SOFTWARE MANUAL

AMOS
ASSEMBLY LANGUAGE
PROGRAMMER’S MANUAL

DWM-00100-43
REV. BOO

alpha
micro

SOFTWARE MANUAL

AMOS
ASSEMBLY LANGUAGE
PROGRAMMER’S MANUAL

DWM-00100-43
REV. BOO

N OV

alpha
micro

AMOS ASSEMBLY LANGUAGE PROGRAMMER'S MANUAL

2MD-4/81

First printing: April 1979
Second printing: 30 April 1981

'Alpha Micro', 'AMOS', 'AlphaBASIC', 'AM-100',
'"AlphaPASCAL', 'AlphaLISP', and 'AlphaSERV'

are trademarks of

ALPHA MICROSYSTEMS
Irvine, CA 92714

This manual reflects AMOS Versions 4.5 and later

©1981 - ALPHA MICROSYSTEMS

ALPHA MICROSYSTEMS
17881 Sky Park North
Irvine, CA 92714

. Page ii

AMOS ASSEMBLY LANGUAGE PROGRAMMER'S MANUAL Page iii

PREFACE

This manual covers the procedures for writing assembly language programs for
the Alpha Micro AM-100 and AM-100/T based computer systems. We also discuss
the operation of the programs. that make up the AMOS assembly program
development system. We assume that you are familiar with assembly Language
programming techniques 1in general, and with the AM-100 machine instruction
set in particular.

The WD16 Microcomputer Programmer's Reference Manual, (DWM-00100-04) ,
describes the instruction set for the AM-100 and AM-100/T CPUs. For
information concerning interfacing with AMOS via the AMOS monitor calls,
refer to the AMOS Monitor Calls Manual, (DWM-00100-42).

NOTE: Because the AM-100 and the AM-100/T CPUs use the same instruction set,
all references to "AM-100" in this manual also apply to the AM-100/T.

AMOS ASSEMBLY LANGUAGE PROGRAMMER'S MANUAL

CHAPTER 1

PART I

CHAPTER 2

CHAPTER 3

CHAPTER 4

Table of Contents

PREFACE cueucuueeenceeeccccccensaacnsanns eseaveccaanse .
INTRODUCTION

1.1 NOTE TO USERS OF PREVIOUS VERSIONS OF

MACRO, LINK, SYMBOL AND DDT .seuceccass csescsae
THE CONTENTS OF THIS MANUAL cceuececacnncanasns
READER'S COMMENTS FORM ..cvvecaaccnns areanscua
CONVENTIONS USED IN THIS MANUAL .cecicenncasnss

—_
L]
H NN

Page v

INTRODUCTION TO ALPHA MICRO ASSEMBLY LANGUAGE PROGRAMMING

FILES USED IN THE ASSEMBLY LANGUAGE SYSTEM

2.1 .MAC - SOURCE FILES ..cevencn. cesascscacsesans
2.2 .0BJ - INTERMEDTATE OBJECT FILES .cveuvececnnen
2.3 .PRG - BINARY PROGRAM FILES .ueeececocncsacans
2.4 .OVR - BINARY OVERLAY FILES ceeveacencnnsanse .
2.5 .LST - PROGRAM LISTING FTLES wcecncecccsancnns
2.6 .LIB - LIBRARY FILES .uuveeeucacccncannsannas .
2.7 .GLB - GLOBAL CROSS REFERENCE FILE ...ecu.. .an
2.8 .MAP - LOAD MAP FILE cemsanna cesecenna
2.9 .SYM - RESOLVED SYMBOL FILES ...ccen.. cnsccene
2.10 .IPF - INTER-PHASE WORK FILE ..u.civccecacnseas
2.11 .TMP - TEMPORARY WORK FILES ..uceena-. ccascens

MACRO SOURCE PROGRAM FORMAT

3.1 MACHINE INSTRUCTIONS ceecscscenncnaans
3.2 DATA GENERATION STATEMENTS ..cueeceenceccnanens
3.3 SYMBOLIC EQUATE STATEMENTS ...cccaneacaan camuae
3.4 ASSEMBLY CONTROL STATEMENTS ..ucccecenccancaas
3.5 CONDITIONAL ASSEMBLY DIRECTIVES ...ccceeeecnns
3.6 MACRO DEFINITIONS AND MACRO CALLS ...cevveennn
3.7 COMMENT LINES AMD BLANK LINES crscecenn

TERMS AND EXPRESSIONS

TERMS seeecnnccancancnnans ceensecensasaansenes

NNNNNI})NNNNN
PP NN ANAWNNDVUNN=

3-3

AMOS ASSEMBLY LANGUAGE PROGRAMMER'S MANUAL Page vi

CHAPTER 5 ASSEMBLER PSEUDO OPCODES
5.1 ASSEMBLY CONTROL PSEUDO OPCODES ..vceccececes . 5-1
5.1.17 COPY snu... cesaassann ceesasneas cenennss 51
5.17.2 O0BINAM ..ccevceccnences csesssesenssscas 5-3
5.17.3 PAGE .vvceeenccans cesemssessssssananses S-4
5.17.4 LIST = NOLIST ceeeecnncecncsuncancanananse 5-4
5.1.5 ASECT = RSECT .cuevecenccccancanns cemmaas . 5-4
5.17.6 SYM — NOSYM ..i.eecunccnccunnnnasanannns 5-5
5.1.7 CREF - NOCREF - MAYCREFecuos cassne 95
5.1.8 EVEN fiieueencecenscnnnaas cesssasenssnes 5-5
5.1.9 RADIX cecaws cessssessamssassssasasncnss 5-5
5.7.10 NVALU tiieeenececnnanansnnsanansnnnnns . 5-6
5.7.11 END siceeennccnncsannancsananns O
5.2 DATA GENERATION PSEUDO OPCODES ...eeecvaccans . 5-7
5.2.1 BYTE cesescenssscsscsssnasannannns 5-7
5.2.2 WORD tiuueeencecccansansacanasnes ceeaaas 5-7
5.2.3 ASCII .cececencees cesessescancsas cesanans 5-8
5.2.4 RADS50 .c.veeecvcecsnannnes cecesssasaanas 5-8
5.2.5 BLKB - BLKW .eeeeua ceescsasesssssanenss 5-8
5.3 SEGMENTATION PSEUDO OPCODES .eeceeceaccaascnes . 5-9
5.3.17 Segmenting Assembly Language
Programs c.ccceescecesscase cssssssssnsas . 5-9
5.3.2 AUTOEXTERN csessassasmas ceanssaa . 5-10
5.3.3 INTERN teuvveccancacnsccncaannancananas 5-10
5.3.4 EXTERN .tuceeeccncasnsasccnnaeanccanscnas 5-11
5.3.5 OVRLAY cessssasssnssns cencesane 5-12
5.4 CONVENIENCE PSEUDO OPCODES .eeecvcoeccvasnsaass =12
5.4.1 Extended Conditional Jumps .eeeceveeaase 5-13
5.4.2 PUSH = POP tvceecencnanceaanncsacancans 5-12
5.4.3 CALL - RTN ceesassnasnase csacssnes 5-14
5.4.4 OFFSET e.ieeanccccannsceaes cnssanes cesanes =14
5.4.5 PSI tiieecnncnccnnncens cessnsans ceeeses D14
CHAPTER 6 USER DEFINED MACROS
6.1 MACRO DEFINITION ..ccencnceces Y
6.1.1 Macro Definition Formats ceeeecececae e 672
6.1.2 The Macro Source Statements ...ecceeacees 6-2
6.1.3 The Dummy Argument LiSt .cuceeeanacasea 6-3
6.1.4 Labels .ceeeeececansnncnnnnna csessuans . 6-3
6.1.5 Local Symbols .secevancccnnnaans ceesans . 6-3
6.1.6 COMMENTS seveevcascnnccacncsnncnncnana . 6~4
6.1.7 Special Macro Operators ceeeececsceecas 6-4
6.1.7.1 Argument Concatenation (') ... 6-5
6.1.7.2 Expression Evaluation (\) 6-5
6.1.8 Suppressing Macro Expansion — ENDMX ... 6-6
6.1.9 NCHR, NTYPE, NEVAL and NSIZEc.... 6-6
6.1.9.17 NCHR cesssssscssscasas O—H
6.1.9.2 NTYPE .cccnee cessscasassans eea 6-7
6.1.9.3 NEVAL c.vcenccnnnnnes cascsssss 6=7

621.9.4 NSIZE seecccevaccnsnnancannaas 67
6.1.10 Sample Macro Definitions ...cccececceas. 6-8

AMOS ASSEMBLY LANGUAGE PROGRAMMER'S MANUAL

CHAPTER 7

CHAPTER 8

PART 1II

CHAPTER 9

Page vin
6.2 MACRO CALLS .ceeccuacen cesescsceanes cessssnana 6-8
6.2.1 Name Ceesssascessasamssnsssanan .. 6-9
6.2.2 Real Arguments .eceeecescseccaccaceaese .. 6-9
6.2.2.1 Real Argument Format 6-9
6.2.3 Label .eeeeeencencannaannnanancoaancans 6-10
6.2.4 COMMENES .ueeneaccccccnncenccnnsannanns 6~-11
6.2.5 Nested Macro Calls .cevececccncannncnns 6-11
6.2.6 Sample Macro Calls .cecccencccacenancnns 6-11
CONDITIONAL ASSEMBLY DIRECTIVES
7.1 CONDITIONAL DIRECTIVE FORMATS ..ccicacacacsans 7-1
7.2 CONDITION CODES .cceecucecasncascscnsacnasn ceeee (-2
7.3 SUBCONDITIONALS .cecce.n ceesassessamscnmsceanense 7-3
7.4 NESTING OF CONDITIONALS cececuccacnsnceannanns ee (-3
WRITING RELOCATABLE AND RE-ENTRANT CODE
8.1 VALID ADDRESSING MNDES vecvecancenccnccaananns 8-1
8.7.17 1Index ModeS ...ccucececccacncnacnnnnas .. 3-3
8.2 RE~ENTRANT CODEcvvcecaccsccansacasnascanas 8-3
8.2.17 Using Base Registers eceeeececes R
USING THE ALPHA MICRO ASSEMBLY LANGUAGE PROGRAMMING SYSTEM
THE ALPHA MICRO ASSEMBLER (MACRN)
9.1 THE MACRO PHASES t.uceceeceananceancannanncnnns 9-1
9.2 COMMAND LINE ..cieucecccuncnccancaacaanannanas . 9-2
9.2.71 FileSPEC cceeaesncccsannsancanaceannccns 9-2
9.2.2 Assembler OptionNS c.eceececcaccccccnaans 9-2
9.2.3 Parameterized Assembly Option 9-4
9.3 SAMPLE ASSEMBLY DISPLAY weceecececconannanncens 9-5
9.4 THE ASSEMBLY LISTING v.vvevcacecescccaccaaces .. 9-6
9.4.1 Assembly Listina Format .c.eeceeccenenss 9-6
9.4.2 Listing Control Pseudo Opcodes e.ee.. .. 9-6
9.4.3 Generating a Cross Reference ...cec.... 9-7
9.4.3%3.1 Cross Reference Control
Pseudo 0pcodeS ..eecencancanana 9-7
9.4.3.2 (Cross Reference Listing
Format ceeecececanns cecscanana Q-7
9.4.3.3 Sample Cross Reference
LiSting cceececevensccncancnanas 9-8
9.5 MACRO ERRORS .veceeccacncansscnancnncanasnanns 9-9 -
9.5.7 Error CodeS ececeaceasnonancannsnsananas 9-9
9.5.2 Error MeSSA0€S .cusecssscnccscanscnasnes 9-10

e <

AMOS ASSEMBLY LANGUAGE PROGRAMMER'S MANUAL
CHAPTER 10 THE LINKAGE EDITOR (LINK) AND SYMBOL TABLE FILE
GENERATOR (SYMBOL)
10.1 LINK ..ce. Ceesassscecmssssssassancaanssenannsn
10.1.7 LINK Command LiNe ...eeceaa cesessanenas
10.1.1.1 Continuation LiNeS eeeeacen .
10.1.1.2 LINK Nptions ceeanas cecssansa
10.1.2 Sample LINK DiSplay weseececcccsaannass
10.7.3 LINK EFrrOrS ceccucecenscsccancanceans .
10.2 THE SYMBOL TABLE FILE GENERATOR (SYMBOL)
10.2.1 SYMROL Command LiNE .veveececasnnansns .a
10.2.1.1 Continuation LiNesS ...ececeee
10.2.71.2 SYMBOL OptioNS eeeeececencase
10.2.2 Sample SYMBOL DiSplay eececncecscssases
10.3 LIBRARY AND QOPTIONAL FILES .vievceceacen emensasan
10.3.1 Library FileS .ceueeccccanacanaaancanas
10.3.2 Optional FileS .ueeeecaccccncncacannnns
10.4 THE LOAD MAP FILE ..c.ecacccanscsuncnnnas aesnaa
10.5 LINK AND SYMBOL ERROR MESSAGES ..ecvvcan cseass
CHAPTER 11 THE OBJECT FILE LIBRARY GENERATOR (LIB)
11.1 LIB COMMAND LINE cesssmscenseacesnsnacanas
11.1.1 Continuation LiNeS .ceececacasaan cesaan
11.1.2 LIB Option Switch (/L) .c.ieeececennnans .
11.2 SAMPLE LIB DISPLAY .ecececccccccenccnces [
11.3 UPDATING A LIBRARY .eecuaccacasce ceasecsa aseans
11.4 LIB ERROR MESSAGES .vuceccscccnncnnasancananes
CHAPTER 12 THE GLOBAL CROSS REFERENCE GENERATOR (GLOBAL)
12.1 GLOBAL COMMAND LINE cessesssanssesanes .
12.1.1 Continuation LiNeS .eeeeeacsacsacscnsas
12.1.2 GLOBAL OptiONS c.eseessccssssacanasns .
12.2 SAMPLE GLOBAL DISPLAY wccececcceccrcnansasnnasn
12.3 SAMPLE LISTING DISPLAY ticevecceccnccaanananas
12.4 GLOBAL ERROR MESSAGES ...cc... cessass ceanoae .
CHAPTER 13 THE SYMBOLIC DEBUGGER (DDT)
13.7 THE DDT COMMAND LINE ..c.eacencess csssessennea
13.2 USING SYMBOL FILES ..ceceanceaccccoanccncscncas
13.3 TERMINAL INPUT .suoeececncacancscraannanacannns -
13.4 EXPRESSIONS ..eceeccnaes ceessssmssnasn essscaan .e
13.4.1 Input Express1ons cessasase
13.4.1.1 Special SymboLs cesasans cnnaa
13.4.1.2 Local Symbols caassssas
13.4.2 OUtDUt EXPresSSioNS eeeesececesacassses ..
13.5 DODT MODES amscsscanmss ssesssnmnssssnnaae
13.6 DDT COMMANDS .ccveesncucanncna cessscsca cecanns

13.6.1 Opening a Location or Register (/) ...
13.6.2 Closina a Location

(Carriage-Return) ..eccees cesssscssnsea '

Page viii

AMOS ASSEMBLY LANGUAGE PROGRAMMER'S MANUAL Page ix

13.6.3 Display a Value in Octal (=)caue. 13-6
13.6.4 Opening the Next Location

(Line-Feed) c.eacacsan sseassscesancass 1376
13.6.5 Opening the Previous Location (7) 13-7
13.6.6 Opening a Location Indirectly (@) 13-7
13.6.7 Opening an Absolute Location

Indirectly (TAB) .cccececrcenccecns cenea 13-7
13.6.8 Starting a Program (3G) cecannnas 13-7
13.6.9 Setting Breakpoints ($8) eeees 13-7
13.6.10 Clearing Breakpoints ($€) ...c.cceeeee. 13-8
13.6.11 Proceeding From a Breakpoint ($P) 13-8
13.6.12 Executing Single Instructions

($X and \) csessessansssanan ceeas 13-9
13.6.13 Setting Program-Relative Mode ($R) ... 13-9
13.6.14 Displaying bata in Decimal ($D) 13-9
13.6.15 Displaying Data in Octal ($=) ...eee.. 13-9
13.6.16 Displaying Data in Hex ($H) ves 13-9
13.6.17 Displaying Data in RADS0 ($*) 13-10
13.6.18 Displaying Data as ASCII

Characters ($") cessacsacsassanss 13-10
13.6.19 Displaying Data as Bytes ($#) 13-10

13.6.20 Displaying a String of ASCII

Characters ($A) c.cceuecenssccaacaasss 13-10

13.6.21 Displaying the Base Address and

Size (M) tiveececnnnnccncnanacsnnanss 13-10

13.6.22 Defining New Symbols (:) ..ceeeenacasas 13-10
13.6.23 Examining Reaister Contents (%) 13-11

13.7 USING DDT TO PATCH PROGRAMS .ivvecccccvanneees 13-11

13.8 DDT ERRORS suvcececnacnccannannns ceesecsaneess 1311
13.9 EXITING DDT seeueccncacaccananns csesaasane eeeee 13-12
APPENDIX A THE ASCII CHARACTER SET
APPENDIX B SUMMARY OF PROGRAM SWITCHES

B.1 THE MACRO ASSEMBLER = MACRO ...ceceececes eeees B-1
B.2 THE LINKAGE EDITOR = LINK ceveevecacncennnnsss B=2
B.3 THE SYMBOL TABLE FILE GENERATOR - SYMBOL B-3
B.4 THE OBJECT FILE LIBRARY GENERATOR - LIB B-3
B.5 THE GLOBAL CROSS REFERENCE GENERATOR - GLOBAL B-3

INDEX

CHAPTER 1

INTRODUCTION

The AM-100 and AM-100/T based computer systems support a flexible and
efficient assembly lanquage development system under the AMOS monitor. This
system includes the assembler, linkage editor, symbol file generator, ohject
file Llibrary aenerator, global symbol <cross reference generator, and
symbolic debugger programs.

The assembler dis a multi-mass macro assembler with conditional assembly
directives, Llibrary copy function, and external segment links. The Linkage
editor dis wused to Llink multi-segment programs together and to create a
runnable program file. The operating system supports seagment overlays
thereby allowing a Llarge program to be Llogically divided into smaller
segments and executed sequentially. The debugger programs accept a
specially created symbol file as input and allow the program to he traced
and debugged in symbolic instructions using all the Labels as they were
entered in the source program. The library generator provides a mechanism
for developing and maintaining a Llibrary file that contains frequently wused
routines, making them accessible to all programmers on the system. AlL
components of the assembly language development system run under control of
the standard AMOS monitor.

There currently exist over 70 monitor calls in macro form that the assembly
languaae programmer uses to communicate with the AMOS monitor and to make
use of the routines it has to offer. These macro calls are predefined in a
file called SYS.MAC located in account 7,71 on the AMOS System Disk. The
programmer uses a single COPY statement to include this complete Llibrary of
predefined functions in his assembly lanauage program and then refers to the
monitor calls by their macro names; this makes for an easy-to-use
communication Llink to the system resources. SYS.MAC also includes equate
statements for many of the predefined system variables dincluding the job
table entries for the user's impure job variables.

INTRODUCTION Page 1-2

1f your programs are to be compatible with the AMOS system architecture, you
must write them in totally relocatable code. A relocatable program may be
loaded anywhere in RAM and executed without modifying any addresses within
the program itself. There are machine instructions which assist in writing
totally relocatable code, and by obeying a few simple restrictions the task

of writing assembly Llanguage programs for the AM-100 and AM-100/T hecomes
almost foolproof.

Optionally, you may write programs which are re—entrant and then incorporate
these programs or subroutines into system memory to be shared by all users
without requiring a separate copy for each user. (To add programs to system
memory, you must modify the system initialization command file. For
information on the system initialization command file, see the "System
Operator's Information' section of the AMOS Software Update Documentation
Packet.)

We will not delve into the rules for re-entrant programming in great detail
here since it is an advanced programming technigue and requires specific
rules that are not machine dependent. There are numerous books on the
subject and all general practices apply to the programming of the Alpha
Micro computer system. There are a number of features in the instruction
set which do lend themselves quite nicely to writing re-entrant code, some
of which are detailed in Chapter 8.

1.1 NOTE TO USERS OF PREVIOUS VERSIONS OF MACRO, LINK, SYMBOL AND DDT

If you are familiar with versions of MACRO, LINK, SYMBOL, and DDT that were
released before AMOS Versions 4.5 and later, you would probably Llike a
summary of what changes were made to these programs with AMOS Release 4.5.
If you are new to the AMOS system, please skip on to Section 1.2, below.

THE OBJECT FILE LIBRARY

One of the most important changes made was the introduction of the new
program LIB, the object file Library generator. You can now use LIB to
combine collections of .0BJ files into an object file library. Then when
you use LINK or SYMBOL to link your program, you can optionally specify a
Library file from which routines will be linked into your program if your
program references symbols in that library file. Besides generating new
Library files, you may update existing Llibrary files by deleting or
replacing existing modules or adding new modules, and you may obtain a
Library Listing file that tells you what object files are in a specific
Library. For more information on LIB and the use of Llibrary files, refer
to Section 10.3, "Library and Optional Files,” and Chapter 11, "The
Object File Library Generator (LIB)."

LOCAL SYMBOLS

MACRO, DDT, and FIX now support the wuse of local symbols. A brief
discussion of local symbols occurs in Section 4.7, "Local Symbols." For
information on the wuse of local symbols within macro definitions, see

INTRODUCTION Page 1-3

Section 6.1.5, '"Local Symbols,” and for a discussion on accessing local
symbols through DDT and AlphaFIX, see Section 13.4, "Expressions."

CHANGES TO MACRO:

The macro assembler now gives a new assembly display which provides more
information. (For example, if MACRO is automatically EXTERNing symbols,
it lists those symbols alphabetically in Phase 2. For information on
automatically EXTERNing undefined symbols, see AUTOEXTERN, below, in
the section on Pseudo Opcodes.) 1If you forgot to end your file with an
END statement, MACRO now tells you so.

MACRO supports two new option request switches that allow you to: 1)
request a symbol cross reference listing; and, 2) use the parameterized
assembly option.

The cross reference listing (which appears at the end of a reaular
assembly Llisting) contains an alphabetic list of all symbols, tells you
which Llines of your source program they appeared on. and whether the
symbols are label definitions, equate definitions, are INTERNed,
EXTERNed, or are overlays. The listing also tells you which symbols were
never defined. The cross reference then gives a similar listing for all
macro definitions and references. For information on the MACRO cross
reference, see Section 9.4.3, "Generating a Cross Reference."

The parameterized assembly option allows you to specify a value at the
time you assemble your program which your program can analyze. This
feature is very useful when used with the conditional assembly directive
pseudo opcodes. For more information, see Section 9.2.3, 'The
Parameterized Assembly Option."

LINK and SYMBOL

Both LINK and SYMBOL have changed quite a bit. They both now support a
number of option request switches. By combining these switches, LINK and
SYMBOL can be made to nerform the same functions. (For example, LINK can
generate a symbol table file, and SYMBOL can generate a resolved program
file.)

LINK and SYMBOL both support Llibrary files and optional files.
The LINK options are:

Desiagnate a file as a Llibrary file.

Designate a file as an optional file.

Designate a file as a required file (the default).
Generate a load map file.

Generate a symbol table file.

Include equated symhols in the symbol table file.
Generate a proaram file (the default).

Suppress program generation.

INTRODUCTION) Page 1-4

NOTE: An "optional file" contains only one .0BJ file, and 1is Llinked in
only if references are made by your program to symbols in that file. For
information on optional files, see Section 10.3, "Library and 0Optional
Files." A load map file contains a map of how the linked together items
will be Lloaded 1into memory when you execute the program file. It also
contains additional information on each item. See Section 10.4, '"The Load
Map File," for more information.

The SYMBOL options are:

Designate a file as a library file.

Designate a file as an optional file.

Designate a file as a required file (the default).
Generate a load map file.

Generate a symbol table file (the default).
Include equated symbols in the symbol table file.
Generate a program file.

Suppress symbol table file generation.

GLOBAL

GLOBAL generates a global symbol cross reference for a collection of .0BJ
files. This Llisting tells you which files the symbols were defined in
and which files the symbols were referenced in. (NOTE: This differs from
the MACRO cross reference in that GLOBAL 1is meant to be used for a
collection of .0BJ files to determine the symbol references between those
files; the MACRO <cross reference gives detailed information on the
symbols within a single file.) See Chapter 12, '"The Global Cross
Reference Generator (GLOBAL)," for more information.

PSEUDO OPCODES
This manual now documents the search pattern MACRO uses 1in looking for
the copy file specified by the COPY pseudo opcode. Please see Section
5.1.1, "copy."

Several new pseudo opcodes have been added:

0BJNAM - Allows you to modify the name and extension given to the
output files created by MACRO, LINK, and SYMBOL.

LIST, NOLIST - Allow you to suspend and re-enable output to the
assembly Llisting.

CREF, NOCREF, MAYCREF - Allow you to suspend and re-enable output to
the cross reference portion of the assembly listing.

NVALU - Allows your program to make use of the value supplied on the
MACRO command line via the /V parameterized assembly option switch.

AUTOEXTERN - Tells MACRO to automatically EXTERN any undefined
symbols. N

D

\.

INTRODUCTION Page 1-5

ENDMX - Terminates macro expansion.

You may find information on all of these pseudo opcodes except ENDMX by
referring to Chapter 5, "Assembler Pseudo Opcodes." For information on
ENDMX, see Section 6.1.8, "Suppressing Macro Expansion - ENDMX."

