
DAP Series

General Support
Library

GSLIB

AMT

(manOl 0.02)

AMT endeavours to ensure that the information in this doc
ument is correct, but does not accept responsibility for any
error or omission.

Any procedure described in this document for operating AMT
equipment should be read and understood by the operator
before the equipment is used. To ensure that AMT equipment
functions without risk to safety or health, such procedures
should be strictly observed by the operator.

The development of AMT products and services is continuous
and published information may not be up to date. Any pai’tic
ular issue of a product may contain part only of the facilities
described in this document or may contain facilities not de
scribed here. It is important to check the current position
with AMT.

Specifications and statements as to performance in this docu
ment are AMT estimates intended for general guidance. They
may require adjustment in particular circumstances and are
therefore not formal offers or undertakings.

Statements in this document are not part of a contract or
program product licence save in so far as they are incorporated
into a contract or licence by express reference. Issue of this
document does not entitle the recipient to access to or use of
the products described, and such access or use may be subject
to separate contracts or licences.

Technical publication manOlO.02

First edition 20 October 1987
Second edition 22 April 1988

Copyright © 1988 by Active Memory Technology
No part of this publication may be reproduced in any form
without written permission from Active Memory Technology.

AMT will be pleased to receive readers’ views on the contents,
organisation, etc of this publication. Please make contact at
either of the addresses below:

Publications Manager Publications Manager
Active Memory Technology Ltd Active Memory Technology Inc
65 Suttons Park Avenue 16802 Aston St Suite 103
Reading Irvine
Berks RG6 1AZ, UK California, 92714, USA

Tel: 0734 661111 Tel: (714) 261 8901

manOlO.02 AMT

General Support library manOlO.02 111

1

1

1

Contents

1 Introduction

1.1 Background

1.2 Arrangement of Documentation

1.3 Validation 1

1.4 Full-form Documentation 2

1.4.1 Purpose 2

1.4.2 Specification 2

1.4.3 Description 2

1.4.4 References 2

1.4.5 Arguments 2

1.4.6 Error Indicators 3

1.4.7 Auxiliary routines 3

1.4.8 Accuracy 3

1.4.9 Further Comments 3

1.4.10 Keywords 3

1.4.11 Example 3

1.5 Access to the Library 3

1.5.1 Using the library under UNIX 4

1.5.2 Using the library under VAX/VMS 4

1.6 Other AMT subroutine libraries 4

CONTENTS CONTENTS

2 GSLIB quick-reference catalogue 5

3 A03 — Variable precision arithmetic

3.1 A03..ADDPLANES.A1

4 C06 — Summation of series

4.1 C0&FFTESS

4.2 C0&FFTLV

5 FOl — Matrix Operations 29

5.1 F01_G_MM 30

5.2 F01_M_INV 34

5.3 FOLMMSTRASSEN 37

6 F02 41

6.1 42

6.2 46

6.3 50

6.4 54

7 F04 59

7.1 60

7.2 66

7.3 71

7.4 75

7.5

7.6 82

8 G05 — Random numbers 85

8.1 G05..MC.BEGIN

8.2 G05MC14

15

16

19

20

24

— Eigenvalues and eigenvectors

F02.ALLEIGXALSJD ES

F02...ALL...EIGXALSJDLV

F02..EIGXALS.TD. LV

F02...JACOBI

— Simultaneous linear equations

F04 BIGSOLVE

FO4J3JNLE...ES

F04 QILGIVENS..SOLVE

F04 TRIDSES

F04...TRIDSE&SQ

F04 ...TRIDSLV

86

88

manOlO.02 AMTiv

CONTENTS CONTENTS

8.3 G05_MC_18 90

8.4 G05..MCNORMAL..R4 92

8.5 G05_MC_R4 94

8.6 G05_MC_R8 96

8.7 G0&.MC..REPEAT 9$

9 HOl — Operations research, graph structures, networks 101

9.1 HO1_L_ASSIGN 102

10 J06 — Plotting 107

10.1 JO&CHAR.CONT 108

10.2 J0&ZEBRA...CHART 111

11 MOl — Sorting 113

11.1 M01.BSORTLV 114

11.2 MOLJNVPERMUTEJDOLS 117

11.3 MO1JNVPERMUTELV32 121

11.4 MO1ANVPERMUTEROWS 124

11.5 MOLPERMUTECOLS 128

11.6 MO1PERMUTE.LV32 132

11.7 MOL.PERMUTE.ROWS 135

11.8 M01_SORT_VJ4 139

11.9 M01_SORT_V_R4 142

12 S — Special functions 147

12.1 SO4ARC_COS 148

12.2 S04_ARC_SIN 152

12.3 S04_ATAN2_M 156

12.4 S04_ATAN2_V 159

12.5 S0&COS_INT 162

General Support library manOlO.02 V

CONTENTS

12.6 S04_MOD_BES_I0.

12.7 S04_MODBESJ1

12.8 S04_SIN_INT

12.9 S15_ERF

12.10S15_ERFC

CO NTENTS

166

170

174

178

182

13 XO1 — Mathematical constants

13.1 X01_PI

187

188

14 X02 — Machine constants

14.1 X02.. EPSILON . .

14.2 X02...MAXDEC. .

14.3 X02... MAXINT

14.4 X02.. MAXPW2. .

14.5 X02_ MINPW2 . .

14.6 X02...RMAX

14.7 X02_RMIN

14.8 X02..TOL

191

192194196198200202204206

15 X05 — Other utilities

15.1 XO5ALTLV

15.2 X05...CRINKLE

15.3 XO5EAST.BOUNDARY

15.4 XO&EMAX...PC

15.5 X05.E.MAX.PR

15.6 X05E...MAXVC

15.7 X05...E...MAXXR

15.8 X05E...MIN.PC

15.9 XO5EMINPR

15.10X05...f.MIN VC

209

211

213

215

217

219

221

223

225

227

229

vi manOlO.02 AMT

CONTENTS CONTENTS

15.24X05 NORTH - BOUNDARY.

15.25X05 PATTERN

15.26X05.SCATTER.Y...32

15.27X0&. SHLC... LV

15.28XO5SHLPLV

15.29X05.SHORT.JNDEX

15.3OXO5SHRCLV

15.31XO5SHRPLV

15.32X0&. SOUTH .BOUNDARY

15.33X0&. STRETCH .4

15.34X0& STRETCH 8

15.35X05... STRETCH - N

15.36X05 SUM LEFT..J2

15.37X05 SuM.. BJGHT...12

15.38X05... UNCRJNKLE

231233236239241243245247249251253255258260262264267269271273275277279281283285288

291

15.11X05..EMIN.NR

15.12XO5EXCHP

15.13XO5GATHER.V..32..

15.14XO5LMAX.PC

15.15X05.LMAX.PR

15.16X0&.LMAXXC

15.1ZXO&.I - MAX.VR

15.18X05_I_MIN_PC

15.19X05_I_MIN_PR

15.20X05_LMIN..VC

15.21X05.A_MIN_VR

15.22X05_LOG2

15.23X05... LONG... INDEX

General Support library man 01 0.02 vii

CONTENTS
CONTENTS

15.39X05WEST BOUNDARY 293

I
viii manOlQ.Q2 AMT

Chapter 1

Introduction

1.1 Background

The General Support subroutine library was developed at Queen Mary College (QMC) in London
and is jointly owned by AMT and QMC. The library is a set of 93 routines which can be called
from FORTRAN-PLUS. The contents of the library are based on those of the DAP Fortran library
at QMC, which grew in response to user requests for specific routines. The routines were provided
by members of the DAP Support Unit (DAPSU) at QMC, or were written at the suggestion of
DAPSU members, or were submitted by users themselves. Many of the algorithms .used by these
routines have been in regular use on a first generation DAP at QMC since 1980.

1.2 Arrangement of Documentation

The routines described in this manual are classified by chapter, arranged in a NAG-like manner,
covering such areas as solution of linear equations, Fourier transforms, and so on. The next chapter
in this manual provides a full listing of the contents of the library, chapter by chapter, and gives
a brief description of the area covered by each routine.

1.3 Validation

Before being added to the library all routines undergo validation tests, designed and written at
DAPSU. These tests have been collected together in a validation suite, which is used to check
installation of the library.

General Support library manOlO.02 1

1.4 FULL-FORM DOCUMENTATION Inuction

1.4 Full-form Documentation

The full description of each routine has eleven sections, covering the following areas:

1 Purpose

2 Specification

3 Description

4 References

5 Arguments

6 Error Indicators

7 Auxiliary Routines

8 Accuracy

9 Further Comments

10 Keywords

11 Example

1.4.1 Purpose

The purpose of the routine is given, and where relevant, details of the area covered by the routine.

1.4.2 Specification

The calling sequence to be used when you invoke the routine. If the routine is written in FORTRAN
PLUS, Specification gives the declaration statements at the head of the routine; if the routine is
written in APAL, the equivalent statements are given.

1.4.3 Description

The description of the algorithm used by the routine is given.

1.4.4 References

Any references used in connection with the routine are given.

1.4.5 Arguments

The significance of each argument used by the routine is explained.

2 manOlO.02 AMT

Introduction 1.5 ACCESS TO THE LIBRARY

1.4.6 Error Indicators

The significance of any error indicators returned by the routine is explained.

1.4.7 Auxiliary routines

The names of any auxiliary routines used by the routine are given. The auxiliary routines are kept
in the same library as the subroutine library routines but are not, in general, available to users.

1.4.8 Accuracy

Some indication is given of the expected accuracy of any result returned by the routine as a result
of the method used to calculate it. No information is given about results with respect to the
word length used; for such information have a look at the routines in chapter 12 (X02 — Machine
constants).

1.4.9 Further Comments

Any information which does not fall under any other heading is included here.

1.4.10 Keywords

This section is intended for use with an information retrieval system and gives a list of subjects to
which the operation of the routine may be relevant.

1.4.11 Example

An example program is given (both Host and DAP programs) for each of the routines, showing
the use of the routine and any expected results.

WARNING

You should follow closely the specification of the calling sequence given in section 2 of the details
of each routine in the following chapters, otherwise you may get unexpected results.

1.5 Access to the Library

The subroutine library is linked in at the consolidation stage of the compiling process. For more
details than are included below, see the relevant AMT publication: Program Development Under
UNIX (manOO3), or Program Development Under VAX/VMS (manOO4).

General Support library manOlO.02 3

1.6 OTHER AMT SUBROUTINE LIBRARIES Introduction

1.5.1 Using the library under UNIX

The library resides within the UNIX system as:

/usr/lib/dap/sulib .dl

and you can use it in a call to dapa or dapf by means of the -l flag, as in:

dap —o myfila.dd myfile.df -1 sulib

This call will compile the DAP section myfi1e.df linking in any routines from the library and
produce a DOF file myfile.dd.

1.5.2 Using the library under VAX/VMS

The library resides within the VMS system as:

SYS$LIBRARY: GSLIB DIB

and you can use it in a call to DLINK using the /LIBRARY qualifier, as in:

$ DLINK MYFILE , SYS$LIBRARY : GSLIB/LIBRARY

This call links the DAP object code in file MYFILE.DOB with any library routines you might
specify in your source code, producing an executable DAP program in file MYFILE.DEX.

Alternatively, you can use the DAP_ LIBRARY logical name, as in:

$ DEFINE DAP_LIBRARY SY5$LIBRAaY:GSLIB

This call will cause the library to be searched automatically in all subsequent DLINK operations.
If you use the library frequently, you may find it convenient to include the above line in your
LOGIN.COM file.. If there are several DAP users on your system, your system manager could
include the line:

$ DEFINE/SYSTEM DAP_LIBRARY SYS$LIBRARY:GSLIB

in the system startup command file, to give all users automatic access to the library.

1.6 Other AMT subroutine libraries

This General Support subroutine library forms one of a series of libraries available from AMT.
Other libraries include:

• Low level graphics library

• Signal processing library

• Image Processing library

details of which can be obtained from your local AMT representative.

4 manOlO.02 AMT

Chapter 2

GSLIB quick-reference catalogue

Listed below are the groups of subroutines in release 1 of GSLIB, the General Support subroutine
library, and the subroutines in each group; each group is allocated a chapter in this manual. Release
1 of the library is targetted at the DAP 500 series of machines, those with an edge size of 32.

You may find this chapter helpful in the initial selection of suitable routines for the job in hand.

Chapter 3: A03 — Variable precision arithmetic

1 A03_ ADD_ PLANES_Il adds bit planes together by performing an addition of n
consecutive bits under each processing element. It returns the result of this addition as an
INTEGER*1 MATRIX. Any overflow past bit 7 is discarded and the result is given modulo
128.

Chapter 4: C06 — Summation of series, including fast Fourier
transformations

1 C06_ LFT_ LV performs a one dimensional finite Fourier transform of 1024 complex
points.

2 C06_ LFT_ ESS calculates the two dimensional discrete Fourier transform of 322 com
plex points.

Chapter 5: FOl — Matrix operations, including inversion

1 FOl_G_ MM performs a general matrix multiply of two matrices A and B where A is a
P by Q matrix and B is a Q by R matrix with P, Q and R in the range 1 to 32.

2 FOl_M_INV calculates, in place, the inverse of a given N by N matrix with N in the
range 1 to 32.

3 FOl_MM_STRASSEN uses Strassen’s algorithm to multiply two (partitioned) 642

matrices.

Chapter 6: F02 — Elgenvalues and elgenvectors

General Support library manOlO.02 5

GSLIB quick-reference catalogue

1 F02_ ALL_ EIG_VALS_TD — LV finds all the eigenvalues of a symmetric t ridiagonal
matrix of order up to 1024 using Sturm sequences.

2 F02_ALL_EIG_VALS_TD_ES finds all the eigenvalues ofasymmetric tridiagonal
matrix of order up to 32 using Sturm sequences.

3 F02_EIG_VALS_TD_LV finds up to 32 selected eigenvalues of a symmetric tridi
agonal matrix of order up to 1024 using Sturm sequences.

4 F02... JACOBI calculates the eigenvalues and eigenvectors of a real symmetric matrix.
The method is based on the classical Jacobi algorithm using plane rotations.

Chapter 7: F04 — Simultaneous linear equations

1 F04_ BIGSOLVE solves large sets of linear equations. The maximum size of the system
depends on the size of the DAP store. The matrix of the coefficients of the equations is of
size SIZE by SIZE and the right hand side is assumed to be held in column SIZE+1.
The whole matrix is held in the DAP partitioned in DAPSIZE blocks. This routine is
not recommended for systems of order 32 or less — in this case, you should use the routine
FO4GJN.. LE ES.

2 F04_Gi..NLE_ES solves for x the system of linear equations Ax = b, where A is a
non-sparse matrix of order N (in the range 1 to 32), using the Gauss Jordan method.

3 F04_QR_GIVENS... SOLVE solves for x the linear system Ax = b, where A is an
by N matrix with 2 < N < 33. The routine may be used to solve up to 32 different right

hand side vectors b simultaneously.

4 F04_TRIDS_ ES returns the solution of a tridiagonal linear system of equations of
order up to 32. It finds vector x, where:

Mx = y

and M is a tridiagonal matrix.

5 F04_TRIDS_ ES_ SQ returns the solution of a set of up to 32 tridiagonal linear systems
of equations each of order up to 32. It solves up to 32 systems of the form:

Mx=y

where M is a tridiagonal matrix.

6 F04_TRIDS_ LV returns the solution of a tridiagonal linear system of equations of
order up to 1024. It finds vector x, where:

Mx = y

and M is a tridiagonal matrix.

Chapter 8: G05 — Random numbers

1 GO&. MC... BEGIN sets the basic generator routine Z.G05_ MC.. INT to an initial state.

6 manOlO.02 AMT

GSLIB quick-reference catalogue

2 G05_ MC_14 returns an INTEGER*4 MATRIX containing 1024 pseudo-random integer
numbers taken from a uniform distribution between 0 and 231

— 1

3 G05_MC_18 returns an INTEGER*8 MATRIX containing 1024 pseudo-random integer
numbers taken ftom a uniform distribution between 1 and — 1.

4 G05_MC_NORMAL_R4 returns a REAL*4 MATRIX of 1024 normal pseudo-
random variates from the distribution N (0, 1).

5 G05_ MC_ R4 returns a REAL*4 MATRIX of 1024 pseudo-random real numbers taken
from a uniform distribution between 0 and 1.

6 G05_ MC_ R8 returns a REAL*8 MATRIX of 1024 pseudo-random real numbers taken
from a uniform distribution between 0 and 1.

7 G05_ MC_ REPEAT sets the basic generator routine Z.G05_ MCJNT to a repeatable
initial state.

Chapter 9: H — Operations research, graph structures, networks

1 H01_L_ ASSIGN solves the linear assignment problem with a minimum objective
function and a real cost matrix of order N by N, where N <= 32.

Chapter 10: J06 — Plotting

1 J06_CHAR_CONT returns a character matrix containing a rough contour map of a
real matrix. You can control the number of contours and contour levels.

2 J06_ ZEBRA_CHART returns a contour map of a real matrix suitable for output to
a printing device. The output is called a ZEBRA chart as it consists of alternating bands of
blanks and a given character.

Chapter 11: MOl — Sorting

1 M01_BSORT_LV is based on bitonic sorting. Data is sorted according to a key, or
the key alone may be sorted.

2 M01_INV_PERMUTE_COLS permutes the first M columns of a matrix ac
cording to a permutation vector (IV). The routine is equivalent to the FORTRAN-PLUS
statements:

DO 10 I = 1, M
10 APERMUTED(,IV(I)) = A(,I)

3 M01_INV_ PERMUTE_LV_32 permutes the values in an INTEGER*4 or REAL*4
matrix using an INTEGER*4 matrix key. The result is written to a new matrix and the orig
inal data is unaffected. The data shuffling implemented is ANSWER (KEY(I)) = START
(I), for I = 1, 1024, using long vector indexing. Hence the key matrix must contain values
in the range 1 — 1024, but the values need not be distinct.

General Support library manOlO.02 7

GSLIB quick-reference catalogue

4 MO1_INV_PERMUTE_ ROWS peTmutes the first M rows of a matrix according

to a permutation vector (IV). The routine is equivalent to the FORTRAN-PLUS statements:

DO 101 1, M
10 APERMUTED(,IV(I)) = A(,I)

5 MOl_PERMUTE_COLS permutes the first M columns of a matrix according to a
permutation vector (IV). The routine is equivalent to the FORTRAN-PLUS statements:

DO10I=1,M
10 APERMUTED(,I) = A(,IV(I))

6 MO1_PERMUTE_LV_32 permutes the values in an INTEGER*4 or REAL*4 ma
trix using an INTEGER*4 matrix key. The result is written to a new matrix and the original
data is unaffected. The data shuffling implemented is ANSWER (I) = START (KEY(I)),
for I = 1,1024, using long vector indexing. Hence the key matrix must contain values in the
range 1 — 1024, but the values need not be distinct.

7 MOl_PERMUTE_ ROWS permutes the first M rows of a matrix according to a
permutation vector (IV). The result is equivalent to the FORTRAN-PLUS statements:

DO 101 = 1, M
10 A..PERMUTED(I,) = A(IV(I),)

8 MO1_ SORT_V_I 4 sorts the first N elements of an integer vector into ascending or
descending order. The permutation required to perform the sort is returned to the calling
routine.

9 MO1_ SORT_V_ R4 sorts the first N elements of a real vector into ascending or de
scending order. The permutation required to perform the sort is returned to the calling
routine.

Chapter 12: S — Special functions

1 S04_ARC_COS returns the value of the inverse cosine function arccos (x) for a matrix
argument. The result lies in the range [0 , wJ.

2 S04_ARC_ SIN returns the value of the inverse sine function arcsin (x) for a matrix
argument. The result lies in the range [—w/2, ir/2].

3 S04_ ATAN2_ M is a matrix function similar to the standard FORTRAN ATAN2
function. It calculates arc-tangent(matrix-1/matrix-2), and returns a matrix of values in the
range —ir to ir, in the correct quadrant, and with divide-by-zero errors avoided. If a zero
divided by zero is attempted then a zero is returned.

4 504_ATAN2_V is a vector function similar to the standard FORTRAN ATAN2 func
tion. It calculates arc_tangent(vector_1/vector-2), and returns a vector of values in the range
—ir to ir, in the correct quadrant, and with divide-by-zero errors avoided. If a zero divided
by zero is attempted then a zero is returned.

5 S04_COS_ TNT returns the value of the cosine integral C1x for a matrix argument.

8 man 010.02 AMT

GSLIB quick-reference catalogue

6 S04_ MOD... BES_ 10 returns the value of the modified Bessel function 10 for a matrix
argument.

7 S04_ MOD_ BES_Il returns the value of the modified Bessel function Ii for a matrix
argument.

8 S04_ SIN_TNT returns the value of the sine integral Sx for a matrix argument.

9 S15_ERF returns the value of the error function.

10 S15_ ERFC returns the value of the complement of the error function.

Chapter 13: X01 — Mathematical constants

1 XO1... P1 determines the value of ir for any of the real precision lengths available on the
DAP.

Chapter 14: X02 — Machine constants

1 X02_ EPSILON determines the smallest positive real (EPS) such that 1.0+EPS differs
from 1.0, for any of the real precision lengths available on the DAP.

2 X02_ MAXDEC determines the value of MAXDEC for the different precision lengths
available on the DAP. MAXDEC is the maximum number of decimal digits which can be
represented accurately over the whole range of floating point numbers.

3 X02_ MAXINT determines the value of MAXINT for the different precision lengths
available on the DAP. MAXINT is the largest integer such that MAXINT and —MAXINT
can both be represented accuratetly.

4 X02_ MAXPW2 determines the value of MAXPW2 for the different precision lengths
available on the DAP. MAXPW2 is the largest integer power to which 2.0 may be raised
without overflow.

5 X02_ MINP’.V2 determines the value of MINPW2 for the different precision lengths
available on the DAP. MINPW2 is the largest negative integer power to which 2.0 may be
raised without underfiow.

6 X02_ RMAX determines the largest real (RMAX) such that RMAX and —RMAX can
both be represented exactly, for any of the real precision lengths available on the DAP.

7 X02_RMJN determines the smallest real (RMIN) such that RMIN and —RMIN can
both be represented exactly, for any of the real precision lengths available on the DAP.

8 X02_TOL determines the value of TOL (= RMIN/EPSILON) for any of the precision
lengths available on the DAP.

General Support library man 010.02 9

GSLIB quick-reference catalogue

Chapter 15: X05 — Other utilities

1 X05_ALT_LV produces a long vector of alternating groups of N false values followed
by N true values and so on, until all components of the vector have a value. If the value of
N lies outside the range 1 to 1024 all components will have the value false.

2 X05_CRINKLE effects a transformation in data storage format for vertical mode data
occupying an array of matrices — from ‘sliced’ to ‘crinkled’ storage.

3 X05_EAST_ BOUNDARY returns a logical matrix containing at most one .TRUE.
in each row corresponding to the last .TRUE. (if any) in each row of the logical matrix
parameter. The routine is equivalent to the FORTRAN-PLUS code:

DO 10 I 1, 32
IF (.NOT.ANY(LM(I,))) GOTO 10
KM (I,) REV (FRST (REV (LM (I,))))

10 CONTINUE

4 X05_E_MAX...PC returns a logical matrix whose row has the value TRUE. in
the position(s) corresponding to the position(s) in the row of the real matrix argument
holding the maximum value in that row, and .FALSE. elsewhere.

5 X05.... E_ MAX_ PR returns a logical matrix whose i1’ column has the value .TRUE. in
the position(s) corresponding to the position(s) in the i’ column of the real matrix argument
holding the maximum value in that column, and .FALSE. elsewhere.

6 X05_ E_ MAX_VC returns a real vector whose jth component is the maximum value
in the ii” row of the real matrix argument.

7 X05_ E_ MAX_yR returns a real vector whose 1th component is the maximum value
in the i’” column of the real matrix argument.

8 X05_E_MIN_PC returns a logical matrix whose i’ row has the value .TRUE, in
the position(s) corresponding to the position(s) in the i’ row of the real matrix argument
holding the minimum value in that row, and .FALSE. elsewhere.

9 X05_E_MIN_PR returns a logical matrix whose jh column has the value .TRUE. in
the position(s) corresponding to the position(s) in the jth column of the real matrix argument
holding the minimum value in that column, and .FALSE. elsewhere.

10 X05.... E_ MIN_VC returns a real vector whose i’’ component is the minimum value in
the row of the real matrix argument.

11 X05_ E_ MIN_VR returns a real vector whose th component is the minimum value in
the column of the real matrix argument.

12 X05_ EXCH_ P exchanges L planes starting at X with L planes starting at Y under
activity control indicated by M. The planes are exchanged in increasing order; you are
cautioned about the strange effects which will occur if the two sets of planes overlap.

10 manOlO.02 AMT

GSLIB quick-reference catalogue

13 X05_GATHER_V_ 32 assigns to the components of a vector the values of those
components of a vector array designated by corresponding components of an indexing vector.
The index values are interpreted as reduced rank indices to the vector array.

14 X05_I_MAX_PC returns a logical matrix whose jth row has the value .TRUE. in the
position(s) corresponding to the position(s) in the ii” row of the integer matrix argument
holding the maximum value in that row, and .FALSE. elsewhere.

15 X05_I_MAX_PR returns a logical matrix whose i’ column has the value .TRUE.
in the position(s) corresponding to the position(s) in the i1’ column of the integer matrix
argument holding the maximum value in that column, and .FALSE. elsewhere.

16 X05_ I_ MAX...VC returns an integer vector whose i’ component is the maximum
value in the i’ row of the integer matrix argument.

17 X05_I_MAX_VR returns an integer vector whose th component is the maximum
value in the jth column of the integer matrix argument.

1$ X05_I_MIN_PC returns a logical matrix whose i1’ row has the value .TRUE. in the
position(s) corresponding to the position(s) in the i1’ row of the integer matrix argument
holding the minimum value in that row, and .fALSE. elsewhere.

19 X05_I_MIN_PR returns a logical matrix whose th column has the value TRUE.
in the position(s) corresponding to the position(s) in the it” column of the integer matrix
argument holding the minimum value in that column, and .FALSE. elsewhere,

20 X05_ I_ MINXC returns an integer vector whose i’ component is the minimum value
in the row of the integer matrix argument.

21 X05_ I_ MIN_VR returns an integer vector whose jth component is the minimum value
in the i’ column of the integer matrix argument.

22 X05_LOG2 returns the value:

[Iog(N— 1)1+1

where square brackets indicate ‘integer part of’, and N is the input argument. The routine
returns the number of steps required in a log2, recursive doubling, algorithm.

23 X05_ LONG_ INDEX generates an integer matrix whose i’ element in long vector
order is (i + N — 1), where N is a parameter to the routine.

24 X05_NORTH_BOUNDARY returns a logical matrix containing at most one
.TRUE. in each column corresponding to the first .TRUE. (if any) in each column of the
logical matrix parameter. The routine is equivalent to the FORTRAN-PLUS code:

DO 10 I = 1, 32
IF (.NOT.ANY(LM(,I))) GOTO 10
KM(,I) = FRST(LM(,I))

10 CONTINUE

General Support library manOlO.02 11

GSLIB quick-reference catalogue

25 X05_ PATTERN produces four user-selectable patterns, each of which is returned as
a logical matrix. The four patterns available are:

0 — The main diagonal

1 — The minor diagonal

2 — A matrix, the rows of which correspond to the rows generated by ALTC

3 — The unit lower triangular matrix

26 X05_ SCATTER_V_ 32 takes components of a vector and assigns the values to com
ponents of a vector array designated by corresponding components of an indexing vector.
The index values are interpreted as reduced rank indices to the vector array.

27 X05_ SHLC_LV performs a cyclic long vector shift to the left on up to 128 bit planes.

2$ X05_ SHLP_ LV performs a planar long vector shift to the left on up to 12$ bit planes.

29 X05_ SHORT_INDEX generates an integer vector whose element is (i + N — 1),
where N is a parameter to the routine.

30 X05_ SHRC_ LV performs a cyclic long vector shift to the right on up to 128 bit planes.

31 X05_ SHRP_LV performs a planar long vector shift to the right on up to 128 bit
planes.

32 X05_SOUTH_BOUNDARY returns a logical matrix containing at most one
.TRUE. in each column corresponding to the last .TRUE. (if any) in each column of the
logical matrix parameter. The routine is equivalent to the FORTRAN-PLUS code:

DO 10 I = 1, 32
IF (.NOT.ANY(LM(,I))) GOTO 10
KM(,I) = REV(FRST(REV(LM(,I))))

10 CONTINUE

33 X05_ STRETCH_4 stretches the first quarter of a real matrix A (considered as a long
vector), such that each element is repeated four times consecutively.

34 X05_ STRETCH_8 stretches the first eighth of a real matrix A (considered as a long
vector), such that each element is repeated eight times consecutively.

35 X05_ STRETCH_ N stretches the first Nth of a real matrix A (considered as a long
vector), such that each element is repeated N times consecutively, N being 2 raised to a
positive integer power.

36 X05_ SUM_ LEFT_ 12 takes as input the long vector A (an INTEGER*2 vector) and
returns an INTEGER*2 long vector each of whose elements is the sum of all the elements
on the left of, but not including, the corresponding element of A.

12 manOlO.02 AMT

GSLIB quick-reference catalogue

37 X05_ SUM.... RIGHT_ 12 takes as input the long vector A (an INTEGER*2 vector)
and returns an INTEGER*2 long vector each of whose elements is the sum of all the elements
on the right of, but not including, the corresponding element of A.

38 X05_UNCRINKLE effects a transformation in data storage format for vertical mode
data occupying an array of matrices — from ‘crinkled’ to ‘sliced’ storage.

39 X05_WEST_ BOUNDARY returns a logical matrix containing at most one TRUE.
in each row corresponding to the first .TRUE. (if any) in each row of the logical matrix
parameter. The routine is equivalent to the FORTRAN-PLUS code:

DO 10 I = 1, 32
IF (.NOT.ANY(LM,(I,))) GOTO 10
KM (I,) FRST (LM (I,))

10 CONTINUE

General Support library manOlO.02 13

GSLIB quick-refeTence catalogue

14 manOlO.02 AMT

Chapter 3

A03 — Variable precision
anthmetIc

Contents:

Subroutine Page

A03..ADD.. PLANES.J1 16

General Support library manOlO.02 15

3.1 A03..ADD_ PLANES_Il A03 Variable precision arithmetic

3.1 A03..ADD_ PLANES_Il release 1

1 Purpose
A03_ADD_PLANES_Il adds bit planes together, that is, it performs an addition of n con-
secutive bits of each PE.

A03_ADD_ PLANES_Il returns the result of this addition so that the corresponding element
of the result is the sum of the n consecutive bits of the corresponding PE.
The result is calculated to an accuracy of integer*1, therefore any overflow past bit 7 is
thrown away and the result is modulo 128.

2 Specification
INTEGER*1 MATRIX FUNCTION AO3ADDPLANESI1 (STARTPLANE,

+ NRPLANES)
INTEGER NRPLANES
<any type> STARTPLANE(,)

3 Description
The DAP can add the contents of a store plane and the Q and C planes simultaneously
this routine uses that ability to add pairs of planes. The resulting carry is then rippled up
the answer.

4 References
None

5 Arguments
STABTPLANE - <any type> MATRIX

On entry STARTPLANE contains the address of the first plane to be added. The
function adds NRPLANES consecutive planes starting at STARTPLANE, . START-
PLANE may, in FORTRAN-PLUS, be any variable represented by a plane address.
None of the planes added are changed by the function, but you are warned against
allowing the destination of the result to overlap the planes to be added. If you do
try overlapping the planes, the program will still work, but you will have overwritten
your arguments before you accessed them!

NRPLANES - INTEGER

On entry NRPLANES specifies the number of planes to be added. Unchanged on exit.

6 Error Indicators
None

7 Auxiliary Routines
None

8 Accuracy
The results are calculated mod 128 — overflow is not detected.

16 manOlO.02 AMT

A03 — Variable precision arithmetic 3.1 A03_4DD_ PLANES_Il

9 Further Comments
N one

10 Keywords
Bit summation, integer addition.

11 Example
The example adds the bit planes which define a long index vector, thus counting the number
of bits set .TRUE. in the binary representation of the integers 0 to 1023.

Host program

PROGRAM MAIN

INTEGER IM(1024)
COMMON /IM/IM

CALL DAPCON(’ent.dd’)
CALL DA?ENT(‘ENT’)
CALL DAPREC(’IM’ ,IM,1024)

WRITE(6 • 1000)
1000FORMAT(6X,’I’,3X,’No. of bits set’!!)

00 10 11=1,1024
1=11—1

10 WRITE(6,2000) I,IM(fl)
2000 FORMAT(17, TOX,12)

CALL DAPREL
STOP
END

DAP program

ENTRY SUBROUTINE ENT

INTEGER*1 IM1(,)
INTEGER IMC)
LOGICAL LM(,,32)
COMMON /IM/IM

EQUIVALENCE (111, LM)

EXTERNAL INTEGER*1 MATRIX FUNCTION A03_ADD.3LANES_I1

General Support library manOl 0.02 17

3.1 AO&ADD_ PLANES_Il A03 - Variable precision arithmetic

CALL XOSLONGINDEX(IM,O)
IMI=A03_ADD._PLANES_I1CLM(, ,21) ,l0)
IM=IM1
CALL CONVMFI(IM)

RETURN
END

Results -

I No. of bits set

0 0
1 1
2 1
3 2

1020 8
1021 9
1022 9
1023 10

18 manOlO.02 AMT

Chapter 4

C06 — Summation of series
(including fast fourier transformations)

Contents:

Subroutine Page

C0&FFTESS 20

C0..FFTLV 24

General Support library manOlO.02 19

4.1 C06_FFT_ESS COC — Summation of series

4.1 C06_FFT_ESS release 1

1 Purpose
C06_ FFT_ ESS calculates the two dimensional discrete Fourier transform of 32 x 32 complex
points.

2 Specification
SUBROUTINE C06..FFT...ESS (X , Y , INVERS , FIRST)
REAL X(,) ,Y(,)
LOGICAL INVERS , FIRST

3 Description
The 2D transform is calculated by performing independent sets of row and column 32-point
transforms.

The data is then in bit reversed order independently in rows and columns and a final shuffle
is performed to reorder the data.

For a description of the general theory of FFTs see [1].

4 References
[1] BRIGHAM E.O.

The Fast Fourier Transform: Prentice-Hall, 1974

o Arguments
X - REAL MATRIX

On entry X contains the real part of the data to be transformed. On exit X contains the
real part of the transformed data.

Y - REAL MATRIX

On entry Y contains the imaginary part of the data to be transformed. On exit Y
contains the imaginary part of the transformed data.

INVERS - LOGICAL

If INVERS is set to .FALSE. the transform:

(Amn+i3mn)exp
(2.(i — lXrn — 1)

+
(k — 1)(n — 1))

is calculated, where j = 1, 2, ... , 32 ; Ic = 1, 2, ... , 32 and the summations are also
over m = 1, 2, ... , 32 and n = 1, 2, ... , 32; and where i =

If INVERS is set to .TRUE. the transform:

Amn+iBmn = (Xk+k)exp
(2.(m

—
—1)

+
— 1)(k — 1))

is calculated, where in = 1, 2, ... , 32 ; ii = 1, 2, ... , 32 and the summations are also
over j = 1, 2, ... , 32 and k = 1, 2, ... , 32; and where i = \/ET.

20 manUlO.02 AMT

C06 — Summation of series 4.1 C06.. fFL ESS

FIRST - LOGICAL

If FIRST is set to .TRUE. the exponential coefficients for the transform are calculated.
Consequently FIRST must be set to .TRUE. the first time this routine is called within
a program, but may be set to .FALSE. for all subsequent calls.

6 Error Indicators
N one

7 Auxiliary Routines
This routine calls the DAP library routines Z..C06..F2DCOEFF, Z.C0&ROWFFT,
Z.C06..COLFFT and i..CO&F2DBREV.

8 Accuracy
Accuracy will be data dependent. Some indication of the accuracy may be obtained by
performing a subsequent inverse transform and comparing the results with the original data.

9 Further Comments
This routine uses a common block with the name CCO6FFTESSQ. Consequently the user
program must not use a common block with this name.

10 Keywords
Fast Fourier Transform

11 Example
The example given sets up an initial array of complex points in which the real and imaginary
parts are simple functions of a real variable. A forward transform is then performed followed
by a back transform of the transformed data. The first 32 complex values of the first row of
the initial data, transformed data and back transformed data are printed.

Host program

PROGRAM HTFFTESS
REAL X(32,32),Y(32,32),XT(32,32),YT(32,32),XB(32,32),YB(32,32)
COMMON /BDATA/X,Y,XT,YT,XB,YB
CALL dapcon(‘tfftess .dd’)
CALL dapent(’TFFrESS’)
CALL daprec(’BDATA’ ,X,6*1024)
00 100 i=1,1
WRITE(6,6001)
WRITE(6 ,6002)

$fX(J,i),Y(J,I),XT(J,I),YT(J,I),xB(J,I),YB(J,I),J=1,32)
6001 FORMAT(2X,’DATA TO BE TRANSFORMED’,9X,’TRANSFORMED DATA

$9X, ‘BACK TRANSFORMED DATA’//3(9X, ‘REAL’, 9X, ‘IMAG’) I)
6002 FORMAT(6(1X,F12.6))
100 CONTINUE

CALL daprel
STOP
END

General Support library manOlO.02 21

4.1 C06_FFT.ESS C06 — Summation of series

DAP program

ENTRY SUBROUTINE TFFTESS
REAL XC,) ,Y(,) ,XT(,),YT(,),XB(,) ,YB(,)
INTEGER IM(,)
LOGICAL INVERS,FIRST
COMMON /BDATA/X,Y,XT,YT,XB,YB
CALL LONG_INDEX (IM)
1=6. 28318*(IM—1)/1023. 0
Y=SIN(x)
X=CQS(X)*COS(X)

XT=X
YT=Y
INVERS= . FALSE.
FIRST=.TRUE.
CALL C06_FFT_ESS(XT,YT, INVERS,FIRST)
XB=XT
YB=YT
FIRST=.FALSE.
INVERS= . TRUE.
CALL C06_FFT_ESS(XB ,YB, INVERS ,FIRST)
XB=XB/1024. 0
YB=YB/1024. 0
CALL CONVMFE(X)
CALL CONVMFE(Y)
CALL CONVMFE(XT)
CALL CONVMFE(YT)
CALL CONVMFE(XB)
CALL CONVMFEfYB)
RETURN
END

22 manOlO.02 AMT

C06 — Summation of series 1.1 CO6FFLESS

Results

DATA TO BE TRANSFORMED TRANSFORMED DATA BACK TRANSFORMED DATA

REAL IMAG REAL IMAG REAL IMAG

1.000000 .000000 512.499512 —.000001 1.000000 .000000
.999962 .006142 .029227 —.002885 .999962 .006142
.999848 .012284 .014964 —.002954 .999849 .012284
.999661 .018425 .009909 —.002994 .999661 .018425
.999397 .024565 .007302 —.003027 .999397 .024565
.999057 .030705 .005657 —.002998 .999057 .030705
.998642 .036843 .004522 —.003013 .998642 .036843
.998152 .042980 .003741 —.003100 .998152 .042980
.997588 .049116 .003037 —.003032 .997588 .049115
.996947 .055249 .002486 —.003049 .996948 .055249
.996232 .061381 .002015 —.003077 .996232 .061380
.995442 .067510 .001615 —.003032 .995441 .067510
.994578 .073636 .001249 —.003026 .994577 .073636
.993638 .079760 .000901 —.003026 .993638 .079760
.992624 .085881 .000625 —.003057 .992624 .085881
.991536 .091999 .000311 —.003093 .991536 .091999
.990374 .098113 .000000 —.003080 .990374 .098113
.989138 .104223 —.000266 —.003058 .989137 .104223
.987827 .110329 —.000591 —.003060 .987828 .110329
.986444 .116432 —.000956 —.003115 .986444 .116432
.984986 .122530 —.001285 —.003113 .984986 .122530
.983456 .128623 —.001659 —.003107 .983457 .128623
.981852 .134711 —.002083 —.003071 .981853 .134711
.980176 .140795 —.002545 —.003089 .980176 .140795
.978428 .146873 —.003098 —.003093 .978428 .146873
.976608 .152945 —.003736 —.003047 .976608 .152945
.974715 .159012 —.004658 —.003119 .974715 .159012
.972751 .165073 —.005815 —.003132 .972751 .165073
.970715 .171127 —.007510 —.003113 .970715 .171127
.968608 .177175 —.010330 —.003156 .968608 .177175
.966431 .183217 —.015892 —.003190 .966431 .183217
.964184 .189251 —.033177 —.003261 .964183 .189251

General Support library manOlO.02 23

4.2 C06_FFT_LV C06 — Summation of series

4.2 C06_FFT_LV release 1

1 Purpose
C06_FFT....LV performs a one dimensional finite Fourier transform of 1024 complex points.

2 Specification
SUBROUTINE C06..FFT...LV(X , Y, INVERS , FIRST)
REALX(,),Y(,)
LOGICAL INVERS , FIRST

3 Description
The data is considered as 1024 complex points in long vector order, and the transform is
calculated by performing linked row and column transforms. The first step is to calculate
32-point transforms along each row of complex data. The results of the row transforms are
multiplied by a second set of exponential factors and then 32-point transforms are calculated
along each column in a similar way to the row transforms but using different exponential
factors. The exponential factors are set up in such a way as to ensure that the row and
column transforms are linked correctly to give the required 1D transform. The final step
re-orders the data which is in bit reversed order.

For a description of the general theory of FFTs see [1].

4 References
[1] BRIGHAM E.O.

The Fast Fourier Transform: Prentice-Hall, 1974

5 Arguments

X - REAL MATRIX

On entry X contains the real part of the data to be transformed. On exit X contains the
transformed real part of the data.

Y - REAL MATRIX

On entry Y contains the imaginary part of the data to be transformed. On exit Y
contains the transformed imaginary part of the data.

INVERS - LOGICAL

If INVERS is set to .FALSE. the transform:

1024

X+iY, (Ak+iBk)exp (21r1(’
1))

k+1

is calculated, wherej = 1, 2, ... , 1024 and the summation is over k = 1, 2, ... , 1024;
and where i = 11CT.

24 manOlO.02 AMT

C06 — Summation of series 4.2 C06.. FFT_ LV

If INVERS is set to .TRUE. the transform:

1024

Ak+zBk (X+iY)exp (_27ri(1 —

j+1

is calculated, where k = 1, 2, ... , 1024 and the summation is over j = 1, 2, ... , 1024; and
where i = .jCT.

The argument is unchanged on exit.

FIRST - LOGICAL

If FIRST is set to .TRUE. the exponential coefficients for the transform are calculated.
Consequently FIRST must be set to .TRUE. the first time this routine is called within
a program,but may be set to .FALSE. for all subsequent calls.

The argument is unchanged on exit.

6 Error Indicator
None

7 Auxiliary Routines
The routine calls the DAP library routines Z..CO6FFT1DCOEFF, Z_CO6ROWFFT,
Z...CO6COLFFT, Z...CO6FFT1DBREV.

8 Accuracy
Accuracy will be data dependent. You can get some idea of the accuracy by carrying out
the transform, then carrying out the inverse transform and comparing the results with the
original data.

9 Further Comments
The routine uses a common block with name CCO6FFTLV. Consequently your program must
not use a common block with this name.

10 Keywords
Fast Fourier Transform

11 Example
The example given sets up initial data in which the real and imaginary parts are simple func
tions of a real variable. A forward transform is then performed, followed by a back transform
of the transformed data. The first ten complex values of the initial data, transformed data
and back transformed data are printed in long vector order.

General Support library man 010.02 25

4.2 C06_FFT...LV C06 — Summation of series

Host program

PROGRAM HTFFTLV
REAL X(32,32),Y(32,32),XT(32,32),YT(32,32),xB(32,32),YB(32,32)
COMMON /BDATA/X,Y,XT,YT,XB,YB

CALL DAPCON(’tt1v.dd’)
CALL DA?ENT(’TFFTLV’)
CALL DAPREC(’BDATA’ ,X,6*1024)
WRITE(6,6001)
WRITE(6,6002) (x(I,i),Y(I,;),I=iio)
WRITEf 6, 6003)
WRITE(6,6002) (XTfI,1),YT(I,1),I=1,lo)
WRITE(6, 6004)
WRITEf6,6002) (XB(I,;),YB(I,1),I=1,1o)

6001 FORMAT(2X,’DATA TO BE TRANSFORMED’//7X,’REAL’,9X,’INAG’/)
6002 FORMiT(2f1X,F12.6))
6003 FORMAT(//2X, ‘TRANSFORMED DATA ‘I/TX, ‘REAL’ ,9X, ‘IMAG’/)
6004 FORMAT(//2X, ‘BACK TRANSFORMED DATA’//ZX, ‘REAL’ ,9X, ‘INAG’)

STOP
END

DAP Program

ENTRY SUBROUTINE TFFTLV
REAL X(,),Y(,),xT(,),YTc,),xn(,) ,‘(B(,)
INTEGER IMC)
LOGICAL INVERS,
COMMON /BDATA/X ,Y,XT,YT ,XB ,YB
CALL LONG_INDEX (IN)
X=6 . 28318*(IM—1)/1023 .0
Y=SIN(X)
X=COS(X)*COSCX)
XT=X
YT=Y
INVERS= . FALSE.
FIRST=.TRUE.
CALL C06_FFT_LV(XT,YT, INVERS ,FIRST)
XB=XT
YB=YT
FIRST=.FALSE.
INVERS=.TRUE.
CALL C06_FFr_LV (xB ,, INVERS ,FIRST)
XB=XB/1024. 0
YB=YB/1024. 0

26 manOlO.02 AMT

C06 — Summation of series 4.2 C06 fFL LV

REAL IMAG

1.000000 .000000
.999962 .006142
.999848 .012284
.999661 .018425
.999397 .024565
.999057 .030705
.998642 .036843
.998152 .042980
.997588 .049116
.996947 .055249

IMAG

512.499512 —.000001
—511.081055 1.567145
256.785889 —1.574793

—.025975 .000161
.099694 —.001184
.113036 —.001728
.108699 —.002016
.101061 —.002178
.093657 —.002353
.086534 —.002373

CALL CONVMFE(X)
CALL CONVMFE(Y)
CALL CONVMFE(XT)
CALL CONVMFE(YT)
CALL CONVMFE(XB)
CALL CONVMFE(YB)
RETURN
END

Results

DATA TO BE TRANSFORMED

TRANSFORMED DATA

REAL

General Support library manOlO.02 27

4.2 CO&FFT..LV COG — Summation of series

BACK TRANSFORMED DATA

REAL INAG
.999999 .000000
.999961 .006134
.999847 .012277
.999661 .018417
.999397 .024560
.999058 .030699
.998641 .036837
.998152 .042973
.997588 .049111
.996948 .055240

28 manOIO.02 AMT

Chapter 5

FOl — Matrix Operations
(including inversion)

Contents:

Subroutine Page

FOLGMM 30

FOLMINV 34

FOLMM.STRASSEN 37

General Support library manOlO.02 29

5.1 FO1_G_MM fol — Matrix Operations

5.1 FO1_G_MM release 1

1 Purpose
FOLG_MM performs a general matrix multiply of two matrices A and B, where A is a
P by Q matrix and B is a Q by R matrix, with P, Q and R in the range 1 to 32.

