
, .

SOFT\NARE MANUAL

ISAM SYSTEM
USER'S GUIDE

DWM-00100-06

REV. A02

alpha
micro

'. '
." ,,,. ~
" " .' -,'''' .' .-

'-~

SOFT\NARE MANUAL

ISAM SYSTEM
USER'S GUIDE

DWM-001DD-DS

REV. ADS

,..... ____ aiiiiilpha mll:::rc

Page ii

This printing of the manual contains Change Page Packet #1 for the "ISAM
System Userls Guide", (DSS-10000-22), which may be ordered separatedly from
Alpha Micro.

First printing:
Second printing:
Third printing:
Fourth printing:

6 December 1977
April 1979
30 Apri l 1981
31 October 1981

'Alpha Micro', 'AMOS', 'AlphaBASIC ' , 'AM-100 ' ,
'AlphaPASCAL ' , 'AlphaLISP ' , and 'AlphaSERV '

'AlphaVUE ' , and 'AlphaACCOUNTING '

are trademarks of

ALPHA MICROSYSTEMS
Irvine, CA 92714

© 1981 - ALPHA MICROSYSTEMS

ALPHA MICROSYSTEMS
17881 Sky Park North
Irvine, CA 92714

This document reflects AMOS Versions 4.6 and later

October 1981

IMPORTANT NOTICE FOR ISAM USERS

1.0 INTRODUCTION

ISAM is software package that aLLows you to organize and retrieve
fiLe via a system of index fiLes. You may caLL ISAM from within
ALphaBASIC or assembLy Language programs. For more information on
the ISAM System User's Guide, (DWM-00100-07), Revision A03,
ALphaBASIC User's ManuaL, (DWM-00100-01).

The foLLowing notice is intended for experienced assembLy
programmers whose assembLy Language programs make use of ISAM:

You shouLd be aware of the foLLowing change to ISAM--

data in a
your own
ISAM, see
and the

Language

As of AMOS ReLease 4.6, ISAM supports a new feature: when using ISAM
to find the next data record (by order of the symboLic keys as they
appear in the index fiLe), you may optionaLLy ask ISAM to return the
symbolic key as weLL as the reLative record number of the data record.

The implementation of this feature has changed the way that the .SREDR
ISAM caLL works: ISAM now Looks at the contents of a register that was
not formerLy checked. If you wish to use the AMOS 4.6 version of
ISAM, you may need to check your assembly Language programs to see
that they do not conflict with the new ISAM's calLing convention. If
you do not wish to make use of this new feature (and do not want to
check alL .SREDR calLs in your programs), you may wish to keep your
AMOS 4.5 version of ISAM when updating to AMOS 4.6.

For exact information on the change to the way you must use the .SREDR
calL, see the ISAM System User's Guide, (DWM-00100-07), Revision A03
or Later. (NOTE: This information ;s aLso in the Change Page Packet
#1 for the "ISAM System User's Guide", (DSS-10000-22).)

ISAM SYSTEM USER'S GUIDE Page iii

PREFACE

This manual is aimed at the experienced assembly language or BASIC
programmer who wishes to make use of the Alpha Micro ISAM system within his
or her own programs. If you are not familiar with Alpha Micro Assembly
Language, please refer to the AMOS Assembly Language Programmer's Reference
Manual, (OWM-00100-43). If you wish information on AlphaBASIC, refer to
the AlphaBASIC User's Manual, (OWM-00100-01).

ISAM SYSTEM USER'S GUIDE Page v

CHAPTER 1

PART I

CHAPTER 2

TabLe of Contents

INTRODUCTION TO ISAM

1.1 THE INDEXED SEQUENTIAL ACCESS METHOD ••••••••• 1-1
1.2 DESCRIPTION OF INDEXED SEQUENTIAL FILES •••••• 1-3

1.2.1 The Data File ••••••••••••••••••••••••• 1-4
1.2.2 The Index FiLe •••••••••••••••••••••••• 1-4

1.3 ISAM ACCESS MODES •••••••••••••••••••••••••••• 1-5
1.3.1 Counted Update Mode ••••••••••••••••••• 1-5
1.3.2 ExcLusive Open Mode ••••••••••••••••••• 1-6
1.3.3 Hints and Restrictions •••••••••••••••• 1-7

1.4 CONVERTING VERSION 4.2 ISAM FILES TO ISAM
VERSIONS 4.3 OR LATER •••••••••••••••••••••••• 1-8

THE ISAM UTILITY PROGRAMS

CREATING AND LOADING AN ISAM FILE WITH ISMBLD

2.1 GENERAL OPERATING INSTRUCTIONS ••••••••••••••• 2-1
2.2 CREATION MODE •••••••••••••••••••••••••••••••• 2-1

2.2.1 Specifying FiLe Parameters •••••••••••• 2-2
2.2.1.1 Size of key: ••••••••••••••••• 2-2
2.2.1.2 Position of key: ••••••••••••• 2-2
2.2.1.3 Size of data record: ••••••••• 2-2
2.2.1.4 Number of records to

allocate: •••••••••••••••••••• 2-2
2.2.1.5 Entries per index block: ••••• 2-2
2.2.1.6 Empty index blocks to

allocate: •••••••••••••••••••• 2-3
2.2.1.7 Primary Directory? ••••••••••• 2-3

2.2.1.7.1 Secondary File •••• 2-3
2.2.1.8 Data FiLe Device? •••••••••••• 2-3

2.3 FILE LOADING MODE •••••••••••••••••••••••••••• 2-3
2.3.1 Suppressing Exclusive Open Mode

(the IN Switch) ••••••••••••••••••••••• 2-4
2.4 CHANGING THE DATA FILE DEVICE

(THE 10 SWITCH) •••••••••••••••••••••••••••••• 2-4
2.5 OPTIMIZING FILE PARAMETERS ••••••••••••••••••• 2-4

2.5.1 Entries per Index Block ••••••••••••••• 2-5
2.5.2 Empty Index Blocks to Allocate •••••••• 2-5

ISAM SYSTEM USER'S GUIDE Page vi

CHAPTER 3

CHAPTER 4

PART II

CHAPTER 5

CHAPTER 6

DUMPING AN ISAM FILE WITH ISMOMP

3.1 GENERAL OPERATING INSTRUCTIONS ••••••••••••••• 3-1
3.1.1 Suppressing Exclusive Open Mode ••••••• 3-1

3.2 FILE DUMP MODE ••••••••••••••••••••••••••••••• 3-2
3.2.1 Sample Data File Display •••••••••••••• 3-2

3.3 INDEX FILE DUMP MODE ••••••••••••••••••••••••• 3-2
3.3.1 Sample Index File Display ••••••••••••• 3-3

COMPRESSING INDEX FILES WITH ISMCOM

PROGRAMMING WITH ISAM

USING ISAM FROM THE ASSEM8LY LANGUAGE LEVEL

5.1 GENERAL CALLING SEQUENCE ••••••••••••••••••••• 5-1
5.2 INITIALIZING THE ISAM SYSTEM (.INIT) ••••••••• 5-2

5.2.1 Calling Sequence •••••••••••••••••••••• 5-2
5.2.2 User Supplied Allocation and

Deallocation Routines ••••••••••••••••• 5-2
5.3 FINALIZING ISAM PROCESSING (.IFIN) ••••••••••• 5-3

5.3.1 Calling Sequence •••••••••••••••••••••• 5-3
5.4 OPENING A FILE FOR PROCESSING (.IOPNR) ••••••• 5-3

5.4.1 Calling Sequence •••••••••••••••••••••• 5-4
5.5 CLOSING THE FILE AFTER PROCESSING (.ICLOS) ••• 5-4

5.5.1 Calling Sequence •••••••••••••••••••••• 5-4
5.6 LOCATING A FREE DATA RECORD (.IGTFR) ••••••••• 5-5

5.6.1 Calling Sequence •••••••••••••• ~ ••••••• 5-5
5.7 DELETING A DATA RECORD (.IOLFR) •••••••••••••• 5-5

5.7.1 Calling Sequence •••••••••••••••••••••• 5-5
5.B READING A DATA RECORD 8Y RELATIVE RECORD

NUM8ER (.IRLRD) •••••••••••••••••••••••••••••• 5-6
5.B.1 Calling Sequence •••••••••••••••••••••• 5-6

5.9 WRITING A DATA RECOR~ 8Y RELATIVE RECORD
NUM8ER (.IRLWT) •••••••••••••••••••••••••••••• 5-6
5.9.1 Calling Sequence •••••••••••••••••••••• 5-6

5.10 FINDING A RECORD (.IREOR) •••••••••••••••••••• 5-7
5.10.1 Calling Sequence ••••••••••••••••••••• 5-7

5.11 ADDING A SYM80LIC KEY (.IWRTR) ••••••••••••••• 5-7
5.11.1 Calling Sequence ••••••••••••••••••••• 5-7

5.12 DELETING A KEY (.IDELK) •••••••••••••••••••••• 5-B
5.12.1 Calling Sequence ••••••••••••••••••••• 5-8

5.13 FINDING THE NEXT SEQUENTIAL KEY (.SREOR) ••••• 5-B
5.13.1 Calling Sequence ••••••••••••••••••••• 5-9

STANDARD ISAM SYM80LS FOR ASSEMBLY LANGUAGE PROGRAMMERS

6.1 CALLING SYM80LS •••••••••••••••••••••••••••••• 6-1
6.2 COMPLETION CODE SYM80LS •••••••••••••••••••••• 6-1

ISAM SYSTEM USER'S GUIDE Page vii

CHAPTER 7

INDEX

USING ISAM FROM WITHIN BASIC

7.1 OPENING AN INDEXED SEQUENTIAL FILE ••••••••••• 7-1
7.2 THE ISAM STATEMENT ••••••••••••••••••••••••••• 7-3

7.2.1 ISAM Statement Codes •••••••••••••••••• 7-3
7.3 READING AND WRITING DATA IN AN ISAM

OATA FILE •••••••••••••••••••••••••••••••••••• 7-4
7.4 CLOSING FILES •••••••••••••••••••••••••••••••• 7-5
7.5 ERROR PROCESSING ••••••••••••••••••••••••••••• 7-5
7.6 USING THE ISAM FUNCTIONS WITHIN A

BASIC PROGRAM •••••••••••••••••••••••••••••••• 7-6
7.6.1 Adding Data to an Indexed

Sequential File •••••.••••••••••••••••• 7-6
7.6.2 Reading Data Records in Symbolic

Key Order ••••••••••••••••••••••••••••• 7-8
7.6.3 Reading Data Records Randomly by

SymboLic Key •••••••••••••••••••••••••• 7-8
7.6.4 Updating Data Records ••••••••••••••••• 7-9
7.6.5 Deleting a Data Record •••••••••••••••• 7-9

7.7 SAMPLE ISAM PROGRAM •••••••••••••••••••••••••• 7-11

CHAPTER 1

INTRODUCTION TO ISAM

The purpose of this short manual is: 1. to give you an introduction to ISAM;
and, 2. to discuss how you can create and access indexed sequential fiLes
using the various programs of the ISAM system, as weLL as write programs in
either assembly Language or BASIC to Locate, update, add, and deLete data in
those files.

ISAM is a method for organlzlng and retrievinq data. The name of the method
(Indexed Sequential Access Method) refers to the manner in which the data is
organized. The information in the ISAM data fiLe is accessed by searching a
separate index file that contains a group of symbolic keys and pointers to
records in the data file with which those keys are associated. By searching
severaL LeveLs of indices within the index fiLe, we can Locate records in a
separate file much more quickly and efficiently than if we had to search the
actual data fiLe itself. Some examples of data for which symbolic keys can
be specified are:

Customer information-- the name of the customer is the key (that
is, an element of the data record) on which you base your search.

Payroll-- the key is an employee number.

Inventory control-- the key is a part number.

