Advanced

Micro

Computers

A subsidiary of
Advanced Micro Devices

P

AmSYS™29/10
Microprogram
Support Software

User’s Manual

059910515-001

$15.00

REVISION RECORD

REVISION

DESCRIPTION

e

—

01

Prelimiary Issue

(1/30/81)

02

Manual Revised

(37/13781)

A

Manual Released

(6/12/81)

Publication No.

059910515-001

REVISION LETTERS 1, O. Q AND X ARE NOT USED

€ 1981 Advanced Micro Computers

Printed in 1J.S.A.

ii

Address comments concerning
this manual to:

ADVANCED MICRO COMPUTERS

Publications Department
3340 Scott Boulevard
Santa Clara, CA 95051

PREFACE

This manual provides the wuser with detailed information about the
generation, debug, and emulator support software used wtih the AmSYS29
bit-slice microprocessor development system. The manual is organized
according to the wusual sequence employed 1in program development:
definition, assembly, emulation support, post-processing, and error
analysis.

The information in this publication is believed to be accurate in all
respects. However, no responsibility is assumed for errors that might
appear in this publication. Advanced Micro Computers disclaims
responsibility for any consequences resulting from the use thereof. No
part of this manual may be copied or reproduced in any form without
prior written permission from AMC.

These products are intended for use only as described in this document.

Advanced Micro Computers cannot be resposible for the proper
functioning of undescribed features or parameters.

iii/iv

1.

TABLE OF CONTENTS

INTRODUCTION AND PURPOSE

Introductioneeeesssccesassoscsesl=l
Character Set.................-.1-2
Definition Of TerMSeceseescssessl=3
ImplementatioNeeeceeescsecoocnoeesl=3
Assembler OperatioNeieesceccessssel=3
Horizontal TabSesteeesceasesesseesl=6

DEFINITION PHASE (PHASE 1)

Introductioneeesececessceceenasel=1
Definition File.eeesccoscencese=l
Printing Control StatementS.....2=3
Definition StatementSeeeeeeesese2=b
Definition WordsSeeeseeeeseseasee2=4
Fieldseseeosssnsensoensosncnnnsee2=5
DesignatorSecescseccsseseeseecseel=5
Field RuleSeeeeessscccocossnneesl=5
NameSieeeceseteescescsosaocceseee2=8
CONStantSesseensasssccccsnanseeel—8
EXpressionSeeecesssccccccacceneee2=0
Definition WordSeeeesseeenesnss2=10
Field LengthSeeceesseeceseecsanee2~13
Constant LengthSessesccosceansa2=13
ContinuatlioNesssessescccsccanee2=13
Comment StatementSeesecsesceose2=ld
Modifiers and AttributeS.sesos.2=15
Modifier Precedenceecececeeesse2—=17
Designators as AttributeS......2-17
AttributeSeseeceeececsosonnansa2=17
DON't CareSessseecesecssesesese2=18
VariableSeeeeeeeeeeecsscanesesal2=18
Examples of Variable Fields....2-19
Definition File Reserved

WOrdSeeeneeesensssesscssosnnesnsal=19

ASSEMBLY PHASE (PHASE 2)

Introductionecssseseeceeceeseeeald=l
Assembly File StatementSeeeeeess3-3
ContinuatioNeeeeessscesesacenneeld=3
Labels or NameSeessseesacsnsessald=3
Entry Point SymbolSiseeeseeesesed=d
Statement TypPEeSeecscssscscssssseld=d
Printing Control StatementsS.....3-4

Program Counter Control

StatementSeesessesescessssacssed=6
Constant Definition Statement...3-7
Executable StatementS.cesseeeess3=7
Executable Statements Using

Format NameS.eseeeeveccoseoeceald=7
Free Format Statement (FF)u......3-8
Overlaying FoOrmatSeecescecssosesald=9
Comment StatementS.eesceceseses3d=10
ArgumentSeceeseseccsessosssasesld=10
ConsStantSeeesesssssscceccnnssseld=10
Constant LengthSeeseceeeesssasad~11
Constant ModifierSecececeececssssad=11
EXpressionS.ecesecseeccscecnnnaeeld=l?
Examples of Correct Constant

USageeveeccersoscneesncsonconnneeld~l3
Variable Field Substitutes

(VFS) eeeeesosnnevaneacsnnnnasald=ll
Required SubstitutionSeeeeeesse3=14
Substitution SeparatorsS..cse...3-14
Fitting Variable Substitutes

to Variable FieldSeesseeeeceaasld=15
Paged and Relative Addressing..3-15
Hexadecimal Attribute.eeeescess3=18
Assembler Symbol Tableeeeeeees.3=-18
Assembler Entry Point Table....3-19
Source File - Reserved Words...3-19
AMDASM Output Filenames,

Execution Assembler Output....3-19
FilenamesS.eseeesssesceccesansseald=20
EXeCutioNeieeeecesosvecvocosanaeeld=2]
Disk Drive DesignatorSeeeessess3=21
Examples of AMDASM Execution...3-24
Submit FileSieeeeeeeccscasaenaal=25
Sample of AMDASM Processing....3-25

ENMULATOR SUPPORT SOFTWARE

Introductioneececesesscecocenesaadim=l
Microprogramming Software

CommandSeeeeecesrssseecccansnaead=5
Load Bipolar Memory (MBPM).e....b—6
Verify Bipolar Memory (VBPM)....4-9
Save Bipolar Memory (SBPM).....4-10
Restore Bipolar Memory

(RBPM) eeveeeosnsosanoennnnnnaadim=ll
Dynamic Debugging Tool 29

(DDT 29) ¢eetecnnecnanncnannaaad=12

vi

TABLE OF CONTENTS (continued)

Displayecececososcocesssccccansed=l2
SLOL@icensensonossasnssnssssanseecd=l]
Status..--.........-.-.....o...4-15
Haltaoo.‘ooooonooo.o---oo-oooc-4-16
Single-stepooooooo.ooooa00000-04—16
Microcycle Stepeesscecsccscsasdd=l7
Run....................o.......4-17
Control Register StOr€ececseasasd=17
Address Register Store.cseesce.4-19
Jam AddresSesceccccscesceccassed=19
Sleep....---.....-.-..-e.......4-20
Display Trac€essececsccceceaassad=21
Macro.-.....-.................‘4—21
Display Last AddresS.ecceeceseeas=22
Display Monitor Bit.ceeseooseeebd=22
Exit...--.....p-..........-....4-22

POST PROCESSING ROUTINES

IntroductioNeccscesccscsccsasasssd=1
AMSCRM Descriptionecesceessesssesd=l
Execution and Filenames for
AMSCRM--o-oooooouoooon.oaooooo05-2
AMSCRM Example.‘...-.....a......5-3
AMPROM Descriptionvooaocomoc--o15-4
PROM Organization...-.-..a......5-4
Post Processing FeatureS.oeeeee«5=5
Execution Command for AMPROM....5=5
AMPROM FilenameSeecscecescocacesed=8
AMPROM Execution ExampleSseceesee5=8
Interactive AMPROM Inputasocesssss5=8
BNPF Paper Tape OptioNeceoececes5=9
Hexadecimal Paper Tape Option...5=9
Example of AMPROMecsseessoassesd=14
AMMAP Description..a...........5-15
AMMAP Major FunctionSeeeeceosse5=15
AMMAP Performance
CharacteristicSeecescecesscesseed=16
User Interfac@esescecscscesscseesdi—=16
Comment StatementSesscscesesssed=lbh
Assembler DirectiveScscessseses5~16
Width (PROM Width) Directive...5-16
Title Directiveieccesccescocesad=17
Base (Location Counter Base)
Directiveeeecsescscncescacsesad=17
End (End of Program)
Directiveesscsnscecosncncesesed=l?
Command Language.eecececesesssecasad=17
AMMAP Error MessageSeeessessesed~19
PFORMAT DescriptioNevecessssase5=19

6. ERROR MESSAGES AND INTERPRETATIONS
AMDASM ErrTOrSecsceccccccscescesab=l
AMDASM Errors Which Halt

EXecUutioNessceceescocscscccnss b=7
AMSCRM ErrOorSeccessscsscsveceessb=8
AMPROM ErTOrSecessssssscsceseseeb=9
AMDOS 29 Error

MessageSeeccaceccecssnenscnnsaeab=ll

TABLES

1-1. Common Terms for AMDASM.......l=4

1-2. AMDASM Command SUmmMary.eeeeseel=5

1-3. AMDASM Microcode Object

File Format..........w..-....1-6

1-4, AMDASM Field and Operator

Informationeecessssseencaeseeal=?

2-1. Permissible DesignatorsS.esse..2=6

2-2. Constant FOrMSceeeseeecessness2=0

2~3. Field Length Definitione.....2-13

2-4. Implicit Length Attributes

Of CONStantSesesssssccceassal2=lb

2-5. Permitted ModifierSecececesess2=16

2=6. Correct Modifier USC.eeeeess 2=16

2-7. Incorrect FieldSseeseesecease2~16

2-8., Modifier Precedenceeecececeeas.2=17

2-9. Variable Field ConstantsS.....2=20

3-1. Assembly Phase StatementSe....3=-2

3-2. Designators Used to Define

ConstantSeeceesecsesessoasasennssld=ll

3-3. Constant ModifierSeececeeceesa3d=12

3-4. Source File StatementSeee....3=16

3-5. Source File Paged and

Relative Addressingeesceeces.3-17

3-6., Sample Symbol Table.eeeesee..3~18

3-7. Printed Listing TypeS.eesese.3=19

3-8. AMDASM OptiOnSeseesececesesss3=22

3-9. Definition Fileeeesoseeoeeesald=27

4-1. Microprogramming Software

CommandSeeecsssscnevesocecassd=d

4-2. Data Loaded into WCS by

Store Subcommand Example....4-14
4-3. Status Register Bit

Assignment SUMMATYessasessesd=15
4=4. Control Register Mask Bit

AssignmentSececsnesccesssaaead=18
4-5. Jam Address Micro-

instructions StepSeeeccease4=20

TABLE OF CONTENTS (continued)

5=1. AMPROM OptioONSeeceeeesecscssee5=7
5=2. AMPROM Input Substitutes.....5-10
5=3. BNPF Paper Tape ContentS.....5-12
5=4. Hexadecimal Paper Tape
ContentSsseeeessssacesaassesd=1l3
5=5+ AMMAP OptiOonSeesecsecececesss’=18
5=6. AMMAP Error MesSageS.eeessss«5=19
6=1. AMDASM ErrorSeseeecscescecsesesb=2
6-2. AMDASM Errors Which Halt
Executioneisesecesessseasansseb=7
6=3. AMSCRM ErrorSeescecsccecscscssb=8
6=4. AMPROM ErrorS.ecesccescscssessb=0
6=5. AMDOS 29 ErrorSessccecssceeseb=11
FIGURES
3-1. 1Microinstruction Free Form ‘
Statementeseessesecocsssessesld=9
3-2. Definition File Expression
Examplecscecesesescscnssnnsconeeald=12
3-3. Am2900 Learning and Evaluation
Kit Architectureessssscecces.3=26
3-4. Example of Fields and

Functions.............-.....3—29

5"]. .
5_2 .

5-3 .

5=4.

Flow Chart of Examples.......3=30
Assembly Output in Block

FOrmatesecescessesaseocenasad=3l
AMDASM/Microprogramming

Software Relationshipeeceecso..b4=2
LBPM Command EXampleeeseeesesob=7
Relationship Between Data

Bits and Bytes for DDT 29

Store Subcommande.eseceeees.4=13
Example of Status Subcommand

Subcommand Display and

Interpretationesscceecceeess =16
Clock Control Logic Control

Register Mask Bit Example...4-19
Typical Monitor Bit Display

and Clock Control Logic

Card Pin Assignment.seeees..4=22
Bit MatriXeeeooeseoesoenononees5=3
Sample Printout of a

PROM MaPeveceeneosssanonneeasai=b
Physical Organization of

PROMSeeesecsceecaaseescnoesased=b
AMPROM Output for Am2900

Learning and Evaluation

G A s A

vii

CHAPTER 1

INTRODUCTION AND PURPOSE

INTRODUCTION

Microprogramming Software programs used with AmSYS29 support the
development and debugging of microcode for prototype systems designed
around microprogrammed controllers.

It is assumed that the user has some familiarity with the AmSYS29
hardware and operating procedures. For more detailed information
concerning System 29 hardware and operation, refer to the AmSYS29
Hardware Manual or related documentation.

This manual describes the Microprogram Support Software which 1is
composed of the Microprogram Generation Software and the
Microprogrammed debug software. Microprogram generation software
consists of the AMDASM meta-assembler, AMMAP, AMPROM, and AMSCRAM.
Microprogrammed debug software consists of four programs to move
microcode between disk storage and bipolar memory and debug support
that interfaces the CPU with the clock control logic.

AMDASM 1s a meta-assembler processor used to generate microprogram
object code. An assembler reads another program written in a symbolic
form and produces an output of binary words corresponding to the
symbolic input. A microprogram assembler is a special kind of
assembler formally called a meta-assembler.

A meta-assembler differs from an ordinary assembler in that most of the
symbols are defined by the user prior to the assembly process. In an
ordinary assembler, the user can define labels for instructions and
symbols for particular data words, but the instructions themselves,
including their associated word length and format, are generally
already defined by the assembler. A meta-assembler format rarely
establishes the entire contents of a microinstruction, but rather
defines only a few bits of the total word.

A meta-assembler must be far more flexible than a traditional
assembler, since it is used with many hardware configurations. Each
hardware configuration can require a different format and word lengths
(microinstructions) over 100 bits.

AMDASM operates in two phases, the definition phase (PHASEl) and the
assembly phase (PHASE2). The definition phase establishes word length
and definition of formats and constants (the definition file). The
assembly phase 1is traditional assembly process (assembly file)
performed on a program using the formats and constants from the
definition file. This phase reads a symbolic program, handles most
common assembler features such as labeling and setting the address

counter, and produces a binary output and various listings and
cross~reference tables. The definition phase is executed first to set
up the table which associates the user’s format names and constant
names with their corresponding bit patterns.

Following assembly of the user’s program, a file is retained which
contains the assembled microprogram. This file is then prepared for
PROM programming and for debugging in the AmSYS29 microprogrammed
controller. The output utility can select columns and rows for a given
PROM freeing the user from any restrictions regarding the organization
of the microprogram memory.

The program to be assembled may be written using any of the features
specified during the definition phase. In the simplest case, the
assembly phase source program might be written using Just strings of
ones and zeros, with the definition phase consisting only of the micro-
instruction word length. At the other extreme, the assembly phase
source program may refer to multiple format names from the definition
phase for each microinstruction. Any number of formats may be overlaid
to define a single microinstruction, as long as the defined or variable
fields of each format fall into the don’t care fields of the other
formats invoked. A user can overlay a format specifying sequence
control operations, another for data control, and a third for memory
control,

The AMC assembler has been written to maximize its flexibility and ease
of use for hardware designers. Every effort has been made to make the
program efficient on the machine and efficient at the human interface,
with a minimal knowledge of the host machine’s operating system re-
quired.

NOTE
Throughout this manual examples often refer to the

Am2900 Learning and Evaluation Kit {llustrated in
Chapter 5. :

CHARACTER SET

The following characters are legal in AMDASM source statements.
® The letters of the alphabet, A through Z. Both upper and lower
case letters are allowed. Internally, AMDASM treats all letters
as though they were upper case, but the characters are printed ex-
actly as they were input in the source files.

® The digits 0 through 9.

1-2

® The following special characters:

CHARACTER MEANING
+ Plus Sign
- Minus Sign
* Asterisk
/ Slash
’ Comma
(Left Parenthesis
) Right Parenthesis
& Ampersand
: Colon
S Dollar Sign
% Percent Sign
it Blank or Space
H Semicolon
. Period
cr Carriage Return
HT Horizontal Tab

DEFINITION OF TERMS

There are no standard terms associated with microprogram assemblers;
the more common terms used in this manual are listed in table 1-1.

IMPLEMENTATION

AMDASM operates on the Advanced Micro Computers’ AmSYS29 under the
AMDOS29 Operation System. Table 1-2 1is a summary of AMDASM commands
for both the definition and assembly phase. 1Included are examples or
constraints for each command.

ASSEMBLER OPERATION

AMDASM is placed into execution by control statements from the console
input device.

The definition file is processed in PHASE 1 and if it contains no
errors the assembly phase begins. PHASE 2 Pass 1 assigns values to
source file labels and allocates storage. PHASE 2 Pass 2 translates
the source file source program into object code.

1-3

1-4

TABLE 1-1.

COMMON TERMS FOR AMDASM

TERM

DEFINITION

¥

Name or label

Constant
Constant Name
Field

Format

Format Name

Line

Modifiers

Attribute

Designator

Delimiters

Default Values

Options

(]

cr

Indicates a required blank character.

1-8 characters are assigned a value by the
programmer or the assembly process. Labels are
used only in the assembly file.

A specific pattern of 1-16 bits.
A name for a constant.
A group of adjacent bits in a microinstruction

A model for a microinstruction consisting of
fields containing constants, variables, and
don’t cares.

A name for a format.

An input 1line of up to 128 characters on a
console or a diskette file.

Symbols (*%:-$) which indicate the data given
for a field is to be modified.

A modifier which is permanently associated
with a field.

A symbol (V, X, B# Q#, or H#) which indicates
the type of field or constant: variable (V),
don”t care (X), binary (B#), octal (Q#),
decimal (D#), or hexadecimal (H#).

A symbol (:B=,/) used to indicate the end of
a name (:B=), the end of a field (,), or the
continuation of a statement (/) on another
line.

The value which will be substituted if an
explicit value is not specified.

Choices available which indicate the input and
output devices to be used, the type of output
listing desired, and processing of one or both
phases (definition and assembly).

Brackets indicate that the enclosed parameter
is optional.

Carriage Return.

TABLE 1-2. AMDASM COMMAND SUMMARY

DEFINITION PHASE
COMMAND EXAMPLE OR CONSTRAINT
TITLE Max 60 characters
WORD n n < 128 .
EQUP Name : EQU¥constant/expression
SUBY Name : SUBPYfield, ... 10 fields max
DEF} Name :DEFBfield,... 30 fields max
NOLIST Do not print following statements
LIST Print following statements
END End of definition source file
COMMAND ASSEMBLY PHASE
TITLEY Maximum 60 characters
EQUY Name : EQU¥constant /expression
NOLIST Do not print following statements
LIST Print following statements
fen.p Format nameBVFS,...(from DEF)
FFY Free format FF¥field,...max 30
SPACE¥n Spaces n blank lines
EJECT Ejects page
ORGHn Resets program counter (forward)
RES¥n Reserves n words of code
ALIGN¥n Sets PC to next even multiple of n
LABEL: Preceded f.n. or FF, value = PC
LABEL:: Entry point for op code mapping memory
H Comment statement
NOTES

B = Required space
Names = 8 characters, no blanks

Char 1 = A-Z, or Char 2-8 = A-Z, 1-9

esese = Optional

User-selected options determine whether the definition phase 1s to be
executed or if a previous execution of that phase has already
established the table of formats on a file which will be used by the
assembly process.

The AMDOS29 operation system allocates all necessary input and output
resources, such as files, automatically. Table 1-3 is the AMDASM
microcode object file format. Table 1-4 is a summary of field and
operator information.

1-5

TABLE 1l-3. AMDASM MICROCODE OBJECT FILE FORMAT

BYTE NUMBERS DESCRIPTION
0-59 Title record (60 bytes)
60 " | Microword size (i.e., width in bits)
61-62 Maximum location (program) counter value
63-64 Number of microinstructions in file
65 m = Number of 16 bit words required for
each microinstruction
* 66~67 One microinstruction record
*% 68«(68+2m=1)
**%% (68+2m) - (68+4m=-1)

* Location (program) counter value.

** Magk defining don’t care fields bit = l- means this is a don’t
care bit; bit = O~ means this is a defined bit.

**% Contents of microinstruction. If corresponding bit of mask =
0, this bit is a defined value. Don’t care bits = 0.

HORIZONTAL TABS

A horizontal tab may be entered for readability as the user inputs his
source files. The assembler places the character following the hori-
zontal tab at the next tab position. Tab stops begin with position 1,
and occur every eight positions thereafter as follows: position 1, 9,
17, 25, etc. Thus if data is input at character position 5, a tab will
place the next character input as position 9. However, if data is
input at character position 17, a tab will place the next character at
position 23. Horizontal tabs may be used in both the definition and
assembly files.

1-6

TABLE 1-4. AMDASM 29 FIELD AND OPERATOR INFORMATION

CONSTANTS, EXPRESSIONS. CONSTANT FIELDS

[n] des digits [mod]

JARIABLE FIELDS

n V [attr] {[des] [digits] [mod] (digits are default value)

nV [attr] X (defaults to X)
max n = 16

DON’T CARE FIELDS

nV [attr] X max n = word size

MODIFIERS gmodz and ATTRIBUTES gattr!

* Inversion
- Negation
A Right justify or field has expression
: Truncation
$ Paging (relative addressing) ATTRIBUTE only, sets % and :
EXPRESSION OPERATORS
+ Add
- Subtract Evaluated left to right
* Multiply
/ Divide
DESIGNATORS
B# Binary
D# Decimal
Q# Octal

H# Hexadecimal

VARIABLE FIELD SUBSTITUTES (VFS)

Label

Label$
Expression
Digits

Des digits [mod]
Constant name

1-7

1-8

TABLE 1l-4.

NOTES
[1 = Optional
Des = Designator
Attr = Attribute
Mod = Modifier

Digits = Numbers

All values are binary. Bytes 61 and 62 are stored
low order byte first, high order byte second (e.g.,
if the value is OlFF it would be stored as FF,0l).
This also applies for bytes 63-64, 66-67, the mask
and the microinstruction which are stored and
written as 8080 addresses (i.e., 2 bytes with low
order first).

If the microcode is not continuous (due to the use
of ALIGN, ORG or RES), there is no data stored for
the empty words of microcode.

AMDASM 29 FIELD AND OPERATOR INFORMATION (continued)

CHAPTER 2
DEFINITION PHASE (PHASE 1)

INTRODUCTION

The definition phase allows the user to define the microword length,
constants and formats used to write source programs.

The AMDASM definition phase includes the following features:

® A name from 1l to 8 characters assigned to a constant value.

® A name used to define a format whose fields are given as vari-
ables, don’t cares, explicit bit patterns (values), or specific
addresses by using appropriate designators.

® Blanks used to improve readability.

® Microword length from 1 to 128 bits.

® Modifiers that include inversion, truncation, negation, and de-
signation of a field as an address field to be right-justified

(placing a value in a field at the right with leading bits set to
Zero).

® The ability to set a page size via the attribute $. This permits

error detection when the assembly phase calls for a jump or branch
to an address which is on a different page of the microcode.

Data from the definition phase may be retained for use with subsequent
assembly phase source programs and/or it may be modified as desired.

DEFINITION FILE

Definitions are input via a sequence of instructions called the
definition file whose content includes the following items:

TITLE (heading to be printed on output listing)
WORD n (defines microinstruction word length)

l
| Printing control statements
| Definition statements

| Comment statements

!

END

The control statement WORD appears as the first statement in the
definition file after the optional TITLE statement. The END statement
is the last statement in the definition file.

Other statements (shown boxed) may be interspersed throughout the body
of the file.

In the definition file, microinstruction length is defined‘first. The
word can be any length from 1 to 128 bits, which is adequate for all
but the most sophisticated processors.

Each user defined symbol has a specific bit pattern associated with it.
A format name is used to define all or part of one microinstruction.
The format definition can consist of numeric fields defined to contain
specific bit patterns, variables filled in when the format is invoked,
and don’t care states.

