3-7-66 DRAFT

Specification: EVAL Microprogram

1.0 GENERAL., The EVAL operation performs interpretive
evaluation of expressions which are written in a
modified Polish-string notation, In addition to initiating
arithmetic operations as a part of the string evaluation,
the operation performs all necessary housekeeping for control
of a pushdown operand stack, Once the EVAL operation is
initiated, it maintains control until certain escape characters
appear in the Polish string, or until* a data fetc 3
attempted which requires software intervention, At these
times, control goes to the next machine instruction.

1.1 FORMAT. EVAL is an RS-format instruction with the hexidecimal
operation code AE. The fields within the RS-format are
interpreted as described below.

1.1.1 FIELD DEFINITION,

R1 points to the string which is being evaluated.

R3 identifies a reg1ster which EVAL will use to return
clue information to the using program.wx_i_' i

B2,D2 is the base address for an indirect addressing table.

1.2 ADDRESSING CONVENTIONS. A1l information which is communicated
~via general registers is in the form of 24-bit absolute
addresses, All addresses contained in the indirect addressing
table is in the form of 12-bit base-displacement lddresses.

1.3 *REGISTER USAGE., R1, R3, and R(0) are used to communicate
nformation to and from the EVAL operation. i

1.3,1 GENERAL REGISTER R1, R1 may be any of the general re@gsters
other than R(0). Tt should be distinct from R3, stnce both
R1 and R3 are updated by EVAL, The left-most byte of Rl is
altered by EVAL; a programmer should not depend upon informat1on
Lontained in this byte, b

s

& - s

S po1nts to the next string character to be 1nterpreted
The user must initialize R1 to the f1rst character in
his string before invoking EVAL, R1 1s updated by EVAL
and will be current upon return from the operation.

#i44 contents of this byte are unpredictable,

* NOTE: Through this specification, Rl and R3 refer to general
registers specified n the operation code. R(0) refers to
general reqgister 0.

3-7-66 DRAFT
page 2

Specification: EVAL Microprogram

1.3.2 GENERAL REGISTER R3, R3 may be any of the general
registers except R(0). It should, however, be distinct
from R1, The contents of R3 provide clue information
upon return from execution of the EVAL operation. The
specific information contained in R3 depends on the
manner in which EVAL completed its execution,

1.3.2.1 R3 CONTENTS ON FUNCTION ESCAPE: Two. - of the EVAL
operators cause an escape, after an address mapping
is performed. The contents of R3 are similar in both
cases, differing only in byte 0 of the register,

891 pointer Function escape
C@] pointer I Left-variable escape
pointer is a 24-bit address which results from

mapping the R-number which follows the
operators mentioned in an EVAL-string.

1.3.2,2 R3 CONTENTS ON OTHER ESCAPES, The remaining escape
operators set up R3 as shown below:

00 00 00 résc I

esc is the string character which caused escape
' from EVAL

1.3.2.3 R3 CONTENTS ON ADDRESS INTERCEPT. There is a third
~escape from EVAL, which occurs when the address mapping
process is "intercepted". For this case, R3 will contain:

1vl successorl
'} A

1v1 is the number of levels of indirect addressing
which occurred before interception.

successor is a 24-bit pointer to the location which would
have been accessed if interception had not occurred.

3-7-66 DRAFT
page 3

Specification: EVAL Microprogram

GENERAL REGISTER 0, This register points to a core
area into whick the operand stack may overflow, Before
EVAL is invoked, the user should insure that R(0) is
pointing to a memory address which is:

a) On a double word boundary
b) available for storage of the operand stack
c) c) at least 64 double-words long

EVAL updates R(0) before escape so that it will contain
the following information:

2*d next avail. spill addr
+ 1-
d the number of items currently in the operand stack.

next addr is the address into which an additional operand
‘ would be placed.

Note that the spill base may be computed from:

NA@ = NA - 2*(2*d)

where NA@ = spill base
NA = next available spill address
d = current stack depth.

CONDITION CODES. The condition register is set by EVAL
to reflect the reason for terminating the operation.

cC explanation

1) Normal completion, EVAL has detected an EOX
TEnd of Expression) operator in the string.

