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Chapter 1

Introduction

1.1 Background

The General Support subroutine library was developed at Queen Mary College (QMC) in London
and is jointly owned by AMT and QMC. The library is a set of 93 routines which can be called
from FORTRAN-PLUS. The contents of the library are based on those of the DAP Fortran library
at QMC, which grew in response to user requests for specific routines. The routines were provided
by members of the DAP Support Unit (DAPSU) at QMC, or were written at the suggestion of
DAPSU members, or were submitted by users themselves. Many of the algorithms used by these
routines have been in regular use on a first generation DAP at QMC since 1980.

1.2 Arrangement of Documentation

The routines described in this manual are classified by chapter, arranged in a NAG-like manner,
covering such areas as solution of linear equations, Fourier transforms, and so on. The next chapter
in this manual provides a full listing of the contents of the library, chapter by chapter, and gives
a brief description of the area covered by each routine.

1.3 Validation

Before being added to the library all routines undergo validation tests, designed and written at
DAPSU. These tests have been collected together in a validation suite, which is used to check
installation of the library.

General Support library man010.02 1



1.4 FULL-FORM DOCUMENTATION Introduction

1.4 Full-form Documentation

The full description of each routine has eleven sections, covering the following areas:

1 Purpose
Specification
Description
References
Arguments

Error Indicators
Auxiliary Routines

Accuracy

SoREe R T > T | R O UL )

Further Comments

[y
o

Keywords

-y
—

Example

1.4.1 Purpose

The purpose of the routine is given, and where relevant, details of the area covered by the routine.

1.4.2 Specification

The calling sequence to be used when you invoke the routine. If the routine is written in FORTRAN-
PLUS, Specification gives the declaration statements at the head of the routine; if the routine is
written in APAL, the equivalent statements are given.

1.4.3 Description

The description of the algorithm used by the routine is given.

1.4.4 References

Any references used in connection with the routine are given.

1.4.5 Arguments

The significance of each argument used by the routine is explained.

2 man010.02 AMT



Introduction 1.5 ACCESS TO THE LIBRARY

1.4.6 Error Indicators

The significance of any error indicators returned by the routine is explained.

1.4.7 Auxiliary routines ‘

The names of any auxiliary routines used by the routine are given. The auxiliary routines are kept
in the same library as the subroutine library routines but are not, in general, available to users.

1.4.8 Accuracy

Some indication is given of the expected accuracy of any result returned by the routine as a result
of the method used to calculate it. No information is given about results with respect to the
word length used; for such information have a look at the routines in chapter 12 (X02 — Machine
constants).

1.4.9 Further Comments

Any information which does not fall under any other heading is included here.

1.4.10 Keywords

This section is intended for use with an information retrieval system and gives a list of sub jects to
which the operation of the routine may be relevant.

1.4.11 Example

An example program is given (both Host and DAP programs) for each of the routines, showing
the use of the routine and any expected results.

WARNING

You should follow closely the specification of the calling sequence given in section 2 of the details
of each routine in the following chapters, otherwise you may get unexpected results.

1.5 Access to the Library

The subroutine library is linked in at the consolidation stage of the compiling process. For more
details than are included below, see the relevant AMT publication: Program Development Under
UNIX (man003), or Program Development Under VAX/VMS (man004).

General Support library man010.02 3



1.6 OTHER AMT SUBROUTINE LIBRARIES Introduction

1.5.1 Using the library under UNIX

The library resides within the UNIX system as:
/usr/lib/dap/sulib.dl

and you can use it in a call to dapa or dapf by rﬁeans of the -1 flag, as in:
dapf -o myfile.dd myfile.df -1 sulib

This call will compile the DAP section myfile.df, linking in any routines from the library and
produce a DOF file myfile.dd.

1.5.2 Using the library under VAX/VMS

The library resides within the VMS system as:
SYS$LIBRARY:GSLIB.DLB

and you can use it in a call to DLINK using the /LIBRARY qualifier, as in:
$ DLINK MYFILE,SYS$LIBRARY:GSLIB/LIBRARY

This call links the DAP object code in file MYFILE.DOB with any library routines you might
specify in your source code, producing an executable DAP program in file MYFILE.DEX.

Alternatively, you can use the DAP_LIBRARY logical name, as in:
$ DEFINE DAP_LIBRARY SYS$LIBRARY:GSLIB

This call will cause the library to be searched automatically in all subsequent DLINK operations.
If you use the library frequently, you may find it convenient to include the above line in your
LOGIN.COM file.. If there are several DAP users on your system, your system manager could
include the line:

$ DEFINE/SYSTEM DAP_LIBRARY SYS$LIBRARY:GSLIB

in the system startup command file, to give all users automatic access to the library.

1.6 Other AMT subroutine libraries

This General Support subroutine library forms one of a series of libraries available from AMT.
Other libraries include:

e Low level graphics library
e Signal processing library

o Image Processing library

details of which can be obtained from your local AMT representative.

4 man010.02 AMT




Chapter 2

GSLIB quick-reference catalogue

Listed below are the groups of subroutines in release 1 of GSLIB, the General Support subroutine
library, and the subroutines in each group; each group is allocated a chapter in this manual. Release
1 of the library is targetted at the DAP 500 series of machines, those with an edge size of 32.

You may find this chapter helpful in the initial selection of suitable routines for the job in hand.

Chapter 3: A03 — Variable precision arithmetic
1 AO3_ADD_PLANES_I1 adds bit planes together by performing an addition of .n

consecutive bits under each processing element. It returns the result of this addition as an
INTEGER*1 MATRIX. Any overflow past bit 7 is discarded and the result is given modulo
128.

Chapter 4: C06 — Summation of series, including fast Fourier
transformations

1 CO6_LFT_LV performs a one dimensional finite Fourier transform of 1024 complex
points.

2 CO6_LFT_ESS calculates the two dimensional discrete Fourier transform of 322 com-
plex points.

Chapter 5: FO1 — Matrix operations, including inversion

1 FO1_.G_MM performs a general matrix multiply of two matrices A and B where A is a
P by Q matrix and B is a Q by R matrix with P, Q and R in the range 1 to 32.

2 FO1_M_INV calculates, in place, the inverse of a given N by N matrix with N in the
range 1 to 32.

3 FOL_MM._STRASSEN uses Strassen’s algorithm to multiply two (partitioned) 642

matrices.

Chapter 6: F02 — Eigenvalues and eigenvectors

General Support library man010.02 5



GSLIB quick-reference catalogue

FO2_ALL_EIG_VALS_TD_LV finds all the eigenvalues of a symmetric tridiagonal

matrix of order up to 1024 using Sturm sequences.

FO2_ALL_EIG_VALS_TD_ES finds all the eigenvalues of a symmetric tridiagonal

matrix of order up to 32 using Sturm sequences.

FO2_EIG_VALS_TD_LV finds up to 32 selected eigenvalues of a symmetric tridi-
agonal matrix of order up to 1024 using Sturm sequences.

FO02_JACOBI -calculates the eigenvalues and eigenvectors of a real symmetric matrix.
The method is based on the classical Jacobi algorithm using plane rotations.

Chapter 7: F04 — Simultaneous linear equations

1

F04_BIGSOLVE solves large sets of linear equations. The maximum size of the system
depends on the size of the DAP store. The matrix of the coefficients of the equations is of
size SIZE by SIZE and the right hand side is assumed to be held in column SIZE-+1.
The whole matrix is held in the DAP partitioned in DAPSIZE blocks. This routine is
not recommended for systems of order 32 or less ~ in this case, you should use the routine
F04_.GIN.LE_ES.

‘FO4_GJI_NLE_ES solves for « the system of linear equations Az = b, where 4 is a

non-sparse matrix of order N (in the range 1 to 32), using the Gauss Jordan method.

FO04_QR_GIVENS_SOLVE solves for z the linear system Az = b, where A is an
N by N matrix with 2 < N < 33. The routine may be used to solve up to 32 different right
hand side vectors b simultaneously.

F04_TRIDS_ES returns the solution of a tridiagonal linear system of equations of
order up to 32. It finds vector z, where:

Mz=y

and M is a tridiagonal matrix.

F04_TRIDS_ES_SQ returns the solution of a set of up to 32 tridiagonal linear systems
of equations each of order up to 32. It solves up to 32 systems of the form:

Mz=y

where M is a tridiagonal matrix.

FO04_TRIDS_LV returns the solution of a tridiagonal linear system of equations of
order up to 1024. It finds vector z, where:

Mz=y

and M is a tridiagonal matrix.

Chapter 8: G0O5 — Random numbers

1

GO5_MC_BEGIN sets the basic generator routine Z-G05. MC.INT to an initial state.

man010.02 AMT




GSLIB quick-reference catalogue

2 GO5_MC_I4 returns an INTEGER*4 MATRIX containing 1024 pseudo-random integer
numbers taken from a uniform distribution between 0 and 23! — 1.

3 GO5_MC_I8 returns an INTEGER*8 MATRIX containing 1024 pseudo-random integer
numbers taken from a uniform distribution between 1 and 25° — 1.

4 GO5_MC_NORMAL_R4 returns a REAL*4 MATRIX of 1024 normal pseudo-
random variates from the distribution N (0,1).

5 GO5_MC_R4 returns a REAL*4 MATRIX of 1024 pseudo-random real numbers taken
from a uniform distribution between 0 and 1.

6 GO5_MC_RS8 returns a REAL*8 MATRIX of 1024 pseudo-random real numbers taken
from a uniform distribution between 0 and 1.

7 GO5_MC_REPEAT sets the basic generator routine Z_G05_MC_INT to a repeatable
initial state.

Chapter 9: H — Operations research, graph structures, networks

1 HO1_L_ASSIGN solves the linear assignment problem with a minimum objective
function and a real cost matrix of order N by N, where N <= 32.

Chapter 10: J06 — Plotting

1 JO6_CHAR_CONT returns a character matrix containing a rough contour map of a
real matrix. You can control the number of contours and contour levels.

2 JO6_ZEBRA_CHART returns a contour map of a real matrix suitable for output to
a printing device. The output is called a ZEBRA chart as it consists of alternating bands of
blanks and a given character.

Chapter 11: MO1 — Sorting

1 MO1_BSORT_LV is based on bitonic sorting. Data is sorted according to a key, or
the key alone may be sorted.

2 MO1_INV_PERMUTE_COLS permutes the first M columns of a matrix ac-
cording to a permutation vector (IV). The routine is equivalent to the FORTRAN-PLUS
statements:

DO10I=1M
10 A-PERMUTED (,IV(I) ) = A(,I)

3 MO1_INV_PERMUTE_LV_32 permutes the values in an INTEGER*4 or REAL*4
matrix using an INTEGER*4 matrix key. The result is written to a new matrix and the orig-
inal data is unaffected. The data shuffling implemented is ANSWER (KEY(I)) = START
(I), for I = 1, 1024, using long vector indexing. Hence the key matrix must contain values
in the range 1 — 1024, but the values need not be distinct.
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GSLIB quick-reference catalogue

MO1_INV_PERMUTE_ROWS permutes the first M rows of a matrix according
to a permutation vector (IV). The routine is equivalent to the FORTRAN-PLUS statements:

DO10I=1M
10 A_PERMUTED (,IV(I)) = A(,I)

- MO1_PERMUTE_COLS permutes the first M columns of a matrix according to a

permutation vector (IV). The routine is equivalent to the FORTRAN-PLUS statements:

DO10I=1M
10 A_PERMUTED(,1) = A (,IV(I))

MO1_PERMUTE_LV_32 permutes the values in an INTEGER*4 or REAL*4 ma-
trix using an INTEGER*4 matrix key. The result is written to a new matrix and the original
data is unaffected. The data shuffling implemented is ANSWER (I) = START (KEY(I)),
for I = 1,1024, using long vector indexing. Hence the key matrix must contain values in the
range 1 — 1024, but the values need not be distinct.

MO1_PERMUTE_ROWS permutes the first M rows of a matrix according to a
permutation vector (IV). The result is equivalent to the FORTRAN-PLUS statements:

DO10I=1,M
10 A_PERMUTED(I,) = A (IV(I),)

MO1_SORT_V_I4 -sorts the first N elements of an integer vector into ascending or
descending order. The permutation required to perform the sort is returned to the calling
routine.

MO1_SORT_V_R4 sorts the first N elements of a real vector into ascending or de-
scending order. The permutation required to perform the sort is returned to the calling
routine.

Chapter 12: S — Special functions

1

S04_ARC_COS returns the value of the inverse cosine function arccos () for a matrix
argument. The result lies in the range [0, 7).

S04.ARC_SIN returns the value of the inverse sine function arcsin (z) for a matrix
argument. The result lies in the range [—7/2,7/2].

S04_ATAN2_M is a matrix function similar to the standard FORTRAN ATAN?
function. It calculates arc-tangent(matrix-1/matrix-2), and returns a matrix of values in the
range —n to m, in the correct quadrant, and with divide-by-zero errors avoided. If a zero
divided by zero is attempted then a zero is returned.

S04_ATAN2_V is a vector function similar to the standard FORTRAN ATAN?2 func-
tion. It calculates arc-tangent(vector-1/vector-2), and returns a vector of values in the range
—m to m, in the correct quadrant, and with divide-by-zero errors avoided. If a zero divided
by zero is attempted then a zero is returned.

S04_COS_INT returns the value of the cosine integral Cjz for a matrix argument.

man010.02 AMT




GSLIB quick-reference catalogue

10

S04_MOD_BES_I0 returns the value of the modified Bessel function 10 for a matrix
argument.

S04_MOD_BES_TI1 returns the value of the modified Bessel function I1 for a matrix
argument.

S04_SIN_INT returns the value of the sine integral S;z for a matrix argument.
S15_ERF returns the value of the error function.

S15_ERFC returns the value of the complement of the error function.

Chapter 13: X01 — Mathematical constants

1

XO01_PI determines the value of r for any of the real precision lengths available on the
DAP.

Chapter 14: X02 — Machine constants

1

X02_EPSILON determines the smallest positive real (EPS) such that 1.0+EPS differs
from 1.0, for any of the real precision lengths available on the DAP.

X02_MAXDEC determines the value of MAXDEC for the different precision lengths
available on the DAP. MAXDEC is the maximum number of decimal digits Whl(:h can be
represented accurately over the whole range of floating point numbers.

X02_MAXINT determines the value of MAXINT for the different precision lengths
available on the DAP. MAXINT is the largest integer such that MAXINT and ~-MAXINT
can both be represented accuratetly.

X02_MAXPW2 determines the value of MAXPW?2 for the different precision lengths
available on the DAP. MAXPW2 is the largest integer power to which 2.0 may be raised
without overflow.

X02_MINPW2 determines the value of MINPW2 for the different precision lengths
available on the DAP. MINPW2 is the largest negative integer power to which 2.0 may be
raised without underflow.

X02_.RMAX determines the largest real (RMAX) such that RMAX and -RMAX can
both be represented exactly, for any of the real precision lengths available on the DAP.

X02_RMIN determines the smallest real (RMIN) such that RMIN and ~-RMIN can
both be represented exactly, for any of the real precision lengths available on the DAP.

XO02_TOL determines the value of TOL ( = RMIN/EPSILON ) for any of the precision
lengths available on the DAP.

General Support library man010.02 9



GSLIB quick-reference catalogue

Chapter 15: X05 — Other utilities

1

10

11

12

10

XO05_ALT_LV produces a long vector of alternating groups of N false values followed
by N true values and so on, until all components of the vector have a value. If the value of
N lies outside the range 1 to 1024 all components will have the value false.

X05_CRINKLE effects a transformation in data storage format for vertical mode data
occupying an array of matrices — from ‘sliced’ to ‘crinkled’ storage.

X05_EAST_BOUNDARY returns a logical matrix containing at most one .TRUE.

in each row corresponding to the last .TRUE. (if any) in each row of the logical matrix
parameter. The routine is equivalent to the FORTRAN-PLUS code:

DO10I=1,32

IF (NOT.ANY (LM(I,))) GOTO 10

KM (I,) = REV (FRST (REV (LM (I, ))))
10 CONTINUE

X05_E_MAX_PC returns a logical matrix whose i** row has the value TRUE. in
the position(s) corresponding to the position(s) in the i** row of the real matrix argument
holding the maximum value in that row, and .FALSE. elsewhere.

X05_E_MAX_PR returns a logical matrix whose i*» column has the value TRUE. in
the position(s) corresponding to the position(s) in the 7 column of the real matrix argument
holding the maximum value in that column, and .FALSE. elsewhere.

X05_E_MAX_VC returns a real vector whose i** component is the maximum value
in the *» row of the real matrix argument.

X05_E_MAX_VR. returns a real vector whose ith component is the maximum value
in the i** column of the real matrix argument.

XO05_E_MIN_PC returns a logical matrix whose i** row has the value .TRUE. in
the position(s) corresponding to the position(s) in the 7** row of the real matrix argument
holding the minimum value in that row, and .FALSE. elsewhere.

XO05_.E_MIN_PR returns a logical matrix whose i column has the value TRUE. in
the position(s) corresponding to the position(s) in the i** column of the real matrix argument
holding the minimum value in that column, and .FALSE. elsewhere.

X05_E_MIN_VC returns a real vector whose t» component is the minimum value in
the i** row of the real matrix argument.

X05_E_MIN_VR returns a real vector whose ith component is the minimum value in
the i*» column of the real matrix argument.

X05_.EXCH_P exchanges L planes starting at X with L planes starting at Y under

activity control indicated by M. The planes are exchanged in increasing order; you are
cautioned about the strange effects which will occur if the two sets of planes overlap.
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13

14

15

16

17

18

19

20

21

22

23

24

X05_GATHER_V_32 assigns to the components of a vector the values of those
components of a vector array designated by corresponding components of an indexing vector.
The index values are interpreted as reduced rank indices to the vector array.

X05_I_MAX_PC returns a logical matrix whose i* row has the value . TRUE. in the
position(s) corresponding to the position(s) in the i* row of the integer-matrix argument
holding the maximum value in that row, and .FALSE. elsewhere.

X05_.I_MAX_PR returns a logical matrix whose i** column has the value .TRUE.
in the position(s) corresponding to the position(s) in the #** column of the integer matrix

argument holding the maximum value in that column, and .FALSE. elsewhere.