Once the definition phase has been executed, its output can be retained
and used by future programs. The don’t care states are retained until
defined, which may not happen urtil after the assembly process, during
a third, or post-processing, phase. At the conclusion of assembly a
listing of the microprogram shows an X for every undefined bit. This
is extremely useful during the development process before the microword
length has been optimized by sharing fields.

To facilitate readability, blanks may appear in most parts of these
statements, blanks are not permitted between the letters of the control
words TITLE, WORD, END, LIST, NOLIST, DEF, EQU, or SUB. An entire
blank line may be inserted by entering a semicolon and a carriage
return. The definition file statements TITLE, WORD, and END are
described in the following paragraphs.

TITLE

To print a title on definition file statements, the first statement
input should be TITLE. The format is:

TITLE¥ title desired by user
TITLE must begin on a new line and is followed by a blank and a maximum
of 60 characters.
WORD
WORD statement input is used after the optional TITLE. Its format is:
WORD¥n
WORDE is followed by a decimal integer value n that indicates the
microword size in bits (range 1-128), and by at least one blank and 1

to 3 decimal digits. It is the first input line (second input line if
TITLE was used) and must begin on a separate line.

2-2

If WORD is omitted, assembly will halt as the definition phase must
know the size of the microword in order to proceed.

END

END indicates the end of the definition file. TIf END 1is omitted an
error message will be printed but processing will continue. The format
is:

END

END must begin on a new line and be the last statement in the
definition file. It is always followed by a carriage return.

'PRINTING CONTROL STATEMENTS

The description of printing control statements, LIST, NOLIST, EJECT,
and SPACE is as follows:

LIST

LIST indicates that the following statements are to be printed whenever
printing of the definition file input is requested. This feature is
used when correcting or modifying a definition file. AMDASM selects
LIST as the default option. NOLIST must be specified if the user does
not wish to print his definition file source statements. The format
is:

LIST
LIST begins on a new line and is always followed by a carriage return.
It precedes the definition file statements to be printed and is
interspersed between complete definition statements.
NOLIST
NOLIST turns printing off, and printing of the definition file input
statements will not occur until LIST is encountered. However, any
source statement containing an error will be listed. The format is:
NOLIST
NOLIST begins on a new line and is followed by a carriage return. It

precedes the definition file statements, which are not to be listed,
and is interspersed between complete source statements.

2-3

SPACE

SPACE indicates that the assembler is to leave n blank lines before
printing the next source statement. The format is:

SPACE¥n

SPACE begins on a new line and is followed by ¥ and a decimal digit
indicating the number of succeeding lines to be left blank. It is
inserted in the definition file at the point where the spaces are
desired.

EJECT

An EJECT statement causes the assembler to generate blank lines on a
list device so that any previous lines plus the blank lines equals the
specified page length (default is 66 lines). It then generates a new
page headed with the title. On a printer a new page is ejected. The
format of this statement is:

EJECT

EJECT begins on a new line and is followed by a carriage return.

DEFINITION STATEMENTS

Definition statements are used to define constants, full microword
formats, or partial microword formats. The format for these statements
is:
name: definition word¥ |fieldl, field2,..., fieldn|
lor |
| constant |

DEFINITION WORDS

The definition words and their functions are:

EQU is used to set a name equal to a bit pattern.
DEF is used to define a format for a microinstruction.
SUB is used to define a format for part of a microinstruction.

NUMBER OF PERMITTED EQUs, DEFs, AND SUBs

There is no fixed maximum number of EQUs, DEFs, or SUBs because AMDASM
stores all data dynamically. The user of a 64K-byte system has avail-
able, in PHASEl, approximately 42K bytes for variable storage; PHASE2
has approximately 40K bytes.

PHASEl allocates:
12 bytes for each EQU
12 bytes for each format or subformat name
4 bytes for each field in a DEF or SUB

PHASE2 allocates:
12 bytes for each format name, constant name and label
4 bytes for each format field

FIELDS

A field is a contiguous group of bits in a microinstruction (such as
branch address, next instruction control, etc.) Each field may be one
of three types:

® A constant field whose content is a fixed value or a fixed bit
pattern, (for example, the next instruction control).

® A variable field whose content will contain different bit patterns
in different situations (for example, an address field).

® A don’t care field whose content is not used in this format (for
example, the address field for a continue instruction).

The type of data in a particular field is indicated by using
designators.

DESIGNATORS

Permissible designators and their meanings are shown in table 2-l.

FIELD RULES

Each field following a definition word contains a maximum of 16 bits
except the don’t care field which contains a bit length and the
designator X. The field is followed by a comma unless it is the last or
only field following the definition word.

Define a constant field by using the designators B#, Q#, D#, or H# and
the appropriate digits. Some fields contain a variable which gives a
bit length and the designator V, the field type defaults to binary.
Fields may also contain a constant name or subformat name which has
been previously defined.

TABLE 2-1.

PERMISSIBLE DESIGNATORS

DESIGNATOR

MEANING

EXAMPLE

B#

Q#

D#

Hit

A constant or field whose
contents will be represented
using binary digits (0 and
1) Each digit has an im-
plicit length of one bit.

A counstant or field whose
contents will be represented
using octal digits (0 thru
7). Each digit has an im-
plicit length of three bits.

A constant or field whose
contents will be represented
using decimal digits (0
through 9). For a constant
name definition using EQU,
the implicit length for dec=-
imal numbers i1is the number
of bits needed to represent
the number in binary. Thus,
D#3 has an implicit length
of 2, D#4 has an implicit
length of 3. TFor fields in
a format (DEF or SUB), the
D# must be preceded by dec-
imal digit(s) giving an ex-
plicit 1length (number of
bits) for the field.

A constant or field whose
contents will be represented
using hexadecimal digits (0
through 9, A through F).
Each digit has an implicit
length of four bits.

A don’t care field. X must
be preceded by decimal digit
(s) giving an explicit
length for this field (i.e.,
the bit length). ’

A variable field. V must be
preceded by a decimal digit
(s) giving an explicit
length for this field (i.e.,
bit length).

B#101 (three bits 101).

Q#32 (six bits 011010).

D#4 (three bits 100).

3D#6 (three bits 110).

H#8A (eight bits
10001010).

4X (4 bit don’t care
field).

6V (six bit variable
field).

2-6

TABLE 2-1. PERMISSIBLE DESIGNATORS (continued)
DESIGNATOR MEANING EXAMPLE
' When a designator B#, Q#,
(continued | D#, or H# is given after a

V, it becomes a permanent
attribute of that field and
the assembler assumes that
any value specified for that
field will be given in
digits appropriate to that
designator.

These permanent designators
for variable fields may be
overridden when using the
format during the assembly
phase. If a variable field
has no designator given, it
defaults to binary. For
example, 1if all variable
fields are given as nVQ# in
the definition phase, all
values for this variable
field that are octal may be
written during the assembly
phase by writing only the
necessary octal digits.

The content of a wvariable
field may be given during
the definition phase. The V
designator may be followed
by the B#, Q#, D#, or #H and
these may be followed by ap-
propriate digits called the
default value for this
field.

Thus 6VQ# indicates a 6-bit
variable field whose con-
tents will be given in
octal. 6VQ#35 indicates that
if no value 1is substituted
in the Assembly Phase, this
variable field should assume
the default value 011101.

NOTE

The designators B#, Q#, D#, and #H must not have

blanks between the letter and the #.

The desired

value for the field is then given in the appropriate
digits as shown in the examples.

NAMES

Names may be user-defined constants, formats, or subformats.

They are the first element in a statement. Each name begins with an
alphabetic character (A-Z) or a period (.) and is terminated by a colon
(). A maximum of eight characters not i1including the colon is
permitted. Embedded blanks are not permitted. Names are followed by
EQU, DEF, or SUB. Positions 2 through 8 contain only alphabetic
characters (A-Z), a period (.), or the digits (0 through 9).

Names that contain more than eight characters will be truncated after
the first eight characters. A name may be preceded by blanks or
followed by blanks after the colon and before the EQU, SUB or DEF.
Examples of proper names are:

NUMBER:

«SHIFT:
REG.3:

Improper names are:

*ADD (special character used)

SHIFT LEFT: (embedded blank, more than eight characters)

3MUXCNTL: (first character not A through Z or period)
CONSTANTS

Constants are used to associate a name with a value or to define a
specified fixed bit pattern. They are expressed by using designators
and the appropriate digits as follows:

Q#62 This defines the bit pattern 110010 and has an implicit bit
length of 6 bits (each octal digit represents 3 bits).

4H#5 A decimal digit precedes the designator the 4 represents the
explicit length of the field, and the bit pattern is 1010.

Explicit and implicit lengths are more fully defined later in this
chapter. Constants are left justified.

Constants must be represented in 16 bits (i.e., 216.1 maximum). The
permlssible forms for constants are shown in table 2-2.

2-8

TABLE 2-2. CONSTANT FORMS

PERMISSIBLE
FORM DIGITS MEANING
n 0 through 9 - Decimal value (default form)

i B#n | 0 or 1 Binary value

i Q#fn | 0 through 7 Octal value

i D#n | O through 9 Decimal value

i H#n | O through 9 Hexadecimal value

or A through F

where: 1 represents optional digits specifying the explicit length.

EXPRESSIONS

When a field contains an expression, the expression may use designators
labels, operators and/or digits.

Operators permitted in expressions are:

OPERATOR DESCRIPTION

+ Add the value of the left operand to the value of the
operand on the right of +.

- Subtract the value of the operand to the right of the
minus (~) from the value of the operand on the left.

* Multiply the left operand by the right operand.

/ Divide the operand on the left (dividend) by the
operand on the right (divisor).

All expressions are evaluated from left to right. There 1s no
hierarchy for the operators and no parentheses for nesting are
permitted. The result is a value that is a positive constant which is
calculated using integers; remainders are discarded.

2-9

DEFINITION WORDS
The definition words EQU, DEF, and SUB are described as follows:

EQU

EQU is used to equate a constant name to a constant value or expres-
sions The format is:

name:EQUY constant (or expression)

This equates the characters given in the name position to the value of
the constant or expression. Only one expression or constant is permit-
ted following the EQU.

The following sets the name R12 equal to the bit pattern 1100:
R12:EQUBH{#C

Future references to the bit pattern 1100 (register 12) may be made by
using the name R12.

The default type 1s decimal if no designator follows the EQU.
(R10:EQU¥10 assumes the bit pattern 1010, implicit length 4 bits).

Each EQU statement begins on a new line with a name. The name and
colon (:) must be followed by EQUY (blanks between the colon and EQU
are optional). It contains a constant, an expression or a constant
name which represents a bit pattern. The statement defines a wvalue
that can be represented in 16 bits (216-1 maximum).

Each EQU may be followed by a semicclon and comment after the constant
or expression. To continue on additional lines use a / (slash) as the
first nomblank character in those lines. The statement is used in the
assembly file as well as in the definition file.

DEF

DEF is used to define a complete microword format by establishing the
contents of unvarying portions of the microword, the position and
length of variable and don’t care fields. In addition, default values
for variable portions of the word may be specified. The format is:

name: DEFPfieldl, field2,...,fieldn

Each DEF begins on a new line, preceded by a name. It is followed by
one or more blanks, then fields separated by commas. The sum of the
lengths of all fields must equal the microword length specified by
WORD. Every bit in the microword is specified in terms of constants,
don’t cares, or variables.

2-10

A DEF may contain blanks between name, the colon, and DEFH. To
continue the statement on additional lines use a / (slash) as the first
nonblank character in those 1lines. A semicolon and a comment may
follow after any full field is defined. A subformat name or constant
name which has been PREVIOUSLY defined, don‘t care, constant or
expression may be part of any field.

A DEF may contain a variable field which specifies a default value for
the field. The statement may be overlaid' on don’t care fields with
another format to obtain a complete microword during the assembly
phase. Overlaying on other than don’t care fields will result in
errors, so this feature must be used with care.

SUB

SUB is used to define a subformat of the microword. A subformat is the
same as a format except that it contains fewer bits than the full
microword. The fields may be constants, variables or don’t cares. Its
format is:

name: SUBY fieldl, field2, ..., fieldn

Each SUB is preceded by a name: (colon) and followed by one or more
blanks, then fields separated by commas. It precedes the DEF in which
it is first referenced, begins on a new line and can not be used in the
Assembly File.

A SUB may be less than a microword in length bits. To continue on
additional lines use / (slash) as the first nonblank character in those
lines. It can be followed by a semicolon and a comment after any
complete field or contain (for any field) a constant name that was
previously defined, or a constant, expression, variable, or don‘t care
specification.

A SUB will be useful when several formats contain identical adjacent
fields. In this case, the subformat name may be used in each DEF where
these fields occur.

EXAMPLES OF EQU, SUB, DEF (H1)

An EQU is used to associate a bit pattern with a symbol (comstant
name). An example of this and other applications are as follows:

R2:EQUYB#010 This defines the name R2
as a 3 bit constant with
the bit pattern 010. When-
ever the symbol R2 1is
used, the bit pattern 010
will be substituted.

A DEF is used to associlate bit patterns with
Examples of this and other applications are:

Alternatively, by

SHFTRT:SUBB3V,B#10110, 5X

ADD:DEF¥

3v,B#10110,5X,B#0011,4X,B#010

ADD:DEFBSHFTRT, B#0011, 4X,R2

TWOK:EQU®¥2048

EIGHT :EQU¥S8

using

different

TWOK:EQU¥2048 could be written:

TWOK: EQUBB#100000000000
TWOK : EQUYB #4000
TWOK : EQUBH#800

designators, the

This defines SHFTRT as a
subformat with a 3 bit
variable field (3V), a 5
bit constant field
(B#10110), and a 5 bit
don’t care field (S5X) for
a total of 13 bits.

a symbol (format name).

This defines ADD as a
format with a 3 bit vari-
able field (3V), a 5 bit
constant field (B#10110),
5 bit don’t care field
(5X), a 4 bit constant
field (B#001l1), a 4 bit
don‘t care field (4X),
and a 3 bit constant
field (B#101). This
gives a total microword
length of 24 bits.

Alternatively, the same
format name could be
written using the
subformat name (SHFTRT)
and the constant name
(R2) previously defined.

This assigns the bit pat-
tern 1000000000000 and a
length of 12 bits to the
name TWOK. The 2048 1is
assumed to be decimal and
the length 1is taken from
the rightmost bit through
the leftmost bit in which
a 1 appears.

This yields the bit pat-

tern 1000 with a length
of 4.

constant

All of these yileld the bit pattern 100000000000 and a length of 12.

2-12

FIELD LENGTHS

Each field may be given an explicit or implicit length. An explicit
length is indicated for a field by using decimal digit(s) before the
designator. The maximum length is 16 bits except for don’t care fields
whose maximum length is the microword size. The expression 3B#101
indicates a field with an explicit length of 3 bits.

Decimal, variable, or don’t care designators require an explicit length
before the designator D#, V, or X. Table 2-3 shows examples of field
length definition. Decimal fields in a format or subformat require an
explicit length since there is no direct correlation between the number
of decimal digits given and the number of binary bits desired for this
field.

TABLE 2-3. FIELD LENGTH DEFINITION

EXAMPLE DESCRIPTION
4v Defines a variable field with the explicit length of
4 bits.
5D#16 Defines a constant field with the explicit length of

5 bits and the bit pattern 10000.

R3:EQUY5 Defines a constant using the default type decimal,
value 5. The implicit bit length is 3.

CONSTANT LENGTHS

A constant may have an implicit or an explicit length. An explicit
length is given by placing the bit length (in decimal digits) before
the designator. An example of this is B:EQY4D#8 which has an
explicit length of 4 and the bit pattern 1000.

If an explicit 1length is not given, the constant is assigned an
implicit length determined by the designator used. Table 2-4 shows
some examples of the attributes of implicit length constants.

CONTINUATION

Any statement may be continued on additional lines by placing a /
(slash) as the first nonblank character in those lines. Continuation
should be indicated after a complete field (including comma) has been

2-13

given on the preceding line, but not between the designators B, D, Q,
or H, and the # sign.

Examples are:

SHFTRT:SUB¥3V,B#10110,

/5%
ADD1ldef33V,B#10110, 5X,
/B#0011, 4X,8#010
TABLE 2-4. IMPLICIT LENGTH ATTRIBUTES OF CONSTANTS
IMPLICIT BINARY
CONSTANT LENGTH VALUE DESCRIPTION
AB:EQU¥B#1000 4 1000 Each binary digit yields an
implicit length of 1 bit per
digit.
BB:EQUYQ#10 '

6 001 000 Each octal digit yields an im-
plicit 1length of 3 bits per
digit.

CB:EQUBH#10 :

8 0001 0000 | Each hexadecimal digit yields
an implicit length of 4 bits
per digit.

DB:EQU¥12 1100

4 The 12 is assumed to be deci-
mal, and the implicit length
is counted from the rightmost
bit through the leftmost 1.

EB:EQU¥4 3 100 Same as above. Implicit
length 3.

COMMENT STATEMENTS

A comment statement 18 used to provide information about program
variables or program flow. It may be a full or a partial line. The
format is:

scomment text

Comments begin with a semicolon and are placed after a completed field
if used within a DEF or SUB. Subsequent fields for that DEF or SUB
must begin on a new line with a / (slash) indicating that they are a
continuation.

2-14

Examples of comment statements are as follows:

1. SHFTRT:SUBY3V,; this is a shift right subformat.

2. /B#10110,5X; which is continued on a second line.

3. ; the ADD given below is a complete microword format.
4. ADD:DEFBSHFTRT,B#0011,4X,R2.

5. ; total number of bits for SHFTRT is 13.

6. ; the bit pattern for SHFTRT will be substituted.

7. 3 in the ADD given above.

Statements 3, 5, 6, and 7 are full comment lines. Statements 1 and 2
are statements to be processed but all characters after the ‘semicolon’
will be treated as comments. The SUB begun in statement 1 is continued

in statement 2 where / indicates continuation.
A :

MODIFIERS AND ATTRIBUTES

Modifiers are placed after a constant or after the designator V. When
placed after a constant, they alter only the value given. When used
after a V, the modifiers are called attributes of that field and are
permanently associated with the field. Attributes will modify any
default value given with the variable field in the definition file and
they will modify any value substituted for this variable field when the -
format name is used in the assembly file.

Table 2-5 provides a list of permitted modifiers and their actions.
Table 2-6 provides examples of correct use of modifiers with constants.

Table 2-7 provides examples of incorrect fields due to omission of
modifiers.

Modifiers must appear after the value of a constant (1.e., 12H#4C% or
5Q#37:), appear after the V but before the (optional) default value for
a variable field (12V7%Q#46), if they are to be permanent attributes of
the field. The 7Z and the Q# become permanent attributes of this
variable field and are also modifiers of the default value. To modify
only the default value, modifiers must follow the value (12VQ#46%).
Modifiers do not appear with don’t cares (e.g., 3XZ is illegal).

The modifiers (*) and (-) may not both be used for the same field.

A more detailed description and examples are given in Chapter 3.

TABLE 2-5. PERMITTED MODIFIERS

MODIFIER

ACTION PERFORMED ON CONSTANTS OR DEFAULT VALUES

*

ee

Inversion (one’s complement).
Negate the number (two’s complement).

Truncate on the left to make the value given fit into the
number of explicit bits for this field.

This field is to be considered an address field. Any value
given is to be right-justified in the field and any bits
remaining on the left are to be filled with zeros.

The field is treated as an address within a paged memory
organization. This attribute permits substitution in this
regard and initiates out-of-bounds page checking logic.
Used only with variable fields as an attribute (may not
follow a default value).

TABLE 2-6. CORRECT MODIFIER USE

EXAMPLE

DESCRIPTION

Dit5%
B#0101~-

6Q#357:

12H#A5Z

Yields bit pattern 010 (101 (5) is inverted).
Yields bit pattern 1011 (010l is two’s complemented).

Yields bit pattern 101 111 (the left bits 0ll (3) are trun-
cated).

Yields bit pattern 0000 1010 0101 (the A5 is right justified
in a 12 bit field).

TABLE 2-7. 1INCORRECT FIELDS

EXAMPLE

DESCRIPTION

4B#101

5Q#34

Explicit length is 4 bits, only 3 bits follow the B# but no
% sign (indicating right justification) is given.

Explicit length is 5 bits but the 34 generates 6 bits and no
¢ has been given to indicate that the leftmost bit is to be
truncated.

MODIFIER PRECEDENCE

Modifiers or attributes may appear in any order but will always be pro-
cessed in the order shown in table 2-8,

TABLE 2-8. MODIFIER PRECEDENCE

MODIFIER DESCRIPTION

"% or - Inversion or negation.
A Right Justification.
: Truncation.
$ Paged addressing.

DESIGNATORS AS ATTRIBUTES

Variable fields may use the B#, Q#, D#, and H# as attributes and once
given they are permanently associated with that variable field unless
overridden. If a variable field has no radix base specified it will
default to binary.

If the user wants to always input assembly variables in octal, each
variable field in the definition phase should be written as nVQ#. Then
in the assembly phase the value for this field may be given as 27 and
the program will assume that these are octal digits. If octal is
not desired in the assembly file, the field in the assembly file
program could be written as B#010111, H#27, etc., to override the octal
attribute.

If a variable field is defined with a default value (4VH#C) the
designator (H#) becomes an attribute of that field.

The attribute H#, if given with a variable field in the Definition
File, may need to be repeated in the Assembly File. This is necessary
since the program can not distinguish hexadecimal values which begin
with A through F from names, which may also begin with the letters A
through F.

ATTRIBUTES

The $ attribute may be used only with variable fields to indicate paged
addressing. When the § is given with a variable field, the % and

attributes are automatically set for that field. The $ will indicate
that this is a field whose remaining upper (leftmost) bits are to be

truncated and compared with the corresponding bits of the current
program counter. If the truncated bits do not agree with the
corresponding bits of the PC, an error occurs.

The desired length of the page is determined by the number of bits
given as the width of this variable field. Thus, if a page 1s to be
256 words deep, the variable field would be defined as 8VS$. Any value
substituted for this field will be truncated on the left and the
remaining eight right-hand bits will be substituted into the field. If
the truncated left bits do not agree with the corresponding bits of the
current program counter value, the substitution would attempt to
produce a jump to another page; thus an error message is generated.

DON'T CARES

A don’t care is used to indicate the bits (a field) whose state (bit
pattern) is irrelevant in this microword instruction.

The form is:
nX
where
n is the number of bits (in decimal), and X indicates don’t care.

Don’t cares are printed as an X in the assembly phase output and may be
assigned the value O or 1 during the post processing phase. Don’t cares
are the only fields that may be greater than 16 bits in length or used
in a format that is overlayed (or‘ed) with another format containing a
constant in the same field.

VARIABLES

Variables are used to define microword fields whose contents need not
be assigned until assembly time. A variable field may be assigned a
default value in the definition file. The formats are:

nV

nV attributes

nV attributes default-value

nV attributes default-value modifiers
nV default-value modifiers

A variable field is preceded by an explicit length (n) which gives (in
decimal) the bit length of the field (n<l6), contains a V after the
length, and ends with a comma (,) if another field follows it.

A % 1is used after the V if an expression or the program counter is to
be used as a substitute for this field in the Assembly File.

2-18

A variable field may contain attributes immediately after the V such as
inversion (*) that inverts any value given for this field. The field
contains a designator given with or without a default value that
automatically determines the default type for this field. A default
value is given in binary indicated by (B#), octal (Q#), hexadecimal
(8#), or decimal (D#) followed by the desired digits. Modifiers
appearing after the default value modify only the default value and are
not permanently associated with this variable field. Default values
given as X indicating don’t care are used to overlay this field during
the assembly phase. Either a default value of don’t care or an
explicit default value (bit pattern) may be used, but not both.

