AMD CUSTOMER EDUCATION

ED2900A

INTRODUCTION TO

DESIGNING WITH THE

Am2900 FAMILY OF

MICROPROGRAMMABLE
BIPOLAR DEVICES

LECTURE
VOLUME |

ED2900A

INTRODUCTION TO DESIGNING WITH THE Am2900 FAMILY
OF MICROPROGRAMMING BIPOLAR DEVICES

Volume 1

3rd Edition

January 1985
Advanced Micro Devices, Inc.
Customer Education Center

ADVANCED MICRO DEVICES 1

Volume 1

Table of Contents

Educational Objectives
Introduction

Bit-slice Architecture

Microprogramming
Am2900 Family of Microprogrammable Devices
Analyzing and Designing a Computer Control Unit (CCU)
Adding Program Control Flow to a CCU
Improving CCU Speed

Further Improvements in Microprogram Control Flow
CCU Implementations Using Am2900 Family Devices
Supersequencer Am2910
Microprogrammed Sequencers Am2909/2911

Next-Address Control Am29811
Microsequencer Am29112

Microcycle Timing for Am2910

ADVANCED MICRO DEVICES &1

1-10

ED2900A 1-10

INTRODUCTION TO DESIGNING WITH THE Am2900 FAMILY

OF MICROPROGAMMING BIPOLAR DEVICES

EDUCATIONAL OBJECTIVES

Understanding the digital-computer, machine-instruction
sequencing process (macro level) and associated architecture
at the lower level (micro level).

Appreciation of digital-computer control-unit organization
for machine-instruction sequencing and its implementation
with Am2900 family devices.

Appreciation of digital-computer, arithmetic/logic unit (ALU)
organization and its implementation with Am2900 family devices.

Understanding microprogramming terms (mnemonic programming
at the micro level).

Understanding Am2900 family support devices for constructing
an instruction sequencing system at the micro level.

ADVANCED MICRO DEVICES (1

1-20 ED2900A 1-20

ADVANCED MICRO DEVICES C1

1-30 ED2900A 1-30

INTRODUCTION

WELCOME TO THE WORLD OF MICROPROGAMMING AND THE Am2900 FAMILY

ADYANCED MICRO DEVICES {1

1-40 ED2900A 1-40

ADVANCED MICRO DEVICES 1

1-50

ED2900A 1-50

ED2900A EDUCATIONAL GOALS

" Introduction to the Advanced Micro Devices (AMD) Am2900 family
of devices and their use. "
DAY 1
e Introduction to bit-slice architecture, microprogramming,
microprogram sequencers (controllers) and their use.
DAY 2
¢ Study of arithmetic/logic units (ALUs), their use (algorithms)
and interfacing to sequencers
DAY 3

e Analysis of support chips for systems support and specialized
applications:

Devices for dealing with interrupts
Register expansion for ALU's
Registered PROMs for ALU's

Shift and status control devices
Microprogrammable clocks

16-bit and 32-bit AlLUs

ADVANCED MICRO DEVICES 1

1-60

EARLY
1960s

LATE
1960s

1970s

1980s

ED2900A 1-60

TECHNOLOGY TRENDS

SMALL SCALE INTEGRATION (SSI), 2-10 GATES PER CHIP.

NAND gates

NOR gates

XOR gates

NOT gates (inverters)
Individual f1ip-flops (storage)
256-bit RAM

MEDIUM SCALE INTEGRATION (MSI), 20-100 GATES PER CHIP.

Registers/Latches
Decoders/Encoders
Multiplexers

Adders/ Comparators
Arithmetic/Logic Units
1K-bit RAM

LARGE SCALE INTEGRATION (LSI), 200-500 GATES PER CHIP.

RALU-Arithmetic/Logic Unit (ALU) with registers
Interrupt controller/Direct Memory Access controller
Microprogram sequencer/Macro program controller
Memory controller/Input-Output controller
Microprocessors

16K-bit RAM

VERY LARGE SCALE INTEGRATION (VLSI), MORE THAN 1000 GATES.
16-bit Bipolar and MOS ALUs

16 and 32-bit Bipolar and MOS microprocessors
Multi-mode arithmetic on expandable RALUs

Special Data Manipulation (FFT, Signal processing, 000)
256K~bit RAM

ADVANCED MICRO DEVICES ¢t

1-70

ED2900A

1-70

Example of Bipolar Speed/Density Improvements

Am2901 FOUR-BIT MICROPROCESSOR SLICE

540 GATES
800mwW
40-PIN DIP
DIE Am2901 Am2901A Am2901B Am2901C
SIZE 33,000 MILS? 20,000 MILS2 15,000 MILS?2 15,000 MILS2
SPEED
AB G,P 80ns 65ns 50ns 37ns
LOW-POWER DUAL LAYER PROJECTION ECL INTERNAL
TECHNOLOGY SCHOTTKY METAL ION- BRINTING TTL /O
IMPLANTATION IMOX
1975 1977 1978 1981

ADVANCED MICRO DEVICES 1

1-80 D2900A 1-80
1 e 5 S
TECHNOLOGY TYPES

(see Am2900 Family Data Book and Figure on next page)

“ OF WHAT IS THE ACTUAL SEMICONDUCTOR CHIP MADE? "

o BIPOLAR - Earliest technology
Fastest technology
Transistor-Transistor Logic (TTL)
Emitter-coupled Logic (ECL)
Ion-implanted oxide-isolation (IMOX)
TTL external/ECL internal

IMOX used in Am2900 family

s MOS - Developed later than Bipolar
Higher chip density
Slower speed relative to Bipolar Technology

Used in microprocessor chips (e.g. Intel 80286, 28000)

PROBLEM

How do you build a large circuit (e.g. a microprocessor)
with bipolar speed if it won't fit on a single chip?

SOLUTION

Use a bit-slice architecture!

ADVANCED MICRO DEVICES 1

1-90

10.000

ED2900A 1-90

Bipolar Density Improvements

Am2900 Bipolar LSI/VLSI

Am29116

~ SSLMSI FAMILIES (2500 GATES)
T - GOLD DOPED Am2903 e |
S = SCHOTTKY (630 GATES ,—*”'
- L = LOW-POWER SCHOTTKY o b4 AMm2910
A = ADVANCED SCHOTTKY 17 736 GATES)
z‘ Am2901
(540 GATES) A
L LL&- A
Lot AA
L A
L A
L s S A, A
L A
[T | Ll
1975 1980

“Moore's Law”

Moore's Law - Gates/chip increases by a factor of four

approximately every two years.

ADVANCED MICRO DEVICES

1-160

ED2900A 1-100

BIT-SLICE ARCHITECTURE

Since chip density is T1imited, a small processor chip
(typically four bits wide) is made in such a way that
several of these chips can be hooked together as building
blocks to make a larger (8-, 16-, 24-, 32-, 64-bit)
processor. This is defined as bit-slice architecture.

This hardware implementation requires special features to
handle problems like carry overflow, sign bit, etc. that
involve data movement between slices.

Note that the term microprogramming has not yet been defined.
Microprogramming and bit-slice are two separate concepts,
although they are closely related in most of the Am2900
family. Bit-slice generally refers to the structure of
various devices and how they are connected. Microprogramming
concepts involve the method by which these devices and others
are controlied.

ADVANCED MICRO DEVICES {1

1-110 £ED2900A 1-110

16 BIT ADDER/REGISTER

16-BIT INPUT

S - _l

)

4-BIT |

ADDR | |

i

S

t | 4-BIT 4-BIT 4-BIT s-817 ||
i |REGISTER REGISTER REGISTER REGISTER :
! i
e P N S i B

_ Y,

16-BIT OUTPUT

ADVANCED MICRO DEVICES <t

1-120 ED2900A 1-120
1 D S s SO

THERE ARE THREE BASIC IMPLEMENTATION CHOICES (LEVELS):

) SSI/MSI Hardware
(] Bit-slice (LSI/VLSI) "Firmware"*

° MOS Microprocessors (LSI/VLSI) Software

* "0"s and "1"s stored in a Read-Only Memory (ROM)

ADVANCED MICRO DEVICES ¢t

1-130 ED2900A 1-130

USE BIT SLICES TO BUILD SYSTEMS

e MACHINES WITH LONG WORD LENGTHS

16, 24, 32, 36, 64 bit words and beyond

e MACHINES WITH SPECIAL MACRO LEVEL INSTRUCTION SETS

Emulators - such as Nanodata QM-1

MIL STD 1750 computers

Controllers

® FAST MACHINES - 100ns cycle times

Real-time data control

Real-time complex arithmetic

ADVANCED MICRO DEVICES

1-140

FIXED INSTR.

4,8, or 16 bit
fixed

FIXED INSTR.

3-6

FIXED INSTR.

pre-determined

FIXED INSTR.

pre-determined;
primitive

FIXED INSTR.

cheapest:
use 9080A
whenever
possible

ED2900A

WORD LENGTH

IT SLIC

—
m

any multiple
of 4

ARCHITECTURE

[vs)
—i
(%24

IT SLIC

m

|

largely user
defined

INSTRUCTION SET

(s =]
—
w

IT SLICE

|

user-defined
in firmware

CONCLUSIONS
BIT SLICE

use whenever
high speeds and/or
unique instructions
are needed

1-140

SSI/MSI

any length

CHIP COUNT FOR SIMPLE SYSTEM

SSI/MSI

100~-500

SSI/MSI

completely
user defined

SSI/MSI

user-defined
firmware/
hardware

SSI/MSI

fastest: use
Schottky MSI where
very high speed
is a must

ADVANCED MICRO DEVICES 1

1-150

ED2900A 1-150

IF YOU'RE GOING TO BUILD A BIPOLAR MACHINE, YOU SHOULD USE

LS1

® LSI reduces costs (less chips and connections)

e LSI improves reliability (fewer total pins)

IF YOU'RE GOING TO BUILD A BIPOLAR MACHINE IT SHOULD BE

MICROPROGRAMMED INSTEAD OF USING HARDWARE LOGIC

(Microprogramming is a level above hardware logic)

® Etasier design, using application-specific variable names
and operations

e Easier implementation
o Easier testing
e CEtasier maintenance

o Better documentation (easier to understand)

ADVANCED MICRO DEVICES 1

1-160

¢

Note:

ED2900A 1-160

MICROPROGRAMMING

In order to appreciate the position of the microprogramming level
{(micro level) in systems design consider the ...

HIERARCHY OF COMPUTER ALGORITHM DESCRIPTIONS/LANGUAGES

- Higher-order languages (compiler/interpreter translators)

Lower-order languages (assembler translators)

Machine language (macro level)

Register-transfer languages-RTL (microprogramming)

Boolean algebra (symbolic logic - state diagrams)

Logic levels (timing diagrams - waveforms)

One can design, implement and test algorithms on any one
or more of the above levels, the choice depending upon
application and constraints. Specific languages at each
level are used to define a desired algorithm as well as
its implementation. Various design approaches using some
of the above languages are employed in this course.

ADVANCED MICRO DEVICES <1

1-170 ED2900A 1-170

MICROPROGRAMMING IS A TECHNIQUE FOR

DESIGNING COMPUTER CONTROL UNITS (CCUs) FOR CONTROLLERS

® Instead of defining information movements and manipulations
in terms of Boolean algebra, they are described on a higher
symbolic level using register and arithmetic/logic operation
designations (register transfer language-RTL). With
Boolean algebra, all hardware operations are described at
the logic level. RTL permits a more concise description
of the desired process using names and operations reflective
of the original design process.

® Initially consider computer control as an example of a
microprogrammed architecture, i.e.

Computer
| Control
i Unit
| (CCU)
i o
N
D
L
_ | _| Arithmetic/
Memory [T T T T Logic %
’ P . :
| Unit ‘
; (ALU) |
i i

ADVANCED MICRO DEVICES <

1-180 ED2900A 1-180
R

MICROPROGRAMMING DEFINITIONS

0 Using a register transfer language (i.e. microprogramming)
to define desired information movements and operations
permits the system to be developed with a hierarchical
modular (chip and firmware-RTL) structure. For example,
ALU bit-slice chips are given a coded CCU command, such as
ADD Register 2 to Register 1. The ALU bit-slice chips then
execute the operation internally with the CCU not having to
control the exact step by step addition process

() Microprogramming then consists of defining in an encoded
fashion using system variables (registers/variables operations),
a step-by-step process of information movement and manipulation.
The mnemonic microprogram is then decoded into zeros and ones
and is put into a PROM. Each line statement or sequence of
ones and zeros of the PROM program is sent to the ALU or other
system chips under clock control for proper sequential execution.

Microcode

110100010

010101011 bit patterns control
001100111 individual logic gates
110011000

ADVANCED MICRO DEVICES {1

1-190 ED2900A 1-190
S

GENERAL MICROPROGRAMMED ARCHITECTURE

MACROINSTRUCTIONS
COND ‘
-1 CODE cc
MUX Am2910 | eapg—— CLOCK

~]1 SEQUENCER

MICROPROGRAM

MEMORY
|
DATA/ADDRESSES
PIPELINE
REGISTER I
Am2901A
ALU
@i
- STATUS
REGISTER

ADVANCED MICRO DEVICES &

1-200

FROM DATA BUS

I

ED2900A 1-200

GENERAL MICROPROGRAMMED SYSTEM

CLOCK

INSTRUCTION
(Am2918s) REGISTER
MAPPING
(PROM OR PLA} PROM
OTHER
ADDRESS
SOURCES
5 % ¢
12-34 51 .
m29094s Fe CONTROL] &
OR Am2911As SEQUENCER pUP LOGIC
OR Am2910A) (PROM, SS1) STATUS
c REGISTER
v cp Cn (Am2918) ¢ vV N 2
2
P 1 ®
omane S S
3 FROM DATA BUS
A cp
i DATA
1 recisTer
cc
MICROPROGRAM ~408:TS
MEMORY
(PROM) ° BA cp o Crva i
256 TO 4k WORDS 4, PIPELINE a
REGISTER N A ovR
A ALY ;
Cn 3
v Fx0
1 Microinstruction currently being executed 'J
2 Sequencer control iines seiect source of TO OTHER TO DATA BUS PROGRAM
next microinstruction address e e CONTROL UNIT
) ‘ ‘ ENAEN S AND/OR MEMORY
3 Next microinstruction address RV R ADDRESS REGISTER
4 Next microinstruction .J\}
5 Status bits from current microinstruction 1o
6 Status bits from last microinstruction ADESSESS

ADVANCED MICRO DEVICES <1

1-210 ED2900A 1-210

TRADITIONAL HARDWIRED CCU:

FROM MEMORY

INSTRUCTION REGISTER

DECODE LOGIC

L

NS

COMPLEX
TIMING SEQUENTIAL/
GENERATOR COMBINATIONAL
NETWORK

yailnn

TIMING CONTROL
CONTROLS SIGNALS
TO SYSTEM
‘MICROWORD’

ADVANCED MICRO DEVICES

1-220

£D2900A 1-220

HARDWIRED CCU

Advantages

e May be faster solution (execution time)

Custom designed for the specific problem

e May be smaller (part count and size)

Justification

Suitable if design is rigid or fixed
for high volume production

Disadvantages

Lengthy design time with Boolean algebra descriptions
(logic equations)

Bulky documentation - long parts lists, detailed
logic schematics, etc.

Any changes require partial or total redesign
Pin count, board space high

Board may have very limited modular structure
(modularity in design layout is difficult)

Testing difficult - minimization effort is difficult

Debug at logic level is more complex than for
LSI solutions

ADVANCED MICRO DEVICES &1

1-230

ED2900A

1-230

NEXT
ADDRESS

THE SIMPLEST CONTROL UNIT

CCU - Computer Control Unit

L/

LOAD NEXT ADDRESS
ON RISING EDGE OF
CLOCK SIGNAL

REGISTER

L

~ CLOCK

MICROMEMORY

ADDRESS

PROM

N

TIMING CONTROL
SIGNALS TO SYSTEM

ADVANCED MICRO DEVICES

1-240 ED2900A 1-240
| e A

MICROPROGRAMMED CCU:

e C(CU memory, usually programmable read-only memory (PROM),
contains a sequence of "microinstructions"
e Each microinstruction contains two parts:

- microinstruction sequencer portion contains CCU
memory address of next word

- controller portion contains control bits
for system
Advantages
e Design now becomes a programming effort (software
engineering)
e Development time shortened with appropriate tools
e Major documentation contained in program listings
o Changes may require little or no redesign
e Part count small (mainly memory)
e Modular, structured techniques can be easily applied

o Testing and debugging are easier

Disadvantages

& May be slower than hardwired CCU

ADVANCED MICRO DEVICES ¢t

1-250

ED2900A 1-250

WHY MICROPROGRAMMING IS BETTER

More structured organization

- random hardware logic is replaced by zeros and ones
in a memory (PROM)

Field changes are easy - PROM replacement

Adaptations are easy (extendability) - additional PROMs

System definition can be expanded - additional chips & PROMS

Documentation and service are easier (understandability)

- structured, modular microcode instead of possible
unstructured schematics and wire lists

ADVANCED MICRO DEVICES

1-260 £D2900A 1-260
1 s S

LANGUAGE INTERRELATIONSHIPS

It is helpful to develop a more detailed understanding of
where microprogramming fits in relation to "conventional®
levels of programming.

o High Level Languages (HLL) - Basic, FORTRAN, Pascal, ADA, etc.

expressed in pseudo-math (Z=X+Y)

converted to machine language (ML) by compiler/interpreter

each HLL statement translates into many ML statements

user is largely isolated from the particular hardware system

fixed instruction set (FIS)

o Assembly Language
- expressed in mnemonics (ADD Rl, R2)
- converted to machine language by assembler
- ratio to machine language statements is usually 1:1
- user no longer isolated from knowledge of system hardware

- fixed instruction set (operations and format)

ADVANCED MICRO DEVICES ¢t

1-270 ED2900A 1-270

e Machine Language

expressed in binary code (01101110)

each machine language instruction interpreted by a
microprogram routine

1

fixed instruction set (operations and format)

knowledge of system hardware

¢ Register Transfer Language (Microprogramming)

- direct control of hardware at register transfer level

must know complete system hardware

format of microprogram instruction statements defined

microprogramming often stored in PROM (firmware)

e Boolean Language (Hardware logic)

- logic function realization in SSI/MSI circuits

ADVANCED MICRO DEVICES oV

1-280

ED2900A 1-280
.————
LANGUAGE RELATIONSHIPS
SYSTEM DEVELOPMENT PSEUDO-ASSEMBLY
HIGH-LEVEL ASSEMBLY MACHINE
LANGUAGE LEVEL LEVEL MICROCODE
’ L
DECREASING ‘a\ INCREASING
— PROGRAMMING EFFORT — PROGRAMMING EFFORT
- ACCESS TO HARDWARE gg”{;ﬁggxgEngCTRUM _ ACCESS TO HARDWARE

ADVANCED MICRO DEVICES ¢1

1-290

ED2900A 1-290

COMPARING LANGUAGE IMPLEMENTATIONS

BASIC ASSEMBLY MACHINE COMMENTS
8080A 8080A (HEX)
READ A, B, C
IN CRD DB 05 INPUT FROM CARD

MVI H, ADRH 26 00
MVI L, ADRL 2E 40

MOV M, A 77 CRD -> MEM - A
INX HL 23 INCR ADDRESS

IN CRD DB 05

MOV M, A 77 CRD - > MEM - B
INX HL 23

IN CRD DB 05

MOV M, A 77 CRD -> MEM - C

LETA=A+8-C

MVE L, ADRL 2E 40 RESET ADDRESS

MOV A, M 7t LOAD ACC <- A

INX HL 23

ADD M 86 ADD ACC <- ACC + B
INX HL 23

SUB M 96 SUB ACC <- ACC - C
MVI L, ADRL 2t 40 RESET ADDRESS

MOV M,A 77 ACC -> MEM - A

® Note that each Basic statement translates into 10 or so
assembly language instructions and each assembly instruction
transtates into 1 or 2 words at the machine level.

¢ No attempt was made to make the assembly program efficient.

- the intent was to translate directly from the Basic
statements (one at a time)

ADVANCED MICRO DEVICES <1

1-300 ED2900A 1-300

MICROPROGRAMMING DEFINITIONS

Microstore (control store, micromemory)

- The CCU memory (often ROM or PROM) where microprograms are
stored.

Microprogram

- A logically related sequence of microinstructions and/or
microroutines.

Microroutine
- A sequence of one or more microinstructions which control
a functional task (may implement one macroinstruction, for
example).
Microinstruction
- The combination of all micro-operations or fields that

specify the state of all control lines during a time
interval (clock cyle).

Micro-operation
- The combination of one or more fields to control one
functional unit, such as the ALU.
Field
- One or more bits (binary digits) as needed to define a

specific hardware activity for a functional unit such as
an ALU arithmetic operation.

ADVANCED MICRO DEVICES <1

1-310

ED2900A

MACHINE LEVEL INSTRUCTION

OP CODE

DESTINATION

R1

SOURCE
R2

15

MICRO-INSTRUCTION

(FIELD

817
MICRO-OPERATION

N

1-310

BRANCH
ADDRESS

Am2910
INST

ccC
MUX

IR
LD

Am2903
A&B

Am2903
SOURCE

Am2903
ALU

Am2903
DEST

STATUS
LOAD

SHIFT
MuX

ETC

32 TO 128 BITS

ADVANCED MICRO DEVICES <1

1-320

ED2900A 1-320

I__-_—

INSTRUCTION REGISTER:

INSTRUCTION A ==

INSTRUCTION B --

p————>

INSTRUCTION A -=

MICROPROGRAM HARDWARE

MICROROUTINE FOR A

= » MUX

! 'v' L' l ‘—* ALU

[

> SHIFTER

MICROROUTINE FOR B

Each machine instruction causes a specific microroutine to be executed.

ADVANCED MICRO DEVICES ¢t

1-330 ED2900A 1-330

MICROINSTRUCTIONS

e The microword is typically very wide (48-128 bits) because of
the large number of control signals required to control
system resources (functional units).

o The microprogrammer and detailed hardware designer, if not the
same person, must work as a team to define the required
microword fields (hardware/firmware/software interface fuzzy!)