2 Specification
REAL MATRIX FUNCTION FOLGMM (A , B , P , Q , R, IFAIL)
REAL A(,) , B(,)
INTEGER P , Q , R, IFAIL

3 Description
The routine is an optimised general matrix multiply using one of the following three proce
dures, depending on the relative sizes of P,Q and R (see [1]).

Procedure 1

FOLG...MM = 0.0
DO 101= 1, Q

10 FOLG.MM = FOLG...MM + MATC(A(,I))*MATR(B(I,))

Procedure 2

DO 10 I = 1, P
10 FOLGMM(I,) = SUMR(MATC(A(I,))*B)

Procedure 3

DO 10 I=1,R
10 FOLGMM (, I)=SUMC (A*MATR(B (, I)))

If P/Q> 0.75 and R/Q > 0.75 procedure us used, otherwise if P >= R procedure 3 is used
or if P< R procedure 2 is used; the number 0.75 was determined empirically.

4 References
[1] MCKEOWN J J

Multiplication of non-standard matrices on DAP: DAP newsletter no 7: available from the
DAP Suppoprt Unit, Queen Mary College, Mile End Road, London El 4NS

5 Arguments
A - REAL MATRIX

On entry A contains the first of the two matrices to be multiplied together - array
elements outside the matrix to be multiplied must be set to zero. The contents of A are
unchanged on exit.

B - REAL MATRIX

On entry B contains the second of the two matrices to be multiplied together - array
elements outside the matrix to be multiplied must be set to zero. The contents of B are
unchanged on exit.

30 manOlO.02 AMT

Fol — MatTix Operations 5.1 fOl_ G_MM

P - INTEGER

The number of rows in the first matrix. Unchanged on exit.

Q - INTEGER

The number of columns in the first matrix and the number of rows in the second matrix.
Unchanged on exit.

R - INTEGER

The number of columns in the second matrix. Unchanged on exit.

IFAIL - INTEGER

Unless the routine detects an error (see Error indicators below) IFAIL contains zero
on exit.

6 Error Indicators
Errors detected by the routine:

IFAIL = 1

At least one of P, Q or R is not in the range ito 32.

7 Auxiliary Routines
None

8 Accuracy
You can expect six significant figures.

9 Further Comments
N one

10 Keywords
Matrix multiply.

ii Example
The example given multiplies a 3 by 5 matrix of is by a 5 by 4 matrix of is.

Host program

PROGRAM ETGMM
INTEGER P,Q,R
REAL A(32,32),B(32,32),C(32,32)
COMMON /BN/?,Q,R
COMMON /BIFAIL/IFAIL
COMMON /BDATA/A,B,C
READ(5,*) P,Q,R
CALL dapcon(‘tgmm.dd’)
CALL dapsen(’BN’p,3)
CALL dapent(’TGMM’)

General Support library manOlO.02 31

5.1 FO1_G_MM FOl Matrix Operations

CALL daprecQBDATA’,A,3*1024)
WRITE(6 ,6000) IFAIL
WRITE(6,6001) ((A(I,J),J=1,6),I=1,6)
WRITE(6 ,6002)
WRITE(6,6001) ((B(I,J),J=1,6),I=1,6)
WRITE(6,6002)
WRITE(66001) ((C(I,J),J=1,6),I=1,6)

6000 FORMATf3X,I1//)
6001 FORMATf6(1X,F5.2)/)
6002 FORMAT(/)

CALL DAPREL
STOP
END

DAP program

ENTRY SUBROUTINE TGMM
REAL A(,),B(,),C(,)
INTEGER P,Q)R
COMMON /BN/P,Q,R
COMMON /BIFAIL/IFAIL
COMMON /BDATA/A, , C
EXTERNAL REAL MATRIX FUNCTION F01_G_MM
CALL CONVFSI(P,3)
A=0.0
B=0.0
A(ROWS(1,P).AND.COLS(1,Q))=1.0
B(ROWS(1,Q).AND.COLS(1,R))=1.0
C=0.0
C=F01_G_MM(A,B,?,Q,R,IFAIL)
CALL CONVMFE(A)
CALL CONVMFE(B)
CALL CONVMFE(C)
CALL CONVSFIfIFAIL, 1)
RETURN
END

Data

354

32 manOlO.02 AMT

FOl — Matrix Operations 5.1 fO1_G_MIi

Results

0

1.00 1.00 1.00 1.00 1.00 0.00

1.00 1.00 1.00 1.00 1.00 0.00

1.00 1.00 1.00 1.00 1.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

1.00 1.00 1.00 1.00 0.00 0.00

1.00 1.00 1.00 1.00 0.00 0.00

1.00 1.00 1.00 1.00 0.00 0.00

1.00 1.00 1.00 1.00 0.00 0.00

1.00 1.00 1.00 1.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

5.00 5.00 5.00 5.00 0.00 0.00

5.00 5.00 5.00 5.00 0.00 0.00

5.00 5.00 5.00 5.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

General Support library manOlO.02 33

5.2 FO1_M_INV fOl — Matrix Operations

5.2 FO1_M_INV release 1

1 Purpose
FO1_M_INV calculates,in place, the inverse of a given N by N matrix with N in the range 1
to 32.

2 Specification
SUBROUTINE FOLM...INV(A , N , IFAIL)
REAL A(,)
INTEGER N , IFAIL

3 Description
The matrix is inverted using Gauss-Jordan elimination with full pivoting.

4 References
None

5 Arguments

A - REAL MATRIX

On entry A contains the matrix to be inverted, which is assumed to be located in the
top left of A and array elements outside the input matrix must be set to zero. On exit
A contains the inverse of that matrix.

N - INTEGER

On entry N must be set to the order of the matrix to be inverted. N is unchanged on
exit.

IFAIL - INTEGER

Unless the routine detects an error (see Error indicators below) IFAIL contains zero
on exit.

6 Error Indicators
Errors detected by the routine:

IFAlL = 1 N is not in the range 1 to 32.

IFAIL = 2 A pivot element is equal to zero — the matrix is singular.

7 Auxiliary Routines
None

8 Accuracy
You can expect five or six significant figures for well conditioned problems.

9 Further Comments
None

34 manOlO.02 AMT

FOl — Matrix Operations .5.2 FO1_ M_ INV

10 Keywords
Matrix inversion, Gauss-Jordan elimination.

11 Example
The example given inverts an N by N matrix, with N = 5 in this case. The matrix is
generated as pseudo-random numbers in the range 0.0, 1.0, ... , 9.0 and then the diagonal
elements are set to the sum of the elements in each row, thus ensuring a diagonally dominant,
and so well conditioned matrix. The inverse matrix is multiplied by the original matrix as a
check.

The results consist of the original matrix, the inverse matrix and their product.

Host program

PROGRAM HTMINV
REAL A(32,32),B(32,32),C(32,32)
COMMON /BN/N
COMMON /BDATA/A ,

COMMON /BIFAIL/IFAIL
READ(51*) N
CALL dapcon(tmin.dd’)
CALL DAPSENf’BN’,N,l)
CALL DA?ENT(‘TMINV’)
CALL DAPREC(’BDATA’ ,A,3*1024)
CALL DAPREC(’BIFAIL’ ,IFAIL,1)
WRITE(6,6000) IFAIL
WRITE(6,6001) ((A(I,J),J=115),I=1,5)
WRITE(6 • 6002)
WRITE(6,6001) ((B(I,J),J=1,s),I=1,s)
WRITE(6, 6002)
WRITEC6,6001) ffC(I,J),J=;,5)I=;,5)

6000 FORMAT(2X,12)
6001 FORMAT(5(2X,F1O.6))
6002 FORMAT(/)

CALL DAPREL
STOP
END

DAP progam

ENTRY SUBROUTINE TMINV
C

REAL A(1))B(,),C(,)
INTEGER Ilif,)
COMMON /BN/N
COMMON /BDATA/A,B,C
COMMON /BIFAIL/IFAIL
EXTERNAL REAL MATRIX FUNCTION GO5MCR4
EXTERNAL LOGICAL MATRIX FUNCTION X05?ATTERN
EXTERNAL REAL MATRIX FUNCTION FO1GMM
CALL CONVFSI(N,1)

General Support library manOlO.02 35

5.2 F01..ILINV F 01 — Matrix Operations

CALL GOSMCBEGIN
IM=10 . 0*GOSMCR4(X)
A=0.0
A(ROWS(1,N).AND.COLS(1,N))=IM
A(X05?ATTERN(0))=MATC(SUMC(A(,)))
B=A

C
CALL F01_M_INV(B,N,IFAIL)

C
C=0.0
C=FO1G_MM(A)B,N ,N ,N, IERR)

C
CALL CONVMFE(A)
CALL CONVMFE(B)
CALL CONVMFE(C)
CALL CONVSFI(IFAIL, 1)
RETURN
END

Data

5

Results

0

35.000000 8.000000 3.000000 8.000000 8.000000
2.000000 21.000000 7.000000 3.000000 5.000000
4.000000 1.000000 19.000000 4.000000 5.000000
4.000000 6.000000 .000000 25.000000 9.000000
6.000000 9.000000 1.000000 7.000000 32.000000

.030777 — .007744 — .001791 — .007485 — .004099

.000214 .050931 —.018557 —.001932 —.004569
— .004507 .003413 .052401 — .005672 —.005999
—.003178 —.006852 .003615 .044393 —.011185
—.004995 —.011480 .003127 —.007587 .035938

1.000000 .000000 .000000 .000000 .000000
.000000 .999999 .000000 .000000 .000000
.000000 .000000 .999999 .000000 .000000
.000000 .000000 .000000 1.000001 .000000
.000000 .000000 .000000 .000000 1.000000

36 manOlO.02 AMT

FOl — Matrix Operations 5.3 fOL MM.. STRASSEN

5.3 FO1_MM_STRASSEN release 1

1 Purpose
FO1_MM_STRASSEN uses Strassen’s algorithm to multiply two (partitioned) 64 by 64 ma
trices.

2 Specification
SUBROUTINE FOLMM.STRASSEN (A , B , C)
REALA(,,2,2),B(,,2,2),C(,,2,2)

3 Description
There is a well known result due to Strassen showing that 2 by 2 matrices may be multiplied
using seven multiplications and fifteen additions instead of the eight multiplications and four
additions required by the ‘normal’ method. This result is applied to the multiplication of
64 by 64 matrices partitioned into 2 by 2 sub-matrices of size 32 by 32. [1].

4 References
[1] PARKINSON D

Some interesting and useful results from complexity theory: DAP Newsletter no 2, p 8,
August 1979: available from the DAP Support Unit, Queen Mary College, Mile End Road,
London El 4NS

5 Arguments
A — REAL MATRIX array of dimension (,,2, 2)

On exit the 64 by 64 elements of the matrix set A contain the values of the matrix
product

B — REAL MATRIX array of dimension (,,2,2)

Before entry the elements of B must be set to the first of the 64 by 64 matrices to be
multiplied. Unchanged on exit.

C — REAL MATRIX array of dimension (,,2, 2)

Before entry the elements of C must be set to the second of the 64 by 64 matrices to
be multiplied. Unchanged on exit. All the matrices must be partitioned into four equal
sub-matrices.

11 12

21 22

The matrix (,,I,J) is occupied by the data area shown as IJ above.

General Support library manOlO.02 37

5.3 F01_MM_STRASSEN F 01 - Matrix Operations

6 Error Indicators
None

7 Auxiliary Routines
This routine calls the DAP library routine Z_F01_MM_N.

8 Accuracy
Depends on the data; you can normally expect six significant figures.

9 Further Comments
None

10 Keywords
Matrix multiplication, partitioned matrices, Strassen’s algorithm.

11 Example

Host program

PROGRAM STRASSENTEST

REAL A(32,32),B(32,32),D,E
LOGICAL FLAG

COMMON/TEST/A,B
COMMON/FLAG/FLAG

DO 1 J = 1,32
DO 1 I = 1,32

D=I
E=J
A(I,J) = D*E — 2.
B(I,J) = CD + E)*3.

1 CONTINUE
CALL dapcon(’testmu1t.dd)
CALL dapsen(’TEST’,A,2*1024)
CALL dapentf ‘TESTMULT’)
CALL daprecf’FLAG’,FLAG,l)
CALL daprel
IF(.NOT.FLAG) GO TO 2
WRITE(6,100)

100 FORMAT(20X,37HSUCCESSFUL RESULTS FROM FOMMSTRASSEN)
STOP

2 WRITE(6,101)
101 FORI1AT(20X,1ZHINCORRECT RESULTS)

STOP

END

38 manOlO.02 AMT

— Matrix Operations 5.3 fOL MM_ STRASSEN

DAP program

ENTRY SUBROUTINE TESTMULT

REAL U(,,2,2),VC,2,2),W(,,2,2),X(,,2,2),RELDIFF(,,2,2)
LOGICAL FLAG

COMMON/TEST/AC,) ,B(,)
COMMON/FLAG/FLAG

EXTERNAL REAL MATRIX FUNCTION E
C
C CALL CONVERSION ROUTINES
C

CALL CONVFME(A)
CALL CONVFMECB)
FLAG = .TRUE.

C
C GENERATE ENLARGED MATRIX DATA
C

V(,,i,i) = A
W(,,1,1) = B
v(,,1,2) = vf,,1,1) * 3.1
W(,,1,2) = W(,,1,1) + 6.3
V(,,2,1) = W(,,1,1) * 0.9
W(,,2,1) = V(,,1,1) * 2.4
v(,,2,2) = V(,,1,2) + 5.6
W(,,2,2) = Wf,,1,2) * 1.3

C
C CALL THE STRASSEN ROUTINE AND ANOTHER ROUTINE FOR
C MATRIX MULTIPLICATION
C

CALL F01_MM_STRASSEN(U, V,W)
CALL MM2N(X,V,W)

C
C CHECK THE TWO SETS OF RESULTS CALCULATED
C

DO 11 L = 1,2
DO 11 K = 1,2

RELDIFFC,,K,L) = E(U(,,K,L),X(,,K,L))
IF(ANY(RELDIFF(,,K,L).GT.0.0001))FLAG = .FALSE.

11 CONTINUE
C
C CONVERT DATA AND RETURN TO THE HOST
C

CALL CONVSFL (FLAG, 1)
RETURN
END

General Support library manOlO.02 39

5.3 fO1_MM_STRASSEN fol - Matrix Operations

REAL MATRIX FUNCTION E(X,Y)
C
C FUNCTION TO COMPARE RELATIVE VALUES OF TWO MATRICES
C

DIMENSION X(,),Yf,)

E=X—Y
X(ABS(X).LT.1.OE—50) = 1.0
ECABS(Y).GE.1.OE—50) = ABS(E/X)
X(ABS(X — 1.0).LT.1.OE—50) = 0.0

RETURN
END

SUBROUTINE MM2N(A,B,C)
C
C THIS SUBROUTINE IS DESIGNED TO MULTIPLY TWO 64 X 64
C MATRICES TOGETHER.THE METHOD USED TO PERFORM THIS TASK
C IS THE “INTuITIVE” NETHOD,THAT IS ,IMPLEMENTING THE
C 32 X 32 MATRIX MULTIPLICATION 8 TIMES TO COMPUTE EACH
C PARTITION SEPARATELY.
C

DIMENSION A(,,2,2),B(,,2,2),C(,,2,2)
INTEGER K

C
C INITIALISE THE RESULTANT ARRAY.
C

A(,,1,1) = 0.0
A(,,1,2) = 0.0
A(,,2,1) = 0.0
AC,,2,2) = 0.0

C
C PERFORM THE MATRIX MULTIPLICATION FOR EACH PARTITION
C IN TURN.
C

DO 1 K = 1,32
A(,,1,1)=A(,,1,1)+MATC(B(,K,1,1))*MATRCC(K,,1,1))
Af,,1,1)=A(,,1,1)+MATC(B(,K,1,2))*MATR(C(K,,2,1))
A(,,1,2)=A(,,1,2)+MATC(B(,K,1,1))*MATR(C(K,,1,2))
A(,,1,2)=A(,,1,2)+MATC(Bf,K,1,2))*MATR(CfK,,2,2))
A(,,2,1)=A(,,2,1)+MATC(B(,K,2,1))*MATR(C(K,,1,1))
AC, ,2,1)=A(, ,2,1)+MATC(BC,K,2,2))*MATRCCCK, ,2,1))
AC, ,2,2)=AC, ,2,2)+MATC(3(,K,2,1))*MATR(CCK, ,1,2))
AC, ,2,2)=AC, ,2,2)+MATC(BC,K,2,2))*MATR(C(K, ,2,2))

1 CONTINUE

RETURN
END

Results

SUCCESSFUL RESULTS FROM FO1MMSTRASSEN

40 manOlO.02. AMT

Chapter 6

F02 — Eigenvalues and
elgenvectors

Contents:

Subroutine Page

F02 ALL. EIGXALSJD.. ES 42

F02 ALL. EIGXALS.Ta. LV 46

F02. EIGXALS...Ta. LV 50

F02..JACOBI 54

General Support library manOlO.02 41

6.1 F02. ALL_ EIG_ VALS_TD_ ES f02 — Eigen values an U eIgen vectors

6.1 F02.ALL..EIGNALSTDES release 1

1 Purpose
F02_ALL_EIG_VALS_TD.ES uses Sturm sequences to find all the eigenvalues of a symmet
Tic tridiagonal matrix of ordeT up to 32.

2 Specification
SUBROUTINE FO2ALLEIGVALS..TDES(ALPHA GAMMA , N , EVALS

IC , IFAIL)
INTEGER N , IC , IFAIL
REAL ALPHA() , GAMMA() , EVALS()

3 Description
The algorithm uses the following theorem:

Given a symmetric tridiagonal matrix with diagonal elements c1, ..., c,, and off diagonal
elements b2, ..., b, then let the sequence qi(A), ..., q(A) be defined for any real A by:

qy(A) =

q(A) = (c1—A)— (i = 2, ..., n)
q_ 1(A)

If a(A) is the number of negative q2(A) then this number is equal to the number of
elgenvalues less than A. If q_1(A) = 0 for any i, then it can be replaced in (4.2) by a
suitably small non-zero value (see [1]). Also see [1] for an example of another use of this
theorem.

For each eigenvalue, an initial interval is determined which is known to contain the eigen
value. Each such interval is then repeatedly subdivided until further refinements produce
no improvement in the corresponding eigenvalue or the subinterval width becomes less than
io—.

4 References
[1] BARTH W, MARTIN R S and WILKINSON J H

Calculation of the eigenvalues of a symmetric tridiagonal matrix by the method of bisection:
Numer Math 9, pp 386-393, 1967.

5 Arguments
ALPHA - REAL VECTOR

On entry ALPHA specifies the components of the main diagonal of the tridiagonal matrix,
that is, ALPHA (I) = A (I, I) (I = 1, 2, . .. , N). Elements (N + 1) to 32 maybe undefined;
the argument is unchanged on exit from the sub-routine.

GAMMA - REAL VECTOR

On entry GAMMA specifies the components of the oft diagonal of the tridiagonal matrix,
that is, GAMMA(I) = A(I, I + 1) = A(I + 1, I) (I = 2, 3, ..., N). Elements not in the
range 2 to N may be undefined; the argument is unchanged on exit from the sub-routine.

42 manOlO.02 AMT

F02 — Elgen values and eigenvectors 6.1 F02..ALL EIG..VALS..TD.. ES

N - INTEGER

On entTy, N specifies the order of the tridiagonal matrix. N must lie in the range 2 to
32, and is unchanged on exit.

EVALS - REAL VECTOR

On exit, EVALS contains the N eigenvalues of the matrix in components 1 to N.

IC - INTEGER

On exit, IC contains the number of calls to the Sturm sequence evaluation routine re
quired to isolate all the eigenvalues. Note: for each such call the Sturm sequence is
evaluated at 1024 points simultaneously.

IFAIL - INTEGER

Unless the routine detects an error (see section 6) IFAIL contains zero on exit.

6 Error Indicators
Errors detected by the routine:

IFAIL 1 N not in the range 2 to 32 inclusive

IFAIL = 2 After 10 calls to the Sturm sequence evaluation routine
some eigenvalues have not converged

7 Auxiliary Routines
This routine calls the GS ibrary routines X02_EPSILON, X05_LONG_INDEX,
X05. SHORTJNDEX and Z. F02 STURM.. SEQ.. 1.

8 Accuracy
In general, you can expect at least 6 significant figures of accuracy in the computed eigen
values.

9 Further Comments
None

10 Keywords
Eigenvalues, Sturm sequences, symmetric tridiagonal matrices

11 Example
The matrix used in the example is a tridiagonal matrix of the form:

ab
bab

bab

General Support library manOlO.02 43

6.1 F02_ALL_EIG_VALS_TD_ES f02 — Elgen values and eigen vectors

the eigenvalues of which are given by:

= a+2bcos
(s) (s = 1, 2, . . ,n)

The largest error in the computed solution is 6 parts in i07.

Host program

PROGRAM MAINES
REAL ALPHA(32), GAMMA(32), Y(32)
COMMON /ALPHA/ALPHA /GAMMA/GAMMA /Y/Y
COMMON/SCALARS/N, IC, IFAIL
N = 32
00 10 I = 1,32
ALPHA (I) = 5.0

10 GAMMA (I) = 10.0
CALL OAPCONf ‘entes . dd’)
CALL DAPSEN(’SCALARS’,N,l)
CALL DAPSEN(’ALPHA’ ,AL?HA,32)
CALL DAPSEN(’GAMMA’ ,GAMMA,32)
CALL DAPENT(‘ENTES’)
CALL DAPREC(’Y’,Y,32)
CALL DAPREC(’SCALARS’ ,N,3)
CALL DAPREL
WRITE(6,100) IFAIL,IC, (YfI), I = 1,32)

100 FORMAT(’ IFAIL =‘,IS/’ IC =‘,15/ EIGENVALUES’/(G14.7))

STOP
END

DAP program

ENTRY SUBROUTINE ENTES
REAL ALPHAQ, GAMMAO, YO
COMMON /ALPHA/ALPHA /GAMMA/GAMMA /Y/Y
COMMON /SCALARS/ N,IC,IFAIL
CALL CONVFVE(ALPHA,32, 1)
CALL CONVFVE(GAMMA,32, 1)
CALL CONVFSI(N,1)
CALL FO2ALL_EIG_VALS_TD_ES(ALPRA , GAMMA, N, Y, IC, IFAIL)
CALL CONVVFE(Y,32,1)
CALL CONVSFI(N,3)
RETURN
END

44 manOlO.02 AMT

F02 — Eigen values and eigenvectors 6.1 F02 ALL. EIGVALS.ffD ES

Results

IFAIL = 0
IC =6
EIGENVALUES
—14.97665
—14.90632
—14.79012

General Support library manOlO.02 45

6.2 F02..ALL_EIG.VALSJD..LV F02 — Figen values and eigenvectors

6.2 FO2ALLEIGVALS..TD..LY release 1

1 Purpose
f02_ALL_EIG_VALS_TD_LV uses Sturm sequences to find all the eigenvalues of a symmetric
tridiagonal matrix of order up to 1024.

2 Specification
SUBROUTINE FO2ALL.EIGXALSJD...LV (ALPHA GAMMA , N EVALS

+ IC , IFAIL)
INTEGER N , IC ,IFAIL
REAL ALPHA(,) , GAMMA(,) , EVALS(,)

3 Description
The algorithm uses the following theorem:

Given a symmetric tridiagonal matrix with diagonal elements c1, ..., c, and off diagonal
elements 62, . .., 6, then let the sequence qi(..), ... q,(A) be defined for any real) by:

qi()) = c1—\ (1)

62
= (c1—)— (1= 2, ..., n) (2)

If a(..\) is the number of negative q(A) then this number is equal to the number of
eigenvalues less than .\. If qj_i) = 0 for any 1, then it can be replaced in (2) by a
suitably small non-zero value (see [1]). Also see [1] for an example of another use of this
theorem.

For each eigenvalue, an initial hiterval is determined which is known to contain the elgen
value. Each such interval is then repeatedly subdivided until further refinements produce
no improvement in the corresponding eigenvalue or the subinterval width becomes less than
io—.

4 References
[1] BARTH W, MARTIN R S and WILKINSON J H

Calculation of the eigenvalues of a symmetric tridiagonal matrix by the method of bisection:
Numer Math, 9, pp 386-393, 1967.

5 Arguments

ALPHA - REAL VECTOR

On entry ALPHA specifies the components of the main diagonal of the tridiagonal matrix,
that is, ALPHA(I) = A(I, I) (I = 1, 2, ..., N). Elements (N + 1) to 1024 may be
undefined; the argument is unchanged on exit from the sub-routine.

GAMMA - REAL VECTOR

On entry GAMMA specifies the components of the off diagonal of the tridiagonat matrix,
that is, GAMMA(I) = A(I, I + 1) = A(I + 1, I) (I = 2, 3, ..., N). Elements not in the
range 2 to N may be undefined; the argument is unchanged on exit from the sub-routine.

46 manOlO.02 AMT

F02 — Eigenvalues and elgenvectors 6.2 F02.ALL.EIG4LS.TD.LV

N - INTEGER

On entry, N specifies the order of the tridiagonal matrix. N must lie in the range 2 to
1024, and is unchanged on exit.

EVALS - REAL VECTOR

On exit, EVALS contains the N eigenvalues of the matrix in components 1 to N.

IC-INTEGER

On exit, IC contains the number of calls to the Sturm sequence evaluation routine re
quired to isolate all the eigenvalues. Note: for each such call the Sturm sequence is
evaluated at 1024 points simultaneously.

IFAIL - INTEGER

Unless the routine detects an error (see section 6) IFAIL contains zero on exit.

6 Error Indicators
Errors detected by the routine:

IFAIL = 1 N not in the range 2 to 1024 inclusive

IFAIL = 2 After 30 calls to ther Sturm sequence evaluation routine
some eigenvalues have not converged

7 Auxiliary Routines
This routine calls the GS library routines X02..EPSILON, X05..LONG_INDEX,
X0&. SHORT...INDEX and Z F02 STURM SEQ 2.

S Accuracy
In general, you can expect about 5 or 6 significant figures of accuracy in the computed
eigenvalues.

9 Further Comments
None

10. Keywords
Eigenvalues, Sturm sequences, symmetric tridiagonal matrices

11 Example
The matrix used in the example is a tridiagonal matrix of the form:

ab
bab

bab

General Support library manOlO.02 47

6.2 F02_ALL_EIG_VALS_TD_LV f02 — Eigen values and eigenvectors

the eigenvalues of which are given by:

s=a+2bcos(1) (s=1,2, ...,n)

Host program

PROGRAM MAIN
REAL ALPRA(1024) ,GAMMA(1024) ,EVALS(1024)
COMMON /MATS/ALPHA, GAMMA, EVALS
COMMON /SCALARS/N ,IC ,IFAIL
N=128
DO 10 1=1,128
ALPHA(I)=5.0

10 GAMMACI)=1O.0
CALL DAPCON(’ent.dd’)
CALL DAPSEN(’SCALARS’ ,N,1)
CALL DAPSEN(‘MATS’ ,ALPHA ,2*1024)
CALL DAPENT(‘ENT’)
CALL DAPREC(’MATS’ ,ALPHA,3*1024)
CALL DAPREC(‘SCALARS’ , N, 3)
CALL DAPREL
WRITE(6,1000) IFAIL,IC,(EVALS(I),I=1,128)

1000 FORMATC’ IFAIL =‘,IS/’ IC = ‘,15/’ EIGENVALUES’/(G14.Z))
STOP

END

DAP program

ENTRY SUBROUTINE ENT
REAL AL?HA(,),GAMMA(,),EVALS(,)
COMMON /MATS/ALPHA ,GAMMA ,EVALS
COMMON /SCALARS/N ,IC. IFAIL
CALL CONVFME (ALPHA)
CALL CONVFME (GAMMA)
CALL CONVFSI (N,1)
CALL F02_ALL_EIQ.ALS_TD_LV(ALPHA ,GAMMA ,N , EVALS ,IC. IFAIL)
CALL CONVMFE (Evils)
CALL CONVSFI (N,3)
RETURN
END

48 manOlO.02 AMT

F02 — Eigen values and eigenvectors 6.2 FO2ALL..EIG.VALSTD.. LV

Results

IFAIL = 0
IC = 20
EIGENVALUES
—14.99412
—14.97626
—14.94660

General Support library manOlO.02 49

6.3 F02_EIG_VALS_TD_LV f02 — figen values and eigenvectors

6.3 FO2EIG_VALS_TD...LV release 1

1 Purpose
F02_EIG.VALS_TD_LV uses Sturm sequences to find up to 32 selected eigenvalues of a
symmetric tridiagonal matrix of order up to 1024.

2 Specification
SUBROUTINE FO2EIG...VALS.TD...LV(ALPHA , GAMMA , N IEIGS,

+ NUM.EIGS , EVALS , IC IFAIL)
INTEGER N , LEIGS() , NUMEIGS , IC , IFAIL
REAL ALPHA(,) , GAMMA(,) EVALS()

3 Description
The algorithm uses the following theorem:

Given a symmetric tridiagonal matrix with diagonal elements c1, ... c and off diagonal
elements b2, ... b, then let the sequence q;(.), ...

q()) be defined for any real) by:

q1(A) = c1—..\ (1)

b2
q(A) = (c1—\)— , (i = 2, . .:, n) (2)

q-_ 1l))

If a(A) is the number of negative q(A) then this number is equal to the number of
eigenvalues less than). If qj..y(.i) = 0 for any i, then it can be replaced in (4.6) by a
suitably small non-zero value (see [1]). Also see [1] for an example of another use of this
theorem.

For each eigenvalue, an initial interval is determined which is known to contain the eigen
value. Each such interval is then repeatedly subdivided until further refinements produce
no improvement in the corresponding eigenvalue or the subinterval width becomes less than

4 References
[1] BARTH W, MARTIN R S and WILKINSON J II

Calculation of the eigenvalues of a symmetric tridiagonal matrix by the method of bisection.
Numer. Math. 9 pp 386-393 (1967).

5 Arguments

ALPHA - REAL VECTOR

On entry ALPHA specifies the components of the main diagonal of the tridiagonal matrix,
that is, ALPHA(I) = A(I, I) (I = 1, 2,

...,
N). Elements (N + 1) to 1024 may be

undefined; the argument is unchanged on exit from the sub-routine.

GAMMA - REAL VECTOR

50 manOlO.02 AMT

F02 — Elgen values and elgenvectors 6.3 f02...EIG.V4LS. TD.. LV

On entry GAMMA specifies the components of the off diagonal of the tridiagonal matrix,
that is, GAMMA(I) = A(I, I + 1) = A(I + 1, I) (I = 2, 3, ..., N). Elements not in the
range 2 to N may be undefined; the argument is unchanged on exit from the sub-routine.

N - INTEGER

On entry, N specifies the oraer of the tridiagonal matrix. N must lie in the range 2 to
0124, and is unchanged on exit.

LEIGS - INTEGER VECTOR

I_EIGS is used to indicate which eigenvalues of the matrix are requited. If the eigenvalues
are 1(1) <= 1(2) <= ... <= 1(N) then to determine the subset 1 (j1), I (j2) 1 tip)
the first p (equals NUM - EIGS) components of I - EIGS must be set to ji, 32, ..., J, and
the condition ii < < ... <j,, must hold. Components (p+ 1) to 32 may be undefined;
the argument is unchanged on exit.

NUM - EIGS - INTEGER

On entry NUM_EIGS specifies the number of eigenvalues required and must be in the
range 1 to 32; it is unchanged on exit.

EVALS - REAL VECTOR

On exit, EVALS contains the NUM_EIGS eigenvalues of the matrix in components 1 to
NUM.. EIGS.

IC-INTEGER

On exit, IC contains the number of calls to the Sturm sequence evaluation routine re
quired to isolate all the eigenvalues. Note: for each such call the Sturm sequence is
evaluated at 1024 points simultaneously.

IFAIL - INTEGER

Unless the routine detects an error (see section 6) IFAIL contains zero on exit.

6 Error Indicators
Errors detected by the routine:

IFAIL = 1 N not in the range 2 to 1024 inclusive

IFAIL = 2 Entries 1 to NUM_EIGS of I_EIGS are not strictly increasing
or lie outside the range 1 to 1024

IFAIL = 3 After 10 calls to the Sturm sequence evaluation routine
some eigenvalues have not converged

7 Auxiliary Routines
This routine calls the GS library routines X02. EPSILON, X05.. LONG_INDEX,
X0&.SHORT..INDEX and ZFO2.STURM..SEQ2.

8 Accuracy
In general, you can expect about 6 significant figures of accuracy in the computed eigenvalues.

9 Further Comments
None

General Support library manOlO.02 51

6.3 F02_EIG_VALS_ TD_LV F02 — Eigenvalues and eigenvectors

10 Keywords
Eigenvalues, Sturm sequences, symmetric tridiagonal matrices

ii Example
The matrix used in the example is a tridiagonal matrix of the form:

ab
bab

bab

the eigenvalues of which are given by:

s=a+2bcos(1) (s=1,2,...,n)

The eigenvalues requested are spread throughout the spectrum and the largest error in the
computed solution was 7 parts io.

Host program

PROGRAM MAIN
REAL AL?RA(1024), GAMNA(1024) ,Y(32)
INTEGER IEIGS(32)
COMMON /MATS/ALPHA , GAMMA
COMMON /IEIGS/IEIGS /Y/Y
COMMON /SCALS/N , NUMEIGS ,IC • IFAIL
N = 1024
DO 10 I = 1,1024
ALPHACI) = 5.0

10 GAMMA (I) = 10.0
NUMEIGS = 32
DO 20 I = 1,32

20 IEIGS(I) = 32*1
CALL DAPCON(‘ent . dd)
CALL DAPSEN(’MATS’ ,ALPHA,2*1024)
CALL DAPSEN(’IEIGS’,IEIGS,32)
CALL DAPSEN(’SCALS’ ,N,2)
CALL DA?ENT(‘ENT’)
CALL DAPREC(’SCALS’ ,N,4)
CALL DAPREC(’Y’ ,Y,32)
CALL DAPREL
WRITE(6,100) IFAIL,IC, (IEIGS(I),Y(I), 1= 1,32)

100 FORMAT(’ IFAIL =‘,15/’ IC =‘,15/
*‘EIGENVALUES’/(I5,5X,G14.7))

STOP
END

52 manOlO.02 AliT

F02 — Eigenvalues and elgenvectors 6.3 FO2EIGVALS Tli LV

DAP program

ENTRY SUBROUTINE ENT
INTEGER IEIGSQ
REAL ALPHA(), GAMMA(j, YQ
COMMON /MATS/ALPA,GAMMA
COMMON /IEIGS/IEIGS /Y/Y
COMMO! /SCALS/N, NUMEIGS,IC,IFAIL
CALL CONVFME (ALPHA)
CALL CONVFME (GAMMA)
CALL CONVFVI(IEIGS,32, 1)
CALL CONVFSI(N,2)
CALL F02_EIG_VALS_TD_LV(ALPHA,GAMMA,N, IEIGS,NUMEIGS ,Y, IC, IFAIL)
CALL CONVVFE(Y,32, 1)
CALL CONVSFI(N,4)
RETURN
END

Results

IFAIL = 0
IC = 6
EIGENVALUES

32 —14.90388
64 —14.61645
96 —14.14048

128 —13.48052

General Support library manOlO.02 53

6.4 f02_ JACOBI F02 — Figen values and eigen vectors

6.4 F02_ JACOBI release 1

1 Purpose
F02_ JACOBI calculates the eigenvalues and eigenvectors of a real symmetric matrix of order
32 x 32.

The method is based on the classical Jacobi algorithm using plane rotations.

2 Specification
SUBROUTINE F02...JACOBI (C , EVALUES , Q , BOOL)
REAL C(,) , EVALUES() , Q(,)
LOGICAL BOOL

3 Description
The cyclic Jacobi method is a well known technique for determining the eigensolution of a
matrix [4]. A real symmetric matrix A is reduced to diagonal form by application of plane
rotations. Full details can be found in [2].

4 References

[1] MODI J 3

Error analysis for the parallel Jacobi method: QMC internal report, Department of Com
puter Science and Statistics, Queen Mary College, Mile End Road, London, El 4NS: available
on request from the DAP Suppost Unit at Queen Mary College.

[2] MODI J J

Jacobi methods for eigenvalue and related problems in a parallel computing environment:
Ph D thesis, University of London.

[3] SAMEH A H

On Jacobi and Jacobi-like algorithms for the parallel computer: Mathematics of Computa
tion, v 25, no 115, pp 579-590, July 1971.

[4] WILKINSON 3 H

The Algebraic Eigenvalue Problem: Clarendon Press, Oxford, 1965.

5 Arguments
C - REAL MATRIX

On entry C contains the real symmetric matrix whose eigenvalues are required, and is
unchanged on exit.

EVALUES - REAL VECTOR

On exit EVALUES will contain the eigenvalues of C, in ascending order.

Q - REAL MATBJX

If BOOL was set to .TRUE. on entry then on exit the columns of Q will contain the
eigenvectors of C.

The eigenvector in column I corresponds to the V1 element of EVALUES,

54 manOlO.02 AMT

F02 — Eigen values and eigenvectors 6.4 F 02_ JACOBI

BOOL - LOGICAL

If BOOL is set to .TRUE. on entry, the eigenvectors of C will be calculated as well as
the eigenvalues; BOOL is unchanged on exit.

6 Error Indicators
None

7 Auxiliary Routines
This routine calls the GS ibrary routines MOLPERMUTE_COLS, M01_SORT..VR4
and X05... PATTERN.

8 Accuracy
The method is numerically very stable (see [1]). Tests show that the routine agrees with
EISPACK routines, run on a 60 bit word computer, to 4 or 5 significant figures.

9 Further Comments
None

10 Keywords
Disjoint Rotations, Jacobi Method, Parallel Algorithm.

11 Example
The example finds the eigensolution of a 32 x 32 matrix.

Host program

PROGRAM MAINJACOBI
LOGICAL BOOL
COMMON /A/A(32 ,32) /EV/EIGENVALUES(32)
COMMON /Q/Q(32,32) /BOOL/BOOL
3001 = .TRUE.
DO 20 J = 1,32
00 20 I = 1,32
A(I,J) = 0.0
IF ((I + 1).EQ.J) A(I,J) = 1.0
IF ((3 + 1).EQ.I) A(I,J) = 1.0

20 CONTINUE
CALL DAPCON(’v3.dd’)
CALL DAPSEN(‘A’ ,a, 1024)
CALL DA?SEN(‘BOOL’ ,BOOL, 1)
CALL DAPENT(’V3’)
CALL DAPREC(’EV’ ,eigenvalues,32)
WRITE (6,1000) (EIGENVALuEs(I),I = 1,32)

General Support library manOlO.02 55

6.4 F02_ JACOBI F02 — figen values and eigen vectors

1000 FORMAT C’ Eigenvalues ‘ /(1X,F14.5))
WRITE (6,1500)

1500 FORMATC’ Eigenvectors’)
CALL DAPREC(’Q’ ,Q,1024)
CALL DAPREL
J=1
DO 40 I = 1,32

40 WRITE (6,2000) Q(I,J)
2000 FORMATf1X,F14.5)

STOP
END

DAP program

ENTRY SUBROUTINE V3
REAL A(,) , Qf,) ,EIGENvALUEs()
LOGICAL BOOL
COMMON IA/A /EV/EIGENVALUES
COMMON /q/Q /BOOL/BOOL
CALL CONVFME(A)

CALL CONVFSL(BOOL, 1)
CALL F02_JACOBI (A, EIGENVALUES , Q , BOOL)
CALL CONVVFE(EIGENVALUES,32,1)
CALL CONVMFE(q)
RETURN
END

Results

Eigenvalues
—1.99084
—1.96374
—1.91889
—1.85665
—1.77758
—1.68242
—1.57204
—1.44740
—1.30967
—1.16006

—.99995
— .83079
— .65410
— .47150
— .28462
— .09516

56 manOlO.02 AMT

F02 — Elgen values and eigenvectors 6.4 F02... JACOBI

.09516

.28462

.47150

.65410

.83079

.99995
1.16006
1.30967
1.44740
1.57204
1.68242
1.77758
1.85665
1.91889
1.96374
1.99084

Eigenvectors
— .02315

.04610
—.06866

.09063
—.11182

13204
—.15109

• 16879
—. 18499

• 19953
—.21228

.22313
— .23198

.23876
—.24338

24582
— .24603

.24401
—. 23977

.23334
— .22477

.21414
—.20154

.18710
—. 17093

.15319
—. 13404

.11365
— .09221

.06992
—.04697

.02360

General Support library manOlO.02 57

6.4 F02.. JACOBI F02 — Figenvalues and eigen vectors

.

.

.
58 manOlO.02 AMT

Chapter 7

F04 — Simultaneous linear
equations

Contents:

Subroutines Page

FO4BIGSOLVE 60

FO4GJNLEES 66

F04...QR.. GIVEN& SOLVE Ti

F04_TRIDS_ ES 75

F04_TRIDS_ ES_ SQ 78

FO4TRIDSLV 82

General Support library manOlO.02 59

7.1 f04 _BIGSOLVE f04 — Simultaneous linear equations

7.1 F04 _BIGSOLVE release 1

1 Purpose
F04 ..BIGSOLVE is a routine for solving large sets of linear equations. The maximum size of
the system depends on th size of the DAP store — for a 32 by 32 DAP with a 4 Mbyte store
this maximum size is 1023, whereas for a 32 by 32 DAP with an 8 Mbyte store the maximum
size is 1407. The method used was developed by D Hunt; it consists of a block form of Gauss
Elimination with colunm pivoting. The matrix of the coefficients of the equations is of size
‘SIZE’ by ‘SIZE’ and the right hand side is assumed to be held in column ‘SIZE’ + 1. The
whole matrix is held in the DAP partitioned in DAPSIZE blocks.

You are not recommended to use this routine for systems of order 32 or less — for which you
should use the routine F04_GJ_NLE_ES.

2 Specification
SUBROUTINE F04 - BIGSOLVE (BIGM , SIZE , ALLBLKS , IFAIL)
REAL BIGM (, , ALLBLKS, ALLBLKS)
INTEGER SIZE , IFAIL ,ALLBLKS

3 Description
You can use this routine to solve a system of equations of maximum size N = 1023 on the
4 Mbyte 32 by 32 DAP, (N = 1407 on the 8 Mbyte 32 by 32 DAP) using a block form of Gauss
elimination with column pivoting [2]. After the forward step, the matrix is conceptually of
the form: (illustrated for a hypothetical 4 by 4 DAP and for N = 11)

1000 XXXI XXXI
0100 XXIX XXXI
0010 XXIX XXIX
0001 XXXX XXXI

0000 1000 XXXI
0000 0100 XXXX
0000 0010 XXXX
0000 0001 XXXI

0000 0000 1001
0000 0000 0101
0000 0000 0011
0000 0000 0000

C I = non zero value)

Gauss Jordan elimination is used for the diagonal blocks (see [1]). In practice, the diagonal
and below diagonal blocks are not needed and are therefore left undefined.

On DAP the relevant part of the pivot column will in general be spread over several sheets.
In DAP 500 that part of the pivot column is extracted in order to find the maximum in a
single operation.

60 manOlO.02 AMT

F04 — Simultaneous linear equations 7.1 FO4BIGSOLVE

The factors by which the rows of the large matrix are multiplied are obtained by dividing
the pivot column by the pivot element. This is done in a single matrix division operation on
the extracted data.

The solution time is ultimately O(m3 x d), where the matrix is partitioned into m by m
sheets each of size d by d to match the DAP 500 array. (In terms of the parameters below,
N = SIZE, ((m — 1) d < N < md) and m = ALLBLKS).

