
.
I:

SOFT\NARE MANUAL

AMOS
ASSEMBLY LANGUAGE

PROGRAMMER'S MANUAL

DWM-00100-43

REV BOO

alpha
micro

SOFT\NARE MANUAL

AMOS
ASSEMBLY LANGUAGE

PROGRAMMER'S MANUAL

DWM-00100-43

REV. BOO

alpha
micro

AMOS ASSEMBLY LANGUAGE PROGRAMMER'S MANUAL

2MD-4/81

First printing:
Second printing:

Apri l 1979
30 Apri l 1981

'Alpha Micro', 'AMOS', 'AlphaBASIC', 'AM-100',
'AlphaPASCAL', 'AlphaLISP', and 'AlphaSERV'

are trademarks of

ALPHA MICROSYSTEMS
Irvine, CA 92714

This manual reflects AMOS Versions 4.5 and later

~1981 - ALPHA MICROSYSTEMS

ALPHA MICROSYSTEMS
17881 Sky Park North

Irvine, CA 92714

/ Page; ;

AMOS ASSEMBLY LANGUAGE PROGRAMMER'S MANUAL Page iii

PREFACE

This manuaL covers the procedures for writing assembly language proqrams for
the ALpha Micro AM-100 and AM-100fT based computer systems. We also discuss
the operation of the programs. that make up the AMOS assembLy program
deveLopment system. We assume that you are famiLiar with assembLy lanquage
programming techniques in generaL, and with the AM-100 machine instruction
set in particuLar.

The WD16 Microcomputer Programmer's Reference ManuaL, (DWM-00100-04),
describes the instruction set for the AM-100 and AM-100fT CPUs. For
information concerning interfacing with AMOS via the AMOS monitor caLLs,
refer to the AMOS Monitor CaLLs ManuaL, (DWM-00100-42).

NOTE: Because the AM-100 and the AM-100fT CPUs use the same instruction set,
aLL references to "AM-100" in this manuaL aLso appLy to the AM-100fT.

(

\

AMOS ASSEMBLY LANGUAGE PROGRAMMER'S MANUAL Paqe v

CHAPTER 1

PART I

CHAPTER 2

CHAPTER 3

CHAPTER 4

Table of Contents

PREFACE ••• iii

INTRODUCTION

1.1 NOTE TO USERS OF PREVIOUS VERSIONS OF
MACRO, LINK, SY~BOL AND DDT •••••••••••••••••• 1-2

1.2 THE CONTF.NTS OF THIS MANUAL •••••••••••••••••• 1-5
1.3 READER'S COMMENTS FORM ••••••••••••••••••••••• 1-6
1.4 CONVENTIONS USED IN THIS MANUAL •••••••••••••• 1-6

INTRODUCTION TO ALPHA MICRO ASSEMBLY LANGUAGE PROGRAMMING

FILES USED IN THE ASSEMBLY LANGUAGE SYSTEM

2.1 .MAC - SOURCE FILES •••••••••••••••••••••••••• 2-1
2.2 .OBJ - INTERMEDtATE OBJECT FILES ••••••••••••• 2-1
2.3 .PRG - BINARY PROGRAM FILES •••••••••••••••••• 2-2
2.4 .OVR - BINARY OVERLAY FILES •••••••••••••••••• 2-2
2.5 .LST - PROGRAM LISTING FILES ••••••••••••••••• 2-2
2.6 .LIB - LIBRARY FILES ••••••••••••••••••••••••• 2-3
2.7 .GLB - GLOBAL CROSS REFERENCE FILE ••••••••••• 2-~
2.8 .MAP - LOAD MAP FILE ••••••••••••••••••••••••• 2-3
2.9 .SYM - RESOLVED SYMBOL FILES ••••••••••••••••• 2-3
2.10 .IPF - INTER-PHASE WORK FILE ••••••••••••••••• 2-4
2.11 .TMP - TEMPORARY WORK FILES •••••••••••••••••• 2-4

MACRO SOURCE PROGRAM FORMAT

3.1 MACHINE INSTRUCTIONS ••••••••••••••••••••••••• ~-2
1.2 DATA GENERATION STATEMENTS ••••••••••••••••••• 3-2
~.1 SYMBOLIC EQUATE STATEMENTS ••••••••••••••••••• 3-3
~.4 ASSEMBLY CONTROL STATEMENTS •••••••••••••••••• 3-4
3.5 CONDITIONAL ASSEMBLY DIRECTIVES •••••••••••••• 1-4
1.6 MACRO DEFINITIONS AND MACRO CALLS •••••••••••• 1-4
3.7 COMMENT LI~ES AND BLANK LINES •••••••••••••••• 3-5

TERMS AND EXPRESSIONS

4.1 CHARACTER SET ••.••.•••.••.•••••.•••••.••••••• 4-1
4.2 TERMS •• 4-2
4.3 EXPRESSIONS ••••..•••••.••••.••.•••••••.•••.•• 4-2
4.4 NUMBERS•........••.•.................. 4-4
4.5 REGISTER SYMBOLS ••••••••••••••••••••••••••••• 4-4
4.6 ASSEMBLY LOCATION COUNTER •••••••••••••••••••• 4-5
4.7 LOCAL SYMBOLS .••••••••.••••.••.••••.•••••..•• 4-6

AMOS ASSEMBLY LANGUAGE PROGRAMMER'S MANUAL

CHAPTER 5

CHAPTER 6

ASSEMBLER PSEUDO OPCODES

5.1

5.2

5.3

5.4

ASSEMBLY CONTROL PSEUDO OPCODES ••••••••••••••
5.1.1 COpy ••••••••••••••••••••••••••••••••••
5.1.2 OBJNAM ••••••••••••••••••••••••••••••••
5.1.3 PAGE ••••••••••••••••••••••••••••••••••
5.1.4 LIST - NOLIST •••••••••••••••••••••••••
5.1.5 ASECT - RSECT •••••••••••••••••••••••••
5.1.6 SYM - NOSYM •••••••••••••..•••.•••.••••
5.1.7 CREF - NOCREF - MAYCREF •••••••••••••••
5.1.8 EVEN ••••••••••••••••••••••••••••••••••
5.1.9 RADIX •••••••••••••••••••••••••••••••••
5.1.10 NVALU •••••••••••••••••••••••••••••••••
5.1 .11 END •••••••••••••••••••••••••••••••••••
DATA GENERATION PSEUDO OPCODES •••••••••••••••
5.2.1 BYTE ••••••••••••••••••••••••••••••••••
5.2.2 WORD ••••••••••••••••••••••••••••••••••
5.2.~ ASCII •••••••••••••••••••••••••••••••••
5.2.4 RAD50 •••••••••••••••••••••••••••••••••
5.2.5 BlKB - BLKW••••••••••••••.....•.
SEGMENTATION PSEUDO OPCODES ••••••••••••••••••
5.3.1 Segmenting Assembly Language

Proqrams ••••••••••••••••••••••••••••••
5.3.2 AUTOEXTERN ••••••••••••••••••••••••••••
5.3.3 INTERN
5.3.4 EXTERN ••••••••••••••••••• a ••••••••••••

5.3.5 OVRLAY •••••••••••••••••••.••••••••••••
CONVENIENCE PSEUDO OPCODES •••••••••••••••••••
5.4.1 Extended Conditional Jumps ••••••••••••
5.4. 2 P(J~H - POP ••••••••••••••••••••••••••••
5.4.3 CALL - RTN •••••••••••••••••••.•••.••••
5.4.4 OFFSET ••••••••••••••••••••••••••••••••
5.4.5 PSI •••••••••••••••••••••••••••••••••••

USER DEFINED MACROS

6.1 MACRO
6.1.1
6.1.2
6.1.3
6.1.4
6.1.5
6.1.6
6.1.7

6.1.8
6.1.9

DEFINITION
Macro Definition Formats ••••••••••••••
The Macro Source Statements •••••••••••
The Dummy Argument List •••••••••••••••
labe L s •.••••••••••••••••...••••...•..•
locaL Symbols •••••••••••••••••••••••••
Comments ••••••••••••••••••••••••••••••
Special Mqcro Operators •••••••••••••••
6.1.7.1 Argument Concatenat i on (') •••
6.1.7.2 Expression EvaLuation (\) ••••
Suppressing Macro Expansion - ENDMX •••
NCHR, NTYPE, NEVAL and NSIZE ••••••••••
6.1.9.1 NCHR .•......••....•...•.•....
6.1.9.2 NTYPE•....••.....••..
6.1.9.3 NEVAL •••••••••••..•••••.•••••
6.1.9.4 NSIZE .•....•••..•.........••.

6.1.10 Sample Macro Definitions ••••••••••••••

Page vi

5-1
5-1
5-3
5-4
5-4
5-4
5-5
5-5
5-5
5-5
5-6
5-6
5-7
5-7
5-7
5-8
5-8
5-R
5-9

5-9
5-10
5-10
5-11
5-12
5-12
5-13
5-13
5-14
5-14
5-14

6-1
6-2
6-2
6-3
6-3
6-3
6-4
6-4
6-5
6-5
6-6
6-6
6-6
6-7
6-7
6-7
6-8

AMOS ASSEMBLY LANGUAGE PROGRAMMER'S MANUAL Page vii

CHAPTER 7

CHAPTER 8

PART II

CHAPTER 9

6.2 MACRO CALLS .•••••••••.•••••••••.•••••••••••••
6.2.1 Name ••••••••••••••••••••••••••••••••••
6.2.2 Real Arguments ••••••••.•.•••••••••.•••

6.2.3
6.2.4
6.2.5
6.2.6

6.2.2.1 Real Argument Format •••••••••
Label •••••••••••••••••••••••••••••••••
Comments ••••••••••••••••••••••••••••••
Nested Macro Calls
Sample Macro Calls ••••••••••••••••••••

CONDITIONAL ASSEMBLY DIRECTIVES

7.1
7.2
7.~

7.4

CONDITIONAL DIRECTIVE FORMATS
CONDITION CODES ••••••••••••••••••••••••••••••
SUBCONDITIONALS ••••••••••••••••••••••••••••••
NESTING OF CONDITIONALS ••••••••••••••••••••••

WRITING RELOCATAALE AND RE-ENTRANT CODE

6-8
6-9
6-9
6-9
6-10
6-11
6-11
6-11

7-1
7-2
7-3
7-3

8.1 VALID ADDRESSING M0DES ••••••••••••••••••••••• 8-1
8.1.1 Index Modes •.••••••••••••••.•••••••••• 8-3

R.2 RE-ENTRANT CODE •••••••••••••••••••••••••••••• 8-3
R.2.1 Using B~se Reqisters •••••••••••••••••• 8-3

USING THE ALPHA MICRO ASSEMBLY LANGUAGE PROGRAMMING SYSTEM

THE ALPHA MICRO ASSEMBLER (MACRO)

9.1
9.2

9.3
9.4

THE MACRO PHASES •••••••••••••••••••••••••••••
COMMAND LINE •••••••••••••••••••••••••••••••••
9.2.1 Filespec ••••••••••••••••••••••••••••••
9.2.2 Assembler Octions •••••••••••••••••••••
9.2.3 Parameterized Assembly Option •••••••••
SAMPLE ASSEMBLY DISPLAy ••••••••••••••••••••••
THE ASSEMBLY LISTING •••••••••••••••••••••••••
9.4.1
9.4.2
9.4.3

Assembly Listina Format •••••••••••••••
Listing Control Pseudo Opcodes ••••••••
Generatinq a Cross Reference ••••••••••
9.4.~.1 Cross Reference Control

9-1
9-2
9-2
9-2
9-4
9-5
9-6
9-6
9-6
9-7

Pseudo Occodes ••••••••••••••• 9-7
9.4.3.2 Cross Reference Listinq

Format ••••••••••••••••••••••• 9-7
9.4.3.1 Sample Cross Reference

9.S MACRO ERRORS
9.5.1 Error
9.5.2 Error

Listinq ••••••••••••••••••••••

Codes •••••••••••••••••••••••••••
Messaqes ••.•••••••••••••••.•••••

9-8
9-9
9-9
9-10

AMOS ASSEMBLY LANGUAGE PROGRAMMER'S MANUAL PaRe viii

CHAPTER 10

CHAPTER 11

CHAPTER 12

CHAPTER 13

THE LINKAGE EDITOR (LINK) AND SYMBOL TABLE FILE
GENERATOR (SYMBOL)

10.1 LINK ••• 10-1
10.1.1 LINK Command Line ••••••••••••••••••••• 10-2

10.1.1.1 Continuation Lines •••••••••• 10-3
10.1.1.~ LJ~K Options •••••••••••••••• 10-3

10.1.2 SampLe LINK Display ••••••••••••••••••• 10-3
10.1.3 LINK Errors •••••.•••••••••.••••••••••• 10-4

10.?' THE SYMBOL TABLE FILE GENERATOR (SYMBOL) ••••• 10-4
10.2.1 SYMBOL Co~mand Line ••••••••••••••••••• 10-5

10.2.1.1 Continuation Lines •••••••••• 10-~
10.2.1.2 SYMBOL Options •••••••••••••• 10-6

10.2.2 SampLe SYMBOL DispLay ••••••••••••••••• 10-6
10.~ LIBRARY AND OPTIONAL FILES ••••••••••••••••••• 10-7

10.3.1 Library FiLes ••••••••••••••••••••••••• 10-~
10.3.2 OptionaL FiLes •••••••••••••••••••••••• 10-8

10.4 THE LOAD MAP FILE •••••••••••••••••••••••••••• 10-9
10.5 LINK AND SYMBOL ERROR MESSAGES ••••••••••••••• 10-9

THE OBJECT FILE LIBRARY GENERATOR (LIB)

11.1 LIB COMMAND LINE ••••••••••••••••••••••••••••• 11-1
11.1.1 Continuation Lines •••••••••••••••••••• 11-2
11.1.2 LIB Option Switch (/L) •••••••••••••••• 11-2

11.2 SAMPLE LIB DISPLAy ••••••••••••••••••••••••••• 11-3
11.3 UPDATING A LIBRARy ••••••••••••••••••••••••••• 11-3
11.4 LIB ERROR MESSAGES ••••••••••••••••••••••••••• 11-4

THE GLOBAL CROSS REFERENCE GENERATOR (GLOBAL)

12.1 GLOBAL COMMAND LINE •••••••••••••••••••••••••• 12-1
12.1.1 Continuation Lines ••••••••••••••••••• 12-2
12.1.2 GLOBAL Options ••••••••••••••••••••••• 12-2

12.2 SAMPLE GLOBAL DISPLAy •••••••••••••••••••••••• 12-2
12.3 SAMPLE LISTING DISPLAy ••••••••••••••••••••••• 12-3
12.4 GLOBAL ERROR MESSAGES •••••••••••••••••••••••• 12-4

THE SYMBOLIC DEBUGGER (DDT)

13.1 THE DDT COMMAND LINE ••••••••••••••••••••••••• 13-1
13.2 USING SYMBOL FILES ••••••••••••••••••••••••••• 13-2
13.3 TERMINAL INPUT ••••••••••••••••••••••••••••••• 13-2
13.4 EXPRESSIONS ••••••••••••••••••••••••• ~ •••••••• 13-2

13.4.1 Input Expressions ••••••••••••••••••••• 13-3
13.4.1.1 SpeciaL Symbols ••••••••••••• 13-3
1~.4.1.2 LocaL SymboLs ••••••••••••••• 13-3

13.4.2 Outout Expressions •••••••••••••••••••• 13-4
13.5 DDT MODES ••••••••••••••••••••••••.••••.•••••• 13-5
13.6 DDT COMMANDS ••••••••••••••••••••••••••••••••• 13-5

13.6.1 Opening a Location or Register (I) ••• 13-5
13.6.2 CLosinQ a Location

(Carriaqe-Return) •••••••••••••••••••• 13-6

AMOS ASSEMBLY LANGUAGE PROGRAMMER'S MANUAL Page ix

APPENDIX A

APPENDIX B

INDEX

13.6.3 DispLay ~ VaLue in OctaL (=) ••••••••• 13-6
13.6.4 Opening the Next Location

(Line-Feed) ••••••.••••••••••••••••••• 13-6
13.6.5 Opening the Previous Location (~) 13-7
13.6.6 Opening a Location IndirectLy (@) •••• 13-7
13.6.7 Opening an AbsoLute Location

IndirectLy (TAB) ••••••••••••••••••••• 13-7
13.6.8 Starting a Program ($G) •••••••••••••• 13-7
13.6.9 Setting Breakpoints ($8) ••••••••••••• 13-7
13.6.10 CLearing Breakpoints ($C) •••••••••••• 13-8
13.6.11 Proceeding From a Breakpoint ($P) •••• 13-8
13.6.12 Executing SingLe Instructions

($X and \) •••••.••.•••••••••••••.•••• 13-9
13.6.13 Setting Program-ReLative Mode ($R) ••• 13-9
13.6.14 DispLaying Data in DecimaL ($0) •••••• 13-9
13.6.15 DispLaying Data in OctaL ($=) •••••••• 13-9
13.6.16 DispLaying Data in Hex ($H) •••••••••• 13-9
13.6.17 DispLaying Data in RAD50 ($*) •••••••• 13-10
13.6.18 DispLaying Data as ASCII

Characters ($") •••••••••••••••••••••• 13-10
13.6.19 DispLaying Data as Bytes ($#) •••••••• 13-10
13.6.20 DispLaying a String of ASCII

Characters ($A) •••••••••••••••••••••• 13-10
13.6.21 DispLayinq the Base Address and

Size ($M) •••..•••••••••••••••.••••••• 13-10
13.6.22 Defininq New SymboLs (:) ••••••••••••• 13-10
13.6.23 Examining Register Contents (%) •••••• 13-11

13.7 USING DDT TO PATCH PROGRAMS •••••••••••••••••• 13-11
13.8 DDT ERRORS ••••••••••••••••••••••••••••••••••• 13-11
13.9 EXITING DDT •••••••••••••••••••••••••••••••••• 13-12

THE ASCII CHARACTER SET

SUMMARY OF PROGRAM SWITCHES

B.1 THE MACRO ASSEMBLER - MACRO •••••••••••••••••• B-1
B.2 THE LINKAGE EDITOR - LINK •••••••••••••••••••• B-2
B.3 THE SYMBOL TABLE FILE GENERATOR - SYMBOL ••••• B-3
B.4 THE OBJECT FILE LIBRARY GENERATOR - LIB •••••• B-3
B.5 THE GLOBAL CROSS REFERENCE GENERATOR - GLOBAL B-3

CHAPTER 1

INTRODUCTION

The AM-100 and AM-100fT based computer systems support a fLexibLe and
efficient assembLy Languaqe deveLooment system under the AMOS monitor. This
system incLudes the assembLer, Linkaqe editor, symboL fiLe generator, object
fiLe Library generator, gLobaL symboL cross reference qenerator, ~nd
symboLic debugger programs.

The assembLer is a muLti-oass macro assembLer with conditionaL assembLy
directives, Library copy function, and externaL segment Links. The Linkage
editor is used to Link muLti-segment programs together and to create a
runnabLe program fiLe. The ooeratinq system supports seqment overLays
thereby aLLowing a Large proqram to be LogicalLy divided into smaLLer
segments and executed sequentiaLLy. The debugger proqrams accept a
speciaLLy created symboL fiLe as input and aLLow the program to he traced
and debugqed in symboLic instructions using aLL the LabeLs as they were
entered in the source program. The Library qenerator provides a mechanism
for deveLopinq and maintaining a Library fiLe that contains frequentLy used
routines, making them accessibLe to aLL programmers on the system. ALL
components of the assembLy Lanquage deveLopment system run under controL of
the standard AMOS monitor. .

There currentLy exist over 70 monitor caLLs in macro form that the assembly
Languaqe programmer uses to communicate with the AMOS monitor and to make
use of the routines it has to offer. These macro caLLs are predefined in a
fiLe caLLed SYS.MAC Located in account ~7,71 on the AMOS System Disk. The
programmer uses a sinqle cnpy statement to incLude this complete library of
predefined functions in his assembLy Lanquaqe program and then refers to the
monitor calLs by their macro names; this makes for an easy-to-use
communication Link to the system resources. SYS.MAC aLso incLudes equate
statements fl)r many of the predefined system vi'lriabLes incLuding the job
tabLe entries for the user's impure job variabLes.

INTRODUCTION Page 1-2

If your programs are to be compatible with the AMOS system architecture, you
must write them in totaLly relocatable code. A relocatable proqram may be
loaded anywhere in RAM and executed without modifyinq any addresses within
the program itself. There are machine instructions which assist in writing
totally relocatable code, and by obeying a few simple restrictions the task
of writing assembly language progr~ms for the AM-10Q and AM-100fT becomes
almost foolproof.

Optionally, you may write programs which are re-entrant and then incorporate
these programs or subroutines into system memory to be shared by all users
without requiring a separate copy for each user. (To add programs to system
memory, you must modify the system initialization command file. For
information on the system initialization command file, see the "System
Operator's Information" section of the AMOS Software Update Documentation
Pac ket .)

We will not delve into the rules for re-entrant programming in qreat detail
here since it is an advanced programming technique and requires specific
rules that are not machine dependent. There are numerous books on the
subject and all general practices apply to the programming of the Alpha
Micro computer system. There are a number of features in the instruction
set which do lend themselves quite nicely to writing re-entrant code, some
of which are detailed in Chapter ~.

1.1 NOTE TO USERS OF PREVIOUS VERSIONS OF MACRO, LINK, SYMBOL AND DDT

If you are familiar with versions of MACRO, LINK, SYMBOL, and DDT that were
released before AMOS Versions 4.5 and later, you wouLd probabLy like a
summary of what changes were made to these programs with AMOS Release 4.5.
If you are new to the AMOS system, please skip on to Section 1.2, below.

THE OBJECT FILE LIBRARY

One of the most important changes made was the introduction of the new
program LIB, the object file library generator. You can now use LIB to
combine coLlections of .OBJ fiLes into an object file library. Then when
you use LINK or SYMBOL to link your program, you can optionalLy specify a
Library fiLe from which routines wilL be linked into your program if your
program references symbols in that library fi Le. Besides generating new
Library files, you may update existing Library files by deleting or
replacing existing modules or adding new moduLes, and you may obtain a
Library Listing file that telLs you what object files are in a specific
Library. For more information on LIB and the use of library fiLes, refer
to Section 10.'3, "Library and Optional Fi les," and Chapter 11, "The
Object FiLe Library Generator (LIB)."

LOCAL SYMBOLS

MACRO, DOT, and FIX now support the use of LocaL symbols. A brief
discussion of locaL symbols occurs in Section 4.7, "Local Symbols." For
information on the use of local symbols within macro definitions, see

........

INTRODUCTION Paqe 1-3

Section 6.1.5, "LocaL SymboLs," and for a discussion on accessing locaL
symboLs through DDT and ALphaFIX, see Section 13.4, "Expressions."

CHANGES TO MACRO:

The macro assembLer now gives a new assembly dispLay which provides more
information. (For example, if MACRO is automaticaLLy EXTERNing symboLs,
it Lists those symboLs alphabeticalLy in phase 2. For information on
automaticaLLy EXTERNing undefined symboLs, see AUTOEXTERN, beLow, in
the section on Pseudo Opcodes.) If you forgot to end your fiLe with an
END statement, MACRO now teLLs you so.

MACRO supports two new option request switches th~t aLLow you to: 1)
request n symboL cross reference Listinq; and, 2) use the parameterized
assembLy option.

The cross reference Listing (which appears at the end of a reguLar
assembLy Listing) contains an aLphabetic List of aLL symboLs, teLLs you
which Lines of your source program they appeared on. and whether the
symboLs are LabeL definitions, equate definitions, are INTERNed,
EXTERNed, or are overLays. The Listing aLso teLLs you w~ich symbols were
never defined. The cross reference then gives a simiLar Listing for aLL
macro definitions and references. For information on the MACRO cross
reference, see Section 9.4.:;, "Generating a Cross Reference."

The parameterized assembLy option aLLows you to specify a vaLue at the
time you assembLe your program which your program can anaLyze. This
feature is very usefuL when used with the conditionaL assembLy directive
pseudo opcodes. For more information, see Section 9.2.3, "The
Parameterized Assembly Option."

LINK and SYMBOL

Both LINK and SYMBOL have changed quite a bit. They both now support a
number of option request switches. By combininq these switch~s, LI~K and
SYMBOL can be made to oerform the same functions. (For exampLe, LINK can
generate a symboL tabLe file, and SYMBOL can generate a resoLved program
fiLe.)

LINK and SYMBOL both support Library fiLes and optionaL fiLes.

The LINK options are:

Designate a fiLe as a library fiLe.
~esignate a fiLe as an optionaL fiLe.
Designate a fiLe as a required fiLe (the def3uLt).
Generate a Load map fiLe.
Generate a symboL table file.
Include equated symbols in the symbol table fiLe.
Generate a program fiLe (the defauLt).
Suppress program qeneration.

INTRODUCTION Page 1-4

NOTE: An "optionaL fiLe" contains only one .OBJ fiLe, and is linked in
onLy if references are made by your program to symbols in that file. For
information on optional files, see Section 10.3, "Library and Optional
FiLes." A load map file contains a map of how the linked together items
will be loaded into memory when you execute the program file. It also
contains additionaL information on each item. See Section 10.4, "The Load
Map Fi Le," for more inform~tion.

The SYMBOL options are:

GLOBAL

Designate a file as a library file.
Designate a file as ~n optional file.
Designate a file as a required file (the default).
Generate a load map file.
Generate a symbol table file (the default).
Include equated symboLs in the symbol tabLe fiLe.
Generate a program fiLe.
Suppress symbol table file generation.

GLOBAL generates a globaL symbol cross reference for a collection of .OBJ
files. This listing teLls you which files the symbols were defined in
and which files the symbols were referenced in. (NOTE: This differs from
the MACRO cross reference in that GLOBAL is meant to be used for a
collection of .OBJ files to determine the symbol references between those
files; the MACRO cross reference gives detailed information on the
symbols within a single file.) See Chapter 12, "The Global Cross
Reference Generator (GLOBAL)," for more information.

PSEUDO OPCODES

This manual now documents the search pattern MACRO uses in looking for
the copy file specified by the COpy pseudo opcode. please see Section
5.1.1, "COPY."

SeveraL new pseudo opcodes have been added:

OBJNAM - Allows you to modify the name and extension given to the
output files created by MACRO, LINK, and SYMBOL.

LIST, NOLIST Allow you to suspend and re-enabLe output to the
assembly listing.

CREF, NOCREF, MAYCREF - Allow you to suspend and re-enable output to
the cross reference portion of the assembly listing.

NVALU ALlows your'program to make use of the value suppLied on the
MACRO command line via the IV parameterized assembLy option switch.

AUTOEXTERN
symbols. ")

Tells MACRO to automatically EXTERN any undefined

INTRODUCTION Page 1-5

ENDMX - Terminates macro expansion.

You may find information on aLL of these pseudo opcodes except ENDMX by
referring to Chapter 5, "AssembLer Pseudo Opcodes." For information on
ENDMX, see Section 6.1.8, "Suppressing Macro Expansion - ENDMX."

