SOFTWARE MANUAL

AMOS
MONITOR CALLS

DWM-0010042
REV. BOO

alpha
micro

FTWARE MANUAL

AMOS
MONITOR CALLS

DWM-0010042
REV. BOO

alpha
micro

AMOS MONITOR CALLS MANUAL

First printing: 1978
Second printing: 1979
Third printing: 30 April 1981

C-2MD-4/81

'Alpha Micro', 'AMOS', 'AlphaBASIC', 'AM-100',
'AlphaPASCAL', 'AlphalLISP', and 'AlphaSERV'

are trademarks of

ALPHA MICROSYSTEMS
Irvine, CA 92714

This manual reflects AMOS version 4.5 and Llater.

©1981 - ALPHA MICROSYSTEMS

ALPHA MICROSYSTEMS
17881 Sky Park North

Irvine, CA 92714

Page i1

=S

AMGS MONITOR CALLS MANUAL Page iii

PREFACE

One of the major features of the AMOS operating system is the large number
of monitor calls aveilable to the assembly languace programmer. By making
most common routines available 1in the monitor, AMOS frees the programmer

from having to repetitively write the same routine. This manual describes
these monitor calls.

We assume that the reacder of this manual is familiar with assembly language
programming and the AM-1C0 instruction set. We a2lso assume that the reader
is familiar with the AM-1C0 macro assembly system described in the AMOS
Assemhly Language Programmer's Reference Manual (DWM-00100-43). This
reference manual 1s most emphatically NCOT a tutorial on assembly language
programming. Many such tutorials exist; if you are just Llearning assembly
language, you should consult such a book before reading this manual.

Page v

AMOS MCNITOR CALLS MAMUAL
Table of Contents
CHAPTER 1 COMMUNICATING WITH THE AM-100 MONITOR
7.1 MONTTOR CALL CALLING FORMAT ..vcvevecccoccnnna 1-1
T.1.7 ArguMENtS civeeeceanceevennceacacnannens 1-1
1.1.2 Standard Address ArgumentsSeeeeee.. 1-2
CHAPTER 2 JOB SCHEDULING AND CONTROL SYSTEM
2.1 THE JOB CONTROL BLOCK (JCB) .uvevencccccnanens 2-1
. 2.1.1 Example - Scanning The Job
Control Area ..cieeececcenccaccacencas 2-2
2.2 ACCESSING YOUR JCB teceveuenascccanaaacacnnana 2-3
2.2.1 Calling SEQUENCE ..eeneeveenncccncaanns 2-3
2.3 JOB SCHEDULING CALLS t.ceeeeeeenceannccanccans 2-3
2.2.1 SLEEP = PUT JOB TO SLEEP +vevvecenaenan 2-3
2.3.2 WAKE — WAKE UP JOB .reveoneencccnnaannna 2-4
2.4 JOB CONTROL BLOCK FORMAT .sucieccecnccanancanes 2-4
2.4.1 JOBSTS - The Job Status Wordeeea.. 24
2.4.2 JOBSPR - The Stack Pointer Reset
Address ..uceecececancncacaes 2-5
2.4.3 JOBNAM - The Job Name ..ceeenneencecaaen 2-5
2.4.4 JOBBAS - The Memory Base Address ?2-5
2.4.5 J0OBSIZ - The Memory Partition Size 2-5
2.4.6 JOBUSR - The Current PPN .teeeeceanceans 2-6
2.4.7 JOBPRV = The Privilege Word ..ceeeeeee. 2-6
2.4.8 JOBPRG - The Current Program Name 2-6
2.4.9 JOBCMZ - The Command File S1z€ ceeeaann 2-6
2.4.10 JOBCMS - The Command File Status 2=-6
2.4.11 JOBERC - The Error Control Address 2-7
2.4.12 JOBTYP = The JOb TYPE cuceeecerveanaeaans 2-7
2.4.13 JOBBPT - The BRreakpoint Address 2-7
2.4.14 JOBRNK - The Memory Bank Pointer 2-7
2.4.15 JOBDEV ~- The Default Device ..ieeeecenas 2-7
2.4.16 JOBDRV - The Default Drive eceeceececeacs 2-8
2.4.17 JOBTRM - The Terminal Block Pointer ... 2-8
2.4.18 JOBRBK - The Run Control BlLock seweeeas 2-8
2.4.19 JOBFPE - The Floating-Point Trap
Address ..ccceenecscecaancenan 2-9
2.4.20 JOBRNQ - The Scheduling Area ...cecceea.. 2-9
2.4.21 JOBDYS = The DYSTAT AdAress .eeeeceeceass 2-9
2.4.22 JOBSTK - The Job's Stack Area .eceeea-. 2-9
CHAPTER 3 MEMORY CONTROL SYSTEM CALLS
3.1 MEMORY PARTITIOM FORMAT L ieuceecrcoccecaaaann 3-2
2.2 MEMORY MODULE FORMAT tieeeencucacncannancannna 2-5
3.3 MANIPULATING MEMORY MODULES weeeeeccuncnccnaes 2-6

3.3.1

Al locat

ing 2 Memory Module ...ceeececene 3-8

AMOS MONITOR CALLS MANUAL Page vi
3.3.2 Changing a Memory Module ...cceeeceaaees 3-8
3.3.3 Deleting a Memory Module ..cceececcccas 3-8
3.3.4 Permanent and Temporary Modules 3-8

3.4 MEMORY MAPPING SYSTEM csesscecassenassnss 32-9
3.4.1 1Internal Table Format .eccevcececacaccas 3-10
3.4.1.1 The MEMDEF Word .ceeecececcees 3-10
3.4.1.2 The JOBBNK Word ..ccceeeancaaes 3-1
3.4.2 The Bank Switching Process ..ceeeasceas 3-12
2.4.3 The BNKSWP Monitor Call ceeness 3712
2.4.4 The DMADDR Monitor Call (For Memory
Partition Controller)ceeeceecene. 3=13
CHAPTER 4 LOADING AND LOCATING MEMORY MODULES
4.1 THE SRCH AND FETCH CALLS c.ceccecacccancaneans 4-1
4.1.1 Specifying the Module Name ..cccecnn. .. 4-1
4.1.2 The Module ADAress ...eceeecccnccacenes 4=2
4.7.3 FLAQS ceneccsssnasancesnscansosannsnassa 4L-2
4.1.3.1 F.FCH - Fetch Module
From Disk soeeeccenaan 4-2
4.1.3.2 F.USR - Bypass System
Memory Search ..ceeae 4-3
4.1.3.3 F.ABS - Bypass Memeory Search . 4-3
4.1.%2.4 F.FIL - Mark Module as
Permanent ...caecanss 4L-3
4.1.L Completion COJES ceeeececccccanncaanans 4-3
CHAPTER 5 MONITOR QUEUE SYSTEM CALLS
5.1 INCREASING THE AVAILABLE QUEUE LIST SIZE .e... 5-1
5.2 QUEUE BLOCK USAGF BY THE SYSTEM ..ieceecceans ees D2
5.3 QUEUF SYSTEM MONITOR CALLS ..cvcee.. ceesensasss 5-3
5.3.1 QGET - Obtain a Free Queue Block 5-3
5.3.2 QRET - Return a Queue BLOCK ..eceueaeees 5-3
5.3.3 QADD, QINS - Manipulating Queue Blocks 5-3
CHAPTER 6 THE FILE SERVICE SYSTEM
6.1 THE DATASET DRIVER BLOCK vveenccncncaccannanes 6-1
6.17.17 DDB FOrmat .ueeeecececsacccancnsancacnasn 6-2
6.1.17.1 Error €0de weeceecesenscsancns 6-2
6.1.1.2 FlAaOdS .eeceavceanceanancnnnannn 6-4
6.1.1.2 Buffer AdAreSS ..eeeneceaneccne 6-4
6.1.7.4 PRecord S1Z€ ceeeeannnnccnnanss 6-4
6.1.1.5 RBuffer TNAEX seeeeerecencenans 6=4
A.1.1.6 Record Number ...eceeceacannss 6-5
6.1.1.7 Queue Chain LINk seeeeanceaees 6-5
E.1.1.2 JCB AdOresSS veevnecacecnnscacea 6-5
5.7.1.9 Job Priority ceeeeecemcececans 6-5
6.1.71.10 Device €006 veeencenancansacns 6-5
6.7.7.11 Drive cieeenecencennccacacanase 6-5
6£.1.1.12 Call Level cneniecanncacananen 6-5
6.1.1.13 Filename and Extension .eeweee. 6-6

AMOS MONITOR CALLS MANUAL Page vii

6.1.1.14 PPNc.... T, 6-6
6.1.1.15 0pen COde veeeenccencnnnnnnnns 6~6
6.1.1.16 Driver Work Ared ...ceeececees 6-6
6.1.2 Device Transfer Buffers ceeeeeeceeeccaas 6-6
6.1.% Error Handling .eceeceenccanes hessssana 6-7
6.1.3.17 Error Co0deS .eeeeeeenenceannna 6-7
6.2 FILE SERVICE MONITOR CALLS sececeacecacancnncs 6-8
6.2.1 FSPEC - Process an ASCIT Filespec ..n.. 6-8
6.2.2 INIT - Initialize the DDB voceeeccacens 6-9
6.2.3 LOOKUP = Find the File veeecececeacacnns 6-10
6.2.4 OPENI - Open a File for Input .oceeee.. 6-10
6.2.5 OPENO - Open a File for Cutputc... 6-10
6.2.6 OPENA - Open and Append to
EXisting File .tvececeennacncenn 6-10
6.2.7 OPENR - QOpen a File for Random
Processing vcececececescancanana 6-11
6.2.8 CLOSE - Close a File seeecveenenoncaans 6-11
6.2.9 READ - Perform a Physical Transfer 6-11
6.2.9.1 Sequential DeviceS .eeceaananaas 6-11
6.2.9.7 Pandom DEViCeS eceeeenesaannans 6-11
6.2.9.3 Interrupt Structure ...eeeeea. 6-12
6.2.10 WRITE - Perform a Physical Write 6-12
6.2.10.1 Sequential DeviceS .oeecenaann 6-12
6.2.10.2 Random DEVICES ceneeeceennaeans 6-12
6.2.10.3 Interrupt Structure ...ceeen.. 6-12
6.2.11 INPUT - Perform a Logical Read ..ou.c... 6-13
6.2.11.1 Sequentiel File Processing ... 6-13
6.2.11.1.1 Example ..oeeceaas 6-13
6.2.11.2 Random File Processing eeeee.. 6-13
6.2.11.2 Special DeviceS ..ceceeenanaces 6-14
6.2.12 OUTPUT - Perform a Logical Write 6-14
6.2.12.1 Sequential File Processing ... 6-14
6$.2.12.1.1 Example ..ceeeeeea. 6-14
6.2.12.2 Random File Processing ceeeee. 6-15
6.2.12.3 Special DeviCeS .veeeenceaeaans 6-15
6.2.13 DELETE — Delete @ File .cuececeaccacaans 6-15
6.2.14 RENAME - Rename @ File .tveecececennaana 6-15
6.2.15 ASSIGN - AsSSign @ DEVICE weeceacccanees A-15
6.2.16 DEASGN - Deassign a DeViCe ceeeaveceans 6-16
6.3 DISK SERVICE MONITOR CALLS .soeceecacscccncaness 6-16
6.2.1 Calling SEQUENCEe .cecececcceceancnacnns 6-16
6.3.2 The Bitmap Are2 cueeeeececcaccsccacanns 6-17
6.3.2.1 The Status WOrd c.eeeeceeeaans 6-17
6.3.2.2 The Bitmap DDB ceeeeveccanccns 6-17
6.2.2.3 The Bitmap Buffe ceense 6-17
6.3.2.4 The BitMop ecceeceacecenccancaans 6-18
6.3.2.5 Altering the Bitmap .ccceeecen 6-18
6.3.3 DSKCTG - Allocate a Contiguous Area ... 6-18
6.3.4 DSKALC - Allocate a ReCOrd .seeeeeneaans 6-18
6.3.5 DSKDEA - Deallocate a Record ..ceveve.. 6-19
6.3.6 DSKBMR — Read the Bitmap eceeeees csenas 6-19

S R
L

AMOS MONITOR CALLS MANUAL Page viii

6.3.7 DSKBMW - Write the Bitmap .cececenaansa (=19
6.3.8 DSKDRL = Lock the Directory .cececeseecss 6-19
6.3.9 DSKDRU - Unlock the Directory .cceceaus 6-20
6.4 MAGNETIC TAPE DRIVER MONITOR CALLS ceveeacevace 6-20
6.b4.1 REWIND APQ eeeeeveesecesancanccannnnans 6-20
6.4.2 WRTFM ArQ ceeeeeesaccas cessmcscensasaca 6-20
6.4.3 FMARK Arg eeececeusasccssaanssarsancaans 6=21
6.4.4 FMARKR ArQ veceeseccccsacanscascaannanns 6-21
6.4.5 TAPST Argl1,Arg2 ..cceececeecanccooannnnnas £-21
CHAPTER 7 TERMIMAL SERVICE SYSTEM
7.1 TERMIMOLOGY cuoveeeccascsancnnnenannnancnnnnnna 7-1
7.2 THE TERMINAL LINE TABLF 7-2
7.2.1 The Terminal Status Word ceesaanna 7-2
7.3 THE TERMINAL SERVICE CALLS cevceecvanceccaeanne 7-2
7.3.1 KBD {label} - Fetch a Line of Data 7-2
7.3.2 TTY = Output One Character ...cecesssess 7-3
7.3.3 TIN - Get an Input Charactereeee. 7-3
7.2.4 TOUT - Output One Character ...c.essees 7-3
7.3.5 TAB - Output One Tab ..ceececnccecans ea (-3
7.32.6 CRLF - Output a Carriage-Return /
Line—Feed ..cieeinecnnncennnanns 7-4
7.3.7 TTYI - Output a Strinag of Characters .. 7-4
7.3.8 TTYL - Output a String of Characters
Indexed ceeececcvcancnnsncaancasn 7-4
7.3.9 PTYIN - Place Character in Input
Buffer ciieeceeccecnncacccnnncns 7-4
7.3.10 PTYOUT - Fetch Character from Output
Buffer ceeeeeececencecaccannna 7-5
7.3.11 TTYIN - Fetch Another Job's Input 7-5
7.3.12 TTYOUT - Place a Character in Another
Job's Output ..ceen.. csesasnns 7-5
7.3.13 TRMICP - Process Input Character
Within Interface Driver 7-5
7.3.14 TRMOCP - Process Cutput Character
Within Interface Driver 7-5
7.3.15 TRMBF@ - Process Qutput Characters
Within Terminal Driver 7-6
7.3.16 TBUF - Qutput Large Amounts of Data ... 7-6&
7.3.17 TCRT - Call Special Terminal Driver
Routines ...cueue.. cheeesassescans 7-6
7.3.17.1 Stendard Functions 7-7
7.2.17.1.1 Cursor Addressing 7-7
7.2.17.1.2 Other Functions . 7-7
7.3.18 Message Calls ceeceacaceccnennanancnnna 7-8
CHAPTER 8 CONVERSION MONTTOR CALLS
8.1 MNUMERIC CONVERSION CALLS .ceveveeenmcncennnens &-1
2.1.1 Calling FOrMat ceeececcansencnacncannas 8-1
827207121 5726 BYLE cececruncccnascancas &-1
R.7.7.2 FlB0S ececiccancasncsacasnannns &-2

AMOS MONITOR CALLS MANUAL

CHAPTER 9

CHAPTER 10

APPENDIX A

APPENDIX B

8.2

8.3

8.4

Page 1ix
RADS50 COMVERSION MONITOR CALLS wveveeeencocees §-2
8.2.1 RADP50 Packing Algorithm ..eeeeeeecannn. 8-3
8.2.2 Packing and Unpacking Calls .ceeeennen.. &-3

8.2.2.1 PACK - Pack Three ASCIT
Characters into RADS0 . 8-3
8.2.72.2 UNPACK - Unpack Three RAD5C
Characters into ASCTI &-4

PRINTING CONVERSTON CALLS .eceeencnccancascans 8-4
8.3.1 PFILE - OQutput a Filespec From a DDB .. 8-4
8.3.2 PRNAM - Qutput a Filename ...ceeececaea 8-4
8.3.3 PRPPN — Qutput 2@ PPN ceeevencccnccnnans 8-4
ALPHABETIC CONVERSION--LCS AND UCS veeeevecees 8-4

INPUT LINE PROCESSING CALLS

0 0 000 VVYWDO
« 8 8 8 8 8 0
NV OO NN PN =

ALF = TEST A CHARACTER FOR ALPHABETIC 9-1
NUM - TEST A CHARACTER FOR NUMERIC ..ceweceecen 9-2
TRM = TEST A CHARACTER FOR TEPMINATOR 9-2
LIN - TEST A CHARACTER FOR LINE TERMINATOR ... 9-2
BYP = BYPASS BLANKS ..ceiceccenanancnnaccanans 9-2
GTDEC - INPUT A DECTMAL NUMBER ...ececncccacan 9-2
GTOCT = TNPUT AN OCTAL NUMBER seucicceaccaanns 9-2
GTPPN - INPUT A PROJECT-PROGRAMMER NUMBER 9-3
FILNAM = TNPUT A FILENAMEciceeecncccnnnns 9-3

MISCELLANEOUS MONITOR CALLS

10.1
10.2
10.3
10.4
10.5
10.6
10.7

DISK

A1
A2

A.3
A.4
A.5

EXIT = RETURN TO AMOS COMMAND LEVELceece.. 10-1
CTRLC - BRANCH ON CONTROL-C .vevveecccacacans 10-1
JLOCK, JUNLOK - PREVENT CONTEXT SWITCHING ... 10-2
ROST -~ REQUEST CONTROL OF A SEMAPHORE 10-2
RLSE - RELEASE CONTROL OF A SEMAPHORE 10-2
PCALL - INVOKE PROGRAM AS SUBROUTINE 10-3

AMOS - EXECUTE AMOS COMMAND AS SUBROUTINE ... 10-3

STRUCTURE FORMAT

PHYSTICAL RECORD FORMAT ...ecvc.. ccssasssasassas A-1
DISK PECORD TYPES .ucuecvinacccanancassacnnnanns A-2
A.2.1 The Disk ID RECOrd .c.eceueenccncannacns A-2
A.2.2 The Bitmap eceececeecccacacnacscasasncans A-2
A.2.3 The Master File Directory ..cece.. caees A-3
A.2.4 The User File Directory ceeeseccecaaaes A-3
A.2.5 Sequential File Data Records ...ceeeun. A-3
pA.2.6 Contiguous File Data Records ceees A-3
FILE STRUCTURE ..ecu... eemcssensessssesasanans A-3
MFD TTEM FORMAT .cuccecancscacnsnnsnnanacannns A-5
UFD ITEM FORMAT ...c.... cesssssssassssnn censans A-5

SYSTEM COMMUNICATICN AREA

B.1
B.?2

SYSTEM ~ SYSTEM ATTRIBUTES WORD seeueeecaceaaas B-1
DEVTBL - ADDRESS OF THE DEVICE TABLE B-1

AMOS MONITCR CALLS MANUAL Page x

APPENDIX C

INDEX

B.3 DDBCHN - ACTIVE DDPB CHAIN .cevueccrcenccnnanans B-1
B.4 MEMBAS & MEMEND - USER MEMQRY POINTERS B-2
B.5 SYSBAS - BASE OF SYSTEM MEMORY ...ceeccucnncns B-2
B.6 JOBTBL — ADDRESS OF THE JOR TABLE ..cueeceeven.. B-2
B.7 JOBCUR - JCB ADDRESS OF THE CURRENT JOB B-2
B.& JOBESZ - JOB TABLE ENTRY SIZE .cueeecccnnceeces B-2
B.9 TIME - THE TIME OF DAY Luecccnnuaceccanncnancca B-3
B.10 DATE — THE SYSTEM DATE ..ucceccecncacnaancnanes B-3
B.11 HLDTIM - THE HEAD LOAD TIMFR .cciecceccanceans B-3
B.12 CLKFRQ - LINE CLOCK FREQUENCY ...ccceccccannss R-3
B.13 SPXSAV - STACK POINTER SAVE LOCATION .ccenvon- B4
B.14 SPXINT — TNTERNAL STACK icucececcconcunaannanans B-4
B.15 LPTQUE - LINE PRINTER SPOOLER QUEUE ...c.e.... B-4
B.16 TRMDFC - BASE OF THE TERMINAL DEFINITION

TABLE cicnceecaencennccccansccccnnnns B-4
R.17 TRMIDC - ADDRESS OF FIRST INTERFACE DRIVER ... B-4
B.18 TRMTDC - ADDRESS OF FTRST TERMINAL DRIVER B-4
B.19 TRMSCM - THE NON-INTERRUPT TERMINAL QUEUE B-4
B.20 CLKQUE - THE CLOCK QUEUE .uvuecuenacncaaancaans B-5
B.21 SCNQUE - THE TDLE SCAN QUEUE ...cccecccnna- ees B-5
B.22 RUNQUE - THE JOR SCHEDULTING QUEUE ..ececeecaces B-5
B.23 DRVTRK - THE DRIVE/TRACK TABLE ..ccucecnnnnens B-5
B.24 MEMDEF R MEMBNK - MEMORY MANAGEMENT CONTROL .. B=5
R.25 ZSYDSK - ADDRESS OF SYSTEM DISK DRIVER B-5
B.26 OFREE - QUEUE SYSTEM COMTROL ..cecevecccamanes B-6

ALPHABETIC LISTING OF AMOS MONITCR CALLS

CHAPTER 1

COMMUNICATING WITH THE AM-10C MONITOR

The AM-10C monitor contains over 70 routines available for use by assembly
Language programs running in user or monitor memory. These routines are
called by the superviser calls SVCA and SVCB, which have been coded into
macro form to make them easy to incorporate into user programs. The macros
are included as a part of the system library file SYS.MAC in account [7,7]
of the system disk. These calls have been grouped according to the function
they perform and are described in this chapter and the following chapters.

1.1 MONITOR CALL CALLING FORMAT
The general format for all monitor calls is:
{label :} opcode {arguments)} {;comments)}

As the format shows, the only required item 1in all calls 1is the opcode
itself, which 1is the name of the monitor call. A label may be used if
desired, in which case it is assigned the address of the SVCA or SVCB
instructions which start all monitor call sequences. The total number of
words generated by any monitor call depends upon the call dtself. Some
calls generate up to four words of code tc perform the function. Those
calls which incorporate an ASCII message (such as the TYPE call) generate a
string of bytes varying in length depending cn the message involved. As in
machine instructions, you may also place comments at the end of the Lline;
each line of comments is identified by a preceding semi-colon.

1.1.17 Arguments

Some calls require one or more arguments to specify parameters for the
execution of the monitor call function. These arguments most normally are
source and/or destination address items for the data being manipulated by
the monitor call. Some calls allow you to specify the Llocation of data
parameters, while other calls operate with predefined registers that you
must set up beforehand. The following sections define each call and detail

COMMUNICATING WITH THE AM-100 MONITOR Page 1-2

the required arguments. Normally you define the arguments as expression
values, standard addresses, or ASCII strings. An expression value may be
any valid source expression which, after full evaluation, results in a value
within the range of the argument definition. ASCII strings are just that; a
string of characters typically used as a message to he displayed. Standard
addresses are so important and complex that we devote the next entire
section (1.1.2) to explaining them.