Examples of the correct use of variable fields with a default value of
don’t care are:

3vx
3v*x
3v-72X
3Vv*:X

EXAMPLES OF VARIABLE FIELDS

Table 2-9 describes variable field contents. It shows example field
contents and discusses their meanings.

To summarize, attributes placed immediately after the V are permanently
attached to this field and will operate on any default value given with
the field as well as any value substituted for the field in the
assembly file. Modifiers placed after a default apply only to the
default value. Examples of incorrect variable fields are:

INCORRECT
FIELD
CONTENT DESCRIPTION
3VH#E The H#7 yields 4 bits. No : was given to indicate that the
left bit should be truncated to fit the 3-bit field.
3: VH#7 The : 1s in an incorrect position. It should be 3V:H#7 or
3VH#7: (depending on whether the truncation is a permanent
field attribute or a modifier of the default value H#7).

DEFINITION FILE RESERVED WORDS

The following words are used during the assembly phase as assembler
control statements and may not be used as format names or constant
names in the definition file:

ALIGN EQU NOLIST SPACE
EJECT FF ORG TITLE
END LIST RES

TABLE 2-9. VARIABLE FIELD CONTENTS

FIELD
CONTENT

MEANING

3v

3vq#

3V*Z

3vQ#5

IVQ#S5*

3V*Q#5

3VkQ#t5*

A 3-bit field. The content is variable and will be supplied
when this format name 13 used in the assembly file. The
field type defaults to binary.

A 3-bit field whose content is variable. -The content will
be supplied when the format name is used during the assembly
file. The content may then be given as one octal digit
without using the designator Q#. 1If the content is to be
given in binary, decimal, etc., then the designator B# or D#
would be placed before the digit(s) given in the assembly
file.

A 3~bit field whose content is variable. Any value given
for this field within the assembly file will automatically

- be inverted and right—justified. Since no designator is

given, the field defaults to binary. If the content is to
be given in octal, etc. in the Assembly File, the appro-
priate designator (Q#, H#, D#) must precede the digit(s).

A 3-bit field whose content 1is variable. If no value is
specified for this field in the assembly file, it will as-
sume the default value (specified as Q#5), bit pattern 10l.

Same as above but the 5 is inverted to yield the bit pattern
010. Values substituted for this field during the assembly
file are not automatically inverted.

Yields the same pattern as 3VQ#5* but, in addition, any
value substituted during the assembly file for this fileld
will also be automatically inverted since the * follows the
V rather than the 5.

Yields a 3-bit variable field with a default value of 5, in-
verted, then inverted again by the * following the V. The
resulting bit pattern 1s 10l. Any value substituted for
this field in the assembly file will be inverted.

2=20

CHAPTER 3

ASSEMBLY PHASE (PHASE?2)

INTRODUCTION

The assembly phase provides for input of the microprogram source
statements, conversion of format and constant names to their
appropriate bit patterns, substitution of values for variable fields in
the format, and generation of listing and binary output. The assembly
source program references format names and constant names from the
definition file. It also contains statements that associate labels
with addresses, control assembler operation, and provide program
counter control.

The assembly process provides the user with the following features:

® A microword assembled by .referring to one or more format names
from the definition file.

® A microword whose format was not specified in the definition file
specified by using the built-in free-form format command.

® Programmer control of the program location counter to set the
origin and/or to reserve storage.

® One of four different output listing formats.

® A constant or variable field defined by using values and/or
expressions. .

® Errors detected and listed. Severe errors cause processing to
halt.

Output of the assembly phase is an object file which contains the
complete microprogram. Post processors can directly convert this
object file to other forms, such as hexadecimal or BNPF.

The user must input source program statements in an order corresponding
to the desired order of executable statements. Blocks of storage may
be allocated, a list of print control statements obtained and the
program counter set via nonexecutable assembler control instructions
that are interspersed with, and do not affect the order of, executable
statements.

3-1

The source code is input via a sequence of instructions called the
source file whose content includes the following:

TITLE (heading to be printed on the output listing)

Printing control words
Program counter control words
Constant definition word
Executable statements
Comments

[U,

=1
2

The optional TITLE statement is usually input first so that the desired
title appears on the first output page.

The other statements (shown boxed) may be interspersed throughout the
body of the file. However, the executable statements must be input in
the order that corresponds to the desired sequence of the object
(micro) code.

The END statement must be the last statement in the source file. Table
3-1 is a list of assembly phase statements and their categories.

None of the control words (LIST, ORG, etc.) or format names may contain
blanks.

TABLE 3-1. ASSEMBLY PHRASE STATEMENTS

STATEMENT CATEGORY

TITLE

LIST

NOLIST Printing control words

SPACE

EJECT

ORG

RES Program counter control words

ALIGN

EQU Constant definition word

FF Free~form definition word to establish a
microword content

COMMENTS Used for documentation and program flow

END | End of assembly file

3-2

ASSEMBLY FILE STATEMENTS
Each statement contains an optional label followed by a statement type.
Some statement types must be followed by an argument which may be a

constant name or an expression.

The format of all assembly file statements except comments is:

label | control word |
or | or |
name: | format name | PBarguments
l or |
| definition word |
CONTINUATION

Any statement.may be continued on additional lines by placing a / as
the first nonblank character in those lines.

LABELS OR NAMES

Labels or names are packed groups of letters and/or symbols which have
an associated value.

Labels are permissible with executable statements. Names are required
with the definition word EQU. The format for labels or names is:

Name: definition word
or
label: format name

A name or label’s value is determined by the statement type which
follows it. Thus, name: EQUY equates the symbol name with the value
given for n, while label: format name ¥ VFS, VFS... equates label to
the current value of the program counter, so that reference may be made
to this location in the microcode by using this label.

A label or name begins with an alphabetic character (A through Z) or
period (.) and ends with a colon. It contains no more than 8
characters without embedded blanks and, exclusive of the colon, excess
characters are truncated on the right. Each label is unique. If
duplicates occur, the value at the first occurrence is used and a
warning message is issued for each duplicate.

A label or name may precede an EQU, RES, ORG, FF, or an executable
instruction. It is used as a variable field substitute (VFS) or as a
field in an FF statement but not a reserved word. Labels contain only
the letters A-Z, numerals 0-9 or a period in positions 2 through 8.

3-3

When a name is defined by an EQU, the definition (source statement)
must precede the use of the name as a field or a constant. If the
statement AM2909:DEFYJSR,28X 1is given, it must be physically located
in the source program after the statement JSR:EQUWH.

A good general rule is to place all EQUs at the beginning of the source
file program. :

ENTRY POINT SYMBOLS

When a label is followed by a double colon (::) it 1is called an entry

point. Entry points are used when generating mapping PROMs to easily

obtain the program counter value associated with certain points in the

microcode.

Entry points are indicated in the assembly source file as follows:
label:: format name ¥ VFS,...

Except for the double colon, entry points are subject to all the rules
applicable to labels.

A list of the entry points (symbols and values) may be obtained when
AMDASM is executed by requesting the MAP option.

STATEMENT TYPES

The assembly file uses six general types of statements. These are
listed below with their permissible control words:

o Printing control statements (LIST, NOLIST, SPACE, EJECT, TITLE)

e Program counter control statements (RES, ORG ALIGN)

o Constant definition statement (EQU)

e Executable instruction statements (format names from the defin-
ition phase, FF)

e Comment statements ()

e END statement

PRINTING CONTROL STATEMENTS

Printing statements for the assembly phase are TITLE, LIST, NOLIST,
SPACE and EJECT. They are described as follows:

TITLE
All data input on the line with TITLE will br printed at the top of

each page of output. A maximum of 60 characters may be input for a
title. When a new TITLEP is encountered the 1list device ejects

3-4

blank lines to complete the present page and succeeding pages will
contain this title. A page is not necessarily a physical page since
the user may specify the length (number of lines) of a page. The
format is: :

TITLE ¥ alphanumeric data to be printed at the top of the page
LIST

LIST indicates that the following statements are to be printed whenever
printing of the source file input is requested. This feature will be
most useful when correcting or modifying an Source File. (AMDASM
automatically prints the source statements unless NOLIST is specified
by -the user.) The format is:

LIST

LIST must begin on a ﬁew line, be followed by a carriage return,
precede the source file statements which are to be printed, and be
interspersed between complete assembly statements.

NOLIST

NOLIST turns off printing source statements. Printing of source file
input will be suppressed until LIST is again encountered. Any source
statement containing an error will be printed. The format is:

NOLIST

NOLIST must begin on a new line, be followed by a carriage return,
precede the source file statements which are not to be listed, and be
interspersed between complete assembly statements.

SPACE

SPACE indicates that the assembler is to leave n blank lines before
printing the next source statement. The format is:

SPACEY n
SPACE must begin on a new line, be followed by a ¥ and a decimal
indicating the number of succeeding lines to be left blank and be
inserted in the source file at the point where the spaces are desired.
EJECT
When EJECT is encountered, the assembler generates blank lines on a
list device so that any previous lines plus the blank lines equals the
specified page length (default is 66 lines). It begins a new page,
headed with the title. On a printer a new page is ejected. The format
is: .

EJECT

EJECT begins on a new line and is followed by a carriage return.

PROGRAM COUNTER CONTROL STATEMENTS

Program counter control statements for the assembly phase include ORG,
RES and ALIGN. They are described as follows:

ORG

ORG is used to set a new program counter (PC) origin. The next
assembled microword will be located at the nex origin. The format is:

ORG ¥ n

ORG must be followed by at least one blank and n that is specified
using decimal digits,. unless one of the designators B#, QFf or H#
precedes the digits given. The statement is used only for setting the
program counter forward to a value greater than or equal to the
current value of the program counter.

ORG may contain an expression instead of n and be used an unlimited
number of times in the source file.

If no ORG is specified, the assembly uses an initial PC of O.
RES

RES is used to reserve n words of memory. This increments the program
counter by n. The reserved words will automatically be filled with
don’t cares by the assembler. The format is:

RESH n

RES must be followed by at least one blank and n that is specified
using decimal digits, unless one of the designators B#, Q#, or H#
precedes the digits given.

RES may contain an expression instead of n and be used an unlimited
number of times in the source file.

ALIGN

ALIGN is used to set the program counter to the next value which is an
integral multiple of the value of n. It is used to align the program
counter to a specific boundary such as that the next microinstruction
will be assembled at an address which is the next integral multiple of
2, 4, 8 or 16. The format is:

ALIGNYn
ALIGN must be followed by at least one blank and n that is specified
using decimal digits, unless one of the designators B#, Q#, H# precedes
the digits given. A

ALIGN may contain an ekpression instead of n and be used an unlimited
number of times in the source file.

3-6

CONSTANT DEFINITION STATEMENT

The constant definition statement for the assembly phase is EQU. It is
described as follows:

EQU

EQU is wused to equate a constant name to a constant value or
expression. The format is:

name: EQUY constant (or expression)

This equates the characters given in the name position to the value of
the constant or expression. Only one expression or constant is
permitted following the EQU.

Each EQU must begin on a new line with a new name followed by EQUY
(blanks between (:) and EQU are optional). A constant or expression
represents the bit pattern for one field which must define a value that
can be represented in 16 bits (216 -1 maximum).

Each EQU may be followed by a semicolon and comment after the constant
or expression. To continue on additional lines use a / (slash) as the
first non-blank characters in these lines. An EQU may be used in the
source file even 1if defined in the Definition File. This statement can
be equated to the current value of the program counter by using $ as
the designator. The $ may be part of an expression.

Examples of EQUs are:
ADD:EQU¥Q#0 defines a 3-bit field whose bit pattern is 000.
This could be an ALU function of ADD for the Learning Kit.
PUSH:EQUYH#9 defines a 4-bit field, bit pattern 1001 which might

represent the next microinstruction control field in the Learning
Kit.

EXECUTABLE STATEMENTS

Executable statements form the body of the assembly phase program.
When assembled (with appropriate substitution of parameters) they form
the binary output code of the assembly phase. They must be input in an
order which corresponds to the desired order of the object code.

EXECUTABLE STATEMENTS USING FORMAT NAMES

Most executable instructions will refer to the format names established
by the definition phase. The format is:

{label:}format nameBVFS,VFS
(VFS = Variable Field substitution)

These formats may be referenced singly (with appropriate VFSs) or they
may be combined (overlaid) with other formats (and their appropriate
VFSs) . All cases result in the formation of a single, complete
microword.

Executable instruction statements must begin on a2 new line and contain
a format name from the definition phase. A constant name, a label, a
constant, or an expression 1s substituted for each wvariable field
separated by commas. If a default value was given in the definition
phase and is to be used, the VFS may be omitted.

Executable instructions may contain a single format name or an
unlimited number of format names to be overlayed. The current value of
the program counter may be used as the value for a field if $ is the
VFS used for that field. The $ can be part of an expression ($ + n)
given for a VFS and be preceded by a label: or a label::.

FREE FORMAT STATEMENT (FF)

Executable statements whose instruction formats were not defined in the
definition phase may be defined in the assembly phase by using the
built=-in free format command, FF. The format is:

(label:] FFpfield 1, field2, ..., fieldn

An assembly file may contain an unlimited number of FFs. . The
statements begin on a new line with fields separated by commas. A / is
used as the first nonblank character if the statement is to be
continued on another line. An explicit length n is given for don’t
care fields (nX) or for fields defined using decimal (aD#m). FF’s do
not contain a variable field or a constant name for a field unless that
constant has been previously defined in the Source or Definition File.
These statements can not be overlayed with another format name.

An FF may be preceded by a label (:) or label (::) and contain an
expression for any field, but the expression must be enclosed in
parenthesis and be preceded by the field length n. An example of this
is FF¥5X,10($-5),B#101. It may also contain a value for an
expression which is to be automatically right justified in a field. 1If
the number of bits representing the value is larger than the field
length, an error is generated unless the truncation follows the right
parenthesis [)] for this expression. A field whose value is the
current value of the program counter can be utilized by using $ or an
expression containing $§ for that field.

3-8

If the constants (WORDp 48 AZ:),

the following statéements:

C: EQUBH#C

(EQUBBi#O01

XTRA:££¥ 12H#3%,AZ,18X,C,B#10111,

/1X, RB

The microinstruction (binary output) for this FF is shown in figure
The microinstruction will be printed in the following format:

3-1.

RB:), or (EQUB#10)
were defined in the definition file, then the source file could contain

00000000001 101XX XXXXXXXXXXXXXXXX 110010111X001000

000000000011

I
12H#37%

1100

o1
|
AZ

10111

I
C

|
B#10111

XXX XXXXXXKXXXXXXXXX

X
I
1X

!
18X

001000

|
RB

Figure 3-1. Microinstruction Free Form Statement

OVERLAYING FORMATS

The format for overlaying to form a microword is:

[label:]format namebVFS,VFS, &format namebVFS,VFS..
(VFS = Variable Field Substitution) (& = overlay)

Formats are overlayed with other formats if each bit of format name
(#2) contains a one or zero, and that bit is specified as a don’t care
in the format name (#1) to be overlayed. Subsequent overlays must be
on the don’t care fields remaining after the overlay of all preceding

formats. Each format is a full microword in length. 1Iicroword
instructions defined wusing the built-in free format may not be
overlayed.

If the definition file contains the following:

ADD: DEF¥ 5X, 8H#A2, 3X
REGl: DEFB B#00001, 11X
CARRY: DEF¥ 15X, B#l

Then in the assembly phase:

ADRGCY: ADD & REGI & CARRY

yields: © 00001 10100010 XX1

COMMENT STATEMENTS

Comment statements are nonexecutable statements which are used to
provide information about the program variables or the program flow. A
comment may be a full 1line or may follow a constant definition
Statement. All characters from the semicolon to the end of the input
line are not processed and serve merely as a documentation aid. The
format is:

scomment text desired
END

END indicates that the source file is complete and should be processed.
The format is: :

END

END must begin on a new line, be the last statement in the source file
and be followed by a carriage return.

ARGUMENTS

An argument follows some types of statements as shown in the executable
instruction section.

Permissible arguments are:

Constants
Expressions
Constant names
Labels

The statements LIST, NOLIST, END, EJECT require no arguments.

Executable instructions which contain format names from the definition
file need arguments only if there were no default values given for
variable fields. Arguments which are to be substituted in variable
fields are called variable field substitutes. All other statement
types require arguments.

CONSTANTS

Constants are used as arguments for the commands EQU, ALIGN, RES,
SPACE, ORG or as variable field substitutes.

Note that in the assembly file the $§ 1is used to indicate the
substitution of the program counter value for the content of a constant
or field. Table 3-2 lists the designators that may be used to define
constants.

3-10

TABLE 3-2. DESIGNATORS USED TO DEFINE CONSTANTS

DESIGNATOR MEANING -

B# A constant or field whose content will be represented
using binary digits (0 and 1).

Q# A constant or field whose content will be représented
using octal digits (0 through 7).

D# A constant or field whose content will be represented
using decimal digits (0 through 9). A D# must be pre-
ceded by decimal digit(s) giving an explicit length
(number of bits) when representing a field in an FF
statement.

H# A constant or field whose content will be represented
using hexadecimal digits (O through 9, A through F).

$ Use the current program counter as the value for this
field or constant.

CONSTANT LENGTHS

Constant lengths are discussed in detail in Chapter 4. However, the
length associated with the use of the $ is a special case. When the $
is detected in the evaluation of a constant field or expression, the
current program counter value is substituted in place of the $. If the
PC = 59 at the instruction preceding NEXTLOC: EQU¥$+5 then NEXTLOC is
equated to 64. If the $ 1s substituted for a field, the length of the
PC is calculated by counting the bits from right to the leftmost
significant one bit. The PC length most probably will not agree with
the defined field length. When defining fields in a format in the
definition phase or in an FF statement, the fields that are to have $
substituted in them should include the percent sign (%) and/or the
colon (:) attributes. For example, the field definition 4% will permit
any PC value to be substituted into it, but 4V will accept only PC
values between 00007 and 1111j.

CONSTANT MODIFIERS

Constants may have modifiers following their given value. They must
appear after the constant digits where they may be in any order but
will be processed in the order defined in table 3-3. A constant may
not be modified by both inversion and negation.

TABLE 3-3. CONSTANT MODIFIERS

MODIFIER : DESCRIPTION
* or - Inversion or negation
Z Right justification

Left truncation
Paging

Uy oo

If a constant, including modifiers, is given as a VFS, any attributes
(permanent modifiers) given for that field in the definition file will
also modify the value of the constant given.

If the definition file contains the expression shown in figure 3-2 and
the source file is written TEST: A¥011,9. The binary value 01l is
inverted and substituted for field #1, while the 9 (hex) is equated to
binary 100l and right justified for field #2. This results in the
microinstruction XXXXX 100 XX 01001 10101. If the source file
statement is written TEST2: ABOOl*,3* the binary value 001 is
inverted by the current *, then inverted again by the attribute in the
definition file for field #1. Field #2 hex 3 (binary 0011) is inverted
to 1100 and right justified.

The complete microinstruction is as follows:

XXXXX 001 XX 01100 10101

A: DEF¥ 5X, 3V*,2X,5VZH#,B#10101
l l

field#1 field#2

Figure 3-2. Definition File Expression Example

EXPRESSIONS

Expressions may be used when the programmer wishes to have a value
calculated as an argument or as a field substitution. An expression
assumes the format:

Symbol operator symbol operator ...
All expressions are evaluated using integer arithmetic and remainders
are discarded. Expressions must result in a positive value which can

be represented in 16 bits (216 -1 maximum). Only the operators, +,
-, *, / are permitted.

3-12

The rules for expression usage are:

® Expressions are evaluated in strict left to right sequence. There
is no hierarchy for the operators and no parentheses is for nest-
ing are permitted.

® They may contain the $ as a symbol to indicate that the current
value of the program counter is to be substituted.

® They are terminated by a comma or the end of the line except when
used as a field in FF where they are enclosed by parenthesis.

® They may be continued on the next line by making the first non-
blank character a slash (/). A continuation involving a division
would thus require a double slash (//).

® They may contain constants, constant names or labels.

For example: i1if SBB is a format name, and the first variable field is
to contain the value 3, the expression is written as follows:

SBBYl + 2

This is the same as SBBK3 (1 and 2 are expression symbols, + is an
expression operator). The expression JMPY$-5 yields the current
value of the program counter minus 5 as the VFS for the first variable
field in the format name JMP. ($ and 5 are expression symbols, = is an
expression operator). The expression EIGHT: EQUB2*2*2 means EIGHT = 8
(2°s are the expression symbols, *’s are the operators).

EXAMPLES OF CORRECT CONSTANT USAGE

QREG: EQU¥#0

Definition File

AQ:ERQBQREG

DQ:EQU¥4+8/6 (value = 2)
AB:EQUBREG+1

AM2901 : DEFB4VZD#,5X,AQ, 3V, 17X

EXOR : EQUKQREG+6 |
BEGIN:AM2901¥$+2,EXOR |- Source File
AM2901¥$~1,AB |

3-13

VARIABLE FIELD SUBSTITUTES (VFS)

When a format is defined in the definition file, some of its fields may
be designated as variable fields. If these fields are not given a
default value during their definition or if one wishes to override the
default value, a substitution must be made for these field(s) in the
source file statements. These substitutes are called variable field
substitutes.

REQUIRED SUBSTITUTIONS

If the variable field(s) are not given values in the definitiom file,
values for these fields must be provided in the source file statements.
If omitted, an error message will be provided, and processing of that
statement ends.

SUBSTITUTIONS SEPARATORS

Each VFS (whether required or optional) represents a single field and
must be separated from other VFSs by a comma. Trailing commas may be
omitted but the assembler uses the commas to indicate which fields are
to be given substitute values (i.e., VFSs are positional and position
is determined by the number of commas), so leading or intermediate
commas must be given. If the definition file contains:

A: DEF¥ 5X, 3V*B#110,2X,5VZH#,B#10101
| l
field#1 field#2

Then the source file is written as TEST3: aB,4. Field #1 will assume
the default value 001 (from 3V*B#11) while field #2 will be equated to
0100 and right-justified in the 5-bit field so that field #2 is 00100.
The complete microinstruction will be XXXXX 001 XX 00100 10101.
If the comma were omitted and TEST4: AY¥4 were written, the assembler
would try to use 4 as the VFS for field #l. Two errors are present:
the 4 is not a binary number as required for field #1, and value is not
indicated for field #2. The fact that field #2 has no explicit default
value and no VFS given are errors. The indication would be illegal
character since the 4 is assumed to go with field #1 which requires
binary digits.

If the user wishes to input field #1 as 4 and field #2 as zero, write
TEST5: ABQ#4,0 which yields the following microinstruction:

XXXXX 011 XX 00000 10101

et

octal 4 hex 0
inverted right=-
Justified

3-14

If a leading or intermediate variable field is to assume a default
value, but a trailing field requires a VFS, each field to be skipped
must be represented by a comma when forming the microword definition.

This concept is best explained by assuming a format ADE with three
variable fields, each having a default value of zero specified in the
definition file as follows:

ADE: DEF¥ 2VB#000, 3vB#00, 3VB#000

Table 3-4 items 1 through 4 illustrates fields which assume default
values that are given override or substitute values.

If the variable field substitutions contain modifiers using the
following definition file statement:

ADE: DEF¥ 3VB#000, 3VB000, 3VB00O

Then the source file statements for the previous example could be
written as shown in table 3-4 items 5 and 6.

The variable fields may contain attributes in the definition file such
as: .

ADE: DEF¥ 3V:H#0,3V*B#000, 3VZB#000

The source file statements shown in items 7 and 8 of table 3-4
ilTlustrate this condition.