21 Function Call, A function operator or an odd-
address 1nterception has occurred. These cases
are consistent in that a function operator is
inserted in the Polish-string whenever it can
be determined from context that a function must
be invoked., The odd-address intercept is forced
as a result of declarations which specifiy that
an identifier is, in fact, the name of a function,
Function codes take precedence ower odd-address
intercepts in the sense that odd addresses are
ignored while mapping the R-number associated
with a function,

19 Escape. Anv of the pure escape characters other
than EOX set tne condition code to two.

1.4

1.5

3-7-66 DRAFT

page 4
Specification: EVAL Microprogram
CONDITION CODES (continued)
ce ‘explanation
11 -~ Program Interruption. The only abnormal exits

from EVAL occur as the result of a program
interrupt (e.g. invalid address, specification
error, arithmetic error)., If an interrupt occurs
the appropriate interruption routine is executed,
then control passes to the instruction following
EVAL,

MACHINE STATE ON RETURN.

When execution of EVAL is

completed the machine state is as described in Table 1 .,
The operand stack has been unloaded and resides in core,

R1, R3 and R(2) have been updated to the values discussed
in earlier paragraphs, and the appropriate condition code

has been set,

Upon return from EVAL, the user is free

to use any of the machine registers (general or floating
- point) except that, of course, he should preserve any
pertinent information in R1,R3, or R(Q).

Operator

Action

cc

C[R3]

1

@@ Expon,

@6 LVAR

@7 Function

@B Left-Rep.
@F EOX

Checks for two operands,
then escapes. Sets @@ in low
byte of R3,

Left-replace variable. Does
R-mapping on the byte which
follows the LVAR Code. Sets
CP into byte @ of R3,

Does R-mapping on the byte
which follows the FUNCTION
Code, Sets 8@ into byte @
of R3,

Sets @#B into byte 3 of R3,

X
End of expression string.
Sets @#F into bvte 3 of R3,

19

g1

g1

19
99

g9 09 00 09

C@ rr rr rr

‘189 re rrorr

g9 99 99 @8
po 90 99 oF

TABLE 1. Machine State on Return from EVAL

operations

3-7-66 DRAFT
page 5

Specification: EVAL Microprogram

2.0 STRING NOTATION, The string which is interpreted by EVAL
must be consistent with coding conventions which are
designed into the operation code. The following paragraphs
describe the string conventions and notation which must be
adhered to.

2.1 BYTE CLASSIFICATION. Each byte in the string is an operator
which causes some action with respect to a push-down stack
of operands., By convention, the four high order bits
distinguish a "Load Stack" operator from the other operators
in the set., Specifically, if the four high order bits are
zero, an operator is encoded in the four low-order bits;
otherwise a Load Stack operation is implied.

2,1.1 LOAD STACK OPERATOR. A load stack operation is implied
whenever any of the four high-order bits are non-zero.
The Load Stack operator uses the byte contents to accomplish
a two-level indirect address mapping. Detailed interpretation
is discussed in Section 8 of this specification.

Load Stack

where Al # 0

2.1.2 OTHER STACK OPERATORS. If the high-order four digits of a
byte are zero, the four low-order bits specify one of the
16 permissible EVAL operators. The EVAL operators fall into
three general classes; unary operators, binary operators,
and process control operators. An operator byte has the
following configuration:

where n= one of the sixteen possible four-bit combinations.

2.2 OPERATOR LENGTH, As a rule, operators require only a siﬁgle
byte in the Polish-string. In certain specific cases, the
byte following an operator contains additional information
which " the operator must use.

2.2.1 COMPARE OPERATOR, The operator.byte for compare is immediately
followed by a byte which indigates the condition(s) for which
the comparison is "True",

2.2.2 FUNCTION OPERATOR, The operator byte for a function is
Tmmediately followed by a Load Stack Operator. This second
byte provides the internal mapping (R-number) of the function
to be evaluated.