1.1.2 Standard Address Arguments
NOTE

The following section 1is one of the most
important, and most frecuently misunder-
stood, sections of this manual. The concept
of standard arguments s fundamental to
understanding the monitor call calling
sequences.

Standard addresses form the heart of many of the more complex monitor calls;
you should therefore thoroughly understand them in order to gain maximum
flexibility from the system. A standard address argument is coded exactly
the same as a standard source or destination operend for a machine
instruction such as ADD or MOV. Some restrictions should be noted, however,
due to the method wused 1in processing the standard address. Standard
addresses are only used with those monitor calls that are coded as SVCB
instructions. The SVCB pushes all user registers onto the stack, and it is
from these stored values on the stack that the monitor call processor gains
access to the address calculations wusing those registers. Standard
addresses may take the form of any of the valid WD16 addressing modes;
however, all autoincrement and autodecrement processing is done on a word
basis, even though the monitor call may be requesting only one byte of data.
In addition, the wvalue wused for SP register references is a dummy value
which is not reloaded dinto SP when the monitor call exits, so the
autoincrementing and autodecrementing modes will be ignored if used with the
stack pointer register.

The monitor call processing software within the monitor actually duplicates
the hardware, calculating the target address from the stored register value
on the stack and the data from the extra word, if the address mode uses one.
This target address then becomes the address of the datz to be manipulated
by the specific monitor call routine itself. This data may be only one
byte, or it may be several words or more. The target address calculated by
the processing of the standard address argument always points to the first
byte of the data if more than one byte is required by the monitor call. A
special case occurs when the standard address argument specifies the direct
register address mode. In the WD16 hardware instructions, there is never
more than one full word of data 1involved for the standard source and
destination address modes, so direct register works on either the low byte
or the full word in the target register. 1In the processing of monitor call
standard addresses, however, this 1is not always the case since, as we

COMMUNICATING WITH THE AM-100 MONITOR Page 1-3

pointed out, some calls require scveral words of data to be manipulated.
When direct register mode 1is used, the target address is actually the
address of the stored register on the stack, which was a direct result of
the SVCB hardware instruction orocessing. Tf more than one word is used by
the call, it merely sequences right on through the stored words on the
stack. In simple terms this means that if a monitor call wants three words
of data for an argument and you specify the register R? as the standard
address argument, the three words that are used are actually those in R2, R3
and R4, 1in sequence. This is often very useful when writing re-entrant
code.

CAUTION: If you specify a register for a call that wants more words than you
have registers (most 1/0 calls want a 20-word DDB argument), the monitor
call will walk right on through your stack and most likely crash the entire
system.

One of the more common errors is forgetting that a standard argument needs a
pound-sign (#) in front of a literal argument. For example, if you want the
program to sleep for 20 clcck ticks, the code reads:

SLEEP #20.

Note that without the pound-sign, the proaram would sleep for the number of
ticks contained in program-relative location 20.

It is very important that you understand the concepts outlined above. Think
of the standard address arguments as source or destination addresses, as in
the machine instructions. When you wuse them incorrectly, you will
definitely find out about it guickly, since the usual result is a system
crash.

CHAPTER 2

JOBR SCHEDULING AND CONTROL SYSTEM

The AMOS timesharing monitor allocates ijobs and schedules CPU time and
resources for their operation. In order to properly write assembly lLanguage
programs which make use of some of the more complex features of the system,
you must have a basic understanding of how jobs are scheduled and
controlled. The theory behind job-handling is too encompassing to cover in
one section of this manual, but we can explain the fundamentals of job
control by user programs.

Each job running 1in the system has two dedicated components which are not
shared by any other job in the system: a monitor job control block and a
user memory partition. In the monitor memory area itself, a job control
table contains one area for each job that has been allocated to the system.
One job 1is allocated for each JOR command in the system initialization
command file, which gives the job name and the terminal to which it s
connected. The area allocated for each job in the job control table
contains specific information about that job. This area is called the job
control block and will be referred to from now on as the JCB.

2.1 THE JOB CONTROL BLOCK (JCB)

The format of the JCB is defined in the system library file SYS.MAC as a
series of equate statements. Each equate statement has the name JOBxxx,
where xxx 1is a 2-character code for the specific item of the JCB being
defined. The value of this symbol is actually the offset in bytes from the
base of the JCB to the item itself. You may, during the course of your
program, wish to read the current data in your own JCB or in some instances
modify it. References to the JCB items should be made in one of two ways:

1. Use the system monitor calls JOBGET, JOBSET, and JORIDX; which is
the preferred method.

2. Locate the JCB for your job by moving a#JORCUR into a register and
then referencing all JCB items via JOBxxx(Rx).

JOB SCHEDULING AND CONTROL SYSTEM Page 2-2

Three words 1in the system communication area define the entire job control
system during time-sharing operation. These three words are not part of the
JCB areas but rather are non-sharable parameters set up during system
initialization and not part of any one job. We point this out because the
names of these three words are JOBTBL, JOBCUR and JOBESZ; which appear to be
part of a user JCB but really are not. JOBTBL contains the base of the JCB
table where all JCB's are stacked seaguentially. This address is set up at
system initialization time and is never changed. JOBCUR always contains the
address of the JCB which has current control of the CPU and 1is updated to
point to the new JCB each time the job scheduler switches to a different
job. Therefore, 3#JOBCUR always ponints to your JCB if you reference it,
because the reference is only executed while you have current control of the
CPU. JOBESZ contains the size of the JCB in bytes and is used by the system
and by user programs for scanning through the JCB table. Since the size of
the JCB may expand as new features are added to the system, JCB table scans
must be made by setting an index to the base of the table (MOV ##JOBCUR,Rx)
and then adding the size to the index to get to the next entry (ADD
AHJOBESZ,Rx). 1In a JCB table scan, the first word of each JCB is guaranteed
to be non-zero and the table is terminated by a null (zero) word. Again,
these three words are a part of the master system communication area and not
in the job table itself.

2.1.1 Example -= Scanning The Job Contrcl Area

The following is a brief example of how tc scan the JCB table and process
each JCB entry (such as for a system status report):

Mov a#JOBTBL RO ;set JCB table index RO to table base
;Loop here to process each job table entry (JCB)
LOOP: - - ;sprocess JCB entry which is indexed by RO
- - ;sreferences to JCB items are via JOBxxx(RO)
ADD a#JOBESZ RO ;advance RO to next JCB entry
TST aRrR0 ;is this end of JCB table? (null word)
BNE LOOP ; nope - go process valid JCB entry

;At this point we have finished the job table scan

JOB SCHEDULING AND CONTROL SYSTEM Page 2-3

2.2 ACCESSING YOUR JCB

You use three monitor calls to gain access to your own JCB when necessary.
Two of the calls are used to transfer a single word of data to and from a
specific word in the JCB; the other sets an index to a specific spot in the
JCB area so that multiple worcds may be transferred, or so that faster access
may be obtained when needed.

JOBGET teg,item ;Transfers ore word from JCB item to tag
JOBSET tag,item ;Transfers one word from tag to JCB item
JOBIDX tag,item ;Sets absolute address of JCBR item into tag

Since the locations may change, always use these calls as shown above.

2.2.1 Calling Sequence

ALL calls share the same basic format, where tag is a standard argument used
for the transfer of one word of data in the JORGET and JOBSET calls or to
receive the 1index address in the JOBIDX call. The item argument is one of
the JCB item tags (JOBSTS, JOBNAM, etc.), which identifies the item to be
used in the transfer or to have the index set to. These items are eauated
to their relative offset value in SYS.MAC. Section 2.4 below explains how
to use these items and points out their importance to the user.

2.3 JOB SCHEDULING CALLS

In addition to the above calls, three others are used by various routines
within the system monitor for controlling the job scheduling processes.
These calls are JWAIT, JWAITC, and JRUN. JWAIT sets any job into the wait
state. JWAITC sets your job into the wait state. JRUN then reactivates a
job to the run state. T1f the J.NXT flag is specified, the job is placed at
the beginning of the run queue; when J.NXT is not specified along with other
JRUN flags, the job is placed at the end of the run queue. JWAIT and JRUN
reauire that the job being controlled be indexed by RN (which must point to
the base of the JCB for that job), and that the argument specify one of the
status control bits (in JORBSTS) to be used as the control flag. JWAITC
assumes the current user.

2.3.1 SLEEP - PUT JOB TO SLEEP

SLEEP is a simple call that puts the user job to sleep for the number of
Line clock ticks you specify in the argument. After the specified amount of
time has elapsed, the job is automatically awakened and execution continues
with the instruction following the SLEEP call. The Z-flag is set if the job
slept for the specified number of clock ticks. The Z-flag is reset if the
job woke up prematurely because another job used the WAKE call.

JOB SCHEDULING AND CONTROL SYSTEM Page 2-4

CAUTION: A sleep call with an argument of zero clock ticks puts the job to
sleep for about 18 minutes (65536 clock ticks).

The normal AM-100 system runs with a clock frequency of 60 Hz; each clock
tick, therefore, has a value of 16.7 milliseconds. Also, the first clock

tick may occur any time within the first 16.7 milliseconds (not necessarily
a full clock tick).

Rememher that SLEEP takes a standard argument; therefore, to cause the job
to sleep for one minute, you would execute:

SLEEP #3600

not
SLEEP 3600

Leaving off the pound sign (#) is a fregent coding error.

2.3.2 WAKE - WAKE UP JOB

This call wakes a specified job. RO must point to the base of the job you
want to wake out of the sleep state. The Z-flag is set if the call is
successful. If the specified job was already awake, the Z-flag is reset.

2.4 JOB CONTROL BLOCK FCRMAT

The following is a list of the entries contained in your JCB. Each of these
entries may be accessed via JOBGET, JOBSET, or JOBIDX by using the tag
defined in each entry.

2.4.1 JOBSTS - The Job Status Word

The first word 1in each JCB is the job status flag word. Each bit in this
word indicates a particular state in which the job may reside. Some legal
states are defined by more than one bit being on at a time. The system and
some of the system programs set and reset these bits as the current state of
the job changes, but you should not alter this word without extreme caution.
Following is a brief Llist of the bits and the mneumonics assigned to them,
along with a basic description of the function of the bit when it is set.

J.ALC=1 ;Job entry is allocated (guarantees JOBSTS non-zero)
J.TIW=2 ;Job is in Terminal Input Wait state

J.TOW=4 ;Job is in Terminal Cutput Wait state

J.SLP=10 ;Job is in Sleep state

J.I0W=20 ;Job is in I/0 Wait state

JEXW=40 ;Job is in External Event Wait state

JOB SCHEDULING AND CONTROL SYSTEM Page 2-5

J . SMW=100 ;Job is waiting for semaphore

J.CCC=200 ;A control-C abort is waiting to be processed

J . RUN=400 ;Job is running

J .MON=1000 ;Job is in monitor command mode (no program active)
J.LOD=4000 ;Program 1is being loaded for execution

J.SUS=10000 ;Job is in Suspend state

J.LOK=20000 ;Job has CPU lLocked (by user program command)

J .NXT=100000 ;Is always 0 in JOBSTS

If any of the following flags are on, the job will not be scheduled for CPU
run time until the flag has been cleared: J.TIW, J.TOW, J.SLP, J.IOW, J.EXW,
or J.SUS.

2.4.2 JOBSPR - The Stack Pointer Reset Address

One word, JOBSTR, is used to store the stack pointer reset address which is
calculated when the system is initialized. This address is then used to
reset the stack pointer each time the job exits back to monitor command

mode. The user may allocate a larger stack area within his own partition by
reloading this address if desired.

2.4.3 JOBNAM - The Job Name

Two words, JOBNAM, contain the 6-character job name packed RAD50. This name
is set up by the JOBS command in the system initialization file. If a user
program alters this word, it effectively alters the name of the job.

2.4.4 JOBBAS - The Memory Base Address

JOBBAS, one word, contains the base address of the user memory partition if
one has been allocated for this job. This address is altered only by the
MEMORY program which allocates and deallocates user memory partitions. We
advise against altering this address unless you thoroughly understand the
memory allocation process.

2.4.5 JOBSIZ - The Memory Partition Size

One word, JOBSIZ, contains the size of the user memory partition in bytes if
one has been allocated for this job. This size word together with the above
JOBBAS address word define the current user memory partition. JOBSIZ s
altered only by the MEMORY program and the monitor command processor.

JOB SCHEDULING AND CONTROL SYSTEM Page 2-6

2.4.6 JOBUSR - The Current PPN

JOBUSR, one word, contains the current user PPN (account number) if the user
is logaed in. Zero indicates that no user is currently loagged into this
job. JOBUSR is modified by the LOG and LOGOFF programs and 1is tested by
various protection schemes in the system to allow user access to files, etc.

2.4.7 JOBPRV - The Privilege Word

JOBPRV, one word, is used to store the privileges associated with the job.
This word is not currently used but is allocated for future implementations
of the security system. Further documentation will be provided when the
system is completed.

2.4.8 JOBPRG - The Current Program Name

Two words, JOBPRG, contain the é6-character program name which is currently
running or was the Llast job run if in monitor command mode. JOBPRG is
loaded with the program name (packed RAD50) by the command processor when
the program 1is loaded or Llocated for execution. Currently, the only
significance of this program name is in the displays created by the SYSTAT
program (user terminal status display) and the DYSTAT program (video
monitor) .

2.4.9 JOBCMZ - The Command File Size

JOBRCMZ is one word containing the size of the current command file aree in
the user memory partition 1if a command file is heing processed. If this
word 1is zero, no command file is currently in effect. This word is set to
the initial size of a command file when that file is loaded into the top of
the user partition and is decreased as each line is extracted from the area
and sent to the monitor command processor. When it gets to zero, the
command file is finished and the system returns to normal command mode input
from the user terminal. The user should not alter this word.

2.4.10 JOBCMS - The Command File Status

JOBCMS is one word containing flags used by the command file processor when
a command file is being processed. These flags should never be altered by
the user, so they are not detailed here. JOBCMS works in conjunction with
JOBCMZ to affect the command file processing scheme.

JOB SCHEDULING AND CONTROL SYSTEM Page 2-7

2.4.11 JOBERC - The Error Control Address

One word, JGBERC, controls the processing of WD16 hardware bus errors as
described in the WD16 Programmer's Reference Manual. 1If JOBERC is zero a
bus error causes a message to be printed on the user terminal, and the job
is aborted. If JOBERC is non-zero a jump is made to the address specified
in JOBERC, which should contain a valid routine for shutting down the
program. Note that the bus error is fatal for this user only and does not
normally kill the whole time-sharing system.

2.4.12 JOBTYP - The Job Type

JOBTYP, ocne word, specifies the type of job which is assigned to this
jobstream. The following flags are currently implemented:

J .USR=1 ;Job is a user partition

J.NUL=2 ;Jdob is currently running the null subroutine
J.NEW=4 ;Jeb is processina a new memory allocation
J.LPT=10 ;Job is running the Lline-printer spooler (LPTSPL)
J.HEX=20 ;Binary inputs and outputs are in hex (not octal)
J.DER=40 ;Print disk error retry messages

J.VER=100 ;Activate auto-verify mode for disk writes
J.GRD=400 ;Terminal is guarded against SEND commands

2.4.13 JOBBPT -~ The Breakpoint Address

JOBBPT is one word specifying the address to jump to if a breakpoint s
encountered during the execution of a user program. JOBBPT is used by the

DDT debug program for breakpoint handling and not normally used by user
progarams.

2.4.14 JOBBNK - The Memory Bank Pointer

JOBBNK is one word used by the memory management system to define the bank
in which the job's current memory partition resides. It is actually a
pointer to the control item within the memory mapping table which is used
for turning the bank on and off when the job is allocated CPU time. This
word must not be modified by the user.

2.4.15 JOBDEV - The Default Device

JOBDEV, one word, contains the RAD50 device code for the default device to
he used if the file specification being processed by the FSPEC call does not
explicitly specify a device. Normally this default device is DSK.

JOB SCHEDULING AND CONTROL SYSTEM Page 2-8

2.4.16 JOBDRV - The Default Drive

One word, JOBDRV, contains the drive number in binary for the default drive
number to be wused if the file specification being processed by the FSPEC
call does not explicitly specify a drive number. Only used 1if the device
code matches the code 1in JOBDEV or if the device code is left to default
also. JOBDEV and JOBDRV normally contain the device and drive number set by
the LOG program when a user logs in. They specify the disk device and drive
which you usually use for processing.

2.4.17 JOBTRM - The Terminal Block Pointer

JOBTRM is one word containing a pointer to the terminal definition block for
the terminal which is currently attached to this job. If no terminal s
currently attached, this word contains a zero. The first word in the
terminal definition block is the terminal status word, which is available to
you for modification to set wvarious terminal parameters such as echo
control, 1image mode and lower-case processing. The old monitor call TIDX
would deliver the address of this status word back to you 1in register RO.
The TIDX <call 1is no Llonger supported and must be replaced by the more
general call:

JOBGET RC,JOBTRM ;Get status word index

As with all of the JOBxxx calls, the destination may be any valid address
and not just RC as in the example above. The above example will replace the
TIDX call exactly in performance, since TIDX used R0 as its destination.

For further information on the format of the terminal definition block and
its use, refer to the source Llisting of the terminal service routine
(TRMSER) which 1is made available to users on a special source diskette, as
well as on the standard system disk pack. The terminal definition block is
defined at the beginning of this routine.

2.4.18 JOBRBK = The Run Control Block

JOBRBK, a 14-word area, is the run control block for the jobstream. It is
used for the loading of programs and overlays during job execution and is
set up by the wuser program with the parameters needed to fetch the next
program or overlay segment prior to the execution of a FETCH call. Refer to

the description of the FETCH monitor call in section 4.1 for more details on
the use of this item.

JOB SCHEDULING AND CONTROL SYSTEM Page 2-9

2.4.19 JOBFPE - The Floating-Point Trap Address

JOBFPE, one word, contains the address to jump to if a floating point error,
such as a divide by zero, 1is executed. A user program which executes
floating point instructions should enter its error trap address into JOBFPE
and not into the vector at memory location 76, since this would destroy the
sharable resource of that vector.

2.4.20 JOBRNQ@ - The Scheduling Area

JOBRNQ, a 7-word area, maintains the parameters for job scheduling and
context switching of this job. The first four words are dynamically
changing Llinks used during the job scheduling process to place the job into
the active run queue for future processing. Any altering of these four Llink
words should be done with caution.

The fifth and sixth words are used to determine the job's run priority. The
fifth word (at JOBRNQ+10) is the time counter which is decremented once for
each clock 1interrupt whenever the job is running. When this count goes to
zero, the job is put into the wait state and another job is activated. The
sixth word (at JOBRN@+12) is the actual priority of the job (set up by the
JOBPRI command) and 1is used to initialize the above time counter each time
the job is given control of the CPU for running. These two words replace
the old system word called JOBPRI in the JCB.

The seventh word is used for storaage of the current stack pointer value when
the job is not in the active run state. The scheduler restores the stack
pointer from this word each time the job 1is reactivated.

2.4.21 JOBDYS - The DYSTAT Address

JOBDYS, one word, contains the address tc the byte in the VDM screen memory
area for the job execution arrow. It is set by the DYSTAT program and
referenced by the monitor job scheduler. The user should not alter this
address.

2.4.22 JOBSTK - The Job's Stack Area

JOBSTK is a 100-word area that acts as the stack for this job. SP is set to
the top of this area when a new program is initiated. You may reset your
own stack pointer by moving the address of a larger area within your own
partition, if the program needs more stack area. BRe sure to allow at Lleast
20 extra words or so for possible real-time interrupt handling which needs a
valid stack area for register saves. The job scheduler also saves all user

registers and processor status on the wuser stack during job context
switching.

JOB SCHEDULING AND CONTROL SYSTEM Page 2-10

The Label "JOBSTK'" is not defined explicitly in SYS.MAC, but the area exists
as the last 100 words in the JCB. The area has not been labeled because the
JCB may be increased in size as the need arises, and the JOBSTK area should
not be referenced by a label which will change value in future releases.

CHAPTER 3

MEMORY CONTROL SYSTEM CALLS

The AM-100 system contains a fairly sophisticated memory control system,
even thouah there 1is no memory protection or mapping hardware asscciated
with it. T1n order to make maximum use of the memory resources available and
minimize system crashes due to memory violations, the assembly Language
programmer should understand how the monitor allocates memory and the rules
under which memory should be accessed. This section describes the memory
allocation scheme and the monitor calls that assist you in using memory in
the proper way.

The AM-1C0 processor has available up to 64K bytes (32K words); the top
256-byte portion is unavailable because it is mapped to the I1I/0 ports. The
AMOS monitor resides in Low memory beginning at location zero and extending
upward as far as the monitor requires (typically around 14K bytes). The
remaining memory above the monitor up to the end of the total amount of
memory in your system is available for assignment as user memory partitions
for each of the jobs. ALl of the user memory may be allocated to one job,
or it may be split wup into several partitions of varying sizes with one
partition allocated to each job. The amount of memory a wuser program has
available 1is therefore defined as the single contiguous memory partition
which has been assigned to his job by the operator MEMORY command. This
memory partition block is then allocated into smaller defined blocks called
"modules," which are used by the system and the user to contain programs and
data areas. Monitor calls exist which allow the user program to locate the
absolute boundaries of its own memory partition and also to allocate,
change, and delete memory segments in the form of defined modules. These
modules can be named just like files (filename.extension), so they may be
located by that name. Any program loaded for execution will be in the form
of a module. During execution, some programs create other modules for
device buffers, data tables, etc.

MEMORY CONTROL SYSTEM CALLS Page 3-2

3.1 MEMORY PARTITION FORMAT

The memory partition assigned to a job may be Llocated anywhere din memory
depending on the memory that was available when the job assigned it using
the MEMORY operator command program. The user program may not count on any
specific location for this partition. Within the partition, memory modules
are allocated upward beginning at the base of the defined partition and
building modules on top of each other as long as space permits. Modules may
not be built that will extend past the top boundary of the user partition.
As modules are deleted from memory, all mocdules abhove them are automatically
shifted downward to fill up the space that the deleted module Lleft. Also,
when any module 1dis changed 1in size, the modules above it are shifted in
position accordingly. This method insures that all available memory is
always at the top of your partition in one contiguous hlock. This method of
agrabbing the first portion of free memory to load a program into is the main
reason that all programs must be written in totally relocatable code.

Figure 3-1 shows a typical memory lLayout for three users operating in a 64K
system. The free memory at the 56K boundary could be used by a fourth job
or by a current job that needs to expand.

Three monitor calls return information about your memory partition as it
happens to be allocated. These three calls all take a single standard
argument 1into which is delivered the absolute address of the base, end, or
free base of the user memory partition. The three calls and the addresses
that they return are listed below:

USRBAS arg - absolute base of user memory partition (last word)
USREND arg - absolute end of user memory partition (lLast word)
USRFRE arg - current base of remaining free memory (last module+2)

Since modules must always occupy an even number of bytes, the above calls
always return an even address. If no modules are allocated in the current
partition, the USRFRE address will equal the USRBAS address. Otherwise, the
USRFRE address will be the word following the last currently allocated
module in the memory partition. The remaining free memory that the user may
use may be calculated by subtracting the USRFRE address from the USREND
address.