¢ The microinstruction format is defined by these individuals.

@ There are no fixed rules with regard to format layout or limits
on the number of formats permissible. Objectives should include
ease of understanding, readability, testing, flexibility and
extendability and the associated development of good documentation.

ADVANCED MICRO DEVICES &1

1-340 ED2900A 1-340

SUGGESTED PRACTICES FOR MICROINSTRUCTION FORMATTING

e Use logical fields to increase readability. Worry about physical
layout later. There are development tools to help in implementation.

@ Minimize the use of shared or overlapped fields (use horizontal
format), as they reduce understandability.

® Group fields as to the hardware functional unit micro-operations
which they control for readability and understanding.

® Group all micromemory next address fields at one end of the
microword for readability.

ADVANCED MICRO DEVICES

1-350 ED2900A 1-350

DEVELOPMENT SYSTEMS

FOR AIDING MICROPROGRAM DEVELOPMENT

¢ META assembler - converts mnemonics to 1's and 0's. Initially
requires a definition of microinstruction format and mnemonics
(registers, operations). Then a microroutine (source) using
the specified format and mnemonics is translated into 1's and
0's appropriately.

e Microprogramming shortens the development effort considerably.

¢ A development system simplifies debugging (error finding)
- of microcoded routines

- of hardware functional units and connections

e Aids documentation by producing human readable code

- "mnemonics"”

ADVANCED MICRO DEVICES <1

1-360 ED2900A 1-360
L —

MICROPROGRAMMED CCU ADVANTAGES REVISITED:

e Speeds comparable to Schottky TTL
o Custom design at an RTL level (mnemonics versus Boolean logic)
e Compact unit (less space) with LSI circuits

¢ Changes may be "firmware" changes (in PROMs) rather than
physical changes

® LSI supports a structured organization
® LSI has better reliability

- approximately 80% of failures in the field are due to
external connection failures (pins, etch)

® Microprogramming the control portion (CCU) allows:

1

hardware and firmware being designed in parallel

better documentation (structured microprogramming!)

development systems for microprogram development

development systems for prototype check-out
@ Overall better potential for better documentation
- understandability
o Potential for better diagnostics
- separate switchable PROM

- diagnostic routines on-board the control memory (PROM)

ADVANCED MICRO DEVICES o

1-370 ED2900A 1-370

“

Summary of Design Tradeoffs

ITEM SSI/MSI
HARDWARE

2900 FAMILY
FIRMWARE

MICROPROCESSOR
FIS MOS SOFTWARE

architecture any desired almost any desired predesigned
instruction any desired any desired predesigned
via wiring via microprogram may use software

technigues to
achieve desired set

word length any desired multiples of 4 fixed at 4,8,16,32

execution 100-200ns cycle times 0.7 -5us cycle

speed

3-6 dips
large packages

physical size 500 dips 50 dips
(controller) small packages medium size

long, slow, parallel - fast software - fast
to do correctly use aids - development systems

design time

documentation tedious forced via programming techniques

upgrades redesign change microprogram change software
design cost highest medium lowest
debug various aides exist - microprogramming development systems

ADVANCED MICRO DEVICES &1

1-380

ED2900A 1-380

IF YOU'RE GOING TO DESIGN ANY MACHINE,

USE INDUSTRY STANDARD PRODUCTS

True LSI!

Am2900 family parts
are 10 to 20 times
as complex as

traditional MSI

The Am2900 family
is designed to be

microprogrammed

“The Am2900 family is
the industry standard

for bipolar LSI"

ADVANCED MICRO DEVICES (1

1-390

ED2900A 1-390

THE Am2900 FAMILY ELEMENTS

CPUs (CCU + ALU)

Microprogram controllers/sequencers

Bipolar memory (macro and micro Tevels)

Interrupt processing devices

Bus I/0 interfaces

Direct memory access (DMA) devices

Timing/clocks

Macroprogram (machine Tanguages) controllers/sequencers

Multipliers

ADVANCED MICRO DEVICES 1

1-400 ED2900A 1-400
| s S O

SOME ELEMENTS OF Am2900 PRODUCT FAMILY

¢ High speed microprogrammable registered ALUs

4-bit slice, 16 registers Am2901B
Higher speed 4-bit slice, 16 registers Am2901C
Speed selected version of 2901C Am2901C-1
Expanded function 4-bit slice, 16 registers Am2903
Higher speed version of Am2903 ~ Am2903A
Enhancement of Am2903A, including BCD arithmetic Am29203
16-bit microprocessor for high speed control Am29116
Multiport, pipelined processor, 8-bit slice Am29501

® ALU auxillary circuits
Carry lookahead Am2902A
Status and shift control unit for 2901, 2903, 29203 Am2904
° Register file extensions for ALUs
16-word by &4-bit two-port register file, for 2903 Am29705

Higher speed version of 29705, for 2903A Am29705A
16-word by 4-bit two-port register file, for 29203 Am29707

® Microprogram sequencers

4-bit sequencer slice Am2909A
12-bit single-chip sequencer, for up to 4k microwords Am2910
Speed selected version of Am2910 Am2910-1

Fastest (IMOX) version of Am2910, plus deeper stack Am2910A
4-bit sequencer slice, compact version of Am2909A Am2911A
4-bit program control slice Am2930
4-bit program control slice, compact version of 2930 Am2932
Interruptible sequencer, 31-deep stack, 8-bit siice Am29112
16-way branch control unit, for 2909A and 2911A Am29803A
Next address control unit, for 2909A and 2911A Am29811A

ADVANCED MICRO DEVICES &1

1-410 ED2900A 1-410

° Clocks

Single-chip clock, microprogrammable cycle lengths Am2925

] Interrupt control

Vectored priority interrupt controller, expandable Am2914
Priority interrupt expander Am2913

® Pipeline registers

Diagnostics register, 8 bits Am29818
Multilevel pipeline register, 8 bits Am29520
Multilevel pipeline register, 8 bits Am29521

Registered PROMs

Registered PROM, 512 x 8 Am27S25
Registered PROM, 512 x 8 Am27S527
Registered PROM, 1024 x 8 Am27S535
Registered PROM, 1024 x 8 Am27537
Registered PROM, 2048 x 8 Am27S45
Registered PROM, 2048 x 8 Am27547

ADVANCED MICRO DEVICES o\

1-420 ED2900A 1-420
1 S

ADVANCED MICRO DEVICES ¢t

1-430 ED2900A 1-430

ANALYZING AND DESIGNING A
COMPUTER CONTROL UNIT

(ccu)

ADVANCED MICRO DEVICES 1

1-440 ED2900A 1-440

DEVELOPMENT OF A COMPUTER CONTROL UNIT (CCU)

° The objective of this section is to develop an understanding
of the function and use of a process sequencer. In order to
describe the design of a sequencer in a Togical manner, something
is required for the sequencer to control. While the design
concepts are applicable to any kind of process control, examples
of a traffic light and a coffee machine will be presented later.
Initially, a digital computer macroinstruction sequencer process
will be used and an associated computer control unit (CCU)
developed.

) The drawing shows the classical Von Neumann/Babbage architecture
{5 basic units), with a few buffer-register details. The
arithmetic-logic unit (ALU) includes some “scratchpad” local
storage registers, the memory unit includes the memory address
register (MAR) and the program counter (PC), and the control
unit includes the instruction register (IR). This register
receives the next machine (macro level) instruction to be
executed. It is the function of the CCU to decode the operation
code (OP code) portion of the IR value and generate the sequence
of control signals needed to direct the ALU, the memory and the
I/0 portions of the system (i.e. the system resources).

ADVANCED MICRO DEVICES ¢t

1-450

m—
<

ED2900A 1-450

INPUT/ OUTPUT
UNITS

AN

i,

SCRATCHPAD IR
REGISTERS
ARITHMETIC e iﬁﬂiﬁ;ﬁ?
LOGIC N
UNIT UNIT
(ALU) (cev)

f“l“

MAR PC

MAIN -
MEMORY

(MACHINE LEVEL)

::::::::> DATA

—————3» CONTROL

ADVANCED MICRO DEVICES (1

1-460 ED2900A 1-460

| O S A —

DETAIL VIEW:

o A more detailed view of this architecture shows the
level of support provided by the AMD Am2900 family
of parts.

@ As can be seen, all of the components of a computer
are supported with Am2900 chips.

e For most of this discussion the controller portion is
emphasized which is shown on the left hand side of this
illustration.

ADVANCED MICRO DEVICES ¢t

1-470

ED2900A

1-470

iviswy
pveiswy
oriewy
oclewy
viiswy

ge6cwy
Ocecwy
glecwy
oceewy

25621y
€0c6ewy
0ceewy
6i6gwy

- leeTwy
voeTwy
€06cwy
coezwy
viogcwy

¢ YNvg
AHOW3NW

VZIL/VIL/Y¥G1/20/90/5062Wwy
SH3ITTOHLNOD FOV4HIINI OL

-

1S3N03Y LdNHHILNI

”

A

~_

[P]|

L ¥NVE
AHOW3W

[

4318193y
$S3HAAv AHOW3W
ONV
H3ILNNOD WYHODOUd

~

1INN
J1901
OILINHLIYY

SH31SI93H
ONIIHOM

1INN HOSS3IO0Hd HIHIO
- 7I0H1NOD HO
> L1dNHY31NI TINVd T0HLINOD
=)
m €L6zwy
& vieewy SNOILIONOD
(0] 1S31
Cc
@ m T162uy
z 6062wy
w 0z6Zwy
w
) r OHINOD SSauaav Swmmwc_«
\ S$%2070 WYHOOHdOHOIW vEoaEsUIY
1X3N zz6TWY
cl6zwy
o szezWyY C
>
IL
>
w —
c)
o
81862y H3LSI1D3H NOILONHLSNIOHIIW
§ES/Zuny
/)
LINN TOHLNOD H3LINdWOD L
J/
, J H31S1934
ozezwy | NOHONHISNI
A / gl6gwy
6l6zwy

ADVANCED MICRO DEVICES O

1-480 ED2900A 1-480
e A e

SIMPLIFIED SYSTEM:

e In order to initially concentrate on the sequence
controller (CCU) the remainder of the computer is
simplified to

- an ALU

- the accumulator register (ACC)

e This architecture is defined as a single-address
structure since the other address (the ACC) is
implied. Thus,

- data comes into only one side of the ALU

- the accumulator provides the second operand

- the result of the ALU operation is transferred
to the accumulator

ADVANCED MICRO DEVICES 1

1-490

£D2900A 1-490
DATA IN OP CODE
\V4
IR
A B
STATUS
ccu
ALU
FUNCTION,
CARRY
ACCUMULATOR LOAD, ENABLE
1
REGISTER
[-
Y
DATA OUuT

ADVANCED MICRO DEVICES O

1-500 ED2900A 1-500

CONTROL SIGNALS:

® In order to define the control signals, assume the ALU can
perform the functions shown on the next page. Three function
control signals are required. Five basic types of instructions
can be supported by the ALU, as shown.

o In addition, the ALU needs one bit to provide a1 or 0 for
the carry-in. This can be provided by the microword. This
carry-in capability can be used in incrementing a register.
Note that in a bit slice ALU configuration the carry-out of
one slice would be connected to the carry-in of the next.

() Outputs from the ALU include the numerical result of the
operation, plus various status signals. Examples include

carry out

zero

negative

overflow

ADYANCED MICRO DEVICES <1

1-510 ED2900A 1-510

“

CONTROL

LINES ALU FUNCTION
S, $1 g Cpy = 0 Cy = 1
0 0O A+B A+B+1
00 1 B-A-1 B-A
010 A-B-1 A-B
0011 VB "A OR B
100 MB "A AND B
101 AAB “NOT A AND B”
110 AvB “A EXOR B”
111 B “NOT (A EXOR B)"

MACHINE INSTRUCTION SUPPORTED:

ADD
SuB
OR

AND

EXOR

ADVANCED MICRO DEVICES 1

1-520 ED2900A 1-520

MICROWORD FORMAT:

The following page shows the microword format to control

o ALU function select

¢ Carry-in

e ACC load (input)

¢ ACC enable (output)

e (oad OP code into IR

ADVANCED MICRO DEVICES <t

1-530

ED2900A

1-530

<- MICROWORD FORMAT >
AL ACC ACC OP CODE
FUNCTION, LR ABLE o ce e
CARRY
4-6 1 1 1 OTHERS
AS
NEEDED

ADVANCED MICRO DEVICES {1

1-540 ED2900A 1-540

SIMPLE CCU:

. Each microinstruction contains the address of the next
microinstruction to be executed in addition to the fields
for the necessary functional unit control signals. The
result is a single-sequence controller (i.e. no conditional
decisions). Any microinstruction can unconditionally “jump"
to any other microinstruction. Usually loops are not created
in this addressing mode.

The micro memory in this simple example is 2" words deep, and m bits
wide, where

microword width (m) = # address bits (a) + # control bits (c)

ADVANCED MICRO DEVICES <1

1-550 ED2900A 1-550

THE SIMPLEST CONTROL UNIT
LOAD NEXT ADDRESS

' ON RISING EDGE OF
CLOCK SIGNAL

i

REGISTER —-— CLOCK

MICROMEMORY
ADDRESS

2n words

PROM

2" & (n + ¢)

n - bits ¢ bits

NEXT
ADDRESS

TIMING CONTROL
SIGNALS TO SYSTEM

ADVANCED MICRO DEVICES Q1

1-560

ED2900A 1-560

TIMING DIAGRAMS

Now, consider designing at the logic level using timing
diagrams that define the desired control signal operation.
Specifically consider their binary value based upon a
periodic interval (clock).

- use the rising edge of the clock as a measurement point

- the bit pattern formed by the time slice is defined as
the microword

The following three pages present :

- a timing diagram for a four-signal system

- the timing diagram digitized on the clock edge

- the resulting program flow and the clocked microprogram
that would generate the desired timing diagram

ADVANCED MICRO DEVICES £t

1-570

ED2900A

1-570

JNIL

d TVYNOIS T0HLINOD

O TYNOIS TOHLNOD

8 TYNOIS TOHLNOD

V 7TYNDIS T0H1INOD

A00710

ADVANCED MICRO DEVICES &1

1-580

ED2900A

1-580

JNIL

Q TTYNDIS TOH1INOD

O TVNDIS TOHLINOD

8 TYNDIS T0HINOD

V TVNDOIS TOHINOD

AJ01D

ADVANCED MICRO DEVICES <1

1-590

ED2900A

MICROPROGRAM

MICROPROGRAM | MEMORY OUTPUTS
MEMORY ADDRESS | A | B [¢ | D
0 1|1 | 1] o

1 o[1|10

2 o|o | 1] o

3 oo | 1] 1

4 oo]| 1|1

5 1] 0| o0 | 1

6 1] 0| o] 1

1-590

MICROPROGRAM
FLOW

- O

A g & W N

This is the microcode for sequential execution.

ADVANCED MICRO DEVICES 1

1-600 ED2900A 1-600

CLASS EXERCISE

Turn to the ED2900A Exercise and Laboratory Manual

Solve the simple traffic 1ight problem by designing at the Boolean level
using a state diagram to define the sequenced transitions between each
desired light condition. The associated state code of zeros and ones is
then used to define the microroutine. This problem could also be solved
at the waveform level by initially defining the desired transitions in
terms of zero-one transitions for each control signal.

ADVANCED MICRO DEVICES <1

1-610 ED2900A 1-610

ADDING PROGRAM FLOW CONTROL TO CCU

ADVANCED MICRO DEVICES 1

1-620

ED2900A 1-620

PROGRAM FLOW CONTROL ADDITION (conditional branches)

Required microprogram flow should have the same characteris-
tics as any computer program, i.e. sequence (continue),
iteration (loop) and decision (branch) in order to implement
an algorithm. The previous design permitted only sequential
flow (a single sequence of microinstructions). Thus, the
current CCU structure must be expanded to provide for these
additional capabilities.

The controller just described can execute one serial sequence
of operations. In order to select from multiple sequences
and to allow conditional branching, further addressing hard-
ware is necessary. The current CCU configuration will be
enhanced with additional hardware to provide this capability.

A means must be provided to select from two microaddress
sources. Thus, a tri-state bus is used. Since only one
source may be actively connected to this bus at any time,
each source requires an enabling signal to allow it to be
selectively enabled and disabled.

ADVANCED MICRO DEVICES &1

1-630

ED2900A

1-630

Application of Tristate Gates

Control

The Tristate Gate Symbol

n inputs
Source Bit #0
#1
Control
Source
#2
(One of N
decoder) -
Source
#3

" Bus

Other
bits

Bit #0

Only Bit @ is illustrated, all other bits would be attached similarily.

ADVANCED MICRO DEVICES ot

1-640

ED2900A 1-640

PROGRAM FLOW CONTROL (Cont'd)

A "load counter" signal allows the counter to be loaded from
one of these tri-state sources or to simply be incremented.

The block labeled "logic" decodes a 2-bit value from the
microword "next address select field" to generate these
three control signals. An alternate approach would be to
provide three separate bits in the microword for these three
signals.

The multiplexer (MUX) and polarity circuits provide the test
signals for conditional jumps, and will be developed in more
detail later. Likewise, the instruction register (IR) and
jts associated mapping PROM, which allow the introduction of
new micro-addresses, will be developed later.

Note that in formatting the microword, the microinstruction
next microaddress sequence fields are grouped to the left, as
previously suggested, in order to provide more structure and
readability in the code. Grouping in any manner provides for
understandability.

ADVANCED MICRO DEVICES ¢l

1-650

ED2900A 1-650

MULTIPLEXER

Strobe Select

—Aem A,
Enable,E B A
[+] o

T
Y Y

'Xo 00=0
[S—
X, 01=1
o

Inputs <4 @M“

X, 10=2
[o S—
X, 11=3

. &

Logic Circuit

Xo —10
Xl__.______—— 1 4-to-1
Inputs EEm—— Output
MUX
X, —————2
2
X3 3
EN 0 1
Enable
A
B

Block Symbol

ADVANCED MICRO DEVICES ¢l

1-660 ED2900A 1-660

General Computer Control Unit (CCU) Architecture

Each block will now be discussed in terms of its operation
associated with sequencing microinstructions.

INSTRUCTION
LOAD N -
..... —r—=---
P CODE | OTHER
STATE -
sELcT —>—>{ MAPPING PROM
X n
TRI-STATE
I TRI-STATE
VCC
A n
7 |
6

COUNTER
MUX POLARITY [~=s LOGIC L—’ LOAD e CLOCK
0 —*—J n

AR kT A

1" MICRO MEMORY
4
13 Aoor | por | BRANCH | BrancH | Loap | RrequIReD
SEL SOND | CApoR | IR | cowTRoLs
p "

TO ALU

ADVANCED MICRO DEVICES &1

1-670 ED2900A 1-670
L

LINEAR SEQUENCES (“CONTINUE" microinstruction)

° In programming, quite often one instruction follows another.
This is true of microprogramming as well. In the CCU, this
is facilitated by using a counter register instead of the
general register as previously shown. This counter contains
the address of the current microinstruction, and can be
incremented to the microaddress of a sequential flow is
desired.

. The “next address select" field would contain the necessary
bit pattern to disable the counter load control, allowing
the counter to increment on the next clock pulse. Since
three control signals must be generated, two bits would be
needed for this encoded field. Whatever the actual bit
pattern, the mnemonic “CONT" is assigned for a "continue"
microinstruction. The other fields of the microword are
not used in this mode, and are mnemonically represented as
"X" for "don't care".

For example:

MICROINSTRUCTION SEQUENCER MICROOPERATIONS

FLOW NEXT COND BRANCH CONTROL
ADDR POL SEL ADDR
° CONT X XXX XXXX * ok ok
° CONT X XXX XXXX * ox ok
° CONT X . XXX XXXX * ok ox

ADVANCED MICRO DEVICES <1

1-680 ED2900A

1-680

INSTRUCTION
LOAD
o P
0P CODE ! OTHER
STATE

SELECT oyl MAPPING PROM

A

N TRI-STATE

TRI-STATE

>

6 e
MUX [=3» POLARITY : LOAD

COUNTER
= (1. OCK

MEMORY

)
. MICRO
1
ye BRANCH
3 COND
SELECT

BRANCH REQUIRED
ADOR CONTROLS

ADVANCED MICRO DEVICES

1-690 ~ ED2900A 1-690

MULTIPLE SEQUENCES (JMAP)

° The controller can still execute only one sequence with the
mnemonic "CONT".

. In order to execute multiple sequences, the ability to exit
the current sequence is required and a new starting address
from some storage location must be provided, i.e. a jump
(conditional or unconditional) capability.

[The input to the counter can be used for this purpose (a
Jjump address). Various sources are examined as sources for
this address,

® First consider the interpretation of a new macro level
instruction. Once the counter is loaded with a new
microroutine starting address, each microinstruction in
this microroutine sequence could have a "CONT" in the next
address select field, except possibly for the last one.

The microinstruction would also contain one bit fields to

- enable the counter load control for external
data (address) input

- enable the tri-state output signal of the mapping
PROM which is driven from the macroinstruction
register (op-code field).

® The mnemonic “JMAP" is used to represent this “jump via
the mapping PROM".

ADVANCED MICRO DEVICES

1-700

ED2900A 1-700

INSTRUCTION

LOAD
_— IR
S U
0P CODE | OTHER
STATE ,
SELECT ——7—>| MAPPING PROM
TRI-STATE

I\ TRI-STATE

>4

<

cc

Y

=3

COUNTER

POLARITY LOAD

AR R b R

[|

MICRO MEMORY

BRANCH
aoor | por | cono. | BRANCH | LOAD | REQUIRED

ADVANCED MICRO DEVICES &1

1-710

ED2S00A 1-710

MICROMEMORY ADDRESS SOURCE

. Consider now the new microaddress source for the counter
in more detail.

() In a digital computer, the starting micro-address is
dependent upon the current machine (macro) instruction.

