DAP Series

APAL
Language

i

ii

AMT endeavours to ensure that the information in this doc-
ument is correct, but does not accept responsibility for any
error or omission.

Any procedure described in this document for operating AMT
equipment should be read and understood by the operator
before the equipment is used. To ensure that AMT equipment
functions without risk to safety or health, such procedures
should be strictly observed by the operator.

The development of AMT products and services is continuous
and published information may not be up to date. Any partic-
ular issue of a product may contain part only of the facilities
described in this document or may contain facilities not de-
scribed here. It is important to check the current position
with AMT.

Specifications and statements as to performance in this docu-
ment are AMT estimates intended for general guidance. They
may require adjustment in particular circumstances and are
therefore not formal offers or undertakings.

Statements in this document are not part of a contract or
program product licence save in so far as they are incorporated
into a contract or licence by express reference. Issue of this
document does not entitle the recipient to access to or use of
the products described, and such access or use may be subject
to separate contracts or licences.

Technical publication man005.03
First edition June 1987

Second edition October 1987
Third edition 3 October 1983

Copyright © 1988 by Active Memory Technology

Publications Manager

Active Memory Technology Ltd
" 65 Suttons Park Avenue

Reading
Berks, RG6 1AZ, UK

Tel: 0734 661111

man005.03

No part of this publication may be reproduced in any form
without written permission from Active Memory Technology.

AMT will be pleased to receive readers’ views on the contents,
organisation, etc of this publication. Please make contact at
either of the addresses below:;

Publications Manager

Active Memory Technology Inc
16802 Aston St Suite 103
Irvine

California, 92714, USA

Tel: (714) 261 8901 ,

iaArT

iii

Preface

This manual describes the Array Processor Assembly Language (APAL), which represents the
lowest level at which a DAP-series machine can be programmed; the manual covers the use of
APAL with all models in the DAP-series range. ‘

Although this manual is a definitive reference for the syntax of APAL, chapters 1 to 12 are in-
tended to be read serially as an introduction to the language (although you should preferably have
some experience of assembly language programming in general); appendix F describes the APAL
instruction set in alphabetical order. After you have studied chapter 1, you may find it helpful to
look at the examples in appendix C, to get an impression of the style and level of programming of
APAL before you continue with the detailed description in chapter 2 and onwards.

Descriptions of features of the language are given in two parts: the first part is a formal syntactic
definition of the language feature, and the second part is a description of its semantics.

Chapter 1 describes the architecture of a DAP-series machine. Chapter 2 describes the format
of APAL source text. Chapter 3 describes the structure of an APAL source module. Chapter 4
describes the declaration and initialisation of data. Chapter 5 describes the declaration of code
sections. Chapter 6 describes the APAL instruction set. Chapter 7 describes the various modes
of addressing possible in APAL. Chapter 8 describes the run-time tracing facility. Chapter 9 de-
scribes code section conventions and mixed language programming with FORTRAN-PLUS, the
superset of FORTRAN 77 implemented on DAP-series machines. Chapter 10 describes miscella-
neous assembly-time facilities such as listing control. Chapter 11 describes assembly-time facilities
such as conditional assembly and textual substitution. Chapter 12 describes the APAL macro
facility.

The preparation of a DAP program involving APAL routines is described in the AMT manual
DAP Series: Program Development; consult the version of the manual appropriate to your host
system.

Other relevant AMT manuals are:

DAP Series: Introduction to FORTRAN-PLUS (man001)

DAP Series: FORTRAN-PLUS Language (man002)

Syntax and semantics
Both the syntax and the semantics of the various APAL code statements are covered in the manual

at the appropriate places. To get a full understanding of how to use a particular statement you
need to read both the syntax and semantics sub-sections covering the statement.

APAL Language - man005.03 1

iv

The formal syntax of APAL is defined using Backus-Naur form (BNF), with the following exten-
sions:

e <entity >? means that <entity > is optional; <entity > may occur once, or not at all

e <entity >* means that <entity > may occur several times, or not at all

As usual with BNF notation, items printed in capitals in the syntax (terminals) are to be included
in your code exactly as they are stated in the syntax; items printed in lower case and enclosed
within ‘< >’ - such as ‘<entity>’ above (non-terminals) — are to be replaced in your code by an
appropriate terminal.

In the semantics of a statement, terminals are also printed in capitals, non terminals in italics.

For example, the semantics of the data header statement is given in section 4.1 as:
DATA section-name name-property common-property write-property
An actual data header you might have in your APAL code might be:

DATA FREIDA HOST COMMON WRITE

where:
FREIDA is the name of your data section

You are specifying a name property of HOST; that is that you want the data to be available
for reference in a call in a host program interface subroutine

You are specifying the common-property COMMON; that is that the data in the section is to
occupy a common area in store with other data sections in different code modules, but which
have the same data section name and have the COMMON property :

You are specifying that you want write as well as read access to the data

See chapter 4 for fuller details of data headers!

iv man005.03 AMT

Contents

1 The architecture of DAP-series machines
1.1 The DAP Beries . .« v v v v v v v v e e v s oottt s e e e s
1.2 The PEmatriX . . . v ¢ v vt v i et v e vt bt v o e a s oot o n s ne e
13 The DAP cOde MEMOLY . . v v v v v v v v o v v o v ottt o et v o oo n o s v s v
14 The DAP array store o v v v v v v vt v v o v s e e vt e m st e s e
1.5 Data mapping and number representation 0o
1.6 Processorelement functions e e e
17 The MCU .. .t it it et e it ettt it e e s e e
1.8 MCU registers and theedgeregister
1.9 DOI0OPS & v v v vt it ot it s e e e e e e e
110 C-and Vflagst P e e e e e e e e
1.11 Arrayedge dimensions o .. oo e

2 APAL source program format

2.1 Character set . . . v v v v v o v bt e e e e e e e e e e
p O B 2 7 I I
2.1.2 Semantics . « v v v vt e e e e e e e e e e e e e
2.2 Identifiers P e e
221 Symax . . . v i e e e e e e e e e e
22,2 Semantics i it et e e e e e e e e e e e e e s
APAL Language man005.03

10
11
11
12

13
13
13
14
15
15

15

vi

vi

23 Formatofdatavalues
23.1 Integervalues.......................
232 Realvalues0....
2.3.3 Hexadecimalvalues.
234 Charactervalues

24 Continuationlines

25 Comments.' i in e,
25.1 Symtax.,
252 Semantics,

APAL source program structure

3.1 Declaring an APALmodule
311 Syntax.t e e e
312 Semantics

3.2 Scopeofidentifiers

4.1 Declaringadatasection
411 SYMEAX . .ttt
412 Semantics

42 Declaringdata
421 Syntax............ ...,
422 Semantics,

4.2.3 Representation of values in the array store

43 Dataidentities
43.1 Syntax........... ...,
43.2 Semantics

man005.03

CONTENTS

AMT

CONTENTS

5 Code sections
5.1 Declaring a code

5.1.1 Syntax.

SECHION . & . vt e e e e e e e e e e e e e e e e

......................................

5.1.2 Semantics . . v v v v vttt e e e e e e e e e e e e e e e e s .

5.2 Codesection contents v v v v v it i e e e e e e e e e

5.2.1 Declaring

entIy POINES . . v v v vt e e e e e

5.2.2 APALINStructions v v v v v i v it e e e e e e e e e e e

5.3 Mixed sections

6 APAL Instructions
6.1 Instruction fields

6.1.1 The OPE

......................................

......................................

.....................................

RATIONfield i it

6.1.2 The MCURfield i i i i i i e e i e e e e e e

6.1.3 The MODfieldo it it i e

6.1.4 The ADDR,INT and WORDfields

6.1.5 The INCREMENT/DECREMENT and STEP TYPE fields

6.1.6 The DIRECTION and GEOMETRY fields e

6.1.7 The LITERALfield i,

6.1.8 The CODE ADDRESSfield

6.2 Theinstruction Set v v v v v v i et e e et e e e e e e e

6.2.1 Introduction ¢ i i v i it i e e e e e e e s

6.2.2 Group 0
6.2.3 Group 1
6.2.4 Group 2
6.2.5 Group 3
6.2.6 Group 4

6.2.7 Group 5

APAL Language

......................................
T T T T T S S R L T e L I
......................................
......................................
......................................

......................................

man005.03

vii

43
43
43

44

44
45
45
46

46

47
47
48
48
49
49
49
50
50
51
51
51
52
52
52
53
53

54

vii

viii CONTENTS
628 Group 6 54

8.29 Group 7 e 54

8.210 Group 8 e e 54

6.2.11 Group 9 it i e e 55

6.2.12 Group 10 e e 55

6.2.13 Group 11 e 56

6.214 Group 12 e e 56

6.2.15 Group 13 e e e 56

6.216 Group 14 e e e 57

6.217 Group 15 e e e e e 58

6.2.18 Pseudoinmstructions 58

7 Addressing 61
7.1 Addressingmodes, 61
7.1.1 Mode A : ADDR, INT evaluated separately 63

7.1.2 Mode B : carry propagates from INTto ADDR 65

713 ModeC:wordaddress0..00uu.... 66

7.1.4 Mode D : direction, geometry andcount 68

715 ModeE:DOloopecountouiivimunumennn... 69

716 Mode F:EXITinstruction0covuu.... 69

72 Modifierregisterformats, 69
7.2.1 Array store plane and row, column, word or bit number modifier 69

7.2.2 Di-rection, geometry and count modifier 70

723 DOcountmodifierv.... 70

724 Instruction addressmodifier 71

73 Addressingcomstructs 71
7.3.1 Specifying modifier registers 71

7.3.2 Specifying DO loop stepping oo it 72

73.3 Arraystoreaddresses 72

viil man005.03 AMT

CONTENTS

734 Registerbitaddresses o

7.3.5 Codestore addresses v v v v v vt v e e e e e e e

8 Tracing facilities

8.1 The TRACE statement e e e e e e e e e e e

811 SYMbaX . . . v e e e e e e e e e e e e e e e

8.1.2 SemantiCs . . v v v v v e

8.2 Formatofitemstobe TRACEd. ¢ i i i it s i vt i i et e

82.1 WORDPACK format . . . v v v v v v v vt et ettt bt e e o

822 ROWPACK format v v i i i i i it i e it et e et v e s v a

823 VERTICALformat v v v v v v v e v e et et e e e it e oo o as

83 Examplest ittt e e e e e e e e

9 Code section conventions

9.1 Imtroduction v & v v i v it e e e e e e e e e e e e e e e e e e e

9.1.1 Run-timestructure ¢ o o v i i i i e e e e e e e e

9.1.2 Standard macro facilities

............................

9.2 Entryandexit conventions ooy

9.2.1 Entryconventions ittt it

022 Exitconventions . . . v v v v v v v v b v e e e e e e e e

023 Parameter aCCe88 . . v v v v v v e e e e e e e e e e e e e e e

9.3 Areas of the DAP available to a code section

......

...............

0.3.1 FreenameSPaCe v v v v v v o v u s e e e e e

9.3.2 Workspaceo i i e e e e e e

9.3.3 Other array store locations

9.3.4 PE register planes, MCU registers and the edge register

APAL Language

man005.03

...........

74

75

7
77
77
78
81
81
81
82

82

83
83
83
84

84
85
85
86
86
86
87

87

ix

X CONTENTS
94 Calling anothercodesection 87
94.1 Creatinganamespace v v v v vt bt i e e 87

94.2 Calling the routinebyname 88

94.3 Calling the routinebyaddress 88

94.4 Completeexample 89

9.5 Calling an APAL code section from a host routine 90
9.5.1 Passing data between the host and APAL routines 90

9.6 User-definedconventions 91
10 Miscellaneous facilities 93
10.1 Accessing standard bit patterns 93
1011 "BINARY_CHOP oottt i oo 94

10.1.2 "UDBASEo i i e e e 94

10.1.3 "UNITDIAG e e e e e e e e e e, 94

10.1.4 "TRAILDIAG ittt e e i e i 95

10.1.5 ’ALTERNATE 95

10.1.6 "LOWER.TRI e e 96

10.1.7 SHUFFLE it e i e e e e e e e 96

10.1.8 "UNSHUFFLE ittt ittt et e e e e e e e 96

10.2 Incorporating source from alternativefiles 97
10.3 Requesting stackspace i 97
103.1 Syntax0 vt o e e e e e e e e 97

103.2 Semantics e e e e e 97

10.4 Controlling the output listing 98
104.1 The LIST statement, . 98

10.4.2 The NOTE statement e 99

X man005.03 AMT

CONTENTS

11 Substitutions and conditional assembly

11.1 Assembly-time values.
11.1.1 Syntax.
11.1.2 Semantics

11.2 Assembly-time variables . . .
11.2.1 The VAR statement .
11.2.2 The SET statement .

11.3 Substitutions
11.3.1 Syntax.

11.3.2 Variable substitutions

..............................

..............................

..............................

..............................

..............................

..............................

..............................

..............................

..............................

11.3.3 Expression substitutions oo o

11.3.4 Section substitutions .
11.3.5 Plane substitutions . .
11.3.6 Row substitutions . .
11.3.7 Column substitutions

11.3.8 Word substitutions . .
11.3.9 Substring substitutions
11.3.10 Length substitutions .

11.3.11 Repeated substitutions

..............................

..............................

..............................

11.3.12 Concatentation within substitutions

11.4 Conditional assembly

11.4.1 The IF construct . . .

..............................

11.4.2 Assembly-timeconditions o i it v e

12 Macros
12.1 Defining macros.
1211 Syntax
12.1.2 Semantics

12.1.3 The ERASE statement

APAL Language

..............................

..............................

..............................

man005.03

101
101
102
102
104
105
106
106
107
107
109
110
110
111
112
112
113
117
118
119
120
121

123

127
127
127
128

131

CONTENTS

122 Calling Macros . . . v v o vt e e e e e e 131
1221 SyntaX . . . o 0 o e e e e e e 131
12.2.2 Semantics e 131
12.2.3 System variables associated withmacros L. 134

123 Leaving macros ittt e e e e e 134
123.1 The MEND statement 134
123.2 The MEXIT statement i i i vn i in ... 135
12.3.3 The MQUIT statement v v vt v e e 135

12.4 Parameter substitutions, 135
1241 Syntax o v e e e e e e e e 136
1242 Semantics L e e e e 136

125 Macrovariables e 138
125.1 The MVARstatement unn... 138
12.5.2 The MSET statement v v vt it i e .. 139

12,6 The CYCLE comstTuct v v v vt it e e i it e e e e e e e e e 140
12.8.1 Syntax vttt e e e e e e e e e 140
126.2 Semantics e e e e 140

12,7 Macrocomments it e e e e e 142
12,71 Syntax . . . o o o e e e e e e e e 142
1272 Semantics e e 142

12.8 Exampleof asimplemacro 143

APAL Keywords 145

A.1 APALinstruction mnemonicst i i it it 145

A.2 System variables and functions e e e e e e e e e e e e e 146

A3 Otherkeywords i it e 147

man(}N5.03 AN

CONTENTS xiii

B Character set 149
C Examples of APAL code - 151
C.1 Code fragment for matrix addition 151
C.2 Code fragment to extract and broadcast rows from array store 152
C.3 A fragment using macro facilities 153
C.4 Complete program: Conway’s Gameof Life 153
D APAL syntax 161
D.l Basicelements oo oo v vt v v m vttt n ot e s 161
D2 Comments . . . v v v v v v v v vt et e e e e e e e e 162
D.3 Substitutions i i i i e e e e e e e 162
D4 Assembly-timevalues.t i e 163
D.5 Assembly-timestatements L e e 164
D.6 Macros . . B P 166
D.7 Values . v v v v v v e et e e e e e e e e e e e e e 168
D8 Identifiers v v v v i it e e e e e e e e e 168
DO Modules v v i vt i e e e e e e 168
D.10Dataidentities 0 e e e e e e e 169
DilDatasections v v v v it v e e e e e e e s 169
DI2Mixed Sections . . . v v v v v vt et e e e e e e e e s 170
D.13Codesections . . « v v v v v v i e e e e e e e e e e e e e 170
D.14 Trace Statements . . . « . v v v v v e v e e e e e e e 171
D.15 Addresses and instruction fields L o o oo oo 172
E Derivation of APAL instruction mnemonics 175
F APAL instructions 179

Index 381

APAL Language man005.03 Xiil

man005.03

CONTENTS

AMT

Chapter 1

The architecture of DAP-series
machines

This chapter describes the architecture of the whole range of DAP-series machines, and in particular
those components of the architecture that are relevant to a programmer using the Array Processor
Assembly Language (APAL).

1.1 The DAP series

The AMT DAP series of machines is the latest generation of a parallel processing architecture
based on a ‘distributed array of processors’ (DAP). A DAP-series computer is connected to its
host machine as an attached processor. A simulation system is also available, which enables you
to develop and run programs in the absence of DAP-series hardware.

(In order to help you make easy reference to the accompanying figures, the text starts again on
the next page.)

APAL Language man005.03 1

Chapter 1: The architecture of DA P-series machines

DAP bus
host interfaces
Host R
connection | Code
unit memory
(HCU)
Master
’ | control
. | unit
high speed interface(s) (MCU)
)
AN I
1} i [}
...... B A
it X% S I -
1} peemeeedetann- Lo e
])) d [
P /I
1 4 1
{i1| Video . Array ‘i“ay
{11| output (ESx ES PEs) || Store
L « > /l
ta
[_/
1/0 coupler(s)
Figure 1.1 Block diagram of a DAP-series machine

manf(iN5 N2 AMT

1.1: The DAP series 3

Figure 1.1 is a block diagram of a DAP-series machine. The backbone of all DAP-series machines
is the DAP bus, an internal synchronous 32-bit multiplexed bus, into which the various component
parts of the machine are connected.

The main computing resource in the DAP is the array or matrix of processor elements (PEs),
which is closely connected to an array store that holds the data to be processed. A DAP-series
machine achieves its high performance by having each processor element operate in parallel with
all other processor elements; each element operates on its local data, subject to local (or activity)
control when required.

The processors are arranged in a square matrix; the number of processors on one side of the square
gives the edge size of the machine; AMT uses ES to signify edge size. The different ranges of
machines in the DAP series are characterised by the value of ES. For the DAP 500 range, the
array is a square matrix of 32 by 32 PEs — an ES of 32; for the DAP 600 range, ES is 64, and so
on. Note that the edge size is a power of 2, the exponent being the first digit in the DAP model
number (the other digits in the model number being the clock speed in MHz, with the memory
size in Mbytes after the hyphen) so the DAP 600 range has an array size of 26 by 25 PEs, and so
on for other ranges in the DAP series.

The array (the array of PEs or PE array) acts under the control of the master control unit (MCU).
The MCU fetches and decodes instructions held in the separate code memory, broadcasting address
and control information to all the PEs in parallel, along with data in some cases. The MCU also
has facilities for integer scalar operations. Typically, the code memory is 0.5 Mbytes or more; the
array store is ES? x 32 K-bits or more, 16 Mbytes for the DAP 600 range for example.

The interconnection to the host computer is controlled by the host connection unit (HCU). Connec-
tion to the host is via any one of the 3 host interfaces, with the other 2 being available for low and
medium speed data input and output. Communication between the host and your DAP program
is managed for you by AMT-supplied library routines (see DAP Series: Program Development for
further details), so the presence of the HCU is invisible to you as a user.

The design of the DAP-series caters for up to 4 high speed interfaces, for video or other high band-
width requirements, with an available bandwidth of 50 Mbytes/sec, or higher in some situations.
The set of I/O couplers fitted to any particular machine will depend on customer requirements.
Note that the high speed input/output capability allows you to transfer data in and out of the
array store at high speed, but it does not allow high speed transfers onto the DAP bus which only
supports data transfers up to a few Mbytes/sec.

A program which runs on a DAP-sgeries machine is called a DAP program. An associated program
written in a conventional language is used on the host. This host program is entered first and
is then responsible for starting the execution of the DAP program, and for data transfers to and
from the DAP-series machine, using special interface subroutines. The preparation of a DAP
program, and the interface subroutines, are described in the AMT manual DAP Series: Program
Development. Different versions of this manual are available for each of the host operating systems
under which AMT supports DAP operation.

Facilities also exist for a DAP program to read or write host filestore, and to communicate with
peripherals connected directly to the DAP-series machine; consult AMT for further details.

You can write a DAP program in APAL, which is the subject of this manual, or in FORTRAN-
PLUS (see DAP Series: FORTRAN-PLUS Language), or in a mixture of the two. If an APAL code
section communicates with FORTRAN-PLUS or a host program, there are certain conventions to
be followed; these are given in chapter 9. You can write the host program in any language or

APAL Language man005.03 3

4 Chapter 1: The architecture of DA P-series machines

mixture of languages supported by the host operating system; however, if you want to use the
special AMT-provided interface subroutines, you will find things are simplified if you write the
calling sections in FORTRAN. For generality, the term FORTRAN as used in this manual is
intended to include FORTRAN 77.

As with many other computer systems, more than one user program can be resident in the DAP at
the same time, although only one program can be running at any given time. Each user program
is allocated a contiguous range of code memory addresses and a contiguous range of array store
addresses. Allocation of these resources is made by the HCU, and the running of individual user
programs — on a time-slice-per-user-program basis — is scheduled by a supervisor program resident
in the MCU. For further details of DAP’s multi-programming facilities see DAP Series: Program
Development.

1.2 The PE matrix

Figure 1.2 opposite shows a simple conceptual diagram of a DAP. As described briefly above, the
parallel processing capability of a DAP-series machine is provided by a square matrix of ES by
E'S processor elements (PEs), with ES taking the value 32 for the DAP 500 range, 64 for the
DAP 600 range, and so on. Each PE is capable of performing arithmetic and logical operations on
operands that are single bit values.

In APAL the rows and columns of the PE matrix are each numbered from 0 to ES — 1, as shown in
the figure. (In FORTRAN-PLUS they are numbered 1 to ES). The edges of the array are referred
to as North (row 0), East (column ES — 1), South (row ES — 1), and West (column 0).

Each PE is connected to the four neighbouring PEs in the north, south, east and west directions.
Using these connections, data can be shifted from a register of each PE into the corresponding
register of a neighbouring PE; a north shift means that data is shifted to the north.

1.3 - The DAP code memory

The object code of a DAP program derived from APAL or FORTRAN-PLUS source resides in a
separate code memory. The code area of a DAP program is delineated by hardware datum and
limit registers, which are inaccessible to you, the user. You are concerned only with instruction
addresses relative to the datum. If you try to use instruction addresses above the value in the limit
register, or negative memory addresses (below the value in the datum register), you will cause a
run-time error. The actual size of the code memory depends on the actual DAP-series machine
concerned, but it will hold at least 128K instructions (512 Kbytes).

1.4 The DAP array store

Each of the ES by ES PEs has a local memory whose size depends on the actual DAP-series
machine concerned, but is at least 32K (= 32,768) bits. The sum total of this PE storage is
referred to as the array store, and is at least ES? x 32 K-bits, 4 Mbytes for the DAP 500 range
for example.

4 man005.03 AMT

1.4: The DAP array store 5

typical processor element (PE)

PE matrix s
(ES x ES PES) 0T

Array store
an array store plane

at least —
32K planes N one bit in an

array store plane

I local memory for
typical PE
0 ES-1
North
0
i
West East
J gkl «TOW I

Bt T

South t
column j

Figure 1.2 PE matrix and array store

APAL Language man005.03 5

6 Chapter 1: The architecture of DA P-series machines

The array store is best regarded as a three dimensional array of bits, as shown in figure 1.2, and
consists of at least 32K memory planes.

A DAP word is 32 bits, so each memory plane can be looked on as ES rows of either ES bits or
ES/32 words. Alternatively, an array plane can be considerd as ES columns of ES bits or ES/32
words. For example, for the DAP 600 range of machines, each memory plane can be described as
64 by 64 bits, or 64 rows of 64 bits each, or 64 rows of 2 words each, or 64 columns of 64 bits, and
so on. Word 0 of each row is the most significant 32 bits of the row, so for example, on DAP 600
word 0 is bits 0 to 31 of the row, and word 1 is bits 32 to 63. The PE array maps onto the array
store in such a way that the local memory for PE; ; consists of bit; ; of each memory plane.

Data can be transferred between the host and the array store in units of words, with one row of
array store consisting of £S/32 words. The last (or only) word of each row is regarded by both
DAP and host as immediately preceding the first word of the next row. The last word of a memory
plane is regarded by both the DAP and the host as immediately preceding the first word of the
next memory plane.

The array store holds the data of the DAP program. A single user program has a block of contiguous
memory planes in array store; this block is delineated by hardware datum and limit registers which
are inaccessible to you, the user. You are concerned only with memory addresses relative to the
datum, that is, memory planes are numbered from zero, starting with the plane addressed by the
datum register. If you try to access data outside the range defined by datum and limit, you will
cause a run-time error.

The two blocks of code and array stores assigned to your DAP program are known collectively as
the DAP program block; its structure is shown in figure 1.3.

You can use planes 0 to 119 freely as workspace. Planes 120 to 127 are reserved for the run-time
system and must not be written to. Certain literal values (created implicitly by some of the APAL
instructions) occupy plane 128 onwards along with any APAL or FORTRAN-PLUS data sections
declared to be read-only.

The stack area is managed by software according to conventions described in chapter 9. The size
of the stack area is determined during the consolidation phase; it can be controlled by parameters
input by you at consolidation time (for more details see the version of DAP Series: Program
Development relevant to your host system).

1.5 Data mapping and number representation

You control the mapping of data onto the array store. Two mappings that are particularly well
suited to the structure of DAP-series machines are:

e Vector (or horizontal) mode, in which successive bits of a data item are mapped onto suc-
cessive bits of a single store row

e Matrix (or vertical) mode, in which successive bits of a data item are mapped onto the same
bit position in successive store planes

These mappings correspond to FORTRAN-PLUS vector and matrix storage modes respectively
(see DAP Series: FORTRAN-PLUS Language).

6 man005.03 ‘ AMT

1.5: Data mapping and number representation

Code memory Array Store

plane
datum datum 0
code

Kimit workspace
119
120

control

127

literals and

read only data
read only

host common

read [write
host common

read /write data

stack

limit

Figure 1.3 DAP program block

APAL Language man005.03

8 Chapter 1: The architecture of DA P-series machines

Because of the bit orientation of its hardware, a DAP-series machine is not committed to any
particular representation of data. In general, a DAP-series machine regards data simply as arrays
of bits, the interpretation of which (as fixed or floating point numbers, for example) is entirely
dependent on software. However, you should note the following exceptions to this independence:

e The hardware supports arithmetic operations on 32-bit signed integers (2’s complement) in
the MCU registers

e The hardware supports the parallel addition of ES pairs of up to ES-bit integers held in the
array

1.6 Processor element functions

Figure 14 is a simplified diagram of one processor element (PE) showing its main functional
components.

Each PE has three one-bit registers, denoted A, C and Q, each of which can be clocked or not,
depending on the instruction.

The C- and Q-registers are input to an adder. Depending on the specific instruction either or both
of these inputs can be treated as False (using AND gates, not shown in the figure).

The third adder input is selected by a multiplexor and can come from the PE’s memory via the
S register, the outputs of the Q- or A-registers, data broadcast by the MCU in either ‘row’ or
‘column’ orientation, or the carry output of a neighbouring PE. For each of these input sources,
except the neighbour carry output, there is the option of inverting the multiplexor output using
an Exclusive-OR gate (not shown in the figure).

The A-register also receives its input from this multiplexor, and it may either be written in directly
or AND-ed (masked) with the existing A-register contents; this gating at the input to the A- register
is not shown.

PE outputs may be written to memory, and in some instructions this writing is conditional on the
value in the A-register, which thus acts as an activity control. With some instructions, there is the
option of writing to just one row or one word of memory rather than to the entire plane.

The D-register shown in the PE diagram does not appear explicitly in the APAL programmers
model of the PE, but is used for input or output under control of the fast input/output hardware.

Instructions that perform activity-controlled write-to-memory achieve their effect by performing
a memory read-modify-write sequence. Clearly a register is needed somewhere in this path; the
details are implementation dependent, but an example of such a register is shown as S in the
diagram; again this register does not appear in the APAL programmer’s model.

1.7 The MCU

The Master Control Unit (MCU) performs the following functions:

® Instruction fetching, decoding, and address generating

8 man005.03 AMT

1.7: The MCU 9

N to neighbouring PEs
w E
S
« A
r 3
» A Ll >
‘carry’
from 11
neighbouring >
PEs 1 \ to row and
- ey COlumn
responses
A 4 | C \
M | M
Ne—s| U u A
S i i \ ﬁ carry i e
4
w P LI, > d p > . m
1 e 1 o
TOW =i @ r sum R e Y r
column—»} X N Tl X y
o o
of T o T
L Y
Q _—
| |-—D r
- - - S >
A A [
from MCU from to
3 South =1+ D }»r+ North
neighbour Y neighbour
Figure 1.4 Simplified diagram of a processor element

APAL Language man005.03 9

10 Chapter 1: The architecture of DA P-series machines

e Executing certain instructions, and broadcasting other instructions to the PE matrix for
simultaneous execution by all PEs

¢ Providing fourteen 32-bit MCU registers to hold program data and addresses (see section
1.8)

e Transmitting data between the array store or the PE array, and the MCU registers
e Providing hardware support for APAL DO loops (see section 1.9)

e Supporting data transfers between the DAP and the host filestore or attached peripheral
devices

1.8 MCU registers and the edge register

The MCU has fourteen 32-bit general-purpose registers that are visible to the low level programmer.
There is another register, the edge register, whose size matches the size of the array edge (that is,
ES bits). For example, in a DAP 600, the edge register is 64 bits wide.

Registers can be loaded in various ways from the array store or PE array, or a register’s contents
can be supplied as data to the memory or PEs. Logical and arithmetic operations are available to
operate on the registers. Instructions can test the registers and SKIP on certain conditions, or use
them to hold link values for subroutine entry and exit.

You can use a register’s contents to modify addresses or values; a register being used in this way
is referred to as a modifier register.

In more detail, the functions of the registers are:

e MO to M13 are general purpose registers, which can hold link values or data, and be operated
upon by MCU arithmetic or logical functions. You can also transfer the contents of these
registers to or from the array

e M1 to M7 can always be used as modifiers. Register MO is not generally available as a
modifier, since value 0 in the instruction modifier field is interpreted as no modification;
the exception is EXIT, where an instruction address rather than a data address is modified.
For the DO instruction, you can use registers M1 to M13 as modifiers for the loop count.
Instructions J and JE can use M1 to M13 as modifiers :

e ME is the edge register, and is matched in size to the array edge size of ES bits. In a
DAP 500 range machine, ME is the same size as the other registers; in all other ranges of
DAP machine, ME is larger than the other registers. The ME register is regarded as being
part of the array and can be used as the source or destination of data transferred to or from
the array; it cannot in general take part in MCU arithmetic or logical operations or act as a
modifier register

Registers MO to M13 are referred to as MCU registers. You should NOT regard register ME, the
edge register, as an MCU register.

In any DAP-series machine, the bits within an MCU register are numbered 0 to 31; within the
edge register they are numbered 0 to ES — 1. Bit 0 is the most significant bit for both the edge

10 man005.03 AMT

1.9: DO loops 11

and MCU registers. When data is copied from a register to an array plane, the least significant bit
in the register is aligned with the least significant bit in the row or column of the plane, and the
register bits transferred across to similarly positioned bits in the row or column. When an MCU
register is being used, the remaining ES - 32 bits (if any) in the row or column are zero-filled;
when the edge register-is used, no zero filling is necessary.

When data is transferred between an array plane and a register you can write the entire ES
bits into the edge register, but only the least significant 32 bits into an MCU register (the most
significant ES — 32 bits, if any, are discarded). Some instructions allow you to address a 32 bit
word in the array and to transfer the contents of that word to or from an MCU register (but not
to or from the edge register).

1.9 DO loops

A ‘DO loop’ is a sequence of instructions, invoked by a hardware DO instruction, which is executed
a specified number of times, unless a premature exit is taken.

Instructions in a ‘DO loop’ can, on successive iterations of the loop, access successive bit-planes,
rows, columns or words of memory, or bits in an MCU register or the edge register. This process
is referred to as ‘address stepping’. It is implemented by adding the DO loop iteration number
to, or subtracting it from, addresses or values (which can also have the contents of a modifier
register added) to give the addresses or values that are ‘effective’ for that particular execution of
the instruction. The result of address generation can thus have ‘effective ADDR’ (that is, bit-
plane number), ‘effective INT’ (that is, row, column or bit number) and ‘effective word address’
components. The address generation process is fully described in section 7.1. The iteration number
used for address stepping is zero in the first pass of the loop and is incremented at the end of each
pass of the loop. Some instruction types can apply this stepping in one of two ways - see section
7.1.2 for more details.

1.10 C- and V-flags

Each of the C-flag (Carry) and V-flag (Overflow) is a 1-bit flag written to by MCU scalar instruc-
tions; the flags are normally thought of as holding Boolean values.

The C-flag is affected as follows, the operands being regarded as 32-bit unsigned values:

e For addition, the C-flag is the same as the Carry-out of the most significant bit of the sum

e For subtraction, if operand 2 is less than or equal to operand 1, the C-flag is set to True
(that is, 1); otherwise it is set to False (that is, 0). Hence C is the inverse of ‘borrow’

Some variants of add and subtract also use the C-flag as the carry-in or inverted borrow-in respec-
tively.

The V-flag is also set according to the result of the above instructions, the operands and result
being regarded for this purpose as 32-bit signed (2’s complement) integers:

e For addition, if the two operands have the same sign, then the V-flag becomes True if the
result sign is different; in all other cases, the V-flag becomes False

APAL Language man005.03 11

12 Chapter 1: The architecture of DAP-series machines

o For subtraction, if the two operands have different signs, then the V-flag becomes True if the
result sign is different from that of the first operand; in all other cases, the V-flag becomes
False

Some of the multiply instructions that return only a single length result set the V-flag according
to the discarded most significant half of the product. For further details see the entries for the
MPY32V and MPYU32V instructions in appendix F at the back of this manual.

1.11 Array edge dimensions

This manual is general to the whole range of DAP-series machines. The design of APAL is such
that you can write source code that is portable across the whole range of DAP-series machines.

The main aspects of the strategy to achieve this edge-size independence are:

e MCU registers are fixed at 32 bits. Thus, when an edge-sized response is returned to the
MCU, all but the least significant 32 bits are discarded. Similarly when data is broadcast,
the MCU register contents are normally extended on the left (more significant end) with
Zeros

e The edge register grows in size to match the array dimension

¢ A DAP word is a 32-bit data item. On DAP 500, words and rows are equivalent; on larger
sized arrays, a word is part of a row, and instructions that transfer a single word to or
from an MCU register are available. If you want to make sure your DAP code is portable
between all edge-sizes of DAP, you should use word addressing rather than row addressing
for accessing scalars and addresses held in array store

¢ Addresses held in modifier registers are always stored in the format of a word address,
regardless of whether the modifier is used by a word access instruction or a row access
instruction. Thus on the larger edge-size arrays, one or more word-within-row address bits
are inserted at the least significant end of the modifier register. In the case of a row access,
any word-within-row bits of the modifier are ignored.

If you want your code to be portable between all edge sizes of DAP, rather than trying to
specify address modifiers directly as literals, you should use instructions RAX and RAW
to construct modifier values that are edge size dependent, and so give you the results you
want for all edge sizes

e The Assembler permits the size of array for which the code is being assembled to be accessed
at assembly time (see section 11.4.2)

12 man005.03 AMT

Chapter 2

APAL source program format

This chapter covers a number of general points concerned with writing a source program in the
Array Processor Assembly Language (APAL).

The characters that can be used in an APAL source program are described in section 2.1.
The format of identifiers in APAL is described in section 2.2.

The format of the various types of data values that can be written in APAL are described in section
2.3.

Continuation lines and comments are described in sections 2.4 and 2.5.

2.1 Character set

2.1.1 Syntax

<character> ::= <basic character> | <special character>

|+ 1=1/71C =11

=|
;1\ |’ (single quotes) | <space> |
I

<basic character> = <letter> | <digit> | [|]]. | < |
H
{131 (grave) |~ (tilde)

c|&|#]£]8] <star> | @
<question> | <vertical bar>

<special character> =1 |~ | % |”

<letter> x==ABICIDIE|IFIGIH]I|J|K|L M|
N[0 [P jQ RIS T UV W XY [Z |
alble|dlel|fighliljfkl|m|
nlofplglrisitfulv|wixly |z

<digit> ==0]1]2|3]4|5]6|7|8]9

<alphanumeric character> = <letter> | <digit> |’

APALIL Language man005.03 13

14 Chapter 2: APAL source program format

<star> ;= *
<vertical bar> ::= |

<question> =7

2.1.2 Semantics

You can write the source text of an APAL program using any of the characters listed in section
2.1.1. The internal hexadecimal representations of these characters are listed in appendix B at the
back of this manual.

You can use a comma as a separator between syntactic constructs in the same way as a space.

For example:
FRED:01 3.14 10
can also be written as:
FRED: 0, 1, 3.14, 10

Note, however, that in certain cases commas are obligatory.

The escape character, * , can be used to alter the way in which certain special characters are
interpreted by the assembler.

The underscore character, _, can appear anywhere in the source text. If it appears within a char-
acter value (see section 2.3.4), it is significant; that is, the assembler treats it like an alphanumeric
character. If underscore appears in any other context, it is removed by the assembler. For example,
the following are all equivalent:

ABCD
ABCD
ABCD

whereas the following character values are all distinct:

” ABCD”
» AB_CD”
» AB_C_D”

Certain APAL instruction mnemonics are commonly written with an underline character to aid
clarity, but this is unnecessary; for example the following are equivalent:

QT.CF
QTCF

Note that the symbols # and £ are equivalent; # is used in this publication.

14 man0N5.03 AN

2.2: Identifiers 15

2.2 Identifiers

2.2.1 Syntax

<identifier> ::= <letter> <alphanumeric character>* |
'<alphanumeric character>*

2.2.2 Semantics

Identifiers are user-defined names that represent instances of various types of entity in APAL. An
identifier is a string of up to 32 characters, the first of which must be either a letter or a single
quotes symbol. Note however, that by convention only system variables and functions (see sections
10.1 and 11.4.2) begin with a single quote. The single quote, the * characater, is also known an
apostrophe, and has the ASCII value of hexadecimal 27.

The remaining characters in the identifer can be any of the alphanumeric characters described in
section 2.1.1. The following are all examples of valid identifiers:

NAME
THIS_IS_AN_IDENTIFIER
'PCOUNT

VARI123A

Note that two identifiers that differ only in the presence of underscore characters are considered
by the assembler to be equivalent. :

Identifiers can be used to represent the following APAL entities:

¢ Modules and module aliases
e Code, data, and mixed sections
e Entry points within code sections
e Data identities
e Data variables
e Code labels
e Assembly-time variables
e Macros, macro parameters, and macro variables
APAL contains no reserved words, although a number of APAL keywords have special signifi-

cance within an APAL program; examples of these keywords include instruction mnemonics and
assembly-time statements. APAL keywords are listed in appendix A.

Since APAL keywords are not reserved words you can use them as identifiers, although in the
interests of clarity you are recommended not to use them. In particular, you should be aware of
the consequences of declaring a macro whose name is the same as an instruction mnemonic or
assembly-time statement (see chapter 12).

APAL Language man005.03 15

16 Chapter 2: APAL source program format

The assembler considers upper and lower case characters to be equivalent in identifiers and APAL
keywords. For example, the following are equivalent:

END_MODULE
Endmodule

2.3 Format of data values
This section describes how the various types of data value that can be manipulated by the assembler
are written within an APAL statement.

You can write integer, real, hexadecimal, or character values in an APAL statement. The internal
representation of these values is described in chapter 4.

You can also write values that are to be manipulated at assembly time; assembly-time values are
described in chapter 11.

2.3.1 Integer values
2.3.1.1 Syntax

<integer value> ::= <unsigned integer> | <signed integer> | <hexadecimal value>
<unsigned integer> ::= <basic integer> | <basic integer>I<basic integer>
<signed integer> ::= <sign>?<unsigned integer>

<basic integer> ::= <digit><digit>*

<sign> =+ | -

2.3.1.2 Semantics

An integer value, in general, can be:

® An unsigned integer value, consisting of a sequence of digits with no intervening spaces,
referred to as a basic integer

* A signed integer value, which is an unsigned integer value that can optionally be preceded
by a + or -

e Either form of the above forms of integer value can be followed by an integer exponent of
the form:

I basic integer

which causes the preceding signed or unsigned integer value to be multiplied by 10", where
n is the value of basic integer.

® A hexadecimal value (see section 2.3.3)

16 man(i5 N3 ARLT

2.3: Format of data values 17

Note

+359 is a signed integer; 359 can be considered as either a signed or unsigned integer. If +359 is
included in an APAL statement where an unsigned integer is expected, you will get an assembly-
time error.

Examples
2349
-812
+4316 _ (equivalent to 43,000,000; or 43 x 10°)
-9I2 (equivalent to —900)

2.3.2 Real values

2.3.2.1 Syntax

<real value> ::= <sign>7<basic integer><exponent> |
<sign>7<basic integer>.<basic integer>?<exponent>? |
<sign>7?.<basic integer><exponent>?

<exponent> ::= E<sign>7<basic integer>

2.3.2.2 Semantics

A real value, in general, can be any of:

e An unsigned real value, consisting of two basic integer values separated by a decimal point.
Either integer value, but not both, can be omitted

e A signed real value, which is an unsigned real value that can optionally be preceded by a +
or —
e Either of the above forms of real value can be followed by an exponent of the form:
E sign basic integer

where sign is optional. This causes the preceding signed or unsigned real value to be multi-
plied by 107, where n is the value of sign basic integer. If this form is used, then the decimal
point can be omitted

Examples
18.
-.427
18.427E2 (equivalent to 1842.7)
142E-1 (equivalent to 14.2)
92.E+2 (equivalent to 9200.0)

APAL Language man005.03 17

18 Chapter 2: APAL source program format

2.3.3 Hexadecimal values

2.3.3.1 Syntax

<hexadecimal value> ::= #<hexadecimal digit><hexadecimal digit>*
<hexadecimal digit> ::= <digit> | A |B|C|D|E|F|a|b|c|d|e|f
2.3.3.2 Semantics

A hexadeximal value is written as the # character followed by a sequence of hexadecimal digits.
A hexadecimal value can be used wherever an integer value can appear.

Examples
#9 (equivalent to 9)
#A (equivalent to 10)
#1F (equivalent to 31)

2.3.4 Character values
2.3.4.1 Syntax

<character value> ::= ” <value character>*”

<value character> ::= <basic character> | “<special character>

2.3.4.2 Semantics

A character value is written as a sequence of characters enclosed within double quotes (”). Any
of the characters listed in appendix B can be included in a character value, except for the four
characters:

' %”

which have special significance for the assembler and are therefore called signifier characters. A
signifier character can be included in a character value by preceding it with the escape character
“ ; the escape character itself is removed by the assembler and does not appear in the value. The
escape character can also precede a character that is not a signifier character and will be removed
by the assembler, but it cannot be the last character in a character value.

Examples
” ABCD” (character value ABCD)
”AB * %CD” (character value AB%CD)
"AB*”CD”" (character value AB”CD)
»AB* ~CD” (character value AB ~ CD)

»AB" " *“%CD” (character value AB * %CD)

18 man005.03 ArLm

2.4: Continuation lines 19

2.4 Continuation lines

Any APAL statement, as defined in section 3.1, can be continued onto any number of succesive
continuation lines. A line is recognised as a continuation line if it contains a hyphen in the first
character position of the line. In the formal syntax of later chapters, the entity <newline> implies
the new line character at the end of the last continuation line (if any) of the statement in question.

A source line or continuation line can contain at most 80 characters.

Note that an identifier, a value, a string, or a substitution (see chapter 11) must appear wholly on
a single line.

2.5 Comments

2.5.1 Syntax

<comment> = | <comment character>*

<comment character> ::= <basic character> | ~<special character>

2.5.2 Semantics

An APAL program can be documented by the use of comments. The start of a comment is
indicated by the ! character; a comment is always terminated by the end of the line. A line
can consist entirely of comment. A comment can be used in a statement involving continuation
lines but the comment is not itself continued, although further comments can be added to the
continuation line(s). For example:

SVAR = 126 + ! PUTS 12.6 PLUS CONTENTS OF VARIABLES
~ SSTART + ! SSTART

- SEND ! AND SEND

‘ ! INTO SVAR

A comment can include text consisting of any of the characters specified in section 2.1.1.

Note that the ! character is always recognised as signifying a comment, except in the following
cases:

e When ! appears within a character value (see section 2.3.4)

e Within a string when it is preceded by “ (see chapter 11)

Substitutions can take place within comments (see chapter 11).

APAL Language man005.03 19

20

20

man005.03

Chapter 2: APAL source program format

AMT

Chapter 3
APAL source program structure

The APAL assembler processes files of APAL source. These files are first read by a pre-processor,
which can insert the contents of other source files where specified by a file include statement. Such
included files can include other files up to a maximum nesting level of 16. The interface to the
assembler and the file include facility are described in DAP Series: Program Development; see the
version of the manual relevant to your host system.

APAL source text can be interspersed with assembly-time variable definitions or expressions (see
chapter 11) and macro definitions or calls (see chapter 12). These definitions are not considered
to be part of a module declaration; however, after the effects of such statements have been taken
into account, a module declaration must follow the pattern described in chapters 3 to 5. Note that
the exact position-of an assembly-time variable declaration or macro definition in the source text
can affect its scope (see section 3.2).

Each APAL module declaration processed by the assembler results in one CIF module (Consolidator
Input Format) as part of a CIF file suitable for input to the DAP linker. The output from the
linker is a single DOF file (DAP Object Format) which can be loaded into the DAP code and array
stores to form part of the user’s DAP program block. Management of CIF files and use of the
DAP Consolidator are described in DAP Series: Program Development.

This chapter describes:

o How you declare an APAL module
e The contents of an APAL module

o The scope of identifiers within an APAL source program

3.1 D‘eclaring an APAL module

This section describes the declaration and contents of an APAL module.

APAL Language man005.03 21

22 Chapter 3: APAL source program structure

3.1.1 Syntax

<module declaration> ::= <module header><module body>*<module end>
<module header> ::= MODULE<module name> <alias>*<newline>
<module name> ::= <identifier>

<alias> := <identifier>

<module body> ::= <data section> | (see chapter 4)
<code section> | _..(see chapter 5)
<mixed section> | (see chapter 5)
<global data identity> (see chapter 4)

<module end> ::= ENDMODULE <module name>?<newline>

3.1.2 Semantics

Each source file you present to the APAL assembler can contain APAL module declarations. An
APAL module is the smallest unit of source for which the assembler will generate CIF output.

A module declaration begins with a module header of the form:
MODULE module-name alias; alias; ... alias,

where

module-name is the user-defined name given to the CIF module produced by the assembler
for this module

Each of the alias;, which are optional, is an alternative name for the module. The aliases of
a module, together with the module name, comprise the module synonyms. The synonyms
are used by the linker to satisfy outstanding unsatisfied external references (see DAP Series:
Program Development)

An APAL source module is terminated by:
ENDMODULE module-name

where module-name, if given, must be the same name as that used in the module header.

You can include in an APAL module any of the following, in any order:

e Data sections, which allocate and optionally initialise areas of the DAP program block and
allow these areas to be referred to by name (see chapter 4)

o Code sections, which contain APAL instructions (see chapter 5)

e Mixed sections, which consist of a data part followed by an associated code part (see chap-
ter 5)

22 man005.03 AMT

3.2: Scope of identifiers 23

e Global data identities, which associate user-defined names at assembly time with addresses
in the DAP program block, thereby permitting forward and external references to data (see
chapter 4)

Comments can appear anywhere in a module.

3.2 Scope of identifiers

The scope of a user-defined identifier is that part of the APAL program to which the identifier is
visible; that is, the part in which the name can be referenced in an APAL instruction or assembly-
time statement.

The scope of an identifier can be: v
e EXTERNAL External identifiers are visible to all modules. An external identifier can be
any of the following:
— A module name or alias
— Section or entry point names with the HOST or DAP property (see chapters 4 and 5)
"~ The name of a macro defined outside a module

— The name of an assembly-time variable declared outside a module

e GLOBAL Global identifiers are visible throughout the module in which they are declared,
but are not visible to any other module. A global identifier can be any of the following:

~ Section or entry point names with neither HOST nor DAP properties (see chapters 4
and 5)

~ The name of a macro defined in the same module
— The name of an assembly-time variable declared in the same module
-~ The name of a data variable declared in a data section in the same module

— The name on the left hand side of a global data identity (see section 4.3) in the same
module

e LOCAL Local identifiers are only visible within the module, or part of the module, in which
they are declared (for example, within a particular section). A local identifier can be any of
the following:

- A macro parameter or macro variable (see chapter 12)

— A code label (see section 5.2)

— The name of a data variable declared in the data part of a mixed section (see chapter 5)
-~ The name on the left hand side of a local data identity

APAL Language man005.03 23

24 Chapter 3: APAL source program structure

You must declare all identifiers before referencing them, with the following exceptions:

e Code labels
e Code sections and entry points
e Data section names used on the right hand side of global or local data identities

For the purposes of determining the uniqueness of identifiers, the following classes of identifiers are
distinguished by the assembler:

1 Names of assembly-time variables

2 Names of macros

3 Names of macro parameters and macro variables

4 All other names (see section 2.2)
At any particular point in an APAL program, all the visible identifiers of any one of the above
classes must be different. An identifier in one class can be the same as an identifier in another
class; for example, a macro can have the same name as an assembly-time variable. Note that the

assembler performs no checking of identifiers between modules; the visibility of external identifiers
is a linker facility and an error will be flagged at linking time if a clash occurs.

The following table summarises the scope and uniqueness rules described above.

Type of identifier Scope Uniqueness

Assembly-time variable declared External The identifier must differ from all other
outside a module assembly-time variables

Assembly-time variable declared Global The identifier must differ from all other
within a module assembly-time variables in the same mod-

ule and from any assembly-time variables
declared previously outside any modules
in this assembly

Macro defined outside a module External May be the same as any other identifier
(see note 1 below)

Macro defined within a module Global May be the same as any other identifier
(see note 1 below)

Macro parameter Local The identifier must differ from all other
parameter and variable names in the
same macro definition

24 man005.03 AMT

3.2: Scope of identifiers

Type of identifier .

Macro variable

Section or entry point names with
HOST or DAP property

Other section or entry point
names
Data variable declared in a data

section

Data variable declared in data
part of mixed section

Global data identity

Local data identity

Code label

Module name or alias name

Notes:

Scope

Local

External

Global

Global

Local

Global

Local

Local

External

25

Uniqueness

The identifier must differ from all other
variable and parameter names in the
same macro definition

The identifier must differ from all other
class 4 identifiers (as defined on the pre-
vious page)

The identifier must differ from all other
class 4 identifiers

The identifier must differ from all other
class 4 identifiers

The identifier must differ from all other
class 4 identifiers except local identi-
fiers in other code or mixed sections (see
note 2)

The identifier must differ from all other
class 4 identifiers

The identifier must differ from all other
class 4 identifiers except local identi-
fiers in other code or mixed sections (see
note 2)

The identifier must differ from all other
class 4 identifiers except local identi-
fiers in other code or mixed sections (see
note 2)

May be the same as any other identifier

1 Only the most recent definition of the identifier is visible. Global identifiers become invisible
at the end of the module in which they are declared

2 For the purposes of determining the scope and uniqueness of identifiers the code and data
parts of a mixed section are considered to be one section

APAL Language

man005.03 25

26

26

man005.03

Chapter 3: APAL source program structure

AMT

Chapter 4

Data sections, declarations and
identities

An APAL module can contain data section declarations each of which reserves part of the array
store segment of the DAP program block. A data section contains a number of data declarations
that define the structure of the data section in terms of the number, type and size of the data
values contained in the data section. As part of the data declaration, the data section can either
initialise each declared data item, or simply reserve a number of words, rows and planes without
initialising the item.

This chapter describes the declaration of data sections and the representation of data values con-
tained in the data sections. Section 4.3 describes data identities, which you can use to make
forward and external references to data sections.

4.1 Declaring a data section

This section describes the declaration of a data section, which is an area in the array store part of
the DAP program block that is to contain data.

4.1.1 Syntax

<data section> ::= <data header><data body>*<data end>

<data header> ::= DATA <data section name><name property>?<common property>?7
<write property>?<newline>

<data section name> ::= <identifier>
<name property> ::= DAP | HOST
<common property> i:= COMMON

<write property> ::= WRITE

APAL Language man005.03 27

28

C’bapter 4: Data sections, declarations and identities

<data body> ::= <data declaration><newline> | <length><newline>

<length> ::= ROWPACK | WORDPACK

<data end> ::= END<newline>

4.1.2 Semantics

An APAL source module can contain one or more data sections. Each data section begins with a
data header of the form:

DATA section-name name-property common-property write-property

where

28

section-name is an identifier by which the data section can be referred to in APAL instructions
or in data identities (see section 4.3)

name-property, which is optional, specifies to the DAP linker how the data section name
is to be linked within the DAP program for the purpose of satisfying external references.
name-property can take either of the following values:

e DAP The data section is associated with other modules in which section-name
appears as an external reference. These modules can be derived from source code in
either APAL or a high level language such as FORTRAN-PLUS

e HOST As for the DAP property above. The data section can also be referenced in
a host program interface subroutine call for the purpose of transmitting data (see the

AMT manual DAP Series: Program Development). Such a data section must also have
the COMMON property (see below)

If you omit name-property, the data section is local to the module in which it is declared;
that is, an external reference to section-name in another module will not be taken as referring
to this data section

common-property, which takes the value COMMON, specifies to the DAP linker that the
data section is to be mapped onto the same part of the DAP program block as other data
sections with both the COMMON property and the same section-name. If you omit name-
property, you must also omit common-property.

Any data sections that you map onto such a COMMON area of the DAP program block will
begin at the same plane-aligned array store address as other such sections having the same
name, although the data sections you map onto the COMMON area need not be of the same
size; the size of the COMMON area is the size of the largest data section you have mapped
onto that COMMON area.

Only one of the data sections mapped onto a given COMMON area should contain initiali-
sations for its contents, although multiple initialisation will not cause an assembler error

manfNs N} AXET

4.2: Declaring data 29

write-property, which is optional, takes the value WRITE, and specifies that a program has
write access to the data section; that is, its contents can be altered by the program. If you
omit write-property, then the linker places the data section into a ‘read only’ area of store,
unless that section has the COMMON property, and you have specified another data section
with the same name in another module in your APAL program, and that other section has
COMMON and WRITE properties.

Each data item is held in onfi%! Adobe PostScript(tm) via Sun Microsystems PC-NFS % e or more storag
(32 bits), or one row (a number of bits equal to the array edge size £S): in a DAP 500 range

machine these two options are identical, but they are different in machines in other ranges. On all

ranges by default the storage unit is set to one word (that is, WORDPACK is active) at the start

of each data section, but use of the directive ROWPACK changes the size of the storage unit for

subsequent declarations. ROWPACK also forces alignment to the next row boundary.

Note that ROWPACK and WORDPACK have no effect on the size of a data item, they merely
fix the size of the one or more storage units used to hold each data item.

A data section ends with the line:

END

The body of a data section consists of data declarations, which are described in the next section.

4.2 Declaring data

This section describes the declarations and optional initialisation of data values within a data
section.

4.2.1 Syntax

<data label> ::= <data variable name>:

<data variable name> ::= <identifier>

<data item> ::= <repeat count>>?<basic data item> | <repeat count><data sequence>
<data sequence> ::= (<data item><data item>*)

<repeat count> ::= <numval><star>

<numval> ::= <number> | <hexadecimal value>

<number> ::= <unsigned integer> | [<assembly-time expression>]

<value> ::= <integer value> | <real value> | <character value>

<basic data item> ::= <value><size>? | PLANE | ROW | WORD |
PLANE_ALIGN | ROW_ALIGN

<size> = (<numval>)

APAL Language man005.03 29

30 Chapter 4: Data sections, declarations and identities

4.2.2 Semantics

A data section can contain data declarations, each of which:

e Optionally labels a word within a data section
e Optionally reserves an area of store within a data section

e Optionally assigns initial values to the reserved area of store. You can specify the number of
bits or bytes to be used in the internal representation of values, otherwise default sizes are
assumed (see section 4.2.3).

If more than one data section has the COMMON propery, only one of the sections mapped onto
the same COMMON area can initialise the area’s contents.

The values declared in a data section are mapped onto contiguous areas of array store in the order
in which they are declared; the precise nature of the mapping depends on the type of value. A
data section is always aligned to a store plane boundary. When assembling a data section, the
assembler keeps a record of the within-section address of the next available word, the data-offset.

The minimum unit of allocation within a data section is one word or one row, according to the
current declared size of the storage unit (that is, according to whether WORDPACK or ROWPACK
is active), but the value does not necessarily occupy all the allocated bits (see section 4.2.3).

Hence, when the assembler is mapping the data storage requirements of a DAP program onto the
resources available, if the declaration associated with a data item requires 40 bits, and WORD-
PACK is active, then two storage units are allocated to hold that data item, and data offset is
increased by 2 words. Of the allocated 64 bits, only the least significant 40 bits will be available
to hold that data item, the other bits being zero-filled. This mapping process continues for all
data declarations in each data section in the DAP program, with no gap between the storage
unit(s) allocated to succeeding data items, unless ROW.ALIGN or PLANE_ALIGN is specified
in a declaration (see later).

A data declaration has the general form:
data-label: data-item; data-item, ... data-item,,
where

data-label is an identifier, immediately followed by a colon, with global scope within the
module in which the data declaration appears. The assembler associates with data-label the
current value of data-offset, thus allowing the user to refer to that row or word, symbolically
rather than by an explicit within-section address (see chapter 7). data-label and the following
colon, can be omitted, but if present must be the first item in a data declaration

each data-item; specifies an amount of store to be reserved (in multiples of the current storage
unit) and optionally provides initial values for that area of store

each data-item; can be either a basic data item or a data sequence.