FILES

Several new files are now created by the AMOS assembly language system:

.LIB files - Library files generated by LIB •
• GLB files - GLobaL cross reference Listing created by GLOBAL •
• MAP files - Load map files generated by LINK and SYMBOL •
• TMP files - Temporary work file generated by LIR.

OTHER FEATURES:

This manual contains information on two previousLy undocumented
operators:

The expression evaluation operator, \, for use within macro
definitions (see Section 6.1.7, "Special Macro Operators"); and,

The binary shift
"Expressions. "

operator, (underscore); see Section 4.~,

This book also now includes two Appendices: "Appendix A, The ASCII
Character Set," and "Appendix B, Summary of Program Switches."

1.2 THE CONTENTS OF THIS MANUAL

Part I - INTRODUCTION TO ALPHA MICRO ASSEMBLY LANGUAGE P~OGRAMMING

Chapters 2 through 8 contain information on the form of your assembLy
Language programs. For exampLe, Chapter 4 discusses labeLs, terms, and
expressions in your assembLy language program statements. Chapter 5
discusses the pseudo opcodes avaiLable to you, and Chapter 6 discusses
how to construct and calL macros.

Part II - USING THE ALPHA MICRO ASSEMBLY LANGUAGE PROGRAMMTNG SYSTEM

Chapters 9 through 13 give operating information for the various
components of the ALpha Micro assembly Language programming system:

MACRO
LINK
SYMBOL -
LIB
GLOBAL -
DDT

The macro-assembLer
The linkaQe editor
The symbol table generator
The object fiLe library generator
The gLobaL cross reference generator
The dynamic debugging and patching program

INTRODUCTION Page 1-6

Appendix A gives the complete ASCII character set, with values specified in
decimal, octal, and hexadecimal. Appendix B gives a brief summary of all
option request switches used by MACRO, LINK, SYMBOL, LIB, and GLOBAL.

1.3 READER'S COMMENTS FORM

Please note the Reader's Comment Form at the back of this manual. We would
very much appreciate any comments or criticisms you may have concerning this
book. Any suggestions for future documentation projects are also welcome.

1.4 CONVENTIONS USED IN THIS MANUAL

To make our examples concise and easy to understand, we've adopted a number
of graphics conventions throughout our manuals:

Number Base

PPN

Filespec

{}

$

Unless otherwise noted, all numbers are decimal (base 10).

A Project-programmer number. This number identifies a user
disk account (e.g., [100,2]). We also represent an account
number as [p,pnJ.

A file specification. rdentifies a file. It usualLy has the
elements:

Devn:Filename.Ext[p,pn]

where "Devn:" is a device specification that identifies a
logical unit of a physical device, "fiLename" gives the name
of the file, and "ext" specifies the file's extension.

Optional elements of a command line. When these symbols
appear in a sampLe command Line, they designate eLements that
you may omit from the command line.

Underlined characters indicate those characters that AMOS
orints on your terminal display. For exampLe, in the latter
chapters of this manuaL you may see an underLined dot, ~,
which indicates the AMOS monitor prompt symbol.

Carriage return symbol. This symboL marks the pLace in your
keyboard entry to press the RETURN key.

Indicates a ControL-character. For example, if you type a
ControL-C, you see it echoed on your terminaL as AC.

Escape

,- '" ~~y
--"') .

J

"

symbol. This symboL marks the place in your keyboard
to press the ESCAPE key (sometimes labeled ALT MODE or

AMOS ASSEMBLY LANGUAGE PROGRAMMER'S MANUAL

PART I

INTRODUCTION TO ALPHA MICRO ASSEMBLY LANGUAGE PROGRAMMING

These chapters ;ntroduc~ the experienced assembLy Lanquaqe oroqrammer to
ass~mbLy Languaqe proqramm;nq for the AM-100 and AM-100/T based computer
systems.

CHAPTER 2

FILES USED IN THE ASSEMBLY LANGUAGE SYSTEM

This section describes the files that are used during the normal course of
buiLding and testing an assembLy Language ~rogram. We wilL refer to these
files by their extensions; i.e., a .MAC file is any fiLe with an extension
of "MAC". All files described here will not necessariLy be used by aLL
programmers during anyone programming session, but you wiLL eventually run
across all of them at one time or another so you might as well know briefly
what they are used for and how they are created.

2.1 .MAC - SOURCE FILES

.MAC fiLes are the original ASCII source files that you create using the
EDIT or VUE program. .MAC fiLes are input fiLes for the assembler program
(MACRO) which makes one or more passes over them depending on the assembly
options selected. If you want to make any changes to a proqram, you make
the changes to the .MAC file by using the EDIT or VUE program; you then
reassemble and relink it. Files that you incLude with the COpy assembly
pseudo opcode must also be ASCII source files with an extension of .MAC.

2.2 .OBJ - INTERMEDIATE OBJECT FILES

.OBJ fiLes are the direct output of the assembLer (Phase 2) and contain the
assembled binary code, symboL references, internaL symbol definitions, and
unresoLved external symbol referenc~s •• OBJ fiLes are not directly usable
for anything by themselves but must first be processed by one or more of
several other programs to get a finished fiLe that has a direct use by
itself. The Linkage editor program (LINK) reads one or more .OBJ fiLes and
creates a fuLly resoLved and runnable binary program fiLe in memory image
format. The library generating program (LIB) combines specified .OBJ files
into an object fiLe library. The GLOBAL program reads .OBJ fiLes and
creates a gLobaL symbol cross reference fiLe. The symbol file oroqram
(SYMBOL) reads the .OBJ files and creates a fiLe which contains aLL user
defined symbols and their resolved addresses. (This sy~bol tabLe fiLe is
used by the symbolic debugger programs DDT and FIX.) The assembler itself

FILES USED IN THE ASSEMBLY LANGUAGE SYSTEM Page 2-2

aLso rereads the .OBJ fiLe during Phase 3 together with the .MAC source fiLe
to create the ASCII List fiLe.

2.3 .PRG - BINARY PROGRAM FILES

.PRG fiLes are created by the Linkage editor program (LINK) and are the end
resuLt of the assembLy process. The .PRG fiLe is a binary memory image of
the assembLed program which is Loaded into user RAM when the program is
requested for execution. (That is, the .PRG fiLe is the finaL, fuLly
assembLed and resoLved machine Language program of which the .MAC fiLe was
t he source.)

The .MAC fiLe from which the .PRG fiLe was generated must have been written
using the ruLes for totaLLy reLocatabLe code so that the .PRG file may be
dumped into any memory location and executed without modification. One or
more .OBJ files may have been input to the linker for the creation of the
single .PRG fiLe. Once you have teste" the .PRG program fiLe, you may pLace
it into the System Library Account, DSKO:[1,4J, where it wiLL become
available to all users on the system.

2.4 .OVR - BINARY OVERLAY FILES

If the program contains overLay segments which do not aLL reside in memory
at the same time, the linkage editor generates one .PRG main segment fiLe
and one or more .OVR overlay segment files. LINK generates each overLay
fiLe in response to an OVRLAY assembLer pseudo opcode. The .PRG program
segment wiLL be responsibLe for the caLling and executing of each of the
other .OVR segments during the running of the program. Your program may
seLectiveLy bypass overlay segments as does the assembLer itseLf, which
contains six overLays. Overlay files have the same memory image format as
the .PRG program files except that they are resolved at an effective address
other than zero so that they will not compLeteLy overLay the controlLing
segment. This addressing is the direct responsibility of the programmer;
for more information on creating overLays, see Section 5.3.5, "OVRLAY."

2.5 .LST - PROGRAM LISTING FILES

An optionaL output of the assembler is a complete resoLved listing of the
source program with the associated binary code that was generated. MACRO
creates this List fiLe during Phase 3 of the assembLy process; you may
generate it directly from the .MAC and .OBJ fiLes by bypassing Phases 1 and
2 with the /0 assemblY'switch. The .LST fiLe is formated ASCII; you may
dispLay it via the TYPE command or examine it by either the EDIT or VUE
programs. Or, you may print the List file using the PRINT command.

,
"

FILES USED IN THE ASSEMBLY LANGUAGE SYSTEM Page 2-3

The .LST file may optionally contain a full symbol cross reference if you
use the IR assembly switch. (See Section 9.2 for information on the 10 and
IR MACRO switches.>

2.6 .LIB - LI8RARY FILES

The .LIB file is a Library fiLe. (A library file contains? coLlection of
.OBJ fiLes that are linked into the main program as required.> The LIB
program alLows you to generate and maintain object fiLe libraries. The LINK
and SYMBOL programs accept these library (.LIA) files as input and
automaticaLLy incLude any object, fiLes from such a library necessary to
resolve external references. ~ee Chapter 11 for information on creatinq and
maintaining program libraries.

2.7 .GLB - GLOBAL CROSS REFERENCE FILE

The GLOBAL program reads a group of .OBJ fiLes and creates an aLphabetic
cross reference .GLB file that lists all gLobal symboLs in the fiLes, and
shows which fiLes define them and which files accept them as externalLy
definerl symbols. (For information on GLOBAL, see Chapter 12.)

2.8 .MAP - LOAD MAP FILE

Both the Linkaqe editor LINK and the symbol tabL~ file generator SY~ROL
generate a Load map fiLe in response to the optionaL 1M switch. The load
map (.MAP) fiLe shows how the assembLed and Linked object files wiLL be
Located in memory when the proqram is Loaded into memory prior to execution.
It aLso gives information about each objeci fiLe Linked into the final .PRG
fiLe. For information on the Load mao, see Section 10.4, "The Load Map
Fi Le."

2.9 .SYM - RESOLVED SYMBOL FILES

The .~YM fiLe is a direct output of the symbol fiLe qeneration proqram
(SYMBOL) which takes one or more object (.OBJ) files ~nd creates a symhoL
table with aLL user defined symhoLs and their resolved machine addresses.
The .SYM fiLe is used as input to the debugger programs DDT and FIX which
may then operate with references to the user symbols in the program instE'ad
of absolute machine addresses. In a system where the proqram is aLways
offset by some amount in memory, this is almost essentiaL if you are to be
able to trace the execution fLow of a program under test. The .~Y~ fiLe is
in a special oacked binary form and, as such, is not much good for anythinq
except input to DDT and FIX. (NOTE: The LINK oroqram can aLso generate a
.SYM symbol tabLe fiLe.)

FILES USED IN THE ASSEMBLY LANGUAGE SYSTEM Page 2-4

2.10 .IPF - INTER-PHASE WORK FILE

The .IPF file is a temporary work file built during the assembly process by
Phase 1 of the assembler to carry information on to Phase 2. The .IPF file
is packed binary junk and the only reason we mention it here is that if the
system crashes during an assembly you may find one left on your disk. Erase
it; it is useless and just takes up space. There is no problem if it exists
and you don't find it, since the next assembly of the same proqram will
erase any .IPF file it finds durinq phase 1 before attempting to create a
new one.

2.11 .TMP - TEMPORARY WORK FILES

The LIB program creates a temporary work file named Jobnam.TMP ('~obnam" is
the name of your job). As with the .IPF file, you should never see this
file unless something goes wronq. The next time you run LIB, the .TMP file
should disappear.

CHAPTER 3

MACRO SOURCE PROGRAM FORMAT

~ macro source program is a singLe .MAC fiLe composed of a sequence of ASCII
source statement Lines. Each Line must be compLete in itseLf since there is
no provision for muLtipLe-Line statements. Each statement may be one of the
foLLowing, depending on its function:

1. VaLid machine instruction
2. Data generation statement
3. ~ymboLic equate statement
4. AssembLy controL statement
5. ConditionaL assembLy directive
6. ~acro definition
7. Macro caLL
8. Comment or bLank Line

The maximum line Length is 100 characters. ~ach Line is terminated by a
carriaqe-return and Line-feed oair which the editor provides when you press
the RETURN key. UnLess otherwise specified, ~LL of the above lines may
contain an optionaL comment fieLd foLLowing the actuaL statement; this
comment fieLd starts with a semicoLon (;) and extends to the end of the
Line The assembLer treats spaces and tabs (ControL-I) as equaL; they are
used to deLimit fieLds within statements. Tabs are usefuL to keep statement
fieLds aLigned and make for cLean Listings. Tabs are an imoortant part of
generating readabLe code.

NOTE: This manuaL refers to the term "user symboL" sever<lL times during
Later discussions, so we wiLL define it at this point. ~ user symboL is any
name defined by you within your program. T.t must be unique to that proqram,
and must be from 1-6 characters in Length. LegaL characters for a user
symboL incLude the aLphabetic characters A-Z, the numeric characters 0-9,
and the two speciaL symboLs "." and "$". The first character of a user
symboL must be non-numeric. ~ACRO foLds aLL Lower case characters to upoer
case. SymboLs are packed RAD50 and stored as two words in the symboL tabLe
durinq the assembLy orocess aLong with their current assigned vaLue and
attribute fLags.

MACRO SOURCE PROGRAM FORMAT Paqe ~-~

3.1 MACHINE INSTRUCTIONS

One machine statement is aLLowed p~r Line ann is assembLed into a sinqLe
machine hardware instruction which generates one, two, or three worns of
binary code dependinq on the instruction and addressing modes used. The
qeneraL format of a machine instructiQn statement is:

{LabeL:} {oncode} {operands} {;comments}

The LabeL fieLd is optionaL and is used to give a symboLic name to the
current instruction being assembLed. It ~ust terminate with a coLon. The
LabeL may be any vaLid user symboL that has not been previousLy defined.
The vaLue of the LabeL may he either absoLute Qr r~LocatabLe rlependinq on
the current assembLy status. ReLocatabLe symboLs wiLL be resoLved durinq
Link-edit time by addin~ the LabeL vaLue to the curre~t program reLocation
bias <caLcuLated by LINK). More than on~ LabeL may appear on the same
statement Line senarated by coLons; in this case, each LabeL is given the
same vaLue as the current Location. ~ny symboL used in a LabeL fieLd may
not be redefined Later in the program. A LabeL may appear as the onLy item
on a Line in which case it is assigned the address of the next byte of
~enerated code.

The opcode fieLd is required and contains one of the machine instruction
opcodes in mnemonic form such as MOV, CLRB, TST, ADD, etc. (Refer to the
WD16 Microcomputer Programmer's Reference ManuaL,' (OWM-00100-04), for a
compLete description of aLL the machine instructions avaiLabLe in the AM-100
system.) The opcode fieLd terminates with a space, tab, semicoLon or
carriage-return. If a LabeL fieLd was used, a space or tab between the
coLon and the opcode is optionaL but recommended.

The operands fieLd is required on those instructions that have either one or
two operands. The operands fieLd is separated from the opcode fieLd by one
or more spaces or tabs. If the instruction being used requires two
operands, the operands are separated from each other by a comma. Leading
spaces are aLways ignored in the operands fieLd whiLe the operands
themseLves terminate with a space, tab, comma, semicoLon or carriage-return.

The comments field
comments fieLd then
carriage-return.
fieLd.

is optionaL and is defined by a Leading semicoLon. The
extends throuqh the remainder of the Line up to the
Any vaLid ASCII characters ~re LegaL in the comments

3.2 DATA GENERATION STATEMENTS

Data generation statements resembLe machine instructions in format and
generate binary data within the program fLow. The data generated ;s
normaLly not interpreted during program run as executabLe instructions but
rather as constant data such as ASCII messages to be typed or numeric vaLues
to be used by those instruction being executeq. The generaL format of the
data generation statement is:

MACRO SOURCE PROGRAM FORMAT Page '3-3

{label:} {operator) {operands) {;commentsl

The label fieLd is optionaL and foLLows the same format and rules as the
machine instruction Label fieLd. The 'operator fieLd contains the specific
data qeneration mnemonic for the type of data desired. We discuss these
codes in Section 5.2, "Data Generation Pseudo Opcodes." The operands fieLd
contains the actuaL data to be generated by the statement and its format
depends on the type of operator in use. Some operators such as WORD and
BYTE aLLow muLtipLe operands within the same statement so that the amount of
binary data generated by the one statement is variabLe. If a LabeL is used,
its vaLue is aLways that of the address into which the first byte of data
wiLL be assembLed. As with machine instructions, the comments fieLd ;s
oot i ona L.

There is a speciaL default type of data qeneration statement which you
shouLd be aware of. If no operator is present, MACRO assumes the statement
is a WORD statement and it interprets the operands field as such. The
assembler works in the followinq manner when analyzing statements:

1. Leading symbols ter~inated by colons are processed as labels and
stored in the assembLer symbol table.

2. The next symbol is first scanned for a match in the macro table
which consists of all macros previously defined in the proqram.

'3. If the operator symbol is not a macro name, it is then matched
against the table of machine instruction opcodes, data qeneration
operators, and asse~bly control pseudo opcodes.

4. If none of the above resuLt i~ a defined operator, the defauLt WORO
processor is entered and the symbol is assumed to be th~ beqinning
of the associated operands field for the WORD statement.

~.3 SYMBOLIC EQUATE STATEMENTS

A user symbol may be assiqned a value by enterinq it on a statement Line
followed by an equal-siqn (=) and the expression to which it is to be
equated. The gen~ral format of the equate statement is:

{user symbol} = {expression} {;comments~

The equal-sign may have leading or trailinq spaces and tabs if desired for
formatting purposes. The expression may be any valid numeric expression but
since alL equate statements must be fuLly resoLved durinq Phase 1, any user
symbols used in the expression must be defined at the time that the equate
statement is encountered. Equate statements may not contain references to
external symbols. The comments field is optional as in the machine
instruction statement.

MACRO SOURCE PROGRAM FORMAT Page 3-4

User symboLs that are assigned vaLues in the program may be reassigned a
different vaLue Later in the program hy usinq another equate statement to
redefine the desired symboL. LabeLs may not be redefined by equate
statements, however. If the reLocation attribute of the evaLuated
expression is zero, the vaLue assigned to the symboL is absoLute. If the
reLocation attribute is non-zero, then the vaLue assigned is relocatabLe.
If the expression contains a register symbol, then the equated symbol is
also given a reqister attribute. In other words, the value assigned to the
user symboL pretty much foLLows the attributes of the expression to which it
is equated.

~.4 ASSEMBLY CONTROL STATEMENTS

AssembLy controL statements cover a wide range of functions that generaLLy
set up or aLter the parameters which controL the assembLy process. They do
not themseLves generate any binary code but are used for such purposes as
Listing format controL, numeric radix assignment, and program generation or
addressing information. The general format for assembLy controL statements
is:

{pseudo-opcode} {arquments} {;comments~

The pseudo opcode is the mnemonic that defines the function to be performed.
Chapter 5 lists all pseudo opcodes aLonq with an expLanation of what each
one does. Some of them require arguments that are needed to set up
parameters. These arguments are separated from the pseudo opcode by one or
more spaces or tabs. As in other statement formats, the comments fieLd is
optionaL. Unless the expLanation in Chapter 5 for a pseudo opcode specifies
otherwise, LabeLs are not normaLLy permitted in assembLy controL statements.

~.5 CONDITIONAL ASSEMBLY DIRECTIVES

ConditionaL assembLy is defined as seLectiveLy assembLing or bypassing
statements within defined bounds dependinq on the vaLue of some variabLe at
the time the assembLy is performed. The bounds are made by conditionaL
assembly directives which specify the variabLe or variabLes to be tested and
the condition to be met in order for the assembLy to occur. ConditionaL
assembLy directives are most commonLy used in coni unction with macro
definitions to direct the taiLoring of each macro calL as it is encountered.
We discuss conditionaL assembLy directives in Chapter 7.

3.6 MACRO DEFINITIONS AND MACRO CALLS

Macros are
by using a
the macro
program or

defined as one or more vaLid statements which may be caLled for
singLe symboL (the macro name) within the program anytime after
has been defined. Macros are aLways defined by you within your

within a copy fiLe which is caLLed into your program by the COpy

MACRO SOURCE PROGRAM FORMAT Page 3-5

statement. The copy file called SYS.MAC is a macro library of over 70 such
macro definitions which define all the supervisor calls available to your
programs for communicating with the monitor routines. This library file is
supplied on the AMOS System Disk in accpunt [7,7J.

Macro calLs are those statements which name the defined macro as the
operator of the statement and give the specific arguments to be used by the
macro (if any are required). A macro calL within the program causes the
defined macro to be included in its tailored form at the point of the call.
Macro calls normally cause one or more machine instructions to be assembled
and the respective binary code to be generated.

Chapter 6 defines macro definitions and macro calLs more fully.

3.7 COMMENT LINES AND BLANK LINES

Statements which begin with a semicolon (after any leading spaces and tabs)
are considered comment lines and do not result in the generation of any
binary code or in the alteration of any assembly control parameters. They
are useful only for documenting the source programs and making them easier
to read and maintain. Blank lines are also considered comment lines and are
for appearances only in the source file. It is most important to fully
document your programs, so use comments liberally.

CHAPTER 4

TERMS AND EXPRESSIONS

This section describes the various terms and components used in MACRO source
statements, incLuding the defined character set for the construction of
symboLs and expressions.

4.1 CHARACTER SET

The entire ASCII character set is LegaL in MACRO source programs except for
the controL-characters. MACRO transLates Lower case characters to upp~r
case before it checks the syntax of each source Line. The characters that
are vaLid in user defined symboLs are Limited to A-Z, 0-9, "$" and ""
because symboLs are packed RAD50 before being stored in the symboL tabLe.
The foLowing List gives the speciaL characters that are recognized by the
assembLer when scanning source Lines:

. ,
=

@

(
)

,

<
>
+

*
/
I?:

LabeL terminator
Comment fieLd indicator
Equate statement operator
Immediate expression indicator
Deferred addressing indicator
InitiaL register indicator
Terminating register indicator
Operand fieLd or macro ar~ument separator
VaLue of the assembLy current Location counter when used as a term
InitiaL argument or expression indicator
Terminating argument or exrrp.ssion indicator
Arithmetic addition operator or autoincrement mode indicator
Arithmetic subtraction operator or autodecrement mode indicator
Arithmetic muLtipLication operator
Arithmetic division operator
LogicaL AND operator
LogicaL incLusive OR operator

TERMS AND EXPRESSIONS Page 4-2

"
[
]

SingLe ASCII character term indicator
DoubLe ASCII character term indicator
InitiaL RAD50 tripLet term indicator
Terminating RAD50 triplet term indicator
UniversaL unary indicator
(Underscore) Binary shift operator

The use of the above LegaL characters out of context for their designed
purposes wiLL cause the generation of a syntax error (code Q).

4.2 TERMS

A term is the basic unit of data in an arithmetic expression and may be one
of the foLLowing:

1. A number as composed of LegaL diqits within the current radix of
the system or as temporariLy defined by the incLusion of a Leading
temporary radix change operator;

2. A user symboL (as previousLy defined) which is given an assigned
vaLue either by its use as a LabeL or a direct equate statement;

3. An ASCII conversion defined by the singLe or doubLe
indicators;

quote

4. A RADSO tripLet encLosed in square brackets;

5. The period symboL (.) which represents the current vaLue of the
assembLy current Location counter;

6. An expression or term encLosed within angLe brackets. AngLe
brackets are used to aLter the normaL hierarchy of expression
evaLuation which is normaLLy done in a Left-to-right manner. Any
quantity encLosed within anqLe brackets wiLL be evaLuated before
the remainder of the expression in which'it is found. The action
of angLe brackets within a MACRO source expression is the same as
that of parentheses within a normaL arithmetic expression such as
is used in the BASIC Languaqe. AngLe brackets may aLso be used to
appLy a unary operator to an entire expression such as -<16/A>.

4.3 EXPRESSIONS

An expression is a combination of terms and operators which
an unsigned 16-bit value in the decimal range of 0-65535.
in the range of -32768 through -1 wilL be stored properly
but wiLL be treated the same as their unsigned counterparts
32768 through 65535.

wiLL evaLuate to
Negative vaLues
after evaLuation
in the range of

TERMS AND EXPRESSIONS Paqe 4-'3

The evaLuation of any expression aLso incLudes the evaLuation of the mode of
that expression (absoLute, reLocatabLe, and externaL) and the register
designation of the expression.

Operators are defined as unary or binary. Unary operators precede a singLe
term and aLter the evaLuation of that term aLone. MuLtipLe unary operators
may be appLied in sequence to the same term and are evaLuated in reverse
order. Binary operators combine two terms to give a resuLtant effective
singLe term vaLue. MuLtipLe binary operators are iLLegaL.

Expressions are evaLuated Left to- right under the hierarchy of the operators
which are in use within that expression. AngLe brackets may be used to
aLter the normaL process of evaLuation. Unary operators aLways take
precedence over binary operators and are appLied to the associated terms
fi rst.

The LegaL operators are:

+ Unary pLus sign (defauLt if term not preceded by another unary)
Unary minus sign which negates the associated term vaLue

ftC Unary one's compLement ooerator (XOR's the term with aLL ones)
ftD Temporary radix change to decimaL for the associated term
ftB Temporary radix change to binary for the associated term
ftO Temporary radix change to octaL for the associated term
ftH Temporary radix chanqe to hexadecimaL for the associated term
+ Binary addition operator

Binary subtraction operator
* Binary muLtipLication operator
/ Binary division operator

(Underscore.) Binary shift operator (given A B, binary representa­
tion of A is shifted B number of times. If B-is positive, shifts A
Left; if B is negative, shifts A right.)

& Binary LogicaL AND operator
Binary LogicaL incLusive OR operator

NOTE: Two speciaL
definitions. See
information.

operators (\
Section 6.1.7,

and ') aLso exist for use within macro
"SpeciaL Macro Operators," for more

Expressions are evaLuated as being absoLute, reLocatabLe, or
distinction becomes particuLarLy important since we are
reLocatabLe code for the AM-100 system. The foLLowing ruLes
evaLuation of the reLocation attribute of an expression:

externaL. This
writing totally

appLy in the

1. An expression is absoLute if its vaLue is fixed and contains no
reLocatabLe terms. ALso, a reLocatabLe term minus another
reLocatabLe term resuLts in an absoLute vaLue. LabeLs aLLocated
within an absoLute section (ASECT) wiLL be assiqned absoLute vaLues
and attributes.

2. An expression is reLocatabLe if its vaLue is fixed reLative to the
current program base which is reLocatabLe at Load time. The vaLue
may have an offset added to it by LINK if it is not within the

TERMS AND EXPRESSIONS Page 4-4

first segment of a program file. LabeLs aLlocated within a
reLocatabLe section (RSECT) wiLL be assigned relocatabLe vaLues and
attributes. (For information on the ASECT and RSECT pseudo
opcodes, see Section 5.1.5.)

3. An expression is defined as externaL when one or more of its terms
is an externaL symbol reference. This expression wiLL not be fulLy
resoLved untiL the program file is generated by the Linkage editor
(LINK) when the external terms are defined. The finaL resolution
of an externaL expression may be reLocatable or absoLute, depending
on the attributes of the terms invoLved (both internal and
external). The Linkage editor also contains all the mechanics for
evaLuating the attributes of resoLved expressions. (See Section
5.3, "Segmentation Pseudo Oocodes," for information on the EXTERN,
INTERN, and AUTOEXTERN pseudo opcodes.)

