
DAP Series

Low1eveI
Graphics Library

(enhanced)

GRALIB

AMT

(mani 17.01)

iv Preface

we consider you would not be following good (or at least
normal) coding practice. The words you should (not)
elsewhere in the body of the text are meant to give you a similar
caution.

typographical conventions The following typographical conventions are used in this
manual:

a Names of variable, commands, functions, subroutines
and files mentioned in the text are shown in bold type
face

• Computer screen or hard copy output is shown in a box:

[This is an example of screen output

a Any input that you would type is shown in bold type
face.

Occasionally, what you have to type in is shown boxed,
as well as being shown in bold typeface

• Text that would be replaced by other text in what you type
in or what the computer outputs is shown in italics.

For example, you might be asked to type the command:

save name

When you come to type the command you would replace
name with the name of the file into which you wanted to
save whatever was involved.

Similarly, a host screen display might be shown as:

(ersion n.m with SCSI HCU link
MCU code size 512 Kbytes, array size 4 Mbytes
TWON>

whereas, in what you would actually see on your screen,
n.m would replaced by a number combination, such as
3.1

• If you are asked to press a particular key on the keyboard,
that key will printed in capital letters and will be enclosed
in angled brackets. For example:

<RETURN>

is asking you to press the Return key

a If you are asked to press one key whilst holding down
another key, both keys will be enclosed in angled
brackets, with the to-be-held-down key given first and the
keys joined by a ‘-‘. For example:

<CONTROL-Z>

is asking you to hold down the Control key and press the
Z’ key.

iv manll7.07 AMT

Preface v

Similarly:

<CONTROL-SHIFT-Q>

is asking you to press and hold down the Control key, then
press and hold down either Shitt key, and then press the
‘Q’key

command syntax The syntax for a command specifies optional and alternative
sub-items in the command as:

[] You don’t need to include any of the item(s) enclosed
in square brackets, but if you do, then you can only
include one

(1 You must have one — and only one — of the items
enclosed in braces

You can repeat the item (and its delimiter, it
appropriate) preceding an ellipsis zero or more times;
that is, the item can occur one or more times

For example, a hypothetical command might be specified as:

[oPtion [. option...]

ad [filename

Possible variations of the command include:

ab option

ab option 7, option2, option3

ab filename

ac option 7, option2

and so on, where option, option 7, option 2, option3 and
filename would be defined as appropriate to the command.

DAP Series: Low-level graphics library (enhanced) man 777.07 V

vi

.

.

.
vi manll7.Q1 AMT

.
.

.

.

vii

Table of Contents

Preface iii

Chapter 1 Introduction and usage . . . 1
1.1 Colour modes and generation 2
1.2 Display buffer 4
1.3 Summary 4
1.4 Differences from earlier version of gralib 5
1.5 Using the library on different DAP machines 6
1.6 Compilation and linking procedure 6
1.6.1 In a Sun UNIX environment 6
1.6.2 In a VAXNMS environment 6

Chapter 2 Details of routines
. 9

2.1 Introduction 9
2.2 amt_gra_change screen 11
2.3 amt_gra_clear_screen 11
2.4 amt_gra_copy_image 12
2.5 axnt_gra_define_image 13
2.6 amt_gra_get_lut 16
2.7 amt_gra_init_font 17
2.3 amt_gra_init_graphics 18
2.9 amt_gra_magnify 19
2.10 amt_gra_put_cliaracters 20
2.11 mt_grayut_dot $ 22
2.12 amt_gra_put_fraine 23
2.13 amt_gra_put_lines 24
2.14 amt_gra_put_lut 25
2.15 amt_gra_put_rectangles 26
2.16 aixkt_gra_put_wide_lines 28
2.17 amtgrarasterop 29
2.18 amt_gra_RGBva1 and amt_gra_RGB_vals 30
2.19 amt_gra_set_colour regime 31
2.20 amt_gra_set_lut 33
2.21 amt_gra_start_sequence 34
2.22 amt_gra_stop_graphics 35
2.23 amt_gra_stop_sequence

. . 36
2.24 amt_gra_turn_of f_error_messages 36
2.25 amt_gra_turn_on_error_messages 36

DAP Series: Low-level graphics library (enhanced) man 177.01 vii

VIII Contents

Chapter 3 Examples 39
3.1 Example 1 39
3.2 Example 2 39
3.3 Example 3 42
3.4 Example 2 alternative solution 47

Appendix A library-defined error messages 49

Appendix B Specification for routine magnify 53

Index . 57

Reader comment form . 59

.
viii manl 77.07 AMT

Chapter 1

Introduction and usage

Your DAP system may include hardware for driving a suitable
high resolution colour monitor. If such hardware is installed,
you can use the AMT graphics library gralib, supplied with
the basic DAP software, to construct images and display them
on your monitor.

The image displayed on the monitor is made up of
10242 pixels (or picture elements). It your DAP system is fitted
with a VO-24 video output coupler, you can define pixels in
direct colour mode as three-channel (Red, Green Blue)
composite values, using 1 2, 4 or 8 bits per colour channel
which gives 3, 6, 12 or 24 bits per pixel. Direct colour is also
referred to as true colour.

