A
EXT «i> DATA PROCESSING
A 2

TR 440

Time-$haring
Computing System

Introduction

TR 440
Time-Sharing Computing System

INTRODUCTION
as of March 1971

The brief description is to familiarize the reader with the most important
characteristics of the computing system and to give him a general survey
of the programs connected with the Time-Sharing Computing System.

Application systems which also may be used in connection with the TR 440
Time-Sharing Computing System have not been taken into account. This
includes the TELDOK Documentation System, the DBS 440 Data Bank
System and the PSS Planning and Control System for Production.

Order-No N31.80.04 E
Edition 0371 - V24
AEG-TELEFUNKEN If reproduced, source must

I nformation Systems Division be acknowledged
D-775 Konstanz, Bucklestr, 1-5 Printed in Western Germany

CONTENTS

1. SUMMARY

Concept
Configuration
Facilities

Modes of Operation

.._._.
nw N —

RD 441 CENTRAL COMPUTER

N

Block Diagram
Data Structure
Storage Unit

. Processor

1/O-Processor

NNV NN
. SV
A wWN —

PERIPHERAL UNITS

w

Background Storage
I/O-Units
Satellite Units

www
wWN —

BS 3 TIME-SHARING OPERATING SYSTEM

S

System Structure
Nucleus

System Modules
Process Monitors
Resource Scheduler
Job Processing
Data Management

AA DA DMADMN
NOO b wh —

PS PROGRAMMING SYSTEM

(8,

User Programs

C ommand Language

Source Language Translation
Combination of Languages
Programming Languages

Test Aids

Conversational Mode

(SIS, IS, G, S NSNS
NSO h W —

AbADNODND

O N NO- W,

12
12
13

14
15
15
16
17
18
19

21
21
23
24
24
25
26

1.1,
Concept

1.2,
Configuration

SUMMARY

The development of Time-Sharing Computing Systems was triggered by the
demand to decrease the turn-around time of users programs. The users desired
the direct, ever ready access to the processing capabilities of the computer
thus being able to feed in their program on-line and to test it.

The demand for ‘ever ready access’ was satiesfied by time-sharing of the

limited resources (e.g. processor, storage etc.) by the programs of the indi-
vidual users. Periodic assignment of the resources and the speed of the computer,
gives the individual user the impression that the total capacity of the computer

is at his sole disposal.

The demand for the “direct access’ led to the application of terminals (e.g.
display units and teleprinters), installed directly at the users place of work
thus permitting the direct communication with the computer.

The TR 440 Time-Sharing Computing System presented here has all the properties
of a modern time-sharing computing system:

- easy conversational mode facilities
- large number of simultaneously serviced terminals
- efficient test aids

Figure 1 presents a possible configuration of the TR 440 Time-Sharing Compu-
ting System.

The RD 186 Digital Computer - otherwise central unit of the TR 86 Computing
System - controls the input and output intensive operations for the terminals

and prepares the information for processing by the main frame RD 441 computer.
Furthermore another RD 186 may be connected to this RD 186 Front End Computer
as subordinate computer via coaxial cables or via remote data transfer lines.

The terminals are connected to the RD 186 and may be either display units
or teleprinters. Background storage (drum storage and disc storage) and
the conventional |/O-devices of the Time-Sharing Computing System are
connected to the RD 441.

The following average configuration is recommended for the Time-Sharing
Computing System.

- Central Unit
1 RD 441 Computer inclusive core storage for 128 K whole words (minimum
64 K)
6 Standard 1/O-Channel Units (minimum 4)
2 High-Speed 1/0O-Channel Units (for drum and disc storage, a minimum
of 1 for one background storage)

Ill--.-ll

v v
vy vy

vy vy

Drum Storage \mtor/ Magnetic Tape Units

1
1 i

Punched Card Devices
Punched Tape Devices

[]
Plotter RD 441 Central Unit
—
RD 186 Remote Satellite Remote Data Transfer
Computer

Line Printer

RD 188 Satellite Computer

Fig. T Configuration

- Peripherial Units
1 Drum Storage (2 modules)
1 Disc Storage (3 sets of discs)
4 Magnetic Tape Units (minimum of 2)
2 High-Speed Printers
1 Card Reader
1 Tape Reader

- Satellite Units
1 RD 186 Satellite Computer
Display Units
Teleprinters

The technical data of the system configuration is presented in chapters 2

and 3.

1.3. Certain minimum characteristics are required of a Time-Sharing Computing

Facilities System, they are presented below:

- Conventional batch processing must be possible parallel to the time-
sharing operation mode.

- The user may only input data from the terminals - remote job entry -
or conduct a dialog - conversational mode.

- The total computing capacity of the computing system must be accessible
by using a terminal , especially to programs written in high level program-
ming languages.

- Programs entered in the conversational mode are processed with equal
priority - but ahead of the ones formulated in batch mode. -

The following characteristics are also of importance:

- All programs are processed in multiprogramming mode . In that way up to
seven users programs are quasi-simultaneously processed.

- Spooling of I/O-information is carried out onto background storage. By
this means it is possible to gather information for up to 72 users programs.

- The data management allows for supplementation and correction of source
programs and data.

- In the data management the following file types are available for use:

SEQ Sequential access according to the physical storage of the informa-

tion.

RAN Random access with record-numbers, the index is organised
sequentially.

RAM Random access with record-keys, the index is organised index-
sequentially.

- Frequently required information may be held on disc storage under separate
file administration (long term data retention).

- Time-Sharing mode becomes effective and significant by the means of the
extensive test aids in the programming system.

1.4, Two kinds of jobs are available to the user of the Time=-Sharing Computing
Modes of Operation System:

- A job is called a conversational job or a dialog if the user wishes
to interrupt the processing, spontaneously, or as a reaction to inter-
rogation by the system (correcting, input and output data, change
variables).

— I the user is not interested in influencing the processing after the
input of the job the job is entered and processed in the batch mode.

Conversational jobs may be entered via the terminal keyboard (also with the
help of the attached tape reader at the teleprinter). Once started the

job may request further input via the terminal or from the long term data
retention storage.

Output tasks during conversational processing may be assigned to all output
devices, whereby the information is intermediately stored in the disc storage

(spooling).

Batch jobs may be entered via any input device and via the terminal keyboard
Input to batch jobs being processed is only possible via magnetic tape units

or long term data retention storage.

The output tasks are intermediately stored in the disc storage if they are

not directed to a magnetic tape unit.

2.1,
Block Diagram

RD 441 CENTRAL COMPUTER

In the basic configuration the RD 441 Central Computer of the Time-Sharing
Computing System comprises of the Central Processor, the Priority Unit and

the 1/O-Processor.

The processor is composed of the control unit and the arithmetic unit. The
central storage is equiped with a high-speed core storage with 64, 128 or
256 K words of 52 bits each.
The 1/O-processor consists of the |/O-control unit, the peripheral interrupt
unit and from 5 to 16 channel units for input and output devices.

The priority unit controls the access requests of the processor and those of the

channel units to the central storage.

The ceniral storage may be further expanded with a mass-core storage (cycle
time 2,1 psec, access time 1,1 psec). Furthermore the incorporation of an
additional processor is possible (Double Processor System).