X05_I_MAX_VC returns an integer vector whose i** component is the maximum
value in the i** row of the integer matrix argument.

X05_I_MAX_VR returns an integer vector whose i* component is the maximum

- value in the i** column of the integer matrix argument.

X05_I_MIN_PC returns a logical matrix whose i'* row has the value .TRUE. in the
position(s) corresponding to the position(s) in the i*® row of the integer matrix argument
holding the minimum value in that row, and .FALSE. elsewhere.

X05_I_MIN_PR returns a logical matrix whose i** column has the value .TRUE.
in the position(s) corresponding to the position(s) in the i** column of the integer matrix
argument holding the minimum value in that column, and .FALSE. elsewhere.

X05_I_MIN_VC returns an integer vector whose it* component is the minimum value
in the ¢** row of the integer matrix argument.

X05_I_MIN_VR returns an integer vector whose i*» component is the minimum value
in the i** column of the integer matrix argument.

X05_LOG2 returns the value:
[log(N—-1)]+1

where square brackets indicate ‘integer part of’, and N is the input argument. The routine
returns the number of steps required in a logy, recursive doubling, algorithm.

X05_-LONG.INDEX generates an integer matrix whose i** element in long vector
order is (¢ + N — 1), where N is a parameter to the routine.

X05_.NORTH_BOUNDARY returns a logical matrix containing at most one

TRUE. in each column corresponding to the first .TRUE. (if any) in each column of the
logical matrix parameter. The routine is equivalent to the FORTRAN-PLUS code:

DO 101=1, 32
IF (NOT.ANY (LM (,I))) GOTO 10
KM (,I) = FRST (LM (,I))

10 CONTINUE

General Support library man010.02 11
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26

27
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29

30

31

32

33

34

35

36
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X05_PATTERN produces four user-selectable patterns, each of which is returned as
a logical matrix. The four patterns available are:

0 ~ The main diagonal
1 — The minor diagonal
2 — A matrix, the rows of which correspond to the rows generated by ALTC

3 ~ The unit lower triangular matrix

X05_.SCATTER_V_32 takes components of a vector and assigns the values to com-
ponents of a vector array designated by corresponding components of an indexing vector.
The index values are interpreted as reduced rank indices to the vector array.

X05_SHLC_LV performs a cyclic long vector shift to the left on up to 128 bit planes.
X05_SHLP_LV performs a planar long vector shift to the left on up to 128 bit planes.

X05_.SHORT.INDEX generates an integer vector whose i** element is (i + N - 1),
where N is a parameter to the routine.

X05_SHRC_LV performs a cyclic long vector shift to the right on up to 128 bit planes.

X05_SHRP_LV performs a planar long vector shift to the right on up to 128 bit
planes. :

X05_.SOUTH_BOUNDARY returns a logical matrix containing at most one

"TRUE. in each column corresponding to the last .TRUE. (if any) in each column of the
logical matrix parameter. The routine is equivalent to the FORTRAN-PLUS code:

DO 101=1, 32

IF (NOT.ANY (LM (,I))) GOTO 10

KM (,I) = REV (FRST (REV (LM (,1))))
10 CONTINUE

X05_STRETCH_4 stretches the first quarter of a real matrix A (considered as a long
vector), such that each element is repeated four times consecutively.

X05_STRETCH_8 stretches the first eighth of a real matrix A (considered as a long

" vector), such that each element is repeated eight times consecutively.

X05.STRETCHL_N stretches the first N*® of a real matrix A (considered as a long
vector), such that each element is repeated N times consecutively, N being 2 raised to a
positive integer power.

X05_SUM.LEFT_I2 takes as input the long vector A (an INTEGER*2 vector) and

returns an INTEGER*2 long vector each of whose elements is the sum of all the elements
on the left of, but not including, the corresponding element of A.

man010.02 AMT
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37 XO05_SUM_RIGHT_I2 takes as input the long vector A (an INTEGER*2 vector)
and returns an INTEGER*2 long vector each of whose elements is the sum of all the elements
on the right of , but not including, the corresponding element of A.

38 XO05_UNCRINKLE effects a transformation in data storage format for vertical mode
data occupying an array of matrices — from ‘crinkled’ to ‘sliced’ storage.

39 X05_WEST_BOUNDARY returns alogical matrix containing at most one .TRUE.

in each row corresponding to the first .TRUE. (if any) in each row of the logical matrix
parameter. The routine is equivalent to the FORTRAN-PLUS code:

DO101=1,32
IF (NOT.ANY (LM, (I,))) GOTO 10
KM (I,) = FRST (LM (I, ))

10 CONTINUE

General Support library man010.02 13
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Chapter 3

A03 — Variable precision

arithmetic
Contents:
Subroutine Page

A03_ADD_PLANES.I1 16
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3.1 AO3_.ADD.PLANES_I1 A03 - Variable precision arithmetic

3.1 AO3_ADD_PLANES_I]. . release 1

1 Purpose

A03_.ADD.PLANES_I1 adds bit planes together, that is, it performs an addition of n con-
secutive bits of each PE.

A03_.ADD_PLANES_I1 returns the result of this addition so that the corresponding element
of the result is the sum of the n consecutive bits of the corresponding PE.

The result is calculated to an accuracy of integer*1, therefore any overflow past bit 7 is
thrown away and the result is modulo 128.

2 Specification

INTEGER*1 MATRIX FUNCTION A03_ADD_PLANES_I1 (STARTPLANE ,
+  NRPLANES)

INTEGER NRPLANES

<any type> STARTPLANE(,)

3 Description

The DAP can add the contents of a store plane and the Q and C planes simultaneously ;
this routine uses that ability to add pairs of planes. The resulting carry is then rippled up
the answer.

4 References

None

5 Arguments
STARTPLANE - <any type> MATRIX

On entry STARTPLANE contains the address of the first plane to be added. The
function adds NRPLANES consecutive planes starting at STARTPLANE..START-
PLANE may, in FORTRAN-PLUS, be any variable represented by a plane address.
None of the planes added are changed by the function, but you are warned against
allowing the destination of the result to overlap the planes to be added. If you do
try overlapping the planes, the program will still work, but you will have overwritten
your arguments before you accessed them!

NRPLANES - INTEGER
On entry NRPLANES specifies the number of planes to be added. Unchanged on exit.

6 Error Indicators

None

7 Auxiliary Routines

None

8 Accuracy

The results are calculated mod 128 - overflow is not detected.

16 man010.02 AMT
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9 Further Comments

None

10 Keywords

Bit summation, integer addition.

11 Example

The example adds the bit planes which define a long index vector, thus counting the number
of bits set .TRUE. in the binary representation of the integers 0 to 1023.

Host program

PROGRAM MAIN

INTEGER IM(1024)
COMMON /IM/IM

CALL DAPCON(’ent.dd’)
CALL DAPENT(’ENT’)
CALL DAPREC(’IM’,IM,1024)

WRITE(6,1000)

1000 'FORMAT(6X,*I’,3X, ’No. of bits set’//)
DO 10 II=1,1024

~ I=II~1

10  WRITE(6,2000) I,IM(II)

2000 FORMAT(I7,10X,I2)

CALL DAPREL

STOP
END

DAP program

ENTRY SUBROUTINE ENT
INTEGER*1 IM1(,)
INTEGER IM(,)
LOGICAL LM(,,32)
COMMON /IM/IM
EQUIVALENCE (IM,LM)

EXTERNAL INTEGER#1 MATRIX FUNCTION AO3_ADD_PLANES_I1

General Support library man010.02 17



3.1 A03_ADD_PLANES_I1
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CALL XOSLONGINDEX(IM,0)
IM1=A03_ADD_PLANES_I1(LM(,,21),10)
IM=IM1

CALL CONVMFI(IM)

RETURN
END

Results -

I No. of bits set

0 0
1 1
2 1
3 2
1020 8
1021 9
1022 9
1023 10

man010.02
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COG — Summation of series

(including fast fourier transformations)

Contents:

Subroutine
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4.1 CO06_FFT_ESS C06 —~ Summation of series

4.1 COG-FFT-ESS release 1

20

Purpose

CO06.FFT_ESS calculates the two dimensional discrete Fourier transform of 32 x 32 complex
points,

Specification

SUBROUTINE C06_FFT_ESS(X, Y, INVERS , FIRST)
REAL X(’) ) Y())
LOGICAL INVERS , FIRST

Description

The 2D transform is calculated by performing independent sets of row and column 32-point
transforms.

The data is then in bit reversed order independently in rows and columns and a final shuffle
is performed to reorder the data.

For a description of the general theory of FFTs see [1].

References
[1] BRIGHAM E.O.
The Fast Fourier Transform: Prentice-Hall, 1974

Arguments
X -~ REAL MATRIX

On entry X contains the real part of the data to be transformed. On exit X contains the
real part of the transformed data.

Y -~ REAL MATRIX

On entry Y contains the imaginary part of the data to be transformed. On exit Y
contains the imaginary part of the transformed data.

INVERS -~ LOGICAL
If INVERS is set to .FALSE. the transform:

Xjk“l"iyjk = ZZ(Amn"‘ian)exp (27ri(j - 1?3(2771 — 1) + (]C - I;gn - 1)>

is calculated, where j = 1,2,... ,32;k=1,2, ... , 32 and the summations are also
overm=1,2,... ,32andn =1, 2,..., 32; and where i = +/=1.

If INVERS is set to .TRUE. the transform:

Amn+iBmn = 3 S (Xju+Yje)exp (_Qm.(m - 13)2(1' —1, (n~ 1;21: - 1))
Jj ok

is calculated, where m = 1,2,... ,32;n=1,2, ..., 32 and the summations are also
overj=1,2,...,32and k=1,2, ..., 32 and where i = v/—1.
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FIRST - LOGICAL

If FIRST is set to .TRUE. the exponential coefficients for the transform are calculated.
Consequently FIRST must be set to .TRUE. the first time this routine is called within
a program, but may be set to .FALSE. for all subsequent calls.

Error Indicators

None

A uxiliary Routines

This routine calls the DAP library routines Z_.C06_F2DCOEFF, Z_C06_ROWFFT,
Z_C06.COLFFT and Z.CO6_F2DBREV.

A ccuracy

Accuracy will be data dependent. Some indication of the accuracy may be obtained by
performing a subsequent inverse transform and comparing the results with the original data.

Further Comments

This routine uses a common block with the name CCO6FFTESSQ. Consequently the user
program must not use a common block with this name.

Keywords

Fast Fourier Transform

Exémple

The example given sets up an initial array of complex points in which the real and imaginary
parts are simple functions of a real variable. A forward transform is then performed followed
by a back transform of the transformed data. The first 32 complex values of the first row of
the initial data, transformed data and back transformed data are printed.

Host program

PROGRAM HTFFTESS
REAL X(32,32),Y(32,32),XT(32,32),YT(32,32),XB(32,32),YB(32,32)
COMMON /BDATA/X,Y,XT,YT,XB,YB
CALL dapcon(’tfftess.dd’)
CALL dapent(’TFFTESS’)
CALL daprec(’BDATA’,X,6%1024)
DO 100 i=1,1
WRITE(6,6001)
WRITE(6,6002)
$(x(J,1),Y(3,I),XT(J3,1),YT(J,I),XB(J,I),¥YB(J,I),J=1,32)
6001 FORMAT(2X,’DATA TO BE TRANSFORMED’,9X,’TRANSFORMED DATA’
$9X, 'BACK TRANSFORMED DATA’//3(9X,’REAL’, 9X,’IMAG’) /)
6002 FORMAT(6(1X,F12.6))
100 CONTINUE
CALL daprel
STOP
END
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DAP program

ENTRY SUBROUTINE TFFTESS
REAL X(,),Y(,),XT(,),YT(,),XB(,),¥YB(,)
INTEGER IM(,)

LOGICAL INVERS,FIRST

COMMON /BDATA/X,Y,XT,YT,XB,YB

CALL LONG_INDEX(IM)
X=6.28318*(IM-1)/1023.0

Y=SIN(X)

X=C0S(X)*C0s(X)

XT=X

YT=Y

INVERS=.FALSE.

FIRST=.TRUE.

CALL CO6_FFT_ESS(XT,YT,INVERS,FIRST)
XB=XT

YB=YT

FIRST=.FALSE.

INVERS=.TRUE.

CALL CO6_FFT_ESS(XB,YB,INVERS,FIRST)
XB=XB/1024.0

YB=YB/1024.0

CALL CONVMFE(X)

CALL CONVMFE(Y)

CALL CONVMFE(XT)

CALL CONVMFE(YT)

CALL CONVMFE(XB)

CALL CONVMFE(YB)

RETURN

END
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Results
DATA TO BE TRANSFORMED TRANSFORMED DATA BACK TRANSFORMED DATA
REAL IMAG REAL IMAG REAL IMAG
1.000000 .000000 512.499512 -.000001 1.000000 .000000
. 9998962 .006142 .029227 -.002885 .999962 | .006142
.999848 .012284 .014964 -.002954 . 999849 .012284
. 999661 .018425 .009909 -.002994 .999661 .018425
. 999397 .024565 .007302 -.003027 .999397 . 024565
. 999057 .030705 .005657 ~.002998 . 999057 .030705
. 998642 .036843 .004522 -.003013 .998642 .036843
.998152 .042980 .003741 -.003100 .998152 . 042980
.997588 .049116 .003037 -.003032 .997588 .049115
. 996947 .055249 .002486 -.003049 .996948 .055249
.996232 .061381 .002015 -.003077 . . 996232 .061380
. 995442 .067510 .001615 -.003032 .995441 .067510
.994578 .073636 .001249 -.003026 . 994577 .073636
.993638 .079760 .000901 -.003026 .993638 .079760
.992624 .085881 .000625 -.003057 .992624 .085881
.991536 .091999 .000311 -.003093 .991536 .091999
.990374 .098113 .000000 -.003080 .990374 .098113
.989138 .104223 -.000266 -.003058 .989137 .104223
.987827 .110329 -.000591 -.003060 .987828 .110329
.986444 .116432 -.000956 ~.003115 . 986444 .116432
. 984986 .122530 -.001285 -.003113 . 984986 .122530
. 983456 .128623 -.001659 ~-.003107 .983457 .128623
.981852 .134711 -.002083 -.003071 .981853 .134711
.980176 . 140795 -.002545 -.003089 .980176 .140795
.978428 .146873 -.003098 -.003093 .978428 .146873
.976608 .152945 -.003736 ~-.003047 . 976608 .152945
.974715 .159012 -.004658 -.003119 .974715 .159012
.972751 .165073 -.005815 -.003132 .972751 .165073
.970715 171127 -.007510 -.003113 .970715 171127
. 968608 177175 -.010330 ~.0031566 . 968608 177175
.966431 .183217 -.015892 -.003190 .966431 .183217
.964184 .189251 -.033177 -.003261 .964183 .189251

General Support library man010.02 23



4.2 CO6_FFT_LV C06 - Summation of series

4.2 COG- FFT_LV release 1

1 Purpose

CO6.FFT_LV performs a one dimensional finite Fourier transform of 1024 complex points.

2 Specification

SUBROUTINE C06_FFT.LV (X, Y, INVERS , FIRST)
REAL X(,), Y(,)
LOGICAL INVERS , FIRST

3 Description

The data is considered as 1024 complex points in long vector order, and the transform is
calculated by performing linked row and column transforms. The first step is to calculate
32-point transforms along each row of complex data. The results of the row transforms are
multiplied by a second set of exponential factors and then 32-point transforms are calculated
along each column in a similar way to the row transforms but using different exponential
factors. The exponential factors are set up in such a way as to ensure that the row and
column transforms are linked correctly to give the required 1D transform. The final step
re-orders the data which is in bit reversed order.

For a description of the general theory of FFTs see [1].

4 References
[1] BRIGHAM E.O.
The Fast Fourier Transform: Prentice-Hall, 1974

5 Arguments
X - REAL MATRIX

On entry X contains the real part of the data to be transformed. On exit X contains the
transformed real part of the data.

Y - REAL MATRIX

On entry Y contains the imaginary part of the data to be transformed. On exit Y
contains the transformed imaginary part of the data.

INVERS - LOGICAL
If INVERS is set to .FALSE. the transform:

1024
. . (J-D(k=1)
3 R A ——————————aa—.
Xi+iY; = k§+1(Ak+sz)ezp (27rz 1094

is calculated, where j = 1, 2, ... , 1024 and the summation isover k = 1, 2, ... , 1024;
and where i = /—1.
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If INVERS is set to .TRUE. the transform:

1024 .
. . (G=-1D(k=-1)
Ap+iBy = Z(Xj-i—zyj)emp (—27rz———m—
i+t
is calculated, where k = 1, 2, ... , 1024 and the summation is over j = 1, 2, ... , 1024; and
where i = /1.

The argument is unchanged on exit.

FIRST - LOGICAL

If FIRST is set to .TRUE. the exponential coefficients for the transform are calculated.
Consequently FIRST must be set to .TRUE. the first time this routine is called within
a program,but may be set to .FALSE. for all subsequent calls.

The argument is unchanged on exit.

6 Error Indicator

None

7 Auxiliary Routines

The routine calls the DAP library routines Z_CO6FFT1DCOEFF, Z_CO6ROWFFT,
Z_CO06COLFFT, Z.CO6FFT1IDBREV.

8 Accuracy

Accuracy will be data dependent. You can get some idea of the accuracy by carrying out
the transform, then carrying out the inverse transform and comparing the results with the
original data.

9 Further Comments

The routine uses a common block with name CCO6FFTLV. Consequently your program must
not use a common block with this name.

