AMIGOS Graphics
Operating System
Reference Manual

ALPHA
MICROSYSTEMS

RIGHT. FROM THE START.

DSM-00058-01 AOO

© 1995 Alpha Microsystems

REVISIONS INCORPORATED

REVISION DATE
00 August 1988
01 April 1990

AMIGOS Reference Manual
To re-order this document, request part number DS0-00058-00

The information contained in this manual is believed to be accurate and reliable. However,
no responsibility for the accuracy, completeness or use of this information is assumed by

Alpha Microsystems.

This document may contain references to products covered under U.S. Patent Number 4,530,048.

The following are registered trademarks of Alpha Microsystems, Santa Ana, CA 92799:

AMIGOS AMOS Alpha Micro
AlphaBASIC AlphaCALC AlphaCOBOL
AlphaFORTRAN 77 AlphalLAN AlphalLEDGER
AlphaMATE AlphaNET AlphaPASCAL
AlphaWRITE CASELODE OmniBASIC
VIDEOTRAX

The following are trademarks of Alpha Microsystems, Santa Ana, CA 92799:

AlphaBASIC PLUS AlphaVUE AM-PC
DART ESP MULTI
inFront/am

All other copyrights and trademarks are the property of their respective holders.

ALPHA MICROSYSTEMS
2722 S. Fairview St.
P.O. Box 25059
Santa Ana, CA 92799

AlphaACCOUNTING
AlphaDDE
AlphaMAIL
AlphaRJE

VER-A-TEL

AMTEC
inSight/am

Table of Contents

Page i

TABLE OF CONTENTS

CHAPTER 1 - INTRODUCTION

11
1.2
13
14
15

WHAT IS AMIGOS? . . e e 1-1
THE AMIGOS DOCUMENTATION LIBRARY 1-1
REFERENCE BOOKS e e e 1-2
HOW THIS BOOKISORGANIZED 1-3
PRINTING CONVENTIONS 1-4

CHAPTER 2 - GENERAL CONCEPTS

2.1
2.2
2.3
2.4
2.5
2.6

COORDINATE SPACES s 2-1
WINDOWS . 2-3
VIEWPORTS . .. 2-4
TRANSFORMATION 2-5
CLIPPING ... 2-6
NORMALIZATION AND DEVICE COORDINATES 2-6

CHAPTER 3 - AMIGOS FUNCTIONS

3.1

3.2
3.3

3.4
3.5
3.6
3.7

INTERFACINGWITHAMIGOS i 3-1
3.1.1 AssemblerBinding 3-1
3.1.2 AlphaCBinding 3-1
3.1.3 AIphaBASICBIndingc.o i 3-2
CONTROL FUNCTIONS e 3-2
GRAPHICAL OUTPUT ... e 3-3
3.3.1 Polyline Attributes 3-4
3.3.2 Polymarker Attributes 3-5
3.3.3 TextAttributes 3-6
3.3.4 FillArea Attributes L 3-7
3.3.5 BitmapAttributes 3-7
3.3.6 Generalized Drawing Primitive Attributes 3-8
3.3.7 Color ... 3-8
GRAPHICAL INPUT .. e 3-9
INQUIRY FUNCTIONS e e 3-9
ERRORHANDLING i 3-9
STATUSRETURN CODES e 3-10

AMIGOS Reference Manual, Rev. 01

Page ii

Table of Contents

CHAPTER 4 - THE GRAPHICS CONTROL BLOCK

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10
411
412
413
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25
4.26
4.27
4.28
4.29
4.30
4.31
4.32
4.33
4.34
4.35
4.36
4.37
4.38
4.39
4.40
4.41
4.42
4.43
4.44
4.45
4.46
4.47

USER ARGUMENT (GC.ARG) oeoee e 4-3
SYMBOLIC WORKSTATION NAME (GC.NAM) 4-3
FLAGS (GC.FLG) ..ottt e et 4-3
ERROR RETURN (GC.ERR)ottt 4-3
POINTER TO DYNAMIC IMPURE AREA (GC.DPT) 4-3
SIZE OF DYNAMIC IMPURE AREA (GC.DSZ) 4-4
POINTER TO WORKSTATION GDV (GC.GDV)o\ eoe o 4-4
NUMBER OF POLYGON OUTPUT POINTS (GC.OPP) 4-4
/O DDB (GC.DDB)ttt et 4-4
/O BUFFER (GC.BUF) ...\t otee et 4-4
INPUT FUNCTION BUFFER POINTER (GC.IBP) 4-4
USER OUTPUT DDB INDEX (GC.OUT)o\ oeeeeeaeeen 4-4
ALTERNATE OUTPUT TERMINAL NAME (GC.TNM) 4-5
ALTERNATE TERMINAL OUTPUT TCB INDEX (GC.TCB) 4-5
CURRENT FUNCTION CODE (GC.FUN) . ..o\ oeoeeaaeeeeans 4-5
CURRENT LINE TYPE (GC.CLT) .. e teeeee e e 4-5
CURRENT LINEWIDTH (GC.LWS) . . oot oveee e 4-5
CURRENT LINEWIDTH NORMALIZED (GC.LWN) 4-6
CURRENT POLYLINE COLOR INDEX (GC.PLC) 4-6
CURRENT MARKER TYPE (GC.CMT)\t eoeeeeaeaee et 4-6
CURRENT MARKER SIZE (GC.MSS) ...\ iviieieaeaeeen 4-6
CURRENT MARKER SIZE NORMALIZED (GC.MSN) 4-6
CURRENT POLYMARKER COLOR INDEX (GC.PMC) 4-6
CURRENT TEXT FONT (GC.TXF) © e oeeeeeeee e 4-7
CURRENT TEXT COLOR INDEX (GC.TXC) . vveeaaennn 4-7
CURRENT CHARACTER HEIGHT (GC.CHH) 4-7
CURRENT CHARACTER HEIGHT NORMALIZED (GC.CHN) 4-7
CURRENT CHARACTER ROTATION (GC.CHR)o voe ot 4-7
CURRENT FILL AREA STYLE INDEX (GC.FAl) 4-7
CURRENT FILL AREA INTERIOR STYLE (GC.FAS) 4-7
CURRENT FILL AREA COLOR INDEX (GC.FAC) 4-7
CURRENT WRITING MODE (GC.WMD)o 4-8
CURRENT COLOR MODE (GC.CMD) . ..o eeeieaaeen 4-8
RASTER BUFFER POINTER (GC.RBP)ovuveen... 4-8
RASTER BUFFER SIZE (GC.RSZ) . . oo oteee e 4-8
RESERVED (GC.RSV) . ..ottt 4-8
VIEWPORT X MINIMUM (GC.VXL) ... oeoeeeeaeeeeeae 4-9
VIEWPORT Y MINIMUM (GC.VYL) .. oeoe e 4-9
VIEWPORT X MAXIMUM (GC.VXH) .ot 4-9
VIEWPORT Y MAXIMUM (GC.VYH) . oioe oo 4-9
WINDOW X MINIMUM (GC.WXL) . . e eeeeeee e 4-9
WINDOW Y MINIMUM (GCWYL) . .. o eeeeeee e 4-9
WINDOW X MAXIMUM (GC.WXH) oeoeeeeae e 4-9
WINDOW Y MAXIMUM (GCWYH) ovoeee e 4-9
WINDOW X SCALING FACTOR (GC.WSX) .. .o vvoeeeeaan . 4-10
WINDOW Y SCALING FACTOR (GC.WSY) ...\ oooeoeeaa . 4-10
IMPURE AREA POINTER FOR GDV (GC.IMP) 4-10

AMIGOS Reference Manual, Rev. 01

Table of Contents Page iii
CHAPTER 5 - THE GRAPHICS DEVICE DRIVER
5.1 AN OVERVIEW OF THE GDV e 5-2
51.1 GDVMemoryUsagecc i 5-2
512 GDVDiskUsage 5-3
5.2 VECTOR GDVS ... e e e e 5-3
5.3 RASTER GDVS e e 5-3
5.3.1 Raster GDV Memory Requirements 5-3
CHAPTER 6 - AMIGOS REFERENCE LISTS
6.1 ALPHABETIC FUNCTION DESCRIPTION LIST 6-2
6.2 FUNCTION GROUPINGLISTS 6-6
Control Function List 6-6
Output Function List. 6-7
Output Attributes List e 6-9
Input Function List 6-11
Inquiry Function List 6-11
Mode Setting Function List i 6-12
CHAPTER 7 - REFERENCE SHEETS
GBM e 7-3
GCLRW . 7-11
GCLWK . 7-13
GESC . 7-15
G A e 7-18
GG P .. e 7-21
GDP -Circle. 7-24
GDP - Circular Arc 7-26
GDP - Circular SECIOr 7-28
GDP - Cubic B-spline Curve 7-30
GDP -EIlipSe e 7-32
GDP - Elliptical Arc 7-34
GDP - Elliptical Sector 7-36
GDP - Parametric Curve 7-38
GDP-Rectangle 7-40
GOPWK . 7-42
G . 7-44
GPM 7-47
GQCHR .. 7-50
GO CR . 7-52
GOD S .. 7-56
GRERR . . 7-58
GO TXE .ttt e 7-61
GO TXR . 7-65
GROLC . 7-68
GROV L . 7-72
GSCHH . 7-74
GSCHR . 7-76
GSCM L e 7-78

AMIGOS Reference Manual, Rev. 01

Page iv Table of Contents

GSCR 7-80
GSFAC 7-84
GSF Al e 7-86
GO AS 7-88
GSOMLC L e 7-91
GOV L L e 7-94
GSPLC . 7-96
GO PSS . . 7-98
GO P . 7-100
GSOPMC .. 7-103
GO PMS e 7-105
GO P M L e 7-107
GO X 7-110
GO X 7-112
GSOWKYV L e 7-114
GSOWKW L e 7-117
G OWIM L e 7-120
G X 7-123
GUP W L L e 7-126

APPENDIX A - STATUS CODES AND MESSAGES

APPENDIX B - DEFINED FILL AREA AND HATCH PATTERNS

APPENDIX C - BMP BITMAP IMAGE FILE FORMAT

C.1 THEBMP FORMAT . .. e e C-1
C.1.1 The AMOS FileHeader C-2

C.1.2 The Bitmap Image Definition Block C-2

C.1.3 The Color Palette Definition Block C-2
TheBitmaplmage C-3

C.1.4 The lmage Packing Algorithm C-4

APPENDIX D - SAMPLE PROGRAMS

D.1 ASSEMBLER SAMPLE PROGRAM D-1

D.2 ALPHABASIC SAMPLE PROGRAM D-3

D.3 ALPHAC SAMPLE PROGRAM D-5
GLOSSARY

DOCUMENT HISTORY

INDEX

AMIGOS Reference Manual, Rev. 01

Preface Page v

PREFACE

ACKNOWLEDGEMENTS

The Alpha Micro Graphics Operating System (AMIGOS) is based on, and contains many
of the concepts of, the proposed Computer Graphics Interface and the Graphics Kernal
System (GKS). As such, the design of the product is based on the work of many groups.

Much of the early design methodology was developed at the Workshop on Graphics
Standards Methodology held in May 1976 in Seillac, France under IFIP WG5.2
sponsership. GKS itself was originally developed by the West German Standardization
Institute, DIN, in 1978 and was subsequently refined extensively during the period
1980-1982 by Working Group 2 of the Subcommittee on Programming Languages of the
Technical Committee on Information Processing of the International Standard Organiza-
tion (ISO TC97/SC5/WG2).

The resulting draft International Standard ISO/DIS 7942 then became the draft of the
American National Standard for GKS. GKS, in turn, was heavily influenced throughout its
development cycle by the work of the Graphics Standards Planning Committee of the
Special Interest Group on Computer Graphics of the Association for Computing Machin-
ery (ASM-SIGGRAPH GSPC). This work, known as the CORE SYSTEM proposal, was
published and widely distributed in 1977 and again (in a revised version) in 1979.

This manual makes liberal use of the explanations of underlying concepts contained in
this earlier work.

READER AUDIENCE

We assume the reader of this manual is familar with AMOS, and either the Assembler,
AlphaC or AlphaBASIC programming languages.

This reference manual is most emphatically not a tutorial on using a graphics operating
system. However, many explanatory books do exist. Please refer to the section
"Reference Books," in Chapter 1 for a list of books you might find useful.

AMIGOS Reference Manual, Rev. 01

CHAPTER 1

INTRODUCTION

This chapter introduces you to AMIGOS, Alpha Microsystems’ Graphics Operating System. It
discusses the AMIGOS documents available, reference books you might find useful, how this
book is organized, and the printing conventions we use in this book.

1.1 WHAT IS AMIGOS?

AMIGOS is organized as a collection of subroutines which may be used by an
application program to perform graphical input, output, and transformation. AMIGOS
provides a standardized interface between the various types of graphical input and
output devices (printers, plotters, CRTs, etc.) and application software.

By providing this standard interface, you can write application software so graphics can
be displayed on many different device types without modifying the application. With the
graphics market in a state of flux, this device independence allows your application to
function on many types of devices.

AMIGOS is device independent because it uses a graphics device driver (GDV) which
performs all device dependent translations. The GDV is similar in concept to the
terminal driver (TDV) used by the AMOS terminal service system to provide terminal
type independence.

1.2 THE AMIGOS DOCUMENTATION LIBRARY

The AMIGOS product’'s documentation library is especially for programmers and
consists of these books:

® AMIGOS Reference Manual - gives a brief introduction to graphics systems in
general and includes detailed information for all AMIGOS functions.

® AMIGOS Installation Instructions and Release Notes - contains all the information
you need to get AMIGOS up and running on your computer.

® GRAPH Reference Manual - describes how to use the GRAPH software with
AMIGOS to let your application make, store, retrieve and modify charts.

AMIGOS Reference Manual, Rev. 01

Page 1-2

Chapter One

1.3 REFERENCE BOOKS

During AMIGOS’s development, the books listed below have proven to be excellent
resources for information about graphics.

Computer Graphics. Written by Donald Hearn and M. Pauline Baker. Published in
1986 by Prentice-Hall, Inc.

Principles of Interactive Computer Graphics, second edition. Written by William
M. Newman, Robert F Sproull. Published in 1979 by McGraw-Hill Book
Company.

Computer Graphics A Programming Approach. Written by Steven Harrington.
Published in 1983 by McGraw-Hill Book Company.

Fundamentals of Interactive Computer Graphics. Written by J. D. Foley and A.
Van Dam. Published in 1982 by Addison-Wesley Publishing Company, Inc.

Raster Graphics Handbook. Written and published by Conrac Corporation in
1980.

PostScript Language Tutorial and Cookbook. Written by Adobe Systems Incorpor-
ated. Published in 1985 by Addison-Wesley Publishing Company, Inc.

PostScript Language Reference Manual. Written by Adobe Systems Incorporated.
Published in 1985 by Addison-Wesley Publishing Company, Inc.

PostScript Language Program Design. Written by Adobe Systems Incorporated.
Published in 1988 by Addison-Wesley Publishing Company, Inc.

Alpha Microsystems’ documents you may need to refer to are:

AMOS Monitor Calls Reference Manual

AlphaBASIC User’s Manual or AlphaBASIC PLUS User’s Manual
AlphaBASIC XCALL Subroutine User’s Manual

AlphaC User’s Manual

AlphaC AMOS Monitor Interface Manual

AlphaC Release Notes

AMOS Terminal System Programmer’s Reference Manual

AMIGOS Reference Manual, Rev. 01

Introduction Page 1-3

1.4 HOW THIS BOOK IS ORGANIZED
The AMIGOS Reference Manual is organized into seven chapters and four appendices.

Chapter 2 - "General Concepts" introduces you to terms and ideas particular to graphics
systems.

Chapter 3- "AMIGOS Functions" describes status return codes, AlphaBASIC subroutine
calls, control functions, graphical output and input, inquiry functions and error handling.

Chapter 4 "The Graphics Control Block" shows the format of the graphics control block
and describes each of its fields.

Chapter 5 "The Graphics Device Driver" introduces you to the graphics device driver
that translates AMIGOS’s commands for the particular output device.

Chapter 6 "Reference Lists" contains a group of lists showing function name and syntax
for specific reference needs. You'll find an alphabetic list by function name showing
Assembler, AlphaBASIC, and AlphaC calling format, and lists organized by major
function group.

Chapter 7 "Reference Sheets" is organized alphabetically by function name and
provides you with the function’s purpose and complete information on the calling
sequence to use with Assembler, AlphaBASIC and AlphaC languages.

Appendix A - "Status Codes and Messages" lists the status codes and corresponding
messages AMIGOS returns after call completion.

Appendix B - Defined Fill Area and Hatch Patterns” illustrates the fill area and hatch
patterns already defined in AMIGOS.

Appendix C - "BMP Bitmap Image File Format" describes the BMP file’'s AMOS file
header, bitmap image definition block, color palette definition block and image packing
algorithm.

Appendix D -"Sample Programs" provides you with working programs in Assembler,
AlphaBASIC, and AlphacC to illustrate AMIGOS’s capabilities.

At the end of the appendices, a glossary contains many of the terms and definitions
specific to graphics software generally and AMIGOS in particular.

AMIGOS Reference Manual, Rev. 01

Page 1-4

Chapter One

1.5 PRINTING CONVENTIONS

Like other Alpha Micro documents, this book uses standard symbols and abbreviations
to make the information easier to read and understand.

SYMBOL

DESCRIPTION

{

type

}

This type face is used when illustrating the function
format. For example:

GOPVK gch, st at us.
Optional elements in a function are enclosed within

braces. When these symbols appear in a sample, they
designate elements you may omit from the command line.

AMIGOS Reference Manual, Rev. 01

CHAPTER 2

GENERAL CONCEPTS

This chapter discusses these general concepts: coordinate spaces, transformation, clipping,
normalization and device coordinates.

2.1 COORDINATE SPACES

You may find it helpful in understanding the operation of AMIGOS to visualize two
separate coordinate spaces. The first of these spaces is referred to as the world. The
world resides in the first quadrant of a Cartesian plane and has a range of 0 to 32767 in
both X and Y directions. The user program performs all drawing with respect to the
world coordinate space.

For example, when AMIGOS is directed to draw a line, the X and Y coordinates defined
in the call serve as the endpoints for the line to be drawn. These coordinates must
reside in the world space and, therefore, must be in the range of 0 to 32767. In Figure
2-1, a polyline is drawn in the world space using the coordinates 1000,2000 and
10000,15000 as endpoints.

AMIGOS Reference Manual, Rev. 01

Page 2-2 Chapter Two

32767
10000,15000
v ()
(1000,2000)
o
o X 32767

MAC219

Figure 2-1: The "World"

Since the world coordinate space does not directly relate to an output device without
some form of translation, its coordinates are often referred to as Virtual Device
Coordinates (VDC). The user program draws in this virtual world without regard to the
size or resolution of the output device.

The second coordinate space in AMIGOS is the Normalized Device Coordinate (NDC)
space. This space also resides in the first quadrant of a Cartesian plane and has a
range of 0 to 32767 in the X and Y directions. The NDC space is used by AMIGOS to
translate the world drawn by the user into an image to be displayed on the output
device. The user does not draw in the NDC space but it is presented here to provide an
understanding of the transformations which occur between the user program and the
output device.

AMIGOS defaults to displaying the entire world space in the entire NDC space. In this
case, no transformation occurs, and the world space is the same as the NDC space. It
is the job of the graphics device driver (GDV) to translate the NDC coordinates into the
actual coordinates required for a specific output device. On output devices which do not
have a square display area (most CRT devices) the entire NDC space may not be
visible in the default mode (see Figure 2-2).

AMIGOS Reference Manual, Rev. 01

General Concepts Page 2-3

NOT VISIBLE

32767
Vi - " -~ -~ - - - - - - - - - AY
1 1
1 1
1 1
1 1
1 1
1 1
: 10000,15000 '
1 1
1 1
CRT DISPLAY ! :
! i
1 1
1 1
1 1
1 (1000,2000) :
1
10 !
1
e X 32167

MAC220

Figure 2-2: Normalized Device Coordinate (NDC) Space

2.2 WINDOWS

It may not always be desirable to display the entire world. The user may wish to view
only a portion of the entire drawing. AMIGOS allows you to define a rectangular portion
of the world space to be displayed. This partial world space is called a window (see
Figure 2-3). When a window is defined in AMIGOS, that portion of the world space is
mapped into NDC space for display. This normally results in all subsequent drawings
being scaled or "zoomed up" for display.

AMIGOS Reference Manual, Rev. 01

Page 2-4 Chapter Two

"WORLD" NDC SPACE

CRT
WINDOW DISPLAY

-~ .
—
—
—
-

e e e e e e e e e e e e e = -

MAC221

Figure 2-3: A "Window"

2.3 VIEWPORTS

AMIGOS defaults to scaling the window into the entire NDC space as shown in Figure
2-3. This may not always be desirable. It might be necessary to display the window in a
smaller portion of the NDC space. We may, for example, wish to draw only in the upper
right corner of the NDC space. AMIGOS allows you to define a rectangular portion of
the NDC space in which to display the current window. This partial NDC space is called
a viewport. When a viewport is defined in AMIGOS, the currently defined window is
mapped into the viewport area of the NDC space. This normally results in all
subsequent drawings being scaled or "zoomed down" for display. Figure 2-4 shows the
effect of defining a viewport. In this case, no window has been defined, so the window is
equivalent to the entire world space. This function is useful in applications such as
displaying multiple charts on a CRT screen. In this application, a viewport is defined
followed by the display of the first chart. Then a second viewport is defined followed by
the drawing of a second chart, and so on.

AMIGOS Reference Manual, Rev. 01

General Concepts

Page 2-5

"WORLD"

WINDOW

O

/

A

2.4 TRANSFORMATION

NDC SPACE

VIEWPORT

I

MAC222

Figure 2-4: Viewport

The resulting scaling and movement of a drawing from the window in the world space to
a viewport in the NDC space is called transformation. Figure 2-5 details the effect of
specifying a window and viewport and the resulting transformation of the drawing.

"WORLD"

WINDOW

NDC SPACE

CRT DISPLAY

VIEWPORT

e e e e e e e e e e e e =

MAC223

Figure 2-5: Window and Viewport Transformation

AMIGOS performs transformation on all output and input functions as the functions are
executed. Objects which are already drawn on the output device are not transformed by
AMIGOS when a new window or viewport are specified. If you want to transform
drawings which are already displayed, it is your program’s responsibility to redraw the
objects with the new window and viewport in effect. You are free to specify any window
and viewport desired, within the 0 to 32767 coordinate limits.

AMIGOS Reference Manual, Rev. 01

Page 2-6 Chapter Two

AMIGOS does not preserve the aspect ratio of the workstation while performing these
transformations. It is possible, therefore, to produce a distorted image. When a worksta-
tion is opened, AMIGOS presets the window and viewport parameters to be equal to the
entire world coordinate space.

2.5 CLIPPING

When a window is specified which is smaller than the world, all portions of the image
falling outside the window are discarded. This process is referred to as clipping. By
performing clipping, AMIGOS ensures that no parts of the image are drawn outside the
window boundary and no attempt is made to draw an image outside of the workstation
display area.

2.6 NORMALIZATION AND DEVICE COORDINATES

The process of transformation and clipping results in a new image which is specified in
Normalized Device Coordinates (NDC). All coordinates passed to a GDV during output
are normalized. The GDV is responsible for translating these coordinates into Device
Coordinates (DC) for the specific output device being used. This normally requires a
translation from the 32K by 32K normalized coordinate space into the actual resolution
of the device.

All coordinates returned to AMIGOS through the GDV by an input function are specified
in NDCs. AMIGOS performs a reverse transformation which yields world coordinates to
the user program.

AMIGOS Reference Manual, Rev. 01

CHAPTER 3

AMIGOS FUNCTIONS

This chapter describes AMIGOS functions. Topics included are: how to interface to AMIGOS
via assembler, AlphaBASIC, and AlphaC subroutine calls; control functions; graphical output
and input; inquiry functions and error handling.

3.1 INTERFACING WITH AMIGOS

Depending on the language used in your application program, you will communicate
with AMIGOS in one of three different language bindings. Each binding calls the same
routines in AMIGOS, but each binding has a uniqgue method of passing arguments to
and from the routines. In general, AMIGOS is called specifying a particular function to
be performed. Along with the function, your program supplies any necessary arguments
required by the function. Upon return, AMIGOS provides a status indicating whether the
call was successful.

3.1.1 Assembler Binding

The assembly language binding provides a closely coupled, efficient interface to
AMIGOS. Your program maintains call-specific argument blocks and variables for use
by AMIGOS. The calls themselves are macro expansions which cause a subroutine call
to the AMIGOS dispatch vector in the System Communication Area. In most calls, your
program may specify a return status argument as part of the call. The assembler binding
is available by SEARCHing for AMGSYM.UNV at the head of the program. This module
defines all of the calls and associated data structure items.

3.1.2 AlphaC Binding

The AlphaC language interface to AMIGOS is very similar in structure to the assembly
language binding. Your program includes AMIGOS.H in the program to define the calls
and data structures required by AMIGOS. When the compiled object code is linked with
the AMGCLB.LIB library, the resulting program contains the interface to the AMIGOS
routines. The data structures required by individual calls are detailed in the reference
sheets section of this manual in Chapter 7. All calls return status as the returned
variable. This allows your program to store the status or use the conditional call method
as shown in the AlphaC example in Appendix D.

AMIGOS Reference Manual, Rev. 01

Page 3-2 Chapter Three

3.1.3 AlphaBASIC Binding

You may use the ++INCLUDE statement to include the file AMGSYM.BSI in an
AlphaBASIC program to use AMIGOS from an AlphaBASIC subroutine level. The
subroutine, AMGSBR.SBR (for AlphaBASIC) or AMGSBR.XBR (for AlphaBASIC
PLUS), includes all calls to the AMIGOS routines. The interface to AMIGOS from
AlphaBASIC is somewhat different in concept from the Assembler and AlphaC bindings.
A major difference exists in the area of memory allocation. AMIGOS requires a Graphics
Control Block (GCB), explained in Chapter 4, to perform operations on a workstation. In
addition to the GCB, AMIGOS requires a block of "work" memory in which to perform
graphics functions. This block, called the dynamic impure area, is variable in size,
dependent upon the type of workstation being used. Since AlphaBASIC is not able to
allocate memory dynamically, it is necessary for the program to contain a MAP
statement which defines an unformatted variable large enough to include both the GCB
and the dynamic impure area. The following statement allocates a 32,000 byte area for
use by AMIGOS.

MAP1 GCB, X, 32000
A GCB, such as that described above is necessary for each open workstation. Some
raster type workstations may require more than 32K of dynamic impure space. If this is
the case, the MAP statements must be broken into multiple statements such as:
MAP1 GCB
MAP2 GCBA, X, 32000
MAP2 GCBB, X, 30000
The above statements allocate a 62,000 byte area for use by AMIGOS.

Certain calls require additional arguments passed as a binary point array. The following
format defines an X-Y point array:

MAP1 PO NT' ARRAY

MAP2 PO NT' COUNT, B, 2 I'total count of points

MAP2 PO NTS(n) I'n = maxi num nunber of points
MAP3 X PO NT, B, 2 I X coordinate
MAP3 Y’ PO NT, B, 2 | Y coordi nate

3.2 CONTROL FUNCTIONS

AMIGOS contains several control functions used to begin, terminate, and control the
use of a graphics workstation from the applications software. Each workstation to be
accessed through AMIGOS must first be opened by the Open Workstation (GOPWK)
function. When you are through using the workstation you terminate its use with the
Close Workstation (GCLWK) function.

Additional control functions allow clearing (initialization) of the workstation display
surface, updating of the workstation display for synchronization purposes, and
performance of special workstation dependent functions. Whenever a workstation has

AMIGOS Reference Manual, Rev. 01

AMIGOS Functions Page 3-3

been opened for use by a program, it is represented within the program by a data
structure known as the Graphics Control Block (GCB). This control block, which is
allocated by the application software and therefore resides in the user's memory
partition, is similar in concept to the Dataset Driver Block (DDB) used by the AMOS file
system to refer to data files. The Graphics Control Block is discussed further in Chapter
4,

3.3 GRAPHICAL OUTPUT

The graphical information AMIGOS generates and routes to the workstation is built up of
basic pieces called output primitives. AMIGOS provides six output primitives:

® Polyline (GPL) - AMIGOS generates a set of connected lines defined by a point
sequence.

® Polymarker (GPM) - AMIGOS generates symbols of one type centered at given
positions.

® Text (GTX) - AMIGOS generates a character string at a given position.

® Fill Area (GFA) - AMIGOS generates a polygonal area which may be hollow, filled
with a solid color, or filled with a pattern.

® Bitmap (GBM) - AMIGOS generates an array of pixels with individual colors.