2,2.3 LEFT-VARTABLE OPERATCR. The operator byte for a left-variable

2.2,3

2.4
2.4.1
2.4.1.1

2.4,1.,2

2.4,2

3-7-66 DRAFT
page 6

Specification: EVAL Microprogram

LEFT-VARIABLE OPERATOR(continued)

is immediately followed by a Load Stack Operator, This
second byte provides the internal mapping (R-number) of
the Left-hand variable,

OPERATOR CODES. The 16 EVAL operators are described in this
section of the specification., Arithmetic, logical and
relational operators have an interpretation which is consistent
with the PL/I programming language. Escape and no-operation
codes have no source-language counterpart; their interpretation
is tailored to the needs of the system for which EVAL was
developed. Operator actions, and machine state at the end

of operator interpretation are summarized in Table 2,

UNARY OPERATORS. The unary operators operate on the top
member of the operand stack. The result of their operation
replaces the top member of the stack.

PREFIX MINUS (Code @#2). The value at the top of the operand
stack 1s negated; that is, it is replaced by minus it's value,

A« -A

LOGICAL NEGATION (Code @E). The value at the top of stack is
replaced by § 1f it was "True"; by 1 if it was "False".
"True" and "False" values are consistent with the PL/!

definition.

A«Q if lA];]
A<l if [A] <1

BINARY OPERATORS. The binary operators work with the top two

members of the operand stack. The general operation is -
A «AsB

where 8§ is one of the permitted binary operators,
B js the value at the top of the operand stack
A is the second value in the operand stack.,

Upon cgmp1etion of the operation, A is replaced by a result
and B8 is deleted from the top of stack. '

3-7-66 DRAFT
page 7

Soecc Specification: EVAL Microprogram

.2 BINARY OPERATORS (continued)

4
2,4,2,1 ARITNMETIC OPERATORS. There are four binary arithmetic
operators, The values on which they operate are A-BC
Floating Decimal Numbers. The specific operations are
defined as follows:

Code Operation Process
@8 addition A « A+B
a9 subtraction A « A-B
@c multiplication, A « A*B
@D division A « A/B

2,4.2,2 LOGICAL OPERATORS. The two binary logical operators follow
e convention for the Truth or falsity of a value.

T if JAl2] 5 Foif JA] <
o ® IR

The dogical operators ‘satisfy the following truth tables:
Logical And (&)

Logical Or (]) A
FpT
F R0 1
B
T 1 1

The stack operations are:

Code §5 A « A&B
Code 91 A« A|B

2.4.2.3 COMPARISON OPERATOR(Code @#4), The compare operator tests
the two top stack operands., The results of its comparison
are tested against the relation specified by a byte which
immediately follows the compare operator. If the specified
relationship is true, a value of one is placed on the stack;
if false, a value of zero is nlaced on the stack. In general

AQ‘ADB

where o is one of the nermitted relationals.

2.4.,2.3

2,4.3

2.4.3.1

2.4.3.2

3-7-66 DRAFT
page 8

Specification:,EVAL Microprogram

COMPARISON'OPERATOR(continued)

The four low-order bits of an information byte are used

to specify the desired relationship. The relational codes
are identical to those used in an S/360 conditional branch
instruction, However, there are repeated here for complete-
ness. In the table which follows both the compare operator
(Code @4) and the relational mask are shown. :

String Code Conditions Tested Remarks
= < > '?
g4 99 p 2 9 9 False
g4 @92 /) g2 1 92 A greater than B
g4 04 2 1 9 0 A less than B
g4 96 /) 1 1 9 A not equal B
@a g8 1) A equal B
24 QA 1 g 1 9 A greater than or equal B
g4 gcC 1 1 9 9 A less than or equal to B
34 QE 1 1 1 9 True

CONTROL OPERATORS. The remaining EVAL operators are used
to control processing of the string. They fall into two classes,
escape operators, and no-operators,

NO-OPERATORS. No actual computation results from the appearance
of these operators in the Polish-string, They are included in
the operators set to simplify the problems of recomposing

the Polish-string into a source statement,

Code Name . Action
23 S8kip © This byte and the byte which immediately

follows it are ignored by EVAL,
BA Nop This byte only is ignored by EVAL,

ESCAPE OPERATORS. There are five operators which terminate
execution of an EVAL instruction. Two of these operators are
followed by an information byte which is acted upon before
escape, The other three are single-byte operators.

