MVS/SP Assist
Release 1.0
Software Logic Manual

amdahl®

MVS/SP Assist
Release 1.0
~ Software Logic Manual

" LICENSED MATERIAL — PROPERTY OF AMDAHL CORPORATION

Publication Number: L1020.0-02A
October 1982

REVISION NOTICE

This is the second edition. It replaces L1020.0-01A,
September 1982. It incorporates new technical in-
formation shown with revision bars. -

ABSTRACT

This manual provides technical information for the
Amdahl MVS/SP Assist (MVS/SPA) Release 1.0 program
product (4PZ0-C3-U). It is intended for systems pro-
gramming and support personnel who are responsible
for problem determination and diagnosis of MVS/SP
Assist problems. The MVS/SP Assist General Information
Manual (Amdahl M1130.0) is recommended as a pre-
requisite.

RESTRICTION ON USE

The information contained in this manual is the licensed
property of Amdahl Corporation. Use of the information
contained herein is restricted pursuant to the terms and
conditions of the License Agreement for Amdahl
Program Products.

This manual has not been published or otherwise placed ,

in the public domain.

READER COMMENT FORM

A reader comment form is provided at the end of this
manual. If this form is not available, comments and
suggestions may be sent to Amdahl Corporation,
Technical Publications Department, Mail Stop 323,
P.O. Box 470, Sunnyvale, CA 94086. All comments
and suggestions become the property of Amdahl
Corporation. .

amdaht , amdahl 470 and amdac are registered
trademarks of the Amdahl Corporation.

© 1982 Amdahl Corporation.
All rights reserved. Printed in U.S.A.

All specifications are subject to change without notice.

"LICENSED MATERIAL — PROPERTY OF AMDAHL CORPORATION

” .

L

CONTENTS

CHAPTER 1 — INTRODUCTION . . « = + o o oo e i e s 11
1.1 RELATED DOCUMENTATION ¢« v v v v v ¢ « v« « « . 1=2
CHAPTER 2 = OVERVIEW « ¢ it v vt v e e e e e 21
CHAPTER 3 - METHOD OF OPERATION ¢ ¢« v ¢ v v « . 81
3.1 EXTENDED FACILITY/FEATURE (EF) INSTRUCTIONS .
3.1.1 Test Protection Simulator - SPAE50 .
3.1.2 Fix Page Simulator - SPAE502 382
3.1.3 8SVC Assist Simulator . . e e e e o . 3=3
3.1.4 Obtain Local Lock Simulator - SPAE504 3-8
3.1.5 Release Local Lock Simulator - SPAE505 3-4
3.1.6 Obtain CMS Lock Simulator - SPAE506 3-4
3.1.7 Release CMS Lock Simulator - SPAE507 . . 3-5
3.1.8 Trace Instruction Simulations - SPAE508,9, A B, C D 3-5
3.1.9 Invalidate Page Table Entry Simulation - SPAB221 . 3-7
3.2 3033 EXTENSION (3033E,XF) SUPPORTED INSTRUCTIONS 3=7
3.2.1 Program Call Simulator - SPAB218A . . .
3.2.2 Set Address Space Control Simulator - SPAB219A . . 38-9
3.2.3 Insert Virtual Storage Key Simulator - SPAB223A . 3-9
Vi 3.2.4 Insert Address Space Control Simulator - SPAB224A 3-9
3.2.5 Set Secondary ASN Simulator - SPAB225A . 3-9
3.2.6 Extract Primary/Secondary ASN - SPAB226A/SPAB227A 3-10
3.2.7 Program Transfer Simulator - SPAB228A . . 3-10

3.2.8 Move to Primary and Move to Secondary Simulations -
MVCXCOMM - 3
3.2.9 Move With Key Simulation 3=13
. 3.2.10 ASN Translation and Authorization — ASNTRAN . . . 3-13
3.3 EXTENDED ADDRESSING (EA) SUPPORTED INSTRUCTIONS . . 3-14
3.3.1 Insert Storage Key Extended Simulator - SPAB229A . 3-15
3.3.2 Reset Reference Bit Extended Simulator - SPAB22AA 3-15
3.3.3 Set Storage Key Extended Simulator - SPAB22BA . . 3-15
3.4 IPK/SPKA INPROBLEM STATE +. « « v « ¢« « « . 315
3.4.1 Insert PSW Key Simulator . e v e e e e . . 315
3.4.2 Set PSW Key From Address Simulator 8-16
3.5 EXIT PROCESSING + ¢« ¢« ¢ v e v v «7e v o « . 3=16
3.5.1 Resume Bxit + v v v v 3=18
3.5.2 Error Exit . . e e L]
3.5.3 Setting Exceptzons et e e e e e e e e e e . . 8=18
3.6 SPA RECURSION ROUTINE - IEAVEXM2 318
3.7 RESERVING PSA PATCH AREA « . « . « 319

Ve MVS/SP Assist Release 1.0 Software Logic Manual iii
. Licensed Material - Property of Amdahl Corporation

o

3.8 SUPPORT FOR THE EXECUTE INSTRUCTION .
3.9 PER CONSIDERATIONS
CHAPTER 4 - FLOWCHARTS
APPENDIX A - DYNAMICALLY CONSTRUCTED CODE
A.1 DYNAMIC OVERLAYS '
A.2 PAGE FIX ASSIST PROLOGUE
A.3 SVC ASSIST NOPS .
A.4 LINEAGE TO LOCK-HANDLING INSTRUCTIONS .
A.5 EXIT ROUTINES .
APPENDIX B — EXCEPTIONS GENERATED
APPENDIX C — INSTRUCTION TRAP/SIMULATION CROSS REFERENCE .
APPENDIX D -~ MVS/SPA ON A 370/168 OR UNDER VM
APPENDIX E — IMPLEMENTATION DIFFERENCES
E.1 UNSUPPORTED FEATURES
E.2 DEVIATIONS
APPENDIX F — SCP MODIFICATIONS .
F.1 MVS/SPA UNDER VM OR ON A 370/168
F.2 MVS/SPA ON A MACHINE WITHOUT 370/EF .
F.3 MVS/SPA ON AN EXTENDED MEMORY 470 CPU .

FIGURES

Figure 3-1. Trace Table Entry Formats
Figure 4-1. SPAE501 - Test Protect Simulation .

Figure 4-2. SPAE502 - Fix Page Simulation
Figure 4-3. SPAE504 - Obtain Local Lock Simulation .
Figure 4—4. SPAE505 - Release Local Lock Simulation .
Figure 4-5. SPAE506 - Obtain CMS Lock Simulation .
Figure 4-6. SPAE507 - Release CMS Lock Simulation .

iv
Licensed Material - Property of Amdahl Corporation

LY

. 3=20
. 3=20

4-1
A-1

F-1
F-1
F-1
F-

-

LLTILEY

”

Figure 4-7. SPAE508-D - Trace Instruction Simulation 4-8
Figure 4-8. CHECKPI2 - IPK and SPKA in Problem State . 4=9
Figure 4-9. SPAB218A - Pro§ram Call Simulation . . 4=-10
Figure 4-10. Program Call Number Translation 4=11
Figure 4-11. SPAB219A - Set Address Space Control Simulation 4-12
Figure 4-12. SPAB221A - IPTE Simulation - 4-13
Figure 4-13. SPAB223A - Insert Virtual Storage Key Simulation 4-14
Figure 4-14. SPAB224A - Insert Address Space Control Simula- e
- tion e e e e e e e e s e e e e e e
N Figure 4-15. SPAB225A - Set Secondary ASN Simulation . 4-16
Figure 4-16. SPAB226A - Extract Primary ASN Processing . 4=17
Figure 4-17. SPAB227A - Extract Secondary ASN Processing . 4-18
Figure 4-18. SPAB228A - Program Transfer Simulation . . 4=19
. Figure 4-19. ASN Translation . . . : 4-20
Figure 4-20. ASN Authorization 4-21
Figure 4-21. SPAB229A-BA - Extended Storage Key Instruction

© U 8imulations o+ 4 e e e e e e e e e e e . 4=22

Figure 4-22. MVCXCOMM - Move to Secondary/Move to Primary Simu-
1ation . + « « & 4 4 4 e e e e e e e e e . . 4=23
Figure 4-23 IEAVEXMS Resume Exit Processing . 4-26
Figure 4-24. IEAVEXMS Error Exit 4=27
Figure 4-25 %gecial Program Exception Handling 4-28
Figure 4-26 Instruction Non-Unique Trap Buildin . 4-29
Figure 4-27. Common Unique Trap Processing . . . 4=-30
Figure 4-28.. RRE Unique Trap Processing . . 4=31
Figure 4-29. SSE Unique Trap Processing . . 432
7 Figure 4-30. Trap Completion 4=-33
Figure 4-31. PSA Allocation 4-34
Figure 4-32. OVERRUN - Dynamic Patch Area Switching . . 4=35
Figure 4-33. Dynamic Instruction Patching 4=-36

TABLES

Table 1-1. Supported Systems and Features . 1-2
Table A=1. Instruction Replacement Code A-1
Table B-1. Interrupts Caused b{ Simulations B-1
¢ Table B-2. Cross Reference of Interrupt Code to ABEND Code B-5
Table C—1. Cross Reference of Instruction Trap/Simulation . C-1
N MVS/SP Assist Release 1.0 Software Logic Manual v

Licensed Material - Property of Amdahl Corporation

jo

CHAPTER 1 - INTRODUCTION

MVS/SP Assist (MVS/SPA) Release 1.0 is an Amdahl licensed program
sroduct that allows the MVS/System Products (5740-XYN and 5740-XYS) at

ersion 1 Release 3 to run on Amdahl 470 processors and System/370
uniprocessors that do not have the 370 Extended Facility/Feature (EF)
installed. In addition, it irov1des support for the 3033 Extension
(XF) for those 470, 370, 303X and 4300 systems that do not- have the
3033 Extension available or installed. t also provides suEYort for
Extended Addressing (EA) on the Amdahl 470 systems. See table 1-1 for
supported combinations.

MVS/SPA supersedes MVS/SEA Release 3.0 and, because of a different
desﬁgn, does 'not require most of the operating system changes required
by MVS/SEA; therefore the installation procedure is much simpler. It
gives additional performance gains for an MVS/SP 1.3 system that cur-

rently uses MVS/SEA and/or the IBM-provided XF simulation routines.

MVS/SPA will produce results functionally equivalent to any of the
following environments:

"MVS/SP 1.3 with IBM XF simulations and MVS/SEA
MVS/SP 1.3 with IBM XF simulations and 370/EF
MVS/SP 1.3 with the 3033 Extension

Unsupported features and exceptions to the operation of the supported
instructions, as defined in the System/370 Principles of Operation or
System/370 Assists for MVS, are Tisted in Appendix E.

NOTE

As is the case with MVS/SEA, MVS/SPA
assumes that it will be the only user of
the unused sections of the PSA. Should
any other user installed products also
require use of some or all of this area,
please see paragraph 3.7 for information
on how to resolve these comnflicts.

MVS/SP Assist Release 1.0 Software Logic Manual . 1-1
Licensed Material - Property of Amdahl Corporation

Introduction~

1.1 RELATED DOCUMENTATION

The documents listed below provide the user with additional informa-
tion about the Amdahl MVS/SPA and MVS/SEA products, and the IBM
370/Extended Facility, the 3033 Extension and Extended Addressing.
IBM System/370 Principles of Operation (IBM GA22-7000)

IBM System/370 Assists for MVS (IBM GA22-7079)

Cross Memory Services User’s Guide (IBM GG22-9231)

MVS/SP Assist Release 1.0 General ;nformation Manual (Amdahl M1130.0)

'MVS/SE Assist Release 3.0 General Information Manual (Amdahl M1109.0)

Amdahl MVS/SPA Microfiche (Amdahl Licensed Material)

Table 1-1. Supported Systems and Features

SYSTEM . 370/EF 3033E" EA
Amdahl 470 X X X
IBM 370 w/o EF X X
IBM 370 w/EF X
IBM 303z w/o 3033E X
IBM 303z w/3033E - Not Used - Completely Transparent
IBM 4300 w/o ECPS:MVS . X ' X
IBM 4300 w/ECPS:MVS | X
IBM 4300 w/3033E EC | Not Used - Completely Transparent
Other CPUs As Required

1-2 '
Licensed Material - Property of Amdahl Corporation

to

CHAPTER 2 - OVERVIEW

A CPU running MVS/SP 1.3 without the 3033 Extension will program check
when it encounters one of the XF instructions. This program check is
passed to nuc¢leus-resident module IEAVEXMS to see if the instruction
is indeed one of the XF instructions and not a codins error. If it is
an XF instruction, it is simulated, and return is made either to the
next sequential instruction or otherwise as the instruction dictates.