If you have a VO-8 or an earlier DPIO video output system,
pixel values defined with 1, 2, 4 or 8 bit precision are used to
select colours out of the current palette or colour look-up table.
This is known as mapped colour mode (sometimes referred to
as false colour mode), since the look-up table provides a
mapping between the 16 million possible colours and the
limited number of colours available on the screen at the same
time with the VO-8 or DPIO hardware.

You can change the look-up table at any time, to one of the
AMT-supplied tables, or to one of your own making.

the display buffer You construct the image you want to display in a data area
within your program block. This part of array memory allocated
to your program is referred to in this manual as the
display buffer (screen buffet in previous AMT
documentation). A typical declaration in a FORTRAN-PLUS
enhanced program for a mapped-colour display buffer might
be:

[NTEGER*1 IMAGE (*1024*1024)

You can construct an image in your display buffer either by
calling one or more of the AMT-supplied routines in gralib
(such as amt_grayut_lines), or by explicitly updating
the pixel values in the display buffer using your own code, or
by some combination of the two techniques. You only need to
transfer the image from the display buffer to the hardware
framestore when you want to change the picture displayed on
the monitor. The gralib routines let you specify such an
update either on a one-off basis (by using routine

DAP Series: Low-level graphics library (enhanced) man 777.01 1

2 Chapter 1: Introduction and usage

amt gra_put frame), or repeatedly (using
amt gra start sequence). You are strongly advised to
define your display buffer in a common block, to make sure
that the buffer contents are preserved between calls to the
routines.

using co-ordinates With some gralib routines you will need to specify the
co-ordinates of individual pixels. The x co-ordinates (left to
right on the screen) and the y co-ordinates (top to bottom on
the screen) ate integers in the range 0 to 1023. The top left
corner of the screen has co-ordinates x=0, y=0; the bottom
right corner has x=1023, y=1023; and so on.

The first row of pixels on the screen corresponds to
display-buffer(1,) where display-buffer is the name you
have declared for the variable holding your display buffer.
Similary, the th row of pixels on the screen corresponds to
display-buffet (n,) and the th column of pixels on the screen
corresponds to display-buffet (, n).

1.1 Colour modes and generation
The DAP display hardware uses three 256-entry tables as a
colour look-up table. There is one table for each of the 3

how colour is generated primary colours, red, green, and blue. The tables provide the
link between the pixel values the software handles and the
colours displayed on the DAP monitor screen.

The diagram below illustrated the operation of the look-up
table. The entries in the red, green and blue sub-tables are
accessed by separate pixel-controlled pointers or indices IR,

IG and ‘B. The values held in the 3 tables at the three access
points, BRIR, B_GIG and BBIB, specify the brightnesses of
the primary colours to be displayed on the DAP monitor
screen.

entry 256,_

IG —

to
colour-generatingsoftware access

. electronicsto table
ZR — .—,

LB — —, B BIB
entry1_ —

red table green table blue tab colour look-up table

Each entry in each table can hold a value in the range 0 to
255; 255 specifies maximum brighness in the relevant primary
colour, 0 specifies zero brightness.

2 manll7.07 AMT

7. 1: Colour modes and generation 3

The values held in the 3 tables specify what colour will be
displayed for a given index into each table, and you can load
different sets of values into the 3 tables. These sets of values
— software look-up tables — give you great control over the
colours displayed. You can use one of the AMI-supplied
standard software look-up tables, but you can also generate
your own tables, or modify one of the AMT tables, and load
that.

How you specify colours in your software depends on whether
you are working with three channel direct colour using the
VO-24, or single channel mapped colour using the VO-8
coupler or the earlier DPIO coupler. You will have to supply
most gralib routines with a colour value (or in some cases
a set of colour values), as a parameter. These colour values
are 32 bit integers, only the least significant pxl bits being
used, where pxl is the number of bits per pixel.

direct colour mode Using direct colour mode, you access each sub-table in the
look-up table separately. The indices IR, IG and ‘B of the
diagram opposite are coded into one pixel value, using a pixel
length pxlof 3, 6, 12 or 24 bit precision (1, 2, 4 or 8 bits for
each of I, IG and IB).

mapped colour mode In mapped colour mode, you use the same pointer to access
all three tables. In terms of the diagram on the opposite page,
you only supply one index, I say, and I=IR=IG=IB. Each
pixel value in mapped colour mode is defined with apxlof 1,
2, 4 or 8 bit precision.

Note that although the three channel mode is described as
direct mode, it too makes use of the mappings built into the
look-up table. Whereas in mapped mode, the single index into
the look-up table controls all three primary displayed colours,
in direct mode any one of the 3 indices into the table can only
control one primary.

either colour mode When you initialise the gralib routines, a default colour
look-up table, giving 256 greyscale values, is automatically
loaded.

setting pixel values directly To set a value into a pixel directly, the value you supply has to
match the declared type of your display buffer. INTEGER*1
variables (for mapped mode) are signed quantities and can
take values in the range -128 to 127, while INTEGER*3
variables (for direct mode) take values in the range -8388608
to 8388607. Hence, for mapped mode, to specify a
brightness in the range 128 to 255, you need to specify a value
in the range -128 to -1.

For other precisions, where the display buffer has been
declared as if it were an array of LOGICAL bit planes, you
have to set individually each bit of each pixel you want to
change.