2.4.3.2

3-7-66 DRAFT

Specification: EVAL Microprogram Page 9

ESCAPE OPBRATORS(continued)

Code

Name Action

g9

p6

p7
g8

gF

Exponentiation Operand stack is checked to make sure
that there are two operands available,
No actual computation is performed,

Left-Variable The Byte which follows the @6 Code is
mapped into a 24-bit address. The
string pointer is positioned to point
two characters beyond the @6 and an
escape is initiated.

Function Action is similar to that for Code (6.

Left-Replace An escape is initiated, with the proper
' information in R3,

End-of-expression An escape is initiated with the proper
condition code setting,

3.0

3.1

3.2.1

3.3.2

3.1.3

3.2

3-7-66 DRAFT
page 10

SPecification: EVAL Microprogranm

VARIABLE MAPPING. Variables in an EVAL String are
represented by one-byte internal codes. When EVAL

detects a variable in the string, it is treated as

a Load Stack Operator. The microprogram attempts to fetch
the current data value via a two-level indirect addressing
scheme, In the case of a scalar variable, the fetch is
completed successfully, and the data value is placed on

top of the operand stack. For array variables, and cer-. .
tain other cases, the attempt to fetch data is “intercepted
and EVAL relinquishes control to software,

LOAD STACK INTERPRETATION. The internal code for a
variable 1s treated as two four-bit offsets to be used
in the address mapping process.

LOAD STACK Al A
The addressing algorithm is:

v C[L + 2*A2}
with L C[R + 2*al

u un

in the above

R = Base of a 16 half-word Segment Directory
L = Base of a 16 half-word Line Directory

81,42= Row numbers in their respective directories,
V = Value sought

SEGMENT DIRECTORY, The segment directory consists of a
sixteen half-word table which starts on a half-word
boundary, Each entry in the table consists of the base-
displacement address of a Line Directory. Segment @ is
not used because the internal codes @n"are reserved for
operators, . .

LINE DIRECTORIES. Each line directory cosists of sixteen
half-words, starting on a half-word boundary. The entries
in a Line Directory consist of base-displacement addresses
which point to data values or to data attribute tables.
edppropr ia by,
DATA WORD BOUNDARIES.'By convention, data values must .be
stored on dowble—wewd boundaries, and data attribute tables
on full-word boundaries. Thus the base-displacement (BD)
addresses in Line- or Segment-Directories normally give
24-bit effective addresses which are multiples of 4.

FETCH INTERCEPTION., As stated in 3.1.3, normal addresses
in a directory will be even. EVAL is designed so that an
odd effective address produces the following:

a) The effective address is placed in R3
b) R1 and R(@) are updated, and the operand stack

is spilled to core.)
¢) EVAL execution is terminated.

3.2

3.3

3-7-66 DRAFT
page 11

Specification: EVAL Microprogram

FETCH INTERCEPTION. (Continued)

The instruction sequence which follows EVAL should test
for this termination condition, and then use the informa-
tion which is pointed to by R3 to complete the data fetch.

SHORT PRECISION DATA. The normal data value is a double
precision en-Babcock Decimal Number, However, bit 30
in an effective address is used to signal the existence
of a short (full-word) data value. If this bit is on,
then only the high order portion of the data value is
fetched from memory. Zeros are forced into the low-order
portion of the operand stack, and processing continues
as for normal values.

3-7-66 DRAFT
page 13

FUNCTIONAL CHARACTERISTICS: EVAL MICROPROGRAM

INTERNAL OPERATION OF EVAL. This section provides detailed
information about the organization and the inner workings of
the EVAL operation. A knowledge of microprogramming, and

the availability of appropriate Control Logic Diagrams is
assumed,

OVERALL ORGANIZATION. As far as possible, the EVAL Microprogram
was divided Into functional pieces which are on seperate
Control Logic Diagrams (CLD's). The following table summarizes
the processes which are defined by each of the CLD's.

CLD FUNCTIONS PERFORMED
Qz489 Post I-fetch Initialization.
QZ490 Setup on entry to EVAL.

Refetch Stack operand on Re-entry to EVAL.
Pick up next string character.

QZ491 Perform R-mapping for Load Stack Operations,
Classify other operations (Unary,Binary,Control)
Re-fetch 2nd operand for binary operators.

Qz492 Branch on EVAL operator; link to arithmetic.
Treat skip and nop operators.
Treat unary minus.