® Generalized Drawing Primitive (GDP) - AMIGOS addresses special geometrical
output capabilities of workstations, such as drawing spline curves, circular arcs,
elliptic arcs, etc. The objects are characterized by a primitive type, a set of points,
plus other data.

Each output primitive potentially has two types of attributes: geometric and non-
geometric. These attribute types determine the exact appearance of the output primitive.

The values of these attributes are set and stored by AMIGOS in the workstation state
list. A separate AMIGOS function is provided for each primitive attribute to allow the
application program to specify the value of an attribute without unnecessarily specifying
the values of other attributes. During the creation of an output primitive (that is, when
one of the AMIGOS output primitive functions is invoked) these values are bound to the
primitive and cannot be changed afterward.

Geometric attributes control the geometric aspects of primitives; these are aspects
affecting the shape or size of a primitive (for example, Character Height (GSCHH) for
Text (GTX). Each geometric attribute is defined separately for each primitive and a
primitive may have no, one, or many geometric attributes.

Non-geometric attributes control primitive aspects which do not affect the shape or size
of a primitive but only affect its appearance (for example, Linetype (GSPLT) for Polyline
(GPL), or Color Index (GSFAC) for all primitives except Bitmap (GBM)).

AMIGOS Reference Manual, Rev. 01

Page 3-4 Chapter Three

There is a separate attribute for each non-geometric aspect. As with the attributes
controlling the geometric aspects, these attributes are workstation independent. Each
of these attributes applies to only one primitive type.

As indicated above, Generalized Drawing Primitive (GDP) and Bitmap (GBM) do not
have corresponding attributes. The GDP uses the most appropriate of the individual
attributes for each GDP function. GBM contains color index information as part of its
definition but has no other non-geometric aspects.

The following table shows the attributes which apply to each output primitive.

PRIMITIVE TYPE ATTRIBUTE

Polyline Linetype
Linewidth
Polyline Color Index

Polymarker Marker Type
Marker Size
Polymarker Color Index

Text Text Font
Text Color Index
Character Height
Character Rotation

Fill Area Fill Area Interior Style
Fill Area Style Index
Fill Area Color Index

Bitmap none

Generalized Polyline or Fill Area
Drawing Primitive Attributes

3.3.1 Polyline Attributes

Polyline has no geometric attributes. The representation of polyline at the workstation is
controlled by these individually specified attributes:

® Linetype (GSPLT)

e Linewidth (GSPLS)

AMIGOS Reference Manual, Rev. 01

AMIGOS Functions Page 3-5

® Polyline Color Index (GSPLC)

The Linetype (GSPLT) specifies a sequence of line segments and gaps which are
repeated to draw a polyline. Whether this sequence is restarted or continued at the start
of the polyline or at each vertex of a polyline is workstation dependent.

Linetype 1 is solid, Linetype 2 is dashed, Linetype 3 is dotted, and Linetype 4 is
dashed-dotted. Every workstation supports these four linetypes in a recognizable
fashion. Linetypes greater than 4 may be available but their styles are workstation
dependent.

The Linewidth (GSPLS) is specified as a nominal linewidth in world coordinates. This
value is mapped by the workstation to the nearest available linewidth. For solid
linetypes, a line width specification larger than the workstation can support results in
AMIGOS drawing the wide solid line as a filled area. Multiple segments in a polyline are
mitred during the wide line emulation.

The Color Index (GSPLC) specifies which entry in the workstation’s color table will be
used to display the polyline.

3.3.2 Polymarker Attributes

Polymarker (GPM) has no geometric attributes. The representation of polymarker at the
workstation is controlled by the individual polymarker attributes:

® Marker Type (GSPMT)

® Marker Size (GSPMS)

® Polymarker Color Index (GSPMC)
Markertypes 1 to 5 are defined as:

Markertype 1 = dot
Markertype 2 = plus sign
Markertype 3 = asterisk
Markertype 4 = circle
Markertype 5 = diagonal cross

Each markertype is centered on the position it is identifying. Every workstation supports
these five markertypes in a recognizable fashion. Markertypes greater than 5 may be
available but their styles are workstation dependent.

The Markersize is specified as a nominal size in world coordinates. This value is
mapped by the workstation to the nearest available size. Markersize 1 is always dis-
played as the smallest displayable dot.

The Color Index specifies which entry in the workstation’s color table will be used to
display the polymarker.

AMIGOS Reference Manual, Rev. 01

Page 3-6 Chapter Three

3.3.3 Text Attributes
Text has these geometric attributes:
® Character Height (GSCHH)
® Character Rotation (GSCHR)

The representation of text at the workstation is controlled by the individual attributes
Text Font (GSTXF) and Text Color Index (GSTXC).

Appearance of text on the workstation is controlled by the aspects Character Height
(GSCHH) and Character Rotation (GSCHR). However, the use of these values in display-
ing text is determined by the setting of the text font. GSCHH specifies the nominal
height of a capital letter character. The GSCHR specifies the angle at which the text will
be displayed relative to a provided origin point. This angle is specified as a
counterclockwise rotation in tenths of degrees.

The text font value is used to select a particular font on the workstation. Every
workstation supports at least one font that is capable of generating a graphical
representation of the characters defined in ANSI X3.4-1977, commonly known as ASCII.
This is font number 1.

AMIGOS also provides a set of internally generated stroke fonts numbered 1001 to
1009. Font 1001, a Simplex Roman stroke font is always available. Fonts 1002 through
1009 are defined as follows:

FONT # TYPE FILE

1002 Simplex Script SIMSCR.FNT
1003 Complex Roman COMROM.FNT
1004 Complex Italic COMITL.ENT

1005 Complex Script COMSCR.FNT
1006 Duplex Roman DUPROM.FNT
1007 Triplex Roman TRIROM.FNT
1008 Triplex Italic TRITL.FNT
1009 Gothic Roman GOTHIC.FNT

These fonts must reside in user or system memory to be used. If a font above 1001 is
specified and not found in memory, AMIGOS defaults to font 1001 for subsequent text
operations. If a font below 1001 is specified and the workstation does not support that
font, the default workstation font (font 1) is used.

AMIGOS Reference Manual, Rev. 01

AMIGOS Functions Page 3-7

3.3.4 Fill Area Attributes
The representation of fill area at the workstation is controlled by the individual attributes:
® Fill Area Interior Style (GSFAS)
® Fill Area Style Index (GSFAI)
® Fill Area Color Index (GSFAC)

The fill area interior style is used to determine in what style the area should be filled. It
has the following values:

® Hollow - No filling, but draw the bounding polyline, using the Fill Area Color Index
currently selected. The Linetype and Linewidth are workstation dependent, but
will normally default to the current polyline type and width.

® Solid - Fill the interior of the polygon using the fill area color index currently
selected.

® Pattern - Fill the interior of the polygon using the fill area style index currently
selected as an index into the pattern table. In this context, the fill area style index
is sometimes referred to as the pattern index.

® Hatch -Fill the interior of the polygon using the fill area style index currently
selected as an index into the internal hatch table. The area will be filled with a
hatch pattern generated with polylines, in order to simulate a fill pattern. In this
context, the fill area style index is sometimes referred to as the hatch index.

For interior style Pattern, the pattern index is selected from workstation dependent
patterns. Certain of these patterns have been pre-defined and are shown in Appendix B,
"Fill Area and Hatch Patterns." Other patterns may be available on specific workstations.
Interior style Hollow is available on all workstations. It is workstation dependent which
of the interior styles Solid and Pattern are available.

3.3.5 Bitmap Attributes

Bitmap (GBM) has no attributes associated with it. However, an array of color indices,
which are pointers into the color table, is part of the definition of a bitmap.

AMIGOS Reference Manual, Rev. 01

Page 3-8 Chapter Three

3.3.6 Generalized Drawing Primitive Attributes

Generalized Drawing Primitive (GDP) has no explicit geometric attributes. Such informa-
tion may be specified in the GDP function. The representation of the GDP on the
workstation is controlled by Polyline or Fill Area attributes. The sets of attributes most
appropriate for a given GDP function are selected by the GDP function.

3.3.7 Color

Color is specified in a number of different situations. It may be an aspect of a primitive
such as Polyline. It may be part of a pattern for Fill Area Interior Style (GSFAS), in
which case an array of colors is specified, or it may part of a primitive itself, namely
Bitmap (GBM), when an array of colors is also specified. In each case the color is
specified as an index into a color table on the workstation. On each workstation, there
is one color table into which all of the color indices point.

The size of the color table is workstation dependent but entries 0 and 1 always exist.
Entry O corresponds to the background color. The background color is the color of the
display surface after it has been cleared. Entry 1 is the default foreground color and
entries higher than 1 correspond to alternative foreground colors. The specified color is
mapped to the nearest color available on the workstation. On some workstations it may
not be possible to change the background color (such as being unable to change the
color of the paper on a pen plotter) and in this case the mapping of a specific color to
the nearest available for background color may be different from the mapping of the
same color for the foreground colors.

The color representation is set through the use of the HLS (Hue, Lightness, saturation)
system, as defined in the AMOS Terminal System Programmer’s Manual, or RGB (Red,
Green, Blue) depending on the current color mode. Briefly, all colors may be repre-
sented as a combination of hue, lightness, and saturation. Hue is specified as an angle
of rotation about the vertical axis of the color cone model, and ranges from 0 to 360
degrees. Lightness and saturation are specified as a percentage of total with a range of
0 to 100 percent. In RGB mode, the color is represented by a mixture of red, green and
blue components, each specified in the range 0 to 255. A value of O indicates no color,
while a value of 255 indicates full color.

Some workstations are not capable of displaying colors (for example, workstations only
capable of displaying colors with equal red, green, and blue intensities or workstations
capable of displaying colors which are different intensities of the same color); these are
called monochrome workstations. Whether a workstation is capable of color is recorded
in the "color available" bit in the workstation descriptor field. On monochrome worksta-
tions, the intensity is computed from the color respresentation desired. This is normally
a gray scale value corresponding to the NTSC color standard, consisting of 30% red,
59% green and 11% blue.

The workstation will select a color from a palette which most closely matches the
specified color. On a monochrome display, the workstation driver (GDV) determines the
closest representation of the desired color.

AMIGOS Reference Manual, Rev. 01

AMIGOS Functions Page 3-9

3.4 GRAPHICAL INPUT
AMIGOS provides the capability of graphical input in two classes:
® | ocator (GRQLC) - provides a position in world coordinates.
® Valuator (GRQVL) - provides an integer value.

The physical function of each of these input classes is workstation dependent. For exam-
ple, a Request Locator (GRQLC) function performed on a Tektronix 4105 terminal might
use the joydisk as the input device, while the same function performed on an IBM PC
might use a mouse or cursor keys. The implementation of the function is controlled by
the GDV for a specific workstation.

3.5 INQUIRY FUNCTIONS

Inquiry functions return information about the current state of the graphics workstation,
including device capabilities and current attributes. This class of functions is also used
in error reporting.

3.6 ERROR HANDLING

AMIGOS returns the status of each call in a language binding-dependent manner. From
assembler level, the Z-flag is reset if any error occurs. You can specify a return status
register on each call, or the error code can be extracted directly from the GCB. AMIGOS
also provides the Inquire Error (GQERR) function to return an error message correspond-
ing to the error code in GC.ERR in the GCB.

The action AMIGOS performs when an error occurs depends on the specific function
being performed and on the setting of the return on error (GC$ERC) flag in the GCB. If
the flag is not set, AMIGOS will cause the user program to EXIT to AMOS command
level. If the flag is set, AMIGOS will perform the requested function in as normal a
manner as possible to the point that the error occurs. In this mode, it is the user’s
responsibility to detect all errors and provide suitable reporting and recovery.

AMIGOS will display an error message on the user’s terminal unless the bypass error
print (GC$BYP) flag has been set in the flags word.

Error codes resulting from AMIGOS calls start at 512 decimal and extend upward. Error
codes in the range 0 to 255 decimal are standard AMOS file system errors which are
duplicated in GC.ERR for convenience. This approach to error encoding allows the
programmer to specify an alternate output DDB in GC.OUT and condition the DDB to
return on error conditions. The programmer may determine whether an error returned by
AMIGOS is related to file handling or graphics by testing the value returned.

AMIGOS Reference Manual, Rev. 01

Page 3-10 Chapter Three

3.7 STATUS RETURN CODES

Each graphics function returns a 16-bit status code upon its completion. This 16-bit
status code is used to notify the application software of any errors or warnings that may
occur during the use of the graphics workstation. (See Appendix A, "Status Codes and
Messages," for more information.)

If the graphics operation is successful, this status code will contain a zero. For assembly
language users, the Z-flag status bit will also be set. All error conditions will return a
non-zero error code.

AMIGOS Reference Manual, Rev. 01

CHAPTER 4

THE GRAPHICS CONTROL BLOCK

Whenever a workstation has been opened for use by a program, it is represented within the
program by a data structure known as the Graphics Control Block (GCB). This control block,
which is allocated by the application software and therefore resides in the user's memory
partition, is similar in concept to the Dataset Driver Block (DDB) used by the AMOS file system
to refer to data files.

Before you can perform any graphics function, you must first allocate a GCB within your
partition. This data structure has a size (defined in AMGSYM.UNV) of GC.SIZ bytes. AMIGOS
requires a larger work space than this initial GCB in order to perform graphics input and output.
The graphics device driver (GDV) may also require a work area for temporary storage of
variables during operation. For this reason, the GCB contains a pointer to an additional memory
area which must be allocated in the user partition. This area is called the dynamic impure area.

If the user program allows standard AMOS memory allocation techniques (GETMEM), it may
simply perform the AMIGOS GOPWK (open workstation) call, with a value of zero in the GCB
dynamic impure area pointer (GC.DPT). This will cause AMIGOS to allocate the dynamic
impure area on its own. If the user program allocates its own memory modules, the dynamic
impure area pointer (GC.DPT) is initialized to point to the user's work area before the Open
Workstation call.

Your program may determine the required size of the dynamic impure area prior to the open
workstation process through use of the Inquire Dynamic Impure Size (GQDSZ) call. The
internal format of the graphics control block is illustrated in the following table.

AMIGOS Reference Manual, Rev. 01

Page 4-2 Chapter Four
Graphics Control Block - Internal Format
0 — user argument — GCARG 1252 current marker color GC.PMC
2 1254 current text font GC.TXFE
4 L workstation name . GC.NAM 1256 current text color GC.TXC
6 1260 current character height GC.CHH
10 L flags | GC.FLG 1262 current character height GC.CHN
12 1264 normalized |
14 error status return
- GC.ERR 1266 current character rotation GC.CHR
16 L pointer to _| GC.DPT 1270 current fill area style index GC.FAI
20 dynamic impure area
4 P 1272 current fill area interior style GC.FAS
22 | size of _| GD.DSz 1274 current fill area color GC.FAC
24 dynamic impure area
1276 current writing mode GC.WMD
26 pointer to GC.GDV
— — 1300 current color mode GC.CMD
30 workstation GDV
1302 . GC.RBP
32 number of GC.OPP raster buffer pointer —
— — 1304
34 polygon output points
1306 . GC.RSZ
36 raster buffer size —
| | GC.DDB 1310
‘ graphical output DDB | 1312 GC.RSV
204 |
} } reserved |
206 ‘ ‘ GC.BUF 1400
| graphical output buffer | 1402 viewport X minimum GC.VXL
1204 1404 viewport Y minimum GC.VYL
1206 GC.IBP 1406 viewport X maximum GC.VXH
— input function buffer pointer — - ,
1210 1410 viewport Y maximum GC.VYH
1212 GC.OUT 1412 window X minimum GC.WXL
— user output DDB pointer — N .
1214 1414 window Y minimum GC.WYL
1216 alternate output GC.TNM 1416 window X maximum GC.WXH
1220 | terminal name | 1420 window Y maximum GC.WYH
1222 alternate output GC.TCB 1422 X window scaling factor GC.WsX
1224 | terminal TCB index | 1424 Y window scaling factor GC.wsY
1226 AMIGOS function code GC.FUN 1426 GDV impure area | ecump
1230 current line type GC.CLT 1430 pointer
1232 current linewidth GC.LWS
1234 current linewidth GC.LWN MAC229
1236 | normalized |
1240 current line color GC.PLC
1242 current marker type GC.CMT
1244 current marker size GC.MSS
1246 current marker size GC.MSN
1250 | normalized |
MAC227

AMIGOS Reference Manual, Rev. 01

The Graphics Control Block Page 4-3

4.1 USER ARGUMENT (GC.ARG)

GC.ARG is a 32-bit field used to pass arguments such as values, pointers, etc., to
AMIGOS routines. This field is normally updated by the graphical calls and therefore
need not be accessed directly by the programmer.

4.2 SYMBOLIC WORKSTATION NAME (GC.NAM)

GC.NAM is a 32-bit field containing the symbolic name of the graphical workstation that
this GCB is representing. The symbolic name is from one to six alphanumeric
characters, packed RADSO. If this field contains a binary zero, the currently attached
terminal is assumed to be the intended graphical workstation. If the terminal is not
capable of performing as a graphical workstation, an error will be returned.

4.3 FLAGS (GC.FLG)

GC.FLG is a 32-bit field containing various status flags used by the Graphics Device
Driver. The flags are:

GC$ERC Return on error condition
GC$BYP Bypass printing of error messages

GC$FLA This flag is used by Graphics Device Drivers (GDV) to determine
whether the current function is part of a filled area. This flag
should not be modified.

GC$RSE This flag indicates that an error has occurred during raster device
processing and no further further operations should take place.
This flag is used internally in AMIGOS and should not be modified.

4.4 ERROR RETURN (GC.ERR)

GC.ERR is a 16-bit field updated at the completion of each graphical operation to
contain the status code indicating the success or failure of the operation. This field will
contain zero when the operation was successful. If the operation failed, a status code
(defined in Appendix A) will be returned.

4.5 POINTER TO DYNAMIC IMPURE AREA (GC.DPT)
GC.DPT is a 32-bit field pointing to the dynamic impure area required by AMIGOS for

intermediate storage. It is either allocated by the user program or by AMIGOS during the
GOPWK Open Workstation call.

AMIGOS Reference Manual, Rev. 01

Page 4-4 Chapter Four

4.6 SIZE OF DYNAMIC IMPURE AREA (GC.DSZ)
GC.DSZ is a 32-bit field containing the size of the dynamic impure area required by
AMIGOS for intermediate storage. It is set by the GQDSZ (Inquire Dynamic Impure
Size) function or the GOPWK (Open Workstation) function.

4.7 POINTER TO WORKSTATION GDV (GC.GDV)
GC.GDV is a 32-bit field pointing to the Graphical Device Driver used by the specified
workstation.

4.8 NUMBER OF POLYGON OUTPUT POINTS (GC.OPP)
GC.OPP is a 32-bit field containing the maximum number of polygon output points
which may be generated in a single fill area (GFA) command. This value may be set by
the user program prior to the GQDSZ Inquire Dynamic Impure Size call to allocate a
larger polygon area in the dynamic impure zone.

4.9 1/0 DDB (GC.DDB)

GC.DDB is used by the GDV to perform I/O on the graphical workstation.

4.10 1/0 BUFFER (GC.BUF)
GC.BUF is a 512-byte field used in conjunction with the 1/O DDB (GC.DDB) when
performing 1/O on the graphical workstation.

4.11 INPUT FUNCTION BUFFER POINTER (GC.IBP)
GC.IBP is a 32-bit field used as a pointer to a buffer used for input functions. This field
also receives a single character input in the input calls.

4.12 USER OUTPUT DDB INDEX (GC.OUT)

GC.OUT is a 32-bit field used as a pointer to a user DDB which is used for all graphical
output. This allows output redirection.

AMIGOS Reference Manual, Rev. 01

The Graphics Control Block Page 4-5

4.13 ALTERNATE OUTPUT TERMINAL NAME (GC.TNM)
GC.TNM is a 32-bit field used to define an alternate output terminal during the Open
Workstation (GOPWK) function. The six character terminal name is packed RAD50 in
this field.

4.14 ALTERNATE TERMINAL OUTPUT TCB INDEX (GC.TCB)
GC.TCB is a 32-bit field used as a pointer to the terminal control block corresponding to
the alternate terminal name in TC.TNM during the Open Workstation call. The graphics
device driver (GDV) uses this index to redirect output to an alternate terminal.

4.15 CURRENT FUNCTION CODE (GC.FUN)
GC.FUN is a 16-bit field defining the current AMIGOS function and is used to internally
keep track of the current call level.

4.16 CURRENT LINE TYPE (GC.CLT)

GC.CLT is a 16-bit field defining the currently active polyline type, as shown in the
following table.

TYPE MEANING

solid line

dashed line

dotted line
dashed-dotted line
device dependent

AP wWDNPR

4.17 CURRENT LINEWIDTH (GC.LWS)

GC.LWS is a 16-Dbit field defining the currently active linewidth.

AMIGOS Reference Manual, Rev. 01

Page 4-6 Chapter Four

4.18 CURRENT LINEWIDTH NORMALIZED (GC.LWN)
GC.LWN is a 32-bit field defining the currently active linewidth in normalized device
coordinates (NDC).

4.19 CURRENT POLYLINE COLOR INDEX (GC.PLC)
GC.PLC is a 16-bit field defining the currently active color index associated with polyline
commands.

4.20 CURRENT MARKER TYPE (GC.CMT)

GC.CMT is a 16-bit field defining the currently active polymarker type. The valid marker
types are:

TYPE MEANING

dot ()

plus (+)

star (*)

circle (O)

cross (X)

device dependent

o~ wWNRE

4.21 CURRENT MARKER SIZE (GC.MSS)

GC.MSS is a 16-bit field defining the currently active polymarker size.

4.22 CURRENT MARKER SIZE NORMALIZED (GC.MSN)
GC.MSN is a 32-bit field defining the currently active polymarker size in normalized
device coordinates (NDC).

4.23 CURRENT POLYMARKER COLOR INDEX (GC.PMC)

GC.PMC is a 16-bit field defining the currently active color index associated with
polymarker commands.

AMIGOS Reference Manual, Rev. 01

The Graphics Control Block Page 4-7

4.24

4.25

4.26

4.27

4.28

4.29

4.30

4.31

CURRENT TEXT FONT (GC.TXF)

GC.TXF is a 16-bit field defining the currently active text font.

CURRENT TEXT COLOR INDEX (GC.TXC)

GC.TXT is a 16-bit field defining the currently active color index associated with text.

CURRENT CHARACTER HEIGHT (GC.CHH)

GC.CHH is a 16-bit field defining the currently active character height.

CURRENT CHARACTER HEIGHT NORMALIZED (GC.CHN)

GC.CHN is a 32-bit field defining the currently active character height in normalized
device coordinates (NDC).

CURRENT CHARACTER ROTATION (GC.CHR)

GC.CHR is a 16-bit field defining the currently active character rotation in tenths of
degrees.

CURRENT FILL AREA STYLE INDEX (GC.FAI)

GC.FAl is a 16-bit field defining the currently active fill area style index.

CURRENT FILL AREA INTERIOR STYLE (GC.FAS)

GC.FAS is a 16-bit field defining the currently active fill area interior style.

CURRENT FILL AREA COLOR INDEX (GC.FAC)

GC.FAC is a 16-hit field defining the currently active color index associated with fill area
commands.

AMIGOS Reference Manual, Rev. 01

Page 4-8 Chapter Four

4.32 CURRENT WRITING MODE (GC.WMD)
GC.WMD is a 16-bit field defining the currently active writing mode.

The writing modes are:

TYPE MEANING

replace (G$WREP)
exclusive or (G$WXOR)
logical and (G$WAND)
logical or (G$WOR)
device dependent

wWwwNhEFk O

4.33 CURRENT COLOR MODE (GC.CMD)
GC.CMD is a 16-bit field defining the currently active color mode. The color modes can
be set to either HLS (hue, lightness, saturation) or RGB (red, green, blue). A value of 0
indicates HLS mode, a value of 1 indicates RGB mode.

4.34 RASTER BUFFER POINTER (GC.RBP)
GC.RBP is a 32-bit field containing an index to a buffer maintained by AMIGOS for
raster type devices. The user program may place a raster buffer index into this location
prior to opening a workstation. This location must not be modified while a workstation is
open.

4.35 RASTER BUFFER SIZE (GC.RSZ2)
GC.RSZ is a 32-bit field containing the size of a buffer maintained by AMIGOS for raster
type devices. The user program may place a raster buffer size into this location prior to
opening a workstation. This location must not be modified while a workstation is open.

4.36 RESERVED (GC.RSV)

GC.RSV is reserved for future expansion.

AMIGOS Reference Manual, Rev. 01

The Graphics Control Block Page 4-9

4.37 VIEWPORT X MINIMUM (GC.VXL)

GC.VXL is a 16-hit field containing the minimum X coordinate of the currently active
viewport.

4.38 VIEWPORT Y MINIMUM (GC.VYL)

GC.VYL is a 16-hit field containing the minimum Y coordinate of the currently active
viewport.

4.39 VIEWPORT X MAXIMUM (GC.VXH)

GC.VXH is a 16-bit field containing the maximum X coordinate of the currently active
viewport.

4.40 VIEWPORT Y MAXIMUM (GC.VYH)

GC.VYH is a 16-hit field containing the maximum Y coordinate of the currently active
viewport.

4.41 WINDOW X MINIMUM (GC.WXL)

GC.WXL is a 16-bit field containing the minimum X coordinate of the currently active
window.

4.42 WINDOW Y MINIMUM (GC.WYL)

GC.WYL is a 16-bit field containing the minimum Y coordinate of the currently active
window.

4.43 WINDOW X MAXIMUM (GC.WXH)

GC.WXH is a 16-bit field containing the maximum X coordinate of the currently active
window.

4.44 WINDOW Y MAXIMUM (GC.WYH)

GC.WYH is a 16-bit field containing the maximum Y coordinate of the currently active
window.

AMIGOS Reference Manual, Rev. 01

Page 4-10 Chapter Four

4.45 WINDOW X SCALING FACTOR (GC.WSX)
GC.WSX is a 16-hit field containing the X component of the scaling factor used to
transform output primitives to the current window and viewport.

4.46 WINDOW Y SCALING FACTOR (GC.WSY)
GC.WSY is a 16-hit field containing the Y component of the scaling factor used to
transform output primitives to the current window and viewport.

4.47 IMPURE AREA POINTER FOR GDV (GC.IMP)
GC.IMP is a 32-bit field used as a pointer to an impure zone within the dynamic impure

area which is used by the graphics device driver (GDV) to store information unique to
the particular graphics workstation in use.

AMIGOS Reference Manual, Rev. 01

CHAPTER 5

THE GRAPHICS DEVICE DRIVER

AMIGOS provides a device independent interface to different graphics devices by insulating the
programmer from any differences between devices. It does this by presenting a common,
uniform appearance to the programmer, independent of the requirements of a specific device. It
is the job of the Graphics Device Driver (GDV) to perform any necessary translation between
the AMIGOS commands given by a program and the actual code sequences required by a
particular graphics device. As we will see, different types of graphics devices require markedly
different support.

AMIGOS presents a common interface which has vector oriented commands (such as the
polyline function), raster oriented commands (such as the bitmap function), as well as
commands which contain a bit of both (such as the fill area function). AMIGOS provides these
different types of commands so that you can use the command best suited to your application.

Graphics display devices also come in both vector and raster command types. Some, such as
pen plotters, are only capable of drawing vectors. Others, such as the AM-72 color graphics
terminal, accept both vector commands and raster commands. Still others, such as dot-matrix
printers, are only capable of accepting rasters.

To deal with the different types of devices efficiently, AMIGOS separates them into two distinct
classes: vector and raster. While you still use the same AMIGOS commands with both types,
the way in which AMIGOS internally deals with these two types, and the internal function of the
GDVs, differs significantly. While you can ignore these differences and still get useful graphics
output, knowing the different ways that AMIGOS treats these devices can help you optimize the
performance of your graphics display.

Remember that the type of commands, vector or raster, used by a given device have little to do
with the actual method of display used. Just about all display devices you will run into, except
for pen plotters, are actually raster devices internally. Such raster devices, however, may
accept vector oriented commands; examples of this are the AM-72 or a PostScript printer.
AMIGOS is sensitive to the command type, not the actual display method.

AMIGOS Reference Manual, Rev. 01

Page 5-2 Chapter Five

5.1 AN OVERVIEW OF THE GDV

As mentioned above, the primary role of the GDV is to translate the stream of AMIGOS
commands issued by the calling program into whatever set of commands are required
by the device the GDV is supporting. It does this by providing two different types of
resources to AMIGOS.