(] In a controller with no macro level instructions, the
starting micro-address is dependent upon the current
external “command" which must supply a micro-address.

® The computer control unit (CCU) is used as an example, but
the design approach is common to both. The CCU accepts
either a control command or a machine instruction (OP code)
as directly or indirectly defining a macro-address which
lends to a sequence of microinstructions.

® Thus, to be able to control which microroutine is to be
executed based upon a macro instruction
- Add a macroinstruction register (IR)
- Add the IR "load control" bit to the microword format
- Gate the opcode portion of the macroinstruction to

the counter as the starting address.

Note: A PROM mapper is not used in this simple case. Thus the
number of opcode bits cannot exceed the microprogram address
width. If it equals the microaddress width, there can only be
one microword per macroinstruction (assuming unique opcodes).

ADVANCED MICRO DEVICES

1-720 £D2900A 1-720

OP-CODE MAPPING PROBLEM - There are typically fewer bits in
the opcode than in the microaddress for example,
let there be
x bit opcode and n bit counter

where
x <n

SOLUTION

One approach is to input @ on the remaining least

significant microaddress lines:

OPCODE 4
{x % n-x
START ADR -
COUNTER } on=X WORDS
START ADR
t n START ADR i
START ADR
ADDRESS
EXAMPLE
X = 8
n=12
n-x = 4

This permits 16 microwords (24=16) per sequence or microroutine.

ADVANCED MICRO DEVICES 1

1-730 ED2900A 1-730

Examine the micromemory:

START ADDRESS:

] 16 MICROWORDS
START ADDRESS: N\\\

START ADDRESS: < 16 MICROWORDS
SSnS S

START ADDRESS:

START ADDRESS: S§§§§S§ES > 16 MICROWORDS

e

START ADDRESS:

PROBLEM

e MWhat about microroutines of less than 16 microwords?
- Fragmented control memory
e What about microroutines of more than 16 microwords?

- Lose starting address and its associated macro OP code

SOLUTION

o Add a micromemory address decoded (mapper)

ADVANCED MICRO DEVICES &1

1-740 ED2900A 1-740
OP CODE MICROPROGRAM MEMORY
4 8ITS START ADDRESS
16 WORDS, MAPPING
8 BITS WIDE PROM START ADDRESS
START ADDRESS
-] VARIABLE
- LENGTH
START ADDRESS
START ADDRESSES
GATED THRU COUNTER
. -
=| 256 WORDS, 32-128 BITS WIDE
ANY 16 OF THE 256
LOCATIONS CAN BE USED ROM/PROM
AS THE START ADDRESS
[———

CONTROL
SIGNALS

ADVANCED MICRO DEVICES 1

1-750 ED2900A 1-750

FURTHER SUGGESTIONS:

® Use a larger mapping PROM to provide for privileged macro
instruction operation or detection by adding address lines
driven by the console switches or the PSW (processor status
word -- usually ACC value plus ALU status bits).

[Privileged instructions without the privileged bit set, map
into a common "trap" microroutine.

® Provide for more addressing capability than is needed in
the initial design.

° Provide for expansion in either of these directions in the
initial design.

ADVANCED MICRO DEVICES &1

1-760 ED2900A 1-760

MICROPROGRAM MEMORY

0P CODE

4 BITS START ADDRESS

64 woRbDS, MAPPING
BITS WIDE PROM START ADDRESS
START ADDRESS -
—_] VARIABLE
- LENGTH
PRIVILEGED
START ADDRESS
- STATE SELECT
FOR TESTING
START ADDRESSES
GATED THRU COUNTER
256 WORDS, 32-128 BITS WIDE
ANY 16 OF THE 256
LOCATIONS CAN BE USED ROM/PROM
AS THE START ADDRESS
—
{} CONTAINS A TRAP
FOR ERROR
CONTROL .
SIGNALS

ADYANCED MICRO DEVICES {1

1-770 ED2900A 1-770

MICROPROGRAM CONTROL REVISITED

® Structuring of the microprogram can be accomplished with the
same conceptual program structures which exist for high level
languages. A more extensive list based upon sequence, branch
and iteration is:

CONT (sequence)

G0-TO (unconditional branch or jump)

IF-THEN-ELSE (conditfonal branch)

IF-THEN (conditional branch)

DO X (iteration)

DO UNTIL P = TRUE or DO WHILE P = FALSE (iteration)

On X GO-TO (case statements/conditional branch)

° These various control flow operations are now presented for
the previous microsequencer architecture in more detail.

ADVANCED MICRO DEVICES 1

1-780 ED2900A 1-780

UNCONDITIONAL JUMP (JP)

® In order to jump to another microaddress from the middle of
a linear sequence, a new address is again required. The
input to the counter will be used, but this time the new
address will come from the current microinstruction.

® The next address select field would carry a bit pattern to
- enable the counter load control
- enable the tri-state gates from the microword

branch address field

® The mnemonic “JP" is used for this next address operation

For example

FLOW NEXT COND BRANCH
(ADDR) ADDR POL SEL ADDR CONTROL
51 CONT X XXX XXXX x x ok
52 CONT X XXX XXXX £ % *
53 JP X XXX 27 x % %
90 CONT X XXX XXXX * x
91 CONT X XXX XXXX x x
92 JMAP X XXX XXXX x ox %

ADVANCED MICRO DEVICES {1

1-790

ED2900A

INSTRUCTION

!

LOAD
> ot oo
0P CODE ¢ OTHER
1
STATE
SELECT MAPPING PROM
TRI-STATE

TRI-STATE

MUX

Y

POLARITY

COUNTER
LOAD

[)

— |

g CLOCK

MICRO MEMORY

BRANCH
COND BRANCH

SELECT | ADDR

REQUIRED
CONTROLS

1-790

ADVANCED MICRO DEVICES 1

1-800

PROM
ADDRESS

FORWARD

BRANCH \

ED2900A 1-800

EXAMPLE - JP
NEXT ADDRESS SELECT CONT = 99
JMAP = p1
JP = 1p
—— BRANCH ADDRESS
|
13} 0 X
START
141 0 X NEXT OP
[]
[J
START: *
50| o0 X)
51} o X
SEQUENTIAL
f EXECUTION
52] o X
53] 1 90)
[
[]
[]
90y o X
BACKWARD
np o X _BRANCH
92] 1 13
Y

N\ THESE BITS ARE “DON'T CARE"

FOR THIS OP CODE

FOR THIS OP CODE THEY ARE
AN ADDRESS

ADVANCED MICRO DEVICES 1

1-810 ED2900A 1-810

EXPLANATION:

50) Start address of routine
50 is an address in the PROM mapping

Continue to 51

51) Continue to 52

52) Continue to 53

53) Go to 90 (jump to 90) - JP

-~ The branch address is selected to be active

and loaded into the counter

- Note how both fields participate

90) Continue to 91

91) Continue to 92

92) Go to 13

13) Continue to 14

14) Go to next sequence start address - JMAP

- Note that the branch address field values
are don't care

ADVANCED MICRO DEVICES &1

1-820 ED2900A 1-820

MICROPROGRAM RETURN FLOW CONTROL

[In a CCU microprogram it is usually required to return to a
common (shared) micro instruction sequence before jumping to
the next microroutine: This is required in order to get the
next macro instruction from main memory, thus the following
steps are required:

- microaddress 13 might be the macro instruction fetch step

- microaddress 14 would be the op-code decode step to control
a microaddress

COMMON
CODE

CONT 13 INSTRUCTION FETCH
JMAP 14 DECODE STEP

CONT OTHER SEOUENCES
CONT |
CONT
JP 88
89
CONT 90
POSSIBLE SHARED END
CONT ¢ 91 OF SEQUENCE STEPS
JP $ 92

ADVANCED MICRO DEVICES 1

1-830

ED2900A 1-830

CONDITIONAL JUMPS OR BRANCHES:

[During execution of certain opcodes, it is often desirable to

end a microroutine dependent upon the result of a logic test.
For example, a check made on a hardware status line.

For example, Add two numbers and check for

- overflow error - do one microinstruction sequence

- no overflow error - do a different sequence of
microinstructions

or, Add two numbers and do

L]

- on carry-out = 1; one microroutine

- on carry-out = @; a different routine

ADVANCED MICRO DEVICES &1

1-840 ED2900A 1-840

OTHER TESTABLE CONDITIONS MAY INCLUDE:

logical mnemonic
expression

ACC = 0 ZERO

ACC > 0 SIGN

OVERFLOW OVR

CARRY = 1 cout

A > B GTR

A < B LESS
interrupt request IR
error status bit set ES

invalid instruction bit set II

° A specific control flow example is shown in the figure where
if the condition is true, the CJP next address selection will
be microaddress 85, If the condition is false, the next
microaddress is 54.

ADVANCED MICRO DEVICES 1

1-850 ED2900A 1-850

CJP (address)

50 ¢
51 #
52
CONDITION TRUE
CJP 53 -9 385
54 ¢ 86
55 # ® 87
56 ¢ ¢ 88
CONDITION
FALSE Y

ADVANCED MICRO DEVICES {1

1-860 ED2900A 1-860

CONDITIONAL JUMP (CJP)

] In this instruction the micro-address is also provided from
the microinstruction branch address field (same as JP). The
next address select field code would

- test the condition code input
- IF the condition code is TRUE, then
(1) enable the counter load control

(2) enable the tri-state gates from the
microword branch address field

- ELSE (condition code FALSE)
(1) disable the counter load control

The mnemonic "CJIP" s used.

° In order to allow testing one of several available conditions
(overflow, negative, zero, etc.) another multiplexer is used.
To allow for testing for either TRUE or FALSE conditions, a
polarity selector is used. Both the choice of condition and
the choice of polarity is controlled from the microinstruction.

o Note that a constant TRUE and a constant FALSE are shown as
inputs to the MUX. This allows an alternate way to do
unconditional jumps with a "CJpP".

ADVANCED MICRO DEVICES {1

1-870 ED2900A 1-870

INSTRUCTION
LOAD . R
0P CODE ' OTHER
STATE -
SELECT ——7“=1 MAPPING PROM
TRI-STATE
N TRI-STATE E'Jf

CONDITION COUNTER

POLARITY LOAD e 01 OCK

1

MICRO MEMORY

BRANCH
conp | BRANCH REQUIRED

SELECT ADDR CONTROLS

ADVANCED MICRO DEVICES

1-880 ED2900A 1-880
| S Sy

EXAMPLE OF CURRENT CONTROL FLOW OPERATIONS

. The following page provides a sample microroutine (sequence)
which demonstrated the four microprogram control flow
mnemonics

- CONT

- Cop

0 There are three fields which are important

(next) address select

branch condition select including polarity

(micromemory) address select

i

branch (micromemory) address

. The next address select field determines the microinstruction
type.

ADVANCED MICRO DEVICES &1

1-890 ED2900A 1-890

Example - CJP
CONT = 99
JMAP = D1
NEXT JP = 19
BRANCH ADDRESS CJP = 11
CONDITION SELECT BRANCH
SELECT — ADDRESS
PROM —‘ r
ADDRESS:
START: 13 X 00 X

14 X 110 | 30

UNCONDITIONAL
BRANCH

CONDITIONAL | 30 2 |11 | 56

TEST '
STATEMENTS 31] 1 o5 TEST CONDITION 2 — FAIL

TEST CONDITION 1 -
32 X 00 X ST CONDITIO FAIL

33 X 00 X

34 1 11 | 106 TEST CONDITION 1 - TRUE

CONDITIONAL BRANCH
106 X {00 X :
107 X 1ol | X START NEXT OP
\-——- S1, So CHOOSE CONDITION TO BE TESTED, IF ANY.

ADVANCED MICRO DEVICES 1

1-900 ED2900A 1-900

EXPLANATION:

13) CONT - first microaddress

14) JP - unconditional jump to microaddress 30

30) CJP - jump to microaddress 56
if condition 2 = TRUE

assume CZ = FALSE

31) CJP on condition 1, "assume FALSE"

32) CONT

33) CONT

34) CJP on condition 1, "assume TRUE", GO TO
microaddress 106

this time Cl = true

GO TO 106
106) CONT
107) JMAP - unconditional jump

select mapping PROM output

ADVANCED MICRO DEVICES <1

1-910

ED2900A

T

1-910

CLASS EXERCISE: MICRO-PROGRAM CONTROL

® The purpose of this exercise is to develop additional
understanding of microprogramming architectures through
a simple example.

° Consider the simple computer presented at the beginning of

this section.

is defined as follows:

With the control fields added, the microword

< MICROWORD FORMAT >
NEXT BRANCH | prancy LOAD ALY LOAD
ADDRESS | POLARITY [CONDITION | 0o . FUNCTION, ACe s oo
SELECT SELECT CARRY
.)
i
|
2 1 3 n o1 4 1
I
of n bits '
|
.)
~ ““\r'-——————~”’/}
N ~—
MICROINSTRUCTION MICROINSTRUCTION

ADDRESS SEGUENCER

CONTROL (ALU...)

NOTE: Another way of stating requirements is through the use
of a flow chart defining specific RTL sequential operations.

] For the structured flowchart on the next page, write the
microcode for the sequencer portion of the microinstructions.
Define mnemonics where needed.

ADVANCED MICRO DEVICES o1

1-9

0

YES

ED2900A

READ DATAIN--» ACC

YES

ACC =0

ACC «- ACC + DATAIN

< ACC =0

ACC «- ACC V DATAIN

DATAOUT «- ACC

NO

1-920

NO

DATAOUT

e- ACC

O

ACC<~-0

LOAD IR

JUMP MAP

This flowchart does not represent a real-world algorithm,

but is useful as a pedagogical example.

ADVANCED MICRO DEVICES &1

1-930

ED2900A

1-930

ENCODING OF MNEMONICS (bit patterns are arbitrary examples)

CONT = 00; continue

JMAP = 01; jump map

JP = 10; wunconditional jump

CdP =113 conditional jump

TRUE = 1; condition true

FALSE = 0; condition false

ZERO = 000; test for ALU result =0

SOLUTION
FLOW NEXT COND BRANCH (REGISTER TRANSFER

(MM ADDR*) ADDR* POL SEL ADDR* CONTROL LANGUAGE)
1 cJap FALSE ZERO 6 DATAIN -- ACC
2 cJap FALSE ZERO 4 ACC -- ACC + DATAIN
3 CONT X XXX XXX ACC -~ ACC V DATAIN
4 CONT X XXX XXX DATAQUT -- ACC
5 JP X XXX 1 ACC --0
6 JMAP X XXX XXX LOAD IR**

* A1l addresses are micromemory addresses

** Assume macroinstruction prefetch

ADVANCED MICRO DEVICES <1

1-940 ED2900A 1-940

ADVANCED MICRO DEVICES 1

1-950 ED2900A 1-950

IMPROVING CCU SPEED

ADVANCED MICRO DEVICES &

1-960 ED2900A 1-960

TIMING CONSIDERATIONS

. Consider the CCU with the ALU attached as shown in the
figure on the next page. Note that the condition code
MUX and address logic are combined into one block.

° Note also the addition of a status register between the
ALU and the condition code multiplexer. This allows a
test on the result of the previous operation, and increases
speed as will be seen later.

) In order to determine the clock period, it is necessary to
time the signal flows from the time they leave a register
until they are ready to be clocked into another register.
This must be done for all such paths. The slowest register-
to-register path determines the lower bound on clock speed
(microcyle).

® For example, the main path delays in the CCU itself are:

clock to output of the counter
- read-access time of micromemory
- set-up time for the counter (except for CONT)

- in parallel with the above, time through the MUX
and set-up time for the counter load

tep = el to output * tread access ¥ tset-up

since t +t is shorter

mux delay setup

] In order to examine speed improvements in the CCU, consider
the timing paths including the ALU.

ADVANCED MICRO DEVICES <1

12 SIJIAIA OWIIW AIDINVAAY

DATA IN

ALU

STATUS
REGISTER

ADD THE ALU

INSTRUCTION REGISTER

ccu

Ve —13

CONDITION 2

CONDITION 1 Mux LOAD COUNTER

A \/ 8 /
ALU /

/~ FuncTioN
cLock LOAD, EN
—_— ACC

DATA OUT

CLOCK

GROUND 4
——-1

CLOCK

MICROPROGRAM
MEMORY

ADDRESS BRANCH

COND. SELECT ADDRESS

OTHER

PIPELINE REGISTER

CLOCK

CONTROL
SIGNALS

046-1

V006203

0L6-1

1-980 ED2900A 1-980

TIMING COMPUTATION

. The timing for this implementation is computed by examining
all sequential paths. Two of these are of interest in
developing our CCU:

First:
1. Clock to output of counter 15ns
2. Fetch instruction 50 ns
3. ALU to status line 95 ns
4, Status register set-up 5 ns

Total = 165ns

And second, in parallel:

Steps 1. and 2. 65 ns
3a. ALU instr to output 120 ns
4a. ACC set-up 5 ns

Total = 190 ns

() The minimum microcycle required is the time of the longest
path §p==CNTR(15)+ MEMORY(50) + ALU(120) + ACC(5) = 190 ns

ADVANCED MICRO DEVICES 1

12 SIJ1A3A OWIW AIINVAQY

DATA IN

ALU

STATUS
REGISTER

Vee ——=i3
CONDITION 2)

CONDITION 1 MUX

A —v B /
ALU //
/ FUNCTION
CLOCK LOAD, EN
 — AcC
DATA OUT

CLOCK

GROUND
—

INSTRUCTION REGISTER
CcCcu
MAP
] 1
S
MUX
CLOCK
LOAD COUNTER —
1
-
“1n
0 s
MICROPROGRAM
MEMORY
ADDRESS BRANCH
COND. SELECT ADDRESS OTHER
CLOCK
PIPELINE REGISTER
CONTROL
SIGNALS

066-1

V006203

066-1

1-1000 ED2900A 1-1000

CONTINUING EVOLUTION OF SEQUENCER

. A fairly powerful sequencer has evolved in terms of the
instruction set (next address selection) it can support.
However, speed is another criteria. Some additional
improvements can be made to increase speed of operation.

[For this development, the execution of a conditional branch
is analyzed, both with the branch taken and with the branch

not taken.
1
CONDITIONAL BRANCH (CJP) I+1 b
1+2 b+1

® Note that although several things seem to take place
"simultaneously" during a single microcycle, some of
them actually occur sequentially within a microcycle
due to asynchronous nature (non-clocked Togic delays)
of the hardware.

] Note also that there is no difference in flow when the
branch is taken as shown in the BRANCH TAKEN diagram.

ADVANCED MICRO DEVICES {1

1-1010 ED2900A 1-1010

No Branch

e 4-CYCLE —»
CLOCK] L 1] mil
COUNTER u-INST i ADR u-INST i + 1 ADR u-INST i+ 2 ADR
MEMORY FETCH — FETCH _ FETCH —
u-INST i u-INST i+ 1 u-INST i + 2
ALU —— EXECUTE — EXECUTE —— EXECUTE
ueINST i u-INST i + 1 u-INST i + 2
ACCUMULATOR RESULT OF RESULT OF RESULT OF
u-INST i-1 pu-INST | u-INST i + 1

ADVYANCED MICRO DEVICES 1

1-1020 ED2900A 1-1020
0 S

Current Instruction Flow

(No Branch)

i+ 1 cP
Counter Ad?r ;
| I
Micro- =
memory In?tr
Fetch
-—-—l
ALU >
Execution In?tr
Status Results
Register i-1

ADVANCED MICRO DEVICES &1

1-1030 ED2900A 1-1030

Branch Taken

«— 4-CYCLE—»]
cLock _ | 1] LT | — LT
COUNTER u-INST i ADR p-INST i+ 1 ADR| u-INST b ADR “ e
MEMORY FETCH —— | FETCH — | FETCH —

u—lNSQ\ p-INST i + 1 u-INST b e
ALU — EXECUTE | — (COND BRN| — EXECUTE
u-INST i INSTR) u-INST b e
ACCUMULATOR .« o RESULT OF — RESULT OF
u-INST i u-INST b

Branch on result of previous instruction.

ADVANCED MICRO DEVICES &1

1-1040 ED2900A 1-1040

Current Architecture with Branch Taken

i+ 1 CP b i+ 2 CP
| s 31§
' Add
Counter A?dr ‘ i +r1 ¢
| § L
Micro-
Instr Instr
memory X ;
Fetch i i+ 1 (CP)
i]
ALU Instr Instr
Execution i i+ 1
.
Status Results Results |
Register i-1 i _
b+ 1 CcP b+ 2 CcP
3 1 —_—
Addr Addr .
Counter b - b+ 1
| - | | I
Micro- Instr Instr
memory b b+1
Fetch]
ALU Ins{:y\ Instr
Execution b b+1
y a

Status Results . Results
Register i+ 1 - b

ADVANCED MICRO DEVICES &1

1-1050 ED2900A 1-1050

PROBLEM WITH NONPARALLEL USE OF FUNCTIONAL UNITS

® Memory fetch idle during ALU execute

® ALU idle during memory fetch

0 Wide or long micro-cycle (relatively slow)

A SOLUTION

e Add a pipeline register (buffer) at the output of
the ROM (PROM). The pipeline register then buffers
the “flow" of data in the logic (pipe) so that
independent functional units can act in parallel
(concurrent operation) for reduced microcycle timing.