FILES
Several new files are now created by the AMOS assembly language system:
.LIB files - Library files generated by LIB.
.GLB files - Global cross reference listing created by GLOBAL.

.MAP files - Load map files generated by LINK and SYMBOL.
.TMP files - Temporary work file generated by LIR.

OTHER FEATURES:

This manual contains information on two previously undocumented
operators:

The expression evaluation operator, \, for wuse within macro
definitions (see Section 6.1.7, '"Special Macro Operators'); and,

The binary shift operator, (underscore); see Section 4.3,
"Expressions."

This book also now includes two Appendices: 'Appendix A, The ASCII
Character Set," and "Appendix B, Summary of Program Switches."

1.2 THE CONTENTS OF THIS MANUAL
Part I - INTRODUCTION TO ALPHA MICRO ASSEMBLY LANGUAGE PROGRAMMING

Chapters 2 through 8 contain information on the form of your assembly
language programs. For example, Chapter 4 discusses labels, terms, and
expressions in your assembly language program statements. Chapter 5
discusses the pseudo opcodes available to you, and Chapter 4 discusses
how to construct and call macros.

Part IT - USING THE ALPHA MICRO ASSEMBLY LANGUAGE PROGRAMMTING SYSTEM

Chapters 9 through 13 give operating information for the various
components of the Alpha Micro assembly language programming system:

MACRO - The macro-assembler

LINK - The linkaoe editor

SYMBOL - The symbol table generator

LIB - The object file Llibrary generator

GLOBAL - The global cross reference generator

DDT - The dynamic debugging and patching program

INTRODUCTION Page 1-6

Appendix A gives the complete ASCII character set, with values specified in
decimal, octal, and hexadecimal. Appendix B gives a brief summary of all
option request switches used by MACRO, LINK, SYMBOL, LIB, and GLOBAL.

1.3 READER'S COMMENTS FORM

Please note the Reader's Comment Form at the back of this manual. We would
very much appreciate any comments or criticisms you may have concerning this
book. Any suggestions for future documentation projects are also welcome.

1.4 CONVENTIONS USED IN THIS MANUAL

To make our examples concise and easy to understand, we've adopted a number
of graphics conventions throughout our manuals:

Number Base Unless otherwise noted, all numbers are decimal (base 10).

PPN A Project-programmer number. This number identifies a wuser
disk account (e.g., [100,21). We also represent an account
number as [p,pnl.

Filespec A file specification. Tdentifies a file. It usually has the
elements:

Devn:Filename.Extlp,pnl
where "Devn:" is a device specification that didentifies a
logical unit of a physical device, "filename" gives the name
of the file, and "ext" specifies the file's extension.

8 Optional elements of a command Line. when these symbols
appear in a sample command line, they designate elements that
you may omit from the command Lline.

Underlined characters indicate those characters that AMOS
orints on your terminal display. For example, in the Llatter
chapters of this manual you may see an underlined dot, .,
which indicates the AMOS monitor prompt symbol.

nET Carriage return symbol. This symbol marks the place in your
keyboard entry to press the RETURN key.

A Indicates a Control-character. For example, if you type a
Control-C, you see it echoed on your terminal as “C.

$ Escape symbol. This symbol marks the place in your keyboard
. . .entry to press the ESCAPE key (sometimes labeled ALT MODE or
A Y

AMOS ASSEMBLY LANGUAGE PROGRAMMER'S MANUAL

PART I

INTRODUCTION TO ALPHA MICRO ASSEMBLY LANGUAGE PROGRAMMING

These chapters introduce the experienced assembly lanquage programmer to
assembly Llanguage proaramming for the AM-100 and AM-100/T based computer
systems.

e

CHAPTER 2

FILES USED IN THE ASSEMBLY LANGUAGE SYSTEM

This section describes the files that are used during the normal course of
building and testing an assembly language program. We will refer to these
files by their extensions; i.e., a .MAC file is any file with an extension
of '""MAC". ALL files described here will not necessarily be used by all
programmers during any one programming session, but you will eventually run
across all of them at one time or another so you might as well know briefly
what they are used for and how they are created.

2.1 .MAC - SOURCE FILES

.MAC files are the original ASCII source files that you create wusing the
EDIT or VUE program. .MAC files are input files for the assembler program
(MACRO) which makes one or more passes over them depending on the assembly
options selected. If you want to make any changes to a program, you make
the changes to the .MAC file by using the EDIT or VUE program; you then
reassemble and relink it. Files that you include with the COPY assembly
pseudo opcode must also be ASCII source files with an extension of .MAC.

2.2 .0BJ - INTERMEDIATE OBJECT FILES

.0BJ files are the direct output of the assembler (Phase 2) and contain the
assembled binary code, symbol references, internal symbol definitions, and
unresolved external symbol references. .0BJ files are not directly wusable
for anything by themselves but must first be processed by one or more of
several other programs to get a finished file that has a direct use by
itself. The linkage editor program (LINK) reads one or more .0BJ files and
creates a fully resolved and runnable binary program file in memory image
format. The Llibrary generating program (LIB) combines specified .0BJ files
into an object file Library. The GLOBAL program reads .08J files and
creates a global symbol cross reference file. The symbol file orogram
(SYMBOL) reads the .0BJ files and creates a file which contains all wuser
defined symbols and their resolved addresses. (This symbol table file is
used by the symbolic debugger programs DDT and FIX.) The assembler itself

FILES USED IN THE ASSEMBLY LANGUAGE SYSTEM . Page 2-2

also rereads the .0BJ file during Phase 3 together with the .MAC source file
to create the ASCII Llist file.

2.3 .PRG - BINARY PROGRAM FILES

.PRG files are created by the linkage editor program (LINK) and are the end
result of the assembly process. The .PRG file is a binary memory image of
the assembled program which is Lloaded into user RAM when the program is
requested for execution. (That 1is, the .PRG file 1is the final, fully
assembled and resolved machine language program of which the .MAC file was
the source.)

The .MAC file from which the .PRG file was generated must have been written
using the rules for totally relocatable code so that the .PRG file may be
dumped into any memory location and executed without modification. One or
more .0BJ files may have been input to the linker for the creation of the
single .PRG file. Once you have tested the .PRG program file, you may place
it into the System Library Account, 0DSK0:[1,41, where it will become
available to all users on the system.

2.4 .0OVR - BINARY OVERLAY FILES

If the program contains overlay segments which do not all reside in memory
at the same time, the linkage editor generates one .PRG main segment file
and one or more .0OVR overlay segment files. LINK generates each overlay
file in response to an QOVRLAY assembler pseudo opcode. The .PRG program
segment will be responsible for the calling and executing of each of the
other .0VR segments during the running of the program. Your program may
selectively bypass overlay segments as does the assembler itself, which
contains six overlays. Overlay files have the same memory image format as
the .PRG program files except that they are resolved at an effective address
other than zero so that they will not completely overlay the controlling
segment. This addressing is the direct responsibility of the programmer;
for more information on creating overlays, see Section 5.3.5, "OVRLAY."

2.5 .LST = PROGRAM LISTING FILES

An optional output of the assembler is a complete resolved listing of the
source program with the associated binary code that was generated. MACRO
creates this Llist file during Phase 3 of the assembly process; you may
generate it directly from the .MAC and .0BJ files by bypassing Phases 1 and
2 with the /0 assembly switch. The .LST file is formated ASCII; you may
display it via the TYPE command or examine it by either the EDIT or VUE
programs. Or, you may print the List file using the PRINT command.

3

¢

FILES USED IN THE ASSEMBLY LANGUAGE SYSTEM Page 2-3

The .LST file may optionally contain a full symbol cross reference if you
use the /R assembly switch. (See Section 9.2 for information on the /0 and
/R MACRO switches.)

2.6 .LIB - LIBRARY FILES

The .LIB file is a library file. (A Llibrary file contains 3 collection of
.0BJ files that are Llinked into the main program as required.) The LIB
program allows you to generate and maintain object file libraries. The LINK
and SYMBOL programs accept these Llibrary (,LIB) files as input and
automatically include any object files from such a library necessary to
resolve external references. See Chapter 11 for information on creating and
maintaining program Llibraries.

2.7 .GLB - GLOBAL CROSS REFERENCE FILE

The GLOBAL program reads a group of .0BJ files and creates an alphabetic
cross reference .GLB file that Llists all global symbols in the files, and
shows which files define them and which files accept them as externally
defined symbols. (For information on GLNBAL, see Chapter 12.)

2.8 L.MAP - LOAD MAP FILE

Both the Linkage editor LINK and the symhol table file generator SYMROL
generate a load map file in response to the optional /M switch. The Lload
map (.MAP) file shows how the assembled and linked object files will be
located in memory when the program is loaded into memory prior to execution.
It also gives information about each object file Linked into the final .PRG
file. For information on the load map, see Section 10.4, "The Load Map
File."

2.9 .SYM - RESOLVED SYMBOL FILES

The .SYM file is a direct output of the symbol file generation program
(SYMBOL) which takes one or more object (.0BJ) files and creates a symhol
table with all user defined symhols and their resolved machine addresses.
The .SYM file 1is used as input to the debugger programs DDT and FIX which
may then operate with references to the user symbols in the orogram instead
of absolute machine addresses. In a system where the program is always
offset by some amount in memory, this is almost essential if you are to be
able to trace the execution flow of a program under test. The .SYM file is
in a special packed binary form and, as such, is not much good for anything
except input to DDT and FIX. (NOTE: The LINK program can also generate a
.SYM symbol table file.)

"5:5

FILES USED IN THE ASSEMBLY LANGUAGE SYSTEM Page 2-4

2.10 .IPF - INTER-PHASE WORK FILE

The .IPF file is a temporary work file built during the assembly process by
Phase 1 of the assembler to carry information on to Phase 2. The .IPF file
is packed binary junk and the only reason we mention it here is that if the
system crashes during an assembly you may find one Lleft on your disk. Erase
it; it is useless and just takes up space. There is no problem if it exists
and you don't find 1it, since the next assembly of the same program will
erase any .IPF file it finds during Phase 1 before attempting to create a
new one.

2.11 .TMP - TEMPORARY WORK FILES

The LIB program creates a temporary work file named Jobnam.TMP ("Jobnam'" is
the name of your job). As with the .IPF file, you should never see this
file wunless something goes wrong. The next time you run LIB, the .TMP file
should disappear.

CHAPTER 3

MACRO SOURCE PROGRAM FORMAT

A macro source orogram is a single .MAC file composed of a sequence of ASCII
source statement lines. Each Line must be complete in itself since there is
no provision for multiple-line statements. Fach statement may be one of the
following, depending on its function:

Valid machine instruction

Data generation statement
Symbolic equate statement
Assembly control statement
Conditional assembly directive
Macro definition

Macro call

Comment or blank Lline

O NI AN
L]

The maximum Line length is 107 characters. Fach line 1is terminated by a
carriage-return and line-feed pair which the editor provides when you press
the RETURN key. Unless otherwise specified, all of the above Lines may
contain an optional comment field following the actual statement; this
comment field starts with a semicolon (;) and extends to the end of the
Line The assembler treats spaces and tabs (Control-1) as equal: they are
used to delimit fields within statements. Tabs are useful to keep statement
fields aligned and make for clean listings. Tabs are an important part of
generating readable code.

NOTE: This manual refers to the term '"user symbol' several times during
later discussions, so we will define it at this point. A user symbol is any
name defined by you within your program. Tt must be unique to that program,
and must be from 1-4 characters in length. Legal characters for a wuser
symbol dinclude the alphabetic characters A-Z, the numeric characters 0-9,
and the two special symbols "." and "$'". The first character of a wuser
symbol must be non-numeric. MACRO folds all Lower case characters to upper
case. Symhols are packed RAD50 and stored as two words in the symbol table
during the assembly process along with their current assigned value and
attribute flags.

MACRO SOURCE PROGRAM FORMAT . Page 3-2

3.1 MACHINE INSTRUCTIONS

One machine statement is allowed per Lline and is assembled into a single
machine hardware dinstruction which aqenerates one, two, or three words of
binary code depending on the instruction and addressing modes wused. The
aeneral format of a machine instruction statement is:

{label:}¥ <{oncode} <Loperands} {:comments?}

The Llabel field 1is optional and 1is used to give a symbolic name to the
current instruction being assembled. It must terminate with a colon. The
Label may be any valid user symbol that has not been previously defined.
The value of the lahel may he either absolute or relocatable depending on
the current assembly status. Relocatable symbols will be resolved during
Link-edit time by adding the label value to the current program relocation
bias (calculated by LINK). More than one labhel may appear on the same
statement Lline separated by colons; in this case, each label 1dis given the
same value as the current location. Any symbol used in a label field may
not be redefined later in the program. A label may appear as the only item
on a Lline 1in which case 1t is assigned the address of the next byte of
agenerated code.

The opcode field is required and contains one of the machine dinstruction
opcodes in mnemonic form such as MOV, CLRB, TST, ADD, etc. (Refer to the
WD16 Microcomputer Programmer's Reference Manual, (DWM-0N010N-04), for a

complete description of all the machine instructions available in the AM-100
system.) The opcode field terminates with a space, tab, semicolon or
carriage-return. If a label field was used, a space or tab between the
colon and the opcode is optional hut recommended.

The operands field is required on those instructions that have either one or
two operands. The operands field is separated from the opcode field by one
or more spaces or tabs. If the dnstruction bheing used requires two
operands, the operands are separated from each other by a comma. Leading
spaces are always ignored 1in the operands field while the operands
themselves terminate with a space, tab, comma, semicolon or carriage-return.
The comments field is optional and is defined by a leading semicolon. The
comments field then extends through the remainder of the Lline up to the
carriage-return. Any valid ASCII characters are legal in the comments
field.

3.2 DATA GENERATION STATEMENTS

Data generation statements resemble machine instructions in format and
generate binary data within the program flow. The data generated is
normally not interpreted during program run as executable dinstructions but
rather as constant data such as ASCII messaaes to be typed or numeric values
to be wused by those instruction being executed. The general format of the
data generation statement is:

MACRO SOURCE PROGRAM FORMAT Page 3-3

{label:} <{operator} <{operands} <{;comments?

The label field is optional and follows the same format and rules as the
machine instruction Llabel field. The operator field contains the specific
data generation mnemonic for the type of data desired. We discuss these
codes 1in Section 5.2, '"Data Generation Pseudo Opcodes.”" The operands field
contains the actual data to be generated by the statement and its format
depends on the type of operator in use. Some operators such as WORD and
BYTE allow multiple operands within the same statement so that the amount of
binary data generated by the one statement is variable. 1f a label is used,
its value is always that of the address into which the first byte of data
will be assembled. As with machine instructions, the comments field is
optional.

There is a special default type of data generation statement which you
should be aware of. If no operator is present, MACRO assumes the statement
is a WORD statement and it interprets the operands field as such. The
assembler works in the following manner when analyzing statements:

1. Leading symbols terminated by colons are processed as labels and
stored in the assembler symhol table.

2. The next symbol is first scanned for a match in the macro tahle
which consists of all macros previously defined in the program.

3. If the operator symbol 1is not a macro name, it is then matched
against the table of machine instruction opcodes, data qgeneration
operators, and assembly control pseudo opcodes.

4L, If none of the above result in a defined operator, the default WORD
processor 1is entered and the symbol is assumed to be the heginning
of the associated operands field for the WORD statement.

3.3 SYMBOLIC EQUATE STATEMENTS

A user symbol may be assianed a value by entering it on a statement Line
followed by an equal-sign (=) and the expression to which it is to be
equated. The general format of the equate statement is:

{user symbol} = {expression} {:comments?

The equal-sign may have leading or trailing spaces and tabs if desired for
formatting purposes. The expression may be any valid numeric expression but
since all equate statements must be fully resolved durina Phase 1, any user
symbols used in the expression must be defined at the time that the equate
statement 1is encountered. Equate statements may not contain references to
external symbols. The comments field 1is optional as in the machine
instruction statement.

MACRO SOURCE PROGRAM FORMAT Page 3-4

User symbols that are assigned values in the program may be reassianed a
different value Llater in the program by using another eqguate statement to
redefine the desired symbol. Labels may not be redefined by equate
statements, however. If the relocation attribute of the evaluated.
expression 1is zero, the value assigned to the symbol is absolute. 1If the
relocation attribute is non-zero, then the value assianed 1is relocatable.
I1f the expression contains a register symbol, then the equated symbol is
also given a register attribute. 1In other words, the value assigned to the
user symbol pretty much follows the attributes of the expression to which it
is equated.

3.4 ASSEMBLY CONTROL STATEMENTS

Assembly control statements cover a wide range of functions that generally
set up or alter the parameters which control the assembly process. They do
not themselves generate any binary code but are used for such purposes as
Listing format control, numeric radix assignment, and program generation or

addressing information. The general format for assembly control statements
is:

{pseudo-opcode} {farquments} <{;comments?}

The pseudo opcode is the mnemonic that defines the function to be performed.
Chapter 5 Llists all pseudo opcodes along with an explanation of what each
one does. Some of them require arguments that are needed to set up
parameters. These arguments are separated from the pseudo opcode by one or
more spaces or tabs. As in other statement formats, the comments field is
optional. Unless the explanation in Chapter 5 for a pseudo opcode specifies
otherwise, labels are not normally permitted in assembly control statements.

3.5 CONDITIONAL ASSEMBLY DIRECTIVES

Conditional assembly is defined as selectively assembling or bypassing
statements within defined bounds depending on the value of some variable at
the time the assembly is performed. The bounds are made by conditional
assembly directives which specify the variable or variables to be tested and
the condition to be met in order for the assembly to occur. Conditional
assembly directives are most commonly used in conjunction with macro
definitions to direct the tailoring of each macro call as it is encountered.
We discuss conditional assembly directives in Chapter 7.

3.6 MACRO DEFINITIONS AND MACRO CALLS

Macros are defined as one or more valid statements which may be called for
by using a single symbol (the macro name) within the program anytime after
the macro has been defined. Macros are always defined by you within your
program or within a copy file which is called into your program by the COPY

MACRO SOURCE PROGRAM FORMAT Page 3-5

statement. The copy file called SYS.MAC is a macro Llibrary of over 70 such
macro definitions which define all the supervisor calls available to your
programs for communicating with the monitor routines. This Llibrary file is
supplied on the AMOS System Disk in account [7,7].

Macro calls are those statements which name the defined macro as the
operator of the statement and give the specific arguments to be used by the
macro (if any are required). A macro call within the program causes the
defined macro to be included in its tailored form at the point of the call.
Macro calls normally cause one or more machine instructions to be assembled
and the respective binary code to be generated.

Chapter 6 defines macro definitions and macro calls more fully.

3.7 COMMENT LINES AND BLANK LINES

Statements which begin with a semicolon (after any leading spaces and tabs)
are considered comment lines and do not result 1in the generation of any
binary code or in the alteration of any assembly control parameters. They
are useful only for documenting the source programs and making them easier
to read and maintain. Blank Lines are also considered comment lines and are
for appearances only in the source file. It is most important to fully
document your programs, so use comments Lliberally.

CHAPTER 4

TERMS AND EXPRESSIONS

This section describes the various terms and components used in MACRO source
statements, including the defined character set for the construction of
symbols and expressions.

4.1 CHARACTER SET

The entire ASCII character set is legal in MACRO source programs except for
the control-characters. MACRO translates lower case characters to upper
case before it checks the syntax of each source Line. The characters that
are valid in user defined symbols are limited to A-Z, 0-9, "$" and "."
because symbols are packed RADS0) before being stored in the symbol table.
The folowing List gives the special characters that are recognized by the
assembler when scanning source Llines:

Label terminator

Comment field indicator

Equate statement operator

Immediate expression indicator

Deferred addressing indicator

Initial register indicator

Terminating register indicator

Operand field or macro argument separator

Value of the assembly current location counter when used as a term
Initial argument or expression indicator

Terminating argument or expression indicator

Arithmetic addition operator or autoincrement mode indicator
Arithmetic subtraction operator or autodecrement mode indicator
Arithmetic multiplication operator

Arithmetic division operator

Logical AND cperator

Logical inclusive OR operator

A D T N N e

~N* I+ VAN

-0

TERMS AND EXPRESSIONS Page 4-2

! Single ASCII character term indicator
Double ASCII character term indicator
r Initial RAD50 triplet term indicator
] Terminating RADS0 triplet term indicator
" Universal unary indicator
_ (Underscore) Binary shift operator
The wuse of the above Llegal characters out of context for their designed
purposes will cause the generation of a syntax error (code Q).

4.2 TERMS

A term is the basic unit of data in an arithmetic expression and may be one
of the following:

1. A number as composed of legal digits within the current radix of
the system or as temporarily defined by the inclusion of a Lleading
temporary radix change operator;

2. A user symbol (as previously defined) which is given an assigned
value either by its use as a label or a direct equate statement;

3. An ASCII conversion defined by the single or double quote
indicators;

4. A RADS0 triplet enclosed in square brackets;

5. The period symbol (.) which represents the current value of the
assembly current location counter;

6. An expression or term enclosed within angle brackets. Angle
brackets are used to alter the normal hierarchy of expression
evaluation which is normally done in a left-to-right manner. Any
guantity enclosed within angle brackets will be evaluated before
the remainder of the expression in which it is found. The action
of angle brackets within a MACRO source expression is the same as
that of parentheses within a normal arithmetic expression such as
is wused in the BASIC lLanguage. Angle brackets may also be used to
apply a unary operator to an entire expression such as -<16/A>.

4.3 EXPRESSIONS

An expression is a combination of terms and operators which will evaluate to
an unsigned 16-bit value in the decimal range of 0-65535. Negative values
in the range of -32768 through -1 will be stored properly after evaluation
but will be treated the same as their unsigned counterparts in the range of
32768 through 65535.

TERMS AND EXPRESSIONS Page 4-3

The evaluation of any expression also includes the evaluation of the mode of
that expression (absolute, relocatable, and external) and the register
designation of the expression.

Operators are defined as unary or binary. Unary operators precede a single
term and alter the evaluation of that term alone. Multiple unary operators
may be applied in sequence to the same term and are evaluated 1in reverse
order. Binary operators combine two terms to give a resultant effective
single term value. Multiple binary operators are illegal.

Expressions are evaluated left to- right under the hierarchy of the operators
which are in use within that expression. Angle brackets may be wused to
alter the normal process of evaluation. Unary operators always take
precedence over binary operators and are applied to the associated terms
first.

The Llegal operators are:

Unary plus sign (default if term not preceded by another unary)
Unary minus sign which negates the associated term value

Unary one's complement operator (XOR's the term with all ones)
Temporary radix change to decimal for the associated term
Temporary radix change to binary for the associated term

Temporary radix change to octal for the associated term

Temporary radix change to hexadecimal for the associated term
Binary addition operator

Binary subtraction operator

Binary multiplication operator

Binary division operator

(Underscore.) Binary shift operator (given A B, binary representa-
tion of A is shifted B number of times. If B is positive, shifts A
left; if B is negative, shifts A right.)

& Binary logical AND operator

Binary logical inclusive QR operator

> 1+

>
T OmMWMOTO O

b

>

3

~N % 1+

NOTE: Two special operators (\ and ') also exist for use within macro
definitions. See Section 6.1.7, '"Special Macro Operators,”"” for more
information.

Expressions are evaluated as being absolute, relocatable, or external. This
distinction becomes particularly important since we are writing totally
relocatable code for the AM-100 system. The following rules apply in the
evaluation of the relocation attribute of an expression:

1. An expression 1is absolute if its value is fixed and contains no
relocatable terms. Also, a relocatable term minus another
relocatable term results 1in an absolute value. Labels allocated
within an absolute section (ASECT) will be assigned absolute values
and attributes.

N
L]

An expression is relocatable if its value is fixed relative to the
current program base which is relocatable at load time. The value
may have an offset added to it by LINK if it dis not within the

TERMS AND EXPRESSIONS Page 4-4

first segment of a program file. Labels allocated within a
relocatable section (RSECT) will be assigned relocatable values and

attributes. (For 1information on the ASECT and RSECT pseudo
opcodes, see Section 5.1.5.)

3. An expression is defined as external when one or more of its terms
is an external symbol reference. This expression will not be fully
resolved until the program file is generated by the linkage editor
(LINK) when the external terms are defined. The final resolution
of an external expression may be relocatable or absolute, depending
on the attributes of the terms 1involved <(both internal and
external). The Llinkage editor also contains all the mechanics for
evaluating the attributes of resolved expressions. (See Section
5.3, 'Segmentation Pseudo Opcodes,'" for information on the EXTERN,
INTERN, and AUTOEXTERN pseudo opcodes.)

4.4 NUMBERS

Any source item which starts with a digit (0-9) is considered to be a number
and this number will be evaluated under the currently prevailing radix
unless preceded by a temporary radix operator or followed immediately by a
decimal point. The prevailing radix always starts as octal (base 8) at the
beginning of any assembly but may be changed by the RADIX assembly control
statement. Any number that terminates with a decimal point will be
evaluated as decimal (base 10) regardless of the prevailing radix.
Fractional numbers are not allowed in MACRO source statements since altl
numbers must evaluate to a 16-bit binary integer value.

The prevailing radix controls the default evaluation of numbers and may be
set by the RADIX statement to any value from 2 (binary) through 36. Numbers
in a base above 10 (decimal) use the alphabetic characters A-Z to represent
the digit values of 10 through 35. The most common system above base 10 is
hexadecimal where the letters A-F represent the decimal digit values 10-15.
ALL numbers must begin with a digit 0-9 to distinguish them from a user
symbol, so the hexadecimal value of F56 must be entered as OF56.