FITTING VARIABLE SUBSTITUTES TO VARIABLE FIELDS

Any value given as a variable field substitute must contain exactly the
number of bits specified (in the definition file) for the total length
of the variable field unless the modifiers % (right justification), :
(truncation), or $ (paged addressing) are given.

These modifiers may be supplied as attributes with the original field
definition (definition file) or they may be supplied with the field
substitution value in the assembly file.

PAGED AND RELATIVE ADDRESSING

Paged and relative addressing are achieved by using a $ in the state-
ment. The $ is used in two ways in the assembly file:

a. To indicate that the current value of the program counter is the
value to be substituted into this field. This is called relative
addressing.

b. As an attribute to indicate that the value substituted for this
field must be on the same memory page as the microword into which
it is substituted. This is called paged addressing.

TABLE 3-4.

SOURCE FILE STATEMENTS

ITEM

INSTRUCTION

RESULTANT
MICROWORD
DEFINITION

MEANING

TEST6:ADE¥, ,010
or
TEST7:ADEY, ,Q#2

TEST8: ADE¥Q#4, ,B#101

TEST9:ADEBOL11

TEST10:ADE¥,,101%

TEST11:ADE¥H#4:

TEST12:ADE¥,,01*

TEST13:ADEY¥9,Q#3%,1

000 000 010

000 000 010

100 000 101

000 000 010

100 000 000

000 111 o010

001 011 001

Fields 1 and 2 assume
their default values,
field 3 contains 010.

Field 2 assumes its
default value, field
1 1is 100, field 3 is
101.

Fields 2 and 3 ‘assume
their default values,
field 1 is 011.

Fields 1 and 2 assume
their default values.
Field 3 is 10l in-
verted.

Field 1 1is hex 4
(binary 0100) trun-
cated to 100. Fields
2 and 3 assume their
default values.

Field 1 assumes its
default wvalue 000.
Field 2 assumes 1its
default wvalue 1l1.
(000 inverted).
Field 3 is dinverted
to 10 then right jus-
tified to be 010.

Field 1 1is hex 9
truncated to 001.
Field 3 1is octal 3
inverted to 100, then
inverted by field #2
attribute (*) to Oll.
Field 3 1is binary 1
right justified to
001.

3-16

For relative addressing, the $ alone or as part of an expression is
used as a VFS.

For paged addressing, the $ may be given as an attribute of this
variable field in the definition file, or the $ may immediately follow
the VFS in the assembly file source statement.
If the definition file contains the following

JSR:DEFB8X,8V$,H#27, 12VH#
JSB:DEF8VZD#,8X,8Q#013:,12X

The source flle could be written as shown in table 3-5.

TABLE 3-5. SOURCE FILE PAGED AND RELATIVE ADDRESSING

Line #

JSRY BEGIN,0BC
JSBY MULTIS$+5
JSRP MULT.BEGINS
JSBY H#35

JSBB $+5

.

Vi WN =

BEGIN: ADD

MULT: MPY

Lines 1-3 of table 3-5 are examples of § used for paged addressing. In
line 1, the valué of the program counter (where BEGIN: appears) is
substituted into the first variable field of the forfnat JSR. This
value is truncated on the left if necessary to fit into this 8-bit
field, and any truncated left bits must be identical to the
corresponding bits of the program counter associated with line 1.

The same type of substitution and/or truncation can occur for lines 2
and 30

JSB on line 2 needs a § after MULT if paged addressing is desired since
no $ was given with that variable field in the definition file. TFor
expressions such as illustrated on line 2, the constant (5) is added to
the value of the label (MULT) before the check is made to ensure that
the value substituted is still on the correct page. JSR on line 1
needs no $ with the BEGIN since that variable field contained a $ in
the definition file. As illustrated on line 2, a label with a $ may be
part of an expression. Line 5 is an example of relative addressing.

3-17

the current value of the program counter plus 5 will be substituted for
the variable field.

There i1s no connection between the $ used for paged addressing, as
an attribute for a variable field - and the $ used as a variable
field substitute to indicate use of the current value of the pro-
gram counter (relative addressing).

HEXADECIMAL ATTRIBUTE

The designator H#, 1f given with a variable field in the definition
file, is a permanent attribute but it may need to be repeated in the
assembly file. This is necessary since the program cannot distinguish
a hexadecimal value that begins with an A through F from a label or
format name.

If the definition fille contains AM2901:DEF¥8VZH#,Q#0,21X and the
assembly file statement contains AM2901¥3A, it 1is clear to the
program that the digits 3A are to be substituted into the variable
field. (A label or name cannot begin with a numeral).-

However, the statement AM2901¥AB does not clearly indicate whether
the constant name AB 1s meant, or the value of the hexadecimal digits
AB i1s meant. If the programmer wishes the hex wvalue AB, write
AM2901BH#AB. The statement AM2901¥AB will substitute the value of
the constant named AB in the first variable field. If there is no con-
stant named AB, an error will be generated.

ASSEMBLER SYMBOL TABLE

The symbol table contains a list of all the symbols (constant names)
defined by EQUs and all labels in the assembly file. The symbol table
also includes all the constant names and their associated values
defined, or if the symbol i1s a constant name (defined EQU), it is
followed by the value of the constant.

A symbol table is useful when errors occur due to misspelling or the
omission of the colon after a label.

Table 3-6 1is a sample symbol table.

TABLE 3-6. SAMPLE SYMBOL TABLE

SYMBOLS
A 0001
S 0023
X 0000

Printing of the symbol table is optional and is described in the SYMBOL
and NOSYMBOL section of table 3-8.

ASSEMBLER ENTRY POINT TABLE

The entry point table contains a list of all the entry point symbols
(labels followed by ::) and their associated program counters. These
values are useful for mapping PROMs.

Printing of the entry point table 1s optional and is described in the
MAP and NOMAP section of table 3-8.

SOURCE FILE - RESERVED WORDS

The following are reserved words used by the assembler program during
the assembly phase. These words MAY NOT BE USED AS LABELS in the
source file statements, format names or constant. names from the
definition file:

ALIGN NOLIST
EJECT ORG
END RES
FF SPACE
LIST TITLE

AMDASM OUTPUT FILENAMES, EXECUTION
ASSEMBLER OUTPUT

Assembly phase output includes a choice of one of the four types of
printed listings shown in table 3-7.

TABLE 3-7. PRINTED LISTING TYPES

TYPE DESCRIPTION

I Interleaved format (INTER). One line of source code is
printed with the corresponding line of object code printed
directly below it.

II Source only format (SRCONLY). Only the source file state-
ments are printed.

III Object code only format (OBJONLY). Only the assembly phase
object code is printed.

IV | Block format (BLOCK). All lines of source code are printed
followed by all lines of the object code.

Each of these listings contains the program counter associated with
each line of source and object code.)

A final option is to output the binary object code directly to disc for
use as input to the post processing phase. (Disc output is independent
of the listing option chosen.) The object code on the dise may then be
loaded into the microprogrammed controller where the program is
debugged.

FILENAMES

Filenames are used to identify unique files on a diskette. They are in
two parts, a primary part and a generic part. The format is as follows:

PPPPPPPP-888

where: p represents from one to eight characters in the primary part
and g represents from one to three characters in the generic part.

All alphanumerics and special characters except for < > . , ; : =7 8
or a blank may be used for p or g.

In the following section, p refers to primary filenames for the
definition file; q refers to primary filenames in the source file.
Normally the user will use the same primary name for PHASE 1 and PHASE

2, thus pppppppp will equal qqqqqqqq.

The user may define names for p’s or q°s that are meaningful for a
particular application. The generics listed below must be used in some
cases. Mandatory generics are underlined. Generics not underlined are
defaults and will be assigned or assumed if not specified by the user.

PPPPPPPP - DEF Source input for the definition file (PHASE2)
pppppppp-IBL Output from PHASEL |

|m——— usually p = q
9999999q-IBL Input for PHASE_Z____’

q9qqqqqq«SRC Source input for source file (PHASE 2)
PHASEl listing output

ppPPPPPP-PIL
PHASE2 listing output
99999999.P2L
PHASE2 output (object code)
q4999qqq.0BJ
PHASE2 output entry point symbols and their values
99999999 .MAP

When creating the input files pppppppp.DEF and 9999qqqq.SRC the DEF and
SRC generics must be typed as part of the filename when invoking the
editor.

3-20

EXECUTION

In examples of execution commands, data to be input by the user is
underlined. Other data is output by the system.

After the user creates a definition file and source file using AMDQS29
editor, it is ready to execute AMDASM. After the AMD0S29 operating
system has issued a user prompt (i.e., the characters A>), the
microassembler is executed by entering the following command:

A> AMDASMPPHASEn=primaryfilename{Boptions’ cr

Either PHASEl=primary filename or PHASEBlprimary filename specifies
execution of both the definition and assembly phases. Thus, A>
AMDASMPPHASE1pB:KIT cr specifies execution of only the definition
phase using the file (on drive B) called KIT.DEF. or A>
AMDASMBPHASE1=B : KITHPHASE2=B:KIT cr specifies execution of the
definition and assembly phases using the files (on drive B) KIT.DEF as
the definition source file and KIT.SRC as the assembly source file.

Either PHASEl or PHASE2 or both must be specified following AMDASMP .
Pl and P2 are the alternate abbreviated keywords used for PHASEl and
PHASE2, respectively.

The generic part of the filename must not be typed, and either a b or
an = used before the primary filename as a delimiter. For example,
the following are permissible execution commands for PHASEl:

AMDASMF¥P l=pppppppp IThis assumes pppppppp.DEF was the
AMDASMEPHASEl=ppppppp Iname assigned when the definition
AMDASM¥P1¥ppppPpPPP |file was created.
AMDASMBPHASE1Bpppppppp

Following AMDASMPPlBprimary filename the wuser then enters the
desired options. Options listed in table 3-8 may be given in any
order. The full option may be typed (OBJECT) or the abbreviated option
may be typed (0). 1If an option is not typed, AMDASM uses the default
option given.

DISK DRIVE DESIGNATORS

Since the AMDASM program is always loaded from the current drive, the
user must precede his file names with a drive designator if his input
or output files are not on the current drive.

Thus the format for of all filenames will be as follows:

device: primary.generic

Device: is indicated by an A: or B:. A indicates drive A; B indicates
drive B.

3-21

TABLE 3-8.

AMDASM OPTIONS

OPTION

ABBREVIATED
OPTION

DEFAULT

MEANING

DEFYBLAf | lename
or
DEFTBL=f i lename

LIST1pf i lename
or
LISTI=filename

LIST2pf11ename
or
LIST2=f1lename

NOLIST

OBJECT)filename
or
OBJECT=f | lename

NOOBJECT

INTER

D

L1

L2

NL

PPPPPPPP.TBL
or

449qqqqq. TBL

PPPPPPPP.PIL

99499999.P2L

q9999qqq.P 1L
and/or

494999999.P2L

499944q4.08J

9999994q.08J

BLOCK

Specifles the name of the file where output
of the definition phase is to be stored.
When only PHASE2 Is executed executed, this
specifles the Input file which contains the
processed definitlions, if no
DEFTBLYfIlename is given the default name
ppppPPPPPs TBL will be used If PHASE 1 is
executed; qqqqqqqq. TBL 1Is the default
when only PHASEZ Is executed.

Specifled whers the definition output is to
go. When LST: Is glven as the filename, the
output will be listed on the line printer.
If no listiffilename is given, the autput
goes to the flle with the default name

pppppppP.PIL.

Same as LIST! except this specifies where
the PHASE2 (assembly) ocutput Is to go. The
defauit name Is the generic P2L appended to
the Source File input name (qqqqqqqq.P2L).

Suppresses listing of PHASE! and/or PHASE2
autput, |If not specified defaults to LIST
I and LIST2, OQutput goes to flles
pppPPPPP.PIL and qqqqqqqq.P2L.

Specifies that the microcode (object code)
Is to be output on a file with the name
(filename). If not given, the microcode is
placed on a flle with the default name
9999999q.08J.

Suppresses placement of the microcode onto
a flles If block format printing is
requested, the object code printing is also
suppresseds |f not specified defaults to
OBJECT and the microcode goes to flle

49499999.08J.

Specifles blocked listing format (all lines
of source code, then all lines of object
code). '

3-22

TABLE 3-8.

AMDASM OPTIONS (continued)

ABBREVIATED
QPTION OPTION DEFAULT MEANING

BLOCK BL BLOCK Specifies source-only l1sting format
(prints only the source code.)

WIDTHbn

or W BLOCK Specifles width n, (a decimal number) of

WIDTH=n lines per page. |f not speciflied, default
Is 66 lines (11 Inches),

LINESHn

or LN n=80 Specifies width n, (a decimal number) of

LINES=N characters for listing device. Default is
80,

MAPLf i lename M n=66 Specifles listing of entry point symbols

or (l.e., label symbols designated as entry

MAP=f| lename points by double colons ::) and their
assoclated program counter values is to be
output on the Iist device or onto a list
file,

NOMAP NM -99999999.MAP | Suppresses |isting of entry point symbols,
If not specified, defaults +to MAP and
results are stored on a file with the
default name gqqqqqqqq.MAP,

HEX H HEX Specifies listing o} program counter in
hexadecimal format,

OCTAL Q HEX Specifles listing of program counter in
octal format. |f not specifled defaults to
HEX,

SYMBOL S HEX Specifies |isting of constant names and
labels and their associated values.
Suppresses listing of symbol table. If not

NOSYMBOL NS SYMBOL speciflied, defaults to SYMBOL.

Examples assume all files are on the current drive. However, when a

drive is designated with an input filename, all output default files
will be placed on the same drive as the input file for the associated

PHASE.

When the user specifies a filename but no drive designator, the file(s)
will be placed on the current drive.

3-23

EXAMPLES OF AMDASM EXECUTION

Options need to be separated by at least one blank character from other
options in the execution command. Whenever a user does not specify an
option in his execution command AMDASM will use the default values
given in the table 3-8.

The command language for executing AMDASM is 1illustrated as follows
(current drive is assumed to be drive A):

A> AMDASM¥P1=2900pP2=2900 cr

This command specifies execution of both PHASEl and PHASE2 using
2900.DEF as the input file for PHASEl and 2900.SRC for PHASE2.
Defaults are selected for all other options as follows.

A> AMDASMPP1=2900R]l cr

This specifies execution of PHASEl with 2900.DEF as the input source
file and 2900R1.TBL as the definition table output file. The command
A> AMDASMPP2=SYSTEM1PD=2900R1BILBNS cr specifies execution of
PHASE2 with SYSTEM1.SRC as the input source file and 2900R1.BL as the
definition table input file, interleaved 1listing format, no symbol
table listing, and a list of entry point symbols (by default).

The primary default name for the DEFTBL option may assume the PHASEL
(pppppppp) filename or the PHASE? (qqqqqqqq) filename as illustrated in
Table 3-7. Thus, if the execution command is A> AMDASM¥YP1PAM2900 cr
the program will indicate an error since it will be looking for SYSTEM
1.TBL as the filename for the DEFTBK input.

The user may, prior to executing the above command, rename his
AM2900.TBL file to be SYSTEM1.TBL. Alternatively, he may execute the
command A> AMDASMPP2PSYSTEMI¥DBAM2900 cr indicating the name
AM2900.TBL is the DEFTBL input filename.

In either case, PHASE 2 will output files with the following default
names (including generics):

SYSTEMI .OBJ object code generated

SYSTEM1.P2L PHASE2 listing

SYSTEM1 .MAP mapping PROM file (entry point symbols and their
values)

The user may assign only a primary filename to the DEFTBL option. All
other options may be given a primary or a primary and generic default
option is not used.

3-24

SUBMIT FILES

To have AMDOS29 automatically execute an AMDASM command, create a SUB-
MIT file as follows:

A > EDPname, SUB cr
NEW FILE

* T CR cr
AMDASMBP1-$FP2-52 cr
Control Z

*E cr

SUBMIT files assume the name.SUB file is on the current drive, thus it
must be created on the diskette which contains AMDASM and this dis-
kette must be mounted on the current drive.

For execution of the above SUBMIT file, type the following:

A> SUBMIT¥nameBppppppppBaaqqaqqq

AMDOS29 automatically substitutes pppppppp for $1, qgqqqqqqq for $2.

SUBMIT files are similar to batch jobs since more than one execution
command may be part of the SUBMIT file. The user may create a SUBMIT
file for one or multiple jobs and need not remain at the console.

A multiple job SUBMIT file is most convenient when the user has a long
‘execution command and/or when he wishes to execute several consecutive
assemblies without staying at the console and/or when he wishes to
execute the same type of command using many different files. For more
detailed information about SUBMIT files, please refer to the AMDOS29
manuals.

SAMPLE OF AMDASM PROCESSING

The capabilities of AMDASM can be demonstrated by microprogramming one
of the exercises from the Am2900 Learning and Evaluation Kit. This kit
provides a simple but complete example of a microprogrammed system.

The architecture of the kit is shown in figure 3-3. The dashed lines
outline the two LSI components, the Am2909 microprogram sequencer and
the Am2901 four-bit slice microprocessor. Each microinstruction in the
microprogram memory consists of 32 bits divided into fields to control
the sequencer, branch address, shift multiplexers, and all the inputs
to the Am2901. Figure 3-4 defines the fields and their functions.

The first step in using AMDASM is the creation of a set of definitions
reflecting the microprogram hardware statements. Table 3-9 defines,
mnemonically, the kits fields. They implement the fields and their
functions for microprograms operating in this architecture. Figure 3-4
is an example of those fields and functions. Figure 3-5 is a flow
chart of the program to be written. Figure 3-6 is the AMDASM output
in block format.

3-25

2INIVIITY21Y ITY uotleneag pue Sutured goeZWY *E-f 9InST4
_ {062 _
Moo [t 1
v A
l “ xow | 1saa ifed]
| 4 Wvy ‘D h I“
XNW 3002 _ v |\
NOILIONOD | s vy ! _
qu _ H H_ _) _ —4
i
sNivis T o 3% o'l ¥31s1938
| 7 3 I INIT3did
: [o] 3
s] |||z e T
g v | I ot 1! AHOWIW
|] g _ | | [wvuo0ud ouow
_ Wy _ _ 1 vEzly
_ o pxoL | |t soszuy| o
| 1 _ Il o4 xwz 4_1 WOHd [+ Oy
|| e En_g:m o £ ﬂoﬂm Lo | _ ad4 4 a |l
| L) [y | _ Tl — I ...4||_
Lo — 41— 1 - 313 i 1SIHOLIMS
| i {ss3vaav
|1 t——4
xnw [¢ || xnw e | xom e ||] xnw fe Heainiodl) | o3y wonvus | |
FFE_| | FFFE_| | — !
el J
- S S sy
NOILONYLSNI

3-26

TABLE 3-9. DEFINITION FILE

TITLE AM 2900 KIT DEFINITIONS

H

WORD 32

H

REGISTER DEFINITIONS

H

RO: EQU H#0 RO to R15 are using the equate
Rl: EQU H#l statement. The H# means the
R2: EQU H#2 numbers following H# are a digit
R3: EQU H#3 representing 4 bits.

R4: EQU H#4
R5: EQU H#5
R6: EQU H#6
R7: EQU H#7
R8: EQU H#8
R9: EQU H#9
R10: EQU H#A
. Rl1l: EQU H#B
R12: EQU HAC
R13: EQU H#D
Rl4: EQU HFE
R15: EQU H#F

’
;AM2901 SOURCE OPERANDS (R S)

AQ: EQU Q#0 ALU source Qf designates digit.
AB: EQU Q#1
ZQ: EQU Q#2
ZB: EQU Q#3
ZA: EQU Q4
DA: EQU Q#5
DQ: EQU Q#6
DZ: EQU Q#7

;AM2901 DESTINATION CONTROL
QREG: EQU Q#0
NOP: EQU Qf#l
RAMA: EQU Q#2
RAMF: EQU Q#3
RAMQD: EQU Q#4
RAMD: EQU Q#5
RAMQU: EQU Q#6
RAMU: EQU Q#7

H
3SHIFT MATRIX CONTROL

SHIFT: DEF 8X,B#0,3XB#0,19X Defines the two bits which con~
ROTATE: DEF 8X,B#0,3XB#1,19X trol the left-right shift; x°s
DBLROT: DEF 8X,B#0,3XB#0,19X are don“t-care bits 1in between
ARITH: DEF 8X,B#0,3XB#1,19X the defined bits.

sNEXT MICROINSTRUCTION ADDRESS SELECT

TABLE 3-9.

DEFINITION FILE (continued)

BRFNO;
BR;
CONT:
BM:
JSRFNO:
JSR;
RTS:
STKREF:
LOOPFNO:
PUSH;
POP:
LOOPCOUT:
BRFEQO;
BRF3:
BROVR:-
BRCOUT :

EQU H#l
EQU H#2
EQU H#3
EQU H#4
EQU H#5
EQU H#6
EQU H#7
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

H
;OTHER STUFF

1]
CNO:
CN1:
LOW:
HIGH:
ZERO:
ONE:

EQU B#0
EQU B4l
EQU B#0
EQU B#1
EQU B#0
EQU B#l

*
AM2901:
AM2902:
DIN:

;

END

H#8
H#9
HEA
H#B
HiC
H#D
RIE
R#F

EQH#0 ;BRANCH REGISTER IF F NOT EQUAL TO ZERO

;BRANCH REGISTER

;CONTINUE

;BRANCH MAP

s JUMP-TO-SUBROUTINE IF F NOT EQUAL TO ZERO
; JUMP=-TO=-SUBROUTINE

sRETURN FROM SUBROUTINE
sFILE REFERENCE

sEND LOOP AND POP IF F=0Q
;PUSH AND CONTINUE

;POP AND CONTINUE

;END LOOP AND POP IF CN+4
;BRANCH REGISTER IF F=0
sBRANCH REGISTER 1IF F3
sBRANCH REGISTER IF OVR
sBRANCH REGISTER IF CN+4

DEF 9X,3vQ#l,1X,3VX,4VX,4VX,4X
DEF 4VX,4VH#2,24X
DEF 28X,4VH#

Definitions for the sequence
control instructions used in the
second field of the microin-
struction.

Format definitions are made for
the ALU fields, the sequence
control fields, and the data
input. Formats contain don’t
cares (x) and variables (v).
Each variable can have a default
value. For example, in AM2902,
trhe second four-bit variable
defaults to hex 2, and the first
four-bit varisble defaults to x.