4.4 NUMBERS

Any source item which starts with a digit (0-9) is considered to be a number
and this number wilL be evaluated under the currentLy prevailing radix
unless preceded by a temporary radix operator or followed immediateLy by a
decimal point. The prevaiLing radix aLways starts as octal (base R) at the
beginning of any assembLy but may be chanqed by the RADIX assembLy control
statement. Any number that terminates with a decimaL point wiLL be
evaLuated as decimaL (base 10) regardLess of the prevaiLinq radix.
FractionaL numbers are not alLowed in MACRO source statements since aLL
numbers must evaLuate to a 16-bit binary integer vaLue.

The prevailing radix controLs the defauLt evaLuation of numbers and may be
set by the RADIX statement to any vaLue from 2 (binary) throu~h 36. Numbers
in a base above 10 (decimaL) use the aLphabetic characters A-Z to reoresent
the digit vaLues of 10 through 35. The most common system above base 10 is
hexadecimaL where the Letters A-F represent the decimal digit vaLues 10-15.
ALL numbers must begin with a digit 0-9 to distinguish them from a user
symboL, so the hexadecimal vaLue of F56 must be entered as OF56.

Negative numbers are preceded by a minus sign; MACRO evaluates them and
stores them in two's compLement form. You may optionaLLy precede positive
numbers with a plus sign but this is not required.

4.5 REGISTER SYMBOLS

The WD16 chipset (the heart of the AM-100 and AM-100/T systems) contains
eight 16-bit registers which are symboLically named and used as foLLows:

TERMS AND EXPRESSIONS Page 4-5

RO - register 0, generaL purpose
R1 - register 1, generaL purpose
R2 - register 2, generaL purpose
R3 - register 3, generaL purpose
R4 - register 4, generaL purpose
R5 - register 5, generaL purpose
SP - register 6, stack poi nter
PC - register 7, program counter

These eight symboLs are aLready defined to the assembLer and must be used
when the address mode expLicitLy requires a register to be referenced. The
above register symboLs have a register attribute associated with them and
you may equate your own symbols to these registers if you so desire. The
register attribute will be carried over to this newLy defined symbol. For
example, the equate statement IOPTR=R4 will equate the user symbol IOPTR to
the vaLue of 4 and also give it a register attribute so that it may be used
in pLace of R4 for address modes.

4.6 ASSEMBLY LOCATION COUNTER

During the assembly process, MACRO assigns sequential memory locations to
all machine instructions and data constants as it encounters them in the
source program. At any given statement, the next byte to be assigned wiLL
be internaLly stored in the assembLy location counter. This address may be
used in expressions by referencing the period (.) as a symboLic term. For
exampLe, the instruction "JMP .+6" wilL cause a jump to the address which is
6 bytes in front of the first byte of the instruction itself.

The assembly Location counter has an attribute associated with it which is
either absoLute or relocatabLe. InitiaLLy, it is set up in the reLocatabLe
mode and cleared to zero value for the aLlocation of reLocatable binary code
as machine instructions and data constants are assembLed. If MACRO
encounters an ASECT statement, MACRO changes the attribute of the assembLy
location counter to absolute which means the address associated with it wiLL
not be adjusted by the LINK orogram. If MACRO encounters an RSECT
statement, MACRO sets the attribute back to reLocatabLe again which means
that the address associated with it will be adjusted by the LINK program to
compensate for the program seqment offset. The assembler aLso maintains two
separate address counters for switching between ASECT and RSECT sections.

InitialLy, the vaLue of the assembly location counter is set to zero and is
incremented as each statement which oroduces binary code is assembLed during
Phase 1. You may expLicitLy change the setting of the assembLy Location
counter at any time by using a direct equate statement that uses the period
symboL instead of a user symboL. For exampLe, the statement ".=500" forces
the assembLy Location counter to take on a vaLue of 500 and to begin aLL
assembLy aLlocation from that point.

TERMS AND EXP~ESSIONS Page 4-6

4.7 LOCAL SYMBOLS

MACRO supports local symbols of the form nnn$, where nnn may be any number
from 0 through 65535, decimal. A program using local symbols wiLL require
Less symbol tabLe space and wilL assemble faster than a simiLar program
without local symbols.

(NOTE: LocaL symboLs of the form nnn~$ are used within macros and have scope
within a particuLar macro expansion. For information on this kind of Local
symboL, see Section 6.1.5, "LocaL Symbols.")

A Local symbol only has scope between two non-Local symbols. For example:

SEND:

1 $:

RCV:

1 $:

SUBR:

MOVB
SEQ
TTY
BR
RTN

KBD
LEA
MOVB
BNE
RTN

(RO)+ ,R1
1$

SEND

RO,BUF
(R2)+ ,(RO)+
1$

1$ is defined twice in the program above. The first 1$ has a range from the
definition of SEND up to but not including the definition of RCV. The
second 1$ has a range from Rev up to SUBR.

NOTE: You may also define locaL symboLs with an equate (=).

CH~PTER 5

ASSE~BLER PSEUDO OPCODES

A pseudo opcode is so named because aLthough it Looks much Like a reguLar
operation code, a pseudo opcode is not a true machine instruction and mayor
may not generate actuaL binary code. Pseudo opcodes are buiLt into the
assembLer and provide a variety of usefuL functions that make the Life of
the programmer easier.

This chapter discusses the MACRO pseudo opcodes avaiLabLe for your use. We
cLassify the functions of the pseudo opcodes into four categories: 1)
assembLy controL; 2) data qeneration; 3) segmentation; and, 4) convenience.
The sections beLow discuss each of these types of pseudo opcodes.

Note that other chapters discuss severaL other pseudo opcodes that are used
in speciaL ci rcumstances. For exampLe, Chaoter 6, "User Defined Macros,"
discusses the pseudo opcodes you can use inside of macro definitions. For a
fuLL List of aLL pseudo opcodes, refer to the index.

5.1 ASSEMBLY CONTROL PSEUDO OPCODES

AssembLy controL statements perform a wide variety of functions which do not
in themseLves generate any binary code but, instead, set up or aLter certain
parameters which controL the assembLy process. Each statement consists of a
defined assembLy controL pseudo opcode foLLowed by optionaL arquments as
required by the specific format. These pseudo oocodes are described here
aLong with the required arguments for each.

5.1.1 COpy

The COpy statement aLLows another fiLe to be incLuded in the assembLed
program at the point where the COPY statement is Located. The entire copied
fiLe is assembLed, but you may use conditionaL assembLy statements to omit
certain portions if desired. The most common use of this statement is for
the incLusion of the standard copy fiLe SYS.MAC which defines aLL system
caLL macros and system parameters. (The SYS.MAC fiLe is in account

ASSEMBLER PSEUDO OPCODES Page 5-2

OSKO:[7,7J.) The COPY statement includes a file soecification that specifies
the file that is to be copied into the source proqram during assembly. For
exampLe:

COpy DEF ; My own set of macro definitions in the file OEF.MAC.

Note that the actual source program is not modified; rather, the assembler
merely gets the input from the copied fiLe and then returns to the originaL
source file as it assembles the source file. A copy fiLe may not include
another COpy statement within itseLf although the original fiLe may incLude
as many individual COpy statements as desired. The filespec may actually be
a compLete fiLe specification containing a device and account specification.
If you do not specify an extension, MACRO uses the defauLt extension of
.MAC.

If you specify both a device and account, MACRO looks for the copy file in
the specified device and account. However, if you omit either a device or
an account specification, MACRO goes through several steps in trying to find
the specified fiLe:

If you omit both the device and the account specification:

1. MACRO Looks for the file in the device and account you are Logged
into.

2. If the fiLe does not exist in that account and if the source fiLe
is on a different device than the one you are logged into, MACRO
Looks in the account you are logged into on the device containing
the source fiLe.

3. If the file does not exist in that account either, and if the
source fiLe is in a different account and device than the ones you
are Logged into, MACRO looks in the account and device of the
source file.

4. FinaLLy, MACRO looks in the System MACRO account, OSKO:[7,7J.

If you omit just the device specification:

1. MACRO Looks in the specified account on the device containing the
source fiLe.

2. If the file does not exist in that account, MACRO looks in the
specified account on the device you are logged into.

3. Finally, if the accou~t specified is [7,7J, MACRO looks in the
System MACRO account, DSKO:[7,7J.

If you omit just the account specification:

1. MACRO looks in the account containing the source file on the
specified device.

ASSEMBLER PSEUDO OPCODES Page 5-3

2. If the fiLe does not exist in that account, and if the source fiLe
is in a different account than the one you are Logged into, MACRO
Looks on the specified device in the account you are Logged into.

3. FinaLly, MACRO looks in the System MACRO account, DSKO:[7,7J.

You may find it convenient to place copy
account, DSKO:[7,7], since they wiLL
programmers throuqh the COPY statement.

fiLes
then

into
become

the System
avaiLable to

MACRO
aLL

MACRO does not normaLLy output the source statements in the copied fiLe
durinq the Listing phase of the assembLy since most users do not want the
system copy fiLe (SYS.MAC) and other collections of common routines to be
repeated in all program Listinqs. You may override this by usinq a IL
switch following the fiLespec in the statement; this wiLL cause the copied
fiLe to be incLuded in the assembLy Listing. For exampLe:

COPY MYMAC.MAC/L

As it assembLes your program, MACRO reports any COpy statements encountered.
For ex am p L e :

Copying from DSKO:SY~.MAC(7,7J

S.1.2 OBJNAM

The OBJNAM oseudo opcode controLs the names of output fiLes produced by
LINK, SYMBOL, and MACRO. It teLLs these programs how you want to modify the
output fiLe name and extension. If you do not use OBJNAM, MACRO, LINK, and
SYMBOL produce an output fiLe with the same name as the input fiLe and the
appropriate extension.

The OBJNAM statement takes the form:

OBJNAM fiLnam.ext
or:

OBJNAM expr1{, ••• exprN}

where 1<=N<=3. That is, OBJNAM is foLLowed by a fiLename and extension or by
one to three expressions. If OBJNAM takes the second form, each expression
is either 0 or a RADSO vaLue. The first expression denotes the first three
characters of the fiLename, the second expresson denotes the last three
characters of the fiLename, and the third expression denotes the three
characters of the fiLe extension.

OBJNAM causes the output fiLe names to be modified as foLLows (where you
have specified "fi Le" and "ext" in the OBJNAM statement Line):

ASSEMBLER PSEUDO OPCODES

source.OBJ
source.PRG
source.OVR
source.LST
source.MAP
source.SYM

--->
--->
--->
--->
--->
--->

fiLe.OBJ
fiLe.ext
fiLe.ext
fiLe.LST
fiLe.MAP
fiLe.SYM

Page ';-4

If you omit "ext" or if any expression is omitted or is zero, the
corresponding portion of the fiLe name remains unmodified. For example, if
you were assembLing DEVCPY.MAC, and specified the OBJNAM statement:

OBJNAM TEST

(omitting the extension), the assembled and linked output file would have
the name:

TEST.PRG

5.1.3 PAGE

The PAGE statement causes your assembly Listing to begin a new page before
continuing with the listed output. No action takes place other than this
during assembly.

5.1.4 LIST - NOLIST

You may obtain an assembly Listinq by using the fL assembly switch. The
LIST and NOLIST pseudo opcodes control which portions of your program wiLL
appear in the listing fiLe. NOLIST disables listing, and LIST re-enables
listing. The LIST and ~OLIST pseudo opcodes do not appear in the listinq.
NOTE: MACRO will ignore the LIST and NOLIST pseudo opcodes if you use the
optionaL fX assembLy switch.

5.1.5 ASECT - RSECT

The ASECT statement causes the assembler to generate code for the absolute
section of the program. This code will not be modified during LINK editing
and the vaLues assigned to labeLs will not have the relocatabLe attribute
flag set.

The RSECT statement causes the assembLer to generate code for the
relocatabLe section of the program. This is the normal section for the
AM-100 and AM-100fT systems which always relocates the program in user
memory. This code will be modified during LINK editing and the values
assigned to Labels wiLL have the relocatable attribute flag set. Two
separate assembly location counters are maintained during program assembLy.

ASSEMBLER PSEUDO OPCODES Page 5-5

5.1.6 SYM - NOSYM

The SYM statement causes aLL foLLowinq user symboLs to be output to the
object fiLe aLong with their assigned vaLues. The NOSYM inhibits this
output for aLL foLLowing user symboLs. These symboLs are Later used by the
SYMBOL program to generate a reference fiLe for the dynamic debuggger
programs DDT and FIX. The use of SYM and NOSYM does not cause any
noticeabLe change in the actuaL program.

5.1.7 CREF - NOCREF - MAYCREF

To obtain a fuLL cross reference Listing, you may specify the IR assembLy
switch. (To see the cross reference Listing on your terminaL, specify the
IRT switch.)

The three pseudo opcodes CREF, NOCREF, and MAYCREF controL which portions of
your program wiLL be processed in creating the cross reference.

CREF enabLes normaL cross referencing.

NOCREF suppresses from the cross reference Listing aLL defined symboLs untiL
MACRO encounters a CREF or MAYCREF statement.

MAYCREF teLLs MACRO to suppress aLL symboLs defined from the cross reference
listing if those symbols are never referenced.

For a fulL discussion of the format of the cross reference listing, see
Section 9.4.~, "Generating a Cross Reference."

5.1.8 EVEN

The EVEN statement forces the next hi nary code to be g~nerated on a word
boundary (next even byte) by incrementing the assembly location counter if
it is odd (no change if it is even). This is necessary since all
instructions must lie on a word boundary for proper execution by the AM-100
system.

5.1.9 RADIX

The RADIX statement forces a new default radix to be set up in the
assembler. The default radix of the system determines how all numbers that
are not preceded by a temporary radix operator (~A,~D,~H,~O) will be
interpreted. The statement takes the form:

RADIX n

ASSEMBLER PSEUDO OPCODES Page 5-6

where the radix change argument "n" must be a decimaL number in the range of
2-36. Radix vaLues above 10 use the letters A-Z to represent the digit
vaLues of 10-35 incLusiveLy. The defauLt radix of all assembLies is base g
(octaL) in the absence of any explicit RADIX statement.

5 • 1 • 1 0 NVA LU

MACRO provides a parameterized assembly facility by aLLowinq you to use the
IV switch to specify a vaLue on the MACRO command Line. The vaLue switch
may take one of these forms:

IV:x

IVO:x
IVH:x
IVD :x
IVA:x
IVR :x

x is an octaL or hex number (depending on the
prevailing radix setting)
x is an octaL number
x is a hexadecimal number
x is a decimaL number
x is one or two ASCII characters
x is one to three RAD50 characters

The NVALU pseudo opcode alLows your program to access the vaLue specified in
the IV assembLy switch. The NV4LU statement takes the form:

NVALU sym

which sets the symboL "sym" to one of the vaLues beLow, depending on which
IV switch was used:

sym=x
sym=AOx
sym=AHOx
sym=ADx
sym= IX

sym="x
sym=[x]

5.1.11 END

The END statement terminates the source fiLe and is incLuded onLy to give a
defined end on the Listing. In the absence of an END statement, the
assembLy wilL terminate with the logical end of input fiLe. Note that if an
END statement is encountered anywhere in the source input (incLuding inside
a copied fiLe) the assembLy wilL terminate whether the LogicaL end of the
input file has been reached or not.

NOTE: As it assembLes your program, MACRO warns you if your program fiLe
does not contain an END statement:

Phase 1: Missing END statement

ASSEMBLER PSEUDO OPCODES Page 5-7

5.2 DATA GENERATION PSEUDO OPCODES

The MACRO assembLer has severaL pseudo opcodes which generate specific data
constants within the program area for use as text messages, constant vaLues,
tabLes, etc. This section Lists these pseudo opcodes and gives detaiLs on
the data formats which are generatp.d by them. ALL statements may have
LabeLs in which case the LabeL is assigned the address that wiLL receive the
first byte of the generated data. ALL data statements begin aLLocating
their specific data formats at the address specified by the assembLy current
Location counter and generate muLtipLe bytes in sequence, incrementing the
current Location counter as necessary. Those statements which generate byte
data (BYTE, ASCII, BLKB) may begin and end on any byte address, odd or even.
Those statements which generate word data (WORD, RAD50, BLKW) must begin on
a word boundary (even byte) or eLse a boundary error (8) wiLL resuLt. The
EVEN statement may be used at any point where the status of the current
Location counter is in doubt to insure an even boundary.

5.2.1 BYTE

The BYTE statement qenerates one or more bytes (eight bits each) of data.
The arguments for generating the data consist of expressions separated by
commas. Any LegaL expression is vaLid but onLy the Lower byte wiLL be
stored after evaLuation. Some exampLes are:

ZER: RYTE
BYTE

MULTI: BYTE
BYTE

5.2.2 WORD

o
1,2,~

A-8,TAG*4,SAM
'A,'Q

;Generates 1 byte of data containinq zero
;Generates 3 bytes of data containing 1,2,~
;Generates 3 bytes of data
;Generates 2 bytes of ASCII data

The WORD statement generates one or more words (16 bits each) of data. The
arguments for generating the data consist of expressions separated by
commas. Any LeqaL expression is vaLid which evaLuates into a 16-bit vaLue.
WORD statements may aLso be generated by defauLt if the first symboL on a
Line (after any LabeLs) is not defined as an opcode, pseudo opcode or macro
name. Some exampLes are:

ZER: WORD
WORD
WORD
SAM

o
1,2,3
A-B,"QT,SAM-.

;Generates 1 word (2 hytes) of data zero
;Generates ~ words of data containing 1,2,~
;Generates ~ words of data
;Generates by defauLt the vaLue of SAM

ASSEMBLER PSEUDO OPCODES Page 5-8

5.2.3 ASCII

The ASCII statement generates one or more bytes of ASCII data. The argument
for generating the data is a string of LegaL ASCII characters bounded on
both ends by the same character which must not be incLuded in the data
string itseLf. Any printing character may be used as a deLimiter. OnLy one
such string may be generated by each ASCII statement. Some exampLes are:

MSG:

MSG2:

ASCII
ASCII
ASCII

5.2.4 RAD50

ITHIS IS A MESSAGEI
IQI
$ I/O TERM $

;Generates a string of 17 data bytes
;Generates a singLe data byte of "G"
;Generates a string of 10 data bytes

The RAD50 statement generates one or more words (16 bits each) of data. The
argument is a string of vaLid RAD50 packabLe characters bounded on both ends
by the same character which must not be incLuded in the data string. Any
printing character may be used as a deLimiter. The LegaL characters for
RAD50 packing are A-Z, 0-9, doLLar-sign ($), period (.) and space. One
packed word wiLL be generated for each three characters in the string or
fraction thereof with traiLing spaces being assumed to fiLL out the Last
tripLet. Some exampLes are:

DDB: RAD50
RAD50
RAD50

5.2.5 BLKB - BLKW

IDSKI
ISAM QQI
IABCDI

;Generates one word of packed data
;Generates two words of packed data
;Generates two words (same as RAD50 IABCD I)

These statements do not ectuaLLy generate data but are incLuded in this
section because they resuLt in the aLLocation of memory in a defined manner.
The 8LKB aLLocates an area of bytes ~nd the BLKW aLLocates an area of words.
In aLL other respects they operate the same. The argument for each is a
singLe expression which evaLuates to a vaLue between 0 and 65535. This
vaLue is then added to the assembLy current Location counter (twice if BLKW)
which effectiveLy reserves that bLock of memory and continues aLLocating
memory at the new address. NormaLLy this resuLts in a contiguous area of
aLL zeros since the Linker cLears aLL bLank areas when it generates the
program fiLe. This action does not aLways happen, however, because the
Location counter may be stepped back into the reserved area in which case
the new data wiLL overLay the reserved bLock of memory. This is an
important concept in deaLing with the absoLute section since no data is
actuaLLy generated by these statements, onLy memory addresses are reserved.
Some exampLes are:

DATA: BLKS
BLKB
BLKW

44
A*B
200

;Reserves 44 bytes of memory
;Reserves A*8 bytes of memory
;Reserves 200 words (400 bytes) of m~mory

ASSEMBLER PSEUDO OPCODES Page 5-9

5.3 SEGMENTATION PSEUDO OPCODES

The MACRO assembler, toqether with the LINK editor and monitor overlay
calls, support a powerful method of seqmenting and overlayinq programs for
both convenience during system development and memory conservation during
execution. This section describes the methods available for the various
options and also the assembler pseudo opcodes which help support the system.
The pseudo opcodes we will discuss are AUTOEXTERN, INTERN, EXTERN and
OVRLAY. This section aLso briefly discusses the concept of program
L ibrari es.

5.3.1 Segmenting AssembLy Language Programs

There are several reasons for segmentinq a program and aLso different
methods for doing so, depending on the end result desired. A very large
source program takes longer to edit (even a smaLL change) and gives a
greater opportunity for total Loss if some disaster strikes the fiLe links.
A larqe program also takes longer to assemble and more memory in which to do
so. Segmented programs may be organized in such a manner as to aLlow
portions of the proqram to be resident in memory and other portions to be
called in from disk only as required. Segmented programs may aLso contain
dupLicate symbols if the program segments are assembled separately and
linked together by LINK. Also, program seqments which are assembLed
separately may also be listed separateLy resuLting in Less Listing time (and
less paper used) for each chanqe that is made.

The simpLest method for creating a program in seqments gains one of the
above advantages. This method makes use of the COpy statement and aLLows a
large program to be edited as multipLe seqments which are then copied into
the main source program by using one COpy statement for each seqment. As
changes are made to the source program, you need onLy edit the seqment which
requires the changes. The assembly is done, however, on the compLete source
program since aLL copied fiLes are included in the source input. OnLy one
object fiLe results and onLy one singLe List file can be created. The IL
option on the COpy statement may be used to control those segments that are
desired to be incLuded on the Listing itself.

A more compLex but flexible method is to break up the program into logicaL
segments which may be assembled serarateLy and then Linked together at a
Later time by the LINK program. Several object (.OBJ) fiLes resuLt as
output of the different segment assembLies which are then input to the LINK
program which creates a fuLly resoLved and runnabLe program (.PRG) fiLe.
The advantaqes of the COpy method are reaLized as welL as the added
advantaqe of having to assemble onLy those segments which require changes.
The LINK process runs Much faster and requires less user memory than the
assembly process. One of the requirements of a program which is segmented
in this manner is that alL references to routines and data constants which
reside in another segment must be done through two special assembLer pseudo
opcodes, INTERN and EXTERN. Since a reference to a routine in another
segment is not defined during the assembLy of the caLling segment, the
symboL (name of the routine) is said to be "externaL." It is decLared

ASSEMBLER PSEUDO OPCODES Paqe 5-10

external by the EXTERN statement which tells the assembler that it is
defined and wilL be resoLved by the Linkage editor at a later time. The
segment in which the routine exists then declares that symboL as "internaL"
via the INTERN statement which teLLs the assembLer to output the symbol with
a speciaL code which defines it to the linkage editor for final resolution.

The method of segmenting a program and then creating a single runnable
program with LINK may be extended one step further using a feature in the
monitor which aLlows program segments to be caLLed in from the disk and
overLay an existing portion of the main program. A segment which is to be
used as an overLay defines itseLf as such by using the OVRLAY statement and
giving the address at which the overLay is to be Loaded. The main program
then uses a special form of the FETCH supervisor calL to Load the overLay
segment and then executes it by jumping to a known segment start address.
This impLementation of overLaying segments is used in the MACRO assembLer
itseLf and conserves user memory during execution of Large system programs.
The LINK program creates one program (.PRG) file for the main segment and
one overlay (.OVR) fiLe for each overLay segment in use.

NOTE: StiLL another method for moduLarizing programs is the use of library
files. Program libraries aLLow you to make use of frequentLy used routines
in many different programs without rewriting those routines each, time you
need them.

You may specify one or more library (.LIB) fiLes to LINK which then Links in
onLy those object files in the .LIB file that are necessary to resoLve
external references. For fuLL information on generating and maintaining
program Library files, see Chapter 11, "The Object FiLe Library Generator
(LIB) ."

5.3.2 AUTOEXTERN

The AUTOEXTERN pseudo opcode teLLs MACRO to automaticaLLy EXTERN any
undefined symboLs; those symboLs are then dispLayed at the end of Phase 2 of
the assembly. When AUTOEXTERN is in effect you do not have to expLicitLy
EXTERN symboLs.

5.3.3 INTERN

The INTERN statement defines one or more user symboLs as internaL to the
program segment so that they wiLL be defined to the Linkage editor program
for finaL resoLution. The INTERN statement takes the form:

INTERN sym1{,sym2, ••• symN}

Each INTERN statement may be foLLowed by one or more internaL user symboLs
separated by commas. As many INTERN statements as required may be used in
the program. There is aLso no Limit to the number of symboLs that may be
referenced by each INTERN statement except for the physicaL Line Length.

ASSEMBLER PSEUDO OPCODES Page 5-11

Each symbol that is referenced in an INTERN statement must be defined within
the segment either as a labeL on a routine or constant or as a value by an
equate statement. The symbol will then be available to the LINK program for
resolving references to it which come from EXTERN statements in other
segments. Any symbol defined as externaL in a segment that has not been
defined as internal in another segment wiLL resuLt in an undefined error
during Linkage editing. A symhol may never be defined by more than one
INTERN statement durinq anyone LINK run; i.e., the same symbol cannot
appear as internal in two different segments that will eventually be linked
into the same program.

A short hand notation for INTERNing a labeL or equated symbol exists.
Instead of writing:

INTERN Symbol
Symbol:

you may now write:

Symbol::

Instead of writing:

INTERN SymboL
Symbol = Expression

you may now write:

Symbol == Expression

5.3.4 EXTERN

The EXTERN statement is used to define one or more user symbols as external
to the segment so that they may be resolved by the linkage editor proqram.
The EXTERN statement takes the form:

EXTERN sym1{,sym2, ••• symN}

Each EXTERN statement may be followed
by commas. As many EXTERN statements
program. There is also no limit
defined by each EXTERN statement except

by one or more user symbols separated
as required may be used in the
to the number of symbols that may be
for the physical line length.

Each symbol that is defined by an EXTERN statement may be referenced within
the segment just as if it had been defined within the segment as a label or
an equate statement item. There is no limitation pLaced on its use as a
term within any operand expression since the LINK program has complete
expression resolution mechanic~ built in. There are two restrictions to its
use within the segment. An externally defined symbo~ may not be used within
the address operand of any branch instructions (BR, 8EQ, BGT etc.) due to
the fact that there is no way to insure that the resulting pLacement wilL

ASSEMBLER PSEUDO OPCODES Paqe 5-12

fall within the 127-word relative requirement. It may, however, be used
within the address operand of the ;ump (JMP) instruction. The second
restriction is that an equate statement may not contain any externally
defined symbols in its operand expression sincp. all equates must be fully
resolvable as they are encountered.

The LINK program builds a symbol table from alL the symbols referenced in
all INTERN statements in alL program segments. It then goes back and
resoLves alL expressions containing symbols defined by EXTERN statements by
Looking them up in the table of INTERN symbols. Any symboL defined in an
EXTERN statement but not matched by some INTERN symboL will give an error
message during linkage editing.