Negative numbers are preceded by a minus sign; MACRO evaluates them and

stores them in two's complement form. You may optionally precede positive
numbers with a plus sign but this is not required.

4.5 REGISTER SYMBOLS

The WD16 chipset (the heart of the AM-100 and AM-100/T systems) contains
eight 16-bit registers which are symbolically named and used as follows:

TERMS AND EXPRESSIONS Page 4-5

RO - register 0, general purpose
R1 - register 1, general purpose
R2 - register 2, general purpose
R3 - register 3, general purpose
R4 - register 4, general purpose
RS - register 5, general purpose
SP - register 6, stack pointer

PC - register 7, program counter

These eight symbols are already defined to the assembler and must be used
when the address mode explicitly requires a register to be referenced. The
above register symbols have a register attribute associated with them and
you may equate your own symbols to these registers if you so desire. The
register attribute will be carried over to this newly defined symbol. For
example, the equate statement IOPTR=R4 will equate the user symbol IOPTR to
the value of 4 and also give it a register attribute so that it may be used
in place of R4 for address modes.

4.6 ASSEMBLY LOCATION COUNTER

buring the assembly process, MACRO assigns sequential memory Llocations to
all machine instructions and data constants as it encounters them in the
source program. At any given statement, the next byte to be assigned will
be internally stored in the assembly location counter. This address may be
used in expressions by referencing the period (.) as a symbolic term. For
example, the instruction "JMP .+6" will cause a jump to the address which is
6 bytes in front of the first byte of the instruction itself.

The assembly Llocation counter has an attribute associated with it which is
either absolute or relocatable. 1Initially, it is set up in the relocatable
mode and cleared to zero value for the allocation of relocatable binary code
as machine instructions and data constants are assembled. Tf MACRO
encounters an ASECT statement, MACRO changes the attribute of the assembly
location counter to absolute which means the address associated with it will
not be adjusted by the LINK oprogram. If MACRO encounters an RSECT
statement, MACRO sets the attribute back to relocatable again which means
that the address associated with it will be adjusted by the LINK program to
compensate for the program seament offset. The assembler also maintains two
separate address counters for switching between ASECT and RSECT sections.

Initially, the value of the assembly location counter is set to zero and is
incremented as each statement which oroduces binary code is assembled during
Phase 1. You may explicitly change the setting of the assembly Llocation
counter at any time by using a direct equate statement that uses the period
symbol instead of a user symbol. For example, the statement '".=500" forces
the assembly location counter to take on a value of 500 and to begin all
assembly allocation from that point.

TERMS AND EXPRESSIONS Page 4-6

4.7 LOCAL SYMBOLS

MACRO supports Local symbols of the form nnn$, where nnn may be any number
from 0 through 65535, decimal. A program using local symbols will require
less symbol table space and will assemble faster than a similar program
without local symbols.

(NOTE: Local symbols of the form nnn%$ are used within macros and have scope
within a particular macro expansion, For information on this kind of Local
symbol, see Section 6.1.5, "Local Symbols.")

A local symbol only has scope between two non-local symbols. For example:

SEND: Move (ROY+,R1

BEQ 13
TTY
BR SEND
1%: RTN
RCV: KBD
LEA RO ,BUF
1%: Move (R2)+,(ROO+
BNE 1%
RTN
SUBR: aee

18 is defined twice in the program above. The first 1$ has a range from the
definition of SEND up to but not including the definition of RCV. The
second 1% has a range from RCV up to SUBR.

NOTE: You may also define local symbols with an equate (=),

CHAPTER 5

ASSEMBLER PSEUDO OPCODES

A pseudo opcode is so named because although it Llooks much Like a regular
operation code, a pseudo opcode is not a true machine instruction and may or
may not generate actual binary code. Pseudo opcodes are built into the
assembler and provide a variety of useful functions that make the Life of
the programmer easier.

This chapter discusses the MACRO pseudo opcodes available for your use. We
classify the functions of the pseudo opcodes into four categories: 1)
assembly control; 2) data aeneration; 3) segmentation; and, 4) convenience.
The sections below discuss each of these types of pseudo opcodes.

Note that other chapters discuss several other pseudo opcodes that are used
in special circumstances. For example, Chaoter 6, "User Defined Macros,"
discusses the pseudo opcodes you can use inside of macro definitions. For a
full Llist of all pseudo opcodes, refer to the index.

5.1 ASSEMBLY CONTROL PSEUDO OPCODES

Assembly control statements perform a wide variety of functions which do not
in themselves generate any binary code but, instead, set up or alter certain
parameters which control the assembly process. Each statement consists of a
defined assembly control pseudo opcode followed by optional arguments as
required by the specific format. These pseudo opcodes are described here
along with the required arguments for each.

5.1.1 COPY

The COPY statement allows another file to be included in the assembled
program at the point where the COPY statement is located. The entire copied
file 1is assembled, but you may use conditional assembly statements to omit
certain portions if desired. The most common use of this statement is for
the inclusion of the standard copy file SYS.MAC which defines all system
call macros and system parameters. (The SYS.MAC file 1is in account

ASSEMBLER PSEUDO OPCODES Page 5-2

DSKO:[7,71.) The COPY statement includes a file specification that specifies

the file that is to be copied into the source program during assembly. For
example: .

COPY DEF ;s My ouwn set of macro definitions in the file DEF.MAC.

Note that the actual source program is not modified; rather, the assembler
merely gets the input from the copied file and then returns to the original
source file as it assembles the source file. A copy file may not include
another COPY statement within itself although the original file may include
as many individual COPY statements as desired. The filespec may actually be
a complete file specification containing a device and account specification.
If you do not specify an extension, MACRO uses the default extension of
.MAC.

If you specify both a device and account, MACRO looks for the copy file in
the specified device and account. However, if you omit either a device or
an account specification, MACRO goes through several steps in trying to find
the specified file:

1f you omit both the device and the account specification:

1. MACRO Looks for the file in the device and account you are logged
into.

2. 1f the file does not exist in that account and if the source file
is on a different device than the one you are logged into, MACRO
Looks in the account you are logged into on the device containing
the source file,

3. If the file does not exist din that account either, and if the

source file is in a different account and device than the ones you

are logged into, MACRO Looks 1in the account and device of the
source file.

4. Finally, MACRO Looks in the System MACRO account, DSK0Q:[7,71].
If you omit just the device specification:

1. MACRO looks in the specified account on the device containing the
source file.

2. If the file does not exist in that account, MACRO looks in the
specified account on the device you are logged into.

3. Finally, if the account specified is [7,7], MACRO Looks 1in the
System MACRO account, DSKO:[7,71].

If you omit just the account specification:

1. MACRO Looks 1in the account containing the source file on the
specified device.

ASSEMBLER PSEUDO OPCODES Page 5-3

2. If the file does not exist in that account, and if the source file
is 1in a different account than the one you are logged into, MACRO
Llooks on the specified device in the account you are logged into.

3. Finally, MACRO looks in the System MACRO account, DSKN:[7,7].

You may find it convenient to place copy files into the System MACRO
account, DSK0N:C7,7], since they will then become available to all
programmers throuah the COPY statement.

MACRO does not normally output the source statements in the copied file
during the Listing phase of the assembly since most users do not want the
system copy file (SYS.MAC) and other collections of common routines to be
repeated 1in all program Llistings. You may override this by usina a /L
switch following the filespec in the statement; this will cause the copied
file to be included in the assembly listing. For example:

COPY MYMAC.MAC/L

As it assembles your program, MACRO reports any COPY statements encountered.
For example: -

Copying from DSKQO:SYS.MACC?7,7]

5.1.2 O0BJNAM

The OBJNAM opseudo opcode controls the names of output files produced by
LINK, SYMBOL, and MACRO. It tells these programs how you want to modify the
output file name and extension. If you do not use OBJNAM, MACRO, LINK, and
SYMBOL oproduce an output file with the same name as the input file and the
appropriate extension.

The OBJNAM statement takes the form:

OBJNAM filnam.ext
or:
0BJNAM expr1{,...exprN}

where 1<=N<=3. That 1is, OBJNAM is followed by a filename and extension or by
one to three expressions. If OBJNAM takes the second form, each expression
is either 0 or a RAD50 value. The first expression denotes the first three
characters of the filename, the second expresson denotes the Last three
characters of the filename, and the third expression denotes the three
characters of the file extension.

OBJNAM causes the output file names to be modified as follows (where you
have specified "file" and "ext" in the OBJNAM statement Line):

ASSEMBLER PSEUDO OPCODES Page 5-4

source.0BJ - file.0BJ
source.PRG —-_— file.ext
source.0VR —-—— file.ext
source.LST -—— file.LST
source.MAP —-_—— file.MAP
source.SYM —-_—— file.SYM

If you omit "ext" or if any expression 1is omitted or is zero, the
corresponding portion of the file name remains unmodified. For example, if
you were assembling DEVCPY.MAC, and specified the OBJNAM statement:

OBJNAM TEST

(omitting the extension), the assembled and linked output file would have
the name:

TEST.PRG

5.1.3 PAGE

The PAGE statement causes your assembly listing to begin a new page before
continuing with the Llisted output. No action takes place other than this
during assembly.

5.1.4 LIST - NOLIST

You may obtain an assembly listing by using the /L assembly switch. The
LIST and NOLIST pseudo opcodes control which portions of your program will
appear in the listing file. NOLIST disables Llisting, and LIST re-enables
listing. The LIST and NOLIST pseudo opcodes do not appear in the listing.
NOTE: MACRO will ignore the LIST and NOLIST pseudo opcodes if you wuse the
optional /X assembly switch.

5.1.5 ASECT - RSECT

The ASECT statement causes the assembler to generate code for the absolute
section of the program. This code will not be modified during LINK editing
and the values assigned to labels will not have the relocatable attribute
flag set.

The RSECT statement causes the assembler to generate code for the
relocatable section of the program. This is the normal section for the
AM-100 and AM-100/T systems which always relocates the program in user
memory. This code will be modified during LINK editing and the values
assigned to labels will have the relocatable attribute flag set. Two
separate assembly location counters are maintained during program assembly.

ASSEMBLER PSEUDO OPCODES Page 5-5

5.1.6 SYM - NOSYM

The SYM statement causes all following user symbols to be output to the
object file along with their assigned values. The NOSYM inhibits this
output for all following user symbols. These symbols are later used by the
SYMBOL program to generate a reference file for the dynamic debuggger
programs DDT and FIX. The use of SYM and NOSYM does not cause any
noticeable change in the actual program.

5.1.7 CREF - NOCREF — MAYCREF

To obtain a full cross reference listing, you may specify the /R assembly
switch. (To see the cross reference Llisting on your terminal, specify the
/RT switch.)

The three pseudo opcodes CREF, NOCREF, and MAYCREF control which portions of
your program will be processed in creating the cross reference.

CREF enables normal cross referencing.

NOCREF suppresses from the cross reference listing all defined symbols until
MACRO encounters a CREF or MAYCREF statement.

MAYCREF tells MACRO to suppress all symbols defined from the cross reference
Listing if those symbols are never referenced.

For a full discussion of the format of the «cross reference Llisting, see
Section 9.4.3, "Generating a Cross Reference."

5.1.8 EVEN

The EVEN statement forces the next hinary code to be generated on a word
boundary (next even byte) by incrementing the assembly location counter if
it is odd (no change if it 1is even). This 1is necessary since all
instructions must Lie on a word boundary for proper execution by the AM-100
system.

5.1.9 RADIX

The RADIX statement forces a new default radix to be set up in the
assembler. The default radix of the system determines how all numbers that
are not preceded by a temporary radix operator (°8,°D,"H,"0) will be
interpreted. The statement takes the form:

RADIX n

ASSEMBLER PSEUDO OPCODES Page 5-6

where the radix change argument "n" must be a decimal number in the range of
2-36. Radix values above 10 use the letters A-Z to represent the digit
values of 10-35 dinclusively. The default radix of all assemblies is base 8
(octal) 1in the absence of any explicit RADIX statement.

5.17.10 NVALU

MACRO provides a parameterized assembly facility by allowing you to use the
/V switch to specify a value on the MACRO command line. The value switch
may take one of these forms:

/V:x x is an octal or hex number (depending on the
prevailing radix setting)

/VO:x x is an octal number

/VH :x x i1s a hexadecimal number

/VD :x x is a decimal number

/VA:x X is one or two ASCII characters

/VR X X is one to three RADS50 characters

The NVALU pseudo opcode allows your proaram to access the value specified in
the /V assembly switch. The MVALU statement takes the form:

NVALU sym

which sets the symbol "sym" to one of the values below, depending on which
/V switch was used:

sym=x
sym="0x
sym="H0x
sym="Dx
sym="x
sym="'x
sym=[x]

5.1.11 END

The END statement terminates the source file and is included only to give a
defined end on the Llisting. In the absence of an END statement, the
assembly will terminate with the logical end of input file. Note that if an
END statement is encountered anywhere in the source input (including inside
a copied file) the assembly will terminate whether the logical end of the
input file has been reached or not.

NOTE: As it assembles your program, MACRO warns you if your program file
does not contain an END statement:

Phase 1: Missing END statement

ASSEMBLER PSEUDO OPCODES Page 5-7

5.2 DATA GENERATION PSEUDO OPCODES

The MACRO assemhler has several pseudo opcodes which generate specific data
constants within the program area for use as text messages, constant values,
tables, etc. This section lists these pseudo opcodes and gives details on
the data formats which are generated by them. ALL statements may have
labels in which case the label is assigned the address that will receive the
first byte of the generated data. ALl data statements begin allocating
their specific data formats at the address specified by the assembly current
Location counter and generate multiple bytes in sequence, incrementing the
current location counter as necessary. Those statements which generate byte
data (BYTE, ASCII, BLKB) may begin and end on any byte address, odd or even.
Those statements which generate word data (WORD, RADS50, BLKW) must begin on
a word boundary (even byte) or else a boundary error (B) will result. The
EVEN statement may be wused at any point where the status of the current
location counter is in doubt to insure an even boundary.

5.2.1 BYTE

The BYTE statement generates one or more bytes (eight bits each) of data.
The arguments for generating the data consist of expressions separated by
commas. Any legal expression is valid but only the Llower byte will be
stored after evaluation. Some examples are:

ZER: RYTE 0 :Generates 1 byte of data containing zero
BYTE 1,2,3 ;Generates 3 bytes of data containing 1,2,3
MULTI: BYTE A-B,TAG*4 ,SAM ;Generates 3 bytes of data
BYTE 'AL'Q ;Generates 2 hytes of ASCIJ data

5.2.2 WORD

The WORD statement generates one or more words (16 bits each) of data. The
arguments for generating the data consist of expressions separated by
commas. Any legal expression is valid which evaluates into a 16-bit value.
WORD statements may also be generated by default if the first symbol on a
Line (after any labels) is not defined as an opcode, pseudo opcode or macro
name. Some examples are:

ZER: WORD 0 :Generates 1 word (2 hytes) of data zero
WORD 1,2,3 :Generates 3 words of data containing 1,2,3
WORD A-B,"QT ,SAM-. ;Generates 3 words of data

SAM ;Generates by default the value of SAM

ASSEMBLER PSEUDO OPCODES . Page 5-8

5.2.3 ASCII

The ASCII statement generates one or more bytes of ASCII data. The argument
for generating the data is a string of legal ASCII characters bounded on
both ends by the same character which must not be included in the data
string itself. Any printing character may be used as a delimiter. Only one
such string may be generated by each ASCII statement. Some examples are:

MSG: ASCII /THIS IS A MESSAGE/ ;Generates a string of 17 data bytes
ASCII /Q/ ;Generates a single data byte of "Q"
MSG2: ASCII $ 1/0 TERM $;Generates a string of 10 data bytes

5.2.4 RADS0

The RAD50 statement generates one or more words (16 bits each) of data. The
argument is a string of valid RAD50 packable characters bounded on both ends
by the same character which must not be included in the data string. Any
printing character may be wused as a delimiter. The legal characters for
RADSO packing are A-Z, 0-9, dollar-sign ($), period (.) and space. One
packed word will be generated for each three characters in the string or
fraction thereof with trailing spaces being assumed to fill out the Llast
triplet. Some examples are:

pDDB: RADS0 /DSK/ ;Generates one word of packed data
RADS0 /SAM QQ/ ;Generates two words of packed data
RADSO /ABCD/ ;Generates two words (same as RADS0 /ABCD /)

5.2.5 BLKB - BLKW

These statements do not actually generate data but are included in this
section because they result in the allocation of memory in a defined manner.
The BLKB allocates an area of bytes and the BLKW allocates an area of words.
In all other respects they operate the same. The argument for each 1dis a
single expression which evaluates to a value between 0 and 65535. This
value is then added to the assembly current location counter (twice if BLKW)
which effectively reserves that block of memory and continues allocating
memory at the new address. Normally this results in a contiguous area of
all zeros since the Llinker clears all blank areas when it generates the
program file. This action does not always happen, however, because the
location counter may be stepped back into the reserved area 1in which case
the new data will overlay the reserved block of memory. This is an
important concept in dealing with the absolute section since no data is
actually generated by these statements, only memory addresses are reserved.
Some examples are:)

DATA: 8LKB 44 ;Reserves 44 bytes of memory
BLKB A*B ;Reserves A*B bytes of memory
BLKW 200 ;Reserves 200 words (400 bytes) of memory

ASSEMBLER PSEUDO OPCODES Page 5-9

5.3 SEGMENTATION PSEUDO OPCODES

The MACRO assembler, together with the LINK editor and monitor overlay
calls, support a powerful method of seamenting and overlaying programs for
both convenience during system development and memory conservation during
execution. This section describes the methods available for the various
options and also the assembler pseudo opcodes which help support the system.
The pseudo opcodes we will discuss are AUTOEXTERN, INTERN, EXTERN and
OVRLAY. This section also briefly discusses the concept of program
Libraries.

5.3.1 Segmenting Assembly Language Programs

There are several reasons for segmenting a program and also different
methods for doing so, depending on the end result desired. A very large
source program takes longer to edit (even a small change) and gives a
greater opportunity for total loss if some disaster strikes the file links.
A large program also takes longer to assemble and more memory in which to do
so. Segmented programs may be organized in such a manner as to allow
portions of the program to be resident in memory and other portions to be
called in from disk only as required. Seamented programs may also contain
duplicate symbols 1if the program segments are assembled separately and
linked together by LINK. Also, program segments which are assembled
separately may also be listed separately resulting in less Llisting time (and
less paper used) for each change that is made.

The simplest method for «creating a program in segments gains one of the
above advantages. This method makes use of the COPY statement and allows a
large program to be edited as multiple seaments which are then copied into
the main source program by using one COPY statement for each segment. As
changes are made to the source program, you need only edit the segment which
requires the changes. The assembly is done, however, on the complete source
program since all copied files are included in the source input. Only one
object file results and only one single List file can be created. The /L
option on the COPY statement may be used to control those segments that are
desired to be included on the Llisting itself.

A more complex but flexible method is to break up the program into logical
segments which may be assembled separately and then linked together at a
Later time by the LINK program. Several object (.0BJ) files result as
output of the different segment assemblies which are then input to the LINK
program which creates a fully resolved and runnable program (.PRG) file.
The advantages of the COPY method are realized as well as the added
advantage of having to assemble only those segments which require changes.
The LINK process runs much faster and requires less user memory than the
assembly process. One of the requirements of a program which 1is segmented
in this manner is that all references to routines and data constants which
reside in another segment must be done through two special assembler pseudo
opcodes, INTERN and EXTERN. Since a reference to a routine in another
segment is not defined during the assembly of the calling segment, the
symbol (name of the routine) 1is said to be "external." It is declared

ASSEMBLER PSEUDO OPCODES Page 5-10

external by the EXTERN statement which tells the assembler that it s
defined and will be resolved by the linkage editor at a later time. The
segment in which the routine exists then declares that symbol as "internal"
via the INTERN statement which tells the assembler to output the symbol with
a special code which defines it to the linkage editor for final resolution.

The method of segmenting a program and then creating a single runnable
program with LINK may be extended one step further using a feature 1in the
monitor which allows program segments to be called in from the disk and
overlay an existing portion of the main program. A segment which is to be
used as an overlay defines ditself as such by using the OVRLAY statement and
giving the address at which the overlay is to be loaded. The main program
then wuses a special form of the FETCH supervisor call to load the overlay
segment and then executes it by jumping to a known segment start address.
This implementation of overlaying segments is used in the MACRO assembler
itself and conserves user memory during execution of large system programs.
The LINK program creates one program (,PRG) file for the main segment and
one overlay (.0VR) file for each overlay segment in use.

NOTE: Still another method for modularizing programs is the use of Llibrary
files. Program Llibraries allow you to make use of frequently used routines
in many different programs without rewriting those routines each. time you
need them.

You may specify one or more library (.LIB) files to LINK which then Llinks in
only those object files 1in the .LIB file that are necessary to resolve
external references. For full information on generating and maintaining
program Llibrary files, see Chapter 11, "The Object File Library Generator
wis."

5.3.2 AUTOEXTERN

The AUTOEXTERN pseudo opcode tells MACRO to automatically EXTERN any
undefined symbols; those symbols are then displayed at the end of Phase 2 of
the assembly. When AUTOEXTERN is in effect you do not have to explicitly
EXTERN symbols.

5.3.3 INTERN

The INTERN statement defines one or more user symbols as internal to the
program segment so that they will be defined to the lLinkage editor program
for final resolution. The INTERN statement takes the form:

INTERN sym1{,sym2,...symN}

Each INTERN statement may be followed by one or more internal user symbols
separated by commas. As many INTERN statements as required may be used in
the program. There is also no lLimit to the number of symbols that may be
referenced by each INTERN statement except for the physical line length.

ASSEMBLER PSEUDO OPCODES Page 5-11

Each symbol that is referenced in an INTERN statement must be defined within
the segment either as a label on a routine or constant or as a value by an
equate statement. The symbol will then be available to the LINK program for
resolving references to it which come from EXTERN statements in other

segments. Any symbol defined as external in a segment that has not been
defined as internal in another segment will result in an undefined error
during Llinkage editing. A symbhol may never be defined by more than one

INTERN statement during any one LINK run; i.e., the same symbol cannot
appear as internal in two different segments that will eventually be linked
into the same program.

A short hand notation for INTERNing a label or equated symbol exists.
Instead of writing:

INTERN Symbol
Symbol:

you may now write:
Symbol::
Instead of writing:

INTERN Symbol
Symbol = Expression

you may now write:

Symbol == Expression

5.3.4 EXTERN

The EXTERN statement is used to define one or more user symbols as external
to the segment so that they may be resolved by the linkage -editor program.
The EXTERN statement takes the form:

EXTERN sym1{,sym2,...symN}

Each EXTERN statement may be followed by one or more user symbols separated
by commas. As many EXTERN statements as required may be wused in the
program. There 1is also no Llimit to the number of symbols that may be
defined by each EXTERN statement except for the physical Line Llength.

Each symbol that is defined by an EXTERN statement may be referenced within
the segment just as if it had been defined within the segment as a label or
an equate statement item. There is no limitation placed on its wuse as a
term within any operand expression since the LINK program has complete
expression resolution mechanics built in. There are two restrictions to its
use within the segment. An externally defined symbol may not be used within
the address operand of any branch instructions (BR, BER, BGT etc.) due to
the fact that there is no way to insure that the resulting placement will

ASSEMBLER PSEUDO OPCODES Page 5-12

fall within the 127-word relative requirement. It may, however, be used
within the address operand of the jump (JMP) instruction. The second
restriction is that an equate statement may not contain any externally
defined symbols in its operand expression since all equates must be fully
resolvable as they are encountered.

The LINK program builds a symbol table from all the symbols referenced in
all INTERN statements 1in all program segments. It then goes back and
resolves all expressions containing symbols defined by EXTERN statements by
looking them wup 1in the table of INTERN symbols. Any symbol defined in an
EXTERN statement but not matched by some INTERN symbol will give an error
message during linkage editing.

5.3.5 OVRLAY

The OVRLAY statement identifies a program segment as being an overlay file
instead of a continuation of the main proaram file. It also defines the
address of the base of the overlay relative to the base of the main program
so that the Loading of the overlay seament is done at the proper spot in the
program memory area. The OVRLAY statement takes a single argument which is
a wuser symbol that must be defined 1in some other segment in an INTERN
statement. For example:

OVRLAY Sym
NOTE: It is legal to write:

OVRLAY Sym
Sym: e

as long as "sym:" appears at the start of the overlay. (The symbol 'sym"
is essentially defined twice with the same value.) The OVRLAY address will
be resolved by LINK when the files are processed. Information on the code
used to Lload the overlay segments 1into memory will be found in the
description of the FETCH supervisor call in the AMOS Monitor Calls Manual.
Further information on processing of the OVRLAY statement may be found in
the section describing the LINK program processing.

5.4 CONVENIENCE PSEUDO OPCODES

There exist a few pseudo opcodes in the assembler that we refer to as
convenience opcodes for Lack of a better term. These opcodes do not really
do anything that cannot already be accomplished by the existing source
language in some other format, but they are easier to understand and make
the Listing more readable when used in the form that has been implemented
here. Some of them are implemented directly in the assembler program itself
while others exist as predefined macro calls in the system copy file SYS.MAC
which is normally called by all programs.