4 References

[1] FOX, L

Numerical Linear Algebra: Chapters 3, 7, Oxford University Press, Oxford,1964

HUNT,DJ
[2] Solution of a large system of equations on DAP using a hybrid Gauss/Gauss Jordan

method: DAPSU Technical Report 7.27: available on request from The DAP Support
Unit, Queen Mary ColIge, Mile End Road, London El 4NS

[3] PARKINSON, D and LIDDELL, H M

The measurement of performance on a highly parallel system: IEEE Trans on Com
puters, Special Issue, Nov 1982

5 Arguments

BIGM - REAL MATRIX array of dimension (, ,ALLBLKS,ALLBLKS)

On entry the first SIZE rows and columns must be set to the elements of the matrix of
coefficients of the equations defining the linear system. The right-handside of the equa
tions is stored in column SIZE + 1. The values in BIGM are changed during execution
of the subroutine, and on exit column SIZE + 1 contains the solution of the system.

SIZE - INTEGER

On entry SIZE must be set to the order of the system. Unchanged on exit. SIZE must
not be less than 2.

ALLBLKS - INTEGER

On entry ALLBLKS must be set to the number of DAP partitions needed to store the
complete system (i.e. including the RHS). Unchanged on exit.

IFAIL - INTEGER

Unless the routine detects an error (see Error Indicators below) IFAIL contains zero
on exit.

6 Error Indicators
Errors detected by the routine:

IFAIL = 1 SIZE is less than 2

IFAIL = 2 One of the conditions:

32*(ALLBLKS
- 1) < SIZE

32*ALLBLKS
- 1 >= SIZE

has been violated

General Support library manOIO.02 61

7.1 f04 ..BIGSOLVE F04 — Simultaneous linear equations

6 Error Indicators — continued

IFAIL = 3 A zero pivot has been found during the back substitution process.
The calculation is terminated

IFAIL = 4 A very small pivot has been found during the back substitution
process and the matrix is probably singular.
Computation proceeds anyway, but the results should be treated
with caution

7 Auxiliary Routines
None

8 Accuracy
The accuracy depends on the conditioning of the system; during extensive testing of this
single precision implementation of the routine the maximum residual was approximately

9 Further Comments
None

10 Keywords
Gauss elimination, Gauss-Jordan, linear solver.

ii Example

Host program

PROGRAM HOSTBIGSOLVER
COMMON/INPUT1/A(32 ,32 • 5,5)
COMMON/STATS/FNMONE ,FNMTWO , FNMINF
COMMON/IFAIL/IFAIL

DATA N,IX/32,1111111/

CALL DAPCON(‘bigtest .dd’)
CALL INITDATA(N , Ix)
CALL DAPSEN(’INPUTl’ ,A,25*1024)
CALL DAPENT(‘BIGSOLVETEST’)
CALL DAPREC(’IFAIL’ ,IFAIL,1)
CALL DAPREC(’STATS’ ,FNMONE,3)
CALL DAPREL
WRITE(6 ,99) IFAIL

99 FORMAT(1OX,7RIFAIL =,13)
IF(IFAIL.Eq. 1.OR.IFAIL.EQ.2.OR.IFAIL.EQ.3)STOP
WRITE(6, 100)FNMONE,FNMTwO,FNMINF

62 manOlO.02 AMT

F04 — Simultaneous linear equations 7.1 f04 - BIGSOLVE

100 FORMAT(20H SUM OF RESIDUALS = ,E10.4//
131H SUM OF SQUARES OF RESIDUALS = ,E1O.4//
220R MAXIMUM RESIDUAL = ,E10.4)
STOP
END

DAP program

SUBROUTINE INITDATA(N, IX)
COMMON/INPUTT/A(32, 32,5,5)

C
C THIS SUBROUTINE CREATES THE INITIAL SEEDS THAT THE DAP CAN USE TO
C CALCULATE EXACTLY THE REQUIRED SET OF PSEUDO-RANDOM NUMBERS.
C THIS IS DONE IN ORDER TO BE ABLE TO MAKE FAIR COMPARISONS IN
C RESPECT OF RUNTIME AS WELL AS NUMERICAL RESULTS
C

DO 1 L = 1,5
DO 1 K = 1,5
DO 1 J = 1,N
DO 1 I = 1,N

IY =FLOAT(IX)/22369 .624
IX=125*IX—2796203*IY
A(I,J,K,L) = FLOAT(IX)/2796203.

1 CONTINUE
RETUR!
END

ENTRY SUBROUTINE BIGSOLVETEST
COMMON/INPUT1/A(, ,5 ,5)
COMMON/STATS/FNMONE,FNMTWO , FNMINF
COMMON/IFAIL/IFAIL

REAL BIGM(,,5,5),QSAVE(,5),TRHS(,S),RESIDU(,5),MAXIMUM(,5)
REAL MULT(,),X(,5)
INTEGER N, IFAIL, DAPSIZE,RHSCOL

NDAPS = 5
DO 700 L = 1,NDAPS
DO 700 K = 1,NDAPS

CALL CONVFME (AC , ,K,L))
700 CONTINUE

General Support library manOlO.02 63

7.1 f04 _BIGSOLVE f04 — Simultaneous linear equations

DAPSIZE = 32
N = 150
RESCOL = N — (NDAPS — 1)*DAPSIZE + 1
DO 400 L = 1,NDAPS
DO 400 K = 1,NDAPS

BIGM(, ,K,L) = AC , x,L)

400 CONTINUE
DO 500 1 = 1,NDAPS
QSAVE(,L) = AC ,RHSCOL,L,NDAPS)

500 CONTINUE

CALL F04...BIGSOLVE(BIGMN,NDAPS,IFAIL)
IF(IFAIL.EQ.0.OR.IFAIL.EQ.4)GO TO 200
CALL CONVSFI(IFAIL, 1)
RETURN

200 CONTINUE
DO 300 K = 1,NDAPS
XC)K) = BIGM(,RESCOL,K,NDAPS)

300 CONTINUE

FNMONE = 0.
FNMTWO = 0.
FNMINF = 0.
DO 60 K = 1,NDAPS
TRESC ,K) = 0.
DO 70 1 = 1,NDA?S

MULT = NATR(XC IL))

TRES(,K) = TRHSC ,K) + SUNC(MULTtA(,,K,L))
70 CONTINUE

RESIDU(,K) = ABSCTRHS(,K) — QSAVEC ,K))
IF(K .NE. NDAPS) GO TO 80
DO 90 I = RRSCOL,DAPSIZE

RESIDU(I,NDAPS) = 0.0
QSAVECI,NDA?S) = 0.0
TRUS(INDAPS) = 0.0

90 CONTINUE
80 CONTINUE

FNMONE = FNMONE + SUM(RESIDU(,K))
FNMTWO = FNMTWO + SUM(RESIDUC ,K)**2)
MAXIMUM(,K) = 0.
MAXIMUM(RESIDU(,K) .GT.MAXIMUM(,K) ,K) = RESIDU(,K)
IF (MA1vCMAXIMUMC ,K)).GT.FNMINF) FNMINF = MAXV(MAXIMUM(K))

60 CONTINUE
600 CONTINUE

CALL CONVSFECFNMONE , 3)
CALL CONVSFICIFAIL, 1)
RETURN
END

64 manOlO.02 AMT

F04 — Simultaneous linear equations 7.1 F04 - BIGSOLVE

Results

IFAIL=O
SUM OF RESIDUALS = O.9086E—O1
SUM OF SQUARES OF RESIDUALS = O.7045E—06
MAXIMUM RESIDUAL = O.1943E—03

General Support library manOlO.02 65

7.2 F04_GJ_NLE...ES f04 — Simultaneous linear equations

7.2 F04 _GJ_ NLE - ES release 1

1 Purpose
F04_GJ_NLE_ES is a routine for solving the system of linear equations Ax = b for x, where
A is a non sparse matrix of order N in the range 1 to 32, using the Gauss Jordan method.
It is not particularly efficient for small values of N.

2 Specification
SUBROUTINE F04.GJ.NLE...ES(A , X , Q , N , IFAIL)
REALA(,),XO,Q()
INTEGER N , IFAIL

3 Description
The Gauss Jordan method [1,2] can be considered as a variant of Gauss elimination, but the
elimination is also applied to terms above the diagonal at each stage.

For example, for a 4 by 4 system:

StepO XXXX = I
XXXI = I
XXXX = I
XXXX = X

Step 1 xxxx = x
OXIX = I
oXXX = X
oXXX = I

(This is the same as in Gauss elimination)

Step2 XOXX =X
oXXX = X
0011 = I
OOXX = 1

Step3 X00X = I
OXOX = I
00XX = I
OOXX I

Step4 X000 = I
0X00 = X
00X0 = I
000X = I

(X represents a non zero value)

66 manOlO.02 AMT

F04 — Simultaneous linear equations 7.2 f04 ..GJ_ NLE.. ES

Thus the parallelism at each step is maximised and there is no need to perform the back
substitution. On a computer with mx m parallel processors, where m exceeds the number
of equations, N, the operation count for Gauss Jordan is iV divisions, multiplications and
subtractions, which is the same number of operations required by the elimination phase of
Gauss elimination. However, the latter also requires N — 1 multiplies and subtractions for the
back substitution phase. On a serial machine, the operation count for Gauss Jordan is 0 (.),
which is greater than that for Gauss elimination — 0(ç). The back substitution phase takes
o (N2) operations and is therefore negligible for large systems.

4 References

[1] FLANDERS P M , HUNT D J, REDDAWAY S F and PARKINSON D

Efficient high speed computing with the distributed array processor, in High Speed Com
puter and Algorithm Organisation: Academic Press, London, 1977

[2] WEBB S J

Solution of elliptic partial differential equations on the ICL Distributed Array Processor:
ICL Technical Journal, vol 2, 175 — 189 (1980)

5 Arguments

A - REAL MATRIX

On entry, elements A(I) (i, j = 1 ..., N) must be set to the elements of the matrix
defining the linear system. The argument is unchanged on exit.

X - REAL VECTOR

On exit the first N elements of X will contain the solution of the system.

Q - REAL VECTOR

On entry, the first N elements of Q should contain the values of the right hand side (b)
of the system. The argument is unchanged on exit.

N - INTEGER

On entry, N must be set to the order of the system; it is unchanged on exit.

IFAIL - INTEGER

Unless the routine detects an error (see Error Indicators below) IFAIL contains zero
on exit.

6 Error Indicators
Errors detected by the routine:

IFAIL = 1 N is not in the range 1 to 32.

IFAIL 2 A zero pivot has been found. The calculation is terminated.

IFAIL = 3 A very small pivot has been found and the matrix is probably
singular. Computation proceeds anyway, but the results should
be treated with caution.

7 Auxiliary Routines
None

General Support library manOlO.02 67

7.2 F04_GJ_NLE_ES F04 — Simultaneous linear equations

8 Accuracy
Accuracy depends on the conditioning of the system; during testing of this single precision
implementation, the maximum residual was less than ion.

9 Further Comments
N one

10 Keywords
Gauss Jordan, linear system solver

11 Example

Host program

PROGRAM HOSTSOLVER
COMMON/IN?UTD1/A(32 ,32)
COMMON/INPUTD2/Q (32) , X (32)
COMMON/STATS/FNNONE , FNMTWO , FNMINF
COMMON /IFAIL/IFAIL

DATA N,IX/32,1111111/

CALL INITOATA ,IX)
CALL DAPCN(’gjtest..dd’)
CALL DAPSENC’INPUTDATAl’ ,a1024)
CALL DAPSEN(INPUTDATA2’ ,Q,32)
CALL DA?ENT(’GJTEST’)
CALL DAPREC(’IFAIL’ ,IFAIL,1)
CALL DAPSEN(’IN?UTDATA2’)x,32)
WRITE(6, 200) IFAIL

200 FORMAT(1OX,2H IFAIL =,12)
IF(IFAIL.NE.0)STOP
CALL DAPREC(’STATS’ ,FNMONE,3)
CALL DAPREL
WRITE(6, 100)FNMONE,FNMTWO,FNMINF

100 FORI1AT(20H SUM OF RESIDUALS = ,E1O.4//
131H SUM OF SQUARES OF RESIDUALS = ,E10.4//
220H MAXIMUM RESIDUAL = ,E10.4)
STOP
END

SUBROUTINE INITDATA (N,IX)
COMMON/INPUTD/A(32, 32)
COMMON/INPUTD2/Q (32) , 1(32)

68 manOlO.02 AMT

F04 — Simultaneous linear equations 72 f04 _GJ_NLE ES

C
C THIS SUBROUTINE CREATES THE INITIAL SEEDS THAT THE DA? CAN USE
C TO CALCULATE EXACTLY THE REQUIRED SET OF PSEUDO-RANDOM NUMBERS.
C THIS IS DONE IN ORDER TO BE ABLE TO MAKE FAIR COMPARISONS IN
C RESPECT OF RUNTIME AS WELL AS NUMERICAL RESULTS
C

DO 1 I = 1,N
DO 1 J = 1.N

IY =FLOAT(IX)/22369 .624
IX=125*IX—2796203*IY

A(I,J) = FLOAT(IX)/2796203
1 CONTINUE

DO 2 I = 1,N
IY = FLOATCIX)/22369.624
IX=125*IX—2796203*IY
Q(I) = FLOAT(IX)/2796203

2 CONTINUE
RETURN
END

DAP program

ENTRY SUBROUTINE GJTEST
COMMON/INPUTDATA1/A(,)
COMMON/INPUTDATA2/Q() ,X()
COMMON/STATS/FNMONE , FNMTWO , FNMINF
COMMON/IFAIL/IFAIL

REAL ASAVE(1),QSAVEQ,TRHSQ,RESIDUQ,MAXIMUMQ,MULT(,)
+ ,QSAVE1()

LOGICAL MASK(,),VMASK()

CALL CONVFME(A)
CALL CONVFVE(Q,32,1)
ASAVE = A
QSAVE = Q
QSAVE1 = QSAVE

N = 27
MASK = ROWS(1,N).AND.COLS(1,N)
VMASK = ELSC1,N)
QSAVE = QSAVE1
Q(VMASK) = QSAVE
q(.NOT.vMASK) = 0.
A(MASK) = ASAVE

Af.NOT.MASK) = 0.

General Support library manOlO.02 69

7.2 F04_GJ_NLE_ES f04 — Simultaneous linear equations

CALL F04_GJ_NLE_ES (A, X , Q , N, IFAIL)
X(.NOT.VMASK) = 0.
QSAVE(.NOT.VMASK) = 0.
IF(IFAIL.NE.0)GO TO 100
TRHS =0.
MULT=MATR (x)
TRS = sUMC(MULT*ASAVE)

TRZS(.NOT.VMASK) = 0.
RESIDU = ABS(TRUS — QSAVE)
FNMONE=SUM C RESIDU)
FNMTWO= SUM (REsIDU**2)
MAXIMUM = 0.
MAXIMUM(RESIDU.GT.MAXIMUM) = RESIDU
FNMINF = MAXV(MAXIMUM)

CALL CONVVFE(X,32,1)
CALL CONVSFE(FNMONE , 3)

100 CONTINUE
CALL CONVSFI(IFAIL, 1)
RETURN
END

Results

IFAIL = 0
SUM OF RESIDUALS = 0.3069

SUM OF SQUARES OF RESIDUALS = 0.3604E—06

MAXIMUM RESIDUAL = 0.1466E—03

70 manOlO.02 AMT

f04 — Simultaneous linear equations 7.3 f04 - QR_ GIVENS_ SOLVE

7.3 F04 - QR_ GIVENS_ SOLVE release 1

1 Purpose
F04_QR_GIVENS_SOLVE solves the linear system Ax = b for x, where A is an n by n
matrix with 2 < n < 33. The routine may be used to solve simultaneously for up to 32
different right hand side vectors b.

2 Specification
SUBROUTINE F04...QRGIVENSSOLVE(A X , B , N , NB IFAIL)
INTEGER N , NB , IFAIL
REAL A(,) , X(,) , B(,)

3 Description
The routine factorizes the given n by n matrix A as:

QA=R

where Q is an orthogonal matrix and r is upper triangular.

Givens method of plane rotations is used to annihilate elements of A below the leading
diagonal until the matrix R remains. This leaves an upper triangular system which is solved
by back substitution. Row i of A is used to annihilate the element in position (i + 1,j) by
p re-multiplying A by a matrix- of the form:

PI,I+i) = diag (I(i_1), U(I1), ‘(n_i_i)) 1 j n—i

where U(Ij)
= (:) , with c + s = 1

In the usual serial application, these rotations are applied sequentially, but on the DAP you
can perform up to rotations simultaneously [1].

4 References

[1] SAMER A H and KUCK D J

On stable parallel linear system solvers: Journal of the Association of Computing
Machinery, vol 25, no 1, pp 81-91.

5 Arguments

A - REAL MATRIX

On entry, elements A(f) (1 = 1, 2, .. ., N; 5 = 1,2, ..., N) must be set to the elements
of the matrix defining the linear system. A is unchanged on exit.

X - REAL MATRIX

On exit, column i of X will contain the solution of the system corresponding to the
column of B.

General Support library manUlO.02 71

7.3 F04 - QR.. GIVENS.. SOLVE F01 — Simultaneous linear equations

5 Arguments — continued

B - REAL MATRIX

On entTy, columns 1 to NB must give the NB right hand side vectors. B is unchanged
on exit.

N - INTEGER

On entry, N must be set to the order of the matrix A. N is unchanged on exit.

NB - INTEGER

On entry, NB must be set to the number of right hand side vectors for which the system
is to be solved. NB is unchanged on exit.

IFAIL - INTEGER

Unless the routine detects an error (see Error Indicators below) IFAIL contains zero
on exit.

6 Error Indicators
Errors detected by the routine:

IFAIL = 1 N is not in the range 3 to 32 or NB is not in the range 1 to 32

IFAIL = 2 A zero pivot has been found during the back substitution process,
that is, the matrix is singular

IFAIL = 3 A very small pivot has been found during the back substitution
process and the matrix is probably singular. Computation proceeds
anyway, but you should treat the results with caution

7 Auxiliary Routines
This routine calls the DAP library routines ZFO4..BACK_SUBST,
Z F04.. SPREAD LMAT.. EAST, Z... F04.. SPREADRMAT.EAST and 1.. FO& UPDATE.

8 Accuracy

Empirical results indicate that errors may be expected in the 6th or 7th significant digit.
The routine will return IFAIL = 3 (see Error Indicators above) if the condition:

MAX, IR
>5x105

MINE IRiI

is satisfied, where Rj3 is the upper triangular matrix defined in Description above.

9 Further Comments
You must not use common blocks with the names:

C.F04..QR1 and C...F04.QR2

10 Keywords
Givens’ rotation, linear equations

72 manOlO.02 AMT

F04 — Simultaneous linear equations T. 3 F01 - QR_ GIVENS soLvE

ii Example
The example solves a 5 by 5 linear system with one right hand side. The true solution vector
is [1,1,1,1,1] T

Host program

PROGRAM MAINGIVEN
REAL A(32,32),X(32,32),B(32,32)
COMMON /MATS/A,X,B
COMMON /SCALARS/ N,NB,IFAIL
READ(5,*) N,NB
READ(5,*) (fA(I,J),J=1,N), I=1,N)
READ(5,*) ((B(I,J),J=1,NB),I=1,N)
CALL DAPCON(’entgiven.dd’)
CALL DA?SEN(’SCALARS’ ,N,3)
CALL DAPSEN(’MATS’ ,A,3*1024)
CALL DAPENT(’ENTGIVEN’)
CALL DAPREC(‘SCALARS’ , N, 3)
CALL DAPRECC’MATS’ ,A,2*1024)

CALL DAPREL
WRITE (6,1000) IFAIL

1000 FORMAT(‘ IFAIL = ‘,15)
IF (IFAIL.NE.0 .AND. IFAIL.NE.3) STOP
WRITE(6,2000) f(x(I,J),J=1,NB),I=1,N)

2000 FORMAT(/’ Solution:’/(1X,F12.7))
STOP
END

DAP program

ENTRY SUBROUTINE ENTGIVEN
REAL A(,),X(,),B(,)
COMMON /MATS/A,X,B
COMMON /SCALARS/N ,NB, IFAIL
CALL CONVFME(A)
CALL CONVFME(B)
CALL CONVFSI(N,3)
CALL F04_QR_GIVENS_SOLVE(A,X ,B,N,NB, IFAIL)
CALL CONVMFE(X)
CALL CONVSFI(N,3)
RETUR1I
END

General Support library manOlO.02 73

7.3 F04_QR.GIVENS_SOLVE F 01 — Simultaneous linear equations

Data

51

3.0 —7.0 1.5 2.5 6.1
8.0 1.6 0.0 —3.0 2.8

—0.5 1.6 2.3 7.4 —8.5
0.0 —1.0 —2.3 1.7 5.8
2.7 1.3 —3.5 0.0 4.1

6.1 9.4 2.3 4.2 4.6

Results

IFAIL=0

Solution:
0,9999998
0.9999985
0.9999961
0.9999998
0.9999990

74 manOlO.02 AMT

F04 — Simultaneous linear equations 7.4 F04 - TRIDS_ ES

7.4 F04 _TRIDS_ES release 1

1 Purpose
F04 _TRIDS_ES returns the solution of a tridiagonal linear system of equations of order up
to 32. That is, it finds vector x where:

Mx = y

and M is a tridiagonal matrix.

2 Specification
REAL VECTOR FUNCTION F04.TRIDS..ES (A , B , C , Y N , IFAIL)
INTEGER N , IFAIL
REALA() ,B(),C() ,Y()

3 Description
The algorithm used is of the recursive doubling type. At each step the distance of the outer
diagonals from the main diagonal is doubled. When only a diagonal matrix remains the
solution is obtained by a simple division. Full details may be found in [1].

4 References
[1] WHITEWAY J

A parallel algorithm for solving tridiagonal systems: DAPSU Newsletter, 3 December
1979: available on request from the DAP Support Unit, Queen Mary College, Mile
End Road, London El 4NS

5 Arguments

A - REAL VECTOR

On entry, elements 2 to N of A must be set to the values of the lower diagonal of the
tridiagonal matrix. That is, if the matrix is M = m(i, j) then A (I) must be set to
M(I, I — 1) (I = 2, ..., N). Elements with subscripts not in the range 2 to N are
ignored. A is unchanged on exit.

B - REAL VECTOR

On entry, elements 1 to N of B must be set to the values of the main diagonal of the
tridiagonal matrix. That is, if the matrix is M = m(i,j) then 3(I) must be set to
M(I, I) (I = 1, ..., N). Elements with subscripts not in the range 1 to N are ignored.
B is unchanged on exit.

C - REAL VECTOR

On entry, elements 1 to N — 1 of C must be set to the values of the upper diagonal of
the tridiagonal matrix. That is, if the matrix is M = m(i,j) then C (I) must be set to
M(I,I+ 1) (I = 1, ..., N —1). Elements with subscripts not in the range ito N—i
are ignored. C is unchanged on exit.

Y - REAL VECTOR

On entry, elements 1 to N of Y must be set to the values of the RHS vector. Elements
with subscripts not in the range 1 to N are ignored. Y is unchanged on exit.

General Support library manOlO.02 75

7.4 F04_TRIDS_ES f04 Simultaneous linear equations

5 Arguments — continued

N - INTEGER

On entry, N must specify the size of the system (in the range 2 to 32). That is, for
Mx y, M must be N by N.

IFAIL - INTEGER

Unless the routine detects an error (see Error Indicators below) IFAIL contains zero
on exit.

6 Error Indicators
Errors detected by the routine:

IFAIL = 1 At some stage during the calculation, an element on the leading
diagonal is zero. This implies the original matrix was singular. The
contents of F04_TRIDS_ES in this case are undefined

IFAIL = 2 At some stage during the calculation, the matrix has ceased to be
diagonally dominant. Note: this is only a warning and the routine
continues to completion (if possible)

IFAIL = 3 N is not in the range 2 to 32

7 Auxiliary Routines
None

8 Accuracy
General results seem to indicate that the more diagonally dominant the system is the more
accurate the results. IFAIL = 1 is possible for non-diagonally dominant systems even if the
system is non-singular.

9 Further Comments
None

10 Keywords
Tridiagonal linear systems

11 Example
The example given is such that the solution vector should be 1. The system is diagonally
dominant.

Host program

PROGRAM MAINTRIDSES
REAL ANs(32)
COMMON /ANS/ANS/IFAIL/IFAIL
CALL DAPCON(‘tridses .dd’)
CALL DAPENT(‘ENTTRIDSES’)
CALL DAPREC(’ANS’ ,ANS,32)
CALL DA?REC(’IFAIL’ ,IFAIL,1)
CALL DAPREL
WRITE (6,1000) IFAIL

76 manOlO.02 AMT

F04 — Simultaneous linear equations 7.4 F04 TRIDS_ ES

1000 FORMAT(’ IFAIL =‘,15)
IF (IFAIL.NE.0) STOP
WRITE(6,2000) (AN5f1), 1=1,15)

2000 FORMAT(’ RESULTS’//(F12.7))
STOP
END

DAP program

ENTRY SUBROUTINE ENTTRIDSES
REAL LOWERO, UPPERO, DIAGO, ANSO, aHs()
COMMON /ANS/ANS/IFAIL/IFAIL
EXTERNAL REAL VECTOR FUNCTION F04_TRIDS_ES
N = 15
LOWER = 0.5
UPPER = 0.5
DIAG = 2.0
RES = 3.0
RHS(1) = 2.5
RHS(N) = 2.5
ANS = F04_TRIDS_ES(LOWER,DIAG,UPPER,RHS ,N, IFAIL)
CALL CONVVFE(ANS,32, 1)
CALL CONVSFI(IFAIL, 1)
RETURN
END

Results

IFAIL = 0
RESULTS

.9999999

.9999999
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000

.9999999

.9999999

General Support library manOlO.02 77

7.5 F04_TRIDS_ES..SQ f04 — Simultaneous]inear equations

7.5 FO4TRIDS_ES_SQ releasel

1 Purpose
F04_TRIDS_ES_SQ returns the solution of a set of up to 32 tridiagonal linear systems of
equations each of order up to 32. That is, it solves up to 32 systems of the form:

Mx = y

where M is a tridiagonal matrix.

2 Specification
REAL MATRIX FUNCTION F04 .TRID& ES.. SQ (A, B, C, Y, N, K, IFAIL)
INTEGER N , K IFAIL
REAL A(,) , B(,) , C(,) , Y(,)

3 Description
The algorithm used is of the recursive doubling type. At each step the distance of the two
outer diagonals from the main diagonal is doubled. When only a diagonal matrix remains
the solution is obtained by a simple division. Each system is stored down the columns of the
matrix arguments and so, many systems can be solved simultaneously. Full details can be
found in [1].

4 References
[1] WHITEWAY J

A parallel algorithm for solving tridiagonal systems: DAPSU Newletter 3, December
1979: available from the DAP Support Unit, Queen Mary College, Mile End Road,
London El 4NS.

5 Arguments

A - REAL MATRIX

On entry, elements 2 to N of columns 1 to K of A must be set to the values of the lower
diagonal of each of the K systems That is, if the KtI matrix is M = m(i, j) then A(I, K)
must be set to M(I,I— 1) (I = 2,3, ..., N). Elements with row subscripts not in the
range 2 to N or columns subscripts not in the range 1 to K are ignored. A is unchanged
on exit.

B - REAL MATRIX

On entry, elements 1 to N of columns 1 to K of B must be set to the values of the
main diagonal of each of the K systems. That is, if the Kth matrix is M = m(i,j)
then 3(I,K) must be set to M(I,I)(I = 1,2, ..., N). Elements with row subscripts
not in the range 1 to N or column subscripts not in the range 1 to K are ignored. B is
unchanged on exit.

C - REAL MATRIX

On entry, elements 1 to N — 1 of columns 1 to K of C must be set to the values of the
upper diagonal of each of the K systems. That is, if the Kth matrix is M = m(i, j) then
C (I, K) must be set to M(I, 1+ 1) (I = 1,2, ..., N — 1). Elements with row subscripts
not in the range 1 to N — 1 or column subscripts not in the range 1 to K are ignored. C
is unchanged on exit.

78 manOlO.02 AMT

F04 — Simultaneous linear equations 7.5 f04 - TRIDS_ ES_SQ

Y - REAL MATRIX

On entry, elements 1 to N of columns 1 to K of Y must be set to the values of the K
RHS vectors. Elements with row subscripts not in the range 1 to N or column subscripts
not in the range 1 to K are ignored. Y is unchanged on exit.

N - INTEGER

On entry, N must specify the order of the tridiagonal systems (in the range 1 to 32).

K-INTEGER

On entry, K must specify the number of tridiagonal systems to be solved (in the range
1 to 32).

IFAIL - INTEGER

Unless the routine detects an error (see Error Indicators below) IFAIL contains zero
on exit.

6 Error Indicators
Errors detected by the routine:

IFAIL = 1 At some stage during the calculation, an element on one of the
leading diagonals is zero. This implies that, at least, one of the
systems was singular. The contents of F04 _TRIDS_ES_SQ in this
case are undefined

IFAIL = 2 As a minimum, at some stage during the calculation, one matrix
has ceased to be diagonally dominant. Note: this is only a warning
and the routine continues to completion (if possible)

IFAIL = 3 N is not in the range 1 to 32 or K is not in the range 1 to 32

7 Auxiliary Routines
None

8 Accuracy
General results seem to indicate that the more diagonally dominant the systems are the more
accurate the results. IFAIL = us possible for non-diagonally dominant systems even if the
system is non-singular.

9 Further Comments
None

10 Keywords
Tridiagonal linear systems

11 Example
The example given solves 2 tridiagonal systems of order 15. The solutions are 1 and 2
respectively.

General Support library manOlO.02 79

7.5 F04 .TRIDSES...SQ F 04 — Simultaneous linear equations

Host program

PROGRAM MAINTRIDSESSQ
REAL ANS(32,32)
COMMON /ANS/ANS/IFAIL/IFAIL

DAPCON(’tridsessq.dd’)
DAPENT(‘ENTTRIDSESSQ’)
DAPREC(’ANS’ ,ANS,1024)
DAPREC(’IFAIL’ ,IFAIL,1)
DAPREL

CALL
CALL
CALL
CALL
CALL

WRITE(6, 1000) IFAIL
1000 FORMAT f’ IFAIL =‘,15)

IF (IFAIL.NE.o.AND.IFAIL.NE.2) STOP
WRITE(6,2000) (ANS(I,1), ANS(I,2), I = 1,15)

2000 FORMAT(’ RESULTS’/I(2F12.7))
STOP
END

DAP program

ENTRY SUBROUTINE ENTTRIDSESSQ
REAL LOWERf,), UPPER(,), DIAG(,), RHS(,), ANS(,)
COMMON /ANS/ANS/IFAIL/IFAIL
EXTERNAL REAL MATRIX FUNCTION F04_TRIDS_ES_SQ
N = 15
K=2
LOWER = 0.5
UPPER = 0.5
DIAG = 2.0
RHS(,1) = 3.0
RHS(,2) = 6.0
RHS(1,1) = 2.5
RHS(N,1) = 2.5
RHS(1,2) = 5.0
RHS(N,2) = 5.0
ANS = F04_TRIDS_ES_SQ
CALL CONVMFE(ANS)
CALL CONVFSI(IFAIL, 1)
RETURN
END

(LOWER,DIAG,UPPER,RHS ,N,K, IFAIL)

80 manOl 0.02 AMT

F04 — Simultaneous linear equations 7.5. F04 - TRIDS_ ES_SQ

Results

IFAIL = 0
RESULTS

1.0000019 2.0000019
1.0000019 2.0000019
1.0000019 2.0000019
1.0000019 2.0000019
1.0000019 2.0000019
1.0000019 2.0000048
1.0000019 2.0000019
1.0000019 2.0000019
1,0000019 2.0000019
1.0000019 2.0000019
1.0000019 2.0000019
1.0000019 2.0000019
1.0000019 2.0000019
1.0000019 2.0000019
1.0000019 2.0000019

General Support library manOlO.02 81

7.6 F04_TRIDS_LV F01 — Simultaneous lineaT equations

7.6 F04 _TRIDS_LV release 1

1 Purpose
F04 .TRIDS_LV returns the solution of a tridiagonal linear system of equations of order up
to 1024. That is, it finds vector x where:

Mx = y

and M is a tridiagonal matrix.

2 Specification
REAL MATRIX FUNCTION F04.TRIDS.. LV (A , B , C , Y, N , IFAIL)
INTEGER N , IFAIL
REAL A(,) , B(,) , C(,) , Y(,)

3 Description
The algorithm used is of the recursive doubling type. At each step the distance of the two
outer diagonals from the main diagonal is doubled. When only a diagonal matrix remains
the solution is obtained by a simple division. Full details may be found in [1].

4 References
[1] WHITEWAY J

A parallel algorithm for solving tridiagonal systems: DAPSU Newsletter 3, December 1979:
available from the DAP Support Unit, Queen Mary College, Mile End Road, London El
4NS.

5 Arguments

A - REAL MATRIX

On entry, elements 2 to N of A (treated as a long vector) must be set to the values of
the lower diagonal of the tridiagonal matrix. That is, if the matrix is M = m(i, j) then
A (I) must be set to M(I, I — 1) (I = 2,3, .. ., N). Elements with subscripts not in the
range 2 to N are ignored. A is unchanged on exit.

B — REAL MATRIX

On entry, elements 1 to N of B (treated as a long vector) must be set to the values of
the main diagonal of the tridiagonal matrix. That is, if the matrix is M = m(i, j) then
3(I) must be set to M(I,I) (I = 1,2, ..., N). Elements with subscripts not in the
range 1 to N are ignored. 3 is unchanged on exit.

C - REAL MATRIX

On entry, elements 1 to N — 1 of C (treated as a long vector) must be set to the values
of the upper diagonal of the tridiagonal matrix. That is, if the matrix is M = m(i, j)
then C (I) must be set to M(I, I + 1) (I = 1, 2, ..., N — 1). Elements with subscripts
not in the range 1 to N — 1 are ignored. C is unchanged on exit.

Y - REAL MATRIX

On entry, elements 1 to N of Y (treated as a long vector) must be set to the values of
the RHS vector. Elements with subscripts not in the range 1 to N are ignored. Y is
unchanged on exit.

82 manOlO.02 AMT

F04 — Simultaneous linear equations 7.6 F04_ TRIDS_ LV

N - INTEGER

On entry, N must specify the size of the system (in the range 2 to 1024). That is, for
Mx = y, M must be N by N.

IFAIL - INTEGER

Unless the routine detects an error (see Error Indicators below) IFAIL contains zero
on exit.

6 Error Indicators
Errors detected by the routine:

IFAIL = 1 At some stage during the calculation, an element on the leading
diagonal is zero. This implies the original matrix was singular. The
contents of F04 - TRIDS LV in this case are undefined

IFAIL = 2 At some stage during the calculation, the matrix has ceased to be
diagonally dominant. Note: this is only a warning and the routine
continues to completion (if possible)

IFAIL = 3 N is not in the range 2 to 1024

7 Auxiliary Routines
None

8 Accuracy
General results seem to indicate that the more diagonally dominant the system is the more
accurate the results. IFAIL = us possible for non-diagonally dominant systems even if the
system is non-singular.

9 Further Comments
None

10 Keywords
Tridiagonal linear systems

11 Example
The example given is such that the solution vector should be 1. The system is diagonally
dominant.

Host program

PROGRAM MAINTRIDS....LV
REAL ANSf 1024)
COMMON/ANS/ANS/IFAIL/IFAIL
CALL DAPCON(‘tridslv .dd’)
CALL DA?ENT(‘ENTTRIDS_LV’)
CALL DA?RECC’ANS’ ,ANS,1024)
CALL DAPREC(’IFAIL’ ,IFAIL,1)
CALL DAPREL

General Support library manOlU.02 83

7.6 F04...TRIDS_LV F04 — Simultaneous linear equations

WRITE (6,1000) IFAIL
1000 FORMAT C’ IFAIL =‘,15)

IF (IFAIL.NE.o) STOP
WRITE(6,2000) (ANS(I), = 1, 15)

2000 FORMAT(’ RESULTS’!! (F12.7))
STOP
END

DAP program

ENTRY SUBROUTINE ENTTRIDS_LV
REAL LOWER(,), UPPER(,), DIAG(,), ANS(,), RHS(,)
COMMON /ANS/ANS/IFAIL/IFAIL
EXTERNAL REAL MATRIX FUNCTION F04_TRIDSJV
N = 15
LOWER = 0.5
UPPER = 0.5
DIAG = 2,0
RHS = 3.0

RHSC1) = 2.5
RHS(N) = 2.5
ANS = F04_TRIDS_LV(LOWER,DIAG,UPPER,RHS,N, IFAIL)
CALL CONVMFE(ANS)
CALL CONVSFI (IFAIL, 1)
RETURN
END

Results

IFAIL = 0

RESULTS
1.00000020
1.00000020
1.00000020

All other results are also equal to 1.0000020

84 manOlO.02 AMT

Chapter 8

G05 — Random numbers

Contents:

Subroutine Page

G0&.MCBEGIN 86

G05_MC_14 88

G05_MC_18 90

G05.. MC NORMAL. R4 92

G05..MCR4 94

G0&. MC... REPEAT 96

98

General Support library manOlO.02 85

8.1 G05_MC_BEGIN G05 — Random numbers

8.1 G05_MC_ BEGIN release 1

1 Purpose
G05_MC_BEGIN sets the basic generator routine G05..I’1C_I8 to an initial state.

2 Specification
SUBROUTINE G05MCBEGIN

3 Description
This routine sets the internal variable N used by G05_ MC_ 18 to the value 123456789 x (232 + 1).

4 References
[1] SMITH K A, REDDAWAY S F and SCOTT D M

Very High Performance Pseudo-Random Number Generator on DAP: Computer
Physics Communications, vol 37, pp 239-244 (1985)

5 Arguments
None

6 Error Indicators
None

7 Auxiliary Routines
N one

8 Accuracy
Not applicable

9 Further Comments
The routine uses a labelled COMMON block C_G05...MC.

10 Keywords
Initialisation, random numbers

11 Example
The example program prints the first five pseudo-random real numbers from a uniform distri
bution between 0 and 1, generated by G05_MC_R4 after initialization by G05_MC_BEGIN.

Host program

PROGRAM MAIN

REAL*4 RAND(1024)
COMMON/RESULT/RAND

86 manOlO.02 AMT

G05 — Random numbers 8.1 G05_MC.. BEGIN

CALL DAPCON(’ent.dd’)
CALL DAPENTf ‘ENT’)
CALL DA?REC(’RESULT’ ,RAND,1024)
CALL DAPREL

WRITE(6,1000)(RAND(I),I=1,5)
1000 FORMAT(’G05_MC_BEGIN EXAMPLE PROGRAM RESULTS’/lX/

*5(1x,F10.4/))

STOP
END

DAP Program

ENTRY SUBROUTINE ENT

REAL*4 RAND(,)
COMMON/RESULT/RAND

EXTERNAL REAL*4 MATRIX FUNCTION G05_MC...R4

CALL G05_MC_BEGIN
RAND=G05_MC_R4(0 .0)
CALL CONVMFE(RAND)

RETURN
END

Results

G05_MC_BEGIN EXAMPLE PROGRAM RESULTS

0.6149
0.8745
0.1511
0.0734
0.2451

General Support library manOlO.02 87

8.2 G05_MC_14 G05 — Random numbers

8.2 G05_MC_14 release 1

1 Purpose
G0&.MC_14 returns an INTEGER*4 MATRIX containing 1024 pseudo-random integer num
bers taken ftom a uniform distribution between 0 and 231

— 1

2 Specification
INTEGER*4 MATRIX FUNCTION G05..MC.A4 (I)
INTEGER*4 I

3 Description
The routine calls G05_MC_18 which uses the multiplicative congruential method:

N = 13’s N mod
G05_MC_14 = N/228

where N is a variable, internal to G05_MC_18, whose value is preserved between calls of the
routine. Its initial value is set by a call to either G05_MC_BEGIN or G05_MCREPEAT.

4 References
[1] SMITH K A, REDDAWAY S F and SCOTT D M

Very High Performance Pseudo-Random Number Generator on DAP: Computer
Physics Communications, vol 37, pp 239-244, 1985

5- Arguments

I_INTEGER*4

A dummy argument required by FORTRAN-PLUS syntax

6 Error Indicators
None

7 Auxiliary Routines
The routine calls the General Support library routine G05_ MC_ 18.

8 Accuracy
Not applicable

9 Further Comments
N one

10 Keywords
Pseudo-random number, random number, rectangular distribution, uniform distribution

11 Example
The example program prints the first five pseudo-random numbers from a uniform distribu
tion between 0 and 2’—1, generated by G05_ MC_14 after initialization by G05_MC_BEGIN.

88 manOlO.02 AMT

G05 — Random numbers 8.2 G05_ MC_14

Host Program

PROGRAM MAIN

INTEGER*4 RAND (1024)
COMMON/RESULT/RAND

CALL DAPCON(’ent.dd)
CALL DAPENT(‘ENT’)
CALL DAPREC(’RESULT’ ,RAND,1024)
CALL DAPREL

WRITE(6, 1000)(RAND(I) .1=1,5)
1000 FORMAT(/’ G05_MC_14 EXAMPLE PROGRAM RESULTS’/lX/

* S(1X,120/))
STOP
END

DAP program

ENTRY SUBROUTINE ENT

INTEGER*4 RANDC,)
COMMON/RESULT/RAND

EXTERNAL INTEGER*4 MATRIX FUNCTION G05...MC_14

CALL GOB_NC_BEGIN
RAND=G05_MC_14 (0)
CALL CONVMFI(RAND)

RETURN
END

Results

G05_MC_14 EXAMPLE PROGRAM RESULTS

1815152335
436969313
976973459

1028379600
1443266400

General Support library manOlO.02 89

8.3 G05_MC_18 G05 — Random numbers

8.3 G05_MC_18 release 1

1 Purpose
G05_MC_18 returns an INTEGER*$ MATRIX containing 1024 pseudo-random integer num
bers taken from a uniform distribution between 10 and — 1.

2 Specification
INTEGER*$ MATRIX FUNCTION G05MC18 (I)
INTEGER*8 I

3 Description
The routine uses the multiplicative congruential method:

N 13’s N mod
G05.MC.J8 = N

where N is a variable, internal to G05_MC..18, whose value is preserved between calls of the
routine. Its initial value is set by a call to either G05_MC_BEGIN or G05_MC_REPEAT.

4 References
[1] SMITH K A, REDDAWAY S F and SCOTT D M

Very High Performance Pseudo-Random Number Generator on DAP: Computer
Physics Communications, vol 37, pp 239-244, 1985

5 Arguments

I - INTEGER8

A dummy argument required by FORTRAN-PLUS syntax

6 Error Indicators
None

7 Auxiliary Routines
None

8 Accuracy
Not applicable

9 Further Comments
The routine uses labelled COMMON block C_G05_MC.

10 Keywords
Pseudo-random number, random number, rectangular distribution, uniform distribution

11 Example
This FORTRAN-PLUS fragment traces the pseudo-random numbers from a uniform distribu
tion between 0 and 2—1 generated by G05.MC_I8 after initialization by G05_MC_ BEGIN.

90 manOlO.02 AMT

G05 — Random numbers 8.3 G05_MC_18

DAP program

ENTRY SUBROUTINE ENT

INTEGER*8 RAND(,)

EXTERNAL INTEGER*8 MATRIX FUNCTION GOS_MC_18

CALL G05_MC_BEGIN
RAND=G05_MC_18 (0)
TRACE 1(RAND)

RETURN
END

Results

FORTRAN-PLUS Trace
FORTRAN-PLUS Subroutine: ENT at Line 9

Integer Matrix Local Variable RAND in 64 bits — addressed by Stack + 0.09

(Row 01 Col 01) 487251244993469717, 476067912847080853,
(Col 03) 190484975398149653, 493464185425411733,
(Col 05) 517514364922158869. 463547216227221397,

There are 512 lines of detailed output altogether.

General Support library manOlO.02 91

8.4 GO&MCJVORMAL_R4 G05 — Random numbeTs

8.4 G05_MC_NORMAL_R4 release 1

1 Purpose
G05_MC_NORMAL_R4 provides a REAL*4 matrix containing normal pseudo-random vari
ates from the distribution N(0,1).

2 Specification
REAL*4 MATRIX FUNCTION G05.MC.NORMAL..R4 (D)
REAL*4

3 Description
The real matrix G05_MC_NORMAL_R4 is set equal to 1024 of either of:

SQRT(—2.0 LOG(U1)) SIN(27r U2)

SQRT(—2.0 LOG(U1)) COS(27r U2)

where U1 and U2 are uniform pseudo-random numbers generated by G05_MC...R4 (see Atkin
son[1]).

4 References
[1] ATKINSON A C and PEARCE M C

The computer generation of Beta, Gamma and Normal random variables: 3 R Statist
Soc 139, pp 431-461, 1976

5 Arguments
D - REAL*4

D is a dummy argument required by FORTRAN-PLUS syntax.

6 Error Indicators
None

7 Auxiliary Routines
The routine calls the General Support library routine G05 MC. R4.

8 Accuracy
Not applicable

9 further Comments
The routine uses the labelled COMMON block C...G05_N.NORM.

10 Keywords
Gaussian distribution, normal distribution, random numbers

92 manOlO.02 AMT

G05 — Random numbers 8.4 GO&MCJVORMAL.R4

ii Example
This example program prints the first five pseudo-random normal variates from a normal
distribution with mean 0 and standard deviation 1, generated by G05_MC_NORMAL_R4
after initialization by G05_MC_BEGIN.