The first of these is the GDV header. This header contains many different items which
describe the characteristics of the device (how many colors it supports, its resolution,
etc.) and the capabilities of the GDV itself (whether it supports area fills, whether it
supports text, etc.). This information is used both by the calling program and by
AMIGOS. While the calling program may use such information to decide whether or not
to use color or some other such feature, AMIGOS also uses this information to
determine how best to emulate those display features that the GDV does not directly
support.

The second resource within the GDV is the GDV routines themselves. For each
AMIGOS call, there is a corresponding routine within the GDV. Each time the AMIGOS
function is called, the corresponding routine within the GDV is called. This allows the
GDV to perform any special action it needs to for each AMIGOS call.

AMIGOS is capable of emulating most of the graphics functions itself, given only the
basic capability of drawing a line. If a GDV has no more capability than this, AMIGOS
will be able to draw text, fill areas, draw hatch patterns, and otherwise perform most
common graphics operations. Devices that have direct support for these functions,
however, may be able to improve display performance by not relying on AMIGOS to do
emulation.

AMIGOS relies heavily on the information in the GDV header. While it may not seem
important to exactly calculate a parameter such as the size of a pixel in micrometers,
this value, along with all the others, is an important part of the information used by
AMIGOS.

Sample source code to several different types of GDVs is provided with AMIGOS. Many
times new devices can easily be supported by simply modifying existing GDVs, rather
than trying to start from scratch.

5.1.1 GDV Memory Usage
Whenever you open a workstation, you must allocate memory space for a graphics
control block (GCB). In addition to the memory needed for this GCB, each individual
GDV may require additional impure memory space. You can determine the amount of
impure memory space a specific GDV needs by using the GQDSZ call.

Raster GDVs also need additional buffer memory, as discussed below.

Making sure you have sufficient memory allocated is particularly important in environ-
ments such as AlphaBASIC, which do not support dynamic memory allocation.

AMIGOS Reference Manual, Rev. 01

The Graphics Device Driver Page 5-3

5.1.2 GDV Disk Usage

A GDV need not use any disk space at all. However, most printer and plotter type GDVs
perform their output to a disk file, rather than directly to the device, allowing for spooling
of output in a multi-user environment. You must make sure that there is enough disk
space available for these output files on your login disk when using such GDVs.

Raster GDVs need additional disk space for buffering, as discussed below.

5.2 VECTOR GDVS

Vector GDVs are used for those devices which accept line drawing commands.
Because the devices that support vector style commands are often fairly intelligent
devices, most of the work in a vector GDV consists of scaling coordinates to device
coordinate space and outputting specific command sequences to the vector device.

5.3 RASTER GDVS

Raster GDVs are used for those devices which have no built-in line drawing commands,
but instead are only capable of displaying a raster image. Examples of devices that use
raster GDVs are dot-matrix printers and non-PostScript laser printers.

To support such devices, AMIGOS builds a copy of the image in memory, performing all
line drawing, area filling, and other commands itself, in conjunction with the GDV. Only
when the display operation is completed is this raster image sent to the display device.

Raster GDVs require even less internal support than vector GDVs. A typical raster GDV
will consist primarily of calls to AMIGOS library functions which perform all of the work
related to laying down the pixels in the raster buffer. The primary job of the raster GDV
is, upon the Close Workstation call, to convert the contents of the AMIGOS raster buffer
to the device specific code required to render the raster image on the display device.

Because so much of the raster image generation function performed by AMIGOS is
based on device specific parameters, it is (if possible) even more critical that the GDV
header values be properly set than it is with vector GDVs. Improper setting of these
values will most often lead to completely unpredictable display results.

5.3.1 Raster GDV Memory Requirements

In order to have space in which to build this raster image, AMIGOS uses a combination
of memory and disk buffers. Because this raster image can be quite large (typically well
over one megabyte), you must be sure that you have adequate memory and disk space
available before using a raster GDV.

AMIGOS Reference Manual, Rev. 01

Page 5-4 Chapter Five

AMIGOS by default uses an 8K buffer within your partition (in addition to the GCB and
any impure space required by the particular GDV), paging the remainder of the raster
buffer out to disk. This allows image generation in a small memory partition, but causes
a great deal of disk I/0 and limits performance.

To improve raster image generation performance, AMIGOS allows you to preallocate
memory for raster GDV use. This memory can be located in either user or system
memory. Whenever AMIGOS needs to allocate memory for raster generation, it first
looks for a memory module called RASTER.00L. If it cannot find one, it looks for
RASTER.002, and so on, up to RASTER.009. If cannot find any such memory modules,
it uses the default 8K memory buffer described above.

If it does find a memory module, it allocates it for its use, and uses it for all raster image
generation buffering. Note that any such memory modules must be at least 8K in size.
The use of multiple memory modules allows for the simultaneous output to multiple
raster GDVs, via different GCBs.

The program MAKRST is provided to make it straightforward to allocate these raster
memory modules. Use this command followed by the desired memory size to allocate a
new raster memory module of the specified size, automatically choosing the appropriate
extension.

AMIGOS Reference Manual, Rev. 01

CHAPTER 6

AMIGOS REFERENCE LISTS

This chapter contains quick reference lists for AMIGOS's functions. The first list is alphabetic
by function description. The second list is organized into the six major function groups: control
functions, output functions, output attributes, input functions, inquiry functions, and mode
setting functions; with the function names in each group appearing alphabetically. All of the
lists include calling format. For detailed information about the calling format for a given
function, please refer to that function’s reference sheet in Chapter 7, "Reference Sheets."

Alphabetic Function Description List for Assembler, AlphaBASIC,

and AlphaC Calls. 6-2 to 6-5
Control Function List 6-6

Output Function List 6-7 to 6-8
Output Attributes List 6-9 to 6-10
Input Function List 6-11
Inquiry Function List e 6-11

Mode Setting Function List 6-12

AMIGOS Reference Manual, Rev. 01

Page 6-2

Chapter Six

6.1 ALPHABETIC FUNCTION DESCRIPTION LIST

FUNCTION INTERFACE CALLING FORMAT
Bitmap Assembler GBM gcb,addr,status
memory based AlphaBASIC XCALL AMGSBR,G'BMM,gch,orX,orY,bpp,wid,hgt,pix'arr,flags,status
file based XCALL AMGSBR,G’'BMF,gch,orX,orY fil'chanl,flags,status

AlphaC gbm(gcb,argblock);

Clear Workstation Assembler GCLRW gcb,status
AlphaBASIC XCALL AMGSBR,G'CLRW,gcb,status
AlphaC gclrw(gceb);

Close Assembler GCLWK gcb,status

Workstation AlphaBASIC XCALL AMGSBR,G'CLWK,gch,status
AlphaC gclwk(gcb);

Escape Assembler GESC gcb,argblk,status
AlphaBASIC XCALL AMGSBR,G’ESC,gcb,argblk,status
AlphaC gesc(gcb,argblk);

Fill Area Assembler GFA gcb,addr,status
AlphaBASIC XCALL AMGSBR,G’FA,gch,point’array,status
AlphaC gfa(gcb,pointarray);

Generalized Assembler GGDP gcb,addr,status

Drawing AlphaBASIC XCALL AMGSBR,G'GXXX,gcb,{arguments},status

Primitive (GDP) AlphaC ggdp(gch,argblock);

GDP - Circle Assembler See GDP Reference sheet.
AlphaBASIC XCALL AMGSBR,G’GCIR,gcbh,centx,centY ,radius,res,status
AlphaC See GDP Reference sheet.

GDP - Circular Assembler See GDP reference sheet.

Arc AlphaBASIC XCALL AMGSBR,G’GARC,gch,centX,centY,radius,start,end,res,status
AlphaC See GDP reference sheet.

GDP - Circular Assembler See GDP reference sheet.

Sector AlphaBASIC XCALL AMGSBR,G'GSCT,gch,centX,centY,radius,start,end,res,status
AlphaC See GDP reference sheet.

GDP - Cubic Assembler See GDP reference sheet.

B-Spline AlphaBASIC XCALL AMGSBR,G’GBCV,gch,point’array,res,status

Curve AlphaC See GDP reference sheet.

GDP - Ellipse Assembler See GDP reference sheet.
AlphaBASIC XCALL AMGSBR,G’GELI,gcb,centX,centY,radiusX,radiusY,res,stat{,rot}
AlphaC See GDP reference sheet.

GDP - Elliptical Assembler See GDP reference sheet.

Arc AlphaBASIC XCALL AMGSBR,G'GEAR,gch,centX,centY,radiusX,,radiusY,start,end,res,stat{,rot}
AlphaC See GDP reference sheet.

AMIGOS Reference Manual, Rev. 01

AMIGOS Reference Lists

Page 6-3

Alphabetic Function Description List (continued)

FUNCTION INTERFACE CALLING FORMAT

GDP - Elliptical Assembler See GDP reference sheet.

Sector AlphaBASIC XCALL AMGSBR,G’GESC,gcb,centX,centY,radiusX,radiusY,start,end,res,stat{,rot}
AlphaC See GDP reference sheet.

GDP - Parametric Assembler See GDP Reference Sheet

Curve AlphaBASIC XCALL AMGSBR,G'GPCV,gcb,point’array,res,status
AlphaC See GDP Reference Sheet

GDP - Rectangle Assembler See GDP Reference Sheet
AlphaBASIC XCALL AMGSBR,G’GRCT,gcb,minX,minY,maxX,maxy ,status
AlphaC See GDP Reference Sheet

Inquire Color Assembler GQCR gcb,addr,status

Rep.

HLS mode AlphaBASIC XCALL AMGSBR,G’QCR,gcb,index,hue,light,sat,status
RGB mode XCALL AMGSBR,G’QCR,gch,index,red,green,blue,status

AlphaC ggcr(gch,argblock);

Inquire Dynamic ~ Assembler GQDSZ gcb,status

Impure Size AlphaBASIC XCALL AMGSBR,G’'QDSZ,gcb,name,size,status
AlphaC gqdsz(gcb);

Inquire Error Assembler GQERR gcb,error,status
AlphaBASIC XCALL AMGSBR,G’QERR,gch,error'mes,status
AlphaC ggerr(gchb,textptr);

Inquire Text Assembler GQTXE gcb,addr,status

Extent AlphaBASIC XCALL AMGSBR,G'QTXE,gcb,text,ext'blk,status
AlphaC gqtxe(gchb,argblock);

Inquire Text Assembly GQTXR gcb,addr,status

Representation AlphaBASIC XCALL AMGSBR,G’QTXR,gcb,font,ro’'type,hgt,rotat,status
AlphaC gqtxr(gch,argblock);

Inquire Assembly GQCHR gcb,addr,status

Workstation AlphaBASIC XCALL AMGSBR,G'QCHR,gch,G'QCHR’MAP,status

Characteristics AlphaC gqchr(gcb,argblock);

Open Workstation Assembly GOPWK gcb,status
AlphaBASIC XCALL AMGSBR,G’'OPWK,gch,name,status,filchnl,term
AlphaC gopwk(gcb);

Polyline Assembly GPL gcb,addr,status
AlphaBASIC XCALL AMGSBR,G'PL,gcb,point'array,status
AlphaC gpl(gch,pointarray);

Polymarker Assembly GPM gcb,addr,status
AlphaBASIC XCALL AMGSBR,G’PM,gcb,point’array,status
AlphaC gpm(gcb,pointarray);

AMIGOS Reference Manual, Rev. 01

Page 6-4

Alphabetic Function Description List (continued)

FUNCTION INTERFACE CALLING FORMAT

Request Locator Assembler GRQLC gcb,addr,status
AlphaBASIC XCALL AMGSBR,G’RQLC,gch,ix,iy,rbrbnd,fx,fy,char,val,status
AlphaC grglc(gceb,argblock,char);

Request Valuator Assembler GRQVL gcb,status
AlphaBASIC XCALL AMGSBR,G’RQVL,gch,value,status
AlphaC grqvl(gcb,value);

Sample Locator ~ Assembler GSMLC gcb,addr,status
AlphaBASIC XCALL AMGSBR,G’SMLC,gcb,x,y,char,valid,status
AlphaC gsmic(gchb,argblock,char);

Sample Valuator Assembler GSMVL gcb,status
AlphaBASIC XCALL AMGSBR,G’SMVL,gch,value,status
AlphaC gsmvl(gcb,value);

Set Character Assembler GSCHH gcb,height,status

Height AlphaBASIC XCALL AMGSBR,G’SCHH,gcb,height,status
AlphaC gschh(gchb,height);

Set Character Assembler GSCHR (gcb,rotation,status

Rotation AlphaBASIC XCALL AMGSBR,G’SCHR,gcb,rotation,status
AlphaC gschr(gchb,rotation);

Set Color Mode Assembler GSCM gcb,clrmode,status
AlphaBASIC XCALL AMGSBR,G'SCM,gch,mode,status
AlphaC gscm(gcb,colormode);

Set Color Rep. Assembler GSCR gch,addr,status

HLS mode AlphaBASIC XCALL AMGSBR,G’'SCR,gcb,clr’idx,hue,light,sat,status
RGB mode XCALL AMGSBR,G'SCR,gcb,clridx,red,green,blue,status

AlphaC gscr(gcb,argblock);

Set Fill Area Assembler GSFAC gcb,color,status

Color Index AlphaBASIC XCALL AMGSBR,G'SFAC,gcb,color,status
AlphaC gsfac(gcb,fillcolor);

Set Fill Area Assembler GSFAS (gcb,style,status

Interior Style AlphaBASIC XCALL AMGSBR,G’SFAS,gchb,style,status
AlphaC gsfas(gcbfillstyle);

Set Fill Area Assembler GSFAI gcb,style,status

Style Index AlphaBASIC XCALL AMGSBR,G'SFAI,gcb,style,status
AlphaC gsfai(gcb,fillindex);

Set Line Type Assembler GSPLT gcb,type,status
AlphaBASIC XCALL AMGSBR,G'SPLT,gch,type,status
AlphaC gsplt(gcb,linetype);

Set Line Width Assembler GSPLS gcb,width,status
AlphaBASIC XCALL AMGSBR,G’'SPLS,gcb,width,status
AlphaC gspls(gch,linewidth);

AMIGOS Reference Manual, Rev. 01

Chapter Six

AMIGOS Reference Lists

Page 6-5

Alphabetic Function Description List (continued)

FUNCTION INTERFACE CALLING FORMAT

Set Marker Size Assembler GSPMS (gcb,size,status
AlphaBASIC XCALL AMGSBR,G'SPMS,gcb,size,status
AlphaC gspms(gch,markersize);

Set Marker Type Assembler GSPMT gcb,type,status
AlphaBASIC XCALL AMGSBR,G'SPMT,gch,type,status
AlphaC gspmt(gch,markertype);

Set Polyline Color Assembler GSPLC gcb,color,status

Index AlphaBASIC XCALL AMGSBR,G’SPLC,gcb,color,status
AlphaC gsplc(gceb,linecolor);

Set Polymarker Assembler GSPMC gcb,color,status

Color Index AlphaBASIC XCALL AMGSBR,G'SPMC,gcb,color,status
AlphaC gspmc(gcb,markercolor);

Set Text Color Assembler GSTXC gcb,color,status

Index AlphaBASIC XCALL AMGSBR,G'STXC,gcb,color,status
AlphaC gstxc(gchb,textcolor);

Set Text Font Assembler GSTXF gcb,font,status
AlphaBASIC XCALL AMGSBR,G’STXF,gcb,font,status
AlphaC gstxf(gch,font);

Set Workstation ~ Assembler GSWKYV gcbh,addr,status

Viewport AlphaBASIC XCALL AMGSBR,G’SWKV,gcb,minX,minY,maxX,maxyY,status
AlphaC gswkv(gcb,argblock);

Set Workstation ~ Assembler GSWKW gcb,addr,status

Window AlphaBASIC XCALL AMGSBR,G’'SWKW,gch,minX,minY,maxX,maxyY,status
AlphaC gswkw(gch,argblock);

Set Writing Mode Assembler GSWM gcb,wrtmode,status
AlphaBASIC XCALL AMGSBR,G'SWM,gcb,mode,status
AlphaC gswm(gch,writemode);

Text Assembler GTX gcb,addr,status
AlphaBASIC XCALL AMGSBR,G'TX,gchb,x,y,string,status
AlphaC gtx(gcb,argblk);

Update Assembler GUPDW gch,status

Workstation AlphaBASIC XCALL AMGSBR,G’'UPDW,gcb,status
AlphaC gupdw(gchb);

AMIGOS Reference Manual, Rev. 01

Page 6-6

Chapter Six

6.2 FUNCTION GROUPING LISTS

Control Function List

CONTROL
FUNCTION

INTERFACE

CALLING FORMAT

Clear Workstation Assembler

Close
Workstation

Escape

Open Workstation

Update
Workstation

AlphaBASIC
AlphaC

Assembler
AlphaBASIC
AlphaC

Assembler
AlphaBASIC
AlphaC

Assembler
AlphaBASIC
AlphaC

Assembler
AlphaBASIC
AlphaC

GCLRW gcb,status
XCALL AMGSBR,G’CLRW,gcb,status
gclrw(geb);

GCLWK gcb,status
XCALL AMGSBR,G'CLWK,gcb,status
gclwk(gcb);

GESC gcb,argblk,status
XCALL AMGSBR,G’ESC,gcb,argblk,status
gesc(gcb,argblk);

GOPWK gcb,status
XCALL AMGSBR,G’'OPWK,gch,name,status,filchnl,term
gopwk(gch);

GUPDW gcb,status
XCALL AMGSBR,G’'UPDW,gcb,status
gupdw(gcb);

AMIGOS Reference Manual, Rev. 01

AMIGOS Reference Lists

Page 6-7

Output Function List

OUTPUT INTERFACE CALLING FORMAT

FUNCTION

Bitmap Assembler GBM gcb,addr,status

Memory based AlphaBASIC XCALL AMGSBR,G'BMM,gch,orX,orY,bpp,wid,hgt,pix’arr,flags,status
File based XCALL AMGSBR,G’'BMF,gch,orX,orY fil'chanl,flags,status

AlphaC gbm(gcb,argblock);

Fill Area Assembler GFA gcb,addr,status
AlphaBASIC XCALL AMGSBR,G’FA,gch,point’array,status
AlphaC gfa(gcb,pointarray);

Generalized Assembler GGDP gcb,addr,status

Drawing AlphaBASIC XCALL AMGSBR,G'GXXX,gcb,{arguments},status

Primitive (GDP) AlphaC ggdp(gch,argblock);

GDP - Circle Assembler See GDP Reference sheet.
AlphaBASIC XCALL AMGSBR,G’GCIR,gcbh,centx,centY radius,res,status
AlphaC See GDP Reference sheet.

GDP - Circular Assembler See GDP reference sheet.

Arc AlphaBASIC XCALL AMGSBR,G’GARC,gch,centX,centY,radius,start,end,res,status
AlphaC See GDP reference sheet.

GDP - Circular Assembler See GDP reference sheet.

Sector AlphaBASIC XCALL AMGSBR,G'GSCT,gch,centX,centY,radius,start,end,res,status
AlphaC See GDP reference sheet.

GDP - Cubic Assembler See GDP reference sheet.

B-Spline AlphaBASIC XCALL AMGSBR,G’GBCV,gch,point’array,res,status

Curve AlphaC See GDP reference sheet.

GDP - Ellipse Assembler See GDP reference sheet.
AlphaBASIC XCALL AMGSBR,G’GELI,gcb,centX,centY,radiusX,radiusY,res,stat{,rot}
AlphaC See GDP reference sheet.

GDP - Elliptical Assembler See GDP reference sheet.

Arc AlphaBASIC XCALL AMGSBR,G'GEAR,gcb,centX,centY,radiusX,,radiusY,start,end,res,stat{,rot}
AlphaC See GDP reference sheet.

GDP - Elliptical Assembler See GDP reference sheet.

Sector AlphaBASIC XCALL AMGSBR,G’GESC,gcb,centX,centY ,radiusX,radiusY,start,end,res,stat{,rot}
AlphaC See GDP reference sheet.

GDP - Parametric Assembler See GDP Reference Sheet

Curve AlphaBASIC XCALL AMGSBR,G’GPCV,gcb,point'array,res,status
AlphaC See GDP reference sheet.

GDP - Rectangle Assembler See GDP Reference Sheet
AlphaBASIC XCALL AMGSBR,G'GRCT,gcb,minX,minY,maxX,maxyY,status
AlphaC See GDP reference sheet.

AMIGOS Reference Manual, Rev. 01

Page 6-8

Chapter Six

Function Grouping List—Output Function (Continued)

OUTPUT INTERFACE CALLING FORMAT

FUNCTION

Polyline Assembler GPL gcb,addr,status
AlphaBASIC XCALL AMGSBR,G'PL,gch,point'array,status
AlphaC gpl(gcb,pointarray);

Polymarker Assembler GPM gcb,addr,status
AlphaBASIC XCALL AMGSBR,G’PM,gch,point’array,status
AlphaC gpm(gchb,pointarray);

Text Assembler GTX gcb,addr,status
AlphaBASIC XCALL AMGSBR,G'TX,gchb,x,y,string,status
AlphaC gtx(gcb,argblk);

AMIGOS Reference Manual, Rev. 01

AMIGOS Reference Lists

Page 6-9

Output Attributes List

OUTPUT INTERFACE CALLING FORMAT

ATTRIBUTES

Set Character Assembler GSCHH gcb,height,status

Height AlphaBASIC XCALL AMGSBR,G’SCHH,gcb,height,status
AlphaC gschh(gcb,height);

Set Character Assembler GSCHR (gcb,rotation,status

Rotation AlphaBASIC XCALL AMGSBR,G'SCHR,gcb,rotation,status
AlphaC gschr(gchb,rotation);

Set Color Mode Assembler GSCM gcb,clrmode,status
AlphaBASIC XCALL AMGSBR,G’SCM,gch,mode,status
AlphaC gscm(gcb,colormode);

Set Color Rep. Assembler GSCR gcb,addr,status

HLS mode AlphaBASIC XCALL AMGSBR,G’SCR,gcb,clr’idx,hue,light,sat,status
RGB mode XCALL AMGSBR,G'SCR,gcb,clr'idx,red,green,blue,status

AlphaC gscr(gcb,argblock);

Set Fill Area Assembler GSFAC gcbh,color,status

Color Index AlphaBASIC XCALL AMGSBR,G'SFAC,gcb,color,status
AlphaC gsfac(gcb,fillcolor);

Set Fill Area Assembler GSFAS (gcb,style,status

Interior Style AlphaBASIC XCALL AMGSBR,G’'SFAS,gch,style,status
AlphaC gsfas(gcb fillstyle);

Set Fill Area Assembler GSFAIl gcb,style,status

Style Index AlphaBASIC XCALL AMGSBR,G’SFAI,gcb,style,status
AlphaC gsfai(gcb,fillindex);

Set Line Type Assembler GSPLT gcb,type,status
AlphaBASIC XCALL AMGSBR,G'SPLT,gch,type,status
AlphaC gsplt(gcb,linetype);

Set Line Width Assembler GSPLS gcb,width,status
AlphaBASIC XCALL AMGSBR,G'SPLS,gcb,width,status
AlphaC gspls(gch,linewidth);

Set Marker Size Assembler GSPMS (gcb,size,status
AlphaBASIC XCALL AMGSBR,G’SPMS,gch,size,status
AlphaC gspms(gcb,markersize);

Set Marker Type Assembler GSPMT gcb,type,status
AlphaBASIC XCALL AMGSBR,G’SPMT,gcb,type,status
AlphaC gspmt(gcb,markertype);

Set Polyline Color Assembler GSPLC gcb,color,status

Index AlphaBASIC XCALL AMGSBR,G'SPLC,gch,color,status
AlphaC gsplc(geb,linecolor);

AMIGOS Reference Manual, Rev. 01

Page 6-10

Chapter Six

Function Grouping List—Output Attributes (Continued)

OUTPUT INTERFACE CALLING FORMAT
ATTRIBUTES
Set Polymarker Assembler GSPMC gcb,color,status
Color Index AlphaBASIC XCALL AMGSBR,G'SPMC,gcb,color,status
AlphaC gspmc(gcb,markercolor);
Set Text Color Assembler GSTXC gcb,color,status
Index AlphaBASIC XCALL AMGSBR,G’STXC,gcb,color,status
AlphaC gstxc(gceb,textcolor);
Set Text Font Assembler GSTXF gcb,font,status
AlphaBASIC XCALL AMGSBR,G’STXF,gcb,font,status
AlphaC gstxf(gch,font);
Set Workstation ~ Assembler GSWKV gcb,addr,status
Viewport AlphaBASIC XCALL AMGSBR,G’SWKYV,gcb,minX,minY,maxX,maxY ,status
AlphaC gswkv(gcb,argblock);
Set Workstation ~ Assembler GSWKW gcb,addr,status
Window AlphaBASIC XCALL AMGSBR,G’'SWKW,gch,minX,minY,maxX,maxyY,status
AlphaC gswkw(gch,argblock);
Set Writing Mode Assembler GSWM gcb,wrtmode,status
AlphaBASIC XCALL AMGSBR,G'SWM,gcb,mode,status
AlphaC gswm(gch,writemode);

AMIGOS Reference Manual, Rev. 01

AMIGOS Reference Lists

Page 6-11

Input Function List

INPUT INTERFACE CALLING FORMAT

FUNCTION

Request Locator Assembler GRQLC gcb,addr,status
AlphaBASIC XCALL AMGSBR,G’RQLC,gcbh,ix,iy,rbrbnd,fx,fy,char,val,status
AlphaC grglc(gceb,argblock,char);

Request Valuator Assembler GRQVL gcb,status
AlphaBASIC XCALL AMGSBR,G’RQVL,gcb,value,status
AlphaC grqvl(gcb,value);

Sample Locator Assembler GSMLC gcb,addr,status
AlphaBASIC XCALL AMGSBR,G’SMLC,gcb,x,y,char,valid,status
AlphaC gsmic(gch,argblock,char);

Sample Valuator Assembler GSMVL gcb,status
AlphaBASIC XCALL AMGSBR,G’SMVL,gcb,value,status
AlphaC gsmvl(gcb,value);

Inquiry Function List

INQUIRY INTERFACE CALLING FORMAT

FUNCTION

Inquire Color Assembler GQCR gcb,addr,status

Rep.

HLS mode AlphaBASIC XCALL AMGSBR,G’QCR,gcb,index,hue,light,sat,status
RGB mode XCALL AMGSBR,G'QCR,gch,index,red,green,blue,status

AlphaC gqcr(gch,argblock);

Inquire Dynamic ~ Assembler GQDSZ gcb,status

Impure Size AlphaBASIC XCALL AMGSBR,G’QDSZ,gcbh,name,size,status
AlphaC gqdsz(gcb);

Inquire Error Assembler GQERR gcb,error,status
AlphaBASIC XCALL AMGSBR,G’'QERR,gch,error'mes,status
AlphaC ggerr(gchb,textptr);

Inquire Text Assembler GQTXE gcb,addr,status

Extent AlphaBASIC XCALL AMGSBR,G’QTXE,gcb,text,ext’blk,status
AlphaC gqtxe(gcb,argblock);

Inquire Text Assembler GQTXR gcb,addr,status

Representation AlphaBASIC XCALL AMGSBR,G’QTXR,gcb,font,ro’type,hgt,rotat,status
AlphaC gqtxr(gch,argblock);

Inquire Assembler GQCHR gch,addr,status

Workstation AlphaBASIC XCALL AMGSBR,G’QCHR,gcb,G’QCHR’MAP,status

Characteristics AlphaC gqchr(gcb,argblock);

AMIGOS Reference Manual, Rev. 01

Page 6-12 Chapter Six

Mode Setting Function List

MODE SETTING INTERFACE CALLING FORMAT
FUNCTION

Set Writing Mode Assembler GSWM gcb,wrtmode,status
AlphaBASIC XCALL AMGSBR,G’'SWM,gcb,mode,status
AlphaC gswm(gchb,writemode);

AMIGOS Reference Manual, Rev. 01

CHAPTER 7

REFERENCE SHEETS

This chapter contains reference sheets for AMIGOS's functions which are organized alpha-
betically by function name. Each sheet shows the function calling information for Assembler,
AlphaC and AlphaBASIC languages.

The following table of contents shows the reference sheet name, corresponding generic
description and the page number where it appears in this chapter.