DAP Series: Low-level graphics library (enhanced) man 777.07 3

4 Chapter 1: introduction and usage

When you are using gralili routines, you are insulated from
the problem of specitying colours in signed integer format. For
the routines, all colours are held in the lower pxl bits of a 32-bit
integer variable; conversion to signed integer format is carried
out for you by gralib.

7.2 Display buffer
In earlier versions of gralib, the display buffer (or screen
buffer as it was then called) was fixed at the full-screen size
of 1024 by 1024 pixels.

The version of gralib available from DAP basic software
release 3.3 lets you define a display buffer smaller than
full-screen. A new gralib command,
amt_gra_define_image, lets your specify the image to
be displayed as different from full-screen. The defined image
can be the whole of a sub-screen size display buffer, or just
part of a normal full-screen display buffer

A major advantage of a smaller-than-screen-size buffer is that
you no longer have to reserve at least 1 Mbytes (1024 x 1024
8-bit pixels) for your display buffer.

7.3 Summary
In summary, the AMT graphics library is a set of routines that
you can call from FORTRAN-PLUS or APAL code, which let
you:

a Nominate a data area within your DAP program block as
a display buffer

• Specify a colour look-up table

• Draw characters, dots, lines and so on into the display
buffer

• Magnify an existing image

• Output the display buffer to the screen on a one-off or
regular basis

a Define an image for display smaller than your display
buffer

As an aid to debugging a graphics program you are provided
with two routines:

a t_graturn_onerror_messages

• amt_gra_turn_o ff_error_messages

which control messages that can be sent to the host screen
as a Trace report when the library routines detect possible
error conditions. Error messages are output by default and any
unexpected results from your graphics routines should prompt
you to check these messages.

4 manll7.O1 AMT

7.4: Differences from earlier version of gralib 5

This version of the library accompanies version 3.3 or higher
of the DAP basic software, and is designed for use with any
DAP-series machine; that machine can be connected to either
a Sun or a Digital VAXNMS system host. There are differences
between this version of gralib, and the one available with
r&ease 3.2 or earlier of the DAP software: see section 1.4 for
more details of the differences.

The DAP basic software supports multi-programming, and
several programs can run simultaneously on a time-slice
basis. Provided no other program has issued an
ant grainitgraphi cs command without a following
ant gra stop graphics command, if your program
issues an ant gra mit_graphics command, you will
get access to the graphics display system. If another program
is already using graphics when your program issues
ant gra_init_graphics, the system returns a
non-zero error code, which your program should trap and deal
with appropriately. See pages 18, 35 and 49 later in the
manual for more details of ant gra mit graphics,
ant gra stop graphics and error messages from
ant gra_init_graphics respectively.

A DAP simulator is also supplied with your basic software; DAP
programsthat include calls to gralib will work on the
simulator but produce no screen output. Graphics routines
running on a simulator will return the normal error messages
and codes (except that errors associated with the
unavailability of a monitor are not sent).

1.4 Differences from earlier version of gralib

The current version of gralib has been designed to use with
release 3.3 or higher of the DAP basic software, which
includes FORTRAN-PLUS enhanced, the unconstrained
version of FORTRAN-PLUS.

With this latest version of gralib you do not, in general, have
to concern yourself as to how your display buffer and other
images are mapped onto the array store of the target DAR In
earlier gralib versions, you had to partition your buffer and
images into tiles, each of size ES x ES pixels, where ES is the
edge size of the target DAP. Graphics source code written for
release 3.2 or earlier will still work under release 3.3, but you
have to recompile the source if you want to use it with code
written in FORTRAN-PLUS enhanced.

extra routines in the new gralib Two new commands have been added to the new version of
graith: amt_gra_define_image and
ant gra magnify—the second of which has been added
as routine magnify to the old version of gralib included
in release 3.3. magnify is documented in appendix B on
page 53 of this manual.

DAP Series: Low-level graphics library (enhanced) man 77707 5

6 Chapter 1 Introduction and usage

Names of routines in the new gralib all start with
ant gra, names in the old gralib had no such prefix.
The old routines are supported in the new gralib, and you
can mix the two. No details are given in this manual of the old
routines (except as mentioned above); they are documented
in [5], the AMT manual DAP Series: Low Level Graphics
Library (manOl7).

7.5 Using the library on different DAP machines

Because you can declare your images and display buffer
independently of the edge size of the target DAP, you can write
graphics (and other) source code without regard to DAP
edge-size. The only time when edge-size is important is when
you compile and link your code.

7.6 Compilation and linking procedure

7.6.1 In a Sun UNIX environment You can link the graphics library into a program by using
the —1 option to either dapa or dapf (see [2], DAP Series:
Program Development under UNIX (manOO3), for more
details).

For example, a FORTRAN-PLUS source program in a file
picture.df can be compiled and linked with the
AMT-supplied gralib graphics routines, and the object
code put into a DOF file picture by executing the
command:

[host# dapf -o picture picture.df -1 gralib

If you want to port FORTRAN-PLUS or APAL code containing
calls to graphics subroutines to a DAP of different edge size,
then you have to recompile and relink the code. Provided you
have not declared any at your images or display buffer in terms
of DAP edge-size, you do not need to change your source
code. If you do use DAP edge-size in your image of buffet
declarations, then you will need to use the #if facility. See
section 2.3.3 in [2] for more details.