ASSEMBLER PSEUDO OPCODES Page 5-13

5.4.1 Extended Conditional Jumps

One very frustrating thing about editinag some new changes into a program is
when you find that an existing BNE (or other conditional branch) no Llonger
reaches due to the new code extending the address out of the 127-word Limit
for branches. The most common solution to this problem is to replace the
offending branch with a branch of the opposite condition followed by a jump
to the desired address. 1In other words, our BNE TAG could be replaced by
BEQ .+6 followed by JMP TAG which effectively does the same thing. The only
problem here 1is that this makes the Listing somewhat less than clear when
trying to decipher the flow of the proaram. We have therefore implemented
into the assembler a set of conditional jump opcodes which effectively
generate this two-instruction code seaguence for the proper opposite
conditional but which still Look very readable in the source listing. These
opcodes have been Listed here along with the actual WD16 instructions
generated:

JEQ TAG aenerates BNE .+6 followed by JMP TAG

JNE TAG BEQ .+6 JMP TAG
JPL TAG " BMI .+6 " JMP TAG
JMI TAG " BPL .+6 " JMP TAG
JLO TAG " BHIS .+6 " JMP TAG
JHI TAG " BLOS .+5 " JMP TAG
JLOS TAG " BHI .+6 " JMP TAG
JHIS TAG " BLO .+6 " JMP TAG
JLT TAG " BGE .+6 " JMP TAG
JGT TAG " BLE .+6 " JMP TAG
JLE TAG " BGT .+6 " JMP TAG
JGE TAG " BLT .+6 " JMP TAG
JCC TAG " BCS .+6 " JMP TAG
JCS TAG " BCC .+6 " JMP TAG
JVC TAG " BYS .46 " JMP TAG
JVS TAG " BVC .46 " JMP TAG

Remember that although these opcodes are easier (require less planning) than
the simple branches they do actually generate three words of binary code
instead of only one so, if space 1is at a premium, use them only when
necessary.

5.4.2 PUSH - POP

The hardware stack in the WD16 is normally referenced by its index register
(SP) and transferring words of data to and from the stack is done by MOV
instructions. Many machines have dedicated instructions to push and pop
data to and from the stack. 1In order to make the flow of system programs a
Little clearer for those of us used to pushing and popping, two macros have
been dimplemented in SYS.MAC which recognize the PUSH and POP instructions.
Each takes a normal source address argument but each also has a special
default format which is used when no specific argument address is desired.
These instructions generate the following code:

ASSEMBLER PSEUDO OPCODES Page 5-14

PUSH SRC generates MOV SRC,-(SP) ;Pushes SRC onto stack

PUSH " CLR -(SP) ;Pushes a zero onto stack
POP DST " MoV (SP)+,DST ;Pops stack into DST
POP " TST (SP)+ ;Removes top stack word

5.4.3 CALL - RTN

The normal subroutine calling sequence of the WD16 is the JSR dnstruction
which Llinks its arguments through any of the eight registers. The assembler
recognizes the more popular mnemonic opcode CALL for which it generates a
JSR instruction. 1In addition, if no register 1is specified in the CALL or
RTN instructions, the assembler assumes the most commonly used register PC
for its argument linkage. 1In other words:

CALL TAG generates CALL PC,TAG
RTN " RTN PC

5.4.4 OFFSET

There are many times during the programming of totally relocatable code
where an address must be expressed and stored as a relative offset from the
location of the constant itself. 1In other words, the storage of the address
TAG must be in the form of TAG-. which 1is actually the offset from the
current position of the constant itself to the address defined as TAG. The
value of this constant offset will not change no matter what its position in
memory happens to turn out to be. A good example of the use of relative
address offsets 1is in the tables associated with the instructions TJMP and
TCALL which must be relative offsets and not direct addresses. The OFFSET
pseudo opcode has been implemented to make the Llistings a Little more
obvious as to intent. The OFFSET opcode takes a single address argument and
generates the relative offset to that address from the current position of
the constant.

5.4.5 PSI

Although dintended only to be used internally to generate the system monitor
macros, the PSI (PSeudo-Instruction) will be defined here as a result of the
numerous inguiries about it. The PSI dnstruction will generate an
instruction similar 1in format to the double-address instructions (such as
MOV, ADD, SUB etc.) which may be one, two or three words in length depending
on the address modes used. 1In addition, it allows a 4-bit pseudo opcode to
be specified explicitly in the operand field. Basically, the format is:

PSI opcode,source-address , destination—address

This results 1in a normal instruction format with the opcode comprising the
top 4 bits (bits 12-15), the source address comprising the middle 6 bits

ASSEMBLER PSEUDO OPCODES Page 5-15

(bits 6-11) and the destination address comprising the low 6 bits (bits
0-5). Additional index words are generated if required by the addressing
modes in use.

The instruction generated by the PSI statement is never executed directly by
the machine since, 1in actuality, it duplicates one of the existing legal
instructions. Instead, it follows a specific SVCB instruction and is wused
to generate the pseudo-instruction to be executed by the SVCB calling

sequence and thereby results in an easy method for generating the standard
address arguments.

CHAPTER 6

USER DEFINED MACROS

It is often convenient to create your own opcode definitions which when used
in the source program result in the creation of a predefined sequence of one

or more source code statements. These user-created opcodes are called
"macros'" 1in assembly language programming and the Alpha Micro assembler
supports a flexible macro subsystem. There are two phases that you go

through when using macro calls. First, you define the macro opcode once in
the program as a series of source code statements along with possible dummy
arguments. You only do this once; the macro remains defined throughout the
remainder of the assembly process. Second, you then invoke the macro by a
single source statement giving the macro name along with optional real
arguments that replace the defined dummy arguments in the macro source code
which is generated. Calling the macro 1in this manner causes the macro
statement to be replaced by the defined sequence of source code statements
that have been custom tailored by the optional real arguments in the calling
statement. You may perform this calling sequence as many times as needed in
the source program with as many different real arguments as desired.

6.1 MACRO DEFINITION

Defining a macro generates no actual binary code in the program but merely
places the macro definition in a special table in the assembler memory work
area. Calling the macro (which then generates the segquence of source
statements) 1is the process that actually generates the binary code. 1f your
program never calls the macro or if the macro does not contain any
code-generating source statements, MACRO produces no binary code for the
macro. The use of conditional assembly directives within a macro definition
may result in no code-generating statements for this particular call to the
macro. The fact that no code is actually generated if the macro 1is never
called 14is an important concept since it then allows macro libraries to be
created that may contain many macro definitions that are standard for a
particular wuser system. Those macros that are never called in any specific
program do not generate any code and therefore take up no additional memory.
The system Llibrary SYS.MAC contains over 70 such macro definitions that
define the supervisor calls to the monitor. .

USER DEFINED MACROS Page 6-2

6.1.1 Macro Definition Formats

There are two formats available for use in defining macros. The normal
format allows one or more source lines to be generated as a result of the
macro call. The single-Lline format restricts the macro definition to one
Lline of generated source code but takes up less room on the source Llisting.
For several sample macros, see Section 6.1.10, below.

The general format for multiple-~line macros is:

DEFINE name {dummy argument Llist}
source Lline 1
source line ?

source line n
ENDM

The general format for a single-line macro is:
DEFINE name {dummy argument List} = source line

In both forms above, the macro name is any legal user symbol; it effectively
becomes the opcode by which the macro is called. This symbol may duplicate
a label in the program or may even redefine an AM-1000 pseudo opcode or a
WD16 machine opcode (e.a., you can redefine the MOV opcode to do an ADD if
you really want to confuse some people). You may only define a macro name
once and an attempt to redefine it Llater 1in the program will give
unspecified results.

6.1.2 The Macro Source Statements

The multiple-line macro definition source statements begin with the Lline
immediately following the DEFINE statement and continue through to but not
including the ENDM termination line. NOTE: Every macro definition must end
with the ENDM pseudo opcode.

When the program text calls the macro, MACRO will generate and assemble all
macro source lines just as if they had been explicitly entered directly into
the source program. In the single-line form, the source Line begins with
the character following the equal sign and continues through (and including)

the carriage-return and line-feed pair which terminates the DEFINE statement
line.

Macro definitions must not be nested within other macro definitions. Macro
processing 1is done on a special prepass scheme which prohibits the
processing of any DEFINE statements within another DEFINE statement.

USER DEFINED MACROS Page 6-3

6.1.3 The Dummy Argument List

The dummy argument Llist is optional in both forms of macros and consists of
one or more user symbols separated by commas. These symbols are unique only
-within the actual definition of the current macro and may be duplicated in
other macro argument Llists or may even be other opcodes and defined symbols.
These dummy argument symbols will never appear as such in the generated
sequence of source statements when the macro is called but will be replaced
by the equivalent real arguments supplied in the calling statement. The
dummy argument symbols may appear anywhere in the definition source Llines,
even as labels. Each time MACRO encounters a dummy argument when generating
the source Llines during a macro call, it replaces the dummy argument with
the corresponding real argument that was supplied by the calling statement.

6.1.4 Labels

A Llabel must not be used on the DEFINE statement Line since it has no

meaning. Labels may be used on the calling statements. A label must not be
used on the ENDM Line or the ENDM line will not be detected.

6.1.5 Local Symbols

MACRO supports Local symbols of the form nnn$ and nnn$%, where nnn is a
number between (and 65535, decimal. Local symbols of the form nnn%$ have
scope only between two non-local labels, and may be used outside of macro
definitions.

Local symbols of the form nnn$$ are for use only within macro definitions.
If a nnn%$ Llabel appears outside of a macro, MACRO will treat the label Llike
nnn® except that the label will not appear in the symbol table file (used

for debugging purposes). NOTE: You may define a local symbol with an equate
(=).

Below are two sample macros that use local symbols:

DEFINE LEAMSG X

LEA RN,10%% ; Get address of message

BR 20¢% : Branch around message
108%: ASCII X!

BYTE O

EVEN

20%%:
ENDM

USER DEFINED MACROS Page 6-4

Now we call the macro:

LEAMSG HELLO

TTYL aR0 ;s Display HELLO
LEAMSG BYE
TTYL arR0 ; Display BYE

The example above works correctly even though it generates two occurrences
of 10%% and 20%$$ because the symbols are local to each macro call.

The example below demonstrates that lLocal Llabels of the form nnn$ can be
passed as arguments to macros, and that they will be distinguished from
Labels of the form nnn$$ even if "nnn" is the same:

DEFINE JGT10 X,Y

cmp X, #10
BLE 1$%
JMP Y
1%%:
ENDM

Now we call the macro:

JGT10 RO,$1 ; expands to:
; cMp RO, #10
H BLE 18$
; JMP 1%
; 1%%:
DEC RO
1%: RTN

6.1.6 Comments

A comment may follow the dummy argument List in the multiple-line form but
you should not use a comment with the single-line form. You should avoid
comments in the actual generated source Llines in the macro definition simply
because MACRO stores the entire source text 1in work memory as ASCII
characters (including all comments). This may tend to use up work memory to
the extent that you may not have enough memory to finish the assembly.

6.1.7 Special Macro Operators

Two special operators exist that are used only within macro definitions: the

argument concatenation operator (') and the expression evaluation operator
M\,

USER DEFINED MACROS Page 6-5

6.1.7.1 Argument Concatenation (') - Since dummy arguments must be valid
user symbols, the apostrophe (') 1is a legal delimiter for any dummy argument
within a macro definition source Lline. When an apostrophe immediately
precedes and/or follows a dummy argument in the source text, the apostrophe
is removed and the substitution of the real argument occurs at that point.
This is useful for building symbols with arguments that are to be a part of
that symbol.

Given the following macro definition and eventual calls:

DEFINE BUILD AA BB
TAG'AA: MOV R1,@'BB'7
ENDM

BUILD RA,STS
BUILD T,P

the effective code generated by the two calls would be:

TAGRA: MOV R1,QSTS7
TAGT: Mov R1,QP7

6.1.7.2 Expression Evaluation (\) - The \ operator tells M™ACRO to
evaluate the expression that follows and to return its value. (Before local
symbols were supported by MACRO, the \ operator was often used to simulate
local symbols. For information on true local symbols, see Section 4.1.5,
"Local Symbols.'") You may use an expression of the form:

\expr
(a "\" followed by an expression) within a ‘macro definition. MACRO then
evaluates the expression and returns its value as a string. By placing a

symbol in front of the \, you can direct MACRO to append the value of the
expression following the \ onto the end of the symbol. For example:

LABEL\4 x4 :
evaluates to:

LABEL16:
and:

$ =1

STC/S$:

evaluates to:

STC1:

USER DEFINED MACROS Page 6-6

Symbols generated in this way do take up room in the symbol table.

NOTE: Be very careful that the expression following the \ operator does not
contain any macro arguments; they will not be expanded properly and will
probably cause a syntax error (Q code).

6.1.8 Suppressing Macro Expansion - ENDMX

The ENDMX pseudo opcode ends the expansion of the current macro. This
pseudo opcode is illegal outside of a macro definition. You will find this
pseudo opcode wuseful when using conditional assembly directive pseudo
opcodes to control macro expansion. (NOTE: ENDMX controls what macro code
is generated at the time of a macro call; it does not affect whether the
macro expansion is included in your assembly Llisting.)

6.1.9 NCHR, NTYPE, NEVAL and NSIZE

These four macro directives return a value that specifies the number of
characters in an argument (NCHR), the addressing mode type of an argument
(NTYPE), the value of any extra word generated by the addressing mode
evaluation, or the Llength of any extra words generated by an addressing
mode. These statements function similarly to the equate statement (=) in
that they assign a value to a user symbol which may be reassigned as many
times as desired during the course of the assembly. They are normally used
to control the development of macro source code based on the size and type
of arguments passed to the macro and therefore are defined in this section
dealing with macros. In actuality, you may use them anywhere in the source
program with any valid source code as an argument but they are fairly
meaningless unless used within a macro.

Once the symbol has been assigned a value by one of the NCHR, NTYPE, NEVAL
directives, you may use it by itself or within expressions to control the

development of the macro source code through the conditional assembly
statements.

6.1.9.17 NCHR - The NCHR statement assigns a value to a user symbol that
is equivalent to the number of characters in the argument string. It has
the format:

NCHR symbol ,string

USER DEFINED MACROS Page 6-7

6.1.9.2 NTYPE - The NTYPE statement assigns a value to a user symbol that
is equivalent to the 6-bit addressing mode of the argument. It has the
format:

NTYPE symbol ,argument

The following is a list of the addressing modes and the values that they
will deliver via the NTYPE statement. The upper case '"R" represents any of
the eight registers (RO-R5, SP, PC) which have a corresponding result wvalue
of 0-7 added to the resulting mode they are used in.

R direct register delivers 0OR

aRr indirect register delivers 1R

(R)+ autoincrement delivers 2R

D (R)+ indirect autoincrement delivers 3R
-(R) autodecrement delivers 4R

a-(R) indirect autoincrement delivers 5R
X (R) indexed delivers 6R
aX (R) indirect indexed delivers 7R

#X immediate delivers 27
TAG relative delivers 47
ATAG indirect relative delivers 77

For example, if you wuse register R4 in indirect addressing mode, NTYPE
returns a 14 (i.e., 1R where R = register 4).

6.1.9.3 NEVAL - The NEVAL statement assigns a value to a user symbol that
is eguivalent to the value of the extra word generated by one of the
indexed, relative or immediate addressing modes. This word represents the
index augment for indexed modes, the relative offset for relative modes or
the immediate value for the immediate mode. It has the format:

NEVAL symbol ,argument

65.1.9.4 NSIZE - The NSIZE statement assigns a value to a user symbol that
is equal to the size of the address form (i.e., 0 if no extra word is
generated, 2 if an extra word is generated). It has the format:

NSIZE symbol ,argument

USER DEFINED MACROS Page 6-8

6.1.10 Sample Macro Definitions
Below are several sample macro definitions.

A macro called ADDIT which generates four instructions:

DEFINE ADDIT

MOV R1,R3

ADD R3,SUM
ASL R3

ADD R3,SUM
ENDM

A macro called XCHNG which exchanges two memory words:

DEFINE XCHNG MEMA,MEMB

mov MEMA ,R1
mov MEMB ,MEMA
mov R1,MEMB
ENDM

A macro called STKSUB which subtracts a memory word from the top stack word:

DEFINE STKSUB TAG
sus TAG Q5P
ENDM

The same STKSUB macro in the single-line format since only one Lline is used:
DEFINE STKSUB TAG = SUB TAG,aSP

For some more complex examples of macro definitions, print out or inspect
the system macro Llibrary SYS.MAC that defines all of the supervisor calls
used by the AM-100 computer system.

6.2 MACRO CALLS

The actual generation of the defined source code comes when you call the
macro by 1its name within the text of your source program. The macro must
have been defined prior to its first reference. Macros are only processed
for definition during Phase 1 of the assembly process. Macro calls have the
same format regardless of whether the macro definition is multiple or single
Line format:

{label:} name <{real arguments} <{;commments}

USER DEFINED MACROS Page 6-9

6.2.1 Name

Name represents the name given to the macro definition; this becomes the
effective opcode by which your program calls the macro.

6.2.2 Real Arguments

Use real arguments when the definition of the macro has a dummy argument
list; they actually replace the dummy arguments in the source code text of
the macro definition. The real arguments replace the dummy arguments on a
one-for-one basis 1in exactly the same order as the elements of the dummy
argument Llist. The first real argument in the call takes the place of each
occurrence of the first dummy argument in the definition, and so on for all
the arguments. If there are not enough real arguments given in the call to
fill all required dummy arguments, the unfilled dummy arguments take on a
null value and are effectively replaced with nothing. If there are more
arguments in the <call then required to fill the dummy arguments in the
definition, MACRO ignores the excess arguments.

6.2.2.1 Real Argument Format - Normally, the real arqguments are separated
by commas and the assembler expects this format. Also, leading and trailing
blanks are ignored when processing each real argument in the macro call
statement. Often you may want to include a comma or blank as part of the
real argument without having it act as a delimiter or be bypassed. Any
argument that is enclosed in angle brackets will be passed onto the source
code generation verbatim including any blanks and commas.

The macro call:
XPURT ONE,TWO,THREE

has three real arguments while the call:
XPURT <ONE,TWO,THREE>

has only one argument which includes the two commas. The call:
XPURT <ONE,TWO0>,THREE

has two real arguments of which the first includes one comma.

USER DEFINED MACROS Page 6-10

The system macro TYPE is another good example:

DEFINE TYPE MSG

TTYI

ASCII /MSG/
BYTE 0
EVEN

ENDM

This macro is one of the AMOS monitor calls and is designed to type out the
ASCII message which appears as the argument to the TYPE macro call. The
BYTE 0O statement idinsures a null terminator and the EVEN statement insures
that the next instruction is again synchronized on a word boundary.

The call:
TYPE HELLO

will type out the message 'HELLO" because all the Lleading blanks are
automatically ignored before the argument is processed. The call:

TYPE < HELLO >

will type out the message " HELLO " because the blanks are included in
the argument as a result of the angle brackets. Similarly, the call:

TYPE HELLO, I AM A COMPUTER

will type out the message "HELLO" because the comma will terminate the
argument and the rest of it will be ignored. The call:

TYPE <HELLO, I AM A COMPUTER>

will type out the message '"HELLO, I AM A COMPUTER" because the comma is
included in the argument as a result of the angle brackets.

6.2.3 Label

The Llabel is optional and will be assigned the address contained by the
assembly current location counter. This will normally be the address of the
first byte of code which is generated by the macro source lines (assuming
that the macro does actually generate code). 1If the macro does not generate
code, then the label will still be defined but it will represent the address -
of the next byte of code that is generated after the macro call.

USER DEFINED MACROS Page 6-11

6.2.4 Comments

As in other statements, comments are optional.

6.2.5 Nested Macro Calls

Macro calls may be nested to a depth of 16 Llevels. A nested macro is
defined as a macro call within the source statements generated by another
macro call. Arguments may be passed to nested macros by naming the dummy
arguments the same throughout the levels. Arguments that contain blanks or
commas may be passed through successive leveéls by enclosing them in one set
of angle brackets for each level of nesting since one set of angle brackets
will be removed from an argument with each nesting level. For example, to
pass the argument A,B through three levels of nested macro calls you would
enter the argument as <<<A,B>>> in the first level macro call.

6.2.6 Sample Macro Calls
Consider this example:

DEFINE TBLADD ARG1,ARG2,ARG3

Mov ARG1 ,R1

ADD ARG2,R1

Mov R1,ARG1 (ARG3)
ENDM

This macro is called TBLADD and requires three real arguments. Assume the
following call in your program:

SAM: TBLADD SUMS_ENTRY,R5

The following source statements would be generated:

SAM: MoV SUMS ,R1
ADD ENTRY,R1
MoV R1,SUMS (R5)

It is evident from its usage that ARG3 must be a register. Assume that only
two arguments were given in the call:

SAM: TBLADD SUMS ,ENTRY
The following source statements would be generated:
SAM: MOV SUMS,R1

ADD ENTRY,R1
MOV R1,SUMS ()

USER DEFINED MACROS Page 6-12

Notice that the third instruction would contain an error due to the missing
register term which resulted from the missing third argument. Sometimes a
missing argument may be used to advantage by altering the generation of the
source statements with the conditional assembly statements, These
statements (described 1in the next chapter) can detect the fact that the
argument is missing and be used to selectively omit portions of code.

CHAPTER 7

CONDITIONAL ASSEMBLY DIRECTIVES

Conditional assembly directives allow you to selectively include or bypass
certain Llines or segments of source code based on variable parameters which
are tested during assembly. This allows several different versions of the
same program to be generated from one source file. Conditional assembly
directives find their widest use within macro definitions where they are
used to tailor the macro based on the real arguments used in the macro call.

NOTE: You may find the MACRO oarameterized assembly option especially useful
when wused with conditional assembly directives. The MACRO /V switch allows
you to provide a value on the MACRQ command Line which can be examined by
your source program. See Section 9.2.3 for information on this feature.

7.1 CONDITIONAL DIRECTIVE FORMATS

Like the macro definitions, conditional directives follow two general forms.
The normal form allows one or more lLines of source code to be selected or
bypassed based on the current status of a variable. The single Line form
performs the same function but 1is a shorter version and only allows the
control of a single line of source code.

The general form of a normal conditional block is:

IF condition,argument
source Line 1
source Lline 2

source Line n
ENDC

The general form of a single-line conditional is:

IF condition,argument, source-line

CONDITIONAL ASSEMBLY DIRECTIVES . Page 7-2

Both forms employ the IF pseudo opcode to identify the conditional directive
and both forms require a condition code which specifies the type of test to
be performed and an argument upon which to perform that test. The condition
code 1is a symbol which identifies the test which is performed at the time
the conditional is encountered during Phase 1 of the assembly process. The
argument may be a symbol, expression or macro argument, depending on the
type of test being performed.

Note that the item that distinguishes the two forms 1is the comma that
follows the argument 1in the single-line form. 1If the comma exists, the
remainder of the line up to and including the carriage-return and Line-feed
will be the source line that will either be assembled or bypassed depending
on the result of the conditional test. 1If the comma does not exist, the
conditional assembly will be done on the source lLine that follows the
conditional directive (IF) line up to but not including the ENDC terminating
Line.

7.2 CONDITION CODES

The following is a list of the condition codes that are lLegal and the type
of condition that the associated argument 1is tested for. Unless otherwise
specified, the argument is evaluated as an expression and the 16-bit result
of that -evaluation 1is the quantity that is tested to meet the condition.
The conditional source Llines are assembled if the argument meets the
condition listed next to the code below.

EQ The argument is equal to zero.

NE The argument is not equal to zero.

LT The argument is less than zero.

GT The argument is greater than zero.

LE The argument is less than or equal to zero.

GE The argument is greater than or equal to zero.

DF The argument is completely defined at this point.

NDF The argument contains one or more undefined symbols at this
noint.

B The argument (a string of ASCII characters) is blank or null.

NB The argument (a string of ASCII characters) is not blank or null.

CONDITIONAL ASSEMBLY DIRECTIVES Page 7-3

7.3 SUBCONDITIONALS

There are three subconditional directives that allow the alteration of the
normal conditional processing within a conditional block. These
subconditionals (IFF, IFT and IFTF) require no other parameters and must be
used within the source code that is between the IF and ENDC statements. The
following functions may be performed through the proper use of
subconditionals:

1. Assembly of an alternate block of code when the main conditional
code is being bypassed due to a failed conditonal test.

2. Assembly of a noncontiguous body of code within the conditional
block depending on the result of the main conditional test.

3. Unconditional assembly of a block of code within a conditional
block regardless of the result of the conditional test.

The three subconditionals and their functions are:

IFF The source Llines following the IFF statement up to the
next subconditional or end of main conditional are
assembled if the main conditional test result was false.

IFT The source Llines following the IFT statement up to the
next subconditional or end of main conditional are
assembled if the main conditional test result was true.

IFTF The source Lines following the IFTF statement up to the
next subconditional or end of main conditional are
assembled regardless of the main conditional test result.