GBM Bitmap. 7-3
GCLRW Clear workstation 7-11
GCLWK Closeworkstation. 7-13
GESC Escape ... 7-15
GFA Fill Area. 7-18
GGDP Generalized Drawing Primitive 7-21
GDP-Circle 7-24
GDP -Circular Arc 7-26
GDP - Circular Sector. 7-28
GDP - Cubic B-spline Curve. 7-30
GDP -EIlpSe .. 7-32
GDP - Elliptical ArC. o 7-34
GDP - Elliptical Sector 7-36
GDP - Parametric Curve. 7-38
GDB-Rectangle. 7-40
GOPWK Open Workstation. 7-42
GPL Polyline. 7-44
GPM Polymarker 7-47
GQCHR Inquire Workstation Characteristics 7-50
GQCR Inquire Color Representation 7-52
GQDSZ Inquire Dynamic Impure Size 7-56
GQERR Inquire Brror 7-58
GQTXE Inquire TextExtent i, 7-61
GQTXR Inquire Text Representation. 7-65
GRQLC RequestLocator. i 7-68
GRQVL RequestValuator 7-72
GSCHH Set Character Height 7-74
GSCHR Set Character Rotation., 7-76
GSCM SetColorMode. 7-78

AMIGOS Reference Manual, Rev. 01

Page 7-2 Chapter Seven

GSCR Set Color Representation.c.cuuuuo... 7-80
GSFAC SetFill AreaColorIndex. 7-84
GSFAI SetFillAreaStyleIndex. 7-86
GSFAS Set Fill Area Interior Style. 7-88
GSMLC Sample Locator. 7-91
GSMLV Sample Valuator. 7-94
GSPLC Set Polyline ColorIndex., 7-96
GSPLS SetLineWidth 7-98
GSPLT SetLline Type 7-100
GSPMC Set Polymarker ColorIndex 7-103
GSPMS SetMarkerSize 7-105
GSPMT SetMarker Type. . ..o 7-107
GSTXC SetTextColorIndex. i, 7-110
GSTXF SetTextFont 7-112
GSWKV Set Workstation Viewport. 7-114
GSWKW Set Workstation Window. 7-117
GSWM SetWritingMode 7-120
GTX T X, e 7-123
GUPDW Update Workstation 7-126

AMIGOS Reference Manual, Rev. 01

GBM Reference Sheet Page 7-3

GBM

Bitmap
FUNCTION:

The GBM function causes an array of color indices to be output to the workstation. Each
color index corresponds to a pixel position. The array may reside in a contiguous
memory area or in a specially formatted bitmap definition file. (Refer to Appendix C,
"BMP Bitmap Image File Format.") The number of bits contained in each color index is
variable. The resulting image output shape and appearance are workstation dependent.

ASSEMBLER CALLING SEQUENCE:

The Assembler format for the GBM function is:

GBM gchb, addr, st at us
where:

gcb Specifies the address of the graphics control block associated
with the workstation used.

addr Specifies the address of an argument block formatted as
described below.

st at us Specifies a register in which 16-bits of status are returned. Status
field values are defined in Appendix A, "Status Codes and
Messages."

AMIGOS Reference Manual, Rev. 01

Page 7-4 GBM Reference Sheet

Argument Block Format

The format for the argument block is:

0 Origin - X
2 Origin - Y
4 Bits per pixel
6 Bitmap width
10 Bitmap height
12 | Pointer to pixel array or B
14 pointer to input DDB
16 Bitmap flags

MAC230

Origin X and origin Y define the starting position of the image in world coordinates. This
starting position may be further defined as any of the four corners, lower left, upper left,
upper right, or lower right through use of the flags word described below.

The bits per pixel value defines the number of bits used to define the color index value
for each pixel in the bitmap array. A four color bitmap requires 2 bits per pixel, while an
eight color bitmap requires 3 bits per pixel, etc.

The bitmap width and bitmap height define the size of the entire bitmap array in pixel
units.

The pointer to pixel array or pointer to input DDB field may index a memory based
pixel array or a DDB which has been open for file input. The flags word describes the
type of input to use.

The bitmap flags word contains a number of bits which describe the orientation and
source of the bitmap image. The flags are defined in the following table.

AMIGOS Reference Manual, Rev. 01

GBM Reference Sheet Page 7-5

Flag Definition

BM$TRX Bitmap Transformation
Reserved for future use.

BM$PAK Bitmap Packing
When BM$PAK is set, the bitmap image is defined as conforming to the
packing format described in Appendix C, "BMP Bitmap Image File
Format." With BM$PAK reset (default) each pixel occupies its defined
size in bits per pixel. You do not need to alter this flag if the bitmap
source is file oriented.

BMS$FIL Bitmap Source is Open File

When BMS$FIL is reset (default) the bitmap image is defined as residing
at the memory location defined by the pointer in the argument block.The
first location corresponds to the first pixel in the array. The bitmap array
is contiguous. Pixels from adjacent rows may reside in the same byte
(rows are not byte aligned). When BM$FIL is set, the bitmap image is
extracted from a file corresponding to the DDB indexed by the pointer in
the argument block. This file must conform to the bitmap file format
described in Appendix C, "BMP Bitmap Image File Format." Since the file
contains a header describing the size and type of the image, you do not
need to include the bits per pixel, width, or height in the call. Additionally,
the packing format flag is conditioned by the header information in the
file, and does not need to be determined or set by you.

BM$HOR Bitmap Horizontal Origin
When BM$HOR is reset (default) the horizontal origin is defined as the
left side of the image. When BM$HOR is set, the horizontal origin is
defined as the right side of the image.

BM$VOR Bitmap Vertical Origin
When BM$VOR is reset (default) the vertical origin is defined as the
bottom of the image. When BM$VOR is set, the vertical origin is defined
as the top of the image.

The use of the BMSHOR and BM$VOR flags together produce the
following origin locations.

BM$HOR BM$VOR Origin

0 0 Bottom Left
0 1 Top Left

1 0 Bottom Right
1 1 Top Right

AMIGOS Reference Manual, Rev. 01

Page 7-6 GBM Reference Sheet

Flag Definition

BM$VAL Bitmap Vertical Alignment During Clipping
When BMS$VAL is reset (default) any clipping will result in the top of the
image being visible. When BM$VAL is set, any clipping will result in the
bottom of the image being visible.

BM$HAL Bitmap Horizontal Alignment During Clipping
When BM$HAL is reset (default) any clipping will result in the left of the
image being visible. When BM$HAL is set, any clipping will result in the
right of the image being visible.

AMIGOS Reference Manual, Rev. 01

GBM Reference Sheet Page 7-7

AlphaC CALLING SEQUENCE:
The AlphaC format for the GBM function is:

gbm(gcb, ar gbl ock) ; [* bitmap */

where:
gch Specifies the address of the graphics control block associated
with the workstation used.
ar gbl ock Specifies the address of an argument block formatted as

described above.

Input Parameters:

g_gch gch; /* graphics control block */
brmpbl k ar gbl ock; /* bitmap argunent bl ock */
Data Types:

typedef struct gcb g_gcb; /* graphics control block */
t ypedef struct /* bitmap bl ock */

{

gpoi nt bnpor g; /* x,y coordinates of origin */

gword bpp; /* bits per pixel */

gword wi dth; /* width in pixels */

gword hei ght; /* height in pixels */

char *arraypnt; /* pointer to bitmap array

or DDB index */
gword bmpfl g; /* bitmap flags */
} bmpbl k;

AMIGOS Reference Manual, Rev. 01

Page 7-8 GBM Reference Sheet

AlphaBASIC CALLING SEQUENCE:
There are two formats for the GBM function in AlphaBASIC. One function defines a
memory based bitmap (GBMM), and the other defines a file based bitmap (GBMF).
Memory Based Bitmap AlphaBASIC Calling Sequence

The format of the GBMM function used to produce an image from an array of pixels
residing in memory is:

XCALL AMGSBR, G BWMM gcb, or X, orY, bpp, wi d, hgt, pi x" arr, fl ags, stat us

where:

gcb Specifies an unformatted (type X) variable which is the graphics
control block for the workstation used.

or X This floating point field defines the horizontal origin point in world
coordinates.

orY This floating point field defines the vertical origin point in world
coordinates.

bpp This floating point field defines the number of bits per pixel used
to specify color index information.

wi d This floating point field defines the number of horizontal pixels

(columns) in the bitmap image.

AMIGOS Reference Manual, Rev. 01

GBM Reference Sheet Page 7-9

hgt This floating point field defines the number of vertical pixels
(rows) in the bitmap image.

pi x"arr Specifies an array of pixels which make up the bitmap image. The
first pixel corresponds to the upper left corner of the image.
Subsequent pixels define the image as progressing horizontally
across each row from left to right. The last pixel in the array
corresponds to the lower right of the bitmap image. Each pixel
consists of a color index made up of the number of bits defined in
the bits per pixel field.

fl ags This floating point field defines the flags used for displaying the
bitmap image in the proper aspect. The operation of these flags is
described above. The file AMGSYM.BSI defines the flags, using
the following naming convention:

BM'TRX Reserved for future use.
BM'PAK Bitmap Packing
BM'FIL Bitmap Source is Open File

BM'HOR Bitmap Horizontal Origin
BM'VOR Bitmap Vertical Origin

BM'VAL Bitmap Vertical Alignment During Clipping
BM'HAL Bitmap Horizontal Alignment During Clipping
st at us Specifies a floating point variable in which the status of the

complete operation is returned. Status field values are defined in
Appendix A, "Status Codes and Messages."

AMIGOS Reference Manual, Rev. 01

Page 7-10 GBM Reference Sheet

File Based Bitmap AlphaBASIC Calling Sequence

The format of the GBMF function used to produce an image from a file conforming to the
bitmap file specification defined in Appendix C, "BMP Bitmap Image File Format" is:

XCALL AMGSBR, G BMF, gcb, or X, orY, fil’chanl, fl ags, status

where:
gcb Specifies an unformatted (type X) variable which is the graphics
control block for the workstation used.
or X This floating point field defines the haorizontal origin point in world
coordinates.
orY This floating point field defines the vertical origin point in world
coordinates.
fil’chanl Specifies an AlphaBASIC file channel which has been open for
sequential input. The format of the file to be input on this channel
must conform to the bitmap file format defined in Appendix C,
"BMP Bitmap Image File Format."
fl ags This floating point field defines the flags used for displaying the
bitmap image in the proper aspect. The operation of these flags is
described above. The file AMGSYM.BSI defines the flags with
the following naming convention:
BM'TRX Bitmap Transformation
BM'FIL Bitmap Source is Open File
BM'HOR Bitmap Horizontal Origin
BM'VOR Bitmap Vertical Origin
BM'VAL Bitmap Vertical Alignment During Clipping
BM'HAL Bitmap Horizontal Alignment During Clipping
st at us Specifies a floating point variable in which the status of the

complete operation is returned. Status field values are defined in
Appendix A, "Status Codes and Messages."

AMIGOS Reference Manual, Rev. 01

GCLRW Reference Sheet Page 7-11

GCLRW

Clear Workstation

FUNCTION:

GCLRW initializes a workstation to a known state and clears the display surface.

The results of GCLRW are device dependent. On a display terminal, GCLRW typically
clears the screen. On a plotter it loads a new sheet of paper and positions the pen to its
"home" position. On a matrix printer, it positions a new sheet of paper into the printing
position.

ASSEMBLER CALLING SEQUENCE

The Assembler format for the GCLRW function is:

GCLRW gch, stat us

where:
gcb Specifies the address of the graphics control block associated
with the workstation used.
status Specifies a register in which 16-bits of status are returned. Status
field values are defined in Appendix A, "Status Codes and
Messages."

AlphaC CALLING SEQUENCE

The AlphaC format for the GCLRW function is:
gcl rw(gch); /* clear workstation */
where:

gcb Specifies the address of the graphics control block associated
with the workstation used.

Input Parameters:

g_gchb gcb; /* graphics control block */
Data Types:
t ypedef struct gcb g_gcb; /* graphics control block */

AMIGOS Reference Manual, Rev. 01

Page 7-12 GCLRW Reference Sheet

AlphaBASIC CALLING SEQUENCE
The AlphaBASIC format for the GCLRW function is:

XCALL AMGSBR, G CLRW gcb, st at us

where:
gch Specifies an unformatted (type X) variable which is the graphics
control block for the workstation used.
st at us Specifies a floating point variable in which the status of the

complete operation is returned. Status field values are defined in
Appendix A, "Status Codes and Messages."

AMIGOS Reference Manual, Rev. 01

GCLWK Reference Sheet Page 7-13

GCLWK

Close Workstation

FUNCTION:
The GCLWK function closes a workstation, terminating any operations being performed
on that workstation. Before the workstation is closed, any pending operations are
completed.

ASSEMBLER CALLING SEQUENCE

The Assembler format of the GCLWK function is:

GCLWK gchb, st at us
where:
gch Specifies the address of the graphics control block associated
with the workstation used.
stat us Specifies a register in which 16-bits of status are returned. Status
field values are defined in Appendix A, "Status Codes and
Messages."

AlphaC CALLING SEQUENCE
The AlphaC format of the GCLWK function is:
gcl wk(gch); /* cl ose workstation */
where:

gcb Specifies the address of the graphics control block associated
with the workstation used.

Input Parameters:

g_gchb gcb; /* graphics control block */
Data Types:
t ypedef struct gcb g_gcb; /* graphics control block */

AMIGOS Reference Manual, Rev. 01

Page 7-14 GCLWK Reference Sheet

AlphaBASIC CALLING SEQUENCE
The AlphaBASIC format of the GCLWK function is:

XCALL AMGSBR, G CLVK, gcb, st at us

where:
gch Specifies an unformatted (type X) variable which is the graphics
control block for the workstation used.
st at us Specifies a floating point variable in which the status of the

complete operation is returned. Status field values are defined in
Appendix A, "Status Codes and Messages."

AMIGOS Reference Manual, Rev. 01

GESC Reference Sheet Page 7-15

GESC

Escape

FUNCTION:

The specified non-standard escape function is invoked. The form of the data supplied
differs depending on the escape function being invoked.

GESC provides a well-defined method to add extensions to AMIGOS without violating the
spirit of the standard.

ASSEMBLER CALLING SEQUENCE
The Assembler format for the GESC function is:
CGESC gch, ar gbl ock, st at us
where:

gcb Specifies the address of the graphics control block associated
with the workstation used.

ar gbl ock Specifies the address of an argument block which is passed to
the workstation driver for custom processing. The first word of this
block contains a function number. Function numbers 0 to 32767
are reserved. Workstation drivers requiring custom processing
make use of values 32768 to 65535. The remainder of the
argument block is defined by the particular function required by
the workstation. If a workstation does not need custom
processing, or the function number does not apply to the
workstation, no operation is performed.

0 escape function

| remainder of argument block |
| depends on function being |
performed

MAC231

status Specifies a register in which 16-bits of status are returned. Status
field values are defined in Appendix A, "Status Codes and
Messages."

AMIGOS Reference Manual, Rev. 01

Page 7-16 GESC Reference Sheet

AlphaC CALLING SEQUENCE
The AlphaC format for the GESC function is:

gesc(gch, argbl k) ; /* escape */

where:
gch Specifies the address of the graphics control block associated
with the workstation used.
ar gbl k Specifies the address of an argument block which is passed to

the workstation driver for custom processing. See "Assembler
Calling Sequence,” above, for details on the format of the
argument block.

Input Parameters:

g_gch gcb; /* graphics control block */

g_arg ar gbl k; /* workstation dependent bl ock */
Data Types:

t ypedef struct gcb g_gcb; /* graphics control block */

t ypedef struct

{

gword escfnc; /* escape function */

/* remai nder of block is workstation dependent */
} g_arg;

AMIGOS Reference Manual, Rev. 01

GESC Reference Sheet Page 7-17

AlphaBASIC CALLING SEQUENCE
The AlphaBASIC format of the GESC function is:

XCALL AMGSBR, G ESC, gcb, ar gbl ock, st at us

where:
gch Specifies an unformatted (type X) variable which is the graphics
control block for the workstation used.
ar gbl ock An unformatted variable containing the function and data to be
used by the workstation driver. This area is formatted as
described above.
st at us Specifies a floating point variable in which the status of the

complete operation is returned. Status field values are defined in
Appendix A, "Status Codes and Messages."

AMIGOS Reference Manual, Rev. 01

Page 7-18 GFA Reference Sheet

GFA

Fill Area

FUNCTION:
The GFA function causes the polygon defined by a supplied array to be filled according to
the fill area index and style currently selected. The boundary is drawn for interior style
hollow and is not drawn for other interior styles. Closure is implied, i.e., the first and last
points specified are automatically connected.
Input to this function consists of a number of end points (2-65535) to be connected,
followed by a sequence of coordinate pairs describing those end points.

ASSEMBLER CALLING SEQUENCE
The Assembler format for the GFA function is:

GFA gch, addr, st at us

where:

gcb Specifies the address of the graphics control block associated
with the workstation used.

addr Specifies the address of an argument block formatted as
described below.

st at us Specifies a register in which 16-bits of status are returned. Status
field values are defined in Appendix A, "Status Codes and
Messages."

AMIGOS Reference Manual, Rev. 01

GFA Reference Sheet

Page 7-19

Argument Block Format

The format of the argument block is:

number of points

X coordinate #1

Y coordinate #1

o A~ N O

X coordinate #2

10

Y coordinate #2

n-2

X coordinate #n

Y coordinate #n

MAC232

AMIGOS Reference Manual, Rev. 01

Page 7-20 GFA Reference Sheet

AlphaC CALLING SEQUENCE
The AlphaC format for the GFA function is:
gf a(gcb, poi ntarray); [* fill area */
where:

gch Specifies the address of the graphics control block associated
with the workstation used.

poi ntarray Specifies the address of an argument block formatted as
described in "Assembler Calling Sequence," above.

Input Parameters:

g_gch gch; /* graphics control block */
parray pointarray; /* array of points */
Data Types:

typedef struct gcb g_gcb; /* graphics control block */

t ypedef struct /* point array */
{
gword pcount; /* count of active points in array */
struct gpoint points[n]; /* x and y coordinates */
} parray;

AlphaBASIC CALLING SEQUENCE
The AlphaBASIC format for the GFA function is:
XCALL AMSSBR, G FA, gch, poi nt’ array, status
where:

gcb Specifies an unformatted (type X) variable which is the graphics
control block for the workstation used.

poi nt’ array Specifies a binary array containing the list of X/Y coordinate pairs
defining the area to be displayed. This binary array must be
formatted as described in section 3.1.

status Specifies a floating point variable in which the status of the
complete operation is returned. Status field values are defined in
Appendix A, "Status Codes and Messages."

AMIGOS Reference Manual, Rev. 01

GGDP Reference Sheet Page 7-21

GGDP

Generalized Drawing Primitive
FUNCTION:

The GGDP function provides a series of specialized drawing primitives, such as circle,
arc, spline generation, etc.

Each of the primitives require a different number and type of arguments.
The supported primitive numbers are:

Draw a rectangle using fill area attributes.

Draw a circle using fill area attributes.

Draw an arc of a circle using polyline attributes.
Draw a sector of a circle using fill area attributes.
Draw an ellipse using fill area attributes.

Draw an arc of an ellipse using polyline attributes.
Draw a sector of an ellipse using fill area attributes.
Draw a parametric curve using polyline attributes.
Draw a cubic B-spline curve using polyline attributes.

O©CoOoO~NOOUIWNBE

Each of the generalized drawing primitive types is described below. Each description
includes the argument block layout for the assembly language call, the data structure for
the AlphaC call, and the external subroutine call syntax for operation with AlphaBASIC.

In the following argument block definitions, all points are specified in world coordinates.
The resolution is specified in tenths of degrees. This determines the number of line
segments used to draw the object. Since this number of segments might exceed the
maximum number of polygon points allowed, the resolution may not be as accurate as
specified. A value of zero causes the best possible resolution to be used.

Starting and ending angles are specified in tenths of degrees with angle 0 extending in a
positive direction along the X axis. Angles increase in a counterclockwise direction.

AMIGOS Reference Manual, Rev. 01

Page 7-22 GGDP Reference Sheet

ASSEMBLER CALLING SEQUENCE

The Assembler format of the GGDP function is:

GGEDOP gchb, addr, st at us
where:

gch Specifies the address of the graphics control block associated
with the workstation used.

addr Specifies the address of an argument block formatted as
described below.

st at us Specifies a register in which 16-bits of status are returned. Status
field values are defined in Appendix A, "Status Codes and
Messages."

AlphaC CALLING SEQUENCE
Unlike the Assembler calling sequence, each generalized drawing primitive uses a
separate function in AlphaC. Each function consists of a GCB index, a variable number of
arguments, and an optional returned status. The general format is:

ggdp(gch, ar gbl ock) ; /* generalized drawing primtive */

where:
gcb Specifies the address of the graphics control block associated
with the workstation used.
ar gbl ock Specifies the address of an argument block formatted as

described below.

AMIGOS Reference Manual, Rev. 01

GGDP Reference Sheet Page 7-23

AlphaBASIC CALLING SEQUENCE

Unlike the Assembler calling sequence, each generalized drawing primitive uses a
separate function in AlphaBASIC. Each function consists of a GCB index, a variable
number of arguments, and an optional returned status. The general format is:

XCALL AMGSBR, G GXXX, gcb, {argunent s}, st at us
where:

gcb Specifies an unformatted (type X) variable which is the graphics
control block for the workstation used.

argunent s This is a variable list of parameters supplied to define the
primitive being drawn. All arguments are floating point with the
exception of the point arrays supplied to the parametric and cubic
B-spline curve primitives. These point arrays are formatted as
described in section 3.1. The AlphaBASIC program must supply
all arguments. There are no optional or default arguments in this
function.

st at us Specifies a floating point variable in which the status of the
complete operation is returned. Status field values are defined in
Appendix A, "Status Codes and Messages."

AMIGOS Reference Manual, Rev. 01

Page 7-24

GDP - Circle

GDP - Circle

A circle is drawn using fill area attributes by specifying the center point and radius.

The argument block format for the circle function is:

0 G$GCIR (2)
2 Center X
4 Center Y
6 Radius
10 Resolution

AlphaC CALLING SEQUENCE

The AlphaC format for a circle is:

MAC233

ggdp(gch, ar gbl ock) ; /* generalized drawing primtive */

Input Parameters:

g_gch gcb;
circle argbl ock;

Data Types:
t ypedef struct gcb g_gcb;

t ypedef struct
{
gword gdptyp = 2;
gpoi nt center;
gword radi us;
gword resol ution;
} circle;

/* graphics control block */
/* generalized drawing prinmitive
argunent bl ock. */

/* graphics control block */

/* circle descriptor block */

/* gdp type code for circle */

/* center point coordinates */
/* radius */

/* resolution in tenth degrees */

AMIGOS Reference Manual, Rev. 01

GDP - Circle Page 7-25

AlphaBASIC CALLING SEQUENCE
The AlphaBASIC format for GGCIR is:

XCALL AMGSBR, G CGCI R, gch, cent X, cent Y, r adi us, res, status

where:

gch Specifies the address of the graphics control block associated
with the workstation used.

cent X A floating point value which defines the center X point of the circle.

centy A floating point value which defines the center Y point of the circle.

radi us A floating point value which defines the radius of the circle.

res A floating point value which defines the resolution of the circle.

status Specifies a register in which 16-bits of status are returned. Status
field values are defined in Appendix A, "Status Codes and
Messages."

AMIGOS Reference Manual, Rev. 01

Page 7-26

GDP - Circular Arc

GDP - Circular Arc

A circular arc is drawn using polyline attributes by specifying the center point, radius,

starting angle, and ending angle.

The argument block format for the circular arc function is:

0 G$GARC (3)

2 Center X

4 Center Y

6 Radius
10 Starting angle
12 Ending Angle
14 Resolution

AlphaC CALLING SEQUENCE

The AlphaC format for a circular arc is:

MAC234

ggdp(gchb, ar gbl ock) ; /* generalized drawing prinitive */

Input Parameters:

g_gchb gchb;
circarc argbl ock;

Data Types:
typedef struct gcb g_gcb;

t ypedef struct
{
gword gdptyp = 3;
gpoi nt center;
gword radi us;
gword startangl e;
gword endangl e;
gword resol ution;
} circarc;

/* graphics control block */
/* generalized drawing prinmtive
argurent bl ock. */

/* graphics control block */

/* circular arc descriptor block */

/* gdp type code for circular arc */
/* center point coordinates */

/* radius */

/* starting angle in tenth degrees */
/* ending angle in tenth degrees */
/* resolution in tenth degrees */

AMIGOS Reference Manual, Rev. 01

GDP - Circular Arc Page 7-27

AlphaBASIC CALLING SEQUENCE
The AlphaBASIC format for GGARC is:

XCALL AMGSBR, G GARC, gch, cent X, cent Y, radi us, start, end, res, stat us

where:

gch Specifies the address of the graphics control block associated
with the workstation used.

cent X A floating point value which defines the center X point of the arc.

centy A floating point value which defines the center Y point of the arc.

radi us A floating point value which defines the radius of the arc.

start A floating point value which defines the starting angle of the arc.

end A floating point value which defines the ending angle of the arc.

res A floating point value which defines the resolution of the arc.

st at us Specifies a register in which 16-bits of status are returned. Status
field values are defined in Appendix A, "Status Codes and
Messages."

AMIGOS Reference Manual, Rev. 01

Page 7-28

GDP - Circular Sector

GDP - Circular Sector

A circular sector (pie wedge) is drawn using fill area attributes by specifying the center
point, radius, starting angle, and ending angle.

The argument block format for the circular sector function is:

0 G$GSCT (4)

2 Center X

4 Center Y

6 Radius
10 Starting angle
12 Ending Angle
14 Resolution

AlphaC CALLING SEQUENCE

MAC235

The AlphaC format for a circular sector is:

ggdp(gchb, ar gbl ock) ; /* generalized drawing prinitive */

Input Parameters:

g_gchb gchb;
circsec argbl ock;

Data Types:
typedef struct gcb g_gcb;

t ypedef struct
{
gword gdptyp = 4;
gpoi nt center;
gword radi us;
gword startangl e;
gword endangl e;
gword resol ution;
} circsec;

/* graphics control block */
/* generalized drawing prinmtive
argurent bl ock. */

/* graphics control block */
/* circular sector descriptor block */

/* gdp type code for circular sector */
/* center point coordinates */

/* radius */

/* starting angle in tenth degrees */
/* ending angle in tenth degrees */

/* resolution in tenth degrees */

AMIGOS Reference Manual, Rev. 01

GDP - Circular Sector Page 7-29

AlphaBASIC CALLING SEQUENCE
The AlphaBASIC format for GGSCT is:

XCALL AMGSBR, G GSCT, gch, cent X, cent Y, radi us, start, end, res, stat us

where:

gch Specifies the address of the graphics control block associated
with the workstation used.

cent X A floating point value defining the X center point of the sector.

centy A floating point value defining the Y center point of the sector.

radi us A floating point value defining the radius of the sector.

start A floating point value defining the starting angle of the sector.

end A floating point value defining the ending angle of the sector.

res A floating point value defining the resolution of the sector.

st at us Specifies a register in which 16-bits of status are returned. Status
field values are defined in Appendix A, "Status Codes and
Messages."

AMIGOS Reference Manual, Rev. 01

Page 7-30 GDP - Cubic B-spline Curve

GDP - Cubic B-spline Curve
A smooth cubic B-spline curve is drawn to connect the points defined by a point array.
This curve approaches the points defined in the array. By adding duplicate data points,
the curve will more closely track the data points.

The argument block format for the cubic B-spline curve function is:

G$GBCV (9)

resolution

o M~ M O

— Pointer to point array —

MAC236

AlphaC CALLING SEQUENCE
The AlphaC format for a cubic B-spline curve is:

ggdp(gchb, ar gbl ock) ; /* generalized drawing primtive */

Input Parameters:

g_gcb gcb; /* graphics control block */
b_spline argbl ock; /* generalized drawing prinitive
argunent bl ock. */

Data Types:

t ypedef struct gcb g_gcb; /* graphics control block */

t ypedef struct /* B-spline descriptor block */
{
gword gdptyp = 9; /* gdp type code for B-spline */
gword resol ution; /* resolution in nunmber of segnents

bet ween adj acent points */

char *pointarray; /* pointer to point array */
} b_spline;

AMIGOS Reference Manual, Rev. 01

GDP - Cubic B-spline Curve Page 7-31

AlphaBASIC CALLING SEQUENCE
The AlphaBASIC format for GGBCV is:

XCALL AMGSBR, G GBCV, gch, poi nt’ array, res, status

where:

gch Specifies the address of the graphics control block associated
with the workstation used.

poi nt’ Specifies a binary array containing the list of X/Y coordinate pairs

array defining the curve to be displayed. This binary array must be
formatted as described in section 3.1.

res Floating point value defining resolution. Expressed as number of
line segments to draw between contiguous points.

st at us Specifies a register in which 16-bits of status are returned. Status
field values are defined in Appendix A, "Status Codes and
Messages."

AMIGOS Reference Manual, Rev. 01

Page 7-32

GDP - Ellipse

GDP - Ellipse

An ellipse is drawn using fill area attributes by specifying the center point, radius in X
direction, and radius in Y direction.

