
®@~£ f}{]W [W@®D@[fi}
£~©Iiil O~@©~(y][r@

Part 1

Overview

AMDAHL INTERNAL USE ONLY AM 3493

~
c » ::r:
r-
2
~
m
::Jl
Z » r-
C
en
m
o
2
r-
-<

·.3Jf)·:ArdIJIJecture
. Huge Picture

Rev. 2, 8191

..... .
N

CPU
... ..

Console

~~,~~""""""""""""'" · . · . · .
~ Expanded ~

· · · ·
Storage

. .
~ , ,

Storage

1/0

.. , .
\ .
\ .
\ .
\ .
\ .
\ .
\ .
\ .
\, , "' \

= OPTIONAL

370 Architecture - Huge Picture

Required elements

1. CPU

2. Storage

3. I/O subsystem, including devices

4. Console

Optional elements

1. additional CPUs for multi-processing

2. Vector elements

3. Expanded storage

AMDAHL INTERNAL USE ONLY AM 3493

~
c »
:t
r-
Z
-I
m
:lJ
Z »
r-
C
C/)
m
o
Z
r-
-<

saNA Overview -
S5 System Rov.2.8191

.­
• ~

-

I-unit

E-unit

.~

VE

CPU
I

I

S-unit

-
CV

1/0
Subsystem

~ . ~ • . . .
Irl Ir

Customer Devices

Expanded
p

Store
System
Storage

System
Controller

Main Store
System

Data
Switch

" ~
" I

Scan " Scan I

" I

"
+

,

Scan ----------... Service
Processor

SONA Overview - SS System

• CPU
up to 4 on a side (QP).

Each CPU includes I, E, and S units.

- CPU fits on an MlG.

• System storage
Focal point for data traffic.

Includes Main Store and Expanded Store.

- CPUs talk to System Storage, not to each other.

- SC and SOS are each an MLG.

Main Store and Expanded store are implemented in ET technology on BlCs.

• 1/0 Subsystem
- Gateway to the real world.

Linked to System Storage.

1 MlG per lOP.

- QOIH's (BlCs, ET) provide actual interfaces to devices.

• Service Processor
- Stand alone computer system.

- Has its own devices, including hard disks and terminals.

- Communicates with mainframe via scan.

Implemented in ET technology on BlCs.

AMDAHL INTERNAL USE ONLY

t.~.5··

AM 3493

»
3:
c »
::z:
r-
Z
-f
m
::D
z »
r-
c: en
m
0
Z
r-
oo(

,370 Architecture
CPU Instruction
Processing

Rev. 1, 5191

Instruction

® 0
Result

370 Architecture - CPU Instruction Processing

1. Program Status Word (PSW) is starting point

• 64 bit register containing various parameters for instruction execution.

- Current Instruction Address.

- Dynamic Address Translation (OAT) mode: enables OAT (virtual addressing).

- Condition Code (CC): result of prior operation. Used in conditional branch.

- Key: 4 bits compared against storage key to verify that a storage access is OK.

- Ruptlexception masks: enable/disable various interrupts.

2. Translate the instruction address

• if OAT is on, the address needs to be translated to an Absolute Address.

3. Fetch the instruction

• Includes an opcode and various fields (described later).

4. For storage accesses:

• Generate the Operand Effective Address. Fields in the instruction point to GPRs, which
are used in Effective Address Generation (EAG).

• If OAT is enabled, translate the address to an Absolute Address.

• The Absolute Address is used to fetch the operand from storage.

5. For register operands:

• registers include:

- General Purpose Registers: most common registers, used for most operations.
- Floating Point Registers: used in floating point operations.
- PSW: see above.
- Control Registers: contain a variety of parameters, many used in OAT.

• a field in the instruction points to the register.

6. Send the operands to the ALU for processing.

7. Store the results away in either storage or a register.

1-7

AMDAHL INTERNAL USE ONLY AM 3493

General Purpose
Registers

Rev. 1, 5191

GPR# ~ 4 bytes ____
(1 word)

0 I
Even/odd pair

1 I

2 I
Even/odd pair

3 I

4 I

5
Even/odd pair

I

6 I
Even/odd pair

7 I

8 I I
Even/odd pair

9 I I

A I I I
Even/odd pair

B I I I

C I

D
Even/odd pair

I

E I

F
Even/odd pair

I

1-8

AMDAHL INTERNAL USE ONLY AM 3493

General Purpose Registers

• General Purpose Registers.

- Also called just General Registers in POO.

• Focal point for a lot of processing.

- Contain general data results.

- Also can contain addresses (see EAG).

• 16 of them.
Four bit field indicates which register to use.

• Four bytes wide = 1 word.

• Can be addressed in even/odd pairs to do double-word operations.

Register field points to even register. Second (odd) register is implied by opcode.

AMDAHL INTERNAL USE ONLY

1·9

AM 3493

Effective Address
Generation

Rev. 1. 5191

indeX '2'

Base '9'

0

-...

--... ..

15

GPRs

00001234

56789ABC

00001234
+ 56789ABC

Displacement --------'DEF'-----------------1.~ + DEF

AMDAHL INTERNAL USE ONLY

5678BADF

Operand
Effective
Address

1-10

AM 3493

Effective Address Generation

• Uses two GPRs, indeX and Base.

- Index GPR pointed to by X field of the instruction.

- Base GPR pOinted to by B field of the instruction.

• Adds them in with 12 bit (right aligned) Displacement.

- Displacement is also a field of the instruction.

AMDAHL INTERNAL USE ONLY

1-11

AM 3493

Sample Instruction
Formats Rev. 1.5191

RR I OpCode ! R1 1 R2

RX I Op Code 11 R1 1X2 82 02

I I
SS ! Op Code " L 1 1 L2 81 01 I 82 1 02

I I I
I I I

SI I Op Code "I 12 I 81 1
01

1
I I I
I I

RRE I OpCode _R11R21
I I

I Byte • i ..
I

I ... Halfword ~I

1-12

AMDAHL INTERNAL USE ONLY AM 3493

Sample Instruction Formats

• RR
- Operates on two registers.

- Typically, both registers are inputs to the operation and the result is stored in R1.

• RX
- Operates on a register (R1) and a storage location (X2, 82, D2).

- Typically, both operands are inputs to the operation and the result is stored in R1.

- X2, 82, and D2 are inputs to EAG to generate the address of the first byte of data.

· s s
- Storage to storage.

- Typically, two fields of storage data form the operands.

- Results are usually stored to the first operand.

- The L fields indicate the length of each operand.

- EAG (without an index) points to the first byte in each field.

• S I

- Storage-Immediate.

- One operand is storage, the other is a field in the instruction itself.

• xxE (e.g. RRE)

- Extended (2 byte) opcode.

- First byte points to a "family" of related opcodes.

• Note:
- Instructions are 1, 2, or 3 half-words. Must be half-word aligned.

- Register addresses are nibbles.

- Displacement is 12 bits.

1-13

AMDAHL INTERNAL USE ONLY AM 3493

Exercise

PSW 100 109 100 100 100 100 110 100 I

GPR 1
GPR 2
GPR 3
GPR 4
GPR 6

OFFO
OFF4
OFF8
OFFC
1000
1004
1008
100C
1010
1014
1018
101C
1020
1024

00 00
00 00
FF OF
00' 00
00 00

Storage

49 32
37 FC
54 9C
47 32
54 32
50 32
47 F2
1A 44
47 32
50 42
47 F2
FC FF
21 32
ED 89

10 00
00 00
FF FF
00 01
00 01

00 90
AO 03
FF FF
FF F3
10 08
10 08
10 00
18 56-
111 lrC
20 00
10 18
FC FF
48 A8
45 51

AMDAHL INTERNAL USE ONLY

1-14

AM 3493

Architecture Summary

Key paints of architecture.

•

• Ib

•

• 11('4 ie-\
I

•

•

1-15

AMDAHL INTERNAL USE ONLY AM 3493

» s:
c »
::J:
r
Z
-t
m
:0
Z »
r
c
en
m
0 z
r
-<

SONA Pipeline
Overview

Rev. 1 J)l9

...----_ .. ---

C~_~j

..a.
• ..a.

en

Instruction
Queue

Jl

D

lOR

P

A T B X W
.-".-,-,~.~,-~ , ""

EAG TagslTLB OP Cache E-unit

\~ OWR RR

tiellE

] A T R

SONA Pipeline Overview

SONA Pipeline

D Decode instruction to generate controls. Do Effective Address Generation.

A Address sent to the S-unit.

T T AG/TLB access.

B Buffer (cache) access.

X eXecute the instruction.

W Write the results back.

Notes

• This pipeline is interlocked.

• Two cycles are not shown - they're I-unit constructs and are generally transparent to the rest
of the machine. They're not part of the "official" pipe (at least in my view).

C Control store access on second and subsequent flows. In front of D.

Z When data is really written to the GPRs and other registers. After W.

Key Registers

Instruction Data Register - holds 4 bytes of instruction.

Operand Word Register - contains 8 bytes (doubleword) of operand data.

Result Register - contains 8 bytes of operation results.

S-unit Pipeline

P Initial priority cycle.

A Address selection (based on fi nal priority)

T T AG/TLB access.

B Buffer (cache) access.

R Data (results) clocked into OWR.

Note

• The S-unit pipeline is free-running.

AMDAHL INTERNAL USE ONLY

1-17

AM 3493

- This page intentionally left blank -

1-18

AMDAHL INTERNAL USE ONLY AM 3493

- This page intentionally left blank -

1-19

AMDAHL INTERNAL USE ONLY AM 3493

»
~
c » :x:
r-
2
.....
m
l:J
Z » r-
c: en
m
0
2
r-
-<

Branches

...a. .
N
o

Rev. 1.9191

Branch Flow

580

5890

SONA

D

D I EAG

lOR

G

I D

I D

A T B X

I I TagsITLB I IIF Cache D
lOR

Target Instruction Flow D A

B I L E W

A B I X W

A T B I X w

Branches

Branch Processing

Goes through EAG like any other RX instruction. (D,A cycle)

- Address sent to TAGsITLB and Buffer. (T, B cycles)

* Note: non-branch instructions will access OP Tags and buffers, whereas a branch
accesses IF Tags and Buffer. The timing of these two accesses is the same.

New instruction data is loaded. (X cycle)

* Note: non-branch instructions will load OP data into the OWR, whereas a branch will
load IF data into the IDR.

Since D cycle of target lines up with X cycle of branch, there's a 3 cycle branch penalty
incurred on taken branches.

Branches and performance

- The machine cycle time can't be faster than the raw branch path delay
(IDR=>EAG=> TAGITLB/Cache=>IDR) divided by the number of cycles in this path.

* SONA divides this over 4 cycles - DATB.

* 5890 divided this over 3 cycles - DAB.

* 580 divided if over 2 cycles - GB.

- the down side of having more cycles is:

*

*

*

AMDAHL INTERNAL USE ONLY

1-21

AM 3493

I-un i ·

2 -1

AMDAHL INTERNAL USE ONLY AM 3493

» s
o »
J:
r-
Z
-i
m
:::c
z » r-
C
C/)
m
o
Z
r-
-<

I-unit Basic
Blocks

Rev. 2. 9/91

Instruction
Fetch

D

lOR

Control
Store

A

EAG

D rls

T B

...........

Control Signals

T rls

Interlock Analysis

x w

: OyiR: : : : : : : : FU~ :
·

· E-unit ·

(Z)

Timer
Complex

B rls X rls

Basic Blocks

• Instruction Fetch

Maintains a queue of instructions.

Uses queue to keep __ filled.

• Instruction Data Register (lOR)

Primary D-cycle platform.

Holds 4 bytes of the current instruction.

• Effective Address Generation (EAG)

- Adds indeX, Base, and Displacement to generate the operand effective address.

• Register Array (RA)

- A variety of registers, including the GPRs.

• Timer Complex

Includes a Time of Day clock and facilities to count time intervals (for time slici-ng).

• Control Store

- Generates control points for the pipe.

- Combination of Jlcode and hard-wired control.

• Interlock Analysis

• Process Control

State machine to control process switching (interrupts).

• Non I-unit stuff

- OP cache (a.k.a. buffer) in S-unit.

E-unit, including OWR and RR.

AMDAHL INTERNAL USE ONLY

2·3

AM 3493

»
3:
c »
J:
r-
2:
-I
m
jJ
2: »
r-
C
CI)
m
o
2:
r-
-<

1-fetch Data
Paths

Rev. 1,5191

P A T

r--

-

B

IF Cache

~ ,

16

~

.-- 16

~

---- .1§

"-

Fetch
Data
Registers

"
-

/

"",.1§

R

~

r~

r---J ---'
.1§

t--

i....- I

1

Instruction
Buffers

-
-

16

-
o

""--r\
~

·2
4 ..

/
r

D

DIDR

-
..
'~ !

Instruction
Data
Register

A T

....

~ -
~

'- -

I-fetch Data Paths

I-fetch charter

Function of paths (excluding FDRs)

- IF cache:

* LcJ rDQ.

* LocJ fBi) -.1GI

IBO:

*

- IB1:

* llt.y~)~ Jib~
* "&" 7, ~7~ 2l?, \ Sn'¥ -g~~ L l~ 1.0 i"

* c.th '" S c;~.

• Note:

the lOR is only 4 bytes. For 6 byte instructions, we start out with the first 4 bytes, which
are enough to generate the first address. Once this is done, the third HW overclocks the
2nd HW, allowing us to then generate the second address.

2-5

AMDAHL INTERNAL USE ONLY AM 3493

- This page intentionally left blank -

2-6

AMDAHL INTERNAL USE ONLY AM 3493

I-fetch Data Paths (cont.)
Branch Processing

Instructions that set the CC will do so in 1 of 3 cycles:
* Early Setters: X
* Normal Setters: W
* Late Setters: Z

Subsequent branch instructions can't make the branch decision (what to load into the
lOR) until the CC has been set. Thus, the branch penalty is increased for Normal and
Late CC setters.

Setting Instr
Early CC Setter
Normal CC Setter
Late CC Setter

Branch
SU Flow

CC Setter Timings
D A T B X W z

I-I
I-I

I-I

OAT B X W

A T B R
Target (Early CC)
Target (Norm CC)
Tarqet (Late CC)

DATBXW
D A T B X W

D A T B X W

Since the S-unit is free-running, it may return the data before the branch decision has
been resolved. Until then, the data needs to be stored somewhere.
* I-fetch provides Fetch Data Registers (16 bytes each) to hold target instruction data

until the branch is resolved.
* Two FDRs provide enough for worst case (late CC setter followed by 3 branches).

Mu1tiple Branches
Setting Instr D A T B X W Z
CC SET I-I

BRANCH 1 D A T B X X W
SU Flow A T B R
FDR 0 1---1

BRANCH 2 D A T B B X
SU Flow A T B R
FDR 1 I-I

BRANCH 3 D A T T B
SU Flow A T B R

2-7

AMDAHL INTERNAL USE ONLY AM 3493

I SAT COnCep! ... ' , I

Target
Hedge
Registers

Non-taken
Branches

Taken
Branch

f
Sequential
Hedge
Registers

BAT

Next Taken Trgt

A~ress (P;:didOO\

Recursion

Predicted
Trgt Data

~
t

Sequential
Hedge
Registers

~
Next Taken Trgt

Address ~OO)

Predicted
Trgt Data

AMDAHL INTERNAL USE ONLY

•••

2-8

AM 3493

» s
o »
::I:
r-
2:
-I
m
jJ

2: » r-
C
en
m
o
2:
r-
-<

Branch Target
Buffer

Rev. 1.5191

Predecessor D
Flow

..--

I....-

D AR

TAG
~
V
Branch

. Flow

BRANCH
ADRS

BRANCH •
DATA 7 16

~= .~~-

A T

Match

D A
..-- -

r...-- I....-

[;>-EAG
Match

Predicted D Target
~ Flow ~

-....
l....- i....-

lOR

Branch Address Table Concept

Goal: Whenever a branch is encountered, it takes a while to fetch the target data and resolve
the branch decision. In the meantime you'd like to keep the pipe busy. In the current
design IF guesses that the branch will be and fills these pipeflows
with

The goal is to improve this guess. To do so you need to:

1. Have some way to predict which branches will be taken, then fill the pipe with the
target stream following these branches. This requires that you

2. Prefetch the target data so it's ready for execution. Since it takes a while to fetch data
from the cache, the prediction needs to be made well ahead of time so you have a
chance to do this prefetching.

Implementation:

• The Branch Address Table is addressed by the Target Address of taken branches.
• The BAT contains the Target Address of the rum taken branch. It also contains a count

of how many branches are not taken before the next taken branch. Both of these fields
are written into the BAT whenever a branch is first taken (Le .• predicted branch).

• In words: the last time I branched to this location, the next 1ak.e.n branch was x branches
later, and it branched to location y.

• Using the Predicted Target Address, prefetch the target data from the IF cache and keep
it handy.

• Keep track of non-taken branches. When you get to the one that should be taken, let the
next pipeflow use the prefetched target data instead of sequential data.

• The branch still needs to be processed and the branch decision checked to verify that
the prediction was correct. Similarly, the generated target address is compared with the
predicted address to make sure the address is correct.

Hedge Registers:

• On branches that are predicted to be not-taken, the branch flow still fetches the data and
puts it in a Target Hedge Register, pending resolution of the branch. If it ends up being
taken after all, this data can be loaded into the lOR to start up the next stream. Target
Hedge Registers function just like do in the current design.

• On branches that are predicted to be taken, save whatever data you have queued up for
the sequential stream in a Sequential Hedge Register. That way if the prediction is
wrong you can quickly restart the sequential stream.

• In either case, if you predict wrong you have to cancel the flows that got fired up. This is
the same as it is today.

• This structure allows recursion. The Predicted Next Target Address can be used to
address the BAT to get the follow-on Target Address, and so on. Each of these follow­
on addresses can be sent to the IF cache to get the corresponding data, thereby
building up a .queue of target data (along with the associated addresses and NTCs).

• The current plan is 1 level of recursion (Le. fetch next 2 targets) for the data and 3 levels
of recursion for the address and the Not Taken Count.

2-9

AMDAHL INTERNAL USE ONLY AM 3493

Branch Target Buffer
(obsolete)

Goal: For each branch decision, correctly guess what the decision will be and have the data
ready in time for the first D-cycle after the branch.

Approach: Keep track of taken branches and guess that they'll be taken again.

Implementation:
Keys off of predecessor instruction address (instr. before branch) for timing reasons.
In words: Last time / was at this instruction address, the next instruction was a taken
branch, so /'11 assume that's what is going to happen this time.

The BTB saves the instruction data fetched from the previous time around, and loads it
into the lOR to start processing.
A "complete" BTB would have an entry for ______________ _
Instead, only a portion of this conceptually huge address space is saved using standard
cachiAg techniques.
* 256 sets x 2 associativities.
* Addressed by low order bits of predecessor instruction address.
* Remaining bits stored in TAGs and matched against.
* The "data" includes the branch data (Le. target instruction) to be loaded into the lOR,

plus the target address, which has two uses.
• The predicted target address is compared with the calculated target address (from

EAG) to provide early detection of an incorrect prediction.
• It provides an early copy of the target address to access the BTB, as the target

instruction could be a predecessor itself.
* This data can then be loaded into the lOR the cycle after the branch D-cycle.
* The branch processing continues as usual to allow verification of the BTB data:

• verify that it is, indeed, a branch.
• verify that the branch is taken.
• check that the branch address is the same as the predicted address.
• compare the data fetched by the branch flow with the data taken from the BTB.