A two-level pipeline results in the current design
with:

1) counter register

2) pipeline register

ADVANCED MICRO DEVICES o1

1?7 $3D1A3Q OUIIW GIDINVAQY

&

INSTRUCTION REGISTER

MEMORY
MAP
GE ~——— TRI-STATE
LOAD
-~ GLOCK
POLARITY LOGIC COUNTER ——
——
————y
i n
CONDITIONAL
— MUX
-
I 4 - 1 4
-~ Cs
I MICROPROGRAM
— MEMORY
NEXT BRANCH
ADDRESS { POLARITY | CONDITION f:;::s“s OTHER
SELECT SELECT
OE cLocK
PIPELINE REGISTER H——————
n 4
P
CONTROL
TRI-STATE SIGNALS

0901-1

V006203

0901-1

1-1070 £ED2900A 1-1070

Pipeline Concept

i+ 1 cP

¥ &

Counter Addr |
i
, [
Micro-
memory Instr
Fetch i
Pipeline Instr
Register i-1 [
1

ALU Instr
Execution i -1
Status Results ;
Register i-2

ADVANCED MICRO DEVICES 1

L? SIDIAIA OUIW QIINVAAY

DATA IN

N

ALU

/ FUNCTION

CLOCK

LOAD, EN
ACC

STATUS
REGISTER

Veg m—ei3
CONDITION 2

CONDITION 1 MUX

DATA OUT

CLOCK

GROUND
—

INSTRUCTION REGISTER
ccu
map
1
) 1
s
MUX
cLock
LOAD COUNTER Dihaatdill
1
’/n
s
MICROPROGRAM
MEMORY
ADDRESS | BRANCH
COND. SELECT ADDRESS OTHER
cLocK
PIPELINE REGISTER -
CONTROL
SIGNALS

0801-1

V006203

0801-1

1-1090

Counter

Micro-
memory
Fetch

Pipeline
Register

ALY
Execution

Status
Register

Counter

Micro-
memory
Fetch

Pipeline
Register

ALU
Execution

Status
Register

ED2900A

Pipeline with Branch Taken

i+ 1

CP

Results
i-2

b i+ 3

Addr

Ccp

i+ 2

Instr
i+ 2

N3

Instr
i + 1(CJP)

L

Instr

i+ 1

4

Results

1

i+ 2

P d <
Addr
i+ 1

1-1090

cp

=

Instr
i + 1(CJP)

Results

i-1 [

Instr

i + 2(NOP)

fesults

i+ 1

ADVANCED MICRO DEVICES 1

1-1100

ED2900A

1-1100

No Branch
SHORTER
™ cycLe [
cLock | | L || || LI
COUNTER u-INST i u-INSTi+1 | u-INSTi+2 | u-INSTi+3 | u~-INSTi+4
ADR ADR ADR ADR ADR
MEMORY FETCH FETCH FETCH FETCH FETCH
u-INST i\ u=INST i+ 1 | u=INSTi+2 | u-INSTi+3 | u-INSTi+4

PIPELINE REG u=INST i--1 u=INST i u=INST i+ 1 | u-INSTi+2 | p-INSTi+3
ALU- EXECUTE EXECUTE EXECUTE EXECUTE EXECUTE

u-INST i =1 u-INST i u-INST i+ 1 | u~INSTi+2 | u-INSTi+3

N

ACCUMULATOR| RESULT OF | RESULT OF | RESULT OF | RESULT OF | RESULT OF

u=INSTi—2 | u~-INST i— 1| u-INST i u=INST i+ 1 u-INST i+ 2

ADVANCED MICRO DEVICES Q1

1-1110

ED2900A

Branch Taken

1-1110

 uCYCLE
cock 4 LI I I ur
COUNTER pINSTi |uINST i+ 1 uINSTi+2 uINSTRbD |u INSTRb+1{u INSTb+2
ADR ADR ADR ADR ADR ADR
MEMORY FETCH |FETCH FETCH FETCH S —
MINST i |uINST i+ 1|{uINSTi+2| uINSTb 6\\
LR XX X3 . 0
PIPELINE REG. |uINSTi~=1| wINSTi |uINSTi+1 (HOLQO“ u INST b —_
ALU EXECUTE | EXECUTE | (COND (HOLD) | EXECUTE _
pINST i— 1 pINST BRAN 1 INST b
INSTR)
ACCUMULATOR |RESULT OF|RESULT OF |RESULT OF ? RESULT OF
pINST i — 2| INST i— 1|u INST i wINST b

ADVANCED MICRO DEVICES «1

1-1120

ED2900A 1-1120

ADDITIONAL ARCHITECTURAL IMPROVEMENTS

Further improvement can be made by moving the counter out of
the path of the branch address, and replacing it with a
combinatorial logic incrementer and a microprogram counter
register (uPC). The incrementer generates the next sequential
address during the clock cycle with only a gate delay.

A multiplexor is added to allow either the micro PC register
or the tri-state bus to be selected as the address source to
the micro memory.

Note that the tri-state output on the pipeline is for the
branch address field only.

This architectural change eliminates the problem of a lost
cycle when the branch is taken and allows the controller to
run at full speed all the time as shown in the following
diagrams:

ADVANCED MICRO DEVICES {1

L7 SIDIAIA OUWIIW AIINVAAY

INSTRUCTION REGISTER

EREERRR

CONDITIONAL
MuUXx

POLARITY

MEMORY
MAP
OE ~——— TRISTATE
CLOCK
2 s° uPC »#PC REGISTER
LOGIC + 1 MUX
So
INCREMENTER
4 |- 1 3
-y Pa
MICROPROGRAM
MEMORY
NEXT BARANCH
ADORESS] POLARITY | CONDITION f;‘;:gs’; OTHER
SELECT SELECT
0E cLocx
PIPELINE REGISTER e
"L
CONTROL
TRI-STATE SIGNALS

0cTi-1

V006203

0ETT-1

1-1140

ED2900A

1-1140

Pipeline Concept with Incrementer

Incrementer

upPC

Micro-
memory
Fetch

Pipeline
Register

ALU
Fxecution

Status
Register

i

b]
+ 1

CP

Adcr
i

——#(MUX)

Instr

»

i=-2

Kesults

ADVANCED MICRO DEVICES <1

L7 SADIAIA OWIW AIINVAAY

(revised)

CLOCK

INSTRUCTION pt——
AEGISTER
ALy ccu 0PCODE
OE
MAP
b i+ 2
STATUS >
DATA IN REGISTER ?“cc ! !
2 -
| y—{s MUX @,.Pc REGISTER
CONDITION
‘ \/ * L R uux b b+ 1
/ E AND
@ a LOGIC
ALU
Z @ GROUND @ INCREMENTER
/ FUNCTION
b
CLOCK
Py LOAD, @ =b
CLOCK ®) EN MICROPROGRAM
] MEMORY
ACC
NEXT
ADDRESS :::::ecs“s OTHER
SELECT
A
DATA OUT ,rn
@ cLoCK
L PIPELINE REGISTER -
OE <io+ 1o
‘ l TRt L
: 8TATE n 7
CONTROL
SIGNALS

TIMING

branch address

0SsTt-1

V006203

06T1I-1

1-1160

ED2900A

Pipeline with Incrementer - Branch Taken

Incrementer

uPC

Micro-
memory
Fetch

Pipeline
Register

ALU
Execution

Status
Register
Incrementer
uPC

Micro-

memory
Fetch

Pipeline
Register

ALU
Execution

Status
Register

Kesults
i -2

1

[i+3 or b+1}{CP
¥

Addr
i+ 2

L J

Instr
i+ 2
or b

y

Instr

i + 1(CJIP)

L]

Results

i n

Addr

CP

I + 1

)

4

Instr
i+ 1(CJP)

cp

Results

i+ 1

1-1160

ADVANCED MICRO DEVICES <1

1-1170

ED2900A

1-1170

No Branch
—{ uUCYCLE |e—-o
CLOCK 1 | L j . I
INCREMENTER | wINSTi+1 | uINSTi+2 | uINSTi+3 | uINSTi+4 | uINSTi+5
ADR | ADR ADR ADR ADR
u PC REG WINSTi | wINSTi+1 | uINSTi+2 | uINSTi+3. | uINSTi+4
ADR ADR ADR ADR ADR
MEMORY FETCH FETCH FETCH FETCH FETCH
WINSTi | wINSTi+ 1 wINSTi+2 | uINSTi+3 | uINSTi+4
PIPELINEREG | wINSTi—1| uINSTi | uINSTi+1 | uINSTi+2 | uINSTi+3
ALU EXECUTE | EXECUTE | EXECUTE | EXECUTE | EXECUTE
pINSTi—1| uINSTi WINST i+ 1 uINSTi+2 | uINSTi+3
ACCUMULATOR| RESULT OF | RESULT OF | RESULT OF | RESULT OF | RESULT OF
WINST i—2 | wINSTi—1 | uINSTi wINSTi+1 | wINSTi+2

Final Version Architecture

ADVYANCED MICRO DEVICES {1

1-1180

ED2900A

Branch Taken - No Penalty

1-1180

— uCYCLE |o+——o
CLOCK | | L L_]‘ .| L_l
INCREMENTER | uINSTi+1 | uINSTi+2 | uINSTb+1| uINSTb+2-| uINSTD+3
ADR \ ADR ADR ADR ADR
u PC REG uINSTiADR| uINSTi+1 | uINSTi+2 | uINSTb+1| uINSTb+2
ADR ADR ADR ADR
MEMORY FETCH FETCH FETCH FETCH FETCH
WINSTi=1| wINSTi+ 1| uINSTb | uINSTb+1 | 4INSTb+2
PIPELINE REG | uINSTi—1| uINST i pINSTi+1 | uINSTb | wINSTb+1
ALU EXECUTE EXECUTE | EXECUTE EXECUTE | EXECUTE
uINSTi—1| wINSTi pINSTi+1| uINSTb g INST b+1
(COND
BRANCH): \
ACCUMULATOR| RESULT OF | RESULT OF | RESULT OF | RESULT OF | RESULT OF
pINSTi—=2 | pINSTi—1 | wINSTI INSTi+1 | uINSTb

ADVANCED MICRO DEVICES

1-1190 ED2900A 1-1190

FURTHER IMPROVEMENTS IN MICROPROGRAM CONTROL

ADVANCED MICRO DEVICES o1

1-1200 ED2900A 1-1200

ADVANCED MICRO DEVICES {1

1-1210 ED2900A 1-1210

SUBROUTINE CONTROL FLOW (branching)

° There are cases where a branch to a routine and then a
return to the main microprogram flow upon the routine's
completion is desired. It may be desired to do this
branching from several different places in the main
program.

0 Subroutine organizations, as used in other programming
languages, provide a structured way of accomplishing this
task.

® The ability to perform nested subroutines is also desired,
that is, where one subroutine can call another subroutine
and so forth.

° Subroutines support structured programming concepts,
especially the implementation of modular code and
functionality.

@ To facilitate these features, the following capabilities
are required to perform a subroutine (a branch and return
sequence):

- a stack to save the micromemory address

- a top-of-stack (70S) pointer

- a means of accessing the top of the stack
through another input to the micromemory address MUX

logic to control the stack operations

ADVANCED MICRO DEVICES {1

LI SIDIAIA OUDIW QIDNVAQV

l

INSTRUCTION REGISTER

EERERENR

| CONDITIONAL
MUX

POLARITY

MEMORY
MAP
OE {~——— TRI-STATE
cLOCK
2 s o uPC #PC REGISTER f———
LOGIC £ ' MUX
S
INCREMENTER
4 i
A’ /’
MICROPROGRAM
MEMORY
NEXT BAANCH
sooRess | poLarTY | conoimion | SPANCH | oen
SELECT SELECT
oE cLocK
HPELI@E REGISTER SandEmmm—
W
CONTROL
TRESTATE —= SIGNALS

02e1-1

V006203

02¢1-1

1-1230

ED2900A 1-1230

SUBROUTINES:

Subroutines should be callable from anywhere in the
microprogram.

As with jumps/branches, subroutine calls can be conditional
or unconditional.

At the completion of the subroutine, control returns to the
main macroprogram statement following the calling statement.
This is an unconditional return.

A return can be permitted prior to the completion of the
subroutine based on some logical condition. This would be
by definition a conditional return.

Defined mnemonics are:
CJS - conditional jump subroutine
CRTN - conditional return

Assume forced TRUE conditions will be used to implement
unconditional calls and returns.

The "logic" will control PUSHing the return micromemory
address onto the stack and POPping the stack on return.

The POP operation logically connects the value (microaddress
on the top of the stack) to the S input on the microaddress
MUX.

ADVANCED MICRO DEVICES 1

1-1240 ED2900A 1-1240
s e

UNCONDITIONAL JSUB (CJS-PASS)

UNCONDITIONAL RETURN (CRTN-PASS)

MAIN
PROGRAM
SUBROUTINE
50
51 80
JSB 52 81
53 82
54 83
55 84 :
56 85 RTS
JSB 57
58
-59
60

61

JSB: JUMP TO SUBROUTINE
RTS: RETURN FROM SUBROUTINE

RETURN ADDRESS STACK CONTENTS

START AFTER 52 AFTER 85 AFTER 57

A 53 A 58

)\ means “undef ined”

ADVANCED MICRO DEVICES &l

1-1250 ED2900A 1-1250

NESTED SUBROUTINES

[Occur where one subroutine calls another

® The best way to handle multiple return addresses is via a
last in, first out stack and a top of stack (T0S) pointer

"TOP OF STACK" --->

A
L/ /
POINTER (//////
L/
/[

[/]
4

STACK

"PUSH" an address on the stack T0S = T0S + 1

"POP" an address off the stack TOS = T0S - 1

ADVANCED MICRO DEVICES {1

1-1260

MAIN

PROGRAM

50
51
52
53
54
55
56
57
58

START

JS8

ED2900A

SUBROUTINE 2
502 SUBROUTINE 3

SUBROUTINE 1

88 503 720
JsB @ 59 504
90
» \
AT @ 92
ATS
JSB : JUMP TO SUBROUTINE
RTS: RETURN FROM SUBROUTINE
AFTER 53 AFTER 89 AFTER 505
54 90 506
54 %
54

LIFO STACK CONTENTS

1-1260

SUBROUTINE 4

780
781
782
783
784
785

AFTER 722

723

-e—— TOS

506

90

54

ADVANCED MICRO DEVICES &1

1-1270

EXAMPLE :

ED2900A 1-1270

The following microroutine demonstrates a subroutine call

and return:

NEXT
ADDR
SELECT

s o . . o D i 41 2

STRT:31 CONT
32 CJp
32 CONT
33 JpP

L1: 104 CONT
105 CONT
L2: 106 CJS
107 CONT
108 JMAP

L3: 547 CONT
548 CONT
549 CONT
550 CRTN

P COND BR
0 Mux ADDR
L SEL
X X
TEST L1
X X
X L2
X X
X X
TEST L3
X X
X X
X X
X X
X X
PASS X “unconditional return"

Possible next address controls for our CCU so far:

CONT

JP

Cap

JMAP

CJs

CRTN

Continue

Go to branch address

If condition true then go to branch address

Go to mapping PROM output (start address)

If condition true then go to subroutine address

1f condition true then go to <T0S>

ADVANCED MICRO DEVICES {1

1-1280 ED2900A 1-1280

X

LOOPS (ITERATION)

® There are many algorithms that require one or more
statements to be repeated for X number of times (DO loop)

® One way to implement a X-times loop is via a loop starting
address and a decrementing counter.

o Example -
BEGIN LOOP:
REGISTER <--- START ADDRESS

COUNTER <-- X -1 note counter is 1 less
than times loop is executed

END LOOP:

IF COUNTER = @ GO TO <uPC> (leave loop and continue)

IF COUNTER # @ GO TO <REGISTER> (loop again at
START ADDRESS)

® Note that loop's starting micromemory address could also be
stored in the branch address field at the last microinstruction
in the loop instead of the register (an additional required
storage location).

] A lToop may also occur where one or more statements are
repeated until some condition exists or event occurs
(referred to as DO-WHILE or DO-UNTIL loops).

TRUE GO TO <uPC>

IF TEST

IF TEST = FALSE GO TO <REGISTER>

ADVANCED MICRO DEVICES 1

1-1290 ED2900A 1-1290

LOOPS
LOAD REGISTER 50
D 52
LOAD COUNTER . 51
REGISTER
52
< X
PRIOR TO 53 ¢
START COUNTER
54 ¢
55 ¢
56 ¢ DECREMENT COUNTER
57 ¢
58 ¢
59
TEST 60
61 CONDITIONAL JUMP TO LOOP
IF COUNTER # 0
OR

IF CONDITION = FALSE

ADVANCED MICRO DEVICES 1

1-1300

ED2900A 1-1300

MODIFIED SEQUENCER STRUCTURE FOR LOOP ITERATION:

A counter was added to hold the loop count. A source is
needed to hold the original value of the count for transfer
to the counter. Another field in the microword could be
added. However, an overlapped or shared field could be used.

A shared field is a field that has one meaning for some
operations and another meaning for other operations. Often
an extra bit is added to the microword to indicate which
meaning is being used, but in this case the next address
select field does the job.

Sharing fields (also called vertical microprogramming)
should be used with care. However, the example under
consideration is commonly used with Am2900 parts.

The branch address field (which is only used during jump or
CJS instructions) is "overlapped" with the counter value
field. Note that the count is thus limited to n bits.

Some type of next address select code is needed that will
determine the location (register, microinstruction, stack)
of loop starting address.

Finally, an extra tri-state enable is added for flexibility
for selecting other external microaddress values. In this
development, it will be used for enabling interrupt vectors.

ADVANCED MICRO DEYVICES <1

1-1310

ED2900A

Complete CCU

I

1-1310

INSTRUCTION REGISTER
OTHER
ADDREBS S8OURGE l
MEMORY
MAP
0 |e——— TRI-STATE
CLOCK cLocK 108
REGISTER §e—o POINTER
4
w i
COUNTER
STACK
LOAD, EN 2
COUNTER = 0 Py |
l l cLocK
2 5 D A 8 upC uPC REGISTER
POLARITY LOGIC —— s‘ MUX
0
— !
- INCREMENTER
==~*1 CONDITIONAL
—— MUX ;
et ‘4/ "/
” MICROPROGRAM
—] MEMORY
NEXT BRANCH
ADDRESS | POLARITY | CONOITION f:;::s’f._ OTHER
SELECT SELECT
OE cLOCK
-—o{ PIPELINE REGISTER
n/ I
1 CONTROL
TRKSTATE ———= SIGNALS

ADVYANCED MICRO DEVICES (1

1-1320 tD2900A 1-1320
S A

SEQUENCER NEXT ADDRESS CONTROL

® The next figure presents the logic block diagram for next
address control. The following signals are thus defined:

o Inputs:
- Next address select from pipeline (microword) - assume
4-bits will suffice

- Condition code; - output of condition code MUX

- Ob (low); - allows all outputs to be tri-stated

° QOutputs:

Three output enables for tri-state sources
MAP - for mapping PROM
PIPELINE - for pipeline branch address fieid

VECT - extra (intended for interrupt vectors)

- MUX select for control of the micromemory address MUX

- Counter load and enable for loop counter control

- FE file enable causes a stack operation

- PUP determines stack push or pop

ADVANCED MICRO DEVICES <1

1-1330

ED2900A

1-1330

_—

NEXT ADR SELEC

Logic Block

Summary of Next Address Control

4

COND MuX OUTPUT

T
i

i

OE

LOGIC

-

OEvecT
= OEwpp

— OEpypeLINE

5 MUX SELECT

[~ FE FILE ENABLE (STACK)

—* PUP PUSH/POP

—» COUNTER
LOAD

— ™ COUNTER ENABLE

ADVANCED MICRO DEVICES o1

1-1340 ED2900A 1-1340

ADVANCED MICRO DEVICES &1

1-1350 ED2900A 1-1350

CCU IMPLEMENTATIONS

USING Am2900/Am29100 FAMILY PARTS

ADVANCED MICRO DEVICES {1

1-1360 ED2900A 1-1360

MICROSEQUENCER SELECTION

(] There are three choices of Am2900 chip sets available for
implementing a control unit.

° The first consists of the Am2910 microprogram controller.

® The second is the Am29112 microprogram controller.

® The third consists of the Am29811 next address control unit
with either the Am2909 or Am2911 microprogram sequencer
(bit slice).

ADVANCED MICRO DEVICES 1

1-1370

ED2900A 1-1370

PRIMARY DIFFERENCES BETWEEN APPROACHES

Am2910

The Am2910 is a single package, containing sequencer, next
address control logic, and a combined counter/register.

. The Am2910 is not a bit-slice, but has a 12-bit micromemory
address output (4K micromemory addressing).

] The Am2910 includes vector-enable output

Am29112

o The Am29112 is similar to the Am2910 in general structure,
but is an 8-bit slice expandable to two for addressing 64K
of micromemory.

° The Am29112 stack is 33 registers deep.

® The Am29112 also features direct, multiway, relative and

program-counter-relative addressing modes, along with vectored
interrupts.

(The Am2910 will be emphasized with possible alternate
capabilities discussed with the Am29811 and the Am2909/2911
and the Am29112)

ADVANCED MICRO DEVICES <1

1-1380 ED2900A 1-1380

Am2909/2911 SEQUENCERS

0 The Am2909/2911 is a 4-bit sequencer slice, allowing any
width of microprogramming addressing and requires next
address control logic.

® The Am2909 has four input bits OR'ed with its output for use
with the Am29803 for doing 16-way branches (case statement).

® The Am29811 next address control logic has the same
instruction set as the Am2910 except for the Am2910's
three-way-branch.