The argument block format for the ellipse function is:

0 G$GELI (5)
2 Center X
4 Center Y
6 Radius X
10 Radius Y
12 Resolution
14 Rotation

AlphaC CALLING SEQUENCE

MAC237

The AlphaC format for an ellipse is:

ggdp(gchb, ar gbl ock) ;

Input Parameters:

g_gcb geb;
el l'i pse argbl ock;

/* generalized drawing printive */

/* graphics control block */
/* generalized drawing primtive
argurent bl ock. */

Data Types:
t ypedef struct gcb g_gcb; /* graphics control block */
t ypedef struct /* ellipse descriptor block */
éword gdptyp = 5; /* gdp type code for ellipse */

gpoi nt center;
gwor d radi usx;
gwor d radi usy;

/* center point coordinates */
/* radius in x direction */
/* radius iny direction */

gword resol ution; /* resolution in tenth degrees */
gword rotation; /* rotation in tenth degrees */
} ellipse;

AMIGOS Reference Manual, Rev. 01

GDP - Ellipse Page 7-33

AlphaBASIC CALLING SEQUENCE

The AlphaBASIC format for GGELI is:

XCALL AMGSBR, G GELI, gch, cent X, cent Y, radi usX, radi usY, res, stat{, rotation}

where:

gcb Specifies the address of the graphics control block associated
with the workstation used.

cent X A floating point value defining the X center point of the ellipse.

centY A floating point value defining the Y center point of the ellipse.

radi usX A floating point value defining the X direction radius of the ellipse.

radi usyY A floating point value defining the Y direction radius of the ellipse.

res A floating point value defining the resolution of the ellipse.

st at Specifies a register in which 16-bits of status are returned.
Appendix A, "Status Codes and Messages" gives status field
value definitions.

rotation An optional floating point value specifying the rotation of the

ellipse expressed in tenths of degrees.

AMIGOS Reference Manual, Rev. 01

Page 7-34 GDP - Elliptical Arc

GDP - Elliptical Arc

An elliptical arc is drawn using polyline attributes by specifying the center point, radius in
X direction, radius in Y direction, starting angle, and ending angle.

The argument block format of the elliptical arc function is:

0 G3$GEAR (6)

2 Center X

4 Center Y

6 Radius X
10 Radius Y
12 Starting angle
14 Ending angle
16 Resolution
20 Rotation

MAC238
AlphaC CALLING SEQUENCE

The AlphaC format for an elliptical arc is:

ggdp(gch, ar gbl ock) ; /* generalized drawing primtive */

Input Parameters:

g_gch gcb; /* graphics control block */
el li parc argbl ock; /* generalized drawing primtive
argunent bl ock. */

Data Types:

typedef struct gcb g_gcb; /* graphics control block */

t ypedef struct /* elliptical arc descriptor block */
{
gword gdptyp = 6; /* gdp type code for elliptical arc */
gpoi nt center; /* center point coordinates */
gwor d radi usx; /* radius in x direction */
gword radi usy; /* radius iny direction */
gword startangl e; /* starting angle in tenth degrees */
gword endangl e; /* ending angle in tenth degrees */
gword resol ution; /* resolution in tenth degrees */
gword rotation; /* rotation in tenth degrees */
} elliparc;

AMIGOS Reference Manual, Rev. 01

GDP - Elliptical Arc Page 7-35

AlphaBASIC CALLING SEQUENCE
The AlphaBASIC format for GGEAR is:

XCALL AMGSBR, G GEAR, gch, cent X, cent Y, radX, radY, start, end, res, stat{,rotation}

where:

gcb Specifies the address of the graphics control block associated
with the workstation used.

cent X A floating point value defining the X center point of the arc.

centY A floating point value defining the Y center point of the arc.

radXx A floating point value defining the X direction radius of the arc.

rady A floating point value defining the Y direction radius of the arc.

start A floating point value defining the starting angle of the arc.

end A floating point value defining the ending angle of the arc.

res A floating point value defining the resolution of the arc.

st at Specifies a register in which 16-bits of status are returned.
Appendix A, "Status Codes and Messages" gives status field
value definitions.

rotation An optional floating point number specifying the rotation of the

elliptical arc expressed in tenths of degrees.

AMIGOS Reference Manual, Rev. 01

Page 7-36

GDP - Elliptical Sector

GDP - Elliptical Sector

An elliptical sector is drawn using fill area attributes by specifying the center point, radius
in X direction, radius in Y direction, starting angle, and ending angle.

The argument block format for the elliptical sector function is:

0 G$GESC (7)

2 Center X

4 Center Y

6 Radius X
10 Radius Y
12 Starting angle
14 Ending angle
16 Resolution
20 Rotation

AlphaC CALLING SEQUENCE

The AlphaC format for an elliptical sector is:

ggdp(gch, ar gbl ock) ;

Input Parameters:

g_gcb geb;
el li psec argbl ock;

Data Types:
t ypedef struct gcb g_gcb;

t ypedef struct
{
gword gdptyp = 7;
gpoi nt center;
gwor d radi usx;
gwor d radi usy;
gword startangl e;
gword endangl e;
gword resol ution;
gword rotation;
} ellipsec;

/*
/*

/*

/*

/*
/*
/*
/*
/*
/*
/*
/*

MAC239

/* generalized drawing primtive */

graphi cs control block */
generalized drawing primtive
argunent bl ock. */

graphi cs control block */

elliptical sector descriptor block */

gdp type code for elliptical sector */
center point coordinates */

radius in x direction */

radius in y direction */

starting angle in tenth degrees */
ending angle in tenth degrees */
resolution in tenth degrees */
rotation in tenth degrees */

AMIGOS Reference Manual, Rev. 01

GDP - Elliptical Sector Page 7-37

AlphaBASIC CALLING SEQUENCE
The AlphaBASIC format for GGESC is:

XCALL AMGSBR, G GESC, gch, cent X, cent Y, radX, radY, start, end, res, stat{,rotation}

where:

gcb Specifies the address of the graphics control block associated
with the workstation used.

cent X Floating point value defining the X center point of the sector.

centY Floating point value defining the Y center point of the sector.

radXx Floating point value defining the X direction radius of the sector.

rady Floating point value defining the Y direction radius of the sector.

start Floating point value defining the starting angle of the sector.

end Floating point value defining the ending angle of the sector.

res Floating point value defining the resolution of the sector.

st at Specifies a register in which 16-bits of status are returned.
Appendix A, "Status Codes and Messages" gives status field
value definitions.

rotation An optional floating point number specifying the rotation of the

elliptical sector expressed in tenths of degrees.

AMIGOS Reference Manual, Rev. 01

Page 7-38

GDP - Parametric Curve

GDP - Parametric Curve

A smooth parametric curve is drawn to connect the points defined by a point array. This

curve passes through the points.

The argument block format for the parametric curve function is:

G$GPCV (8)

resolution

o M~ M O

Pointer to point array

AlphaC CALLING SEQUENCE

The AlphaC format for a parametric curve is:

ggdp(gch, ar gbl ock) ;

Input Parameters:
g_gcb geb;
par curve ar gbl ock;
Data Types:
t ypedef struct gcb g_gcb;
t ypedef struct
{QV\DFd gdptyp = 8;

gword resol ution;

char *pointarray;
} parcurve;

/*
/*

/*

/*

/*
/*

/*

MAC240

/* generalized drawing primtive */

graphi cs control block */
generalized drawing primtive
argunent bl ock. */

graphi cs control block */

paranmetric curve descriptor block */
gdp type code for paranmetric curve */
resol ution in number of segnents

bet ween adj acent points */

pointer to point array */

AMIGOS Reference Manual, Rev. 01

GDP - Parametric Curve Page 7-39

AlphaBASIC CALLING SEQUENCE
The AlphaBASIC format for GGPCV is:

XCALL AMGSBR, G GPCV, gch, poi nt’ array, res, stat us

where:

gch Specifies the address of the graphics control block associated
with the workstation used.

poi nt’ Specifies a binary array containing the list of X/Y coordinate pairs

array defining the curve to be displayed. This binary array must be
formatted as described in section 3.1.

res Floating point value defining resolution. Expressed as number of
line segments to draw between contiguous points.

st at us Specifies a register in which 16-bits of status are returned. Status
field values are defined in Appendix A, "Status Codes and
Messages."

AMIGOS Reference Manual, Rev. 01

Page 7-40

GDP - Rectangle

GDP - Rectangle

A rectangle is drawn using fill area attributes by specifying the lower left and upper right

coordinate points.

The argument block format for the rectangle function is:

0 G$GRCT (1)
2 Minimum X
4 Minimum Y
6 Maximum X
10 Maximum Y

AlphaC CALLING SEQUENCE
The AlphaC format for a rectangle is:

ggdp(gchb, ar gbl ock) ;

Input Parameters:

g_gcb gcb;
rect angl e argbl ock;

Data Types:
t ypedef struct gcb g_gcb;

t ypedef struct
{
gword gdptyp = 1;
gpoi nt corner1;
gpoi nt corner 2;
} rectangle;

/*
/*

/*
/*
/*

/*
/*

MAC241

/* generalized drawing primtive */

graphics control block */
generalized drawing printive
argunent bl ock. */

graphics control block */
rectangl e descriptor block */
gdp type code for rectangle */

first corner coordi nates */
second corner coordi nates */

AMIGOS Reference Manual, Rev. 01

GDP - Rectangle

Page 7-41

AlphaBASIC CALLING SEQUENCE

The AlphaBASIC format for GGRCT is:

XCALL AMGSBR, G GRCT, gcb, mi nX, m nY, maxX, maxyY, st at us

where:

gch

m nX

max X

maxyY

stat us

Specifies the address of the graphics control block associated
with the workstation used.

A floating point value which defines the lower left X point of the
rectangle.

A floating point value which defines the lower left Y point of the
rectangle.

A floating point value which defines the upper right X point of the
rectangle.

A floating point value which defines the upper right Y point of the
rectangle.

Specifies a register in which 16-bits of status are returned. Status
field values are defined in Appendix A, "Status Codes and
Messages."

AMIGOS Reference Manual, Rev. 01

Page 7-42 GOPWK Reference Sheet

GOPWK

Open Workstation
FUNCTION:

GOPWK selects a given workstation for input and output operations by intializing it. You
must open a workstation with GOPWK before any operations can be performed with it.

ASSEMBLER CALLING SEQUENCE
The Assembler format for the GOPWK function is:
GOPVWK gch, status
where:

gcb Specifies the address of a graphics control block. This block
must have the workstation name field (GC.NAM) filled in prior to
the GOPWK function. If this field is null—contains zeros—then
your terminal will be used as the default workstation, providing
that the terminal is a graphics workstation.

Each workstation type defaults to a specific output type. For
example, the TK4105.GDV assumes all output is routed to the
user terminal, while LASWRT.GDV by default opens the file
LASPLT.PS for output. You can specify an alternate output file by
placing the index to an output DDB in the field GC.OUT prior to
the GOPWK function. This DDB must be initialized and open for
output. You must close this file after use. The field GC.OUT must
be zero if you do not want to use this feature.

You can also specify an alternate output terminal. By placing the
name of the terminal, as defined by TRMDEF during system
initialization, in the GC.TNM variable in the GCB, all graphics
output will be routed through the terminal output system to the
specified terminal. The name must be packed in RAD50 format
and be placed in GC.TNM prior to the GOPWK function.

If the dynamic impure area pointer (GC.DPT) field is zero,
AMIGOS will allocate any necessary dynamic impure space
through the use of the GETMEM monitor call through AMOS.
Alternately, you can set this field to point to an impure area
previously allocated. The required size of this area may be
determined by the inquire dynamic impure size function (GQDSZ).

st at us Specifies a register in which 16-bits of status are returned. Status
field values are defined in Appendix A, "Status Codes and
Messages."

AMIGOS Reference Manual, Rev. 01

GOPWK Reference Sheet Page 7-43

AlphaC CALLING SEQUENCE
The AlphaC format for the GOPWK function is:
gopwk(gch); /* open workstation */
For information on the gcb argument, refer to the discussion above in "Assembler Calling

Sequence."

Input Parameters:

g_gch gcb; /* graphics control block */
Data Types:
t ypedef struct gcb g_gcb; /* graphics control block */

AlphaBASIC CALLING SEQUENCE
The AlphaBASIC format for the GOPWK function is:
XCALL AMGSBR, G OPVK, gch, nane, status, fil chnl,term
where:

gch Specifies an unformatted (type X) variable which is the graphics
control block for the workstation used. The size of this area must
be large enough to contain the GCB and any additional dynamic
impure areas required by AMIGOS and the workstation driver.

name Specifies a string giving the name of the workstation which is to
be opened. If this field is null, the user terminal will be used as
the graphics device.

st at us Specifies a floating point variable in which the status of the
complete operation is returned. Status field values are defined in
Appendix A, "Status Codes and Messages."

filchnl Specifies an optional file channel number for an output file which
has been open for output. All output will be routed to this file
channel if this parameter is specified.

term Specifies an optional terminal name to route all graphics output
to. This string variable must match a terminal defined in a system
initialization file TRMDEF command.

AMIGOS Reference Manual, Rev. 01

Page 7-44 GPL Reference Sheet

GPL

Polyline
FUNCTION:

GPL generates a sequence of connected straight lines, starting from the first point and
ending at the last point.

The input to GPL consists of a number of end points (2-65535) to be connected, followed
by a sequence of coordinate pairs describing those end points.

If the polyline width exceeds the maximum width supported by the workstation, the lines
will be generated by AMIGOS as filled areas, using the current polyline attributes. The
intersection points of the line segments will be mitered with a filled circle using a radius
equal to one half the polyline width.
ASSEMBLER CALLING SEQUENCE
The Assembler format for the GPL function is:
GPL gcb, addr, st at us

where:

gcb Specifies the address of the graphics control block associated
with the workstation used.

addr Specifies the address of an argument block formatted as
described below.

stat us Specifies a register in which 16-bits of status are returned. Status
field values are defined in Appendix A, "Status Codes and
Messages."

AMIGOS Reference Manual, Rev. 01

GPL Reference Sheet Page 7-45

Argument Block Format

The format of the argument block is:

0 number of points
2 X coordinate #1
4 Y coordinate #1
6 X coordinate #2
10 Y coordinate #2
I I
I I
n-2 X coordinate #n
n Y coordinate #n

MAC232
AlphaC CALLING SEQUENCE
The AlphaC format for the GPL function is:
gpl (gcb, poi ntarray); /* polyline */
where:
gcb Specifies the address of the graphics control block associated

with the workstation used.

poi ntarray Specifies the address of an argument block formatted as
described below.

Input Parameters:

g_gchb gcb; /* graphics control block */
parray pointarray; /* array of points */
Data Types:

t ypedef struct gcb g_gcb; /* graphics control block */

t ypedef struct /* point array */
{
gword pcount; /* count of active points in array */
struct gpoint points[n]; /* x and y coordinates */
} parray;

AMIGOS Reference Manual, Rev. 01

Page 7-46 GPL Reference Sheet

AlphaBASIC CALLING SEQUENCE
The AlphaBASIC format for the GPL function is:

XCALL AMGSBR, G PL, gch, poi nt’ array, stat us

where:
gch Specifies an unformatted (type X) variable which is the graphics
control block for the workstation used.
poi nt’ Specifies a binary array containing the list of X/Y coordinate pairs
array defining the list of lines to be displayed. This binary array must
be formatted as described in section 3.1.
st at us Specifies a floating point variable in which the status of the

complete operation is returned. Status field values are defined in
Appendix A, "Status Codes and Messages."

AMIGOS Reference Manual, Rev. 01

GPM Reference Sheet Page 7-47

GPM

Polymarker
FUNCTION:
The GPM function generates a sequence of markers to identify all of the given positions.
The input to GPM consists of a number of points (1-65535) where markers are to be
placed, followed by a sequence of coordinate pairs describing those points.
ASSEMBLER CALLING SEQUENCE

The Assembler format for the GPM function is:

GPM gcb, addr, st at us
where:

gch Specifies the address of the graphics control block associated
with the workstation used.

addr Specifies the address of an argument block formatted as
described below.

st at us Specifies a register in which 16-bits of status are returned. Status
field values are defined in Appendix A, "Status Codes and
Messages."

AMIGOS Reference Manual, Rev. 01

Page 7-48 GPM Reference Sheet

Argument Block Format

The format of the argument block is:

0 number of points
2 X coordinate #1
4 Y coordinate #1
6 X coordinate #2
10 Y coordinate #2
I I
I I
n-2 X coordinate #n
n Y coordinate #n

MAC232
AlphaC CALLING SEQUENCE
The AlphaC format for the GPM function is:
gpm(gch, poi ntarray); /* pol ymarker */
where:
gcb Specifies the address of the graphics control block associated

with the workstation used.

poi ntarray Specifies the address of an argument block formatted as
described below.

Input Parameters:

g_gch gcb; /* graphics control block */
parray pointarray; /* array of points */
Data Types:

t ypedef struct gcb g_gcb; /* graphics control block */

t ypedef struct /* point array */
{
gword pcount; /* count of active points in array */
struct gpoint points[n]; /* x and y coordinates */
} parray;

AMIGOS Reference Manual, Rev. 01

GPM Reference Sheet Page 7-49

AlphaBASIC CALLING SEQUENCE
The format of the AlphaBASIC GPM function is:

XCALL AMGSBR, G PM gch, poi nt’ array, stat us

where:
gch Specifies an unformatted (type X) variable which is the graphics
control block for the workstation used.
poi nt’ Specifies a binary array containing the list of X/Y coordinate pairs
array defining the list of markers to be displayed. This binary array
must be formatted as described in section 3.1.
st at us Specifies a floating point variable in which the status of the

complete operation is returned. Status field values are defined in
Appendix A, "Status Codes and Messages."

AMIGOS Reference Manual, Rev. 01

Page 7-50 GQCHR Reference Sheet

GQCHR

Inquire Workstation Characteristics
FUNCTION:
The GQCHR function returns the workstation characteristics block from the graphics
device driver (.GDV)
ASSEMBLER CALLING SEQUENCE
The Assembler format for the GQCHR function is:

GQCHR gch, addr, st at us

where:

gcb Specifies the address of the graphics control block associated
with the workstation used.

addr Specifies the address of an argument block formatted as
described in the file AMGSYM.M68. The size of this area should
be equal or larger than GH.SIZ.

status Specifies a register in which 16-bits of status are returned. Status
field values are defined in Appendix A, "Status Codes and
Messages."

AMIGOS Reference Manual, Rev. 01

GQCHR Reference Sheet Page 7-51

AlphaC CALLING SEQUENCE

The AlphaC format for the GQCHR function is:

gqchr (gch, ar gbl ock) ; /* inquire workstation characteristics */
where:
gcb Specifies the address of the graphics control block associated

with the workstation used.

ar gbl ock Specifies the address of an argument block formatted as
described in the file AMIGOS.H.

Input Parameters:

g_gchb gcb; /* graphics control block */

Output Parameters:

chrbl k *ar gbl ock; /* characteristics block */
Data Types:

t ypedef struct gcb g_gcb; /* graphics control block */

t ypedef struct wschar chrblk; /* characteristics block */

AlphaBASIC CALLING SEQUENCE
The AlphaBASIC format for the GQCHR function is:
XCALL AMGSBR, G QCHR, gch, G QCHR MAP, st at us
where:

gch Specifies an unformatted (type X) variable which is the graphics
control block for the workstation used.

G QCHR MAP Specifies a workstation characteristics area formatted as defined
in the file AMGSYM.BSI.

stat us Specifies a floating point variable in which the status of the
complete operation is returned. Status field values are defined in
Appendix A, "Status Codes and Messages."

AMIGOS Reference Manual, Rev. 01

Page 7-52 GQCR Reference Sheet

Inquire Color Representation
FUNCTION:
GQCR returns the current color representation for a specified index. The color
representation may be returned as HLS (Hue, Lightness, Saturation) or RGB (red, green,
blue), depending on the current color mode.
ASSEMBLER CALLING SEQUENCE

The Assembler format for the GQCR function is:

GQCR gchb, addr, st at us

where:

gch Specifies the address of the graphics control block associated
with the workstation used.

addr Specifies the address of an argument block formatted as
described below.

status Specifies a register in which 16-bits of status are returned. Status
field values are defined in Appendix A, "Status Codes and
Messages."

HLS Color Mode Argument Block Format

The format of the argument block in HLS color mode is:

0
, color index to inquire —
4 Hue (0 to 360)
6 Lightness (0 to 100)
10 Saturation (0 to 100)

MAC243

AMIGOS Reference Manual, Rev. 01

GQCR Reference Sheet Page 7-53

RGB Color Mode Argument Block Format

The format of the argument block in RGB color mode is:

0
) — color index to inquire —
4 Red (0 to 255)
6 Green (0 to 255)
10 Blue (0 to 255)

MAC244

AMIGOS Reference Manual, Rev. 01

Page 7-54

GQCR Reference Sheet

AlphaC CALLING SEQUENCE

The AlphaC format for the GQCR function is:

gqcr (gch, ar gbl ock) ;

/* inquire color representation */

where:
gch Specifies the address of the graphics control block associated
with the workstation used.
ar gbl ock Specifies the address of an argument block formatted as

described below.

Input Parameters:

g_gchb gcb;

Input/Output Parameters:

clrbl k argbl ock;

Data Types:
t ypedef struct gcb g_gcb

t ypedef struct
{
gl ong i ndex;
gword hue_red
gword | gt_green;
gword sat _bl ue
} clrblk;

/*

/*

/*

/*

/*
/*
/*
/*

graphi cs control block */

color representation argunment */

graphi cs control block */
color representation argunment */

color index to nmodify */
hue or red

I ightness or green */
saturation or blue */

AMIGOS Reference Manual, Rev. 01

GQCR Reference Sheet Page 7-55

AlphaBASIC CALLING SEQUENCE
The AlphaBASIC format for the GQCR function in HLS color mode:

XCALL AMGSBR, G (CR, gcb, i ndex, hue, | i ght, sat, st at us

where:
gch Specifies an unformatted (type X) variable which is the graphics
control block for the workstation used.
i ndex A variable containing the color index number to inquire.
hue A floating point variable to receive the Hue in the range 0 - 360.
I'ight A variable to receive the lightness in the range 0 - 100.
sat A variable to receive the saturation in the range 0 - 100.
status Specifies a floating point variable in which the status of the

complete operation is returned. Status field values are defined in
Appendix A, "Status Codes and Messages."

The AlphaBASIC format for the GQCR function in RGB color mode:

XCALL AMGSBR, G (CR, gch, i ndex, r ed, gr een, bl ue, st at us

where:

gch Specifies an unformatted (type X) variable which is the graphics
control block for the workstation used.

i ndex A variable containing the color index number to inquire.

red A floating point variable to receive the red component of the color
representation.

green A floating point variable to receive the green component of the
color representation.

bl ue A floating point variable to receive the blue component of the
color representation.

st at us Specifies a floating point variable in which the status of the

complete operation is returned. Status field values are defined in
Appendix A, "Status Codes and Messages."

AMIGOS Reference Manual, Rev. 01

Page 7-56 GQDSZ Reference Sheet

GQDSZ

Inquire Dynamic Impure Size
FUNCTION:

The GQDSZ function determines the amount of impure memory space required to
successfully open a workstation for subsequent use.

ASSEMBLER CALLING SEQUENCE

The Assembler format for the GQDSZ function is:

GQPsz gch, status
where:

gcb Specifies the address of a graphics control block. This block
must have the workstation name field (GC.NAM) set in the same
manner as the open workstation (GOPWK) function. Refer to the
GOPWK function for more information. If GC.NAM is null
(zeroes), AMIGOS assumes the user’s terminal will be used as a
workstation in a subsequent open workstation function. AMIGOS
defaults to a maximum of 500 points per polygon generated
through use of the fill area (GFA) function. The user may specify
a larger number of points by placing the desired count in the
number of polygon output points (GC.OPP) field. The impure size
required is returned in the dynamic impure size (GC.DSZ) field.
The user may use this size to allocate an impure zone prior to the
open workstation (GOPWK) function. The pointer to this impure
area must be put in the dynamic impure pointer (GC.DPT) field
prior the the GOPWK function.

st at us Specifies a register in which 16-bits of status are returned. Status
field values are defined in Appendix A, "Status Codes and
Messages."

AMIGOS Reference Manual, Rev. 01

GQDSZ Reference Sheet Page 7-57

AlphaC CALLING SEQUENCE
The AlphaC format for the GQDSZ function is:
gqdsz(gch); /* inquire dynamic inpure size */
where:
gch Specifies the address of a graphics control block. See

"Assembler Calling Sequence" above for details on this argument.

Input Parameters:

g_gcb gcb; /* graphics control block */
Data Types:
t ypedef struct gcb g_gcb; /* graphics control block */

AlphaBASIC CALLING SEQUENCE
The AlphaBASIC format for the GQDSZ function is:

XCALL AMGSBR, G QDSZ, gcb, nane, si ze, st at us

where:

gcb Specifies an unformatted (type X) variable which is the graphics
control block for the workstation used.

nane Specifies a string giving the name of the workstation which is to
be opened. If this field is null, the user terminal will be used as
the graphics device.

si ze Specifies a floating point variable in which the required size of the
dynamic impure area is returned.

st at us Specifies a floating point variable in which the status of the

complete operation is returned. Status field values are defined in
Appendix A, "Status Codes and Messages."

AMIGOS Reference Manual, Rev. 01

Page 7-58 GQERR Reference Sheet

GQERR

Inquire Error

FUNCTION:

GQERR causes the pointer to an error message corresponding to the status in GC.ERR
to be returned. The error message is terminated with a null byte.

ASSEMBLER CALLING SEQUENCE

The Assembler format for the GQERR function is:

GERR gch, error, status
where:

gcb Specifies the address of the graphics control block associated
with the workstation used.

error Specifies a register in which the pointer the ASCII error message
associated with the current error condition is returned.

st at us Specifies a register in which 16-bits of status are returned. Status
field values are defined in Appendix A, "Status Codes and
Messages."

AMIGOS Reference Manual, Rev. 01

GQERR Reference Sheet Page 7-59
AlphaC CALLING SEQUENCE
The AlphaC format for the GQERR function is:
ggerr(gch, textptr); [* inquire error */
where:
gch Specifies the address of the graphics control block associated
with the workstation used.
textptr Specifies a register in which the pointer the ASCII error message

associated with the current error condition is returned.

Input Parameters:

g_gchb gcb;

Output Parameters:

glong *textptr;

Data Types:

t ypedef struct gcb g_gcb

t ypedef unsi gned gl ong;

/* graphics control block */

/* pointer to error string */

/* graphics control block */

/* 4-byte integer */

AMIGOS Reference Manual, Rev. 01

Page 7-60 GQERR Reference Sheet

AlphaBASIC CALLING SEQUENCE
The AlphaBASIC format for the GQERR function is:
XCALL AMGSBR, G (ERR, gcb, error’ nmes, stat us

where:

gch Specifies an unformatted (type X) variable which is the graphics
control block for the workstation used.

error’ mes A string or unformatted variable to receive the error message.
status Specifies a floating point variable in which the status of the

complete operation is returned. Status field values are defined in
Appendix A, "Status Codes and Messages."

AMIGOS Reference Manual, Rev. 01

GQTXE Reference Sheet Page 7-61

GQTXE

Inquire Text Extent

FUNCTION:

The GQTXE function returns the coordinates of a rectangle corresponding to the size of a
supplied text string. This rectangle represents the current text attributes, including height,
font, and rotation. The returned coordinate points are expressed in world coordinates.
Since the text string may extend beyond the current viewport boundaries, these
coordinates are returned as longword (32-bit) signed integers. The rectangle is positioned
relative to the lower left corner of the first character such that the first coordinate pair is
always 0,0. The remaining coordinate pairs follow in a sequence which follows a
counterclockwise path around the bounding rectangle.

ASSEMBLER CALLING SEQUENCE
The Assembler format for the GQTXE function is:
GQTrXE gch, addr, st at us

where:

gch Specifies the address of the graphics control block associated
with the workstation used.

addr Specifies the address of an argument block formatted as
described below. Only the text string pointer needs to be supplied
when making the call. The text string must be terminated with a
null (0) byte.

stat us Specifies a register in which 16-bits of status are returned. Status
field values are defined in Appendix A, "Status Codes and
Messages."