* If any of these checks detects a problem, the pipeflows spawned from the BTB data
are cancelled and the lOR is re-Ioaded with the correct ·instruction.

Branch
Predecessor Instr
Branch

Target Buffer
D A T B X W

D A T B X W
PAT B R

I-I
I-I

I-I
I-I

Timing

SU Target Fetch
Branch address chk
Branch decode chk
Branch decision chk
Data mismatch chk
1st predicted instr D A T B X W

2-9

AMDAHL INTERNAL USE ONLY AM 3493

» s:
c »
J:
r-
Z
-t
m
::c
z » r-
C
en
m
o
Z
r-
-<

I BAT Design"BY. ,.31921

N .
...a.
o

ab br

BAT

Trgt. Addr (....,Prdctd)

Se . IF Addr

p

LBRR

TGT1:2 AR

IB1'S (SEQ, TGT1)

ATB

TGT HDGO:1

SEQ HDG1:2

w~ .u-

IDR/IBO

BAT Design
Branch Address Table Design

• 4K buffer, 2-way set-associative

• Addressed by Target Address 20:30

• TAGs include:
* Target Address 12:19
* Domain #
* Guest/Host bit

• Access cycles include:
* ab - address BAT cycle
* br - BAT read cycle. On writes this becomes bw.

• Contents include a prediction (based on last time around) for:

* Next Target Address 1 :30
* Non-taken count 0:3

- Number of non-taken branches before next taken branch.
- A count of F means invalid. This saves having a valid bit.

• The BAT can be accessed recursively in consecutive cycles. If this recursion gets
interrupted it can be restarted from the LBRR (Last BAT Recursive Read). Predicted
addresses can be saved in TGT1 :2 and LBRR, with a 4th address on the BAT outputs.

IF Data Paths

• TGT1 :2 AR are each sent down the IF pipe to prefetch target data, which is saved in their
respective IBOs.

• In addition, the second 16 bytes for TGT1 are prefetched and stored in TGT1 IB1.
• When the predicted branch is encountered, the data from the corresponding TGT IBO is

loaded into the IDR/IBO and processing commences on it. For TGT1 this can be further
replenished from TGT1 IB 1.

• Meanwhile, the top 22 unused bytes of the IDR/IBO and SEQ IB1 are saved in a
Sequential Hedge Register, pending verification that the branch is indeed taken.

• Sometimes the new target stream will immediately encounter another branch which is
predicted to be taken. This may occur before the original branch is resolved. To handle
this a second Sequential Hedge register is provided to save the just loaded IDRIIBO
contents. Once the branch decisions are resolved these hedges will either be cancelled
or one of them will be re-Ioaded into the IDR/IBO.

• The lOR and IBO from the current design are combined into one 22-byte register. The top
bytes are used as the lOR, and the whole thing is viewed as IBO.
- For Zero Cycle Branches you always want to have 8 bytes or more in the lOR. Thus,

when the count falls to 8 you know you want to load in 16 bytes from IB1 next cycle.
Meanwhile, at least 2 of the current bytes will be consumed by the pipe, so room is
needed for 6+16=22 bytes.

- Since the Sequential Hedge Registers are fed by the same shifter bus as the lOR/lBO,
making them also 22 bytes each simplifies things.

2-10.1

AMDAHL INTERNAL USE ONLY AM 3493

Zero Cycle Branch
Rev. 1,3192

E

~ E -pipe
c »
J:
I

Z
~
m
::0
Z »
I

C
VJ
m
o
Z
I
-<

r--

!

~ ----
I--

..---

~

E IDR

1-pipe

D A

r-- r--

t--- EAG ~

""'- ""'-

E DIDR

- r--

t--- lAG -
- --

I DIDR r----
...... IF

~

TLB -----

... ~~ .r:JA-

T B x w z

r-- r-- r-- r-- r--

I-- RA t-- E-unit t--
Exceptions

r--

-- ""'- ""'- --
r-- r--

~ TAGs ~ I-- OP-
TLB $ -- ""'-

SU OP Pipe

r-- r-- - r--

Exceptions

--- "'- - -
r-- ,...-

~ TAGs ~ r- IF H IF Machine I
$

""'- '--

SU IF Pipe

Zero Cycle Branch

Basic Concept

• For certain cases of certain branch instructions (BC, BCR), execute the branches in
parallel with the previous instruction.

Basic Implementation

• In addition to the original pipe (now called the E-pipe since it can use the E-unit), a
second parallel pipeline (I-pipe) is created. This pipeline is dedicated to executing
BC/BCR and has minimal facilities. Specifically, it has:

- Instruction Address Generation
* Generates the target address
* Only has a 2 port adder. Either the base or index must be zero to do 2CB on aBC.
* Has a dedicated selector to read out the base/index from the EAG GPRs.
* No EGI bypass provided.

- SU IF Interface
* Interface to the IF pipe to fetch the target data.
* SU IF pipe now has a 4 entry TLB. On TLB match (95% of IF's) this allows the

target fetch to complete w/o the OP pipeline.
* On TLB miss (done in the A-cycle) a traditional IF TLB validate is initiated a cycle

later than normal, requiring the OP pipe.

- Staging of address, opcode, misc. stuff
* Used for exceptions, PER, Address Compare, STIS.

• An Extra (or Eligibility) cycle is added to the front end of the pipe ..
- The EIDR is examined to determine if the first two instructions can be "paired". A

number of conditions must be met. A partial list includes:
* The second instruction is a Be or BCR. If a BC, one of X or B must be zero.
* Certain first instructions can't be paired with a Be.
* No EGI.

- This extra cycle also allows the IDR to be latched before being distributed to lots of
DIDR copies. In the current design this distribution is done directly from the IF cache,
creating some physical design problems.

• If pairing occurs (between the first instruction and the subsequent Be/BCR), the two
instructions will proceed down their respective pipes in lockstep with each other. That is,
if either pipe interlocks, they both will interlock.

• If all goes weH (e.g. Be/BeR is eligible, IF TLB match) the Be/BCR can be executed
using only the I-pipe, effectively costing zero cycles.

2-10.3

AMDAHL INTERNAL USE ONLY AM 3493

Sample Timing

Successfu1 Branch Prediction w/ZCB

Previous Branch
BAT Lookup
TGTl IBO Prefetch
TGTl IBO
TGTl IBl Prefetch .
TGTl IBl
Recursive BAT Lookup
TGT2 IBO Prefetch
TGT2 IBO

Misc. Flows

Misc. (E-pipe)
Be (I-pipe)
TGTl -> IDR/IBO:l
IDR/IBO:l -> SEQ HDGl
Brnch decision
Target (E-pipe)
Misc. target stream flows

E D A T B X W Z
ab br

p A T B R
1--------->

p A T B R
1-------->

ab br
PAT B R

1-------->

E D A T B X W Z

E D A T B X W

E D A T B X
E D A T B X

I-I
I-I

I-I
E D A T B

E D A T
E D A

AMDAHL INTERNAL USE ONLY

W Z
W Z

X W Z
B X W Z
T B X W Z

2-10.4

AM 3493

- This page intentionally left blank -

2 -11

AMDAHLINTE'RNAL USE ONLY AM 3493

EAG Data Paths
Rev. 1,5191

IDR

» D4
s:
0 » :x D3 r-
~ D2
-t Base
m D1

A

:0 E
Z

to S-unit

~ DO
A

Index
R

c:
CIl m
0
Z S
r-
-< H

I
Result Register F

T
OWR E

R

EAG Data Paths

• Effective Address Generation

EAG complex maintains a copy of the GPRs.

X and B fields used to select index and base GPRs, respectively.
Index and base GPRs fed to a 3 port adder, along with the displacement field.
Result is put into the AEAR which sends it to the S-unit.

Note the path from the RR to update the GPRs at the end of the W-cycle.

• EGI interlock

If a prior instruction is modifying the B or X GPRs, .EAG must wait for it to be updated
from the Result Register.

Can be a substantial performance penalty.

• Bypasses can buy some of this back.

RR Bypass
* RR data sent directly into the adder at same time it's written to GPR.
* Saves 1 cycle over no bypass.

OWR Bypass

* OWR data bypassed into the adder.
* Only works if bypassing from instructions.
* Saves 2 cycles over no bypass.

EAG Result Bypass
* EAG complex duplicates ALU calculations being done in E-unit.
* Done on NR, AR, ALR, LA, SLL, SLA (shift amounts of 0, 2, or 3).
* Saves up to 5 cycles over no bypass.

EGI Timings

GPR modifying inst. D A T B X W
w/O Bypass D A T B X W
RR Bypass D A T B X W
OWR Bypass D A T B X W
EAG Result Bypass D A T B X W

AMDAHL INTERNAL USEON:lY

2·13

AM 3493

Register Array
Rev. 1, 5/9

r\
WRA ~ I--' J

.JI.-
512x1

HI

T
h TA.G

A J '1
G
S - r -

~

~

RA2 ~

'9

~Bit8

WRA ~
~ ~ J

q ~

512x1
I"'"~

LO

T
't T~G

A J '1
G
S

,
-J--- ~

RA1
~

'9

Bit 8

256x32 each

EVEN
A

EVEN
B

... ODD
-p

A

- ODD --
B

256x32 each

EVEN
A ..

.... EVEN ...
B

... ODD
A

... ODD
B

Live
Registers

~ Even HI

I J

~
l Odd HI

r~

Live
Registers

~1 Even lO

1,1

~
OddlO

I~

- ~

I
~l

- \

I
A

...
- ..

~ ..

to
OWRHI

to
OWRLO

Register Array

Register Array - per Sequoia architecture

• Includes all architectural registers (GPRs, Control Registers, Timer Registers, etc.)
except Floating Point and Vector Registers.

- Superset of IBM defined registers.

• Defined to be a 256x32 bit array with each register in a defined location.

- IBM defines as a variety of registers. Sequoia consolidates them all into one entity.

Register Array - as implemented

• 512x32 array implemented in RAM (256 scratch registers provided for J.lcode use).

• All architectural registers implemented in 1 of 3 types:

- RAM Register: the only copy is in the RAM array.

- LSI copies: the register is in RAM, but LSI copies are kept elsewhere.

- Live registers: the only copy that's accurately maintained is in LSI. The RAM location
is reserved but not used.

• RAM array capabilities (requirements) include:

- concurrent read and a write to -------
- can write even and odd registers in parallel for ______ _

- read any two registers in parallel for ____ _

Implementation scheme

• Concurrent Read/Write:

- 2 banks of RAM (A and B) implemented, each large enough to hold all the registers.

- For a given location, only 1 bank contains the current, up to date copy.

- A 1 bit LSI TAG, one per location, indicates which bank is up to date for that location.

• Writing register pair:

- Even and Odd GPRs are put in separate RAMs.

• Reading 2 registers:

- Duplicate this whole scheme to provide a second read port.

2-15

AMDAHL INTERNAL USE ONLY AM 3493

:t> s:
o
:t>
::t
r

Z
-I
m
JJ
Z
:t>
r
C
C/)
m
o
Z
r
-<

I\)

•
en

Timer Complex

from
Result

Register

Rev. 1.5191

CPU Timer

mode

D
~ ____________________ o~ __ ~

M

Epoch Differences

Timer
Rupt

\C')
f t r'r

I""'v'

32 ns tick

all
clock ----I
regs

mode

Clock Comparators

toOWR

Timer
Rupt

Timer Complex

Time Of Day clock

- Always running. Keeps track of "absolute" time.

- Architecture requires several versions.

* Current Domain
* Macrocode
* Guest running in current domain

A Macrocode TOO is maintained in a register. Epoch Differences provide the offsets for
the other versions.

Comparators
- "Alarm clocks". The TOO is compared with these values and a rupt is generated when

the TOO exceeds them.

- Two versions, Domain and Guest.

CPU Timer

- Only counts CPU time (Le. when CPU is executing).

Counts down to zero, then sends a rupt. Useful for time slicing.

Implementation

Registers hold the current value of the various timers.

- They're multiplexed through an incrementor/decrementor to get updated once per 32 ns.

32 ns tick from oscillator card provides timing.

- The TOO is adjusted for Epoch offset, then compared with Comparator register to see if
a rupt is needed.

- All registers loaded from the RR, and can load the OWR (via the).

2-17

AMDAHL INTERNAL USE ONLY AM 3493

l> s:
o
l>
:::I:
r-
2:
~
m
jJ
2:
l>
r-
C
(I)
m
'0
2:
r­
oo(

I-unit Control
Store

N
(X)

I fetch

Rev. 1,5191

Byte 0:1

Byte 0

STK
(2)

D

Byte 0

'----I FACS

c

DCS
A

DCS
B

MACS
A 1---

MACS
~-.i

B

A
1st flow

D Controls

t------~ A Controls

D

Control Store

First flow of an instruction algorithm

• D-cycle control points hard are wired.

• A-cycle and subsequent control points come from FACS (First A-cycle Control Store).

- 256x96 RAM (including parity).

- Addressed by byteO (opcode byte) of IDR.

Second and subsequent flows

• D-cycle control paints come from DCS.

- Two, 1 KXQO (including parity) banks.

- Branches always go to the other bank. No branch penalty.
- 2 deep ______ _

- Starting address is ___ _

* . Always starts in bank B.

- For 2-byte opcodes, the opcode is remapped into 10 bits for the CSADR.

* flow is the first unique control store access for a 2-byte opcode.

* Always in bank A.

• A-cycle and subsequent control points come from MACS.

- Sam/e address structure as DCS, just different RAMs and control points.

AMDAHL INTERNAL USE ONLY

2-19

AM 3493

»
S
0 »
::I: ..
Z
-I
m
JJ
z » ..
c
CI)
m
0
Z ..
-<

Decode Opcode

N .
N
o

DFACS

I-Fetch

Rev. 1.5191

'O'--i

8yteO

'8'

DCS Field

Des Field

D A T

o cntl A cntl T cntl

1st flow
Q ,,\e,'\!\

n 6 i1.:Y-'
D~ .

/

Function
4 Count ••••

Decode
12 Opcode •••

Pop
- ____ ~___1 STK

(2)

Decode Opcode

• Decode Opcode goes down the pipe with each flow.

Hardwired control points are generated by decoding the Decode Opcode.

Sparse, stable control points are candidates for hardwiring.

• The Decode Opcode has two fields:

1. Decode Opcode

- 8 bits.

- original source is ______ _

- Other sources include:

* Value from previous flow. Multi-flow algs usually keep the same value throughout.

* 01:2 + 4 bit D-cycle FACS field for . Unique DCD OPCD on __ _

* 2 deep stack for _____ _

* DCS field used to change to a new value when you run out of Function Counts.

2. Function Count

- Used to differentiate flows in a multiple flow algorithm (all have the same Dcd Oped).

- Word "Count" is a misnomer as this field doesn't just increment.

- Can be reused if different flinstruction flows have same hardwired control points.

- Starts at 8 on first flow.

- Sourced from ____ on subsequent flows.

2-21

AMDAHL INTERNAL USE ONLY AM 3493

» s:
C »
::J:
r-
2:
-f
m
jJ
2: »
r-
c
en
m
0
2:
r-
-<

I\) .
I\)
I\)

Operation
Exceptions

D
0

Rev. 1,5191

B eO

lOR

D B e1
1,
2

opcode
is 2-byte

256x96
Exception Code

FACS

16

A OP EXCEPTION

256x16

OPEX
RAM 16

Op Exceptions

• For 1-byte opcodes, comes from __ _

• For 2-byte opcodes, use OP EX RAM.

- 256x16 RAM.

- Addressed by the second byte of the opcode.

Each column belongs to one 2-byte opcode family (same first byte).

- FACS field selects which column to use.

- Selected bit indicates opcode validity for that 2-byte opcode.

• Final selection chooses between the OP EX Ram (for 2-byte opcodes) and the
FACS (for 1-byte opcodes).

2-23

AMDAHL INTERNAL USE ONLY AM 3493

» s
c »
J:
r-
Z
-I
m
:JJ
Z » r-
C
(n
m
o
Z
r-
-<

OP EX Ram
Contents Rev. 2. 9191

Byte 1

0
0
0
0
1
1
1
0
1
0
1
0
1
1
1
0
0
1
1

· · ·
1
1
0

1 0 0
1 0 0
0 0 1
1 0 0
0 1 0
1 1 1
1 0 1
0 1 1
0 0 0
1 1 0
0 0 0
1 1 0
0 1 0
0 0 1
1 0 1
1 1 1
0 0 0
1 1 1
1 1 0

· · · · · · · · ·
1 1 1
0 1 0
1 0 0

Opcode Families

0 1 1 0 0 0 1 0 1 0 1 0
0 1 0 0 1 0 1 0 0 0 1 0
0 0 1 0 1 0 0 0 1 0 0 0

0 1 1 0 1 0 1 0 1 0 1 0
0 0 0 1 1 1 ,0 1 0 1 0 1
0 1 1 1 0 1 1 1 1 1 1 1

0 1 0 1 0 1 1 1 0 1 1 1
1 0 0 0 0 0 0 0 0 0 0 0
1 0 1 1 1 1 0 1 1 1 0 1
0 1 0 0 1 0 1 0 0 0 1 0
1 0 1 1 0 1 0 1 1 1 0 1

0 1 1 0 0 0 1 0 1 0 1 0
1 0 1 1 1 1 0 1 1 1 0 1 256
1 0 0 1 0 1 0 1 0. 1 0 1
1 1 0 1 1 1 1 1 0 1 1 1
0 1 1 0 0 0 1 0 1 0 1 0
1 0 0 0 1 0 0 0 0 0 0 0
0 1 0 1 1 1 1 1 0 1 1 1
0 1 0 1 0 1 1 1 0 1 1 1

·
0 1 0 1 0 1 1 1 0 1 1 1
1 0 0 1 1 1 0 1 0 1 0 1
0 1 0 0 1 0 1 0 0 0 1 0

Interlocks

General - all stages

• Inhibit pipe - signal used to freeze pipe state (e.g. for error recovery).
• Pipeline interlock - the downstream stage is valid and is interlocked.

D-cycle Interlocks

• Execute-Generate Interlock - prior instruction is modifying a GPR needed for EAG.
• Programmed Delay Interlock - J.1,code can force an interlock.

• Overlap Interlock - if overlap turned off, wait for pipe to clear.
• OWR Interlock - OWR EGI bypass shares a bus with RR. If RR is using it, can't bypass.
• I-fetch TLB Validate Interlock - waiting for S-unit access to do an IF TLB validate.

• Domain Interlock - like EGI but for some Sequoia registers.

• D-cycle Control Store Parity Error
• Access Register Interlock - deals with Access Registers, which we're ignoring.

A-cycle Interlocks

• Operand Priority Interlock - waiting for priority into the S-unit.