ADVANCED MICRO DEVICES 1

L2 SIDIAIA OWIW AIINVAAY

INSTRUCTION REGISTER

]

MAP

O—EMAP

IRPT.
REG.

ap OEyecr
Cp
VEC
POLARIT!
e | ——
ANY
—t
-
—] —] g
—={ IRPT. PRIORITY —] 2x
—ol &Ea ENCODER —| &%
—t ——
———rd ——

MICROPROGNAM MEMORY

PIPELINE REGISTER

CONTROL
SIGNALS

Cp

06El-1

V006203

06€T-1

l

’ INSTRUCTION REGISTER

i

AERRRR

MEMORY
MAP
géLOCK
cLocK
COUNTER e ;
|cLock
Lot
AmM29811A
POLARITY
CONDITIONAL Cout
MUX
\
MICROPROGRAM
MEMORY .
NEXT BRANCH
ADDRESS | POLARITY | conpition| SratCH | oTHeR
SELECT SELECT
OE ‘ ' & i CLOCK
PIPELINE REGISTER J-————

CONTROL
SIGNALS

L7 SIDIA2A OWIW AIDINVAAY

0ov1-1

V006203

11624/ 606240

0ovI-1

1-1410

ED2900A

OEyect
A

DECODE ‘ OEyap

IR

MAP

1-1410

COND
MUX

POL

2909 -

2909 ~—1 2909

29811A

A

A

A

:
y

MICRO
MEMORY

¥

Ll pIpELINE

IR

MAP

COND
MUX

OEmap

POL ‘

Am2910

OEVECT

v

MICRO
MEMORY

y

|

PIPELINE

Je' OEp

—l

ADVANCED MICRO DEVICES O

1-1420 ED2900A 1-1420
S S S 2 S

Am29112 in a Single Pipelined System

EMERGENCY FIFO
DETECT
CIRCUIT
D
ol
£l VECTORED INT REQ Am29112 ce | conomon | !
2! | erionry T ACK INTERRUPTIBLE CODE |
& | |} INTERRUPT MICROPROGRAM MUX
E| [coNTRoLLER] SEQUENCER [
zl | -
OE Y
VECTOR
MAP
PROM
MICROPROGRAM
PIPELINE REGISTER

ADVANCED MICRO DEVICES &1

1-1430 ED2900A 1-1430

SUPERSEQUENCER

Am2910

ADVANCED MICRO DEVICES 1

1-1440 tD2900A 1-1440

Am2910 DISTINCTIVE CHARACTERISTICS

) Twelve bit address output

. Four address sources - D, R, File (Stack output), uPC

() Internal loop counter

® Five deep subroutine stack - Am2910, nine deep - Am2910A

® Conditional test input

() Sixteen powerful microinstructions

] E for three next address jump sources

© Fast microprogram execution

] Additional control pins
{discussed in detail later)

RLD - register latch

CCEN - for forced pass

CI - for inhibiting incrementer

ADVANCED MICRO DEVICES 1

1-1450 ED2900A 1-1450

P
-
O

0
1

REGISTER/ STACK FULL
counTer < S POINTER —
R

—N] zero
r—-/ DETECTOR]| ¢

| >~5 WORD X 12 BIT

r" STACK
] ouTt
IN F

S

e 1 L AN l J L
© =3 D R F o upC MICROPROGRAM
o Wy B MULTIPLEXER COUNTER—

g - REGISTER

2 g uPC

(=)

-
e 2 1T
cc

a o
m INCREMENTER —<J

2
(e}
CCEN 5« PUSH/
ga‘ POP/HOLD/CLEAR
(2]
i 4 Z CLEAR/COUNT

‘J
000 0 =

ADVANCED MICRO DEVICES &1

1-1460 ED2900A 1-1160
S S 0

Am2910 INSTRUCTION SET SUMMARY
START:
JZz Jump Zero (Reset)

SEQUENCE:
CONT Continue

BRANCH:

JMAP Jump Map

CJP Conditional Jump to Pipeline

CJV Conditional Jump to Vector

JRP Conditional Jump Register or Pipeline

CJPP Conditional Jump to Pipeline and POP Stack
SUBROUTINE:

CJS Conditional Jump to Subroutine (CJP and PUSH)

JSRP Conditional Jump to Subroutine where Start Address
js the Register or Pipeline

CRTN Conditicnal Return
LOOPING:
LDCT Load Counter and Continue

PUSH Push Micro-PC on Stack, Conditional Load Counter
and Continue

@, Start Address on Stack

RPCT Repeat Loop if Counter

LOOP Repeat Loop until TEST = TRUE, Start Address on Stack

TWB Repeat Loop if TEST = FALSE and Counter = §

ELSE IF TEST = FALSE and COUNTER = @, Go to Pipeline

ELSE IF TEST = TRUE Continue

ADVANCED MICRO DEVICES 1

1-1470

ED2900A

Am2910

1-1470

0 JUMP ZERO {J2)

fa

1 COND JSB PL (CJS)

50 STACK
51

82 90

53 9N

54 92

58 3

2 JUMP MAP (JMAP)

50

51

52

53 20
2]

3 COND JUMP PL (CJP)

50

51

13

53

o4 30
3

4 PUSH/COND LD CNTR (PUSH)

STACK
50
o o
52 (& REGISTER'
53 coumea

§ COND JSB R/PL (JSRP)

6 COND JUMP VECTOR (CJV)

50
51
52
53 20
54 2

7 COND JUMP R/PL (JRP)

50

51

52

53
70 80
n 81

8 REPEAT LOOP, CNTR + 0 (RFCT)

STACK
(PUSH)
%0 REGISTER/
51 COUNTER
52
53
54
55

9 REPEAT PL,CNTR # 0 (RPCT}

COUNTER
iLDCT)

51
52
53

i

10 COND RETURN (CRTN)

11 COND JUMP PL & POP (CJPP)

STACK
- {PUSH)
51
52 7
53 (¢ 20 7
s (& ® 80 91 72
55 ¢— fﬂ‘ 92
56 ¢ 82

12 LD CNTR & CONTINUE (LDCT)

COUNTER

51
52
53

1

STACK
50
51 20
52 91
53 92
54 93
55 94
85
96
97

13 TEST END LOOP (LOOP)

14 CONTINUE (CONT)

51
52

15 THREE-WAY BRANCH (TWB)

STACK
{PUSH)

REGISTER/
COUNTER
2

n

50 STACK
51 (PUSH)
52
53
54
55
56
57

ADVANCED MICRO DEVICES &1

1-1480

ED2900A

1-1480

JZ Jump to Address Zero
ADDRESS LABEL 2910 COND BRANCH
(HEX) INSTR MUX ADDRESS
0 START: CONT # # e Start Address
1 CONT # #
2 CONT # #
n JZ # # (mmmmmmm Hardwired Start Address

FROM SPECIAL ADDRESS OR RESET OF
PIPELINE REGISTER. EITHER SEND 000

(JZ) TO Am2910 OR THE INITIALIZATION
(START. RESET) COULD SEND ADDRESS FFF

INTO MICROMEMORY. JZ SHOULD BE PLACED
THERE. JZ RESETS THE STACK AND SHOULD
BE EXECUTED FIRST.

cC COUNTER = 0 STACK ADDRESS REGISTER. OE
LINE SOURCE COUNTER
X X CLEAR 0 NC PL
Figure 4-9. Jump zero (JZ, 0).

ADVANCED MICRO DEVICES &1

1-1490

CARRY
OVR
2ERO
SIGN
INTR
ETC
ETC

ED2900A 1-1490

JZ

DATA BUS

¢

INSTRUCTION REGISTER

0P CODE] OTHER

8
j ” I ‘
ADDRESS
Am2910
s-mzrszy | OF \
MAPPING PROMS
output REGISTER/ STACK
COUNTER POINTER
121,
_ SUBROUTINE
e AND LOOP STACK
—]
-1 2 g
Ll
— g Sl
DHJ:
s oG MICROPROGRAM
535 COUNTER REGISTER
— 4 EEE .2
—] . 2% <
. D R OF bt
R NEXT ADDRESS
1 MULTIPLEXER NCREM
.E- OUTPUT EMENTER
g \'T J
cc
TEST
CONTROL
b
'
&a—P:E.H_____'
ADDRESS
Y41CROPROGRAM MEMORY
Am27527
£ PIPELINE REGISTER
1
BRANCH NEXT)
ADDRESS ADDRESS SELECT OTHER
12 ‘V "

Am2901 OR
An2903

ADVANCED MICRO DEVICES {1

1-1500 ED2900A 1-1500

CONT Continue to Next Instruction in Sequence

ADDRESS LABEL 2910 COND BRANCH

(HEX) INSTR MUX ADDRESS
50 CONT # #
51 CONT # #
52 CONT # # Sequential Program Flow
53 CONT # #
CONT 50
CONT 51 (& SEQUENTIAL
CONT 52 PROGRAM
CONT 53 FLow
cc COUNTER = 0 STACK ADDRESS REGISTER/ OE
LINE SOURCE COUNTER
X X NC uPC NC PL

Figure 4-10. Continue (CONT., E}.

ADVANCED MICRO DEVICES <1

1-1510 ED2900A 1-1510

CONT

< DATA BUS

INSTRUCTION REGISTER
opcoE | omer

° I |
—

ADDRESS - Am2910
3-ame7s2l | _]
MAPPING PROMS
OUTPUT REGISTER/ STACK
COUNTER POINTER
12
SUBRQITINE
7 AND LOOP STACK
CARRY ~wwwmemmmaml. g °
OVR a7 12 7 TN
- A
ZER) emmmmmend 6 ég;—_
Sxb MICROPROGRAM
[Egi COUNTER REGISTER
INTR] 4 &
222
ETC e 3 g = R
) F
EC |] 2 NEXT ADDRES
. MULTIPLEXE INCHEMENT
_ .E— OUTPUT ER
4 y.
T 1
cc
TEST
4, CONTROL
ADDRESS
‘MICROPROGRAM MEMORY
Am27527
£ PITZLINE REGISTER
1
BRANCH NEXT
ADDRESS ADDRESS SELECT OTHER ,
12§ 1{ l

Am2901 OR
An2903

ADVANCED MICRO DEVICES

1-1520 ED2900A 1-1520
S

JMAP Jump to Start Address (Enable Mapping PROM)

ADDRESS LABEL 2910 COND BRANCH

(HEX) INSTR MUX ADDRESS

50 CONT # #

51 CONT # #

52 CONT # #

53 JMAP # # Address supplied by Map

CONT 50
CONT 51
NT 5
co 2 GO TO

JMAP 53 @&— 90 CONT
% 91 CONT

cc COUNTER =0 STACK ADDRESS REGISTER! OE
LINE SOURCE COUNTER
X X NC D NC MAP

Figure 4-11. Jump map (JMAP. 2).

ADVANCED MICRO DEVICES <1

1-1530 ED2900A 1-1530

JMAP

< DATA BUS >

INSTRUCTION REGISTER
opcooe | oru

8
I : !
ADDRESS - Am2910
3-An27521]
MAPPING PROMS -
ouTPyT REGISTER/ STACK
COUNTER POINTER
12 ".f
\ SUBROUTINE
. - AND LOOP STACK
CARRY ~emmeomeny. g
OVR emmmemeesd' 7 12 ‘f
ZER0 e § Hesp
ow
8¥E MICROPROGRAM
SIGN] 5 =X ' COUNTER REGISTER
SE3 |—
DR e 4 EES
QEQ
T amee] 3 53 T
ETC | o] 2 N xr Auoness
: LTIPLEXER , INCREMENTE
I ! urpur)

i A

. ' I
TESt

y3 CONTROL

et iy, et————————

RODRE
MICROPROGRAM MEMORY
An27527
T PIPELINE REGISTER
1
BRANCH NEXT
ADDRESS ADDRESS SELECT OTHER
12 ‘b’ ‘/

Am2901 OR
An2903

ADVANCED MICRO DEVICES O

1-1540 ED2900A 1-1540
Pt S O Y

CJP Conditional Jump to Branch Address (Pipeline)
ADDRESS LABEL 2910 COND BRANCH
(HEX) INSTR MUX ADDRESS
30 LABELA: CONT # #
31 CONT # #
50 CONT # #
51 CONT # #
52 CJdP TESTA LABELA
53 CONT # #
54 CONT # #
CONT 50
CONT 51
IF TEST CJP 52 Py
CONT 53 Ss
CONT 54 ¢ FAIL 30 CONT
31 CONT
cc COUNTER = 0 STACK ADDRESS REGISTER, OE
LINE SOURCE COUNTER
,:-“:\?LS X NC “gc NC PL
Figure 4-12. Conditional jump pipeline (CJP. 3).

ADVANCED MICRO DEVICES &1

1-1550 ED2900A 1-1550
< DATA BUS >
INSTRUCTION REGISTER
OPCODE | OTHER
8
— I |
ADDRESS
910
3-Am27521 oF __.‘ An2
MAPPING PROMS - J™]
ouTPUT REGISTER/ STACK
COUNTER POINTER
;Z;I
\ SUBROUTINE
7 AND LOOP STACK
CARRY wmmemmaef. g ° P A'S N1
VR wmmeed* 7 22k r _ﬁ
3 Jp— §§: FAIL
: Oxo MICROPROGRAM
SN et 5 23 g COUNTER REGISTER
N] 4 ER&
QEQ .
1 (p— § 2
£nc 2 - *
T e XT ADDRE
1 LTIPLEX
. : LTIPLE INCREMENTER
-2
y ¢ 4 ' 1
w I
TEST T
. EST 5
. CONTROL ,
2
(1
ADDRESS
WICROPROGRAM MEMORY
Am27527
£ PIPELINE REGISTER
1
BRANCH NEXT
ﬂ ADDRESS ADDRESS SELECT OTHER
I 12 Ve
e
Am2901 OR
An2903

ADVANCED MICRO DEVICES <1

1-1560 ED2900A 1-1560

CJV Conditional Jump to Vector Map Output

ADDRESS LABEL 2910 COND BRANCH

(HEX) INSTR MUX ADDRESS
20 CONT # #
21 CONT # #
50 CONT # #
51 CONT # #
52 CJv ANYI # <--- Branch Address from Vector Map
53 CONT # #
54 CONT # #
CONT 50
ZONT 51
IF TEST CJV 52 @ PAsg
CONT 53 \} 20 CONT
CONT 54 ¢ FAIL 21 CONT
cc COUNTER =0 STACK ADDRESS REGISTER' OE
LINE SOURCE COUNTER
PASS X NC “gc NC VECT

Figure 4-13. Conditional jump vector (CJV. 6).

ADVANCED MICRO DEVICES <1

1-1570

ED2900A

CJv

1-1570

DATA BUS (16 BITS)

U

INSTRUCTION
REGISTER

MAPPING
O

OTHER STATUS

| Am2922
CONDITION
CODE MUX

[=]
Y
MICROPROGRAM
MEMORY
A l l
oe PIPELNE

REGISTER
l So-z Vo2
Mor amooia '3 %
LB [T) o S— OTHER
Poy
- /i« +5V
s
INTERRUPT %
REQUESTS

ADVANCED MICRO DEVICES 1

1-1580 ED2900A 1-1580

LDCT Load the Register/Counter and Continue

ADDRESS LABEL 2910 COND BRANCH

(HEX) INSTR MUX ADDRESS
50 CONT # #
51 LDCT # VALUE-1
52 CONT # #
53 CONT # #

CONT 50 ' @
LDCT 51

CONT 52 REGISTER
CONT 53 COUNTER

cc COUNTER = 0 STACK ADDRESS REGISTER: OE
LINE SOURCE COUNTER
X X NC uPC LOAD PL

Figure 4-14. Load counter and continue (LDCT. C). This instruction must be
executed before a loop instruction or a jump which used the register.

ADVANCED MICRO DEVICES &1

1-1590 £D2900A 1-1590
< DATA BUS >
INSTRUCTION REGISTER
0P CODE | OTHER
8
‘ . []
ADDRESS - An2910
3-Am27521
MAPPING PROMS - J™]
ouTPUT REGISTER/ STACK
COUNTER POINTER
12
SUBROUTINE
AND LOOP STACK
CARRY emememt. g
OVR emmmremenny ' 7 .12
LR] 6 S
cEe MICROPROGRAM
St ——] 5 z3% COUNTER REGISTER
INTR cwe—ed 4 52
g2
B e 3 552
D R [C
L2 (Jp—— NEXT ADDRES
MULTIPLEXE INCREMENTER
. : 1 OUTPUT \ S
. | i
TEST
A CONTROL
(4
»
‘A
o
FODRESS
'MICROPROGRAM MEMORY
An27527
PIPELINE REGISTER
BRANCH NEXT
— ADDRESS ADDRESS SELECT OTHER
12 ¥ P
ADDR. Ju-\orpev—
i 1]
Am2901 OR
Am2903

ADVANCED MICRO DEVICES &1

1-1600

ED2900A 1-1600

JRP Conditional Jump to Register or Branch Address (Pipeline)
ADDRESS LABEL 2910 COND BRANCH
(HEX) INSTR Mux ABDRESS
27 LDCT # REGADR <--- Load Address into Register:
50 CONT # #
51 CONT # #
52 CONT # #
53 JRP TESTB PIPEADR <--- If True Go To PIPEADR:
70 REGADR: CONT # #
71 CONT # #
80 PIPEADR: CONT # #
81 CONT # #

CONT 50
CONT 51
CONT 52

IF TEST JRP 53 %, ADDRESS 80 FROM PIPELINE:

ADDRESS 70 FROM REGISTER: CONT 70 80 CONT
CONT 71 81 CONT
cc COUNTER = 0 STACK ADDRESS REGISTER, OE
LINE SOURCE COUNTER
PASS D
FAIL X NC R NC PL
Figure 4-15. Conditional jump register/pipeline (JRP, 7). LDCT must have been

executed somewhere ahead of JRP.

ADYANCED MICRO DEVICES 1

1-1610

CARRY
OVR
ZERO
SIGN
INTR
ETC
ETC

ED2900A

JRP

¢

DATA BUS

INSTRUCTION REGYSTER

oPCODE] omeR
8
— | l
ADDRESS
910
3o An27521 _z_sF ____.‘ A2
MAPPING PROMS -
ouTPUT REGISTER/ STACK
COUNTER POINTER
12-
FAIL-
WSS
P STACK
—— : P A $£
—_—] s B
5 "gg MICROPROGRAM
— 525 COUNTER REGISTER
— 252 ‘L
a2Da
—l 3 B5FE
F_RC
—i 2 XTLADDRESS
. ULYPLEXER INCREM}
M LYPLE CREMENTER
-
P & ’
w I
TEST | e
CONTROL
ADDRESS
'MICROPROGRAM_ MEMORY
An27527
z PIPELINE REGISTER
1
BRANCH NEXT
9 AogRess ADDRESS SELECT OTHER

12y

y

1-1610

Am2901 OR

An2903

ADVANCED MICRO DEVICES &1

1-1620 ED2900A 1-1620
{0 S S

CJS Conditional Jump to Subroutine Address

ADDRESS LABEL 2910 COND BRANCH

(HEX) INSTR MUX ADBDRESS

50 CONT # #

51 CONT # #

52 CJas TESTC SUBADR <--- GOSUB if True

53 CONT # # <{--~- Where SUB Returns
54 CONT # #

55 CONT # #

90 SUBADR: CONT

#
91 CONT # #
92 CONT # #
93 CRTN PASS # <--- Unconditional Return

PASS PUSH ON TO
CONT 50 i] STACK
CONT 51 /,@
IF TEST CJS 52 « ——=¢ 90 CONT SUBROUTINE START ADDRESS
cont sz éF4I 91 CONT COMES FROM BRANCH ADDRESS FIELD
CONT 54 % AR 92 CONT
CONT 55 Rrn 93 CRTN

cc COUNTER = 0 STACK ADDRESS REGISTER: OE
LINE SOURCE COUNTER
PASS PUSH D
FAIL X NC uPC NC PL

Figure 4-16. Conditional jump subroutine from pipeline (CIS, 1).

ADVANCED MICRO DEVICES <1

1-1630 ED2900A 1-1630

CJS

< DATA BUS >

INSTRUCTION REGISTER
OP CODE | OTHER
8
— I s

ADDRESS - Am2910
3-amers2t | O '—‘
MAPPING PROMS
ouTPUT REGISTER/ STACK
COUNTER POINTER
12; L:NCR ON PASS
A
.~ 4 D LOOP STACK
CARRY emmmmmesd. g PAasis
OVR emeeet” 7 12 ’ PUSH ON PASS
ZERD - e éﬁtz | FAaIL
i ' MICROPROGRAM
s T COUNTER REGISTER
MR e 4 EEE N
) [=]
3 JU— §E§
R OF ke
3 { S B ‘ EXT ADDRES
ULTIPLEXER INCR@MENTER
I b | OUTPUT
=

N\L

’) n
o I
N IgsT Fxd
4', CONTROL

ADDRESS
MICROPROGRAM MEMORY

An27527

= PIPELINE REGISTER

E
1

BRANCH NEXT

ADDRESS ADDRESS SELECT OTHER

SUB.ILO-O-:—-IZ { 1

Am2901 OR
Am2903

ADVANCED MICRO DEVICES 1

1-1640

ED2900A

1-1640

JSRP Conditional Jump to Subroutine (Register or Pipeline)

ADDRESS LABEL 2910 COND BRANCH
(HEX) INSTR MUX ADDRESS
30 LOCT # SUBADRF <--- Load Register with
Subroutine Address
51 CONT # #
52 CONT # #
53 CONT # #
54 JSRP TESTE SUBADRT <--- If TRUE, go to SUBADRT
55 CONT # # {--- Where Subroutine Returns
80 SUBADRT: CONT # #
81 CONT # #
82 CONT # #
83 CONT # #
84 CRTN PASS # {--- Unconditional Return
90 SUBADRF: CONT # #
9 CONT # #
92 CONT # #
93 CONT # #
94 CRTN PASS # {--- Unconditional Return
cc COUNTER = 0 STACK ADDRESS REGISTER OE
LINE SOURCE COUNTER
pass « PUSH b Ne oL LDCT 30 i“. REGISTER
Figure 4-17. Conditional jump subroutine register/pipeline (JSRP, 5). LDCT or a gg:z Z;
register load must occur somewhere prior to JSRP. CONT 53

START ADDRESS i
FROM REGISTER: CONT 90 ¢~ ¥R

IF TEST JSRP 54

80 CONT
81 CONT
82 CONT
83 CONT
84 CRTN

CONT 91 ¢ CONT 55
CONT 92
CONT 93

CRTN 94

CONT 56

!