Figure 3-2 shows a typical wuser job partition during the execution of a
program which was loaded automatically by the operating system. The program
itself was the first module to be allocated in the user partition and then
was executed after being loaded. It remains in memory until it completes
its task and exits to the monitor, at which time it 1is deleted by the
operating system monitor. During execution, the program allocates a 1K data
table module which may be wused for storage of symbols or some similar
function. Two I/0 files are then opened on disk which causes the operating
system file service routine to allocate the two disk buffer modules. The
remaining memory in the partition has not yet been allocated in our example.

MEMORY CONTROL SYSTEM CALLS Page 3-3

Note: Memory sizes
are typical

64K
Free Memory >8K
S6K
User 3 > 8K
a8sK
User 2 >1BK
32K
16K
Resident Programs > aK
Total resident moni
size is 16K, leaving ¢
for user partitions
Resident Monitor 12K
[]

Memory Map for a Typical 64K System (3 users)
Fig 3-1

MEMORY COWTROL SYSTEM CALLS

Top:

Bottom:

Page 3-4

Command File (if used)

«——USREND

Free Memory Area

(Available to this job only)

«—————USRFRE
Disk Buffer 512 bytes

Disk Buffer 512 bytes

These modules allocated by
GETMEM calls during the
execution of the program
Data Table 2Kbytes

User Program (Running) User program maodule loaded

by operating system when the
program name was entered
8K bytes as an operator command

«——USRBAS

-

Memory Map for a Typical User Job Partition

Fig 3-2

MEMORY CONTROL SYSTEM CALLS Page 3-5

Note that the USREND call does not actually return the absolute end of the
partition but rather the end of the available free memory 2t the time of the
call. 1f a command file is in progress, it occupies the upper part of the
partition which we do not wish to alter during the execution of a program.
In fact, the proaram should not have to take into consideration whether or
not it was called by direct command or from a command file. Use of the
USREND call insures that the user program may use all of free memory without
having to compensate for the remaining part of any command file module.

Although the standard use of memory by the operating system is through the
use of the memory management system calls (to be described next), you may
find it easier to use free memory without regard to module boundaries,
especially for use in variable length tables or hashing techniaues. For
this reason, the free memory space is always defined as the area between the
addresses returned by the USRFRE and USREND calls. Note that the
initialization of files normally results 1in the allocation of a buffer
module; the operating system allocates this buffer at the current setting of
the USRFRE address, then updates that USRFRE address. Therefore, you must
be sure that all 1/0 buffers and any work modules are allocated before
freely using the memory above the USRFRE address. The INIT and FETCH calls
both cause the indirect allocation of a memory module in addition to the
direct allocation or alteration of modules by the GETMEM, CHGMEM and DELMEM
calls.

3.2 MEMORY MODULE FORMAT

Memory modules are the basic unit of formal data structure within the wuser
memory partition. They are always allocated on word boundaries and must
contain an even number of bytes to maintain this format. The monitor calls
automatically pad an odd-sized module with a null byte to even it up. ALL
modules contain five housekeeping words followed by any number of data words
from zero to the maximum size left in the user memory partition. The five
housekeeping words are always allocated, so a single-word module really
takes up six words of memory.

The module format is as follows:

Word 1 total size of module in bytes including the housekeeping words
Word 2 - module flag word

Word 3 - module filename packed RADS0

Word 4 - module filename packed RADS0

Word 5 - module extension packed RAD50

Words 6 thru n - module data area

Figure 3-3 aives a pictorial view of the above standard module format. The
data area 1is usually the only area with which the user 1is concerned and so
all references are made from the base of this area. The SRCH and FETCH
calls (described in sectian 4.1) return this absolute address when locating
or loading the requested module, instead of the address of the base of the
housekeeping words. References to the housekeeping words should therefore
be made via negative offsets relative to the data base address.

MEMORY CONTROL SYSTEM CALLS Page 3-6

When scanning for a specific module or locating the end of the current
module string, you may set your index using the USRBAS call, which returns
the address of the size word of the first allocated module. You can then
merely check the housekeeping words for the correct module name or other
determining parameters and, if the module is to be bypassed, add the size
word to the index. This bumps the index to the next module allocated. The
Last module always has a zero word following it, and you must be careful not
to destroy this zero word if you are manipulating free memory directly
without allocating it using the memory calls.

The module filename and extension follow the same format as the filenames on

disk if the module 1in memory is named. The name is optional and need be
used only if the module is to be located by name at a later time.

Modules may be either temporary or permanent depending on the method used to
load them into memory. A module is made permanent by setting the file bit
on in the housekeeping flag word when the module is allocated. Temporary
modules are automatically deleted by the monitor when the program finishes
and executes the EXIT call. Permanent modules are not automatically deleted
but may be deleted by either the operator DELETE command or the monitor
DELMEM call. Forcing a zero into the size word of the module is another way
of deleting it, but this is not the recommended way since it also deletes
all modules above it (the zero is the module area termination word).

3.3 MANIPULATING MEMORY MODULES

Three monitor calls are used to create, alter and cdelete these memory
modules. ALl three calls take a single standard argument which must be the
address of a 2-word block called a memory control block (MCB). The first
word of this MCB contains the absolute memory address of the data area 1in
the allocated module (past the housekeeping words). The second word
contains the size of the data area in bytes (ten bytes less than the total
module size since the housekeeping words are not included). The M(CB
therefore is the user's block, which defines a contiguous area in memory by
its base address and size 1in bytes. You need not be concerned with the
housekeeping words unless you need to access them directly; such a necessity
should be rare.

The following three calls are used to manipulate memory modules:

GETMEM M(CB - allocates a new memory module at current USRFRE
CHGMEM M(CB - changes the size of the module defined by MCB
DELMEM MCB - deletes the memory module defined by MCB

The Z-flag is reset if GETMEM and/or CHGMEM fail. (i.e., there is insufficient
memory) .

MEMORY CONTROL SYSTEM CALLS

Page 3-7
+n
User Program or Data Actual data area size as
specified in GETMEM call
+6
- —
+a
+2
Base:
SRCH, FETCH & GETMEN
- return this address
-2 Module Extension (RADS0)
-4 Module Name Word 2 (RADS0)
-6 Module Name Word 1 (RADS0) 5 housekeeping words
-10 Module Flag Word
-12 Module Size Word™*

*Module size equals c
area size plus 10 byt
(5 words)

Standard Memory Maodule Format

Fig 3-3

MEMORY CONTROL SYSTEM CALLS Page 3-8

3.3.1 Allocating a Memory Module

The following example shows the allocation of a 100-byte module

Mov #100. ,MCB+2 ;set module size as 100 (decimal) bytes
GETMEM MCB ;allocate module (MCB gets 1its address)
BNE NDMEM ;no memory available

mcB: WORD 0 ;receives address of module data area
WORD 0 ;size of module data area in bytes

NOMEM: EXIT

3.3.2 Changing a Memory Module

You may increase the size of the same module by:

ADD #20. ,MCB+2 ;increase size word by 20 bytes
CHGMEM M(CB ;change its size
BNE NOMEM ;not enough memory available

The above code causes the monitor to adjust the module housekeeping size
word to reflect the new size. The address of the module does not change.
However, note that the USRFRE address advances by 20 bytes and that any
modules allocated after the one at MCB are shifted up in memory; but their
corresponding addresses in their MCB are not adjusted by the monitor. I1/0
buffers allocated after the MCB module will therefore be erroneously
addressed after the change, so the CHGMEM call must be used with care.

3.3.3 Deleting a Memory Module
To delete the above module we use the code,

DELMEM MCB ;delete the module

3.3.4 Permanent and Temporary Modules

Recall that all temporary modules are automatically deleted by the monitor
when the program exits. You may force the module to be permanently left in
memory by giving it a name and setting the file bit (defined in SYS.MAC as
"FIL") 1in the flag word. The following example illustrates the allocation
of a 200-word module which is made permanent with the name "TABLE1.DAT":

MEMORY CONTROL SYSTEM CALLS Page 3-9

MoV #200.,TBL1+2 ;set size as 200 bytes

GETMEM TBL1 ;allocate the module

BNE NOMEM :no memory available

mov T8L1,RO ;set RO to index the data area base

mMov #LDATI, - (RO ;set the module name and extension (RAD5()
mMov #LLE1],-(RD) ; into the housekeeping words

mMov #LTAB],-(RO) ; in reverse order for efficient use of RO
BIS #FIL,-(RD) ;set permanent file bit on in flag word

TBL1: WORD 0 ;sreceives address of module
WORD 0 ;size of module in bytes

Permanent memory modules may be saved onto disk using the operator SAVE
command, or they may be deleted from memory when done by the operator DEL
command. Refer to the AMOS User's Guide (DWM-00100-35) for details on
these commands.

3.4 MEMORY MAPPING SYSTEM

The AMOS system is capable of supportingo memory in excess of 64K by a simple
bank switching technique which turns selected memory boards on and off under
control of the operating system. This section defines some of the technical
aspects of that system. It is assumed that you are already familiar with
the operational aspects of the memory managemert system from the standpoint
of setting up the SYSTEM.INI file commands and operating procedures.

You must define for your own application the normal 64K memory as two
general areas called sharable and switchable memory. Sharable memory always
starts at location zero and extends upward far enough to totally contain the
resident operating system and any system programs or sharable memory area
needed for the application. Switchable memory then may occupy the remainder
of the memory area up to the 64K address (octal 177376 inclusive).

There 1dis only one sharable memory area that dis always active. The
switchable area, however, may be occupied by multiple memory boards referred
to as "banks." Banks are defined to the operating system during system
startup with the MEMDEF statements. Each MEMDEF statement defines the
memory board (or boards) which are to be activated when that bank is
selected by the operating system. Selection of the bank for activation is
done when one of the user jobs which resides within that bank is granted CPU
time by the AMOS job scheduling system. This action 1is automatic and
transparent to the user. Only one bank may be active at a time, since all
banks effectively respond to the same memory addresses (the area defined as
switchable memory).

MEMORY CONTROL SYSTEM CALLS Page 3-10

2.4.1 Internal Table Format

The memory bank switching system is controlled by a table which is built by
the MEMDEF statements during system startuo time. The table is besically a
linked Llist of multi-word entries that resides within the monitor area. One
entry defines the sharable memory area, and there is one entry for each bank
defined by a MEMDEF statement. Two words that reside in the monitor system
communication area are used to control the memory management system. These
words are Llabled ''MEMDEF" and 'MEMBNK'; MEMDEF stores the base address of
the table just defined, and MEMBNK stores the memory bank which is currently
active. If memory management is not in use (no MEMDEF statements appeared
in the SYSTEM.INI file) both of these words contain a zero value.

A system configured with an AM-700 or Memory Partition Controller (MPC) has
a different controlling data structure than one wusing traditional bank
swapping. (For information on the MPC, refer to the "System Operator's
Information" section of the AMOS Software Update Documentation Packet.) The
data structure is a linked list of queue elements, each containing four
words. One element 1is allocated for the sharable memory area, one for each
job on the system, one for each piece of switchable system memory, and one
to indicate the end of physical memory. These elements are created by JOBS,
BITMAP, and SYSTEM during the system initialization procedure. The queue is
pointed to by the word Llabeled '"MEMDEF" residing 1in the system
communications area.

3.4.1.1 The MEMDEF Word - The MEMDEF word in the system communication area
contains the address of the first entry in the table, which is always the

entry defining the sharable memory boundaries. The format for this entry
is:

Word 1 - Llink to next entry
Word 2 - base address of sharable memory (0)
Word 3 - top address of sharable memory plus 1

The remaining entries define the switchable memory banks in use and have the
format:
" Word 1 - link to next entry (0 if this is last entry)

Word 2 - base address of this switchable bank

Word 3 - top address of this switchable bank plus 1

~ Words 4 through n - hardware control codes for bank switching

The hardware control codes are one or more entries used to turn the memory
boards on and off during hank switching. There is one control code for each
physical board which has been defined as part of this bank. Each control
code is two words in length, with the first word containing the address of
the hardware port for the memory board and the second word containing the
switch-on and switch-off bytes (low and high bytes, respectively) that are
sent to that port. Note that in the MEMDEF statements you can specify more
than one board per bank (even different types of boards) by separating the

MEMORY CONTROL SYSTEM CALLS Page 3-11

board definitions with slashes. The final hardware code is followed by a
single word of zero to indicate the end of the codes for this bank.

On a Memory Partition Controller (MPC) system (see reference in section
3.4.1 above), the word MEMDEF points to the data structure used by the

operating system to control memory partitions. Each entry has the following
format:

Word 1 - Link to the next entry
Word 2 - JCB pointer

Word 3 - Base address of partition
Word 4 - Limit address of partition

The element describing the sharable memory area has a 0 in word 2. An
element describing a switchable system memory module has a -2 1in word 2.
The Last element has a Q in word 1. The base and limit addresses contained
in words 3 and 4 are magnitude 256; that is, the real memory address shifts
right eight bits. The sharable memory element has a 0 in word 3, and word 4
contains the end of the system area. The first job on the system has 0 in
word 3, as the base address is an offset from the end of the sharable area.
The element for the sharable memory area is first in the queue, the elements
for jobs are next, occurring in the sequence that the JOBS statement Llists
them. Next are the elements for switchable system memory, occurring in
reverse order of the BITMAP statements that generated them. The last
element indicates the end of physical memory. For more details on exactly
what base and Llimit addresses are and how they work, refer to the hardware
documentation for the AM-700.

3.4.1.2 The JOBBNK Word = The JOBRBNK word in each job's JCB contains the
address of the word 4 in the above definition for the bank in which the job
currently resides. This address is the base of the control codes for the
hardware switching operation. The MEMBNK word in the system communication
area always contains the same address as the JOBBNK word for the job that is
currently running. This is used by the scheduling and switching system to
turn off the current job and turn on the next job for running.

For a Memory Partition Contrcller (MPC) system (see reference in section
3.4.1 above), the JOBBNK word in a job's JCB points to word 3 1in the
corresponding MEMDEF queue element. The MEMBNK word 1in the system
communications area always points to word 3 of the element corresponding to
the memory partition currently mapped in by the AM-700.

MEMORY CONTROL SYSTEM CALLS Page 3-12

3.4.2 The Bank Switching Process

Memory bank switching is performed by the job scheduler by a simple sequence
of steps:

1. Use the MEMBNK word to locate the currently active bank entry.
2. Send the switch-off byte to the port address for each control code.

3. Use the JOBBNK word for the next job to be run to locate the bank
entry for that job.

4. Send the switch—-on byte to the port address for each control code.

5. Store the new job's JOBBNK data into the MEMBNK word for next time.

3.4.3 The BNKSWP Monitor Call

Under normal operation of the AMOS system each user 1is confined to an area
that resides totally within any one defined memory bank. The BNKSWP call
may be used by a more sophisticated assembly language routine to allow one
user to access more than one bank of memory. The BNKSWP monitor call
expects register R1 to contain the address of word 4 of the bank which is to
be activated (similar to the automatic operation which wuses the address
within the JOBBNK word). The currently active memory bank is switched off
and the new bank (per R1 address) is switched on. The MEMBNK word is
updated oroperly to reflect the newly activated memory bank. Register R1 is
also changed to contain the index to the previously operating bank, thereby
allowing a convenient return to reactivate the previous bank if R1 is not
altered.

Note that since the current bank is switched off, the BNKSWP call must be
executed from somewhere in sharable memcry to prevent the return from
executing instructions in the new bank. This can be accomplished in one of
several different ways, including pushing the routine onto your stack
(within the JCB) or executing a special subroutine which has been loaded
into system memory.

On a Memory Partition Controller (MPC) system (see reference in section
3.4.1 above), the BNKSWP call functions the same as it does on a bank
swapped system, except that R1 is expected to point to word 3 of the MEMDEF
qgueue element describing the memory partition the caller wants to map in.
The same restrictions that existed before still apply. The user must check
bit 15 din the SYSTEM word residing in the system communications area. If
it's on, he must realize that the MEMDEF queue 1is structured differently
than it would be on a bank swapped system.

MEMORY CONTROL SYSTEM CALLS Page 3-13

3.4.4 The DMADDR Monitor Call (For Memory Partition Controller)

The ANM-70C or Memory Partition Controller translates memory addresses for
DMA devices as well as for the AM-10(/T processor. This feature allows DMA
activity to occur in one job's partition concurrently with another job
running in another partition. On bank swapping systems, only the job that
is doing DMA activity can be running. ALl other jobs are locked out for the
duration of the DMA operation. Device drivers for DMA I/C devices (e.g.,
the magnetic tape) must include a DMADDP monitor call when executing on an
MPC system. The one argument passed to the DMADDR is the DMA Level of the
device. When called, DMADDR sets up the appropriate base address and Llimit
address registers on the MPC. If DMADDR is called on a system configured
without the MPC, nothing is done at all.

In order to utilize the advantages of the MPC, the driver should test the
word SYSTEM in the system connumications area; if bit 15 is set, other jobs
should be allowed to run while DMA activity is ongoing. If bhit 15 1dis not

set, the normal bank-swapping code should be executed. The calling seaquence
for DMADDR appears as follows:

DMADDR DMALEV ; Set up MPC hardware for this DMA activity.

DMALEV is the DMA Level of the device, which is constant for any particular
device but changes from one device to another. There are no return
arguments from DMADDR.

(For a more complete explanation of the Memory Partition Controller, refer
to the "System Operator's Information" section of the AMOS Software Update
Documentation Packet.)

CHAPTER 4

LCADING AND LOCATING MEMORY MODULES

Memory modules may contain an optional filename and extension, which may be
used to locate modules, both in memory and on the disk. This chapter deals
with locating and loadinga modules via these optional filenames and
extensions. Normally, when you enter a command from the terminal, AMOS
first searches for the reauested program in the resident system memory area,
then in your own memory partition. If the program is resident in either of
these places, it need not be loaded in from disk, and execution begins
immediately using the resident program in system or user memory.

4.1 THE SRCH AND FETCH CALLS

The user may make use of two monitor calls (FETCH and SRCH) for locating and
loading modules 1in memory by name. In actuality, the SRCH call is a
specialized version of the FETCH call and is included only for convenience
and compatibility with older programs that are still 1in the system.
Basically, the SRCH call only locates a module if it is in memory, while the
FETCH call automatically loads a module into memory from the disk if it s
not found to be in memory already.

Both calls have the same basic format:

SRCH nameblock,index ,control-flags
FETCH nameblock,index,control-flags

4.1.1 Specifying the Module Name

Nameblock is a standard argument used in the SRCH and FETCH calls to specify
the name of the module to be located or lLoaded. The format of the actual
nameblock referenced is different in each case, however. In the case of the
SRCH call, nameblock refers to a 3-word block of memory (or 3 contiguous
registers) containing the filename and extension of the desired module in
RAD50 packed form. For the FETCH call, nameblock refers to a full file
Dataset Driver Block (DDB) which allows the user to specify a full disk file

LOADING AND LOCATING MEMORY MODULES Page 4-2

specification to Lload the module from in case it is not located in memory.
The DDB has not yet been introduced and is defined and explained in section
6.1.1. In brief, the DDB 1is a 24 (octal) word area in memory which contains
all the information and work areas to define and manipulate a specific disk
file in any area on any defined disk device. The DDB is normally set up by
processing an ASCII file specification with the FSPEC call (more on this
Later).

4.1.2 The Module Address

The second argument 1is the index which is to receive the absolute memory
address of the located (or loaded) memory module data area. Refer to figure
3-3 in the preceding chapter for the Layout of the memory module and the
plLace that this index is set to. The index argument 1is also a standard
araument, although the normal mode is to receive the module address in a
general register (RO-R5). If the index argument is not specified in the
call, the default used 1is register RO which 1is compatible with older
versions of this system.

4.1.3 Flags

The third argument is the optional control flags which may be used to
control the operation of the SRCH and FETCH calls. This argument is any
valid expression which evaluates down to a wvalue in the range of 0-17
(octal). Only the low order four bits are significant and they have been
given the following mnemonic definitions in the system library SYS.MAC:

F.FCH=1 ;Fetch module from disk if nct in memory

F.USR=2 ;Search user memory only

F.ABS=4 ;Load absolute segment from disk

F.FIL=10 ;Set module permanent file flag after load from disk

4.1.3.1 F.FCH - Fetch Module From Disk - F.FCH is the flag that actually
differentiates the SRCH call from the FETCH call, since they both
technically are the same SVCB supervisor call. The SRCH call forces this
bit off while the FETCH call forces this bit on. When set, the F.FCH bit
causes the nameblock to be interpreted as a full file DDB and the module to
be Lloaded from disk if not located in memory first. Since the use of this
bit is controlled by specifying either SRCH or FETCH as the calling opcode,
you should not include this bit in the control-flags argument of your call.

LOADING AND LOCATING MEMORY MODULES Page 4-3

4.1.3.2 F.USR - Bypass System Memory Search — F.USR is the flaa used to
specify bypassing the searching of the resident system memory area for the
module and proceed directly to searching the user aree only. This allows
specific versions of modules to be loaded and used even though they may be
duplicated in the system memory area. This flag is not normally used by
programs other than system software.

4.,1.3.3 F.ABS - Bypass Memory Search - When set, F.ABS forces a direct
search to the disk for the reauested module, bypassing all memory searches
that would normally occur. The module is then loaded into memory at the
ahbsolute address specified by the index argument in the calling seouence.
No housekeeping words are allocated, and the first word of the module gets
loaded into the first word specified by the index argument. NMNote that this
form is the only time the index argument is used to pass an address to the
FETCH processor instead of beina used to receive the address of the Llocated

module. The F.ABS form of the FETCH call is used to Lload program segment
overlays.

4.1.3.4 F.FIL - Mark Module as Permanent - F.FIL is used to force the
permanent file flag bit on in the module flag word after the module has been
loaded from disk. The FETCH call always places the filename and extension
into the housekeeping words 3-5 so even if the module is only temporary, it
may still be located by name as lonqg as the proaram which loaded it is still
active. This is useful for dynamic Lloading of subproarams and/or data
modules. Setting the F.FIL flag on in the control-flags argument means that
the module will not be deleted from memory by the operating system when the
calling program finally exits. The operator LOAD command uses this method
to load a program into memory and leave it there to be called by name.

4.1.4 Completion Codes

When the SRCH or FETCH call returns, the user must test the status of the
Z-bit to see if the module was located or loaded successfully. If the Z-bit
is set (tested by BEQ), the operation was successful. 1If the 7-bit 1is not
set (tested by BNE), the module was either rot located or would not fit into
the remaining free memory within the user's partition.

CHAPTER 5

MONITOR QUEUE SYSTEM CALLS

The monitor oaueue is a list of blocks in system memory which are Llinked to
each other in a forward chain. The base of this chain, and the count of the
blocks in the chain, are contained in the QFREE monitor communications words
(see Pppendix B). Each aueue block in the chain links to the next one by
storing its address 1in the first word of the queue block. The last queue
block in the chain contains a zero link word to flag it as the end. Each
queue block is currently 8 words (16 bytes) in size, althouah this value may
increase with the next release of the file system. The monitor initially
contains 20 blocks 1in the available queue List.

During normal monitor operation various functions use these queue blocks to
perform certain tasks. When a routine needs a aueue block, it issues a QGET
monitor call, which delivers the first available aqueue block by returning
its base address in register R3. The routine then wuses this area to
temporarily store information during processing. When the routine no longer
requires the block, it issues a QRET monitor call, which returns the queue
block to the available list for Later re-use.