AMIGOS Reference Manual, Rev. 01

Page 7-62 GQTXE Reference Sheet

Argument Block Format

The format of the argument block is:

0
) — Pointer to text string — LTXAR
4
5 — Corner 1 (lower left) X coordinate — .TXX1
10
12 — Corner 1 (lower left) Y coordinate — .TXY1
14))
16 — Corner 2 (lower right) X coordinate — . TXX2
20))
- — Corner 2 (lower right) Y coordinate] .TXY2
24))
o6 — Corner 3 (upper right) X coordinate — L.TXX3
30
3 | Corner 3 (upper right) Y coordinate — .TXY3
34
36 | Corner 4 (upper left) X coordinate — .TXX4
40
o Corner 4 (upper left) Y coordinate — LTXY4
MAC245

AMIGOS Reference Manual, Rev. 01

GQTXE Reference Sheet Page 7-63
AlphaC CALLING SEQUENCE
The AlphaC format for the GQTXE function is:
gqt xe(gch, ar gbl ock) ; /* inquire text extent
where:
gch Specifies the address of the graphics control block associated
with the workstation used.
ar gbl ock Specifies the address of an argument block formatted as

described below. Only the text string pointer needs to be supplied
when making the call. The text string must be terminated with a
null (0) byte.

Input Parameters:

g_gchb gcb

Input/Output Parameters:

ext bl k argbl ock;

Data Types:

t ypedef struct gcb g_gcb;

t ypedef struct

{

char *itxar;
glong itxx1;
glong itxyl,;
glong itxx2;
glong itxy2;
glong itxx3;
glong itxy3;
glong itxx4;
glong itxy4;
} extblk;

/*

/*

/*

/*

/*
/*
/*
/*
/*
/*
/*
/*
/*

graphics contro

text extent argunent */

graphics contro

text extent argument block */

pointer to text string */

| ower
| owner
| owner
| owner
upper
upper
upper
upper

left x */
left y */
right x */
right y */
right x */
right y */
left x */
left y */

AMIGOS Reference Manual, Rev. 01

Page 7-64 GQTXE Reference Sheet

AlphaBASIC CALLING SEQUENCE
The AlphaBASIC format of the GQTXE function is:

XCALL AMGSBR, G QTXE, gchb, text, ext’ bl k, st at us

where:
gch Specifies an unformatted (type X) variable which is the graphics
control block for the workstation used.
t ext A string variable which contains the text for which the extent is
requested.
ext’ bl k This argument specifies a text extent rectangle formatted as
follows:

MAP1 EXTENT BLOCK
MAP2 EXTENT CORNER(4)
MAP3 EXTENT' X, F
MAP3 EXTENT' Y, F

In the above block, each of four corners contains an X and Y
coordinate. The corners proceed in a counterclockwise fashion.
Corner 1 is lower left, corner 2 is lower right, corner 3 is upper
right, and corner 4 is upper left. These locations apply to a
rectangle with no rotation.

st at us Specifies a floating point variable in which the status of the
complete operation is returned. Status field values are defined in
Appendix A, "Status Codes and Messages."

AMIGOS Reference Manual, Rev. 01

GQTXR Reference Sheet

FUNCTION:

The GQTXR function returns the current text attributes being used by the workstation.
Since the workstation need not exactly match the specified text attributes, this function
provides a means to determine the attributes which will actually be used to produce the

text.

ASSEMBLER CALLING SEQUENCE
The Assembler format for the GQTXR function is:

GATXR gcb, addr, st at us

where:
gch Specifies the address of the graphics control block associated
with the workstation used.
addr Specifies the address of an argument block formatted as
described below. The workstation GDV returns the current text
attributes in effect to this block.
stat us Specifies a register in which 16-bits of status are returned. Status

field values are defined in Appendix A, "Status Codes and

Messages."

Argument Block Format

The format of the argument block is:

Text font being used

Rotation type supported

Actual character height

S A~ N O

Actual character rotation

MAC246

I.TRFN
I.TRRT
I.TRCH
I.TRCR

AMIGOS Reference Manual, Rev. 01

Page 7-65

GOQTXR

Inquire Text Representation

Page 7-66 GQTXR Reference Sheet

All returned values are 16 bit. The rotation type supported defines the capability of the
workstation to rotate characters. The types are as follows:

I$STRNR Workstation does not support rotation.
I$TR90 Workstation supports 90 degree rotation.
I$TR45 Workstation supports 45 degree rotation.
I$TRFR Workstation provides full rotation.

The text font, actual character height, and actual character rotation define the current
attributes in use by the workstation. These attributes may be used to determine actual
text positioning and appearance.

AlphaC CALLING SEQUENCE

The AlphaC format for the GQTXR function is:

gqt xr (gcb, ar gbl ock) ; /* inquire text representation */
where:
gcb Specifies the address of the graphics control block associated

with the workstation used.
ar gbl ock Specifies the address of an argument block formatted as

described above. The workstation GDV returns the current text
attributes in effect to this block.

Input Parameters:

g_gchb gcb; /* graphics control block */

Output Parameters:

t ext bl k ar gbl ock; /* text representation argument */
Data Types:

t ypedef struct gcb g_gcb; /* graphics control block */

t ypedef struct /* text representation argument block */
{
gword font; /* font being used */
gword rot at etype; /* rotation type supported */
gl ong hei ght; /* actual character height */
gl ong rotation; /* actual character rotation */
} textblk;

AMIGOS Reference Manual, Rev. 01

GQTXR Reference Sheet Page 7-67

AlphaBASIC CALLING SEQUENCE
The AlphaBASIC format for the GQTXR function is:

XCALL AMGSBR, G QTXR, gcbh, font,ro’type, hght,rotati on, status

where:
gch Specifies an unformatted (type X) variable which is the graphics
control block for the workstation used.
f ont This floating point variable receives the current text font number.
ro’ This floating point variable receives the type of rotation supported
type by the workstation. The rotation types are:
0 Workstation does not support rotation.
1 Workstation supports 90 degree rotation.
2 Workstation supports 45 degree rotation.
3 Workstation supports full rotation.
hght This floating point variable receives the current text height which
will be used by the workstation for subsequent text output.
rotation This floating point variable receives the current text rotation which
will be used by the workstation for subsequent text output.
stat us Specifies a floating point variable in which the status of the

complete operation is returned. Status field values are defined in
Appendix A, "Status Codes and Messages."

AMIGOS Reference Manual, Rev. 01

Page 7-68 GRQLC Reference Sheet

GRQLC

Request Locator
FUNCTION:

The GRQLC function causes the specified workstation to return a pair of world
coordinates corresponding to a workstation dependent locator. This may be realized by a
number of input methods: mouse, joystick, joydisk, cursor keys, digitizing tablet, etc. The
coordinates are returned in a user defined argument block. Certain workstations may
provide an additional character input corresponding to a particular keystroke or button
depression. This character is returned in register D1. If bit 31 of D1 is set, the operator
has selected a location outside of the current viewport and the coordinates returned may
not be accurate. This is an interactive function which requires the operator to perform a
workstation dependent function (such as pressing a key or mouse button) before the
coordinates are returned. Some workstations support rubberbanding. This will appear as
a moving line or rectangle on the display until the operator actuates a key or button. The
type of rubberbanding desired is defined in the function. Not all workstations support this
feature and will ignore associated fields in the argument block.

ASSEMBLER CALLING SEQUENCE

The Assembler format for the GRQLC function is:

GRQLC gch, addr, st at us
where:

gcb Specifies the address of the graphics control block associated
with the workstation used.

addr Specifies the address of an argument block formatted as
described below.

st at us Specifies a register in which 32 bits of status are returned. Status
field values are defined in Appendix A, "Status Codes and
Messages."

AMIGOS Reference Manual, Rev. 01

GRQLC Reference Sheet Page 7-69

Argument Block Format

The format of the argument block is as follows:

0 Initial X coordinate
2 Initial Y coordinate
4 Rubberband type
6 Final X coordinate
10 Final Y coordinate

MAC247

The initial X and Y coordinates are used to specify the starting position of the cursor or
the anchor point of a rubberband function. The rubberband types are defined as follows:

RB$OFF No rubberbanding.
RBS$LIN Rubberband line.
RB$RCT Rubberband rectangle.

The final X and Y coordinates are returned in the argument block at offsets 6 and 10.

AMIGOS Reference Manual, Rev. 01

Page 7-70 GRQLC Reference Sheet

AlphaC CALLING SEQUENCE

The AlphaC format for the GRQLC function is:

grql c(gch, ar gbl ock, chr); /* request |ocator */
where:
gch Specifies the address of the graphics control block associated
with the workstation used.
ar gbl ock Specifies the address of an argument block formatted as
described below.
chr Specifies a pointer to a string variable to receive the returned

character from the pointing device.

Input Parameters:

g_gcb gcb; /* graphics control block */

Input/Output Parameters:

rqgl bl k argbl ock; /* request |ocator argunent block */

Output Parameters:

char chr[1]; /* string to receive character */
Data Types:
typedef struct gcb g_gcb; /* graphics control block */
t ypedef struct /* request |ocator */
{
gpoi nt i nitpos; /* initial coordinate point */
gwor d rbandtype; /* rubber band type */
gpoi nt final pos; /* final returned position */
} ral bl k;

AMIGOS Reference Manual, Rev. 01

GRQLC Reference Sheet Page 7-71

AlphaBASIC CALLING SEQUENCE
The AlphaBASIC format for the GRQLC function is:

XCALL AMGSBR, G RQLC, gch,ix, iy, rbrbnd, fx,fy, char, val, stat

where:
gch Specifies an unformatted (type X) variable which is the graphics
control block for the workstation used.
i X This floating point field specifies the initial X coordinate to be used
as a rubberband anchor.
iy This floating point field specifies the initial Y coordinate to be used
as a rubberband anchor.
rbr bnd This floating point field specifies the type of rubberbanding to be
used. The rubber band types are:
0 No rubberbanding.
1 Rubberband line.
2 Rubberband rectangle.
fx This floating point field receives the final X coordinate.
fy This floating point field receives the final Y coordinate.
char This string variable receives the character corresponding to a key
press or button depression.
val This floating point field represents the validity of the returned
coordinates. If this field is zero, the coordinates are valid. If this
field is non-zero, the operator has selected a location outside of
the current viewport and the final coordinates may be erroneous.
st at Specifies the status of the complete operation is returned. Status
field values are defined in Appendix A, "Status Codes and
Messages."

AMIGOS Reference Manual, Rev. 01

Page 7-72 GRQVL Reference Sheet

GRQVL

Request Valuator
FUNCTION:
The GRQVL function requesting valuator returns an integer value in a workstation
dependent manner. This may correspond to a scalar value or potentiometer input. This is
an interactive function and requires you to perform a workstation dependent function to
return the value. The integer value is returned in register D1.

ASSEMBLER CALLING SEQUENCE

The Assembler format for the GRQVL function is:

GRQVL gch, stat us
where:
gch Specifies the address of the graphics control block associated
with the workstation used.
st at us Specifies a register in which 32 bits of status are returned. Status
field values are defined in Appendix A, "Status Codes and
Messages."

AMIGOS Reference Manual, Rev. 01

GRQVL Reference Sheet Page 7-73

AlphaC CALLING SEQUENCE

The AlphaC format for the GRQVL function is:

grqvl (gcb, val ue) ; /* request valuator */
where:
gch Specifies the address of the graphics control block associated
with the workstation used.
val ue Specifies a pointer to a variable to receive the final value.

Input Parameters:

g_gchb gcb; /* graphics control block */

Output Parameters:

gl ong *val ue; /* requested val ue */

Data Types:
t ypedef struct gcb g_gcb; /* graphics control block */
t ypedef unsi gned gl ong; /* 4-byte integer */

AlphaBASIC CALLING SEQUENCE
The AlphaBASIC format for the GRQVL function is:

XCALL AMGSBR, G RQVL, gch, val ue, st at us

where:
gcb Specifies an unformatted (type X) variable which is the graphics
control block for the workstation used.
val ue This floating point field receives the final value.
st at us Specifies a floating point variable in which the status of the

complete operation is returned. Status field values are defined in
Appendix A, "Status Codes and Messages."

AMIGOS Reference Manual, Rev. 01

Page 7-74 GSCHH Reference Sheet

GSCHH

Set Character Height
FUNCTION:

GSCHH sets the height of all characters output by subsequent text functions. Depending
on the selected font, the workstation may map the character height to the closest height
available, rather than use the exact value specified.

Character height is specified in world coordinates. Most fonts will have a capital height
(height of upper case alphabet character) of approximately 73 percent of this total height.
In most cases, this allows sufficient room for character ascenders and descenders when
setting lines solid—that is, with no additional space between lines other than the text
height itself.

ASSEMBLER CALLING SEQUENCE

The Assembler format for the GSCHH function is:

GSCHH gchb, hei ght, st at us
where:

gch Specifies the address of the graphics control block associated
with the workstation used.

hei ght Specifies the height of the characters, in world coordinates, to be
output in subsequent text operations.

status Specifies a register in which 16-bits of status are returned. Status
field values are defined in Appendix A, "Status Codes and
Messages."

AMIGOS Reference Manual, Rev. 01

GSCHH Reference Sheet Page 7-75

AlphaC CALLING SEQUENCE

The AlphaC format for the GSCHH function is:

gschh(gch, hei ght); /* set character height */
where:
gch Specifies the address of the graphics control block associated
with the workstation used.
hei ght Specifies the height of the characters, in world coordinates, to be

output in subsequent text operations.

Input Parameters:

g_gchb gcb; /* graphics control block */
gl ong hei ght; /* character height */

Data Types:
typedef struct gcb g_gcb; /* graphics control block */
t ypedef unsigned gl ong; /* 4-byte integer */

AlphaBASIC CALLING SEQUENCE
The AlphaBASIC format for the GSCHH function is:

XCALL AMGSBR, G SCHH, gcb, hei ght, st at us

where:
gcb Specifies an unformatted (type X) variable which is the graphics
control block for the workstation used.
hei ght This floating point field specifies the height of the characters to be
output in subsequent text operations.
st at us Specifies a floating point variable in which the status of the

complete operation is returned. Status field values are defined in
Appendix A, "Status Codes and Messages."

AMIGOS Reference Manual, Rev. 01

Page 7-76 GSCHR Reference Sheet

GSCHR

Set Character Rotation
FUNCTION:
The specified character rotation is stored for use when generating subsequent text output
primitives.
ASSEMBLER CALLING SEQUENCE

The Assembler format for the GSCHR function is:

GSCHR gch, rotati on, st atus
where:

gch Specifies the address of the graphics control block associated
with the workstation used.

rotation Specifies the rotation angle in tenths of degrees. The rotation
angle is specified as a counterclockwise rotation from the positive
X axis.

status Specifies a register in which 16-bits of status are returned. Status
field values are defined in Appendix A, "Status Codes and
Messages."

AMIGOS Reference Manual, Rev. 01

GSCHR Reference Sheet Page 7-77

AlphaC CALLING SEQUENCE

The AlphaC format for the GSCHR function is:

gschr(gchb, rotation); /* set character height */
where:
gcb Specifies the address of the graphics control block associated
with the workstation used.
rotation Specifies the rotation angle in tenths of degrees. The rotation
angle is specified as a counterclockwise rotation from the positive
X axis.
Input Parameters:
g_gchb gcb; /* graphics control block */
glong rotation; /* rotation in tenth degrees */
Data Types:
t ypedef struct gcb g_gcb; /* graphics control block */
t ypedef unsi gned gl ong; /* 4-byte integer */

AlphaBASIC CALLING SEQUENCE
The AlphaBASIC format of the GSCHR function is:

XCALL AMSGSBR, G SCHR, gcb, rot ati on, st at us

where:
gcb Specifies an unformatted (type X) variable which is the graphics
control block for the workstation used.
rotation A floating point field which defines the rotation angle in tenths of
degrees. The rotation angle is specified as a counterclockwise
rotation from the positive X axis.
status Specifies a floating point variable in which the status of the

complete operation is returned. Status field values are defined in
Appendix A, "Status Codes and Messages."

AMIGOS Reference Manual, Rev. 01

Page 7-78 GSCM Reference Sheet

GSCM

Set Color Mode

FUNCTION:

GSCM sets the color definition mode for subsequent GSCR (set color representation) and

GQCR (inquire color representation) functions. The mode may be set to either the HLS

(hue, lightness, saturation) or RGB (red, green, blue) mode.
ASSEMBLER CALLING SEQUENCE

The format for the GSCM function is:

GSCM gch, cl rnode, st at us
where:

gch Specifies the address of the graphics control block associated
with the workstation used.

cl r node Specifies the color mode to be used for subsequent color setting
and inquiry functions. The defined color modes are as follows:

HLS (hue, lightness, saturation)
RGB (red, green, blue)

0
1
stat us Specifies a register in which 16-bits of status are returned. Status

field values are defined in Appendix A, "Status Codes and
Messages."

AMIGOS Reference Manual, Rev. 01

GSCM Reference Sheet Page 7-79

AlphaC CALLING SEQUENCE
The AlphaC format for the GSCM function is:
gscm(gch, col or node) ; /* set color node */
where:

gch Specifies the address of the graphics control block associated
with the workstation used.

col or node Specifies the color mode to be used for subsequent color setting
and inquiry functions. The defined color modes are as follows:

0= HLS (hue, lightness, saturation)
1= RGB (red, green, blue)
Input Parameters:
g_gcb gcb; /* graphics control block */
gl ong col or node; /* col or node */
Data Types:
t ypedef struct gcb g_gcb; /* graphics control block */
t ypedef unsigned gl ong; /* 4-byte integer */

AlphaBASIC CALLING SEQUENCE
The AlphaBASIC format for the GSCM function is:

XCALL AMSSBR, G SCM gcb, node, st at us

where:
gch Specifies an unformatted (type X) variable which is the graphics
control block for the workstation used.
node A floating point field defining the color mode to be used for
subsequent output operations. The allowable values for this field
are defined above.
stat us Specifies a floating point variable in which the status of the

complete operation is returned. Status field values are defined in
Appendix A, "Status Codes and Messages."

AMIGOS Reference Manual, Rev. 01

Page 7-80 GSCR Reference Sheet

GSCR

Set Color Representation
FUNCTION:

In the color table of a given workstation, each color index is associated with a specific
color. The selected color is then mapped to the closest available value available on the
workstation.

The workstation color table has predefined entries based on the characteristics of the
workstation; at least indices 0 and 1 are predefined for every workstation. Any table
entry, including the predefined ones, may be redefined using this function.

When any output primitive (line, marker, text, etc.) is displayed, the color index refers to
an entry in the color table. If output primitives are displayed with a color index that is not
present in the color table, a workstation dependent color will be used. The background
color is defined by color index 0.

GSCR sets the current color representation for a specified index. The color
representation may be returned as HLS (Hue, Lightness, Saturation) or RGB (red, green,
blue), depending on the current color mode.

ASSEMBLER CALLING SEQUENCE

The Assembler format for the GSCR function is:

GSCR gchb, addr, st atus
where:

gcb Specifies the address of the graphics control block associated
with the workstation used.

addr Specifies the address of an argument block formatted as
described below.

st at us Specifies a register in which 16-bits of status are returned. Status
field values are defined in Appendix A, "Status Codes and
Messages."

AMIGOS Reference Manual, Rev. 01

GSCR Reference Sheet

Page 7-81

HLS Mode Argument Block Format

The format of the argument block in HLS mode is:

0
5 [color index to modify —
4 Hue (0 to 360)
6 Lightness (0 to 100)
10 Saturation (0 to 100)

MAC248
RGB Mode Argument Block Format
The format of the argument block in RGB mode is:
0
) — color index to modify —
4 Red (0 to 255)
6 Green (0 to 255)
10 Blue (0 to 255)
MAC249

AMIGOS Reference Manual, Rev. 01

Page 7-82 GSCR Reference Sheet

AlphaC CALLING SEQUENCE
The AlphaC format for the GSCR function is:
gscr(gch, ar gbl ock) ; /* set color representation */
where:

gch Specifies the address of the graphics control block associated
with the workstation used.

addr Specifies the address of an argument block formatted as
described below.

Input Parameters:

g_gchb gcb; /* graphics control block */
cl rbl k argbl ock; /* color representation argunent */
Data Types:
typedef struct gcb g_gcb; /* graphics control block */
t ypedef struct /* color representation argunent */
{
gl ong i ndex; /* color index to nodify */
gword hue_red; /* hue or red
gword | gt_green; /* lightness or green */
gword sat _bl ue; /* saturation or blue */
} clrblk;

AMIGOS Reference Manual, Rev. 01

GSCR Reference Sheet Page 7-83

AlphaBASIC CALLING SEQUENCE
The AlphaBASIC format for the GSCR function in HLS mode is:

XCALL AMGSBR, G SCR, gcb, cl r’i dx, hue, | i ght, sat, st at us

where:
gch Specifies an unformatted (type X) variable which is the graphics
control block for the workstation used.
clr’idx A variable containing the number of the color index to get.
hue A variable containing the hue component in range 0-360.
I'ight A variable containing the lightness component in range 0-100.
sat A variable containing the saturation component in range 0-100.
status Specifies a floating point variable in which the status of the complete

operation is returned. Status field values are defined in Appendix A,
"Status Codes and Messages."

The AlphaBASIC format for the GSCR function in RGB mode is:

XCALL AMSSBR, G SCR, gcb, cl r’i dx, red, green, bl ue, st at us

where:
gch Specifies an unformatted (type X) variable which is the graphics
control block for the workstation used.
clr’idx A variable containing the number of the color index to get.
red A variable containing the red component in range 0-255.
bl ue A variable containing the blue component in range 0-255.
green A variable containing the green component in range 0-255.
st at us Specifies a floating point variable in which the status of the complete

operation is returned. Status field values are defined in Appendix A,
"Status Codes and Messages."

AMIGOS Reference Manual, Rev. 01

Page 7-84 GSFAC Reference Sheet

GSFAC

Set Fill Area Color Index
FUNCTION:
GSFAC determines the color index to be used by subsequent fill area operations. If a
workstation does not support color, this function is ignored. The number of possible
colors which may be selected is workstation dependent.

ASSEMBLER CALLING SEQUENCE

The Assembler format for the GSFAC function is:

GSFAC gchb, col or, stat us
where:

gch Specifies the address of the graphics control block associated
with the workstation used.

col or Specifies the color index to be used in subsequent fill area
operations. This field is an index into the workstation’s color
representation table.

st at us Specifies a register in which 16-bits of status are returned. Status
field values are defined in Appendix A, "Status Codes and
Messages."

AMIGOS Reference Manual, Rev. 01

GSFAC Reference Sheet Page 7-85

AlphaC CALLING SEQUENCE
The AlphaC format for the GSFAC function is:
gsfac(gch,fillcolor); /* set fill area color */
where:

gch Specifies the address of the graphics control block associated
with the workstation used.

fillcolor Specifies the color index to be used in subsequent fill area

operations. This field is an index into the workstation's color
representation table.

Input Parameters:

g_gch gcb; /* graphics control block */
glong fillcolor; /* fill area color */

Data Types:
t ypedef struct gcb g_gcb; /* graphics control block */
t ypedef unsi gned gl ong; /* 4-byte integer */

AlphaBASIC CALLING SEQUENCE
The AlphaBASIC format for the GSFAC function is:

XCALL AMGSBR, G SFAC, gcb, col or, status

where:
gcb Specifies an unformatted (type X) variable which is the graphics
control block for the workstation used.
col or A floating point field defining the color index to be used in
subsequent fill area operations. This field is an index into the
workstation’s color index table.
st at us Specifies a floating point variable in which the status of the

complete operation is returned. Status field values are defined in
Appendix A, "Status Codes and Messages."

AMIGOS Reference Manual, Rev. 01

Page 7-86 GSFAI Reference Sheet

GSFAI

Set Fill Area Style Index
FUNCTION:
GSFAI sets the fill area style to be used in subsequent fill area operations. For the hollow
and solid interior styles, this setting is ignored. For the pattern interior style, it specifies
which of the workstation dependent patterns to use.

ASSEMBLER CALLING SEQUENCE

The Assembler format for the GSFAI function is:

GSFAI gchb, i ndex, st at us
where:

gch Specifies the address of the graphics control block associated
with the workstation used.

i ndex Specifies pattern style to be used. This argument is an index into
the workstation’s style table.

status Specifies a register in which 16-bits of status are returned. Status
field values are defined in Appendix A, "Status Codes and
Messages."

AMIGOS Reference Manual, Rev. 01

GSFAI Reference Sheet Page 7-87

AlphaC CALLING SEQUENCE

The AlphaC format for the GSFAI function is:

gsfai (gch, fillindex); /* set fill area index */
where:
gch Specifies the address of the graphics control block associated
with the workstation used.
fillindex Specifies pattern style to be used. This argument is an index into

the workstation’s style table.

Input Parameters:

g_gchb gcb; /* graphics control block */

glong fillindex; /* fill area style index */
Data Types:

typedef struct gcb g_gcb; /* graphics control block */

t ypedef unsigned gl ong; /* 4-byte integer */

AlphaBASIC CALLING SEQUENCE
The AlphaBASIC format for the GSFAI function is:

XCALL AMGSBR, G SFAI, gcb, i ndex, st at us

where:
gcb Specifies an unformatted (type X) variable which is the graphics
control block for the workstation used.
i ndex This floating point field specifies pattern style to be used. This
argument is an index into the workstation’s style table.
st at us Specifies a floating point variable in which the status of the

complete operation is returned. Status field values are defined in
Appendix A, "Status Codes and Messages."

AMIGOS Reference Manual, Rev. 01

Page 7-88 GSFAS Reference Sheet

GSFAS

Set Fill Area Internal Style
FUNCTION:

GSFAS sets the type of interior fill to be used in subsequent filled areas.

ASSEMBLER CALLING SEQUENCE
The Assembler format for the GSFAS function is:
GSFAS gch, styl e, status
where:

gcb Specifies the address of the graphics control block associated
with the workstation used.

style Specifies the interior style to be used in subsequent fill area
operations. The defined interior styles are:

1 = hollow

2 = solid

3 = pattern

4 = hatch

>4 = device dependent

st at us Specifies a register in which 16-bits of status are returned. Status

field values are defined in Appendix A, "Status Codes and
Messages."

AMIGOS Reference Manual, Rev. 01

GSFAS Reference Sheet Page 7-89

AlphaC CALLING SEQUENCE
The AlphaC format for the GSFAS function is:
gsfas(gch,fillstyle); /* set fill area style */
where:

gch Specifies the address of the graphics control block associated
with the workstation used.

fillstyle Specifies the interior style to be used in subsequent fill area
operations. The defined interior styles are:

1 = hollow
2 = solid
3 = pattern
4 = hatch
>4 = device dependent
Input Parameters:
g_gchb gcb; /* graphics control block */
glong fillstyle; /* fill area style */
Data Types:
t ypedef struct gcb g_gcb; /* graphics control block */
t ypedef unsigned gl ong; /* 4-byte integer */

AMIGOS Reference Manual, Rev. 01

Page 7-90 GSFAS Reference Sheet

AlphaBASIC CALLING SEQUENCE
The AlphaBASIC format for the GSFAS function is:

XCALL AMGSBR, G SFAS, gch, styl e, stat us

where:
gch Specifies an unformatted (type X) variable which is the graphics
control block for the workstation used.
style A floating point field defining the interior style to be used in
subsequent fill area functions. The allowable values for this field
are defined above.
st at us Specifies a floating point variable in which the status of the

complete operation is returned. Status field values are defined in
Appendix A, "Status Codes and Messages."

AMIGOS Reference Manual, Rev. 01

GSMLC Reference Sheet Page 7-91

GSMLC

Sample Locator
FUNCTION:

The GSMLC function causes the specified workstation to return a pair of world
coordinates corresponding to a workstation dependent locator. This may be realized by a
number of input methods, such as: mouse, joystick, joydisk, cursor keys, digitizing tablet,
etc.

The coordinates are returned in a user defined argument block. This is a non-interactive
input function which returns the current locator without operator intervention. Certain
workstations may return a character corresponding to a key or button that was pressed
prior to the function. This character is returned in register D1. If bit 31 of D1 is set, the
current location is outside of the current viewport and the coordinates returned may not
be accurate.

ASSEMBLER CALLING SEQUENCE

The Assembler format for the GSMLC function is:

GSMLC gchb, addr, st at us
where:

gcb Specifies the address of the graphics control block associated
with the workstation used.

addr Specifies the address of an argument block formatted as
described below.

stat us Specifies a register in which 32 bits of status are returned. Status
field values are defined in Appendix A, "Status Codes and
Messages."

Argument Block Format

The format of the argument block is as follows:

0 X coordinate

Y coordinate

MAC250

AMIGOS Reference Manual, Rev. 01

Page 7-92

GSMLC Reference Sheet

AlphaC CALLING SEQUENCE

The AlphaC format for the GSMLC function is:

gsm c(gch, argbl ock, chr);

/* sanple locator */

where:
gch Specifies the address of the graphics control block associated
with the workstation used.
ar gbl ock Specifies the address of an argument block formatted as
described below.
chr Specifies a pointer to a string variable to receive the returned

character from the pointing device.

