of
the text line is restored to its original position when the I(nsert
command is accepted by the <etx>.

>Ed1t. A(djust C(opy D(elete I(nsert J(ump R(eplace eX(change ?
Now is the time

for all good employees

to come to the aid

of their_enemy.

Page 180

Advanced System Editor

Typing "D" (for "D(elete") invokes the D(elete command:

>Delete: < > <Moving commands>{<etx> to delete,<esc> to abort}
Now is the time

for all good employees

to come to the aid

of their_eneny.

Typing the spacebar five times followed by <etx> leaves the screen
as:

>Edit: A(djust C(opy D(elete I(nsert J(ump R(eplace eX(change ?
Now is the time

for all good employees

to come to the aid

of theiry.

Typing "I compan<etx>" uses the I(nsert command to finish the text
modifications made in this session:

>Edit: A(djust C(opy D(elete I(nsert J(ump R(eplace eX(change ?
Now is the time

for all good employees

to come to the aid '

of their company.

To terminate the edit session, "Q" (for "Q(uit") is typed. The
following prompt then appears:

Quit: _
A(nother file (after Updating)

B(ackup and re-edit same file

C(hange the name of the output file

E(xit (but workfile not updated)

R(eturn to the editor without doing anything
U(pdate the workfile and leave

Output File Mame: SYSTEM.WRK.TEXT

Page 181

PDQ-3 System Reference Manual

The file name "SYSTEM.WRK.TEXT" is the work file name; to save the
file under a different name, the C(hange option 1is invoked by
typing "C". The prompt then appears as:

Quit:
A(nother file (after Updating)
B(ackup and re-edit same file
C(hange the name of the output file
E(xit (but workfile not updated)
R(eturn to the editor without doing anything
U(pdate the workfile and leave

Output File Name:

The file is saved under the name "TREASON.TEXT" by typing "treason
<cr>"; the prompt then appears as:

Quit: _
A(nother file (after Updating)
B(ackup and re~edit same file
C(hange the name of the output file
E(xit (but workfile not updated)
R(eturn to the editor without doing anything
U(pdate the workfile and leave

Output File Name: TREASON.TEXT
Typing "U" (for "U(pdate”) writes the file to a disk file named
"TREASON.TEXT" and terminates the edit session. The system prompt
displayed at the start of the edit session reappears:

Command: X(ecute, S(ubmit, R(un, F(ile, E(dit, C(omp, «..

This completes the edit session.

Page 182

Advanced System Editor

4.4 Problems

This section serves two purposes: to enumerate and explain error
conditions detected and flagged by the editor, and to explain
unexpected operating characteristics of the editor itself,

This section consists of two parts: a symptom 1list describing
editor actions symptomatic of a bug and/or error condition, and a
list of detailed problem reports. The symptom list serves as a
reference index for the problem reports.

Each symptom 1list entry is assigned a number corresponding to a
problem report entry, e.g. a symptom list entry assigned the
number "9" indicates that a detailed description of the underlying
problem may be found in the ninth entry in the problem report.

Each problem report entry contains the following fields:

1) Report number - Used to address problem reports from the
symptom 1list. Problem reports are ordered by report number;
new problem reports are added to the end of the 1list and
allocated a report number.

2) Overview - A capsule summary of the problem.

3) Severity - One of four values: "cosmetic", "minor", "major",
or "lethal". "cosmetic"™ implies problems of an aesthetic
rather than a functional nature. "minor" implies harmless but
confusing problems; these usually require explicit user ac-
tions to «correct. "major" implies that the integrity of the
edit session is threatened. "lethal" implies that the integ-
rity of one or more disk files is threatened.

4) Detailed description - Provides information useful in under-
standing and thus overcoming the problem.

5) Solution - Suggested detours with which users can avoid or
work around the stated problem,

Page 183

PDQ-3 System Reference Iilanual

4.4.0 Symptom List
‘.Smp.t.o.m Broblem Report

The editor generates the error message:
Not enough room for backup! 1
No more editing room., 2
The editor behaves inexplicably when:

The disk volume containing the editor code 3
file is removed during an edit session.

Page 1384

Advanced System Editor
4.4.1 Problem Reports

Report: 1
Problem:

Not enough disk space to create a working copy of the specified
file.

Severity: minor
Description:

This error only occurs at the beginning of an edit session, when
the editor is attempting to copy the backup file. A free space on
disk at least as large as the file to be edited must exist before
an edit session can commence., When the error occurs in a nested
edit session, the editor leaves behind a trail of "ASE!"™ files
containing the unfinished edit sessions; however, the backups for
these files still exist with their original names.

Solution:
Use the menu option to check if a file may be edited before
attempting to specify it for an edit session. Maintain the disk

volume's free space regularly with the filer commands; a fine way
to gain extra disk space is to remove old backup files.

Report: 2

Problem:

Not enough disk space to enlarge the file in current edit session.
Severity: minor

Description:

ASE uses the largest available free space on disk to hold the file
in the current session; however, an overabundance of text inser-
tions can cause a file to grow larger than its allocated disk area.
At this point, all attempts to insert the offending text are
forestalled by the displayed error message.

Solution:
Update the file 1in its current state; no space problems will be

encountered by doing so. Use the filer to <create a larger free
space, and then resume editing in a new edit session.

Page 185

PDQ-3 System Reference Manual

Report: 3
Problem:

The editor crashes after removing the disk volume containing the
editor's code file in the midst of an edit session.

Severity: major

Description:

ASE contains a number of disk-resident code segments. If the disk
containing these code segments (i.e. the disk containing the
editor's code file) is not mounted in the expected disk drive, the
system will crash when it attempts to read one of the code segments
into memory.

Solution:

Do not remove the editor's disk volume during an edit session.

Report: 4
Problem:
Severity:
Description:

Solution:

Page 136

Compiler

Y. IHE COMPILER

This chapter describes compiler operation from the system wuser's
point of view. Compiler usage is described in section 5.1.
System-level problems encountered during compilation are described
in section 5.2,

The UCSD Pascal language implementation 1is described in the
Programmer's Manual.

5.0 Introduction

The compiler is a one~pass recursive descent compiler for the UCSD
Pascal language. It is based on the P2 compiler developed at ETH
Zurich.

The compiler reads a text file containing a Pascal program, and
produces a code file (containing P-code) and an optional text file
(containing a program listing). The code file is executable if the
program does not reference separately compiled library routines
which are unavailable in its current environment. P-code infor-
mation is described in the Architecture Guide. Program listings
are described in the Programmer's Manual.

The following sections contain passing references to compiler
options; because these options are set by directives embedded in
Pascal programs rather than by compiler prompts, they are described
in the Programmer's Manual.

Page 187

PDQ-3 System Reference lanual

3.1 Using the Compiler

The compiler is invoked from the system prompt by typing C(ompile.
Typing R(un invokes the compiler if the work code £file doesn't
exist.

S5.1.0 Setting Up Input and Qutput Files
If a work text file exists, the compiler uses it as the input file,

and names the output file "*SYSTEM.WRK.CODE[*]"; otherwise, the
following prompt appears:

Compile what text?

The specified input £file name should not contain the suffix
", TEXT"; it is automatically appended by the compiler unless the
file name ends with a period (which is stripped off).

The next prompt asks for the output file name:
To what codefile?

Typing <return> causes the output file name to default to *SYSTEM
WRK,CODE[*]., Typing "<esc> <return>" aborts the C(ompile command.
A "$" in the output file name is substituted with the input file
title; thus, compiling "STUFF" to "$1" names the output file
"STUFF1.CODE".

NOTE - "$" does not include the volume identifier. If the textfile
is "#4:STUFF", "#4:$" must be entered to put "STUFF.CODE" on volume
4., Otherwise "$" compiles to the prefixed disk.

The suffix ".CODE" is automatically appended by the compiler to any
specified output file name unless the file name ends with a period
(which is stripped off). Length specifiers are sometimes necessary
in the output file name - see section 5.2 for details.

If the current work code file is not named *SYSTEM.WRK.CODE, the
work code file is replaced by the new code file.

Page 188

Compiler

S.1.1 Console Display

During compilation, a running account of the compiler's progress is
written to the console; however, this can be inhibited by a couple
of methods: the "quiet"™ compile option can be asserted, or a
program listing may be directed to the console by the "list"
compile option. The former leaves the screen >.&¢nk during compila-

tion, while the latter uses the screen to display the program
listing.

NOTE - On CRT terminals, suppressing the console display speeds up
the compiler somewhat. '

Example of a console display:

PASCAL Compiler [AOS 1.0l

-=> SYSTEM.WRK,TEXT

< 0>.....0...'.'..+++++'...........0.0...'.....
LAINIT [28710]

< 43>..’......

GETFILE [28692]

< 52>....0.'.........0..

WRITEIT [28674]

< 7l>..............

NEWLINE [28634]

< 84>...Q.......0.......++++'...Q..‘......'......0...00

<~ l34>.....0...0.'..........'...’...'..++......0‘.......

< 184>.0.Q....

COPYIT [28616]

< 192>.Q.Q‘...‘.....

SEND [28627]

< 205>......

211 lines, 6 secs, 2110 lines/min
Compiled to WORKDSK:SYSTEM,.WRK, CODE

The compiler's release version is delimited by square Dbrackets at
the start of the display. The name of each routine in the program
is displayed; the adjacent number delimited by square brackets
indicates the current amount of memory available (# of words).
Numbers delimited by angle brackets indicate the current 1line
number in the source program. The compiler outputs either a '.,' or
a '+' to the screen for each line compiled. '.' is output for any
line not contained in a comment; '+' 1is output for commented
sections. The file name following the symbol "-->" indicates a new
source file, A file name following the symbol "--" indicates the
current source file. The destination codefile name is printed at
the end of the compilation.,

Page 189

PDQ-3 System Reference ilanual

3.1.2 Syntax Error Handling

If the compiler detects a syntax error, the current source line is
printed on the screen; the symbol causing the error is pointed at
by "<<<<". Below this, the following prompt is displayed:

Line <n>, error <m>: <sp>(continue), <esc>(terminate), E(dit

ces where <n> 1is the current source line, and <m> is the error
number,

Typing <space> skips the erroneous symbol and resumes compilation
if the error number is less than 400; otherwise the compilation is
aborted. Typing <esc> aborts the compiler and returns control to
the system prompt. Typing "E" automatically invokes the editor.
The editor first prompts for the name of the current input file.
Once the file 1is specified, the editor reads the input file and
prompts:

Jump to what marker? S$SYNTAX

Typing <return> causes the Editor to position the cursor over the
error, and display the error number or message. See section 4.1.0
for details.

A list of syntax error numbers and their corresponding error
messages is provided in Appendix D.

NOTE - If the wrong input file name is given to the editor, the
editor reads in the file and gives the "Jump $SYNTAX" message as
above., However, the Editor may:

1) respond with the message: "Error, marker not there"

2) respond with the message: "Marker all messed up"

3) position the cursor where the error would be if the correct
file were read in (see section 5.2.0)

When the "list" compile option is asserted, syntax error messages
are also written to the listing file. However, if both the "list"
and "quiet" compile options are asserted, error messages are only
written to the listing file; compilation continues without inter-
ruption, as no error message or prompt is displayed on the console.

NOTE - If syntax errors are detected in the program, the compiler
does not produce an output code file.

Page 19C

Compiler

5.2 Compiler Problems
This section describes strictly system-related problems caused by

using the compiler. Problems concerning the correct compilation of
Pascal programs are described in the Programmer's Manual,

5.2,0 Syntax Errors and the Editor

In some situations, the communication between compiler and editor
(described in section 5.1.2) seems muddled after syntax errors. If
a workfile exists, the system may enter the wrong file name into
the editor file name prompt. '

This problem arises when a Pascal source program is spread across a
number of text files that are "included" into the compiler's input
stream (see the Programmer's Manual for details). For reasons
discussed below, the editor reads in a file other than the current
input file, and places the cursor at the file position set by the
compiler (i.e. the right place in the wrong file,

If no workfile exists, this can occur by explicitly typing the
wrong file name into the weditor's prompt - it is the wuser's
responsibility to keep track of the «current input file being
compiled (the console display provides this information). However,
if the program being compiled resides in the work file and includes
other files, the editor always enters the work file after a syntax
error. This is incorrect if the error occurs in an "include" file.
To get around this problem, type upon entering the editor
(this removes the work file name from the input prompt), and enter
the name of the correct file, or avoid using the work file when a
program uses "include" files.

Page 191

PDQ-3 System Reference llanual

3.2.1 Insufficient Memory

' Compiling large programs may cause the system to "stack overflow”.
Programs containing a large number of identifiers use large amounts
of memory during compilation - sometimes more than the system can
provide. Here, in increasing order of severity, are some ways to
avoid running out of memory:

1) Make a four-block data file named "SYSTEli.SWAPDISK" on the
system volume. This can save one thousand words of nmnemory
during disk directory accesses; directories are accessed while
opening "include" files for compilation.

2) Assert the "swapping" compile option. This can save four
thousand words of memory, but the compile speed is cut in
half.

.
e, Minimize the
e

program into
ltS (see the Programmer's Manual for

3) Reorganize the
use of global
separately compil

details).

4) Buy more memory!

5.2.2 Insufficient Space on Volume

When the compiler is directed to write a program listing to a disk
file, the output code file competes for disk space with the program

listing file - adversely, in some circumstances. Here is a typical
scenario:

The program listing file and output code file are to be written to
the same disk wvolume, which has a single area of available disk
space. The output code file is opened first, with a default length
specifier of "*"; it reserves one half of the available disk space.
The listing file is opened next, entitling it to the rest of the
disk space. (Note - these defaults are assigned by the compiler -
not the file system).

Unfortunately, program listing files are usually nuch larger than
their corresponding code files; if the listing file needs any more
than half of the total available space to be completed, compilation
aborts because of a "no room on vol" error from the file system.
By adding an explicit length specifier to the file name entered at
the compiler's output file prompt, the user can limit the amount of
disk space allocated for the code file, and thus maximize the
amount of disk space available for the listing file.

Page 192

Command Interpreter

VI. COMMAND EILE INTERPRETER

The command file interpreter is used to automate system operation;
it reads a command program from a text file (known as a "command
file"), translates the program into a series of system commands and
input data, and queues the commands and data in the Kkeyboard
type-ahead buffer for eventual use by the system. Command inter-
preter operation and command file names are described in section
6.0. Command language syntax is described in section 6.1. Exam-
ples of command programs appear in section 6.2, The file "X.DEMO"
is a command file that presents an overview of the command
interpreter,

6.0 S(ubmitting Command Files

Typing S(ubmit from the system prompt automatically executes the
code file "X.CODE" residing on the system volume; this file
contains the command interpreter., The following prompt appears:

Filename?

The specified command file name must not contain the file suffix
“.TEXT”'

The command interpreter also accepts "targets" as valid responses
to its file name prompt; targets specify a command £file and the
label or 1line number within the command program where execution
should commence. Targets are described in section 6.1.1.

A list of parameters may be specified after the command file name.
Command file parameters are strings of characters delimited blanks
and terminated by the-end of the line. Up to 9 parameters may be
passed. Parameters are discussed further in section 6.1.3.

Typing <return> aborts the command interpreter and returns control
to the system prompt. :

If the command interpreter discovers an error in a command program,
it halts without notifying the wuser of the problem; control is
returned to the system prompt. If a command program contains an
infinite loop, the command interpreter must be halted by rebooting
the system.

When the execution of a command program finishes, its output is
queued in the keyboard type-ahead buffer (as if it had been typed
from the keyboard), and the command interpreter terminates., Con-
trol 1is returned to the system prompt, but the type-ahead buffer
contains queued input; the system then begins to read characters
oug dof the type-ahead buffer and process them as system commands
an ata.

PDQ-3 System Reference llanual

NOTE - The S(ubmit keyboard type-ahead buffer contains a maximum of
256 characters. Data entered 1into the type-ahead buffer by the
command interpreter is read from the buffer before any data
actually entered from the keyboard.

WARNING - Command files are written with the assumption that the
various system parts behave in a predetermined fashion; i.e., that
the order of commands and data in the type-ahead buffer match the
order of the generated prompt 1lines. If an unexpected system
condition causes an unanticipated prompt to appear, the gqueued
commands and data may lose their synchronization with the system
prompts; chaos then presides until the type-ahead buffer is
emptied. It is theoretically possible for the resulting series of
randomly generated commands to destroy the contents of online disk
volumes. The user can terminate out-of-control command £files by
typing <ctrl=X>; this clears the type-ahead buffer of all queued
characters.

8.0.2 Regserved Command File Names

Two command file titles are reserved by the system <£for special
uses: "PROFILE" and "SEXEC". A command file named "PROFILE,TEXT"
is automatically S(ubmitted when the system is bootstrapped. A
command file named "SEXEC,.TEXT" is automatically submitted when the
S(ubmit command is invoked.

NOTE - Automatic execution of "S$EXEC" may be subverted by typing
ahead a command file name after typing S(ubmit. If the command
interpreter detects characters queued in the type-ahead buffer, it
will wuse them to build a command file name rather than opening
"$SEXEC".

NOTE - "SEXEC" must reside on the prefixed volume. "PROFILE" must
reside on the system volume.

WARNING = The file title "SEXEC" causes problems in the filer, as
it violates the restriction on using the "$" character in a file
name. The best way to change a command file title to/from "S$EXEC"
is to edit the file and write it out with the desired file name.

6.1 Command Language

The command language described in this section is named "eXec". An
eXec program is stored as a series of commands and labels in a text
file; a single text line contains at most one eXec command or
label. Command lines start with a reserved command word; all other
lines are treated as comments. Commands are described 1in section
6.1.0. Commands take either "targets" or "textlines" as arguments.
Targets are used as arguments by the flow-of-control commands; they
are described in section 6.1.1. Textlines contain text that is
either immediately written to the screen or gqueued 1in the type-
ahead buffer; they are described in section 6.1.3. Parameters and
variables contain text that may be manipulated by a command f£file
program; they are described in section 6.1.2.

Pzge 194

Command Interpreter

When dealing with alphabetic characters, the command interpreter is
case-insensitive for commands and labels; however, case 1is pre-
served for screen I/0.

Blank characters are usually ignored by the command interpreter,
with the following exceptions:

Blanks are significant after these commands: READ, WRITE,
WRITELN, and T.

Blanks should not occur in targets.

6.1.0 Commands

Commands must appear as the first token on a text line. Commands
may be classified by their time of "execution":

Immediate commands (READ, WRITE, CALL, etc.) cause the command
interpreter to execute the command upon processing the line.

Deferred commands (STK, S, RUN) cause the command interpreter
to save characters for subsequent use by the system.
6.1.0.0 Immediate Commands
WRITE
Form: WRITE <textline>

Writes <textline> to the console (without writing <return>).

WRITELN
Form: WRITELN <textline>

Writes <textline><returnd> to the console.

Form: T <textline>

Synonymous with the WRITELN command, but allows a 1longer
"textline" argument because of its abbreviated form.

PDQ-3 System Reference llanual

READ
Form: READ <textline>
Writes <textline> to the console; then, reads text from the
keyboard until <return> is typed. The text read is stored in
an interpreter variable named "Answer"; its contents are
accessable with the special character "2?" (described in
section 6.1.3).

GOTO
Form: GOTO <target>

Command interpretation continues at <target>.

CALL

Form: CALL <target> { <param>}

Command interpretation continues at <target>, but returns to
the command following the CALL after a RUN command is
executed. Up to 9 parameter: may be passed to the <target>
routine., They are treated as local inside of the routine.
All parameters are passed by value. No variable paremters are
allowed,

CALL's may be nested up to 18 levels deep.

SET
Form: SET <variable#> <value>
Sets the specified variable (lvariable#) to the specified
value. The value may be a string constant or another
variable.

EQU
Form: EQU <valuel> <value2> <target>
Performs a conditional jump to <target> based on the compari-
son of the values <valuel> and <value2>. The values may be

either string constants or variables. A GOTO to <target> |is
performed if the values are equal.

Page 196

Command Interpreter

VERBOSE

QUI

Form: VERBOSE

Verifies each command before executing it; the command is
written to the console, and the user may type either <return>
to execute it or <escape><return> to abort the command
interpreter, VERBOSE is used to debug command programs.

ET

Form: QUIET

Disables the VERBOSE command.

6.1.0.]1 Deferred Commands

STK

RUN

Form: STK <textline>

Saves <textline> on the command interpreter's internal stack.

Form: S <target> { <paramb>}

STKs a S(ubmit command for <target>. Up to 9 parameters may
be passed to the <target> routine.

Form: ROUN

If CALL commands are extant, command interpretation continues
at the command following the last CALL; otherwise, RUN puts
all text saved on the command interpreter's internal stack
into the system's type-ahead buffer, and terminates the
command interpreter,

6.1.1 Targets

Form:

Targe
indic
tion
comma
"\004
a lin

NOTE

<target> ::= [<filename>] ["/<label>" or "\<line#>"]

ts are used as arguments to the GOTO and CALL commands; they
ate the location in a command file where command interpreta-
is to continue. Targets denoting a specific location within a
nd file contain either a zero-origin 1line number (e.g.,
") or a label (e.g., "/beginloop") which is the first token on
e.

- Care must be taken to ensure that labels have names distinct

Page 197

PDQ-3 System Reference llanual

from command names. For instance, "shell™ is not a valid label; it
is interpreted as s<target>, where <target> = "hell".

Targets can specify lo:sctions in other command files with the
optional file name field (e.g. "profile/subroutine”)., File suf-
fixes must not be used in the file name. If only the <£file nanme
field is specified, command interpretation continues at the first
line in the named command file.

NOTE - Targets may also be wused in the command interpreter's
initial file prompt to specify the location in a command file where
interpretation is to commence.

6.1.2 Parameters and Variables

Up to 9 variables are available to a command file program at any
time, They are accessed as |1 through 19, Each variable may
contain a text string. A new set of variables is allocated each
time a CALL is performed. The old set of variables is placed on a
stack (up to 18 deep) until the CALLed routine is terminated.

Variables are initialized to the wvalues of the parameters passed to
the command interpreter or passed through a CALL. Parameters are
passed as sequences of characters separated by spaces., They occur
after a file name or target. The first parameter is assigned to
11, the second parameter to 12, etc. The |0 variable contains the
number of variables initialized to parameter values.

Variables may also receive values by using them in a SET operation.
Their values may be tested by using the EQU instruction. They may
be printed by using a WRITE instruction. They may also be passed
as parameters to other routines.

8.1.3 Text Lines

Within "textline" arguments, key commands are prefixed with the
escape character "|"; they are denoted as follows:

noe <space> "n" <return>

bl | {single "I"} :b: <bs>

"u" <up> ! <escape>

"g" <down> e <delete>

" <left> i <tab>

“r" <right> non Answer to last READ
"k" Relinquish control to the console keyboard

"0".."S" variables 0 through 9

An occurrence of "I?" in a textline is substituted with the text
read in by the last READ command.

The special character "Ilk" should only be used in textlines passed
as arguments to the STK command. All occurrences of "IKk" are
replaced by special tokens as they are put in the type-ahead
buffer. Later, when the system encounters one of these tokens

Page 198

Command Interpreter

while reading characters from the type-ahead buffer, it requests
direct Kkeyboard input until a <null> is typed, and then resumes
reading from the type-ahead buffer. Thus, a series of gueued
system commands and data may be punctuated with requests for input
directly from the keyboard, allowing automated tasks to possess
interactive capabilities. (See the example in section 6.2).

PDQ-3 System Reference ianual

6.2 Example eXec Programs

Example from command file "X.DEMO":

writeln line 0 executing
s /target
run

target

writeln target executing
writeln calling /t2

call /t2

writeln /t2 returned
writeln going to /t3
goto /t3

t2
writeln /t2 running
run

t£3

writeln /t3 gone to
writeln

read Enter Text :
writeln You Typed "I2"
writeln

writeln end of test
run

t Once S(ubmitted, this program runs forever...
t

loopstart

read directory listing of what volume?

stk £fel2Inl Il | g

s /loopstart

run

This command program repeatedly prompts for a volume name, invokes
the filer, lists the directory of the specified volume, and returns
to the system prompt. The three blanks are added in case the
directory listing is longer than the screen; otherwise, the blanks
are consumed by the filer's prompt 1line. Note that the title
message is printed only once; subsequent invocations of the command
file Jjump to the 1label "loopstart". Note also that the command
interpreter automatically expands the specified target to include
the name of the enclosing command file.