The monitor queue system is necessary to provide storage for interrupt
driven hardware (AM-300 board) and for storage during memory management
operations. The queue blocks always reside in sharable system memory and
therefore may be wused by interrupt routines without regard to memory
management context switching. The monitor queue system will be used more
and more as the monitor is improved but is also available to the user if
desired. The XLOCK subroutine (for multi-user locks in AlphaBasic) uses the
monitor queue system to store the lock parameters.

5.1 INCREASING THE AVAILABLE QUEUE LIST SIZE

It is apparent that the number of queue blocks in use at any one time varies
with system loading, number of wusers, and tasks being performed. Some
applications may demand a larger available list of queue blocks to insure
safe system operation. Due to overhead restrictions, no check is performed
to see 1if the available queue is exhausted. However, you can increase the
size of the available queue list during system startup time.

MONITOR QUEUE SYSTEM CALLS Page 5-2

The monitor is initially generated with 20 free blocks 1in the available
queue. At any time in the SYSTEM.INI file prior to the final SYSTEM command
you may execute the QUEUE nnn command which allocates '"nnn' more queue
blocks for general use. A typical increase for a large system with several

users running extensive applications might be 100 more blocks for a total of
120.

Once the system is up and running no more queue blocks may be added to the
list, so you must give your best guess at your total requirements. The
QUEUE command takes on a new Life once the system is running. If you type
the QUEUE command, the system responds by typing back the current number of
free oqueue blocks 1in the available queue List. It is by this method that
you may keep a close eye on the relationship between the system operation
and queue block usage.

5.2 QUEUE BLOCK USAGE BY THE SYSTEM

This section lists the areas of the monitor which currently make use of the
queue system, to give you a better idea on how to estimate your particular
needs. Remember that this Llist will probably expand in future releases of
the monitor. Also, add to this any applications that you may write which
include the QGET and QRET calls (described in section 5.3).

The terminal service system makes frequent use of the queue system during
output operations. A typical terminal driver may have up to four or five
queue blocks 1in use at any one time, for Llinking buffers and storing
immediate data values.

The monitor SLEEP call uses one queue block during the time the job is
asleep.

The Persci disk driver uses one queue block while the head is loaded.

The XLOCK AlphaBasic subroutine wuses one queue block for each separate
system lock that is currently active by any job. This block is not returned
to the available Llist until the lock is released by the job that has it
locked.

The FLOCK AlphaBasic subroutine uses a number of queue blocks that varies
with the number of jobs accessing files, the number of files open at one
time, and the number of records open for each file. At any given moment

during the use of FLOCK, the numher of queue blocks being used eauals:

twice the number of different files open using FLOCK, plus

the number of different records open using FLOCK, plus

the number of jobs with files open using FLOCK, plus

the total number of FLOCK opens (i.e., # of Action O's)
that haven't been closed, plus

the total number of record uses (i.e., # of BAction 3's)
that haven't been released

MONITOR QUEUE SYSTEM CALLS Page 5-3

The Last two factors of the above equation anticipate circumstances where
the same file and/or the same record is being accessed by more than one job

at a time. If two jobs are reading the same file, that is two opens or two
Action Q's.

The Lline printer spooler, as of version 4.1, uses the gueue system to store
the printer queue as well as a list of printers connected to the system.

5.3 QUEUE SYSTEM MONITOR CALLS

You can utilize the monitor queue system by using one of the four monitor
queue management calls (QGET, QRET, QADD, QINS). These calls are fast for
use in interrupt level routines. ALl calls work through register R3 and no
other registers are disturbed. Since most queue blocks will be used in some
form of sharable resource chain or interrupt level routine, the processor
must be Llocked before executing any of the queue management calls.
Violating this rule could destroy the available gueue Llist or result in
inter-job errors. None of the calls require any arguments to be passed
except for the address in R3.

5.3.1 OGET - Obtain a Free Queue Block

This call obtains the first free queue block from the available Llist and
returns its base address in R3. The Z-flag is set if the queue block was
available, and is reset if no queue hlocks were available. The queue block
is first removed from the available Llist, and then all words in the bhlock
are cleared to zeros.

5.3.2 QRET = Return a Queue Block

This call returns a queue bhlock to the available aqueue List in the monitor.
The address which was in the first word of the block (usually a Llink to the
next block in your chain) is returned in R3 after the block has been Llinked
back into the available queue Llist. ALl qgueue blocks that have been
allocated by OGET, QADD or QINS should eventually he returned to the monitor
by the QRET call when they are no longer needed.

5.3.3 QADD, QIMNS - Manipulating Queue Blocks

Similar to the QGET call, these two calls obtain the first free queue block
from the available Llist. The Z-flag 1is set if the queue block was
available, and 1is reset if no queue blocks were available. 1f available,
the queue block is linked into your own specific list whose address s in
R3. This is because most system calls use queue blocks as elements of some
specific Llist, dependina on the application. The XLOCK subroutine, for

MONITOR QUEUE SYSTEM CALLS Page 5-4

instance, maintains a Llist of all active system locks and adds or deletes
queue blocks from this Llist as locks are set and reset.

The standard format of these individual Llists follows the format of the free
list. Each block links to its successor by storing its address in the first
word of the block. ALl other words in the queue block are available for the
storage of specific data. The last block in the Llist contains a zero 1in
word 1 to mark the end of the list. The QADD call scans down the chain
marked by the address in R3 and then inserts the new queue block at the end
of the existing Llist. The QINS call inserts the new queue block in the
chain at the point indexed by R3 and links the remaining list elements (if
any) to the newly inserted block. Both calls then return the address of the
second word of the new queue block in R3. This is the base of the data area
of the queue block where you may store the data.

Remember that the current size of each queue block is eight words in length.
The QADD and QINS calls place a Llink in the first word, leaving seven words
of data storage for your application. The QRET call always requires the
address of the first word when returning the queue block to the available
list, regardless of the call used to obtain the block.

CHAPTER 6

THE FILE SERVICE SYSTEM

The AMOS monitor has a simple yet powerful device-independent file service
system which relieves the programmer of the task of 1/0 coding for each
device with which he wishes his program to interface. 1In addition to this
device independence, the monitor contains all routines to manage the disk
file system on a logical-call basis. The programmer need not be concerned
with the exact physical placement of files on the disk except in rare
instances where the system software is being developed or tested. The
monitor also contains an efficient means for developing new device drivers
to be incorporated 1into the system when wunsupported devices must be
interfaced. This section gives a general overview of the file service
system and describes the Dataset Driver Block (abbreviated as DDB) which is
the descriptor Link for all I/0 and file calls to the monitor.

6.1 THE DATASET DRIVER BLOCK

ALL I/0 operations and file operations are accomplished by monitor calls
with reference to a DDB, which defines the device or file being operated
upon. Whether the operation is to a unit-record device such as a printer,
or to a specific file within & file-structured device such as a disk,
depends upon the parameters passed to the monitor through the referenced
DDB. There is no limit to the number of devices or files that may be active
at any given time, but there must be one separate DDB for each device or
file din use concurrently. There are no internal channel numbers or device
numbers to Llimit the number of concurrently active devices or files. The
general sequence of events for the complete processing of a device or file
operation can be summed up as follows:

1. The DDB is set up with the defining parameters such as device name,
drive number, filename and extension, project-programmer number,
etc. This data normally comes from the processing of an ASCII file
specification such as DSK1:FILTST.MAC[C101,11 by an FSPEC call.

2. The 1/0 buffers are allocated either directly by the user program
or by an INIT call referencing the DDB in use.

THE FILE SERVICE SYSTEM Page 6-2

3. The logical opening processes for the device or file are performed,
normally by an OPEN call referencing the DDB.

4. Data transfers to or from the device are performed by either READ
and WRITE calls for physical transfers or INPUT and OQOUTPUT calls
for logical transfers.

5. The logical closing processes for the device or file are performed,
normally by a CLOSE call referencing the DDB.

The monitor contains complete error processing routines which allow the
programmer to specify (by flags in word 1 of the DDB) whether any
uncorrectable errors are to result in an automatic error message to the
operator on his terminal, an aborting of the program and return to monitor,
or both. You may also elect to process the errors yourself by checking the
error code returned in word 1 of the DDB.

6.1.1 DDB Format

Figure 6-1 shows the format of the DDB which must be allocated within the
user program area and set up by the user before any I/0 operations can take
place. The DDB is 24 (octal) words in size and is usually allocated by a
BLKW 24 statement. The DDB can be assigned any tag which will then become
the reference tag for all subseauent operations to that dataset. Some of
the items in the DDB you must set up before certain operations may be called
for, while other items are set up and wused by the monitor file service
routines. The following descriptions explain the use of each item.

6.1.1.1 Error Code - This byte is set to a non-zero code at the completion
of an I/0 operation that was unsuccessful for various reasons. A zero
indicates the operation was successful. You need to test this byte only if
the error control flag in the flags byte (DDB+1) specifies returning to the
user on an error condition or if the operation allowed a non-fatal error
condition to occur. The error codes are listed at the end of this section.

THE FILE SERVICE SYSTEMW

DDB:

+2

+4

+6

+10

+ 12

+14

+16

+20

+22

+249

+ 26

+30

+32

+349

+ 36

+40

+42

+4a49

+46

Page 6-3

Flags

Error Code

Buffer Address

Record Size

Buffer Index

Record Nlumber

Driver Address

JCB Address

Job Priority

DSK1:FILNAM.EXT (101,4]

Device Code

AV Y

Call Level Drive
Filename
Extension
PPN
Open Code

(S words)

- Driver Work Area

Dataset Driver

Fig 6-1

Block

THE FILE SERVICE SYSTEM Page 6-4

6.1.1.2 Flags - This byte is used to control the flow of the I/0 operation
and the handling of error codes by the file service routines. The followinga
functions are controlled by the eight flag bits:

set by user to force a return on error condition (abort if clear)

- set by user to bypass printing of error messages on error conditions
- real-time transfer flag (currently not implemented)

- spare

transfer initiated (for internal file service use only)

- read if 0 or write if 1 (for internal file service use only)

- device INITed - set by INIT call or user if explicit buffer in use

- dataset busy (transfer initiated or queued)

~NoONUnT P W= O
|

6.1.1.3 Buffer Address - This is the 16-bit absolute address of the base of
the buffer to be used for all dataset transfers (read and write). It is set
by the INIT call which allocates a buffer, or by the user program if it is
allocating its own buffer and not using the INIT call. This address is used
in conjunction with the flag bit 6 above, which indicates that a buffer has
been allocated either by the INIT call or by the user. No transfers can
take place without a buffer.

6.1.1.4 Record Size - This is the size in bytes for the physical transfer
to use. The READ cell transfers this number of bytes from the device to the
user buffer beginning with the address in DDB+2. The WRITE call transfers
this number of bytes from the user buffer to the user device. The INIT call
sets this size to the standard buffer size, or you can set the size if you
are doing your ouwn buffering. You may modify the size for transferring
records of variable sizes as long as it does nct exceed the buffer size of
the capacity of the device or driver in use. Various loaical file service
routines set this size word during processing, such as the OPEN call for the
disk which must perform directory operations on a 512-byte buffer at all
times.

6.1.1.5 Buffer 1Index - This 1is a byte counter which is used by logical
routines (INPUT and OUTPUT calls) for keeping track of bytes transferred
into and out of the user buffer. Various calls reset this value, and you
then use it and increment it as bytes are transferred into and out of the
buffer. Details are given in later sections where the calls themselves are
described. This buffer index word 1is nermally not a true buffer pointer but
rather an offset from the buffer base (per DDB+2) to the current byte being
manipul ated.

THE FILE SERVICE SYSTEM Page 6-5

6.1.1.6 Record Number - You set the record number to read or write a
specific random record from a random access device such as disk. The first
record on the device 1is considered record zero, and the record numbers
increment sequentially from there. This record number is actually used only
by the physical driver routines for READ and WRITE calls, but other Llogical
calls set this word to perform transfers to specific disk areas such as
directory operations on disk. Most non-disk devices are not random access,
in which case this record number is ignored by the respective drivers.

6.1.1.7 Queue Chain Link - This word is for internal use only, It is the
link used by the I/0 queueing routines for interrupt driven transfers. You
should not alter this word.

6.1.1.8 JCBR Address - File service routines store the address of the
controlling job's JCB so that interrupt driven drivers can Llocate the
corresponding job for activation on transfer complete status. This word is
also for internal use only.

6.1.1.9 Job Priority - The current software job priority 1is set here by
file service routines to specify the priority of the transfer in queued
operations. This byte is for internal use only. The top byte of this word
(DDB+17) is currently not used.

6.1.1.10 Device Code - The 3-character device code (packed RAD50) must be

set here by an FSPEC call or directly by the user before any I/0 operations
may be performed.

6.1.1.11 Drive - Used only by drivers for devices with multiple drives,
this byte must be set to specify the drive to be used for the transfer. A
-1 byte (octal 377) may be wused to indicate the current default drive
number. If the device is DSK, the default drive wused is the drive onto
which you are currently logaged. Other devices may have different defaults.

6.1.1.12 call Level - For internal wuse only, this byte is used to keep
track of the Llevel of nesting of the file service calls for proper error

recovery handling. This byte must be zero before the first file call is
executed.

THE FILE SERVICE SYSTEM Page 6-6

6.1.1.13 Filename and Extension - These are three words which contain the
RAD50 packed filename and extensior for file-structured devices. These
words are ignored by drivers for devices which are not file-structured, but
they may cause inaccurate error messages if they are not set to zero values.

6.1.1.14 PPN - This 1is the octal project-programmer bytes for the area to
be used to locate the file. It is wused only on file-structured devices
which are multi-user based such as disk. A zero causes the default value to
be the current PPN which the job is logged in under. To prevent inaccurate
error messages, this word should be zero, if not used.

6.1.1.15 Open Code - This byte is set by the OPEN call to indicate the mode
of the open statement for future processing operations. It 1is normally
ignored by drivers for devices which are not file-structured. It is for
internal use only and should not be modified by the user. The corresponding
top byte of the word (DDB+35) is currently not wused. The following open
codes are in use:

0 file is not open

1 - file is open for sequential input (OPENI call)

2 file is open for sequential output (OPENO call)
10 - file is open for appendina (OPENA call)

4 - file is open for random input/output (OPENR call)

6.1.1.16 Driver Work Area - The remaining five words are for internal use
by the device drivers for links, record counts, etc., and should not be
modified by the wuser during processing. Not all drivers make use of the
work area, but it must be there if device independence is to be preserved.

6.1.2 Device Transfer Buffers

Each dataset must have an associated transfer buffer to handle input and
output operations. This buffer must be allocated either directly or through
use of the INIT call which allocates the buffer as a memory module by using
a GETMEM call. The INIT call allocates a standard size buffer for the
device being wused (the size of the buffer is defined within the driver
itself). If you do not wish to use the INIT call, you may allocate any size
buffer you wish (must be large enough for any logical calls to be performed)
and then set its address in DDB+2. Refer to the section detailing the 1/0
calls themselves for more details on the use of these buffers.

THE FILE SERVICE SYSTEM Page 6-7

6.1.3 Error Handling

When an error occurs during any file service call, the file service routines
normally perform typical error correction procedures. If the error is fatal
(uncorrectable), two operations may or may not take place depending on the
setting of bits 0 and 1 in the flags byte at DDB+1. First, bit 1 is tested
and if it is not set, the monitor outputs a standard error message to the
user terminal, giving the type of call that failed, the file specification
for the device that the error occurred on, and the reason for the error.
The appropriate error code is also placed in the error byte at D0DB+0 for
later testing by the user. Second, bit 0 of the flags byte is tested and if
it is not set, the user program is aborted by the file service system and
you are returned to monitor mode. You normally set these bits on before any
1/0 calls are made, if you wish to process the errors within the user
program itself.

6.1.3.1 Error Codes - The following Llist gives the error code (in octal)

returned in the DDB error byte by the file service system, along with the
reason for the error:

01 - file specification error (FSPEC)

02 - insufficient free memory for buffer allocation (INIT)
03 - file not found (OPENI, OPENR, OPENA, DELETE, RENAME)
04 - file already exists (QPENO)

05 - device not ready (all calls)

06 - device full (OUTPUT)

(07 - device error (all calls)

10 - device in use (ASSIGN)

11 - illegal user code (all file calls)

12 - protection violation (OPENQ, OPENR, DELETE, RENAME)
13 - write protected (all output calls)

14 - file type mismatch

15 - device does not exist (all calls)

16 - illegal block number (READ, WRITE)

17 - buffer not initiated (all calls except INIT)

20 - file not open (READ, WRITE, INPUT, OUTPUT, CLOSE)

21 - file already open (all OPEN calls)

22 - bitmap kaput (all disk bitmap calls)

23 - device not mounted (all calls)

24 - qnvalid filename (OPENC, FSPEC, DSKCTG)

At the conclusion of every file service monitor call, the error byte at the
base of the DDB is tested for the convenience of the wuser program. This
allows you to test for an error status directly after the call with a BNE
instruction without having to first explicitly test the byte with a TSTB
instruction. This, of course, only eppliss if you have the error trapping
bit set in the DDB status word to prevent the job from being aborted on a
file error.

THE FILE SERVICE SYSTEM ‘ Page 6-8

6.2 FILE SERVICE MONITOR CALLS

This section describes the file service calls which are available to the
user program for both logical and physical I/0 operations. ALl calls have
the same general format, which uses a single argument representing the
dataset driver block (DDB) to be used for the operation. See the preceding
chapter for a complete description of the DDB format. In brief, the calls
described in this section are:

FSPEC process a device specification

INIT initjalize a dataset driver block buffer
LOOKUP Lookup a file to see if it exists
OPENI open a file for sequential input
OPENO open a file for seaquential output
OPENA open a file for appending

OPENR open a file for random input/output
CLOSE close a file to further processing
READ read a physical record

WRITE write a physical record

INPUT read a logical record

OUTPUT write a logical record

DELETE delete a file

RENAME rename a file

ASSIGN assign a device to a job

DEASGN deassign a device from a job

6.2.1 FSPEC - Process an ASCII Filespec

The FSPEC call is used to process an ASCIT file specification from a command
Line (or any other ASCII buffer) and set up the parameters in the DDB
according to the results of the processing. The ASCII file specification
must be dindexed by R2 and must be in the standard format of
dev:filnam.extlp,pnl with a valid termination character, if a short default
specification is used.

The FSPEC call is slightly different from the rest of the I1/Q calls in that
it allows you to use a second argument if you wish. This argument must be
the default extension for the filename parameter to be wused 1in the event
that the file specification does not contain an explicit extension
(identified by a period after the filename). If the second argument does
not exist, the FSPEC processor does not process the input file specification
past the colon which terminates the device/drive parameters.

The device code (3 characters) is packed RAD50 and stored in DDB+20 if it
exists as marked by the terminating colon. The drive number is stored 1in
the byte at DDB+22 if it exists. If the device code does not exist, the
current default device (stored in the job's JCE item JOBDEV) is stored in
DDE+20. If the drive number is not in the input specification an octal 377
is stored in DDB+22 to flag the default drive number to the device driver.

THE FILE SERVICE SYSTEM Page 6-9

The filename and extensicn are then processed unless no second argument was

used in the call, in which case the FSPEC processor returns to the user at
this point. The filename and extension are packed RADSQ and stored 1in the
three words at DDB+24 through DDB+30. If no filename is entered in the
input specification, the word at DDB+24 i1s cleared to =zero to flag the
absence of the filename parameter. If a filename 1is entered but no
extension is entered, then the default extension specified 1in the second
argument of the FSPEC call is stored as the extension in DDB+30.

If a project-programmer number is in the file specification (marked by a
Left sauare bracket "['"), it is processecd and stored in DDB+32. 1f no p,pn
is entered, DDB+32 is cleared to zero to flag its absence.

At the conclusion of the processing of the input file specification, the
index R2 is pointing to the termination character (the first character
following the file specification string). If an error in the input string
is detected, the FILE SPECIFICATION FERROR message 1is printed (unless
suppressed by bit 1 in DDB+1) and the program is aborted (unless suppressed
by bit 0 in DDB+1). The error code 01 is set in DDB+(0 error code byte.

No other modifications take place to the DDB area except that the error byte
at DDB+0 is cleared at the start of the FSPEC processing. If you do not use
the FSPEC call to set up your DDB, you must use some other form of explicit
code to insure that the DDB is set up properly to define the device and file
for any subsequent 1/0 operations.

6.2.2 INIT - Initialize the DDR

The INIT call is the normal means for allocating the dataset buffer and
initializing the DDB for processing. The INIT call Locates the device
driver (searching [1,67 on DSKO: if not 1in memory), then allocates a
standard size buffer based on the size specified in the driver. Bit 6 of
the flag byte at DDB+1 is set to indicate the initialization. The address
of the buffer is set into DDB+2, and the size in bytes is set into DDB+4.

No calls deallocate the buffer once it has been allocated by the INIT call.
Multiple OPEN-CLOSE processes may be performed on the DDB once the INIT has
been done. The buffer is temporary and is deallocated automatically when
the program exits to monitor, or it can be explicitly deallocated by using
the DELMEM call with the address stored in DDB+2. Recall that the buffer is
allocated as a standard memory module with a GETMEM call.

NOTE

ALL file service calls with the exception of
the FSPEC call require the use of a disk
buffer, and therefore must be preceded by
the INIT call for processing.

THE FILE SERVICE SYSTEM Page 6-10

6.2.3 LOOKUP - Find the File

This dis a form of the OPEN call which does nothing except search for the
file and return an error code if it is not focund. The file is not actually
opened for processing, and an OPENI call must be used if the file is to be
subsequently read from. The LOOKUP call is useful for determining if a file
that is about to be opened for output already exists, so that it can first
be deleted by the DELETE call. The LOOKUP call is ignored for devices which
are not file-structured.

The LOOKUP call is also useful for some system programming techniques since
it returns parameters about the file in the DDB work area. The work area is
located in the last five words of the DDB. The first three words of this
work area are loaded with the three words of the directory item if the file
is found. These three words are the number of records 1in the file, the
number of active data bytes in the last record, and the record number of the
first data record 1in the file. Refer to Appendix A, "Disk Structure
Format," for complete details on the directory format.

6.2.4 OPENI - Open a File for Input

The OPENI call locates a file in a file-structured device and sets up the
DDB parameters (work area) for subsequent INPUT processing. An error
results if the file is not found. The code 01 is set into DDB+34 to flag
the OPENI operation. The OPENI call is normally followed by a series of
INPUT calls which deliver seaquential records from the file to the wuser
buffer. The OPENI call is ignored for devices which are not
file-structured.

6.2.5 OPENO - Open a File for Output

The OPENO call first searches the specified device 1in the specified wuser
area and returns an error if the file already exists. If it does not, the
DDB is set up for OUTPUT processing. The code 02 is set into DDB+34 to flag
the OPENO operation. The OPENO call is normally followed by a series of
OUTPUT calls which transfer data from the user buffer to sequential records

in the file. The OPENO call 1is ignored for devices which are not
file-structured.