4.2.2.1 A basic data item

A basic data item can be any of the following:

30 man005.03 AMT

4.2: Declaring data 31

e WORD The next word of store is reserved, with no initial value. Data-offset is increased
by one word. The directive WORD is not allowed when the current storage unit is a row
(that is, when ROWPACK is active)

e ROW The next row of store is reserved, with no initial value. Data-offset is increased by
one row. For machines with an array edge size E'S greater than 32, which have more than
one word per row, if data offset is not at a row boundary when ROW is used, data offset is
increased to the start of the next row boundary before the row is allocated

e PLANE The next store plane is reserved, with no initial value. If data-offset is not at a
plane boundary when PLANE is used, data-offset is increased to the start of the next plane
boundary (as with PLANE_ALIGN), then in addition a complete store plane is reserved
(unlike PLANE_ALIGN)

e ROW_ALIGN If data-offset is not aligned to a row boundary (only possible on machine
with an ES greater than 32), the offset is increased to the next row boundary. This makes
sure that the next item to be declared in that section is aligned to the first word of the next
available row

e PLANE_ALIGN If data-offset is not aligned at a plane boundary, it is increased to the
next plane boundary. This makes sure that the next item to be declared in that section is
aligned to the first storage unit of the next available store plane

o value (size)

where value is an integer, real, hexadecimal, or character value as defined in section 2.3. size,
which is optional (along with its enclosing brackets), is an unsigned integer or hexadecimal
value, or an assembly-time expression, in [], yielding a positive integer value (see chapter
-11). value is allocated to the next available storage unit(s), starting at the word defined by
data~offset, and data-offset is incremented accordingly. For example:

3.4(32)
reserves space and initialises the space to a 32-bit real value

The internal representations of values and how they are mapped onto the array store is described
in section 4.2.3.

Note that a minus sign (hyphen) in the first column of a source line indicates a continuation line
rather than a negative value.

A basic data item can optionally be preceded by the construct:

count*

where count is an unsigned integer or hexadecimal value, or an assembly-time expression, in [],
yielding a positive integer value. The effect of this construct is as though n consecutive instances
of the basic data item had been written, where n is the value of count.

APAL Language man005.03 31

32 Chapter 4: Data sections, declarations and identities

For example, the following declarations are equivalent:

VAR1: 126 12.6 PLANE PLANE 14
VAR1: 2¥12.6 2*PLANE 14

Note that on all DAP-series machines, PLANE is equivalent to:
PLANE_ALIGN ES*ROW

where ES is the edge size of the machine concerned,

and that count*PLANE_ALIGN has the same effect as PLANE_ALIGN, but if you try to use
count*PLANE. ALIGN the assembler will output a warning message.

A count of zero is an error.

4.2.2.2 A data sequence

A data sequence has the form:
count*(data-item; data-item, ... data-item,)
where each data-item; can be a basic data item or another data sequence. The characteristic of a

data sequence is the use of the enclosing ‘() and of count*; a sequence allows you to declare one
or more instances of a data structure.

For example:
STRUCT1: 3 * (1,2,2 * (3,4),5)
is equivalent to the declaration:

STRUCT1: 1 2 3 4
12 3 4
1 23 4

W oW
B
o v Ot

Data-offset is incremented for each basic data item in the data sequence.

If you want to use either or both of PLANE_ALIGN or PLANE in a data sequence, the first basic
data item in the outermost data sequence must be PLANE. ALIGN; you can use PLANE_ALIGN
and PLANE freely after that.

Likewise, if you want to use either or both of ROW or ROW. ALIGN in a data sequence, the first ba-
sic data item in the outermost data sequence must be either ROW. ALIGN or PLANE. ALIGN; you
can use ROW and ROW_ALIGN freely after that. This requirement to start with ROW_ALIGN
or PLANE_ALIGN is not necessary with machines in the DAP 500 range, as all data items are
row aligned by default.

32 manN5.N3 . AL

4.2: Declaring data 33

4.2.2.3 Mapping of values onto array store

You should be aware of the way in which the assembler maps values onto the array store; note the
following points:

e If a data label is immediately followed by PLANE_ALIGN, then the label refers to the value
of data-offset before PLANE_.ALIGN is implemented rather than after.

For example, if ROWPACK is in force (that is, the size of a storage unit is a row):
~ LABEL1l: PLANE_ALIGN 3 6 9
If the current value of data-offset just before the above declaration is, say, plane 6 row
7, LABEL1 will refer to this row, whereas the value 3 will be stored in plane 7 row 0.
- LABEL2: 3*(PLANE_ALIGN 1 PLANE 2)
If data-offset is plane 4 row 7 just before the above declaration, the assembler performs
the following mappings:
1 LABEL? is associated with plane 4 row 7
2 Data-offset is incremented to plane 5 row 0
3 The value 1 is stored in plane 5 row 0 and data-offset is incremented by one
4

Data-offset is incremented to plane 6 row 0 and an entire plane is allocated;
data-offset is now plane 7 row 0

The value 2 is stored in plane 7 row 0 and data-offset is now plane 7 row 1

6 The equivalents of steps 2 to 5 are repeated twice more to give the following final
mapping, where ES is the edge size of the DAP-series machine concerned:

o

Plane Row Value
4 7 Labelled by LABEL2; no initial value

8 to (ES-1) No initial value
5 0 Value 1

1to (ES-1) No initial value
6 No initial value
7 0 Value 2

1to (ES-1) No initial value
8 0 Value 1

1to (ES-1) No initial value
9 No initial value
10 0 Value 2

1to (ES-1) No initial value
11 0 Value 1

1to (ES -1) No initial value
12 No initial value
13 0 Value 2

APAL Language man005.03 33

34

Chapter 4: Data sections, declarations and identities

e If a nested data sequence (that is, a data sequence that is an item in another data sequence)

34

contains either PLANE or PLANE.ALIGN, then unless the nested data sequence begins
with PLANE_ALIGN each instance of the nested data sequence need not start at the same
row within a plane. :

Similarly, for machies with ES greater than 32, if a nested data sequence contains either
ROW or ROW_ALIGN, unless the nested data sequence begins with ROW.ALIGN each
instance of the nested data sequence need not start at the same word within a row.

For example, if ROWPACK is active:

PLANE_ALIGN
LABEL: 2 * (PLANE_ALIGN 1 2* (1,2,3 PLANE) 4 5)

produces the following mapping (assuming a current data-offset of plane 8 row 0, and that
ES is the machine edge size):

Plane Row Value
8 Oto3 Values 1, 1, 2 and 3

4to (ES—-1) No initial value
9 No initial value
10 0to2 Values 1, 2 and 3
3to(ES—-1) No initial value
11 No initial value
12 Oand 1 Values 4 and 5
2to (ES—-1) No initial value
13 0to3 Values 1, 1, 2 and 3
4 to (ES-1) No initial value
14 No initial value
15 0 to 2 Values 1, 2 and 3
3to(ES-1) No initial value
16 No initial value

17 0and 1 Values 4 and 5

Note that the first and third instances of the inner data sequence begin at row 1 of a plane,
whereas the second and fourth instances begin at row zero

man(5.N3 ARET

4.2: Declaring data 35

When you are declaring complex data structures make sure that data sequences containing PLANE_ALIGN
or PLANE are plane aligned, and that data sequences containing ROW_ALIGN or ROW are either
row aligned or plane aligned.

4.2.3 Representation of values in the array store

This section describes how values specified in data declarations are represented within the array
store. -

Data values are held in the machine as bit patterns that are contained in one or more words or
rows. APAL provides four different types of data value: integer, real, hexadecimal and character.

The storage allocated to each type of value depends on the data declaration for the data item
concerned, with a maximum of 64 bits for integer and real values. For hexadecimal values, a
maximum allocation is either 64 bits or ES bits, whichever is the greater; for character values, the
maximum is 512 bits. The three numeric types differ only in the notation used to represent the
bit patterns; they do not reflect any intrinsic properties of the bit patterns in store. For example,
a bit pattern of 32 zero bits could be written as any of:

0(32) (integer)
0.0(32) (real)
#00000000 (hexadecimal)

with the same effect in each case.

4.2.3.1 Integer values

An integer value is represented exactly. When you specify an integer value in a data declaration
you can specify the number of bits that are to be used to represent the value by using the (size)
option. For example:

VARINT : 1217(29) ! INTEGER VALUE IS REPRESENTED IN 29 BITS
The maximum value of size is 64 bits, the default value of size is 32 bits.

An integer value is held, in two’s complement form, in the rightmost (least significant) n bits of
the storage unit(s) needed to contain the n bits, where n is the value (possibly default value) of
size. Any remaining bits of the storage unit(s) are set to zero.

The range of integer values that can be held in this way depends on the value of size. An n-bit
integer can take any value in the range —2"~! to +2"~! - 1; if you try to enter a value outside this
range the assembler will flag an error.

4.2.3.2 Real values

In general a real value is held as an approximation to the specified real value. When you specify a
real value in a data declaration you can specify the number of bits that are to be used to represent
the value by using the (size) option.

APAL Language man005.03 35

36 Chapter 4: Data sections, declarations and identities

For example:
VARREAL : 916.7234617 (40)

For a real value size can be 24, 32, 40, 48, 56 or 64 bits; if (size) is omitted, (32) is assumed as
default.

A real value is held in FORTRAN-PLUS floating point format in the rightmost n bits of the storage
unit(s) needed to contain the n bits, where n is the value (possibly default value) of size. That is:

e The leading tot_bits — n bits are set to zero, where tot.bits is the number of bits in the
storage unit(s) allocated by the relevant data declaration

o The rightmost n - 8 bits represent the mantissa as an unsigned binary fraction. If the value
being represented is zero, then all those n — 8 bits are zero. For a non-zero value, the mantissa
is normalised so that it is a fraction in the range

1/16 < mantissa < 1

e The remaining eight bits of the representation are used to hold the sign bit (zero for a positive
value and one for a negative value) followed by a seven-bit exponent, which is an unsigned
integer. The value so represented is:

(-1)%%9m x 16(eaponent—64) y mantissa

The range of values that can be represented in this way is +/- (5.4 x 10~ to 7.2 x 1075)
approximately. Values in the range —5.4 x 10~ to 5.4 x 10~7° approximately, are represented
as zero.

The precision with which a real value is represented depends on the number of bits in
the mantissa, and therefore depends on the value of size. The following table shows the
relationship between size and precision: :

Size Precision in significant decimal digits (; approximately)
24 4

32 7

40 9

48 11

56 14

64 16

4.2.3.3 Hexadecimal values

A hexadecimal value is represented exactly; it must be a positive value. When you specify a
hexadecimal value in a data declaration you can specify the number of bits that are to be used to
represent the value by using the (size) option. For example:

VARHEX1 : #123F(24) ! 24 BITS ARE USED
VARHEX2 : #1A3 ! 32 BITS ARE USED

36 : man005.03 AMT

4.3: Data identities 37

The maximum value of size is 64 bits or ES bits, whichever is the greater; the default value of size
is 32 bits.

A hexadecimal value is held in the rightmost (least significant) n bits of the storage unit(s) needed
to contain the n bits, where n is the value (possibly default value) of size. Any remaining bits of
the storage unit(s) are set to zero.

The range of hexadecimal values that can be held in this way depends on the value of size. An
n-bit hexadecimal value can represent an unsigned integer in the range zero to 2" - 1; if you try
to enter a value outside this range the assembler will flag an error.

4.2.3.4 Character values

A character value is held in a number of consecutive storage units, with each character occupying
8 bits. If necessary, the assembler adds space characters to the left to make the storage allocated
to the value a whole number of storage units.

When you specify a character value in a data declaration you can specify the number of characters
in the value to be allowed for, by using the (size) option to specify the number of bits to be
allocated. For example:

WORDPACK

VARCHAR : "EXAMPLE CHARACTER VALUE” (192) { 24 CHARACTERS
! (6 STORE WORDS)
! ARE USED

If (size) is omitted, a default number of bits of eight times the number of characters in the value
is taken. Character values are padded, if necessary, with leading space characters.

The above example character value would be stored in consecutive words as follows, starting at
the store address labelled as VARCHAR:

EXA
MPLE
CHA
RACT
ER V
ALUE

The maximum size for a character value, whether a declared size or a default value, is 64 characters,
512 bits. As usual, if you try to insert into the requested storage space a value too large to fit, you
will get an assembly-time error. Each character in a character value is represented by an eight-bit
ASCII-like pattern, as specified in appendix B. ‘

4.3 Data identities

A data identity associates, at assembly time, an identifier with an array store address, and is
similar to a data label, already discussed above. Once declared, an identifier can then appear

APAL Language man005.03 37

38 Chapter 4: Data sections, declarations and identities

in subsequent APAL statements, where it will be replaced by the address assigned to it in the
data identity. Note that a data identity does not reserve storage; it is merely an assembly-time
association between an identifier and a store address. Data identities are the only way you have
of getting forward or external references to the contents of a data section.

4.3.1 Syntax

<data identity> ::= <global data identity> | <local data identity>
<global data identity> ::= DEFINE<newline><identity>*END<newline>
<local data identity> ::= <identity>

<identity> ::= <identity name> = <data address><newline>

<identity name> ::= <identifier>

<data address> ::= <plane> | <row> | <word> | <column>

<plane> ::= <aligned data name><plane offset>? | <plane number>
<name or plane> ::= <data name><plane offset>? | <plane number>
<row> :i= <name or plane><row offset>? | <row offset>

<column> ::= <name or plane><column offset>? | <column offset>

<word> ::= <row> |
<name or plane>?.<word offset> |
<name or plane>?<row offset><word offset>

<aligned data name> ::= <data name>

<data name> ::= <data section name> | <data variable name> | <identity name>
<plane offset> ::= + <plane number>

<row offset> ::= .<numval>

<column offset> = .<numval>

<word offset> ::= .<numval>

<code store address> ::= <within-section address> | <inter-section address>

<within-section address> ::= <code label name><label offset>? |
<star><label offset><doj modifier>?

<inter-section address> ::= <code section name><section offset>?<doj modifier>? |
<entry point name><section offset>>?<doj modifier>?

<label offset> ::= +<numval> | ~<numval>

<section offset> ::= +<numval>

38 man005.03 AMT

4.3: Data identities 39

4.3.2 Semantics

Generally, you should not reference the contents of a data section in APAL statements until you
have declared the data section. However, you can get forward references to data sections in the
same module, and external references to data sections in other modules, by using data identities,
which associate an identifier with an array store address at assembly time. Data identities can
refer to previously declared data sections, data variables and data identities. You can use data
identities to associate names with locations in the workspace part of the DAP program block (see
section 1.4 for further details), in which the plane addresses are in the range 0 to 119.

There are two classes of data identity:

e Global data identities. These can appear within an APAL module declaration. They cannot
appear in a data, code, or mixed section, and must be enclosed within the keywords DEFINE
and END:

DEFINE

identities

END
The identifiers appearing on the left hand side of global data identities have global scope
within the module in which they are defined

e Local data identities. These can appear in a code section, or in the code part of a mixed
section. The keywords DEFINE and END must not appear. The identifiers that are defined
in local data identities have local scope within the code section in which they are defined

A data identity has the form:
identity-name = data address
where

identity-name is the name that can appear in subsequent APAL statements. identity-name
must be different from all other class 4 names currently in scope (class 4 names are defined
in section 3.2)

data address specifies the array store address that is to be associated at assembly time with
identity-name. data address can have any of the forms:
o data name plane-offset row-offset word-offset
where

data-name can be the name of a data section in the same or another module,
a data label in a previously declared data section, or the name of a previously
defined data identity

plane-offset, row-offset and word-offset, which are all optional, have the form:
<+numval .numval .numval

where numval is an unsigned integer or hexadecimal value, or an assembly-time
expression within [] yielding a non-negative integer value

APAL Language man005.03 39

40

40

Chapter 4: Data sections, declarations and identities

This form of data address specifies an address relative to the address of a previously
defined data name or an as yet undeclared data section.

For example:
FRED = TOM + 12.6

associates with FRED the store address 12 planes and 6 rows beyond TOM which can
be the name of a preceding or subsequent data section, a data label in a previously
declared data section, or a previously defined data identity;

MARY = FRED + 2.1.1

associates with MARY the store address 2 planes, 1 row and 1 word beyond FRED,
that is 14 planes, 7 rows and 1 word beyond TOM, which in a DAP 500 would be 14
planes and 8 rows beyond TOM;

FRIEDA = MARY + 1..1

associates with FRIEDA the store address 1 plane and 1 word beyond MARY, or 3
planes, 1 row and 2 words beyond FRED (3 planes and 3 rows beyond FRED on a
DAP 500, 3 planes and 2 rows beyond FRED on a DAP 600), and so on

plane-number row-offset word-offset
where

plane-number has the form:
numval

where numval is an unsigned integer or hexadecimal value, or an assembly-time
expression within [] yielding a non-negative integer value

row-offset and word-offset, which are optional, are as defined on the previous page

This form of data address specifies an address that can be regarded, depending on the
context in which it is used, as either:

— An address relative to the start of the array store part of the DAP program block

— An address relative to an address held in a modifier register

Consequently the name is associated with any or all of a plane, row or word displace-
ment without specifying the base for this displacement. For example, given the data
identity:

FRED = 27.16.1
the instruction:
RW M3 FRED

loads the contents of the word at location plane 27 row 16 word 1 into M3. However,
the instruction:

RW M3 FRED(MS)

loads M3 with the contents of the word 27 planes, 16 rows and 1 word beyond the
address held in M6

man(05.N3 ARET

4.3: Data identities 41

e row-offset word-offset

where row-offset and word-offset are as defined for the first and second forms of data
address. Either or both of row-offset and word-offset must be present in this form of
data address.

This form of data address specifies either or both of a row or word displacement; for
example:

FRED = .78.1

associates with FRED the address 78 rows and 1 word beyond an address in a modifier
register. Alternatively (depending on the context), FRED = .78.1 could associate
FRED with a particular word in a particular plane, the actual word depending on
the particular range of DAP machine concerned. On a DAP 500 machine this address
would be plane 2 row 15; on DAP 600 it would be plane 1 row 14 word 1

As you will have seen from the examples above, in all the three forms of data address for all ranges
of DAP-series machines, you can use a word-offset equal to or greater than the number of words
in a row, in which case the word-offset count is carried across row boundaries. Similarly, you can
use row-offset equal to or greater than the number of rows in a plane, and the row-offset count is
carried across store plane boundaries. Hence, the following data identities are all equivalent in a
DAP 600-series machine:

JANE = 10.152.4
JANE = 11.89.2
JANE = 12.26

Example global data identity on a DAP 600 machine

Assuming that a data section called DATAONE is declared elsewhere, the following global data
identity can appear in a module declaration:

DEFINE

FIRST = DATAONE + 12.3 ! ASSOCIATES 'FIRST’ WITH AN ADDRESS 12 PLANES
! AND 3 ROWS BEYOND THE START OF THE DATA SECTION
! CALLED (OR YET TO BE CALLED) 'DATAONE’

SECOND = 14.2.1 ! ASSOCIATES 'SECOND’ WITH AN ADDRESS OF PLANE
! 14 ROW 2 WORD 1 IN THE ARRAY STORE PART OF
! THE DAP PROGRAM BLOCK
THIRD = DATAONE.30 ! ASSOCIATES 'THIRD’ WITH AN ADDRESS 0 PLANES AND

! 30 ROWS BEYOND THE START OF DATAONE

FOURTH = THIRD + 22.1.1 ! ASSOCIATES 'FOURTH’ WITH AN ADDRESS 22 PLANES
! 31 ROWS AND 1 WORD BEYOND THE START OF DATAONE

FIFTH = FOURTH + 5..3 ! ASSOCIATES 'FIFTH’ WITH AN ADDRESS 27 PLANES
! AND 33 ROWS BEYOND THE START OF DATAONE

END

APAL Language man005.03 41

42

42

Chapter 4: Data sections, declarations and identities

man005.03 ANLT

Chapter 5

Code sections

An APAL module can contain code section declarations, each of which can contain any number of
the following in any order:

e Entry point declarations (see section 5.2.1)
e APAL instructions (see section 5.2.2)

e Local data identities (see section 4.3)

e The TRACE statement (see chapter 8)

An APAL module can also contain any number of mixed section declarations, each of which
consists of a code section declaration preceded by a data section whose contents are local to that
code section.

The declaration of a code section is described in section 5.1. The contents of a code section

are described in section 5.2. The declaration and contents of a mixed section are described in
section 5.3.

5.1 Declaring a code section

5.1.1 Syntax

<code section> ::= <code header><code body>*<code end>
<code header> ::= CODE<code section name><name property>?7<newline>
<code section name> = <identifier>

<name property> ::= DAP | HOST

APAL Language man005.03 43

44 Chapter 5: Code sections

<code body> ::= <entry point> |
<code label>?<APAL instruction>?<newline> |
<local data identity> |
<TRACE statement>

<code label> ::= <code label name>7:
<code label name> ::= <identifier>

<code end> ::= END<newline>

5.1.2 Semantics
An APAL source module can contain code sections. Each code section begins with a code header
of the form:

CODE section-name name property

where

section-name is an identifier by which the section can be referenced in instructions within
the section and by instructions in other code sections. The scope of section-name can be
global or external, depending on the value of name-property (see below)

name-property, which is optional, specifies to the DAP linker how the code section is to be
linked within the program,; it can take either of the following values:

o DAP The code section can only be linked within the DAP program; that is the code
section can only be entered from another APAL code section or from a FORTRAN-
PLUS program

¢ HOST The code section can be linked within the DAP program (as with the DAP
property); the section can also be referenced in a host program interface subroutine
call for the purpose of entering the DAP program (see the AMT manual DAP Series:
Developing and using DAP Programs).

If name-property is omitted, the code section can only be entered from a code section declared

in the same module; section-name is an identifier with external scope if name-property is
specified, otherwise it has global scope

A code section ends with the line:

END

5.2 Code section contents

5.2.1 Declaring entry points

This section describes the syntax of entry point declarations and their function.

44 man005.03 AMT

5.3: Mixed sections 45

5.2.1.1 Syntax

<entry point> ::= ENTRY <entry point name><name property>?<newline>

<entry point name> ::= <identifier>

5.2.1.2 Semantics

A code section is normally entered at the first APAL instruction in the code section. However, any
number of alternative entry points can be defined by writing:

ENTRY entry-point-name name-property

at the required point in the code section, where entry-point-name and name-property have the
same functions as in a code header (see section 5.1). Note, however, that the name-property
specified in an entry point declaration need not be the same as the name-property specified in the
code header. h

When a code section is entered via an entry point, the first instruction to be executed is the first
instruction following the entry point declaration.

5.2.2 APAL instructions

The APAL instructions in a code section specify the operations to be performed when that code
section is entered.

Any APAL instruction can be preceded by a code label, which has the form:
label:

where label is an identifier with local scope in the code section; there must not be any spaces
between the identifier and the colon. The code label can be used by instructions in the same code
section to transfer control to the instruction that it labels.

A code label can appear without an APAL instruction following it, in which case it refers to the
next APAL instruction for which the assembler generates object code.

A dummy code label, consisting of a colon with no preceding label identifier can be used to identify
the last instruction in an APAL DO loop. A dummy code label has no other significance.

APAL instructions are described in appendix F to this manual.

5.3 Mixed sections

This section describes the declaration and contents of a mixed section.

APAL Language man005.03 45

46 Chapter 5: Code sections

5.3.1 Syntax

<mixed section> ::= <mixed header><data body>*<code section>

<mixed header> ::= MIXED<data section name><name property>?<common property>?
<write property>?<newline>

5.3.2 Semantics

An APAL module can contain mixed sections. Each mixed section comsists of a code section
preceded by a data section whose contents are local to that code section.

A mixed section begins with a mixed header of the form:
MIXED data-section-name name-property common-property write-property

where data-section-name, name-property, common-property and write-property refer to the data
section part of the mixed section and have the same functions as when applied to a data section
(see section 4.1).

The mixed header is followed by data declarations, which are as described in section 4.2 except
that data labels are local to the mixed section rather than global within the whole module and
must be different from all external and global identifiers in the module (see section 3.2).

The last data declaration is followed, without an END line, by a code section header, as defined in
section 5.1. The code section name, and the name property (if specified), refer to the code part of
the mixed section and have the same functions as when applied to a code section. Note that the
code and data sections associated with a mixed section must have different names.

The code section name can be followed by any number of code section statements; the line:
END

must terminate the mixed section.

For the purposes of linking by the DAP Consolidator, as specified by the properties in the mixed
and code section headers, the data and code sections of a mixed section are treated as separate
sections. However, for the purpose of determining the scope of identifiers within the mixed section
the data and code sections are regarded as a single section; that is, all identifiers declared within
the mixed section have local scope within that section.

48 man005.03 AMT

Chapter 6

APAL Instructions

This chapter describes the fields that an APAL instruction can contain, and gives an introduction
to the detailed description of individual instructions you will find in appendix F at the end of
the manual. This chapter (and chapter 7) is not intended to give you detailed knowledge and
understanding of the bit patterns of different APAL instructions. It is more concerned with giving
you a general understanding of the functions of the various fields in an APAL instruction.

Section 6.1 is concerned with the hardware instruction set in the DAP. In appendix F you will
find details of the hardware instructions, together with those of ‘pseudo’ instructions. Pseudo
instructions are ‘translated’ by the assembler into one of several hardware instructions, the actual
hardware instruction depending on the value of certain fields in the pseudo instruction. For ex-
ample, you can use the RLIT pseudo instruction to load a literal value into an MCU register, If
all but the 16 least significant bits in the literal are zeros, then the assembler generates an RH
instruction, which copies the literal into the register specified in RLIT. In some other cases, the
assembler creates the literal in array store, then generates an RX instruction to load that literal
into the specified register.

APAL instructions can be split up into two broad categories: MCU instructions, in which only the
MCU is involved; and array instructions, in which the array of PEs is also involved. Section 6.2
breaks the instruction set down further — into 17 categories — lists the instructions in each category,
and gives a 1-line description of each instruction. The section also discusses execution times for
the different instructions.

6.1 Instruction fields

This section describes the fields that APAL hardware instructions can contain, and gives the
associated syntax where this is not covered elsewhere.

Each APAL instruction is assembled into a 32-bit instruction word; these instructions occupy
consecutive words in the code store when the DAP program is loaded.

Some patterns of bits in the instruction word do not correspond to a valid instruction. The assembly
system generally prevents the creation of instructions having such bit patterns, but in the unlikely
event of one being encountered when the program is executed, a run-time error results.

APAL Language man005.03 47

48 Chapter 6: APAL Instructions

Each instruction includes an OPERATION field which, broadly, is the op-code for the instruction.
As with conventional microprocessor chips, the field is used by the MCU to decode the remaining
bit pattern in the instruction and to interpret that pattern as one or more instruction fields,
essentially containing parameters to the op-code. Unlike conventional microprocessors, the APAL
instruction has a fixed 32-bit length. All the various possible fields that can occur in an instruction
are discussed in the following sub-sections; no instruction will contain all the fields.

6.1.1 The OPERATION field

The OPERATION field specifies the essential function of the instruction; more detailed information
on the instruction is given in the rest of the instruction word. The OPERATION field specifies
whether registers are to be written, whether data is to be broadcast to the PE array, which function
is to be performed by the scalar Arithmetic and Logic Unit (ALU) within the MCU and the form
of jumps and DO loops. For array instructions, the field also specifies the detailed function of the
array, such as whether array store is to be written, whether PE registers are to be clocked, which
operands are to be input to the PE, whether an entire store plane or just one row, column or word
is to be used, and whether a response is to be returned to the MCU.

No further detail of the OPERATION field is given here, since its content is implicit in the de-
scriptions of individual instructions given in appendix F.

6.1.2 The MCUR field

The MCUR field is a field that identifies an MCU register or the edge register that is to be used
as either or both of the source and destination of data. Any of MCU registers MO to M13 can be
used for this purpose; for many instructions, the edge register can be used instead.

The register identified by the MCUR field can be one of:

e An MCU register used as the first operand of a scalar arithmetic, logical or shift instruction.
In this case the register specified in this field will also contain the result of the instruction.
The edge register can only be specified for a subset of scalar shift operations

® An MCU register or the edge register whose contents are broadcast to the array

e An MCU register or the edge register from which a single bit is selected for testing by the
MCU or for broadcast to the array

® An MCU register or the edge register to which a response from the array is to be written

The instruction syntax is one of:

<MCU-register> := MO | M1 | M2 | M3 | M4 | M5 | M6 | M7 | M8 | M9 | M10 | M11 |
M12 | M13 |
<MCU-or-edge-register> ::= <MCU register> | ME

Which syntax is used depends on the actual instruction concerned.

48 man005.03 AMT

6.1: Instruction fields 49

6.1.3 The MOD ﬁel'd

The MOD field specifies a second MCU register, or in a few cases, the edge register. The use of
the register varies with the type of instruction:

e For array instructions, the register contributes to address generation, as described in sections
7.1.1, 7.1.2, 7.1.3, or 7.1.4. Any of registers M1 to M7 can be specified; if none is specified,
a value to signify no address modification is encoded in the MOD field

e For MCU instructions DO, J, JE and EXIT the register contributes to address generation
as described in sections 7.1.5, or 7.1.6. Any of registers M1 to M13 can be specified; if none
is specified, a value to signify no address modification is encoded in the MOD field

e For scalar arithmetic, logical or shift instructions, the register holds the second (or only)
operand. Any of registers MO to M13 can be specified. The edge register can only be
specified for a subset of scalar shift operations.

The syntax of modifiers is given in section 7.3.1.

6.1.4 The ADDR, INT and WORD fields

The ADDR field specifies a bit-plane address within array store; the field is eight bits long.

Depending on the instruction, the INT field can specify a row or column number in array store; a
bit number within an MCU register or the edge register; or, for an MCU register shift, array shift
or vector add instruction, the count. The length of the field depends on which range of DAP-series
machine the APAL code is assembled to run on. For DAP 500 machines, the INT field is § bits
long; for the DAP 600 range, the field is 6 bits.

The WORD field allows you to specify the word component of an array store address. As with the
INT field, the length of the WORD field depends on the machine the APAL code is assembled to
run on. WORD is 0 or 1 bits long, for the DAP 500 and 600 ranges of machine respectively; that
is, the WORD field does not exist on code assembled to run on a DAP 500.

The use of these three fields in address generation is discussed in section 7.1, and the syntax of
addresses in section 7.3.

6.1.5 The INCREMENT/DECREMENT and STEP TYPE fields

The INCREMENT/DECREMENT field is only relevant if the instruction containing it appears
inside an APAL DO loop; the field specifies how addresses in the instruction are to be stepped
within the DO loop. The three options are:

e Address is unaffected
e Address is to be incremented

e Address is to be decremented

APAL Language man005.03 49

50 Chapter 6: APAL Instructions

For some instructions there is an option to step the bit-plane address or the row or column address;
the option is specified in the STEP TYPE field.

The syntax of DO loop stepping is given in section 7.3.2

6.1.6 The DIRECTION and GEOMETRY fields

The DIRECTION field specifies the direction of shift for an array shift operation, or the direction
of carry propogation for an array vector add operation.

For such instructions, the edge effects (or topology) are specified by the GEOMETRY field. The
available geometries are ‘Plane’, meaning that zero (or Falge) is input at the edge, or ‘Cyeclic’,
meaning that data shifted out at one edge is shifted in at the corresponding row or column position
at the opposite edge.

The options available with the DIRECTION and GEOMETRY fields are described in section 7.1.4.

6.1.7 The LITERAL field

The LITERAL field is used as the second operand of some scalar arithmetic and logical instructions.
The field is 16 bits wide, and before use in the scalar operation it is implicitly expanded to a 32
bit value by extending on the left with zeros - that is, zeros are inserted at the most significant
end of the field.

The syntax of such a literal is;

<literal-16> ::= <integer value><size>? | <character value><size>?
<size> = (<numval>)

Thus the literal can be any of:

¢ An optionally signed integer, optionally followed by (size) in units of bits, for example -24(6).
The maximum value of ‘size’ is 16; if (size) is omitted, its default value is (16). ‘size’ represents
the number of right-aligned bits of the field used to hold the integer, which is represented in
two’s complement form. The remaining bits of the 16-bit field are set to zero. If size = n,
the range of integers that can be so represented is ~2"-! to 27-1-1

® A hexadecimal value, followed by (size) in units of bits, for example #3E(10). The maximum
value of ‘size’ is 16; if ‘size’ is omitted, its default value is (16). The value is held right-aligned
in the instruction with the remaining bits set to zero. The maximum hexadecimal value is
#FFFF

o A character value of zero, one or two characters, followed by (size) in units of bits, for example
”J7(8); the maximum value of ‘size’ is 16. If ‘size’ is omitted, its default value is eight times
the number of characters given, with a maximum of 16. The value is held right-aligned, and
is padded on the left with a space character if necessary

50 man{05.03 AMT

6.2: The instruction set ‘ 51

6.1.8 The CODE ADDRESS field

The CODE ADDRESS field is used by instructions that jump to another instruction. The field
can specify the address of an instruction anywhere in the DAP program block.

The syntax of code store addresses is given in section 7.3.5.

6.2 The instruction set

6.2.1 Introduction

DAP hardware instructions are classed in one of 16 ‘groups’, depending on the general type of
function performed. Which group a particular instruction belongs to is defined in part of the
OPERATION field of the instruction. This section discusses the instruction set, listing the hard-
ware instructions in each group, and giving a 1-line description for each instruction. The section
also covers the pseudo instructions.

The hardware instruction set includes some compound instructions: in these instructions, the ac-
tions of two component instructions are executed as a result of the one compound instruction,
whose mnemonic is constructed by adding together the mnemonics of the two component instruc-
tions; by convention, the component mnemonics are separated by the ‘.’ character. For example,
the instruction AS_CF copies a specified store plane into the PE A registers (instruction AS),
then sets every bit of the C plane to zero (instruction CF). From a functional point of view,
the component instructions are always carried out in the order they appear in the compound
instruction.

There is also a compact list of mnemonics in appendix A; tables giving the derivation of the
mnemonics are presented in appendix E.

In the descriptions below, as elsewhere, the complete set of Q, C or A single-bit registers for all
the PEs is referred to as the Q, C or A plane respectively. Also, inverting a plane means inverting
each bit in the plane. Thus ‘Q plane = C plane + store plane’ means that the Q register bit, in
every PE, is to be set equal to the sum of the C register bit and the bit ‘belonging’ to that PE
in the plane whose address is specified in the instruction. Although not explicitly specified in the
entries below, any carry bits from such sums are discarded. See appendix F for more details of any
particular instruction. For compactness the entries below present each instruction on a single line.

Some instructions (groups 6 and 7) broadcast a register to the PE array or to a store plane. The
options available depend on the size of the target DAP machine, and on whether an MCU register
or the edge register is to be broadcast, as explained in section 1.8 and 1.11. In the following
subsections and in appendix F, the term R-plane is used to refer to the notional or fictitious plane
resulting from that broadcasting, where every row in the plane is identical; the term orthogonal
R-plane is applied to the notional plane where every column is identical. There is no physical R~
plane or orthogonal R-plane, they are simply concepts used in describing the operation of certain
instructions.

APAL Language] man005.03 51

52 Chapter 6: APAL Instructions

6.2.2 Group O

General characteristic: instructions fetch an array store plane and combine it with PE register
plane(s).

AS(N) A plane = (inverted) store plane

AMS(N) A plane = A plane ANDed with (inverted) store plane

AS(N)_.CF A plane = (inverted) store plane, C plane = zeros

QS(N) Q plane = (inverted) store plane

QS-AS(N) Q and A planes = (inverted) store plane

QPQS(N) Q plane = Q plane + (inverted) store plane

QPCQS(N) Q plane = C plane + Q plane + (inverted) store plane

QPCS(N) Q plane = C plane + (inverted) store plane

QS(N).CF Q plane = (inverted) store plane, C plane = zeros

CQPQS(N) Q plane = Q plane + (inverted) store plane, carry into C plane
CQPCQS(N) Q plane = C plane + Q plane + (inverted) store plane, carry into C plane
CQPCS(N) Q plane = C plane + (inverted) store plane, carry into C plane
CPQS(N) C plane = carry from: Q plane + (inverted) store plane
CPCQS(N) C plane = carry from: C plane + Q plane + (inverted) store plane
CPCS(N) C plane = carry from: C plane = (inverted) store plane

6.2.3 Group 1

General characteristic: instructions fetch a store plane and equivalence or non-equivalence it with
a specified bit of a specified MCU register (or of the edge register), storing the result in the A or
Q plane.

AEBS(N) A plane = (inverted) store plane EQUIV with register bit
AMEBS(N) A plane = A plane ANDed with operand above
QEBS(N) Q plane = (inverted) store plane EQUIV with register bit

6.2.4 Group 2

General characteristic: instructions load an MCU register (or the edge register) with a word, row
or column from array store, or load an MCU register with an address.

RAW Load address of word into MCU register

RAX Load address of row into MCU register

RS AND all rows of store plane into MCU or edge register
RSO : AND all columns of store plane into MCU or edge register
RW Load MCU register with word from store plane

RWO Load MCU register with orthogonal word from store plane
RX Load MCU or edge register with store row

RXO " Load MCU or edge register with store column

52 man005.03 AMT

6.2: The instruction set 53

6.2.5 Group 3

General characteristic: instructions broadcast the contents of an MCU register (or the edge register)
to the columns of a PE register plane; that is, copy the orthogonal R plane into the destination

plane.

AR(N)O
AMR(N)O
QR(N)O
QPQR(N)O
QPCQR(N)O
QPCR(N)O
CQPQR(N)O
CQPCQR(N)O

CQPCR(N)O
CPQR(N)O
CPCQR(N)O
CPCR(N)O

6.2.6 Group 4

Set A plane equal to (inverted) orthogonal R plane

A plane = A plane ANDed with (inverted) orthogonal R plane

Q plane = (inverted) orthogonal R plane

Q plane = Q plane + (inverted) orthogonal R plane

Q plane = C plane + Q plane + (inverted) orthogonal R plane

Q plane = C plane + (inverted) orthogonal R plane

Q plane = Q plane + (inverted) orthogonal R plane, carry to C plane
Q plane = C plane + Q plane + (inverted) orthogonal R plane,

carry to C plane

Q plane = C plane + (inverted) orthogonal R plane, carry to C plane
C plane = carry from: Q plane + (inverted) orthogonal R plane

C plane = carry from: C plane + Q plane + (inverted) orthogonal R plane
C plane = carry from: C plane + (inverted) orthogonal R plane

General characteristic: instructions use an operand plane of all zeros (false) or all ones (true), and
combine it with PE register planes or write it to store.

AF

AT

QF

QT
QQN
QPCQ
QPCQT
QC
QF_CF
QT.CF
CQ-QQN
CQPCQ
CQPCQT
QCCF
QCN
CF

CcQ
CPCQ
CPCQT
SF

XF
WF

APAL Language

A plane = zeros

A plane = ones

Q plane = zeros

Q plane = ones

Invert Q plane

Q plane = C plane + Q plane

Q plane = C plane + Q plane + ones

Q plane = C plane

Q plane, C plane = zeros

Q plane = ones, C plane = zeros

C plane = Q plane, invert Q plane

Q plane = C plane + Q plane, carry to C plane
Q plane = C plane + Q plane + ones, carry to C plane
Q plane = C plane, C plane = zeros

Q plane = inverted C plane

C plane = zeros

C plane = Q plane

C plane = carry from: C plane + Q plane

C plane = carry from: C plane + Q plane + ones
Store plane = zeros

Store row = zeros

Store word = zeros

man005.03 53

54 Chapter 6: APAL Instructions

QT.AT Both A plane and Q plane = ones
QF_AF Both A plane and Q plane = zeros

6.2.7 Group 5

General characteristic: instructions load into all bits of the A or Q plane a specified bit from a
specified MCU register or the edge register.

AB(N) All bits in A plane = (inverse of) selected bit
AMB(N) All bits in A plane ANDed with (inverse of) selected bit
QB(N) All bits in Q plane = (inverse of) selected bit

6.2.8 Group 6

General characteristic: instructions broadcast an MCU register or the edge register to the rows of
a store plane; that is, copy the R plane into the destination plane.

SR(N) Store plane = (inverted) R plane
XR(N) Store row = (inverted) row of R plane
WR(N) Store word = (inverted) register

6.2.9 Group 7

General characteristic: instructions broadcast an MCU register or the edge register to the rows of
a PE register plane; that is, copy the R plane into the desination plane.

AR(N) Set A plane equal to (inverted) R plane

AMR(N) " Aplane = A plane ANDed with (inverted) R plane

QR(N) Q plane = (inverted) R plane

QPQR(N) Q plane = Q plane + (inverted) R plane

QPCQR(N) Q plane = C plane + Q plane + (inverted) R plane

QPCR(N) Q plane = C plane + (inverted) R plane

CQPQR(N) Q plane = C plane + (inverted) R plane, carry to C plane
CQPCQR(N) Q plane = C plane + Q plane + (inverted) R plane, carry to C plane
CQPCR(N) Q plane = C plane + (inverted) R plane, carry to C plane
CPQR(N) C plane = carry from: Q plane + (inverted) R plane
CPCQR(N) C plane = carry from: C plane + Q plane + (inverted) R plane
CPCR(N) C plane = carry from: C plane + (inverted) R plane

6.2.10 Group 8

General characteristic: instructions copy a suitably modified Q plane to a PE register plane, array
store plane or row, or an MCU register or the edge register.

54 man005.03 AMT

6.2: The instruction set 586

AQ(N) A plane = (inverted) Q plane

AMQ(N) A plane = A plane ANDed with (inverted) Q plane
RQO MCU or edge register = logical AND of Q plane columns
SQ . Store plane = Q plane

SQ.AQ Store plane and A plane = Q plane

SQ.CQ Store plane and C plane = Q plane

SQ.QC(N) Store plane = Q plane, Q plane = (inverted) C plane
SQ.QF Store plane = Q plane, Q plane = zeros ’
SQ.QT Store plane = Q plane, Q plane = ones

XQ Store row = corresponding row from Q plane

6.2.11 Group 9

General characteristic: instructions copy a suitably modified A plane to another PE register plane,
an array store plane, an MCU register or the edge register.

QA(N) Q plane = (inverted) A plane

QPQA(N) Q plane = Q plane + (inverted) A plane

QPCQA(N) Q plane = C plane + Q plane + (inverted) A plane

QPCA(N) Q plane = C plane + (inverted) A plane

QA(N)-CF Q plane = (inverted) A plane, C plane = zeros

CQPQA(N) Q plane = Q plane + (inverted) A plane, carry to C plane
CQPCQA(N) Q plane = Q plane + C plane + (inverted) A plane, carry to C plane
CQPCA(N) Q plane = C plane + (inverted) A plane, carry to C plane
CPQA(N) . C plane = carry from: Q plane + (inverted) A plane

CPCQA(N) C plane = carry from: C plane + Q plane + (inverted) A plane
CPCA(N) C plane = carry from: C plane + (inverted) A plane

RANO MCU register or edge register = logical AND of inverted A plane columns
SAN Store plane = inverted A plane

XAN Store row = inverse of corresponding row from A plane

6.2.12 Group 10

General characteristic: instructions add to an array store plane under activity control; that is, only
for those bits in the array store plane where the corresponding bits of the A plane are true (one).
In some cases the Q or C plane is also written to, in which case updating of that plane takes place
for all bits in the plane.

SIPQS Store plane = Q plane + store plane

SIPCQS Store plane = C plane + Q plane + store plane

SIPCS Store plane = C plane + store plane

SIQPQS Both Q plane and store plane = Q plane + store plane

SIQPCQS Both Q plane and store plane = Q plane + C plane + store plane
SIQPCS Both Q plane and store plane = C plane + store plane

SICQPQS Both Q plane and store plane = Q plane + store plane, carry to C plane

APAL Language man005.03 55

56

SICQPCS
SICQPCQS

SICPQS
SICPCQS
SICPCS

Chapter 6: APAL Instructions

Both Q plane and store plane = C plane + store plane, carry to C plane
Both Q plane and store plane = C plane + Q plane + store plane, carry
to C plane

Store plane = Q plane + store plane, carry to C plane

Store plane = C plane + Q plane + store plane, carry to C plane

Store plane = C plane + store plane, carry to C plane

6.2.13 Group 11

General characteristic: instructions write to an array store plane under activity control; that is,
only where corresponding bits of the A plane are true (one).

SIF
SIQ
SIC
SIPCQ
XIF
XIQ
XIC
XIPCQ

Store plane = zeros

Store plane = Q plane

Store plane = C plane

Store plane = Q plane + C plane
Store row = zeros

Store row = Q plane

Store row = C plane

Store row = Q plane + C plane

6.2.14 Group 12

General characteristic: instructions shift the PE register plane as specified by the effective direction,
geometry and count values.

AQ
AQQQ
QQ
AMQ

AMQ.QQ

A plane = Q plane shifted one place

Both A plane and Q plane = Q plane shifted count places

Q plane = Q plane shifted by count places

A plane = A plane ANDed with Q plane shifted one place

Repeat AMQ and QQ (both shifted one place) a total of count times

6.2.15 Group 13

General characteristic: instructions add the rows or columns of the Q and C planes as if each were
a set of edge-sized unsigned integers. The results of the addition are placed in the rows or columns
of either or both of the Q and C planes. The action of the instruction depends on the effective
direction, geometry and count values.

QvVCQ
CcQveQ

cvecQ

56

Q plane and C plane rows or columns added, sum in Q plane

Q plane and C plane rows or columns added, sum in Q plane, carry in C
plane

Q plane and C plane rows or columns added, carry in C plane

manfiNg N2 Anrrm

6.2: The instruction set

6.2.16 Group 14

57

General characteristic: instructions operate on MCU registers, and are mostly concerned with two
MCU registers specified in the instruction and denoted below by R and M.

ADD
ADDC
SUB
SUBC
ADDH
ADDHC
SUBH
SUBHC
INCR
DECR
AND
NAND
OR
NOR
RR
RRN
RF

RT
EQV
NEQ
ANDH
ANDHN
NANDH
NANDHN
ORH
ORHN
NORH
NORHN
RH
REN
EQVH
NEQH
SHL
SHR
SHLC
SHRA
SHRC
MPY32
MPY32V
MPY64
MPYU32
MPYU32V
MPYU64

APAL Language

R=R+M

R=R+ M + CAlag

R=R-M

R = R - M - inverted C-flag

R = R + literal

R = R + literal + C-flag

R = R - literal

R = R - inverted C-flag — literal
R=R+1

R=R-1

R = (inverted) R AND (inverted) M
R = (inverted) R NAND (inverted) M
R = (inverted) R OR (inverted) M

R = (inverted) R NOR (inverted) M
R=M :
R = inverse of M

R = zeros

R = ones

R = REQUIVM

R =R NOT.EQUIVM

R = (inverted) R AND literal

R = (inverted) R AND (NOT literal)
R = (inverted) R NAND literal

R = (inverted) R NAND (NOT literal)
R = (inverted) R OR literal

R = (inverted) R OR (NOT literal)
R = (inverted) R NOR literal

R = (inverted) R NOR (NOT literal)

R = inverted literal

R = R EQUIV literal

R = NOT (R EQUIV literal)

R = M shifted left count times

R = M shifted right count times

R = M cyclic shift left count times

R = M arithmetic shifted right count times

R = M cyclic shift right count times

R = least significant 32 bits from R x M (signed integers)

As above, but set V-flag for overflow

Register pair (R - 1, R) = 64-bit product R x M (signed integers)
R = least significant 32 bits from R x M (unsigned integers)

As above, but set V-flag for overflow

Register pair (R — 1, R) = 64-bit product R x M (unsigned integers)

man005.03

57

58

Chapter 6: APAL Instructions

6.2.17 Group 15

General characteristic: instructions provide branch and other control commands.

CALL

DO

EXIT

J

JE

JSL

JESL
NULL
SKIP
SKIP ALL
SKIP ANY
SKIP C
SKIP V

Supervisor entry

Initiate instruction loop

Return from subroutine

Jump

Jump to another code section

Jump and preserve link in register - used for subroutine call
Subroutine call to another code section

No effect

Skip next instruction on value of specified register bit

Skip next instruction on value of all bits of specified register
Skip next instruction on value of any bit of specified register
Skip next instruction on value of C-flag

Skip next instruction on value of V-flag

6.2.18 Pseudo instructions

LOOP
PAUSE
RAC
RACE
RALITR
RALITW
RAPL
RAR
RASC
RAWD
RDGC
RLIT
STOP

Signify end of DO LOOP (no code is generated)
Temporarily suspend program

Load address of instruction in code store

Load address of instruction in another code section
Load address of first row of row-aligned literal
Load address of first word of word-aligned literal
Load address of plane-aligned data item

Load address of row of data

Load address of data section

Load address of word of data

Load direction, geometry and count modifier value
Load literal value

Abandon program

6.2.18.1 Timing of instructions

Most instructions are executed in one cycle. The main exceptions are given in the table on the

next page.

58

man(05.03 AMT

6.2: The instruction set

Type of instruction

Activity-controlled operations (groups 10 and 11)

Data returned from array memory (group 2)

Data returned from PE register (some cases of groups 8, 9)
Array shifts (group 12)

Vector adds (group 13)

MCU scalar multiply (group 14)

DO, jump (group 15)
EXIT (group 15)

APAL Language man005.03

59

Cyecles to execute

2

3

2

1 per 1-bit shift
9 for DAP 500
17 for DAP 600
Jor4

2

3

59

60

60

manfifik N2

Chapter 6: APAL Instructions

PR W iasl

Chapter 7

Addressing

This chapter is concerned with the generation of addresses (or related values) by the MCU while
instructions are being executed: section 7.1 describes the different possible modes of calculation
of these addresses or values; section 7.2 describes the format of addresses or values held in MCU
registers that can contribute to address generation; and section 7.3 describes the syntax and usage
of addressing constructs.

Of necessity, parts of this chapter will discuss the individual bits of an instruction word; the
‘meaning’ of a particular bit in an APAL instruction will depend on the range of machines the
code will be assembled to run on. To enable you to see at a glance the bit structure for instructions
for the different ranges, the relevant lines are tagged with ‘DAP 500°, ‘DAP 600’ or ‘All ranges’,
as appropriate, or suitable comments are made in the flow of the text. Alternatively, some feature
of an instruction, for example, may be described as only applicable to machines with ES greater
than 32, that is machines with array edge sizes greater than DAP 500’s.

7.1 Addressing modes

Six modes of addressing are catered for in the APAL instruction set. The different modes allow
the MCU to construct one or more addresses or values by adding terms derived from:

e Fields in the instruction

e The DO loop iteration number

e A value held in a modifier register
Addressing modes A, B and C described below are generally used to address array store. In-
structions concerned with accessing a complete array store plane will use mode A addressing, and
will have an S in their instruction mnemonics; instructions concerned with accessing an array
store row will use mode B addressing and have an X in their mnemonics; instructions concerned

with accessing a word of an array store row will use mode C addressing, and have an W in their
mnemonics.

Mode A addressing is also used where an instruction wants to address a bit in an MCU register,
or the edge register; such instructions have a B in their mnemonics.

APAL Language man005.03 61

62 Chapter 7: Addressing

Modes A, B and C addressing

Modes A, B and C can be described as generating the effective ADDR, INT and WORD fields:

o The effective ADDR field specifies the address in the array store of the bit-plane of interest

e The effective INT field usually specifies the row or column address of interest in an ADDR-
selected plane. Some instructions use the INT field to select one bit of the edge register, or
one bit of an MCU register; in this latter case modulo 32 of the full INT field is used for bit
selection

o The effective WORD field is only relevant with mode C addressing and in code assembled to
run on a ES > 32 machine; the field specifies the address within a row or column of a 32-bit
word

The effective ADDR, INT and WORD addresses are generated at run time from, amongst the
other things mentioned above, ADDR, INT and WORD information supplied by you the user as
part of the instruction. The method of calculating the effective ADDR, INT and WORD fields
from the ADDR, INT and WORD fields in the instruction is described in sections 7 JA1.1,7.1.2 and
7.1.3.

With certain instructions using mode A addressing, one or both of the ADDR and INT fields need
not be specified. As a result, not all the bits in the instruction word (a fixed length of 32 bits) are
necessarily defined; any undefined bits are disregarded. Appendix F discusses in more detail all
the different instructions, including their usage of the various addressing modes.

The effective address calculated using modes A, B and C is a 29-bit value with a ‘layout’ of its bits
of:

Z ZZZA AAAA AAAA AAAA AAAA AAAT IIII DAP 500
Z ZAAA AAAA AAAA AAAA AAAA ATII ITIW DAP 600

where

Z... are bits checked by the MCU. For instructions that access the array store, if any of
these bits is not zero, a run-time error is flagged

A... is the effective ADDR field. For instructions that access the array store, the MCU flags
a run-time error if the ADDR field is greater than the value held in the program limit register

I... is the effective INT field

W is the effective WORD field

Other addressing modes

Address mode D is concerned with parameters for array shift and vector add intructions, rather
than array store addressing. Mode E is used to evaluate the count in a DO loop. Mode F is
concerned only with calculation of the return address when control returns from a sub-routine as
a result of executing an EXIT instruction.

62 man005.03 AMT

7.1: Addressing modes 63

7.1.1 Mode A : ADDR, INT evaluated separately

Mode A addressing is interpreted by the MCU in one of the following three ways, depending on
which instruction is being processed:

e The effective ADDR field specifies a store plane; the effective INT field is discarded

~ o The effective INT field specifies a bit from either an MCU register or the edge register; the
effective ADDR field is discarded

¢ The effective ADDR field specifies a store plane and the effective INT field specifies a bit
from the MCU or edge registers

The effective ADDR and INT fields, where used, refer to separate entities. These fields are evalu-
ated separately, although in the detailed description below these fields are shown concatenated in
order to emphasize the similarity with modes B and C addressing, described in sections 7.1.2 and
7.1.3. In ES > 32 machines, a WORD field is catered for in some instructions; mode A makes no
use of the field.

The effective address fields are constructed using 29-bit arithmetic, with any .carry-out from the

most significant bit position being ignored. In this address mode, there is also no carry propagation
between the INT and ADDR parts of the field.

Up to four of the following four terms may be added together to produce the effective ADDR and
INT fields; the actual fields that are added depending on the instruction concerned:

1 A composite instruction address field:

0 0000 0000 0000 Q000A AAAA AAAI IIII DAP 500
0 0000 0000 0000 OAAA AAAA AIII IIIO DAP 600
where

A... is the ADDR field you supplied in the instruction
I... is the INT field you supplied in the instruction

2 A field derived from the current DO loop iteration number (for INT field stepping):

0 0000 0000 0000 0000 0000 OQON NNEN DAP 500
0 0000 0000 0000 0000 0000 ONNN NNNO DAP 600

where N... are the least significant bits of the current DO loop iteration number

This term is only added when stepping is applicable, that is, if the instruction is inside
a DO loop, and the instruction specifies that the address is to be stepped. A bit in the
INCREMENT/DECREMENT field ‘specifies if the DO loop steps are to be negative, in
which case this second term will be subtracted from term 1

APAL Language man(005.03 63

64 Chapter 7: Addressing

3 Another field derived from the current DO loop iteration number (for ADDR field stepping):

N NNNN NNNN RNNN NNNN NENN NNNO 0000 DAP 500
¥ NNNN NNNN NNNN NNNN NNNN NOOO 0000 DAP 600

where N... are the least significant bits of the current DO loop iteration number

This term is only added when stepping is applicable, that is, if the instruction is inside
a DO loop, and the instruction specifies that the count value is to be stepped. A bit in
the INCREMENT/DECREMENT field specifies if the DO loop steps are to be negative, in
which case this second term will be subtracted from term 1

4 Modifier:
M MMMM MMMM MMMM MMMM MMMM MMMM MMMNM All ranges
where H... are the least significant 29 bits of the contents of the modifier register (see section
7.2.1)

If no modification is specified in the instruction, this fourth term is not added

Note that for any particular instruction, terms 2 and 3 (if relevant) can only be both added, both
subtracted, or both ignored.

Mode A addressing caters for addressing a store plane, or addressing a bit in the edge register or
an MCU register, or both plane and bit; the QEBS instruction, for example, addresses both.

The following addition illustrates how on a DAP 500 all of the above four possible terms could be
added to form the composite address fields for a QEBS instruction:

0 0000 0000 0000 OOOA AAAA AAAT IIXII
0 0000 0000 0000 0000 0000 OOON NNNN
N NNEN NENE NNNN NNNN NNNN NNRO 0000
M MMMM MMMM MMMM MMMM MMMM MMMM MMMM

V VVVV VVVV VVVV VVVV VVVV YVVV VYUV
which would be interpreted as:

Z ZZZA AAAA AAAA AAAA AAAA AAAT IIIX

The addition for the same instruction running on DAP 600 would be:

0 0000 0000 0000 OAAA AAAA AIII IXIO
0 0000 0000 0000 0000 0000 ONNN NNNO
N NNNN NNNN NNNN NNNN NNNN NOOO 0000
M MMMM MMMM MMMM MMMM MMMM MMMM MMMM

V VVVV VYUV VVVV VVVV VVVV VVVV VVVY

which would be interpreted as:

Z ZAAA AAAA AAAA AAAA AAAA AIIT IIIW

64 man005.03 AMT

7.1: Addressing modes 65

where:

V... is the value of the addition of the terms

Z... are bits checked by the MCU

A... is the effective ADDR field

I... is the effective INT field

W is the effective WORD field (which is ignored for mode A addressing)

Note, as stated above, any carry-out from the left-hand bit (that is, the most significant of the 29
bits) is ignored, as is any carry across the boundary between the the ADDR and INT fields.

The 29-bit result was interpreted as stated in section 7.1. Note that if the array is being addressed,
and the first few most significant bits — the ones labelled z ... above — are not zero, then a run-time
error will occur.

To illustrate how plane and bit address stepping works in mode A, suppose that on the first pass of
a DAP 500 DO loop, instruction QEBS generates an effective address of 60.29 (that is, bit plane
60, register bit number 29). If address incrementing is specified, then on subsequent passes of the
loop the effective address will be 61.30, 62.31, 63.0, 64.1, and so on. In a similar DAP 600 DO
loop, if the starting address was 65.62, then the addresses in subsequent passes of the loop would
be 66.63, 67.0, 68.1, and so on.