Page 200

Command Interpreter

Another example of listing a disk directory:

stk felkin!l | | g
run

In this example, the volume name is not specified until the actual
filer prompt is displayed; at this point, the system regquests
direct input from the keyboard (bypassing the queued <return>,
three blanks, and "g"). The volume name must be terminated by
typing <null>, The listing is then made and control is returned to
the system prompt. -

NOTE - Another example of an eXec program appears in the BINDER
.TEXT command file. The operation of this program is described in
section 8.3.0.

PDQ-3 System Reference llanual

Page 202

System Monitor

VII. SYSTEM MONITOR

The system monitor is named HDT, short for "Hexadecimal Debugging
Tool". HDT is capable of: examining and modifying the contents of
memory words and I/0 device registers, starting/suspending/resuming
system operation, and recovering from power failures.

HDT does not display a prompt line; instead, the prompt character
("#") is printed on the console. HDT commands are described 1in
section 7.1. Examples of using HDT appear in section 7.2.

NOTE - HDT is implemented as a Pascal program resident in PROils on
the PDQ-3 CPU board. 1Its code occupies memory addresses - F400-F7FF
hex. Its data occupies memory in 100-200 hex and 22-25 hex; using
HDT to modify the contents of these areas disrupts monitor
operation and thus 1is not recommended. The Hardware Reference
Manual describes the memory layout of the PDQ-3 system, including
memory addresses reserved for I/0 devices and other system func-
tions. '

1.0 Entering The Monitor
HDT is activated in these situations:
1) Pressing the RESET button on the front panel.

HDT prompts for a command., Typing "R" causes HDT to boot the
system from the system volume. The PDQ-3 may be configured to
automatically boot the system after RESET is pressed - see the
Hardware User's lManual for details,

2) System power-up.

HDT checks for a power fail restart in progress. If a restart
is in progress (and battery backup exists for the system
memory), HDT restarts the system at the point where a power
failure interrupted it; otherwise, HDT acts as if the RESET
button was pressed.,

3) Typing the monitor key (<control-P>) during system operation.
HDT is invoked as a high priority process, suspending normal
system operation; HDT then prompts for a command. During monitor

operation, all interrupts are 1latched and any outstanding I/C
operations continue. System operation is resumed by typing "P".

Page 203

PDQ-~3 System Reference llanual

1.1 Monitor Commands

HDT commands examine and modify memory contents, boot the system
from the system volume, and resume execution of a currently
suspended system or user program. All numbers used in HDT are
hexadecimal <(hex digits: 0..9, A..F); all memory addresses are
word addresses; all data quantities are 16-bit words. Hex numbers
are entered as a string of hex digits; if a number contains more
than four digits, only the last four are significant.

HDT commands are all single key commands; lower-case alphabetic
characters are mapped into their upper-case equivalents. Commands
and numbers are echoed on the console as they are typed. Typing an
invalid command or number causes HDT to print "?" and redisplay the
prompt character.

The HDT commands are:
R
Form: [<number>lR

Reboot the system from the specified device. If no <number>
is specified, the system 1is bootstrapped from the default
bootstrap device, and the system floppies are configured for
single-sided operation.

If a <number> is specified, it indicates an alternate boot-
strap device or floppy drive configuration, The <number>
consists of two digits. The first digit indicates the type of
the desired bootstrap device. 1In versions of HDT capable of
bootstrapping from only one device, the value of this digit is
irrelevant., In versions capable of bootstrapping from two
devices, this digit is normally 0 to indicate a hard disk and
1l to indicate a floppy drive. The second digit selects a
particular drive of the device specified by the first digit,
and indicates the initial floppy configuration. A 0 designat-
es drive 0; 1 designates drive 1. The floppy drives may be
configured for double-sided operation by adding 4 to the drive
number. :

For an exact interpretation of <number> for a given hardware
configuration, consult the Hardware User's Manual.

Form: P

Resume execution of a suspended user or system program.
Invoking this command if a program is not currently suspended
(i.e., if the monitor was entered because of a power failure
or a RESET condition) halts the monitor.

System Monitor

/
Form: [<number>l/
Set current address.
Display contents of current address.
If <number> is typed, it becomes the current address.
then displays the contents of the current address.
{return>

Form: [<number>l<return>

Set contents of current address.
Redisplay prompt.

If <number> is typed, it 1is stored into the word at
current address, HDT then displays the prompt character,

warnings are denerated for invalid memory writes; e.

storage into ROM,

<line feed>
Form: [<number>l<line feed>

Set contents of current address.,
Increment current address and display contents.

If <number> 1is typed, it 1is stored into the word at

current address. HDT then increments the current address,
displays the contents of the current address,

Form: [<number>]”

Set contents of current address.
Decrement current address and display contents.

If a number 1is typed, it 1is stored into the word at

current address. HDT then decrements the current address,
displays the contents of the current address.

Form: [<number>]@

Set current address indirect and display contents.,

HDT

the
No

Jer

the
and

the
and

If the number is typed, it is stored into word at the current
address, HDT then sets the current address to the contents of
the current address, and displays the contents of the current

Page 205

PDQ-3 System Reference llanual
address.

NOTE - lMost HDT PROMs are capable of bootstrapping the Pascal
system from only one type of device (e.g. £floppy drives). Some
HDT PROlMs can bootstrap the system from one of two possible
devices. These versions of HDT are not capable of executing the
memory examination commands. The HDT.DRVR.CODE file on the AQS
release disk contains a version of the SYSDRIVER I/0 driver which
has a software version of the monitor. The software version
identifies itself with a "%" prompt. It implements all monitor
commands except R. In addition, the H command is provided; it
invokes the HDT PROM, from which the R command may be used.
Section 2.3.1 describes how to replace a system I/0O driver.

'y
o
[Ce}
8]
8}
o
()}

System Monitor

1.2 HDT Examples

In the following examples, the user's responses are uncerlined.
.Starting the system with the system disk mounted:

#R or #l3R

Zeroing memory locations 2000-2002 hex:
Memory beforehand:

#2000/2937 Kline feed>
2001/A1Al1 <line feed>
2002/ABCD <line feed>

2003/FEFE <return>
#

Zeroing memory:

§2
2002/ABCD 0~
2001/A1A1 0°

200072937 Q<Lreturn>
#

Memory afterwards:

#£0000 <line feed>
2001/0000 <line feed>
2002/0000 <cr>

#

Chaining through memory pointers starting at 1000 hex:

#1000/234E @
234E/3EFC @
3EFC/0000 10008

1000/234E <return>
*

PDQ-3 System Reference !lanual

Page 20C

Utilities
VIiIiI. UTILITIES

The programs described in this chapter perform useful system
functions; they are known as "utility programs". Unlike the system
parts described in the previous chapters, utility programs are
invoked as user programs with the X(ecute command.

8.0 Disk Management

This section describes the utility programs used to manage disk
media: Booter, Backup, Mapper, Format, Bad.Blocks, Drive.Con and
Change.Dir.

Booter copies the system bootstrap from one disk to another. Track
0 must contain the bootstrap code regquired for bootable system
disks, Booter is described in section 8.0.0.

Backup copies entire disk images from one disk to another. 1Its
most common use is to make backup copies of disks containing
valuable data. Backup is described in section 8.0.1.

Mapper converts entire disk volumes to different disk formats, thus
allowing floppy disks to be read by UCSD Pascal systems running on
different machines. Mapper is described in section 8.0.2.

Format writes formatting information on blank disks so they may be
used on the PDQ-3 system. Format is described in section 8.0.3.

Bad.Blocks performs high-speed scanning of disks for bad blocks; it
is described in section 8.0.4.

Drive.Con configures virtual floppies on a hard disk drive; it is
described in section 8.0.5.

Change.Dir changes the number of blocks a directory may access; it
is described in section 8.0.6.

J
(¥}
(8]
(1]
[8]
(o]
(%)

PDQ-3 System Reference ilanual

8.0.0 Bootstrap Copier
The Booter utility copies a system bootstrap (i.e. all of track 0)
from a source to a destination. The source bootstrap may exist

either in a file or on a volume and it may be copied to either a
file or a volume.

8.0,0.0 Using Booter

X(ecute Booter. The following prompt appears:
Read from F(ile or U(nit?

Typing <cr> terminates the program.

Typing 'F' causes Booter to prompt for a file name; typing 'U'
causes Booter to prompt for a unit number:

Name of file?

or
What Unit?

Typing <return> causes the first prompt to reappear; typing the
name of a file containing a bootstrap or the number of an online
unit completes the read.
After a successful disk read, the following prompt appears:

Read successful,

Wreite to F(ile or U(nit?

Typing <return> exits Booter. The responses to this prompt specify
the bootstrap destination and are entered in the same manner as
above. Upon completion of a successful transfer, Booter verifies:

Write successful.

'9

¥
]
1]
(3]
[
p)

Utilities

8.0.1 Disk Copying

The wutility program Backup copies the entire contents of a disk
volume {(called the "master" or "source" volume) onto another disk
(called the "backup" or "destination" volume). Although there are

other ways to copy disks (e.g. the T(ransfer command in the
filer), Backup has the following features:

1) Backup checks that the backup volume is an exact copy of the
source volume by repeatedly reading the finished copy and
comparing its ccntents with those of the source volume.

2) Backup copies any bootstrap information contained on the
source volume. ’

8.0.1.0 Using Backup
X(ecute Backup. The following prompt appears:
Enter Master's Unit # :

Typing <return> exits Backup. Typing the number of the unit
containing the information to be copied generates the prompt:

Enter Backup's Unit # :
Typing <return> exits Backup. Typing the number of the unit to
which the backup information will be copied causes the following
verification message to appear:

Master on <source unit number> Volume <source volume name>

If the destination volume has a directory the following prompt
appears:

Destroy <dest unit number> Volume <dest volume name> ?

Typing <return>, <space>, 'N' or <esc> generates the exit prompt
described below. Typing 'Y' causes the following information to be
displayed:

Backup on <dest unit number> Volume <dest volume name>
Backing up <# of occupied blocks on source volume> blocks

Backup then proceeds to copy the source volume to the destination
volume; it writes a series of dots to the screen to indicate its
progress. Typing <esc> at any time during the copy denerates the
exit promt which is described below., When copying is successfully
completed, this prompt appears:

Unit # <dest unit number> is currently named <dest vol name>,
Would you like to rename it?

Typing 'Y' or 'y' generates the prompt:

Page 211

PDQ-3 System Reference Manual

Enter volume name:
Type <return> to avoid renaming the destination volume and continue
to the next prompt. Otherwise, type the desired name for the
backup volume. All lower case characters are converted to upper
case, and any trailing c¢olon is stripped. The fcllowing prompt
appears:

<unit number> Renamed <new volume name> ‘

Directory contains <# of blocks on source volume> blocks.

Change Size ?
Typing 'Y' generates the prompt:

New number of blocks (<# occupied blks on dest vol - 32767)?

Type <return> to avoid changing the volume block size; ctherwise,
type the number of blocks desired. Backup verifies:

<unit number> now contains <new block number> blocks
The exit prompt then appears:

E(xit to Boot Diskette in Boot Drive ?
Typing 'E', 'Y' or <esc> returns the user to the system prompt; as
impli2c by the prompt, the system disk is assumed to be mounted.
Typing 'N' (or any other character) redisplays the original Backup
prompt:

Enter Master's Unit # :

e o o allowing a new set of disks to be copied.

[Xv]
)
4
D
1S9]
l-—l
J

Utilities

8.0.2 Disk Format Conversion

The utility program Mapper changes floppy disk formats; this allows
disk volumes to be transported between systems with different
hardware configurations. Mapper operates on disks having the
following standard formats: Digital Equipment (DEC), Western Dig-
ital, and PDQ-3. The contents of a source disk are written
("mapped") onto a destination disk in the format requested by the
user; the source disk is not affected.

NOTE - Disks having Western Digital or DEC format can be read by
the PDQ-3 without being remapped. See section 1.4.3.4 for details.

8.0.2.0 Using Mapper
X(ecute Mapper. The following prompt appears:

Source unit number ?

Enter the number of the unit containing the source disk; <return>
exits the program, If the source wunit is a floppy disk, the
following prompt appears:

Source D(ec W(d P(dqg :

The choices available are: "D", "W", "P", and <return>., The first
three choices specify the corresponding disk format; <return>
allows the source unit number to be reentered. 1If the source unit
is a hard disk, the source format defaults to P(dq.

NOTE - Mapper cannot verify the source disk's format; incorrectly
specifying the source disk's format yields a scrambled destination
disk., Mapper will not map a disk to the same format (i.e. a
straight copy); use the Backup utility to do this.

The destination unit number is entered in the same manner as the
source unit -number,

Once the source and destination units are specified, the following
prompt appears:

Map #<source unit> : [<source format>]
--=> #<destination unit> : [<Kdestination format>] OK ?

The choices available are: "Y", "N", and <return>. Typing "Y"
starts the mapping process; typing either "N" or <return> allows
the source and destination units to be reentered.,

While Mapper maps, information detailing its progress is displayed
in the wupper right-hand corner of the screen. Typing a <blank>
during mapping causes llapper to skip the current track, and
continue mapping on the next track. Typing <escape> terminates
mapping and returns to the source unit prompt.

PDQ-3 System Reference lanual

Then mapping is completed, a new source and destination unit may be
specified.

Utilities

8.0.3 Disk Formakting

The utility program Format formats floppy disks in the PDQ-3 disk
format. Disk formatting is used for:

1) Preparing new disks (8" soft-sectored floppies only - we
recommend Dysan disks).

2) Recycling old disks with different formats.

3) Fixing disks which have been rendered unreadable by unfortun-
ate circumstances.,

WARNING - When a disk or an area of a disk is reformatted, its
original data is irretrievably lost.

NOTE - To format any disks other than PDQ-3 floppies, please see
the subsystem document for that disk.

8.0.3.0 Using Format
X(ecute Format. The following prompt appears:
Enter unit number containing disk to be formatted [0,4,5]

Typing "O0" exits 'Format; typing either 4 or 5 dgenerates the
following prompt:

Format single or double density? (S or D)

Typing "S" specifies single density formatting; typing "D" speci-
fies double density. Typing <escape> aborts the formatter.

The next prompt is:
Format single or double sided? (S or D)

Typing "S" specifies single-sided disks; typing "D" specifies
double-sided. Typing <escape> aborts the formatter.

NOTE - Before choosing double density, be sure that the floppy disk
are rated for double density usage. Before choosing double-sided,
be sure that the disks AND disk drives support it.

NOTE - The formatter configures the system floppies for single- or
double-sided operation according to the prompt response. This
configuration will remain in effect after the formatter terminates.
The next prompt is:

Skewing? (Y or N)
Typing "Y" directs Format to skew the placement of disk sectors in

order to improve disk performance. Typing "N" suppresses sector
skewing., Typing <escape> aborts the formatter, See the Archi-

Page 215

PDQ-3 System Reference llanual

tecture Guide for more information on disk sector skewing.
The next prompt is:
Format all tracks? (Y or N)

Typing "Y" initiates formatting of the entire disk; typing <escape>
aborts the formatter. Typing "N" generates the following prompt:

Enter starting track number

The starting track number is typed in, followed by a <return>; The
final track number is handled similarly:

Enter final track number

Once the track range 1is specified, formatting commences. The
screen displays the following messages detailing Format's progress:

Formatting <track # being processed>
Verifying <track # being processed>

8.0.3.1 Reformatting Bad Blocks

This section describes how to reformat bad blocks that cannot be
fixed with the X(amine command in the filer. It 1is necessary to
determine which tracks the bad blocks occupy; only these tracks
need reformatting. Here are the formulae for determining the track
and sectors used by an arbitrary block:

(<block #> * 4 DIV 26) + 1 = <track #>
(<block #> * 4 MOD 26) + 1 = <starting sector #>

There are four sectors per block. If the starting sector is 25,
the next track should be reformatted also, because it contains the
rest of the block.

NOTE - The above formulae and information are for single density
disks. For double density, "4" => "2", For double-sided, "26" =>
"52.. N

NOTE - Reformatting an entire track to fix a bad block destroys the
contents of adjacent blocks on that track.

Utilities

8.0.4 Fast Bad Blocks Scanning

The utility program Bad.Blocks checks a disk file or disk volume
for damaged blocks. Bad blocks scanning may also be performed with
the filer's B(ad blocks command; however, Bad.Blocks is much more

convenient. Bad blocks are repaired with the filer's X(amine
command or the Format utility (section 8.0.3).

8.0.4.0 Using Bad.Blocks
X(ecute Bad.Blocks. The following prompt appears:

File to scan?

Typing <return> exits Bad.Blocks; typing a volume id (e.g. "#5:"
or "MYDISK:") scans an entire disk volume; typing a file name scans
a single file on a disk volume. The next prompt is:

Scan all <# blocks in file> blocks [y/nl

Typing "Y" scans all blocks occupied by the specified file; typing
"N" generates this prompt:

Start scanning at block:
Type the number, followed by a <return>., The starting block number
is relative to the start of the specified file; e.g. a starting
block of 0 initiates bad blocks scanning on the first block of the
file, even if the file itself starts at block 45 on the disk
volume.
The following prompt is defined similarly:

Stop scanning after block:
Once the block range 1is specified, scanning begins; Bad.Blocks
indicates its progress by writing a series of message having the
following form:

Scanning blocks <block number> to <block number>

When scanning a single disk file, the block numbers indicated are
relative to the start of the file; when scanning a disk volume, the
block numbers displayed correspond to the actual disk block
numbers. Bad.Blocks checks 40 blockskat a time,
If a bad block is detected, the following message appears:

Block <block number> is bad

Vhen Bad.Blocks is finished, it indicates the total number of bad
blocks detected:

<number> bad blocks

rJ
"
(5]
o
)
H
~J

PDQ-3 System Reference llanual

Before terminating, Bad.Blocks writes the following prompt:
Insert system disk and type <CR>
Typing <return> returns control to the system prompt.
NOTE - For more bad block information during the scan, the

<control-D> Noisy option may be invoked before starting Bad.Blocks.
See section 1.4.3.4 for more details.

g
)
4
D
(3]
j—
(&)

Utilities

8.0.5 Hard Disk Management

The utility program Drive.Con is used to allocate disk volumes on
hard disk drives. Up to 32 disk volumes per drive may be
allocated. Drive.Con displays and alters a drive i i
consisting of a volume label, a size and a status for each disk
volume,

8.0,5.0 Using Drive.Con
X(ecute Drive.Con. The following promptline appears:

Command: R(ead, W(rite, C(hange, D(ismount, M(ount,
N(ew, Q(uit (1.0]

Q(uit exits Drive.Con. <Return> aborts any prompt that does not
have an explicit escape.

Some of Drive.Con's prompts display a series of ' ' which
determine the field size of the requested response. The field may
be modified using a protocol similar to that of the eX(change mode
in the system editor; entering a printable character causes the
character under the cursor to be replaced by the character entered.
Utility keys used to alter the fields are:

Rey Action

<bs> moves cursor left one space

<left> moves cursor left one space

 moves cursor to beginning of field
<right> moves cursor right one space

<tab> moves cursor to end of field

{return> accepts all input up to cursor position
<etx> accepts all input in field

Certain commands allow a range of table entries, indexed by
letters, to be affected. The response to such a command mnay be
either a single entry index (e.g. A), a closed entry range (e.qg.
A-C), or an open entry range (e.g. =C means from the beginning to
C, B- means from B to the end, - means from the beginning to the
end). If the response contains a '?', the operation is verified
for each entry of the range before it is carried out.

8.0.5.2 Drive Configurations

A drive configuration describes the allocation of disk volumes on a
hard disk drive. It may exist either in a text file or on a track
designated for <configuration information (see Appendix D of the
Programmers lanual). A configuration residing on the configuration
track describes the disk volume allocation for that drive. Config-
gzations may also be stored in text files £for subsequent use as
ata.

g
[9)]
0
1]
(%]
o
(Yo

PDQ-3 System Reference ilanual

A drive 1is a sequence of gegments consisting of a drive-dependent
number of blocks. Segments are numbered beginning with 0; segment
0 1is reserved, Disk volumes may contain an arbitrary number of
segments. and are identified by a 15 character volume lapel. They
may be either mounted (visible to the system) or dismountedg.

8.0.5.3 Displaying a Drive Configuration

R(ead generates the prompt:

Channel: F(ile, D(rive, E(xit
This allows the selection of a drive configuration from either a
disk file or a drive's configuration track. F(ile generates the
prompt:

File name ?

Type the name of a file containing a drive configuration.
D(rive generates the prompt:

Drive _
Type the number of a drive whose configuration is to be examined; 0
for systems containing only one hard disk drive.

To obtain a blank drive configuration, type MN(ew and choose the
appropriate drive type from the selection shown.

The drive configuration display includes a heading which reads:
Volume label Start Size Empty

The Volume 1label describes the disk volume contents. The Volume
label has no relation to the volume name. Start gives the starting
segment address on the drive, Size indicates the number of
segments allotted to the volume, and Empty shows the number of
empty segments between the end of one volume and the beginning of
the next (0 if none). The number of blocks corresponding to a
quantity of segments may be calculated by multiplying the number of
segments by the number of blocks per segment (displayed at the
bottom of the screen). Volume label and Size may be altered
manually; Start and Empty are automatically maintained by Drive
.Con.

The display may be altered by using the M(ount, D(ismount, and
C(hange comnands.

g
fu
W)
Ip]
ro
o
o

Utilities

8.0,5.4.0 M(ount and D(ismount

M(ounting a volume makes it visible to the system, and D(ismounting
renders it invisible (although still intact). The maximum number
of mountable volumes is determined by the System I/0 Configuration
(see section 2.,3.1). If the number of mounted volumes exceeds the
number of physical units allocated to the hard disk; only those
volumes that <correspond to physical units are visible to the
system. Volumes are assigned to physical units starting with the
first mounted entry in the configuration table. In multiple drive
systems, these volumes are selected starting with the boot drive
and then proceeding £from drive 0 to the last drive., The first
volume mounted is marked with an asterisk (*) to the 1left of the
volume 1label and 1is considered the boot volume. Other mounted
volumes are marked with a number sign (#).

M(ount and D(ismount generate the prompt:
Which entry (<Kchar>-<char>)?
Responses are of the form:
<response> ::= [<char>] ["="[<char>]] ["?2"]

Responses are entered as described in section 8.0.5.1.

8.0.5.4.1 C(hange

C(hange generates the same prompt line as M(ount and D(ismount, but
only single character responses are allowed. C(hange is used to
create and destroy volumes, and to alter the volume label and size
of existing volumes.

Existing volumes are altered by selecting the index of the desired
volume and editing the desired field. The Volume label field must
be edited and accepted, before the Size field may be edited. The
size of a volume may be reduced by specifying fewer segments; a
volume may be removed by specifying a size of 0. The size of a
volume may be increased by specifying more segments, assuming an
adequate number of empty segments follow the volume.

New volumes are created by C(hanging the first empty entry on the
display. Drive.Con will allocate the new volume in the first
available space of that size, and update the display accordingly.

Before a new volume is visible to the system, it must be !M(ounted
using Drive.Con and Z(eroced using the F(iler,

8.0,5.5 Saving Drive Configurations

Drive configurations are saved using the W(rite command, which
generates the prompt: »

Channel: r(ile, D(rive, E(xit

F(ile generates the prompt:

PDQ-3 System Reference lManual

File name ?

Typing a file name causes the configuration to be saved in a text
file. Drive configurations may be saved in text files for archival
purposes.

If the drive configuration on display was not originally R(ead from
a drive, D(rive generates the prompt:

Drive _

Type the number of the drive on which the configuration is to be
written; 0 for systems containing only one hard disk drive.

If the drive configuration on display was originally R(ead from a
drive. D)rive generates the prompt:

Write to Drive <number>?