6.2.6 OPENA - Open and Append to Existing File

The OPENA call is similar to OPENO, except that it allows you to append data
to an existing file. The code 10 is set into DDB+34 to flag the OPENA
operation. The OPENA call is normally followed by a series of OUTPUT calls
which transfer data from the user buffer to the end of the file. This call
is ignored for devices which are not file-structured.

THE FILE SERVICE SYSTEM Page 6-11

6.2.7 OPENR - Open a File for Random Processing

The OPENR executes basically the same as the OPENI call, but the code stored
in DDB+34 is 04 to flag random processing. The file Llocated for random
processing must be a contiguous file. The OPENR call 1is normally followed
by a series of INPUT and OUTPUT calls which transfer data between specific
records 1in the file and the user buffer in both directions. The OPENR call
is also ignored for devices which are not file-structured.

6.2.8 CLOSE - Close a File

The CLOSE call finishes up lLogical processing of a file and clears the open
code in DDB+34. No further INPUT or OUTPUT operation may occur once 2 file
has been closed. No action is normally done on a file which 1is open for
input . For files open for output, the final record is written out and the
file is added to the directory system on the specific device. The CLOSE
call is ignored for devices which are not file-structured.

6.2.9 READ - Perform 2 Physical Transfer

This is the physical transfer call for reading input data from a device. No

check is made for file open status since the READ call is not a logical file
call.

6.2.9.1 Sequential Devices - For sequential access devices such as a paper
tape reader, the READ call delivers one record from the device to the wuser
buffer. The size of this record is normally the number of bytes specified
in DDB+4, but this may not necessarily be true if the driver does not
transfer under the rules of the system. If the device is not capable of
generating the requested number of bytes per DDB+4 (such as a tape reader
which runs out of tape), a lesser number may bhe transferred in which case
the count in DDB+4 1is adjusted to reflect the +true number actually
transferred to the user buffer.

6.2.9.2 Random Devices - For random access devices such as disk, you must
specify the record number to be located and read, by placing that number
into DDB+10 before executing the READ call. Most random access devices
always transfer the requested number of bytes per DDB+4 into the user
buffer. (1f the buffer is larger than the physical block, the system reads
multiple conticuous blocks to fill up the buffer.) An error results if the
record number is not within the range of the specific device. For example,
the standard AMOS floppy disk is structured as 500 (decimal) records of 512
bytes each. The legal record numbers therefore range from 0O through 499,
decimal. Similar range restrictions apply for each random device.

THE FILE SERVICE SYSTEM Page 6-12

6.2.9.3 Interrupt Structure - The system allows interrupt driven devices to
be queued and processed in a priority fashion. Normally, the execution of a
READ call suspends the running of the user program until the transfer has
been completed, at which time the user job is reactivated. You must then
either test the dataset busy bit (bit 7) of the flag byte or use the WAIT
call to stall until the transfer has been completed. The dataset busy flag
is reset when the transfer has been completed. You must then check for
errors. The realtime bit is ignored for devices which are not interrupt
driven or whose drivers do not run under the I/0 gueue system.

6.2.10 WRITE - Perform a Physical Write

This is the physical transfer call for writing data to a device. No check
is made for file open status, since the WRITE call is not a logical file
call.

6.2.10.1 Sequentijal Devices - For sequential access devices such as a
printer, the WRITE call delivers one record to the device from the user
buffer. The size of this record is the number of bytes specified in DDB+4.
The driver is responsible for the correct transfer count, and you may alter
the number in DDB+4 for each new WRITE call to the same device for the
writing of variable length records.

6.2.10.2 Random Devices - For random access devices such as disk, you must
specify the record number to be located and read, by placing that number
into DDB+10 before executing the WRITE call. Most random access devices
always transfer the reauested number of bytes per DDB+4 into the wuser
buffer. An error results if the record number is not within the range of
the specific device. The standard AMOS floppy disk is structured as 500

(decimal) records of 512 bytes each. The legal record numbers, therefore,
range from 0 through 499, decimal.

6.2.10.3 Interrupt Structure — The system allows interrupt driven devices
to be queued and processed in a priority fashion. Normally, the execution
of a WRITE call suspends the running of the user program until the transfer
has been completed, at which time the user job is reactivated. The user may
optionally set the realtime bit (bit 2) in the flag byte at DDB+1 to force
an immediate return to the program once the transfer has been queued or
initiated. You must then either test the dataset busy bit (bit 7) of the
flag byte or use the WAIT call to stall wuntil the transfer has been
completed. The dataset busy flag 1is reset when the transfer has been
completed. You must then check for errors. The realtime bit is ignored for

devices which are not interrupt driven or whose drivers do not run under the
I/0 queue system.

THE FILE SERVICE SYSTEM Page 6-13

6.2.11 INPUT - Perform a Logical Read

The INPUT call is the logical equivalent of the READ call for Llogical
processing of datasets. The INPUT call reads a logical record within a file
or device dataset wunder the control of the specific driver in use. A
dataset must be opened for input (OPENI) or random access (OPENR) before
INPUT calls are performed. The INPUT call first sets the standard buffer
size into DDB+4, so you may not wuse this call to transfer non-standard
record sizes. The number of bytes actually read may be less than the
- standard record size due to the driver processing or due to an end-of-file
condition. The actual number of bytes transferred is set into DDB+4 by the
driver routine.

6.2.11.1 Sequential File Processing - The INPUT call is mainly used in
logical seauential file processing; it sets up the buffer index value in
DDB+6 to direct the processing of the data by the user routines. This index
value is actually the offset to the first byte of valid data within the user
buffer, whose base address is at DDB+2. For unit record devices, the value
is zero since all data within the buffer is user data. For sequential disk
files, however, the first word in each record within the file is a link word
to the next record; therefore, the value set into DDB+6 by the disk driver
is 2, so that processing starts with the third byte in the user buffer.

6.2.11.1.1 Example - The following subroutine is normally used to get each
byte of data from a sequential file:

;Subroutine to get next byte from file defined as INDDB and leave it in R1

’

INBYTE: CMP INDDB+6,INDDB+4 ;is the buffer empty?
BLO INBG ; no - get next byte
INPUT INDDB ;read next logical record into buffer
cMpP INDDB+6,INDDB+4 ;check for end of file (no data transferred)
BEQ INEOF ; go to end of file routine

INBG: PUSH INDDB+2 ;stack the buffer base address
ADD INDDB+6 ,aSP ; and add the index offset to get position
MOVB a(SP)+ ,R1 ;pick up the next byte from user buffer
AND #377,R1 ;insure upper byte is cleared in R1
INC INDDB+6 ;increment the buffer index for next time
RTN ;subroutine return

6.2.11.2 Random File Processing — A special situation arises for files
opened for random access by the OPENR call. Instead of the next sequential
record being read, the specific relative record whose number is in DDB+10 is
read into the user buffer. You first set this number up and then execute
the INPUT call. The record number is actually relative to the base of the
file and has no direct relationship to the physical record on the device as
would be returned by a READ call.

THE FILE SERVICE SYSTEM Page 6-14

6.2.11.3 Special Devices - For devices that do not implement special
processing of logical calls, the INPUT call performs a READ call instead.

6.2.12 OUTPUT - Perform a Logical Write

The OUTPUT call is the logical equivalent of the WRITE call for Llogical
processing of datasets. The OUTPUT call writes a logical record to a file
or device dataset under the control of the specific driver in use. A
dataset must be opened for output (OPENO) or random access (OPENR) before
OUTPUT calls are performed. The OUTPUT call transfers the number of bytes
in DDB+4, but it normally does it as a standard record (depends on the
driver in use). We discourage attempts to wuse the OUTPUT call for
transferring non-standard record sizes.

6.2.12.1 Sequential File Processing - The main use of the OUTPUT call is in
logical sequential file processing. The OUTPUT call sets up the buffer
index value in DDB+6 to direct the processing of the data by the wuser

routines. This dindex value 1is actually the offset to the first byte
position for valid data within the user buffer whose base address is at
DDB+2. For unit record devices this value is zero, since all data within

the buffer is user data. For sequential disk files, however, the first word
in each record within the file 1is a Llink word to the next record;
therefore, the value the disk driver sets into DDB+6 is 2, so that
processing starts with the third byte in the user buffer.

6.2.12.1.1 Example - The following subroutine is normally used to put each
byte of data to a sequential file:

;Subroutine to put next byte from R1 into file defined as OTDDB

’
OUTBYT: CMP OTDDB+6,0TDDB+4 ;is the buffer full now?
BLO ouBYT ;no - add this byte
OUTPUT OTDDB ;Jyes = write it
MOUBYT: PUSH 0TDDB+2 ;stack the buffer base address
ADD 0TDDB+6,3SP ; and add index offset to get position
mMove R1,a(SP)+ ;move data byte to user buffer
INC OTDDB+6 sincrement the buffer index offset value

RTN ;subroutine return

THE FILE SERVICE SYSTEM Page 6-15

6.2.12.2 Random File Processing — A special situation arises for files
opened for random access by the OPENR call. TInstead of the next sequential
record being written, the specific relative record whose number is in DDB+10
is written out from the user buffer. You first set this number up and then
execute the OUPUT call. The record number is actually relative to the base

of the file and hées no direct relationship to the physical record on the
device as would be written by a WRITE call.

6.2.12.3 Special Devices — For devices that do not implement special
processing of logical calls, the OUTPUT call performs a WRITE call instead.

6.2.13 DELETE - Delete a File

The DELETE call deletes a specific file from a file-structured device. The
filename, extension and p,pn (if wused) must be set 1in the DDB before
executing the call. An error results if the file is not found. The DELETE
call 1is ignored for devices which are not file-structured.

6.2.14 RENAME - Rename a File

The RENAME call renames a specific file on a file-structured device. The
filename, extension and p,pn (if wused) must be set in the DDB before
executing the call. The new filename and extension must be packed RADS0
into the three words immediately following the DDB in memory. The RENAME
call merely locates the directory item for the file and replaces the three
words which store the filename and extension. The RENAME call is ignored
for devices which are not file-structured.

6.2.15 ASSIGN - Assign a Device

The ASSIGN call is used to assign a non-sharable device (such as a printer)
to the ~current wuser's job by setting a flag in the device's entry in the
device table in monitor memory. Once a device has been assigned by this
call, any attempt to assign it by another job results in an error. The
device stays assigned to this job until deassigned by the DEASGN call. The
ASSIGN call performs no action if the specified device is sharable, such as
a disk.

THE FILE SERVICE SYSTEM Page 6-16

6.2.16 DEASGN - Deassign a Device

The DEASGN call is used to deassign a device which has been assigned to the
user's job by the ASSIGN call. Once deassigned, the device becomes
available for assignment by other jobs. The DEASGN call performs no action
if the specified device is sharable or if it is not currently assigned to
the user's job. ALl devices are deassigned when the program exits to the
monitor.

6.3 DISK SERVICE MONITOR CALLS

In the previous section we covered the file-oriented monitor calls. Those
calls allow you to access data files without regard to the actual structure
of the data on the device. Internally, of course, AMOS does have to deal
with the structure of the data. This section deals with the monitor calls
used to manipulate that structure. A description of the data structures
used to maintain files on a device can be found in Appendix A, '"Disk
Structure Format."

The disk presents special problems which require the use of special monitor
calls to control the accessing of the directory and bitmap records. These
records have a non-sharable attribute associated with them, even though the
disk in general is a sharable device. For instance, two user programs may
not both be updating the same directory records at the same time. The same
holds true for the bitmap records. The following monitor calls are used to
control the access to these non-sharable records:

DSKCTG - allocates a contiguous file for random processing
DSKALC - allocates the next available record on disk

DSKDEA - deallocates a specific record on disk

DSKBMR - reads disk bitmap and sets re-entrant lock flag
DSKBMW - rewrites disk bitmap after user modification

DSKDRL - sets re-entrant directory lock for a specific user
DSKDRU - clears re-entrant directory lock for a specific user

The access to these records is normally done by the monitor routines as a
direct result of normal I/0 processing by file service calls. It is a
somewhat tricky process and the disk calls should not be used except with
extreme caution, since misuse could violate the integrity of the file
structure on the disk. The following descriptions are directed at those
system programmers who are familiar with shared file technioues.

6.3.1 Calling Sequence

ALL calls use a standard argument which is the address of the associated DDB
to be used for the call. 1In addition to the first argument which 1is the
DDB, some calls use an optional second argument for processing. The second
argument is detailed in the description of the call.

THE FILE SERVICE SYSTEM Page 6-17

6.3.2 The Bitmap Area

The bitmap area is an area in monitor memory which 1is allocated by the
BITMAP program run at system startup time by the BITMAP command in the
system initialization command file. This area consists of a status word, a
DDB for bitmap reads and writes, and a buffer for the actual bitmap
including the hash total words. The format of the bitmap area 1is as
fol lows:

BLDW 0 ;Bitmap status word

BLKW 12 ;sPartial DDB for bitmap I1/0

BLKW Bitmap-size ;Bitmap buffer (size depends on device)
BLKW 2 ;Hash total words

The device table entry for each drive has the address of the corresponding
bitmap area to be used for that drive. More than one drive may share the
same bitmap area, forcing a rewrite each time a different drive is
referenced. This is not efficient with regard to time but can save some
memory for larger devices where the bitmap buffer may be several hundred
words or more.

6.3.2.1 The Status Word - The status word (first word 1in bitmap area)
contains two flags which are used to control bitmap access. Bit 0 is the
bitmap lock flag and is set to flag that the bitmap is locked and being read
or modified by some user job. The DSKBMR call sets this flag on, and it is
up to you to clear it after you have finished the bitmap access and
modification. Bit 1 is the bitmap rewrite flag which 1is set to indicate
that one or more modifications have been made to the bitmap in memory, and
that it must be rewritten to disk before being discarded. If the user
program modifies the bitmap in memory, it must set the rewrite flag to
insure that the bitmap is rewritten.

6.3.2.2 The Bitmap DDB - The bitmap DDB is a partial DDB because no files
are ever referenced, and the rest of the DDB is not needed. The bitmap is
normally allocated as record 2 of each disk, and it extends across
successive records for those devices which overflow one record.

6.3.2.3 The Bitmap Buffer -— The bitmap buffer area is the exact size
required to contain the entire bitmap from the disk. Two extra words are
allocated to contain the hash total which is used to insure the integrity of
the bitmap 1in memory and on disk. Each time the bitmap is read, or before
the bitmap is rewritten, this hash total is checked and an error results if
it is bad. The hash total is merely the double-word binary sum of the
entire bitmap buffer. You must update this hash total each time you modify

the bitmap, or else an error results when it is time to rewrite the bitmap
to disk.

THE FILE SERVICE SYSTEM Page 6-18

6.3.2.4 The Bitmap - The bitmap itself contains one bit for each Llogical
record on the disk structure. This bit is off if the record is free, and on
if the record 1is in use by anyone, including the system structure records
themselves. Each word in the bitmap can define up to 16 records. The first
word in the bitmap defines records 0 through 17 (octal) with bit 0 defining
record 0 and proceeding upward throughout the word. The second word defines
records 20 through 37, and so on. To define the 500 decimal records in a
standard IBM—-compatible AMOS floppy disk, we need 32 words (32 times 16 =
512) with the Llast word not being totally used. The bitmap itself therefore
takes up 34 words, including the two hash total words.

6.3.2.5 Altering the Bitmap - Altering the bhitmap is tricky but the
sequence recommended is:

1. Read the bitmap using the DSKBMR call

2. Alter the bitmap as necessary (recompute the hash total)
3. Set the rewrite flag (status word bit 1)

4. Clear the bitmap lock (status word bit @)

5. Rewrite the bitmap using the DSKRMW call

6.3.3 DSKCTG - Allocate a Contiguous Area

The DSKCTG call 1is used to allocate a contigous file on a random access
device. A standard argument is used as the second argument which represents
the number of records to be allocated in the file. A search is made to find
the first available area on the disk which can fully contain the requested
number of records. These records are marked as in-use on the disk bitmap,
and a file descriptor item is added to the user directory. The word which
gives the number of bytes in the last record is set negative to flag this
file as contiguous, distinguishing it from the normal sequential files. A

device-full error results if no area can be found on the disk which is large
enough to contain the file.

6.3.4 DSKALC - Allocate a Record

The DSKALC call is used to allocate one record for use by this wuser as a
directory record or as a file record. A standard argument is used as the
second argument, which represents the word that is to receive the record
number of the allocated record. An error results if there are no free
records left on the specified disk. A DSKBMR call is first performed to
insure that the current job has access to the bitmap, and then the first
free record is located and marked in use. The bitmap record is flagged as
modified, causing it to be rewritten at the next DSKBMW call or if it must
be swapped out to make room for another bitmap sharing the same area in
memory.

THE FILE SERVICE SYSTEM Page 6-19

6.3.5 DSKDEA - Deallocate a Record

The DSKDEA call is used to deallocate a specific record on a disk and make
it immediately available for use by another user (or the same wuser). A
standard argument is wused as the second argument, which represents the
address of the word containing the record number of the record to be
deal located. No check is made to insure that this record is allocated to
either the current user or any other user. A DSKBMR call is first performed
to insure that the current job has access to the bitmap, then the specified
record's bit is set to zero to indicate that the record is free. The bitmap
record is flagged as modified to force a rewrite.

6.3.6 DSKBMR - Read the Bitmap

The DSKBMR call locates the bitmap area in monitor memory for the specified
disk and insures that it is not locked by another job. If it is Llocked, a
stall 1is made wuntil it is released. It 1is then locked for this job and a
return is made to the user. The address of the bitmap area is set into the
word specified by the second argument in the calling sequence. The second
argument is a standard argument in format. Refer to the description of the
bitmap area above and note that the second argument receives the address of
this area and not the address of the bitmap itself. You may Llocate the
bitmap itself because its address is in the second word of the bitmap area
(second word of the bitmap DDB).

6.3.7 DSKBMW - Write the Bitmap

The DSKBMW call locates the bitmap area in monitor memory for the specified
disk and insures that it is not locked by another job. If it is locked, a
stall is made until it is released. It is then Locked for this job and
rewritten to disk from memory unless the hash total is bad. After the
rewrite is complete both the rewrite and lock flags are cleared and a return
is made to the user.

6.3.8 DSKDRL - Lock the Directory

The DSKDRL call locks the directory for the specified drive for modification
by the user program. It 1is used by such file service routines as CLOSE for
output files, DELETE and RENAME calls. 1If the directory is already locked
by another job, a stall is made until it is released. The user program or
routine must unlock the directory via the DSKDRU call after the
modifications have been made.

THE FILE SERVICE SYSTEM Page 6-20

6.3.9 DSKDRU - Unlock the Directory

The DSKDRU call unlocks the directory for the specified drive after it heas
been Llocked by the DSKDRL call for modification. No action is performed if
the directory is not locked by the current job.

6.4 MAGNETIC TAPE DRIVER MONITOR CALLS

Some monitor calls allow your assembly Llanguage programs to access the
magnetic tape unit driver, MTU.DVR. For information on using the magnetic
tape utility programs, refer to Using the Magnetic Tape Unit 1in the
"User's Information" section of the AMOS Software Update Documentation
Packet. That document also defines some of the terms we use in the
following discussion.

Before you begin use of MTU.DVR, make sure your magnetic tape units are
defined in your system device table, and that the program MTSTAT.SYS has
been included 1in the monitor (via the SYSTEM command 1in the system
initialization command file).

In addition to the magnetic tape drive monitor calls detailed below, you can
use the READ and WRITE calls to input and output data to and from the
magnetic tape unit, in the same way you would use them to perform disk I/0.

6.4.17 REWIND Arg

This call 1issues a rewind command to the specified tape unit. REWIND
accepts a standard argument that represents a DDB on which you have already
performed an FSPEC, an INIT, and an OPEN monitor call.

The DDB selects the device to which you want to issue a REWIND command. If
an error results from this call, you see the standard system file operation
error messages (e.g., ?Cannot INIT Devn: - device does not exist).

6.4.2 WRTFM Arg

This call issues a write-file-mark command to the specified tape unit.
WRTFM accepts a standard argument that represents a DDB on which you have
already performed an FSPEC, an INIT, and an OPEN monitor call.

The DDB selects the device to which you want to write a file mark. If this

call results in an error, you see the standard system file operation error
messages.

THE FILE SERVICE SYSTEM Page 6-21

6.4.3 FMARK Arg

This call issues @ find-file-mark command to the specified tape unit. FMARK
accepts & standard argument that represents a DDB on which you have
previously performed an FSPEC, an INIT, and an OPEN monitor call. The DDR
selects the device to which you want to issue a find-file-mark command. The
FMARK call causes the MTU driver to read forward on the specified tape until
it finds a file mark. Any errors resulting from this call are indicated by
standard file operation error messages.

6.4.4 FMARKR Arg

FMARKR causes the MTU driver to read in reverse on the tape until it finds a
file mark. The call accepts a standard argument that represents a DDB on
which you have previously performed an FSPEC, an INIT, and an OPEN monitor
call. The DDB selects the device to which you want to 1issue the FMARKR
command. Any resulting error is indicated by standard file operation error
messages.

6.4.5 TAPST Argl,Arg?

This call issues a read-tape-status command to the specified tape unit.
TAPST accepts two standard arguments. The first, Arg1, represents a DDB on
which you have previously performed an FSPEC, an INIT, and an OPEN monitor
call. The DDB selects the device whose status you want to return. The

returned status code appears in Arg2. The staus bits TAPST returns are as
follows:

BIT FUNCTICON COMMENTS
0 7-track Indicates that unit is in 7-track mode.
1 NR7ZI mode Indicetes that unit is in NRZI recording mode.
? End-of-tape Indicates that end-of-tape was detected during

the previous command.

CHAPTER 7

TERMINAL SERVICE SYSTEM

The AMOS monitor has several calls which deliver data to and from both the
user terminal and other terminals connected to the system. A terminal is
defined as an ASCIT character-oriented device which is capable of both
output and input. This is the formal definition and does not preclude the
use of output-only devices on terminal designated ports. Also, the system
includes software terminals known as '"pseudo terminals,” which can be used
to control jobs that are not actually associated with a hardware interface
on a designated port address. The calls listed here normally input from or
output to the terminal which is controlling the job that is executing the
call. Some calls (as specified) will input from or output to another
terminal not connected to the current job or to a pseudo terminal
controlling another job.

Programs which make wuse of the standard terminal service calls that
communicate with the user terminal can be run without modification in a job
controlled by a pseudo terminal. Keyboard input calls and terminal output
calls always go to the controlling terminal, regardless of which job they
are running in. Therefore, you need not be concerned with the physical port
address or attributes of the terminal which is controlling the job. The
monitor routines handle all this automatically.

7.1 TERMINOLOGY

Due to a holdover from older system terminology, most terminal output calls
reference the device name of "TTY," which used to define the teletype device
on systems that normally used teletypes as terminals. The input device of
the teletype was then called the keyboard, and the calls reference the
device name of "KBD."” These are strictly mnemonics and do not necessarily
reflect the physical attributes of the terminals, which now are more
commonly the higher speed video display terminals.

TERMINAL SERVICE SYSTEM Page 7-2

7.2 THE TERMINAL LINE TABLE

Each terminal has associated with it a terminal Lline table which is a work
area in monitor memory set up to contain the parameters and work areas
associated with the control of the terminal device. Most of the iditems in
this terminal Lline table are for internal use only, and you need not be
concerned with them. The JOBGET Rx,JOBTRM call may be used to set an index
to the associated terminal line table, so that you can inspect or modify the
items within.

