|

REPRINTED FROM: MINI-MICRO SYSTEMS

Extending
UNIX to

local-area
networks

PETER KAVALER and ALAN GREENSPAN,
Altos Computer Systems

The UNIX operating system—together with deriva-
tive products such as Microsoft Corp.’s XENIX—is
rapidly becoming a standard for 16-bit microcomputers,
providing a rich set of development tools and a solid
base for running application software. A fundamental
feature of both UNIX and XENIX is a hierarchical file
system that hides hardware-dependent details, such as
block size, record length, sector location and type of
disk drives, from application programs and end users.
This design provides a uniform user interface, but one
that is confined to a single machine.

ALTOS-NET II software, which runs with XENIX on
Altos Computer Systems' 8086-based microcomputers,
extends the hierarchical file system to local-area
networks. It allows transparent remote file aceess and
remote processor execution, making it possible to build
a network of XENIX-based systems that appears to be a
single large computer. Network users can save sub-
stantial disk space by sharing files and can transport
application programs to the network with minimal
modification,

Enhancing the file system

The XENIX file system is an inverted tree with leaf
nodes corresponding to data files, programs and
devices; branch nodes corresponding to directories; and
the root of the tree corresponding to a “root directory.”

mach1 mach2

bin usr dev bin usr

lIs cp vi joe bob Ip tape ls

prog1 prog2

Fig. 1. The @ directory is ALTOS-NET Ii's extension to XENIX's
hierarchical file system. Traditionally, XENIX files on separate
machines ara linked by utilities that confine network functions to file
transfer and remote log-on. But the @ directory establishes a new
root on the tree, enabling all utilities and applications to function
throughout the network.

Users can access a node by specifying its location in the
tree using a pathname—a sequence of node names
separated by slashes. A pathname beginning with a “/”
descends the hierarchy from the root directory. For
example, the pathname /usr/bob/prog3 represents the
file prog3 within user Bob’s directory. The command cd
simplifies pathnames by designating a “current directo-
ry” as the starting point for pathnames not beginning
with “/. If the current directory in the above example
were /usr/bob, the desired file could be represented by
just prog3. However, in either case, file access is
limited to a single machine. Inter-machine communica-
tion in UNIX or XENIX has required network utilities
that have permitted file transfer and remote log-on, but
little else.

ALTOS-NET II introduces a directory, called the “@&@
directory,” one level above the root directory of each
system in the network (Fig. 1). The @ directory
enables users and application programs to access any
file in the network using standard XENIX commands.
For example, a user on the machine named mach2 can
use the pathname @wmachi/usr/bobiprogs to access the
prog3 file on the machine named machi. The user’s only
concern is the logical locations of the files within the file
system hierarchy. Just as UNIX and XENIX hide the
physical storage media and file-access methods from
users, ALTOS-NET II hides the underlying network

ALTOS-NET Il software enhances the XENIX kernel,
allowing user-transparent access

to remote files and processors

MINI-MICRO SYSTEMS/September 1983

AARRTNTY BT 5T

__Another Solution From ALTOS

SOFTWARE

System call Purpose
File control
access Determine accessibility of file
chmod Change made of a file
chown Change owner and group of a file
hardware and protocols. Moreover, while conventional _fswt‘l' gef f"fel Sd‘atlus
5 i = . 1o0C ontrol device
networks require that application programs be rewrit- link Link to & file
ten to invoke network utilities, ALTOS-NET II runs mknod Make a directory or a special file
. Sopaa i i . stat Get file status
application programs without modification or re- uinask Set file-creation mode mast
compilation. . unlink Remove directary entry
ki T utime Set file times
With ALTOS-NET II, there is little need to copy files
from machine to machine; a single copy of a shared file Flleaccess
need be kept on only one machine for all programs create Create atile -
i 7 i s 2 5 open Open for reading or writing L
within the network to access it. By avoiding duplication seek Move readiwrite pointer
of system utilities, disk space is freed for user a2 ?;:?I‘é ftr:;“fn';
programs and data. Since most microcomputer-based close Close a file
UNIX systems require about 8M bytes of mass storage et
for the full set of UNIX utilities, the savings from . ;

Wiie) , : 2 chdir Change default directory
avmdmg file duphcatlon can be considerable. An chroot Change root directory
ALTOS-NET II configuration of 10 machines with 80 e Srening 'p"r‘;cesg
percent of system utilities on Ol‘lly one disk would save fork Spawn new process

selgid ¥ Set group 1D
as much as 60M bytes across the network. i i

ALTOS-NET 11 also permits the use of a low-cost
disk-less workstation on the network. For example, the