10 Keywords

Fast Fourier Transform

11 Example

The example given sets up initial data in which the real and imaginary parts are simple func-
tions of a real variable. A forward transform is then performed, followed by a back transform
of the transformed data. The first ten complex values of the initial data, transformed data
and back transformed data are printed in long vector order.
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Host program

6001
6002
6003
6004

PROGRAM HTFFTLV
REAL X(32,32),Y(32,32),XT(32,32),YT(32,32),XB(32,32),YB(32,32)
COMMON /BDATA/X,Y,XT,YT,XB,YB

CALL DAPCON(’tfftlv.dd’)

CALL DAPENT(’TFFTLV’)

CALL DAPREC(’BDATA’,X,6%1024)

WRITE(6,6001)

WRITE(6,6002) (X(I,1),Y(I,1),I=1,10)

WRITE(6,6003)

WRITE(6,6002) (XT(I,1),YT(I,1),I=1,10)

WRITE(6,6004)

WRITE(6,6002) (XB(I,1),YB(I,1),I=1,10)

FORMAT(2X, ’DATA TO BE TRANSFORMED’//7X,’REAL’,9X,’IMAG’/)
FORMAT(2(1X,F12.6))

FORMAT(//2X,’TRANSFORMED DATA’//7X,’REAL’,9X, ' IMAG’/)
FORMAT(//2X,’BACK TRANSFORMED DATA’//7X,’REAL’,9X,’IMAG’)
STOP

END

DAP Program

26

ENTRY SUBROUTINE TFFTLV

REAL X(,),Y(,),XT(,),YT(,),XB(,),YB(,)
INTEGER IM(,)

LOGICAL INVERS,FIRST

COMMON /BDATA/X,Y,XT,YT,XB,YB

CALL LONG_INDEX(IM)
X=6.28318*(IM-1)/1023.0

Y=SIN(X)

X=C0S(X)*C0S(X)

XT=X

YT=Y

INVERS=.FALSE.

FIRST=.TRUE.

CALL CO6_FFT_LV(XT,YT,INVERS,FIRST)
XB=XT

YB=YT

FIRST=.FALSE.

INVERS=.TRUE.

CALL CO6_FFT_LV(XB,YB,INVERS,FIRST)
XB=XB/1024.0

YB=YB/1024.0

man010.02
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CALL CONVMFE(X)
CALL CONVMFE(Y)
CALL CONVMFE(XT)
CALL CONVMFE(YT)
CALL CONVMFE(XB)
CALL CONVMFE(YB)
RETURN

END

Results

DATA TC BE TRANSFORMED

REAL IMAG
1.000000 .000000
.999962 .006142
.999848 .012284
. 999661 .018425
. 999397 .024565
.999057 .030705
. 998642 .036843
.998152 . 042980
.997588 .049116
. 996947 .085249

TRANSFORMED DATA

REAL IMAG
512.499512 -.000001
-511.081055 1.567145
256.785889 -1.574793
-.025975 .000161
.099694 -.001184
.113036 -.001728
.108699 ~-.002016
.101061 -.002178
.003657 -.002353
.086534 -.002373
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BACK TRANSFORMED DATA

REAL

. 999999
.999961
.999847
.999661
.999397
.999058
.998641
.998152
.997588
.996948

IMAG

.000000
.006134
.012277
.018417
.024560
.030698
.036837
. 042973
.049111
.055240
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F01 — Matrix Operations

(including inversion)

Contents:

Subroutine
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FOI_M_INV
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5.1 FO1.G.MM F01 - Matrix Operations

5.1 FO1_G_MM release 1

1 Purpose

FO01.G.MM performs a general matrix multiply of two matrices A and B, where A is a
P by Q matrix and B is a Q by R matrix, with P, Q and R in the range 1 to 32.

2 Specification

REAL MATRIX FUNCTION FOIL.G_.MM (A ,B, P, Q, R, IFAIL)
REA’L A' () ) ’ B () )
INTEGER P, Q, R, IFAIL

3 Description

The routine is an optimised general matrix multiply using one of the following three proce-
dures, depending on the relative sizes of P,Q and R (see [1]).

Procedure 1

F01.G_MM = 0.0
DO10I=1,Q
10 FO1.G_MM = F01.G-MM + MATC (A (,I))*MATR (B (I,))

Procedure 2

DO10I=1,P
10 FO1.G_MM (I,) = SUMR (MATC (A (I, ))*B)

Procedure 3
DO 10 I=1,R
10 FO1.G.MM (,I)=SUMC (A*MATR (B (,1)))

If P/Q > 0.75 and R/Q > 0.75 procedure 1 is used, otherwise if P >= R procedure 3 is used
or if P< R procedure 2 is used; the number 0.75 was determined empirically.

4 References
[1] MCKEOWN 1 J

Multiplication of non-standard matrices on DAP: DAP newsletter no 7: available from the
DAP Suppoprt Unit, Queen Mary College, Mile End Road, London E1 4NS

5 Arguments
A - REAL MATRIX

On entry A contains the first of the two matrices to be multiplied together - array
elements outside the matrix to be multiplied must be set to zero. The contents of A are
unchanged on exit.

B - REAL MATRIX

On entry B contains the second of the two matrices to be multiplied together - array
elements outside the matrix to be multiplied must be set to zero. The contents of B are
unchanged on exit.
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11

P - INTEGER

The number of rows in the first matrix. Unchanged on exit.

Q - INTEGER

The number of columns in the first matrix and the number of rows in the second matrix.
Unchanged on exit.

R - INTEGER

The number of columns in the second matrix. Unchanged on exit.

IFAIL - INTEGER

Unless the routine detects an error (see Error indicators below) IFAIL contains zero
on exit.

Error Indicators
Errors detected by the routine:
IFAIL =1 :
At least one of P, Q or R is not in the range 1 to 32.

A uxiliary Routines
None

Accuracy
You can expect six significant figures.

Further Comments
None

Keywords
Matrix multiply.

Example
The example given multiplies a 3 by 5 matrix of 1s by a 5 by 4 matrix of 1s.

Host program

PROGRAM HTGMM
INTEGER P,Q,R
REAL A(32,32),B(32,32),C(32,32)
COMMON /BN/P,Q,R
COMMON /BIFAIL/IFAIL -
COMMON /BDATA/A,B,C
READ(5,*) P,Q,R
CALL dapcon(’tgmm.dd’)
CALL dapsen(’BN’,p,3)
CALL dapent(’TGMM’)
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CALL daprec(’BDATA’,A,3%1024)
WRITE(6,6000) IFAIL
WRITE(6,6001) ((A(I,J),J=1,6),I=1,6)
WRITE(6,6002)
WRITE(6,6001) ((B(I,J),J=1,6),I=1,6)
WRITE(6,6002)
WRITE(6,6001) ((c(I1,J),J=1,6),I=1,6)
6000 FORMAT(3X,I1//)
6001 FORMAT(6(1X,F5.2)/)
6002 FORMAT(/)
CALL DAPREL
STOP
END

DAP program

ENTRY SUBROUTINE TGMM

REAL A(,),B(,),c(,)

INTEGER P,Q,R

COMMON /BN/P,Q,R

COMMON /BIFAIL/IFAIL

COMMON /BDATA/A,B,C

EXTERNAL REAL MATRIX FUNCTION FO1_G_MM
CALL CONVFSI(P,3)

A=0.0

B=0.0
A(ROWS(1,P).AND.COLS(1,Q))=1.0
B(ROWS(1,Q).AND.COLS(1,R))=1.0
C=0.0
C=F01_G_MM(A,B,P,Q,R,IFAIL)
CALL CONVMFE(A)

CALL CONVMFE(B)

CALL CONVMFE(C)

CALL CONVSFI(IFAIL,1)

RETURN

END

Data
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5.2 FOI_.M_.INV FO01 - Matrix Operations

5.2 FO1_M_INV release 1

34

Purpose

FO1_M_INV calculates,in place, the inverse of a given N by N matrix with N in the range 1
to 32.

Specification

SUBROUTINE FO1.M_INV (A , N , IFAIL)
REAL A (,) |
INTEGER N , IFAIL

Description

The matrix is inverted using Gauss-Jordan elimination with full pivoting.

References

None

Arguments
A - REAL MATRIX

On entry A contains the matrix to be inverted, which is assumed to be located in the
top left of A and array elements outside the input matrix must be set to zero. On exit
A contains the inverse of that matrix.

INTEGER

On entry N must be set to the order of the matrix to be inverted. N is unchanged on
exit.

IFAIL - INTEGER

Unless the routine detects an error (see Error indicators below) IFAIL contains zero
on exit.

2
f

Error Indicators
Errors detected by the routine:
IFAIL =1 N is not in the range 1 to 32.

IFAIL =2 A pivot element is equal to zero — the matrix is singular.

A uxiliary Routines

None

Accuracy

You can expect five or six significant figures for well conditioned problems.

Further Comments

None
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10 Keywords

Matrix inversion, Gauss-Jordan elimination.

11 Example

The example given inverts an N by N matrix, with N = 5 in this case. The matrix is
generated as pseudo-random numbers in the range 0.0, 1.0, ... , 9.0 and then the diagonal
elements are set to the sum of the elements in each row, thus ensuring a diagonally dominant,
and so well conditioned matrix. The inverse matrix is multiplied by the original matrix as a
check.

The results consist of the original matrix, the inverse matrix and their product.

Host program

PROGRAM HTMINV
REAL A(32,32),B(32,32),C(32,32)
COMMON /BN/N
COMMON /BDATA/A,B,C
COMMON /BIFAIL/IFAIL
READ(5,*) N
CALL dapcon(’tmin.dd’)
CALL DAPSEN(’BN’,N,1)
CALL DAPENT(’TMINV’)
CALL DAPREC(’BDATA’,A,3*1024)
CALL DAPREC(’BIFAIL’,IFAIL,1)
WRITE(6,6000) IFAIL
WRITE(6,6001) ((A(I,J),J=1,5),I=1,5)
WRITE(6,6002)
WRITE(6,6001) ((B(1,J),J=1,5),I=1,5)
WRITE(6,6002)
WRITE(6,6001) ((c(1,J),J=1,5),I=1,5)
6000 FORMAT(2X,I2)
6001 FORMAT(5(2X,F10.6))
6002 FORMAT(/)
CALL DAPREL
STOP
END

DAP progam
ENTRY SUBROUTINE TMINV

REAL A(,),B(,),c(,)

INTEGER IN(,)

COMMON /BN/N

COMMON /BDATA/A,B,C

COMMON /BIFAIL/IFAIL

EXTERNAL REAL MATRIX FUNCTION GOSMCR4
EXTERNAL LOGICAL MATRIX FUNCTION XOSPATTERN
EXTERNAL REAL MATRIX FUNCTION FO1GMM

CALL CONVFSI(N,1)
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CALL GOSMCBEGIN
IM=10.0*GO5SMCR4(X)

A=0.0
A(ROWS(1,N).AND.COLS{1,N))=IM
A(XOSPATTERN(0))=MATC(SUMC(A(,)))
B=A

c
CALL FO1_M_INV(B,N,IFAIL)
c
€=0.0
C=FO1_G_MM(4,B,N,N,N,IERR)
c .
CALL CONVMFE(A)
CALL CONVMFE(B)
CALL CONVMFE(C)
CALL CONVSFI(IFAIL,1)
RETURN
END
Data
5
Results
0
35.000000 8.000000 3.000000
2.000000 21.000000 7.000000
4.000000 1.000000  19.000000
4.000000 6.000000 .000000
6.000000 9.000000 1.000000
.030777 -.007744 -.001791
.000214 .050931 ~.018557
-.004507 .003413 .052401
~-.003178 -.006852 .003615
-.004995 -.011480 .003127
1.000000 .000000 .000000
.000000 999999 .000000
.000000 .000000 .999999
.000000 .000000 .000000
.000000 .000000 .000000
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F01 - Matrix Operations , 5.3 FOI_MM_STRASSEN

5.3 FO1_MM_STRASSEN release 1

1 Purpose

FO01.MM_STRASSEN uses Strassen’s algorithm to multiply two (partitioned) 64 by 64 ma-
trices.

2 Specification

SUBROUTINE F01_.MM_STRASSEN (A , B, C)
REAL A(,,2,2),B(,,2,2),C(,2,2)

3 Description

There is a well known result due to Strassen showing that 2 by 2 matrices may be multiplied
using seven multiplications and fifteen additions instead of the eight multiplications and four
additions required by the ’normal’ method. This result is applied to the multiplication of
64 by 64 matrices partitioned into 2 by 2 sub-matrices of size 32 by 32. [1].

4 References:
[1] PARKINSON D

Some interesting and useful results from complexity theory: DAP Newsletter no 2, p 8,
August 1979: available from the DAP Support Unit, Queen Mary College, Mile End Road,
London E1 4NS

5 Arguments
A - REAL MATRIX array of dimension (,,2,2)

On exit the 64 by 64 elements of the matrix set A contain the values of the matrix
product

B - REAL MATRIX array of dimension (,,2,2)
Before entry the elements of B must be set to the first of the 64 by 64 matrices to be
multiplied. Unchanged on exit.

C - REAL MATRIX array of dimension (,,2,2)

Before entry the elements of C must be set to the second of the 64 by 64 matrices to
be multiplied. Unchanged on exit. All the matrices must be partitioned into four equal
sub-matrices.

11 12

21 22

The matrix (,,I,J) is occupied by the data area shown as IJ above.
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6 FError Indicators

None

7 Auxiliary Routines
This routine calls the DAP library routine Z_F01_MM_N.

8 Accuracy

Depends on the data; you can normally expect six significant figures.

9 Further Comments

None

10 Keywords

Matrix multiplication, partitioned matrices, Strassen’s algorithm.

11 Example

Host program

PROGRAM STRASSENTEST

REAL A(32,32),B(32,32),D,E
LOGICAL FLAG

COMMON/TEST/A,B
COMMON/FLAG/FLAG

po113J
DO 1

il e

»32
1,32

[ I}

D=1
E=1J
A(I,J) = D*E - 2.
B(I,J) = (D + E)*3.
1 CONTINUE
CALL dapcon(’testmult.dd’)
CALL dapsen(’TEST’,A,2%1024)
CALL dapent(’TESTMULT’)
CALL daprec(’FLAG’,FLAG,1)
CALL daprel
IF(.NOT.FLAG) GO TO 2
WRITE(6,100)
100 FORMAT(20X,37HSUCCESSFUL RESULTS FROM FO1MMSTRASSEN )
STOP

2 WRITE(6,101)
101 FORMAT(20X,17HINCORRECT RESULTS )
STOP

END
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DAP program

ENTRY SUBROUTINE TESTMULT

REAL U(,,2,2),V(,,2,2),¥(,,2,2),X(,,2,2) ,RELDIFF(,,2,2)
LOGICAL FLAG

COMMON/TEST/AC(,),B(,)
COMMON/FLAG/FLAG

EXTERNAL REAL MATRIX FUNCTION E

c
c CALL CONVERSION ROUTINES
c
CALL CONVFME(A)
CALL CONVFME(B)
FLAG = .TRUE.
c
c GENERATE ENLARGED MATRIX DATA
C
v(,,1,1) = A
w(,,1,1) = B
v(,,1,2) = v(,,1,1) * 3.1
w(,,1,2) = W(,,1,1) + 6.3
v(,,2,1) = W(,,1,1) * 0.9
w(,,2,1) = v(,,1,1) * 2.4
v(,,2,2) = v(,,1,2) + 5.6
¥w(,,2,2) = W(,,1,2) * 1.3
c
C CALL THE STRASSEN ROUTINE AND ANOTHER ROUTINE FOR
c MATRIX MULTIPLICATION
c
CALL FO1_MM_STRASSEN(U,V,W)
CALL MM2N(X,V,W)
c
c CHECK THE TWO SETS OF RESULTS CALCULATED
c

DO 11 L = 1,2
DO 11 K = 1,2
RELDIFF(,,K,L) = E(U(,,K,L),X(,,K,L))
IF (ANY(RELDIFF(,,K,L).GT.0.0001))FLAG = .FALSE.
11  CONTINUE

c
C CONVERT DATA AND RETURN TO THE HOST
c

CALL CONVSFL(FLAG,1)

RETURN

END
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5.3 FO1_.MM_STRASSEN F01 — Matrix Operations

REAL MATRIX FUNCTION E(X,Y)

c
C FUNCTION TO COMPARE RELATIVE VALUES OF TWO MATRICES
c

DIMENSION X(,),Y(,)

E=X-~-Y

X(ABS(X).LT.1.0E-50) = 1.0

E(ABS(Y).GE.1.0E-50) = ABS(E/X)

X(ABS(X - 1.0).LT.1.0E-50) = 0.0

RETURN

END

SUBROUTINE MM2N(A,B,C)
c
c THIS SUBROUTINE IS DESIGNED TO MULTIPLY TWO 64 X 64
c MATRICES TOGETHER.THE METHOD USED TO PERFORM THIS TASK
C IS THE "INTUITIVE" METHOD,THAT IS ,IMPLEMENTING THE
C 32 X 32 MATRIX MULTIPLICATION 8 TIMES TO COMPUTE EACH
c PARTITION SEPARATELY.
c

DIMENSION A(,,2,2),B(,,2,2),c(,,2,2)

INTEGER K
c
o INITIALISE THE RESULTANT ARRAY.
c

A(,,1,1) = 0.0

A(,,1,2) = 0.0

A(,,2,1) = 0.0

A(,,2,2) = 0.0
C
C PERFORM THE MATRIX MULTIPLICATION FOR EACH PARTITION
c IN TURN.
c

DO 1K =1,32
A(,,1,1)=A(,,1,1)+MATC(B(,K,1,1) ) *MATR(C(K, ,1,1))
AC,,1,1)=A(,,1,1)+MATC(B(,K,1,2))*MATR(C(X,,2,1))
A(,,1,2)=A(,,1,2)+MATC(B(,K,1,1) ) *MATR(C(X, ,1,2))
A(,,1,2)=A(,,1,2)+MATC(B(,K,1,2) ) *MATR(C(K, ,2,2))
A(,,2,1)=A(,,2,1)+MATC(B(,K,2,1) ) *MATR(C(K, ,1,1))
A(,,2,1)=A(,,2,1)+MATC(B(,K,2,2) )*MATR(C(K, ,2,1))
A(,,2,2)=A(,,2,2)+MATC(B(,K,2,1) ) *MATR(C(K, ,1,2))
A(,,2,2)=A(,,2,2)+MATC(B(,K,2,2) ) *MATR(C(K, ,2,2))

1 CONTINUE

RETURN
END

Results

SUCCESSFUL RESULTS FROM FO1MMSTRASSEN
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Chapter 6

F02 — Eigenvalues and
eigenvectors

Contents:

Subroutine
FO2_ALL_EIG.VALS.TD.ES
F02_ALL_EIG.VALS.TD.LV
FO02_EIG.VALS_.TD_.LV

F02_JACOBI
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6.1 FO2_.ALL_EIG.VALS.TD.ES F02 - Eigenvalues and eigenvectors

6.1 FO2_ALL._ EIG_VALS_TD_ES release 1

1 Purpose

F02.ALL_EIG.VALS_TD._ES uses Sturm sequences to find all the eigenvalues of a symmet-
ric tridiagonal matrix of order up to 32.