7.2.1 The Terminal Status Word

Normally, you need to be concerned only with the terminal status word, which
is the first word in the terminal line table. This word has certain flags
in it that you may modify to alter the operation of your terminal calls.
The terminal status word has the following flag positions defined:

Bit 0 - user sets to force image mode input (see KBD call)

Bit - user sets to suppress echoing of input characters
Bit - user sets to allow escapes to be processed (as in EDIT)
Bit - user sets to allow lLower-case input (disables conversion)

1

2

4
Bit 7 - internal flag used to indicate output is in progress
Bit 9 - flag used to indicate "hog" mode for terminal (set by TRMDEF)
Bit 10 - user sets to indicate terminal runs in local mode (no echo)
The terminal status word is cleared each time the user program exits back to
monitor mode upon program completion, thereby restoring normal terminal
operation regardless of program operation.

7.3 THE TERMINAL SERVICE CALLS

AMOS includes 17 monitor calls to perform input and output between the
system and any of its connected terminals.

7.3.1 KBD {label} - Fetch a Line of Data

The KBD call accepts one full Lline of input from the user terminal into a
monitor Lline buffer, then sets index R2 to the base of that buffer for the
user reference. During the inputting of the line, the user job 1is set into
the terminal input wait state, thereby consuming no CPU time until the Lline
is finished. ALL normal Lline editing features are active (rubout,
control-U, tab, etc.) and a control-c input aborts the job unless the user
has set wup control-c trapping via the JOBICP item in the JCB for the job.
If you specify a lLabel with the KBD call, the program automatically branches
to that label. The line is terminated when a carriage-return or a line-feed
is entered. The monitor automatically appends a Line-feed to the
carriage-return, and a null byte is set after the line-feed character.

TERMINAL SERVICE SYSTEM Page 7-3

If the echo-suppress flag is set in the terminal status word, normal echoing
of the input characters is suppressed, such as when the password is being
entered for the LOG command. If the image-mode input flag is set, the KBD
command has a different effect. No editing is performed and instead of one
Line being accepted, only one character is accepted and it is delivered back
to you in register R1 instead of register R2 being set to the monitor Line
buffer. Image-mode input echoing is still wunder control of the
echo-suppress flag as in normal line mode.

7.3.2 TTY - Output One Character

The TTY call outputs one character from register R1 to the controlling
terminal and then returns. Tabs are echoed as spaces up to the next
modulo-8 carriage position, unless the image-mode output flag is set in the
terminal status word. If the job is running under the control of a command
file, the character will only be output to the terminal if the output
suppress command is in the normal state (:R revives it, :S silences it).

7.3.3 TIN - Get an Input Character

TIN gets the next input character from either the terminal input buffer or
from the command string if the job is controlled by a command file. The

character 1is delivered 1in R1. This call is normally only used within the
operating system itself and not by user programs.

7.3.4 TOUT - Output One Character

TOUT outputs one character to the controlling terminal of the job or to the
job which has this job attached (hy the address in the JOBATT item). This
call differs from the general TTY call in that the command file status is
not checked by the TOUT call. The TOUT call, Like the TIN call, is normally
only used within the operating system itself.

7.3.5 TAB - Output One Tab

This convenience call outputs a single tab character to the user terminal.
In effect, it is the same as the code sequence:

MOVI 11,R1
TTY

TERMINAL SERVICE SYSTEM Page 7-4

7.3.6 CRLF - Qutput a Carriage-Return / Line-Feed

This convenience call outputs a carriage-return and line-feed pair to the
user terminal. In effect, it is the same as the code seauence:

MOVI 15,R1
TTY
MOVI 12,R1
TTY

7.3.7 TTYI - Qutput a String of Characters

The TTYI call outputs a string of characters which follows the call itself
up to but not including a null byte. The call could be used as follows to
output two lines of data to the user terminal:

TTYI

ASCII /LINE 1 DATA/
BYTE 15

ASCII /LINE 2 DATA/
BYTE 15,0

EVEN

The TTYI call also automatically appends a Line-feed to all carriage-returns
included in the string.

7.3.8 TTYL - Qutput a String of Characters Indexed

The TTYL call s similar to the TTYI call in that it outputs a string of
ASCII characters up to a null byte. The string of characters for the TTYL
call may be anywhere in memory and not in Lline with the call itself in the
program flow. TTYL takes one standard argument--the address of the message
to be output. It 1is therefore wuseful for outputting from a table of
messages by setting an index to the specific message within the table (per
some numeric director code), and then using that register as the argument to
the TTYL call. The TTYL call also appends a Line-feed to each
carriage-return in the string.

7.3.9 PTYIN - Place Character in Input Buffer

The PTYIN call allows one job to force a character into the input buffer of
another job which is probably controlled by a pseudo terminal. This call
takes two standard arguments. The first is the data byte to be sent to the
other job and the second argument is the address of the JCB of the job into
which the character is to be forced. PTYIN is the call through which the
FORCE operator command functions.

TERMINAL SERVICE SYSTEM Page 7-5

7.3.10 PTYOUT - Fetch Character from Output Buffer

The PTYOUT call allows one job to get a character from the terminal output
buffer of another job which is controlled by a pseudo terminal. If no
output 1is available from the specified job, the calling job is put to sleep
until a character 1is available. The PTYOUT call takes two standard
arguments. The first argument is the address of the byte which will receive
the data character, and the second argument is the address of the JCB from
which the character is to be taken.

7.3.11 TTYIN - Fetch Another Job's Input

The TTYIN call allows one job to get waiting input data from the terminal
input buffer of another job. This call has not yet been fully inplemented.

7.3.12 TTYOUT - Place a Character in Another Job's Output

The TTYOUT call allows one job to put data into another job's terminal
output buffer. This call, Llike the TTYIN call, 1dis not yet fully
implemented.

7.3.13 TRMICP - Process Input Character Within Interface Driver

The TRMICP call 1is executed from within a terminal interface driver to
process one character which has just been received from the terminal by the
hardware interface. R1 must contain the input character to be processed,
and R5 must index the terminal definition table entry for the specific
terminal being serviced. TRMSER then takes the character and passes it to
the terminal driver input routine for pre-processing if desired. When the
terminal driver passes it back to TRMSER, it is then edited for control
codes and other special characters and then added to the terminal dinput
buffer. ALL the pertinent flags are set automatically to indiciate actions
to be taken by the application program when it requests the input data. If
the idnput character 1is a break character (lLine-feed), or if image mode is
active, the associated job is awakened to process the available data.

7.3.14 TRMOCP - Process Output Character Within Interface Driver

The TRMOCP call is executed from within a terminal interface driver to get
from TRMSER the next output character to be sent to the terminal. This is
usually in response to an interrupt from the interface bhoard, indicating
that the prior character has been fully output and the board is ready to
transmit the next character. R5 must index the terminal definition table
entry for the specific terminal being serviced, and R1 gets the next
available character upon return from TRMSER processing of the call. 1f

TERMINAL SERVICE SYSTEM Page 7-6

there is no more output available in the output buffer, R1 is set to -1 as a
flag, and the associated job is awakened to fill the output buffer again.

7.3.15 TRMBFQ - Process Output Characters Within Terminal Driver

The TRMBFQ call s a physical output call usually executed from within a
terminal driver or a monitor routine. There are, however, times when it can
be used by an assembly Language application program. The TRMBFQ call
effectively adds a buffer full of data characters to the output buffering
system for a specific terminal. It does this by linking the buffer into the
dynamic output queue Llist used by TRMSER for this terminal. When this call
is used, R2 must index the buffer to be queued, R3 must contain the number
of characters in the buffer, and R5 must index the terminal definition table
entry for the specific terminal. The TRMBFQ call performs the output
initiation function if the output system for the terminal is currently idle.

7.3.16 TBUF - Output Large Amounts of Data

The TBUF call 1is the normal call for user programs to use for queueing up
lLarge amounts of data into the terminal output system of a terminal where
the single character calls are considered inefficient. 1t is a buffered
call in that it works through the two output buffers for the terminal, as
opposed to going directly into the output queue system. If you try to
output more data via the TBUF call than there is currently room for 1in the
output buffers, the wuser job 1is suspended while the output buffers are
unloaded to the terminal. Each time one of the output buffers is emptied,
the job 1is awakened and the TBUF call proceeds to fill that buffer. This
continues until the original amount of data is exhausted, at which time the
call returns to the user program. When the call is executed, R2 must index
the buffer to be output and R3 must contain the number of characters to be
output (similar to the TRMBFQ call). R5 need not index the terminal
definition table entry since this is a user level call.

7.3.17 TCRT - Call Special Terminal Driver Routines

The TCRT call is the linkage into the special processing routine portion of
a terminal driver. R1 usually contains a 2-byte code which is interpreted
by the terminal driver routine as a special function, such as cursor
positioning or special editing action. The only action actually performed
by the TCRT call within TRMSER is to locate the terminal driver for the
attached terminal and call the driver control routine within it. You must
refer to the actual driver Llisting to determine the action performed
relative to the code passed to it in R1.

TERMINAL SERVICE SYSTEM Page 7-7

7.3.17.1 Standard Functions -= The TCRT call is most commonly used for
controlling such special CRT functions as cursor addressing and screen
clearing. To maintain compatibility between terminal drivers, Alpha Micro
has defined the following functions within the terminal drivers it supports.

7.3.17.1.1 Cursor Addressing - To perform cursor addressing, R1 1is loaded
with a 2-byte argument defining the screen row and column to which the
cursor is to be moved. The high-order byte is loaded with the row, and the

low-order byte dis loaded with the column. The uppermost-leftmost (Home)
position is column 1, row 1.

7.3.17.1.2 Other Functions - To perform other special CRT functions, the
high-order byte of R1 should be loaded with 377 (octal). The Llow-order byte
is then loaded with one of the special function codes listed below.

n Clear Screen and set normal 1intensity

1 Cursor Home (move to 1,1)

2 Cursor Return (move to column 1 without Lline-feed)
3 Cursor Up one row

4 Cursor Down one row

5 Cursor Left one column

6 Cursor Right one column

7 Lock Keyboard

g Unlock Keyboard

9 Erase to End of Line

10 Erase to End of Screen

11 Enter Background Display Mode (reduced intensity)
12 Enter Foreground Display Mode (normal intensity)
13 Enable Protected Fields

14 Disable Protected Fields

15 Delete Line

16 Insert Line

17 Delete Character

18 Insert Character

19 Read Cursor Address

2n Read Character at Current Cursor Address

21 Start Blinking Field

22 End Blinking Field

23 Start Line Drawing Mode (enable alternate character set)
24 End Line Drawing Mode (disable alternate character set)
25 Set Horizontal Position

26 Set Vertical Position

27 Set Terminal Attributes

Not all terminal drivers have all of the above functions, simply because all
terminals do not have all of the functions. If your terminal has additional
features, Alpha Micro recommends starting at 100 (octal) when assigning
function codes.

TERMINAL SERVICE SYSTEM Page 7-8

7.3.18 Message Calls

Three calls have been defined in SYS.MAC as macros wusing the TTYI call.
These calls are for the convenience of the programmer and to make the
program more readily understandable. They all take a single argument which
is an ASCII message string to be output to the user terminal. Due to the
way that macro arguments are processed, if the message has Lleading or
trailing spaces, or if it has imbedded commas, it must be enclosed in angle
brackets or part of it will be Lost. The three calls are:

TYPE msg ;Types the message on the user terminal as is
TYPESP msg ;Types the message and appends one space to it
TYPECR msg ;Types the message and appends a CRLF pair to it

The macros are defined in SYS.MAC as follows:

DEFINE TYPE MSG

TTYL
ASCII /MSG/
BYTE 0
EVEN
ENDM

DEFINE TYPESP MSG
TTYI
ASCII /MSG* /
BYTE 0
EVEN
ENDM

DEFINE TYPECR MSG
TTYI
ASCII /MSG/
BYTE 15,0
EVEN
ENDM

It should be noted that the message may not contain any slashes, since these
are used as delimiters for the ASCII statement in the macros.

CHAPTER 8

CONVERSION MONITOR CALLS

8.1 NUMERIC CONVERSION CALLS

The AMOS monitor contains two calls which perform conversions from a single
binary word value to an ASCII formatted decimal or octal strina. Options
for the conversion allow the string to be sent to the user terminal, to an
output file or to a buffer in memory. Options also allow control of the
result format.

8.1.1 Calling Format

Both calls have the same general format and take two arguments, each of

which must be an expression that evaluates down to a byte value within the
specified range. The two calls are:

DCVT size,flags ;Convert binary number in R1 to decimal
ocvT size,flags ;Convert binary number in R1 to octal
; (hexadecimal if J.HEX is set for this job)

8.1.1.1 Size Byte - The size byte determines the number of digits in the
output result. A zero size specifies a floating format in which the number
of digits used is just enough to fully contain the result. A non-zero size
specifies a fixed number of digits for the result with leading zeros being
replaced by blanks. 1In either form, if the R1 value is zero, at least one
zero digit will be output as the result.

CONVERSION MONITOR CALLS Page 8-2

8.1.1.2 Flags - The flags byte contains six flags which control the
destination of the result string and also some other formatting options.

The following Llist gives the flag bit positions and the action taken when
the flag is set:

Bit 0 - disables leading zero blanking

Bit 1 - outputs the result to the user terminal

Bit 2 - outputs the result to the file whose DDB is indexed by R2
Bit 3 - puts result in memory at buffer indexed by R2 and updates R2
Bit 4 - adds one leading space to the result

Bit 5 - adds one trailing space to the result

Note that the maximum value which can be displayed using these calls is the
maximum value of a 16-bit word. ALl numbers are considered unsigned so the

Largest decimal number is 65535, the largest octal number is 177777, and the
Largest hex number is FFFF.

If the size byte is non-zero, the sense of the leading zero blanking flag
described below 1s reversed. In other words, when the size byte is zero,
the conversion calls default to leading zero blanking, with bit 0 turning
that blanking off. When the size byte 1is non-zero, the calls default to
leading zeroes, with bit 0 specifying that leading zeroes are to be blanked.

The following examples may clarify things a bit. ALl examples assume the
value in R1 is 964 (decimal), and the Lletter "b" in the result field
indicates a blank.

DCVT 0,2 prints 964

DCVT 0,22 prints b964

DCVT 0,42 prints 964b

DCVT 5,2 prints 00964

DCVT 5,3 prints bb%é64

DCVT 5,43 prints bb964b

DCVT 5,62 prints b00964b

DCVT 2,2 prints 64 (the 9 is lost)

8.2 RAD50 CONVERSTION MONITOR CALLS

Radix-50 packing 1is wused throughout the system where the packing of
filenames and other data entities lends itself. Radix=50 (RAD50) packing is
a system by which three ASCII characters may be packed into a single 16-bit
word using a special algorithm based on the value of octal 50. The
character set that may be packed RADS0C 1is Limited 1in scope to the
alphanumeric characters, the period, the dollar sign, and the blank. The
following Llist gives the legal characters that may be packed RADS5Q and their
equivalent octal codes:

CONVERSION MONITOR CALLS Page 8-3

Character RAD50 code
blank 0
A-Z 1-32
a-z 1-32
$ 23
. 34
0-9 36-47

There is no character for the RAD50 code 35.

8.2.1 RAD50 Packing Algorithm
The packing algorithm for a 3-character input to a 16-bit RADS50 result is:
1. The first character code is multiplied by 3100 octal (50x50).

2. The second character code 1is multiplied by 50 and added to the
first.

3. The third character code is added to the above to form the result.

The unpacking algorithm merely reverses the above seaquence to get the
triolet.

8.2.2 Packing and Unpackina Calls

There are two monitor calls which perform the above packing and unpacking
algorithms. Both calls use registers R1 and R2 as indexes to the components
and require no calling arguments.

8.2.2.1 PACK - Pack Three ASCII Characters into RADS50 - The triplet (3
ASCII characters) indexed by R2 is packed into RAD50 form and the result is
left in the word indexed by R1. R1 is incremented by 2 to receive the next
result word for multiple packing. RZ2 is left indexing the first character,
which was not included in the packing of this triplet. The PACK call
terminates packing and forces blank fill for any input which does not
contain three valid RAD50 characters. For the PACK call, a blank is
considered an illegal input character and terminates packing.

CONVERSION MONITOR CALLS Page 8-4

8.2.2.2 UNPACK - Unpack Three RAD50 Characters into ASCII - The word in the
address indexed by R1 is unpacked, and the triplet 1is Lleft 4in the three
bytes beginning with the byte currently indexed by R2. R1 is incremented by
2 for the next word, and R2 is incremented by 3 for the next triplet result.
Blanks are Llegal 1in unpacking and are placed into the result if they are
decoded from the input word.

8.3 PRINTING CONVERSION CALLS

There are three calls in the monitor which accept a system wunit input and
convert the unit to standard printable form and then output it to the user
terminal. These calls are used to print out file specifications, filenames,
and project-programmer numbers. Each call takes one standard argument which
addresses the system unit to be converted and printed.

8.3.1 PFILE - Qutput a Filespec From a DDB

The argument addresses a file DDB, and the PFILE call extracts the
parameters in the file specification words. It then prints them on the user
terminal in the standard format of dev:filnam.extlp,pnl.

8.3.2 PRNAM - Qutput a Filename

The argument addresses a 3-word filename.extension block (packed RAD50), and
the PRNAM call prints the converted result on the user terminal in the
standard format of filnam.ext.

8.3.3 PRPPN - OQutput a PPN

The argument addresses a 1-word project—-programmer code, and the PRPPN call
prints the converted result on the user terminal in the standard format of
proj,prog. The p,pn is output in octal, regardless of the setting of J.HEX.

8.4 ALPHABETIC CONVERSION--LCS AND UCS

The AMOS monitor inlcudes two calls that switch between upper- and
lower-case alphabetic characters. LCS converts one character in R1 to Llower
case. UCS converts one cheracter in R1 to upper case.

CHAPTER 9

INPUT LINE PROCESSING CALLS

When a program is executed by an operator command, register R2 is Lleft
pointing to the first non-blank character on the command line which follows
the command name itself. The remainder of the line is normally interpreted
by the particular program and used to determine the files to be acted on,
the record number to be dumped, the devices to be accessed, etc. For
example, the MACRO call requires the name of the program and any switch
options to follow the MACRC command name on the same Line. The macro
assembly program then processes the proaram name and the switch options by
way of the R?2 index which was left indexing the rest of the command Line.
This command Lline is actually the user's terminal input buffer.

In addition to the command input Lline, the KBD monitor call also leaves R2
set to the input Lline buffer which contains the wuser input data. Also,
various translators and file processing programs may read in a line of data
and then set index R2 to the base of that Line for scanning. For this
reason, there exists a number of monitor calls which perform scanning and
conversion functions based on an input Line which is indexed by R2. Some of
the calls merely test the character indexed by R2 for a specific condition
and return with flags set, based on the result of the test. 1In these
instances R2 is not modified. 1In calls which perform scan conversions, R2
is updated to point to the character which terminated the conversion. With
the exception of the FILNAM call, none of these calls require any arguments.
Conversion results are always delivered back to the user in register R1.

9.1 ALF - TEST A CHARACTER FOR ALPHABETIC

The character indexed by R2 is tested for alphabetic (A~Z; a-z); the Z-flag
is set if it is, and cleared if it is not. R2 is not changed.

INPUT LINE PROCESSING CALLS Page 9-2

9.2 NUM - TEST A CHARACTER FOR NUMERIC

The character indexed by R2 is tested for numeric (0-9); the Z-flag is set
if it is, and cleared if it is not. RZ2 is not changed.

9.3 TRM - TEST A CHARACTER FOR TERMINATOR

The character indexed by R2 is tested for a legal terminator defined as a
blank, tab, comma, semicolor, carriage-return, Lline-feed, or null. The

Z-flag is set if the character is a terminator, and cleared if it 1is not.
R2 is not changed.

9.4 LIN - TEST A CHARACTER FOR LINE TERMINATOR

The character 1indexed by R2 is tested for a leaal end-of-lLine defined as a
semicolon, carriage-return, Line-feed, or null. The Z-flag is set if the

character 1is an end-of-line character, and cleared if it is not. RZ2 is not
changed.

9.5 BYP - BYPASS BLANKS

Index R2 is advanced past all characters which are blanks or tabs and Left
indexing the first non-blank, non-tab character it finds.

9.6 GTDEC - INPUT A DECIMAL NUMBER

Index R2 1dis wused to process a decimal number whose value may be from 0 to
65535 in the input line (leading zercs are legal), and to deliver the
resultant binary value back in R1. The N-flag is set if there is an error
(i.e., result is greater than 65535). R2 1is wupdated to point to the
character following the decimal input number. In the case of an error, R2
is left indexing the digit that would have caused the overflow past 65535
for double-word processing techniques.

9.7 GTOCT - INPUT AN OCTAL NUMBER

Index R?2 1dis wused to process an octal number whose value may be from 0 to
177777 in the input line (leading zeros are legal), and to deliver the
resultant binary value back in R1. The N-flag is set if there is an error
(i.e., result is greater than 177777). R2 dis wupdated to point to the
character followina the octal input number. If J.HEX is set for this job
(via the SET HEX command), this call processes input in hexadecimal instead
of octal.

INPUT LINE PROCESSING CALLS Page 9-3

9.8 GTPPM - INPUT A PROJECT-PROGRAMMER NUMBER

Index R2 1is wused to process a project—-proarammer number in the standard
format of proj,prog, and to deliver the resultant binary code back in R1.
The format dictates that project numbers be octal numbers with a value
between 1 and 377, and programmer numbers be octal numbers with a wvalue
between 0 and 377. The N-flag is set if the PPN was not in valid format.
R2 is updated to point to the character following the PPN.

9.9 FILNAM - INPUT A FILENAME

Index R2 is used to process a filename.extension input string, leaving the
RAD50 packed 3-word result in the three words starting with the address
specified as the first argument of the call. 1In format, this argument is a
standard monitor call argument. The second argument is a 1- to 3-character
extension to be used in case no explicit extension is entered in the input
string. R2 is updated to index the terminating character. The Z-bit is set
if there was no filename to process (i.e., the first character was not a
legal RADS0 character).

CHAPTER 10

MISCELLANEQOUS MONITOR CALLS

This section deals with the monitor calls which do not fit into any of the
cateqories treated thus far.

10.1 EXIT - RETURN TO AMOS COMMAND LEVEL

This 1is the normal means that a program uses to terminate processing and
return to monitor command mode. The EXIT call takes no arguments. The
monitor, wupon executing the EXIT call, deletes all temporary memory modules
in the user partition and resets any parameters that are program dependent
such as JOBICP, JOBBPT, etc. ALl assigned devices are also released at this

time. The user terminal is then placed in the monitor command mode, ready
to process ancther operator command.

10.2 CTRLC - BRANCH ON CONTROL-C

Whenever a control-C is entered on a terminal keyboard (usually to abort a
program) , no action takes place immediately, but rather a flag is set in the
JCB status word which must be tested later hy the program. The CTRLC call
is used within an application program to check the status of the control-C
flag (in the JCB status word) and branch to a specific address if the flag
is set. This call is a convenience since the user could perform the same
task with a few 1instructions by Llocating his own JCB status word and
checking the J.CCC flag within it. The format of this call is:

CTRLC routine-address

where routine-address is the address to branch to within the program if the
control-C flag is set.