Qz493 Treat AND,OR, and NOT logical operators,
Convert result of COMP into TRUE or FALSE.

QZ494 Move Data from Memory to operand stack.

Qz495 Treat Function and LVAR Operators.

QzZ496 Clean up and housekeeping before exit from EVAL,
Post-arithmetic cleanup.

Qz497 Spill operand stack to memory.

Qz4938 «eessNot presently used....

QzZ499 Treat error returns from arithmetic operations,

The relationships among the above CLD'S are shown schematically
on Figure 5,0, Normal flow of control is shown by double
lines; error paths are single lines.

3-7-66
pajge 14

DRAFT

FUNCTIONAL CHARACTERISTICS: EVAL MICROPROGRAM

5.0 INTERNAL OPERATION (Continued)

5.2 PROGRAM SIZE. The EVAL Microprogram requires approximately
191 words of Read-only Storage (ROS). It is located in
Extended ROS with the following distribution across ROS

planes:
Plane Number Number of ROS Words CLD Reference
1 1 QZ489 JA
4 22 Q2493
19 QZ494 except RA,TA
5 5 QZ489 except JA
23 QZ490
33 QZ491
23 Qz492 ,
2 QZ494 RA and TA
17 QZ495
15 0Z496
24 QZ497
7 QZ499
19T
5.3 DETAILED DESCRIPTION. A detailed narrative description

of EVAL will be written at a later date,

3-7-66 DRAFT
page 15

FUNCTIONAL CHARACTERISTICS: EVAL MICROPROGRAM

ERROR CONDITIONS. A variety of error conditions are detected
within EVAL, Specifie tests, the actions taken, and possible
causes are detailed below.

ROS Location Data Error Type Action
QZ490 CE Rotor. Invalid Addr IC= 25
EH Rotor Not dble-word 26
CH String Invalid Addr 25
A JJ Depth 0dd 26
0Z491 LM Spill Invalid Addr 25
MC Depth Stack Underflow 27
SF R-SEG Invalid Addr 25
02493 LD String Invalid Addr
on Compare Mask 25 =
02494 SG _3Stack Overflow 23"
TG Data Off dble-word bound 26
VH Spill \Invalid Addr 25
Q2495 ED StringNFunction-Inv Addr 25
QZ497 NI Spill Invalid Addr : 25
01 Spill NInvalid Addr 26 ///é@
QZ499 EJ Math Exponent Overflow 2C ~ B
Exponent Underflow 2D *—
—--=Signtficance - 2E * g
Divide Check 2F m”?g“

* May be masked

DECODE
|OPERATOR

Qz491

MOVE DATA
FROM CORE
TO STACK

BRANCH ON

TREAT
NLOGICAL
OPERATORS =¥
Q7493

OPERATOR

Q2492

CLEANUP

BEFORE

RETURN
FROM ARITH

Q7496

—¢=

FIGURE 5,0, EVAL CLD SCHEMATIC

DV 2N A

S~

m

3-7-66 DRAST

string

String Operafor Process Stack depth Control

+ .

90 .. *x escape waxapol d Seti 03 90 90 g9
g1 .. or A<A|B d-1 S+1 —. - e -a
p2 .. | pfx - A« -A d S+1 e e e -
3 .. skip nop ce-- s+2 c. e mm e
24 9m cmpar A<AoB d-1 s+2 e mm em -m
g5 .. and A«A&B d-1 s+1 —- e e a-
76 vr | LVAR R{rri++R3; escape d s*2: .4 . CO rr rr rr

27 rr Function | R[rr]++R3; escape d S+2 82 rr rr rr

3 .. add A<A+B d-1 s+1 —e - me -a

g9 .. subtract | A«A-B d-1 s+1 ca e - ea

gA .. | nop nop d s+1 . e me —a

%8 .. escape | d s+1 99 00 99 98

pc .. mult, A<A*B d-1 5+l s+ ce me me am

g0 .. | divide | A«A/B d-1 s+1 c. e e -

gE .. negate A« A d s+1 —. e e —m

pF .. EOX escape d s+1 90 99 99 oF

Table 2. Summary of EVAL Operation Codes.

:}‘ﬂl\\:} A

LA