Input Parameters:

g_gcb geb;

Output Parameters:
sm bl k ar gbl ock;
char chr[1];
Data Types:

t ypedef struct gcb g_gcb;

t ypedef struct gpoint sm blk;

/*

/*
/*

/*

/*

graphics control block */

sanpl e | ocator argunent block */
string to receive character */

graphics control block */

returned | ocator point */

AMIGOS Reference Manual, Rev. 01

GSMLC Reference Sheet Page 7-93

AlphaBASIC CALLING SEQUENCE
The AlphaBASIC format for the GSMLC function is:

XCALL AMGSBR, G SMLC, gchb, x,y, char, valid, status

where:

gch Specifies an unformatted (type X) variable which is the graphics
control block for the workstation used.

X This floating point field receives the current X coordinate.

y This floating point field receives the current Y coordinate.

char This string variable receives the character corresponding to the
pressing of a key or button which may have occurred prior to the
call.

valid This floating point field represents the validity of the returned
coordinates. If this field is zero, the coordinates are valid. If this
field is non-zero, the location is outside of the current viewport
and the final coordinates may be erroneous.

st at us Specifies a floating point variable in which the status of the

complete operation is returned. Status field values are defined in
Appendix A, "Status Codes and Messages."

AMIGOS Reference Manual, Rev. 01

Page 7-94 GSMVL Reference Sheet

GSMVL

Sample Valuator

FUNCTION:
The GSMVL function returns an integer value in a workstation dependent manner. This
may correspond to a scalar value or potentiometer input. This is an non-interactive

function and does not require operator intervention in order to return a value. The integer
value is returned in register D1.

ASSEMBLER CALLING SEQUENCE

The Assembler format for the GSMVL function is:

GSMVL gch, stat us
where:
gch Specifies the address of the graphics control block associated
with the workstation used.
st at us Specifies a register in which 32 bits of status are returned. Status
field values are defined in Appendix A, "Status Codes and
Messages."

AMIGOS Reference Manual, Rev. 01

GSMVL Reference Sheet Page 7-95

AlphaC CALLING SEQUENCE

The AlphaC format for the GSMVL function is:

gsmvl (gcb, val ue) ; /* sanpl e val uator */
where:
gch Specifies the address of the graphics control block associated
with the workstation used.
val ue Specifies a pointer to a variable to receive the final value.

Input Parameters:

g_gchb gcb; /* graphics control block */

Output Parameters:

gl ong *val ue; /* sanpl ed val ue */

Data Types:
t ypedef struct gcb g_gcb; /* graphics control block */
t ypedef unsi gned gl ong; /* 4-byte integer */

AlphaBASIC CALLING SEQUENCE
The AlphaBASIC format for the GSMVL function is:

XCALL AMGSBR, G SMVL, gcb, val ue, st at us

where:
gcb Specifies an unformatted (type X) variable which is the graphics
control block for the workstation used.
val ue This floating point field receives the final value.
st at us Specifies a floating point variable in which the status of the

complete operation is returned. Status field values are defined in
Appendix A, "Status Codes and Messages."

AMIGOS Reference Manual, Rev. 01

Page 7-96 GSPLC Reference Sheet

GSPLC

Set Polyline Color Index
FUNCTION:
GSPLC determines the color index to be used by subsequent polyline operations. If a
workstation does not support color, this function is ignored. The number of possible
colors which may be selected is workstation dependent.

ASSEMBLER CALLING SEQUENCE

The Assembler format for the GSPLC function is:

GSPLC gchb, col or, stat us
where:

gch Specifies the address of the graphics control block associated
with the workstation used.

col or Specifies the color index to be used in subsequent polyline
operations. This field is an index into the workstation’s color
representation table.

st at us Specifies a register in which 16-bits of status are returned. Status
field values are defined in Appendix A, "Status Codes and
Messages."

AMIGOS Reference Manual, Rev. 01

GSPLC Reference Sheet Page 7-97

AlphaC CALLING SEQUENCE
The AlphaC format for the GSPLC function is:
gspl c(gch, I'i necol or); /* set line color */
where:

gch Specifies the address of the graphics control block associated
with the workstation used.

I i necol or Specifies the color index to be used in subsequent polyline opera-
tions. This field is an index into the workstation’s color representa-

tion table.
Input Parameters:
g_gch gcb; /* graphics control block */
gl ong |inecol or; /* character height */
Data Types:
t ypedef struct gcb g_gcb; /* graphics control block */
t ypedef unsi gned gl ong; /* 4-byte integer */

AlphaBASIC CALLING SEQUENCE
The AlphaBASIC format for the GSPLC function is:

XCALL AMGSBR, G SPLC, gcb, col or, status

where:
gcb Specifies an unformatted (type X) variable which is the graphics
control block for the workstation used.
col or A floating point field defining the color index to be used in
subsequent polyline operations. This field is an index into the
workstation’s color index table.
st at us Specifies a floating point variable in which the status of the

complete operation is returned. Status field values are defined in
Appendix A, "Status Codes and Messages."

AMIGOS Reference Manual, Rev. 01

Page 7-98 GSPLS Reference Sheet

GSPLS

Set Line Width
FUNCTION:
GSPLS sets the width of the lines to be drawn via subsequent polyline operations. Line
width is specified in world coordinates. The line width produced is device dependent.
Each device supports a nominal line width which may be used by setting this value to
zero. If the specified line width exceeds that which the workstation can produce, solid
lines are drawn using the fill area function. All other line types are matched to the
workstation capabilities as closely as possible.
ASSEMBLER CALLING SEQUENCE
The Assembler format for the GSPLS function is:
GSPLS gcb, wi dt h, st at us

where:

gcb Specifies the address of the graphics control block associated
with the workstation used.

wi dt h Defines the line width in world coordinates.

st at us Specifies a register in which 16-bits of status are returned. Status
field values are defined in Appendix A, "Status Codes and
Messages."

AMIGOS Reference Manual, Rev. 01

GSPLS Reference Sheet Page 7-99

AlphaC CALLING SEQUENCE
The AlphaC format for the GSPLS function is:
gspl s(gch, I'i newi dth); /* set line width */
where:

gch Specifies the address of the graphics control block associated
with the workstation used.

i newi dt h Defines the line width in world coordinates.

Input Parameters:

g_gchb gcb; /* graphics control block */
gl ong |inew dt h; /* line width */

Data Types:
t ypedef struct gcb g_gcb; /* graphics control block */
t ypedef unsigned gl ong; /* 4-byte integer */

AlphaBASIC CALLING SEQUENCE
The AlphaBASIC format for the GSPLS function is:

XCALL AMGSBR, G SPLS, gcb, wi dt h, st at us

where:
gcb Specifies an unformatted (type X) variable which is the graphics
control block for the workstation used.
wi dt h A floating point field defining the line width.
st at us Specifies a floating point variable in which the status of the

complete operation is returned. Status field values are defined in
Appendix A, "Status Codes and Messages."

AMIGOS Reference Manual, Rev. 01

Page 7-100 GSPLT Reference Sheet

GSPLT

Set Line Type
FUNCTION:

GSPLT sets the line type to be used in subsequent polyline operations.

ASSEMBLER CALLING SEQUENCE
The Assembler format for the GSPLT function is:
GSPLT gch, type, st at us
where:

gcb Specifies the address of the graphics control block associated
with the workstation used.

type Specifies the line type to be used in subsequent polyline
operations. The defined line types are as follows:

solid line

dashed line
dotted line

device dependent

>

W wN -

stat us Specifies a register in which 16-bits of status are returned. Status
field values are defined in Appendix A, "Status Codes and
Messages."

AMIGOS Reference Manual, Rev. 01

GSPLT Reference Sheet Page 7-101

AlphaC CALLING SEQUENCE

The AlphaC format for the GSPLT function is:

gspl t(gch, I'i netype); /* set line type */
where:
gch Specifies the address of the graphics control block associated
with the workstation used.
i netype Specifies the line type to be used in subsequent polyline

operations. The defined line types are as follows:

1 = solid line
2 = dashed line
3 = dotted line
>3 = device dependent
Input Parameters:
g_gchb gcb; /* graphics control block */
gl ong linetype; /* line type */
Data Types:
t ypedef struct gcb g_gcb; /* graphics control block */
t ypedef unsigned gl ong; /* 4-byte integer */

AMIGOS Reference Manual, Rev. 01

Page 7-102 GSPLT Reference Sheet

AlphaBASIC CALLING SEQUENCE
The AlphaBASIC format for the GSPLT function is:

XCALL AMGSBR, G SPLT, gcb, type, st at us

where:
gch Specifies an unformatted (type X) variable which is the graphics
control block for the workstation used.
type A floating point field defining the line type to be used. The
allowable values for this field are defined above.
st at us Specifies a floating point variable in which the the status of the

complete operation is returned. Status field values are defined in
Appendix A, "Status Codes and Messages."

AMIGOS Reference Manual, Rev. 01

GSPMC Reference Sheet Page 7-103

GSPMC

Set Polymarker Color Index
FUNCTION:
GSPMC determines the color index to be used by subsequent polymarker
operations. If a workstation does not support color, this function is ignored. The
number of possible colors which may be selected is workstation dependent.

ASSEMBLER CALLING SEQUENCE

The Assembler format for the GSPMC function is:

GSPMC gchb, col or, stat us
where:

gch Specifies the address of the graphics control block associated
with the workstation used.

col or Specifies the color index to be used in subsequent polymarker
operations. This field is an index into the workstation’s color
representation table.

st at us Specifies a register in which 16-bits of status are returned. Status
field values are defined in Appendix A, "Status Codes and
Messages."

AMIGOS Reference Manual, Rev. 01

Page 7-104 GSPMC Reference Sheet

AlphaC CALLING SEQUENCE
The AlphaC format for the GSPMC function is:

gspnt(gchb, mar kercol or); [* set
pol ynmar ker col or */

where:

gcb Specifies the address of the graphics control block associated
with the workstation used.

mar ker col or Specifies the color index to be used in subsequent polymarker

operations. This field is an index into the workstation’s color
representation table.

Input Parameters:

g_gchb gcb; /* graphics control block */
gl ong nmarker col or; /* pol ymarker color */

Data Types:
t ypedef struct gcb g_gcb; /* graphics control block */
t ypedef unsi gned gl ong; /* 4-byte integer */

AlphaBASIC CALLING SEQUENCE
The AlphaBASIC format for the GSPMC function is:

XCALL AMSSBR, G SPMC, gcb, col or, st at us

where:
gch Specifies an unformatted (type X) variable which is the graphics
control block for the workstation used.
col or A floating point field defining the color index to be used in
subsequent polyline operations. This field is an index into the
workstation’s color index table.
st at us Specifies a floating point variable in which the status of the

complete operation is returned. Status field values are defined in
Appendix A, "Status Codes and Messages."

AMIGOS Reference Manual, Rev. 01

GSPMS Reference Sheet Page 7-105

GSPMS

Set Marker Size
FUNCTION:
GSPMS sets the size of the markers to be drawn via subsequent polymarker
operations. The marker size is related to the nominal marker size on a workstation;
the result is mapped by the workstation to the nearest available marker size.

ASSEMBLER CALLING SEQUENCE

The Assembler format for the GSPMS function is:

GSPNVB gchb, si ze, stat us
where:

gch Specifies the address of the graphics control block associated
with the workstation used.

wi dth Defines the marker size in world coordinates.

st at us Specifies a register in which 16-bits of status are returned. Status
field values are defined in Appendix A, "Status Codes and
Messages."

AMIGOS Reference Manual, Rev. 01

Page 7-106 GSPMS Reference Sheet

AlphaC CALLING SEQUENCE
The AlphaC format for the GSPMS function is:
gspns(gch, mar kersi ze) ; /* set polymarker size */
where:

gch Specifies the address of the graphics control block associated
with the workstation used.

mar ker si ze Defines the marker size in world coordinates.

Input Parameters:

g_gchb gcb; /* graphics control block */
gl ong nmarkersi ze; /* pol ymar ker size */

Data Types:
t ypedef struct gcb g_gcb; /* graphics control block */
t ypedef unsigned gl ong; /* 4-byte integer */

AlphaBASIC CALLING SEQUENCE
The AlphaBASIC format for the GSPMS function is:

XCALL AMGSBR, G SPMs, gcb, si ze, st at us

where:
gcb Specifies an unformatted (type X) variable which is the graphics
control block for the workstation used.
scal e A floating point field defining the size of the markers to be used in
subsequent polymarker operations.
stat us Specifies a floating point variable in which the status of the

complete operation is returned. Status field values are defined in
Appendix A, "Status Codes and Messages."

AMIGOS Reference Manual, Rev. 01

GSPMT Reference Sheet Page 7-107

GSPMT

Set Marker Type
FUNCTION:

GSPMT sets the marker type to be used in subsequent polymarker operations.

ASSEMBLER CALLING SEQUENCE
The Assembler format for the GSPMT function is:
GSPMT gch, type, st at us
where:

gcb Specifies the address of the graphics control block associated
with the workstation used.

type Specifies the marker type to be used in subsequent polymarker
operations. The defined marker types are as follows:

1 = dot (.) 4 = circle (O)
2 = plus (+) 5 = cross (X)
3 = star (*) >5 = device dependent
stat us Specifies a register in which 16-bits of status are returned.

Appendix A, "Status Codes and Messages" gives status field
value definitions.

AMIGOS Reference Manual, Rev. 01

Page 7-108 GSPMT Reference Sheet

AlphaC CALLING SEQUENCE
The AlphaC format for the GSPMT function is:
gspnt (gcb, mar kertype) ; /* set polymarker type */
where:

gch Specifies the address of the graphics control block associated
with the workstation used.

mar kertype Specifies the marker type to be used in subsequent polymarker
operations. The defined marker types are as follows:

1 = dot (.) 4 = circle (O)
2 = plus (+) 5 = cross (X)
3 = star (¥) >5 = device dependent
Input Parameters:
g_gcb gcb; /* graphics control block */
gl ong narkertype; /* marker type */
Data Types:
t ypedef struct gcb g_gcb; /* graphics control block */
t ypedef unsigned gl ong; /* 4-byte integer */

AMIGOS Reference Manual, Rev. 01

GSPMT Reference Sheet Page 7-109

AlphaBASIC CALLING SEQUENCE
The AlphaBASIC format for the GSPMT function is:

XCALL AMGSBR, G SPM, gcb, type, st at us

where:
gch Specifies an unformatted (type X) variable which is the graphics
control block for the workstation used.
type A floating point field defining the marker type to be used in
subsequent polymarker operations. Allowable values are defined
above.
stat us Specifies a floating point variable in which the status of the

complete operation is returned. Appendix A, "Status Codes and
Messages" gives status field value definitions.

AMIGOS Reference Manual, Rev. 01

Page 7-110 GSTXC Reference Sheet

GSTXC

Set Text Color Index
FUNCTION:
GSTXC determines the color index to be used by subsequent text operations. If a
workstation does not support color, this function is ignored. The number of possible
colors which may be selected is workstation dependent.

ASSEMBLER CALLING SEQUENCE

The Assembler format for the GSTXC function is:

GSTXC gchb, col or, stat us
where:

gch Specifies the address of the graphics control block associated
with the workstation used.

col or Specifies the color index to be used in subsequent text
operations. This field is an index into the workstation’s color
representation table.

st at us Specifies a register in which 16-bits of status are returned. Status
field values are defined in Appendix A, "Status Codes and
Messages."

AMIGOS Reference Manual, Rev. 01

GSTXC Reference Sheet Page 7-111

AlphaC CALLING SEQUENCE
The AlphaC format for the GSTXC function is:
gst xc(gch, textcol or); /* set text color */
where:

gch Specifies the address of the graphics control block associated
with the workstation used.

t ext col or Specifies the color index to be used in subsequent text

operations. This field is an index into the workstation's color
representation table.

Input Parameters:

g_gch gcb; /* graphics control block */
gl ong textcol or; /* text color */

Data Types:
t ypedef struct gcb g_gcb; /* graphics control block */
t ypedef unsi gned gl ong; /* 4-byte integer */

AlphaBASIC CALLING SEQUENCE
The AlphaBASIC format for the GSTXC function is:

XCALL AMGSBR, G STXC, gcb, col or, status

where:
gch Specifies an unformatted (type X) variable which is the graphics
control block for the workstation used.
col or A floating point field defining the color index to be used in
subsequent text operations. This field is an index into the
workstation’s color index table.
st at us Specifies a floating point variable in which the status of the

complete operation is returned. Status field values are defined in
Appendix A, "Status Codes and Messages."

AMIGOS Reference Manual, Rev. 01

Page 7-112 GSTXF Reference Sheet

GSTXF

Set Text Font

FUNCTION:

GSTXF determines the font to be used by subsequent text functions.

If the specified text font is not available on a workstation, font 1 is used. If a font

above 1001 is specified and not found in memory, font 1001, Simplex Roman, is

used.

All workstations which support graphics output are guaranteed to have font 1 as a

minimum.

ASSEMBLER CALLING SEQUENCE

The Assembler format for the GSTXF function is:

GSTXF gch, font, status
where:

gchb Specifies the address of the graphics control block associated
with the workstation used.

f ont Specifies the font to be used for subsequent text operations.

st at us Specifies a register in which 16-bits of status are returned. Status
field values are defined in Appendix A, "Status Codes and
Messages."

AMIGOS Reference Manual, Rev. 01

GSTXF Reference Sheet Page 7-113

AlphaC CALLING SEQUENCE

The AlphaC format for the GSTXF function is:

gst xf (gch, font); /* set text font */
where:
gch Specifies the address of the graphics control block associated
with the workstation used.
f ont Specifies the font to be used for subsequent text operations.

Input Parameters:

g_gchb gcb; /* graphics control block */
gl ong font; /* text font */

Data Types:
t ypedef struct gcb g_gcb; /* graphics control block */
t ypedef unsigned gl ong; /* 4-byte integer */

AlphaBASIC CALLING SEQUENCE
The AlphaBASIC format for the GSTXF function is:

XCALL AMGSBR, G STXF, gcb, font, stat us

where:
gcb Specifies an unformatted (type X) variable which is the graphics
control block for the workstation used.
f ont A floating point variable which specifies the font to be used in
subsequent text operations.
stat us Specifies a floating point variable in which the status of the

complete operation is returned. Status field values are defined in
Appendix A, "Status Codes and Messages."

AMIGOS Reference Manual, Rev. 01

Page 7-114 GSWKYV Reference Sheet

GSWKYV

Set Workstation Viewport

FUNCTION:

GSWKYV allows display of the currently windowed portion of the world coordinate
space in a portion of the entire display area. In this way, multiple representations of
the world space can reside in a single display area.

To set a viewport, the desired lower left and upper right coordinates of the display
space are specified. This results in all subsequent output operations being reduced
or enlarged to fill the specified display area. When a workstation is opened, the
workstation viewport is set equal to the entire world coordinate space.

ASSEMBLER CALLING SEQUENCE

The Assembler format for the GSWKYV function is:

GSVKV gch, addr, st at us
where:

gchb Specifies the address of the graphics control block associated
with the workstation used.

addr Specifies the address of an argument block formatted as
described below.

st at us Specifies a register in which 16-bits of status are returned. Status
field values are defined in Appendix A, "Status Codes and
Messages."

AMIGOS Reference Manual, Rev. 01

GSWKYV Reference Sheet Page 7-115

Argument Block Format

The format of the argument block is:

0 Lower left X
2 Lower left Y
4 Upper right X
6 Upper right Y
MAC228
AlphaC CALLING SEQUENCE
The AlphaC format for the GSWKY function is:
gswkv(gch, argbl ock); /* set viewport */
where:
gch Specifies the address of the graphics control block associated
with the workstation used.
ar gbl ock Specifies the address of an argument block formatted as
described below.
Input Parameters:
g_gchb gcb; /* graphics control block */
vi ewbl k ar gbl ock; /* viewport argument */
Data Types:
t ypedef struct gcb g_gcb; /* graphics control block */
t ypedef struct /* viewport argunent bl ock */
{
gpoi nt corner1; /* first corner of viewport */
gpoi nt corner 2; /* second corner of viewport */
} viewbdl k;

AMIGOS Reference Manual, Rev. 01

Page 7-116 GSWKYV Reference Sheet

AlphaBASIC CALLING SEQUENCE
The AlphaBASIC format for the GSWKYV function is:

XCALL AMGSBR, G SWKV, gcb, mi nX, m nY, maxX, maxyY, st at us

where:

gch Specifies an unformatted (type X) variable which is the graphics
control block for the workstation used.

m nX This floating point value defines the lower left X coordinate of the
desired viewport.

mnyY This floating point value defines the lower left Y coordinate of the
desired viewport.

max X This floating point value defines the upper right X coordinate of
the desired viewport.

maxyY This floating point value defines the upper right Y coordinate of
the desired viewport.

st at us This field specifies a floating point variable in which the status of

the complete operation is returned. Status field values are
defined in Appendix A, "Status Codes and Messages."

AMIGOS Reference Manual, Rev. 01

GSWKW Reference Sheet Page 7-117

GSWKW

Set Workstation Window

FUNCTION:

GSWKW allows you to view only a portion of the entire world coordinate space. This
portion of the full space is displayed in the currently active display area (viewport) of
the workstation.

To set a window, the desired lower left and upper right coordinates of the world
space are specified. This results in all subsequent output operations being reduced
or enlarged to fill the current viewport. Output primitives which lie outside of the
window area are not displayed. When a workstation is opened, the workstation
window is set equal to the entire world coordinate space.

ASSEMBLER CALLING SEQUENCE
The Assembler format for the GSWKW function is:

GSVKW gcb, addr, st at us

where:

gch Specifies the address of the graphics control block associated
with the workstation used.

addr Specifies the address of an argument block formatted as
described below.

status Specifies a register in which 16-bits of status are returned. Status
field values are defined in Appendix A, "Status Codes and
Messages."

Argument Block Format

The format of the argument block is:

Lower left X

Lower left Y

Upper right X

o M~ N O

Upper right Y

MAC228

AMIGOS Reference Manual, Rev. 01

Page 7-118 GSWKW Reference Sheet

AlphaC CALLING SEQUENCE
The AlphaC format for the GSWKW function is:
gswkw(gcb, ar gbl ock) ; /* set wi ndow */
where:

gch Specifies the address of the graphics control block associated
with the workstation used.

ar gbl ock Specifies the address of an argument block formatted as
described below.

Input Parameters:

g_gchb gcb; /* graphics control block */
wi nbl k ar gbl ock; /* wi ndow ar gunent */
Data Types:

typedef struct gcb g_gcb; /* graphics control block */

t ypedef struct /* viewport argunent block */
{
gpoi nt corner 1; /* first corner of w ndow */
gpoi nt corner 2; /* second corner of w ndow */
} winbl k;

AMIGOS Reference Manual, Rev. 01

GSWKW Reference Sheet

AlphaBASIC CALLING SEQUENCE

The AlphaBASIC format for the GSWKW function is:

XCALL AMGSBR, G SWKW gcb, mi nX, m nY, maxX, maxY, st at us

where:

gch

m nX

max X

maxyY

stat us

Specifies an unformatted (type X) variable which is the graphics
control block for the workstation used.

This floating point value defines the lower left X coordinate of the
desired window

This floating point value defines the lower left Y coordinate of the
desired window

This floating point value defines the upper right X coordinate of
the desired window

This floating point value defines the upper right Y coordinate of
the desired window

Specifies a floating point variable in which the status of the
complete operation is returned. Status field values are defined in
Appendix A, "Status Codes and Messages."

AMIGOS Reference Manual, Rev. 01

Page 7-119

Page 7-120 GSWM Reference Sheet

GSWM

Set Writing Mode
FUNCTION:
GSWM sets the writing mode for the workstation for subsequent output operations.
Not all workstations support all writing modes. Certain workstation types support
writing modes only in pixel operations during bitmap output. GSWM’s function is
workstation dependent.
ASSEMBLER CALLING SEQUENCE
The Assembler format for the GSWM function is:
GSVW gch, wt node, st at us

where:

gch Specifies the graphics control block address associated with the
workstation used.

wr t nrode Specifies the writing mode to be used for subsequent output
operations. The defined writing modes are as follows:

replace mode

exclusive or mode (XOR)
logical and mode (AND)
logical or mode (OR)
device dependent

WWwWNEFLO
i nn

>

stat us Specifies a register in which 16-bits of status are returned. Status
field values are defined in Appendix A, "Status Codes and
Messages."

AMIGOS Reference Manual, Rev. 01

GSWM Reference Sheet Page 7-121
AlphaC CALLING SEQUENCE
The AlphaC format for the GSWM function is:
gswn(gcb, writ ennde) ; /* set writing node */
where:
gch Specifies the graphics control block address associated with the

workstation used.

writenode Specifies the writing mode to be used for subsequent output
operations. The defined writing modes are as follows:

WWNBEFL O
i mnnn

Input Parameters:

g_gcb gcb;
gl ong writenode

Data Types:

t ypedef struct gcb g_gcb;

t ypedef unsigned gl ong;

replace mode

exclusive or mode (XOR)
logical and mode (AND)
logical or mode (OR)
device dependent

/* graphics control block */
/* writing node */

/* graphics control block */

/* 4-byte integer */

AMIGOS Reference Manual, Rev. 01

Page 7-122 GSWM Reference Sheet

AlphaBASIC CALLING SEQUENCE
The AlphaBASIC format for the GSWM function is:

XCALL AMGSBR, G SVWM gcb, node, st at us

where:
gch Specifies an unformatted (type X) variable which is the graphics
control block for the workstation used.
node A floating point field defining the writing mode to be used for

subsequent output operations. The allowable values for this field
are defined above.

st at us Specifies a floating point variable in which the status of the
complete operation is returned. Status field values are defined in
Appendix A, "Status Codes and Messages."

AMIGOS Reference Manual, Rev. 01

GTX Reference Sheet Page 7-123

GTX

Text
FUNCTION:

The GTX function causes the display of a character string. The current values of the
text attributes are used. The starting position is specified within the function. Text
rotation is applied to text string relative to the origin point specified within the
function. If the workstation is not able to produce the exact attributes, the closest
approximation is used. The user may call the GQTXR routine to determine the actual
attributes which will be used.

ASSEMBLER CALLING SEQUENCE

The Assembler format for the GTX function is:

GTX gchb, addr, st at us
where:

gcb Specifies the address of the graphics control block associated
with the workstation used.

addr Specifies the address of a memory block formatted as described
below. The text string must be terminated by a null (0) byte.

stat us Specifies a register in which 16-bits of status are returned. Status
field values are defined in Appendix A, "Status Codes and
Messages."

Argument Block Format

The format of the text argument block is:

Text Origin - X
Text Origin - Y

— Pointer to text string —

o A~ N O

MAC242

AMIGOS Reference Manual, Rev. 01

Page 7-124 GTX Reference Sheet

AlphaC CALLING SEQUENCE

The AlphaC format for the GTX function is:

gt x(gch, argbl k) ; [* text */
where:
gch Specifies the address of the graphics control block associated
with the workstation used.
ar gbl k Specifies the address of a memory block formatted as described

below. The text string must be terminated by a null (0) byte.

Input Parameters:

g_gchb gcb; /* graphics control block */
txt bl k argbl k; /* text argument block */
Data Types:

typedef struct gcb g_gcb; /* graphics control block */

t ypedef struct /* text argunent bl ock */
{
gpoi nt origin; /* X,y coordinates of origin */
char *text_pnt; [* pointer to text string */
} txthblk;

AMIGOS Reference Manual, Rev. 01

GTX Reference Sheet Page 7-125

AlphaBASIC CALLING SEQUENCE
The AlphaBASIC format for the GTX function is:

XCALL AMGSBR, G TX, gch, x,y, string, status

where:

gch Specifies an unformatted (type X) variable which is the graphics
control block for the workstation used.

X A floating point field specifying the X-axis component of the
coordinate at which to display the text string.

y A floating point field specifying the Y-axis component of the
coordinate at which to display the text string.

string A string field containing the text to be displayed.

status Specifies a floating point variable in which the status of the

complete operation is returned. Status field values are defined in
Appendix A, "Status Codes and Messages."

AMIGOS Reference Manual, Rev. 01

Page 7-126 GUPDW Reference Sheet

GUPDW

Update Workstation

FUNCTION:

GUPDW causes any deferred actions currently pending for the workstation to be
executed. If no deferred actions are pending, GUPDW performs no operation. If an
alternate output path is active through the GC.OUT field, any buffered data is output
at this time.

ASSEMBLER CALLING SEQUENCE

The Assembler format for the GUPDW function is:

GUPDW gch, stat us

where:
gch Specifies the address of the graphics control block associated
with the workstation used.
st at us Specifies a register in which 16-bits of status are returned. Status
field values are defined in Appendix A, "Status Codes and
Messages."