• A-cycle Control Store' Parity Error
• ALB Interlock - deals with ALB, which we're ignoring.
• A eXception Valid Interlock - special interlock to fix a bug.

T-cycle Interlocks

• None.

B-cycle Interlocks

• BALRUS Interlock - BAL and RUS use CC as data. Need to get it set then pass to OWR.

X-cycle Interlocks

• Fetch Data Interlock - waiting for data from S-unit.
• E-Unit Busy Interlock - E-unit busy processing data.
• Condition Code Interlock - waiting for CC setter to allow branch decision.
• Syscom Interlock

W-cycle Interlocks

• None.

AMDAHL INTERNAL USE ONLY

2-25

AM 3493

- This page intentionally left blank -

2-26

AMDAHL INTERNAL USE ONLY AM 3493

Process Control

Process switching per the POO

• 6 classes of interrupts:
- External: Timer rupts, plus some miscellaneous rupts.
- Program: detected during instruction execution.

* e.g. overflow, translation exception, operation exception (illegal opcode)
- Machi ne check
- Supervisor Call: this is an instruction.
- 1/0: initiated by conditions or events in the I/O subsystem.
- Restart: used by console or another CPU.

• Upon taking the rupt:
1. Stop processing the current instruction stream.
2. Store the current PSW as Old PSW into a fixed location in page O.
3. Store an interrupt code describing the interrupt (into a fixed location).
4. Load the New PSW from a fixed location and start processing.

AMDAHL INTERNAL USE ONLY

2-27

AM 3493

» s
c »
:I:
r-

2
-f
m
::lJ
2 »
r-
C en
m
o
2
r-
-<

Process Control
State Machine - Normal
Process Switch . Rev. 1, 5191

r "' End PrQ~~I~ Slill~
• wait while ucode

Set Proc St
~

runs
\.. ~

~~

I' "'"
B~&UUi Sli!l~ 2 STQempty
• Fetch 1 st Jlcode
• set 0 valid

\. ../

r "' Proc~ls Still~

• Process instr.
• wait for a rupt

\.. ./

rupt

" r "'" B~&lg~ Sli!l~ 1
• cncl, inhib pipe
• flush St Queue

\.. • init. CSADR ./

Process Control (cont.)

Process Switch implementation

Process Control State Machine:

• Process state - normal state for processing instructions.

• RS1
- Cancels/inhibits the pipe and waits for the Store Queue to flush.

- Starts reconstructing old PSW from ZARIWAR.

- Sets up CSAR address (to be loaded next cycle).

• RS2
- Finishes reconstructing the old PSW (clocks TOAR w/address).

- Sets up D-valid (to be loaded next cycle).

• End process state
- waits while J,lcode does rupt processing.

Rupt handli ng ucode:
• Stores rupt code info, as needed.

• Does any other special handling required (e.g. I/O rupts).

• Loads New PSW. and fetches target instruction.

• Asserts SET PROC STATE, kicking Process Control back into Process State.

Instr. taking rupt
Next instruction
Rupt Taken
Inhibit Pipe
Cancel Pipe

Process Switch Timing
D A T B X W Z Z

DATBXWW
I-I
1-------/

Example

/-1

Process Control State
WAR/ZAR + ILC ~ OIR
aIR ~ TOAR

I-I
--Proc-----I-RS1-/ /-121--EndPr--I---Proc-­

I-I

~code rupt processing
Misc.
Fetch Target Inst.
SET PROC STATE

Tarqet Instr. Flow

I-I
C D A T B X W

D A T B X W
I-I

D A

2-29

AMDAHL INTERNAL USE ONLY AM 3493

» :s:
c »
J:
r-
2
-I
m
:0
2 » r-
C
en
m
o
2
r­
oo(

Process Control
State Machine

Rev. 1,5191

Set Proc St.

Restore State 2 STa empty

• Fetch 1st Ilcode ... ------t
• set 0 valid

Start State

SVP • move to RS2
• init. CSAOR

Start from

Check Stop State

• Cancel everything
• Wait for Reset

Process State

• Process instr.
• wait for a rupt

rupt

Restore State 1
• cncl, inhib pipe
• flush St Queue
• init. CSAOR

STOP CPU

StQP State

• cancel pipe
• wait

Error Idle 1

• Inhib pipe
• Pinch EU clks
• wait for stall cnt

Extended Retry

• Recirculate lOR
from Wor Z

stall done

normal retry or mck report

SVP XOP Load. (2 states)
SVP Plpeflow Load

SVPcmd
~----... • Set 0 valid

• Kick off processing

SVP Clear State

• Flush STQ
• Wait for SVP Ackn

Error Clear State

• Cancel SU intf
• flush St queue

STaempty

Error Restore State 1

• Cancel pipe
• init. CSAOR

SVP Execute State

• Wait for Endop

• Start/Stop

SYf

Process Control (cont)

Issue STOP command (or after a reset).

State Machine
- Cancel pipe and wait for Start from SVP. (Stop State)

SYf
Issue START command.

State Machine
- Set up CSADR and go to RS2. (Start State)

From there on it looks like normal rupt handling.

• SVP Op loop
SVP (Stop State)

- Scan in an instruction or pipeflow w/clocks off.
- Turn clocks on.

State Machi ne
- Turn on D valid and start execution. (Load State)
- Wait until done, then flush Store queue. (SVP Execute, Clear States)
- Return to STOP State. (SVP Clear State)

• Error handling loop
State Machine
- Freeze pipe state and E-unit. (Error Idle 1)
- Wait for clocks to go off using stall counter. (Error Icjle 1)

SVP
- S-code repairs damage, then turns clocks back on.

State Machine
- Flush Store Queue. (Error Clear State)
- Request SVP Aid, if needed. (Error Idle 2)

SVP
- With liE clocks off, S-code assembles MCIC for Macrocode, based on log analysis.

State Machine
- Reconstruct Old PSW and go to RS2. (Error RS1)

If not past retry point, refetch from Old PSW. Otherwise, load CSAR to point to Jlcode to
do rupt processing and fetch first Jlinstruction. (RS2)

LLcode (if no retry)
- Store OLD PSW and MCIC.
- Load New PSW and start processing.

2-31

AMDAHL INTERNAL USE ONLY AM 3493

AMDAHL INTERNAL USE ONLY AM 3493

E-nni

3-1

AMDAHL INTERNAL USE ONLY AM 3493

» s
o »
::I: .-
2
-i m
JJ
2 » .-
c
CJ)
m
o
2·
r
-<

E-unit
Basic Blocks

Rev. 1 5191

IU GPRs

OP Buffer ~

'J!

Fixed Point

,.... -- r
to--- H> ~ --' . ~

OWR RR

Floating Point

r--.-

H> H~

--' ~
OWR FPRs

Decimal

.-- roo-

H>
---' "-

OWR RR

.
'a

..-

L- .
'a

~

RR

~

'J!

... --

.........

to Op Buffer,
IU GPRs

to Op Buffer

to Op Buffer

Sub-units

The E-unit is made up of 3 sub-units:

Floating point

• Handles floating point calculations, per the Floating Point chapter in the POD.

Decimal

• Handles decimal calculations, per the Decimal chapter in the POD.

Fixed point

• Handles everything else, especially the General Instruction chapter in the POD.

Each sub-unit has its own versions of the OWR and RR.

3-3

AMDAHL INTERNAL USE ONLY AM 3493

- This page intentionally left blank -

3-4

AMDAHL INTERNAL USE ONLY AM 3493

~iXBd
Poin

3·5

AMDAHL INTERNAL USE ONLY AM 3493

» s:
0 »
:::I:
r

Z
-I
m
jJ
Z »
r
C
CJ)
m
0 z
r
-<

Fixed Point
Basic Blocks

r---

r--

IU GPRs

OP Buffer

Rev. 1 5/91

~

~

~

",

-
OWR

r---

HI .
'!

-r---

LO .
'!

~

-

Adder

Result Regis ter
Multiplier

,....-

HI L -
-~U '!

Divider --- to Op Buffer,
..- IU GPRs

,.....-.
",;1

LOL- ..L -'~
.....

i....-..I

Logical
Unit

Shifter

Fixed Point - Basic Blocks

• The fixed point contains 5 fairly independent blocks:

- Adder/subtractor

- Multiplier

- Divider

- Logical Unit

- Shifter

• Data is in two's complement notation.

- Halfword, word, and doubleword lengths.

AMDAHL INTERNAL USE ONLY

3·7

AM 3493

l>
S
o
l>
:I:
r-
Z
-i
m
:JJ
Z
l>
r-
C
en
m
o
Z
r-
-<

»
~
(.)
~
(0
(.)

19 bit CPA
Rev. 1. 101911

w
i

Q)

PO GO

Pout Gout

Cl = G2 + P2-Cin
co = G1 + Pl-G2 + Pl-P2-Cin
Gout = GO + PO-Gl + PO-Pl-G2
Pout = PO-Pl-P2

co

Cin - ...

PO GO CO P1 G1 C1 P2 G2

MB A-B A+B A-B A+B A-S

Full Full Full
Adder Adder Adder

Cin f+- Cin +- Cin

1010L II J II J
A1 81 51 A2 8252

rpoul lGom
Cl = G2 + P2-Cin
co = Gl + Pl-G2 + Pl-P2-Cin
Gout = GO + PO-Gl + PO-Pl-G2
Pout = PO-Pl-P2

P1 G1

Pout Gout

Cl = G2 + P2-Cin
CO = G1 + Pl-G2 + Pl-P2-Cin
Gout = GO + PO-Gl + PO-Pl-G2
Pout = PO-Pl-P2

C1

Cln..---t

PO GO CO P1 G1 C1 P2 G2

MB A-B A+S A-B A+B A-B

Full Full Full
Adder Adder Adder

Cin Cin +- Cin

If J ff J If J
A3 8353 A48454 A5 8555

P2 G2

Pout Gout

Cl = G2 + P2-Cin
CO = Gl + Pl-G2 + Pl-P2-Cin
Gout = GO + PO-Gl+ PO-Pl-G2
Pout = PO-Pl-P2

"~ -'-S»Fll

Cin

Cin - ..

PO GO CO P1 G1 C1 P2 G2

A+B A-B A+B A-S A+B A-B

Full Full Full
Adder Adder Adder

Cin ~ Cin f+- Cin

III ff J ff J
A78757 A8 88 58

Cin

9-bit Carry Propagate Adder

EXAMPLE ONLY, NOT IN THE DESIGN!

- Used here to illustrate concepts.

• Full Adder

1 per bit.

- Sums An, Bn, and Cin.

- Also calculates Propagate and Generate for each bit.

* Pn = An + Bn (Le. a carry into this bit will cause a carry out of this bit).
* Gn = An • Bn (Le. a carry-out is generated, irrespective of the carry in).
* Note that P and G are independent of Cin.

• Carry Propagate

- Bits grouped by three. Each group has a Carry Propagate Element (my name).

- Based on the Pn and Gn inputs from the 3 Full Adders, plus the Cin to the group:
* Calculates Cin into the top 2 bits (the low order bit gets the group Cin).

- Based on the Pn and Gn inputs only (noton Cin to the group):
* Calculates P and G for the 3 bits as a whole.

P means the 3-bit group will propagate a carry coming in.
G means the 3-bit group generates a carry-out on its own.

- Can stack elements to make larger adders:

* One 3-bit element groups together three lower 3-bit elements to form a 9-bit adder.

* Elements don't have to be same size at each level. Could make a 12-bit adder with a
4 "bit" element at the highest level.

3-9

AMDAHL INTERNAL USE ONLY AM 3493

» s
c »
J:
r

Z
-I
m
JJ
Z »
r
C
en
m
o
Z
r
-<

Conditional
Sum Adder

Rev. 1, 5191

n = arbitrary number of bits

w •
o

A
n

B

n

SUM

'0'

'1' .
Carry In

Fixed Point CPA

Conditional Sum Adder

• For a group of bits, calculate the sum with and without the carry-in.

• Let the carry-in select the appropriate sum.

Fixed Point CPA

• Propagate Structure

1 st level groups bits by 8 to form byte P and G.

- 2nd level bundles the 4 bytes to form byte Cin'S.

• Carry in structure

- Conditional sum done at nibble level.

Byte Cin'S combined with bit P and G to generate nibble Cin'S.

* Low order nibble gets byte Gin directly.
* High order nibble gets byte Cin combined with 4 low order bit PIG's.

• Adds 32 bits in 1 cycle.

CPA Propagate Structure

an P,G an P,G an P,G

BJ E1J ~
Byte 0 Byte 1 Byte 2 Byte 3

AMDAHL INTERNAL USE ONLY

an

3-11

AM 3493

Multiply Algorithms

N bits x 16 bits

Standard "Shift and Add" Multiply Algorithm

80 81 82 83 84 B5 B6 B7 B8 B9 810 B11 B12 B13 B14 815 times
1 A

1 A-21

1 A-22

1 A-23

1 A-24

1 A-25

1 A-26

1 A-27

1 A-28

1 A-29
- 1 A_21O

1 A_211

1 A_212

1 A_213

1 A_214

1 A_215

Modified Booth's Multiply Algorithm

80 81 B2 B3 84 B5 86 B7 88 89 B10 B11 B12 B13 81-4 815 times
-1 A

-2 1 1 A-21

-2 1 1 A-23

-2 1 1 A-25

-2 1 1 A-27

-2 1 1 A-29

-2 1 1 A_211

-2 1 1 A_213
1 1 A_215

3-12

AMDAHL INTERNAL USE ONLY AM 3493

Fixed Point Multiply Algorithm

Standard "Shift and Add"

• As you traverse Multiplier from right to left:

- Add in Multiplicand, if Multiplier bit is a 1.

- Shift Multiplicand left 1 bit (Le. multiply by 2).

- Move on to next Multiplier bit.

Modified Booth's Algorithm

• Examine Multiplier bits in triplets, moving left 2 bits at a time (Le. edge bits of triplet are
shared with adjacent triplets).

• From most to least significant Multiplier bits, contribution is -2, 1, 1. (See table, p. 3-12).

• Possible values for a given row (Le. given multiplicand shift amount) are ____ _
All of these can be generated by ____________ _

Triplet Multiplicand
Value Select

000 0
001 l

010 \
011 ~

100 -?
101 -I

110 -I
111 0

3-13

AMDAHL INTERNAL USE ONLY AM 3493

» s:
o »
J: ,
2
~
m
::x:J
Z »
" e
CI)
m
o
Z ,
-<

Fixed Point
Multiplier

from
OWR

Rev. 1,5191

C
A

----~----. N r-----~~----~~ 32 'D

I
_____ E

R

CSA Tree

Pre-MCPA

Multiplier Implementation

POO Definition

• Multiplies two 32-bit operands to form a 64-bit result to be stored into a register pair.

Implementation

• Breaks 32x32=64 bit multiply down into two 32x16=48 bit multiplies.

• Current MultipliER half (16 bits) is recoded per Booth's algorithm, then controls shift and
adding of MultipliCAND. Generates 9 terms.

• Carry Save Adder tree reduces nine 32 bit terms to two 48 bit terms, then adds in upper
32 bits from prior cycle in the last CSA level.

• Multiply Carry Propagate Adder sums the final two terms.

• Low 16 bits from first cycle are concatenated with 48 bits from 2nd cycle to form final 64
bit result.

• Takes _ X-cycles.

Carry Save Adder

• Technique for multiple operand addition.

• Basic element is a 3 input adder:

For each bit position it generates a Sum bit and a CarrY bit.
Instead of propagating the Carry, it's shifted left 1 bit to form a new operand.

- Output is two operands, a Sum and a Carry. Thus, the CSA reduces 3 operands to 2.

• By stacking these CSAs into a tree, multiple operands can be reduced to 2, without
having to propagate any carries.

• Eventually, a CPA is needed to sum the final two terms. The CPA structure is:

MCP A Propagate Structure

AMDAHL INTERNAL USE ONLY

3·15

AM 3493

» s
c »
J:
r

Z
-I
m
jJ
Z »
r
C
en
m
o
Z
r
-<

Fixed Point
Divider Rev. 1,5191

w •
en

from OWR

'"
D
i

1,..000"

v
i
d
e
n
d

Divisor

r---

0

I-

R 1---1.
r""'"

30 - [,3

~ ~
7

Q

6j

l' .I ,3

Partial
Quotient

~4

Sign Bits

x8 - x1 '"
x4 + x2 ~

Partial
Quotient

x4 + x1 il"alt---------J

x4 ""1----------1
x4 - x1 ~ nr----------1
x2 r'Iw----------J
x1

~IW----------------~

>

r ~ rV
Remainder

- ..
Quotient toRR

--..

Pa rtlal
Rema inder

Fixed Point Divider

POO Requirements

• Dividend - 64 bits

• Divisor - 32 bits

• Quotient - 32 bits

• Remai nder - 32 bits

Implementation

1. Load so the Dividend is positive and the Divisor negative. (Paths not shown.)

2. Do trial subtractions (Le. additions of negative) of 1t07 times Divisor from Dividend 0:33.

- All 7 trial values are obtainable with shift, complement, and 1 addition. This is built
into the adders.

Dividend bit 33 is aligned with Divisor bit 31. This allows the Dividend value to be up
to 7 times the Divisor value.

3. Select "winning" result back into Dividend 0:30.

4. Left shift appropriate Partial Quotient bits into Dividend 31 :63, using the room left by the
3 bits that participated in the subtractions.

5. When done, the Remainder is in the upper half of Dividend, and the Quotient is in the
lower half.

6. Does 3 quotient bits/cycle.

7. In the picturethe Dividend register is broken into 2 parts, Rand Q:

R is loaded directly with the selected remainder from the trial subtractions.
Q is a shift register; can do 3-bit left shifts.
Except for bit 31, Rand Q correspond to the Remainder and Quotient at the end.

Note: If the Dividend has excess leading zeros, they can be shifted out (by a multiple of
three) via the shifter prior to starting the alg, and the number of quotient iterations is then
reduced appropriately. The shift amount is basically ___________ _

3-17

AMDAHL INTERNAL USE ONLY AM 3493

Fixed Point
Shifter -
Byte Shift Rev. 1. 5/91

Byte 0

Byte 1

Byte 2

Byte 3

Byte 4

ByteS

Byte 6

Byte 7

Bit o 1 234 S 6 7

3-18

AMDAHL INTERNAL USE ONLY AM 3493

Fixed Point - Shifter

POO Requirements

• Shift double word left or right by 0 to 63 bits.

• . Sign bit mayor may not be included.

• Shift-in value may be zero or the sign bit.

Implementation

• Shift done in two stages. For shift amount S:

1. Rotation done within bytes. This rotation is same for all bytes and = ____ _
2. Bits are shifted in byte multiples (maintaining position within byte).

• Sign bit and shift-in values are details not covered here.

3-19

AMDAHL INTERNAL USE ONLY AM 3493

l> :s:
o
l>
:::r:
r-

Z
-t
m
:xJ
Z »
r-
C en
m
o
Z
r-
-<

E-unit
Control Store

Rev. 1 5/91

IU TCYC OPCODE

Scrub
Address

B x

A

Controls

B

E-unit Control Store

• Each Sub-unit has its own Control Store. Basic structure is the same for all.