1.1 THE INDEXED SEQUENTIAL ACCESS METHOD

Finding a convenient and efficient way to access information in a file is an
important problem for a programmer. Suppose, for example, that you have a
phone book of five thousand names and phone numbers. If you need to find a
specific person's phone number, you can start with page number one and scan
every entry in the book untiL you find the proper name. That process is
very slow and inefficient, however, because you have to deal with so many
entries. A more efficient method wouLd involve dividing the phone book into
sections, and searching onLy those sections that might contain the data you
need instead of searching the entire data base.

INTRODUCTION TO ISAM Page 1-2

Organizing your data so that it is easier and quicker to search is the main
idea behind ISAM. If we were to organize the phone book in somewhat the
same way as ISAM would do it, we might do this:

A. First we build a file containing one logical record for each entry
in the phone book; each record consists of a person's name, an
address, and a phone number. We assign each entry a number (called
the relative record number or the relative key) that marks its
position in the file. For example, the five hundredth entry is
number 499 (the first record is number 0, not 1). (The record
number is called "reLative" because it marks the position of the
record from the front of the file; it is not an absolute disk
address.) This file that contains aLL of our data corresponds to
the ISAM data file.

B. Next we construct a file that contains information about the data
file that helps uS search the data fiLe. (The file we are
constructing corresp'onds to the ISAM index fi le.) When you open a
phone book, you notice that the top of each page contains two
words; the first and the last names that appear on that page.
These two names give you an "index" into the data on -that page.
So, if the two words at the top of a particular page are
"PENDERGRASS-PENNINGTON," you know that the names associated with
all entries on that page fall somewhere in that range. Suppose,
then, that this second file we are creating contains the words at
the top of the phone book pages, along with the relative record
numbers of the entries that fallon each page.

c.

Instead of searching the entire data file, we can search this much
smaller "index" file. If we want to find the entry for the name
PENHALL, we can search the page indices in our index file until we
find two names that PENHALL falls between. Then we can search just
the data file records associated with that range of names until we
find PENHALL.

When we build an index file, we say that the file contains symbolic
keys. A symbolic key is an element of a logical record on which we
base our'search. In this example, the symbolic key we are using is
the name associated with each phone book entry. We might just as
easily have set up the files so that we can base our search on
phone numbers or city names.

We have
improved
file.
the top
provide

improved our original file-search procedure, but it can be
upon still further. We now have a data file and an index
The index file contains one level of indices (the words at

of each page in the phone book). The next step is to
another level of indices within the index file.

When you look for a name in a phone book, you first find the proper
page by glancing at the names at the top of each page. Then you
might look at the first and last names of each column on the page
to narrow your search still further. If the name for which you are
searching falls between the names at the top and bottom of the

INTROOUCTION TO ISAM Page 1-3

column, you begin to search each entry in that column; otherwise,
you move to the next column on the page. In the sam~ way, our
index file contains a first-level index (the names at the top of
the page); then it further divides the data on the page by giving
indices into subgroups of entries on the page (the first and last
naliles in each column make up the second-level index). The final
level of indices (the third-level) in the index fiLe consists of
lists of names for each column in the book along with the actual
record number in our original data file that contains the entry
associated with that name.

O. Journeying through the levels of indices in our index fiLe, then,
we first find the page on which the name appears, then we find the
column in which the name appears, then we find the actual record
number of the fiLe in which the entire entry associated with that
name appears. At no time do we ever need to search the actuaL data
file itseLf.

Note that the keys in the index file are grouped aLphabeticaLLy.
Since we find a data record by searching the index fiLe, the data
records in the data fiLe do not need to be arranged in any
particular order. An index fiLe may not contain dupLicate keys;
that is, no two data records in the data fiLe may have the same
symbolic key.

The exampLe above discusses a data fiLe that has one index fiLe (caLLed the
primary index fiLe). A data fiLe aLways has one primary index fiLe; it may
aLso have one or more secondary index fiLes. A secondary index fiLe is
structured in the same way as the primary index fiLe except that it contains
different symboLic keys. For exampLe, if we want to base our search of
phone book entries on phone numbers as welL as names, we might construct a
secondary index file that contains phone numbers.

ALthough we constructed the exampLe above ourseLves, the ISAM program
automaticaLly creates aLL data fiLes and index fiLes for you in response to
information and fiLe specifications that you suppLy.

1.2 DESCRIPTION OF INDEXED SEQUENTIAL FILES

In summary, an indexed sequentiaL fiLe consists of two fiLes: 1. the data
fiLe, containing the actual data; and 2. the index fiLe, containing pointers
to symboLic keys within the data fiLe. You specify the Location of the
symboLic key within each record when you buiLd an indexed sequential fiLe
using the ISMBLD program (discussed in Chapter 2, "Creating and Loading an
ISAM FiLe with ISMBLD"). To buiLd an indexed sequentiaL fiLe, you suppLy
certain parameters to the ISMBLD program; ISMBLD then produces an empty
fiLe. To Load the fiLe with data, you may write your own program or vou may
use the ISMBLD program to copy the data from an ordinary sequentiaL fiLe
into the data fiLe (updating the index fiLe in the process).

INTROOUCTION TO ISAM Page 1-4

The ISAM program does all re.ding and writing of the index' . fi le; you ,wi II
not have to handle these functions yourself. Your BASIC or assembLy
language program wilL add, delete, or update data in the ISAM data file
based on the relative record number returned to your program by ISAM.

1.2.1 The Oata Fi le

The data in your data file may be in any data format; however, the index
file orders keys in ASCII collating sequence (i.e., ascending binary order)
which may affect operation of the ISAM program when data is recorded in
other than ASCII form. When you buiLd an indexed sequential file (via the
ISMBLO program), you supply various items of information about your data
file (e.g., the size of the data records, the location of the symbolic key
within the data record, and so on); ISMBLO then builds both the data file
and its primary index file.

Your programs use the ISAM functions to add and delete data records in the
data fiLe. When you add a record, ISAM inserts it into the first free space
in your data fiLe. When you delete a record, ISAM does so by recovering the
space in the data file used by that record, and returning that area to the
free record list so that it is avaiLabLe for new records. Because the Alpha
Micro operating system (AMOS) requires that contiguous files (e.g., an ISAM
data file) be prealLocated, once the data fiLe is fulL it must be
reorganized before it can be used further. For this reason, be careful to
allocate as many records as you will need for the file.

All ISAM data files MUST have the extension .IOA.

1.2.2 The Index File

The ISMBLO program automatically creates the index file from a description
of the data file. The index file contains three leveLs of indices, the
Lowest of which contains pointers to the records in the data file~ Each
successive index level points to all the blocks containing the next lower
level index. Index levels are provided so that the entire index need not be
searched each time a symbolic key is accessed. When a symbolic key is
accessed, ISAM reads the highest level index to find which lower level index
contains a pointer to the approximate location of that key. ISAM then
searches the block of that lower level index; that index block in turn
points to a lower index block which points to the data record in which the
key is stored.

In addition to the index blocks, the ind.~ file contains another block named
the Oirectory Rock, SO called beca~se it never moves. This block contains
information describing the index and data files as well as maintenance
information (e.g., free record links, Jccess counts, etc.).

Each data file must have a primary index file; in addition to this, it may
have several secondary index files. A typical example of the use of this

INTRODUCTION TO ISAM Page 1-5

feature wouLd be a maiLing List maintenance program, where the data is keyed
on both a hashed retrievaL code for unique reference and aLso keyed on the
person's name. (For an exampLe of this kind of program, see the sampLe
BASIC ISAM program in Chapter 7, "Using ISAM From Within BASIC.")

Your programs use the ISAM functions to add and deLete keys from the index
fiLes, and to Locate data records in the corresponding data fiLes.

The extension of an ISAM index fiLe MUST be .IDX.

1.3 ISAM ACCESS MODES

Beginning with AMOS version 4.2, changes have been made to ISAM that greatLy
increase its fiLe access speed. The increase in speed was made possibLe by
the two new access modes, Counted Update mode and ExcLusive Open mode, which
aLLow ISAM to avoid unnecessary processing of your index fiLes.

Counted Update mode is the normaL access mode for assembLy Language or BASIC
programs. ExcLusive Open mode is the normaL access mode for the ISMOMP and
ISMBLD programs and is the onLy mode for the ISMCOM program. ISAM aLways
processes indexed sequentiaL fiLes in one or the other of these modes. The
next two sections discuss both of these modes.

NOTE: The paragraphs beLow mention the need for fiLe interLocking. It is
most important that your programs guard against the possibiLity of more than
one user trying to update the same data fiLe at the same time. If several
users were to try to write to the same fiLe record at the same time, severe
damage to your data fiLe couLd resuLt. For information on file interLocking
procedures, see the documents FLOCK BASIC Subroutine to Coordinate
MuLti-user FiLe Access and XLOCK - BASIC Subroutine for MuLti-user Locks
in the "BASIC Programmer's Information" section of the AMOS Software Update
documentation packet.

1.3.1 Counted Update Mode

Counted Update mode allows ISAM to increase its speed by avoiding any
unnecessary processing. Every time ISAM updates a fiLe in any way, it
increments a counter in the Rock portion of the index file. At the time of
fiLe access, ISAM checks this counter to see if the fiLe has been updated
since the last access. If the fiLe has not been updated, ISAM can skip
futher access initiaLization and take advantage of its prior knowLedge about
the fiLe. These actions are compLetely transparent to the user and the
speed gains (3 to 70 times faster access times) are free.

IMPORTANT NOTE: The Counted Update mode does NOT eLiminate fiLe interLock
requirements from your programs. If anyone might possibLy be updating the
file, your program must continue to use file interLock programs such as
XLOCK or FLOCK to prevent simuLtaneous updates or accesses. The preferred
method for locking fiLes is to use the FLOCK non-exclusive "open" locking

INTROOUCTION TQ ISAM Page 1-l!

(action 0, mode 0 or 4) for reeding, and to use tne FLOCK exclusive "open"
locking (action 0, mode 2 or 6) for upcjating. Use the ROCK "close" (action
1, mode 0) to rel.a~e the fiLe for other users.

Note that it is not necessary to open and close the ISA~ fiLe with each
manipulation even though the FLOCK commands ~re so named. It is acceptabLe
to leave the file ope~ during the whole interLocking and release process and
is, in f~ct, the only way to gain the speed increase made possible by the
Counted Update mode.

1.3.2 Exclu$ive Open Mode

When a program opens a file exclusiveLy, ISA~ renames the .lOX file to a
.IOY extension. ISAM also sets a fLag in the Rock that identifies the fiLe
as an exclusive file. If any other job tries to open that fiLe, it receives
a U?File not found" error; if another job tries to access the file once it
; s open, the job receiv,s a "?\. in~ structure smashed" error CIS.LSS).

As a result of the exclusive open, {SAM knows that no other program wiLL be
updating or accessing the file. It can therefore take full advantage of the
single-process situ.tion for initialization and change posting. Except for
the process of opening the file and the need to properly close the file, use
of ISAM is the same as in previous versions. The use of this mode results
in an extremely large gain in access speed.

The onLy fiLe interlock probLem occurs at the moment of the ISAM OPEN call;
no one may update the file while you are opening it. You MUST prevent this
situation 'from occurring by using one of the fiLe interlock programs, FLOCK
or X\.OCK, or by simply making sure that no other user is running a program
that can update that file. Once your program has executed the ISA~ OPEN
calL, your program needs no interlocks since no one eLse can access the
file.

Invoke ~he Exclusive Open mode from within BASIC by using the fiLe mode of
INOEXeO'EXC\.USIVe in the file OPEN statement in your program. Your assembly
language program m~y ~elect the Exclusive Open mode by setting bit number
three of RO for' the • IOPNR call. You MUST close the file when you are
completely done with manipulating that file ~hat ISAM can post the final
updates and remove the Exclusive Open conditions from that fiLe. If an
error occurs during processing, you should close the fi le to remove the
Exclusive Open conditions (although you can also remove them manually). A
file in ~hich an error occurred during updating is probably badly damaged.