7.4 NESTING OF CONDITIONALS

Conditionals and subconditionals may be nested to a maximum depth of 16
levels. Any conditionals within a higher level conditional will be bypassed
(the test will not be performed) if the result of the higher Llevel
conditional test was false. Subconditionals within outer Llevel conditional
blocks will be tested while those within inner level untested blocks will be
ignored. Consider the following simple example:

CONDITIONAL ASSEMBLY DIRECTIVES

Paae 7-4

TEST1: 1IF £EQ,3-3 ;True so assemble following code
WORD 23 ;Assembled since EQ,3-3 was true
IF NE,4-4 ;False so bypass following code
WORD 44 ;Not assembled since NE,4-4 was false
IFF :Tested - true since NE,4-4 was false
WORD 441 ;Assembled since IFF was true
IFT :Tested - false since NE,4-4 wasn't true
WORD 442 ;Not assembled since IFT was false
IFTF ;Tested - true regardless of NE,4-4
WORD 443 ;Assembled since IFTF was true
ENDC ;End of NE,4-4 conditional block
ENDC ;End of EQ,3-3 conditional block

TEST2: 1IF EQ,5-6 ;False so bypass following code
WORD 56 ;Not assembled since EQ,5-6 was false
IF EQ,6-6 ;Not tested since €Q,5-6 was false
WORD 61 ;Not assembled since EQ,6-6 was untested
IFF ;Not tested since EQ,6-6 was untested
WORD 661 ;Not assembled since IFF was untested
IFT ;Not tested since EQ,6~6 was untested
WORD 662 ;Not assembled since IFT was untested
IFTF :Not tested since EQ,A-6 was untested
WORD 663 ;Not assembled since IFTF was untested
ENDC :End of EQ,6-6 conditional block
ENDC ;End of EQ,5-6 conditional block

The system macro for the PUSH convenience opcode is a good example of how

conditionals may be used to control the code generated by a macro:

DEFINE PUSH SRC
IF B,SRC, CLR -(SP)
IF NB,SRC, MOV SRC,-(SP)
ENDM
If the macro is called without an argument (SRC is blank) then the first

conditional is true and the code CLR -(SP) is generated to push a zero word

onto the stack. The second conditional is therefore false and generates no
code. If the macro is called with an argument (SRC is not blank) then the
reverse happens and the code MOV SRC,-(SP) is generated with SRC being

replaced by the real argument in the calling statement. This causes the SRC

word to be pushed onto the stack.
The same PUSH macro could have been alternately coded using subconditionals:

DEFINE PUSH SRC

IF B,SRC

CLR -(SP)

IFF ,
MOV SRC,~(SP)

ENDC

ENDM

CONDITIONAL ASSEMBLY DIRECTIVES Page 7-5

For some more examples of conditionals used within macros, print out or
inspect the system Library SYS.MAC which defines all of the supervisor calls
used by the AM-100 computer system. This file is on the System Disk in
account [7,71].

CHAPTER 8

WRITING RELOCATABLE AND RE-ENTRANT CODE

The Alpha Micro computer system not only supports relocatable programs, but
requires that all programs written for operation under control of the AMOS
monitor be written in totally relocatable code. This means that a program
may be loaded physically into memory at any location and it will run without
modification. No addresses within the program ever need to be modified
since all references to memory are made in relation to the current value of
the program counter register (PC). The program may even be dynamically
moved about in memory without modification so long as it 1is not currently
active while it 1is being moved. The code is actually independent of its
position in memory and therefore has often been referred to by other
manufacturers as "position independent code."

Writing relocatable code for the AM-100 system has been simplified by the
incorporation of several instructions which make references to the current
position of the program automatic. The Lload effective address (LEA)
instruction may be used to calculate the current value of any relocatable
address and to load that current value into any register. The table
referencing instructions (TJMP and TCALL) both use relative offsets to
perform their functions as opposed to absolute or calculated addresses.

8.1 VALID ADDRESSING MODES

Due to the normally relocatable nature of the AM-100 instruction set and
addressing modes, writing totally relacatable code merely involves obeying a
few specific restrictions in the course of programming. The most important
of these is to never refer to any absolute address in main memory unless you
are sure of idts Llocation and contents. Two of the addressing modes will
always generate absolute memory references and must be avoided when writing
relocatable code. Note the following examples:

CLR M TAG
CLR TAG(R4)

WRITING RELOCATABLE AND RE-~ENTRANT CODE Page 8-2

In the first example the absolute address of TAG is stored in immediate mode
and then wused to indirectly address that absolute memory location. This
addressing mode is not relocatable wunless the reference to TAG 1is a
reference to a known absolute memory location. 1In the second example, the
most common method of indexing can bhe shown to be non-relocatable. Normal
indexing address schemes take the base of some area (in this case it is TAG)
and add an offset from some calculation which is stored in an index register
(in this case R4) to develop the target memory address. The value of TAG is
stored 1in the dinstruction as an absolute value and no offset is ever added
to compensate for relocation of the program. This mode would not be
relocatable wunless, as 1in the first example, the reference to TAG is to a
known absolute memory location.

The two above addressing modes are the most commonly made errors that
violate the rules for relocatable code. A more subtle mistake is made when
a register is set up as an index to a table within the user program to be
referenced later through the register. Take these examples:

MoV H#TABLE RO
LEA RO, TABLE

The first example stores the address of TABLE as an absolute value due to
the immediate mode addressing. Since the assembly of the program 1is done
starting at location zero, the value of TABLE during assembly is really the
offset from TABLE to the base of the program. wWwhen the program actually
runs, it will not be located at zero (the operating system resides in the
first 12K or so) and the actual address of TABLE will not be the same as at
assembly time. The second example is the proper instruction to be used when
setting up a register to a memory reference. The instruction is coded at
assembly time as an offset from the instruction ditself to the Llocation
marked as TABLE and when the LEA instruction is executed, the actual value
of TABLE in its current location is calculated and loaded into the register.

Addressing modes that involve only register references are totally
relocatable. These modes are:

RX direct register

DRX indirect register

(Rx) + autoincrement

A(Rx)+ 1indirect autoincrement
=(Rx) autodecrement

@-(Rx) indirect autodecrement

The two relative addressing modes are also relocatable:

TAG relative
ATAG indirect relative

WRITING RELOCATABLE AND RE-ENTRANT CODE Page 8-3

8.1.1 1Index Modes

Index modes <can be relocatable or non—-relocatable depending on their usage
and set up procedure. Generally speaking, if the register is absolute and
the idindex offset dis a relative tag in the program, the indexing is not
relocatable and will deliver wrong results. If the register is first loaded
with the effective value of the relative address within the program and the
index offset 1is the absolute component, then the scheme is relocatable and
will give the desired results. Take the following two examples of <clearing
the third word (sixth byte) in TABLE:

This is the wrong way:

MoVI 6,R3 ;R3 gets absolute component offset
CLR TABLE (R3) ;absolute location TABLE(R3) is cleared

This 1is the right way:

LEA R3,TABLE :R3 gets current address of TABLE in program
CLR 6(R3) :relocatable location at TABLE+6 is cleared

8.2 RE-ENTRANT CODE

Writing re—entrant programs involves a Llittle trick which can be played with
relative code machines. Re-entrant programs distinguish themselves by their
ability to be placed 1into system memory (via the SYSTEM command in your
SYSTEM.INI fule) and simultaneously shared by multiple wusers. A good
example of a re-entrant program 1is the AlphaBASIC compiler and runtime
package. More than one user may share this program without loading it into
each of their individual memory partitions. The main problem with writing
re-entrant programs deals with the local variables that must be used as a
work space for -each user. These individual work spaces must be allocated
within the user's own memory partition and yet must be accessed by the
common re-entrant program. Remember, the re-entrant program must never
store variables within its own program area or else it 1is no Llonger
re-entrant.

8.2.1 Using Base Registers

If a table of the named local variables is created using BLKB and BLKW
statements at the beginning of the re-entrant program, the Labels assigned
to these variables may be used as indexes to the variable area once it has
been allocated within the user's memory space. This concept requires that
one register (R0O-R5) be dedicated throughout the program as the base point
for the local variable area. For an example, Llet's suppose that vyour
program will require four variables called VARA through VARD with the
following sizes:

WRITING RELOCATABLE AND RE-ENTRANT CODE Page 8-4

ASECT

.=0
VARA: BLKW 4 :variable 1 size is 4 words
VARB: BLKW 1 ;variable 2 size is 1 word
VARC: BLKB 16. ;variable 3 size is 16 bytes
VARD: BLKW 1 ;variable 4 size is 1 word

.=0

RSECT

The above table will be at the beginning of the re-entrant program defining
a local variable area of 14 words (or 28 bytes). The two ".=N" statements
surrounding the table are required to insure that the area generates no code
but is merely used to set up the index values assigned to the Llabels VARA
through VARD. Generation of the actual program code which follows will then
begin at relative location O where it is expected. The ASECT call sets the
assembler into absolute mode so that the variables are defined as
non-relocatable, The RSECT call restores relocation for the following
program code. The program must set up the above variable area by allocating
the required space within the wuser's memory partition (probably with a
GETMEM call) and set the selected index register to point to its absolute
base address (returned by the GETMEM call).

If we assume that you have chosen R5 to be your index to the variable area
and have set it to point to the allocated 14-word block, the four variables

may then be referenced throughout the program execution by the following
addresses:

VARA(RS) for variable 1
VARB(RS) for variable 2
VARC(R5) for variable 3
VARD (R5) for variable 4

In addition to the above direct addressing method, another index (say R2)
may be set to index an individual variable with the following statement:

LEA R2 ,VARC(R5) ;index the 16-byte variable 3

The index R2 now points to the specific VARC variable which might be wused
for incremental indexing within itself (perhaps to store 16 1-byte flags).

Remember that 1in the above scheme, the base index register RS in this
example) must never be destroyed in the program execution or else you will
not be able to reference any of the variables.

In summary, the best way to learn how to evaluate the relocatablity of a
particular programming technique is to become thoroughly familiar with the
addressing modes used by the WD16 chipset and the type of code that they
generate. This dnformation can be found 1in the WD16 Microcomputer
Programmer's Reference Manual, (DWM-00100-04).

AMOS ASSEMBLY LANGUAGE PROGRAMMER'S MANUAL

PART II

USING THE ALPHA MICRO ASSEMBLY LANGUAGE PROGRAMMING SYSTEM

These chapters describe the use of:

MACRO - The macro assembler.

LINK - The Llinkage editor

SYMBOL - The symbol table generator

LIB - The object file library generator

GLOBAL - The global symbol cross reference aenerator
DDT - The dynamic debugging and patching program

For information on the screen-oriented assembly language program debugger
AlphaFIX, see the AlphaFIX User's Manual, (DWM-00100-69).

CHAPTER 9

THE ALPHA MICRO ASSEMBLER (MACRO)

This chapter discusses the Alpha Micro assembler proaram, MACRO.

After writing your source code (the .MAC file), you must assemble it. The
assembler translates your assembly language program into machine language
(the .0BJ file). The Llinkage editor (discussed 1in the next chapter)
processes the .0BJ files to resolve all symbol references and to create the
final, executable program (.PRG or .0VR) file.

This chapter gives information on the operation of the macro assembler
program.

9.1 THE MACRO PHASES

The assembler actually runs in five distinct phases that are selectively
called depending on what functions are needed. A brief summary of their
respective functions follows:

PHASE 0

Interprets the command line and sets up parameters in the
common area for use by successive phases.

PHASE 1 Reads the source (.MAC) file and performs Pass 1 of a
standard two-pass assembly process by expanding macros,
building the user symbol table, and generating the

interphase work (.IPF) file.

PHASE 2

Reads the interphase (.IPF) file and performs Pass 2 of a
standard two-pass assembly process by resolving symbols
and generatina the object code (.0BJ) file. MACRO then
deletes the interphase work file.

PHASE 3 Reads the source (.MAC) file and the object (.0BJ) file
and creates a List (.LST) disk file or outputs the
assembly listing to the terminal.

THE ALPHA MICRO ASSEMBLER (MACRO) Page 9-2

PHASE 4 =~ Actually not part of the assembler but an automatic call
to the LINK program to read the object (.0BJ) file and
create a runnable program (.PRG or .0VR) file. Only occurs
if there were no internal or external symbol references in
the program. (If Phase 4 is not called, you will Llater
have to wuse LINK to link this file with the other files
that contain the symbols that will resolve the external
and internal references.)

9.2 COMMAND LINE
The general format for the assembler command line is:

=MACRO filespec{/switches ®ETD)

9.2.1 Filespec

Filespec specifies the source file you want to assemble; it may optionally
be a complete file specification containing account and device
specifications.

The /switches option request is a slash followed by one or more alphabetic
characters. A switch alters the normal assembly process. If you enter no
switches, MACRO performs an assembly on the specified source file and
creates an object file but no List file (i.e., Phase 3 is bypassed). If the
program is a sinale segment (i.e., it contains no INTERN or EXTERN
statements), then MACRO enters Phase 4, which creates an executable (.PRG or
.OVR) program file.

9.2.2 Assembler Options

You may select one or more of the assembly options below by specifying the
appropriate switch on the MACRO command line:

/B text Generates a bottom footer line on every page of the Llisting
using the rest of the text on the command Line following the
/B switch as title information. For example:

+<MACRO DEVCPY/B Version AQQ(RET)

generates a Llisting file of which every page contains the
bottom line title: "Version AN0.'" /B must be the last switch
on the command Lline.

/C Includes conditionals in the Listing. (Conditionals are
normally suppressed.)

THE ALPHA MICRO ASSEMBLER (MACRO) Page 9-3

/E Writes to the assembly listing only those Lines that contain
an error.
/H Lists binary code 1in hexadecimal instead of octal in the

assembly Llisting.

/L Generates a Llist file by calling Phase 3 during the
assembly. Creates the output file with the same name as
your source file, but a .LST extension. (You may modify the
name of your Llisting file by using the OBJNAM pseudo opcode
in your source proqram-- see Section 5.1.2, "OBJNAM.')

/0 Uses the current object file by omitting Phases 1 and 2.
/R Generates a cross reference, which appears at the end of the
assembly Llisting. See Section 9.4.%, "Generating a Cross

Reference," for information on the cross reference Llisting.

/T Prints the assembly Llisting on vyour terminal instead of
writing it to a disk file.

/v{aY: X Allows you to specify a value on the MACRO command Lline
which can be examined during the assembly process. "a"
specifies the type of value specified, and X is the value.
See Section 9.72.3, "Parameterized Assembly Option," for more
information.

/X Lists in your assembly listing all macro expansions. (Macro
expansions are normally suppressed.)

NOTE: You do not have to specify the /L switch when you use the /B, /C, /E,
/H, /R, /T, or /X switches to tell MACRO to generate a listing.

You may combine any of the above switches as desired in a sinale command
line by entering them after a single / character at the end of the command
line. For example:

-MACRO NEWDVR .MAC/RT(ReD)

The command Line above tells MACRO to generate a listing file for NEWDVR.MAC
that contains a cross reference and to output that Llisting to the terminal.

The most common method of assembling new programs is as follows:
1. Assemble the program with the command:
-MACRO filespec @D

This will allow you to count any errors that occur during Phases 1
and 2.

THE ALPHA MICRO ASSEMBLER (MACRO) Page 9-4

If no errors occur, create a Llist file with:
_._MACRO filespec/LOReD)
or, optionally, List it on the terminal with:
-MACRO filespec/TO
or, get a cross reference with the Llisting:
_._MACRO filespec/RO
1f there were errors, List them alone with:
-MACRO filespec/TOE
Correct the errors and go back to Step 1.
If the program has only one segment, then MACRO automatically calls
Phase 4 which creates the .PRG or .0VR program file; otherwise, you
will need to use the LINK or SYMBOL proaram to generate the final

program file-- see the next chapter for information on LINK and
SYMBOL.

9.2.3 Parameterized Assembly Option

MACRO provides a parameterized assembly facility by allowing you to use the
/V switch to specify a value on the MACRO command line. The value switch
may take one of these forms:

/V:x x is an octal or hex number (depending on the
prevailing radix setting)

/VO:x x is an octal number

/VH:x X is a hexadecimal number

/ND:x X is a decimal number

/VA:x x is one or two ASCII characters
/VR:X X is one to three RADS0D characters

The NVALU pseudo opcode allows your program to access the value specified in
the /V assembly switch. The NVALU statement takes the form:

NVALU sym

which sets the symbol "sym'" to one of the values below, depending on which
/V switch was used:

THE ALPHA MICRO ASSEMBLER (MACRO) Page 9-5

sym=x
sym="0x
sym="HOx
sym="Dx
sym="x
sym=""x
sym=Cx]

You may find this feature especially useful when using conditional assembly
directive pseudo opcodes to select which portions of code to assemble.

9.3 SAMPLE ASSEMBLY DISPLAY
Below we show a sample assembly display:
;MACRO SAVTXT.MAC/L

== Macro Assembler Version 1.1 ==

Processing SAVTXT.MAC

Phase 1: Copying from DSKQ:SYS.MACFr7,77
Work area: 3916 bytes, 3614 used

Phase 2: Object file finished
Phase 3: Listing file finished
Phase 4: Program file finished [Program size = 60. bytes]

If MACRO is automatically EXTERNing any symbols, it tells you so in Phase ?
(Listing the symbols alphabetically). For example:

Phase 2: Object file finished
EXTERNs were generated for the following symbols:
GETNUM PRTNUM

In the case above, MACRO automatically EXTERNed the symbols GETNUM and
PRTNUM. MACRO automatically EXTERNs symbols if those symbols are undefined
and if the AUTOEXTERN pseudo opcode appears in your source file.

Notice that even if your program is a single seament, MACRO will not call
Phase 4 to Link your proaram if MACRO was not able to resolve all symbol
references in your program (that is, if EXTERNs were agenerated). You will
need to use LINK or SYMBOL to link your program with the other file(s) that
contain the symbols referenced by your main program.

If you ask for a cross reference listing, you see the following message
during Phase 3:

Phase 3: Cross reference file finished

THE ALPHA MICRO ASSEMBLER (MACRO) . Page 9-4

9.4 THE ASSEMBLY LISTING

By specifying the appropriate assembly switches, you can direct MACRO to
call Phase 3 of the assembly process to create a list file which is sent to
a disk file or to your terminal. The Llisting is formatted and contains both
the source of your program and binary code that 1is generated by the
assembly.

9.4.1 Assembly Listing Format

Each page contains a page number and a title that gives the name of the
program that has been assembled and the account number that the file was

assembled 1in. Unless otherwise controlled by PAGE statements, each page
contains 54 lines of source data. FEach page is terminated by a form-feed
character. If the system date has been set (via the monitor level DATE

command) , the date appears at the top of each page of the Llisting. 1f you
specified the /B assembly switch, MACRO outputs to each page a page footer
containing the text specified on your MACRO command line.

Each data line on the Llisting contains four sections:
1. Columns 1-5 Llist the error codes on the Lline that generated the
error. (For a Llist of the MACRO error codes, see Section 9.5,
""MACRO Errors.'™
2. Columns 8-13 Llist the current address of the generated data if any
data code was generated. Or, these columns give the value of the

assignment if this is an equate statement.

3. Columns 16-37 List the generated binary data (maximum of the first
three words) in octal (or hex if /H assembly switch was used).

4. Columns 40-132 Llist the source Lline.

9.4.2 Listing Control Pseudo Opcodes

Several pseudo opcodes exist that control your assembly Listing; you will
place these pseudo opcodes in your source program. We List them briefly
below. For more information on each pseudo opcode, see Chapter 5.

0BJNAM - Allows you to modify the name of your assembly
Llisting disk file.

LIST - Re-enables output to the Llisting file.

NOLIST - Turns off output to the assembly Llisting file.
(LIST and NOLIST are ignored if you use the /X
switch.)

PAGE ~- Begins a new page in the assembly Llisting.

THE ALPHA MICRO ASSEMBLER (MACRO) Page 9-7

9.4.3 Generating a Cross Reference

You may use the /R switch to generate a cross reference as part of the
assembly Llisting. To see the cross reference on your terminal, use the /RT
switches. You may specify the /0 switch to bypass assembly Phases 1 and 2
if an object (.0BJ) file for the current source file already exists.

NOTE: For information on using the GLOBAL command to generate a global cross
reference, see Chapter 12.

9.4.3.1 Cross Reference Control Pseudo Opcodes - The CREF, MAYCREF, and
NOCREF pseudo opcodes control the generation of the cross reference listing:

CREF Enables normal cross referencing.

NOCREF Suppresses from the listing all defined symbols until
MACRO encounters a CREF or MAYCREF pseudo-op.

MAYCREF Suppresses from the Llistina all defined symbols if
those symbols are never referenced.

9.4.3.2 C(Cross Reference Listing Format = The cross reference listing is
similar to an ordinary assembly [isting except that it also includes the
following:

1. A column of sequence numbers appears at the left of the Llisting.

2. At the end of the assembly Listing, an alphabetic listing of each
symbol appears giving, in numeric order, the sequence numbers of
the Lines 1in which each symbol appears. These sequence numbers are
sometimes followed by a code of the form =X, where X identifies the
type of symbol. X may be one of the following:

a label definition

- an eqguate definition
an INTERNed symbol

- an EXTERNed symbol

- an OVRLAY.

O X =M
|

Also, a single quote (') appears after symbols that were never
defined. (MACRO will automatically EXTERN such symbols if the
AUTOEXTERN pseudo opcode is present in your source program.)

3. A similar Llisting of macro definitions and references follows the
symbol Listing. (The sequence number corresponding to a macro
definition is flaaged by a "-M" code.)

THE ALPHA MICRO ASSEMBLER (MACRO) Page 9-8

9.4.3.3 Sample Cross Reference Listing - Remember that the cross
reference appears at the end of a regular assembly listing. Below is a
sample of what the cross reference portion of the assembly Llisting for a
small program, MATH.MAC, might look like:

MATH [110,51 CROSS REFERENCE LISTING PAGE 001

ACCUM 394 535 520 530) 543 553 557

ADD 423 520-L

DIVI 429 553-1

EXIT 365 370 459 597-L

GETEXP 364-L

GETNOM' 386 415

NUMERR 393 416 S567-L

OPRERR 407 XK 583-L

OPRTBL 468 AT3=L

PARSE 383-L

PRTNUM' 441 450

START 354-L

SUs 425 530-L

S..RDX 30-E 309

SVAL 615 6T6-E 618 619 619-E 623 626 627
643 GL3-E

MATH [110,5] CROSS REFERENCE LISTING PAGE 002

=M 356 383 798 512 9% 503

CRLF _ 173-M 457

EXIT 174-M 573 589 597

GTDEC 186-M 495

OPERAT 331-M 613 621 629 637

TYPECR 202-M 457 567 583

Notice that the cross reference above identifies equated s&mbols and macro
definition symbols. 1Tt also identifies the GETNUM and PRTNUM symbols as
undefined or automatically EXTERNed symbols.

THE ALPHA MICRO ASSEMBLER (MACRO) Page 9-9

9.5 MACRO ERRORS
MACRO displays two types of error messages: errors codes that appear in your

assembly Llisting and error messages that appear on your terminal screen as
you assemble the program.

9.5.1 Error Codes

Below are the error codes that can appear in your assembly Llisting. Each
code appears on the line of the source program in which the error occurred.

A Branch address was out of the 127-word range.
B8 Boundary error - a word operand was on an odd byte

address. (See Chapter S5 for information on the EVEN
pseudo opcode.)

C Conditional statement syntax error.

D Duplicate user symbol. (Symbol defined more than once.)

1 Illegal character in source Lline.

M Missing term or operator in operand or expression.

N Numeric error which indicates a digit out of the current

radix range.

P An expression that had to be resolvable on the first pass
was not.

Q Questionable syntax = this is a general catch-all error
code.

R Register error - a register expression was not in the

range of 0-7.

T Source line or operand terminated improperly.

1 Undefined user symbol during Pass 2.

v Value of an absolute parameter was out of its defined
ranae.

X Assembler system error - please notify Alpha Micro.

THE ALPHA MICRO ASSEMBLER (MACRO) . Page 9-10

9.5.2 Error Messages
You may see several error messages during the program assembly:

INVALID CONTROL PARAMETER VALUE
You used the /V assembly switch to specify a value on the MACRO command
line, but somethinag was wrong with the format of the option request.
For example, the value after the /V switch was missing or incorrect.

?Cannot OPEN Devn: - invalid filename
There 1is something wrong with the format of your command line. For
example, you may have tried to use an assembly switch but forgot to
place it at the end of the file specification. ALL switches must
appear at the end of the command Lline.

?File specification error
There 1s something wrong with the format of your command Line. For

example, you typed MACRO followed by a RETURN (omitting the file
specification).

?MACNn.0OVR not found
where n 1s a number from 0 to S. MACRO cannot find one of the overlays
that are a part of MACRO. Make sure that the missing file 1is in
account DSK0:[1,41. 1f the file 1is not there, contact the System
Operator.

?Copy file filespec not found
where filespec is the file specification you supplied to the COPY
pseudo opcode. For detailed information on the search pattern MACRO
now uses to search for the copy file, see Section 5.1.1, "COPY."

?Expression stack error
This is an internal MACRO error. You should never see it-- but if you
.do, check your source program to see if you made any errors in
specifying expressions.

CSYNC ERRORI

MACRO generates a listing file by reading the source file and the
object file and synchronizing the source lines with the resolved object
data to come up with the Llisting line data. If these two files get out
of sync, there is no.way that the listing may proceed and the message
[SYNC ERROR] appears on your terminal. MACRO will then close the List
file at the point of the sync error, but the line that caused the error
will not have been included. A sync error of this sort means one of
two things: either you have an out-of-date object file that you are
using with the /0 switch, or you have found an undiagnosed assembler
bug. These bugs usually occur when you get fancy with nested macros
and conditionals that have a valid error buried down deep within.