FX CS is 1024 x 128.x""Z-

FP and DU CS are each 256 x 9' VL

• E-unit J,J.code is tightly coupled with I-unit J,J.code.

Especially multi-flow algorithms.

- e.g. E-unit J,J.code may assume data will be in the OWR without explicitly checking for it.

• The basic control store structure includes:

I-unit sends an opcode in the T-cycle which serves as the starting CS address.

* Opcode can be held in a register in case __________ _

- Two banks. Increment through 1 bank, branch to the other. Similar to I-unit.

Background scrub machine to access CS when sub-unit is idle, searching for errors.

3-21

AMDAHL INTERNAL USE ONLY AM 3493

- This page intentionally left blank -

3-22

AMDAHL INTERNAL USE ONLY AM 3493

II

~ 08 log
POio

3-23

AMDAHL INTERNAL USE ONLY AM 3493

l>
S
C
l>
J:
r

z
~
m
:0 z
l>
r
c
(I)
m
0
Z
r
-<

» ~ s: • I\)
CrJ ~
~
<0
CrJ

Floating Point
Architectu ral
Elements Rev. 1,5/91

Short

Long

Extended

FPR#

0

2

4

6

Data Formats

I 5 I Characteristic Fraction

0 1 7 8 31

I 5 I Characteristic Fraction

0 1 7 8 63

High Order Characteristic Fraction - High Half

0 1 7 8 63

Low Order Characteristic Fraction • Low Half

64 65 71 72 127

Floating Point Registers

I 0 ~ I
Pair

I 0 6~ I

I 0 6~ I
Pair

I 0 6~ I

Floating Point Architectural Elements

Data Formats

• First bit is sign bit.

• Fraction is in Hex with Hex point at the left. (Elsewhere. called Mantissa.)

• Characteristic is exponent (base 16) in excess 64 notation. Thus ...

N F t - 16 (Characterlatlc-64ded = rae Ion x

• Format precision varies (but the characteristic is always the same):

Short: 6 digits

Long:

Extended:

14 digits

28 digits

This is the "standard" format the FPU is built around.

(note: low order characteristic is ignored during processing.
but is set to hi order characteristic - 14 when results are st(;}(ed)

Floating Point Registers (FPRs)

64 bits (= long format)

Register pairs are used for extended operations.

Only used in Floating Point instructions.

The Floating Point Unit has the only copy of these registers.

Instruction types

• Add, Subtract, Multiply, Divide, Load, Store

• Some instructions require results to be normalized (leading digit made non-zero).

• See Chapter 9 of the POO for details.

AMDAHL INTERNAL USE ONLY

3-25

AM 3493

» s:
c »
:I:
r-
z
-I
m
:0
Z »
r-
c
en
m
0
Z
r-
-<

»
~
(..)
~
\0
(..)

w • I\)
0)

Floating Point
Basic Blocks

Rev. 1 5191

f rom OP Buffer

OWR --
~

--
~

.---

FPRs V
.-- ~

r--- 0
~

~ 2
~

~ 4
to--

~ 6 V
""-

RR

0:63
t-------1...;.... to OP Buffer

1:7

1:7
Exponent

I +++ Shift Leading
Amount leiS Count

i
8:63

8:63
Adder

RB1
,
64

8:63 f'

'"'
"---

' Multiplier
I---

8:63 r--
~

==ro==

8:63
~

RB2 . . Divider
64

WB .
r

64

Floating Point Basic Blocks

• Buffer data comes into OWR

• Two Read Busses select the operand sources.

- At least one is an FPR (FP ops are RX or RR).

• Separate sections for fraction addition, multiplication, and division.

• One exponent section for all operations

- On adds/subtracts, determines alignment shift amount and sends to adder.

Receives leading zero digit count for normalization (ie. to decrement exponent).

(Slight lie in picture - Division LZDC goes through multiplier)

Sign bit also handled here, but not included in any pictures or discussion.

• Write bus writes the results back to the FPRs.

Re~ult Register only sourced from FPRs. Only needed for ______ _

AMDAHL INTERNAL USE ONLY

3-27

AM 3493

~
C
l>
::I:
r-
Z
-I
m
jJ
Z
l>
r-
C
en
m
o
Z
r-
-<

Floati ng Poi nt
Exponent
Complex Rev. 1,5191

RB1 1:7

RB2 1:7

Exponent
Difference
Calculator

1 1
Min (15, IRB1-RB2j)

Exponent
Adder

to Adder

EXPR

Sum
Exponent
Adder

Product
Exponent
Adder

WB1:7

Exponent Complex

Difference Calculator

• Calculates the ABSOLUTE VALUE of the difference between the two exponents and
sends to the adder complex.

• The max shift amount for Long Operations is 15. Past that and you're just adding zero.

• An extended shift amount (max is 31) is also calculated and sent out. Not shown.

Exponent Adder

• Calculates the new exponent value and loads into the EXPR.

For Multiply/Divide

For Add/Subtract

- Can also pass through RB2 unchanged, and RB1 has a direct path to EXPR .

. Sum Exponent Adder

• Decrements exponent by the LZD Count from the adder for normalization.

• Increments on

• Sends resulting characteristic out on the Write Bus.

Product Exponent Adder

• Decrements exponent by the LZD Count from the multiplier for normalization.

• On divides, the quotient is accumulated in the multiplier, so the same LZO can be used.

• ±64 input used to

• -14 input used to

3-29

AMDAHL INTERNAL USE ONLY AM 3493

» s:
c »
::I:
r-
:z
-I
m
jJ
:z »
r-
C
(I)
m
o :z
r-
-<

Floating Point
Adder

Rev. 1 5/91

RB18:63

RB28:63

Enable

Alignment Shift Amount
(from Exponent Complex)

carry
out

Enable

toWB 8:63

LZD Count
(to Exponent Complex)

Floating Point Adder

• Fraction with smalle.r exponent is right shifted for alignment.

- Per the Alignment Shift Amount from the Exponent Complex.

• The other operand may be complemented.
- Complement if ______________ of minus signs, where

subtraction counts as 1 minus sign.

• The adder has a latch point in the middle.

- Sum w/o byte carries is computed and latched.

- Then the carries are added in.

• If needed a recomplementation is done.

• Shifter normalizes results.

Based on the carry out and Leading Zero Digit Count.

LZDC is also sent over to the exponent complex.

AMDAHL INTERNAL USE ONLY

3-31

AM 3493

~
c »
:r::
r-
Z
~
m
:tJ
Z » r-
C en
m
o
Z
r-
-<

Floating Point
Multiplier

Rev. 1 5/91

RB1 8:63

/

~~

RB2 8:63 ~

W
a

W
N

from
Exponent
Complex

.

2-cycle path
I

~

CSA

Carry
r

112

RBl

: 29 terms
Tree

Sum
~ r 112

OuoJlent
4

Extended
Shift Amount

5

""""'"
r---

~

'"

r/

r---

X
S
A
R
~

A '" ~

R

M
C 0:111
p
A

-- B
R V

0:111 0:55 ~

WB 8:63 ... --
0:111 0:55

/: ;/

r-....

Digit -
~

Shift

~~
LZD Count to

-~ 1
... Exponent

i' -- Complex

V:.
'/

Floating Point Multiplier

Multiplies

• POO requires various combinations. Examples include ...

- Short x Short = Long

Long x Long = Long (truncated)

Long x Long = Extended

• Discussion focuses on L x L = E. Other flavors are similar.

• Like Fixed Point multiply, but bigger.

- RB2 Recoded (modified Booth's alg) to select _ different _ bit multiplicand terms.

- CSA tree adds these to generate Carry and Sum terms, __ bits each.

Multiplier CPA adds Carry and Sum. Propagate done by "brute force" in 3 levels:
1. Generates lots of common terms (e.g. consecutive strings of propagates).
2. Calculates, for each pair of digits, the carry-in from the lower to the higher one.
3. DRs in, for each digit, all carries from lower digits.

• If no Leading Zeros, can send out over we right away

- Send the high half immediately.

- Latch result into BR then shift by 14 to send the low half onto the WB.

• If there are leading zero digits ...

Latch result into BR.

- Shift left based on LZD Count.

- Send out result (same process as above).

Extended Adds

• Load ope rands into AR and BR.

• Using the Digit shifter, shift the fraction that has the smaller exponent by the Extended
Shift Amount from the Exponent Complex. This fraction is restored into SR, and the other
is put into AR.

• Add and post-normalize the same way multiply is done.

Divides

• The divider sends over 4 quotient bits per cycle, which are shifted into the SR.

• When quotient is complete, normalization then proceeds as above.

3-33

AMDAHL INTERNAL USE ONLY AM 3493

l> s:
o
l>
J:
r-
Z
-I
m
:0
Z
l>
r-
C
en
m
o
Z
r-
-<

Floating Point
Divider

Rev. 1 5191

RB18:63

RB28:63

*

o
RI----+--~

o j
V ~~--t-~-------~-4~~~i--~~--~
S
R
*
3

o
~~------__ V r--~~~-4

S
R

~c~c..T""

, 1 " I

/--+--------------------------------~

Remainder 8:63

Q2:3

QO:1

Floating Point Divider

• Two stage divide:

- Do trial subtractions of 4, 8, and 12 times the Divisor. This determines QO:1.

- Do trial subtractions of 1, 2, and 3 times the Divisor (subtracting from the Temporary
Remainder calculated from the previous stage). This determines Q2:3.

• Send Partial Quotient (QO:3) to Multiplier for accumulation.

• Load Remainder back into DR.

• Using DVSR*3 allows all subtractions to be done via shift and subtract. To
load DVSR*3:

First, DR is loaded with 16*RB2 and DVSR*3 is loaded with RB2 (RB2 has the Divisor).

- These are sent through the -12*DVSR subtractor. Since this subtractor assumes the
DVSR· has already been tripled, it's designed to do X-4Y, which gives (16-4)*DVSR =
12*DVSR.

- This is shifted right 2 bits and loaded into DVSR*3 the next cycle.

Meanwhile, DR and DVSR are loaded with unaltered RB1 and RB2 values.

3·35

AMDAHL INTERNAL USE ONLY AM 3493

- This page intentionally left blank -

3-36

AMDAHL INTERNAL USE ONLY AM 3493

Vaoima

3·37

AMDAHL INTERNAL USE ONLY AM 3493

Z N Z N

D D D o

Decimal Data Formats

Zoned Format

Z N • • • Z N Z N Z

Packed Format

o 0 • • • o D D 0 o

Z = Zone N = Numeric
S = Sign D = Decimal Digit

Each square represents 4 bits

AMDAHL INTERNAL USE ONLY

N IZ/51 N

D o 1 S

3-38

AM 3493

Decimal Data Formats

2.. formats, Zoned and Packed. Both are:

• Based on strings of bytes, each containing two 4-bit fields.

• Variable length ~ only used in SS ops.

Zoned

• First field is called Zone. This can be anything.

• Second field is called Numeric. Often it's a decimal digit.

• In the rightmost byte, the zone may be a sign digit.

• This format is set up for EBCDIC data manipulation. For example, decimal numbers in
EBCDIC all have the same zone field value, and the numeric field contains the binary
representation of the digit.

Packed

• String of decimal digits, terminated by a sign code.

• Digits must be 0-9. Sign is A-F, where low order bit is the· actual sign bit.

... This is the format used by all arithmetic decimal ops.

- Add, Subtract, Multiply, Divide

Some instructions are provided that convert between these two formats:

• Pack: converts from Zoned to Packed. Basically just strips out the zones.

• Unpack: converts from Packed to Zoned. Inserts F into Zone, making it EBCDIC.

• Edit, Edit & Mark: Very hairy. Converts from Packed to Zoned and allows lots of
modifications on the way. Masochists are referred to Chapter 8 of the POO.

3-39

AMDAHL INTERNAL USE ONLY AM 3493

Decimal Unit
Rev. 1. 5191

» s:
C »
:I:
r-
Z
-I _Buffer 0 m S
jJ W
z Data In 64 R
» R 1
r-
C
C/)
m
0
Z
r-
oo(

w •
..1::10
o

*

x7

x5

x1

x6

x3

x9

56:59---.----1---

Right
Shift

In

64

1

Divide
Table

1--01-----1 Lookup
5

8

RRout

Decimal· Wnit

• Basic elements include:

- The OWR (note that it's only fed from the buffer, since all OPs are 55).

Scratch Registers 1 and 3. SR3 is loaded with 3xSR1.
Digit Multipliers producing multiples of SR1 from 2 to 9.

- Adder Register.
Result Register.

- Adder/subtracter - operates on the RR and the Adder Register.
Multiplier/Quotient Register.
NOTE: data paths are all 8 bytes wide.

• Addition

Load the AR and RR with the operands. Then add into the RR.

• Multiplication

Per POO: Multiply Decimal allows a Multiplier of ::;;;8 bytes and a Multiplicand of ::;;; 16
bytes. Multiplicand must have enough leading zeros to ensure the result is ::;;; 16 bytes.

Load the Multiplier into the MQR and the Multiplicand into SR1 ,3. Clear the RR, which
will act as an accumulator.

Use MQR56:59 (60:63 is the sign) to select the proper multiple of the Multiplicand.

- Add this to the contents of the RR and store the result back into the RR, shifting right as
you do. The rightmost .dlgj1 is shifted into the MQR and its rightmost digit is discarded.

Continue until done. The product is in the RR and MQR and can be read out over 2
cycles, if needed. A shifter (not shown) aligns the data before doing so.

• Division

From POO: DVSR ::;;; 8 bytes, Dividend::;;; 16 bytes.

Load Divisor into SR1,3 and also put the upper 5 bits into DVSR. Load Dividend into RR.

Upper 8 bits of Dividend/Remainder and upper 5 bits of Divisor address a lookup table
for a lower bound guess at the quotient digit. (Assumes remaining Divisor bits are __ and
Dividend bits are __ .)

Based on this guess, select a Divisor multiple and subtract from the Remainder.

Keep incrementing QDR and subtracting the Divisor times 1 until you get a carryout (ie.
number goes negative).

- At this point, don't load the RR, it has the correct Remainder. QDR2 has the correct
Quotient, which is shifted into MQR.

- Continue till done. MQR has the Quotient, RR has the Remainder.

3-41

AMDAHL INTERNAL USE ONLY AM 3493

S-uni

4-1

AMDAHL INTERNAL USE ONLY AM 3493

» s:
o »
:t:
r-
Z
-I
m
:JJ
Z » r-
C
CI)
m
o
Z
r-
-<

Basic S-unit
Concept

Rev. 1 5/91

p

SC request

Ports

Internal &
recycled
requests

Request:

A

Select highest
priority request

I-unit

Opcode

T B

Do the work

Address

Logical (Physical) (Mise)

R

Post
results

-Flags

to I, E, SC units

Basic S-unit Concept

• Pipe has 3 basic stages:

- Select the highest priority reQuest, including internal and external requests. Split across
P and A cycles.

- Do the work for that reQuest. Split across T and B cycles.

Post the results. Done in Band R-cycles.

• 580 had just PBR. Apache and Sona added A and T for timing reasons.

• A request includes everything needed to complete processing, including:

Opcode (-150 of 256 used):

I-unit: Fetches, stores, branch, SC ops (e.g. XSU stuff), TLB maintenance, register
loading, misc.

SC: Move-in flows, move-out flows, key ops, misc.

Internal: TAG maintenance, TLB maintenance, translator flows, misc.

Address:

- Logical (called Effective in I-unit)

- Physical (not supplied on I-unit requests)

- Misc (STD)

Flags:

- Key

- Address Dimension

- VirtlReal

- Others

• Ports store the request for recycling.

4·3

AMDAHL INTERNAL USE ONLY AM 3493

» s
c »
J:
r-
:2
-I
m
:0
:2 »
r-
C en
m
o
:2
r-
-<

S-unit Pipes
Rev. 1 519

P

se Request

Internal
_--I

Requests

A

I-fetch machl

I-unit
request

ALAR

T B R

IF line present
TLB, 1----1 t---.....;...----
TAGs

OP
TLB,
TAGs

IF
Buffer

OP
Buffer

RIAR

ROAR

request
toSe

request
toSe

S-unit Pipelines

• S-unit has two parallel pipelines, IF and OP.

Each has its own TLB, TAGs, and Buffer.

OP sends data to the , IF sends data to the ------ -----
Pipelines are free-running; incomplete requests recycle until complete.

• Two common OP pipe requests from the I-unit are Fetches and Stores.

Much of the S-unit is tailored to these operations.

Fetches read data out of the buffer and into the OWR.

Stores have two parts.

* The store flow reads the data from the buffer and into the OWR.

* The write flow writes data (sent from the RR) into the buffer.

* The store flow of a store is handled a lot like a normal fetch.

AMDAHL INTERNAL USE ONLY

4-5

AM 3493

S-unit Basic
Blocks Rev. 1,5/91

Internal request

---I~~ External request

--- Data

tose

ROAR

S-unit OP Pipe Basic Blocks

• TAGs, TLB

- used to determine if line is present in the cache.

• Buffer (a.k.a. cache)

• Translator

- does Virtual to Physical Address translations.

• Fetch Ports

- contain fetch requests until they complete.

• Store Ports

- contain write flows (of stores) until they complete.

• Search Machine

- does background TLB maintenance.

• Scrub Machine

- does background searches for single-bits errors.

• SC Requests

- path used by SC to move data into and out of the buffer.

• I-unit Request Processing sequence:

1. Requests priority in the A-cycle.

2. If granted, TAG and TLB match done in the T. Buffer accessed in B.

3. If line present, status valid posted and data clocked into the OWR.

* Status Valid is a key signal from the S-unit. Indicates request completion, even for
requests that don't return data. Lack of Status Valid leads to in the I-unit.

4. Otherwise, request is loaded into a fetch port.

5. Later, the fetch port requests priority into the P-cycle.

6. If granted, it contends for A-cycle priority and continues as from 1.

4-7

AMDAHL INTERNAL USE ONLY AM 3493

Address
Translation

Rev. 1,5191

Segment Table Designation

19 25 STL 31

OAT

(x'1000'X)

Virtual Address

1 SX 11 12 PX 19 20 ex 31

1

(x4)

Real Address

Prefixing

Swap page 0
and prefix page.

31

Absolute Address

9 10 31

9 MRU Table

Address Dimension
o 9

3

Memory

Segment Table

(x'40'X)

o Physical Address

AMDAHL INTERNAL USE ONLY

_. -----~.--.----

31
4-8

AM 3493

Address Translation

Dynamic Address Translation

• Maps Virtual Address to Real Address on 4K boundaries.

• IBM defined. Enabled by a bit.

• Uses 2-level lookup of tables stored in memory.

- Segment Table Origin 0:19 (left justified) points to beginning of segment table.

- VA 1 :11 (for segments) indexes into segment table in 4 byte increments.

- Segment table entries are 1 word. Bits 1 :25 form a Page Table Origin and (left justified)
point to a page table.

- VA 12:19 indexes into the page table in 4 byte increments.

- Page table entries are 1 word. Bits 1 :19 form the Page Frame Real Address (i.e. bits
1 :19 of the Real Address).