Use Of the Exclusive Open mode c~n result in signifi~ant gains when printing
reports and other such batch-type, operations. It does have the drawba~k
that no one eL~e can acce~s the file for any reason while it is
exclusTVeLY opened.e, ~arned that any attempts to circumvent the exclusive
properties of such a file by cLever manipulations will probably meet with
disaster. If several peopl, need to access the file at the same time, use
the normal mode, C04"~.d Update mode; if no one updates the file, you will
lose very Lit~le speed in changfng to that mode •.

)

INTROOUCTION TO ISAM Page 1-7

The ISMBLO, ISMOMP, and ISMCOM programs use the ExcLusive Open mode. To
prevent ISMBLO (when Loading or cross-indexing an existing fiLe) or ISMOMP
from using ExcLusive Open mode, use the /N switch. The /N switch must
appear at the very end of the command Line that invokes the program. For
exampLe:

~ISMBLO LABELS/N(RETJ

ISMBLO (when creating/Loading or creating/cross-indexing) and ISMCOM
aLways use the ExcLusive Open mode.

1.3.3 Hints and Restrictions

The new access modes make possibLe a dramatic increase in the speed of ISAM
data accesses. They aLso may resuLt in sLightLy pecuLiar situations of
which you shouLd be aware:

1. If the Counted Update mode counter has not changed, ISAM assumes
that no updates have been made to the fiLe since the Last time an
access was made, and that it may therefore make certain assumptions
about fiLe status and contents. The counter cycLes on a count of
16,777,216. If by some very unLikeLy chance the fiLe were to
remain open for an incredibLy Long time and exactLy 16,777,216
updates were made between accesses, ISAM wouLd access and/or update
the fiLe using out-of-date information.

ALthough not strictLy impossibLe, it is very unLikeLy
situation wiLL occur. We estimate that you wouLd have
your machine up and running for severaL weeks with the
open without making any accesses to that fiLe in order to
happen.

that this
to Leave
ISAM fiLe
see this

2. When you open a fiLe in ExcLusive Open mode, ISAM must be abLe to
write to the disk that contains the fiLe. This means that you must
make sure that the disk is not write-protected even if aLL accesses
to that fiLe are going to be read operations,

3. The most visibLe quirk ot the ExcLusive Open mode is that it causes
ISAM to rename the extension of the fiLe being opened from .IOX to
.IOY. If such a fiLe is not properLy cLosed (for whatever reason),
then the name of that fiLe wiLL not be correct in the disk
directory. You can cure this probLem very easiLy by using the
RENAME command. For exampLe:

~RENAME *.IOX=*.IOY[RET]

A fiLe OPEN aLso changes a fLag in the Rock of the ISAM index fiLe.
You do not need to worry about changing the fLag yourseLf in the
event of an improperLy cLosed fiLe, since the situation is
automaticaLLy seLf-correcting the next time the fiLe is opened (in
either ExcLusive Open or Counted Update mode).

INTRODUCTION TO ISAM Page 1-8

4. I f you open a fi Le in Counted Update mode but the' 1-i Le was Last
used in ExcLusive Open mode and was never cLosed, th~ fiLe OPEN
~iLL cause ISAM to write to the fiLe to correct the excLusive fLag.
If this situation is going to occur, make sure that the disk is
write-enabLed.

1.4 CONVERTING VERSION 4.2 ISAM FILES TO ISAM VERSIONS 4.3 OR LATER

If you have ISAM fiLes buiLt under ISAM version 4.2, you wiLL need to use
the ISMFIX program to convert them over to ISAM versions 4.3 and Later.
(ALthough using ISMFIX on files that were buiLt under ISAM versions 4.3 and
Later doesn't do anything usefuL, it doesn't harm the fiLes. either.)

Because various conversion steps may be necessary to convert your ISAM files
from one ISAM version to another, it is wisest not to skip any ISAM
versions. (For exampLe, going directLy from ISAM version 4.1 to ISAM
version 4.5 with existing ISAM fiLes is not a good idea and, in fact, won't
work.)

For information on ISMFIX, see the ISMFIX reference sheet in the AMOS
System Commands Reference Manual, (DWM-00100-49).

ISAM SYSTEM USER'S GUIDE

PART I

THE ISAM UTILITY PROGRAMS

The next few chapters discuss the ISAM utility programs. These programs: 1.
create and (optionally) load an indexed sequential fiLe; 2. display the
contents of your data and index files; and, 3. aLLow more efficient use of
your index fiLes by compressing index block entries.

CHAPTER 2

CREATING AND LOADING AN ISAM FILE WITH ISMBLD

The ISMBLD program provides a convenient method for creating and Loading
indexed sequentiaL fiLes. It gives you the ability to create a new indexed
sequentiaL file, to add records to the data fiLe from an ordinary sequential
data file, and to create a secondary index file that cross-indexes to a
primary index fiLe.

2.1 GENERAL OPERATING INSTRUCTIONS

ISMBLD has three operating modes: 1. create a new indexed file; 2. add data
to the new file or to an existing fiLe; and, 3. change the device
specification of a data fiLe. ALL modes are calLed via the generaL command:

~ISMBLD filespec{/D}{/N}[RET)

If the indexed sequentiaL fiLe specified by fiLespec does not exist, ISMBLD
enters the creation mode. If the file aLready exists, ISMBLD enters the
data Loading mode unLess you have specified the optionaL /0 maintenance
switch. (NOTE: If the fiLe aLready exists, you may specify Counted Update
mode by using the /N switch. See Section 2.3.1, "Suppressing ExcLusive Open
Mode.")

2.2 CREATION MODE

The creation mqde is the most commonLy used mode. In this mode you input
series of parameters that describe the desired indexed sequentiaL fiLe.
From these parameters the ISMBLD program generates a data file/primary index
fiLe combination or a secondary index fiLe that cross-indexes to an existing
primary index fiLe.

CREATING AND LOADING AN ISAM FILE WITH ISMBLO Page 2-2

2.2.1 Sp~cifying FiLe Parameters

Before actually cr~ating the file, ISMBLO asks you a number of questions
about your data file. In response to each of the questions. '~u are
expected to enter a valid answer. Because of the myriad ways that you can
set up an indexed sequential file, very Little validity checking is done on
your answ~rs. It i$ therefore possible to create totally useLess fiLes. Be
careful. For an example of the ISMBLO dialog, turn to Chapter 7, "Using
ISAM From Within BASIC."

The following sections describe the questions asked and the expected
responses:

2.2.1.1 Size of key: - Enter the size of the desired key in decimal
bytes. To minimize index search time, keep this size as smaLL as possible.
The m~ximum key size is 256. When you later access the ISAM fiLes you are
now creatin9, you must remember to pad with blanks or other characters keys
that are smaller than this specified size. Pad numeric fields in the front
of the field; pad symbolic keys at the end. One side effect of thi~ is that
both binary and floating point keys may be used.

2.2.1.2 Position of key: - This parameter specifies the Location of the
key within the data record. The symbolic key position is used when Loading
indexed sequential files from sequential files as the means of determining
the symbolic key. Enter the number of the first character-position in the
record which the key occupies; the first position within a record is
position number one.

2.2.1.3 Size of data record: - This parameter defines the size of the
records in the data file or the maximum data record size in the case of
variable len9th records. Specify this size in bytes (decimal). The data
record size must be greater than or equal to the key size plus the key
position.

2.2.1.4 Number of records to aLlocate: - This parameter defines the
number of reco~ds which the data fiLe is to contain.

2.2.1.5 Entries Per index block: - This parameter alLows you to specify
the number of - entries contained in an index bLock; this value can greatLy
affect the efficiency of searches and inserts within the fiLe. See Section
2.5, "Optimi~ing File Parameters," for more information.

CREATING ANO LOAOING AN ISAM FILE WITH ISMBLO Page 2-3

2.2.1.6 Empty index blocks to allocate: - ISMBLO allocates for you the
bare minimum number of index blocks you will need to contain keys for the
specified number of data records. This calculation is based on the
assumption that the index file tree structure will be perfectly balanced.
Since this is rarely the case, you will probably need to specify an
additional ~umber of index blocks.

2.2.1.7 Primary Oirectory? - If you are creating a primary index and data
file combination. enter Y; if you are creating a secondary index file, enter
N.

2.2.1.7.1 Secondary File - If you are building a secondary index file,
ISMBLO prompts you for the file specification of the primary index file:

Secondary index to file:

Enter the specification of the primary index file to which this secondary
file cross-indexes. Type just a RETURN to exit ISMBLO. You may create as
many secondary index files as you want that cross-index to a particular
primary index file by re-invoking ISMBLO with the specification of that
primary index file and specifying a new secondary index file.

If you have created a secondary index file, your dialog with ISMBLD is now
over. ISMBLD returns you to AMOS command level. If you are creating a data
file/primary index file combination, ISMBLD asks you for more information
(see below>.

2.2.1.8 Data File Device? - ISMBLO now asks you:

Data File Device?

If the data file is to be on a different device than the index file, enter
the name (and number> of that device. If they are to be on the same device,
enter a RETURN. For example, if the data file is to be on unit 1 of device
"0 SK," ent e r :

Data File Device? DSK1:~ET]

2.3 FILE LOADING MODE

After an indexed sequential file has been created, it is often desirable to
load the data and index files with data from an ordinary sequential data
file. To allow this, ISMBLD enters the data loading mode once it creates
the indexed sequential file.

CREATING ANO LOAOING AN ISAM FILE WITH ISMBLO Page 2-4

If you want to load data into an existing data file, invoke ISMBLO with the
name of that fiLe. ISMBLO then responds:

'.

[Processing existing fiLe]

This notifies you that you are in the fiLe Loading mode and not the creation
mode.

ISMBLD now prompts you for a sequentiaL fiLe specification by typing:

Load from fiLe:

You may now enter the fiLe specification that seLects the sequential data
file from which you want to load. A default extension of .SEQ is assumed by
ISMBLO. (If you do not want ISMBLD to load the new file for you or if you
have made an error in the file specification you gave to ISMBLD, type a
RETURN after the "Load from file:" prompt; no data will be added to the data
file.)

2.3.1 Suppressing Exclusive Open Mode (the IN Switch)

When loading an existing file, ISMBLD normally uses Exclusive Open mode. If
you wish it to use Counted Update mode instead, include the IN switch at the
end of the ISMBLD command line. For example:

• I 5MBLO MA IL IN (RET)

2.4 CHANGING THE OATA FILE DEVICE (THE 10 SWITCH)

The only creation data that you can change is the data file device. The 10
switch provides this field for examination and change. Simply enter the new
device name or a RETURN (to leave the device unchanged). To change the
device to the same device that the index file uses, enter a period (.) only.
It is your reponsiblity to move the file to the specified device.

2.5 OPTIMIZING FILE PARAMETERS

This section provides some hints on how to organize an indexed sequential
file for maximum efficiency.

Once your file has stabilized and you aren't changing it much, re-evaluate
the original file parameters. If your evaluation so indicates, rebuild the
file with different parameters.

CREATING AND LOADING AN ISAM FILE WITH ISMBLD Page 2-5

2.5.1 Entries per Index Block

This parameter is a two-edged sword. A smaLL vaLue means faster in-core
searches, but more disk accesses and more bLock spLits during record
additions. A Large vaLue reduces the number of disk accesses and bLock
splits, but increases in-core search time and increases the amount of memory
used for buffers. (A bLock spLit occurs if you add a key to an index bLock,
but there is no more room in that bLock; ISAM automaticalLy "spLits" that
bLock and redistributes the keys among the two new bLocks.)