The MVS/SPA product takes advantage of this design to also intercept
the Yrogram checks from the EF and EA instructions; module IEA is
completely replaced, and SPA simulates or traps all three types of
instructions. The simulations are faster in most cases than those in
the standard IEAVEXMS, and the construction of the MVS/SPA IEAVEXMS
eliminates the possibility of a Erogram check recursion.caused by the
issuance of EF instructions in the standard IEAVEXMS. In some cases
the existence of an MVS coding convention is checked for, allowing a
fast path in the decoding and fetching of operands - for example, in
the Program Call and Program Transfer simulations.

Normally, all EF (and some XF) instructions are replaced by valid
instructions that either directly enter the simulatior routines or
simulate the original instruction.

For program interruptions that are .not related to EF, XF or EA
instructions, MVS/SPA Yassses control back to the program check FLIH
to continue with normal RTM processing. Also, should a simulation ’
routine encounter a cause for exception while simulating an instruc-
tion, the exception is passed to the program FLIH as it would have
been had the hardware feature been installed.

The MVS/SPA product consists of one module, a replacement for IEA-
VEXMS. In addition, a small superzap change to module IEAVNIPO is
required for CPUs without the 370/EF implemented in hardware to allow
MVS/SP to IPL without it. On 370/168 s without EF, or under non-SP
VM systems, a change is also required to IEAVNPX1l to ensure that the
common segment bits are not turned on, as the MVS/SPA product cannot
intercept the resulting program checks that would result. See appen-
dix D for further information.

The 470 Extended Addressing feature requires some additional changes
to the operatin%ngstem. e feature is checked for proper enablement
by a zap to IEAVNIPO, and three standalone dump modules are updated to
support the Amdahl implementation of the extended key instructions.
Paragraph 3.3 describes the necessary feature settings to enable the
470 tended Memory feature after it has been installed.

Appendix F summarizes the operating system modules changed and the
nature of the changes.

MVS/SP Assist Release 1.0 Software Logic Manual 2-1
Licensed Material - Property of Amdahl Corporation

(1Y

CHAPTER 3 — METHOD OF OPERATION

Flowcharts for most of the MVS/SP Assist routines are provided in
chapter 4.

Module IEAVEXMS is gﬁssed control from the Program Check First Level
Interrupt Handler (FLIH) whenever a §rogram interrupt occurs for an
operation exception (interrupt code X’01’) or a privileged operation
exception (interrupt code X'02’). The type of interrupt is determined
from the program interrupt code (location X’8F’ in the PSA), and the
instruction address is determined by subtracting the instruction
length code (PSA location X’8D’) from the address in the Yrogram old
PSW (PSA location X’28’). The cause of the interrupt will be an oper-
ation exception for a sugBorted instruction, a privileged operation
exception for an IPK or SPKA, or some other non-supported reason.

Supported instructions are handled -in one of three ways: simulating,
trapgﬁng or_ignoring them. In general, EF instructions are trapped,
and and EA instructions are simulated. The difference between

 trapping and simulating is that while both result in the instruction

being simulated, the trapged instruction uses an exit in the PSA, and
operand decodes are alrea g done. The non-trap simulation routines
require that the operands be decoded on all occurrences.

3.1 EXTENDED FACILITY/FEATURE (EF) INSTRUCTIONS

When an EF instruction is recognized, the program check old PSW is
checked to ensure the issuer was in supervisor state. If not, . the
interruption code is changed to X'0002° to indicate a privileged oper-
ation exception, and control is passed via the error exit to RTM.

The opcode is next checked to ensure that it is within the range
X'E501° to X'E50D°. If not, the interrupt is passed back to the pro-
fram FLIH via the error exit. If the opcode is supported, an address

ocated via table look-up is used to locate the specific simulation
routine and to control further processing.

The trace, IPTE and TPROT simulations require trap areas in the PSA.
These areas are allocated and the traps are built by the PSAALLOC rou-
tine. Appendix A describes this routine in more detail.

3.1.1 Test Protection Simulator - SPAE501

Routine SPAE501 receives control from the PSA exit routine built on
the first occurrence of the instruction. On entrg, two registers have
been loaded with the instruction operands and a third with the routine
base register. (See appendix A for details of the PSA exit.)

MVS/SP Assist Release 1.0 Software Logic Manual ' 3-1
Licensed Material - Property of Amdahl Corporation

Method of Operation

After setting a recursion indicator into PSAPCFB4, SPAE501 changes the
PSW key to that specified.in the second operand. The storage address
designated by the first operand is then fetched (via a TM instruction)
and tested for store permission (via a non-destructive OI). The PSW
key is reset to zero to allow resetting of the recursion indicator,
and control is returned to the original code via LPSW. The default
condition code in the resume PSW is zero (set during trap construc-

tion) so the condition code is valid.

If either fetch or store is disallowed, the references by the T or OI
cause a program check. Due to the setting of PSAPCFB4, control is
assed to the SPA recursion entry, IEAVEXM2, by the program FLIH.

EA then examines the register contents to decide whether the
fetch or the store was disallowed (a register contains 'F’ during the
fetch trial and 'S’ on the store trial). It sets the appropriate con-
dition code in the resume PSW and returns to the original code.

3.1.2 Fix Page Simulator - SPAE502

Routine SPAE502 receives control from the PSA exit routine built on
ghflfirst occurrence of the instruction. On entry, registers are as
ollows:

Register 0 - Real address in the first page frame to be fixed.

Register 1 Virtual address in. the. first page to be fixed.

Register 2
Registers 8-10

Virtual address in the last page to be fixed.
Saved

Routine base register

Register 11

Register 14 - Pointer to S-type address constant of successful-
fix exit point. (Instruction first operand.)

After locating the MAPL, the routine loops, attempti%g to fix all the
pages in the range specified by registers 1 and 2. (The microcode
implementation does only one page per issuance of the instruction, but
as a performance enhancement, the simulation fixes all possible pages
on each issuance.) The following description applies to each pass
through the loop.

If the page to be fixed is already fixed by default (nucleus, L/SQA or
V=R page), the fix count is not examined, and control passes to the
end of the loop. .

If the page frame is being fized for the first time and is not in the
preferred area, or if it does not belon§ to either the common area or
a second-level preferred user, the simulation terminates by calling

3-2
Licensed Material - Property of Amdahl Corporation.

({1}

Method of Operation

the MVS exception routine, located from MPLPFAL. In all other cases
the fix count is incremented for the page. If this is the first fix
for the page (fix count is now one), the total system fixed frame
count (MPLCNTRS in the PVT) is incremented. If the page is_a common
area page, the common area fix count is also incremented. If it is a
rivate area page, the address space fix count in the RSM header is

igcremented. e proBer RSMHD is located from the ASCB either in PSA-
AOLD (during early NIP), or the ASCB located (via the ASVT) from the

in control register 3 or 4, depending on the setting of the sec-
ondary mode bit.

If the last page in the range has not yet been fixed, the address of
the current page to fix is incremented by X'1000°. If the Yaﬁe exists
in storage or the Extended Main StoraEe feature is not enabled, proc-
essing begins again at the start of the loop. If not, the S-constant
pointed to by register 14 is decoded and branched to.

If the last page in the range has been fixed, the total system fix
count is compared with the maximum number of pages allowed to be fixed
contained in the MAPL (MPLMAXFX). If the maximum count has not been
exceeded, return is made to the instruction after the FIX PAGE
instruction trap. If the count is exceeded, exit is made to the SRM
frame fix excession routine, located in the MAPL (MPLPFCM).

3.1.3 SVC Assist Simulator

The function performed by the SVC Assist hardware implementation
instruction is identical to that of normal SVC FLIH processing; there-
fore, there is no SVC Assist simulation routine. Whenever the SVC
Assist instruction is encountered, it is overlaid with NOPs so that
control passes to standard FLIH processing.

3.1.4 Obtain Local Lock Simulator - SPAE504

Routine SPAE504 receives control directly from the instream code via a

LOAD/BALR sequence which replaced the original instruction on first

occurrence. Register 12 contains the return address, 13 the base

?4gi:ss,)and 11 is free. (See appendix A for further details of the
inkage.

First, pseudo-SRB mode (PSAPSRBM) is set to_ avoid preemption during
interrupts, then the PSA super bit for the lock manager (PSALOCK) 1s
gset to disable any PER processing that may occur. Because the lock
simulators run enabled, these bit-settings prevent any possibility of
loss of control during update of the lock word and indicators.

The current ASCB is located via PSAAOLD and the lock status checked.
If it is held, exit is made to the ’'Local Lock Obtain Failed’ entry
oint in the Lock Interface Table prefix (LITOLOC). If it is not
eld, the CPU physical address is set into the lock word, the PSAHLHI

MVS/SP Assist Release 1.0 Software Logic Manual 3-3
Licensed Material - Property of Amdahl Corporation

Method of Operation

bit for the local lock is set, and exit is made to the caller. In
both cases, the condition code is restored to what it was on entry,
and both the SUPER and MODE bits set on entry are reset.

3.1.5 Release Local Lock Simulator - SPAE505

Routine SPAE505 receives control directly from the. instream code via a

LOAD/BALR sequence which replaced the original instruction on first

occurrence. Register 12 contains the return address, 13 the base

?@giess,)and 11 is free. (See appendix A for further details of the
inkage.

First, pseudo-SRB mode (PSAPSRBM) is set to avoid preemption during
interrupts, then the PSA super bit for the lock manager (PSALOCK) is
set to disable any PER processing that may occur. Because the lock-
simulators run enabled, these bit-settings prevent any possibility of
loss of control during update of the lock word and indicators.

The ’locks held’ bit string is checked to ensure that a CMS lock is
not held and the local lock is held. The current ASCB is located via
PSAAOLD and the local lock suspend queue is checked. If a CMS lock is

. held, the local lock is not, or there is an entry in the suspend

queue, exit is made to the 'Local Lock Release Failed’ entry point in
the LIT prefix (LITRLOC). If all the checkinﬁ is passed, the lock-
word is zeroed, the lock held indicator (PS I) is reset, and exit
is made to the caller. In both cases, the condition code is restored
to. what és was on entry, and both the SUPER and MODE bits set on entry
are reset.

3.1.6 Obtain CMS Lock Simulator - SPAE506

Routine SPAE506 receives control directly from the instream code via a
LOAD/BALR sequence which replaced the original instruction on first
occurrence. Register 12 contains the return address, 13 the base
address, and 11 points to the CMS lockword to be used. (See appendix
A for further details of the linkage.)

First, pseudo-SRB mode (PSAPSRBM) is set to avoid preemption during
interrusts, then the PSA super bit for the lock manager (PSALOCK) is
set to disable any PER processing that may occur. Because the lock
simulators run enabled, these bit-settings prevent any possibility of
loss of control during update of the lock word and indicators.

The specified lockword is first inspected to ensure that it is free.
If it is not, or a CMS lock is already held, or the local lock is not,
exit is made to the *CMS Lock Obtain Failed’ entry point in the Lock
Interface Table prefix (LITOCMS). Field PSALOCAL is then used to
locate the proper ASCB (if it is zero, PSAAOLD is used). The CMS lock
held indicator is then turned on in the PSAHLHI field, and the ASCB
address is stored into the lock to mark it held. Exzit is then made to

Licensed Material - Property of Amdahl Corporation

~

Method of Operation

the caller. In all cases, the condition code is restored to what it
was on entry, and both the SUPER and MODE bits set on entry are reset.

3.1.7 Release CMS Lock Simulator - SPAE507

Routine SPAE507 receives control directly from the instream code via a
LOAD/BALR sequence which replaced the original instruction on first
occurrence. Register 12 contains the return address, 13 the base
address, and 11 points to the lockword to be used. (See appendix A
for further details of the linkage.)