]
3
»
2
4
—————— Priority Unit - ——-—-T —‘1 Interrupt Unit g0
! 3 2
T [a3
| b o B
X o =3
Control Unit ; |
—— Standard 299
! Unit
High - Speed — -
1 Standard E 2 ? ?
1 ggrz Storage : Channel Unit
! 128 K = Standard $9°°9
; 256 K %H Channel Unit
] Cells with = — Standard ? 2 3 9
S—— -
52 bits \ I/O_ Control| Gronna Unit
[Unit
!
Arithmetic - ! s
Unit | Channel Unit
! 2
']
) @
- . 29
High-Speed S5
Channdl Unit ah
Proces
sor Central Storage 1/0 - Processor

Fig. 2 Block Diagram

The computer is offered in three basic configurations varying in the size of
the high-speed core storage and in the number of channel units. Every
computer may be adapted, at the users office, to the growing needs of the
user without exchanging the devices installed. The minimum configuration
consists of 64 K words of high-speed core storage, one high-speed 1/0O-

channe! and 4 standard |/O-channels.

2.2.
Data Structure

Sedecimal Floating Point
Number

Binary Fixed Point Number '

The registers of the central processor and the core storage locations each acco-
modate one word, thus the data format of the RD 441 is word-oriented.

A number of specific instructions are available for the selection and com-
putation with word partitions of selective lenghts (especially bytes of

8 bits), special attention was paid to the effectivness of these instructions
during development.

A whole word consists of 52 bits, of which the first two are used as mod 3
check bits and the next two as word type identifier bits.

Information in Accordance to the Word Type ~

\ WT Word Type Bits
M3 Mod3 Check Bits

Fig. 3a Machine Word

In core storage, each numerical word (word types Oorl) contains a flag bit
adjacent to the sign bit. When the word is loaded into an arithmetic
register, the flag bit is stored separately and the bit position vaccated is
set identical to the sign bit and used to catch overflows.

The floating point presentation of numbers is used in computations in which
the order of the result can not be estimated or where the range of the results
vary very much. The accuracy of the calculation is equal to 10 decimal
digits.

2] 2|] 38[1 7
00}fis Mantissa (Sedecimat in Binary Digits) s|Exponent
of 16
\Sign \
Flag Sign of the Exponent
WT 0
M3

Fig. 3b Sedecimal Floating Point Number

Standardized Floating Point Numbers of normal accuracy are within the range
of

7.4 -107%% <1< 8.3 -10™2

If floating point numbers are represented by two successive whole words (double
word) then a computation accuracy equal to 24 decimal digits may be attained.

The use of fixed point binary numbers is suitable for applications where the
order of the input data, of the intermediate result and that of the final result
can be surveyed. The simple computation accuracy is equal to 13 decimal
digits.

On the other hand a fixed point number may also be stored in a half word

which is equal to an accuracy of 6 decimal digits.

Fixed Point Number (Binary)

46

\\ Sign
Flag

WT1
M3

Fig. 3c Binary Fixed Point Number

Instruction Pair

A machine word accepts two instructions. The address field may be divided

into a left and right address portions which then address index locations or
represent specifications of the instruction.

7] 2 8 16 3 16
Lo| Operation Address Operation Address
\ \WTZ
M3
Fig. 3d Instruction Pair
Text Word Standard RD 441 characters consist of 8 bits, called also bytes. Thus 6 bytes
may be accomodated in one whole word.
2] 2 8 8 8 8 8 8
L
\ \wra
M3
Fig. 3e Bytes as Example of Text Words
2.3. The Central Storage is composed of modules of 16 K whole words. Since every

Storage Unit

half word has an address assigned, the so-called address area of a module compri-
ses 32 K. Every storage module has its own functional logic. If the module is busy

because of an access to a word then no additional access to that module is
possible within the cycle time of 900 nsec. However access to a word in another
storage module can be made. The processor and the 1/O-channel units are able
to operate in parallel as long as they make access to different modules.

Address Interleaving

Paging

Storage Protection

Since successive locations are frequently required to be addressed, addresses are
interleaved, i.e.successivelocations are found in different modules. Thus the
effective cycle time depends on the expansion of the core storage and can only
be given statistically. It may be as low as 125 nsec in the case of 16 storage
modules. Figures 4a and 4b show how the addresses are distributed among the

modules.

0 n 2n 3n

1 n+1 2n+ 1 3n+1
2 n*2 2n+2 3n+2
n-1 2n-1 3n-1 4n-)

Fig. 4a Non-interleaved Addressing

0 | 2 3
4 5 6 7
8 9 lp 11
4n-4 4n-3 4n-2 4n-1

Fig. 4b Address Interleaving

1024 consecutively addressable storage locations form one physical page, and
because of address interleaving, a page spreads across all modules.
A total access prohibit or a write prohibit may be set for each page, under

program conirol .

At program load time, assignment of logical pages to physical pages is
carried out by the operating system, and recorded in the page assignment
table associated with the loaded program. Since this assignment may be
completely random, access to data or instructions is carried out via the
page assignment table. However, to save the time overhead of permanent
table access (thereby double core access) to obtain data or instructions,
the four last used logical/physical page relationships are stored in four
page registers.

Storage protection implies the protection of stored programs from mutual
interference and the protection of certain parts of the program from changes
through the program itself. For this purpose the page assignment table
includes indicators for the storage protection.

Thereby it is possible to differentiate between write access (write and read),
read access (read only) and access prohibit.

The mutual storage protection of the program results from the fact that
every program interpretes only its assignment table but is not able to
change it.

Index Storage

2.4.

Processor

Control Unit

Arithmetic Unit

Instruction Repertoire

A consecutive area of 256 half words of the core storage is designated as
index storage. The primary address of this area is stored in an index base
register. The index address (8 bits) is added to the primary address for the
purpose of addressing an index cell.

Four index registers contain the addresses and contents of the four last used
index cells, thus avoiding the necessity of continuous core memory access
to obtain index values.

In a wider sense the processor should be considered as a unit for computa-
tions. The Processor of a RD 441 comprises the Control Unit and the
Arithmetic Unit inclusive Mikroprogramm Unit. A second processor can be
installed thus permitting a doubling of the computing capacity.

The Control Unit handles the recalling of instructions from the core
storage in the sequence fixed by the program. It prepares the individual
instruction for execution and sends the respective enabling signals

to the microprogram control unit.

If only the arithmetic unitf is used by the microprogram for the execution
of an instruction (e.g. during arithmetic operations) then additional in-
structions may be processed simultaneously if the arithmetic unit is not
necessary for their execution.

The Control Unit of the RD 441 consists of 30 registers (5 of which are
adressable by the programmer).

The Arithmetic Unit executes the arithmetic operations initiated by instruc-
tions. The execution takes place in parallel to the 1/O-processor. The
connection of the Control Unit and Arithmetic Unit to central storage is
given by a so-called Collection Register.

The Arithmetic Unit of the RD 441 consists of 16 registers (6 of which are
adressable by the programmer) and includes the Microprogram Unit.

