
amclahl

M VS/SP Assist
Release 1.0

Software Logic Manual

MVS/SP Assist

Release 1.0

Software Logic Manual

LICENSED MATERIAL - PROPERTY OF AMDAHL CORPORATION

Publication Number: L1020.0-02A

October 1982

REVISION NOTICE

This is the second edition. It replaces L1020.0-01A,
September 1982. It incorporates new technical in
formation shown with revision bars.

ABSTRACT
This manual provides technical information for the
Amdahl MVS/SP Assist (MVS/SPA) Release 1.0 program
product (4PZ0-C3-U). It is intended for systems pro
gramming and support personnel vdio are responsible
for problem determination and diagnosis of MVS/SP
Assist problems. The MVS/SP Assist General Information
Manual (Amdahl M1130.0) is recommended as a pre
requisite.

RESTRICTION ON USE
The information contained in this manual is the licensed
property of Amdahl Corporation. Use of the information
contained herein is restricted pursuant to the and
conditions of the License Agreement for Amdahl
Program Products.

This manual has not been published or otherwise placed
in the public domain.

READER COMMENT FORM
A reader commait form is provided at the end of this
manual. If this form is not available, comments and
suggestions may be sent to Amdahl Corporation,
Technical Publications Department, Mail Stop 323,
P.O. Box 470, Sunnyvale, CA 94086. All comments
and suggestions become the property of Amdahl
Corporation.

, amdatil470 and amcfac are registered
trademarks of the Amdahl Corporation.

© 1982 Amdahl Corporation.
All rights reserved. Printed in U.S.A.

All specifications are subject to change without notice.

u

LICENSED MATERIAL — PROPERTY OF AMDAHL CORPORATION

CONTENTS

CHAPTER 1 - INTRODUCTION 1-1

1.1 RELATED DOCUMENTATION 1-2

CHAPTER 2 - OVERVIEW 2—1

CHAPTER 3 - METHOD OF OPERATION 3-1

EXTENDED FACILITY/FEATURE (EF) INSTRUCTIONS
3.1.1 Test Protection Simulator - SPAE501
3.1.2 Fix Page Simulator - SPAE502
3.1.3 SVC Assist Simulator
3.1.4 Obtain Local Lock Simulator - SPAE504
3.1.5 Release Local Lock Simulator - SPAE505
3.1.6 Obtain CMS Lock Simulator - SPAE506
3.1.7 Release CMS Lock Simulator - SPAE507
3.1.8 Trace Instruction Simulations - SPAE508,9,A,B>C,D 3—5
3.1.9 Invalidate Page Table Entry Simulation - SPAB221 . 3—7

3-1
3-1
3-2
3-3
3-3
3-4
3-4
3-5

3033 EXTENSION (3033E,XF) SUPPORTED INSTRUCTIONS
3.2.1 Program Call Simulator - SPAB218A
3.2.2 Set Address Space Control Simulator - SPAB219A . . 3—9

3-7
3-7

3.2.3 Insert Virtual
3.2.4 Insert Address Space Control Simulator - SPAB224A
3.2.5 Set Secondary ASN Simulator - SPAB225A

Storage Key Simulator - SPAB223A

3.2.6 Extract Primary/Secondary ASN - SPAB226A/SPAB227A 3—10
3.2.7 Program Transfer Simulator - SPAB228A

3-9
3-9
3-9

3-10
3.2.8 Move to Primary and Move to Secondary Simulations -

MVCXCOMM . . .
3.2.9 Move With Key Simulation
3.2.10 ASN Translation and Authorization - ASNTRAN . .

3.1

3.2

 3-11
. 3-13
. 3-13

EXTENDED ADDRESSING (EA) SUPPORTED INSTRUCTIONS
3.3.1

3.3 3-14
Insert Storage Key Extended Simulator - SPAB229A . 3—15

3.3.2 Reset Reference Bit Extended Simulator - SPAB22AA 3—15
3.3.3 Set Storage Key Extended Simulator - SPAB22BA . . 3—15

IPK/SPKA IN PROBLEM STATE
3.4.1 Insert PSW Key Simulator
3.4.2 Set PSW Key From Address Simulator

EXIT PROCESSING
3.5.1 Resume Exit
3.5.2 Error Exit
3.5.3 Setting Exceptions

SPA RECURSION ROUTINE - IEAVEXM2

3.4 3-15
3-15
3-16

3—16
3—16
3-16
3-18

3.5

3-183.6

RESERVING PSA PATCH AREA 3-193.7

MVS/SP Assist Release 1.0 Software Logic Manual
Licensed Material - Property of Amdahl Corporation

i i i

L

uoi^Bjodjoo I^BP®v JO iCjjadojd -XBtj0?Bjn paeuaoiq
At

L-f
● ● uoi;Binmtg jfooq gj^io asBaxaa - iosaVdS
● SWO niB?qo - BOSaVdS
noijBjnmTs 3[oot xBooq asBaxag - gosaVdS
uoT^Binmtg 3fooq iboot tITB:^qo - ̂OS^dS

● ■ ● ● ● uoi^xBinniig a3B£ xtj - sosaVdS
uoitjBxnmig joajojj :^sax - lOSaVdS

■■■■■■ s^Bnuo^ siqBx sobjj,

●9-t sjnSia
■Q-f ajTiSia
‘f—f ajnSij
‘2—f aanSja
‘Z-f oJitSia
’I-t sjnSia
●I-e ajnSia

9-f
9-f
f-f
e-f
z-f
9-e

saanoia

T-a■ fido OLf AHOKaw aa(ii©ixa ifv no vds/SM 8'a
aa/oz,e itioslim aNiHOvw v no vds/SM s'a

891/0^8 V NO ao KA aaONIl VdS/SAJ! T’d
SNOiivoiaiaoK dos - a xioNaddv

 ■ SNOixviAaa z's.
■ saaiLLvaa aaxaoddfisNn I’a

T-a
T-a
T-a
T-a ●

VT-a ” ●

T-asaoNaaaaaia NoixviNawaidHi - a xioNaddv
KA aaONH ao 89T/0i8 V NO VdS/SAW

aoNaaaaaa ssoao NoiivariKis/dvai NoixonaxsNi
- a xioNaddv
- 0 xioNaddv

T-a

oaxvaaNao SNOiiaaoxa - a xioNaddv
 saNiiiioa xixa e-v

SNOixonaxsNi ONnoNVH-xooi ox aovMnfY

T-O
T-a
Z-Y

Z-Y

Z-Y
■ ' ■ ■ ■ SdON XSISSV OAS 8'V

■■■■■● anooaoad xsissv xia aovd z'y
‘ ‘ ■ SAviaaAO oii?vNAa t'v

aaoo oaxonaxsNoo ATivoiKVNAa - v xioNaddv

Z-Y ● ●
T-V
T-V
T-T’sxavHOMOia - f aaxavno

 SNOixvaaaisNoo aaa 6’8
NoixonaxsNi axnoaxa aax aoa xaoddns8-8

08-8
08-8

4-8SPAE508-D - Trace Instruction Simulation . .
CHECKPI2 - IPK and SPKA in Problem State . .
SPAB218A - Program Call Simulation
Program Call Number Translation
SPAB219A - Set Address Space Control Simulation
SPAB221A - IPTE Simulation
SPAB223A - Insert Virtual Storage Key Simulation 4-14
SPAB224A - Insert Address Space Control Simula-

SPAB225A - Set Secondary ASN Simulation 4-16
SPAB226A - Extract Primary ASN Processing . . . ̂ 17
SPAB227A - Extract Secondary ASN Processing . . ●^18
SPAB228A - Program Transfer Simulation 4-19

. . 4-9
4-10
4-11
4-12
4-13

ASN Translation . . .
ASN Authorization 4—21
SPAB229A-BA - Extended Storage Key Instruction
Simulations ' A.

MVCXCOMM - Move to Secondary/Move to Primary Simu
lation . .

lEAVEXMS Resume Exit Processing
lEAVEXMS Error Exit
Special Program Exception Handling
EF Instruction Non-Unique Trap Building . .
Common Unique Trap Processing
REE Unique Trap Processing
SSE Unique Trap Processing
Trap Completion .
PSA Allocation , ; ● ● ● ●
OVERRUN - Dynamic Patch Area Switching . . .
Dynamic Instruction Patching

F igure 4—7.
Figure 4-8.
Figure 4—9.
Figure 4—10.
Figure 4—11.
Figure 4—12.
Figure 4—13.
Figure 4—14.

Figure 4—15.
Figure 4—16.
Figure 4—17.
Figure 4—18.
Figure 4—19.
Figure 4—20.
Figure 4—21.

Figure 4-22.

Figure 4—23.
Figure 4—24.
Figure 4—25.
Figure 4—26.
Figure 4—27.
Figure 4—28.
Figure 4-29.
Figure 4—30.
Figure 4—31.
Figure 4—32.
Figure 4—33.

4-22

4-23
. . 4-26
. . 4-27
. . 4-28
. . 4-29
. . 4-30
. . 4-31
. . 4-32
. . 4-33
. . 4-34
. . 4-35
. . 4-36

TABLES

1-2Supported Systems and Features .
Instruction Replacement Code . .
Interrupts Caused by Simulations ^ ,
Cross Reference of Interrupt Code to ABEND Code
Cross Reference of Instruction Trap/Simulation .

Table 1-1.
Table A-1.
Table B-1,
Table B-2.
Table C-1.

A-1
B-1
B-5
C-1

MVS/SP Assist Release 1.0 Software Logic Manual
Licensed Material - Property of Amdahl Corporation

V

CHAPTER 1 - INTRODUCTION

MVS/SP Assist (MVS/SPA) Release 1.0 is an Amdahl licensed program
product that allows the MVS/System Products (5740-XYN and 5740-XYS) at
version 1 Release 3 to run on Amdahl 470 processors and System/370
uniprocessors that do not have the 370 Extended Facility/Feature (EF)
installed. In addition, it provides support for the 3033 Extension
(XF) for those 470, 370, 303X and 4300 systems that do not have the
3033 Extension available or installed. It also provides support for
Extended Addressing (EA) on the Amdahl 470 systems. See table 1-1 for
supported combinations.

I MVS/SPA supersedes MVS/SEA Release 3.0 and, because of a different
design, does “not require most of the operating system changes required
by MVS/SEA; therefore the installation procedure is much simpler,
gives additional performance gains for an MVS/SP 1.3 system that cur
rently uses MVS/SEA and/or the IBM-provided XF simulation routines.

MVS/SPA will produce results functionally equivalent to any of the
following environments:

MVS/SP 1.3 with IBM XF simulations and MVS/SEA

MVS/SP 1.3 with IBM XF simulations and 370/EF

MVS/SP 1.3 with the 3033 Extension

It

Unsupported features and exceptions to the operation of the supported
instructions, as defined in the Sy3tem/370 Principles of Operation or
System/370 Assists for MVS, are listed in Appendix E.

NOTE

As is the case with MVS/SEA, MVS/SPA
assumes that it will be the only user of
the unused sections of the PSA. Should
any other user installed products also
require use of some or all of this area,
please see paragraph 3.7 for information
on how to resolve these conflicts.

MVS/SP Assist Release 1.0 Software Logic Manual
Licensed Material - Property of Amdahl Corporation

1-1

Introduction

1.1 RELATED DOCUMENTATION

The documents listed below provide the user with additional informa
tion about the Amdahl MVS/SPA and MVS/SEA products, and the IBM
370/Extended Facility, the 3033 Extension and Extended Addressing.

IBM System/370 Principles of Operation (IBM GA22-700O)

IBM System/370 Assists for MVS (IBM GA22-7079)

Cross Memory Services User’s Guide (IBM GG22-9231)

MVS/SP Assist Release 1.0 General Information Manual (Amdahl M1130.0)

MVS/SE Assist Release 3.0 General Information Manual (Amdahl M1109.0)

Amdahl MVS/SPA Microfiche (Amdahl Licensed Material)

Supported Systems and FeaturesTable 1-1.