- The PFRA is then used in place of the high order 19 bits of the address.

- VA20:31 = RA20:31. No translation done on these bits.

Prefixing

• Maps a Real Address to an Absolute Address.

• Also IBM defined.

• Swaps the prefix page (pointed to by a prefix register) with page O. All other page
addresses are unchanged.

• Allows each CPU's page 0 to point to a different address in memory.

Main Store Reconfigurable Unit Tabl.e Lookup

• Maps an Absolute Address to a Physical Address.

• Amdahl defined. Implemented in dedicated RAM.

• AA1 :9, along with the Address Dimension, index into a table which provides PAO:9.
AA10:31 are unaltered.

• Allows Domains (each Domain is in a different Dimension) to map to its own chunk of
memory, and to give an Addressing Exception if a Domain tries to go outside its bounds.

• Also used to reconfigure Main Store in 4M chunks.

• Called MRUTable or MRUT.

4-9

AMDAHL INTERNAL USE ONLY AM 3493

Page Mapping
Rev. 1, 5191

Virtual Address Space Real Address Space Absolute Address Space

4K 4K 4K

4K 4K 4K

4K 4K 4K

4K 4K 4K

4K • •
• •

4K • •

4K
4K 4K

• 4K 4K

•
•

4K 4K

4K

Prefixing

4K

4K

4K

4-10

AMDAHL INTERNAL USE ONLY AM 3493

I OAT Quiz " ... , , I

STD

I 00003001 1

3000

3004

3008

300C

3010

3014

3018

301C

3020

3024

3028

302C

3030

3034

3038

303C

3040

3044

3048

304C

3050

3054

3058

305C

3060

3064

3068

306C

VA

I 00903A5F I

MAIN MEMORY

34420A4A

4820BC8A

BB836B54

34420A4A

9BA6473B

C8574387

578AECEF

34420A4A

00003D41

00003054

FF738A63

0000349A

A7D8F9EE

00003442

34420A4A

56734E2A

4820BC8A

FFFOO123

47584FDA

00489AE7

15283754

ADFFD456

47386954

98473859

A6734251

39CD70F3

A8DF3490

32859604

* note: all numbers are in hex

AMDAHL INTERNAL USE ONLY

4-11

AM 3493

» s
o »
::I:
r-
2:
-I
m
jJ
2: »
r-
C
(J)
m
o
2:
r-
-<

I TLB R9V",~ll

STO,
Dim.,
Misc.

-
-
E
A

'---

I

r--I

1:12

-...
12:19

r>
1

..

~r

"
EA1 :12' I STO I DIM 10 I I

PAO:19
MiSe PAO:19

JIll"

'- /

-

Translation Lookaside Buffer

• Holds recently used translations.

• 256 sets x 2 associativities.

• Addressed by

• Match against EA 1 :12, STO, Address Dimension, various flags.

• TLB "data" is

• Real to Physical address translations are also stored in the TLB.

4-13

AMDAHL INTERNAL USE ONLY AM 3493

» s:
c »
::I:
r-
2
-I
m
:0
2 » r-
C
en
m
0
2
r-
oo(

TAG, Buffer
Organization

ft 1/

I
/ 1/ / '

"/ ,/,-,l
/ /A

/i :~' /'
,,/

,//< i

i..-

Rev. 1 5191

fA L Line Address
A

ICb " 2J!
f--

~ B 7~:,J
I

L....--

ADDRESS

~
r

I
~

I
I

I

'VA 0 tr -,.....-

-)

// I

TAGs

~ line present

=>

- V

x8 assoc.

8~1 number
assoc. I r

~r
~

J~
f--

-
LA

....
.. 1 line = 128 bytes Data 0 ... ut

128
~~

...I sets - I-

-

~
Buffer Data -- -

- ~

- -r-

Byte Index

Buffer Organization

• 128 sets x 8 associativities

• 128 bytes lines.

• TAGs contain

• Addressed by

4-15

AMDAHL INTERNAL USE ONLY AM 3493

l>
S
o
l>
z
r-
Z
-I
m
:0
Z
l>
r-
c en
m
o z
r­
oo(

I OP T AGS/TL~ev. " .,.,1

T
o

TOAR 1:12

A TOAR 12:19
~-----+----------~ R

TOAR18:24

VA, STO, etc. PAO:19

TLB

PAO:19

TAGs

x2

x8

line
present

OP TAGs/ TLB

• TAGs/TLB used to determine line state. Possible states are:

Translation Line in TLB TAG
in TLB? Cache? Match? Match?

Yes Yes Yes Yes

Yes No Yes No
No Yes No NA
No No No NA

4-17

AMDAHL INTERNAL USE ONLY AM 3493

» s:
c »
:I:
r-
Z
-I m
jJ
Z »
r-
C
CI)
m
o
Z
r-
-<

IIF TAGsfTLB """., ... J

TOAR12:19
AssoC#

Stream Regs
(TLB Pntrs)

T

Stream #

TIAR12:19

(Branch Flow +
Page Crosser)

I TIAR18:24

IF
TLB

PAO:19

PAO:19 A~-------------4----~~~~------~~
R ~--------~

IF TAGs

IF line
present

IF TLB

• IF TLB is a copy of the PA portion of the OP TLB.

- When creating TLB entries, Translator writes to both OP and IF TLB.

• Stream register holds TLB address for current page.

•

Current page = page containing current instruction address.

Loaded/validated by accessing OP TLB (via OP pipe) on branches and when instruction
stream crosses 4K page boundaries (a.k.a. IF TLB Validate flow).

This validation flow accesses the OP TLB to do a match to make sure a valid translation
is in the TLB.

If the validation flow gets a match, the matching location (TLB address and associativity)
is saved in a stream register.

All subsequent IF flows for this stream use this "pointer" in the stream register to just
read the PA out of the TLB and use it for TAG match; TLB match is implicit.

Note that this means reading out the same entry from the IF TLB over and over until you
branch or cross into a new page.

stream registers allow for late branch decisions .

Stream
IF TLB Vldte (OP/IF)
OP TLB Match
Stream reg loaded
Seq IF - IF Pipe
Access TLB
TAG Match

Register
A T B R

I-I
1----->

A T B R

I-I
I-I

Timing

AMDAHL INTERNAL USE ONLY

4-19

AM 3493

IF TLB - Another
Perspective

Rev. 1,3/92

OP Pipe

TLB

PA (OP)

OPTAGs

line
present

AMDAHL INTERNAL USE ONLY

TOAR, etc.

4-19.1

AM 3493

IF TLB - Another Perspective

• Key Points:

- TLB entry includes 2 copies of the PA field.

- One copy of the PA is accessible from IF, the other from OP.

Each pipe uses the PA for its TAG match.

- To make a new TLB entry the translator has to go down IF (as well as OP) to write the
IF copy of the PA.

- The OP pipe does an explicit TLB match each cycle, whereas the IF just does it on an
IF TLB Validate flow, then remember the results.

4-19.2

AMDAHL INTERNAL USE ONLY AM 3493

» s
o »
J:
r-
:2
-i
m
jJ

:2 »
r-
C
CI)
m
o
:2
r-
-<

~D-
PIPE

TR C

Simplified
Translator
Data Paths

IU ADDRESS

~

~[}-
L---

B OP Buffer DATA

~ ~

f---

l- I.-

•

.---

m ~~~~

~------------------------------------~ PIPE

TR~STD

IU STD------,

r--- TO TLB
MATCH LOGIC

TGPRSTACK

.----
VlRT

,~
'-

r--)
flEAl

i

~

1\

V" r'.. ADDER

~vl~
T,B....§ID

- -TABLE
~ORIGIN

~-4------~~~~ ~/~ __ ~

(~ V L-

T~B

/!".L

.­
PFX

I REAL

I r--..
ADDR

1
'-------l PREFIXING, _

LOGIC

fnt
TSA

1/
TOR /

/

r7) \
/

/ v
------ _Y1RANSLATOR

LOGICAL
L- ADDRESS

MRUTR
r-- ABSOLUTE

ADDRESS
r---

1"---" -------.-- "-7
'~

MRUT PA
to

'--- pipe

/ ----
DIMID /

Translator Data Paths

The basic translation algorithm is:

1. Load VIRT on a TLB miss with the address that's in the pipe.

2. At the same time, load TR STD with the STO associated with the TLB miss.

3. Add the Segment Index from VIRT to the STO to generate a segment table entry address
in the TOR.

4. Send the TOR down the pipe (when granted priority) to fetch the segment table entry.

5. Load the STE (Le. the Page Table Origin) into TR FOB.

6. Add the Page Index from VIRT to the PTa, and send this address down the pipe to fetch
the PageTable Entry.

7. Load the PTE (Le. the Page Frame Real Address) into the TR FOB. Send it through
prefixing and MRUT to get a physical address.

8. Take one last flow down the pipe and use the VA, STO, and PA to make a new TLB
entry.

• Note: if table entry fetches (which use Real Addresses) get a TLB miss themselves, load
their address into REAL, do Prefixing and MRUT, and make a TLB entry. Then continue
with the original translation.

4-21

AMDAHL INTERNAL USE ONLY AM 3493

General Port
Structure Rev. 1. 5191

~P~C~YC~L~E~G~O ____________________ R

I---~ P Prio Request

Kick signals ...----.. s

R Load Port

A~)ft" OP&DE.
~~GSVpv-- ------_. Opcode. Flags

ROAR Effective Address

IJ Physical Address
----~~ ..

IJ STO
-------. ~------------------~.~

AMDAHL INTERNAL USE ONLY

to P-cycle

4·22

AM 3493

General Port Structure

• This is a general picture of a port. Actual ports may be a subset of this.

• When a Port is loaded, Addresses (EA, STD, PA) are clocked into registers.

• Opcode and flags are also clocked in, but they may differ from the original versions,
depending on the results of the flow just completed.

• A state machine keeps track of the port state, including some external events, and may even
modify the opcode if required by these external events.

• Wait state is loaded to indicate what the algorithm is waiting on (e.g. on a TLB miss, a Fetch
request would go into a Translator Wait state while the translation is being done). This
controls a selector that monitors the various possible "kick" signals.

• Once kicked out of the wait, the port requests priority to the pipe.

4-23

AMDAHL INTERNAL USE ONLY AM 3493

Fetch Port
State Machine

Rev. 1,5191

Port Alloe.

Status Valid

AMDAHL INTERNAL USE ONLY

4-24

AM 3493

Fetch Ports

• Just two states, busy and available.

• Port goes busy (is "allocated") when I-unit request gets priority into A. If the external flow
completes, the port won't actually be needed.

• An independent mechanism keeps track of the order of port allocation. The oldest request is
called Top Of Queue. The TOQ request is the only one that's allowed to post Status Valid (Le.
send results) to the I-unit.

• Need ____ fetch ports for no-wait service.

4-25

AMDAHL INTERNAL USE ONLY AM 3493

:t>
3:
c
:t>
J:
r-
2
-I
m
jJ

2
:t>
r-
C en
m
o
2
r­
~

I -unit flow (RX)
S-unit Flow
TLB Miss
TR Busy
TR Kick
TR Wait State
Re-cycl.e Fl.ow
Line Miss
Move In Processing
Move In Kick
MI Wait state
Re-cycl.e Fl.ow
Status Valid
Port state

I-unit flow 0
S-unit flows
I-unit flow 1
I-unit flow 2
I-unit flow 3
Port 0 State

Fetch (TLB and TAG miss) - Simplified

D A T B X X X X·. x x x x x x x x X.. x x x x x x x W
A T B R

I-I
1------/ /------------1

I-I
1------/ /----1

PAT B R

I-I
1------/ /-------------------->

I-I
1------/ /----1

PAT B R
I-I

-AVI-----~------SVP----------------------------------I--AV--->

Multiple fetches - 1 st one has line missing

D A T B X X X X X X X X X W
A T B R P A T B R
D A T B B B B B B B B B X W

D A T T T T T T T T T B X W
D A A A A A A A A A T B X W

-AVI---------SVP FLO---IAI---SVP FL3--->

- This page intentionally left blank -

4-27

AMDAHL INTERNAL USE ONLY AM 3493

~
C
:t>
J: .-
Z
-i
m
jJ
:2
:t> .-
c
en
m
o
Z .­
~

Buffer Data
Paths - partial

RRFX
RRFP
RRDEC

Rev. 1 5191

STQO:7

BUFFER
DATA IN

OP (IF)
Buffer

Assoc.#,

OAR26:28
(IAR26:27)

toOWR
(lOR)

Buffer Data Paths (incomplete)

Output paths

• 8 associativities of data.

• 64 bytes read out (bit 25 used in addressing buffer, though not TAGs).

• Low order address bits used to select the correct data, then align it to send into the
OWR.

• Note IF differences due to 16 byte output path and halfword alignment.

Input Paths

• RR data clocked into Store Queue on Data Ready.

• Write flow eventually writes data from Store Queue into buffer.

AMDAHL INTERNAL USE ONLY

4-29

AM 3493

Store Port State
Machine

SCB
Sent

Rev. 1,5191

AGO
·~SCB
Required

I
Data Ready

AMDAHL INTERNAL USE ONLY

Line Store Path - not detailed

Line Status State Machine

-Store Flow· Match

Interference

Store Flow • -,Match

4-30

AM 3493

Store Port State Machine

• Tracks status of write portion of stores

Allocated on SV of store flow. Responsibility passed from the fetch port to the store port.

• Basic Store Algorithm

- Waits for Data Ready, then starts requesting priority.
Once write flow gets priority (both P and A), it's done.

Normal Store Sequence (SV on Ext fl.ow)

I-unit flow
S-unit Store
Status valid
Alloc. Store Port
Data Ready
Write Flow

D A T B X W
A T B R

I-I
I-I

I-I

• Line Status State Machine

Tracks presence of line in cache.

• • • PAT B R

During MO's, address of line moved out is compared with addresses of pending stores.
MO interference called on a match. Machine goes to Line Missing state.
On Line Missing, Store Retry flow initiated (a separate mechanism tracks priority grants).
Store Retry matches the PA from the Store Port with the PA in the TAGs to see if the line
is in the cache. If not, a MI requested.
When the SR flow finally gets a match, the LS machine goes back to Line Present State.
Store-ahead: if the fetch data isn't needed (e.g. on a Store), you only need TLB match to
post SV. If TAG Miss, allocate Store Port in Line Missing State.

Store Retry Sequence

Port State ---------LM-------------------I---LP-----
Store Retry PAT B R
TAG Miss I-I
Resultant MI
Store Retry
TAG Match
Write Flow

• •• PAT B R
PAT B R

I-I

AMDAHL INTERNAL USE ONLY

PAT B R

4-31

AM 3493

Page Mapping
Rev. 1, 5191

Virtual Address Space Real Address Space

4K 4K I STORAGE KEyl

4K 4K I STORAGE KEyl

4K 4K I STORAGE KEyl

4K 4K I STORAGE KEyl

4K •
•

4K •

4K
4K I STORAGE KEyl

• 4K I STORAGE KEyl

•
I STORAGE KEyl •

4K

4K

4K

4K STORAGE KEY

4K
Access KeyO:3 Fetch Protect Reference Change

4-32

AMDAHL INTERNAL USE ONLY AM 3493

Set Change Bit

• Each 4K page has a Storage Key. Includes ...

* 4 bit Access Key (often just called the Key):
- Matched against a 4 bit key in the PSW.
- Mismatches on stores cause a protection exception.

* Fetch Protect bit:
- If this is a one, protection checking applies to fetches also.

* Reference bit:
- Set when a storage reference is made to the page.
- Used __________________________ _

* Change bit:
- Set when the page is modified.
- Used _____________ _

• System storage includes a key array associated with the MSU.

• A copy of the key is kept in the TLB for protection checking.

- Also tracks modified state of page (Le. Change Bit).

TLB Contents

EA1 :12 STO DIM ID PIP Misc

PAO:19 KEYO:3, C, FP

• On Stores to a page with C=O, need to update TLB and send Set Change Bit
message to SC.

• SCB state added to state machine to track pending SCB. Priority handled
separately.

AMDAHL INTERNAL USE ONLY

4-33

AM 3493

Simplified
Search Machine

Rev. 1. 5191

Init value

Match Results ~
---8

Read FlowO P A T

Read Flow1 P A

Read Flow2 p

Read Flow3

FlowO Match

Write FlowO

1-----4...---~ to P-cycle

FlowO:3 x Assoc.

8 R

T 8 R

A T 8 R

p A T 8 R

1--1
p A T 8 R

AMDAHL INTERNAL USE ONLY

4·34

AM 3493

Search Machine

Architectural requirements
Purge TLB - invalidate all virtual entries in the TLB for the current domain.
Invalidate Page Table Entry - given PTO and PX, set Page Table and TLB entries invalid.
Set Storage Key - store new key value into Key Array at given Real Address ..

PTLB Algorithm
• A PrelPost latch is written into TLB entries when they're created.
• This same PIP bit is included in TLB match (Le. match the PIP bit in the TLB with the PIP

latch). Normally all entries will match the latch.
• PTLS toggles the latch and posts SV. All entries will now mismatch.
• The TLB is searched In the background for entries to invalidate, based on matching:

• New entries, and those that have been examined, have their PIP bit set to the new value
so they'll match.

Background search implementation:
• Read flow reads TLB contents and matches them against appropriate search

parameters (both associativities).
• Write flow writes entries to appropriate new state. Two write flows per read flow.
• Match results for 4 flows accumulated to help deal with pipe latency.
• The current Rand W addresses are kept in separate registers.
• Note: Abandon TLS does same thing, but forces match on all searches.

IPTE Algorithm
• Search parameter is the PA (called Search Physical Address Match).
• SPAM inhibits status valid on fetch flows (a match indicates the fetch wants the TLB

entry that has a pending IPTE).
• \ read flows for 1 MB segments.

SSK Algorithm
• Same as IPTE: search for PA; SPAM match on fetch flows causes the SSK key to be

used for protection check in place of the TLB key.
• Have to search --",L.. __ 4~ ____ _

Scrub Machine (not detailed)
• Does background fetches looking for buffer single bits to clean up.

• Looks a lot like the Search Machine.

4-35

AMDAHL INTERNAL USE ONLY AM 3493

TAG Contents
Rev. 1,5191

Cycle Accessed

T T T T R

TAG Entry IF Pair, IF Pair Assoc. 0:2

1 per associativity

LRU Data
(R-cycle)

10> 1 1 0>21 0>31 0>41 0>51 0>61 0> 711 >211 >31 ... 14>514>614>715>61 5>716>71

1 per MU:.

4-36

AMDAHL INTERNAL USE ONLY AM 3493

TAG Contents

• Valid bit - TAG entry is valid.

• PAO:19

- page physical address.
matched against PAO:19 in TLB.

• Private bit

If '1 " this is the only cached copy of the line (line is Private).
- This CPU is allowed to modify the line.

If '0', this line is read only (line is Public).
- System Controller is responsible for setting this bit correctly when moving the line in.
- OP Cache is usually about 90% Private.

IF Cache is almost entirely Public (see IF Pair below for exception).