5.3.5 OVRLAY

The OVRLAY statement identifies a proqram seq~ent as being an overlay file
instead of a continuation of the main program file. It also defines the
address of the base of the overlay relativp. to the base of the main program
so that the loading of the overLay seqment is done at the proper spot in the
program memory area. The OVRLAY statement takes a sinqle argument which is
a user symbol that must be defined in some other segment in an INTERN
statement. For example:

OVRLAY Sym

NOTE: It is legal to write:

OVRLAY Sym
Sym: ...

as Long as "sym:" appears at the start of the overlay. (The symbol "sym"
is essentialLy defined twice with the same value.) The OVRLAY address will
be resolved by LINK when the files are processed. Information on the code
used to load the overlay segments into memory will be found in the
description of the FETCH supervisor call in the AMOS Monitor Calls Manual.
Further information on processing of the OVRLAY statement may be found in
the section describing the LINK program processing.

5.4 CONVENIENce PSEUDO OPCOOES

There exist a few pseudo opcodes in the assembler that we refer to as
convenience opcodes for lack of a better term. These opcodes do not realLy
do anything that cannot alrearly be accomplished by the existing source
language in some other format, but they are easier to understand and make
the listing more readable when used in the form that has been implemented
here. Some of them are implemented directly in the assembLer program itself
while others exist as predefined macro calls in the system copy file SYS.MAC
which is normally called by all programs.

ASSEMBLER PSEUDO OPCODES Page 5-13

5.4.1 Extended Conditional Jumps

One very frustrating thing about editing some new chanqes into a program is
when you find that an existing BNE (or qther conditionaL branch) no longer
reaches due to the new code extendinq the address out of the 127-word limit
for branches. The most common solution to this problem is to replace the
offendinq branch with a branch of the opposite condition foLLowed by a jump
to the desired address. In other words, our BNE TAG could be replaced by
BEQ .+6 foLLowed by JMP TAG which effectiveLy does the same thing. The onLy
probLem h~re is that this makes the Listing somewhat less than clear when
trying to decipher the fLow of the program. We have therefore impLemented
into the assembler a set of conditionaL jump opcodes which effectively
generate this two-instruction code sequence for the proper opposite
conditional but which stiLL look very readabLe in the source listinq. These
opcodes have been listed here aLong with the actuaL WD16 instructions
generated:

JEQ TAG generates BNE .+6 followed by JMP TAG
JNE TAG BEQ .+6 " JMP TAG
JPL TAG BMI .+6 " JMP TAG
JMI TAG BPL .+6 JMP TAG
JLO TAG BHIS .+6 JIVIP TAG
JHI TAG BLOS .+6 JMP TAG
JLOS TAG 8HI .+6 JMP TAG
JHIS TAG BLO .+6 JMP TAG
JLT TAG AGE .+6 JIVIP TAG
JGT TAG ALE .+6 JMP TAG
JLE TAG BGT .+6 JIVIP TAG
JGE TAG ALT .+6 JMP TAG
.ICC TAG Bes .+6 JMP TAG
JCS TAG ACC .+6 JMP TAG
JVC TAG BVS .+6 JMP TAG
JVS TAG " 8ve .+6 .IIVIP TAG

Remember that although these opcodes are easier (require less planninq) than
the simple branches they do actuaLly qenerate three words of binary code
instead of only one so, if space is at a premium, use them only when
necessary.

5.4.2 PUSH - POP

The hardware stack in the WD16 is normally referenced by its index reqister
(SP) and transferring words of data to and from the stack is done by MOV
instructions. lVIany machines have dedicated instructions to push and pop
data to and from the stack. In order to make the flow of system proqrams a
Little clearer for those of us used to pushing and popping, two macros have
been impLemented in SYS.MAC which recognize the PUSH and POP instructions.
Each takes a normal source address argument but each aLso has a special
default format which is used when no specific argument address is desired.
These instructions generate the followinq code:

ASSEMBLER PSEUDO OPCODES

PUSH SRC
PUSH
POP OST
POP

5.4.3 CALL - RTN

generates
"
"
"

MOV SRC,-(SP)
CLR -(SP)
MOV <SP)+ ,DST
TST (SP)+

Page 5-14

;Pushes SRC onto stack
;Pushes a zero onto stack
;Pops stack into OST
;Removes top stack word

The normaL subroutine caLLing sequence of the W016 is the JSR instruction
which Links its arguments throuqh any of the eight registers. The assembLer
recognizes the more popuLar mnemonic opcode CALL for which it generates a
JSR instruction. In addition, if no register is specified in the CALL or
RTN instructions, the assembLer assumes the most commonLy used register PC
for its argument Linkage. In other words:

CALL TAG
RTN

5.4.4 OFFSET

generates
"

CALL PC ,TAG
RTN PC

There are many times during the programming of totaLLy reLocatabLe code
where an address must be expressed and stored as a reLative offset from the
Location of the constant itseLf. In other words, the storage of the address
TAG must be in the form of TAG-. which is actuaLLy the offset from the
current position of the constant itseLf to the address defined as TAG. The
vaLue of this constant offset wiLL not change no matter what its position in
memory happens to turn out to be. A good exampLe of the use of reLative
address offsets is in the tabLes associated with the instructions TJMP and
TCALL which must be reLative offsets and not direct addresses. The OFFSET
pseudo opcode has been impLemented to make the Listings a LittLe.more
obvious as to intent. The OFFSET opcode takes a singLe address argument and
generates the reLative offset to that address from the current position of
the constant.

5.4.5 PSI

ALthough intended onLy to be used internaLLy to generate the system monitor
macros, the PSI (PSeudo-Instruction) wiLL be defined here as a result of the
numerous inquiries about it. The PSI instruction will generate an
instruction simiLar in format to the double-address instructions (such as
MOV, ADD, SUB etc.) which may be one, two or three words in length depending
on the address modes used. In addition, it allows a 4-bit pseudo opcode to
be specified expl icitLy in the operand fieLd. BasicaLLy, the format is:

PSI opcode,source-address,destination-address

This resuLts in a normaL instruction format with the opcode comprlslng the
top 4 bits (bits 12-15), the source address comprising the middLe 6 bits

ASSEMBLER PSEUDO OPCODES Page 5-15

(bits
0-5).

6-11) and the destination address comprlslng the Low 6 bits (bits
AdditionaL index words are generated if required by the addressing

modes in use.

The instruction generated by the PSI statement is never executed directLy by
the machine since, in actuaLity, it dupLicates one of the existing LegaL
instructions. Instead, it foLLows a specific SVCB instruction and is used
to generate the pseudo-instruction to be executed by the SVCB caLLing
sequence and thereby resuLts in an easy method for generating the standard
address arguments.

CHAPTER 6

USER DEFINED MACROS

It is often convenient to create your own opcode definitions which when used
in the source program result in the creation of a predefined sequence of one
or more source code statements. These user-created opcodes are called
"macros" in assembly language programming and the Alpha Micro assembler
supports a flexible macro subsystem. There are two phases that you go
through when using macro calls. First, you define the macro opcode once in
the program as a series of source code statements along with possibLe dummy
arguments. You only do this once; the macro remains defined throughout the
remainder of the assembly process. Second, you then invoke the macro by a
single source statement giving the macro name aLong with optional real
arguments that repLace the defined dummy arguments in the macro source code
which is generated. Calling the macro in this manner causes the macro
statement to be repLaced by the defined sequence of source code statements
that have been custom tailored by the optional reaL arguments in the caLLing
statement. You may perform this caLLing sequence as many times as needed in
the source program with as many different real arguments as desired.

6.1 MACRO DEFINITION

Defining a macro generates no actuaL binary code in the program but mereLy
places the macro definition in a soecial table in the assembler memory work
area. CaLling the macro (which then generates the sequence of source
statements) is the process that actually generates the binary code. If your
program never calLs the macro or if the macro does not contain any
code-generating source statements, MACRO produces no hinary code for the
macro. The use of conditional assembLy directives within a macro definition
may result in no code-generating statements for this particular calL to the
macro. The fact that no code is actualLy generated if the macro is never
caLLed is an important concept since it then aLLows macro libraries to be
created that may contain many macro definitions that are standard for a
particuLar user system. Those macros that are never caLLed in any specific
program do not generate any code and therefore take uo no additionaL memory.
The system Library SYS.MAC contains over 70 such macro definitions that
define the supervisor calls to the monitor.

USER DEFINED MACROS Paq~ 6-2

6.1.1 Macro Definition Formats

There are two formats avaiLabLe for use in defininq macros. The normaL
format aLlows one or more source lines to be generated as a result of the
macro caLL. The singl~-line format restricts the macro definition to one
line of generated source code but tak~s up less room on the source listing.
For several sample macros, see Section 6.1.10, below.

The general format for multiple-Line macros is:

DEFINE name {dummy argument list}
source line 1
source line?

source line n
EN OM

The general format for a sinqle-line macro is:

DEFINE name {dummy arqument list} = source line

In both forms above, the macro name is any legal user symhol; it effectively
becomes the opcode by which the macro is called. This symbol may dupLicate
a labeL in the program or may even redefine an AM-100 pseudo opcode or a
WD16 machin~ ope ode (e.g., you can redefine the MOV opcode to do an ADD if
you reaLLy want to confuse some peopLe). You may onLy define a macro name
once and an attempt to redefine it Later in the proqram wilL give
unspecified resuLts.

6.1.2 The Macro Source Statements

The muLtipLe-Line macro definition source statements begin with the Line
immediateLy foLLowing the DEFINE statement and continue through to but not
incLuding the ENDM termination Line. NOTE: Every macro definition must end
with the ENDM pseudo opcode.

When the program text caLLs the macro, MACRO wiLL generate and assembLe aLL
macro source Lines just as if they had been expLicitLy entered directLy into
the source program. In the singLe-Line form, the source Line beqins with
the character foLLowing the equaL sign and continues through (and incLuding)
the carriage-return and Line-feed pair which terminates the DEFINE statement
Line.

Macro definitions must not be nested within other macro definitions. Macro
processing is done on a speciaL prepass scheme which prohibits the
processing of any DEFINE statements within another DEFINE statement.

USER DEFINED MACROS Paqe 6-3

6.1.3 The Dummy Argument List

The dummy argument List is optionaL in both forms of macros and consists of
one or more user symboLs separated by commas. These symboLs are unique onLy
within the actuaL definition of the current macro and may be dupLicated in
other macro argument Lists or may even be other opcodes and defined symboLs.
These dummy argument symboLs wiLL never appear as such in the generated
sequence of source statements when the macro is caLLed but wiLL be repLaced
by the equivaLent reaL arguments suppLied in the caLLing statement. The
dummy argument symboLs may appear anywhere in the definition source Lines,
even as LabeLs. Each time MACRO encounters a dummy arqument when generating
the source Lines durinq a macro caLL, it repLaces the dummy argument with
the corresponding reaL argument that was suppLied by the caLLing statement.

6.1.4 LabeLs

A LabeL must not be used on the DEFINE statement Line since it has no
meaning. LabeLs may be used on the caLLinq statements. A LabeL must not be
used on the ENDM Line or the ENDM Line wiLL not be detected.

6.1.5 LocaL SymboLs

MACRO supports LocaL symboLs of the form nnn~ and nnn$~, where nnn is a
number between 0 and 65535, decimaL. LocaL symboLs of the form nnn$ have
scope onLy between two non-LocaL L~beLs, and may be used outside of macro
definitions.

LocaL symboLs of the form nnn$$ are for use onLy within macro definitions.
If a nnn$$ LabeL appears outside of a macro, MACRO wiLL treat the LabeL Like
nnn$ except that the LabeL wiLL not appear in the symboL tabLe fiLe (used
for debugginq purposes). NOTE: You m~y define a LocaL symboL with an equate
(=).

BeLow are two sampLe macros that use LocaL symboLs:

DEFINE LEAMSG
LEA
AR

10$$: ASCII
BYTE 0
EVEN

20$$:
ENDM

X
RO,10$$
20$$
'X'

; Get address of message
; Branch around message

USER DEfINED MACROS

Now we call the macro:

LEAMSG
TTYl
LEAMSG
TTYL

HELLO
@RO
BYE
@RO

; Display HELLO

; Di~play BYE

Page 6-4

The example above works correctly even thouqh it generates two occurrence$
of 10$$ and 20$$ because the symboLs are local to each macro call.

The example below demonstrates that local labels of the form nnnS can be
passed as arguments to macros, and that they will be distinquished from
labels of the form nnn$$ even if "nnn" is the same:

DEFINE JGT10
CMP
BlE
JMP

1$$:
ENDM

Now we call the macro:

JGT10

DEC
1 $: RTN

6.1.6 Comments

X,Y
X,#10
1$$
y

RO,$1

RO

· expands to: ,
· CMP RO,#10 ,
· BLE 1$$,
; JMP 1$
· 1$$: ,

A comment may follow the dummy argument list in the multiple-line form but
you should not use a comment with the single-line form. You should avoid
comments in the actual generated source lines in the macro definition simply
because MACRO stores the entire source text in work memory as ASCII
characters (including all comments). This may tend to use up work memory to
the extent that you may not have enough memory to finish the assembly.

6.1.7 Special Macro Operators

Two special operators exist that are used only within macro definitions: the
argument concatenat ion operator (') and the expression evaluat i'on operator
(\) .

USER DEFINED MACROS Page 6-5

6.1.7.1 Argument Concatenation (I) - Since dummy arguments must be valid
user symbols, the apostrophe (') is a legal delimiter for any dummy argument
within a macro definition source line. When an apostrophe immediately
precedes and/or follows a dummy argument in the source text, the apostrophe
is removed and the substitution of the real arqument occurs at that point.
This is useful for building symbols with arguments that are to be a part of
that symbo l.

Given the following macro definition and eventuaL caLLs:

DEFINE BUILD
TAG'AA: MOV

ENDM

BUILD
BUILD

AA,BB
R1,Q'BB'7

RA,STS
T,P

the effective code generated by the two caLLs wouLd be:

TAGRA: MOV
TAGT: MOV

R1,QSTS7
R1,QP7

6.1.7.2 Expression EvaLu~tion (\) - The \ operator teLLs MACRO to
evaLuate the expression that foLLows and to return its vaLue. (Before LocaL
symboLs were supported by MAC~O, the \ operator was often used to simuLate
LocaL symboLs. For information on true LocaL symboLs, see Section 0.1.5,
"Local SymboLs.") You may use an expression of the form:

\expr

(a "\" foLLowed by an expression) within a macro definition. MACRO then
evaluates the expression and returns its vaLue as a strinq. By pLacinq a
symboL in front of the \, you can direct MACRO to append the vaLue of the
expression foLLowing the \ onto the end of the symboL. For exampLe:

LABEL\4*4:

evaLuates to:

and:

LABEL16:

$ = 1
STC/$:

evaLuates to:

STC1:

USER DEFINED MACROS Page 6-6

SymboLs generated in this way do take up room in the symboL tabLe.

NOTE: Be very carefuL that the expression foLLowing the \ operator does not
contain any macro arguments; they wiLL not be expanded properLy and wiLL
probabLy cause a syntax error (Q code).

6.1.8 Suppressing Macro Expansion - ENDMX

The ENOMX pseudo opcode ends the expansion of the current macro. This
pseudo opcode is iLLegaL outside of a macro definition. You wiLL find this
pseudo ope ode usefuL when using conditionaL assembLy directive pseudo
opcodes to controL macro expansion. (NOTE: ENDMX controLs what macro code
is generated at the time of a macro caLL; it does not affect whether the
macro expansion is incLuded in your assembLy Listing.)

6.1.9 NCHR, NTVPE, NEVAL and NSIZE

These four macro directives return a vaLue that specifies the number of
characters in an argument (NCHR), the addressing mode type of an argument
(NTVPE), the vaLue of any extra word generated by the addressing mode
evaLuation, or the Length of any extra words generated by an addressing
mode. These statements function simiLarLy to the equate statement (=) in
that they assign a vaLue to a user symboL which may be reassigned as many
times as desired during the course of the assembLy. They are normaLLy used
to controL the deveLopment of macro source code based on the size and type
of arguments passed to the macro and therefore are defined in this section
deaLing with macros. In actuaLity, you may use them anywhere in the source
program with any vaLid source code as an argument but they are fairLy
meaningLess unLess used within a macro.

Once the symboL has been assigned a vaLue by one of the NCHR, NTVPE, NEVAL
directives, you may use it by itself or within expressions to controL the
deveLopment of the macro source code through the conditionaL assembLy
statements.

6.1.9.1 NCHR - The NCHR statement assigns a vaLue to a user symboL that
is equivaLent to the number of characters in the argument string. It has
the format:

NCHR symboL,string

USER DEFINED MACROS Page 6-7

6.1.9.2 NTYPE - The NTYPE statement assiqns a vaLue to a user symboL that
is equivaLent to the 6-bit addressing mode of the argument. It has the
format:

NTYPE symbo L,a rgument

The foLLowing is a List of the addressing modes and the vaLues that they
wilL deLiver via the NTYPE statement. The upper case "R" represents any of
the eight registers (RO-R5, SP, PC) which have a corresponding resuLt vaLue
of 0-7 added to the resuLting mode they are used in.

R di rect register deLivers OR
@R indirect register deLivers 1R
(R)+ autoincrement deLivers 2R
@(R)+ indirect autoincrement deL ivers ~R
- (R) autodecrement deLivers 4R
@-(R) indirect autoincrement deL ivers 5R
X (R) indexed deLivers 6R
@X (R) indirect indexed deL ivers 7R
#X immediate deLivers 27
TAG reLative deLivers 67
@TAG indirect reL~tive deLivers 77

For exampLe, if you use register R4 in indirect addressing mode, NTYPE
returns a 14 (i.e., 1R where R = register 4).

6.1.9.3 NEVAL - The NEVAL statement assigns a vaLue to a user symboL that
is equivaLent to the vaLue of the extra word generated by one of the
indexed, reLative or immediate addressing modes. This word represents the
index auqment for indexed modes, the reLative offset for reLative modes or
the immediate vaLue for the immediate mode. It has the format:

NEVAL symbo L ,argument

6.1.9.4 NSIZE - The NSIZE statement assigns a vaLue to a user symboL that
is equaL to the size of the address form (i.e., 0 if no extra word is
generated, 2 if an extra word is generated). It has the format:

NSIZE symbo L ,argument

USER DEFINED MACROS Page 6-8

6.1.10 Sample Macro Definitions

Below are several sample macro definitions.

A macro called MOlT whi ch generates four instructions:

DEFINE ADDlT
MOV R1,R3
ADD R3,SUM
ASL R3
ADD R3,SUM
ENDM

A macro called XCHNG which exchanges two memory words:

DEFINE XCHNG MEMA,MEMB
MOV MEMA,R1
MOV MEMB,MEMA
MOV R1,MEMB
ENDM

A macro called STKSUB which subtracts a memory word from the top stack word:

DEFINE STKSUB TAG
SUB TAG,@SP
ENDM

The same STKSUB macro in the single-line format since only one line is used:

DEFINE STKSUB TAG = SUB TAG,@SP

For some more complex examples of macro definitions, print out or inspect
the system macro library SYS.MAC that defines all of the supervisor calls
used by the AM-100 computer system.

6.2 MACRO CALLS

The actual generation of the defined source code comes when you call the
macro by its name within the text of your source program. The macro must
have been defined prior to its first reference. Macros are onLy processed
for definition during Phase 1 of the assembly process. Macro caLLs have the
same format regardLess of whether the macro definition is muLtipLe or singLe
line format:

{Label:} name {reaL arguments} {;commments}

USER DEFINED MACROS Paqe 6-9

6.2.1 Name

Name represents the name given to the macro definition; this becomes the
effective opcode by which your program caLLs the macro.

6.2.2 ReaL Arguments

Use reaL arquments when the definition of the macro has a dummy arqument
List; they actuaLLy repLace the dummy arguments in the source code text of
the macro definition. The real arguments repLace the dummy arguments on a
one-for-one basis in exactLy the same order as the eLements of the dummy
argument List. The first reaL argument in the caLL takes the pLace of p.ach
occurrence of the first dummy arqument in the definition, and so on for aLL
the arguments. If there are not enouqh reaL arguments qiven in the caLL to
fiLL aLL required dummy arguments, the unfiLLed dummy arguments take on a
nuLL vaLue and are effectiveLy replaced with nothing. If there are more
arguments in the caLL then required to fiLL the dummy arguments in the
definition, MACRO ignores the excess arguments.

6.2.2.1 ReaL Argument Format - NormaLly, the reaL arguments are separated
by commas and the assembler expects this format. ALso, Leading and traiLinq
bLanks are ignored when processing each reaL arqument in the macro caLL
statement. Often you may want to incLude a comma or blank as part of the
reaL argument without having it act as a deLimiter or be bypassed. Any
argument that is encLosed in angLe brackets wiLL be passed onto the source
code generation verbatim incLuding any blanks and commas.

The macro caLL:

XPURT ONE,TWO,THREE

has three reaL arguments whiLe the caLL:

XPURT <ONE,TWO,THREE>

has only one argument which incLudes the two commas. The caLL:

XPURT <ONE,TWO>,THREE

has two reaL arquments of which the first incLudes one comma.

USER DEFINED MACROS

The system macro TYPE ;s another good exampLe:

DEFINE TYPE MSG
TTYI
ASCII
BYTE
EVEN
ENDM

/MSG/
o

Page 6-10

This macro is one of the AMOS monitor caLLs and is designed to type out the
ASCII message which appears as the argument to the TYPE macro caLL. The
BYTE 0 statement insures a nuLL terminator and the EVEN statement insures
that the next instruction is again synchronized on a word boundary.

The ca L L :

TYPE HELLO

wiLL type out the message "HELLO" because aLL the
automaticaLLy ignored before the argument is processed.

TYPE < HELLO >

Leading bLanks
The ca L l:

are

wiLL type out the message" HELLO" because the bLanks are included in
the argument as a resuLt of the angLe brackets. SimiLarLy, the caLL:

TYPE HELLO, I AM A COMPUTER

wiLL type out the message "HELLO" because the comma wiLL terminate the
argument and the rest of it wiLL be ignored. The caLL:

TYPE <HELLO, I AM A COMPUTER>

wiLL type out the message "HELLO, I AM A COMPUTER" because the comma is
incLuded in the argument as a resuLt of the angLe brackets.

6.2.3 LabeL

The LabeL is optionaL and wiLL be assigned the address contained by the
assembLy current Location counter. This wiLL normaLLy be the address of the
first byte of code which is generated by the macro source Lines (assuming
that the macro does actuaLLy generate code). If the macro does not generate
code, then the LabeL wilL stiLL be defined but it wiLL represent the address
of the next byte of code that is generated after the macro caLL.

USER DEFINED MACROS Paqe 6-11

6.2.4 Comments

As in other statements, comments are optionaL.

6.2.5 Nested Macro CaLLs

Macro caLLs may be nested to a depth of 16 LeveLs. A nested macro is
defined as a macro caLL within the source statements generated by another
macro caLL. Arguments may be passed to nested macros by naming the dummy
arguments the same throughout the LeveLs. Arguments that contain bLanks or
commas may be passed through successive Lev~Ls by encLosing them in one set
of angLe brackets for each LeveL of nesting since one set of angLe brackets
wiLL be removed from an argument with each nesting LeveL. For exampLe, to
pass the argument A,B through three LeveLs of nested macro caLLs you wouLd
enter the argument as «<A,B»> in the first LeveL macro caLL.

6.2.6 SampLe Macro CaLLs

Consider this exampLe:

DEFINE TBLADD
MOV
ADD
MOV
ENDM

ARG1,ARG2,ARG3
ARG1,R1
ARG2,R1
R1,ARG1(ARG'3)

This macro ;s caLLed TBLADD and requires three reaL arguments.
foLLowing caLL in your proqram:

SAM: TBLADD SUMS,ENTRY,R5

The foLLowin~ source statements wouLd be generated:

SAM: MOV
ADD
MOV

SUMS,R1
ENTRY,R1
R1,SUMS(RS)

Assume the

It is evident from its usage that ARG3 must be a register. Assume that onLy
two arguments were given in the caLL:

SAM: TBLADD SUMS,ENTRY

The foLLowing source statements wouLd be generated:

SAM: MOV
ADD
MOV

SUMS,R1
ENTRY,R1
R1 ,SUMS ()

USER DEFINED MACROS Page 6-12

Notice that the third instruction wouLd contain an error due to the missing
register term which resuLted from the missing third argument. Sometimes a
missing argument may be used to advantage by altering the generation of the
source statements with the conditional assembLy statements. These
statements (described in the next chapter) can detect the fact that the
argument is missing and be used to seLectiveLy omit portions of code.

CHAPTER 7

CONDITIONAL ASSEMBLY DIRECTIVES

Conditional assembly directives allow you to selectively include or bypass
certain lines or segments of source code based on variable parameters which
are tested during assembly. This allows several different versions of the
same program to be generated from one source file. Conditional assembly
directives find their widest use within macro definitions where they are
used to tailor the macro based on the real arguments used in the macro call.

NOTE: You may find the MACRO oarameterized assembly option especially useful
when used with conditional assembly directives. The MACRO IV switch allows
you to provide a value on the MACRO command line which can be examined by
your source program. See Section 9.2.~ for information on this feature.

7.1 CONDITIONAL DIRECTIVE FORMATS

Like the macro definitions, conditional directives follow two general forms.
The normal form allows one or more lines of source code to be selected or
bypassed based on the current status of a variable. The sinqle line form
performs the same function but is a shorter version and only allows the
control of a single line of source code.

The general form of a normaL conditional block is:

IF condition,arqument
source line 1
source line 2

source line n
ENDC

The general form of a sinqLe-Line conditional is:

IF condition,argument, source-line

CONDITIONAL ASSEMBLY DIRECTIVES Page 7-2

Both forms empLoy the IF pseudo opcode to identify the conditionaL directive
and both forms require a condition code which specifies the type of test to
be performed and an argument upon which to perform that test. The condition
code is a symboL which identifies the test which is performed at the time
the conditionaL is encountered during Phase 1 of the assembLy process. The
argument may be a symboL, expression or macro argument, depending on the
type of test being performed.

Note that the item that distinguishes the two forms is the comma that
foLLows the argument in the singLe-Line form. If the comma exists, the
remainder of the Line up to and incLuding the carriage-return and Line-feed
wiLL be the source Line that wiLL either be assembLed or bypassed depending
on the resuLt of the conditionaL test. If the comma does not exist, the
conditionaL assembLy wiLL be done on the source Line that folLows the
conditionaL directive (IF) Line up to but not including the ENDC terminating
Line.

7.2 CONDITION CODES

The foLLowing is a List of the condition codes that are LegaL and the type
of condition that the associated argument is tested for. UnLess otherwise
specified, the argument is evaLuated as an expression and the 16-bit resuLt
of that evaLuation is the quantity that is tested to meet the condition.
The conditionaL source Lines are assembLed if the argument meets the
condition listed next to the code beLow.