Other instructions using mode A addressing include CQPQS, QS and AMB.

7.1.2 Mode B : carry propagates from INT to ADDR

Instructions that access an array store row or column use mode B addressing, in which the effective
ADDR specifies the store plane, and the effective INT specifies the row or column within that plane.
These instructions have an X in their mnemonics. Mode B addressing allows modification and DO
loop stepping across plane boundaries. For example on DAP 500, row 31 of plane 10 and row 0
of plane 11 are regarded as consecutive rows. Hence in mode B addressing, the ADDR and INT
fields are concatenated, with carry-outs being propagated from INT to ADDR. As with mode A
addressing, for code running on ES > 32 machines, the WORD field is not used.

The address fields are constructed using 29-bit arithmetic, with any carry-out from the most sig-
nificant bit position being ignored. Unlike mode A addressing, during the addition that constructs
the effective ADDR and INT fields any carry bit from the most significant bit in the INT field is
carried forward to the least significant bit of the ADDR field.

Up to three of the following three terms are added together to form the effective ADDR and INT
fields:

1 A composite instruction address field:

0 0000 0000 0000 OOOA AAAA AAAT IIII ; DAP 500
0 0000 0000 0000 OAAA AAAA AIII IIIO DAP 600
where

A... is the ADDR field you supplied in the instruction
I... is the INT field you supplied in the instruction

APAL Language man005.03 65

66 ' Chapter 7: Addressing

2 Either of:
a A field derived from the current DO loop iteration number (for stepping the concate-
nated INT and ADDR fields):
N NNNN NNNN NNNN NNNN NNNN ENNN NNNN DAP 3500
N NNNN NNNN NNNN NNNN NNNN NNNN NNNO DAP 600
where N... are the least significant 29 or 28 bits of the DO loop iteration number
b A field derived from the current DO loop iteration number (for stepping the ADDR

field only):
N NNRN NNNN NNNN NNNN NENN NNNO 0000 DAP 500
N NNNN NNNN NNNN NNNN NNNN NOOO 0000 DAP 600

where N... are the least significant 24 or 22 bits of the DO loop iteration number.

The STEP TYPE instruction field specifies which of the above alternative stepping terms is
used.

The addition of the appropriate stepping term only occurs when stepping is applicable. That
is, if the instruction is inside a DO loop, and the instruction specifies that the address is to
be stepped. A bit in the INCREMENT/DECREMENT field specifies if the DO loop steps
are to be negative, in which case the selected stepping term will be subtracted from term 1

3 Modifier

M MMMM MMMM MMMM MMMM MMMM MMMM MMMM All ranges
where M. .. are the least significant 29 bits of the contents of the modifier register (see section
7.2.1).

If no modification is specified in the instruction, this third term is not added

In a similar way to mode A addressing, a 29 bit sum is formed from whichever of the above three
terms is relevant; any carry out from the 29" least significant bit position is ignored. As with
mode A, the 29 bit value is interpreted and checked as described in section 7.1.

For example, suppose in a DAP 600 machine on the first pass of a DO loop an instruction using
mode B addressing (instruction XAN perhaps) is operating on an effective address of 50.2 (that
is, bit plane 50, row 2). If decrementing the row address is specified, then on subsequent passes
of the DO loop the effective address would be 50.1, 50.0, 49.63, 49.62, and so on. If, instead of
decrementing the row address, incrementing the bit-plane address was specified, then on subsequent
passes of the DO loop the effective address would be 51.2, 52.2, 53.2, and so on.

Other instructions using mode B addressing include RX, XIQ.

7.1.3 Mode C : word address

Instructions that access words in an array store plane have a W in their mnemonics and use mode
C addressing, which is similar to mode B addressing; in mode C use is made of the WORD field
to specify the word of interest.

The address fields are constructed using 29-bit arithmetic, with any carry-out from the most
significant bit position being ignored. In a similar way to the process used in mode B addressing,
during the addition that constructs the effective ADDR, INT and WORD fields any carry bit from

66 man005.03 AMT

7.1: Addressing modes . 67

the most significant bit in the WORD field is carried forward to the least significant bit of the INT
field, and any carry bit from the most significant bit in the INT field is carried forward to the least
significant bit of the ADDR field.

On DAP 500 mode C is identical to mode B. However, if you want your code to be portable between
all ranges of DAP, even when you are programming for a DAP 500 you should distinguish between
word accesses and row accesses. For completeness, mode C instructions to run on both DAP 500
and DAP 600 are considered here. '

Up to three of the following three terms are added together to form the effective ADDR, INT and
WORD fields:

1 A composite instruction address field:

0 0000 0000 0000 OO0OA AAAA AAKI ITII DAP 500
0 0000 0000 0000 OAAA AAAA AIII IIIW DAP 600
where

A... is the ADDR field you supplied in the instruction
I... is the INT field you supplied in the instruction
W is the WORD field you supplied in the instruction

2 A field derived from the current DO loop iteration number (for stepping the concatenated
WORD, INT and ADDR fields):

N NNNN NNNN NNNN NNNN NNNN NNKEN NNNN All ranges

where ¥... are the least significant 29 bits of the DO loop iteration number

The addition of the appropriate stepping term only occurs when stepping is applicable. That
is, if the instruction is inside a DO loop, and the instruction specifies that the address is to
be stepped. A bit in the INCREMENT/DECREMENT field specifies if the DO loop steps
are to be negative, in which case the selected stepping term will be subtracted from term 1.

Note that in mode C addressing, DO-loop stepping of the ADDR field only is not allowed,
unlike in mode B addressing

3 Modifier
M MMMM MMMM MMMM MMMM MMMM MMMM MMMM All ranges
where M. .. are the least significant 29 bits of the contents of the modifier register (see section
7.2.1).

If no modification is specified in the instruction, this third term is not added

As with modes A and B addressing, a 29 bit sum is formed from whichever of the above terms is
relevant; any carry out from the 29*h least significant bit position is ignored; the 29 bit value is
interpreted and checked as described in section 7.1.

For example, suppose in a DAP 600 machine on the first pass of a DO loop an instruction using
mode C addressing is concerned with an effective address of 38.62.1 (that is, bit plane 38, row 62,
word 1). If incrementing the address is specified, then on subsequent passes of the DO loop the
effective address would be 38.63.0, 38.63.1, 39.0.0, and so on.

Instructions using mode C addressing include RW and WR.

APAL Language man005.03 67

68 Chapter 7: Addressing

7.1.4 Mode D : direction, geometry and count

Mode D is concerned with specifying four parameters: the direction of shift in an array shift
operation; the direction of carry propagation for an array vector add operation; the ‘geometry’ or
the edge effect for such operations; and the count, or number of planes of shift or carry propagation.
Many instructions that use mode D addressing have a Q in their mnemonics, as they are, in part
at least, concerned with the Q plane.

The effective direction of shift or carry propagation is formed using the DIRECTION field in the
instruction, and optionally a field from a modifier register. The options available are:

e North)

* East independent of the contents of the modifier register,
e South even if a modifier register is specified

e West

e Direction specified by part of the contents of the modifier register

e Direction specified by part of the contents of the modifier register, with the addition of 90
degrees clockwise rotation

o Direction specified by part of the contents of the modifier register, with the addition of 180
" degrees clockwise rotation

e Direction specified by part of the contents of the modifier register, with the addition of 270
degrees clockwise rotation

The effective geometry specifies the edge effect, as discussed in section 6.1.6, and is formed using
the instruction GEOMETRY field, or a field from a modifier register.

The options available are :
e Plane EW, Plane NS
e Plane EW, Cyclic NS
e Cyclic EW, Plane NS
e Cyclic EW, Cyclic NS

e Geometry specified by the contents of the modifier register

Note that where the EW and NS geometries differ, then the effective geometry depends on the
effective direction, as defined above.

The effective count value is 5 bits wide for DAP 500, and 6 bits wide for DAP 600. The value is
constructed by taking the sum of up to 3 of the following terms:

1 The value you supplied in the INT field of the instruction

68 man005.03 AMT

7.2: Modifier register formats 69

2 A field derived from the current DO loop iteration number (for stepping the COUNT value).

The addition of the appropriate stepping term only occurs when stepping is applicable. That
is, if the instruction is inside a DO loop, and the instruction specifies that the count value
is to be stepped. A bit in the INCREMENT/DECREMENT field specifies if the DO loop
steps are to be negative, in which case the selected stepping term will be subtracted from
term 1

3 The least significant bits of the contents of a modifier register.

If no modification is specified in the instruction, this third term is not added

The effective direction and geometry are unaffected by DO loop stepping.
Instructions using mode D addressing include QQ, CVCQ, and QVCQ.

7.1.5 Mode E : DO loop count

The value of the DO loop iteration count is given by adding the instruction DO COUNT field, and
(if instruction modification is specified) the entire contents of the modifier register.

“If the loop count is unmodified, then the count values that can be encoded in the instruction are
in the range 1 to 256.

" If the loop count is modified, then the count value encoded in the instruction is a signed offset in
the range —255 to +256. If the result of such count modification is zero then the effect is undefined.

7.1.6 Mode F : EXIT instruction

In the EXIT instruction, the address in code store of the destination instruction is evaluated
by adding the instruction CODE ADDRESS field to the least significant 20 bits of the modifier
register, ignoring any carry-out.

7.2 Modifier register formats

This section describes the various formats for the contents of MCU registers when they are used
as modifier registers.

Array instructions only permit M1 to M7 to be used as modifiers, but for the DO count and for
instructions J and JE, M1 to M13 are usable. Any MCU register (including M0) can be used with
the EXIT instruction to construct the destination instruction address.

7.2.1 Array store plane and row, column, word or bit number modifier

The modifier always has the format of a word address, as follows:

APAL Language man005.03 69

70 Chapter 7: Addressing

XX00 O00A AAAA AAAA AAAA AAAA AAAT IIII DAP 500
XX00 OAAA AAAA AAAA AAAA AAAA AIIT IIIVW DAP 600
where

X... are bits whose values are disregarded by the MCU (often called ‘don’t care’ bits)
A... is the ADDR field, corresponding to a plane address

I... is the INT field, corresponding to row or column number or register bit number
W is the WORD field, corresponding to a word address within a row

Such modifiers can be constructed using the instructions RAX or RAW, or pseudo-instructions
RASC, RAPL, RAR or RAWD.

When you use such a modifier to generate an array store address, the effective address is subject to
the checks described in section 7.1. Hence some of the most significant bits in the modifier should
be zero (bits 3 to 6 inclusive for DAP 500, bits 3 and 4 for DAP 600). Also, when you address the
array store, bit 2 in the modifier should be zero, otherwise a run-time error will result.

7.2.2 Direction, geometry and count modifier

Modifiers of this form can be used by the array shift and vector add instructions.

The format of the modifier register is: ,
XXXX XXXX XXXX XXXX XXDD XXGG XXXC CcCCC DAP 500

XXXX XXXX XXXX XXXX XXDD XXGG XXCC CCCC DAP 600
where

X... are bits whose values are disregarded by the MCU (often called ‘don’t care’ bits)
DD is the direction field

GG is the geometry field

C... is the count field

Possible values for DD and GG are :

DD 00 North GG 00 Plane EW, Plane NS
01 East 01 Plane EW, Cyclic NS
10 South 10 Cyclic EW, Plane NS
11 West 11 Cyclic EW, Cyclic NS

Section 7.1.4 specifies direction and geometry modification; even when a modifier is specified, the
direction and/or geometry fields of the modifier register can be ignored.

You are recommended to construct these modifiers using the pseudo-instruction RDGC.

7.2.3 DO count modifier

A modifier of this type can be used in constructing the effective count for a DO loop (see section
7.1.5):

70 manfliNk N2 ANST

7.3: Addressing constructs 71

4443 1411 1111 1211 1111 1311 1131 113141 All ranges

where T... is the field in the modifier which will be added to the ‘times round the DO-loop’ count.

Note that the entire contents of the modifier register are used.

7.2.4 Instruction address modifier

Modifiers of this type are used with the EXIT or J instructions.

The format of the register is:
XXXX XXXX XXXX RRRR RRRR RRRR RRRR RRRR All ranges

where

X... are bits whose values are disregarded by the MCU (often called ‘don’t care’ bits)
R... is the modifier field to be added to the return instruction address

These modifiers are created typically when a JSL or JESL instruction is used to enter a subroutine,
or when a RAC or RACE instruction is used. Note that in either case the most significant bits
are undefined, and are ignored by EXIT or J.

7.3 Addressing constructs

This section describes the syntax and usage of a number of addressing constructs that are used in
APAL instructions.

7.3.1 Specifying modifier registers

Modifiers must be used to form the following array store addresses:

e An address of a plane, row or word in a data section

e An address of a plane, row or word in the stack section

Use of a modifier to form or select any of the following items is optional:

e An address of a plane, row or word in the workspace area (planes 0 to 119)
e A bit number in an MCU register or the edge register

e DIRECTION, GEOMETRY and COUNT fields

e DO loop iteration count

e Instruction address

APAL Language man005.03 71

72 . Chapter 7: Addressing

For the DO loop iteration count, or instruction addresses the modifier is specified as follows:
<doj modifier> ::= (<dojmreg>)

<dojmreg> ::= M1 | M2 | M3 | M4 | M5 | M6 | M7 | M8 | M9 | M10 | M11 | M12 | M13
All other types of modifier are as follows:

<modifier> ::= (<mreg>)

<mreg> = M1 | M2 | M3 | M4 | M5 | M6 | M7

If DO loop stepping is also specified, the modifier and step can be written in a short combined
form (see section 7.3.3).

7.3.2 Specifying DO loop stepping

For most instruction types, stepping of addresses or values is specifed as:
<step> = (+) | ()

These step options are the only ones available with mode A or mode C addressing (see sections
7.1.1 and 7.1.3 for more details).

For those instructions that access a row or column of array store, the stepping is specified as:
<step A> u= (+A) | (-A) | <step>
These step options are used with mode B addressing (see section 7.1.2 for more details). Use of

options +A or —A cause the bit-plane address to be stepped; options + or — cause the row or
column address to be stepped.

7.3.3 Array store addresses

The syntax of array store addresses is:

<array store address> ::= <store plane address> | <store row address> |
<store column address> | <store word address>

<store plane address> ::= <plane><modifier>?<step>?
<store row address> ::= <row><modifier>?<step A>?
<store column address> ::= <column><modifier>?<step A>?
<store word address> = <word><modifier>?<step>?

<data address> ::= <plane> | <row> | <column> | <word>

<plane> ::= <aligned data name><plane offset>? | <plane number>

72 manNg N2 AN

7.3: Addressing constructs 73

<row> = <name or plane><row offset>? | <row offset>
<column> ::= <name or plane><column offset>? | <column offset>

<name or plane> ::= <data name><plane offset>>? | <plane number>

<word> = <row> |
<name or plane>?.<word offset> |
<name or plane>7<row offset><word offset>

<aligned data name> ::i= <data name>

<data name> ::= <data section name> | <data variable name> | <identity name>
<plane offset> ::= + <plane number>

<row offset> ::= .<numval>

<column offset> ::= .<numval>

<word offset> ::= .<numval>

<plane number> ::= <numval>

When <modifier> and <step> are both present in a store address, they can be combined by
combining the pairs of brackets; for example, the following are equivalent:

(M1)(+)
(M1+)

Some examples of array addresses are:

DATAVAR1 + 14.2(M3)
DATAVAR2 + 10 (M4)(+)
20.14(-)

.9(M6)

1..3(M4)

Effective array store addresses are constructed at run time using mode A, mode B or mode C
addressing (for more details see sections 7.1.1, 7.1.2 and 7.1.3 respectively), depending on the
instruction concerned.

Note that when a data variable name, or a data identity name which represents an address within
a data section is used, then a modifier register is mandatory; the modifier must contain the address
of the start of the data section. Since the instruction ADDR field is eight bits, the value of <plane
number>, or the instruction field implied by <aligned data name> together with <plane offset>
must be in the range 0 to 255. The following program extract illustrates these points and the use
of pseudo-instructions RASC and RAPL in constructing addresses:

DATA D
D1:256%PLANE
D2:1,2,3

APAL Language man005.03 73

74

END

Chapter 7: Addressing

CODE C
RASC M1 D1 ! M1 CAN BE USED TO ACCESS THE
! FIRST 256 PLANES OF D.
Qs D1(M1) ! LDAD FIRST PLANE OF D.
Qs D1+265 (M1) ! LDAD PLAKE 2B5 OF D.
Qs D2(M1) ! THIS WOULD FAIL AT ASSEMBLY TIME;
! AN OFFSET OF 256 WILL NOT FIT
! IN INSTRUCTION.
RAPL M2 D2 ! LOAD ADDRESS OF PLANE 256 OF D INTO M2.
Qs o(M2) ! LOAD PLANE 256 OF D.
as 255(M2) ! LOAD PLANE 511 OF D.
END

7.3.4 Register bit addresses

Bit selection can be applied to an MCU register or to the edge register. The syntax is:

<MCU-or-edge-register bit address> ::= <MCU-or-edge-register>.<bit number><modifier>?<step>?

<MCU-or-edge-register> ::= MO | M1 | M2 | M3 | M4 | M5 | M6 | M7 | M8 | M9 | M10 | M11 |
M12 | M13 | ME

<bit number> = <numval>

The bit number must be in the range 0 to 31 for an MCU register, or 0 to (ES -1) for the edge
register.

Some examples of register bit selection are:

MO0.12
M11.20(M2)
M6.14(M3)(+)
ME.30(-)

Some APAL instructions address both a register bit and a store plane. The syntax of such an
address is:

<MCU-or-edge-register>.<bit number><store plane address>
Some examples are:

MO0.12 VARI + 2 (M6)(+)
M6.14 171(M4)

74 man005.03 AMT

7.3: Addressing constructs 75

The effective bit number is the INT value constructed at run time using mode A addressing (see
section 7.1.1. for more details). When a bit of an MCU register is being selected, modulo 32 of
the effective INT value is used.

Note that the bit selection number in a modifier register occupies the INT field (as defined in
section 7.1), which for machines with ES > 32 is not held in the least significant bits of the
modifier. Hence you will often find it convenient to construct such modifiers using the RAX
instruction — see appendix F for details.

7.3.5 Code store addresses

Much as with data store addresses, once a code store address has been given a label, then you can
refer to that address simply by the label name.

Code store addresses within the same code section have the following syntax:

<within-section address> ::= <code label name><label offset>7<doj modifier>? |
<star><label offset><doj modifier>?

<label offset> ::= + <numval> | - <numval>

<star> u= ¥

Thus a code store address can be either of the following;:

e The name of a code label in the same code section, with an optional displacement (in in-
structions) forwards or backwards, and with an optional modifier

e A displacement, forwards or backwards, from the current instruction, with an optional mod-
ifier. The current instruction is represented by the character *

Any within-section code address can be referenced by a J instruction. Any unmeodified address
can be referenced by a JSL instruction or an RAC instruction. Typical instructions might be:

J LAB1 ! jump to instruction labelled LAB1
JSL LAB2 +3 ! jump to the third instruction after the one
! labelled LAB2, saving a link value in M0
J *-2 ! jump to the instruction two before the present one
RAC M1 LAB2 ! load the address of LAB2 into M1

Code store addresses within a different code section have the following syntax:

<inter-section address> ::= <code section name><section offset>?<doj modifier>? |
<entry point name><section offset>?<doj modifier>?

<section offset> ::= + <numval>

Thus the address can be the name of another code section, or the name of an entry point within

another code section, either of them having an optional forward displacement and an optional
modifier.

APAL Language man005.03 75

76 ' Chapter 7: Addressing

Any of these address forms can be used with the JE instruction. The unmodified forms can be
used with the JESL or RACE instructions.

. When you are transferring control between sections, you should take account of the software
conventions given in section 9.6.

The syntax of the EXIT instruction is:

EXIT <MCU register>7?<offset>?
<offset> ;= <numval>

You can regard the MCU register (including MO, the default) as being a modifier for the offset.

76 ’ man005.03 AMT

Chapter 8
Tracing facilities

APAL provides a facility which you can use to suspend the execution of a DAP program temporar-
ily, and output the contents of various registers and a segment of the array store part of your DAP
program block. This facility is intended as an aid to program development; it will affect program
performance adversely.

8.1 The TRACE statement

The tracing facility is provided by the TRACE statement.

8.1.1 Syntax

<trace.statement> ::= TRACE<trace_number>?<registers_trace_item> <trace.level ><newline> |
TRACE<trace.number>?<registers_trace_.item>7<trace level>
<array.store.trace_item><newline>

<array.store_traceitem> ::= <word><modifier>?<trace.count>? WORDPACK?<type/size>7|
<word><modifier>? <trace_count>? ROWPACK< type/size>?
<start_bit>?|
<word><modifier>?<trace.count>? VERTICAL<type/size>?
<row.range>7<colrange>?|
<word><modifier>?<trace.count>? VERTICAL<type/size>?
<col.range>7<row.range>?

<trace.number> ::= <numval> .

<registers_trace_item> ::= PER|MER|PER MER|MER PER
<modifier> ::= (<mreg>)

<mreg> = M1 | M2 | M3 | M4 | M5 | M6 | M7

<tracelevel> ::= LEVEL <numval>

APAL Language man005.03 77

78 Chapter 8: Tracing facilities

<trace.count> ::= <numval>

<type/size> = <type><size>?

<type> = HEX|INT|REAL|CHAR|BIT
<size> 1= (<numval>)

<start_bit> ::= FROM.BIT <numval>
<row._range> ::= ROWS (<numval>,<numval>)

<col.range> ::= COLS (<numval>,<numval>)

8.1.2 Semantics

The APAL tracing facility is controlled by TRACE statements within an APAL code section.
TRACE statements must not appear outside a code section. When the output is complete, execu-
tion continues with the next APAL instruction.

TRACE has the following basic form:

TRACE trace-number registers-trace-item LEVEL trace-level-number
array-store-trace-item

where:

trace-number is an unsigned integer or hexadecimal value, or an assembly-time expression
within [] yielding a non-negative integer value; it must lie in the range 0 - 1023, and appears
at the head of the output generated by TRACE. trace-number is used to identify the origin
of the TRACE output; you can omit trace-number, in which case it defaults to the line
number of the TRACE statement generated for the APAL code listing

registers-trace-item is any of MER, PER, MER PER, or PER MER. The effect is to TRACE
the contents of the MCU and edge registers (MER), the PE registers — the A, Q and C
planes of the PEs — (PER), or both the MCU and edge registers and the PE registers (MER.
PER, and PER MER). MER PER and PER MER have the same effect; they both specify an
output of PER then MER. Either or both of registers-trace-item and array-store-trace-item
(see below) can be included in a TRACE statement

trace-level-number is an unsigned integer, a hexadecimal value, or an assembly-time expres-
sion in [] producing an integer in the range 1 to 15.

At APAL source assembly time, you can specify a TRACE option with a value in the range
0 to 15. The effect of this assembly-time TRACE option is that any TRACE statement with
a trace-level-number greater than your option will not be assembled. The default for this
assembly-time option is no TRACEing.

78 man005.03 AMT

8.1: The TRACE statement 79

You can specify a further TRACE option value, which has effect when the program is run.
Only those assembled TRACE statements with a trace-level-number not exceeding the run-
time option value will generate output. The default for this run time option is that output is
produced for all assembled TRACE statements.

A detailed description of how to control TRACE at assembly and run time is given in DAP Se- x
ries: Program Development

array-store-trace-item specifies the array store item(s) to be TRACEd, and is defined below.
Either or both of array-store-trace-item and registers-trace-item can be included in a TRACE
statement

8.1.2.1 Array store trace items

Unless you tell it otherwise, TRACE has no knowledge of the structure of the data item(s) to be
traced. You must tell it therefore what to assume about the format of the items (integer, real,
and so on), about the size of each item, about how many items are to be traced, about how they
are packed in store, and so on. Your specification for array-store-trace-item gives TRACE this
information.

array-store-trace-item can take any of the forms:

word (modifier) trace-count WORDPACK type (size)
word (modifier) trace-count ROWPACK type (size) start-bit
word (modifier) trace-count VERTICAL type (size) row-range col-range

where:

word (modifier) specifies an effective address, the word address of the start of the (first) data
item to be TRACEd. This address is similar to an array store address (see section 7.3.3 for
more details), except that:

e Address stepping is not allowed

e A global name can be specified without a modifier, since the address fields associated with
TRACE are wide enough to address anywhere within the DAP program block (unlike the
address fields of APAL instructions). If both word and (modifier) are specified, the two
are added together to form the effective word address, using carry across the INT and
WORD and ADDR and INT boundaries — as in Mode C addressing

trace-count is an unsigned integer, a hexadecimal value, or an assembly-time expression in []
producing an integer; it specifies how may items are to be traced out, and should lie in the
range 1 to 22°, The parameter is optional; if you do not specify one a default of 1 is assumed

WORDPACK, ROWPACK and VERTICAL specify the way the data is assumed to be mapped
in the DAP memory, and are discussed below

type specifies the type to be assumed for the data item(s) to be TRACEd,; it can take any one
of the values given in the table on the next page

APAL Language man005.03 79

80

80

Chapter 8: Tracing facilities

(size) is an unsigned integer, hexadecimal value or an assembly-time expression in [].
The values of type and the ranges within which size should lie are given below:
Value of type Effect: possible range of values for size

INT Data is interpreted and output as two’s complement integer values: 1 to
64 bits, in steps of 1 bit

REAL Data is interpreted and output as real values: 24 to 64 bits, in steps of 8
bits
HEX Data is interpreted and output as hexadecimal values: 1 bit to (either 64

for WORDPACK or VERTICAL formats; or for ROWPACK, 64 or ES,
whichever is the greater), in steps of 1 bit

CHAR Data is interpreted and output as ASCII character values (see appendix
B for details): 24 bits to (either 64 for WORDPACK or VERTICAL
formats; or for ROWPACK, 64 or ES, whichever is the greater) bits, in
steps of 8 bits

BIT Data is interpreted and output as bit patterns: 1 to (either 64 for WORD-
PACK or VERTICAL formats; or for ROWPACK, 64 or ES, whichever
is the greater) bits, in steps of 1 bit

You can omit type, in which case a default value of HEX is assumed

If you specify type, specifying (size) is optional; if you do not specify type, specifying (size)
will cause an assembly-time error. If you do not specify (size) it will default to 32 for all
values of type

One word of caution: notice that TRACE’s maximum size for a CHAR item is 64 bits, not
the 512 bits of a normal data item. Should you want to TRACE character strings larger
than 64 bits, then one way would be to TRACE several ES-sized WORDPACKed CHAR
data items starting at the same address in store as each of your large strings

start-bit specifies the start of the data item(s) to be TRACEd as an offset from the start
(the most significant bit) of the selected row(s), and has the form:

FROM.BIT bit-number

where bit-number can take any value from 0 to ES — 1. The sum of bit-number and size
must not exceed E'S. start-bit is optional; the default is such that each item is assumed to
be ‘right aligned’ in its row; for example, in code to run on a DAP 600, if type (size) is INT
(32), then the default for start-bit is 32

row-range specifies the range of rows to be output in each plane selected for TRACEing; it
takes the form:

ROWS (start-row, end-row)

man005.03 AMT

8.2: Format of items to be TRACEd 81

where start-row and end-row define the start and end of the blocks of rows of interest; each
is in the range 0 to ES — 1. The parameter is optional; if you do not specify any ROWS a
default of all rows is assumed. ROWS (...) and COLS (...) can be specified in either order

column-range specifies the range of columns to be output in each plane selected for
TRACEing; it takes the form:

COLS (start-column, end-column)

where start-column and end-column define the start and end of the blocks of columns of
interest; each is in the range 0 to ES — 1. The parameter is optional; if if you do not specify
any COLS a default of all columns is assumed. COLS (...) and ROWS (...) can be specified
in either order

8.2 Format of items to be TRACEd

For TRACE to produce output that can easily be understood by you, it needs to know how the
data you want to TRACE is held in the array store. As explained in chapter 4, when you initialise
~ a data section, you can state that data is to be packed into a series of contiguous horizontal words
(WORDPACK), or into a series of contiguous horizontal rows (ROWPACK). Similarly, TRACE
lets you specify that the data you want to TRACE is stored WORDPACKed or ROWPACKed.
Although you cannot declare or initialise data in VERTICAL format (PLANE_ALIGN lets you
declare and initialise data starting at a plane boundary, but the data is still stored horizontally),
you can TRACE VERTICALly stored data.

The following sections discuss the three possible formats.

8.2.1 WORDPACK format

If you specify WORDPACK, TRACE assumes that each data item to be TRACEd is packed into
a whole number of 32-bit words in array store; the type (size) specified in the statement and
discussed above, specify the assumed details of the item(s) in the word(s).

8.2.2 ROWPACK format

If you specify ROWPACK, TRACE assumes that each data item to be TRACEd is packed into
a whole number of rows in array store. If the effective word address you specified in the TRACE
statement is not at a row boundary, then TRACEing starts at the beginning of the row that contains
the effective word address; the specified or default value of start-bit may modify TRACE’s starting
point.)

If you do not specify any start-bit, then TRACE will output the type and (size) of data item as
specified (explicitly or by default), using a default value for start-bit, such that each data item is
assumed to be ‘right aligned’ in its row.

You can use start-bit to TRACE unusual data structures in store, or part only of normal data
items; one use might be to TRACE only the sign bits of an array of vectors.

APAL Language man005.03 . 81

82 Chapter 8: Tracing facilities

8.2.3 VERTICAL format

If you specify VERTICAL, TRACE assumes that each data item to be traced is a vertical mode
matrix (of size ES by ES, unless you specify either or both of ‘COLS (start-column, end-column)’
and ‘ROWS (start-row, end-row)’). Each successive data item (if any) is a similar matrix, starting
in array store, size bit planes from the previous item TRACEd. .

If the effective word address you specified in the TRACE statement is not at a plane boundary, then
TRACEing starts at the beginning of the plane that contains the effective word address, modified
by any ‘COLS (start-column, end-column)’ and ‘ROWS (start-row, end-row)’ you specify.

8.3 Examples

e A simple example:
TRACE PER MER LEVEL 5

which will output, if traces of level 5 or lower are required, a trace report numbered with the
line number of the TRACE statement in the listing of the APAL source code. The report
will consist of the contents of the PE register planes, then the contents of the MCU registers.

e An example of tracing WORDPACKed data items:
FRED = 24.3.0

TRACE 23 LEVEL 8 FRED 32 WORDPACK

The TRACE statement will output a report numbered 23 if reports of level 8 or lower are
required. The report will include 32 hexadecimal data items, each 32 bits wide, taken from
array store starting at address 24.3.0

See the entry for TRACE in appendix F for further examples.

82 manfiN5 N2 ANLT

Chapter 9

Code section conventions

9.1 Introduction

This chapter describes:
o Entry and exit conventions for an APAL code section
¢ The areas of the DAP available to the code section
e How to call an APAL or a FORTRAN-PLUS subprogram from an APAL code section
e How to call an APAL code section from a host FORTRAN (or whatever) subprogram

9.1.1 Run-time structure

Any program that uses the DAP consists of a DAP program and an associated host program.

The host program consists of one or more modules commonly, but not necessarily, written in
FORTRAN or C that execute on the host. The DAP program consists of one or more modules
written in either or both of FORTRAN-PLUS and APAL that execute on the DAP (see also
DAP Series: FORTRAN-PLUS Language).

Any module in the entire program can call any other module, with the following restrictions:

¢ Execution must begin and end in the host program N
¢ A DAP module cannot call a host module

e Data can only be passed between the host program and the DAP program via APAL data
sections with the COMMON property, or FORTRAN-PLUS COMMON blocks

APAIL Language man005.03 83

84 Chapter 9: Code section conventions

9.1.2 Standard macro facilities

A suite of standard macros and data identities is available to simplify your task of creating code
sections; in particular, of creating the interface between the code sections. You can use the macros
and identities throughout a module if the APAL pre-processor file-include statement:

F#include usrmacs.da

appears directly after the module header (see DAP Series: Program Development). This statement
also includes a global data identity giving you access to a set of useful bit patterns, described in
section 10.1. If you want to you can devise your own code section conventions rather than use the
standard macros; guidelines for doing this are given in in section 9.6. Sections 9.2 to 9.5 assume
that the standard suite is used. Details of the APAL instructions used in the examples appear in
chapter 6 and appendix F.

9.2 Entry and exit conventions

This section describes the entry and exit conventions for an APAL code section and how it can
access its parameters, if any.

9.2.1 Entry conventions

You should call the standard macro 'PROLOGUE immediately after every code header and every
code section entry point. It takes one parameter, which is the number of parameters passed to the
code section or entry point, the default being zero.

Example

CODE EXAMPLE DAP

'PROLOGUE 3 ! EXAMPLE HAS 3 PARAMETERS
ENTRY ENT1
'PROLOGUE 1 ! ENT1 HAS 1 PARAMETER

ENTRY ENT2 HOST

"PROLOGUE ! ENT2 MAY BE CALLED FROM
! THE HOST PROGRAM AND
! HAS NO PARAMETERS

END

84 man005.03 AMT

9.2: Entry and exit conventions 85

9.2.2 Exit conventions

You should call the standard macro ’EPILOGUE to return to the calling routine. The most
convenient place for it is just before the code section END statement. In cases where a return is
required at several points in a code section, the macro call can be labelled and then jumped to
using the J instruction. Alternatively, 'TEPILOGUE can be called anywhere in the code section,
but as it expands to several instructions it cannot be conditionally jumped around using SKIP.

9.2.3 Parameter access

When a code section is called, register M6 contains the address of its name space. This area of
array store contains linkage information and the addresses of any parameters for the code section.
You can access the parameters using the data identity 'PARBASE, which is the word offset from
the address in M6 of a consecutive set of rows containing the addresses of the parameters.

Each parameter address occupies one word, the first such address being 'PARBASE..1 (M6), the
second in 'PARBASE..2 (M6) and so on. If the code section is expected to return a result (thus
behaving like a FORTRAN-PLUS FUNCTION), then the address of the result will be in the first
word of the set, 'PARBASE (MS6).

Some addresses are passed directly in registers to the code section, as well as being copied to the
name space. A result address is passed in M1, the first parameter address in M2, the second in
M3, and the last parameter address (if there are three or more) in M4.

Example

This example shows a FORTRAN-PLUS subprogram calling an APAL code section as though it
were a FORTRAN-PLUS FUNCTION.

FORTRAN-PLUS subprogram

SUBROUTINE CALLSAPAL
EXTERNAL INTEGER SCALAR FUNCTION DIFF

J = DIFF (73, 31)

APAL code section

MODULE EXAMPLE2
Finclude usrmacs.da

APAL Language man005.03 85

86 Chapter 9: Code section conventions

CODE DIFF DAP

'PROLOGUE 2 ! DIFF HAS 2 PARAMETERS

RW M1 'PARBASE (M6) ! THE FUNCTION RESULT ADDRESS
RW M2 "PARBASE..1 (M6) ! THE FIRST PARAMETER ADDRESS
RW M2 0 (M2) ! THE FIRST PARAMETER

RW M3 'PARBASE..2 (M6) ! THE SECOND PARAMETER ADDRESS
RW M3 0 (M3) ! THE SECOND PARAMETER

SUB M2 M3 !

WR M2 0 (M1) ! COPY THE ANSWER TO THE RESULT
’ EPILOGUE

END

ENDMODULE

In this simple example M1, M2 and M3 could have been used directly instead of being loaded from
the name space, thus saving three instructions.

9.3 Areas of the DAP available to a code section

This section describes the locations in a DAP whose contents can be altered by a code section.

9.3.1 Free name space

After a call of 'PROLOGUE, register M7 contains the address of the free name space. This is the
first free plane in the name space of the code section that does not contain linkage information or
parameter addresses. All planes in array store from this location up to the DAP Program Block
limit are available to the code section. The size of this stack area can be adjusted at assembly time
using the STACK statement (see section 10.4).

9.3.2 Workspace

Array store planes 0 to 119 in the DAP Program Block are freely available as workspace to any
code section. Their contents are undefined on entry to the code section.

86 man005.03 . AMNMT

9.4: Calling another code section 87

9.3.3 Other array store locations

As well as workspace and the free name space, the following array store locations can be accessed
by a code section:

o The locations containing parameters passed by the calling routine
o The location containing the result to be passed back to the calling routine

e Data sections that are either local to the module containing the code section, or that have
the DAP property

9.3.4 PE register planes, MCU registers and the edge register

The PE A, Q and C planes are freely available to a code section. Their contents are undefined on
entry and need not be restored on exit.

The MCU registers MO — M13 and the edge register ME are also available to a code section. Some
registers contain useful information on entry or after a call of 'PROLOGUE. However you do not
need to restore any of them on exit. It is convenient to maintain the value of M7 (the free name
space address) throughout a code section.

9.4 Calling another code section

This section describes the conventions you should follow in an APAL code section when calling
another APAL code section or FORTRAN-PLUS subprogram.

9.4.1 Creating a name space

A calling routine must create the name space for the called routine, and place its address in register
MS5. The only information that needs to be put into the name space is the result and parameter
addresses; all other linkage information is created automatically by the standard macros. The
address of the name space should be that of the first unused plane in the calling routine’s free
name space.

Example
RAX M5 97 (M7)

In this example the new name space begins 97 array store planes beyond the start of the current
free name space.

The result and parameter addresses must now go in the new name space using the data identity
"PARBASE. Some addresses must also be made available directly in MCU registers (see section
9.2.3). All these addresses are supplied, in the most general case, as follows:

APAL Language man005.03 87

88 Chapter 9: Code section conventions

RAW M1 function result address
WR M1 "PARBASE (M5)
RAW M2 parameter 1 address
WR M2 'PARBASE..1 (M5)
RAW M3 parameter 2 address
WR M3 "PARBASE..2 (M5)
RA M4 parameter 3 address
WR M4 "PARBASE..3 (M5)
RAW M4 parameter 4 address
WR M4 'PARBASE. .4 (M5)

RAW M4 parameter n address
WR M4 "PARBASE..n (M5)

You sometimes need to use an instruction other than RAW to load a parameter address into
a register. When you are calling a FORTRAN-PLUS sub-program, do not put parameters in
workspace, since a called routine can corrupt workspace before accessing its parameters.

9.4.2 Calling the routine by name

Once the name space has been created for the routine, you can then call it using the standard
macro ’'CALLNAME, which takes one parameter, the name of the routine to be called. On exit
from the called routine, registers M6 and M7 hold the values of the calling routine’s name space
and free name space addresses. This is the same as after calling 'PROLOGUE on entry.

Example
RAX M5 24 (M7) ! NEW NAME SPACE
RAX M2 10.3 (M7) ! ONE PARAMETER AT PLANE 10 ROW 3
WR M2 'PARBASE..1 (M5) ! OF CURRENT FREE NAME SPACE
'CALLNAME EX1 ! CALL CODE SECTION EX1

9.4.3 Calling the routine by address

A routine can be called using its address instead of its name. Usually this is done when the name is
unknown because the address of the routine was passed as a parameter to the calling code section;
such calls are therefore referred to as parametric calls.

The address of the routine must be placed in M7. The routine is then called using the standard
macro '"CALLPARAM, which has no parameters. As with '’CALLNAME, the name space and free
name space addresses are restored to M6 and M7 on exit.

88 man005.03 AMT

9.4: Calling another code section 89

Example
RAX M5 10 (M7) ! NEW NAME SPACE.
RAX M1 RESULT (M7) ! CALLED ROUTINE RETURNS A
WR M1 "PARBASE (M5) ! RESULT. THE CODE SECTION
RW M7 'PARBASE. .4 (M6) ! ADDRESS WAS PARAMETER 4 OF
! THE CALLING ROUTINE.
'CALLPARAM ! CALL CODE SECTION

9.4.4 Complete example

This example illustrates the above points. It is a complete example of one routine calling another,
and is based on the example in section 9.2.3 except that the calling routine is now an APAL code
section as well.

Calling module

MODULE CALLER
#include usrmacs.da
DATA ARTHUR HOST COMMON WRITE ! A DATA SECTION WITH ONE

ANSWER: ROW ! UNINITIALISED ROW

END

CODE DENT HOST

'PROLOGUE ! DENT MAY BE CALLED FROM THE
! HOST SECTION AND SO HAS NO
! PARAMETERS

PARI1 = 0..0 ! LOCAL DATA IDENTITIES

PAR2 = 0..1 ! TO SIMPLIFY ACCESS TO

FREE = 1.0 ! FREE NAME SPACE

RLIT M1 73

WR M1 PARI (M7) ! PAR1 (M7) HOLDS 73

RLIT M1 31

WR M1 PAR2 (MT7) ! PAR2 (M7) HOLDS 31

RAW M5 FREE (M7) ! NEW NAME SPACE

RAR M1 ANSWER ! RESULT ADDRESS IS IN

WR M1 ’PARBASE (M5) ! DATA SECTION ARTHUR

RAW M2 PARI (M7)

WR M2 ’PARBASE..1 (M5) ! PARAMETER 1

RAW M3 PAR2 (M7) |

WR M3 ’PARBASE.2 (M5) ! PARAMETER 2

'CALLNAME DIFF ! CALL CODE SECTION DIFF

"EPILOGUE

END

ENDMODULE

APAL Language man005.03 89

90 Chapter 9: Code section conventions

Called module

MODULE CALLED
#include usrmacs.da
CODE DIFF DAP

"PROLOGUE 2 ! DIFF HAS 2 PARAMETERS
RW M1 ’PARBASE (M) ! THE FUNCTION RESULT ADDRESS
RW M2 'PARBASE..I (MS)

RW M2 0 (M2) ! PARAMETER 1

RW M3 'PARBASE..2 (MS)

RW M3 0(M3) ! PARAMETER 2

SUB M2 M3 ! M2 = M2 - M3

WR M2 0 (Ml) ! COPY ANSWER TO RESULT
"EPILOGUE

END

ENDMODULE

9.5 Calling an APAL code section from a host routine

A host routine can call an APAL code section. The calling process is the same as if the calling
program were a FORTRAN-PLUS subroutine with the following differences:

¢ The called code section, or entry point, must have the HOST property rather than the DAP
property : -

e No parameters can be passed from the host routine to the APAL code section. Similarly,
the APAL code section cannot return a result to the host routine; thus it can not behave as
a FORTRAN-PLUS function subprogram

e The transfer of control from the host program to the DAP program is performed via interface
subroutines. These are described in DAP Series: Program Development

All communication between the host and APAL routines is via DATA sections.

9.5.1 Passing data between the host and APAL routines

Since a host routine is not permitted to pass parameters to or receive a result from an APAL
routine, data is passed between the two via APAL DATA sections.

A DATA section used for this purpose is declared with the properties HOST, COMMON, and
optionally WRITE.

Transfer of data to and from the APAL DATA section is made in units of store words and is

carried out by interface routines called by the host program. How to use the interface subroutines
is described in DAP Series: Program Development.

90 man005.03 AMT

9.6: User-defined conventions 91

You should note the following points:

Care should be taken to make sure that the data areas in both the host code and the DAP
code (FORTRAN-PLUS or APAL) are large enough to accommodate the number of words
being transmitied

The sizes of APAL DATA sections are rounded up to multiples of a plane (ES?/8 bytes),
and the sections are aligned to plane boundaries

In general, data storage modes used by the host differ from those used by the DAP — see
section 8.4.1 in DAP Series: FORTRAN-PLUS Language. You may find it more convenient
therefore to enter the DAP at a FORTRAN-PLUS routine where the appropriate mode
conversion routines are available, and then call your APAL routine from your FORTRAN-
PLUS code

An example of a complete DAP program and associated host program is given in appendix C.

9.6 User-defined conventions

If you want to adopt your own conventions for parameter passing and name space chaining (instead
of using standard macros), you should follow the following guidelines:

M6 must contain the address of the current name space. This is passed in M5 in a call from
FORTRAN-PLUS or a host program

Word 0..0 (M6) must contain the address of the calling routine’s name space. This is passed
in M6 in a call from FORTRAN-PLUS or a host program

Word 0..1 (M6) must contain the link address (code address of the next instruction to be
obeyed on return to the caller). This is passed in MO in a call from FORTRAN-PLUS or a
host program

No other words in plane 0 (M6) should be used. The first word that a routine can use for
parameter passing and general stack purposes is 1.0.0 (M6)

To call a routine by name, use the following code:

JESL name
NULL

To call a routine parametrically, use the following code:
RW M7 word containing code section address
JESL AMT5PARAM ! AN AMT-SUPPLIED SUBROUTINE

Before returning (using EXIT), M6 must contain the caller’s name space address, and M0
the link address

The run-time diagnostic system will give spurious information if an error occurs and a
FORTRAN-PLUS routine has been entered but control has not been returned to its caller

APAL Language man005.03 91

92

92

man005.03

Chapter 9: Code section conventions

AMT

Chapter 10

Miscellaneous facilities

This chapter describes a number of facilities not covered elsewhere. These facilities are:

e Accessing standard bit patterns

¢ Including source input from alternative files

e Requesting stack space

e Controlling the format of the assembler source output listing

e Generating messages to the assembly output listing file

10.1 Accessing standard bit patterns

You can make a set of useful bit patterns available to all code sections in a module by putting the
file-include statement:

#include usrmacs.da

at the beginning of the module, after the module header (see DAP Series: Program Development).
This statement also gives you access to the standard macros suite for code section conventions,
as described in chapter 9. The usrmacs.da file includes global data identities associating standard
identifiers with data addresses. Most of the patterns occupy a whole store plane but you can
usefully access some of them on a row basis. As they are all in the same data section the easiest
way of addressing them is by loading the start of section address into a register.

APAL Language man005.03 93

94 Chapter 10: Miscellaneous facilities

Example
RASC M1 'BINARY_.CHOP ! LOAD M1 WITH ADDRESS OF
! PATTERNS DATA SECTION
RX ME ’BINARY_.CHOP.1(M1) ! LOAD ME WITH SECOND ROW
! OF 'BINARY.CHOP

QS "UNIT.DIAG(M1) ! LOAD Q PLANE WITH 'UNIT_DIAG

The following sections illustrates the bit patterns corresponding to each identifier; all identifiers
except 'UD.BASE address the start of a plane.

In each illustration, the most significant bit in each row is on the left of the row, the least significant
bit on the right. Most illustrations show only the first few and the last few rows in the plane, and
only the first 8 bits and the last 8 bits in the row; one illustration shows the middle 8 bits as well.

10.1.1 ’BINARY_CHOP

The plane starts with a set of n rows with bits set much as shown below, where n = log, ES, ES
being the edge size of the target DAP on which the APAL code will be run; other rows in the plane
are undefined. Hence for DAP 500 the first 5 rows are defined, for DAP 600 the first 6 rows are
defined, and so on,

For DAP 600 the defined rows would be:

1111 1111 1111 1111 1111 1111 11311 1111 0000 0000 0000 Q000 0000 0000 0000 0000
1111 1111 1111 1111 0000 0000 0000 0000 1111 1111 1111 1111 0000 0000 0000 0000
1111 1111 0000 0000 1111 1111 0000 0000 1111 1111 0000 0000 1111 1111 0000 0000
1111 0000 1111 0000 1111 0000 1111 0000 1111 0000 1111 0000 1111 0000 1111 0000
1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100
1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010

For DAPs with a different ES a similar set of defined (log, E'S) rows are produced, each row being
ES bits wide.

10.1.2 °UD_BASE

This name does not identify a pattern, but points to the row preceding 'UNIT.DIAG. The name
is included so that you can index the individual rows of 'UNIT.DIAG from 1 instead of 0 if you
need to.

10.1.3 ’'UNIT_DIAG

The plane identified by "UNIT_DIAG contains a unit diagonal matrix. The ES rows are:

94 man005.03 AMT

10.1: Accessing standard bit patterns 95

1000... ...0000 row 0
0100... ...0000 row 1
0010... ...0000 row 2
0001... ...0000 row 3
0000... ...1000 row ES —4
0000... ...0100 row ES -3
0000... ...0010 row ES —2
0000... ...0001 row ES -1

10.1.4 ’TRAIL_DIAG

The plane identified by *TRAIL_DIAG contains a trailing diagonal matrix. The ES rows are:

0000... ...0001 row 0
0000... ...0010 row 1
0000... ...0100 row 2
0000... ...1000 row 2
0001... ...0000 row ES -4
0010... ...0000 row ES -3
0100... ...0000 row ES -2
1000... ...0000 row ES -1

10.1.5 ’ALTERNATE

Each row of this plane contains a repeating pattern of n false and n true bits where n is the row
index numbering from 0. The E'S rows are:

0000 0000 ... 0000 0000 all bits false

0101 0101 ... 0101 0101 false, true, false, true, ...

0011 0011 ... 0011 0011 two false bits , two true bits , ...

0001 1100 three false bits , three true bits , ...

0000 0000 ... 0000 0111 first ES — 3 bits false, last three bits true
0000 0000 ... 0000 0011 first ES — 2 bits false, last two bits true
0000 0000 ... 0000 0001 first ES — 1 bits false, last bit true

APAL Lancuage man005.03 95

96 Chapter 10: Miscellaneous facilities

10.1.6 °LOWER_TRI

This plane contains a lower triangular matrix, the ES rows being:

1000 0000 ... 0000 0000 row 0
1100 0000 ... 0000 0000 row 1
1110 0000 ... 0000 0000 row 2
1111 0000 ... 0000 0000 row 3
1111 1000 ... 0000 0000 row 4
1111 1114 ... 1111 1100 row £S -3
1141 1114 ... 1111 1110 row ES —2
1141 1111 ... 1111 1144 row ES -1

10.1.7 ’SHUFFLE

This plane contains a pattern useful in perfect shuffle operations, the ES rows being:

bit 0 bit £S/2 bit ES — 1

! i |

1000 0000 ... 0000 0000 ... 0000 0000 row 0

0000 0000 ... 0000 1000 ... 0000 0000 row 1

0100 0000 ... 0000 0000 ... 0000 0000 row 2

0000 0000 ... 0000 0100 ... 0000 0000 row 3

0010 0000 ... 0000 0000 ... 0000 0000 row 4

0000 0000 ... 0010 0000 ... 0000 0000 row ES — 4
0000 0000 ... 0000 0000 ... 0000 0010 row ES -3
0000 0000 ... 0001 0000 ... 0000 0000 row ES -2
0000 0000 ... 0000 0000 ... 0000 0001 row ES -1

10.1.8 'UNSHUFFLE

This plane contains a pattern for selecting alternate bits in sequence.

1000 0000 ... 0000 0000 row 0
0010 0000 ... 0000 0000 row 1
0000 1000 ... 0000 0000 row 2
0000 0010 ... 0000 0000 row 3

.

.

gR manfINK N2 ARAT

10.2: Incorporating source from alternative files 97

0000 0000 ... 0000 1000 row ES/2-2
0000 0000 ... 0000 0010 row ES/2-1
0100 0000 ... 0000 0000 row ES/2

0001 0000 ... 0000 0000 row ES/2+1
0000 0100 ... 0000 0000 row ES/2+2
0000 0001 ... 0000 0000 row ES/2+3
0000 0000 ... 0000 0100 row ES -2
0000 0000 ... 0000 0001 row ES -1

10.2 Incorporating source from alternative files

You can specify that the assembler is to read source from another file, by using the APAL pre-
processor file-include facility (see DAP Series: Program Development). At the end of the included
file, assembly continues at the statement after the file-include statement in the original file. File-
include statements can be nested.

10.3 Requesting stack space

You can request stack space at assembly time using the STACK statement.

10.3.1 Syntax

<STACK statement> ::= STACK <numval><new line>

10.3.2 Semantics

STACK can appear anywhere within an APAL module, and has the form:

. STACK plane-count

where plane-count is an unsigned integer or hexadecimal value, or an assembly-time expression
enclosed in [] yielding a non-negative integer value.

plane-count is the size of the stack space request in store planes. Several STACKs can appear in
the module; the assembler takes the largest value of plane-count for each module.

The consolidator creates a stack section in the DOF file which is the sum of the stack space requests
from all the included CIF modules. There are ways of increasing this sum or ignoring it altogether
and using an absolute value at consolidation time; for more details see DAP Series: Program
Development.

APAL Language man005.03 97

98 ‘ Chapter 10: Miscellaneous facilities

When you are calculating the value to be used in a STACK statement, allow for the difference of
a few planes between the name space and the free name space of a code section; see chapter 9 for
more details.

10.4 Controlling the output listing

Two assembly-time facilities control the output listing produced by the assembler. You have access
to these facilities through the APAL statements:

LIST
NOTE

10.4.1 The LIST statement

The LIST statement alters the current listing option for the assembler output listing.

10.4.1.1 Syntax

<LIST statement> ::= LIST<list option><new line>

<list option> ::= FULL | SOURCE | SHORT | NONE

10.4.1.2 Semantics

Multiple occurences of LIST are allowed; a statement can appear anywhere within an APAL
module, over-riding any LIST option already in force The statement has the form:

LIS’f list-option
where list-option can be FULL, SOURCE, SHORT, or NONE.

The options FULL, SOURCE and SHORT produce the same effect as the parameters 3, 2, and 1.
respectively to the L flag for the dapa command when the APAL source code is assembled; the
NONE option for the LIST statement results in no listing, and is equivalent to specifying no dapa
L flag. If a dapa L flag is specified, and LIST statement(s) are used in the APAL source code,
then the L flag only stays in force until the first LIST statement is encountered. The listing option
controls the type and amount of information produced in the assembler output listing; the detailed
significance of the values of list-option are described in DAP Series: Program Development.

If LIST appears in a macro body, the specified option remains in force until exit from the macro
or until it is changed in a subsequent LIST in the same, or nested, macro body. On exit from the
macro the listing option is reset to its value at the time of the macro call.

LIST itself will only appear in the assembler output listing if the listing option in force when LIST
is encountered is such that assembly-time statements are listed.

98 man005.03 AMT

10.4: Controlling the output listing 99

10.4.2 The NOTE statement

The NOTE statement outputs a message to the assembler output listing.

10.4.2.1 Syntax

<NOTE statement> ::= NOTE<note type><string><new line>

<note type> := TERMINAL | ERROR | WARNING | COMMENT

10.4.2.2 Semantics

NOTE can appear anywhere within an APAL module, and has the form:
NOTE note-type string

where note-type can be TERMINAL, ERROR, WARNING, or COMMENT.

NOTE allows you to output a message to the assembler output listing file. note-type specifies the
type of message and its format; string constitutes the text of the message.

Messages output by NOTE are treated in the same way as messages generated by the assembler
(see DAP Series: Program Development). The assembler message count is incremented each time
NOTE generates a message. If a TERMINAL message is generated, assembly is abandoned.

The NOTE statement is generally only useful when you are using conditional assembly (see chapter
11 for more details).

APAL Language man005.03 99

100 Chapter 10: Miscellaneous facilities

100 man005.03 AMT

Chapter 11

Substitutions and conditional
assembly

The APAL language allows you to define and manipulate values of assembly-time variables (see
section 11.2). The assembly-time values (see section 11.1) held in these variables are character
strings, or arithmetic expressions whose numerical results at assembly time are then regarded as
character strings. As part of the assembly process you can specify that the current value of an
assembly-time variable is to be substituted into a specified point in your APAL code text prior to
the assembler analysing it as an APAL statement (see section 11.3 for details).

There is a closely related set of facilities that allows you to manipulate and use macro parameters
and macro variables; chapter 12 describes facilities specific to macros.

You can control the assembly process further, by specifying conditions under which the assembler
is to ignore specified sequences of statements (see section 11.4 for details); these statement-ignoring
conditions typically are the result of a comparison between assembly-time values.

You may sometimes want to include in your character strings some special characters (such as a
‘’, which normlly marks the start of a comment). You use the escape character mechanism to
include these characters; you will find many references to it, both in this chapter and in chapter
12. However, you will find in practice that you will not often want to use special characters, so
on a first reading of these chapters you can safely ignore all references to the escape character),
and to the exact meaning of and distiction between protected and unprotected strings.

11.1 Assembly-time values

assembly-time values are character strings, or expressions which are evaluted at assembly time and
the results regarded as character strings.

APAL Language man005.03 101

102 Chapter 11: Substitutions and conditional assembly

11.1.1 Syntax

<assembly-time value> ::= [<assembly-time expression>] | <string>
<string> ;= <string character>*<delimiter>

<string character> ::= 7 <character> | “ | ” | <basic character>
<delimiter> =, |]|! | <newline>

<assembly-time expression> ::= <sign>?<expression>
<expression> 1= <expression><operator><opera.nd> I <operand>

<operand> ::= <assembly-time variable name> |
<macro variable name> |
<macro parameter name> |
<unsigned integer> |
<hexadecimal value> |
(<assembly-time expression>)

<operator> = + | - | <star> | / | // | "AND | 'NEQ | 'OR | 'ROTATE | 'SCALE

11.1.2 Semantics

An assembly-time value can be either a string or an assembly-time-expression enclosed in []. If
the first character of an assembly-time value is [, it is treated as an assembly-time expression,
otherwise it is treated as a string.

11.1.2.1 Strings

A string is a sequence of characters (or a null string) as defined in section 11.1.1, and is terminated
by a delimiter. The type of delimiter that can terminate a string depends on the context in which
the string appears.

When a string is encountered by the assembler it is extracted from the source text as follows:

o All underscore characters and leading spaces are removed

e Each pair of characters of the form:
“character
is copied to the string, regardless of the value of character

e All other characters, except for underscore characters, are copied to the string, up to, but
not including, the string delimiter appropriate to that context

¢ <newline> always acts as a string delimiter. The ! character is also a string delimiter unless
preceded by the escape character *, in which case it is a protected character and is copied
to the string. Comma and] only delimit strings in certain contexts that are described later
in this chapter; they can be included in a string as protected characters if they are preceded
by *

102 man005.03 AMT

11.1: Assembly-time values 103

e Trailing spaces and underscore characters are normally ignored. Note however that if a
string terminates with a “ character that is immediately followed by space or underscore,
the space/underscore is transferred to the string together with the * character

Note that the significant part of a string (that part that remains after leading and trailing spaces
and underscores have been removed) must not be longer than one line (80 characters).

A string that is extracted from the text in this way is called a protected string, because it can
contain special characters protected by the escape character ~.