• Modified bit

If '1 " the line has been modified since being moved into the cache.
If Modified, the line state must also be ____ _
If Modified, need to back store to MSU eventually.

- About 500/0 of Private lines get Modified.

• IF Pair

- Means line is private in OP and IF has a copy at the same line address.
- The Write flow of a Store will write both OP and IF copies.

Used when a line contains both operands and instructions. Prevents thrashing.
- The Line Pair state is created by the SC when the line is moved in.

IF Pair Assoc. points to the associativity of the other half of the IF pair.

• LRU data

1 bit for each pair of associativities in the set (covering all combinations).
- indicates which associativity of the pair has been accessed more recently.
- used to determine which assoc. is Least Recently Used (for replacement on Move-Ins).
- one entry per set.

4-37

AMDAHL INTERNAL USE ONLY AM 3493

» s
C »
:::I:
r-
2
-I
m
JJ
2 »
r-
C en
m
0
2
r-
-<

Buffer Data
Paths

RRFX
RR FP
RRDEC

MIDATA

Rev. 1 5191

STQO:7

Data Ready

DIMIR

Path widths in bytes
(IF .1 in parentheses)

BUFFER
DATA IN

OP (IF)
Buffer

Assoc. #

MOVEOUT
REGISTER

r-

I--

t-

r--

-

Assoc.#,
SelBypass

OAR26:28
(IAR26:27)

i\

16

I

... ... MODATA
(OP only)

toOWR
(lOR)

Buffer Data Paths

16 byte (1 aw) MI path from System Storage

• 64 bytes (4 QWs) accumulated for buffer data-in.

• Bypass path from Data In Register.

- Requested doubleword will be in first QW returned.

- Can be bypassed to OWR while subsequent QWs are being accumulated.

16 byte MO path to System Storage

• 64 byte MO register latches data from selected associativity.

• Muxed out to System Storage over 4 cycles.

4-39

AMDAHL INTERNAL USE ONLY AM 3493

» s
c »
J:
r
Z
-I
m
jJ
Z »
r
C en
m
o
Z
r
-<

I Move-In Sequ~f!;, I

IU flow D A T B X
SU flow It T B R
Line Miss, TLB Match I-I
Request to SC I-I

(Opcd, PAO:27, LA18: 19)
Replacement Info

(Assoc. NumO:2, Line state)

LMOl Flow
LM02 Flow
Write TAG Invalid
MO REG
SEND QW

LoaD B~ass TAG ADdress
Kick Fetch Port
MIl FLOW
MI2 FLOW
DATA IN REG QWO - uncorrected

QWO - corrected
QWl
QW2
QW3·
QW4
QWS
QW6
QW7

Line Miss Flow

X X X X X • • • • • X X X X X X X X W
PAT B R

I-I

Move Out Sequence

PAT B R
P A T B R

I-I
1--HLO--I--HL1--1

10111213141516171

Move In Sequence
P A T B R

I-I
P A T B R

P A T B R
I-I

1-------1
1-----1

1---1
I-I

1-------1
1-----1

1---1
I-I

S-unit - Fetch w/Line miss
1. External flow

• Gets TLB match, giving us the PA.

• Gets TAG miss - the line needs to be moved in.

2. Send Move In request to SC

• In R-cycle, send:
- opcode (e.g. Fetch Private).

- PAD :27 (low order bits indicate which OW to move in first).

- EA 1 8: 1 9 () .

• In R+ 1 cycle, send:
- Assoc# and line state of line to replace (swap).

3. Move Out

• Initiated by SC an indeterminate number of cycles later.

• Has three basic flavors, based on swap line state:

- Short: line is public. Takes one flow to change it to invalid.
- Private Short: line is private but unmodified. Takes 2 flows.

* First flow verifies it's still unmodified (if not, convert to LMO). Second flow invalidates.

- Long (what's shown in the diagram): line is modified and needs to be backstored.
* Two flows needed to read out both half lines.
* Muxing to System Storage takes 4 cycles, so the flows are spaced 4 cycles apart.

• This is called a Swap MO.

4. Move In

• Initiated by the SC an indeterminate number of cycles later.

• Data transferred 1 aw per cycle, starting with the aw containing the requested data.

• LDBYPTAGAD flow
- Loads BYPTAGAD register with the address of the data being moved in.
- Generates a P-cycle Kick signal to the ports.

• Awakened by the Kick signal, the- fetch port retries the fetch the next cycle.
- BYPTAGAD is matched against the TLB, along with the TAGs.

- If it matches (which it will in this case), the data is selected from the bypass path.

- To save a cycle, data can be bypassed before going through ECC.

• MI1 and MI2 flows
- After 4 aws fill the data in register, MI1 flow writes them.
- Similarly, MI2 flow writes the second 4 aws.

AMDAHL INTERNAL USE ONLY

4-41

AM 3493

»
S
c »
::I:
r

Z
-i
m
:0
Z »
r
c: en
m
0 z
r
-<

S-unit Basic
Blocks Rev. 1, 5191

I-unit pipe D
S-unit pipe p

se uest

Scrub

Search

Fetch
pons

Result Store
Register pons

Internal request

---II"~ External request

Data

adrs

oped,

A

A

ALAR

I-unit
opcd

T
T

MS

BOAR

B X W

B R

sent

OP toMSU

Buffer

Translator

tose

Priority

• Overall S-unit priority structure:

1. ~c..

2. gh (L vu-r \.-- p-}
j

3. frc-I'-s \ ~ \.1 I

4. fp' Jc~1 ¥. 'v ,~- fr

5. -r- UNif

6. S ~ r __ ?t, r\- Lo
7. ~a~-~ M 0., ~\'I\J "

8. ~c"tjb

4-43

AMDAHL INTERNAL USE ONLY AM 3493

Some Advanced Stuff

• Line crossers (LX), potential page crossers (PPX)

For LX, operand to be fetched spans 2 lines, requiring 2 buffer accesses. First access
loads OWR, second access overclocks only those bytes that come from the 2nd line.

For PPX, future operands for the instruction may cross a page boundary (e.g. MVC). If
the second page gets an exception, this needs to be determined early on in the alg.

I-unit sends flags indicating PPX and LX (could even be both).

- XR Complex contains registers (1 for LX, 1 for PPX) that can be loaded with an
incremented version of the BOAR (increment to next line or page, appropriately).

For the second flow, the appropriate XR register is selected into the P-cycle instead of
the fetch port.

LX/PPX Timing
External Flow
XR loaded
LX2 or PPX2 flow
Status Valid

• Out of Order Fetches (OOF)

A T B R
1---->
PAT B R

I-I

For SS OPs the address for the store comes from the 2nd HW of the instruction, and the
address for the fetch comes from the 3rd HW. As a result it's more convenient to do the
store flow first, followed by the fetch which will provide the data used by the store.

- This fetch is called an Out of Order Fetch to the S-unit. The main difference is that the
fetch can ignore SFI w.r.t. the store port containing the associated store. This associated
store is logically after the fetch, so the fetch can (and must) proceed before the store
completes, even if the addresses overlap.

1U Store
1U Fetch
Data Ready
SU Store

Out of Order Fetch
D A T B X W

Alloc. Store Port
SU Fetch (OaF)

D A T B X W
I-I

A T B R
I-I

A T B R

AMDAHL INTERNAL USE ONLY

4-44

AM 3493

Some Advanced Stuff (continued)

• Continuing Stores
- Used when the I-unit wants to do a series of contiguous stores to the same line (e.g.

Store Multiple).

- Special Store Queue buffer can hold up to 64 bytes (8 OW), all associated with 1 port.

- This buffer can write 16 bytes per cycle to the cache.

- Thus, you need to do:

* 1 store flow to allocate the port.
* 1 write flow per QW.

which is a lot faster than 2 flows (1 store, 1 write) per DW, as it would be otherwise.

IU Store
Continuing Store

D A T B X W
IU Fetch (srce data)
IU Fetch (srce data)
IU Fetch (srce data)
IU Fetch (srce data)
Data Readies
SU Store
Alloc. Store Port
Write Flow 1
Write Flow 2

• Store Propagate

D A T B X W
D A T B X W

D A T B X W
DATBXW

1-1-1-1-1
A T B R

I-I
PAT B R

PAT B R

- Some SS Ops (e.g. MVCL) can be used to store the same data value to all bytes of the
destination field. This is called propagation.

- When doing such a propagation, the Store Port only needs to be loaded with 1 OW of
data. This doubleword can then be simultaneously written to multiple OWs in the buffer
(up to 64 bytes) using just 1 write flow.

• Line Store
- A special case of the above propagation is used by the operating system to do page

clears - the same byte (typically 00) is propagated to an entire 4K page of data.

- Often this page is cleared in anticipation of allocating it to a process. Since it isn't yet
allocated, no further references will be made to it for a while, so you'd rather do the
stores to MS without bringing the page into the cache and displacing more useful data.

- Accordingly, the I-unit detects this case and generates a Linestore to the S-unit. The S­
unit, in turn, passes the Linestore on to the System Controller, which will propagate the
byte throughout a line of data directly in Main Store.

4-45

AMDAHL INTERNAL USE ONLY AM 3493

Execution

CPU Performance Analysis

1000
MIPS = P (ns/cyc) X I (cyc/instr)

I=E+D+S+M

• nominal instruction execution time, assuming no interlocks.
• Function of:

.. 1 / \~
Delay

• delays due to pipeline interlocks, other than FOI, including:
- I-fetch: Branch penalties, other IF disruptions due to branches
- Pipeline interlocks: EGI, OPI, etc.

• In addition to instruction mix and Jlcode, this is a function of:

Storage
• FD I delays - waiti ng for buffer data.

S = Jli • Mi + Jlo. Mo + Ilub· Mtlb (J.1. = miss rate, M = miss penalty, i means IF, and 0 means OP)

• In addition to instruction mix, this is primarily a function of:

M P Serialization
• Some instructions require the CPUs to synch up (get between units of operation) before

the instruction is executed. Each CPU completes the current unit of operation, then waits
until the instruction is executed. Thus, the Initiating CPU pays a penalty waiting for the
others, and the Receiving CPUs pay a penalty each time they have to stop and wait.

M = Initiator Rate • Initiator Penalty
+ Receiver Rate • Receiver Penalty

• In addition to instruction mix, M is primarily a function of:

4-46

AMDAHL INTERNAL USE ONLY AM 3493

· 811S em
8 orage

5·1

AMDAHL INTERNAL USE ONLY AM 3493

~
o
l>
J:
r-
2
-I
m
:0
2
l>
r-
C en
m
o
2
r­
oo(

SONA Overview -
SS System Rev. 2. 8191

I-unit

E-unit
.... L ...

J

VE

CPU
~

1
..L

S-unit

(f>
-

-- -

1/0
Subsystem

Customer Devices

System
Storage

System
Controller

System
Data

Switch

-

_ ..

... __ 2£~ ____

Expanded
Store

Main Store

~
: Scan
I

+

Service
Processor

SONA Overview

• System Storage is the focal point for data transfer between:

- CPU(s)

IOP(s)

- svp
System Storage itself

• System Storage includes:

Main Store Array

Key Array

- XSU Controllerl Array

- System Data Switch (provides connectivity between CPUs/IOPs and data)

- System Controller (address and control focal point)

AMDAHL INTERNAL USE ONLY

5·3

AM 3493

SC Opcode List
(condensed)

SU MS Data Ops

-+ FETCH 4 f~avors (Public/Private x fetch/prefetch)
DECLARE PRIVATE

-+ S -UNIT LMO
LINESTORE - 4 flavors

COpy REASSIGN OPCODES (2)
RELEASE CACHE LINE

SU MP , Key Ops

PURGE - 7 flavors
SSKNP Set Storage Key Non Propagate
SCRB Set Reference and Change Bit
RRB Reset Reference Bit
ISK I-Unit Key Fetch
TLB KEY REQUEST (S-Unit Key Fetch)
SSK Set Storage Key Propagate
SWK Swap Storage Key
IPTE - 13 flavors
LDMRUMSGprop PROPAGATE LOAD MRUT

XSU Ops
PGOUT MS ADRS
PGOUT XS ADRS
PGIN MS ADRS
PGIN XS A

Page-out Mainstore Addr
Page-out Extended Storage Addr
Page-in Mainstore Addr

-21 other XSU Ops

lOP Ops
FETCH - 5 flavors
RELEASE LOCK
STORE 5 flavors

Internal MS Ops

-+ MAINSTORE WRITE
MAINS TORE SCRUB

AMDAHL INTERNAL USE ONLY

5-4

AM 3493

SC Opcodes

• All requests to System Storage come through the SC.

• SC Design is oriented around the Data Ops, esp. Fetch.
- A Fetch request from the S-unit leads to a _____ _
- May say Public is OK, or may ask for it Private.

• LMO
- the SC initiates this by sending LMO pipeflows down the S-unit pipe.
- These flows return the address and data to System Storage in the form of a LMO

"request" to the SC.

• MP and Key Ops
- MP Ops involve propagation of the operation to other CPUs.
- Key Ops operate on the Key Array.

• XSU Ops
- Data transfers between the XSU and the MSU.

• lOP OPs
- Fetches are similar to S-unit OPs.
- Lacking a cache, the lOP does Stores directly to the MSU. Similar to a LMO:
- To do Read-Modify-Write, the lOP can lock a line. The SC maintains this lock.

• MS Write
- The actual writing of data to the Main Store.
- Done in the background, thanks to the Move Out Queue.

5·5

AMDAHL INTERNAL USE ONLY AM 3493

»
S
c »
X
r-
2
-I
m
jJ

2 » r-
C
en
m
0
2
r-
-<

System Storage
Basic Concept Rev. 1,8191

I-bus

Requests
CPUs,
lOPs,
SVP

CPUs,
lOPs,
SVP

SC Ports,
Status files,
Data Buffers

MS Data In

Moa
Array

Post Status

Requests,
Data, tatus

MS Data Out

Main
Store
Array

PA

Servers

Key Out

PA

Key
Array

CPUs,
lOPs,
SVP

Basic System Storage Concepts

• The I-bus chooses the highest priority request and loads it into the SC ports

- A request includes a packet with enough information to process the request.

If the I-bus doesn't accept a request, it's up to the requestor to try again.

• The SC Ports are the focal point of System Storage

- Central mailbox containing everything dealing with a request, including:

* The initial request.
* Current status of processing.
* Any data associated with the request.

FIFO Queue: I-bus loads Bottom of Queue Port, servers process Top of Queue.

• Servers provide the control to process the request

Send addresses and control to the arrays.

- Transfer results to the requestor.

Process requests independently. Communicate with each other through status bits.

Each server proceeds at its own pace. Each server has its own TOO.

• Arrays provide storage for Data and Keys

• Basic actions needed to complete an SU Fetch:

• Move Out Queue provides buffering for writes to Main Store

Holds Move Out data while Main Store is busy doing the read.

Maintains data in a queue, does write to MS in background.

- Analogous to ______ _

AMDAHL INTERNAL USE ONLY

5·7

AM 3493

» s
o »
:I:
r-
Z
-I
m
jJ
Z » r-
c:
en
m
o
Z
r­
oo(

System Storage
Basic Blocks

Rev. 1 8191

CPUO ------1
CPU1 ------1

I-bus

SC Ports,
Status files

CPU2 ------1
CPU3 ------1
IOPO

address, control __ --III+-li--r.......;;;....------1 ... "Ii~~

IOP1

SVP

MOO
XFR ------1
CNTRLR

XSC

01
I

(X)

CPUO-------------~~~

CPU1----------------~----~

CPU2-----------------.-~----~

CPU3--------------~+-~----~

IOPO --------+-.......-~-~
IOP1 ---------------+-.......-~----~
SVP
XSU

*-MSUData

Swap/Store Buffers

data

Fetch Buffers

SCU

SDS

MOQ
DATA

"~ -r==SFll

address,
control

to CPUO

to CPU1

to CPU2
TAG2

to CPU3

MOQ to to IOPO

TAGs Ibus to IOP1

toSVP

Key pons
to CPUO
to CPU1
to CPU2
to CPU3
toSVP

data
to CPUO

to CPU1

to CPU2

to CPU3

to IOPO

to IOP1

to SVP

toXSU

System Storage Basic Blocks

• I-bus
Selects request to load into the ports.

• SC Ports
Provide storage for the initial request.
Separate output selectors for each server, allowing servers to go at their own pace.

- Also provide individually writeable status bits allowing each server to post its status.
- 8 ports in an SS system, addressed by Port 10.

• Data Buffers
Conceptually an extension of the SC Ports, but often referred to separately.

- a.k.a. Port Data Buffers (POBs).
Swap/Store Buffers hold Swap LMO data.
Fetch Buffers hold Ml data.

• Key Ports
- Conceptually an extension of the SC Ports.

Hold data read out of Key Array.

• Arrays
Main Store, Key, and Move Out Oueue.
MS and Keys implemented on BLCs, MOO is in SIMTEC.

• Servers
Each server has its own Port 10 to read out a request from the SC Ports.
Main store Request Server: sends address and control to the MSU.
Key Server: sends address, control, and data to the Key Array.
Data Integrity: searches all caches for data, initiates 01 Move Out if needed.
MO Server: initiates Swap MO based on replacement info from S-unit.
MI Server: initiates MI flows to S-unit and controls data transfer out of Fetch Buffers,
based on status posted by ports. In general, wraps things up for a request.
MOQ Search Server: searches MOO for data.
MOQ Add Server: transfers MO data from Ports/Buffers into MOO.
MOQ Transfer Controller: initiates transfer of data from MOO to MS, via SC ports.
Not a "server" as it doesn't process SC Port requests.

• Interface Controllers
Provide actual control and address interface to the S-unit pipeline.
MI, MO, and 01 (path not shown) may all contend for a given IFC.

AMDAHL INTERNAL USE ONLY

5-9

AM 3493

Generic Port
Structure Rev. 1.7/91

Data In

Write Port 10

Server X
Read Port 10

Server Y
Read Port 10

•
•
•

Port Contents
(to Server X)

t-----I I--___ ~ Port Contents
------I (to Server V)

AMDAHL INTERNAL USE ONLY

5-10

AM 3493

Port Structure

• Looks like a multi-ported RAM.

Has data in, write address (Write Port 10).

Multiple read paths provided, each with a separate read address (Read Port 10).

Read paths customized: only provided for servers that need them.
* A given server may have several selectors covering different bits. This allows the

server to read different bits at different times.

e.g. SC Ports
* Data is the original request.
* Write Port 10 is ------
* Read paths for every server.

• Each port includes multiple pieces which are all variations of this structure.

SC Ports (original request)

Swap Address Buffers
* The PA of the line to be swapped out on a fetch is sent over much later than the initial

request and is stored in a special section of the port called a Swap Address Buffer.

- Various status bits

Data buffers (Swap and Fetch data)

Key Ports

• Each server processes like a FIFO queue

Different servers may be on different requests at the same point in time, but each server
cycles through the Ports on a FIFO basis.

• Statu s Fi les
Each server sets one or more status bits, including:

* Done bits (1 per server) indicating server is done with request. Stays set until port is
overclocked with a new request.

* Timing bits: Provide timing information to other servers.

