ALPHA MICROSYSTEM AM-100
ASSEMBLY LANGUAGE PROGRAMMING SYSTEM

USER’S REFERENCE MANUAL

O(L.PHA)
MICROSI*IS‘TE"”S

17875-N Sky Park North
Irvine, CA 92714

ALPHA MICROSYSTEM AM-100

ASSEMBLY LANGUAGE PROGRAMMING SYSTEM

USER'S REFERENCE MANUAL

ALPHA MICROSYSTEMS
17875 Sky Park North
Irvine, CA 92714

I would like to express my thanks to the following people
for their assistance in the development of this manual:

John M. Keefe Jr.
Orange County Computer Center

Mike Roach
Educational Support Systems

Guruprem Singh Khalsa
Byteshop of Pasadena

and especially to Carolyn
for patience and understanding and dinners and ...

Dick Wilcox

'AMOS', 'AlphaBasic', and 'AM-100'

are trademarks of products
and software of

ALPHA MICROSYSTEMS
Irvine, CA 92714

© 1977 - ALPHA MICROSYSTEMS

ALPHA MICROSYSTEMS
17875 Sky Park North
Irvine, CA 92714

INDEX

SECTION 1 - PROGRAMMING AND OPERATION OF THE MACRO ASSEMBLY SYSTEM

INTRODUCTION TO ASSEMBLY LANGUAGE PROGRAMMING PAGE
FILES USED IN THE ASSEMBLY LANGUAGE SYSTEM PAGE
MACRO SOURCE PROGRAM FORMAT PAGE
TERMS AND EXPRESSIONS PAGE
ASSEMBLY CONTROL PSEUDO-OPCODES PAGE
DATA GENERATION PSEUDO-OPCODES ' PAGE
SEGMENTING ASSEMBLY LANGUAGE PROGRAMS PAGE
CONVENIENCE PSEUDO-OPCODES PAGE
USER DEFINED MACROS PAGE
CONDITIONAL ASSEMBLY DIRECTIVES PAGE
WRITING TOTALLY RELOCATABLE CODE PAGE
MACRO ASSEMBLER OPERATION PAGE
LINKAGE EDITOR OPERATION ' PAGE
SECTION 2 - OPERATION AND USAGE OF AM-100 MONITOR CALLS

COMMUNICATING WITH THE AM-100 MONITOR PAGE
STANDARD ADDRESS ARGUMENTS PAGE
ALPHABETICAL LISTING OF AM-100 MONITOR CALLS PAGE
JOB SCHEDULING AND CONTROL SYSTEM PAGE
MEMORY CONTROL SYSTEM CALLS PAGE
LOADING AND LOCATING MEMORY MODULES PAGE
FILE SERVICE SYSTEM DESCRIPTION PAGE
FILE SERVICE MONITOR CALLS PAGE
DISK SERVICE MONITOR CALLS PAGE
TERMINAL SERVICE MONITOR CALLS PAGE
NUMERIC CONVERSION MONITOR CALLS PAGE
RAD50 CONVERSION MONITOR CALLS PAGE
INPUT LINE PROCESSING CALLS ' PAGE
PRINTING CONVERSION MONITOR CALLS PAGE
MISCELLANEOUS MONITOR CALLS PAGE
FLOPPY DISK FILE STRUCTURE PAGE

SYSTEM COMMUNICATION AREA PAGE

SECTION 1

PROGRAMMING AND OPERATION OF THE MACRO ASSEMBLY SYSTEM

INTRODUCTION TO ASSEMBLY LANGUAGE PROGRAMMING

The AM-100 microcomputer supports a flexible and efficient assembly language
development system under the AMOS supervisor which includes the assembler,
linkage editor, symbol file generator, and symbolic debug program. The
assembler is a multi-pass macro assembler with conditional assembly directives,
library copy function, and external segment links. The linkage editor is used
to link multi-segment programs together and create a runnable program file. The
operating system supports segment overlays thereby allowing a large program to
be logically divided into smaller segments and executed sequentially. The debug
program accepts a specially created symbol file as input and allows the program
to be traced and debugged.in symbolic instructions using all the labels as they
were entered in the source program. All components of the assembly language
development system run under conktrol of the standard AMOS supervisor.

There currently exist over 70 supervisor calls in macro form that are used by
the assembly language programmer to communicate with the AMOS monitor and make
use of the routines it has to offer. These macro calls are predefined in a file
called SYS.MAC located in area [7,7] on the AMOS system disk. The programmer
uses a single COPY statement to include this complete library of predefined
functions in his assembly language program and then refers to the supervisor
calls by their macro names which makes for an easy-to-use communication link to
the system resources. SYS.MAC also includes equate statements for many of the
predefined system variables including the job table entries for the user's
impure job variables.

To be compatible with the AMOS system architecture all programs must be written
in totally relocatable code which means that the program may be loaded anywhere
in RAM and executed without modifying any addresses within the program itself.
There are machine instructions which assist in writing totally relocatable code,
and by following a few simple restrictions, the task of writing assembly
language programs for the AM-100 becomes almost foolproof.

Optionally, the user may write programs which are reentrant and then incorporate
these programs or subroutines into the system monitor to be shared by all users
without requiring a separate copy for each one. The rules for reentrant
programming will not be delved into here since this is an advanced programming
technique and requires specific rules which are not machine dependent. There
are numerous books on the subject and all general practices will apply to the
programming of the AM-100 system. There are a number of features in the
instruction set which do lend themselves quite nicely to reentrant code and the
proficient systems programmer will quickly recognize them.

This manual is designed to cover the procedures for writing assembly language
programs, using the supervisor calls, and the operation of the component
programs described above to implement and test the finished program. The user
should be familiar with machine language programming techniques in general and
in particular with the AM-100 machine instructions which are described in the
WD16 MICROCOMPUTER PROGRAMMER'S REFERENCE MANUAL.

FILES USED IN THE ASSEMBLY LANGUAGE SYSTEM

This section will describe the files that are used during the normal course of
building and testing an assembly language program. The files will be referred
to by their extensions, i.e., a MAC file is any file with an extension of "MAC".
All files described here will not necessarily be used by all programmers during
any one session but you will eventually run across all of them at one time or
another so you might as well know briefly what they are used for and how they
are created.

MAC SOURCE FILES

MAC files are the original ASCII source files created by the programmer using
the EDIT program. They are input to the assembler program (MACRO) which makes
one or more passes over them depending on the assembly options selected. Any
changes to be made to a program are made to the MAC file by using the EDIT
program and then reassembling and relinking it. Library files which are
included with the COPY assembly pseudo-opcode are also ASCII source files with
an extension of MAC.

0OBJ INTERMEDIATE OBJECT FILES

OBJ files are the direct output of the assembler (phase 2) and contain the
assembled binary code, symbol references, internal symbol definitions, and
unresolved external symbol references. OBJ files are not directly usable for
anything by themselves but must first be processed by one of three other
programs to get a finished file that has a direct use by itself. The linkage
editor program (LINK) reads one or more OBJ files and creates a fully resolved
and runnable binary program file in memory image format. The symbol file
program (SYMBOL) reads the same OBJ files and creates a file which contains all
user defined symbols and their resolved addresses. This file is used by the
symbolic debug program (DDT). The assembler itself also rereads the OBJ file
during phase 3 together with the MAC source file to create the ASCII list file.

PRG BINARY PROGRAM FILES

PRG files are created by the linkage editor program (LINK) and are the end
result of all this nonsense we are attempting to describe. The PRG file is a
binary memory image of the assembled program which is loaded into user RAM when
the program is requested for execution. It must have been written using the
rules for totally relocatable code so that it may be dumped into any memory
location and executed without modification. One or more OBJ files may have been
input to the linker for the creation of the single PRG file. Once the PRG
program file has been checked out it may be placed into the common system area
on DSKO:[1,4] where it will become available to all users if such is its fate.

OVR BINARY OVERLAY FILES

If the program contains overlay segments which do not all reside in memory at
the same time, the linkage editor will generate one PRG main segment file and
one or more OVR overlay segment files. Each overlay file will be generated as a
result of an OVRLAY assembler pseudo-opcode. The PRG program segment will be
responsible for the calling and executing of each of the other OVR segments
during the running of the program. Overlay segments may be selectively bypassed
as in the assembler itself which contains four overlays. Overlay files have the
same memory image format as the PRG program files except that they are resolved
at an effective address other than zero so that they will not completely overlay
the controlling segment. This addressing is the direct responsibility of the
programmer and will be described later in the section dealing with the OVRLAY
opcode.

LST PROGRAM LISTING FILES

An optional output of the assembler is a complete resolved listing of the source
program with the associated binary code that was generated. This list file is
created during phase 3 of the assembly process and may be generated directly
from the MAC and OBJ files by bypassing phases 1 and 2 with the /O assembly
switch. The LST file is formated ASCII and may be typed with the TYPE command
or examined in part by the EDIT program. It may also be printed by the line
printer spooler if you have that job included in your configuration.

SYM RESOLVED SYMBOL FILES

The SYM file is a direct output of the symbol file generation program (SYMBOL)
which takes one or more object (OBJ) files and creates a symbol table with all
user defined symbols and their resolved machine addresses. The SYM file is used
as input to the debug program (DDT) which may then operate with references to
the user symbols in the program instead of absolute machine addresses. 1In a
system where the program is always offset by some amount in memory this is
almost essential to keep from going bananas while tracing execution flow of a
program under test. The SYM file is in a special packed binary form and, as
such, is not much good for anything except input to DDT.

IPF INTER-PHASE WORK FILE

The IPF file is a temporary work file built during the assembly process by phase
1 of the assembler to carry information on to phase 2. The IPF file is packed
binary junk and the only reason it is mentioned here is that if the system
crashes during an assembly you may find one left on your disk. Erase it since
it is useless and just takes up space. No problem if you don't find it since
the next assembly of the same program will erase any IPF file it finds during
phase 1 before attempting to create a new one.

MACRO SOURCE PROGRAM FORMAT

A macro source program is a single file with the extension MAC composed of a
sequence of ASCII source statement lines. Each line must be complete in itself
since there is no provision for multiple-line statements. Each statement may be
one of the following depending on its function:

Valid machine instruction

Data generation statement
Symbolic equate statement
Assembly control statement
Conditional assembly directive
Macro definition

Macro call

Comment or blank line

OJOU B WN -
.

Each line should be limited in size to under 100 characters and should be
terminated by a carriage-return and line-feed pair which the editor provides
when the return key is entered. Unless otherwise specified, all of the above
lines may contain an optional comment field following the actual statement which
starts with a semicolon (;) and extends to the end of the line. Spaces and tabs
(CONTROL-I) are treated as equal and used to delimit fields within statements.
Tabs are nifty to keep statement fields aligned and make for pretty listings.
Lightning may strike down those who do not use tabs.

The term "user symbol" will be referred to several times during the course of
this manual so it will be defined at this point. A user symbol is any name
which is unique within the program under the various rules to be presented. A
user symbol may be from 1-6 characters in length and made up from the character
set defined by the alphabetics A-Z, the numerics 0-9, and the two special
symbols "$" and "." with the first character being non-numeric. Symbols are
packed RAD50 and stored as two words in the symbol table during the assembly
process along with their current assigned value and attribute flags.

MACHINE INSTRUCTIONS

One machine statement is allowed per line and is assembled into a single machine
hardware instruction which generates one, two, or three words of binary code
depending on the instruction and addressing modes used. The general format of a
machine instruction statement is:

{label:} {opcode} {operands} {;comments}

The label field is optional and is used to give a symbolic name to the current
instruction being assembled. It must be terminated by a colon. The label may
be any valid user symbol that has not been previously defined. The value of the
label may have an attribute of either absolute or relocatable depending on the
current assembly status. Relocatable symbols will be resolved during link-edit
time by adding the label value to the current program relocation bias
(calculated by LINK). More than one label may appear on the same statement line
separated by colons in which case each label is given the same value as the
current location. Any symbol used in a label field may not be redefined later

in the program. A label may appear as the only item on a line in which case it
is assigned the address of the next byte of generated code.

The opcode field is required and is one of the machine instruction opcodes in
mnemonic form such as MOV, CLRB, TST, ADD, etc. Refer to the WDl16 MICROCOMPUTER
USERS MANUAL for a complete description of all the machine instructions
available in the AM-100 system. The opcode field is terminated by a space, tab,
semicolon or carriage-return. If a label field was used the space or tab
between the colon and the opcode is optional but recommended.

The operands field is required on those instructions which have either one or
two operands. The operands field is separated from the opcode field by one or
more spaces or tabs. If the instruction being used required two operands they
are separated from each other by a comma. Leading spaces are always ignored in
the operands field while the operands themselves are terminated by a space, tab,
comma, semicolon or carriage-return.

The comments field is optional and if used is defined by a leading semicolon.
The comments field then extends through the remainder of the line up to the
carriage-return. Any valid ASCII characters are legal in the comments field.

DATA GENERATION STATEMENTS

Data generation statements resemble machine instructions in format and generate
binary data within the program flow. The data generated is normally not
interpreted during program run as executable instructions but rather as constant
data such as ASCII messages to be typed or numeric values to be used by those
instruction being executed. The general format of the data generation statement
is:

{label:} {operator} {operands} {;comments}

The label field is optional and if used follows the same format and rules as the
machine instruction label field. The operator field contains the specific data
generation mnemonic for the type of data desired. These codes will be defined
in another section. The operands field contains. the actual data to be generated
by the statement and its format depends on the type of operator in use. Some
operators such as WORD and BYTE allow multiple operands within the same
statement so that the amount of binary data generated by the one statement is
variable. If a label is used, its value is always that of the address into
which the first byte of data will be assembled. As with machine instructions,
the comments field is optional.

There is a special default type of data generation statement which the user
should be aware of. If no operator is present the statement is assumed to be a
WORD statement and the operands field is interpreted as such. The assembler
works in the following manner when analyzing statements:

1. Leading symbols which are terminated by colons are processed
as labels and stored in the assembler symbol table.
2. The next symbol is first scanned for a match in the macro table
which consists of all macros defined previously in the program.
3. If the operator symbol is not a macro name it is then matched

against the table of machine instruction opcodes, data generation
operators, and assembly control pseudo-opcodes.

4. If none of the above result in a defined operator, the default
WORD processor is entered and the symbol is assumed to be the
beginning of the associated operands field for the WORD statement.

SYMBOLIC EQUATE STATEMENTS

A user symbol may be assigned a value by entering it on a statement line
followed by an equal-sign (=) and the expression to which it is to be equated.
The general format of the equate statement is:

{user symbol} = {expression} {;comments}

The equal-sign may have leading or trailing spaces and tabs if desired for
formatting purposes. The expression may be any valid numeric expression but
since all equate statements must be fully resolved during phase 1, any user
symbols used in the expression must be defined at the time that the equate
statement is encountered. Equate statements may not contain references to
external symbols. The comments field is optional as in the machine instruction
statement.

User symbols that are assigned values in the program may be reassigned a
different value later in the program by using another equate statement to
redefine the desired symbol. Labels may not be redefined by equate statements,
however. If the relocation attribute of the evaluated expression is zero the
value assigned to the symbol is absolute. If the relocation attribute is
non-zero then the value assigned is relocatable. If the expression contains a
register symbol then the equated symbol is also given a register attribute. 1In
other words, the value assigned to the user symbol pretty much follows the
attributes of the expression to which it is equated.

ASSEMBLY CONTROL STATEMENTS

Assembly control statements cover a wide range of functions that generally set
up or alter the parameters which control the assembly process. They do not
themselves generate any birary code but are used for such purposes as listing
format control, numeric radix assignment, and program generation or addressing
information. The general format for assembly control statements is:

{pseudo-opcode} {arguments} {;comments}

The pseudo-opcode is the mnemonic which defines the function to be performed.
These are listed in a later section along with an explanation of what each one
does. Some of them require arguments that are needed to set up parameters.
These arguments are separated fram the pseudo-opcode by one or more spaces or
tabs. As in other statement formats, the comments field is optional. Unless
otherwise specified in the detailed explanation, labels are normally not
permitted in assembly control statements.

CONDITIONAL ASSEMBLY DIRECTIVES

Conditional assembly is defined as statements within defined bounds which are
selectively assembled or bypassed depending on the value of some variable at the
time the assembly is performed. The bounds are made by conditional assembly
directives which specify the variable or variables to be tested and the
condition to be met in order for the assembly to occur. Conditional assembly
directives are most commonly used in conjunction with macro definitions to
direct the tailoring of each macro call as it is encountered. Conditional
assembly directives will be fully explained in a later section dedicated
entirely to them.

MACRO DEFINITIONS AND MACRO CALLS

Macros are defined as one or more valid statements which may be called for by
using a single symbol (the macro name) within the program anytime after the
macro has been defined. Macros are always defined by the user within his
program or within a library which is called into his program by the COPY
statement. The library file called SYS.MAC is a collection of over 70 such
macro definitions which define all the supervisor calls available to the user
program for communicating with the monitor routines. This library file is
supplied on the AMOS system disk in area [7,7].

Macro calls are those statements which name the defined macro as the operator of
the statement and give the specific arguments to be used by the macro (if any
are required). A macro call within the program causes the defined macro to be
included in its tailored form at the point of the call. Macro calls normally
cause one or more machine instructions to be assembled and the respective binary
code to be generated.

Macro definitions and macro calls are defined more fully in a later section.

COMMENT LINES AND BLANK LINES

Statements which begin with a semicolon (after any leading spaces and tabs) are
considered comment lines and do not result in the generation of any binary code
or in the alteration of any assembly control parameters. They are useful only
for documenting the source programs and making them look real pretty. Blank
lines are also considered comment lines and are for appearances only in the
source file. Lightning may also strike down those who do not use sufficient
comment lines in their programs.

TERMS AND EXPRESSIONS

This section describes the various terms and camponents used in MACRO source

statements including the defined character set for the construction of symbols
and expressions.

CHARACTER SET

The entire ASCII character set is legal in MACRO source programs except for the
control characters. Lower case characters will be translated to upper case
before being used in syntax checking of each source line. The characters which
are valid in user defined symbols are limited to A-Z, 0-9, "$" and "." due to
the fact that symbols are packed RAD50 before being stored in the symbol table.
The folowing list will give the special characters that are recognized by the
assembler when scanning source lines.

s Label terminator

; Comment field indicator
= Equate statement operator
Immediate expression indicator
@ Deferred addressing indicator
(Initial register indicator
) Terminating register indicator
p Operand field or macro argument separator
. Value of the assembly current location counter when used as a term
< Initial argument or expression indicator
> Terminating argument or expression indicator
+ Arithmetic addition operator or autoincrement mode indicator
- Arithmetic subtraction operator or autodecrement mode indicator
* Arithmetic multiplication operator
/ Arithmetic division operator
Logical AND operator

Logical inclusive OR operator

Single ASCII character term indicator
Double ASCII character term indicator
Initial RAD50 triplet term indicator
Terminating RAD50 triplet term indicator
Universal unary indicator

= mem

Pt

The use of the above legal characters out of context for their designed purposes
will cause the generation a syntax error (code Q).

TERMS

A term is the basic unit of data in an arithmetic expression and may be one of
the following:

1. A number as composed of legal digits within the current radix of the
system or as temporarily defined by the inclusion of a leading
temporary radix change operator

2. A user symbol as previously defined which is given an assigned value
either by its use as a label or a direct equate statement

3. An ASCII conversion defined by the single or double quote indicators
4. A RAD50 triplet enclosed in square brackets

5. The period symbol (.) which represents the current value of the
assembly current location counter

6. An expression or term enclosed within angle brackets. Angle brackets
are used to alter the normal hierarchy of expression evaluation which
is normally done in a left-to-right manner. Any quantity enclosed
within angle brackets will be evaluated before the remainder of the
expression in which it is found. The action of angle brackets within
a MACRO source expression is the same as that of parentheses within
a normal arithmetic expression such as is used in the BASIC language.
Angle brackets may also be used to apply a unary operator to an
entire expression such as -<16/A>.

EXPRESSIONS

An expression is a combination of terms and operators which will evaluate down
to an unsigned 16-bit value in the decimal range of 0-65535. Negative values in
the range of -32768 through -1 will be stored properly after evaluation but will
be treated the same as their unsigned conterparts in the range of 32768 through
65535. The evaluation of any expression also includes the evaluation of the
mode of that expression (absolute, relocatable, and external) and the register
designation of the expression.

Operators are defined as unary or binary. Unary operators precede a single term
and alter the evaluation of that term alone. Multiple unary operators may be
applied in sequence to the same term and are evaluated in reverse order. Binary
operators combine two terms to give a resultant effective single term value.
Multiple binary operators are illegal.

Expressions are evaluated left to right under the hierarchy of the operators
which are in use within that expression. Angle brackets may be used to alter
the normal process of evaluation. Unary operators always take precedence over
binary operators and are applied to the associated terms first.

The legal operators are:

Unary plus sign (default of any term not preceded by another unary)
Unary minus sign which negates the associated term value

Unary one's complement operator (XOR's the term with all ones)
Temporary radix change to decimal for the associated term
Temporary radix change to binary for the associated term

Temporary radix change to octal for the associated term

Temporary radix change to hexadecimal for the associated term
Binary addition operator

Binary subtraction operator

Binary multiplication operator

Yy > 1 +
ZTOWOUnO

>

)

* |+

/ Binary division operator
& Binary logical AND operator
! Binary logical inclusive OR operator

Expressions are evaluated as being either absolute, relocatable, or external.
This distinction becomes particularly important since we are writing totally
relocatable code for the AM-100 system. The following rules apply in the
evaluation of the relocation attribute of an expression:

1. An expression is absolute if its value is fixed and contains no
relocatable terms. Also, a relocatable term minus another relocatable
term results in an absolute value. Labels allocated within an
absolute section (ASECT) will be assigned absolute values and attributes.