However, in some cases, described later in this chapter, it is necessary to remove ~ characters to
form an unprotected string, which is derived from a protected string as follows:

e Each character of the protected string is copied to the unprotected string until a * character
is encountered

e If * is not the last character in the protected string, it is ignored and the following character,
whatever it may be, is copied to the unprotected string. If * is the last character in the
protected string, it is copied to the unprotected string

A protected string can be changed into an unprotected string explicitly by variable substitutions
(see section 11.4.1).

The assembler will also use the unprotected form of a string in certain assembly-time operations
(see sections 11.4.7, 11.4.8 and 12.2), although the string itself will not be altered.

Examples

A PROTECTED STRING CONTAINING A “! CHARACTER
THIS STRING TERMINATES WITH ONE SPACE

Note that if * is not immediately followed by <newline>, the * and the first of any following space
character(s) are included in the string.

11.1.2.2 Assembly-time expressions

An assembly-time expression is a combination of operands and operators that can be evaluated at
assembly-time to produce an assembly-time value. An operand is an unsigned integer, hexadecimal
value, or assembly-time variable, macro variable, or macro parameter whose value is an optionally
signed basic integer; an operator defines the function to be performed on operands, and can be
any of the following:

Operator Effect

+ Addition

- Subtraction

* : Multiplication

APAL Language man005.03 103

104 Chapter 11: Substitutions and conditional assembly

Operator Effect

/ Integer division. The sign of the result is the same as that of
the dividend; the remainder is ignored

// Integer division, giving the remainder. The remainder has the
same sign as the dividend; the quotient is ignored The logical
AND of the two operands, each treated as unsigned 32-bit

’AND ‘ integers :

The logical OR of the two operands, each treated as unsigned
'OR 32-bit integers

The logical non-equivalence of the two operands, each treated
'NEQ as unsigned 32-bit integers

The first operand is treated as an unsigned 32-bit integer, and
'ROTATE shifted left cyclically through the number of bit positions given

by the second operand. A negative second operand gives a

right shift

The first operand is treated as an unsigned 32-bit integer, and
'SCALE shifted left the number of bit positions given by the second

operand. A negative second operand gives a right shift. In

either case zero bits are fed into the ‘empty’ bit positions

The order of evaluation is such that the operators *, /, and // take precedence over +, —, ’AND,]
"OR, 'NEQ, 'ROTATE and 'SCALE. The order of evaluation for operators of equal precedence is
from left to right; you can use parentheses to alter the order of evaluation.

For example:

A+ B *Cisthesame as A + (B * C)
A/B * C is the same as (A/B) * C

The unary operators 4 or — must be either the first symbol in an expression or the symbol imme-
diately following an open parenthesis.

For example:
-A + B * (-C/D)

Assembly-time expressions are evaluated to 32-bit precision. If overflow occurs, an error is flagged
by the assembler.

11.2 Assembly-time variables

An assembly-time variable is a data item that is processed by the assembly-time facilities described
in this chapter. Once you have declared an assembly-time variable, you can use its value in an
assembly-time expression or substitute the value into the source text (see section 11.4).

104 man005.03 AMT

11.2: Assembly-time variables 105

You declare an assembly-time variable (and optionally give it an initial value) by using the
assembly-time statement VAR (see section 11.2.1); you can give a declared assembly-time variable
a new value by means of the assembly-time statement SET (see section 11.2.2). Assembly-time
variables can either be declared or redefined or both, either within or outside a module.

The value assigned to an assembly-time variable is a character string: that value can either be a
normal alphanumeric character string or the character representation of an integer value. You can
use this value in the source program either by writing the name of the variable as an operand of

an assembly-time expression or by substituting the value itself into the source text (see section
11.4.1).

11.2.1 The VAR statement

The VAR statement declares and optionally gives an initial value to an assembly-time variable.

11.2.1.1 Syntax

<VAR statement> ::= VAR<assembly-time variable name><preset>?<newline>
<assembly-time variable name> ::= <identifier>

<preset> ::= =<assembly-time-value>

11.2.1.2 Semantics

Before you can reference an assembly-time variable you must declare it in a VAR statement, which
has the form:

VAR name = assembly-time-value

where

name is an identifier whose scope is determined by the context of VAR as follows:

e If VAR appears outside a module, name has external scope and must be different from
the names of all other assembly-time variables

e If VAR appears within a module, name has global scope within that module and must be
different from the names of all the other assembly-time variables you declare within the
module and from any assembly-time variables you have declared previously and whose
names have external scope

= assembly-time-value is optional, and allows you to specify an initial value for the variable.
This value must be a string or an assembly-time expression enclosed in [], otherwise the initial
value of the variable is the null string.

If assembly-time-value is a string, it is delimited either by <newline> or by the first unprotected
! character (see section 11.1.1).

APAL Language man005.03 105

106 Chapter 11: Substitutions and conditional assembly

Examples

VAR A = THIS IS A STRING 35 CHARACTERS LONG

VAR B = -11 ! THIS VALUE MAY BE USED IN AN ASSEMBLY-TIME
! EXPRESSION, OR MAY BE SUBSTITUTED INTO THE
! PROGRAM SOURCE AS THE THREE CHARACTERS

f-11
VAR C = [B+1] ' ! C HAS INITIAL VALUE -10.
VARA =6 ! THIS IS INVALID, SINCE A HAS ALREADY BEEN
! DECLARED.
VAR D = [THIS IS INVALID; IT IS NOT AN ASSEMBLY-TIME EXPRESSION]
VAR E = 6+B*3 ! THIS IS A STRING, NOT AN EXPRESSION (THERE

! ARE NO SURROUNDING []).

11.2.2 The SET statement

The SET statement assigns a value to an assembly-time variable you have declared previously.

11.2.2.1 Syntax

<SET statement> ::= SET<assembly-time variable name><preset><newline>

11.2.2.2 Semantics

You can redefine an assembly-time variable, that is, give it a new assembly-time value, by using
SET, which has the form:

SET name = assembly-time-value

where
name is the name of an assembly-time variable that is currently in scope

assembly-time-value is the assembly-time value you want to assign to name, and can be a null
string-

11.3 Substitutions

With the exceptions listed below, each input line, including comments, is scanned at assembly time
for any textual substitutions you require; these substitutions show what part of the text of a line
you want to replace by alternative text, for example, by the character value of some assembly-time
variable.

You use the % character to show the start of such a substitution.

The exceptions to this generalisation are:

106 man005.03 AMT

11.3: Substitutions 107

e The lines of a macro body during the assembly of the macro definition; that is, all lines
following a MACRO statement up to and including the corresponding MEND (see Chapter
12). These lines will be scanned for substitutions if and when the macro is called

e Any lines that are omitted in a conditional assembly (for details, see section 11.4, and the
CYCLE construct in section 12.6)

e A % character that is preceded by an odd number of * characters. The “(s) prevents any
substitution from taking place, and the text is unchanged .

Lines that are scanned for substitutions before being interpreted as instructions need not be syn-
tactically correct until all substitutions have been performed.

Like most computer languages APAL has a macro facility, and chapter 12 discusses macros in
detail. All of the facilities discussed in this section are available in macros, a few are available only
in macros. To make formal description of these facilities complete, substitutions only available in
macros are included in the syntax statements in this section, and at a few other points. So as not
to complicate this section unnecessarily, no discussion is offered on those macro facilities; they are
marked by comments such as:

! only in macros, see chapter 12

These macro facilities are fully discussed in chapter 12.

11.3.1 Syntax

<substitution> ::= <variable substitution> |
<expression substitution> |
<section substitution> |
<plane substitution> |
<row substitution> |
<column substitution> |
<substring substitution> |
<length substitution> |
<repeated substitution> |
<parameter substitution> ! only in macros, see chapter 12

If the text immediately following a % character is not a valid substitution, an error is flagged by
the assembler.

11.3.2 Variable substitutions

In a variable substitution, an assembly-time variable, macro variable (see chapter 12 for more
details) or system variable in a line of code is replaced by the character string representing the
assembly-time value of that variable.

APAL Language man005.03 107

108 Chapter 11: Substitutions and conditional assembly

11.3.2.1 Syntax

<variable substitution> ::= %<assembly-time variable name> |
%" <assembly-time variable name> |
%<system variable name> |
%<macro variable name> | ! only in macros, see chapter 12
%" <macro variable name> ! only in macros, see chapter 12

<system variable name> ::= "DATE | ’DIM | 'LOGDIM | 'TIME | 'TRANSFER |
'MCOUNT | ! macro facility, see chapter 12
'’PCOUNT ! only in macros, see chapter 12

11.3.2.2 Semantics

A variable substitution causes the name of an assembly-time, macro, or system variable and the
preceding % or %" character to be replaced at assembly-time by the character value of the variable.
If the substitution refers to a variable whose name is not in scope, an error is flagged by the
assembler. See chapter 12 for details of macro variables.

A variable substitution can have any of the following forms:

o %assembly-time-variable-name, which is replaced by the value of the named assembly-time
variable

¢ %" assembly-time-variable-name which is the same as %assembly-time-variable-name except
that all pairs of characters in the value of the form:
“character

are replaced by character alone; that is, the value of the assembly-time variable is converted
to its unprotected form (see section 11.1.2.1)

e %macro-variable-name and %" macro-variable-name, discussed in chapter 12

o %system-variable-name, which is replaced by the value of the named system variable
The following system variables can be referenced in a variable substitution:

System variable name Value

'DIM This variable is replaced by a character string representing the
value of ES, the dimension of the DAP array for which the
assembly is being carried out. For example, for DAP 600,
"DIM is replaced by the two characters ‘64’

'LOGDIM This variable is replaced by a character string representing the
value of log, E'S; for example, again for DAP 600, 'LOGDIM
is replaced by the character ‘6’

'MCOUNT See chapter 12 for details
'PCOUNT See chapter 12 for details

108 man005.03 AMT

11.3: Substitutions

System variable name

'DATE

'TIME

"TRANSFER

109

Value

This variable is replaced by characters representing the value
of the date on which the assembly began, in the form:

YYYY/MM/DD

For example, ’DATE might be replaced by the characters
1988/7/30°

This variable is replaced by characters representing the value
of the time (expressed in 24-hour clock time) at which the
assembly began, in the form:

HH:MM:SS

For example, 'TIME might be replaced by the characters
09:32:45’

This variable is replaced by characters that represent the value
of the 32-bit word offset, from the beginning of the current
code section, of the next instruction to be generated in the
code section. If this substitution appears outside a code sec-
tion, a warning is output and the character ‘0’ is substituted

Only the ’ character and the following two characters of the system variable name need be

specified

11.3.3 Expression substitutions

In an expression substitution, an assembly-time expression is replaced by the value of that expres-

sion.

11.3.3.1 Syntax

<expression substitution> ::= %=[<assembly-time expression>]

11.3.3.2 Semantics

The value of an assembly-time expression can be substituted for that expression at assembly-time.
The expression must be as defined in section 11.1.

For example, if in the line:

DATAL: %=[3 + A]

A is an assembly-time variable with an assembly-time value of 7, then at assembly-time the ex-
pression [3 + A] is replaced by 10 and the line becomes:

DATAL: 10

APAL Language

man005.03 109

110 Chapter 11: Substitutions and conditional assembly

11.3.4 Section substitutions

In a section substitution, the relevant text is replaced at assembly-time by the name of the section
associated with a data address identified in that text (see section 7.3.3).

11.3.4.1 Syntax

<section substitution> ::= %’SECTION[<data address>]

11.3.4.2 Semantics

A section substitution has the form:
%’SECTION[data address]

In a section substitution, %’SECTION[data address] is replaced at assembly-time by the name of
the section of store associated with the address. If data address specifies an absolute address (that
is, there is no section name), a null string is substituted.

The keyword 'SECTION can be abbreviated to 'SE.

For example, in code to run on a DAP 600, given:

DATA MAT
END
DEFINE

DOG = MAT+2.9.1
CAT = MAT+3.27.0

END

then both the text:
%’SECTION[DOG]
and the text:
%’SECTION[CAT]
would be replaced at assembly-time by the characgter string MAT.

11.3.5 Plane substitutions

In a plane substitution the relevant text is replaced at assembly-time by the plane offset associated
with the data address identified in that text.

110 man005.03 AMT

11.3: Substitutions 111

11.3.5.1 Syntax

<plane substitution> ::= %’PLANE[<data address>]

11.3.5.2 Semantics

A plane substitution has the form:
% PLANE[data address]

In a plane substitution, %’PLANE[data address] is replaced at assembly-time by the value of the
plane offset from the start of the section of store in which the address occurs. If the address is
an absolute address, the plane offset is relative to the start of the array store part of the DAP
program block.

The keyword 'PLANE can be abbreviated to 'PL.

For example, using the example in the previous section:

%’PLANE[DOG]

is replaced at assembly-time by 2.

11.3.6 Row substitutions

In a row substitution, the relevant text is replaced at assembly-time by the row offset from the
start of plane of the data address.

11.3.6.1 Syntax

<row substitution> ::= %’ROW|[<data address>]

11.3.6.2 Semantics

A row substitution has the form:
%’ROW/data address]

In a row substitution, %’ROW/[data address] is replaced at assembly-time by the value of the row
offset from the start of the plane associated with [data address.

The keyword 'ROW can be abbreviated to 'RO.
For example, using the example in section 11.4.4:
% ROW[CAT]

is replaced at assembly-time by 27.

APAL Language man005.03 111 .

112 Chapter 11: Substitutions and conditional assembly

11.3.7 Column substitutions

In a column substitution, the relevant text is replaced at assembly-time by the column offset of
the column identified in that text.

11.3.7.1 Syntax

<column substitution> ::= %’COLUMN][<data address>]

11.3.7.2 Semantics

A column substitution has the form:
%’COLUMN|data address]

In a column substitution, %’COLUMN[data address] is replaced at assembly-time by the value of
the column offset from the start of the plane associated with the data address.

The keyword ’"COLUMN can be abbreviated to ’CO.

For example, using the example in section 11.4.4:

%’COLUMN[DOG]

is replaced at assembly-time by 9.

11.3.8 Word substitutions

In a word substitution, the relevant text is replaced at assembly-time by the word offset from the
start of a row of the word identified in that text.

On code to run on a DAP 500, words and rows are equivalent, so such a substitution always results
in the value 0 being substituted for the text.

11.3.8.1 Syntax

<word substitution> ::= %’"WORD|[<data address>]

11.3.8.2 Semantics

A word substitution has the form:

%'WORD|data address]

112 ' man005.03 AMT

' 11.3: Substitutions 113

In a word substitution, %’'WORD[data address] is replaced at assembly-time by the value of the
word offset from the start of the row associated with data address.

The keyword 'WORD can be abbreviated to "WO.

For example, using the example in section 11.3.4:
%’WORD [DOG]

is replaced at assembly time by 1.

11.3.9 Substring substitutions

In a substring substitution, the relevant text is replaced at assembly-time by a substring derived
from the value of the variable or parameter quoted in that text.

11.3.9.1 Syntax

<substring substitution> ::= %’SUBSTRING[<selector>]<string ref>

<selector> ::= <number>?SIZE<number>? |
FROM<string> |
UPTO<string> |
FROM<string>, UPTO<string>

<string ref> ::= <assembly-time variable name> |

<number> | ! only in macros, see chapter 12
<macro variable name> | ! only in macros, see chapter 12
<macro parameter name> " ! only in macros, see chapter 12

11.3.9.2 Semantics

A substring substitution allows you to select a substring from:

e The value of an assembly-time variable

e The value of a macro variable or parameter — see chapter 12 for details

Note that the substring inserted into the line of code can contain leading or trailing spaces. These
spaces will be removed in the usual way if the substring is later used as a string.

APAL Language man005.03 113

114 ‘ Chapter 11: Substitutions and conditional assembly

A substring substitution has the form:
%’SUBSTRING [selector] name

or, in the case of a positional macro parameter (see chapter 12 for details):
%’SUBSTRING [selector] number

where

name, if specified, is the name of an assembly-time variable that is in scope; otherwise an
error is flagged by the assembler and no substitution is performed

number is discussed in chapter 12

selector specifies how the substring is to be selected from name and can take any of the
following values:

e numbery SIZE number,

number; specifies the character position (numbered from zero) at which the selected
substring is to begin, and must therefore be less than the number of characters in the
value of name. If number; is omitted, zero is assumed. If number; is greater than the
number of characters in the value of name, a null string is substituted

number; specifies the number of characters in the selected substring; for example:
VAR A = ABCDEFGH

%’SUBSTRING [2 SIZE 3] A ! SELECTS THE SUBSTRING CDE

If number; is omitted, or if it specifies more characters than are left in the value of
name, all the remaining characters are selected.

For example:
%’SUBSTRING [2 SIZE] A ! SELECTS THE SUBSTRING CDEFGH
%’SUBSTRING [4 SIZE 6] A ! SELECTS THE SUBSTRING EFGH

If number, is zero the result of the substitution is a null string.
The above description applies to values that contain no escape characters; the effect
of the presence of escape characters is described in section 11.3.9.3

e FROM string,

string; is delimited by] or a comma. The selected substring is that string within the
value of name that follows, but does not include, the first occurrence of string;.

For example: .

VAR J = A JACKSON IN YOUR HOUSE
%’SUBSTRING [FROM IN]J ! SELECTS THE SUBSTRING (WITH
! LEADING SPACE) YOUR HOUSE

%’SUBSTRING [FROM HOUSE]J ! SELECTS THE NULL STRING

If string; does not occur in the name, a null string is selected.

The above description is valid if name and string; contain no escape characters.

114 man005.03 AT

11.3: Substitutions 115

Note that the ! character must not appear in string; unless protected by the * escape
character, otherwise it would be interpreted as the start of a comment

e UPTO string;

string is delimited by]. The selected substring is that string within the value of name
that precedes, but does not include, the first occurrence of string;.

For example:
VAR K = B FLAT MINOR SEVENTH

%’SUBSTRING [UPTO MINORJK ! SELECTS THE SUBSTRING
! (WITH TRAILING SPACE) B FLAT

If string; does not occur in the name, the entire string is selected.
The above description is valid if name and string; contain no escape characters.
Note that the ! character must not appear in string; unless protected by the * char-
acter, otherwise it would be interpreted as the start of a comment
e FROM string;, UPTO string,
string is delimited by the comma; string, is delimited by].
The selected substring is that string within the value of name that:
— Follows, but does not include, the first occurrence of string;

— Precedes, but does not include, the first occurrence of string, following string;

For example:
VAR X = THE JOHN COLTRANE QUARTET

%’SUBSTRING [FROM THE, UPTO QUARTET]X

! SELECTS THE SUBSTRING
! JOHN COLTRANE
! (WITH A SPACE BEFORE AND AFTER)

If string, is not within the value of name, a null string is selected; if strings is not
within the value, the string following, but excluding the first occurrence of, string; is
selected.

The above description is valid if none of name, string,, and strings contain escape
characters.

Note that the ! character must not appear in string; or string, unless protected by
the = character, otherwise it would be interpreted as the start of a comment

The keyword 'SUBSTRING can be abbreviated to ’SU.

A similar form of substring substitution is used with macro parameters; see chapter 12 for details.

11.3.9.3 Escape characters in substring substitutions

You may like to omit this section on first reading of the manual, as it deals with the somewhat
complex and infrequently-used escape character mechanism.

APAL Language man005.03 115

116 Chapter 11: Substitutions and conditional assembly

If the value of name or any selector strings in a substring substitution contains the escape character
("), the substring selection process is carried out as follows:

o The original string and any selector strings are converted to the unprotected form, as de-
scribed in section 11.1.2.1

e The appropriate substring selection is then done, as described in section 11.4.9.2

¢ The resulting substring is converted back to a protected form by inserting the escape char-
acter immediately before any character where one was removed from the original string in
the first step above

Examples

The examples below perform substring selection on an assembly-time variable declared as follows:
VAR A = AB"CD""EF~""GHJK " <space><newline>

Note that the space character before the end of the line is part of the string because an escape
character preceded it.

The unprotected form of the string is ABCD*EF~GHJK <space>

e %’SU [3SIZE 4] A
Here the unprotected form D*EF is selected, and D* *EF is substituted
e %’SU [FROM D] A

“D in unprotected formis D, so “EF “GHJK <space> is selected, and *“EF**~~GHJ K" <space>
is substituted

e %'SU [UPTO G"HJ] A

G"HJ in unprotected form is GHJ, so ABCD"EF*, is selected, and AB~CD~“EF~" is
substituted. Note that only two “s appear at the end of this substituting string; the third *
in the original string is associated with the G, so is not ‘put back’ in the substituting string

e %’SU [FROM A"B"C, UPTO H*JK"“] A

A"B~C in unprotected form is ABC.
However, H*JK"" in unprotected form is HIK*, which does not occur in the unprotected
form of A, so the selection goes up to the end of the string.

Hence the selected unprotected string is D*EF~GHJK<space>, and D~“EF***GHJK"
<space>> is substituted
e %'SU [FROM ABC, UPTO H*JK"] A

This is a syntatic error. The escape character preceding] prevents it from being interpreted
as the selector delimiter. It and the following A form part of the string H"J K*1A

e %’SU [FROM BC"D"", UPTO H"JK" <space>] A

BC"D"" in unprotected form is BCD".
H"JK"<space> in unprotected form is HIK <space>.

Hence the selected unprotected string is EF*G, and EF***G is substituted

116 man005.03 AMT

11.3: Substitutions 117

11.3.10 Length substitutions

In a length substitution the relevant text in the code line is replaced at assembly-time by the
number of characters in the value of the variable specified in that text.

11.3.10.1 Syntax

<length substitution> ::= %’LENGTH <string ref>

11.3.10.2 Semantics

In a length substitution the possible variables are:

¢ An assembly-time variable

e A macro variable or parameter. See chapter 12 for details

A length substitution has the form:

% LENGTH name
%’LENGTH number

where

name is the name of a previously declared assembly-time variable, macro variable or macro
parameter

number is discussed in chapter 12

The value substituted is the length of the unprotected form of the string associated with the named
variable.

If name does not exist or has a null string value, zero is substituted.

The keyword ‘LENGTH can be abbreviated to 'LE.

Examples
VAR A = 12497
VAR B = [2*4]
VAR C =2*A

VAR D = AB"C""DEF"G
VAR E = HORRIBLY COMPLICATED

VAR F = %’SU [UPTO COMP] E

APAL Language man005.03 117

118 Chapter 11: Substitutions and conditional assembly

VAR G

%’LE A ! SUBSTITUTES TO 5

%’LE B ! SUBSTITUTES TO 5 (B IS THE STRING 24994)

%’LE C ! SUBSTITUTES TO 3

%’LE D ! SUBSTITUTES TO 8 (THE UNPROTECTED EQUIVALENT OF D
! IS THE STRING ABC"DEFQG)

%’LE F ! SUBSTITUTES TO 9. NOTE THAT THE LENGTH INCLUDES THE
! SPACE PRECEDING COMP

%’LE G ! SUBSTITUTES TO 0

11.3.11 Repeated substitutions

A repeated substitution allows you to nest a series of substitutions and control the order in which
they are performed.

11.3.11.1 Syntax

<repeated substitution> ::= %<substitution>

11.3.11.2 Semantics

When a line is scanned for substitutions, all substitutions indicated by single % characters are
performed in the order of their appearance. If a pair of consecutive unprotected % characters
is encountered, it is replaced by a single % character, and scanning of the remainder of the line
continues. On completion, the line is known to contain at least one % character and consequently
the line is rescanned. This process is repeated until all substitutions have been performed.

For example, given:

VARA =B

VAR B = 12
then:

%% %A

first substitutes to:
%B

which then substitutes to:

118 man(05.03 AMT

11.3: Substitutions 119

12
A further example:
%%=[%"ROW[A]-%’COLUMN[B]]
is replaced by the character string representing the difference between the row address of A and

the column address of B.

11.3.12 Concatentation within substitutions

Whenever substitutions are performed, concatenations can also be performed. They can be either
implicit or explicit.

11.3.12.1 Implicit concatenations

An implicit concatenation is performed whenever a substitution is performed; the string produced
by the substitution is concatenated with the string that precedes the % character that caused the
substitution.

For example:

VAR COUNT =0
VAR S

IF NE %COUNT, 1
SETS=S

FI

! %COUNT ERROR%S FOUND
When this code is assembled, an S will be appended to ERROR if COUNT is not 1, otherwise the
null string is added. Depending on the value of COUNT when the comment line is reached in the
assembly, the line might perhaps be printed out as:

! O ERRORS FOUND

11.3.12.2 Explicit concatenations

An explicit concatenation is performed whenever a substitution is immediately followed by the &
character, in which case the string following & is concatenated with the substituting string.

APAL Language man005.03 119

120 Chapter 11: Substitutions and conditional assembly

For example, given:
VAR A = ABC
then:
%A&DEF
is replaced by the string:

ABCDEF

Whenever the & character is found in this context, it is removed and two halves of the line are
concatenated. If two or more adjacent & characters are found in this context, only one is removed
per scan of the line. The presence of another & character does not itself cause the line to be
re-scanned; & is only interpreted as a concatenation character if it appears immediately after a
substitution.

Note that you generally only require explicit concatenation when you are using substitutions to
create text in which spaces are significant; for example, identifiers, values, and labels. In other
circumstances you will find that the implicit concatenation caused by a substitution is sufficient.

For example, given::

VARA =B

VAR B =17
then

%% %A &84

substitutes first to:
%B&4
The repeated substitution causes the line to be re-scanned, thus producing the substitution:

174

11.4 Conditional assembly

In general, the assembler processes files of APAL source sequentially, assembling the entire contents
of each file. However, by using the IF construct you can specify that a particular part of the APAL
source is only to be assembled if a specified condition is satisfied. The IF construct allows you to
specify this conditional assembly.

As will be discussed in chapter 12, if you want to achieve conditional assembly in a macro, you
can also use the CYCLE contruct — see chapter 12 for details.

120 man005.03 AMT

11.4: Conditional assembly 121

11.4.1 The IF construct

An IF construct allows you to specify that a certain part of the APAL source is only to be assembled
if a specified condition is true.

11.4.1.1 Syntax

<IF construct> ::= <IF test><choice>FI<newline>
<IF test> ::= IF<condition> | IFN<condition>
<choice> ::= <true part><false part>?

<true part> ::= <APAL construct>*

<false part> ::= ELSE<newline><true part> | ELSE_IF<condition><choice> |
ELSE_IFN<condition><choice>

~ <APAL construct> ::= <module declaration> |
<module header> |
<module end> |
<global data identity> |
DEFINE<newline> |
END<newline> |
<data section> |
<data header> |
<data body> |
<data end> |
<code section> |
<code header> |
<code body> |
<code end> |
<mixed section> |
<mixed header> |
<VAR statement> |
<SET statement> |
<IF construct> |
<LIST statement> |
<NOTE statement> |
<STACK statement> |
<ERASE statement> |
<macro definition> |
<macro construct> |
<macro call>

<condition> See section 11.4.2

APAL Language man005.03 121

122 Chapter 11: Substitutions and conditional assembly

11.4.1.2 Semantics

When the assembler encounters an IF construct, assembly proceeds as follows:

¢ The assembly-time condition in the IF or IFN is evaluated (see section 11.4.2 for details)

. & If the condition in an IF is true, or if the condition in an IFN is false any following APAL
statements up to, but not including, the matching ELSE, ELSEIF, ELSEIFN, or FI are
assembled. Assembly then continues with the statement following the matching FI.

If the condition in an IF is false, or if the condition in an IFN is true any following APAL
statements up to, but not including, the matching ELSE, ELSEIF, ELSE_IFN, or FI are
skipped. Assembly continues as shown in the remaining notes

Y

o If the statement after the skipped ones is an ELSE, any following APAL statements up to,
but not including, the matching FI are assembled

e If the statement after the skipped ones is an ELSEIF or ELSE_IFN, this statement and
those up to and including the matching FI are treated as an IF construct and are assembled
by the process described above

The statements that are assembled as a result of an IF construct can themselves contain IF con-
structs and macro definitions, provided that the entire IF construct or macro definition is contained
within the statement sequence.

An example of the use of the IF construct is:

IF condition;

statement-sequence-

ELSE _IFN condition,
statement-sequence-;
ELSE

statement-sequence-g

FI

122 man005.03 AMT

11.4: Conditional assembly 123

which will assemble the statement sequences as follows:

condition; conditions APAL statements assembled
True True statement-sequence-
True False statement-sequence-;
False True s-tatemen t-sequence-3
False False statement-sequence-o

11.4.2 Assembly-time conditions

An assembly-time condition is a logical relationship between assembly-time values that evaluates
to a logical truth value.

11.4.2.1 Syntax

<condition> ::= <arithmetic test><test-operand>,<test-operand><newline> |
<monadic string test><string><newline> |
<diadic string test><string>,<string><newline>

<arithmetic test> ::= GT | GE | EQ | LE | LT | NE
<test-operand> ::= <number> | <signed integer>

<monadic string test> ::= EX | ID [NU | VA | AV | VS

<diadic string test> ::= BE | SA

<number> ::= [<assembly-time expression>] | <unsigned integer>

<numval> ::= <number> | <hexadecimal value>

11.4.2.2 Semantics

The assembly-time conditions that occur in IF, IFN, ELSEIF, or ELSE.IFN statements can be
any of the following;:

arithmetic-test operand;, operands
monadic-string-test string;

diadic-string-test stringl, strings
where:
operand; and operand; are optionally signed integers or assembly-time expressions in []

yielding integer values. operand, is delimited by a comma; operand; is delimited by an ‘V
or a <newline>

APAL Language man005.03 123

124 Chapter 11: Substitutions and conditional assembly

arithmetic-test can have the following values and effects:

arithmetic-test Effect

GT . True if operand, is greater than operand,, otherwise false

GE True if operand, is greater than or equal to operand, otherwise
false

EQ True if operand; equals operand,, otherwise false

NE False if operand; equals operand,, otherwise true

LE True if operand; is less than or equal to operand; otherwise
false

LT True if operand, is less than operand,, otherwise false

string; of a monadic string test and string, of a diadic string test are delimited by ! or
<newline>; string; of a diadic string test is delimited by a comma

monadic-string-test can have the following values and effects:

monadic-string-test Effect

EX True if string; is a valid assembly-time expression (note that
string; does not include the surrounding []), otherwise false

iD True if string, is an identifier other than a macro name, macro
parameter name, macro variable name, or assembly-time vari-
able name, otherwise false. Only those identifiers in scope are

considered

NU True if string; is the null string, otherwise false

VA True if string; is a value as defined in section 2.3 otherwise
false

VS True if string; is a value as defined in section 2.3 optionally

followed by size as defined in section 4.2, otherwise false

AV True if string, is the name of an assembly-time variable that
is in scope, otherwise false

diadic-string-test can have the following values and effects:

diadic-string-test Effect

BE True if string; begins with the characters in string,, otherwise
false '

SA . True if string, is the same as string,, otherwise false

124 man005.03 AMT

11.4: Conditional assembly 125

Examples of assembly-time conditions

BE ABCDEF, ABC is true.
EX 12*A+9 is true; note however, that EX [12*A+9] is false.

SA ABC, A_B.C s true, since the assembler removes underscore characters from
strings.

VA 12.96E-9 is true, since the string is a valid real value.
VS 12.96E-9 is true.
VS 26(12) is true.

An example of the use of the IF construct

VAR A

IF GE [A), 63
SETA=0

ELSE
SETA=[A+1]
FI

APAL Language man005.03 125

126 Chapter 11: Substitutions and conditional assembly

126 man005.03 AMT

Chapter 12

Macros

In common with most computer languages APAL provides a facility whereby you can associate a
name with a sequence of APAL statements. Such a sequence, referred to as a macro definition,
can be assembled at any subsequent point into an APAL program by writing the name associated
with the macro definition; this is referred to as a macro call. The effect of a macro call is to
replace the line on which the call appears with the statement sequence associated with the name
in the macro definition. You can control the way in which statements from the macro definition
are incorporated into the source program at assembly time by the use of macro parameters and
macro variables.

This chapter describes the APAL macro facility and those assembly-time facilities that you can
only use within macro definitions,

Simple examples of the use of a macro are given at the end of this chapter (in section 12.8) and in
appendix C at the back of the manual.

12.1 Defining macros

A macro definition allows you to associate a name with a sequence of APAL statements.

12.1.1 Syntax

<macro definition> ::= <macro header><macro body><macro end>

<macro header> ::= MACRO<macro name><parameter template>?<newline>

<macro name> ::= <identifier>

<parameter template> ::= <formal parameter> | <formal parameter>?,<parameter template>
<formal parameter> ::= <macro parameter name><preset>?

<macro parameter name> ::= <identifier>

APAL Language man005.03 127

128 Chapter 12: Macros

<preset> ::= =<assembly-time value>

<macro body> ::= <APAL construct>*

<macro construct> ::= <MEXIT statement> |
<MQUIT statement> |
<CYCLE statement> |
<MVAR statement> |
<MSET statement> |
<macro comment>

<macro comment> :i= !<comment><newline>
<macro end> ::= MEND<macro name>?<newline>

Note that <APAL construct> is defined in section 5 of appendix D.

12.1.2 Semantics

A macro definition associates an identifier with a sequence of APAL statements that is to be
incorporated into the source program at a later point in the assembly process. A macro definition
consists of:)

¢ A macro header. The macro header marks the start of a macro definition, names it, and
optionally specifies a formal parameter list -~ known as a parameter template

e The macro body, consisting of the sequence of APAL statements to be assembled into the
program whenever the macro is called. A macro body can contain calls to other macros; it
can also contain complete macro definitions

® A macro end, consisting of the line:
MEND macro-name

where macro-name, if specified, must be the same as the identifier in the corresponding
macro header

Macro definitions can appear:

e Outside a module, in which case the macro can be called at any time during the assembly
after the macro definition appears

® Anywhere within a module, in which case the macro can only be called from within that
module, and after the macro definition has appeared

Any substitutions specified in the macro header are made when the macro is defined, but no
substitutions take place in the macro body until the macro is called.

A nested macro definition is not recorded in the assembler symbol tables until the macro definition
that contains it is called. The nested macro can only be called after the first such call of the outer
macro. Each call of the outer macro causes a new definition of the nested macro to be processed,
thereby rendering earlier definitions inaccessible. No substitutions occur within the body of a
nested definition, until the nested macro is itself called.

128 man(NA. N3 ARAT

12.1: Defining macros 129

There are no restrictions on the names of macros, although:

o If a macro name is the same as one of the APAL instruction mnemonics or APAL keywords
listed in appendix A, any statement that begins with the macro name, after the macro
definition, is recognised as a call of that macro until the macro name is either out of scope
or erased (see section 12.1.3).

The assembler will output a comment message for each macro definition in which such a
name clash occurs

e If a macro name is the same as that of a previously defined macro that is still in scope, the
assembler will output a comment to the effect that a name clash has occurred. The assembler
will use the most recent definition of the macro until it is either out of scope or erased.

12.1.2.1 Parameter templates

The parameter template in a macro definition:

e Specifies identifiers for some or all of the formal parameters, so that the formal parameters
can be referenced by name within the macro body

e Associates a parameter number with each formal parameter, so that the formal parameter
can be referenced by number within the macro body

e Optionally supplies a default value for some or all of the formal parameters. If a call of the
macro does not supply a value for a particular parameter, the parameter will be given this
default value, if specified

A parameter template has the form:
parameter;, parametery, ... parametery
where parameter; can be any of the following;:

parameter-name
parameter-name = assembly-time-value
the null string

Formal parameters are separated by commas; the last parameter is terminated by the end of the
statement.

In the first form of parameter specification the formal parameter is given a default value of the null
string. In the second form the formal parameter is given a default value of a string or an assembly-
time expression, as described in section 11.1. Both forms also specify the relative positions of the
formal parameters.

The third form serves only to define the relative position of subsequent formal parameters.

APAL Language man005.03 129

130 Chapter 12: Macros

For example:
MACRO MACEXAMPLE1 PAR1 = 0, PAR2, ,PAR3 = NAME,

defines a parameter template with five parameters, as follows:

Parameter name Parameter number Default value
PAR1 | 1 0

PAR2 2 Null string

- 3 Null string
PAR3 4 NAME

- 5 Null string

Note that you don’t use the parameter template to define the number of actual parameters that
can be passed to the macro; you use it to define those formal parameters that you want to reference
by name within the macro body and to assign default values where required. If you have defined
a parameter template then when you call the macro you can supply actual parameters by name,
possibly in a different order from the one in the template (see section 12.3.2.1).

In any one macro definition, the names of macro parameters must all be different, and must also
differ from any macro variables declared in the macro body (see section 12.5).

You can include the value of a macro parameter in the text of the macro body by a parameter
substitution (see section 12.4).

Examples
e MACRO MACEXAMPLE2 ! CONTINUATION LINES FOLLOW
- PAR1 = [3*4],
- PAR2 = ! NULL STRING
-1 ! FIRST COMMA TERMINATES PAR2
- PAR3 =

- STRING VALUE ON SEPARATE LINE

This defines a macro with four parameters, as follows:
Parameter name Parameter number Default value

PAR1 1 12

PAR2 2 Null string

- 3 Null string

PAR3 4 STRING VALUE ON SEPARATE LINE

e MACRO MACEXAMPLE3 ! INVALID CASE
- PAR1 = AN INVALID STRING
- ACROSS TWO LINES

130 man005.03 AMT

12.2; Calling macros 131

12.1.3 The ERASE statement

The ERASE statement allows you to erase a particular macro definition from the assembler symbol
tables.

12.1.3.1 Syntax

<ERASE statement> ::= ERASE<macro name><macro name>*<newline>

12.1.3.2 Semantics

An ERASE statement can appear anywhere in the APAL source, and has the form:
ERASE macro-name; macro-names ... macro-namey,

where each macro-name; is the name of a previously defined macro. If that macro does not exist
or is not in scope, the assembler flags an error.

The effect of ERASE is to make the most recent definition of each of the named macros permanently
inaccessible. If the same macro is defined more than once ERASE allows you to make a previous
version of the macro definition current again.

12.2 Calling macros

When the assembler encounters a macro call, assembly proceeds as if the macro body were substi-
tuted for the macro call into the source text at that point.

12.2.1 Syntax

<macro call> ;1= <macro name><actual parameter list>?<newline>

<actual parameter list> ::= <actual parameter> | <actual parameter>, <actual parameter list>

<actual parameter> ::= <assembly-time value> |
<macro parameter name> = <assembly-time value>

12.2.2 Semantics

If the first item in an APAL statement is the name of a macro that is currently in scope, the
statement is recognised as a macro call. The macro body associated with the name is assembled
as if it had been written at that point instead of the macro call.

APAL Language man005.03 131

132 ' Chapter 12: Macros

The macro name in the call is followed by an optional list of actual parameters, assembly-time
values that are to be passed to the macro. These actual parameters need not correspond in number
or order to the formal parameters defined in the parameter template of the macro.

If you nest macro calls (including calling the same macro recursively), the system creates a separate
set of macro parameters for each level of nesting, and only the parameters associated with the
current macro level are accessible.

You can supply actual parameters to a macro in two ways:

e By specifying them positionally, by supplying a list of assembly-time values in the macro
call. The first such value becomes the value of the first parameter in the macro parameter
template, the second value the value of the second parameter in the template, and so on

e By specifying them by name, by supplying a list of parameters each of the form:

name = assembly-time-value

You can only use this method of supplying actual parameters if a template was specified
in the macro definition, and each instance of name matches an instance of name in the
template, in which case each named parameter is given the specified value

If the macro definition includes a template, then if any parameters are not given values by either
of the above methods in the macro call, and if values are specified in the template for those
parameters, then the parameters take those template values by default.

You are recommended not to mix the above ‘by name’ and ‘by position’ methods of supplying
macro parameter values, but if you do use both, it is best to give all the ‘by position’ values first,
followed by the ‘by name’ values. If you do follow a named parameter and its value by one or
more positional parameter values, then if the named parameter is n** in the list in the formal
parameter list in the template, then the positional parameter values that follow in the macro call
will be assigned to the formal parameters numbered (n + 1), (n + 2), and so on.

Examples

¢ Given the macro definition:

MACRO EXAMPLE1 PAR1, PAR2=1, PAR3

MEND
the macro call:
EXAMPLE1 PAR3 = 2*3

creates the following parameters:

Parameter name Parameter number Parameter value
PARI1 1 Null string
PAR2 2 1

PAR3 3 2*3

132 , man005.03 AMT

12.2: Calling macros

e Given the macro definition:

MACRO EXAMPLE?2 PAR1,, PAR2, PAR3

MEND
the macro call:
EXAMPLE2 1,2,3,4

creates the following parameters:

Parameter name Parameter number
PAR1 1
- 2
PAR2 3
PAR3 4

e Given the macro definition:

133

Parameter value

> N

MACRO EXAMPLE4 PAR1 = 3,, PAR2 =4, PAR3 =5

MEND
the macro call:
EXAMPLE4 PAR1 =1, PAR2=10,3

creates the following parameters:

Parameter name Parameter number
PAR1 1
- 2
PAR2 3
PAR3 4

Parameter value

1
Null string
0
3

Note that all the defaults for the formal parameters are overwritten. In particular, PAR3 is
assigned the value 3, which is given ‘by position’ after the ‘by name’ PAR2=0

APAL Language man005.03

133

134 Chapter 12: Macros

12,2.3 System variables associated with macros

Two system variables ' MCOUNT and ’PCOUNT are associated with macros, and their values can
be substituted using: :

% system-varable-name

in the same way as the other system variables discussed in section 11.3.2. Details of 'MCOUNT
and 'PCOUNT are:

'MCOUNT ‘MCOUNT is a variable containing a character string represent-
ing the number of macro calls processed within the module up to
the time when "MCOUNT was referenced. The number is zero
initially, and is incremented at each macro call.

'MCOUNT can be referenced inside or outside a macro

'"PCOUNT The variable PCOUNT contains a character string representing
the highest parameter number of all the actual parameters sup-
plied in a macro call. If all parameters are supplied ‘by position’,
then the number is simply the number of actual parameters in
the call. Hence for a macro definition of:

MACRO MIKE PARI, PAR2, PAR3

MEND

a macro call of MIKE 8, 4 would result in 'PCOUNT containing
the string ‘2’, and a call of MIKE PAR3=6,5,6 would result in
'PCOUNT containing the string ‘5’.

You should only reference 'PCOUNT from within a macro; if you
try to reference it outside a macro the assembler will flag an error

12.3 Leaving macros

You can exit from a macro by using any of the statements MEND, MEXIT, or MQUIT; MEXIT
and MQUIT are usually associated with conditional assembly within the macro (see section 11.4
for details of conditional assembly).

12.3.1 The MEND statement
12.3.1.1 Syntax

<macro end> ::= MEND<macro name>?<newline>

134 man005.03 AMT

12.4: Parameter substitutions 135

12.3.1.2 Semantics

The MEND statement performs two functions:

e When the assembler encounters a macro definition, the macro body is taken as all those
statements up to, but excluding, the corresponding MEND (that is, ignoring matching nested
pairs of MACRO/MEND statements). If MEND specifies a name, it must be the same as
the name specified in the corresponding MACRO statement

o When MEND is encountered following assembly of a macro body as a result of a macro call,
assembly of that macro ceases; that is, assembly continues with the statement following the
macro call. All macro variables and parameters defined in that macro then cease to exist

12.3.2 The MEXIT statement
12.3.2.1 Syntax

<MEXIT statement> ::= MEXIT<newline>

12.3.2.2 Semantics

Any number of MEXIT statements can appear within the macro body. When encountered during
the assembly of a macro body as the result of a macro call MEXIT has the same effect as MEND.
MEXIT has no effect when the macro definition is being processed.

12.3.3 The MQUIT statement
12.3.3.1 Syntax

<MQUIT statement> ::= MQUIT<newline>

12.3.3.2 Semantics

Any number of MQUIT statements can appear within the macro body. When MQUIT is encoun-
tered during assembly of a macro body as the result of a macro call, all current macro processing
is abandoned; that is, assembly continues with the statement following the first macro call in the
current macro calling sequence.

12.4 Parameter substitutions

You reference the value of a macro parameter within the macro body by a parameter substitu-
tion. The parameter values that are effective for a particular a macro call are constructed by the
assembler, as explained in section 12.2.2.

APAL Language man005.03 135

136 Chapter 12: Macros

Macro parameter substitutions can also be used in substring substitutions (see section 11.3.9 for
details) and length substitutions (see section 11.3.10 for details). The method of using these
substitutions is similar to the corresponding substitutions applied to assembly-time variables, with
the addition for macro parameters of having the option of specifying parameters either by name or
position, as discussed below. The ’'0OCCUR option of parameter substitution cannot be combined
with substring or length substitutions.

12.4.1 Syntax

<parameter substitution> ::= %<macro parameter name> |
%" <macro parameter name> |
%<number> |
% “<number> |
%’OCCUR[<number>,<string>]

12.4.2 Semantics

A parameter substitution performs a similar function to a variable substitution (see section 11.3.2),
except that it can only appear within a macro.

A macro parameter can be referenced either positionally or by name.

You can reference any macro parameter positionally; that is, by specifying the relative position of
the parameter within the formal parameter list.

A positional parameter substitution can have either of the following forms:

%number
%" number

where number is an unsigned integer, or an assembly-time expression in [] yielding a positive
integer value. The first form is replaced by the string value corresponding to the n** formal
parameter, where n is the value of number. The second form has a similar effect, except that the
string value of the parameter is inserted into the text in its unprotected form (see section 11.1.2.1).
The value of number must not exceed the greater of the number of formal parameters in the macro
definition and the value of "PCOUNT f(see section 12.2.3) for the current call of the macro. The
first parameter is %1 (or %"1).

You can reference a macro parameter by name, provided that you have already associated an
identifier with it in the parameter template. A name parameter substitution can have either of the
following forms:

%parameter-name
% " parameter-name

The first form is replaced by the string represented by the named parameter. The second form is
replaced by the unprotected form of the string value of the named formal parameter.

136 manfink N2 ANLT

12.4: Parameter substitutions 137

Example

Suppose you have as part of a macro definition:

MACRO MARY PAR1,PAR2,PAR3
QS %PARI1

MEND
Later in the source code you might have a statement:

MARY 50

The effect of the macro call would be that at assembly time the value 50 would be substituted for
PARI1, thus creating the instruction QS 50. When at run time the QS instruction was reached,
array store plane 50 would be loaded into the Q plane - see appendix F for details of QS.

A parameter substitution can also have the form:
%’OCCUR [number, string]

which is replaced by the remainder of the value of the n*® actual parameter beginning with string,
where n is the value of number. If no such parameter can be found a null string is substituted.
Parameters are searched in ascending order of parameter number.

For example, given the macro call:
MACI1 123, 134, 216, 1357, 21, 9, 13
the substitution:
%'OCCUR|[3,1]
yields the string 357; that is, the remainder of the third parameter beginning with 1.

If either of string or the values of any of the parameters is a protected string, the algorithm
described for substring substitutions (see section 11.3.9) is implemented. For example, given a
macro call:

MAC2 AB“C, A*BD, A“"BC, CD, ABE
the substitution:
%'OCCUR [3, A"B]

yields the string E. Note that the fourth parameter ABE is the third parameter beginning with
A°Bor AB.

APAL Language man005.03 137

138 Chapter 12: Macros

12.5 Macro variables

A macro variable is similar to an assembly-time variable except that it has only local scope within
the macro that defined it. In the macro context there are the MVAR and MSET statements, corre-
sponding to the VAR and SET assembly-time statements, which process assembly-time variables.

Macro variables can be used in the same way as assembly-time variables, and with the same syntax,
in variable substitutions (see section 11.3.2 for further details), substring substitutions (see section
11.3.9) and length substitutions (see section 11.3.10).

12.5.1 The MVAR statement

The MVAR statement declares and optionally gives an initial value to a macro variable.

12.5.1.1 Syntax

<MVAR statement> ::= MVAR<macro variable name><preset>?<newline>
<macro variable name> ::= <identifier>

<preset> ;= =< assembly-time-value>

12.5.1.2 Semantics

MVAR can have either of the following forms:

MVAR name
MVAR name = assembly-time-value

MVAR specifies an identifier by which you can reference the macro variable from a subsequent point
in the macro body. MVAR must precede any reference to the named macro variable. The identifier
has local scope within the macro body and must be distinct from the name of any other macro
variables or parameters in the macro definition. If the name is the same as that of an assembly-time
variable currently in scope, the value of the assembly-time variable will not be accessible until the
macro variable is out of scope; however, the assembly-time variable can be given a new value using
the SET statement.

For example, if the following statement appears in a macro body:
SET A = [A.+ 1]

and you have declared a macro variable called A previously in that macro body, it is not clear
whether you are referring to the assembly-time variable or the macro variable, so you are recom-
mended to avoid the situation. In the case above the assembler will assume that you mean to refer
to the assembly-time variable on the left of the = and to the macro variable on the right of the =.

A macro variable name is only in scope when control is within the macro in which the name is
defined; the name is NOT in scope when control is within any macro called or defined by the

138 man005.03 AMT

12.5: Macro variables 139

name-defining macro. That is, if a macro variable name is declared in macro A, and macro A calls
or defines macro B, then the name is out of scope when control is within macro B.

The values that you can assign to a macro variable are strings, including the null string, or assembly-

time expressions enclosed in [] which yield integer values. You can reference the values of macro
variables using variable substitutions (see section 11.3.2).

12.5.2 The MSET statement

The MSET statement assigns a new value to a previously-defined macro variable or macro param-
eter.

12.5.2.1 Syntax
<MSET statement> ::= MSET<macro variable name><preset><newline> |

MSET<macro parameter name><preset><newline> |
MSET<number>< preset><newline>

12.5.2.2 Semantics

Once you have used MVAR to declare a macro variable, the variable’s value can be changed By an
MSET of the following form:

MSET name = assembly-time-value

You can reference any macro parameter positionally, that is, by using its relative position on the
macro parameter stack; in this case the MSET has the form:

MSET number = assembly-time-value
For example:
MSET 4 = 126 ! FOURTH PARAMETER ON STACK IS THE STRING 126

If an identifier is associated with a parameter in the parameter template, you can also reference it
by name, as follows:

MSET PAR1 = NEW VALUE ! PARAMETER PAR1IS GIVEN A STRING
: ! VALUE OF "NEW VALUE’.

Note that when you reference a macro parameter positionally, number must not exceed the greater
of the number of formal parameters in the macro definition and the value of 'PCOUNT for the
current call of the macro, otherwise an error is flagged by the assembler.

Example

The example on the next page shows a different method of using MSET to provide default param-
eter values.

APAL Language man005.03 139

140 Chapter 12: Macros

MACRO A P1 = DEFAULT

MEND
can be replaced by:

MACRO A P1
IF NU%P1

MSET P1 = DEFAULT
FI

MEND

12.6 The CYCLE construct

The cycle construct causes the repeated assembly of some part of a macro body.

12.6.1 Syntax

<CYCLE construct> ::= <cycle header><cycle body><cycle end>

<cycle header> ::= CYCLE<number>?<newline>

<cycle body> ::= <APAL construct>*<conditional part>?

<conditional part> ::= <cycle test> <APAL construct>*

<cycle test> ::= WHILE<condition><newline> | UNTIL<con-dition><newline>

<cycle end> = REPEAT<newline>

12.6.2 Semantics

You might need to assemble repeatedly a sequence of statements within a macro body, subject to
a certain assembly-time condition. Rather than include each repetition of the sequence within the
macro body, you can use CYCLE to specify the sequence just once.

The CYCLE construct, which can only appear within a macro body, has the general form:

CYCLE number
statement-sequence-1
WHILE (or UNTIL) condition

140 man005.03 AMT

12.6: The CYCLE construct 141

statement-sequence-2
REPEAT

where:

number, which is optional, is an unsigned integer, or an assémbly—time expression within [],
yielding a non-negative integer value

statement-sequence-1 and statement-sequence-2, which are optional, are sequences of APAL
statements

WHILE (or UNTIL) condition is optional

condition is as defined in section 11.3.2.
When the assembler encounters CYCLE, assembly proceeds as follows:

e number, if specified, is evaluated. number determines the maximum number of times that the
APAL statements in statement-sequence-1 and statement-sequence-2 are to be assembled.

If number is negative or does not evaluate to an integer, an error is flagged and a value of 1
is assumed. If number is zero, assembly continues with the statement following REPEAT. If
number is omitted, the number of repetitions of the assembly is determined by WHILE (or
UNTIL) condition. number must be specified if WHILE (or UNTIL) condition is omitted

e If number is not zero, the APAL statements, if any, in statement-sequence-1 are assembled.
These statements will be assembled in every cycle

e If WHILE (or UNTIL) condition is present, condition is evaluated (see section 11.2.2). Ac-
cording to the result of the evaluation, and whether WHILE or UNTIL is specified, assembly
continues as follows:

Test Condition Effect
WHILE True statement-sequence-2 is assembled
WHILE False statement-sequence-2

is ignored, and assembly continues
with the APAL statement following
REPEAT (the cycle is terminated)

UNTIL True statement-sequence-2
is ignored, and assembly continues
with the APAL statement following
REPEAT (the cycle is terminated)

UNTIL False statement-sequence-2 is assembled
WHILE (or UNTIL) condition must be specified if number is omitted

e Provided the cycle has not been terminated by the WHILE (or UNTIL) condition, and the
cycle has been through fewer than number cycles, the process repeats with the assembly of
statement-sequence-1. If the maximum value of cycles has been reached, assembly continues
with the APAL statement following REPEAT

APAL Language man005.03 . 141

142 Chapter 12: Macros

Note that unless the value of number is zero, statement-sequence-1 is assembled at least once.
If the loop terminates because the WHILE condition is not satisfied (or the UNTIL condition is
satisfied), then statement-sequence-1 is assembled once more than statement-sequence-2.

statement-sequence-1 or statement-sequence-2 can contain other CYCLE or IF constructs (see
section 11.3), provided that the entire CYCLE or IF is completely contained within one of the
statement sequences. The sequences can also contain macro definitions, again provided that the
definitions are completely contained within a statement sequence.

Example

The following example shows how CYCLE can be used within a macro definiton to set the values
of all parameters passed to it to null strings:

MACRO NULLSET
MVAR COUNT = 1
CYCLE ! NO NUMBER, SO "WHILE’ TEST ENDS CYCLE
WHILE LE %COUNT, %’PCOUNT

MSET %COUNT = ! SET PARAMETER TO NULL STRING

MSET COUNT = [COUNT + 1]
REPEAT
MEND NULLSET

12.7 Macro comments

When a macro is called, any comments that form part of that macro definition are treated in the
same way as the other text of the macro, subject to the LIST option. However, macro comments
are suppressed when the macro is called, and are only printed when the macro definition is listed
- and the appropriate LIST option is set.

12.7.1 Syntax

<macro comment> ::= !<comment><new line>
<comment> = |<comment character>*

<comment character> ::= <basic character> | “<special character>

12.7.2 Semantics

A macro comment is only recognised as such if it is the first and only item on a line, and begins
with the two characters ‘!'’. The comment will only be listed if the macro definition itself is listed;
it will not be incorporated into the source when the macro is called.

If a macro comment appears after or within an APAL statement, it is treated as a normal comment.

For example:

142 manfNg N2 Anam

12.8: Example of a simple macro 143

MACRO A

! EXAMPLE OF A MACRO COMMENT
RR M1 M2 ! THIS IS A NORMAL COMMENT
MEND

12.8 Example of a simple macro

The definition of a macro to add two arrays of matrices might be:

MACRO ADD_MAT MAT1, MAT2, N_BITS

! ADDS TWO MATRIX ARRAYS, LEAVING THE RESULT

I IN THE FIRST ARRAY; MCU REGISTERS MAT1 AND MAT?2
1! SPECIFY THE START ADDRESSES OF THE TWO ARRAYS.
! EACH ARRAY CONSISTS OF N_BIT PLANES

MVAR LAYER = %N_BITS

CF

AT

CYCLE

MSET LAYER = [LAYER- 1]
WHILE GE %LAYER, 0

Qs %LAYER (%MAT?2)
SICPCQS %LAYER (%MAT1)

REPEAT

MEND

If in your APAL code you wanted to add two matrix arrays each 8 planes deep and whose start
addresses in array store were held in register M2 and M4, say, then you could issue the macro call:

ADD_MAT M2, M4, 8

and the resultant array would be put in the 8 planes of store pointed to by M2.

APAL Language man005.03 143

144 Chapter 12: Macros

144 man005.03 AMT

Appendix A

APAL Keywords

A number of valid APAL identifiers have a special significance in APAL; such identifiers are called
APAL keywords. Although you can use an APAL keyword as an identifier, such usage is not
recommended in the interests of program clarity. In particular, you should be aware of the conse-
quences of declaring a macro whose name is the same as an instruction mnemonic or assembly-time
statement (see chapter 12).

APAL keywords fall into three classes: instruction mnemonics, system variables and functions, and

other keywords.