1.6.2 In a VAXNMS environment You can link the graphics library into a program by including
it in the list of input files to the DLINK command (see [3],
DAP Series: Program Development Under VAX/VMS
(man004) for further details). In release 3.3V of the basic
software, two versions of the graphics library are supplied,
GRALIB5 for DAP 500, and GRALIB6 for DAP 600; when
you link the graphics library into your program you need to
specify the appropriate version of GRALIB.

To compile and link the DAP program in the tile
PICTORE .DFP to run on a DAP 600, you can use the
following commands:

6 manll7.O1 AMT

7.6: Compilation and linking procedure 7

($ DFORTRN/DAPSIZ64 PICTURE

L_DLINK/DPSIZE=64
PICTURE, SYS$IIBRRY:GRMIB6/LIBR?RY

To compile and link code in tile IMAGES.DFP to run on a
DAP 500 the above commands would be:

(j-DFO!PRN/DI2SIZE=32 DGES
DMC/D?PSIZE=32 DAGES, SYS$zJBR?RY GP,MJB5/LThRAPY

As an alternative to specifying that the graphics routines which
program PICTURE references are to be found in library
SYS$LIBRARY:GRALIB6.DLB, or the routines for
IMAGES are in library SYS$LIBRARY: GRALIB5 .DLB you
can define the logical name DAPn LIBRARY by using the
command:

[$ DEFINE D2n_LIBRARY SY$MBRI4RY:GR?LIBn

where n is 5 (for DAP 500) or 6 (for DAP 600). This will cause
DLINK to search GRALIBn automatically for unsatisfied
external references. If you are going to use GRALIBn
frequently, you can insert the above DEFINE into your
LOGIN. COM file. If there are several DAP users on the
system, linked to a DAP 600 say, the system manager could
include the command:

C $ DEFINE/SYSTEM flAP 6LIBR?RY SY$IIBRARY : GRAIJB6 . DLB

into the site system start-up command file which would give
all users automatic access to the library.

Similarly, the command:

Ls DEFINE/SYSTEM DAP5 LIBR?4RY SYS$LIBRARY : GRALTh5 . DLB

would achieve the same thing for a DAP 500 system.

linking several DAP libraries If you want DLINK to search more than one library
automatically, then in addition to defining DAPn LIBRARY
you can define one or more of the following logical names:

DP n_LIBRARY_i
DAP n_LIBRARY_2

DLINK will scan each library specified by these names in turn,
stopping at the first value of mfor which DAPnLIBRARYm
is not defined. Note that each logical name should specify only
one DAP library.

For example, if a program to run on a DAP 600 uses routines
in both GRALIB and DSPLIB, then if you have already

DAP Series: Low-level graphics library (enhanced) man 777.07 7

8 Chapter 1: Introduction and usage

defined D.P6 LIBRARY to be GRALIB6, and you use the
command:

L $ DEFINE DAP6LBAPY1 SYS$LIBRARY:DS?LIB6

when DuNK is called it wifl scan both GRALIB6 and
DSPLIB6 libraries.

On a system that has available both DAP 500 and DAP 600,
then both D.AP5 LIBRARY and DAP6 LIBRARY can be
defined, and users will pick up the appropriate version of
GRALIB when they specify DAPSIZE in their DFORTRAN
and DLINK commands.

It you want to port FORTRAN-PLUS or APAL code containing
calls to graphics subroutines to a DAP of different edge size,
then you have to recompile and relink the code. Provided you
have not declared any of your images or display buffer in terms
of DAP edge-size, you do not need to change your source
code. If you do use DAP edge-size in your image or buffer
declarations, then you will need to use the 4if facility. See
section 2.2.5.3 in [3] for more details.

.

8 manhl7.07 AMT

9

Chapter 2

Details of routines

2.7 Introduction

This chapter gives a short description of each routine, and
includes an example of a typical calling sequence. Any DAP
program that calls any of the routine should have declarations
similar to those given in these examples. Declarations have to
precede the call, but can appear anywhere before the call
itself, either together or separately.

The colour construction functions ant gra_RGB_val and
ant graRGBvals are also included in the following
descriptions.

The routines should return an error code of zero in the IERR
parameter. Any other value indicates an error — a list of
possible error codes is given in appendix A starting on
page 49.

The routines are listed in alphabetical order in the main part
of this chapter; the list that follows lists the routines in groups
of related function.

Routine Action

ant gra mit graphics Obtains graphic resources

ant gra stop graphi Cs Releases the graphics resources

ant gra set colour regime Specifies how pixels from different graphic objects are to be
combined in the display buffer

ant gra set lut Loads an AMT-supplied look-up table

amt_grayut_lut Loads a look-up table from array store

amt_gra get lut Copies the current look-up table into array store

ant gra change screen Changes the area of array memory to be used as display buffer

ant grayut frame Outputs a single image to DAP monitor screen

ant gra start sequence Starts the repeated output of images to DAP monitor screen

ant gra stop sequence Stops the repeated output of images to DAP monitor screen

ant gra clear screen Clears the image in the display buffer and replaces it with a
background colour