Host program

PROGRAM MAIN

REAL*4 RAND(1024)
COMMON/RESULT/RAND

CALL DAPCON(’ent.dd’)
CALL DAPENT(‘ENT’)
CALL DAPREC(’RESULT’ ,RAND,1024)
CALL DAPREL

WRITE(6, 1000) (RAND(I),I=1,5)
1000 FORMAT(/,’ G05_MC_NORMAL_R4 EXAMPLE PROGRAM RESULTS’/lX/

*5(1X,F10.4/))

STOP
END

DAP program

ENTRY SUBROUTINE ENT

REAL*4 RAND(1)
COMMON/RESULT/RAND

EXTERNAL REAL*4 MATRIX FUNCTION G05_MC_NORMAL_R4

CALL G05_MC_BEGIN
RAND=G05_MC_NORMAL_R4(0 .0)
CALL CONVMFE(RAND)

RETURN
END

Results

G05_MC_NORMAL_R4 EXAMPLE PROGRAM RESULTS

-1.4384
1.7104

.1361
1528

—
. 8427

General Support library manOlO.02 93

8.5 G05_MC_R4 G05 — Random numbers

8.5 G05_MC_R4 release 1

1 Purpose
G05_MC_R4 returns a REAL*4 MATRIX of 1024 pseudo-random real numbers taken from
a uniform distribution between 0 and 1.

2 Specification
REAL*4 MATRIX FUNCTION G05...MC.R4 (X)
REAL*4 X

3 Description
The routine returns the matrix of values:

N/259

where N is the result of a call to G05..MC_18.

4 References
[1] SMITH K A, REDDAWAY S F and SCOTT D M

Very High Performance Pseudo-Random Number Generator on DAP: Computer
Physics Communications, vol 37, pp 239-244, 1985

5 Arguments

X - REAL’’4

A dummy argument required by FORTRAN-PLUS syntax

6 Error Indicators
None

7 Auxiliary Routines
The routine calls the General Support library routine G05_ MC_ R8.

8 Accuracy
Not applicable

9 Further Comments
None

10 Keywords
Pseudo-random number, random number, rectangular distribution, uniform distribution

11 Example
The example program prints the first five pseudo-random real numbers from a uniform distri
bution between 0 and 1, generated by G05_MC_R4 after initialization by G05_MC_BEGIN.

94 manOlO.02 AMT

G05 — Random numbers 8.5 G05... MC..R4

Host program

PROGRAM MAIN

REAL*4 RAND(1024)
COMMON/RESULT/RAND

CALL DAPCON(’ent.dd’)
CALL DAPENT(‘ENT’)
CALL DAPREC(’RESULT’ ,RAND,1024)
CALL DAPREL

WRITE(61000)(RAND(I),I=1,5)
1000 FORMATC/,,’ GOSMC_R4 EXAMPLE PROGRAM RESULTS’/lX/

*5(1X,F1O.4/))

STOP
END

DAP program

ENTRY SUBROUTINE ENT

REAL*4 RAND(,)
COMMON/RESULT/RAND

EXTER1AL REAL*4 MATRIX FUNCTION G05_MC_R4

CALL G05_MC_BEGIN
RAND=G05..MC.R4(0 .0)
CALL CONVMFE(RAND)

RETURN
END

Results

G05_MC_R4 EXAMPLE PROGRAM RESULTS

.8452

.2035

.4549

.4789

.6721

General Support library manOlO.02 95

8.6 G05_MC_R8 G05 — Rant]om numbers

8.6 G05_ MC... R8 release 1

1 Purpose
G05_MC_R8 returns a REAL*8 MATRIX of 1024 pseudo-random real numbers taken from
a uniform distribution between 0 and 1.

2 Specification
REAL*8 MATRIX FUNCTION G05. MC.. R8 (X)
REAL*SX

3 Description
The routine returns the matrix of values:

N/259

where N is the result of a call to G05_MC_I$.

4 References
[1] SMITH K A, REDDAWAY S F and SCOTT D M

Very High Performance Pseudo-Random Number Generator on DAP: Computer
Physics Communications, vol 37, pp 239-244, 1985

5 Arguments

X - REAL*8

A dummy argument required by FORTRAN-PLUS syntax

6 Error Indicators
None

7 Auxiliary Routines
The routine calls the General Support library routine G05_MC_18.

8 Accuracy
Not applicable

9 Further Comments
None

10 Keywords
Pseudo-random number, random number, rectangular distribution, uniform distribution

11 Example
The example program prints the first five pseudo-random real numbers from a uniform distri
bution between 0 and 1, generated by G05_MC_R8 after initialization by G05_MC_BEGIN.

96 manOlO.02 AMT

G05 —Random numbers 8.6 GO&MC.R8

Host program

PROGRAM MAIN

DOUBLE PRECISION RAND(1024)
COMMON/RESULT/RAND

CALL DAPCON(’ent.dd’)
CALL DAPENT(‘ENV)
CALL DAPREC(’RESULT’ ,RAND,2048)
CALL DAPREL

WRITE(6,1000)(RAND(I),I=1,5)
1000 FORMAT(/,,’ G05_MC_R8 EXAMPLE PROGRAM RESULTS’/lX/

*5(1X,F1o.4/))

STOP
END

DAP program

ENTRY SUBROUTINE ENT

DOUBLE PRECISION RAND(,)
COMMON/RESULT/RAND

EXTERNAL REAL*8 MATRIX FUNCTION G0S_MC_R8

CALL G0S_MC_BEGIN

RAND=G0S_MC_R8(0 .0)
CALL CONVMFD(RAND)

RETURN
END

Results

G0S_MC_R8 EXAMPLE PROGRAM RESULTS

.8452

.2035

.4549

.4789

.6721

General Support library manOlO.02 97

8.7 GO&MG.REPEAT 005 - Random numbers

8.7 G05_MC_ REPEAT release 1

1 Purpose
G05_MC_REPEAT sets the basic generator routine G05_MCJ8 to a repeatable initial state.

2 Specification
SUBROUTINE G05.. MC.. REPEAT(I)
INTEGER*4 I

3 Description
The routine sets the internal variable N used by G05_MC_18 to a value calculated from the
parameter I, where:

N = 2ABS(I) + 1

The routine will yield different subsequent sequences of random numbers if called with differ
ent values of I, but the sequences will be repeatable in different runs of the calling program.

4 References
[1] SMITH K A, REDDAWAY S F and SCOTT D M

Very High Performance Pseudo-Random Number Generator on DAP: Computer
Physics Communications, vol 37, pp 239-244, 1985

5 Arguments

I - INTEGER’4

On entry I specifies a number from which the new internal generator is calculated; I is
unchanged on exit.

6 Error Indicators
None

7 Auxiliary Routines
None

8 Accuracy
Not applicable

9 further Comments
The routine uses a labelled COMMON block C_G05_MC.

10 Keywords
Pseudo-random number, random number, rectangular distribution, uniform distribution

11 Example
The example program prints the first five pseudo-random real numbers from a uniform distri
bution between 0 and 1, generated by G05_MC_R4 after initialization by G05_MC_REPEAT.

98 manOlO.02 AMT

G05 — Random numbers 8.7 G05MC.REPEAT

Host program

PROGRAM MAIN

REAL*4 RAND(1024)
COMMON/RESULT/RAND

CALL DA?CON(’ent.dd’)
CALL DAPENT(‘ENT’)
CALL DA?REC(’RESULT’ ,RAND)1024)
CALL DAPREL

WRITE(61000)(RAND(I),I=1,5)
1000 FORMAT(/,’ G05_MC_REPEAT EXAMPLE PROGRAM RESULTS’/lX/

*5(1X,F104/))

STOP
END

DAP program

ENTRY SUBROUTINE ENT

REAL*4 RAND(1)
COMMON/RESULT/RAND

EXTERNAL REAL*4 MATRIX FUNCTION GO5MC_R4

CALL G05_MC_REPEAT(10)
RAND=G0S_MC_R4(0 .0)
CALL CONVMFE(RAND)

RETURN
END

Results

G05j1C_REPEAT EXAMPLE PROGRAM RESULTS

.6178

.6430

.5399

.3852
1947

General Support library manOlO.02 99

8.7 GO&MCLREPEAT 005 - Random numbers

.

• .

100 manOlO.02 AMT

Chapter 9

HOl — Operations research, graph
structures, networks

Contents:

Subroutine Page

H01_L_ASSIGN 102

General Support library man 010.02 101

9.1 HOl _L...ASSIGN HOl — Operations research, graph structures, networks

9.1 HOl _L....ASSIGN release 1

1 Purpose
HO1_L_ASSIGN solves the linear assignment problem with a minimum objective function
and a real cost matrix of order N x N, where N < 32.

2 Specification
SUBROUTINE HOLL ASSIGN (C , X , N , MIN , IFAIL)
REAL C(,) , MIN
INTEGER X () , N , IFAIL

3 Description
The algorithm used is that of Ford and Fulkerson, [1], [2], which uses the Primal-Dual
method. After dualizing the Primal problem, the routine aims to find a pair X, (U,V) of
Primal and Dual solutions respectively which satisfy the complimentary slackness condition.
To find the appropriate solutions, a network G(U, V) is set up. There is an arc (i,j) in
the graph whenever u + v = cjj, where c is the cost of assigning i to j. Next, the
labelling algorithm of Ford and Fulkerson is appplied to find a maximum flow in G(U, V). If
the maximum flow saturates the sink or (source), the problem is solved, otherwise the dual
solutions are updated and the process restarts.

4 References
[1] DANTZIG G B

Linear Programming and Extensions: Princeton University Press, 1963

[2] FORD L R and FULKERSON D R
Flows in Networks: Princeton University Press, 1962

5 Arguments
C - REAL MATRIX

On entry C contains the N x N assignment cost matrix; C is unchanged on exit.

X - INTEGER VECTOR

On exit, X specifies the assignment solution; that is, if X(I) = J, for I,J < N, then I is
assigned to J.

N - INTEGER

On entry N is the order of the cost matrix C. N must lie between 2 and 32, and is
unchanged on exit.

MIN - REAL

On exit MIN contains the assignment value.

IFAIL - INTEGER

Unless the routine detects an error (see Error Indicators below) IFAIL contains zero
on exit.

102 manOlO.02 AMT

HOl — Operations research, graph structures, networks 9.1 HOl - L_ ASSIGN

6 Error Indicators
Errors detected by the routine:

IFAIL = 1 N does not lie in the range 2 to 32

7 Auxiliary Routines
The routine calls the GS library routines XO&.E..MIN.NC and X05...EMINXR.

8 Accuracy
You can expect the computed value of the objective function MIN to be accurate to about
6 significant digits.

9 Further Comments
None

10 Keywords
Labelling algorithm, linear assignment, maximum flow, Primal-Dual algorithms

11 Example
The example is a 5 x 5 assignment problem, where the cost matrix is as follows:

32341
41242

0= 1 0 5 3 2
75013
04123

HenceN=5

Host program

PROGRAM LAS?

REAL C(32)32),MIN
INTEGER X(32) ,N,IFAIL
COMMON/Al/C
COMMON/A2/X
COMMON/A3/N,IFAIL
COMMON/A4/MIN

READ(*,*) N
DO 10 I=1,N

10 READ(*,*) (c(I,J), J=l,N)

CALL DAPCON(‘initial .dd 0
CALL DAPSEN(’Al’ ,C, 1024)
CALL DA?SEN(’A3’,N,l)

General Support library manOlO.02 103

9.1 HOl _L_ASSIGN HOl — OpeTatlons research, graph structures, networks

CALL DA?ENT(INITIAL’)

CALL DAPREC(’Al’ ,C,1024)
CALL DAPREC(’A2’,X,32)
CALL DAPREC(’A3’,N,2)
CALL DA?REC(’A4’,MIN,l)

CALL DAPREL

WRITE (*,*) ‘IFAIL = ‘,IFAIL

IF (IFAIL .NE. 0) STOP

WRITEf6,30) MIN, (XCI), I=l,N)

30 FORMAT(/,,’ MINIMUM VALUE OF ASP. =‘,F125,//,’ THE ASSIGNMENTS’,
* ‘ ARE AS FOLLOWS:’,!!, (1X,1614))

STOP
END

DAP program

ENTRY SUBROUTINE INITIAL

REAL C(,)1MIN
INTEGER XC),N,IFAIL
COMMON/Al/C
COMMON/A2/X
COMMON/A3/N, IFAIL
COMMON/A4/MIN

CALL CONVFSI(N,l)
CALL CONVFME(C)

CALL H0l_L_ASSIGN(C,X,N,MIN,IFAIL)

CALL CONVMFE(C)
CALL CONVVFI(X,32, 1)
CALL CONVSFI(N,2)
CALL CONVSFE(MIN, 1)

RETURN
END

104 manOlO.02 AMT

HUl — Operations research, graph structures, networks 9.1 ff01 _L_ASSIGN

Data

5
32341
41242
10532
75013
04123

Results

IFAIL= 0

MINIMUM VALUE OF AS?. = 4.00000

THE ASSIGNMENTS ARE AS FOLLOWS:

5 3 2 4 1

General Support library manOlU.02 105

9.1 HOl LASSIGN HOl Operations research, graph structures, networks

.

.

.
106 manOlO.02 AMT

Chapter 10

J06 — Plotting

Contents:

Subroutine Page

J0&.CHAR.CONT 108

J0&ZEBRACHART 111

General Support library manOlO.02 107

10.1 J0&CHAR..CONT J06 - Plotting

10.1 J06....CHAR _CONT release 1

1 Purpose
J06.CHAR_CONT returns a character matrix containing a rough contour map of a real
matrix. You can control the number of contours and contour levels.

2 Specification
SUBROUTINE JO&CHARCONT(A , MAP , CODE, LEVELS , NUMIEVELS,

+ IFAIL)
INTEGER NUM LEVELS , IFAIL
REAL A(,) , LEVELS()
CHARACTER MAP(,) , CODE()

3 Description
The routine adds contours one by one in order of descending height. For each contour the
routine finds the area of the map which is less than the contour height. The border of this
area is then found by eliminating any elements lying entirely within the area. This border
is then taken as the contour.

4 References
None

5 Arguments

A - REAL MATRIX

On entry, A contains the matrix for which a contour map is required. A is unchanged
on exit.

MAP - CHARACTER MATRIX
On exit, MAP contains the required contour map.

CODE - CHARACTER VECTOR
On entry, CODE must either have been set to all spaces or the first NUM_LEVELS entries
must contain the characters required to represent the contour levels. If CODE is all spaces
then the default character sequence of O123456Z89ABCDEFGHIJKLMNOPQRSTU-
VWXYZ will be used. CODE is unchanged on exit.

LEVELS - REAL VECTOR
On entry, LEVELS must contain the NUM.. LEVELS contour height values required (if
NUM_ LEVELS is positive), or may be undefined if NUM_ LEVELS is negative.
If NUM_ LEVELS is positive, successive entries in LEVELS must be strictly increasing.
On exit, elements 1 to ABS(NUM_LEVELS) of LEVELS contain the contour height
values used in the contour plot, (other elements of LEVELS are undefined).

NUM... LEVELS - INTEGER
On entry, NUM_ LEVELS specifies the number of contour lines required. NUM LEVELS
must not be zero or greater than 36 in absolute magnitude.
If NUM_ LEVELS is positive, the contour heights will be taken from the vector LEVELS.
If NUM_ LEVELS is negative, ABS(NUM_ LEVELS) contours will be drawn equally
spaced between the maximum and minimum values of A. NUM_ LEVELS is unchanged
on exit.

108 manOlO.02 AMT

J06 — Plotting 10.1 J06.CHARCONT

IFAIL - INTEGER

Unless the routine detects an error (see Error Indicators below) IFAIL contains zero
on exit.

6 Error Indicators
Errors detected by the routine:

IFAIL = 1 NUMJEVELS is zero or not in the ranges -36 to -1 or 1 to 36
IFAIL = 2 The first NUMIEVELS entries of LEVELS are not in strictly ascending order
IFAIL = 3 NUMIEVELS is negative and all the entries in A are identical

7 Auxiliary Routines
None

8 Accuracy
Not applicable

9 Further Comments
None

10 Keywords
Contour plots

11 Example
The example generates two maps of the function x2 + y2, the first using the default character
set and equally spaced contour heights and the second using heights and characters you
define. The maps are output using the FORTRAN-PLUS TRACE statement.

Host program

PROGRAM MAIN
CALL DAPCON(‘example. dd’)
CALL DAPENT(’EXAMPLE’)
CALL DAPREL
STOP
END

DAP program

ENTRY SUBROUTINE EXAMPLE
REAL A(,),CLEVELSQ
INTEGER IV()
CHARACTER MA?() ,14YcODE()
CALL XO5_SHORT_INDEX(IV 0)
A=FLOATfMATR(IV—32)**2 + MATC(IV—32)**.2)
CALL JO6_CHARCONT(AMAp,VEC(’ ‘),cLEVELs,—lo,IFAIL)
TRACE 1 (MAP,IFAIL,cLEvEL5)
CLEVELS(1)=100 .0

General Support library manOlO.02 109

10.1 J06..CHAR...CONT J06 Plotting

CLEVELS (2)=S00 .0
CLEVELSC3)=1000. 0
CLEVELS(4)=1200.0
MYCODE(1)=’A’
MYCODE(2)=’B’
MYCODE(3)=’C’
MYCODE(4)=’D’
CALL J06_CHAR.CONTCA,MA? ,MYCODE,CLEVELS,4, IFAIL)
TRACE 1 (MAP,IFAIL,CLEvELS)
RETURN
END

.
110 manOlO.02 AMT

J06 — Plotting 10.2 JO6ZEBRA CHART

10.2 JO 6_ZEBRA _CHART release 1

1 Purpose
JO&ZEBRA_CHART returns a contour map suitable for output to a printing device of a
real matrix. The output is called a ZEBRA chart; it consists of alternating bands of blanks
and a given character.

2 Specification
CHARACTER MATRIX FUNCTION JO&ZEBRA CHART(X , STEPS , CHAR)
INTEGER STEPS
REAL X(,)
CHARACTER CHAR

3 Description
The method used is straightforward: the input variable is scaled and divided into STEPS
levels, and the least significant bit of the level number is used as a mask to create the output.

4 References
None

5 Arguments

X - REAL MATRIX

On entry, X contains the matrix to be plotted, and is unchanged on exit.

STEPS - INTEGER

On entry, STEPS specifies the number of bands in the chart (between the minimum and
maximum of X), and is unchanged on exit.

CHAR - CHARACTER

On entry, CHAR specifies the character to be used in the bands, and is unchanged on
exit.

6 Error Indicators
Errors detected by the routine:

If STEPS is less than 2 or the range of X is less than 1.OE-5 then a chart of all ‘E’s is
produced.

7 Auxiliary Routines
None

8 Accuracy
Not applicable

9 Further Comments
None

General Support library manOlO.02 111

1O2 J06...ZEBRA .XJHART J06 - Plotting

10 Keywords
-

Contour map, Zebra chart

ii Example
The example calculates a simple function and uses the FORTRAN-PLUS TRACE facility
to output the Zebra chart generated.

Host program

PROGRAM MAIN
CALL DA?CON(‘example .dd’)
CALL DAPENT(EXAMPLE’)
CALL DAPREL
STOP
END

DAP program

ENTRY SUBROUTINE EXAMPLE
EXTERNAL CHARACTER MATRIX FUNCTION J06_ZEBRA_CEART
REAL If,)
CHARACTER OUT(,)
INTEGER 10
F=3.14159/32.
G=2.O*F
CALL SHORT_INDEX(I)
X=MATR(SIN(F*I))+MATC(COS(G*I))
OUT=J06_ZEBRA_CHART(X, 10, ‘*‘)

TRACE 1 (OUT)
RETURN
END

112 manOl 0.02 AMT

Chapter 11

MOl — Sorting

Contents:

Subroutine Page

MO1.BSORT...LV 114

MOLJNV..PERMUTE..CoLs 117

MOl JNV..PERMUTE ,..LV 32 121

MOl ..JNV.PERMUTE...RQWs 124

MOl - PERMUTE ...COLS 128

MOl - PERMUTE - LV 32 132

MOl .PERMUTEROWS 135

MO1_SORT_V_14 139

MOl ...SORTX.R4 142

General Support library man 010.02 113

11.1 MO1_BSORT_LV MGi — Sorting

11.1 MO1_BSORT_LV release 1

1 Purpose
MO1_BSORT_LV is a sorting routine based on hitonic sorting. Data is sorted according to
a key, or the key alone may be sorted.

2 Specification
SUBROUTINE MOLBSORTLV(KEY, L , X , D)
INTEGER KEY(,) , L, D
LOGICAL X (, , D)

3 Description
The routine uses Batcher’s bitonic sorting algorithm. For a description see [1].

4 References
[1] KNUTH D E

The Art of Computer Programming, Vol 3 (Sorting and Searching): p 232 Addison
Wesley, 1973

5 Arguments

KEY - INTEGER MATRIX

On entry, KEY (considered as a long vector) must be defined as the key to the sort; on
exit the contents of KEY will have been sorted.

L - INTEGER

On entry, L must have been set to zero if only the KEY is to be sorted; any other value
will cause the data to be sorted as well. L is unchanged on exit.

X - <any type> MATRIX (or MATRIX array)
On entry, X contains the data to be sorted. On exit, X contains the sorted data.

D - INTEGER

On entry, D specifies the number of bit planes in the data, and is unchanged on exit.

6 Error Indicators
None

7 Auxiliary Routines
None

8 Accuracy
Not applicable

9 Further Comments
N one

114 manOlO.02 AMT

MOl —Sorting 11.1 MOIBSORT.LV

10 Keywords
Batcher sort, bitonic sort, data sort, key sort

11 Example
The example sorts 6 real values according to an integer key. Key entries beyond the data of
interest are set to a large number to prevent them being involved in the sort.

Host program

PROGRAM MAIN

REAL DATA(1024)
INTEGER KEY(1024)
COMMON !KEY!KEY !DATA!DATA

DO 10 J=1,1024
10 KEY(3)=10000

READ(*,*) (KEYCI) ,I=16)
READ(*,*) (DATA(I),I=16)
WRITE(6,1000) (DATA(I),I=1,6),(KEY(I),I=1,6)

1000 FORMAT(’ INPUT VALUES:’!!’ DATA:’ ,6F10.3/’ KEY:’ ,6I10)

CALL DA?CON(’ent.dd’)
CALL DAPSEN(‘KEY’ ,KEY, 1024)
CALL DAPSEN(’DATA’ ,DATA,1024)

CALL DAPENT(’ENT’)

CALL DA?RECC’KEY’ ,KEY, 1024)
CALL DA?REC(’DATA’ ,DATA,1024)

CALL DAPREL

WRITE(6,2000) (DATh(I),I=1,6)(KEY(I),I=1,6)
2000 FORMAT(//’ OUTPUT VALUES:’!!’ DATA: ‘,6F10.3/’ KEY: ‘,6110)

STOP
END

DAP program

ENTRY SUBROUTINE ENT

INTEGER KEY(,)
REAL DATA(,)
COMMON !KEY/KEY !DATA!DATA

General Support library manOlO.02 115

11.1 MOl _BSORT..LV MOl — Sorting

CALL CONVFMI(KEY)
CALL CONVFME (DATA)

CALL MO1...BSORT_LVCKEY, 1 ,DATA,32)

CALL CONVMFI(KEY)
CALL CONVMFE (DATA)

RETURN
END

Data

8 —1 7 16 2 —3
7.5 22 —81 —2 3 19

Results

INPUT VALUES:

DATA: 7.500 22.000 —81,000 —2.000 3.000 19.000
KEY: 8 —1 7 16 2 —3

OUTPUT VALUES:

DATA: 19.000 22.000 3.000 —81.000 7.500 —2.000
KEY: —3 —1 2 7 8 16

116 manOlO.02 AMT

MOl — Sorting 11.2 MOl .INV.PERMUTE.COLS

11.2 MOl INV.. PERMUTE COLS release 1

1 Purpose
M01_INV_PERMUTE_COLS permutes the first M columns of a matrix according to a
permutation vector (IV). The result is equivalent to the FORTRAN-PLUS statements:

DO10I=1,M
10 A.PERMUTED(,IV(I)) = A(,I)

2 Specification
SUBROUTINE MOLJNV.PERMUTECOLS(A , AP ,IV , N , M)
INTEGERIV() ,N, M
<any type> A(,) , AP(,)

3 Description
Columns are permuted according to the integer index vector IV, such that column I is moved
to column IV(I).

4 References
None

5 Arguments

A - <any type> MATRIX

On entry, A contains the matrix whose columns are to be permuted. A may be of any
type, and is unchanged on exit.

AP - <any type> MATRIX

On exit, AP contains the columns of A permuted according to the index vector IV. AP
should usually be of the same type as A. If M is less than 32, columns M+1 to 32 are
unchanged on exit.

IV - INTEGER VECTOR

On entry, IV contains the required permutation, that is, column I of A will be moved to
column IV(I) of AP. Elements 1 to M of IV must be in the range 1 to 32. If the entries
of IV are not all distinct — for example, if IV(I) = IV(J) with J > I — then column
AP(,IV(J)) will have the value A(,J) on exit. IV is unchanged on exit.

N - INTEGER

On entry, N contains the number of planes in the matrix to be permuted; possible values
for N are:

N = 1 for permuting a logical matrix
N = $ for permuting a character matrix
N = 8*n for permuting an INTEGER*n or REAL*n matrix

N should be less than 257, and is unchanged on exit.

General Support library manOlO.02 117

11.2 MO1_INV_PERMUTE..COLS MOl — Sorting

5 Arguments — continued

M-INTEGER

On entry, M must contain a value in the range 1 to 32; only the first M index values of
IV are used. M is unchanged on exit..

6 Error Indicators
None

7 Auxiliary Routines
The routine references the General Support library routine Z _MO1_AUX.

8 Accuracy
Not applicable

9 Further Comments
The parameters given as A and AP may be single arrays or part of a matrix set. For example,
in:

CALL MOl ..INVPERMUTE COLS (L (,,5), LL(,,1O), IV,1,32)

L and LL are logical matrix sets of size (at least) 5 and 10 respectively.

You must not use a common block with the names of CZ - MOl - HEX1F or CZ - MO 1 - REVERSE.

10 Keywords
Permutation

11 Example
The following FORTRAN-PLUS fragment reverses the order of the columns of a real matrix,
that is,
AP = REVR(A).

ENTRY SUBROUTINE ENT
REAL AC,), A?(,)
INTEGER IVO
DO 10 1=1, 32

10 IV(I) = 33 —— I
DO 20 I = 1, 32
DO 20 J = 1, 32

20 A(I,J) = FLOAT (I + J)
CALL MO1_INV.YERMUTE_COLS (A, AP, IV, 32, 32)
TRACE 1 (A?)
RETURN
END

Results

118 manOlO.02 AMT

MOl — Sorting 11.2 MO1 _INV..PERMUTECOLS

FORTRAN—PLUS Trace
FORTRAN-PLUS Subroutine: ENT at Line 10

Real Matrix Local Variable AP in 32 bits —— addressed by Stack + 0.10

3. 1000000E+01,
2. 8000000E+01,
2. S000000E+01,
2. 2000000E+01,
1 . 9000000E+01,
1. 6000000E+01,
1. 3000000E+01,
1. 0000000E+01,
7. 0000000E+00,
4.0000000E+00,

3 . 2000000E+0 1,
2. 9000000E+01,
2. 6000000E+01,
2. 3000000E+01,
2. 0000000E+01,
1. 7000000E+01,
1 .4000000E+01,
1. 000000E+01,
8.0000000E+00,
5. 0000000E+00,

3 .3000000E+01,
3. 0000000E+01,
2. 7000000E+01,
2.4000000E+01,
2. 1000000E+01,
1 . 8000000E+01,
1. S000000E+01,
1. 2000000E+01,
9.0000000E+00,
6. 0000000E+00,

(Row 01 Col 01) 3.3000000E+01, 3.2000000E+01,
(Col 04) 3. 0000000E+01, 2. 9000000E+01,
(Col 07) 2 .7000000E+01, 2. 6000000E+01,
(Col 10) 2.4000000E+01, 2.3000000E+01,
(Col 13) 2.1000000E+01, 2.0000000E+01,
(Col 16) 1. 8000000E+01, 1. 7000000E+01,
(Col 19) 1.s000000E+o1, 1.4000000E+01,
(Col 22) 1. 2000000E+01, 1. 1000000E+01,
(Col 25) 9.0000000E+00, 8.0000000E+00,
(Col 28) 6.0000000E+00, 5.0000000E+00,
(Col 31) 3.0000000E+00, 2.0000000E+00

(Row 02 Col 01) 3.4000000E+01, 3.3000000E+01,
(Col 04) 3. 1000000E+01, 3. 0000000E+01,
(Col 07) 2.8000000E+01, 2.7000000E+01,
C Col 10) 2.5000000E+01, 2.4000000E+01,
(Col 13) 2.2000000E+01, 2.1000000E+01,
(Col 16) 1. 9000000E+01, 1. 8000000E+01,
(Col 19) 1. 6000000E+01, 1. 5000000E+01,
(Col 22) 1.3000000E+01, 1.2000000E+01,
(Col 25) 1. 0000000E+01 • 9. 0000000E+00,
(Col 28) 7.0000000E+00, 6.0000000E+00,
(Col 31) 4.0000000E+00, 3.0000000E+00

(Row 03 Col 01) 3.S000000E+01, 3.4000000E+01,
(Col 04) 3.2000000E+01, 3.1000000E+01,
(Col 07) 2. 9000000E+01, 2. 8000000E+01,
(Col 10) 2.6000000E+01, 2.5000000E+01,
(Col 13) 2.3000000E+01, 2.2000000E+01,
(Col 16) 2.0000000E+01, 1.9000000E+01,
(Co]. 19) 1.Z000000E+ol, 1.6000000E+01,
(Col 22) 1 .4000000E+01, 1. 3000000E+01,
(Col 25) 1. 1000000E+01, 1. 0000+01,
(Go; 28) 8.0000000E+00, 7.0000000E+00,
(Col 31) 5.0000000E+00, 4.0000000E+00

General Support library manOlO.02 119

11.2 MOl ..INVPERMUTECOLS MOl — Sorting

(Row 30 Col 01)

(Col 04)
(Col 07)
(Col 10)
(Col 13)
(Col 16)
(Col 19)
(Col 22)
(Col 25)
(Col 28)

(Col 31)

(Row 31 Col 01)

(Col 04)
(Col 07)

(Col 10)
(Col 13)
(Col 16)
(Col 19)
(Col 22)
(Col 25)
(Col 28)
(Col 31)

(Row 32 Col 01)

(Col 04)
(Col 07)
(Col 10)
(Col 13)
(Col 16)

(Col 19)
(Col 22)
(Col 25)

(Col 28)

(Col 31)

6. 20000001+01,

5. 9000000E+01,

5. 60000001+01,

5. 3000000E+01,

5. 0000000E+01,

4. 70000001+01,

4.4000000E+01,

4. 1000000E+01,

3.80000001+01,

3. 5000000E+01,

3. 2000000E+01.

6. 30000001+01,

6. 0000000E+01,

5.70000001+01,
5.40000001+01,

5. 1000000E+01,

4.80000001+01,

4. 5000000E+01,

4. 2000000E+01,
3.90000001+01,

3.60000001+01,

3.30000001+01,

6. 4000000E+01,

6. 000000E+01,

5. 8000000E+01,

5. 5000000E+01,

5. 2000000E+01,
4.90000001+01,

4. 6000000E+01,

4. 3000000E+01,

4. 0000000E+01,

3. 70000001+01,

3. 4000000E+01,

6. 1000000E+01,

5. 8000000E+01,

5 .5000000E+01,

5. 2000000E+01,

4.9000000E+01,

4. 6000000E+01,

4. 3000000E+01,

4. 0000000E+01,

3. 7000000E+01,
3.40000001+01,

3. 1000000E+01

6.20000001+01,

5 .9000000E+01,

5.60000001+01,

5.30000001+01,

5. 0000000E+01,

4.7000000E+01,

4.40000001+01,

4. 000000E+01,
3. 8000000E+01,

3. 5000000E+01,

3 .2000000E+01

6. 3000000E+01,

6 . 0000000E+01,

5 .7000000E+01,
5.40000001+01,

5. 000000E+01,
4. 8000000E+01,

4.50000001+01,

4. 2000000E+01,

3. 9000000E+01,

3.60000001+01,

3. 3000000E+01

6. 0000000E+01,

5. 7000000E+01,

5. 4000000E+01,

S. 1000000E+01,

4.8000000E+01,

4.S000000E+01,

4. 2000000E+01,

3. 9000000E+01,

3. 6000000E+01,

3. 3000000E+01,

6. 1000000E+01,

5. 8000000E+01,
5.50000001+01,

5.20000001+01,

4. 9000000E+01,

4.60000001+01,

4.30000001+01,

4.0000000E+01,
3.70000001+01,

3. 4000000E+01,

6.20000001+01,

5. 9000000E+01,

5. 6000000E+01,
5. 3000000E+01,

5. 0000000E+01,

4.70000001+01,

4. 4000000E+01,

4. 000000E+01,

3. 8000000E+01,

3. S000000E+01,

120 manOlO.02 AMT

MO) — Sorting 11.3 MOl _INV.PERMUTE_LV.32

11.3 MOl _INV_PERMUTE _LV_32 release 1

1 Purpose
MOl _INV_PERMUTE_LV_32 permutes the values in a long vector of 4-byte values using
an INTEGER*4 long vector key. The result is written to a new long vector; the original
data is unaffected. The data shuffling implemented is:

ANSWER (KEY(I)) START (I), I = 1, 1024

using long vector indexing. Hence the key long vector must contain values in the range
1 — 1024, but the values need not be distinct.

2 Specification
SUBROUTINE MOL.INV..PERMUTE..LV.32(ANSWER, START, KEY)
INTEGER*4 or REAL*4 ANSWER (,) , START (,)
INTEGER*4 KEY (,)

3 Description
Local copies of the data and answer long vectors are made, and converted to vector mode.
The keys are copied and changed to zero-based offsets, and converted to vector mode. Each
row of this key vector set then contains an index of a row in the destination vector set. The
data rows are processed in turn and the contents of the addressed row are copied to the
(copy of the) destination vector set, indexed by the value in the same row position of the key
row. This result vector set is then copied to the answer long vector and converted to matrix
mode.

4 References
None

5 Arguments

ANSWER - INTEGER*4 or REAL*4 MATRIX

On exit, ANSWER contains the shuffled version of the input matrix START.

START - INTEGER*4 or REAL*4 MATRIX

On entry, START should contain the data to be shuffled; START is unchanged on exit.

KEY - INTEGER*4 MATRIX

On entry, KEY should contain values in the range 1 — 1024 (not necessarily distinct)
describing the required shuffle; KEY is unchanged on exit.

6 Error Indicators
None

7 Auxiliary Routines
The routine references routines Z.M01 .PLV..CONV..ONLY and Z.MOLPLV..COPY.AND..CONV
from the General Support library.

General Support library manOlO.02 121

11.3 MOl ..INV.PERMUTE...LV...32 iifOl — Sorting

8 Accuracy
Not applicable

9 Further Comments
Because of the way that the routine is coded, you should not assume that the start and key
long vectors are processed with an index that increases in a simple way.

10 Keywords
Data movement, permutation, rearrange data, shuffle.

11 Example
The following FORTRAN-PLUS fragment reverses a long vector of integer values.

ENTRY SUBROUTINE ENT
INTEGER DATA(,), KEY(,), RESULT(,)
DO 10 I = 1, 1024
DATA(I) = 3 * I

10 KEY(I) = 1025 —— I
CALL MOLPERMUTE_LV_32(RESULT, DATA, KEY)
TRACE 1 (RESULT)
RETURN
END

Results

FORTRAN-PLUS Trace
FORTRAN—PLUS Subroutine: ENT at Line 7

Integer Matrix Local Variable RESULT in 32 bits —— addressed by Stack + 0.10

(Row 01 Col 01) 3072, 2976, 2880, 2784,
(Col 05) 2688, 2592, 2496, 2400,
(Col 09) 2304, 2208, 2112, 2016,
(Col 13) 1920, 1824, 1728, 1632,
(Col 17) 1536, 1440, 1344, 1248,
(Col 21) 1152, 1056, 960, 864,
(Col 25) 768, 672, 576, 480,
(Col 29) 384, 288, 192, 96

(Row 02 Col 01) 3069, 2973, 2877, 2781,
(Col 05) 2685, 2589, 2493, 2397,
(Col 09) 2301, 2205, 2109, 2013,
(Col 13) 1917, 1821, 1725, 1629,
(Col 17) 1633, 1437, 1341, 1245,
(Col 21) 1149, 1053, 957, 861,
(Col 25) 765, 669, 573, 477,
(Col 29) 381, 285, 189, 93

122 manOlO.02 AMT

MOl — Sorting 11.3 MOl INVPERMUTE_LV.32

(Row 03 Col 01) 3066, 2970, 2874, 2778,

(Col 05) 2682, 2586, 2490, 2394,
(Col 09) 2298, 2202, 2106, 2010,
(Col 13) 1914, 1818, 1722, 1626,
(Col 17) 1530, 1434, 1338, 1242,
(Col 21) 1146, 1050, 954, 858,
(Col 25) 762, 666, 570, 474,
(Col 29) 378, 282, 186, 90

(Row 30 Col 01) 2985, 2889, 2793, 2697,
(Col 05) 2601, 2505, 2409, 2313,
(Col 09) 2217, 2121, 2025, 1929,
(Col 13) 1833, 1737, 1641, 1545,
(Col 17) 1449, 1353, 1257, 1161,
(Col 21) 1065, 969, 873, 777,
(Col 25) 681, 585, 489, 393,
(Col 29) 297, 201, 105, 9

(Row 31 Col 01) 2982, 2886, 2790, 2694,
(Col 05) 2598, 2502, 2406, 2310,
(Col 09) 2214, 2118, 2022, 1926,
(Col 13) 1830, 1734, 1638, 1542,
(Col 17) 1446, 1350, 1254, 1158,
(Col 21) 1062, 966, 870, 774,
(Col 25) 678, 582, 486, 390,
(Col 29) 294, 198, 102, 6

(Row 32 Col 01) 2979, 2883, 2787, 2691,
(Col 05) 2595, 2499, 2403, 2307,
(Col 09) 2211, 2115, 2019, 1923,
(Col 13) 1827, 1731, 1635, 1539,
(Col 17) 1443, 1347, 1251, 1155,
(Col 21) 1059, 963, 867, 771,
(Col 25) 675, 579, 483, 387,
(Col 29) 291, 195, 99, 3

General Support library manOlO.02 123

11.4 MOl ..INV..PERMUTE..ROWS MOl - Sorting

11.4 MOl 1NV PERMUTE ROWS release 1

1 Purpose
MOl _INV_PERMUTE_ROWS permutes the first M rows of a matrix according to a per
mutation vector (IV). The result is equivalent to the FORTRAN-PLUS statements:

D0101=1,M
10 APERMUTED(IV(I),) = A(I,)

2 Specification
SUBROUTINE MOL.INV...PERMUTE.A{OWS(A , AP , IV , N , M)
INTEGERIV() , N, M
<any type> A(,) , AP(,)

3 Description
Rows are permuted according to the integer index vector IV such that row us moved to row
IV(I).

4 References
None

5 Arguments

A - <any type> MATRIX

On entry, A should contain the matrix whose rows are to be permuted. A may be of any
type and is unchanged on exit.

AP - <any type> MATRIX

On exit, AP contains the rows of A permuted according to the index vector IV. AP should
usually be of the same type as A. If M is less than 32, rows M+1 to 32 are unchanged
on exit.

IV - INTEGER VECTOR

On entry, IV should contain the required permutation; that is, row I of A will be moved
to row IY(I) of AP. Elements 1 to M of IV must be in the range 1 to 32. If the entries of
IV are not all distinct — for example, if IV(I) = IV(J) with J > I — then row AP(IV(J),)
will have the value A(J,) on exit. IV is unchanged on exit.

N - INTEGER

On entry, N contains the number of planes in the matrix to be permuted; possible values
for N are:

N = 1 for permuting a logical matrix
N = 8 for permuting a character matrix
N = for permuting an INTEGER*n or REAL*n matrix

N should be less than 257, and is unchanged on exit.

M - INTEGER

124 manOlO.02 AMT

MOl — Sorting 11.4 MOl INV_PERMUTE..ROWS

On entry M must contain a value in the range 1 to 32. Only the first M index values of
IV are used. M is unchanged on exit.

6 Error Indicators
None

7 Auxiliary Routines
The routine references the General Support library routine ZMO1_AUX.

8 Accuracy
Not applicable

9 Further Comments
The parameters given as A and AP may be single arrays or part of a matrix set. For example,
in:

CALL MOl JNV_PERMUTECOLS (L (, , 5), LL (,, 10), IV, 1,32)

L and LL are logical matrix sets of size (at least) 5 and 10 respectively.

You must not use a common block with the names of CZ - MOl - HEX iF or CZ - MGi - REVERSE.

10 Keywords
Permutation

11 Example
The following FORTRAN-PLUS fragment reverses the order of the rows or a real matrix,
that is AP = REVC (A)

ENTRY SUBROUTINE ENT
REAL AC,), APf,)
INTEGER Iv()
DO 10 I = 1, 32

10 IV(I) = 33 — I
DO 20 I = 1, 32
DO 20 J = 1, 32

20 A(I,J) = FLOAT (I + .1)
CALL M01_INV_PER.MUTE_ROWS (A, A?, IV, 32, 32)
TRACE 1 (A?)
RETURN
END

General Support library manOlO.02 125

11.4 MOl .INVPERMUTE ROWS MOl — Sorting

Results

FORTRAN-PLUS Trace
FORTRAN-PLUS Subroutine: ENT at Line 10

Real Matrix Local Variable A? in 32 bits —— addressed by Stack + 0.10

3 . 3000000E+01,
3. 6000000E+01,
3. 9000000E+01,
4. 2000000E+01,
4. S000000E+01,
4. 8000000E+01,
5. 1000000E+01,
5.40000001+01,
5. 7000000E+01,
6.00000001+01,
6. 3000000E+01,
3. 2000000E+01,
3. 5000000E+01,
3. 8000000E+01,
4. 1000000E+01,
4. 4000000E+01,
4. Z000000E+01,
5. 0000000E+01,
5.30000001+01,
5.60000001+01,
5.90000001+01,
6. 2000000E+01,
3. 000000E+01,
3.40000001+01,
3. 7000000E+01,
4.00000001+01,
4. 3000000E+01,
4.60000001+01,
4.90000001+01,
5. 2000000E+01,
5. S000000E+01,
5.80000001+01,
6. 1000000E+01,

3. 4000000E+01,
3.70000001+01,
4. 0000000E+01,
4.30000001+01,
4. 6000000E+01,
4. 9000000E+01,
5. 2000000E+01,
5. 5000000E+01,
5. 8000000E+01,
6.10000001+01,
6. 4000000E+01
3. 3000000E+01,
3. 6000000E+01,
3. 9000000E+01,
4. 2000000E+01,
4. S000000E+01,
4. 8000000E+01,
5. 000000E+01,
5 . 4000000E+01,
5. 7000000E+01,
6. 0000000E+01,
6. 3000000E+01
3. 2000000E+01,
3. 5000000E+01,
3.80000001+01,
4.10000001+01,
4.40000001+01,
4.70000001+01,
5. 0000000E+01,
5. 3000000E+01,
5. 6000000E+01,
5.90000001+01,
6. 2000000E+01

3. 5000000E+01,
3. 8000000E+01,
4.10000001+01,
4.40000001+01,
4. 7000000E+01,
5. 0000000E+01,
5.30000001+01,
5. 6000000E+01,
5. 9000000E+01,
6. 2000000E+01,

3.40000001+01,
3. 7000000E+01,
4.0000000E+0i,
4. 3000000E+01,
4. 6000000E+01,
4. 9000000E+01,
5. 2000000E+01,
5. 5000000E+0I,
5. 8000000E+01,
6. 000000E+01,

3. 3000000E+01,
3. 6000000E+01,
3. 9000000E+01,
4. 2000000E+01,
4. 5000000E+01,
4. 8000000E+01,
5. 10000001+01,
5.4000000E+01,
5.7000000E+01,
6. 0000000E+01,

(Row 01 Col

(Col
(Col
(Col
(Col
(Col
(Col
(Col
(Col
(Col
(Col

(Row 02 Col
(Col
(Col
(Col
(Col

(Col
(Col
(Col
(Col
(Col
(Col

(Row 03 Col
(Col

(Col
(Col

(Col
(Col
(Col
(Col

(Col
(Col
(Col

01)
04)

07)
10)
13)
16)

19)
22)
25)
28)
31)
01)
04)
07)
10)
13)
16)
19)

22)
25)
28)
31)
01)
04)
07)
10)
13)
16)
19)
22)
25)
28)
31)

126 manOl 0.02 AMT

MOl — Sorting 11.4 MOl INV.PERMUTE.ROWS

6.0000000E+00,

9.0000000E+00,

1. 2000000E+01,

1 . S000000E+01,

1. 8000000E+01,

2. 1000000E+01,

2 .4000000E+01,

2. 7000000E+01,

3. 0000000E+01,
3. 3000000E+01,

5.0000000E+00,

8.0000000E+00,

1 . 1000000E+01

1 .4000000E+01,

1 .7000000E+01,

2. 0000000E+01,

2. 3000000E+01,

2. 6000000E+01,

2 . 9000000E+01,

3. 2000000E+01,

4.0000000E+00,

7.0000000E+00,

1. 0000000E+01,

1 . 3000000E+01,

1. 6000000E+01,

1. 9000000E+01,

2. 2000000E+01,

2. 5000000E+01,

2. 8000000E+01,

3. 000000E+01,

(Row 30 Cal 01) 4.0000000E+00, 5.0000000E+00,
(Col 04) 7.0000000E+00, 8.0000000E+00,
(Col 07) 1.0000000E+01, 1.1000000E+01,
(Col 10) 1. 3000000E+01, 1 .4000000E+01,
(Col 13) 1.6000000E+01, 1.7000000E+01,
(Col 16) 1.9000000E+01, 2.0000000E+01,
(Cal 19) 2.2000000E+01, 2.3000000E+01,
(Cal 22) 2.5000000E+01, 2.6000000E+01,
(Cal 25) 2.8000000E+01, 2.9000000E+01,
(Cal 28) 3.1000000E+01, 3.2000000E+01,
(Col 31) 3.4000000E+01, 3.5000000E+01

(Row 31 Cal 01) 3.0000000E+00, 4.0000000E+00,
(Col 04) 6.0000000E+00, 7.0000000E+0O,
(Cal 07) 9.0000000E+00, 1.0000000E+01,
(Col 10) 1 .2000000E+01, 1 .3000000E+01,
(Cal 13) 1. 5000000E+01, 1. 6000000E+01,
(Cal 16) 1.8000000E+01, 1.9000000E+01,
(Cal 19) 2.Y000000E+01, 2.2000000E+01,
(Cal 22) 2 .4000000E+01, 2 .S000000E+01,
(Cal 25) 2.7000000E+01, 2.8000000E+01,
(Cal 28) 3.0000000E+01, 3.1000000E+01,
(Cal 31) 3 .3000000E+01, 3. 4000000E+01

(Raw 32 Cal 01) 2.0000000E+00, 3.0000000E+00,
(Col 04) 5.0000000E+00, 6.0000000E+00,
(Col 07) 8.0000000E+00 9.0000000E+00,
(Cal 10) 1. 1000000E+01, 1 .2000000E+01,
(Cal 13) 1 .4000000E+01, 1. 5000000E+01,
(Cal 16) 1. 7000000E+01, 1. 8000000E+01,
(Col 19) 2. 0000000E+01, 2. 1000000E+01,
(Cal 22) 2.3000000E+01, 2.4000000E+01,
(Cal 25) 2.6000000E+01, 2.7000000E+01,
(Col 28) 2.9000000E+01, 3.0000000E+01,
(Cal 31) 3.2000000E+01, 3.3000000E+01

General Support library man 010.02 127

11.5 MOLPERMUTE...COLS MOl — Sorting

11.5 MO1_ PERMUTE _COLS release 1

1 Purpose
MOl PERMUTE_COLS permutes the first M columns of a matrix according to a permu
tation vector(IV). The result is equivalent to the FORTRAN-PLUS statements:

DO 101 = 1, M
10 APERMUTED(,I) = A(,IV(I))

2 Specification
SUBROUTINE MOLPERMUTE.COLS(A , AP ,IV , N , M)
INTEGERIV() , N, M
<any type> A (,) ,AP (,)

3 Description
Columns are permuted according to the integer index vector IV, such that column IV(I) is
moved to column I.