A.1 APAL instruction mnemonics

AB
ABN
ADD
ADDC
ADDH
ADDHC
AEBS
AEBSN
AF
AMB
AMBN
AMEBS
AMEBSN
AMQ
AMQN
AMQQQ
AMR
AMRN
AMRNO
AMRO
AMS
AMSN

APAL Language

AND
ANDH
ANDHN
AQ
AQN
AQQQ
AR
ARN
ARNO
ARO
AS
ASCF
ASN
ASNCF
AT

CF
CPCA
CPCAN
CPCQ
CPCQA
CPCQAN

CPCQR
CPCQRN
CPCQRNO
CPCQRO
CPCQS
CPCQSN
CPCQT
CPCR
CPCRN
CPCRNO
CPCRO
CPCS
CPCSN
CPQA
CPQAN
CPQR
CPQRN
CPQRNO
CPQRO
CPQS
CPQSN
CQ

man005.03

CQPCA
CQPCAN
CQPCQ
CQPCQA
CQPCQAN
CQPCQR
CQPCQRN
CQPCQRNO
CQPCQRO
CQPCQS
CQPCQSN
CQPCQT
CQPCR
CQPCRN
CQPCRNO
CQPCRO
CQPCS
CQPCSN
CQPQA
CQPQAN
CQPQR
CQPQRN

CQPQRNO
CQPQRO
CQPQS
CQPQSN
CQ-QQN
CcQVCQ
cveq

.DECR

DO

EQV
EQVH
EXIT

INCR
J
JE

JESL
JSL

145

146

LOOP

MPY32
MPY32Vv
MPY64
MPYU32
MPYU32v
MPYU64

NAND
NANDH
NANDHN
NEQ
NEQH
NOR
NORH
NORHN
NULL

OR
ORH
ORHN

PAUSE

QA
QACF
QAN
QAN_CF
QB
QBN
QC
QCCF

A.2 System variables and functions

QCN
QEBS
QEBSN
QF
QFAF
QF_.CF
QPCA
QPCAN
QPCQ
QPCQA
QPCQAN
QPCQR
QPCQRN
QPCQRNO
QPCQRO
QPCQS
QPCQSN
QPCQT
QPCR
QPCRN
QPCRNO
QPCRO
QPCS
QPCSN
QPQA
QPQAN
QPQR
QPQRN
QPQRNO
QPQRO
QPQS
QPQSN
QQ

QQN
QR
QRN
QRNO
QRO
Qs
QS-AS
QS.CF
QSN
QSN_ASN
QSN_CF
QT
QTAT
QT.CF
QvCQ

RAC
RACE
RALITR
RALITW
RANO
RAPL
RAR
RASC
RAW
RAWD
RAX
RDGC
RF

RH

RHN
RLIT
RQO

Appendix A: APAL Keywords

RR
RRN
RS
RSO
RT
RW
RWO
RX
RXO

SAN
SF

SHL
SHLC
SHR
SHRA
SHRC
SIC
SICPCQS
SICPCS
SICPQS
SICQPCQS
SICQPCS
SICQPQS
SIF
SIPCQ
SIPCQS
SIPCS
SIPQS
SIQ
SIQPCQS
SIQPCS
SIQPQS

SKIP
5Q
SQAQ
5Q.CQ
SQ.QC
SQ.QCN
SQ.QF
SQQT
SR
SRN
STOP
SUB
SUBC
SUBH
SUBHC

There are 35 keywords used by the system for various functions and variables; all of them start
with a ’ (pronounced ‘blip’); they are listed below. You are strongly recommended not to use any

identifier names starting with a ’.

'AND 'CO ’COLUMN ‘DA 'DATE
DI 'DIM 'LE ’LENGTH 'LO
"LOGDIM "MC 'MCOUNT 'NEQ '0C
’'OCCUR 'OR 'PC 'PCOUNT 'PL
'PLANE 'RO 'ROTATE 'ROW ’SCALE
'SE 'SECTION 'SU 'SUBSTRING "TI
"TIME 'TR "TRANSFER 'WO "WORD

148 rmanNE ND . —

A.3: Other keywords

A.3 Other keywords

A
ALIGN
ALL
ANY
AV

BE
BIT
BITS

C

CARRY
CHAR
CODE
COL
COLS
COMMENT
COMMON
CP
CYCLE
DAP
DATA
DEFINE

E

ELSE
ELSE_IF
ELSE_IFN
END
ENDMODULE
ENTRY

APAL Language

EQ
ERASE
ERROR
EX

F

FI

FROM
FROMBIT
FULL

GE
GT

HEX
HOST

I

ID
IF
IFN
INT

-LE

LEVEL
LIST
LT

MO
MON
Mi

M10
M10N
M11
MI11N
M12
Mi12N
Mi13
M13N
MIN
M2
M2N
M3
M3N
M4
M4N
M5
M5N
Mé
M6N
M7
M7N
M8
MS8N
M9
M9N
MACRO
MCUR
ME
MEND
MER
MEXIT

man(005.03

MIXED
MODULE
MQUIT
MSET
MVAR

N

NE
NONE
NOTE
NU

P

PC

PER

PLANE
PLANEALIGN
PLANES

RO

R1

R2

R3

REAL
REPEAT
ROW
ROWALIGN
ROWPACK
ROWS

S

147

SA

SET
SHORT
SIZE .
SOURCE
STACK

T
TERMINAL
TIMES
TRACE
TYPE

UNTIL
UPTO

v

VA

VAR
VERTICAL
VS

w
WARNING
WHILE
WORD
WORDPACK
WORDS
WRITE

147

148 Appendix A: APAL Keywords

148 man005.03 AMT

Appendix B

Character set

This appendix lists those characters that may appear in APAL source text, and gives the internal
hexadecimal representation of each character. The following table shows the ASCII character set,
used by the APAL assembler and the DAP run-time software. ’

Character Hexadecimal Character Hexadecimal
(space) 20 : 3A
! 21 ; 3B
” (double quotes) 22 < 3C
(or £) 23 = 3D
$ 24 > 3E
% 25 ? 3F
. 26 @ 40
’ (‘blip’ or single quotes) 27 A 41
(28 B 42
) 29 c 43
* 2A D 44
+ 2B E 45
, (comma) 2C F 46
- (hyphen) 2D G 47
. 2E H 48
/ 2F I 49
0 30 J 4A
1 31 K 4B
2 32 L 4C
3 33 M 4D
4 34 N 4E
5 35 O 4F
6 36 P 50
7 37 Q 51
8 38 R 52
9 39 S 53

APAL Language man005.03 149

150 Appendix B: Character set

Character Hexadecimal Character Hexadecimal
T 54 j 6A
U 55 k 6B
A 56 1 6C
w 57 m 6D
X 58 n 6E
Y 59 o 6F
Z 5A p 70
[5B q 71
\ 5C r 72
] 5D s 73
* (circumflex) 5E t 74
. (underline) 5F u 75
* (grave) 60 v 76
a 61 w 77
b 62 X 78
c 63 y 79
d 64 z TA
e 65 { 7B
f 66 | (vertical bar) 7C
g 67 } 7D
h 68 " (tilde) 7E
i 69

150 man005.03 AMT

Appendix C

Examples of APAL code

This appendix starts with three examples of fragments of APAL code, each designed to carry out
a fairly simple task. The appendix ends with a complete DAP program that makes extensive use
of APAL facilities; it also includes the associated host program.

C.1 Code fragment for matrix addition

First, a fragment of code fragment that will carry out element-by-element addition of two 16-bit
integer matrices. Each of the two operands for the addition is held in 16 array store planes, pointed
to by MCU registers M2 and M3; the result of the addition is to be put in the 16 array store planes
pointed to by register M1. Only the plane part of the addresses in M1, M2 and M3 is relevant,
and by convention the lowest numbered of each of the 16 planes contains the most significant bit
of each of the integers. The contents of the PE registers are initially undefined. The code is as
follows:-

]
CF ! Clear the Carry register

DO 16 TIMES

Qs 15(M2-) ! Load a bit from the first operand into the Q plane
CQPCRS 15(M3-) ! Add a bit from the second operand into the § plane
sqQ 15(M1-) | Store the result bit
LOOP
!
The ‘DO .. . LOOP’ construct invokes the hardware-controlled loop over the instructions included

within it. The loop terminator ‘LOOP’ is a pseudo-instruction that generates no code, but tells the
assembler how many instructions are included within the loop. DO is an instruction implemented
directly in hardware, and the assembler encodes within it the number of times that the loop is to
be executed (information supplied by you; 16 in this case) and the number of instructions within
the loop (information it works out; three in this case).

Instruction ‘QS’ loads the Q register in each PE with a bit from an array store plane (that is,
copies a store plane into the Q plane). The address of the store plane is held in M2 in this case,

APAL Lancuage man005.03 151

152 Appendix C: Examples of APAL code

and the offset of 15 planes specifies that the (by convention) least significant bit of the number
is accessed. Mnemonic CQPCQS is the general form of the add (or Plus) operation, where the
operands (C, Q and S in this case) are to the right of the P and the results (carry to C, sum to
Q) to the left. ‘

Automatic stepping of memory addresses is specified by the ‘-’ as a qualifier to the address modifier,
meaning that the effective plane address is decremented each time round the loop. Thus on
successive passes of the loop the plane addresses are 15, 14, 13, . . . , 1, 0, all relative to the plane
address held in the MCU register.

At the end of the code extract above, the carry out from the most significant bit of the addition is in
the C register, and normally further code would perform an overflow check, the details depending
on whether the operands are regarded as signed or unsigned values.

C.2 Code fragment to extract and broadcast rows from
array store

This example extracts a row from a matrix of 32-bit values and replicates the row’s values in every
row of the resultant 32 array store planes. Register M2 holds the address of the operand, and
both the plane part of the address and the row-within-plane part are used. Register M1 holds the
starting address in array store where the result is to be put. The code is:

!
DO 32 TIMES

RX ME 0.0(M2+A) ! Select a row to be broadcast
SR ME O(Mi1+) ! Broadcast the row to an array store plane
Loop

Instruction RX extracts a row from a plane in array store, and writes the result into the edge-size
register, ME. Instruction SR broadcasts the register to each row in the notional R-plane, and copies
the R-plane to an array store plane, in this case pointed to by register M1. The most significant
bits of the 32-bit values have been dealt with first in this example, though the code could equally
have been written to start at the least significant end of the values. The address stepping for the
SR instruction is similar to that in the example in section C.1.

The RX instruction uses the row part of the address within M2 as well as the plane part. In
general both a plane and a row offset can be specified, but here they are both 0, so the offset is
written as ‘0.0’ (which could have been written simply as ‘0°, but by using ‘0.0’ you underline that
a row address is being used). When you access a row there are two ways of stepping the address:
successive rows in the same plane, or successive planes but the same row. In this case the latter is
required, so address stepping is specified as ‘+A’. If, for example, M2 contains the address 506.5
(plane 506 row 5), then the effective addresses on successive passes of the loop would be 506.5,
507.5, 508.5, and so on.

152 . man005.03 AMT

C.3: A fragment using macro facilities 153

C.3 A fragment using macro facilities

The piece of code in C.2 has been rewritten as a macro having as parameters the precision of the
values in the row to be replicated, and the MCU registers holding source and destination addresses:

MACRO ROWREPLICATE FROM = M2 , TO = M1 , LEN = 32
DO YLEN TIMES
RX ME 0.0(/FROM+A)
SR ME O0(%TO+)
LOOP

MEND
!

The first line defines the name of the macro, ROWREPLICATE in this case, and defines names
and default values for its three parameters. Thus when the macro is invoked, the actual value of
the third formal parameter is subtituted for %LEN in the body of the macro, and so on. Since
all the parameters in the macro have been given default values, any of the parameters can be
omitted from a macro call, in which case they would be given their default values. Thus a call of
ROWREPLICATE with no parameters given in the call would generate exactly the code given in
C.2 above.

Code to replicate 28-bit values, where the address of the operand is in M3 and the destination in
M1, can be generated by the macro call:

ROWREPLICATE FROM = M3 , TO = M1 , LEN = 28

or more simply, since TO is given a default value of M1 in the parameter template in the macro
definition:

ROWREPLICATE FROM = M3 , LEN = 28

C.4 Complete program: Conway’s Game of Life

This complete program includes both the DAP and Host parts. The program calculates successive
generations of a colony of cells on a cyclic grid, using the rules of Conway’s Game of Life. At any
stage in the Game the next generation at a grid point depends on the number of its eight nearest
neighbours which hold live cells.

The rules specify that at any grid point, if there are three ‘live’ nearest-neighbours — whether or
not the point itself is live — or if the point is live and two of its nearest-neighbours are live, then
the point is live in the next generation of the game. If these conditions are not met, then the point
is ‘dead’ in the next generation.

The state of each grid point is held on the DAP in the 1-bit matrix LASTGEN as either true, that
is, live in Game of Life terms, or false or dead. The central part of the program is the DAP entry

APAL Language man005.03 153

154 . Appendix C: Examples of APAL code

subroutine UPDATE. Each time UPDATE is called it advances the pattern held in LASTGEN by
one timestep. This updating involves at every grid point:

¢ Summation of the number of true (or live) values in the eight nearest-neighbour points,
using cyclic wraparound at the edges

o Updating the value at the point according to the rules of Conway’s Game of Life

Subroutine CONVERT changes the initial data pattern from a format convenient to the host into
the 1-bit matrix expected by UPDATE. Subroutine RECONVERT performs the inverse transform,
and is called after each timestep to allow the host to print out the current pattern. Addresses of
operand and result are passed as parameters to RECONVERT in order to illustrate the use of
parameter passing; in practice addresses could in this case be dealt with in the same way as in
CONVERT.

The host program LIFE inputs the initial data to the DAP, then repeatedly calls UPDATE, each
time receiving back from the DAP the new pattern and then printing it out. Further details of
the interface subroutines DAPSEN, DAPREC and DAPENT are given in DAP Series: Program
Development.

The program listed below ‘plays’ the Game for a 32 x 32 grid of points, and was written to run on
a DAP 500. The subroutine UPDATE would play the Game for a 64 x 64 grid if the code were
re-compiled to run on a DAP 600, but the DAP conversion routines and the host program would
need to be changed to allow for the larger number of data items.

Additional features could easily be added to the code. For example, the DAP program could keep
a record of the last few generations to see if a repetitive loop had been entered. It would also
improve performance if the DAP program allowed several generations to elapse before returning
to the host program to print the current state.

Host Program

PROGRAM LIFE

c
C Conway’s Life Game
C

COMMON/MATDAT/START

COMMON/MATRES/RESULT
c

INTEGER START(32,32), RESULT(32,32)

INTEGER DAPCON
C .
C Read start position from file. The state of each of the 32x32 grid of cells
C is stored as integer value 0 or 1, representing dead and live cells
C respectively.
c

READ (5,99) ((START(I,J), J=1,32), I=1,32)

99 FORMAT (32I1)

C

154 man005.03 AMT

C.4: Complete program: Conway’s Game of Life 155

c
C Print out generation 0
c

CALL SHOW (START,O)
c
C Connect to DAP Program in object file ’'LIFE_DOF’
c

IF (DAPCON (’LIFE_DOF’) .NE. 0) STOP
c
C Send START to 1024 words of data section MATDAT in the DAP program
c

CALL DAPSEN (’MATDAT’, START, 1024)
c
C Call the DAP program at code section CONVERT to prepare the data
c

CALL DAPENT (’CONVERT’)
c
C The main loop calls the DAP program at code section UPDATE to calculate the
C next generation of cells, receives it im RESULT, and prints it.
c
C

DO 10 NUM = 1,1000

CALL DAPENT (’UPDATE’)

CALL DAPREC (’MATRES’,RESULT,1024)

CALL SHOW (RESULT,NUM)

10 CONTINUE

c

STOP

END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCceeccececcececccececccccecccccececcecececccececece

SUBROUTINE SHOW(MATRIX,GEN)

c
C Display the pattern in MATRIX
c
INTEGER MATRIX(32,32), GEN
CHARACTER MAP(32,32)
c
DO 10 J=1,32
DO 10 I=1,32
MAP(L,3) = '=?
IF (MATRIX(I,J) .EQ. 1) MAP(I,J) = 'X?
10 CONTINUE
c

APAL Language man005.03 155

156 Appendix C: Examples of APAL code

WRITE(6,100) GEN
100 FORMAT(///28X,’GENERATION *,116///)
WRITE(6,200) ((MAP(I,J),J=1,32),I=1,32)
200 FORMAT(20X,3241)

RETURN
END

DAP Program

MODULE DAP_PROGRAM

#include usrmacs.da

§

DATA MATDAT HOST COMMON WRITE
32+PLANE

END

!

DATA MATRES HOST COMMON WRITE
32%(32%0)

END

!

DATA LASTGEN WRITE
PLAKE

END

..

CODE CONVERT HOST

The data in MATDAT has been sent from the host program. It consists of 1024
rows, bit 31 of each row containing either 0 or 1.

reading the column 31s of the successive planes of MATDAT, and copying
those columns to successive columns of LASTGEN.

!
!
!
!
! The data in MATDAT is now to be compressed into a single plane LASTGEN, by
1
!
|
)

PROLOGUE
RASC M1 MATDAT
RASC M2 LASTGEN
QT_AT

Put address of MATDAT into Mi.

Put address of LASTGEN into M2.

Set both plane Q and activity plane A
to all TRUE.

156 man005.03 AMT

C.4: Complete program: Conway’s Game of Life 157

!
DO 32 TIMES

RXO ME 0.31 (M1 + A) Load a column of MATDAT into ME
CPQRO ME Copy ME into columns of C where Q TRUE

!
!

sIC 0 (M2) ! Write to LASTGEN under activity control
!

AQ_QQ EP1 SHIFT A, to protect previous columns
LOOP
’EPILOGUE ! Return to host program
END

..

CODE UPDATE HOST
!
! This subroutine takes the pattern of cells in LASTGEN, and calculates the
! next generation. To do this it needs the sum of all 8 neighbours at every
! grid point.

Local data identities to workspace area:

t
SELFNS = 0 ! 2 planes for sum of self and North and
! South neighbours
NEIGHBQURS = 2 ! 4 planes for sum of all neighbours.
i
’PROLOGUE
RASC M2 LASTGEN ! Put address of LASTGEN into Mi.
AT ! Set activity plane A to all TRUE.

First calculate the sum of the North and South neighbours, and store the
answer (max 2 bits) in NEIGHBOURS.

Qs 0 (M2) ! Put LASTGEN into Q plane

QQ NC1 { Shift in South neighbour ...
sQ NEIGHBOURS+3 ! ... and store

QQ SsC2 ! Shift in North mneighbour ...
SICPQS NEIGHBOURS+3 ! . and add

SIC NEIGHBOURS+2

Now calculate sum of North and South neighbours and self, and store answer
(max 2 bits) in SELFNS.

Qs 0 (M2)

cQPQs NEIGHBOURS+3 ! Add self ...

sQ SELFNS+1 ! ... and result to SELFNS
QPCsS NEIGHBOURS+2

sSQ SELFNS

..

APAL Language man005.03 157

158 Appendix C: Examples of APAL code

! Define a macro which adds SELFNS shifted 1 place to the least significant 2
! bits of NEIGHBOURS.
1

MACRO ADDIT DIRN

Qs SELFNS+1
QQ YDIRN C 1 ! Direction of shift is a parameter
SICPQS NEIGHBOURS+3
Qs SELFNS
QQ “DIRN C 1
SICPCQS NEIGHBOURS+2
MEND

..

Add the value in SELFNS to the west. This is the sum of the original west
north-west and south-west neighbours (max 3 bits)

ADDIT E
SIC NEIGHBOURS+1

Conceptually, the result in the C plane is written to NEIGHBOURS;
in pratice it is left in C as it is needed again immediately and
not needed later, so saving an instruction

s sww smm awm cm

ADDIT W
SICPCS NEIGHBOURS+1

The rules are that the new generation of each cell is live (true) where:
(NEIGHBOURS.EQ.3) .OR. (LASTGEN.AND.NEIGHBOURS.EQ.2),
and dead (false) otherwise

First calculate where NEIGHBOURS is 2 or 3.
that is, test the bits in 3 of the 4 planes of NEIGHBOURS against
the binary value 00ix (x = don’t care)

QCN ! Q is .TRUE. if C-plane is .FALSE.
! that is, if MSB of NEIGHBOURS is .FALSE.
CPQSN NEIGHBOURS+1
CPCS NEIGHBOURS+2
Qc ! hence Q is .TRUE. where NEIGHBOURS

! is 2 or 3

158 man005.03 AMT

C.4: Complete program: Conway’s Game of Life 159

! Calculate (LASTGEN.AND.NEIGHBOURS.EQ.2)

CPCSN NEIGHBOURS+3 ! C is .TRUE. where NEIGHBOURS is 2
CPCS 0 (M2) t € is (LASTGEN.AND.NEIGHBOURS.EQ.2)

! Calculate (NEIGHBOURS.EQR.3)

AS NEIGHBOURS+3
AMQ ! A is .TRUE. where NEIGHBOURS is 3

! Finally calculate A.OR.C and save the answer in LASTGEN

QPCA ! Create logical OR of C and A planes.
sqQ 0 (M2) ! Save new generation in LASTGEN.

Now call a subroutine to expand the new value of LASTGEN into 1024 rows in
the data section MATRES.

RAX M5 1 (M7) ! New name space

WR M2 PARBASE..1 (M5) ! Parameter 1 is address of LASTGEN
RASC M3 MATRES

WR M3 PARBASE..2 (M5) ! Parameter 2 is address of MATRES
CALLNAME RECONVERT

’EPILOGUE ! Return to the host program

END

..

CODE RECONVERT

!

! This subroutine takes 2 parameters - a plame and a set of 32 planes.

! Successive columns of the single plane are to be written to the last column
! of successive planes in the set.
!

!

]

PROLOGUE 2
RLIT ME 1
AR ME ! Activity plane is true in column 31
DO 32 TIMES
RXO ME 0.31 (M2~) ! Read a column in plane
QRO ME .
SIQ 31 (M3-) ! Write to column 31 of one of set
Loop
’EPILOGUE ! Return to calling routine
END
1

ENDMODULE

APAL Language man005.03 159

160 Appendix C: Examples of APAL code

160 man005.03 AMT

Appendix D

APAL syntax

This appendix is a summary of the APAL syntax in the remainder of this publication.

The following symbols are used in the syntax definition:

Symbol Meaning
<> " Enclose the name of a syntactic construct (for example, <character>)
o= Is equivalent to the following syntactic construct(s)

Separates alternative forms of a syntactic construct

* The immediately preceding syntactic construct may appear any number of
times, or not at all

The immediately preceding syntactic construct is optional and may be omit-
ted

The construct <space> represents a space character.

The construct <question> represents a question mark character.

The construct <star> represents an asterisk.

The construct <vertical bar> represents a vertical bar character.

The construct <new line> implies the end of a source statement; that is, the next statement must
begin on a new line.

D.1 Basic elements

<character> ::= <basic character> | <special character>

<basic character> ::= <space> | [|. | < |(|+ & |] |8 | <star> [)|;|-|/1,1-1>]
<question> |: | # | @ |’ | = | <letter> | \ | <digit> | { | } |

<vertical bar> |~ (tilde) | (grave)

<special character> :=1]"|%|”

APAL Language ’ man005.03 161

162 Appendix D: APAL syntax

<letter> = A |B|C|D|E|F|G|H|I|J|K|L|M|N|O]|
UIVIWI|X|Y|Z|a|b|c|d|e|f|g|h]|i]j]|k
olplalr|s|tful|v|w]|x]|y]|z

|QIR[S|T
llm|n

P
|
<digit> == 0]1[2]3]|4[5]6|7|8]9

<alphanumeric character> = <letter> | <digit> |’

D.2 Comments

<comment> ::= !<comment character>*

D.3 Substitutions

<substitution> ::= <variable substitution> |
<expression substitution> |
<section substitution> |
<plane substitution> |
<row substitution> |
<word substitution> |
<column substitution> |
<substring substitution> |
<length substitution> |
<parameter substitution> |
<repeated substitution>

<variable substitution> ::= %<assembly-time variable name> |
%" <assembly-time variable name> |
%<macro variable name> |
%" <macro variable name> |
%<system variable name>

<system variable name> ::= 'DATE | 'DIM | 'LOGDIM | 'MCOUNT | ’PCOUNT | 'TIME |
"'TRANSFER

<expression substitution> ::= %=[<assembly-time expression>]
<section substitution> ::= %’SECTION [<data address>]
<plane substitution> ::= %’PLANE [<data address>]

<row substitution> ::= %’ROW [<data address>]

<word substitution> ::= %’WORD [<data address>]

<column substitution> ::= %’COLUMN [<data address>]

<substring substitution> ::= %’SUBSTRING [<selector>]<string ref>

162 man005.03 AMT

D.4: Assembly-time values

<selector> ::= <number>? SIZE <number>? |
UPTO <string> | FROM <string> |
FROM <string>, UPTO <string>

<string ref> ::= <macro parameter name> |
<macro variable name> |
<assembly-time variable name> |
<number>

<length substitution> ::= %’LENGTH <string ref>

<parameter substitution> ::= %<macro parameter name> |
%~ <macro parameter name> |
%<number> |
%" <number> |
%’OCCUR [<number>, <string>]

<repeated substitution> ::= %<substitution>

<assembly-time variable name> see D.5
<macro variable name> see D.6
<assembly-time expression> see D.4
<row> see D.15 ‘
<column> see D.15
<number> see D.4
<string> see D.4
<macro parameter name> see D.6

D.4 Assembly-time values

<assembly-time-value> ::= [<assembly-time expression>] | <string>
<assembly-time expression> ::= <sign>?7<expression>
<expression> = <expression><operator><operand> | <operand>

<operand> ::= <assembly-time variable name> |
<macro variable name> |
<macro parameter name> |
<unsigned integer> |
<hexadecimal value> |
(<assembly-time expression>)

<operator> ::= + | - | <star> | / | // | '"AND | 'NEQ | 'OR. | 'ROTATE | 'SCALE

<string> = <string character>*<delimiter>

APAL Language man005.03

163

163

164 Appendix D: APAL syntax

<string character> ::= “<character> | <basic character> | » | *
<delimiter> ::=1! | , |] | <newline>
<number> ::= [<assembly-time expression>] | <unsigned integer>

<numval> ::= <number> | <hexadecimal value>

<sign> . see D.7
<assembly-time variable name> see D.5
<macro variable name> see D.6
<macro parameter name> see D.6
<unsigned integer> see D.7
<hexadecimal value> see D.7

D.5 Assembly-time statements

<VAR statement> ::= VAR<assembly-time variable name><preset>?<newline>

<assembly-time variable name> ::= <identifier>

<preset> 1= = <assembly-time value>

<SET statement> ::= SET<assembly-time variable name><preset><newline>
<IF construct> 1= <IF test><choice>FI<newline>

<IF test> ::= IF<condition> | IFN <condition>

<choice> ::= <true part><false part>?

<true part> 1= <APAL construct>*

<false part> ::= ELSE <newline><true part> |
ELSE.IF <condition><choice> |
ELSE.IFN <condition><choice>

<condition> ::= <arithmetic test><test operand>, <test operand><newline>]
<monadic string test><string><newline> |
<diadic string test><string>, <string><newline>

<arithmetic test> = GT | GE | EQ | LE | LT | NE
<test operand> ::= <number> | <signed integer>

<monadic string test> ::= EX | ID | NU | VA | AV | VS

<diadic string test> ::= BE | SA

164) man005.03 AMT

D.5: Assembly-time statements 165

<LIST statement> ::= LIST <list option><newline>

<list option> ::= FULL | SOURCE | SHORT | NONE

<NOTE statement> ::= NOTE <note type><string><newline>
<note type> ::= TERMINAL | ERROR | WARNING | COMMENT
<STACK statement> ::= STACK <numval><newline>

<APAL construct> ::= <module declaration> |
<module header> |
<module end> |
<global data identity> |
DEFINE <newline> |
END <newline> |
<data section> |
<data header> |
<data body> |
<data end> |
<mixed section> |
<mixed header> |
<code section> |
<code header> |
<code body> |
<code end> |
<VAR statement> |
<SET statement> |
<IF construct> |
<LIST statement> |
<NOTE statement> |
<STACK statement> |
<ERASE statement> |
<macro definition> |
<macro construct> |
<macro call>

<assembly-time-value> see D.4
<number> see D.4
<numval> see D.4
<signed integer> see D.7
<string> see D.4
<module declaration> see D.9
<module header> see D.9
<module end> see D.9
<global data identity> see D.10

APAL Language man005.03 165

166 Appendix D: APAL syntax

<data section> see D.11

<data header> see D.11
<data body> see D.11
<data end> see D.11
<mixed section> see D.12
<mixed header> see D.12
<code section> see D.13
<code header> see D.13
<code body> see D.13
<code end> see D.13
<ERASE statement> see D.6
<macro definition> see D.6
<macro construct> see D.6
<macro call> see D.6
D.6 Macros

<macro definition> ::= <macro header><macro body><macro end>

<macro header> ::= MACRO <macro name><parameter template>?<newline>

<Imacro name> ::= <identifier>

<parameter template> ::= <formal parameter> |
<formal parameter>?,<parameter template>

<formal parameter> ::= <macro parameter name><preset>?
<macro parameter name> ::= <identifier>

<macro body> ::= <APAL construct>*

<macro construct> ::= <MEXIT statement> |
' <MQUIT statement> |
<CYCLE construct> |
<MVAR statement> |
<MSET statement> |
<macro comment>

<macro end> ::= MEND <macro name>?<newline>

166 man005.03 AMT

D.6: Macros

<MEXIT statement> ::= MEXIT <newline>

<MQUIT statement> 1= MQUIT <newline>

<CYCLE construct> 1= <cycle header><cycle body><cycle end>
<cycle header> ::= CYCLE <number>7<newline>

‘<cycle body> ::= <APAL construct>*<conditional part>?

<conditional part> ::= <cycle test><APAL construct>*

<cycle test> :=WHILE <condition><newline> |
UNTIL <condition><newline>

<cycle end> ::= REPEAT <newline>
<MVAR statement> ::= MVAR <macro variable name><preset>>7<newline>

<macro variable name> ::= <identifier>

<MSET statement> ::=MSET <macro variable name><preset><newline> |
MSET <macro parameter name>><preset><newline> |
MSET <number><preset><newline>

<macro comment> ::= !<comment><newline>

<macro call> ::= <macro name><actual parameter list>?<newline>

<actual parameter list> ::= <actual parameter>,<actual parameter list> |
<actual parameter>

<actual parameter> ::= <assembly-time value> |
<macro parameter name> = <assembly-time value>

<ERASE statement> ::= ERASE <macro name><macro name>*<newline>

<preset> see D.5
<APAL construct> see D.5
<number> see D.4
<condition> see D.5
<comment> see D.2
<assembly-time value> see D.;l
APAL Language man005.03

167

167

168 Appendix D: APAL syntax

D.7 Values

<value> ::= <integer value> | <real value> | <character value>
<integer value> ::= <unsigned integer> | <signed integer> | <hexadecimal value>
<unsigned integer> ::= <basic integer> | <basic integer>I<basic integer>
<signed integer> ::= <sign>?<unsigned integer>
<basic integer> ::= <digit><digit>*
<sign> =+ | -
<hexadecimal value> ::= #<hexadecimal digit><hexadecimal digit>*
<hexadecimal digit> ::= <digit> | A |B|C|D|E|F|a|b|c|d]|e|f
<real value> ::= <sign>?<basic integer><exponent> |
<sign>?<basic integer>.<basic integer>?<exponent>? |
<sign>?.<basic integer><exponent>?
<exponent> ::= E<sign>?<basic integer>
<character value> ::= ” <value character>*"

<value character> ::= ~<character> | <basic character> | !

D.8 Identifiers

<identifier> ::= <letter><alphanumeric character>* | ’<alphanumeric character>*

D.9 Modules

<module declaration> ::= <module header><module body>*<module end>

<module header> ::= MODULE <module name><alias>*<newline>

<module body> ::= <global data identity> | <data section> | <mixed section> |
<code section>

<module end> ::= ENDMODULE <module name>?<newline>
<module name> ::= <identifier>

<alias> ::= <identifier>

<global data identity> see D.10

<data section> see D.12

168 man(005.03 AMT

D.10: Data identities

<code section> see D.13

<mixed section> see D.12

D.10 Data identities

<data identity> ::= <global data identity> | <local data identity>

<global data identity> ::= DEFINE <newline><identity>*END <newline>
<local data identity> ::= <identity>

<identity> ::= <identity name>=<row><data address><newline>
<identity name> ::= <identifier>

<row> see D.15

D.11 Data sections

<data section> ::= <data header><data body>*<data end>

<data header> ::= DATA <data section name><name property>?<common property>?
<write property>7<newline>

<data section name> ::= <identifier>

<name property> ::= DAP | HOST

<common property> ::= COMMON

<write property> = WRITE

<data body> ::= <data declaration><newline> | <length><newline>

<length> := ROWPACK | WORDPACK

<data declaration> ::= <data label>7<data item>*

<data label> ::= <data variable name>:

<data variable name> ::= <identifier>

<data item> ::= <repeat count>7<basic data item> | <repeat count> <data sequence>

<repeat count> :i= <numval><star>

<basic data item> ::= <value><size>? | PLANE | ROW | WORD | ALIGN |
PLANE_ALIGN | ROW_ALIGN

<size> ::= (<numval>)

APAL Language man005.03

169

169

170 Appendix D: APAL syntax

<data sequence> ::= (<data item><data item>*)
<data end> ::= END <newline>
<numval> see D.4

<value> see D.7

D.12 Mixed sections

<mixed section> ::= <mixed header><data body>*<code section>

<mixed header> ::=MIXED <data section name><name property>?<common property>?
<write property>?<newline>

<data body> : see D.11
<code section> see D.13
<data section name> see D.11
<name property> see D.11
<common property> see D.11
<write property> see D.11

D.13 Code sections

<code section> ::= <code header><code body>*<code end>
<code header> ::= CODE<code section name><name property>?<newline>

<code section name> ::= <identifier>

<code body> ::= <local data identity> |
<entry point> |
<TRACE statement> |
<code label>?<APAL instruction>?<newline>

<entry point> ::= ENTRY <entry point name><name property>?<newline>
<entry point name> ::= <identifier>

<code label> ::= <code label name>7?:

<code label name> ::= <identifier>

<code end> ::= END <newline>

170 man(005.03 AMT

D.14: Trace statements 171

<name property> see D.11
<local data identity> see D.10
<TRACE statement> see D.14
<APAL instruction> see appendix F

D.14 Trace statements

<trace.statement> ::= TRACE<trace_number>?<registers_trace_item><trace_level ><newline> |
TRACE<tra.ce_number>‘7<reglsters _trace_item>?<trace.level>
<arraystore.trace_item><newline>

<array.store_trace_item> ::= <word><modifier>7<trace_count>? WORDPACK?<type/size>?|
<word><modifier>?<trace.count>? ROWPACK < type/size>?
<start.bit>7?|
<word><modifier>?<trace.count>? VERTICAL<type/size>?
<row.range>7<colrange>?|
<word><modifier>?<trace.count>? VERTICAL<type/size>?
<col_range>7<row.range>7

<trace_number> ::= <numval>

<registers.trace.item> ::= PER|MER|PER MER|MER PER
<tracelevel> ::= LEVEL <numval>

<trace_count> :i= <numval>

<type/size> = <type><size>?

<type> = HEX|INT|REAL|CHAR|BIT

<size> ::= (<numval>)

<start.bit> ::= FROM_BIT <numval>

<row.range> ::= ROWS (<numval>,<numval>)

<col.range> := COLS (<numval>,<numval>)

<word> see D.15
<row> see D.15
<plane> see D.15
<modifier> see D.15
<numval> see D.4

APAL Language man005.03 171

172 Appendix D: APAL syntax

D.15 Addresses and instruction fields

<array store address> ::= <store plane address> | <store row address> |
<store column address> | <store word address>

<store plane address> ::= <plane><modifier>?<step>?

<store row address> ;1= <row><modifier>?<step A>?

<store column address> ::= <column><modifier>?<step A>?

<store word address> ::= <word><modifier>?<step>?

<data address> ::= <plane> | <row> | <word> | <column>
<plane> ::= <aligned data name><plane offset>? | <plane number>
<name or plane> ::= <data name><plane offset>? | <plane number>
<row> ::= <name or plane><row offset>? | <row offset>

<column> ::= <name or plane><column offset>? | <column offset>

<word> = <row> |
<name or plane>?.<word offset> |
<name or plane>7<row offset><word offset>

<aligned data name> ::= <data name>

<data name> ::= <data section name> | <data variable name> | <identity name>
<plane offset> ::= 4 <plane number>

<row offset> ::= .<numval>

<column offset> ::= .<numval>

<word offset> ::= .<numval>

<code store address> ::= <within-section address> | <inter-section address>

<within-section address> ::= <code label name><label offset>? |
<star><label offset><doj modifier>?

<inter-section address> ::= <code section name><section offset>?<doj modifier>? |
<entry point name><section offset>?<doj modifier>?

<label offset> ::= +<numval> | ~<numval>
<section offset> ::= +<numval>
<MCU-or-edge -register bit address> ::= <MCU-or-edge-register>.<bit number><modifier>?<step>?

<modifier> ::= (<mreg>)

<mreg> == M1 | M2 | M3 | M4 | M5 | M6 | M7

172 man005.03 AMT

D.15: Addresses and instruction fields 173

<doj modifier> := (<dojmreg>)

<dojmreg> := M1 | M2 | M3 | M4 | M5 | M6 | M7 | M8 | M9 | M10 | M11 | M12 | M13
<step A> u= (+A) | (-A) | <step>

<step> := (+) | (-)

<modifier>7<step A>? 1= <modifier><step A> | <modifier> | <step A>?

<modifier>?<step>? ::= <modifier><step> | <modifier> | <step>?

<modifier><step A> 1= (<mreg>)(+A) | (<mreg>)(-A) |
(<mreg>+ A) | (<mreg> - A) | <modifier><step>

<modifier><step> ::= (<mreg>)(+) | (<mreg>)(-) | (<mreg> +) | (<mreg>-)
<(inverted) MCU register-1> ::= <(inverted) MCU register>

<(inverted) MCU register-2> ::= <(inverted) MCU register>

<(inverted) MCU register> ::= <inverted MCU register> | <MCU register>
<MCU register-1> = <MCU register>

<MCU register-2> 1= <MCU register>

<inverted MCU register> ::= MON | MIN | M2N | M3N | M4N | M5N | M6N | M7N | M8N |
MON | M1ON | M11N | M12N | M13N

<MCU register> ::= M0 | M1 | M2 | M3 | M4 | M5 | M6 | M7 | M8 | M9 | M10 | M11 | M12 |
M13

<MCU-or-edge-register> := MO | M1 | M2 | M3 | M4 | M5 | M6 | M7 | M8 | M9 | M10 | M11 | M12 |
M13 | ME

<bit number> ::= <numval>

<direction> ::= RO | R1 | R2 | R3 | <nesw>
<nesw> =N |E|S|W

<geometry> :=PC|P |CP | C

<count> = <numval>

<truth value> =T |F|1]0

<times> ::= TIMES

<error number> 1= <numval>

<integer offset> ::= .<numval>

<literal 16> ::= <integer value><size>? | <character value><size>?

APAL Language man005.03 173

174 Appendix D: APAL syntax

<integer value> see D.7

<character value> see D.7

<code label name> see D.13
<code section name> see D.13
<data section name> see D.11
<data variable name> see D.11
<entry point name> see D.13
<identity name> see D.10
<numval> see D.4

<size> see D.11

174 man(005.03 AMT

Appendix E

Derivation of APAL instruction
mnemonics

This appendix contains a number of tables that describe how valid APAL instruction mnemonics
are derived, and also how the mnemonics are related to the function of the corresponding APAL

instructions.

For array and compound instructions, each letter in the mnemonic has a certain significance, as

follows:

Letter

5 Q = »

O Y O =

APAL Language

Meaning

The A plane
A single bit of an MCU register or the edge register
The C plane

Logical equivalence of a bit from an MCU register or the edge register, with
each bit of a store plane

False (or zero)

Inhibit writing to store wherever the corresponding A plane bit is zero.
Qualifies S or X when representing the destination of an operation

Logical AND of an operand and destination. Qualifies A when representing
the destination of an operation

Negation (complement) of an operand
Orthogonal mode (that is, by columns)
Plus

The Q plane

man005.03 175

176 Appendix E: Derivation of APAL instruction mnemonics

Letter Meaning

MCU register, or the edge register
Store plane

True (or one)

Vector add operation

Word

M g < H W

Store row

You can derive valid APAL mnemonics from the following tables. You can construct a mnemonic
from each of the sub-divided boxes by selecting one letter, or sequence of letters, from each com-
partment, working from left to right.

An asterisk in any compartment means that you can construct valid mnemonics by omitting a
choice from that compartment entirely. If a letter appears in parentheses, (), it indicates that the
letter may optionally be appended onto the letter, or letters, preceding it.

For example:

CPCA is formed by concatenating one item from each compartment in the first box; that is,
items C, P, C and A

AMEBSN is formed by concatenating one item from each compartment in the large box in
centre left of the next page; that is, items A(M) and EBS(N)

SIPCQS is formed by concatenating one item from each compartment in the box top right
of the next page, except the compartment containing an #; that is, items SI, P, CQ and S

A(N) AN
C C |R(N) S |F
CQ CQ | R(N)O X|Q
Q [P|Q [S(W) , R(N)

cqQ

CQT
C
SI |F
X1|Q
AQ
o PCQ
SQ- | QC(N)
QF WIF
QT R(N)

176 man005.03 AnMT

177

AMQ | QQ *
A | M) c | |c
si|cql|p|cqls
Q Q
T[T
Q
AS(N)
- QALN)
cq|v|cq gg oF
QS(N)
A [T
Q |t
B(N) CQQQN
EBS(N) Qg _BSQ
A(M) | S(N) QSN_ASN
Q Q
RV
R(N)O
Q A(N) I(E)
C(N) J(E)SL
NULL
SKIP
CF
QT | AT
TOOP
ANO PAUSE
AX RLIT
AW RALITR
W(0) RALITW
R|F RAPL
H(N) RAR
QO | RAWD
R(N) RASC
5(0) RDGC
T RAC(E)
X(0) STOP

- APAL Language man005.03 177

178

178

ADD(H)(C)
AND
ANDH(N)
DECR
EQV(H)
INCR
MPY(U)32(V)
MPY(U)64
NAND
NANDH(N)
NEQ(H)
NOR
NORH(N)
OR
ORH(N)
SHL(C)
SHR(A)
SHRC
SUB(H)(C)

Appendix E: Derivation of APAL instruction mnemonics

man005.03

AMT

Appendix F

APAL instructions

This section presents an introduction to the detailed descriptions of individual APAL instructions
given later in the appendix. There is also a compact list of mnemonics in appendix A; tables giving
the derivation of the mnemonics are presented in appendix E.

APAL code will run on any machine in any range of DAP, whatever its edge size, once the code
has been assembled for that size of DAP. The term ES is used in this manual (and in other AMT
publications) to'stand for the edge size of DAP under discussion. Often an example given relates
to a machine of particular ES, but the principles involved should be clear, and you should not find
it difficult to apply them to machines with other values of E'S.

In this appendix F, most of the instructions are given in alphabetical order, but where an instruction
has a companion instruction that performs the same operation on an inverted operand (for example,
QS, QSN), or on an orthogonal operand (for example RX, RXO) the two instructions are described
together.

Each instruction description has the following general form:

e A heading giving the instruction mnemonic(s)

o A brief description of the function(s) performed by the instruction

o The syntax of the instruction as it is written in an APAL code section.

e The addressing mode, where applicable

e Notes, giving more detail of the syntax or of the function

¢ Run-time errors that can occur while executing the instruction

e In non-trivial cases, one or more examples
Certain mnemonics are classified as ‘pseudo-instructions’; they too are included. One of these,
LOOP, generates no code. Many of the others are concerned with loading addresses or values into
registers, and differ from other mnemonics in that the instruction type generated is dependent on

the size of that address or value. In many cases the value is created in the program literals area,
and the assembled instruction references that literal.

APAL Language man005.03 179

180 Appendix F: APAL instructions

In a few specific cases, the actions of two instructions can be performed in a single instruction.
Such an instruction is referred to as a ‘compound instruction’, and its mnemonic is constructed
by concatenating the two instruction mnemonics; by convention, the component mnemonics are
separated by the ¢_’ character. From a functional point of view, the component instructions are
executed in the order as written.

In the description of the operation of the instructions:-

e The complete set of Q registers, for all the PEs, is referred to as the ‘Q plane’, and similarly
for the C and A registers and bits of array store. Thus ‘the C plane is copied into the Q
plane’ is equivalent to ‘in every PE the C register is copied into the Q register’

e Where addition operations in the array are described, this means, unless explicitly stated
otherwise (for example, in the vector add instructions), that each PE independently performs
an add on two or three one-bit operands, producing a Sum and a Carry

e When an MCU register or the edge register is broadcast to the array in ‘Main-Store-Mode?’,
it is regarded as having created a fictitious ‘R plane’, the least significant end of each of
whose rows is equal to the register contents, with the most significant end being zero-filled
as necessary. Similarly, a broadcast in ‘Orthogonal Mode’ results in a fictitious ‘Orthogonal
R plane’, the least significant end of each of whose columns is equal to the register contents,
with the most significant end being zero-filled as necessary

In the logical operations that can be performed on MCU registers, each AND function is related
to one of the NOR functions, in accordance with the usual rules of Boolean algebra; the NAND
and OR functions are similarly related. The alternative mnemonics are provided as a programimer
convenience.

180 man005.03 AMT

181

AB AB
ABN ABN
Function

AB sets every bit of the A plane to a specified bit of an MCU register or the edge register

ABN sets every bit of the A plane to the inverse of a specified bit of an MCU register or the edge
register.
Syntax

AB <MCU-or-edge-register>.<bit number><modifier>?<step>7
ABN <MCU-or-edge-register>.<bit number><modifier>?<step>?

where <MCU-or-edge-register>, <bit number>, <modifier>, and <step> together form a register
bit address.

Addressing mode

Mode A addressing is used (see section 7.1.1 for details). The effective INT field defines the bit
number of the MCU register or the edge register, and the effective ADDR field is discarded.
Notes

1 MCU-or-edge-register specifies the value in the MCUR field of the instruction which specifies
the register whose bit is addressed by this instruction

2 bit-number specifies the value in the INT field of the instruction which is used to construct
the effective INT value

3 modifier specifies the value in the MOD field of the instruction, which specifies the modifier
register to be used, if any. If modifier is omitted the MOD field is set to zero

4 step specifies the value in the INCREMENT/DECREMENT field of the instruction, which
specifies how the bit number is to be stepped if the instruction appears inside an APAL DO
loop.

Possible run-time program errors

None

Example
AB MO0.16 (M2)(+) ! SET EACH BIT OF THE A PLANE TO BIT i OF M0

! WHERE i IS 16 + (INT FIELD OF M2)
! + THE DO LOOP ITERATION NUMBER

APAL Language man005.03 181

182 Appendix F: APAL instructions

ADD ADD

Function

ADD adds two MCU registers, putting the result in one of them. It also assigns the CARRY and
OFLO flags.

Syntax
ADD <MCU register-1><MCU register-2>
where

<MCU register-1> ::= <MCU-register>
<MCU register-2> ::= <MCU-register>

Notes

1 MCU-register-1 specifies the value in the MCUR field of the instruction, which specifies both
the register containing the first operand and the register to contain the result

2 MCU-register-2 specifies the value in the MOD field of the instruction which specifies the
register containing the second operand

3 The CARRY and OFLO flags are assigned as described in section 1.10

Possible run-time program errors

None.

Example

ADD M3 M5 ! M3 = M3 + M5

182 - man005.03 AMT

183

ADDC ADDC

Function

ADDC adds two MCU registers using the CARRY flag as the carry-in at the least significant bit,
putting the result in one of the MCU registers. It also assigns the CARRY and OFLO flags.
Syntax

ADDC <MCU register-1><MCU register-2>

where

<MCU register-1> ::= <MCU-register>
<MCU register-2> ::= <MCU-register>
Notes

1 MCU-register-1 specifies the value in the MCUR field of the instruction, which specifies both
the register containing the first operand and the register to contain the result

2 MCU-register-2 specifies the value in the MOD field of the instruction which specifies the
register containing the second operand

3 The CARRY and OFLO flags are assigned as described in section 1.10

Possible run-time program errors

None.

Example

ADD M2 M10 ! ADD THE TWO 64-BIT NUMBERS HELD IN
ADDC M1 M9 ! REGISTER PAIRS M1, M2 AND M9, M10

APAL Language man005.03 183

184 Appendix F: APAL instructions

ADDH ADDH

Function

ADDH adds a literal to an MCU register. It also assigns the CARRY and OFLO flags.

Syntax
ADDH <MCU-register><literal_16>

where <literal_16> see section 6.1.7 for details

Notes

1 MCU-register specifies the value in the MCUR field of the instruction which specifies both
the register containing the first operand and the register to contain the result

2 literal 16 specifies the value in the LITERAL field. This value is extended to 32 bits with
leading zeros to form the second operand (see section 6.1.7)

3 The CARRY and OFLO flags are assigned as described in section 1.10

Possible run-time program errors

None

Example

ADDH M3 7§ ! M3 = M3 + #00002024

184 man005.03 AMT

185

ADDHC ADDHC

Function

ADDHC adds a literal to an MCU register using the CARRY flag as the carry-in at the least
significant bit. It also assigns the CARRY and OFLO flags.

Syntax
ADDHC <MCU-register><literal 16>

where <literal_16> is defined in section 6.1.7

Notes

1 MCU-register specifies the value in the MCUR field of the instruction which specifies both
the register containing the first operand and the register to contain the result

2 literal 16 specifies the value in the LITERAL field. This value is extended to 32 bits with
leading zeros to form the second operand (see section 6.1.7)

3 The CARRY and OFLO flags are assigned as described in section 1.10

Possible run-time program errors

None

Example

ADDHC M3 ”§$” ! M3 = M3 + #00002024 + CARRY FLAG

APAL Language man(005.03 185

186 Appendix F: APAL instructions

AEBS AEBS
AEBSN AEBSN
Function

AEBS creates the logical equivalence of each bit of a given store plane with a specified bit of an
MCU register or the edge register, putting the result in the A plane.

AEBSN is as AEBS, but uses the inverse of the store plane

Syntax

AEBS <MCU-or-edge-register>.<bit number><plane><modifier>?<step>?
AEBSN <MCU-or-edge-register>.<bit number><plane><modifier>?<step>?

‘where

<MCU-or-edge-register>, <bit number>, <modifier>, and <step> together form a register
bit address

<plane>, <modifier>, and <step> together form a store plane address

Addressing mode

Mode A addressing is used (see section 7.1.1 for details). The effective ADDR field defines the
store plane address, and the effective INT field defines the bit number of the MCU register or the
edge register.

Notes

1 MCU-or-edge-register specifies the value in the MCUR field of the instruction which specifies
the register whose bit is addressed by this instruction

2 bit-number specifies the value in the INT field of the instruction which is used to construct
the effective INT value

3 plane specifies the value in the ADDR field of the instruction, which is used to construct the
effective ADDR value

4 modifier specifies the value in the MOD field of the instruction, which specifies the modifier
register to be used, if any

5 step specifies the value in the INCREMENT/DECREMENT field of the instruction, which
specifies how both the store plane address and MCU register bit number are to be stepped
if the instruction appears inside an APAL DO loop

Possible run-time program errors

A run-time error will occur if the effective ADDR value is outside the range defined by the DAP
program block.

186 man005.03 AMT

187

AEBS AEBS
AEBSN AEBSN

Example

AEBS M7.0 SPLANE + 12 ! SET EACH BIT OF THE A PLANE TO
| THE LOGICAL EQUIVALENCE OF
| THE CORRESPONDING BIT OF STORE PLANE
| SPLANE + 12 WITH BIT ZERO OF M7.
|
!
! SPLANE IS THE NAME OF A DATA
! IDENTITY. BECAUSE THERE
! IS NO MODIFIER FIELD IN
{ THE INSTRUCTION, SPLANE + 12
! REPRESENTS AN ABSOLUTE ADDRESS.

APAL Language man005.03 187

188 Appendix F: APAL instructions

AF AF

Function

AF sets every bit of the A plane to zero.

Syntax
AF

Possible run-time program errors

None.

188 man005.03 AMT

189

AMB AMB
AMBN AMBN
Function

AMB sets each bit of the A plane to the logical AND of itself and a specified bit of an MCU register
or the edge register. ’

AMBN sets each bit of the A plane to the logical AND of itself and the inverse of a specified bit
of an MCU register or the edge register.

Syntax

AMB <MCU-or-edge-register>.<bit number><modifier>?<step>?
AMBN <MCU-or-edge-register>.<bit number><modifier>?<step>?

where <MCU-or-edge-register>, <bit number>, <modifier>, and <step> together form a register
bit address.

Addressing mode

Mode A addressing is used (see section 7.1.1 for details). The effective INT field defines the bit
number of the MCU register or the edge register, and the effective ADDR field is discarded.

Notes

See notes for the AB instruction

Possible run-time program errors

None

Example

AMB M2.30(-) ! SET EACH BIT OF THE A PLANE TO THE
! LOGICAL AND OF ITSELF, WITH BIT i OF M2
| WHERE i IS 30 - THE DO LOOP ITERATION
! NUMBER MODULO 32

AMB ME.30(-) ! AS ABOVE, BUT THE EDGE REGISTER IS

! USED, AND THE BIT NUMBER IS MODULO ES

APAL Language man005.03 189

190 Appendix F: APAL instructions

AMEBS . AMEBS
AMEBSN AMEBSN
Function

AMEBS creates the logical AND of the A plane with the logical equivalence of each bit of a given
store plane with a specified bit of an MCU register or the edge register, putting the result in the
A plane.

AMEBSN is as AMEBS, but uses the inverse of the store plane.

Syntax

AMEBS <MCU-or-edge-register>.<bit number><plane><modifier>?<step>?
AMEBSN <MCU-or-edge-register>.<bit number><plane><modifier>?<step>?

where

<MCU-or-edge-register>, <bit number>, <modifier>, and <step> together form a register
bit address

<plane>, <modifier>, and <step> together form a store plane address

Addressing mode

Mode A addressing is used (see section 7.1.1 for details). The effective ADDR. field defines the
store plane address, and the effective INT field defines the bit number of the MCU register or the
edge register.

Notes
See notes for the AEBS instruction
Possible run-time program errors

A run-time error will occur if the effective ADDR value is outside the range defined by the DAP
program block.

Example

AMEBS MO0.0 SPLANE (M3) ! SET EACH BIT OF THE A PLANE
! TO THE LOGICAL AND OF
! ITSELF, WITH THE LOGICAL
! EQUIVALENCE OF
! THE CORRESPONDING BIT OF STORE
! PLANE SPLANE (M3) WITH BIT i OF
! MO, WHERE i IS THE INT FIELD
! OF M3 MODULO 32

190 man005.03 ArT

191

AMQ (non shifting) AMQ (non shifting)
AMQN AMQN
Function

AMQ creates the logical AND of the A and Q planes, putting the result in the A plane.

AMQN is as AMQ but uses the inverse of the Q plane.

Syntax

AMQ
AMQN

Notes

1 There is also an AMQ instruction that performs shifting (see next page). The assembler can
distinguish between them because the non-shifting AMQ instruction has no operand

Possible run-time program errors

None.

APAL Language man005.03 191

192

Appendix F: APAL instructions

AMQ (shifting) AMQ (shifting)
Function

AMQ (shifting) creates the logical AND of the A and Q planes, putting the result in the A plane,
as though the Q plane had first been shifted one place. The Q plane is not changed.

Syntax

AMQ <direction>?<geometry>?<count>?<modifier>

AMQ

where

<nesw><geometry><count>?

<direction> ::= <nesw> | RO | R1 | R2 | R3
<geometry> = P | C | PC | CP

<count> ::= <numval>
<nesw>:=N|E|S|W

Addressing Mode

Mode

D addressing is used (see section 7.1.4 for details). The result specifies the effective direction,

geometry and count. If the effective count is zero, the instruction is executed as if it were a non-
shifting AMQ instruction. Otherwise a shift of one place is performed regardless of the effective
count, but the instruction may take longer to execute if the effective count is greater than one.

Notes
1

direction or nesw specify the value in the DIRECTION field of the instruction, which is used
to construct the effective DIRECTION value. If you supply a direction of N, E, S or W,
then that value is used at run time as the effective direction regardless of whether or not you
supply a modifier. If you specify a modifier then you can either omit the direction, in which
case the direction is taken from the modifier at run time, or you can supply a direction of
RO, R1, R2 or R3 - meaning a clockwise rotation of 0, 1, 2 or 3 quadrants (each quadrant
being 90°) from the direction specified in the modifier. Specifying RO is identical to omitting
the direction

geometry specifies the value in the GEOMETRY field of the instruction which is used to
construct the effective GEOMETRY value. If omitted, the GEOMETRY field is set such
that the geometry is taken from the modifier; modifier may not be omitted in this case

count specifies the value in the COUNT field of the instruction, which is used to construct
the effective COUNT value. If omitted, zero is assumed

modifier specifies the value in the MOD field of the instruction, which gives the modifier
register to be used, if any

The shift of the Q plane is only notional, that is, the Q plane is not itself shifted

Possible run-time program errors

None

192

man005.03 AMT

AMQ (shifting)

Example
AMQ E P 1

APAL Language

193

AMQ (shifting)

! PERFORM A NOTIONAL SHIFT OF THE

! Q PLANE ONE PLACE TO THE EAST WITH

! PLANE GEOMETRY, AND ‘AND’ THE RESULT
! WITH THE A PLANE, PUTTING THE RESULT
! BACKIN THE A PLANE

man005.03 193

194 Appendix F: APAL instructions

AMQQQ AMQ_QQ

Function

AMQ_QQ is a compound instruction (see section 6.2 for details), and is equivalent to an AMQ
(shifting) instruction with a count of one followed by a QQ instruction with a count of one, the

instruction pair being executed altogether n times where n is the effective value of count in the
AMQ_QQ instruction.

Syntax

AMQ_QQ <direction>?<geometry>?<count>?<modiﬁer><step>?
AMQ_QQ <nesw><geometry><count>?<step>?

where
<direction> ::= <nesw> | RO | R1 | R2 | R3
<geometry> :=P | C | PC | CP
<count> ::= <numval>
<nesw> =N |E|S|W

Addressing Mode

Mode D addressing is used (see section 7.1.4 for details). The result specifies the effective direction,
geometry and count. If the effective count is zero, the instruction is executed as if it were a non-
shifting AMQ instruction.

Notes

See notes 1 to 4 for AMQ (shifting)

Possible run-time program errors

None

Example

AMQQQ E C 10 (M3) ! THIS INSTRUCTION DOES THE SAME
! AS THE SEQUENCE:
! AMQEC1
! QQEC1

! EXECUTED (10 + i) TIMES, TAKEN
! MODULO ES, WHERE i IS THE

! COUNT FIELD OF M3.

!

I IF (10 + i) MODULO ES IS ZERO

! AMQ_QQ DOES THE SAME AS THE
! SINGLE INSTRUCTION AMQ

194 man005.03 AMT

195

AMR AMR
AMRN AMRN
Function

AMR creates the logical AND of the A and R planes, putting the result in the A plane.