EA370/EF 3033ESYSTEM

X X XAmdahl 470

XIBM 370 w/o EF X

XIBM 370 w/EF

XIBM 303x w/o 3033E

Not Used - Completely TransparentIBM 303x W/3033E

IBM 4300 w/o ECPS:MVS . X X

IBM 4300 w/ECPS:MVS X

Not Used - Completely Transparent

As Required

IBM 4300 W/3033E EC

Other CPUs

1-2
Licensed Material - Property of Amdahl Corporation

n

CHAPTEE 2 - OVERVIEW

A CPU running MVS/SP 1.3 without the 3033 Extension will program check
when it encounters one of the XF instructions. This program check is
passed to nucleus-resident module lEAVEXMS to see if the instruction
is indeed one of the XF instructions and not a coding error. If it is
an ̂ instruction, it is simulated, and return is made either to the
next sequential instruction or otherwise as the instruction dictates.

The MVS/SPA product takes advantage of this design to also intercept
the program checks from the EF and EA instructions; module lEAVEXM^
completely replaced, and SPA simulates or traps all three types of
instructions. The simulations are faster in most cases than those in
the standard lEAVEXMS, and the construction of the MVS/SPA lEAVEXMS
eliminates the possibility of a program check recursion caused by the
issuance of EF instructions in the standard lEAVEXMS. In some cases
the existence of an MVS coding convention is checked for, allowing a
fast path in the decoding and fetching of operands - for example, in
the Program Call and Program Transfer simulations.

Normally, all EF (and some XF) instructions are replaced by valid
instructions that either directly enter the simulation routines or
simulate the original instruction.

For program interrupt
instructions, MVS/SPA passses control back to the program check FLIH
to continue with normal RTM processing. Also, should a simulation
routine encounter a cause for exception while simulating an instruc
tion, the exception is passed to the program FLIH as it would have
been had the hardware feature been installed.

1 s

ions that are not related to EF, XF or EA

The MVS/SPA product consists of one module, a replacement for lEA
VEXMS. In addition, a small superzap change to module lEAVNIPO is
required for CPUs without the 370/EF implemented in hardware to allow
MVS/SP to IPL without it. On 370/168 CPUs without EF
VM systems, a change is also required to lEAVNPXl to ensure that the
common segment bits are not turned on, as the MVS/SPA product cannot
intercept the resulting program checks that would result. See appen
dix D for further information.

The 470 Extended Addressing feature requires some additional changes
to the operating system. The feature is checked for proper enablement
by a zap to lEAVNlPO, and three standalone dump modules are updated to
support the Amdahl implementation of the extended key instructions.
Paragraph 3.3 describes the necessary feature settings to enable the
470 Extended Memory feature after it has been installed.

Appendix F summarizes the operating system modules changed and the
nature of the changes.

, or under non-SP

MVS/SP Assist Release 1.0 Software Logic Manual
Licensed Material - Property of Amdahl Corporation

2-1

n

CHAPTER 3 - METHOD OF OPERATION

Flowcharts for most of the MVS/SP Assist routines are provided in
chapter 4.

Module lEAVEXMS is passed control from the Program Check First Level
Interrupt Handler (FLIH) whenever a program interrupt occurs for an
operation exception (interrupt code X’Ol’) or a privileged operation
exception (interrupt code X’02’). The type of interrupt is determined
from the program interrupt code (location X’8F’ in the PSA), and the
instruction address is determined by subtracting the instruction
length code (PSA location X’8D’) from the address in the
PSW (PSA location X’28’).
ation exception for a su
exception for an IPK or

e program old
The cause of the interrupt will be an oper-

ported instruction, a privileged operation
PKA, or some other non-supported reason.

Supported instructions are handled -in one of three ways: simulating,
trapping or ignoring them. In general, EF instructions are trapped,
and XF and EA instructions are simulated. The difference between
trapping and simulating is that while both result in the instruction
being simulated, the trapped instruction uses an exit in the PSA, and
operand decodes are already done. The non-trap simulation routines
require that the operands be decoded on all occurrences.

3.1 EXTENDED FACILITY/FEATURE (EF) INSTRUCTIONS

When an EF instruction is recognized, the program check old PSW is
checked to ensure the issuer was in supervisor state. If not, the
interruption code is changed to X’0002’ to indicate a privileged oper
ation exception, and control is passed via the error exit to RTM.

The opcode is next checked to ensure that it is within the range
X’ESOl’ to X’ESOD’. If not, the interrupt is passed back to the pro
ram FLIH via the error exit. If the opcode is supported, an address
ocated via table look-up is used to locate the specific simulation
routine and to control further processing.

IPTE and TPROT simulations require trap areas in the PSA.
are allocated and the traps are built by the PSAALLOC rou-

Appendix A describes this routine in more detail.

!

The trace.
These areas
t ine.

3.1.1 Test Protection Simulator - SPAE501

Routine SPAE501 receives control from the PSA exit routine built on
the first occurrence of the instruction. On entry, two registers have
been loaded with the instruction operands and a third with the routine
base register. (See appendix A for details of the PSA exit.)

MVS/SP Assist Release 1.0 Software Logic Manual
Licensed Material - Property of Amdahl Corporation

3-1

1

Method of Operation

After setting a recursion indicator into PSAPCFB4, SPAE501 changes the
PSW key to that specified in the second operand. TTie storage address
designated by the first operand is then fetched (via a TM instruction)
and tested for store permission (via a non-destructive 01). The PSW
key is reset to zero to allow resetting of the recursion indicator,
and control is returned to the original code via LPSW. The default
condition code in the resume PSW is zero (set during trap construc
tion) so the condition code is valid.

If either fetch or store is disallowed, the references by the TM or 01
cause a program check. Due to the setting of PSAPCFB4, control is
passed to the SPA recursion entry, IEAVEXM2, by the program FLIH.
IEAVEXM2 then examines the register contents to decide whether the
fetch or the store was disallowed (a register contains ’F’ during the
fetch trial and ’S’ on the store trial). It sets the appropriate con
dition code in the resume PSW and returns to the original code.

3.1.2 Fix Page Simulator - SPAE502

Routine SPAE502 receives control from the PSA exit routine built
the first occurrence of the instruction. On entry, registers are as
follows:

Register 0

Register 1

on

- Real address in the first page frame to be fixed.

- Virtual address in the, first page to be fixed.

- Virtual address in the last page to be fixed.Register 2

Registers 8-10 - Saved

Register 11

Register 14

- Routine base register

- Pointer to S-type address constant of successful-
fix exit point. (Instruction first operand.)

After locating the MAPL, the routine loops, attempting to fix all the
pages in the range specified by registers 1 and 2. (The microcode
implementation does only one page per issuance of the instruction, but
as a performance enhancement, the simulation fixes all possible pages
on each issuance.) The following description applies to each pass
through the loop.

If the page to be fixed is already fixed by default (nucleus, L/SQA
V=R page), the fix count is not examined, and control passes to the
end of the loop.

If the page frame is being fixed for the first time and is not in the
preferred area, or if it does not belong to either the common area or
a second-level preferred user, the simulation terminates by calling

or

3-2

Licensed Material - Property of Amdahl Corporation

Method of Operation

the MVS exception routine, located from MPLPFAL. .In all other cases
the fix count is incremented for the page. If this is the first fix
for the page (fix count is now one), the total system fixed frame
count (MPLCNTRS in the PVT) is incremented. If the page is a common
area page, the common area fix count is also incremented. If it is a
private area page, the address space fix count in the RSM header is
incremented. The proper RSMHD is located from the ASCB either in PSA—
AOLD (during early NIPK or the ASCB located (via the ASVT) from the
ASN in control register 3 or 4, depending on the setting of the sec
ondary mode bit.

If the last page in the range has not yet been fixed, the address of
the current page to fix is incremented by X’lOOO’ . If the page exists
in storage or the Extended Main Storage feature is not enabled, proc-
iz^ing begins again at the start of the loop. If not, the S—constant
pointed to by register 14 is decoded and branched to.
ess

If the last page in the range has been fixed, the total system fix
count is compared with the maximum number of pages allowed to be fixed
contained in the MAPL (MPLMAXFX). If the maximum count has not been
exceeded, return is made to the instruction after the FIX PAGE

If the count is exceeded, exit is made to the SRMinstruction trap,
frame fix excession routine, located in the MAPL (MPLPFCM).

SVC Assist Simulator3.1.3

The function performed by the SVC Assist hardware implementation
instruction is identical to that of normal SVC FLIH processing; there
fore, there is no SVC Assist simulation routine. Whenever the SVC
Assist instruction is encountered, it is overlaid with NOPs so that
control passes to standard FLIH processing.

3.1.4 Obtain Local Lock Simulator - SPAE564

Routine SPAE504 receives control directly from the instream code via a
I LOAD/BALR sequence which replaced the original instruction on first

Register 12 contains the return address, 13 the base
(See appendix A for further details of the

occurrence,
address, and 11 is free,
linkage.)

First, pseudo-SRB mode (PSAPSRBM) is set to avoid preemption d^ing
interrupts, then the PSA super bit for the lock manager (PSALOCK) is
set to disable any PER processing that may occur. Because the lock
simulators run enabled, these bit-settings prevent any possibility of
loss of control during update of. the lock word and indicators.

The current ASCB is located via PSAAOLD and the lock status checked.
If it is held, exit is made to the ’Local Lock Obtain Failed’ entry
point in the Lock Interface Table prefix (LITOLOC). If it is
held, the CTU physical address is set into the lock word, the PSAHLHI

3-3MVS/SP Assist Release 1.0 Software Logic Manual
Licensed Material - Property of Amdahl Corporation

1

Method of Operation

bit for the local lock is set, and exit is made to the caller
both cases, the condition code is restored to what it was on entry,
and both the SUPER and MODE bits set on entry are reset.

In

3.1.5 Release Local Lock Simulator - SPAE505

1 receives control directly from the instream code via a
I LOAD/BALR sequence which replaced the original instruction on first
occurrence. Register 12 contains the return address, 13 the base
address, and 11 is free. (See appendix A for further details of the
1inkage.)

First, pseudo—SRB mode (PSAPSRBM) is set to avoid preemption during
interrupts, then the PSA super bit for the lock manager (PSALOCK) is
set to disable any PER processing that may occur. Because the lock-
simulators run enabled, these bit-settings prevent any possibility of
loss of control during update of the lock word and indicators

The ’locks held’ bit string is checked to ensure that a CMS lock is
the local lock held. The current ASCB is located via

PS^OLD and the local lock suspend queue is checked. If a CMS lock is
held, the local lock is not, or there is an entry in the suspend
queue, exit is made to the ’Local Lock Release Failed’ entry point in
the LIT prefix (LIT^OC) . If all the checking is passed, the lock-
word IS zeroed, the lock held indicator (PSAHLHI) is reset, and exit
IS made to the caller. In both cases, the condition code is restored
to, what IS was on entry, and both the SUPER and MODE bits set on entry
are reset.

3.1.6 Obtain CMS Lock Simulator - SPAE506

, receives control directly from the instream code via a
I LOAD/BALR sequence which replaced the original instruction on first
occurrence. Register 12 contains the return address, 13 the base
address, and 11 points to the CMS lockword to be used. (See appendix
A for further details of the linkage.)

First, pseudo—SRB mode (PSAPSRBM) is set to avoid preemption during
interrupts, then the PSA super bit for the lock manager (PSALOCK) is
set to disable any PER processing that -
simulators run enabled, these bit-settin
loss of control during update of the loc

Because the lock
s prevent any possibility o

may occur.
f

word and indicators.