AlphaC CALLING SEQUENCE

The AlphaC format for the GUPDW function is:
gupdw(gcb) ; /* update workstation */
where:
gch Specifies the address of the graphics control block associated

with the workstation used.

Input Parameters:

g_gch gcb; /* graphics control block */
Data Types:
t ypedef struct gcb g_gcb; /* graphics control block */

AMIGOS Reference Manual, Rev. 01

GUPDW Reference Sheet Page 7-127

AlphaBASIC CALLING SEQUENCE
The AlphaBASIC format for the GUPDW function is:

XCALL AMGSBR, G UPDW gcb, st at us

where:
gch Specifies an unformatted (type X) variable which is the graphics
control block for the workstation used.
st at us Specifies a floating point variable in which the status of the

complete operation is returned. Status field values are defined in
Appendix A, "Status Codes and Messages."

AMIGOS Reference Manual, Rev. 01

Page 7-128 GUPDW Reference Sheet

AMIGOS Reference Manual, Rev. 01

APPENDIX A

STATUS CODES AND MESSAGES

AMIGOS returns the following decimal codes and corresponding messages after a call.

CODE SYMBOL MESSAGE

0-255 Standard AMOS file system errors.
256-511 Unused by AMIGOS.

512 G$EWSA Workstation is active.

513 G$ENPR Workstation has no pixel readback.

514 G$EGDP Invalid GDP specified in argument.

515 G$EANP AMIGOS not present in system.

516 G$ENEP Not enough data points provided.

517 G$EWNO Workstation not open.

518 G$ENWK Unable to locate workstation.

519 GS$EILT Invalid line type.

520 GS$EILW Invalid line width.

521 GS$EICI Invalid color index.

522 GS$EIMT Invalid marker type.

523 GS$EIFS Invalid fill area interior style.

524 GSEIFI Invalid fill area index.

525 GSETNF Alternate terminal in GC.TNM not found.
526 G$EOUT Workstation does not support output.
527 GS$EINP Workstation does not support input.

528 G$EEOF Unexpected end of bitmap file.

529 G$EMEM Insufficient memory for dynamic area.
530 G$EWIN Improper window specification.

531 G$EVEW Improper viewport specification.

532 G$EFNO File channel not open (AMGSBR).

533 G$EGCB GCB too small (AMGSBR).

534 G$ETIO Workstation does not support TCB 1/O redirection.
535 GS$EDFL Not enough disk space for raster device temporary file.
900 G$EANP AMIGOS not present on system.

AMIGOS Reference Manual, Rev. 01

Page A-2 Appendix A

AMIGOS Reference Manual, Rev. 01

APPENDIX B

DEFINED FILL AREA AND HATCH
PATTERNS

The following fill area and hatch patterns have been pre-defined in AMIGOS. All additional
workstation dependent patterns should be added at a starting value of 64 decimal since this list
may expand in future releases of AMIGOS.

FILL AREA PATTERNS

1%2 %a

= 27 :._:::E!EB
L

3o TR VR
ks AT

AMIGOS Reference Manual, Rev. 01

Defined Fill Area and Hatch Patterns Page B-3

HATCH PATTERNS

ESsgs 7T A NN NN N SO
£ LI 77 I Y e I 2 B N P N E I S 2
-] SSSes 7000 oy SRR NN NSERN SN
//////////// NN \\\\\\\\\\\\
///////// 28 (|29 \\\\\\\\ \30
1,010, T W

41 42 43 44 HHHHA45 46 % 47 % 48

-== P . R AT RN NN SRS
E= = =|49 272050 L7751 puaqs2 | sz [WWWB4 WS048 TS |56
R - vy, 1 o N NS
- == -~ _ 2 (7 LT W W SRINAN NRSREN
F—_—] — \ NININ ~
- = o Va //// // ‘HHHH \\\\\ NS\ NN
E— — A\

57 444/ 58 Y 59 ///?/// 60 T 61 ss\\\\GZ \\\\i 63 \\\QQ 64
= = S 7",/ AL I AN NN S

AMIGOS Reference Manual, Rev. 01

Page B-4 Appendix B

HATCH PATTERNS (Continued)

pp—— =~ 7 B o1 NN N S

----165 =7 _|e6 |~ 467 |/ /68 ||| | |69 W70 PAUNTL LS T2

=== _ = 2 V7Y NERARRNY N I~

- - 4 // /1 [SR N NN
73 74 75 76 77 78 79 80

= Y 7 7 / | I { VRN \ N X

=—==181 == |82 ~ 183 7 //|84 I |85 N\ \\[86 Y87 |88

— /// 787 7 /) | 1 | NERN N N N

g gl

ﬁSQ e/é 90 91 777\, 92 %93 C/\/\/\/\\/¥94 95 M96

| 0

97 % 98 99 100 101 102 103 104

///// ///// 7,

Z
~ = Z 7
105 106 107 108 109 EZ 2110 W, %, 4111 Yy, "ij112
2=z %,%, "y,
~Z % Ui,
TITTTTITTITT \ N NS
\\\\\ NN I
gz NawW114 PSS W15 S S §116 117
T AN N SN
AW NN S

AMIGOS Reference Manual, Rev. 01

APPENDIX C

BMP BITMAP IMAGE FILE FORMAT

This appendix describes the BMP bitmap image file format. This file format is designed to
describe bitmap images of different sizes and resolutions in a device-independent fashion.
Any device with bitmap display capabilities should be capable of displaying these bitmap
images without extensive processing.
The BMP format provides:

® Variable size bitmaps, up to 65535 by 65535 pixels.

e Different size pixels, including 1, 4, 8 and 24 bits per pixel resolution for gray
scale and color.

® Built-in color palette allowing up to 256 colors to be defined and associated
with an image, with each color having a full 24-bit RGB resolution, or a full
HLS color specification.

® The option of packing the image to reduce storage and transmission time
requirements.

C.1 THE BMP FORMAT
Each BMP file is a sequential data file containing four parts:
® A standard AMOS file header
® A bitmap definition block describing the bitmap image
® An optional color palette definition

® The image itself, which may be packed or unpacked.

AMIGOS Reference Manual, Rev. 01

Page C-2 Appendix C

C.1.1 The AMOS File Header
Each BMP file starts with a standard AMOS file header, as generated by a PHDR
statement. This allows a version number to be associated with the bitmap image
that can be displayed by the DIR directory utility.

The standard file header occupies the first 10 bytes of the file.

C.1.2 The Bitmap Image Definition Block

The bitmap image definition block consists of 70 bytes, the first 10 of which
describe the overall image characteristics.

The first word contains the width of the image, in pixels. The second word contains
the height of the image in pixels.

The third word contains the number of bits each pixel in the image occupies. Values
of 1, 4, 8, and 24 may be specified.

The fourth word contains a series of flags describing other image attributes:

Bit O 1 if a palette is present, O if not.
Bit 1 1 if palette is HLS encoded, 0 if RGB encoded.

The other bits is this word are reserved for future expansion.

The fifth word describes the packing algorithm used to pack the bitmap image. The
supported values are:

0 Image is unpacked.
1 Image is packed with run-length encoding, described below.

Other values in this field are reserved for future expansion.
The next 60 bytes contain a null-terminated ASCII string describing the image. It is
intended that this field be used in cataloging and organizing stored images.
C.1.3 The Color Palette Definition Block
If a color palette is present in a BMP file (as defined within the bitmap definition

block flags), it will immediately follow the definition block. If no palette is present,
the bitmap image itself will immediately follow the definition block.

AMIGOS Reference Manual, Rev. 01

BMP Bitmap Image File Format Page C-3

The first word of the palette definition contains the total number of palette indices
minus one. Following this will be the palette indices themselves. If the bitmap
definition block defines the palette as using RGB encoding, each palette index will
consist of three bytes: one byte each for the R, G, and B color values, making a
24-bit color definition. If the bitmap definition block defines the palette as using HLS
encoding, each palette index will consist of 6 bytes: two bytes each for the Hue,
Lightness, and Saturation specifications.

The color palette is intended to be loaded into the display device before the image
is displayed. The bitmap image itself will consist of a series of pixels whose values
correspond to one of the color palette indices.

The first color palette index is always black and the second is always white. The
remaining indices should be sorted in order of the frequency of usage of the color
index within the bitmap image, with the most frequently used color immediately
following the white index.

Keep in mind that while we refer to this as a color palette, the palette definition may
in fact define a series of gray shades for the display of a monochrome image.

If no color palette is present in a BMP file, the display device’s currently active color
palette will be used.

The Bitmap Image

The remainder of the file contains the bitmap image itself. If the image is not packed
(packing type O in the fifth word of the definition block), the image consists of a
series of scan lines, ordered in a top-to-bottom, left-to-right fashion, describing the
image. Each scan line occupies (image_width / (8/bits_per_pixel)) bytes. Each scan
line starts on a byte boundary. The image height parameter defines the number of
scan lines included in the image.

If the bitmap image is defined as packed, each scan line consists of a scan line
width followed by a variable number of bytes. The scan line width parameter is a
word value defining the number of following bytes that make up the current scan
line. The following bytes make up the packed scan line, according to the
packing/unpacking algorithm described below. All packing is done on a single scan
line basis. No packing is done across scan lines. Each scan line starts on a byte
boundary. The image height parameter defines the number of scan lines included in
the image.

AMIGOS Reference Manual, Rev. 01

Page C-4 Appendix C

C.1.4 The Image Packing Algorithm

Images are packed using a simple run-length encoding scheme which trades off
packing density for ease and efficiency of the packing and unpacking operation,
since these may be done within relatively "dumb" peripheral devices.

All image packing is done on the basis of a single scan line. Because the packing
can result in a different number of packed bytes for each scan line, a byte count
must precede each scan line.

Packing is done by compressing repeated bytes into a count and a single byte, and
preceding any series of unique bytes with a count and the unique bytes. This
techniqgue has good worst case behavior in that it adds at most one byte for every
128 input bytes.

A pseudo-code fragment to unpack this type of image might be:

Loop until all bytes are read in for this line
Read the next source byte into n
If nis between 0 and 127 inclusive, copy the next n+l bytes literally
Elself nis between -127 and -1 inclusive, copy the next byte-n+l tines
El self n is 128, do nothing

EndLoop

To pack an image, it is best to encode a two-byte repeat run as a replicate run,
except when preceded and followed by a literal run, in which case it is better to
merge all three runs into one literal run. Always encode three byte runs as replicate
runs.

If a run is longer than 128 bytes, simply encode the remainder of the run as one or
more additional replicate runs.

AMIGOS Reference Manual, Rev. 01

APPENDIX D

SAMPLE PROGRAMS

The function of these programs is to draw a filled, outlined box in the lower left of the
workstation display. An example is provided for Assembler, AlphaC, and AlphaBASIC. In
all cases, the workstation is assumed to be the user’s terminal.

D.1 ASSEMBLER SAMPLE PROGRAM

; DRWBOX Programto draw a filled box using AM GOS
SEARCH SYS ; get systemdefinitions
SEARCH SYSSYM
SEARCH AMGSYM ; get AM GOS definitions
VMAIJOR=1. : define revision |evel
VM NOR=0.

VEDI T=100.

PACE

; Define Inpure Area

.OFINI

. OFDEF CCB, GC. Sl Z ; the GCB

; storage for polyline point array
. OFDEF PQLY, <5*4>+2
.OFSI Z | MPSI Z

DRVBOX:
PHDR -1, 0, PH$REU! PHSREE
GETI MP | MPSI Z, A5 ; get sone inpure area
GOPVK GCB(A5) ; open the work station
GCLRW GCB(A5) ; clear the screen
GSFAS GCB(A5) , #2 ; set solid fill style
GSFAC GCB(A5) , #4 ; set red fill color
LEA A2, POLY(A5) ; index arg bl ock

; Fill in the point array
MOVW #5, (A2) + ; set nunber of points

AMIGOS Reference Manual, Rev. 01

Page D-2 Appendix D
MOVW #0, (A2) + set |l ower |eft coordinates
MOVW #0, (A2) +
MOVW #0, (A2) + set upper left coordinates
MOVW #8000. , (A2) +
MOVW #8000. , (A2) + set upper right coordinates
MOVW #8000. , (A2) +
MOVW #8000. , (A2) + set |lower right coordinates
MOVW #0, (A2) +
MOVW #0, (A2) + set |ower left coordinates
MOVW #0, (A2) +
GFA GCB(A5) , POLY(A5) fill in the box
GPL GCB(A5) , POLY(A5) outline the box with polyline
GCLVK GCB(Ab) cl ose the workstation
EXIT return to AMOS conmand | evel
END

AMIGOS Reference Manual, Rev. 01

Sample Programs Page D-3

D.2 ALPHABASIC SAMPLE PROGRAM
I DRABOX Programto draw a filled box using AM GCS
++| NCLUDE AMGSYM BSI I Get AM GOS definitions

MAP1 GCB, X, 20000 I Allocate a graphics control bl ock
MAP1 ERROR STRING S,30 ! Allocate a string for error nmessage

I Define a polyline point array
MAP1 PO NT' ARRAY
MAP2 PO NT' COUNT, B, 2
MAP2 PO NTS(5)
MAP3 PO NT' X, B, 2
MAP3 PO NT'Y, B, 2

DRWBOX:

I Open the workstation defaulting to our term nal as output device
XCALL AMGSBR, G OPVK, GCB, "", STATUS
| F STATUS <> 0 THEN GOTO AMGERR

| Clear the workstation
XCALL AMGSBR, G CLRW GCB, STATUS
| F STATUS <> 0 THEN GOTO AMGERR

I Set the fill area style to solid
XCALL AMGSBR, G SFAS, GCB, 2, STATUS
| F STATUS <> 0 THEN GOTO AMGERR
I Set the fill area color to red
XCALL AMGSBR, G SFAC, GCB, 4, STATUS
| F STATUS <> 0 THEN GOTO AMGERR
' Fill in the point array with desired coordi nate points

PO NT" COUNT = 5

PONT' X(1) = 0
PONT Y(1) = 0
PONT X(2) = 0
PO NT’ Y(2) = 8000
PO NT’ X(3) = 8000
PO NT’ Y(3) = 8000
PO NT’ X(4) = 8000
PONT Y(4) = 0
PO NT’ X(5) = 0
PO NT Y(5) = 0

AMIGOS Reference Manual, Rev. 01

Page D-4 Appendix D

' Fill in the box area
XCALL AMGSBR, G FA, GCB, PO NT' ARRAY, STATUS
| F STATUS <> 0 THEN GOTO AMGERR

Now outline the box using the polyline function
XCALL AMGSBR, G PL, GCB, PO NT' ARRAY, STATUS
| F STATUS <> 0 THEN GOTO AMGERR

I Close the workstation
XCALL AMGSBR, G CLVWK, GCB, STATUS

| F STATUS <> 0 THEN GOTO AMGERR
END

I process AM GOS error
AMGERR:
PRI NT "AM GOS error" ; STATUS ; " "
| Get the error from AM GOS
XCALL AMGSBR, G QERR, GCB, ERROR STRI NG
PRI NT ERROR STRI NG
END

AMIGOS Reference Manual, Rev. 01

Sample Programs Page D-5

D.3 ALPHAC SAMPLE PROGRAM

/* Sample programto draw a box using AM GOS
Conpile the programand link with AMSCLB. LIB */

#i ncl ude <stdio. h>
#i ncl ude <cdefs.c>
#i ncl ude "am gos. h"

/* version "1.0(100), -1, 0, PHSREE! PHSREU" ; */
static struct gcb gcb;

static char *errpnt;
static struct

{
gword pcount;
struct gpoint points[20];
} parray;
mai n()
{
/* printf ("gcb address is %\n", &gch);*/
gch.gc_flg = gcb. gc_fl gl G_FERC| G_FBYP; /* set return on error */
if (gopwk(&gcb)) error_proc(); /* open workstation */
if (gclrw(&gcb)) error_proc(); /* clear the workstation */
if (gsfas(&gch, 2)) error_proc(); /* set solid fill */
if (gsfac(&gch,4)) error_proc(); /* set desired fill color */
parray. pcount = 5; /* set 5 endpoints in array */
parray. poi nts[0].xcoord = O; /* Fill in the coordinates */
parray. points[0].ycoord = O;
parray. poi nts[1].xcoord = 0;
parray. points[1].ycoord = 8000
parray. poi nts[2].xcoord = 8000
parray. poi nts[2].ycoord = 8000
parray. poi nts[3].xcoord = 8000
parray. points[3].ycoord = O;
parray. poi nts[4].xcoord = 0;
parray. poi nts[4].ycoord = O;
if (gfa(&gch, &array)) error_proc(); /* fill the box */
if (gpl (&gch, &parray)) error_proc(); /* outline the box */
if (gclwk(&gcb)) error_proc(); /* close the workstation */
b

error_proc()

printf("AMGOS error %d.\n",gch.gc_err);
ggerr (&gch, &errpnt);

puts(errpnt);

exit();

GLOSSARY

AMIGOS Reference Manual, Rev. 01

Page D-2 Glossary

aspect ratio - The width-to-height ratio of a rectangular area.
attribute - A property of a primitive determining its appearance, such as color.

bitmap - A generalization of an array of pixels on a raster device, it defines an array of
rectangular cells with individual colors.

character height - The vertical extent of a character.
clipping - The process where portions of an image falling outside a window are discarded.
color table - A table associating color indices with actual colors shown on a display device.

device coordinate - A coordinate system specific to a display device. Most devices have
a unique system of specifying positions on the display surface.

device independence - A characteristic of a computer software package enabling it to
access and use different makes and models of display devices generating similar output.

dynamic impure area - An intermediate workspace used by AMIGOS which varies in size
dependent on the graphic device driver in use.

fill area - A region in space with a well-defined boundary and whose interior may be
distinguished in different ways.

Generalized Drawing Primitive (GDP) - GDPs are functions provided to access
commonly used primitives which are not a part of the basic primitives, i.e., circles and
ellipses.

graphics control block (gcb) - A memory work area used to store intermediate data
specific to a particular workstation.

Graphics Device Driver (GDV) - A software module which translates commands and
normalized device coordinates to those required by a specific device.

linetype - Used to distinguish different styles of lines, such as solid, dashed, and
dash-dotted.

linewidth - A scale factor used with lines to determine the thickness of the line to be drawn.

marker type - Marker types are used to distinguish different marker symbols, such as dots,
asterisks, and crosses.

pixel - The smallest element of a display surface that may be addressed independently.
Literally, a pixel is a tiny dot.

polyline - A set of points joined by straight lines.

Polymarker - A set of positions marked by the same marker.

AMIGOS Reference Manual, Rev. 01

Glossary Page D-3

primitive - A basic unit of graphics output. A picture may be visualized to be made up of
primitives, such as lines and markers.

raster - An array of pixels arranged in continuous rows and columns

text - Text in graphics refers to a string of characters displayed starting at a specified
position.

transformation - The process of moving and scaling an image into a viewport.

viewport - A rectangular region specified in normalized device coordinates that determines
the region into which a picture is projected.

window - A rectangular region specified in world coordinates in which you describe
graphic objects.

world coordinates - A Cartesian coordinate system used by the application program to
specify graphical data.

AMIGOS Reference Manual, Rev. 01

DOCUMENT HISTORY

Revision 00 - AMIGOS Release 1.0 - (Printed 8/88)
New document for AMIGOS version 1.0.

Revision 01 - AMIGOS Release 1.1 - (Printed 4/90)
Documents the new AlphaC interface, and corrects minor, typographical errors.

AMIGOS Reference Manual, Rev. 01

AMIGOS Reference Manual

Page Index-1

++INCLUDE 3-2
AlphaBASIC 3-2
AlphaC 3-1

library 3-1
Alternate Output Terminal Name 4-5
Alternate Terminal Output TCB Index 4-5
AMGCLB.LIB 3-1
AMGSBR.SBR 3-2
AMGSBR.XBR 3-2
AMGSYMBSI 3-2
AMGSYM.UNV 3-1,4-1
AMIGOS

documentation Library 1-1

subroutines 1-1
AMIGOSH 3-1
AMOS Terminal System Programmer’'s Man3a8
ANSI X3.4-1977 3-6
ASCIl .o 3-6
Assembler 3-1
Attributes 3-3
Bindings L 3-1
Bitmap............. 3-3, 3-7, 7-3, C-1
BMP .. C-1
Braces 1-4

Call format

type faceusedfor 1-4
Calling format for functions 6-11t0 6-12
Cartesianplane 2-1
CharacterHeight 3-3, 3-6
Character Rotation 3-6
Clear Workstation 7-11
Clipping 2-6
Close Workstation. 3-2, 7-13
Color ... 3-8
Colorindex 3-3
Colorindex 35

INDEX

AMIGOS Reference Manual, Rev. 01

Page Index-2

AMIGOS Reference Manual

Color representation

HLSsystem
onmonochrome
RGBsystem....................
Complex ltalicfont
Complex Romanfont
Complex Scriptfont
Control function
referencelist
Coordinates
Current Character Height

Current Character Height Normalized

Current Character Rotation
CurrentColorMode
Current Fill Area ColorIndex
Current Fill Area Interior Style
Current Fill Area Style Index
Current FunctionCode
CurrentLine Type
CurrentLinewidth
Current Linewidth Normalized
Current Marker Size
Current Marker Size Normalized
Current Marker Type
Current Polyline Color Index
Current Polymarker Color Index
CurrentTextFont
Current Writing Mode

Device coordinates (DC)
Devices i
Documentation
Duplex Romanfont
Dynamic impurearea

pointerto

sizeof

Errorcodes
Errorhandling
ErrorReturn
Escape i

Fill Area.
Fill AreaColorIndex

Fill Area Interior Style

hollow
pattern
solid
Fill Area Interior Style

3-6

4-3

AMIGOS Reference Manual, Rev. 01

AMIGOS Reference Manual

Page Index-3

Fillareapatterns B-1
Fill Area Style Index 3-7
Flags 4-3
Fonts 3-6
Functionlists 6-1to 6-12
GBM .. 3-3,3-7,7-3
GC$BYP 3-9
GCSERC ... 3-9
GC.DPT ... e 4-1, 7-42, 7-56 to 7-57
GCERR 3-9
GCRBP 4-8
GC.RSZ 4-8
GCB . 3-2,4-1
internal format 4-2
GCLRW 7-11
GCLWK . .. 3-2, 7-13
GDP . 3-3t0 3-4, 3-8
GDV . 1-1, 4-1,5-2
diskusage 5-3
MEMOIYy USAQEeot iiei e 5-2
raster 5-3
VECIOr 5-3
Generalized Drawing Primitive 3-3to0 3-4, 3-8, 7-21
Geometric attributes 3-3
GESC 7-15
GFA . 3-3, 7-18
GGDP ... 7-21
GOPWK 3-2, 7-42
Gothic Romanfont 3-6
GPL .. 3-3,7-44
GPM ... 3-3, 7-47
GQ.DSZ 7-42
GQCHR 7-50
GQCR .. 7-52
GQDSZ 4-1, 7-56
GQERR 3-9, 7-58
GQTXE ... 7-61
GOQTXR .o oottt 7-65
Graphical input 3-9
Graphicaloutput 3-3
Graphics control block 3-2,4-1
GCARG....... i 4-3
GCBUF ... 4-4
GCCHH.......... 4-7
GCCHN......... 4-7
GC.CHR..... ... 4-7
GC.CLT ... 4-5
GC.CMD i 4-8
GC.CMT ... 4-6

AMIGOS Reference Manual, Rev. 01

Page Index-4

AMIGOS Reference Manual

GCDDB......... 4-4
GC.DPT ... 4-3
GC.DSZ ... 4-4
GCERR 4-3
GC.FAC 4-7
GC.FAl ... o 4-7
GC.FAS 4-7
GCFLG 4-3
GC.FUN 4-5
GC.GDV ... 4-4
GCIUBP ... 4-4
GC.IMP 4-10
GC.LWN 4-6
GCLWS 4-5
GC.MSN 4-6
GC.MSS 4-6
GC.NAM 4-3
GCOPP 4-4
GCOUT ... 4-4
GC.PLC 4-6
GC.PMC 4-6
GC.RSV ... 4-8
GCTCB ... 4-5
GCTNM 4-5
GC.TXC ... 4-7
GC.TXF ... 4-7
GCVXH 4-9
GC. VXL ..o 4-9
GC.VYH 4-9
GCVYL ..o 4-9
GCWMDc i 4-8
GCWSX .. 4-10
GC.WSY .. . 4-10
GCWXH 4-9
GCWXL ... 4-9
GCWYH 4-9
GCWYL. ..o 4-9
Graphics devicedriver 1-1, 4-1, 5-1 to 5-2
Grayscale.......... 3-8
GRQCLC 7-68
GROQLC 3-9
GRQVL ... 7-72
GROQVL .. 3-9
GSCHH ... 3-6, 7-74
GSCHR ... o 3-6, 7-76
GSCM .. 7-78
GSCR ... 7-80
GSFAC 3-3,3-7,7-84
GSFAIl 3-7, 7-86
GSFAS 3-7,7-88

AMIGOS Reference Manual, Rev. 01

AMIGOS Reference Manual Page Index-5

GSMLC 7-91
GSMVL ... 7-94
GSPLC 3-5, 7-96
GSPLS 3-5, 7-98
GSPLT 3-3, 3-5, 7-100
GSPMC 3-5, 7-103
GSPMS 3-5, 7-105
GSPMT ... 3-5, 7-107
GSTXC .. 3-6, 7-110
GSTXF .. 3-6, 7-112
GSWKV ... 7-114
GSWKW 7-117
GSWM .. 7-120
GTX 3-3, 7-123
GUPDW 7-126
Hatch patterns B-1
HLS colorsystem 3-8
Hollowfill, 3-7
/Obuffer.......... 4-4
IODDB 4-4
Impure Area Pointer for GDV 4-10
Impurememoryc.oo.... 7-42, 7-56 to 7-57
Input Function Buffer Pointer 4-4
Input functions

referencelist 6-11
Inquire Color Representation 7-52
Inquire Dynamic Impure Size 7-56
Inquire error 3-9, 7-58
Inquire TextExtent 7-61
Inquire Text Representation 7-65
Inquire Workstation Characteristics 7-50
Inquiry functions 3-9

referencelist 6-11
Linetype 3-3,3-5
Linewidth 3-5
Locator 3-9
Macros 3-1
Marker Size 3-5
Marker Type, 3-5
Memory 3-2

fonts 3-6
Mode setting function

referencelist 6-12
Monochrome 3-8
NDC ... 2-6

AMIGOS Reference Manual, Rev. 01

Page Index-6

AMIGOS Reference Manual

Non-geometric attributes
Normalization
Normalized Device Coordinates (NDC) . ..
NTSC color standard

Open Workstation
Optionalelements
Output attributes

reference list
Output functions

reference list
Output primitives

Pattern fill
Point array
Polygon output points
numberof........................
Polyline
Polyline attributes
Polymarker
Polymarker attributes
Polymarker Color Index

Raster buffer pointer
Raster buffer size
Raster device
Raster GDV

Reference books
Reference lists

Request Locator
Request Valuator
Reserved
Return on error
RGBcolorsystem

SampleLocator.
Sample Valuator
SEARCH
Set Character Height

Set Character Rotation
SetColorMode
Set Color Representation
Set Fill Area ColorIndex
Set Fill Area Internal Style
Set Fill Area Style Index
Set Line Type
Set Line Width
Set Marker Size
SetMarker Type
Set Polyline Color Index

AMIGOS Reference Manual, Rev. 01

AMIGOS Reference Manual

Page Index-7

Set Polymarker Color Index 7-103
Set TextColorindex 7-110
SetTextFont 7-112
Set Workstation Viewport 7-114
Set Workstation Window 7-117
Set WritingMode 7-120
Simplex Scriptfont 3-6
Solidfill 3-7
Statuscodes A-1
Statusreturncodes. 3-10
Strokefonts............. 3-6
Symbolic Workstation Name 4-3
TDV . 1-1
Terminal driver 1-1
Text .. 3-3, 7-123
TextColorindex 3-6
TextFont......... ..., 3-6
Transformation 2-5
Triplex Italicfont 3-6
Triplex Romanfont 3-6
Update Workstation 7-126
Userargument 4-3
User Output DDB Index 4-4
Valuator, 3-9
Vectordevice 5-3
VectorGDV 5-3
Viewport 2-4
Viewport X maximum 4-9
Viewport X minimum 4-9
Viewport Y maximum 4-9
Viewport Y minimum 4-9
Wwindow 2-3
Window X maximum 4-9
Window X minimum 4-9
Window X Scaling Factor 4-10
Window Y Maximum 4-9
Window Y minimum 4-9
Window Y scaling factor 4-10
Workstation

pointerto 4-4
World coordinates 2-1

AMIGOS Reference Manual, Rev. 01