First, pseudo-SRB mode (PSAPSRBM) is set to avoid preemption during
interrupts, then the PSA super bit for the lock manager (PSALOCK) is
set to disable any PER processing that may occur. Because the lock
simulators run enabled, these bit-settinﬁs prevent any possibility of
loss of control during update of the lock word and indicators.

The ’locks held’ bit string is checked to ensure that both a CMS lock
and the local lock are held. If either lock is not held, or there is
an entry in the suspend queue, exit is made to the 'CMS Lock Release
Failed’ entry point in the LIT grefix (LITRCMS). 1If all the checking
is passed, the lockword is zeroed, the lock held indicator (PSAHLHI)
is reset, the condition code is restored to what it was on entry, both
the SUPER and MODE bits are reset, and exit. is made to the caller.

~ 3.1.8 Trace Instruction Simulations -~ SPAE508,9,A,B,C,D

The method of operation is the same for all of the trace instruction
simulations: the simulation routine is entered from a unique PSA trap
that disables the machine, saves some registers, moves the model
resume PSW to the resume area (PSAXMPSW) and calls the simulation rou-
tine. (See appendix A for further details of the linkage.)

The trace table header is first checked to see if the table has wrap-
ped. If so, the table start address is used for the new entry address
and condition code 1 is set in the resume PSW. Otherwise the current
entry pointer is incremented by 32, and the new entry address is
stored back into the current entry pointer.

The format of each entry is defined in IBM System/370 Assists for MVS.
The only difference is that in some cases an operand is assumed and
fetched from the PSA, instead of decoding the instruction operand and
using that address. Results should be identical in both cases. Fig-
ure 3-1 contains a layout of the trace entries.
The specific trace routines are:) .

e SPAE508 - Trace SVC Interrupt

e SPAE509 - Trace Program Interrupt

MVS/SP Assist Release 1.0 Software Logic Manual . 3-5
Licensed Material - Property of Amdahl Corporation

Method of Operation

Trace Table Entry Formats

€0LEOY
%3079 THOLS.. NOLLDNYUASEN) AU GTUOLS §1 1V CHOMITENOD 40 8-8 ST1AT 1£-szsa1Ae
Y Y ' avwoavss avavs atolvm 200w avoivse ao1ves -
Y - e aigvaosy arsveoy crvessy e sane
uvmov 12ae
- e CR) - a-nun RO -t
3408974 ATMSIVSE ATHRSSVEd cane - 3008014 3408313 us | e
Ll o1 o [0’3 t1te L X vsun 1-9 | Hre
HINTNIGY HININRRY oMM MDY s
2 " o 1 MaLsto3 s M31I03Y o t w03 s s g0z a-n
vuINID TVUINID IvNINID VBINGD IVHINID L
Vi gio 0. W 8313V ouaisiozY o u31sIOTW . o uaiTOTY sNiismIn w-n
B Nive 010 31802 TVHIN, IVHINID IviINZD WHINID Y vuINID SUAS -
NIvsmIN 0. NevemMIN e n 308 arvaeys n ™ 31701 3140
wnso sty wnsozy untio
NIve NSYaMIN NEVEMIN TYHINID IVUINID e TYHIND TVHINTD S'eSIIAe
TsIAe L= ¥ $31A8 2-ys31A8 L- VI3RS L= V538 L-Vy31IAS L=V 831A8 =¥
-t L-tatae N34 M3N ATMSdVEd ATHSIVEd 3401314 MeamIYEd 3006014 N $IAY
Msemzn Lo TIIAT 13088 L31A8 EIA0 1 3240 LIIAG esan
SIMIN QooINITY -nam NTNIVEY 0000 NIASTTS
vvonls -y
o o 2. o 2. 2 - Y i
.. e - - L. K s - 2 v e
L0821R0 1°083148 1°083A8 L°0831A0 1°0831A0 1’08318 1052120 (XL] [N Y] Los3iAe
MsdmaN 34 MIN .34 MIN ATHSIvEd ATRIIVE 2001974 NSAIVEY #3083 3003014
vezzsvas vemzaves verzaves aosaves sonva N amznow
NSV AuvaN0ITs | uastavan TIvonvEDOw M1y nILvetia wowmysm | soavesiauns | wouwsnsuim | wottenvuazm
23339viL | wvwoous ovHL VL A9 2OVHL ¥5V1 30VEL o/t 33vH2 VLN ZIVUL mizva | “oatpvi NOLITUAEN

Figure 3-1.
Licensed Material - Property of Amdahl Corporation

w

Method of Operation

SPAE50A -~ Trace Initial SRB Dispatch

™
e SPAE50B - Trace I/0 Interrupt
o SPAE50C - Trace Task Dispatch
e SPAE50D - Trace SVC Return

3.1.9 Invalidate Page Table Entry Simulation - SPAB221

Routine SPAB221 receives control from the PSA exit routine built on
the first occurrence of the instruction. On entrﬁ, two registers have
been loaded with the instruction operands and a third with the routine
base register. The fourth register has been loaded by a BAL that
calls the simulation routine, to provide the condition code on entry.
(See appendix A for details of the PSA exit.)

A PURGE TLB (PTLB) is done immediately upon entry to allow the purge
to execute asynchronously. After setting the recursion indicator
(PSAPCFB4), input operand values are used to locate the proper page
table entry to be marked invalid. If the issuer of the instruction
was not in key zero, a SPKA is done to enter user key, and the page
table entry is marked invalid. After housekeeping, return is made
directly to the caller via the resume PSW.

3.2 3033 EXTENSION (3033E,XF) SUPPORTED INSTRUCTIONS

All of the 3033 Extension supported instructions have X’B2’ opcodes.
After housekeeping at entry point IEAVEXM1, the second byte of the
opcode is retrieved, validity checked (it must be between X’21’ and
X’2B’), multiplied by 4 and used as an index into a table. The table
contﬁins the addresses of the various simulation routines for the B2
opcodes.

3.2.1 Program Call Simulator - SPAB218A

After setting the recursion indicator, SPA checks to ensure the caller
has translate on and is not in secondary mode. The instruction ope-
rand is then decoded, with a fast path if the operand is *0(R2)’, the
MVS convention. If the fast path is not used, the base register (if
any) is retrieved and the displacement (if any) added in.

The program call number (PCN) is now translated, in a process very
similar to virtual address translation. After ensuring that PCN trans-
lation is allowed (bit 8 of CR5), the Linkage Index (LX) is isolated
from bits 17-23 of the PCN, and used as an index to the proper Link- -
age Table En;éﬁ to retrieve the Entry Table Origin. The_ low-order
byte of the is used as an Entry Index (EX) into the Entry Table,
and byte four of the located Entry Table Entry (ETE) is then checked

MVS/SP Assist Release 1.0 Software Logic Manual 3-7
’ Licensed Material - Property of Amdahl Corporation

Method of Operation

for zero. If the caller is in supervisor state, the PCN translation
Erocess is now complete. If the caller is in problem state, the Entry
ey Mask in the is checked to see if he is authorized to invoke
that particular program call function. If so, translation is complete.
(If not, a Privileged Operation exception is generated.)

Next, the routine handles address §¥Ece switching requirements. If
the destination ASID field in the is non-zero, switching is
required and the ASID is used as infut to the ASN translation process
to locate the proper ASN Second Table Entry (ASTE) that contains all
the new address space’s control information. (Paragraph 3.2.10
describes the ASN translation process.) When the AS is returned, the.
following status changes are made: .

e The current primary address space is made the secondary.

e The Linkage Table Designator address (CR5) is set from the ASTE.
e The new Authorization Index (AX) is set from_.the ASTE.

e If required, a Space Switch Event is noted for later processing.
o The new STO is loaded into CRIL.

e The old primary ASID is put into gemeral register 3.

If space switching is not required, the ggimﬁry address space is also
made tge secondary, and the old primary ID is put into general reg-
ister 3. oo '

At this point, any address space switching and/or housekéeping that is
required has been done, and all that is left is program linkage. Gen-
eral register 14 is loaded with the address of the next instruction
after the Pro%ram Call (the program old PSW instruction address), and
the low bit of the register is set to corfrespond to the PSW E;oblem
state bit. The old Program Key Mask (PKM) is OR’d with the tr{ Key
Mask from the ETE to create the new PKM. General register 4 is loaded
with the latent parm word from the ETE. The resume PSW instruction
address is then set to the entry point address of the invoked routine.
If the new routine is to run in problem state (ETE byte 7, bit 7 is
1), the problem bit is set on in the resume PSW. At this point the
actual program call processing is done. If the MVS system trace is
disabled, a check is made for the Space Switch Event required flag.

If on, an SSE is simulated. If not, exit is made to the new routine
via the resume PSW. If tracing is enabled, a trace table entry is
made in the same manner as for the EF trace instructions, as described
in paragraph 3.1.8. (The format of the entry is given in figure 3-1).
Processing then continues as if trace was disabled.

Chapter 4 contains a flowchart of this process.

Licensed Material - Property of Amdahl Corporation

Method of Operation

3.2.2 Set Address Space Control Simulator - SPAB219A

If the caller has translate on, the instruction oYerand is decoded,
the base register (if any) retrieved and the displacement (if any)
added in. f bits 20-23 of the resulting address are zero, the
request is for primary mode, and the XM mode flag (PSAXMODE) is zeroed
:o sgt thilmode,.the primary STO is loaded to CRl,.and control returns
o the caller. :

If bits 20-23 are not zero, bits 20-22 are checked to ensure that they
are zero. If so, the request is a valid request for secondary mode,
the XM mode flag is set to X’80’ (secondary mode), and the secondary
STO is loaded to CR1. Control then returns to the caller. If bits
20-22 are not zero, a specification exception is simulated.

3.2.3 Insert Virtual Storage Key Simulétor - SPAB223A

After setting the recursion indicator (PSAPCFB4) and ensuring the
caller has translate on, the instruction second operand is decoded and
the resulting virtual address is tested for validity. If a valid
translation does not exist, the page is referenced and the ensuing
program check is reflected to the program FLIH for resolution.

If the address has a valid translation, the real address from the
translation is checked to see if it is over the 16Mb boundary, meaning
Extended Addressing is active. If.so, bit 4 of the PSW is turned on.
An ISK is then done to get the storaﬁe key, and the first operand reg-
ister is decoded and retrieved. If bit 4 of the PSW was turned on, it
is now turned off. The retrieved operand value then has the retrieved
key OR’d into it, and the result is stored back into the register or
save area, as required. Exit is then made to the caller.

3.2.4 Insert Address Space Control Simulator - SPAB224A

If the caller has translate on, the instruction operand is decoded and
the register contents retrieved. The resume PSW condition code is set
to zero, and the result byte from the instruction (byte 2 of the ope-
rand register) is also zeroed. If the CPU is in primary mode, the
register is saved with the zero byte, and control returns to the
caller. If the CPU is in secondarg mode, the result byte is set to
X’01’ and condition code 1 is set before control is returned.

!

3.2.5 Set Secondary ASN Simulator - SPAB225A

If the caller has translate on, ‘the instruction operand register is
decoded and retrieved, and the destination ASN is compared to the cur-
rent primary ASN. If they are the same, and ASN translation is .
allowed, the secondary ASK and STO are set to the values of the pri-
mary.

MVS/SP Assist Release 1.0 Software Logic Manual 3-9
Licensed Material - Property of Amdahl Corporation ~

Method of Operation

If the destination ASN is not the same as the current primary, then
the new ASN must be translated to obtain the necessary control inform-
ation. Dat is turned off, and the ASN translate routine is called to
ensure that the target ASN is a valid secondary address space for this
user. (See paragraph 3.2.10 for an explanation of ASN translation and
authorization checking.) If the ASN has a valid translation, the new
secondary STO and ASN are copied from the retrieved ASTE and set into
the proper control register images. If the CPU is in secondary mode,
the new secondary STO is loaded to real control register 1.

If tracing is enabled, a trace table entry is made in the same manner

as for the EF trace instructions, as described in paragraph 3.1.8.
(The format of the entry is %iven in figure 3-1). After the trace
tgble ??try is created, or if trace is not active, control returns to
the caller.