2. An expression is relocatable if its value is fixed relative to the
current program base which is relocatable at load time. The value
may have an offset added to it by LINK if it is not within the first
segment of a program file. Labels allocated within a relocatable
section (RSECT) will be assigned relocatable values and attributes.

3. An expression is defined as external when one or more of its terms
is an external symbol reference. This expression will not be fully
resolved until the program file is generated by the linkage editor
(LINK) when the external terms are defined. The final resolution
of an external expression may be relocatable or absolute, depending
on the attributes of the terms involved (both internal and external).
The linkage editor also contains all the mechanics for evaluating the
attributes of resolved expressions.

NUMBERS

Any source item which starts with a digit (0-9) is considered to be a number
and this number will be evaluated under the currently prevailing radix

unless preceded by a temporary radix operator or followed immediately by a
decimal point. The prevailing radix always starts as octal (base 8) at

the beginning of any assembly but may be changed by th: RADIX assembly
control statement. Any number that terminates with a decimal point will be
evaluated as decimal (base 10) regardless of the prevailing radix. Fractional
numbers are not allowed in MACRO source statements since all numbers must
evaluate to a 16-bit binary integer value.

The prevailing radix controls the default evaluation of numbers and may be
set by the RADIX statement to any value from 2 (binary) through 36 (which is
really weird)! Numbers in a base above 10 (decimal) use the alphabetic
characters A-Z to represent the digit values of 10 through 35. The most
common system above base 10 is hexadecimal where the letters A-F represent
the digit values 10-15. All numbers must begin with a digit 0-9 so that the
hexadecimal value of F56 must be entered as OF56 to distinguish it from a
user symbol.

Negative numbers are preceded by a minus sign and will be evaluated and stored
by the assembler in two's complement form. Positive numbers may optionally
be preceded by a plus sign but this is not required.

10

REGISTER SYMBOLS

The WD16 microcomputer (the heart of the AM-100 system) contains eight
l6-bit registers which are symbolically named and used as follows:

RO - register 0, general purpose
Rl - register 1, general purpose
R2 - register 2, general purpose
R3 - register 3, general purpose
R4 - register 4, general purpose
R5 - register 5, general purpose
SP - register 6, stack pointer

PC - register 7, program counter

These eight symbols are already defined to the assembler and must be used when
the address mode explicitly requires a register to be referenced. The above
register symbols have a register attribute associated with them and the user may
equate his own symbols to these registers if he so desires. The register
attribute will be carried forth to his newly defined symbol. For example, the
equate statement IOPTR=R4 will equate the user symbol IOPTR to the value of 4
and also give it a register attribute so that it may be used in place of R4 for
address modes.

ASSEMBLY LOCATION COUNTER

During the assembly process, sequential memory locations are assigned to all
machine instructions and data constants as they are encountered in the source
program. At any given statement, the next byte to be assigned will be
internally stored in the assembly location counter. This address may be used in
expressions by referencing the period (.) as a symbolic term. For example, the
instruction "JMP .+6" will cause a jump to the address which is 6 bytes in front
of the first byte of the instruction itself.

The assembly location counter has an attribute associated with it which is
either absolute or relocatable. Initially it is set up in the relocatable mode
and cleared to zero value for the allocation of relocatable binary code as
machine instructions and data constants are assembled. If an ASECT statement is
encountered the attribute of the assembly locataion counter is changed to
absolute which means the address associated with it will not be adjusted by the
LINK program. If an RSECT statement is encountered the attribute will be set
back to relocatable again which means that the address associated with it will
be adjusted by the LINK program to compensate for the program segment offset.
The assembler also maintains two separate address counters for switching between
ASECT and RSECT sections.

Initially the value of the assembly location counter is set to zero and is
incremented as each statement which produces binary code is assembled during
phase 1. The setting of the assembly location counter may be changed at any
time explicitly by a direct equate statement using the period symbol instead of
a user symbol. For example, the statement ".=500" will force the assembly

location counter to take on a value of 500 and begin all assembly allocation
from that point on.

11

ASSEMBLY CONTROL PSEUDO-OPCODES

Assembly control statements perform a wide variety of functions which do not in
themselves generate any binary code but instead, set up or alter certain
parameters which control the assembly process. Each statement consists of a
defined assembly control pseudo-opcode followed by optional arguments as
required by the specific format. These pseudo-opcodes will be described here
along with the required arguments for each.

COPY filename

The COPY statement allows another file to be included in the assembled program
at the point where the COPY statement is located. The entire copied file is
assembled but conditional assembly statements may be used to omit certain
portions if desired. The most common use of this statement is for the inclusion
of the standard library file SYS.MAC which defines all system call macros and
system parameters to the program.

The filename specifies the name of the file to be copied into the source program
during assembly. Note that the actual source program is not actually modified
but rather the assembler merely gets the input from the copied file and then
returns to the original source file. A copy file may not include another COPY
statement within itself although the original file may include as many
individual COPY statements as desired. The filename may actually be a camplete
file specifier which references another disk area. If the extension is not
specified, the assumed default is MAC. If the area is not specified the
assembler first searches the system library area in DSKO:[7,7] and if not found
there, searches the current user disk area. An error message results if the
file cannot be found and the assembly is aborted. The user may put other
library files into the system library area DSKO:[7,7] which will then become
available to all users through the COPY statement.

The source statements in the copied file are not normally output during the
listing phase of the assembly since most users do not want the system library
(SYS.MAC) and other common library routines to be repeated in all program
listings. This may be overidden by using a "/L" switch following the filename
in the statement which will cause the copied file to be included in the assembly
listing.

PAGE

The PAGE statement causes a skip to the next page during the listing phase

before continuing with the listed output. No action takes place other than this
during assembly.

ASECT - RSECT
The ASECT statement causes the assembler to generate code for the absolute

section of the program. This code will not be modified during LINK editing and
the values assigned to labels will not have the relocatable attribute flag set.

12

The RSECT statement causes the assembler to generate code for the relocatable
section of the program. This is the normal section for the AM-100 system which
always relocates the program in user memory. This code will be modified during
LINK editing and the values assigned to labels will have the relocatable
attribute flag set. Two separate assembly location counters are maintained
during program assembly.

SYM - NOSYM

The SYM statement causes all following user symbols to be output to the object
file along with their assigned values. The NOSYM inhibits this output for all
following user symbols. These symbols are later used by the SYMBOL program to
generate a reference file for the dynamic debug program DDT. No change in the
actual program is ever noticed by the use of 5YM and NOSYM.

EVEN

The EVEN statement forces the next binary code to be generated on a word
boundary (next even byte) by incrementing the assembly location counter if it is
odd (no change if it is even). This is necessary since all instructions must
lie on a word boundary for proper execution by the AM-100 system.

RADIX n

The RADIX statement forces a new default radix to be set up in the assembler.
The default radix of the system determines how all numbers that are not preceded
by a temporary radix operator ("B,"D,"H,"0) will be interpreted. The radix
change argument "n" must be a decimal number in the range of 2-36. Radix values
above 10 will use the letters A-7 to represent the digit values of 10-35
inclusively. The default radix of all assemblies is base 8 (octal) in the
absence of any explicit RADIX statement.

END

The END statement terminates the source file and is included only to give a
defined end on the listing. 1In the absence of an END statement the assembly
will terminate with the logical end of input file. Note that if an END
statement is encountered anywhere in the source input (including inside a copied
file) the assembly will terminate whether the logical end of the input file has
been reached or not.

13

DATA GENERATION PSEUDO-OPCODES

The MACRO assembler has several pseudo—opcodes which generate specific data
constants within the program area for use as text messages, constant values,
tables, etc. This section will list these pseudo-opcodes and give details on
the data formats which are generated by them. All statements may have labels in
which case the label is assigned the address that will receive the first byte of
the generated data. All data statements begin allocating their specific data
formats at the address specified by the assembly current location counter and
generate multiple bytes in sequence incrementing the current location counter as
necessary. Those statements which generate byte data (BYTE, ASCII, BLKB) may
begin and end on any byte address, odd or even. Those statements which generate
word data (WORD, RAD50, BLKW) must begin on a word boundary (even byte) or else
a boundary error (B) will result. The EVEN statement may be used at any point
where the status of the current location counter is in doubt to insure an even
boundary.

BYTE

The BYTE statement generates one or more bytes of data. The arguments for
generating the data consist of expressions separated by commas. Any legal
expression is valid but only the lower byte will be stored after evaluation.
Some examples are:

ZER: BYTE 0 ;Generates one byte of data containing zero
BYTE 1,2,3 :Generates three bytes of data containing 1,2,3
MULTI: BYTE A-B,TAG*4,SAM ;Generates three bytes of data
BYTE 'A,'Q ;Generates two bytes of ASCII data
WORD

The WORD statement generates one or more words (16 bits each) of data. The
arguments for generating the data consist of expressions separated by commas.
Any legal expression is valid which evaluates into a 16-bit value. WORD
statements may also be generated by default if the first symbol on a line (after

any labels) is not defined as an opcode, pseudo-opcode or macro name. Some
examples are:

ZER: WORD 0 ;Generates one word (two bytes) of data zero
WORD 1,2,3 ;Generates three words of data containing 1,2 ,3
WORD A-B,"QT,SAM-. ;Generates three words of data
SAM ;Generates by default the value of SAM

14

ASCII

The ASCII statement generates one or more bytes of ASCII data. The argument for
generating the data is a string of legal ASCII characters bounded on both ends
by the same character which must not be included in the data string itself.
Only one such string may be generated by each ASCII statement. Some examples
are:

MSG: ASCII /THIS IS A MESSAGE/ ;Generates a string of 17 data bytes
ASCII /¢/ :Generates a single data byte of "Q"
MSG2: ASCII $ I/O TERM $:Generates a string of 10 data bytes

RAD50

The RAD50 statement generates one or more words (16 bits each) of data. The
argument is a string of valid RAD50 packable characters bounded on both ends by
the same character which must not be included in the data string. The legal
characters for RAD50 packing are A-Z, 0-9, dollar-sign ($), period (.) and
space. One packed word will be generated for each three characters in the
string or fraction thereof with trailing spaces being assumed to fill out the
last triplet. Some examples are:

DDB: RADS0 /DSK/ ;Generates one word of packed data

RADS0 /sSaM QQ/ :Generates two words of packed data

RADS0 /ABCD/ ;Generates two words (same as RAD50 /ABCD /)
BLKB - BLKW

These statements do not actually generate data but are included in this section
because they result in the allocation of memory in a defined manner. The BLKB
allocates an area of bytes and the BLKW allocates an area of words. 1In all
other respects they operate the same. The argument for each is a single
expression which evaluates down to a value between 0 and 65535. This value is
then added to the assembly current location counter (twice if BLKW) which
effectively reserves that block of memory and continues allocating memory at the
new address. Normally this results in a contiguous area of all zeros since the
linker clears all blank areas when it generates the program file. This action
does not always happen, however, because the location counter may be stepped
back into the reserved area in which case the new data will overlay the reserved
block of memory. This is an important concept in dealing with the absolute
section since no data is actually generated by these statements, only memory
addresses are reserved. Some examples are:

DATA: BLKB 44 ;Reserves 44 bytes of memory
BLKB A*B :Reserves A*B bytes of memory
BLKW 200 ;Reserves 200 words (400 bytes) of memory

15

SEGMENTING ASSEMBLY LANGUAGE PROGRAMS

The MACRO assembler together with the LINK editor and monitor overlay calls
support a powerful method of segmenting and overlaying programs for both
convenience during system development and memory conservation during execution.
This section will describe the methods available for the various options and
also the assembler pseudo—-opcodes which help support the system. The
pseudo—opcodes to be described are INTERN, EXTERN and OVRLAY.

There are several reasons for segmenting a program and also different methods
for doing so, depending on the end result desired. A very large source program
takes longer to edit (even a small change) and gives a greater opportunity for
total loss if some disaster strikes the file links. A large program also takes
longer to assemble and more memory in which to do so. Segmented programs may be
organized in such a manner as to allow portions of the program to be resident in
memory and other portions to be called in from disk only as required. Segmented
programs may also contain duplicate symbols if the program segments are
assembled separately and linked together by LINK. Also, program segments which
are assembled separately may also be listed separately resulting in less listing
time (and less paper used) for each change that is made.

The simplest method for creating a program in segments gains one of the above
advantages. This method makes use of the COPY statement and allows a large
program to be edited as multiple segments which are then copied into the main
source program by using one COPY statement for each segment. As changes are
made to the source program you need only edit the segment which requires the
changes. The assembly is done, however, on the complete source program since
all copied files are included in the source input. Only one object file results
and only one single list file can be created. The /L option on the COPY
statement may be used to control those segments that are desired to be included
on the listing itself.

A more complex but flexible method is to break up the program into logical
segments which may be assembled separately and then linked together at a later
time by the LINK program. Several object (OBJ) files result as output of the
different segment assemblies which are then input to the LINK program which
creates a fully resolved and runnable program (PRG) file. The advantages of the
COPY method are realized as well as the added advantage of having to assemble
only those segments which require changes. The LINK process runs much faster
and requires less user memory than the assembly process. One of the
requirements of a program which is segmented in this manner is that all
references to routines and data constants which reside in another segment must
be done through two special assembler pseudo-opcodes, INTERN and EXTERN. Since
a reference to a routine in another segment is not defined during the assembly
of the calling segment, the symbol (name of the routine) is said to be
"external”. It is declared external by the EXTERN statement which tells the
assembler that it is defined and will be resolved by the linkage editor at a
later time. The segment in which the routine exists then delares that symbol as
"internal" via the INTERN statement which tells the assembler to output the
symbol with a special code which defines it to the linkage editor for final
resolution.

The method of segmenting a program and then creating a single runnable program

16

with LINK may be extended one step further using a feature in the monitor which
allows program segments to be called in from the disk and overlay an existing
portion of the main program. A segment which is to be used as an overlay
defines itself as such by using the OVRLAY statement and giving the address at
which the overlay is to be loaded. The main program then uses a special form of
the FETCH supervisor call to load the overlay segment and then executes it by
jumping to a known segment start address. This implementation of overlaying
segments is used in the MACRO assembler itself and conserves user memory during
execution of large system programs. The LINK program creates one program (PRG)
file for the main segment and one overlay (OVR) file for each overlay segment in
use.

INTERN

The INTERN statement is used to define one or more user symbols as internal to
the segment so that they will be defined to the linkage editor program for final
resolution. Each INTERN statement may be followed by one or more internal user
symbols separated by commas. As many INTERN statements as required may be used
in the program. There is also no limit to the number of symbols that may be
referenced by each INTERN statement except for the physical line length.

Each symbol that is referenced in an INTERN statement must be defined within the
segment either as a label on a routine or constant or as a value by an equate
statement. The symbol will then be available to the LINK program for resolving
references to it which come from EXTERN statements in other segments. Any
symbol defined as external in a segment that has not been defined as internal in
another segment will result in an undefined error during linkage editing. A
symbol may never be defined by more than one INTERN statement during any one
LINK run, i.e. the same symbol cannot appear as internal in two different
segments that will eventually be linked into the same program.

EXTERN

The EXTERN statement is used to define one or more user symbols as external to
the segment so that they may be resolved by the linkage editor program. Each
EXTERN statement may be followed by one or more user symbols separated by
commas. As many EXTERN statements as required may be used in the program.
There is also no limit to the number of symbols that may be defined by each
EXTERN statement except for the physical line length.

Each symbol that is defined by an EXTERN statement may be referenced within the
segment just as if it had been defined within the segment as a label or an
equate statement item. There is no limitation placed on its use as a term
within any operand expression since the LINK program has complete expression
resolution mechanics built in. There are two restrictions to its use within the
segment. An externally defined symbol may not be used within the address
operand of any branch instructions (BR, BEQ, BGT etc.) due to the fact that
there is no way to insure that the resulting placement will fall within the
127-word relative requirement. They may, however, be used within the address
operand of the jump (JMP) instruction. The second restriction is that an equate
statement may not contain any externally defined symbols in its operand
expression since all equates must be fully resolvable as they are encountered.

17

The LINK program builds a symbol table from all the symbols referenced in all
INTERN statements in all program segments. It then goes back and resolves all
expressions containing symbols defined by EXTERN statements by looking them up
in the table of INTERN symbols. Any symbol defined in an EXTERN statement but
not matched by some INTERN symbol will give an error message during linkage
editing.

OVRLAY

The OVRLAY statement identifies a program segment as being an overlay file
instead of a continuation of the main program file. It also defines the address
of the base of the overlay relative to the base of the main program so that the
loading of the overlay segment is done at the proper spot in the program memory
area. The OVRLAY statement takes a single argument which is a user symbol that
must be defined in some other segment in an INTERN statement. The OVRLAY
address will be resolved by LINK when the files are processed. The OVRLAY .
statement must be the first non-comment statement in the program if it is used.
Information on the code used to load the overlay segments into memory will be
found in the description of the FETCH supervisor call. Further information on
processing of the OVRLAY statement may be found in the section describing the
LINK program processing.

18

CONVENIENCE PSEUDO-OPCODES

There exist a few pseudo-opcodes in the assembler that I refer to as convenience
opcodes for lack of a better term. They are those few goodies that tend to make
life easier for those of us that are used to working on larger machines and have
tended to become set in our ways. These opcodes do not really do anything that
cannot already be accomplished by the existing source language in some other
format but they are easier to understand and make the listing more readable when
used in the form that they have been implemented here. Some of them are
implemented directly in the assembler program itself while others exist as
predefined macro calls in the system library SYS.MAC which is normally called by
all programs.

EXTENDED CONDITIONAL JUMPS

One very frustrating thing about editing some new changes into a program is when
you find that an existing BNE (or other conditional branch) no longer reaches
due to the new code extending the address out of the 127-word limit for
branches. The most common solution to this problem is to replace the offending
branch with a branch of the opposite condition followed by a jump to the desired
address. In other words, our BNE TAG could be replaced by BEQ .+6 followed by
JMP TAG which effectively does the same thing. The only problem here is that
this makes the listing somewhat less than clear when trying to decipher the flow
of the program. I have therefore implemented into the assembler a set of
conditional jump opcodes which effectively generate this two-instruction code
sequence for the proper opposite conditional but which still look very readable
in the source listing. These opcodes have been listed here along with the
actual WD1l6 instructions generated:

JEQ TAG generates BNE .+6 followed by JMP TAG
"

JNE TAG " BEQ .46 JMP TAG
JPL TAG " BMI .+6 " JMP TAG
JMI TAG " BPL .+6 " JMP TAG
JLO TAG " BHIS .+6 " JMP TAG
JHI TAG " BLOS .+6 " JMP TAG
JLOS TAG " BHI .+6 " JMP TAG
JHIS TAG " BIO .+6 " JMP TAG
JLT TAG " BGE .+6 " JMP TAG
JGT TAG " BLE .46 " JMP TAG
JLE TAG " BGT .+6 " JMP TAG
JGE TAG " BLT .46 " JMP TAG
JCC TAG " BCS .+6 " JMP TAG
JCS TAG " BCC .+6 " JMP TAG
JVC TAG " BVS .+6 " JMP TAG
JVS TAG " BVC .+6 " JMP TAG

Remember that although these opcodes are easier (require less planning) than the
simple branches they do actually generate three words of binary code instead of
only one so use them only when necessary if space is at a premium.

19

PUSH -~ POP

The hardware stack in the WD16 is normally referenced by its index register (SP)
and transferring words of data to and from the stack are done by MOV
instructions. Many machines have dedicated instructions to push and pop data to
and from the stack. In order to make the flow of system programs a little
clearer for those of us used to pushing and popping, two macros have been
implemented in SYS.MAC which recognize the PUSH and POP instructions. Each
takes a normal source address argument but each also has a special default
format which is used when no specific argument address is desired. These
instructions generate the following code:

PUSH SRC generates MOV SRC,—(SP) :Pushes SRC onto stack

PUSH " CLR -(SP) :Pushes a zero onto stack

POP DST " MOV (SP)+,DST ;Pops stack into DST

POP " ST (SP)+ ;Removes top stack word
CALL - RIN

The normal subroutine calling sequence of the WDl6 is the JSR instruction which
links its arguments through any of the eight registers. The assembler
recognizes the more popular mnemonic opcode CALL for which it generates a JSR
instruction. 1In addition, if no register is specified in the CALL or RIN
instructions the assembler assumes the most commonly used register PC for its
argument linkage. In other words:

CALL TAG generates CALL PC,TAG
RTN " RIN PC

OFFSET

There are many times during the programming of totally relocatable code where an
address must be expressed and stored as a relative offset from the location of
the constant itself. 1In other words, the storage of the address TAG must be in
the form of TAG-. which is actually the offset from the current position of the
constant itself to the address defined as TAG. The value of this constant
offset will not change no matter what its position in memory happens to turn out
to be. A good example of the use of relative address offsets is in the tables
associated with the instructions TIMP and TCALL which must be relative offsets
and not direct addresses. The OFFSET pseudo-opcode has been implemented to make
the listings a little more obvious as to intent. The OFFSET opcode takes a
single address argument and generates the relative offset to that address from
the current position of the constant.