3-28

suoTidunyg pue sp[ard jo ardwexy

*4-¢ 21In31y

o, £0€Ony €
D<0 Opvu<€£o D40nvy Eyyye (vbis) £y 378100 311 IWHLINY § 1 ¥+ Y3 5 ya1s1034 HoNvee| st
OWve<¢to Opetwvy | Ewvyelo Co«%vy 318N00 31v104 0 1 HAO 41 HI1SIO3Y HONVYE| ¥t
| .
00«0 Owvu<Ewvy €0€0 EwvyeOwyy 3tvioy v 0 4 143ISI0IHONVE | €1
- . p 0= 43143151938 HONVYE]| 21
z 0
Oo€o0 WY Y€0 0€0 WY d €0 043 o ¥+ Y5 41 40d ONV 4001 aN3| 11
ed .NMOG 3dAL {3NNILNOD ONVI dod| o1
(3NNILNGD ONY)I HSNd| 6
0= 441404 ONY 4001 ON3| 8
s~ P ° a Z P 3INIUI3Y 34| ¢
INILNOWENS WOU4 NUNLIY| 9
sau 9 o a 9 04-0Z 8432 | 9
INiLnodensoLdwnr| s
s-¥ s v a s 8«4 | S 0 £ 4 41 INILAOYSBNS OL-4WNF| ¥
Sv iy v v o 4 0420 84-2/3 | ¥ 1SIHILIMS G) dYW HONVEE| €
SAY € e o € A€ € annunoa| ¢z
- u 2 ° ° z PP ¥3I1S1934 HONVYE| 1
03 414ILSIDIY HONYYE| o©
y-§ i -] v t ONIHION | 1
S+y 0 o ¥ 0€3 NOILINNS 1002
E] s u avol g
10¥1INOD
. . 193138 o Jouined |, P ssIwagv NOILINIZ3Q
a- ~8- - mv 21 3dwnos | X" noirvniisaa | XV zo:wnwumz_ HINVHE a4
NOILINIZ3IQ
%a|ta|%a|%a |08 tg|2g | T Oy |ty |2¢ | Ew [B [WS [v3 |0 |t |2 Joxnu % | & | 8 lixnw O | ba | 24 | Eg [oug|tue {2y |tus| MO e
ofjvilefelvis|o]|e]le]|e|oc]efafe|ve|sefofe]o] e |oz|rzlez]ez|vz]se|oz]ez|se]ez]oe] e Sw“:z
n en »m sn on n NOILVIOT
8 n 6N vy
123735
° t ¢ £ ' s 9 t XOW Twvy

3-29

————————

0] LOAD Ry=V,
1] LOAD Ry=v, T

2] L0AD Ry=v, [14] ATsiNcRy |
3] LoAD R, -4

4] cLear ry=0

Ry + D: 0 = 0001

8| Ry~ Ry2
7] Ry.0:0«0001

YES
IFF=Q

NO

8] Ry-Ry2
9| Rye D;D =000t

—_————

READ A3 (SYNC)
SR ._J

Figure 5-4. Flow Chart of Example

Figure 3-5. Flow Chart of Example

3-30

2000

AM29@9 & AM29B1 RAMF, DZ,,OR,,R® & DIN H#F

0091 AM29@9 & AM2901 RAMF, DZ,,O0R,,R1 & DIN 9
0002 AM2929 & AM2991 RAMF, DZ,,O0R,,R2 & DIN 9
0003 AM29P9 & AM2991 RAMF, DZ,,OR,,R4 & DIN 4
0004 AM2999 & AM29@1 RAMF, ZB,,AND,,R3
PA05 A5: AM2909 & AM2981 ,DA,,AND.RD,RO & DIN 1
2006 AM2909 All4,JSRFND & AM2901 RAMD, ZB,,OR,,RO
00a7 AM29@3 & AM291 ,DA,,AND,R1,R1 & DIN 1
poos AM2909 Alh4,JSRFND & AM2901 RAMD, ZB,,0R,,R1
2009 AM2909 & AM29P1 ,DA,,AND,R2,R2 & DIN 1
PooA AM29@9 Al4,JSRFND & AM2901 RAMD, ZB,,OR,,R2
2008 AM2999 & AM2981 RAMF, ZB, CNB,SUBR,,RU
ppac A29@89 AS5,BRFND & AM2901
202D AM29039 A15,BR & AM29p1
OBOE Al4: AM29@9 ,RTS & AM29@1 RAMF, ZB,CN1,ADD,,R3
POOF A1S: AM29@9 A15,BR & AM2991 ,ZB,,OR,,R3

END

003 XXXX@010XP11X111 XP11XXXX@0P01111
G001 XXXXP212XP11X111 X@L1XXXXP0911001
0002 XXXX@010XD11X111 XBL1XXXX00100000
0603 XXXXZD10XP11X111 XB11XXXX21200100
0004 XXXXD10XP11XA11 X1DOXXXXDO11XXXX
0005 XXXXP010XPD1X101 X100000020000001
0006 11100180X101XB11 XB11XXXXBDOBXXXX
@007 XXXX0210X001X101 X109020100010001
00038 111P01P0X1P1XD11 XBLIXXXXDOBIXXXX
0009 XXXX0010X001X101 X100031000100901
Q0CA 111221P0X1D1XP11 XB11XXXXDOIBXXXX
GO0B XXXXO010XQ11XP11l PPBIXXXXD1DBXXXX
0B0C D10100PAXPBIXXXX XXXXXXXXXXXXXXXX
000D 11118BD1XPBIXXXX XXXXXXXXXXXXXXXX
GO0t XXXXP118XQ11XP11 18PDXXXXBOI1XXXX
0O6F 1111P201XA01XB11 XBL1XXXXBBLIXXXX

Figure 3-6. Assembly Output in Block Format

3-31

CHAPTER 4
EMULATOR SUPPORT SOFTWARE

INTRODUCTION

The microprogramming software consists of a number of programs, each
having its own command. Each command has a multitude of operands and/or
subcommands with operands. Any number of operands and/or subcommands,
up to a maximum of 127 characters, may be input on a single command
line at the CRT console. The basic microprogramming software commands
consist of the following:

Load Bipolar Memory (LBPM)
Verify Bipolar Memory (VBPM)
Save Bipolar Memory (SBPM)
Restore Biﬁolar Memory (RBPM)

Dynamic Debugging Tool 29 (DDT29)

Any number or combination of the legal delimiters may be used between a
command and the associated subcommands and operands. Thus, the user
can structure a command line in a form that is easily readable.

Once the initial version of the prototype microcode is input at the CRT
console and assembled by the AMDASM assembler, the microprogramming
software is used. Figure 4-1 shows the interrelationship between
AMDASM and part of the microprogramming software. The LBPM (Load
Bipolar Memory) command is used to load the assembled object file into
WCS (Writable Control Store). The load is automatically verified
unless the NOVerify option is selected. Alternatively, the load can be
separately verified using the VBPM (Verify Bipolar Memory) command.
Bits selected as don’t care bits in the microword can be loaded as
zeroes, ones, or not altered in memory. In addition, any portion or
all of the object file can be loaded anywhere in memory. In a similar
manner, the microcode address entry points can be assembled and loaded
into the mapping memory on the microprogram sequencer (MSC) card. As
with the WCS card contents, the mapping memory contents can be verified
by invoking the VBPM command.

After the prototype microcode is stored in the WCS memory and address
entry points are stored in the MSC card mapping memory, the DDT29
program 1is used to debug the user’s microcode. That is, if the
hardware responses are inappropriate for a portion of .the microcode
execution, a microcode address breakpoint can be set into a register in
the Clock Control Logic (CCL) and the microcode can be rerun. When the
selected address occurs, microcode execution stops. At that point, the

| AmDASM

b
-

m
\»/)

.TBL

SRC

(

!

AMDASM
P2

MAP

OPC

o,

AMMAP

5

..-———. PFORMAT .DIo PLPROG

=] AMPROM

PAPER
TAPE PPROG

DISKETTE

PROGRAM

HARDWARE

LBPM
VBPFM

REBPM

L

SBPM
APPING

\=/

RAM

LEGEND

DEF - User AMDASM Defi File
.P1L - AMDASM Phase 1 List Output
AMDASM P1 - AMDASM Phase 1 (Definition Phase)
.SRC - User AMDASM A y S File
.TBL - AMDASM Phase 1 Tabie Output for use by Phase 2
AMDASM P2 - AMDASM Phase 2 (Assembly Phase)
P2L - AMDASM Phase 2 List Output
OBJ - AMDASM Phase 2 Object Output
MAP - AMDASM Phase 2 Map Qutput
.OPC - Opcode input to AMMAP
AMMAP™ - Generates Object File for Mapping RAM
-OBM - MAP Object Output from AMMAP
.P4L - AMMAP List Output
AMPROM™ - Generate PROM Programmer Output
.OUT - PROM Programmer Output File (for paper tape)
P3L - AMPROM List Output
t::: - Load & Vaerify Bipotar Memory (WCS or MAP)
SBPM - Save WCS or MAP
SVW - SBPM Output from WCS
.SVM - SBPM Output from MAP
RBPM - Restore WCS or MAP from .SVM or .SVW
PFORMAT - Converts AMPROM Qutput to a PROM Programmer Format
PPAQG - Selects PROM Prog ver Hardwa fy
interface Program for Data /O Models. 7, 9. 17
and 19 PROM Programmers.

PLPROG - Selects PROM Programmaear Hardware/Softwars Interface

Program for PRO-LOG Modeis M300 and

M920 PROM Programmers.

DIO - PROM Programmer Input File

AMMAP and AMPROM are trademarks of Advanced Micro Devices, Inc.

Figure 4-1,

4=2

AMDASM/Microprogramming Software Relationship

user can examine up to 20 selected (user-wired to connector P4 of the
CCL; refer to drawings in hardware manual) test points or data bits in
the prototype hardware circuit.

If results are not as anticipated, DDT29 can be used to display the
last microinstruction or any desired continuous number of
microinstructions on the CRT console. If the user decides to alter the
microcode, the modification can be entered at the CRT console via
DDT29 or assembled as previously described.

The assembled output creates a new object file on diskette. Then, the
LBPM command is used to move the new microcode file to the WCS. A
DDT29 subcommand can be invoked to jam a microcode address onto the
prototype system WCS address bus.

Thus, the entry point of the last microcode routine or microinstruction
executed can be addressed and re-executed. While testing the portion
of modified microcode, the user can again monitor the selected test
points to verify that the modification is successful.

If microcode operation is still not satisfactory, more of the many
DDT29 subcommands can be used to examine both prototype microcode and
hardware. For example, the microprogrammed controller clock (MPC) can
be controlled from the CRT console by inputting run, halt, or
single-step (SS) subcommands. The SS subcommand permits the
microprogrammed system clock to be stepped one phase at a time while
observing hardware responses to the various stages of microcycle
execution.

Once the prototype microcode and hardware operation are satisfactory,
the developed and debugged microcode can be stored in a diskette file
through the use of the SBPM command. If, at a later date, more testing
or development is required, execution of the RBPM command causes the
saved microcode to be restored in the WCS memory.

Alternatively, the saved microcode can be used by AmSYS29 to drive a
PROM programmer, or output as a listing on a printer. When the user is
finished with microcode development, the DDT29 exit subcommand is used
to return AmSYS29 operation to the AMDOS 29 program.

Table 4-1 provides a summary of the microprogramming software commands.
A command format summary is included in chapter 3 of the user manual.

4-3

TABLE 4-1.

MICROPROGRAMMING SOFTWARE COMMANDS

COMMAND/SUBCOMMAND

GENERAL DESCRIPTION

Load Bipolar Memory
(LBPM)

Verify Bipolar Memory
(VBPM)

Save Bipolar Memory
(SBPM)

Restore Bipolar Memory
(RBPM)

Dynamic Debugging Tool
29 (00T29)

Display WCS
Centents (DW)

Display MSC
Mapping Memory
Centents (DM)

Status (STatus)

Store Data In WCS
Memory (SW)
Store Data Iin MSC

Memory Mapping (SM)

Halt
Run

Single-step CCL (SS)

Loads machine language microcode from AMDASM generated disk-
ette flle Into WCS memory or MSC card mapping memory. Can
foad any portion of diskette file into any portion of WCS or
MSC card memory.

Yerlfles that loaded contents of WCS or MSC memory corres—
pends to originating file on diskette. Can verify any por-
tlon of AMDASM generated diskette file against a correspond-
Ing portion of WCS or MSC card memory.

Saves WCS or MSC Card memory contents In new diskette file
crezted by SBPM command. Any specified portion of the WCS

or MSC Card memory contents can be saved.

Restores specified diskette file to either the WCS or MSC
card memory, '

Entry to Micoprogrammed System debug environment.

The following DDT29 subcommands perform specific functions,

Display WCS contents from specified address for a specified
number of words or through a specified address.

Display MSC card mapplng memory contents from a speciflied
address for a specified number of words or thraugh a speci-
fied address. ’

Display contents of CCL status reglster.

Specified number of data bytes are stored in WCS memory be-
ginning at specifled address and specified byte. Multiple
data bytes replace microword bytes beginning at specified
byte and continuing to right until right-most byte of micro-
word Is reached.

Specified number of data bytes are stored In CCU card map-
ping memory beglnning at specifled address and specified
byte., Multiple data bytes replace previous bytes beginning
at specified byte and continuing to right until right-most
byte is reached,

Stops microprogrammed controller
Enables micaoprogrammed controller to run.

Permits one or more clock phase steps to be run by clock
control loglc,

TABLE 4-1. MICROPROGRAMMING SOFTWARE COMMANDS (Continued)

COMMAND/SUBCOMMAND GENERAL DESCRIPT ION
Microcyie Step CCL Permits one or more clock phase steps to be run by CCL.
(MS)
Store Value in CCL Stores specified value In CCL control register.

Control Register (CTL)

Jam Address (Jam) Jam CCL address register contents onto WCS card address bus.
Store Jam Address Store specifled address Into CCL address register.

(IRY .

Z (n) Stop executing DDT29 subcammands for the specifled number of

milllseconds.

Macro (n) Execute one or a string of DDT29 subcommands for the speci-
fied number of times.

Display Last Address Display contents of CCL register that contalns the address
(DLA) of the last microinstruction executed,

Display Monitor Bits Display 20 monitor bits of user selected and wired test
(DMB) point or other data In hexadecimal format at CRT console.
Display Trace (DTR) Display microprogram address, data at that address, and mon-

itor bits of the last microcyle.

Leave DDT29 Program Return AmSYS29 operation to AMDOS 29 program.
(Exit)

MICROPROGRAMMING SOFTWARE COMMANDS

In the following command description, all default values are
underlined. The use of each command or subcommand is presented along
with execution format, definitions of associated operands and usage
rules pertaining to a particular command.

4=5

The following constants are used in the descriptionms:

X = hexadecimal

d = decimal (0-9)

b = binary (1 or Q)

N = required radix indicator where:

H = hexadecimal
Q oroO = octal
B = binary

Nothing or D = decimal

Capital letters included in the execution formats are required for
proper command execution. Lower case letters are optional.

To load, modify, display, or in any other way access the WCS, the clock
control logic clock must first be halted. The clock can be stopped by
invoking the DDT29 halt subcommand or by setting the system mainframe
front panel RUN ENABLE/HALT switch to the HALT position. To restart
the MPC clock system, the mainframe front panel switch or a software
command can be used.

System mainframe RUN ENABLE and MICRO CYCLE STEP can be pressed to

restart the clock. When the DDT29 halt subcommand is used to stop the
clock, then the DDT29 run command is used to restart it.

LOAD BIPOLAR MEMORY (LBPM)

The LBPM command is used to transfer an AMDASM machine language object
file from diskette to either the WCS memory or the mapping memory.

The execution format of the LBPM command is as follows:

l] | | | |LOwer | |
LBPM filename|WCs|FRon X|TO X |WA X LSb leOClearIUPperiVErifz IDC b SBft
|MAp{ |FOr X| |CLear |UL INO Verify|

During the AMDASM assembly process, a start address is assigned by the
user to the first microword in the diskette file being built. If the
user does not assign a start address, AMDASM assigns default address
0000 to the first microword. A program counter is maintained by AMDASM
so the address for each successive microword can be incremented by one.
The PC address associated with each microword is then recorded on the
diskette along with the microword.

When the LBPM command is invoked to transfer microcode from diskette to
the WCS or mapping memory, the LBPM program first locates the
appropriate file by the filename specified in the LBPM command. Then,
the LBPM program searches for the starting PC address (which can be
specified by the FRom X operand) from which the data transfer begins.
The LBPM program begins to transfer microcode from that address to the
correct address in the WCS or mapping memory formed by adding the PC

address to the WA address specified. The default for WA is zero 1if
unspecified. Microcode transfer from the diskette file to the WSC or
mapping memory continues until the ending PC address (as specified by
the TO X operand in the LBPM command) is reached, or the correct number
of microwords are transferred (as specified by the FOr X operand in the
LBPM command) or, until end-of-file on the input file 1s reached. An
example of the LBPM command is presented below and graphically
illustrated in figure 4-2.

LBPM JIM WCs FR 200 TO 300 WA 200 NOC UL NOV cr

In the LBPM command example, the diskette file called JIM.OBJ is
accessed and the block of microcode stored between PC addresses 200H
and 300H is loaded into the WCS starting at WCS address 400H (FR of
200H plus WA of 200H = 400H). Any data previously residing in WCS
addresses 400H thru 500H is not cleared before the diskette file data
is loaded into WCS from diskette file and JIM.OBJ 1s not to be
verified.

NOTE ,
File type (OBJ) is always read even if different ex-
tension is typed.

The Don’t Care (DC b) and Set Bipolar Format (SBft) operands are not
used in the preceding LBPM command example. Consequently, the DC b
operand, which is used to specify whether don’t care bits are set to 1
or 0, automatically defaults to O unless a default value of 1 exists in
the bipolar format table for the WCS.

The bipolar format tables for the WCS and MAP reside in the uppermost
area of the 64K byte RAM associated with the system processor. Operand
default values that supercede the built-in default values for the
commands can be loaded into the bipolar format tables. The bipolar
format tables are loaded with operand default values by specifying the
SBft operand with the LBPM command.

PC DISKETTE FILE WCS WCS
ADDRESS “JIM.08J" ADDRESS MEMORY
0 [}

200 200
MICROCODE BLOCK
TRANSFERRED BY

\COMMAND EXAMPLE
N N

300 300

400 400

AW TN
MICROCODE BLOCK
TRANSFERRED FROM
DISKETTE FILE “JIM"’
2

P

500

800

Figure 4-2. LBPM Command Example

When the SBft operand is used with the LBPM command, the values given
for the remaining operands in the LBPM command are stored in the
bipolar format table for the WCS or MAP. Since the SBft operand is not
used in the previous LBPM Command example, the other operand values
presented in the exanple are not stored in the WCS bipolar format
table.

The operand descriptions for the LBPM command are as follows:

WCs 1indicates that the WCS memory is to be loaded from diskette
filename.0BJ. The .OBJ is assumed and need not be entered.

MAp indicates that mapping memory is to be loaded from diskette
filename.0BM. The .OBM is assumed and need not be entered.

Filename designates name of diskette file to be loaded into WCS or
mapping memory.

FRom designates the value of the program counter address on the
diskette file from which the transfer to bipolar memory is to
start. The default value is the first PC address on the diskette
file.

TO designates the ending PC address within the diskette file. De-
fault value is the end of file.

FOr designates the number of microwords to load. Default value is
the entire file. TO and FOr are mutually exclusive.

Writable address (WA) designates the starting address in the WCS
memory or the mapping memory offset. The offset is added to the
PC address to form the memory address.

Least significant bit (LSB d) designates the position d in bipolar
memory of the least significant bit (127-0) of the microword. The
position starts from right to left. Default value is right justi-
fied (d=0).

NOClear indicates that each microword in the WCS or MSC card
memory area to be loaded is not cleared before loading a new word
from the diskette file. Default is NOClear.

CLear designates that each microword in the WCS or MSC card memory
area to be loaded is cleared before loading a new word from the
diskette file. Default is NOClear.

LOwer indicates that only bits 63-00 of WCS memory are implement-
ed. Default is LOwer.

UPper indicates that only bits 127-64 of WCS memory are implement-
ed. Default is LOwer.

Upper/Lower (UL) indicates that all 128 bits of WCS memory are
used. Default is LOwer.

@ VErify causes the VBPM program to be automatically executed after
the WCS or mapping memories are loaded. VBPM verifies that memory
is correctly loaded. Default is VErify.

® NOVerify indicates that VBPM is not to be executed after loading
memory. Default is VErify.

® Don’t Care (DC) specifies whether don’t cares are set to O or 1.
Default value is O.

Set bipolar format table (SBft) places the given operands into the
appropriate bipolar format table as subsequent default values. The
SBft operand is for user convenience. That 1s, the bipolar format
table can be loaded with default values and the bipolar memory can be
loaded with microcode by using only one command (LBPM).

The following usage rules apply to the LBPM command:
1. Either the WCs or MAp operand must always be specified.

2. Two bipolar format tables exist to service either the WCS memory
or the mapping memory. Once a bipolar format table is loaded with
default values, those values supercede the default values given in
the execution format paragraph.

VERIFY BIPOLAR MEMORY (VBPM)

The VBPM command is used to verify that the data loaded into the WCS or
mapping memory is identical to that contained on the diskette source
file. A byte-by-byte comparison is made between the WCS or mapping
memory contents and the original file on the diskette. If an error
exists, the VBPM program causes VERIFY ERROR to be printed out at the
CRT console and/or printer along with the WCS or MAP data and the
diskette data. An example of verify error is as follows:

The execution format of the VBPM command is as follows:

| | | | | |Lower |
VBPM filename|WCS|FRom X|TO X |WA X LSb d|NOClear|UPper|DC b
|MAP | |For X| |CLear |UL |

The operand descriptions for the VBPM command are as follows:

® Filename designates name of diskette file against which WCS or
mapping memory is verified.

® WCs indicates that the WCS memory is to be verified against the
diskette file.

® MAp indicates that the mapping memory is to be verified against
the diskette file.

4-9

The

1.

2.

FRom designates the starting PC within the diskette file that is
used for verification. Default is the starting file PC.

TO designates the ending PC within the diskette file that is used
for verification. Default is the entire file.

FOr designates the number of microwords verified. Default is the
entire file. TO and FOr are mutually exclusive.

WA designates the WCS or mapping memory offset.

LSB designates the least significant bit number of the microword.
Default value is 0, right justified.

NOClear causes only the microword width to be verified. Default
1s NOClear.

CLear causes the entire WCS or MAP width to be verified. Default
is NOClear.

LOwer indicates that only WCS bits 63-00 are verified. Default is
LOwer. .

UPper indicates that only WCS bits 127-64 are verified. Default
is LOwer.

UL indicates that all WCS bits are verified. Default is LOwer.
DC specifies whether don’t cares are set to 0 or l. Default value
is 0.

following usage rules apply to the VBPM command:

Either the WCs or MAp operand must always be specified.

If WCS and/or mapping memory default values are loaded into the
bipolar format table, then those default values supercede the de-
fault values given for the VBPM command in the execution format
paragraph.

SAVE BIPOLAR MEMORY (SBPM)

The SBPM command creates a file on diskette from the WCS or mapping
memory.
The execution format of the SBPM command is as follows:

4-10

|WCs | ITO X
SBPM filename|MAp|FRom X|FOr

The operand descriptions for the SBPM command are as follows:

Fllename specifies the name of the file created on diskette to re-
ceive WCS or mapping memory contents. A three-letter name is ap-
pended to the specified filename to form the complete filename as
follows: Filename.SVW for WCS memory and Filename.SVM for mapping

memory.

Where:

WCs specifies contents of WCS memory are to be saved.

MAp specifies contents of mapping memory are to be saved. The

entire 256 word map is saved.

FRom specifies the starting microword address of the micro-

code 1n the WCS to be saved. Default value is O.

TO specifies the ending microword address (in the WCS) of the
microcode to be saved. . Default value is FRom; that is, a

single microword is saved.

FOr specifies the number of microwords to be saved.

value is l. TO and FOr are mutually exclusive.

The following usage rules apply to the SBPM command:
l. Either WCs or MAp must always be specified.

2. The FRom, TO, and FOr operands are valid for WCs only.

RESTORE BIPOLAR MEMORY (RBPM)

Default

The RBPM command is used to restore a specified saved file to either

the WCS or mapping memory.
The execution format for the RBPM command is as follows:
| SVW
RBPM filename|SWVM

The operand descriptions for the RBPM command are as follows:

® Filename.SVM indicates name of saved mapping memory file on disk-

ette.

® Filename.SVW indicates name of saved WCS memory file on diskette.

NOTE

The complete filename must be specified for RBPM.

4-11

DYNAMIC DEBUGGING TOOL 29 (DDT 29)

The DDT 29 command consists of a number of subcommands that are used
during the development of the prototype microcode.

The command DDT29 places AmSYS29 in the DDT29 environment so the
various subcommands can be used during the development process.