Since the index structure is fixed at three LeveLs deep, the maximum number
of keys that you may add to an index without the top index bLock splitting
is nA 3, where n is the number of entries per index bLock. When the top
index bLock spLits, the search time through the index increases due to the
possibiLity of having to do more disk reads.

When you use a floppy disk, the in-core search time is so smaLL compared to
a disk seek/transfer that any increase/decrease wiLL not be apparent. When
you use a faster disk the trade-off becomes trickier. As a ruLe, keep the
number of entries as Large as possibLe, consistent with the user memory
partition size. The amount of index buffer space required is:

5 * «entries-per-bLock * (keysize + 4»+2)

where key size is rounded to an even number of bytes. Given this, you
shouLd be abLe to determine a reasonabLe vaLue for the number of entries.
(NOTE: (keysize + 4) * entries-per-bLock MUST be Less than or equaL to 510.)
The more entries per bLock, the more memory you use. It is sometimes more
efficient to have the top bLock spLit a few times rather than to eat up a
Large amount of memory. '

2.5.2 Empty Index BLocks to ALLocate

During creation, enough index bLocks are aLLocated to support a baLanced
index fiLe tree with sufficient nodes for the number of data records
aLLocated. In practice, the index fiLe tree is rareLy baLanced (unLess you
add records in a truLy random number with an even distribution of key
vaLues). Because of this, you should aLLocate empty index bLocks. Practice
has shown that the number of data records divided by the number of entries
in an index bLock gives a good number of empty bLocks.

CHAPTER 3

OUMPING AN ISAM FILE WITH ISMDMP

The ISMOMP program provides a convenient method for unLoading an indexed
sequentiaL fiLe into a sequentiaL fiLe. It aLso provides a means of
examining the index fiLe structure to determine how baLanced that structure
is.

3.1 GENERAL OPERATING INSTRUCTIONS

ISMOMP has two operating modes: the first aLLows you to output the contents
of an indexed sequentiaL fiLe to an ordinary sequentiaL fiLe; the second
allows you to dispLay the index fiLe structure on a terminaL to aLLow
anaLysis thereof. Both are invoked via the generaL command form:

~ISMOMP fiLespec{/N}(AET)

where fiLespec specifies an indexed
switch suppresses ExcLusive Open mode.
initiaLization procedures, ISMOMP asks:

Output to:

sequentiaL fiLe and the optionaL IN
(See beLow.) After performing some

Supply another fiLe specification; this one seLects the sequentiaL output
fiLe. ISMOMP assumes a defauLt fiLe extension of .SEQ. If you want to
enter the index fiLe dump mode, enter TTY: as the fiLe specification. For
exampLe:

Output to: TTY: (AET)

3.1.1 Suppressing ExcLusive Open Mode

ISMOMP normalLy uses ExcLusive Open mode when performing its fiLe accesses.
If you wish it to use Counted Update mode instead, use the IN switch at the
end of the ISMOMP command line. For example:

DUMPING AN ISAM FILE WITH ISMDMP Page 3-2

.ISMOMP STAT IN (RET)

3.2 FILE DUMP MODE

In this mode, ISMDMP outputs the records of the indexed sequential file to
an ordinary sequential file in ascending key order. ISMDMP does no
translation of the records; it outputs the records in exactly the same form
as they were input at some earlier date.

3.2.1 Sample Data File Display

We used ISMBLD to create a small ISAM data file named LABELS. Then we used
the sample program in Chapter 7 ("Using ISAM From Within BASIC") to place
five records in the file. We then asked ISMDMP to place the data in that
file into a file n~med DATDMP:

~ISMDMP LABELS[RET)

Output to: DATDMP (RET)

5 records dumped

If we use the TYPE command to display the new file (e.g., TYPE DATDMP.SEQ),
we see:

FILMORE SUSAN 230 STILWOOD LOWELLMA15673200
HINCHEY EDSEL 6712 VIA MALAGA TUSTINCA90245102
LAWRENCE T.E. 1023 W. SANDS PANGUITCHUT98344100
MUKLUK, H. 345 PRAIRIE DOG LN BAKERCA98766120
SAVOY JOHN 891 E. DECATUR LAS VEGASNE89023103

Each record contains: 1. Customer name; 2. street address; 3. city; 4. state
(two letters); 5. zip code; and, 6. three-digit identifying number (called a
hash number).

3.3 INOEX FILE DUMP MODE

The dump mode is intended primarily as a debugging tool, and will not find
much use among general users. Therefore we provide little documentation on
its use. Those of you who understand the basic structure of the index file
should be able to figure out the display quite easily. Remember that you
can type a Control-S to freeze the screen display and a Control-R to release
the display.

DUMPING AN ISAM FILE WITH ISMDMP Page 3-3

3.3.1 SampLe Index FiLe DispLay

Let's say that we want to dispLay the structure of the primary index fiLe
that beLongs to our sampLe data fiLe, LABELS:

.!.lSMDMP LABELS [RET]

Output to: TTY: [RET)

Now you see something Like this (our comments on the information in this
dispLay are in square brackets):

Size of data record:
Size of dir entry:
size of dir block:
size of key:
Type of key:
Entries per dir bLock:
Record key position:
BLocking factor:
IDA freeList pointer:
IDA freecount:
lOX freeList pointer:
IDX freecount:
Records aLLocated:
Top dir bLk pointer:

67
30
302
25
o
10
1
7
000000000517
45
000004
22
5
000001

[index file block number:]

[keys per index bLock]

[first free record in data file]
[number of free data file records]
[first free index fiLe block]
[number of free index fiLe bLocks]
[number of data records]
[points to top index bLock]

000001: 000000000002 [points to next index leveL]

000000 177777

000000000000
000000000000
000000000000
000000000000
000000000000
000000000000
000000000000
000000000000

000002: ----------------------------- 000000000003
000000000000

000000 1777777

000000000000
000000000000'
000000000000
000000000000
000000000000
000000000000
000000000000
000000000000

DUMPING AN ISAM FILE WITH ISMDMP Page 3-4

000003: FILMORE SUSAN 000000000414 [points to data record]
----:H~I:TN:-::C~HE:-:Y:.:--:E~O-:r.SE::'L,;,......-------O~O'"OirliiO:'llll'O~O1:r..71rwi?1"III7-?7 (f; r s t reco rd ent e red]

000004:

000005:

LAWRENCE T.E. 000000000206
MUKLUK H. 000000000311
SAVOY JOHN 000000000103

177777177776 [indicates last record]
--------------~O~O~OO~O~O~O~OO~O~O~O

000000 044506

000000000000
000000000000
000000000000
[in used blocks, this number is
junk-- ignore it.]
000000000000
000000000000
000000000000
000000000000
000000000000
000000000000
000000000000
000000000000
000000000000
000000000000

000000 000005 [in unused blocks, points to next
-----------,;,......- free index block]

000000

[Etc.]

000006

000000000000
000000000000
000000000000
000000000000
000000000000
000000000000
000000000000
000000000000
000000000000
000000000000

CHAPTER 4

COMPRESSING INDEX FILES WITH ISMCOM

ISMCOM.PRG compresses the upper level of ISAM index files; this increases
access speed and may recover some storage room in the index file. To use
ISMCOM, enter:

.ISMCOM filespec[RET]

where filespec selects the index file you want to compress. The program now
reports its intended compression factor (initially based on 95%). If you
wish denser or looser compression, enter the percentage of compression you
want ISMCOM to use. If that value is valid for the file (based on the
number of entries per index block), the program proceeds; otherwise, it
reports the actual effective value and-allows you to enter a new value.- The
only way to get 100% compression is to enter 100. The program will not
accept input of a percentage of less than 50. (In actual practice, 50% can
be rounded down to, say, 47% in some cases.) Below is a sample ISMCOM
dialog:

~ISMCOM OATA.IOX[RET]

NOBOOY else may use this file while I'm processing it

I am planning to compress each block to at least 90 percent full
If that is not acceptable, enter the percentage you desire 16[RET)
It will actually work out to be 80 percent full
If that is not acceptable, enter the percentage you desire

No blocks unchanged, No blocks freed, No blocks compressed

Note that a compression factor of 100% will cause a block split the next
time a top level index is created. The number 95% was chosen as the optimum
compression factor for most files. At the end of the compression, ISMCOM
prints some statistics that tell you how much compression was done and how
much good it should do.

ISAM SYSTEM USER'S GUIDE

PART II

PROGRAMMING WITH ISAM

This section contains information on writing assembly language programs and
BASIC programs that use the ISAM functions to access and update ISAM files.
For information on writing assembly language programs on the AMOS system,
refer to the AMOS Assembly Language Programmer's Reference Manual,
(DWM-00100-43), and the AMOS Monitor Calls Manual, (DWM-00100-42). For
information on BASIC, refer to the ALphaBASIC User's Manual, (DWM-00100-01).

CHAPTER 5

USING ISAM FROM THE ASSEMBLY lANGUAGE lEVEL

NOTE: This section assumes that you are an experienced assembLy
Language programmer and that you are famiLiar with the ALpha Micro CPU
instruction set and the AMOS monitor caLLs. For information on these
topics, refer to the AMOS Assembly language Programmer's Reference
Manual, the WD16 Microcomputer Programmer's Reference Manual,
(DWM-00100-04), and the AMOS Monitor CalLs Manual.

The ISAM program is implemented as a FETCHable memory module which allows
the assembly language programmer easy access to the features of indexed
sequential files. (NOTE: FETCH is an AMOS monitor calL. Refer to the AMOS
Monitor Calls Manual for information on the routines within the operating
system (calLed "monitor calls") that have been made avai labLe to your
assembly language programs.) It is through the ISAM moduLe that high Level
languages such as BASIC gain access to indexed sequentiaL files. The ISAM
program is fuLLy re-entrant, and could therefore be made resident in system
memory if more than one user at a time is going to be using indexed
sequential fiLes.

The ISAM program itself takes up approximately 4K bytes of memory. In
addition to this space, another 1 to 4K bytes is required for each indexed
sequential file that you are processing. This memory space is usualLy
alLocated by the ISAM system using the GETMEM monitor calL; you may,
however, aLLocate your own buffer areas (see Section 5.2.2).

5.1 GENERAL CAllING SEQUENCE

The various ISAM subroutines are calLed via a dispatch table at the start of
the ISAM program. To make things easier, the file ISUSYM.MAC defines the
table offsets. This file aLso contains symboLs for the various return
codes. ALL table offsets begin with a period (e.g., .IelOS, the close
routine). All return codes have the general form IS.xxx (e.g., IS.EOF, the
end-of-fiLe return code). ISUSYM.MAC is designed to be COPYed by your
assembly language program.

USING ISAM FROM THE ASSEMBLY LANGUAGE LEVEL Page 5-2

To call the close routine (.ICLOS) with the base of the ISAM.PRG module
contained in register R4, use the following code:

CALL .ICLOS(R4)

in registers. Each call returns with a completion
return (IS.SUC) is indicated by a zero in RO; the
as condition codes or condition flags) on return

All arguments are passed
code in RO. A successful
indicators (also known
reflect success or error
branches on error).

status. The Z-bit is set if successful (BNE

5.2 INITIALIZING THE ISAM SYSTEM (.INIT)

Before your program can access an indexed sequential fiLe, you must telL the
ISAM system that you exist; this is done via the .INIT caLL. The .INIT caLL
alLocates space for the user's impure variables and does minor housekeeping
chores. NOTE: Your program calLs .INIT onLy once regardless of the number
of ISAM files that are to be opened.

5.2.1 CalLing Sequence

Parameters: R2
R3

R4, R5

User allocation routine address (optionaL)
User dealLocation routine address (optionaL)
Used to pass information to user memory
aLlocation routines (optional).

CALL .INIT(Rn)

Returns: RO
RS

Indicators

Completion code
User memory pointer
Z if no error

The user memory pointer that is returned in R5 is a pointer to your impure
area. This pointer is needed by alL other ISAM caLLs; if convenient, leave
it in R5 since all calls look for it there.