4 References
None

5 Arguments

A - <any type> MATRIX

On entry, A contains the matrix whose columns are to be permuted. A may be of any
type, and is unchanged on exit.

AP - <any type> MATRIX

On exit, AP contains the columns of A permuted according to the index vector IV. AP
should usually be of the same type as A. If M is less than 32, columns M+1 to 32 are
unchanged on exit.

IV - INTEGER VECTOR

On entry, IV contains the required permutation, that is column IV(I) of A will be moved
to column I of AP. Elements 1 to M of IV must be in the range 1 to 32 (but need not be
distinct). IV is unchanged on exit.

N - INTEGER

On entry, N contains the number of planes in the matrix to be permuted; possible values
for N are:

N = 1 for permuting a logical matrix
N = 8 for permuting a character matrix
N = 8*n for permuting an INTEGERtn or REAL*n matrix

N should be less than 257, and is unchanged on exit.

M-INTEGER

On entry M must contain a value in the range 1 to 32. Only the first M index values of
IV are used; M is unchanged on exit.

128 manOlO.02 AMT

MOl — Sorting 11.5 MOLPERMUTE.COLS

6 Error Indicators
None

7 Auxiliary Routines
The routine references the General Support library routine Z_M01_AUX.

8 Accuracy
Not applicable

9 Further Comments
The parameters given as A and AP may be single arrays or part of a matrix set. For example,
in:

CALL MOl ...PERMUTE COLS (L(, , 5), LL (,, 10), IV, 1,32)

L and LI are logical matrix sets of size (at least) 5 and 10 respectively.

You must not use a common block with the name of CZ _M01 HEX1F.

10 Keywords
Permutation

11 Example
The following FORTRAN-PLUS fragment reverses the order of the columns of a real matrix,
that is, AP = REVC(A).

ENTRY SUBROUTINE ENT
REAL Af,), AP(,)
INTEGER IV()
DO 10 I = 1,32

10 Iv(I) = 33 — I
DO 20 J = 1, 32
DO 20 I = 1, 32

20 A(I,J) = FLOAT (I + 3)
CALL M01_PERMUTE..COLS(A, A?, IV, 32, 32)
TRACE 1 (A?)
RETURN
END

General Support library manOlQ.02 129

11.5 MGI - PERMUTE CQLS MOl — Sorting

Results

FORTRAN-PLUS Trace
FORTRAN—PLUS Subroutine: ENT at Line 10

Real Matrix Local Variable A? in 32 bits —— addressed by Stack + 0.10

3. 3000000E+01,
3 .0000000E+01,
2 .7000000E+01,
2 .4000000E+O1,
2. 1000000E+01,
1 .8000000E+01,
1. 5000000E+01,
1. 2000000E+01,
9.0000000E+00,
6.0000000E+00,
3.0000000E+0O,
3 .4000000E+01,
3. 000000E+01,
2. 8000000E+01,
2. 5000000E+01,
2. 2000000E+01,
1. 9000000E+01,
1. 6000000E+01,
1 . 3000000E+01,
1. 0000000E+01,
7.0000000E+00,
4.0000000E+00,
3 .5000000E+01,
3. 2000000E+01,
2. 9000000E+01,
2. 6000000E+01,
2. 3000000E+01,
2. 0000000E+01,
1 . 7000000E+01,
1. 4000000E+01,
1. 1000000E+01,
8. 0000000E+00,
5.0000000E+00,

3. 2000000E+01,
2 . 9000000E+01,
2. 6000000E+01,
2. 3000000E+01,
2. 0000000E+01,
1 . 7000000E+01,
1 . 4000000E+01,
1. 1000000E+01,
8.0000000E+00,
5.0000000E+00,
2.0000000E+00
3. 3000000E+01,
3. 0000000E+01,
2. 7000000E+01,
2. 4000000E+01,
2. 1000000E+01,
1 . 8000000E+01,
1. 5000000E+01,
1 . 2000000E+01,
9.0000000E+00,
6. 0000000E+00,
3.0000000E+00

3. 4000000E+O1,
3. 1000000E+01,
2. 8000000E+01,
2. 5000000E+01,

2. 2000000E+01,
1 . 9000000E+01,
1 . 6000000E+01,
1 .3000000E+01,
1. 0000000E+01,
7 .0000000E+00,
4. 0000000E+00

3. 1000000E+01,
2. 8000000E+01,
2. 5000000E+01,
2. 2000000E+01,
1. 9000000E+01,
1 . 6000000E+01,
1 . 3000000E+01,
1 . 0000000E+01,
7.0000000E+00,
4.0000000E+00,

3. 2000000E+01,
2. 9000000E+01,
2. 6000000E+01,
2. 3000000E+01,
2. 0000000E+01,
1 . 7000000E+01,
1. 4000000E+01,
1. 000000E+01,
8 . 0000000E+00,
5. 0000000E+00,

3. 3000000E+01,
3.0000+01
2. 7000000E+01,
2. 4000000E+01,
2. 000000E+01,
1 . 8000000E+01,
1. 5000000E+01,
1 . 2000000E+0 1)
9. 0000000E+00,
6 . 0000000E+00,

(Row 01 Col

(Col
(Col
(Col
(Col
(Col
(Col
(Col

(Col
(Col

(Col
(Row 02 Col

(Col
(Col
(Col
(Col
(Col
(Col

(Col
(Col
(Col
(Col

(Row 03 Col

(Col
(Col
(Col

(Col
(Col
(Col

(Col
(Col
(Col
(Col

01)
04)
07)
10)
13)
16)
19)
22)
25)
28)
31)
01)
04)
07)

10)
13)
16)
19)
22)
25)
28)
31)
01)
04)

07)
10)
13)
16)
19)
22)
25)
28)
31)

130 manOl 0.02 AMT

MOl — Sorting 11.5 MOL PERMUTE .COLS

6. 0000000E+01,
5. 7000000E+01,

5. 4000000E+01,
5. 1000000E+01,

4.8000000E+01,

4. 5000000E+01,

4.2000000E+01,

3. 9000000E+01,

3. 6000000E+01,
3. 3000000E+01,

6. 1000000E+01,

5. 8000000E+01,

5. 5000000E+01,

5. 2000000E+01,

4. 9000000E+01,

4. 6000000E+01

4. 3000000E+01,

4. 0000000E+01,

3 .7000000E+01,
3. 4000000E+01,

6. 2000000E+01,

5. 9000000E+01,

5. 6000000E+01,

5. 3000000E+01,

5. 0000000E+01,

4. 7000000E+01,

4.4000000E+01,

4. 1000000E+01,

3. 8000000E+01,

3. 5000000E+01,

(Row 30 Col 01) 6.2000000E+01, 6.1000000E+01,
(Col 04) 5.9000000E+O1, 5.8000000E+01,
(Col 07) 5.6000000E+01, 5.5000000E+01,

• (Col 10) 5.3000000E+0l, 5.2000000E+01,
(Col 13) 5.0000000E+Ol, 4.9000000E+O1,
(Col 16) 4.7000000E+01, 4.6000000E+Ol,
(Col 19) 4.4000000E+01, 4.3000000E+O1,

(Col 22) 4. 1000000E+01, 4. 0000000E+01,

(Col 25) 3.8000000E+01, 3.7000000E+01,
(Col 28) 3.5000000E+01, 3.4000000E+01,

(Col 31) 3.2000000E+01, 3.1000000E+01

(Row 31 Col 01) 6.3000000E+01, 6.2000000E+01,

(Col 04) 6.0000000E+01, 5.9000000E+01,

(Col 07) 5. Z000000E+01, 5. 6000000E+01,
(Col 10) 5.4000000E+01, 5.3000000E+01,

(Col 13) 5.1000000E+01, 5.0000000E+01,
(Col 16) 4.8000000E+01, 4.7000000E+01,

(Col 19) 4.5000000E+01, 4.4000000E+01,

(Col 22) 4.2000000E+01, 4.1000000E+01,
(Col 25) 3.9000000E+01, 3.8000000E+01,
(Col 28) 3. 6000000E+01, 3. 5000000E+01,

(Col 31) 3. 3000000E+01, 3. 2000000E+01

(Row 32 Col 01) 6.4000000E+01, 6.3000000E+01,

(Col 04) 6.1000000E+01, 6.0000000E+01,

(Col 07) 5.8000000E+01, 5.7000000E+01,
(Col 10) 5.5000000E+01, 5.4000000E+01,

(Col 13) 5.2000000E+01, 5.000000E+01,

(Col 16) 4.9000000E+01, 4.8000000E+01,

(Col 19) 4. 6000000E+01, 4. 5000000E+01,

(Col 22) 4. 3000000E+01, 4. 2000000E+01,
(Col 25) 4.0000000E+01, 3.9000000E+01,

(Col 28) 3 .7000000E+01, 3. 6000000E+01,
(Col 31) 3.4000000E+01, 3.3000000E+01

General Support library manOlO.O2 131

11.6 MOl _PERMUTE_LV..32 MGi — Sorting

11.6 MOl ...PERMUTE _LV_32 release 1

1 Purpose
MOl _PERMUTE...LV_32 permutes the values in a long vector of 4-byte values using an
INTEGER*4 long vector key. The result is written to a new long vector and the original
data is unaffected. The data shuffling implemented is:

ANSWER (I) — START (KEY(I)), I = 1, 1024

using long vector indexing. Hence the key long vector must contain values in the range
1 — 1024, but the values need not be distinct.

2 Specification
SUBROUTINE MOL.PERMUTE ...LV...32 (ANSWER, START, KEY)
INTEGER*4 or REAL*4 ANSWER (,) , START(,)
INTEGER*4 KEY(,)

3 Description
A local copy of the data is made, and converted to vector mode. The keys are copied and
changed to zero-based offsets, then converted to vector mode. Each row of this key vector
set then contains an index of a row in the data vector set. The key rows are processed in
turn and the contents of the addressed row are copied to another vector set in the same row
position as the key row. This result vector set is then copied to the answer long vector, and
converted to matrix mode.

4 References
None

5 Arguments

ANSWER - INTEGER*4 or REAL*4 MATRIX

On exit, ANSWER contains the shuffled version of the input matrix START.

START - INTEGER*4 or REAL*4 MATRIX

On entry, START should contain the data to be shuffled; START is unchanged on exit.

KEY - INTEGER*4 MATRIX

On entry, KEY should contain values in the range 1 — 1024 (not necessarily distinct)
describing the required shuffle; KEY is unchanged on exit.

6 Error Indicators
None

7 Auxiliary Routines
This routine references routines Z..MOLPLV..CONV..ONLY and Z..MOLPLV..COPY..AND..CONV
from the General Support library.

8 Accuracy
Not applicable

132 manOlO.02 AMT

MOl — Sorting 11.6 MOl .PERMUTE...LV.32

9 Further Comments
None

10 Keywords
Data movement, permutation, rearrange data, shuffle

ii Example
The following FORTRAN-PLUS fragment reverses a long vector of integer values.

ENTRY SUBROUTINE ENT
INTEGER DATA(,), KEY(,), RESULT(,)
DO 10 I = 1, 1024
DATAfI) = 3 * I

10 KEYCI) = 1025 — I
CALL M01_PEB.NUTE_LV_32(RESULT, DATA, KEY)
TRACE 1 (REsULT)
RETURN
END

Results

FORTRAN—PLUS Trace
FORTRAN—PLUS Subroutine: ENT at Line 7

Integer Matrix Local Variable RESULT in 32 bits —— addressed by Stack + 0.10

(Row 01 Col 01) 3072, 2976, 2880, 2784,
(Col 05) 2688, 2592, 2496, 2400,
(Col 09) 2304, 2208, 2112, 2016,
(Col 13) 1920, 1824, 1728, 1632,
(Co]. 17) 1536, 1440, 1344, 1248,
(Col 21) 1152, 1066, 960, 864,
(Col 25) 768, 672, 576, 480,
(Col 29) 384, 288, 192, 96

(Row 02 Col 01) 3069, 2973, 2877, 2781,
(Col 05) 2685, 2589, 2493, 2397,
(Col 09) 2301, 2205, 2109, 2013,
(Col 13) 1917, 1821, 1725, 1629,
(Col 17) 1533, 1437, 1341, 1245,
(Col 21) 1149, 1053, 957, 861,
(Col 25) 765, 669, 573, 477,
(Col 29) 381, 285, 189, 93

General Support library man 010.02 133

11.6 M01 ...PERMUTE_LV_32 MOl Sorting

(Row 03 Col 01) 3066, 2970, 2874, 2778,

(Col 05) 2682, 2586, 2490, 2394,

(Col 09) 2298, 2202, 2106, 2010,
(Col 13) 1914, 1818, 1722, 1626,
(Col 17) 1530, 1434, 1338, 1242,
(Col 21) 1146, 1050, 954, 858,
(Col 25) 762, 666, 570, 474,
(Col 29) 378, 282, 186, 90

(Row 30 Col 01) 2985, 2889, 2793, 2697,
(Col 05) 2601, 2505, 2409, 2313,
(Col 09) 2217, 2121, 2025, 1929,
(iDol 13) 1833, 1737, 1641, 1545,
(Col 17) 1449, 1353, 1257, 1161,
(Col 21) 1065, 969, 873, 777,
(Col 25) 681, 585, 489, 393,
(Col 29) 297, 201, 105, 9

(Row 31 Col 01) 2982, 2886, 2790, 2694,
(Col 05) 2598, 2502, 2406, 2310,
(Col 09) 2214, 2118, 2022, 1926,
(Col 13) 1830, 1734, 1638, 1542,
(Col 17) 1446, 1350, 1254, 1158,
(Col 21) 1062, 966, 870, 774,
(Col 25) 678, 582, 486, 390,
(Col 29) 294, 198, 102, 6

(Row 32 Col 01) 2979, 2883, 2787, 2691,
(Col 05) 2595, 2499, 2403, 2307,
(Col 09) 2211, 2115, 2019, 1923,
(Col 13) 1827, 1731, 1635, 1539,
(Col 17) 1443, 1347, 1251, 1155,
(Col 21) 1059, 963, 867, 771,
(Col 25) 675, 579, 483, 387,
(Col 29) 291, 195, 99, 3

134 manOlU.02 AMT

MOl — Sorting II 7 MGI - PERMUTE ROWS

11.7 MOl _PERMUTE _ROWS release 1

1 Purpose
MOl - PERMUTE - ROWS permutes the first M Tows of a matrix according to a permutation

vector (IV). The result is equivalent to the FORTRAN-PLUS statements:

DO 10 I = 1, M
10 10 APERMUTED(I,) = A(IV(I),)

2 Specification
SUBROUTINE MO1PERMUTEROWS(A , AP ,IV , N , M)
INTEGERIV() ,N, M
<any type> A (,) , AP (,)

3 Description
Rows are permuted according to the integer index vector IV such that row IV(I) is moved
to row I.

4 References
N one

5 Arguments

A - <any type> MATRIX

On entry, A should contain the matrix whose rows are to be permuted. A may be of any
type and is unchanged on exit.

AP - <any type> MATRIX

On exit, AP contains the rows of A permuted according to the index vector IV. AP should
usually be of the same type as A. If M is less than 32, rows M+1 to 32 are unchanged
on exit.

IV - INTEGER VECTOR

On entry, IV should contain the required permutation; that is, row I of A will be moved
to row IV(I) of AP. Elements 1 to M of IV must be in the range 1 to 32. If the entries of
IV are not all distinct — for example, if IV(I) = IV(J) with J > I — then row AP (IV(J),)
will have the value A(J,) on exit. IV is unchanged on exit.

N - INTEGER

On entry, N contains the number of planes in the matrix to be permuted; possible values
for N are:

N = 1 for permuting a logical matrix
N = 8 for permuting a character matrix
N = for permuting an INTEGER*n or REAL*n matrix

N should be less than 257, and is unchanged on exit.

M - INTEGER

On entry M must contain a value in the range 1 to 32. Only the first M index values of
IV are used. M is unchanged on exit.

General Support library manOlO.02 135

11.7 MOl PERMUTEROWS MOl - Sorting

6 Error Indicators
None

7 Auxiliary Routines
The routine references the General Support library routine Z...MOL AUX.

8 Accuracy
Not applicable

9 Further Comments
The parameter given as A and AP may be single arrays or part of a matrix set. For example,
in:

CALL MOl _PERMUTE _ROWS(L(, , 5),LL (, 10), IV, 1,32)

L and LL are logical matrix sets of size (at least) 5 and 10 respectively.

You must not use common blocks with name CZ_M01_HEX1F.

10 Keywords
Permutation

11 Example
The following FORTRAN-PLUS fragment given reverses the order of the rows of a real
matrix that is, AP REVC (A).

ENTRY SUBROUTINE ENT
REAL AC,), AP C,)
INTEGER IV()
0010 I = 1,32

10 IV (I) = 33 — I
DO 20 I = 1, 32
DO 20 J = 1, 32

20 A(I,J) = FLOAT(I + J)
CALL MO1_PERMUTEJtOWS (A, A?, IV, 32, 32)
TRACE 1 (A?)
RETUR1
END

.
136 manOlO.02 AMT

MOl — Sorting 11 7 MOl - PERMUTE - ROWS

Results

FORTRAN-PLUS Trace
FORTRAN—PLUS Subroutine: ENT at Line 10

Real Matrix Local Variable A? in 32 bits —— addressed by Stack + 0.10

3. 3000000E+01,
3. 6000000E+01,
3. 9000000E+01,
4. 2000000E+01,
4. S000000E+01,
4. 8000000E+01,
5. 1000000E+01,
5.4000000E+01,
5. 7000000E+01,
6. 0000000E+01,
6. 3000000E+01,
3. 2000000E+01,
3. 5000000E+01,
3. 8000000E+01,
4. 1000000E+01,
4. 4000000E+01,
4. 7000000E+01,
5. 0000000E+01,
5. 3000000E+01
5. 6000000E+01,
5. 9000000E+01,
6. 2000000E+01,
3. 1000000E+01,
3. 4000000E+01,
3. 7000000E+01,
4. 0000000E+01,
4. 3000000E+01,
4. 6000000E+01,
4. 9000000E+01
5. 2000000E+01,
5. 5000000E+01
5. 8000000E+01,
6. 1000000E+01,

3. 4000000E+01,
3. 7000000E+01,
4. 0000000E+01,
4. 3000000E+01,
4. 6000000E+01,
4. 9000000E+01,
5 .2000000E+01,
5. 5000000E+01,
5 .8000000E+01,
6. 1000000E+01,
6. 4000000E+01
3. 3000000E+01,
3. 6000000E+01,
3. 9000000E+01,
4. 2000000E+01,
4. S000000E+01,
4. 8000000E+01,
5. 1000000E+01,
5. 4000000E+01,
5. 7000000E÷01,
6. 0000000E+01,
6. 3000000E+01
3. 2000000E+01,
3. 5000000E+O1,
3. 8000000E+01,
4. Y000000E+01,
4. 4000000E+01,
4. 7000000E+01,
5. 0000000E+01,
5. 3000000E+01,
5. 6000000E+01,
5. 9000000E+01,
6. 2000000E+01

3. 5000000E+01,
3 . 8000000E+01,
4. 1000000E+01,
4.4000000E+01,
4. Z000000E+01,
5. 0000000E+01,
5. 3000000E+01,
5. 6000000E+01,
5. 9000000E+01,
6. 2000000E+01,

3 .4000000E+01,
3. Z000000E+01,
4. 0000000E+01,
4.3000000E+01,
4. 6000000E+01,
4.9000000E+01,
5. 2000000E+01,
5 .5000000E+01,
5. 8000000E+01,
6. 1000000E+01,

3. 3000000E+01,
3. 6000000E+01,
3 . 9000000E+01,
4. 2000000E+01,
4. S000000E+01,
4. 8000000E+01,
5. 1000000E+01,
5. 4000000E+01,
5. 7000000E+01,
6. 0000000E+01,

(Row 01 Col
(Col

C Col

(Col
(Col
(Col
(Col

f Col

(Col
(Col
f Col

(Row 02 Col

(Col
(Col
(Col
(Col
(Col

(Col
(Col
(Col
(Col
(Col

(Row 03 Col
(Col
(Col
(Col

(Col
(Col
(Col
(Col
(Col
(Col
(Col

01)
04)
07)

10)
13)
16)
19)
22)
25)
28)
31)
01)
04)

07)
10)
13)
16)
19)
22)
25)
28)
31)
01)
04)
07)
10)
13)
16)
19)
22)
25)
28)

31)

General Support library man 010.02 137

11.7 MOl PERMUTE...ROWS MOl — Sorting

6.0000000E+00,
9. 0000000E+00,
1. 2000000E+01,
1. S000000E+01,
1. 8000000E+01,
2. 1000000E+01,
2 . 4000000E+01,
2. 7000000E+01,
3. 0000000E+01,
3. 3000000E+01,

5. 0000000E+00,
8.0000000E+00,
1. 1000000E+01,
1. 4000000E+01
1. 7000000E+01,
2. 0000000E+01,
2. 3000000E+01,
2. 6000000E+01,
2. 9000000E+01,
3. 2000000E+01,

4.0000000E+00,
7. 0000000E+00,
1. 0000000E+01,
1. 3000000E+01,
1. 6000000E+01,
1. 9000000E+01,
2. 2000000E+01,
2. 5000000E+01,
2. 8000000E+01,
3. 1000000E+01,

(Row 30 Col 01) 4.0000000E+00, 5.0000000E+0O,
(Ccl 04) 7.0000000E+0O, 8.0000000E+O0,
(Col 07) 1.0000000E+O1, l.1000000E+01,
(Col 10) 1. 3000000E+01, 1. 4000000E+O1,
(Col 13) 1.6000000E+Ol, 1.7000000E+01,
(Ccl 16) 1.9000000E+Ol, 2.0000000E+O1,
(Col 19) 2.2000000E+01 • 2. 3000000E+01,
(Col 22) 2. S000000E+01, 2. 6000000E+01,
(Col 25) 2.8000000E+01, 2.9000000E+0l,
(Col 28) 3.000000E+01, 3.2000000E+01,
(Col 31) 3.4000000E+01, 3.S000000E+01

(Row 31 Col 01) 3.0000000E+00, 4.0000000E+00,
(Col 04) 6.0000000E+00, 7.0000000E+00,
(Col 07) 9.0000000E+00, 1.0000000E+01,
(Col 10) 1.2000000E+01, 1.3000000E+01,
(Col 13) 1.5000000E+01, 1.6000000E+01,
(Ccl 16) 1. 8000000E+01 • 1. 9000000E+01,
(Ccl 19) 2.1000000E+01, 2.2000000E+01,
(Col 22) 2 .4000000E+01, 2. S000000E+01,
(Col 25) 2.7000000E+01, 2.8000000E+01,
(Col 28) 3.0000000E+01, 3.1000000E+01,
(Col 31) 3.3000000E+01, 3.4000000E+01

(Row 32 Col 01) 2.0000000E+00, 3.0000000E+00,
(Col 04) 5.0000000E+00, 6.0000000E+00,
(Ccl 07) 8.0000000E+00, 9.0000000E+00,
(Col 10) 1.1000000E+01, 1.2000000E+01,
(Col 13) 1 ,4000000E+01, 1. 5000000E+01,
(Col 16) 1. 7000000E+01, 1. 8000000E+01,
(Col 19) 2.0000000E+01, 2.1000000E+01,
(Col 22) 2 .3000000E+01, 2 .4000000E+01,
(Col 25) 2., 2.7,
(Col 28) 2. 9000000E+01, 3. 0000000E+01,
(Col 31) 3. 2000000E+01, 3. 3000000E+01

138 manOl 0.02 AMT

MOl — Sorting 11.8 ?tiOl - SORT_V_ 14

11.8 MOl _SORT_V...14 release 1

1 Purpose

MOl _SOR’LV_14 sorts the first N elements of an integer vector into ascending or descending
order. The permutation required to perform the sort is returned to the calling routine.

2 Specification
SUBROUTINE MOL.SORTX.A4 (IV , N ,UP ,PERM , IFAIL)
INTEGER *1 PERM ()
INTEGER IV() ,N , IFAIL
LOGICAL UP

3 Description
The sort is carried out by spreading the vector, IV, across the DAP and counting the number
of elements less than or equal to each particular element. Comparing this count with an index
vector and selecting the relevant element from each colurrm of the DAP completes the sort
when all elements of IV are distinct. If there are repeated elements in IV, a log2 duplication
process is carried out to regenerate the multiple values.

4 References
None

5 Arguments

IV - INTEGER VECTOR

On entry, components 1 to N of IV contain the elements to be sorted. On exit, compo
nents 1 to N will have been sorted as required. Elements N+1 to 32 are unchanged on
exit.

N - INTEGER

On entry, N specifies how many components of IV are to be sorted. N must lie in the
range 1 to 32, and is unchanged on exit.

UP - LOGICAL

If UP is .TRUE. on entry, then IV is sorted into ascending order, otherwise IV is sorted
into descending order. UP is unchanged on exit.

PERM - INTEGER *1 VECTOR

On exit, PERM contains the permutation required to perform the sort, that is, the sort
was equivalent to:

DO 10 I = 1, N
10 JV(I) = IV(PERM(I))

Elements N+1 to 32 of PERM are zero on exit.

IFAIL - INTEGER

Unless the routine detects an error (see Error Indicators below) IFAIL contains zero
on exit.

General Support library manOlO.02 139

11.8 ?vIOLSORT_V_14 MOl — Sorting

6 Error Indicators
Errors detected by the routine:

IFAIL = 1 N is not in the range 1 to 32

7 Auxiliary Routines
The routine calls the General Support library routines X0&. NORTH BOUNDARY, X05.. PATTERN
and X0&.SHORT...INDEX.

8 Accuracy
Not applicable

9 Further Comments
None

10 Keywords
Sorting

11 Example
The vector to be sorted consists of the numbers 1 to 8, each repeated 4 times. The vector is
sorted into ascending order.

Host program

INTEGER IV(32), ?ERM(32)
COMMON /VEC/IV /VEC2/PERM
COMMON /SCALAR/N, IFAIL

N = 32
00 10 I = 1. 32

10 Iv(I) = MOD(I—1, 8) + 1

CALL DAPCON(’ent.dd’)
CALL DAPSEN(’SCALAR’ ,N1)
CALL DAPSEN(’VECl’ ,IV32)

CALL DA?ENT(’ENT’)

CALL DAPREC(’SCALAR’ ,N,2)
CALL DA?REC(’VECl’ IV,32)
CALL DAPRECC’VEC2’ ,PERM32)

CALL DAPREL

WRITE (6, 100) IFAIL, (Iv(I), I = 1,32)
100 FORMAT (‘IFAIL = ‘, Ii, II, ‘SORTED DATA’, II, (415))

WRITE (6,200) (?ERM(I), I = 1,32)
200 FORMAT (/,‘PERMUTATION’, II, (415))

STOP
END

140 manOlO.02 AMT

MOl — Sorting 11.8 MOl _SORT_V.J4

DAP program

ENTRY SUBROUTINE ENT

INTEGER IVO, PERI14()
INTEGER *1 PERM()
COMMON /VEC1/IV /VEC2/PERM4
COMMON /SCALAR/N, IFAIL

CALL CONVFSI(N,1)
CALL CONVFVI(IV,32,1)

CALL MO1_SORT_V_I4(IV,N, .TRUE., PERM, IFAIL)

PERM4 = PERM

CALL CONVVFIfIV,32,1)
CALL CONVVFI(PERM4,32, 1)
CALL CONVSFI(N,2)

RETURN
END

Results

IFAIL = 0

SORTED DATA

1 1 1 1
2 2 2 2
3 3 3 3
4 4 4 4
5 5 5 5
6 6 6 6
7 7 7 7
8 8 8 8

PERMUTATION

1 1 1 1
2 2 2 2
3 3 3 3
4 4 4 4
5 5 5 5
6 6 6 6
7 7 7 7
8 8 8 8

General Support library manOlO.02 141

11.9 MOl _SORT_V_R4 MOl — Sorting

11.9 MOl _SORT_V_R4 release 1

1 Purpose
MOl _SORT_V_R4 sorts the first N elements of a real vector into ascending or descending
order. The permutation required to perform the sort is returned to the calling routine.

2 Specification
SUBROUTINE MO1.SORT..V.R4(RV , N , UP , PERM , IFAIL)
INTEGER *1 PERM ()
INTEGER N , IFAIL
REAL RV()
LOGICAL UP

3 Description
The sort is carried out by spreading the vector RV across the DAP, and counting the number -

of elements less than or equal to each particular element; comparing this with an index vector
and selecting the relevant element from each column of the DAP completes the sort when all
elements of RV are distinct. If there are repeated elements in RV, a log2 duplication process
is carried out to regenerate the multiple values.

4 References
None

5 Arguments

RV - REAL VECTOR

On entry, components 1 to N of RV contain the elements to be sorted. On exit, compo
nents 1 to N will have been sorted as required. Elements N+1 to 32 are unchanged on
exit.

N - INTEGER

On entry N specifies how many components of RV are to be sorted. N must lie in the
range 1 to 32, and is unchanged on exit.

UP - LOGICAL

If UP is .TRUE. on entry, then RV is sorted into ascending order, otherwise RV is sorted
into descending order. UP is unchanged on exit.

PERM - INTEGER *1 VECTOR

On exit PERM contains the permutation required to perform the sort, that is, the sort
was equivalent to:

DO 10 I = 1, N
10 SV(I) = RV(PERM(I))
Elements N+1 to 32 of PERM are zero on exit.

142 manOlO.02 AI’IT

MOl — Sorting 11.9 MOl SORTV..R4

5 Arguments — continued

IFAIL - INTEGER

Unless the routine detects an error (see Error Indicators below) IFAIL contains zero
on exit.

6 Error Indicators
Errors detected by the routine:

IFAIL = 1 N is not in the range 1 to 32

7 Auxiliary Routines
The routine calls the General Support library routines X05_ NORTH_BOUNDARY, X05_ PATTERN
and XO5SHORTINDEX.

8 Accuracy
Not applicable

9 Further Comments
N one

10 Keywords
Sorting

11 Example
The vector to be sorted consists of the numbers 1.0 to 8.0, each repeated 4 times. The vector
is sorted into ascending order.

Host program

INTEGER PERM (32)
REAL RV(32)
COMMON /VEC1/RV /VEC2/PERM
COMMON /SCALAR/N, IFAIL

N = 32
DO 10 I = 1,32

10 RV(I) = MOD(I—1,8)+1

CALL DAPCON(’ent.dd’)
CALL DAPSEN(’SCALAR’ ,N,1)
CALL DAPSEN(’VEC1’,RV,32)

CALL DAPENT(‘ENT’)

General Support library manOlO.02 143

11.9 MOl .SORT_V_R4 MOl Sorting

CALL DAPREC(’SCALAR’ ,N,2)
CALL DAPREC(’VECl’ ,RV,32)
CALL DAPREC(’VEC2’,PERM,32)

CALL DAPREL

WRITE (6, 100) IFAIL, (RV(I), I = 1,32)
100 FORMAT (‘IFAIL = ‘, Ii, 1/, ‘SORTED DATA’, II, (4F5.0))

WRITE (6,200) (PERM(I), I = 1,32)
200 FORMAT (/,‘PERMuTATIoN’, II, (415))

STOP
END

DAP program

ENTRY SUBROUTINE ENT

INTEGER ?ERN4()
INTEGER *1 PERM C)
REAL RVC)
COMMON /VEC1/RV /VEC2/PERM4
COMMON /SCALAR/ N,IFAIL

CALL CONVFSI(N,1)
CALL CONVFVE(RV,32, 1)

CALL M01_SORT_V_R4(RV, N, .TRUE., ?ERZI, IFAIL)

PERM4 = PERM

CALL CONVVFE(RV, 32, 1)
CALL CONVVFI(PERM4, 32. 1)
CALL CONVSFI(N,2)

RETURN
END

144 manOlO.02 AMT

MOl — Sorting 11. MOl SORLV R4

Results

IFAIL=O

SORTED DATA

1. 1. 1. 1.
2. 2. 2. 2.
3. 3. 3. 3.
4. 4. 4. 4.
5. 5. 5. 5.
6. 6. 6. 6.
7, 7, 7. 7.
8. 8. 8. 8.

PERMUTATION

1 1 1 1
2 2 2 2
3 3 3 3
4 4 4 4
5 5 5 5
6 6 6 6
7 7 7 7
8 8 8 8

General Support library manOlO.02 145

11.9 MO1_SORT_V_R4 MOl —Sorting

.

.

.
146 manOlO.02 AMT

Chapter 12

$ — Special functions

Contents:

Subroutine Page

S04_ARC_COS 148

S04_ARC_SIN 152

SO4ATAN2_M 156

SO4ATAN2_V 159

S04_COS_INT 162

S04_MOI1BESIO 166

SO&.MODBES_I 1 170

S04_SIN_INT 174

S15ERF 178

S15_ERFC 182

General Support library manOlO.02 147

12.1 S04_ARC.COS S — Special functions

12.1 S04_ARC_COS release 1

1 Purpose
S04_ARC_COS returns the value of the inverse cosine function arccos () for a matrix argu
merit. The result lies in the range [0, x].

2 Specification

REAL MATRIX FUNCTION S04..ARCCOS (X , EMASK)
REAL X(,)
LOGICAL EMASK (,)

3 Description
Arccos is approximated using a Tschebyshev polynomial expansion of the form:

arcsin(x) p(x) = xEarTr(t) where = 4x2—1

where is a series equal, term for term, to , except that the first term in is half

the first term in

The approximation for different values of the argument z is as follows:

arccos(x) 7r/2—p(x) for z E [—i//, 1/v’)

arccos(x) 7r_p(I’iZx2) for x [—1, —1/v’)

arccos(x) p (1 — x2) for x e (1/v’, 11

For zI> 1 the result is undefined.

4 References
[1] ABRAMOWITZ M and STEGUN I A

Handbook of Mathematical Functions; chapter 4 section 4, p 79: Dover Publications
1968.

[2] FOX L and PARKER I

Chebyshev Polynomials in Numerical Analysis: Oxford University Press; 1968.

5 Arguments

X - REAL MATRIX

On entry, X contains the points at which the evaluation of arccos is required. All elements
of X must be defined on entry. X is unchanged on exit.

EMASK - LOGICAL MATRIX

On exit, EMASK is set .TRUE. at positions corresponding to invalid arguments (see
Error Indicators below).

148 manOl 0.02 AMT

S — Special functions 12.1 S04_ARC.COS

.
6 Error Indicators

Arccos(z) is undefined for x > 1. The routine returns zero for any such arguments and
the corresponding bit in EMASK is set .TRUE.

7 Auxiliary Routines
None

8 Accuracy
The accuracy is better than 20 parts in except for xI very close to unity, when only 3
or 4 significant figures can be guaranteed.

9 Further Comments
None

10 Keywords
Arccosine, special function

ii Example
The example calculates arccos (x) for 1024 values of x between —1 and 1.

Host program

PROGRAM MAIN
REAL XC 1024), Yf 1024)
COMMON /XY/X,Y

C
C Initialise data for testing function
C

DO 1 I = 1,1024
X (I) = FLOAT(I—1)*2.O / 1023.0 —1.0

1 CONTINUE
C
C Connect to DAP module
C

CALL DAPCON(’ent.dd’)
C
C Send testdata to the DAP
C

CALL DAPSEN(’XY’ ,X, 1024)
C
C Call the DAP ENTRY subroutine
C

CALL DAPENT(‘ENT’)
C
C Retrieve data and results from the DA?
C

CALL DAPREC(’XY’ ,X,2048)

General Support library manOlO.02 149

12.1 S04_ARc_COS S — Special functions

C
C Release the DAP
C

CALL DAPREL
C
C Write out a sample selection of the data and results for inspection
C

WRITE (6,2)
2 FORMAT(6X, ‘I’, 11X,’Arccos(X)’/)

DO 3 I = 1,1024,32
3 WRITE (6,4) X (I), Y(I)
4 FORMAT(1X,2G15.7)

STOP
END

DAP program

ENTRY SUBROUTINE ENT
REAL XC,), Y(,)
LOGICAL EMASK C,)
COMMON /XY/X,Y

C
C Note the EXTERNAL statement for this function
C

EXTERNAL REAL MATRIX FUNCTION_S04..ARC_COS
C
C Convert input data
C

CALL CONVFME(X)
Y = S04_ARC_COS(X,EMASK)
IF (ANY(EMA5K)) TRACE 1 (EMAsK)

C
C Convert input data and results back to host format
C

CALL CONVMFE(X)
CALL CONVMFE(Y)
RETURN
END

150 manOIO.02 AliT

S — Special functions 12.1 S04ARC.COS

Results

X Arccos(X)

—1.0000000 3.141593
—.9374389 2.785996
—.8748778 2.635980
— .8123167 2.518910
—.7497556 2.418489
—.6871945 2.328417
—.6246334 2.245458
—.5620723 2.167686
—.4995112 2.093831
—.4369501 2.023001
—.3743891 1.954534
—.3118280 1.887913
—.2492669 1.822720
—.1867058 1.758604
—.1241447 1.695262
—.6158358e—01 1.632419

• 9775162e—03 1.569818
• 6353867e—01 1.507215
.1260997 1.444360
.1826609 1.380998
.2512219 1.316854
.3137830 1.251621
.3763441 1.184949
.4389052 1.116416
.5014663 1.045503
.5640274 .9715414
.6265885 .8936281
.6891496 .8104811
.7517107 .7201442
.8142718 .6193231
.8768328 .5015618
.9393940 .3499371

General Support library manOlO.02 151

12.2 S04_ARC_SIN S — Special functions

12.2 $04_ARC_SIN release 1

1 Purpose
S04...ARC_ SIN returns the value of the inverse sine function arcsin(x) for a matrix argument.
The result lies in the range [—ir/2, ir/2].

2 Specification
REAL MATRIX FUNCTION S04.ARC SIN (X , EMASK)
REALX(,)
LOGICAL EMASK (,)

3 Description
Arcsin is approximated using a Tschebyshev polynomial expansion. Since arcsin(—x) =

arcsin(x) it is only necessary to consider positive arguments. In the evaluation of arcsin,
an expansion is used of the form:

p(z) = xarTr(t) where t = 4x2—1
I I

where is a series equal, term for term, to , except that the first term in is half

the first term in

The approximation for different value of the argument x is as follows:

arcsinfr) p (z) where x E [0, i//

arcsin(x) 7r/2—p(v”l — x2) where x é (1/v’, 11

For I xj > 1 the result is undefined.

4 References
[11 ABRAMOWITZ M and STEGUN I A

Handbook of Mathematical Functions; chapter 4 section 4, p 79: Dover Publications
1968.

[2] FOX L and PARKER I

Chebyshev Polynomials in Numerical Analysis: Oxford University Press, 1968.

5 Arguments

X - REAL MATRIX

On entry, X contains the points at which the evaluation of arccos is required. All elements
of X must be defined on entry. X is unchanged on exit.

EMASK - LOGICAL MATRIX

On exit, EMASK is set .TRUE. at positions corresponding to invalid arguments (see
Error Indicators below).

.
152 manOlO.02 AMT

S — Special functions 12.2 SU4_ ARc_SIN

6 Error Indicators
Arccos (z) is undefined for IxI > 1. The routine returns zero for any such arguments and the
corresponding bit in EMASK is set .TRUE.

7 Auxiliary Routines
None

$ Accuracy
The accuracy is better than 20 parts in i0 except for I x very close to unity, when only 3
or 4 significant figures can be guaranteed.

9 Further Comments
None

10 Keywords
Arccosine, special function

11 Example
The example calculates arcsin (x) for 1024 values of x between —1 and 1.

Host program

PROGRAM MAIN
REAL xf 1024) , Y(1024)
COMMON /XY/X,Y

C
C Initialise dafa for testing function
C

DO 1 I = 1,1024
XCI) = FLOAT (I—1)*2.0/1023.0 — 1.0

1 CONTINUE
C
C Connect to DAP module
C

CALL DAPCON(’ent.dd’)
C
C Send testdata to the DAP
C

CALL DAPSENC’XV ,X,1024)
C
C Call the DAP ENTRY subroutine
C

CALL DAPENT(‘ENT’)
C
C Retrieve data and results from the flAP
C

CALL DAPREC(XY’ ,X,2048)

General Support library manOlO.02 153

12.2 S04_ARC_ SIN S Special functions

C
C Release the DAP
C

CALL DAPREL
C
C Write out a sample selection of the data and results for inspection.
C

WRITE (6,2)
2 FORMAT(6X,’X’,llX, ‘Arcsin(X)’/)

DO 3 I = 1,1024,32
3 WRITE (6,4) X(I),Y(I)
4 FORMAT (ix, 2G15.7)

STOP
END

DAP program

ENTRY SUBROUTINE ENT
REAL X(,),Y(,)
LOGICAL EMASK(,)
COMMON /XY/X,Y

C
C Note the EXTERNAL statement for this function
C

EXTERNAL REAL MATRIX FUNCTION S04_ARC_SIN
C
C Convert input data
C

CALL CONVFME(X)
Y = SO4ARC_SIN(X,EMASK)
IF (ANYfEMAsK)) TRACE 1 (EMASK)

C
C Convert input data and results back to host format
C

CALL CONVMFE(X)
CALL CONVMFE(Y)
RETURN
END

154 manOlO.02 AMT

S — Special functions 12.2 S04.ARCSIN

—1.0000000
— .9374389
—.8748778
—.8123167
— .7497556
— .6871945
— .6246334
— .5620723
—.4995112
— .4369501
— .3743891
—.3118280
—.2492669
—. 1867058
—. 1241447
—

. 6158358e—01
• 9775162e—03
• 6353867e—01
• 1260997
1886609

.2512219

.3137830

.3763441

.4389052

.5014663

.5640274

.6265885

.6891496

.7517107

.8142718

.8768328

.9393940

Arcs in(X)

—1.570796
—1.215199
—1.065183
—.9481134
—. 8476925
—.7576209
—.6746613
—.5968893
—.5230349
— .4522050
—.3837375
—.3171163
—.2519231
—. 1878080
—. 1244658
—

. 6162257e—01

.9775 162e—03
6358147e—01
1264364

• 1897984
2539426

.3191746

.3858470

.4543798

.5252929

.5992549

.6771679

.7603152

.8506517

.9514732
1.069234
1.220859

Results

x

General Support library manOlO.02 155

12.3 S04_ATAN2_M $ — Special functions

12.3 S04_ATAN2_M release 1

1 Purpose
S04_ATAN2.M is a matrix function similar to the standard FORTRAN ATAN2 function.
It returns a matrix of values in the range —it to it for arc_tangent(matrix-1/matrix_2), in the
correct quadrant, and with divide-by-zero errors avoided. If both arguments are zero, zero
is returned.

2 Specification
REAL MATRIX FUNCTION S04..ATAN2M (A , B)
REAL A(,) , B(,)

3 Description
A logical mask is set up, where each element is defined by the relative magnitudes of the
arguments to ATAN2_M. Where the absolute value of an element of matrix A is greater than
that of B, the logical mask element is set to .TRUE.; for all other cases the logical mask
element is set to .fALSE.

ATAN2_M takes the value:

ATAN() where ABS(A) > ABS(B) (the logical mask is .TRUE.)

w/2—ATAN where ABS(A) ABS(B) (the logical mask is .FALSE.)