THE ALPHA MICRO ASSEMBLER (MACRO) Page 9-11

NOTE: The most probable cause for this error is that you are using an
object file that was generated by a different version of MACRO than the
one you are using now. If you see no obvious errors in your program,
try generating a Llisting without the /0 switch (thus building a new

object file). 1If you still get [SYNC ERROR], report the problem to
Alpha Micro.

CHAPTER 10

THE LINKAGE EDITOR (LINK) AND SYMBOL TABLE FILE GENERATOR (SYMBOL)

This chapter contains information on the linkage editor LINK and the symbol
table generator program SYMBOL. We discuss both of these programs at this
time because LINK and SYMBOL are very similar and, with the proper selection
of option switches, can be made to perform virtually the same functions.
LINK takes one or more object files produced by the assembler and resolves
all external symbol references. The file that LINK produces is the final,
executable program file. SYMBOL takes one or more object files and produces
a symbol table file for that program. As we will see later, LINK and SYMBOL
can also perform other functions.

Besides discussing how to Link .0BJ files, this chapter also discusses the
use of LINK and SYMBOL with library (.LIB) files. For more information on
object file libraries, see Chapter 11, "The Object File Library Generator
ie)."

10.1 LINK

The assembler ditself does not produce a file that is directly usable as an
executable program. (Unless of course, your program 1is a single segment
file that contains no EXTERNed, INTERNed, or AUTOEXTERNed symbols, in which
case MACRO calls LINK as Phase 4 of the assembly.)

The assembler output file is an object (.0BJ) file that is not fully
resolved and which contains symbol definitions and embedded cross—-seament
commands.

It is the linkage editor (LINK) that resolves the object file. LINK reads
one or more of these object files and creates one runnable program (.PRG)
file which the operating system can load into memory and run. Furthermore,
if the program contains overlay segments, LINK resolves them and creates one
overlay (.0VR) file for each one. These overlay files are loaded into
memory upon command during the running of the program and allow memory
conservation for large programs such as the assembler itself.

THE LINKAGE EDITOR (LINK) AND SYMBOL TABLE FILE GENERATOR (SYMBOL) Page 10-2

We mentioned previously that if your program has only one segment, MACRO
automatically calls the linkage editor to create a program file (as Phase &
of the assembly). In this case, no further action 1is necessary and you are
ready to run the program. 1If, however, the program is comprised of more
than one segment, you must run the LINK program yourself, specifying the
name and order of the segment files involved.

10.1.1 LINK Command Line
The general format of the LINK command is:

-LINK {/switches }filespec1{,filespec?2,...filespecN} {/switches} (RED)

where filespec selects an object file. The default extension is .08BJ. The
first file specified may not be a library file or an overlay file. If a
filespec includes a device and account specification, LINK searches for the
file 1in that account. If you omit a device and account specification, LINK
searches for the file first in the account and device you are Llogged into;
secondly, 1in your project Llibrary account (account MP,N1); and, finally, in
the System Macro Library account, DSKD:[7,7].

LINK treats switches in the same way that a standard AMOS wildcard command
does; this means that the files affected by the option switches you use can
depend on where you place the switches. Any switch that appears in front of
a filespec becomes the default switch and thus affects the rest of the
filespecs on the command line (unless canceled by a subsequent switch). Any
switch that appears at the end of a filespec affects only the files selected
by that specification. For example, suppose you want to use the /0 switch to
identify one or more .0BJ files as optional files:

«LINK FILBCK,/O DIRBCK,TAPBCK (RET)

selects the files DIRBCK and TAPBCK as optional files because the /0 switch

precedes the filespec DIRBCK, and thus becomes the default. The command
(ine:

LINK FILBCK,DIRBCK/0,TAPBCK

selects only the file DIRBCK as an optional file because the /0 switch

follows the DIRBCK filespec and appears before the next comma in the command
Line.

NOTE: Special switches (identified as ''operation switches" in the
discussions below) affect ALL filespecs specified on the command line no
matter where you place the switch. For example, it doesn't matter where you
place the /M switch on the command Lline-- it affects all files selected by
the filespecs on the command Lline.

THE LINKAGE EDITOR (LINK) AND SYMBOL TABLE FILE GENERATOR (SYMBOL) Page 10-3

10.1.1.1 Continuation Lines -= If the program you want to link contains
more files than will fit on the command Lline, you may continue the files on
the next Line by terminating the last filespec with a comma. LINK continues
to accept files as long as the last filespec on the Line terminates with a
comma.

10.1.1.2 LINK Options

/E Include equated symbols in the symbol table file. (You must wuse
/E with the /M or /S switch.) (Operation switch.)

/L Designates a Library file. See Section 10.3, 'Library and
Optional Files," for information on Library files.

/M Generate a load map (.MAP) file. See Section 10.4, '"The Load
Map File," for a discussion of the lLoad map. (Operation switch.)

/N Suppress /P switch. (Operation switch.)

/0 Designates an optional file. See Section 10.3, "Library and
Optional Files," for information on optional files.

/P Generate program (.PRG) and overlay (.O0VR) files. The default
switch. (Operation switch.)

/R Designates a required file. The default switch. Cancels the /L
and /0 switches.

/S Generate a symbol table (.SYM) file. (Operation switch.)

You may specify multiple switches by preceding each switch with a /. (See
the command Lline bhelow.)

10.1.2 Sample LINK Display

Below is a sample LINK display. Note that we are using the /L switch to
specify a library file, and are using the /M switch to generate a load map.

THE LINKAGE EDITOR (LINK) AND SYMBOL TABLE FILE GENERATOR (SYMBOL) Page 10-4

«LINK MATH,UTILIT.LIB/L/M

== Linkage Editor Version 2.0 ==

Processing MATH.0BJ [Base = 0, Size = 348. bytes]

-- Optional and Library Request --

Processing UTILIT.LIB(NUM) [Base = 534, Size = 144. bytes]

Program and Map files finished. [Program size = 492. bytes]

Notice that LINK tells you the size (in decimal bytes) of each module. If
you specify a library file, LINK tells you which of the object files in the
Library file are being linked in. (In the sample above, LINK linked in the
NUM routine from the UTILIT.LIB Library file.)

10.1.3 LINK Errors

LINK reads each of the files specified and creates the necessary program and
optional overlay files. LINK displays any error messages on the terminal if
it encounters any errors during processing. The most common error is the
undefined . global symbol error which means you have an EXTERN symbol in one
segment which is not defined in another segment by an INTERN statement.
LINK does not generate a program file if it cannot find one or more of the
segments in its assembled object (.0BJ) form. For a List of the LINK error
messages, see Section 10.5.

10.2 THE SYMBOL TABLE FILE GENERATOR (SYMBOL)

The object files output by the assembler contain complete information on the
symbols used in your program, as well as the actual generated code. To make
this List of symbols available to the debugger programs, you must use the
SYMBOL program. Just Llike LINK, the SYMBOL program takes one or more .0BJ
files and creates an output file, in this case a symbol (.SYM) file. ODT
and FIX use this file to provide symbolic debugging of programs.

Unlike the program file, the symbol file is not generated automatically even

if only one program segment is used. You must explicitly run SYMBOL if you
wish to create a symbol file.

THE LINKAGE EDITOR (LINK) AND SYMBOL TABLE FILE GENERATOR (SYMBOL) Page 10-5

10.2.1 SYMBOL Command Line
The format for calling SYMBOL is identical to the LINK command Lline:
-SYMBOL {/switches }filespec1{,fi LéspecZ,. ..filespecN}{/switches} (Ren)

where filespec selects an object file. The default extension is .0BJ. The
first file specified may not be a library file or an overlay file. If a
filespec 1dincludes a device and account specification, SYMBOL searches for
the file in that account. If you omit a device and account specification,
SYMBOL searches for the file first in the account and device you are logged
into; secondly, in your project Library account <C(account [P,01); and,
finally, in the System Macro Library account, DSK0:[7,71].

SYMBOL treats switches in the same way that a standard AMOS wildcard command
does; this means that the files affected by the option switches you use
depends on where you place the switches. Any switch that appears in front
of a filespec becomes the default switch and thus affects the rest of the
filespecs on the command Lline (unless canceled by a subsequent switch). Any
switch that appears at the end of a filespec affects only the files selected
by that specification. For example, suppose you want to use the /0 switch
to identify one or more .08J files as optional files:

-SYMBOL MAIN,/0 SUB1,SUB? (reT)

selects the files SUB1 and SUB2 as optional files because the /0 switch
precedes the filespec SUB1, and thus becomes the default. The command line:

-SYMBOL MAIN,SUB1/0,S5UB2

selects only the file SUB1 as an optional file because the /0 switch follows
the SUB1 filespec and appears before the next comma in the command Lline.

NOTE: Special switches (identified as 'operation switches" in the
discussions below) affect ALL filespecs specified on the command Line no
matter where you place the switch. For example, it doesn't matter where you
place the /M switch on the command line-- it affects all files selected by
the filespecs on the command line.

The output of SYMBOL 1is placed into a file named filespec.SYM, where
filespec is the first file specified on the SYMBOL command Line. No symbol
file will be generated if one or more of the specified files 1is not found in
its assembled object (.0BJ file) form. (NOTE: You may use the OBJNAM pseudo
opcode within your .MAC file to modify the name used for the SYMBOL output
file. See Section 5.1.2, "OBJNAM.')

THE LINKAGE EDITOR (LINK) AND SYMBOL TABLE FILE GENERATOR (SYMBOL) Page 10-6

10.2.1.1 Continuation Lines - As with LINK, if the program contains more
files than will fit on the command Lline, you may continue the file
specifications on the next line by terminating the last filespec with a
comma. SYMBOL will continue to accept filespecs as lona as the last
filespec on the Lline terminates with a comma.

10.2.1.2 SYMBOL Options

/E Include equated symbols in the symbol table file. You may also
use this switch with /M to tell SYMBOL to include equated
symbols in the load map. (Operation switch.)

/L Designates a library file. See Section 10.3, '"Library and
Optional Files,'" for information on Llibrary files.

/M Generate a Lload map (.MAP) file. See Section 10.4, "The Load
Map File," below, for a discussion of the load map. (Operation
switch.)

/N Suppress /S switch. (Operation switch.)

/0 Designates an optional file. See Section 10.3, "Library and
Optional Files," below, for information on optional files.

/P Generate program (.PRG) and overlay (.OVR) files. (Operation
switch.)

/R Designates a required file. The default switch. Cancels the
affect of a /L or /0 switch.

/S Generate a symbol table (.SYM) file. The default switch.
(Operation switch.)

You may specify multiple switches by preceding each switch with a /. (See
the command Lline below.)

10.2.2 Sample SYMBOL Display

Below is a sample SYMBOL display. MNote that we are using the /L switch to
specify a library file, and are using the /M switch to generate a load map.

THE LINKAGE EDITOR (LINK) AND SYMBOL TABLE FILE GENERATOR (SYMBOL) Page 10-7

«SYMBOL MATH,UTILIT.LIB/L/M

== Linkage Editor Version 2.0 ==

Processing MATH.0BJ

-- Optional and Library Request --

Processing UTILIT.LIB(NUM)

Symbol and Map files finished.

If you specify a Library file, SYMBOL tells you which of the object files in
the Llibrary file it is including in the symbol table file. (In the sample
above, SYMBOL included the NUM routine from the UTILIT.LIB Llibrary file.)

NOTE: If you compare this display with that of the LINK program (Section
10.1.2, "Sample LINK Display,”"” above), you will notice that it is very
similar. In fact, LINK and SYMBOL can be made to perform exactly the same
functions. If we had specified the /P switch and the /N switch (specifying
that we wanted a .PRG file generated and did not want a symbol table file),
the display above would have looked exactly Like the LINK display in Section
10.1.2.

10.3 LIBRARY AND OPTIONAL FILES
Both LINK and SYMBOL support the use of Llibrary files and optional files.

Most programmers have been faced at one time or another with the task of
having to write a standard routine again and again for multiple programs.
Library and optional files help you to avoid this situation by allowing your
programs to contain references to previously written routines in an object
file library or an optional file.

Besides making your life easier by making it possible for you to write
frequently used routines only once, Library and optional files also help to
standardize programs by providing the same error checking, input checking,
message display, etc., for multiple programs.

LINK and SYMBOL place any object files from a Library file and any optional
files at the end of your program in the order that they are needed to
resolve external references.

THE LINKAGE EDITOR (LINK) AND SYMBOL TABLE FILE GENERATOR (SYMBOL) Page 10-8

10.3.1 Library Files

A Llibrary file is a file produced by the LIB program (discussed in the next
chapter). The Llibrary file contains a group of .0BJ files. The purpose of
generating a Llibrary file is to gather together a group of subroutines that
are frequently used by programs on your system. These routines are then
easily accessed by all programmers on the system by using the EXTERN or
AUTOEXTERN pseudo opcodes 1in their source programs and specifying the
required routine. Unlike wusing the COPY pseudo opcode, which physically
incorporates the entire source file specified by the COPY statement into
your assembled program when you assemble it, using a Library file causes
only those subroutines within the library file that are referenced by vyour
program to be Llinked into your orogram.

For example, 1if a Library file contains the following object files: SWTCH,
SPACE, STRCHK, and GETLIN, and the program you link with the Library file
only references the routine GETLIN, only the object code for that routine
will be linked into your program.

IMPORTANT NOTE: You should note that the entire .0BJ file that is a
component of a Llibrary file will be Llinked in if your program references a
symbol in it; not just that portion of the .0BJ file required by your
program. For example, suppose you create a library file (using LIB) that
contains the following .0BJ files: STRCHK, GETLIN, and GETNUM. If vyour
program references a symbol within the GETNUM object file, the entire GETNUM
file is linked in even if it also contains several other routines. For this
reason, you should Llimit each .0BJ file that is a component of the Library
to only one subroutine.

You may not specify the Llibrary file first on the LINK or SYMBOL command
line. (This 1is because to resolve symbol references, LINK and SYMBOL must
first access the file that makes those references before it accesses the
file that defines them.)

10.3.2 Optional Files

By wusing the /0 switch with LINK or SYMBOL, you may request that the
specified file (called an "optional file") be included in the Linked program
if the optional file is needed to resolve any external references in one of
the other files being linked. 1If such a reference exists, the optional file
will be dncorporated 1into your program; otherwise, it will not. Unlike a
library file, an optional file only contains the contents of a single .0BJ
file. An optional file may not be an overlay.

THE LINKAGE EDITOR (LINK) AND SYMBOL TABLE FILE GENERATOR (SYMBOL) Page 10-9

10.4 THE LOAD MAP FILE

A load map shows how the modules linked together will be loaded into memory
when the program is invoked for execution. Using the /M switch with LINK or
SYMBOL, you may ask that a load map file be generated.
the name of the first file specified on the LINK or SYMBOL command Lline and

the extension .MAP.

A lLoad map lLists each object file used in the order that it was
each object file, the load map gives the following information:

1. The file's offset from the beginning of the program;

2. the size of the file in decimal bytes;

A Load map file

used.

has

For

3. in alphabetic order, all the symbols defined in that file and their
If the symbols are
relocatable relative to the base of the program, the load map flags

relocated values after the Linking process.

them with a "r" symbol.

For example, the following LINK command Lline:
LINK MATH,NUM/M

generated the load map file below, MATH.MAP:

[Linkage Editor Version 1.0]
Program Load Map

Module Base Size Symbol Value Symbol Value Symbol Value
MATH 000000r 348. ACCUM 000520r ADD 000330r BASCHG 000262r
BASE 0N0516r DIVI 000s562r EXIT 000514r
GETEXP 000006r GETOPR 000224r MULT 000344
NUMERR 000406r OPRERR 000446r OPRTBL 000522r
PARSE 000024r START 000000r SUB 000336r
NUM 000534r 144, CHGTBL 000706r GETNUM 000534r PRTNUM 000616r
10.5 LINK AND SYMBOL ERROR MESSAGES
?Command error
There was something wrong with your command Lline. For example, you

tried to use LINK or SYMBOL without specifying a file on which to work.

?Fatal error - Insufficient memory

You must increase the size of your memory partition; there was not

enough room to perform the procedure you specified.

THE LINKAGE EDITOR (LINK) AND SYMBOL TABLE FILE GENERATOR (SYMBOL) age 10-10

?Undefined switch /x - ignored
Refer to Appendix B, "Summary of Program Switches," to make sure that
you specified a valid switch.

?Fatal error - Qverlays of code are not permitted

Next expected address is xxxx

Overlay code address 1s xxxx
Your program 1is trying to overlay previous code. Check your .MAC
programs to make sure that your overlay references are correct.

?xxxx undefined
An external symbol is undefined. This is a very common error. You
have referenced a symbol which has not previously been defined (e.g.,
you have made a reference to a lLabel that does not exist). Make sure

that an EXTERN statement 1in one segment is defined by an INTERN
statement in another segment.

?Fatal error - First file must not be a Llibrary
To enable LINK or SYMBOL to correctly resolve external references to a
library, you must specify the program that references that Llibrary
before you specify the Llibrary file itself.

?7Fatal error - Attempt to specify overlay xxx as optional
You may not use the /0 switch to designate a file as optional 1if that
object file is an overlay.

?Fatal error - QOverlay symbol "xxxx'" in segment yyyy

was not defined in a previous input segment
You may not reference an undefined overlay. In other words, LINK is
trying to process a supposed overlay file, but has seen no references
to the overlay 1in a previous file. Without such a reference, LINK
cannot construct the overlay, so it aborts and returns you to AMOS
command Llevel.

?Fatal error - First file must not be an overlay
To enable LINK or SYMBOL to correctly resolve external references to an
overlay, you must specify the program that references that overlay
before you specify the overlay file itself.

?Fatal error - Expression stack error
An error occurred when LINK or SYMBOL evaluated some expressions in
your files. This idindicates an internal error-- you should never see
this error message.

?Fatal error - Expression stack overflow
You exceeded the number of nested expressions that LINK or SYMBOL can
handle. Try to find the exceedingly complex expression in your source
file and simplify it. '

CHAPTER 11

THE OBJECT FILE LIBRARY GENERATOR (LIB)

One of the more aggravating programming tasks is rewriting a utility program
that you've used many times before and that you know you will use many times
in the future. Many kinds of routines are so useful that you need them
again and aqain in many different programs: e.g., routines that check for
ASCII characters, that input and output characters, that sort data, etc.

The purpose of the Llibrary file is to collect together these frequently used
routines where they can be accessible to your program files when you Link
them into final, executable programs. Not only do Llibrary files help you to
avoid writing and rewriting the same routines over and over, but they can
also give help to every other programmer on the system. An added benefit of
library files is that they tend to help standardize programs on the system
by providing standard input, output, error checking, and message display
routines used by everyone on the system.

The Alpha Micro object file Library generator, LIB, constructs Llibrary files
out of .0BJ files. Each of the .0BJ files which is built into the Llibrary
file is a separate routine that can be accessed by your programs. The final
Library file has a .LIB extension and can be used by both LINK and SYMBOL.

11.1 LIB COMMAND LINE
The LIB command Lline takes one of two forms:

.LIB{/LY output=input1{,input2,...inputN>
or:
~LIBU/LY dinout{,input2,.. .inputNY RED

(The second format is equivalent to: LIB inout=inout{,input2,...inputN} if
you do not wuse the /L switch; otherwise, it is equivalent to:
TRM:=inout{,inout?2,...inputN}.)

"Qutput" is an output file specification; it specifies the name of your
Library file. The output file has the extension .LIB and the name specified
by the output or inout specification. -

THE OBJECT FILE LIBRARY GENERATOR (LIB) Page 11-2

"Input'" specifies the .0BJ files you want to place 1in the Llibrary. The
input specification can take the following forms:

filespec

filespec\item

filespec\ (item1,item2,...itemN)
filespec(item1,item?2,...itemN)

The \ symbol designates an exception. For example, in the command Lline:
_._LIB MYLIB\SUB1 ,NEWSUB,READIT

tells LIB that we want to modify the existing Library MYLIB (the "inout"
specification) by removing the object file SUB1, and adding NEWSUB and
READIT.

The parentheses specify a group of object files. For example:
_:_LIB MYLIB\ (SUB1 ,NEWSUB,READIT) ,GETNUM

tells LIB to modify the existing Llibrary MYLIB by deleting the collection of
object files SUB1, NEWSUB, and READIT, and to add the object file GETNUM.

LIB Looks for the specified files in the account and device specified. If
you omit the device and account specification from the filespec, LIB
searches first 1in the account and device you are logged into; then your
project Llibrary account on the device you are logged into (account TP,07);
finally, LIB searches in the System Macro Library account, DSKO0:l7,7].

11.1.1 Continuation Lines

As with LINK and SYMBOL, you may enter as many filespecs as you wish on as
many lines as you wish as long as you end the lLast filespec on the line with
a comma.

1.1.2 LIB Option Switch (/L)

The only LIB switch at this time dis the /L switch which tells LIB to
generate a Llibrary Llisting. This Llisting Llooks similar to a load map
listing (see Section 10.4., "The Load Map File."), and Llists all object
files in the Llibrary file and all INTERNed symbols.

If you specify an output file (e.g., LIB LISTSMYLIB/L) LIB creates the
Listing with the name and extension you specified, (The default extension
is .LST.) If you do not specify an output file (e.g., LIB MYLIB/L), LIB
sends the Llibrary listing to your terminal display.

THE OBJECT FILE LIBRARY GENERATOR (LIB) Page 11-3

11.2 SAMPLE LIB DISPLAY

Suppose we are creating a new Llibrary called USEFUL from the .0BJ files
ERRMSG, GETLIN, and FORMAT:

LIB USEFUL=GETLIN,FORMAT,ERRMSG

== Object File Librarian Version 1.0 ==

Processing GETLIN.OBJ
Processing FORMAT.O0BJ
Processing ERRMSG.0BJ

Library file finished

As LIB processes each new .0BJ file, it tells you so.

Suppose we want to add a routine to an existing library. The sample display
might Look Llike this:

«LIB USEFUL,LINSIZ

== Object File Librarian Version 1.0 ==

Processing USEFUL.LIB(GETLIN)
Processing USEFUL.LIB(FORMAT)
Processing USEFUL.LIB(ERRMSG)
Processing LINSTZ.0BJ

Library file finished

We've sucessfully added the new routine LINSIZ to our old Llibrary that
already contained the object files GETLIN, FORMAT, and ERRMSG. Notice that
LIB tells you as it processes each .0BJ file contained within the Llibrary
file.

11.3 UPDATING A LIBRARY

Replacing one or more of the .0BJ files that make up a library file can be a
bit tricky. If you simply try to add a new version of an existing .0BJ file
without deleting the old one first, problems can result because both
versions of the object file will be 1in the Llibrary. The recommended
procedure is to first delete the old routine, and then to add the new one.
For example, if we wish to replace the old version of FORMAT with a new one,
we enter:

-LIB USEFUL\FORMAT, FORMAT ReD

THE OBJECT FILE LIBRARY GENERATOR (LIB) Page 11-4

which first deletes the file and then adds it. Assume that our small

Library only contains three routines, GETLIN, ERRMSG, and FORMAT. The LIB
display in response to this command Lline would look like this:

Object File Librarian Version 1.0 ==

Processing USEFUL.LIB(GETLIN)
Processing USEFUL.LIBCERRMSG)
Processing FORMAT.O0BJ

Library file finished

Notice that LIB tells you what routines are contained in the Llibrary.

11.4 LIB ERROR MESSAGES
You may see the following error messages when you use LIB:

?Command error
LIB did not understand your command line. For example, you entered

LIB followed by a RETURN. Make sure that vyour file specifications
are in standard form.

2Undefined switch /X - ignored
where X 1J1s the switch you supplied. LIB currently uses only one
option switch, /L, to produce a library listing. Make sure that you
did not type a / by accident when you wanted to type a backslash.

?0BJ files are not Llibraries -- they can not be restricted

with a modifier
You may only use the "\" file restrictor and thp "OO" file inclusion
symbols if you are modifying a Llibrary.

?Listing aborted

LIB was not able to finish the Llibrary Llistina. For example, an
error occurred while LIB was trying to access a file.

?The following module was not found - xxx
You tried to modify an existing Llibrary, but the object files you
specified were not present in the library file. Make sure that you
did not accidentally use the \ restrictor symbol.

?Fatal error - xxx is an overlay

You may not specify an overlay as an element of an gbject file
Library.

CHAPTER 12

THE GLOBAL CROSS REFERENCE GENERATOR (GLOBAL)

The GLOBAL program takes a group of object (.0BJ) files and produces an
alphabetic global cross reference which Lists all global symbols in the
files, and shows which files define those symbols and which files accept
them as externally defined symbols.

In other words, GLOBAL produces a Llisting file that contains a cross
reference of all symbols that have been referenced in an INTERN, EXTERN, or
OVRLAY statement so that you can see in which .0BJ files these references
occur. (NOTE: GLOBAL produces a cross reference of all global symbols for a
collection of .0BJ files. Remember that you can also see a cross reference
listing as part of your assembly listing for all alobal and local symbols
for an individual .0BJ file by specifying the MACRO /R switch when you
assemble the file.)

GLOBAL is particularly useful when you want to find out what references are
made to symbols between files. The /R assembly switch is most wuseful when
you want more detailed information about a single .0BJ file.

NOTE: GLOBAL does not support Llibrary files.

12.1 GLOBAL COMMAND LINE
The GLOBAL command Line takes this form:
-GLOBAL{/switches} filespecl,filespec?{,...fi LespecN} (RETD)
where switches are optional and affect the format of the information in the
listing file. Filespecl...filespecN is a list of file specifications that

select the .0BJ files for which you want the global cross reference.