The subcommands can be entered on the same or subsequent lines after
the . prompt. Any DDT29 subcommand string can be up to the 128
characters in length. If more than 128 characters are entered, the
DDT29 subcommand invoked responds as if a carriage return (cr) is
initiated. The subcommands include:

DISPLAY

STORE

STATUS

HALT

SINGLE STEP

MICROCYCLE STEP

RUN

CONTROL REGISTER STORE
ADDRESS REGISTER STORE
JAM ADDRESS

SLEEP

DISPLAY TRACE

MACRO

DISPLAY LAST ADDRESS
DISPLAY MONITOR BITS
EXIT

The following paragraphs individually cover the DDT29 subcommands.

DISPLAY

The display subcommand permits microcode in the WCS or mapping memory
to be displayed from a specified address for a specified number of
words or through a specified address. The execution format of the
display subcommand is as follows:

[X.Y | [X.Y |
Dw|X ¥Y| X ¥lY

Where:
® Dw indicates the WCS memory is to be displayed.
e DM indicates the mapping memory is to be displayed.
o X.Y specifies that Y words are to be displayed from starting

address X. Initially, default is first 16 words. Thereafter,
default is 16 words from last address displayed.

4-12

® XPY specifies that microcode from address X through address Y
is to be displayed.

® X and Y are in hexadecimal notation.

STORE

The store subcommand stores one or more data bytes 1into the WCS
starting at a specified address and byte. Multiple bytes replace bytes
in the WCS by beginning at the specified byte and continuing to the
right until the right-most specified byte is reached. Mapping memory
data is loaded in three-byte fields, beginning with the specified field
address and continuing in sequence for each additional three~byte data
field entered. Leading zeroes need not be entered. For a mapping
memory store, a delimiter must always be used between . data byte
entries. Figure 4-3 shows the relationship between the data bits and
bytes as typed in at the CRT console. The execution format of the
store subcommand 1is as follows:

Sw XYD or SM XD
Where:
® SW indicates store data in WCS.
® ©SM indicates store data in mapping memory .

® X is a hexadecimal value that indicates the WCS or mapping memory
address for the data store at which the loading starts.

@® Y is a hexadecimal value that indicates the starting byte for the
data store.

® D is a hexadecimal wvalue that represents the data nibble, byte,
string, or field.

Bit
Number 127 126 125 124 123 122 121 120 119..8 7 6 5 4 3 2 1 0

Byte
Number 0 leeesE F

Nibble
Typed=-In
At CRT
Console 8 F ' 8 6

Binary
Value
Loaded 1 0 0 0 1 1 1 1 1 0 0 0 0 1 1 0O

Figure 4-3. Relationship Between Data Bits and Bytes
for DDT29 Store Subcommand

For example, if the following is typed at the CRT console:

Sw

then data loading begins at WCS address
accordance with the information presented in Table 4-2.

100 cC

1A9EF38 cr

100,

byte number 12

TABLE 4-2. DATA LOADED INTO WCS BY STORE SUBCOMMAND EXAMPLE

in

HEXADECIMAL { BINARY DATA
DATA INPUT | EQUIVALENT
WCs AT CRT LOADED INTO
ADDRESS HEXADECIMAL BYTE NUMBER CONSOLE WCSs
100 C 1A 00011010
100 D 9E 10011110
100 E F3 11110011
100 F (high order nibble only) 8 1000

A special delimiter must be used to terminate the data input D whenever

the command is not followed by a carriage return.

when a number of DDT29 commands are entered on a single line.

The special delimiter 1is a slash.
in the SW or SM command.

standard delimiter such as ¥, = ().

Example:

SsW 5 8

changes byte 8 to 9 of microword 5 to lE and 24,

1E2A/Dw 5.1

changed microword.

then displays

Only high order nibbles can be entered as nibble-only increments.
only the low order four-bit nibble of a byte 1is to be changed,
existing high order four-bit nibble must also be entered at the
console to prevent changing that nibble wvalue.

NOTE

All 128 microword bits must be accounted for at all
times.

NOTE

References made in the following paragraph to the

control register can be clarified by reading the
- paragraph entitled Control Register Store Subcom-

mand that is presented later in this chapter.

4=14

This 1is the case

It must follow the data D included
The slash must be followed by at least one

the

1f
the
CRT

STATUS

The status subcommand is used to display the contents of the CCL status
register. The status register contents indicate what caused the CCL
clock to stop. Causes include: one of four user-wired trap bits is
active, an address comparison occurred, control register mask bit 5 is
low, a hardware stop, or a software stope.

When the status subcommand is invoked, the status register contents are
displayed at the CRT console as a two-character hexadecimal number.
The hexadecimal number represents the status of the eight status
register bits. Any low bit indicates what stopped the CCL clock.

Table 4-3 summarizes the status register bit assignments.

TABLE 4-3. STATUS REGISTER BIT ASSIGNMENT SUMMARY
STATUS
BIT FUNCTION DESCRIPTION
0 Trap bit O | When any user-wired trap bit is low and the associ-
1 Trap bit 1| ated control register mask bit is low, the CCL
2 Trap bit 2 | clock is stopped and the associated status register
3 Trap bit 3 | bits O thru 3 and trap bits O through 3.
4 Address When control register mask bit 4 is set low and an
Compare address comparison occurs, the address com pare
status bit 4 is set low to indicate an address com-
parison stopped the CCL clock during address break-
point operation.
5 Clock When control register mask bit 5 is low, the CCL
Disable clock cannot run and status register bit 5 is low.
6 Software When the CCL clock is stopped by execution of a
Clock software halt command, status register bit 6 is set
Enable low.
7 Hardware When the CCL clock is stopped by setting the front
Clock panel RUN ENABLE/ HALT switch in the HALT position,
Enable status register bit 7 is set low.

Figure 4-4 shows an example of a status subcommand display at the CRT
console and how the two-character hexadecimal presentation is
interpreted. In the example of Figure 4-4, an address comparison
stopped the CCL clock.

The execution format of the status subcommand is as follows:

STatus

HEX NUMBER
DISPLAY AT E F
CRT CONSOLE

BINARY
EQUIVALENT 1 1 1 0 1 1 1 1
OF HEX NUMBER

STATUS
REGISTER 7 6 5 4 3 2 1 0
BIT NUMBER

Figure 4-4. Example of Status Subcommand Display and Interpretation

HALT

The halt subcommand stops the microprogrammed controller clock. The
execution format is as follows:

Halt

SINGLE-STEP

The single-step subcommand permits the microprogrammed controller clock
to be stepped one or more phases at one time. The execution format for
one single-step subcommand is as follows:

58 n
Where:

® 55 denotes single-step.

® n specifies number (1-65535) of clock phases to be stepped.
Default for n is one.

MICROCYCLE STEP

The microcycle step subcommand permits the microprogrammed controller
clock to be stepped one or more microcycles at a time. The execution
format for the microcycle step subcommand is as follows:

MS n
Where:

® MS denotes microcycle step.

® n specifies number (1-65535) of microcycles to be stepped. Default
for n is one.

RUN

The run subcommand causes the microprogrammed controller clock to run.
The execution format of the run subcommand is as follows:

Run

CONTROL REGISTER STORE

The control register store subcommand is used to store mask bits that
control various functions on the CCL. The subcommand stores the binary
equivalent of a two character hexadecimal value (input at the CRT
console) into the clock control logic control register. Table 4-4
describes the assignments of the eight control register mask bits.

The execution format of the microprogrammed controller subcommand is as
follows:

CTL XX
Where:

XX is a hexadecimal byte representing the eight mask bit values.
Example:

CTL 6F cr
Figure 4-5 shows the relationship between the two-character hexadecimal
value entered at the CRT console in the example and the individual mask

bits. 1In the example, all trap bits are inhibited, address comparison

is enabled, the MPC clock is enabled to run, CCL dinterrupt 5 is
serviced whenever the MPC clock stops, and the contents of the clock
control 1logic address register can be jammed onto the WCS card address

TABLE 4=4.

CONTROL REGISTER MASK BIT ASSIGNMENTS

MASK BIT FUNCTION DESCRIPTION
0 Trap Bit O
Enable/Inhibit
(0) (1)
1 Trap Bit 1 When any of the first four mask bits (0
Enable/Inhibit | thru 3) 4is high, the associated user-
implemented trap bit is inhibited. That
2 Trap Bit 2 is, the trap bit 4is unable .to stop the
Enable/Inhibit | MPC clock.
3 Trap Bit 3
Enable/Inhibit
4 Address When mask bit 4 is high, the output of the
Comparison CCL address comparator is inhibited. That
Enable/Inhibit | is, address breakpoint operation is in-
0) (L hibited.
5 MPC Clock When mask bit 5 is high, the MPC clock 1is
Enable/Inhibit | enabled to run, providing all other clock
(1) (0) conditions are met. When mask bit 5 is low,
operation of the MPC clock is inhibited.
6 Interrupt 5 Mask bit 6 1s used to enable or inhibit the
Enable/Inhibit generation of interrupt 5 CCL whenever the
(1) (0) MPC clock is stopped. If mask bit 6 is
low, interrupt 5 is inhibited and conse-
quently, not serviced when the MPCclock
stops. If mask bit 6 1is high, interrupt 5
is enabled for servicing when the MPC clock
stops.
7 Address Jamming | Mask bit 7 controls the address jamming

Control Clock/
DDT29J

(1) (0)

function. i1if mask bit 7 is high, the con-
tents of the CCL address register are jam-
med onto the WCS address bus whenever the
System Clock signal goes high. If mask bit
7 is low, the CCL address register contents
are jammed onto the WCS address bus when-
ever the DDT29 jam subcommand is invoked.

bus by invoking the DDT29 jam subcommand.
useful for

setting

address

The example given could be

breakpoints to examine the prototype

microcode and hardware cperation at significant points.

4-18

ADDR. INTR.5 | M.S. ADDR. TRAP BITS
JAM CLOCK COMP.
MASK BIT 7 6 5 4 3 2 1 0
ENTERED
AT CRT 6 F
CONSOLE

BINARY VALUE
LOADED INTO 0 1 1 0 1 1 1 1
CONTROL REG. '

Figure 4-5. Clock Control Logic Control Register Mask Bit Example

ADDRESS REGISTER STORE

The address registér store subcommand stores a specified address into
the clock control logic address register. The execution format is as
follows:

IR X
Where:

X indicates the address value (000-FFF).

JAM ADDRESS

The jam address subcommand jams the address stored in the CCL address
register onto the WCS card address bus. The execution format is as
follows:

Jam

The user must consider the type of microinstruction located at the
jammed address and take the steps shown in table 4-5. This is because
the jam address bypasses the sequencer and accesses WCS directly. The
effect is that the jam address is forced to the address inputs of the
WCS for one microcycle and then cleared. The microprogrammed
architecture then executes whatever microinstruction was pointed at by
the jam address. The PC held by the sequencer is not changed unless
the microinstruction at the jam address changes it.

4-19

TABLE 4-5.

JAM ADDRESS MICROINSTRUCTIONS STEPS

TYPE OF
MICROINSTRUCTION#*

USER STEPS#**

Stack Operation
(Push/Pop)

Jump-to-Pipeline
Operations
(From D Input)

Continue

(i.e., LDCT, CONT)

External Inputs
(OR inputs)

Push---Note that the address being push=-
ed is the PC address. PC may have to be
reset.

Pop---User must verify that the popped
address corresponds to the intended
pushed address.

No limitations. (The jammed instruction
sets the PC and next address.)

Not allowed. Instruction must be
changed to one that updates the PC (e.g.
JUMP) and next address.

Since OR inputs only affect the least
significant 4 bits (with AmSYS29 MSC),

the user must reset/set the most signi-
ficant 8 bits of address in the next ad-
dress and PC.

Conditional
Instruction

Allowed except 1if a continue operation
results. (See continue above.)

* Refers to Am29811 next address control.
** Assumes AmSYS29 MSC is used for microprogram control.

SLEEP
The sleep subcommand permits the user to stop DDT29 subcommand
processing in a variety of ways:

Z n

Z Sp

Z TGL

n operand---n gpecifies the number (1-65535) of milliseconds that DDT29
subcommand processing will be stopped. Default value for n is 1.

SP operand---Each time a 2Z SP subcommand is encountered, DDT29
subcommand processing will stop. Pressing the space bar on the System
29 console will cause DDT29 subcommand processing to resume. The user
may optionally enter a numerical value n (1-65535) followed by the
space-bar. Subsequent subcommand processing will halt on every nth 2
SP subcommand.

4=20

TGL operand---The TGL operand of the Z subcommand will cause DDT29
subcommand processing to stop the first time it is encountered.
Pressing the space-bar on the AmSYS29 console will cause DDT29
subcommand processing to resume. The user may optionally enter a
numerical value n (1-65535) followed by the space-bar. Subsequent
subcommand processing will halt on every nth Z SP subcommand.

TGL operand---The Z subcommand will cause DDT29 subcommand processing
to stop the first time it is encountered. Pressing the space-bar on
the AmSYS29 console will cause DDT29 subcommand processing to resume.
Now, the Z TGL subcommand will be ignored until the console space-bar
is pressed again. TGL, therefore, is a toggle which, on each
depression of the console space-bar, will alternate between stopping or
not-stopping on the Z.

DISPLAY TRACE

The DTR subcommand displays the address of the last microinstruction
executed (see DLA subcommand), the contents of WCS at that address, and
the monitor bits (see DMB subcommand). By using DDT29’s macro
facility, the user may be use the DTR subcommand to trace microprogram
execution. An example follows:

DIR M Z SP MS DTR cr

Each time the console space~bar is pressed, the microprogram will
advance to the next microinstruction, display DTR information as
described above, and stop. Replacing the SP operand with a numerical
value will cause the microprogram to automatically slow-step at any
rate between 1 and 65535 milliseconds.

MACRO

The macro subcommand permits the user to repeatedly execute a string of
DDT29 subcommands. The string of subcommands can be executed as many
times as desired through the use of the n operand as described below.
The DDT29 subcommands repeatedly executed are contained between the M
subcommand and the MEnd term or the carriage return cr terminating the
command line. The execution format for the macro subcommand is as
follows:

M n DDT-29-subcommand,«.e«...DDT-29-subcommand, MEnd cr
Where:

n specifies the number of times the string of DDT29 subcommands is
to be executed. Default value for n is infinity. The subcommands
following the MEnd term are executed when the n count is complet-
ed. Should the n count not be entered (infinit loop), a DElete
from the CRT console terminates the macro loop. Any DDT29 subcom-
mands entered after the MEnd term are then executed.

4-21

NOTE
Execution of the macro subcommand can be terminated
at any time by pressing the CRT console DEL key.

DISPLAY LAST ADDRESS

The display last address subcommand permits the user to display the
contents of clock control logic register that contains the address of
the last microinstruction executed. The address is displayed in
hexadecimal at the CRT console. The execution format for the display
last address subcommand is as follows:

DLA

DISPLAY MONITOR BITS

The display monitor bits subcommand permits the user to display the
20-bit contents of the clock control logic monitor registers. The
monitor registers contain monitor bits such as test points or other
data that are user selected and then, user wired to the instrumentation
card. The 20 monitor bits are displayed as five hexadecimal characters
at the CRT console display and the monitor bits. Figure 4-6 shows the
relationship between a typical CRT console display and the monitor
bits. The execution format for the display monitor bits subcommand is
as follows:

DMB

EXIT

The exit subcommand causes AmSYS29 to leave the DDT29 environment and
return to AMDOS29 control.

Exit

HEX DISPLAY
AT CRT
CONSOLE

BINARY MSB
EQUIVALENT 0 1 1 1 1j]ojojojJojJo}jojo 1 0

MONITOR
BIT NUMBER 19 18 |17 |16 {15 |14 |13 J12 |11 {10 } 9 | 8| 7 6

CCL CARD
P4 PIN -
ASSIGNMENT 40 |38 |36 |34 |32 {30 |28 |26 |24 [22 |20 |18 |16 |14

Figure 4~6. Typical Monitor Bit Display and Clock Control
Logic Card Pin Assignment

4-22

CHAPTER 5

POST PROCESSING ROUTINES

INTRODUCTION

The AMDASM meta—-assembler has three post processing routines: AMSCRM
for engineering applications, AMPROM to produce an object code tape and
AMMAP to generate non-microinstruction PROM data.

AMSCRM DESCRIPTION

AMSCRM bit scrambling post processor reassigns the bit positions of the
microword contents by simply specifying the source and destination bit
positions and the length of each field to be moved. In so doing, a
reorganized microcode object file is produced. At the conclusion of an
AMDASM assembly, the object code generated by AMDASM is the input to
AMSCRM. The leftmost bit in the object code is assumed to be position
0; thus the rightmost bit position will be microword size-1.

After execution begins, the transformation parameters are entered.
These indicate the source bits to be moved, their destinations and the
length of the field to be moved.

After execution of AMSCRM the microcode is in its new bit order and is
available on a file to be used as input to AMPROM.

AMSCRM is used by the microprogrammer to assign microword fields that
differ from those in the actual hardware implementation. This is
important when the programmer allocates bits according to functions and
needs to translate the object code produced by AMDASM to be consistent
with the hardware microprogram memory design.

The ability to shift bit assignments is important to engineers. As a
product evolves, bits may be added or deleted from the original
microword format. At the time that PROMs need to be blown, bits often
need to be reassigned to be consistent with the hardware
implementation.

EXECUTION AND FILENAMES FOR AMSCRM

After the AMDOS29 operating system has issued a user prompt (e.g., the
characters A>), AMSCRM is executed by entering either of the following
commands $

A > AMSCRMPOLD=filenamel PNEW=filename?2 cr

A > AMSCRMBOLD¥filenamel¥NEWPfilename2 cr

Filenamel is the name given to the file containing the microcode
generated by AMDASM and is assigned name qqqqqqqq.OBJ if AMDASM was
executed without specifying OBJECT=filename.

Filename2 is a user-defined name for the file on which the reordered
microcode is to be placed. It is recommended that the user make the
primary part of Filename2 the same as Filenamel, but that he use a
different generic. Filename2 must be different from Filenamel. There
are no required generics. for AMSCRM, but if Filenamel does not specify
a generic, the generic defaults to .0OBJ. Likewise, the default generic
for Filename2 is .XOB.

After the execution command and a carriage return is entered, AMSCRM
issues a prompt:

ENTER TRANSFORMATION PARAMETERS:

The user enters:
S0, DO, WO, ecr
S1, D1, Wl, cr
Sn, Dn, Wn, cr
L] Cr

where:

SO = starting (leftmost) bit position for the first source field to be
moved.

DO = destination bit position for the first (leftmost) bit of the first
group of bits.

WO = width of the field to be moved.

S1 = starting (leftmost) bit position for second source field to be
moved.

Wn = width of the last field to be moved.

Each group of parameters is ended by a carriage return. A period and a
carriage return are used to terminate input. For all microwords the
leftmost bit position of the AMDASM printout is considered to be zero;
thus the rightmost bit position will be the width of the microword -1.

It is the user’s responsibility to see that all bits are properly
shifted. Thus, if the user enters 13,28,4 cr. Indicating that 4 bits
beginning at bit position 14 are to be moved to bit positions
28,29,30,31; 28,X,4 cr must also be entered. X indicates the new
starting bit position for the bits originally in positions 28-31,

AMSCRM EXAMPLE

The MUX control bits in the Evaluation Kit are physically separated in
the hardware configuration. However, it would be much more convenient
to program them as contiguous bits when writing the microcode.

The bit numbers shown in figure 3-4 are numbered right to left; AMDASM
and AMSCRM count bit positions from left to right. Thus, if the MUX
control bits were assigned to the bit positions 8 and 9 during AMDASM ,
then AMSCRM would require the following command to put them into the
positions shown in Figure 5-1. The AMDASM output is assumed to be on
the file SYSTEM1.0BJ. SYSTEM1.XOB is the name to be assigned to the
AMSCRM output as follows:

A > AMSCRMBOLD=SYSTEM1BNEW=SYSTEMl cr

ENTER TRANSFORMATION PARAMETERS:

9,12,1 cr
3

10292 cr
. CT

Bit No. O 1 2 3 4.‘...........Q.Q.l.....0.........'.47
Executable 1

Instruction 2

Number 3

1023

Figure 5-1. Bit Matrix

AMPROM DESCRIPTION
When an AMDASM assembly and an optional AMSCRM execution is complete,
AMPROM is used to output binary object code in a form that corresponds

with the PROM’s organization and/or to be used as input to a PROM
burner.

PROM ORGANIZATION

In order to understand post processing one must know how the PROMs are
organized in the computer memory space.

If AMDASM has been executed using the command

A > AMDASMPpl=2900)P2=2900 cr

AMDASM generates binary object code for the executable statements in
the file names 2900.SRC. This binary object code is output to a file
called 9000.0BJ. Assume that the microword is 48 bits wide and the
number of executable statements is 1024. '

This gives us a matrix 48 wide by 1024 deep as shown in figure 5-1.

After PROM width and depth are specified, the bit matrix is subdivided
to yield a PROM map where each PROM is n bits wide by m bits deep. If
we assume that the initial program counter is zero the actual PROM map
printed appears as shown in figure 5-2.

PC Cl C2 ¢3 ¢4 ¢5 <¢c6 7
-R1 0000 1 2 3 4 5 6 7
R2 0l00 8 9 10 11 12 13 14 PROM
R3 0300 15 16 17 18 19 20 21 VNo.
R4 0380 22 23 24 25 26 27 28

where:
Pc represents the initial program counter value

for that PROM row. The PC value is given in
hexadecimal.

Figure 5-2. Sample Printout of a PROM MAP

Physical size and organization are as shown in figure 5-3.

Each executable instruction has a program counter associated with it by
virtue of its position in the program and/or the origin(s) that were
set during the assembly execution.

This breakup of the matrix is now called a PROM map that has associated
with it, not only the PROMs shown, but also rows and columns as shown
in figure 5-3. Thus, we may now refer to PROM 19 by using the digits
19, or by referring to R3 for row 3 or CS5 for column 5.

All PROMs in row 1l are 256 (instructions) deep. PROMs 1, 3, 5, and 6
are only 4 bits wide, while PROMs 2 and 7 are 8 bits wide and PROM 4 is
16 bits wide.

In row 2, all PROMs are 512 (instructions) deep; PROMs 15, 22, 17, 24,
19, 26, 20 and 27 are 4 bits wide; PROMs 16, 23, 21, 28 are 8 bits
wide; and PROMs 18 and 25 are 16 bits wide.

A printing request (or punching) for PROM #1 will obtain data that is &
by 256.

A printing request for row 3, will obtain data (i.e., the contents of
PROMs 15 through 21) in the following form:

4 x 128, 8 x 128, 16 x 128, 4 x 128, 4 x 128, 8 x 128

A printing request for column 4 will obtain data (i.e., the contents
of PROMs 4, 11, 18, and 25) that is as follows:

16 x 256, 16 x 512, 16 x 128, 16 x 128

POST PROCESSING FEATURES

AMPROM allows the user to specify the depth (number of instructions)
and width (bits of the microword) for each PROM. Listing or
suppression of listing of the PROM map is available by PROM number and
listing of PROM content by PROM rows or PROM columns or by PROM number.
Optional automatic inversion of all bits except the don’t care bits and
specification of don’t care bits to be 0 or 1 is available.

EXECUTION COMMAND FOR AMPROM

The format for AMPROM execution command is:

A> AMPROMBO=gqaqqqqqq.gegloptions] cr

The primary part of the object code filename must be typeds If the
generic part is not specified, the default .OBJ is assumed.

Options and their default values are shown in table 5-1.