The RD 441 has an extremely comprehensive instruction repertoire. 240 codes
are differentiated in the 8 bits of the operation field. Moreover in some
instructions a second operation field spezification or two addresses are pla-~
ced in the address field (the 16 operation codes not occupied may be designa-
ted to macros).

The instruction repertoire may be divided into the following classes:

- floating point arithmetic of normal and double accuracy (21 instructions
permanently wired)

- fixed point arithmetic of normal and half accuracy (27 instructions)

- non numerical operations for the processing of data with fixed or variable
lengths (e.g. strings) or logical variables. These include
branching operations (35 instructions)
conversion and preparatory instructions
setting and clearing instructions
modifying and replacing instructions
character transfer instructions for characters with 4, 6, 8 or 12 bits (byte
instructions)

- System instructions for the transition between different levels of the
programming. i.e. Switch between the mode of execution (see below).

- Included in the non-numerical operations are the processor instructions
for input and output, which however are executed in the |/O-processor.
The control of the |/O-processor is soley that of the operating system.

Execution Modi There are five modi in the RD 441 for the execution of instructions. The
reason for these modi is to enable varying address interpreations during the
execution of instructions and to fix the use of certain types of instruction
at different levels of the programming (storage protection, easy programming
for the user and others).

Normal Mode is used for the user programs. The instruction unit considers

all addresses transferred to it as virtual (relative to imagened primary address 0)
addresses and assignes to them real (actually present in the core storage)
addresses via the page assignment table.

The Process Monitor Mode varies from the normal mode only as far as an ex-
tended address area is admissable.

The System Mode is used for the next higher program hierarchy, especially
the parts closely related to the hardware of the operating system. In this
mode the control unit regards all addresses transferred to it as absolute
addresses.

The Special Mode is in between the normal and the system mode and is
used for the process of the subroutines which are actually part of the opera-
ting system but which may be called-up by an user program and then are

to operate on users data.

The Maintenance Mode permits the process of checking and maintenance
programs (addressing of additional registers for example).

2.5. The 1/O-Processor comprises the 1/O-Control Unit, the Standard Channel

1/O-Processor and the High-Speed Channel Units and the Interrupt Unit. The 1/0O-Control
Unit is able to simultaneously execute up to 5 IOC-instructions, one each
for the maximum of four High-Speed Channel Units and one for the maximum
of 12 Standard Channel Units operating in time multiplex.

The central processor is occupied by the |/O-sequence only for the duration
of one start instruction with which it triggers a channel unit. The 1/0-
Control Unit recalls the IOC-instructions from the storage for the started
channel unit and executes them completely in parallel to the operation of
the (central) processor.

10

Channel Units The minimum configuration comprises 1 High-Speed and 4 Standard Channel
Units and the maximum configuration is 4 High-Speed and 12 Standard
Channel Units.

A Standard Channel Unit has interfaces (sub-channels) for four peripheral
units. The transmission rate is up to 700,000 bytes of 8 bits each per second,
whereby the characters are transferred in series via a coaxial cable.

A High-Speed Channel Unit has only one interface, by which a background
storage device may be connected via an interface unit. However the rate
of transmission is up to 3 million bytes per second, transferred in paraliel
via several coaxial cables.

Interrupt Unit |/O-processes are conducted asynchronous from the central processor, and
information regarding the condition of any 1/O-process, device or channel
is supplied to the operating system by means of peripheral interrupts. The
interrupt unit generates an interrupt request, and when granted, places the
"Interrupt Word” in the appropriate memory location.

Types of Interrupt Requests Call Interrupt Requests, which - externally triggered - may happen at any
time are confronted by Block-, Error and Stop Interrupt Requests which -
programmed or because of the state - may only happen during an |/O-process
conducted at that time. Peripheral units or (in case of computer coupling)
another computer report their readiness to transfer or accept information
by means of a Call Interrupt Request.

Interrupt requests can be ignored or blocked by programming or during the
execution of a microprogram.

Alarms Alarms are interrupt requests to a processor triggered by an occurence in the
computer (e.g. power failure). There are two categories of alarms:

- alarms of category 1 whose handling is a logical prerequesite for sub-
sequent processing steps (arithmetical alarms, storage protection alarm

and others)

- alarms of category 2 whose handling may at least be delayed for a short
time {counter alarm)

There are, independent of the type of alarm, two alarm blocks. Alarm block 1
is set when an alarm occurs. An additional alarm of category 1 generates alarm
block 2. If there is an alarm of category 1 during alarm block 2 then this leads
to a computer stop. If an alarm of category 2 occurs then it is delayed by means
of the set alarm blocks.

3.1.
Background Storage

TSP 500

Drum Storage

PSP 600
Disc Storage

WSP 414
Disc Storage

3.2.
|/O-Units

MDS 252
Magnetic Tape Unit

12

PERIPHERAL UNITS

This chapter gives a brief survey of the peripheral units which may be connec-
ted to the RD 441.

The background storage serves as residence medium for the software, as buffer
for program input and output or for the swapping as well as storage for users
data which are often recalled or which are very changing intensive.

This include:

A disc storage with drum characteristics because of the fixed read and write
heads and composed of 1 up to 5 modules.
Capacity: 1 module - 7.8 million bytes
5 modules - 39.2 million bytes
Average access time: 20 msec
Transfer rate: 979,000 bytes/sec

A disc storage consisting of 8, 12, 16, 20 or 24 discs with moveable read and
write heads which are combined on a flying head assembly at each disc face.
Capacity: 8 discs = 125.8 million bytes

24 discs - 377.4 million bytes
Average access time: 186 msec
Transfer rate: up to 794,000 bytes/sec

A disc storage for exchangeable disc packs of 11 discs. Up to 8 drives may be
connected to one standard channel. Two drives may be simultaneously operated
via two interface units.
Capacity: 1 disc pack - 24.5 million bytes
8 disc packs - 196.6 million bytes
Average access time: 45 msec (per drive)
Average latency time: 12.5 msec
Transfer rate: 233,000 bytes/sec

The users non-conversational jobs are introduced into the computing system
via the input/output units the same as the results of the computations are
read out via these units.

For 1/2'’ magnetic tapes for 1SO-9-track-operation, adaptable to 7-track
operation.

Storage capacity: about 15 million bytes (at 800 b.p.i. and 800 yd of tape)
Transfer rate: max. 68,600 bytes/sec (at 800 b.p.i.)

Character density: 200, 550 and 800 b.p.i.

LSL 195
Paper Tape Reader

LKL 720
Card Reader

LSS 150
Paper Tape Punch

LKS 145
Card Punch

SDR 176
High-Speed Line Printer

ZCH 231
Plotter (as example)

3.3.
Satellite Units

RD 186

Computer

SIG 100
Display Unit

FSR 105
Teleprinter

Photoelectrically reading, adaptable to 5 and up to 8-track punched tape,
with built-in buffer storage for 256 bytes.
Speed: up to 2,000 frames/sec

Photoelectrically reading, column by column, with pneumatic advance, rea-
ding comparison via second reading station by means of the light-dark test.
Speed: 1200 cards/min

With 8 punches for 5 and up to 8-track punched tape
Speed: up to 150 frames/sec

Punching row by row, reading comparison via check reading station, with
offset stacking of reject cards in a stacker.
Speed: 250 cards/min

Line Printer with rotating printing cylinder with constant rpms, at whose
circumference the characters are arranged per print section, with a buffer
storage for one printing line.
Character set: 29 capital letters, 10 digits, 24 special characters in case
of the SDR 176-1
additionally 30 small letters plus another 32 special charac-
ters in case of the SDR 176-2
Printing speed: 1,000 1250 lines/min
(500 - 625 for the SDR 176-2)

1250 lines/min in case of numerical output

Incremental plotter with vacuum buffered paper transport and 8 step vectors,
paper width 13 in.