AMRN is as AMR, but uses the inverse of the R plane.

Syntax
AMR <MCU.or-edge-register>
AMRN <MCU-or-edge-register>

Notes

1 MCU-or-edge-register specifies the value in the MCUR field of the instruction which specifies
the register that is used to form the R plane (see section 6.2 for details)

Possible run-time program errors

None.

Example

AMR ME ! SET EACH ROW OF THE A PLANE TO THE
! LOGICAL AND OF ITSELF WITH THE
! EDGE REGISTER

APAL Language man005.03 195

196 Appendix F: APAL instructions

AMRO AMRO
AMRNO AMRNO
Function

AMRO creates the logical AND of the A and orthogonal R planes, putting the result in the A
plane.

AMRNO is as AMRO but uses the inverse of the orthogonal R plane.

Syntax
AMRO <MCU-or-edge-register>
AMRNO <MCU-or-edge-register>

Notes

1 MCU-or-edge-register specifies the value in the MCUR field of the instruction which specifies
the register that is used to form the orthogonal R plane (see section 6.2 for details)

Possible run-time program errors

None.

Example

AMRO ME ! SET EACH COLUMN OF THE A PLANE TO THE
! LOGICAL AND OF ITSELF WITH THE
! EDGE REGISTER

196 man005.03 ’ AMT

197

AMS AMS
AMSN AMSN
Function

AMS creates the logical AND of the A plane and a given store plane, putting the result in the A
plane. :

AMSN is as AMS but uses the inverse of the store plane.

Syntax

AMS <plane> <modiﬁer>?<st;ep>n;';7i
AMSN <plane><modifier>?<step>?

where <plane>, <modifier>, and <step> together form a store plane address.

Addressing mode

Mode A addressing is used (see section 7.1.1 for details). The effective ADDR field defines the
store plane address, and the effective INT field is discarded.

Notes

See notes for the AS instruction

Possible run-time program errors

A run-time error will occur if the effective ADDR value is outside the range defined by the DAP
program block.

Example

AMS SPLANE (M1) (+) ! SET EACH BIT OF THE A PLANE
! TO THE LOGICAL AND OF ITSELF WITH
! THE CORRESPONDING BIT OF STORE
! PLANE SPLANE (M1) + i, WHERE 1 IS
! THE DO LOOP ITERATION NUMBER

APAL Language man005.03 197

198 ’ Appendix F: APAL instructions

AND AND

Function

AND creates the logical AND of two MCU registers, putting the result in one of them. The bits
from either or both registers may be inverted before doing the logical AND.

Syntax
AND <(inverted)MCU-register-1><(inverted)MCU-register-2>
where

<(inverted)MCU-register-1> ::= <(inverted)MCU-register>

<(inverted)MCU-register-2> ::= <(inverted)MCU-register>
<(inverted)MCU-register> ::= <MCU-register> | <inverted MCU-register>

Notes

1 MCU-register-1 specifies the value in the MCUR field of the instruction, which specifies both
the register containing the first operand and the register to contain the result

2 MCU-register-2 specifies the value in the MOD field of the instruction which specifies the
register containing the second operand

Possible run-time program errors

None.

Example

AND M2 M3N ! M2 = M2 AND (NOT M3)

198 man005.03 AMT

199

ANDH ANDH
ANDHN ANDHN
Function

ANDH creates the logical AND of an MCU register and a literal, putting the result in the register.
The bits of the register may be inverted before doing the logical AND.

ANDEHN does the same as ANDH but uses the inverse of the literal.

Syntax

ANDH <(inverted)MCU-register><literal 16>
ANDHN <(inverted)MCU-register><literal 16>

where

<(inverted)MCU-register> see AND instruction
<literal_16> gee section 6.1.7 for details

Notes

1 MCU-register specifies the value in the MCUR field of the instruction which specifies both
the register containing the first operand and the register to contain the result

9 literal_16 specifies the value in the LITERAL field of the instruction. This value is extended
to 32 bits with leading zeros to form the second operand. In the case of ANDHN this 32-bit
literal is inverted before use

Possible run-time program errors

None

Example
ANDHN M1-1 (12) ! M1 = M1 AND #FFFFF000

APAL Language man005.03 199

200 Appendix F: APAL instructions

AQ (non-shifting) AQ (non-shifting)
AQN AQN

Fuhction
AQ copies the Q plane into the A plane.

AQN copies the inverse of the Q plane into the A plane.

Syntax

AQ
AQN

Notes

1 There is also an AQ instruction that performs shifting (see next instruction). The assembler
can distinguish between them because the non-shifting AQ instruction has no operands

Possible run-time program errors

None.

200 man005.03 ARET

201

AQ (shifting) . A Q (shifting)

Function

AQ (shifting) copies the Q plane into the A plane, as though the Q plane had first been shifted
one place. The Q plane is not altered.
Syntax

AQ <direction>?<geometry>?<count>?<modifer>
AQ <nesw><geometry><count>?

where

<direction> ::= <nesw> | RO | R1 | R2 | R3
<geometry> 2= P | C | PC | CP

<count> ::= <numval>

<nesw> =N |E|S|W

Addressing Mode

Mode D addressing is used (see section 7.1.4 for details). The result specifies the effective direction,
geometry and count. If the effective count is zero, the instruction is executed as if it were a non-
shifting AQ instruction. Otherwise a shift of one place is performed regardless of the effective
count, but the instruction may take longer to execute if the effective count is greater than one.

Notes

See notes for the AMQ(shifting)

Possible run-time program errors

None

Example

AQ W C 3 ! PERFORM A NOTIONAL SHIFT OF THE
! Q PLANE ONE PLACE WEST USING CYCLIC
! AND COPY THE RESULT INTO THE A PLANE

APAL Language man005.03 201

202 Appendix F: APAL instructions

AQQQ AQQQ

Function

AQ_QQ is a compound instruction. It first shifts the Q plane the specified number of places, then
copies it into the A plane.

Syntax

AQ_QQ <direction>?<geometry>?<count>?<modifier> <step>?
AQ_QQ <nesw><geometry><count>?<step>?

where
<direction> ::= <nesw> | RO | R1 | R2 | R3
<geometry> =P | C | PC | CP
<count> 1= <numval>
<nesw> =N |E|S|W
Addressing Mode

Mode D addressing is used (see section 7.1.4 for details). The result specifies the effective direction,
geometry and count. If the effective count is zero, the instruction is executed as if it were a non-
shifting AQ instruction.

Notes

See notes 1 to 4 for AMQ(shifting)

Possible run-time program errors

None

Example

AQQQ E P 3 ! SHIFT THE Q PLANE THREE PLACES EAST USING
! PLANE GEOMETRY, AND COPY THE RESULT INTO
! BOTH THE Q PLANE AND THE A PLANE

202 man005.03 AMT

203

AR AR
ARN ARN
Function

AR copies the R plane into the A plane.

ARN copies the inverse of the R plane into the A plane.

Syntax
AR <MCU-or-edge-register>
ARN <MCU-or-edge-register>

Notes

1 MCU-or-edge-register specifies the value in the MCUR field of the instruction; it specifies
the register used to form the R plane (see section 6.2)

Possible run-time program errors

None.

Example

AR ME ! SET EACH ROW OF THE A PLANE EQUAL TO
! THE CONTENTS OF THE EDGE REGISTER

APAL Language man005.03 ’ 203

204 Appendix F: APAL instructions

ARO ARO
ARNO ARNO
Function

ARO copies the orthogonal R plane into the A plane.

ARNO copies the inverse of the orthogonal R plane into the A plane.

Syntax
ARO <MCU-or-edge-register>
ARNO <MCU-or-edge-register>

Notes

1 MCU-or-edge-register specifies the value in the MCUR field of the instruction; it specifies
the register used to form the orthogonal R plane (see section 6.2)

Possible run-time program errors

None.
Example

ARO ME ! SET EACH COLUMN OF THE A PLANE EQUAL
! TO THE CONTENTS OF THE EDGE REGISTER

204 man005.03 AMT

205

AS AS
ASN : ASN
Function

AS copies a given store plane into the A plane.

ASN copies the inverse of a given store plane into the A plane.

Syntax

AS <plane><modifier>7<step>?
ASN <plane><modifier>7<step>?

where <plane>, <modifier>> and <step> together form a store plane address.

Addressing mode

Mode A addressing is used (see section 7.1.1 for details). The effective ADDR field defines the
store plane address, and the effective INT field is discarded.

Notes

1 plane specifies the value in the ADDR field of the instruction, which is used to construct the
effective ADDR. value

2 modifier specifies the value in the MOD field of the instruction, which specifies the modifier
register to be used, if any

3 step specifies the value in the INCREMENT/DECREMENT field of the instruction, which
specifies how the store plane address is to be stepped if the instruction appears inside an
APAL DO loop

Possible run-time program errors

A run-time error will occur if the effective ADDR value is outside the range defined by the DAP
program block.

Example

AS SPLANE + 1 (M3) (-) ! SET EACH BIT OF THE A PLANE
! TO THE CORRESPONDING BIT OF
! PLANE SPLANE (M3) + 1 - i, WHERE i IS
! THE DO LOOP ITERATION NUMBER

APAL Language man005.03 205

206 Appendix F: APAL instructions

AS CF AS CF
ASN_CF ASN_CF
Function

AS_CF is a compound instruction. It copies a given store plane into the A plane, then sets every
bit of the C plane to zero. :

ASN_CF copies the inverse of a given store plane into the A plane, then sets every bit of the C
plane to zero.

Syntax

AS_CF <plane><modifier>?<step>?
ASN_CF <plane><modifier>7<step>?

where <plane>, <modifier>, and <step> together form a store plane address.

Addressing mode
Mode A addressing is used (see section 7.1.1 for details). The effective ADDR field defines the
store plane address, and the effective INT field is discarded.

Notes

Same as for AS instruction

Possible run-time program errors

A run-time error will occur if the effective ADDR value is outside the range defined by the DAP
program block.

Example

ASCF 13 (+4) ! SET EACH BIT OF THE A PLANE TO THE
! CORRESPONDING BIT OF PLANE 13 + |
! WHERE i IS THE DO LOOP ITERATION
! NUMBER.
! THEN SET EACH BIT OF THE C PLANE TO ZERO

206 man005.03 AMT

AT

Function

AT sets every bit of the A plane to one.

Syntax
AT

Possible run-time program errors

None.

APAL Language ‘

man005.03

207

AT

207

208 Appendix F: APAL instructions

CALL CALL

Function

CALL causes a supervisor entry to one of a number of routines that perform privileged operations
such as input-output. Generally CALL will be invoked by AMT-supplied macros or subroutines
rather than appearing in user programs; operations such as TRACE, STOP and PAUSE are all
implemented as particular cases of CALL.

The CALL instruction itself does not change any MCU register or the edge register, though the
called routine may do so. A return link is saved in an additional hardware register in the same
way as for JESL. This link register is referred to as MP, but it is inaccessible to user code except
implicitly through the CALL instruction.

The CALL facilities available and their parameters will be documented elsewhere; contact AMT
for further details.

208 man005.03 AMT

CF

Function

CF sets every bit of the C plane to zero.

Syntax
CF

Possible run-time program errors

None.

APAL Language

man005.03

209

CF

209

210 Appendix F: APAL instructions

CPCA CPCA
CPCAN CPCAN
Function

CPCA adds corresponding bits of the C and A planes, putting the carry bits in the C plane.
CPCAN is as CPCA but uses the inverse of the A plane.

The sums are discarded.

Syntax

CPCA
CPCAN

Possible run-time program errors

None.

210 man005.03 AMT

211

CPCQ CPCQ

Function

CPCQ adds corresponding bits of the C and Q planes, putting the carry bits in the C plane. The
sums are discarded.

Syntax
CPCQ

Possible run-time program errors

None.

APAL Language man005.03 211

212 Appendix F: APAL instructions

CPCQA CPCQA
CPCQAN CPCQAN
Function

CPCQA adds corresponding bits of the C, Q and A planes, putting the carry bits in the C plane.
CPCQAN is as CPCQA but uses the inverse of the A plane.

The sums are discarded.

Syntax

CPCQA
CPCQAN

Possible run-time program errors

None.

212 man005.03 AMT

Qg

213

CPCQR CPCQR
CPCQRN CPCQRN
Function

CPCQR adds corresponding bits of the C, Q and R planes, putting the carry bits in the C plane.
CPCQRN is as CPCQR but uses the inverse of the R plane.

The sums are discarded.

Syntax
CPCQR <MCU-or-edge-register>
CPCQRN <MCU-or-edge-register>

Notes

1 MCU-or-edge-register specifies the value in the MCUR field of the instruction; it specifies
the register used to form the R plane (see section 6.2)

Possible run-time program errors

None.

APAL Language man005.03 213

214 Appendix F: APAL instructions

CPCQRO CPCQRO
CPCQRNO CPCQRNO
Function

CPCQRO adds coi'responding bits of the C, Q and orthogonal R planes, putting the carry bits in
the C plane.

CPCQRNO is as CPCQRO but uses the inverse of the orthogonal R plane.

The sums are discarded.

Syntax
CPCQRO <MCU-or-edge-register>
CPCQRNO <MCU-or-edge-register>

Notes

1 MCU-or-edge-register specifies the value in the MCUR field of the instruction; it specifies
the register used to form the orthogonal R plane (see section 6.2)

Possible run-time program errors

None.

214 man005.03 AMT

215

CPCQS - _CPCQs
CPCQSN CPCQSN
Function

CPCQS adds corresponding bits of the C and Q planes and a given store plane putting the carry
bits in the C plane.

CPCQSN is as CPCQS but uses the inverse of the store plane.

The sums are discarded.

Syntax

CPCQS <plane><modifier>?<step>7
CPCQSN <plane><modifier>7<step>?

where <plane>, <modifier>, and <step> together form a store plane address.

Addressing mode

Mode A addressing is used (see section 7.1.1 for details). The effective ADDR field defines the
store plane address, and the effective INT field is discarded.

Notes

1 plane specifies the value in the ADDR field of the instruction, which is used to construct the
effective ADDR value

2 modifier specifies the value in the MOD field of the instruction, which specifies the modifier
register to be used, if any

3 step specifies the value in the INCREMENT/DECREMENT field of the instruction, which
specifies how the store plane adfi ! Adobe PostScript(tm) via Sun Microsystems PC-NFS
APAL DO loop

Possible run-time program errors

A run-time error will occur if the effective ADDR value is outside the range defined by the DAP
program block.

Example

CPCQS 28 (M4) ! SET EACH BIT OF THE C PLANE TO THE
! CARRY BIT GENERATED BY ADDING THAT
! C PLANE BIT TO THE CORRESPONDING BITS
! OF THE Q PLANE AND
! STORE PLANE 28 + (ADDR FIELD OF M4)

APAL Language man005.03 215

dress is to

216 Appendix F: APAL instructions

cpCQT cpPCQT

Function

CPCQT adds corresponding bits of the C and Q planes and a notional plane consisting of all ones,
putting the carry bits in the C plane. The sums are discarded.

Syntax
CPCQT

Possible run-time program errors

None.

216 man005.03 AMT

217

CPCR CPCR
CPCRN CPCRN
Function

CPCR adds corresponding bits of the C and R planes putting the carry bits in the C plane.
CPCRN is as CPCR but uses the inverse of the R plane.

The sums are discarded.

Syntax

CPCR <MCU-or-edge-register>
CPCRN <MCU-or-edge-register>

Notes

1 MCU-or-edge-register specifies the value in the MCUR field of the instruction; it specifies
the register used to form the R plane (see section 6.2)

Possible run-time program errors

None.

APAL Language man005.03 217

218 Appendix F: APAL instructions

CPCRO CPCRO
CPCRNO CPCRNO
Function

CPCRO adds corresponding bits of the C and orthogonal R planes, putting the carry bits in the
C plane.

CPCRNO is as CPCRO but uses the inverse of the orthogonal R plane.

The sums are discarded.

Syntax

CPCRO <MCU-or-edge-register>
CPCRNO <MCU-or-edge-register>

Notes

1 MCU-or-edge-register specifies the value in the MCUR field of the instruction; it specifies
the register used to form the orthogonal R plane (see section 6.2)

Possible run-time program errors

None.

218 man005.03 ANT

219

CPCS CPCS
CPCSN CPCSN
Function

CPCS adds corresponding bits of the C plane and a given store plane, putting the carry bits in
the C plane.

CPCSN is as CPCS but uses the inverse of the store plane.

The sums are discarded.

Syntax

CPCS <plane><modifier>?<step>?
CPCSN <plane><modifier>7?<step>?

where <plane>, <modifier>, and <step> together form a store plane address.

Addressing mode

Mode A addressing is used (see section 7.1.1 for details). The effective ADDR field defines the
store plane address, and the effective INT field is discarded.

Notes

See notes for the CPCQS instruction

Possible run-time program errors

A run-time error will occur if the effective ADDR value is outside the range defined by the DAP
program block.

Example

CPCS SPLANE (M2) ! SET EACH BIT OF THE C PLANE TO THE
! CARRY BIT GENERATED BY ADDING
! THAT C PLANE BIT TO THE CORRESPONDING
! BIT OF STORE PLANE SPLANE (M2)

APAL Language man005.03 219

220 Appendix F: APAL instructions

CPQA CPQA
CPQAN CPQAN
Function

CPQA adds corresponding bits of the Q and A planes, putting the carry bits in the C plane.
CPQAN is as CPQA but uses the inverse of the A plane.

The sums are discarded.

Syntax

CPQA
CPQAN

Possible run-time program errors

None.

9% AAr An

221

CPQR CPQR
CPQRN , CPQRN
Function

CPQR adds corresponding bits of the Q and R planes, putting the carry bits in the C plane.
CPQRN is as CPQR but uses the inverse of the R plane.

The sums are discarded.

Syntax
CPQR <MCU-or-edge-register>
CPQRN <MCU-or-edge-register>

Notes

1 MCU-or-edge-register specifies the value in the MCUR field of the instruction; it specifies
the register used to form the R plane (see section 6.2)

Possible run-time program errors

None.

APAL Language man005.03 221

222 Appendix F: APAL instructions

CPQRO CPQRO
CPQRNO CPQRNO
Function

CPQRO adds corresponding bits of the Q and orthogonal R planes, putting the carry bits in the
C plane.

CPQRNO is as CPQRO but uses the inverse of the orthogonal R plane.

The sums are discarded.

Syntax
CPQRO <MCU-or-edge-register>
CPQRNO <MCU-or-edge-register>

Notes

1 MCU-or-edge-register specifies the value in the MCUR field of the instruction; it specifies
the register used to form the orthogonal R plane (see section 6.2)

Possible run-time program errors

None.

222 man005.03 AMT

223

CPQS CPQS
CPQSN CPQSN
Function

CPQS adds corresponding bits of the Q plane and a given store plane, putting the carry bits in
the C plane. -

CPQSN is as CPQS but uses the inverse of the store plane.

The sums are discarded.

Syntax

CPQS <plane><modifier>?<step>?
CPQSN <plane><modifier>?<step>?

where <plane>, <modifier>, and <step> together form a store plane address.

Notes

See notes for the CPCQS instruction

Possible run-time program errors

A run-time error will occur if the effective ADDR value is outside the range defined by the DAP
program block.

Example

CPQS SPLANE (M4) (+) ! SET EACH BIT OF THE C PLANE
. ! TO THE CARRY BIT GENERATED BY
! ADDING CORRESPONDING BITS
! OF THE Q PLANE AND STORE PLANE
! SPLANE (M4) + i, WHERE i IS
! THE DO LOOP ITERATION NUMBER

APAL Language man005.03 223

224 Appendix F: APAL instructions

CQ cQ

Function

CQ copies the Q plane into the C plane.

Syntax
cQ

Possible run-time program errors

None.

224 man005.03 AMT

225

CQPCA CQPCA
CQPCAN CQPCAN
Func{;ion

CQPCA adds corresponding bits of the C and A planes, putting the carry bits in the C plane and
the sums in the Q plane.

CQPCAN is as CQPCA but uses the inverse of the A plane.

Syntax

CQPCA
CQPCAN

Possible run-time program errors

None.

APAL Language man005.03 225

226 Appendix F: APAL instructions

CQPCQ CQPCQ

Function CQPCQ adds corresponding bits of the C and Q planes, putting the carry bits in the C
plane and the sums in the Q plane.

Syntax
CQPCQ

Possible run-time program errors

None.

226 man005.03 AMT

227

CQPCQA CQPCQA
CQPCQAN CQPCQAN
Function

CQPCQA adds corresponding bits of the C, Q and A planes, putting the carry bits in the C plane
and the sums in the Q plane.

CQPCQAN is as CQPCQA but uses the inverse of the A plane.

Syntax

CQPCQA
CQPCQAN

Possible run-time program errors

None.

APAL Language man005.03 227

228 Appendix F: APAL instructions

CQPCQR CQPCQR
CQPCQRN : CQPCQRN
Function

CQPCQR adds corresponding bits of the C, Q and R planes, putting the carry bits in the C plane
and the sums in the Q plane.

CQPCQRN is as CQPCQR but uses the inverse of the R plane.

Syntax
CQPCQR <MCU-or-edge-register>
CQPCQRN <MCU-or-edge-register>

Notes

1 MCU-or-edge-register specifies the value in the MCUR field of the instruction; it specifies
the register used to form the R plane (see section 6.2)

Possible run-time program errors

None.

228 man005.03 AMT

229

CQPCQRO CQPCQRO
CQPCQRNO CQPCQRNO
Function

CQPCQRO adds corresponding bits of the C, Q and orthogonal R planes, putting the carry bits
in the C plane and the sums in the Q plane.

CQPCQRNO is as CQPCQRO but uses the inverse of the orthogonal R plane.

Syntax
CQPCQRO <MCU-or-edge-register>
CQPCQRNO <MCU-or-edge-register>

Notes

1 MCU-or-edge-register specifies the value in the MCUR field of the instruction; it specifies
the register used to form the orthogonal R plane (see section 6.2)

Possible run-time program errors

None.

APAL Language man005.03 229

230 Appendix F: APAL instructions

CQPCQS CQPCQS
CQPCQSN CQPCQSN
Function

CQPCQS adds corresponding bits of the C and Q planes and a given store plane putting the carry
bits in the C plane and the sums in the Q plane.

CQPCQSN is as CQPCQS but uses the inverse of the store plane.

Syntax

CQPCQS <plane><modifier>?<step>7?
CQPCQSN <plane><modifier>?<step>?

where <plane>, <modifier>, and <step> together form a store plane address.

Addressing mode

Mode A addressing is used (see section 7.1.1 for details). The effective ADDR field defines the
store plane address, and the effective INT field is discarded.

Notes

See notes for the CPCQS instruction

Possible run-time program errors

A run-time error will occur if the effective ADDR value is outside the range defined by the DAP
program block. .

Example

CQPCQS 26 (M6) (+) ! SET EACH BIT OF THE Q PLANE
! TO THE SUM OF THAT BIT,
! THE CORRESPONDING BIT OF THE C PLANE
! AND THE CORRESPONDING BIT OF
! STORE PLANE 26 + (ADDR FIELD OF MS6) + i
! WHERE i IS THE DO LOOP ITERATION
! NUMBER.
1
! THE CARRY BIT IS PLACED IN THE
! CORRESPONDING BIT OF THE C PLANE.

230 man005.03 AMT

231

CQPCQT CQPCQT

Function

CQPCQT adds corresponding bits of the C and Q planes and a notional plane consisting of all
ones, putting the carry bits in the C plane and the sums in the Q plane.

Syntax
CQPCQT

Possible run-time program errors

None.

APAL Language man005.03 231

232 Appendix F: APAL instructions

CQPCR CQPCR
CQPCRN CQPCRN
Function

CQPCR adds corresponding bits of the C and R planes, putting the carry bits in the C plane and
the sums in the Q plane.

CQPCRN is as CQPCR but uses the inverse of the R plane.

Syntax
CQPCR <MCU-or-edge-register>
CQPCRN <MCU-or-edge-register>

Notes

1 MCU-or-edge-register specifies the value in the MCUR field of the instruction; it specifies
the register used to form the R plane (see section 6.2)

Possible run-time program errors

None.

232 man005.03 AMT

233

CQPCRO CQPCRO
CQPCRNO CQPCRNO
Function

CQPCRO adds corresponding bits of the C and orthogonal R planes, putting the carry bits in the
C plane and the sums in the Q plane.

CQPCRNO is as CQPCRO but uses the inverse of the orthogonal R plane.

Syntax
CQPCRO <MCU-or-edge-register>
CQPCRNO <MCU-or-edge-register>

Notes

1 MCU-or-edge-register specifies the value in the MCUR field of the instruction; it specifies
the register used to form the orthogonal R plane (see section 6.2)

Possible run-time program errors

None.

APAL Language man005.03 233

234 Appendix F: APAL instructions

cQPCs CQPCS
CQPCSN . CQPCSN
Function

CQPCS adds corresponding bits of the C plane and a given store plane, putting the carry bits in
the C plane and the sums in the Q plane.

CQPCSN is as CQPCS but uses the inverse of the store plane.

Syntax

CQPCS <plane><modifier>7<step>?
CQPCSN <plane><modifier>?<step>?

where <plane>, <modifier>, and <step> together form a store plane address.

Addressing mode

Mode A addressing is used (see section 7.1.1 for details). The effective ADDR field defines the
store plane address, and the effective INT field is discarded.

Notes

See notes for the CPCQS instruction

Possible run-time program errors

A run-time error will occur if the effective ADDR value is outside the range defined by the DAP
program block.

Example

CQPCS SPLANE (M4) (-) ! SET EACH BIT OF THE Q PLANE
! TO THE SUM OF THE CORRESPONDING
! BITS OF THE C PLANE AND
! STORE PLANE SPLANE (M4) - i
{ WHERE i IS THE DO LOOP ITERATION
! NUMBER.
!
! THE CARRY BIT IS PLACED IN
! THE CORRESPONDING BIT OF
! THE C PLANE.

234 man005.03 AMT

235

CQPQA CQPQA
CQPQAN CQPQAN
Function

CQPQA adds corresponding bits of the Q and A planes, putting the carry bits in the C plane and
the sums in the Q plane.

CQPQAN is as CQPQA but uses the inverse of the A plane.

Syntax

CQPQA
CQPQAN

Possible run-time program errors

None.

APAL Language man005.03 235

236 Appendix F: APAL instructions

CQPQR CQPQR
CQPQRN CQPQRN
Function

CQPQR adds corresponding bits of the Q and R planes, putting the carry bits in the C plane and
the sums in the Q plane.

CQPQRN is as CQPQR but uses the inverse of the R plane.

Syntax
CQPQR <MCU-or-edge-register>
CQPQRN <MCU-or-edge-register>

Notes

1 MCU-or-edge-register specifies the value in the MCUR field of the instruction; it specifies
the register used to form the R plane (see section 6.2)

Possible run-time program errors

None.

236 man005.03 AMT

237

CQPQRO CQPQRO
CQPQRNO CQPQRNO
Function

CQPQRO adds corresponding bits of the Q and orthogonal R planes, putting the carry bits in the
C plane and the sums in the Q plane.

CQPQRNO is as CQPQRO but uses the inverse of the orthogonal R plane.

Syntax
CQPQRO <MCU-or-edge-register>
CQPQRNO <MCU-or-edge-register>

Notes

1 MCU-or-edge-register specifies the value in the MCUR field of the instruction; it specifies
the register used to form the orthogonal R plane (see section 6.2)

Possible run-time program errors

None.

APAL Language man005.03 237

238 Appendix F: APAL instructions

CQPQS cQPQSs
CQPQSN CQPQSN
Function

CQPQS adds corresponding bits of the Q plane and a given store plane, putting the carry bits in
the C plane and the sums in the Q plane.

CQPQSN is as CQPQS but uses the inverse of the store plane.

Syntax

CQPQS <plane><modifier>?<step>?
CQPQSN <plane><modifier>?<step>?

where <plane>, <modifier>, and <step> together form a store plane address (see section 7.3.3
for details).

Addressing mode

Mode A addressing is used (see section 7.1.1 for details). The effective ADDR field defines the
store plane address, and the effective INT field is discarded.

Notes

See notes for the CPCQS instruction

Possible run-time program errors

A run-time error will occur if the effective ADDR value is outside the range defined by the DAP
program block.

Example

CQPQS 23 (M5) (+) ! SET EACH BIT OF THE Q PLANE TO
! THE SUM OF THAT BIT AND
! THE CORRESPONDING BIT OF STORE
! PLANE 23 + (ADDR FIELD OF M5) + |
! WHERE i IS THE DO LOOP ITERATION
! NUMBER.
!
! THE CARRY BIT IS PLACED IN
! THE CORRESPONDING BIT OF THE C PLANE.

238 man(005.03 AMT

239

CQ_QQN CQ_QQN

Function

CQ_QQN is a compound instruction. It copies the Q plane into the C plane, then inverts every
bit of the Q plane.

Syntax
CQQQN

Possible run-time program errors

None.

APAL Language man(005.03 239

240 Appendix F: APAL instructions
cQveQ | cQveQ
Function

CQVCQ adds together corresponding rows or columns of the C and Q planes treating each pair
of rows or columns as ES-sized unsigned integers. The results are placed in the Q plane, the
carry-out bits in the C plane. -

Syntax

CQVCQ <direction>?<geometry>?<count>?<modifier><step>?
CQVCQ <nesw><geometry><count>?<step>?

where

<direction> ::= <nesw> | RO | R1| R2 | R3
<geometry> =P | C | PC | CP

<count> ::= <numval>

<nesw> =N |E|S|W

Addressing Mode

Mode

D addressing is used (see section 7.1.4 for details). The result specifies the effective direction,

geometry and count.

Notes
1

240

direction or nesw specify the value in the DIRECTION field of the instruction, which is used
to construct the effective DIRECTION value. If omitted the value RO is assumed; modifier
is mandatory in this case

geometry specifies the value in the GEOMETRY field of the instruction which is used to
construct the effective GEOMETRY value. If omitted, the GEOMETRY field is set such
that the geometry is specified by the modifier; modifier is mandatory in this case

count specifies the value in the COUNT field of the instruction, which is used to construct
the effective COUNT value. If omitted, zero is assumed. Henceforth, in the notes for this
instruction, the effective COUNT value is denoted by EC

modifier specifies the value in the MOD field of the instruction which indicates which modifier
register is to be used, if any

The direction of carry propagation is given by the effective DIRECTION value. This deter-
mines how the Q and C planes are to be added (as E'S pairs of either rows or columns), and
the ordering of the bits in the rows or columns (since the direction of carry propagation is
that of increasing bit significance)

man(005.03 AMT

241

cQVCQ cQVeCQ

5 (continued)
effective DIRECTION form of addition

North Add corresponding pairs of columns; carry bits prop-
agate northwards

South Add corresponding pairs of columns; carry bits prop-
agate southwards

East Add corresponding pairs of rows; carry bits propa-
gate eastwards

West Add corresponding pairs of rows; carry bits propa-
gate westwards

6 The geometry of carry propagation is given by the effective GEOMETRY value. Hence the
carry-in bit(s) at the least significant end are either all zeros (for PLANE geometry) or the
bits carried out from the most significant end (for CYCLIC geometry)

7 For CQVCQ and CVCQ (covered next in this appendix) the C plane receives the current
carry-out bits. For CQVCQ and QVCQ (covered later in this appendix) the Q plane receives
the current sum bits

8 The addition of a pair of rows or columns can be regarded as E'S separate additions; each
of these takes as operands one bit from the original Q plane, the corresponding bit of the
original C plane, and the carry-out from adding the next less significant bits.

In each row or column the carry-out bits are only known initially at certain positions called
defined carry points. These are:

a In plane geometry, the conceptual bit position outside the least significant edge

b In either geometry, any bit position where corresponding initial bits of the C and Q
planes are the same

At the end of the instruction, sum bits are only guaranteed in the EC + 1 places more
significant than any defined carry point. Carry-out bits are defined in these places and also
at the defined carry points. Thus when EC has its maximum value of ES -1, this guarantees
ES defined sum and carry-out bits in every row or column if plane geometry is specified.
With cyclic geometry, if the Q plane is the inverse of the C plane, there are no defined carry
points and thus no defined sum or carry-out bits, whatever the value of EC.

Note that specific hardware implementations (including the initial versions of DAP 500 and
DAP 600) may ignore the value of EC and always allow time for carrys to propagate along
the entire row or column. However, for compatibility with possible future implementations,
you are recommended to specify count as described above. It is convenient to use a value of
ES — 1, excépt for cases where the performance of CQVCQ is critical

APAL Language man005.03 241

242 Appendix F: APAL instructions

cQVCQ CcQVCQ

Possible run-time program errors

None

Example

This example is from code to run on a DAP 500; the example assumes the following user-defined
convention for the data in each row of the Q and C planes:

There are two data fields, in bits 8 to 14 and 24 to 31 of each row. Bit 15 is always zero.

bit positions contents

0-7 undefined

8-14 data field, 7 bits
15 0

16 - 23 undefined

24 - 31 data field, 8 bits

The following instruction is used:
cQveQ w P 7

The instruction has an effective DIRECTION of west, an effective GEOMETRY of plane and an
effective COUNT of 7 (EC = 7). Bit 15 is a defined carry point; because the geometry is plane,
notional bit 32 is also a defined carry point. EC = 7 guarantees 8 defined sum bits in the 8 positions
more significant than any defined carry point, and 9 defined carry-out bits in the same positions
also including the defined carry point. However, the results in any position can only be defined if
the original data was defined. The resulting sum and carry bits are therefore as follows:

bit positions sum bits carry-out bits
0-7 undefined undefined
8-14 7-bit data sum defined

15 ‘ undefined defined (0)

16 - 23 undefined undefined

24 - 31 8-bit data sum defined

The defined carry-out bits in positions 8 and 24 indicate whether there was overflow in the 7-bit
or 8-bit data sums respectively.

242 manNN& N2 ’ R

243

CcvVCQ | cvCeQ

Function

CVCQ adds together corresponding rows or columns of the C and Q planes treating each pair of
rows or columns as ES-sized unsigned integers. The carry-out bits are placed in the C plane the
Q plane is unchanged by this instruction.

Syntax

CVCQ <direction>?<geometry>?<count>?<modifier><step>?
CVCQ <nesw><geometry><count>?<step>?

where

<direction> ::= <nesw> | RO | R1 | R2 | R3
<geometry> x=P|C|PC|CP

<count> ::= <numval>

<nesw> :=N|EIS[W

Addressing Mode

Mode D addressing is used (see section 7.1.4 for details). The result specifies the effective direction,
geometry and count.

Notes

See notes for the CQVCQ instruction

Possible run-time program errors

None.

Example
cvCQ W P 31

In this DAP 600 example the Q and C planes are added as 64 rows of integers. Notional bit
position 64 is a defined carry point because of plane geometry. A count of 31 guarantees 32 result
sum and carry-out bits in positions 32 to 63 of each row. The carry-out bits go into the C plane;
the Q plane is unchanged.

APAL Language man005.03 243

244 Appendix F: APAL instructions

DECR DECR

Function

DECR subtracts one from a specified MCU register. It also assigns the CARRY and OFLO flags.

Syntax
DECR <MCU-register>

Notes

1 MCU-register specifies the value in the MCUR field of the instruction which specifies the
register whose value is to be decremented

2 The value in the specified MCU register is treated as a 32-bit unsigned integer. The CARRY
and OFLO flags are assigned as described in section 1.10

Possible run-time program errors

None.

Example

DECR M7 IM7T=MT7-1
! SET THE CARRY FLAG UNLESS THE ORIGINAL M7 = 0

244 =N NO [

245

DO DO

Function

DO indicates the start of an APAL DO loop, and also specifies how many times the instruction
sequence within the loop is to be executed.

An APAL DO loop is a sequence of up to 256 APAL instructions, excluding the DO instruction
itself, that is to be executed repeatedly the number of times specified in the DO instruction (see
the syntax description below). The first instruction in the loop is the instruction that immediately
follows the DO instruction.

A DO loop is terminated by whichever of the following occurs first:

e The pseudo-instruction LOOP; the instruction preceding LOOP is the last instruction in the
loop. LOOP itself generates no code; it is merely an indicator of the end of a DO loop

e A labelled instruction; that instruction is the last instruction in the loop. A null label,
consisting of a colon with no preceding identifier, can be used for this purpose. Note that
the label need not occur on the same source line as the instruction that it labels; it can be
separated from the instruction by comment lines, or by lines containing only labels.

The assembler counts the number of instructions between the DO and the terminating instruction
(not including the DO or a LOOP, but including the labelled instruction), and stores that number
in the machine code version of the DO.

For example the following are all equivalent, the AMS instruction being the last instruction in the
loop in every case:

DO 32 TIMES DO 32 TIMES DO 32 TIMES DO 32 TIMES
QA QA QA QA
AMS 0 (M14) : : LAST: AMS 0 (M14)
LOOP AMS 0 (M1+) ! NEXTIS LAST
AMS 0 (M1+)

DO 32 TIMES DO 32 TIMES
QA QA

: AMS 0 (M1+)

LAST : AMS 0(M1+)

The instructions inside an APAL DO loop (that is, after the DO instruction and up to and including
the last instruction) can be any of those described in this appendix except DO, JSL, JESL or STOP.
In particular, this implies that APAL DO loops cannot be nested. The last instruction in a DO
loop must not be a SKIP. The instructions have the same effect as if they were not in a DO loop,
except that the INCREMENT/DECREMENT field can cause stepping of either or both of store
addresses and MCU or edge register bit numbers on each execution of the loop (see section 7.1 for
details). The J, JE or EXIT instructions will prematurely terminate the DO loop.

APAL Language man005.03 ' 245

246 Appendix F: APAL instructions

DO DO

Syntax

DO <DO count><doj modifier>?<times>?
DO <doj modifier><times>?

where

<DO count> ::= <numval>

<doj modifier> ::= (<dojmreg>)

<dojmreg> := M1 | M2 | M3 | M4 | M5 | M6 | M7 | M8 | M9 | M10 | M11 | M12 | M13
<times> = TIMES

Addressing Mode

Mode E addressing is used (see section 7.1.5 for details).

Notes

1 DO count specifies the number of times that the DO loop will be executed and can be
modified. If DO count is zero, modifier is obligatory

2 modifier specifies the value in the MOD field, which gives the modifier register to be used,
if any

3 The length of the DO loop is encoded in the DO instruction, and has a maximum value of -
256 instructions. Registers M1 to M13 are available as modifiers for this instruction

Possible run-time program errors

A run-time program error will occur if an attempt is made to execute a DO instruction inside
another DO loop.

Examples
DO 32 TIMES ! EXECUTE THE LOOP 32 TIMES.
QS 0 (M2) (+) ! THESE STORE PLANE ADDRESSES ARE INCREASED
:5Q 0 (M3) (+) ! BY ONE PLANE EACH TIME THE LOOP IS
! EXECUTED
!
DO 0 (M1) TIMES ! EXECUTE THE LOOP i TIMES, WHERE i IS
:SF 31 (M2) (-) ! THE VALUE IN M1

246 man005.03 Arm

247

EQV | EQV

Function

EQV creates the logical equivalence of two MCU registers, putting the result in one of them.

Syntax
EQV <MCU-register-1><MCU-register-2>
where

<MCU-register-1> ::= <MCU-register>
<MCU-register-2> ::= <MCU-register>
Notes

1 MCU-register-1 specifies the value in the MCUR field of the instruction, which gpecifies both
the register containing the first operand and the register to contain the result

9 MCU-register-2 specifies the value in the MOD field of the instruction which specifies the
register containing the second operand

Possible run-time program errors

None.

Example

EQV M3 M4 ! SET EACH BIT OF M3 TO THE LOGICAL EQUIVALENCE
! OF CORRESPONDING BITS OF M3 AND M4.

APAL Language man005.03 247

248 Appendix F: APAL instructions

EQVH EQVH

Function

EQVH creates the logical equivalence of an MCU register and a literal, putting the result in the
register.

Syntax
EQVH <MCU-register><literal 16>

where <literal_16> is defined in section 6.1.7

Notes

1 MCU-register specifies the value in the MCUR field of the instruction which specifies both
the register containing the first operand and the register to hold the result

2 literal 16 specifies the value in the LITERAL field of the instruction. This value is extended
to 32 bits with leading zeros to form the second operand

Possible run-time program errors

None

Example

EQVH M1 31 ! SET EACH BIT OF M1 TO THE LOGICAL
! EQUIVALENCE OF THE CORRESPONDING
! BITS OF M1 WITH #0000001F.

248 man005.03 AMT

249

EXIT EXIT

Function

EXIT loads an instruction address into the program counter using the value in a specified MCU
register, thereby causing a transfer of control.

EXIT is the normal way of returning control from a subroutine to the point from which the
subroutine was entered (via a JSL or JESL instruction). Software conventions to be used when
writing APAL subroutines are given in Chapter 9.

Syntax

EXIT <MCU-register>7<offset>?

where <offset> ::= <numval>

Addressing Mode

Mode F addressing is used (see section 7.1.6 for details). The result specifies the address of the
destination instruction.

Notes

1 MCU-register specifies the value in the MCUR field of the instruction. This specifies the
register from whose contents is derived the value that is loaded into the program counter. If
MCU-register is omitted, then MO is used by default

2 offset specifies the value in the CODE ADDRESS field of the instruction, and represents an
optional offset from the value in the register. If offset is omitted, zero is assumed

3 The transfer of control between APAL and FORTRAN-PLUS and/or an associated host
program is described in chapter 9

Possible run-time program errors

A run-time error will occur if the address of the destination instruction is outside the range defined
by the DAP program block.

Examples

EXIT ! PROGRAM COUNTER = THE LEAST SIGNIFICANT
! 20 BITS OF MO

EXIT 40 ! PROGRAM COUNTER = THE LEAST SIGNIFICANT

! 20 BITS OF (MO + 40)

APAL Language man005.03 249

250 Appendix F: APAL instructions

INCR INCR

Function

INCR adds one to an MCU register. It also assigns the CARRY and OFLO flags.

Syntax
INCR <MCU-register>

Notes

1 MCU-register specifies the value in the MCUR field of the instruction which specifies the
register whose value is to be incremented

2 The CARRY and OFLO flags are assigned as described in section 1.10

Possible run-time program errors

None.
Example

INCR Ms ! M6 = M6 + 1; RESET THE CARRY FLAG
' ! UNLESS ORIGINAL M6 = -1 (32)

250 man(005.03 AMT

251

J J

Function

J loads an instruction address into the program counter, thereby causing control to be transferred
to that instruction. The instruction to which control is transferred must be in the same code
section as the J instruction.

’ Syntax

J <code label name><label offset>?<doj modifier>?
J <star><label offset><doj modifier>?

where <code label name> (or <star>) and <label offset> together form a within-section instruc-
tion address as described in section 7.3.5

Addressing Mode
If a modifier is specified, then mode F addressing is used (see section 7.1.6 for details), the result

giving the destination instruction address.

Notes

1 The instruction address specifies the value in the CODE ADDRESS field of the instruction,
which is the value that will be loaded into the program counter

2 An error will occur. during consolidation if the instruction address is not in the same code
section as the J instruction

Possible run-time program errors

A run-time error will occur if the address of the destination instruction is outside the range defined
by the DAP program block.

Examples

J LAB ! TRANSFER CONTROL TO THE INSTRUCTION
! LABELLED LAB

J LAB + 4 ! TRANSFER CONTROL TO THE FOURTH
! INSTRUCTION AFTER THE INSTRUCTION
! LABELLED LAB

J LAB(M3) ! TRANSFER CONTROL TO THE INSTRUCTION
! n INSTRUCTIONS AFTER THE INSTRUCTION
! LABELLED LAB, WHERE n IS THE CONTENTS
! OF REGISTER M3

J x - 12 ! TRANSFER CONTROL TO THE TWELFTH

! INSTRUCTION BEFORE THE J INSTRUCTION

APAL Language man(005.03 251

252 Appendix F: APAL instructions

JE JE

Function

JE loads an instruction address into the program counter, thereby causing control to be transferred
to that instruction. The instruction to which control is transferred is identified relative to the first
instruction of a named entry point in the same or another code section.

Syntax

JE <code section name><section offset>?<doj modifier>?
JE <entry point name><section offset><doj modifier>?

where <code section name> (or <entry point name>) and <section offset> together form an
inter-section instruction address as described in section 7.3.5

Addressing Mode

If a modifier is specified, then mode F addressing is used (see section 7.1.6 for details), the result

giving the destination instruction address.

Notes

1 The instruction address specifies the value in the CODE ADDRESS field of the instruction,
which is the value that will be loaded into the program counter

2 When transferring control between code sections, you should be aware of the code section
conventions described in chapter 9.

Possible run-time program errors

A run-time error will occur if the address of the destination instruction is outside the range defined
by the DAP program block.

Examples

JE SECTION3 4 9 ! TRANSFER CONTROL TO THE 10TH .
! INSTRUCTION OF CODE SECTION 'SECTION3’

JE EP2 ! TRANSFER CONTROL TO THE INSTRUCTION

! AT ENTRY POINT EP2.

252 man(005.03 AMT

253

JESL JESL

Function

JESL transfers control to a named code section or entry point (see the JE instruction) but before
loading the appropriate instruction address into the program counter, the current value of the
program counter +1 is saved in a specified MCU register. This value can be used by a subsequent
EXIT to return control to the instruction following the JESL.

The JESL or JSL instructions are the normal means of calling a subroutine. Software conventions
to be used when writing APAL subroutines are given in Chapter 9.

Syntax

JESL <MCU-register>7<code section name><section offset>?
JESL <MCU-register>7<entry point name><section offset>?

where <code section name> (or <entry point name>) and <section offset> together form an
inter-section instruction address as described in section 7.3.5.

Notes

1 MCU-register specifies the value in the MCUR field of the instruction which specifies the
register in which the current program counter value +1 is to be saved. This value is held in
the least significant 20 bits of MCU-register ; all remaining bits are undefined.

If MCU-register is omitted, the current program counter value +1 is saved in MO by default

2 The instruction address specifies the value in the CODE ADDRESS field of the instruction,
which is the value that will be loaded into the program counter

3 When transferring control between code sections, you should be aware of the code section
conventions described in chapter 9.

Possible run-time program errors

A run-time program error will occur if the address in the J field is outside the DAP program block,
or if a JESL instruction is encountered in a DO loop.

Example

JESL SECTION3 + 9 ! AS FOR JE, EXCEPT THAT THE CURRENT VALUE
! OF THE PROGRAM COUNTER +1 IS SAVED IN M0

APAL Language man005.03 253

254 Appendix F: APAL instructions

JSL JSL

Function

JSL transfers control to another instruction in the same code section (see the J instruction), but
before loading the appropriate instruction address into the program counter the current value of the
program counter +1 is saved in a specified MCU register. The value can be used in a subsequent
EXIT to return control to the instruction following the JSL.

The JSL or JESL instructions are the normal means of calling a subroutine.

Syntax

JSL <MCU-register>?<code label name><label offset>?
JSL <MCU-register>?<star><label offset>?

where <code label name> (or <star>) and <label offset> together form a within-section instruc-
tion address as described in section 7.3.5.

Notes

1 MCU-register specifies the value in the MCUR field of the instruction which specifies the
register in which the current program counter value +1 is to be saved. This value is held in
the least significant 20 bits of MCU-register; all remaining bits are undefined.

If MCU-register is omitted, MO is assumed by default

2 The instruction address specifies the value in the CODE ADDRESS field of the instruction,
which specifies the value that will be loaded into the program counter

3 An error will occur during consolidation if the instruction address is not in the same code
section as the JSL instruction

Possible run-time program errors

A run-time program error will occur if the address in the J field is outside the DAP program block,
or a JSL instruction is encountered in a DO loop.

Example

JSL LAB !' AS FOR J EXCEPT THAT THE CURRENT VALUE
! OF THE PROGRAM COUNTER +1 IS SAVED IN M0

254 man005.03 AMT

255

LOOP LOOP

Function

LOOP is a pseudo instruction that indicates the end of an APAL DO LOOP (see the DO instruc-
tion)

LOOP generates no code and should not be labelled.

Syntax

LOOP

APAL Language man005.03 255

256 Appendix F: APAL instructions

MPY32 MPY32

Function

MPY32 performs a multiplication of the contents of two MCU registers, regarded as 32-bit signed
integers. The least significant half of the 64-bit product is written to the first MCU register. The
most significant half is discarded. -

Syntax
MPY32 <MCU-register-1><MCU-register-2>

where

<MCU-register-1> ::= <MCU-register>
<MCU-register-2> ::= <MCU-register>

Notes

1 MCU-register-1 states the value to be placed in the MCUR field of the instruction, specifying
the register which when the instruction is entered will hold the first operand and when the
instruction has been completed will hold the least significant half of the product

2 MCU-register-2 states the value to be placed in the MOD field of the instruction, specifying
the register containing the second operand

Possible run-time program errors

None

Example

MPY32 M3 M7 ! FORM THE PRODUCT OF THE CONTENTS
! OF M3 AND M7, PUT THE LEAST
! SIGNIFICANT HALF BACK IN M3 AND
! DISCARD THE MOST SIGNIFICANT HALF

256 man005.03 AMT

257

MPY32V MPY32V

Function

MPY32V performs a multiplication of the contents of two MCU registers, regarded as 32-bit signed
integers. The least significant half of the 64-bit product is written to the first MCU register. The
most significant half is discarded, but if any bit of that half is different from the most significant
bit of the least significant half, then the V flag is set; otherwise the V flag is unset.

Syntax
MPY32V <MCU-register-1><MCU-register-2>
where

<MCU-register-1> ::= <MCU-register>
<MCU-register-2> 1= <MCU-register>

Notes

1 MCU-register-1 states the value to be placed in the MCUR field of the instruction, specifying
the register which when the instruction is entered will hold the first operand and when the
instruction has been completed will hold the least significant half of the product

2 MCU-register-2 states the value to be placed in the MOD field of the instruction, specifying
the register containing the second operand

Possible run-time program errors

None

Example

MPY32V M12 M10 ! FORM THE PRODUCT OF THE CONTENTS
! OF M12 AND M10, AND WRITE THE LEAST
! SIGNIFICANT HALF BACK TO M12.
|
! IF THE MOST SIGNIFICANT HALF HAS ANY
! BIT THAT DIFFERS FROM THE MOST SIGNIFICANT
! BIT OF THE LEAST SIGNIFICANT HALF,
! SET THE V FLAG, OTHERWISE UNSET
| THE V FLAG

APAL Language man005.03 257

258 Appendix F: APAL instructions

MPY64 MPY64

Function

MPY®64 performs a multiplication of the contents of two MCU registers, regarded as 32-bit signed
integers. The least significant half of the 64-bit product is written to the first MCU register. The
most significant half is written to the register whose number is one less than that of the first MCU
register.

Syntax
MPY64 <MCU-register-1><MCU-register-2>
where

<MCU-register-1> ::= M1 | M2 | M3 | M4 | M5 | M6 | M7 | M8 | M9 | M10 | M11 | M12 |
M13
<MCU-register-2> ::= <MCU-register>

Notes

1 MCU-register-1 states the value to be placed in the MCUR field of the instruction, specifying
the register which when the instruction is entered will hold the first operand and when the
instruction has been completed will hold the least significant half of the product

2 MCU-register-2 states the value to be placed in the MOD field of the instruction, specifying
the register containing the second operand

3 If MCU-register-1 is M3 (for example) then the 64-bit result is written to M2 and M3, with
M2 holding the most significant half

4 MO cannot be specified as the first operand

Possible run-time program errors

None

Example

MPY64 M5 M7 ! FORM THE PRODUCT OF THE CONTENTS
! OF M5 AND M7, PUTTING THE DOUBLE-
! LENGTH RESULT INTO M4 AND M5, WITH THE
! MOST SIGNIFGICANT HALF IN M4

258 man005.03 AMT

259

MPYU32 MPYU32

Function

MPYU32 performs a multiplication of the contents of two MCU registers, regarded as 32-bit
unsigned integers. The least significant half of the 64-bit product is written to the first MCU
register. The most significant half is discarded. :

Syntax
MPYU32 <MCU-register-1><MCU-register-2>
where

<MCU-register-1> ::
<MCU-register-2> ::

<MCU-register>
<MCU-register>

it

Notes

1 MCU-register-1 states the value to be placed in the MCUR field of the instruction, specifying
the register which when the instruction is entered will hold the first operand and when the
instruction has been completed will hold the least significant half of the product

2 MCU-register-2 states the value to be placed in the MOD field of the instruction, specifying
the register containing the second operand

Possible run-time program errors

None

Example

MPYU32 M4 M1 ! FORM THE PRODUCT OF THE CONTENTS
! OF M4 AND M1 (REGARDED AS UNSIGNED
{ INTEGERS), AND WRITE THE LEAST
! SIGNIFICANT HALF INTO M4
!
| THE MOST SIGNIFICANT HALF OF THE
! PRODUCT IS DISREGARDED

APAL Language man005.03 259

260 Appendix F: APAL instructions

MPYU32V MPYU32V

Function

MPYU32V performs a multiplication of the contents of two MCU registers, regarded as 32-bit
unsigned integers. The least significant half of the 64-bit product is written to the first MCU
register. The most significant half is discarded, but if any bit of it is set then the V flag is set;
otherwise the V flag is unset.

Syntax

MPYU32V <MCU-register-1><MCU-register-2>

where

<MCU-register-1> ::
<MCU-register-2> ::

<MCU-register>
<MCU-register>

1Tl

Notes

1 MCU-register-1 states the value to be placed in the MCUR field of the instruction, specifying
the register which when the instruction is entered will hold the first operand and when the
instruction has been completed will hold the least significant half of the product

2 MCU-register-2 states the value to be placed in the MOD field of the instruction, specifying
the register containing the second operand

Possible run-time program errors

None

Example

MPYU32 M0 M1 ! FORM THE PRODUCT OF THE CONTENTS
! OF M0 AND M1 (REGARDED .AS UNSIGNED
! INTEGERS), AND WRITE THE LEAST
! SIGNIFICANT HALF INTO Mo.
!
! THE V FLAG IS SET EQUAL TO
! THE VALUE OF THE ‘OR’ FUNCTION OF
! THE BITS IN THE MOST SIGNIFICANT
! HALF OF THE PRODUCT.

260 man(005.03 AMT

261

MPYU64 MPYU64

Function

MPYU64 performs a multiplication of the contents of two MCU registers, regarded as 32-bit
unsigned integers. The least significant half of the 64-bit product is written to the first MCU
register. The most significant half is written to the register whose number is one less than that of
the first operand.

Syntax
MPYU64 <MCU-register-1><MCU-register-2>

where

<MCU-register-1> ::= M1 | M2 | M3 | M4 | M5 | M6 | M7 | M8 | M9 | M10 | M11 | M12 |
M13
<MCU-register-2> 1= <MCU-register>

Notes

1 MCU-register-1 states the value to be placed in the MCUR . field of the instruction, specifying
the register which when the instruction is entered will hold the first operand and when the
instruction has been completed will hold the least significant half of the product

2 MCU.register-2 states the value to be placed in the MOD field of the instruction, specifying
the register containing the second operand

3 If MCU-register-1 is M3 (for example) then the 64-bit result is written to M2 and M3, with
M2 holding the most significant half

4 MO cannot be specified as the first operand

Possible run-time program errors

None

Example

MPYU64 M2 M1 ! FORM THE PRODUCT OF THE CONTENTS
! OF M2 AND M1, PUTTING THE DOUBLE-
! LENGTH RESULT INTO M2 AND M1 AS
! UNSIGNED NUMBERS, WITH THE MOST
! SIGNIFICANT HALF IN M1

APAL Language man005.03 261

262 Appendix F: APAL instructions

NAND NAND

Function

NAND creates the logical NAND of two MCU registers, putting the result in one of them. The
bits from either or both registers can be inverted before doing the logical NAND. -

Syntax
NAND <(inverted) MCU-register-1><(inverted) MCU-register-2>
where

<(inverted) MCU-register-1> ::= <(inverted) MCU-register>
<(inverted) MCU-register-2> ::= <(inverted) MCU-register>
<(inverted) MCU-register> ::= <MCU-register> | <inverted MCU-register>

Notes

1 MCU-register-1 specifies the value in the MCUR field of the instruction, which specifies both
the register containing the first operand and the register to contain the result

2 MCU-register-2 specifies the value in the MOD field of the instruction which specifies the
register containing the second operand

Possible run-time program errors

None.

Example

NAND MIN M4N ! M1 = (NOT M1) NAND (NOT M4)

262 man005.03 AMT

263

NANDH NANDH
NANDHN NANDHN
Function

NAND creates the logical NAND of an MCU register and a literal, putting the result in the register.
The bits of the register can be inverted before doing the logical NAND.

NANDHN does exactly as NANDH but uses the inverse of .the literal.

Syntax

NANDH <(inverted) MCU-register><literal_16>
NANDHN < (inverted) MCU-register><literal 16>

(for further details of:

<(inverted) MCU-register> see NAND instruction
<literal 16> . see section 6.1.7 for details
Notes

1 MCU-register specifies the value in the MCUR field of the instruction which gives both the
register containing the first operand and the register to contain the result

2 literal 16 specifies the value in the LITERAL field of the instruction. To form the second
operand, the bit pattern representing the value is extended to 32 bits with leading zeros (see
section 6.1.7 for details). In the case of NANDHN this 32-bit literal is inverted before use.

Possible run-time program errors

None

Example

NANDHN M1 ”F” ! M1 = M1 NAND #FFFFDFB9

APAL Language man005.03 263

264 Appendix F: APAL instructions

NEQ NEQ

Function

NEQ creates the logical non-equivalence of two MCU registers, putting the result in one of them.

Syntax
NEQ <MCU-register-1><MCU-register-2>
where

<MCU-register-1> 1= <MCU-register>
<MCU-register-2> 1= <MCU-register>
Notes

1 MCU-register-1 specifies the value in the MCUR field of the instruction, which specifies both
the register containing the first operand and the register to contain the result

2 MCU-register-2 specifies the value in the MOD field of the instruction which specifies the
register containing the second operand

Possible run-time program errors

None.

Example

NEQ MO0 M2 ! SET EACH BIT OF M0 TO THE LOGICAL
! NON_EQUIVALENCE OF THE CORRESPONDING
! BITS OF M0 WITH M2.