^e specified lockword is first inspected to ensure that it is free.
If It is not, or a CMS lock is already held, or the local lock is not,
exit IS made to the ’CMS Lock Obtain Failed’ entry point in the Lock
Interface Table prefix (LITOCMS). Field PSALOCAL is then used to
locate the proper ASCB (if it is zero, PSAAOLD is used) . The CMS lock
held indicator is then turned on in the PSAHLHI field, and the ASCB
address is stored into the lock to mark it held. Exit is then made to

3-4

Licensed Material - Property of Amdahl Corporation

1

Method of Operation

the caller,
was on entry, and both the SUPER and MODE bits set on entry are reset.

In all cases, the condition code is restored to what it

3.1.7 Release CMS Lock Simulator - SPAE507

Routine SPAE507 receives control directly from the instream code via a
LOAD/BALR sequence which replaced the original instruction on first
occurrence. Register 12 contains the return address, 13 the base
address, and 11 points to the lockword to be used. (See appendix A
for further details of the linkage.)

First, pseudo-SRB mode (PSAPSRBM) is set to avoid preemption during
interrupts, then the PSA super bit for the lock manager (PSALOCK) is
set to disable any PER processing that may occur. Because the lock
simulators run enabled, these bit-settings prevent any possibility of
loss of control during update of the lock word and indicators.

The ’locks held’ bit string is checked to ensure that both a CMS lock
and the local lock are held. If either lock is not held, or there is
an entry in the suspend queue, exit is made to the ’CMS Lock Release
Failed’ entrv point in the LIT prefix (LITRCMS). If all the checking
is passed, the lockword is zeroed, the lock held indicator (PSAHLHI)
is reset, the condition code is restored to what it was on entry, both
the SUPER and MODE bits are reset, and exit is made to the caller.

3.1.8 Trace Instruction Simulations - SPAE508,9,A,B,C,D

The method of operation is the same for all of the trace instruction
simulations: the simulation routine is entered from a unique PSA trap
that disables the machine, saves some registers, moves the model
resume PSW to the resume area (PSAXMPSW) and calls the simulation rou
tine. (See appendix A for further details of the linkage.)

The trace table header is first checked to see if the table has wrap
ped. If so, the table start address is used for the new entry address
and condition code 1 is set in the resume PSW. Otherwise the current
entry pointer is incremented by 32, and the new entry address is
stored back into the current entry pointer.

The format of each entry is defined in IBM System/370 Assists for MVS.
The only difference is that in some cases an operand is assumed and
fetched from the PSA, instead of decoding the instruction operand and
using that address. Results should be identical in both cases. Fig
ure 3-1 contains a layout of the trace entries.

The specific trace routines are:

● SPAE508 - Trace SVC Interrupt

● SPAE509 - Trace Program Interrupt

MVS/SP Assist Release 1.0 Software Logic Manual
Licensed Material - Property of Amdahl Corporation

3-5

n

Method of Operation

CO
O<

I<
S

n 3
<I %I* i» i» !●s ii s o

i

I
5c i1ii

i
s I< b? h !●£ <

i 5 Si X<
i n3 3

I
S

2 i:ii
ii

s ii ii I
MI H s>a k? £< X X

Ss <u.s£ X

1
o

ii o
<£
spii

ii*
3

o

I
i

oI-: 3
i

S is ii if ? z S5SS
It:ctt a pn3 S ==s

iu jO oi i
i£ft

ii o
s|>

i
S£-si*

w

Ig
2

i- !»ii i ii
os o«

is
i a:t 3S = s 2 a

i

a
B

si
!

i
os

3 ao' 3
2Ift i- sf ¥ KS 2*

3
Iun si< a

3
ft

a
is i8

Inii ii iiS3
!● ¥ s (■ p'tftsi 2S s●1 os

iii I 3
2 SiS Sg

i
Cl ●<w <o !● ii

I
s3 M

5 3II* iSSif ff3i 5 ●<= 5

ii
ii

s a

I
2

i|s a:
Uh !2 I

I P iiS3
<
Si Oc s

I
X

i il 57 ft
1« io2 ISr. 22 I

; i i .3 tS
HI

£ isO

I
ss £●i > SiC" s s >

Figure 3—1. Trace Table Entry Formats

3-6
Licensed Material - Property of Amdahl Corporation

n

Method of Operation

● SPAE50A - Trace Initial SRB Dispatch

● SPAE50B - Trace I/O Interrupt

● SPAE50C - Trace Task Dispatch

● SPAE50D - Trace SVC Return

Invalidate Page Table Entry Simulation - SPAB221

Routine SPAB221 receives control from the PSA exit routine built on
the first occurrence of the instruction. On entry, two registers have
been loaded with the instruction operands and a third with the routine
base register. The fourth register has been loaded by a BAL that
calls' the simulation routine, to provide the condition code on entry.
(See appendix A for details of the PSA exit.)

A PURGE TLB (PTLB) is done immediately upon entry to allow the purge
to execute asynchronously. After setting the recursion indicator
(PSAPCFB4), input operand values are used to locate the proper page
table entry to be marked invalid. If the issuer of the instruction
was not in key zero, a SPKA is done to enter user key, and the page
table entry is marked invalid. After housekeeping, return is made
directly to the caller via the resume PSW.

3.1.9

3.2 3033 EXTENSION (3033E,XF) SUPPORTED INSTRUCTIONS

All of the 3033 Extension supported instructions have X’B2’ opcodes.
After housekeeping at entry point lEAVEXMl, the second byte of the
opcode is retrieved, validity checked (it must be between X’21’ and
X’2B’), multiplied by 4 and used as an index into a table. The table
contains the addresses of the various simulation routines for .the B2
opcodes.

3.2.1 Program Call Simulator - SPAB218A

After setting the recursion indicator, SPA checks to ensure the caller
has translate on and is not in secondary mode. The instruction ope
rand is then decoded, with a fast path if the operand is ’0(R2)’, the
MVS convention. If the fast path is not used, the base register (if
any) is retrieved and the displacement (if any) added in.

The program call number (PCN) is now translated, in a process very
similar to virtual address translation. After ensuring that PCN trans
lation is allowed (bit 8 of CR5), the Linkage Index (LX) is isolated
from bits 17-23 of the PCN, and used as an index to the proper Link
age Table Entry to retrieve the Entry Table Origin. The low-order

Entry Index (EX) into the Entry Table,
and byte four of the located Entry Table Entry (ETE) is then checked
byte of the PCN is used as an

MVS/SP Assist Release 1.0 Software Logic Manual
Licensed Material - Property of Amdahl Corporation

3-7

1

Method of Operation

for zero. If the caller is in supervisor state, the PCN translation
rocess is now complete. If the caller is in problem state, the Entry
ey Mask in the ETE is checked to see if he is authorized to invoke
that particular program call function. If so, translation is complete.
(If not, a Privileged Operation exception is generated.)

Next, the routine handles address space switching requirements,
the destination ASID field in the ETE is non-zero, switching is
required and the ASID is used as input to the ASN translation process
to locate the proper ASN Second Table Entry (ASTE) that contains all
the new address space’s control information. (Paragraph 3.2.10
describes the ASN translation process.) When the ASTE is returned, the
following status changes are made:

● The current primary address space is made the secondary.

● The Linkage Table Designator address (CR5) is set from the ASTE.

● The new Authorization Index (AX) is set from.the ASTE.

● If required, a Space Switch Event is noted for later processing.

● The new STO is loaded into CRl.

● The old primary ASID is put into general register 3.

If

If space switching is not required, the primary address space is also
made the secondary, and the old primary ASID is put into general reg
ister 3.

At this point, any address space switching and/or housekeeping that is
required has been done, and all that is left is program linkage. Gen
eral register 14 is loaded with the address of the next instruction
after the Program Call (the program old PSW instruction address), and
the low bit of the register is set to correspond to the PSW problem
state bit. The old Program Key Mask (PKM) is OR’d with the Entry Key
Mask from the ETE to create the new PM. General register 4 is loaded
with the latent parm word from the ETE. The resume
address is then set to the entry point address of the invoked routine.
If the new routine is to run in problem state (ETE byte 7, bit 7 is
1), the problem bit is set on in the resume PSW. At this point the
actual program call processing is done. If the MVS system trace is
disabled, a check is made for the Space Switch Event required flag.
If on, an SSE is simulated. If not, exit is made to the new routine
via the resume PSW. If tracing is enabled, a trace table entry is
made in the same manner as for the EF trace instructions, as described
in paragraph 3.1.8. (The format of the entry is given in figure 3-lK
Processing then continues as if trace was disabled.

Chapter 4 contains a flowchart of this process.

instruction

3-8
Licensed Material - Property of Amdahl Corporation

Method of Operation

3.2.2 Set Address Space Control Simulator - SPAB219A

If the caller has translate on, the instruction operand is decoded,
the base register (if any) retrieved and the displacement (if any)
added in. If bits 20-23 of the resulting address are zero, the
request is for primary mode, and the XM mode flag (PSAXMODE) is zeroed
to set the mode, the primary STO is loaded to CRl,-and control returns
to the caller.

If bits 20-23 are not zero, bits 20-22 are checked to ensure that they
are zero. If so, the request is a valid request for secondary mode,
the XM mode flag is set to X’80’ (secondary mode), and the secondary
STO is loaded to CRl. Control then returns to the caller. If bits
20-22 are not zero, a specification exception is simulated.

3.2.3 Insert Virtual Storage Key Simulator - SPAB223A

After setting the recursion indicator (PSAPCFB4) and ensuring the
caller has translate on, the instruction second operand is decoded and
the resulting virtual address is tested for validity. If a valid
translation does not exist, the page is referenced and the ensuing
program check is reflected to the program FLIH for resolution.

If the address has a valid translation, the real address from the
translation is checked to see if it is over the 16Mb boundary, meaning
Extended Addressing is active. If so-, bit 4 of the PSW is turned on.
An ISK is then done to get the storage key, and the first operand reg
ister is decoded and retrieved. If bit 4 of the PSW was turned on, it
is now turned off. The retrieved operand value then has the retrieved
key OR’d into it, and the result is stored back into the register or
save area, as required. Exit is then made to the caller.

3.2.4 Insert Address Space Control Simulator - SPAB224A

If the caller has translate on, the instruction operand is decoded and
the register contents retrieved. The resume PSW condition code is set
to zero, and the result byte from the instruction (byte 2 of the ope
rand register) is also zeroed. If the CPU is in primary mode, the
register is saved with the zero byte,
caller. If the (]PU is in secondary mode, the result byte is set to
X’Ol’ and condition code 1 is set before control is returned.

and control returns to the

3.2.5 Set Secondary ASN Simulator - SPAB225A

If the caller has translate on, the instruction operand register is
decoded and retrieved, and the destination ASN is compared to the cur
rent primary ASN.
allowed, the secondary
mary.

If they
ASN

are the same, and ASN translation is
and STO are set to the values of the pri-

MVS/SP Assist Release 1.0 Software Logic Manual
Licensed Material - Property of Amdahl Corporation

3-9

1

Method of Operation

If the destination ASN is not the same as the current primary, then
the new ASN must be translated to obtain the necessary control inform
ation. Dat is turned off, and the ASN translate routine is called to
ensure that the target ASN is a valid secondary address space for this
user. (See paragraph 3.2.10 for an explanation of ASN translation and
authorization checking.) If the ASN has a valid translation, the new
secondary STO and ASN are copied from the retrieved ASTE and set into
the proper control register images. If the CPU is in secondary mode,
the new secondary STO is loaded to real control register 1.

If tracing is enabled, a trace table entry is made in the same manner
as for the EF trace instructions, as described in paragraph 3.1.8.
(The format of the entry is given in figure 3-1). After the trace
table entry is created, or if trace is not active, control returns to
the caller.

Chapter 4 contains a flowchart of this process.