Drawing speed: 1,000 steps/sec

Pin movement per second: 25

Users conversational or remote batch jobs are fed into the computing system
via satellite units. The RD 441 Computer thereby is used as concentrator of

the information.

Medium size computer, operating wordwise in parallel with 30 single address
instructions, wired binary fixed point arithmetic (2 psec per addition) core
storage for 8 and up to 64 K words with 24 bits each (half word at the RD 441)
Interrupt unit with 8 or 24 priority levels. Various channel units.

For the display of characters of different print type and of vectors of optio-

nal length and position on a 12 in x 12 in screen with 512 x 512 raster

points.

Capacity: max. 64 lines, max. 86 characters/line

Video repetition: 33 1/3 cycles constant, the central storage of a RD 186 serves
as the video repetition storage for several SIG 100.

Full duplex teleprinter with modified ALGOL-keyboard; storage device;
additional devices: attached paper tape reader and punch.
69 character/line; operating speed 75 baud.

13

4, BS 3 TIME - SHARING OPERATING SYSTEM

4.1. The BS 3 Operating System is typified by its modular construction, and its
System Structure resident segments are located in the core storage of the RD 441 and in the
core storage of the RD 186 which is used as a front end computer.
The non-resident segments (as the whole Programming System) are located in
the drum storage.

The RD 441 Supervisor consists of a System Nucleus and a fixed number of
independent program units, called modules. The task of the modules may
be classified as follows:

- tasks with absolute priority in time:
Handling of events by System Modules

- tasks which are highly 1/O-intensive; they cause long waiting periods -
in comparison to the processor - due to the slow peripheral units:

Handling of the tasks by 1/O-Monitors

- tasks, which may be computing intensive and whose handling is subject
to time conditions (response time at the terminals):
Handling of the tasks by (Conversational) Job Monitors.

- tasks, which may be computing intensive but whose handling is not subject
to time conditions:
Handling of the tasks by (Non-Conversational) Job Monitors.

[Nucleus l

System Modules

T

]

]

2

1

i\ | ERT DRM
!

! DIM oPM
[}

1

[}

]

System Mode

Priority

o 10 11 12 13 14 15 16 17 18 19 20
Normal Mode

6 7 8
User Programs @
(see 5.1)
@ Fig. 5 System Structure

14

4.2,
Nucleus

CPU-Assignment

Storage Allocation

Coordination of the
Peripheral Units

4.3.
System Modules

Inactive Loop

Emergency Routine

A fixed allocation has been made between the modules and priority because
of the task classifications indicated, see fig. 5 (in a later version the priority
will be allocated dynamically).

The indicated sequence of the task classification is necessary as to meet the
requirements for acceptable response time and good through-put i.e. optimal
use of the system.

The Modules are sub-divided into System Modules and Process Monitors
which differ in the varying task assignment and in their mode of execution
(see 2.4.). Figure 5 arranged according to priority and mode of execution.
The explanations for the abbreviations used are presented in the text below.

In the BS 3 the Nucleus administers the processing resources: processor, core
storage (in the RD 441), 1/O-units and channels. Administration here signifies
a ‘physical” administration (assignment and release) of the resources; the
"logical” administration (scheduling and re-scheduling) is carried out by

the resource scheduler (see 4.5.).

The System Nucleus allocates the use of the central processor to the system
modules (under demand or time slice multiprogramming operation), according
to their relative priorities, and their ability to make use of processing time
or not.

The storage media (core storage and background storage) are administered
as pages of 1 K (1024) whole words, the core storage by the Nucleus, the
background storage by the associated system modules (see 4.3.).

A process requests the required storage facilities from the System Nucleus
and releases them upon completion of the task.

The Nucleus accepts input and output tasks from the modules, distributes
them to the queues in front of the |/O-channels and processes them via the
channel units. Following this the interrupt request of the |/C-channels are
transferred to the corresponding modules.

In case of input-output transfer the |/O-monitors report the peripheral
unit concerned to the Nucleus and release them after completion of the
transfer.

The TR 86 S’peripheral unit’ (RD 186 front end computer and its peripheral
units, teleprinters and display units) does not have a special status in it’s
handling by the Nucleus. Output to the terminals is transferred to the
channel unit to which the RD 186 is connected to.

The System Modules fulfill the following activities:

The Inactive Loop is always in a nonstalled condition, i.e. can always make
use of central processor time. When all other modules are idle or stalled, the
IAL gets possession of the central processor.

The Emergency Routine ERT is activated in case of system failures. It is nor-
mally in an idle state and is overlooked during the allocation of the central
processor.,

Disc Storage Module

Drum Storage Module

Operator Module

4.4,
Process Monitors

I/O-Monitors

Satellite System

The Disc Storage Module DIM administers the disc storage and organizes the
information transfer to and from the storage medium.

The Drum Storage Module DRM controls and administers the drum in a similar
way .

The Operator Module OPM has the highest priority, and gives the operator
the oppurtunity to intervene in the processing sequence with the help of
operator commands (e.g. interrogation for the state of the system).

Besides that, the Operator Module administers the console and the control
panel and enables the input and output of information between the modules
and the operator.

Processes are understood to be programs which give clearly defined services
to the user of the computing system. Whereas the System Modules receive
their tasks from the Process Monitors and fulfill system-related tasks, that
is they are not directly accessible to the user, the Process Monitors are
representatives of the Nucleus to the user,

Process Monitors are sub-classified as those which operate 1/O-units -
1/O-Monitors - and those w hich administer computing tasks for the user -
Job Monitors -.

The I/O-Monitors HPM, CPM, PPM, PLM, CRM and PRM (compare fig. 5)
organize the information transfer between the background storage and the
peripheral units high-speed printer, card punch, paper tape punch, plotter,
card reader and paper tape reader.

Magnetic tape units are operated by an 1/O-Monitor which is part of the
Job Monitors.

The Communication Monitor CCM is a mutual communications partner to all
program sequences related to the terminals. It accepts buffered outputs in
the core storage or in background storage and after request transmits

them in partitions to the RD 186.

The Communication Monitor accepts input information from the terminals
by way of the RD 186. It buffers incomplete information in the background
storage, complete information is transferred to the respective processes
(see fig. 6).

Because of the nature of it’s task, the software in the RD 186 is called
Terminal Module (TLM). It organizes the terminal 1/O and the transfer of
information and from the Communication Monitor via the computer coupling.
Thereby it takes care of the registration of various terminal states, it

buffers small partitions of |/O-information and looks after the regulated
flow of information. The Communication Monitor CCM (in the RD 441)

and the Terminal Module TLM (in the RD 186) together form the Satellite
System SAS.