Thus the built-in ATAN function is always presented with arguments whose values are in
the range zero to one, and divide-by-zero errors are avoided, except when the corresponding
elements in each argument are zero. After the ATAN operation, the results are corrected
to put their values into the correct quadrants, from —it to it, according to the signs of the
arguments.

4 References
None

5 Arguments

A - REAL MATRIX

On entry, A contains values proportional to the sines of the angles to be returned by the
function, and is unchanged on exit.

B - REAL MATRIX

On entry, B contains values proportional to the cosines of the angles to be returned by
the function, and is unchanged on exit.

6 Error Indicators
None

156 manOlO.02 AMT

S —Special functions 12.3 SO&ATAN2_M

7 Auxiliary Routines
None

8 Accuracy
Over most of the range the results are accurate to within one part in 106. Under worst case
conditions, where the resultant angle is 7r/4, 3ir/4, and so on, the error may approach two
parts in 106.

9 Further Comments
A program interrupt will occur if corresponding elements of A and B are both zero.

10 Keywords
Arc-tangent, inverse tangent

11 Example
In the following example the host routine sets up array ANGLES to contain the radian
equivalents of 0, 0.1, 0.2 ... degrees. The DAP routine calculates the sines and cosines of
these angles, and, then calls S04_ATAN2_M to return the original angles. In this example
ANGLES is treated as a long vector.

Host program

PROGRAM MATTESTHOST V

REAL ANGLES(1024)
COMMON/DAP/ANGLES

C
C Conversion factor from degrees to radians
C

F=3.14159265/180.0
C
C Initialise data for testing function
C

00 1 3=1,1024
1 ANGLES(J)=FLOATfJ-1)*F*0. 1

C
C Connect to OAF module
C

CALL OAFCONf ‘mattest .dd’)
C
C Send testdata to the OAF
C

CALL DAPSEN(’OAP’ ,ANGLES,1024)
C
C Call the OAF ENTRY subroutine
C

CALL OAPENT(’MATrESTOAP’) V

C
C Retrieve the results from the DAP
C

General Support library manOlO.02 157

12.3 S0&ATAN2M S Special functions

CALL DAPREC(’DAP’ ,ANGLES,1024)
C
C Release the DAP
C

CALL DAPREL
C
C Write out a sample selection of the data and results for inspection
C

WRITE(6,2)(J,ANGLES(J),J=1,1024,32)
2 FORMAT(4(’ ‘,I4, ‘,F9.6))

STOP
END

DAP program

ENTRY SUBROUTINE MATTESTDAP
REAL*4 SINVALS(,) ,COSVALS(,) ,ANGLES(,)
COMMON/flAP/ANGLES

C
C Note the EXTERNAL statement for this function
C

EXTERNAL REAL*4 MATRIX FUNCTION S04_ATAN2_M
C
C Convert input data
C

CALL CONVFME (ANGLES)
C
C Calculate sine and cosine components
C

SINVALS=SIN (ANGLES)
COSVALS=COS(ANGLES)
ANGLES=S04_ATAN2_M (sINvALs , COSVALS)

C
C Convert input results back to host format
C

CALL CONVMFE(ANGLES)
RETURN

-

END

Results

1 .000000 33 .055851 65 .111701 97 .167552
129 .223402 161 .279253 193 .335103 225 .390954
257 .446804 289 .502655 321 .558506 353 .614356
385 .670206 417 .726058 449 .781908 481 .837757
513 .893608 545 .949459 577 1.005308 609 1.061160
641 1.117010 673 1.172861 705 1.228711 737 1.284562
769 1,340412 801 1.396263 833 1.452113 865 1.507964
897 1.663814 929 1.619666 961 1.675517 993 1.731367

158 man 010.02 AMT

S — Special functions 124 S04_ATAN2_V

12.4 S04_ATAN2_V release 1

1 Purpose
S04_ATAN2_V is a vector function similar to the standard FORTRAN ATAN2 function. It
returns a vector of values in the range —r to ir for arc-tangent(vector-1/vector-2), in the
correct quadrant, and with divide-by-zero errors avoided. If both arguments are zero, zero
is returned.

2 Specification
REAL VECTOR FUNCTION SO4ATAN2X (A , B)
REAL A () , B ()

3 Description
A logical mask is set up, where each element is defined by the relative magnitudes of the
arguments to S04_ATAN2_V. Where the absolute value of an element of vector A is greater
than that of B, the logical mask element is set to .TRUE.; for all other cases the logical mask
element is set to .FALSE.

S04_ATAN2_V takes the value:

ATAN() where ABS(A) > ABS(B) (the logical mask is .TRUE.)

r/2—ATAN (,) where ABS(A) <ABS(B) (the logical mask is .FALSE.)

Thus the built-in ATAN function is always presented with arguments whose values are in
the range zero to one, and divide-by-zero errors are avoided, except when the corresponding
elements in each argument are zero. After the ATAN operation the results are corrected
to put their values into the correct quadrants, from —ir to r, according to the signs of the
arguments.

4 References
N one

5 Arguments

A - REAL MATRIX

On entry, A contains values proportional to the sines of the angles to be returned by the
function, and is unchanged on exit.

B - REAL MATRIX

On entry, B contains values proportional to the cosines of the angles to be returned by
the function, and is unchanged on exit.

6 Error Indicators
N one

General Support library manOlO.02 159

12.4 S04_ATAN2_V S — Special functions

7 Auxiliary Routines
None

8 Accuracy
Over most of the range the results are accurate to within one part in 106. Under worst case
conditions, where the resultant angle is ir/4, 3ir/4, and so on, the error may approach two
parts in 106.

9 Further Comments
A program interrupt will occur if corresponding elements of A and B are both zero.

10 Keywords
Arc-tangent, inverse tangent

11 Example
In the following example the host routine sets up array ANGLES to contain the radian
equivalents of 0, 6, 12, 18 ... degrees. The DAP routine calculates the sines and cosines of
these angles, and then calls S04_ATAN2X to return the original angles.

Host program

PROGRAM VECTESTHOST
REAL ANGLES(32)
COMMON/DAP/ANGLES

C
C Conversion factor from degrees to radians
C

F=3. 14159265/180.0
C
C Initialise data for testing function
C

DO 1 J=1,32
1 ANGLES(J)=FLOATCJ—1)*F*6.0

C
C Connect to DAP module
C

CALL DAPCON(‘vectest .dd’)
C
C Send testdata to the DAP
C

CALL DAPSEN(’DAP’ ,ANGLES,32)
C
C Call the DA? ENTRY subroutine
C

CALL DAPENT(‘VECTESTDAP’)
C
C Retrieve the results from the DAP
C

CALL DAPREC(’DAP’ ,ANGLES,32)

160 manOlO.02 AMT

S — Special functions 12.4 S04..ATAN2_V

C
C Release the DA?
C

C
CALL DAPREL

C Write out a sample selection of the data and results for inspection
C

WRITE(6,2)(J,ANGLES(J) ,J=1,32)
2 FORMAT(5(’ ‘,12,’ ‘,F9.6))

STOP
END

DAP program

C

ENTRY SUBROUTINE VECTESTDAP
REAL*4 SINVALS() ,COSvALS() ,ANGLES()
COMMON/DAP/ANGLES

C Note the EXTERNAL statement for this function
C

C
C
C

C

EXTERNAL REAL*4 VECTOR FUNCTION S04_ATAN2_V

Convert input data

CALL CONVFVE(ANGLES,32, 1)

C Calculate sine and cosine components
C

C
C
C

SINVALS=SIN (ANGLES)
COSVALS=COS (ANGLES)
ANGLES=S04_ATAN2_V (SINvALS,COsvALs)

Convert input results back to host format

Results

CALL CONVVFE(ANGLES,32, 1)
RETURN
END

1 .000000
6 .523599

11 1.047197
16 1.570796
21 2.094396
26 2.617993
31 3.141592

2 .104720
7 .628318

12 1.151917
17 1.675517
22 2.199116
27 2.722714
32 —3.036874

3 .209440
8 .733039

13 1.256637
18 1.780236
23 2.303835
28 2.827433

4 .314159
9 .837757

14 1.361357
19 1.884956
24 2.408554
29 2.932153

5 .418879
10 .942478
15 1.466076
20 1.989675
25 2.513275
30 3.036873

General Support library man 010.02 161

12.5 S04_COS_INT S — Special functions

12.5 S04_COS_INT release 1

1 Purpose
S04_COS_INT returns the value of the cosine integral C, (x) for a matrix argument.

2 Specification
REAL MATRIX FUNCTION S04...COSJNT (X , EMASK)
REAL X(,)
LOGICAL EMASK (,)

3 Description
C2 (x) is approximated using one of three Tschebyshev expansions. Since C2 (x) is imaginary
for x < 0, only positive arguments are considered. The expansions (and the ranges over
which they are valid) are of the form:

C(x) ln(x)+arDr(t) for z E [0,9] and where I = 2
tx)21

C(x) ln(z)+brTr(I) for x e (9,16] and where t 2
(x

9)_i

C1(x) f(z)sin(x)—g(x)cos(x) for rE (16,co)

where:

f(x) = crTr(t)

g(z) drTr(I)

where is a series equal, term for term, to >, except that the first term in is half

the first term in

In the third approximation f and g are asymptotic expansions of the form:

ti\ I 12!’\ 14!’\ t6!f(z) -) - + -

/ i” I /3!\ t5!\ tY!

As x — , C1(x) — 0; this fact is usedby the routine for very large arguments.

162 manOlO.02 AMT

S — Special functions 12.5 S04.COS..INT

4 References
[1] ABRAMOWITZ M and STEGUN I A

Handbook of Mathematical Functions; chapter 4 section 4, p 79: Dover Publications,
1968.

[2] FOX L and PARKERI

Chebyshev Polynomials in Numerical Analysis: Oxford University Press, 1968.

5 Arguments

X - REAL MATRIX

On entry, X contains the points at which the evaluation of C3 is required. All elements
of X must be defined on entry, and are unchanged on exit.

EMASK - LOGICAL MATRIX

On exit, EMASK indicates the positions for which the argument was non-positive (see
Error Indicator below).

6 Error Indicators
C1 (z) is undefined if x is zero, and is imaginary for negative x. In either case the result
returned by S04_COSJNT is zero and the corresponding bit in EMASK is set .TRUE.

7 Auxiliary Routines
None

8 Accuracy
In general 6 significant figures of accuracy may be expected in the result. However, close to
the zeros of C3 (x) all relative accuracy may be lost. For very large arguments, the result is
set to zero as the true value of C1 (x) is less than the possible inaccuracy inherent in 32 bit
precision.

9 Further Comments
None

10 Keywords
Cosine integral function, special function

11 Example
The example calculates C1 (x) for 1024 values of x between about 0.005 and 20.

Host program

PROGRAM MAIN
REAL X(1024) ,Y(1024)
COMMON /XY/X,Y

C

C Initialise data for testing function
C

General Support library manOlO.02 163

12.5 S04_COS_INT S Special functions

DO 1 I = 1,1024
1 XCI) = FLOAT (I) * 20.0 / 1024.0

C
C Connect to DAP module
C

CALL DAPCON(’ent.dd’)
C
C Send testdata to the DAP
C

CALL DAPSENC ‘XY’ ,X, 1024)
C
C Call the DA? ENTRY subroutine
C

CALL DAPENT(‘ENT’)
C
C Retrieve the results from the DA?
C

CALL DA?REC(’XY’ ,X,2048)
C
C Release the DA?
C

CALL DAPREL
C
C Write out a sample selection of the data and results for inspection
C

WRITE (6,2)
2 FORMAT (6X, ‘X’, 14X, ‘Ci(X) ‘I)

DO 3 I = 1,1024, 32
3 WRITE (6,4) X(I),Y(I)
4 FORMAT (1X,2G15.7)

STOP
END

DAP program

ENTRY SUBROUTINE ENT
REAL XC,), Y(,)
LOGICAL EMASK C,)
COMMON /XY/X,Y

C
C Note the EXTERNAL statement for this fimction
C

EXTERNAL REAL MATRIX FUNCTION S04_COS..INT
C
C Convert input data
C

CALL CONVFME(X)
Y = 504...COS_INT(X, EMASK)

C
C Trace out any components that may be <=0
C

164 manOlO.02 AMT

S — Special functions 12.5 S04_COSINT

IF (ANY(EMAsK)) TRACE 1 (EMAsK)
C
C Convert input data axtd results back to host format
C

CALL CONVMFE(X)
CALL CONVMFE(Y)
RETURN
END

Results

x Ci(X)

• 1953125e—01 —3.358611
• 6445313 • 3590578e—O1
1.269531 .4390500
1.894531 .4428694
2.519531 .2795894
3. 144531 . 7273293e—01
3.769531 —.9733582e—01
4.394531 —.1872826
5.019531 —.1888952
5.644531 —.1224203
6.269531 —.2474308e—01
6.894531 .6474495e—01
7.519531 .1165104
8.144531 .1185551
8.769531 .7754135e—01
9.394531 . 1383400e—01
10.01953 —.4708195e—01
10.64453 —.8390427e—01
11.26953 —.8623505e—01
11.89453 —.5696487e—01
12.51953 —.9857178e—02
13.14453 .3642845e—01
13.76953 .6525517e—01
14.39453 . 6775570e—01
15.01953 .4528236e—01
15.64453 . 7996559e—02
16.26953 —.2936367e—01
16.89453 —.5321791e—01
17.51953 —.5584693e—01
18.14453 —.3777995e—01
18.76953 —.7019278e—02
19.39453 .2435225e—01

General Support library manOlO.02 165

12.6 S04_MOD_BES_IO S — Special functions

12.6 S04_MOD_BES_IO release 1

1 Purpose
S04_MOD_BES_I0 returns the value of the modified Bessel function 10 for a matrix argu
ment.

2 Specification

REAL MATRIX FUNCTION S04...MOD.BESJO(X , EMASK)
REAL X(,)
LOGICAL EMASK (,)

3 Description
TO is approximated using one of three Tschebyshev polynomial expansions. Since the function
is even it is only necessary to consider positive arguments. The expansions (and the ranges
over which they are valid) are of the form:

10(x) exp (x) a1 (t) for x E [0,4] and where t =

10 (x) exp (x) b1T1 (t) for x E (4, 12] and where t = x/4—2

I0(x) ECj(t) for x E (12,) and where t = 24/x—1

where is a series equal, term for term, to , except that the first term in is half

the first term in

4 References
[1] ABRAMOWITZ Mand STEGUN I A

Handbook of Mathematical Functions; chapter 9 , p 374: Dover Publications, 1968.

FOX Land PARKER I
[2] Chebyshev Polynomials in Numerical Analysis: Oxford University Press, 1968.

5 Arguments

X - REAL MATRIX

On entry, X contains the points at which the evaluation of 10 is required. All elements
of X must be defined on entry, and are unchanged on exit.

EMASK - LOGICAL MATRIX

On exit, EMASK indicates the positions for which the argument was too large (see Error
Indicator below).

166 manOlO.02 AMT

S — Special functions 12.6 SQ4MOD_ BES_lO

6 Error Indicators
Since 10 (z) increases rapidly with x, the result could easily overflow even for modest values
of x. To prevent this overflow, large values are detected and the corresponding bit in EMASK
is set .TRUE. The value returned by the function for such large arguments is that returned
by the largest valid argument (that is, an argument of about 174).

7 Auxiliary Routines
None

8 Accuracy
The accuracy depends on the size of the argument. For small arguments (say I xI < 12) the
error is less than about 20 parts in io, but the error will increase rapidly as x increases.

9 Further Comments
None

10 Keywords
Modified Bessel function, special function

11 Example
The example calculates 10 (x) for 1024 values of x between 0 and 20.

Host program

PROGRAM MAIN
REAL X(1024) • Y(1024)
COMMON /XY/X,Y

C
C Initialise data for testing function
C

DO 1 1=1,1024
1 XCI) = FLOAT(I—1)*20.O/1023.0

C
C Connect to DAP module
C

CALL DA?CON(ent.dd’)
C
C Send testdata to the DA?
C

CALL DA?SENC ‘XY’ ,X, 1024)
C
C Call the DAP ENTRY subroutine
C

CALL DA?ENT(’ENT’)
C
C Retrieve the results from the DA?
C

CALL DAPREC(’XY’ ,X,2048)
C

General Support library manOlO.02 167

12.6 S04_MOD_BES_IU S Special functions

C Release the DA?
C

CALL DA?REL
C

WRITE (6,2)
2 FORMAT(6X, ‘I’ 14X, ‘10(x)’!) V

C
C Write out a sample selection of the data and results for inspection
C

DO 3 I = 1, 1024 , 32
3 WRITE(6,4) X(I),Y(i)
4 FORMAT(1X, 2G15.7)

STOP
END

DAP program

ENTRY SUBROUTINE ENT
REAL X(,),YC,)
LOGICAL EMASK(,)
COMMON /XY/X,Y

C
C Note the EXTERNAL statement for this function
C

EXTER1iAL REAL MATRIX FUNCTION S04_MOD_BES_I0
C
C Convert input data
C

CALL CONVFME(X)
Y = S04_MOD_BES_I0(X, EMASK)

C
C Trace out a mask to show where arguments were too large
C

IF (ANY (EMAsK))TRACE 1 (EMASK)
C
C Convert input data and results back to host format
C

CALL CONVMFE(X)
CALL CONVMFE(Y)
RETURN
END

.
168 manOlO.02 AMT

S — Special functions 12.6 S04. MOD_ BES_lO

Results

x 10(x)

.0000000e+00 1.0000000

.6256109 1.100267
1.251222 1.431391
1.876832 2.094550
2.502443 3.295993
3.128055 5.417401
3.753665 9.147502
4.379276 15.72208
5.004888 27.35907
5.630498 48.04684
6.256109 84.97379
6.881721 151.1240
7.507331 269.9973
8.132942 484.2058
8.758554 871.1418
9.384164 1571.584
10.00978 2841.946
10.63539 5149.855
11.26100 9349.078
11.88661 16999.96
12.51222 30957.04
13.13783 56446.73
13.76344 103046.5
14.38905 188319.1
15.01466 344494.9
15.64027 630757.9
16.26588 1155853.
16.89149 2119699.
17.51711 3890039.
18.14272 7143643.
18.76833 . 1312658e+08
19.39394 .2413416e+08

General Support library manOlO.02 169

12.7 S04_MOD_BES_I1 S Special functions

12.7 S04_MOD_BES_I1 releasel

1 Purpose

S04_MOD_BES_I 1 returns the value of the modified Bessel function Ii for a matrix argu
ment.

2 Specification

REAL MATRIX FUNCTION SO&.MOD.BESI 1 (X , EMASK)
REAL X(,)
LOGICAL EMASK (,)

3 Description

Ii is approximated using 3 Tschebyshev polynomial expansions. Since Ii (—x) = —Il (x) it
is only necessary to consider positive arguments. The expansions (and the ranges over which
they are valid) are of the form:

I1(z) xEajT(t) for e [0,4] and where t = x/2—1

11(x) exp (x) b7 (t) for £ E (4, 12] and where t = x/4—2

ho exP(x)T() for x (12,) and where t = 24/x—1

I I

where is a series equal, term for term, to , except that the first term in is half

the first term in

4 References

[1] ABRAMOWITZ M and STEGUN I A

Handbook of Mathematical Functions; chapter 9, p 374: Dover Publications
[2] FOX L and PARKER I

Chebyshev Polynomials in Numerical Analysis: Oxford University Press, 1966

5 Arguments

X - REAL MATRIX

On entry X contains the points at which the evaluation of Ii is required. All elements
of X must be defined on entry. X is unchanged on exit.

EMASK - LOGICAL MATRIX

On exit EMASK indicates the positions for which the argument was too large (see Error
Indicators below).

170 man 010.02 A MT

S — Special functions 12.7 S04_AIOD_BES_I1

6 Error Indicators
Since I 1 (z) increases rapidly with x, the result could easily overflow even for modest values
of x. To prevent this, large values are detected and the corresponding bit in EMASK is set
.TRUE. The value returned by the function for such large arguments is that returned by the
largest valid argument (that is, an argument of about 174).

7 Auxiliary Routines

None

8 Accuracy
The accuracy depends on the size of the argument. For small arguments (say I xI < 12) the
error is less than about 20 parts in io, but the error will increase rapidly as I xj increases.

9 further Comments
None

10 Keywords
Modified Bessel function, special function

11 Example
The example calculates 11(x) for 1024 values of x between 0 and 20.

Host program

PROGRAM MAIN
REAL XC 1024) ,Y(1024)
COMMON /XY/X,Y

C
C Initialise data for testing function
C

DO 1 I = 1,1024
1 XCI) = FLOAT(I1)*20.0/1023.O

C
C Connect to DAP module
C

CALL DAPCON(’ent.dd’)
C
C Send testdata to the DA?

CALL DAPSEN(’XY’ ,X,1024)
C
C Call the DAP ENTRY subroutine
C

CALL DA?ENT(‘ENT’)
C
C Retrieve the results from the DAP
C

CALL DA?REC(’XY’ ,X,2048)

General Support library manOlO.02 171

12.7 S04_MOD_BES_I1 S — Special functions

C
C Release the DAP
C

CALL DAPREL
C

WRITE (6,2)
2 FORMAT(6X,’X’,14X,’I1(X)’/)

C
C Write out a sample selection of the data and results for inspection.
C

DO 3 I = 1,1024,32
3 WRITE (6,4) I (I) , Y(I)
4 FORMAT (1X,2G15.7)

STOP
END

DAP program

ENTRY SUBROUTINE ENT
REAL X(,),Y(,)
LOGICAL EMASK(,)
COMMON /XY/X,Y

C
C Note the EXTERNAL statement for this function
C

EXTERNAL REAL MATRIX FUNCTION S04_MOD_BES_I1
C
C Convert input data
C

CALL CONVFME(X)
Y=S04_MOD_BES_I1 (X , EMASK)

C
C Trace out a mask to show where arguments were too large
C

IF (ANY(EMASK))TRAcE 1 (EMASK)
C
C Convert input data and results back to host format
C

CALL CONVMFE(X)
CALL CONVMFE(Y)
RETURN
END

172 manOlO.02 AMT

S — Special functions 12.7 S04_ MOD_ BES. 11

Results

X 11(1)

• 0000000e+00 . 0000000e+00
.6256109 .3283606
1.251222 .7562914
1.876832 1.416910
2.502443 2.522305
3.128055 4.436992
3.753665 7.805889
4.379276 13.78311
5.004888 24.44524
5.630498 43.54034
6.256109 77.84995
6.881721 139.6668
7.507331 251.3122
8.132942 453.3796
8.758554 819.7910
9.384164 1485.328
10.00978 2696.016
10.63539 4901.422
11.26100 8923.789
11.88661 16268.36
12.51222 29692.97
13.13783 54254.05
13.76344 99229.38
14.38905 181652.6
15.01466 332817.7
15.64027 610248.1
16.26588 1119740.
16.89149 2055966.
17.51711 3777319.
18.14272 6943891.
18.76833 . 1277195e+08
19.39394 . 2350347e+08

General Support library man 010.02 173

12.8 S04_SIN_INT S — Special functions

12.8 S04_ SIN_ INT release 1

1 Purpose

S04_SIN_INT returns 51(x) j du for a matrix argument.

2 Specification
REAL MATRIX FUNCTION S04 SIN..INT (X)
REAL X(,)

3 Description
S (x) is approximated using one of three Tschebyshev polynomial expansions.
S1 (—x) = S (x), so it is only necessary to consider positive arguments. The expansions (and
the ranges over which they are valid) are of the form:

5: (x) xarTr(t) for zE [0,9] and where t =
2(x)21

S1(z) XbrTr (1) for z E (9, 16] and where t 2
(x;

9)_i

S (z) ir/2—f (x) cos(x)—g (x) sin(x) for x E (16,)

where:

f(x)= crTr(t)

g(z)= ECrTr(t)

is a series equal, term for term, to , except that the first term in is half

the first term in

In the third approximation f and g are asymptotic expansions of the form:

fi” I 12!\ 14!\ t6!
f(z) -) t1-))

ri I r3!\ 15!\ (7!

As x — ±, S (x) —* ±ir/2; this fact is used by the routine for very large arguments.

174 manOlO.02 AMT

S — Special functions 12.8 S04_SI?’LINT

4 References
[1] ABRAMOWITZ M and STEGUN I A

Handbook of Mathematical Functions; chapter 5 section 2, p 231: Dover Publications,
1968.

[2] FOX L and PARKER I

Chebyshev Polynomials in Numerical Analysis: Oxford University Press; 1968.

5 Arguments

X - REAL MATRIX

On entry, X contains the points at which the evaluation of S is required. All elements
of X must be defined on entry, and are unchanged on exit.

6 Error Indicators
None

7 Auxiliary Routines
None

8 Accuracy
The maximum error should be less than about 20 parts in

9 Further Comments
None

10 Keywords
Sine integral function, special function

11 Example

The example calculates S for 1024 values of x between —10 and 10.

Host program

PROGRAM MAIN
REAL X(1024) , Y(1024)
COMMON /XY/X,Y

C
C Initialise data for testing function
C

00 1 I = 1, 1024
1 XCI) = FLOAT (I—l)*20.0 / 1023.0 — 10.0

C
C Connect to DAP module
C

CALL OAPCON(’ent.dd’)

General Support library manOlO.02 175

12.8 S04_SIN_INT S — Special functions

C
C Send testdata to the DAP
C

CALL DAPSEN(’XY’ ,X,1024)
C
C Call the DA? ENTRY subroutine
C

CALL DAPENT(’ENT’)
C
C Retrieve the results from the DAP
C

CALL DAPREC(’XY’,X,2048)
C
C Release the DAP
C

CALL DAPREL
C

WRITE (6,2)
2 FORMAT(6X, ‘I’, 14X, ‘Si(X)’/)

C
C Write out a sample selection of the data and results for inspection
C

DO 3 I = 1,1024,32
3 WRITE (6,4) XCI), Y(I)
4 FORMAT(1X, 2G15.Y)

STOP
END

DAP program

ENTRY SUBROUTINE ENT
REAL XC,) , Y(,)
COMMON /XY/X,Y

C
C Note the EXTERNAL statement for this function
C

EXTERNAL REAL MATRIX FUNCTION 504_SIN_INT
C
C Convert input data
C

CALL CONVFME(X)
Y= S04_SIN_INT CX)

C
C Convert input data and results back to host format
C

CALL CONVMFE(X)
CALL CONVMFE(Y)
RETURN
END .

176 manOlO.02 AMT

S — Special functions 12.8 S04_SIN_INT

Results

X Si(X)

—10.000000 —1.658348
—9.374389 —1.674626
—8.748778 —1 .650258
—8.123167 —1.589128
—7.497556 —1 .510376
—6.871944 —1.443393
—6.246334 —1.418261
—5.620723 —1.454368
—4.995112 —1.550871
—4.369501 —1.682421
—3.743890 —1.802158
—3.118279 —1.851851
—2.492668 —1.776752
—1.867058 —1.541133
—1.241446 —1.139938
— .6158361 —.6030076

.9775162e—02 .9775121e—02

.6353865 .6213064
1.260997 1.154774
1.886608 1.551066
2.512219 1.781414
3.137830 1.851934
3.763441 1.799163
4.389051 1.678203
5.014663 1.547130
5.640274 1.452258
6.265884 1.418175
6.891495 1.444993
7.517107 1.512826
8.142717 1.591439
8.768328 1.651638
9.393940 1.674711

General Support library manOlO.02 177

12.9 S15_ERF $ Special functions

12.9 S15_ERF release 1

1 Purpose
S15.ERF returns the value of the error function.

2 Specification
REAL*8 MATRIX FUNCTION S15..ERF (X)
REAL*8 X(,)

3 Description

The function is calculated by one of three algorithms. The algorithms used (and the ranges
over which they are valid) are:

ierf(r)I = irITi(T) for ri E [0,2] and where T=

ierf(x)i
1exp(—x2)

T2(T) for ri E (2,XHIGH) and where T = ÷

ierf(z)I = 1 for ri E [XHIGH,ooj

where XHIGH is the value above which erf(x) = 1, to the machine’s accuracy; XHIGH
is machine-dependent, and is 6.25 for the DAP

The sign of erfr) is the same as that of x; T1(T) and T2(T) are Tschebychev polynomial
expansions. They are evaluated using recursive descent by the function ‘ZTSCHEB’, which
has as parameters the dimension and array of coefficients for the expansion. The argument
‘T’ is passed in the named common block ‘CTSCHEBARG’.

4 References

[1] ABRAMOWITZ M and STEGUN I A

Handbook of Mathematical Functions; chapter 7 section 1, p 297: Dover Publications,
196$.

5 Arguments

X - REAL*8 MATRIX

On entry, X contains the points at which the function is to be evaluated. All elements
of X must be assigned on entry; X is unchanged on exit.

6 Error Indicators
N one

7 Auxiliary Routines
The routine calls the General Support library routine ZTSCHEB.

178 manOlO.02 AliT

S — Special functions 12.9 S15... ERF

8 Accuracy
The DAP works to a precision of about 17 significant figures in REAL*8 arithmetic. S15_ ERF
was checked against S15_ERFC according to the relation:

erf(x) + erfc(x) = 1

The worst error was 7 E-16, and the median error was about 2 E-16.

9 Further Comments
The routine uses the common block ‘CTSCHEBARG’ to pass a parameter to the function
‘ZTSCIIEB’, so you must not use a block of that name.

10 Keywords
Error function, special function

11 Example
The following example program reads and prints a caption and then reads pairs of numbers
from the data stream. The program assumes that the first number of each pair indicates
whether the second number in the pair is a valid argument of the function, Reading of the
pairs of numbers continues until the first number in a pair is negative.

The program packs the arguments into the first column of a 32 by 32 array, X, which is
passed by the named common block COM1 to the DAP entry subroutine DAPSUB. The
subroutine converts the values into DAP storage mode, then calls S15_ ERF. The result is
assigned to matrix Y, which is also in common block. COM1. Both matrices are converted
back into host storage mode and the results printed.

Host program

PROGRAM MAIN

INTEGER INUM(32 ,32)
CHARACTER*40 TITLE
COMMON /COMu/X(32,32) ,Y(32,32)
DOUBLE PRECISION X,Y

C
C Initialise I to avoid ‘UNASSIGNED VARIABLE’
C

00 2 J = 1,32
DO 1 I = 1,32
X(I,3) = 0.0

1 CONTINUE
2 CONTINUE

C
READ (*,5) TITLE
WRITE (*,6) TITLE
WRITE (*,7)

General SuppoTt library manOlO.02 179

12.9 S15_ERF S — Special functions

C
C Read data
C

J=o
3 J=J+1

READ (*,8) INUM(J,1), X(Ji)
IF (INUM(3,1).GE.O)GOTO3

C
C Connect to DAP module
C

CALL DAPCON(’dapsub.dd’)
C
C Send test data to DAP
C

CALL DAPSEN(’COM1,X,2O48)
C
C Call DAP routine
C

CALL DAPENT(‘DAPSUB’)
C
C Receive test data and results from DAP
C

CALL DAPREC(’COMl’ ,X,4096)
C
C Release the DAP
C

CALL DAPREL
C
C Write out results
C

J=J—1
DO 4 I=1,J

4 WRITE (*,g) x(I,i), Y(I,1), INUM(I,1)
STOP

5 FORMAT (A)
6 FORMAT (4(11/), H , A, 8H RESULTS/1X)
7 FORMAT (18X, ‘X’, 251, ‘Y’, 13X, ‘INUM’)
8 FORMAT (15, F20.5)
9 FORMAT (4X, 1PD2O.3, lx, 1PD2O.3, 14X, 12)

END

DAP program

ENTRY SUBROUTINE DAPSUB
C
C Note the use of the external statement for this function
C

EXTERNAL REAL*8 MATRIX FUNCTION S15_ERF
COMMON /COM1/ X(,),Y(,)
REAL*8 X,Y

180 manOlO.02 AMT

S — Special functions 12.9 S15...ERf

C
C Convert input data
C

CALL CONVFMD(X)
C

Y(,) = S15_ERF(X)
C
C Convert input data and results back to host mode
C

CALL CONVMFD(X)
CALL CONVMFD(Y)
RETURN
END

Data

S15ERF EXAMPLE PROGRAM DATA
1 —6.0
2 -4.5
3 —1.0
4 1.0
5 4.5
6 6.0

—1 0.0

Results

S15ERF EXAMPLE PROGRAM DATA RESULTS.

I Y INUM
—6.000e+00 —1.000e+00 1
—4.500e+00 —1.000e+00 2
—1.000e+00 —8.427e—01 3

1.000e+00 8.427e—01 4
4.500e+00 1.000e+00 5
6.000e+00 1.000e+00 6

General Support library manOlO.02 181

12.10 S15_ERFC S — Special functions

12.10 S15_ERFC release 1

1 Purpose
S15.ERFC returns the value of the complement of the error function.

2 Specification
REAL*8 MATRIX FUNCTION S15.ERFC (X)
REAL*8 X(,)

3 Description
S15_ERFC returns the complement of the error fucntion S15_ERC. S15_ERFC is calculated
by one of four algorithms. The algorithms used (and the ranges over which they are valid)
are:

erfc(x) = 2.0 (to machine accuracy) for z E (—oo,XLOW)

erfc(,) = 2.0—exp(—x2) POLY(T) for z E [XLOW,0)

erfcfr) = exp(—x2) POLY(T) for x E [0,XHIGH)

erfc (z) = 0.0 (to machine accuracy) for x E [XHIGH, co)

where:

XLOW and XHIGH are values that are machine-dependent; for the DAP they are
—6.25 and 13.0 respectively

POLY(T) is a Tschebychev polynomial function of T, where:

T—
xI 3.75

IxI+3.75
and is calculated by conversion to an ordinary polynomial, which is then evaluated
by HorneT’s method.

4 References
[1] ABRAMOWITZ M and STEGUN I A

Handbook of Mathematical Functions; chapter 7 section 1, p 297: Dover Publications,
1968.

5 Arguments

X - REAL*8 MATRIX

On entry, X contains the points at which the function is to be evaluated. All elements
of X must be assigned on entry; X is unchanged on exit.

6 Error Indicators
None

182 manOlO.02 AMT

S —Special functions 12.10 S15_ERfC

7 Auxiliary Routines
None

8 Accuracy
If E and D are the relative errors in result and argument respectively, they are in principle
related by:

E
— 2xexp(—x2)

D
—

erfc(x)

You should note that near z = 0 the amplification factor behaves as --, hence the accuracy
v

is also largely determined by machine precision.

for large negative z, where the factor is
exp(—x2)

accuracy is mainly limited by machine

precision.

For large positive x ,the factor behaves like 2z2 and hence to a certain extent relative accuracy
is unavoidably lost. However the absolute error in the result, E, is given by:

E
— 2xexp(—x2)

D
v/

so absolute accuracy can be guaranteed for all x.

9 Further Comments
None

10 Keywords
Complementary error function, special function.

11 Example
The following example program reads and prints a caption and then reads pairs of numbers
from the data stream. The program assumes that the first number of each pair indicates
whether the second number in the pair is a valid argument of the function. Reading of the
pairs of numbers continues until the first number in a pair is negative.
The program packs the arguments into the first column of a 32 by 32 array, X, which is
passed by the named common block .COM1 to the DAP entry subroutine DAPSUB. The
subroutine converts the values into DAP storage mode, then calls S15_ERFC. The result is
assigned to matrix Y, which is also in common block COM1. Both matrices are converted
back into host storage mode and the results printed.

Host program

PROGRAM MAIN
C
C S15_ERFC example program
C

INTEGER IFAIL(32 ,32)
CHARACTER*40 TITLE
COMMON /COMu/X(32,32) ,Y(32,32)
DOUBLE PRECISION X,Y

General Support library manOlO.02 183

12.10 S15_ERFC S—Special functions

C
C Initialise X to avoid
C ‘UNASSIGNED VARIABLE’
C

DO 2 J = 132
DO 1 I = 1,32
xfI,J) = 0.0

1 CONTINUE
2 CONTINUE

C
READ f*,s) TITLE
WRITE C *,6) TITLE
WRITE (*,7)

C
C Read data
C

J=0
3 J=J+1

READ (*,8) IFAIL(J,1), X(J,1)
IF (IFAIL(J,1).GE.o)GOT03

C
C Connect to DA? module
C

CALL DA?CON(’dapsub.dd’)
C
C Send test data to DAP
C

CALL DA?SEN(’COMl’ ,X,2048)
C
C Call DA? routine
C

CALL DA?ENTf ‘DAPSUB’)
C
C Receive test data and results from DA?
C

CALL DAPREC(’COMl’ ,X,4096)
C
C Release the DA?
C

CALL DA?REL

184 man 010.02 AMT

S — Special functions 121O S15_ERfC

C
C Write out results
C

3=J— 1
00 4 I=1,J

4 WRITE (*,9) X(I,1), Y(I,1), IFAIL(I,1)
5 FORMAT (A)
6 FORMAT (4(1X/), 111 , A, 811 RESULTS/1X)
7 FORMAT (18X, ‘1’, 251, Y’,13X, ‘INUM’)
8 FORMAT (IS, F20.5)
9 FORMAT (4X, 1PD2O.3, lx, 1P020.3, 14X, 12)

STOP
END

DAP program

ENTRY SUBROUTINE DAPSUB
C
C Note the use o the external statement for this function
C

EXTERNAL REAL*8 MATRIX FUNCTION S15_ERFC
COMMON /COM/ X(,),Y(,)
REAL*8 X,Y

C
C Convert input data
C

CALL CONVFMD(X)
C

Y(,) = 515_ERFC(X)
C
C Convert input data and results back to host mode
C

CALL CONVMFD(X)
CALL CONVMFD(Y)
RETURN
END

Data

S15ERFC EXAMPLE PROGRAM DATA
1 —10.0
2 —1.0
3 0.0
4 1.0
5 15.0

—1 0.0

General Support library manOlO.02 185

12.10 S1&ERfC S — Special functions

Results

S15ERFC EXAMPLE PROGRAM DATA RESULTS

X Y INUM
—1.000e+O1 2.000e+OO 1
—1.000e+OO 1.843e+OO 2

O.000e+OO 1.000e+OO 3
1.000e+OO 1.573e—O1 4
1.SOOe+O1 O.000e+OO 5

.

186 manOlO.02 AMT

Chapter 13

XO1 — Mathematical constants

Contents:

Subroutine Page

XO1_PI 188

General Support library manOlO.02 187

13.1 XU1_PI XO1 — Mathematical constants

13.1 XOi.PI release 1

1 Purpose
XO1_PI provides the value of p1 for any of the Teal precision lengths available on the DAP.

2 Specification
SUBROUTINE XOLPI (P1 , LEN)
REAL* <LEN> P1
INTEGER LEN

3 Description
The relevant value is picked out from a table of values.

4 References
None

5 Arguments

P1 - REAL* <LEN>

On exit, P1 contains the value of it for reals of length LEN bytes.

LEN - INTEGER

On entry, LEN must contain the length in bytes of P1 (in the range 3 to 8). If LEN, is
outside the range 3 to 8 the results are unpredictable. LEN is unchanged on exit.

6 Error Indicators
None

7 Auxiliary Routines
This routine references the General Support library routine Z_XO1_X02..AUX.

8 Accuracy
The results are to machine accuracy for the precision required.

9 Further Comments
None

10 Keywords
Machine constants, pi

11 Example
The following FORTRAN-PLUS fragment traces out the REAL*4 value for it.

188 manOIO.02 AMT

X01 — Mathematical constants 13.1 XOLPI

ENTRY SUBROUTINE ENT
REAL*4 P1
CALL Xo1_PiCPI4)
TRACE 1 (P1)
RETURN
END

Results

FORTRAN-PLUS Trace
FORTRAN—PLUS Subroutine: ENT at Line 4

Real Scalar Local Variable P1 in 32 bits — on Stack at 0.09

3. 1415930E+OO

End of Report

General Support library man0l 0.02 189

13.1 XO1_PI XO1 — Mathematical constants

.

.

.
190 manOlO.02 AMT

Chapter 14

X02 — Machine constants

Contents:

Subroutine Page

X02 EPSILON 192

X02...MAXDEC 194

X02..MAXINT 196

XO2MAXPW2 198

X02_MINPW2 200

X02...RMAX 202

X02_ RMIN 204

XO2TOL 206

General Support library manOlO.02 191

14.1 X02_ EPSILON X02 -- Machine constants

14.1 X02.... EPSILON release 1

1 Purpose.
X02_ EPSILON provides the smallest positive Teal (EPS) such that 1.0 + EPS differs from
1.0, for any of the real precision lengths available on the DAP.

2 Specification
SUBROUTINE X02.. EPSILON (EPSILON, LEN)
REAL* <LEN> EPSILON
INTEGER LEN

3 Description
The relevant value is picked out from a table of values.

4 References
None

5 Arguments

EPSILON - REAL* <LEN>

On exit, EPSILON contains the value of EPS for reals of length LEN bytes.

LEN-INTEGER

On entry, LEN must contain the length in bytes of EPSILON (in the range 3 to 8). If
LEN is outside the range 3 to 8 the results are unpredictable. LEN is unchanged on exit.

6 Error Indicators
None

7 Auxiliary Routines
The routine references the General Support library routine Z _X01_X02...AUX.

8 Accuracy
The results are to machine accuracy for the precision required.

9 Further Comments
None

10 Keywords
Machine constants, machine precision

11 Example
The following FORTRAN-PLUS fragment traces out the REAL*4 value of f.

192 manOlO.02 AMT

X02 — Machine constants 14.1 X02.. EPSILON

ENTRY SUBROUTINE ENT
REAL*4 EPS
CALL X02_E?SILONCEPS ,4)
TRACE 1 (E?S)
RETURN
END

Results

FORTRAN-PLUS Trace
FORTRAN—PLUS Subroutine: ENT at Line 4

Real Scalar Local Variable EPS in 32 bits — on Stack at 0.09

9. 5367432E—07

End of Report

General Support library manOlO.02 193

14.2 X02..MAXDEC X02 Machine constants

14.2 X02_MAXDEC release 1

1 Purpose
X02_MAXDEC provides a value for MAXDEC for the range of reals of different precision
available on the DAP; MAXDEC is the maximum number of decimal digits which can be
accurately represented over the whole range of floating point numbers.

2 Specification
SUBROUTINE X02..MAXDEC (M , LEN)
INTEGER M , LEN

3 Description
The relevant value is picked out from a table of values.

4 References
None

5 Arguments

M - INTEGER

On exit, M contains the value of MAXDEC for reals of length LEN bytes.

LEN - INTEGER

On entry LEN must contain the length in bytes of the reals for which MAXDEC is
required (in the range 3 to 8). If LEN is outside the range 3 to $ the results are unpre
dictable. Unchanged on exit.

6 Error Indicators
None

7 Auxiliary Routines
None

8 Accuracy
Whilst the results given are accurate for any particular real number, precision may be lost
after a sequence of arithmetic operations.

9 Further Comments
None

10 Keywords
Machine constants, real precision

11 Example
The following FORTRAN-PLUS fragment traces out the maximum number of decimal digits
which can be accurately represented over the whole range of REAL*4 precision floating point
numbers.

194 manOlO.02 AMT

X02 — Machine constants 11.2 X02. MAXDEC

ENTRY SUBROUTINE ENT
INTEGER MAXD
CALL X02_MAXDEC (MAXD, 4)
TRACE 1 (MAID)
RETURN
END

Results

FORTRAN-PLUS Trace
FORTRAN-PLUS Subroutine: ENT at Line 4

Integer Scalar Local Variable MAID in 32 bits — on Stack at 0.09

6

End o Report

General Support library manOlO.02 195

14.3 X02.MAXINT X02 — Machine constants

14.3 X02_MAXINT release 1

1 Purpose
X02_MAXINT provides a value for MAXINT for the range of integers of different precision
available on the DAP; MAXINT is the largest integer such that MAXINT and —MAXINT
can both be represented exactly.

2 Specification
SUBROUTINE X02..MAXINT(M , LEN)
INTEGER* <LEN> M
INTEGER LEN

3 Description
The relevant value is picked out from a table of values.

4 References
None

5 Arguments

M -
INTEGERt <LEN>

On exit, M contains the value of MAXINT for integers of length LEN bytes.

LEN - INTEGER

On entry, LEN must contain the length in bytes of M (in the range 1 to 8). If LEN is
outside the range 1 to $ the results are unpredictable. LEN is unchanged on exit.

6 Error Indicators
None

7 Auxiliary Routines
The routine references the General Support library routine Z _XOLXO2_AUX.

8 Accuracy
The results returned are to machine accuracy for the precision required.

9 Further Comments
None

10 Keywords
Machine constants, maximum integer

11 Example

The following FORTRAN-PLUS fragment traces out the value of MAXINT for INTEGER*4
precision.

196 manOlU.02 AMT

X02 — Machine constants 11.3 X02. ?iAXINT

ENTRY SUBROUTINE ENT
INTEGER MAXI
CALL X02_MAXINT(MAXI 4)
TRACE 1 (MAXI)
RETURN
END

Results

FORTRAN-PIUS Trace
FORTRAN—PLUS Subroutine: ENT at Line 4

Integer Scalar Local Variable MAXI in 32 bits — on Stack at 0.09

2147483647

End o Report

General Support library manOlO.02 197

14.4 X02_MAXPW2 102 — Machine constants

14.4 X02_MAXPW2 release 1

1 Purpose
X02...MAXPW2 provides a value for MAXPW2 for the range of reals of different precision
available on the DAP; MAXPW2 is the largest integer power to which 2.0 may be raised
without overflow.

2 Specification
SUBROUTINE X02...MAXPW2 (M)
INTEGER* <2-4> M

3 Description
The relevant value is picked out from a table of values.

4 References
N one

5 Arguments

M - INTEGER* <2-4>

On exit, M contains the value of MAXPW2 for reals of any length

6 Error Indicators
None

7 Auxiliary Routines
None

8 Accuracy
The accuracy does not depend on the precision used.

9 Further Comments
None

10 Keywords
Machine constans maximum power of 2

11 Example
The following FORTRAN-PLUS fragment traces out the largest integer power to which 2.0
may be raised without overflow for any real precision length.