Extract Primary/Secondary ASN - SPAB226A/SPAB227A

If the caller has translate on, and if the EPAE/ESAE is not the sub
ject of an execute, the instruction is overlaid with a Load Halfword
(LH) (since the operation of EPAE/ESAE in this case is identical to
that of LH). The target register of the LH is that of the EPAE/ESAE
and the displacement is that of the primary (EPAE) or secondary (ESAE)
ASN in the PSA simulated control registers. After the patch has been
built, DYNAMFIX is called to place the patch, and exit is made to the
caller.

3.2.6

If the instruction is EXECUTEd, it cannot be overlaid and must be
decoded and simulated each time it is encountered. The destination
register is decoded, the proper ASN set into it, and return made to
the caller.

3.2.7 Program Transfer Simulator - SPAB228A

If the caller has translate on and is not in secondary mode, the
instruction operand is decoded, with a fast path if the operand is
’E3,E14’, the MVS convention. The state requested by the issuer in
the low bit of the second operand is checked to ensure the caller has
not requested a transfer to supervisor state from problem state.

The simulation next handles address space switching,
tion ASID field in the first operand (low halfword)
current primary, space switching is not required, and the resume PSW
instruction address is set from the second operand, secondary ASN and
STO are set, to those of the primary, and the proper state (supervisor
or problem) is set. Trace and Space Switch Events are then checked.

If the destina-
is the same as the

3-10
Licensed Material - Property of Amdahl Corporation

n

Method of Operation

If space switching is required, the destination ASID is used to locate
the proper ASN Second Table Entry (ASTE) that contains all the new
address space’s control information. Authorization checking is done
to ensure that this caller is authorized to use the requested address
space as a primary address space. Paragraph 3.2.10 describes the ASN
translation and authorization process. When the ASTE is returned, the
following status changes are made:

The Linkage Table Designator address (CR5) is set from the ASTE.

The new Authorization Index (AX) is set from the ASTE.

If required, a Space Switch Event is noted for later processing.

The new STO is loaded into CRl and set into simulated CRl and
CR7.

Supervisor or problem state is set as requested.

The primary and secondary ASN are set to the requested new ASN.

The PKM is reset to what it was on entry to the PC.

The resume PSW instruction address is set from the second ope
rand .

If a Space Switch Event is required, a flag is set for later inspec
tion.

If the MVS system trace is disabled, a check is made for the ’Space
Switch Event Required’ flag. If on, an SSE is simulated. If not,
exit is made to the new routine via the resume PSW. If tracing is
enabled, a trace table entry is made in the same manner as for the EF
trace instructions, as described in paragraph 3.1.8. (The format of
the entry is given in table 3-1.)

Chapter 4 contains a flowchart of this process.

3.2.8 Move to Primary and Move to Secondary Simulations - MVCXCOMM

Routine MVCXCOMM receives control when an MVd!P or MVCS opcode (X’D9’
or X’DA’) is encountered. If the caller has translate on, the instruc
tion operands are decoded, the base registers (if any) are retrieved
and the displacements added in. (The length register is decoded,
retrieved, and saved into a work area for use in setting the condition
code at the end of the simulation.) If the length was zero, the move
is a NOP and control returns to the caller with condition code zero.
If the length is greater than 256, it is set to 256, then decremented
by one for working purposes. The key register, used for access check
ing for the secondary space operand, is then decoded and retrieved.

3-11MVS/SP Assist Release 1.0 Software Logic Manual
Licensed Material - Property of Amdahl Corporation

1

Method of Operation

At this point, the source and sink data operands must be checked for
accessabi1ity. There must be a valid translation for the addresses,
and the storage keys must agree with the PSW key or secondary key, as
required. There are four routines that do the checking, depending on
the instruction being simulated and whether the CPU is in primary or
secondary mode. The simulation is optimized for MVCS in primary mode,

, by far the most common simulation. The checking involves testing both
ends of the operand for access, using the proper keys and segment
table. The routines that do the checking, and the origin of the keys
and STOs are:

MVCP, primary mode - after label MVCPPORS

- Operand 1 - PSW key. Active STO

Operand 2 - R3 key, STO from CR7

MVCP, secondary mode - Label MVCPS

- Operand 1 - PSW key, STO from CRl

- Operand 2 - R3 key. Active STO

MVCS, primary mode - (No Label, fall through)

- Operand 1 - R3 key. Active STO

- Operand 2 - PSW key, STO from C!R7

MVCS, secondary mode - Label MVCSS

- Operand 1 - R3 key, STO from CRl

- Operand 2 - PSW key. Active STO

If there is no valid translation for part of the data, or the keys do
not match, a program check occurs that will be handled by IEAVEXM2.

If the caller is in problem state, and is not allowed to use the sec
ondary space key, a protection exception is generated. If the user is
authorized, or in supervisor state, DAT is turned off and the operands
are checked for page crossing. If the move is one byte the page cros-
ser checking is skipped.

After page crossing checks, there are extended addressing checks,
extended addressing is active on the system (determined from the
inspection of PSAHWFB) and either of the operand addresses

I the 16Mb boundary, bit 4 of the PSW is turned on to allow the access
ing of the high storage.

I

is above

f

3-12
Licensed Material - Property of Amdahl Corporation

Method of Operation

The move is then simulated by either an EXECUTEd MVC or an IC/STC
sequence (for one byte moves). Condition code 3 is set if the origi
nal length was greater then 256; otherwise, condition code zero is
set. Control then passes to the resume exit.

If a page crosser has been detected, further pr
which operand(s) crossed. If only one crossed,

EXECUTEd MVCs. If both operands crossed, three moves are
In all cases, the addresses involved are checked for r

I dence above the 16Mb boundarv, and PSW bit 4 turned on before the
moves if a high address has been found.

rocessing depends o

two
required. r

n
, the move is done with

es 1-

3.2.9 Move With Key Simulation

art of the MVCK simulation is common with that for the
1 simulations up to the point that the operands are

decoded and retrieved. After the key register has been retrieved, the
simulation becomes unique to MVCK. The MVCK instruction uses only one
segement table, so the checking with different segment tables for
access is not required. Also, DAT is not required to be on. Since
page crossing checks are not required, it is only necessary to access
the first and last byte of each operand in the proper key. (A check
for page crossing is not needed because moves are done DAT on or DAT
off, depending on the caller’s mode, so all storage will be logically
contiguous. The other XF moves are always done DAT off, so this will
not usually be the case for them.) The first operand key is checked
with the PSW key, and the second with the R3 key. If one of the keys
is improper, or if DAT is on and access to of one of the operands
causes a page fault, the resulting program check is reflected to the
original instruction by IEAVEXM2.

If the user is in problem state, the R3 key is checked against the PSW
key mask. When all checks have been successfully passed, the move is
done with an EXECUTEd MVC, the proper condition code is set (depending
on the length register), and control returns to the caller via the
standard resume exit.

The initial
MVCP and MVCi

3.2.10 ASN Translation and Authorization - ASNTRAN

The ASN translation routine is called by the Program Call, Program
Transfer and Set Secondary ASN simulation routines when a space switch
is required. The ASNT^ routine takes as input an ASN (ASID) , and
using the ASN translation tables built during IPL, returns an ASTE
that contains information about the target address space. This
information includes such things as the segment table origin address
and the LTD, AX and Authority Table Origin.

The ASN translation process is similar to that of a virtual to real
address translation. The index into the ASN First Table (AFT) is the
high ten bits of the ASN, called the AFX. The AFX is multiplied by 4

MVS/SP Assist Release 1.0 Software Logic Manual
Licensed Material - Property of Amdahl Corporation

3-13

1

Method of Operation

to provide the offset into the AFT to locate the AFTE. The start of
the AFT, the AFTO, is contained in C3114 bts 12-31, and is the same for
all users of the system. If bit 12 is zero, translation is not ,
allowed, and a special operation exception is generated.

The valid/invalid bit of the AFTE is first inspected, and then the
AFTE itself is format checked. If it passes these tests, the AFTE is
used as the start of the AST (ASN Second Table). The low-order 6 bits
of the ASN are multiplied by 16 to get the index into the second table
(ASX), and are added to the ASTO obtained from the AFTE.
is a pointer to the ASTE, the ASN Second Table Entry. The ASTE is
then format checked, and if the format is valid and the invalid bit is
not on, the translation process is complete.

If the translation was performed for the Program Call simulation, the
process is complete and control returns to the simulation routine. If
the call was from PT or SSAR (the caller is identified from the value
in PSAPCFB4), ASN authorization checking is required. This process
ensures that the issuer of the PT or SSAE is authorized to request the
address space he has specified in the instruction as either a primary
or secondary space, respectively.

ASN authorization involves locating the Authorization Table Origin
(ATO) from the ASTE, and indexing in using the caller’s AX to do the
actual check. Each byte in the AT (Authorization Table) contains
information for four AX’s. The AX is divided by 4 to locate the
proper byte, and the proper pair of bits is located from the last two
bits of the AX. For primary authorization, the first of the pair must
be one; for secondary the second bit must be one. The proper bit is
calculated and a TM instruction is EXECUTEd to perform the check. If
the check passes, control returns to the appropriate simulation rou
tine. Otherwise, an authorization exception is generated.

Chapter 4 contains a flowchart of this process.

The result

3.3 EXTENDED ADDRESSING (EA) SUPPORTED INSTRUCTIONS

Extended Addressing on the Amdahl 470 rests on three assumptions:

1. Storage key instructions operate only in 4K mode.

2. Turning on bit 4 of the PSW enables 31-bit real addressing.

3. The Extended Memory hardware feature is installed.

MVS/SPA expects all three conditions to be met.
lEAVNIP

, , modification to
O ensures that the appropriate hardware features are enabled if

present.)

3-14

Licensed Material - Property of Amdahl Corporation

~i

Method of Operation

3.3.1 Insert Storage Key Extended Simulator - SPAB229A

First, the instruction operand registers are decoded and their con
tents retrieved. Then bit 4 of the PSW is turned on if required, an
ISK is done to get the storage key, and PSW bit 4 is turned off. The
retrieved first operand is used as the first operand of the ISK, and
the second operand provides the address to use. After the ISK, the
first operand register is stored back into the proper location, and
control the returns to the caller from the resume exit.

3.3.2 Reset Reference Bit Extended Simulator - SPAB22AA

First, the instruction operand register is decoded and its contents
retrieved. Then bit 4 of the PSW is turned on if required, and an RRB
is done to set the condition cod'e and reset the reference and change
bits. The resulting condition code is then set into the resume PSW,
and control passes back to the caller from the resume exit.

3.3.3 Set Storage Key Extended Simulator - SPAB22BA

First, the instruction operand registers are decoded and their con
tents retrieved. Then bit 4 of the PSW is turned on if required, an
SSK is done to set the storage key, and PSW bit 4 turned off. Control
then returns to the caller from the resume exit.

3.4 IPK/SPKA IN PROBLEM STATE

Part of the implementation of the DAS feature is the changing of the
two PSW key handling instructions. Insert PSW Key and Set PSW Key
Address, from privileged instructions to ’semi-privileged’ . With
appropriate authorization, any problem program is now allowed to use
these instructions. A CPU without the DAS
this execution, and causes a privileged operation exception (interrupt
code X’02’). This exception is detected and reflected to lEAVEXMS to
handle. Routine CHECKPI2 is given control when a privileged operation
exception is detected. It then chooses the proper simulation routine
to receive control.

From

feature will not support

3.4.1 Insert PSW Key Simulator

The IPK simulator sets the key from the program old PSW into the low
byte of register 2, and then ANDs out the low nibble. No authoriza
tion checking is done, as the only requirement is extraction author
ity. Control is then returned to the caller via the standard resume
exit.