Type 'Y' or 'y' to write the drive configuration to the drive from
which it originated. Typing 'N' or 'n' results in a prompt for a
drive number as described above.

If an attempt to exit Drive.Con is made, and the current drive
configuration has not been saved, the following appears:

Nothing updated: W(rite, R(eturn, Q(uit

Q(uit then exits the program, R(eturn returns to Drive.Con, and
W(rite behaves as described above and then exits the program.

WARNING - W(rite D(rive replaces the configuration on a drive. The
prior configuration will be lost if it is not saved in a text file,
which may result in 1lost volumes. If the boot volume has been
dismounted, the system may not reboot from the hard drive, but it
may be rebooted from a floppy disk, and the configuration resto:zzc.

Utilities

8.0.6 Changing Volume Size

The utility program Change.Dir is used to change the number of
blocks a directory may access. This program should be used to
match the number of blocks a directory may access with the actual
volume size. For example, after a volume size is changed using
Drive.Con, the size of the directory on the volume should be
changed using Change.Dir.

8.0.6.0 Using Change.Dir
X (ecute Change.Dir. The following prompt appears:

What is the unit number of the directory you wish to change?

Enter the wunit number containing the directory to be changed
followed by <return>. Change.Dir prompts:

The current size of <volume name> is <volume size>;
What is the new size (<lower bound>=-<upper bound>)?

<Volume size> is the number of blocks currently accessible from the
directory. Choices for a new size are limited to values that do
not exclude any files already on the volume; existing files may not
be removed with Change.Dir. If the response is outside of these
bounds, Change.Dir aborts with the prompt:

New size must be at least <lower bound>.

If the response is within bounds, and no I/0 error occurs in
updating the directory, Change.Dir reports:

Directory write successful,

NOTE - Typing <return> to any prompt in Change.Dir exits the
program,

NOTE - The number of blocks allotted to a directory may be
different than the actual number of blocks on the volume (as seen
in Drive.Con). If the directory is larger, 1I/0 errors occur on
accesses beyond the end of the volume; if the directory is smaller,
some volume space is inaccessible to the user hence wasted,

PDQ-3 System Reference llanual

8.1 Data Recovery

This section describes utilities involved in the recovery of data
lost through unfortunate circumstances; specifically, the recovery
of files from trashed directories. The utilities are llarkdupdir,
Copydupdir, and Recover,

Markdupdir modifies a disk volume currently maintaining only a
primary directory so that it maintains a duplicate directory. This
is usually done with the filer command Z(ero; ilarkdupdir is used to
add a duplicate directory to an existing disk volume without
destroying its contents.

Copydupdir copies the duplicate directory into the location of the
primary disk directory; it is used after unfortunate circumstances
destroy the primary directory.

Recover searches a volume for lost text and code files; it is used
after both primary and duplicate directories have been destroyed.
Files are recovered first by searching the existing directory for
valid entries, then by scanning the volume £for groups of blocks
that appear to be files.

Primary and duplicate disk directories are described in section
2.1.3.5 and the Architecture Guide.

8.1.0 Using Markdupdir
X (ecute Markdupdir. The following prompt appears:
Enter Unit # :

Type <return> to exit Markdupdir; otherwise, type the number of the
volume to be marked., If the disk volume already has a duplicate
directory, the user is notified and Markdupdir is terminated. If
no duplicate directory exists, blocks 6-5 on the disk volume are
checked to see if they are currently occupied by a disk file. If
so, the user is asked to verify the mark, as the disk file would be
overwritten by a duplicate directory. Typing 'Y' proceeds with the
marking; typing any other character exits HMarkdupdir.

- The status of blocks 6-9 can be checked with the filer command
E(xtended list. 1If the first disk file in the directory starts at
block 6, or if it starts at Dblock 10 and is preceded by a
four-block wunused area, then the disk has not been marked.
However, if the first directory entry starts at block 10 and there
are no unused blocks at the beginning, the disk has been marked.

Utilities

Examples of directory listings of unmarked volumes:

SYSTEM.PASCAL 31 10-Jan-79 6 Codefile
or

<unused> 4 10-Jan-79 6 Codefile

SYSTENM. PASCAL 31 10-3an-79 10 Codefile

Example of a directory listing of a marked volume:

SYSTEM.PASCAL 31 10-Jan-79 10 Codefile

8.1.1 Using Copydupdirx

X(ecute Copydupdir. It first prompts for the disk drive in which
the copy is to take place.

The user 1is notified if the disk is not currently maintaining a
duplicate directory (see section 8.1.0). If a duplicate directory
is found, a prompt is issued to verify that the current primary
directory is to be overwritten., Typing "Y" copies the directory;
typing any other character exits Copydupdir.

8.1.2 Using Recover
X(ecute Recover., The following prompt appears:

Enter # of Unit to be Recovered:

Typing <return> exits Recover; typing the number of the desired
volume generates the prompt:

Enter volume name:
Typing <return> exits Recover; otherwise, the first seven charac-
ters typed in are entered into the directory as the volume name.
All lower case letters are converted to upper <case, and trailing
colons are deleted.

Recover first attempts to read the volume size from the current
directory. If invalid information is received, Recover prompts:

Number of blocks on the disk?
Any positive integer may be entered. Recover then searches for
valid entries 1in the volume's directory. Each entry found is
listed as:

<file name> found

If no valid entries are found in the volume's directory, Recover
reports: ‘

PDQ=-3 System Reference !llanual

No files found

After the directory search 1is completed, the following prompt
appears:

Are there still IMPORTANT files missing ?
Typing 'N' or <return> discontinues the file search; typing 'Y’
continues with a block by block search through the volume for Text
and Code files (Data files are ignored). Each file discovered
generates a report:
File <file name> inserted at blocks <start blk>-<end blk>
Upon completion of Recover's file search, this prompt is displayed:
Go ahead and update directory?

Typing 'Y' writes the new directory to the volume; typing 'N' or
{return> does not.

Utilities

8.2 Library Management
Libraries are managed with the utility programs Library and Libmap.

The Library utility may construct a library £file from other
libraries and code files. It may also bind a unit code file with a
program code file to make that code file completely portable (i.e.
the program code file has its own copy of the unit so that it may
be run in an environment where that unit is not normally avail-
able). Library is described in section 8.2.0.

The Libmap utility gives detailed information on the contents of a
code file. This includes a list of all segment names and sizes,
used units and versions, and other attributes of the unit,
Optionally, the interface section of a given unit may be 1listed.
Libmap is described in section 8.2.1.

See section 2.2 for a system-level description of units and
libraries and the Programmer's llanual for a program-level descrip-
tion of units and libraries.

8.2.0 Using Library

X (ecute Library. The partial terminal display containing the
compilation unit header and output file prompt appears:

Status Name #B1lk Vers Seg Ref

L]
o

L]

Output file: *System,Library

8.2.0.0 Editing Library Prompts

All Library prompts display a series of ' ' which determine the
field size of the requested response. The field may be modified
using a protocol similar to that of the eX(change mode in the
system editor; entering a printable character causes the character
under the cursor to be replaced by the character entered. Utility
keys used to alter the fields are:

Key Action

<bs> moves cursor left one space

<left> moves cursor left one space

 moves cursor to beginning of field
<right> moves cursor right one space

<tab> A moves cursor to end of field

{return> accepts all input up to cursor position
<etx> accepts all input in field

Certain commands allow a range of table entries, indexed by
letters, to be affected. The response to such a comnmand mnay be
either a single entry index (e.g. A), a closed entry range (e.g.

"J
W)
[a
D
')
2]
N

PDQ-3 System Reference lanual

A-C), or an open entry range (e.g. =-C means from the beginning to
C, B- means from B to the end, - means from the beginning to the
end). If the response contains a '?', the operation is verified
for each entry of the range before it is carried out.

8.2.0.1 Output and Iﬁput Files

When Library 1is first executed, the output file prompt appears at
the bottom of the terminal display. To exit Library, type
followed by <return>, The default output file is *System.Library.
The file name may be changed using the editing features described
above. The output file display consists of:

Qutput File: <file name> Blocks: <current outfile size>
"<copyright notice>"

The output file size is updated after appropriate Library commands.
The copyright notice is optional.

After the output file name has been accepted, the input file prompt
appears at the top of the terminal display:

Input File: *System.Library

The input file name defaults to the output file name if the output
file already exists. Otherwise, it defaults to '*System.Library'.
The input file name is specified in the same manner as the output
file name. Library attempts to open the input file as specified.
If the attempt fails, ".Code" is appended and the operation is
retried. After the input file is opened, the units contained in
this 1library appear as entries in the terminal display and the
copyright message (if any) appears beneath the input file prompt.

8.2.0.2 Library Commands

ter the output and input files are specified, the following
prompt appears at the top of the display:

Library: N(ew, K(eep, T(oss, R(efs, S(trip, I(at, Clopy.,
A(bort, Q(uit [1.0]

8.2.0.2.0 K(eep and I(os3

The K(eep command is used to mark units to be included in the
output file. All K(ept files are marked with a '#' at the left of
the index letter. If the input file supplies more than one
comp%lation unit, the K(eep command prompts for a range of entries
to K(eep.

The T(oss command is used to cancel the action of the K(eep
command. T(oss may be used on any entry marked with a '#'.

Note - The K(eep command simply changes the status of an entry. A
unit 1is not <copied from the input file to the output file until

Page 228

Utilities

either the MN(ew or Q(uit command is invoked.

8.2.0.2.]1 S(trip and I(nt

The S(trip command is used to remove the interface text from the
library. This action is noted on the display by the disappearance
of the 'i' to the left of the unitname and a decrease in the number
of blocks occupied by the unit. The I(nterface command restores
the text.

8.2.0.2.2 Rfefs

The R(efs command is used to K(eep a unit and all of the units it
references. Referenced user units not contained on the display are
enumerated by entries with an 'r' to the left of the unit name.
These units may be found in other libraries. Referenced system
units are enumerated by entries with an 's' to the left of the unit
name. System units are provided by the system; thus they are
unavailable for binding. Mo operations are allowed on 'r' and 's'
entries; they are for informational purposes only.

8.2.0.2.3 N(ew

The N(ew command is used to specify a new input file. At this
time, all K(ept entries are copied to the output file. This
changes the status of these entries from '#' to '*', which
signifies permanent status (i.e. no further operations may be
performed on them). N(ew may be aborted by typing <return>,

8.2.0.2.4 C(opy

The C(opy command is used to copy the copyright message from the
input file to the output file. The copyright messages associated
with these files are displayed immediately below the file name.

8.2.0.2.5 Albort
The A(bort command purges the output file and aborts Library.
8.2.0.2.6 Q(uit

The Q(uit command 1is used to close the output file. All entries
are processed as in the MN(ew command. The cursor is placed at the
end of the output file copyright message for possible editing. The
output file is closed when the copyright message has been accepted.
Note that if the Q(uit command is issued and there are no K(ept.
entries, Library A(borts.

MNarmaA 970

PDQ-3 System Reference llanual

8.2.1 Using Libmap
X (ecute Libmap. The following prompt appears:

Yhat is the name of the output file (<cr> for Stanout:) ?
Typing <return> sends the output to the standard output; typing a
file name sends paged output to that file name appended with ,TEXT.
Either response generates the following prompt:

What is the name of the library file (<cr> to exit) ?

Typing <return> exits Libmap; otherwise, Libmap automatically
appends ".CODE"™ to the library file name unless the file name is
followed by a period (which is stripped). Typing "*" is a special
case which invokes the "*System.Library" file.

Following the information for each compilation unit, this prompt
appears:

Do you wish to list the interface section for <unit name> ?
Typing 'Y' generates a listing of the interface section for that
unit; typing <esc> aborts the Library listing and regenerates the
prompt:

What is the name of the library file (<cr> to exit) 2

This prompt also appears after the map file is completed.

'
V)
V]
(8]
[P]
[0S]
(o]

Utilities

Example of a library map listing:

FILE: *library.Code
(c) Copyright Advanced Computer Design, 1982 All Rights Reserved

- e e s S i e o I e S =t e S cmat G G SIS S SR e G ST ST SMS Smm Sem Sme G S GNE NS MU GAS NS SmS Ewe GNS Gmn GNP EmS SN SN SIS SR TS auS @mS T T W
3+ttt T 31t 2ttt 1t 3 3t 2t 2 1 2 2 2 32 3 23 33

Program LIBRARY Version: O llachine: PDQ-3
Global Data Size: 1265 words Uses II.0 heap
Segment 128: LIBRARY Size: 1969 words
Referenced Unit 130: APPPROCS Version: 1 Resident
Referenced Unit 129: SCCNTRL Version: 0 Resident

Unit SCCNTRL Version: 0 Machine: PDQ-3
Global Data Size: 1 words Uses II.0 heap
Segment 128: SCCNTRL Size: 1350 words
Referenced Unit 8: GOTOXYU Version: Resident

Unit APPPROCS Version: 1 Machine: PDQ-3
Global Data Size: 55 words
" Segment 128: APPPROCS Size: 846 words
Referenced Unit 129: SCCNTRL Version: 0 Resident

Dara O]

PDQ-3 System Reference lManual

This section describes the system parts used to create and maintain
a standard interface between system software and the terminal.
These parts enable the system to use many different terminals with
a minimum of effort.

Two system parts define the system's current terminal interface:
GOTOXY and SYSTEM.MISCINFO.

The UCSD Pascal intrinsic, GOTOXY, implements random (i.e. X-Y
coordinate) cursor positioning. It is wused by the operating
system, the system editor, and various utilities for screen
formatting. 1Its use is described in the Programmer's HMHanual.

The data file named "SYSTEM,MISCINFO" resides on the system volume.
SYSTEM.MISCINFO is a two block file containing system and editor
information. The first block of SYSTEN.MISCINFO contains three
kinds of system information: miscellaneous system data, terminal
screen control characters, and key definitions £for special com-
mands. Its contents are read into a system data structure named
SYSCOM after booting or I(nitializing the system (see the Architec-
ture Guide for details on SYSCOM). The system uses the values in
SYSCOi#1 to perform various screen control operations. The second
block of SYSTEM.MISCINFO contains information used by the editor
for terminal screen control sequences and special function keys.

Three system parts are used to reconfigure the system's terminal
interface: Binder, Setup, and ASS.,

The Binder wutility binds a compiled GOTOXY procedure into the
system support library. Details on creating, compiling, and
binding a new GOTOXY are presented in section 8.3.C.

The Setup and ASS utilities are used to create a new miscinfo file.
Setup (described in section 8.3.1) modifies the first block, which
contains system information. ASS (described in section 8.3.2)
modifies the second block, which contains editor information. The
following table indicates which utility should be used in order to
modify a given function.

Page 232

Utilities

Screen Control

BACKSPACE CHAR

CURSOR HOME CHAR

CURSOR RIGHT CHAR

CURSOR UP CHAR

ERASE LINE CHAR

ERASE SCREEN CHAR

ERASE TO END OF LINE CHAR
ERASE TO END OF SCREEN CHAR
INSERT LINE CHAR
NON-PRINTING CHAR

Keyboard Functions
BACKSPACE KEY
CURSOR DOWN KEY
CURSOR LEFT KEY
CURSOR RIGHT KEY
CURSOR UP KEY
DELETE CHAR KEY
DELETE LINE KEY
EDITOR ACCEPT KEY
EDITOR COMMAND XEYS
EDITOR ESCAPE KEY
END FILE KEY

Systen

LOVER CASE

RANDOI!M1 CURSOR ADDRESSING
SLOW TERMINMAL

SCREEN HEIGHT

SCREEN WIDTH

VERTICAL MOVE DELAY

Use Sefup

K KKK KK

KK KKK KKK

KKK

Use ASS

KKK KKK K

PDQ-3 System Reference llanual

8.3.0 GOTOXY Binding

The GOTOXY intrinsic is implemented as a procedure in a UCSD Pascal
Unit (described in section 3.2 of the Programmer's iianual). The
GOTOXY intrinsic may be modified for use with a given terminal by
writing a new GOTOXY unit, compiling it to a code file, and binding
it into the system support library. If the system has not been
configqured for the terminal being used, it might be necessary to
create the unit with the line-orinted editor, YALOE (see section
8.5); the regular editor may be unusable.

Here 1is an example of a complete GOTOXY unit for the Zenith 2-19
terminal:
{$R-,I- No checking needed (makes GOTOXY faster & smaller)}
Unit Goto_XY U {for Zenith Z-19};

Interface

Procedure My_Goto_XY (X, Y : Integer):
Implementation
Uses Progops;

Procedure My_Goto_XY {X, Y : Integer};
Const Esc = 27;

Out_Unit = 21;
Var Buf : Packed Array [0..3] Of Char;
Begin

I£f ¥ > 23 Then Y := 23;
If X > 79 Then X := 79;
I£f YO0 Then Y := 0;
If X < 0 Then X := 0;
Buf (0] := Chr (Esc);

Buf(l] := 'Y';

Buf[2] := Chr (¥ + 32);

Buf[3] := Chr (X + 32);

If Prog_Redir (True) Then
Write (Buf)

Else
Unitwrite (Out_Unit, Buf, 4);

End {of My_Goto_XY};

End {of Goto_XY¥Y_U}.

g
m
Wi
(1]
[9]
(8%
>

Utilities

This exanmple demonstrates most of the requirements and restrictions
imposed on new GOTOXY units. IMost terminals use similar character
sequences for cursor addressing; the parameters most likely to vary
are the prefix and command characters, and the biases applied to
the X and Y coordinates. These should be documented in the
terminal's functional specification.

The name "GOTOXY" cannot be used as an identifier; it is reserved
for standard calls to the GOTOXY intrinsic. The unit must be named
GOTOXYU. It should be the only unit in the GOTOXYU code file. The
procedure implementing the GOTOXY intrinsic should be the only
procedure in the GOTOXYU interface section., It should have exactly
two integer parameters. The first parameter is the 2zero-based
horizontal coordinate, and the second parameter is the zero=-based
vertical coordinate. The procedure must ensure that both coordin-
ates are in the proper range for the target terminal; if not, they
nust be truncated. The unit may be validated by embedding it in a
program (as an in-line unit) and calling it with test coordinates.

~ The GOTOXY intrinsic must execute as quickly as possible. Thus,
only the simplest and fastest operations should be used in order to
calculate and output the cursor positioning sequence (i.e. 1long
integer and real operations should not be used, and procedure calls
should be kept to a minimum). It is recommended that the "R-" and
"I-" compiler directives be used in order to minimize execution
checks and code size. Use of the UNITWRITE intrinsic to output the
cursor positioning sequence incurs less system overhead than wusing
the standard WRITE procedure, thus reducing I/0 time. I/O time can
be reduced further by sending the cursor positioning sequence to
the Fastcon 1I/0 device (unit 21), which 1locks out all tasks
contending for CPU time wuntil the I/0 1is complete. Compiler
directives and the UNITWRITE intrinsic are described 1in the
Programmer's Manual.

Use of the UMNITWRITE intrinsic with the Fastcon device 1is not
compatible with 1I/0 redirection options (section 2.4.4); output
operations performed in this manner affect only the system console
rather than the output streams and t-files designated by redirec-
tion options. The Prog_Redir function (documented in the Library
User's HManual) may be used to determine whether I/C redirection is
in effect., If it .is, cursor positioning sequences should be
written to the standard output using the WRITE procedure,

PDQ-2 System Reference !anual

8.3.0.0 Using Binderx

Binder 1is invoked using the S(ubmit command (chapter 6) instead of
the X(ecute command. The S(ubmit command accepts the name of a
command file and a list of parameters, separated by spaces; null
parameters are specified by. two contiguous spaces or an end of
line. The Binder 1is executed by S(ubmitting the Einder command
file with three optional parameters. The first parameter 1is the
name of the code file containing the GOTOXYU wunit. If this
parameter is not specified, the Binder prompts for the name of the
code file:

Enter name of file with GOTOXY procedure:

The second parameter is the volume identifier of the volume
containing the system support library (SYSTEM.PASCAL) to which the
GOTOXYU wunit is to be bound. The third parameter is the volume
identifier of the volume containing a copy of the Library utility
(section 8.2.0). The default value of the second and third
parameters is the name of the system volume.

Examples of Binder invocations are:

Binder

Binder MyGotoXY

Binder MyGotoXY Testvol: Utility:
Binder MyGotoXY Utility:

Binder X(ecutes the Library utility and accesses the <code file
containing the GOTOXYU unit. It K(eeps the first unit in the unit
display (presumably the GOTOXYU unit) and then accesses the system
support library. Binder K(eeps all system support units except the
first, which is assumed to be the old GOTOXYU unit. The Library
utility is then terminated and the binding is complete. The system
should be rebooted immediately.

NOTE - A newly bound in GOTOXY is correct if the welcome message
appears in the center of the screen when the new system is booted
(section 2.4.0) and the editor seems to work correctly.

Utilities

8.3.1 Using Setup
X(ecute SETUP. Setup spends a few moments copying the contents of
SYSCOM into its own buffer, and then displays the following prompt
line: _

SETUP: C(HANGE T(EACH) H(ELP) Q(UIT)
H(ELP describes the currently available commands.

T(EACH describes how to use Setup.

C(HANGE is used to display and modify screen control and special
command information in Setup's edit buffer.

Q(UIT displays the following prompt:

QUIT: D(ISK) OR M(EMORY) UPDATE, R(ETURN) H(ELP) E(XIT)
D(ISK UPDATE saves the contents of Setup's edit buffer in the data
file "NEW.MISCINFO" on the system volume. This must be changed to
"SYSTEM.IMISCINFO" to be used by the system. ,
M(EMORY UPDATE writes the contents of Setup's edit buffer to the
SYSCOM data structure in memory; the new values may be tested
immediately, but are 1lost if the system is rebooted or I(nitial-
ized. '
R(ETURN returns the Setup prompt line.
E(XIT exits Setup.

NOTE - The Setup utility may be used to modify system configuration
information. The ASS utility (section 8,3.2) should be used to
modify editor configuration information.

g
o0
Q
1))
8]
(¥)
~J

PDQ=-3 System Reference Handal

8.3.1.0 Fields in Setup

This section describes the fields accessed by the C(HANGE command.
The <£fields represent three kinds of system information: Kkeys,
characters, and parameters.

Keys are character sequences initiated at the console keyboard to
indicate a request for a particular predefined action. Key fields
in Setup have the word "XEY" in their field names.

Characters are character sequences that the system writes to the
terminal 1in order to manipulate the screen display (e.g. writing
the ERASE LINE character to the terminal erases the characters
displayed on the current line).

Parameters are various integer or Boolean values which control the
system's operation (e.g. the HAS CLOCK field is a Boolean
parameter indicating the presence of a system clock).

Most character and Kkey sequences may be prefixed by a "lead-in
prefix" The terminal's functional specification should be consulted
to determine the character sequences regquired and emitted by the
terminal. Configurations for some common terminals are 1listed in
Appendix F.

NOTE - The ASCII character names used in some fields are defined in
Appendix E.

BACKSPACE CHAR

Writing this character to the console moves the cursor one space to
the left. Suggested value: ASCII BS

BACKSPACE KEY

This key moves the cursor one space to the left. It should not be
prefixed. Default value: ASCII BS

CHAIN QUEUE SIZE

This field sets the maximum number of programs which can be chained
together using the CHAIN intrinsic (see Library User's Manual).
The default value is 1 and may be changed to any number between 0
and 10. Note that each chain queue entry (even if unused) occupies
40 words of memory.

'J
)
01
D
M
)
>}

Utilities

CURSOR DOWN KEY

This key and the corresponding UP, LEFT and RIGHT Keys are used by
the editor for cursor control. If the terminal keyboard has a
vector pad, it should be used to define these keys. Otherwise,
four keys may be chosen in the pattern of a vector pad and assigned
the control codes that correspond to them.

CURSOR HOME CHAR

Writing this character to the console "homes"™ the cursor (i.e.
moves it to the upper left hand corner of the screen).

NOTE - If the terminal does not have such a character, the field
should be set to ASCII CR ("return"); as a consequence, the editor
will be unusable. Use YALOE (section 8.4) instead.