If you omit the extension from a file specification, GLOBAL uses the default
extension of .0BJ.

THE GLOBAL CROSS REFERENCE GENERATOR (GLOBAL) Page 12-2

GLOBAL produces the Llisting file in the account and device you are logged
into with the name of the first file specification on the command Lline and a
.GLB extension.

12.1.1 Continuation Lines

If there are too many file specifications to fit on one line, you may end
the command line with a comma. GLOBAL continues to accept file
specifications as long as the last filespec on the Lline ends with a comma.

If the last filespec on the Line ends with a comma, GLOBAL prompts you with
an asterisk for more filespecs. For example:

.GLOBAL MAIN,SUB1,SUB?,SUB3,SUB4,
*S1B5,SUBA

12.1.2 GLOBAL Options

You may request the following options by including the appropriate switches
on your command Lline:

Line width options (default is 80 characters):

/W Wide Llisting (same as /W:130). Produces a Llisting
file that may have up to 130 characters on a line.

/Wen Specifies characters per Line, where n specifies
the number of characters.

Page length options (default is 60 Llines):

/L Long Llisting (same as /L:80).

/L:n Specifies Lines per page, where n specifies the
number of Llines.

Each switch must begin with a slash. For example:

.GLOBAL/W/L MAIN,SUB1,SUB?

12.2 SAMPLE GLOBAL DISPLAY

As GLOBAL processes the specified files, it displays a message telling you
so ("Processing filespec"). After it processes all files, GLOBAL produces a
.GLB file; as it works, it displays the name of the file it is building and
displays a dot for each disk block it outputs. For example:

Building MAIN.GLB

THE GLOBAL CROSS REFERENCE GENERATOR (GLOBAL) Page 12-3
This file has the same name as the first file you specified on the GLOBAL
command Lline.
Below is a sample GLOBAL display:

LGLOBAL MAIN,SUB1,5UB2,SUB3

== Global Cross Referencer (Version 2.0) ==

Processing MAIN.OBJ
Processing SUB1.0BJ
Processing SUB2.0BJ
Processing SUB3.0BJ

Building MAIN.GLB....

Global file finished

If GLOBAL found any reference errors, it tells you so. For example:

Global file finished, 2 errors exist

12.3 SAMPLE LISTING DISPLAY

The Llisting file that GLOBAL produces Llists each defined symbol, and what
.0BJ file the symbol was referenced in. The Llisting tells you whether the
symbol was referenced as an internal symbol (I) via an INTERN pseudo opcode,
an external symbol (E) via an EXTERN or AUTOEXTERN pseudo opcode, or an
overlay symbol (0) via an OVRLAY pseudo opcode.

Here is a portion of what a GLOBAL Listing file might Llook Llike:

Global Cross—-Reference (Version 2.0)

MSSS
AUUU
I1B8BBB
N123
ALPHA I EL.E
BETA I. .
LETA I10..

The Listing file above tells us: 1) the symbol ALPHA appeared in an INTERN
statement in the file MAIN.OBJ and in EXTERN statements 1in the files
SUB1.0BJ and SUB3.0BJ; 2) the symbol BETA appeared in an INTERN statement in
MAIN.OBJ and in an EXTERN statement in SUB2.0BJ; 3) the symbol ZETA appeared
in an INTERN statement in MAIN.OBJ and in an OVRLAY statement in SUB1.0BJ.

THE GLOBAL CROSS REFERENCE GENERATOR (GLORAL) Page 12-4

12.4 GLOBAL ERROR MESSAGES
You may see the following error messages when usina GLOSAL:
?Undefined switch /X - ignored

You specified an invalid switch. The only switches GLOBAL recognizes
are the /L and /W switches.

?Cannot OPEN filespec - not found
GLOBAL could not find the file you specified. Make sure you are
logged into the correct account on the right device.

CHAPTER 13

THE SYMBOLIC DEBUGGER (DDT)

A debugger is a program that helps you to test and examine a new program.
The Alpha Micro system contains two dynamic debugger programs for assembly
language programs: 1) AlphaFIX, a screen-oriented debuaging program; and 2)
DDT, a debugging and patching program. For information on AlphaFIX, see the
AlphafFIX User's Manual, (DWM-00100-69). (AlphaFIX wusers please note
Section 145.4.1.2, below, which discusses using local symbols with both DDT
and AlphaFIX.)

The rest of this chapter discusses the operation of DDT. DDT is the AMOS
dynamic debugaing and patching program. It allows you to run your program
and to examine or alter program data or flow at any point in the program.
ALl of the examination and modification may be done via symbols, both on
type-in and type-out. DDT automatically expands your program in memory to
accommodate patches. This expansion capability, along with the ability to
define new symbols, makes it easy to patch existing programs. As a matter
of fact, all Alpha Micro system software patches are implemented using DDT.

NOTE: Most DDT commands terminate with an Escape. DDT echoes Escapes as
dollar signs. (That is, when you press the ESCAPE key (sometimes Llabeled
ALT MODE or ESC on your keyboard), DDT repeats the Escape as a $ symbol.)
Except for our discussion of local symbols, whenever you see a dollar sign
symbol in the discussions below, keep in mind that it represents the place
in your command input where you should type an Escape.

13.1 THE DDT COMMAND LINE

You may use DDT on any program, whether it contains executable code or not.
Tts most common use will be with program (.PRG) files produced by the
Linkage editor. To invoke DDT, type:

-DDT filespec GED
where filespec specifies the file you want to debug. If you omit the

extension, DDT uses the default extension .PRG. When DDT is called, the
first thing it does 1is check to see if the specified file is already in

THE SYMBOLIC DEBUGGER (DDT) Page 13-2

memory. If it is, the file is deleted from memory, The program 1is then
loaded 1into memory ensuring that a fresh copy is now resident, and DDT
proceeds to lLook for a symbol file.

Once DDT has loaded the program file and any associated symbol file, it
prints the base memory address and the size in bytes of the program heing
debugged. For example:

.DDT DEVCPY.PRG
PROGRAM BASE: 32777
PROGRAM SIZE: 400

Now you can begin to enter the DDT commands discussed below. For
information on exiting DDT, see Section 13.9, "Exiting DDT."

13.2 USING SYMBOL FILES

After Lloading the actual program to be debuaged into memory, DDT searches
for a symbol file. 1f one is currently in memory, DDT deletes it. DDT then
searches your account for a file with the same name as the specified program
file, but an extension of .SYM. If one is found, it is loaded into memory,
and debuggina can start. If no symbol file is found, DDT assumes that you
wish to debug without user symbols and enters debug mode without a symbol
table.

13.3 TERMINAL INPUT

Because DDT must accept characters on an individual basis, it runs in
terminal image mode. This mode disables the wusual functions of RUBOUT,
Control-U, Control-S, Control-Q, etc. However, Control-C will still abort
DDT and return you to AMOS. RUBOUT takes on a special meaning in DDT.
Instead of the standard function of erasing the lLast character typed, RUBOUT
in DDT will cancel the entire current command, and echoes as '"XXX" followed
by a tab.

13.4 EXPRESSIONS

DDT allows both input and output expressions to be 1in either numeric or
symbolic form. The majority of commands will accept or display in either -
mode, although certain arguments, such as a breakpoint number, must be
provided as a numeric value.

THE SYMBOLIC DEBUGGER (DDT) Page 13-3

13.4.1 Input Expressions

Most commands will accept an expression whenever they require input. AlL
numeric input to DDT is in octal. Both symbolic and numeric expressions can
use the plus (+) or minus (=) operators. The following are all wvalid DOT
input expressions:

123
12343+57725
TAG

TAG+77
TAG+IT

Where TAG and IT are defined symbols.

13.4.1.1 Special Symbols - In addition to the symbols defined in the
program being debugged, DDT recognizes several special symbols in input
expressions. In register mode, DDT recognizes the register names RO, R1,
R2, R3, R4, R5, SP, and PC. In program-relative mode, DDT recognizes the
special symbol dot (.) as being equal to the currently open location. Dot
allows you to use relative offsets in an expression:

-+40/ Mov 7,R1 BR .+20
.58

The above example of using dot in a breakpoint command ($8) is one of the
most frequent uses of the special symbol dot.

13.4.1.2 Local Symbols - ©ODDT correctly displays local symbols if the
appropriate symbol table file 1is available. (If your version of DOT
displays Llocal symbols as garbled RAD50 names that begin with a colon, you
have an obsolete version of DDT.) (For information on using local symbols in
your source programs, see Sections 4.7 and 6.1.6.)

NOTE: Local symbols take the form nnn$. In the examples below, notice that a
dollar sign preceding a character indicates a normal DDT command 1in which
the dollar sign designates an Escape (for example: $A indicates Escape-A).
When a dollar sign follows a character (e.g., 10%), we are talking about a
local symbol.

DDT searches for Llocal symbols by Looking backward from the current open
location to the first non-local symbol and then scanning forward from that
location to the next non-Local symbol. The local symbol you are looking for
must fall within that region.

To access a local symbol, you must first set the current location counter to
a location 1in the region containing the local symbol. (Remember that a
local symbol only has scope between two non-local symbols. This 1is its
"region.") You will probably want to simply open the location at the

THE SYMBOLIC DEBUGGER (DDT) Page 13-4

non-Local symbol that appears just before the local symbol; then you can
access the symbol that is local to it. For example: The $A command displays
a string of ASCII characters at the current location or at the location of
the symbolic argument supplied:

LABELSA

tells the $A command to use the location at "LABEL'", a non-local symbol. If
we want to see the ASCII characters at the Llocal symbol 10% which Lies
between LABEL and LABEL1, we would first open the non-local symbol that
precedes 10%:

LABEL/

Now we can access 10%, which is local to the non-local symbol LABEL by
entering the local symbol "10%" followed by the command '"Escape-A":

1033A

DDT also. accepts a local symbol when assembling an instruction, searching
for it in the range where the instruction is being assembled.

NOTE FOR ALPHA FIX USERS: FIX also correctly displays lLocal symbols. Any of
the FIX commands that allow you to specify non-local symbols may also be
used to access Llocal symbols. Just follow the non-local symbol with a
space; then enter the symbol you want to access that s Llocal to that
non-local symbol. For example:

>S START 108 GED

tells FIX to search for the symbol 10% that is local to the non-local symbol
START.

13.4.2 Output Expressions

DDT outputs data in both symbolic and numeric format. When in
program—-relative mode, DDT displays memory locations in symbolic form; 1in
register mode, it displays register contents in octal. All numeric output,
even when combined in a symbolic output expression (such as JMP TAG+12) will
be in octal unless you have set J.HEX in your job status word via the SET
HEX command, or you are executing a command which explicitly displays data
in another radix (such as $D, the decimal typeout command).

THE SYMBOLIC DEBUGGER (DDT) Page 13-5

13.5 DDT MODES

DDT has three modes in which it operates: program-relative mode, absolute
mode, and register mode. The normal mode, and the one in which DDT initally
comes up, is program-relative mode. In this mode, addresses are assumed to
be relatijve to the base address of the program being debugged. Therefore,
an expression of '"12" refers to location 12 relative to the program base,
not absolute location 12.

In absolute mode, all addresses are taken to represent absolute memory
locations. In the example above, '"12" would refer to absolute memory
location 12, regardless of the fact that that location is outside of your
memory partition as well as outside of the program being debugged. Absolute
mode is entered via the TAB command, and left via the $R command.

In register mode, expressions refer to the registers instead of memory
locations. Register mode may be entered by using one of the special symbols
RO-R5, SP, or PC. Any of these symbols followed by a command which opens a
location will enter register mode. Register mode may be left via the $R
command.

13.6 DDT COMMANDS

DDT has a variety of commands to allow you to examine memory Llocations,
change the contents of locations, display registers, set breakpoints,
single-step, etc. Commands to DDT usually consist of giving a numeric or
symbolic argument followed by a DDT command. Commands consist of single
characters, such as the slash (/) command, and also of an Escape (ALTMODE on
some terminals) followed by a single Lletter command, such as the Escape-B
command. Escapes in DDT echo as a dollar-sign ($). The dollar-sign is used’
in this section to represent an Escape; therefore, when you see a command
such as "$B", that should be interpreted as an Escape followed by a "B".

Several of the commands refer to opening and closing memory Llocations or
registers. When a Llocation or register is said to be '"open,'" it simply
means that DDT will place into the open item any expression entered through
your terminal followed by a command that closes the location. This is the
method by which memory or register contents are modified. When a Llocation
is '"closed," vyou may no longer modify it by entering an expression without
first opening the location again.

13.6.1 Opening a Location or Register (/)

The slash command (/) displays the current contents of a memory location or
register and leaves that location open for modification. The slash command
takes a symbolic or numeric argument immediately preceding the slash. The
contents of the opened item will be displayed in symbolic form. The
contents may be examined in other formats via other commands such as equal
(=), Escape-D (3$D), etc. The sltash command will not open locations outside

THE SYMBOLIC DEBUGGER (DDT) \‘ Page 13-6

of the program being debugged unless DDT is in absolute mode. The following
shows a few examples of using the slash command:

TAG/ MOVI 7,R1 examine location TAG
TAG+12/ SET QFLG(B) examine location TAG+12
R1/ 46623 examine register R1

13.6.2 Closing a Location (Carriage-Return)

The carriage-return (RE)) command closes the current Llocation. As with
other commands which close a location, it may be immediately preceded by a
number or symbolic expression which will be placed into the open Llocation.
Note that the expression given prior to the closing command may generate
more than one word of data, in which case the extra words are placed in the
locations immediately following the open one.

13.6.3 Display a Value in Octal (=)

The eaual (=) command displays the contents of the currently open item in
octal unless you have SET HEX, 1in which case the display will be in
hexadecimal. The equal command may be used to convert a symbolic typeout to
numeric, or may be wused to compute the value of an expression. The
following are all common uses of the equal command:

TAG/ MOVI 7,R1 = 004166 display contents in octal
TAG=3252 find value of symbol
26662+15252=44134 compute an expression

.=24233 display current location addr

13.6.4 Opening the Next Location (Line-Feed)

The line-feed (LF) command functions the same as the carriage-return command
except that it opens the next Llocation after closing the current one.
Depending on your terminal, to enter a Line-feed, press the down-arrow key
on your terminal or the key labeled "LF'" or "LINEFEED."

If the contents of the current location have been displayed in symbolic
form, LF will advance to the Llocation following the entire instruction
displayed, regardless of length. This allows you to easily step through a
program, without regard to opcode length. If the current location has been
displayed in octal (via the = command) the LF command will step to the next
word. If new data is entered prior to the LF command, the length of the
data entered will determine the next location opened.

In register mode, a line-feed will step to the next register. If you step
past PC, RO will be reopened.

THE SYMBOLIC DEBUGGER (DDT) Page 13-7

13.6.5 Opening the Previous Location (")

The wup-arroWw (%) command wWwill <close the current location and open the
location immediately preceding the current one. Unlike LF, up—arrow does
not automatically open a Llocation on a valid opcode boundary; up-arrow
always backs up one word.

(NOTE: This command is not the key labeled with an up-arrow on your
terminal keyboard-- it is the """ symbol, the circumflex.)

13.6.6 Opening a Location Indirectly (&)

The at-sign (3) command treats the contents of the current open location as
a program relative address and opens that Llocation.

13.6.7 Opening an Absolute Location Indirectly (TAB)

The TAB (Control-I) command treats the contents of the current open location
as an absolute address and opens that Llocation. It also sets DODT into
absolute address mode. DDT will remain in this mode until you execute an $R
command.

13.6.8 Starting a Program (3$G)

The Escape-G (3G) command starts the program being debugged at relative
address 0. ODOT echoes a tab after the $G, and waits for one line of input
terminated by a carriage-return, prior to beginning actual execution of the
program. This line of input is passed to the program just as if it had been
entered following the command if the program were being run without DDT.
The proceed ($P) and single-instruction ($X) commands are not legal until an
$G command has been entered. You may execute an 3G command at any time to
restart the execution of the program. This assumes, of course, that the
program being debugged is self-initializing so that the same copy can be run
more than once.

13.6.9 Setting Breakpoints (3$B)

The Escape-B ($B) command sets or Lists breakpoints within the program. ODT
allows up to eight breakpoints to be set in the program. Each breakpoint is
assigned a number from 0 to 7. The $B command accepts two arguments: the
numeric or symbolic program-relative address at which you wish to set a
breakpoint, and the breakpoint number which you wish to place at this point.
The program-relative address 1is given first, 1immediately preceding the
Escape. The breakpoint number 1is given after the Escape, immediately
preceding the B. Both of the arguments are optional. If the address is

THE SYMBOLIC DEBUGGER (DDT) Page 13-8

omitted, the breakpoints are Listed on your terminal. If the breakpoint
number is omitted, the first available breakpoint 1is assigned. The
following list should make things clear:

$8 Lists all active breakpoints by number and symbolic or
numeric address.
$xB Lists breakpoint x, if it is active.

TAGSB Sets a breakpoint at address TAG. The first inactive
breakpoint is used. If no breakpoint is available a "?"
is printed on your terminal.

TAGSxB Sets a breakpoint at address TAG. Uses breakpoint x
whether it was previously in use or not.

DDT will not allow odd address arguments or breakpoint numbers greater than
7 for 38, or for the $C command below.

13.6.10 Clearing Breakpoints ($C)

The Escape=C (3C) command clears one or all of the breakpoints currently
set. It accepts two arguments in the same manner as $B.

$C Clears all active breakpoints from the table.

$xC Clears breakpoint x, if it was active.

TAGSC Clears the breakpoint at address TAG, if such a breakpoint
exists.

TAGSxC Functions the same as $xC.

13.6.11 Proceeding From a Breakpoint ($P)

The Escape-P ($P) command proceeds from the last breakpoint. This command
is only wvalid 1if a breakpoint has been reached in the program. When
executed, $P causes program execution to resume until another breakpoint is
encountered or the program exits.

The $P command accepts an optional argument before the Escape-P. This
argument is a one word value telling ODT how many times to execute the
current breakpoint before breaking again. Thus the command 5%P tells DDT to
pass through this breakpoint five times before breaking again. If this
argument is not given, DDT assumes a value of one. Using this argument is
often wuseful if a breakpoint has been placed within a loop, and you wish to
have DDT break only after several iterations of the Lloop.

THE SYMBOLIC DEBUGGER (DDT) Page 13-9

13.6.12 Executing Single Instructions ($X and \)

The Escape-X ($X) and backslash (\) commands are identical. Both cause the
execution of a single instruction. These commands are valid only after a
breakpoint has been reached. They are usually used to monitor the execution
of a small section of a program, allowing the examination or modification of
registers and memory locations between each instruction. IMPORTANT NOTE:
You are not allowed to single-step through a supervisor call (also known as
a "monitor call™).

13.6.13 Setting Program-Relative Mode ($R)

The Escape-R ($R) command enters program-relative mode once you have been in
absolute or register mode.

13.6.14 Displaying Data in Decimal ($D)

The Escape-D ($D) command displays a location or series of Llocations in
decimal. This command accepts one of two possible arguments, but not both.
One of the arguments represents the expression to translate and the other is
the number of locations to translate. The following table should explain
the format:

$D Displays the currently open location in decimal.

$xD Displays x words in decimal, starting with the currently
open location.

exp$d Displays the decimal value of exp. Exp can be numeric,
symbolic, or an opcode expression. As many words as are
needed to display the entire expression are used.

13.6.15 Displaying Data in Octal ($=)

The Escape-equal ($=) command displays a location or a series of locations
in octal. It is identical in format to the $D command.

13.6.16 Displaying Data in Hex ($H)

The Escape-H ($H) command displays a location or a series of locations in
hexadecimal. It is identical in format to the $D command.

THE SYMBOLIC DEBUGGER (DDT) Page 13-10

13.6.17 Displaying Data in RADSO (3%*)

The Escape-asterisk ($x) command displays the contents of the current
location in unpacked RAD50 format.

13.6.18 Displaying Data as ASCII Characters ($')

The Escape—-quote ($'") command displays the contents of the current Llocation
as two ASCII characters.

13.6.19 Displaying Data as Bytes (3#)

The Escape-pound sign ($#) command displays the contents of the current
location as two 8-bit bytes. The low order byte of the word is displayed
first. Typeout is in octal.

13.6.20 Displaying a String of ASCII Characters (3A)

The Escape~A ($A) command displays a string of bytes as ASCII characters.
This command terminates its typeout when a null byte is found, and adjusts
the current location to the next even address following the null byte. The
command accepts two formats:

3A Display ASCII data starting with the current open
Llocation.

TAGSA Display ASCII data starting at relative address TAG.

13.6.21 Displaying the Base Address and Size ($M)

The Escape-M ($M) command displays the absolute base address and the size in
bytes of the program being debugged. This is the same information typed
when DDT is first started.

13.6.22 Defining New Symbols (:)

The colon (:) command allows you to define new symbols and insert them into
the symbol table. The location being given a Llabel must be within the
program, not outside of it. Symbols are, as usual, one to six RADS50
characters long, with the first character always alphabetic. A symbol may

be defined by merely typing the label name followed immediately by a colon,
as in:

TAG:

THE SYMBOLIC DEBUGGER (DDT) Page 13-11

The value assigned to the symbol 1is the Llocation of the Last examined
address. Once the symbol has been defined, it may be referenced
symbolically by you throughout the program. The colon command is most often
used during program patching (see Section 13.7, "Using DDT To Patch
Programs'). New symbols are automatically inserted into your symbol table.
Once you have exited from DDT, you can resave the symbol (.SYM) file so that
the newly defined symbols are available next time you use DDT on the
program.

13.6.23 Examining Register Contents (%)

The percent (%) command examines the contents of a register without entering
register mode. It is often used to display the contents of a register as
you single-step through a program, without having to enter and exit register
mode. The format for the percent command is "%xx=", where xx is the CPU
register that you want to display. The register argument must be in
standard register notation (i.e., R1, R2, R3, R4, R5, SP, or PC). The
contents of the register are displayed in octal.

13.7 USING DDT TO PATCH PROGRAMS

You will often use DDT to patch an existing program. This is often useful
if you do not have the source code handy, or if you do not wish to go
through a time-consuming reassembly of your program. DDT provides for
patching through the use of the colon command to define symbols, and through
automatic expansion of the program area. Patches may be placed at the end
of the program after the Llast valid Llocation in the program; DDT will
automatically expand the program to fit the patches. Program patches may be
done symbolically through the normal symbolic entry mode, and through the
use of the colon command. A symbol may not, however, be referenced before
you define it. If a label is defined at the start of the patch, the patch
may be referred to symbolically throughout the main program.

13.8 DDT ERRORS
If DDT does not understand your input, it displays a "?".
Other error messages include:

?Cannot OPEN filespec - not found

where filespec is the file you want to debug. Make sure that you are
logged into the proper account and device.

THE SYMBOLIC DEBUGGER (DDT) Page 13-12

?Cannot single step through SVC
You cannot use the 9$X command to single-step trhough a supervisor
call. You must skip over the call by placing a breakpoint after the
call and its arguments; then wuse the $P command to skip to that
location. At that point you can resume single-stepping.

?DDT Internal buserr

A bus error occurred within the DDT program itself. This error was
not caused by your program.

?Buserr at monitor PC nnnn
A bus error occurred, but was not caused by DDT. Your program is
probably at fault. The number that appears in the message tells you
what memory address was loaded into the Program Counter when the
error occurred.

13.9 EXITING DDT

To leave DDT, type a Control-C. DDT will save the altered program and
symbol table in memory, allowing you to use the SAVE command to make a
permanent copy of either the modified program or symbol table. You should
never save a program that has been partially run; it is a good idea to use
DDT on the program once again, put in the patches, and save it, without
running it. This ensures that there are no data storage areas that have
been altered from their orginal state. 1f the program exits on its own
while being run, you should NEVER save it if breakpoints were used anywhere
in the program. Breakpoints are not cleared until the program goes back to
DDT. Running through breakpoints when not under control of DDT can have
disasterous results.

APPENDIX A

THE ASCII CHARACTER SET

The next few pages contain charts that List the complete ASCII character
set. We provide the octal, decimal and hexadecimal representations of the

ASCII values.

Note that the first 32 characters are non-printing Control-characters.