Chapter 4 contains a flowchart of this process.

3.2.6 Extract Primary/Secondary ASN - SPAB226A/SPAB227A

If the caller has translate on, and if the EPAR/ESAR is not the sub-
ject of an execute, the instruction is overlaid with a Load Halfword
(LH) (since the operation of EPAR/ESAR in this case is identical to
that of LH). The target register of the LH is that of the EPAR/ESAR
and the displacement is that of the primary (EPAR) or secondary (ESAR)
ASN in the PSA simulated control registers. After the patch has been
bu{{t, DYNAMFIX is called to place the patch, and exit is made to the
caller.

If the instruction is EXECUTEd, it cannot be overlaid and must be
decoded and simulated each time it is encountered. The destination
rﬁgist?{ is decoded, the proper ASN set into it, and return made to
the caller. .

3.2.7 Program Transfer Simulator - SPAB228A

If the caller has translate on and is not in secondari mode, the
instruction operand is decoded, with a fast path if the operand is
'R3,R14’, the MVS convention. The state reguested by the issuer in
the low bit of the second operand is checked to ensure the caller has
not requested a transfer to supervisor state from problem state.

The simulation next handles address space switching. If the destina-
tion ASID field in the first operand (low halfword) is the same as the
current primary, space switching is not required, and the resume PSW
instruction address is set from the second operand, secondary ASN and
STO are set, to those of the primary, and the proper state (supervisor
or problem) is set. Trace and Space Switch Events are then checked.

3-10
Licensed Material - Property of Amdahl Corporation

[t

)

"y

Method of Operation

If space switching is required, the destination ASID is used to locate
the proper ASN Second Table Entry (ASTE) that contains all the new
address space’s .control information. Authorization checking is done
to ensure that this caller is authorized to use the requested address
space as a primary address space. Paragraph 3.2.10 describes the ASN
translation and authorization process. When the ASTE is returned, the
following status changes are made:

e The Linkage Table Designator address (CR5) is set from the ASTE.
e The new Authorization Index (AX) is set from the ASTE.
e If required, a Space.Switch Event is noted for later processing.

PY ggg new STO is loaded into CR1 and set into simulated CR1 and

e Supervisor or problem state is set as requested.
e The primary and secondary ASN are set to the requested new ASN.
e The PRM is reset to what it was on entry to the PC.

° Thedresume PSW instruction address is set from the secbnd ope-
rand.

%f a Space Switch Event is required, a flag is set for later inspec-
ion.

If the MVS system trace is disabled, a check is made for the ’Space
Switch Event Required’ flag. If on, an SSE is simulated. If not,
exit is made to the new routine via the resume PSW. If tracing is
enabled, a trace table entry is made in the same manner as for the EF.
trace instructions, as described in paragraph 3.1.8. (The format of
the entry is given in table 3-1.)

Chapter 4 contains a flowchart of this process.

8.2.8 Move to Primary and Move to Secondary Simulations - MVCXCOMM

Routine MVCXCOMM receives control when an MVCP or MVCS opcode (X°D9’
or X’DA’) is encountered. If the caller has translate on, the instruec-
tion operands are decoded, the base registers (if any) are retrieved
and the displacements added in. (The length register is decoded,
retrieved, and saved into a work area for use in setting the condition
code at the end of the simulation.) If the length was zero, the move
is a NOP and control returns to the caller with condition code zero.
If the length is greater than 256, it is set to 256, then decremented
by one for working purposes. The key register, used for access check-
ing for the secondary space operand, is then decoded and retrieved.

MVS/SP Assist Release 1.0 Software Logic Manual 3-11
Licensed Material -~ Property of Amdahl Corporation - .

Method of Operation

At this point, the source and sink data operands must be checked for
accessability. There must be a valid translation for the addresses,
and the storage keys must agree with the PSW key or secondary key, as
required. There are four routines that do the checking, depending on
the instruction being simulated and whether the CPU is in primary or
secondarg mode. The simulation is ogﬁimized for MVCS in primary mode,
by far the most common simulation. e checking involves testing both
ends of the operand for access, using the proger keys and segment
taﬁlgTO The routines that do the checking, and the origin of the keys
an s are:

e MVCP, primary mode - after label MVCPPORS
- Operand 1 - PSW ke&, Active STO
— Operand 2 - R3 key, STO from CR7
e MVCP, secondary mode - Label MVCPS
- Operand 1 - PSW key, STO from CR1
- Operand 2 - R3 key, Active STO
e MVCS, primary mode - (No Label, fall through)
- Operand 1 - R3 key, Active STO
- Operand 2 - PSW key, STO from CR7
e MVCS, secondary mode - Label MVCSS
- Operand 1 - R3 key, STO from CR1
- Operand 2 - PSW key, Active STO
If there is no valid translation for part of the data, or the keys do
not match, a program check occurs that will be handled by IEA .
If the caller is in problem state, and is not allowed to use the sec-
ondary space key, a protection exception is generated. If the user is
authorized, or in supervisor state, DAT is turned off and the operands
are checked for page crossing. If the move is one byte the page cros-
ser checking is skipped. . -
After page crossing checks, there are extended addressing checks. If
extended addressing is active on the sgstem (determined from the
inspection of PS.) and either of-the operand addresses is above

the 16Mb boundary, bit 4 of the PSW is turned on to allow the access-
ing of the high storage.

3-12
Licensed Material - Property of Amdahl Corporation

“

Mgthod of Operation

The move is then simulated by either an EXECUTEd MVC or an IC/STC _
se?uence (for one byte moves). Condition code 3 is set if the origi-
nal length was greater then 256; otherwise, condition code zero is

set. Control then passes to the resume exit.

If a page crosser has been detected, further grocessing depends on
which operand(s) crossed. If only one crossed, the move is done with
two EXEBUTE& MVCs. If both operands crossed,. three moves are
required. In all cases, the addresses involved are checked for resi-
dence above the 16Mb boundarz, and PSW bit 4 turned on before the
moves if a high address has been found.

3.2.9 Move With Key Simulation

The initial gart of the MVCK simulation is common with that for the
MVCP and MVCS simulations up to the point that the operands are
decoded and retrieved. After the ke%hreﬁéster has been retrieved, the
simulation becomes unique to MVCK. e MVCK instruction uses only one
segement table, so the checking with different segment tables for
access is not required. Also, DAT is not required to be on. Since
page crossing checks are not required, it is only necessary to access
the first and last byte of each operand in the proper key. (A check
for page crossing is not needed because moves are done DAT on or DAT
off, dependin%hon the caller’s mode, so all storaxe will be logicall{
contiguous. e other XF moves are always done DAT off, so this wil
not usual%gwbe the case for them.) The first operand key is checked
with the key, and the second with the R3 key. If one of the keys
is improper, or if DAT is on and access to of one of the operands
causes a page fault, the resulting program check is reflected to the
original instruction by IEAVEXM2.

" If the user is in Troblem state, the R3 key is checked against the PSW

key mask. When all checks have been successfully passed, the move is
done with an EXECUTEd MVC, the proper condition code is set (depending
on the length register), and control returns to the caller via the .
standard resume exit. :

3.2.10 ASN Translation and Authorization - ASNTRAN

The ASN translation routine is called by the Program Call, Program_
Transfer and Set Secondary ASN simulation routines when a sgace switch
is required. The ASNTRAN routine takes as input an ASN (ASID), and
using the ASN translation tables built during IPL, returns an

that contains information about the target address space. -This
information includes such thin%s_as the segment table origin address
and the LTD, AX and Authority Table Origin. .

The ASN translation process is similar to that of a virtual to real
address translation. The index into the ASN First Table (AFT) is the
high ten bits of the ASN, called the AFX. . The AFX is multiplied by 4

MVS/SP Assist Release 1.0 Software Logic Manual ' 3-13
Licensed Material - Property of Amdahl Corporation

Method of Operation

to provide the offset into the AFT to locate the AFTE. The start of
the AFT, the AFTO, is contained in CR14 bts 12-31, and is the same for
all users of the system. If bit 12 is zero, translation is not
allowed, and a special operation exception is generated.

The valid/invalid bit of the AFTE is first inspected, and then the
AFTE itself is format checked. If it passes t ese tests, the AFTE is
used as the start of the AST (ASN Second Table). The low-order 6 bits
of the ASN are multiplied by 16 to get the index into the second table
(ASX), and are added to the ASTO obtained from the AFTE. The result
is a pointer to the ASTE, the ASN Second Table Entry. The ASTE is
then format checked, and if the format is valid and the invalid bit is
not on, the translation process is complete. .

If the translation was performed for the Program Call simulation, the
process is complete and control returns to the simulation routine. 1If
the call was from PT or SSAR (the caller is identified from the value
in PSAPCFB4), ASN authorization checking is required. This process
ensures that the issuer of the PT or SS is authorized to request the
address space he has specified in the instruction as either a primary
or secondary space, respectively.

ASN authorization involves locating the Authorization Table Origin
(ATO) from the ASTE, and indexing in using the caller’s AX to do the
actual check. Each byte in the AT (Authorization Table) contains
information for four AX’s. The AX is divided by 4 to locate the
Eroper byte, and the proper pair of bits is located from the last two

its of the AX. For primary authorization, the first of the pair must
be one; for secondary the second bit must be one. The proper bit is
calculated and a TM instruction is EXECUTEd to perform the check. If
the check passes, control returns to the appropriate simulation rou-
tine. Otherwise, an authorization exception is generated.

Chapter 4 contains a flowchart of this process.

3.3 EXTENDED ADDRESSING (EA) SUPPORTED INSTRUCTIONS

Extended Addressing on the Amdahl 470 rests on three assumptions:
1. Storage key instructions operate only in 4K mode.
2. Turning on bit 4 of the PSW enables 31-bit real addressing.
3. The Extended Memory hardwareAfeqture is installed.

MVS/SPA expects all three conditions-to be met. (A modification to

IEAVNIPO ensures that the appropriate hardware features are enabled if
present.)

3-14
Licensed Material -~ Property of Amdahl Corporation

[}

Method of Operation

3.3.1 Insert Storage Key Extended Simulator - SPAB229A

First, the instruction operand registers are decoded and their con-
tents retrieved. Then bit 4 of the PSW is turned on if required, an
ISK is done to get the storage key, and PSW bit 4 is turned off. The
retrieved first ogerand is used as the first operand of the ISK, and
the second operand provides the address to use. After the ISK, the
first operand register is stored back into the proper location, and
control the returns to the caller from the resume exit.

3.3.2 Reset Reference Bit Extended Simulator - SPAB22AA

First, the instruction operand register is decoded and its contents

retrieved. Then bit 4 of the PSW is turned on if required, and an

is done to set the condition code and reset the reference and change
bits. The resulting condition code is then set into the resume PSW,
and control passes back to the caller from the resume exit.

3.3.3 Set Storage Key Extended Simulator - SPAB22BA

First, the instruction operand registers are decoded and their con-
tents retrieved. Then bit 4 of the PSW is turned on if required, an
SSK is done to set the storage key, and PSW bit 4 turned off. Control
then returns to the caller from the resume exit.

3.4 IPK/SPKA IN PROBLEM STATE

Part of the implementation of the DAS feature is the changin% of the
two PSW key handlinf instructions, Insert PSW Key and Set PSW Key From
Address, from privileged instructions to 'semi-privileged’. Wit

~:ﬁpropriate authorization, any problem grogram 1s now allowed to use

ese instructions. A CPU without the DAS feature will not support
this execution, and causes a privileged operation exception (interrupt
code X’02’). This exception is detected and reflected to IEAVEXMS to
handle. Routine CHECKPI2 is given control when a privileged operation
exception is detected. It then chooses the proper simulation routine
to receive control.

3.4.1 Insert PSW Key Simulator

The IPK simulator sets the key from the program old PSW into the low
byte of register 2, and then ANDs out the low nibble. No authoriza-
tion checking is done, as the only requirement is extraction author-
ityé Control is then returned to the caller via the standard resume
exit.