20

USER DEFINED MACROS

It is often convenient for the user to create his own opcode definitions which,
when used in the source program, result in the creation of a predefined sequence
of one or more source code statements. These user—created opcodes are called
"macros" in assembly language programming and the AM-100 assembler supports a
flexible macro subsystem which accomplishes this objective. There are two
phases which the user goes through when using macro calls. First, the macro
opcode is defined once in the program as a series of source code statements
along with possible dummy arguments. This is done only once and remains defined
throughout the remainder of the assembly process. Second, the user then invokes
the macro by a single source statement giving the macro name along with optional
real arguments which replace the defined dummy arguments in the macro source
code which is generated. Calling the macro in this manner causes the macro
statement to be replaced by the defined sequence of source code statements which
have been custom tailored by the optional real arguments in the calling
statement. This calling sequence may be done as many times as needed in the
source program with as many different real arguments as desired.

MACRO DEFINITION

Defining a macro generates no actual binary code in the program but merely
places the macro definition in a special table in the assembler memory work
area. Calling the macro which then generates the sequence of source statements
is the process that actually generates the binary code. If the macro is never
called in the program or if the macro does not contain any code—generating
source statements, no binary code is produced. The use of conditional assembly
directives within a macro definition may result in no code-generating statements
for this particular call to the macro. The fact that no code is actually
generated if the macro is never called is an important concept since it then
allows libraries to be created which may contain many macro definitions that are
standard for a particular user system. Those macros that are never called in
any specific program do not generate any code and therefore take up no
additional memory. The system library SYS.MAC contains over 70 such macro
defintions which define the supervisor calls to the monitor.

There are two formats available for use in defining macros. The normal format
allows one or more source lines to be generated as a result of the macro call.
The single-line format restricts the macro definition to one line of generated
source code but takes up less room on the source listing (and looks niftier
too) .

The general format for multiple-line macros is:

DEFINE name {dummy argument list}
source line 1
source line 2

..

source line n
ENDM

21

The general format for a single-line macro is:

DEFINE name {dummy argument list} = source line

In both forms the macro name is any legal user symbol which effectively becomes
the opcode by which the macro is called. This symbol may duplicate a label in
the program or may even redefine an AM-100 pseudo-opcode or a WD1l6é machine
opcode (you can redefine the MOV opcode to do an ADD if you really want to
confuse some people). A macro name may only be defined once and an attempt to
redefine it later in the program will give unspecified results in the current
version of the assembler.

The dummy argument list is optional in both forms and if used consists of one or
more user symbols separated by commas. These symbols are unique only wihtin the
actual definition of the current macro and may be duplicated in other macro
argument lists or may even be other opcodes and defined symbols. These dummy
argument symbols will never appear as such in the generated sequence of source
statements when the macro is called but will be replaced by the equivalent real
arguments supplied in the calling statement. The dummy argument symbols may
appear anywhere in the definition source lines, even as labels. Each time a
dumy argument is encountered when generating the source lines during a macro
call it will be replaced by the real argument supplied in its place by the
calling statement.

The multiple-line macro definition source statements begin with the line
immediately following the DEFINE statement and continue through to but not
including the ENDM termination line which must be there. When the macro is
called in the program text, all macro source lines will be generated ard
assembled just as if they had been entered directly into the source program
explicitly. In the single-line form the source line begins with the character
following the equal sign and continues through (and including) the
carriage-return and line-feed pair which terminates the DEFINE statement line.

Macro definitions must not be nested within other macro definitions. Macro
processing is done on a special prepass scheme which prohibits the processing of
any DEFINE statements within another DEFINE statement.

A comment may follow the dummy argument list in the multiple-line form but
should not be used with the single-line form. Comments should be avoided in the
actual generated source lines in the macro definition simply because the entire
source text is stored in work memory as ASCII characters which includes all
comments if used. This may tend to use up work memory to the extent that you
may not have enough to finish the assembly. KABOOM!

A label must not be used on the DEFINE statement line since it has no meaning.

Labels may be used on the calling statements. A label must not be used on the
ENDM line or the entire ENDM line will not be detected.

22

The following examples may help to clarify things a bit.
A macro called ADDIT which generates four instructions:
DEFINE ADDIT

MOV R1,R3
ADD R3,SUM

ASL R3
ADD R3,SUM
ENDM

A macro called XCHNG which exchanges two memory words:

DEFINE XCHNG MEMA,MEMB
MOV MEMA,R1

MOV MEMB ,MEMA
MOV R1,MEMB
ENDM

A macro called FOOF which subtracts a memory word from the top stack word:

DEFINE FOOF TAG
SUB TAG,@SP
ENDM

The same FOOF macro in the single-line format since only one line is used:
DEFINE FOOF TAG = SUB TAG,@SP

For some more complex examples of macro definitions, print out or inspect the
system library SYS.MAC which defines all of the supervisor calls used by the
AM-100 timesharing system.

MACRO CALLS

The actual generation of the defined source code comes when the user calls the
macro by its name within the text of his source program. The macro must have
been defined prior to its first reference. Macros are only processed for
definition during phase 1 of the assembly process. Macro calls have the same
format regardless of whether the macro definition is multiple or single line
format: '

{label:} name {real arguments} {;commments}

The label is optional and if used will be assigned the address contained by the
assembly current location counter. This will normally be the address of the
first byte of code which is generated by the macro source lines assuming that
the macro does actually generate code. If the macro does not generate code then
the label will still be defined but it will represent the address of the next
byte of code that is generated after the macro call.

Name represents the name given to the macro definition which becomes the
effective opcode by which the macro is called.

23

The real arguments are used when the defined macro had a dummy argument list and
actually replace the dummy arguments in the source code text of the macro
definition. The real arguments replace the dummy arguments in the exact same
order that the dummy argument list was in on a one-for-one basis. The first
real argument in the call takes the place of each occurance of the first dummy
argument in the definition, and so on for all the arguments. If there are not
enough real arguments given in the call to fill all required dummy arguments the
unfilled dummy arguments take on a null value and are effectively replaced with
nothing. If there are more arguments in the call then required to fill the
dummy arguments in the definition, the excess arguments are ignored.

Refer to the following example:

DEFINE TBLADD ARG1l,ARG2,ARG3
MOV ARG1,R1

ADD ARG2,R1
MOV R1,ARG] (ARG3)
ENDM

This macro is called TBLADD and reguires three real arguments.
Assume the following call in the user program:

SAM: TBLADD SUMS,ENTRY,R5
The following source statements would be generated:
SAM: MOV SUMS, R1
ADD ENTRY,R1
MOV R1,SUMS (R5)

It is evident from the usage that ARG3 must be a register.
Assume that only two arguments were given in the call:

SAM: TBLADD SUMS,ENTRY

The following source statements would be generated:

SAM: MOV SUMS,R1
ADD ENTRY,R1
MOV R1,SUMS ()

Notice that the third instruction would contain an error due to the missing
register term which resulted fraom the missing third argument. Sometimes a
missing argument may be used to advantage by altering the generation of the
source statements with the conditional assembly statements. These statements
(described in the next section) can detect the fact that the argument is missing
and be used to omit portions of code selectively.

24

MACRO CALL ARGUMENTS
Normally the real arguments are separated by commas and the assembler expects
this format. Also, leading and trailing blanks are ignored when processing each
real argument in the macro call statement. Often it is desired to include a
comma or blank as part of the real argument without having it act as a delimiter
or be bypassed. BAny argument that is enclosed in angle brackets will be passed
onto the source code generation in total including any blanks and commas.
The macro call

XPURT ONE,TWO,THREE
has three real arguments while the call

XPURT <ONE , TWO, THREE>
has only one argument which includes the two commas and the call

XPURT <ONE , TWO> , THREE
has two real arguments of which the first includes one comma.

The system macro TYPE is another good example:

DEFINE TYPE MSG

TTYI

ASCII /MSG/
BYTE 0
EVEN

ENDM

This macro is one of the AM-100 supervisor calls and is designed to type out the
ASCIT message which appears as the argument to the TYPE macro call. The BYTE 0
statement insures a null terminator and the EVEN statement insures that the next
instruction is again synchronized on a word boundary.
The call

TYPE HELLO
will type out the message "HELLO" because all the leading blanks are
automatically ignored before the argument is processed.
The call

TYPE < HELLO >
will type out the message " HELLO " because the blanks are
included in the argument as a result of the angle brackets.
Similarly, the call

TYPE HELLO, I AaM A COMPUTER

will type out the message "HELLO" because the comma will terminate the

25

argument and the rest of it will be ignored.
The call

TYPE <HELLO, I AM A COMPUTER>

will type out the message "HELILO, I AM A COMPUTER" because the comma
is included in the argument as a result of the angle brackets.
Get it? Got it? Good!

NESTED MACRO CALLS

Macro calls may be nested to a depth of 16 levels. A nested macro is defined as
a macro call within the source statements generated by another macro call.
Arguments may be passed to nested macros by naming the dummy arguments the same
throughout the levels. Arguments that contain blanks or commas may be passed
through successive levels by enclosing them in one set of angle brackets for
each level of nesting since one set of angle brackets will be removed from an
argument with each nesting level. For example, to pass the argument A,B through
three levels of nested macro calls you would enter the argument as <<<A,B>>> in
the first level macro call.

ARGUMENT CONCATENATION

Since dummy arguments must be valid user symbols the apostrophe (') will be a
legal delimiter for any dummy argument within a macro definition source line.
When an apostrophe immediately precedes and/or follows a dummy argument in the
source text, the apostrophe is removed and the substitution of the real argument
occurs at that point. This is useful for building symbols with arguments that
are to be a part of that symbol.

Given the following macro definition and eventual calls

DEFINE BUILD AA,BB
TAG'AA: MOV R1,Q'BB'7
ENDM

BUILD RA,STS
BUILD T,P

the effective code generated by the two calls would be
TAGRA: MOV R1,0STS7
TAGT: MOV R1,QP7
NCHR AND NTYPE
These two macro directives return a value which specify the number of characters
in an argument (NCHR) or the addressing mode type of an argument (NTYPE). The

NCHR and NTYPE statements function similarly to the equate statement (=) in that
they assign a value to a user symbol which may be reassigned as many times as

26

desired during the course of the assembly. These statements are normally used
to control the development of macro source code based on the size and type of
arguments passed to the macro and therefore are defined in this section dealing
with macros. 1In actuality they may be used anywhere in the source program with

any valid source code as an argument but are fairly meaningless unless used
within a macro.

The NCHR statement assigns a value to a user symbol which is equivalent to the
number of characters in the argument string. It has the format:

NCHR symbol ,string

The NTYPE statement assigns a value to a user symbol which is equivalent to the
6-bit addressing mode of the argument. It has the format:

NTYPE symbol,argument

The following is a list of the addressing modes and the values that they
will deliver via the NITYPE statement, The upper case "R" represents any
of the eight registers (RO-R5, SP, PC) which have a corresponding result
value of 0-7 added to the resulting mode they are used in.

R direct register delivers OR

@R indirect register delivers 1R

(R)+ autoincrement delivers 2R

Q(R)+ indirect autoincrement delivers 3R
- (R) autodecrement delivers 4R

@-(R) indirect autoincrement delivers 5R
X (R) indexed delivers 6R
@X (R) indirect indexed delivers 7R

#X immediate delivers 27
TAG relative delivers 67
QTAG indirect relative delivers 77

Once the symbol has been assigned a value by either the NCHR or NTYPE directives
it may be used by itself or in expressions to control the development of the
macro source code through the conditional assembly statements.

27

CONDITIONAL ASSEMBLY DIRECTIVES

Conditional assembly directives allow the programmer to selectively include or
bypass certain lines or segments of source code based on variable parameters
which are tested during assembly. This allows several different versions of the
same program to be generated from one source file. They also find their widest
use within macro definitions where they are used to tailor the macro based on
the real arguments used in the macro call.

Like the macro definitions, conditional directives take on two general forms.
The normal form allows one or more lines of source code to be selected or
bypassed based on the current status of a variable. The single-line form
performs the same function but is a shorter version and only allows the control
of a single line of source code.

The general form of a normal conditional block is:

IF condition,argument
source line 1
source line 2

source line n
ENDC

The general form of a single-line conditional is:
IF condition,argunent, source line

Both forms employ the IF pseudo-opcode to identify the conditional directive and
both forms require a condition code which specifies the type of test to be
performed and an argument upon which to perform that test. The condition code
is a symbol which identifies the test which is performed at the time the .
conditional is encountered during phase 1 of the assembly process. The argument
may be a symbol, expression or macro argument depending on the type of test
being performed.

Note that the indicating item that distinguishes the two forms is the comma that
follows the argument in the single-line form. If the comma exists the remainder
of the line up to and including the carriage-return and line-feed will be the
source line that will either be assembled or bypassed depending on the result of
the conditional test. If the comma does not exist the conditional assembly will
be done on the source line which follows the conditional directive (IF) line up
to but not including the ENDC terminating line.

CONDITION CODES

The following is a list of the condition codes that are legal and the type of
condition that the associated argument is tested for. Unless otherwise
specified, the argument is evaluated as an expression and the 16-bit result of
that evaluation is the quantity that is tested to meet the condition. The
conditional source lines are to be assembled if the argument meets the condition

28

below.

equal to zero

not equal to zero

less than zero

greater fhan Z2ero

less than or equal to zero
greater than or equal to zero

completely defined at this point

contains one or more undefined symbols at this point

listed next to the code
EQ The argument is
NE The argument is
LT The argument is
GT The argument is
LE The argument is
GE The argument is
DF The argument is
NDF The argument
B The argument (a
NB The argument (a

SUBCONDITIONALS

string of ASCII characters) is blank or null

string of ASCII characters) is not blank or null

There are three subconditional directives which allow the alteration of the
normal conditional processing within a conditional block. These subconditionals
(IFF, IFT and IFTF) require no other parameters and must be used within the
source code that is between the IF and ENDC statements. The following functions
may be performed through the proper use of subconditionals:

1.

2.

3.

Assembly of an alternate block of code when the main conditional
code is being bypassed due to a failed conditonal test.

Assembly of a noncontiguous body of code within the conditional block
depending on the result of the main conditional test.

Unconditional assembly of a block of code within a conditional block
regardless of the result of the conditional test.

The three subconditionals and their functions are:

IFF

IFT

IFTF

The source lines following the IFF statement up to the next
subconditional or end of main conditional are assembled if the
main conditional test result was false.

The source lines following the IFT statement up to the next
subconditional or end of main conditional are assembled if the
main conditional test result was true.

The source lines following the IFTF statement up to the next
subconditional or end of main conditional are assembled
regardless of the main conditional test result.

29

NESTING OF CONDITIONALS

Conditionals and subconditionals may be nested to a maximum depth of 16 levels.
Any conditionals within a higher level conditional will be bypassed (the test
will not be performed) if the result of the higher level conditional test was
false. Subconditionals within outer level conditional blocks will be tested
while those within inner level untested blocks will be ignored. Consider the
following example (mundane as it may be):

TEST1l: IF BEQ,3-3 :True so assemble following code
WORD 33 sAssembled since EQ,3-3 was true
IF NE,4-4 ;False so bypass following code
WORD 44 ;Not assembled since NE,4-4 was false
IFF :Tested — true since NE,4-4 was false
WORD 441 sAssembled since IFF was true
IFT sTested - false since NE,4-4 was not true
WORD 442 :Not assembled since IFT was false
IFTF ;Tested - true regardless of NE,4-4
WORD 443 ;:Assembled since IFTF was true
ENDC :End of NE,4-4 conditional block
ENDC :End of EQ,3-3 conditional block

TEST2: IF EQ,5-6 ;False so bypass following code
WORD 56 :Not assembled since EQ,5-6 was false
IF EQ,6-6 :Not tested since EQ,5-6 was false
WORD 61 :Not assembled since EQ,6—6 was untested
IFF :Not tested since EQ,6-6 was untested
WORD 661 :Not assembled since IFF was untested
IFT ;Not tested since EQ,6~6 was untested
WORD 662 ;Not assembled since IFT was untested
IFTF :Not tested since EQ,6-6 was untested
WORD 663 ;Not assembled since IFTF was untested
ENDC ;End of EQ,6-6 conditional block
ENDC :End of EQ,5-6 conditional block

The system macro for the PUSH convenience opcode is a good example of how
conditionals may be used to control the code generated by a macro:

DEFINE PUSH SRC

IF NB,SRC, MOV SRC,-(SP)
ENDM

If the macro is called without an argument (SRC is blank) then the first
conditional is true and the code CLR -(SP) is generated to push a zero word
onto the stack. The second conditional is therefore false and generates no
code. If the macro is called with an argument (SRC is not blank) then the
reverse happens and the code MOV SRC,-(SP) is generated with SRC being
replaced by the real argument in the calling statement. This causes the SRC
word to be pushed onto.the stack.

30

The same PUSH macro could have been alternately coded using subconditionals:

DEFINE PUSH SRC

IF B,SRC

CIR -(SP)

IFF

MOV SRC,-(SP)
ENDC

ENDM

For some more examples of conditionals used within macros, print out or inspect
the system library SYS.MAC which defines all of the supervisor calls used by the
AM-100 timesharing system. This file can be found on the system disk in area
[7,71.

31

WRITING TOTALLY RELOCATABLE CODE

The AM-100 system not only supports but requires that all programs written for
operation under control of the AMOS monitor be written in totally relocatable
code. This means that a program may be loaded physically into memory at any
location and it will run without modification. No addresses within the program
ever need to be modified since all references to memory are made in relation to
the current value of the program counter register (PC). The program may even be
dynamically moved about in memory without modification as long as it is not
currently active while it is being moved. The code is actually independent of
its position in memory and therefore has often been referred to by other
manufacturers as position independent code.

Writing relocatable code for the AM-100 system has been simplified by the
incorporation of several instructions which make references to the current
position of the program automatic. The load effective address (LEA) instruction
may be used to calculate the current value of any relocatable address and load
that current value into any register. The table referencing instructions (TIJMP
and TCALL) both use relative offsets to perform their functions as opposed to
absolute or calculated addresses.

Due to the normally relocatable nature of the AM-100 instruction set and
addressing modes, writing totally relocatable code merely involves obeying a few
specific restrictions in the course of programming. The most important of these
is to never refer to any absolute address in main memory unless you are sure of
its location and contents. Two of the addressing modes will always generate
absolute memory references and must be avoided when writing relocatable code.
Note the following examples:

CLR @#TAG
CILR TAG (R4)

In the first example the absolute address of TAG is stored in immediate mode and
then used to indirectly address that absolute memory location. This addressing
mode is not relocatable unless the reference to TAG is a reference to a known
absolute memory location. In the second example the very most common method of
indexing can be shown to be non-relocatable. Normal indexing address schemes
take the base of some area (in this case it is TAG) and add an offset from some
calculation which is stored in an index register (in this case R4) to develop
the target memory address. The value of TAG is stored in the instruction as an
absolute value and no offset is ever added to compensate for relocation of the
program. This mode would not be relocatable unless, as in the first example,
the reference to TAG is to a known absolute memory location.

The two above addressing modes are the most commonly made errors that violate
the rules for relocatable code. A more subtle mistake is made when a register
is set up as an index to a table within the user program to be referenced later
through the register. Take these examples:

MOV #TABLE,RO
LEA RO, TABLE

The first example stores the address of TABLE as an absolute value due to the

32

inmediate mode addressing. Since the assembly of the program is done starting
at location zero, the value of TABLE during assembly is really the offset from
TABLE to the base of the program. When the program actually runs it will not be
located at zero (the operating system resides in the first 12K or so) and the
actual address of TABLE will not be the same as at assembly time. The second
example is the proper instruction to be used when setting up a register to a
memory reference. The instruction is coded at assembly time as an offset from
the instruction itself to the location marked as TABLE and when the LEA
instruction is executed, the actual value of TABLE in its current location is
calculated and loaded into the register. This method awards two gold stars for
intelligence.

Addressing modes which involve only register references are totally relocatable
and also rate a gold star. These modes are listed here:

Rx direct register

@Rx indirect register
(Rx)+ autoincrement

@(Rx)+ indirect autoincrement
~(Rx) autodecrement

@-(Rx) 1indirect autodecrement

The two relative addressing modes are also relocatable:

TAG relative
QTAG indirect relative

Index modes can be relocatable or non-relocatable depending on their usage and
set up procedure. Generally speaking, if the register is absolute and the index
offset is a relative tag in the program the indexing is not relocatable and will
deliver wrong results. If the register is first loaded with the effective value
of the relative address within the program and the index offset is the absolute
component then the scheme is relocatable and will give the desired results.

Teke the following two examples of clearing the third word (sixth byte) in
TABLE:

This is the wrong way:

MOVI 6,R3 ;R3 GETS ABSOLUTE COMPONENT OFFSET
CIR TABLE (R3) ;ABSOLUTE LOCATION TABLE (R3) IS CLEARED

This is the right way (two gold stars):

LEA R3,TABLE ;R3 GETS CURRENT' ADDRESS OF TABLE IN PROGRAM
CIR 6 (R3) ;RELOCATABLE LOCATION AT TABLE+6 IS CLEARED

In summary, the best way to learn how to evaluate the reloacatblity of a
particular programming technique is to become thoroughly familiar with the
addressing modes used by the WD16 microcomputer and the type of code that they
generate., This information can be found in chapter two of the WD16
MICROCOMPUTER PROGRAMMER'S REFERENCE MANUAL. Soon you will be whizzing along
writing totally relocatable code in your sleep, on your way to work, in the
shower, etc.