The CTRLC call does not reset the J.CCC flaag but merely indicates that it is
set (this allows nested routines to unwind themselves correctly). The user
program must then reset the flag explicitly by clearing it in the JCB status

MISCELLANEOUS MONITOR CALLS Page 10-2

word or implicitly by performing the EXIT call, which kills the program and
returns to monitor mode, clearina J.CCC.

10.3 JLOCK, JUNLOK - PREVENT CONTEXT SWITCHING

The JLOCK call prevents context switches from occurring and allows the
current user to run. JUNLOK reverses the effect of JLOCK.

10.4 RQST - REQUEST CONTROL OF A SEMAPHORE

RO points to a 2-word semaphore which may conventionally be associated with
any type of resource (disk, buffer, queue block, etc.). When a job requires
access to a resource, it should RQST the semaphore associated with that
resource. RQST decrements the semaphore count (representing the number of
available resources) by 1. If the resulting count is greater than or ecual
to 0, the RQST returns, allowing access to that resource. If the difference
is less than Q, the job is placed in a wait chain until the resource is
available.

To iJllustrate, suppose a job needs to access one of 20 available queue
blocks. A semaphore with an initial value of 20 (to represent the available
gueue blocks) could he set up and accessed prior to any attempts to allocate
a queue block. A RGST call decrements the count from 20 to 19, confirms
that 19 is greater than or equal to 0, then returns control of the job so it
can get a queue block. If none of the 20 queue blocks were available (i.e.,
the semaphore count < (0), the job would be placed in 2 wait state until a
queue block was identified as freed via a RLSE call (see section 10.5
below) .

10.5 RLSE - RELEASE CONTROL OF A SEMAPHORE

If, wupon execution of the RQST call (see section 10.4 for explanation), the
semaphore count is less than or equal to 0 (i.e., none of the resources
requested is available), the requesting job is put to sleep in a wait chain.
When one job 1is finished with one of those resources, a RLSE call on the
semaphore associated with that resource increments the count by 1 and
determines if the result is less than or equal to 0. If it is, the next job
in the wait chain is awakened and allowed to finish the RQST.

For example, if none of 20 queue blocks is currently available, the count is
less than or equal to 0--let's say it's 0. Before a job tries to get a
queue block, a RAST on the semaphore decrements the count from 0 to -1 and
places the job in a wait chain. After a job frees a queue block, it uses
the RLSE call on the semaphore asscociated with "queue blocks." This call
increments the semaphore count by 1, resulting in 0, and wakes the first job
in the wait chain, which allows it to continue on and allocate a queue
block. The following diagram illustrates the semaphore:

MISCELLANEOUS MONTTOR CALLS Page 10-3

SEMAPHORE
RO >

| count |

| wait chain |

10.6 PCALL - INVOKE PROGRAM AS SUBROUTINE

PCALL is similar to the standard machine instruction call (JSR), except
return is not done via the RTN instruction but is accomplished via the EXIT
supervisor call. The formet is:

PCALL subroutine-address

where the subroutine address is the address of the program you wish to call.

10.7 AMOS - EXECUTE AMOS COMMAND AS SUBROUTINE

When AMOS is used as 2 monitor call, the character string pointed to by R2
is treated as a monitor command Lline, and the AMOS command in this command
Line is executed without Lleaving the current program.

APPENDIX A

DISK STRUCTURE FORMAT

The AMOS monitor supports a flexible disk file system which relieves you of
the task of keeping track of files, links and record counts. The structure
of the standard disk format used in the AMOS system is described here for

those programmers who wish to do some disk file manipulation or system
software programming.

A.1 PHYSICAL RECORD FORMAT

The logical record size for all disks used within the AMOS file structure,
regardless of type, is 512 bytes. For efficiency, the hard-disk structures
(such as the AM-500 or Trident subsystems), and the AMS floppy format all
define the physical record size to be this 512-byte logical record size. To
maintain compatibility with other systems, the standard IBM-compatible

floppy disk format is somewhat different and will be expained in more detail
here.

The standard IBM-compatible floppy disk has 2002 128-byte physical records
on 77 tracks, each track having 26 sectors numbered 1 through 26. The AMOS
system uses a logical record size of 512 bytes (256 words) for each record,
so the actual record is made up of four standard size 128-byte records on
the floppy disk itself. The disk driver routine 1is responsible for
translating the AMOS record number (0-499) to the proper four physical
records on the disk. There are only 500 records of 512 bytes each, as far
as the programmer 1is concerned, and the last two 128-byte records on the
floppy disk are lost to his use.

The driver translates the AMOS record number into a starting record number,
which is four times as great. 1In addition, a physical sector interleave
factor is used so that a 512-byte record requires only one rotation of the
disk dinstead of four, which would be the case if an attempt was made to
access four physically contiguous sectors on the floppy disk. The
interleave factor 1is 5, meaning that there are four sectors between each
(ogically contiguous pair of sectors.

DISK STRUCTURE FORMAT Page A-2

A.2 DISK RECORD TYPES

There are six different record types in use in the AMOS system, categorized
by their use in the logical processing of files. Each record is 512 bytes
long, but their internal structure differs due to different wusage 1in the
system. The six record types are:

Disk ID record

Bitmap records

Master File Directory record (MFD)
User directory records

. Sequential file data records

. Contiguous file data records

[o NV I > BEUN I A I
[]

The following three record types take care of records 0-2, which are the
same on all disks. Initializing the disk by using the "I" command 1in the
SYSACT program writes out record 1 (empty MFD of all zeros) and record 2
(bitmap with records 0-2 allocated), logically clearing the disk of all
users and files and making all remaining records (3-499) available. These
records are then allocated as either user directory records or file data
records.

A.2.1 The Disk ID Record

The Disk ID record is always record 0 and is not currently used by the AMOS
system. It has been reserved for use by user routines which may want to
store disk identification information in it. It is permanently allocated,
so it will not accidently be used as a data record by any system routine.
Since this record is reserved for the disk ID, you should not attempt to use
it for other purposes.

A.2.2 The Bitmap

The bitmap 1is one or more records which always begin with record 2 and
extend into as many sequential records as necessary to represent the entire
disk. Each word in the bitmap is capable of representing the state of 16
logical records with one bit being used for each record. The bit is set if
the record is in use and cleared if it is free. The last two words of every
bitmap are a double-word hash total used to maintain bitmap integrity during
processing. Any remaining words in the last bitmap record are unused. The
bitmap itself is permanently allocated but contains no Links to other system
disk records. If you destroy the bitmap, you can run the DSKANA program to
recover it.

DISK STRUCTURE FORMAT Page A-3

A.2.3 The Master File Directory

The master file directory record is always record 1 and forms the root of
the file structure tree. 1It contains one entry of four words for each wuser
PPN which is allocated to this disk by the SYSACT program. A maximum of 63

users may be allocated on any one disk, since only one MFD record is
available.

A.2.4 The User File Directory

User directory records contain up to 42 entries of six words each to
describe user files in the corresponding PPN. The first word of each
directory record 1is a link word to the next directory record in the event
that more than 42 files are allocated in the current user area. The final
directory record has a zero Llink word indicating that no more directory
records follow.

A.2.5 Seqguential File Data Records

Sequential file data records have a link word and 255 data words. The Link
word is the record number of the next record in the file. A zero link word
indicates this is the last record in the file. The Last record in the file
may have anywhere from 0 to 509 active data bytes in its data area. The
directory record item contains this number. Sequential files are normally
processed as one long string of bytes from start to finish.

A.2.6 Contiguous File Data Records

Contiguous file data records have 256 data words and no Links. Contiguous
files must be allocated as a block of records with no intervening records
belonging to other files. They must be allocated before their use while
sequential files are allocated one record at a time as they are required.
Contiouous files allow random access processing, since any record may be
located as a direct offset relative to the base record.

A.3 FILE STRUCTURE

The file structure is depicted in figure A-1 and resembles a tree with the
MFD record as its root. The MFD record has one item for each allocated user
on this disk. Each MFD jtem then contains the record number of the first
user directory record for that PPN number. The user directory record has
one item for each data file in this user's area. Each directory item then
contains the record number of the first data record in he file. Sequential

DISK STRUCTURE FORMAT Page A-4

MFD 1.2
RECORD 1 !
1,4 LINKS TO
DIRECTORY RECORDS
20, 20 s e
ETC. — e - —_— - —ETC.
/W !
|
|

DIRECTORY

gggDRD FIRST DIRECTORY DIRECTORY RECORD
[.2] RECORD FOR [1, 4] y FOR (=20, 20]
o — LINK 2
(-]
MAP. PRG |— — —TO MAP. PRG | gno.Bas |~ — — 7O SNDO. BAS
(NO FILES) FILE FILE
BasiC. PRG|— — — TO BASIC.PRG| REC.BAS |— — — TO REC. BAS
FILE FILE
RUN. PRG |— — — TO RUN.PRG | REC.RUN [~ — — TO REC. RUN
K/\/\/ FILE FILE
SECOND ETC. ETC.
DIRECTORY
RECORD FOR
[.4] [——1 l———i
[——- LINK LINK LINK LINK — — — TO REST
OF EDIT. PRG
EDIT. PRG FIRST SECOND THIRD
| RECORD OF RECORD OF RECORD OF}
| DIR. PRG EDIT. PRG EDIT. PRG EDIT. PRG
TC FILE FILE FILE
FSYSTEM.MQN \/\/\ /\f’\ AV A\

v oo

ETC. |

TO SYSTEM.
FILE

- — - TO REST

OF DIR. PRG

. .J——j __l—__——l
LINK LINK LINK
FIRST SECOND THIRD

RECORD OF| RECORD OF RECORD OF
DIR. PRG DIR. PRG DIR. PRG
FILE FILE FILE
(&
~—

FILE DATA RECORDS

Disk File Structure

Fig A-1

DISK STRUCTURE FORMAT Page A-5

files then chain through the data records by link words as shown 1in the
diagram. The two files thaet are partially depicted are EDIT.PRG and DIR.PRG

in user area [1,4] which happens to he the system program area. Contiguous
files have no Llink words and must occupy physically adjacent records

beginning with the first record as addressed in the directory item.

Contiguous files are not depicted 1in the diaaram since they are so
straightforward in organization.

A4 MFD ITEM FORMAT

Each MFD 1item 1is four words long and contains the PPN specification, user
directory Link, and password. The format of the item is:

Word 1 - user PPN (proj and prog are each one byte)
Word 2 - record number of first user directory record
Words 3-4 - password packed RAD50 (up to 6 characters)

Word 2 is zero if no files have been allocated to this user yet, meaning no

directory records have yet been allccated. Words 3-4 are zero if no
password is required to gain access to this user account when logging on via
the LOG command.

MFD items are added, deleted, and changed by the SYSACT program.

A.5 UFD ITEM FORMAT

Each user directory item is six words long and contains information about
the data file which it defines. The format of the item is:

Words 1-3 - filename.extension of the file packed RAD5S0
Word 4 - number of data records in this file

Word 5 - number of active data bytes in last record
Word 6 - record number of first data record in file

Word 1 is -1 (octal 177777) if this file has been erased and the directory
item is available for another file definition. Word 1 is zero, to mark the
logical end of the user directory. The hyte count in word 5 is negative if
this is a contiguous file. It also represents the negative active byte
count of the file if the contiguous file has been opened for output and
written into sequentially.

APPENDIX B

SYSTEM COMMUNICATIOM AREA

One area in monitor memory starting at location 100 (octal) is called the
system communication area. It 1is defined mnemonically in SYS.MAC and
contains specific parameters that deal directly with singular system
resources and root addresses. They are briefly defined here for those users
who wish to carefully reference them; but such action should be rare and
must be undertaken with great caution. ALl references to these parameters
should be made symbolically in the absolute addressing mode. For example,
the instruction MOV a#JOBTBL,R0 should be used to set the base of the user
job table into index register RO.

B.1 SYSTEM - SYSTEM ATTRIBUTES WORD

This word contains system attribute and status flags. Currently it is only
used to indicate that the system has been properly loaded when bit 0 is set
on.

B.2 DEVTBL - ADDRESS OF THE DEVICE TABLE

Set up by the DEVTBL program in the system initialization command file, this
word contains the absolute address of the device table in monitor memory.

B.3 DDBCHN - ACTIVE DDB CHAIN

This 1ds the base of the active DDB chain for interrupt driven routines. It
is set up and altered by the file service routines as new I/0 DDB's are
gueued for transfer requests, and goes to zerc each time there are no
requests pending. It is not used for non-interrupt driven devices.

SYSTEM COMMUNICATION AREA Page B-2

B.4 MEMBAS & MEMEND - USER MEMORY POINTERS

These two words define the beginning and end of the complete user memory
area. MEMBAS 1is the address of the first word following the complete
resident monitor, including the system memory area for user resident
programs. MEMEND 1is the address of the last word in the total physically
contiguous RAM memory in the machine. It is set up by the INITIA program
when the monitor first starts up, by a memory scan technique which locates
the last available 1K bank. If memory management is active, MEMEND can only
reflect the end of switchable memory within bank 0, and its wuse 1in the
system diminishes.

B.5 SYSBAS - BASE OF SYSTEM MEMORY

This dis the address of the system memory area which is used to contain any
user programs set up by the SYSTEM command 1in the system 1initialization
command file. 1t is zero if no system memory area exists.

B.6 JOBTBL - ADDRESS OF THE JOB TABLE

This is the address of the user job table which contains one JCB entry for
each user allocated via the JOB command in the system initialization command
file. For a complete description of the job table and JCB entries, refer to
Chapter 2, "JOB SCHEDULING AND CONTROL SYSTEM."

B.7 JOBCUR - JCB ADDRESS OF THE CURRENT JOB

This word always contains the address of the JCB for the job that is
currently running and has control of the CPU. For the user program, it
always points to your own JCB as long as you are running. Obviously if you
are referencing this word you must be running. JOBCUR is updated only by
the job scheduler in the time-sharing monitor.

B.8& JOBESZ - JOB TABLE ENTRY SIZE

This word is set up when the monitor is built and contains the size in bytes
of the JCB entry in the job table. This way, when the JCB item expands, the
programs which scan the job table will not have to be reassembled since they
get the JCB size dynamically from JOBESZ. This includes routines within the
monitor itself.

SYSTEM COMMUNICATION AREA Page B-3

B.9 TIME - THE TIME OF DAY

THIS 2-word field is incremented each time the line clock dinterrupts. It
represents the current time of day, stored as the number of ticks since
midnight. You can reference this parameter to keep track of the time it
takes to do something on the machine. Remember, TIME is used to count clock
ticks and not seconds or milliseconds. To calculate the actual time in
seconds, divide the elapsed time in ticks by the clock freguency which s
stored 1in the CLKFRQ constant described further on. This, of course,
assumes that the CLKFR@ command has been used in the system initialization
command file to properly set up the constant for your particular frequency
(50 Hz overseas, remember?).

B.10 DATE - THE SYSTEM DATE

This 2-word field is used by various date routines to store the current date
in some specific format. 1Its use depends upon the applications which are
defining the format. The DATE field is not accessed or altered by the
system monitor itself.

B.11 HLDTIM - THE HEAD LOAD TIMER

This 2-word area controls the head-load timing for the AM-200 floppy disk
system when used with the Persci Floppy Disk Drive. The second word (at
HLDTIM+2) is set up by the HEDLOD program, in the system initialization
command file, to the numbher of clock ticks desired to wait before unloading
the disk heads during periods of inactivity. Each time the head 1is Lloaded
or another disk transfer 1is idnitiated, the count in the second word is
transferred to the first word. Each time the clock interrupts, the count in
the first word is decremented, and if it ever gets to zero the head is
unloaded.

B.12 CLKFRQ ~ LINE CLOCK FREQUENCY

This word dis set up by the CLKFRQ command in the system initialization
command file to contain the frequency at which the line clock 1is running.
It dis wused by routines which compute elapsed time by counting the clock
ticks in the TIME constant. It 1is normally set to 60 for systems in North
American countries and to 50 for systems running overseas.

Remember that CLKFRQ specifes only the local line freguency. Changing
CLKFRQ has no effect on the execution speed of the computer.

SYSTEM COMMUNICATION AREA Page B-4

B.13 SPXSAV - STACK POINTER SAVE LOCATION

This word is used by the clock interrupt routine for saving the wuser stack
pointer just prior to switching to the internal stack.

B.14 SPXINT - INTERNAL STACK
This 1is the address of the internal work stack used for processing clock

interrupts. It is set up by the initial load routine and used by the clock
interrupt processor.

B.15 LPTQUE - LINE PRINTER SPOOLER QUEUE

This is the dynamic Link address toc the base of the line printer spooler
gueue. The format of the spooler queue 1is subject to frequent change, so it
is not detailed here.

B.16 TRMDFC - BASE OF THE TERMINAL DEFINITION TABLE
This is the link to the base of the terminal definition table. There 1is one

entry in this table for each terminal defined at system stertup by a TRMDEF
statement in the SYSTEM.INI file.

B.17 TRMIDC - ADDRESS OF FIRST INTERFACE DRIVER

This is the Llink to the first terminal interface driver defined in the
system. Each driver then links to the next one 1in the chain.

B.18 TRMTDC - ADDRESS OF FIRST TERMINAL DRIVER

This is the Llink to the first terminal driver defined in the system. Each
driver then Links to the next one in the chain.

B.19 TRMSCN - THE NON-INTERRUPT TERMINAL QUEUE

TRMTSC is the Link to the chain of gueue blocks for all terminals which are
defined as non-interrupt driven and which require terminal scan service each
clock tick.

SYSTEM COMMUNICATION AREA Page B-5

B.20 CLKQUE - THE CLOCK QUEUE

CLKQUE is the Llink to the <clock quecue which gets scanned every clock
interrupt. This queue has some entries that remain constant and some theat
are continuously added and deleted (such as SLEEP commend queue blocks).
CLKQUE s actually the base entry in the gueue chain and therefore is two
words in size.

B.21 SCNQUE - THE IDLE SCAN QUEUE

This is the Llink to that point within the clock aqueue chain which defines
the 1idle scan queue or that portion of the clock queue which will be
continuously scanned when the system is idle. SCNQUE is actually the base
entry in the queue chain and therefore is two words in size.

B.22 RUNQUE - THE JOB SCHEDULTNG QUEUE

This 5-word block forms the base and end entries for the job scheduling and
run queue, along with the necessary control information. Its format s
unimportant to the user, and you should never alter it.

B.23 DRVTRK - THE DRIVE/TRACK TABLE

DRVTRK s a 4-byte block that stores head track positioning information for
floppy disks used in the system. It is used only by the head unload and
head positioning routines in various floppy disk drivers.

B.24 MEMDEF & MEMBNK — MEMORY MANAGEMENT CONTROL

These two words are used by the memory management system (when active) to
store the base of the memory bank definition table and the currently active
bank index. They are explained in detail in Chapter 3, '""MEMCRY CONTROL
SYSTEM CALLS."

B.25 ZSYDSK - ADDRESS OF SYSTEM DISK DRIVER

This word contains the base address of the system disk driver within the
monitor. It is used by MONGEN to overlay the disk driver with another one
when changing the resident disk type.

SYSTEM COMMUNICATION AREA Page B-6

B.26 QFREE - QUEUE SYSTEM CONTROL

QFREE consists of two words, the first containing the number of queue blocks
currently available, the second pointing to the first available queue block.
Queue blocks are sllocated and deallocated by getting and returning them
from the front of the Llist controlled by this address, automatically
incrementing or decrementing the free count in the process. The operation

of the oqueue system is more fully explained in Chapter 5, "MONITOR QUEUE
SYSTEM CALLS."

APPENDIX C

ALPHABETIC LISTING OF AMOS MONITOR CALLS

The followino is a quick reference to all AM-100 monitor calls:

ALF
AMOS
ASSIGN
BNKSWP
BYP
CHGMEM
CLOSE
CRLF
CTRLC
DCVT
DEASGN
DELETE
DELMEM
DSKALC
DSKBMR
DSKBMW
DSKCTG

DSKDEA
DSKDRL

DSKDRU
EXTT
FETCH
FILNAM
FMARK
FMARKR
FSPEC
GETMEM
GTDEC
GTOCT
GTPPN
HTIM
INIT
INPUT
JLOCK
JORGET

tests the character indexed by R? for zlphabetic

executes AMOS command without exitirg current program

assigns a non-sharable device to a job

changes banks when running under memory management system

bypasses all spaces and tabs in the string indexed by R2

changes the size of a user memory module

closes a logical dataset

prints a carriage-return Line-feed pair on the user terminal

checks for a control-c pending

converts a binary value to decimal and prints it on the user terminal
deassigns a non-sharable device from a job

deletes a file from a file-structured device

deletes a user memory meodule from his partition

allocates next available record on disk and returns block number
reads disk bitmap and sets re-entrant lock for user modification
rewrites disk bitmap after user modification

allocates a contiguous file for random processing

deal locates a record on disk and makes it available for use again
sets re-entrant directory lock for a specific user's directory
clears re-entrant directory lock for a specific user's directory
exits from user program and returns to monitor command mode

fetches a module from disk into user memory unless already in memory
processes a filename specification indexed by R2 into RAD5(Q format
find file mark on specified magnetic tape unit

read in reverse to find file mark on specified maanetic tape unit
processes a complete file specification indexed by R2 and sets up DDB
allocates a user memory module in his partition

converts a decimal number indexed by R2 into bhinary and returns it in R1
converts an octal number indexed by R2 into binary and returns it in R1
converts a p,pn format indexed by R2 into binary and returns it in R1
sets up the diskette head unload timer function

initializes a dataset driver block (DDB) for 1/Q processing

performs a logical record input 1/0 function on an open dataset
prevents context switches and allows current user to run

retrieves a job control block item for the current job

ALPHABETIC LISTING OF AMOS MONITOR CALLS Page C-2

JOBIDX
JOBSET
JRUN
JUNLOK
JWAIT
JWAITC
KBD
LCS
LIN
LOCK
LOOKUP
NUM
ocvT
OPEN
OPENA
OPENI
OPENO
OPENR
OUTPUT
PACK
PCALL
PFILE
PRNAM
PRPPN
PTYIN
PTYOUT
QADD
QGET
QINS
QRET
READ
RENAME
REWIND
RLSE
RQST
SCAN
SLEEP
SRCH
TAB
TAPST
TBUF
TCRT
TIN
TOUT
TRM
TRMBFQ
TRMICP
TRMOCP
TTY
TTYI
TTYIN
TTYL
TTYOUT

set an index to a job control block item for the current job

sets data into a job control block item for the current job

restores a waiting job to the run request state

enables context switches (reverses effect of JLOCK)

sets an active job into the wait state

sets your job into the wait state

accepts input from user terminal keyboard (character or Lline mode)
converts one character in R1 to lower case

tests the character indexed by R2 for valid end-of-line character
locks the prccessor against interrupts (performs IDS instruction)
looks for a specific file on disk and returns information about it
tests the character indexed by R2 for numeric

converts a binary value to octal and prints it on the user terminal
general form of the I/0 logical dataset open calls

opens a logical dataset for appending

opens 2 logical dataset for input

opens a logical dataset for output

opens a logical dataset for random access

performs a logical record output I/0 function on an open dataset
packs an ASCII triplet into its RADS50 code

invokes program as subroutine

prints a complete file specification on user terminal from a DDB
prints a filename specification on user terminal from its packed format
prints a p,pn specification on user terminal from its packed format
forces one character into another job's terminal input buffer
retrieves one character from another job's terminal output buffer
adds a queue block to the end of a aueue Llist

gets a queue block from the free list and clears it for use

inserts a aqueue block into a queue list at a defined point

removes & aueue block from a queue Llist and returns it to the free Llist
performs a physicael record read I/0 function on a dataset

renames a file on a file-structured device

rewind magnetic tape on specified magnetic tape unit

releases control of a semaphore and allows waiting job to access source
requests control of a semaphore to access source or to wait in wait chain
forces a single scan of the idle scanner queue (SCNQUE)

puts the user job to sleep for a specified number of Lline clock ticks
searches for a named memory module and returns its address

sends a tab character to the user terminal

read tape status of specified magnetic tape unit

queues up a variable length data buffer for output to a terminal
executes the special function CRT routine in the active terminal driver
reads one character from the user terminal input buffer

sends one character to the user terminal output buffer

tests the character indexed by R2 for a valid terminaticn character
adds a data buffer to the active output queue of a terminal

processes one input character (used within terminal drivers)
processes one output character (used within terminal drivers)

outputs one character to the user terminal

outputs an in-line message to the user terminal

retrieves one character from any job's terminal input buffer

outputs a message to the user terminal

forces one character into any job's output buffer

ALPHABETIC LISTING OF AMOS MONITOR CALLS Page C-3

TYPE types an ASCII message on the user terminal

TYPECR types an ASCII message on the user terminal with appended CRLF pair
TYPESP types an ASCII message on the user terminal with one appended space
ucs converts one character in R1 to upper case

UNLOCK unlocks the processor for interrupts (performs IEN instruction)
UNPACK unpacks a RADS50 code word into its eaquivalent ASCII triplet

USRBAS returns the address of the current user's memory partition base
USREND returns the address of the current user's memory partition end
USRFRE returns the address of the current user's free memory area

WAKE wakes a job out of sleep state

WRITE performs a physical record write I/0 function on a dataset

WRTFM write a file mark to specified magnetic tape unit

AMOS MONITOR CALLS MANUAL

ALF v & 0 0 v i e e ..
Alphabetic conversion . .
AM-100
AM-100/T @ @ v o v o o
AM=700 o . . .
AMOS . & & ¢ & ¢ 4@ o . .
ASSIGN . . . ¢ v o « o .