THE ASCII CHARACTER SET Page A-2

THE CONTROL CHARACTERS

CHARACTER OCTAL DECIMAL HEX MEANING
NULL 000 0 0on Null (fill character)
SOH 001 1 N1 Start of Heading
STX Nno2 2 02 Start of Text
ETX N03 2 N3 Fnd of Text
ECT 0N4 4 N4 End of Transmission
ENQ 00s 5 05 Fnouiry
ACK 004 b 06 Acknowledge
BEL 007 7 07 Bell code
BS 010] 08 Back Space
HT 011 9 n9 Horizontal Tab
LF 012 10 NA Line Feed
VT 013 11 N8 Vertical Tab
FF 014 12 0c Form Feed
CR 015 13 (4D Carriage Return
SO 016 14 NE Shift Out
SI 017 15 OF Shift In
DLE 020 16 10 Data Link Escape
DC1 021 17 11 Device Control 1
DC2 022 18 12 Device Control 2
DC3 023 19 13 Device Control 3
DC4 024 20 14 Device Control 4
NAK N25 21 15 Negative Acknowledge
SYN 026 22 16 Synchronous Idle
ETB 027 23 17 End of Transmission Blocks
CAN 030 24 18 Cancel
EM 031 25 19 End of Medium
SS 032 26 1A Special Sequence
ESC 033 27 18 Escape
FS 034 28 1C File Separator
GS 035 29 1D Group Separator
RS 036 30 1E Record Separator
us 037 31 1F Unit Separator

THE ASCII CHARACTER SET

PRINTING CHARACTERS

Page A-3

CHARACTER OCTAL | DECIMAL HEX MEANING
SP 040 32 . 20 Space
! 041 33 21 Exclamation Mark
" 042 34 22 Quotation Mark
043 35 23 Number Sign
$ 044 36 24 Dollar Sign
% 045 37 25 Percent Sign
& 046 38 26 Ampersand
! 047 39 27 Apostrophe
(050 40 28 Opening Parenthesis
) 051 41 29 Closing Parenthesis
* 052 42 2A Asterisk
+ 053 43 28 Plus
, 054 INA 2C Comma
- 055 45 2D Hyphen or Minus
. nsé 46 2E Period
/ 057 47 2F Slash
0 060 48 30 lero
1 061 49 31 One
2 062 50 32 Two
3 063 51 33 Three
4 064 52 34 Four
5 065 53 35 Five
6 066 54 26 Six
7 067 55 37 Seven
8 070 56 38 Eight
9 071 57 39 Nine
: 072 58 3A Colon
; nv3 59 3B Semicolon
< 074 60 3C Less Than
= 075 61 3D Sign
> 076 62 3E Greater Than
? rard 63 3F Question Mark
@ 100 64 40 Commercial At

THE ASCII CHARACTER SET

Page A-4

CHARACTER OCTAL DECIMAL HEX MEANING
A 101 65 41 Upper Case Letter
] 102 66 42 Upper Case Letter
C 103 67 43 Upper Case Letter
D 104 68 44 Upper Case Letter
E 105 69 45 Upper Case Letter
F 106 70 46 Upper Case Letter
G 107 71 47 Upper Case Letter
H 110 72 48 Upper Case Letter
I 111 73 49 Upper Case Letter
J 112 74 4A Upper Case Letter
K 113 75 4B Upper Case Letter
L 114 76 4C Upper Case Letter
M 115 77 4D Upper Case Letter
N 116 78 4LE Upper Case Letter
0 117 79 4F Upper Case Letter
P 120 80 50 Upper Case Letter
Q 121 81 51 Upper Case Letter
R 122 82 52 Upper Case Letter
S 123 83 53 Upper Case Letter
T 124 84 54 Upper Case Letter
U 125 85 55 Upper Case Letter
v 126 86 56 Upper Case Letter
W 127 87 57 Upper Case Letter
X 130 88 58 Upper Case Letter
Y 131 89 59 Upper Case Letter
z 132 90 SA Upper Case Letter
C 133 91 5B Opening Bracket
\ 134 92 5¢C Back Slash
] 135 93 5D Closing Bracket
" 136 94 SE Circumflex
_ 137 95 SF Underline
) 140 96 60 Grave Accent
a 141 97 61 Lower Case Letter
b 142 98 62 Lower Case Letter
c 143 99 63 Lower Case Letter
d 144 100 64 Lower Case Letter
e 145 101 65 Lower Case Letter
f 146 102 66 Lower Case Letter
g 147 103 67 Lower Case Letter
h 150 104 68 Lower Case Letter
i 151 105 69 Lower Case Letter
j 152 106 6A Lower Case Letter
k 153 107 6B Lower Case Letter
L 154 108 6C Lower Case Letter
m 155 109 6D Lower Case Letter
n 156 110 6E Lower Case Letter
o] 157 1M1 6F Lower Case Letter

THE ASCII CHARACTER SET

Page A-5

CHARACTER OCTAL DECIMAL HEX MEANING
p 160 112 70 Lower Case Letter
q 161 13 71 Lower Case Letter
r 162 114 72 Lower Case Letter
s 163 115 73 Lower Case Letter
t 164 116 74 Lower Case Letter
u 165 117 75 Lower Case Letter
v 166 118 76 Lower Case Letter
W 167 119 77 Lower Case Letter
X 170 120 78 Lower Case Letter
y 171 121 79 Lower Case Letter
z 172 122 7A Lower Case Letter
{ 173 123 78 Opening Brace
| 174 124 7C Vertical Line
} 175 125 7D Closing Brace
176 126 7E Tilde
DEL 177 127 7F Delete

APPENDIX B

SUMMARY OF PROGRAM SWITCHES

The sections below List the option request switches wused by the various
components of the Alpha Micro assembly language programming system:

MACRO
LINK
SYMBOL
LIB
GLOBAL

For more information on a particular option request, see the chapter in this
book that discusses the appropriate program.

B.1 THE MACRO ASSEMBLER - MACRO

/B text Generates bottom footer title on each listing page using the
rest of the command Line following the switch. /B must be
the last switch on the command Lline.

/C Includes conditionals in the Llisting.

/E Writes to the listing only those Llines that contain an
error.

/H Lists binary code 1in hexadecimal instead of octal in the
listing.

/L Generates an assembly Llisting file. Creates the output file
with the same name as vyour source file, but a .LST
extension.

/0 Uses current object file by omitting Phases 1 and 2.

/R Generates a cross reference, which appears at the end of the

assembly Llisting. “

SUMMARY OF PROGRAM SWITCHES Page B-2
/T Prints the Listing on your terminal instead of writing it to
a disk file.
/v{a}:X Allows you to specify a value on the MACRO command Line
which can be examined during the assembly process. "a"
specifies the type of value specified, and X is the value.

/X Lists in your assembly listing all macro expansions.

NOTE: You do not have to specify the /L switch when you use the /B, /C, /E,
/H, /R, /T, or /X switches to tell MACRO to generate a listing.

You may combine any of the above switches as desired in a single command
line by entering them after a single / character at the end of the command
line. For example:

.MACRO NEWDVR.MAC/RT @D

B.2 THE LINKAGE EDITOR - LINK

/E Include equated symbols in the symbol table file. (You must wuse
/E with the /M or /S switch.) (Operation switch.)

/L -Designates a Library file.

/M Generates a load map (.MAP) file. (Operation switch.)
/N Suppress /P switch. (Operation switch.,)

/0 Designates an optional file.

/P Generates program (.PRG) and overlay (.0VR) files. The default
switch. (Operation switch.)

/R Designates a required file. The default switch. Cancels the /L
and /0 switches.

/S Generate a symbol table (.SYM) file. (Operation switch.)

You may specify multiple switches if you precede each switch with a slash.
For example:

=LINK MAIN,SUB1/M/S

SUMMARY OF PROGRAM SWITCHES

B.3 THE SYMBOL TABLE FILE GENERATOR - SYMBOL

Page B-3

/E Include equated symbols in the symbol table file. You may also

use this switch with /M to tell SYMBOL to include
symbols in the load map. (Operation switch.)

/L Designates a library file.
/M Generate a load map (.MAP) file. (Operation switch.)
/N Suppress /S switch. (Opération switch.)

/0 Designates an optional file.

equated

/P Generate program (.PRG) and overlay (.0VR) files. (0Operation

switch.)

/R Designates a required file. The default switch. Cancels the

affect of a /L or /0 switch.

/S Generate a symbol table (.SYM) file. The default
(Operation switch.)

You may specify multiple switches if you precede each switch with
For example:

-SYMBOL MATN,SUB1/M/S

B.4 THE OBJECT FILE LIBRARY GENERATOR - LIS

switch.

a slash.

The only LIB switch at this time dis the /L switch which tells LIB to

generate a library listing. This Llisting looks similar to a

Lload map

listing (see Section 10.4., "The Load Map File."), and Llists all object

files in the Llibrary file and all INTERNed symbols.

1f you specify an output file <(e.qg., LIB LIST=MYLIB/L) LIB creates the
listing with the name and extension you specified (the default extension is
.LST). If you do not specify an output file (e.qg., LIB MYLIB/L), LIB sends

the Llibrary listing to your terminal display.

B.5 THE GLOBAL CROSS REFERENCE GENERATOR - GLOBAL
Line width options (default is 80 characters):

/u Wide Listing (same as /W:130). Produces a listing

file that may have up to 130 characters on a lLine.

/W:in Specifies characters per Lline, where n specifies
the number of characters.

SUMMARY OF PROGRAM SWITCHES Page B-4

Page length options (default is 60 Llines):
/L Long listing (same as /L:30).

/L:n Specifies lines per page, where n specifies the
number of Llines.

Each switch must begin with a slash. For example:

-GLOBAL/W/L MAIN,SUB1,SUB2

AMOS ASSEMBLY LANGUAGE PROGRAMMER'S MANUAL

$ symbol

.GLB file . « . & &« o« .
JIPF file @ 0 0 0 0 0 .
LIB file &« & &« & & . .
LST file o 0 0 0 0 o
MAC file & v @ @ @ o .
MAP file . & . & . . .
.0BJ file o = & & .+ . .
OVR file . v « & &« & .
PRG file
-SYM file
TMP file W 0 0 0 4 . .

Argument concatenation
ASCII character set . .
ASECT v v 4 4 « & o o &
Assembled program . . .
AUTOEXTERN

BLKB
BLKW . . o o o o . ..
BYTE . « ¢« v o o« o« & &

CALL . & &« & & o o . .
Comments
Condition codes
Conditional assembly .
Condition codes . . .
ENDC . ¢ & ¢ &« o o &
Example o « « & o« & .
I
IFF v & v o v &« o W
S
IFTF @ @ ¢ o & o o
Multi-line format . .
Nestina . . . & o . .
Nesting example . . .
Single-Line format .
Subconditional rules
Subconditionals . . .
COPY . & ¢ & & o o o &
Copy file v v & « &« . .
Search defaults . . .

Index

131

2-3, 12-2

24

2-3, 5-10, 10-8, 11-1
2-2, 11-2

2-1, 5-2, 9-1
2-3, 10-6, 10-9
2-1, 9-1, 10-1, 10-8, 12-1
2-2, 5-12, 9-1
2-2, 9-1, 10-1
2-3, 10-4, 13-2
2-4

6-=5

4-1, 5-%

5-4

2-?

5-10

5-8

5-8

5-7

5-14

3-5, 6-4

7-2

3=b, 7-1

7-2?

7-3

7-4

7-1

7-3

7-3

7-3

7-1

7-3

7=

7-1

7-3

7-3

1-1, 2-1, 5-1, 5-9
5-1

5-2

Page Index-1

AMOS ASSEMBLY LANGUAGE PROGRAMMER'S MANUAL _ Paae Index-2

CREF & & v & & 4 s o 4 o & o a o 5-5,09-7

Cross reference . v ¢ . « . « . . 5-5, 9-7
Codes v v 4 4 4 4 ¢ 6o o o = o o« 97
Sample . & v ¢ 4 4 o o &« o . . 09-8

DDT & v v vt e e h h e e e e e 2-1, 2-3, 104, 13-1, 13-3, 1%3=5 to 13-12
Absolute open & &« . . . 137
ASCTII typeout . . v &« v &« « « « 13-10
Breakpoints « & & v o ¢ v &« « . 13-7 to 13-8
Byte typeout < . 1310
Closing locations . . . « « . . 136
Command Lline . . . &« « & « o . 13-1
CommandS + v & 2 & o« =« « =« « &« 13-5
Decimal typeout . . . &« 13-9
Definina symhols 13-10
Display ASCTI characters . . . 13-10
Display octal data 136
Displaying base address 13-10
Error messages « & ¢ & 13-11
Examining locations 13-5
Examining registers 13-11
EXiting v v & ¢« & @ @ & & & « « 13-12
EXpressions v« v v o o« « = = « « 13-2
Hex typeout . . &« &« & &« o « . . 13-9
Indirect open o« v v v« o « & . - 13-7
Local symbols « &« &« & &« & & . . 13-3
Modes v« & & v & 4 ¢ v o s v - - 13%-5
Octal typeout « & &« v « & o . o« 13-9
Opening the next location . . . 136
Opening the previous location . 13-7
Operation v o« v ¢ ¢ o « = « « « 131
Patching orograms . « « « « . . 1311
RAD50 typeout . .« & ¢ &« . « . . 13-10
Sinale step v &« v &« v ¢« v « « . 139
Special symbols = 13-3
Starting the proaram 137

Debugger . .« ¢ ¢ ¢ v 4 4 & - . . 1341

DEFINE . & v 4 ¢ ¢ o o ¢ o« a » « 6-2

END . . & & & ¢ v 4 4 4 4 s = o o 5-6
ENDC . . ¢ & ¢ v ¢ o & & o o « o 7-3
ENDM . . . & ¢ v 4 4 s e e e .. 6-2
ENDMX . & & & & 4 4 v o o o o o o A=b
Error messages
DDT & v & & & 4 4 4 s e e e« 131
GLOBAL . & 4 v v ¢ & & & =« « « 12-4
LIB . & & & v v v 4 4 s o v o 1-4
LINK . . & v v o o o o oo« 10-9
MACRO & & & & & & ¢ & « =« = o « 99
SYMBOL . & & v 4 4 4 o & o« » - 10-9
ESCAPE . & & & 4 & o 2 & & = « « 131
EVEN . . . & &« 4 & 4 & 4 o &« « « 5=5

AMOS ASSEMBLY LANGUAGE PROGRAMMER'S

Expression evaluation
EXPressionsS « o o o o« o o o a o @
EXTERN & & & 4 & & o o o a s o &«
External symhols . . &« & & & & .

FETCH v & 2 o 4 o o &« & 2 a o « =

Files
Assembhly cross reference . . .
Assembly listina
Global cross reference
Inter-phase work
Library o o o o o o & o = o = »
Library listing
Load map & & & 4 4« 4 4 4
ObieCt & 4 v ¢ 4 4 e 4 e . oa .
Optional .+ . . & &« ¢ 4 & & « &
Overlay o @ o o o v 4 a o a o =
Proaram . o <« o & o o o o = =« =
Regquired . & & & & o 4 o o« - .
Resolved symbol « . . .
SOUPCR v 4 4 2 & o o = » = « &«
Temporary work . .« o o o o o

FIX @ @ i e e h h e e s s s & e
Local symbols . . & & & & & o .

GLOBAL . & v & 4 4o a a @« o «a o &«
Command Line . . ¢« . & o & & &
ContinuAation Lines
Frror messanes .« « ¢ o « o = «
Oparation & o v & o ¢ 4 4 4 e
ONtioNS & & v 4 4 4 4 4 & o -
Sample display . .« . « « .« . .
Sample listina « . . .

Global CREF file . . «v v &« &« o .

Globhal cross reference

GLOBAL options v v o v 2 « o = «
Lona listina . . . « &« . « . .
Wide Listina« « . . .

TF e e e e e e e h e e e e e e .

L

I
L
Index modes o & v v ¢ 4 4 4 & e
Tnter-phase work files
TNTERN & . . i v i h h e e e e s
Internal symbols

Lahels . & & & 4@ o 4 o o o & o &
LEA & e e i h e e e e e e e e .
LTB & 4 4 s & 4 2 2 o o « o a a =
Command line . . ¢« o & & o o .
Continuation lines

MANUAL

2-3, 10-3

10-3, 10-6

2-1, 0-2
4

Page Index-3

AMOS ASSEMBLY LAMGUAGE PROGRAMMER'S MANUAL Page Index-4

Error messages
Exceptions (\)
Inclusions . &« v v o o .
Input specification . . .
Library files
Listing option
Qutput specification . .
Sample display .« « « . .
Updating a Library . . .
Library files
Library listing
Library updating
LINK & o 4 4 & & & o o » =
Command line
Continuation lines . . .
Error messages
Operation . . . « .« . . .
Optional files
Options . . & v v &« & o .
Sample display
LINK options
Equated symbols
Generate program file . .
Generate symbol table . .
Library file
Load map file« . .
Optional file . &
Required file

Suppress proaram aeneration

LIST & 4 v 4o 4 4 v o «
Listing fite
Load map file . . « & . . .

Sample . & . . ¢ 4 4 o .
Local symbols
Location counter

Machine instruction format

MACRO
Command line
Cross reference
Error Codes . « « &« . . .
Listina format
Operation « &« « « v o o .
Options « v v v &« ¢ v & &
Sample cross reference .
Sample display

MACRO options

Display listing on terminal

Generate a listing . . .
Generate cross reference
List code in hexadecimal
List conditionals
LiSt errors . v o o o o«

11-4

11-2

11-2

11-2

1n-8

11-2

11-1

11-3

11-2

2-3, 5-10, 10-7, 11-1
11-2

11-3

2-1 to 2-?, 4=5, 5-0 to 5-12, 10-1, 10-4
10-2

10-3

10-9

10-1

10-3

10-2 to 10-3

10-3

10-3
10-3

10-3

10-3

10-3

10-3

10-3

10-3

5-4, 9-6

2-2

2-3, 10-9

10-9

b=6, h=3, 13-3
4-5

N
i
[aN)

VTN = N0 NN

POPTEY

AMOS ASSEMBLY LANGUAGE PROGRAMMER'S MANUAL

List macro expansions
Listing footers . . .

Parameterized assembly

Use current object file

MACroS o o « o = = &« =
' operator

Araument concatenation

Call araguments . . .
Calls v v & v & & o &
Comments .+ &« & & « .
DEFINE . .« &« & & & &
Definition
Dummy arguments . . .
ENDM . . . & & & o« .
ENDMX & o v & « & o &
Examples . . . « . .
Expression evaluation
Labels o . .
Local symbols
Multi-Lline definition
NCHR & .
Nested calls
NEVAL &+ & & & & 2 & &
NSTZE . . & & & & o« &
NTYPE &« & v & & o o
Real arguments . . .

Sinale Lline definition

\ operator
MAYCREF . « & v o o & &
Monitor calls

FETCH & o o o o « o «

GETMEM . . o o o & &

NCHR & v a4 o o o
NEVAL & . & & o & & o &
NOCREF . & v & & o« o &
NOLTST & v v & v 2« &
NOSYM+«
NSIZE . & ¢« & &« & o o .
NTYPE & & v & & ¢« o o @
Numbers . . . « « « . .
NVALU o 0 0 0 v v o o W

Ohject file . . . o . .
Object file Lihrary . .
OBIJNAM & & . .
OFFSET & v v &« & w & &
Operation switches . .
Operators « « « & o« & =
Optional files
Ovarlay files
Overlays . o« o o o o =
OVRLAY . & & & & o » =

[
~
fo)
]
AN

R SRS SRR SR PO SRR RO
N2 N NNV ORNIIRN RNV ANV ANV ONN N VW
- ~ ~ ~
N N fo)
| | |
- - 0
KN

-5, 9-7
-1, 13-9
-10, 5-12
8-

6-6

6-6

5-5, 9-7
5-4, 9-6
5-5

6-6

66
A

5-4, 9-4
2-1
5-10, 11-1
5-3, 9-6, 10-5
5-14

10-2

4-3

10-7

2-2

5-17

2=2. 5-9 to 5-10, 5-12

Page Index-5

AMOS ASSEMBLY LANGUAGE PROGRAMMER'S MANUAL

PAGE . . & & 4 v 4o v o o o &
Parameterized assemhly option
POP & i i 4 4 e e e e e e e
Position independent code . .
Program file
Pseudo opcodes
Y
ASECT & 4 4 @ o o o o o = =
Assembly control
AUTOEXTERN« . .
BLKB . & & & 4 4 ¢ & & . .
BLKW & & 4 4 4 e e e . ..
BYTE & & 4 4 4 ¢ ¢ v o o .
CALL & 4 ¢ v 4 v e e v e .
Convenience « o o« .
COPY 4 i e e e e e e e e
CREF . . & ¢ & v ¢« v o o .
Data aeneration
DEFINE v ¢ ¢« & .o .
END & 4 & 4 e e e e e e e .
ENDC . . ¢ & ¢ ¢ @ & o « &
ENDM . . & & . e e e e . .
ENDMX . & . 4 v v o o & . .
EVEN . . & & ¢ v ¢« ¢ o o &
Extended conditional jumps
EXTERN . . . v & ¢ & & o .

IF o e v e v e e e e e

TFF v e e e e e e e e e
2 S
1
INTERN v v ww w .
LIST v v v e e e m e e e
MAYCREF + « v v @ v v o & &
NCHR v v v v h e e w e w s
NEVAL &« v v v 0w o e wou s
NOCREF v v v v @ v v o u .
NOLIST v v 4 o w v s v o .
NOSYM . v v v i e e w e ow s
NSIZE v v v v o o o & o & &«
NTYPE &« v v 4 e a e oa e u s
NVALU & @ @ e v e n e a e s
OBINAM & v v v e v a w w s
OFFSET @ v v & w o & o & »
OVRLAY v & 4w w e e e ™
PAGE & v v 4 v e e a e .
POP & v e e e e e e e .
PST & v e e e e e e a e .
PUSH v v e e e w o ow nc
RADSD v v v v e e e e e o .
RADIX v @ v @ o o o o o o .
RSECT v @ v @ w e o w m .
0
SYM vt e e e e e e e e ..
WORD & v v v e a e w e s

~

[I \l)tio‘{'\lm
N =
AN

N

| T T T R T T T |
L A I 2

!
OWNANAND2DID D2V DRNV ANNNINN 2 2 200 =2 N0

LD T | |
N N A

~

~

~

Ny 'Ol~’3|~k:1\{1ﬂﬁsf}\n\n\n\lu\l\l\lm\{lmo&\lm&mm—-\.n\n'.n.nm\nw.l.\m
N SN a ~

1
VIRV, RN A O O N S IR ST VIR, N NI NRG, TSRV, I, NEE NRV, W8

|
NP NN

A

[
S~

5NWU1-L\J-\J1‘\|I'W\I\\J1,\)\J1WW

~

(ad

Paae Index—-4A

9-6
0-4

4=5, 5-4

O~£|)O
~N O~ A

[o 3N}

AMOS ASSEMBLY LANGUAGE PROGRAMMER'S MANUAL Page Index-7

PST @ v ¢ v & o o o & o o o o o »
PUSH . . & & ¢ v @ v o o o o « .

RADS50 & v & & ¢ o « o o« o = « & .
RAD50 character set . v & &« &« « &
RADIX & & & ¢ ¢ o o o o « o « o «
Radix changing . « « &« & ¢ & « .

Re-entrant code « s o s
Registers . .« « « o« & c s e s e .
Relocatable code . . . « . « .« &
ASECT & & & o e s & s e @ =
Legal addressing modes
RSECT & & 4 o« o o« o « &« & - e =
RSECT v & & ¢ o = & “ s s s e = =
RTN & & & @ & ¢ & o « = « s s s .

Segmenting programs . . « « <« . .
Source file . o « o . . e s e s .
Source format
Subconditionals &« &« ¢ & & & & « .
RulesS v v o« ¢ o o o o o a « « &
SVCB & & 4 & 4 . . e s s e e e
SYM & & & & i i s s e e e e e
SYMBOL . & & & & & ¢ o o o o & &«
Command Line .+ « v o o « & « &
Continuation Llines . « .« & . .
Error messages .« « ¢ 2 & o & &
OptionNS v & o & o =2 o o s o =« &
Sample display . . « &« + & .« .
Symbol files . . & & & & &« &« . .
SYMBOL optionsS .« « v « o « o « &
Equated symbols « .« . & « . . .
Generate program file
Generate symbol table
Library file .« ¢ v o« ¢ « &« o« .
Load map file ¢« o o o« ¢ & o & .
Optional file « v & ¢ &« &« « & .
Required file . &« « ¢ v & & .« .
Suppress symbol table
Symbolic equates (=) . . .« . . .
SYS.MAC . & & & & & & & & & = & &

TCALL &« v ¢ &« & &« = & a e s o o =
Temporary work files
Terms o o & ¢ ¢ o o o o & &« “ e .
TIMP & 4 4 e 4 & o & = a @« s &« =
Updating a library« . . .
User symbols « & ¢ & o o « « « &

WORD . . & v & v v v & & o o o &

L
w

NU'IU'I\I\II‘.NNUI
DT DA ANW S0

, 23, 10-4
10-5

2-3, 13-2

JFTWARE PUBLICATIONS FILE REFERENCE NUMBER:

SOFTWARE DOCUMENTATION READER’S COMMENTS

2 appreciate your help in evaluating our documentation efforts. Please feel free to attach additional comments. If you require a written response, che

NOTE: This form is for comments on software documentation only. To submit reports on software problems, use Software
Performance Reports (SPRs), available from Alpha Micro.

gase comment on the usefulness, organization, and clarity of this manual: AMOS Assemb l.y Language Programmer 's Manual

id you find errors in this manual? If so, please specify the error and the number of the page on which it occurred.

hat kinds of manuals would you like to see in the future?

ease Indicate the type of reader that you represent (check all that apply):
O Alpha Micro Dealer or OEM

Od Non-programmer, using Alpha Micro computer for:
Business applications

Education applications

Scientific applications

Other (please specify):

oooo

O Programmer:

Assembly language
Higher-level language
Experienced programmer
Little programming ex perience
Student

Other (please specify):

oooooo

AME: DATE:

TLE: PHONE NUMBER:

RGANIZATION:

JDRESS:

TY: STATE: ZIP OR COUNTRY:

STAPLE STAPLE

FOLD FOLD

® 0 0 00600 00 000 0000006000 00000060 00000600 000000000000600060000000000000060000060000.

PLACE
STAMP
HERE

alpha
micro

17881 Sky Park North
Irvine, California
92714

ATTN: SOFTWARE DEPARTMENT

© 0 0000000 000000000000 000000000000000000000006000006080060006000060600060000000000

FOLD FOLD