5.2.2 User Supplied ALlocation and Oeallocation Routines

In many cases, the program calling the ISAM program will do its own memory
management, and not want ISAM to use GETMEMs to do so. To allow you to do
your own alLocation, the .INIT call allows the passing of allocation and
deal location routine addresses. .INIT uses its ·own routines (which use
GETMEMs) if you pass a zero instead of an address.

The user allocation routine is called with the desired module size in R1.
The .INIT call expects the address of the assigned module to be returned in
R1. You may not modify any other registers.

USING ISAM FROM THE ASSEM8LY LANGUAGE LEVEL Page 5-3

The user deal location routine is called with the address of the module to be
deleted in R1. 00 not modify any other registers. If you pass a zero to
.INIT in R3, no deal location occurs.

The current version of ISAM allows you to move any of the modules that ISAM
requests as well as the ISAM program itself. ISAM is immune to such
movement as long as the user memory pointer (in R5) and the FPN (fiLe pair
number, see Section 5.6.1) associated with a given file are updated to show
any movement. (The FPN is usually in R1.)

5.3 FINALIZING ISAM PROCESSING (.IFIN)

When you are through processing indexed sequential file$, you must
.IFIN routine. This call deallocates any space used by ISAM
deal location routine has been provided; otherwise the modules
deleted untiL the job EXITs. (EXIT is an AMOS monitor call.)

5.3.1 Calling Sequence

Parameters: R5 User memory pointer

CALL .IFIN(Rn)

Returns: RO
Indicators

IS.SUC
Z if no error

call the
if a user
are not

The .IFIN routine cannot fail, therefore it always returns the successful
completion code in RO.

5.4 OPENING A FILE FOR PROCESSING (.IOPNR)

You must open an indexed sequential file via this call before you can
process the file in any way. Also use this call when opening a secondary
index file for processing a previously opened data file. If you execute
this call on a primary index file, the call also opens the associated data
file; if you execute the call on a secondary index file, the call opens the
index file only. Thus to process a data file with a secondary index file,
you must execute two .IOPNR calls: once to open the data file and primary
index file, and once to open the secondary index file.

USING ISAM FROM THE ASSEMBLY LANGUAGE LEVEL Page 5-4

5.4.1 Calling Sequence

Parameters: RO

R2

R5

Flags:
Bit <3> (decimal)

ISAM will open file in Exclusive Open
mode; otherwise, Counted Update mode is
used.

Bit <10> (decimal)
Operating system wiLL print system and
device error messages before returning.

Pointer to ASCII filespec string describ­
ing the index fiLe to be opened. If the
index file is a primary index, the data
file must have the same name.
User memory pointer

CALL .IOPNR(Rn)

Returns: RO
R1

Indicators

Completion code
Unique File Pair Number (FPN)
Z if no error

The fiLe pair number (FPN) is a pointer to the memory module that has been
allocated for the storage needed by this particular indexed sequential file.
The read, write, and deLete routines use the FPN to telL the ISAM program
which indexed sequential files to process of the ones you may have open.

If you must move the module alLocated by .IOPNR, you may do so as Long as
you also update the FPN.

5.5 CLOSING THE FILE AFTER PROCESSING (.ICLOS)

After you have finished processing a file, you must close it. The .ICLOS
calL does some housekeeping and aLso deallocates any space used by the file
if a user deaL location routine has been provided.

5.5.1 Calling Sequence

Parameters: R1
R5

File pair number (FPN)
User memory pointer

CALL .ICLOS(Rn)

Returns: RO
Indicators

Completion code
Z if no error

The fiLe pair number used in R1 is that value returned by .IOPNR.

USING ISAM FROM THE ASSEMBLY LANGUAGE LEVEL Page 5-5

5.6 LOCATING A FREE DATA RECORD (.IGTFR)

Use this call to get the relative record number of the next available data
record in the data fiLe.

5.6.1 CaLLing Sequence

Parameters:

Returns:

R1
R5

FiLe pair number CFPN) of primary index fiLe
User memory pointer

CALL .IGTFRCRn)

RO
R1

R2

Indicators

CompLetion code
Low-order reLative record number of the data
record
High-order reLative record number of the
data record
Z if no error

The FPN suppLied in R1 must refer to the primary index fiLe associated with
the data fiLe from which a free record is to be obtained.

5.7 DELETING A DATA RECORD C.IDLFR)

Use this calL to return a data record to the free record List.

5.7.1 CaLLing Sequence

Parameters:

Returns:

R1
R2

R3

FiLe pair number (FPN) of primary index, fiLe
Low-order reLative record number of the
data record
High-order reLative record number of the
data record

R5 User memory pointer

CALL .IDLFRCRn)

RO
Indicators

CompLetion code
Z if no error

The FPN supplied in R1 must refer to a primary index fiLe.

USING ISAM FROM THE ASSEMBLY LANGUAGE LEVEL Page 5-6

5.8 READING A DATA RECORD BY RELATIVE RECORD NUMBER (.IRLRD)

Use this call to read the data record pointed to by the relative record
number.

5.8.1 Calling Sequence

Parameters: R1

R2

R3
R4
R5

Low-order relative record number of the
data record
High-order reLative record number of the
data record
FiLe pair number (FPN)
Buffer address
User memory pointer

CALL .IRLRD(Rn)

Returns: RO
Indicators

CompLetion code
Z if no error

The FPN suppLied in R3 must refer to the primary index file associated with
the data file.

5.9 WRITING A DATA RECORD BY RELATIVE RECORD NUMBER (.IRLWT)

Use this calL to write or update the data record pointed to by the relative
record number.

5.9.1 CaLLing Sequence

Parameters: R1

R2

R3
R4
RS

Low-order relative record number of the
data record
High-ord.er relative record number of the
data record
FiLe pair number (FPN)
Buffer address
User memory pointer

CALL .IRLWT(Rn)

Returns: RO
Indicators

CompLetion code
Z if no error

USING ISAM FROM THE ASSEMBLY LANGUAGE LEVEL Page 5-7

5.10 FINOING A RECORO (.IREOR)

Use this call to use a symbolic key to find the relative record number of a
data record.

5.10.1 Calling Sequence

Parameters: R1

R3
R5

File pair number (FPN) of the desired index
file
Pointer to symbolic key
User memory pointer

CALL .IREOR(Rn)

Returns: RO
R1

R2

Indicators

Completion code
Low-order relative
record
High-order relative
record
Z if no error

record number of data
\

record number of data

The FPN supplied in R1 may refer to any open index file.

5.11 AOOING A SYMBOLIC KEY (.IWRTR)

Use this call to add a key entry to an index file given a user supplied data
record number.

5.11.1 Calling Sequence

Parameters: R1

R2
R3

R4

RS

File pair number (FP~) of desired index
file
Pointer to symbolic key
Low-order relative record number of the
data record
High-order relative record number of the
data record
User memory pointer

CALL .IWRTR(Rn)

Returns:
.",

RO
Indicators

Completion code
Z if no error

The FPN supplied in R1 may refer to any open index file. The relative

USING ,ISAM FROM THE ASSEM8LY LANGUAGE LEVEL Page 5-8

record number in R3- and R4 wi II usua lly be a record number returned by the
.IGTFR call.

5.12 OELETING A KEY (.IOELK)

Use this calL to deLete a key from an index fiLe.

5.12.1 CaLL ing Sequence

Parameters: R1

R3
R5

FiLe pair number (FPN) of desired index
file
Pointer to symboLic key
User memory pointer

CALL .IOELK(Rn)

Returns: RO
R1

R2

Indicators

CompLetion code
Low-order reLative record number of deLeted
key
High-order reLative record number of
deLeted key
Z if no error

The reLative record number in R1 and R2 refers to the data record associated
with the deLeted key within the index fiLe referred to by the suppLied FPN.
The data record is not deLeted in the data fiLe; do this by using the .IOLFR
caLL when you are sure that there are no keys Left in the index fiLe that
refer to that data record.

5.13 FINOING THE NEXT SEQUENTIAL KEY (.SREOR)

When printing reports or posting data, it is often usefuL to be abLe to go
through the records in the indexed sequentiaL fiLe in ascending key order.
The .SREOR caLL makes this possible; it returns the reLative record number
of the record that immediateLy foLLows the one returned by the Last caLL to
ISAM. It thus makes it possibLe to start sequentiaL processing by key
anywhere in the fiLe. To do so, use the .IREOR caLL to get the first key
you wish to use. Then, caLL .SREO,R to get the key following the one read by
.IREOR. You can get the next key by doing another .SREOR, ad infinitum. If
.IREOR does not find the key specified, the foLLowing .SREOR returns the
record with the key cLosest to (but greater than) the one not found. Thus,
to read the file from the very beginning, try to do a .IREOR with a key of
zero. This calL will almost always fail, but the following .SREOR grabs the
very first record in the fiLe.

I

USING ISAM FROM THE ASSEMBLY LANGUAGE LEVEL Page 5-9

If the file contains a key of all zero, the initial .IREDR will succeed and
that record should be processed as the first record before doing any
.SREDRs. When the file is initially opened by .IOPNR, it is set up so that
.SREDR gets the first key, unless the first key is all zero. Therefore it
is almost always possible to open the file and read it sequentially. Since
keys are expected to be ASCII, and an all-null key is not very sensible, the
various utilities assume that the first key is not zero. When the end of
the file is reached by the last .SREDR, the end-of-file (IS.EOF) completion
code is returned.

5.13.1 Calling Sequence

Parameters: R1
R3

R5

File pair number (FPN) of desired index
Contains 0 if symbolic key is not to be
returned; otherwise, R3 contains a pointer
to the location in memory that the returned
symbolic key is to be placed in.
User memory pointer

CALL .SREDR(Rn)

Returns: RO
R1

R2

Indicators

Completion code
Low-order relative record number of data
record
High-order relative record number of the
data record
Z if no error

NOTE: If you want ISAM to behave as in previous releases (that is, if you do
not want the symbolic key returned), be sure that R3 is cleared to zero
before your program calls .SREDR. Remember that if R3 is nonzero, ISAM will
return the symbolic key to the memory Location specified by the contents of
R3-- if R3 happens to contain invalid data, ISAM may damage important data
in memory.

(Changed 31 October 1981)

CHAPTER 6

STANOARO ISAM SYMBOLS FOR ASSEMBLY LANGUAGE PROGRAMMERS

We have provided a symboLs fiLe (ISUSYM.MAC> to make Life easier for the
assembLy Language programmer. This appendix describes the contents of that
fiLe. We have broken this information into two sections: 1. those offsets
used when invoking ISAM; 2. the compLetion codes returned by the various
ISAM functions.

6.1 CALLING SYMBOLS

The foLLowing symboLs define entry offsets in the ISAM package. See Section
5.1 of this manuaL for more information.

.INIT

.IFIN

.IOPNR

.ICLOS
• IGTFR
• IDLFR
.IRLRO

.IRLWT

.IREDR

• IWRTR
• IOELK
• SREDR

CaLL the initiaLization routine
CaLL the finaLization routine
CaLL the fiLe open routine
CaLL the fiLe cLose routine
CaLL the get free record routine •
CaLL the data record deletion routine •
CaLL the read data record via reLative record
number routine.
CaLL the write data record via reLative record
number routine.
CaLL the read returning reLative record number
routine.
CaLL the write using reLative record number routine •
CaLL the key deLetion routine •
CaLL the read sequentiaL reLative record number routine •

6.2 COMPLETION COOE SYMBOLS

The foLLowing symboLs name the compLetion codes returned in RO upon
compLetion of an ISAM caLL. ALways use these symboLs rather than their
vaLues in ISUSYM.MAC, since those vaLues couLd change in the future.