2 Specification

SUBROUTINE F02.ALL_EIG. VALS_TD_ES (ALPHA , GAMMA , N , EVALS
IC , IFAIL)

INTEGER N , IC , IFAIL

REAL ALPHA () , GAMMA () , EVALS()

3 Description
The algorithm uses the following theorem:

Given a symmetric tridiagonal matrix with diagonal elements ¢y, ..., ¢, and off diagonal
elements bs, ..., by, then let the sequence q1(A), ..., ¢,(A) be defined for any real A by:
gi{A) =e1—A
b

gi(A) = (ci=A)— (i=2,...,n)

2i-1(A)

If a(}) is the number of negative ¢;(A) then this number is equal to the number of
eigenvalues less than A. If ¢;_;1(A) = 0 for any i, then it can be replaced in (4.2) by a
suitably small non-zero value (see [1]). Also see [1] for an example of another use of this
theorem.

For each eigenvalue, an initial interval is determined which is known to contain the eigen-
value. Each such interval is then repeatedly subdivided until further refinements produce

no improvement in the corresponding eigenvalue or the subinterval width becomes less than
10738,

4 References
[1] BARTH W, MARTIN R S and WILKINSON J H

Calculation of the eigenvalues of a symmetric tridiagonal matrix by the method of bisection:
Numer Math 9, pp 386-393, 1967.

5 Arguments

ALPHA - REAL VECTOR

On entry ALPHA specifies the components of the main diagonal of the tridiagonal matrix,
that is, ALPHA(I) = A(I,LI) (I=1,2,...,N).Elements (N + 1) to 32 may be undefined;
the argument is unchanged on exit from the sub-routine.

GAMMA - REAL VECTOR

On entry GAMMA specifies the components of the off diagonal of the tridiagonal matrix,
that is, GAMMA(I) = A(II+ 1) = AI+1,I) (I=2,3,...,N). Elements not in the
range 2 to N may be undefined; the argument is unchanged on exit from the sub-routine.
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F02 - Eigenvalues and eigenvectors 6.1 FO2_.ALL_EIG_.VALS.TD_ES

10

11

N - INTEGER

On entry, N specifies the order of the tridiagonal matrix. N must lie in the range 2 to
32, and is unchanged on exit.

EVALS - REAL VECTOR

On exit, EVALS contains the N eigenvalues of the matrix in components 1 to N.

IC - INTEGER

On exit, IC contains the number of calls to the Sturm sequence evaluation routine re-
quired to isolate all the eigenvalues. Note: for each such call the Sturm sequence is
evaluated at 1024 points simultaneously.

IFAIL - INTEGER

Unless the routine detects an error (see section 6) IFAIL contains zero on exit.

Error Indicators
Errors detected by the routine:

IFAIL =1 N not in the range 2 to 32 inclusive

IFAIL = 2 After 10 calls to the Sturm sequence evaluation routine
some eigenvalues have not converged

A uxiliary Routines

This routine calls the GS lbrary routines X02_ EPSILON, X05.LONG_INDEX,
X05_SHORT.INDEX and Z.F02_.STURM.SEQ.1.

Accuracy

In general, you can expect at least 6 significant figures of accuracy in the computed eigen-
values. :

Further Comments

None

Keywords

Eigenvalues, Sturm sequences, symmetric tridiagonal matrices

Example

The matrix used in the example is a tridiagonal matrix of the form:

a b
b a b
b ab
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the eigenvalues of which are given by:

As = a+2bcos ( ns;r 1) (s=1,2,...,n)
The largest error in the computed solution is 6 parts in 107.

Host program

PROGRAM MAINES

REAL ALPHA(32), GAMMA(32), Y(32)
COMMON /ALPHA/ALPHA /GAMMA/GAMMA /Y/Y
COMMON/SCALARS/N,IC,IFAIL

N = 32

DO 10 I = 1,32

ALPEA (I) = 5.0
10 GAMMA (I) = 10.0

CALL DAPCON(’entes.dd’)
CALL DAPSEN(’SCALARS’,N,1)
CALL DAPSEN(’ALPHA’,ALPHA,32)
CALL DAPSEN(’GAMMA’,GAMMA,32)
CALL DAPENT(’ENTES’)
CALL DAPREC(’Y’,Y,32)
CALL DAPREC(’SCALARS’,N,3)
CALL DAPREL
WRITE(6,100) IFAIL,IC, (Y(I), I = 1,32)
100 FORMAT(® IFAIL =’,I5/° IC =’,I5/ ’ EIGENVALUES’/(G14.7))

STOP
END

DAP program

ENTRY SUBROUTINE ENTES
REAL ALPHA(Q), GAMMAQ), YO

COMMON /ALPHA/ALPHA /GAMMA/GAMMA /Y/Y

COMMON /SCALARS/ N,IC,IFAIL

CALL CONVFVE(ALPHA,32,1)

CALL CONVFVE(GAMMA,32,1)

CALL CONVFSI(N,1)

CALL FO2ALL_EIG_VALS_TD_ES(ALPHA,GAMMA,N,Y,IC,IFAIL)
CALL CONVVFE(Y,32,1)

CALL CONVSFI(N,3)

RETURN

END
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Results

IFAIL = 0
IC =6
EIGENVALUES
-14.97665
~14.90632
-14.79012
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6.2 FO2.ALL_EIG.VALS.TD.LV F02 - Eigenvalues and eigenvectors

6.2 F02_A.LL_ EIG_VALS_TD_LV release 1

1 Purpose

F02_ALL_EIG.VALS.TD_.LV uses Sturm sequences to find all the eigenvalues of a symmetric
tridiagonal matrix of order up to 1024.

2 Specification

SUBROUTINE F02_ALL.EIG_VALS.TD_LV (ALPHA , GAMMA , N , EVALS .
+ ° IC, IFAIL)

INTEGER N |, IC , IFAIL

REAL ALPHA (,) , GAMMA (,) , EVALS(,)

3 Description
The algorithm uses the following theorem:

Given a symmetric tridiagonal matrix with diagonal elements ¢y, ..., ¢, and off diagonal
elements by, ..., by, then let the sequence q1()), ..., g,(A) be defined for any real A by:
(A =ca-2A (1)
b?
i(A) = (c;—A) = b i=2,...,n 2
() = (=Nt ) 2

If a(A) is the number of negative g;(A) then this number is equal to the number of
eigenvalues less than A. If ¢;_1()) = 0 for any 4, then it can be replaced in (2) by a
suitably small non-zero value (see [1]). Also see [1] for an example of another use of this
theorem.

For each eigenvalue, an initial interval is determined which is known to contain the eigen-
value. Each such interval is then repeatedly subdivided until further refinements produce
no improvement in the corresponding eigenvalue or the subinterval width becomes less than
10—,

4 References
[1] BARTH W, MARTIN R S and WILKINSON ] H

Calculation of the eigenvalues of a symmetric tridiagonal matrix by the method of bisection:
Numer Math, 9, pp 386-393, 1967.

5 Arguments

ALPHA - REAL VECTOR

On entry ALPHA specifies the components of the main diagonal of the tridiagonal matrix,
that is, ALPHA(I) = A(ILI) (I=1,2, ..., N). Elements (N + 1) to 1024 may be
undefined; the argument is unchanged on exit from the sub-routine.

GAMMA - REAL VECTOR

On entry GAMMA specifies the components of the off diagonal of the tridiagonal matrix,
that is, GAMMA(I) = A(ILT+ 1) = A(I+1,I) (I=2,3,..., N). Elements not in the
range 2 to N may be undefined; the argument is unchanged on exit from the sub-routine.
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N - INTEGER

On entry, N specifies the order of the tridiagonal matrix. N must lie in the range 2 to
1024, and is unchanged on exit.

EVALS - REAL VECTOR

On exit, EVALS contains the N eigenvalues of the matrix in components 1 to N.

IC - INTEGER

On exit, IC contains the number of calls to the Sturm sequence evaluation routine re-
quired to isolate all the eigenvalues. Note: for each such call the Sturm sequence is
evaluated at 1024 points simultaneously.

IFAIL - INTEGER

Unless the routine detects an error (see section 6) IFAIL contains zero on exit.

Error Indicators
Errors detected by the routine:

TFAIL =1 N not in the range 2 to 1024 inclusive

IFAIL = 2 After 30 calls to ther Sturm sequence evaluation routine
some eigenvalues have not converged

Auxiliary Routines

This routine calls the GS library routines X02_EPSILON, X05.LONG.INDEX,
X05_SHORT.INDEX and Z_F02_STURM_SEQ_2.

Accuracy

In general, you can expect about 5 or 6 significant figures of accuracy in the computed
eigenvalues.

Further Comments

None

Keywords

Eigenvalues, Sturm sequences, symmetric tridiagonal matrices

Example

The matrix used in the example is a tridiagonal matrix of the form:

a b
b a b
b ab
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the eigenvalues of which are given by:

s
Ay _a+2bcos(n+1) (s=1,2,...,n)

Host program

PROGRAM MAIN
REAL ALPHA(1024),GAMMA(1024) ,EVALS(1024)
COMMON /MATS/ALPHA,GAMMA,EVALS
COMMON /SCALARS/N,IC,IFAIL
N=128
DO 10 I=1,128
ALPHA(I)=5.0
10 GAMMA(I)=10.0
CALL DAPCON(’ent.dd’)
CALL DAPSEN(’SCALARS’,N,1)
CALL DAPSEN(’MATS’,ALPHA,2%1024)
CALL DAPENT(’ENT?)
CALL DAPREC(’MATS’,ALPHA,3%1024)
CALL DAPREC(’SCALARS’,N,3)
CALL DAPREL
WRITE(6,1000) IFAIL,IC,(EVALS(I),I=1,128)
1000  FORMAT(® IFAIL =’,I5/’ IC = ’,I5/? EIGENVALUES’/(G14.7))
STOP

END

DAP program

ENTRY SUBROUTINE ENT
REAL ALPHA(,),GAMMA(,),EVALS(,)

COMMON /MATS/ALPHA,GAMMA,EVALS

COMMON /SCALARS/N,IC,IFAIL

CALL CONVFME (ALPHA)

CALL CONVFME (GAMMA)

CALL CONVFSI (N,1)

CALL FO2_ALL_EIG_VALS_TD_LV(ALPHA,GAMMA,N,EVALS,IC,IFAIL)
CALL CONVMFE (EVALS)

CALL CONVSFI (N,3)

RETURN

END

48 man010.02 AMT



F02 - Eigenvalues and eigenvectors 6.2 FO2_ALL_EIG.VALS.TD.LV

Results

IFAIL 0
IC = 20
EIGENVALUES
-14.99412
-14.97626
-14.94660
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6.3 FOZ_EIG_VALS_TD_LV release 1

1 Purpose

50

F02_EIG.VALS_TD.LV uses Sturm sequences to find up to 32 selected eigenvalues of a
symmetric tridiagonal matrix of order up to 1024.

Specification

SUBROUTINE F02_EIG_VALS_TD.LV (ALPHA , GAMMA , N, I _EIGS ,
+  NUM_EIGS, EVALS , IC , IFAIL)

INTEGER N, IEIGS() , NUM.EIGS , IC , IFAIL

REAL ALPHA(,) , GAMMA (,) , EVALS()

Description

The algorithm uses the following theorem:

Given a symmetric tridiagonal matrix with diagonal elements ¢y, ... ¢, and off diagonal
elements b, ... by, then let the sequence ¢1(}), ... ¢4(}) be defined for any real A by:

@A) =c-r . (1)

b

g:(A) = (¢i=A)-

If a()) is the number of negative ¢;(A) then this number is equal to the number of
eigenvalues less than A. If ¢;_;(A) = 0 for any 1, then it can be replaced in (4.6) by a
suitably small non-zero value (see [1]). Also see [1] for an example of another use of this
theorem.

For each eigenvalue, an initial interval is determined which is known to contain the eigen-
value. Each such interval is then repeatedly subdivided until further refinements produce
no improvement in the corresponding eigenvalue or the subinterval width becomes less than
10-35,

References
[1] BARTH W, MARTIN R S and WILKINSON J H

Calculation of the eigenvalues of a symmetric tridiagonal matrix by the method of bisection.
Numer. Math. 9 pp 386-393 (1967).

Arguments

ALPHA - REAL VECTOR

On entry ALPHA specifies the components of the main diagonal of the tridiagonal matrix,
that is, ALPHA(I) = A(,I) (I=1,2, ..., N). Elements (N + 1) to 1024 may be
undefined; the argument is unchanged on exit from the sub-routine.

GAMMA - REAL VECTOR
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On entry GAMMA specifies the components of the off diagonal of the tridiagonal matrix,

that is, GAMMA(I) = AL, I+ 1) = A(I+1,I) (I=2,3,..., N). Elements not in the

range 2 to N may be undefined; the argument is unchanged on exit from the sub-routine.
N - INTEGER

On entry, N specifies the order of the tridiagonal matrix. N must lie in the range 2 to
0124, and is unchanged on exit.

I_EIGS - INTEGER VECTOR

I_EIGS is used to indicate which eigenvalues of the matrix are required. If the eigenvalues
are [(1) <=1(2) <= ... <=I(N) then to determine the subset ! (j1),!(j2), .., { (jp)
the first p (equals NUM _EIGS) components of I_EIGS must be set to ji, ja, ..., j, and
the condition j; < jo < ... < j, must hold. Components (p+1) to 32 may be undefined,;
the argument is unchanged on exit.

NUM_EIGS - INTEGER

On entry NUM _EIGS specifies the number of eigenvalues required and must be in the
range 1 to 32; it is unchanged on exit.

EVALS - REAL VECTOR

On exit, EVALS contains the NUM_EIGS eigenvahies of the matrix in components 1 to
NUM_EIGS.

IC - INTEGER

On exit, IC contains the number of calls to the Sturm sequence evaluation routine re-
quired to isolate all the eigenvalues. Note: for each such call the Sturm sequence is .
evaluated at 1024 points simultaneously.

IFAIL - INTEGER

Unless the routine detects an error (see section 6) IFAIL contains zero on exit.

6 Error Indicators
Errors detected by the routine:
IFAIL =1 N not in the range 2 to 1024 inclusive

IFAIL = 2 Entries 1 to NUM_EIGS of I_EIGS are not strictly increasing
or lie outside the range 1 to 1024

IFAIL = 3 After 10 calls to the Sturm sequence evaluation routine
some eigenvalues have not converged

7 Auxiliary Routines

This routine calls the GS library routines X02. EPSILON, X05.LONG_INDEX,
X05.SHORT.INDEX and Z_F02_.STURM_.SEQ.2.

8 Accuracy

In general, you can expect about 6 significant figures of accuracy in the computed eigenvalues.

9 Further Comments
None
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10 Keywords

11

52

Eigenvalues, Sturm sequences, symmetric tridiagonal matrices

Example

The matrix used in the example is a tridiagonal matrix of the form:

a b
b ab
b a b

the eigenvalues of which are given by:

ST
/\,:a+2bcos(n+l) (s=1,2,...,n)

The eigenvalues requested are spread throughout the spectrum and the largest error in the
computed solution was 7 parts 107.

Host program

PROGRAM MAIN

REAL ALPHA(1024), GAMMA(1024),Y(32)
INTEGER IEIGS(32)

COMMON /MATS/ALPHA,GAMMA

COMMON /IEIGS/IEIGS /Y/Y

COMMON /SCALS/N,NUMEIGS,IC,IFAIL

N = 1024

DO 10 I = 1,1024

ALPHA(I) = 5.0

10 GAMMA (I) = 10.0
NUMEIGS = 32
DO 20 I = 1,32

20 IEIGS(I) = 32%I

CALL DAPCON(’ent.dd)

CALL DAPSEN(’MATS’,ALPHA,2%1024)

CALL DAPSEN(’IEIGS’,IEIGS,32)

CALL DAPSEN(’SCALS’,N,2)

CALL DAPENT(’ENT?)

CALL DAPREC(’SCALS’,N,4)

CALL DAPREC(’Y’,Y,32)

CALL DAPREL

WRITE(6,100) IFAIL,IC, (IEIGS(I),Y(I), I= 1,32)
100  FORMAT(’ IFAIL =’,I5/’ IC =’,I5/

*'EIGENVALUES’/(I5,5X,G14.7))
STOP
END
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DAP program

ENTRY SUBROUTINE ENT
INTEGER IEIGS()

REAL ALPHA(,), GAMMA(,), YO
COMMON /MATS/ALPHA,GAMMA

COMMON /IEIGS/IEIGS /Y/Y

COMMON /SCALS/N, NUMEIGS,IC,IFAIL
CALL CONVFME(ALPHA)

CALL CONVFME(GAMMA)

CALL CONVFVI(IEIGS,32,1)

CALL CONVFSI(N,2)

CALL FO2_EIG_VALS_TD_LV(ALPHA,GAMMA,N,IEIGS,NUMEIGS,Y,IC,IFAIL)
CALL CONVVFE(Y,32,1)

CALL CONVSFI(N,4)

RETURN
END
Results
IFAIL = O
IC =6
EIGENVALUES
32 -14.90388
64 -14.61645
g6 -14.14048
128 -13.48052
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6.4 F02_JACOBI release 1

54

Purpose

F02.JACOBI calculates the eigenvalues and eigenvectors of a real symmetric matrix of order
32 x 32.

The method is based on the classical Jacobi algorithm using plane rotations.

Specification
SUBROUTINE F02.JACOBI(C , EVALUES , Q , BOOL)
REAL C(,) , EVALUES() , Q(,)
LOGICAL BOOL

Description

The cyclic Jacobi method is a well known technique for determining the eigensolution of a
matrix [4]. A real symmetric matrix A is reduced to diagonal form by application of plane
rotations. Full details can be found in [2].

References

[1] MODIJJ
Error analysis for the parallel Jacobi method: QMC internal report, Department of Com-
puter Science and Statistics, Queen Mary College, Mile End Road, London, E1 4NS: available
on request from the DAP Suppost Unit at Queen Mary College.