Bitmap Format
Bitmaps =« « & =« & « « « &
BNKSWP
BYP . & & . h e h e ..

CHGMEM
CLKFRG@
CLKQUE . . . &« &« & &« . .
Clock Freguency
CLOSE . & & v ¢ ¢ o o o«
Contiguous Files
Control-C . . . & . .« . .
Convenience Macros . . .
CRLF & ¢ & 4@ ¢ & @ & o =
CTRLC . & & ¢ v @ & o o .
Cursor Addressing

DATE . & & v & & o & o @
DCVT & & @ @ & v ¢ o «
DPB . . . & 4 4 4
Buffer Address
Buffer Index
Buffers . . . «
Call Level
Device Code
Drive . . v v v v ¢ &
Driver Work Area . . .
Error Code
Error Handling
Extension . .«
Filename
Flags « v =« & &« « o o &

Index

| [
_e A PN

N> NWWW PO
f'D [

VTN ONW

!
-

6-11
A-3
10-1
7-8

10-1

Iy
o

111
IR R Y

Voo
FOONNV OV IO

[3« N> Mo ks e N¥e e N0 N6 SN SNe NEs SNe Nvs)
[

Page Index-1

AMOS MONITOR CALLS MANUAL

JCB Address . v « o « o .

Job Priority

Open Code v v« =« o & o o &

PPN & & & & 4 4 e & & o &

Queue Chain Link

Record Number

Record Size <« . .
DDB Format
DDBCHN . . . & & ¢ ¢ & .
DEASGN . . . & v o v o « .
Decimal Input
Decimal OQutput
DELETE . & & & & o o o o .
DELMEM & o . .
DEVIBL . . & & ¢ o ¢ o o .
DEVTBL program
Disk File Structure
Disk ID Record
Disk Record Types
Disk Service Monitor Calls
Disk Structure
DSKALC . . . & v v v & o .
DSKBMR « . .
DSKBMW . & & ¢ v & o o « «
DSKCTG & & &« & . .
DSKDEA ¢« « « . .
DSKDRL & & & & & & o o o «
DSKDRU . . v & ¢ & o o . .

EXIT & v 0 v 0 v o v o o

FETCH & & v v & v v ¢ o o «

Flags &« @ v & & & o & o .
File marks . . . & « « . .
File Service Monitor Calls
File Service System
File Structure
Filenames . .« v v v o o o« .
Filespecs v« v« v« ¢ ¢ « = o «
FILNAM . . . ¢ ¢« ¢ & & . .
FMARK & & v ¢ @ @ v & o o @
FMARKR . . & &« & &« v & o .
FORCE command . . .« . « . .
FSPEC & & & v & 4 v v o o

GETMEM« . .
GTDEC & & & &« o . .
GTOCT . . & v v v v o & v .
GTPPN &« « . ¢« &« . .

Head Load Time
HEDLOD program
Hexadecimal Input

[

(o9] NKe e S Ne NNe SNe Se
|

| T T T
wi o

| L A L
o

1
N = et RS DO NNW=mS N a2 T NIyt

O 00O 00O

-—
T
—

| U
e

9-3

Lo
— —

O\\JO\O\\OOOO?)O\O\O\J-\L\
O P NVNANSTPFINONNN =
~

1
)
o
o

00 O W
LI |

NN O

\OCFGJ
N N WN

Page Index-2

AMOS MONITOR CALLS MANUAL

Hexadecimal OQutput

HLDTIM . .

INIT . ..
INPUT . . .

Input Line Processing Calls
Interface Drivers

J€B
Size . .
JCB Entries
JOBBAS .
JOBBNK .
JOBBPT .
JOBBRK .
JORCMS .
JOBCMZ .
JOBCUR .
JOBDEV .
JOBDRV .
JOoBDYS .
JOBERC .
JORFPE .
JOBNAM .
JOBPRG .
JOBPRV .
JOBRNQ@ .
JOBSIZ .
JOBSPR .
JOBSTK .
JOBSTS .
JOBTRM .
JOBTYP .
JOBUSR .
JLOCK . . .
Job Control
Size . .
Job Table .
JOBBAS . .
JOBBNK . .
JORBPT . .
JOBBRK . .
JOBCMS . .
JoBcMz . .
JOBCUR . .
JOBDEV . .
JORDRV . .
JOBDYS . .
JORERC . .
JORBESZ . .
JORFPE . .
JOBGET . .
JORIDX . .

8-1
""3

6-6, 6-9
6-13

9-1

7-5, B-4

2-1, B-?

i
(]

LI .
~
N
|
-
-

]
O ~NDOON=_ROO NN

NNV NNV NN DN NN
|

Page Index-2

AMCS MONITOR CALLS MANUAL Page Index—4

JOBNAM e s e s e . 25
JOBPRG . & & & 2o ¢ « o & « & e . 2-6
JOBPRV & & & & ¢ 'c o o« s = o = = 2-6
JOBRN® . . . & ¢ ¢ 4o 4 e e e .. 2-9
JOBSET & & ¢ ¢ 4 ¢ « o « = o & = 2-1, 2-3
JOBSIZ . & & & ¢ @ « & o & « & = 2-5
JOBSPR & & v 4 e h h a e e e .. 2-5
JOBSTK & & v & ¢ ¢ ¢ & o = = . « 2-9
JOBSTS & & ¢ & & o a « o « = . - 2-4
JOBTBL . & & & & @ @ ¢ o = . . B-2
JOBTRM . . . & ¢ v ¢« v &« =« v o« « 2-8
JOBTYP & & & ¢ o ¢ o o o o = . . 2=7
JOBUSR & & & & & o o « o o = = . 2-6
] 2-3
JUNLOK . & & ¢ 4o 4 ¢ v v o & . . 10-2
JWAIT @ @ 4 4 4 4 e e e o o = e o 2-3
B A 2-3
KBD & & & & 4t e s e e e e e 7-2, 9-1
LIN & & & o 4 6 6 o e e o o o o = Q-2
Line Printer Spooler B-4
LOOKUP . . . & ¢ ¢ ¢ & & o & . . 6-10
LPTQUE e s s s « « o« B-4

Magnetic tape drivers 6-20 to 6-21
Master File Directory A-3, A-5

MEMBAS . & & ¢ & & o o« o = « . . B-2
MEMBNK . & v v @ v & & o . -« - 3-11, B-5
MEMDEF . & & & ¢ ¢ & @ o & o « . B-5
MEMDEF Program . . . ¢ &« « & « . 3-9
MEMEND « . . . e « « = « B-2
Memory Management 3-9, B-5
Memory Mapping . . « o « o . . 39
Memory Modules &« . . . 3-5, 441
Memory Partition Controller . . . 3-10 to 3-13
Memory Partitions - . 32

MFD & 4 4 vt e e e e e e A3, A5

Miscellaneous Monitor Calls . . . 10-1
Monitor Calls

ALF & & 4 i i a e e e e e . . . 91
Alphabetic conversion 8-4
AMOS & 4 & o 10-3
Arguments e e e e 1M
ASSIGN . . & &« & ¢ v ¢ v =« « - 6-15
BNKSWP ¢ . ¢ o . . 3-12
BYP v & & i s i h e e e .. . 9-2
Calling Format < - 14
CHGMEM ¢ ¢« ¢« . . 3-6
CLOSE . . . & & ¢ ¢ ¢ v . - . 6-11
CRLF . & & & o o v o« . . Y
CTRLC & & & & v v v o = & « « « 101

DEVT . & & & v i i it e . .. 8-

AMOS MONITOR CALLS MANUAL Page Index-5

DEASGN e s e . . 6-16
DELETE . & & & & & o« o = o o & 6-15
DELMEM . . . & ¢ & & & ¢ « o & 3-6

Disk Service . . ¢ & v & & o . 6-16
DSKALC . & & ¢ &« & o o « = o« & 6-18
DSKBMR e e = = & = = 6-10
DSKBMW . . . ¢ & v & & o o o & 6-19
DSKCTG & & & & & e« o o o o = « 6-18
DSKDEA . & &¢ ¢ & o o o« & « =« 6-19
DSKDRL & v & & & & o ¢« =« « o = 6-19
DSKDRU . & & & ¢ v v ¢ v o = & 6-20
EXIT . . & ¢ ¢ ¢ & & e e e .« 101
FETCH & & & & & & o &« & o o o &« 3-5, 41
File Service . v« v v v ¢ « o 6-8
FMARK & & v 4 ¢ ¢ o & « = =« « « 6-21
FMARKR . & & & ¢ 4 & ¢ o« = & = 6-21
FSPEC . . & & & & ¢ ¢ o o o o 6-8
GETMEM . . . & & ¢ &« & o & & & 3-6, 6-6
GTDEC . . & & & o« o« & e e e« 9-2
GTOCT & & & ¢ o & & o & o o & = 9-2
GTPPN & & & & 4 & &4 o & & = o = 9-3

1 6-6, 6-9
INPUT & & 4 b e h e h e e e e 6-13
Input Line Processing .« « « . . 9-1
JLOCK & & & 4o 4 4 e e e e e . 10-2
JOBGET v v v v 4 e s e e e e . 2-1, 2-32
JOBIDX & v o v o o o « o « = & 2-1, 2-3
JOBSET & v ¢ &4 o« o « « « o = 2-1, 2-3
JRUN . . . & ¢ v e v v e e e . 2-3
JUNLOK . & ¢ v 4 4o a0 o & o o » 10-2
JWAIT & & & ot 6 e v e e o o = 2-3
L 2-3

KBD & & & & i 4 e e e e e e - 7-2, 9-1
1 9-2
LOOKUP . & & & &4 & ¢ ¢ & & = = 6-10
Magnetic tape drivers 6-20 to 6-21
Memory Control . . ¢ &« o o & & 2
Miscellaneous . &« . & v« & v . . 10-1

NUM & & i h ot d d e e e e o o 9-2
Numeric Conversion 8-1

OCVT & 4 4 4 e e e e = = « =« « 8-
OPENA . . & & &« & & & = @ . -« . 6710
OPENI . . & & & & « « o & « . « 6-10
OPENO . . & 4 & 4o ¢ & « « = « =« 6-10
OPENR . & & & &t & & o o « « « « 6-11
OUTPUT . & & & & & & & & & o =« 6-14

PACK & & & & 4 4 o e« a = « « 83
PCALL o & & & & & & & & & =« « « 10-3
PFILE & & 2@ ¢ & o & o & = =« o« « 8-4
Printing Conversion 8-4
PRNAM “ s e mae s 8-4
PRPPN . . & & & ¢ & & & & a =« « 8-4
PTYIN . & ¢ & & & 4 & & & & o & 7-4

AMOS MONITOR CALLS MANUAL

PTYOUT

QADD . . . i e e e e e e e e .
QGET & & & 4 & 4 4 ¢ o v = = =
QINS & & & i it et e e e .
QRET & & 4 & & v & @ a o = « .
RAD50 Conversion . . v« v« o « .
READ . & & & & & 4 ¢ e e« o =
RENAME . . & &« &« & ¢ ¢ & & -
REWIND & v v ¢ ¢ & ¢ & a o = @
RLSE & & 4 @ & 4 e e e o o o «
RAST & & v 4 4 4 v e e e w ™ .
SLEEP & v & ¢ & 4 ¢ ¢ o v o o «
SRCH . . & ¢ o v v .o . .« - e .
Standard Address Araument . . .
2 =
TAPST & 4 i it e e e e e e o a
TBUF & v & ¢ 4 o o o = & .
TCRT 4 4 4 4 s 4 4 s s s o o =
Terminal Service
TIDX (obsolete)
TIN & & i s et e e e e e . .
TOUT & i h ot e et e e e e m .
TRM & i h i e h h e e e e e .
TRMBFQ . . . ¢ & v v o o = @ .
TRMICP . & & & & @ v o o o o «
TRMOCP & & v 4 4 v e e e o o =
TTY & 6 6 e e e e o o a = o &« .
TIYL & s h et e e e e e e m .
TTYIN & & h i e e e e e e e = a
TTYL & 6 4 h e e e e a . - . .
TTYOUT & & 4 6 4 e o s o o &« .
TYPE & & 4 e s i e e e e e -
UNPACK . & & 4 & ¢ v o o« o = «
USRBAS . & & & & & ¢ & v« o o «
USREND . . & & v v v 4 o o o &
USRFRE . & & & @ @ & ¢ v o o .
WAKE & & & & ¢ 4 ¢ v o o o o &«
WRITE . & & & ¢ & & ¢ o o o o
WRTFM . . & & 4 v 4 v o v o o« &
MPC & . & & & 4 i e e e e . . .
MTU.DVR & & & v v v o o . « e s =
NUM & & f h e e h e e e e e .
Numeric Conversion Monitor Calls
Numeric Input « & v v & o o o « .
Octal Input « - .
Octal Qutput “ e e .
OCVT &t i e d e e e e e e e e
OPENA . . & & & v & 4 4 e e e u .
OPENI & & & & 4@ ¢ @ ¢ v o o = = -
OPENO . . & & ¢ & 4 4 & o v o o «
OPENR . & & & ¢ 4 v 4 o o o & -
OUTPUT . . & & & 4 ¢ 4 o o« o @ .

7=5
5-3
5-3
5-3
5-3
8-2
6-11
6-15
6-20
10-2
10-2

~

—_—

~

NN WD NNV NNNNNO NN NAN N
Lo |
AOLLALSLGLLGSGELddohdabdddd

|
-
N

4-1

T
(o)

Page Index-6

AMOS MONITOR CALLS MANUAL

PACK & & & 4@ 4 v 4 @ o o
PCALL . & & ¢ v 4 ¢ @ o o @
PFILE & & & & ¢ ¢ & & & o
Physical Disk Record Format
PPNs . . . ¢ ¢ 4 4 o & ..
Printing Conversion Monitor
PRNAM . . . ¢ ¢ & & & o o &

Project-Programmer Numbers
PRPPN e« a = o @« a
Pseudo Term1nats « e s e
PTYIN . . & . & & & & o o .
PTYOUT . & & & & ¢ & o & &

QADD
QFREE . & & 4 ¢ & o o o « =
QGET . . & & ¢ v 4 & o . .
QINS . . & & & o & & o o .
QRET . & v & & v & ¢ o o =
QUEUE command
Queue System
Manipulating Queue Blocks

Obtaining a Free Queue BLock .

Returning a Queue Block .

RAD50 Conversion Monitor Calls .

Random File Processing . .
Random Files
READ . & & ¢ ¢ 4 ¢ @ o o @
RENAME « . « .
REWIND . . . & & &« & & & =
RLSE . & & ¢ & v ¢ & o o .
RAST & & 4 & & o o & o o« &«
RUNQUE . . . ¢ & ¢ & o« & &

SCNQUE
Semaphores . &« o« o« & o o
Seaquential Files
SLEEP . & & ¢ 4 4 ¢ & o o &
SPXINT . & & 4 4 o & & o &
SPXSAV . . . ¢ & ¢ ¢ & . .
SRCH . & & & 4 & 4 4 o« &
Flags = = & « & &« « & .
Standard Address Argument .
SYS.MAC . &= & & & & & 4 .
SYSBAS & & 4 4 4 4 e e e .
SYSTEM &« &« o o .
System Communication
QFREE & & & & . .
System Communication Area .
CLKFRG . . & & & o o o @
CLKQUE . & v & & & & & &

10-3

mmmmmu\\n\n?m
| T T T I | |
NWW =SSN WWOW

~

23]

|

o

|
SN =N

o> 0N 00
1
RN

B-5
10-2

A-3

2-3

B-4

B-4

2-5, 4-1
4=2

1-2

1-1, 2-1,
B-2

B-1

7-8

Page Index-7

AMOS MONITOR CALLS MANUAL

DATE & & & & & ¢ ¢ & o o = «
DDBCHN &« ¢ &« &« o . .
DEVIBL . & ¢ & 2 o & & =« & &
DRVTIRK . & & ¢ &4 & & o o & &
HLDTIM . . . & v & v &« v o @
JOBCUR . & & & v ¢ & ¢ o & &
JOBESZ . & & 4@ & 4 4 4 4 & .
JOBTBL . . & & & &« & & &« . .
LPTQUE . . &« & & & &« o o & .
MEMBAS . . . &« & ¢ v & & o &
MEMBNK & ¢ ¢ & . . .
MEMDEF . . . &« & & v & & &« &
MEMEND . . . & & & & & o « &
QFREE . & v ¢ ¢ & 4 & ¢ & o
RUNQUE ¢« & & & o & &
SCNQUE . . . & & & & & o « .
SPXINT . & & & & 4 & ¢ & = @
SPXSAV & & & 4 4 4 4 4 e & .
SYSBAS . . & 4 4 4 4 e e . .
SYSTEM . . . & & 4 & v o« & .
TIME . & ¢ @ 4o ¢« & & o & =«
TRMDFC . & & & & & & o o &
TRMIDC . & & & 4 4 o o o o &
TRMSCN . ¢ & @ & & & & & & .
TRMTDC . & & v ¢ & & & o & @
ZISYDSK v 4 4 4 ¢ 4 o o = o @
System Date = v & &« & & o o - &

TAB & & ittt h e e e e
TAPST & v 4@ & & o e o « o « @« =
=
TCRT & 4 s e e e e o o o = o =
Terminal Definition Table . . .
Terminal Drivers . . .« « « . .
Terminal Input
Terminal Service Monitor Calls
Terminal Status Word
TIDX (obsolete) &« . . .
TIME . v ¢ ¢ ¢ o @ o « o = « «
Time of DAy v ¢ v v« o ¢ o o «
TIN & & it e d e et e e e o =
TOUT & i a e e e e e e s o o =
TRM & . i h h e e e e e e e e
TRMBFR . . . v v v v v o o
TRMDFC & & &4 & & & o o o o « =
TRMICP . & & & & ¢ o o a o = &
TRMIDC . & & v v v v e a e .
TRMOCP & & & & v 4 e e e e e
TRMSCN & & & 4 e e e v e e e
TRMTDC & & & 4 v 4 v e o o = =
TTY & i e e e e e e e a o = =
TTYL & s e e e e e e e s s = =
TTIYIN & @ i i e e e e e e e .

3-10, B-5
3-10, B-5
2

N O

" LN

St
DN
i

)

DD DD DDDDDODDOD DD
o
(I ER I R e R

N

UL L R U |
~ —
33}
]
Fas

YYVPPPIIPNRNFIPENNIYFIPFINTY
NMAWEAFRUVRAUVRGONUWWWWONSNSIROON W

Page Tndex-8

AMOS MONITOR CALLS MANUAL

TIYL o . 0 0 v 0 0 o v .
TTYOUT . & v & & v & o &

TYPE . &« & & 0 @ v o ..
TYPECR . . & & v & o o .

TYPESP . . ¢ & v &« o . .

UFD & & v v 4@ ¢ & a o o &
UNPACK . &« v & v o o « .
User File Directory . . .
USRBAS . . + ¢ & =« =« « =
USREND . . +. & & &« & &« .
USRFRE .+ & & &« ¢ = = & &

WAKE . . . & & o o v & .
WRITE . . & & &« ¢« ¢ &« & .
WRTFM . & & v ¢ & o o o &

ZSYDSK v v v v 4 4 . . .

NN = NN
1

s I IV
“
\J
)
(o

~

www;rolo~>

I 1

NN NN W
~

~N
|
Fol

6-12
6-20

A-5

A-5

Page Index-9

AMOS MONITOR CALLS
JOFTWARE PUBLICATIONS FILE REFERENCE NUMBER:

SOFTWARE DOCUMENTATION READER’S COMMENTS

Ve appreciate your help in evaluating our documentation efforts. Please feel free to attach additional comments. |f you require a written response, chec

NOTE: This form i1s for comments on software documentation only. To submit reports on software groblems, use Software
Performance Reports (SPRs), available from Alpha Micro.

’lease comment on the usefulness, organization, and clarity of this manual.

Did you find errors in this manual? If so, please specify the error and the number of the page on which 1t occurred

‘hat kinds of manuals would you like to see in the future?

dlease indicate the type of reader that you represent (check all that apply).
O Alpha Micro Dealer or OEM

| Non-programmer, using Alpha Micro computer for.
O Business applications
O Education applications
O Scientific applications
O Other (ptease specify):

d Programmer:

Assembly language
Higher-level language
Experienced programmer
Little programming ex perience
Student

Other (please specify):

aaoooao

NAME. DATE.

CTLE PHONE NUMBER"

JRGANIZATION

ADDRESS:

CITY: STATE" ZIP OR COUNTRY

WPLE) STAPLE

FOLD

® © 0 00 50 0000000 00 0000000 00O OO0 OO OO SO0 OL O OO O OO OSSOSO OO OSS OO GES SO O OO

PLACE
STAMP
HERE

alpha
micro
17881 Sky Park North

Irvine, California
92714

'N: SOFTWARE DEPARTMENT

© © 90000000000 0000000000007 .000000006000000000600606060060000060600006060600000000

FOLD

----------—-—------‘------------------------‘------ﬂ---------------------

CUT ALONG LINE