264 man005.03 AMT

265

NEQH NEQH

Function

NEQH creates the logical non-equivalence of an MCU register and a literal putting the result in
the register.

Syntax

NEQH <MCU-register><literal 16>

where <literal 16> is defined in section 6.1.7.

Notes

1 MCU-register specifies the value in the MCUR field of the instruction which gives both the
register containing the first operand and the register to contain the result

2 literal 16 specifies the value in the LITERAL field of the instruction. To form the second
operand, the bit pattern representing the value is expanded to 32 bits with leading zeros (see
section 6.1.7 for details)

Possible run-time program errors

None

Example

NEQH M1 16 ! SET EACH BIT OF M1 TO THE LOGICAL
! NON EQUIVALENCE OF THE CORRESPONDING
! BITS OF M1 WITH #00000010.

APAL Language man005.03 265

266 Appendix F: APAL instructions

NOR NOR

Function

NOR creates the logical NOR of two MCU registers, putting the result in one of them. The bits
from either or both registers can be inverted before doing the logical NOR.

Syntax

NOR <(inverted) MCU-register-1><(inverted) MCU-register-2>

where

<(inverted) MCU-register-1> ::= <(inverted) MCU-register>

<(inverted) MCU-register-2> ::= <(inverted) MCU-register>

<(inverted) MCU-register> ::= <MCU-register> | <inverted MCU-register>
Notes

1 MCU-register-1 specifies the value in the MCUR field of the instruction, which specifies both
the register containing the first operand and the register to contain the result

2 MCU-register-2 specifies the value in the MOD field of the instruction, which specifies the
register containing the second operand

Possible run-time program errors

None.

Example

NOR M3 M6N ! SET EACH BIT OF M3 TO THE LOGICAL
! NOT_OR OF THE CORRESPONDING
! BITS OF M3 WITH INVERTED M6

266 man005.03 AMT

267

NORH NORH
NORHN NORHN
Function

NORH creates the logical NOR of an MCU register and a literal, putting the result in the register.
The bits of the register can be inverted before doing the logical NOR.

NORHN does exactly as NORH but uses the inverse of the literal.

Syntax

NORH <(inverted) MCU-register><literal_16>
NORHN < (inverted) MCU-register><literal 16>

where

<(inverted) MCU-register> ::= <MCU-register> | <inverted MCU-register>
<literal 16> see section 6.1.7 for details

Notes

1 MCU-register specifies the value in the MCUR field of the instruction, which gives both the
register containing the first operand and the register to contain the result

2 literal 16 specifies the value in the LITERAL field of the instruction. To form the second
operand, the bit pattern representing the value is extended to 32 bits with leading zeros (see
section 6.1.7 for details). In the case of NORHN, this 32-bit literal is inverted before use

Possible run-time program errors

None

Example
NORH M2N #FE ! M2 = (NOT M2) NOR #000000FE

APAL Language man005.03 267

268

NULL

Function

NULL has no effect.

Syntax
NULL

Possible run-time program errors

None.

268

man005.03

Appendix F: APAL instructions

NULL

AMT

269

OR OR

Function

OR creates the logical OR of two MCU registers, putting the result in one of them. The bits from
either or both registers can be inverted before doing the logical OR.

Syntax

OR <(inverted) MCU-register-1>< (inverted) MCU-register-2>

where

<(inverted) MCU-register-1> ::= <(inverted) MCU-register>

<(inverted) MCU-register-2> ::= <(inverted) MCU-register>

<(inverted) MCU-register> ::= <MCU-register> | <inverted MCU-register>
Notes

1 MCU-register-1 specifies the value in the MCUR field of the instruction, which specifies both
the register containing the first operand and the register to contain the result

2 MCU-register-2 specifies the value in the MOD field of the instruction which specifies the
register containing the second operand

Possible run-time program errors

None.

Example

OR MON M1 ! SET EACH BIT OF M0 TO THE LOGICAL
! OR OF M1 WITH INVERTED MO.

APAL Language man005.03 269

270 Appendix F: APAL instructions

ORH ORH
ORHN ORHN
Function

ORH creates the logical OR of an MCU register and a literal, putting the result in the register.
The bits of the register can be inverted before doing the logical OR.

ORHN does exactiy as ORH but uses the inverse of the literal

Syntax

ORH <(inverted) MCU-register><literal_16>
ORHN <(inverted) MCU-register><literal_16>

where

<(inverted) MCU-register> ::= <MCU-register> | <inverted MCU-register>
<literal_16> see section 6.1.7 for details

Notes

1 MCU-register specifies the value in the MCUR field of the instruction which specifies both
the register containing the first operand and the register to hold the result

2 literal 16 specifies the value in the LITERAL field of the instruction. To form the second
operand, the bit pattern representing the value is extended to 32 bits with leading zeros (see
section 6.1.7 for details). In the case of ORHN this 32-bit literal is inverted before use

Possible run-time program errors

None

Example

ORHN M1 -1 ! M1=M1 OR #FFFF0000

270 man005.03 AMT

271

PAUSE PAUSE

Function

PAUSE is a pseudo instruction that causes the DAP program to halt temporarily, with the option
of its being restarted; it is one of several instructions (PAUSE, STOP and TRACE) that the
assembler encodes as particular cases of the CALL instruction. The action taken on PAUSE by
the run-time-support system is specified by you prior to running the program, and can be depend
on the number associated with the PAUSE statement. The options you have available include, in
various combinations:

o Abandon the DAP and host programs
o Initiate a diagnostic dump of DAP store contents
o Enter the interactive program state analysis mode

o Restart the DAP program

In the simulation environment, one use of PAUSE is to provide timing information.

For further details see DAP Series: Program Development.

Syntax
PAUSE <pause number>?

where <pause number> ::= <numval>

Notes

1 pause number must be in the range 1 to 262, 143. The action taken can depend on the value
of this number

Possible run-time program errors

None.

APAL Language man005.03 271

272 Appendix F: APAL instructions

QA QA
QAN QAN
Function

QA copies the A plane into the Q plane.

QAN copies the inverse of the A plane to the Q plane.

Syntax

QA
QAN

Possible run-time program errors

None.

272 man(005.03 AMT

273

QA_CF QA _CF
QAN_CF . QAN_CF
Function

QA_CF is a compound instruction. It copies the A plane into the Q plane, then sets every bit of
the C plane to zero.

QAN_CF copies the inverse of the A plane into the Q plane and then sets every bit of the C plane
to zero.

Syntax

QA_CF
QAN_CF

Possible run-time program errors

None.

APAL Language man005.03 273

274 Appendix F: APAL instructions

QB QB
QBN , . QBN
Function

QB sets every bit of the Q plane to a specified bit of an MCU register or the edge register

QBN sets every bit of the Q plane to the inverse of a specified bit of an MCU register or the edge
register

Syntax

QB <MCU-or-edge-register>.<bit number><modifier>?<step>7
QBN <MCU-or-edge-register>.<bit number><modifier>?<step>?

where <MCU-or-edge-register>, <bit number>, <modifier>, and <step> together form a register
bit address (see section 7.3.4 for details)
Addressing mode

Mode A addressing is used (see section 7.1.1 for details). The effective INT field defines the bit
number of the MCU register or the edge register, and the effective ADDR field is discarded.

Notes

See notes for the AB instruction

Possible run-time program errors

None

Example

QB M4.0 (M1) (+) ! SET EACH BIT OF THE Q PLANE TO
! BIT i OF M4, WHERE i IS
! MODULO 32 OF ((INT FIELD OF M1) + DO
! LOOP ITERATION NUMBER)

274 man005.03 AMT

275

QC QC
QCN QCN
Function

QC copies the C plane into the Q plane.

QCN copies the inverse of the C plane into the Q plane.

Syntax

QC
QCN

Possible run-time program errors

None.

APAL Language man005.03 275

276 Appendix F: APAL instructions

QC_CF QC_CF

Function

QC_CF is a compound instruction. It copies the C plane into the Q plane, then sets every bit of
the C plane to zero.

Syntax

QCCF

Possible run-time program errors

None.

276 man(005.03 AMT

277

QEBS QEBS
QEBSN | . QEBSN
Function

QEBS creates the logical equivalence of each bit of a given store plane with a specified bit of an
MCU register or the edge register. The result is put in the Q plane. '

QEBSN is as QEBS, but uses the inverse of the store plane.

Syntax

QEBS <MCU-or-edge-register>.<bit number><plane><modifier>7<step>?
QEBSN <MCU-or-edge-register>.<bit number><plane><modifier>7<step>?

where

<MCU-or-edge-register>, <bit number>, <modifier>, and <step> together form a register
bit address (see section 7.3.4 for details)

<plane>, <modifier>, and <step> together form a store plane address (see section 7.3.3 for
details)

Addressing mode

Mode A addressing is used (see section 7.1.1 for details). The effective ADDR field defines the
store plane address, and the effective INT field defines the bit number of the MCU register or the
edge register. ~

Notes

See notes for the AEBS instruction

Possible run-time program errors

A run-time error will occur if the effective ADDR value is outside the range defined by the DAP
program block.

Example

QEBS M4.0 SPLANE (M3) (+) ! SET EACH BIT OF THE Q PLANE
! TO THE LOGICAL EQUIVALENCE OF
! THE CORRESPONDING BIT OF STORE
! PLANE SPLANE ((M3) + i) WITH BIT
! ((INT FIELD OF M3 + i) MOLULO 32) OF M4,
! WHERE i IS THE DO LOOP
| ITERATION NUMBER.

APAL Language man005.03 277

278 Appendix F: APAL instructions

QF QF

Function

QF sets every bit of the Q plane to zero.

Syntax
QF
Possible run-time program errors

None.

278 man005.03 AMT

279

QF_AF QF_AF

Function

QF_AF is a compound instruction. It sets every bit of the Q and A planes to zero.

Syntax
QF_AF

Possible run-time program errors

None.

APAL Language man005.03 279

280 Appendix F: APAL instructions

QF_CF QF CF

Function

QF _CF is a compound instruction. It sets every bit of the C and Q planes to zero.

Syntax
QF_CF

Possible run-time program errors

None.

280 man005.03 AMT

281

QPCA QPCA
QPCAN QPCAN
Function

QPCA adds corresponding bits of the C and A planes, putting the sums in the Q plane.
QPCAN is as QPCA but uses the inverse of the A plane.

The carry bits are discarded.

Syntax

QPCA
QPCAN

Possible run-time program errors

None.

APAL Language man005.03 281

282 Appendix F: APAL instructions

QPCQ QPCQ

Function

QPCQ adds corresponding bits of the C and Q planes, putting the sums in the Q plane. The carry
bits are discarded.

Syntax
QPCQ

Possible run-time program errors

None.

282 man005.03 AMT

283

QPCQA QPCQA
QPCQAN QPCQAN
Function

QPCQA adds corresponding bits of the C, Q and A planes, putting the sums in the Q plane.
QPCQAN is as QPCQA but uses the inverse of the A plane.

The carry bits are discarded.

Syntax

QPCQA
QPCQAN

Possible run-time program errors

None.

APAL Language man005.03 283

284 Appendix F: APAL instructions

QPCQR QPCQR
QPCQRN QPCQRN
Function

QPCQR adds corresponding bits of the C, Q and R planes, putting the sums in the Q plane.
QPCQRN is as QPCQR but uses the inverse of the R plane.

The carry bits are discarded.

Syntax

QPCQR. <MCU-or-edge-register>
QPCQRN <MCU-or-edge-register>

Notes

1 MCU-or-edge-register specifies the value in the MCUR field of the instruction which specifies
the register that is used to form the R plane (see section 6.2 for details)

Possible run-time program errors

None.

284 man005.03 AMT

285

QPCQRO QPCQRO
QPCQRNO QPCQRNO
Function

QPCQRO adds corresponding bits of the C, Q and orthogonal R planes, putting the sums in the
Q plane.

QPCQRNO is as QPCQRO but uses the inverse of the orthogonal R plane.

The carry bits are discarded.

Syntax
QPCQRO <MCU-or-edge-register>
QPCQRNO <MCU-or-edge-register>

Notes

1 MCU-or-edge-register specifies the value in the MCUR field of the instruction which specifies
the register that is used to form the orthogonal R plane (see section 6.2 for details)

Possible run-time program errors

None.

APAL Language man005.03 285

286 Appendix F: APAL instructions

QPCQS V QPCQSs
QPCQSN . QPCQSN
Function

QPCQS adds corresponding bits of the C and Q planes and a given store plane putting the sums
in the Q plane.

QPCQSN is as QPCQS but uses the inverse of the store plane.

The carry bits are discarded.

Syntax

QPCQS <plane><modifier>?<step>?
QPCQSN <plane><modifier>?<step>?

where <plane>, <modifier>, and <step> together form a store plane address (see section 7.3.3
for details)
Addressing mode

Mode A addressing is used (see section 7.1.1 for details). The effective ADDR field defines the
store plane address, and the effective INT field is discarded.

Notes

See notes for the QS instruction

Possible run-time program errors

A run-time error will occur if the effective ADDR value is outside the range defined by the DAP
program block.

Example

QPCQS SPLANE (M2) ! SET EACH BIT OF THE Q PLANE TO
! THE SUM OF THAT BIT AND
! THE CORRESPONDING BITS OF THE C PLANE
! AND STORE PLANE SPLANE (M2)

286 man005.03 AMT

287

QPCQT QPCQT

Function

QPCQT adds corresponding bits of the C and Q planes and a notional plane consisting of all ones,
putting the sums in the Q plane. The carry bits are discarded.

Syntax
QPCQT

Possible run-time program errors

None.

APAL Language man005.03 287

288 Appendix F: APAL instructions

QPCR QPCR
QPCRN QPCRN
Function

QPCR adds corresponding bits of the C and R planes, putting the sums in the Q plane.
QPCRN is as QPCR but uses the inverse of the R plane.

The carry bits are discarded.

Syntax

QPCR <MCU-or-edge-register>
QPCRN <MCU-or-edge-register>

Notes

1 MCU-or-edge-register specifies the value in the MCUR field of the instruction which specifies
the register that is used to form the R plane (see section 6.2 for details)

Possible run-time program errors

None.

288 man005.03 - AMT

289

QPCRO ‘ QPCRO
QPCRNO QPCRNO
Function

QPCRO adds corresponding bits of the C and orthogonal R planes, putting the sums in the Q
plane.

QPCRNO is as QPCRO but uses the inverse of the orthogonal R plane.

The carry bits are discarded.

Syntax

QPCRO <MCU-or-edge-register>
QPCRNO <MCU-or-edge-register>

Notes

1 MCU-or-edge-register specifies the value of the MCUR field of the instruction which specifies
the register that is used to form the orthogonal R plane (see section 6.2 for details)

Possible run-time program errors

None.

APAL Lancuage man005.03 289

290 Appendix F: APAL instructions

QPCS QPCS
QPCSN ‘ QPCSN
Function

QPCS adds corresponding bits of the C plane and a given store plane, putting the sums in the Q
plane.

QPCSN is as QPCS but uses the inverse of the store plane.

The carry bits are discarded.

Syntax

QPCS <plane><modifier>?<step>?
QPCSN <plane><modifier>?<step>?

where <plane>, <modifier>, and <step> together form a store plane address (see section 7.3.3
for details) '
Addressing mode

Mode A addressing is used (see section 7.1.1 for details). The effective ADDR. field defines the
store plane address, and the effective INT field is discarded.

Notes

See notes for the QS instruction

Possible run-time program errors

A run-time error will occur if the effective ADDR value is outside the range defined by the DAP
program block.

Example

QPCS S1 (-) ! SET EACH BIT OF THE Q PLANE TO THE SUM
! OF THE CORRESPONDING BITS OF THE C PLANE
! AND STORE PLANE S1 - i, WHERE i IS
! THE DO LOOP ITERATION NUMBER.

290 man(005.03 AMT

291

QPQA QPQA
QPQAN QPQAN
Function

QPQA adds corresponding bits of the Q and A planes, putting the sums in the Q plane.
QPQAN is as QPQA but uses the inverse of the A plane.

The carry bits are discarded.

Syntax

QPQA
QPQAN

Possible run-time program errors

None.

APAL Language man005.03 291

292 Appendix F: APAL instructions

QPQR QPQR
QPQRN QPQRN
Function

QPQR adds corresponding bits of the Q and R planes, putting the sums in the Q plane.
QPQRN is as QPQR but uses the inverse of the R plane.

The carry bits are discarded.

Syntax

QPQR <MCU-or-edge-register>
QPQRN <MCU-or-edge-register>

Notes

1 MCU-or-edge-register specifies the value in the MCUR field of the instruction which specifies
the register that is used to form the R plane (see section 6.2 for details)

Possible run-time program errors

None.

292 man005.03 AMT

293

QPQRO QPQRO
QPQRNO ; : QPQRNO
Function

QPQRO adds corresponding bits of the Q and orthogonal R planes, putting the sums in the Q
plane. ’

QPQRNO is as QPQRO but uses the inverse of the orthogonal R plane.

The carry bits are discarded.

Syntax

QPQRO <MCU-or-edge-register>
QPQRNO <MCU-or-edge-register>

Notes

1 MCU-or-edge-register specifies the value in the MCUR field of the instruction which specifies
the register that is used to form the orthogonal R plane (see section 6.2 for details)

Possible run-time program errors

None.

APAL Language man005.03 293

294 Appendix F: APAL instructions

PQS ' QPQS
8P85N QPQSN
Function

QPQS adds corresponding bits of the Q plane and a given store plane, putting the sums in the Q
plane. ’

QPQSN is as QPQS but uses the inverse of the store plane.

The carry bits are discarded.

Syntax

QPQS <plane><modifier>7<step>?
QPQSN <plane><modifier>?<step>?

where <plane>, <modifier>, and <step> together form a store plane address (see section 7.3.3
for details)
Addressing mode

Mode A addressing is used (see section 7.1.1 for details). The effective ADDR field defines the
store plane address, and the effective INT field is discarded.

Notes

See notes for the QS instruction

Possible run-time program errors

A run-time error will occur if the effective ADDR value is outside the range defined by the DAP
program block.

Example

QPQS 49 (Ms) ! SET EACH BIT OF THE Q PLANE TO THE SUM OF
! THAT BIT AND THE CORRESPONDING BIT OF
! STORE PLANE 49 + (ADDR FIELD OF MS6)

294 man005.03 AMT

295

QQ QQ

Function

QQ shifts the Q plane a specified number of places.

Syntax

QQ <direction>7<geometry>?<count>?<modifier><step>?
QQ <nesw><geometry><count>?<step>7

where
<direction> ::= <nesw> | RO | R1 | R2 | R3
<geometry> := P | C | PC | CP

<count> ;1= <numval>
<nesw> =N |E|S|W

Addressing Mode

Mode D addressing is used (see section 7.1.4 for details). The result specifies the effective direction,
geometry and count. If the effective count value is zero, the instruction has no effect.

Notes

See notes 1 to 4 for AMQ(shifting).

Possible run-time program errors

None

Example

QQ W P 1 (M2) ! SHIFT THE Q PLANE
! 1+ (INT FIELD OF M2) MODULO ES
! PLACES TO THE WEST, USING PLANE GEOMETRY.

APAL Language man005.03 295

296

QQN

Function

QQN inverts every bit of the Q plane.

Syntax
QQN

Possible run-time program errors

None.

296

man005.03

Appendix F: APAL instructions

QQN

AMT

297

QR ' QR
QRN QRN
Function

QR copies the R plane into the Q plane.

QRN copies the inverse of the R plane into the Q plane.

Syntax
QR <MCU-or-edge-register>
QRN <MCU-or-edge-register>

Notes

1 MCU-or-edge-register specifies the value in the MCUR field of the instruction which specifies
the register that is used to form the R plane (see section 6.2)

Possible run-time program errors

None.

Example

QR M3 ! EACH ROW OF THE Q PLANE IS SET EQUAL TO THE
! CONTENTS OF M3; M3 IS FIRST EXTENDED TO THE
! LEFT WITH ZEROS (IF NECESSARY) TO GIVE AN
! ES-SIZED VALUE.

APAL Language man005.03 297

298 Appendix F: APAL instructions

QRO QRO
QRNO . QRNO
Function

QRO copies the orthogonal R plane into the Q plane.

QRNO copies the inverse of the orthogonal R plane into the Q plane.

Syntax

QRO <MCU-or-edge-register>
QRNO <MCU-or-edge-register>

Notes

1 MCU-or-edge-register specifies the value in the MCUR field of the instruction which specifies
the register that is used to form the orthogonal R plane (see section 6.2 for details)

Possible run-time program errors

None.

Example

QRO M5 ! EACH COLUMN OF THE Q PLANE IS SET EQUAL TO THE
! CONTENTS OF M5. M5 IS FIRST EXTENDED TO THE
! LEFT WITH ZEROS (IF NECESSARY) TO GIVE AN
! ES-SIZED VALUE.

298 man005.03 AMT

299

QS Qs
QSN ' QSN
Function

QS copies a given store plane into the Q plane.
QSN copies the inverse of a given store plane into the Q plane.
Syntax

QS <plane><modifier>7<step>?
QSN <plane><modifier>?<step>?

where <plane>,<modifier>>, and <step> together form a store plane address, as described in
section 7.3.3

Addressing mode

Mode A addressing is used (see section 7.1.1 for details). The effective ADDR field defines the
store plane address, and the effective INT field is discarded.

Notes

1 plane specifies the value in the ADDR field of the instruction, which is used to construct the
effective ADDR. value

2 modifier specifies the value in the MOD field of the instruction which specifies the modifier
register to be used, if any

3 step specifies the value in the INCREMENT/DECREMENT field of the instruction, which
specifies how the store plane address is to be stepped if the instruction appears inside an
APAL DO loop

Possible run-time program errors

A run-time error will occur if the effective ADDR value is outside the range defined by the DAP
program block.

Example

QS SPLANE (M2) (+) ! EACH BIT OF THE Q PLANE IS SET TO
! THE CORRESPONDING BIT OF STORE
! PLANE SPLANE (M2) + i, WHERE i IS THE
! DO LOOP ITERATION NUMBER

APAL Language man005.03 ’ 299

300 Appendix F: APAL instructions

QS_AS QS_AS
QSN_ASN QSN_ASN
Function

QS_AS is a compound instruction. It copies a given store plane into the Q and A planes.

QSN_ASN copies the inverse of a given store plane into the Q and A planes.

Syntax

QS_AS <plane><modifier>?<step>?
QSN_ASN <plane><modifier>?<step>?

where <plane>, <modifier>, and <step> together form a store plane address (see section 7.3.3
for details)

Addressing mode

Mode A addressing is used (see section 7.1.1 for details). The effective ADDR field defines the
store plane address, and the effective INT field is discarded.

Notes

See notes for the QS instruction

Possible run-time program errors

A run-time error will occur if the effective ADDR value is outside the range defined by the DAP
program block. .

Example

QS_AS 20 (M2) ! EACH BIT OF THE Q AND A PLANES IS SET
! TO THE CORRESPONDING BIT OF STORE PLANE
! 20 + (ADDR FIELD OF M2).

300 man(005.03 AMT

301

QS_CF QS_CF
QSN_CF . QSN_CF
Function

QS_CF is a compound instruction. It copies a given store plane into the Q plane, then sets every
bit of the C plane to zero.

QSN_CF copies the inverse of a given store plane into the Q plane, then sets every bit of the C
plane to zero.
Syntax

QS_CF <plane><modifier>7<step>?
QSN_CF <plane><modifier>7<step>?

where <plane>, <modifier>, and <step> together form a store plane address (see section 7.3.3
for details)

Addressing mode

Mode A addressing is used (see section 7.1.1 for details). The effective ADDR field defines the
store plane address, and the effective INT field is discarded.

Notes

See notes for the QS instruction.

Possible run-time program errors

A run-time error will occur if the effective ADDR. value is outside the range defined by the DAP
program block. .

Example

QS_CF SPLANE + 2 (M3) () ! EACH BIT OF THE C PLANE IS
! SET TO ZERO, AND EACH BIT OF
! THE Q PLANE IS SET TO THE
! CORRESPONDING BIT OF STORE
! PLANE SPLANE (M3) + 2 - i, WHERE i IS
! THE DO LOOP ITERATION NUMBER.

APAL Language man005.03 301

302 Appendix F: APAL instructions

QT QT

Function

QT sets every bit of the Q plane to one.

Syntax
QT

Possible run-time program errors

None.

302 man005.03 AMT

303

QT_AT QT_AT

Function

QT_AT is a compound instruction. It sets every bit of both the Q plane and A plane to one.

Syntax

QT_AT

Possible run-time program errors

None.

APAIL Language man005.03 303

304 Appendix F: APAL instructions

QT _CF QT_CF

Function

QT_CF is a compound instruction. It sets every bit of the Q plane to one and every bit of the C
plane to zero.

Syntax
QT_CF

Possible run-time program errors

None.

304 man005.03 AMT

305

QvCQ QvCQ

Function

QVCQ adds together corresponding rows or columns of the C and Q planes treating each pair of
rows or columns as ES-sized unsigned integers. The results of the additions are placed in the Q
plane; the C plane is not altered by this instruction.

Syntax

QVCQ <direction>?<geometry>?<count>?<modifier><step>?
QVCQ <nesw><geometry><count>?<step>?

where
<direction> :: = <nesw> | RO | R1 | R2 | R3
<geometry>:: =P | C | PC | CP
<count> :1 = <numval>
<nesw>: =N |E|S|W

Addressing Mode

Mode D addressing is used (see section 7.1.4 for details). The result specifies the effective direction,
geometry and count.

Notes

See notes for the CQVCQ instruction.

Possible run-time program errors

None

Example

QVCQ W P 15

In this example, on DAP 500 the Q and C planes are added as 32 rows of integers. Notional bit
position 32 is a defined carry point because of plane geometry. A count of 15 guarantees 16 result
sum and carry-out bits in positions 16 to 31 of each row. The sum bits go into the Q plane; the C
plane is unchanged.

APAL Language man005.03 305

306 Appendix F: APAL instructions

RAC RAC

Function

RAC is a pseudo instruction that loads an instruction address into an MCU register. The instruc-
tion address is created in the literals area and accessed in the same way as other literals. Its format
is identical to the link value created by a JSL instruction (see section 7.2.4 for details), but note
that the most significant bits of the value are undefined. The instruction referenced must be in
the same code section as the RAC instruction.

Syntax
RAC <MCU-register><code label name><label offset>?

where <code label name> and <label offset> together form a within-section instruction address
as described in section 7.3.5.

Notes

1 An error will occur during consolidation if the instruction address is not in the same code
section as the RAC instruction

Possible run-time program errors

None.

Example

RAC M12 LABEL2 ! LOAD ADDRESS OF LABEL2 INTO M12

306 man005.03 AMT

307

RACE RACE

Function

RACE is a pseudo instruction that loads an instruction address into an MCU register. The instruc-
tion address is created in the literals area and accessed in the same way as other literals. Its format
is identical to the link value created by a JSL instruction (see section 7.2.4 for details), but note
that the most significant bits of the value are undefined. The instruction referenced is identified
relative to the first instruction of a named entry point in the same or another code section.

Syntax

RACE <MCU-register><code section name><section offset>?
RACE <MCU-register><entry point name> <section offset>?

where <code section name> (or <entry point name>) and <section offset> together form an
instruction address as described in section 7.3.5.

Possible run-time program errors

None.

Example
RACE Mi2 SUB1 ! LOAD ADDRESS OF ENTRY POINT SUB1 INTO M12

APAL Language man005.03 307

308 Appendix F: APAL instructions

RALITR RALITR

Function

RALITR is a pseudo instruction (see section 6.2 for details) which creates a row-aligned literal
value and loads the address of the first row of that value into a specified MCU register.

Syntax
RALITR <MCU-register><value><size>?

where <value> and <size> are as defined below:

Type of value Size, in bits

Range of possible sizes Default size
integer 1 to 64, in steps of 1 32
real 24 to 64, in steps of 8 32
hexadecimal 1 to (64 or E'S, whichever is the greater) 32

in steps of 1

character 8 to 64, in steps of 8 32

The instructions RALITR, RALITW and RLIT create literals for which the same limits to <value>s
and <size>s apply.

These <value>s and <size>s are much the same as for items in a data section (see section 4.2.3
for more details), except that the RALITR maximum <size> for character values is 64 bits (in a
data section the maximum size is 512 bits, that is 64 characters), and that the RALITR default
<size> for character values is 32 bits (in a data section the default in bits is 8 times the number
of characters the item is initialised with).

As with data items, integers are created in two’s complement form.

Possible run-time program errors

None.

Examples

RALITR M5 -1(24) ! CREATE A LITERAL HAVING THE VALUE
! -1 OCCUPYING THE LEAST SIGNIFICANT
! 24 BITS OF A ROW, AND LOAD THE ADDRESS
! OF THAT ROW INTO M5

308 man005.03 AMT

RALITR

Examples — continued

RALITR M2 *ABC”

APAL Language

309

RALITR

! CREATE A LITERAL HAVING THE VALUE ”ABC”
! AND EXTENDED BY ONE SPACE TO THE LEFT
! TO OCCUPY THE LEAST SIGNIFICANT 32 BITS

! OF A ROW, AND LOAD THE ADDRESS OF THE

! ROW CONTAINING THAT LITERAL INTO M2.

man005.03 309

310 Appendix F: APAL instructions

RALITW RALITW

Function

RALITW is a pseudo instruction (see section 6.2 for details) which creates a word-aligned literal
value and loads the address of the first word of that value into a specified MCU register.

Syntax
RALITW <MCU-register><value><size>?

where <value> and <size> are as defined below:

Type of value - Size, in bits

Range of possible sizes Default size
integer 1 to 64, in steps of 1 32
real 24 to 64, in steps of 8 : 32

hexadecimal 1 to (64 or E'S, whichever is the greater) 32
in steps of 1 :

character 8 to 64, in steps of 8 32
The instructions RALITR, RALITW and RLIT create literals for which the same limits to <value>s
and <size>s apply.

These <value>s and <size>s are much the same as for items in a data section (see section 4.2.3
for more details), except that the RALITR maximum <size> for character values is 64 bits (in a
data section the maximum size is 512 bits, that is 64 characters), and that the RALITR default
<size> for character values is 32 bits (in a data section the default in bits is 8 times the number
of characters the item is initialised with).

As with data items, integers are created in two’s complement form.

Notes
1 On DAP 500, words and rows are equivalent, so RALITW has the same effect as RALITR

Possible run-time program errors

None.

310 man005.03 AMT

RALITW

Examples

RALITW M5 -1(24)

RALITW M3 2.5

APAL Language

311

RALITW

! CREATE A LITERAL HAVING THE VALUE

! -1 OCCUPYING THE LEAST SIGNIFICANT

! 24 BITS OF A WORD, AND LOAD THE ADDRESS
! OF THAT WORD INTO M5

! CREATE A LITERAL HAVING THE REAL VALUE

! 2.5 AND OCCUPYING ONE 32-BIT WORD, AND
! LOAD THE ADDRESS OF THAT WORD INTO M3.

man005.03 311

312 Appendix F: APAL instructions

RANO , RANO

Function

RANO sets a specified MCU register or the edge register to the logical AND of all ES columns of
the inverse of the A plane.

Syntax

RANO <MCU-or-edge-register>

Notes

1 MCU-or edge-register specifies the value in the MCUR field of the instruction which specifies
the register to contain the result

2 The AND function produces an ES-size value, and if ME is specified then this entire value
is written into ME. If an MCU register is specified, then the least significant 32 bits at the
ES-sized value are written into the register and any other bits discarded

Possible run-time program errors

None.

Example

RANO ME ! SET EACH BIT OF THE EDGE REGISTER TO THE
! LOGICAL AND OF THE INVERSE OF ALL THE BITS
! IN THE CORRESPONDING A PLANE ROW

312 ' man005.03 AMT

313

RAPL RAPL

Function

RAPL is a pseudo instruction (see section 6.2 for details) which loads the plane part of a specified
data address into the ADDR field of a specified MCU register. Remaining bits of the register are
set to zero. -

If possible, an RAX instruction is generated; otherwise a literal is created to hold the address, and
an instruction is generated to load the address from the literals area.

Syntax

RAPL <MCU-register><data address>

where <data address> is defined in section 7.3.3.

Notes
1 Only the plane part of the address is used, but the address need not be plane or row aligned

2 The value loaded into the MCU register is discussed in section 7.2.1

Possible run-time program errors

None.

Example

DATA SECT1
FRED: 3 * PLANE
TOM: 3.142

END

RAPL M3 TOM + 2 ! LOAD THE VALUE n + 5 INTO THE ADDR FIELD
! OF M3. n IS THE PLANE ADDRESS OF DATA
! SECTION SECT1. TOM HAS A PLANE
! DISPLACEMENT OF 3 WITHIN SECT1, AND
! ANOTHER DISPLACEMENT OF 2 PLANES IS
! SPECIFIED IN THE INSTRUCTION

APAL Language man005.03 313

314 ' Appendix F: APAL instructions

RAR RAR

Function

RAR is a pseudo instruction (see section 6.2 for details) which loads both the plane and row parts
of a specified address into a specified MCU register. The remaining bits of the register are set to
zero,

If possible, an RAX instruction is generated; otherwise a literal is created to hold the address, and
an instruction is generated to load the address from the literals area.

Syntax

RAR <MCU-register><data address>

where <data address> is defined in section 7.3.3.

Notes

1 Only the plane and row parts of the address are used, but the address need not be word
aligned

2 The value loaded into the MCU register is discussed in section 7.2.1

Possible run-time program errors

None.

Example

DATA DATASEC
FRED : 200*PLANE
JOE : PLANE :
TOM : PLANE

END

RAR M4 JOE .37 ! LOAD THE ADDRESS OF ROW 37 OF JOE INTO M4.
! ON DAP 500 THIS ADDRESS HAS AN OFFSET OF
! ONE PLANE AND FIVE ROWS FROM JOE, WHICH
! IN THIS CASE IS EQUIVALENT TO ROW 5 OF
! TOM. ON DAP 600 ROW 37 OF PLANE JOE IS
! ADDRESSED

314 man005.03 AMT

315

RASC RASC

Function

" RASC is a pseudo instruction (see section 6.2 for details) which loads the address of the start of
the data section, or data part of a mixed section, associated with a specified data address into a
given MCU register.

A literal is created to hold the address, and an instruction is generated to load the address from
the literals area.

Syntax
RASC <MCU-register><data address>

where <data address> is defined in section 7.3.3.

Notes
1 The value loaded into the MCU register is discussed in section 7.2.1

Possible run-time program errors

None.

Example

RASC M6 VAR1 ! LOAD INTO M6 THE START ADDRESS OF THE
! DATA SECTION IN WHICH VARI1 IS DECLARED.

APAL Language ’ man005.03 315

316 Appendix F: APAL instructions

RAW RAW

Function

RAW loads the address of a word into a specified MCU register. The effective ADDR, effective
INT and (where applicable) effective WORD fields are loaded into the corresponding fields of an
MCU register.

Syntax

RAW <MCU-register><word><modifier>?

where <word> and <modifier> together form a store word address (see section 7.3.3 for details).

Addressing Mode

Mode C addressing is used (see section 7.1.3 for details). The effective ADDR, INT and (where
applicable) WORD fields together define the store word address.

Notes

1 MCU-register specifies the value in the MCUR field of the instruction which specifies the
register into which the store address is to be loaded

2 word specifies the values in the ADDR, INT and WORD fields of the instruction, which are
used to construct the effective ADDR, INT and WORD values

3 modifier specifies the value in the MOD field of the instruction which specifies the modifier
register to be used, if any. The format of the modifier is given in section 7.2.1

4 The value loaded into the MCU register is discussed in section 7.2.1

Possible run-time program errors

None
Example
RAW M4 12..6 ! LOAD INTO M4 THE ADDRESS, PLANE 12 WORD 6
RAW M4 126 ! LOAD INTO M4 THE ADDRESS, PLANE 12 ROW 6.
!
! ON DAP 500 WORDS AND ROWS ARE EQUIVALENT,
! SO THIS AND THE ABOVE EXAMPLE HAVE THE
! SAME EFFECT
RAW M4 12..6 (M5) ! AS THE FIRST EXAMPLE ABOVE, EXCEPT THAT

! THE ADDRESS IS MODIFIED BY THE CONTENTS
! OF M5, AS DESCRIBED IN SECTION 7.1.3

316 man005.03 AMT

317

RAWD RAWD

Function

RAWD is a pseudo instruction (see section 6.2 for details) which loads the plane, row and word
parts of the data address associated with a given word into a specified MCU register. The remaining
- bits of the register are set to zero.

If possible, an RAW instruction is generated; otherwise a literal is created to hold the address, and
an instruction is generated to load the address from the literals area.

Syntax

RAWD <MCU-register><word>

where <word> is defined in section 7.3.3.

Notes
1 The value loaded into the MCU register is discussed in section 7.2.1

Possible run-time program errors

None.

Example

DATA DATASEC
FRED : 200*PLANE
JOE : PLANE
TOM : 5*PLANE

END

RAWD M4 JOE..131 ! LOAD THE ADDRESS OF WORD 131 OF JOE INTO M4
! ON DAP 600 THIS IS EQUIVALENT TO LOADING
! THE ADDRESS OF WORD 3 OF TOM INTO M4;
! ON DAP 500 IT IS EQUIVALENT TO LOADING
! THE ADDRESS OF WORD 3 OF PLANE (TOM + 3)
! INTO M4

APAL Language man005.03 317

318 Appendix F: APAL instructions

RAX RAX

Function

RAX loads the address of a row into a specified MCU register. The effective ADDR, effective INT
and effective WORD fields are loaded into the corresponding fields of an MCU register.

Syntax

RAX <MCU-register><row><modifier>?

where <row> and <modifier> together form a store row address (see section 7.3.3 for details).

Addressing mode

Mode B addressing is used (see section 7.1.2 for details). The effective ADDR field and the effective
INT field together define the store row address.

Notes

1 MCU-register specifies the value in the MCUR field of the instruction which specifies the
register into which the store address is to be loaded

2 row specifies the values in the ADDR and INT fields of the instruction, which are used to
construct the effective ADDR and INT values

3 modifier specifies the value in the MOD field of the instruction which specifies the modifier
register to be used, if any. The format of the modifier is given in section 7.2.1

4 The value loaded into the MCU register is discussed in section 7.2.1

Possible run-time program errors

None
Examples
RAX M2 14.2 (MS6) ! LOAD ADDR FIELD OF M2 WITH
! 14 + (ADDR FIELD OF M6) + CARRY OUT OF INT FIELD.
! LOAD INT FIELD OF M2 WITH 2 + (INT FIELD OF Ms).
RAX M3 1(M3) ! ADD 1 PLANE TO THE ADDRESS IN M3.
RAX M4 0.1 (M4) ! ADD 1 ROW TO THE ADDRESS IN M4.

318 man005.03 AMT

319

RDGC RDGC

Function

RDGC is a pseudo instruction (see section 6.2 for details) which loads a specified MCU register
with direction, geometry, and count fields. All other bits of the register are set to zero.

An RH instruction is generated.

Syntax
RDGC <MCU-register><nesw><geometry><count>?
where

<nesw>u=N |E |S | W
<geometry>:=P | C | PC | CP
<count>:=<numval>

Notes

1 MCU-register specifies the value in the MCUR. field of the instruction; the value specifies the
register into which the DIRECTION, GEOMETRY, and COUNT values are to be loaded

2 nesw specifies the value of DIRECTION
3 geometry specifies the value of GEOMETRY

The values are interpreted as follows:

Value Geometry

P Plane geometry for all shifts

C) Cyclic geometry for all shifts

PC Plane geometry for north and south shifts, cyclic geometry

for east and west shift

CP Cyclic geometry for north and south shifts, plane geometry
for east and west shift

4 count specifies the value of COUNT. If count is omitted, a zero count is assumed

5 The value loaded into the MCU register is discussed in section 7.2.2

Possible run-time program errors

None.

Example

RDGC M1 N P 3 ! LOAD M1 WITH A DIRECTION
! OF N, A GEOMETRY OF P, AND
! A COUNT OF 3

APAL Language man005.03 319

320 Appendix F: APAL instructions

RF RF

Function

RF sets every bit in a specified MCU register to zero.

Syntax

RF <MCU-register>

Notes

1 MCU-register specifies the value in the MCUR field of the instruction which specifies the
register whose bits are to be set to zero

Possible run-time program errors

None.

320 man(005.03 AMT

321

RH RH
RHN RHN
Function

RH loads a specified MCU register with a literal.

RHN loads a specified MCU register with the inverse of a literal.

Syntax

RH <MCU-register><literal 16>
RHN <MCU-register><literal 16>

where <literal_16> is defined in section 6.1.7.

Notes

1 MCU-register specifies the value in the MCUR field of the instruction which gives the register
to be loaded with the literal

2 literal 16 specifies the value in the LITERAL field of the instruction. To form the second
operand, the bit pattern representing the value is extended to 32 bits with leading zeros
(see section 6.1.7 for details). If you are using RH, this bit pattern is then loaded into the
register. If you are using RHN, the 32-bit literal is inverted before being loaded into the
register

Possible run-time program errors

None

Examples

RH M1 -2(5) ! M1 = #0000001E
RHN M2 33 ! M2 = #FFFFFFDE

APAL Language man005.03 321

322 Appendix F: APAL instructions

RLIT RLIT

Function

RLIT is a pseudo instruction (see section 6.2 for details) which loads a literal value into a specified
MCU register or the edge register .

If possible, an RH or RHN instruction is generated; otherwise a literal is created and an instruction
is generated to load it from the literals area.

Syntax
RLIT <MCU-or-edge-register><value><size>7

where <value> and <size> are as defined below:

Type of value Size, in bits

Range of possible sizes Default size
integer ' 1 to 64, in steps of 1 32
real 24 to 64, in steps of 8 32
hexadecimal 1 to (64 or ES, whichever is the greater) 32

in steps of 1
character 8 to 64, in steps of 8 32
The instructions RALITR, RALITW and RLIT create literals for which the same limits to <value>s
and <size>s apply.

These <value>s and <size>s are much the same as for items in a data section (see section 4.2.3
for more details), except that the RALITR maximum <size> for character values is 64 bits (in a
data section the maximum size is 512 bits, that is 64 characters), and that the RALITR. default
<size> for character values is 32 bits (in a data section the default in bits is 8 times the number
of characters the item is initialised with).

As with data items, integers are created in two’s complement form.

Possible run-time program errors

None.

Example

RLIT M5 3.247(24) ! LOAD M5 WITH THE 24-BIT REAL
! VALUE 3.247. THE VALUE WILL HAVE
! BEEN GENERATED AS A LITERAL.

322 man005.03 AMT

323

RQO RQO

Function

RQO sets a specified MCU register or the edge register to the logical AND of all the columns in
the Q plane.

Syntax

RQO <MCU-or-edge-register>

Notes

1 MCU-or-edge-register specifies the value in the MCUR field of the instruction which specifies
the register to contain the result

2 The AND function produces an ES-size value, and if ME is specified then this entire value
is written into ME. If an MCU register is specified, then the least significant 32 bits of the
E S-sized value are written into the regular and any other bits discarded

Possible run-time program errors

None.

Example

RQO ME ! SET EACH BIT OF THE EDGE REGISTER TO
! THE LOGICAL AND OF ALL BITS IN
! THE CORRESPONDING Q PLANE ROW

APAL Lansuage man005.03 323

324 Appendix F: APAL instructions

RR ' RR
RRN RRN
Function

RR copies one MCU register to another.

RRN copies the inverse of one MCU register to another.

Syntax

RR <MCU register-1><MCU register-2>
RRN <MCU register-1><MCU register-2>7

where

<MCU register-1> ::= <MCU-register>
<MCU register-2> 1= <MCU-register>

Notes

1 MCU-register-1 specifies the value in the MCUR field of the instruction, which specifies the
register to contain the result

2 MCU-register-2 specifies the value in the MOD field of the instruction, which specifies the
register holding the required value. If MCU-register-2 is omitted in an RRN instruction, it is
assumed to be the same as MCU-register-1; that is, the instruction will invert the specified
MCU register

Possible run-time program errors

None.

Examples

RR MO M6 ! LOAD M0 WITH M6

RRN M2 M3 ! LOAD M2 WITH THE INVERSE OF M3
RRN M4 ! LOAD M4 WITH THE INVERSE OF M4

324 man005.03 AMT

325

RS . RS
RSO RSO
Function

RS sets a specified MCU register or the edge register to the logical AND of all the rows in a store
plane.

RSO sets a specified MCU register or the edge register to the logical AND of all the columns in a
store plane.

Syntax

RS <MCU-or-edge-register><plane><modifier>?<step>?
RSO <MCU-or-edge-register><plane><modifier>?<step>?

where <plane>, <modifier> and <step> together form a store plane address (see section 7.3.3 for
details).

Addressing mode

Mode A addressing is used (see section 7.1.1 for details). The effective ADDR field defines the
store plane address, and the effective INT field is discarded.

Notes

1 MCU-or-edge-register specifies the value in the MCUR field of the instruction which specifies
the register to contain the result

2 plane specifies the value in the ADDR field of the instruction, which is used to construct the
effective ADDR value

3 modifier specifies the value in the MOD field of the instruction which specifies the modifier
register to be used, if any

4 step specifies the value in the INCREMENT/DECREMENT field of the instruction, which
specifies how the store plane address is to be stepped if the instruction appears inside an
APAL DO loop

5 The AND function produces an ES-sized value, and if ME is specified then this entire value
is written into ME. If an MCU register is specified, then the least significant 32 bits of the
ES-sized value are written into the register and any other bits discarded

Possible run-time program errors

A run-time error will occur if the effective ADDR value is outside the range defined by the DAP
program block.

APAL Language man005.03 325

326

RS
RSO

Example

RS ME 62 (M3) (-)

326

Appendix F: APAL instructions

RS
RSO

! SET THE EDGE REGISTER TO THE LOGICAL AND OF
! ALL ROWS IN STORE PLANE

! 62 + (ADDR FIELD OF M3) - i,

! WHERE i IS THE DO LOOP ITERATION

! NUMBER

man005.03 ' AMT

327

RT ’ RT
Function

RT sets every bit of a given MCU register to one.

Syntax

RT <MCU-register>

Notes

1 MCU-register specifies the value in the MCUR field of the instruction which specifies the
register whose bits are to be set to one

Possible run-time program errors

None.

APAL Language man005.03 327

328 Appendix F: APAL instructions

RW RW
RWO) RWO
Function

RW copies a given store word into an MCU register.

RWO copies a given store orthogonal word into an MCU register.

Syntax

RW <MCU-register><word><modifier>?<step>?
RWO <MCU-register><word><modifier>7<step>?

where <word>, <modifier> and <step> together form a store word address (see section 7.3.3 for
details).

Addressing Mode

Mode C addressing is used (see section 7.1.3 for details). The effective ADDR field, the effective
INT field and the effective WORD field together define the store word address.

Notes

1 MCU-register specifies the value in the MCUR field of the instruction which specifies the
register into which the contents of the addressed word are to be loaded

2 word specifies the values in the ADDR, INT and WORD fields of the instruction, which are
used to construct the effective ADDR, INT and WORD values

3 The orthogonal word of RWO is obtained by using the effective ADDR and INT fields to
select a column of array store, then (where applicable) using the effective WORD address to
select a word from that column

4 modifier specifies the value in the MOD field of the instruction which specifies the modifier
register to be used, if any

5 step specifies the value in the INCREMENT/DECREMENT field of the instruction, which
specifies whether the word address is to be incremented or decremented if it appears in an
APAL DO loop

Possible run-time program errors

A run-time error will occur if the effective ADDR value is outside the range defined by the DAP
program block.

328 man005.03 AMT

RW
RWO

Example
RwW M9 15.23.1

RWO M12 6.33.0

APAL Language

329

RW
RWO

! COPY INTO REGISTER M9 CONTENTS OF WORD AT
! LOCATION (PLANE 15, ROW 23, WORD 1) IN STORE.

! COPY INTO REGISTER M12 CONTENTS OF WORD AT
! LOCATION (PLANE 6, COLUMN 33, WORD 0) IN STORE.

man005.03 ' 329

330 Appendix F: APAL instructions

RX RX
RXO RXO
Function

RX copies a given store row into an MCU register or the edge register .

RXO copies a given store column into an MCU register or the edge register .

Syntax

RX <MCU-or-edge-register><row><modifier>?<step A>?
RXO <MCU-or-edge-register><column><modifier>?<step A>?

Syntax

where <row>, <modifier> and <step A> together form a store column address, and <column>,
<modifier> and <step A> together form a store row address (see section 7.3.3 for details)

Addressing mode

Mode B addressing is used (see section 7.1.2 for details). The effective ADDR field and the effective
INT field together define the store row address (for RX) or store column address (for RXO).

Notes

1 MCU-or-edge-register specifies the value in the MCUR field of the instruction which specifies
the register into which the contents of the addressed row (for RX) or the addressed column
(for RXO) are to be loaded

2 row specifies the values in the ADDR and INT fields of the instruction, which are used to
construct the effective ADDR and INT values

3 column specifies the values in the ADDR and INT fields of the instruction, which are used
to construct the effective ADDR and INT values

4 modifier specifies the value in the MOD field of the instruction which specifies the modifier
register to be used, if any

5 step A specifies the value in the INCREMENT/DECREMENT field of the instruction, which
specifies whether the store address is to be incremented or decremented if it appears in an
APAL DO loop. step A also specifies the value in the STEP TYPE field of the instruction,
which specifies whether the INT or ADDR part of the address is to be stepped

6 If an MCU register is specified then the least significant 32 bits of the row are written into
it, and any other bits of the row (for RX) or of the column (for RXO) are discarded

Possible run-time program errors

A run-time error will occur if the effective ADDR value is outside the range defined by the DAP
program block.

330 ‘ man005.03 AMT

331

RX RX
RXO , : RXO

Examples

RX ME SPLANE + 10.20 (M3) (+A) ! SET THE EDGE REGISTER TO THE
! CONTENTS OF ROW i OF STORE

! PLANE j, WHERE:

!

! i =20+ (INT FIELD OF M3)

! 4+ ROW ADDRESS OF 'SPLANFE’

!

! j= THE PLANE ADDRESS OF

4 ! SPLANE (M3)+10+n, WHERE n

1 IS THE CURRENT DO LOOP ITERATION
! NUMBER.

PUT INTO REGISTER M10 THE CONTENTS OF
ROW i OF STORE PLANE j; WHERE:

RX M10 GPLANE (Ms)

!
!
!
! i =INT FIELD OF M6

! 4 ROW ADDRESS OF 'GPLANE’
!

!

!

j = THE PLANE ADDRESS OF GPLANE
+ ADDR FIELD OF M6
!
! THE EFFECT ON DAP 600 WILL BE TO PUT
! THE 32 LEAST SIGNIFICANT BITS OF THE
! SELECTED ROW INTO M10.

RXO ME 26.12 (M2) ! SET THE EDGE REGISTER TO THE CONTENTS OF
! COLUMN i OF STORE PLANE j, WHERE:
X !

! i =12 + (INT FIELD OF M2)
!

! j= 26 + (ADDR FIELD OF M2)

APAL Language man005.03 331

332 | Appendix F: APAL instructions

SAN SAN

Function

SAN copies the inverse of the A plane into a store plane.

Syntax
SAN <plane><modifier>7?<step>?

where <plane>, <modifier> and <step> together form a store plane address (see section 7.3.3 for
details)

Addressing mode

Mode A addressing is used (see section 7.1.1 for details). The effective ADDR field defines the
store plane address, and the effective INT field is discarded.

Notes

See notes for the SQ instruction

Possible run-time program errors

A run-time error will occur if the effective ADDR value is outside the range defined by the DAP
program block.

Example

SAN SPLANE + 9 (MS6) (+) ! SET EACH BIT OF STORE SPLANE (M6) + 9 + i
! (WHERE i IS THE DO LOOP ITERATION NUMBER)
! NUMBER) TO THE INVERSE OF THE CORRESPONDING
! BIT OF THE A PLANE

332 man005.03 AMT

333

SF SF

Function

SF sets every bit in a specified store plane to zero.

Syntax

SF <plane><modifier>7<step>7

where <plane>, <modifier> and <step> together form a store plane address (see section 7.3.3 for
details)

Addressing mode

Mode A addressing is used (see section 7.1.1 for details). The effective ADDR. field defines the
store plane address, and the effective INT field is discarded.

Notes

See notes for the SQ instruction

Possible run-time program errors

A run-time error will occur if the effective ADDR value is outside the range defined by the DAP
program block.

Example

SF 27 (M3) ! SET EACH BIT OF .
! STORE PLANE 27 + (ADDR FIELD OF M3)
! TO ZERO.

APAL Language man005.03 333

334 Appendix F: APAL instructions

SHL SHL

Function

SHL copies one MCU register to another, then shifts the latter to the left feeding in zeros on the
right. This function may also be used to invoke a single place shift of the edge register.

Syntax

SHL <MCU-register-1><MCU-register-2>7<count>?
SHL ME <count>?

where

<MCU-register-1> 1= <MCU-register>
<MCU-register-2> ::= <MCU-register>
<count> ::= <numval>

Notes

1 MCU-register-1 specifies the value in the MCUR field of the instruction, which specifies the
register to hold the result. If MCU-register-2 is omitted, this register also holds the operand
to be shifted

2 MCU-register-2 specifies the value in the MOD field of the instruction, and if specified
determines the register from which the operand is taken. If MCU-register-2 is omitted, the
MOD field has the same value as the MCUR field

3 count specifies the number of places by which MCU-register-1 is to be shifted. The value
of count should be in the range 1 to (ES — 1); its default value is 1. If the edge register is
being shifted, then count must either be omitted or specified as 1

Possible run-time program errors

None.

Examples

SHL M1 M2 17 ! SET M1 TO M2 SHIFTED 17 PLACES TO THE LEFT
SHL M4 12 ! SET M4 TO ITSELF SHIFTED 12 PLACES TO THE LEFT
SHL ME ! SHIFT THE EDGE REGISTER 1 PLACE LEFT

334 man005.03 AMT

335

SHLC SHLC

Function

SHLC copies one MCU register to another, then shifts the latter to the left. Bits shifted off at the
left come in at the right. This function may also be used to invoke a single place shift of the edge
register.

Syntax

SHLC <MCU-register-1><MCU-register-2>7<count>?
SHLC ME <count>?

where
<MCU-register-1> ::= <MCU-register>

<MCU-register-2> 1= <MCU-register>
<count> ::= <numval>

Notes

See notes for the SHL instruction

Possible run-time program errors

None.

Examples

SHLC M3 14 ! SET M3 TO ITSELF ROTATED 14 PLACES TO THE LEFT
SHLC M1 M6 7 ! SET M1 TO M6 ROTATED 7 PLACES TO THE LEFT

APAL Language man005.03 335

336 Appendix F: APAL instructions

SHR SHR

Function

SHR copies one MCU register to another, then shifts the latter to the right feeding in zeros at the
left. This function may also be used to invoke a single place shift of the edge register.

Syntax

SHR <MCU-register-1><MCU-register-2>?<count>?
SHR ME <count>?

where
<MCU-register-1> ::= <MCU-register>

<MCU-register-1> ::= <MCU-register>
<count> ::= <numval>

Notes

See notes for the SHL instruction

Possible run-time program errors

None.

Example

SHR M1 M4 12 ! SET M1 TO M4 SHIFTED 12 PLACES TO THE RIGHT

336 man005.03 AMT

337

SHRA SHRA

Function

SHRA copies one MCU register to another, then shifts the copy to the right. The most significant
bit(s) of the copy are filled with repeats of the most significant bit (that is, the sign bit) from the
MCU register. This function may also be used to invpke a single place shift of the edge register.

Syntax

SHRA <MCU-register-1><MCU-register-2>7<count>?
SHRA ME <count>?

where
<MCU-register-1> ::= <MCU-register>

<MCU-register-1> ::= <MCU-register>
<count> ::= <numval>

Notes

See notes for the SHL instruction

Possible run-time program errors

None.

Example

SHRA M1 M4 12 ! SET M1 TO M4 SHIFTED 12 PLACES TO THE
! RIGHT, WITH SIGN BIT PROPAGATION

APAL Language man005.03 337

338 Appendix F: APAL instructions

SHRC SHRC

Function

SHRC copies one MCU register to another, then shifts the latter to the right. Bits shifted off at
the right come in at the left. This function may also be used to invoke a single place shift of the
edge register.

Syntax

SHRC <MCU-register-1><MCU-register-2>?<count>?
SHRC ME <count>?

where

<MCU-register-1> ::= <MCU-register>
<MCU-register-2> ::= <MCU-register>

<count> ::= <numval>

Notes

See notes for the SHL instruction

Possible run-time program errors

None.
Example

SHRC M1 10 ! SET M1 TO ITSELF ROTATED 10 PLACES TO THE
! RIGHT

338 man005.03 AMT

339

SIC SIC

Function

SIC copies the C plane into a given store plane, under activity control (see section 1.6 for details).

Syntax
SIC <plane><modifier>?<step>7

where <plane>, <modifier> and <step> together form a store plane address (see section 7.3.3 for
details).

Addressing mode

Mode A addressing is used (see section 7.1.1 for details). The effective ADDR field defines the
store plane address, and the effective INT field is discarded.

Notes

1 plane specifies the value in the ADDR field of the instruction, which is used to construct the
effective ADDR value

2 modifier specifies the value in the MOD field of the instruction which specifies the modifier
register to be used, if any

3 step specifies the value in the IN CREMENT/DECREMENT field of the instruction, which
specifies how the store plane address is to be stepped if the instruction appears inside an
APAL DO loop

4 The only bits of the store plane which are updated are those corresponding to those bits in
the A plane that are true (that is, are set to one)

Possible run-time program errors

A run-time error will occur if the effective ADDR value is outside the range defined by the DAP
program block.

Example

SIC SPLANE (M4) (+) ! SET EACH BIT OF STORE PLANE SPLANE (M4) + i
! (WHERE i IS THE DO LOOP ITERATION NUMBER)
! CORRESPONDING TO A 'ONE’ BIT IN THE A PLANE
! TO THE CORRESPONDING BIT OF PLANE C. LEAVE
! OTHER BITS OF STORE SPLANE (M4) + i
! UNCHANGED

APAL Language man005.03 339

340 Appendix F: APAL instructions

SICPCQS SICPCQS

Function

SICPCQS adds corresponding bits of the C plane, Q plane and a store plane putting the sum in
the store plane, under activity control (see section 1.6)

Carry bits go into the C plane (in every PE).