Job Management A user job (conversational or non-conversational job) results in the opera-
tion of an user program sequence (command language interpreter, compiler
etc.). The program entered by the user becomes a job step - the objekt
sequence -.

The Job Monitor has the task to administrate the user program sequence
and to offer system services to the individual user program.

The Job Steps are part of the Programming System (see chapter 5).

4.5, Normally the processing of any job starts with the acceptance of the source

Resource Scheduler program and ends with the output of the results at whatever output media
was requested. In between is the processing of the job for which ‘resources’
are needed.

Resources The main task of the Resource Scheduler RSS is to decide over the assignment

of the resources.
In this connection the resources are:

- the processor

- the storage media (core and background storage)

- the Job Monitors

- the input and output devices (via I/O-Monitors)

- the job elements (the core storage areas for the internal description of a job).

The following requirements are taken into consideration by the Resource

Scheduler:

1. The resources, especially the processor and the core storage are to be
put to maximum use.

2. Processing takes place according to a defined importance (weight, sequence
of input efc.)

3. Jobs are to be processed as soon as possible. The response time especially
in case of dialog should be within such limits that the user has the
impression that he is adequately served according to his own working speed
and the problem posed by him.

In some points these demands are contradictory, thus parameter evaluation is
conducted by the Resource Scheduler and a decision is made according to
the following rules:

- a good processor loading is to be reached by parallel processing of up
to 7 jobs (multiprogramming). Latency time of a job (e.g. because
of 1/O-transfer) is to be utilized by other jobs.

- dialogs are more important then non-conversational jobs (response time).

- batch jobs are “weighted’ dependant upon installation specific and job
specific parameters and are completed according to their relative prio-
rities. It is possible that the arrival of an important job will cause a
temporary withdrawal of certain resources from less important jobs.

The _tofclc system time (not onlr processor time) is to be distributed to
the jobs in such a way that rule 3 is fulfilled (time-sharing). In that

way an appropriate reaction time for all dialogs is attained by cyclic
assignment of the required core storage and processor (time slicing).
The "next’ dialog is always the most important one in this cycle.

To be able to conduct the resource assignment the Resource Scheduler is set
‘ready’ at fixed time intervals or because of a message from the Process

Monitors.

4 ~
?y §\
z N
.\l .
1
7
Ve l /\‘ \\
/ AN

x .
IRECORD

/

RSS Resource Scheduler
TLM Terminal Module
CCM Communication Monitor

== == Task Managament

JM Job Monitor — — —Job ContArOI »
HPM - High - Speed Printer Monitor lnf'ormatlon
JE - Job Element Unit Control
LTDS Long - Term Data Store Data Flow
Disk Storage
Fig. 6 Dialog Processing _

4.6, A job is started with the XBA-(start batch job) or XBG (start dialog)-com-
Job Processing mand, it contains a sequence of command language statements (chapter 5)

and is terminated by an XEN-(terminate job)-command. If the job is entered in
the conversational mode then the user is able to influence the processing.
Otherwise the CL statements contain the sequence of the requests which are
entered with the user programs.

In Figure 6, representative of other modes, the dialog sequence presented
via a display unit which only create a print task as output is shown.

The Communication Monitor accepts the XBG-command and informs the
Resource Scheduler that a Job Monitor is to take over the job. This results

in a conversation between the user and the user program, administered by the
Job Monitor. Thereby the information is exchanged either in the core
storage or via the disc storage depending on the amount. Additionally the
user is able to use the data base of the Long-Term Data Store (compare 4.7.).
At the end of the conversation the High-Speed Printer Monitor is directed to
output the print information accumulated on the disc storage.

18

Swapping

4.7.
Data Management

Files

The basic idea of a time-sharing computing system is the time-sharing of
the limited resources available to the programs of the user. Since the human
being has a relatively long reaction time in comparison to the machine

he will in most cases not notice the time slicing. He will have the impres-
sion that the service of the computing system is at his sole disposal.

Every dialog may use the processor for a certain time interval-service
interval-after the last assignment of a Conversational Job Monitor. If

the conversational job does not give the cause for swapping within a
service interval - terminal output with subsequent input -, then the pro-
gram set of the conversational job is forcibly displaced to the drum storage.
The thus unoccupied resources are made available to other dialog.

The Data Organisation as part of the Job Monitor represents a complete
program complex. The user of the TR 440 Time-Sharing Computing System
has the storage media drum, disc and magnetic tape at his disposal for the
storage of data bases. Services of the Data Organisation are offered to him
for the creation, administration and processing of the data bases.

The user (and partly the operating system) keeps his information in the form

of files. The term file signifies that the information is structurized and that

a location reference is kept about the file. The files are composed of records-
the smallest addressable unit of information. The types of files are differentia-
ted according to the manner of access to their records.

- SEQ Sequential access to the records
The physical sequence of the records on the storage medium
determines the logical sequence.

- RAN Random access with record-numbers
The information is tightly packed in the sequence of their input.
The logical sequence is represented by indices which are filed
whithout gap in ascending order according to their binary inter-
pretation.

- RAM Random access with record-keys
The difference to the RAN is that the variation possibility of the
indices with equal storage need is much higher since no indices
are filed for undefined records.

Up to 255 files can be simultaneously administered within one task. The user
has the possibility to logically combine the files under the term of a data
base. The file name has to be clearly defined only within the data base.
The user may handle the information within a file at will, however, a file

may be secured against illegal access.

19

Libraries The number of data bases administrable by a Job Monitor is limited to 8.
Two special data bases are created and processed by the operating system.

- A Utility Data Base (System Library)
The Utility Data Base comprises the program sets of the Programming
System. It is available to all users for reading only. The Utility Data
Base is created anew for every system generation, it’s lifetime is
therefore the same as that of the system.

- A Standard Data Base (Job Library)
A Standard Data Base is available to every user’s job, containing job
specific data (e.g. link modules, retrace lists, description of the user
programs).
The Standard Data Base is created by an user program - the CL Inter-
preter (also see 5.). The user implicitly puts his files into the Standard
Data Base if he does not define a private data base.
The Standard Data Base is cleared at the end of each job.

Long-Term Data Store The Long-Term Data Store offers the possibility to permanently store files.
LTDS Thereby the users’ files are combined under a common users’ identifier which
takes the place of a data base name (Users Library). The decision about
the contents and the lifetime of the file in the LTDS is that of the user.

The file in the LTDS - all of the above mentioned types are allowed -
differ in their access characteristics.

- C-files (common files) appointed for the access of several users and
for which a coordination of simultaneous processing has to take place.

- P-file (private file) may only be changed and cleared by the user who
has set-up the file.

Manipulation of the Long-Term Data Store files is possible by means of
Source Handling commands (see 5.7.) and through higher programming

languages.

Segment Concept The necessity of transferability of larger information units among various
storage media - e.g. swapping of a program set - leads to the indirect data
addressing.

Coherent information units of one or more pages (see 2.3.) are designated
as segments.