Altos 186-vDU has a 14-inch bit-mapped screen, an The 24 system calls that handle fife control, file access and process
80186 CPU and as much as 512K bytes of RAM—but 1o controf are intercepted by ALTOS-NET I, which determines if a call

local disk storage. Such a workstation would be of little has network implications.

use on a conventional network because it could be used

only to log onto another machine by emulating a act as a “file server” for one or more disk-less
terminal. But with ALTOS-NET 11, another computer can workstations by downloading the XENIX kernel and

Keyboard

Local
system

Remote
system

CRT

File-server process
A U&IJIQ' iﬂﬂa‘ iﬁa‘s
User 2

User
memory memory

SYS‘emi \\ ALTOS-NET I \ \ System / / ALTOS-NET Il \‘i
memaory maemaory 1

File requests

T } aaalmaﬂonpf ram -

XENIX Packels XENF)IE

kernel |55 | | B E I Kernel
-
f File results \

\ Y RS422 twisted- RS422 twisted.

Hard-disk pair or pair or Hard-disk
driver E!h_emet Eth_emel driver
Pa drivers drivers

Fig. 2. Remote-file access involves the same user interface as local-file access. ALTOS-NET Il software intercepts each file request from an
application program and determines whether the file is on the local or remote system. If local, the software passes the file request to the local
operating-system kernel for normal processing, if remote, it transmits a packet to a file-server process on the remote system. From the
standpoint of the remote systemn, the file-server process behaves as an application program requesting a local file.

MINI-MICRO SYSTEMS/Septermber 1883

SOFTWARE

sharing its file system. A 40M-byte file-server machine
attached to four disk-less workstations would more
economically provide each with 10M-byte storage than
would separate disk drives and controllers.

Design trade-offs

All programs running under UNIX must make calls to
the operating-system kernel when they require main-

BENCHMARKING ALTOS-NET II

Several performance measurements have been made
on an operational ALTOS-NET 1 system. The system
contained two Altos 586 systems connected by an Rs422
twisted-pair cable. The Altos 586 system is based on a
10-MHz 8086 processor; the standard systermn comes with
512K bytes of main memory, an 8089-based hard disk
controller, a 10m-byte hard disk (with an average seek
time of 85 msec.) and a zs0-based communications
processor. The z80 controls the transmission and recep-
tion of packets on the network cable, and as many as five
Ascll terminals attached to the system. The network uses
the spLc mode of the Zilog sio chip and standard Rs422
drivers to transmit data at 800K bps.

The measurements show the time required to load and
run the cp file-copying utility. Benchmark 1 is the “control
case” that employs no network requests. Benchmarks 2,
3 and 4 are “worst-case” network tests in that virtually no
local processing is done between disk and network
requests.

Benchmark 1:
cp big1 big2 Copy 315K bytes from big1
to bigz on the same ma-
chine.
CcPU time = 6.9 seconds; Real time = 32 seconds.

Benchmark 2:

cp big1 @dept2/big2 Copy 315K bytes from the
local machine to a remote
machine.

cPuU time = 10.7 seconds; Real time = 48 seconds.

Benchmark 3:

cp @dept2/big2 big1 Copy 315K bytes from a
remote machine to the
local machine.

CPU time = 6.6 seconds; Real time = 43 seconds.

Benchmark 4:
cp @dept2/big2
dept2/big2 Copy 315K bytes from a
; remote machine to the
same remote machine.

CPU time = 10.2 seconds; Real time = 80 seconds.

Benchmarks 2 and 3 indicate that it is slightly more
efficient to read from a remote system than to write to a
remote system; this is due to the effects of XENIX's
read-ahead buffering algorithms. Benchmark 4 shows the
worst-case performance that can be expected from a
disk-less workstation.

L e

MINI-MICRO SYSTEMS/September 1983

memory allocation, process creation and termination or
file access. A typical UNIX implementation supports
about 60 such calls to the operating system, of which 24
have networking implications (see p- 198). ALTOS-NET IT
software residing in the kernel intercepts these calls
immediately after the request is made and determines
whether to process the calls locally or remotely (Fig. 2).
If the request is for a loeal resource, it is passed to the
kernel for normal processing. But if the user program is
requesting a resource on a remote machine, ALTOS-NET
II construets a request packet and transmits it over the
network. A file-server process on the remote machine
receives the request, calls its own kernel for processing
and passes the results back to the requesting machine.