ant_grayutdots Plots dots

DAP Series: Low-level graphics library mani 17.01 9

10 Chapter 2: Details of routines

Routine Action

amt_gra_put_rectangles Draws rectangles

amt_gra_put_lines Draws lines

amt_gra_put wide_lines Draws wider lines and parallelograms

amt_gra_init_font_fontname Loads a font

amt_gra_put_characters Draws a character string

amt_gra_rasterop Copies to part of the display buffer an image from another
part of the buffet or from another part of array memory

amt_gra_copy_image Copies to part of the display buffer a tile-aligned image
from another part of the buffer or from another part of
array memory

amt_gra_magnify Magnifies an image

amt_gra_define_image Specifies image attributes that are used when the
framestore hardware outputs to the DAP monitor screen

amt_gra_turn_on_error_messages Turns on error messages

amt_gra_turn_off_error_messages Turns off error messages

Colour construction function Action

amt_gra_RGBva1 Generates a 24 bit colour value from its red, green and
blue constituents

amt_gra_RGB_vals Generates a set of 24 bit colour values from their
red, green and blue constituents

The full-screen-size image is 1024 by 1024 pixels; you
normally don’t have to concern yourself with processing
individual ES x ES tiles (where ES is the edge-size of the target
DAP). However, a few graith routines only handle images
made up of complete tiles.

declaration of display buffer To avoid repetition in this manual, in the various fragments of
code the display buffer is specified as INTEGER*n. For 8 bit
mapped colour this should read INTEGER*1, whereas for
24 bit direct colour it should read INTEGER*3. For other pixel
lengths the display buffer has to be declared as it each tile
were an array of logical bit-planes (see section 1.1 on page 3).

routines handle co-ordinates in Many of the graith routines take as some of their
vector or matrix arguments arguments, parameters specifying the co-ordinates and

colours of the objects to be drawn on the screen — and
specifying the accompanying filtering-out masks. In all such
cases you can specify such co-ordinates and so on as
components in either vectors or matrices, although you can’t
use both in the one routine.

70 manhl7.O1 AMT

22: amt_gra_change_screen 11

You cannot use scalars for the required parameters; if you only
want one graphic object, say a rectangle, then you would have
to declare a set of one element vectors — or matrices!

2.2 amt_gra_change_s creen

amt gra change screen nominates a new display
buffer, perhaps to let you switch between ready-prepared
images.

Typical calling sequence:

(NTEGER*n IMAGE2(*1024,*1024)

INTEGER IERR

CALL ANT GRA CHANGE SCREEN f IMAGE2, IERR)

The routine takes the arguments:

Argument Description

INAGE2 The new display buffer

IERR The error indicator, which is set on exit from the routine; 0 implies successful completion
of the routine. See appendix A starting on page 49 for details of the meaning of a
non-zero error code

If you have called amt_gra_start_sequenáe you
should call amt_gra stop_sequence before changing
the location of the display buffer.

As with amt gra mit graphics, the new display
buffet can be smaller than a full screen, although you should
also call amt_gra_define_iinage (see page 13) if you
want to declare a smaller-than-full-screen display buffer.

2.3 amt_gra_clear_screen

amtgraclearscreen sets the whole of the nominated
display buffer to a uniform background colour.

Typical calling sequence:

INTEGER ICOL, IERR

CALL ANT GRA CLEAR SCREEN (ICOL, IERR)

The routine takes the arguments:

Argument Description

ICOL The pixel value of the cleared screen

IERR The error indicator, which is set on exit from the routine; 0 implies successful completion
of the routine. See page 50 in appendix A for details of the meaning of a non-zero error
code

DAP Series: Low-level graphics library man 77707 17

12 Chapter 2. Details of routines

aint gra clear screen sets the whole of your
nominated display buffer to a colour specified by the pixel
value, that is, the least significant pxl bits of ICOL (pxl being
1, 2, 4 or 8 for mapped colour: or 3, 6, 12 or 24 bits for direct
colour).

2.4 amt_gra_copy_image

amt gra_copy image copies some or all of the
bit-planes of its input image into selected bits in the nominated
display buffer.

Typical calling sequence:

LOGICM, INPUT(*I_X_SIZE,*I_Y_SIZE,W)

INTEGER W, BIN, BN, XOUT, YOUT, 3_OUT

LL ANT GRA COPY IMAGE (INPUT, BIN, BN, XOUT, YOUT, BOUT, IEBR)

The routine takes the following arguments:

Argument Description

INPUT The input image.

I_X_SIZE is the horizontal size ot the image to be copied, is measured in pixels, and
is an integer multiple of ES, the edge-size of the target DAP.

IYSIZE is the vertical size of the image to be copied, is measured in pixels, and is
an integer multiple of ES, the edge-size of the target DAR

W is the wordlength, in bits, of the pixels in the input image

BIN The bit number of the pixels in the input image from where the copying is to start

BN The number of bits per pixel to be copied

XOUT The column address, in pixels, of the left edge of the receiving region in the display
buffer fan integer multiple of ES)

YOUT The row address, in pixels, of the top edge of the receiving region in the display buffer
(an integer multiple of ES)

BOUT The bit number of the pixels in the display buffer at which the copying is to start

IERR The error indicator, which is set on exit from the routine; 0 implies successful completion
of the routine. See page 51 in appendix A tot details of the meaning of a non-zero error
code

The routine copies an input image (held in a data area of your
program block) into a region of the same size in the display
buffer, over-writing the existing pixels in that part of the buffer.
Unlike amt_gra rasterop (described in section 2.17 on
page 29) the edges of both the input and output regions are
constrained to lie on tile boundaries.