Access to these information sets organized in these segments by the user may
either be implicitly (via the Data Organisation) or explicitly (service
performances of the Job Monitor).

20

5.1.

User programs

Linkage Editor

C.L. Interpreter

5.2.
Command Language

PS PROGRAMMING SYSTEM

The total of all programs available to the user of the TR 440 Time-Sharing
Computing System - system programs - and all routines held as link modules,
are designated as Programming System.

A program in the sense of the software-organisation of the TR 440 is every
program which fulfills the following conditions:

- all instructions are conducted in normal mode (compare 2.4.)

- all contact to the operating system is made via the Job Monitor, which
processes the corresponding users program.

- adescription of this program exists in the Job Monitor (start address, size
etc.).

Because of the last mentioned description the Job Monitor is able to start an
user program.

Naturally it is not the task of the user to generate the necessary description.
This is done by means of a special program - the Linkage Editor -.

It compiles a runable program out of the individual link modules and it
deposits the description in the Standard Data Base of the user (compare 4.7.).

On request of the user this description, inclusive reference lists, allows the
many programming aids to read out information with the description from the
source language in case of an error in the program sequence (source related
dump) and to locate the error position.

A job comprises the actual information to be processed in the computing
system (source, data) and instructions as to the form in which it is to be
conducted. The control information in form of commands (see below) is
decoded by a special user program, the (Command Language) Interpreter,
and the requested programs are started.

The TR 440 Command Language was created to give the user a standardized
and easy means of control for the processing sequence. It’s validity is not
limited to the Programming System but it allows the complete external control
of the computing system.

The language elements are commands which are preceeded by a special
character, the so-called escape symbol (from here on represented by x), so
as to separate them from the rest of the input data.

21

Activity Commands

Presetting

Extension of the Repertoire

22

The basic element of the command language is the Activity Command by
which a certain performance is requested of the Programming System. It
starts with the activity identifier followed by the specifications e.g.:

x UEBERSETZE, SPRACHE=FTN, QUELLE=TEXT,...
(COMPILE, LANGUAGE=FTN,SOURCE=TEXT,...)

Many specifications are defined for every activity (in the example
SPRACHE, QUELLE etc.). The specification identifier may be omitted if
a preset sequence is followed. Also activity and specification identifier
may be abbreviated as long as the meaning is unique, e.g.:

% UEB.,, FTN,QU.=TEXT, ...

There is @ universal presetting for the individual specifications, which are
divided into the obligatory and the optional ones.

This presetting becomes valid if no statement is made to a specification.
The basic C.L. repertoire can be sub-divided in:

- Standard Commands
Compile, Assemble, Link Edit, Start, Compute

- General File Handling
Create, Declare, Secure, Block

- Source Language Handling
Enter, Correct, Clear, Copy, Merge

- Data Handling
Sort, Collate, Copy, Compress (sources)

- Data Transfer Handling
Input and QOutput of object, Output of data

- Assembler Macro Handling
Enter, Clear and Inform

- Long-Term Data Store
e.g. Create, Release of fong-time data

The existing C.L. repertoire may be extended via the DEFINIERE-command
or via a procedure definition without mistakingly altering existing commands.

A number of existing commands are combined to form a new command by
means of a procedure definition. Thereby formal parameters may be introducted
which then appear as specifications of the new command. Example:

Procedure definition:

r¥RECHNE(TEXT, SPRACHE, PROG) (CCMPUTE(TEXT, LANGUAGE ,PROGRAM))
nUEBERS. ,QUELLE=%TEXT,SPR AZ(*SPRACHE (COMPILE,...)

aMCNTIERE, PROGRAMM=x (LINK EDIT,...)
nSTARTE,PROGR.=#PROG ,DUMP=F-NEST’A-NEST (START,...)

Procedure call-up:
aRECHNE, TEXT=QUELLE, SPR.=FTN,PROG=TEST
(COMPUTE, TEXT=SOURCE, LANGUAGE=FTN, PROGRAM=TEST)

Command Sequence

5.3.

Source Language Translation

If the job is processed in the batch mode then the compilation of the source
may be erroneous. A subsequent link editing and start atempt would be
senseless. For this reason there are two special commands which interrupt
the job ofter the occurence of an error, (FEHLERHALT, "ERROR-HALT’) or
(SPRINGE ,BRANCH) which jumps out of the preset command sequence
depending on the setting of specific variables.

One of the most important services of the Programming System is the trans-
lation of source language into runable object coding. This procedure is
always completed in two stepfs (see Fig. 7).

The source language, located either in a background storage LTDS file or a
job work file, is first processed by the appropriate language translator

and an intermediary relocatable coding is generated. The intermediary
coding is then processed by the link editor and a runable object programme
is produced out of one or more linked modules (compare 5.1.).

A typical example is shown in figure 7.

Process Result
On the Background Storage

& UEBERSETZE, ... Source

CompilinV
Link Module Directory of All
Link Modules

¢
AN\
LI
. I
Directory For " /1 !
Retracing | l
|
!
¢ MONTIERE , . . . Linking Code 4~ &
- L o !
Link / !
Editing /
Directory And _ 7
Discription of All \\
User Programs)
+ Retrace Lists '
j
|
/

STARTE, ... User Program
-
/ User Program Information
Run ~- - Control

- - - - References

Fig. 7 Source Language Translation

23

5.4.
Combination of Languages

Example

5.5.

Programming Languages

TAS
Telefunken Assembler

24

The two steps of the translation are used among other things to permit the
use of the different languages. Thereby the mutual call-up facilities in the
languages ALGOL 60, FORTRAN and TAS (Telefunken-Assembler) has been
realized. COBOL-routines may be called-up by TAS, and the rest of the
languages indicated called up by COBOL-routines.

The combination is made during the link editing. The translation between
two languages is not possible during one pass (e.g. insertion of assembler
instructions into an ALGOL-program). The linkage of assembler procedures
to higher languages only has to observe the conventions according to which
the compiler generates its link modules.

The combination of higher language procedures will be explained with an
example of ALGOL and FORTRAN. Some adaption procedures are neces-
sary because of the different program structures, they are conducted in an
intermediate procedure invisible to the user, this procedure may also be
called up recursively.

It is required that FORTRAN be able to administer dynamic fields with the
help of an ALGOL-procedure:

- The FORTRAN-program for mairix manipulation is organized as a
subroutine:
SUBROUTINE MATRIX (N,AT,A2)
DIMENSION A1 (N,N), A2(N)

- The following ALGOL-program contains the declaration of the two
fields al, a2 and the call-up for the FORTRAN-procedure:

‘begin’ 'integer’ n;
'procedure’ matrix (x,y,z); ‘fortran’;
read (n);
"begin’ ’array’ al [1:n,1:n] , a2 [1:n];
matrix (n,al,a2)
‘end’
‘end’

The transition between the two languages permits the almost unlimited use
of procedures from the program library without consideration as to the
language in which the procedure was written.

!n the following a brief survey of the programming languages implemented
in the TR 440 Time-Sharing Computing System is given.

TAS is a fromat-free language with symbolic addressing which not only in-

cludes the actual 240 instructions (machine instructions) but also so-called

pseudo instructions (assembler directives). A macro-library (with macros

;or input and output) is available to the user and it may be expanded by
im.