5-5

SHO¥d JO uollezTuEdlQ TedT1SAyg °*¢-¢ 9an31y
€201
82 L2 92 14 ¥2 €3 72 o
#WOoud #NOUd| | ¥NOUd #WOUd #NOUd #NOoud #NOUd 968
$68
12 02 61 81 L1 91 St 0
fNoud #WOHd| | #NOUd #NOYUd #NOUd #NOUd #WOUd | go;
. 9L
(7]
148 141 (41 11 01 6 8
#MOUd #HOoUd; | #N0Ud fNCdd #FNOHd4 #NOUud #NOUd | 95t
. 1374 Jaquiny
L 9 s ¥ & ¢ t o) uoponIIsuj
#INOHd #NOHd| | #NOUd #WNOUd #NOUd #NOUd #NOUd | o AqeINIaxXy
Lr-or 6€-9¢ sE-¢ [S1-21 Hn-v £-0 ‘ON M|

TABLE 5-1.

AMPROM 29 OPTIONS

OPTION

ABBREVIATED
OPTION

DEFAULT

MEANING

OBJECTHf 1 lenamel
or
OBJECT=f{ lenamel

MAP

NOMAP

HEX

BNPF

INVERT

PUNCHBf | | ename2
or
PUNCH=f{ | ename2

NOPUNCH

L ISThfl lename3
or
LIST=filename3

NOLIST

0

NP

NL

NONE
This Is a re~
quired Input.

MAP

MAP

HEX

HEX

No inversion

filename!,0UT

f1llename!,0UT

filename1l.P3L

filenamel,P3L

Specifies the name of the flle on which
the AMDASM object code is located. |f only
the primary part of filenamel Is Input,
the default generic .0BJ is assumed.

Print the PROM map.

Suppress. printing the PROM map. If NOMAP
Is not specified, the program automatic-
ally prints the PROM map.

Punch the PROM output hexadecimal format.

Punch the PROM output in BNPF format. |f
BNPF Is not specified, the output is auto-
matical ly punched in hexadecimal.

If INVERT is specified, all ones are in-
verted to zeros, and zeros to onhes, except
for bits specified as don't cares. I f
INVERT 1s not specified there Is no modi-
fication to the binary object code.

Specifies the name of the file or device
where punch data is to be output. If not
specifled there is no modification to the
binary object code.

Suppresses punching the PROM contents. |f
not specifled, defaults to PUNCH.

Specifies the name of the ocutput file de~
vice where the AMPROM output Iisting is to
be placed. If not specified, the out-
put automatically goes to the default file
named fllenamel,P3L,

Specifles that the oautput is not to be
listede This would be used when only
punching of the output is desired. If not
specfied the program defaults +o LIST us-
ing the default file named fIlenamel.P3L.

AMPROM FILENAMES

As part of the opticns, the user may need to specify filename
information. Whether filename information is needed will depend on
whether or not the user wishes to receive his output at a printer
console or punched on paper tape or stored on files with or without
default assignments.

The PUNCHBfilename and LISTBfilename must each be preceded by a
blank and may be specified in any order. The filename may be any AMDOS
29 device.

If the user executed AMDASM with the following command:

A > AMDASMBP1B2900pP2¥2900 ecr

The binary object code is stored on a file called 2900.0BJ. When
executing AMPROM, only 2900 must be given as the input filename.

Thus the command to execute AMPROM is A > AMPROMBOK2900 cr and,
since no LIST or PUNCH is specified, all output will be to the default
filenames 2900.0UT and 2900.P3L.

AMPROM EXECUTION EXAMPLES

The command A > AMPROMYNOLISTYPUNCHBPUN:BOBJIECTH2900 cr

specifies the PROM map and the PROM content are to be printed on the
list device, the content of the PROMs is not to be punched, but will be
stored in hexadecimal on the file with the default name qqqqqqqq.OUT.

However, A > AMPROMKO=qqqqqqqq.gggBNOLISTENOMAPKPUNCH=PUN: cr
specifies that the content of the PROMs is to be punched on the paper
tape punch with no listing of the PROM map or PROM content.

Each option is preceded by a required blank and options may be given in
any order. The full option name or the abbreviated option name can be
used. If filenamel has no generic specified, it defaults to .OBJ. If
filename2 (PUNCH) or filename3 (LIST) is input without a generic,
AMPROM assumes no generic, and uses exactly what was input.

INTERACTIVE AMPROM INPUT

Once AMPROM has begun execution, the user acts interactively with the
console. Messages from the console will be received and responses can
be input followed by a carriage return. The terminal prints the
requested output and sends a message requesting additional input. When
execution is complete, control is returned to AMD0S29.

5-8

Sample console messages are given below. For this example, underlined
numbers are used to illustrate the user’s input. Table 5~2 is a list
of the acceptable substitutes that may be used for the underlined
values. After the user has input an AMPROM execution command, the
terminal responds by displaying these messages:

DON‘T CARES? 1 ecr
ENTER PROM WIDTHS &4 * 8, 4 cr
ENTER PROM DEPTHS 128 cr

If a map listing at the output device is requested the PROM map is
output here. Then the console displays the message,

WHICH PROMS DO YOU WISH TO PRINT? 5-7 cor

If printing of the PROM content was specified, the PROM content is
printed. A tape of the contents will be punched unless NOPUNCH was
specified. The punch device should be turned on before keying in the
PROMs to be printed and punched.

When execution is complete, control is returned to AMDOS29.

BNPF PAPER TAPE OPTION

When BNPF is specified as an option, the output is in the BNPF format.
B is punched as the first character, then a P (for a one) or an N (for
a zero) is punched as the last character for this row of PROM data.
This continues until all rows (the depth) of the PROM are punched.

Before the first BNPF for each PROM is punched, the program punches
identification on the tape that consists of 32 rubouts, 4 ASCII
characters that are the PROM number and 32 NULs to be used as the
leader when loading the PROM burner tape reader. After the PROM data
1s punched, 40 NULs are punched to facilitate tape handling.

If PROM #5 is 4 bits wide by 128 bits deep, and begins at origin zero,
the paper tape will appear as shown in table 5-3.

HEXADECIMAL PAPER TAPE OPTION

When punching is desired, and HEX is specified or assumed by default,
the PROM contents are punched in the DATA I/0 hexadecimal format.

The same initial data (32 rubouts, PROM number and 32 NULs) is punched
as 1is punched for the BNPF format, followed by the PROM content in
hexadecimal.

TABLE 5-2.

AMPROM INPUT SUBSTITUTES

CONSOLE PROMPT

SUBSTITUTES

MEAN ING

DON'CARES?

ENTER PROM
WIDTHS

ENTER PROM
DEPTHS

WHICH PROMS DO
YOU WISH TO
PR INT##%

0 or i

{xb

Combinations of n
and Ixb

txd

Combinations of r
and tad

The wlue specified here s assigned to all don't
care bits in the PROM(s)., Any value except 0 o ! Is
an error and the prampt is repeated.

n Is a decimal Integer and each PROM is n bits wide.
It the microword size Is 60 and n Is glven as 8, 8
PROMs wil! be ganerated. The first seven will con=
tain actual microword Information but the 8+h PROM
will contain microword information in its leftmost 4
bits and don't cares In the 4 right-hand bits (i.e.,
1f the microword width is not an even multiple of n,
It Is padded on the right with don't cares).

| Is a decimal Integer indicating a number of PROMs,
b is a decimal integer indlcating the number of bits
wide for each of these PROMS.

Thus, 3 # 4 means there are 3 PROMS each 4 bits
Wldeo

For the PROM map (flgure 5-2), the user would write
4, 8, 4, 16, 2x4, 8.

Any combination of n and Ixb Is permissible |f
separated by commas and If the total number of bits
Is less than or equal to the microword width,

r Is a decimal integer and each PROM s r Iinstruc-
tions deep (long). |If the binary object code is not
an even multiple of r, AMPROM fllls the final PROM
loations with don't cares.

t Is a decimal integer indicating a number of PROMs.
d Is a decimal integer indicating how many words deep
each of these PROMs is to be. Thus 24512 indicates
there are 2 PROMs each 512 bits deep.

For the PROM map In flgure 5-2, the user would write
256, 512, 2x128.

Any canbination of r and txd se~
parated by commas.

Is permissible if

Y Is a decimal Integer which Is a PROM number, 5
means |ist the contents of PROM #5,

*%% The same PROMS are printed and/or punched.

Thus, all values for

printing apply for punching also.

5-10

TABLE 5-2. AMPROM INPUT SUBSTITUTES (continued)

CONSOLE PROMPT SUBSTITUTES - MEANING
WHICH PROMS DO Yi=Yq Yy Is a decimal integer specifying the number of
YOU WISH TO the first PROM to be- listed. Y, Is a decimal
PRI NT*3%* Integer speclfying the last PROM to be listed. Thus,
{ continued) 2-5 specifies listing of PROMs 2, 3, 4, and 5.

Combinations of |3, 5-7, 9 means print (and punch) PROMs 3, 5, 6 and
r and txd 9. All combinations of Y and Yy-Y, are accept-
able If separated by commas.

Cs C means column and s is a decimal integer which spec-
ifles the PROM column desired. C4 means print all
PROMs in column 4,

Csy-s, Print columns sy through Spe C1-6 indicates print
PROM columns 1 through 6.

Combinations of CS, 7-9, 11 means print columns 5, 7, 8, 9, 11,

Cs, sy-sq C3~6, 10 means print columns 3, 4, 6, 10 (i.e., C Is
only given once, then the s and/or S1=s, separ—
ated by commas).

Rs R means row and s is a decimal integer which specl-
) fles the row. desired. R1 means print all PROMs In
row 1,
Rsq=s List the contents of PROM rows 1y, through sg.

R2-6 means print all PROMs In rows 2 through row 6,

Combinations of The same as columns. The R Is gliven once, followed
Rs, sy-s, by the row numbers separated by commas,

R1, 4-6, 1113 prints rows 1, 4, 5, 6, 11, 12, 13,

N The letter N is typed if the user wishes to Indlicate
none of the PROM contents are to be Iisted.

A The letter A when typed means all PROMs are to be
printed.

*%** The same PROMS are printed and/or punched. Thus, all! values for
printing apply fof punching also.

5-11

For PROMs 4 or less bits wide, one hexadecimal character and a space is
punched. For PROMs greater than 4 bits wide, two hexadecimal
characters and a space are punched. Thus, two characters, space, two
characters, space would be punched for either 2 rosw of an 8-bit PROM,
or for 1 row of a 16-bit wide PROM.

Thus if PROM #7 (16 bits x 128 words) is punched, the output will
appear as shown in table 5-4.

TABLE 5-3. BNPF PAPER TAPE CONTENTS

TAPE CONTENTS CONTENT EXPLANATION
Rubout
. 32 Rubouts
Rubout gy
Characters 0005 PROM number
NUL;
. 32 NULs
NUL32

Character B

Character N or P BPNF format for one row
Character N or P of this 4~bit wide
Character N or P PROM

Character F
Space See Note

Character B

Character N or P Repeated 127 times
NUL;

. 40 training NULs
NUL40

NOTE: Carriage return/line feed for possible
listings is inserted after 8 words for PROMs4
or less bits wide, after 43 words for widths
of 16 or less bits, and after one word for
width greater than 16.

5-12

TABLE 5-4. HEXADECIMAL PAPER TAPE CONTENTS

TAPE CONTENTS CONTENT EXPLANATION
Rubout)
. 32 Rubouts
Rubout 39
Characters 0007 PROM number
NUL
. 32 NULs
NUL 32
SOH
Character
Character
Space Contents of PROM Row 1
Character (4 HEX digits)
.Character
Space
Character
Character Repeated 127 Times
*See Note
. End of Text
EXT
NUL;
. 40 NULs
NUL40

NOTE: Carriage return/line feed for possible
listings is inserted after 16 groups of hexa-
decimal characters. .

5-13

EXAMPLE OF AMPROM

Figure 5-4 1is an example of AMPROM for the Am2900 Learning and
Evaluation Kit.

LCONSQLE INPUT

DON‘T CARES?78

ENTER PROM WIDTH?8

ENTER PROM DEPTH?16

WHICH PROMS DO YOU WISH TO PRINT?3-4

AMPROM OUTPUT

AMD AMPROM UTILITY
AM2928 KIT EXERCISE 108

PROM MAP
PC €1 @ 3 4
Rl odg 1 2 3 4

PROM CONTENTS

PC ADDP3 Py

£PeD 208 9A1100P2 #APA1111
0201 201 28117999 09A11281
0882 202 29119009 DR1P200D
0883 003 20110000 91098109
peey o4 919P0200 28110009
8985 205 81990009 PAPPDDAL
6026 096 9p110000 PPODOAAD
2007 007 91000001 20910091
0028 288 PY11900) 0R1028
#0809 229 91000917 P8100081
£A9A BPA 98119900 2PlP0o0e
£028 998 0PA1PP0H 2129200
B2AC 20C £900DOAR PAPODODD
2000 28D 29720000 VoA20RAD
B02E P0E 19720080 29110808
#00F PoF 99112920 92110288

PUNCH OhTPUT

3
BNNPPNNNNF BNNPPANNNF BNNPPNNNNF BNNPPNNNNF
BNPHNNNNNF BNPNNNNNNF BNNPPNNNNF BMPNNNNNPF
BANPPNNNNF BNPNNNNPNE BNNPPNNNNF BNNNPNNNNF
BNNNNNNNNF BNNNNNNNNF BPNNNNNNNF BNNPPHMNNF
4
BNNNNPPPPE BNNNPPNNPF BNNPNNNNNF BHPNNNPNNF
BNHPPNNNNF BHNNNNNNPF BNNNNNNNNF BNNNPNNNPF
BHINPNNNNF BNNPNNNNPF BNNPNNNANF BNPNNNNNNF
BNNNNNNNNF BHNNNNAHNF BNMPPNHNNF BNNPPNNNNF

Figure 5-4. AMPROM Output for Am2900 Learning
and Evaluation Kit.

AMMAP DESCRIPTION

The AMMAP mapping RAM/PROM data assembler enables AmSYS29 to generate
non-microinstruction PROM data for the mapping RAM in the microprogram
sequencer card.

AMDASM outputs a symbol table file of microprogram entry point symbols
as an option with the generic file name MAP. The AMMAP assembler uses
this file, in conjunction with an assembly source file provided by the
user, as a symbol table to generate an object file. The object file
uses the generic file name OBM, and is compatible with the AMDASM
object file format. Therefore, it can be loaded/verified by the LBPM
and VBPM programs.

AMMAP is a one-pass assembler that allows the user to specify the width
of the mapping PROM, the assembler’s location counter value, and the
microprogram entry point addresses to be assembled into any PROM
location.

AMMAP MAJOR FUNCTIONS

The principal function of the AMMAP assembler is to generate mapping
PROM data through a symbolic source program. When AMMAP is called for
execution, the user must specify the map file to be used for symbol
table input. AMMAP builds a symbol file from this file and begins
assembly of PROM data.

The individual functions of AMMAP are as follows:

a. Entry point symbol table management = AMMAP will manage and
utilize the entry point symbol table built from the user specified
MAP file.

b. Location counter control - AMMAP starts assembly at PROM location
0 unless specified otherwise via user directives that set the
location counter value. In addition, it keeps track of locations
and assigns locations for each entry point address assembled.

c. Data assembly - translates symbolic entry point addresses into
internal binary equivalents and assembles them into PROM location.

d. Assembly directive processing - processes all assembly directives:
PROM width specification, number base specification for setting
location counter, assembly listing, and object output control, and
directive.

e. Assembler output generation - generates an assembly 1listing,
object data output file, and error diagnostics.

f. User command language interface - processes user-specified assem-
bler execution parameters and other user interfaces.

AMMAP PERFORMANCE CHARACTERISTICS
AMMAP runs under the 64K memory configuration for AmSYS29. It allows

at least 40K for entry point symbol table space and can handle more
than 3000 entry point symbols.

USER INTERFACE
PROGRAM SOURCE STATEMENT CONCEPTS
The format of an assembly statement in AMMAP is:

location: entry0, entryl,. . . «sentryn

where:

location is a binary, octal, decimal, or hex constant. The number base
is selectable via the BASE directive and default base is hexa-
decimal. location and colon following it are optional. 1If not

present, AMMAP assigns the next available location. Assembly
origin is 0, unless specified otherwise.

entry(n) is an entry point symbol that is defined during AMDASM assembly
phase and entered into the symbol table written out as the

MAP file. It may also be an absolute address in which case it
must be a constant which follows AMDASM syntax rules.

COMMENT STATEMENTS

A comment may be introduced into any source line by preceding the
comment with a semi-colon (;). AMMAP will treat all source text on a
line after a semi-colon as a comment up to the carriage return.

ASSEMBLER DIRECTIVES

There are four assembler directives used by AMMAP: WIDTH, TITLE, BASE
and END.

WIDTH (PROM WIDTH) DIRECTIVE
The format for the WIDTH directive is:
WIDTH n

where: n is a decimal constant (which specified the width of mapping
PROM or RAM 1 _n_128).

5-16

TITLE DIRECTIVE

The format for the TITLE directive is:
TITLE text
where: text is a title string of up to 60 characters.

The title will appear in the page header of assembly listings and the
title record for object file.

BASE (LOCATION COUNTER BASE) DIRECTIVE
The format for the BASE directive is:
BASE type
where: type may be one of the following: 2, 8, 10, or 16 to designate
that binary octal, decimal, or hex numbers will be used for

specifying PROM location.

If a number base is not specified in the program, the default used is
16 (hexadecimal).

END (END OF PROGRAM) DIRECTIVE
The format for the END directive is:
END

The END directive must be used to terminate the AMMAP assembly source
input file. Use of TAB characters are also allowed in AMDASM.

COMMAND LANGUAGE

The AMMAP assembler may be executed with the following AMDOS29
transient command:

AMMAP filenamel MAP = filename2 options cr
where:

filenamel 1is the primary filename of the AMMAP source input file
which must have the generic file name .OPC.

filename2 is the primary filename of the .MAP output file from
AMDASM to be used as the entry point symbol table.

options are user selectable options described in table 5-=5.

5-17

TABLE 5-5.

AMMAP OPTIONS

ABBREVIATED
OFTION OPTION DEFAULT MEANING

LISTHfilename L Specifles the listing is to be cutput to a

or file with the name (filename). |f not given

LIST=f1lename the listing is placed on a flle with the de-
fault name pppppp.P4L.

NOLIST NL pppppp.PAL | Suppresses the creation of a listing. |f not
specified defaults to L=pppppp.P4L.

OBJECTHfi1ename 0 Specifies that the microcode (object code)

or Is to be output on a file with the name

OBJECT=f1lename (filename)s If not given, the microcode is
placed on a flle with the default name
499999.08M,

NOOBJECT NO qqq4qq.(BM | Suppresses placement of the microcode onto a
flle. If block format printing Is requested,
the object code printing is also suppressed.,
It not specifled defaults to OBJECT and the
microcode goes to file qqqqqq.0BJ.

Wi0THEn W n=80 Specifles width of n (a decimal number)

or characters for Iisting devices. Default Is

WIDTH=n 80.

LINEB/n LN n=66 Speclifles length of n, (a decimal number)

or lines per page. |If no specified, default is

LINES=n 66 lines (11 inches).

HEX H Specifles |listing of location counter In
hexadecimal format.

QCTAL 0 HEX Specifles listing of location counter in
octal format. If no specifled defaults to
HEX,

SYMBOL S SYMBOL Specifles |Iisting of constant names and
labels and thelir associated values,

NOSYMBOL NS Suppresses listing of symbo! table. If not

specl fied, defaults to SYMBOL.

5-18

AMMAP ERROR MESSAGES

Table 5-6 is a 1list of AMMAP error messages and their definitions.

TABLE 5-6. AMMAP ERROR MESSAGES

ERROR MEANING
ERROR 1 Illegal character
ERROR 2 Undefined symbol
ERROR 3 Illegal location counter value
ERROR 4 Missing colon after location

Counter value

ERROR 5 Missing delimiter after PROM
Data specification

ERROR 6 Missing end statement

FATAL ERRORS:

ERROR 100 Command option syntax error
ERROR 101 Illegal mapping PROM width
specification

PFORMAT DESCRIPTION

The PROM Programmer subsystem provides the software routines that
reformat the microinstruction fields and output the microcode to the
PROM Programmer. PFORMAT.COM converts an AMPROM output file
(filename.OUT) to a DATA I/0 format file (filename.DIO). PPROG.COM
interfaces .DIO format files to the PROM Programmer via a set of
subsystem commands; PLPROG.COM interfaces to a Prolog PROM programmer.

The PFORMAT command converts an AMPROM output file to a PROM Programmer
input file. Each PROM defined on the AMPROM output file is defined by
PROM number, on the PROM Programmer .DIO input file. The format of the
PFORMAT command is:

PFORMAT filenamel (.filetype)filename2(.filetype)

filenamel is the name of the AMPROM output file; its filetype is
optional and will default to .QUT if omitted.

filename2 identifies the DATA I/O format file; it is optional. When
filename2 is not specified, it will default to filenamel. The filetype

for filename2 is alsc optional; it will default to .DIO if omitted.

A space 1is required to delimit PFORMAT from filenamel and delimit
filenamel from filename2.

For information on using PPROG and PLPROG, refer to the AMDOS 29 User’s
Manual.

5-20

CHAPTER 6

ERROR MESSAGES AND INTERPRETATIONS

AMDASM ERRORS

Each source file input statement 1is processed until a single error is
detected. One missing comma between fields, for example, would result
in incorrect processing of the remainder of the statement.

Thus, the assembler stops when an error is encountered, records the
error, the statement that caused it, and processes subsequent source
input statements.

Console error messages without an error number are AMD0S29 error
messages.

AMDASM and AMPROM error message format is as follows:
#%*ERROR n {y}

where:
n = error number
y = illegal character or symbol.

Fatal error messages appear on the console output device as well as on
the assembly file.

Seemingly inappropriate error messages occur because the assembler is
unable to determine the programmer’s intent. This is often the result
of a missing comma, semicolon, blank, or colon. Table 6-1 is a list of
AMDASM errors.

ERROR 1: ILLEGAL CHARACTER

The character which cannot be interpreted is printed and the line in
which it occurs is also printed. This message may be generated by:

® Striking the wrong console key.
® A missing comma or semicolon (B#101Q#7 is not interpretable).

® A wrong number base used (N#3 or Q#8 cannot be interpreted).

TABLE 6-1. AMDASM ERRORS

ERROR 1 ILLEGAL CHARACTER

ERROR 2 UNDEFINED SYMBOL

ERROR 3 UNDEFINED FORMAT

ERROR 4 DUPLICATE FORMAT

ERROR 5 DUPLICATE LABEL

ERROR 6 DUPLICATE SUBDEFINE

ERROR 7 FORMAT FIELD OVERFLOW

ERROR 8 SUBDEFINE FIELD OVERFLOW

ERROR 9 UNDEFINED DIRECTIVE

ERROR 10 ILLEGAL MICROWORD LENGTH

ERROR 11 ILLEGAL FIELD LENGTH

ERROR 12 DON‘T CARE FIELD TOO LONG

ERROR 13 ARITHMETIC OPERATION ON FIXED FIELD
ERROR 14 ATTRIBUTE ERROR

ERROR 15 (Not Used)

ERROR 16 MISSING END STATEMENT

ERROR 17 ILLEGAL SYMBOL

ERROR 18 OVERLAY ERROR

ERROR 19 NO DEFAULT VALUE

ERROR 20 FIELD LENGTH CONFLICT

ERROR 21 $ SPECIFIED FOR NON-ADDRESS FIELD
ERROR 22 (Not Used)

ERROR 23 MISSING DESIGNATORS

ERROR 24 SPACE DIRECTIVE ERROR

ERROR 25 ORG SET TO LESS THAN CURRENT PC
ERROR 26 NO FORMAT NAME AFTER &

ERROR 27 (Not Used)

ERROR 28 ADDRESS NOT IN CURRENT PAGE
ERROR 29 LENGTH REQUIRED FOR $ MODIFIER
ERROR 30 ILLEGAL FIELD LENGTH IN FF STMT
ERROR 31 (Not used)

ERROR 32 NO EXPLICIT LENGTH BEFORE (

ERROR 2: UNDEFINED SYMBOL
This message will most often occur when:
® Something is misspelled.