12 manll7.O1 AMT

2.5. amt_gra_define_image 13

caution

2.5 amt_gra_define_image

Also unlike amtgra rasterop, the number of bits in the
data being copied across is not constrained to pxl bits, and
you can specify a range of consecutive bit planes within the
input image to be copied to a range of consecutive bit planes
within the corresponding part of the display buffer.

The sketch in the margin illustrates some aspects of what the
routine does.

The location of the input image is in general different from that
of the buffer.

Bits within a pixel are numbered 0 to pxl—1, bit 0 being the
most significant, where pxl is the number of bits in the pixel
(in the typical calling sequence above, W for input image
pixels; whatever was declared in the relevant call to
amt_gra_init_graphics or
amt gra change screen for the display buffer pixels).

So, for example, if pxl=8 for INPUT and display buffer,
BIN=2, B OUT=5 and BN=3, the effect is to copy bits 2 to
4 in each pixel in the input image to bits 5 to 7 in the
corresponding pixels in the display buffer. The result is that
the least significant 3 bits of the selected B bit pixels in the
display buffer are over-written, but their most significant 5 bits
are unaffected.

There are no restrictions on the value of W, that is,
non-standard wordlengths may be used — perhaps 32 bits,
10 bits, or 1 bit.

You can use the display buffer itself as the input image, but if
you do, you should make sure that the input and output regions
do not overlap — if they do, the effect is undefined.

amt gra define image records image attributes for
subsequent use by the framestore hardware, when a picture
is output to screen, as directed by the commands
amt_grayut_frame and amtgra_start_
sequence.

A typical calling sequence:

Alt the routine’s arguments are scalars. They are listed on the
next page.

I X SIZZ
ZYSIZE ——

N
display buffer

Y OU

7
NN

7 H

INTEGER WE SIZE, NS SIZE, PXL, OFFSETBOUT, IMGX, IMGY, FRMX, FRM_Y,
& DISPLAY OPT, IERR

LOGICAL COL MAJOR FLG, PACKED FLG

CALL ANT CPA DEFINE IMAGE (WE SIZE, NS SIZE, ?XL, OFFSET BOUT,
& COL MAJOR FLG, PACKED FLG, IMG_X, IMG_Y, FRNX, FRNY, DISPLAY OPT, IERR)

DAP Series: Low-level graphics library manl 77.07 73

14 Chapter 2: Details of routines

Argument Description

WE SIZE The width of the image area you want to define in the nominated display
buffer, in units of tiles

NSSIZE The height of the image area you want to define in the nominated display
buffer, in units of tiles

The number of bits per pixel in the image area to be defined.

Note: 24-bit working is only available on DAPs fitted with a V0—24 24-bit
graphics board

OFFSET B_OUT The bit number of the pixels in framestore to which transfer from the display
buffet is to start (for more detail, see the paragraphs below this table). You
will normally specify an OFFSET B_OUT of 0

C011 MAJOR FLG If this logical flag is set TRUE. then gralib assumes that tiles of the image
area to be defined are in column-major order, otherwise it assumes
row-major ordering

PAKEDFLG If this logical flag is set TRUE. then graith assumes that the image area
to be defined is the whole ot the display buffer, otherwise it assumes that
the display buffer is screen-sized —that is, 1024 by 1024 pixels

IMGX The x co-ordinate of the first tile in the image area to be defined, measured
in units of tiles and measured with respect to the top-left-hand corner of the
display buffer. If PACKED FIG is TRUE., then IMGX has to be 0

IMGY The y co-ordinate of the first tile in the image area to be defined, measured
in units of tiles and measured with respeët to the top left-hand corner of the
display buffer. If PACKED FIG is .TRUE., then INGY has to be 0

FRMX The x co-ordinate of the first tile in framestore to receive the pixels from the
image area, measured in units of tiles, and measured with respect to the
top-left-hand corner of framestore

FRMY The y co-ordinate of the first tile in tramestore to receive the pixels from the
image area, measured in units of tiles, and measured with respect to the
top-left-hand corner of tramestore

DISPLAY OPT Acts as an 8-bit mask, specifying which bits of the framestore pixels
selected for output are actually output; in 24-bit working, each of the 3 bytes
of a pixel is masked by the same DISPLAY OPT mask.

Note: DISPLAY OPT is ignored on DAPs fitted with the DPIO graphics
board

The error indicator, which is set on exit from the routine; 0 implies successful
completion of the routine. See page 51 in appendix A for details of the
meaning of a non-zero error code

The routine maps a selected area of the display buffer onto
part of the framestore. You can map the area onto any part of
the framestore, provided that the mapped area does not
overlap the edges of the framestore.

The routine also lets you specify that when pixels are sent to
framestore, copying does not start at bit 0 of the framestore’s

74 manll7.Q7 AMT

2.5: amt_gra_define_image 75

pixels and that only some of the bits in the pixels as received
in the framestore are to be output.