CURSOR LEFT KEY

This Key and the corresponding UP, DOWN and RIGHT keys are used by
the editor for cursor control.,. If the terminal Keyboard has a
vector pad, it should be used to define these keys. Otherwise,
four keys may be chosen in the pattern of a vector pad and assigned
the control codes that correspond to them,

CURSOR RIGHT CHAR

Writing this character to the console moves the cursor one space to
the right without erasing any characters.

NOTE - If the terminal does not have such a character, the editor
will be unusable. Use YALOE (section 8.4) instead,

CURSOR RIGHT KEY

This key and the corresponding UP, DOWN and LEFT keys are used by
the editor for cursor control. If the terminal Keyboard has a
vector pad, it should be used to define these keys. Otherwise,
four keys may be chosen in the pattern of a vector pad and assigned
the control codes that correspond to them.

CURSOR UP CHAR

Writing this character to the console moves the cursor vertically
up one line without erasing any characters.

HOTE - If the terminal does not have such a character, the editor
will be unusable. Use YALOE (section 8.4) instead.

g -
[+1]
£y

1]
[\
(]
O

PDQ-3 System Reference llanual

CURSOR UP KEY

This key and the corresponding DOWM, LEFT and RIGHT keys are used
by the editor for cursor control. If the terminal Kkeyboard has a
vector pad, it should be used to define these keys. Otherwise,
four keys may be chosen in the pattern of a vector pad and assigned
the control codes that correspond to them.

DELETE CHARACTER KEY

This key deletes the character where the cursor is, and moves the
cursor one character to the left. Suggested wvalue: ASCII BS

DELETE LINE KEY

This key deletes the line occupied by the cursor. Suggested value:
ASCII DEL

EDITOR ACCEPT KEY

This key 1is wused in the editor to conclude commands and save the
text changes. Suggested value: ASCII ETX or LF

EDITOR ESCAPE KEY

This key is used in the editor to exit from commands. Suggested
value: ASCII ESC

NOTE =« If any keys are prefixed, the EDITOR ESCAPE KEY should also
be designated as prefixed; otherwise, ambiguities result. -

END FILE KEY

This Key sets the Boolean intrinsic EOF to true when it 1is typed
while reading from the predeclared file INPUT. Suggested value:
ASCII ETX

ERASE LINE CHAR

Writing this character to the console erases all characters on the
line containing the cursor, and positions the cursor at the
beginning of the line.

ERASE SCREEN

Triting this character to the console erases the entire screen
positions the cursor at the top left of the screen.

[a N

n

£

g

L8

Utilities

ERASE TO END OF LINE

Writing this <character to the console erases all characters from
the current cursor position to the end of the line, and leaves the
cursor at its current position.

ERASE TO END OF SCREEN

Writing this character to the console erases all characters from
the current cursor position to the end of the screen, and leaves
the cursor at its current position.

ERROR LIST LENGTH

This £field indicates the number of 1lines of execution error
information to print when an execution error occurs. If the value
is 0 or 1, the site of the execution error is reported. If the
value is greater than 1, the remaining lines report the locations
of the procedure calls leading up to the error. The default is 1
and may be changed to any number between 0 and 255, Section 7.8 of
the Programmer's Manual describes how to use this information.

HAS CLOCK

This indicates the presence of a system clock; it should always be
set to TRUE on PDQ-3 systems.

HAS LOWER CASE

This is set to TRUE if the terminal supports lower-case characters;
otherwise, FALSE,

HAS RANDOI1 CURSOR ADDRESSING

This 1is set to FALSE only when using hard-copy terminals; other-
wise, TRUE.

HAS SLOW TERIMINAL

This field is intended for terminals operating at 1less than 600
baud. It is not used by the PDQ-3 system.

LEAD-IN FRO!N KEYBOARD

Some terminals provide keys that generate two-character sequences.
If the prefix character is the same for all of these keys, it 1is
used to set the value of the field LEAD-IN CHAR FRO!M XEYBOARD. The
PREFIX[<Kfield name>] field for each two-character key must then be
set to TRUE.,

o]
%)
(8]
()
)
">
[

PDQ-3 System Reference llanual

LEAD-IN TO SCREEN

Some terminals require two=-character sequences to activate certain
functions. If the prefix character is the same for &ll of these
functions, it is wused to set the value of the field LEAD-III TO
SCREEN. The PREFIX([<Kfield name>] field <for each two-character
function must then be set to TRUE,

NOM=-PRINTING CHARACTER

This character is displayed whenever a non-printing character is
written to the console by the editor. Standard value: ASCII "2"

PREFIXED[<Kfield name>l

The system will recognize any two=-character sequences generated by
a key or sent to the console if the PREFIXED field corresponding to
the appropriate field is set to TRUE. See the descriptions of the
LEAD-IN TO SCREEN and LEAD-IN CHAR FRO!MN KEYBOARD fields for more
details.

SCREEN HEIGHT

The number of text lines displayable on the console Standard
value: 24 decimal. Value for hard-copy terminals: C. -

SCREEN WIDTH

The number of characters on one line on the console. Standard
value: 80 decimal.

VERTICAL MOVE DELAY

This field accepts integer values between 0 and 11. Many types of
terminals require a delay after certain cursor movements to enable
the terminal to complete the movement before the next character is
displayed. The delay is implemented by sending a series of <null>
characters to the terminal; the wvalue in this field determines the
number of characters to be sent.

Utilities

8.3.2 Using Advanced System Setup

This section describes the utility program Advanced System Setup
(ASS), which is used to define the mapping of terminal Kkeys to
Advanced System Editor commands. ASS stores ASE command defini-
tions in the SYSTEM.MISCINFO file.

X(ecute ASS. The first prompt is:
Press <return> to start or "!" to abort...
Typing "!" exits ASS. Typing <return> commences ASS.

NOTE - ASS aborts at this point if the £file SYSTEM.MISCINFO does
not reside on the prefixed disk.

The next prompt is:
Defaults from S(etup, previous A(dvSysSetup, or N(one?

This prompt determines whether the command definitions in the
current SYSTEM.MISCINFO file are to be carried over to the new
miscinfo file.

Typing "A" preserves all ASE command definitions in the current
miscinfo. (Note that this option 1is applicable only to SYs-
EM.MISCINFO's previously created by ASS.)

Typing "S" specifies that the following commands are to be copied
from the system configuration information portion of SYSTEM.MISCIN=-
FO: <left>, <right>, <up>, <down>, <bs>, <etx>, and <escape>.
These command definitions are used by the system utilities and are
assigned by the Setup utility (see section €.3.1). Any pre-exist-
ing ASE command definitions are lost.

Typing "N" directs ASS to ignore all command definitions in the
current SYSTEM.MISCINFO. Commands not specified by ASS's defaults
need to be explicitly defined in ASS.

ASS clears the screen and prompts:
Do you want to change the gap? (y/n)

The current gap setting appears above the prompt preceded by some
instructions for determining the gap. The gap influences the size
of the edit buffer in memory. A liarge gap (i.e., 30000) vyields a
small edit buffer; a small gap (i.e. 20000) yields a larger edit
buffer, The size of the edit buffer determines the speed at which
the editor operates, Various gap values may be tested in order to
obtain optimal editor speed and edit buffer size.

If a gap change is desired, type "y" and enter an integer for the
new specification. If the integer is negative, ASE will ask for a
gap value during initialization, which is wuseful £for tuning the

gap.

'J
N
n
()
]
125
(¥8]

PDQ-3 System Reference llanual

ASS then displays a table of all defined ASE commands at the top of
the screen, followed by a command prompt. The command table and
prompt line are described in section 8.3.2.1. Commands are
described in sections 8.3.2.1.0 through 8.3.2.1.5.

8.3.2.0 Character RPrompts
Character prompts in ASS accept either a single (grinting or
nonprinting) character, or a character representation. Character
representations allow a character to be specified by its numeric
value; they have the following form:
<CharRep> ::= (<integer>)

coe where <integer> is a decimal integer between 0 and 255. For
instance, the character representation "(65)" cdenotes the character
whose integer value is 65 (ASCII *"a"). When ASS displays a
character definition on the screen, it prints either the character
itself or the corresponding character representation (depending on

whether the character is printing or nonprinting). The ASCII table
in Appendix E is useful in interpreting character representations.

8.3.2.]1 The Command Iable and Prompt
The table contains definitions for four classes of commands:

1) Default definitions for alphabetic editor commands (e.g. “I®
for the I(nsert command).

2) Default definitions for some other commands (e.g. <dir-
change>, <space>, and <return>).

3) (Optional)‘ Definitions for cursor-moving commands obtained
from the original SYSTEM.MISCINFO.

4) (Optional) ASE command definitions obtained from the original
SYSTEM.MISCINFO,.

Here is a portion of the command table:

c. S Set o / Slash ee (32) Space

Each command entry has the following form:

<CmdEntry> ::= <case><prefixed> <value> <fieldname>
<case> ts ., | ¢

<prefixed> ::= . | p
The case field indicates whether the command is case-=insensitive

Page 244

Utilities

(i.e. whether lower and upper case responses are eguivalent); "c"
indicates case-insensitivity, "." denotes case-sensitivity. This
field may only be set on commands possessing alphabetic character
values.

The prefixed field indicates whether the character value shown is
the latter part of a 2-character sequence involving a prefix
character; "p" indicates a prefixed character sequence, "." denotes
a non-prefixed sequence. (Note that the actual prefix character is
not shown in the command entry.)

The character value of the command definition is indicated by
<value>, The value appears as either a printing character or a
character representation.

The editor command is indicated by <fieldname>. The field name is
used in ASS commands to specify an editor command definition for
modification.

Information pertaining to the table is displayed below the command
entries, The characters used as prefix characters by commands in
the table are shown, along with the number of empty slots left in
the table for new command entries, The empty slots are used for
defining any commands that remain undefined, and also for adding
multiple command definitions,

NOTE - Several different key sequences may be defined to represent
a given command., For example, the "Digit" fields allow alternate
definitions of digits, possibly including sequences beginning with
a prefix. This enables repeat factors to be applied to commands
invoked within the eX(change command.

The command prompt is displayed next:

A(dd D(elete K(ey-surrogate L(ook P(rompted=-add Q(uit ?:

Typing "?" displays a short description of the prompt 1line
commands.

8.3.2.1.0 A(dd

A(dd 1is wused to add command definition entries., The following
prompt appears: :

Command? (?<ret> shows table)

Typing only <return> aborts the A(dd command. Typing "2<ret>"
displays the field names of all editor commands (defined or
undefined). Commands are specified by typing in their field names
followed by <return>. Field names are case-insensitive, and do not
have to be completely typed in; the first one or two characters of
a field name are sufficient for specifying a command. Typing an
invalid field name causes the prompt to be redisplayed.

)
jo]
Vo]
1)
(8]
o~
(@)

PDQ-3 System Reference llanual

tThen a valid field name is entered, the next prompt appears:
Prefix? (e.g. "(13)")

If a prefix character is not desired, type in "(0)"; this wvalue
denotes the lack of a prefix (see the K(ey=-surrogate command for an
easier way of specifying this value). Prefix characters must be
nonprinting; otherwise, the command 1is aborted. Also, prefizx
characters must be unique with respect to all other nonprefixed
command characters.

The next prompt is:
Character? (e.g. "F" or "(13)")

Any character may be typed in. If the character is alphabetic, the
following prompt appears:

Case insensitive? (y/n)

Typing "y" indicates the command definition is case-insensitive;
typing "n" denotes a case-sensitive definition.

At this point, the command definition is completely specified. If
the new definition is equivalent to an existing command definition,
it is discarded, and the following message appears:

Conflicts with <fieldname>

8.3.2.1.1 Df(elete
D(elete redisplays the command table and adds the following prompt:
--= u,d,1,r to move; z zaps, a accepts, ! escapes =---

Typing "u", "d4d", "1", or "r" moves the cursor up, down, left, or
right across the command table respectively; the cursor is always
located at the front of a command entry. Typing "z" removes the
entry under the cursor. Typing "a" completes D(elete, removing all
of the zapped command entries. Typing "!" exits D(elete without
removing any zapped entries.

8.3.2.1.2 K(ey=surrogate

K(ey-surrogate 1is wused to simplify the entry of characters into
character prompts. A terminal key may be redefined in ASS to
generate an arbitrary character value which may be used for the
remainder of the current ASS execution. The most common use of
this command 1is for defining a single-key alternate £for the
character representation "(0)"; this speeds up the entry of
nonprefixed command definitions.

When X(ey=-surrogate is invoked, it first displays a list of all
existing key surrogate definitions, and then prompts:

‘g
8]
0
[
rd
I
N

Utilities

Surrogate (ch - "1" exits)
Enter the alternate character. The next prompt is:
Character

The character (representation) to be redefined is entered.

8.3.2.1.3 L(ook

L(ook redisplays the command table.

8.3.2.1.4 P(rompted=-add

P(rompted-add cycles through the commands that remain undefined;
for each of these, the following prompt appears:

Add command <fieldname>? (y/n/!)

Typing "n" skips the current command, Typing "!" exits the
P(rompted-add command. Typing "y" generates a prompt segquence
which 1is equivalent to the A(dd command's prompt sequence (section
8'3.2.1.2) L]

NOTE - There is one character prompt which is unique. It is called
InsertLine, and 1is used to define the gutput sequence which will
cause your terminal to insert a blank 1line pushing .down all
following 1lines. It is used by the ASE for upward scrolling. 1If
it is left undefined because it is not supported by the terminal's
hardware, wupscroll will not occur and full screen refresh will be
used in its stead.

8.3.2.1.5 Q(uit

Q(uit asks if a 1listing of the key definitions (suitable for
documentation) 1is desired. 1If so, enter the name of the list file
(with any required ".TEXT" suffix). If not, Jjust type <return>
without entering a filename. :

Q(uit then writes the new terminal configuration to the MNEW.MISCIN-
FO file on the prefixed disk. The new commands are recognized by
the ASE after MNEW,MISCINFO is C(hanged to SYSTEM.MISCINFO (using
the filer).

PDQ-3 System Reference llanual

8.4 System 1/Q Configuration

The Drvr.Info utility is used to modify the 1I/C system configur-
ation. It establishes the correspondence between a physical unit
number and an I/0 device. A device is specified as a system 1I1I/0

driver and a logical device number (see section 2.3.1 for details).
Up to 64 physical units may be allocated.

8.4.0 Using Drvr.Info
X(ecute Drvr.Info. The following terminal display will appear:

Read from which file ? *System.Drvinfo

Unit# Driver LU Unit# Driver LU Sys Drivers
‘ A) SYSDRIVE
<list of current drivers>

Typing <return> displays the current system I/0 configuration and
the prompt:

DrvInfo: R(ead,A(ctivate,D(eactivate,l(ame,W(rite,P(rint,E(dit,
Q(uit [1.0]

Drvr.Info 1loads an I/0 configuration into the display buffer with
the R(ead command. Changes to the configuration are performed
using the A(ctivate, D(eactivate, N(ame, and E(dit commands. The
current display may either be written to a £file wusing W(rite or
printed in hard copy form using P(rint.

8.4.1 Editing Drvr.Info Prompts

All Drvr.Info prompts display a series of ' ' which determine
the field size of the requested response. The field may be
modified using a protocol similar to that of the eX(change mode in
the system editor; entering a printable character causes the
character under the cursor to be replaced by the character entered.
Utility keys used to alter the fields are:

Rey Action

<bs> moves cursor left one space

<left> moves cursor left one space

 moves cursor to beginning of field
<right> moves cursor right one space

<tab> moves cursor to end of field

<return> accepts all input up to cursor position
<etx> accepts all input in field

Certain commands allow a range ©of table entries, indexed by
letters, to be affected. The response to such a command may be
either a single entry index (e.g. A), a closed entry range (e.g.
A-C), or an open entry range (e.g. =-C means from the beginning to
C, B- means from B to the end, - means from the beginning to the
end) . If the response contains a '?', the operation is verified

Npe
Page Zeav

Utilities

for each entry of the range before it is carried out.

8.4.2 R(ead

R(ead is used to display a configuration contained in a Drvinfo
file. When Drvr.Info is executed, an automatic R(ead is performed.
The prompt is:

Read from which file ? *System.Drvinfo

For the initial R(ead, typing <return> aborts the program;
for any other R(ead, it exits the prompt. *System.Drvinfo is the
default input file. The prompt may be edited to specify another
file. Once the file name is accepted, the new configuration is
read into the display.

8.4.3 W(rite

W(rite allows the contents of the display to be written to a file.
This prompt appears:

Write to what file ? *System.Drvinfo
The output file defaults to the input file., Typing <return>
exits the prompt. The prompt may be edited to specify another
file.

P(rint generates a hard copy of the display. P(rint generates the
prompt:

Print to what file ? Printer:

The default printfile is Printer:. The prompt may be edited to
specify another file. Typing <return> exits the prompt.

The dispiay may be altered by using the A(ctivate, D(eactivate,
N(ame and E(dit commands.,

A unit 1is not actually visible to the system unless it |is

A(ctivated (denoted by a "*" to the left of the Unit#). D(eacti-
vate renders units invisible to the system.

8.4.4.1 N(ame

PDQ-3 System Reference ilanual

N(ame allows limited changes to the display. N(ame may create
entries, and alter the driver and/or 1logical device number of
current entries. See E(dit for more extensive mnmodifications.
N(ame generates the prompt:

hich entry (<first entry> - <last entry>) ?

Current entries are altered by selecting the index (or subrange of
indices) of the desired entry. Any response in the selected range
(except <return> which exits the prompt) generates the prompt:

Which system driver name (<first sys drvr>=<last sys drvr>)?

A driver may be chosen from the list of current system I/0 drivers
at the right of the display. A new driver may be specified by
choosing the empty entry. This generates the prompt:

New driver name ? SYSDRIVE

SYSDRIVE is the default. Any other name may be entered by editing
the prompt. .

The chosen driver name will appear beside each selected index. The
driver name field may be edited and nust be accepted before the
logical device field may be edited.

8.4.4.2 E(dit |

E(dit is used for extensive alterations to the I/C system configur-
ation. This command creates a copy of the display in a temporary
file and invokes the editor. E(dit generates the prompt:

Temporary file for edit ? Drvr.Temp

The temporary file name may be edited to specify another file name.
After the file name is accepted, the editor is invoked. 1!odifica-
tions to the display may be performed using Editor commands (see
Chapter 4). When editing is complete, the Editor is exited using
the Q(uit U(pdate editor commands. Then the temporary file is
automatically read back into the configuration display. Invalid
entries are ignored.

8.4.5 Quit

Q(uit exits Drvr.Info. If an attempt is mnade to exit Drvr.info
without saving the current configuration, the following prompt
appears:

Nothing written: W(rite, R(eturn, E(xit
E(xit terminates the program, R(eturn returns to Drvr.Info, and

W(rite behaves as described in section £.4.3 and then exits the
program.

(39
w
(@)

v
Q)
[Ce]
)]

Utilities

YALOE is a line-oriented text editor designed for use in systems
having a hard=-copy device (e.g. teletypewriter) for a terminal, or
on unconfigured systems (see section 8.3); YALOE works in these
situations, while the regular editor does not.

Section 8.5.8 contains a summary of all YALOE commnands.

8.5.0 Entering YALOE

YALOE 1is invoked by eX(ecuting YALOE; however, if YALOE is to be
used extensively, it can assume the role of the standard system
editor. Change the screen editor's code file to a different file
name (e.g. SCREEN.EDITOR), and then change YALOE.CODE to S¥Ys-
TEM.EDIT. Typing E(dit from the system prompt now invokes YALOE.

If a work file exists, the editor prints:
Workfile <file name> read in
.o Where <file name> is the name of the current work file.
If the workfile is empty, this message appears:

No workfile read in.,

8.5.1 Entering Commands and Text

The editor operates in either Command mnode or Text mode. The
editor is in Command mode when it 1s first entered; in Command
mode, all keyboard input is interpreted as edit commands. Commands
may be invoked individually or as part of a command string
specifying the execution of a sequence of commands. Text mode is
entered whenever a command is typed that nust be followed by a text
string; when the text string is terminated, the editor returns to
Command mode,

Examples of command and text strings appear in the sections
describing the edit commands.

MOTE - Unlike other parts of the system, YALOE does not display
promptlines automatically; instead, an asterisk ("*") is printed to
indicate that commands may be entered, Commands are entered by
typing command characters; they are displayed on the screen as they
are typed. The "?" command lists the available commands on the
screen,

'J

€y
0

)
(63}
—t

PDQ-3 System Reference ilanual

wcommandusmem

Some edit commands allow a command argument to precede the command
character. The argument usually specifies the number of times the
command should be performed or the particular portion of text to be
affected by the command. The definitions listed below are used in
the command descriptions.

Command arguments are:

n Any integer, signed or unsigned. Unsigned integers are
assumed to be positive, In a command that accepts an
argument, the default value is 1; if only a minus sign is
present, the value is ~-1. Negative arguments imply
backwards cursor movement.

m An integer between 0 and 9.
o The beginning of the current line.

/ Denotes the number 32700. A "-/" denotes =3270C, "/" is
used as an "infinite" repeat factor.

= Eéuivalent to the signed integer argument "-n", where n
equals the length of the last text string argument used.
Applies only to the J(ump, D(elete, and C(hange commands.

8.5.1.1 Command Strings

Commands may be entered singly or in strings; they are not executed
until <esc><esc> is typed. Command strings consist of a sequence
of single character commands. Commands requiring text strings are
separated by the <esc> terminating the command's text string;
commands not requiring text strings may optionally be separated by
{esc>.

NOTE - <esc> echoes a dollar sign ("$") when typed. The <esc>
terminates the text string and returns control to Command mode.
The examples in this section display <esc> in its echoed form "$".

Spaces, carriage returns and tabs within a command string are
ignored unless they appear in a text string. When the execution of
a command string is complete, the Editor prompts for the next
command with an asterisk ("*"),

If an error is encountered while xecuting a s3ingle command,
execution of the command string is terminated; the results of the
preceding commands in the string remain, but subsequent commands in
the command string are discarded.

8.5.1.2 Text Strings

In Text mode, all keyboard input is treated as text until <esc> is
typed. Commands requiring text strings are F(ind, G(et, I(nsert,
!i(acro define, R(ead file, !T(rite to file, and eX(change.

o]
{3
ul
[
[39]
(8]
(3]

Utilities

8.5.2 The Text Buffer

The text file being modified by the editor is stored in the text
buffer. Files must f£it in the text buffer to be successfully
edited.

8.5.3 The Cursor

The cursor is the position in the £file where the next command will
be executed., Most edit commands use the cursor position as a
starting point in their operations on the text file.

8.5.4 Special Commands

Various Keys on the Kkeyboard have special functions when used in
YALOE. These commands are described below:

{esc>

Echoes a dollar sign ($) on the console., A single <esc>
terminates a text string. A double <esc> executes a
command string.

CTRL H
<chardel>

Deletes a character from the current line. On hard-copy
terminals, it echoes a percent sign ("3$") followed by the
character deleted., Deletions are done right to 1left,
with each deleted character erased by the %, up to the
beginning of the command string. CTRL H may be used in
both Command and Text Modes. -

CTRL X

CTRL X causes the editor to ignore the entire command
string currently being entered; YALOE responds with an
asterisk ("*") to accept new commands. If the command
string covers several 1lines, all 1lines back to the
previous command prompt are ignored.,

NOTE - The Operating System currently reserves CTRL ¥ for
its own purposes; this command does not work.

CTRL O

CTRL O causes the Editor to switch to the optional
character set (bit 7 turned on).

NOTE - If strange characters start appearing on the
terminal, CRTL O may have been accidentally typed.
Typing CRTL O again should fix the problem.

Trae 253

PDQ-2 System Reference !anual

8.5.5 Input/Output Commands

The commands that control 1I/C are: L(ist, V(erify, %W(rite, R(ead,
Q(uit, E(rase, and O(ption. -

8.5.5.0 L{ist
Format:
nL

Prints the specified number of text lines on the terminal without
moving the cursor. Variations of this command are illustrated in
the examples below,

*-3L$$ Prints all characters starting at the third preceding
line and ending at the cursor.