EQ The argument is equaL to zero.

NE The argument is not equaL to zero.

LT The argument is Less than zero.

GT The argument is greater than zero.

LE The argument is Less than or equaL to zero.

GE The argument is greater than or equaL to zero.

OF The argument is compLetely defined at this point.

NDF The argument contains one or more undefined symboLs at thi s
point.

B The argument (a string of ASCII characters) is bLank or nuLL.

NB The argument (a string of ASCII characters) is not bLank or nulL.

CONDITIONAL ASSEMBLY DIRECTIVES Page 7-3

7.3 SUBCONDITIONALS

There are three subconditional directives that allow the alteration of the
normal conditional processing within a conditional block. These
subconditionals (IFF, 1FT and IFTF) require no other parameters and must be
used within the source code that is between the IF and ENDC statements. The
folLowing functions may be performed through the proper use of
subconditionals:

1. AssembLy of an aLternate bLock of code when the main conditionaL
code is being bypassed doe to a faiLed conditonaL test.

2. AssembLy of a noncontiguous body of code within the conditionaL
block depending on the result of the main conditionaL test.

3. Unconditional assembLy of a bLock of code within a conditionaL
bLock regardLess of the result of the conditional test.

The three subconditionaLs and their functions are:

IFF The source lines foLLowinq the IFF statement up to the
next subconditionaL or end of main conditionaL are
assembled if the main conditionaL test resuLt was faLse.

1FT The source lines foLLowing the 1FT statement up to the
next subconditionaL or end of main conditionaL are
assembLed if the main conditionaL test resuLt was true.

IFTF The source Lines following the 1FTF statement up to the
next subconditionaL or end of main conditionaL are
assembled regardless of the main conditionaL test result.

7.4 NESTING OF CONDITIONALS

Conditionals and subconditionals may be nested to a maximum depth of 16
levels. Any conditionals within a higher level conditional will be bypassed
(the test will not be performed) if the result of the higher level
conditional test was false. Subconditionals within outer level conditional
blocks will be tested while those within inner level untested blocks will be
ignored. Consider the following simple example:

CONDITIONAL ASSEMBLY DIRECTIVES

TEST1: IF
WORD
IF
WORD
IFF
WORD
1FT
WORD
IFTF
WORD
ENDC
ENDC

TEST2: IF
WORD
IF
WORD
IFF
WORD
IFT
WORD
IFTF
WORD
ENDC
ENDC

EQ,3-3
33
NE,4-4
44

441

442

443

EQ,5-6
56
EQ,6-6
61

661

662

663

;True so assembLe foLLowing code
;AssembLed since EQ,3-3 was true

;FaLse so bypass foLLowing code

Paqe 7-4

;Not assembled since NE,4-4 was faLse
;Tested - true since NE,4-4 was faLse
;AssembLed since IFF was true
;Tested - faLse since NE,4-4 wasn't true
;Not assembLed since 1FT was faLse
;Tested - true reqardLess of NE,4-4
;AssembLed since IFTF was true

;End of NE,4-4 conditional block
;End of EQ,~-3 conditionaL bLock
;False so bypass folLowing code
;Not assembled since EQ,5-6 was false

;Not tested since EQ,5-6 was false
;Not assembled since EQ,6-6 was untested

;Not tested since EQ,6-6 was untested
;Not assembLed since IFF was untested
;Not tested since EQ,6-6 was untested
;Not assembLed since 1FT was untested
;Not tested since EQ,6-6 was untested
;Not assembled since IFTF was untested

;End of EQ,6-6 conditional bLock
;End of EQ,5-6 conditionaL bLock

The system macro for the PUSH convenience opcode is a good exampLe of how
conditionaLs may be used to controL the code generated by a macro:

DEFINE PUSH
IF
IF
ENDM

SRC
B,SRC, CLR -CSP)
NB,SRC, MOV SRC,-CSP)

If the macro is caLled without an argument CSRC is blank) then the first
conditional is true and the code CLR -CSP) is generated to push a zero word
onto the stack. The second conditionaL is therefore false and generates no
code. If the macro ;s called with an argument CSRC is not bLank) then the
reverse happens and the code MOV SRC,-CSP) is generated with SRC being
replaced by the real argument in the caLLing statement. This causes the SRC
word to be pushed onto the stack.

The same PUSH macro could have been alternately coded using subconditionals:

DEFINE PUSH SRC
IF B,SRC
CLR -CSP)
IFF
MOV SRC,-CSP)
ENDC
ENOM

CONDITIONAL ASSEMBLY DIRECTIVES Page 7-5

For some more examples of conditionals used within macros, print out or
inspect the system library SYS.MAC which defines all of the supervisor calls
used by the AM-100 computer system. This file is on the System Disk in
account [7,7].

CHAPTER 8

WRITING RElOCATABlE AND RE-ENTRANT CODE

The ALpha Micro computer system not onLy supports reLocatabLe programs, but
requires that aLL programs written for operation under controL of the AMOS
monitor be written in totaLLy reLocatabLe code. This means that a program
may be Loaded physicaLLy into memory at any Location and it wiLL run without
modification. No addresses within the program ever need to be modified
since aLL references to memory are made in reLation to the current vaLue of
the program counter register (PC). The program may even be dynamicaLLy
moved about in memory without modification so Long as it is not currentLy
active whiLe it is being moved. The code is actuaLLy independent of its
position in memory and therefore has often been referred to by other
manufacturers as "position independent code."

Writing reLocatabLe code for the AM-100 system has been simpLified by the
incorporation of severaL instructions which make references to the current
position of the program automatic. The Load effective address (lEA)
instruction may be used to caLcuLate the current vaLue of any reLocatabLe
address and to Load that current vaLue into any register. The tabLe
referencing instructions (TJMP and TCAll) both use reLative offsets to
perform their functions as opoosed to absoLute or caLcuLated addresses.

8.1 VALID ADDRESSING MODES

Due to the normaLLy reLocatabLe nature of the AM-100 instruction set and
addressing modes, writing totaLLy reLocatabLe code mereLy invoLves obeying a
few specific restrictions in the course of programming. The most important
of these is to never refer to any absoLute address in main memory unLess you
are sure of its Location and contents. Two of the addressing modes wiLL
aLways generate absoLute memory references and must be avoided when writing
reLocatabLe code. Note the foLLowing exampLes:

ClR @#TAG
ClR TAG(R4)

WRITING RELOCATABLE AND RE-ENTRANT CODE Page 8-2

In the first example the absolute address of TAG is stored in immediate mode
and then used to indirectly address that absolute memory location. This
addressing mode is not relocatable unless the reference to TAG is a
reference to a known absoLute memory Location. In the second exampLe, the
most common method of indexing can be shown to be non-relocatabLe. Normal
indexing address schemes take the base of some area (in this case it is TAG)
and add an offset from some calculation which is stored in an index register
(in this case R4) to develop the target memory address. The value of TAG is
stored in the instruction as an absolute value and no offset is ever added
to compensate for relocation of the program. This mode would not be
relocatable unless, as in the first example, the reference to TAG is to a
known absolute memory location.

The two above addressing modes are the most commonly made errors that
violate the rules for relocatable code. A more subtle mistake is made when
a register is set up as an index to a table within the user program to be
referenced later through the register. Take these examples:

MOV #TABLE,RO
LEA RO,TABLE

The first example stores the address of TABLE as an absolute value due to
the immediate mode addressing. Since the assembly of the program is done
starting at location zero, the value of TABLE during assembly is realLy the
offset from TABLE to the base of the program. When the program actuaLly
runs, it wilL not be located at zero (the operating system resides in the
first 12K or so) and the actual address of TABLE will not be the same as at
assembLy time. The second example is the proper instruction to be used when
setting up a register to a memory reference. The instruction is coded at
assembly time as an offset from the instruction itseLf to the location
marked as TABLE and when the LEA instruction is executed, the actual value
of TABLE in its current location is caLculated and loaded into the register.

Addressing modes that invoLve onLy register references
relocatabLe. These modes are:

Rx
@b
(Rx)+
@(Rx)+
-(Rx)
@-(Rx)

direct register
indirect register
autoincrement
indirect autoincrement
autodecrement
indirect autodecrement

The two relative addressing modes are also relocatable:

TAG relative
@TAG indirect relative

are totally

WRITING RELOCATABLE AND RE-ENTRANT CODE Page 8-3

8.1.1 Index Modes

Index modes can be reLocatabLe or non-reLocatabLe depending on their usage
and set up procedure. GeneraLLy speaking, if the register is absoLute and
the index offset is a reLative tag in the program, the indexing is not
reLocatabLe and wiLL deLiver wrong resuLts. If the register is first Loaded
with the effective vaLue of the reLative address within the program and the
index offset is the absoLute component, then the scheme is reLocatabLe and
wiLL give the desired resuLts. Take the foLLowing two exampLes of cLearing
the third word (sixth byte) in TABLE:

This is the wrong way:

MOVI 6,R3
CLR TABLE(R3)

This is the right way:

LEA R3,TABLE
CLR 6(R3)

8.2 RE-ENTRANT CODE

;R3 gets absoLute component offset
;absoLute Location TABLE(R3) is cLeared

;R3 gets current address of TABLE in program
;reLocatabLe Location at TABLE+6 is cLeared

Writing re-entrant programs invoLves a LittLe trick which can be pLayed with
reLative code machines. Re-entrant programs distinguish themseLves by their
abiLity to be pLaced into system memory (via the SYSTEM command in your
SYSTEM.INI f~Le) and simuLtaneousLy shared by muLtipLe users. A good
exampLe of a re-entrant program is the ALphaBASIC compiLer and runtime
package. More than one user may share this program without Loading it into
each of their individuaL memory partitions. The main probLem with writing
re-entrant programs deaLs with the LocaL variabLes that must be used as a
work space for each user. These individuaL work spaces must be aLLocated
within the user's own memory partition and yet must be accessed by the
common re-entrant program. Remember, the re-entrant program must never
store variabLes within its own program area or eLse it is no Longer
re-entrant.

8.2.1 Using Base Registers

If a tabLe of the named LocaL variabLes is created using BLKB and BLKW
statements at the beginning of the re-entrant program, the LabeLs assigned
to these variabLes may be used as indexes to the variabLe area once it has
been aLLocated within the user's memory space. This concept requires that
one register (~O-R5) be dedicated throughout the program as the base point
for the LocaL variabLe area. For an exampLe, Let's suppose that your
program wiLL require four variabLes caLLed VARA through VARD with the
foLLowing sizes:

WRITING RElOCATABlE AND RE-ENTRANT CODE Page 8-4

ASECT
.=0

VARA: BlKW 4 ;variable 1 si ze is 4 words
VARB: BlKW 1 ;var;able 2 size is 1 word
VARC: BlKS 16. ;variable 3 size is 16 bytes
VARO: BlKW 1 ;variable 4 si ze is 1 word

.=0
RSECT

The above tabLe wiLL be at the beginning of the re-entrant program defining
a LocaL variabLe area of 14 words (or 28 bytes). The two ".=f)" statements
surrounding the table are required to insure that the area generates no code
but is mereLy used to set up the index vaLues assigned to the Labels VARA
through VARD. Generation of the actual program code which follows wiLL then
begin at relative location 0 where it is expected. The ASECT call sets the
assembler into absolute mode so that the variables are defined as
non-relocatable. The RSECT call restores relocation for the following
program code. The program must set up the above variable area by allocating
the required space within the user's memory partition (probably with a
GETMEM call) and set the selected index register to point to its absolute
base address (returned by the GETMF.M call).

If we assume that you have chosen RS to be your index to the
and have set it to point to the allocated 14-word bLock, the
may then be referenced throughout the program execution by
addresses:

VARA(RS) for variable 1
VARB(R5) for variable 2
VARC(RS) for variable 3
VARD(RS) for variabLe 4

variable area
four variabLes
the fo llowi n9

In addition to the above direct addressing method, another index (say R2)
may be set to index an individuaL variable with the foLLowing statement:

lEA R2 ,VARC (R5) ;index the 16-byte variable 3

The index R2 now points to the specific VARC variabLe which might be used
for incrementaL indexing within itseLf (perhaps to store 16 1-byte fLags).

Remember' that in the above scheme, the base index register
exampLe) must never be destroyed in the program execution or else
not be abLe to reference any of the variables.

R5 in this
you will

In summary, the best way to Learn how to evaLuate the relocatabLity of a
particuLar programming techniqup is to become thoroughly famiLiar with the
addressing modes used by the WD16 chipset and the type of code that they
generate. This information can be found in the WD16 Microcomputer
Programmer's Reference Manual, (DWM-00100-04).

AMOS ASSEMBLY LANGUAGE PROGRAMMER'S MANUAL

PART II

USING THE ALPHA MICRO ASSEMBLY LANGUAGE PROGRAMMING SYSTEM

These chapters describe the use of:

MACRO - The macro AssembLer.
LINK - The Linkage editor
SYMBOL - The symboL tabLe generator
LIB - The object fiLe Library generator
GLOBAL - The gLobaL symboL cross reference qenerator
DDT - The dynamic debugginq and patchinq program

For information on the screen-oriented assembLy Language proqram debuqqer
ALphaFIX, see the ALphaFIX User's ManuaL, (DWM-00100-69).

CHAPTER 9

THE ALPHA MICRO ASSEMBLER (MACRO)

This chapter discusses the ALpha Micro assembLer proQram, MACRO.

After writinq your source code (the .MAC fiLe), you must assembLe it. The
assembLer transLates your assembLy Language program into machine Language
(the .OBJ fiLe). The Linkage editor (discusseM in the next chapter)
processes the .OBJ fiLes to resoLve aLL symboL references and to create the
finaL, executabLe program (.PRG or .OVR) fiLe.

This chapter gives information on the operation of the macro assembLer
program.

9.1 THE MACRO PHASES

The assembLer actuaLLy runs in five distinct phases that are seLectiveLy
caLLed dependinq on what functions are needed. A brief summary of their
respective functions foLLows:

PHASE 0

PHASE 1

PHASE 2

PHASE 3

tnterprets the command Line and sets up parameters in the
common area for use by successive phases.

Reads the source (.MAC) fiLe
standard two-pass assembLy
buiLdinq the user symboL
interphase work (.IPF) fiLe.

and performs Pass 1 of a
process by expanding macros,

tahLe, and qenerating the

Reads the interphase (.IPF) fiLe and performs Pass 2 of a
standard two-pass assembLy process by resoLving symboLs
and qeneratinQ the object code (.OBJ) fiLe. MACRO then
deLetes the interphase work fiLe.

Reads the source (.MAC) fiLe and the
and creates a List (.LST) disk
assembLy Listing to the terminaL.

object
fiLe or

(.OBJ) fiLe
outputs the

THE ALPHA MICRO ASSEMBLER (MACRO) Page Q-2

PHASE 4 - Actually not part of the assembler but an automatic call
to the LINK program to read the object (.08J) file and
create a runnable proqram (.PRG or .OVR) file. Only occurs
if there wpre no internal or external symbol references in
the program. (If Phase 4 is not called, you will later
have to use LINK to link this file with the other files
that contain the symbols that wiLL resolve the externaL
and internal references.)

9.2 COMMAND LINE

The general format for the nssembLer command Li~e is:

.MACRO fi Lespec{/switchesHREr]

9.2.1 Filespec

Filespec sp~cifies the source file you want to assemble; it may optionaLLy
be a compLete fiLe specification containinq account and device
specifications.

The Iswitches option request is a sLash folLowed by one or more aLphabetic
characters. A switch aLters the normal assembly process. If you enter no
switches, MACRO performs an assembly on the specified source fiLe and
creates an object fiLe but no list file (i.e., Phase 3 is bypassed). If the
program is a sinaLe segment (i.e., it contains no INTERN or EXTERN
statements), then MACRO enters Phase 4, which creates an executable (.PRG or
.OVR) program file.

9.2.2 Assembler Options

You may select one or more of the assembly options below by specifying the
appropriate switch on the MACRO command line:

18 text

IC

Generates a bottom footer line on every paqe of the listinq
usinq the rest of the text on the command line following the
18 switch as title information. For example:

~MACRO DEVCPY/B Version AOO(RETI

generates a listing file of which every paqe contains the
bottom line title: "Version AOO." 18 must be the last switch
on the command line.

Includes conditionals in the listing.
normally suppressed.)

(Conditionals are

THE ALPHA MICRO ASSEMBLER (MACRO) Paqe 9-3

IE

IH

IL

10

IR

IT

Writes to the assembly listinq only those lines that contain
an error.

Lists binary code in hexadecimal instead of octal in the
assembly listinq.

Generates a list file by callinq Phase) durinq the
assembly. Creates the output fiLe with the same name as
your source file, but a .LST extension. (You may modify the
name of your listinq file by using the OBJNAM pseudo opcode
in your source proqram-- see Section 5.1.~, "OBJNAM.")

Uses the current object filp by omittinq Phases 1 and 2.

Generates a cross reference, which Appp.ars at the end of the
assembly listinq. See Section 9.4.7.., "Gp.nerating a Cross
Reference," for information on the cross reference listinq.

Prints the assembly listinq on your terminal instead of
writing it to a disk file.

IV{a).:X Allows you to specify a value on the MACRO command line
which can be examined during the assembly process. "::t"
specifies the type of value specified, and X is the value.
See Section 9.2.), "Parameterized Assembly Option," for more
i nformat ion.

IX Lists in your assembly listing all macro expansions. (Macro
expansions are normally suppressed.)

NOTE: You do not have to specify the IL switch when you use the 18, IC, IE,
IH, IR, IT, or IX switches to tell MACRO to generate a listinq.

You may combine any of the above switches as desired in a sinQle command
line by entering them after a sinqle I character at the end of the command
line. For example:

.MACRO NEWDVR.MAC/RT[RET)

The command line above tells MACRO to qenerate a listing file for NEWDVR.MAC
that contains a cross reference and to output that listinq to the terminal.

The most common method of assembling new proqrams is as follows:

1. Assemble the proqram with the command:

.MACRO filesoec[RET)

This will allow you to count any errors that occur durinq Phases 1
and 2.

THE ALPHA MICRO ASSEMBLER (MACRO) P~ge 9-4

2. If no errors occur, create a list file with:

.MACRO filespec/LO(RET]

or, optionaL~y, list it on the terminal with:

..:..MACRO fi lespec/TO (RET)

or, get a cross reference with the listin~:

..:..MACRO fi lespec/RO [RET]

3. If there were errors, list them alone with:

.:..MACRO fi lespec/TOE [RET)

Correct the errors and go back to Step 1.

4. If the proqram has only on~ segment, then MACRO automatically calls
Phase 4 which creates the .PRG or .OVR program file; otherwise, you
wilL need to use the LINK or SYMBOL program to generate the final
program file-- see the next chapter for information on LINK and
SYMBOL.

9.2.3 Parameterized Assembly Option

MACRO provides a parameterized assembly facility by aLlowing you to use the
IV switch to specify a value on the ~ACRO command Line. The value switch
may take one of these forms:

IV:x

IVO:x
IVH:x
IVD:x
IVA:x
!VR:x

x is an octal or hex number (depending on the
prevailing radix setting)

x is an octal number
x is a hexadecimal number
x is a decimal number
x is one or two ASCII characters
x is one to three RAD5~ characters

The NVALU pseudo opcode alLows your program to access the vaLue specified in
the IV assembly switch. The NVALU statement takes the form:

NVALU sym

which sets the symbol "sym" to one of the values beLow, depending on which
IV switch was used:

THE ALPHA MICRO ASSEMBLER (MACRO)

sym=x
sym=~Ox

sym=~HOx

sym=~Dx

sym=' x
sym="x
sym=[x]

Page 9-5

You may find this feature especiaLLy usefuL when using conditionaL assembLy
directive pseudo opcodes to seLect which portions of code to assembLe.

9.3 SAMPLE ASSEMBLY DISPLAY

BeLow we show a sampLe assembLy dispLay:

..:.MACRO SAVTXT .MAC/L [RET)

== Macro AssembLer Version 1.1 --

Processinq SAVTXT.MAC

Phase 1 :

Phase 2:
Phase 3:
Phase 4:
. -

Copyinq from DS~O:SYS.MAcr7,71
Work area: 3916 bytes, 3614 used
Object file finished
Listing file finisherl
Proqram fiLe flnlshed [Program size = 60. bytesl

If MACRO is automatically EXTERNing any symbols, it telLs you so in Phase ?
(Listing the sy~bols aLphabetically). For exampLe:

Phase 2: Object fiLe finished
EXTERNs were generated for the foLLowing symboLs:

GETNUM PRTNUM

In the case above, MACRO automaticaLLy EXTERNed the symboLs GETNUM and
PRTNUM. MACRO automaticaLly EXTERNs symboLs if those symboLs are undefined
and if the AUTOEXTERN pseudo accade appears in your source fiLe.

Notice that even if your program is a sinqLe seqment, MACRO wiLL not caLL
Phase 4 to Link your prOQram if MACRO was not abLe to resoLve aLL symboL
references in your program (that is, if EXTERNs were qenerated). You wiLL
need to use LINK or SYMBOL to Link your proqram with the other fiLe(s) that
contain the symboLs referenced by your main program.

If you as~ for a cross reference Listinq, you see the followinq messaqe
during Phase 3:

Phase 3: Cross reference fiLe finished

THE ALPHA MICRO ASSEMBLER (MACRO) Page 9-'"

9.4 THE ASSEMBLY LISTING

By specifying the appropriate assembly switches, you can direct MACRO to
call Phase) of the assembLy process to creat~ a list file which is sent to
a disk file or to your terminal. The listinq is formatted and contains both
the source of your proqram and binary code that is generated by the
assembly.

9.4.1 AssembLy Listing Format

Each page contains a page number and a title that gives the name of the
program that has been assembled and the account number that the file was
assembled in. Unless otherwise controlled by PAGE statements, each page
contains 54 lines of source data. Each page is terminated by a form-feed
character. If the system date has been set (via the monitor level DATE
command), the date appears at the top of each page of the listing. If you
specified the IB assembly switch, MACRO outputs to each page a page footer
containing the text specified on your MACRO command line.

Each data line on the listing contains four sections:

1. Columns 1-5 list the error codes on the line that generated the
error. (For a list of the MACRO error codes, see Section 9.5,
"MACRO Errors.")

2. Columns ~-13 list the current address of the generated data if any
data code was generated. Or, these columns give the value of the
assignment if this is an equate statement.

3. Columns 16-37 list the generated binary data (maximum of the first
three words) in octal (or hex if IH assembly switch was used).

4. Columns 40-132 list the source line.

9.4.2 Listing ControL Pseudo Opcodes

Several pseudo opcodes exist that control your assembly listing; you will
place these pseudo opcodes in your source program. We list them briefly
below. For more information on each pseudo opcorie, see Chapter 5.

OBJNAM - ALLows you to mQdify the name of your assembly
listing disk file.

LIST - Re-enabtes output to the listing file.
NOLIST - Turns off output to the assembly listing file.

(LIST and NOLIST are ignored if you use the IX
switch.)

PAGE - Begins a new page in the assembly listinq.

THE ALPHA MICRO ASSEMBLER (MACRO) Page 9-7

9.4.3 Generatinq a Cross Reference

You may use the IR switch to generate a cross ref~rence as part of the
assembLy Listing. To see the cross reference on your terminaL, use the IRT
switches. You may specify the 10 switch to bypass assembLy Phases 1 and 2
if an object (.OBJ) fiLe for the current source fiLe aLready exists.

NOTE: For information on using the GLOBAL command to qenerate a gLobaL cross
reference, see Chapter 12.

9.4.3.1 Cross Reference ControL Pseudo Opcodes - The CREF, MAYCREF, and
NOCREF pseudo opcodes controL the qeneration of the cross reference Listinq:

CREF EnabLes normaL cross referencinq.

NOCREF Suppresses from the Listinq aLL defined symboLs untiL
MACRO encounters a CREF or MAYCREF pseudo-op.

MAYCREF Suppresses from the Listina aLL defined symboLs if
those symboLs ~re never referenced.

Q.4.3.2 Cross Reference Listing Format - The cross reference Listinq is
simiLar to an ordlnary assembLy Listlng except that it aLso incLudes the
folLowing:

1. A coLumn of sequence numbers appears ~t the Left of the Listinq.

2. At the end of the assembLy listinq, an alphabetic listinq of each
symboL app~ars givinq, in numeric order, the sequence numbers of
the Lines in which each symboL appears. Th~se sequence numbers are
sometimes foLLowed by a code of the form -X, where X identifies the
type of symboL. X may be one of the foLLowi~q:

L - a LabeL definition
E - an equate definition
I - an INTERNed symboL
X - an EXTERNed symboL
o - an OVRLAY.

ALso, a singLe quote (') appe~rs after symboLs that were never
defined. (MACRO wiLL autom~ticaLLy EXTERN such symboLs if the
AUTOEXTERN pseudo opcode is pres~nt in your source proqram.)

3. A simiLar Listing of macro definitions and references foLLows the
symboL Listinq. (The sequence number corresponding to a macro
definition is fla~ged by a "-M" code.)

THE ALPHA MICRO ASSEMBLER (MACRO) Page 9-8

9.4.3.3 SampLe Cross Reference Listing - Remember that the cross
reference app~ars at the end of a reguLar assembLy Listing. BeLow is a
sampLe of what the cross reference portion of the assembLy Listing for a
smaLL program, MATH.MAC, might Look Like:

MATH [110,5] CROSS REFERENCE LISTING
ACCUM 394 434 520 530 ~42 543
ADD 423 520-L
DIVI 429 553-L
EXIT 365 370 459 597-L
GETEXP 364-L

NOM ERR 393
OPRERR 407
OPRTBL 468
PARSE 383-L
PRTNUM'
START 354-L
SUB 425
S •• RDX ~O-E
$VAL 615

643

MATH [110,5]

386
416
411
fl13-L

441

530-L
309
616-E
643-E

BYP 181-M 366
CRLF 173-M 457
EXIT 174-M 573
GTDEC 186-M 496
OPERAT ~31-M 613
TYPECR 2Q2-M 451

415
567-L
583-L

450

618 f,19 619-E 623

CROSS REFERENCE LISTING
383 398 412 494

589 597

621 629 637
567 583

PAGE 001
554

626 627

PAGE 002
503

Notice that the cross reference above identifies equated symboLs and macro
definition symboLs. It aLso identifies the GETNUM and PRTNUM symbols as
undefined or automaticaLLy EXTERNed symboLs.

THE ALPHA MICRO ASSEMBLER (MACRO) Page 9-9

9.5 MACRO ERRORS

MACRO displays two types of error messaqes: errors codes that appear in your
assembly listing and error messages that appear on your terminal screen as
you assemble the program.

9.5.1 Error Codes

Below nre the error codes that can appear in your assembly listing. Each
code appears on the line of the source program in which the error occurred.

A Branch nddress was out of the 127-word ranqe.

B Boundary error a
address. <See Chapter
pseudo opcode.)

word operand was on an odd byte
5 for information on the EVEN

C Conditional statement syntax error.

o DupLicatp. user symboL. (SymboL defined more than once.)

I ILLegaL character in source Line.