STANOARO ISAM SYMBOLS FOR ASSEMBLY LANGUAGE PROGRAMMERS Page 6-2

IS.SUC
IS.ONR

IS.RNF
IS.OPK
IS.LSS
IS.XFL
IS.AFL
IS.EOF

The successful completion code (will always be zero).
Parameters supplied do not match those in the
Directory Rock.
Record not found.
Attempt to add duplicate key.
Index file link structure is smashed.
Index file is full.
Data file is full.
End of file encountered on sequentiaG read.

An error code of 2 (handled by BASIC as a SYSTEM ERROR; which is why this
code was chosen) means either that something in ISAM or the ISAM file
structure is in error (as in a bug) or that you used an obsolete ISAM call.

CHAPTER 7

USING ISAM FROM WITHIN BASIC

The following pages are a brief summary of the BASIC ISAM commands that your
BASIC programs can use to access ISAM indexed sequential files. (Remember
that an indexed sequential file is made up of both an ISAM data file and at
least one ISAM index file.) For more information on the BASIC ISAM
functions and on BASIC itself, refer to the AlphaBASIC User's Manual,
(DWM-00100-01). The following discussions assume that you are already
familiar with opening and closing random files, and that you understand the
BASIC READ and WRITE statements. For more information on usinq fiLes, refer
to the AlphaBASIC User's Manual.

You must use the ISAM utility program ISMBLD to create an indexed sequential
file before your BASIC program can access it. Although no features exist
within BASIC to create an indexed sequential file, your BASIC program can
create and execute a command file that invokes ISMBLD with a list of fiLe
parameters. All data files must have an extension of .IDA and all index
files 'must have the .IDX extension.

Before you run your BASIC program, make sure that ISAM.PRG has been Loaded
into memory if the System Operator has not arranged to have ISAM.PRG
resident in system memory.

7.1 OPENING AN INDEXED SEQUENTIAL FILE

To open an ISAM indexed sequential index fiLe, use the BASIC OPEN command.
Your program must include an OPEN statement that assigns a fiLe channeL to
the indexed sequentiaL fiLe before the program makes any other references to
that fiLe.

This statement takes the same form as the OPEN statement for ordinary random
fiLes except that you must specify either INDEXED or INDEXED'EXCLUSIVE mode
rather than RANDOM mode. (Remember that your ISAM fiLes are random data
files. For information on using random fiLes, see Chapter 15 of the
AlphaBASIC User's Manual.) The OPEN statement takes this form:

OPEN #file-channel,filespec,mode,record-size,relative-record-number

USING ISAM FROM WITHIN BASIC Page 7-2

1. #fiLe-channeL - specifies the fiLe channeL you want to assign to
the indexed sequentiaL' fiLe. Any numeric expression that evaLuates
to an integer from 0-65535" CO is the user terminaU. This is the
number you reference when using the ISAM, READ, and WRITE
statements.

2. FiLespec The fiLespec is any string expression that evaLuates to
a LegaL AMOS fiLe specification. (It may optionaLLy incLude
account and device specifications.) It specifies the name, of the
indexed sequentiaL fiLe you created using ISMBLD (that is, the data
fiLe/primary index fiLe combination you buiLt) or specifies the
name of a secondary index file created with ISMBLO. (If the OPEN
statement refers to a secondary index fiLe, you must have
previousLy opened the corresponding data fiLe/primary index fiLe on
another fiLe channeL.)

Note that the primary index fiLe always has the same name as the
data file, but has a .IDX extension; the data fiLe has a .IDA
extension.

3. Mode - If you wish ISAM to access the indexed sequentiaL fiLe in
Counted Update mode, use the INDEXED keyword as the fiLe mode; if
you want ISAM to access the fiLe in ExcLusive Open mode, use the
keyword INDEXEO'EXCLUSIVE. (For information on Counted Update mode
and on Exclusive Open mode, see Section 1.3, "ISAM Access Modes.")

4. Record-size - An expression that specifies the logicaL record size
for read/write operations.

5. ReLative record number - A fLoating point variabLe that will hold
the reLative record number returned by an ISAM function. (See
Section 7.2, "The ISAM Statement.")

For an example of the use of the OPEN statement, refer to the sampLe BASIC
program at the end of this chapter. Below are severaL sample OPEN
statements:

220 OPEN #1, "LABELS", INOEXED, RECSIZE, RELKEY1
230 OPEN #2, "HASH", INOEXED-, RECStzE, RELKEY1

The two program Lines above assume that there exists a data fiLe named
LABELS.IOA and a primary index fiLe named LABELS.IDX. Line 220 opens that
indexed sequentiaL fiLe. Line 230 opens a secondary index fiLe associated
with LABELS. IDA. Note that RECSIZE and RELKEY1 are identicaL for both OPEN
statements; this is because both OPEN statements refer to the SAME data
fiLe, LABELS.IDA. The RECSIZE and RELKEY1 are used by subsequent READ and
WRITE commands to access the data fiLe.

I

USING ISAM FROM WITHIN BASIC Page 7-3

7.2 THE ISAM STATEMENT

The purpose of the ISAM statement is to allow you to use the ISAM program
from within your BASIC program to: 1. find a record in the data file by
symbolic key (returning the relative record number in the variable specified
by the indexed sequential file OPEN statement); 2. find the next data record
(by the order in which the symbolic keys occur in the index file); 3. add a
symbolic key to an index file; 4. delete a symbolic key from an index file;
5. locate next free data record in data file (returning relative record
number in the variable specified by the appropriate OPEN statement); 6.
delete a record from a data file, and return that record to the free List;
and, 7. find the next data record (by the order in which the symboLic keys
occur in the index file) and return the symbolic key.

The ISAM statement follows this form:

ISAM #file-channel, code, symbolic-key

1. #file-channel Specifies the file channel assigned by an OPEN
statement to either the data file/primary index file or the
secondary index file (depending on which set of symbolic keys you
want to access).

2. Code - A numeric vaLue that seLects one of the functions mentioned
above. May be any legaL numeric expression which is resoLved at
runtime.

3. Symbolic-key - Specifies the symbolic key to be used in locating a
data record. You must always specify a symbolic key even if a
function does not require the use of one. (This simplifies syntax
checking.) If you wish, you may use a dummy string variable in such
cases.

7.2.1 ISAM Statement Codes

The ISAM statement can perform six different functions. You may seLect one
of these functions by suppLying the appropriate code number (see beLow) to
the ISAM statement. An error will result if you do not supply a valid code
number.

Some of the functions below require a reLative record number as input;
others return a reLative record number to be used when your READ and WRITE
statements access the data file. In either case, the ISAM functions pass
the relative record number in the variabLe specified in the OPEN statement
for the data fiLe/primary index file. READ and WRITE statements also use
that variable for locating the data fiLe record that they are going to
access. Remember that the ISAM statement does not directLy access the
data file. Instead, it gives you the information you need to access the
data file yourself using the reLative record number returned by ISAM.

(Changed 31 October 1981)

USING ISAM FROM WITHIN BASIC Page 7-4

CODE 1 - Searches the index fiLe seLected by #fiLe-channeL for the key
that matches the symboLic-key. If it finds a match, it returns the
reLative record number of the data fiLe record containing that key.
If it does not find a match, it returns an error code 33 in ERF(X).
(See Section 7.5, "Error Processing").

CODE 2 - Accesses the index file selected by #file-channel and finds
the next symboLic key. Returns the reLative record number of the data
fiLe record associated with that symboLic key in preparation for a
READ or a WRITE to the data fiLe. If this is the first access to the
fiLe after the OPEN statement, it finds the first symboLic key in the
index fiLe. If this function follows a previous code 1 statement, the
function finds the next symboLic key after the code 1 symboLic key.
If there are no more keys in the index file, the function returns an
end-of-index-fiLe error (38): make no further accesses to the data
fiLe untiL you make another ISAM calL that returns a valid reLative
record number.

CODE 3 - Adds the specified symboLic key to the index fiLe seLected by
#fiLe-channeL. ALso adds the reLative record number specified by the
variabLe in the OPEN statement. You wiLL usually set this reLative
record number just prior to the code 3 caLL by using a code 5 ISAM
statement. (A code 5 caLL returns the reLative record number of the
next free data record.)

CODE 4 - DeLete the specified symboLic key from the index fiLe
seLected by #file-channeL. This function returns the corresponding
reLative record number so that you can use a code 6 ISAM statement to
deLete the data record and return it to the free List. If the
function cannot find the symboLic key in the index file, it returns a
"?Record not found" error (33).

CODE 5 - Finds the next availabLe data record on the free List. (The
free List is a Linked List that keeps track of aLL avaiLabLe records
in the data file. ISMBLD initialLy buiLds the free List.) Returns the
reLative record number of that record so that you can use a code 3
ISAM statement to add a symboLic key/reLative record number pair to
the index fiLe. If no more data records are free in the data fiLe,
the function returns a "?Data fiLe fuLL" error. A code 5 ISAM
statement does not modify the index fiLe; it simpLy Locates the next
free record in the data fiLe. The function ignores the symboLic key
in the ISAM statement. The #fiLe-channeL in the code 5 ISAM statement
must be the fiLe channeL assigned to the primary index fiLe.

CODE 6 - Returns to the free List the data record
reLative record number in the OPEN statement.
index fiLe. The #fiLe-channeL in the code 6 ISAM
the fiLe channeL assigned to the primary index
ignores the symboLic key in the ISAM statement.

(Changed 31 October 1981)

specified by the
Does not modify the
statement must be

fiLe. A code 6 caLL

USING ISAM FROM WITHIN BASIC Page 7-4A

CODE 7 - Accesses the index file selected by #file-channel and finds
the next symbolic key. Returns the relative record number of the data
file record associated with that symbolic key in preparation for a
READ or a WRITE to the data file. If this is the first access to the
file after the OPEN statement, it finds the first symbolic key in the
index file. If this function follows a previous code 1 statement, the
function finds the next symbolic key after the code 1 symbolic key.
If there are no more keys in the index file, the function returns an
end-of-index-file error (38): make no further accesses to the data
file until you make another ISAM call that returns a valid relative
record number.

NOTE: This code performs exactly the same function as code 2 above,
except that it returns the symbolic key as well as the relative record
number.

It is very important that the symbolic 'key variable that appears in
your code 7 ISAM statement be the same size as or larger than the key
defined in the ISAM index file. If the variable is smaller than the
key, data following the symbolic key in memory will be overwritten,
damaging your running program.

(Changed 31 October 1981)

USING ISAM FROM WITHIN BASIC Page 7-5

7.3 READING AND WRITING DATA IN AN ISAM DATA FILE

ISAM statements do not access data records, but instead return their
reLative record numbers. To actuaLLy read or write data records, you must
use the BASIC READ and WRITE commands. When you read or write data in a
specific ISAM data fiLe, BASIC seLects the record to be accessed by
referring to the reLative record number variable in the OPEN statement for
that fi leo

READ #fiLe-channeL, variabLe1, variabLe2, ••• variabLeN

WRITE #fiLe-channeL, variabLe1, variabLe2, ••• variabLeN

The #fiLe-channeL in the ftFAO or WRITE statement MUST be the fiLe channeL
that appears in the OPEN statement for the primary index fiLe you want to
access. The reLative record number variabLe in the OPEN statement must
contain a vaLid reLative record number or an error wiLL resuLt.

7.4 CLOSING FILES

To ensure that ISAM has rewritten aLL data records to the data fiLe and that
it has properLy updated aLL links in the index fiLe, it is VERY impqrtant
that you cLose aLL index files (primary and secondary) via the normaL CLOSE
statement. FaiLing to cLose the fiLe when you are through with it may
destroy the Linking structure of the indexed sequentiaL fiLe. The CLOSE
statement takes the form:

CLOSE #fiLe-channeL

where #fiLe-channeL is the fiLe channeL assigned to the fiLe you want to
cLose For exampLe:

CLOSE #2

where fiLe channel #2 was assigned to an indexed sequentiaL fiLe by a
previous OPEN statement. Remember to cLose both primary and secondary index
fiLes. NOTE: The order in which you cLose the ISAM fiLes makes no
difference; however, remember that you cannot access a secondary index fiLe
if you have aLready cLosed the primary index fiLe/data fiLe.