*SLSS Prints all characters beginning at the cursor and
terminating at the fifth carriage return (line). b

*QLS$S Prints from the beginning of the current 1line up to
the cursor.

8.5.5.1 Y(erify
Format:

v

Prints the current text line on the terminal. The position of the
cursor-within the line has no effect on the command and the cursor
is not moved. No arguments are used., VERIFY is equivalent to a
"*QL$S" list command.

8.5.5.2 W(rite
Format:
W<file title>$

«es wWhere <file title> is a text string containing a wvalid file
title. The editor appends the text file suffix ".TEXT" unless the
title ends with ".", "]1" or ".TEXT". If the title ends in ".", the
dot is removed.

This command writes the entire text buffer to the specified disk
file. It does not move the cursor or alter the <contents of the
text buffer.

g
)
)
(]
(38
w

Utilities
If the specified volume has insufficient room to hold the disk
file, the following error message is printed:
OUTPUT ERROR, HELP! ‘

The text buffer can be written to another volume.

8.5.5.3 R(ead

Format:
R<file title>s

«eo Where <file title> is a text string containing a wvalid file
title.

The editor attempts to locate the specified file. 1If no file is
found with the given title, a ".TEXT" suffix is appended and the
editor makes another attempt at finding the file.

The contents of the specified file are copied into the text buffer
starting at the cursor position.

WARNING - If the file read in does not fit, the entire text buffer
contents become undefined. This is an unrecoverable error.

8.5.5.4 Q(uit
The Q(uit command can have these forms:

QU Quit and update by writing to the work file.

QE Quit and exit YALOE; the text is not saved.

Q Issue a prompt requesting
one of the following options: U, E, or R. R returns
to the edit session,

The "QU" command writes the file to the work text file; it is
similar to the W(rite command., "R" is often used to return to the
editor after a "Q" has been accidentally typed.

8.5.5.5 E(rase

Format:

E

Erases the screen; this command only works with video display
terminals.

P2re 255

PDQ-3 System Reference lianual

8.5.5.6 Q(ption
Format:

no

Automatically display the text surrounding the cursor each time the
cursor is moved; this option only works with video display
terminals. The argument specifies the number of 1lines to be
displayed. This option is disabled when the editor is entered; it
is enabled by typing O(ption, and disabled by typing O(ption again.
The cursor location is indicated by a split in the displayed text
line.

8.5.6 Cursor Moving Commands
The commands that move the cursor are: J(unp, A(dvance, B(egin-

ning, G(et, and F(ind. They are described in the following
sections.

The direction of cursor movement is specified by the sign of the
command argument (e.g. when applied to the J(ump command, the
arguments (+n) and (n) move the cursor forward n characters, while
the argument (-n) moves the cursor backwards n spaces).
Carriage returns are treated as a single text character.

Examples of the moving commands are given in section 8.5.6.4.

8.5.6.0 J(ump

Format:

nJ

lloves the cursor a specified number of characters in the text
buffer.

8.5.6.1 Af{dvance

Format:

nA

lloves the cursor a specified number of lines. The cursor |is
positioned at the beginning of the 1line to which it moved. &

command argument of "0" moves the cursor to the beginning of the
current line.

Oy

Utilities

8,5.6.2 Blegi .
Format:

B

lloves the cursor to the beginning of the text buffer. A logical
complement to this command would be "End"; this can be simulated
with "/J".

8.3.6.3 G(et and F(ind

Format:
nF<target string>$ nG<target string>$

These commands are synonymous, Starting at the current cursor
position, the text buffer is searched for the n'th occurrence of
the specified text string; the sign of n determines the search
direction. If the search is successful, the cursor 1is positicned
immediately after the text string if n is positive, or immediately
before the text string if n is negative. If the string is not
found, an error message is printed, and the cursor is left at the

end of the buffer if n is positive, or at the beginning if n is
negative.,

PDQ-2 System Reference ilanual

8.5.6.4 Examples of Cursor Moving Commands

In these examples, the cursor position is indicated by an under-
score character; the cursor does not appear on a hard=copy device.

Here is the original text:

The time has come
' the walrus said
to balk at many things

*8JS$$ lioves the cursor forward 8 characters:

The time has come
the walrus said
to balk at many things

*~ASS lloves the cursor up one line:

The time has come
the walrus said
to balk at many things

*BGcomes$=J$$ floves the cursor to the beginning of the text
buffer and searches for the string "CCliE".
Yhen the string is found, the cursor is
positioned at the start of the string:

The time has gome
the walrus said
to balk at many things

" Utilities

8.5.7 Text Changing Commands

The commands that change text are: I(nsert, D(elete, KXK(ill,
C(hange, and eX(change. These are described 1in the following
sections. Examples of these commands are given in Section 8.5.7.5.

8.5.7.0 I(nsert
Format:
I<text string>$

Starting at the «current «cursor position, the characters in the
specified text string are added to the text. YALOE enters Text
mode after typing the "I", Text mode is terminated by typing "s",
The cursor is left immediately after the last inserted character.

Occasionally, large insertions may £ill the temporary insert
buffer; before this happens, the editor prints "Please finish" on
the console. Typing <esc><esc> finishes the current command. To
continue, type "I" to re-enter Text mode.

8.5.7.1 D(elete

Format:

nD

Starting at the current cursor position, the specified number of
characters are removed from the text buffer; negative arguments
indicate backwards cursor movement. The cursor is left at the
first character following the deleted text.

8.5,7.2 K(ill
Format:

nKk

Starting at the current cursor position, the specified number of
lines are deleted from the text buffer. The cursor is left at the
beginning of the line following the deleted text.

g
8]
Q2
0]
1)
(9]
(%]

PDQ=3 System Reference lianual

8.5.7.3 C(hange

Format:

nC<text string>s$

Starting at the current cursor position, n characters are replaced

with the specified text string., The cursor is left immediately
after the changed text.

8.5.7.4 el(change

Format:
nX<text string>$
Starting at the current cursor position, n lines are replaced with

the specified text string. The cursor is left at the end of the
changed text.

8.5.7.5 Examples of Text Changing Commands

*=4DSS Deletes the four characters immediately preceding
the cursor (even if they are on the previous line).

*/K$$ Deletes all lines in the text buffer after the
cursor.,

*GCAAASS Replaces the characters from the beginning of the
line to the cursor with "AAA" (same as *QXAAASS).

*BGAS=CB$$ Searches for the first occurrence of "A" and
replaces it with "B",

*=3XMNEWSS Exchanges all characters beginning with the first
character on the third line back and ending at
the cursor with the string "NEW".

*BSGTWINES=D$$ [Moves the cursor to the beginning of the

text buffer, searches for the string
"TWINE", and deletes it.

8.5.8 Other Commands

"Miscellaneous commands include: S(ave, U(nsave, li(acro, ¥ (macro
execution), and "?2".

‘g
[$1)
(e}
(]
(]
<y
(@]

Utilities

8.5.8.0 S(ave
Format:

ns

Starting at the «current cursor position, the specified number of
text lines are copied into the save buffer. The cursor position
and the text buffer contents are not affected. Each time a S(ave
is executed, the previous contents of the save buiffer are de-
stroyed. If the execution of a S(ave command would overflow the
"save buffer, the editor generates a warning message and does not
perform the S(ave.

The contents of the save buffer are accessed with the U(nsave
command.,

8.5.8.1 U(nsave

Format:

U

Starting at the current cursor position, the current contents of
the save buffer are inserted into the text buffer. The cursor is
left in front of the inserted text. If the text buffer does not
have enough room for the contents of the save buffer, the Editor
generates a warning message and and does not execute the U(nsave.,

The save buffer can be removed by typing the command "QOU",

8.5.8.2 M(acro

A macro is a single command that executes a user-defined command
string. Macros are created with the M(acro command. A macro can
invoke other macros (including itself recursively).

Format:
ni%<command string>%

«eo Where m is an integer between 0 and 9 which 1is wused to
specify the macro definition. The default macro number is 1. ' The
command string delimiter ("%" in the exanmple above) is always the
first character following the "u". The delimiter may be any
character that does not appear in the macroc command string itself,
The second occurrence of the delimiter terminates the nmacro
definition.

All characters except the delimiter are 1legal command string
characters, including a single <esc>., All commands are legal in
the command string.

If an error occurs when defining a macro, the following error

‘g
)
Q
(0]
8]
(&)}
—

PDQ-2 System Reference lanual

message 1s generated:
Error in macro definition.
The macro will have to be redefined.
Example of a macro definition:
*4MYFPREFACES=CEND PREFACESVSS3SS
This examnple defines macro number 4. When macro 4 is executed
(using the "N" command), the editor looks for the string "PREFACE",
changes it to "END PREFACE", and displays the change.

NOTE - A maximum of 10 macros may exist at one time.

8.5.8.3 N (Execute Macro)

Format:
nim$

Executes the specified macro definition. "m"™ is the macro number
(between 0 and 9 that identifies the macro; its default value is
1. Because m actually represents a text string of commands, the N
command must be terminated by <esc> (echoed as §).

Attempts to execute undefined macros generate the followving error
message:

Unhappy macnum.
Errors encountered during macro execution generate:

Error in macro.

8.5.8.4 2 (Display Info)

Format:

?

Prints a list of all commands, the current size of the text buffer

and save buffer, the numbers of the currently defined macros, and
the amount of memory available for expansion of the text buffer.

(N)

11
[(s]
1)
[9]
()
(]

Utilities

8.5.9 Command Summary

o
52 e

3 3
OO Ow
e 9 o0 o0 e oo

30

(o]
)

nJ:
nk:

nkL:
miMs
nNm
nO:

n - integer argument m - macro number

Display command list and file information.
Advance the cursor to the beginning of the

n'th line from the current position.

Go to the Beginning of the file.

Change by deleting n characters and inserting

the following text., Terminate text with <esc>,
Delete n characters.

Erase the screen.

Find the n'th occurrence from the current cursor.
position of the following string. Terminate
target string with <esc>,

Insert the following text. Terminate text

with <esc>,

Jump cursor n characters.

Xill n lines of text from the current cursor
position.

List n lines of text. -

Define macro number m,

Perform macro m, n times.

On, off toggle. 1If on, n lines of text will be
displayed above and below the cursor each time
the cursor is moved. If the cursor is in the
middle of a line then the line will be split into
two parts. The default is whatever fills the screen.,
Type O to turn off.

Quit this session, followed by:

U: (pdate Write out a new SYSTELN,WRK.TEXT
E: (scape Escape from session
R: (eturn Return to editor

Read file into buffer starting at cursor;

format is: R<file name><esc>,

WARNING: If the file will not fit into the

buffer, the buffer contents become undefined!

Put the next n lines of text from the cursor

position into the Save Buffer,.

Insert (Unsave) the contents of the Save Buffer into the
text at the cursor; does not destroy the Save Buffer.
Verify: display the current line.

Write file (from start of buffer);

format is: W<file name><esc>.

Delete n lines of text, and insert the following text;
terminate with <esc>.

g
V3]
Q
1]
9]
(93
(@8)

PDQ-3 System Reference lianual

8.6 Byte—=level File Editor

The Patch utility is used to view and alter the contents of a disk
file. Patch operates in either Edit mode or Dump node. In Edit
mode, files are addressed as a series of 512-byte blocks; the
contents of each block may be displayed on the console either in
hex format or as a mixture of hex and ASCII characters. The
contents of a displayed block may be modified by moving the cursor
to the desired position, entering the new data, and writing the
modified block back to disk. In Dunp mode, Patch creates a
byte-level hard copy from either memory or a specified input file.
The hard copy output may appear in any of several formats: decimal,
hexadecimal, ASCII characters (if printable), decimal bytes and
octal bytes. Patch can examine and mnmodify text and code file
information; because it is a low=level utility, it is generally
avoided by users who are not extremely curious or desperate.

8.6.0 Using Pakch

X(ecute Patch. Patch is in Edit mode when first entered. The
following prompt line appears:

EDIT: G(et, R(ead, S(ave, T(ype, F(or, B(ack, !i(ode,
: V(iew, Q(uit,? [1.0]

Typing '?' displays the remaining commands:
EDIT: D(ump, I(nfo, ?

Typing '?' again returns to the original prompt line.

g
[%]
s}
()
[3]
(A}
>

Utilities

8.6.]1 Edit Mode

The Edit commands are G(et, R(ead, F(or, Black, H(ocde, V(iew,
T(ype, I(nfo, S(ave, and Q(uit. Edit commands operate only on the
current block shown in the display buffer. The D(ump command
enters Dump mode.

8.6.1.0 G(et

G(et allows the specification of an input file <for Patch to
examine. It generates the prompt:

FILENAME: <c/r for Unit I/0>

Enter the name of the file to be edited. Patch expects complete
file names; suffixes are required. Specifying a disk file 1limits
Patch to the blocks occupied by the file. Blocks are referenced by
relative block number (e.g. first block in the file is block 0).

Typing <return> generates this prompt:
Unitnumber: 0 .. 255 ([RET] quits)

Typing <return> exits the prompt. Type the number corresponding to
the wunit containing the volume to be examined. Specifying a disk
unit allows Patch to access all blocks on the mounted disk. Blocks
are referenced by absolute block number (e.g. the first block on
the disk is block 0). Block zero is automatically read into the
display buffer. Block numbers are irrelevant when accessing serial
units.

8.6.1.1 R(ead

R(ead is used to load a specified block from the current input file
into the display buffer. R(ead generates the prompt:

Blocknumber:
Enter a nonegative block number,
8.6.1.2 E(or and B(ack
F(orward and B(ackward change the current block in the display
buffer. F(orward displays the next block from the £file, and
B(ackward displays the preceding block.

8.6.1.3 M(ode

"(ode toggles the display format between hexadecimal digits and
characters if printable (hex otherwise).

8.6.1.4 V(iew
V(iew refreshes the current display buffer.

8.6.1.35 T(ype

Page 265

PDQ-3 System Reference ilanual

T(ype allows alteration of the display buifer. T(ype dgenerates the
promptline:

TYPE: Cthar, H(ex, F(ill, U(p, D(own, L(eft, R(ight,
: <vector arrows>, Quit

U(p, D(own, L(eft and R(ight are vector keys which change the
cursor position. U(p moves the cursor up one row; D(own moves the
cursor down one row; L(eft moves the cursor left one column; R(ight
moves the cursor right one column., <Vector arrows> are the keys
used in the screen editor to move the cursor; they also work in
T(ype.

C(har, H(ex and F(ill are used to alter the display buffer. All
alterations begin at the current cursor position. The cursor
should be moved to the desired change site before C(har, H(ex or
F(ill are invoked.

C(har is used to enter printable characters into the display
buffer. The following prompt appears:

CHARACTERS: <printable characters>, <ETX> quits

Starting at the current cursor position, type ASCII characters
(only printable characters are accepted) to exchange them with the
current contents of the display buffer. Type <ETX> to exit C(har.

H(ex is used to enter hexadecimal digits into the display buffer.
The following prompt appears:

HEXADECIMAL : 0 .. 9, A .. F, a .. £, <ETX> quits

Starting at the current- cursor position, type hex digits to
exchange them with the current contents of the display buffer.-
Type <ETX> to exit H(ex. Only hex digits (upper or lower case) are
accepted.

F(ill is used to set a series of bytes to the same value. The
following prompt appears:

Number of bytes:

Type <return> to exit F(ill. Otherwise, enter z number between 0
and 511 (depending on the «current cursor position). The next
prompt is:

What Pattern : :
Valid Format : C<printable char> or H<hexdigit> <hexdigit>
<Return> exits F(ill., A valid format consists of a prefix denoting
whether the format is char or hex, and then the actual pattern
which will £fill the bytes (i.e. 'C' or 'c' followed by one
character or 'lI' or 'h' followed by two hexadecimal digits).

Q(uit exits T(ype.

Naen NTF7

Utilities

8.6.1.6 I(nfo

I(nfo displays the current status of Edit mode, giving the
following information:

File: <input file>

Length: <# of blocks in file>

Current: <current block in display buffer>
Byte 0: <byte sex of machine>

Open: <is there an input file? true/false>

Unit I/C: <reading from a unit? true/false>
Unitnumber: <what unit? (-1 if none)>

8.6.1.7 S(ave
Any alterations performed using T(ype affect only the display

buffer., S(ave writes the contents of the buffer to the current
file. If an altered block is not S(aved, the alterations are lost.

8.6.1.8 OCuit
Q(uit exits Patch.

Noren 2757

PDQ-3 System Reference lianual

8.6.2 Dump Mode

Dump mode is used to generate hard copies of given input <£files 1in
selected radix formats. Dump mode is entered from Edit mode by
using the D(ump command. Yhen Dump mode is entered, the following
prompt appears:

Dump: D(o, Q(uit
D(o performs the dump. Q(uit exits Dump mode.

Following the prompt 1line is the selection menu. To alter a
particular item, type the letter preceding that item. <Return>
exits any prompt without changing the current value except for
prompts with boolean responses, A 'T' or 'F' response must be
entered to exit these prompts.

8.6.2.0 I/0Q Selection

Dumping is allowed from either memory or an input file. The input
file selection appears as follows:

A) Input file
B) Starting Block 0
C) Number of Blocks 1

'A' generates the prompt:
FILENAME : <c/r for Unit I/0>

Enter the name of the file to be dumped. Patch expects complete
file names; suffixes are required. :

Typing <return> generates this prompt:
| Unitnumber: 0 .. 255 ([RET] quits)

Typing <return> exits the prompt. Type the number corresponding to
the volume whose blocks are to be dumped.

'B' prompts for the starting block in the input file. 'C' prompts
for the number of blocks to be dumped.

The memory dump selection is as follows:

E) Read from liemory False
F) Starting Word 0
G) Number of Bytes 0

'E' allows a dump from memory. If 'E' is true, the dump will be
from memory, overriding any input file entered in ‘A'. 'F' prompts
for the starting word in memory. Signed integers are displayed
when the address exceeds 32767. 'G' prompts £for' a non-negative
number of bytes to be dumped from memory.

Utilities

The output file selection is as follows:

H) Cutput File
I) width in Words 15

'H' generates the prompt:
Filename:
Enter the name of the file to be dumped on.
'I' prompts for the size of the output line in 8 character fields.

Fifteen generates a 132 column output; eight generates an 80 column
output.

8.6.2.1 Radix Format Selection

The dump may contain any or all of the radix formats displayed
below. The format selection appears as follows:

, . Flip Both
J) Decimal False _ False False
K) Hexadecimal False False False
L) Characters False False False
11) Octal False False False
N) Decimal Bytes False False False
0) Octal Bytes False False False

Choose the letter preceding the desired format. The £first column
indicates whether or not that radix is to be displayed. The last
two columns determine display format. 'True' in the second column
means that the bytes for that radix will be flipped before being
dumped. 'True' in the last column yields an output of both f£lipped

and nonflipped bytes, thus overriding the value in the second
column,

A further choice of format is provided for inter-line spacing. The
choice of output spacing is as follows:

S) Space between Lines False
T) Space between Groups False

'S' prompts £for single spacing between lines. 'T' prompts for
spacing between output groups (i.e. blocks or 512 byte sections).

o]
W
[Ce]
D
39}
o
(%]

PDQ-3 System Reference ilanual

8.7 Printer Spooler

The Printer utility starts the printer spooler, which writes texz
files to an I/C device concurrently with normal system operation.
The spooler may be configured to allow users to edit, compile, and
run programs while text files are being printed on the line
printer. The printer spooler is a background task that executes
while the system 1is suspended (e.g. waiting at a prompt line).
Printer is described in section 8.7.0.

8.7.0 Using Printer
X(ecute Printer. The following prompt appears:
What is the output unit (1,<online units>)?

«es Where <online units> is a list of unit numbers for &ll online
serial output units (1 is the console unit). Typing <return> exits

Printer; typing a number designates the corresponding unit as the
output unit.

The next prompt is:
File to print ?
File names in Printer have the following form:

[\l<filename>

A "\" preceding the £file name indicates that the file is to be
printed without page breaks; otherwise, all files are paginated (at
60 lines per page followed by 6 blank lines).

Printer allows the specification of file names by wildcard. A
wildcard may appear an arbitrary number of times anywhere in the
file name. The wildcards are:

match any string

match any single character

{a-m} match any single character 'a' through 'm'

{a"m, g"j' \{-\}' z}

match any single character 'a' through 'm',
not including 'g' through 'j', and
including '{' through '}' and z

LAV

The ".TEXT" suffix is appended automatically unless a '.' appears
at the end of the file name (which is stripped).

Up to ten files may be queued for printing; the £file name prompt
reappears after each file name 1is entered. Typing <return>
indicates that no more files are to be queued for printing; Printer
then terminates and begins to print the files.

]
9]
.
0N
58]
~}
(@

Utilities

NOTE - Printer has the following restrictions:

A) Files queued for printing mnust not be modified, moved, or
removed until they are finished printing; the same restric-
tions apply to the disk volumes containing them. Be wary of
{(runch. The best way to avoid problems of this nature is to
mgve files to an unused online disk volume before printing
them. '

B) The output device used by the spooler should not be accessed
by the system until the spooler is finished.

The Spooler unit, SpoolUnit, is bound into the Printer program.
The Spooler is activated when the Printer program is X(ecuted and
terminated when the *Printer program 1is complete, With this
configuration, no other programs may be executed until the Spooler
has finished printing all files.

A copy of the Spooler unit is also provided in System.Library. By
using the Library program to transfer SpoolUnit into the intrinsics
library and rebooting, the Spooler may print files independently of
program execution. This allows concurrent printing and system use
(see section 2.2.4.1 for details).

Page 271

PDQ-3 System Reference ilanual

8.8 Calculator

The Calc utility simulates a desktop calculator.

8.8.0 Using Calc
X (ecute Calc. The following prompt appears:
=->

Calc expects a one-line expression in algebraic form as a response.
Up to 25 different variables are available, Variable names are
significant only to eight case-insensitive characters. Variables
having a value may be used as constants. Two predefined variables
are PI (3.141593) and E (2.718282),

The remainder operator (specified by the dyadic operztor "\")
rounds its result to an integer.

WARNING - Because the remainder operator is based on Pascal's !OD
operator, it should not be used with negative arguments.,

Arguments of the factorial function (form: FAC(x)) are rounded to
integer values; all arguments X : (0 <= X <=. 33) cause the
expression to be rejected.

The uparrow is used for exponentiation (form: x"y). The result is
calculated using the formula: e ° y 1ln (X); operands must be
positive or the expression is rejected.

The predefined variable LASTX is always assigned the value of the
previous correct expression,

Arguments of the trigonometric functions are expected to be in
radians. Degree-to-radian conversion is accomplished with the
formula: RADANGLE = (PI/180) * DEGANGLE.

Calc generates an execution error if an overflow or underflow
occurs. If this happens, all user-assigned variables and their
values are lost. .

Typing <return> in response to a prompt exits Calc.

Example

->

->

Utilities

of a Calc session:

PI

3.14159
E

2.71828
A = (FAC(3)/2)

3.00000
3+ 6

9.00000
A+ 6

9,.,00000
{return>

PDQ-3 System Reference llanual

8.9 Bootstrap Creation

The Make.Boot utility allows users to bootstrap the A0S on a
user-supplied device. The Make.Boot utility creates an AOS boot-
strap by combining the bootstrap core and serial driver with a
user-supplied system device driver (see section 6.2 of the Program-
mer's Manual for details). A copy of the new bootstrap may Dbe
placed on the new device, or it may placed in a disk file which may

be subsequently transferred to the bootstrap device using the
Booter utility described in section 8.0.0.

The bootstrap resides on track 0 of the bootstrap device. The
system monitor (chapter 7) must be equipped with drivers capable of
reading track 0 of the bootstrap device in order to bootstrap the
AOS. 1If this is not already the <case, the new device may be
bootstrapped by writing the new bootstrap on track 0 of some device
already accessible to the system monitor (i.e. a floppy) and
attempting to bootstrap the floppy. The system monitor reads and
executes the new bootstrap, which then proceeds to boot from the
new device. The factory may be consulted regarding the production
of system monitor proms capable of booting directly from the new
device.