MVS/SP Assist Release 1.0 Software Logic Manual
Licensed Material - Property of Amdahl Corporation

3-15

1

Method of Operation

3.4.2 Set PSW Key. From Address Simulator

The SPKA simulator decodes the operand register, and if non-zero,
retrieves its contents and adds in the displacement to obtain the
requested new PSW key. The bit in the PSW key mask corresponding to
the new key is checked. If it is one, the new key is placed into the
resume PSW key field, and control returns to the user via the resume
exit. If the PSW key mask bit is zero, the original privileged opera
tion exception is reflected back to normal RTM processing through the
error exit.

3.5 EXIT PROCESSING

The simulation routines and the recursion routine will exit either
directly back to the caLler, in the case of a successful simulation,
or to the program check FLIH in the event of an error detected during
format checking, operand validation in a simulation, a Space Switch
Event Or a PE)R event. Due to MVS/SPA being imbedded in the program
check handler, some housekeeping must be done to avoid problems in
either case.

3.5.1 Resume Exit

The resume exit is used after a successful simulation to return con
trol to the instruction stream as directed by the simulation. The
point of return is either the next sequential instruction after the
one being simulated, or another location. The resume exit will first
clear out the recursion indicator byte, PSAPCFB4, to ensure that lEA-
VEXM2 will not receive control for
processing. If the program check t
not a recursion, the JTIR stack is reset to what it was on entr
program FLIH had set it to the program check handler stack.)
super bit is then reset to avoid the next program check being consid
ered a recursion. If one of the other bits was on in the program
check status word (PSAPCFUN), the SUPER bit and FRR stack are not
reset. (An example of this would be an occurrence of an EF ’Trace
Program Interrupt’ instruction.) Checking is now done to see if a PER
event was reported with this interrupt. If so', the rest of the inter-
r^pt code is zeroed out, and the error exit routine is called at label
ER0REXT3. If no PER interrupt was indicated, the SPA control flag is
reset, as it is only valid during simulation. The caller’s registers
are then reloaded, and control returns by LPSW of the resume PSW pre
pared by the simulation routine or low core trap.

program checks not related to SPA
hat initiated the simulation was

y. (The
The PI

3.5.2 Error Exit

The error exit is used when control must be passed on to the program
FLIH and/or RTM. Some of these cases are;

● A simulation routine has detected an error in an operand.

3-16

Licensed Material - Property of Amdahl Corporation

1

Method of Operation

An instruction has been issued in an improper environment.

An interrupt was passed to lEAVEXMS that it can not process.

A page fault has been encountered accessing an operand.

A Space Switch Event is to be signaled.

A PER event has occurred.

- ●

There are five points of entry into the error exit, depending on the
processing required. Each falls through to the next.

PSA protection is disabled.

The resume PSW is made the program new PSW.

The PSW address set in the program old PSW is
checked to ensure that it is not the address of the
work area where the target instruction of an E^CUTE
has been bui1t.

PSA protection is re-enabled.

The remainder of the exit processing.

1. EROREXIT

2. EROREXTl

3. ER0REXT2

4. ER0REXT3

5. ER0REXT4

The specific entry points are called as required, depending on what
part of the exit processing has already been done by the simulation
routine or is already correct.

The remainder of the exit processing is primarily MVS housekeeping and.
clean-up. The SPA control flag and recursion bytes are cleared, and
the rest of the program check recursion word (PSAPCFUN) is checked to
see if the program checJc that resulted in the entry to lEAVEXMS was a
true recursion. If not, the program interrupt code being passed on is
checked for an operation exception or a privileged operation excep
tion. If the interrupt is not to be either of these, the previously
current FRR stack is restored to the current, and the program inter
rupt handler SUPER bit is turned off. The caller’s registers then are
restored and the program new PSW loaded, entering normal program check
processing. If the interrupt being passed back is one of the two, a
special entry point in the program check FLIH (lEAVEPCl) is used to
ensure that the interrupt is not routed back to lEAVEXMS in a loop.
The program FLIH base address is set into register 9, (entry lEA-
VEPCB), the special entry point address into register 11, the ’LCCA
not validated’ bit is set (program FLIH housekeeping), the user’s reg
isters are copied to the program FLIH register save area, DAT is
turned off if it is on, and the FLIH is branched to.

MVS/SP Assist Release 1.0 Software Logic Manual
Licensed Material - Property of Amdahl Corporation

3-17

n

Method of Operation

If the interrupt being passed back is from an instruction in the pro
gram check handler itself, the recursion return point must be used
Recursion exit processing is identical to that of the non-recursion
processing, save that if the interrupt to be passed is a 1 or 2 the
entry point IEAVEPC2 is used.

3.5.3 Setting Exceptions

When a simulation exit detects a format, environment or other error,
the program interrupt to be generated is usually not the same as the
current interrupt code indicated. In that case, the simulation
branches to an exception creation routine that sets up the proper
interrupt code and instruction length code.

The exception creation routines restore registers 12-15 if requested
I and then disable PSA low storage protection. The new interrupt code
is then set, including the PER bit if it was on in the original inter
rupt. The ILC is set to either the length of the instruction or zero,
depending on whether the definition of the new interrupt causes sup—
pression or nullification, respectively. The PSW is also backed up if
required to agree with the ILC. In some cases a translation exception
address is set. Control then passes to the normal error exit at label
EROREXTl.

3.6 SPA RECURSION ROUTINE - IEAVEXM2

Entry point IEAVEXM2 is called directly from the program FLIH when a
program check occurs and a non-zero value has been set into field
PSAPcFB4. (PSAPCFB4 is the one—byte field that is used as an indicator
of which simulation routine is running.) The various values that can
be put in this field are given in table 3-2.

IEAVEXM2 first checks to see if a TPROT instruction was being simu-
lated; if so, the proper condition code is set into the resume PSW to
reflect the cause of the interruption: a page or segment fault or a
protection exception. If another type of exception occurred, the
exception is reflected back to the program check handler through the
normal error reflection exit (see paragraph 3.5.2).

If a TPROT was not being simulated, a check is made first for a seg
ment or page fault. If one has occurred, the translation exception
address (TEA) is set to‘ reflect the address space the fault belonged
to, then exclusive OR’d with the PSAXMFLG value. The XOR is done
because IEAVEXM2 sets the proper primary or secondary address space
bit. (The program FLIH XOR’s in the secondary mode bit setting onl
After the fault has been resolved, the PSW is backed up to point to
the instruction being simulated that ’caused’ the fault to be re-dis
patched and re-simulated.

ly.)

3-18

Licensed Material - Property of Amdahl Corporation

1

Method of Operation

Depending on the mode flag (PSAXMFLG), either the primary or secondary
STO is loaded, and the program interrupt SUPER flag (bit PSAPI in
PSASUPl) is reset if it is on. If MVCP or MVCS was executing, regis
ters 12-15 are reloaded from the save area. At last SPA calls the pro
gram FLIH to handle the interrupt from the simulation.

3.7 RESERVING PSA PATCH AREA

MVS/SPA assumes that it is the only user of the PSA patch area (PSA
free area); any product that also uses the PSA patch area will cause
conflicts with MVS/SPA. To resolve the conflict, portions of the PSA
area can be set aside from SPA use.

The areas of PSA used are determined by the values of three pairs of
default and user-adjustable boundary constants; by superzapping the
user constants, the user can change or move the PSA patch areas.
are labeled ’SEPxxxxx’, where xxxxx defines the use of the constant,
and are located near the end of the module. (The defaults are labeled
’DEFxxxxx’ where xxxxx is the same as for the user constants.)

There are two constants for each area, an upper and a lower bound. If
only one bound is changed, the default will be used for the other. To
disable the use of an entire area, change the lower bound constant for
that area to X’FFFF’.

The PSA allocation routine PSAALLOC examines these pairs the first
time a PSA free area must be used. If no changes are specified, the^
area is not totally disabled, or the replacement parameters are in
error, the defaults will be used. The low address of the first two
parameters is rounded up to an 8-byte boundary and the low address of
the third area is rounded up to a 32-byte boundary. The following
conditions are checked:

● The low address of a pair not in a free area.

● High address of a pair being outside of the PSA.

● High address of a pair lower than the low address.

● The high and low address of a pair not in the same free area.

● Any area not big enough for two maximum size traps.

● Any of the areas overlap.

They

There are currently three free areas available to MVS/SPA:

1. PSAUSEND to PSAUS2ST

2.. PSAUS2ND to PSAPFXA

X’6C8’ to X’800’ X’138’

X’810’ to X’AEO’

bytes

X’2D0’ bytes

MVS/SP Assist Release 1.0 Software Logic Manual
Licensed Material - Property of Amdahl Corporation

3-19

1

Method of Operation

3. PSASTAK+768 to PSAAMDST X’FOO’ to X’FEO’ X’EO’ bytes

(Labels PSAPFXA and PSAAMDST are defined in the Amdahl PSA mapping
macro extension SPAPSA.)

I MVS/SPA uses fixed areas from X’AEO’ to X’AFF’ and X’FEO’ to X’FFF’.
These areas cannot be move'd without a reassembly of the product.

Please note that reducing the amount of available PSA
performance degradation.

may cause some

3.8 SUPPORT FOR THE EXECUTE INSTRUCTION

MVS/SPA handles interrupts caused by EF, XF and EA instructions which
are targets of an EXECUTE instruction. If such an instruction is
identified as the cause of the interrupt, the operands of the EXECUTE
are decoded and fetched. A special flag is set to cause routines that
would normally patch or trap the instruction to simulate it or not to
save a trap. The target instruction of the EXECUTE is moved to a work
area, and the modification register, if any, is decoded, fetched and
then OR’d into the copy of the instruction skeleton. The address of
the EXECUTE is saved so that the PSW address can be set properly
should an exception occur. The address of the instruction built in
the work area is then used as though it had not been the subject of
the EXECUTE, and control is passed back to. the start of the opcode
decode section.

Should control return to the EXECUTE decode section, the original
interrupt will be passed on through to RTM to handle as a normal oper
ation or privileged operation exception.

3.9 PER CONSIDERATIONS

In order to maintain the integrity of the lockwords, the lock handling
instructions run as logical extensions of the lock manager. To do
this, the lock manager SUPER bit, PSALOCK, is set to ensure that,
should a PER interrupt occur, control will immediately be returned to
the simulation. (The PER event will be lost.)

Register alteration events may be signaled during the execution of the
page fix assist simulation routine. Instruction fetch events for the
simulated instruction should always be reported.

Generally, no other PER events will be reported in the simulation of
any instruction. Successful branch PER events may be signaled at the
original location of an EF instruction, as the original instruction
may have been replaced by a branch instruction.

3-20

Licensed Material - Property of Amdahl Corporation

CHAPTER 4 - FLOWCHARTS

The following flowcharts (figures 4-1 through 4-33) are designed to
provide a conceptual idea of instruction simulation requirements and
recessing flows. They do not necessarily coincide with the 1ine-by-
ine logic of the product, but provide a summary of the processing

performed.
?

MVS/SP Assist Release 1.0 Software Logic Manual
Licensed Material - Property of Amdahl Corporation

4-1

I

Flowcharts

^ ENTRY - ̂

I
SET ON TPROT
FLAG IN PSA.

ENTER
INDICATED KEY

i
LOADC'F'IN
REG 11 AND

FETCH
INDICATED

BYTE

I
LOAD C 'S' IN
REG 11 AND
STORE TO
INDICATED

BYTE

ENTER KEY 0.
RESET TPROT
FLAG IN PSA

()

EXIT
VIA LPSW

A03113

Figure 4-1. SPAE501 - Test Protect Simulation

4-2
Licensed Material - Property of Amdahl Corporation

Flowcharts

SPAE502 - Fix Page SimulationFigure 4-2.