33

MACRO ASSEMBLER OPERATION

After your first futile ordeal with writing the source code you may get brave
and actually attempt to assemble it. Some instructions on the operation of the
assembler may be in order to accamplish this in a reasonably sane manner. The
assembler actually runs in five distinct phases which are selectively called
depending on functions desired. A brief summary of their respective functions
follows.

PHASE 0 - interprets the command line and sets up parameters in the
common area for use by successive phases.
PHASE 1 - reads the source file (MAC) and performs pass 1 of a standard
two pass assembly process by expanding macros, building the user
symbol table, and generating the interphase work file (IPF).
PHASE 2 - reads the interphase file (IPF) and performs pass 2 of a standard
two pass assembly process by resolving symbols and generating
the object code file (OBJ). The interphase file is deleted.
PHASE 3 - reads the source file (MAC) and the object file (OBJ) and creates
a list file (LST) or outputs to the terminal.
PHASE 4 - actually not part of the assembler but an automatic call to the

LINK program to read the object file (0OBJ) and create a
runnable program file (PRG). Only occurs if there were no
internal or external references in the program.

The general format for the assembler command line is
MACRO filename {/switches}

Filename is the name of the source program to be assembled or listed and may
optionally be a camplete file specification as in other system programs. The
/switches option is comprised of a slash followed by one or more alphabetic
characters which alter the normal assembly process. If no switches are entered
an assembly is performed on the specified source file and an object file is
created but no list file (phase 3 is bypassed). If the program is single
segment (no INTERN or EXTERN statements) then phase 4 is entered which creates a
program file.

The action of the assembler option switches are listed below:

/B generates a bottom header line on every page using the rest
of the command line as title information and if used, must be
the last switch on the line.

/C includes conditionals on listing which are normally suppressed

/E lists only those lines which contained an error

/H lists binary code in hexadecimal instead of octal

34

/L generates a list file by calling phase 3 during assembly

/0 ~ uses current object file by omitting phases 1 and 2

/T prints the listing on the user terminal instead of disk file

/X lists all macro expansions which are normally suppressed
Any of the above switches may be combined as desired in a single command line.
The most common method of assembling new programs is as follows:

1. Assemble the program with the command: MACRO filename
This will count any errors that occurred during phases 1 and 2

2. If no errors occurred create a list file with: MACRO filename /10
or optionally list it on the terminal with: MACRO filename /TO

3. If there were errors list them alone with: MACRO filename/TOE
4, Correct the errors and go back to step 1
5. If the program has only one segment then phase 4 has already
created a program file otherwise refer to the LINK operations
section of this manual to create one
ASSEMBLY LISTING FORMAT
Phase 3 of the assembly process creates a list file on disk or optionally
outputs to the user terminal. The listing is formatted and contains the
resultant binary code that is generated. Each page contains a title and page
numnber giving the name of the program that has been assembled and the account
number that the file was assembled in. Unless otherwise controlled by PAGE
statements, each page contains 54 lines of source data. Each page is terminated
by a form-feed character to perform the page function on most line printers.
Each data line on the listing contains four sections:
1. Error codes are listed in columns 1-5 if any occurred on this line
2. The current address of the generated data is listed in columns 8-13
if any code was generated or the value of the assignment if this is

an equate statement

3. The generated binary data (maximum of the first three words) is
listed in columns 16-37 in octal (or hex if /H switch used)

4. The source line is listed in columns 40-132

35

The error codes and their meanings are listed below:

A branch address was out of the 127-word range

B boundary error — a word operand was on an odd byte address
C conditional statement syntax error

D duplicate user symbol

I illegal character in source line

M missing term or operator in operand or expression
N numeric error which indicates a digit out of the current radix range

p an expression that had to be resolvable on the first pass was not

0 questionable syntax - this is a general catch-all error code

R register error — a register expression was not in the range of 0-7
T source line or operand terminated improperly

U undefined user symbol during pass 2

\Y value of an absolute parameter was out of its defined range

X assembler system error - please notify Alpha Microsystems

Phase 3 generates the list file by reading the source file and the object file
and synchronizinag the source lines with the resolved object data to come up with
the listing line data. If these two files get out of sync there is no way that
the listing may proceed and the message [SYNC ERROR] will appear on the user
terminal. The list file will then be closed at the point of the sync error but
the line that caused the error will not have been included. A sync error of
this sort means one of two things: either you have an out-of-date object file
that you are using with the /O switch or you have found one of several known but
undiagnosed assembler bugs. These bugs usually occur when you get fancy with
nested macros and conditionals and have a valid error buried down deep within.
The assembler just seems to get tied up in knots for no apparent reason.
Temporary action on your part would consist of trying to locate the reason for
the error in your source file and trying again. These bugs will be fixed as
fast as they can be pinpointed.

36

LINKAGE EDITOR OPERATION

The output of the assembler itself is not in a form that is directly usable by
the operating system for running the program. It is an object file (OBJ) which
is not fully resolved and contains symbol definitions and imbedded cross-segment
commands. This object file is resolved by the linkage editor (LINK) which reads
one or more of these object files and creates one runnable program file (PRG)
which the operating system may load into memory and run. Furthermore, if the
program contains overlay segments, LINK will resolve them and create one overlay
file (OVR) for each one. These overlay files are loaded into memory upon
command during the running of the program and allow memory conservation for
large programs such as the assembler itself.

Referring to the previous section on the assembler operation you will note that
if the program had only one segment the linkage editor was called automatically
to create a program file. In this case no further action is necessary and you
are ready to run the program. If, however, the program is comprised of more
than one segment you must run the LINK program and specify the name and order of
the segments involved.

The general format of the LINK command is:
LINK filel,file2,file3,......file-n

LINK will read each of the files specified and create the necessary program and
optional overlay files. Errors will be listed on the terminal if any are
encountered during processing. The most common error is the undefined global
symbol error which means you have an EXTERN symbol in one segment which is not
defined in another segment by an INTERN statement. No program file will be
generated (and no gold star awarded) if one or more of the segments is not found
in its assembled object form (0BJ).

If the program contains more files than will fit on the command line you may
continue the files on the next line by terminating the last filename with a
comma. LINK will continue to accept files as long as the last file on the line
terminates with a comma.

37

SECTION 2

OPERATION AND USAGE OF AM-100 MONITOR CALLS

COMMUNICATING WITH THE AM-100 MONITOR

The AM-100 monitor contains over 70 routines which are available for use by
assembly language programs running in user or monitor memory. These routines
are called by the supervisor calls SVCA and SVCB which have been coded into
macro form to make them easy to incorporate into user programs. The macros are
included as a part of the system library file SYS.MAC in area 7,7 of the system
disk. These calls have been grouped into logical sections according to the
function they perform and will be described in this and the following sections.

The general format for all monitor calls is:
{label:} opcode {arguments} {; comments}

As can be seen from the format, the only required item in all calls is the
opcode itself which is the name of the monitor call. A label may be used if
desired in which case it is assigned the address of the SVCA or SVCB
instructions which start all monitor call sequences. The total number of words
generated by any monitor call depends upon the call itself. Some call generate
up to four words of code to perform the function. Those calls which incorporate
an ASCII message (such as the TYPE call) will generate a string of bytes which
will vary in length depending on the message involved. Comments may also be
placed at the end of the line as desired just as in the machine instructions and
will be preceded by the semicolon which is the identifying character for all
comments. .

Some calls will require one or more arguments which specify parameters for the
execution of the monitor call function. These arguments most normally are
source and/or destination address items for the data being manipulated by the
monitor call. Some calls allow the user to specify the location of data
parameters while other calls operate with predefined registers that must be set
up by the user beforehand. As each call is defined in the sections that follow
the arguments that are required will be detailed. The arguments will normally
be defined as being expression values, standard addresses, or ASCII strings.
Expression values may be any valid source expression which evaluates down to a
value which is within the predefined range of the argument definition. ASCII
strings are just that; a string of characters which are probably used as a
message to be displayed. Standard addresses are so important and complex enough
that we will devote the next whole section to the explanation of them.

STANDARD ADDRESS ARGUMENTS

Standard addresses form the heart of many of the more complex monitor calls and
therefore should be thoroughly understood by the user in order to gain maximum
flexibility from the system. A standard address argument is coded exactly the
same as a standard source or destination operand for a machine instruction such
as ADD or MOV. There are some restrictions that should be noted, however, due
to the method used in processing the standard address. Standard addresses are
only used with those monitor calls that are coded as SVCB instructions. The
SVCB pushes all user registers onto the stack and it is from these stored values
on the stack that the monitor call processor gains access to the address
calculations using those registers. Standard addresses may take the form of any
of the legal WD16 addressing modes however all autoincrement and autodecrement
processing is done on a word basis even though the monitor call may be
requesting only one byte of data. 1In addition; the value used for SP register
references is a dummy value which is not reloaded into SP when the monitor call
eéxits so the autoincrementing and autodecrementing will be ignored if used with
the stack pointer register.

The monitor call processing software within the monitor actually duplicates the
hardware and calculates the target address fram the stored register value on the
stack and the data from the extra word if the address mode uses one. This
target address then becomes the address of the data to be manipulated by the
specific monitor call routine itself. Sometimes this data is only one byte
while other times it may be several words or more. The target address
calculated by the processing of the standard address argument always points to
the first byte of the data if more than one byte is required by the monitor
call. A special case occurs when the standard address argument specifies the
direct register address mode. In the WD16 hardware instructions there is never
more than one full word of data involved for the standard source and destination
address modes so direct register will work on whether the low byte or the full
word in the target register. 1In the processing of monitor call standard
addresses, however, this is not always the case since we pointed out that some
calls require several words of data to be manipulated. When direct register
mode is used the target address is actually the address of the stored register
on the stack which was a direct result of the SVCB hardware instruction
processing. If more than one word is used by the call it will merely sequence
right on through the stored words on the stack. 1In simple terms this means that
if a monitor call wants three words of data for an argument and you specify the
register R2 as the standard address argument, the three words that will be used
will actually be the words in R2, R3 and R4 in sequence. Pretty nifty, huh? A
word of caution: if you specify a register for a call that wants more words than
you have registers for (most I/0 calls want a 20-word DDB argument) the monitor
call will walk right on through your stack and possibly blow the whole silly
system up in your face!

At this point we should pause to allow the smoke to clear. Perhaps a beer might
help you digest the above nonsense before we go on to more frivolous things.
Just try to think of the standard address arguments as good 0ld source or
destination addresses like in the machine instructions. When you foul them up
you will definitely find out about it quick.

ALPHABETICAL LISTING OF AM-100 MONITOR CALLS

The following is a quick reference to all AM-100 monitor calls

ALF
ASSIGN
BYP
CHGMEM
CLOSE
CRLF
DCVT
DEASGN
DELETE
DELMEM
DSKALC
DSKBMR
DSKBMW
DSKCTG
DSKDEA
DSKDRL
DSKDRU
EXIT
FETCH
FILNAM
FSPEC
GETMEM
GTDEC
GTOCT
GTPPN
INIT
INPUT
T0DQ
JOBGET
JOBIDX
JOBSET
KBD
LIN
LOCK
LOOKRUP
NUM
OCvT
OPEN
OPENI
OPENO
OPENR
OUTPUT
PACK
PFILE
PRNAM
PRPPN
PTYIN
PTYOUT
READ

tests the character indexed by R2 for alphabetic

assigns a non-sharable device to a job

bypasses all spaces and tabs in the string indexed by R2

changes the size of a user memory module

closes a logical dataset

prints a carriage-return line-feed pair on the user terminal

converts a binary value to decimal and prints it on the user terminal
deassigns a non-sharable device from a job

deletes a file from a file-structured device

deletes a user memory module from his partition

allocates next available record on disk and returns block number
reads disk bitmap and sets reentrant lock for user modification
rewrites disk bitmap after user modification

allocates a contiguous file for random processing

deallocates a record on disk and makes it available for use again
sets reentrant directory lock for a specific user's directory

clears reentrant directory lock for a specific user's directory
exits from user program and returns to monitor command mode

fetches a module from disk into user memory unless already in memory
processes a filename specification indexed by R2 into RAD50 format
processes a complete file specification indexed by R2 and sets up DDB
allocates a user memory module in his partition

converts a decimal number indexed by R2 into binary and returns it in Rl
converts an octal number indexed by R2 into binary and returns it in R1
converts a PPN format indexed by R2 into binary and returns it in R1
initializes a dataset driver block (DDB) for I/0 processing

performs a logical record input I/0 function on an open dataset
dequeues a device driver transfer function after completion

retrieves a job control block item for the current job

set an index to a job control block item for the current job

sets data into a job control block item for the current job

accepts input from user terminal keyboard (character or line mode)
tests the character indexed by R2 for valid end-of-line character
locks the processor against interrupts (perfoms IDS instruction)
looks for a specific file on disk and returns information about it
tests the character indexed by R2 for numeric

converts a binary value to octal and prints it on the user terminal
general form of the I/O logical dataset open calls

opens a logical dataset for input

opens a logical dataset for output

opens a logical dataset for random access

performs a logical record output I/0 function on an open dataset
packs an ASCII triplet into its RAD5S0 code

prints a complete file specification on user terminal from a DDB
prints a filename specification on user terminal from its packed format
prints a PPN specification on user terminal from its packed format
forces one character into another job's terminal input buffer
retrieves one character from another job's terminal output buffer
performs a physical record read I/0 function on a dataset

RENAME renames a file on a file-structured device

SCHED forces a job scheduling sequence

SLEEP puts the user job to sleep for a specified number of line clock ticks
SRCH searches for a named memory module and returns its address

TAB sends a tab character to the user terminal

TIDX sets RO to index the base of the user terminal line table in the JCB
TIN reads one character from the user terminal input buffer

TOUT sends one character to the user terminal output buffer

TRM tests the character indexed by R2 for a valid termination character
TTY outputs one character to the user terminal

TTYI outputs an inline message to the user terminal

TTYIN retrieves one character from any job's terminal input buffer

TTYL outputs a message to the user terminal

TTYOUT forces one character into any job's output buffer

TYPE types an ASCII message on the user terminal

TYPECR types an ASCII message on the user terminal with appended CRLF pair
TYPESP types an ASCII message on the user terminal with one appended space
UNLOCK unlocks the processor for interrupts (performs IEN instruction)
UNPACK unpacks a RAD50 code word into its equivalend ASCII triplet

USRBAS returns the address of the current user's memory partition base
USREND returns the address of the current user's memory partition end
USRFRE returns the address of the current user's free memory area

WAIT puts user job into a wait state until the completion of I/0

WRITE performs a physical record write I/0 function on a dataset

JOB SCHEDULING AND CONTROL SYSTEM

The AM-100 timesharing monitor performs the task of allocating jobs and
scheduling CPU time and resources for their operation. 1In order to properly
write assembly language programs which make use of some of the more complex
features of the system, a basic understanding of how jobs are scheduled and
controlled is necessary. The total theory of how jobs are handled is too great
a task to attempt to cover in one section of this manual but it is hoped that
enough information can be given to provide the basic fundamentals on job control
by user programs.

Each job that is running in the system basically has two dedicated components
which are not shared by any other job in the system; a monitor job control
block and a user memory partition. 1In the monitor memory area itself there
exists a job control table which contains one area for each job that has been
allocated to the system. One job is allocated for each JOB command in the
system initialization command file which gives the job name and the terminal to
which it is connected. The area that is allocated for each job in the job
control table is used to contain specific information about that job. This area
is called the job control block and will be referred to from now on as the JCB.

The format of the JCB is defined in the system library file SYS.MAC as a series
of equate statements. Each equate statement has the name JOBxxx where xxx is a
three-character code for the specific item being defined. The value of this
symbol is actually the offset in bytes from the base of the JCB to the item
itself. The user may, during the course of his program, desire to read tle
current data in his own JCB or in some instances modify it. References to the
JCB items should be made in one of two ways:

1. Use the system monitor calls JOBGET, JOBSET and JOBIDX which
is the preferred method.

2. Locate the JCB for your job by moving @#JOBCUR into a register
and then referencing all JCB items via JOBxxx (Rx) .

There are three words in the system communication area which define the entire
job control system during timesharing operation. These three words are not part
of the JCB areas but rather are non-sharable parameters set up during system
initialization and not part of any one job. I point this fact out because the
names of these three words are JOBTBL, JOBCUR and JOBESZ which appear to be part
of a user JCB but really are not. JOBTBL contains the base of the JCB table
where all JCB's are stacked sequentially. This address is set up at system
initialization time and is never changed. JOBCUR always contains the address of
the JCB which has current control of the CPU and is updated to point to the new
JCB each time the job scheduler switches to a different job. Therefore,
@#JOBCUR will always point to your JCB if you reference it because the reference
will only be executed while you have current control of the CPU. JOBESZ
contains the size of the JCB in bytes and is used by the system and by user
programs for scanning through the JCB table. Since the size of the JCB may
expand as new features are added to the system, JCB table scans must be made by
settlng an index to the base of the table (MOV @#JOBCUR,Rx) and then addlng the
size to the index to get to the next entry (ADD @#JOBESZ,Rx). When scanning the
JCB table, the first word of each JCB is guaranteed to be non-zero and the table

is terminated by a null (zero) word. BAgain, these three words are a part of the
master system communication area and not in the job table itself.

The following is a brief example of how to scan the JCB table and process
each JCB entry (such as for a system status report):

MOV @#JOBTBL, RO ;SET JCB TABLE INDEX RO TO TABLE BASE

;LOOP HERE TO PROCESS EACH JOB TABLE ENTRY (JCB)

LOOP: oo ces ;PROCESS THE JCB ENTRY WHICH IS INDEXED BY RO
v oo ; REFERENCES TO JCB ITEMS ARE VIA JOBxxx(R0)
ADD @#JOBESZ , RO ;ADVANCE RO TO NEXT JCB ENTRY
TST @RO ;IS THIS END OF JCB TABLE? (NULL WORD)
BNE LOOP ; NOPE - GO PROCESS VALID JCB ENTRY

;AT THIS POINT WE HAVE FINISHED THE JOB TABLE SCAN

see LI]

MONITOR CALLS

There are three monitor calls which should be used to gain access to your own
JCB when necessary. Two calls are used to transfer a single word of data to and
from a specific word in the JCB and one call is used to set an index to a
specific spot in the JCB area so that multiple words may be transferred or so
that faster access may be obtained when needed.

JOBGET tag,item ;Transfers one word from JCB item to tag

JOBSET tag,item ;Transfers one word from tag to JCB item
JOBIDX tag,item :Sets absolute address of JCB item into tag

All calls share the same basic format where tag is a standard argument used for
the transfer of one word of data in the JOBGET and JOBSET calls or to receive
the index address -in the JOBIDX call. The item argument is one of the JCB item
tags (JOBSTS, JOBPRI, JOBNAM, etc) which identifies the desired item to be used
in the transfer or to have the index set to. These items are equated to their
relative offset value in SYS.MAC and will be explained in the remainder of this
section along with the usage of each and its importance to the user, if any.

JOBSTS

The first word in each JCB is the job status flag word. Each bit in this word
indicates a particular state in which the job may reside. Some legal states are
defined by more than one bit being on at a time. The system and some of the
system programs set and reset these bits as the current state of the job changes
but the user is cautioned against altering this word unless extreme caution (and
intelligence) is used. A brief list of the bits and the mneumonics assigned to
them follows along with a basic description of the function of the bit when it
is set.

J.AIC=1 ;JOB ENTRY IS ALIOCATED (GUARANTEES JOBSTS NON-ZERO)
J.TIW=2 ;JOB IS IN TERMINAL INPUT WAIT STATE
J.TOW=4 ;JOB IS IN TERMINAL OUTPUT WAIT STATE

J.SLP=10 sJOB IS IN SLEEP STATE (HOHUM!)

J. IOW=20 ;JOB IS IN I/O WAIT STATE

J.EXW=40 7JOB IS IN EXTERNAL EVENT WAIT STATE

J.CCC=100 ;A CONTROL-C ABORT IS WAITING TO BE PROCESSED
J.DLK=200 ;DISK IOCK FLAG TO STALL OFF J.CCC UNTIL DISK DONE
J.RUN=400 7JOB IS RUNNING

J.MON=1000 7JOB IS IN MONITOR COMMAND MODE (NO PROGRAM ACTIVE)
J.FGD=2000 7JOB IS IN FOREGROUND WAIT STATE

J.LOD=4000 sPROGRAM IS BEING LOADED FOR EXECUTION

J.SUS=10000 ;JOB IS IN SUSPEND STATE

J.LOK=20000 7JOB HAS CPU LOCKED (BY USER PROGRAM COMMAND)

If any of the following flags are on the job will not be scheduled for CPU run
time until the flag has been cleared: J.TIW, J.TOW, J.SLP, J.IOW, J.EXW, J.FGD,
or J.SUS :

JOBPRI

One word which is used for software priority control of jobs. The high byte
contains the priority assigned to the job (by SETPRI command) and the low byte
is used by the job scheduler to count down the clock ticks when the job is
running. The user may modify the high byte to change the job priority if
desired as the SETPRI program does.