HERE: EQU¥100
GO TO:DEFBHEER (the assembler cannot find HEER)

® The # is missing after a B, Q, D, or H.

® The space is missing after definition words DEF, EQU, SUB, WORD,
TITLE, RES, ORG, ALIGN, FF, SPACE.

® A symbol is referenced before it is defined by a SUB or and EQU.

® A VFS for a hexadecimal field begins with the letters A through F
and the H# designator does not precede the letter.

6=-2

ERROR 3: UNDEFINED FORMAT
The format name given 1s misspelled or was not defined in the

definition phase or the required blank was not supplied after the
format name.

ERROR 4: DUPLICATE FORMAT
The name given before a format (DEF) has already been used as a name.

If names contain more than 8 characters, the first 8 must be unique.
Check for misspelled names.

ERROR 5: DUPLICATE LABEL

This label has been used more than once as a constant name or a label.
If the label is more than 8 characters, the first 8 must be unique.

ERROR 6: DUPLICATE SUBDEFINE
The name given preceding a subformat (SUB) has already been used as a

name. If names contain more than 8 characters, the first 8 must be
unique. Check for misspelled names.

ERROR 7: FORMAT FIELD OVERFLOW
The user is permitted a maximum of 128 fields per format name (DEF).

This number has been exceeded. The format must be revised and fields
must be combined.

ERROR 8: SUBDEFINE FIELD OVERFLOW
The user is permitted a maximum of 128 fields per subformat name (SUB).

This number has been exceeded. Revise the sub format and combine
fields or use two subformats for this bit pattern.

ERROR 9: UNDEFINED DIRECTIVE

No name: was found and the characters given are not TITLE, WORD, LIST,
NOLIST, END, ORG, RES, SPACE, or ALIGN.

Check for a missing colon after a name, or misspelling, or blanks in
TITLE, WORD, etc.

6-3

ERROR 10: ILLEGAL MICROWORD LENGTH

Each time DEF or FF is encountered, the assembler checks to see if the
sum of the bits for all fields for this format name exactly equals the
microword length.

Thus, the user 1is assured that each DEF or FF contains an exact number
of bits. If the number of bits in this format does not exactly equal
the number of bits given with WORD, the interpretation of the faulty
DEF or FF is bypassed and the assembler attempts interpretation of the
next source sStatement.

ERROR 11: ILLEGAL FIELD LENGTH

No field, except a don’t care field, may be more than 1 bits in length.
The value calculated for this field cannot be represented in 16 bits.
ERROR 12: DON’T CARE FIELD TOO LONG

The explicit length given for a don‘t care field exceeds the microword
length specified by WORD. Improper digits may have been assumed for
the explicit length due to a missing comma or designator.

ERRCR 13: ARITHMETIC OPERATION ON FIXED FIELD.

If a field is defined as a variable field in the definition file, an
expression cannot be used as a VFS 1in the assembly file unless the
field contained the 7 attribute in its definition.

ERROR 14: ATTRIBUTE ERROR

Both the negative (=) and inversion (*) signs have been assigned to a

single variable or constant. This is not permitted. 4V-* or 4B#1011%-
are meaningless.

ERROR 15: (Not used)

ERROR 16: MISSING END STATEMENT

The definition or assembly file is missing the END statement.

ERROR 17: ILLEGAL SYMBOL

A character other than A through Z, digits O through 9, or period was
used in a name, or a comma may be missing between fields.

ERROR 18: OVERLAY ERROR

This message is given when two formats are overlaid and both of them
contain constants for the same bit position. If the assembler is run
using each of the formats in the overlay statement as a separate
format, and the output is printed in block form, the erroneous bits are
easily detected.

For example, if the definition file statements are:

A: DEFB4X,B#1011
B: DEFBB#01111,3X

and the source file statement is
A& B
the overlay error message occurs.
Rerun the assembly f?le with source statements given as

A
B

and block output requested which generates
XXXX |1] 011
0111 |1] XXX _

- [1]

It can easily be seen that bits |l] are causing the overlay error. The

improper DEF can then be corrected and the overlay A & B can be used in
the assembly file statement.

ERROR 19: FIELD LENGTH CONFLICT

The calculated or implicit field length for the constant or expression
given after the designator does not have the same number of bits as the
explicit field length. Check for a missing % or :, or a comma missing
after the previous field.

This message may be output when commas are left out. For example,

8H#A39Q#274

is missing the comma between 3 and 9. Thus the program assumes A39
1s to be substituted into the 8-bit hexadecimal field.

Similarly,
8H#A3,9Q27,4

will generate this error message since the comma between the 7 and 4 is
misplaced.

ERROR 21: SSPECIFIED FOR NON-ADDRESS FIELD
In order to use the value of the program counter (indicated with a $)
as a VFS, that field must contain the % attribute.

ERROR 22: (Not used)

ERROR 23: MISSING DESIGNATOR

A field has been encountered which contains only decimal numbers. This
is not permitted for a field in a DEF, SUYB, or FF. Decimal numbers
must be input as, n D# digits, where n is the explicit length of the
field and digits are the decimal integers which generate the desired
bit pattern or field value.

ERROR 24: SPACE DIRECTIVE ERROR

The value input following SPACE is interpreted as less than zero or
greater than the number of lines given per page.

ERROR 25: ORG SET TO LESS THAN CURRENT PC

When ORG is encountered, the value given is compared with the current
program (location) counter. TIf ORG is less than the program counter,
the value given with ORG is ignored.

ERROR 26: NO FORMAT NAME AFTER &

When a line ends with an & and no continuation (/) is given at the

beginning of the next line, this error is generated. A format name is
missing after the &, or a / is missing on the continuation line.

ERROR 27: (Not used)

ERROR 28: ADDRESS NOT IN CURRENT PAGE

When the user gives a label or a label$ as a VFS or has defined the
variable field with the $ attribute, this message will be generated if
the left bits to be truncated do not match the corresponding bits of
the current program counter.

ERROR 29: LENGTH REQUIRED FOR $ MODIFIER

Paged addressing (use of the $ as a modifier) requires the field length
before the symbol in FF statements. Thus, 6SYMBOLS is correct but
SYMBOLS is incorrect.

6-6

ERROR 30: ILLEGAL FIELD LENGTH IN FF STMT.

A field is greater than 16 bits in a FF statement. Only don‘t care
fields may be larger than 16 bits.

ERROR 31: (Not Used)
ERROR 32: NO EXPLICIT LENGTH BEFORE (

An expression in a FF statement must be enclosed in (). The explicit
field length must precede the (.

AMDASM ERRORS WHICH HALT EXECUTION

Error messages with n > 100 cause execution to stop. They are listed
in table 6-2 and described below.

TABLE 6-2. AMDASM ERRORS WHICH HALT EXECUTION

ERROR 100 COMMAND OPTION SYNTAX ERROR
ERROR 101 ~ DEF TABLE OVERFLOW

ERROR 102 SUB TABLE OVERFLOW

ERROR 103 EQU TABLE OVERFLOW

ERROR 104 INCORRECT OR MISSING WORD SIZE
ERROR 105 UNEXPECTED END OF FILE

ERROR 106 FIELD TABLE OVERFLOW

Errors 101, 102, 103 and 106 occur when the
amount of memory available has been exceeded.

ERROR 100: COMMAND OPTION SYNTAX ERROR

The input command contains an error. Check for correct spelling of
filenames and options, spaces between options, and correct drive
specification with filenames.

ERROR 104: INCORRECT OR MISSING WORD SIZE

Either the WORD n command is not given as the first command (or the
first command after TITLE) or the value given for n is <1 or >128.

6-7

ERROR 105: UNEXPECTED END OF FILE

The user has given an incorrect file name or the source file is not
correct. AMDASM has encountered an end of file when it was still
expecting data.)

AMSCRM ERRORS

Table 6-3 is a list of the error messages output by AMSCRM:

TABLE 6-3. AMSCRM ERRORS

ERROR 1 COMMAND OPTION ERROR

ERROR 2 INPUT OUTPUT FILE NOT SPECIFIED
ERROR 3 FIELD LENGTH EXCEEDS MAXIMUM
ERROR 4 FIELD EXCEEDS MICROWORD SIZE
ERROR 5 TRANSFORMATION PARAMETER ERROR
ERROR 6 TRANSFORMED FIELDS OVERLAP

ERROR 1: COMMAND OPTION ERROR

There 1is an error in the execution command. Check for delimiters,
correct option spelling, etc.

ERROR 2: INPUT/OUTPUT FILE NOT SPECIFIED

The input or output file was not specified in the execution command, or
an incorrect filename was given.

ERROR 3: FIELD LENGTH EXCEEDS MAXIMUM

The maximum width of any field to be moved (W,) is 16.

ERROR 4: FIELD EXCEEDS MICROWORD SIZE

The bit number given or the number of bits to be moved is incorrect.
For example, if the microword 1s 32 bits wide, and the parameters

10,5,28
are given, the program attempts to move 5 bits to positions 28, 29, 30,

31, 32. This 1is impossible since the bit positions for a 32 bit
microword only range from 0-31.

6-8

ERROR 5: TRANSFORMATION PARAMETER ERROR
An incorrect character or value has been given in the user’s input

Sns Dpy Wy or a comma is missing between S; D; W, or comma
is missing between S, D or W.

ERROR 6: TRANSFORMED FIELDS OVERLAP

If the user attempts to move bits into positions where AMSCRM has
already moved bits, this error occurs. For example, the parameters

6,9,3
15,11,3

would generate this error since they attempt to move two different bits
into bit position 11.

AMPROM ERRORS

Table 6-4 is a list of AMPROM errors.

TABLE 6-4. AMPROM ERRORS

ERROR 1 DON‘T CARE DEFINITION ERROR

ERROR 2 WIDTH INPUT SYNTAX ERROR

ERROR 3 WIDTH EXCEEDS MICROWORD SIZE

ERROR 4 TOO MANY PROM COLUMNS

ERROR 5 DEPTH INPUT SYNTAX ERROR

ERROR 6 WARNING DEPTH EXCEEDS MAXIMUM PC
ERROR 7 TOO MANY PROM ROWS

ERROR 8 ILLEGAL VALUE FOR ROWS OR COLUMNS
ERROR 9 ILLEGAL PROM NO., ROW, OR COLUMN DESIGNATION
ERROR 10 UNEXPECTED END OF FILE ON INPUT FILE
ERROR 100 COMMAND OPTION SYNTAX ERROR

ERROR 1l: DON’T CARE DEFINITION ERROR

A value other than zero or one was input as the value for don’t care
bits. The user has input an incorrect character.

ERROR 2: WIDTH INPUT SYNTAX ERROR

The PROM width specified using n and/or 1Ixb has been stated
incorrectly. Check for missing commas or asterisks.

ERROR 3: WIDTH EXCEEDS MICROWORD SIZE

The width given for all of the PROMs total to so many bits that at
least one additional PROM width s being specified. For example, if
the microword width is 60 and PROM width is specified as 9x8, an er-
ror will be generated as there are 12 (72-60) extra bits specified
which is greater than the 8-bit width of each PROM. Program execution
stops. However, 8x8 will not generate an error since the extra 4
bits (64-60) will fit within one 8-bit wide PROM.

ERROR 4: TOO MANY PROM COLUMNS

The user is limited to 32 columns in his PROM map. When a number of
columns greater than 32 is specified this error occurs.

ERROR 5: DEPTH INPUT SYNTAX ERROR

The data (r and/or txd) specifying the PROM depths has been input
incorrectly. Check for missing commas or asterisks.

ERROR 6: WARNING DEPTH EXCEED MAXIMUM PC

The depth specified by the user will require at least one additional
PROM filled with don’t cares.

Thus, 1if the object code depth 1s 120 words and the user specifies
3x64 to txd, the extra 72 words are flagged as an error. However,

if the user specified 2462 (or 128) the extra 8 words would simply be
filled with don’t cares and the program coutinues executing.

ERROR 7: TOO MANY PROM ROWS
A PROM map may contain a maximum of 64 rows. This provides for 64K of

storage if the user has chosen 1K PROMs. A PROM map with more than 64
rows is not permitted.

ERROR 8: ILLEGAL VALUE FOR ROWS OR COLUMNS

The user has input something other than a decimal integer Y or Rs or Cs
or the letters N or A.

The wuser may have forgotten the - between Y} and Yp, or Csj and
Csp, etc.

6-10

ERROR 9: ILLEGAL PROM NO., ROW, OR COLUMN DESTINATION

The user has requested a PROM number or a PROM row or column using a
decimal value greater than any of the PROM numbers, PROM row numbers,
or PROM column numbers.

ERROR 10: UNEXPECTED END OF FILE ON INPUT FILE

This error only occurs when input to AMPROM is from a file (i.e., the
user is not putting the data interactively). A line giving the don’t
care value, the PROM width or the PROM depth, or the printing
information has been omitted.

ERROR 100: COMMAND OPTION SYNTAX ERROR

This error occurs due to 1llegal command options or illegal syntax.
Execution halts and the correct command must be entered.

Check for misspelling, missing blanks or =, or incorrect drive
specifications. : oo : ;

NOTE

Errors 1, 2 and 5 are indicated on the console and
the previous data request is repeated. In order to
end this loop, the user must input correct data or,
if he inputs a control-C, the loop ends and the
system is rebooted.

AMDOS 29 ERROR MESSAGES

If a system error occurs that is related to AMDASM, AMSCRM or AMPROM,
AMDOS outputs an error message on the console. Table 6-5 is a list of
AMD0OS29 error messages.

TABLE 6-5. AMDOS29 ERRORS

(filename) FILE NOT FOUND
FILE EXTENSION ERROR

END OF DISK DATA ERROR
NO DIRECTORY SPACE

VERIFY

WRITE PROTECTED

FILE ERROR

CLOSE ERROR

FILE EXTENSION ERROR

6-11

(name) FILE NOT FOUND

The (name) input by the user cannot be located on the designated drive.
Check for misspelling of the filename or the wrong drive designator.

This 1s a system error indicating an attempt to write outside the
current file extent.

END OF DISK DATA ERROR

No more disk space for file data. Delete files from current disk or
assign files to another disk.

NO DIRECTORY SPACE

The diskette directory is full. The user must indicate output is to go
to another drive or he must make room on this diskette by deleting some

files.

NOTE: If the user has inserted a disk which 1s write protected, he
will receive a variety of error messages including:

VERIFY ERROR
WRITE PROTECTED

FILE ERROR
CLOSE ERROR
etce.

6=-12

INDEX

Address register StOTrCesseceececcossel=20
AMDASM command SUMMATYeeesessssoeeoel=d
AMDASM cOmmON teIrMSesseccsescesecsssasl=3
AMDA SM ErTOrSecscsccecscansscscnsnesesh=]
AMDASM errors which halt execution..6-7
AMDASM field informatiONeecsececsceeesl=7
AMDASM microcode object file
fOrMmateceesecscsaseccsasesccnceanneel=6
AMDASM operator informatioNeeceseceeesl=7
AMDASM OptiOnSeeessecesssccceccsseal=22
AMDOS29 error mesSsageSeescecsccccssab=11
AMMAP descriptionecscsccecscecessase5=16
AMMAP error meSSageScecsscecsccsseeF=20
AMMAP major functionSeseeeese5-16, 5-17
AMMAP OptiONSessecceseeassccsssccses5=19
AMPROM desScriptionNesesesssscecesecees5=4
AMPROM €rrOTSeeecceccscssccccenassoaceb=0
AMPROM examplecesccecsssscccasceseea5=15
AMPROM execution commandeececeeccssese5=5
AMPROM execution exampleSeseceeceecsess5=8
AMPROM filenameSeeesecscesecccceseses5=8
AMPROM input SubstituteSsesesceesee5=10
AMPROM OptiOnNSeseeccseasscscccsccscsee5=7
AMSCRM descriptiOnNecssscssecicscsaas5=1
AMSCRM exampleseececcecessscossscaseeal=3
AMSCRM executiOmnessscesscsscecavesseS=l
AMSCRM filenameSeeesssessccecsssonneei=l
AMSRM @rTOTSecessssssscccascscncnsssb=8
ArgumentSeecessecesssscscccnconenoed=ll
Assembler directiveScescessescensses5=17
Assembler entry point tableseeseose3=19
Assembler operationecscccsscccccnssel=5
Assembler symbol tableeesecesscceoes3=18
Assembly file statementSeeesecesoess3=3
AttributeSecececsecseseseensea2=15, 2-17

Base (location counter baSeesseecces5=18
BNPF paper tape contentSesesessecceed=12
BNPF paper tape option.........-.-.s-lz

Command languageeceecsscsescessenses5=18
Comment statementS.s...2-14, 3=10, 5-17
Constant definition statementSeees.e3=7
Constant fOIMSeecesssassceccsssocacessl=0
Constant lengthSeseceseccsses2=13, 3-12
Constant modifierseecececeses2=17,.3=12
ConstantSecessecssesceessasessa2=9, 3-11

Continuationeeesesscacsssensea2=14, 3=3
Control register mask bit

assignmentSeeceeccscsssccsccncccnanal=17
Control register StOrCeesecseeceeeesst=18
Correct constant USageeseesececessald=lé
Correct modifier USEeseeseeeesesasa2=16
CRMeeseseasessacessccaccasoocoannacseans

cTrm errors....-.....--0000000000.00-6—8

DDT 29¢eseccccecesocnaccossnanonanabml?
Definition filleeeeseseeesacencoaneaea=l
Definition file reserved words.....2-20
Definition statementSeesecececeasese2=3
Definition WOrdSeesseessneesee2=5, 2=10
DesignatorSesececsccnsccsscccacesaee?=bh
Designators as attributeS.eeeceeess2=17
Designators used to define

CONStantSeeesscessesoscsecasosacaald=ll
Disk drive designatorSeeececceessese3=24
Displayecescesccecesccsccscsscasanah=13
Display last addresSeececeeecccececesasd=23
Display monitor bitesessseecceeesseek=23
Display traceecececssccccceccsensaat=22
DOn’t CAreSeeceecsesscseccncosonaanae2=18
Dynamic debugging tool 29

(DDT 29) eecececnnonosccsenseannnansbml?

End (end of program)seceecececcesessa5=18
Entry point SymbolSeessessscescaeeseld=b
Examples of AMDASM executiONesee...3=25
Executable statementSescecsccceceess3=8
Executable statements using

format NameSeceesseecsscccccessceesal3=8
Executionoc.ooo-.o-ooc-o-.o.o.u.0003-21
Execution assembler outputeececceees3=19
Exit..........-.................-..4—23
Expressions...................2—9, 3-13

Field length definitioneseeceececaes2=13
Field lengthSeeeesceececscecenannsea2=13
Field ruleSeeeecesccescccacoocnsecee2=8
Fields.......-...............-......2-5
FilenameSeeesececescscccccccacansns3=20
Fitting variable substitutes to

variable fileldSeseesvecececcnnceaaald=17
Free format statementescssccecesessas3=8

Index-1

INDEX (continued)

Halt-noolc.no.o'ooo.nconootoo0000004-17
Hexadecimal attribut@sececccesccsecse3l=18
Hexadecimal paper tape contents....5=14
Hexadecimal paper tape optiofNesesss5-13
Hotizontal tabs.-..100000.00001010001“6

Implicit length attributes of
constants................-........2-14
Incorrect fields......-on'0010010002-16
INDEX

Interactive AMPROM input....o......5-9

Jam address microinstructions
Steps.....O"..'.."I....Q.ll...".4-21
Jam address....ooooo.onooo-owcono-o4‘20

LabelsSessesesscasoscacscoscessnsosacsed=3
Load bipolar memory (MBPM)eesoceeossd=6

Macro."..‘......l...l."..'ll..l..lA-ZZ
MBP}i...‘..Il....'l‘."'.....ﬂ'l..'lﬂ.4-'6
Microcycle StepPecececscccecsscsonsesd=18
Microprogramming software
CommandStocoonanaoooo...ol.mno4-6, 4‘3
Modifier precedenc@ecsscscesceccees2=16
Modifiers..,................«......2-15

n.-on0-oo..oolocdl'l‘owt.-'looo..ods-lz

Names.occmOuo.oo-ooocoooocoovotz-s, 3-3

Output filesnameSeccecscesoeveesesel=19
Overlaying format500'ocltoocw.ac-ccB'lO

p.ll..'l.@‘Ol.'ll"'l...'..0‘0000004-21
Paged addressingeecceccesscccccosesssld=l?
Performance characteristicSe.«sseceso5=17
Permissible designatorSeececscecccsese2=6
Permitted modifiers.-........-....-2—15
PFORMAT-no-ooooooo-oooococoocs-lg, 5-20
PLPROG-ocn-nnooo-oonooon..o.c0000005-20
Post processing featureS.cececesecssssd=5
PPROG....a...-....-.....-..........5-20
Printed listing typeS.cesssseeeeeee3=19
Printing control statements....2=1, 3-4

Index-2

Program counter control
StatementS.--......'...............3-6

PROM organizationeiececececescececeesd=b
PROM Programmingeceeecscccecccesesssd~19

RBPM.I....QQ.Q.O..‘Q.Q..CQDWCOOOOOQA-IZ
Relative addressingecescscescecesseld=17
Required substitutionSeecscesesseceeeld=l4
Restore bipolar memory (RBPM)......4~12

Runs.ol0..0-Q....olnol.ocoou00000004-18

Sample of AMDASM processingeecsss.<3=26
Sample symbol table.eccececcceseneee3=l9
Save bipolar memory (SBPM)essessesed=11
SBPH.-....’;noo....oo.ooﬁon.c.o--004-11
Single-step-co.noooo-.n.oocc.00.-..4‘17
Sleep...............-......o.......4-21
Source file paged addressingesssasss3=17
Source file-relative addressinga....3-17
Source file reserved words.ceesssee3=19
Source file statementS.ecesesseseeel=15
Statement LyPeSecesesscecscccescsasseld=b
StatuSoaco.ooo-oo...ooo--.oonaccoo04-16
Status register bit assignment
SUMMAIrYeesesoecsccssossvescssossnssd=l5
Storeocutttro-u'ootcuooo-o.oacoooor4-14
Submit files........'..........--..3-25
Substitution separatorSececescsceceee3=14

Title..-oool.Q0000000000000100001005-18

User interfac@ececcacescencecsssassd=l7
Variable field constantSeecececesse2-19
Variable field substitutionSeesce..3=14
Variable fieldSeeesesesccacacsceesel=1l9
Variables.....---..................2-18
VBPM.coooootoc-oooo-o--ooooco;c.oooé-lo
Verify bipolar memory (VBPM).......4-10

VFS|'..0Qoooooo.ntooo.oct..-oovoooa3-14

widtholo.ooo0.0oooonootuoonnoa-'u005-17

COMMENT SHEET
Address comments to:

Advanced Micro Computers
Publications Department
3340 Scott Boulevard
Santa Clara, CA 95051

TITLE: AmSYS29/10 Microprogram Support Software User's Manual
PUBLICATION NO: 059910516-001 Revision A

COMMENTS: (Describe errors, suggested
additions or deletions, and
include page numbers, etc.)

From: Name: Position:

Company:

Address:

o

Advanced
Micro
Computers

A subsidiary of
Advanced Micro Devices
3340 Scott Boulevard
Santa Clara.

California 95051

(408) 988-7777

TELEX: 171 142

	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	index-1
	index-2
	replyA
	replyB