MVS/SP Assist Release 1.0 Software Logic Manual 3-15
Licensed Material - Property of Amdahl Corporation

Method of Operation

3.4.2 Set PSW Key From Add?ess Simulator

The SPKA simulator decodes the operand register, and if non-zero,
retrieves its contents and adds in the displacement to obtain the
requested new PSW key. The bit in the PSW key mask corresponding to
the new key is checked. If it is one, the new key is placed into the
resume PSW key field, and control returns to the user via the resume
exit. If the PSW key mask bit is zero, the original privileged opera-
tion excggtion is reflected back to normal RTM processing through the
error exit.

3.5 EXIT PROCESSING

The simulation routines and the recursion routine will exit either
directlﬁ back to the caller, in the case of a successful simulation,
or to the program check FLIH in the event of an error detected during
format checking, operand validation in a simulation, a Space Switch
Event or a PER event. Due to MVS/SPA being imbedded in the program
cheﬁk handler, some housekeeping must be done to avoid problems in
either case.

3.5.1 Resume Exit

The resume exit is used after a successful simulation to return con-
trol to the instruction stream as directed by the simulation. The
point of return is either the next sequential instruction after the
one being simulated, or another location. The resume exit will first
clear out the recursion indicator byte, PSAPCFB4, to ensure that IEA-
will not receive control for grogram’checks not related to SPA

processing. If the program check that initiated the simulation was
not a recursion, the stack is reset to what it was on eni:r%l.1 (The
program FLIH had set it to the rogram check handler stack.) e PI
super bit is then reset to avoid the next program check being consid-
ered a recursion. If one of the other bits was on in the program
check status word (PSAPCFUN), the SUPER bit and FRR stack are not
reset. (An example of this would be an occurrence of an EF ’Trace
Program Interrupt’ instruction.) Checking is now done to see if a PER
event was reported with this interrupt. f so, the rest of the inter-
rupt code is zeroed out, and the error exit routine is called at label

REXT f no PER interrupt was indicated, the SPA control flag is
reset, as it is only valid during simulation. The caller’s registers
are then reloaded, and control returns by LPSW of the resume PSW pre-
pared by the simulation routine or low core trap.

3.5.2 Error Exit

The error exit is used when control must be passed on to the program
FLIH and/or RTM. Some of these cases are:

e A simulation routine has detected an error in an operand.

3-16
. Licensed Material - Property of Amdahl Corporation

' Method of Operation

e An instruction has been issued in an improper environment.
.o An interrupt was passed to IEAVEXMS that it can not process.
e A page fault has been encountered accessing an operand.

e A Space Switch Event is to be signaled.

e A PER event has occurred.

There are five points of entry into the error exit, depending on the
processing required. Each falls through to the next.

1. EROREXIT PSA protection is disabled.
2. EROREXT1 The resume PSW is made the program new PSW.

3. EROREXT2 The PSW address set in the program old PSW is
checked to ensure that it is not the address of the
work area where the target instruction of an
has been built.

4. EROREXT3 PSA protection is re-enabled.
5. EROREXT4 The remainder of the exit processing.

The specific entry points are called as required, depending on what
part of the exit processing has already been done by the simulation
routine or is already correct. -

The remainder of the exit processing is primarily MVS housekeeging and.
clean-up. The SPA control flag and recursion bytes are cleared, and
the rest of the program check recursion word (PSAPCFUN) is checked to
see if the program check that resulted in the entry to IEAVEXMS was a
true recursion. If not, the program interrupt code being passed on is
checked for an operation exception or a privileged operation excep-
tion. If the interrupt is not to be either of these, the previously
current FRR stack is restored to the current, and the program inter-
rupt handler SUPER bit is turned off. The caller’s registers then are
restored and the grogram new PSW loaded, entering normal program check
processing. If the interrupt being passed back is one of the two, a
special entry point in the program check FLIH (IEAVEPCl1l) is used to
ensure that the interrupt is not routed back to IEAVEXMS in a loop.
The program FLIH base address is set into register 9, (entry IEA-
VEPCg) the special entry point address into register 11, the ’'LCCA
not validated’ bit is set (program FLIH housekeeping), the user’s reg-
isters are copied to the program FLIH register save area, DAT is
turned off if it is on, and the FLIH is branched to.

MVS/SP Assist Release 1.0 Software Logic Manual 3-17
Licensed Material - Property of Amdahl Corporation

Method of Operation

-

If the interrupt being passed back is from an instruction in the pro-
gram check handler itself, the recursion return point must be useg.
Recursion exit processing is identical to that of the non-recursion
processing, save that if the interrupt to be passed is a 1 or 2, the
entry point IEAVEPC2 is used.

3.5.3 Setting Exceptions

When a simulation exit detects a format, environment or other error,
the program interrupt to be generated is usually not the same as the
current interrupt code indicated. In that case, the simulation
branches to an exception creation routine that sets up the proper
interrupt code and instruction length code. .

The exception creation routines restore registers 12-15 if requested
and then disable PSA low storage protection. The new interrupt code
is then set, including the PER bit if it was on in the original inter-
rupt. The ILC is set to either the length of the instruction or zZero,
depending on whether the definition of the new interruft causes sup-
pression or nullification, respectively. The PSW is also backed up if
reguired to agree with the ILC. In some cases a translation exception
ﬁgoresslis set. Control then passes to the normal error exit at label

3.6 SPA RECURSION ROUTINE - IEAVEXM2

Entry point IEAVEXM2 is called directl{ from the program FLIH when a
Brzgram check occurs and a non-zero value has been set into field
SAPCFB4. (PSAPCFB4 is the one-byte field that is used as an indicator
of which simulation routine is runninf.) The various values that can
be put in this field are given in table 3-2.

IEAVEXM2 first checks to see if a TPROT instruction was being simu-
lated; if so, the proper condition code is set into the resume PSW to
reflect the cause of the interruption: a page or segment fault or a
protection exception. If another type of exception occurred, the
exception is reflected back to the program check handler through the
normal error reflection exit (see paragraph 3.5.2). :

If a TPROT was not being simulated, a check is made first for a seg-
ment or p%ﬁz fault. If one has occurred, the translation exceftion
address () is set to reflect the address space the fault belonged
to, then exclusive OR’d with the PSAXMFLG value. The XOR is done
because IEAVEXM2 sets the Eroper primary or secondarg address space
bit. (The program FLIH XOR’s in the .secondary mode bit setting omnly.)
After the fault has been resolved, the PSW is backed up to point to
the instruction being simulated that ’caused’ the fault to be re—-dis-
patched and re-simulated.

3-18
Licensed Material - Property of Amdah! Corporation

M

Method of Operation

Degending on the mode flag (PSAXMFLG), either the primary or secondary
STO is loaded, and the program interrupt SUPER flag (bit PSAPI in
PSASUP1) is reset if it is on. If MVCP or MVCS was executing, regis-
ters 12-15 are reloaded from the save area. At last SPA calls the pro-
gram FLIH to handle the interrupt from the simulation.

3.7 RESERVING PSA PATCH AREA

MVS/SPA assumes that it is the only user of the PSA patch area (PSA
free area); anyMSroduct that also uses the PSA patch area will cause
conflicts with MVS/SPA. To resolve the conflict, portions of the PSA
area can be set aside from SPA use.

The areas of PSA used are determined by the values of three pairs of
default and user-adjustable boundary constants; by superzapping the
user constants, the user can change or move the PSA patch areas. They
are labeled ’SEPxxxxx’, where xxxxx defines the use of the constant,
and are located near the end of the module. (The defaults are labeled
'DEFxxxxx’ where xxxxx is the same as for the user constants.)

There are two constants for each area, an upper and a lower bound. If
only one bound is changed, the default will be used for the other. To
disable the use of an entire area, change the lower bound constant for’
that area to X'FFFF’.

The PSA allocation routine PSAALLOC examines these pairs the first
time a PSA free area must be used. If no changes are specified, the.
area is not totally disabled, or the replacement parameters are in
error, the defaults will be used. The low address of the first two
parameters is rounded up to an 8-byte boundary and the low address of
the third area is rounded up to a 32-byte boundary. The following
conditions are checked:

e The low address of a pair not in a free area. -

e High address of a pair being outside of the PSA.

o High address of a pair lower than the low address.

e The high and low address of a pair not in the same free area.
e Any area not big enough for two maximum size traps.

e Any of the areas overlap.

There are currently three free areas available to MVS/SPA:

1. PSAUSEND to PSAUS2ST X’'6C8’ to X’800° X’138’ bytes
2.. PSAUS2ND to PSAPFXA X°'810’ to X'AEO’ X’2D0’ bytes
MVS/SP Assist Release 1.0 Software Logic Manual 3-19

Licensed Material - Property of Amdahl Corporation

Method of Operation

3. PSASTAK+768 to PSAAMDST X'F00’ to X’FEO’ X’E0’ bytes

(Labels PSAPFXA and PSAAMDST are defined in the Amdahl PSA mapping
macro extension SPAPSA.) ‘

MVS/SPA uses fixed areas from X’AE0’ to X’AFF’ and X’FEO’ to X'FFF’.
These areas cannot be moveéd without a reassembly of the product.

Please note that reducing the amount of available PSA may cause some
performance degradation.

3.8 SUPPORT FOR THE EXECUTE INSTRUCTION

MVS/SPA handles interrupts caused by EF, XF and EA instructions which
are targets of an instruction. If such an instruction is
identified as the cause of the interrupt, the operands of the EXECUTE
are decoded and fetched. A special flag is set to cause routines that
would normallyTﬁatch or trap the instruction to simulate it or not to
save a trap. e target instruction of the EXECUTE is moved to a work
area, and the modification register, if any, is decoded, fetched and
then OR’d into the copy of the instruction skeleton. The address of
the EXECUTE is saved so that the PSW address can be set progerly
should an exception occur. The address of the instruction built in
the work area is then used as though it had not been the subject of
the EXECUTE, and control is passed back to. the start of the opcode
decode section. S

Should control return to the EXECUTE decode section, the original
interrupt will be passed on.through to RTM to handle as a normal oper-
ation or privileged operation exception.

3.9 PER CONSIDERATIONS

In order to maintain the integrity of the lockwords, the lock handling
instructions run as logical extensions of the lock manager. To do
this, the lock manager SUPER bit, PSALOCK, is set to ensure that,
should a PER interrupt occur, control will immediately be returned to
the simulation. (The PER event will be lost.)

Register alteration events may be signaled during the execution of the
page fix assist simulation routine. Instruction fetch events for the
simulated instruction should always be reported.

Generally, no other PER events will be reported in the simulation of
any instruction. Successful branch PER events may be signaled at the
original .location of an EF instruction, as the original instruction
may have been replaced by a branch instruction. .

3-20
Licensed Material - Property of Amdahl Corporation

CHAPTER 4 - FLOWCHARTS

The following flowcharts (figures 4-1 through 4-33) are designed to
provide a conceptual idea of instruction simulation requirements and
Yrocessing flows. They do not necessarily coincide with the line-by-

ine logic of the product, but provide a summary of the processing
performed.

~ MVS/SP Assist Release 1.0 Software Logic Manual 4-1
Licensed Material - Property of Amdahl Corporation

Flowcharts

ENTRY -

SET ON TPROT
FLAG IN PSA.
ENTER
INDICATED KEY

LOADC 'F' IN

REG 11 AND
FETCH
INDICATED
BYTE

LOADC 'S’ IN
REG 11 AND"
STORE TO
INDICATED
BYTE

Y

ENTER KEY 0.
RESET TPROT
FLAG IN PSA

EXIT
VIA LPSW

A03113

Figure 4-1. SPAE501 - Test Protect Simulation

Licensed Material - Property of Amdahl Corporation

"

N ' " Flowcharts

INCREMENT FIX
COUNT [N PFTE

SECOND
LEVEL
USER

- ADJUST RY BY
PAGE SIZE

.
ADSUST R14
AOJuUST R14 LOAD RS WITH

SET R15=0

Figure 4-2. SPAE502 - Fix Page Simulation

\

DECODE S-CON LOAD REAL
(NTO R14. SET ADDRESS OF
RIS=0 PAGE INTO RO

MVS/SP Assist Release 1.0 Software Logic Manual 4-3
N Licensed Material - Property of Amdahl Corporation

-

Flowcharts

ENTRY

INDICATE
PSEUDO-SRB
MODE

!