ENTRY SUBROUTINE ENT
INTEGER MAXPW2
CALL 102 _MAXPW2 (MAXPu2)
TRACE 1 (MA1?w2)
RETURN
END

198 manOlO.02 AMT

X02 — Machine constants 14.4 X02_ MAXPW2

Results

FORTRAN-PLUS Trace
FORTRAN-PLUS Subroutine: ENT at Line 4

Integer Scalar Local Variable MAXPW2 in 32 bits — on Stack at 0.09

251

End of Report

General Support library manOlO.02 199

14.5 X02_MINPW2 102 — Machine constants

14.5 X02_MINPW2 release 1

1 Purpose
X02_MINPW2 provides a value for MINPW2 for the range of reals of different precision
available on the DAP; MINPW2 is the largest negative integer power to which 2.0 may be
raised without underfiow.

2 Specification
SUBROUTINE X02..MINPW2 (M)
INTEGER* <2-4> M

3 Description
The relevant value is picked out from a table of values.

4 References
None

5 Arguments
M - INTEGER* <2-4>

On exit, M contains the value of MINPW2 for reals of any length.

6 Error Indicators
None

7 Auxiliary Routines
None

8 Accuracy
The accuracy does not depend on the precision used.

9 Further Comments
None

10 Keywords
Machine constants, maximum negative power of 2

11 Example
The following FORTRAN-PLUS fragment traces out the largest negative integer power to
which 2.0 may be raised without underfiow for any real precision length.

ENTRY SUBROUTINE ENT
INTEGER MINPW2
CALL X02_MINPW2(MINPW2)
TRACE 1 (MINPw2)
RETURH
END

200 manOlO.02 AMT

X02 — Machine constants 14.5 X02_MINPW2

Results

FORTRAN-PLUS Trace
FORTRAN-PLUS Subroutine: ENT at Line 4

Integer Scalar Local Variable MINPW2 in 32 bits — on Stack at 0.09

251

End of Report

General Support library manOlO.02 201

14.6 X02_RMAX X02 — Machine constants

14.6 X02....RMAX release 1

1 Purpose
X02_RMAX provides the largest real (RMAX) such that RMAX and —RivIAX can both be
represented exactly, for the range of reals of different precision available on the DAP.

2 Specification
SUBROUTINE X02...RMAX(R , LEN)
REAL* <LEN> R
INTEGER LEN

3 Description
The relevant value is picked out from a table of values.

4 References
None

5 Arguments

R - REAL* <LEN>

On exit, R contains the value of RMAX for reals of length LEN bytes.

LEN-TNTEGER

On entry, LEN must contain the length in bytes of R (in the range 3 to 8). If LEN is
outside the range 3 to 8 the results are unpredictable. LEN is unchanged on exit.

6 Error Indicators
None

7 Auxiliary Routines
The routine references the General Support library routine Z _X01_X02_AUX.

8 Accuracy
The results returned are as accurate as possible for the precision required.

9 Further Comments
None

10 Keywords
Machine constants, maximum real value.

11 Example
The following FORTRAN-PLUS fragment traces out the value of RMAX for REAL*4 pre
cision.

202 manOlO.02 AMT

X02 — Machine constants 14.6 X02..Ri’vIAX

ENTRY SUBROUTINE ENT
REAL*4 RMAX
CALL X02_RMAX (RMAx , 4)
TRACE 1 (RMAx)
RETURN
END

Results

FORTRAN-PLUS Trace
FORTRAN—PLUS Subroutine: ENT at Line 4

Real Scalar Local Variable RMAX in 32 bits — on Stack at 0.09

7.237005 E+75

End of Report

Generai Support library manOlO.02 203

14.7 X02_RMIN X02 — Machine constants

14.7 XO2RMIN release 1

1 Purpose
X02_RMIN provides the smallest real (RMIN) such that RMIN and —RMIN can both be
Tepresented exactly, for the range of reals of different precision available on the DAP.

2 Specification
SUBROUTINE X02...RMIN (R , LEN)
REAL* <LEN> R
INTEGER LEN

3 Description
The relevant value is picked out from a table of values.

4 References
None

5 Arguments
R_REAL* <LEN>

On exit, R contains the value of RMIN for reals of length LEN bytes.

LEN-INTEGER

On entry, LEN must contain the length in bytes of R (in the range 3 to 8). If LEN is
outside the range 3 to 8 the results are unpredictable. LEN is unchanged on exit.

6 Error Indicators
None

7 Auxiliary Routines
The routine references the General Support library routine Z .XOLXO2_AUX.

8 Accuracy
The results returned are as accurate as possible for the precision required.

9 Further Comments
None

10 Keywords
Machine constants, minimum real value.

11 Example
The following FORTRAN-PLUS fragment traces out the value of RMIN for REAL*4 preci
sion.

204 manOlO.02 AMT

XU2 — Machine constants 14.7 X02_ RMIN

ENTRY SUBROUTINE ENT
REAL*4 RMIN
CALL X02 RMIN(RMIN,4)
TRACE 1 (RMIN)
RETURN
END

Results

FORTRAN-PLUS Trace
FORTRAN—PLUS Subroutine: ENT at Line 4

Real Scalar Local Variable RNIN in 32 bits — on Stack at 0.09

5.3976053E—79

EILd of Report

General Support library manOlO.02 205

14.8 X02_TOL X02 — Machine constants

14.8 X02_TOL release 1

1 Purpose
X02_TOL provides the value of TOL (RMIN/EPSILON) for the range of reals of different
precision available on the DAP.

2 Specification
SUBROUTINE X02.TOL (R , LEN)
REAL* <LEN> R
INTEGER LEN

3 Description
The relevant value is picked out from a table of values.

4 References
None

5 Arguments

R_REAL* <LEN>

On exit, R contains the value of TOL for reals of length LEN bytes.

LEN-INTEGER

On entTy, LEN must contain the length’in bytes of R (in the range 3 to 8). If LEN is
outside the range 3 to 8 the results are unpredictable. LEN is unchanged on exit.

6 Error Indicators
None

7 Auxiliary Routines
The routine references the General Support library routine Z _X01_X02_AUX.

8 Accuracy
The results returned are as accurate as possible for the precision required.

9 Further Comments
None

10 Keywords
Machine constants

11 Example
The following FORTRAN-PLUS fragment traces out the value of TOL for REAL*4 precision.

206 manOlO.02 AMT

X02 — Machine constants 14.8 XO2TOL

ENTRY SUBROUTINE ENT
REAL*4 TOL
CALL X02_TOL(TOL , 4)
TRACE 1(T0L)
RETURN
END

Results

FORTRAN-PLUS Trace
FORTRAN-PLUS Subroutine: ENT at Line 4

Real Scalar Local Variable TOL in 32 bits — on Stack at 0.09

5.6897994E—73

End of Report

General Support library manUlO.02 207

14.8 X02_TOL X02 — Machine constants

.

.

.
208 manOlO.02 AMT

Chapter 15

X05 — Other utilities

Contents:

Subroutine Page

XO5ALTLV 211

X05.CRINKLE 213

X05. EAST. BOUNDARY 215

XO&.E.MAXPC 217

X05.EMAXPR 219

X05E..MAX..VC 221

XO&.EMAXXR 223

X05E.MINPC 225

XO5EMINPR 227

X05E.MINXC 229

XO5EMINXR 231

XO5EXCH...P 233

XO5GATHER..V.32 236

General Support library manOlO.02 209

X05 — Other utilities

SubTou tine Page

X05..LMAX.PC 239

X0&.LMAXPR 241

XO&.LMAXXC 243

X05.LMAXXR 245

X05..J_MIN_PC 247

X05_I_MIN_PR 249

X05_LMIN_VC 251

X05_I_MIN_VR 253

XO5LOG2 255

XO5LONGINDEX 258

XO&. NORTH .BOUNDARY 260

X05. PATTERN 262

XO5SCATTEILV32 264

X05...SHLC_LV 267

XO5SHLPLV 269

X0&SHORTiNDEX 271

X05SHRCLV 273

X05.SHRPLV 275

X05... SOUTH ...BOUNDARY 277

XO5STRETCHA 279

X05... STRETCH 8 281

X05.STRETCH .N 283

XO5SUMLEFT.A2 285

XO5SUMRIGHTI2 288

X05...UNCRINKLE 291

X05WEST. BOUNDARY 293

210 manOlO.02 AMT

X05 — Other utilities 15.1 X05_ALT_LV

15.1 X05_ALT_LV release 1

1 Purpose
X05_ALT_LV produces a long vector of alternating groups of N false values followed by N
true values and so on until all components of the vector have a value. If the value of N lies
outside the range 1 to 1024 all components will have the value .FALSE.

2 Specification
LOGICAL MATRIX FUNCTION XO5ALT LV (N)
INTEGER N

3 Description
The required pattern is set up by first producing a long vector containing the values 0 to
1023 in long vector order. The vector is divided by N and the required pattern supplied by
the least significant bit plane of the resulting vector.

4 References
None

5 Arguments

N - INTEGER

On entry, N specifies the number of false and true values to be repeated alternately. N
is unchanged on exit.

6 Error Indicators
None

7 Auxiliary Routines
The routine calls the DAP library routine X05.. LONG_INDEX.

8 Accuracy
Not applicable

9 Further Comments
None

10 Keywords
None

11 Example
This FORTRAN-PLUS fragment demonstrates the use of the function X05_ ALT_ LV to
initialise alternate groups of five elements of the long vector X with different values.

General Support library manOlO.02 211

15.1 X05_ALT_LV X05 — Other utilities

SUBROUTINE TLVA

REAL XC,)
LOGICAL LM(,)

EXTERIAL LOGICAL MATRIX FUNCTION XOS_ALT_LV

Lli=X05_ALT_LV (5)
X=o.o
X(LM)=1.O

RETURN
END

212 manOlO.02 AMT

X05 — Other utilities 15.2 X05_CRINKLE

15.2 X05_CRINKLE release 1

1 Purpose
X05_CRINKLE effects a transformation in data storage format for vertical mode data occu
pying an array of matrices — from ‘sliced’ to ‘crinkled’ storage.

2 Specification
SUBROUTINE XO&CRINKLE (S, I, NR, NC,IFAIL)
<any type, any length> S (, , NR, NC)
INTEGER L, NR, NC, IFAIL

3 Description
The data is conceptually considered to occupy an array C of components of size 32 NR by
32 NC. (NR or NC are positive integers, not excluding 1). The storage area, S, is an NR by
NC array of matrices. In the ‘sliced’ format:

S(ir,ic,jr,jc) =C(Ir+32(jr_i),ic+32(jc_1))

that is, each value of j selects a contiguous group of 32 rows of C, and so on.
In the ‘crinkled’ format:

S(if,iC,jf,jC) = C(jf+NRif_l,jC+NC (ia—i))

that is, each value of i,. selects a contiguous group of NR rows of C, and so on.
In the ‘sliced’ format the conceptual array is divided into subarrays of size 32 by 32. In the
‘crinkled’ format the conceptual array is divided into subarrays of size NR by NC.
To carry out the transformation, first a mapping transformation is done on East — West
vertical sections of the data area. Each section is regarded as an array of 32 NC data items;
each item is of length L by NR (vertical) bits. The transformation reverses the mapping
order so that succesive horizontal sets of NC data items are rethreaded vertically.
Then a similar transformation is done on NC separate groups of North — South vertical
sections of the data area. Each section of each group is regarded as an array of 32 NR data
items; each item is of length L (vertical) bits. The transformation reverses the mapping
order so that successive horizontal sets of NR data items are rethreaded vertically.

4 References
None

5 Arguments

S — <any type, any length> MATRIX array of dimension (,,NR, NC)
On entry, S contains the sliced data to be reformatted. On exit, S contains the data in
crinkled form.

I - INTEGER

On entry, L specifies the length in bits of the components of S; L is unchanged on exit.

NR-INTEGER

On entry, NR specifies the first unconstrained dimension of S; NR is unchanged on exit.

General Support library manOlO.02 213

15.2 X05_CRINKLE X05 — Other utilities

5 Arguments — continued

NC - INTEGER

On entTy, NC specifies the second unconstrained dimension of S; NC is unchanged on
exit.

IFAIL - INTEGER

Unless the routine detects an error (see Error Indicators below) IFAIL contains zero
on exit.

6 Error Indicators
Errors detected by the routine:

IFAIL = 1 either NR or NC was less than 1

IFAIL = 2 L was less than 1

7 Auxiliary Routines
None

8 Accuracy
Not applicable

9 Further Comments
N one

10 Keywords
Crinkled data storage, data formatting, data movement, sliced data storage

11 Example
This FORTRAN-PLUS fragment shows how the routine can be used in an entry subroutine
to conveTt a matrix set from sliced to crinkled form.

ENTRY SUBROUTINE ENT
REAL A(,,2,2)
COMMON IA/A
DO 10 1=1,2
DO 10 J=1,2
CALL CONVFMECA(,,I,J))

10 CONTINUE
CALL X05_CRINKLE(A, 32,2,2,IFAIL)
IF (IFAIL.NE.o) RETURN

C DA? processing
RETURN
END

214 manOlO.02 AMT

X05 — Other utilities 15.3 XO& EASL BOUNDARY

15.3 XO&.EAST BOUNDARY release 1

1 Purpose
X05_EAST_BOUNDARY returns a logical matrix containing at most one .TRUE. element
in each row, corresponding to the last .TRUE. (if any) in each row of the logical matrix
parameter. That is, the subroutine is equivalent to the FORTRAN-PLUS code:

KM = .FALSE.
DO 10 I 1, 32
IF (.NOT.ANY(LM(I,))) GOTO 10
KM(I,) REV(FRST(REV(LM(I,))))

10 CONTINUE

2 Specification
LOGICAL MATRIX FUNCTION X05.. EAST BOUNDARY (LM)
LOGICAL LM(,)

3 Description
The DAP store plane (logical matrix LM) passed to the routine is treated as a set of 32
logical vectors, arranged so that each vector occupies a complete row. Each of these vectors
is dealt with independently, but in parallel.

To each vector is ripple-added a row of all true bits; the easternmost bit of the vector is
treated as least significant. The addition is thrown away; the row of carry bits from the
addition, and a shifted-west version of the row of carries, are XORed to give a vector with
only one true element: the easternmost .TRUE. element in each input vector. The 32
resultant vectors, produced in parallel, form the required east boundary matrix.

4 References
None

5 Arguments

LM - LOGICAL MATRIX

On entry, LM is the logical matrix whose east boundary is required. LM is unchanged
on exit.

6 Error Indicators
None

7 Auxiliary Routines
None

8 Accuracy
Not applicable

9 Further Comments
None

General Support library manOlO.02 215

15.3 X05_ EAST_BOUNDARY X05 — Other utilities

10 Keywords
Boundary

ii Example
This FORTRAN-PLUS fragment takes a ‘black and white’ logical matrix (a chess board
pattern) as input and returns the east boundary.

ENTRY SUBROUTINE ENT
LOGICAL LM(,).KM(,)
EXTERNAL LOGICAL MATRIX FUNCTION X05_EAST_BOUNDARY
LM=ALTRf 1) .LEQ.ALTc(r)
KM=XOS_EAST_BOUNDARY (LM)
TRACE 1 (KM)
RETURN
END

The result in this case is simply LM AND. COLS(31,32)

216 manOlO.02 AMT

X05 — Other utilities 15.4 X05_E_MAX_PC

15.4 X05_E _MAX _PC release 1

1 Purpose
X05_ E_ MA)L PC returns a logical matrix marking the maximum value(s) in each row of the
real matrix argument. The 1th row of the argument contains one or more elements whose
value is the maximum value for the row. The corresponding element(s) of the jh row of the
logical matrix are set to .TRUE. to mark that maximum value, with all other elements of
the logical matrix set tç .FALSE.

2 Specification
LOGICAL MATRIX FUNCTION XO5EMAXPC (RM)
REAL RM(,)

3 Description
In each row of the argument which contains at least one positive number the position(s) of the
maximum positive number is found, and the corresponding output logical mask element(s)
set to .TRUE. If a row of the argument contains only negative numbers, the position(s) of
the elements with smallest absolute value are found, and the corresponding logical mask
elements set to .TRUE.; all other elements of the output mask are set to .FALSE,

4 References
None

5 Arguments

RM - REAL MATRIX

On entry, RM contains the matrix whose row-wise maximum positions are required. RM
is unchanged on exit.

6 Error Indicators
None

7 Auxiliary Routines
None

8 Accuracy
Not applicable

9 Further Comments
None

10 Keywords
Maximum

11 Example
In each row of the matrix processed in the following FORTRAN-PLUS fragment the maxi
mum value(s) in that row are replaced by the value 0.0.

General Support library manOlO.02 217

15.4 X05_E_MAX_PC X05 — Other utilities

SUBROUTINE EXAMPLE C RM)
REAL RMC)
LOGICAL LMC,)

EXTERNAL LOGICAL MATRIX FUNCTION X05_E_MAX_PC

Lli = X05_E_MAX..yC(RM)
RMCLM) = 0.0
RETURN
END

218 manOlO.02 AMT

X05 — Other utilities 15.5 X05_E_MAX_PR

15.5 X05_E _MAX _PR release 1

1 Purpose
X05_E_MAX..PR returns a logical matrix marking the maximum value(s) in each column
of the real matrix argument. The jth column of the argument contains one or more elements
whose value is the maximum value for the column. The corresponding element(s) of the i1
column of the logical matrix are set to .TRUE. to mark that maximum value, with all other
elements of the logical matrix set to .FALSE.

2 Specification
LOGICAL MATRIX FUNCTION X05. E MAX PR (RM)
REAL RM(,)

3 Description
In each column of the argument which contains at least one positive number the position(s)
of the maximum positive number is found, and the corresponding output logical mask el
ement(s) set to .TRUE. If a column of the argument contains only negative numbers, the
position(s) of the elements with smallest absolute value are found, and the corresponding
logical mask elements set to .TRUE.; all other elements of the output mask are set to .FALSE.

4 References
None

5 Arguments

RM - REAL MATRIX

On entry, RM contains the matrix whose column-wise maximum positions are required.
RM is unchanged on exit.

6 Error Indicators
None

7 Auxiliary Routines
None

8 Accuracy
Not applicable

9 Further Comments
None

10 Keywords
Maximum

11 Example
In each column of the matrix input to the following FORTRAN-PLUS fragment the maxi
mum values(s) in that column are replaced by the value 0.0.

General Support library man0l 0.02 219

15.5 X05_E_MAX_PR X05 — Other utilities

SUBROUTINE EXAMPLE (RN)
REAL RN(,)
LOGICAL LM(,)

EXTERNAL LOGICAL MATRIX FUNCTION X05_ENAX_PR

LM = XOS_E_MAX_PR(RM)

RM(LM) = 0.0
RETURN
END

.
220 manOlO.02 AMT

X05 — Other utilities 15.6 X05_ E. MAX _VC

15.6 X05_E _MAX _VC release 1

1 Purpose
X05_E_MAX_VC returns a real vector whose i1 component is the maximum value in the

row of the real matrix argument.

2 Specification
REAL VECTOR FUNCTION X05E...MAXXC(RM)
REAL RM(,)

3 Description
The maximum values are found by locating the position(s) of the maximum value in each
row and then taking the value in the first of these positions in each row. These maximum
values are then used to construct the required output vector.

4 References
None

5 Arguments

RM - REAL MATRIX

On entry, RM contains the matrix whose row-wise maximum values are required. RM is
unchanged on exit.

6 Error Indicators
None

7 Auxiliary Routines
The routine calls the routines X05..WEST_BOUNDARY and X05E..MAX..PC from the
General Support library.

8 Accuracy
Not applicable

9 Further Comments
None

10 Keywords
Maximum

11 Example
In each row of the real matrix input to the following FORTRAN-PLUS fragment the maxi
mum value in the row is subtracted from all the values in the row.

General Support library manOlO.02 221

15.6 X05_E_MAX_VC X05 — Other utilities

SUBROUTINE EXAMPLE (RN)
REAL RNC)

EXTERNAL REAL VECTOR FUNCTION XO5_E_MAX_VC

RM=RM — MATC(X05_E_MAX_VC(RN))
RETURN
END

222 manOlO.02 AMT

X05 — Other utilities 15.7 X05_E_MAX_VR

15.7 X05_E _MAX _VR release 1

1 Purpose
X05_E_MAX_VR returns a real vector whose 1th component is the maximum value in the
jth column of the real matrix argument.

2 Specification
REAL VECTOR FUNCTION XO5EMAXXR(RM)
REALRM(,)

3 Description
The maximum values are found by locating the position(s) of the maximum value in each
column and then taking the value in the first of these position(s) in each column. These
maximum values are then used to construct the required output vector.

4 References
None

5 Arguments

RM - REAL MATRIX

On entry, RM contains the matrix whose column-wise maximum values are required.
RM is unchanged on exit.

6 Error Indicators
None

7 Auxiliary Routines
The routine calls the routines X05_E_MAX..PR and XO&. NORTH_BOUNDARY from the
General Support library.

8 Accuracy
Not applicable

9 further Comments
None

10 Keywords
Maximum

11 Example
In each column of the real matrix input to the following FORTRAN-PLUS fragment the
maximum value in the column is subtracted from all the values in the column.

General Support library manOl 0.02 223

15.7 XO&.E_MAX_VR X05 Other utilities

SUBROUTINE EXAMPLE (RN)
REAL RM(,)

EXTERNAL REAL VECTOR FUNCTION XO5_E_NAX_VR

RM=RM — MATR(XOS_E_MAX.VR(RN))
RETURN
END

.
224 manOlO.02 AMT

X05 — Other utilities 15.8 X05_ F_YIN_PC

15.8 X05_E _MIN PC release 1

1 Purpose
X05_E_MIN _PC returns a logical matrix marking the minimum value(s) in each row of the
real matrix argument. The i1’ row of the argument contains one or more elements whose
value is the minimum value for the row. The corresponding element(s) of the jth row of the
logical matrix are set to .TRUE. to mark that minimum value, with all other elements of
the logical matrix set to .FALSE.

2 Specification
LOGICAL MATRIX FUNCTION X05.E..MIN.PC(RM)
REAL RM(,)

3 Description
In each row of the argument which contains only positive numbers the position(s) of the
minimum number is found, and the corresponding output logical ma.sk element(s) set to
.TRUE. If a row of the argument contains at least one negative number, the position(s) of
the negative number with greatest absolute value are found, and the corresponding logical
mask elements set to .TRUE.; all other elements of the output mask are set to ,FALSE.

4 References
None

5 Arguments

RM - REAL MATRIX

On entry, RM contains the matrix whose row-wise minimum positions are required. RM
is unchanged on exit.

6 Error Indicators
None

7 Auxiliary Routines
None

8 Accuracy
Not applicable

9 Further Comments
None

10 Keywords
Minimum

11 Example
In each row of the matrix input to the following FORTRAN-PLUS fragment the minimum
value(s) in that row are replaced by the value 0.0.

General Support library manOlO.02 225

15.8 XO&E_MIN_PC X05 — Other utilities

SUBROUTINE EXAMPLE (RM)
REAL R14f,)
LOGICAL LM(,)

EXTERNAL LOGICAL MATRIX FUNCTION XOS_E_MIN_PC

LM = X05_E.MIN_PC(RM)
RM(LM) = 0.0
RETURN
END

226 manOlO.02 AMT

X05 — Other utilities 15.9 X05_E_MIN_PR

15.9 X05_E _MIN _PR release 1

1 Purpose
X05.E_MIN _PR returns a logical matrix marking the minimum value(s) in each cotumn of
the real matrix argument. The i’ column of the argument contains one or more elements
whose value is the minimum value for the column. The corresponding element(s) of the th

column of the logical matrix are set to .TRUE. to mark that minimum value, with all other
elements of the logical matrix set to .FALSE.

2 Specification
LOGICAL MATRIX FUNCTION X05.. E.. MIN - PR (RM)
REALRM(,)

3 Description
In each argument column which contains only positive numbers the position(s) of the mini
mum number is found, and the corresponding output logical mask element(s) set to .TRUE.
If a column of the argument contains at least one negative number, the position(s) of the
negative number with greatest absolute value are found, and the corresponding logical mask
elements set to .TRUE.; all other elements of the output mask are set to .FALSE.

4 References
None

5 Arguments

RM - REAL MATRIX

On entry, RM contains the matrix whose column-wise minimum positions are required.
RM is unchanged on exit.

6 Error Indicators
None

7 Auxiliary Routines
None

8 Accuracy
Not applicable

9 Further Comments
None

10 Keywords
Minimum

11 Example
In each column of the matrix input to the following FORTRAN-PLUS fragment the minimum
value(s) in that column are replaced by the value 0.0.

General Support library manOlO.02 227

15.9 X05_E_MIN_PR 105 — Other utilities

SUBROUTINE EXAMPLE (RN)
REAL R11(,)
LOGICAL LM(,)

EXTERNAL LOGICAL MATRIX FUNCTION X05_E_MIN_PR

Lli=XO5_E_MIN.yR(RN)
RM(LM)=O.O
RETURN
END

228 manOlO.02 AMT

X05 — Other utilities 1510 X05_E_MIN_VC

15.10 X05_E _MIN _VC release 1

1 Purpose
X05_ E - MIN XC returns a Teal vectoT whose component is the minimum value in the jth

row of the real matrix argument.

2 Specification
REAL VECTOR FUNCTION XO&.EMIN ...VC(RM)
REAL RM(,)

3 Description
The minimum values are found by locating the positions of the minimum values in each row
and then taking the value in the first of these positions in each row. The minimum values
so found are used to construct the output vector.

4 References
None

5 Arguments

RM - REAL MATRIX

On entry, RM contains the matrix whose row-wise minimum values are required. RM is
unchanged on exit.

6 Error Indicators
None

7 Auxiliary Routines
The routine calls the routines X05&.MIN ...PC and X0&.WEST..BOUNDARY from the
General Support library.

8 Accuracy
Not applicable

9 Further Comments
None

10 Keywords
Minimum

11 Example
In each row of the real matrix input to the following FORTRAN-PLUS fragment the mini
mum value in the row is subtracted from all the values in the row.

General Support library manOl 0.02 229

15.10 X05_E.MIN_VC X05 — Other utilities

SUBROUTINE EXAMPLE (RM)
REAL RMC)

EXTERNAL REAL VECTOR FUNCTION XOS...E_MIN_VC

RM = RN— MATC(XO5..Ej1IN_VC(RN))
RETURN
END

230 manOlO.02 AMT

X05 — Other utilities 15.11 XO.5_E.1111N_VR

15.11 X05_E_MIN _VR release 1

1 Purpose
X05_ E_ MIN XR returns a real vector whose i’ component is the minimum value in the i’d’
column of the real matrix argument.

2 Specification
REAL VECTOR FUNCTION X05E..MIN .YR(RM)
REAL RM(,)

3 Description
The minimum values are found by locating the positions of the minimum values in each
column and then taking the value in the first of these positions in each column. The minimum
values so found are used to construct the output vector.

4 References
None

5 Arguments

RM - REAL MATRIX

On entry, RM contains the matrix whose column-wise minimum values are required. RM
is unchanged on exit.

6 Error Indicators
None

7 Auxiliary Routines
The routine calls the routines X05..E_MIN ...PR and X05..NORTHBOUNDARY from the
General Support library.

8 Accuracy
Not applicable

9 Further Comments
None

10 Keywords
Minimum

11 Example
In each column of the real matrix input to the following FORTRAN-PLUS fragment the
minimum value in the column is subtracted from all the values in the column.

General Support library manOlO.02 231

15.11 X05_E_MIN_VR X05 — Other utilities

SUBROUTINE EXAMPLE CRY)
REAL RM(,)

EXTERNAL REAL VECTOR FUNCTION X05_E_MIN_VR

RN = RN — MATR(X05...E_MIN_VR(RM))
RETURN
END

232 manOlO.02 AMT

X05 — Other utilities 15.12 X05_EXCH_P

15.12 X05_EXCH_P release 1

1 Purpose
X05_EXCH_P exchanges L planes starting at X with L planes starting at Y, under activity
control specified by M. The planes are exchanged in increasing order; you are cautioned
about the strange effects which will occur if the two sets of planes overlap.

2 Specification
SUBROUTINE X05...EXCILP(X , Y , M , L)
INTEGER L
LOGICAL M (,)
<any type> X(,),Y(,)

3 Description
The areas are exchanged under activity control using a machine code loop.

4 References
None

5 Arguments

X - <any type> MATRIX (or MATRIX array)

On entry, X contains the data to be exchanged with Y. On exit, X contains the data
originally held in Y.

Y - <any type> MATRIX (or MATRIX array)

On entry, Y contains the data to be exchanged with X. On exit, Y contains the data
originally held in X.

M - LOGICAL MATRIX

On entry, M defines the mask; .TRUE. indicates elements to be exchanged. M is un
changed on exit.

L - INTEGER

On entry, L specifies the number of planes to be exchanged and must be less than the
maximum number of times that a machine code DO-ioop may be executed (230 times on
the DAP 500). L is unchanged on exit.

6 Error Indicators
None

7 Auxiliary Routines
None

8 Accuracy
Not applicable

General Support library manOlO.02 233

15.12 X05_EXCH_P X05 — Other utilities

9 Further Comments
None

10 Keywords
Data exchange, planar exchange

ii Example
This FORTRAN-PLUS fragment shows how the routine could be used to exchange two one
byte matrices.

ENTRY SUBROUTINE SWAP
INTEGER*1 A()),B(,)
A = 13
B = 25
CALL X05_EXCH_P(ABMAT(.TRUE.),8)
TRACE 1 (A, B)
RETURN
END

Results

FORT.AN-PLUS Trace
FORTRAN-PLUS Subroutine: SWAP at Line 8

Integer Matrix Local Variable A in 8 bits - addressed by Stack + 0.09

(Row 01 Col 01) 25 (* 32)
(Row 02 Col 01) 25 (* 32)
(Row 03 Col 01) 25 (* 32)

(Row 30 Col 01) 25 (* 32)
(Row 31 Col 01) 25 (* 32)
(Row 32 Col 01) 25 (* 32)

Integer Matrix Local Variable B in 8 bits — addressed by Stack + 0.10

(Row 01 Col 01) 13 (* 32)
(Row 02 Col 01) 13 (* 32)
(Row 03 Col 01) 13 (* 32)

234 manOlO.02 AMT

X05 — Other utilities 1512 X05_EXCH_P

(Row 30 Co]. 01) 13 (* 32)
(Row 31 Col 01) 13 (* 32)
(Row 32 Col 01) 13 C* 32)

End of Report

General Support library man 010.02 235

15.13 X05_GATHER_V_32 X05 — Other utilities

15.13 X05_GATHERX_32 release 1

1 Purpose
X05_GATHER_V_32 assigns to the components of a vector the values of those components
of a vector array designated by corresponding components of an indexing vector. The index
values are interpreted as reduced rank indices to the vector array.

2 Specification
SUBROUTINE XO5GATHEILV..32(TO , FROM , NFROM , SELECT , IFAIL)

TO and FROM must agree in type and length. They may be INTEGER* < 1 — 4 >1

REAL* <3—4> or CHARACTER. for example:

INTEGERTO() , FROM(,NFROM)
INTEGER NFROM , SELECT () , IFAIL

3 Description
The gathering is performed in a machine code DO loop.

4 References
None

5 Arguments

TO - INTEGER* < 1 -.- 4>, REAL* <3—4> or CHARACTER VECTOR
On exit, TO contains 32 values from array FROM, as selected by SELECT;
that is, TO(I) = FROM (SELECT (I)) for I = 1,32

FROM - INTEGER, REAL or CHARACTER VECTOR array

The dimensions of the array are (,NFROM), agreeing with TO in type and length.
FROM is unchanged on exit.

NFROM-INTEGER

The second dimension of array FROM. NFROM is unchanged on exit

SELECT - INTEGER VECTOR

The values are applied as reduced rank indices to array FROM to select values to be
assigned to corresponding components of TO. SELECT is unchanged on exit.

IFAIL - INTEGER

Unless the routine detects an error (see Error indicators below) IFAIL contains zero
on exit.

6 Error Indicators
Errors detected by the routine:

IFAIL = 1 NFROM was not positive

IFAIL = 2 Values of SELECT were not in range 1 to 32 NFROM

236 manOlO.02 AMT

X05 — Other utilities 15.13 X05_GATHER_V_32

7 Auxiliary Routines
None

8 Accuracy
Not applicable

9 Further Comments
N one

10 Keywords
Data manipulation, gather, scatter

11 Example
This FORI’RAN-PLUS fragment gathers alternate indexed elements of a 64 element vector
into a 32 element vector.

ENTRY SUBROUTINE ENT
INTEGER FROM(,2) ,To() ,SELECTC)
DO 10 1=1,64

10 FROM(I)=10*I
DO 20 1=1,32

20 SELECT(I)=2*I
CALL X05_GATHER_V32 (TO ,FROM, 2 , ,IFAIL)
TRACE 1 (IFAIL)
TRACE 1 (TO)
RETURN
END

Results

FORTRAN-PLUS Trace
FORTRAN—PLUS Subroutine: ENT at Line 8

Integer Scalar Local Variable IFAIL in 32 bits — on Stack at 0.13

0

End of Report

General Support library manOlO.02 237

15.13 X05_GATHER_V_32 X05 Other utilities

FORTRAN-PLUS Trace
FORTRAN—PLUS Subroutine: ENT at Line 9

Integer Vector Local Variable TO in 32 bits — addressed by Stack + 0.10

(Component 01) 20, 40, 60, 80,
(Component 05) 100, 120, 140, 160,
(Component 09) 180, 200, 220, 240,
(Component 13) 260, 280, 300, 320,
(Component 17) 340, 360, 380, 400,
(Component 21) 420, 440, 460, 480,
(Component 25) 500, 520, 540, 660,
(Component 29) 580, 600, 620, 640

End oI Report

.
238 manOlO.02 AMT

X05 — Other utilities 15.14 X05_I_MAX_PC

15.14 X05_I_MAX_PC release 1

1 Purpose
X05_I_ MAX_PC returns a logical matrix marking the maximum value(s) in each row of the
integer matrix argument. The th row of the argument contains one or more elements whose
value is the maximum value for the row. The corresponding element(s) of the i1’ row of the
logical matrix are set to .TRUE. to mark that maximum value, with all other elements of
the logical matrix set to .FALSE.

2 Specification
LOGICAL MATRIX FUNCTION XO5LMAXPC(IM N)
INTEGER* <N>IM (,)
INTEGER N

3 Description
In each row of the argument which contains at least one positive number the position(s) of the
maximum positive number is found, and the corresponding output logical mask element(s)
set to .TRUE. If a row of the argument contains only negative numbers, the position(s) of
the elements with smallest absolute value are found, and the corresponding logical mask
elements set to .TRUE.; all other elements of the output mask are set to .FALSE.

4 References
None

5 Arguments

IM - INTEGER* <N> MATRIX

On entry, IM contains the matrix whose row-wise maximum positions are required. IM
is unchanged on exit.

N-INTEGER

On entry, N specifies the length of the matrix IM in bytes. N is unchanged on exit.

6 Error Indicators
None

7 Auxiliary Routines
None

8 Accuracy
Not applicable

9 Further Comments
None

10 Keywords
Maximum

General Support library manOlO.02 239

15.14 X05_I_MAX_PC X05 — Other utilities

ii Example -

In each row of the matrix input to the following FORTRAN-PLUS fragment the maximum
value(s) in that row are set to zero.

SUBROUTINE EXAMPLE C IM)
INTEGER*2 IM(,)
LOGICAL LMC,)

EXTERNAL LOGICAL MATRIX FUNCTION 105_I_MAX_PC

LM=X05_I_MAX_PC(IM, 2)
IM(LM)=0
RETURN
END

240 manOlO.02 AMT

X05 — Other utilities 15.15 X05_ LMAX_PR

15.15 X05_I _MAX_PR release 1

1 Purpose
X05_I .MAX_PR returns a logical matrix marking the maximum value(s) in each column of
the integer matrix argument. The jth column of the argument contains one or more elements
whose value is the maximum value for the column. The corresponding element(s) of the jth

column of the logical matrix are set to .TRUE. to mark that maximum value, with all other
elements of the logical matrix set to .FALSE.

2 Specification
LOGICAL MATRIX FUNCTION XO&.LMAX..PR(IM , N)
INTEGER* <N>.IM(,)
INTEGER N

3 Description
In each argument column which contains at least one positive number the position(s) of the
maximum positive number is found, and the corresponding output logical mask element(s)
set to .TRUE. If a column of the argument contains only negative numbers, the position(s)
of the elements with smallest absolute value are found, and the corresponding logical mask
elements set to TRUE.; all other elements of the output mask are set to .FALSE.

4 References
None

5 Arguments

IM - INTEGER* <N> MATRIX

On entry, IM contains the matrix whose column-wise maximum positions are required.
IM is unchanged on exit.

N - INTEGER

On entry, N specifies the length of the matrix TM in bytes. N is unchanged on exit.

6 Error Indicators
None

7 Auxiliary Routines
None

$ Accuracy
Not applicable

9 Further Comments
None

10 Keywords
Maximum

General Support library manOlO.02 241

15.15 X05_I_MAX_PR X05 — Other utilities

ii Example
In each column of the matrix input to the following FORTRAN-PLUS fragment the maxi
mum value(s) in that column are set to zero.

SUBROUTINE EXAMPLE (IN)
INTEGER*2 IM(,)
LOGICAL LM(,)

EXTERNAL LOGICAL MATRIX FUNCTION X05_I_MAX_PR

LM=XOS..1j1AX_?R(IM, 2)
IM(LM)=O
RETURN
END

242 manOlO.02 AMT

X05 — Other utilities 15.16 X05_I_MAX_VC

15.16 X05_I....MAX_VC release 1

1 Purpose
X05_I_MAX_VC returns an integer vector whose component is the maximum value in
the i row of the integer matrix argument.

2 Specification
INTEGER VECTOR FUNCTION X05...LMAXXC(IM)
INTEGER IM(,)

3 Description
The maximum values are found by locating the positions of the maximum values in each row
and then taking the value in the first of these positions in each row. These maximum values
are then used to construct the required output vector.

4 References
None

5 Arguments

IM - INTEGER MATRIX

On entry, IM contains the matrix whose row-wise maximum values are required. IM is
unchanged on exit.

6 Error Indicators
None

7 Auxiliary Routines
The routine calls the routines X05..LMAX_PC and X05_WEST...BOUNDARY from the
General Support library.

8 Accuracy
Not applicable

9 Further Comments
None

10 Keywords
Maximum

11 Example
In each row of the integer matrix argument in this FORTRAN-PLUS fragment the maximum
value in that row is subtracted from all the values in that row.

General Support library manOlO.02 243

15.16 X05_I_MAX_VC X05 — Other utilities

SUBROUTINE EXAMPLE (IN)
INTEGER IM(,)

EXTERNAL INTEGER VECTOR FUNCTION XO5.I_MAX_VC

IM=IM—MATC(Xo5_I_MAX_VC(IN))
RETURN
END

244 manOlO.02 AMT

X05 — Other utilities 15.17 X05.1_MAX_VR

15.17 X05_I_MAX_VR release 1

1 Purpose
X05_I _MAX_VR returns an integer vector whose jth component is the maximum value in
the ith column of the integer matrix argument.

2 Specification
INTEGER VECTOR FUNCTION XO&. I - MAXXR (IM)
INTEGERIM(,)

3 Description
The maximum values are found by locating the positions of the maximum values in each
column and then taking the value in the first of these positions in each column. These
maximum values are then used to construct the required output vector.

4 References
None

5 Arguments

IM - INTEGER MATRIX

On entry, IM contains the matrix whose column-wise maximum values are required. IM
is unchanged on exit.

6 Error Indicators
None

7 Auxiliary Routines
This routine calls the routines X05..I_MAX_PR and X05..NORTIL BOUNDARY from.. the
General Support library.

8 Accuracy
Not applicable

9 Further Comments
N one

10 Keywords
Maximum

11 Example
In each column of the integer matrix input to the following FORTRAN-PLUS fragment the
maximum value in that column is subtracted from all the values in that column.

General Support library manOlO.02 245

15.17 X05_I_MAX_VR X05 — Other utilities

SUBROUTINE EXAMPLE C IM)
INTEGER 111(,)

EXTERNAL INTEGER VECTOR FUNCTION XO5_I_MAX_VR

IM=IM—MATR(XO5j_MAX.yR(IM))
RETURN
END

246 manOlO,02 AMT

X05 — Other utilities 1518 X05_I_MIN_PC

15.18 X05_I _MIN _PC release 1

1 Purpose
X05_LMIN_PC returns a logical matrix marking the minimum value(s) in each row of the
integer matrix argument. The i’ row of the argument contains one or more elements whose
value is the minimum value for the row. The corresponding element(s) of the i’ row of the
logical matrix are set to TRUE. to mark that minimum value, with all other elements of
the logical matrix set to .FALSE.

2 Specification
LOGICAL MATRIX FUNCTION XO&.LMINPC(IM , N)
INTEGER* <N> IM(,)
INTEGER N

3 Description
In each argument row which contains only positive numbers the position(s) of the minimum
number is found, and the corresponding output logical mask element(s) set to .TRUE. If arow of the argument contains at least one negative number, the position(s) of the negativenumber with greatest absolute value are found, and the corresponding logical mask elementsset to .TRUE.; all other elements of the output mask are set to .FALSE.

4 References
N one

5 Arguments

IM - INTEGER* <N> MATRIX
On entry, IM contains the matrix whose row-wise minimum positions are required. IMis unchanged on exit.

N - INTEGER

On entry, N specifies the length of the matrix IM in bytes. N is unchanged on exit.

6 Error Indicators
None

7 Auxiliary Routines
None

8 Accuracy
Not applicable

9 Further Comments
None

10 Keywords
Minimum

General Support library manOlO.O2 247

15.18 X05_I_MIN_PC XO.5 — Other utilities

ii Example
In each row of the matrix input to the follotving FORTRAN-PLUS fragment the minimum
value(s) in that row are set to zero.

SUBROUTINE EXAMPLE flY)
INTEGER*2 IM(,)
LOGICAL LM(,)

EXTERNAL LOGICAL MATRIX FUNCTION X05_I_MIN_PC

LM=X05_I_MIN...PC(IM , 2)
IM(LM)=O
RETURN
END

248 manOlO.02 AMT

X05 — Other utilities 15.19 X05_I_ MIN_PR

15.19 XO5. I — MIN — PR release 1

1 Purpose
X05_I_MIN_PR returns a logical matrix marking the minimum value(s) in each column of
the integer matrix argument. The i column of the argument contains one or more elements
whose value is the minimum value for the column. The corresponding element(s) of the
column of the logical matrix are set to .TRUE. to mark that minimum value, with all other
elements of the logical matrix set to .FALSE.

2 Specification
LOGICAL MATRIX FUNCTION X05. I MIN - PR (IM , N)
INTEGER* <N> IM(,)
INTEGER N

3 Description
In each argument column which contains only positive numbers the position(s) of the mini
mum number is found, and the corresponding output logical mask element(s) set to .TRUE.
If a column of the argument contains at least one negative number, the position(s) of the
negative number with greatest absolute value are found, and the corresponding logical mask
elements set to .TRUE.; all other elements of the output mask are set to .FALSE.

4 References
None

5 Arguments

TM - INTEGER* <N> MATRIX

On entry, TM contains the matrix whose column-wise minimum positions are required.
IM is unchanged on exit.

N - INTEGER

On entry, N specifies the length of the matrix TM in bytes. N is unchanged on exit.

6 Error Indicators
None

7 Auxiliary Routines
None

8 Accuracy
Not applicable

9 Further Comments
None

10 Keywords
Minimum

General Support library manOlO.02 249

15.19 X05_I_MINPR X05 — Other utilities

ii Example
In each column of the input matrix in this FORIRAN-PLUS fragment the minimum value(s)
in that column are set to zero.

SUBROUTINE EXAMPLE C IM)
INTEGER*2 IM(1)
LOGICAL LM()

EXTERNAL LOGICAL MATRIX FUNCTION X05_I_MIN_?R

LM=X05_I_MIN_PR(IN, 2)
IM(LM)=O
RETURN
END

250 manOlO.02 AMT

X05 — Other utilities 15.20 X05_I_MIN_VC

15.20 X05_I_MIN_VC releasel

1 Purpose
X05_I _MIN _VC returns an integer vector whose jfh component is the minimum value in the

row of the integer matrix argument.

2 Specification
INTEGER VECTOR FUNCTION X05 I - MIN XC (IM)
INTEGER IM (,)

3 Description
The minimum values are found by locating the positions of the minimum values in each row
and then taking the value in the first of these positions in each row. The minimum values
so found are used to construct the output vector.

4 References
None -

5 Arguments

IM - INTEGER MATRIX

On entry, IM contains the matrix whose row-wise minimum values are required. IM is
unchanged on exit.

6 Error Indicators

None

7 Auxiliary Routines
The routine calls routines X05_I _MIN ...PC and X05_WEST..BOUNDARY from the General
Support library.

8 Accuracy
Not applicable

9 Further Comments
None

10 Keywords

Minimum

11 Example
In each row of the integer matrix input to the following FORTRAN-PLUS fragment the
minimum value in that row is subtracted from all the values in that row.

General Support library manOlO.02 251

15.20 X05_LMIN_VC X05 Other utilities

SUBROUTINE EXAMPLE C IN)
INTEGER IM(,)

EXTERNAL INTEGER VECTOR FUNCTION X05_I_MIN_VC

IM=IM—MATCfXO5..I_MIN_VC(IN))
RETURN
END

252 manOlO.02 AMT

X05 — Other utilities 15.21 X05_I_MIN_VR

15.21 X05_I_MIN _VR release 1

1 Purpose
X05..I _MIN _VR returns an integer vector whose component is the minimum value in the
th column of the integer matrix argument.