[2] MODIJJ

Jacobi methods for eigenvalue and related problems in a parallel computing environment:
Ph D thesis, University of London.

[3] SAMEH A H
On Jacobi and Jacobi-like algorithms for the parallel computer: Mathematics of Computa-
tion, v 25, no 115, pp 579-590, July 1971.

[4] WILKINSON J H
The Algebraic Eigenvalue Problem: Clarendon Press, Oxford, 1965.

Arguments
C - REAL MATRIX

On entry C contains the real symmetric matrix whose eigenvalues are required, and is
unchanged on exit.

EVALUES - REAL VECTOR
On exit EVALUES will contain the eigenvalues of C, in ascending order.

Q - REAL MATRIX

If BOOL was set to .TRUE. on entry then on exit the columns of Q will contain the
eigenvectors of C.

The eigenvector in column I corresponds to the I** element of EVALUES.
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BOOL - LOGICAL

If BOOL is set to .TRUE. on entry, the eigenvectors of C will be calculated as well as
the eigenvalues; BOOL is unchanged on exit.

6 FError Indicators

None

7 Auxiliary Routines

This routine calls the GS lbrary routines MO1_PERMUTE_COLS, M01_SORT_V_R4
and X05_.PATTERN.

8 Accuracy

The method is numerically very stable (see [1]). Tests show that the routine agrees with
EISPACK routines, run on a 60 bit word computer, to 4 or 5 significant figures.

9 Further Comments

None

10 Keywords
Disjoint Rotations, Jacobi Method, Parallel Algorithm.

11 Example

The example finds the eigensolution of a 32 x 32 matrix.

Host program

PROGRAM MAINJACOBI

LOGICAL BOOL

COMMON /A/A(32,32) /EV/EIGENVALUES(32)

COMMON /Q/Q(32,32) /BOOL/BOOL

BOOL = .TRUE.

D0 20 J = 1,32

DO 201I=1,32

A(I,J) = 0.0

IF ((I + 1).EQ.J) A(I,D)

IF ((J + 1).EQ.I) A(I,1)
20 CONTINUE

CALL DAPCON(’v3.dd’)

CALL DAPSEN(’A’,a,1024)

CALL DAPSEN(’BOOL’,BOOL,1)

CALL DAPENT(°V3’)

CALL DAPREC(’EV’,eigenvalues,32)

WRITE (6,1000) (EIGENVALUES(I),I = 1,32)

(RN
o O

uou
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1000 FORMAT (° Eigenvalues ’ /(1X,F14.5))
WRITE (6,1500)

1500 FORMAT(’ Eigenvectors’)
CALL DAPREC(’Q’,Q,1024)
CALL DAPREL

J=1
DO 40 I = 1,32
40 WRITE (6,2000) Q(I,J)
2000 FORMAT(1X,F14.5)
STOP
END

DAP program

ENTRY SUBROUTINE V3

REAL A(,) , Q(,) ,EIGENVALUES()
LOGICAL BOOL

COMMON /A/A /EV/EIGENVALUES
COMMON /Q/Q /BOCL/BOOL

CALL CONVFME(A)

CALL CONVFSL(BOOL,1)

CALL FO2_JACOBI(A,EIGENVALUES,Q,BOOL)
CALL "CONVVFE(EIGENVALUES,32,1)

CALL CONVMFE(Q)

RETURN

END

Results

Eigenvalues
~1.99084
~1.96374
-1.91889
-1.85665
-1.77758
~1.68242
-1.57204
~1.44740
-1.30967
-1.16006

-.99995
-.83079
-.65410
-.47150
-.28462
-.09516
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.09516

. 28462

.47150

.65410

.83079

.99995

.16006

. 30967

.44740

.57204

.68242

.T77758

. 85665

.91889

.96374

1.99084
Eigenvectors

-.02315

.04610

-.06866

.09063

-.11182

.13204

-.15109

.16879

-.18499

.19953

-.21228

.22313

-.23198

.23876

-.24338

.24582

~.24603

.24401

~.23977

.23334

~-.22477

.21414

-.20154

.18710

-.17093

.15319

-.13404

.11365

-.09221

.06992

~.04697

.02360

L N O A WU TN
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7.1 F04 _BIGSOLVE F04 - Simultaneous linear equations

7.1 F04 _BIGSOLVE release 1

1 Purpose

F04 _BIGSOLVE is a routine for solving large sets of linear equations. The maximum size of
the system depends on the size of the DAP store ~ for a 32 by 32 DAP with a 4 Mbyte store
this maximum size is 1023, whereas for a 32 by 32 DAP with an 8 Mbyte store the maximum
size is 1407. The method used was developed by D Hunt; it consists of a block form of Gauss
Elimination with column pivoting. The matrix of the coefficients of the equations is of size
‘SIZE’ by ‘SIZE’ and the right hand side is assumed to be held in column ‘SIZE’ + 1. The
whole matrix is held in the DAP partitioned in DAPSIZE blocks.

You are not recommended to use this routine for systems of order 32 or less - for which you
should use the routine F04.GJ_NLE_ES.

2 Specification

SUBROUTINE F04 _BIGSOLVE (BIGM , SIZE , ALLBLKS , IFAIL)
REAL BIGM (,, ALLBLKS, ALLBLKS)
INTEGER SIZE , IFAIL , ALLBLKS

3 Description
You can use this routine to solve a system of equations of maximum size N = 1023 on the
4 Mbyte 32 by 32 DAP, (N = 1407 on the 8 Mbyte 32 by 32 DAP) using a block form of Gauss

elimination with column pivoting [2]. After the forward step, the matrix is conceptually of
the form: (illustrated for a hypothetical 4 by 4 DAP and for N = 11)

1000 XXXX XXXX
0100 XXXX XXXX
0010 XXXX XXXX
0001 XXXX XXXX
0000 1000 XXXX
0000 0100 XXXX
0000 0010 XXXX
0000 0001 XXXX
0000 0000 100X
0000 0000 010X
0000 0000 001X
0000 0000 00O00O

( X = non zero value)

Gauss Jordan elimination is used for the diagonal blocks (see [1]). In practice, the diagonal
and below diagonal blocks are not.needed and are therefore left undefined.

On DAP the relevant part of the pivot column will in general be spread over several sheets.
In DAP 500 that part of the pivot column is extracted in order to find the maximum in a
single operation.
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The factors by which the rows of the large matrix are multiplied are obtained by dividing
the pivot column by the pivot element. This is done in a single matrix division operation on
the extracted data.

The solution time is ultimately O(m3 x d), where the matrix is partitioned into m by m
sheets each of size d by d to match the DAP 500 array. (In terms of the parameters below,
N =S8IZE, ((m—-1)d < N < md) and m = ALLBLKS ).

4 References

(1] FOX, L
Numerical Linear Algebra: Chapters 3, 7, Oxford University Press, Oxford, 1964

HUNT,D1J _

[2] Solution of a large system of equations on DAP using a hybrid Gauss/Gauss Jordan
method: DAPSU Technical Report 7.27: available on request from The DAP Support
Unit, Queen Mary Collge, Mile End Road, London E1 4NS

[3] PARKINSON, D and LIDDELL, H M

The measurement of performance on a highly parallel system: IEEE Trans on Com-
puters, Special Issue, Nov 1982

5 Arguments
BIGM - REAL MATRIX array of dimension ( , , ALLBLKS,ALLBLKS)

On entry the first SIZE rows and columns must be set to the elements of the matrix of
coefficients of the' equatioxis defining the linear system. The right-handside of the equa-
tions is stored in column SIZE + 1. The values in BIGM are changed during execution
of the subroutine, and on exit column SIZE + 1 contains the solution of the system.

SIZE - INTEGER

On entry SIZE must be set to the order of the system. Unchanged on exit. SIZE must
not be less than 2.

ALLBLKS - INTEGER

On entry ALLBLKS must be set to the number of DAP partitions needed to store the
complete system (i.e. including the RHS). Unchanged on exit.

IFAIL - INTEGER

Unless the routine detects an error (see Error Indicators below) IFAIL contains zero
on exit.

6 Error Indicators
Errors detected by the routine:
IFAIL =1 SIZE is less than 2
IFAIL = 2 One of the conditions:

32*(ALLBLKS - 1) < SIZE
32*ALLBLKS - 1 >= SIZE

has been violated
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6

10

11

62

Error Indicators - continued

IFAIL = 3 A zero pivot has been found during the back substitution process.
The calculation is terminated

IFAIL =4 A very small pivot has been found during the back substitution
process and the matrix is probably singular.

Computation proceeds anyway, but the results should be treated
with caution

Auxiliary Routines
None

Accuracy

The accuracy depends on the conditioning of the system; during extensive testing of this
single precision implementation of the routine the maximum residual was approximately
1073,

Further Comments
None

Keywords

Gauss elimination, Gauss-Jordan, linear solver.

Example

Host program

PROGRAM HOSTBIGSOLVER
COMMON/INPUT1/A(32,32,5,5)
COMMON/STATS/FNMONE,FNMTWO, FNMINF
COMMON/IFAIL/IFAIL

DATA N,IX/32,1111111/

CALL DAPCON(’bigtest.dd’)
CALL INITDATA(N,IX)
CALL DAPSEN(’INPUT1’,A,25%1024)
CALL DAPENT(’BIGSOLVETEST'’)
CALL DAPREC(’IFAIL’,IFAIL,1)
CALL DAPREC(’STATS’,FNMONE, 3)
CALL DAPREL
WRITE(6,99)IFAIL

99 FORMAT(10X,7HIFAIL =,I3)
IF(IFAIL.EQ.1.0R.IFAIL.EQ.2.0R.IFAIL.EQ.3)STOP
WRITE(6, 100)FNMONE, FNMTWO, FNMINF
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100 FORMAT(20H SUM OF RESIDUALS = ,E10.4//
131H SUM OF SQUARES OF RESIDUALS = ,E10.4//
220H MAXIMUM RESIDUAL = ,E10.4)
STOP
END

DAP program

SUBROUTINE INITDATA(N,IX)
COMMON/INPUT1/A(32,32,5,5)

C
C THIS SUBROUTINE CREATES THE INITIAL SEEDS THAT THE DAP CAN USE TO
C CALCULATE EXACTLY THE REQUIRED SET OF PSEUDO-RANDOM NUMBERS.
C THIS IS DONE IN ORDER TC BE ABLE TO MAKE FAIR COMPARISONS IN
c RESPECT OF RUNTIME AS WELL AS NUMERICAL RESULTS
c
DO1L =1,56
DO1K=1,5
D01J=1,N
DO1I-=1,N

IY =FLOAT(IX)/22369.624
IX=125%IX-2796203*IY
A(I,3,K,L) = FLOAT(IX)/2796203. -
1 CONTINUE
RETURN
END

ENTRY SUBROUTINE BIGSOLVETEST
COMMON/INPUT1/A(,,5,5)
COMMON/STATS/FNMONE, FNMTWO , FEMINF
COMMON/IFAIL/IFAIL

REAL BIGM(,,5,5),QSAVE(,5),TRHS(,5),RESIDU(,5),MAXIMUM(,5)
REAL MULT(,),X(,5)
INTEGER N, IFAIL, DAPSIZE,RHSCOL

NDAPS = 5
DO 700 L = 1,NDAPS
DD 700 K = 1,NDAPS
CALL CONVFME (A( , ,K,L))
700 CONTINUE
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400

500

200

300

70

90
80

60
600
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DAPSIZE = 32
N = 150
RHSCOL = N - (NDAPS - 1)*DAPSIZE + 1
DO 400 L = 1,NDAPS
DO 400 K = 1,NDAPS
BIGM( , ,K,L) = A( , ,K,L)

CONTINUE

DO 500 L = 1,NDAPS

QSAVE( ,L) = A( ,RHSCOL,L,NDAPS)
CONTINUE

CALL FO4_BIGSOLVE(BIGM,N,NDAPS,IFAIL)
IF(IFAIL.EQ.0.CR.IFAIL.EQ.4)GO TO 200
CALL CONVSFI(IFAIL,1)

RETURN

CONTINUE

DO 300 K = 1,NDAPS

X( ,K) = BIGM( ,RHSCOL,K,NDAPS)
CONTINUE

FNMORE = O.
FNMTWO 0.
FNMINF = 0.
DO 60 K = 1,
TRES( ,K) = 0.
=1,

NDAPS

0

DO 70 L NDAPS

MULT = MATR( X( ,L))

TRES( ,K) = TRHS( ,K) + SUMC(MULT#*A(,,K,L))

CONTINUE
RESIDU( ,K) = ABS(TRHS( ,K) - QSAVE( ,K))
IF(K .NE. NDAPS) GO TO 80
DO 90 I = RHSCOL,DAPSIZE

RESIDU(I,NDAPS) = 0.0

QSAVE(I,NDAPS) = 0.0

TRHS(I,NDAPS) = 0.0

CONTINUE

CONTINUE
FNMONE = FNMONE + SUM(RESIDU( ,K))
FNMTWO = FNMTWO + SUM( RESIDU( ,K)#**2)
MAXIMUM( ,K) = 0.
MAXIMUM(RESIDU( ,K) .GT.MAXIMUM( ,XK) ,K)
IF (MAXV(MAXIMUM( ,K)).GT.FNMINF) FNMINF
CONTINUE
CONTINUE
CALL CONVSFE(FNMONE,3)
CALL CONVSFI(IFAIL,1)
RETURN
END

RESIDU( ,K)
MAXV(MAXIMUM( ,K))
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Results

IFAIL =
SUM OF RESIDUALS = 0.9086E-01
SUM OF SQUARES OF RESIDUALS = 0.7045E-06
MAXIMUM RESIDUAL = 0.1943E-03

0
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7.2 F04 _GJ_NLE _ES release 1

1 Purpose

F04 _GJ_NLE _ES is a routine for solving the system of linear equations Az = b for z, where
A is a non sparse matrix of order N in the range 1 to 32, using the Gauss Jordan method.
It is not particularly efficient for small values of N.

2 Specification

SUBROUTINE F04 _GJ_NLE.ES(A , X, Q, N, IFAIL)
REAL A(,) ,X(), Q()
INTEGER N , IFAIL

3 Description

The Gauss Jordan method [1,2] can be considered as a variant of Gauss elimination, but the
elimination is also applied to terms above the diagonal at each stage.

For example, for a 4 by 4 system:

Step 0 XX¥XXx = X
XXX¥XXx = X
XXXX¥ = X
XXXXx = X
Step 1 XXXX = X
0XXX = X
0XXX = X
0XXX = X
(This is the same as in Gauss elimination)
Step 2 X¥X0XXx =X
0XXX = X
00XX = X
00XX = X
Step 3 X00X = X
0Xo0X = X
00XX = X
00XX X
Step 4 X000 = X
0X00 = X
00X0 = X
000X = X

(X represents a non zero value)
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Thus the parallelism at each step is maximised and there is no need to perform the back
substitution. On a computer with mz m parallel processors, where m exceeds the number
of equations, N, the operation count for Gauss Jordan is N divisions, multiplications and
subtractions, which is the same number of operations required by the elimination phase of
Gauss elimination. However, the latter also requires N — 1 multiplies and subtractions for the
back substitution phase. On a serial machine, the operation count for Gauss Jordan is O (N—Q-a)

which is greater than that for Gauss elimination ~ O (%i) The back substitution phase takes
O (N?) operations and is therefore negligible for large systems. )

4 References

[1] FLANDERS P M, HUNT D J, REDDAWAY S F and PARKINSON D

Efficient high speed computing with the distributed array processor, in High Speed Com-
puter and Algorithm Organisation: Academic Press, London, 1977

[2] WEBBSJ
Solution of elliptic partial differential equations on the ICL Distributed Array Processor:
ICL Technical Journal, vol 2, 175 — 189 (1980)
5 Arguments
A - REAL MATRIX

On entry, elements A(; ;y (¢, =1,..., N) must be set to the elements of the matrix
defining the linear system. The argument is unchanged on exit.

X - REAL VECTOR

On exit the first N elements of X will contain the solution of the system.

Q - REAL VECTOR

On entry, the first N elements of @ should contain the values of the right hand side (b)
of the system. The argument is unchanged on exit.

N - INTEGER

On entry, N must be set to the order of the system; it is unchanged on exit.

IFAIL - INTEGER

Unless the routine detects an error (see Error Indicators below) IFAIL contains zero
on exit.

6 Error Indicators
Errors detected by the routine:

IFAIL =1 N is not in the range 1 to 32.
IFAIL = 2 A zero pivot has been found. The calculation is terminated.
IFAIL = 3 A very small pivot has been found and the matrix is probably

singular. Computation proceeds anyway, but the results should
be treated with caution.

7 Auxiliary Routines

None
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8 Accuracy

Accuracy depends on the conditioning of the system; during testing of this single precision
implementation, the maximum residual was less than 10-3.