7.5 ERROR PROCESSING

Any ISAM operation can resuLt in some kind of error. If the error is a
system error (for exampLe, the disk is not mounted), BASIC interrupts your
program and aborts to the monitor, (Or, if error trapping is enabLed, BASIC
transfers controL to your error handLing routine.) For information on
deaLing with the usual system errors (e.g., "?FiLe not found" or "?Disk not
mounted") refer to the ALphaBASIC User's ManuaL, in particuLar the section
titLed "Error Trapping."

USING ISAM FROM WITHIN BASIC Page 7-6

SpeciaL ISAM errors can aLso occur as a resuLt of an ISAM operation. These
errors do not generate an error message or resuLt in an error trap. It is
therefore very important that your program check for these errors after
every ISAM statement; otherwise, you have no way of knowing whether or not
the ISAM function was performed successfuLLy. To do so, use the ERF(X)
function, where X is the fiLe channeL number used by the preceding ISAM
statement. (The ERF(X) function operates in much the same way as the EOF(X)
function.)

If ERF(X) returns a zero, the preceding ISAM statement was successfuL. If
ERF(X) returns a nonzero vaLue, then an error was detected. If an error
occurred, your program shouLd correct the probLem before going on to access
the file. The nonzero vaLue returned telLs you which error occurred. For
exampLe:

! If a "Record not found" error (#33), go to routine that asks for new key.
100 IF ERF(2)=33 THEN PRINT "RECORO NOT FOUNO" : GOTO PROMPT

The current ISAM error codes are:

32 - ILLegaL ISAM statement code.
33 - Record not found in index file search.
34 - Duplicate key found in index file during attempted key addition.
35 - Link structure is smashed and mustt be re-created.
36 - Index file is full.
37 - Data file is fuLL (free List is empty).
38 - End of fiLe during sequentiaL key read.

REMEMBER: Always check after performing an ISAM function to see if an error
occurred. If you do detect an error, your program must take corrective
action before continuing on.

7.6 USING THE ISAM FUNCTIONS WITHIN A BASIC PROGRAM

Below are some exampLes of the ways you can combine the ISAM statements and
other BASIC commands to access and use indexed sequentiaL fiLes. For a Look
at a sampLe ISAM prgram, turn to Section 7.7.

7.6.1 Adding Data to an Indexed Sequential File

At the time that you use ISMBLO to create an indexed
have the option of loading data into the ISAM data and
from an ordinary sequential data fiLe. Your BASIC
data to the indexed sequential file by using code
statements. For each new data record to be added:

sequential file, you
primary index file

programs may aLso add
5 and code 3 ISAM

1. Open the indexed sequential file with an OPEN statement. For
exampLe:

USING ISAM FROM WITHIN BASIC Page 7-7

OPEN #1,"PHONES",INOEXEO,RECSIZE,RELKEY

Remember to open any secondary index files that you might want to
use via separate OPEN statements on different file channels.

2. Use a code 1 statement to see if the index entry you want to add
already exists. For example:

ISAM #1, 1, NAME

Check to see if an error was returned. For example:

IF ERF(1) = 0 THEN PRINT "Ouplicate Name." : GO TO GET'NAME

(If no error occurred, then the index entry already exists and you
can't add it.) If you are using secondary index files, also check
to see that the secondary index entries don't already exist.

3. Retrieve the next free data record (a code 5 ISAM statement). For
example:

ISAM #1, 5, OUMMY

Check to make sure that an error (e.g., 37 - "?Oata file is full
(free list is empty)" did not occur. For example:

IF ERF(1) <> 0 THEN GOTO ISAM'ERROR

4. If no error occurred, the record number of the next free record is
in the reLative record number variabLe defined by the OPEN
statement for the indexed sequentiaL fiLe. Now you can write the
data into the record by using a WRITE statement. For exampLe:

WRITE #1, INFO

5. Now you must add the symbolic keys for that data record to the
index fiLes, using a code 3 statement. (Those symboLic keys wiLL
then Link to that data record.) Be sure to check for an ISAM error
after each addition.

6. After adding aLL data records, cLose the ISAM fiLes. For exampLe:

CLOSE #1
CLOSE #2

CLose primary index fiLe/data fiLe
CLose secondary index fiLe

USING ISAM FROM WITHIN BASIC Page 7-8

7.6.2 Reading Oata Records in Symbolic Key Order

ISAM stores symbolic keys in the index fiLe in ASCII coLLating sequence. To
retrieve records in the order in which their keys appear in an index fiLe:

1. Open the indexed sequentiaL fiLe with an OPEN statement. (If you
aLso wish to open one or more secondary index fiLes that
cross-index to the primary index fiLe, use one OPEN statement for
each secondary index fiLe.)

2. Execute a code 2 ISAM statement to find the next symboLic key.

3. Check to make sure that the ISAM statement didn't return an error.
For exampLe:

IF ERF(1) = 38 THEN PRINT "End of file." GOTO PROMPT
IF ERF(1) <> 0 THEN GOTO ISAM'ERROR

4. The proper record number is now in the reLative record number
defined by the OPEN statement for the fiLe, so you can use a REAO
statement to read in the data. For exampLe:

READ #1, INFO

(Remember that the REAO statement must incLude the fiLe channeL
assigned to the primary inde~ fiLe even if the code 2 ISAM
statement incLuded a symbolic key contained in a secondary index
file; this is because the data you want to read is in the data
file.)

5. Check for an end-of-file error by using the ERF(X) function.

6. Repeat these procedures to step through the data records in the
order of the symbolic keys in the index files untiL you reach the
end of the file, or until you have accessed alL the records you

-need. Be sure to check for an ISAM er~or after each access.

7. Close all files when you are done.

7.6.3 Reading Oata Records Randomly by Symbolic Key

1. Open the indexed sequential file with an OPEN statement. You must
include one OPEN statement for the data file/primary index fiLe.
You must also incLude one OPEN statement for each secondary index
file you want to access.

USING ISAM FROM WITHIN BASIC Page 7-9

2. Locate each data record by using a code 1 [SAM statement. The
statement must contain the symboLic key associated with the record
for which you are searching and the fiLe channeL associated with
the index fiLe containing the symboLic key.

3. Check for a "record not found" error; this indicates that the
symboLic key was not Located in the specified index fiLe.

4. If the record was found, use a READ statement to read in the data
record. (The READ statement incLudes the fiLe channeL associated
with the data fiLe/primary index fiLe, even if the symboLic key
used beLonged to a secondary index fiLe.)

5. Repeat steps 2 through 4 for each record you want to find.

6. CLose aLL files.

7.6.4 Updating Data Records

1. Open the indexed sequentiaL fiLe with an OPEN statement.

2. Locate the data record you want to update via one of the methods
above (i.e., by using a code 1 or code 2 ISAM statement).

3. Check to make sure that the record was found. (Use the ERF
function.)

4. Use a WRITE statement to update the data record. (The WRITE
statement incLudes the fiLe channel associated with the data
fiLe/primary index fiLe, even if the symboLic key used to find the
record beLonged to a secondary index fiLe.)

5. This operation does not change the index fiLes, so do not change
the symboLic key in the record you rewrite. If you need to aLter
data that is part of a symboLic key, you must deLete the key in the
correct index fiLe (a code 4), and then add the new key to the
index fiLe (code 3). You do not need to delete and re-create the
data record during this operation unLess you are entering
compLeteLy new data.

6. CLose aLL fiLes.

USING ISAM FROM WITHIN BASIC Page 7-10

7.6.5 DeLeting a Data Record

DeLeting a data record from an indexed sequentiaL fiLe entaiLs not onLy
deLeting the record itseLf but aLso deLeting aLL symboLic keys associated
with that data record from aLL index fiLes.

1. Open the primary index fiLe and aLL secondary index fiLes needed.

2. Locate the data record via one of the symboLic keys (a code 1 ISAM
statement).

3. Check to make sure that the statement executed without error. For
exampLe:

IF ERF(Z) = 33 THEN PRINT "Record not found." GOTO PROMPT
IF ERF(2) <> 0 THEN GOTO ISAM'ERROR

4. Read the data record with a READ statement (whose #fiLe-channeL is
the fiLe channeL number associated with the primary index fiLe).

5. Extract each symboLic key from that data record. Use each symboLic
key to deLete each key from its associated index fiLe with code 4
ISAM statements.

6. After aLL symboLic keys have been deLeted from aLL index 1iLes_
deLete the record itseLf via a code 6 ISAM statement.

7. CLose aLL fiLes.

NOTE: A good way to check the structure of the indexed sequentiaL fiLe might
be to store the reLative record number in another variabLe; then compare the
reLative record numbers returned by each code 4 ISAM statement to check that
the symboLic keys did indeed aLL Link to the correct data record. You
shouLd aLso check each ISAM statement for any possibLe error that might
otherwise go unnoticed.

USING ISAM FROM WITHIN BASIC Page 7-11

7.7 SAMPLE ISAM PROGRAM

The sampLe program beLow wiLL make cLearer the use of the commands discussed
above. For more information on using ISAM from within a BASIC program,
consuLt the manuaL ALphaBASIC User's ManuaL.

Before we can begin to use ISAM, we must Load it into memory if it is not
aLready resident in system memory:

.LOAD SVS: ISAM.PRG[RET]

Before we run the sampLe program beLow, we first use the program ISMBLO to
buiLd the ISAM fiLes LABELS.IOA (the data fiLe), LABELS.IOX (the primary
index fiLe), and HASH.IOX (the secondary index fiLe). Note that we buiLd ftn
empty fiLe (i.e., we type a RETURN after the "Load from fiLe:" prompt). We
use the BASIC program beLow to pLace data into the fiLe •

• ISMBLO LABELS[RET]
Size of key: 25[RET]
Position of key: 1(RET]
Size of data record: 67~ET]
Number of records to aLLocate: 50[RETJ
Entries per index bLock: 10[RET]
Empty index bLocks to aLLocate: 20[RETJ
Primary Directory: V[RETJ
Data fiLe device: [RETJ

Load from fi Le: [RET)

• I 5MBLO HASH [RETJ
Size of key: 10[REr)
Pos it i on of key: 5atRET] .
Size of data record: 67(RETJ
Number of records to aLLocate: 50~ET)
Entries per index bLock: 10[RET]
Empty index bLocks to aLLocate: 20~ET]
Primary Directory'? N[RET)

Secondary index to fiLe: LABELS(RET]
End of primary fiLe
No records Loaded

Now we can run our sampLe program:

• RUN MA ILlRET]

~'

\

USING ISAM FROM WITHIN BASIC Page 7-12

SAMPLE BASIC ISAM PROGRAM

10 ISAM Sample Program.
20
30
40
50
60
70

J This program is a simple example of how to handle ISAM files, both
primary and secondary. It simulates a very simple-minded mailing
list program, with the addresses keyed by both name and user
defined hash code.