TURN ON
LOCK MGR
SUPER
8iT’

LOCAL
LOCK AVAIL-
ABLE?

NO YES

ASCBLOCK =
TURN oF ¢ PSACPUSA, TURN
LOCK MGR LOCK HELD
SUPER BIT
| ino.on N PSA
TURN OFF TURN OFF
PSEUDO—SRB LOCK MGR
MODE SUPER BIT
TURN OFF
PSEUDO—SRB
MODE
EXIT
TO LOCK MGR. RETURN
AQ3115

Figure 4-3. SPAE504 - Obtain Local Lock Simulation

4-4
Licensed Material - Property of Amdahl Corporation

"

7~ ' | Flowcharts

) ENTRY

TURN ON
P-SRB,
LOCK MGR
SUPER BIT
P-SRB MODE

TURN OFF
RESET PSEUDO-SR8
LOCK HOLD IND. MODE
ASCBLOCK=X'00" LOCK MGR
SUPER BIT

Y

TURN OFF EXIT
PSEUDO-SRB TO LOCK MGR.
MODE
LOCK MGR

m . AQ31C6

Figﬁre 4-4. SPAE505 - Release Local Lock Simulation

MVS/SP Assist Release 1.0 Software Logic Manual 4-5
N Licensed Material - Property of Amdahl Corporatxon :

-

Flowcharts

PsAAOLD ook

TURN LOCK TURN ON

ELD l. HELD

INDICATOR ‘
TURN OFF
P-SRB MODE,
LOCK MGR
SUPER BIT
- AQ3118
Figure 4-5. SPAE506 - Obtain CMS Lock Simulation
4-6

Licensed Material - Property of Amdahl Corporation

\»

N ' ‘ Flowcharts

ENTRY

4

TURN ON
LOCK SUPER BIT
P-SRB
MODE

YES

PSA
LOCAL =0

TURN OFF
RESET PSA IND. PSEUDO-SRB
CMSLOCK=0 MODE
LOCK SUPR

RN OFF exit
Ps.':uo:-saa TOLOCK MGR
MGODE
LOCK SUPER BIT

() e

Figure 4-6. SPAE507 - Release CMS Lock Simulation

MVS/SP Assist Release 1.0 Software Logic Manual 4-7
,f“\ Licensed Material - Property of Amdahl Corporation

Flowcharts

UPDATE TRACE
TABLE POINTER.
SETCC=1
CREATE TRACE
ENTRY.
(Lremem) -

Figure 4-7. SPAE508-D - Trace Instruction Simulation

4-8
Licensed Material - Property of Amdahl Corporation

fﬂn\ ' Flowcharts

IPK _
START

SET PSW o
KEY INTO -
EXCEPTION
SINK REGISTER 02’
ExIv . SET NEW
KEY INTO
: RESUME PSW

Figure 4-8. CHECKPI2 - IPK and SPKA in Problem State

MVS/SP Assist Release 1.0 Software Logic Manual . 4-9
f—n\ Licensed Material - Property of Amdahl Corporation

Flowcharts

oL
CREATE
PATH -SASH RACE ENTAY, ATt
IF REQUIRED

EVENT
(F REQUIRED

AQ03105

Figure 4-9. SPAB218A - Program Call Simulation

4-10
Licensed Material - Property of Amdahl Corporation

@

2

Flowcharts

ALL ADDRESSES ARE REAL

RANSLATIO
SPECIFICATION

Figure 4-10. Program Call Number Translation

MVS/SP Assist Release 1.0 Software Logic Manual
Licensed Material - Property of Amdahl Corporation

4-11

_Flowcharts

SPECIAL’
OPERATION
EXCEPTION
X113

SET SECONDARY
SPACE BIT
TOBIT 23 OF
2ND OPND ADDR.

LOAD LOAD
REAL CR1 REAL CR1
FRCM FROM
PSACR 7 PSA CR1

A03133

Figure 4-11. SPAB219A - Set Address Space Control Simulation

4-12 o
Licensed Material - Property of Amdahl Corporation

/‘h\ " Flowcharts

. ISSUE PTLB
o

Y

(2

TURN ON IPTE
FLAG IN PSA.
CALCULATE

PGTE ADDRESS

ASSUME
CALLER'S KEY

INVALIDATE
PGTE

ASSUME NO
KEY 0

TURN OFF
IPTE FLAG
IN PSA

RETURN
VIA LPSW A03114

Figure 4-12. SPAB221A - IPTE Simulation

MVS/SP Assist Release 1.0 Software Logic Manual

4-13
7~ Licensed Material - Property of Amdahl Corporation

' Flowcharts

SPECIAL
OPERATION
EXCEPTION
X3

GET REAL r—"‘/" BITS]
ADDRESS, |- — — »»| ARENOT
DO ISK INSERTED

L RS J

AQ3099

Figure 4-13. SPAB223A - Insert Virtual Storage Key Simulation

4-14
Licensed Material - Property of Amdahl Corporation

~~

Flowcharts

SPECIAL
OPERATION
EXCEPTION
X113

PUT IAC
BIT INTO
BIT 23 OF
SINK REG

!

ZEROBITS
16-22 OF
SINK REG

Y

SET CONDITION
CODE -

0 —-BIT OFF

1-BITON

EXIT :
A03119

Figure 4-14. SPAB224A - Insert Address Space Control Simulation

MVS/SP Assist Release 1.0 Software Logic Manual
Licensed Material - Property of Amdahl Corporation

4-15

Flowcharts

SPECIAL
OPERATION
EXCEPTION

x13

CR?
SET FRGM
CR1

4-16

Figure 4-15. SPAB225A - Set Secondary ASN Simulation

Licensed Material - Property of Amdahl Corporation

(L)

~

Flowcharts

SPECIAL
OPERATION
EXCEPTION
l13’)

OVERLAY PASN TO
EPAR WITH LOW HW OF
LH SINK REGISTER
BACK UP ZERO HIGH
PSW HW OF
SINK

!

!

GO GD .

Figure 4-16.

SPAB226A - Extract Primary ASN Processing

MVS/SP Assist Release 1.0 Software Logxc Manual

Licensed Material - Property of Amdahl Corporatxon

4-17

Flowcharts

SPECIAL
OPERATION
EXCEPTION

X3

OVERLAY SASN TO
ESAR LOW HW OF
WITH LH SINK REGISTER
BACK UP zs:g g:f"

PSW
SINK

EXIT EXIT

AQ3098

4-18

Figure 4-17.

SPAB227A - Extract Secondary ASN Processing

Licensed Material - Property of Amdahl Corporation

£

Flowcharts

Rq
PRM ASN
16 =
A2
0 1A P
8 1A
SPECIAL
CPERATION
EXCEPTION
X113
SPECIFICATIO
EXCEPTION
X086
PRIVILEGED .
OPERATION L prd 1 .
EXCEPTION ?
X02 .
SET SASN
TOOLD
ﬁ PASN
SET CR?
=CRt
CREATE CR1a&a7 SET SSE
TRACE LOADED FROM [t o INDICATCR
ASTE 6498 IF NEEDED
NEW AX
FROM ASTE
32-47,LTD
FROM 96-127
PASN & SASN
SET FROM
Ay
Yy
A03128
r

Figure 4-18. SPAB228A - Program Transfer Simulation

7~ MVS/SP Assist Release 1.0 Software Logic Manual 4-19

Licensed Material - Property of Amdahl Corporation

Flowcharts

) _SommsT |
| TABLE ENTRY |
LOCATE

.I.-_.;..-J

TAKE AFTO

CR14. 20-31

*4008 + AFX
4098+

Figure 4-19. ASN Translation

4-20
Licensed Material - Property of Amdahl Corporation

»

N

Flowcharts

INVOKEO 8Y
43

SSAR
(LASP)

PT DOES PRIMARY
AUTHORIZATION CHECK

SSAR OOES
SECONDARY

PRIMARY
AUTHORITY
EXCEPTION
x2¢

GET ATO
FROM ASTE
8=31

ALL ADRESSES ARE REAL.

Y

COMPARE ATL
(ASTE 48-59)
WITH AX 0-10

SECONDARY
AUTHORITY
EXCEPTION
X285

TAKE AX 0—13
{FROM CR4) +
ATO (FROM
ASTE) »4

Y

CHOOSE 2
BITS FROM
BYTE WITH

AX 1415

SECONDARY
AUTHORITY
EXCEPTION
X'28°

. RETURN A03100
Figure 4-20. ASN Authorization
MVS/SP Assist Release 1.0 Software Logic Manual 4--21

Licensed Material - Property of Amdahl Corporation

Flowcharts

START

DECODE AND
RETRIEVE
OPERAND(S)

Y

SET PSW
BIT4ON
(F NEEDED

v

ISSUE - -
NON-EXTENDED
INSTRUCTION

v

SET SINK
REGISTER (ISKE)

SET CONDITION
CODE (RRBE)

EXIT
- A03121

Figure 4-21. SPAB229A-BA - Ext:gded Storage‘Key Instruction Simula-
ions

4-22
Licensed Material - Property of Amdahl Corporation

L]

N

Flowcharts

OECOOE,
l RETRIEVE AND
| REsOLVE

L%.:lf_

SAVE LENGTH
RETRIEVE

REFERENCE 13T REFERENCE 15T
OPERAND W TH OPERAND WITH
PIW KEY, OPERAND 3 KBY.
PRIRARY STO, SECONRDARY ST
FOR STORE FOR STORE
REFERENCE 20 REFERENCE 2N0
OPERAND WITH RANDO WITH
QPERAND 3 XEY, ey,
SECOKOARY STO, PRIMARY STO
FOR PETCH FOR FETCH

Figure 4-22. MVCX??MMf—agove to Secondary/Move to Primary Simulation
o

4-23

MVS/SP Assist Release 1.0 Software Logic Manual
Licensed Material - Property of Amdahl Corporation

Flowcharts

PRIVILEGED

CPERATION

EXCEPTION
xX'02

SET DAT
TOCALLER
STATE *

Y

REPERENCE 1ST
GPERAND IN
PSW KEY FOR

STORE

'

REFERENCE 2ND
OPERAND (N
GPERAND 3 KEY
FOR FETCH

PROBLEM

STATE
?

EXECUTED MVC

GPERAND 3

l

KEY BIT ON IN
PKM

SET PROPER
CONDITION

CODE

A03124

Figure 4-22.

4-24

MVCXCOMM - Move to Secondar
(2 of 3)

y/Move to Primary Simulation

Licensed Material - Property of Amdahl Corporation

/—‘N . Flowcharts

[iy | I onty rirsr 1
TH OPERANDS
|B°cnos PAGE | | Ofenano

CROSSES

ANY
SETPSW ¢ 0r | seTesw
BT4ON , 5 BiTaon

00 2PART
MOVE VIA
EXECUTED MVC

SAME
A4
00 2PART 002 PART
MOVE VIA MOVE VIA

/’\ EXECUTED Mve EXECUTED MVC

@—.w Soworiion I'&;Z’éﬂ
cone | osaano |

EXECUTED MVC

é AQ3taz

Figure 4-22. MVCX?gMMf-3¥ove to Secondary/Move to Primary Simulation
o

MVS/SP Assist Release 1.0 Software Logic Manual 4-25
Licensed Material - Property of Amdahl Corporation

~

Flowcharts

END OF
SIMULATION

CLR XM
FUNCTION
8YTE

-----ﬁ

]
PSAPCFUN |

NOT NOW 0?7 =

-----J

] RESET FRR
s STACK, CLEAR
SUPER BIT
RELOAD ORIG.
PER REGISTERS,
REQUIRED? CLEAR SAVE
AREA
— D
INTERRUPT
CODE

EROREXT3 .
: A03123

Figure 4-23. [IEAVEXMS Resume Exit Processing

4-26 ’
Licensed Material - Property of Amdahl Corporation’

n

«

~

Flowcharts
ERROR
DETECTED
CLEAR XM
TRACKING
BYTES
XM
YES ENTERED FOR
All=n SET LCCA
IEAVEPC2 NOT VALIDATED
R11 ==s» PGMCK
é RESET FRR LOADPC
POINTER FLIH BASE
_CLEAR SUPER REG9
BT (LEAVEPCB)
LOAD CRIG
RESTORE
GRIG REGS, bl
‘CLR SAVE
AREA T
COPY GRIG
ok
TO ORIG SAVE
DAT
OFF
VIARM
AQ03126
Figure 4-24. IEAVEXMS Error Exit
MVS/SP Assist Release 1.0 Software Logic Manual 4-27

Licensed'MateriaI - Property of Amdahl Corporation

Flowcharts

PRI AUTH AFX X SSE
N X‘24' N X20° N X222 cxic’

SECN ASX EX
AUTH X25' NX 21 N X23° ZERO
I d X'90-91"
ve Y
NUMBER
ZERO TO X'90° oLp
X'90-91° PAEN
. X92-93°
ASN TO OLD SSE
X92-93' - BIT TO
X90°.0
N-NULLIFY
C—COMPLETE
IN ALL CASES. ILC 1S 2. m
L]
AQ03125

Figure 4-25. Special Program Exception Handling

4-28 '
Licensed Material -~ Property of Amdahl Corporation

/‘h\ A Flowcharts

NOTHING ’
TO
CHECK

1]

TRACE IS
] oK

({3

ONE AREA
__ ISN-V DON'T KNOW TRUE STATUS

__ PSA FIELDS ARE OK FORN-T

~_ SECOND OK, FIRST K
" TRACE?