M Missing term or operator in operand or expression.

N Numeric error which indicates a diqit out of the current
radix ranqe.

P An expression that had to be resoLvabLe on the first pass
was not.

Q QuestionabLe syntax
code.

this is ~ generaL catch-aLL error

R Reqister error - a register expression was not in the
range of 0-7.

T Source Line or operand terminated improperLy.

U Undefined user symboL durinq Pass ?

V Value of an absoLute parameter was out of its defined
range.

X AssembLp.r system error - please notify ALpha Micro.

THE ALPHA MICRO ASSEMBLER (MACRO) Page 9-10

9.5.2 Error Messages

You may see several error messages during the program assembly:

INVALID CONTROL PARAMETER VALUE
You used the Iv assembLy swifch to specify a value on the MACRO command
line, but somethinq was wrong with the format of the option request.
For example, the value after the IV switch was missing or incorrect.

?Cannot OPEN Devn: - invalid filename
There is something wrong with the format of your command line. For
example, you may have tried to use an assembly switch but forgot to
place it at the end of the file specification. All switches must
appear at the end of the command line.

?File specification error
There ;s something wrong with the format of
example, you typed MACRO followed by a
specification).

your command line. For
RETURN (omitting the file

?MACn.OVR not found
where n ;s a number from 0 to 5.
that are a part of MACRO. Make
account DSKO:[1,4J. If the
Operator.

?Copy file filespec not found

MACRO cannot find one of the overlays
sure that the missing file is in
file is not there, contact the System

where f,Lespec ,s the f,Le' specification you supplied to the COpy
pseudo opcode. For detailed infor~ation on the search pattern MACRO
now uses to search for the copy file, see Section 5.1.1, "COPY."

?Expression stack error
Th;s ;s an lnternaL MACRO error.

,do, check your source program
specifying expressions.

[SYNC ERROR]

You should never see it-- but if you
to see if you made any errors in

MACRO generates a listing file by reading the source file and the
object file and synchronizing the source lines with the resolved object
data to come up with the listing line data. If these two files get out
of sync, there is no,~ay that the listing may proceed and the message
tSYNC ERROR] appears on your terminal. MACRO will then close the list
file at the point of the sync error, but the line that caused the error
will not have been included. A sync error of this sort means one of
two things: either you have an out-of-date object file that you are
usinq with the 10 switch, or you have found an undiagnosed assembler
bug. These bugs usually occur when you get fancy with nested macros
and conditionals that'have a valid error buried down deep within.

THE ALPHA MICRO ASSEMBLER (MACRO) Paqe 9-11

NOTE: The most probabLe cause for this error is that you are using an
object fiLe that was generated by a different version of MACRO than the
one you are using now. If you see no obvious errors in your program,
try generating a Listing without the /0 switch (thus buiLding a new
object fiLe). If you stiLL qet [SYNC ERROR], report the probLem to
ALpha Micro.

CHAPTER 10

THE LINKAGE EDITOR (LINK) AND SYMBOL TABLE FILE GENERATOR (SYMBOL)

This chapter contains information on the linkage editor LINK and the symbol
table generator program SYMBOL. We discuss both of these programs at this
time because LINK and SYMBOL are very similar and, with the proper selection
of option switches, can be made to perform virtually the same functions.
LINK takes one or more object files produced by the assembler and resolves
all external symbol references. The file that LINK produces is the final,
executable program file. SYMBOL takes one or more object files and produces
a symbol table file for that program. As we will see later, LINK and SYMBOL
can also perform other functions.

Besides discussing how to link .OBJ files, this chapter also discusses the
use of LINK and SYMBOL with library (.LIB) files. For more information on
object file libraries, see Chapter 11, "The Object File Library Generator
(LIB) ."

10.1 LINK

The assembler itself does not produce a file that is directly usable as an
executable program. (Unless of course, your program is a single segment
file that contains no EXTERNed, INTERNed, or AUTOEXTERNed symbols, in which
case MACRO calls LINK as Phase 4 of the assembly.)

The assembler output file is an object (.OBJ) file that is not fully
resolved and which contains symbol definitions and embedded cross-seqment
commands.

It is the linkage editor (LINK) that resolves the object file. LINK reads
one or more of these object files and creates one runnable program (.PRG)
file which the operating system can load into memory and run. Furthermore,
if the program contains overlay segments, LINK resolves them and creates one
overlay (.OVR) file for each one. These overlay files are loaded into
memory upon command during the running of the program and allow memory
conservation for large programs such as the assembler itself.

THE LINKAGE EDITOR (LINK) AND SYMBOL TABLE FILE GENERATOR (SYMBOL) Page 10-2

We mentioned previously that if your program has only one segment, MACRO
automatically calls the Linkage editor to create a program file (as Phase 4
of the assembly). In this case, no further action is necessary and you are
ready to run the program. If, however, the program is comprised of more
than one segment, you must run the LINK program yourseLf, specifying the
name and order of the seqment fiLes invoLved.

10.1.1 LINK Command Line

The general format of the LINK command is:

.LINK {/switches)fiLespp.c1{,fiLespec2, ••• filespecN~{/switches}(RET)

where filespec selects an object file. The defauLt extension is .OBJ. The
first fiLe specified may not be a library file or an overlay fiLe. If a
fiLespec incLudes a device and account specification, LINK searches for the
fiLe in that account. If you omit a device and account specification, LINK
searches for the file first in the account and device you are Logged into;
secondLy, in your proiect Library account (account rp,nl); and, finaLLy, in
the System Macro Library account, DSKO:[7,7J.

LINK treats switches in the same way that a standard AMOS wiLdcard command
does; this means that the fiLes affected by the option switches you use can
depend on where you place the switches. Any switch that appears in front of
a fiLespec becomes the default switch and thus affects the rest of the
filespecs on the command line (unLess canceLed by a subsequent switch). Any
switch that appears at the end of a fiLespec affects only the files seLected
by that specification. For exampLe, suppose you want to use the 10 switch to
identify one or more .OBJ files as optionaL fiLes:

.LINK FILBCK,/O DIRBCK;. TAPBCK (RET)

selects the fiLes DIRBCK and TAPBCK as optionaL files because the 10 switch
precedes the filespec DIRBCK, and thus becomes the defauLt. The command
line:

~LINK FILBCK,DIRBCK/O,TAPBCK(RET]

selects onLy the file DIRBCK as an optional file because the 10 switch
foLlows the DIRBCK fiLespec and appears before the next comma in the command
Line.

NOTE: SpeciaL switches (identified as "operation switches" in the
discussions beLow) affect ALL fiLespecs specified on the command Line no
matter where you pLace the switch. For exampLe, it doesn't matter where you
place the 1M switch on the command Line-- it affects all fiLes seLected by
the filespecs on the command line.

THE LINKAGE EDITOR (LINK) AND SYMBOL TABLE FILE GENERATOR (SYMBOL) Page 10-3

10.1.1.1 Continuation Lines - If the program you want to link contains
more files than wiLL fit on the command line, you may continue the files on
the next Line by terminating the Last fiLespec with a comma. LINK continues
to accept files as long as the last filespec on the line terminates with a
comma.

10.1.1.2 LINK Options

IE Include equated symbols in the symbol tabLe fiLe. (You must use
IE with the 1M or IS switch.) (Operation switch.)

IL Designates a library file. See Section 10.'3, "Library and
Optional Files," for information on Library fiLes.

1M Generate a Load map (.MAP) file. See Section 10.4, "The Load
Map FiLe," for a discussion of the Load map. (Operation switch.)

IN Suppress IP switch. (Operation switch.)

10 Designates an optional fi Le. See Section 10.3, "Library and
OptionaL FiLes," for information on optional fiLes.

IP Generate program (.PRG) and overlay (.OVR) fiLes.
switch. (Operation switch.)

The default

IR Designates a required file. The default switch. Cancels the IL
and 10 switches.

IS Generate a symbol table (.SYM) file. (Operation switch.)

You may specify muLtiple switches by preceding each switch with a I. (See
the command line below.)

10.1.2 Sample LINK Display

Below is a sample LINK dispLay. Note that we are using the IL switch to
specify a library file, and are usinq the 1M switch to generate a load map.

THE LINKAGE EDITOR (LINK) AND SYMBOL TABLE FILE GENERATOR (SYMBOL) Page 10-4

~LINK MATH,UTILIT.LIB/L/M[RET)

== Linkaqe Editor Version 2.0 --

Processing MATH.OBJ [Base = 0, Size = 348. bytes]

-- Optional and Library Request

Processing UTILIT.LIB(NUM) [Base = 534, Size = 144. bytes]

Proqram and Map files finished. [Program size = 492. bytesl

Notice that LINK tells you the size (in decimal bytes) of each module. If
you specify a library file, LINK tells you which of the object files in the
library file are being linked in. (In the sampLe above, LINK Linked in the
NUM routine from the UTILIT.LIB library fiLe.)

10.1.3 LINK Errors

LINK reads each of the files specified and creates the necessary proqram and
optionaL overlay files. LINK displays any error messages on the terminal if
it encounters any errors during processing. The most common error is the
undefined. global symbol error which means you have an EXTERN symboL in one
segment which is not defined in another segment by an INTERN statement.
LINK does not generate a program file if it cannot find one or more of the
seqments in its assembled object (.OBJ) form. For a List of the LINK error
messages, see Section 10.5.

10u2 THE SYMBOL TABLE FILE GENERATOR (SYMBOL)

The object fiLes output by the assembLer contain compLete information on the
symboLs used in your program, as weLL as the actuaL generated code. To make
this List of symboLs availabLe to the debugger programs, you must use the
SYMBOL program. Just Like LINK, the SYMBOL program takes one or more .OBJ
fiLes and creates an output fiLe, in this ca~e a symboL (.SYM) fiLe. DDT
and FIX use this fiLe to provide symbolic debugging of programs.

UnLike the program fiLe, the symboL file is not qenerated automaticaLLy even
if onLy one program segment is used. You must explicitLy run SYMBOL if you
wish to create a symbol file.

THE LINKAGE EDITOR (LINK) AND SYMBOL TABLE FILE GENERATOR (SYMBOL) Page 10-5

10.2.1 SYMBOL Command Line

The format for calling SYMBOL is identical to the LINK command line:

.SYMBOL {/switches }filespec1{,filespec2, ••• filespecN}{/switches}[RET]

where filespec selects an object file. The default extension is .OBJ. The
first file specified may not be a library file or an overlay file. If a
filespec includes a device and account specification, SYMBOL searches for
the file in that account. If you omit a device and account specification,
SYMBOL searches for the file first in the account and device you are logqed
into; secondly, in your project library account (account [P,OJ); and,
finally, in the System Macro Library account, DSKO:[7,7J.

SYMBOL treats switches in the same way that a standard AMOS wildcard command
does; this means that the files affected by the option switches you use
depends on where you place the switches. Any switch that appears in front
of a filespec becomes the default switch and thus affects the rest of the
filespecs on the command line (unless canceled by a subsequent switch). Any
switch that appears at the end of a filespec affects only the files selected
by that specification. For example, suppose you want to use the 10 switch
to identify one or more .OBJ files ~s optional files:

..:..SYMBOL MAIN,/O SUB1 ,SUB~ (RET]

selects the files SUB1 and SUB2 as optional files because the 10 switch
precedes the filespp.c SUB1, and thus becomes the default. The command line:

..:..SYMBOL MAIN,SllB1/0,SUB2 [RET)

selects only the file SUB1 as ~n optional file because the 10 switch follows
the SUB1 filespec and appears before the next comma in the command line.

NOTE: Special switches (identified as "operation switches" in the
discussions below) affect ALL filespecs specified on the command line no
matter where you place the switch. For example, it doesn't matter where you
place the 1M switch on the command line-- it affects all files selected by
the filespecs on the command line.

The output of SYMBOL is placed into a file named filespec.SYM, where
filespec is the first file specified on the SYMBOL command line. No symbol
file will be generated if one or more of the specified files is not found in
its assembled object (.OBJ file) form. (NOTE: You may use the OBJNAM pseudo
opcode within your .MAC file to modify the name used for the SYMBOL output
file. See Section 5.1.2, "OBJNAM.")

THE LINKAGE EDITOR (LINK) AND SYMBOL TABLE FILE GENERATOR (SYMBOL) Paqe 10-6

10.2.1.1 Continuation Lines - As with LINK, if the program contains more
files than will fit on the command line, you may continue the file
specifications on the next line by terminating the last filespec with a
comma. SYMBOL will continue to accept filespecs as long as the last
filespec on the line terminates with a comma.

10.2.1.2 SYMBOL Options

IE Include equated symbols in the symboL table file. You may aLso
use this switch with 1M to tell SYMBOL to incLude equated
symboLs in the load map. (Operation switch.)

IL Designates a Library fi lea See Section 10.3, ilL ibrary and
Optional Files," for information on library files.

1M Generate a Load map (.MAP) fiLe. See Section 10.4, "The Load
Map File," below, for a discussion of the load map. (Operation
switch.)

IN Suppress IS switch. (Operation switch.)

10 Desiqnates an optional file. See Section 10.3, "Library and
OptionaL Files," beLow, for information on optional files.

Ip Generate program (.PRG) and overlay (.OVR) fiLes. (Operation
switch.)

IR Desiqnates a required fiLe. The defauLt switch. CanceLs the
affect of a IL or 10 switch.

IS Generate a symboL table (.SYM) file. The default switch.
(Operation switch.)

You may specify muLtipLe switches by preceding each switch with a I. (See
the command line below.>

10.2.2 Sample SYMBOL Display

Below is a sample SYMBOL display. Note that we are using the IL switch to
specify a library fiLe, and are using the 1M switch to generate a load map.

THE LINKAGE EDITOR (LINK) AND SYMBOL TABLE FILE GENERATOR (SYMBOL) Page 10-7

.:..SYMBOL MATH,UTILIT .LIB/LIM [RET)

== Linkage Editor Version 2.0 ==

Processing MATH.OBJ

-- Optional and Library Request

Processing UTILIT.LIB(NUM)

Symbol and Map files finished.

If you specify a library file, SYMBOL tells you which of the object files in
the library file it is including in the symbol table file. (In the sample
above, SYMBOL included the NUM routine from the UTILIT.LIB library file.)

NOTE: If you compare this display with that of the LINK program (Section
10.1.2, "Sample LINK Display," above), you will notice that it is very
similar. In fact, LINK and SYMBOL can be made to perform exactly the same
functions. If we had specified the /P switch and the /N switch "(specifyinq
that we wanted a .PRG fiLe generated and did not want a symbol tabLe fiLe),
the display above would have looked exactly like the LINK display in Section
10.1.2.

10.3 LIBRARY AND OPTIONAL FILES

Both LINK and SYMBOL support the use of library files and optional fiLes.

Most programmers have been faced at one time or another with the task of
having to write a standard routine again and again for multipLe proqrams.
Library and optionaL fiLes heLp you to avoid this situation by aLLowing your
programs to contain references to previously written routines in an object
file library or an optional fiLe.

Besides makinq your Life p.asier by making it possibLe for you to write
frequently used routines only once, library and optional files also heLp to
standardize programs by provirlinq the same error checking, input checkinq,
message display, etc., for multipLe programs.

LINK and SYMBOL pLace any object fiLes from a Library fiLe and any optionaL
fiLes at the end of your program in the order that they are needed to
resolve external references.

THE LINKAGE EDITOR (LINK) AND SYMBOL TABLE FILE GENERATOR (SYMBOL) Page 10-8

10.3.1 Library Files

A library file is a file produced by the LIB program (discussed in the next
chapter). The library file contains a group of .OBJ files. The purpose of
generating a library file is to gather together a group of subroutines that
are frequently used by proqrams on your system. These routines are then
easily accessed by all programmers on the system by using the EXTERN or
AUTOEXTERN pseudo opcodes in their source programs and specifying the
required routine. Unlike usinq the COpy pseudo opcode, which physically
incorporates the entire source file specified by the COpy statement into
your assembled program when you assemble it, using a library file causes
only those subroutines within the library file that are referenced by your
program to be linked into your orogram.

For example, if a library file contains the following object files: SWTCH,
SPACE, STRCHK, and GETLIN, and the program you link with the library file
only references the routinp GETLIN, only the object code for that routine
will be linked into your program.

IMPORTANT NOTE: You should not~ that the entire .OBJ +ile that is a
component of a library file will be linked in if your program references a
symbol in it; not just that portion of the .OBJ file required by your
program. For example, suppose you create a library file (using LIB) that
contains the following .OBJ files: STRCHK, GETLIN, and GETNUM. If your
program references a symbol within the GETNUM object file, the entire GETNUM
file is linked in even if it also contains several other routines. For this
reason, you should limit each .OBJ file that is a component of the library
to only one subroutine. '

You may not specify the library file first on the LINK or
line. (This is because to resolve symbol references, LINK
first access the file that makes those references before it
file that defines them.)

10.3.2 Optional Files

SYMBOL command
and SYMBOL must

accesses the

By using the /0 switch with LINK or SYMBOL, you may request that the
specified file (caLled an "optional file") be inCluded in the linked program
if the optional fiLe is needed to resolve any external references in one of
the other fiLes being linked. If such a reference exists, the optional file
will be incorporated into your program; otherwise, it will not. Unlike a
library file, an optional file only contains the contents of a single .OBJ
fiLe. An optional fiLe may not be an overlay.

THE LINKAGE EDITOR (LINK) AND SYMBOL TABLE FILE GENERATOR (SYMBOL) Page 10-9

10.4 THE LOAD MAP FILE

A Load map shows how the moduLes Linked together wiLL be Loaded into memory
when the program is invoked for execution. Using the 1M switch with LINK or
SYMBOL, you may ask that a Load map fiLe be generated. A Load map fiLe has
the name of the first fiLe specified on the LINK or SYMBOL command Line and
the extension .MAP.

A Load map Lists each object fiLe used in the order that it was used. For
each object fiLe, the Load map gives the foLLowing information:

1. The fiLe's offset from the beginning of the program;

2. the size of the fiLe in decimaL bytes;

3. in aLphabetic order, aLL the symboLs defined in that fiLe and their
reLocated vaLues after the Linking process. If the symboLs are
reLocatabLe reLative to the base of the program, the Load map fLaqs
them with a "r" symboL.

For exampLe, the foLLowing LINK command Line:

..=..LINK MATH,NUM/M [RET]

generated the Load map fiLe beLow, MATH.MAP:

[Linkage Editor Version 1.0J
Program Load Map

ModuLe Base Size SymboL VaLue

SymboL

MATH OOOOOOr 348. ACCUM 000520r ADD
BASE rlD!]5~6r DIVI
GETEXP 0OOOO6r GETOPR
NUMERR 0OO406r OPRERR
PARSE 0OOO24r START

NUM 000534r 144. CHGTBL 0OO706r GETNUM

10.5 LINK AND SYMBOL ERROR MESSAGES

?Command error

VaLue SymboL VaLue

000330r BASCHG 0OO262r
nOO~62r EXIT 0OO5~4r
000224r MULT 0OO344r
000446r OPRTBL 000522r
OOOOOOr SUB 0OO336r

000534r PRTNUM 000616r

There was something wrong with your command Line. For exampLe, you
tried to use LINK or SYMBOL without specifying a fiLe on which to work.

?FataL error - Insufficient memory
You must increase the size of your memory partition; there was not
enough room to perform the procedure you specified.

THE LINKAGE EDITOR (LINK) AND SYMBOL TABLE FILE GENERATOR (SYMBOL) age 10-10

?Undefined switch Ix - ignored
Refer to Appendix B, "Summary of Program Switches," to make sure that
you specified a vaLid switch.

?FataL error - OverLays of code are not permitted
Next expected address is xxxx
Overlay code address is xxxx

Your program is trying to overLay previous code. Check your .MAC
programs to make sure that your overLay references are correct.

?xxxx undefined
An externaL symboL is undefined. This is a very common error. You
have referenced a symboL which has not previousLy been defined (e.g.,
you have made a reference to a LabeL that does not exist). Make sure
that an EXTERN statement in one segment is defined by an INTERN
statement in another seqment.

?FataL error - First fiLe must not be a Library
To enable LINK or SYMBOL to correctLy resoLve externaL references to a
Library, you must specify the program that references that Library
before you specify the Library fiLe itsetf.

?FataL error - Attempt to specify overLay xxx as optionaL
You may not use the 70 switch to desiqnate a fiLe as optionaL if that
object fiLe is an overLay.

?FataL error - OverLay symboL "xxxx" in seqment yyyy
was not deflned in a previous input seqment

You may not reference an undefined overLay. In other words, LINK is
trying to process a supposed overLay fiLe, but has seen no references
to the overLay in a previous fiLe. Without such a reference, LINK
cannot construct the overLay, so it aborts and returns you to AMOS
command LeveL.

?FataL error - First fiLe must not be an overLay
To enabLe LINK or SYMBOL to correctLy resoLve externaL references to an
overLay, you must specify the program that references that overLay
before you specify the overLay fiLe itseLf.

?FataL error - Expression stack error
An error occurred when LINK or SYMBOL evaLuated some expressions in
your fiLes. This indicates an internaL error-- you shouLd never see
this error message.

?FataL error - Expression stack overfLow
You exceeded the number of nested expressions
handLe. Try to find the exceedingLy compLex
fiLe and simpLify it.

that LINK or SYMBOL can
expression in your source

I

CHAPTER 11

THE OBJECT FILE LIBRARY GENERATOR (LIB)

One of the more aqgravating programming tasks is rewriting a utility program
that you've used many times before and that you know you will use many times
in the future. Many kinds of routines are so useful that you need them
again and aqain in many different proqrams: e.g., routines that check for
ASCII characters, that input and output characters, that sort data, etc.

Th~ purpose of the library file is to collect together these frequently used
routines where they can be accessibLe to your program fiLes when you Link
them into finaL, executabLe programs. Not onLy do Library fiLes heLp you to
avoid writing and rewriting the same routines over and over, but they can
aLso give heLp to every other programmer on the system. An added benefit of
library files is that they tend to help standardize programs on the system
by providinq standard input, output, error checking, and message display
routines used by everyone on the system.

The Alpha Micro object file library qenerator, LIB, constructs library files
out of .OBJ fiLes. Each of the .OBJ files which is built into the library
fiLe is a separate routine that can be accessed by your programs. The final
library file has a .LIB extension and can be used by both LIN~ and SYMBOL.

11.1 LIB COMMAND LINE

The LIB command line takes one of two forms:

.LIB{fL} output=i nputH, i nput2, ••• i nputN} [RET]

or:
• LIB (/ L} i nout {, input 2, ••• input N1 [RET]

<The second format is equivaLent to: LIB inout=inout{,input2, ••• inputN1 if
you do not use the IL switch; otherwise, it is equivalent to:
TRM:=inout{,inout2, ••• inputN}.)

"Output" is an output fi Le specification; it specifiE"s the name of your
library fiLe. The output fiLe has the extension .LIB and the name specified
by the output or inout specification.

THE OBJECT FILE LIBRARY GENERATOR (LIB) Page 11-2

"Input" specifies the .OBJ fi les you want to place in the library. The
input specification can take the following forms:

fiLespec
fiLespec\item1
fiLespec\(item1,item2, ••• itemN)
fiLespec(item1,item2, ••• itemN)

The \ symbol designates an exception. For exampLe, in the command Line:

..:..LIB MYLIB\SUB1 ,NEWSUB,READIT [RET)

tells LIB that we want to modify the existing Library MYLIB (the "inout"
specification) by removing the object fiLe SUB1, and adding NEWSUB and
READ IT •

The parentheses specify a qroup of object files. For example:

..:..LIB MYlIB\(SUB1,NEWSUB,READIT),GETNUM(RET}

teLls lIB to modify the existing Library MYLIB by deLeting the coLLection of
object files SUB1, NEWSUB, and READIT, and to add the object fiLe GETNUM.

LIB looks for the specified fiLes in the account and device specified. If
you omit the device and account specification from the fiLespec, LIB
searches first in the account and device you are Logged into; then your
project Library account on the device you are Logged into (account rp,01);
finaLLy, LIB searches in the System Macro Library account, DSKO:[7,71.

11.1.1 Continuation Lines

As with LINK and SYMBOL, you may enter as many fiLespecs as you wish on as
many Lines as you wish as Lonq as you end the Last fiLespec on the Line with
a comma.

11.1.2 LIB Option Switch (/l)

The onLy LIB
generate a
Listing (see
fiLes in the

switch at this time is the IL switch Which teLLs LIB to
Library Listing. This listing ,Looks similar to a load map
Section 10.4., "The Load Map File."), and lists all object
Library file and alL INTERNed symboLs.

If you specify an output fiLe (e.g., LIB LIST~MYLIB/l) lIB creates the
listing with the name and extension you specified. (The defauLt extension
is .LST.) If you do not specify ~n output file (e.g., LIB MYLIB/L), LIB
sends the Library Listing to your terminal displAY.

THE OBJECT FILE LIBRARY GENERATOR (LIB) Page 11-'3

11.2 SAMPLE LIB DISPLAY

Suppose we are creatinq a new Library caLLed USEFUL from the .OBJ fiLes
ERRMSG, GETLIN, and FORMAT:

~LIB USEFUL=GETLIN,FORMAT,ERRMSGIRET]

== Object FiLe Librarian Version 1.0 ==

Processinq GETLIN.OBJ
Processing FORMAT.OBJ
Processing ERRMSG.OBJ

Library fiLe finished

As LIB processes each new .OBJ fiLe, it teLLs you so.

Suppose we want to add a routine to an existinq Library. The sampLe dispLay
might Look Like this:

~LIB USEFUL,LINSIZ [REr}

== Object FiLe Librarian Version 1.n --

Processing USEFUL.LIB(GETLIN)
Processing USEFUL.LIB(FORMAT)
Processing USEFUL.LIB(ERRMSG)
Processing LINSIZ.OBJ

Library fiLe finished

We've sucessfuLLy added the new routine LINSIZ to our oLd Library that
aLready contained the object fiLes GETLIN, FORMAT, and ERRMSG. Notice that
LIB teLLs you as it processes each .OBJ fiLe contained within the Library
fi Le.

11.3 UPDATING A LIBRARY

RepLacing one or more of the .OBJ fiLes that make up a Library fiLe can be a
bit tricky. If you simpLy try to add a new version of an existing .OBJ fiLe
without deLeting the oLd one first, probLems can resuLt because both
versions of the object fiLe wiLL be in the Library. The recommended
procedure is to first rleLete the oLd routine, and then to add the new one.
For exampLe, if we wish to repLace the oLd version of FORMAT with a new one,
we enter:

• LIB USE FUL \ FORMAT, FORMAT [RET]

THE OBJECT FILE LIBRARY GENERATOR (LIB) Page 11-4

which first deLetes the fiLe and then adds it. Assume that our smaLL
Library onLy contains three routinps, GETLIN, ERRMSG, and FORMAT. The LIB
dispLay in response to this commanrl Line wouLd Look Like this:

-- Object File Librarian Version 1.0 ==
Processing USEFUL.LI8(GETLIN)
Processinq USEFUL.LIB(ERRMSG)
Process;nq FORMAT.OBJ

Library fiLe finished

Notice that LIB teLLs you what routines are contained in the library.