80 Oefine the Mailing List file record.
90
100 MAP1 LABEL
110 MAP2 NAME,S,25
120 MAP2 AOORESS,S,25
130 MAP2 STATE,S,2
140 MAP2 ZIP,S,5
150 MAP2 HASH,S,10
160
170 Oefine record sizes.
180
190 MAP1 RECSIZE,F,6,67 ! Size of data record.
200
210
220
230
240
250
260
270

280
290
300
310
320
330
340
350
360
370
380
390
400
410
415
420
430
440
450
460

Open the primary and secondary files.
OPEN #1, "LABELS", INOEXEO, RECSIZE, RELKEY1
OPEN #2, "HASH", INOEXEO, RECSIZE, RELKEY1

PROMPT:
PRINT
INPUT "ENTER FUNCTION &

(1 =AOO ,2=OELETE,3=INQU IRE,4=PR INT ,99=ENO): "; FUNCTION
ON FUNCTION GOTO AOO'RECORO,OELETE'RECORO,INQUIRe'RECORO,PRINT'LABELS
IF FUNCTION=99 THEN GOTO ENO'IT
GOTO PROMPT

AOO'RECORO:
INPUT "ENTER NAME: "; NAME
INPUT "ENTER AOORESS: "; AOORESS
INPUT "ENTER STATE: "; STATE
INPUT "ENTER ZIP: "; ZIP
INPUT "ENTER HASH: "; HASH

Add Trailing blanks to the keys.
NAME = NAME + SPACE(25-LEN(NAME»
HASH = HASH + SPACE(10-LEN(HASH»

Look up name to verify that it is not
ISAM found the key in the data file.)

ISAM #1, 1, NAME
IF ERF(1) = 0 THEN PRINT "OUPLICATE

Verify that hash is not a duplicate.
ISAM #2, 1, HASH
IF ERF(2) = 0 THEN PRINT "OUPLICATE

a duplicate. (If ERF(1)=O, then

NAME" GOTO AOO'RECORO

HASH" GOTO AOO'RECORD

USING ISAM FROM WITHIN BASIC

470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770

Get free data record from primary file and write record out.
ISAM #1, 5, NAME
IF ERF(1) <> 0 THEN GOTO ISAM'ERROR
WRITE #1, LABEL

Add key to primary index file.
ISAM #1, 3, NAME
IF ERF(1) <> 0 THEN GOTO ISAM'ERROR

Add key to secondary index file.
ISAM #2, 3, HASH
IF ERF(2) <> 0 THEN GOTO ISAM'ERROR
GOTO PROMPT

DELETE'RECORD:
INPUT "ENTER NAME: "; NAME
NAME = NAME + SPACE(25-LENCNAME»

Verify that the key exists.
ISAM #1, 1, NAME
IF ER F (1) = 33 THEN PR I NT "RECORD NOT
IF ERF(1) <> 0 THEN GOTO ISAM'ERROR
READ #1, LABEL

Delete the key from the primary index.
ISAM #1, 4, NAME
IF ERF(1) <> 0 THEN GOTO ISAM'ERROR

Delete the key from the secondary index.
ISAM #2, 4, HASH
IF ERF(2) <> 0 THEN GOTO ISAM'ERROR

Delete the data record in data file.
ISAM #1, 6, NAME
IF ERF(1) <> 0 THEN GOTO ISAM'ERROR
GOTO PROMPT

780 INQUIRE'RECORD:

FOUND"

790 INPUT "BY NAME (1) OR HASH (2): "; FUNCTION
800 IF FUNCTION = 2 THEN GOTO BY'HASH
810 INPUT "NAME: "; NAME
820 NAME = NAME + SPACE(25-LEN(NAME»
830 Locate the record.
840 tSAM #1, 1, NAME
850 IF ERF(1) = 33 THEN PRINT "RECORD NOT FOUND"
860 IF ERF(1) <> 0 THEN GOTO ISAM'ERROR
870 Read the record.
880 READ'RECORD:
890 READ #1, LABEL
900 PRINT NAME, HASH
910 PRINT ADDRESS, STATE, ZIP
920 GOTO PROMPT

GOTO PROMPT

GO TO PROMPT

Page 7-13

USING ISAM FROM WITHIN BASIC

930 ! Locate record by hash~code.
940 BY·' HASH:
950 INPUT "HASH: "; HASH
960 HASH = HASH + SPACE(10-LEN(HASH»
970 ISAM #2, 1, HASH
980 IF ERF(2) = 33 THEN PRINT "RECORO NOT FOUND" GOTO PROMPT
990 IF ERF(2) <> 0 THEN GOTO ISAM'ERROR
1000 GOTO READ'RECORD
1010
1020 PRINT'LABELS:
1030 Read null key to get to front of file.
1040 NAME = SPACE(2S)
1050 ISAM #1, 1, NAME
1060 Loop thru file doing sequential reads until we hit the end.
1070 LOOP:
1080 ISAM #1, 2, NAME

Page 7-14

1090 IF ERF(1) = 38 THEN GOTO PROMPT We hit end-of-fiLe.
1100 IF ERF(1) <> 0 THEN GOTO ISAM'ERROR
1110 READ #1, LABEL
,1120 PRINT
1130 PRINT NAME, HASH
1140 PRINT ADDRESS, STATE, ZIP
1150 GOTO LOOP
1160
1170 END' IT:
1180
1190
1200
1210
1220
1230
1240
1250

Be sure and
CLOSE #1
CLOSE #2
ENO

cLose files before we exit.

ISAM'ERROR:
PRINT "?FATAL ISAM ERROR"
ENO

ERF(X) returned an ISAM error
other than RECORD NOT FOUND.

ISAM SYSTEM USER'S GUIOE Page Index-1

Index

Adding data records · · · · · · · 7-6
Adding symbolic keys 5-7, 7-4
AMOS monitor calls 5-1

COpy · · • • · · · · · 5-1
EXIT . · · · · • • • 5-3
FETCH . · · · · · · • · 5-1
GETMEM · · · • 5-1 to 5-2

BASIC
Adding data records · · 7-6
Closing fi les · · · · · · · · · 7-5
OeLeting data records · · · · · 7-10
ERF (X) · · · · · · · · · 7-4, 7-6
Error processing · · · · · 7-5
ISAM codes · · • · 7-3
ISAM error codes • · · · · 7-6
ISAM statement · · · · · 7-3
OPEN statement · · · · 7-1
Opening an ISAM file · · • 7-1
REAO statement · · 7-3, 7-5
Reading data records 7-8
Sample ISAM program · 7-11
Updating data records 7-9
WRITE statement · 7-3, 7-5

Block spl it · · · · · 2-5

CLosing ISAM fi les · · · · 1-6, 5-4, 7-5
Code . . · · · · • · • · · • 7-3
Completion codes · · · · 5-2, 6-1

IS .EOF · · · · · · · · · · 5-9
IS.SUC · · · · · • · 5-2

Compressing index fi les · · · 4-1
Compression factor · · · · · 4-1
Condition codes · · · · · · · • · 5-2
Condition flags · · 5-2
Contiguous file · · · · · · · 1-4
Counted update mode · 1-5, 5-4, 7-2
C reat ing ISAM fi Les · · · · 2-1, 7-1'

Oata file · · · · · · • · · • · · 1-2 to 1-4
Oeleting data records · • 5-5, 7-4, 7-10
Oeleting symbolic keys 5-8, 7-4
Oirectory Rock · · · · · 1-4

ISAM SYSTEM USER'S GUIOE

Oisplaying the data fiLe
OispLaying the index fiLe. . . .
ERF function ••••••••
Error processing • • ••••
ExcLusive open mode. • •••

FiLe channeL •••
FiLe int~rLockin9 ••••••••
FiLe pair number ••••••••
FiLe parameters •••••••••
FiLespec ••••• . .
FinaLizing ISAM processing •••
Finding data records
Finding free data records ••••
Finding symboLic keys ••
Finding the next key

Index file •• • •••
Index LeveLs ••••••••••
INOEXEO • • • • • •••
Indexed sequentiaL fiLe ••

Oata fi le • • ••••
Index fiLe ••••

INOEXEO'EX~LUSIVE ••••••••
Indicators ••••••••
InitiaLizing ISAM ••
{SAM ••• • • • • • • • •
ISAM access modes ••••
ISAM caLLs •••••

.ICLOS ••• • ••••••

.IOELK •••

.IOLFR •••••••

.IFIN •••••••••••••

.IGTFR ••••••

.tNIT ••••• ! •

• IOPNR ••••••••
.IREOR ••••••••••
.IRLRO •••••
.I~LWT ••••••••
.IWRTR •••••••••
.SREOR •• • ! •••

ISAM codes ••••••
ISAM error codes ••••••••
ISAM fiLe extensions

.IOA ••••••••

.IOX •••••••••••••
• lOY It...... ~

ISAM statement ••• ,.
ISMBLO •••••••••••••
ISMCOM •••••••••••
I SMOMP • • • • • • • • • • •
ISMFIX •••••••••

3-2
3-2

7-4
7-5
1-5 to 1-6, 5-4, 7-2

7-1
1-5
5-3
2-2
7-2
5-3
5-7,
5-5,
7-4
5-8,

1-2
1-4
7-2
1-3
1-3
1-3
1-6
5-2
5-2
1-1
1-5
5-1,
5-1,
5-8
5-5
5-3
5-5
5-2
5-3
5-7
5-6
5-6
5-7
5-8
7-3
7-6

1-4
1-5
1-6
7·d

to 7-3
to 1-6
to 5-4

7-4
7-4

7-4

to 1-3

6-1
5-4

to 5-8

1-3, 2-1, 7-1, 7-11
4-1
3-1
1-8

Pag~ Index-2

ISAM SYSTEM USER'S GUIOE

ISUSYM.MAC

Loading ISAM fiLes

Memory
Memory
Memory
Mode

aLLocation routine ••••
deaLLocation routine.
requirements.

Opening ISAM fiLes

Primary index fiLe

Reading data records
Record size
ReLative key · · . . ReLative record number . · · . . Return codes . · •

SampLe BASIC ISAM program ••••
SampLe ISMBLO diaLog
Secondary index fiLe ••••
Suppressing ExcLusive Open mode.
SymboLic key •••

TabLe offsets

UnLoading ISAM fiLes ••••••
Updating data records ••••••

Writing data records

5-1

2-1

5-2
5-2
5-1
7-2

5-3, 7-1

1-3 to 1-4

5-6,
7-2
1-2
1-2,
5-1

7-11
7-11

7-8

7-2

1-3 to 1-4
1-6, 2-4, 3-1
7-3

5-1

3-1
5-6, 7-9

5-6

Page Index-3

IARE PUBLICATIONS FILE REFERENCE NUMBER: ISAM System User's Gui

SOFTWARE DOCUMENTATION READER'S COMMENTS

reclate your help In evaluattng our documentation efforts. Please feel free to attach addItIonal comments. If you requIre a wrttten response, check hE

NOTE' ThIs form IS for comments on software documentatIon only. To submIt reports on software problems, use Software
Performance Reports (SPRs), avaIlable from Alpha MIcro.

:omment on the usefulness, organIzatIon, and clartty of thIs manual.

J fInd errors In thIs manual] If so, please specIfy the error and the number of the page on which It occurred.

tnds of manuals would you like to see tn the future?

ndicate the type of reader that you represent (check all that apply):

o Alpha MIcro Dealer or OEM

o Non-programmer, UStng Alpha MIcro computer for:

o BusIness applIcatIons
o EducatIon applicatIons
o SCIentIfIc applIcatIons
o Other (please specIfy).

o Programmer
o Assembly language
o HIgher-level language
o Expertenced programmer
o LIttle programmIng expertence
o Student
o Other (please specIfy).

__ DATE: ________ --__________ __

__ PHONENUMBER: ____________________ ___

~IZATION: __ ----------______________________ __

ESS· __ ----__ __

__ STATE: ____________________ ZIPORCOUNTRY: ______________ _

~PLE

FOLD

,"
I ,
I , , , ,
!

. ~

alpha
micro

rN: SOFTWAaE DEPARTMENT

17881 Sky Park North
Irvine, California
92714

PLACE
STAMP
HERE

. ~ . ~
FOLD

w
Z

-'
CJ
Z o
-' «
~
=> u

',\,

,"""

"

.'-:

"'.If,

-t,:" ': , ,

\, '

,,','

\"
" ',' " '

, ~ , ': <,'

, "

'.,' " '",<