* Results: Specific results obtained by the server.

Separate Write Port 10 is provided for each server's set of status bits.

Read paths customized for each bit

AMDAHL INTERNAL USE ONLY

5-11

AM 3493

I-bus

CPUO

CPU1

CPU2

CPU3

SVP

IOPO

IOP1

MS

XSC

Moa

Request Fields

OpeOde I PA I (LA) I DIM 10 I (Swap Line State) I Mise I

Request
Buffers

MRU t--............

Table

AMDAHL INTERNAL USE ONLY

Swap Address
Buffers

Request Ports

Write Buffers

toXSC

5-12

AM 3493

I-bus

• Highest priority request (assuming no busies) accepted into I-bus. Includes:
- Opcode

Physical Address
logical (Effective) Address (S-unit only)
Dimension ID

- Swap Line State (S-unit only)
Miscellaneous stuff

• Priority tree:
1. long Move Out
2. MOO HI
3. MS Patrol
4. eXpanded Storage Controller
5. SVP
6. lOP - ties broken by toggle latch
7. S-unit (non-lMO) - ties broken by toggle latches
8. MOOlO

• Busies used to protect resources
- MS Element Busy

* Based on PAO:2
* Protects MS RAMs from a second access while first is still busy.

- DIEC Busy

* Based on PA21 :24
* Prevents multiple requests to same line from being in SC at the same time.
* Stands for Data Integrity Equivalency Class.
* Pronounced DEEK.

If the winning request has a conflict with a busy, it isn't validated in the SC ports.

• Most requests go from I-bus into SC ports. Exceptions include:
- Swap LMO: goes into Swap Address Buffer for originating port.

MS Write requests (from MOO only) go through Write Buffers.
- XSC requests go through a dedicated XSC port.

• Request buffers hold pending CPU requests until they're accepted.
- a.k.a. Holding Registers.

• lOP and SVP addresses may be absolute, requiring MRU Table access.

• NOTE: "S-unit" and "CPU" used interchangeably.

AMDAHL INTERNAL USE ONLY

5-13

AM 3493

SU/SC Interface -
DIEC Busies

Rev. 1, 8191

Fetch flow down pipe

LP

t-----LM & DIEC Busy------1~ DIEC Busy Wait

LM & -,DIEC Busy Latency Timed Out & DIEC Busy

t4-____ Latency Timed Out)' Latency Timeout { ~DIEC Bu~y +
& ~DIEC Busy ~) MI DIEC Kick

Fetch Flow
Tag Miss
Send MI Req
Latency Count
DIEC Busy

LdBypTagAddr
MI DIEC Kick
Fetch Flow

Nominal MI Timing

PAT B R
I-I

I-I
5 4 3 2 1 0

1---------->

AMDAHL INTERNAL USE ONLY

PAT B R
I-I

PAT B R

5-13.1

AM 3493

SC-su Interface - DIEC Busies

SC Sends a copy of DIEC Busies to the SU

• these are used to kick fetch ports out of DIEC Busy Wait states.

• also used in the B-cycle to 'determine whether or not to send a request to the SC.

Fetch Flow gets Line Missing:

• If DIEC Busy is already on (in the B-cycle) no request is sent and the flow goes directly
into a DIEC Busy Wait State.

• If DIEC Busy isn't on then the request has a chance to get into the SC:

1. Send a request to the SC.

2. Wait a while so the DIEC Busy has time to come on.
NOTE: implemented by going into DIEC Busy Wait and forcing DIEC Busy with a counter.

3A. If it doesn't come on then assume the request failed and recycle.
NOTE: it could succeed out of during the recycle.

38. If it does come on, then assume the request succeeded and wait in DIEC Busy.
NOTE: it could've actually failed and the DIEC Busy is due to a different request.

• Recycle when the DIEC goes available, or when kicked by the LdBypTagAddr flow. This
kick is DIEC specific.

5-13.2

AMDAHL INTERNAL USE ONLY AM 3493

» s
o »
:::t:
r-
Z
-I
m
JJ
Z » r-
C
en
m
o
Z
r-
-<

MSU Data Paths
Rev. 1,8191

ELement
Address
Register

PA4:24

Physical
Address

1Mx1
SRAMs

4Mx1
SRAMs

1:2

ELement
Data Out
Register

MS Addressing

3 4 5

Side Elmnt Unused Bank 10
Select 10
(OS)

Side Elmnt RAM Address
Select 10
(OS)

RAM Address

ECC
DIR

ECC Fetch
DOR Data

Buffers

system clocks

MSU Data Out Paths

• 1 MB RAMs dotted in pairs to create 2Mx1 structure

- PAS :24 addresses the RAMs

- PA4 selects RAM to enable

• 2M x 128 byte lines per element

- 128 RAMs (64 pairs) per array card = 2M x 64 bits per card

- 20 array cards per element = 2M x 1280 bits = 2M x 128 bytes + ECC

- Can read or write an entire line at a time

• 4 elements per side

- 4 x 2M x 128 = 1 GB/side

• Data Out MUX (16 to 1) selects source element and muxes quarter lines (32 B)
into ECCDIR.

• ECC speed matches to load Fetch Data Buffers

- MSU runs at 1/2 speed clocks, SOS is on full speed clocks.

- ECC (on SOS) selects 16 bytes/cycle from 32 byte ECCOI register.

5-15

AMDAHL INTERNAL USE ONLY AM 3493

» s
o »
:t:
r-

Z
-of
m
:::tJ
Z »
r-
C en
m
o
Z
r-
-<

Main Store
Request Server

CJI
I

.....I.

en

Rev. 1,8191

SC Ports

ponlo

@!!j

to I-bus,
Status File

MS Request
Register

Status

PA1 :24, RIW, Valid
~------------~------------------~toMSU

Data Out
Mux Controls

to MSU,
SOS

MS Request Server

• Next active request loaded into MS Request Register.

• Request sent on to MSU

PA1 :24

Port opcode decoded to 1 bit, plus a Valid bit.

* 1 bit indicates Read or Write.

• State machines informed of the request

Busy Control tracks timing of busies for I-bus.

Fetch Service Queue:

* Tracks fetch requests that have been sent out.
* Initiates Muxing out when data ready.

Mux Control controls Data Out Mux and ECC on MSU and SDS.

• Status bits posted, as appropriate, to inform other servers of progress.

Sample MRS Timing
(SU Fetch, 25 ns RAMs)

1 2 3

SU FETCH
Hold Reg
SC Port
MS Req Reg
EL Address
EL Data Out
Data Pending Set
ECC DIR
ECC DaR

Data Bffrs

PAT B R

(Q = 1st QW w/o ECC)

1 2 3 4 5 6 7 8 9 0 123 4 5 678 9 0 1 2 3 4 5 678 901

I-I

1-->
1---1

11-2-3-4-5-6-7-8-9-0-1-21

AMDAHL INTERNAL USE ONLY

1---------------1
1------------->

IQLOIQL11QL21QL31
IQI0111213141516171

IQI0111213141516171

5-17

AM 3493

» s
c »
::z::
r-
2:
-I
m
jJ
2: » r-
C en
m
o
2:
r­
oo(

Move Out Server

SC Ports

ponlD

~

Rev. 1,8/91

pon Info
(e.g. opcode,
addrs, srce 10)

t

enbl

I,G

Read
Stage

to IFCs

1
Request
Package

start'-~-....

enbl

P·1,P,A

Delay1
Stage

enbl

T,B,R

Delay2
Stage

from S-unit

R+1
CPUMO

Status

enbl

R+1

Write
Stage

MO Server
Status

start

to
Status File

Swap
Buffer --+ to
Controls 8DS

MO Server

• Based on Replacement Line state, initiates Swap MO.

5 state machines pipelined together:

Read State Machine:

* Analyzes request to determine if a Swap MO is needed.

* If so, requests IFC priority.

* When given IFC grant, passes control to Delayl state machine.

Oe/ayl.2 State Machines:

* Each machine counts 3 cycles, then passes the request on to the next stage.

- Write State Machine

* Monitors MO status for line locked or other problems.

* If LMO, initiates Data control state machine.

* Posts status.

SDS Data State Machine

* controls transfer of data into Swap/Store Buffers.

SU Fetch PAT B R
Hold Reg.
SC Port
Repl. info in sc
MO Stages
Req. to IFC
(IFC)
Status posted

MO Timinq Example

I-I
\-->

\-->
\-Rd\-D1--\-D2--\W\-SD->
I-I
I GP-1P A T B R +1

\------------------------------>

5-19

AMDAHL INTERNAL USE ONLY AM 3493

» s:
o »
:J:
r-
Z
-I
m
JJ
Z » r-
C
CI)
m
o
Z
r-
-<

01
~
o

QP Cache Search
Possibilities

Rev. 1,8/91

EA18:19

o

1

2

3

CPUO

IF OP

Associativites

CPU1 CPU2 CPU3

IF OP IF OP IF OP

SLOT

QP Cache Search Possibilities

• In a QP system, the requested data could be in
fA

x).(-----
x L1 ------
x L
= ~1,;1f' ·l,.~~

• Each value of EA 18:19 is referred to as a SLOT in the 01 Server

- at most there are __ matches per slot.

- _ total matches possible.

AMDAHL INTERNAL USE ONLY

5-21

AM 3493

» s
o »
::I:
r-
2
-I
m
:0
2 »
r-
C
CI)
m
o
2
r­
oo(

Data Integrity
Server

SC Ports

Rev. 1,8191

MI Server TAG2
Update Request

Windows

ponlo

@

UI .
I'll
I'll

p

TAG2
Address

PAO:19

Search
Address

Search
Stage

M

01 Match
Registers

Inspect
Stage

R

MO
Needed

SUMOR

I, P-1, A,
G P T

MO Status

I
from S-unlt

Move Out
Stage

to
IFC

MODataCtI
Status
TAG2Req.-

01 Server

• Responsible for:

- Finding any cache copies of requested line.
Initiating Move Outs, as appropriate, to ensure all caches follow the 01 rules.

- Bypassing data into Fetch Data Buffers for 01 LMOs.

• Focal point Is TAG2
- Copy of all S-unit TAGs of a QP (or of 1 side of a OS system).

Each entry includes a valid bit, pub/priv bit, and PAO:19.
- Organization allows 1 slot (Le. EA 18:19 value) to be accessed at a time.
- Accessed via pipeline.

* Priority
* Match
* Results

- MI server can access to update during a Move In.

• TOa request loaded into available window

- Window holds request info for duration of 01 processing.
- 2 windows.
- Saves long path of going out to SC ports and back to read info.

• Search stage initiates 4 flows to search all EA 18:19 values
Slot 0
Slot 1
Slot 2
Slot 3

P M R
P M R

P M R
P M R

• Inspect stage analyzes match results

- Results stored in 01 Match registers.
- 8 registers per slot (since only 1 associativity per cache set can match).

Inspect stage MUXes out 1 slot of the OIMRs at a time for analysis.
- If MO's needed, MO stage is informed.

• Move Out stage
- Requests priority to IFC, which in turn will control interface to S-unit.
- Monitors status from S-unit to see if line is locked (or modified).
- Controls data transfer into FOBs, posts status, and requests TAG2 access to update.
- Addresses (for LMO and TAG2 update) come from window.

5-23

AMDAHL INTERNAL USE ONLY AM 3493 I

l>
S
C
l>
:I:
r-
2
-f
m
jJ

2
:t>
r-
C en
m
o
2
r-
-<

CPU Interface
Controller

(J1 .
N
~

Rev. 1,8191

MI,MO,DI
Servers

Stan Stan

Req.

t
Req.

t
Reauests Priority t---

Grants Determination

N~
MI Rea. Pka.

,
MO Rea. Pka. .-- .--

DI Rea. Pko. Request to S-unH

MIFM
~ --- ~

MIFM ReQ. Pka.

-
r-- I V MOFM Req. Pkg. Remap

~

MOFM

I G P-1

Request Package

I SU Opcode I PA I EA18:19 I Assoc. # I Flags, Misc.

Interface Controllers

• Responsible for controlling the interface into S-unit pipeline.

Selects between DI, MO, and MI servers for priority.

- Generates subsequent flows of multiple flow algs.

1 IFe per S-unit.

• Pipelined.
I IFe priority

G Grant

P -1 send request to SU (in P-1 cycle of S-unit pipe)

• 01, MO, and MI servers contend for priority into IFC in the I-cycle.

Highest priority request gets its request package sent down the pipe.

If this request is for a multiple flow algorithm:

* Flow Machines (one each for MI and MO) are fired up to generate the follow on flows.
* These follow on flows are highest priority.
* The opcode and low order address bits are modified to form the follow on flows, and

saved until needed. .

• Request package selected and sent to S-unit.

- Opcode
PA (exact bits depend on operation)
EA18:19

- Associativity #
Flags, Misc.

Sampl.e IFC Timing - Move In

MI Server Req
Ld BypTag Flow
Start MIFM
MIFM Busy
MIFM Req.
LMIl Flow
MIFM Req.
LMI2 Flow

1---1
I G P-l PAT B R

1---1
1-----------------------------------1

1---1
I G P-l P A

1---1
I

AMDAHL INTERNAL USE ONLY

T

G

B R

P-l P A T B R

5·25

AM 3493

» s:
o »
z
r-
2:
-I
m
:x:J
2: » r-
C
en
m
o
2:
r-
-<

Long Move Out
Process Flow Rev. 1,8191

IFC

Address, Data Flow

TAGs

PAT B
R

Control Flow

PA
(sw
only

ap
)

Dat ,g

Swap
Address
Buffer/
SC Port

r--

-
.....
,....

.....

Swap/Fetch
Data Buffer

MOa
TAGs

MOa
Data

WrHe
Buffer

r--

'-

r--

0.-

MS Data
In Reg

adrs

Main
Store

data

01 or MO+IFC'---t------S-unlt Plpe-t~~~: ~~), t-:da-+- T:~s':er +1-bU+ M;e~:' -
Server . Srvr (Data) Srvr Controller

....... I------------Orlglnal Request in SC Ports-------------.a-4--Background Processlng--~~

- This page intentionally left blank -

5-27.1

AMDAHL INTERNAL USE ONLY AM 3~93

l>
3:
C
l>
:I:
r-
Z
-I
m
:c
2:
l>
r-
c
en
m
a z
r­
oo(

System Storage
Basic Blocks

Rev. 1 8191

CPUO

CPU1

I-bus

SC Ports,
Status files

CPU2 <V <V
CPU3 address,

IOPO

IOP1

SVP

MOO
XFR
CNTRlR

CPUO------------~--~

CPU1 ~~ .. ~
CPU2----------~~--~

CPU3--------~~~--~

IOPO --------+-~~--~
IOP1
SVP
XSU

*-MSUData

XSC

Swap/Store Buffers

<V
data

Fetch Buffers

SCU

SDS

Moa
DATA

TAG2

MOa
TAGs

data
to CPUO

to CPU1

to CPU2

to CPU3

to IOPO

to IOP1

toSVP

toXSU

"~ -r=s-=-

to CPUO

to CPU1

to CPU2

to CPU3

to IOPO

to IOP1

toSVP

Key pons
to CPUO
to CPU1
to CPU2

to CPU3
toSVP

*

Long Move Out Process Flow

1. Initiated by MO (Swap) or 01 (01 LMO) Servers.

2. Interface controller sends flows down S-unit pipe.

3. S-unit sends out data from cache and PA from TAGs

- also sends Valid bit (line may be a Ghost).

- also sends modified bit (on 01 MOs, TAG2 only knows pub/priv. If line is unmodified, don't write MOQ).

4. The MO is loaded into the Ports.

- The PA is sent over the I-bus into the Swap Address Buffer.

* PA only needed on Swap LMO. On DI LMO it's ___________ _

- The data is loaded into a Data Buffer.

* for DI LMO.
* Swap/Store Data Buffer for Swap LMO.

5. MOa Add server then puts the Move Out into the MOa.

- DI or MO server post status bits telling Add Server the MO is there.

- The Add Server loads the PA into a MOa TAG.

- The Add Server loads data into the MOa array.

- This is the end of foreground processing (Le. original SC Port request is now done).

6. MOa Transfer Controller cycles through MOa emptying out pending requests.

- Loads data into MS Data In Register.

- Reads PA out of TAG and sends to I-bus as a MS Write Request.

7. I-bus loads this request into a Write Buffer (instead of using an SC Port).

8. The MS Server generates a write request to the MSU.

- It sends the PA, plus an opcode saying to do a write.

- The data is already set up in the MSDIR.

AMDAHL INTERNAL USE ONLY

5-27

AM 3493

Moa Organization
Rev. 1,8191

SLOT 0

SLOT 1

SLOT 31

DATA

.••••••••••• Q.l:O •••••••••••••
Ql1

........... .9J.:~
Ql3

.••••••••••• Q.l:O ••••••.•..•••
Ql1 •.........•..........•.......

........... . 9.l:~
Ql3

• • •

....•...•.. Q.J..:O•......
Ql1

........... . 9.l:~
Ql3

32 bytes~----1~.

AMDAHL INTERNAL USE ONLY

TAGs

I PAO:24 I Vld I Mise I

I PAO:24 I Vld I Mise I

• • •

I PAO:24 I Vld I Mise I

5-28

AM 3493

Moa Organization

• 32 deep FIFO queue, 1 line per slot.

- MOO can hold 4K of data.

• Data Organization

- Can Read or Write 32 bytes (1 OL) per cycle.

- 4 OLs per Slot.

- Address includes 5 bit Slot Number and 2 bit QL number.

- Implemented in RAMs.

• TAG Organization

- 1 TAG per slot.

- Includes:

* PAO:24
* Valid bit
* Misc. bits

- Implemented in latches.

• Data and TAG Pipelines are accessed independently.

• Non-pipeline control provided by:

MOa Add Server
- Writes data/address ln1Q MOO.

MOa Search Server
- For Fetch requests, searches MOO to see if data is there.

Transfer Controller
- Transfers data QlJ1 of MOO and sends Write request to MS.

AMDAHL INTERNAL USE ONLY

5-29

AM 3493

»
3:
c »
:::r::
r-
2:
-i
m
jJ
2: » r-
C en
m
o
2:
r-
-<

MOQ Data
Pipeline Rev. 1,8191

p

TC

AS

SS

T

sc
r - - - - -

UI
I

W o

Fetch Buffers

Swap Buffers

D A

1-----1 adrs

"""-----#----1 data
132

Not part of
pipeline per 5e 1

MOQ
DATA

Moa

SDS

R

MS
Array

Moa Data Pipeline

• Priority determination and address selection

- Add Server contends to

- Transfer Controller contends to

- Search Server contends to

• Transfer address (i.e. Slot 10, Ql#) to SOS.

- For Transfer or Search, nothing else happens during the T cycle.

- For Adds, the Add Server reads data out of the Data Buffers to prepare to do a write.

* This control can be done directly by the Add Server as no other Data Pipe contenders
use these paths. Thus, these latches aren't strictly associated with a cycle point.

* Note that 16 bytes are read out per cycle and concatenated to form 32 byte Ols.
Because of this, the Add Server will only try to do a Write flow every other cycle.

• Distribute address within SOS .