2 Specification
INTEGER VECTOR FUNCTION X05.. I - MIN .YR (TM)
INTEGER TM (,)

3 Description
The minimum values are found by locating the positions of the minimum values in each
column and then taking the value in the first of these positions in each column. The minimum
values so found are used to construct the output vector.

4 References
None

5 Arguments

TM - INTEGER MATRIX

On entry, TM contains the matrix whose column-wise minimum values are required. TM
is unchanged on exit.

6 Error Indicators
None

7 Auxiliary Routines
The routine calls the General Support library routines X05.. I - MIN - PR and X05.. NORTH - BOUNDARY.

8 Accuracy
Not applicable

9 Further Comments
None

10 Keywords
Minimum

11 Example
In each column of the integer matrix input to the following FORTRAN-PLUS fragment the
minimum value in that column is subtracted from all the values in the column.

General Support library manOlO.02 253

15.21 X05_IJ’JIN_VR X05 — Other utilities

SUBROUTINE EXAMPLE (IM)
INTEGER IM(,)

EXTERNAL INTEGER VECTOR FUNCTION XO5_I_MIN_VR

IM=IM—MATRCXO5_I_MIN_VR(IM))
RETURN
END

254 manOlO.02 AMT

X05 — Other utilities 15.22 X05_LOG2

15.22 XO&.LOG2 release 1

1 Purpose
X05_ LOG2 retuTns the number of steps required in a recursive doubling algorithm.

2 Specification
INTEGER FUNCTION X05.. LOG2 (N)
INTEGER N

3 Description
The value returned by the routine is:

[log2(N—1)]+1

where square brackets indicate ‘integer part of’, and N is the input argument.

The routine subtracts 1 from N, then scans the bit pattern of N — 1 serially, starting at
the most significant bit, to find the first .TRUE. bit. The required output value equals
(11 — the number of serial steps taken).

For N greater than 1024, X05_LOG2 returns an incorrect value, as the routine takes (N
modulo 1024) as its argument.

4 References
None

5 Arguments

N - INTEGER

On entry, the value in N should lie in the range 1 — 1024. N = 0 will return the result
10; for N < 0 the result is undefined. N is unchanged on exit.

6 Error Indicators -

None

7 Auxiliary Routines
None

8 Accuracy
Not applicable

9 Further Comments
None

10 Keywords
Logarithmic algorithm, recursive doubling

General Support library manOlO.02 255

15.22 X05_LOG2 X05 — Other utilities

11 Example
The example calculates the number of steps required by a recursive doubling algorithm for
a problem of size 1001.

Host program

PROGRAM MAIN
INTEGER N,LOG2N
COMMON /LOG2N/ N,LOG2N

C
C Initialise data for function
C

N = 1001
C
C Cormect to DA? module
C

CALL DA?CON(’ent.dd’)
C
C Send test data to the DAP
C

CALL DA?SEN(’LOG2N’,N,1)
C
C Call the DA? ENTRY subroutine
C

CALL DA?ENT(’ENT’)
C
C Send test data and result from the DAP
C

CALL DA?REC(’LOG2N’ ,N2)
C
C Release the DA?
C

CALL DA?REL
C
C Write out the data and result for inspection.
C

WRITE(6,1) N,LOG2N
1 FORMAT(‘VALUE OF N = ‘I6/’STEPS REQUIRED = ‘,16)

STOP
END

DAP program

ENTRY SUBROUTINE ENT
INTEGER N,LOG2N
COMMON /LOG2N/ N,LOG2N

C
C Note the EXTERNAL statement for this function
C

EXTERNAL INTEGER SCALAR FUNCTION X05_LOG2

256 manOlO.02 AMT

X05 — Other utilities 15.22 X05_LOG2

C
C Convert input data
C

CALL CONVFSI(N,1)
LOG2N = XOS_LOG2(N)

C
C Convert input data and results back to host format
C

CALL CONVSFI(N,2)
RETURN
END

Results

VALUE OF N = 1001
STEPS REQUIRED = 10

General Support library manOlO.02 257

15.23 X05..LONG_INDEX X05 Other utilities

15.23 X05_LONG_ INDEX release 1

1 Purpose
X05_LONG_INDEX generates an integer matrix whose jth element in long vector order is
(i + N — 1), where N is a parameter to the routine.

2 Specification
SUBROUTINE X05.. LONG... INDEX (IMAT, N)
INTEGER IMAT(,) , N

3 Description
The routine calls the FORTRAN-PLUS intrinsic ‘Long_Index’, and is provided for backwards
compatability with existing code.

4 References
None

5 Arguments

IMAT - INTEGER MATRIX

On exit, the jh component in long vector order of IMAT will contain (1 + N — 1).

N-INTEGER

On entry, N specifies the value that is required in IMAT (1). N is unchanged on exit.

6 Error Indicators
None

7 Auxiliary Routines
None

8 Accuracy
Not applicable

9 Further Comments
Overflow is not detected for large values of N.

10 Keywords
Indexing

11 Example
The example generates a vector indexed from 1 to 1024.

258 manOlO.02 AMT

X05 — Other utilities 1.5.23 X05_ LONG_INDEX

Host program

PROGRAM MAIN
INTEGER IM(32,32)
COMMON /IM/IM
CALL DA?CON(’ent.dd’)
CALL DAPENT(‘ENT’)
CALL DAPREC(’IM’ ,IM,1024)
CALL DAPREL
00 10 1=1,32
00 10 3=1,32

10 WRITE(6,1000) 111(3,;)
1000 FORMATC1X,16)

STOP
END

DAP program

ENTRY SUBROUTINE ENT
INTEGER IM(,)
COMMON /IM/IM
CALL X0S_LONG_INDEX(IM, 1)
CALL CONVMFI(IM)
RETURN
END

Results

1
2
3

1024

General Support library manOlO.02 259

15.24 X05_NORTH_BOUNDARY X05 — Other utilities

15.24 XO5NORTHBOUNDARY releasel

1 Purpose
X05_NORTH_BOUNDARY returns a logical matrix containing at most one TRUE. in
each column corresponding to the first .TRUE. (if any) in each column of the logical matrix
parameter. That is, the routine is equivalent to the FORTRAN-PLUS code:

KM = .FALSE.
DO10I=1,32
IF (.NOT. ANY (LM(,I))) GOTO 10
KM(,I) = FRST(LM(,I))

10 CONTINUE

2 Specification
LOGICAL MATRIX FUNCTION X05.. NORTH - BOUNDARY (LM)
LOGICAL LM(,)

3 Description
The DAP store plane (logical matrix LM) passed to the routine is treated as a set of 32
logical vectors, arranged so that each vector occupies a complete column. Each of these
vectors is dealt with independently, but in parallel.

To each vector is ripple-added a column of all-true bits; the northernmost bit of the vector
is treated as least significant. The addition column is thrown away; the column of carry bits
from the addition, and a shifted-south version of the column of carries, are XORed to give a
vector with only one true element: the northernmost .TRUE. element in each input vector.
The 32 resultant vectors, produced in parallel, form the required north boundary matrix.

4 References
N one

5 Arguments

LM - LOGICAL MATRIX

On entry, LM is the logical matrix whose north boundary is required. LM is unchanged
on exit.

6 Error Indicators
None

7 Auxiliary Routines
N one

8 Accuracy
Not applicable

9 Further Comments
None

260 manOlO.02 AMT

X05 — Other utilities 15.24 X05_ NORTH_BOUNDARY

10 Keywords
Boundary

11 Example
The following FORTRANPLUS fragment takes a ‘black and white’ logical matrix (a chess
board pattern) as input, and returns the north boundary.

ENTRY SUBROUTINE ENT
LOGICAL LMC),KM(,)
EXTERNAL LOGICAL MATRIX FUNCTION X05_NORTH_BOUNDARY
LM=ALTR(1).LEQ.ALTC(1)
KY=X05_NORTH...BOUNDARY (LM)
TRACE 1 (KY)
RETURN
END

The result in this case is simply LM .AND. ROWS (1,2)

General Support library manOlO.02 261

15.25 X05_ PATTERN X05 — Other utilities

15.25 X05.... PATTERN release 1

1 Purpose
X05_ PATTERN produces four user-selectable patterns, each of which is returned as a logical
matrix. The four patterns available are:

o — The main diagonal
1 — The minor diagonal
2 — A matrix, the rows of which correspond to the rows generated by the built-in

function ALTC
3 — The unit lower triangular matrix

2 Specification
LOGICAL MATRIX FUNCTION X0&. PATTERN (I)
INTEGER I

3 Description
The routine is provided for backwards compatability with existing code.

4 References
None

5 Arguments

I-INTEGER

On entry I specifies the pattern required. Four values are catered for:

I = 0 : RESULT(J,J) = .TRUE. where 0 <J < 33; all other elements are
.FALSE.

I = 1 : RESULT(J, 33 — J) = .TRUE. where 0 < J < 33; all other elements are
.FALSE.

I = 2 : RESULT (J,) is set equal to the row which generates ALTC (J — 1)

I = 3 : RESULT(J,K) = .TRUE. if J .GE.K where 0< J, K < 33

us unchanged on exit.

6 Error Indicators
If I < 0 or I> 3 X05.. PATTERN returns a logical matrix with all entries .FALSE.

7 Auxiliary Routines
None

$ Accuracy
Not applicable

262 manOlO.02 AMT

X05 — Other utilities 15.25 105_PATTERN

9 Further Comments
None

10 Keywords
Pattern generation

11 Example
In the following FORTRAN-PLUS fragment the patterns produced by the routine are used
to set up an integer identity matrix and a second matrix having 1 (.TRUE.) below the main
diagonal and 0 (FALSE.) everywhere else.

ENTRY SUBROUTINE ENT
INTEGER IDENT(,), LOWER(,)
LOGICAL DIAG(1)
EXTERNAL LOGICAL MATRIX FUNCTION 105_PATTERN
DIAG = 105_PATTERN (0)
IDENT = 0
IDENT (DIAG) = 1
LOWER = 0
LOWER(X05_PATTERN(3).AND. .NOT.DIAG) = 1
RETURN
END

General Support library manOlO.02 263

15.26 X05_SCATTER..V_32 X05 — Other utilities

15.26 X05_SCATTER_V_32 release 1

1 Purpose
X05_SCATTEILV_32 takes components of a vector and assigns the values to components
of a vector array designated by corresponding components of an indexing vector. The index
values are interpreted as reduced rank indices to the vector array.

2 Specification
SUBROUTINE X05...SCATTERY32 (FROM , TO , NTO , SELECT , IFAIL)

FROM and TO must agree in type and length. They may be INTEGER* < 1 — 4>,
REAL* <3—4> or CHARACTER. For example:

INTEGER FROM () , TO (, NTO)
INTEGER NTO , SELECT () , IFAIL

3 Description
The scattering is performed in a machine code DO loop.

4 References
None

5 Arguments

FROM - INTEGER* < 1-4>, REAL* <3-4> or CHARACTER VECTOR

Contains the 32 values to be scattered; it is unchanged on exit.

TO - INTEGER, REAL or CHARACTER VECTOR array

The dimensions of the array are (,NTO), agreeing with FROM in type and length. On
exit, TO contains 32 values from FROM, as selected by SELECT;
that is, TO (SELECT (I)) = FROM (I) for I = 1,32

NTO - INTEGER

The second dimension of array TO; NTO is unchanged on exit

SELECT - INTEGER VECTOR

The values are applied as reduced rank indices to TO, to select components as destina
tions for corresponding values from array FROM. SELECT is unchanged on exit.

IFAIL - INTEGER

Unless the routine detects an error (see Error indicators below) IFAIL contains zero
on exit.

6 Error Indicators
Errors detected by the routine:

IFAIL = 1 NTO was not positive

IFAIL = 2 Values of SELECT were not in range 1 to 32 NTO

264 manOlO.02 AMT

X05 — Other utilities 15.26 X05_SCATTEILV.32

7 Auxiliary Routines
None

8 Accuracy
Not applicable

9 Further Comments
None

10 Keywords
Data manipulation, gather, scatter

11 Example
The following FORTRAN-PLUS fragment scatters a 32 element vector to alternate positions
in a 64 element vector.

ENTRY SUBROUTINE ENT
INTEGER FROMQ,TO(,2),SELECT()
DO 10 I=1,64

10 TO(I)=0
DO 20 1=1,32
FROM(I)=I

20 SELECT(I)=2*I
CALL X05_SCATTER_V32 (FROM, TO,2,, IFAIL)
TRACE 1 (IFAIL)
TRACE 1 (TO)
RETURI(
END

Results

FORTRAN—PLUS Trace
FORTRAN—PLUS Subroutine: ENT at Line 9

Integer Scalar Local Variable IFAIL in 32 bits — on Stack at 0.13

0

End o Report

FORTRAN-PLUS Trace
FORTRAN—PLUS Subroutine: ENT at Line 10

Integer Vector Local Variable TO in 32 bits — addressed by Stack + 0.10
Unconstrained dimensions - 2

General Support library manOlO.02 265

15.26 XO&SCATTEfLV_32 X05 Other utilities

(Element 1)
(Component 01) 0, 1, 0, 2,
(Component 05) 0, 3, 0, 4,
(Component 09) 0, 5, 0, 6,
(Component 13) 0, 7, 0, 8,
(Component 17) 0, 9, 0, 10,
(Component 21) 0, 11, 0, 12,
(Component 25) 0, 13, 0, 14,
(Component 29) 0, 15, 0, 16

(Element 2)
(Component 01) 0, 17, 0, 18,
(Component 05) 0, 19, 0, 20,
(Component 09) 0, 21, 0, 22,
(Component 13) 0, 23, 0, 24,
(Component 17) 0, 25, 0, 26,
(Component 21) 0, 27, 0, 28,
(Component2s) 0, 29, 0, 30,
(Component 29) 0, 31, 0, 32

End of Report

.

266 manOlO.02 AMT

X05 — Other utilities 15.27 X05_SHLc_LV

15.27 X05....SHLC_LV release 1

1 Purpose
X05_SHLC_LV performs a cyclic long vector shift to the left on a number of bit planes, up
to a maximum of 256 planes.

2 Specification
SUBROUTINE X05..SIILC.LV(V , W , DEPTH , DIST)
INTEGER DEPTH , DIST
LOGICAL V (, , DEPTH) W (, , DEPTH)

3 Description
The shift is carried out in two stages. If the shift distance is D, then North/South shifting
is used for that part of the shift given by D modulo 32, and a West shift is used to handle
the remaining multiples of 32.

4 References
None

5 Arguments

V - LOGICAL MATRIX array of dimension (,,DEPTH)

On entry, V contains the data to be shifted; V is unchanged on exit.

W — LOGICAL MATRIX array of dimension (“DEPTH)

On exit, W contains the shifted version of the data in V.

DEPTH - INTEGER

On entry, DEPTH specifies the dimension of V; that is, the number of planes to be
shifted (taken modulo 256). DEPTH is unchanged on exit.

DIST - INTEGER

On entry, DIST specifies the magnitude of the shift (taken modulo 1024). DIST is
unchanged on exit.

6 Error Indicators
None

7 Auxiliary Routines
None

8 Accuracy
Not applicable

9 Further Comments
None

General Support library manOlO.02 267

15.27 X05_SHLC_LV X05 — Other utilities

10 Keywords
Shifting

11 Example
The example compares the result from X05_ SHLC_ LV with that from the built-in function
SHLC. The number of positions at which the two results disagree is counted and displayed.

Host program

PROGRAM MAIN
COMMON /ICOUNT/ICOUNT
CALL DAPCON(’ent.dd’)
CALL DAPENTC ‘ENT’)
CALL DAPRECC’ICOUNT’ ,ICOUNT,1)
CALL DAPREL
WRITEf 6, 1000) ICOUNT

1000 FORMAT(’ ICOUNT = ‘,15)
STOP
END

DAP program

ENTRY SUBROUTINE ENT
INTEGER IM(,),JM(,),KM(,)
COMMON /ICOUNT/ICOUNT
CALL X05_LONG_INDEX(IM, 1)
CALL X05_SHLC_LV(IM, JM,32 ,99)
KM=SHLC(IM,99)
ICOUNT = SUMfKM.NE.JN)
CALL CONVSFICICOUNT, 1)
RETURN
END

Results

ICOUNT = 0

.
268 manOlO.02 AMT

X05 — Other utilities 15.28 XO&.SHLP_LV

15.28 X05_SHLP_LV release 1

1 Purpose
X05_SHLP_LV performs a planar long vector shift to the left on a number of bit planes, up
to a maximum of 256 planes.

2 Specification
SUBROUTINE X0&.SHLP..LV(V , W, DEPTH , DIST)
INTEGER DEPTH , DIST
LOGICAL V(,,DEPTH) , W(,,DEPTH)

3 Description
The shift is carried out in two stages. If the shift distance is D, then North/South shifting
is used for that part of the shift given by D modulo 32, and a West shift is used to handle
the remaining multiples of 32.

4 References
None

5 Arguments

V — LOGICAL MATRIX array of dimension (,,DEPTH)

On entry, V contains the data to be shifted; V is unchanged on exit.

W — LOGICAL MATRIX array of dimension (‘,DEPTH)
On exit, W contains the shifted version of the data in V.

DEPTH - INTEGER

On entry, DEPTH specifies the dimension of V; that is, the number of planes to be
shifted (taken modulo 256). DEPTH is unchanged on exit.

DIST - INTEGER

On entry DIST specifies the magnitude of the shift (taken modulo 1024). DIST is un
changed on exit.

6 Error Indicators
None

7 Auxiliary Routines
None

8 Accuracy
Not applicable

9 Further Comments
None

General Support library manOlO.02 269

15.28 X05_SHLP_LV X05 — Other utilities

10 Keywords
Shifting

11 Example
The example compares the result from X05_SHLP_LV with that from the built-in function
SHLP. The number of positions at which the two results disagree is counted and displayed.

Host program

PROGRAM MAIN
COMMON /ICOUNT/ICOUNT
CALL DA?CON(’ent.ddO
CALL DAPENT(‘ENT’)
CALL DA?REC(’ICOUNT’ ,ICOUNT,1)
CALL DAPREL

WRITE(6, 1000) ICOUNT
1000 FORMAT(’ ICOUNT =‘,15)

STOP
END

DAP program

ENTRY SUBROUTINE ENT
INTEGER IM(,),JM(,),KM(,)
COMMON /ICOUNT/ICOUNT
CALL X05_LONG_INDEX(IM, 1)
CALL X05_SHL?_LV(IM, JM,32,99)
KM=SRL?(IM,99)
ICOUNT = SUM(KM.NE.JM)
CALL CONVSFIfICOUNT, 1)
RETURN
END

Results

ICOUNT = 0

270 manOlO.02 AMT

XOö — Other utilities 15.20 X05_ SHORT_INDEX

15.29 X05_SHORT..INDEX release 1

1 Purpose
X05_ SHORT_INDEX uses the FORTRAN-PLUS intrinsic routine ‘Short_Index’, and is pro
vided. for backwards compatibility.

2 Specification
SUBROUTINE XO5SHORTINDEX(IVEC ,N)
INTEGER IVEC () , N

3 Description
The routine is based on the FORTRAN-PLUS intrinsic ‘Short Index’.

4 References
None

5 Arguments

IVEC - INTEGER VECTOR

On exit, the component of IVEC will contain (1 + N — 1).

N-INTEGER

On entry, N specifies the value that is required in IVEC (1); N is unchanged on exit.

6 Error Indicators
None

7 Auxiliary Routines
None

8 Accuracy
Not applicable

9 Further Comments
Overflow is not detected for extremely large values in N.

10 Keywords
Indexing

11 Example
The example generates a vector indexed from 1 to 32.

General Support library manOlO.02 271

15.29 X05_SHORT_INDEX X05 — Other utilities

Host program

PROGRAM MAIN
INTEGER Iv(32)
COMMON /IVtIV
CALL DAPCONQent.dd’)
CALL DA?ENTC ‘ENT’)
CALL DA?REC(’IV’,IV,32)
CALL DAPREL
DO 10 I = 1,32

10 WRITE (6,1000) Iv(i)
1000 FORMAT(TX,16)

STOP
END

DAP program

ENTRY SUBROUTINE ENT
INTEGER IVO
COMMON /IV/IV
CALL X05..SHORT_INDEX_(IV, 1)
CALL CONVVFI(IV,32,1)
RETURN
END

Results

1
2
3

32

272 manOlO.02 AMT

X05 — Other utilities 15.30 X05_SHRC_LV

15.30 X05_ SHRC_ LV release 1

1 Purpose
X05...SHRC_LV performs a cyclic long vector shift to the right on bit planes. up to a maxi
mum of 256 planes.

2 Specification
SUBROUTINE X05.SHRC...LV(V , W, DEPTH , DIST)
INTEGER DEPTH , DIST
LOGICAL V(,,DEPTH) , W(,,DEPTH)

3 Description
The shift is carried out in two stages. If the shift distance is D, then North/South shifting
is used for that part of the shift given by D modulo 32, and an fast shift is used to handle
the remaining multiples of 32.

4 References
None

5 Arguments

V — LOGICAL MATRIX array of dimension (“DEPTH)

On entry, V contains the data to be shifted; V is unchanged on exit.

W — LOGICAL MATRIX array of dimension (,,DEPTH)

On exit, W contains the shifted version of the data in V.

DEPTH - INTEGER

On entry, DEPTH specifies the dimension of V; thgat is, the number of planes to be
shifted (taken modulo 256). DEPTH is unchanged on exit.

DIST - INTEGER

On entry, DIST specifies the magnitude of the shift (taken modulo 1024). DIST is
unchanged on exit.

6 Error Indicators
None

7 Auxiliary Routines
None

8 Accuracy
Not applicable

9 Further Comments
None

General Support library manOlO.02 273

15.30 X05_SHRC_LV 105 Other utilities

10 Keywords
Shifting

11 Example
The example compares the result from X05.. SHRC_ LV with that from the built-in function
SHRC. The number of positions at which the two results disagree is counted and displayed.

Host program

PROGRAM MAIN
COMMON /ICOUNT/ICOUNT
CALL DAPCON(’ent.dd’)
CALL DAPENT(’ENT’)
CALL DAPREC(’ICOUNT’ ,ICOUNT,1)
CALL DAPREL

WRITE(6, 1000) ICOUNT
1000 FORMAT(’ ICOUNT =‘,Is)

STOP
END

DAP program

ENTRY SUBROUTINE ENT
INTEGER IM(,) JM(,) ,KM(,)
COMMON /ICOUNT/ICOUNT
CALL X05_LONG_INDEX(IM, 1)
CALL X05_SHRC_LV(IM, JM,32,99)
KM=SHRC(IM,99)
ICOUNT=SUM(KM. NE. JM)
CALL CONVSFI(ICOUNT, 1)
RETURN
END

Results

ICOUNT = 0

274 manOlO.02 AMT

X05 — Other utilities 15.31 X05..SHRP_LV

15.31 X05_SHRP..LV release 1

1 Purpose
X05...SHRR.LV performs a planar long vector shift to the right on a number of bit planes,
up to a maximum of 256 planes.

2 Specification
SUBROUTINE X05.SHRPLV(V , W , DEPTH , DIST)
INTEGER DEPTH , DIST
LOGICAL V(,,DEPTH) , W(,,DEPTH)

3 Description
The shift is carried out in two stages. If the shift distance is D, then North/South shifting
is used for that part of the shift given by D modulo 32, and an East shift is used to handle
the remaining multiples of 32.

4 References
None

5 Arguments

V - LOGICAL MATRIX array of dimension (“DEPTH)

On entry, V contains the data to be shifted; V is unchanged on exit.

W — LOGICAL MATRIX array of dimension (“DEPTH)

On exit, W contains the shifted version of the data in V.

DEPTH - INTEGER

On entry, DEPTH specifies the dimension of V; that is, the number of planes to be
shifted (taken modulo 256). DEPTH is unchanged on exit.

DIST - INTEGER

On entry DIST specifies the magnitude of the shift (taken modulo 1024). DIST is un
changed on exit.

6 Error Indicators
None

7 Auxiliary Routines

None

8 Accuracy
Not applicable

9 Further Comments

None

General Support library manOlU.02 275

15.31 X05_SHRP_LV X05 Other utilities

10 Keywords
Shifting

11 Example
The example compares the result from X05_SHRP..LV with that from the built-in function
SHRP. The number of positions at which the two results disagree is counted and displayed.

Host program -

PROGRAM MAIN
COMMON /ICOUNT/ICOUNT
CALL DAPCON(’ent.dd’)
CALL DAPENT(‘ENT’)
CALL DAPREC(’ICOUNT’ ,ICOUNT,1)
CALL DAPREL

WRITEC 6, 1000) ICOUNT
1000 FORMAT(’ ICOUNT =‘,15)

STOP
END

DAP program

ENTRY SUBROUTINE ENT
INTEGER IM,),JM(,),KM(,)
COMMON /ICOUNT/ICOUNT
CALL X05_LONG_INDEX(IM, 1)
CALL X05_SHR?_LV(IM, JM ,32,99)
Kli=SHRP(IM,99)
ICOUNT=SUM(KM . NE. JM)
CALL CONVSFICICOUNT, 1)
RETURN
END

Results

ICOUNT = 0

276 manOlO.02 AMT

X05 — Other utilities 15.32 X05_SOUTH_ BOUNDARY

15.32 XO5SOUTHBOUNDARY releasel

1 Purpose
X05_SOUTH_BOUNDARY returns a logical matrix containing at most one TRUE. in each
column, corresponding to the last .TRUE. (if any) in each column of the logical matrix
parameter. That is, the routine is equivalent to the FORTRAN-PLUS code:

KM = .FALSE.
DO 10 I 1, 32
IF (.NOT.ANY(LM(,I))) GOTO 10
KM(, I) = REV(FRST (REV (LM (,I))))

10 CONTINUE

2 Specification
LOGICAL MATRIX FUNCTION X0&. SOUTH BOUNDARY(LM)
LOGICAL LM (,)

3 Description
The DAP store plane (logical matrix LM) passed to the routine is treated as a set of 32
logical vectors, arranged so that each vector occupies a complete column. Each of these
vectors is dealt with independently, but in parallel.

To each vector is ripple-added a column of all-true bits; the southernmost bit of the vector is
treated as least significant. The addition is thrown away; the column of carry bits from the
addition, and a shifted-north version of the column of carries, are XORed to give a vector
with only one true element: the southernnmost .TRUE. element in each input vector. The
32 resultant vectors, produced in parallel, form the required south boundary matrix.

4 References
None

5 Arguments

LM - LOGICAL MATRIX

On entry, LM is the logical matrix whose south boundary is required. LM is unchanged
on exit.

6 Error Indicators
None

7 Auxiliary Routines
None

8 Accuracy
Not applicable

9 Further Comments
None

General Support library manOlO.02 277

15.32 XO&SOUTILBOUNDARY X05 - Other utilities

10 Keywords
Boundary

11 Example
The following FORTRAN-PLUS fragment takes a ‘black and white’ logical matrix (a chess
board pattern) as input, and returns the south boundary.

ENTRY SUBROUTINE ENT
LOGICAL LMC),KM(,)
EXTERI(AL LOGICAL MATRIX FUNCTION X05SOUTH_BOUNDARY
LM=ALTR(1) .LEQ.ALTC(1)
KM=XO5_SOUTH_BOUNDARY (LM)
TRACE 1 (xli)
RETURN
END

The result in this case is simply LM .AND. ROWS (31,32)

278 manOlO.02 AMT

X05 — Other utilities 15.33 X05_STRETCIL4

15.33 X05_STRETCH_4 release 1

1 Purpose
X05_ STRETCH _4 stTetches the first quarter of a real matrix A (considered as a long vector),
such that each element is repeated four times consecutively.

2 Specification
REAL MATRIX FUNCTION XO5STRETCHA(A)
REAL A(,)

3 Description
The routine uses a recursive doubling algorithm to re-arrange the data.

4 References
None

5 Arguments

A - REAL MATRIX

On entry, the first 256 elements of A must be defined. On exit, the 1024 elements of
A contain 256 groups of 4 identical elements, the groups being one elements repeated 4
times, from each of the first 256 elements of the input matrix; long vector order is used.

6 Error Indicators
None

7 Auxiliary Routines
None

$ Accuracy
Not applicable

9 Further Comments
None

10 Keywords
Data manipulation

11 Example
The following FORTRAN-PLUS fragment sets up an index matrix such that A (I) = I
(I = 1, 2, ... 256), with other elements being undefined. This matrix is then ‘stretched’
so that:

A(I)
=

for I = 1,2,... 1024

General Support library man 010.02 279

15.33 X05_STRETCH_4 X05 — Other utilities

ENTRY SUBROUTINE ENT
REAL AC,)
INTEGER IM(,)
EXTERNAL REAL MATRIX FUNCTION X05_STRETCH_4
CALL X05...LONG_INDEX(IM, 1)
A(ELSL(1,256)) = FLOATCIM)
A = X05_STRETCH_4(A)
RETURN
END

280 manOlO.02 AMT

X05 — Other utilities 15.34 XO&STRETcH..8

15.34 X05_STRETCH_8 release;

1 Purpose
X05_ STRETCH _8 stretches the first eighth of a real matrix A (considered as a long vector),
such that each element is repeated eight times consecutively.

2 Specification
REAL MATRIX FUNCTION X0& STRETCH 8 (A)
REAL A(,)

3 Description
The routine uses a recursive doubling algorithm to re-arrange the data.

4 References
None

5 Arguments

A - REAL MATRIX

On entry, the first 12$ elements of A must be defined. On exit, the 1024 elements of
A contain 128 groups of 8 identical elements, the groups being one elements repeated 8
times, from each of the first 12$ elements of the input matrix; long vector order is used.

6 Error Indicators
None

7 Auxiliary Routines
N one

8 Accuracy
Not applicable

9 Further Comments
None

10 Keywords
Data manipulation

11 Example
The following FORTRAN-PLUS fragment sets up an index matrix such that A (I) = I
(I = 1, 2, ... 128), with other elements being undefined. This matrix is then ‘stretched’
so that:

A(I) = ($1)+1 for I = 1,2,... 1024

General Support library manOIO.02 281

15.34 X05_STRETCH_8 X05 — Other utilities

ENTRY SUBROUTINE ENT
REAL AC,)
INTEGER IN(,)
EXTERNAL REAL MATRIX FUNCTION X05_STRETCH_8

CALL XOSLONG_INDEXCIM, 1)
A(ELSLC1,128)) = FLOAT(iM)
A = XO5..STRETCH_8(A)
RETURN
END

282 manOlO.02 AMT

X05 — Other utilities 15.35 X05_STRETCH_N

15.35 X05_ STRETCH_N release 1

1 Purpose
X05_STRETCH_N stretches the first of a real matrix A (considered as a long vector),
such that each element is repeated n times consecutively (n = 21), I being a poitive integer.

2 Specification
REAL MATRIX FUNCTION X05.. STRETCH ...N (A, I, IFAIL)
REALA(,)

3 Description
The routine uses a recursive doubling algorithm to re-arrange the data.

4 References
None

5 Arguments

A - REAL MATRIX

On entry, the first 1024/n elements of A must be defined. On exit, the 1024 elements of
A contain 1024/n groups of n identical elements, the groups being one element repeated
n times, from each of the first 1024/n elements of the input matrix; long vector order is
used.

I - INTEGER

I is the power of 2, such that n = 21. I is unchanged on exit

IFAIL - INTEGER

On exit, IFAIL = 1 if the implied value of n is greater than 32

6 Error Indicators
None

7 Auxiliary Routines
N one

8 Accuracy
Not applicable

9 Further Comments
None

10 Keywords
Data manipulation

General Support library manOlU.02 283

15.35 X0&STRETCILN X05 — Other utilities

11 Example
The following FORTRAN-PLUS fragment sets up an index matrix such that A (I) = I
(I = 1, 2, ... 128), with other elements being undefined. This matrix is then ‘stretched’
so that:

(I—1)
A(I)=

8
+1 for 1=1,2,... 1024

ENTRY SUBROUTINE ENT
REAL AC,)
INTEGER IM(,)
EXTERNAL REAL MATRIX FUNCTION X05_STRETCH_N
CALL 105_LONG_INDEX C IM, 1)
A(ELSL(1,128)) = FLOAT(IM)
A = X05_STRETCH_N(A,3,IFAIL)
trace 1(a)
RETURN
END

Results

FORTRAN—PLUS Trace
FORTRAN-PLUS Subroutine: ENT at Line 8

Real Matrix Local Variable A in 32 bits — addressed by Stack + 0.09

plus rest of TRACE output...

(Row 01 Col 01) 1.0000000E+O0, 5.0000000E+00, 9.0000000E+00,
(Row 02 Col 01) 1.0000000E+00, 5.0000000E+00, 9.0000000E+00,
(Row 03 Col 01) 1.0000000E+00, 5.0000000E+00, 9.0000000E+00,
(Row 04 Col 01) 1.0000000E+00, 5.0000000E+O0, 9.0000000E+00,
(Row 05 Col 01) 1.0000000E+00, 5.0000000E+00, 9.0000000E+00,
(Row 06 Col 01) 1.0000000E+00, 5.0000000E+00, 9.0000000E+00,
(Row 07 Col 01) 1.0000000E+00, 5.0000000E+00, 9.0000000E+00,
(Row 08 Col 01) 1.0000000E+00, 5.0000000E+00, 9.0000000E+O0,
(Row 09 Col 01) 2.0000000E+00, 6.0000000E+00, 1.0000000E+01,
(Row 10 Col 01) 2.0000000E+00, 6.0000000E+0O, 1.0000000E+01,
(Row 11 Col 01) 2.0000000E+00, 6.0000000E+O0, 1.0000000E+01,

284 man 010.02 AMT

X05 — Other utilities 15.36 X05_SUM_LEFT_12

15.36 X05_SUM_LEFT_12 release 1

1 Purpose
X05_SUM_LEFT_12 takes as input the long vector A (INTEGER* 2) and returns an (IN
TEGER* 2) long vector, each of whose elements is the sum of all the elements to the left of
the corresponding element of A, excluding the element itself.

2 Specification
INTEGER* 2 MATRIX FUNCTION X05.SUMLEFTI2 (A)
INTEGER* 2 A(,)

3 Description
Let A (= AJ) be the given long vector. The required long vector result S (= S) is given
by:

j—1 32 i—i

Ak
k=1 1=1 k=1

The sum is broken down into the following steps:

1
=

A the cumulative sums down each column

2 Cq = B32,3_1 for each i, where 332,0 = 0

3 Djj
=

C the cumulative sums of C along each row

4 S1 = D1+B1_1,2 where 30,j = 0

The summations (1) and (3) are performed using standard parallel algorithms (6 steps). The
remaining operations consist of shifts and a matrix add.

4 References
None

5 Arguments

A - INTEGER* 2

On entry, A contains the long vector on which the sum left is to be performed. A is
unchanged on exit.

6 Error Indicators
N one

7 Auxiliary Routines
None

General Support library manOlO.02 285

15.36 X05_SUM_LEFT_12 X05 — Other utilities

8 Accuracy
The results are accurate provided there is no overflow.

9 Further Comments
None

10 Keywords
None

ii Example
In the example, a sum-left is performed on an integer long vector with all components equal
to 1. The first five and last five values of the input and resulting long vectors are printed, in
long vector order.

Host program

PROGRAM HTSL2

INTEGER*2 ILv1(32,32) ,ILV2(32,32)
COMMON /BDATA/ILV1 , ILV2

CALL DAPCON(’tsl2.dd’)
CALL DAPENT(’TSL2’)

CALL DA?REC(’BDATA’ ,ILV1,1024)
CALL DAPREL

WRITE(6 ,6001)

WRITE(6,6002) (ILV1(I,1),I=1,5),(ILvl(I,32),I=28,32)
WRITE(6, 6003)
WRITEC6,6004) (ILV2(I,1),I=1,S)1(ILv2(I,32),I=2832)

6001 FORMAT(’IN?UT VECTOR’!)
6002 FORMAT(5(1X,I1),’ . . . ‘,S(lx,Il))
6003 FORMATC//, ‘RESULT’!)
6004 FORMAT(5(1X,I1),’ . ‘,S(1XI4))

STOP
END

286 manOlO.02 AMT

X05 — Other utilities 15.36 X05_SUM_LEFT_12

DAP program

ENTRY SUBROUTINE TSL2

I.NTEGER*2 ILV1(,),11V2(,)
COMMON /BDATA/ILV1 , ILV2

EXTERNAL INTEGER*2 MATRIX FUNCTION X05_SUM_LEFT_12

ILV=1
ILV2=XOS_SUM_LEFT_12(ILV1)

CALL CONVMF2 (ILV1)
CALL CONVMF2 (ILV2)

RETURN
END

Results

INPUT VECTOR

11111.. .11111

RESULT

0 1 2 3 4 . 1019 1020 1021 1022 1023

General Support library manUlO.02 287

15.37 X05_SUM_RIGHT_12 X05 — Other utilities

15.37 X05....SUM_RIGHT_12 release 1

1 Purpose
X05_SUM_RIGHT_12 takes as input the long vector A (INTEGER* 2) and returns an
(INTEGER* 2) long vector each of whose elements is the sum of all the elements on the
right of the corresponding element of A. The sum is strict in the sense that the element itself
is not included.

2 Specification
INTEGER* 2 MATRIX FUNCTION XO&.SUM RIGHT.. 12 (A)
INTEGER* 2 A(,)

3 Description
Let A (= Al,) be the given long vector. The required long vector result S (= S1) is given
by:

= > A,+
k=j+11=i+1 k=j+1

The sum is broken down into the following steps:

1 Bjj = A1 the cumulative sums up each co1umi

.
2 C2, = 332,j+1 for each i, where Bias = 0

3 Djj = C the cumulative sums of C along each row (right to left)
k=j+1

4 Si, = D1+31,1 where 3,33 0

The summations (1) and (3) are performed using the standard parallel algorithms (6 steps).
The remaining operations consist of shifts and a matrix add.

4 References
None

5 Arguments

A_INTEGER*2

On entry, A contains the long vector on which the sum-right is to be performed. A is
unchanged on exit.

6 Error Indicators
None

288 manOlO.02 AMT

X05 — Other utilities 15.37 X05_SUM_RIGHT_12

7 Auxiliary Routines
None

$ Further Comments
None

9 Keywords
None

10 Example
In the example, a sum-right is performed on an integer vector with all components equal to
1. The first five and last five values of the input and resulting long vectors are printed in
long vector order.

Host program

PROGRAM HTSR2

INTEGER*2 ILV(32,32) ,ILV2(32,32)
COMMON /BDATA/ILV1 ,ILV2

CALL DA?CON(’tsr2.dd’)
CALL DAPENT(’TSR2’)

CALL DAPREC(’BDATA’ ,ILV1,1024)
CALL DAPREL

WRITE(6, 6001)
WRITE(6,6002) (ILvl(I,1),I=1,s),(ILvl(I,32),I=28,32)
WRITE(6 ,6003)
WRITE(6,6004) (1Lv2(I,1),I=1,5),(ILv2(I,32),I=28,32)

6001 FORMAT(’INPUT VECTOR/)
6002 FORMAT(5(1X,I1),’ . . .‘,5(1X,I1))
6003 FOR11AT(//, ‘RESULT’!)
6004 FORMAT(5(1X,14),’ . ,5(1x,I1))

STOP
END

General Support library manOlO.02 289

15.37 X05_SUM_RIGHT_12 103 — Other utilities

DAP program

ENTRY SUBROUTINE TSR2

INTEGER*2 ILV1C),ILV2(,)
COMMON /BDATA/ILV1,ILV2

EXTERNAL INTEGER*2 MATRIX FUNCTION XO5_SUM_RIGHT_12

ILV1=1
ILV2=XOS_SUM_RIGHT_12 (ILV1)

CALL CONVMF2 C ILV1)
CALL CONVMF2(ILV2)

RETURN
END

Results

INPUT VECTOR

1111;.. .11111

RESULT

1023 1022 1021 1020 1019 . . . 4 3 2 1 0

290 manOlO.02 AMT

X05 — Other utilities 15.38 X05 UNCRINKLE

15.38 X05_UNCRINKLE release 1

1 Purpose
X05_UNCRINKLE effects a transformation in data storage format for vertical mode data
occupying an array of matrices from ‘crinkled’ to ‘sliced’ storage.

2 Specification
SUBROUTINE X05...UNCRINKLE (S, L, NR, NC, IFAIL)
<any type, any length> S(,,NR,NC)
INTEGER BL, NR, NC, IFAIL

3 Description
The data is conceptually considered to occupy an array C of components of size 32 NR by
32 NC. (NR or NC are positive integers, not excluding 1). The storage area, S, is an NR by
NC array of matrices. In the ‘sliced’ format:

S(ir,ic,jr,jc) = C(f+32(fr1),ic+32(jC1))

that is, each value of r selects a contiguous group of 32 rows of C, and so on.
In the ‘crinkled’ format:

S(if,ic,jr,jC) = C(jr+NRirl),jc+NC(ic_1)))

that is, each value of i,. selects a contiguous group of NR rows of C, and so on.
In the ‘sliced’ format the conceptual array is divided into subarrays of size 32 by 32. In the
‘crinkled’ format the conceptual array is divided into subarrays of size NB. by NC.
To carry out the transformation, first a mapping transformation is done on East — West
vertical sections of the data area. Each section is regarded as an array of 32 NC data items;
each item is of length L by NB. (vertical) bits. The transformation reverses the mapping
order so that succesive horizontal sets of NC data items are rethreaded vertically.
Then a similar transformation is done on NC separate groups of North — South vertical
sections of the data area. Each section of each group is regarded as an array of 32 NR data
items; each item is of length L (vertical) bits. The transformation reverses the mapping
order so that successive horizontal sets of NR data items are rethreaded vertically.

4 References
None

5 Arguments
S — <any type, any length> MATRIX array of dimension (,,NR, NC)

On entry, S contains the sliced data to be reformatted. On exit, S contains the data in
crinkled form.

L - INTEGER

On entry, L specifies the length in bits of the components of 5; L is unchanged on exit.

NR-INTEGER

On entry, NB. specifies the first unconstrained dimension of 5; NR is unchanged on exit.

General Support library manOl 0.02 291

15.38 X05_ UNCRINKLE X05 — Other utilities

5 Arguments — continued

NC - INTEGER

On entry, NC specifies the second unconstrained dimension of S; NC is unchanged on
exit.

IFAIL - INTEGER

Unless the routine detects an error (see Error Indicators below) IFAIL contains zero
on exit.

6 Error Indicators
Errors detected by the routine:

IFAIL = 1 either NR or NC was less than 1

IFAIL = 2 L was less than 1

7 Auxiliary Routines
to be supplied

8 Accuracy
Not applicable

9 Further Comments
None

10 Keywords
Crinkled data storage, data formatting, data movement, sliced data storage

11 Example
The following FORTRAN-PLUS fragment shows how the routine can be used in an entry
subroutine to convert a matrix set from crinkled to sliced form.

ENTRY SUBROUTINE ENT
REAL A(,,2,2)
COMMON IA/A
DO 10 1=1,2
DO 10 J=1,2
CALL CONVFM4(A(,,I,J))

10 CONTINUE
CALL X05_UNCRINKLE(A,4,2 ,2, IFAIL)
IF (IFAIL.NE.0) RETURN

C DA? processing
RETURN
END

292 manOlO.02 AMT

X05 — Other utilities 15.39 X05_WEST_ BOUNDARY

15.39 XO5WESTBOUNDARY release 1

1 Purpose
X05_WEST_ BOUNDARY returns a logical matrix containing at most one TRUE. element
in each row corresponding to the first .TRUE. (if any) in each row of the logical matrix
parameter. That is, the subroutine is equivalent to the FORTRAN-PLUS code:

KM = .FALSE.
DO10I=1,32
IF (.NOT.ANY(LM(I,))) GOTO 10
KM(I,) = FRST(LM(I,))

10 CONTINUE

2 Specification
LOGICAL MATRIX FUNCTION XO5WEST..BOUNDARY(LM)
LOGICAL LM(,)

3 Description
The DAP store plane (logical matrix LM) passed to the routine is treated as a set of 32
logical vectors, arranged so that each vector occupies a complete row. Each of these vectors
is dealt with independently, but in parallel.

To each vector is ripple-added a row of all-true bits; the westernmost bit of the vector is
treated as least significant. The addition is thrown away; the row of carry bits from the
addition, and a shifted-east version of the row of carries, are XORed to give a vector with
only one true element: the westernnmost .TRUE. element in each input vector. The 32
resultant vectors, produced in parallel, form the required west boundary matrix.

4 References
None

5 Arguments

LM - LOGICAL MATRIX

On entry, LM is the logical matrix whose west boundary is required. LM is unchanged
on exit.

6 Error Indicators
None

7 Auxiliary Routines
None

8 Accuracy
Not applicable

9 Further Comments
None

General Support library manOlO.02 293

15.39 XO&WEST.. BOUNDARY X05 — Other utilities

10 Keywords
Boundary

11 Example
The following FORTRAN-PLUS fragment takes a ‘black and white’ logical matrix (a chess
board pattern) as input and returns the west boundary.

ENTRY SUBROUTINE ENT
LOGICAL LM(,),KM(,)
EXTERNAL LOGICAL MATRIX FUNCTION XO5WEST_BOUNDARY

LM=ALTR(1) .LEQ.ALTC(1)
KM=XOS_WEST_BOUNDARY(LM)
TRACE 1 (KM)
RETURN
END

The result in this case is simply LM .AND. COLS(1,2)

294 manOlO.02 AMT

.

.

.