9 Further Comments

None

10 Keywords

Gauss Jordan, linear system solver

11 Example

Host program

.PROGRAM HOSTSOLVER
COMMON/INPUTD1/4(32,32)
COMMON/INPUTD2/Q(32),X(32)
COMMON/STATS/FNMONE ,FNMTWO, FNMINF
COMMON /IFAIL/IFAIL

DATA N,IX/32,1111111/

CALL INITDATA(N,IX)
CALL DAPCON(’gjtest.dd’)
CALL DAPSEN(’INPUTDATA1’,a,1024)
CALL DAPSEN(’INPUTDATA2’,Q,32)
CALL DAPENT(’GJTEST’)
CALL DAPREC(’IFAIL’,IFAIL,1)
CALL DAPSEN(’INPUTDATA2’,x,32)
WRITE(6,200) IFAIL

200 FORMAT(10X,8H IFAIL =,I2)
IF(IFAIL.NE.O0)STOP
CALL DAPREC(’STATS’,FNMONE,3)
CALL DAPREL
WRITE(S,100)FNMONE, FNMTWO, FRMINF

100 FORMAT(20H SUM OF RESIDUALS = ,E10.4//
131H SUM OF SQUARES OF RESIDUALS = ,E10.4//
220H MAXIMUM RESIDUAL = ,E10.4)
STOP
END

SUBROUTINE INITDATA(N,IX)

COMMON/INPUTD1/4(32,32)
COMMON/INPUTD2/Q(32),X%(32)
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THIS SUBROUTINE CREATES THE INITIAL SEEDS THAT THE DAP CAN USE
TO CALCULATE EXACTLY THE REQUIRED SET OF PSEUDO-RANDOM NUMBERS.
THIS IS DONE IN ORDER TO BE ABLE TO MAKE FAIR COMPARISONS IN
RESPECT OF RUNTIME AS WELL AS NUMERICAL RESULTS

aaoOaoaaan

DO1I=1,N
Do 1J=1,N
IY =FLOAT(IX)/22369.624
IX=125%IX~-2796203*IY
A(I,J) = FLOAT(IX)/2796203
1 CONTINUE
DO 2T =1,N
IY = FLOAT(IX)/22369.624
IX=125%IX~-2796203*IY
Q(I) = FLOAT(IX)/2796203
2 CONTINUE
RETURN
END

DAP program

ENTRY SUBROUTINE GJTEST
COMMON/INPUTDATA1/A(,)
COMMON/INPUTDATA2/Q0),X()
COMMON/STATS/FNMONE ,FNMTWO , FNMINF
COMMON/IFAIL/IFAIL

REAL ASAVE(,),QSAVE(),TRHS(),RESIDU() ,MAXIMUM(),MULT(,)
+ ,QSAVE1()
LOGICAL MASK(,),VMASK()

CALL CONVFME(A)

CALL CONVFVE(Q,32,1)
ASAVE = A

QSAVE = Q

QSAVE1 = QSAVE

N =27

MASK = ROWS(1,N).AND.COLS(1,N)
VMASK = ELS(1,N)

QSAVE = QSAVE1

Q(VMASK) = QSAVE
Q(.NOT.VMASK) = 0.

A(MASK) = ASAVE

A(.NOT.MASK) = 0.
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CALL F04_GJ_NLE_ES(A,X,Q,N,IFAIL)
X(.NOT.VMASK) = 0.
QSAVE(.NOT.VMASK) = 0.
IF(IFAIL.NE.Q)GO TO 100

TRHS =0.

MULT=MATR(X)

TRHS = SUMC(MULT#*ASAVE)
TRHS(.NOT.VMASK) = 0.

RESIDU = ABS(TRHS - QSAVE)
FNMONE=SUM(RESIDU)

FNMTWO= SUM(RESIDU**2)

MAXIMUM = O.
MAXIMUM(RESIDU.GT.MAXIMUM) = RESIDU
FNMINF = MAXV(MAXIMUM)

CALL CONVVFE(X,32,1)

CALL CONVSFE(FNMONE,3)
100 CONTINUE

CALL CONVSFI(IFAIL,1)

RETURN
END

Results

IFAIL = 0
SUM OF RESIDUALS = 0.3069

SUM OF SQUARES OF RESIDUALS = 0.3604E-06

MAXIMUM RESIDUAL = 0.1466E-03
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7.3 F04_QR_GIVENS_SOLVE release 1

1 Purpose

F04 .QR_GIVENS_SOLVE solves the linear system Az = b for z, where 4 is an n by n
matrix with 2 < 7 < 33. The routine may be used to solve simultaneously for up to 32
different right hand side vectors b.

2 Specification

SUBROUTINE F04_.QR.GIVENS_SOLVE (A ,X , B, N, NB, IFAIL)
INTEGER N, NB , IFAIL
REAL A(,), X(,), B(,)

3 Description

The routine factorizes the given n by n matrix A as:
QA=R

where @ is an orthogonal matrix and r is upper triangular.

Givens method of plane rotations is used to annihilate elements of A below the leading
diagonal until the matrix R remains. This leaves an upper triangular system which is solved
by back substitution. Row i of A is used to annihilate the element in position (i + 1, ;) by
pre-multiplying A by a matrix-of the form:

p{i,i-}-l) = dzag (I(i—l): U(i,i+1)a I(n-—i—l)) 1<j<n-1

ci s
-5 G

where Ug; 541) = < ) , withe?+s2=1

In the usual serial application, these rotations are applied séquentially, but on the DAP you
can perform up to % rotations simultaneously [1].
4 References

[1) SAMEH A H and KUCK D J

On stable parallel linear system solvers: Journal of the Association of Computing
Machinery, vol 25, no 1, pp 81-91.

5 Arguments

A - REAL MATRIX

On entry, elements Ag; jy (i=1,2,..., N;j=1,2,..., N) must be set to the elements
of the matrix defining the linear system. A is unchanged on exit.

X - REAL MATRIX

On exit, column 7 of X will contain the solution of the system corresponding to the 7"
column of B.
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Arguments - continued

B - REAL MATRIX

On entry, columns 1 to N B must give the N B right hand side vectors. B is unchanged
on exit.

N - INTEGER

On entry, N must be set to the order of the matrix A. N is unchanged on exit.

NB - INTEGER

On entry, N B must be set to the number of right hand side vectors for which the system
is to be solved. N B is unchanged on exit.

IFAIL - INTEGER

Unless the routine detects an error (see Error Indicators below) IFAIL contains zero
on exit.

Error Indicators
Errors detected by the routine:
IFAIL =1 N is not in the range 3 to 32 or N B is not in the range 1 to 32

IFAIL = 2 A zero pivot has been found during the back substitution process,
that is, the matrix is singular

IFAIL =3 A very small pivot has been found during the back substitution
process and the matrix is probably singular. Computation proceeds
anyway, but you should treat the results with caution

Auxiliary Routines

This routine calls the DAP library routines Z_F04_.BACK_SUBST,
Z_FO4_.SPREAD_LMAT_EAST, Z_FO4_SPREAD_RMAT_EAST and Z_FO4_UPDATE.

A ccuracy

Empirical results indicate that errors may be expected in the 6th or 7th significant digit.
The routine will return IFAIL = 3 (see Error Indicators above) if the condition:

MIN; |Ry;]
is satisfied, where R;; is the upper triangular matrix defined in Description above.

Further Comments

You must not use common blocks with the names:
C_F04_QR1 and C.F04.QR2

Keywords

Givens’ rotation, linear equations
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11 Example

The example solves a 5 by 5 linear system with one right hand side. The true solution vector
is [1,1,1,1,1] T.

Host program

PROGRAM MAINGIVEN
REAL A(32,32),X(32,32),B(32,32)
COMMON /MATS/A,X,B
COMMON /SCALARS/ N,NB,IFAIL
READ(5,*) N,NB
READ(5,*) ((A(I1,J),J=1,N), I=1,N)
READ(5,#*) ((B(I,J),J=1,NB),I=1,N)
CALL DAPCON(’entgiven.dd’)

CALL DAPSEN(’SCALARS®,N,3)
CALL DAPSEN(’MATS’,A,3%1024)
CALL DAPENT(’ENTGIVEN’)

CALL DAPREC(’SCALARS’,N,3)
CALL DAPREC(’MATS’,A,2%1024)
CALL DAPREL

WRITE (6,1000) IFAIL

1000  FORMAT( °® IFAIL = ’,I5)

IF (IFAIL.NE.O .AND. IFAIL.NE.3) STOP

WRITE(6,2000) ((X(I,J),J=1,NB),I=1,N)
2000 FORMAT(/’ Solutiom:’/(1X,F12.7))

STOP

END

DAP program

ENTRY SUBROUTINE ENTGIVEN
REAL A(,),X(,),B(,)

COMMON /MATS/A,X,B

COMMON /SCALARS/N,NB,IFAIL
CALL CONVFME(A)

CALL CONVFME(B)

CALL CONVFSI(N,3)

CALL FO4_QR_GIVENS_SOLVE(A,X,B,N,NB,IFAIL)
CALL CONVMFE(X)

CALL CONVSFI(N,3)

RETURN

END
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Data

Results

5 1

3.0 -7.0
8.0 1.6
0.5 1.6
0.0 -1.0 -
2.7 1.3 -

W NN O
oW wom

O - N WwN
O N O U
I
B 010N

= 0 U1 O

6.1 9.4 2.3 4.2 4.6

IFAIL

i
o

Solution:
0.9999998
0.9999985
0.9999961
0.9999998
0.9999990
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7.4 F04 _TRIDS_ES release 1

1 Purpose

F04 _TRIDS_ES returns the solution of a tridiagonal linear system of equations of order up
to 32. That is, it finds vector £ where:

Mz=y

and M is a tridiagonal matrix.

2 Specification

REAL VECTOR FUNCTION F04_TRIDS_.ES(A ,B,C, Y, N, IFAIL)
INTEGER N , IFAIL
REALA(),B(),C(),Y()

3 Description

The algorithm used is of the recursive doubling type. At each step the distance of the outer
diagonals from the main diagonal is doubled. When only a diagonal matrix remains the
solution is obtained by a simple division. Full details may be found in [1].

4 References
(1] WHITEWAY J

A parallel algorithm for solving tridiagonal systems: DAPSU Newsletter, 3 December
1979: available on request from the DAP Support Unit, Queen Mary College, Mile
End Road, London E1 4NS

5 Arguments
A - REAL VECTOR

On entry, elements 2 to N of A must be set to the values of the lower diagonal of the
tridiagonal matrix. That is, if the matrix is M = m(¢,j) then A(I) must be set to
M(I,I-1) (I =2,...,N). Elements with subscripts not in the range 2 to N are
ignored. A is unchanged on exit.

B - REAL VECTOR

On entry, elements 1 to N of B must be set to the values of the main diagonal of the
tridiagonal matrix. That is, if the matrix is M = m(i,j) then B(I) must be set to
M(I,I) (I=1,...,N). Elements with subscripts not in the range 1 to N are ignored.
B is unchanged on exit.

C - REAL VECTOR

On entry, elements 1 to N — 1 of C must be set to the values of the upper diagonal of
the tridiagonal matrix. That is, if the matrix is M = m(¢,j) then C (I) must be set to
M(I,I+1) (I=1,..., N —1). Elements with subscripts. not in the range 1 to N — 1
are ignored. C is unchanged on exit.

Y - REAL VECTOR

On entry, elements 1 to N of ¥ must be set to the values of the RHS vector. Elements
with subscripts not in the range 1 to N are ignored. Y is unchanged on exit.
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Arguments - continued

N - INTEGER
On entry, N must specify the size of the system (in the range 2 to 32). That is, for
Mz =y, M must be N by N.

IFAIL - INTEGER

Unless the routine detects an error (see Error Indicators below) IFAIL contains zero
on exit.

Error Indicators
Errors detected by the routine:

IFAIL =1 At some stage during the calculation, an element on the leading
diagonal is zero. This implies the original matrix was singular. The
contents of FO4_ TRIDS_ES in this case are undefined

IFAIL = 2 At some stage during the calculation, the matrix has ceased to be
diagonally dominant. Note: this is only a warning and the routine
continues to completion (if possible)

IFAIL = 3 N is not in the range 2 to 32

A uxiliary Routines
None

Accuracy

General results seem to indicate that the more diagonally dominant the system is the more
accurate the results. IFAIL = 1 is possible for non-diagonally dominant systems even if the
system is non-singular.

Further Comments
None

Keywords

Tridiagonal linear systems

Example

The example given is such that the solution vector should be 1. The system is diagonally
dominant.

Host program

PROGRAM MAINTRIDSES

REAL ANS(32)

COMMON /ANS/ANS/IFAIL/IFAIL
CALL DAPCON(’tridses.dd’)
CALL DAPENT(’ENTTRIDSES’)
CALL DAPREC(’ANS’,ANS,32)
CALL DAPREC(’IFAIL’,IFAIL,1)
CALL DAPREL

WRITE (6,1000) IFAIL
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1000  FORMAT(’ IFAIL =’,I5)

IF (IFAIL.NE.O) STOP
WRITE(6,2000) (ANS(I), I=1,15)

2000 FORMAT(’ RESULTS’//(F12.7))

STOP
END

DAP program

Results

IFAIL =
RESULTS

ENTRY SUBROUTINE ENTTRIDSES

REAL LOWER(), UPPER(), DIAG(), ANS(), RHS()
COMMON /ANS/ANS/IFAIL/IFAIL

EXTERNAL REAL VECTOR FUNCTION FO4_TRIDS_ES
K =15

LOWER = 0.5
UPPER = 0.5
DIAG = 2.0
RHS = 3.0
RHS(1) = 2.5
RHS(N) = 2.5

ANS = FO4_TRIDS_ES(LOWER,DIAG,UPPER,RHS,N,IFAIL)
CALL CONVVFE(ANS,32,1)

CALL CONVSFI(IFAIL,1)

RETURN

END

0

.9999999
.9999999

[ N N O U T Y Uy Sy

.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000

.9999999
.9999999
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7.5 F04 _TRIDS_ES_SQ release 1

1 Purpose

F04 _TRIDS.ES.SQ returns the solution of a set of up to 32 tridiagonal linear systems of
equations each of order up to 32. That is, it solves up to 32 systems of the form:

Mz=y

where M is a tridiagonal matrix.

2 Specification

REAL MATRIX FUNCTION F04 _TRIDS.ES.SQ (A,B,C,Y,N, K, IFAIL)
INTEGER N , K , IFAIL :
REAL A(,),B(,),C(,),Y(,)

3 Description

The algorithm used is of the recursive doubling type. At each step the distance of the two
outer diagonals from the main diagonal is doubled. When only a diagonal matrix remains
the solution is obtained by a simple division. Each system is stored down the columns of the

matrix arguments and so, many systems can be solved simultaneously. Full details can be
found in [1].

4 References
[1]] WHITEWAY J

A parallel algorithm for solving tridiagonal systems: DAPSU Newletter 3, December
1979: available from the DAP Support Unit, Queen Mary College, Mile End Road,
London E1 4NS.

5 Arguments
A - REAL MATRIX

On entry, elements 2 to N of columns 1 to K of A must be set to the values of the lower
diagonal of each of the K systems That is, if the K*® matrix is M = m(i, j) then A(I, K)
must be set to M(I,I—-1) (I =2,3,..., N). Elements with row subscripts not in the
range 2 to N or columns subscripts not in the range 1 to K are ignored. A is unchanged
on exit.

B - REAL MATRIX

On entry, elements 1 to N of columns 1 to K of B must be set to the values of the
main diagonal of each of the K systems. That is, if the K*h matrix is M = m(,J)
then B(I, K) must be set to M(I,I)(I = 1,2, ..., N). Elements with row subscripts
not in the range 1 to N or column subscripts not in the range 1 to K are ignored. B is
unchanged on exit.

C - REAL MATRIX

On entry, elements 1 to N — 1 of columns 1 to K of C must be set to the values of the
upper diagonal of each of the K systems. That is, if the K*® matrix is M = m(i, j) then
C(I,K) must beset to M(I,I+1) (I=1,2,..., N—1). Elements with row subscripts
not in the range 1 to N — 1 or column subscripts not in the range 1 to K are ignored. C
is unchanged on exit.
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Y - REAL MATRIX

On entry, elements 1 to N of columns 1 to K of Y must be set to the values of the K
RHS vectors. Elements with row subscripts not in the range 1 to NV or column subscripts
not in the range 1 to K are ignored. Y is unchanged on exit.

N - INTEGER
On entry, N must specify the order of the tridiagonal systems (in the range 1 to 32).

K - INTEGER

On entry, K must specify the number of tridiagonal systems to be solved (in the range
1 to 32).

IFAIL - INTEGER

Unless the routine detects an error (see Error Indicators below) IFAIL contains zero
on exit.

6 Error Indicators
Errors detected by the routine:

IFAIL =1 At some stage during the calculation, an element on one of the
leading diagonals is zero. This implies that, at least, one of the
systems was singular. The contents of F04 . TRIDS_ES_SQ in this
case are undefined

IFAIL = 2 As a minimum, at some stage during the calculation, one matrix
: has ceased to be diagonally dominant. Note : this is only a warning
and the routine continues to completion (if possible)

IFAIL = 3 N is not in the range 1 to 32 or K is not in the range 1 to 32

7 Auxiliary Routines

None

8 Accuracy

General results seem to indicate that the more diagonally dominant the systems are the more
accurate the results. IFAIL = 1 is possible for non-diagonally dominant systems even if the
system is non-singular.

9 Further Comments

None

10 Keywords

Tridiagonal linear systems

11 Example

The example given solves 2 tridiagonal systems of order 15. The solutions are 1 and 2
respectively.
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Host program

PROGRAM MAINTRIDSESSQ

REAL ANS(32,32)

COMMON /ANS/ANS/IFAIL/IFAIL

CALL DAPCON(’tridsessq.dd’)

CALL DAPENT(’ENTTRIDSESSQ’)

CALL DAPREC(’ANS’,ANS,1024)

CALL DAPREC(’IFAIL’,IFAIL,1)

CALL DAPREL

WRITE(6,1000) IFAIL
1000 FORMAT (’ IFAIL =’,I5)

IF (IFAIL.NE.O.AND.IFAIL.NE.2) STOP

WRITE(6,2000) (ANS(I,1), ANS(I,2), I = 1,15)
2000 FORMAT(® RESULTS’//(2F12.7))

STOP

END

DAP program

ENTRY SUBROUTINE ENTTRIDSESSQ
REAL LOWER(,), UPPER(,), DIAG(,), RHS(,), ANS(,)
COMMON /ANS/ANS/IFAIL/IFAIL

EXTERNAL REAL MATRIX FUNCTION FO4_TRIDS_ES_SQ

‘N = 15 o

K=2
LOWER = 0.5
UPPER = 0.5
DIAG = 2.0
RHS(,1) = 3.0
RES(,2) = 6.0

RHS(1,1) = 2.5
RHS(N,1) = 2.5
RES(1,2) = 5.0
RHS(N,2) = 5.0

ANS = FO4_TRIDS_ES_SQ (LOWER,DIAG,UPPER,RHS,N,K,IFAIL)
CALL CONVMFE(ANS)

CALL CONVFSI(IFAIL,1)

RETURN

END
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Results

IFAIL = 0

RESULTS
1.0000019 2.0000019
1.0000019 2.0000019
1.0000019 2.0000019
1.0000019 2.0000019
1.0000019 2.0000019
1.0000019 2.0000048
1.0000019 2.0000019
1.0000019 2.0000019
1.0000019 2.0000019
1.0000019 2.0000019
1.0000019 2.0000019
1.0000019 2.0000019
1.0000019 2.0000019
1.0000019 2.0000019
1.0000019 2.0000019
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7.6 Fo4 _TRIDS_LV release 1

1 Purpose

F04 _TRIDS.LV returns the solution of a tridiagonal linear system of equations of order up
to 1024. That is, it finds vector z where:

Mz=y
and M is a tridiagonal matrix.