BOTH NO SET MERGE TRACE
N=-T SAME WiN=T EXIT
? AREA GURRENT
P
ves (FIRST)
MERGE

SECOND
W/TRACE

L
‘ EXIT ' .
A03095

Figure 4-26. EF Instruction Non-Unique Trap Building

MVS/SP Assist Release 1.0 Software Logic Manual 4-29
f“\ Licensed Material - Property of Amdahl Corporation

Flowcharts

ALLOCATE ALLOCATE
FROM HIGH FROM LOW
END OF PSA END OF PSA
SAVE RESUME
PSW AND
SIMULATION
ADDRESS IN
PSA EXIT
(STIALIZE #38 KIGH
& LOW POINTERS FROM
USER CEFAULTS. 15
UPPLIED GR

INSERT
SPKA IN
EXIT

TURN PER OFF

w

Figure 4-27. Common Unique Trap Processing

4-30
Licensed Material - Property of Amdahl Corporation

/ ‘\ Flowcharts

INSERT “L” INST INSERT “LR”
INTO EXIT INSTRUCTION

ROUTINE INTO EXIT

ROUTINE
’ L < INSERT “LR”
) INSERT “L” INST YES 4EG3—1] i

INTO BXIT USED POR INTO EXIT

ROUTINE PARM 1
2 ROUTINE
A03110

Figure 4-28. BRRE Unique Trap Processing

MVS/SP Assist Release 1.0 Softwafe Logic Manual 4-31
/ﬂh\ Licensed Material - Property of Amdahl Corporation

Flowcharts

YES

REGISTER
=07 .

T

GENERATE GENERATE GENERATE
“LR" LAY o e
INSTRUCTION INSTRUCTION INSTRUCTION
>t
GENERATE
“LA*
INSTRUCTION
< |
4
AEPEAT
PROCESS FOR
PARAMETER 2

A03111

Figure 4-29. SSE Unique Trap Processing

4-32
Licensed Material - Property of Amdahl Corporation

ot

Flowcharté

ILL
EXIT FIT
IN PSA

NO

SIMULATE SET UP BRANCH
TO OVERLAY EF

INSTRUCTION

DYNAMFIX

Y

UPDATE PSA
COUNTERS

EXIT TO “LM”
IN EXIT ROUT.

A03112

Figure 4-30. Trap Completion

MVS/SP Assist Release 1.0 Software Logic Manual

4-33

7~~~ Licensed Material - Property of Amdahl Corporation

Flowcharts

UPDATE
NO MCRE POINTERS
ROCM TONEW
SEGMENT

y
SEGMENTS CAN BE ENABLED,
DiSABLED, AND MOVED BY v
CHANGING THE APPROPRIATE
CONSTANTS.

CALCULATE
LOCATION iN
SEGMENT

GVERLAY
- INSTRUCTION

A0N22

4-34

Figure 4-31. PSA Allocation

Licensed Material - Property of Amdahl Corporation

Flowcharts

JUST FILLED JUST FILLED
SECOND FIRST AREA
SETFLAG SEY FLAG

MAKE
| SECOND
N=T
ST FILLED
@—. SECOND AREA

Figure 4-32. OVERRUN - Dynamic Patch Area Switching

MVS/SP Assist Release 1.0 Software Logic Manual 4-35
Licensed Material - Property of Amdahl Corporation

‘Flowcharts

TURNBITS
OF PSW
oN

y

SAVE STORAGE

KEY FOR PAGE
GEING CI'IANGEDi

UPDATE
STORAGE
WITH PATCH

RESTORE
QRIGINAL
STORAGE KEY

TURNBIT S
QOFF IF ON

‘ RETURN '
AQ3117

Figure 4-33. Dynamic Instruction Patching

4-36 , A
Licensed Material - Property of Amdahl Corporation

in

-

APPENDIX A — DYNAMICALLY CONSTRUCTED CODE

Routine PSAALLQOC replaces some instructions with linkage instructions
to simulation routines. It also constructs exit routines in the PSA
free area. The following paragraphs explain the logic of this dynami-
cally constructed code. : .

A.1 DYNAMIC OVERLAYS

Some instructions are replaced by branches to the simulation routines,
by branches to exit routines, by NO-OPs or by functionally equivalent
@ns:ruc:ions. Table A-1 shows the replacement code for each such
instruction.

Table A-1. Instruction Replacement Code

-

OP CODE REPLACEMENT FUNCTION
B221 B PSA+n = To Unique Exit Routine
B226 LH Rx,PSAXMPAS Set the Primary ASN
B227 LH Rx,PSAXMSAS Set the Secondary ASN
E501 B PSAin To Unique Exit Routine
E502 BAL R14,PSAPFXA To Page Fix Assist
DC S(D1(Bl)) Prologue
E503 LR RO,RO NOPs
LR R1,R1
LR R2,R2
E504:E507 L R13,PSALEXIT+n To Simulation Routine
BALR R12,R13
E508:E50D B PSAtn To Unique Exit Routine
MVS/SP Assist Release 1.0 Software Logic Manual A-1

Licensed Material - Property of Amdahl Corporation

Dynamically Constructed Code

A.2 PAGE FIX ASSIST PROLOGUE

The PSA has an area reserved for the following instruction sequence:

PSAPFXA STM RS8,R11,PSAXMGRS Save Registers ’
. L R11,PSAPFXAA . Get Routine Address
B 0(,R11) Call It
PSAPFXAA., DC A(SPAES02A) Routine Address

The first time a FIX PAGE instruction is encountered, the instructions
above are moved into the PSA at label PSAPFXA. This code is the ’Page
Fix Prologue’. The E502 is then reYIaced, as shown in table A-1, by a
branch and link to the giologue, followed bi the first operand of tie“
replaced instruction. e prologue saves the work registers in the

work area, loads the Page Fix Assist routine’s base address, and
branches to the routine.

The Fix Page prologue is used for all FIX PAGE instructions.

A.3 SVC ASSIST NOPS

Table A-1 shows that the SVC ASSIST instruction (E503) is replaced by:
LR NOPs. This technique is used because MVS does not require the SVC
Assist instructions be issued or that any SVC be assisted. The SVC
call causing the SVC Assist instruction is treated as
'non-assistable’. The referenced IBM System/370 Assists for MVS man-
ua%lexplains the difference between assistable and non-assistable SVC
calls.

The LR Rx,Rx instructions are used because theg do not alter any reg-
isters, occupy two bytes each, do not change the condition code,
require minimum execution time, and do not disrupt the pipeline proc-
essing of the following instruction stream.

A.4 LINKEAGE TO LOCK-HANDLING INSTRUCTIONS

Table A—1 shows the linkage code for for the lock-handling instruc-
tions (E504-E507). The LOAD instruction loads register 13 with the
address of the appropriate lock-handling instruction simulation rou-
tine. The BALR instruction puts the return address into register 12
and calls the simulation routine.

A.5 EXIT ROUTINES

The Test Protect, IPTE and trace instructions cause the building of
exit routines in the PSA free area. These exit routines are similar
to the Fix Page prologue; however, they are more complex and can be
used only for a specific occurrence of an EF instruction routine.

A-2
Licensed Material - Property of Amdahl Corporation

) Dynamically Constructed Code
~

The exact contents of an exit routine depend on the operand addresses
of the associated EF instruction and on the PSW at the time the EF
instruction is issued. All exit routines have the following general

format:
0 program check ... Saved as Resume
4 ... old PSW ‘ PSW
8 A(simulation routine) Routine ‘to be Called
C STNSM bytel,x’BC’ Disable Interrupts and PER
10 STM R8,R11,PSAXMGRS Save Registers 8-11
14 M R8,R10,01dPSW Get Resume PSW and Routine Base
18 ST™ R8,R9, PSAXMPSW Set Resume PSW
1C BR R10 Call Simulation Routine

The ’BR R10’ is replaced with 'BAL R11,0(,R10)’ for an IPTE trap, to
provide for restoring the condition code (from register 11) on exit
from the simulation.

The eight word exit routine above is the simplest type of exit. It is

used for the six trace instructions whose parameters can be located by
the simulation routine.

Exit routines grow lar%er when the resume PSW in the exit has a non-
zero protection key. n this case, a SPKA instruction is placed just
before the STNSM instruction in the exit routine.

~~ For the IPTE and Test Protect instructions, additional instructions
‘ are inserted before the final BR R10 to load the EF instruction’s
first and second operands into registers 8 and 9, respectively. The
following instruction se?uences are possible for each operand with
base register b and displacement ddd: -

LR Rx,b when 0<=b<¢=7 or 12<¢=b<¢=15 and ddd=0
Rx,PSAXMGRb when 8<=b<=11 and ddd=0

L

L Rx,PSAXMGRb when 8<=b<=11 and ddd-=0
LA Rx,ddd(,Rxz)
LA

Rx,ddd(,b) when 0<=b<=7 or 12<¢=b¢=15 and ddd=-=0

MVS/SP Assist Release 1.0 Software Logic Manual . A-3
Vam Licensed Material - Property of Amdahl Corporation)

~

APPENDIX B — EXCEPTIONS GENERATED

Table B-1 grovides a cross reference showing which simulations can
enerate which interrupts and what specific conditions cause the
1nteg§u t. A cross reference of interrupt code to abend code is also
provided. : :

Other interrupts can also be generated, for example from bad input

data or addresses. The occurrences listed here are explicitly gener-
ated by MVS/SPA. ~

Table B-1. Interrupts Caused by Simulations

- SIMULATION EXCEPTION . CAUSE
Non-Routine Operation Opcode passed to IEAVEXMS is
Oriented unsupported or invalid.
Exception
Privileged An EF instruction was issued in
Operation problem state.
SPKA Privileged | The key the problem state caller
Operation attempted to set was not valid
in the PSW key mask.
Program Call Privileged The problem state caller’s
Operation key was not valid in the ETE
A authorization key mask.
Special DAT was not on.
Operation

The caller was inse¢ondary mode.

Program call number translation
was not allowed (CR5.0 was 0).

ASN translation was not allowed
(CR14.12 was 0).

ASN Bits 1-7 & 28-31 of the AFTE were
Translation . not all zero.
Specification

Bits 1-7, 30-31, 60-63 & 97-103
of the ASTE were not all zero.