• Access MOQ Strams.

- This cycle point is the address/data in latches in the STRAM macro.

• Results available.

- The 32 bytes can be MUXed over to the MSU 16 bytes at a time, but each 16 bytes
takes 2 cycles to transfer, so the Transfer Controller does reads every 4 cycles.

- Note the MOO Bypass path back to the Fetch Data Buffers.

AMDAHL INTERNAL USE ONLY

5-31

AM 3493

» s
o »
:I:
r-
Z
-I
m
jJ
Z »
r-
C
en
m
o
Z
r-
-<

I MOQ TAGs ... , . ."" I

~·--.P --------------------~.~ • .--------------------.~--------------------------------~~-~6- FI ~

SC
Ports

Swap
Address
Buffers

CJ1 .
(,.)
N

Search PA

Write PA

Slot 0

Slot 1
T

..-____ .. A I--__ +--+---I~_I

Slot 31

G

• • •

T
10-_____ -11 A 1--____ +-____ -1

G

Write Slot
Pointer

PAO:24

• • •

to
I-bus

Match
Results

Moa TAGs

• TAGs implemented in latches, allowing some special capabilities.

- Can match against all 32 TAGs in parallel.
- Can do concu rrent Reads and Writes.
- Transfer Controller has its own selector to read TAGs.
- Valid bit Resets dedicated to Transfer Controller (not shown).

• Transfer Controller
- Loads data into MSDIR, then ________________ _
- Once accepted into the I-bus, it resets the Valid bit.

• Pipelined TAG Access for Add and Search Servers

- PMR pipe
- Transfer Controller owns all the resources it needs, so it doesn't need pipe access.

Priority cycle

- Search and Add Servers contend for pipeline access.

Match cycle

Search PA register
- Matched against all 32 TAGs in one cycle.
- Used by Search Server to
- Also used by Add Server to
- Search results encoded and latched.

Write PA register
- Contains PA to be written into next MOa slot.
- Owned by Add Server, so it's not strictly part of the pipe.

Result cycle

- Match Results available for examination.

AMDAHL INTERNAL USE ONLY

5-33

AM 3493

Moa Algs -
Typical Timings

Rev. 1,8191

LM01
LM02
QWs in SDB

Write QLO
Write QL1
Write QL2
Write QL3

PA SwpAdrBfr
MOQ TAG Update

Fetch in SC
Search Flow
Match found
Read QLO
Read QL1
Read QL2
Read QL3
*QWs in FDBs

Read QLO
Read QL1
Read QL2
Read QL3
*QWs in MSDI
I-bus Req

Swap LMO MOa Add Timing

PAT B R
PAT B R

012 3 4 5 6 7

P T DAR
P T DAR

P T DAR
P T DAR

1----------------->
IP-M-RI

Search Tim Ing (match case)

1------------------------------->
P M R

I-I
P T DAR

P T DAR
P T DAR

P T DAR
012 3 4 5 6 7

Transfer Controller Flows

P T DAR
P T DAR

P T DAR
P T DAR

1-0-1-1-1-2-1-3-1-4-1-5-1-6-1-7-1

I-I

* Latch points may be missing from Block Diagrams. Timing diagrams should be correct.

AMDAHL INTERNAL USE ONLY

5-34

AM 3493

Moa Aigs

Add Server

- The MO Server posts a status bit indicating the Swap LM01 and LM02 flows have (or
soon will have) loaded the Swap/Store Data Buffers.

Kicked by this, the MOO Add Server will initiate 4 MOO Write flows to write the data into
the MOO.

In parallel with the write flows, the Add Server writes the PA (from the Swap Address
Buffer) into the corresponding MOO TAG.

- The add server also checks the TAGs for an older copy of the line to invalidate.

Search Server

- Fetch requests need to check the MOO to see if the data's there.

- One TAG search flow examines all 32 TAGs.

In the case shown it happens to get a match.

- The Search Server requests priority for 4 data read flows and loads the data into the
Fetch Data Buffers, for subsequent delivery to the requester by the MI server.

Note - the timing diagram takes into account latch points that aren't shown in the block diagrams.

Transfer Controller

- Having found a valid MOO entry in the background, the Transfer Controller initiates 4
read flows to read out the entry.

- The data is muxed 16 bytes at a time to the MSU, and each 16 byte transfer takes 2
cycles, so the TC does read flows every 4 cycles.

In the MSU, the data is loaded into 1 of 2 MS Data In Registers.

- Once all the data is read out, the TC requests I-bus priority to send a MS Write request to
the MS Server.

* Note - this request is sent before all the data is actually in the MSDIR. The timing is
such that, by the time the MS Server does the actual write, all the data will be there.

5-35

AMDAHL INTERNAL USE ONLY AM 3493

» s
c »
J:
r
:2
-I
m
::xJ

~
r
C
en
m
o
:2
r
-<

I Key Serve!..." ... ,1

SC Ports

~::rD
~

... Request Generation

. : : : : : : : : : : : : : : : ~~~ ~~c : : : : : : : : .: .: : : : : : :
.

Key
Array

.. ,... ,..

::::::::::::::.:: :~n~I::::::::::::::::::::

Key
Ports

Key Server

Request Generation Stage

Recodes SC opcode to an internal key opcode. Includes (among others):

* SRB Set Reference Bit.
* SRCB Set Reference and Change Bits.
* STORE Write entire key.
* FETCH Read and retu rn key.
* PchkF Do Fetch Protection Check (using provided key). If OK, Set Ref. Bit.
* RRB Read and return key, reset the Reference Bit.

Fires up Key Array Controller with new opcode (except on NaP).

Key Array Controller

- Controls chip selects and write enables

For opcodes doing both a read and a write, write enable is delayed until read is done.

PchkF Timing

1-1-1-2-1-3-1-4-1-5-1-6-1-7-1-8-1-9-1-0-1-1-1-2-1-3-1-4-1

Key RAM Address 1---I

Key RAM Data 1---I

Data Out Reg 1-------1

Protection Chk 1-------1

Key RAM Write En 1---------------1

Passes results on to Response Stage State Machine

Array is deep.

Key Array runs on half-cycle clocks.

Response Stage

- On Key Reads, key is loaded into port.

Sets status bits describing request results.

5-37

AMDAHL INTERNAL USE ONLY AM 3493

l>
S
o
l>
:I:
r-
2:
-I m
:0
2:
l>
r-
c:
CI)
m
o
2:
r­
oo(

I MI Server _'.919' I

SC Ports

Status File

Data Path
Availability

from IFCs

to to
I-bus Key Chip

I 1
DIEC Key
Busy pon
Reset Control

TAG2 IFC
Pipe Pipe

Rle~ Rl~

to
01

to
IFC, Data

Sequencers

from Key Chip

Handshake

Handshakes

from 01, IFC

Status to
Status

File

MI Server

• Pulls it all together and returns results to requestor.

- Because the MI server is the one that "wraps it all up", it's the prime reader of status bits.

• D-cycle
- Waits for appropriate status bits to be set.

- Based on status bits, initiates response by kicking off I-cycle.

* For S-unit requests, maps the SC opcode to an S-unit opcode.

• I-cycle
- Sends requests to various resources:

* IFC to make S-unit requests.

* Based on IFC grant, kicks off a Data Sequencer on the SDS to control data muxing.

* 01 to update TAG2.

* Key chip to read key results out of the Key Ports.

* I-bus to reset the DIEC busy.

• R-cycle
- Receives handshaking from above resources to make sure there wasn't an error.

If there was, MI stops processing requests until S-code can fix things up.

• W-cycle
- Sets MI Done in the Status File.

AMDAHL INTERNAL USE ONLY

5·39

AM 3493

sample SU Fetch Request Timing

S-unit
Line Miss

Holding Reg
SCPort

Req. Reg.
ELAR
Data Out Reg
Ftch Data Bfr
Status Posted

window 0
TAG2 Search
No match
Status posted

PAT B R
I-I

I-bus

MS Server

01 Server

MO Server
Repl. info in SC
MO Stages
Req. to IFC
Status posted

(~-accurate!)

123
1234567 8 9 0 1 2 3 4 5 678 9 0 1 2 3 4 5 678 9 0 1 2

PAT B R

I-I
I-------------------------------------~---------------->

1---1
1-----------------------1

1---------------1
1.0.-0-1-2-3-4-5-6

1---------------------->

1-->
PMRRRR

1>1.:t:'\~'
1-->

1-->
I-Rdl-D1,--I-D2--lwl
I-I

1-------------------------------->
1 2 3 4 5 678 9 0 1 2 3 4 5 678 9 0 1 2 3 4 5 678 9 0 1 2

LM01 Flow
LM02 Flow
LdBypTAG
MIl
MI2

.Search
No Match
:Srch Status

IFC

Moa

Swap Addr. Buffr
Swap Data Buffr
Wr QL Flows
MOQ TAG Update

SRBFlow
Status Posted

MI Pipeline
Req. to IFC

Key Server

MI Server

I GP-1P A T B R
I GP-1P A T B R

P M R

I-I

I GP-1P A T B R
I GP-1P A T B R

I GP-1P

1-->
1------------------------------>

IGenl-Key Ctrl--IRI

10-1-2-3-4-5-6-71
PTDARARARAR

I-I

1---------------------------------->

I--------D------------------------IIIRIWI
I-I

1 2 3 4 5 678 9 0 1 2 3 4 5 678 9 0 1 2 3 4 5 678 9 0 1 2
123

5·40

AMDAHL INTERNAL USE ONLY AM 3493

- This page intentionally left blank -

5-41

AMDAHL INTERNAL USE ONLY AM 3493

Expand~d storage
Arch ite, ~"Ju re , Rev.. ,1, 8/91

Main Store

4K

4K

4K

•
•
•

4K

4K

10

Main'Store(physical Address

Page In

Expanded Store

4K

4K

4K

4K

4K

•
•
•

4K

4K

f
Expanded Storage

Block Number

I
10

Expanded 'Storage Addressing

AMDAHL INTERNAL USE ONLY

5-42

AM 3493

Expanded Storage Architecture

• Large, slow,' dense storage

In SONA, 4,GB/side (4 Mb DRAMs). Later, 16 GB/side (16 Mb DRAMs)

Larger, slower than MS. Smaller, faster than disk.

• Fundamental unit is a page (4K)

In Sequoia a 32 bit Expanded Storage Block Number pOints to a page. '

- Allows up to 16 TB of data to be stored.

- Since'SONA max'as out at ~~ GB, bits () 'fC6 are always zero.

• Page Ops transfer a page between Expanded. Store and Main Store

Page ~n: Copies a page of data from XSU to MSU.

Page Out: Copies a page of data from MSU to XSU.

Instructions include a Main Store address and an ESBN.

- Operatioh is'synchronous; the CPU waits until the transfer is complete.

• Naming confusion
IBM calls it Expanded Store.

Many peoplec,allif EXtended Store.

- Both ESU and' XSU are used as acronyms.

AMDAHL INTERNAL USE ONLY

5-43

AM 3493

» s:
c »
:I:
r-
2:
-I
m
jJ
2: » r-
C
(J)
m
o
2:
r­
oo(

; ;xs Address~:and
Data Paths

sc
"SDS

CPUO
CPU1
CPU2

, Rev: 1; 8191

I-bus

t---........ -IERU
Table

to SC Ports

'ftom,;t=etc~
Data: BuHers

lAB

XAB

XSBUFF

,.,;o----t.'to,.swapiStore
:,Dat8 Buffer,s

~s Address and Data Paths

• XSC Port-

- - I-bus sehds"XS-lequests to dedicated XS Controller Port.

- AP~geOR1 requires 2 I-bus commands, one for each address:

_ * 'The -ESBN goes through the ERU Table, then into the XAB.
* The Main Store P~ bypasses the ERUT and goes into the lAB.

• Address Buffers

- Two sets of buffers, one for I-bus Addresses (lAB) and one for XSU Addresss~ (XAB).

IA~!,>,,<AB each .provide 1 dedicated buffer for each possible requestor (CPU, SVP, lOP).

',* ,,-.,Each Reque§tor will only have 1 Page Op pending at a time.

- Orie operation is handled at a time. Any others wait in the ABs until processed.

- A~s:,:,are no·ta!queu9'. The XS Controller processes them round robin.

• Data Buffers

- Buffering provided fo~~4 lines of data.
.' .. ,'," :. .. ~:~ .. -;~ .. " ~.. ~ ~~

- ",Data.p.athsare 1 DW:;~8 bytes) wide.
---' ." "-. ,." .~ !

* XSU Array path takes 2 cycles to transfer 1 OW.

• ~~gorit~ths '
- ,Page In

1.
2.
3.
4.
5~:"";' ,.: ..

~----------~---
• '1~:: . - __________ ----------------------

page Out.
1.
2.
3.
4i'
5.

~:~'
ti~

Other Algs'

- sVP can do line fetcnes/stores.
lOP PageOps provided in anticipation of asynchronous page in/out.

- MSU-MSU copies also implemented to support dynamic reconfiguration.
Background refresh done for DRAMS.

AMDAHL INTERNAL USE ONLY AM 3493

» s:
o »
:I:
r-
Z
-I
m
:c
2 » r-
C
en
m
o
Z
r­
oo(

:System Storage
OS Concept

Rev.1';ai91

ei?Uo
• "'s ,'0

CPU3
IOPO
IOP1
etc.

Side 0

Side 1

CPU4
• • •

CPU7

40P2
iOP3
etc.

I-bus

sCPons

SC·Ports

PA

Status
File

Status
File

PA

Data Buffers

MSUO
Data
Out

CPUO
• • •

CPU3
IOPO
IOP1
etc.

CPU4 ..
,:

C~U7

IOP2
IOP3
etc.

System Storage OS Concept

• Sy~tem StQr~ge is DS Focal Point
~ All :6~~~~6p~.·Nl1n.·;"ng done here .

. ' ' .. \ .. , 'I*i<~ (iIi

~; CPUs, lOps only talk to their local SC/SOS.
~ I

- Data ~an 'be on either side of a OS system.

• Approach 'is ;10 cross-couple at key points within System Storage

- I-bus,

- Status· File
:. "1"""" "'''.-' ,. ~.,~.,

- M~in .:~tore l

- Sqm~~~other cross-coupli ng)sn't shown.

• I-bus
- Same request.wins-oflboth· sides~·':

. l

~ OIEQ:and other-busies- must be kept in synch.

• Status"tHes

:-'."" .. , C(m
-.-_A

- Status bits n!~~;~~re'~ther:"pide (e.g. 01 search results) are ,cross-coupled.

- Done by the'stattJsfilEi_j~§~lt,

-Means duplicatir"gthese'i)ubtJs bits" to provide storage for status from local and remote.

• MSU
Oual- ported, eiiffer SC can faccess both MSUs.

* MS.Uinp"uts1i~ve a selector to pick which side drives t,~em.:
- -FWo dat~::;mt~: paths, one fors, each SOS.

~"..<. ~,J.'-.'!"'1Ii'''''~'''' i,

5-47

AMDAHL INTERNAL USE ONLY AM 3493

SV~

lopa

IOP1' .

MS"
Patro"

Request Fields
~~. '~.',: ',.:", "1/">";_.,'-. "~'r:" ," '

L,opCdde.' PA I (LA) I DIM 10 I (Swap Line staterl Mr~'I,,:

cPUO····

CPU1

CPU3

xsc

Moa

Request
Buffers

MRU ..-.-........
Table

SS/OS

to Remote,SC' 00

from
Remote
SC

AMDAHL INTERNAL USE ONLY

Swap Address
Buffers

Request Ports

;' ::. ,§,:)Vrite Buffers

to XSC

xc Swap
AddresS Buffers

5·48

AM 3493

I-bus OS, Design

• Four cY,g,!. adde~ In OS mode to allow for cross-couplioS
: 1\,t , , .. ,

- FirstWib:latc~ points, "early-up" the request to send to the otbe1\:,sld~.p

- NeXf 'ti~,1atchpoints "normalize" the late request from the otniir side~
winhfriJ, request(s).loaded simultaneously on either side .

. ,"'~W:, ...,

• Remotet:;:l;"~eStS",:~jl0.d,d·iflto ' Cross, Couple Ports

- L04J..:lquests,; go iotQ!\e,Quest Ports. ' .

AII+tome servelll;~f~r~Oth.er ~y,en seeing remote requests.
*, They just loo~ ~~" the RQ ports.

· ~~~~t~:rS~k~d to<:;~rn:::~~tween the two sets of ports. '.
* l~dJdes ' . , '

• Element and' O'i-Eq busies are same on: each side
- Both;l--buses ~et tre bus~e,s at the same tim~ when loadin~f the"~~eq~~~t.

,r..: t" ",' ''.':'',

l-bU:S';'I0SS-C9~.PI,~s the reset~, so, they go.:off at the s~me ti"1~~':

AMDAHL INTERNAL USE ONLY

'."." . "crot:
, -r*'

5-49
" ,

AM 3493

» s
o »
J:
r-
:2
-f
m
:JJ
:2 »
r-
C
en
m
o
:2
r-
-<

Data Cross
Coup,Ung' in D.S :i

,'. . '. ~ , Rev.t, ~t

CPUs,
I,Ops,·etc.

~ ·V:.{

Side 0

Side 1

MOOG

j
MOQ1 '~

,_ ~v

-MSU1.

-~SU1

,CPUs,
:'QPs, .tc.---+-----------~
. . .,' ~': \

.~-:.,

Fetctif;·
'~uffet~

Swap/Store Buffers

+--....-----.110·0 Data D~a to
auto · ,

,,,, ~DSO

MSUO
Data Data _ ... Data to

---lIn 1 aut t SDS1

Data. Cross Coupling in Q$,

• MoVe .. (),~ts"go yto MOa on same side as the requesting CPU.
,:,.,I!~"" I .

- B~~ss to ,Remote provided for 01 MOs.

* ,N:eeded"'if
';:~~:, ". -----------------~--~-----

- "Same bypa~s.path used for MOa bypass to remote.

, ,

• MSl1'+ data'~iij'~~dual "ported.

- MOO loaas,.;Data·,ki Registe;r:' of appropriate MSU.

.. Then sends MS:Write reque,$t through I-bus, into its loc~iWtite:'Buffer.
"""l .' . .; .. ,' : ',,_ ' .. t ;'

- T~e local MRS will send th.~ddressand"write enabJe'tp'tHe,target MSU.

• TVvo~~data"out . paths" provide~~:,
'j One for each SOS.

AMDAHL INTERNAL USE ONLY

5-51

AM 3493

1.

2.

4.

5.

5-52

AMDAHL INTERNAL USE ONLY AM 3493

	001
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-08a
	2-09
	2-09a
	2-10.0
	2-10.1
	2-10.2
	2-10.3
	2-10.4
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19.0
	4-19.1
	4-19.2
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	4-40
	4-41
	4-42
	4-43
	4-44
	4-45
	4-46
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13.0
	5-13.1
	5-13.2
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27.1
	5-27.2
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	5-37
	5-38
	5-39
	5-40
	5-41
	5-42
	5-43
	5-44
	5-45
	5-46
	5-47
	5-48
	5-49
	5-50
	5-51
	5-52