11.4 LIB ERROR MESSAGES

You may see the foLlowinq error messagps when you use LIB:

?Command
LIB
LIB
are

error
did not understand your command Line. For exampLe, you entered

folLowed by a RETURN. Make sure that your fiLe soecifications
in standard form.

?Undefin~d switch IX - iqnored
where X 1S the sW1tch you suppLied. LIB currentLy uses onLy one
option switch, IL, to produce a Library Listinq. Make sure that you
did not type a I by accident when you wanted to type a backsLash.

?OBJ fiLes are not Libraries -- they can not be restricted
w1th a modif1er

You may onLy use the "\" file restrictor and thp. "0" file inclusion
symboLs if you are modifying a Library.

?L i sting aborted
LIB was not abLe to finish the Library Listinq. For exampLe, an
error occurred whiLe LIB was trying to access a fiLe.

?The foLLowing ~odule was not found - xxx
You tried to modify an existing Library, but the obj~ct fiLes you
specified were not present in the Library fiLe. Make sure that you
did not accidentaLLy use the \ restrictor symboL.

?FataL error - xxx is an overLay
You may not specify an overLay as an eLement of an 9bject fiLe
Library.

CHAPTER 12

THE GLOBAL CROSS REFERENCE GENERATOR (GLOBAL)

The GLOBAL program takes a group of object (.OBJ) files and produces an
alphabetic global cross reference which lists all global symbols in the
files, and shows which files define those symbols and which files accept
them as externally defined symbols.

In other words, GLOBAL produces a listing file that cont~ins a cross
reference of all symbols that have been referenced in an INTERN, EXTERN, or
OVRLAY statement so that you can see in which .OBJ files these references
occur. (NOTE: GLOBAL produces a cross reference of aLL qLobaL symbols for a
colLection of .OBJ files. Remember that you can also see a cross reference
Listing as part of your assembLy listing for aLL qlobaL and Local symbols
for an individuaL .OBJ fiLe by specifying the MACRO /R switch when you
assemble the file.)

GLOBAL is particularly usefuL when you want to find out what references are
made to symboLs between fiLes. The /R assembly switch is most usefuL when
you want more detailed information about a sinqle .OBJ file.

NOTE: GLOBAL does not support Library fiLes.

12.1 GLOBAL COMMAND LINE

The GLOBAL command line takes this form:

.GLOBAL{/switches} filespec1,filespec?{, ••• filespecNl(RET)

where switches are optional and affect the format of the information in the
Listinq file. Filespec1 ••• filespecN is a List of file specifications that
select the .OBJ files for which you want the global cross reference.

If you omit the extension from a file specification, GLOBAL uses the default
extension of .OBJ.

THE GLOBAL CROSS REFERENCE GENERATOR (GLOBAL) Page 12-2

GLOBAL produces the listing fiLe in the account ano device you are Loggeo
into with the name of the first fiLe sp~c;fication on the command Line ano a
.GLB extension.

12.1.1 Continuation Lines

If there are too many fiLe specifications to fit on one Line, you may end
the command Line with a comma. GLOBAL continues to accept fiL~
specifications as Long as the Last fiLespec on the Line ends with a comma.
If the Last fiLesp~c on the Line ends with a comma, GLOBAL prompts you with
an asterisk for more fiLespecs. For exampLe:

.GLOBAL MAIN,SUB1 ,SUB? ,SU83,SUB4, [RET)

*StJ85,SUB~ [RET)

12.1.2 GLOBAL Options

You may request the foLLowing options by incLuding the appropriate switches
on your command Line:

Line width options (defauLt is 80 characters):

Page

IW Wide listing (same as IW:130). Produc~s a Listing
fiLe that may have up to 1~0 characters on a Line.

IW:n Specifies characters per Line, where n specifies
the number of characters.

Length options (defauLt is 60 Lines) :

IL Long Listing (same as IL :80).

IL:n Specifies Lines per page, where n specifies the
number of Lines.

Each switch must begin with a sLash. For exampLe:

.GLOBALIW/L MAIN,SUB1 ,SUB2 (RET)

12.2 SAMPLE GLOBAL DISPLAY

As GLOBAL processes the specified files, it dispLays a message telLing you
so ("Processing fiLespec"). After it processes aLL fiLes, GLOBAL produces a
.GLB fiLe; as it works, it dispLays the name of the fiLe it is building and
displays a dot for each disk bLock it outputs. For exampLe:

BuiLding MAIN.GLB ••••

THE GLOBAL CROSS REFERENCE GENERATOR (GLOBAL) Page 12-3

This fiLe has the same name as the first fiLe you specified on the GLOBAL
command Line.

BeLow is a sampLe GLOBAL dispLay:

.GLOBAL MAIN,SUB1,SUB2,SUB~[RET)

== GLobaL Cross Referencer (Version 2.0) --

Processing MAIN.OBJ
Processinq SUB1.0BJ
Processing SUB2.0BJ
Processing SUB3.0BJ

BuiLding MAIN.GLB ••••

GLobaL fiLe finished

If GLOBAL found any reference errors, it teLLs you so. For exampLe:

GLobaL fiLe finished, 2 errors exist

12.3 SAMPLE LISTING DISPLAY

The Listing fiLe that GLOBAL produces Lists each defined symboL, and what
.OBJ fiLe the symboL was referenced in. The Listing teLLs you whether the
symboL was referenced as an internaL symboL (I) via an INTERN pseudo opcode,
an externaL symboL (E) via an EXTERN or AUTOEXTERN pseudo opcorle, or an
overLay symboL (0) via an OVRLAY pseudo opcode.

Here is a portion of what a GLOBAL Listinq fiLe miqht Look Like:

GLobaL Cross-Reference (Version 2.0)

M S S S
A U U U
I B B B
N 1 2 3

ALPHA IE. E
BETA I • E •
ZETA I 0

The Listing
statement in
SUB1.0BJ and
MAIN.OBJ and
in an INTERN

fiLe above teLLs us: 1) the symboL ALPHA appeared in an INTERN
the fiLe MAIN.OBJ and in EXTERN statements in the fiLes
SUB~.OBJ; 2) the symboL BETA appeared in an INTERN statement in
in an EXTERN statement in SUB2.0BJ; 3) the symboL ZETA appeared
statement in MAIN.OBJ and in an OVRLAY statement in SUB1.0BJ.

THE GLOBAL CROSS REFERENCE GENERATOR (GLOBAL) Paqe 12-4

12.4 GLOBAL ERROR MESSAGES

You may see the followinq error messaqes when using GLOBAL:

?Undefined switch IX - ignored
You speclfled an ;nvalld switch. The only switches GLOBAL recoqnizes
are the IL and IW switches.

?Cannot OPEN filespec - not found
GLOBAL couLd not find the fiLe you specified. Make sure you are
loqged into the correct account on the right device.

CHAPTER 1~

THE SYMBOLIC DEBUGGER (DDT)

A debugger is a program that helps you to test and examine a new proqram.
The Alpha Micro system contains two dynamic debugger programs for assembly
language programs: 1) AlphaFIX, a screen-oriented debugging proqram; and 2)
DDT, a debugging and patching program. For information on AlphaFIX, see the
AlphaFIX User's Manual, (DWM-0010Q-69). (AlphaFIX users please note
Sectlon 13.4.1.2, beLow, which discusses using local symbols witb both DDT
and AlphaFIX.)

The rest of this chapter discusses the operation of DDT. DDT is the AMOS
dynamic debugqing and patching proqram. It allows you to run your program
and to examine or alter proqram data or fLow at any point in the proqram.
All of the examination and modification may be done via symbols, both on
type-in and type-out. DDT automaticaLLy expands your program in memory to
accommodate patches. This expansion cap~biLity, aLong with the abiLity to
define new symbols, makes it easy to patch existinq proqrams. As a matter
of fact, alL ALpha Micro system softw~re patches are implemented using DDT.

NOTE: Most DDT commands terminate with an Escape. DDT echoes Escapes as
doLLar signs. (That is, when you press the ESCAPE key (sometimes Labelerl
ALT MODE or ESC on your keyboard), DDT repeats the Escape as a $ symbol.)
Except for our discussion of local symbols, whenever you see a doLLar sign
symboL in the discussions beLow, ~eep in mind that it represents the place
in your command input where you shouLd type an Escape.

13.1 THE DDT COMMAND LINE

You may use DDT on any program, whether it contains executabLe code or not.
Tts most common use wiLL be with program (.PRG) fiLes produced by the
Linkaqe editor. To invoke DDT, type:

~DDT fiLespec[RET)

where fiLespec specifies the fiLe you want to debug. If you omit the
extension, DDT uses the defauLt extension .PRG. When DDT is caLLed, the
first thing it does is check to see if the specified fiLe is aLready in

THE SYMBOLIC DEBUGGER (DDT) Paqe 1~-?

memory. If it is, the file is deLeted from memory, The program is then
loaded into memory ensuring that a fresh cgpy is now resident, and DDT
proceeds to look for a symbol file.

Once DDT has loaded the program file and ~ny associated symbol file, it
prints the base memory address and the si,e in bytes of th~ proqram being
debugged. For example:

• DDT DEVCPY. PRG [RET]
PROGRAM BASE: ~2777
PROGRAM SIZE: 400

Now you can begin to enter the DDT commands discussed below. For
information on exiting DDT, see Section 13. 0 , l'E~iting DDT."

13.2 USING SYMBOL FILES

After loading the actual program to be debugqed into memory, DDT searches
for a symbol file. [f one is currently in memo~y, DDT deletes it. DDT then
searches your account for a file with the same n~me as the specified program
file, but an extension of .SYM. If one is foynd, it is loaded into memory,
and debuqging can start. If no symbol file is found, DDT assumes that you
wish to debug without user symbols ~nd enters debuq mode without a symbol
table.

13.3 TERMINAL INPUT

Because DDT must accept characters on an individual basis, it runs in
terminal image mode. This mode disables the usual functions of RUBOUT,
Control-U, Control-S, Control-G, etc. However, Control-C wiLL stiLL abort
DDT and return you to AMOS. RUBOUT takes on a special meaning in DDT.
Instead of the standard function of erasing the Last character typed, RUBOUT
in DDT will cancel the entire current command,-and echoes as "XXX" followed
by a tab.

13.4 EXPRESSIONS

DDT aLlows both input and output expressio~s to be in either numeric or
symbolic form. The majority of commands will accept or display in either
mode, although certain arguments, such as a breakpoint number, must be
provided as a numeric value.

THE SYMBOLIC DEBUGGER (DDT) Paqe 1;-3

13.4.1 Input Expressions

Most commands wiLL accept an expression whenever they require input. ALL
numeric input to DDT is in octaL. Both symboLic and numeric expressions can
use the pLus (+) or minus (-) operators. The foLLowing are aLL vaLid DOT
input expressions:

123
12343+57725
TAG
TAG+77
TAG+IT

Where TAG and IT are defined symboLs.

13.4.1.1 SpeciaL SymboLs - In addition to the symboLs defined in the
program belng debugged, DOT recognizes severaL speciaL symboLs in input
expressions. In register mode, DOT recognizes the register names RO, R1,
R2, R3, R4, R5, SP, and PC. In program-reLative mode, DOT recognizes the
speciaL symbol dot (.) as being equal to the currently open Location. Dot
allows you to use relative offsets in an expression:

.+401

.$B
MOV 7,R1 BR .+20

The above exampLe of using dot in a breakpoint command ($B) is one of the
most frequent uses of the speciaL symboL dot.

13.4.1.2 LocaL Symbols - DOT correctLy dispLays locaL symboLs if the
appropriate symboL tabLe fiLe is avaiLabLe. (If your version of DOT
dispLays LocaL symboLs as qarbLed RAD50 names that beqin with a coLon, you
have an obsoLete version of DDT.) (For information on using LocaL symboLs in
your source programs, see Sections 4.7 and 6.1.6.)

NOTE: LocaL symboLs take the form nnn$. In the exampLes below, notice that a
doLLar sign preceding a character indicates a normaL DOT command in which
the dolLar sign designates an Escape (for example: $A indicates Escape-A).
When a doLLar sign folLows a character (e.g., 10$), we are talking about a
LocaL symboL.

DOT searches for LocaL symbols by Looking backward from the current open
Location to the first non-locaL symbol and then scanninq forward from that
location to the next non-Local symboL. The local symboL you are looking for
must fall within that region.

To access a locaL symbol, you must first
a Location in the region containing
locaL symbol only has scope between two
"region.") You will probabLy want to

set the current Location counter to
the Local symboL. (Remember that a

non-Local symbols. This is its
simply open the location at the

THE SYMBOLIC DEBUGGER (DOT) Page 13-4

non-local symbol that appears just before the local symbol; then you can
access the symbol that is locaL to it. For exampLe: The $A command displays
a string of ASCII characters at the current location or at the Location of
the symbolic argument supplied:

LABEL$A

tells the $A command to use the Location at "LABEL", a non-Local symbol. If
we want to see the ASCII characters at the local symboL 10$ which lies
between LABEL and LABEL1, we wouLd first open the non-Local symbol that
precedes 10$:

LABEll

Now we can access 10$, which is Local to the non-locaL symbol LABEL by
entering the LocaL symbol "10$" folLowed by the command "Escape-A":

10$$A

DDT als~ accepts a local symbol when assembling an instruction, searching
for it in the range where the instruction is being assembled.

NOTE FOR ALPHA FIX USERS: FIX aLso correctly displays locaL symboLs. Any of
the FIX commands that alLow you to specify non-locaL symboLs may also be
used to access local symboLs. Just folLow the non-local symbol with a
space; then enter the symboL you want to access that is LocaL to that
non-locaL symbol. For exampLe:

>S START 10$ [REl]

telLs FIX to search for the symboL 10$ that is Local to the non-LocaL symbol
START.

13.4.2 Output Expressions

DOT outputs data in both symboLic and numeric format. When in
program-relative mode, DOT displays memory Locations in symbolic form; in
register mode, it displays register contents in octal. All numeric output,
even when combined in a symbolic output expression (such as JMP TAG+12) wiLL
be in octal unless you have set J.HEX in your job status word via the SET
HEX command, or you are executing a command which expLicitLy displays data
in another radix (such as $0, the decimal typeout command).

THE SYMBOLIC DEBUGGER (DDT) Paqe 13-5

13.5 DDT MODES

DDT has three modes in which it operates: program-reLative mode, absoLute
mode, and register mode. The normaL mode, and the one in which DDT initaLLy
comes up, is program-reLative mode. In this mode, addresses are assumed to
be reLative to the base address of the program being debugged. Therefore,
an expression of "12" refers to Location 12 reLative to the program base,
not absolute location 12.

In absoLute mode, aLL addresses are taken to represent absoLute memory
Locations. In the exampLe above, "12" would refer to absolute memory
Location 12, regardless of the fact that that location is outside of your
memory partition as weLL as outside of the program being debugged. Absolute
mode is entered via the TAB command, and left via the $R command.

In register mode, expressions refer to the registers instead of memory
locations. Register mode may be entered by using one of the special symbols
RO-R5, SP, or pc. Any of these symbols followed by a command which opens a
Location will enter register mode. Reqister mode may be Left via the $R
command.

13.6 DDT COMMANDS

DDT has a variety of commands to allow you to examine memory Locations,
change the contents of locations, display registers, set breakpoints,
single-step, etc. Commands to DDT usually consist of giving a numeric or
symbolic argument followed by a DDT command. Commands consist of singLe
characters, such as the slash (I) command, and aLso of an Escape (ALTMODE on
some terminaLs) followed by a single letter command, such as the Escape-B
command. Escapes in DDT echo as a doLlar-sign ($). The dollar-sign is used'
in this section to represent an Escape; therefore, when you see a command
such as "$B", that should be interpreted as an Escape folLowed by a "B".

Several of the commands refer to opening and cLosing memory locations or
registers. ~Jhen a location or register is said to be "open," it simply
means that DDT will place into the open item any expression entered through
your terminal followed by a command that closes the location. This is the
method by which memory or register contents are modified. When a location
is "closed," you may no longer modify it by entering an expression without
first openinq the location again.

13.6.1 Opening a Location or Register (I)

The slash command (I) displays the current contents of a memory location or
register and leaves that location open for modification. The slash command
takes a symbolic or numeric argument immediately preceding the slash. The
contents of the opened item will be displayed in symbolic form. The
contents may be examined in other formats via other commands such as equal
(=), Escape-D ($0), etc. The slash command will not open locations outside

THE SYMBOLIC DEBUGGER (DDT) Page 13-6

of the program being debugged unLess DDT is in absoLute mode. The following
shows a few exampLes of using the sLash command:

TAG/ MOVI 7,R1
TAG+12/ SET QFLG(B)
R1/ 46623

examine Location TAG
examine Location TAG+12
examine register R1

13.6.2 CLosing a Location (Carriage-Return)

The carriage-return ([RET]) command closes the current Location. As with
other commands which cLose a Location, it may be immediateLy preceded by a
number or symboLic expression which wiLL be pLaced into the ooen Location.
Note that the expression given prior to the cLosing command may generate
more than one word of data, in which case the extra words are olaced in the
Locations immediateLy foLLowing the open one.

13.6.3 DispLay a VaLue in Octal (=)

The equaL (=) command dispLays the contents of the currentLy open item in
octaL unless you have SET HEX, in which case the display wilL be in
hexadecimaL. The equaL command may be used to convert a symboLic typeout to
numeric, or may be used to compute the vaLue of an expression. The
foLLowing are aLL common uses of the equal command:

TAG/ MOVI 7,R1 = 004166
TAG=3252
26662+15252=44134
.=24233

dispLay contents in octal
find vaLue of symboL
compute an expression
dispLay current Location addr

13.6.4 Opening the Next Location (Line-Feed)

The Line-feed (LF) command functions the
except that it opens the next Location
Depending on your terminaL, to enter a
on your terminaL or the key LabeLed "LF"

same as the carriage-return command
after cLosing tha current one.

Line-feed, press the down-arrow key
or "LINEFEED."

If the contents of the current Location have been dispLayed in symboLic
form, LF wiLL advance to the location foLLowing the entire instruction
dispLayed, regardLess of Length. This aLLows you to easily step through a
program, without regard to opcode Length. If the current Location has been
dispLayed in octaL (via the = command) the LF command wilL step to the next
word. If new data is entered prior to the LF command, the Length of the
data entered will determine the next location opened.

In register mode, a line-feed wiLL step to the next register. If you step
past PC, RO wiLL be reopened.

THE SYMBOLIC DEBUGGER (DOT) Page 13-7

13.6.5 Opening the Previous Location (~)

The up-arrow (~) command wiLL cLose the current Location and open the
Location immediateLy preceding the current one. UnLike LF, uo-arrow does
not automaticaLLy open a Location on a vaLid opcode boundary; up-arrow
aLways backs up one word.

(NOTE: This command is not the
terminaL keyboard-- it fst'he "~,,

key LabeLed with an up-arrow
symboL, the circumfLex.)

13.6.6 Opening a Location IndirectLy (8)

on your

The at-sign (@) command treats the contents of the current open Location as
a program reLative address and opens that Location.

13.6.7 Ooening an AbsoLute Location IndirectLy (TAB)

The TAB (ControL-I) command treats the contents of the current open Location
as an absoLute address and opens that location. It aLso sets DOT into
absolute address mode. DOT wiLL remain in this mode until you execute an $R
command.

13.6.8 Starting a Program ($G)

The Escape-G ($G) command starts the program being debugged at relative
address O. DOT echoes a tab after the $G, and waits for one Line of input
terminated by a carriage-return, prior to beginning actuaL execution of the
program. This line of input is passed to the program just as if it had been
entered foLLowing the command if the program were being run without DOT.
The proceed ($P) and singLe-instruction ($X) commands are not Legal until an
$G command has been entered. You may execute an $G command at any time to
restart the execution of the program. This assumes, of course, that the
program being debugged is self-initiaLizing so that the same copy can be run
more than once.

13.6.9 Setting Breakpoints ($B)

The Escape-B ($B) command sets or Lists breakpoints within the program. DOT
aLLows up to eight breakpoints to be set in the program. Each breakpoint is
assigned a number from 0 to 7. The $B command accepts two arguments: the
numeric or symboLic program-reLative address at which you wish to set a
breakpoint, and the breakpoint number which you wish to pLace at this point.
The program-reLative address is given first, immediateLy preceding the
Escape. The breakpoint number is given after the Escape, immediateLy
preceding the B. Both of the arguments are optionaL. If the address ;s

THE SYMBOLIC DEBUGGER (DDT)

omitted, the breakpoints are Listed on your
number is omitted, the first avaiLabLe
foLLowing list shouLd make things cLear:

terminal.
breakpoint

If
is

Page 13-8

the breakpoint
assigned. The

$B Lists aLL active breakpoints by number and symbolic or

hB
TAG$B

TAGSxB

numeric address.
Lists breakpoint x, if it is active.
Sets a breakpoint at address TAG.
breakpoint is used. If no breakpoint is
is printed on your terminal.
Sets a breakpoint at address TAG.
whether it was previously in use or not.

The first inactive
availabLe a"?"

Uses breakpoint x

DDT will not aLLow odd address arguments or breakpoint numbers greater than
7 for SB, or for the $C command beLow.

13.6.10 CLearing Breakpoints ($C)

The Escape-C (SC) command cLears one or all of the breakpoints currentLy
set. It accepts two arguments in the same manner as $B.

$C CLears aL L active breakpoints from the tabLe.
$xC CLears breakpoint x, if it was active.
TAG$C CLears the breakpoint at address TAG, if such a breakpoint

exists.
TAG$xC Functions the same as $xC.

13.6.11 Proceeding From a Breakpoint ($P)

The Escape-P ($P) command proceeds from the Last breakpoint. This command
is only vaLid if a breakpoint has been reached in the program. When
executed, SP causes program execution to resume untiL another breakpoint is
encountered or the program exits.

The $P command accepts an optionaL argument before the Escape-P. This
argument is a one word value telling DDT how many times to execute the
current breakpoint before breaking again. Thus the command SSP teLLs DDT to
pass through this breakpoint five times before breaking again. If this
argument is not given, DDT assumes a vaLue of one. Using this argument is
often useful if a breakpoint has been placed within a loop, and you wish to
have DDT break onLy after severaL iterations of the Loop.

THE SYMBOLIC DEBUGGER (DDT) Page 13-9

13.6.12 Executing SingLe Instructions ($X and \)

The Escape-X ($X) and backs Lash (\) commands are identical. Both cause the
execution of a singLe instruction. These commands are valid only after a
breakpoint has been reached. They are usually used to monitor the execution
of a smaLL section of a program, aLlowing the examination or modification of
registers and memory Locations between each instruction. IMPORTANT NOTE:
You are not aLLowed to singLe-step through a supervisor caLL (aLso known as
a "monitor caLL").

13.6.13 Setting Program-ReLative Mode ($R)

The Escape-R ($R) command enters program-reLative mode once you have been in
absoLute or register mode.

13.6.14 DispLaying Data in DecimaL ($0)

The Escape-D ($0) command dispLays a Location or series of Locations in
decimat. This command accepts one of two possibLe arguments, but not both.
One of the arguments represents the expression to transLate and the other is
the number of Locations to translate. The foLLowing tabLe shouLd expLain
the format:

$0
$xD

exp$D

DispLays the currentLy open Location in decimaL.
DispLays x words in decimaL, starting with the currentLy
open Location.
DispLays the decimaL vaLue of expo Exp can be numeric,
symboLic, or an opcode expression. As many words as are
needed to dispLay the entire expression are used.

13.6.15 DispLaying Data in Octal ($=)

The Escape-equaL ($=) command dispLays a Location or a series of Locations
in octaL. It is identicaL in format to the $0 command.

13.6.16 DispLaying Data in Hex ($H)

The Escape-H
hexadecimaL.

($H) command dispLays a Location or a series of Locations in
It is identicaL in format to the $D command.

THE SYMBOLIC DEBUGGER (DDT) Page 13-10

13.6.17 DispLaying Data in RADSO ($*)

The Escape-asterisk ($*) command displays the contents of the current
location in unpacked RADSO format.

13.6.18 Di spLaying Data as ASCII Characters ($")

The Escape-quote ($") command dispLays the contents of the current Location
as two ASCII characters.

13.6.19 Displaying Data as Bytes ($#)

The Escape-pound sign ($#) command displays the contents of the current
Location as two 8-bit bytes. The Low order byte of the word is displayed
first. Typeout is in octaL.

13.6.20 DispLaying a String of ASCII Characters ($A)

The Escape-A ($A) command dispLays a string of bytes as ASCII
This command terminates its typeout when a nuLL byte is found~
the current Location to the next even address foLLowing the null
command accepts two formats:

characters.
and adjusts
byte. The

$A Display ASCII data starting with the current open
Location.

TAG$A Display ASCII data starting at relative address TAG.

13.6.21 DispLaying the Base Address and Size (SM)

The Escape-M ($M) command displays the absoLute base address and the size in
bytes of the program being debugged~ This is the same information typed
when DDT is first started.

13.6.22 Defining New Symbols (:)

The coLon (:) command alLows you to define new symboLs and insert them into
the symbol table. The Location being given a Label must be within the
program, not outside of it. SymboLs are, as usuaL, one to six RADSO
characters Long, with the first character always alphabetic. A symbol may
be defined by merely typing the labeL name folLowed immediately by a coLon,
as in:

TAG:

THE SYMBOLIC DEBUGGER (DDT) Page 13-11

The vaLue assigned to the symboL is the Location of the Last examined
address. Once the symboL has been defined, it may be referenced
symboLicaLLy by you throughout the program. The coLon command is most often
used during program patching (see Section 13.7, "Using DDT To Patch
Programs"). New symboLs are automatically inserted into your symboL tabLe.
Once you have exited from DDT, you can resave the symboL (.SYM) fiLe so that
the newLy defined symboLs are avaiLabLe next time you use DDT on the
program.

13.6.23 Examining Register Contents (%)

The percent (%) command examines the contents of a register without entering
register mode. It is often used to dispLay the contents of a register as
you singLe-step through a program, without having to enter and exit register
mode. The format for the percent command is "%xx=", where xx is the CPU
register that you want to dispLay. The register argument must be in
standard register notation (i.e., R1, R2, R3, R4, R5, SP, or PC). The
contents of the register are dispLayed in octaL.

13.7 USING DDT TO PATCH PROGRAMS

You wiLL often use DDT to patch an existing program. This is often usefuL
if you do not have the source code handy, or if you do not wish to go
through a time-consuming reassembLy of your program. DDT provides for
patching through the use of the coLon command to define symboLs, and through
automatic expansion of the program area. Patches may be pLaced at the end
of the program after the Last vaLid Location in the program; DDT wiLL
automaticaLLy expand the program to fit the patches. Program patches may be
done symboLicaLLy through the normaL symboLic entry mode, and through the
use of the coLon command. A symboL may not, however, be referenced before
you define it. If a LabeL is defined at the start of the patch, the patch
may be referred to symboLicaLLy throughout the main program.

13.8 DDT ERRORS

If DDT does not understand your input, it dispLays a"'?".