Logical unit 0 of the bootstrap device must contain a Pascal floppy
with the SYSTEM.PASCAL, SYSTEM.!MISCINFO, SYSTEM.INTRINS, SYSTEN
.SHELL, SYSTEM.DRVINFO, and SYSTEM.DRIVERS files. The SYSTEHM
.DRIVERS and SYSTEii.DRVINFO files must be configured to access the
new device (see section 2.3.1).

8.9.0 Using Make.Boot
X (ecute Make.Boot. The following prompt appears:

What is the name of the bootstrap file ?
Enter the name of the file containing the bootstrap core (BOOT.CODE
on the AOS release disk); typing <return> aborts the program. If
the bootstrap file is found, the following prompt appears:

What file is unit SERIALDR in ?
Enter the name of the file containing the bootstrap serial driver
(EOOT.CODE on the A0S release disk); typing <return> aborts the
program. If the file is found, the following prompt appears:

That is the actual unit name ?

Typing <return> specifies the default bootstrap serial driver name,
SERIALDR; otherwise a new bootstrap serial driver name may be
entered. If the bootstrap serial driver is found in the specified
driver code file, the following prompt appears:

What file is unit FLOPPYDR in ?

Enter the name of the file containing the user-supplied system

Utilities

device driver; typing <return> aborts the program. If the file is
found, the following prompt appears:

tThat is the actual unit name ?

The name of the user-supplied system device driver may be entered;
typing <return> specifies the default bootstrap disk driver name,
FLOPPYDR. If the disk driver unit is found in the specified driver
code file, the following prompt appears:

The booter contains 3 segments and occupies <size> words.
Unit to write (0 for file) ?

Enter the physical unit number of the bootstrap device; 0 indicates
that the bootstrap should be written to a data file. 1If a physical
unit number is entered, the following prompt appears:

Drive number ?

Enter the drive number used by the device's hardware contreller to
access the bootstrap device.

If the bootstrap is to be written to a data £file instead, the
following prompt appears:

Cutput file name ?

Enter the name of the data file to which the bootstrap is to be
written; <return> aborts the program.

The Make.Boot utility attempts to write the bootstrap to the
designated destination. If it is unsuccessful, it prints an error
message and aborts; otherwise, it terminates normally.

NOTE - If the new bootstrap occupies more than 1664 words, a
diagnostic message 1is printed and Ilake.Boot aborts before the
bootstrap is written., Since the bootstrap core uses only the
device initialization and read routines, rocutines not related to
these functions need not be compiled into the version of the device
driver wused by the bootstrap. The conditional compilation mechan-
isms presented in the Programmer's llanual are suggested as a way of
commenting these sections out.

PDQ-32 System Reference iianual

Appendices

APPENDIX A: STANDARD I/O RESULTS

VONOUMWNDHO

No error

Bad Block, Parity error (CRC)

Bad Unit Number

Bad llode, Illegal operation

Undefined hardware error

Lost unit, Unit is no longer on-line

Lost file, File is no longer in directory
Bad Title, Illegal file name

Mo room, insufficient space

No unit, No such volume on line

Mo £ile, No such file on volunme

Duplicate file

Not closed, attempt to open an open file

Not open, attempt to access a closed file
Bad format, error in reading real or integer
Ring buffer overflow

Write Protect; attempted write to protected disk
Illegal block number

Illegal buffer address

PDQ-2 System Reference iianual

V]

[
Y

Appendices

APPENDIX B: STANDARD EXECUTION ERRORS

0 System error

1 Invalid index, value out of range
2 No segment, bad code file

3 Exit from uncalled procedure

4 Stack overflow

5 Integer overflow

6 Divide by zero

7 Invalid memory reference <bus timed out>
8 User Break

9 System I/0 error

10 User I/C error

11 Unimplemented instruction

12 Floating Point math error

13 String too long

14 Illegal heap operation

PDQ-3 System Reference ilanual

Page 28C

Appendices

APPENDIX C: STANDARD I/OQ UNIT ASSIGNMENTS

This section describes the devices normally assigned to the
system's physical unit numbers. The mapping between unit numbers
and operating devices may be changed by the user. 1In addition,
unallocated unit numbers may be assigned to new devices. See
section 2.3.1 for details. See the Hardware User's lianual for
details on the devices listed below., Physical units are described
in section 2.1.2. The Programmer's Manual describes Unit I/C
operations. :

Unit Number PDQ-3 Device Assignment

0 System Clock

1 Console port (echo)

2 Console port (no echo)

3 Reyboard type-ahead buffer

4 Floppy Drive 0

5 Floppy Drive 1

6 LPV-1l1 (FFAO hex) parallel printer
7 DLV-11J (FFB8 hex) Port 3 Input
8 DLV-11J (FFB8 hex) Port 3 Output
9 Hard Disk Drive 0

10 Hard Disk Drive 1

11 Hard Disk Drive 2

12 Hard Disk Drive 3

13 DLV-11J (FEAO hex) Port 0 Input
14 DLV-11J (FEAO hex) Port 0 OQutput
15 DLV~11J (FEA4 hex) Port 1 Input
16 DLV-11J (FEA4 hex) Port 1 Output
17 DLV~-11J (FEA8 hex) Port 2 Input
18 DLV-11J (FEAZ hex) Port 2 Output
19 DLV-11J (FFB8 hex) Port 3 Input
20 DLV-11J (FFB8 hex) Port 3 Output
21 Fast Console Port Ouput

22 Standard Input

23 Standard Output

24 Bit Bucket

25 Hard Disk Drive 4

26 Hard Disk Drive 5

27 Hard Disk Drive 6

23 Hard Disk Drive 7

29 Hard Disk Drive 8

NOTE - Hex numbers displayed with I/C device names indicate the
memory address used to communicate with the device.

vJ
4]
Q0
14
[}
(@]
-

PDQ-3 System Reference ilanual

Appendices

APPENDIX D: COMPILER SYNTAX ERRORS

l: Error in simple type
2: Identifier expected
3: 'PROGRAM' expected
4: ')' expected
5: ':' expected
6: Illegal symbol (maybe missing ';' on the line above)
7: Error in parameter list
8: 'OF' expected
9: '(' expected
10: Error in type
11: '[' expected
12: ']' expected
13: 'END' expected
14: ':' expected
15: 1Integer expected
16: '=' expected
17: 'BEGIN' expected
18: Error in declaration part

19: error in <field-list>

20: ',' expected
21: '.' expected

22: '"INTERFACE' expected
23: 'INPLEMENTATION' expected
24: 'UNIT' expected

50: Error in constant

51: ':=' expected

52: 'THEN' expected

53: 'UNTIL' expected

54: 'DO' expected

55: 'TO' or 'DOWNTO' expected in for statement
56: 'IF' expected

57: 'FILE' expected

58: Error in <factor> (bad expression)
59: Error in variable

60: HMust be semaphore

61l: IHust be processid

101: Identifier declared twice

102: Low bound exceeds high bound

103: Identifier is not of the appropriate class
104: Undeclared identifier

105: sign not allowed

105: HNumber expected

107: Incompatible subrange types

108: File not allowed here

109: Type nust not be real

110: <tagfield> type must be scalar or subrange
111: Incompatible with <tagfield> part

112: 1Index type must not be real

113: Index type must be a scalar or a subrange

114: Base type must not be real

PDQ-3 System Reference !lanual

Base type must be a scalar or a subrange
Error in type of standard procedure parameter
Unsatisified forward reference

Forward reference type identifier in variable declarztion
Re-specified params not OK for a forward declared prccedure
Function result type nust be scalar, subrange or pointer

File value parameter not allowed

Forward declared function result type can't be re-specified

lMissing result type in function declaration
F-format for reals only
Error in type of standard procedure parameter

Number of parameters does not agree with declaration

Illegal parameter substitution

Result type does not agree with declaration
Type conflict of operands

Expression is not of set type

Tests on equality allowed only

Strict inclusion not allowed

File comparison not allowed

Illegal type of operand(s)

Type of operand must be boolean

Set element type must be scalar or subrange
Set element types must be compatible

Type of variable is not array

Index type is not compatible with the declaration
Type of variable is not record

Type of variable must be file or pointer
Illegal parameter solution

Illegal type of loop control variable
Illegal type of expression

Type conflict

Assignment of files not allowed

Label type incompatible with selecting expression
Subrange bounds must be scalar

Index type must be integer

Assignment to standard function is not allowed
Assignment to formal function is not allowed
No such field in this record

Type error in read

Actual parameter must be a variable

Control variable cannot be formal or non-local
Multidefined case label

Too many cases in case statement

No such variant in this record

Real or string tagfields not allowed
Previous declaration was not forward

Again forward declared

Parameter size must be constant

Missing variant in declaration

Substition of standard proc/func not allowed
flultidefined label

Multideclared label

Undeclared label

Undefined label

Error in base set

Value parameter expected

o

Appendices

171: Standard file was re-declared

172: Undeclared exterral file

173: Fortran procedure or function expected!

174: Pascal function or procedure expected

175: .Semaphore value parameter not allowed

182: Nested units not allowed

183: External declaration not allowed at this nesting level
184: External declaration not allowed in interface section
185: Segment declaration not allowed in unit

186: Labels not allowed in interface section

187: Attempt to open library unsuccessful

188: Unit not declared in previous uses declaration

139: 'USES' not allowed at this nesting level

1906: Unit not in library

191: ©No private files

192: 'USES' must be in interface section

193: Not enough room for this operation

194: Comment must appear at top of program

195: Unit not importable

196: 'USES LONGINT' required

201: Error in real number - digit expected

202: String constant must not exceed source line
203: Integer constant exceeds range

204: 8 or 9 in octal number

250: Too many scopes of nested identifiers

251: Too many nested procedures or functions

252: Too many forward references of procedure entries
253: Procedure too long

254: Too many long constants in this procedure

256: Too many external references

257: Too many externals

258: Too many local files

259: Expression too complicated

300: Division by zero

301: No case provided for this value

302: 1Index expression out of bounds

303: Value to be assigned is out of bounds
304: Element expression out of range

398: Implementation restriction

399: Implementation restriction

400: 1Illegal character in text

401: Unexpected end of input

402: Error in writing code file, not enough roomn
403: Error in reading include file

404: Error in writing list file, not enough room
405: Call not allowed in separate procedure

406: 1Include file not legal

407: disk error

4C08: compiler error

PDQ-2 System Reference ilianual

Darm~aA YOF7

APPENDIX Ez: ASCII CHARACTER SET

WoOoNNOAUMsBWNNDHFHO

e
DO

(s
> W

15

000
col
002
003
004
005
006
007
010
011
012
013
014
015
016
017
020
021
022
023
024
025
026
027
030
031
032
033
034
035
036
307

NUL
SOH
STX
ETX
EOT
EN
ACK
BEL
BS
HT
LF
vT
FF
CR
SO
SI
DLE
DC1
DC2
DC3
DC4
NAK
SYN
ETB
CAN
Ei
SUB
EsSC
FS
GS
RS
Us

Appendices

040
040
042
043
044
045
046
047
050
051
052
053
054
055
056
057
060
061
062
063
064
064
066
067
070
071
072
073
074
075
076
077

T = A

SP

4 kR~ = 00 03k

[

WYV L AS e OONOVUMTRWNEON.

AN

100
101
102
103
104
195
106
107
110
111
112
113
114
115
116
117
120
121
122
123
124
125
126
127
130
131
132
133
134
135
136
137

Y= S R KECCHNIOYWOZHPNUHIIOMEBUOW >

S6

e7

28

99
100
101
102
103
104
105
106
107
108
10¢
110
111

‘112

113
114
115
116
117
11¢
119
120
121
122
123
124
125
126
127

140
141
142
143
144
145
146
147
15¢
151
152
153
154
155
156
157
160
161
162
163
164
165
166
167
170
171
172
173
174
175
176
177

4

I =N X ELC U NRQUODH AU DOU MO LLOTM

DEL

PDQ=3 System Reference !lanual

o)
o
2
®
[
[}
(<]

Appendices

APPENDIX F: TERMINAL CONFIGURATIONS

The terminal configuration £or a given terminal consists of the
screen and keyboarcd definitions used by the system utilities and
the Advanced System Editor. The terminal configuration used by the
system utilities is specified using the Setup utility documented in
section €.3.1l. The terminal configuration used by the Advanced
System Editor is specified using the ASS wutility documented in
section 8.3.2. The SYSTEN.STARTUP program on the A0S release disk
attempts to create a work disk containing the <correct terminal
configuration for the system terminal. The procedures described
above should only be necessary if the system terminal 1is one for
which no configuration has been provided.

Terminal configurations for the LSI ADii-3A, Soroc IQ-120, Zenith
Zz-19, and the DEC VT-100 are presented belcw,

HOTE - In the Advanced System Editor configuration 1listings,
control character values are parenthesized. The ASCII chart given
in Appendix E is useful in interpreting these values.

vJ
fal]
)
[P
[9]
(0]
[Xp)

PDQ-2 System Reference lianual

rg
]
(]
(&}

&
€
[{)]

Appendices

APPENDIX Fl: ADM 3-A TERMINAL

Eields Values
BACKSPACE CHAR Cntrl-0
BACKSPACE CHAR PREFIXED False
BACKSPACE KEY BS (Cntrl-H)
BACILSPACE KEY PREFIXED False
CURSOR DOWHI KEY Down=-arrcw
CURSOR DOWN KEY PREFIXED - False
CURSOR HOME CHAR Cntrl-"
CURSOR HOIMIE CHAR PREFIXED False
CURSOR LEFT KEY Left-arrow (Cntrl-H)
CURSOR LEFT KEY PREFIXED False
CURSOR RIGHT CHAR Cntrl-L
CURSOR RIGHT CHAR PREFIXED False

- CURSOR RIGHT KEY Right-arrcw (Cntrl-L)
CURSOR RIGHT KEY PREFIXED False
CURSOR UP CHAR Cntrl-K
CURSOR UP CHAR PREFIXED False
CURSOR UP KEY Up-arrow (Cntrl-K)
CURSOR UP KEY PREFIXED False
DELETE CHAR KEY Left-arrow (Cntrl-H)
DELETE CHAR KEY PREFIXED False
DELETE LINE KEY DEL
DELETE LINE KEY PREFIXED False
EDITOR ACCEPT KEY Cntri-C
EDITOR ACCEPT KEY PREFIXED ’ False
EDITOR ESCAPE KEY ESC
EDITOR ESCAPE KEY PREFIXED False
ENMD FILE KEY Cntrl-C
WD FILE KEY PREFIXED False
ERASE LINE CHAR NUL
ERASE LINE CHAR PREFIXED False
ERASE SCREEN CHAR Cntrl-2
ERASE SCREEN CHAR PREFIXED False
ERASE TO END OF LINE CHAR 1IUL
ERASE TO END OF LINE CHAR PREFIXED False
ERASE TO END OF SCREEN CHAR NUL
ERASE TO END OF SCREEN CHAR PREFIXED False
LOWER CASE 4 True
RANDO!1 CURSOR ADDRESSING True
SLOW TERIIINAL False
LEAD IN FROM XEYBOARD NUL
LEAD IN TO SCREEN NUL
NOMN=-PRINTING CHAR non
HOM-PRINTING CHAR PREFIXED False
SCREEN HEIGHT 24
SCREEN WIDTH 80
VERTICAL IHOVE DELAY 5

Dermra 207

PDQ-3 System Reference lanual

Advanced System
ann:ﬁijEd vexs

;xgs.t.ims Eeys
"5 !
n2n ?
Del (127)
BackSpace (3)
Beginline B and b
Delete D and d
Digit 9
Digit 7
Digit 5
Digit 3
Digit 1
Down=arrow (10)
Equal =
Home (30)
Right-arrow (12)
eXchange X and x
GetAgain G
Getch g
Jump J and j
LineEnd L and 1
Next N and n
Page P and p
Replace R andr
Set S and s
Space (32)
Todisgk T and t
UpTop U and u
Worcdllove (23)
Zap Z and z
Delete (27) D and
Escape (27) (27)
Left-arrow (27) L and
RecorcdKey (27) R and
Find (27) P and
Getch (27) g
£2 (27) 2
£ (27) 4
£6 (27) 6
£8 (27) &

The specified Gap is: 30000

v
fJ

Wl

[}
[
(&
[\

rhy = O

n>n
Columnl
Adjust
Beginline
Copy
DeleteCh
Digit
Digit
Digit
Digit
Digit
Edit

Etx
InsertCh
Up=arrow
Find
Getch
Insert
Kolumn
llargin
OppositePage
Quit
Return
Slash
Tab
UpTop
Verify
Wordlove

Eunctions
DirChange
Insert
CppositePage
Takeup
GetAgain

£1

r'e,zs

(5) .
A and
(2)

C and
(15)

3N > OV

E and
(3)

(11)

F and
(7)

I and
X and
M and
C and
Q and
(13)

(9)
(21)

V and
W7 and

(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)

N OH O D

rh

QO 8 K+

\7}

and
and
and
and

0 B

Appendices
APPENDIX F2: SOROC IQ-=120 TERMINAL

. Cerminal Confi 2t

E‘jg]g’s \Z’\i |”g§

BACKSPACE CHAR Cntrl-H

BACKSPACE CHAR PREFIXED False

BACKSPACE XEY Left-arrow (Cntrl-H)
BACKSPACE KEY PREFIXED False

CURSOR DOWMN KEY Down=-arrow (Cntrl-J)
CURSOR DOVIN KEY PREFIXED False

CURSOR HOHME CHAR Cntrl-"

CURSOR HOME CHAR PREFIXED False

CURSOR LEFT KEY Left-arrow (Cntrl-H)
CURSOR LEFT KEY PREFIXED False

CURSOR RIGHT CHAR Cntrl-L

CURSOR RIGHT CHAR PREFIXED False

CURSOR RIGHT KEY Right-arrow (Cntrl-L)
CURSOR RIGHT KEY PREFIXED False

CURSOR UP CHAR Cntrl-K

CURSOR UP CHAR PREFIXED False

CURSOR UP KEY Up-arrow (Cntrl-K)
CURSOR UP KEY PREFIXED False

DELETE CHAR KEY Left-arrcow (Cntrl-il
DELETE CHAR KEY PREFIXED False

DELETE LINE KEY RUB (DEL)

DELETE LINE KEY PREFIXED False

EDITOR ACCEPT KEY Cntrl~C

EDITOR ACCEPT XEY PREFIXED False

EDITOR ESCAPE KEY ESC

EDITOR ESCAPE KEY PREFIXED False

END FILE KEY Cntrl-C

END FILE KEY PREFIXED False

ERASE LINE CHAR IIUL

ERASE LINE CHAR PREFIXED True

ERASE SCREEWN CHAR ko

ERASE SCREEN CilAR PREFIXED True

ERASE TO END OF LINE CHAR T

ERASE TO END OF LINE CHAR PREFIXED True

ERASE TO EKRD OF SCREEN CHAR Y

ERASE TO END OF SCREEWN CHAR PREFIXED True

LOWER CASE True

RANDOIl CURSOR ADDRESSIING True

SLOW TERMIMNMAL False

LEAD IN FROIl KEYBOARD UL

LEAD IN TO SCREEN ESC

MOM=-PRINTING CHAR nn

ION=-PRINTING CHAR PREFIXE False

SCREEN HEIGHT 24

SCREEN WIDTH 80

VERTICAL HOVE DELAY 10

PDQ-3 System Reference lanual

paxs rre S
ll<ll ’ l'<l| <
n>u . ”)u >
i ? Columnl (5)
Del (127) Adjust A and a
BackSpace (8) Beginline (2)
Beginline B and b Copy C and ¢
Delete D and 4 - DeleteCh (15)
Digit 9 Digit e
Digit 7 Digit 6
Digit 5 Digit 4
Digit 3 Digit 2
Digit 1 Digit 0
Down=arrow (10) Edit E and e
Equal = Etx (3)
Home (30) - InsertCh (1)
Right-arrow (12) Up—-arrow (11)
eXchange X and x Find F and £
CetAgain G Getch (7)
Getch g Insert I and i
Jump J and j Kolumn : K and k
LineEnd L and 1 Margin M and m
Next N and n OppositePage 0 and o
Page P and p Quit Q and g
Replace R and r Return (13)
Set S and s Slash /
Space (32) Tab (%)
ToDisk T and t UpTop (21)
UpTop U and u Verify V ancg v
Wordllove - (23) Wordliove W and w
Zap Z and z

Prefixed Keys

Eunctions Beys Eunctions ¢
Delete (27) D and d DirChange (27) @ and h
Escape (27) (27) Insert (27) I and i
Left-arrow (27) L and 1 CppositePage (27) € and o
RecordKey - (27) R and r Takeup (27) T and t
Find (27) F and £ GetAgain (27) C
Getch (27) g £f1 (27) 1
£2 (27) 2 £3 (27) 3
£4 (27) 4 £5 (27) 5
£6 (27) 6 £7 (27) 7
£8 (27) 8

The specified Gap is: 3000C

Appendices

APPENDIX F3: ZENITH Z=19

System Zerminal Configuration

Fields
BACHKSPACE CHAR

BACKSP
BACKSP
BACKSP
CURSOR
CURSOR
CURSOR
CURSCR
CURSOR
CURSOR
CURSOR
CURSOR
CURSOCR
CURSOR
CURSOR
CURSOR
CURSOR
CURSOR
DELETE
DELETE
DELETE
DELETE
EDITOR
EDITOR
EDITOR
EDITOR
END FI
EID FI
ERASE

ERASE

ERASE

ERASE

ERASE

ERASE

ERASE

ERASE

LOWIER

ACE CHAR PREFIXED
ACE KEY
ACE KEY PREFIXED
DOWIl KEY
DOWN KEY PREFIXED
HOME CHAR
HOI!IE CHAR PREFIXED
LEFT KEY
LEFT KEY PREFIXED
RIGHT CHAR
RIGHT CHAR PREFIXED
RIGHT KEY
RIGHT KEY PREFIXED
UP CHAR
UP CHAR PREFIXED
UP KEY
UP KEY PREFIXED
CHAR KEY
CHAR KEY PREFIXED
LINE KEY
LINE XEY PREFIXED
ACCEPT KEY
ACCEPT KEY PREFIXED
ESCAPE KEY
ESCAPE KEY PREFIXED
LE KEY
LE KEY PREFIXED
LINE CHAR
LINE CHAR PREFIXED
SCREEN CHAR
SCREEN CHAR PREFIXED
TO END OF LIKE CHAR

TO EID OF LINE CHAR PREFIXED
TO END OF SCREEN CHAR
TO END OF SCREEN CHAR PREFIXED

CASE

RANDOII CURSOR ADDRESSING

SLOWT 7

ERIINAL

LEAD IN FROH KEYBOARD
LEAD IN TO SCREEN

IICH-PR
HCI=-PR
SCREENR
SCREER

INTING CHAR :
INTING CIAR PRLEFIXED
HEIGIT

WIDTH

VERTICAL I[IOVE DELAY

‘g
4]
O8]
m
(3]
e}

Values
Cntrl-H

False
Backspace (Cntrl-i)
False
Down-arrow (B)
True

H

True
Left=-arrow (D)
True

C

True

C

True

A

True

A

True
Backspace (Cntrl-5H)
False

Delete (DEL)
False
Linefeed (Cntrl-gJ)
False

ESC

False

Cntrl-C

False

1

True

E

True

K

True

J

True

True

True

False

ESC

ESC

n?n

False

24

80

0

PDQ-2

System Reference lianual

The specified Gap is: 30000

[9))

Uopprefixed Hevs

Functions Zeys £

n<n ’ n<n

ll>" N n>n

n2n ? Del
Adjust A and a BackSpace
Beginline (2) Beginline
Copy C and ¢ Delete
Digit 9 Digit
Digit 7 Digit
Digit 5 Digit
Digit 3 Digit
Digit 1 Digit
Down=-arrow (26) Edit
Equal = , Etx
eXchange X and x Find
GetAgain G Getch
Getch g Insert
Jump J and j Kolumn
LineEnd (12) LineEnd
Margin M and m Next
OppositePage O and o Page
Quit Q and g Replace
Return (13) Set
Slash / Space
Tab (9) ToDisk
Up=-arrow (1) UpTop
UpTop U and u Verify
WordMove (23) Wordllove
zap 2 and 2z