2 Speciﬁcation

REAL MATRIX FUNCTION F04_.TRIDS.LV(A ,B,C,Y, N, IFAIL)
INTEGER N , IFAIL
REAL A(,),B(,),C(,),Y(,)

3 Description

The algorithm used is of the recursive doubling type. At each step the distance of the two
outer diagonals from the main diagonal is doubled. When only a diagonal matrix remains
the solution is obtained by a simple division. Full details may be found in [1].

4 References
(1] WHITEWAY J

A parallel algorithm for solving tridiagonal systems: DAPSU Newsletter 3, December 1979:
available from the DAP Support Unit, Queen Mary College, Mile End Road, London E1
4NS.

5 Arguments
A - REAL MATRIX

On entry, elements 2 to N of A (treated as a long vector) must be set to the values of
the lower diagonal of the tridiagonal matrix. That is, if the matrix is M = m(%,7) then
A (I) must be set to M(I,I-1) (I =2,3,..., N). Elements with subscripts not in the
range 2 to N are ignored. A is unchanged on exit.

B — REAL MATRIX

On entry, elements 1 to N of B (treated as a long vector) must be set to the values of
the main diagonal of the tridiagonal matrix. That is, if the matrix is M = m(i, j) then
B (I) must be set to M(I,I) (I =1,2,..., N). Elements with subscripts not in the
range 1 to N are ignored. B is unchanged on exit.

C - REAL MATRIX

On entry, elements 1 to N — 1 of C (treated as a long vector) must be set to the values
of the upper diagonal of the tridiagonal matrix. That is, if the matrix is M = m(i, §)
then C (I) must be set to M(I,/+1) (I =1,2,..., N —1). Elements with subscripts
not in the range 1 to N — 1 are ignored. C is unchanged on exit.

Y - REAL MATRIX

On entry, elements 1 to N of Y (treated as a long vector) must be set to the values of
the RHS vector. Elements with subscripts not in the range 1 to N are ignored. Y is
unchanged on exit.
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N - INTEGER

On entry, N must specify the size of the system (in the range 2 to 1024). That is, for
Mz =y, M must be ¥ by N.

IFAIL - INTEGER

Unless the routine detects an error (see Error Indicators below) IFAIL contains zero
on exit.

6 Error Indicators
Errors detected by the routine:

IFAIL =1 At some stage during the calculation, an element on the leading

diagonal is zero. This implies the original matrix was singular. The
contents of F04 _TRIDS_LV in this case are undefined

IFAIL = 2 At some stage during the calculation, the matrix has ceased to be
diagonally dominant. Note: this is only a warning and the routine
continues to completion (if possible)

IFAIL = 3 N is not in the range 2 to 1024

7 Auxiliary Routines
None

8 Accuracy

General results seem to indicate that the more diagonally dominant the system is the more
accurate the results. IFAIL = 1 is possible for non-diagonally dominant systems even if the
system is non-singular.

9 Further Comments

None

10 Keywords

Tridiagonal linear systems

11 Example

The example given is such that the solution vector should be 1. The system is diagonally
dominant,.

Host program

PROGRAM MAINTRIDS_LV

REAL ANS(1024)
COMMON/ANS/ANS/IFAIL/IFAIL
CALL DAPCON(’tridslv.dd’)
CALL DAPENT(’ENTTRIDS_LV’)
CALL DAPREC(’ANS’,ANS,1024)
CALL DAPREC(’IFAIL’,IFAIL,1)
CALL DAPREL
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WRITE (6,1000) IFAIL
1000 FORMAT (’ IFAIL =’,I5)
IF (IFAIL.NE.O) STOP
WRITE(6,2000) (ANS(I), I = 1, 15)
2000 FORMAT(® RESULTS'// (F12.7))
STOP
END

DAP program

ENTRY SUBROUTINE ENTTRIDS_LV

REAL LOWER(,), UPPER(,), DIAG(,), ANS(,), RHS(,)
COMMON /ANS/ANS/IFAIL/IFAIL

EXTERNAL REAL MATRIX FUNCTION F04_TRIDS_LV

N = 15
LOWER
UPPER
DIAG = 2.0

RHS = 3.0

RHS(1) = 2.5

RHS(N) = 2.5

ANS = FO4_TRIDS_LV(LOWER,DIAG,UPPER,RHS,N,IFAIL)
CALL CONVMFE(ANS)

CALL CONVSFI(IFAIL,1)

0.5
0.5

RETURN
END
Results
IFAIL = 0
RESULTS

1.00000020
1.00000020
1.00000020

All other results are also equal to 1.0000020
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8.1 GO05_MC_BEGIN release 1

10

11

86

Purpose
GO05-MC_BEGIN sets the basic generator routine G05.MC_I8 to an initial state.

Specification

SUBROUTINE G05_.MC_BEGIN

Description
This routine sets the internal variable N used by G05_MC_I8 to the value 123456789 x (232 + 1).

References
[1] SMITH K A, REDDAWAY S F and SCOTT D M

Very High Performance Pseudo-Random Number Generator on DAP: Computer
Physics Communications, vol 37, pp 239-244 (1985)

Arguments

None

Error Indicators

None

A uxiliary Routines

None

Accuracy
Not applicable

Further Comments
The routine uses a labelled COMMON block C_G05.MC.

Keywords

Initialisation, random numbers

Example

The example program prints the first five pseudo-random real numbers from a uniform distri-
bution between 0 and 1, generated by G05.MC_R4 after initialization by G05_MC_BEGIN.

Host program

PROGRAM MAIN

REAL*4 RAND(1024)
COMMON/RESULT/RAND
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CALL DAPCON(’ent.dd’)

CALL DAPENT(’ENT’)

CALL DAPREC(’RESULT’,RAND,1024)
CALL DAPREL

WRITE(6,1000) (RAND(I),I=1,5)
1000 FORMAT(’GO5_MC_BEGIN EXAMPLE PROGRAM RESULTS’/1X/
*5(1X,F10.4/))

STOP
END

DAP Program

ENTRY SUBROUTINE ENT

REAL*4 RAND(,)
COMMON/RESULT/RAND

EXTERNAL REAL*4 MATRIX FUNCTION GOS_MC_R4
CALL GO5_MC_BEGIN

RAND=GO5_MC_R4(0.0)
CALL CONVMFE(RAND)

RETURN
END

Results

GO5_MC_BEGIN EXAMPLE PROGRAM RESULTS

0.6149
0.8745
0.1511
0.0734
0.2451
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8.2 G05_MC_14 release 1

10

11

88

Purpose

G05-MC_I4 returns an INTEGER*4 MATRIX containing 1024 pseudo-random integer num-
bers taken from a uniform distribution between 0 and 23! — 1.

Specification

INTEGER*4 MATRIX FUNCTION GO05.MC_I4(I)
INTEGER*4 1

Description

The routine calls GO5_MC_I8 which uses the multiplicative congruential method:

N = 13'3 N mod 25°
GO05.MC.I4 = N/2%8

where N is a variable, internal to G05_MC._I8, whose value is presérved between calls of the
routine. Its initial value is set by a call to either GO5.MC.BEGIN or G05.MC_REPEAT.

References
[1] SMITH K A, REDDAWAY S F and SCOTT DM

Very High Performance Pseudo-Random Number Generator on DAP: Computer
Physics Communications, vol 37, pp 239-244, 1985
Arguments

I - INTEGER*4
A dummy argument required by FORTRAN-PLUS syntax

Error Indicators

None

A uxiliary Routines
The routine calls the General Support library routine G05. MC_I8.

Accuracy
Not applicable

Further Comments

None

Keywords

Pseudo-random number, random number, rectangular distribution, uniform distribution

Example

The example program prints the first five pseudo-random numbers from a uniform distribu-
tion between 0 and 23! —1, generated by G05_ MC_1I4 after initialization by G05.MC.BEGIN.
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Host Program

PROGRAM MAIN

INTEGER*4 RAND(1024)
COMMON/RESULT/RAND

CALL DAPCON(’ent.dd’)

CALL DAPENT(’ENT’)

CALL DAPREC(’RESULT’,RAND,1024)
CALL DAPREL

WRITE(6,1000) (RAND(I),I=1,5)
1000 FORMAT(/’ GO5_MC_I4 EXAMPLE PROGRAM RESULTS’/1X/
* 5(1X,120/))
STOP
END

DAP program

ENTRY SUBROUTINE ENT

INTEGER#*4 RAND(,)
COMMON/RESULT/RAND

EXTERNAL INTEGER*4 MATRIX FUNCTION GO5_MC_I4

CALL GO5_MC_BEGIN
RAND=GO5_MC_I4(0)
CALL CONVMFI(RAND)

RETURN
END

Results

GO5_MC_I4 EXAMPLE PROGRAM RESULTS

1815152335
436969313
976973459

1028379600

1443266400
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Purpose

GO05_.MC_I8 returns an INTEGER*8 MATRIX containing 1024 pseudo-random integer num-
‘bers taken from a uniform distribution between 10 and 259 — 1.

Specification
INTEGER*8 MATRIX FUNCTION G05.MC_I8 (I)
INTEGER*8 1

Description

The routine uses the multiplicative congruential method:
N = 13'3 N mod 2°°
G05.MC.I8 = N

where N is a variable, internal to G05.MC.18, whose value is preserved between calls of the
routine. Its initial value is set by a call to either GO5_MC_BEGIN or G05. MC_REPEAT.

References
[1] SMITH K A, REDDAWAY S F 'fmd SCOTTDM

Very High Performance Pseudo-Random Number Generator on DAP: Computer
Physics Communications, vol 37, pp 239-244, 1985
Arguments

I - INTEGER*8
A dummy argument required by FORTRAN-PLUS syntax

Error Indicators

None

Auxiliary Routines

None

Accuracy
Not applicable

Further Comments
The routine uses labelled COMMON block C_G05.MC.

Keywords

Pseudo-random number, random number, rectangular distribution, uniform distribution

Example

This FORTRAN-PLUS fragment traces the pseudo-random numbers from a uniform distribu-
tion between 0 and 2%% — 1 generated by G05. MC_I8 after initialization by G05.MC_BEGIN.
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DAP program

ENTRY SUBROUTINE ENT

INTEGER*8 RAND(,)

EXTERNAL INTEGER*8 MATRIX FUNCTION GO5_MC_I8
CALL GO5_MC_BEGIN

RAND=GO5_MC_I8(0)

TRACE 1(RAND)

RETURN
END

Results

FORTRAN-PLUS Trace
FORTRAN-PLUS Subroutine: ENT at Line 9

Integer Matrix Local Variable RAND in 64 bits - addressed by Stack + 0.09
(Row 01 Col 01)  487251244993469717, 476067912847080853,

(Col 03) 190484975398149653, 493464185425411733,
(Col 05) 517514364922158869, 463547216227221397,

There are 512 lines of detailed output altogether.
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8.4 GO5-MC_NORMAL_R4 release 1
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Purpose

G05.MC_NORMALL. R4 provides a REAL*4 matrix containing normal pseudo-random vari-
ates from the distribution N(0,1).

Specification
REAL*4 MATRIX FUNCTION G05-MC_NORMAL_.R4 (D)
REAL*4 D

Description

The real matrix GO5_.MC_NORMAL_R4 is set equal to 1024 of either of:

SQRT(-2.0 LOG(U,)) SIN(27 Us,)

SQRT(-2.0 LOG(U;)) COS(27 U,)
where U; and U are uniform pseudo-random numbers generated by G05. MC_.R4 (see Atkin-
son[1]).
References

[1] ATKINSON A C and PEARCE M C

The computer generation of Beta, Gamma and Normal random variables: J R Statist
Soc 139, pp 431-461, 1976

Arguments
D - REAL*4
D is a dummy argument required by FORTRAN-PLUS syntax.

Error Indicators

None

Auxiliary Routines
The routine calls the General Support library routine G05_ MC_R4.

Accuracy
Not applicable

Further Comments
The routine uses the labelled COMMON block C_G05_N_NORM.

Keywords

Gaussian distribution, normal distribution, random numbers
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11 Example

This example program prints the first five pseudo-random normal variates from a normal
distribution with mean 0 and standard deviation 1, generated by GO5_.MC_.NORMAL_R4
after initialization by G05.MC.BEGIN.

Host program

PROGRAM MAIN

REAL*4 RAND(1024)
COMMON/RESULT/RAND

CALL DAPCON(’ent.dd’)

CALL DAPENT(’ENT’)

CALL DAPREC(’RESULT’,RAND,1024)
CALL DAPREL

WRITE(6,1000) (RAND(I),I=1,5)
1000 FORMAT(/,’ GO5_MC_NORMAL_R4 EXAMPLE PROGRAM RESULTS’/1X/
*5(1X,F10.4/))

STOP
END

DAP program

ENTRY SUBROUTINE ENT

REAL*4 RAND(,)
COMMON/RESULT/RAND

EXTERNAL REAL*4 MATRIX FUNCTION GO5_MC_NORMAL_R4

CALL GO5_MC_BEGIN
RAND=GOS5_MC_NORMAL_R4(0.0)
CALL CONVMFE(RAND)

RETURN
END

Results

GO5_MC_NORMAL_R4 EXAMPLE PROGRAM RESULTS

-1.4384
1.7104
.1361
.1628
-.8427
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Purpose

GO05_.MC_R4 returns a REAL*4 MATRIX of 1024 pseudo-random real numbers taken from
a uniform distribution between 0 and 1.

Specification

REAL*4 MATRIX FUNCTION G05_.MC.R4 (X)
REAL*4 X

Description
The routine returns the matrix of values:
N /259

where N is the result of a call to G05.MC_IS.

References
[1] SMITH K A, REDDAWAY S F and SCOTT D M )
Very High Performance Pseudo-Random Number Generator on DAP: Computer

Physics Communications, vol 37, pp 239-244, 1985
Arguments
X - REAL*4

A dummy argument required by FORTRAN-PLUS syntax

Error Indicators

None

Auxiliary Routines
The routine calls the General Support library routine G05_ MC_RS.

Accuracy
Not applicable

Further Comments

None

Keywords

Pseudo-random number, random number, rectangular distribution, uniform distribution

Example

The example program prints the first five pseudo-random real numbers from a uniform distri-
bution between 0 and 1, generated by G05.MC_R4 after initialization by G05_MC.BEGIN.
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Host program

PROGRAM MAIN

REAL*4 RAND(1024)
COMMON/RESULT/RAND

CALL DAPCON(’ent.dd’)

CALL DAPENT(’ENT’)

CALL DAPREC(’RESULT’,RAND,1024)
CALL DAPREL

WRITE(6,1000) (RAND(I),I=1,5)
1000 FORMAT(/,’ GO5_MC_R4 EXAMPLE PROGRAM RESULTS’/1X/
*5(1X,F10.4/))

STOP
END

DAP program
ENTRY SUBROUTINE ENT

REAL*4 RAND(,)
COMMON/RESULT/RAND

EXTERNAL REAL*4 MATRIX FUNCTION GO5_MC_R4

CALL GO5_MC_BEGIN
RAND=GO5_MC_R4(0.0)
CALL CONVMFE(RAND)

RETURN
END

Results

GO5_MC_R4 EXAMPLE PROGRAM RESULTS

.8452
.2035
.4549
.4789
.6721
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Purpose

GO05_.MC._R8 returns a REAL*8 MATRIX of 1024 pseudo random real numbers taken from
a uniform distribution between 0 and 1. .

Specification

REAL*8 MATRIX FUNCTION G05.MC_RS8 (X)
REAL*8 X

Description
The routine returns the matrix of values:
N/259

where N is the result of a call to G05_.MC_IS.

References
[1] SMITH K A, REDDAWAY S F and SCOTT D M

Very High Performance Pseudo-Random Number Generator on DAP: Computer
Physics Communications, vol 37, pp 239-244, 1985

Arguments

X - REAL*8
A dummy argument required by FORTRAN-PLUS syntax

Error Indicators

None

Auxiliary Routines
The routine calls the General Support library routine G05. MC_I8.

Accuracy
Not applicable

Further Comments

None

Keywords

Pseudo-random number, random number, rectangular distribution, uniform distribution

Example

The example program prints the first five pseudo-random real numbers from a uniform distri-
bution between 0 and 1, generated by G05. MC_RS8 after initialization by G05_MC_BEGIN.
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Host program

PROGRAM MAIN

DOUBLE PRECISION RAND(1024)
COMMON/RESULT/RAND

CALL DAPCON(’ent.dd’)

CALL DAPENT(’ENT®)

CALL DAPREC(’RESULT’,RAND,2048)
CALL DAPREL

WRITE(6,1000) (RAND(I),I=1,5)
1000 FORMAT(/,’ GO5_MC_R8 EXAMPLE PROGRAM RESULTS’/1X/
*5(1X,F10.4/))

STOP
END

DAP program

ENTRY SUBROUTINE ENT

DOUBLE PRECISION RAND(,)
COMMON/RESULT/RAND

EXTERNAL REAL*8 MATRIX FUNCTION GO5_MC_RS8

CALL GO5_MC_BEGIN
RAND=GO5_MC_R8(0.0)
CALL CONVMFD(RAND)

RETURN
END

Results

GO5_MC_R8 EXAMPLE PROGRAM RESULTS

.8452
.2035
.4549
.4789
.6721
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Purpose
G05.MC_REPEAT sets the basic generator routine G05.MC_I8 to a repeatable initial state.

Specification
SUBROUTINE G05_.MC_REPEAT( 1)

INTEGER*4 1
Description

The routine sets the internal variable N used by G05_.MC_I8 to a value calculated from the
parameter I, where:

N = 2ABS(I) + 1

The routine will yield different subsequent sequences of random numbers if called with differ-
ent values of I, but the sequences will be repeatable in different runs of the calling program.

References
[1] SMITH K A, REDDAWAY S F and SCOTT D M

Very High Performance Pseudo-Random Number Generator on DAP: Computer
Physics Communications, vol 37, pp 239-244, 1985

Arguments

I - INTEGER*4

On entry I specifies a number from which the new internal generator is calculated; I is
unchanged on exit.