Other error messaqes incLude:

'?Cannot OPEN fiLespec - not found
where fiLespec ;s the fiLe you want to debug. Make sure that you are
Logged into the proper account and device.

THE SYMBOLIC DEBUGGER (DDT) Page 13-12

?Cannot singLe step through SVC
You cannot use the $X command to singLe-step trhough a sup~rvisor
caLL. You must skip over the caLL by placing a breakpoint after the
calL and its arguments; then use the $P command to skip to that
location. At that point you can resume singLe-stepping.

?DDT InternaL buserr
A bus error occurred within the DOT program itseLf. This error was
not caused by your program.

?Buserr at monitor PC nnnn
A bus error occurred, but was not caus~d by DDT. Your program is
probabLy at fault. The number that 3pp~ars in the message teLLs you
what memory address was Loaded into the Program Counter when the
error occurred.

13.9 EXITING DDT

To Leave DDT, type a ControL-C. DDT wiLL save the aLtered program and
symboL tabLe in memory, alLowinq you to use the SAVE command to make a
permanent copy of either the modified program or symboL tabLe. You shouLd
never save a program that has been partiaLly run; it is a good idea to use
DDT on the program once again, put in the patches, and save it, without
running it. This ensures that there are no data storage areas that have
been altered from their orqinaL state. If the program exits on its own
while being run, you should NEVER save it if breakpoints were used anywhere
in the program. Breakpoints are not cLeared until the program goes back to
DDT. Running through breakpoints when not under controL of DDT can have
disasterous results.

APPENDIX A

THE ASCII CHARACTER SET

The next few pages contain charts that List the compLete ASCII character
set. We provide the octal, decimal and hexadecimaL representations of the
ASCII vaLues.

Note that the first 32 characters are non-printing ControL-characters.

THE ASCII CHARACTER SET Page A-2

THE CONTROL CHARACTERS

CHARACTER OCTAL DECIMAL HEX MEANING

NULL 000 0 00 NuL L (fi II character)
SOH 001 1 n1 Start of Heading
STX 002 2 02 Start of Text
ETX 003 ~ 03 End of Text
ECT 004 4 04 End of Transmission
ENQ 005 '5 05 f= • "nqul ry
ACK 006 6 06 AcknowLedqe
BEL 007 7 07 Be L L code
BS 010 R 08 Back Space
HT 011 9 09 Hori zont a L Tab
LF 012 10 OA Line Feed
VT on 11 OB VerticaL Tab
FF 014 12 DC Form Feed
CR 015 13 OD Carriage Return
SO 016 14 OE Shift Out
S1 017 15 OF Sh i ft In
DLE 020 16 10 Data Link Escape
DC1 021 17 11 Device Cont ro L 1
DC2 022 18 12 Device Cant ro L 2
DC3 023 19 13 Device Cont ro L 3
DC4 024 20 14 Device Cont ro L 4
NAK 025 21 15 Negative AcknowLedge
SYN 026 22 16 Synchronous IdLe
ETB 027 23 17 End of Transmission BLocks
CAN 030 24 18 Cancel
EM 031 25 19 End of Medium
SS 032 26 1A SpeciaL Sequence
ESC 033 27 1B Escape
FS 034 28 1C Fi Le Separator
GS 035 29 1D Group Separator
RS 036 30 1E Record Separator
US 037 31 1F Unit Separator

THE ASCII CHARACTER SET Page A-3

PRINTING CHARACTERS

CHARACTER OCTAL DECIMAL HEX MEANING

SP 040 32 20 Space
I 041 33 21 Exclamation Mark
" 042 34 22 Quotation Mark
043 35 23 Number Sign
$ 044 36 24 Do L Lar Sign
% 045 37 25 Percent Sign
& 046 38 26 Ampersand
I 047 39 27 Apostrophe
(050 40 28 Opening Parenthesis
) 051 41 29 CLosing Parenthesis

* 052 42 2A Asterisk
+ 053 43 28 PLus
, 054 44 2C Comma
- 055 45 2D Hyphen or Minus
. 056 46 2E Period
I 057 47 2F SLash
a 060 48 30 Zero
1 061 49 31 I)ne
2 062 50 32 Two
3 063 51 33 Three
4 064 52 34 Four
5 065 53 35 Five
6 066 54 36 Six
7 067 55 37 Seven
8 070 56 38 Eight
9 071 57 39 Nine
: 072 58 3A CoLon . 073 59 38 SemicoLon ,
< 074 60 3C Less Than
= 075 61 3D Sign
> 076 62 3E Greater Than
? 077 63 3F Question Mark
@ 100 64 40 CommerciaL At

THE ASCII CHARACTER SET Page A-4

CHARACTER OCTAL OECIMAL HEX MEANING

A 101 65 41 Upper Case Letter
8 102 66 42 Upper Case Letter
C 103 67 43 Upper Case Letter
D 104 68 44 Upper Case Letter
E 105 69 45 Upper Case Letter
F 106 70 46 Upper Case Letter
G 107 71 47 Upper Case Letter
H 110 72 48 Upper Case Letter
I 111 73 49 Upper Case Letter
J 112 74 4A Upper Case Letter
K 113 75 48 Upper Case Letter
L 114 76 4C Upper Case Letter
M 115 77 40 Upper Case Letter
N 116 78 4E Upper Case Letter
0 117 79 4F Upper Case Letter
p 120 80 50 Upper Case Letter
Q 121 81 51 Upper Case Letter
R 122 82 52 Upper Case Letter
S 123 83 53 Upper Case Letter
T 124 84 54 Upper Case Letter
U 125 85 55 Upper Case Letter
V 126 86 56 Upper Case Letter
W 127 87 57 Upper Case Letter
X 130 88 58 Upper Case Letter
y 131 89 59 Upper Case Letter
Z 132 90 SA Upper Case Letter
[133 91 5B Opening Bracket
\ 134 92 5C Back SLash
] 135 93 50 CLosing Bracket
~ 136 94 5E Ci rcumfLex

137 95 5F UnderLine
"T" 140 96 60 Grave Accent
a 141 97 61 Lower Case Letter
b 142 98 62 Lower Case Letter
c 143 99 63 Lower Case Letter
d 144 100 64 Lower Case Letter
e 145 101 65 Lower Case Letter
f 146 102 66 Lower Case Letter
9 147 103 67 Lower Case Letter
h 150 104 68 Lower Case Letter
i 151 105 69 Lower Case Letter
j 152 106 6A Lower Case Letter
k 153 107 6B Lower Case Letter
l 154 108 6C Lower Case Letter
m 155 109 60 Lower Case Letter
n 156 110 6E Lower Case Letter
0 157 111 6F Lower Case Letter

THE ASCII CHARACTER SET Page A-5

CHARACTER OCTAL DECIMAL HEX MEANING

P 160 112 70 Lower Case Letter
q 161 113 71 Lower Case Letter
r 162 114 72 Low~r Case Letter
s 163 115 77.. Lower Case Letter
t 164 116 74 Lower Case Letter
LJ 165 117 75 Lower Case Letter
v 166 118 76 Lower Case Letter
w 167 119 77 Lower Case Letter
x 170 120 78 Lower Case Letter
y 171 121 79 Lo,,,,er Case Letter
z 172 122 7A Low~r Case Letter
{ 173 123 7A Opening Brace
I 174 124 7C VerticaL Line
} 175 125 7D CLosing Brace

176 126 7E TiLde
DEL 177 127 7F De Let e

APPENDIX B

SUMMARY OF PROGRAM SWITCHES

The sections beLow List the option request switches used by the various
components of the ALpha Micro assembLy Language programming system:

MACRO
LINK
SYMBOL
LIB
GLOBAL

For more information on a particuLar option request, see the chapter in this
book that discusses the appropriate program.

B.1 THE MACRO ASSEMBLER - MACRO

IB text

IC

Generates bottom footer titLe on each Listing page using the
rest of the command Line foLLowing the switch. IB must be
the Last switch on the command Line.

IncLudes conditionaLs in the Listing.

IE Writes to the Listing onLy those Lines that contain an
error.

IH Lists binary code in hexadecimaL instead of octaL in the
Listing.

IL Generates an assembLy Listing fiLe. Creates the output fiLe
with the same name as your source fiLe, but a .LST
extension.

10 Uses current object fiLe by omitting Phases 1 and 2.

IR Generates a cross reference, which appears at the end of the
assembLy Listing.

SUMMARY OF PROGRAM SWITCHES Page B-2

IT Prints the listing on your terminal instead of writing it to
a disk file.

IV{a}:X Allows you to specify a value on the MACRO command line
which can be examined during the assembly process. II a"
specifies the type of value specified, and X is the value.

IX Lists in your assembly listing all macro expansions.

NOTE: You do not have to specify the IL switch when you use the IB, IC, IE,
IH, IR, IT, or IX switches to tell MACRO to generate a listing.

You may combine any of the above switches as desired in a single command
line by entering them after a single I character at the end of the command
line. For example:

.MACRO NEWDVR.MAC/RTlRETI

B.2 THE LINKAGE EDITOR - LINK

IE IncLude equated symbols in the symbol table file. (You must use
IE with the 1M or IS switch.) (Operation switch.)

IL ,Designates a library file.

1M Generates a load map (.MAP) file. (Operation switch.)

IN Suppress IP switch. (Operation switch.)

10 Designates an optional file.

IP Generates program (.PRG) and overlay (.OVR) files. The defauLt
switch. (Operation switch.>

IR Designates a required fiLe. The default switch. Cancels the IL
and 10 switches.

IS Generate a symboL tabLe (.SYM) file. (Operation switch.)

You may specify multiple switches if you precede each switch with a slash.
For example:

~LINK MAIN,SUB1/M/S(RET)

SUMMARY OF PROGRAM SWITCHES Page B-3

B.3 THE SYMBOL TABLE FILE GENERATOR - SYMBOL

IE IncLude equated symboLs in the symboL tabLe fiLe. You may aLso
use this switch with 1M to teLL SYMBOL to incLude equated
symbols in the Load map. (Operation switch.)

IL Designates a Library file.

1M Generate n load map (.MAP) fiLe. (Operation switch.)

IN Suppress IS switch. (Operation switch.)

/0 Designates an optionaL fiLe.

Ip Generate program (.PRG) and overLay (.OVR) fiLes. (Operation
switch.)

IR Designates a required fiLe. The default switch.
affect of a IL or 10 switch.

CanceLs the

IS Generate a symboL tabLe (.SYM) fiLe. The defauLt switch.
(Operation switch.)

You may specify muLtipLe switches if you precede each switch with a slash.
For ex am p L e :

.SYMBOL MAIN ... SUB1/M/S [RET)

B.4 THE OBJECT FILE LIBRARY GENERATOR - LIB

The onLy LIB switch at this time is the IL switch which teLLs LIB to
generate a library listing. This listinq' looks simiLar to a load map
Listing (see Section 10.4 "The Load Map File."), and Lists aLL object
fiLes in the Library fiLe and aLL INTERNed symboLs.

If you specify an output file (e.g., LIB LIST=MYLIB/L) LIB creates the
Listinq with the name ~nd extension you specified (the defauLt extension is
.LST). If you do not sppcify an output fiLe (e.g., LIB MYLIB/L) ... LIB sends
the Library Listing to your terminaL display.

B.5 THE GLOBAL CROSS REFERENCE GENERATOR - GLOAAL

Line width options (defauLt is RO characters):

Iw Wide Listing (same as IW:130). Produces a listing
file that may have up to 1)0 characters on a line.

IW:n Sp~cifies characters per line, where n specifies
the numher of characters.

SUMMARY OF PROGRAM SWITCHES

Page Length options (defauLt is 60 Lines):

IL Lonq Listinq (same as IL:80).

IL:n Specifies Lines per page, where n specifies the
number of Lines.

Each switch must begin with a sLash. For exampLe:

.GLOBAL/W/L MAIN,SUB1,5UB2[RET]

Paqe B-4

AMOS ASSEMBLY lANGUAGE PROGRAMMER'S MANUAL Paqe Index-1

Inrlex

$ symboL 13-1

.Gl8 file 2-3, 12-2

.IPF file · ?-It

.LIB file · 2-3, 5-1n, 1Cl-R, 11-1

.lST file · · · · · · · 2-2, 11-2

.MAC file · · · · · · · · · · ?-1, 5-?, 9-1

.MAP file · · · · · · · · · · 2-3, 10-6, 11")-9

.OBJ file · · · · · 2-1, 9-1, 10-1, 10-R, 1~-1

.OVR file · · · · · · · · · · ?-? .. -, 5-12, 9-1

.PRG file · · · · · · 2-2, 9-1, 10-1

.SYM file · · · · · · 2-3, 10-4, 13-2

.TMP filE' · · · · · · 2-4

Arqument concatenation 6-5
ASCII chflr;=jcter set · · · · · 4-1, C;-R
ASECT · · · · · · · · · · · ';-4
AssembLer! proqram · · · · · · 2-2
AUTOEXTERN · · · · · · 5-10

BlKB · · · · 5-R
8lK\.J · · · · · · · · · 5-R
BYTE · · · · · 5-7

CAll · · · · · · · · 5-14
Commel1ts 3-5, ~-4
Condition codes · · · · · · · · · 7-2
Cond it i ona l assembLy · · · · ~-I+, 7-1

Conc'lit ion codes · · · · 7-2
ENDC · · · · 7-7..
Example · · · · · 7-4
IF · · · · · · · · · · · 7-1
IFF · · · · · · · · · · 7-~

IFT · · · · · 7-3
IFTF · · · · · · · · 7-<;
Mu l t i -l i ne format · · · · · 7-1
Nestin(:l · · · · · · 7-~

Nestinq ex iSlmple · · 7-71
Sinqle-line format 7-1
Suhconditional ruLes ;-)
Subcond it i ona l s · · 7-3

COpy · · · · · · · · · · · · 1-1, 2-1, 5-1, I)-C)

Copy file · · · · 5-1
Search defaults · · · · · · 5-2

AMOS ASSEMBLY LANGUAGE PROGRAMMER'S MANUAL Pace Index-~

CREF
Cross reference • • • • • •

Cod~s • • • • • • • • • •
SampLe ••••••

DDT • • . • • • •
AbsoLute open • • ••••
ASCII typeout •••••••••
Breakpoints •••••••
Byte typeout ••••••
CLosing Locations •
Command Line ••••
Commands • • • • • • • •
DecimaL typeout • • •••
Defininq symbols
Display ASCII characters
DispLay octal data
DispLayinq base address •
Error messages • • • • • •
Examininq locations ••••
Examininq registers.
Exiting ••
Expressions ••
Hex typeout • •
Indi rect open •
LocaL symboLs.
Modes • • • • •
OctaL typeout ••••••
Opening the next Location.
Opening the previous Location •
Operation • • • • • • •••
Patchinq oroqrams •
RAD50 typeout ••
SinaLe step •••
SpeciaL symboLs ••
Starting the proqram •••••

Debug~er ••••
DEFINE

END • • • • • •
ENDC ••••
ENDM
ENDMX •
Error messages

DDT
GLOBAL
LIB ••
LINK
MACRO •
SYMBOL

ESCAPE
EVEN

5-", 9-7
5-'5, q-7
9-7
0-8

?-1, 2-" 18-4, 1~-1, 11-3, 13-'5 to 13-1?
n-7
13-10
13-7 to 13-8
13-10
n-6
13-1
13-5
1'3-9
13-1(1
1~-10

13-6
13-10
13-11
13-5
13-11
13-12
13-2
13-9
13-7
13-3
n-5
13-9
13-6
1)-7
13-1
13-11
13-10
13-9
13-3
13-7
13-1
6-2

5-6
7-3
6-2
fo.-6

13-11
12-4
11-4
10-9
9-9
10-9
13-1
5-5

AMOS ASSEMBLY LANGUAGE PROGRAMMER'S MANUAL

Expression evaLuation.
Expressions •••
EXTERN ••••••
External symhoLs

FETCH • • • • • • •
FiLes

Asse~bLy cross reference
Assembly ListinQ
GLobaL cross reference
Inter-phase work
Librnry .•.•..•••.•.
Lihrary Listinq
Loarl map • • • •
Ohiect
OptionaL •••••••••••
OverLay •
Proaram •
Required •••••
Rpsolverl symboL •
Sourc~ •• ~ • • • • • •
Tempor.::lry work

F I X • • • • • • • • • • • • . . .
LOCi'll symboLs •

GLOBl\L
Commancl Line
ContinuPltion Lines
f:rror messa(1PS
Op~rAtion •••••••••
Options •••••••••
S~mpLe rlisDL~y •••••

~

Sample listin!1 •••••
GlobaL CREF file •••••
Gl()haL
GLOBAL

Lon(1
Wirlp

cross referlC!ncf'
nntions
Listinn
tistinn

T.F • • • •
IFF ••
I FT •
UTF
Inrlex mo~ps • • • • •
tnter-nhasp work files •••••
INTERN
InternaL symhnLs

LabeLs
LEA • • •
L TS • • •

Command Line
Cnntinuation lines

6-5
4-2
5-9, 5-11, 10-4
5-9

5-10

9-7
2-2, Q-"i, 9-6
~-"i

2-4
2-~, 1n-~, 10-6, 11-1
11-2
2-3, 1(1-~

10-1, 11-1, 12-1
10-;;, 1f)-6
2-2
2-;>
1n-"i, 10-6
?-3, 10-4, n-:?
2-1, 9-2
?-4
;>-1, ?-~ .. 13-1
13-4

2-1, 2-3, 12-?
1 ?-1
1;?-~

1?-4
12-2
P-1
1?-2
p--:
2-)
12-<
12-;>
1~-?

12-<

7-1, 7-~
7-3
7-7;

7-")

~-~

;>-4
~-9 to 5-10, 10-4
')-0

f)-~

~-1

2-1, 2-3, 5-10, 11-1
11-1
11-/

Paqe Ind~x-~

AMOS ASSEMBLY LANGUAGE PROGRAMMER'S ~ANUAL P'lqe Innp.x-4

Error messages
Exceptions (\)
IncLusions
Input specification •
Library fiLes •••••
Listinq option
Output specific~tion •••••
SampLe display
Updatinq ~ Library

Library files ••
Library Listinq •
Library updating
LINK •• • • • •

Command Line ••••
Continuation Lines
Error messages
Operat i on • • •
Optional files
Options ••••
Sample dispLay

LINK opt ions
Equated symboLs ••
Generate proqram fiLe
Generate symbol table •••••
Library fiLe ••••
Load map fiLe •••••••••
OptionaL file •••••
Required file.
Suppress proaram op.neration

LIST •••. • • • •
Listinq fiLe ••••••••
Load map fiLe

Sample • • • • •
LocaL symbols •
Location counter

Machine instruction format
MACRO

Command Line ••••
Cross reference ••••••
Error Codes ••
Listing format
Operation •••••••
Options ••••
Sample cross reference ••••
Sample display •••••

MACRO options
DispLay Listing on terminaL
Generate a Listing ••••
Generate cross reference
List code in hexadecimaL
List conditionaLs
List errors ••••••••

11-4
11-2
11-2
11-2
1f)-R
11-2
11-1
11-3
11-~

2-~, 5-10, 10-7, 11-1
11-2
11-~
2-1 to 2-?, 4-5, s-q to ~-1?, 10-1~ 10-4
1(1-2
1n-~
10-9
10-1
10-3
10-? to 1()-~

10-3

10-~

10-'1
1f)-~

10-3
10-~
10-~

10-~

10-~
5-4, 9-6
2-2
2-3, 1n-q
10-9
4-6, f,-~, n-,
4-5

3-2

9-2
9-7
9-9
9-6
9-1
9-2
9-8
9-5

9-3
9-3
9-3
9-3
9-?
9-2

AMOS ASSEMBLY LANGUAGE PROGRAMMER'S MANUAL

List macro expansions •••••
Listinq footers ••••••••
Parameteriz~d assembly ••••
Use current object file.

Macros
'operatnr ••••••
Aroument concatenation ••••
CALL ~rquments ••••
CaLLs.. • •••
Comment s
DEFINE
D~finition ••••
Dummy arquments
ENDM
ENDMX • • • • •
ExampLes
Expression evaLunt ion •••••
L~beLs ••••••••
Local symboLs •••••••••
MuLti-Line rlefinition •••••
NCHR •••••••••••••
Nested c~LLs •••••••
NEVAL
NS U t: • • • •
NTYPE • • • • •
Rea I. arqument s
SinqLp Line definition
\ operator • • • •

MAYCREF ••••••••••
MOl1itnr cal Ls

FETCH ••
GETME;'1

NCHR
NEV.II.L
NOCREF
NOUST
NOSYIVI
NS IZ E • • •
NTYPE •••
Numbers
NVAlIl ••

Ol,j ect fi Le •••••
Object fiLp Library ••
OAJNAM •••••••
OFFSET
Operation switch~s
Opf'rators
Optional fiLes ••••
Overlay fiLes.
Overlays ••••••
OVRLAY ••••

9-3
9-~
7-1, 9-~
9-3
oS-1
6-5
6-5
6-9
"3-4, 6-R
(,-4
6-~
~-4, 1,-1
6-3
f,-~

6-6
6-~, 1,-11
6-5
1,-<;
6-<;
11-?
(,-6
1,-11
1,-6
6-(-,
6-6
1,-9
6-2
6-5
5-5, 9-7
1-1, 13-9
1)-1 f), ,)-1?
R-4

6-0
6-6
1)-5, 9-7
')-4, 9-1,
1)-5
6-0
6-6
4-lf

5-A, 9-4

2-1
5-10, 11-1
5-), 9-6, 10-5
5-14
10-?
L.-~

10-7
<-2
1)-1?
2-?~ I)-Q to ')-10, 5-12

Paqe Index-5

AMOS ASSEMBLY LANGUAGE PROGRAMM~R'S MANUAL

PAGE
Param~terized ~ssemhLy option
POP • • • • • • • • • • • • • • •
Position ind~penrlpnt corle
Proqram fiLe ••••
Pseudo opcodps

ASC T. I
ASECT •••••
AssembLy controL
AUTOEXTERN
BLKB
BLKlrJ
RYTE
CALL
Conveniencf'
COpy ••••
CREF
Data qeneration •
DEFINE •••••
E~JD •
ENDC
ENDM
ENDMX •
EVEN •••••
Extended conditionaL ;umos
EXTERN • • • .
IF. • • • • • • • • • •
IFF •••••••• " •••••
1FT • • • •••
IFTF
INTERN
LIST
MAYCREF
NCHR
NEVAL •
NOCREF
NOLIST
NOSYM •
NSIZE
NTYPE •
NVALU
OBJNAM
OFFSET
OVRLAY
PAGE
POP •
PSI •
PUSH
RAD50 •
RADIX •
RSECT •••••
RTN • • • • • • •
SYM • •
WORD

5-4·, Q-6
7-1, 0-4
5-B
8-1
?-?

'5-~

4-7." 4-'5, <;-l.
5-1
tj-10
5-~
')-~

5-7
tj-14
')-12
1-1, ?-1, ~-4, <;-1, s-o
5-5, 9-7
5-7
6--:>
tj-6
7-7.,
n-?
6-6
5-5
')-13
5-0 , S-11" 10-4
7-1, 7-3
7-7.,
7-7..
7-3
5-9 to 5-10, 10-4
5-4, 9-6
5-5, 9-7
6-f,
6-(,
Ci-5, 9-7
1)-4, 9-6
5-5
6-1,
6-6
5-(1, 9-4
5-3, 9-6, 10-5
1)-14
?-2, 5-0 to 5-1n, 5-12
5-4, 9-6
5-13
5-14
5-B
tj-R
4-4, 5-5
4-4 to 4-5, 5-4
5-14
5-5
3-3, 5-7

..

AMOS ASSEMBLY LANGUAGE PROGRAMMER'S MANUAL Page Index-7

PSI • •
PUSH

RAD50 · RAD50 character set · RADIX · . · · · · · Radix changinq · · · · Re-ent rant code · · · · Reqisters · ReLocatabLe code
ASECT . · · · · · · · LegaL addressinq modes
RSECT · · · RSECT · RTN . · · · · · ·

Segmenting proqrams •
Source fiLe •••
Source format •
SubconditionaLs •

RuLes • • • •

·
·

· · · · · ·
·
·

· · ·

SVCB ••••••••••••
SYM • • • • • • •

· ·

· ·

· ·

SYMBOL •••••••••••.•
Command Line
Continuation Lines
Error messaqes ••••••
Options ••••
SampLe dispLay ••••••

SymboL fiLes
SYMBOL options

Equated symbols •
Generate program fiLe
Generate symboL tabLe •
Library file ••••
Load map fiLe
OptionaL fiLe. • •••
Required fiLe •••••
Suppress symboL tabLe •••••

Symbolic equates (=)

SYS.MAC •••••

TCALL ••
Temporary work fiLes
Terms • • . • • • . • • .
TJMP •••••

Updatinq a Library
User symboLs

WORD

5-14
5-13

13-10
3-1,
5-5

4-1, 5-8

4-~ to 4-4, 5-5
1-2, 8-3 to 8-4
4-4
1-~,

5-4
8-~
5-4
5-4
5-14

5-9
2-1
3-1
7-3
7-3
5-15
5-5

5-4, 8-1

2-1, 2-3, 10-4
10-5
10-6
10-9
10-6
10-6
?-~, 13-2
10-6
10-6
10-6
10-6
10-6
10-6
10-6
10-6
10-6
3-3

to 8-2

1-1, 3-4, 5-1, 5-12, 6-1, 6-8, 7-5

5-14, 8-1
2-4
4-2
5-14, 8-1

11-3
3-1

5-7

)FTWARE PUBLICATIONS FILE REFERENCE NUMBER:

SOFTWARE DOCUMENTATION READER'S COMMENTS

e appreciate your help in evaluating our documentation efforts. Please feel free to attach additional comments. If you require a written response, chE

NOTE: This form IS for comments on software documentation only. To submit reports on software problems, use Software
Performance Reports (SPRs), available from Alpha Micro.

ease comment:,n the usefulness, organization, and clarity of this manual: AMOS As semb Ly Language P rog ramme r' s Manua L

id you find errors in this manual? If so, please specify the error and the number of the page on which It occurred.

hat kinds of manuals would you like to see in the future?

ease Indicate the type of reader that you represent (check all that apply):

o
o

o

Alpha Micro Dealer or OEM

Non-programmer, using Alpha MICro computer for:
o
o
o
o

Business applications
Education appl icatlons
Scientific appl ications
Other (please specify):

Programmer:
o Assembly language
o Higher-level language
o Experienced programmer
o Little programming experience
o Student
o Other (please specify):

~ME: __ DATE: __________________ __

TLE: __ PHoNENUMBER: __________________ __

~GANIZATION: __ _

JDRESS: __ __

TY : ___ ST A TE: ____________________ ZIP OR COUNTR Y: __________ _

STAPLE STAPLE

FOLD FOLD
•

alpha
micro

ATTN: SOFTWARE DEPARTMENT

17881 Sky Park North
Irvine, California
92714

PLACE
STAMP
HERE

. ,
FOLD FOLD