Keys i

Columnl (27) 1 Delete
DeleteCh (27) N DirChange
Down=-arrow (27) B Escape
OppositePage (27) 0 and o Find
GetAgain (27) G Getch
Home (27) H Insert
InsertLine (27) L InsertCh
Left-arrow (27) © RecorcdKey
Right-arrow (27) C Takeup
Up=-arrow (27) A £1

£2 (27) T £3

£4 (27) v £5
. £6 (27) 6 £7

£8 (27) R

:

C

~ 8

HONBAOOIL~~VA

~
-~

u
e}
o

and

v
o3
o

(10)

(7)

7
&

A3
1S

and

and
and
and
and
and
anad
and

(32)

T

and

(21)
V and

W

12

KEYS
(27)

(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)

and

e
vix

NGt ora o o

d

10N R olie BN ol ol rh

o

Appendices

APPENDIX F4: DEC VI=100

Systen Zerminal Configuration

Eields

BACKSPACE CHAR
BACKSPACE CHAR PREFIXED
BACKSPACE KEY

BACKSPACE KEY PREFIXED
CURSOR DOWN KEY

7

Cntrl-H

False

Backspace (Cntrl-H)
False

Down=-arrow (B)

CURSOR DOWN REY PREFIXED True
CURSOR HOME CHAR H
CURSCR HOINME CHAR PREFIXED True
CURSOR LEFT KEY Left-arrow (D)
CURSOR LEFT KEY PREFIXED True
CURSOR RIGHT CHAR C
CURSOR RIGHT CEAR PREFIXED True
CURSOR RIGIHT KEY C
CURSOR RIGHT KEY PREFIXED True
CURSOR UP CHAR A
CURSOR UP CHAR PREFIXED True
CURSOR UP KEY A
CURSOR UP KEY PREFIXED True

DELETE CHAR KEY

DELETE CHAR KEY PREFIXED
DELETE LINE KEY

DELETE LINE KEY PREFIXED
EDITOR ACCEPT KEY

EDITOR ACCEPT KEY PREFIXED

Backspace (Cntrl-ii)
False

Delete (DEL)

False

Linefeed (Cntrl-J)
False

EDITOR ESCAPE KEY ESC
EDITOR ESCAPE KEY PREFIXED False
END FILE KEY Cntrl-C
END FILE KEY PREFIXED False
ERASE LINE CHAR NUL
ERASE LINE CHAR PREFIXED False
ERASE SCREEN CHAR UL
ERASE SCREEN CHAR PREFIXED False
ERASE TO END OF LINE CHAR K
ERASE TO END OF LINE CHAR PREFIXED True
ERASE TO END OF SCREEN CHAR J

ERASE TO END OF SCREEN CHAR PREFIXED True

LOWER CASE True
RANDOIl CURSOR ADDRESSING True
SLOY TERMINAL False
LEAD IN FROI1 KEYBOARD ESC
LEAD IN TO SCREEN ESC
MOMN-PRINTING CHAR won
NOMI-PRINTING CHAR PREFIXED False
SCREENW HEIGHT 24
SCREEN WIDTH ce
VERTICAL [CVE DELAY 0

oy
3]
14
(6]
[P
L]
~1

PDQ-3 System Reference ilanual

The specified Gap is: 30000

Darn

°an

i E’e:zs ~ =]
n<u ’ ll<ll
ll>ll . li>!l
n2n ? Cel
Adjust A and a BackSpace
Beginline (2) Beginline
Copy C and ¢ Delete
Digit 9 Digit
Digit 7 Digit
Digit 5 Digit
Digit 3 Digit
Digit 1 Digit
Down=-arrow (26) Edit
Equal = Etx
eXchange X and x Find
GetAgain G Getch
Getch g Insert
Jump J and j Kolumn
LineEnd (12) LineEnd

. Margin 1 and m Next
OppositePage 0 and o Page
Quit - Q and g Replace
Return (13) Set
Slash / Space
Tab (9) ToDisk
Up-arrow (1) UpTop
UpTop U and u Verify
Wordlove (23) tJordiiove
Zap 2 and z

2refixed Keys

X Eunctions

Columnl (27) 1 Delete
DeleteCh (27) s DirChange
Down=-arrow (27) B Escape
Insert- (27) I InsertCh
OppositePage (27) ¢ and o Page
RecordKey (27) T and t Takeup
Find (27) F and £ GetAgain
Getch (27) g Home
Left-arrow (27) D Right-arrow
Up-arrow (27) A £1
£2 (27) ¢ £3
£4 (27) 4 £5
£6 (27) 6 £7
£3 (27) ¢

V4
(27)

I’e::n

(127)

(8)

ané o
and d

rrtoN~cEONOO O

and e
(10)

F and
(7)

I and
K and
L and
¥ and
P and
P and
S and
(32)

T and
(21)

V and v
W and w

(S B0 Bbe Bl Hh

o

bdd

(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)
(27)

NwnOSIOSRT D ~00

Appendices

9

bl

[\l
LD

D

PDQ-3 System Reference ilanual

g
5]
Le
[()
(V3]
o
(@)

$CURSOR ® 0 © 0 0 0 © O OO P OOV SO T OSSO O OO Sssee 0 115'116 ’119
$EQUAIJ ® 6 © 0 0 0 0 O 0 00O OO S S OO0 OSSOSO OSSO S lls'llg
$EXEC.TEXT ® ® 0 0 0 5900 9 G800 00 SO0 O OIS OISO EOS OO 29,194
$LAST ® © 0 0 0 00 0 90 00O 0O OO0 OO OSSOSO OSSN PSON PSS 115’116 '159
SLOG 0 5 0 ¢ 0 00050 00000 00O OO OS OO O OC OO OO CPCODS 117 '126'159
$PP\OFILE e ® 0 0000 000 00 000 009 S0 00 OE OO OSSO OSES 110'117
$SY}ITAX ® 0 0 0 000 0 OO OO OO OO OO OO NS OO OO ON OO 115 '117
sTAG ® ® & 9 00000000000 0 00O S O OSSO0 00 e e 117’150 ’163

.BAC!’\ ® 0 0 0O 0 0 0 00 OO OO O OO OO 0PSSO OO OSSP POS 27

OBAD ® 0 9 0 ¢ 0 0 00 OO0 O S0 O 00O OO OSSO OO OO OGS OSPE ODS 27

QCODE ® 0 0 9 0 O 0 OO OO O OO OO O P O OO S OO P OSSN PSS 27

.TEXT ® ® © 0 € O G 0 O O 0O O O P S PO O OO OO OO OO OO SO PSS 27

<accept> ® ® © 0O 0 0 OO 9 OO PP O OO O S OO O OO OO SOOI 6

<baCkspace> 9 0 060 0600 0000 00 00000 OO o s 0 6 ’135

<bs> .'.0.......‘..0.........."..0.‘... 6

<C011> ® © ® O 0 0 ¢ © O O 0P OO O OO O OO O OO OO O e e 0 105'148’174
<de1> ® 0 0 0 0 O OO OO O OO P OO S OO OO OSSO OO OSSOSO TSOODS 105'148
<DeleteCh> ® 0 O O O O O 09 O OO OV OO OO OO OT OSSOSO 174
<DirChange> ® O © O 0 506 009 O 0 0O O TSP OO OO OO 105’175

<do“]n> €0 00 00000000000 COBRPOIICEOIEPIPOPIOIEOEEOCEOTEEOETTSE 6'118,135
<e°f> ® 0 O 0 O 000 O 00O OO OO OO OSSO OSSOSO RS D 6'89

<esc> ® O 0 0 0 O 00O O S O OO OO OO PO OP OO O DS C®O SN PO PQOND 6'148

<escape> ® 9 O 0 0 0 @ OO OO O OO OO e SO OO OO S OO S O 6

<etx> 0 0 0O O 9 0O O QOO OO O OO O OO0 PO OO OGO OOSPOOITS 6

<GetAgain> ® ® O 0 O 00O 0 000 OO0 OO PO SO0 OO O OO e 105’136 '147
<h0me> ® 0 0 O 00 0O 0 09 OO OO P OV OO OO OO OO O OGBSO IS 105'118'135
<InsertCh> ¢ O © O O 00 0% 00O S OO O OO OB OO OSSO 174

<left> ® @ 0 O 0O 00 O OO OO OO OO OO OO OO OSSO SO OO OSDS 6'118,135
<record> 9 © 0 9O 0 0O OO O OO OO OO OO OO N P OO S O 105'129'136 ,lso
<return> ® O 6 0 0O 0 0 08 O O P OO PO OO O OO 0O SO S OO 135

<right> ® 0 0 @ 0 90O 000 OO OO SO OO OO OO OO O O e e 6'118'135
<space> @ 0 O 0 O OO O OO OO O OO SO OO OO O E OO O OO OO OO 6 '135

<tab> ® @ 00 © 9 O 00 OO0 OO O OO GO OO OO OO OO SO IPNO PSS 135

<t3KeUP> seeecescccsccccccasassssssesss 105,123,130,136,140,168
<up> ® ® O 0 0 O 00 OO O SO OGO OO OO S OO OO O OO OSSO 6'118'135
A(djust ® O 0 0 O 9O O 0909 T OO OO O OO SO S OO OO SPIOS 136,138

Accept Key @ O 0 0 0 5 0 0 O T O OO OO OO 0SS S OO e O 6

ALL.DRIVERS ® 0 O 0 5 0 00 O OO OO OO O OO OO OO OO e e 41

ANChOL cececcccccscovscccsncccccssaccses 142

APPPROCS Unit ® & 0 0 0 0 0O 00 OO0 OO OO Ot OO OO O 38
Architecture GUiGe eeecveocescccscccoses 1

ASE! ® ® O 0 9 O 0 O 0 PO O OO SO O OO OO OO0 O OSSOSO SO 124

ASS © 8 0 000000 000000000000 sOePOOPOOLOEETOSITEOSTDIOE 27'42,104,232'243
Auto Buffer ® 0 0O O 00 00 0 0 0O O O SO O OO OO S OO O PO 112'155’157
AutO‘ii‘;dent LR I IR R R N R R A R A A N A R I I S) 111,148,149,153,157
Available !HEMOLY eceeeccosccccsccsccccss 65

B(ad BlOCKS ecceveceocccccsocsonscssssssess 74,75,80
B(eginLine seseecseessesscesssesssesses 113,135,139
BACI{SPACE C;IAR ® ® O 0O O 0 00 0O OO O OO OO SO e e 00 238

Backspace eY esescccoscssscsscsscsnsecs 5,238

DACKUD seeecosescsccscssscsssscsscnssnses 09,209,211,213
Backup F1le eceeesosscsssssscsssccansases 106,113,114
Backus-Maur FOIM ecececcossccsccccscacsccce 2

Bad BlOCK ceeevccccccsscsccccsssnscscses 210,217

Bad BlOCKS ceeevscccccsesacsesscsscsssece 1D

PDQ-2 System Reference ilanual

Bad Prompt ® 6 0 0 0 OO G O OO OO OO OO O S OB OO PSSO 33
Bad.BIOCks ® O 0 O 0000 00 0000 0O S OO SO O e e e e 75'209'217
Beginner's Guide .cecescccccccssccccces 1 '
Binder ® 00 0 & 0 OO 05 O 5 OO OO 0PSO 9 C e O C OO GO 232'234'236
Block ® 0 0 08 09 0 OO OO DO SO S OO O ePE S CEOEOTOEST C® OO 18'25,29
Block ilumber ® O 9 0 06O 5O O 06 G0 5O O E O e OO E SO le
Block=structured DeviCe .ccococececceecse 10,18
Blocx‘strQCtured UnNit eeeecccececccocsoe 16119,21
BIOCK-structured VOlume ® ® 9 00 08 ¢ OO OO O SO 19'21

Bt‘]? ..'OO.....0.....;’.0...‘...0000..0.. 2

Booter ® 9 00 000 900 0O OO0 OO OO0 OO OO LEGC OO OO TES 209,210,274
Bootstrap LI Y B BK BN BN BE BN BN BN BN BN B BN BN BN NN BN BN BN BK BN BN OBY BN N BN J 210'274
Bootstrap Failure ® 6 © 0 €0 0 C 0 C OO OO OO 0O SO 47
BoOtStrapping ecceceecccccccccoscccecsees 36,42,43,45,204
BreaKPOint ® O 00 0 000000 " 9D OO OFCO®eOCQTPOESCC OO 40’43
BUCI{ET: ® 5 000 00000 OO0 OO OO OO OOECESOS OO CTEOS 54'55
Byte'level File Editor EEEEEEEEEEEEE YY) 264
Bytes-in'last—bIOCK eeoevv0cese0secscco 0 24'26
C(hange ® 0 9 090 80 0G0 G O 9O OO O OO O OO COEC OOV OOODS 74'76'237
C(ompile ® © O 00 & C O 9 OO0 0O S 9O G C OO OCETC O OPERCEOECTE 60’188
C(opy ...0....O;I0.0;...'....'..O.Q'.O.. 108'119'136,140
Clopy <specialkey> cceeececcceccceceses 130,140
C(pr B(Uffer LR K B BB K BN BN BN BN BN BN BN BE B BN X BN BN BN BN BN B BN) 140

C(opy F(rom file ® © 6 0 © 8 90 OO 00O OO OO OO G0 141

Calc ® O 009 00O C OO OO OCCOCHOOC OO0 OO0 OSSO IPIOSES 272

CALL @ © 060090 2OGCC OO GGG OGO OGO O OO EC OSSO COCE O 196

Case Insensitive HHode eceeecceccscccscccce 122,144'161
cHAI}] QUEUE SIZB ® © 00 09O OO GCEECOOSCEOEOIOECOEOS 238
Change Log ® 00O 009000 O OGO O OO OSSO OO OSODS 104'117 ’126’159
Change.Dir ©0e000ess000s000000css000s00 e 209'223
CIear Screen ® 00 990 O OO OO 6O O OO OO OO OO POCOETS 59
Code File ® © 0 00 ¢ 0 06 9SS O S OO OCC OO0 SO O OISO 24'25
Command Argument ® 006 0 © 020 0PSO S0 0o 0O 252
Command Character ceceececcsecoscssccccce 14911541167
Command File ® 99 0000 6O 0O OO O OO OC OO IGIOEESSOSES 193
Command File Interpreter .ceececccescose 3,667,193
Command [10de eeececococesocccoocccssssss 251
Command String e o0 0 .'. ® 00O OO0 000 00000 000 252
Compiler ©0 0000000000600 00060000C00OOCIDOPITD 3’28’35p48’49,50'60'58'115’187p
, 235,283
Copy Buffer ® 06 09 900 SO OO SO OSSO O OGEC O OO OOOOPS 120'142,148'175
Copydupdir ® 0 9 G © & O O 0O 0O O SO OC OO OO OSSO0 OGS 22'103 '224
Cursor ® 9 00 00 06 06O O OO OGO OC OO OO OSBGOSO OR OO0 106'112,135'14—2
CUP\SOR Do"zIT KBY ® ® 09 09000 G GGG QeCOQOCO SOOI ES - 2 3 9
CUP\SOP\ HO{IE CEIAR ® € 00 9 09 OO OO OO O S P O SO OO O 23 9
CUP\SOR LEFT KEY ®© € 6@ 600 600G OOOPIESES OGS OES 23 9
CUP\S OR RIG{IT CI{AR ® 5P © O OO 6 © 96O OO 0O OGO OIIEOOEO 23 9
CUP\SOR RIG HT E{EY ® @6 6 OC O 00 PG OO OO0 OO G OO 6O 23 9
CUP\SOR UP CHAR ® 0 C 000 00900 OSSO I OSSO E OO 239
CUP\SOR UP I(EY e © ® 0 0 O 0000 0O OGO OO OO OO P00 240
D(ate ® S 0 © 09 O OO C OO OO 9O PO OOV OO OO OEC SO COETS 74’77
D(elete o0;0000000000000ooo.pcoocoooooo 103,112,113,119,120,135'142
D(ISK UPDATE @ ® O 0 O 909 9 OO OO O OO PO O OO OIS 237
Data File © 92000000 0000000 s000POROIEDROEOCOIE 24'25
Data Prompt eccecececccecscsccecssccocssncs O
Date 9 @ G 0 0 09 O O 6O P O OO OO PO C O OO0 OO OO OO OO PPN OE 125’128’16‘:‘

- -
D2gme 207

DEC Format ® ® 8 0 6 00 0 00 ¢ 0O OO O s OGP SO O OO 0 8'213

DELETE CHARACTER KEY cececccccecccccsss 240

DELETE LII'E KEY ceeccveccccsscccscnsscece 240

Destination File .eeececcccccacccccesess 108

DeviCe DIriVer ceecececcccscscsscsccscsncnee 274

DireCtion @ 0600000000000 00000000000000 0 107,115,118,135,156’157

Disk DirecCtOrY eevececccsscsccscsscssess 21,22,103,223

DiSk Drive ® © 0 0 & O 0 8 ¢ OO OO PO S OO SO OO S POE S 16

Disk File ® © 0 0 0 0 O 5O 0O P O T S OO OSSOSO O N OYDS 21’22'24'71

DiSK swapping ® O ¢ O O OO0 OO OO O 9O OO O OO DPREP PO O 13

DiSk Type Key ® & 8 © 8 000000 OO OO OSSO OO O O 8'45

DiSk Unit @ ® 68 O 0 @ O O 0O 0O O O 0 OO OO OO SO OGS IO 16,21

DiSk VOlume ®© 00000 s000 000000000 CPOISIDLDOIEODS 21'71,92,93

Disk=to=Disk TranSfers cececcecccccecsses 92

Dismount ® 00 5 0 ¢ 0 & OO OO OO OO O OO OO OO PO SOE PSS 220

Double Density Floppy DisKk eeeececescess 8,45

Double=sided Floppy DiSK eeececcccescees 8,45,97,204

Drive Configuration seeececcecccccscscess 219

Drive.con ® ® @ 0 0 0 800 0 0 OO 90O OO OO OD OO OSSO 18’209'219

Drivers ® O © 0 O 9 9 OO OO OGS OO OO OO OO SO e OO 8OO 41

Drivers LibBrary eececececcececessccscess 40,41,43,274

Drvr.Info ® ® © 0 0 O 00 0 PO OO OO OO OO VOO POSOEOCO OO OODN 42

Dump ® ® ® 0 & © 0 0 O 00 O S OO OO O OO T PO OO OO O SO S 264

Duplicate DireCtOLY ecececsecoscsscsess 22,103,224

Dynamic Variable Allocation eseeeeecesese 35,40,43

E(dit 9 00000000000 OCEOQCECOEPNEGEOIIOEOIEOEURPNIRNOEOLEOTITTITOODN 61,108,114,137'143

E(XIT ® G 0 O O O 0000 00 OO G OO OO OO NSO OOO PP SESOS S TPSS 237

B(xt-dir ® 0 © O 0 0 60 00 0 0 0O S0 O OO OO O OE S OSGSDS 7‘}'78'100

Editor ..‘.....000.....‘O.............OC 3'26'37’42'48’49'61'190,240

EDITOR ACCBPT KBY ® 0 ¢ 0 O 00 000 O OO OO OO O S OOOPN 240

EDITOR ESCAPB I(EY ® @ 00600 0000 000 00 00O O o0 240

END FILE KEY ® 0 9 0 0 0 08 00 0O GO OO O OO OB SO BSGPOECN 240

End °f File {<ey ® & & 00 00 00 08 00000 0O OO e S 6

Environment @ ® 0 0 0 0O OO OO O OO O PO PO OO PP OO OO 106'110’164

EQU ceccecccoscceconsccoscoscsscscscnssssecs 196 .

EQUAlS tecevecccconsccscccnscccnnsscesss 116,118,135,140,142,144,143,161,
176

ERASE LIIJE CEIAR ® 0 00 @ 000 O 00 O ° O OSSOSO e 240

ERASE SCP\BEI\I0.‘.....;........... 240

ERASE TO EI}D OF LIb‘E ® ® 0 0 OO O OO PO OO OO e 00 241

ERASE TO END OF SCREEN ceccecccscccceecs 241

ERROR LIST LENGTH secececcccccnsccssces 241

ESCape Key ® ® © 00 O 0 8 0O OO OO OO OO OO E SO OPS PSS 6'10

eX(change ceececceocscccccosscsccnssesess 103,136,173

E:(CEPTIO:‘] ® 0 5 O 0O 90 00O G OO P OO OO O OO OO S POOO OO 43

e:’;ec ® 9 O 0 O O O 00 OO OO OO D OO OO OO OO SO O OSSO IO 194

Execution ErILOL ceeeccceccscccenssesess 10,13,40,42,279 .