JOBSLP

One word which is loaded with the number of clock ticks to sleep when the job is
put to sleep. The monitor SLEEP call loads the specified count into JOBSLP and
then sets the J.SLP flag in the JOBSTS word which puts the job to beddy-by for
that number of ticks. Caution - if J.SLP is set but JOBSLP is set to zero the
job will sleep forever until J.SLP is reset by some other event or job.

JOBSPX

One word which is used to store the current value of the SP register when the
job forfeits the CPU to another Job during timesharing. The user must not alter
this word under any circumstances.

JOBNAM

Two words which contain the six-character job name packed RAD50. This name is
set up by the JOB command in the system initialization file. If a user program
alters this word it is effectively altering the name of the job.

JOBBAS

One word which contains the base address of the user memory partition if one has

been allocated for this job. This address is altered only by the MEMORY program
which allocates and deallocates user memory partitions. The user is advised

against altering this address unless a thorough understanding of the memory
allocation process is first attained.

JOBSIZ

One word which contains the size of the user memory partition in bytes if one
hase been allocated for this job. This size word together with the above JOBBAS
address word define the current user memory partition. JOBSIZ is altered only
by the MEMORY program and the monitor command pProcessor.

JOBUSR

One word which contains the current user PPN (account number) if the user is
logged in. Zero indicates that no user is currently logged into this job.
JOBUSR is modified by the 1OG and LOGOFF programs and is tested by various
protection schemes in the system to allow user access to files, etc.

JOBICP

One word which controls the handling of control-c interrupts while the job is
running a user program. If JOBICP is a zero the job will be aborted if a
control-c is typed. This is normal mode for most programs and JOBICP is set to
zero by the command processor just before a new program is initiated. The user
program may intercept the abort procedure by setting an address into JOBICP. If
the address is even the monitor will set the word specified by that address to
all ones if a control-c is typed and the program will continue. It is then up
to the program itself to continually test this word (not the JOBICP word but the
one whose address is in JOBICP) and take appropriate action if it is found to be
set to ones. If the address set into JOBICP is odd the monitor will strip off
bit 0 to make it even and then execute a CALL instruction to the routine
specified by that address. The routine must save any registers before using
them and must return to the monitor via the RIN instruction once it has done its
diabolical task. This method is complex and not recommended. AlphaBasic traps
control-c interrupts by the first method and checks the flag each time a new
source statement is about to be executed. This is why BASIC is never aborted by
a control-c.

JOBPRG

Two words which contain the six-character program name which is currently
running or was the last job run if in monitor command mode. JOBPRG is loaded
with the program name (packed RAD50) by the command processor when the program
is loaded or located for execution. Currently the only significance of this
program name is in the displays created by the SYSTAT program (user terminal
status display) and the DYSTAT program (video monitor).

JOBCMZ

One word which contains the size of the current command file area in the user
memory partition if a command file is being processed. If this word is zero no
command file is currently in effect. This word is set to the initial size of a
command file when that file is loaded into the top of the user partition and is
decreased as each line is extracted from the area and sent to the monitor
command processor. When it gets to zero the command file is finished and the
system returns to normal command mode input from the user terminal. The user
should not alter this word.

JOBCMS

One word which contains flags used by the command file processor when a command
file is being processed. These flags should never be altered by the user so
they will not be detailed here. JOBCMS works in conjunction with JOBCMZ to
effect the command file processing scheme.

JOBERC

One word which controls the processing of WD16 hardware bus errors as described
in the WD16 PROGRAMMERS REFERENCE MANUAL. If JOBERC is zero a bus error will
cause a message to be printed on the user terminal and the job will be aborted.
If JOBERC is non-zero a jump will be made to the address specified in JOBERC
which better contain a valid routine for gracefully shutting down the program.
Note that the bus error is fatal for this user only and does not normally kill
the whole timesharing system.

JOBTYP

One word which specifies the type of job which is assigned to this jobstream.
Currently used only by the system, the user must not modify this word.

JOBBPT

One word which specifies the address to jump to if a breakpoint is encountered

during the execution of a user program. JOBBPT is used by the DDT debug program
for breakpoint handling and not normally used by user programs.

JOBUTR

One word which is normally zero but when loaded with an address, gives control
to that address each time a character is entered on the user terminal. Details
on the use of this scheme are somewhat complex and will be explained in a later
section on terminal service programming.

JOBATT

One word which contains the address of the JCB that this job is attached to. 1If
JOBATT is zero, this job is not attached to another job. A job which is
aktached to another job gets its terminal output rerouted to that job instead of
having it output to its own terminal.

JOBDEV

One word which contains the RAD50 device code for the default device to be used
if the file specification being processed by the FSPEC call does not specify an
explicit device. Normally this default device is DSK.

JOBDRV

One word which contains the drive number in binary for the default drive number
to be used if the file specification being processed by the FSPEC call does not
specify an explicit drive number. Only used if the device code matches the code
in JOBDEV or if the device code is left to deafult also. JOBDEV and JOBDRV
normally contain the device and drive number set by the LOG program when a user
logs in. They specify the disk device and drive which will be used for most
processing of this user.

JOBCLK

One word which specifies the address of a user line clock routine but which is
not currently in use by the AM-100 system. Don't mess with this one! (And don't
ask why not!)

JOBTRM

An area which contains the terminal line parameters for this job. This area is
currently 22 words in size and used extensively by the terminal service routines
within the monitor for user terminal processing and echo control. The user is
advised not to alter data within the JOBTRM area.

JOBKBF

A buffer (currently 84 characters in size) which is used to accept each terminal
input line before delivering it to the monitor command processor or to the user
program whenever a KBD call is executed. The KBD call accepts a full edited
line of ASCII data into this buffer and then sets index R2 to the base of the
buffer before returning to the user program.

10

JOBRBK

A l4-word area which is the run control block for the jobstream. It is used for
the loading of programs and overlays during job execution and is set up by the
user program with the parameters needed to fetch the next program or overlay
segment prior to the execution of a FETCH call. Refer to the description of the
FETCH monitor call for more details on the use of this item.

JOBFPE

One word which contains the address to jump to if a floating point error is
executed such as a divide by zero. Used by AlphaBasic to control such nonsense.
A user program which executes floating point instructions should enter his error
trap address into JOBFPE and not into the vector at memory location 76 since
this would destroy the sharable resource of that vector.

JOBDYS

One word which contains the address to the byte in the VDM screen memory area
for the job execution arrow. Set by the DYSTAT program and referenced by the
monitor job scheduler. The user should not alter this address.

JOBSTK

A 100-word area which acts as the stack for this job. SP is set to the top of
this area when a new program is initiated. The user may reset his own stack
pointer by moving the address of a larger area within his own partition if the
program needs more stack area. Be sure to allow at least an extra 20 words or
so for possible real-time interrupt handling which needs a valid stack area for
register saves. The job scheduler also saves all user registers and some other
nonsense on the user stack during job context switching.

11

MEMORY CONTROL SYSTEM CALLS

The AM-100 system contains a fairly sophisticated memory control system even
though there is no memory protection or mapping hardware associated with it. 1In
order to make maximum use of the memory resources available and minimize system
‘crashes due to memory violations the assembly language programmer should
understand how the monitor allocates memory and the rules under which memory
should be accessed. This section will describe the memory allocation scheme and
the monitor calls that assist the user in using memory in the proper way.

The memory that is available to the AM-100 processor is up to 65K bytes (32K
words) with the top 256 bytes being unavailable because it is mapped to the I/0
ports. The AMOS monitor resides in low memory beginning at location zero and
extending upward as far as the monitor requires (typically around 14K bytes).
The remaining memory above the monitor up to the end of the total amount of
memory in your system is available for assignment as user memory partitions for
each of the jobs. all of the user memory may be allocated to one job or it may
be split up into several partitions of varying sizes with one partition
allocated to each job. The amount of memory that a user program has to play
with is therefore defined as the single contiguous memory partition which has
been assigned to his job by the operator MEMORY command. This memory partition
block is then allocated into smaller defined blocks called "modules" which are
used by the system and the user to contain programs and data areas. Monitor
calls exist which allow the user program to locate the absolute boundaries of
his own memory partition and also to allocate, change, and delete memory
segments in the form of defined modules. These modules have the capability of
being named just like files (filename.extension) so they may be located by that
name. Any program loaded for execution will be in the form of a module. During
execution some programs create other modules for device buffers, data tables,
etc.

MEMORY PARTITION FORMAT

The memory partition assigned to a job may be located anywhere in memory
depending on the memory that was available when the job assigned it using the
MEMORY operator command program. The user program may not count on any specific
location for this partition. Within the partition, memory modules are allocated
upward beginning at the base of the defined partition and building modules on
top of each other as long as space permits. Modules may not be built that will
extend past the top boundary of the user partition. As modules are deleted from
memory all modules above them are automatically shifted downward to fill up tho
space that the deleted module left. Also, when any module is changed in size
the modules above it are shifted in position accordingly. This method insures
that all available memory is always at the top of your partition in one
contiguous block. This method of grabbing the first hunk of free memory to load
a program into is the main reason that all programs must be written in totally
relocatable code.

Figure M-1 shows a typical memory layout for three users operating in a 48K
system. The free memory at the 40K boundary could be used by a fourth job or by
one of the current jobs for expansion.

12

HEK
FREE MEMORY 8K
HoK z
#
USER 3 6K
34K <
USER 2 10K
NOTE: MEMORY SIZES
249K 4 RRE TYPIRAL
USER *1 10K
14K 7
RESIPENT PROCRANS HK
TOTAL RESIDENYT MONITOR
—— e e et — 1S MK LEAVING 3H Y Fow.
N UWSER PARTITIONS
RESIDENT MONITOR
10K
@ J

MEMORY MNP FOR A TYPICAL HBK SYSTEM (3 USERS)
FIG M-1

TJoe:

goTTOM:

COMMAND FILE (IF UsED)

FREE MEMORY RRER

AYAILABLE TO “TW\S
USER oALY

!USR EBND

Disik BUFFER 256 WoRDs
DIeK BUFEER 256 WoRPs
DATA TABLE 1k worvs

USER PROGRAM (RUNMING)
HK WWORDPS

Fig M-2

USRFRE

THESE MODULES RALLOCATED 8Y
CETMEM CALLS DuriNG THE
HYECUTION OF THE PROSRAM

USEL PROCERM MODULE LOADED

BY OPERATING SYSTEM \DMEERD THE
PROGRAM NARE VRS EOTRREO AS
AN O PERATOR COMMAND

MEMORY MAP FoR. A TYPICAL UsER 0B PARTITION (Il K Worps)

There are three monitor calls that will return information about your memory
partition as it happens to be allocated. These three calls all take a single
standard argument into which will be delivered the absolute address of the base,
end, or free base of the user memory partition. The three calls and the
addresses that they return are listed below:

USRBAS arg - absolute base of user memory partition (last word)

USREND arg - absolute end of user memory partition (last word)
USRFRE arg - current base of remaining free memory (last module+2)

Since modules must always occupy an even number of bytes the above calls will
always return an even address. If no modules are allocated in the current
partition the USRFRE address will equal the USRBAS address. Otherwise, the
USRFRE address will be the word following the last currently allocated module in
the memory partition. The remaining free memory that the user may make use of
may be calculated by subtracting the USRFRE address fram the USREND address.

Figure M-2 shows a typical user job partition during the execution of a program
which was loaded automatically by the operating system. The program itself was
the first module to be allocated in the user partition and then was executed
after being loaded. It will remain in memory until it has completed its task
and exits to monitor at which time it will be deleted by the operating system
monitor. During execution the program allocated a 1K data table module which
-possibly may be used for storage of symbols or some similar function. Two I/0
files were then opened on disk which caused the operating system file service
routine to allocate the two disk buffer modules. The remaining memory in the
partition has not yet been allocated in our example.

Note that the USREND call does not actually return the absolute end of the
partition but rather the end of the available free memory at the time of the
call. 1If a command file is in progress it occupies the upper part of the
partition which we do not wish to alter during the execution of a program. In
fact, the program should not have to take into consideration whether or not it
was called by direct command or from a command file. Use of the USREND call
insures that the user program may use all of free memory without having to
compensate for the remaining part of any command module.

Although the standard use of memory by the operating system is through the use
of the memory management system calls (to be described next) the user may find
that it is easier to make use of free memory without regard to module
boundaries, especially for use in variable length tables or hashing techniques.
For this reason, the free memory space is always defined as the area between the
addresses returned by the USRFRE and USREND calls. Note that the initialization
of files normally results in the allocation of a buffer module and the operating
system allocates this buffer at the current setting of the USRFRE address and
then updates that USRFRE address. Therefore, the user must be sure all I/0
buffers and any work modules are allocated before freely using the memory above
the USRFRE address. The INIT and FETCH calls both cause the indirect allocation
of a memory module in addition to the direct allocation or alteration of modules
by the GETMEM, CHGMEM and DELMEM calls.

15

MEMORY MODULE FORMAT

Memory modules are the basic wnit of formal data structure within the user
memory partition. They are always allocated on word boundaries and must contain
an even number of bytes to maintain this format. The monitor calls will
automatically pad an odd sized module with a null byte to even it up. All
modules contain five housekeeping words followed by any number of data words
from zero to the maximum size left in the user memory partition. The five
housekeeping words are always allocated and so a single-word module really takes
up six words of memory.

The module format is as follows:

Word 1 - total size of module in bytes including the housekeeping words
Word 2 - module flag word
Word 3 - module filename packed RAD50

Word 4 - module filename packed RADS50
Word 5 - module extension packed RADS0
Words 6 thru n - module data area

Figure M-3 gives a pictorial view of the above standard module format. The data
area is usually the only area with which the user is concerned and so all
references are made from the base of this area. The SRCH and FETCH calls (to be
described in a later section) will return this absolute address when locating or
loading the reqguested module instead of the address of the base of the
housekeeping words. References to the housekeeping words should therefore be
made via negative offsets relative to the data base address.

When scanning for a specific module or locating the end of the current module
string, the user may set his index using the USRBAS call which will return the
address of the size word of the first allocated module. He may then merely
check the housekeeping words for the correct module name or other determining
parameters and if the module is to be bypassed, add the size word to the index.
This bumps the index to the next module allocated. The last module always has a
zero word following it and the user must be careful not to destroy this zero
word if he is manipulating free memory directly wihtout allocating it using the
memory calls.

The module filename and extension follow the same format as the file names on
disk if the module in memory is named. The name is optional and need be used
only if the module is to be located by name at a later time.

Modules may be either temporary or permanent depending on the method used to
load them into memory. A module is made permanent by setting the file bit on in
the housekeeping flag word when the module is allocated. Temporary modules are
automatically deleted by the monitor when the program finishes and executes the
EXIT call. Permanent modules are not automatically deleted but may be deleted
by either the operator DELETE command or the monitor DEIMEM call. Forcing a
zero into the size word of the module is another way of deleting it but this is
not the recommended way since this effectively also deletes all modules above it
(the zero is the module’ area termination word).

There are three monitor calls which are used to create, alter and delete these
crazy memory modules. All three calls take a single standard argument which

16

D PO
-

BASE

USER PROGRAM OR DATH

ACTUAL DATA ARERN SIZE
AS SPECIFIED M GETMEM CALL

SRCW ¢ FETCH caLvg
< <J}— RETURN THIS ADDRESS
MIDULE BYTENSION (RADSE) GCETMEM eRLL
RETURNS THIS ACORESS
MODULE NAME WoRD 2 (RABSE)
MODULE NAME WORDP 1. (RADSE) 5" HOUSEXEBPING WORDS
MODULE FLAG WORD
* MODULE. 812E BQUALS
* DATA OREA SIZE PLUS
o)
MODULE S|ZE WORD) o BYTES (r s

STANDARD MEMORY MODULE FORMAT

Fla M-3

must be the address of a two—word block called a memory control block (MCB).

The first word of this MCB will contain the absolute memory address of the data
area in the allocated module (past the housekeeping words). The second word
will contain the size of the data area in bytes (ten bytes less than the total
module size since the housekeeping words are not included). The MCB therefore
is the user's block which defines a contiguous area in memory by its base
address and size in bytes. The user need not be concerned with the housekeeping
words unless he needs to access them directly for some exotic reason.

The following three calls are used to manipulate memory modules:

GETMEM MCB - allocates a new memory module at current USRFRE
CHGMEM MCB - changes the size of the module defined by MCB
DELIMEM MCB - deletes the memory module defined by MCB

The following example shows the allocation of a 100 byte module

MOV #100. ,MCB+2 ;SET MODULE SIZE AS 100 (DECIMAL) BYTES

GETMEM MCB ;ALLOCATE MODULE (MCB GETS ITS ADDRESS)
MCB: WORD 0 ;RECEIVES ADDRESS OF MODULE DATA AREA

WORD 0 ;SIZE OF MODULE DATA AREA IN BYTES

Then we may increase the size of the same module by

ADD #20. ,MCB+2 ; INCREASE SIZE WORD BY 20 BYTES
CHGMEM MCB ;CHANGE ITS SIZE

The above will cause the monitor to adjust the module housekeeping size word to
reflect the new size. The address of the module will not change but note that
the USRFRE address will advance by 20 bytes and that any modules that were
allocated after the one at MCB will be shifted up in memory but their
corresponding addresses in their MCB will not be adjusted by the monitor. I/O
buffers allocated after the MCB module will therefore be erroneously addressed
after the change so the CHGMEM call must be used with care.

To delete the above module we use the code
DELMEM MCB :DELETE THE MODULE

Recall that all temporary modules will automatically be deleted by the monitor
when the program exits. The user may force the module to be permanently left in
memory by giving it a name and setting the file bit (defined in SYS.MAC as
"FIL") in the flag word. The following example will illustrate the allocation
of a 200 word module which is made permanent with the name "TABLEl.DAT":

MOV #200.,TBL1+2 ;SET SIZE AS 200 BYTES

GETMEM TBL1 ;ALLOCATE THE MODULE

MOV TBL1,R0 ;SET RO TO INDEX THE DATA AREA BASE.

Mov #[DAT] ,~(RO) ;SET THE MODULE NAME AND EXTENSION (RADS50)

Mov #[LE1] ,—- (RO)
MoV #[TAB] , - (RO)

INTO THE HOUSEKEEPING WORDS
IN REVERSE ORDER FOR EFFICIENT USE OF R0

~e weo

18

BIS #FIL,-(RO) ;SET PERMANENT FILE BIT ON IN FLAG WORD

TBL1: WORD 0

y RECEIVES ADDRESS OF MODULE
WORD 0

sSIZE OF MODULE IN BYTES
Permanent memory modules may be saved onto disk using the operator SAVE command

or they may be deleted from memory when done by the operator DEL command. Refer
to the AMOS OPERATOR'S MANUAL for details on these commands.

19

LOADING AND LOCATING MEMORY MODULES

Memory modules may optionally have a filename and extension associated with them
by which they may be located. Normally, when an operator command is entered
from the terminal, the first place searched for locating the requested program
is in the resident system memory area and then the user's owm memory partition.
If the program is resident in either of these places it need not be loaded in
from disk and execution begins immediately using the resident program directly
where located. The user may make use of two monitor calls (FETCH and SRCH) for
loading and locating modules in memory by name. In actuality, the SRCH call is
a specialized version of the FETCH call and is included only for convenience and
compatibility with older programs that are still hanging around in the system.
Basically, the SRCH call will only locate a module if it is in memory while the
FETCH call will automatically load a module into memory from the disk if it is
not found to be in memory already.

Both calls have the same basic format:

SRCH nameblock, index ,control-flags
FETCH nameblock,index ,control-flags

Nameblock is a standard argument used in both cases to specify the name of the
module to be located or loaded. The format of the actual nameblock referenced
is different in each case, however. In the case of the SRCH call, nameblock
refers to a 3-word block of memory (or 3 contiguous registers) which contain the
filename and extension of the desired module in RAD50 packed form. For the
FETCH call, nameblock refers to a full file Dataset Driver Block (DDB) which
allows the user to specify a full disk file specification to load the module
from in case it is not located in memory. The DDB has not yet been introduced
and will be defined and explained in a later section dealing with file I/0
calls. 1In brief, the DDB is a 24-word (octal) area in memory which contains all
the information and work areas to define and manipulate a specific disk file in
any area on any defined disk device. The DDB is normally set up by processing
an ASCII file specification with the FSPEC call (more on this later).

The second argument is the index which is to receive the absolute memory address
of the located (or loaded) memory module data area. Refer to figure M-3 in the
preceding section for the layout of the memory module and the place that this
index is set to. The index argument is also a standard argument although the
normal mode is to receive the module address in a general register (R0-R5). If
the index argument is not specified in the call, the default used is register RO
which is compatible with older versions of this system.

The third argument is the optional control flags which may be used to control
the operation of the SRCH and FETCH calls. This argument is any valid
expression which evaluates down to a value in the range of 0-17 (octal). Only
the low order four bits are significant and they have been given the following
mneumonic definitions in the system library SYS.MAC:

F.FCH=1 ;Fetch module from disk if not in memory

F.USR=2 ;Search user memory only

F.ABS=4 ;Load absolute segment from disk

F.FIL=10 ;Set module permanent file flag after load from disk

20

F.FCH is the flag that actually differentiates the SRCH call from the fetch call
since they both technically are the same SVCB supervisor call. The SRCH call
forces this bit off while the FETCH call forces this bit on. When set, the
F.FCH bit causes the nameblock to be interpreted as a full file DDB and the
module to be loaded from disk if not located in memory first. Since the use of
this bit is controlled by specifying either SRCH or FETCH as the calling opcode,
the user is not supposed to include this bit in the control-flags argument of
his call.