MVS/SP Assist Release 1.0 Software Logic Manual
Licensed Material - Property of Amdahl Corporation

4-3

Flowcharts

()
ENTRY

INDICATE
PSEUDO-SRB

MODE
*

' '

TURN ON
LOCK MGR
SUPER
BIT

^LOCAl>y
LOCK AVAIL-

S.A8LE?>^

NO YES

1
ASCBLOCK “

PSACPUSA. TURN
LOCK HELD

IND. ON IN PSA

TURN OFF
LOCK MGR
SUPER BIT

'f ' I

TURN OFF
PSEUOO-SRB

MODE

TURN OFF
LOCK MGR
SUPER BIT

I
TURN OFF

PSEUOO-SRB
MODE

' I ' r

) c()

EXIT
TO LOCK MGR RETURN

A03115

Figure 4-3. SPAE504 - Obtain Local Lock Simulation

4-4

Licensed Material - Property of Amdahl Corporation

Flowcharts

Figure 4-4. SPAE505 - Release Local Lock Simulation

MVS/SP Assist Release 1.0 Software Logic Manual
Licensed Material - Property of Amdahl Corporation

4-5

Flowcharts

)(
ENTRY

indAatI
PSEUOO-SRB

MODE,
LOCK MGR

SUPER BIT ON

’ f

LOCAL
LOCK

HELO?^

NO

YES

CMS
YES

LOCK
HELD?

NO

CMSNO YES
LOCK AVAIL

S'ABLE? /

TURN OFF
PSEUOO-SRB

MODE.
LOCK MGR
SUPER BtT

YES NO
PSA LOCAL

-0?

)G CMSLOCK «
PSAAOLO
TURN LOCK
HELOINO.
ON IN PSA

EXIT
TO LOCK MGR.

CMSLOCK
- PSALOCAL
TURN ON
HELD

INDICATOR

TURN OFF

P-SRBMODE,
LOCK MGR
SUPER BIT

i
()

RETURN

A03118

Figure 4-5. SPAE506 - Obtain CMS Lock Simulation

4-6
Licensed Material - Property of Amdahl Corporation

1

Flowcharts

)(
ENTRY

I
TURN ON

LOCK SUPER BIT
P-SRB
MODE

CMS NO
LOCK
HELD?

YES

NO PSA
LOCAL > 0

YES

f

ISLOCI NO
NO ̂ XCMSLOCK^
"“^PSALOCAL .OL

YES YES
YES

’ ̂

YESNO TASKS
QUEUED?

TURN OFF
PSEUOO-SRB

MODE
LOCK SUPR

RESET PSAIND.
CMSLOCK-0

I
)Q

EXIT
TO LOCK MGR

TURNOFF
PSEUDOSRB

MODE
LOCK SUPER BIT

)C RETURN
A03094t

SPAE507 - Release CMS Lock SimulationFigure 4-6.

MVS/SP Assist Release 1.0 Software Logic Manual
Licensed Material - Property of Amdahl Corporation

4-7

Flowcharts

UPDATE TRACE
TABLE POINTER.

SET CC = 1

CREATE TRACE
ENTRY.

^ RETURN ^
A03107

Figure 4-7. SPAE508-D - Trace Instruction Simulation

4-8

Licensed Material - Property of Amdahl Corporation

Flowcharts

)(

IPK
START

PRIV.
SET PSW
KEY INTO

SINK REGISTER

OP.
EXCEPTION

X'02'

I
)c EXIT

A03096

CHECKPI2 - IPK and SPKA in Problem StateFigure 4-8.

MVS/SP Assist Release 1.0 Software Logic Manual
Licensed Material - Property of Amdahl Corporation

4-9

Flowcharts

Figure 4—9. SPAB218A - Program Call Simulation

4-10

Licensed Material - Property of Amdahl Corporation

Flowcharts

Figure 4—10. Program Call Number Translation

MVS/SP Assist Release 1.0 Software Logic Manual
Licensed Material - Property of Amdahl

4-11
Corporation

n

Flowcharts

Figure 4-11. SPAB219A - Set Address Space Control Simulation

4-12
Licensed Material - Property of Amdahl Corporation

Flowcharts

)c ENTRY

ISSUE PTLB

I
TURN ON IPTE
FLAG IN PSA.
CALCULATE

PGTE ADDRESS

NO CALLER
“X. IN KEY 0

ASSUME
CALLER'S KEY

YES

INVALIDATE
PGTE

ASSUME
KEYO

NO /caller
IN KEY 0

YES

' I

TURNOFF
IPTE FLAG
IN PSA

Ic)
RETURN
VIA LPSW A03114

SPAB221A - IPTE SimulationFigure 4-12.

MVS/SP Assist Release 1.0 Software Logic Manual
Licensed Material - Property of Amdahl Corporation

4-13

Flowcharts

)c START

/ SPECIAL \
^ >v NO / OPERATION \
Nv , / EXCEPTION /

NX ViiiLyTyes

R/C BITS
ARE NOT
INSERTED

GET REAL
ADDRESS,
DO ISK I

I I

I
)(

EXIT
A03099

Figure 4-13. SPAB223A - Insert Virtual Storage Key Simulation

4-14
Licensed Material - Property of Amdahl Corporation

Flowcharts

c)
START

*»

SPECIAL
OPERATION
EXCEPTION

X'13'

DAT NO
ON
?

YES

PUT lAC
BIT INTO
BIT 23 OF
SINK REG

I
ZERO BITS
16-22 OF
SINK REG

I
SET CONDITION

CODE-
0-BIT OFF
1 - BIT ON

I
()

EXIT
A03119

SPAB224A - Insert Address Space Control SimulationFigure 4-14.

MVS/SP Assist Release 1.0 Software Logic Manual
Licensed Material - Property of Amdahl Corporation

4-15

Flowcharts

SPECIAL
OPERATION
EXCEPTION

X'lr

CR7
SET FROM

CR1

A03132

Figure 4-15. SPAB225A - Set Secondary ASN Simulation

4-16

Licensed Material - Property of Amdahl Corporation

1

Flowcharts

SPAB226A - Extract Primary ASN ProcessingFigure 4-16.

MVS/SP Assist Release 1.0 Software Logic Manual
Licensed Material - Property of Amdahl Corporation

4-17

Flowcharts

SPECIAL
OPERATION
EXCEPTION

X'13'

OVERLAY
ESAR

WITH LH

I
BACK UP
PSW

I
(

EXIT

A03098

Figure 4-17. SPAB227A — Extract Secondary ASN Processing

4-18

Licensed Material - Property of Amdahl Corporation

I

Flowcharts

Figure 4—18. SPAB228A - Program Transfer Simulation

MVS/SP Assist Release 1.0 Software Logic Manual
Licensed Material - Property of Amdahl Corporation

4-19

Flowcharts

Figure 4-19. ASN Translation

4-20
Licensed Material Property of Amdahl Corporation

n

Flowcharts

C)
START

I
GET ATO
FROM ASTE

8-31

I
COMPARE ATL
(ASTE 48-59)
WITH AX 0-10

ALL AORESSES ARE REAL.

SECONDARY
AUTHORITY
EXCEPTION

. X-25' .

/TABLE
.ONG ENOUGI^

NONO PRIMARY
CHECK

? 7

YESYES

PRIMARY
AUTHORITY
EXCEPTION

. X'24'

I● LOCATE
t AUTHORITY I

I BYTE I

-JL
f

INVOKED BY
TAKE AX 0-13
(FR0MCR4)>
ATO (FROM
ASTE) *4

PT
SSAR
(LASP)

IPT DOES PRIMARY
AUTHORIZATION CHECK

CHOOSE 2
BITS FROM
BYTE WITH
AX 14-15

SSAR DOES
SECONDARY

/ PRIMARY \
/ AUTHORITY
\ EXCEPTION

SECONDARY
AUTHORITY
EXCEPTION

, X-25’ ^

2nd YESYES NOYES "PRIMARY

^ CHECK
BITO
?

?

NO

r 1
ASN IS

AUTHORIZED
FOR DESIRED

I

II USE

r
C)

RETURN«
A03100

ASN AuthorizationFigure 4—20.

MVS/SP Assist Release 1.0 Software Logic Manual
Licensed Material - Property of Amdahl Corporation

4-21

n

Flowcharts

^ START ^

I
DECODE AND
RETRIEVE
OPERAND(S)

I
SET PSW
BIT 4 ON

IF NEEDED

I
ISSUE

NON-EXTENDED
INSTRUCTION

I
SET SINK

REGISTER (ISKE)

SET CONDITION
CODE (RRBE)

Ic)EXIT

A03121

Figure 4—21. SPAB229A-BA - Extended Storage Key Instruction Simula
tions

4-22

Licensed Material - Property of Amdahl Corporation

Flowcharts

/ SKCIAL \
/ OfeRATlOM \

k EXCCmON /\ /

i
C EXIT

REFERENCE 1ST
OFE RAND WITH
0FERAN0 3KEY
SECONDARY STO

FOR STORE

I
REFERENCE 2NO
OFf RAND WITH

FSWXEY,
FRIMARY STO
FOR FETCH

FRIVILEGED
OFERATION
EXCEFTION

x-or

*oai

Move to Secondary/Move to Primary SimulationMVCXCOMM
(1 of

Figure 4-22.
3)

4-23Assist Release 1.0 Software Logic Manual
Licensed Material - Property of Amdahl Corporation

MVS/SP

Flowcharts

A03124

Figure 4-22. MVCXCOMM - Move
(2 of 3)

to Secondary/Move to Primary Simulation

4-24
Licensed Material - Property of Amdahl Corporation

1

Flowcharts

7
OYES

PERANO
CROSS
PAGE? >

NO

I BOTH OPERAN^
CROSS PAGE I
BOUNOARYS .
L

I ONLYFIRST^
OPERAND
CROSSESI

T
/ANY \
■^PARTOF^
MOVE t6M

/ any\
' PART OF>
MOVE I6M

YES YESSETPSW
BIT 4 ON

SETPSW
BIT « ON?

NO NO

1
YES >bPenAMo^

. ^ CROSS AT
DO 2 PART
MOVE VIA

EXECUTED MVC.ACS7

5NO

00 2 PART
MOVE VIA

EXECUTED MVC

00 2 PART
MOVE VIA

EXECUTED MVC

O SET PROPER
CONDITION

CODE
r^tY SECONoH

OKRANO
CROSSESI I

_jr
)c EXIT

YES SETPSW
BIT 4 ON

DO 2 PART
MOVE VIA

EXECUTEOMVC

o A031039

Figure 4-22. MVCXCOMM - Move to Secondary/Move to Primary Simulation
(3 of 3)

MVS/SP Assist Release 1.0 Software Logic Manual
Licensed Material - Property of Amdahl Corporation

4-25

1

Flowcharts
I

C)

END OF
SIMULATION

I
CLR XM
FUNCTION
BYTE

r
WAS THISYES

PSAPCFUN I
NOT NOW 07 ●

ARC

RECURSION

? L.

NO

RESET FRR

STACK,CLEAR
SUPER BIT

RELOAD ORIG,

REGISTERS,
CLEAR SAVE

AREA

NOPER
REQUIRED?

I
()

RESUME PSW
SET PER

INTERRUPT
CODE

Ic)EROREXT3

A03123

Figure 4-23. lEAVEXMS Resume Exit Processing

4-26

Licensed Material - Property of Amdahl Corporation

1

Flowcharts

YES

SET UCCA
NOT VALIDATED
R11—^PGMCK

R11
IEAVEPC2

LOAD PC
FLIH BASE
REG 9

(IEAVEPC8)

I
LOAD ORIG

REGS 0-7.
12-15

i
COPY ORIG
REGS 8-11

TO ORIG SAVE

i
OAT
OFF

I
()

IEAVEPC1
VIAR11

A03126

lEAVEXMS Error ExitFigure 4-24.