Syntax
SICPCQS <plane><modifier>?<step>?

where <plane>, <modifier>, and <step> together form a store plane address (see section 7.3.3
for details).

Addressing mode

Mode A addressing is used (see section 7.1.1 for details). The effective ADDR field defines the
store plane address, and the effective INT field is discarded.

Notes

See notes for the SIC instruction

Possible run-time program errors

A run-time error will occur if the effective ADDR value is outside the range defined by the DAP
program block.

Example

SICPCQS 28 (M4) ! SET EACH BIT OF STORE PLANE
! 28 + (ADDR FIELD OF M4)
! THAT CORRESPONDS TO A 'ONE’ BIT IN THE
! A PLANE TO THE SUM OF ITSELF AND THE
! CORRESPONDING BITS OF THE C AND Q PLANES.
! LEAVE OTHER BITS OF THE STORE PLANE
! UNCHANGED.
|
! IRRESPECTIVE OF THE VALUE OF THE BITS
! IN THE A PLANE SET EACH BIT OF THE
! C PLANE TO THE CARRY BIT GENERATED BY
! THE CORRESPONDING ADDITION.

340 man005.03 AMT

341

SICPCS SICPCS

Function

SICPCS adds corresponding bits of the C plane and a store plane, putting the sum in the store
plane, under activity control (see section 1.6 for details)

Carry bits go into the C plane (in every PE).

Syntax
SICPCS <plane><modifier>7?<step>7?

where <plane>, <modifier>, and <step> together form a store plane address (see section 7.3.3
for details).

Addressing mode

Mode A addressing is used (see section 7.1.1 for details). The effective ADDR field defines the
store plane address, and the effective INT field is discarded.

Notes

See notes for the SIC instruction

Possible run-time program errors

A run-time error will occur if the effective ADDR value is outside the range defined by the DAP
program block.

Example

SICPCS SPLANE + 9 (M4) (+) ! SET EACH BIT OF STORE PLANE
! SPLANE (M4) + 9 + i
! (WHERE i IS THE DO LOOP ITERATION NUMBER)
! THAT CORRESPONDS TO A ’ONE’ IN
! THE A PLANE TO THE SUM OF ITSELF AND
| THE CORRESPONDING BIT OF THE C PLANE.
! LEAVE OTHER BITS OF THE STORE PLANE
! UNCHANGED.
!
! IRRESPECTIVE OF THE VALUE OF THE BITS
t IN THE A PLANE SET EACH BIT OF THE
! C PLANE TO THE CARRY BIT GENERATED BY
! THE CORRESPONDING ADDITION.

APAL Language man005.03 341

342 Appendix F: APAL instructions

SICPQS SICPQS

Function

SICPQS adds corrésponding bits of the Q plane and a store plane, putting the sum in the store
plane, under activity control (see section 1.6 for details)

Carry bits go into the C plane (in every PE).

Syntax
SICPQS <plane><modifier>?<step>?

where <plane>, <modifier>, and <step> together form a store plane address (see section 7.3.3
for details).

Addressing mode

Mode A addressing is used (see section 7.1.1 for details). The effective ADDR field defines the
store plane address, and the effective INT field is discarded.

Notes

See notes for the SIC instruction

Possible run-time program errors

A run-time error will occur if the effective ADDR value is outside the range defined by the DAP
program block.

Example

SICPQS 28 (-) ! SET EACH BIT OF STORE PLANE 28 -
! (WHERE i IS THE DO LOOP ITERATION NUMBER)
! THAT CORRESPONDS TO A 'ONE BIT’ IN THE
! A PLANE TO THE SUM OF ITSELF AND THE
! CORRESPONDING BIT OF THE Q PLANE. LEAVE
! OTHER BITS OF THE STORE PLANE UNCHANGED.
]
! IRRESPECTIVE OF VALUE OF CORRESPONDING
! BITS IN PLANE A, SET EACH BIT OF PLANE C
! TO CARRY BIT GENERATED BY CORRESPONDING
! ADDITIONS.

342 man005.03 AMT

343

SICQPCQS SICQPCQS

Function

SICQPCQS adds corresponding bits of the C plane, Q plane and a store plane putting the sum in
the Q plane. It also puts the sum in the store plane but under activity control (see section 1.6 for
details). :

Carry bits go into the C plane (in every PE).

Syntax
SICQPCQS <plane><modifier>7<step>?

where <plane>, <modifier>, and <step> together form a store plane address (see section 7.3.3
for details).

Addressing mode

Mode A addressing is used (see section 7.1.1 for details). The effective ADDR field defines the
store plane address, and the effective INT field is discarded.

Notes

See notes for the SIC instruction

Possible run-time program errors

A run-time error will occur if the effective ADDR value is outside the range defined by the DAP
program block.

Example

SICQPCQS 39 (M4) ! SET EACH BIT OF STORE PLANE
! 39 + (ADDR FIELD OF M4)
! THAT CORRESPONDS TO A 'ONE’ BIT IN THE
! A PLANE TO THE SUM OF ITSELF AND THE
! CORRESPONDING BITS OF THE C AND Q PLANES.
! LEAVE OTHER BITS OF THE STORE PLANE
! UNCHANGED.
|
! IRRESPECTIVE OF THE VALUE OF THE BITS IN
! THE A PLANE, SET THE SUMS OF ALL THE
! CORRESPONDING BITS ORIGINALLY IN
! PLANES C, Q AND 39+(ADDR FIELD OF M4)
! INTO THE CORRESPONDING BITS IN THE
! Q PLANE AND SET THE CARRY BITS INTO THE
! CORRESPONDING BITS OF THE C PLANE.

APAL Language man005.03 343

344 Appendix F: APAL instructions

SICQPCS SICQPCS

Function

SICQPCS adds corresponding bits of the C plane and a store plane, putting the sum in the Q plane.
It also puts the sum in the store plane, but under activity control (see section 1.6 for details).

Carry bits go into the C plane (in every PE).

Syntax
SICQPCS <plane><modifier>7<step>7

where <plane>, <modifier>, and <step> together form a store plane address (see section 7.3.3
for details).

Addressing mode

Mode A addressing is used (see section 7.1.1 for details). The effective ADDR field defines the
store plane address, and the effective INT field is discarded.

Notes

See notes for the SIC instruction

Possible run-time program errors

A run-time error will occur if the effective ADDR value is outside the range defined by the DAP
program block.

Example

SICQPCS 53 (+) ! SET EACH BIT OF STORE PLANE 53 + i
! (WHERE; IS THE DO LOOP ITERATION NUMBER)
! THAT CORRESPONDS TO A *ONE’ BIT IN THE
! A PLANE TO THE SUM OF ITSELF AND THE
! CORRESPONDING BIT OF THE C PLANE. LEAVE
! OTHER BITS OF THE STORE PLANE UNCHANGED.
]
! IRRESPECTIVE OF THE VALUE OF THE BITS IN
! THE A PLANE, SET THE SUMS OF THE
! CORRESPONDING BITS ORIGINALLY IN
! PLANES C AND 53 + i INTO THE BITS IN
! THE Q PLANE, AND THE CARRY BITS INTO
! THE CORRERSPONDING BITS OF THE C PLANE.

344 man005.03 ' AMT

345

SICQPQS SICQPQS

Function

SICQPQS adds corresponding bits of the Q plane and a store plane, putting the sum in the Q
plane. It also puts the sum in the store plane, but under activity control (see section 1.6 for
details).

Carry bits go into the C plane (in every PE).

Syntax
SICQPQS <plane><modifier>7<step>?

where <plane>, <modifier>, and <step> together form a store plane address (see section 7.3.3
for details).

Addressing mode

Mode A addressing is used (see section 7.1.1 for details). The effective ADDR field defines the
store plane address, and the effective INT field is discarded.

Notes

See notes for the SIC instruction

Possible run-time program errors

A run-time error will occur if the effective ADDR value is outside the range defined by the DAP
program block.

Example

SICQPQS SPLANE (MS§) ! SET EACH BIT OF SPLANE (M§)
! CORRESPONDING TO A 'ONE’ BIT IN THE A PLANE
! TO THE SUM OF ITSELF AND THE
! CORRESPONDING BIT OF THE Q PLANE. LEAVE
! OTHER BITS OF THE STORE PLANE UNCHANGED.
!
! IRRESPECTIVE OF THE VALUE OF THE BITS IN
! THE A PLANE, SET THE SUMS OF THE
! CORRESPONDING BITS ORIGINALLY IN
t INTO THE BITS IN THE Q PLANE, AND SET THE
! PLANES Q AND SPLANE (M6) CARRY BITS INTO
! THE CORRESPONDING BITS OF THE C PLANE.

APAL Language man(005.03 345

346 Appendix F: APAL instructions

SIF SIF

Function

SIF sets every bit of a given store plane to zero, under activity control (see section 1.6 for details).

Syntax

SIF <plane><modifier>?<step>?

where <plane>, <modifier>, and <step> together form a store plane address (see section 7.3.3
for details).

Addressing mode

Mode A addressing is used (see section 7.1.1 for details). The effective ADDR field defines the
store plane address, and the effective INT field is discarded.

Notes

See notes for the SIC instruction

Possible run-time program errors

A run-time error will occur if the effective ADDR value is outside the range defined by the DAP
program block. ’

Example

SIF SPLANE + 3 (M2) ! SET EACH BIT OF PLANE SPLANE (M2) + 3
! THAT CORRESPONDS TO A 'ONE’ BIT IN
! THE A PLANE TO ZERO. LEAVE OTHER BITS OF
! THE STORE PLANE UNCHANGED.

346 man005.03 AMT

347

SIPCQ SIPCQ

Function

SIPCQ adds corresponding bits of the C and Q planes, putting the sum in a store plane under
activity control (see section 1.6 for details)

Carry bits are discarded.

Syntax

SIPCQ <plane><modifier>7<step>?

where <plane>, <modifier> and <step> together form a store plane address (see section 7.3.3 for
details).

Addressing mode

Mode A addressing is used (see section 7.1.1 for details). The effective ADDR field defines the
store plane address, and the effective INT field is discarded.

Notes

See notes for the SIC instruction

Possible run-time program errors

A run-time error will occur if the effective ADDR value is outside the range defined by the DAP
program block.

Example

SIPCQ 10 ! SET EACH BIT OF PLANE 10 THAT
! CORRESPONDS TO A 'ONE’ BIT IN THE A PLANE
! TO THE SUM OF THE CORRESPONDING BITS
! IN THE C AND Q PLANES. LEAVE OTHER BITS OF
! PLANE 10 UNCHANGED.

APAL Language man005.03 347

348 Appendix F: APAL instructions

SIPCQS SIPCQS

Function

SIPCQS adds corresponding bits of the C plane, Q plane and a store plane putting the sum in the
store plane under activity control (see section 1.6)

Carry bits are discarded.

Syntax

SIPCQS <plane><modifier>7<step>?7

where <plane>, <modifier>, and <step> together form a store plane address (see section 7.3.3
for details).

Addressing mode

Mode A addressing is used (see section 7.1.1 for details). The effective ADDR field defines the
store plane address, and the effective INT field is discarded.

Notes

See notes for the SIC instruction

Possible run-time program errors

A run-time error will occur if the effective ADDR value is outside the range defined by the DAP
program block.

Example

SIPCQS SPLANE (M3) ! SET EACH BIT OF SPLANE (M3) THAT
! CORRESPONDS TO A ONE’ BIT IN THE A PLANE
! TO THE SUM OF ITSELF AND THE
! CORRESPONDING BITS OF THE C AND Q PLANES.
! LEAVE OTHER BITS OF SPLANE (M3) UNCHANGED.

348 man005.03 AMT

349

SIPCS SIPCS

Fupction

SIPCS adds corresponding bits of a store plane and the C plane, putting the sum in the store plane
under activity control (see section 1.6 for details)

Carry bits are discarded.

Syntax

SIPCS <plane><modifier>7<step>7?

where <plane>, <modifier>, and <step> together form a store plane address (see section 7.3.3
for details).

Addressing mode

Mode A addressing is used (see section 7.1.1 for details). The effective ADDR field defines the
store plane address, and the effective INT field is discarded.

Notes

See notes for the SIC instruction

Possible run-time program errors

A run-time error will occur if the effective ADDR value is outside the range defined by the DAP
program block.

Example

SIPCS SPLANE + 1 (M4) ! SET EACH BIT OF SPLANE (M4) + 1
! THAT CORRESPONDS TO A 'ONE’ BIT IN
! THE A PLANE TO THE SUM OF ITSELF AND
! THE CORRESPONDING BIT OF THE C PLANE.
! LEAVE OTHER BITS IN SPLANE (M4) + 1
! UNCHANGED.

APAL Language man(005.03 349

350 Appendix F: APAL instructions

SIPQS SIPQS

Function

SIPQS adds corresponding bits of a store plane and the Q plane, putting the sum in the store
plane, under activity control (see section 1.6 for details)

Carry bits are discarded.

Syntax
SIPQS <plane><modifier>?<step>?

where <plane>, <modifier>, and <step> together form a store plane address (see section 7.3.3
for details).

Addressing mode

Mode A addressing is used (see section 7.1.1 for details). The effective ADDR. field defines the
store plane address, and the effective INT field is discarded.

Notes

See notes for the SIC instruction

Possible run-time program errors

A run-time error will occur if the effective ADDR value is outside the range defined by the DAP
program block.

Example

SIPQS SPLANE (M4) (+) ! SET EACH BIT OF SPLANE (M4) + i
! (WHERE i IS THE CURRENT DO LOOP STEP
! VALUE) THAT CORRESPONDS TO A *ONE’ BIT
! IN THE A PLAN TO THE SUM OF ITSELF AND
! THE CORRESPONDING BIT OF PLANE Q.
! LEAVE OTHER BITS OF SPLANE (M4) + i
! UNCHANGED.

350 man005.03 AMT

351

SIQ SIQ

Function

SIQ copies the Q plane to a store plane, under activity control (section 1.6).

Syntax

SIQ <plane><modifier>7<step>?

where <plane>, <modifier>>, and <step> together form a store plane address (see section 7.3.3
for details).

Addressing mode

Mode A addressing is used (see section 7.1.1 for details). The effective ADDR field deﬂnes the
store plane address, and the effective INT field is discarded.

Notes

See notes for the SIC instruction

Possible run-time program errors

A run-time error will occur if the effective ADDR value is outside the range defined by the DAP
program block.

Example

SIQ SPLANE (M4) ! SET EACH BIT OF SPLANE (M4) THAT
! CORRESPONDS TO A 'ONE’ BIT IN THE A PLANE
! TO THE CORRESPONDING BIT OF THE Q PLANE.
! LEAVE OTHER BITS OF SPLANE (M4)
! UNCHANGED.

APAL Language man005.03 351

352 Appendix F: APAL instructions

SIQPCQS SIQPCQS

Function

SIQPCQS adds corresponding bits of the C plane, Q plane and a store plane putting the sum in
the Q plane. It also puts the sum in the store plane but under activity control (see section 1.6 for
details).

Carry bits are discarded.

Syntax
SIQPCQS <plane><modifier>7<step>?

where <plane>, <modifier>, and <step> together form a store plane address (see section 7.3.3
for details).

Addressing mode

Mode A addressing is used (see section 7.1.1 for details). The effective ADDR. field defines the
store plane address, and the effective INT field is discarded.

Notes

See notes for the SIC instruction

Possible run-time program errors

A run-time error will occur if the effective ADDR value is outside the range defined by the DAP
program block.

Example

SIQPCQS SPLANE + 5 (M7) ! SET EACH BIT OF SPLANE (M7) + 5
! THAT CORRESPONDS TO A ’ONE’ BIT
! IN THE A PLANE TO THE SUM OF ITSELF AND
! THE CORRESPONDING BITS IN THE C AND Q
! PLANES. LEAVE OTHER BITS IN THE STORE
! PLANE UNCHANGED.
1
! IRRESPECTIVE OF THE VALUE OF BITS IN
! THE PLANE A, SET ALL BITS OF THE Q PLANE
! TO THE SUMS OF THE CORRESPONDING BITS IN
! THE STORE PLANE AND THE C AND Q PLANES.

352 man(005.03 AMT

353

SIQPCS SIQPCS

Function

SIQPCS adds corresponding bits of a store plane and the C plane, putting the result in the Q
plane. It also puts the result in the store plane, but under activity control (see section 1.6 for
details).

Carry bits are discarded.

Syntax
SIQPCS <plane><modifier>7<step>?

where <plane>, <modifier>, and <step> together form a store plane address (see section 7.3.3
for details).

Addressing mode

Mode A addressing is used (see section 7.1.1 for details). The effective ADDR field defines the
store plane address, and the effective INT field is discarded.

Notes

See notes for the SIC instruction

Possible run-time program errors

A run-time error will occur if the effective ADDR value is outside the range defined by the DAP
program block.

Example

SIQPCS SPLANE (M4) ! SET EACH BIT OF SPLANE (M4)
! THAT CORRESPONDS TO A ’ONE’ BIT IN
! THE A PLANE TO THE SUM OF THE
! CORRESPONDING BITS OF ITSELF AND
! THE C PLANE. LEAVE OTHER BITS OF
! SPLANE (M4) UNCHANGED.
|

! IRRESPECTIVE OF THE VALUE OF BITS

! IN THE A PLANE, SET ALL BITS IN THE

! Q PLANE TO THE SUMS OF CORRESPONDING
! BITS ORIGINALLY IN PLANES C AND

| SPLANE (M4).

APAL Language) man005.03 353

354 Appendix F: APAL instructions

SIQPQS SIQPQS

Function

SIQPQS adds corresponding bits of a store plane and the Q plane, putting the sum in the Q plane.
It also puts the sum in the store plane, under activity control (see section 1.6 for details).

Carry bits are discarded.

Syntax
SIQPQS <plane><modifier>7<step>?

where <plane>, <modifier>, and <step> together form a store plane address (see section 7.3.3
for details).

Addressing mode

Mode A addressing is used (see section 7.1.1 for details). The effective ADDR. field defines the
store plane address, and the effective INT field is discarded.

Notes

See notes for the SIC instruction

Possible run-time program errors

A run-time error will occur if the effective ADDR value is outside the range defined by the DAP
program block.

Example

SIQPQS 12 ! SET EACH BIT OF PLANE 12 THAT
! CORRESPONDS TO A *ONE’ BIT IN
! THE A PLANE TO THE SUM OF THE
! CORRESPONDING BITS IN PLANE 12
! AND THE Q PLANE. LEAVE OTHER BITS
! IN PLANE 12 UNCHANGED.
1
! IRRESPECTIVE OF THE VALUE OF THE
! BITS IN THE A PLANE, SET ALL BITS
! OF THE Q PLANE WITH THE SUMS OF
! THE CORRESPONDING BITS ORIGINALLY
! IN ITSELF AND PLANE 12.

354 man005.03 AMT

355

SKIP SKIP

Function

SKIP skips (that is, ignores) the next instruction if one or all bits of a specified MCU register or
the edge register have a certain value, or if the CARRY or V flag has a certain value.

Syntax

SKIP <MCU-or-edge-register>.<bit number><modifier>?<step>7<truth value>
SKIP <MCU-or-edge-register> ALL <truth value>

SKIP <MCU-or-edge-register> ANY <truth value>

SKIP C <truth value>

SKIP V <truth value>

where<MCU-or-edge-register>, <bit number>, <modifier>, and <step> together form a register
bit address (see section 7.3.4 for details).

<truth value> x=0|1|T|F

The truth values 0 and F are equivalent, as are the values 1 and T.

Addressing mode

Mode A addressing is used for the form of SKIP first in the list above (see section 7.1.1 for details).
The effective INT field defines the bit number of the MCU register or the edge register, and the
effective ADDR field is discarded. The other forms of SKIP do not use addressing,.

Notes

1 MCU-or-edge-register specifies the value in the MCUR field of the instruction which specifies
the register whose bit(s) are to be tested by this instruction

2 bit-number specifies the value in the INT field of the instruction which is used to construct
the effective INT value

3 modifier specifies the value in the MOD field of the instruction which specifies the modifier
register to be used, if any. If modifier is omitted, the MOD field is set to zero

4 step specifies the value in the INCREMENT/DECREMENT field of the instruction, which
specifies how the bit number is to be stepped if the instruction appears inside an APAL DO
loop

5 The first form of SKIP tests an individual bit of an MCU register or of the edge register. If
the bit specified by the effective INT field has the same value as truth value, then the next
APAL instruction is skipped

6 If an individual MCU register bit is being tested, then the effective INT field modulo 32 is
used; if an individual bit in the edge register is being tested, then the full effective INT field
is used

APAL Language man005.03 355

356 Appendix F: APAL instructions

SKIP SKIP

Notes ~ continued

7 If SKIP ALL is specified, then the next instruction is skipped only if all bits in the specified
register have the same value as truth value

8 If SKIP ANY is specified, then the next instruction is skipped if any bits in the specified
register have the same value as truth value

9 If SKIP C is specified, then the next instruction is skipped if truth value and the CARRY
flag have the same value; the CARRY flag is not changed by SKIP C

10 If SKIP V is specified, then the next instruction is skipped if truth value and the V flag have
the same value; the V flag is not changed by SKIP V

11 If SKIP is the last instruction in a DO loop, the effect is undefined

Possible run-time program errors

None
Examples
SKIP M4.12 F ! SKIP THE NEXT INSTRUCTION IF BIT 12
! OF M4 IS ZERO.
SKIP ME.3(M5) 1 ! SKIP THE NEXT INSTRUCTION IF BIT
! (3 + INT FIELD OF M5) OF ME IS .TRUE.
SKIP M1 ALL 0 ! SKIP THE NEXT INSTRUCTION IF EVERY BIT
!'OF M11S0.
SKIP M4 ANY T ! SKIP THE NEXT INSTRUCTION IF ANY BIT
! OF M4 1S 1.
ADD M1 M2 ! SKIP THE NEXT INSTRUCTION IF THERE WAS
SKIP C F ! NO CARRY-OUT OF THE MOST SIGNIFICANT BIT
! POSITION IN THE ADD INSTRUCTION
ADD M1 M2 ! SKIP THE NEXT INSTRUCTION IF THERE WAS
SKIP V F ! NO OVERFLOW IN THE ADD INSTRUCTION

356 man005.03 AMT

357

SQ SQ

Function

The SQ instruction copies the Q plane into a given store plane.

Syntax
SQ <plane><modifier>?<step>?

where <plane>, <modifier>, and <step> together form a store plane address (see section 7.3.3
for details).

Addressing mode

Mode A addressing is used (see section 7.1.1 for details). The effective ADDR field defines the
store plane address, and the effective INT field is discarded.

Notes

1 plane specifies the value in the ADDR field of the instruction, which is used to construct the
effective ADDR value

2 modifier specifies the value in the MOD field of the instruction which specifies the modifier
register to be used, if any

3 step specifies the value in the INCREMENT/DECREMENT field of the instruction, which
specifies how the store plane address is to be stepped if the instruction appears inside an
APAL DO loop

Possible run-time program errors

A run-time error will occur if the effective ADDR. value is outside the range defined by the DAP
program block.

Example

SQ 22 (M) (+) ! SET EACH BIT OF STORE PLANE
. ! 22 + (ADDR FIELD OF M6) + i
| (WHERE i IS THE DO LOOP ITERATION NUMBER)
! TO THE CORRESPONDING BIT OF THE Q PLANE.

APAL Language man(005.03 357

358 Appendix F: APAL instructions

SQ_AQ SQ_AQ

Function

SQ_AQ is a compound instruction. It copies the Q plane into a given store plane and into the A
plane.

Syntax
SQ.AQ <plane><modifier>?<step>?

where <plane>, <modifier>, and <step> together form a store plane address (see section 7.3.3
for details).

Addressing mode

Mode A addressing is used (see section 7.1.1 for details). The effective ADDR field defines the
store plane address, and the effective INT field is discarded.

Notes

See notes for the SQ instruction

Possible run-time program errors

A run-time error will occur if the effective ADDR value is outside the range defined by the DAP
program block.

Example

SQ.AQ 0 (Ms) ! SET EACH BIT OF STORE PLANE (ADDR FIELD
' ! OF M6) AND THE A PLANE TO THE CORRESPONDING
! BIT OF THE Q PLANE. ’

358 man005.03 AMT

359

SQ_CQ SQ_CQ

Function

SQ_CQ is a compound instruction. It copies the Q plane into a given store plane and into the C
plane.

Syntax
SQ_CQ <plane><modifier>7<step>7

where <plane>, <modifier> and <step> form a store plane address (see section 7.3.3 for details).

Addressing mode

Mode A addressing is used (see section 7.1.1 for details). The effective ADDR field defines the
store plane address, and the effective INT field is discarded.

Notes

See notes for the SQ instruction

Possible run-time program errors

Example

SQ_CQ 10 ! SET EACH BIT OF PLANE 10 AND
! THE C PLANE TO THE CORRESPONDING BIT OF
! THE Q PLANE

APAL Language man005.03 359

360 Appendix F: APAL instructions

SQ_QC 5Q_QC
sg_ch SQ_QCN
Function

5Q_QC is a compound instruction. It copies the Q plane into a given store plane and then copies
the C plane into the Q plane.

SQ_QCN copies the Q plane into a given store plane, then copies the inverse of the C plane into
the Q plane.
Syntax

SQ_QC <plane><modifier>?<step>?
SQ_QCN <plane><modifier>?<step>?

where <plane>, <modifier>, and <step> together form a store plane address (see section 7.3.3
for details).

Addressing mode

Mode A addressing is used (see section 7.1.1 for details). The effective ADDR. field defines the
store plane address, and the effective INT field is discarded.

Notes

See notes for the SQ instruction

Possible run-time program errors

A run-time error will occur if the effective ADDR value is outside the range defined by the DAP
program block.

- Example

SQ_QC SPLANE (M2) (-) ! SET EACH BIT OF STORE PLANE
! SPLANE (M2) - i (WHERE i IS THE DO LOOP
! ITERATION NUMBER) TO THE CORRESPONDING
! BIT OF THE Q PLANE.
1
! THEN SET EACH BIT OF THE Q PLANE TO
| THE CORRESPONDING BIT OF THE C PLANE.

360 man005.03 AMT

361

SQ_QF SQ_QF
Sg_gT SQ_QT
Function

SQ_QF is a compound instruction. It copies the Q plane to a given store plane then sets every bit
of the Q plane to zero.

SQ_QT copies the Q plane to a given store plane, then sets every bit of the Q plane to one.

Syntax

SQ_QF <plane><modifier>?<step>?
SQ_QT <plane><modifier>7<step>?

where <plane>, <modifier>, and <step> together form a store plane address (see section 7.3.3
for details)

Addressing mode

Mode A addressing is used (see section 7.1.1 for details). The effective ADDR field defines the
store plane address, and the effective INT field is discarded.

Notes

See notes for the SQ instruction

Possible run-time program errors

A run-time error will occur if the effective ADDR value is outside the range defined by the DAP
program block.

Example

SQ_QT SPLANE (M5-) ! SET EACH BIT OF STORE PLANE
! SPLANE (M5) - i (WHERE i IS THE DO LOOP
! ITERATION NUMBER) TO THE CORRESPONDING
! BIT OF THE Q PLANE.
!

! THEN SET EACH BIT OF THE Q PLANE TO ONE.

APAL Language man005.03 361

362 Appendix F: APAL instructions

SR SR
SRN SRN
Function

SR copies the R plane into a given store plane.

SRN copies the inverse of the R plane into a given store plane.

Syntax

SR <MCU-or-edge-register><plane><modifier>7<step>?
SRN <MCU-or-edge-register><plane><modifier>?<step>?

where <plane>, <modifier>, and <step> together form a store plane address (see section 7.3.3
for details).

Addressing mode

Mode A addressing is used (see section 7.1.1 for details). The effective ADDR field defines the
store plane address, and the effective INT field is discarded.

Notes
lto4 See notes for the SQ instruction

5 MCU-or-edge-register specifies the value in the MCUR field of the instruction which
specifies the register that is used to form the R plane (see section 6.2 for details)

Possible run-time program errors

A run-time error will occur if the effective ADDR value is outside the range defined by the DAP
program block.

Example

SR ME SPLANE (M2) ! SET EACH ROW OF STORE PLANE SPLANE (M2)
! TO THE CONTENTS OF THE EDGE REGISTER.

362 man005.03 AMT

363

STOP STOP

Function

STOP is a pseudo instruction that causes the DAP program and its associated host program to
be abandoned, and a message to be output via the run-time support system; it is one of several
instructions (PAUSE, STOP and TRACE) that the assembler encodes as particular cases of the
CALL instruction. STOP is normally used to indicate error or exception conditions. For further
details see DAP Series: Program Development.

Syntax

STOP <error number>?

where <error number> ::= <numval>

Notes

1 error-number must be in the range 1 to 262,143

2 error-number is printed as part of the message output by the run-time support system when
STOP is obeyed

3 STOP causes a user defined APAL error. To generate a non-error exit, the EXIT instruction
should be used. An EXIT in the top level DAP subroutine will cause return to the calling
host program. See chapter 9 for further details

Possible run-time program errors

None.

Example

STOP 2000 ! ABANDON THE PROGRAM, REPORTING THE USER
! DEFINED APAL ERROR NUMBER OF 2000.

APAL Language man005.03 363

364 Appendix F: APAL instructions

SUB SUB

Function

SUB subtracts one MCU register from another. It also assigns the CARRY and OFLO flags.

Syntax
SUB <MCU-register-1><MCU-register-2>
where

<MCU-register-1> ::= <MCU-register>
<MCU-register-2> ::= <MCU-register>

Notes

1 MCU-register-1 specifies the value in the MCUR field of the instruction, which specifies both
the register containing the first operand and the register to contain the result

2 MCU-register-2 specifies the value in the MOD field of the instruction, which specifies the
register containing the second operand

3 The CARRY and OFLO flags are assigned as described in section 1.10

Possible run-time program errors

None.

Example

SUB M3 M4 ! LOAD M3 WITH M3 - M4. SET THE CARRY FLAG
IF M3 >= M4

WMA —anINE N2 R a2l

365

SUBC SUBC

Function

SUBC subtracts one MCU register from another, using the CARRY flag as the inverse of borrow-in
at the least significant bit. It also assigns the CARRY and OFLO flags.

Syntax

SUBC <MCU-register-1><MCU-register-2>

where

<MCU-register-1> ::= <MCU-register>
<MCU-register-2> 1= <MCU-register>

Notes

1 MCU-register-1 specifies the value in the MCUR field of the instruction, which specifies both
the register containing the first operand and the register to contain the result

2 MCU-register-2 specifies the value in the MOD field of the instruction, which specifies the
register containing the second operand

3 The CARRY and OFLO flags are assigned as described in section 1.10

Possible run-time program errors

None.
Example
SUB M2 Mi0 ! SUBTRACT THE 64-BIT NUMBER IN REGISTER
SUBC M3 M12 ! PAIR M10 AND M12 FROM THE 64-BIT NUMBER
! IN REGISTER PAIR M2 AND M3. PUT THE RESULT
! IN M2, M3

APAL Language man005.03 365

366 Appendix F: APAL instructions

SUBH SUBH

Function

SUBH subtracts a literal from an MCU register. It also assigns the CARRY and V flags.

Syntax
SUBH <MCU-register><literal 16>

where <literal_16> is defined in section 6.1.7.

Notes

1 MCU-register specifies the value in the MCUR field of the instruction which specifies both
the register containing the first operand and the register to contain the result

2 literal 16 specifies the value in the LITERAL field. To form the second operand, the bit
pattern representing the value is expanded to 32 bits with leading zeros (see section 6.1.7 for
details for more details)

3 The CARRY and OFLO flags are assigned as described in section 1.10

Possible run-time program errors

None

Example

SUBH M1 #FF ! LOAD M1 WITH M1-#000000FF. SET THE CARRY FLAG
! IF M1 >= #FF
1

! SET V IF M1 CHANGES FROM NEGATIVE TO POSITIVE

366 man005.03 AMT

367

SUBHC SUBHC

Function

SUBHC subtracts a literal from an MCU register, using the CARRY flag as the inverse of borrow-in
at the least significant bit. It also assigns the CARRY and OFLO flags.

Syntax
SUBHC <MCU-register><literal 16>

where <literal 16> is defined in section 6.1.7.

Notes

1 MCU-register specifies the value in the MCUR field of the instruction which specifies both
the register containing the first operand and the register to contain the result

2 literal 16 specifies the value in the LITERAL field. To form the second operand, the bit
pattern representing the value is expanded to 32 bits with leading zeros (see section 6.1.7 for
details for more details)

3 The CARRY and OFLO flags are assigned as described in section 1.10

Possible run-time program errors

None

Example

SUBH M5 27 ! SUBTRACT THE LITERAL VALUE 27 FROM THE
SUBHC M4 0 ! 64-BIT NUMBER HELD IN THE REGISTER PAIR

! M4, M5. PUT THE RESULT IN M4, M5

APAL Language man005.03 367

368 Appendix F: APAL instructions

TRACE TRACE

Function

TRACE suspends the execution of an APAL program temporarily, while it outputs the contents
of the requested registers and array store locations.

Syntax

TRACE<trace_number>?<registers_trace_item><trace_level><newline> |
TRACE<trace_number>?<registers_trace.item>?<tracelevel><array.store_trace_itern><newline>

where:

<array.store.trace_item> ::= <word><modifier>?<trace_count>? WORDPACK?<type/size>?|
<word><modifier>?<trace_count>? ROWPACK< type/size>?
<start_bit>?|
<word><modifier>?<trace_count>? VERTICAL<type/size>?
<row_range>7<col_range>?
<word><modifier>?<trace_count>? VERTICAL<type/size>?
<colrange>?<row_range>?

Notes

1 <trace.number> is a number that will be printed at the head the TRACE output; it defaults
to the line number of the TRACE statement, as given in the listing of the APAL source code
containing the TRACE statement

2 <registers_trace.item> specifies which of the registers are to be TRACEd. Options are MER
(the contents of the MCU and edge registers); PER (the A, Q and C planes of the PEs); or
MER PER or PER MER (both have the same effect: PER then MER)

3 <tracelevel> has the form ‘LEVEL <numval>’, where <numval> is in the range 1 to 15.
The assembler will not generate code for a TRACE statement if <trace_level> exceeds the
‘assembly-trace-level’ parameter; an assembled TRACE statement will not generate output
if <trace_level> exceeds the ‘run-time-trace-level’ parameter

4 <tracecount> is a number specifying the number of store items to be TRACEd; the default
is 1. Where WORDPACK or ROWPACK is specified, each item TRACEd is one scalar
value; where VERTICAL, each item is a matrix of values

5 <type/size> specifies the way in which the items to be TRACEd are to be assumed to
be mapped in memory (options are HEX, INT, REAL, CHAR and BIT, with a default of
HEX), and the assumed size in bits of the item, with a default of 32; <size> takes the form
(numval). Neither <type> nor <size> is required; <type> can be specified without <size>,
but not vice versa

6 <start.bit> specifies an offset in bits from the start (MSB) of the row, of the data item(s)
to be TRACEd, and takes the form ‘FROM.BIT <numval>’. The default is such that each
item is assumed to be ‘right aligned’ in its row; for example, in code to run on a DAP 600,
if <type/size> is CHAR (24), then the default for <start_bit> is 40

368 man005.03 AMT

369

TRACE TRACE

Syntax — continued

7 <row.range> specifies the range of rows (or part rows) to be TRACEd, and takes the form
‘ROWS (<numval>,<numval>)’, where <numval> is in the range 0 to ES — 1; it defaults
to all rows

8 <colrange> specifies the range of columns (or part columns) to be TRACEd, and takes
the form ‘COLS (<numval>,<numval>)’, where <numval> is in the range 0 to ES — 1; it
defaults to all columns

See chapter 8 for more details.

Addressing mode
A reduced form of Mode C addressing is used to specify the array store items to be TRACEd:

<word><modifier>? specifies the starting address in store of the item(s). If <modifier> is
present, then the contents of the modifier register (one of M1 to M7) are addded to the word
address, and the resultant sum used to define the starting word address.

If ROWPACK or VERTICAL format is specified, then TRACEing starts respectively at the row
or plane containing that starting word address (modified by any FROM_BIT or COLS/ROWS
values, if specified)

See chapter 8 for more details.

Possible run-time program errors

A run-time error will occur if the effective ADDR value is outside the range defined by the DAP
program block.

See the next page for examples of TRACE.

‘APAL Language man005.03 369

370 Appendix F: APAL instructions

TRACE TRACE

Examples

MYDATA = 25.34.1 '

TRACE 2 LEVEL 10 MYDATA #100 WORDPACK HEX (8)

! OUTPUT TRACE REPORT NUMBER 2, IF TRACES OF
! LEVEL 10 OR LOWER ARE REQUIRED.

! THE DATA ITEMS TO BE TRACED START AT
! THE LOCATION LABELLED "MYDATA’

! (PLANE 25 ROW 34 WORD 1);

! 100 (IN HEX) DATA ITEMS WILL BE TRACED.

! EACH DATA ITEM IS PACKED (RIGHT JUSTIFIED)
! INTO A WORD; IS PRINTED IN HEX FORMAT; IS TAKEN
! FROM THE LEAST SIGNIFICANT 8 BITS OF THE WORD.

TRACE 6 MER PER LEVEL 3 MYDATA (M5) VERTICAL CHAR (8) ROWS(0,3) COLS(0,5)

! OUTPUT TRACE REPORT NUMBER 6, IF TRACES
! OF LEVEL 3 OR LOWER ARE REQUIRED. TRACE
! THE MCU, EDGE AND PE REGISTERS, AND STORE ITEMS.

! THE STORE ITEMS TO BE TRACED START AT

! LOCATION LABELLED "MYDATA’, MODIFIED BY THE

! CONTENTS OF M5; THAT IS AT THE PLANE GIVEN BY THE
! ADDR COMPONENT OF (25.34.1 + CONTENTS OF MS5).

! 1ITEM ONLY WILL BE OUTPUT,; IT IS ASSUMED TO BE

! HELD IN VERTICAL FORMAT, TO BE OF TYPE CHARACTER,
! AND TO BE A SERIES OF SINGLE CHARACTERS:

! THE 24 CHARACTERS STORED IN THE AREA BOUNDED

! BY ROWS 0 TO 3 AND COLUMNS 0 TO 5 OF THE

! SELECTED 8 PLANES ARE TRACED.

370 man(005.03 AMT

371

WF WEF

Function

WTF sets every bit in a specified word of store to zero.

Syntax
WF <word><modifier>?<step>?

where <word>, <modifier>, and <step> together form a store word address (see section 7.3.3 for
details).

Addressing mode

Mode C addressing is used (see section 7.1.3 for details for details). The effective ADDR, INT and
(where applicable) WORD fields together define the store word address.

Notes

1 word specifies the values in the ADDR, INT and WORD fields of the instruction, which are
used to construct the effective ADDR, INT and WORD values

2 modifier specifies the value in the MOD field of the instruction which specifies the modifier
register to be used, if any

Possible run-time program errors

A run-time error will occur if the effective ADDR value is outside the range defined by the DAP
program block.

Example

WF 18.4 ! SET WORD 4 OF STORE PLANE 18 TO ALL ZEROS

APAL Language man005.03 371

372 Appendix F: APAL instructions

WR WR
WRN WRN
Function

WR. copies a given MCU register into a given store word.

WRN copies the inverse of a given MCU register into a given store word.

Syntax

WR <MCU-register><word><modifier>?<step>?
WRN <MCU-register><word><modifier>?<step>?

where <word>, <modifier>, and <step> together form a store word address (see section 7.3.3 for
details).

Addressing mode

Mode C addressing is used (see section 7.1.3 for details for details). The effective ADDR, INT and
(where applicable) WORD fields together define the store word address.

Notes

1 word specifies the values in the ADDR, INT and WORD fields of the instruction, which are
used to construct the effective ADDR, INT and WORD values

2 modifier specifies the value in the MOD field of the instruction which specifies the modifier
register to be used, if any

3 MCU-register specifies the value in the MCUR field of the instruction which specifies the
register to be copied

Possible run-time program errors

A run-time error will occur if the effective ADDR value is outside the range defined by the DAP
program block.

Example

WR M4 28..10 (-) ! COPY THE CONTENTS OF M4 INTO THE WORD

! WHOSE ADDRESS IS 28*ES™ 4 10 - i, WHERE
! i 1S THE DO LOOP ITERATION NUMBER

372 man005.03 AMT

373

XAN XAN

Function

XAN sets a specified row of store to the inverse of the corresponding row of the A plane.

Syntax
XAN <row><modifier>7<step A>?

where <row>, <modifier>, and <step A> together form a store row address (see section 7.3.3 for
details).

Addressing mode

Mode B addressing is used (see section 7.1.2 for details). The effective ADDR field and the effective
INT field together define the store row address.

Notes

1 row specifies the values in the ADDR and INT fields of the instruction, which are used to
construct the effective ADDR and INT values

2 modifier specifies the value in the MOD field of the instruction which specifies the modifier
register to be used, if any

3 step A specifies the value in the INCREMENT/DECREMENT field of the instruction, which
determines whether the data address is to be incremented or decremented if the instruction
appears in an APAL DO loop. step A also specifies the value in the STEP TYPE field of
the instruction, which determines whether the INT or ADDR part of the address is to be
stepped

Possible run-time program errors

A run-time error will occur if the effective ADDR value is outside the range defined by the DAP
program block.

Example

XAN 129 (M4) ! SET ROW 9 + (INT FIELD OF M4) OF STORE PLANE
! 12 + (ADDR FIELD OF M4) + CARRY-OUT OF INT FIELD
! TO THE CORRESPONDING ROW OF THE INVERSE OF
! THE A PLANE

APAL Language man005.03 373

374 Appendix F: APAL instructions

XF XF

Function

XF sets every bit in a specified row of store to zero.

Syntax

XF <row><modifier>7<step A>?

where <row>, <modifier>, and <step A> together form a store row address (see section 7.3.3 for
details).

Addressing mode

Mode B addressing is used (see section 7.1.2 for details). The effective ADDR field and the effective
INT field together define the store row address.

Notes

See notes for the XAN instruction

Possible run-time program errors

A run-time error will occur if the effective ADDR value is outside the range defined by the DAP
program block.

Example

XF 18.4 ! SET ROW 4 OF STORE PLANE 18 TO ALL ZEROS

374 man005.03 AMT

375

XIC XIC

Function

XIC sets a given store row to the corresponding C plane row, under activity control (see section
1.6 for details).

Syntax

XIC <row><modifier>7<step A>?

where <row>, <modifier>, and <step A> together form a store row address (see section 7.3.3 for
details).

Addressing mode

Mode B addressing is used (see section 7.1.2 for details). The effective ADDR field and the effective
INT field together define the store row address.

Notes
1to3 See notes for the XAN instruction

4 The only bits of the store row that are updated are the ones corresponding to those bits
in the A plane that are true

Possible run-time program errors

A run-time error will occur if the effective ADDR value is outside the range defined by the DAP
program block.

Example

XIC SPLANE + 212 (M4) ! SET EACH BIT OF THE SELECTED
! STORE ROW TO THE CORRESPONDING BIT OF
! THE C PLANE, BUT ONLY WHEN THE
! CORRESPONDING BIT OF THE A PLANE IS TRUE
1
! THE STORE ROW ADDRESS IS CONSTRUCTED
! USING MODE B ADDRESSING

APAL Language man005.03 375

376 Appendix F: APAL instructions

XIF XIF

Function

XIF sets a given store row to zero, under activity control (see section 1.6).

Syntax

XIF <row><modifier>?<step A>?

where <row>, <modifier>, and <step A> together form a store row address (see section 7.3.3 for
details).

Addressing mode

Mode B addressing is used (see section 7.1.2 for details). The effective ADDR field and the effective
INT field together define the store row address.

Notes

See notes for the XIC instruction

Possible run-time program errors

A run-time error will occur if the effective ADDR value is outside the range defined by the DAP
program block.

Example

XIF 21.10 ! SET EACH BIT OF ROW 10 OF STORE PLANE 21
! TO ZERO WHEREVER THE CORRESPONDING BIT IN
! ROW 10 OF THE A PLANE IS ONE.

376 man005.03 AMT

377

XIPCQ XIPCQ

Function

XIPCQ sets a given store row to the corresponding row extracted from the sum of the C plane
and the Q plane, under activity control (see section 1.6 for details).

Syntax

XIPCQ <row><modifier>7<step A>?

where <row>, <modifier>, and <step A> together form a store row address (see section 7.3.3 for
details).

Addressing mode

Mode B addressing is used (see section 7.1.2 for details). The effective ADDR field and the effective
INT field together define the store row address.

Notes
1to3 See notes for the XAN instuction

4 The only bits of the store row that are updated are the ones corresponding to those bits
in the A plane that are true

Possible run-time program errors

A run-time error will occur if the effective ADDR value is outside the range defined by the DAP
program block.

Example

XIPCQ SPLANE + 2.12 (M4) ! SET EACH BIT OF A STORE ROW TO THE
! CORRESPONDING BIT OF THE EXCLUSIVE-OR OF
! THE C PLANE WITH THE Q PLANE, BUT ONLY
! WHERE THE CORRESPONDING BIT OF THE A PLANE
! IS TRUE.
]
! THE STORE ROW ADRESS IS CONSTRUCTED USING
! MODE B ADDRESSING.

APAL Language man005.03 377

378 Appendix F: APAL instructions

XI1Q XIQ

Function

XIQ sets a given store row to the corresponding Q plane row, under activity control (see section
1.6 for details).

Syntax

XIQ <row><modifier>?<step A>?

where <row>, <modifier>, and <step A> together form a store row address (see section 7.3.3 for
details).

Addressing mode

Mode B addressing is used (see section 7.1.2 for details). The effective ADDR field and the effective
INT field together define the store row address.

Notes

See notes for the XIC instruction

Possible run-time program errors

A run-time error will occur if the effective ADDR value is outside the range defined by the DAP
program block.

Example

XIQ SPLANE + 2.12 (M4) ! SET EACH BIT OF THE SELECTED
! STORE ROW TO THE CORRESPONDING BIT OF
! THE Q PLANE, BUT ONLY WHEN THE
! CORRESPONDING BIT OF THE A PLANE IS TRUE
|
! THE STORE ROW ADDRESS IS CONSTRUCTED
! USING MODE B ADDRESSING

378 man005.03 AMT

379

XQ ' XQ
Function

XQ sets a given store row to the corresponding Q plane row.

Syntax

XQ <row><modifier>7<step A>?

where <row>, <modifier>, and <step A> together form a store row address (see section 7.3.3 for
details).

Addressing mode

Mode B addressing is used (see section 7.1.2 for details). The effective ADDR field and the effective
INT field together define the store row address.

Notes

See notes for the XAN instruction

Possible run-time program errors

A run-time error will occur if the effective ADDR value is outside the range defined by the DAP
program block.

Example

XQ 184 ! SET ROW 4 OF STORE PLANE 18 TO
! CORRESPONDING ROW OF Q PLANE

APAL Language man005.03 379

380 Appendix F: APAL instructions

XR XR
XRN XRN
Function

XR copies a given MCU register or the edge register into a given store row.

XRN copies the inverse of a given MCU register or the edge register into a given store row.

Syntax

XR <MCU-or-edge-register><row><modifier>?<step A>?
XRN <MCU-or-edge-register><row><modifier>?<step A>?

where <row>, <modifier>, and <step A> together form a store row address (see section 7.3.3 for
details).
Addressing mode

Mode B addressing is used (see section 7.1.2 for details). The effective ADDR field and the effective
INT field together define the store row address.

Notes
1tob See notes for the XAN instruction

] MCU-or-edge-register specifies the value in the MCUR field of the instruction which

specifies the register to be copied
7

If an MCU register is specified then its value is extended on the left with zeros if necessary,
to make an ES-sized value. This value, or its inverse, is written to the row

Possible run-time program errors

A run-time error will occur if the effective ADDR value is outside the range defined by the DAP
program block.

Example

XR ME 28.10 ! SET ROW 10 OF STORE PLANE 28 TO
! THE CONTENTS OF THE EDGE REGISTER.

380 man005.03 - AMT

Index

{Index

381

There are no references in this index to appendix F. An instruction that is only mentioned in
Appendix F has no entry in the index; an instruction that is mentioned in appendix F and elsewhere

in the manual does not have an appendix F entry in the index.

A

A plane

Accessing a standard bit pattern
Activity control

Actual parameter

ADDR field

Address field

Addressing
construct
modes (A, B, C, D, E)

Alias
ALIGN: PLANE-ALIGN, ROW-ALIGN (data item)
ALTERNATE

APAL instruction
summary

keyword

mnemonics

module

program examples
format
structure

syntax

Areas of DAP 500 available to a code section

APAL Language man005.03

8, 51, 87, 175
93

3, 55, 59

132

49, 61

172

Ch 7 (p 61)
71
61

22
31
95

Ch 6 (p 47), App F (p 179)
51

15, App A (p 145)

145, App E (p 175)

21, 44

App C (p 151)

Ch 2 (p 13)

Ch 3 (p 21)

App D (p 161)

86

381

382

Arithmetic test

Array edge dimension
store

store address

Assembly-time expression
facilities
statement
values

variable
B

Basic integer
BINARY CHOP

Bit patterns, standard

C

C flag

plane
Calling‘ another code section
Calling a macro
"CALLNAME (macro)
"CALLPARAM (macro)

Carry propagation, in array

in address evaluation
Character set (ASCII)

Character values, format

internal representation
CODE
Code label

section

section contents
section convention
store

addresses

382 man005.03

Index

123

12
4
4, 29,61, 71, 72, 79, 172

103
Ch 11 (p 101)
164

101, 132, 163
15, 21, 104

16, 103
94

93

11
51, 87, App E (p 175)

87
131
88
89

50
63, 65, 68

13, App B (p 149)
24
37
43

15, 45, 75

Ch 5 (p 43), 170
44

Ch 9 (p 83)

3, 4

38, 51, 75, 172

AMT

Index 383

COLS 78
Column substitution 112
Column (array store). 4
Comment 19, 162
macro 142
COMMON area 28, 30
property 28, 30, 83
Compound statement App E (p 175)
Concatenation in substitutions 119
Conditional assembly 120, 141
Consolidator Input Format (CIF) 21, 22, 97
Continuation line - 19, 31
Controlling the output listing 98
COUNT field - 69, 71
CYCLE construct 140
Cyclic geometry 50, 68
D
DAP architecture Chl(pl)
array store 4
code store 4
Object Format (DOF) 21, 97
program 3, 83, 90
block 6, 21, 23, 27, 39, 51,
71
example App C (151)
property 23
code section 44, 90
data section 28, 87
— host transfer of control 90
DATA (data section) 28, 90

APAL Language man005.03 383

384

Data address
identity
label

mapping
section

declarations and identities
value
format
internal representation

—offset

Declaring an APAL module
a code section
a data section
an entry point
data

DEFINE (data identities)
Defining a macro

Derivation of APAL mnemonics
Diadic string test

DIRECTION field

DO statement, DO loop

DO loop stepping

E

Edge register

Effective value (modification)
ELSE, ELSE_IF, ELSE_IFN

END (code section)
(data identity)

(data section)

384 man005.03

Index

10, 39, 72, 93, 110, 112
15, 22, 37, 84, 85, 93, 169
29, 39, 46, 169

6

8, 22, 23, Ch4 (p 27), 46,
71, 83, 87, 93, 169

- Ch4(p27)

79
16
35
30

21
43
27
44
29

39
127

App E (p 175)
123

50, 68, 71

10, 11, 45, 48, 49, 59, 62,
72

72

10, 12, Ch 6 (p 47), 63, 71,
74, 77, 87, 175

11, 69, 75
121

44, 46
39
28, 29

AMT

Index

ENDMODULE

ENTRY (code section)
Entry and exit conventions
Entry point |
'EPILOGUE (macro)
ERASE statement

Escape character

Example APAL program

EXIT statement

Explicit concatenation
Expression substitution

External identifier

F

File include statement
Format of data value

FORTRAN-PLUS (link with APAL)

Free name space

G

GEOMETRY field
Geometry

Global data identity

identifier

H

Hexadecimal value

internal representation

APAL Language man005.03

385

22

44

84

45

85

131

14, 18, 102, 116
App C (p 151)

10, 49, 59, 62, 69, 71, 76,
91

119
109

23

21, 84, 89, 90, 93, 97
16

1, 36, 44, 83, 85, 87, 90,
91

86, 87, 98

50, 68
68, 70, 172

22, 23, 39
23

16, 18, 29, 31, 50, 80, 103,
123

36

385

386

HOST property, code section

data section

Host connection unit (HCU)
machine

program

Host-DAP transfer of control

transfer of data

I

Identifier

IF construct

Implicit concatenation

Incorporating source from an alternate file
INCREMENT/DECREMENT field

Instruction field
modification

set
INT field .

Integer values

internal representation

J

J statement

JE statement
JESL statement
JSL statement

Jump

K

Keyword

386 manN& N2

Index

44, 90
28

3
1
3, 28, 44, 83, 90, 91

90, 151
90, 151

15, 19, 23, 27, 29, 38, 43,
45, 46, 168

121
119
97
49

47, 172
10, 69
51, App F (p 179)

11, 49, 62,70, 79

16, 80, 136, 141, 168
35

10, 49, 69, 71, 75, 85
10, 49, 69
71, 76, 91

71, 75

48, 51, 75, 85

15, App A (p 145)

AMNETY

Index

L

Label

Lea.ving a macro
Length substitution
LIST statement
LITERAL field
Literal

Local data identity
Local identifier
LOWER.TRI

M

Macro

body
comment
header

parameter

substitution
variable
standard

statement .

Master Control Unit (MCU)
register

bit address
statements executed by MCU

Matrix mode

MCUR field

APAL Language man005.03

387

45

134

117

98.

50

6, 50, 172
23, 39

23

96

15, 21, 23, 84, 85, 87, 91,
93, 98, 101, Ch 12 (p 127),
166

128
128, 142, 166
127, 128, 166

15, 23, 102, 108, 113, 117,
127

132

15, 23, 102, 107, 113, 138
84

107, 127

3, 8, 10, 47, 48, 59, 61,
62, 63

8, 10,11, 12, 48, 49, 51,
63, 69, 71, 73, 77, 87, 88

74
47

6, 82

48

387

388

MEND statement

MER

MEXIT statement

Miscellaneous facilities

MIXED (code section)

Mixed section

MOD field

Mode A, B, C, D, E, F (address or value generation)
MODULE

Modification

Modifier register

format
Module, APAL
Monadic string test
MQUIT statement
MSET statement -

MVAR statement

N

Name property
NOTE statement

Number representation

o

OPERATION field
Orthogonal R plane

Output listing

388 man(005.03

Index

128, 134, 137, 143
7

135

Ch 10 (p 93)

45

15, 22, 23, 39, 43, 45, 170
49

61

22

49, 65, 69, 70

10, 11, 12, 40, 64, 66, 68,
69, 71

69
21, 44, 168
123, 164

128, 135

128, 139

138, 166

27, 44, 45, 46
99

8

48

51

98

AMT

Index

P

Parameter association (macros)
substitution (macros)

template (macros)
Parametric call
'PARBASE
Passing data between host and DAP

PE
array (or matrix)

register plane
PER
PLANE (data item)

Plane geometry

substitution

Processor element (see also PE)

functions
"PROLOGUE (macro)

Protected character

string

Pseudo instruction (or statement)

Q

Q Plane

R

R plane

RAC statement
RACE statement
RAPL statement

RAR statement

APAL Language man005.03

132
135
129, 132

88
87

90

3, 4, 8, 10, 47, 48, 51

3, 6, 10, 48, 51

51, 52, 77, 87
77

31, 110

50, 68

107, 110, 162

3, 4, 8 (see also PE)

8
84, 86, 87, 88

102
103, 136

52, 58, 70, 73

8, 51, 87, 175

51

71, 75
71, 75
70, 73

70

389

389

390

RASC statement
RAW statement
RAWD statement
RAX statement
RDGC statement

Real values ;

internal representation
Repeated substitution
REPEAT statemeﬁt
Requesting stack space
ROW (data item)

Row substitution

(array store)
ROWPACK
ROWS

S

Scope of identifier
Section substitution
SET statement
Shift instruction
'SHUFFLE
Signifier character
SKIP statement
STACK statement
STEP TYPE field
Store address

Store plane

String

390

maniiNs N2

Index

70, 73
70, 88
70
70, 87
70

17, 29, 31, 80, 168

35
118, 162
140, 143
97

31, 111
111, 162
4

28, 29, 30, 169

77
23, 46
110, 162

106, 125, 139, 164
48, 49

96

18

10, 85

86, 97

49

37, 39, 72, 75

6, 30, 39, 48, 61, 65, 86,
172

102

ARET

Index

Substitution
Substring substitution
Synonym

Syntax

System variable

T
TRACE statement
level number
output:
ROWPACK format
VERTICAL format
WORDPACK format

Trace items
Tracing facilities
"TRAIL.DIAG

Transfer of control

U

"UD_BASE
"UNIT_DIAG
Unprotected string
"UNSHUFFLE

UNTIL statement

A\

V-flag

Values

VAR statement

Variable substitution

APAL Language man005.03

391

106, 162
113, 114, 162
22

App D (p 161)

15, 107, 162
77, 171

7

77, 79, 81
77, 79, 81
77, 79, 81, 82
77, 79, 171
Ch 8 (p 77)

95

90

94

94

102, 116

96

140, 141

11

168

105, 138, 164

105, 107, 136, 162

391

392 Index
Vector add 49, 50, 59, 68
mode 6
VERTICAL format output from TRACE 77, 79, 81, 82
W
WHILE statement 140, 141, 167
WORDPACK 27, 29, 30, 169
WORD statement 29, 31, 112, 162

Word address

substitution
Workspace

WRITE property

F#include

392

66
112, 162

86

27, 29, 90, 169

21, 84, 89, 90, 93, 97

man005.03 AMT