F.USR is the flag used to specify bypassing the searching of the resident system
memory area for the module and proceed directly to searching the user area only.
This allows specific versions of modules to be loaded and used even though they
may possibly be duplicated in the system memory area. This flag is not normally
used by programs other than system software.

F.ABS when set forces a direct search to the disk for the requested module,
bypassing all memory searches that would normally occur. The module is then
loaded into memory at the absolute address specified by the index argument in
the calling sequence. No housekeeping words are allocated and the first word of
the module gets loaded into the first word specified by the index argument.

Note that this form is the only time that the index argument is used to pass an
address to the FETCH processor instead of being used to receive the address of
the located module. The F.ABS form of the FEICH call is used to load program
segment overlays but I am certain that some other exotic uses will be thought of
by you all out there.

F.FIL is used to force the permanent file flag bit on in the module flag word
after the module has been loaded from disk. The FETCH call always places the
filename and extension into the housekeeping words 3-5 so even if the module is
only temporary, it may still be located by name as long as the program which
loaded it is still active. This is useful for dynamic loading of subprograms
and/or data modules. Setting the F.FIL flag on in the control-flags argument
means that the module will not be deleted from memory by the operating system
when the calling program finally exits. The operator LOAD command uses this
method to load a program into memory and leave it there to be called by name.

When the SRCH or FETCH call returns, the user must test the status of the Z-bit
to see if the module was located or loaded successfully. If the Z-bit is set
(tested by BEQ) the operation was successful. If the 7-bit is not set (tested
by BNE) the module was either not located or would not fit into the remaining
free memory within the user's partition. TOO BAD!

21

FILE SERVICE SYSTEM DESCRIPTION

The AMOS monitor has a simple yet powerful device independent files service
system which relieves the programmer of the task of I/O coding for each device
he wishes to have his program interface with. In addition to this device
independence, the monitor contains all routines to manage the disk file system
on a logical call basis. The programmer need not be concerned with the exact
physical placement of files on the disk except in rare instances where the
system software is being developed or tested. The monitor also contains an
efficient means for the development of new device drivers to be incorporated
into the system when unsupported devices must be interfaced. This section will
give a general overview of the file service system and describe the Dataset
Driver Block (abbreviated as DDB) which is the descriptor link for all I/0 and
file calls to the monitor.

All I/0 operations and file operations are accomplished by monitor calls with
reference to a DDB which defines the device or file being operated upon.

Whether the operation is to a unit record device such as a printer or to a
specific file within a file structured device such as disk will depend upon the
parameters passed to the monitor through the referenced DDB. There is no limit
to the number of devices or files that may be active at any given time but there
must be one separate DDB for each device or file in use concurrently. There are
no internal channel numbers or device numbers to limit the number of
concurrently active devices or files. The general sequence of events for the
camplete processing of a device or file operation can be summed up as follows:

1. The DDB is set up with the defining parameters such as device name,
drive number, filename and extension, project-programmer number, etc.
This data normally comes from the processing of an ASCII file
specification such as DSK1:FILTST.MAC[101,1] by an FSPEC call.

2. The I/0 buffers are allocated either directly by the user program or
by an INIT call referencing the DDB in use.

3. The logical opening processes for the device or file are performed
which normally consists of an OPEN call referencing the DDB.

4. Data transfers to or from the device are performed by either READ and
WRITE calls for physical transfers or INPUT and OUTPUT calls for
logical transfers.

5. The logical closing processes for the device or file are performed
which normally consists of a CLOSE call referencing the DDB.

6. The programmer breathes a sigh of relief if all went as planned.

The monitor contains complete error processing routines which allow the
programmer to specify (by flags in word 1 of the DDB) whether or not any
uncorrectable errors are to result in an automatic error message to the operator
on his terminal, an aborting of the program and return to monitor, or both. The
programmer may also elect to process the errors himself by checking the error
code returned in word 1 of the DDB.

22

DDB: FLAGS ERROR CODE.
) BUFFER ADDRESS
+4 RECORD SIZE
+6 BUFFER TINDEX
+10 RECORD NUMBER
+H2 QUEUE CHAIN LINK
+HY JCB ADDRESS
DSK 1. FILvam.EXT [ion]
+l6 J0B PRIORITY —— ~
+20 DEVICE COPDE
22| CALL LEVEL DRIVE
+24 FILENAME
)
+30 EXTENSION
432 PPN =
. J
+34 OPEN COPE
+36
+40 DRIVER WORK RREA
b— —
e (5 WoRDs)
+44
446

DATASET DRIVER BLOCK

Fia F-1

23

DDB FORMAT

Figure F-1 shows the format of the DDB which must be allocated within the user
program area and set up by the user before any I/0 operations can take place.
The DDB is 24 octal words in size and is usually allocated by a BLKW 24
statement. The DDB can be assigned any tag which will then become the reference
tag for all subsequent operations to that dataset. Some of the items in the DDB
must be set up by the user before certain operations may be called for while
other items are set up and used by the monitor file service routines. The item
descriptions that follow will explain the use of each of these.

Error code - this byte is set to a non-zero code at the completion of an I/0
operation that was unsuccessful for various reasons. A zero indicates the
operation was successful. The user need test this byte only if the error
control flag in the flags byte (DDB+l) specifies returning to the user on an
error condition or if the operation allowed a non-fatal error condition to
occur. The error codes are listed at the end of this section.

Flags - this byte is used to control the flow of the I/0 operation and the
handling of error codes by the file service routines. The following functions
are controlled by the eight flag bits:

- set by user to force a return on error condition (abort if clear)

- set by user to bypass printing of error messages on error conditions
- real-time transfer flag (currently not implemented)

- spare

transfer initiated (for internal file service use only)

- read if 0 or write if 1 (for internal file service use only)

- device inited - set by INIT call or by user if explicit buffer in use
- dataset busy (transfer initiated or queued)

NoOUTdwN-O
|

Buffer address - this is the 16-bit absolute address of the base of the buffer
to be used for all dataset transfers (read and write). It is set by the INIT
call which allocates a buffer or it must be set by the user program is he is
allocating his own buffer and not using the INIT call. This address is used in
conjunction with the flag bit 6 above which indicates that a buffer has been
allocated either by the INIT call or by the user. No transfers can take place
without a buffer.

Record size - this is the size in bytes for the physical transfer to use. The
READ call will transfer this number of bytes from the device to the user buffer
beginning with the address in DDB+2. The WRITE call will transfer this number
of bytes from the user buffer to the user device. This size is set to the
standard buffer size by the INIT call or by the user if he is doing his own
buffering. It may be modified by the user for transferring records of variable
sizes as long as it does not exceed the buffer size of the capacity of the
device or driver in use. Various logical file service routines set this size
word during processing such as the OPEN call for the disk which must per form
directory operations on a 512-byte buffer at all times.

Buffer index - this is a byte counter which is used by logical routines (INPUT
and OUTPUT calls) for keeping track of bytes transferred into and out of the
user buffer. Various calls will reset this value and the user will then make
use of it and increment it as bytes are transferred into and out of the buffer.

24

Details will be given in later sections where the calls themselves are
described. This buffer index word is normally not a true buffer pointer but
rather an offset from the buffer base (per DDB+2) to the current byte being
manipulated.

Record number - set by the user to read or write a specific random record from a
random access device such as disk. The first record on the device is considered
record zero and the record numbers increment sequentially from there. This
record number is actually used only by the physical driver routines for READ and
WRITE calls but other logical calls set this word to perform transfers to
specific disk areas such as directory operations on disk. Most devices are not
random access and therefore this record number will be ignored by the respective
drivers.

Queue chain link - this word is for internal use only and is the link used by
the I/0 queueing routines for interrupt driven transfers. The user should not
alter this word.

JCB address - file service routines store the address of the controlling job's
JCB so that interrupt driven drivers can locate the corresponding job for
activation on transfer complete status. This word is also for internal use
only.

Job priority - the current software job priority is set here by file service
routines to specify the priority of the transfer in queued operations. This
byte is for internal use only. The top byte of this word (DDB+17) is currently
not used.

Device code - the three character device code (packed RAD50) must be set here by
an FSPEC call or directly by the user before any IO operations may be performed.

Drive - used only be drivers for devices with multiple drives, this byte must be
set to specify the drive to be used for the transfer. A -1 byte (octal 377) may
be used to indicate the current default drive number which will depend on the
particular driver in use as to action. If the device is DSK the default drive
used will be the drive that the current user is logged in under.

Call level - for internal use only, this byte is used to keep track of the level
of nesting of the file service calls for proper error recovery handling. This
byte must be zero before the first file call is executed.

Filename and extension - three words which contain the RAD50 packed filename and
extension for file structured devices. These words are ignored by drivers for
devices which are not file structured but they may cause funny error messages if
they are not set to zero values.

PPN - this is the octal project-programmer bytes for the area to be used to
locate the file. Used only on file structured devices which are multi-user
based such as disk. A zero causes the default value to be the current PPN which
the job is logged in under. This word should be zero if not used to prevent
funny error messages.

Open code - this byte is set by the OPEN call to indicate the mode of the open
statement for future processing operations. It is normally ignored by drivers

25

for devices which are not file structured. It is for internal use only and
should not be modified by the user. The corresponding top byte of the word
(DDB+35) is currently not used. The following open codes are in use:

- file is not open

file is open for sequential input (OPENI call)

- file is open for sequential output (OPENO call)
- file is open for random input/output (OPENR call)

>N = O
|

Driver work area - the remaining five words are for internal use by the device
drivers for links, record counts, etc and should not be modified by the user
during processing. Not all drivers make use of the work area but it must be
there if device independence is to be preserved.

DEVICE TRANSFER BUFFERS

Each dataset must have an associated transfer buffer for input and output
operations to take place through. This buffer must be allocated either directly
or through use of the INIT call which allocates the buffer as a memory module by
using a GETMEM call. The INIT call will allocate a standard size buffer for the
device being used (the size of the buffer is defined within the driver itself).
If you do not wish to use the INIT call you may allocate any size buffer you
wish (must be large enough for any logical calls to be performed) and then set
its address in DDB+2. Refer to the section detailing the I/O calls themselves
for more details on the use of these buffers.

ERROR HANDLING

When an error occurs during any file service call the file service routines will
normally perform typical error correction procedures. If the error is fatal
(uncorrectable) two operations may or may not take place depending on the
setting of bits 0 and 1 in the flags byte at DDB+l. First, bit 1 is tested and
if it is not set, the monitor outputs a standard error message to the user
terminal giving the type of call that failed, the file specification for the
device that the error occurred on, and the reason for the error., The
appropriate error code is also placed in the error byte at DDB+0 for later
testing by the user. Second, bit 0 of the flags byte is tested and if it is not
set, the user program is aborted by the file service system and a return to
monitor mode is made. The user will normally set these bits on before any I/O
calls are made if it is desired to process the errors within the user program
itself.

The following list gives the error code (in octal) returned in the DDB error
byte by the file service system along with the reason for the error:

01 - file specification error (FSPEC)
02 - insufficient free memory for buffer allocation (INIT)

03 - file not found (OPENI, OPENR, DELETE, RENAME)
04 - file already exists (OPENO)

05 - device not ready (all calls)

06 ~ device full (OUTPUT)

07 - device error (all calls)

26

10
11
12
13
14
15
16
17
20
21
22

-~ device in use (ASSIGN)
- illegal user code (all file calls)

~- protection violation (OPENO, OPENR, DELETE, RENAME)

—~ write protected (all output calls)

- file type mismatch (OPENI, OPENO, OPENR)

—- device does not exist (all calls)

-~ illegal block number (READ, WRITE)

-~ buffer not inited (all calls except INIT)

~- file not open (READ, WRITE, INPUT, OUTPUT, CLOSE)
-~ file already open (all OPEN calls)
~ bitmap kaput (all disk bitmap calls)

27

FILE SERVICE MONITOR CALLS

This section will describe the file service calls which are available to the
user program for both logical and physical I/O operations. Aall calls have the
same general format which uses a single argument representing the dataset driver
block (DDB) to be used for the operation. See the vreceding chapter for a
complete description of the DDB format. In brief, the calls to be described in
this section are:

FSPEC process a device specification

INIT initialize a dataset driver block buffer
LOOKUP 1lookup a file to see if it exists
OPENI open a file for sequential input
OPENO open a file for sequential output
OPENR open a file for random input/output
CLOSE close a file to further processing
READ read a physical record

WRITE write a physical record

INPUT read a logical record

OUTPUT write a logical record

WAIT wait for an I/0 operation to finish
DELETE delete a file

RENAME rename a file

ASSIGN assign a device to a job

DEASGN deassign a device from a job

FSPEC

The FSPEC call is used to process an ASCII file specification from a command
line (or any other ASCII buffer) and set up the parameters in the DDB according
to the results of the processing. The ASCII file specification must be indexed
by R2 and must be in the standard format of dev:filnam.ext[ppn] with a valid
termination character if a short default specification is used.

The FSPEC call is slightly different from the rest of the I/O calls in that it
allows a second argument to be used if desired. This argument must be the
default extension for the filename parameter to be used in the event that the
file specification does not contain an explicit extension (identified by a
period after the filename). If the second argument does not exist the FSPEC
processor will not process the input file specification past the colon which
terminates the device/drive parameters.

The device code (3-characters) will be packed RAD50 and stored in DDB+20 if it
exists as marked by the terminating colon. The drive number will be stored in
the byte at DDB+22 if it exists. 1If the device code does not exist, the current
default device (stored in the job's JCB item JOBDEV) will be stored in DDB+20.
If the drive number is not in the input spec an octal 377 will be stored in
DDB+22 to flag the default drive number to the device driver.

The filename and extension are then processed unless no second argument was used

in the call in which case the FSPEC processor returns to the user at this point.
The filename and extension are packed RAD50 and stored in the three words at

28

DDB+24 through DDB+30. If no filename is entered in the input specification the
word at DDB+24 will be cleared to zero to flag the absence of the filename
parameter. If a filename is entered but no extension is entered then the
default extension specified in the second argument of the FSPEC call is stored
as the extension in DDB+30.

If a project-programmer number is in the file specification (marked by a left
square bracket "[") it will be processed and stored in DDB+32. If no ppn is
entered, DDB+32 will be cleared to zero to flag its absence.

At the conclusion of the processing of the input file specification, the index
'R2 will be pointing to the termination character (the first character following
the file specification string). If an error in the input string is detected the
FILE SPECIFICATION ERROR message will be printed (unless suppressed by bit 1 in
DDB+1) and the program will be aborted (unless suppressed by bit 0 in DDB+l).
The error code 01 will be set in DDB+0 error code byte.

No other modifications take place to the DDB area except that the error byte at
DDB+0 is cleared at the start of the FSPEC processing. If the user does not use
the FSPEC call to set up his DDB then he must use some other form of explicit
code to insure that the DDB is set up properly to define the device and file for
any subsequent I/0 operations.

INIT

The INIT call is the normal means for allocating the dataset buffer and
initializing the DDB for processing. The INIT call will locate the device
driver (searching area 1,6 on DSKO if not in memory) and then allocate a
standard size buffer based on the size specified in the driver. Bit 6 of the
flag byte at DDB+l will be set to indicate the initialization. The address of
the buffer will be set into DDB+2 and the size in bytes will be set into DDB+4.

There are no calls which deallocate the buffer once it has been allocated by the
INIT call. Multiple OPEN-CLOSE processes may be performed on the DDB once the
INIT has been done. The buffer is temporary and will be deallocated
automatically when the program exits to monitor or it can be explicitly
deallocated by using the DEIMEM call with the address stored in DDB+2. Recall
that the buffer is allocated as a standard memory module with a GETMEM call.

LOOKRUP

This is a form of the OPEN call which does nothing except search for the file
and return an error code if it is not found. The file is not actually opened
for processing and an OPENI call must be used if the file is to be subsequently
read from. The LOOKUP call is useful for determining if a file that is about to
be opened for output already exists so that it can first be deleted by the
DELETE call. The LOOKUP call is ignored for devices which are not file
structured.

The lookup call is also useful for some system programming techniques since it
returns parameters about the file in the DDB work area. The work area is
located in the last five words of the DDB. The first three words of this work

29

area are loaded with the three words of the directory item if the file is found. -
These three words are the number of records in the file, the number of active
data bytes in the last record, and the record number of the first data record in
the file. Refer to the section titled FLOPPY DISK STRUCTURE FORMAT for complete
details on the directory format.

OPENI

The OPENI call locates a file in a file structured device and sets up the DDB
parameters (work area) for subsequent INPUT processing. An error results if the
file is not found. The code 01 is set into DDB+34 to flag the OPENI operation.
The OPENI call is normally followed by a series of INPUT calls which deliver
sequential records from the file to the user buffer. The OPENI call is ignored
for devices which are not file structured.

OPENO

The OPENO call first searches the specified device in the specified user area
and returns an error if the file already exists. If it does not, the DDB is set
up for OUTPUT processing. The code 02 is set into DDB+34 to flag the OPENO
operation. The OPENO call is normally followed by a series of OUTPUT calls
which transfer data from the user buffer to sequential records in the file. The
OPENO call is ignored for devices which are not file structured.

OPENR

The OPENR executes basically the same as the OPENI call but the code stored in
DDB+34 is 04 to flag random processing. The file located for random processing
must be a contiguous file. The OPENR call is normally followed by a series of
INPUT and OUTPUT calls which transfer data between specific records in the file
and the user buffer in both directions. The OPENR call is also ignored for
devices which are not file structured.

CLOSE

The CLOSE call finishes up logical processing of a file and clears the open code
in DDB+34. No further INPUT or OUTPUT operation may occur once a file has been
closed. No action is normally done on a file which is open for input. For
files open for output, the final record is written out and the file is added to
the directory system on the specific device. The CLOSE call is ignored for
devices which are not file structured.

READ

This is the physical transfer call for reading input data from a device. No

check is made for file open status since the READ call is not a logical file
call.

For sequential access devices such as a paper tape reader, the READ call will

30

deliver one record from the device to the user buffer. The size of this record
will normally be the number of bytes specified in DDB+4 but this may not
necessarily be true if the driver does not transfer under the rules of the
system. If the device is not capable of generating the requested number of
bytes per DDB+4 (such as a tape reader which runs out of tape) a lesser number
may be transferred in which case the count in DDB+4 will be adjusted to reflect
the true number actually transferred to the user buffer.

For random access devices such<as disk, the user must specify the record number
to be located and read by placing that number into DDB+10 before executing the
READ call. Most random access devices will always transfer the requested number
of bytes per DDB+4 into the user buffer. An error will result if the record
number is not within the range of the specific device. The standard AMOS floppy
disk is structured as 500 (decimal) records of 512 bytes each. The legal record
numbers therefore range from 0 through 499 decimal. :

The system allows interrupt driven devices to be queued and processed in a
priority fashion. Normally, the execution of a READ call will suspend the
running of the user program until the transfer has been completed at which time
the user job will be reactivated. The user may optionally set the realtime bit
(bit 2) in the flag byte at DDB+l to force an immediate return to the program
once the transfer has been queued or initiated. The user must then either test
the dataset busy bit (bit 7) of the flag byte or use the WAIT call to stall
until the transfer has been completed. The dataset busy flag will be reset when
the transfer has been completed. The user mu>E§§150 then check for errors. The
realtime bit is ignored for devices which are not interrupt driven or whose
drivers do not run under the I/0 queue system.

WRITE

This is the physical transfer call for writing data to a device. No check is
made for file open status since the WRITE call is not a logical file call.

For sequential access devices such as a printer, the WRITE call will deliver one
record to the device from the user buffer. The size of this record will be the
number of bytes specified in DDB+4. The driver is responsible for the correct
transfer count and the user may alter the number in DDB+4 for each new WRITE
call to the same device for the writing of variable length records.

For random access devices such as disk, the user must specify the record number
to be located and read by placing that number into DDB+10 before executing the
WRITE call. Most random access devices will always transfer the requested
number of bytes per DDB+4 into the user buffer. An error will result if the
record number is not within the range of the specific device. The standard AMOS
floppy disk is structured as 500 (decimal) records of 512 bytes)each. The legal
record numbers therefore range from 0 through 499 decimal.

The system allows interrupt driven devices to be queued and processed in a
prlorlty fashion. Normally, the execution of a WRITE call will suspend the
running of the user program until the transfer has been completed at which time
the user job will be reactivated. The user may optionally set the realtime bit
(bit 2) in the flag byte at DDB+l to force an immediate return to the program
once the transfer has been queued or initiated. The user must then either test

31

the dataset busy bit (bit 7) of the flag byte or use the WAIT call to stall
until the transfer has been completed. The dataset busy flag will be reset when
the transfer has been completed. The user must also then check for errors. The
realtime bit is ignored for devices which are not interrupt driven or whose
drivers do not run under the I/O queue system.

INPUT

The INPUT call is the logical equivalent of the READ call for logical processing
of datasets. The INPUT call reads a logical record within a file or device
dataset under the control of the specific driver in use. A dataset must be
opened for input (OPENI) or random access (OPENR) before INPUT calls are
performed. The INPUT call first sets the standard buffer size into DDB+4 so the
user may not use this call to transfer non-standard record sizes. The number of
bytes actually read may be less than the standard record size due to the driver
processing or due to an end of file condition. The actual number of bytes
transferred will be set into DDB+4 by the driver routine.