For each process having at least one remote open file,
a corresponding process, residing on the remote
machine, services the requests on its counterpart’s
behalf. This process is created when a program opens
its first file on a remote machine and is terminated
when the program closes its last remote file. Moreover,
the creation and termination of processes occur auto-
matically; neither users nor application programs are
aware of it. There is a brief delay when a new file
server is created; after that, the lag time resulting from
network transactions is negligible (see “Benchmarking
ALTOS-NET II,” left).

Altos chose the implementation technigue
of invoking file-server processes that
interact with a layer of software inside the
OS kernel.

A special concern arises in implementing record and
file locking in ALTOS-NET II. If a remote system goes
down before releasing a locked resource, each file-
server process periodically polls its corresponding
requester process. If the requester fails to answer
several consecutive polls, system failure or cable
disconnection is assumed, and the server process
releases all locks and terminates.

Altos chose the implementation technique of invoking
file-server processes that interact with a layer of
software inside the operating-system kernel over
several other alternatives. One alternative could link
the kernels on the various machines and forgo using
file-server processes. Under this scheme, UNIX i-nodes,
the primitive and normally hidden data about the
location of files on a disk, would be passed from kernel
to kernel. This approach suffers from the heavy amount
of i-node traffic on the network, which could cause
lengthy delays. Also, by passing UNIX internals over
the network, the inclusion of other operating systems
on the same network is all but impossible.

Another possible approach uses file-server processes
but moves the interface layer from the kernel to a
library of routines that is linked with each application
program. Although such an implementation appears
attractive because of the relative ease of debugging

SOFTWARE

Local
system

Keyboard 1

.1_.. =

oy mnid
\ process

User
memory

T
i
i
1 it
Ay
i
'
i

\ ALTOS-NET I \

System
memory

AN

Remole
system

i Exanitiig
T vuneid serve application
L process program
User i
memory : f 1
L

System /
MEmory

Keyboard input Pseudo-device

» driver
i

XENIX Packets XEMIX

kerne TT1LT1 kernel

B
CRT output

RS422
twisted-pair or
Ethernet
drivers

RS422
twisted-pair or
Ethernet
drivers

Fig. 3. Remote-program execution is directed by ALTOS-NET II's run utility, which creates four processes that read and write packets
transmitted between systems. Once the run utility is invoked, the user interface for remote processing is identical to the user interface for focal
processing. In the remote system, a pseudo-device driver communicates with the application program, functioning as a "logical” keyboard

and CRT for the application.

software outside the kernel, the interface layer of about
8K bytes of code would have to be included with each
application, causing a significant reduction in memory
available for user programs. Moreover, all applications
would have to be relinked with the new library before
they could function in the network.

Remote-processor execution

ALTOS-NET II supports remote-processor execution,
which works with remote-file access. A network can
contain as many as 32 Altos 8086- and MC68000-based
systems. Mixing processors allows specialization; for
example, some processors can be configured with large
memories, while others offer floating-point capability.

An ALTOS-NET II utility called run executes a
program on a remote processor yet makes it appear as
if it were executing locally. The utility is especially
applieable to large networks containing a variety of
computers that are each capable of running a different
set of applications. While running a program on a
remote computer, a user can access files from yet a
third machine.

The run utility works by initiating four processes and
using a pseudo-device driver to exchange information
between local /0 devices and the remote processor.
When a run request is made, the utility sends a
start-up packet to the server machine, and both the run
utility and run server processes split into two subpro-

cesses: run-wr and run-rd on the requesting machine
and run-wr-server and run-rd-server on the server
(Fig. 3). The run utility then sends a set of packets to
the server containing the name of the program to be
executed, the user’s security information and the user’s
working directory. All keyboard input from the re-
quester is constructed into a packet and sent to the
run-wr-server on the remote machine, which writes it
to a pseudo-device driver in the kernel. Similarly,
screen output is sent from the driver to the run-rd-
server, which construects a packet and transmits it back
across the machines to the rum-rd process. In both
cases, the pseudo-device driver acts as the stand-in for
the user’s terminal.

At the lowest level of communication, both transpar-
ent file access and remote-processor execution use a
subset of Xerox Corp.'s Internet packet-exchange
protocol to assure reliable data transmission. Because
this protocol is relatively simple, ALTOS-NET II imple-
ments it entirely within the kernel for maximum
network efficiency. O

Peter Kavaler is product manager for networking communica-
tions, and Alan Greenspan is a software engineer with Altos
Computer Systems, San Jose, Calif.

MINI-MICRO SYSTEMS/September 1983