4-27MVS/SP Assist Release 1.0 Software Logic Manual
Licensed Material - Property of Amdahl Corporation

1

Flowcharts

c) c)) c()

PRI AUTH
N X'24'

AFX LX SSE
N X-20' NX-22" C X'lC"

c D C D ()

SECN
AUTH X-25

ASX EX
NX "21 NX-23- ZERO

X-90-91-I ' ’

' f

1PC
NUMBER
TOX-90-

ZERO
X-90-91- OLO

PASN
X-92-93"

I’ ' c)COMMON

ASN TO
X-92-93-

OLD SSE
BIT TO
X-90-.0

I 1n-nullify
C-COMPLETE
IN ALL CASES, ILC IS 2.c)COMMON c)

COMMON

A03125

Figure 4-25. Special Program Exception Handling

4-28

Licensed Material - Property of Amdahl Corporation

1

Flowcharts

Figure 4-26. EF Instruction Non-Unique Trap Building

MVS/SP Assist Release 1.0 Software Logic Manual
Licensed Material - Property of Amdahl Corporation

4-29

1

Flowcharts

)(
ENTER

W

ALLOCATE

FROM HIGH

END OF PSA

ALLOCATE

FROM LOW

END OF PSA

YES NOTRACE

FORMAT?

j
I

SAVE RESUME
PSW AND

SIMULATION
ADDRESS IN
PSA EXIT

INITlALIZC P%A HIGH
h LOn POINTEHS FHOM
USER OEEAULTS. IP
MO«l SUPRtlEOOR

ERROR*. USE SYSTEM
OEPAULTS.

YESFIRST

TIME?

NO

ZERO CC
IN RESUME

YESREQUEST
TO ZERO

PSWCC?

NO

INSERT

SPKA IN

EXIT

»^ESUMe\. NO
PSW IN KEY
<ZERO?>^

JYES

TURN PER OFF
ANO/OR TURN
translate
OFF IN STNSM

IN EXIT

YESSPECIAL

STATE
7

NO

TO INSTRUCTION TYPE

TRACESSERRE
\

0 0 A03109

Figure 4-27. Common Unique Trap Processing

4-30

Licensed Material - Property of Amdahl Corporation

1

Flowcharts

INSERT "LR
INSTRUCTION

INTO EXIT

ROUTINE

«0

INSERT “L" INST

INTO EXIT

ROUTINE

INSERT "LR"

INSTRUCTION

INTO EXIT

ROUTINE

INSERT "L" INST

INTO EXIT

ROUTINE

A03110

RRE Unique Trap ProcessingFigure 4-28.

MVS/SP Assist Release 1.0 Software Logic Manual
Licensed Material - Property of Amdahl Corporation

4-31

1

Flowcharts

Figure 4-29. SSE Unique Trap Processing

4-32

Licensed Material - Property of Amdahl Corporation

1

Flowcharts

Figure 4-30. Trap Completion

MVS/SP Assist Release 1.0 Software Logic Manual
Licensed Material - Property of Amdahl Corporation

4-33

Flowcharts

5

SEGMENTS CAN BE ENAl
DISABLED. AND MOVED
CHANGING THE APPROP
CONSTANTS. CALCULATE

LOCATION IN
SEGMENT

I)(SIMULATE

MOVE
IN

TRAP

I
SAVE
TRAP

I
OVERLAY

INSTRUCTION

ENTER TRAP

Ic)
DONE

A03122

Figure 4-31. PSA A1location

4-34
Licensed Material Property of Amdahl Corporation

Flowcharts

r

Figure 4-32. OVERRUN - Dynamic Patch Area Switching

MVS/SP Assist Release 1.0 Software Logic Manual
Licensed Material - Property of Amdahl Corporation

4-35

1

Flowcharts

c)
entry

NOADDRESS
>16M
?

YES
A

TURN BIT4
OF PSW
ON

I
SAVE STORAGE
KEY FOR PAGE
BEING CHANGED

UPDATE
STORAGE
WITH PATCH

^PATCH^
OVERLAPS

S^UADV"

YES

NO

RESTORE
ORIGINAL

STORAGE KEY

TURN BIT 4
OFF IF ON

()
RETURN

A03117

Figure 4-33. Dynamic Instruction Patching

4-36
Licensed Material - Property of Amdahl Corporation

1

APPENDIX A - DYNAMICALLY CONSTRUCTED CODE

Routine PSAALLOC replaces some instructions with linkage instructions
to simulation routines. It also constructs exit routines in the PSA
free area. The following paragraphs explain the logic of this dynami
cally constructed code.

A.l DYNAMIC OVERLAYS

Some instructions are replaced by branches to the simulation routines,
by branches to exit routines, by NO-OPs or by functionally equivalent
instructions. Table A-1 shows the replacement code for each such
instruction.

Table A-1. Instruction Replacement Code

OP CODE REPLACEMENT FUNCTION

B221 B PSA+n To Unique Exit Routine

Set the Primary ASN

Set the Secondary ASN

To Unique Exit Routine

To Page Fix Assist
Prologue

NOPs

B226 LH Rx,PSAXMPAS

LH Rx,PSAXMSAS

B PSA+n

BAL R14,PSAPFXA
DC S(D1(BD)

LR R0,R0
LR R1,R1
LR R2,R2

L R13,PSALEXIT+n
BALR R12,R13

B PSA+n

B227

E501

E502

E503

E504:E507 To Simulation Routine

E508:E50D To Unique Exit Routine

MVS/SP Assist Release 1.0 Software Logic Manual
Licensed Material - Property of Amdahl Corporation

A-1

Dynamically Constructed Code

A.2 PAGE FIX ASSIST PROLOGUE

The PSA has an area reserved for the following instruction sequence:

PSAPFXA STM R8,R11,PSAXMGR8
Rll.PSAPFXAA
0(,R11)
A(SPAE502A)

L
B

Save Registers
Get Routine Address
Call It
Routine AddressPSAPFXAA. DC

The first time a FIX PAGE instruction is encountered,
above are moved into the PSA at label PSAPFXA.

the instructions
This code is the ’Page

Fix Prologue’. The E502 is then replaced, as shown in table A-1, by a
branch and link to the prologue, followed by the first operand of the-
replaced instruction. The prologue saves the work registers in the
XMS work area, loads the Page Fix Assist routine’s base address, and
branches to the routine.

The Fix Page prologue is used for all FIX PAGE instructions.

A.3 SVC ASSIST NOPS

Table A—1 shows that the SVC ASSIST instruction (E503) is replaced by
LR NOPs. This technique is used because MVS does not requ
Assist instructions be issued or that any .SVC be assisted,
call causing the SVC Assist instruction is treated as
’non-assistable’. The referenced IBM System/370 Assists for MVS
ual explains the difference between assistabie and non-assistable SVC
cal Is.

"nie LR Rx,Rx instructions are used because they do not alter any reg
isters, occupy two bytes each, do not change the condition code,
require minimum execution time, and do not disrupt the pipeline proc
essing of the following instruction stream.

man-

A.4 LINKAGE TO LOCK-HANDLING INSTRUCTIONS

Table A—1 shows the linkage code for for the lock-handling instruc
tions (E504-E507). The LOAD instruction loads register 13 with the
address of the appropriate lock-handling instruction simulation rou
tine. The BALR instruction puts the return address into register 12
and calls the simulation routine.

A.5 EXIT ROUTINES

The Test Protect, IPTE and trace instructions cause the building of
exit routines in the PSA free area. These exit routines are similar
to the Fix Page prologue; however, they are more complex and can be
used only for a specific occurrence of an EF instruction routine.

A-2

Licensed Material - Property of Amdahl Corporation

Dynamically Constructed Code

The exact contents of an exit routine depend on the operand addresses
of the associated EF instruction and on the PSW at the time the EF
instruction is issued. All exit routines have the following general
format:

0 program check ...
... old PSW
A(simulation routine)
STNSM
STM

bytel,x’BC’
R8,R11,PSAXMG

Saved as Resume
PSW
Routine to be Called
Disable Interrupts and PEIR
Save Registers 8-11
Get Resume PSW and Routine Base
Set Resume PSW
Call Simulation Routine

4
8
C

R8
R8,R10,oldPSW
R8,R9,PSAXMPSW

10
LM14
STM18

1C BR RIO

The ’BR RIO’ is replaced with ’BAL R11,0(,R10)’ for an IPTE trap, to
provide for restoring the condition code (from register 11) on exit
from the simulation.

The eight word exit routine above is the simplest type of exit. It is
used for the six trace instructions whose parameters can be located by
the simulation routine.

Exit routines grow larger when the resume PSW in the exit has a non
zero protection key. In this case, a SPKA instruction is placed just
before the STNSM instruction in the exit routine.

For the IPTE and Test Protect instructions, additional instructions
are inserted before the final BR RIO to load the EF instruction’s
first and second operands into registers 8 and 9, respectively. The
following instruction sequences are possible for each operand with
base register b and displacement ddd:

LR Rx,b

L Rx,PSAXMGRb

L Rx,PSAXMGRb
LA Rx, ddd (, Rx)

LA Rx,ddd(,b) when 0<=b<=7 or 12<=b<=15 and ddd-i=0

when 0<=b<=7 or 12<=b<=15 and ddd=0

when 8<=b<=ll and ddd=0

when 8<=b<=ll and ddd-«=0

MVS/SP Assist Release 1.0 Software Logic Manual
Licensed Material - Property of Amdahl Corporation

A-3

APPENDIX B - EXCEPTIONS GENERATED

Table B-1 provides a cross reference showing which simulations can
generate which interrupts and what specific conditions cause the
interrupt. A cross reference of interrupt code to abend code is also
provided.

Other interrupts can also be generated, for example from bad input
data or addresses. The occurrences listed here are explicitly gener
ated by MVS/SPA.

Table B-1. Interrupts Caused by Simulations

EXCEPTION CAUSESIMULATION

Non-Routine
Oriented
Exception

Operation Opcode passed to lEAVEXMS is
unsupported or invalid.

An EF instruction was issued in
problem state.

Privileged
Operation

SPKA Privileged
Operation

The key the problem state caller
attempted to set was not valid
in the PSW key mask.

Program Cal 1 Privileged
Operation

The problem state caller’s
key was not valid in the ETE
authorization key mask.

DAT was not on.

The caller was insecondary mode.

Program call number translation
was not allowed (CR5.0 was 0).

ASN translation was not allowed
(CR14.12 was 0).

Bits 1-7 & 28-31 of the AFTE were
not all zero.

Special
Operation

ASN
Translation
Specification

Bits 1-7, 30-31, 60-63 & 97-103
of the ASTE were not all zero.

(continued)

B-1MVS/SP Assist Release 1.0 Software Logic Manual
Licensed Material - Property of Amdahl Corporation

Dynamically Constructed Code

Table B-1. Interrupts Caused by Simulations (continued)

SIMULATION EXCEPTION CAUSE

Space Switch
Event

Program Cal 1
Translation
Specification

Bit 31 was on in either the old
or new Primary STD.

Bits 1-7 of the LTE were not all
zero.

Bits 32-39 of the ETE
zero (first byte of ETE entry
point address).

The ASTE invalid bit (bit 0)
on.

The ASTE invalid bit (bit 0)

were non-

AFX
Translation

was

ASX
Translation

was
on.

Linkage
Translation

"nie Program Call linkage table
index (LTX) exceeded the linkage
table length (LTL), bits 25-31 of
CR5.

The invalid bit (bit 0)
the linkage table entry (LTE).

The Program Call entry table
index (ETX) exceeded the entry
table length (ETL), bits 26-31 of
the linkage table entry.

The ETX exceeded the ETL, bits
26-31 of the linkage table entry.

was on in

Entry
Translation

Entry
Translation

Set Address
Space Control

Special
Operation

Specification

DAT was not on.

Bits 20-22 of the operand are not
all zero.

Insert Virtual
Storage Key

Special
Operation

DAT was not on.

Insert Address
Space Control

Special
Operation

DAT was not on.