PUSH ON TO STACK
PASS OR FAIL

START ADDRESS
FROM BRANCM
ADDRESS FIEL.,

ADVANCED MICRO DEVICES ¢l

1-1650

ED2900A

JSRP

DATA BUS

¢

INSTRUCTION REGISTER

1-1650

0P CODE | OTHER
8
ADDRESS - 2910
3-an27521 ___]
MAPPING PROMS - [SvVB. ADDR.
ouTPUT REGISTER/ STACK
COUNTER POINTER
FAIL l INCR
SUBROUTINE
AND LOOP STACK
I Jp— L l PVUSH
ZERD wommmmand 6 'é'ﬁ,:
S¥E MICROPROGRAM
SN =——15 B&Z COUNTER REGISTER
INR o] 4 EFS
[=] [~}
[J— ‘325 4
i FPC
ETC e 2 ¥\ ADBRESS
1 ULFIPLEXER INCREMENTER
[okreut
-
4
cc
CONTROL
1
FBDRESS
VMICROPROGRAM MEMORY
Am27527
I z PIPELINE REGISTER
1 BRANCH NEXT
. ADDRESS ADDRESS SELECT OTHER
12 ? b d
J |
V3. ApPDR. 1
Am2901 OR
An2903

ADVANCED MICRO DEVICES 1

1-1660 ED2900A 1-1660

| e O —

CRTN Conditional Return from Subroutine

ADDRESS LABEL 2910 COND BRANCH

(HEX) INSTR MUX ADDRESS

50 START CONT # #

51 CONT # #

52 CJs TESTF SUB90

53 CONT # #

54 CONT # #

55 CONT # #

90 SUBG0: CONT # #

91 CONT # #

92 CONT # #

93 CRTN TESTG # {-=-- Return to TOS on TRUE

94 CONT # #

95 CONT # #

96 CONT # #

97 CRTN PASS # {(~--- Unconditional Return
@ STACK

CONT 50 PAS3
CONT 51 / 90 CONT
cJs 52 I 91 CONT
CONT 53 &~/ 1 92 CONT
CONT 54 \\ 93 CRTN CONDITIONAL RETURN

CONT 55 FAIL 94 CONT
T) 95 CONT
96 CONT

" 97 CRTN UNCONDITIONAL RETURN

cc COUNTER = 0 STACK ADDRESS REGISTER/ OE
LINE SOURCE COUNTER
PASS X POP STACK NC PL
FAIL NC uPC
DISABLE
(CCEN = H X POP STACK NC PL
ORCC = L)

Figure 4-18. Conditional return (CRTN, A).

ADVANCED MICRO DEVICES &1

1-1670

ED2900A 1-1670
¢ DATA BUS >
INSTRUCTION REGISTER
opcooE | omer
8
— I |
ADDRESS Am2910
s-amzrszy | OF |
MAPPING PROMS -)
ouTPUT REGISTER/ STACK DEcCR on
COUNTER POINTER PASS
12°) 1
o
SUBROUTINE rF o : s”"
. Ve PASS AND LOOP STACK P
CARRV O s
[N D) 12 ’f
: Al
ZERD . semnmevemd 6 §ﬁr_‘ F
c&E MICROPROGRAM
stn ——1 5 z5% COUNTER REGISTER
INR | oy 4 EE“’
SEg
ETC | comm 3 g DR c
[3 [J— NEXT ADPRESE
PASS . MULTIRLEX INCREMENTER
on —p [ouTfuT
=
Awm Q910 4
qa T
cc
s b TEST 1 <
p CONTROL
L4
R 4
13 Mumd
e S —
AD%*ESS
'MICROPROGRAM MEMORY
An27527
£ PIPELINE REGISTER
1
BRANCH NEXT
ADDRESS ADDRESS SELECT OTHER
12 ¥ Vg

uncond RTN :

choose MUX SEL = 1 or CCEN = HIGH

Am2901 OR
Am2903

ADVANCED MICRO DEVICES

1-1680 ED2900A 1-1680

1 o S

RPCT Repeat Loop Until Counter = @; Start at Branch Address

ADDRESS LABEL 2910 COND BRANCH

(HEX) INSTR MUX ADDRESS
25 CONT # #

26 LDCT # VAL-1
27 CONT # #

47 BEGIN: CONT # #

48 CONT # #

49 CONT # #

50 RPCT # BEGIN

Or the One-Line Loop Version

50 CONT # #
51 tDCT # VAL-1
52 BEGIN: RPCT # BEGIN
53 CONT # #
CONT 25 @ REGISTER.
LDCT 26 - COUNTER
1 REGISTER!
CONT 47 CONT 50 COUNTER
CONT 48 oR LDCT 51
CONT 49 RPCT 52 (i
RPCT 50 (¢ CONT 53
CONT 51
cc COUNTER = 0 STACK ADDRESS REGISTER/ OE
LINE SOURCE COUNTER
=0
PC NC
X #0 NC "o DECREMENT PL
(PART OF
INSTR. PLA)

Figure 4-19. Repeat pipeline if counter # 0 (RPCT. 9). (Loop on one or more
statements, beginning address of loop in pipeline [at RPCT statement].)

ADVANCED MICRO DEVICES

1-1690 ED2900A 1-1690
4 DATA BUS >
INSTRUCTION REGISTER
OPCODE | ommer
8
‘ . | |
ADDRESS
910
s-mmzrsz1 | T] DECR hné
MAPPING PROMS
ouTPUT REGISTER/ CNTR # ¢ STACK
COUNTER POINTER
12
Msuznoun?x
D LOOP STACK
CARRY ~mmmmmey. g * CNT&#¢
[\ J— Ly} 12 '
ZERD] 6 g BE : -
] MICROPROGRAM
SIGN eed § §§§ COUNTER REGISTER
IR e & R
QEQ
[3 (U N § 2
|3 [J——— N]
iy I
P ¢ 4
c
. TEST
- CONTROL
12
—"- o
sttt B, dm——— a——
AdDRESS
WMICROPROGRAM MEMORY
Am27527
£ PIPELINE REGISTER
1
BRANCH NEXT
. ADDRESS ADDRESS SELECT OTHER
12 ’g
Am2901 OR
-A2903

ADVANCED MICRO DEVICES

1-1700 ED2900A 1-1700

{5 e

PUSH Push Microprocessor to TOS and Continue;
Load Register/Counter Maybe

ADDRESS LABEL 2910 COND BRANCH

(HEX) INSTR MUX ADDRESS

50 CONT # #

51 CONT # #

52 PUSH TESTH VAL-1 <--- The result of TESTH only
53 CONT # # controls the Register Load

PUSH may place an address or a value into the Register/Counter
depending upon the value of TESTH.

PUSH is an unconditional push of the microprogram counter onto the
stack.

Instruction execution then continues.

PASS OR FAIL
A

@STACK

CONT 50
CONT 51
IF TEST PUSH 52

4ss
CONT 53 \@ REGISTER COUNTER
cc COUNTER = 0 STACK ADDRESS REGISTER: OE
LINE SOURCE COUNTER
PASS LOAD
X PUS p I3
FAIL H uPC NC L

Figure 4-20. Push stack and conditional load counter (PUSH, 4). This instruction
must immediately precede the first statement in a loop controlled by LOOP or RFCT.

ADVANCED MICRO DEVICES &1

1-1710 ED2900A 1-1710

PUSH

< DATA BUS ‘ >

INSTRUCTION REGISTER
0P CODE | OTHER

— I |

ADDRESS
Am2910
s-pmz7sz1 | OF LD IF PAass
MAPPING PROMS
ouTPUT REGISTER/ STACK
COUNTER POINTER
12°4
SUBROUTINE
AND LOOP STACK
CARRY eemmmammeed | 8 j’
L I a2) PUSH
ZERD -] §5t ’
SiaN 5 OnE MICROPROGRAM
1> B=3 COUNTER REGISTER
IR] 4 ER& F
[=Y =]
Tl et 3 5%Z '
ETC] 2 NEXT ADDRE
1 MULTIPL| INCRE
I Sy CREMENTER
N | &
|1
cc
s TEST cc
1”3 CONTROL
U 4
'
et
AOOAESS
WICROPROGRAM MEMORY
An27527
£ PIPELINE REGISTER
1
BRANCH NEXT
ADDRESS ADDRESS SELECT OTHER
12 4 4’
Am2901 OR
Am2903

ADVANCED MICRO DEVICES o1

1-1720 ED2900A 1-1720
O 0 A

RFCT Repeat Loop until Counter = @; Start Address is T0S

ADDRESS LABEL 2910 COND BRANCH
(HEX) INSTR MUX ADDRESS

ASS VAL-1 {--- Counter is 1 less than

o

50 PUSH

51 BEGIN: CONT # # desired repeats
52 CONT # #

53 CONT # #

54 RFCT # # {--- Return to T0S
55 CONT # #

RFCT can also be used to form one-line loops.

@ sTack (PUSH ON PUSH: REFERENCE

T INO POP] ON RFCT AND
PUSH \ COUNTER = 0. POP ON RFCT
MUST IMMEDIATELY PUSH 50 AND COUNTER = 0)
PRECEDE THE FIRST REGISTER:
STATEMENT IN LOOP CONT 51 COUNTER
~_ CONT 52
- NT 59 (LOAD ON PUSH; DECREMENT
CONT & ON RECT IF COUNTER = 0)
IF TEST RFCT 54
CONT 55 I
cc COUNTER = 0 STACK ADDRESS REGISTER. 3
LINE SOURCE COUNTER
=0 POP uPC NC
X #0 NC STACK DECREMENT PL

Figure 4-21. Repeat loop from stack if counter 7 0 (RFCT, 8).

ADVANCED MICRO DEVICES &1

1-1730 ED2900A 1-1730
< DATA BUS
INSTRUCTION REGISTER
opcoDE | OTHER
8
— | |
ADDRESS - An2910
3-amz7s21 | —'_‘
MAPPING PROMS -
oUTPUT REGISTER/ STACK
COUNTER POINTER
12} l
\, cNTR # ¢ s | (IO R TF
> AND LOOP STACK | CINT IR =
CARRV e | 8
[12 A’ -
ZER) cmmcmmmnd §5t CNTR = ¢
CEE MICROPROGRAM
SIEN el 5z ME COUNTER REGISTER
IR] 4 EER
ETC cmmwmsneed 3 ggg
o b R Jr fec .
ETC] 2 NEXT Abpfss
. MU(ISH szn INCREM@NTER
'L) '} | |
cc
TEST
4, CONTROL
L4
12p
— A7
ADDRESS
MICROPROGRAM MEMORY
Am27527
z PIPELINE REGISTER
1
BRANCH NEXT
ADDRESS ADDRESS SELECT OTHER
ny V d
bovemew T ()
Am2001 OR
Am2903

ADVANCED MICRO DEVICES 1

1-1740 ED2900A 1-1740
e s e

LOOP Repeat Loop until TEST = TRUE

ADDRESS LABEL 2910 COND BRANCH

(HEX) INSTR MUX ADDRESS
50 CONT # #
51 PUSH FAIL # {--- Register/Counter not used
52 BEGIN: CONT # #
53 CONT # #
54 CONT # #
55 CONT # #
56 LOOP TESTI # {~--- Go to TOS
57 CONR # #
PUSH MUST PFIEC/EV;; THE \\\(;3»54:2? ’"@ STACK
FIRST STATEMENT IN LOOP CONT 52 (PUSH ON PUSH; REFERENCE [NO POP]

ON LOOP AND TEST = FAIL; POP ON

S~ —"CONT53
LOOP AND TEST = PASS)

CONT 54
CONT 55

IF TEST LOOP 56 « FAIL
CONT 57 PASS

cc COUNTER = 0 STACK ADDRESS REGISTER/ OF
LINE SOURCE COUNTER
PASS POP uPC
FAIL X NC STACK NC PL

Figure 4-22. Test end of loop (LOOP. D). Must be preceding first statement in loop.

ADVANCED MICRO DEVICES 1

1-1750

ED2900A 1-1750
< DATA BUS >
INSTRUCTION REGISTER
opCODE | omHer
8
— I 1
ADDRESS An2910
s-amerszr | O —
MAPPING PROMS
ouTPUT REGISTER/ STACK
COUNTER POINTER
12", 1
sirourie | PP P ON
' be FA '——-‘_ moL00P STAK | 3R S S
CARRY ewmmmsen-g: g
[T R —— O 12 ¥ |
. L
L p— PR PAss
- . obF MICROPROGRAM
—] 525 COUNTER REGISTER
INR] 4 E5&
o320
ETC a3 ézﬁ
. b Rk Jrc .
ETC e 2 NEXT ArpHEsS
MULTIPLEXER N
| 1 LTI INCREMENTER
b 1
T | | 1
cc
TEST ==
E ce
=¥ controL
12y
»”
ADDRESS
'MICROPROGRAM MEMORY
Am27527
z PIPELINE REGISTER
1
BRANCH NEXT
> ADDRESS ADDRESS SELECT OTHER
12 X7 4’
Am2901 OR

Am2903

ADVANCED MICRO DEVICES

1-1760 ED2300A 1-1760
1 S S G S

CIPP Conditional Jump to Pipeline and POP TOS
(Use to exit from a loop which uses the stack)
ADDRESS LABEL 2910 COND BRANCH
(HEX) INSTR MUX ADDRESS
50 PUSH FAIL #
51 CONT # #
52 CONT # #
53 CJPP TESTJ ADRJ
54 CIPP TESTK ADRK
b5 LOOP TESTL #
56 CONT # #
80 ADRK: CONT # #
81 CONT # #
82 CONT # #
90 ADRJ: CONT # #
91 CONT # #
92 CONT # #
»1{51)STACK
PUSH 50 ¢
CONT 51 ¢—= PASS
CONT 52 @ '
CJPP 53 - ® 90
CJPP 54 ¢— -~ ¢ 80 91
LOOP 55 ¢— 81 92
CONT 56 1; FAIL i 82
cc COUNTER = 0 STACK ADDRESS REGISTER! OE
LINE SOURCE COUNTER
vy . e "
Figure 4-23. Conditional jump pipeline and POP (CJPP. B).

ADVANCED MICRO DEVICES 1

1-1770 ED2900A 1-1770

CJPP

< DATA BUS

INSTRUCTION REGISTER
OPCODE | oOTHeR
8 | '
-l .
' 4

ADDRESS
Am2910
s-anzzs2r | OF]
MAPPING PROMS -
ouTPUT REGISTER/ STACK
COUNTER POINTER
12
SUBROUTINE
P AND LOOP STACK
CARRY swmmeand, g .
ovn oy ' 7
- 12 FAIL
ZEROD ommemmend § gﬁE
Sten s Oxz MICROPROGRAM
S ég; COUNTER REGISTER
MR] 4 ERE
222
ETC ey 3 § &
1 Jppu— *
I_ 1 INCREM%WER_
i Q
y ¢ 4
cC
TEST
3 s cm—
L
L4
12,
-
RDDRESS
'MICROPROGRAM MEMORY
Am27527
£ PIPELINE REGISTER
1 BRANCH NEXT OTHER
ADDRESS ADDRESS SELECT

! 12 r J’

Am2901 OR
An2903

ADVANCED MICRO DEVICES O

1-1780 ED2900A 1-1780

—

TWB Three-Way Branch (Dead-Man Time-Out)
ADDRESS LABEL 2910 COND BRANCH
(HEX) INSTR MUX ADDRESS
62 CONT # #
63 PUSH PASS VAL-1
64 BEGIN: CONT # #
65 TWB TESTM ADRM
66 CONT # #
72 ADRM: CONT # #
73 CONT # #
7 TS\(CONT 62 @ sTACK
oSS onEy s
STATEMENT IN THE LOOP /c:)vzq; :; L \@ COUNTER
N ____—" contes ¢ %;228:1

€c CCUNTER = 0 STACK ADDRESS REGISTER OE
LINE SOURCE COUNTER
=0 NC
PASS POP
#0 uPC DECREMENT
PL
-0 POP D NC
FAIL
£0 NC STACK DECREMENT

Figure 4-24. Three-way branch (TWB. F).

ADVANCED MICRO DEVICES ¢l

1-1790 ED2900A 1-1790
< TIXT >
INSTRUCTION REGISTER
0P CODE | OTHER or DECR o
8 | | PAsSsS AND
£ .
{ 4 P ENRTR 2 ¢
ADDRESS e
3-Am27521 OF DEcR oW An2910
MAPPING PROMS FAIL AND
ouTPUT REGISTER/ |ENTR * ¢ STACK
COUNTER POINTER
12, P4pP on
FAI1L AND PRSS
NTR
,c * & SUBROUTINE Fg” D
AND LOOP STACK W AN
CARRY . g FC‘:I, 2 ND chra= 7/
OVR emmmcnnef® 7 -
" 14 MATCH
ZER)] § S
gut (PASS) | mcroprocam
SIh —=—— % B23 COUNTER REGISTER
INR] 4 £ 55 T
ETC cvmnemen] 3 §§2 *
R ¥ pC -
ETC] 2 NNT AgbReds
..E. 1 r M b LEAER INCREMENTER
1 j’: :
(. L b]
TES -— .
= cc
*, 3 CONTROL ,
] N
L 2
ADDRESS
'MICROPROGRAM MEMORY
Am27527
z PIPELINE REGISTER
1 BRANCH NEXT
ADDRESS ADDRESS SELECT OTHER
12) r
e o

An2901 OR
An2903

ADVANCED MICRO DEVICES &1

1-1800 ED2900A 1-1800

POWERFUL THREE-WAY BRANCHING

62 ¢
63 ¢ REGISTER |gSTZCA
PUSH 64
65 COUNTER
THB 65(72
67 ¢ : 73
v 74
IF
CONDITION
y/m; FAIL
IF IF
COUNTER = 0 COUNTER = 0
YES \ Ygs/\
CONTINUE CONTINUE GO TO BRANCH GO TO BRANCH
POP STACK POP STACK (PIPELINE) (STACK REFERENCE)
DECR COUNTER POP STACK DECR COUNTER

ADVANCED MICRO DEVICES O

1-1810 ED2900A 1-1810

EXAMPLE OF THREE-WAY BRANCH

@ PUSH START ADDRESS
OF ROUTINE ON STACK

‘ N) LOAD LENGTH OF MEMORY
PUSH 63 O TO BE SEARCHED
CONT 64 $==-
(FETCH NEXT
OPERAND;
CONT 65 ¢ v erey
, l ’ COUNTER # 0; DECREMENT
CONT 66 ¢
COUNTER = 0
NO MATCH ——e —
TWB 67 & —— 78 CONT
NO MATCH
o WITHIN MEMORY
SECTION
CONT 68 79 CONT

MATCH FOUND

ADVANCED MICRO DEVICES 1

1-1820 £ED2900A 1-1820

Special Pins on Am2910

RLD Register Load
e for the basic instruction set, RLD is held high
e For causing the register to load on the 4 clggk
transition, regardliess of the instruction, RLD is

pulled low -- whatever is on the bus is loaded
into the register

Cin Carry In
e for normal operation, Cyy is held high
o To repeat an instruction, CIN is driven low

(not normally under pipeline control or you
may have an infinite loop!)

ADVANCED MICRO DEVICES O

1-1830 ED2900A 1-1830

Special Pins on Am2910

CCEN Condition Code Enable

e CCEN = LOW; enables CT (TEST) input to
operate normally

@ CCEN = HIGH; all conditional instructions
are unconditionally true (TEST = PASS)

OF Tri-state control of Y; outputs

FULL Five items are on stack; use in diagnostic
test programs; debug

ADVANCED MICRO DEVICES o1

1-1840 ED2900A 1-1840

ADVANCED MICRO DEYVICES <1

1-1850 ED2900A 1-1850

NEXT ADDRESS CONTROL

An29811

MICROPROGRAMMED SEQUENCERS

Am2909 / Am2911

ADVANCED MICRO DEVICES

1-1860

ED2900A

Am2909/2911

|

INSTRUCTION REGISTER

i

1-

1860

MEMORY
MAP
[
1 i REGISTER]
TC cLock R
COUNTER o -
|cLock
FE, PuP;
EERt - 3
Am29811A : i 1GLOCK
- [~ iuPC REGISTER i« jrstsmmmnemm
. B g e { T
POLARITY . LoaGic| : e : |Cin
—_— —{ .- |INCREMENTER }-4-———-
~—=1{ CONDITIONAL d Cour
—] MUX
———
— Y
— MICROPROGRAM
MEMORY
NEXT BRANCH
ADDRESS | POLARITY | CONDITION f:;::s"s OTHER
SELECT SELECT

! !

i !

6

-

PIPELINE REGISTER

CLOCK

|

CONTROL
SIGNALS

ADVANCED MICRO DEVICES &1

1-1870 ED2900A 1-1870

Using the Am29811A with the Am2909A/Am2911A

° Bit-slice architecture means more microword addresses due to
more address lines, hence larger microprograms. (Sequencer
width independent of ALU width.)

® ORed outputs on Am2909A allows use of Am29803A for 16-way
branch.

) Separate register (Ri) and direct (Di) inputs on Am2909A for
flexibility.

° Am2909A and Am2911A speeds are comparable to Am2910.
(See Data Book)

® Could replace Am29811A with ROM for customer instruction set.

ADVANCED MICRO DEVICES &1

1-1880

ED2900A

Am29811

1-1880

0 JUMP ZERO (J2)

‘:\ou

2

1 COND JSB PL (2JS)

STACK
L1

52
53

55

83!8®.