FORTRAN The FORTRAN-compiler processes two versions:
- FORTRAN according to ASA-standards

- FORTRAN-440, which is fully compatible to FORTRAN IV H, with
language expansion for terminal input and output.

Besides the FORTRAN-=-standard procedures there are FORTRAN-routines
which permit string manipulation.

ALGOL All but the own-variable of the complete language range of the ALGOL 60
has been implemented. The fortran-like COMMON concept has been reali-
zed as expansion. The input and output routines available comprise the
ALCOR and ISO-procedures, all Knuth=-Proposals-procedures and some
special procedures for file handling.

COBOL The realized language range corresponds to the ANSI-standard-COBOL 68
without the reportwriter but with the COBOL-library, the language specific
segmention, the processing of three-dimensional fields and the sort facilities.
For COBOL-objects there are not only dynamic controls and the procedure
tracing (compare 5.6.) but also control of variables. There is a dump which
upon request prints out in readable form variables according to the description
in the data hierarchy.

GPSS GPSS is a language for discrete system simulation. It is used for the formula-
General Purpose tion and treatment of problems in the fields of operations research and orga-
Simulation System nisation analysis as well as in technical-scientific fields.

The GPSS as an interpretative system is implemented with a pre-translator
and a simulation processor, whereby an extensive compatibility with the
GPSS/360 has to be taken into consideration.

RPG RPG is a problem oriented, fixed format language for commercial and orga-

Report Program Generator nisation related programming. Essential language extensions are related to
the configuration of tables. The access was extended to direct access (in-
dexed) and sequential access.

BASIC BASIC is a fortran-like language, especially conceived for time-sharing
systems and easy to learn. The interpreter is fully conversational and permits
almost unlimited manipulation of the sources. The realized language reper-
toire comprises that implemented by SIEMENS and GE.

5.6. This chapter is used to describe the aids which are made available by the
Test Aids Programming System for program checkout.
Source-related Dumps In case of irregular program operation, the user may request that the

contents of all or specific variables together with their source names
or labels be dumped, thus avoiding the use of reference lists.

25

Retracer

Tracing

Dynamic controls

5.7.

Conversational mode

Interventions

Source Language Handling

26

A special system program - the Retracer - will additionally locate an error
position in reference to the original source.language. Furthermore the actual
procedure hierarchy is given out. The dumps, and the form in which they are
to be executed in case of an alarm are specified in the STARTE-command.

A further test aid is the possibility of having a controlled program execution.
The printing of the register contents or storage area can be made dependent
on the addressing of a certain storage area or from the appearance of a
certain instruction (e.g. recording of all appearing branch instructions).

This facility is also possible for programs generated from higher program
languages. These routines are requested by the UEBERSETZE-command and
are activated by the STARTE-command.

Upon request of the user dynamic controls may be compiled during source
translations with reference to:

- observation of index limits
- compatability of actual and formal parameters
- permissability of loop parameters

Thus statically and syntactically unrecognisable errors may be located.

During the dialog from a terminal all services of the Pregramming System
with the exception of a few unimportant restrictions caused by the dialog
are available.

After the start of the dialog: it is possible to insert a single command or a
sequence of commands.

In the conversational mode therefore it is possible to insert commands into an
already present command sequence, which then are handled with priority.
For example the error in an erroneous translation may be corrected with

a command and the translation will then be repeated. Only the explicit re-
quest of the user will cause the continuation at the point of interrupt after
these priority commands have been executed.

In the conversational mode not only commands but also so-called interventions
may be given to the Job Monitor, which processes the job, or to the C.L.
Interpreter and the objekt run of the user. Interventions are only processed
individually and after request. For example the Interpreter unterstands
interventions to the continuation at the point of interrupt and for the clearing
of all inputs and for the not yet executed commands.

If the user conducts his dialog with extensive source language and a large
amount of data then it would be impractical to put them in via a terminal. In
this case the use of the Long- Term Data Store is to be recommended (comp.

4.7.).

The Source Handling acts independently of or in connection with the LTDS-
files. With their help the sources may be entered in the files, single lines
may be corrected, cleared or exchanged. Even single characters of a line
of text may be inserted, exchanged or cleared. Furthermore the user is
able to combine several sources to a new one and to merge or correct
partitions of any sources.

Extended Test Aids

Example for a Dialog

Especially in dialog, the testing of a program is facilitated and accele-
rated by means of the possibility to react fo results right away. An user
program linked to be able to run in conversational mode may be stopped
at any time during it’s run. So-called Check Points are defined in the
UEBERSETZE-command by assigning names to the numbers of the source
lines,

If such a check point is active (indication in the STARTE-command) then the
user program stops at the corresponding point and it reports the name of the
checkpoint to the terminal. This may be followed by several reactions:

- continuation or completion of the user program run
- activation or release of defined check points

- bringing or storing of individual variables contents which may be chosen
freely out of the program.

- dumping of all variables at the terminals or at the high-speed printer
(buffered) according to the specifications.

- insertion of different commands

- stopping at the end of the user program run, i.e. before the execution of
the following command.

Below a dialog is shown, into which explanatory text has been intro-
duced. The user terminates his inputs by x. (escape symbol, point) and
he may input again after the output of x:

XHXKOS*KONSOLE FREI
XXBG,BEN=000003 BENUTZERNAMEX,
0059+

START BENUTZERVERWALTUNG MVO01
09.02.71 10:29

ENDE BENUTZERVERWALTUNG
GIB KOMMANDOSX:XTDEKLARIERE,ANTON,U200
XTEINTRAGE ,ANTON,PROT,.=KO,INF=/
DIMENSION A(10),B(10)
1 SCHREIBE(9, 2)
2 FORMAT(1HO, 10X’ BERECHNUNG VON 10 QUADRATZAHLEN’,/,
1 10X, ’ERWARTE ANFANGSWERT ’)
READ(8,3) C
3 FORMAT(F10.0)
IF(C.EQ.0) GOTO 20
A(1)=C
B(1)=C*C
DO 10 I=1,9
A(I+1)=A(I)+1

10 B(I+1)=(A(I)+1)**2
WRITE(9,4)
4 FORMAT(1HO, 10X, ’QUADRATZAHLEN ')
WRITE(9,5) (A(I),B(I),I=1,10)
5 FORMAT(5X,F10.0,5X,F10.0)
GOTO 1
20 STOP
ENDX.

27

28

The job number is given out after signing on. The user’s index at the
computing center checks the justification of the user to conduct a dialog.
Then the C.L. Interpreter waits for commands. A file, ANTON, will be
declared and filled with a fortran source program without a program

listing.

GIB KOMMANDOSH:RTKORRIGIERE,ANTON,20,INF,=/
1 WRITE(9,2)K.

Subsequently, additional commands are expected: A compilation could
be requested which in this example would end with an error. See line 20
SCHREIBE (9,2). This error must first be corrected.

GIB KOMMANDOSX:XUEBERSETZE,SPR,=FTN,VAR.=KV’D, TRACE=-5TD~,
KE=20-FTN1’90-FTN2?'120-FTN3,QUELLE=ANTONKX.