It the mapping that amt gra_define_image specifes
does not imply a shift of image — that is if FRMX=IMGX,
and FPMY=IMGY — then (subject to the effect of
OFFSET B OUT mentioned below) the whole ot the contents
of the display buffet ovet-wtites tramestore in subsequent
cal Is to amt_grayut_frame or
amt_gra_start_sequence, even though not all the
framestore is output to screen. If howevet a shift’ is specified
in amt gra define image, then only that part of
framestore overlapped by the shifted display buffer is
over-written.

The diagram below illustrates some of the capabilities of
amt gra define image. You can map only part of the
display buffer onto framestore, so only outputting that part to
screen, leaving the test of the screen image — and some of the
test of the contents of framestore — unaffected when
subsequently you call amt grayut frame or
amt_gra_start_sequence.

The diagram does not show the routine’s ability to map the
display buffer image onto only some bits of the framestore
pixels, or to output to only some bits of the screen pixels.

Bits within a pixel are numbered 0 to pxl—1, bit 0 being the
most significant, where pxl is the number of bits in a pixel. In
a framestore pixel pxl is 8 for VO—8 and DPIO couplers, 24 for
VO—24 couplers.

Normally bit n of the selected pixels in the display buffer
over-writes bit n of the corresponding pixels in framestore.
Howeve if you specify a OFFSETBOUT greater than 0,
then bits 0 to (OFFSETBOUT—1) in tramestore are

1MG Y

display buffer

FPM X

this part of framestore unaffected

this part of screen unaffected

SIZE

framestore

Using amt_gra_define image to map part of a
display buffer onto framestore and the DAP monitor screen

DAP monitor screen

DAP Series: Low-level graphics library manl 77.07 75

16 Chapter 2: Details of routines

unaffected when you subsequently call
ant gra_put frame or
ant gra start sequence, and bit n of the display
buffer overwrites bit (n+OFFSET B OUT) of framestore.
Here n goes from 0 to the size in bits of the pixels in the display
buffer.

uses for ant gra One of the limitations on the output of fast-moving images on
define_image the DAP is that it takes 20 milliseconds to output a full 8-bit

1024 by 1024 pixel image to screen — and 60 milliseconds for
a fuU 24-bit image. The screen refresh rate is 60 pictures a
second so it is not possible to change the whole of the picture
every 1o of a second (16.7 milliseconds).

higher-speed amt_gra_define_iinage lets you define an image
pictures smaller than 1024 by 1024, so that you can change only part

of the image on screen. If you define your image as, say 512
by 512 pixels, then the transfer-to-screen time for such an 8-bit
image is 5 milliseconds, and 15 milliseconds for such a 24-bit
image. Note that this faster-changing picture on the screen
only takes up part of the screen area; there is currently no
magnify facility available to ‘blow up’ part of framestore onto
the whole of screen.

montage of Another use for the routine is to build up a montage of small
small images images in the framestore and on the screen — by setting

PACIZDFLG on, declaring the display buffer to be the same
• size as the small images, and moving the defined image
around the framestore to build up the montage. Note, though,
that you have no control over screen refresh, and you may get
strange visual glitches as each new part of the montage is
added to the screen.

multi-images A third use is have two or more full-size images on the screen
at the same time, each image associated with different bits in
the pixel. You can then set DISPLAY_OPT so that only the
appropriate bits in the displayed pixels are updated.

It you set DISPLAY_OPT and OFFSET_B_OUT
appropriately, you can, for example, write a single-bit-plane
image to any pixel plane in framestore, and display a screen
picture in which only the image associated with that bit plane
is changed.

2.6 amt_gra_get_lut

amt_gra_get_lut copies the currently-loaded look-up
table from the graphics hardware into a selected area of your
array store.

Typical calling sequence:

1”INTEGER IUT(256,3),IEBR

L CMI AMT GRAGETLUT (LUT, lEER) J

16 manil7.O1 AMT

2.7: amt_gra_init_font 17

The routine takes the arguments:

Argument Description

LUT Specifies the area of store into which the current look-up table is to be copied

IEPR The error indicator, which is set on exit from the routine; 0 implies successful completion
of the routine. See page 49 in appendix A for details of the meaning of a non-zero error
code

The routine copies the values held in the hardware look-up
table into the array LUT. In the current gralib
implementation the red entries will be in LUT f, 1) the green
inLUT(,2) and the blue in LUT(,3).

You can use this routine together with arnt_gra_put_lut
to create and load back a modified version of the current
look-up table. The routine is also useful if an application needs
to preserve and re-instate the colour context.

2J amt_gra_init_font

amtgrainit font associates a font identifier with a
selected font. Subsequent calls to
amt_grayut_characters can then use that identified
font.

Typical calling sequence:

(ETEGER IFONT, MAX CELL X, MAX CELL Y, IEBR

CALL ANT GRA INIT FONT fontname (IFONT, MAX CELL X, MAX CELL Y, IERR)

The routine takes the arguments:

Argument Description

fontname The name of the required font. The table on the next page lists the names
of the available fonts

IFONT The variable that on exit from the routine returns the font identitier

MAX CELL X The variable that on exit from the routine returns the width, in pixels, of the
largest character cell in the font

MAX CELL Y The variable that on exit from the routine returns the height, in pixels, of the
largest character cell in the font

IERR The error indicator, which is set on exit from the routine; 0 implies successful
completion of the routine. See appendix A starting on page 49 for details
of the meaning of a non-zero error code

Associated with each character in each font is a character cell,
a notional box that encloses the character, with a suitable
amount of space on all sides. The character cells for the
various characters in a font will be of the same height, but in
general will be of different widths.