2 JUMP MAP (JMAP)

50

1]

2

[] 80
[1)

3 COND JUMP PL (CJSP)

50
51
52
53
54

4 PUSH/COND LD CNTR (PUSHI)

STACK

L1
52
53

PEGISTER/
COUNTER

\

§ COND JSB R/PL (JSRP)

50
o STack
52
0
54

6 COND JUMP VECTOR (CJaV)

50
51
52
53 20
54 kAl

7 COND JUMP R/PL (JRP)

S0
(1)
2
83

90 55
a1

v
) 87

288
L B -%]

8 REPEAT LOOP,CNTR 4 0 (RFCT)

STACK
IPUSHY
bl RLGISTER/
s COUNTER
52
s3
7]

9 REPEAT PL,CNTR » 0 (RPCT)

COUNTER
wocm

51
52
$3

g

10 COND RETURN ICRTN)

STACK

50

51 20
52 L1}
53 82
54 93

11 COND JUMP PL & POP (CIPP)

STACK
t Hl
0 PUSH

St =

83 %0 ¢ N
54 80 21 7”2
55 th i n # 92

56 @ 82

12 LDCNTR & CONTINUE (LOCT}

COUNTER

L1
52
53

¢

13 TEST END LOOP {LOOP)

14 CONTINUE (CONT)

L 1)
L
43

15 TumP ewpsLmns (IP)

In
b}l
2

o0 @ SIACK
v PUSHI
LY
81
(¥}
"
by
e

ADVANCED MICRO DEVICES ¢l

1-1890

ED2900A

SUMMARY OF

1-1890

NEXT ADDRESS CONTROL

LOGIC BLOCK

NEXT ADDR SELECT
4 s

74

COND MUX OUTPUT

{223 Mux sELECT

——3= FE - FILE ENABLE
(STACK)

——3» PUP - PUSH/POP

—3m
3= COUNTER LOAD
Am29811A :
3 COUNTER ENABLE
PLE - PIPELINE ENABLE
o]
VAP E
MAP ENABLE
1 0F 4 —a tﬁ—VE(:T
-3 OF,
MAPE PIE OBwpp OEp DEyeer DECODER PL
-3 UE’MAP
L L H H H Am25L82539 e N.C.
L H L H
H L H L H
H H H H L

ADVANCED MICRO DEVICES 1

1-1900

— — Xo
I'—ngog omv_l }
' [oa;, 5

[0 >

ED2900A

Microprogram Sequencer Block Diagram

REGISTER
ENABLE

|
|
RE >—-
|
|

ADDRESS REG/
HOLDING REG

PUSH/POP

FILE ENABLE

D AND R

s CONNECTED

ONLY

A on amzs
|
|
|

DIRECT

INPUTS iﬁ

n
i/ 4
/]

STACK
POINTER

4

4 X 4FILE

LY, Y Su—— |

S| P —————

AR F

MULTIPLEXER

X, Xy

OR2 —

R
| Fa—

MICROPROGRAM
COUNTER REGISTER

ouTPUT
CONTROL

INCREMENTER |—

Chea

1-1900

ADVANCED MICRO DEVICES &1

1-1910

2911
4 bit

shared
Ri Di

none
RE = LOW
loads reg

ZERO = LOW
Y1=Q

OF
needs Am29811

JP

20pin DIP

2909
4 bit

separate

Ry Dy

ORy input
for 29803

RE = LOW
loads reg

ZERO = LOW
Yj"@

OE

needs Am29811

JP

28pin DIP

ED2900A

2910
12 bit

shared
none

RLD = LOW
loads reg

none

OE

self contained

TW8

OEp,
OEmap

OEygct

40pin DIP

1-1910

29112
8 bit

separate

16-way branch

N/A

CZIo

HOLD
self contained
TWB+

MINTA

48pin DIP

ADYANCED MICRO DEVICES o

1-1920 ED2900A 1-1920

Am29803A

® There is another statement that can be used in structured
code

THE CASE STATEMENT

e An N-way conditional branch

° Used for choosing 1 of n paths based on one or more test
results.

9 For the Am29803A, 1 of 16 branches can be selected.

ADVANCED MICRO DEVICES {1

1-1930 ED2900A 1-1930

16-Way Branch
(T39 T29 Tls TO)

ADVANCED MICRO DEVICES 1

1-1940 ED2900A 1-1940

Advantages of the Am29803A

® Allows any combination of up to four tests
(16-way branch) to be decoded in two
microcycles.

® faster than a series of conditional jumps

and tests written in microcode.

o tasier for microprogramming.

ADVANCED MICRO DEVICES (1

1-1950

ED2900A

1-1950

FUNCTION TABLE

Am29803A

=)
eI T T e ST JNT- 2 L JNL 3 BED NP JT) J JUE SN ST JEE ST J PE JEL SN JUE. 3 U JEL. 4 JED UL S5 SU). 3 QD JUD. SR SEL. J UL UL SER JUE JED SR JEP SR 4
Q
- .
[P T PP PFIEY. 5 J PN PENT. = o IR . 5 PPN | 3 SEPE |- = o JRPEY PEPHD = ST I 3- 3 FUP s S SR e o A I T A I T dd I T | d D I I dIT | S dIT e IT LS JAITILLGIT
(=]
o~
m djdudlddiddd DAl A d TS DS Add AT ITT | WD | Pd P d | d D | A A I I I T | Al d D JJd A I T I D Ld I I I I 2l JdII T I A AT SIS
™ .
W Sluadjaajaeaal gajagaaledagiacacagdaldadladdddisdadlddddddddiddddlddddSddd | Ad D Jd D0 HDddOddUJITIITIIIIY
.mv T XX T AT XX T T | X XXX | I T AT ST ST XX ST AT XXX X AT ST AT AT XX XX | IT AT T T | XXX XX XXX | JT AT T ST AT ST AT AT
X xx|aztaaT T XXX XXX AT ST AT T d T XX XXX K| 4T AT | ST TSI T T XXX XXX XXX XXX | T T AT 0T | dd T T TS d I T =T
P X X X XX XX | ST T T | T | AT T T T XX XX XXX XXX XXX XXX XX ST ST ST TSI T | ST T ST T 4T ITT IS T I
.H. s P | I X XXX KK XXX XX XXX XX IL [S I T Tt d T T A S I I T T | St T Tl dIIIT S H S I I T T | Ul d T I TIIIIT
Olaj x| = x - T - T - I - T =] T - T
fagll PSR) x I - - T = pe] - I I - - I T
Nt a2 - T I I T - - - - x I I x
Boch IBE RS - - - - pu) - I I I = e o4 T T x
-)
-
e o~ d © d L
o - . - - - o~
3 - o~ o~ < = © 23 © 3 3 Lt
e - - - - - - - [od ~ ~ -
& 3 & & bt . L - 2 - - .
- -— o~ = L] (= - =] o~ o - S
RS g - ° - - - I f\ = - - - °
- - - - - - - - ~
S| 8l 8| £ | E| B g £ 5| % Z % 3 5 z 3
-3 I o A - - - [Ll = - [- - - [-

L=1LOW, H=HIGH, X = Don't care

ADVANCED MICRO DEVICES {1

1-1960

A Typical CCU using the Am2909, Am2911, Am29803A and Am29811A

ED2900A

1-1960

DATA BUS

l

INSTRUCTION REGISTER

OP CODE l OTHER
D, ADDRESS AmM2911 MICROPROGRAM SEQUENCERS
STARTING — FE. PUP
— TC COUNTER ADDRESS OF [=— STACK POINTER
! DECODER
LOAD/COUNT (MAPPING PROM} . ‘
OUTPUT
REGISTER
SUBROUTINE
AND LOOP STACK
MICROPROGRAM
COUNTER REGISTER
D R FPC
S0 NEXT ADDRESS
Sy MULTIPLEXER INCREMENTER
L ouTPUT
42 212 ‘ j
—— L]
CARRY ~—and 7 AmM29811A
“o" « NEXT
OVR ~~=16 Qu ADDRESS ADDRESS
26R0O—=fs z& 5 POLARITY CONTROL MICROPROGRAM MEMORY
2z £ CONTRO: TEST
SIGN —=-] 4 Ee 5 ©
=] S o BRANCH NEXT ADDRESS OTHER
INRPT —eef 3 £3 ADDRESS SELECT
(5]
ETC e 2 ‘ I I
! [
I oF PIPELINE REGISTER
- ’ y
1 4 l I
TO Am2001
//3

OTHER

ADVANCED MICRO DEVICES <1

1-1970 ED2900A 1-1970
e

EXAMPLE

] Show the microcode (partial width only) to program these
statements, assuming an Am2903-Am2909/11-Am29811 CCU.
IF A THEN ON (T2T0) GO TO (10, 200, 30, 40)*

ELSE ON (T3T1) GO TO (20, 200, 10, 20)
IF B THEN ON (T3T2T71) GO TO (10, 20, 30, 40,..)
ELSE ON (T2T1T0) GO TO (100, 200, 300,...)
Where:
A and B are condition multiplexer input lines.
T3, T2, T11, T0 are test inputs to the Am29803.
10, 20, 200, etc. are labels of statements.
The same label means the same statement.
The statements may be considered to be the beginning of
a microroutine of unknown length.
* IF A IS TRUE, THEN
IF (T2T@ = ¢9) GO TO 10
IF (T2T@ = 91) GO TO 200
IF (T2T@ = 1) GO TO 30

IF (T27@ = 11) GO TO 40

ADVANCED MICRO DEVICES <1

1-1980 ED2900A 1-1980
1 0 S

Am29803 SOLUTION

1. LABEL/ 29811 MUX BR ADDR 29803

ADDR INSTR SEL INSTR
i CJpP A i+ 2 NO TEST
i+ 1 JpP # 350* T3T1
i+ 2 JP # 360* T2 Tg * address must have
as final HEX
digit if LSS 2909
J CJP B j+2 NO TEST attached to 29803
j+1 JP # 370 T2T1T@
j+2 JP # 380 T3T2T1
350 JP # 20 NO TEST
351 JP # 200 NO TEST
352 JP # 10 NO TEST
353 JP # 20 NO TEST
360 JP # 10 NO TEST
361 JP # 200 NO TEST
362 JP # 30 NO TEST
363 JP # 40 NO TEST
370 JP # 100 NO TEST
371 JP # 200 NO TEST

ADVANCED MICRO DEVICES 1

1-1990 ED2900A 1-1990

Am29112

MICROPROGRAM SEQUENCER

ADVANCED MICRO DEVICES &1

1-2000 ED2900A 1-2000
0 e S

Am29112 in a Single Pipelined System

EMERGENCY FIFO
DETECT
CIRCUIT
D
LS |
21 INT REQ
& VECTORED Am29112 conomon | |
21 | erioRmY INT AC INTERRUPTIBLE] CC CODE |
Z | | INTERRUPT K MICROPROGRAM MUX
£| [coNTROLLER] SEQUENCER _ |
z|
‘ |
OE Y
VECTOR
MAP
PROM
MICROPROGRAM
PIPELINE REGISTER

ADVANCED MICRO DEVICES 1

1-2010 ED2900A 1-2010

Am29112 CHARACTERISTICS

Functional Description

° The Am29112 is a high performance interruptible microprogram
controller intended for use in very high speed microprogrammed
machines and optimized for the new state-of-the-art ALU's and
other processing components.

® It has an instruction set featuring relative and multiway
branching, a rich variety of looping constructs, and
provision for loading and unloading the on-chip stack.

o Interrupts are accepted at the microcycle level and serviced
in a manner completely transparent to the interrupted
microcode.

ADVANCED MICRO DEVICES &1

1-2020

ED2900A 1-2020

DISTINCTIVE CHARACTERISTICS:

The Am29112 is designed to operate in 10 MHz microprogrammed
systems.

A single Am29112 is 8 bits wide and addresses up to 256 words
of microprogram memory. Two Am29112's may be cascaded to
directly address up to 64K of microprogram memory.

A 33 register deep on-chip stack is used for subroutine
l1inkage, interrupt handling and loop control.

Two kinds of interrupts: maskable and unmaskable.

Features an 8-bit counter for loop control. When two
Am29112s are cascaded, the counters can act as a single
16-bit counter or two independent 8-bit counters.

Features direct, muitiway, multiway relative and program
counter relative addressing.

Support for writable control store.

Hold feature - a hold pin facilitates multiple sequencer
implementations.

ADVANCED MICRO DEVICES (1

1-2030

ED2900A 1-2030

Am29112 OVERVIEMW:

The Am29112 is designed for use in single~level pipelined
systems. A typical configuration is shown on the next page.

Branch addresses, constants for the various registers and
stack pointer values are supplied to the Am29112 through
the D port which is bidirectional to allow the stack to be
unloaded onto an external LIFO.

The next address generated by the sequencer is output on
the Y port and directly drives the micromemory program.

A single register at the output of the microprogram memory
contains the microinstruction being executed, while the
next is being fetched.

External conditions are applied to the CC input of the
Am29112 via the condition code MUX and also to the multiway
inputs.

ADVANCED MICRO DEVICES 1

1-2040

STKERR

<z

UINTR

ED2900A

Am29112 Configuration

Dg -0y

-~

1-2040

COMMAND <

INSTRUCTION

INTERRUPT
LOGIC

0 aus

—

wtveetr <

L

!

counTER <]

STACK

—

DWIDTH <

3128

i

STACK MUX

|

F BUS

A MUX

/

ADDER

C MUX

MODE

INSTRUCTION
PLA

 —1

NtRTN - <

8
HOLD Yo-Yp

ADVANCED MICRO DEVICES &1

1-2050

ED2900A 1-2050

Am29112 OVERVIEW (cont'd):

A vectored, priority-interrupt controller generates a
prioritized interrupt request (MINTR) to the Am29112,
which acknowledges the request via the MINTA pin. Upon
receiving the acknowledge, the priority-interrupt control
puts out the encoded vector from the mapping PROM. The
MINTA output of the Am29112 turns on the PROM output and
simultaneously turns off the Y port, enabling the interrupt
vector onto the microprogram address bus. In the Am29112,
internal states are automatically saved on the stack while
the interrupt vector is transmitted through the Y port and
incremented to form the next microprogram address.

The emergency detect circuit generates an unmaskable
interrupt request upon power failure or stack error. On
receiving an unmaskable interrupt, the sequencer branches
to the unmaskable interrupt routine; the address of this
routine is stored on the Am29112 in the INTVECT register.

The internal organization of the Am29112 is shown in the
figure. The most important control loop inside the
sequencer consists of the CMUX, incrementer, and PC register.

ADVANCED MICRO DEVICES {1

1-2060 ED2900A 1-2060

Am29112 OVERVIEW (cont'd)

° The CMUX selects the next microprogram address based on the
instruction and condition code inputs. The next microprogram
address is selected from: the PC register for a continue, the
D port for a branch, the adder for relative and multiway
branches, the interrupt register for unmaskable interrupts,
the stack for subroutine returns or loop repeats, or all
zeros for the JUMP ZERO instruction.

ADVANCED MICRO DEVICES <1

1-2070 ED2900A 1-2070

Am29112 INSTRUCTION SET

MODE BITS

° The Am29112 is controlled by five instruction inputs, two
mode inputs, and the condition code. In typical applications
it is expected that the instruction inputs are driven directly
from the pipeline, whereas the mode inputs are either perman-
ently wired high or Tow to select the desired operating mode,
or driven indirectly via external logic. (In some applications
it might be justifiable to drive the mode bits directly from the
pipeline.) The two mode bits select among three operating modes:
normal (@,8), extended (#1) and forced continue (14 and 11).
In the normal mode the entire instruction set of the Am29112

applies.
MODE CONTROLS

165 Mode Description

79 Normal For cascaded Am29112s, two independent
8-bit counters

21 Extended For cascaded Am29112s, one 16-bit counter

19 Forced The Am29112 executes a continue
instruction regardless of instruction,

11 Continue condition code, and multiway inputs.

ADVANCED MICRO DEVICES 1

1-2080 ED2900A 1-2080

Extended Mode:

° The instruction set includes the instructions that differen-
tiate between upper and lower counters (when there are two
cascaded Am29112s). In the normal mode, the two counters on
cascaded Am29112s function independently.

® In the extended mode, however, the counters on cascaded
Am29112s behave 1ike one 16-bit counter and instructions
that differentiate between counters degenerate into identical
instructions.

° The instructions of the Am29112 are classified into four
groups:

1

branching and subroutine linkage

3

looping

- stack and register

interrupt

® The sequencer has a repertoire of 40 different instructions
In order to encode these instructions with only five
instruction lines, the condition code is used in some
cases to differentiate between two distinct instructions
sharing the same opcode,

ADVANCED MICRO DEVICES O

1-2090 ED2900A 1-2090
L e R -

Am29112 INSTRUCTION SET

Opcode (I4g) Condition Mnemonic Description
o] X JZ.U UNCONDITIONAL JUMP ZERO
1 PASS PUSHD.P PUSH D (PASS)
1 FAIL LDCMD.F LOAD COMMAND REGISTER FROM D (FAIL)
2 COND POP.C POP; CONDITIONAL STACKOUT TO D
3 COND cJD.C CONDITIONAL JUMP D
4 COND CJsb.C CONDITIONAL JUMP SUBROUTINE D
5 COND CiMw.C CONDITIONAL JUMP MULTIWAY D
6 COND cJsmMw.C CONDITIONAL JUMP SUBROUTINE MULTIWAY D
7 COND CRTN.C CONDITIONAL RETURN
8 COND PUSHPL.C PUSH PC: COND LOAD LOWER COUNTER
9 COND LDLC.C LOAD LOWER COUNTER; COND PUSH COUNTER
10 PASS POPLC.P POP TO LOWER COUNTER (PASS)
11 PASS RSTSP.P RESET STACK POINTER (PASS)
1 FAIL LDINTV.F LOAD UNMASKABLE INTERRUPT VECTOR (FAIL)
12¢ PASS RFCTU.P REPEAT LOOP, UPPER COUNTER = 0 (PASS)
12° FAIL "RFCTL.F REPEAT LOOP, LOWER COUNTER = 0 (FAIL)
13 PASS RPCTU.P REPEAT PIPELINE, UPPER COUNTER = 0 (PASS)
13 FAIL RPCTL.F REPEAT PIPELINE, LOWER COUNTER = 0 (FAIL)
14 COND LOOP.C TEST END LOOP
15 PASS ENINT.P ENABLE INTERRUPTS (PASS)
15 FAIL DISINT.F DISABLE INTERRUPTS (FAIL)
16°*° COND TWBL.C THREE-WAY BRANCH, LOWER COUNTER
174~ COND TWBU.C THREE-WAY BRANCH, UPPER COUNTER
18 PASS TSTSP.P TEST SP WITH D (PASS)
18 FAIL TSTMT.F JUMP D IF STACK NOT EMPTY
19 COND CJDF.C COND JUMP D/STACK AND POP
20 COND CJSDF.C COND JUMP SUBROUTINE D/STACK AND POP
21 COND CJMWR.C COND JUMP MULTIWAY RELATIVE D
22 COND CJSMWR.C COND JUMP SUBROUTINE MULTIWAY RELATIVE D
23 COND CJPP.C COND JUMP PIPELINE AND POP
24 COND PUSHPU.C PUSH PC: COND LOAD UPPER COUNTER
25 COND LDUC.C LOAD UPPER COUNTER; COND PUSH COUNTER
26 PASS POPUC.P POP TO UPPER COUNTER (PASS)
26 FAIL POPDW.F POP TO DISPLACEMENT WIDTH (FAIL)
27 COND LDDW.C LOAD DISPLACEMENT WIDTH; COND PUSH DW
28 COND CJR.C COND JUMP D PC REL
29 COND CJRN.C COND JUMP D PC REL NEGATIVE
30 COND CJSR.C COND JUMP SUBROUTINE D PC REL
31 COND CJSRHEN.C COND JUMP SUBROUTINE D PC REL NEGATIVE

*Thesae instructions are identical in the extended mode.

**These t00.
***These too.

Extensions: U — unconditional; C — conditional; P — PASS condition; F — FAIL condition.
Note: PASS/FAIL condition can be produced as follows. P stands for polarity and | for input.

cc| cceN| PoL | Condition
X | 1 0 PASS
X | 1 FAIL
I j o P COND

ADVANCED MICRO DEVICES U

1-2100

ED2900A

1-2100

0 Jump Zero (JZ.U)

1 Push D (PUSHD.P)

1 Load Command Latch

from D (LDCMD.F)
o0 5A %0 (1
[} 1]] oF
02 sc 52 7
STACK COMMAND LATCH
0 50 L8] n
5 72
UNCONDITIONAL FORCED PASS FORCED FAR,
2 Pop and Unconditional Stackout 3 Jump D (CJD. C) 4 Jump Subroutine D (CJSD.C)
to D (POP.C) .

. ¢ ”"
n o ”
n @ "
0 (s7acx) o ¢ © "
34 O PORT [©+1 "
as pASS [V] m+2 ”
FAL ™ ¢ ©)+3 ”

FAL PASS FAIL

CONDITIONAL. CONDITIONAL

5 Jump Multiway D (CUMW.C)

a0
A1 ¢
YORILICEY
a

a
as ¢

AS ¢

FAIL PASS

CONDITIONAL

6 Jump Subroutine Multiway
D (CJSMW.C) :

7 Return (CRTN.C)

lr ° STACK

"
p 12

o 13
POP @ 14

BE B ENQEN

FAIL PASS

8 Push PC and Conditional Load
Lower Counter (PUSHPL.C)

9 Load Lower Counter and
Conditional Push Counter (LDLC. C)

LOWER COUNTER
(UNCONDITIONAL)

10 Pop to Lower Counter
(POPLC.P)

™

o e

o+ LOWER COUNTER
FORCED PASS

ADVANCED MICRO DEVICES {1

1-2110

ED2900A

1-2110

11 Reset Stack Pointer (RSTSP.P)

"
B8 ¢

© —=0

10 STACK POINTER

FORCED PASS

11 Load Unmaskable interrupt
Vector (LDINTV.F)

ac ¢
2

::()———-@

2F @ WNTVECT
REGISTER
30
FORCED FALL

12 Repeat Loop, Upper Counter
(RFCTU.P)

22

24 UPPER COUNTER

28

FORCED PASS

12 Repeat Loop, Lower Counter
(RFCTL.F)

FORCED FAR

' 13 Repeat Pipeline, Upper

Counter (RPCTL.P)
"
”
® UPPER COUNTER
» D=19
20 ¢ POP
2‘ .
2
FORCED PASS

13 Repeat Pipeline, Lower
Counter (RPCTL.F)

"9
me
" LOWER COUNTER

19Gb D=1y

20 ¢ POP
2 ¢
22 4
FORCED FALL

14 Test End Loop {LOOP.C)

15 Enabie Interrupts (ENINT.P)

12 .