(continued)

MVS/SP Assist Release 1.0 Software Logic Manual B-1
' Licensed Material - Property of Amdahl Corporation

Dynamically Constructed Code

Table B-1. Interrupts Caused by Simulations (continued)
SIMULATION EXCEPTION CAUSE
Space Switch Bit 31 was on in either the old
Event or new Primary STD.
Program Call Bits 1-7 of the LTE were not all
Translation zero.
Specification
Bits 32-39 of the ETE were non-
zero (first byte of ETE entry
point address).
AFX The ASTE invalid bit (bit 0) was
Translation on.
ASX The ASTE invalid bit (bit 0) was
Translation on.
Linka?e The Program Call linkage table
Translation index (LTX) exceeded the linkage
‘ éﬁble length (LTL), bits 25-31 of
The invalid bit (bit 0) was on in
the linkage table entry (LTE).
Entry The Program Call entry table
Translat1on index () exceeded the entry
table length (ETL), bits 26-31 of -
i the linkage table entry.
Entry The ETX exceeded the ETL, bits
. Tranllatlon 26-31 of the linkage table entry.
Set Address Special DAT was not on.
Space Control Operation
Specification | Bits 20-22 of the operand are not
all zero.
Insert Virtual | Special DAT was not on.
Storage Key Operation .
Insert Address Special DAT was not on.
Space Control Operation

“

(continued)

B-2
Licensed Material - Property of.Amdahl Corporation

~

Table B-1.

Interrupts Caused by Simulations (continued)
SIMULATION EXCEPTION CAUSE
Sét Secondary Special DAT was not on.
ASN Operation
ASN translation was not allowed
(CR14.12 was 0).
ASN Bits 1-7 & 28-31 of the AFTE were
Translation not all zero.

Specification

Bits 1-7, 380-31, 60-63 & 97-103
of the ASTE were not all zero.

Translation

The AFTE invalid bit (bit 0) was
on.

ASX The ASTE invalid bit (bit 0) was
Translation on.
Secondary The authorization index (AX)
Authority exceeded the authorization table
.length (ASTE bits 48-59).
The secondary bit for the
caller’s AX was zero.
Program Privileged A problem state caller tried to
Transfer Operation transfer into supervisor state.

Specification

High byte of the second operand
register was not zero.

Special DAT was not on.

Operation
The caller was in secondary mode.
ASN translation was not allowed
(CR14.12 was 0).

ASN Bits 1-7 & 28-31 of the AFTE were

Translation not all zero.

Specification

Bits 1-7, 30-31, 60-63 & 97-103
of the ASTE were not all zero.

MVS/SP Assist Release 1.0 Software Logic Manual

(continued)

Licensed Material - Property of Amdahl Corporation

Dynamically Constructed Code

Table B-1. Interrupts Caused by Simulations (continued)

SIMULATION EXCEPTION CAUSE
Space Switch Bit 31 was on in either the old
Event or new Primary STD. :
AFX The AFTE invalid bit (bit 0) was
Translation on.
ASX The ASTE invalid bit (bit 0) was
Translation on.
Primary The authorization index (AX)
Authority exceeded the authorization table
length (ASTE bits 48-59).
The primary bit for the caller’s
AX was zero.
Move to Privileged The key sYecified by the problem
Primary Operation state caller in the operand 3
re?ister was not valid in the
caller’s PSW key mask.
Special DAT was not on.
Operation
Move to Privileged The key sYecified by the problem
Secondary Operation state caller in the operand 3
refister was not valid in the
caller’s PSW key mask.
Special Dat was off.
Operation
Move with Key Privileged The key sYecified by the problem
Operation state caller in the operand 3
refister was not valid in the
caller’s PSW key mask.

Table B-2 contains the ABEND codes that woul
program interrupt were it to pass through to
rupts are occasionally expectgﬁb

these codes results in the AB

Licensed Material - Property of Amdahl Corporation

d result from the specific
Some of the inter-
; not every program check with one of

]

«

~

The X’26°’ interrupt code is included only for completeness. It should

never occur on a s
installed. .

ystem without the 3033 Extension microcode

Table B-2. Cross Reference of Interrupt Code to ABEND Code

égggR%gE%) INTERRUPT ABEND
02 Privileged Operation Exception 0C2
04 Protection Exception 0C4
06 Specification Exception 0Cé
13 Special Operation Exception 0D3
17 ASN Translation Exception 0D4
1C Space Switch Event 0D8
1F Program Call Translation Ezception 0DA
20 AETE Translation Exception 0D5
21 ASTE Translation Exception 0D5
22 LX Translation Exception 0D6
23 EX Translation Exception 0D6
24 Primary Authorization Exception 0D7
25 Secondary Authorization Exception 0D7
26 Page Fault Assist Failed 0D9

MVS/SP Assist Release 1.0 Software Logic Manual
Licensed Material - Property of Amdahl Corporation

/;A,\

APPENDIX C — INSTRUCTION TRAP/SIMULATION CROSS REFERENCE

Table C-1 provides a cross reference of which routine simulates a
given instruction and which routine, if any, constructs the specific

trap for the instruction.

All trap routines are processed b

PSAALLOC,

so the entry in the 'TRAP BUILD’ column is for the routine that sets
the operation parameters for PSAALLOC.

In general the routine names are SPAxxxxy, where xxxx is the opcode

and y is blank if the routine is called directly from a PSA

trap or

instruction patch, and 'A’ where it is called from the routing tables
in IEAVEXMS. ' ' -
Table C-1. Cross Reference of Instruction Trap/Simulation
OPCODE INSTRUCTION SIMULATION TRAP BUILD
B218 Program Call SPAB218A
B219 Set Address Space Control SPAB219A
B221 Invalidate Pafe Table Entry SPAB218A
B223 Ingsert Virtual Storage Key SPAB223A
B224 Insert Address Space Control SPAB224A
B225 Set Secondary SPAB225A
B226 Extract Primary ASN SPAB226A
B227 Extract Secondary ASN SPAB227A
B228 Program Transfer SPAB228A
B229 Insert Storage Key Extended SPAB229A
B22A Reset Reference Bit Extended SPAB22AA
B22B Set Storage Key Extended SPAB22BA
D9 Move with Key MVCKCOMM
DA Move to Primary MVCXCOMM
DB Move to Secondary MVCXCOMM
E501 Test Protection SPAE501 SPAE501A
E502 Page Fix Assist SPAE502 SPAE502A
E503 SVC Assist SPAE503A
E504 Obtain Local Lock SPAE504 SPAE504A
E5056 Release Local Lock SPAE505 SPAE505A
E506 Obtain CMS Lock SPAE506 SPAE506A
E507 Release CMS Lock SPAES07 SPAE507A
E508 Trace SVC Interrupt . - SPAE508 FIXINSTR
E509 Trace Program Interrupt SPAE509 FIXINSTR
E50A Trace Initial SRB Dispatch SPAE50A FIXINSTR
E50B Trace 1/0 Interrupt SPAE50B FIXINSTR
E50C Trace Task Dispatch SPAES0C FIXINSTR
E50D Trace SVC Return SPAE50D FIXINSTR
MVS/SP Assist Release 1.0 Software Logic Manual C-1

Licensed Material - Property of Amdahl Corporation

~

APPENDIX D - MVS/SPA ON A 370/168 OR UNDER VM

In the System/370 Principles of Operation, the operation of the Common
Segment %15 (bit 30 of Eﬁe segmen% table entry), is unspecified for
those CPUs without the Extended Feature/Facility hardware. In most
cases, including the 470 family, the bit is ignored. The 370/168,
however, expects that bit to be zero, and causes a translation sgeci-
fication exception (interrupt code X’'12’) when a one-bit is foun
there. MVS/SEA was able to handle these interrupts by turning off
these bits and re-dispatching the user. This occurs only twice, early
in the IPL process.

VM, on a CPU without VM/SP, will not handle the common segment bits
properly. No error message is given, and the translation specifica-
tion exception mentioned may not occur, but unpredictable results,
usually from wild branches, are seen. All remarks about the 370/168
also apply to systems running VM without VM/SP. -

Due to the design of MVS/SPA, it is no longer possible to intercept
the exception that is caused by these bits. S/SPA is routed control
from the program FLIH only for operation or privileged operation
exceptions, and thus cannot receive control on the translation speci-
fication exception. This will cause an 064-9 wait at IPL time. To
avoid this problem on the 370/168 and under VM without VM/SP, it is
necessary to superzap module IEAVNPX1l, to prevent the common segment
bits from being turned on. A change is made to IEAVNPX1l to prevent
MVS from turning on the common segment bits if the system is running
on a 370/168 or under VM. The bits will be turned on in all other
cases. Please refer to AWS entry A#1208 for further details.

- MVS/SP Assist Release 1.0 Software Logic Manual D-1

Licensed Material - Property of Amdahl Corporation

APPENDIX E - IMPLEMENTATION DIFFERENCES

MVS/SPA does not support all the features that the 370/Extended
Facility and the 3033 Extension provide. The unsupported features
are listed belaw, along with the reason they are not supported.

A listing of deviations from the :

System/370 Principles of Operation

follows.

E.1 UNSUPPORTED FEATURES

The following features are not supported by MVS/SPA: _
; Suspend/Resume - Requires channel and CPU hardware changes.
e Subchannel Queueing - Requires channel hardware changes.

e LASP Instruction - Always simulated by other software on
non-3033 Extension CPUs.

e ADDFRR Instruction - Always simulated by other software on
non-3033 Extension CPUs.

e Low Address Protect - MVS/SPA quports this feature, but
N does not provide it. It is available as an EC to Amdahl 470 CPUs.

e Page Fault Assist - Requires CPU hardware changes.

E.2 DEVIATIONS

The deviations from the
System/370 Principles of Operation
are:

e The extraction authoritg and secondary space control bits
of Control Register O (bits 4 and 5) are always assumed to be one.
The bits are set on early in NIP and left on, so a software check
would never fail.

e For READ and WRITE DIRECT, the operand address will always :
be treated as a logical address (sub{ect to translation) on CPUs
without the Extended Facility installed.

N MVS/SP Assist Release 1.0 Software Logic Manual E-1
Licensed Material - Property of Amdahl Corporation

APPENDIX F — SCP MODIFICATIONS

MVS/SPA requires some superzaf changes to the operating system in
some environments. -The installation instructions provide information
.on how to install these changes.

F.1 MVS/SPA UNDER VM OR ON A 370/168

The requirements are detailed in appendix D.

F.2 MVS/SPA ON A MACHINE WITHOUT 370/EF

Early in NIP processing, a check is made to see if the 370/EF
feature is available by executing a TPROT instruction. If

the instruction 7rogram checks, the system causes a WAIT 014.

It is not possible for MVS/SPA to intercept this TPROT, so it must
be NOP’d. The information on where the instruction resides and
the proper offset to superzap is contained in AWS entry Z#1247.

F.3 MVS/SPA ON AN EXTENDED MEMORY 470 CPU

The following modifications are necessary to support the 470
Extended Memory features:

o IEAVNIPO Ensures that the 470 EM feature is present and
properly enables it.

e AMDSADMP Three modules are changed to support the 470 .
imglementation of the extended storage key instructions.
MVS/SPA installation instructions for further details.

MVS/SP Assist Release 1.0 Software Logic Manual F-1
Licensed Material - Property of Amdahl Corporation

SITicAall’ et ot
P.0. BOX 470 READER COMMENT FORM

SUNNYVALE, CALIFORNIA 94086

WE WOULD APPRECIATE YOUR COMMENTS AND SUGGESTIONS FOR IMPROVING THIS PUBLICATION.

Publication No. Title Current Date
How did you use this publication? What is your occupation?

O Study O Installation [Sales .

O Reference O Maintenance [QOperations

What is your overall rating of this publication? Is the material presented effectively?

O Very Good O Fair O Very Poor O Well organized [Fully covered [Clear
O Good O Poor O Correct O Well illustrated

Please enter your other comments below. If you were in any way dissatisfied with this publication, we would like to know why Be
specific, if possible; give page, column, and line number references where applicable.

Your name & return address (include ZIP code):
All comments and suggestions become

the property of Amdahl Corporation.

AM2283 6/79
Thank you for your interest. Fold and fasten as shown on back. No postage necessary if mailed in U.S.A.

e o

FOLD AND SCOTCH TAPE

Ce

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 741 SUNNYVALE, CA.

POSTAGE WILL BE PAID BY ADDRESSEE

ATTENTION: TECHNICAL PUBLICATIONS
DEPARTMENT 734

® AMDAHL CORPORATION
— g i-r=| 1250 EAST ARQUES AVENUE

P.0. BOX 470
SUNNYVALE, CALIFORNIA 94086

NQ POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

AM2283 (Backer) 6/79

FOLD AND SCOTCH TAPE

#Hpae o

b

s S

P

R Ll

14

3