START PS&FTNCOMP MV63C

ANFANG
000010
000020
000030
000040
000050
000060
000070
000080
000090
000100
000110
000120
000130
000140
000150
000160
000170
000180

PROTOKOLL
DIMENSION A(10),B(10)
1 WRITE(9,2)
2 FORMAT (1HO, 10X*BERECHNUNG VON 10 QUADRATZAHLEN’,/,

1 10X,’ERWARTE ANFANGSWERT ?)
READ(8,3) C
3 FORMAT(F10.0)
IF(C.EQ.0) GOTO 20
A(1)=C
B(1)=C*C
DO 10 I=1,9
A(I+1)=A(1)+1
10 B(I+1)=(A(I)+1)**2
WRITE(9.4)
4 FORMAT(1HO, 10X, *QUADRATZAHLEN ’)
WRITE(9,5) (A(I),B(I),I=1,10)
5 FORMAT(5X,F10.0,5X,F10.0)
GOTO 1
20 STOP

ENDE PROTOKOLL

ERZEUGTES MO : STDHP
UEBERSETZUNG FEHLERFREI

ENDE PS&FTNCOMP .RECHENZEIT:0,39 SEK.
GIB KOMMANDOSX:XMONTIERE
KSTARTE , AKTIV=KEINE (FTN1) ,DUMP=F~KONSOL(A,B)X.

Now the UEBERSETZE-command is given. Thereby the specification VARIANTE
(VAR.) indicates if the object program is able to run in conversational mode.
By means of TRACE it is possible to engage a program execution control la-

ter on. Finally the reaching of source lines 20, 90 and 120 (out of the
recording of TEINTRAGE, see also listing of the compiler) is defined as

check point (KE) with the names FTNT through FTN3.

This franslation was error-free and it generates the link module STDHP
(Standard Program). Subsequently the program is to be linked and started
(the listing of the link editor is omitted here). The check point FTNT is
activated in the STARTE-command. The specification DUMP indicates
that fields A and B will be output at the terminal in case of an error.

START STDHP

STDHP *KE= FTN1X:KEAKTIV(FTN2,FTN3-5)X.
STDHP *KE= FTN1X:KTRACEEIN(ASSIGN)X,
STDHP *KE= FTN1X: X,

The program is stopped at check point FTNT (line 20). Then the check points
FTN2 and FTN3 are activated by the user by means of the intervention
KEAKTIV. FTN3 is to report only after it has been passed through five
times. In the following the intervention effects the recording of all assign-
ments (ASSIGN). The program is continued with an "empty’ intervention.

BERECHNUNG VON 10 QUADRATZAHLEN
ERWARTE ANFANGSWERT K: S5H.
*+ IN ZEILE 80 ZUW.: A(1) = 0.500000000000E+001
STDHP *KE= FTN2X:KEPASSIV(FTN1,FTN2)H.
STDHP *KE= FTN2XK:X.
*+ IN ZEILE 90 ZUW.: B(1) = 0.250000000000E+002
*+ IN ZEILE 100 ZUW.: I = 1

*+ IN ZEILE 110 ZUW.: A(2) = 0.600000000000E+001
++ IN ZEILE 120 ZUW.: B(2) = 0.360000000000E+002
*++ IN ZEILE 120 ZUW.: I = 2
*+ IN ZEILE 110 ZUW.: A(3) = 0.700000000000E+001
*+ IN ZEILE 120 ZUW.: B(3) = 0.490000000000E+002
++ IN ZEILE 120 ZUW.: I = 3
++ IN ZEILE 110 ZUW.: A(4) = 0.800000000000E+001
*» IN ZEILE 120 ZUW.: B(4) = 0.640000000000E+002
#¢« IN ZEILE 120 ZUW.: I = 4

«*+ IN ZEILE 110 ZUW.: A(5) = 0.900000000000E+001
*s IN ZEILE 120 ZUW.: B(5) = 0.810000000000E+002
*+ IN ZEILE 120 ZUW.: I = 5
s¢ IN ZEILE 110 ZUW.: A(6) = 0.100000000000E+002
STDHP *KE= FTN3X:KTRACEAUSX.,
STDHP *KE= FTN3X:KDUMPEK.

The program requests a starting value for it’s computation (line 50) and
assigns this value to the variable A(1). The check point FTN2 is reached
in line 90. FTN1 and FTN2 are released by the intervention KEPASSIV.
After FTN3 (line 120) has been passed four times this check point reports
too (see above). Then first of all the Tracing is released by the inter-
vention and an explicit dump request (not because of an error case).
Only field A will be shown as to give an idea of a source-related dump.

FELD A
A (1)
0.50000000000 E 001 0.60000000000 E 001 0.70000000000 E 001
0.80000000000 E 001 0.90000000000 E €01 0.10000000000 E 002
4 = prrrrrrrrrrrrrrE Ll

29

STDHP *KE= FTN3®:KEPASSIV(FTN3)H.
STDHP *KE= FTN3H: X,

QUADRATZAHLEN
5. 25.
6. 36.
7. 49.
8. 64.
9. 81.
10. 100.
11. 121.
12. 144.
13. 169.
14. 196.

BERECHNUNG VON 10 QUADRATZAHLEN
ERWARTE ANFANGSWERT H:= 20K.

READ, DATEI 8, SATZ 2, ELEMENT 1, REAL*4, SATZ KUERZER ALS VOM FORMAT

ODER VON E/A-LISTE GEFORDERT.''= 207,
START PS&RUECKVERF MV20

1. FORTRAN-HP STDHP
ZEILE 50, ADRESSZONE 1, ADRESSE 7

ENDE PS&RUECKVERF .RECHENZEIT:0.11 SEK.

After the dump FTN3 again reports for new intervention. Thereby FTN3 also
is released. The new starting value had been given in a false format so as to
demonstrate the effectiveness of the Retracer. The error, as expected,
appeared in line 50.

Subsequently the dump requested in the STARTE-command would follow, it
has the same configuration as in the intervention KDUMPE. Thereby the
program is stopped. Finally it is started again by the user but this time
without test aids.

ENDE STDHP .RECHENZEIT:1.24 SEK.
+++++ZULETZT BEARBEITETES KOMMANDO:
MSTARTE ,AKTIV=KEINE (FTN1) ,DUMP =F-KONSOL (A, B)

FEHLER: OPERATORLAUF MIT FEHLER BEENDET
GIB KOMMANDOSHM:®RSTARTEX.
START STDHP

BERECHNUNG VON 10 QUADRATZAHLEN

ERWARTE ANFANGSWERT K: 20K,
QUADRATZAHLEN
20. 400.
21. 441.
22. 484.
23. 529.
24. 576.
25. 625.
26. 676.
27. 729.
28. 784.
29. 841.
Piper
N31/v24 BERECHNUNG VON 10 QUADRATZAHLEN
March 1971 ERWARTE ANFANGSWERT ®: OX.

ENDE STDHP .RECHENZEIT:0.42 SEK.
GIB KOMMANDOSH:HXENH.
KOS *KONSCOLE FREI

30

	000
	001
	002
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30