3

"

- ENASLE
MASKABLE
INTERRUPTS

FORCED PASS

15 Disable interrupts (DISINT.F)

5 DISABLE
MASKABLE
INTERRUPTS

FORCED FAIL

16 Three-Way Branch, Lower

Counter (TWBL.C)

a7

a ¢

49 ¢

A FARL

c (o)

an ¢ PASS
(D)+1

4c 4
D)+2
©)+23

CONDITIONAL

17 Three-Way Branch, Upper

Counter (TWBU.C)
“r STACK
a
ey
o
w@® FAIL
c (/]
48 § PaSS
©)+1
a e
©)+2
©)+3
CONDITIONAL

18 Test SP with D (TSTSP.P)

o
STACK
c2 ¢ cuspe
PO
c3 ¢ p 43
ca @ b
cs }) 47 TEST SPWITH O
® 4
b 4
NOT “
ENOUGH ENOUGH
SPACE SPACE
FORCED PASS

ADVANCED MICRO DEVICES o1

1-2120

ED2900A

1-2120

18 Jump D if Stack Not Empty

(TSTMT.F) B
s e
“ 9
47@
o9 (-]
1] D)+
T] o+2

STACK STACK
EMPTY NOT EMPTY

FORCED FAR

19 Conditional Jump D/Stack
and Pop (CJOF.C)

(BTK) + ¥
(STK) + 2
(STX) + 2

(STACK) (]

20 Conditional Jump Subroutine
D/Stack and Pop (CJSDF.C)

(0) sTacx

POP STACK

PUSH 8
IF PASS

) ©
n O+
” (8TK)+ 2 o+2
ke (5TX) + 3
FARL PASS
(STACK) ©
CONDIMONAL

21 Conditional Jump Multiway
Relative D (CUMWR.C)

D @

M o
MCD Me2

A3 4

Ao

FARL PASS

CONDITIOMAL

22 Conditional Jump Subroutine
Multiway Relative D (CISMWR.C)

FAR PASS

23 Conditional Jump Pipeline
and Pop (CJPP)
STACK

. /:. ass
w

L4 o
- D+
o+2
FAL PASS
CONDITIONAL

24 Push PC and Conditional Load
Upper Counter (PUSHPU.C)

(=)

c STACK
? UNCONDITIONAL

(o)
UPPER COUNTER
] PASS

P38y YR

25 Load Upper Counter and
Conditional Push Counter
(LOUC.C)

| (0)

| UPPER COUNTER
» UNCONDITIONAL
9 :
e
. ¢ STACK
3 é PASS
10 ¢

CONDITIONAL

26 Pop to Upper Counter (POPUC.P)

A
L1
4c
40
13 UPPER COUNTER

aF

FORCED PASS

I 26 Pop to Displacement Width
(POPDW.F)

™" e
n(
nl e

" DWIDTH REG

¢

FORCED FARL

27 Load Displacement Width and
Conditional Push DW (LDDW.C)

)

DWIDTH REG
u(UNCONDITIONAL

-

< e @

10
STACK
1€ PASS

"e

=

CONDITIORAL

28 Conditional Jump D PC Relative

(CJR.C)
4A
DQI - z
4
ac JUMP ADDRESS I3
(PC) + D*°
4D
PASS
FAIL 4E

aF

D** is displacement (see 1).
CONDITIONAL

ADVANCED MICRO DEVICES Z‘

1-2130

ED2900A

1-2130

29 Conditional Jump D PC Relative
Negative' (CJRN.C)

49

D** = -2
4
PASS
@
4c JUMP ADDRESS IS
O (PC) + D**

FAIL

D** = —2, should be two's complement (see 2).
CONDITIONAL

30 Conditional Jump Subroutine
D PC Relative (CJSR.C)

JUMP ADDRESS 1S
(PC) + D**

D** is displacement (see 1).
CONDITIONAL

31 Conditional Jump Subroutine

D PC Relative Negative (CJSRN.C)

STACK

PASS
n:1¢) D = —2

JUMP ADDRESS IS
(PC) + D"

FALL

D** = -2, shouid be two's complement (see 2).

CONDITIONAL

Notes: 1. The number of bits of D used as displacement is stored in DWIDTH register. The remaining high order bits are zero-extended.
2. The number of bits of D used as displacement is stored in DWIDTH register. The remaining high order bits are one-extended.

ADVANCED MICRO DEVICES &1

1-2140 ED2900A 1-2140

ADVANCED MICRO DEVICES £t

1-2150 ED2900A 1-2150

HOMEWORK - Am2910

® Turn to your Am2900A Exercise and Laboratory Manual.

Find the exercises for the Am2910 and perform exercises 1 through
18 inclusive.

° For homework, do the famous Coffee Machine problem in EDB2900
Exercise and Laboratory Manual.

DESIGN EXAMPLE:

6 Solve the advanced traffic light problem using Boolean logic
and the state diagram design approach. See ED2900 Exercise
and Laboratory Manual.

EVALUATION BOARD EXCERCISE

® Read Am29203 Evaluation Board description in ED2900A
Exercise and Laboratory manual.

(] Perform (Day 2) Am2910 sequencer laboratory experiments.

ADVANCED MICRO DEVICES <1

1-2160 ED2900A 1-2160

HOMEWORK DESIGN PROBLEM:

THE FAMOUS COFFEE MACHINE

(See ED2900A Exercise and Laboratory Manual)

ADVANCED MICRO DEVICES &1

1-2170 ED2900A 1-2170

MICROCYCLE TIMING - Am2910

ADVANCED MICRO DEVICES {1

1-2180 ED2900A 1-2180

CCU MICROCYCLE TIMING

(] The objective is to determine the minimum clock period
possible for a given design yielding maximum execution speed.

o - Each system design is different, requiring detailed analysis.

. Always use maximum (guaranteed, worst-case) delay times and
set-up times from the data sheet for the specific system
component.

° The basic technique is straightforward:

find all possible paths from one register to another
- calculate the path delay time using worst-case device times
- the longest path determines the minimum clock period

- if necessary, look for design changes to reduce the
the time delay on the longest path

- alternately, use a variable-length clock to
accommodate the longer delays when needed

® The timing analysis approach is learned by considering
examples for the CCU using the Am2910. In addition, a
similar analysis would be performed for the ALU and other
system circuits and devices.

ADVANCED MICRO DEVICES 1

1-2190 ED2900A 1-2190

MICROCYCLE TIMING (CONT'D):

° Use the AMD Data Book for all Am2900 parts.

) Data for the non-Am2900 parts is assumed.
(For a real design, use the data sheets!)

° For the IR, status register, and pipeline register
assume Schottky technology. Also shown are delays
for the mapping PROM and the microprogram PROM.

DEVICE MIN TYP MAX

Schottky Register

clock-to-output 9 15
OE-to-output 13 20
data-set-up~time 5 2

Mapping PROM

address~-to-output 25 45
OE-to-output 15 20

Microprogram PROM

address-to-output 30 50
Ot-to-output 18 25

ADVANCED MICRO DEVICES {1

1-2200

ED2900A 1-2200

-_——

MICROCYCLE TIMING (CONT'D):

The architecture to be used in these examples is the typical
computer CCU.

Although the ALU is not shown, a similar timing analysis must
be conducted for its paths for a complete design.

Note that the Am2922 multiplexer includes a latch on its input
(I) lines that makes up part of the pipeline register. This
allows a smaller overall part count.

Observe from the Data Book for the Am2910 that different

instructions have different delay times. This means that
each involved path has to be calculated for all possible

instructions.

The potentially huge numbers of timing paths will, in practice,
be reduced by experience.

In addition to timing path diagrams, PERT charts are employed
to find the longest path.

ADVANCED MICRO DEVICES <1

L2 SADIAIA OWIW QIDNVAQY

DATA BUS
D
Q
INSTRUCTION MAP Tn
EGISTER PROM _
AP
oF STACXK
cp PL
Am2910
cLocx — SEOUENCER
=4 _
Pc
]
cp e Y
) A
—_— Am2922
ATUS CONDITION M
— ikl cooE MICROPROGRAM
. Mux TEST MEMORY
ac——
o o
PIPELINE PIPELINE
REGISTER REGISTER [=—
€ or EGISTE 5%

01ee-1

V006203

01¢e-1

1-2220 ED2900A 1-2220
O
Am2910-1 SWITCHING CHARACTERISTICS

The tables below define the Am2910-1 switching characteristics. Tables A are setup and hold tmes relative to the clock LOW-to-HIGH
transition. Tables B are combinational delays. Tables C are clock requirements. All measurements are made at 1.5V with input levels at
0 or 3V. All values are in ns. All outputs have maximum DC loading.

I. GUARANTEED CHARACTERISTICS OVER COMMERCIAL OPERATING RANGE
Am2810-1DC (T = Oto +70°C. Vce = 4.75t0 5.25V, C = 50pF)

A. Set-up and Hold Times B. Combinational Delays
nput |ty 1ty | Input ! Y |PL VECT. MAP: Full °
D =R [24 6 | Dg-D11 20 - | -
D~ PC 58 i 4 Igl3 | S0 51 -
o 75 | 0 Tc [30 - -
cc 63 | o TCEN 30 - -
CTCEN 63 | o CP(Noe2) | 75 - 60
cl 46 5 =89 15 85 - 60
BLD 36 6 cP -
All other 1 55 60
OE (Note 3) |35.30 - -
C. Clock Requirements (Note 1)
Mimimum Clock LOW Time 50 | ns
Minimum Clock HIGH Time 35| ns
Mirumum Clock Penod, 134
I = 8. 9,15 (Note 2) 13 ™
7 Boldtace imes indicate speed selected
Minimum Clock Penod. i=14 93 | ns critical paths.
Il. GUARANTEED CHARACTERISTICS OVER MILITARY OPERATING RANGE
Am2910-1DM (Tc = —55t0 +125°C, Vcc = 4.5t0 5.5V, C_ = 50pF)
A. Set-up and Hold Times B. Combinational Delays
Input ts |ty Input Y |PL VECT.MAPI Full |
D, =R 28 | 6 Do-D11 25 - -
D, = PC 62 | 4 Ig-l3 54 58 -
lg-1a 8t | o cc 35 - -
&c &5 | o CCEN 37 | - -
CCeN 63 | o CP(Note2) | 77 | - 67
ci s8 | 5 1=8.9.15 g9 - 67
ALD 42 | 6 cp .
All other | 61 67
OE (Note 31 140.301 -
C. Clock Requirements (Note 1)
Minimum Clock LOW Time I 58 | ns
Mimmum Clock HIGH Time | 42 | ns
Mirumum Clock Penod, | 114!
1= 8.9 15 (Note 2) T TTi
Minmum Clock Period. t=14 | 100 | ns
NOTES: change in the counter or could only cecrement the counter. Use the
1. Clock penods for instructions not specified a-e getermined by externai longer deiays from CP to outputs i the instruction prior to the clock was
conditions. 4 or 12 or RLD was LOW.
2. These instructions are conditional on the counter. Uce the shorter 3. Enable/Disable. Disapte umes measured 10 0.5V change on output
specified datay times if the previous instruction coutd proguce no voitage leve! with C; = 5.0pF.

ADVANCED MICRO DEVICES &1

1-2230

ED2900A 1-2230

CONTINUE INSTRUCTION TIMING ANALYSIS

Locate "all" register-to-register timing paths.

start at pipeline, CP -> output

i

Am2910 I->Y, CP->Y and I->PC-setup in parallel

after Am2910 output is stable, add micromemory
address -> output delay

§

finally, setup for pipeline and Am2922

On PERT chart, assign worst-case times to each block.

Add up times along each path.

For PERT chart, converging paths must all be satisfied,
hence use maximum time at that point (e.g. address input
to micromemory).

Maximum path defines minimum clock cycle possible.

ADVANCED MICRO DEVICES 1

1-2240 EDZ2900A 1-2240
< PrereTe
fo
Q
INSTRUCTION MAP 7::
REGISTER A rROM o
p— STACX
¢ Am 2310 ;c
cLocx — SEQUENCEN
=<
3 4,5
—
(1,2 C
cr c» Y
o -]
- Am2ry v
——— STATUS CONDIMON
GISTER coos vﬂOPﬂOGﬂ
. he . MUx TEST / MEMORY
1,2,5, 5*(
1,4 &_‘_} - d
2,5 i 10]
mrELINE PMPELINE
aemsr:V s] RecisTER =
Q] 1,2,3 lv_
DEVICE DEVICE PATH PATH 1 PATH 2 PATH3 , PATH 4 ’
PIPELINE | P — v 15 5 | 15 - I .-
2310 I — Y 70 73 -—- ——— l -
2910 1 -— 0L SE .- .—— 104 ——— ——
2910 P —y --- --- -—- 5 55
MEMORY ADDR ouT 50 c0 --- 50 50
2522 SET-UP 1 - 11 -
PIPELINE SET-UP - 5 - - 5
TOTAL ns 146 140 119 ’ 116 I 110

ADVANCED MICRO DEVICES <1

-2250
1-2250 ED2900A 1

Pipeline

Register 15

Clock - Output

Am2910 Am2910 Am2910

Ii - Yij70 Ii Setup|i04 Clock - Output|s55

and Hold

Microprogram
Memory
Addr - Output

50

Am2922
Register{ 11
Setup

®

PERT CHART

Pipeline
Register|s
Setup

CONTINUE INSTRUCTION

ADVANCED MICRO DEVICES 1

L7 SIDIAIA OWIW AIDNVAAVY

JUMP MAP

DATA BUS
D
Q
—
INSTRUCTION Q \ D
REGISTER —— PROM
MAP
—— R
OE
| cp —
CLOCK Amp910 PL
— SEQUENCER
cC
PC
P cm— STACK
1
cp cp
D Q 1] A
——
Am2922
JES—— STATUS CONDITION Y
. REGISTER . CODE ROPROGRAM
. J MUX TEST MEMORY
|
m J/
D D
PIPELINE PIPELINE
Reslsry - cp REGISTER

of

e ———————

092¢-1

V006203

092¢-1

1-2270 ED2900A 1-2270
|
|
@
|
[
1
|
Pipeline IR | {Pipeline Am2910
Register 15 |Clock ~ Output] 15 | |[Register Clock -
Clock - Output 1 JClock - Output| |[Qutput
|
- - J
Am2910 |
Ii - MAP]51 {
WIi - PC
MAP PROM MAP PROM |ISETUP
OE - Output|20 |ADDR - Qutput 45,
(86) (60) |
e e e (CONTINUE)

D

Am2910
Di - Yi

(106)

Microprogram
Memory

Addr - OQutput

Am2922
Register
Setup

|

JUMP MAP

PERT CHART

Pipeline
Register
Setup

161

ADVANCED MICRO DEVICES {1

12 SIDIAIA OWIW AIDNVAAY

CONDITIONAL JUMP - TAKEN

DATA BUS >

L.
A

INSTRUCTION Q MAP Tf \
REGISTER PROM /
R

MAP
OE
o —
CLOCK c ambo10 PL
— SEQUENCER)
6]
PC
([
cp
b \\ a 2 /\ A
—-
——— Am2922
— STATUS CONDITION Y
. REGISTER . CODE MICAOPROGRAM
. ® MUX TEST MEMORY
¢
D D
PIPELINE PIPELINE
REGISTER op REGISTER A==
Y / Y L—-——-—"
4

08l¢-1

V006201

082¢-1

1-2290 ED2900A 1-2290
|
'
!
1
l I | I I
Status Am2922 | |Pipeline Am2910
Register |15 Clock - Output}32 ! |Register Clock =
Clock - ; Clock - Qutput Qutput
Qutput)
‘]
Am2922 !
Di - Yi '
Am2910 1| Am2910 Am2910
Ii - PL{51 |Ii Setup Ii - Yi
Iand Hold
Am2910 l "
cc - vifus L \ (CONTINUE)
Pipeline | ======c=c—=c=-—Y—~—=——
77 Register |20
. Enable -
Output
Am2910 Am2910
Di - Yi]20 Di - PC|58
Setup

Microprogram
Memory
Addr - Output

Am2922
Register
Setup

CONDITIONAL JUMP - TAKEN

PERT CHART

Pipeline
Registeris

Setup

ADVANCED MICRO DEVICES Q1

1-2300

ED2900A 1-2300

SPEEDING UP THE MICROCYCLE

Consider a change to the architecture to speed up the
microcycle.

Use combinatorial SSI circuits to decode the pipeline
enable and map enable directly from the Am2910 instruction

inputs.

Although the SSI delay is small, it too could be eliminated
by driving the map and pipeline enables directly from the
microword.

ADVANCED MICRO DEVICES <1

L7 SIDIAIA OWIW AIDINVAAY

DATA BUS
D
Q
INSTRUCTION MAP <1r
REGISTER PROM D
Y
cLocK cP ce 2910
= SEQUENCER
i
CP cP Y
D
—_ A y
2922
—_— STATUS CONDITION Y
¢ REGISTER cnﬁ?xe TEST MICROPROGRAM
L]
. PROM
I
D D
PIPELINE PIPELINE
REGISTER P REGISTER oF
Y Y

01ec-1

V006203

01ee-1

1-2320

ED2900A

1-2320

1
|
Pipeline IR | | Pipeline Am2910
Register |15 Clock - Output I | Register Clock -
Clock - | [Clock - Output Output
Output :
| |
ss1 | s pp—
|
1 {Am2910 Am2910
1{Ii Setup Ii - Yi
MAP PROM MAP PROM 1|land Hold
OE - Output{20 JADDR - Output| 1 \
= I (CONTINUE)
(40) (60)) R —_———
60) (85)
]
Am2910
Di - Yij20

(80)\
"~

Microprogram
Memory
Addr - Output

|

Am2922
Register
Setup

Pipeline
Register
Setup

JUMP MAP - IMPROVED ARCHITECTURE

PERT CHART

ADVANCED

MICRO DEVICES {1

1-2330 ED2900A 1-2330
1
1
II“Il|
[
l . I
Status Am2922 ' |Pipeline Am2910
Register Clock - Output | |Register 15|Clock -
Clock - Output 1 Clock - OQutput OQutput
1
|
Am2922 |
Di - Yi !
ssI §5 | [am2910 Am2910
) Ii Setup Ii - Yi
and Hold
Am2910 L \ (CONTINUE)
cc - 11 PR . " P DA gt
Pipeline (85)
YD) Register (20
Enable -
Qutput
Am2910 Am2910
Di - Yij20 Di - PC
Setup
60)
Microprogram
Memory) 50
Addr - Output
Am2922 Pipeline
Register|1l Register |5
Setup Setup

JUMP TAKEN - IMPROVED ARCHITECTURE

PERT CHART

ADVANCED MICRO DEVICES 1

1-2340 ED2900A 1-2340
O S SN A

COFFEE MACHINE SOLUTION

(See ED2900A Excercise and Laboratory Manual)

ADVANCED MICRO DEVICES <1

	001
	002
	003
	004
	005
	006
	1-0010
	1-0020
	1-0030
	1-0040
	1-0050
	1-0060
	1-0070
	1-0080
	1-0090
	1-0100
	1-0110
	1-0120
	1-0130
	1-0140
	1-0150
	1-0160
	1-0170
	1-0180
	1-0190
	1-0200
	1-0210
	1-0220
	1-0230
	1-0240
	1-0250
	1-0260
	1-0270
	1-0280
	1-0290
	1-0300
	1-0310
	1-0320
	1-0330
	1-0340
	1-0350
	1-0360
	1-0370
	1-0380
	1-0390
	1-0400
	1-0410
	1-0420
	1-0430
	1-0440
	1-0450
	1-0460
	1-0470
	1-0480
	1-0490
	1-0500
	1-0510
	1-0520
	1-0530
	1-0540
	1-0550
	1-0560
	1-0570
	1-0580
	1-0590
	1-0600
	1-0610
	1-0620
	1-0630
	1-0640
	1-0650
	1-0660
	1-0670
	1-0680
	1-0690
	1-0700
	1-0710
	1-0720
	1-0730
	1-0740
	1-0750
	1-0760
	1-0770
	1-0780
	1-0790
	1-0800
	1-0810
	1-0820
	1-0830
	1-0840
	1-0850
	1-0860
	1-0870
	1-0880
	1-0890
	1-0900
	1-0910
	1-0920
	1-0930
	1-0940
	1-0950
	1-0960
	1-0970
	1-0980
	1-0990
	1-1000
	1-1010
	1-1020
	1-1030
	1-1040
	1-1050
	1-1060
	1-1070
	1-1080
	1-1090
	1-1100
	1-1110
	1-1120
	1-1130
	1-1140
	1-1150
	1-1160
	1-1170
	1-1180
	1-1190
	1-1200
	1-1210
	1-1220
	1-1230
	1-1240
	1-1250
	1-1260
	1-1270
	1-1280
	1-1290
	1-1300
	1-1310
	1-1320
	1-1330
	1-1340
	1-1350
	1-1360
	1-1370
	1-1380
	1-1390
	1-1400
	1-1410
	1-1420
	1-1430
	1-1440
	1-1450
	1-1460
	1-1470
	1-1480
	1-1490
	1-1500
	1-1510
	1-1520
	1-1530
	1-1540
	1-1550
	1-1560
	1-1570
	1-1580
	1-1590
	1-1600
	1-1610
	1-1620
	1-1630
	1-1640
	1-1650
	1-1660
	1-1670
	1-1680
	1-1690
	1-1700
	1-1710
	1-1720
	1-1730
	1-1740
	1-1750
	1-1760
	1-1770
	1-1780
	1-1790
	1-1800
	1-1810
	1-1820
	1-1830
	1-1840
	1-1850
	1-1860
	1-1870
	1-1880
	1-1890
	1-1900
	1-1910
	1-1920
	1-1930
	1-1940
	1-1950
	1-1960
	1-1970
	1-1980
	1-1990
	1-2000
	1-2010
	1-2020
	1-2030
	1-2040
	1-2050
	1-2060
	1-2070
	1-2080
	1-2090
	1-2100
	1-2110
	1-2120
	1-2130
	1-2140
	1-2150
	1-2160
	1-2170
	1-2180
	1-2190
	1-2200
	1-2210
	1-2220
	1-2230
	1-2240
	1-2250
	1-2260
	1-2270
	1-2280
	1-2290
	1-2300
	1-2310
	1-2320
	1-2330
	1-2340