Error Indicators

None

Auxiliary Routines

None

Accuracy
Not applicable

Further Comments
The routine uses a labelled COMMON block C_G05_MC.

Keywords

Pseudo-random number, random number, rectangular distribution, uniform distribution

Example

The example program prints the first five pseudo-random real numbers from a uniform distri-
bution between 0 and 1, generated by G05_.MC_R4 after initialization by GO5_.MC_.REPEAT.
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Host program

PROGRAM MAIN

REAL*4 RAND(1024)
COMMON/RESULT/RAND

CALL DAPCON(’ent.dd’)

CALL DAPENT(’ENT’)

CALL DAPREC(’RESULT’,RAND,1024)
CALL DAPREL

WRITE(6,1000) (RAND(I),I=1,5)
1000 FORMAT(/,’ GO5_MC_REPEAT EXAMPLE PROGRAM RESULTS’/1X/
*5(1X,F10.4/))

STQP
END

DAP program

ENTRY SUBROUTINE ENT

REAL*4 RAND(,)
COMMON/RESULT/RAND

EXTERNAL REAL*4 MATRIX FUNCTION GOS5_MC_R4

CALL GO5_MC_REPEAT(10)
RAND=GO5_MC_R4(0.0)
CALL CONVMFE(RAND)

RETURN
END

Results

GO5_MC_REPEAT EXAMPLE PROGRAM RESULTS

.6178
.6430
.5399
.3852
.1947
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Chapter 9

HO1 — Operations research, graph
structures, networks

Contents: .
Subroutine Page
HO1_L_ASSIGN 102
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9.1 HO1 _L-ASSIGN release 1
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Purpose

HO1_L_ASSIGN solves the linear assignment problem with a minimum objective function
and a real cost matrix of order N x N, where N < 32.

Specification

SUBROUTINE HO1.L_ASSIGN (C, X , N, MIN , IFAIL)
REAL C(,) , MIN
INTEGER X (), N, IFAIL

Description

The algorithm used is that of Ford and Fulkerson, [1], [2], which uses the Primal-Dual
method. After dualizing the Primal problem, the routine aims to find a pair X, (U,V) of
Primal and Dual solutions respectively which satisfy the complimentary slackness condition.

To find the appropriate solutions, a network G(U, V) is set up. There is an arc (i, J) in
the graph whenever u; + Vj = ¢, where c;; is the cost of assigning ¢ to j. Next, the
labelling algorithm of Ford and Fulkerson is appplied to find a maximum flow in G(U, V). If
the maximum flow saturates the sink or (source), the problem is solved, otherwise the dual
solutions are updated and the process restarts.

References
[1] DANTZIG G B

Linear Programming and Extensions: Princeton University Press, 1963

[2] FORD L R and FULKERSON D R

Flows in Networks: Princeton University Press, 1962

Arguments
C - REAL MATRIX

On entry C contains the N x N assignment cost matrix; C is unchanged on exit.

X - INTEGER VECTOR

On exit, X specifies the assignment solution; that is, if X(I) = J, for 1,J < N, then Iis
assigned to J.

N - INTEGER

On entry N is the order of the cost matrix C. N must lie between 2 and 32, and is
unchanged on exit.

MIN - REAL

On exit MIN contains the assignment value.

IFAIL - INTEGER

Unless the routine detects an error (see Error Indicators below) IFAIL contains zero
on exit.
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Error Indicators

Errors detected by the routine:
IFAIL =1 N does not lie in the range 2 to 32

A uxiliary Routines
The routine calls the GS library routines X05.E_.MIN_VC and X05.E.MIN_VR.

Accuracy

You can expect the computed value of the objective function MIN to be accurate to about
6 significant digits.

Further Comments

None

Keywords

Labelling algorithm, linear assignment, maximum flow, Primal-Dual algorithms

Example

The example is a 5 x 5 assignment problem, where the cost matrix is as follows:

3 2 3 41
4 1 2 4 2
C=|10 5 3 2
7 5 0 1 3
0 41 2 3
Hence N = 5

Host program

PROGRAM LASP

REAL C(32,32),MIN
INTEGER X(32),N,IFAIL
COMMON/A1/C
COMMON/A2/X
COMMON/A3/N,IFAIL
COMMON/A4/MIN

READ(*,*) N
DO 10 I=1,N
10 READ(*,*) (c(I1,]), J=1,N)

CALL DAPCON(’initial.dd’)
CALL DAPSEN(’A1’,C,1024)
CALL DAPSEN(’A3’,N,1)
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CALL DAPENT(’INITIAL’)

CALL DAPREC(’A1’,C,1024)

CALL DAPREC(’A2’,X,32)

CALL DAPREC(’A3’,N,2)

CALL DAPREC(’A4’,MIN,1)

CALL DAPREL

WRITE (*,%) ’IFAIL = ’,IFAIL
IF (IFAIL .NE. 0) STOP
WRITE(6,30) MIN, (X(I), I=1,N)

30 FORMAT(/,’ MINIMUM VALUE OF ASP. =’,F12.5,//,’ THE ASSIGNMENTS”,
* * ARE AS FOLLOWS:’,//, (1X,1614))

STOP
END

DAP program

ENTRY SUBROUTINE INITIAL

REAL c(,),MIN
INTEGER X( ),N,IFAIL
COMMON/A1/C
COMMON/A2/%
COMMON/A3/N,IFAIL
COMMON/A4/MIN

CALL CONVFSI(N,1)
CALL CONVFME(C)

CALL HO1i_L_ASSIGN(C,X,N,MIN,IFAIL)

CALL CONVMFE(C)

CALL CONVVFI(X,32,1)
CALL CONVSFI(N,2)
CALL CONVSFE(MIN,1)

RETURN
END
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Data

O ~NRp o>
0N O N
= O NN W
N o= WD
W W NN

Results

IFAIL = O

MINIMUM VALUE OF ASP. = 4.00000

THE ASSIGNMENTS ARE AS FOLLOWS:

5 3 2 4 1

General Support library man010.02 105



9.1 HO1_.L.ASSIGN HO1 - Operations research, graph structures, networks

106 man010.02 AMT



Chapter 10

J06 — Plotting

Contents:
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10.1 JO6.CHAR .CONT J08 - Plotting

10.1 JO6_CHAR _CONT release 1

1
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Purpose

JO6.CHAR _CONT returns a character matrix containing a rough contour map of a real
matrix. You can control the number of contours and contour levels.

Specification

SUBROUTINE J06.CHAR _CONT (A, MAP , CODE, LEVELS , NUM_LEVELS ,
+ IFAIL)

INTEGER NUM_LEVELS , IFAIL

REAL A (,) , LEVELS ()

CHARACTER MAP (,) , CODE()

Description

The routine adds contours one by one in order of descending height. For each contour the
routine finds the area of the map which is less than the contour height. The border of this
area is then found by eliminating any elements lying entirely within the area. This border
is then taken as the contour.

References
None

Arguments
A - REAL MATRIX

On entry, A contains the matrix for which a contour map is required. A is unchanged
on exit.

MAP - CHARACTER MATRIX
On exit, MAP contains the required contour map.

CODE - CHARACTER VECTOR

On entry, CODE must either have been set to all spaces or the first NUM_LEVELS entries
must contain the characters required to represent the contour levels. If CODE is all spaces
then the default character sequence of 0123456789ABCDEFGHIJ KLMNOPQRSTU-
VWXY?Z will be used. CODE is unchanged on exit.

LEVELS - REAL VECTOR
On entry, LEVELS must contain the NUM_LEVELS contour height values required (if
NUM._LEVELS is positive), or may be undefined if NUM_LEVELS is negative.
If NUM.LEVELS is positive, successive entries in LEVELS must be strictly increasing.

On exit, elements 1 to ABS(NUM.LEVELS) of LEVELS contain the contour height

values used in the contour plot, (other elements of LEVELS are undefined).
NUM.LEVELS - INTEGER

On entry, NUM_LEVELS specifies the number of contour lines required. NUM_LEVELS

must not be zero or greater than 36 in absolute magnitude.

If NUM.LEVELS is positive, the contour heights will be taken from the vector LEVELS.
If NUM.LEVELS is negative, ABS(NUM_LEVELS) contours will be drawn equally
spaced between the maximum and minimum values of A. NUM_.LEVELS is unchanged
on exit.
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IFAIL - INTEGER

Unless the routine detects an error (see Error Indicators below) IFAIL contains zero
on exit.

6 Error Indicators

Errors detected by the routine:

IFAIL=1 NUM_LEVELS is zero or not in the ranges -36 to -1 or 1 to 36
IFAIL = 2 The first NUM_LEVELS entries of LEVELS are not in strictly ascending order
IFAIL = 3 NUM_LEVELS is negative and all the entries in A are identical

7 Auxiliary Routines

None

8 Accuracy
Not applicable

9 Further Comments

None

10 Keywords .

Contour plots

11 Example

The example generates two maps of the function 22+ y2, the first using the default character
set and equally spaced contour heights and the second using heights and characters you
define. The maps are output using the FORTRAN-PLUS TRACE statement.

Host program

PROGRAM MAIN

CALL DAPCON(’example.dd’)
CALL DAPENT(’EXAMPLE’)
CALL DAPREL

STOP

END

DAP program

ENTRY SUBROUTINE EXAMPLE

REAL A(,),CLEVELS()

INTEGER IV()

CHARACTER MAP(,),MYCODE()

CALL XO5_SHORT_INDEX(IV,0)

A=FLOAT(MATR(IV-32)#*2 + MATC(IV-32)#%%2)

CALL JO6_CHAR_CONT(A,MAP,VEC(® ’),CLEVELS,-10,IFAIL)
TRACE 1 (MAP,IFAIL,CLEVELS) '
CLEVELS(1)=100.0
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CLEVELS(2)=500.0
CLEVELS(3)=1000.0
CLEVELS(4)=1200.0
MYCODE(1)=’4A"

MYCODE(2)=’B’

MYCODE(3)='C?

MYCODE(4)=’D’

CALL JO6_CHAR_CONT(A,MAP,MYCODE,CLEVELS,4,IFAIL)
TRACE 1 (MAP,IFAIL,CLEVELS)
RETURN

END
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10.2 J06_ZEBRA CHART release 1

1 Purpose

J06_.ZEBRA .CHART returns a contour map suitable for output to a printing device of a
real matrix. The output is called a ZEBRA chart; it consists of alternating bands of blanks
and a given character.

2 Specification

CHARACTER MATRIX FUNCTION J06_ZEBRA CHART (X , STEPS , CHAR)
INTEGER STEPS

REAL X (,)

CHARACTER CHAR

3 Description

The method used is straightforward: the input variable is scaled and divided into STEPS
levels, and the least significant bit of the level number is used as a mask to create the output.

4 References

None

5 Arguments
X - REAL MATRIX

On entry, X contains the matrix to be plotted, and is unchanged on exit.

STEPS - INTEGER

On entry, STEPS specifies the number of bands in the chart (between the minimum and
maximum of X), and is unchanged on exit.

CHAR - CHARACTER
On entry, CHAR specifies the character to be used in the bands, and is unchanged on
exit.
6 Error Indicators
Errors detected by the routine:

If STEPS is less than 2 or the range of X is less than 1.0E-5 then a chart of all ‘E’s is
produced.

7 Auxiliary Routines

None

8 Accuracy
Not applicable

9 Further Comments

None
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10 Keywords

Contour map, Zebra chart

11 Example

The example calculates a simple function and uses the FORTRAN-PLUS TRACE facility
to output the Zebra chart generated.

Host program

PROGRAM MAIN

CALL DAPCON(’example.dd’)
CALL DAPENT(’EXAMPLE’)
CALL DAPREL

STOP

END

DAP program

ENTRY SUBROUTINE EXAMPLE
EXTERNAL CHARACTER MATRIX FUNCTION JO6_ZEBRA_CHART
REAL X(,)

CHARACTER OUT(,)

INTEGER I()

F=3.14159/32.

G=2.0%F

CALL SHORT_INDEX(I)
X=MATR(SIN(F+*I))+MATC(COS(G*I))
OUT=JO06_ZEBRA_CHART(X,10,’%’)

TRACE 1 (OUT)

RETURN

END
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Contents:

Subroutine
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11.1 MoO1 _BSORT_ LV release 1
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Purpose

MO1.BSORT.LV is a sorting routine based on bitonic sorting. Data is sorted according to
a key, or the key alone may be sorted.

Specification

SUBROUTINE M01.BSORT_LV(KEY, L, X, D)
INTEGER KEY(,) ,L,D
LOGICAL X (,,D)

Description

The routine uses Batcher’s bitonic sorting algorithm. For a description see [1].

References
(1] KNUTHDE
The Art of Computer Programming, Vol 3 (Sorting and Searching): p 232 Addison-

Wesley, 1973
Arguments

KEY -~ INTEGER MATRIX

On entry, KEY (considered as a long vector) must be defined as the key to the sort; on
exit the contents of KEY will have been sorted.

L - INTEGER

On entry, L must have been set to zero if only the KEY is to be sorted; any other value
will cause the data to be sorted as well. L is unchanged on exit.

X - <any type> MATRIX (or MATRIX array)

On entry, X contains the data to be sorted. On exit, X contains the sorted data.

D - INTEGER

On entry, D specifies the number of bit planes in the data, and is unchanged on exit.

Error Indicators

None

Auxiliary Routines

None

Accuracy
Not applicable

Further Comments

None
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10 Keywords

Batcher sort, bitonic sort, data sort, key sort

11 Example

The example sorts 6 real values according to an integer key. Key entries beyond the data of
interest are set to a large number to prevent them being involved in the sort.

Host program

PROGRAM MAIN

REAL DATA(1024)
INTEGER KEY(1024)
COMMON /KEY/KEY  /DATA/DATA

DO 10 J=1,1024
10 KEY(J)=10000
READ(*,*) (KEY(I),I=1,6)
READ(*,*) (DATA(I),I=1,6)
WRITE(6,1000) (DATA(I),I=1,6),(KEY(I),I=1,6)
1000 FORMAT(’ INPUT VALUES:'//’ DATA:’,6F10.3/’ KEY:’,6I10)

CALL DAPCON(’ent.dd’)
CALL DAPSEN(’KEY’,KEY,1024)
CALL DAPSEN(’DATA’,DATA,1024)

CALL DAPENT(’ENT’)

CALL DAPREC(’KEY’,KEY,1024)
CALL DAPREC(’DATA’,DATA,1024)

CALL DAPREL

WRITE(6,2000) (DATA(I),I=1,6),(KEY(I),I=1,6)

2000 FORMAT(//’ OUTPUT VALUES:’//’ DATA:’,6F10.3/°’ KEY:’,6I10)
.STOP
END

DAP program

ENTRY SUBROUTINE ENT

INTEGER KEY(,)
REAL DATA(,)
COMMON /KEY/KEY /DATA/DATA
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CALL CONVFMI(KEY)
CALL CONVFME(DATA)

CALL MO1_BSORT_LV{(KEY,1,DATA,32)

CALL CONVMFI(KEY)
CALL CONVMFE(DATA)

RETURN
END

Data

Results

INPUT VALUES:

DATA: 7.500 22.000 -81.000 ~2.000 3.000 19.000
KEY: 8 -1 7 16 2 - -3

OUTPUT VALUES:

DATA: 19.000 22.000 3.000 -81.000 7.500 -2.000
KEY: -3 -1 2 7 8 16
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11.2 MoO1 _INV_PERMUTE _COLS release 1

1 Purpose
MO1.INV_PERMUTE .COLS permutes the first M columns of a matrix according to a
permutation vector (IV). The result is equivalent to the FORTRAN-PLUS statements:

DO10I=1M
10 A.PERMUTED (,IV (I)) = A(,])

2 Specification

SUBROUTINE MO1_INV_PERMUTE _COLS (A,AP,IV N, M)
INTEGERIV(),N, M
<any type> A(!) , AP (:)

3 Description

Columns are permuted according to the integer index vector IV, such that column I is moved
to column IV(I).

4 References

None

5 Arguments
A — <any type> MATRIX

On entry, A contains the matrix whose columns are to be permuted. A may be of any
type, and is unchanged on exit.

AP - <any type> MATRIX

On exit, AP contains the columns of A permuted according to the index vector IV. AP
should usually be of the same type as A. If M is less than 32, columns M+1 to 32 are
unchanged on exit. ’

IV - INTEGER VECTOR

On entry, IV contains the required permutation, that is, column I of A will be moved to
column IV(I) of AP. Elements 1 to M of IV must be in the range 1 to 32. If the entries
of IV are not all distinct - for example, if IV(I) = IV(J) with J > I — then column
AP(,IV(J)) will have the value A(,J) on exit. IV is unchanged on exit.

N - INTEGER
On entry, N contains the number of planes in the matrix to be permuted; possible values
for N are:
N=1 for permuting a logical matrix
N=38 for permuting a character matrix
N = 8*n for permuting an INTEGER*n or REAL*n matrix

N should be less than 257, and is unchanged on exit.
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5 Arguments - continued
M - INTEGER

On entry, M must contain a value in the range 1 to 32; only the first M index values of
IV are used. M is unchanged on exit. .

6 Error Indicators

None

7 Auxiliary Routines
The routine references the General Support library routine Z _M01_AUX.

8 Accuracy
Not applicable

9 Further Comments

The parameters given as A and AP may be single arrays or part of a matrix set. For example,
in:

CALL M01 _INV_.PERMUTE _COLS (L (,,5), LL(,,10),1V,1,32)

L and LL are logical matrix sets of size (at least) 5 and 10 respectively.
You must not use a common block with the names of CZ _M01 _HEX1F or CZ _M01 _REVERSE.

10 Keywords

Permutation

11 Example

The following FORTRAN-PLUS fragment reverses the order of the columns of a real matrix,
that is,
AP = REVR(A).

ENTRY SUBROUTINE ENT
REAL A(,), AP(,)
INTEGER IV()

DO 10 I=1, 32

10 IV(I) = 33 —- I
PDO20I =1, 32
DO 20 J =1, 32

20 A(I,J) = FLOAT (I + 1)
CALL MO1_INV_PERMUTE_COLS (A, AP, IV, 32, 32)
TRACE 1 (AP)
RETURN
END

Results
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FORTRAN-PLUS Trace

FORTRAN-PLUS Subroutine:
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