The main use of the INPUT call is in logical sequential file processing and the
INPUT call therefore sets up the buffer index value in DDB+6 to direct the
processing of the data by the user routines. This index value is actually the
offset to the first byte of valid data within the user buffer whose base address
is at DDB+2. For unit record devices this value will be zero since all data
within the buffer is user data. For sequential disk files, however, the first
word in each record within the file is a link word to the next record and
therefore the value set into DDB+6 by the disk driver will be 2 to start the
processing with the third byte in the user buffer.

The following subroutine is normally used to get each byte of data from a
sequential file:

;SUBROUTINE TO GET NEXT BYTE FROM FILE DEFINED AS INDDB AND LEAVE IT IN Rl

INBYTE: CMP INDDB+6, INDDB+4 ;IS THE BUFFER EMPTY?
BLO INBG ; NO - GET NEXT BYTE
INPUT INDDB sREAD NEXT LOGICAL RECORD INTO BUFFER
TST INDDB+4 sCHECK FOR END OF FILE (NO DATA TRANSFERRED)
BEQ INEOF ;7 GO TO END OF FILE ROUTINE

INBG: PUSH INDDB+2 ;STACK THE BUFFER BASE ADDRESS
ADD INDDB+6 ,@SP : AND ADD THE INDEX OFFSET TO GET POSITION
MOVB @(SP)+,R1 ;PICK UP THE NEXT BYTE FROM USER BUFFER
AND #377,R1 ; INSURE UPPER BYTE IS CLEARED IN R1
INC INDDB+6 ; INCREMENT THE BUFFER INDEX FOR NEXT TIME
RIN ; SUBROUTINE RETURN

For devices that do not implement special processing of logical calls the INPUT
call performs a READ call instead.

A special situation is involved for files opened for random access by the OPENR
call. Instead of reading the next sequential record, the specific relative
record whose number is in DDB+10 will be read into the user buffer. The user
first sets this number up and then executes the INPUT call. The record number
1s actually relative to the base of the file and has no direct relationship to
the physical record on the device as would be returned by a READ call.

32

OUTPUT

The OUTPUT call is the logical eguivalent of the WRITE call for logical
processing of datasets. The OUTPUT call writes a logical record to a file or
device dataset under the control of the specific driver in use. A dataset must
be opened for output (OPENO) or random access (OPENR) before OUTPUT calls are
performed. The OUTPUT call will transfer the number of bytes in DDB+4 but it
will normally do it as a standard record (depends on the driver in use). The
user is discouraged from attempting to use the OUTPUT call for transferring
non-standard record sizes. The user is awarded two black stars for such
filandering. (Black stars are bad, you realize.)

The main use of the OUTPUT call is in logical sequential file processing and the
OUTPUT call therefore sets up the buffer index value in DDB+6 to direct the
processing of the data by the user routines. This index value is actually the
offset to the first byte position for valid data within the user buffer whose
base address is at DDB+2. For unit record devices this value will be zero since
all data within the buffer is user data. For sequential disk files, however,
the first word in each record within the file is a link word to the next record
and therefore the value set into DDB+6 by the disk driver will be 2 to start the
processing with the third byte in the user buffer.

The following subroutine is normally used to put each byte of data to a
sequential file:

:SUBROUTINE TO PUT NEXT BYTE FROM Rl INTO FILE DEFINED AS OTDDB

OUTBYT: PUSH OTDDB+2 ;STACK THE BUFFER BASE ADDRESS
ADD OTDDB+6 ,@SP ; AND ADD INDEX OFFSET TO GET POSITION
MOVB R1,@(SP)+ :MOVE DATA BYTE TO USER BUFFER
INC OTDDB+6 ; INCREMENT THE BUFFER INDEX OFFSET VALUE
cvp OTDDB+6,0TDDB+4 ;IS THE USER BUFFER FULL NOW?
BLO OTIBX ¢ NOT YET SO RETURN
OUTPUT OTDDB sOUTPUT THE CURRENT LOGICAL RECORD TO FILE
OTBX: RTN ' s SUBROUTINE RETURN

For devices that do not implement special processing of logical calls the OUTPUT
call performs a WRITE call instead.

A special situation is involved for files opened for random access by the OPENR
call. Instead of writing the next sequential record, the specific relative
record whose number is in DDB+10 will be written out from the user buffer. The
user first sets this number up and then executes the OUPUT call. The record
number is actually relative to the base of the file and has no direct
relationship to the physical record on the device as would be written by a WRITE
call.

WAIT

The WAIT call is used only for interrupt device processing to stall until the
record transfer has been completed. The WAIT call has no effect unless the user
has set the realtime flag bit (bit 2) in DDB+2 and the device is interrupt
driven. The job will be suspended until the specified dataset is not busy as

33

marked by the flag bit 7 becoming zero. If the dataset is not busy when the
call is executed, an immediate return is made. The WAIT call also checks for an
error condition that may have occurred during the transfer process and performs
error handling under control of flag bits 0 and 1.

DELETE

The DELETE call deletes a specific file from a file structured device. The
filename, extension and ppn (if used) must be set in the DDB before executing
the call. An error results if the file is not found. The DELETE call is
ignored for devices which are not file structured.

RENAME

The RENAME call renames a specific file on a file structured device. The
filename, extension and ppn (if used) must be set in the DDB before executing
the call. The new filename and extension must be packed RAD50 into the three
words immediately following the DDB in memory. The RENAME call merely locates
the directory item for the file and replaces the three words which store the
filename and extension. The RENAME call is ignored for devices which are not
file structured.

ASSIGN

The ASSIGN call is used to assign a non-sharable device (such as a printer) to
the current user's job by setting a flag in the device's entry in the device
table in monitor memory. Once a device has been assigned by this call any
attempt to assign it by another job will result in an error. The device will
stay assigned to this job until deassigned by the DEASGN call. The ASSIGN call
performs no action if the specified device is sharable such as a disk.

DEASGN

The DEASGN call is used to deassign a device which has been assigned to the
user's job by the ASSIGN call. Once deassigned, the device becomes available
for assignment by other jobs. The DEASGN call performs no action if the
specified device is sharable of if it is not currently assigned to the user's
job. All devices are deassigned when the program exits to the monitor.

34

DISK SERVICE MONITOR CALLS

The disk presents special problems which require the use of special monitor
calls to control the accessing of the directory and bitmap records. These
records have a non-csharable attribute associated with them even though the disk
in general is a sharable device. For instance, two user programs may not both
be updating the same directory records at the same time. The same holds true
for the bitmap records. The following monitor calls are used to control the
access to these non-sharable records:

PDSKCTG - allocates a contiguous file for random processing
DSKALC - allocates the next available record on disk

DSKDEA ~ deallocates a specific record on disk

DSKBMR - reads disk bitmap and sets reentrant lock flag
DSKBMW - rewrites disk bitmap after user modification
DSKDRL: - sets reentrant directory lock for a specific user
DSKDRU - clears reentrant directory lock for a specific user

The access to these records is normally done by the monitor routines as a direct
result of normal I/O processing by file service calls. It is a somewhat tricky
process and the disk calls should not be used except with extreme caution since
misuse could violate the integrity of the file structure on the disk. The
following descriptions are directed at those system programmers who are familiar
with shared file techniques.

All calls use a standard argument which is the address of the associated DDB to
be used for the call. 1In addition to the first argument which is the DDB, some
calls use a second argument for processing. The second argument, if used, will
be detailed in the description of the call.

BITMAP AREA FORMAT

The bitmap area is an area in monitor memory which is allocated by the BITMAP
program run at system startup time by the BITMAP command in the system
initialization command file. This area consists of a status word, a DDB for
bitmap reads and writes, and a buffer for the actual bitmap including the hash
total words. The format of the bitmap area is as follows:

WORD 0 ;Bitmap status word

BLKW 12 sPartial DDB for bitmap I/0

BLKW Bitmap—-size ;Bitmap buffer (size depends on device)
BLKW 2 ;Hash total words

The device table entry for each drive has the address of the corresponding
bitmap area to be used for that drive. More than one drive may share the same
bitmap area which will force a rewrite each time a different drive is
referenced. This is not efficient timewise but can save some memory for larger
devices where the bitmap buffer may be several hundred words or more.

The status word (first word in bitmap area) contains two flags which are used to

control bitmap access. Bit 0 is the bitmap lock flag and is set to flag that
the bitmap is locked and being read or modified by some user job. The DSKBMR

35

call sets this flag on and it is up to the user to clear it after he has
finished the bitmap access and modification. Bit 1 is the bitmap rewrite flag
which is set to indicate that one or more modifications have been made to the
bitmap in memory and that it must be rewritten to disk before being discarded.
If the user program modifies the bitmap in memory it must set the rewrite flag
to insure that the bitmap is rewritten.

The bitmap DDB is a partial DDB due to the fact that no files are ever
referenced and the rest of the DDB is not needed. The bitmap is normally
allocated as record 2 of each disk and it extends across successive records for
those devices which overflow one record.

The bitmap buffer area is the exact size required to contain the entire bitmap
from the disk. Two extra words are allocated to contain the hash total which is
used to insure the integrity of the bitmap in memory and on disk. Each time the
bitmap is read or before the bitmap is rewritten this hash total is checked and
an error results if it is bad. The hash total is merely the double-word binary
sun of the entire bitmap buffer. The user must update this hash total each time
he modifies the bitmap or else an error will result when it becomes time to
rewrite the bitmap to disk.

The bitmap itself contains one bit for each logical record on the disk structure
and this bit is off if the record is free and on if the record is in use by
anyone including the system structure records themselves. Each word in the
bitmap can define up to 16 records. The first word in the bitmap defines
records 0 through 17 (octal) with bit 0 defining record 0 and proceding upward
throughout the word. The second word defines records 20 thorugh 27 and so on.
To define the 500 decimal records in a standard AMOS floppy disk we need 32
words (32 times 16 = 512) with the last word not being totally used. The bitmap
itself therefore takes up 34 words which includes the two hash total words.

Altering the bitmap is tricky but the sequence recommended is:

1. Read the bitmap using the DSKBMR call

2. Alter the bitmap as necessary (recompute the hash total)
3. Set the rewrite flag (status word bit 1)

4. Clear the bitmap lock (status word bit 0)

5. Rewrite the bitmap using the DSKBMR call

6. Breathe a sign of relief if it worked

DSKCTG

The DSKCTG call is used to allocate a contigous file on a random access device.
A standard argument is used as the second argument which represents the number
of records to be allocated in the file. A search will be made to find the first
available hole on the disk which will fully contain the requested number of
records. These records are marked as in-use on the disk bitmap and a file
descriptor item is added to the user directory. The word which gives the number
of bytes in the last record will be set negative to flag this file as contiguous
to distinguish it from the normal sequential files. A device full error will
result if no hole can be found on the disk which is large enough to contain the
file.

36

DSKALC

The DSKALC call is used to allocate one record for use by this user as a
directory record or as a file record. A standard argument is used as the second
argument which represents the word which is to receive the record number of the
allocated record. An error will result if there are no free records left on the
specified disk. A DSKBMR call is first performed to insure that the current job
has access to the bitmap and then the first free record is located and marked in
use. The bitmap record is flagged as modified which will cause it to be
rewritten at the next DSKBMW call or if it must be swapped out to make room for
another bitmap sharing the same area in memory.

DSKDEA

The DSKDEA call is used to deallocate a specific record on a disk and make it
immediately available for use by another user (or the same user). A standard
argument is used as the second argument which represents the address of the word
which contains the record number of the record to be deallocated. No check is
made to insure that ‘this record is allocated to either the current user or any
other user. A DSKBMR call is first performed to insure that the current job has
access to the bitmap and then the specified record's bit is set to zero to
indicate that the record is free. The bitmap record is flagged as modified to
force a rewrite,.

DSKBMR

The DSKBMR call locates the bitmap area in monitor memory for the specified disk
and insures that it is not locked by another job. If it is locked, a stall will
be made until it is released. 1t is then locked for this job and a return is
made to the user. The address of the bitmap area will be set into the word
specified by the second argument in the calling sequence. The second argument
is a standard argument in format. Refer to the description of the bitmap area
above and note that the second argument receives the address of this area and
not the address of the bitmap itself. The user may locate the bitmap itself
because its address is in the third word of the bitmap area (second word of the
bitmap DDB) .

DSKBMW

The DSKBMW call locates the bitmap area in monitor memory for the specified disk
and insures that it is not locked by another job. If it is locked, a stall will
be made until it is released. It is then locked for this job and rewritten to
disk from memory unless the hash total is bad. After the rewrite is conplete
both the rewrite and lock flags are cleared and a return is made to the user.

DSKDRL
The DSKDRL call locks the directory for the specified drive for modification by

the user program. It is used by such file service routines as CLOSE for output
files, DELETE and RENAME calls. If the directory is already locked by another

37

job a stall will be made until it is released. The user program or routine must
unlock the directory via the DSKDRU call after the modifications have been made.

DSKDRU

The DSKDRU call unlocks the directory for the specified drive after it has been
locked by the DSKDRL call for modification. No action will be performed if the
directory is not locked by the current job.

38

TERMINAL SERVICE MONITOR CALLS

The AMOS monitor has several calls which deliver data to and from both the user
terminal and other terminals connected to the system. A terminal is defined as
an ASCII character—oriented device which is capable of both output and input.
This is the formal definition and does not preclude the use of output-only
devices on terminal designated ports. Also, the system includes software
terminals known as "pseudo terminals" which can be used to control jobs that are
not actually associated with a hardware interface on a designated port address.
The calls listed here normally input from or output to the terminal which is
controlling the job that the call is being executed by. Some calls (as
specified) will input from or output to another terminal not connected to the
current job or to a pseudo terminal controlling another job.

Programs which make use of the standard terminal service calls that communicate
with the user terminal can be run in a job controlled by a pseudo terminal
without modification. Keyboard input calls and terminal output calls will
always go to the controlling terminal regardless of which job they are running
in. The user, therefore, need not be concerned with the physical port address
or attributes of the terminal which is controlling the job. The monitor
routines handle all this automatically.

" Due to a holdover from older system terminology most terminal output calls
reference the device name of "TTY" which used to define the teletype device on
systems which normally used teletypes as terminals. The input device of the
teletype was then called the keyboard and the calls reference the device name of
"KBD". These are strictly mnemonics and hold no true bearing to the attributes
of the physical terminals which now are more commonly the higher speed video CRT
terminals.

Each terminal has associated with it a terminal line table which is a work area
in monitor memory set up to contain the parameters and work areas associated
with the control of the terminal device. Most of the items in this terminal
line table are for internal use only and the user need not be concerned with
them. The TIDX call is provided to set an index (R0O) to the associated terminal
line table so that the user may inspect or modify the items within. More
details on this will be given in another manual dealing with monitor
modifications and functions. The only item that the user normally need be
concerned with is the terminal status word which is the first word in the
terminal line table. This word has certain flags in it which the user may
modify to alter the operation of his terminal calls. The terminal status word
has the following flag positions defined:

Bit 0 ~ user sets to force image mode input (see KBD call)
Bit 1 - user sets to suppress echoing of input characters
Bit 2 - internal flag to indicate backslash sent during rubout
Bit 3 - internal flag to indicate input character was lost
Bit 4 - user sets to allow lower case input (disables conversion)
Bit 5 - user sets to force image mode output (see TTY call)

5

Bit 5 - user sets to suppress ""C" echo for control-c inputs

The terminal status word is cleared each time the user program exits back to
monitor mode upon program completion thereby restoring normal terminal operation

39

regardless of program operation.

KBD

The KBD call accepts one full line of input from the user terminal into a
monitor line buffer and then sets index R2 to the base of that buffer for the
user reference. During the inputting of the line, the user job is set into the
terminal input wait state thereby consuming no CPU time until the line is
finished. All normal line editing features are active (rubout, control-U, tab,
etc) and a control-c input will abort the job unless the user has set up
control-c trapping via the JOBICP item in the JCB for the job. The line will be
terminated when a carriage-return or a line-feed is entered. The
carriage-return will have a line-feed automatically appended to it by the
monitor and a null byte will be set after the line-feed character.

If the echo-suppress flag is set in the terminal status word, normsl echoing of
the input characters will be suppressed such as when the password is being
entered for the LOG command. If the image-mode input flag is set the KBD
command takes on a whole new lease on life. Mo editing is performed and instead
of one line being accepted, only one character is accepted and it is delivered
back to the user in register Rl instead of setting register R2 to the monitor
line buffer. Image mode input echoing is still under control of the
echo-suppress flag as in normal line mode.

TTY

The TTY call outputs one character from register Rl to the controlling terminal
and then returns. Tabs are echoed as spaces up to the next modulo-8 carriage
position unless the image-mode output flag is set in the terminal status word.
If the job is running under the command of a control file, the character will
only be output to the terminal if the output suppress command is in the normal
state (:R revives it, :S silences it).

TIDX

Sets register RO to the address of the base of the terminal line table for the
controlling terminal of this job. The user may then modify bits in the terminal
status word which is located at @QRO0.

TIN

Gets the next input character from either the terminal input buffer or from the
command string if the job is controlled by a command file. The character is
delivered in Rl. This call is normally only used within the operating system
itself and not by user programs.

40

TOUT

Outputs one character to the controlling terminal of the job or to the job which
has this job attached (by the address in the JOBATT item). This call differs
from the general TTY call in that the command file status is not checked by the
TOUT call. The TOUT call, like the TIN call, is normally only used within the
operating system itself.

TAB

This is a convenience call which outputs a single tab character to the user
terminal. It is in effect the same as the code sequence:

MoV #11,R1
TTY

CRLF

This is a convenience call which outputs a carriage-return and line-feed pair to
the user terminal. It is in effect the same as the code sequence:

MOV #15,R1
TTY
MOV #12,R1
TTY

TTYI

The TTYI call outputs a string of characters which follows the call itself up to
but not including a null byte. The call could be used as follows to output two
lines of data to the user terminal:

TTYI

ASCII /LINE 1 DATA/
BYTE 15

ASCII /LINE 2 DATA/
BYTE 15,0

EVEN

The TTYI call will also automatically append a line-feed to all carriage-returns
which are included in the string.

TTYL

The TTYL call is similar to the TTYI call in that it outputs a string of ASCII
characters up to a null byte. The string of characters for the TTYL ca3ll may be
anywhere in memory and not inline with the call itself in the program flow. The
TTYL call takes one standard argument which is the address of the message to be
output. The TTYL call is therefore useful for outputting from a table of
messages by setting an index to the specific message within the table (per some

41

numeric director code) and then using that register as the argument to the TTYL
call. The TTYL call also appends a line-feed to each carriage-return in the
string.

PTYIN

The PTYIN call allows one job to force a character into the input buffer of
another job which is probably controlled by a pseudo terminal. The PTYIN call
takes two standard arguments. The first argument is the data byte to be sent to
the other job and the second argument is the address of the JCB of the job into
which the character is to be forced. The PTYIN call is the method by which the
FORCE operator command does its dirty work.

PTYOUT

The PTYOUT call allows one job to get a character from the terminal output
buffer of another job which is controlled by a pseudo terminal. If no output is
available from the specified job, the calling job is put to sleep until a ’
character is available. The PTYOUT call takes two standard arguments. The
first argument is the address of the byte which will receive the data character
and the second argument is the address of the JCB from which the character is to
be stolen.

TTYIN

The TTYIN call allows one job to get waiting input data from the terminal input
buffer of another job. This call has not yet been fully inplemented (nor have
we found a good use for it either).

TTYOUT

The TTYOUT call allows one job to put data into another jobs terminal output
buffer. This call, like the TTYIN call, is not yet fully implemented.

MESSAGE CALLS

There are three calls which have been defined in SYS.MAC as macros using the
TTYI call. These calls are for the convenience of the programmer and to make
the program more readily understandable. They all take a single argument which
is an ASCII message string to be output to the user terminal. Due to the way
that macro arguments are processed, if the message has leading or trailing
spaces or if it has imbedded commas, it must be enclosed in angle brackets or
part of it will be lost. The three calls are:

TYPE msg Types the message on the user terminal as is

TYPESP msg ;Types the message and appends one space to it
TYPECR msg ;Types the message and appends a CRLF pair to it

42

The macros are defined in SYS.MAC as follows:

DEFINE TYPE MSG

TTYI
ASCII /MSG/
BYTE 0
EVEN
ENDM

DEFINE TYPESP MSG
TTYI
ASCIT /MSG' /
BYTE 0
EVEN
ENDM

DEFINE TYPECR MSG
TTYI
ASCIT /MSG/
BYTE 15,0
EVEN
ENDM

It should be noted that the message may not contain any slashes since these are
used as delimiters for the ASCII statement in the macros.

43

NUMERIC CONVERSION MONITOR CALLS

The AMOS monitor contains two calls which perform conversions from a single
binary word value to an ASCII formatted decimal or octal string. Options for
the conversion allow the string to be sent to the user terminal, to an output
file or to a buffer in memory. Options also allow the control of the format
which the result is in. Both calls have the same general format and take two
arguments, each of which must be an expression that evaluates down to a byte
value within the specified range. The two calls are:

DCVT size,flags ;Convert binary number in Rl to decimal
oCcvT size,flags ;Convert binary number in Rl to octal

The size byte determines the number of digits in the output result. A zero size
specifies a floating format in which the number of digits used will be just
enough to fully contain the result. A non-zero size specifies a fixed number of
digits for the result with leading zeros being replaced by blanks. In either
form, if the Rl value is zero at least one zero digit will be output as the
result.