Execution Option List seeeeesccceccessss 53

Extended Precision ArithmetiC (eeeeeeee 40,43

F(ile ® ® 0 0 5 9 P ® 0O O O OO OO PP O OO SO SO OO SO O PSS 62

F(ind © 000 0000090000000 GROOOOCOGOGRIROGIOOIOEEOCETOIO 112'119,121'136,144j167’176

FASTCOI]: 0..QOO..I‘.........OI......... 235

File Attributes ® ¢ & 00 0 ¢ 9 08 O P C O SO OO O P PE OIS 24

File Buffer ceecessccccceeccocscasessss 106,111,114,155,15°

File D2Le@ ceeseeccccocsccescscnccnsnces 24,25

File DesignatoOr .ceecsecessccsssaseseeess 13,31,33

-_ . AAn~

PDQ-3 System Reference lianual

File Dump © © © 0 0 0 0 OO0 W OO0 P OO T T OO QOSSO COOCOIOETS 254

File Identifier'.000.0.....'...0000 15'21'31

File Length ® ® 0 0 O 0 00000 OO OO OSSO OO OO OSES 24’26

File :1enu ® © © © & & O 0 C O C OO OO OO OO OO OO OGSO OECNR 104'108'114

File I‘Iame © 9 © 0 0O C OO OO OO0 O PO P OO OO OB OO SO PGS 4'5’15’24

File SUffix ® 0 OO 9 009 O8O OO OO OO OSSO S OO SO 24,25’27'31’33

File system ® © 0 0 0 ¢ O 000 PP CES O OO OO OO C OO ESL OO 4’14

File Title ® 0 @ 6 O 00 0 6 OO OGO OO0 SO OO O OOEC O OO 24’27,29'31’33

File Type 9 C © O 0 0 000 00 00 00O OO DO O OO SO GS OO 24

Pile "Iindov’ LK B BN BK BN BN BN BN BN B BN BY BN BN BN BN BE BN BN CBK BN RN BN BN BN N J 106'111'114

Piler 9 0 0 0 ¢ OO 9 OO O OGO OO OO O OO OO OSNCEODPDGECEETSTOE 3'31'62'71

Filling © 000009000000 OCOPINOSISIOICTEECEOTEOIOEOEEOPEOPEOIEOTTOITSTE 111'1431149'1531167

Floatinq POint I/o C IR N BN BN IR BN BE DR R BN BN BN BN BN BN BN BN BN BN 40,43

FlUSh I{ey L B BN B BN BN BN BE BN BN BN BE X BN BN BN BE BN BE BE BN BN BN BN BN BN BN N] 7

Format ® 6 @ 00O OO0 OO T O OO O OO OO0 OO O PO OO OODS 98'209’215'217

FunCtion Key 0600000000000 OIOGIBROGOIOGIOOEOITDINTIE 104'108'11011151122'128’166

G(et @ S © 0 00 00O 00 OO C OO OO D OO OO OGP O OO e ODN 48'72'73’79

G(etCh ® O 0 O 0O O 00 OO O T 0 C O OO EGEOOOOD OO OGSO 136'146

Gap © 00 0 O 00 ©® OO 9 O OO €0 O OS8O DO OO OGSO OOEEEO EC O 243

General Prompt ® © 00 € ¢ O O 00 OC OO O OGO ECEOLOGS 33

GOOd PromptO..........'....Q....; 33

GOTO ® ® 0 0 0 00 C ¢S O C 0 00 C 0 C IO OO O SO OB OO EO OO CSOS 195

GOTOK 0 0 000 CEC 00 0000000000000 0CCVISIOIEOIOETOEEOEO 40'42'43'232'234

H(alt ® ® 06 0 € OO O 6 OO0 0O G0 0O OO CTOE OO OECOSOEECDO OO 6

H(ELP © 0 © 6 & 0 0 9 9O 3O E O OO e O OO PO O E O SOC O OO DTDOSOE 237

HALTU‘:}IT ® O © 0 6 O 0O OO0 0" &L 0 OGS O OO OO OESPTEO®OOOES 43

Hard DiSk @ 60 00 060 OO0 G OO OO OO IO OOPODT IO O OO 219

Hard DiSKS LK 32N B BN BN BN BN BN BN BN K BE BN BE BN BE B BE BY B BE BN BN BN BN BN) 18

Hardware User's lanual ececeecccvcecscecesscse 1

I‘IAS CLOCI< L Y BN BN BN BN BN Y BE BN NN BN BN BN BE BN B BN BN BN BN BE BN BN BN BN BN BN NN) 241

HAS LOITER CASE 0000 00000000000 000000000 241

HAS RANDO!N CURSOR ADDRESSING ceseccceccee 241

HAS SLOW TERK"III]AL ® O 0 & 0606 0 006 OO OO O OO 241

HDT ® © 9 © 0 C O 9 0 09O 9 0 OO OO PO T O OGP O O OO GOEPRPECEOOOES 203

Heap @ 00 0 00 0 GO 0 OO O OO O C I I LEO O OE OO OO SO ECOCDYY 35,40'43

HEAPOPS ® ® & 6 0 0 6 © 00 00O 08 G OSSO OO G Oe OO BSOS OGS 43

I(nitialize ® © 0 0 0 9900 09 8OO0 OCOPOITOEOTO®OP OO 64

I(nsert ® © O O 00 OO0 OO O OO OO0 OO O OO OO P GO ETO OO 108’113'119'120'135’148'154'167'
176

I/o DeVice ® 00 O 0 000 9 O 06 OO OO OO0 OSSO OO D 16'18

I/O Driver Units ® &0 9 0 00 00 OO OO OGO O IO O OO 41

I/O Ertor L B B BN BE BCBE BN R BN BN BN N BN BN BN BN BN BN BN BN BN BN B BN BN BN BN) lo,lz

I/O Redirection ® 0 2 O 0O 0 OO O OO OIS SO EOS O TPSOS 51,57’235

I/O Result L B B B B BE BN BN IR BN BN BN BN BN BN BE BE BN BN BN BN BN BN BN BN BN R] 12’277

I/C Systern Configuration .seceececccesceces 41

IQCIUde File ® 0 0 9 ¢ 66 © O OO O OO O OO L OO O OO CO S 191'192

Input FluSh I(ey v.'ﬂ.".'......ﬁ'ﬁ.bl'.. 7

Input Prompt ® 0 OO 0O O P ¢ O S OSSO OO SOES O OO OO 33

Input Redirection OptionNsS .ceeceeccssecs 51,53

Input stream ® © O O O O O O OO O OGO S OO O OSSOSO eSO Sl

InsertLine ® 0 ¢ O O O ¢ O OO O S OO PSS OO SO DO e S OO 247

Inte:face Text ...0...0O....OO...Q....Q. 35

Intrinsics LiDr&LY eececcccccccccecesss 35,36,38,40,41,43

J(ump ® € 9 00 O 0 00O SO OO O P E GO GO OO OO OO OO OTSTC 135’150

J(umi) I‘I(a‘r‘kker.y.0.........0.....0.00.'.0 lso

::(olumn O.'.‘.0'...‘..0'O'Q....IQ.QO..'. 136'151

Dom~a 2N

Index

K(runCh ® 0 © 0 0600 000 090 00O OO0 SO OO e PE S
ey COomMENA ceececcccacsssscscscscossose
Xeyboard ceeececesoccocccccscoscsscesocns
L(dir ® ® 0 9 0 0 9 O S0 O OO0 O OO S OO O OT OSSO N O OSSO
L(ineEnd ® 0 0 0 0 & 0 00 000 OO OO O PO OO OO OO OGO OO
LEAD-IN FRO“ KEYBOARD DRI I I I S N S BN S RS N I
LEAD-IN TO SCREEN @00 s e0eveeec00000000 0
Left StaCK ® © 0 @ 0 0 0 00 0 00O O OO PSS OO 0O OSSOSO
Length Specifier .ccecececcecscoccccsccss
Libmap ® © 060 08060000000 000 0009000 Oe PO OTOOE
Library ® ® 9 O & 0 GO0 0O 00 00 OO OO OO O OO OO OO O PCSDE
Library OptioNS ceececccesccccscccccccse
Library Redirection Option ceececcecceccsse
Library Search Path ccseccccccccoccocse
Library System ® © 0 0 06 0 00 00 000 OO 0PSO OO TCSOS
Library User.s i'lanual 000000000000 e
Literal I':ode ® 0 0 0 0000 00090000 00000 0N e
Log Bntry ® ¢ 0 00 0 00 00 O OO O OO OO OO OO OO OO TOSOE
Logical Device NUMDEr ceeeecececcccscccee
Logical VOlUME ceeeecsvcscscsccosccccce
LOI]GIIITS ® ® O ¢ 0 9O O O PO O OO O OO OO OO B OSSO NP
Il(ake ® 0 000 0 00 0000 000 0SS PO OO OO OO OOEOEPSOS
El(argin ® 0 0 0 0 0 © 0 0800 OO OO O S OO OO OSCEEOSIOS DI
zl(emory ® O O 0 0 O O O O O OO OO OSSO OO OO O CE SO OO TSI

I'I(EI'IORY UPDATE ® & 0000 060 90 00 0O OO SO S LOPPOSE

Il(unCh ® © 05 0600 0 ¢ 00905 0O 0OV OO OO OO OSSO ESTTES
1Make.BOOt ceesocvcccccccsccscncccccccncss
Eiapper ® ® 6 0 00 090 00O OO O OO S OO ST O IOS S OGSS I ODLES
Margins R R I R A IR N R R I I I A I I I AT AR A A Y
Harkdupdir ©0e0ecs000s 0000000000 e0 00000
HArLKer ceeevecoscvecoscccoscscccsoscscscccss
Hemory Dump 0000000000 eree0000000 000
lieta=-words evesecrees0rs0escss st se e
MONIiTOr ceveccceccccccccsccccccccccnnse
flonitor Key ©e 00 000000000000 0ss00sese e
I‘lount ® @ 0 0 O O O O OO OO SO OO OO O PP SO OON OO ESEPNONP
I.](evj ® © O 6 00 0 0.0 00 0000 OO PO OO OOV OSSOSO S TPRL IO
bl(ext ® ® 9 00 O O O OO SO T C O OO OO O IO O OO OO PCEE OO
Nested ECQiting scececccccccccevrocccccncce
HEWLIMISCINED ceeecccccecccacccsosessccsns
}\o Room On vol @ ® O 0O 000G O8O OO OO O OO SO GSTOODN
NON=-PRINTING CHARACTER cececscccccccccns
NUMCOLT Unit ®600c 0000000000000 0000000
O(prSitepage LRI O S A S A S S S S S S)
Offline ® 0 0 ¢ 0 9 O O O G OO 0O O OO PV SO PO OE OSSOSO
Online ® 8 0 0 0 09 P OO0 VOO OO OO OO0 OO OO SN SO
operating System ® 0 0 00 00 00000 00" OO O 9 e
Cperating System Libraries seceeeecescecece
Output FlusSh KeY eeceesccccsccscoscccsnse
Cutpul PromMpPL eceesessscsssccsccsscsonsne
Cutput Redirection OptioNS .cececesccsee
Output SLrea@m .cececvecccccccsccccccncccs
P(age ® © 0 9 00 O 0000 00O OO 0PSSO PP O OO OO et
P(refix ® & 9 0 0 0 0O 0 00O O OO OO OSSOSO OO OE SIS

Paging ® 06 0 0 0 0 00 0O 090 O O O OO OO 9SO OO OO SOOI TOGDS

Paint z:ode ® © 0 00 0000 00" 00 O OSSN NGOG

D=2~a 2NE

30,74,30C

6

16

74,78,01
118,135,152
241

242

111,150
24,29,31,83,85,188,192
25,35,100,227
28,35,41,100,227,236
52,53,56

37

35

35

1
122,144,161,157
104,117,126,159
41

19

43

74,83,100
136,153,167
65

237

153

274

8,209,213 -
111,148,167
22,224
116,150,163
264

2

63

6,46,203

220
45,73,54,87
112,120,135,135,155.
104,124,159
247

22,56,192

242

38

135,156

18

18

3,25,35

40

7

33
52,53,54,55
52,54,55
135,157
22,74,85
111,153,157 .
104,175

PDQ=-3 System Reference llanual

Paragraph ® 00 0 O 0 000 OO P GO OO OO SN OO OO ES O OO 149,153’154'157

PASCALIC ceveccccevocsccsccscsccocsnsccnnss 43

bPatc s ecs000c0scesss0sesc0esscscnnssc0s e 25'100'264

PATTERITMATCH UNit eeceecceccccccocccosss 38

PhYSical UNit ceeceveccccccscccccsconssee 10

PhYSical Unit HUMDEr scecececscccccccce 15'41

Prefix Option P < 11

Prefizx Options e060000c0c0000000000sc0 22’52'53,56

Prefixed VOlUME ccceevscvccscesscocosccnsoe 20'22’31'51,52,56'85'94

PREFIXED([<Kfield name>] cceeveeccecccscccecee 242

Primary ComMMAnd eecessccccossconcsscssce 107

Printer ecececccecccccccccsscsccccscsnccs 16'270

Printer sp°°ler e00000ces 0000000000000 0 3,38’270

PROFILE.TEX ee0eececscsesvssces0eveeer e 29,42,46'50,194

PROGOPS UNit ceecccevcccccccccceccosscan 36,38,41

Program Library eec0ess00ce0s0000000 00000 35,37’38

Program Listing eeesscs0ecoeevveos0000 e 10,28'187,139

Program HAMe ccecscecccocossccscscnccce D53

PrOgrammer'S Hanual 6 090 0CE€OC6OCOGOEOEECEOOS OO l

PrOg_Redir ecceseccsccececccosecesosces 23D

Prom?t ConventionsS eccecscccececsscscces 33

Prompt LiN€ ccecccccscecccscccccsccscsnss 4,106'107

Prompts Y

Q(uit © 0000000000003 00000000002000000 0 73,86;137'158,237

Q(Uit A(NOther ececececscecscessccossces 155

Q(uit B(aCKup eevecocoessecsscssscoosce 139

Q(Uit C(hange P §-1)

Q(Uit E(Xit ececccccccesscccccsoscccscnes 158

Q(Uit R(ELUIN ccevcevsccccccssscscsccsss 158

Q(uit U(Pdate esececssssssccescssssssse 155

QUIET ccececvcccccccscsscsoscssccnccscccccccce 197

R(CMOVE cececvcoscoccccscccscnccsssocscsce 74'87

R(eplace ceecscecssssssccseccecccsosven e 112'119'121,13611611167pl75

R(ETURN cecocccccccnccscscsoccosccscoscccsces 237

R{UN ceeevccsvcsccscscssssssccssncscsncos 48'66'188

READ ceccecccccsccccnscccocncccscsscccce 196

Repeat FactoOr .cesecescceccccescessssss 115,118,129,138,139,140,142,144,
146,152,156,157,161,172

Replacement String eses0ccscssvsscccsssne 121'161

Right StaACK ccceccececcvcccscccoscnscsns 111'150

RUN cccecosscvccocscosscsoncccscccccsssnes 137

2 P 5

S(AVE eccoescscscocscscoscsccsscccnsccnsesce 43'72'73'88

S(CL ceecvecesccscccecescsscscccccocsssscs 1371163

S(et D(eletellarkersS cceecessccccsccsces 104

S{et E(nvironment cececcecccccccsccoccsscs 12111381164

S(et E(nvironment I(NfO ccececcescccsces 155

S(et Z(nvironment S(etTabStopPS c¢eccesee 113,165

S(et E(nvircnment U(serkey cceececosces 128,166

S(et [1(arker ceeececcosssccoscoscoscoocsse 1411163

S(et T(ag e

S(UDMIt seeccoovcesosesssscscsccscscssccce 220

SCCITRL UNit cceeccccecssscccoccscsosccces 39

SCREE!l HEIGHT ceeocccccccccecccccccscecas 242

SCPEELIT 'IIDTH ceececccccscaccssccccsssccsse 242

SearCh String DI I NI B SIS I ST A S I I RN I Y 1211144'151

Anrs
Page Suv

Index

Secondary Command sescecscocssscsesssecs 107

segment ® 0 0 © O 0 0 0 0 00 PP OO OO SO SO OO OO S e e e 220

Serial DeVice ® O 5 0 060 00 00 00O OO O SO OGO 0 0o 16,18'25

Serial Unit ® © O 0 8 O 00 0 000 9SO O D OO SO OO OO OPSD 16'19'39

Serial VOlume ® & 0 0 0 0 0 0 0O OO OS8O O SO O S e N PO 19]29

SET @ 8 © 0 009 0 O 0O OSSO G SO PP OO OIS PO OO OGN PO 196

Setup ® ® 0 0 5 0 0 00 0 O OO O OB O OO OO OO OO eSS a0 27'42’232’237
Shell ® 5 6 0 6 0 0 0 0 0O @ O O OO OO OO0 O e OO O PO GS SO 42’43’64

Single Density Floppy DiSK eeeceescecess 8,45

Single-drive Transfers .ceececcecescesscss 91

Single‘Sided Floppy DiSk v 000ces 000000 8'45,204

Ske‘o\, ® © 0 0 O O 0O OO OO S0P OO OO 0 OSSO OO NSO R NS e 215

Source File seceeccesccsscccsssonsssessse 109

space I{ey ® ® 0 0 © 0@ OO O O OO0 P OO O OO OO PO PP TS SN 6

SPOOler ® 0 090 0 00 00O 0 OO OO OGO OO e e OO O 3,270

SPOOLBR Unit ® @ & 0 ¢ 00 0 0 OO OO SO OGO S SO BRSPS C ISP 38’271

Stack Overflow ® 0 0 O 0 00 0O OO0 O OO 0O O O 9O O o0 11'192

Standard Input ® 0 90 5 0009 09000 0PSO G OSO O PP 16,51,55
Standard Output LICEC B R BB K 2K B K B I Y) 16'51'52'54,55’235
TAE::I\’: ® © & 0 000 O 0 OO G DS OO O OO SO OO OO SO S OSSO OPCLS 55

STAI‘IOUT: ® © 0 0 0 0 08 0000 P OO PO OO OO OSSOSO OO 54'56

Start I{ey ® © 0 0 0 0O 0O 00 O OO OO OO O OSSO e e P SOOS 7

Starting BlOCK ® O 9 00 O O 0000000 0O OO eSO e P 24'26

State Flow Diagram ceeeeceecsccscssossceses 45,49

STI(LK B BN BN BN BN BN R BN BN BN BN BN BN BN BN BN BN BE R IR BN BN BN B BN BN BN BN BN B BN BN J 197

Stop Key ® ® 0 09 0 O 0 OO0 0GP T OO O SO0 OO OSSO N s 7

Subsystem DocumentsS ceecseeccccocscscces 1

Swapping Compile OptionN seeecesccccceces 192

SYyntax EXFOr ceeececcccsccsecscessssscss 49,50,115,117,150,283
SYSCOM © 0 0 0 02000 009000 ¢ 0e 80000 COIOSIOESIOSIOSIOGETOCE 232

SYSIIJFO Unit @ © 0 0 6 00 00 0 9 00O OV SO O OSSO OO IS 38

System Configuration .ecceecececccsscess 40

System Customization ..eccececcceccccese 40

System File Title seeececcccccccccceces 27,29

System I/C RedirecCtion eeeeececscsssesss 57

System Library ® ®© 0 000 O 000 "0 O OO O OO SO OO PO 35'36'38

S}’stem Ilonitor ® 00 0 0 0 0 00 0000 C S 0000 O POV 3’45'46'203'274
System OVErlaysS eeeececcsceccsoncsccscsss 40,43

System Shell ® 99 000 00 000 OGO e 6O OO O QOO SO POOS 42,43

System Support LiDrary eceececcecscccecececeee 40,43,236

System UtilitieS ceeeeeccescccccnscesse 38,42

SyStem volume ® & 6 0 00 O 9 O 0 OO0 SO SO S OO PO OO PSS 20'21’236
SYSTEIN.COHPILER ceesceccosccscoccnscacss 27,23,44,50
SYSTEHODRIVERS ® 000 0006000060000 0000000c00 27,28'40’44,47
sYSTEH.DRVINFO 0 0000 0000000000000 0 0000 27,28,41,43,4&,47
SYSTEIl.EDITOR cecevvecscoccccnsccenccse 27,44,51,251
SYSTEH.FILER DI A A SRR S B I S A I IR A A A) 27'44'62
SYSTEHINTRINS ceeovccccccccccenssonncses 27,23,36,41,43,44,47
SYSTEHQLIBRARY s eve00es s 000000000000 27'28'35,44
SYSTEH LSTeTEXT seecoeccccsccesssscsccnne 27
SYSTE“'MISCINFO ©0 9000200000000 00 27123'42'44'232
SYSTEH.PASCAL DR N A R N R A A RN Y RN 27’28’40,43’44747
GYSTEII«SHELL eeecccccscccccccsanncncecee 27,28,42,43,44,47
SYSTEIGSTARTUP ceeecccoccccocscccseeoss 27,28,42,46,50,54
SYSTEI.SYAPDISK eeeeececscccccscccsancee 27,283,192

SYSTE:{.SYI‘:T :{ ® 6 @ & 00 0 6 O 8 0 OO OO OO OSSO OO NS 27'4'2

3
©

[63)
<
~

PDR-3 System Reference lianual

SYSTEI.VIRK CODE ORI I AR I SN S ST S A A S SRR a7,-u,50 7’188
SYSTEIl.HHRKeTELT eccccaccccscscccsscccccs 27 28 87 114
T ® 0 0 0 0 00 O O OO PO OO O O OO OSSOSO OO N 00 0o 195
T(EACIH cececccccoccccccscccasscscscoanese 237
T(ODiSk R I I I S ST A ST I IS ST Y B S AR S) 112’1201136’169
T(ransfer Geceecscncssccscsvscesssscccoves 74,89
T-File Options Se0eececevrereeveetOCOO OO 52,53’55
T=F1leS eovessceccescccsosscscscacccecocce 52'557235
Target Pe00eseesece0n00000e000000Os 00O 197
Temporary File R R R R R I I NN NI S N I 81;87
Terminal Configuration .eececccccecccos 6,42
Text File evsceecseerereveree0sCOOOOEOCOE 18’24'25p83
TeXt FOIM cecevececscoscsscssssscsscscocce 11011301140'168
Text Hode 0000000000000 c000c0OOOTOOGE 251
Token HOde e0ee0s0es0srR00c00R OO CRRC S 122'144,1611167
TRANSCEIID coevecocevsccscccscsccoscooccscses 43
Transcendental Functions cccececcececoee 40,43
Type=ahead Buffer .ccecoecececcecscccecs 7,16,193
Type-abead FluSh Key 6000000000 cce0000 0 7
Type-CheCking Prompt 0000000000 COEBRCOOLE 33
U(Pdate © 00000 00C00000CECEVCOOCOEOC0COOCEDODROROCEEOEDOEO 48
U(ptop © 000 00T 00000CCTCEOOCO0ORCEOEOCOCOROCEOOOREOEEO 1351146’1475170
U(ser ResSta3rt ccevcecccssscccoccscccnee 68
UCSD Pascal $ 00000000 CC000COCCOIERNROIOEOCOIEOEIEDOBOOES 137
UCSD Pascal System @eeecevevsecveccrscoe 1’3
Unit © 0000 000OE0C0IGOE0POPEOECOOESEOOEGCEOOEOCDO0OOSE 35,234
Unit Humber © 00000000 0C00000000000660806E 17'20[31
Units © 0000000000000 000000000OCOROOCOICOEEOTOEO 192
User File Title s000cccesesscsessssccsce 29
User Interface ev0ececco0soccecrvo0scnoe 42'43
User Library Se0ec0e0vecorecsrrersreesveo 35,37'51,52'56
USERLIB,TEXT 20000000 seerec000s0ssc00 00 29,37
USES eceecececcccsccvcscccccscscccecncnccanse 35
Utility Program ©e®e00er0ecstecec0cc0Oo0 e 3'209
V(erify © 000 0000000000200 00006060CC0000CO0CTC 137'171
V(Olumes @e0e0e0s0000000rececesecsb0bo e 74,94 :
Vector Keys 9000000000000 ececect0000000 0 6,118,135’138
VERBOSE 00 0000000000000 00000c000000 OO 197
Version Number ee00eceecceevecoonoccocose 4035
VERTICAL IMOVE DELAY cccecccccesccsccsce 242
Volume Identifier @000 00ecees00000000 0000 15'20’31
Volume Label eceseecsesscccsscscessassce 218
Volume llame © 0000000000000 000000000 0000 19,20,31
AW(hat © 000000 000000000000 OCLO0CECOOCOEOSEOECROSOS 73,95
W(ordilove ®co00ee00000000000000c00 000 e 1101135,172
:!elcome [:essage ® 09 00O 0C0000GBOCEIOESICOET®POEO 3‘0'&30
Western Digital Format 000090 600G OCEPO SO 07213
Wildecard € 00000000000 0C0 0000 OOCOTROIOOEOROGTS 60 71 72 76 78,81 83 87’84,JJ
Work File ©E0 000 COEPOPOCCEOOICEOEOEOOEOIOEOCOROOEOROETDNPTES 28 45,40’30'00’00’71 79,0.;00’
114,188

VIRITE ceceovceccccccncoscccsescscsscssenscee 195
”RIHELJ 00 e 000000 00sRe00000csc0s0s000 e 125

{(amine $9c0cccecscccrsscsrssscrrsccovs 74'75’80,96,2167217

(ecute LK IR B B BN K B B BN B BN BE AR B BE IR K BN B BE BN BN BN BN BN BN BE B) sq
‘X.CODH D 0 9 0 0 ¢ 00000000 0O OO OO OO SO OO OO PO OOONS Mg' 7'&93

-.DE‘IO'LE:;T ® 9 0600 000 009 PO OO ONP SO OPPICOONEOSOOTS 133

Index

YALOE ® 0 0 6 00 00 00000 00O OSSO0 OO OO OSSN TS BCOE 234’239,251
YeS/I}O Question ® © 0 ¢ 60 0 O 0" O OO OO PO eSO e 5’71

Z(ap ® 0 O & 0 00 000000 OO0 OO OSSO OSSO ES SO S PCOEOCTS 112'118'120,136’176
Z(ero ® 0 0 6 00 00000 0000 00O OO P00 O SO OO OO GOSOOTDS 74'98'103

Seem SN

ADDENDA FOR THE SYSTEM USER’S MANUAL

%ection 2:.2:4 {pages 38-39)

The name of the spooler unit is SPOOLUNIT instead of SPOOLER.

Section 2.4.4,1 (page 54)
Section 2.4.4,3 (pages 355-36)

The @ditor does not write to either the pre-declared file QUTPUT
or to the STANOUT: unit., Therefore, cutput and t-output options
may not be used to manipulate the editor’'s output stream,

Section 2.4,4 {pages 394-56)

Instances of STANOUT: and STANIN: are ignored in the redirection
and t-file lists.,

Section 2.0.2,0 (page 213)

A floppy should be mounted im the source drive before the source
unit prompt is answered, LiKewise, floppy should be mounted

in the destination drive before the destination unit prompt is
answered.,

Sections 8.0.5.1 (page 219),
8,.2,0,0 (page 227,
8,4.,1 (page 248)

The <up> Key may be used to insert a space intoc the field at the
current cursor position. The <{down’> Key may be used to delete
the character at the current cursor position.

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	eratta