(continued)

B-2

Licensed Material - Property of Amdahl Corporation

Table B-1. Interrupts Caused by Simulations (continued)

SIMULATION EXCEPTION CAUSE

Set Secondary
ASN

Special
Operation

DAT was not on.

ASN translation was not allowed
(CR14.12 was 0).

Bits 1-7 & 28-31 of the AFTE were
not all zero.

ASN
Translation
Specification

Bits 1-7, 30-31, 60-63 & 97-103
of the ASTE were not all zero.

AFX
Translation

ASX
Translation

Secondary
Authority

The AFTE invalid bit (bit 0) was
on.

The ASTE invalid bit (bit 0) was
on.

The authorization index (AX)
exceeded the authorization table
length (ASTE bits 48-59).

The secondary bit for the
caller’s AX was zero.

Program
Transfer

Privileged
Operation

Specification

A problem state caller tried to
transfer into supervisor state.

High byte of the second operand
register was not zero.

DAT was not on.

The caller was in secondary mode.

ASN translation was not allowed
(CR14.12 was 0).

Special
Operation

ASN
Translation
Specification

Bits 1-7 & 28-31 of the AFTE were
not all zero.

Bits 1-7, 30-31, 60-63 & 97-103
of the ASTE were not all zero.

(continued)

MVS/SP Assist Release 1.0 Software Logic Manual
Licensed Material - Property of Amdahl Corporation

B-3

Dynamically Constructed Code

Table B-1. Interrupts Caused by Simulations (continued)

SIMULATION EXCEPTION CAUSE

Space Switch
Event

AFX
Translation

ASX
Translation

Primary
Authority

Bit 31 was on in either the old
or new Primary STD.

The AFTE invalid bit (bit 0) was
on.

The ASTE invalid bit (bit 0) was
on.

The authorization index (AX)
exceeded the authorization table
length (ASTE bits 48-59).

The primary bit for the caller’s
AX was zero.

Move to
Primary

Privileged
Operation

The key specified by the probl
state caller in the operand 3
register was not valid in the

’er’-s PSW key mask.

DAT was not on.

ca

em

Special
Operation

Move to
Secondary

Privileged
Operation

The key specified by the probl
state caller in the operand 3
register was not valid in the
Tier’s PSW key mask.

Dat was off.

ca

em

Special
Operation

Move with Key Privileged
Operation

The key specified by the probl
state caller in the operand 3
register was not valid
caller’s PSW key mask.

in the

em

Table B-2 contains the ABEND codes that would result from the specific
propam interrupt were it to pass through to RTM. Some of the inter
rupts are occasionally expected; not every program check with one of
these codes results in the ABEND.

B~4

Licensed Material - Property of Amdahl Corporatiion

The X’26’ interrupt code is included only for completeness,
never occur on a system without the 3033 Extension microcode
installed.

It should

Table B-2. Cross Reference of Interrupt Code to ABEND Code

INTERRUPT
CODE (HEX)

INTERRUPT ABEND

02 Privileged Operation Exception

Protection Exception

Specification Exception

Special Operation Exception

ASN Translation Exception

Space Switch Event

Program Call Translation Exception

AFTE Translation Exception

ASTE Translation Exception

LX Translation Exception

EX Translation Exception

Primary Authorization Exception

Secondary Authorization Exception

Page Fault Assist Failed

0C2

04 0C4

06 0C6

13 0D3

17 0D4

1C 0D8

IF ODA

20 0D5

21 0D5

22 0D6

23 0D6

24 0D7

25 0D7

26 0D9

MVS/SP Assist Release 1.0 Software Logic Manual
Licensed Ma-terial - Property of Amdahl Corporation

B-5

APPENDIX C - INSTRUCTION TRAP/SIMULATION CROSS REFERENCE

Table C-1 provides a cross reference of which routine simulates a
given instruction and which routine, if any, constructs the specific
trap for the instruction. All trap routines are processed bv PSAALLOC,
so the entry in the ’TRAP BUILD’ column is for the routine that sets
the operation parameters for PSAALLOC.

In general the routine names are SPAxxxxy, where xxxx is the opcode
and y is blank if the routine is called directly from a PSA trap or
instruction patch, and ’A’ where it is called from the routing tables
in lEAVEXMS.

Table C-1. Cross Reference of Instruction Trap/Simulation

OPCODE INSTRUCTION SIMULATION TRAP BUILD

B218
B219
B221
B223
B224
B225
B226
B227
B228
B229
B22A
B22B

Program Call
Set Address Space Control
Invalidate Page Table Entry
Insert Virtual Storage Key
Insert Address Space Control
Set Secondary ASN
Extract Primary ASN
Extract Secondary ASN
Program Transfer
Insert Storage Key Extended
Reset Reference Bit Extended
Set Storage Key Extended
Move with Key
Move to Primary
Move to Secondary
Test Protection
Page Fix Assist
SVC Assist
Obtain Local Lock
Release Local Lock
Obtain CMS Lock
Release CMS Lock
Trace SVC Interrupt .
Trace Program Interrupt
Trace Initial SRB Dispatch
Trace I/O Interrupt
Trace Task Dispatch
Trace SVC Return

SPAB218A
SPAB219A
SPAB218A
SPAB223A
SPAB224A
SPAB225A

SPAB226A
SPAB227A

SPAB228A
SPAB229A
SPAB22AA
SPAB22BA
MVCKCOMM
MVCXCOMM
MVCXCOMM
SPAE501
SPAE502

D9
DA
DB
E501
E502
E503
E504
E505
E506
E507
E508
E509
E50A
E50B
E50C
E50D

SPAE501A
SPAE502A
SPAE503A
SPAE504A
SPAE505A
SPAE506A
SPAE507A
FIXINSTR
FIXINSTR
FIXINSTR
FIXINSTR
FIXINSTR
FIXINS-TR

SPAE504
SPAE505
SPAE506
SPAE507
SPAE508
SPAE509
SPAE50A
SPAE50B
SPAE50C
SPAE50D

MVS/SP Assist Release 1.0 Software Logic Manual
Licensed Material - Property of Amdahl Corporation

C-1

APPENDIX D - MVS/SPA ON A 370/168 OR UNDER VM

In the Sy3tem/370 Principles of Op
Segment oit (bit 30 of the segment

eration, the operation of the Common
table entry), is unspecified for

those CPUs without the Extended Feature/Facility hardware. In most
cases, including the 470 family, the bit is ignored. The 370/168,
however, expects that bit to be zero, and causes a translation speci
fication exception (interrupt code X’12’) when a one-bit is found
there. MVS/SEA was able to handle these interrupts by turning off
these bits and re-dispatching the user. This occurs only twice, early
in the IPL process.

VM, on a CPU without VM/SP, will not handle the common segment bits
properly. No error message is given, and the translation specifica
tion exception mentioned may not occur, but unpredictable results,
usually from wild branches, are seen. All remarks about the 370/168
also apply to systems running VM without VM/SP.

Due to the design of MVS/SPA, it is no longer possible to intercept
the exception that is caused by these bits. MVS/SPA is routed cont
from the program FLIH only for operation or privileged operation
exceptions, and thus cannot receive control on the translation spac

rol

i
fication exception. This will cause an 064-9 wait at IPL time. To
avoid this problem on the 370/168 and under VM without VM/SP, it is
necessary to superzap module IEAVNPX1-, to prevent the common segment
bits from being turned on. A change is made to lEAVNPXl to prevent
MVS from turning on the common segment bits if the system is running
on a 370/168 or under VM. The bits will be turned on in all other
cases. Please refer to AWS entry A#1208 for further details.

MVS/SP Assist Release 1.0 Software Logic Manual
Licensed Material - Property of Amdahl Corporation

D-1

APPENDIX E - IMPLEMENTATION DIFFEEENCES

MVS/SPA does not support all the features that the 370/Extended
Facility and the 3033 Extension provide. The unsupported features
are listed below, along with the reason they are not supported.
A listing of deviations from the
Sy3tem/370 Principles of Operation
follows.

E.l UNSUPPORTED FEATURES

The following features are not supported by MVS/SPA:

Suspend/Resume - Requires channel and CPU hardware changes.

Subchannel Queueing - Requires channel hardware changes.

LASP Instruction - Always simulated by other software on
non-3033 Extension CPUs.

ADDFRR Instruction - Always simulated by other software on
non-3033 Extension CPUs.

Low Address Protect - MVS/SPA sAipports this feature, but
does not provide it. It is available as an EC to Amdahl 470 CPUs.

Page Fault Assist - Requires CPU hardware changes.

E.2 DEVIATIONS

The deviations from the
System/370 Principles of Operation
are:

● The extraction authority and secondary space control bits
of Control Register 0 (bits 4 and 5) are always assumed to be one.
The bits are set on early in NIP and left on, so a software check
would never fai1.

● For READ and WRITE DIRECT, the operand address will always
be treated as a logical address (subject to translation) on CPUs
without the Extended Facility installed.

MVS/SP Assist Release 1.0 Software Logic Manual
Licensed Material - Property of Amdahl Corporation

E-1

APPENDIX F - SCP MODIFICATIONS

MVS/SPA requires some superzap changes to the operating system in
some environments. The installation instructions provide information
,on how to install these changes.

c
F.l MVS/SPA UNDER VM OR ON A 370/168

The requirements are detailed in appendix D.

F.2 MVS/SPA ON A MACHINE WITHOUT 370/EF

Early in NIP processing, a check is made to see if the 370/EF
feature is available by executing a TPROT instruction. If
the instruction program checks, the system causes a WAIT 014.
It is not possible for WS/SPA to intercept this TPROT, so it must
be NOP’d. The information on where the instruction resides and
the proper offset to superzap is contained in AWS entry Z#1247.

F.3 MVS/SPA ON AN EXTENDED MEMORY 47.0 CPU

The following modifications are necessary to support the 470
Extended Memory features:

● lEAVNIPO Ensures that the 470 EM feature is present and
properly enables it.

"niree modules are changed to support the 470
implementation of the extended storage key instructions.
MVS/SPA installation instructions for further details.

AMDSADMP

k

MVS/SP Assist Release 1.0 Software Logic Manual
Licensed Material - Property of Amdahl Corporation

F-1

amdahl AMDAHL CORPORATION
1250 EAST ARQUES AVENUE
P.O. BOX 470

SUNNYVALE, CALIFORNIA 94086
READER COMMENT FORM

WE WOULD APPRECIATE YOUR COMMENTS AND SUGGESTIONS FOR IMPROVING THIS PUBLICATION.

Publication No. Title Current Date

How did you use this publication?

□ Study
□ Reference

□ Installation
□ Maintenance

What is your occupation?
□ Sales
□ Operations

What is your overall rating of this publication?
□ Very Good
□ Good

□ Fair □ Very Poor
□ Poor

Is the material presented effectively?
□ Well organized □ Fully covered □ Clear
□ Correct □ Well illustrated

c

Please enter your other comments below. If you were in any way dissatisfied with this publication, we would like to know why. Be
specific, if possible; give page, column, and line number references where applicable.

T

Your name & return address (include ZIP code);
All comments and suggestions become
the property of Amdahl Corporation.

AM2283 6/79

Thank you for your interest. Fold and fasten as shown on back. No postage necessary if mailed in U.SA.

FOLD AND SCOTCH TAPE

NO POSTAGE
NECESSARY
IP MAILED
IN THE

UNITED STATES

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 741 SUNNYVALE. CA.

POSTAGE WILL BE PAID BY ADDRESSEE

ATTENTIONr TECHNICAL PUBLICATIONS
DEPARTMENT 734

AMDAHL CORPORATION
1250 EAST ARQUES AVENUE
P.O. BOX 470
SUNNYVALE, CALIFORNIA 94086

FOLD AND SCOTCH TAPE

-4

AM2283 (Back«r) 6/79

I

'a
.V'i
7- i

I

4

r

3

■C -'WC

tk