The flags byte contains six flags which control the destination of the result
string and also some other formatting options. The following list gives the
flag bit positions and the action taken when the flag is set:

Bit 0 - disables leading zero blanking

Bit 1 - outputs the result to the user terminal

Bit 2 - outputs the result to the file whose DDB is indexed by R2
Bit 3 - puts result in memory at buffer indexed by R2 and updates R2
Bit 4 - adds one leading space to the result

Bit 5 - adds one trailing space to the result

Note that the maximum value which can be displayed using these calls is the
maximum value of a 16-bit word. All numbers are considered unsigned so the
largest decimal number is 65,535 and the largest octal number is 177777.

The following examples may clarify things a bit. All examples assume the value
in Rl is 964 (decimal) and the letter "b" in the result field indicates a blank.

DCVT 0,2 prints 964

DCVT 0,22 prints b964

DCVT 0,42 prints 964b

DCVT 5,2 prints bb964

DCVT 5,3 prints 00964

pCvT 5,43 prints 00964b

DCVT 5,63 prints b00964b

BCvT 2,2 prints 64 (the 9 is lost)

44

RAD50 CONVERSION MONITOR CALLS

Radix-50 packing is used throughout the system where the packing of filenames
and other data entities lends itself. Radix-50 (RAD50) packing is a system by
which 3 ASCII characters may be packed into a single 16-bit word using a special
algorithm based on the value of octal 50. The character set that may be packed
RAD50 is limited in scope to the alphanumeric characters, the period, the dollar
sign, and the blank. The following list gives the legal characters that may be
vacked RAD50 and their equivalent octal codes:

Character RADS0 code
blank 0
A-7 1-32
S 33
. 34
0-9 36-47

There is no character for the RAD50 code 35.
The packing algorithm for a three-character input to a 16-bit RADS0 result is:

1. The first character code is multiplied by 3100 octal (50x50)
2. The second character code is multiplied by 50 and added to the first
3. The third character code is added to the above to form the result

The unpacking algorithm merely reverses the above sequence to get the triplet.

There are two monitor calls which perform the above packing and unpacking
algorithms. Both calls use registers Rl and R2 as indexes to the components and
require no calling arguments.

PACK

The triplet (3 ASCII characters) indexed by R2 is packed into RAD50 form and the
result is left in the word indexed by Rl. Rl is incremented by 2 to receive the
next result word for multiple packing. R2 is left indexing the first character
which was not included in the packing of this triplet. The PACK call will
terminate packing and force blank fill for any input which does not contain 3
valid RADS0 characters. For the PACK call, a blank will be considered an
illegal input character and will terminate packing.

UNPACK

The word in the address indexed by Rl will be unpacked and the triplet will be
left in the three bytes beginning with the byte currently indexed by R2. Rl
will be incremented by 2 for the next word and R2 will be incremented by 3 for
the next triplet result. Blanks are legal in unpacking and will be placed into
the result if they are decoded from the input word.

45

INPUT LINE PROCESSING CALLS

When a program is executed by an operator command, register R2 is left pointing
to the first non-blank character on the command line which follows the command
name itself. The remainder of the line is normally interpreted by the
particular program and used to determine the files to be acted on, the record
number to be dumped, the devices to be accessed, etc. For example, the MACRO
call requires the name of the program and any switch options to follow the MACRO
command name on the same line. The macro assembly projram then processes the
program name and the switch options by way of the R2 index which was left
indexing the rest of the command line. This command line is actually the JOBKBF
buffer in the user's JCB.

In addition to the command input line, the KBD monitor also leaves R2 set to the
input line buffer which contains the user input data. Also, various translators
and file processing programs may read in a line of data and then set index R2 to
the base of that line for scannlng For this reason, there exist a number of
monitor calls which perform scanning and conversion functions based on an input
line which is indexed by R2. Some of the calls merely test the character
indexed by R2 for a specific condition and return with flags set based on the
result of the test. 1In these instances R2 is not modified. 1In calls which
perform scan conversions, R2 is updated to point to the character which
terminated the conversion. With the exception of the FILNAM call, none of these
calls require any arguments. Conversion results are always delivered back to
the user in register RI1.

ALF

The character indexed by R2 is tested for alphabetic (A-7) and the z-flag is set
if it is or cleared if it is not. R2 is not changed.

NUM

The character indexed by R2 is tested for numeric (0-9) and the 7Z-flag is set if
it is or cleared if it is not. R2 is not changed.

TRM
The character indexed by R2 is tested for a legal terminator defined as a blank,

tab, comma, semicolon, carriage-return, or line-feed. The Z- -flag is set if the
character is a terminator and cleared if it is not. R2 is not changed.

LIN

The character indexed by R2 is tested for a legal end-of-line defined as a
semicolon, carriage-return, or line-feed. The %- -flag is set if the character is
an end-of-line character and cleared if it is not. R2 is not changed.

46

BYP

Index R2 is advanced past all characters which are blanks or tabs and left
indexing the first non-blank, non-tab character it finds.

GTDEC

Index R2 is used to process a decimal number whose value may be from 0-65535 in
the input line (leading zeros are legal) and deliver the resultant binary value
back in Rl. The N-flag will be set if there was an error (result was greater

than 65535). R2 will be updated to point to the character following the decimal
input number. In the case of an error, R2 will be left indexing the digit that
would have caused the overflow past 65535 for double-word processing techniques.

GTOCT

Index R2 is used to process a octal number whose value may be from 0-177777 in
the input line (leading zeros are legal) and deliver the resultant binary value
back in Rl. The N-flag will be set if there was an error (result was greater
than 177777). R2 will be updated to point to the character following the octal
input number.

GTPPN

Index R2 is used to process a project—programmer number in the standard format
of proj,prog and deliver the resultant binary code back in Rl. The format
dictates that both proj and prog be octal numbers with a value between 1-377.
The N-flag will be set if the PPN was not in valid format. R2 will be updated
to point to the character following the PPN.

FILNAM

Index R2 is used to process a filename.extension input string and leave the
RAD50 packed 3-word result in the 3 words starting with the address specified as
the first argument of the call. This argument is a standard monitor call
argument in format. The second argument is a 1-3 character extension which is
to be used in case no explicit extension is entered in the input string. R2 is
updated to index the terminating character. The Z-bit will be set if there was
no filename to process (the first character was not a leagl RAD50 character).

47

PRINTING CONVERSION MONITOR CALLS

There are three calls in the monitor which accept a system unit input and
convert the unit to standard printable form and then output it to the user
terminal. These calls are used to print out file specifications, filenames, and
project-programmer numbers. Each call takes one standard argument which
addresses the system unit to be converted and printed.

PFILE

The argument addresses a file DDB and the PFILE call extracts the parameters in
the file specification words and prints them in the standard format of
dev:filnam.ext[ppn] on the user terminal.

PRNAM

The argument addresses a 3-word filename.extension block (packed RAD50) and the
PRNAM call prints the converted result in the standard format of filnam.ext on
the user terminal.

PRPPN

The argument addresses a 1l-word project-programmer code and the PRPPN call
prints the converted result in the standard format of proj,prog on the user
terminal.

48

MISCELLANEOUS MONITOR CALLS

This section deals with the orphan monitor calls who don't seem to have a home
in any other section covered thus far. Poor things.

EXIT

This is the normal means that a program uses to terminate processing and return
to monitor command mode. The EXIT call takes no arguments. The monitor, upon
executing the EXIT call, will delete all temporary memory modules in the user
partition and reset any parameters that are program dependent such as JOBICP,
JOBBPT', etc. All assigned devices are also released at this time. The user
terminal is then placed in the monitor command mode ready to process another
operator command. The user effectively forces an early EXIT call from the
program when he aborts it by typing a control-c (unless control-c trapping is in
effect) .

SLEEP

This is a simple call which puts the user job to sleep for a specified number of
line clock ticks. The argument is a standard argument which specifies how many
clock ticks to sleep for. After the specified number of clock ticks have
elapsed the job is automatically awakened and execution proceeds with the
instruction following the SLEEP call. Caution - a sleep call with an argument
of zero clock ticks will put the job to sleep forever or until awakened by some
external event or other job which clears the J.SLP flag in the JOBSTS status
word for this job. The normal AM-]00 system runs with a clock frequency of 60
Hz so each clock tick therefore has a value of 16.7 milliseconds. Also, the
first clock tick may occur any time within the first 16.7 milliseconds (not
necessarily a full clock tick).

SCHED

This call forces a job scheduler scan to see if any other jobs are active. It
is not normally used by user programs but may be if the user fully understands
the job scheduling methods. The normal use of a SCHED call is when some event
either sets or resets a scheduling flag in the JOBSTS word of its own or some
other job. The SCHED call forces a job scheduling scan which guarantees that
the change will be picked up. The SCHED call may be executed from a processor
locked condition since the scheduler always unlocks the processor before
beginning its scan.

IODQ
This call is used by file service routines and device drivers to dequeue a
queued I/0 request running in interrupt mode. This call has not yet been fully

defined and should not be used until further documentation on interrupt driven
processing is released.

49 .

FLOPPY DISK STRUCTURE FORMAT

The AMOS monitor supports a flexible floppy disk file system which relieves the
programmer of the task of keeping track of files, links and record counts. The
structure of the standard floppy disk used in the AMOS system will be described
here for those programmers who wish to do some disk file manipulation or system
software programming.

PHYSICAL RECORD FORMAT

The standard IBM compatible floppy disk has 2002 128-byte physical records on 77
tracks, each track having 26 sectors numbered 1 through 26. The AMOS system
uses a logical record size of 512 bytes (256 words) for each record so the
actual record is made up of four standard size 128-byte records on the floppy
disk itself. The disk driver routine is responsible for translating the AMOS
record number (0-499) to the proper four physical records on the disk. There
are only 500 records of 512 bytes each as far as the programmer is concerned and
the last two 128-byte records on the floppy disk are lost to his use.

The driver translates the AMOS record number into a starting record number which
is four times as great. In addition, a physical sector interleave factor is
used so that a 512-byte record requires only one rotation of the disk instead of
four which would be the case if an attempt was made to access four physically
contiguous sectors on the floppy disk. The interleave factor is 5 meaning that
there are four sectors between each logically contiguous pair of sectors.

Enough of this, however.

DISK RECORD TYPES

There are six different record types in use in the AMOS system, categorized by
their use in the logical processing of files. Each record is 512 bytes long but
their internal structure differs due to different usage in the system. The six
record types are:

1. Diskette ID record

2. Bitmap record

3. Master File Directory record (MFD)
4. User directory records

5. Sequential file data records

6. Contiguous file data records

The Diskette ID record is always record 0 and is not currently used by the AMOS
system. It has been reserved for use by user routines which may want to store
diskette identification information in it. It is permanently allocated so it
will not accidently be used as a data record by any system routine.

The bitmap record is always record 2 and is used to contain the bitmap for the
entire diskette. 32 words of 16 bits each define the allocation of all 500
records on the diskette. The bit is set if the record is in use and cleared if
it is free. Words 33 and 34 are a double-word hash total used to maintain
bitmap integrity during processing. The remaining 222 words of the bitmap

50

record are unused. The bitmap record itself is permanently allocated but
contains no links to other system disk records. If you destroy the bitmap
record you can run the DSKANA program to recover it.

The master file directory record is always record 1 and forms the root of the
file structure tree. It contains one entry of four words for each user PPN
which is allocated to this disk by the SYSACT program. A maximum of 63 users
may be allocated on any one diskette since only one MFD record is available.

The above three record types take care of records 0-2 which are the same on all
diskettes. Initializing the disk by using the "I" command in the SYSACT program
will write out record 1 (empty MFD of all zeros) and record 2 (bitmap with
records 0-2 allocated) which logically clears the disk of all users and files
and makes all remaining records (3-499) available. These records are then
allocated as either user directory records or file data records.

User directory records contain up to 42 entries of six words each to describe
user files in the corresponding PPN. The first word of each directory record is
a link word to the next directory record in the event that more than 42 files
are allocated in the current user area. The final directory record will have a
zero link word indicating no more directory records follow.

Sequential file data records have a link word and 255 data words. The link word
is the record number of the next record in the file. A zero link word indicates
this is the last record in the file. The last record in the file may have
anywhere from 0-509 active data bytes in its data area. The directory record
item contains this number. Sequential files are normally processed as one long
string of bytes from start to finish.

Contiguous file data records have 256 data words and no links. Contiguous files
must be allocated as a block of records with no intervening records belonging to
other files. Contiguous files must be preallocated before their use while
sequential files are allocated one record at a time as they are required.
Contiguous files allow random access processing since any record may be located
as a direct offset relative to the base record.

FILE STRUCTURE

The file struture is depicted in figure D-] and resembles a tree with the MFD
record as its root. The MFD record has one item for each allocated user on this
disk. Each MFD item then contains the record number of the first user directory
record for that PPN number. The user directory record has one item for each
data file in this user's area. Each directory item then contains the record
number of the first data record in he file. Sequential files then chain through
the data records by link words as shown in the diagram. The two files that are
partially depicted are EDIT.PRG and DIR.PRG in user area [1,4] which just
happens to be the system program area. Contiguous files have no link words and
must occupy physically adjacent records beginning with the first record as
addressed in the directory item. Contiguous files are not depicted in the
diagram since they are so pleasingly simple and besides, I ran out of room on

the paper.

51

MFD L2 L
RECORD 1 ’
1,y LINKS TO
2 DIRECTORY RECORDS
ydo) 3 20
ETC.
4 ‘ sTC.
e N
|
|
|
|
DRECTORY RECORD PIRST DIRECTORY RECORD PIRECTORY REORD
For (|2) rFor [nu] For [20,29]
& 1 LK | L& |
)
(Mo Fuse) MRAP.PRG o MAP.PRG FUN.8Rs _ _._T® Fub@As
T T T FuLEe FiLE
BASIC.PRS) 1o emsic.ree Tom.BAS o T> TOMBAS
FLE PILE
RUN, PR& ———TO RUD.PRE ToM. RUV)
FILG 1
IR P, L—— '
v) To Tom.gun
et Ere. ELE
FILE DATA RECORDS
(e . \
SEcod DIRECTORN
RECORD FOR El,‘u j ___I-——-—‘
——J WX LINK LK TANK ———To €EST
l_ oF BOT.PRG
EDIT.PRC FIRST SBcoNd TWIRO
: REccRD OF RECORD oF RECOLD OF
1 wOIT . PRE BOIT. PRG -0IT.PRG
i Dir .Peé e L;LE\/ FILE
s ' B
SYSTEM, MO 7 .
LINK ——I—_—_:{IK ‘——I_uzm - o - TO e5SY
¢ 1 OF DIR.PRGy
BTe. | FiesT SECoND TRIRO
| RELCRD OF RECORD OF RECORD OF
To SYSTEM.MON PIR.PRG OIR.PRG PIR.PRG
FILE FILE e Fus
o —

FLOPPY DIsSK FILE STRUCTURE.

Fi&

52

D-1

MFD ITEM FORMAT

Each MFD item is four words long and contains the PPN, user directory link, and
password. The format of the item is:

Word 1 — user PPN (proj and prog are each one byte)
Word 2 - record number of first user directory record
Words 3-4 - password packed RAD50 (up to 6 characters)

Word 2 is zero if no files have been allocated to thisvuser yet meaning no
directory records have yet been allocated. Words 3-4 are zero if no password is
required to gain access to this user account when logging on via the 10G
command.

MFD items are added, deléted, and changed by the SYSACT program.

USER DIRECTORY ITEM FORMAT

Each user directory item is six words long and contains information about the
data file which it defines. The format of the item is:

Words 1-3 - filename.extension of the file packed RAD50
Word 4 - number of data records in this file

Word 5 - number of active data bytes in last record
Word 6 - record number of first data record in file

Word 1 is -1 (octal 177777) if this file has been erased and the directory item
is available for another file definition. Word 1 is zero to mark the logical
end of the user directory. The byte count in word 5 is negative if this is a
contiguous file. It will also represent the negative active byte count of the
file if the contiguous file has been opened for output and written into
sequentially.

53

SYSTEM COMMUNICATION AREA

There is an area in monitor memory starting at location 100 (octal) which is
called the system communication area. It is defined mnemonically in SYS.MAC and
contains specific parameters that deal directly with singular system resources
and root addresses. The user should not mess aroun' with these parameters
'cause he might create a disaster. They are briefly defined here for those
users who wish to gingerly reference them for whatever diabolical reasons
programmers dream up. All references to these parameters should be made
symbolically in the absolute addressing mode. An example: the instruction MOV
@#JOBTBL,R0 should be used to set the base of the user job table into index
register R0. Get the picture?

5YSTEM

This word is used to contain system attribute and status flags. Currently it is
only used to indicate that the system has been properly loaded when bit 0 is set
on. Don't count on this to remain the case, however.

DEVIBL

Set up by the DEVIBL program in the system initialization command file, this
word contains the absolute address of the device table in monitor memory. The
format of this table remains a mystery to all.

DDBCHN

This is the base of the active DDB chain for interrupt driven routines. It is
set up and altered by the file service routines as new I/O DDB's are queued for
transfer requests and goes to zero each time that there are no requests pending.
Not used for non-interrupt driven devices.

MEMBAS and MEMEND

These two words define the beginning and end of the complete user memory area.
MEMBAS is the address of the first word following the complete resident monitor
including the system memory area for user resident programs. MEMEND is the
address of the last word in the total physically contiguous RAM memory in the
machine. It is set up by the INITIA program when the monitor first starts up by
a memory scan technique which locates the last available 1K bank.

SYSBAS

This is the address of the system memory area which is used to contain any user
programs set up by the SYSTEM command in the system initialization command file.
It is zero if no system memory area exists.

54

JOBTBL

This is the address of the user job table which contains one JCB entry for each
user allocated via the JOB command in the system initialization command file.
For a complete description.of the job table and JCB entries refer to the section
titled JOB SCHEDULING AND CONTROL SYSTEM.

JOBCUR

This word always contains the address of the JCB for the job that is currently
running and has control of the CPU. For the user program, it will always point
to your own JCB as long as you are running. Obviously if you are referencing
this word you must be running, right? JOBCUR is updated only by the jOb
scheduler in the tlmesharlng monitor.

JOBESZ

This word is set up by SYSGEN which builds the monitor and contains the size in
bytes of the JCB entry in the job table. This way, when the JCB item expands
the programs which scan the job table will not have to be reassembled since they
get the JCB size dynamlcally from JOBESZ. This includes routines within the
monitor itself. :

TIME

This is a two-word field which is incremented each time the line clock
interrupts. It represents the current time of day, or at least it will once I
write a simple program to accept the current time and convert it to preload the
TIME parameter. At any rate, it is the parameter which you can reference if you
want to keep track of the time it takes to'do something on the machine.
Remember, TIME is used to count clock ticks and not seconds or milliseconds. To
calculate the actual time in seconds you should divide the elapsed time in ticks
by the clock frequency which is stored in the CLKFRQ constant described further
on. This of course optimistically assumes that the CLKFRQ command has been used
in the system initialization command file to properly set the constant up for
your particular frequency (50 Hz overseas, remember?).

JOBTIM

This word is used by the job scheduler to keep track of the amount of time the
current job has been running for the present time-slice. Each time the job
scheduler gives the CPU to another job for running, its software priority count
is transferred from JOBPRI (in its JCB) to the JOBTIM constant here. Each line
clock interrupt will decrement this counter until it goes to zero and then — POW
- no more time for this job and another job gains control of the CPU. That's
the way the old timesharing ball bounces. It is considered cheating for a user
job to occasionally bump this constant up to some higher value to gain more time
for its time-slice. Shame on you for even thinking of such a dastardly deed.

55

HLDTIM

This is a two-word area which controls the head-load timing for the AM-200
floppy disk system. The second word (at HLDTIM+2) is set up by the HEDLOD
program in the system initialization command file to the number of clock ticks
desired to wait before unloading the disk heads during periods of inactivity.
Each time the head is loaded or another disk transfer is initiated, the count in
the second word is transferred to the first word. Each time the clock
interrupts, the count in the first word is decremented and if it ever gets to
zero - ZAPPO! - the head is unloaded. Nifty, huh?

CLKFRQ

This word is set up by the CLKFRQ command in the system initialization command
file to contain the frequency at which the line clock is running. It is used by
routines which compute elapsed time based on counting the clock ticks in the
TIME constant. Normally set to 60 for systems in North American countries and
to 50 for systems running overseas. Achtung!

DYSTAT

This is the address of the resident DYSTAT program entry point for asyncronous
updating of the video monitor. It is set up when the DYSTAT program is
initially executed by a command in the system iniaitlization command file. If
this word is zero it means the DYSTAT system is inactive.

TRMSER

This is an index to the terminal service routine control table in the TRMSER

program within the monitor. It has not been totally implemented yet so don't
mess around with it.

56

	000
	001
	002
	003
	1-00
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	1-22
	1-23
	1-24
	1-25
	1-26
	1-27
	1-28
	1-29
	1-30
	1-31
	1-32
	1-33
	1-34
	1-35
	1-36
	1-37
	2-00
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	2-41
	2-42
	2-43
	2-44
	2-45
	2-46
	2-47
	2-48
	2-49
	2-50
	2-51
	2-52
	2-53
	2-54
	2-55
	2-56