DAP Series: Low-level graphics library man 717.07 77

78 Chapter 2: Details of routines

You can initialise as many of the available fonts as you want,
each font taking about 130 planes of your program block (on
a DAP 500 or a DAP 600). Once initialised (with identifiers,
perhaps, of IFONT1 for Type 1, IFONT1b for
Typeib, and so on — see below for a list of the available
fonts) the initiaised fonts are available for calls to
amt_grayut_charact ers.

If you do not call the amt gra_init_font routine at all,
then only the default font type (corresponding to an IFONT
value of 0) is available

The available fonts are:

Name Description Maximum size of character cell
(width by height)

Type 1 non-proportional, serif 13 by 24 pixels

Type lb non-proportional, serif, bold 14 by 24 pixels

Type 2 non-proportional, serif 12 by 15 pixels

Print_i proportional, serif 11 by 18 pixels

Print lb proportional, serif, bold 11 by 19 pixels

Print 2 proportional, sans serif, large 30 by 32 pixels

default font non-proportional, serif, small 9 by 12 pixels

The default font is the font that is available with a font identifier
of 0.

2.8 amt_gra_init_graphics
amt_gra_init_graphics requests access to the
graphics hardware, nominates and describes the first display
buffer and sets up the initial drawing parameters to suit this
buffer.

Typical calling sequence:

INTEGERn IMA3E(*1O24,*lO24)

INTEGER IERR, MONITOR, OPTION

CALL PMT GRA INIT GRAPHICS (MONITOR, IMAGE, OPTION, IERR)

The routine takes the arguments:

Argument Description

MONITOR Specifies which display monitor is to be used. The MONITOR parameter will in a future
- release be used to select an appropriate video output coupler (and associated monitor)

from those that may be installed in one or more of the four FlO hardware slots in the DAP.

78 mani 77.07 AMT

2.9. amt_gra_magnify 19

In the meantime you should set MONITOR to —1 which will connect you to the first
available monitor. In the previous release of gralib, you were recommended to use a
value of 1 for MONITOR. which is also currently acceptable, and also connects you to
the first available monitor

IMAGE Declares the area ot store to be used as display buffer. Normally (as in the above calling
sequence) the buffer will be declared as a *1024*1024 area, but you can declare a
display buffer smallerthan full-screen size. Note, though, it you do declare such a buffer,

caution then unless you use amt gra define image (see page 13) to change the image
to be displayed to match the smaller buffer, you may get strange results

OPTION Selects between possible modes of operation: defines the colour mode and colour
precision as follows:

Value in OPTION Mode Channels Bits per channel Pixel length

n MAPPED 1 n= 1, 2, 4 or 8 n

(16+n) DIRECT 3 n=1, 2,4or8 f3*)

IER The error indicator, which is set on exit from the routine; 0 implies successful completion
of the routine. See page 49 in appendix A for details of the meaning of a non-zero error
code

You cannot drive an 8-bit video output coupler in 24-bit mode
and any request to do so will fail. However, you can initialise
a 24-bit video output coupler for either 8-bit or 24-bit mode.

amt_gra_init_graphics loads a grey scale palette into
the colour look-up table, whatever the value of OPTION: equal
values are loaded into corresponding entries in each of the
red, green and blue sub-tables in the table (0 for the 3 entry 1 s,

n for the 3 entry (n+1)s, ... 255 for the 3 entry 256s).

The contents of your nominated display buffer (IMAGE in the
above example) are not transferred to the hardware
tramestore until either routine amt_graput_frame or
routine amt_grastart_sequence is subsequently
called.

Z9 amt_gra_magnify

amt_gra_magnify magnifies an input image; the
magnification factors in the x and y directions can be different,
but both must be powers of 2. The result fills the whole of the
output image buffer.

A typical calling sequence:

INTEGER IERR

INTEGER*n INPUT (*IX SIZE, *IY SIZE), DESTINATION(*DXSIZE, *DY5IZE)

CALL ,NT GEAMAGNIFY (INPUT, DESTINATION, IERR)

DAP Series: Low-level graphics library man 777.07 79

20 Chapter 2: Details of routines

The routine takes the following arguments:

Argument Description

INPUT The image to be magnified.

IX SIZE is the horizontal size of the image, is measured in pixels, and
has to be an integral multiple of ES, the target DAP edge-size.

IYSIZE is the vertical size of the image, is measured in pixels, and has
to be an integral multiple of ES, the target DAP edge-size

DESTINATION The image buffer to receive the magnified image.

DX SIZE is the horizontal size of the buffer, is measured in pixels, and
has to be 2 x IX SIZE, where n is an integer value.

DY SIZE is the vertical size of the buffer, is measured in pixels, and has
to be 2m x IYSIZE, where mis an integer value

IEPR The error indicator, which is set on exit from the routine; 0 implies successful
completion of the routine. See page 51 in appendix A for details of the
meaning of a non-zero error code

The magnification ratios in the x and y directions are set by
the ratios of the declared sizes of the input and output images.
Provided the ratios are both powers of 2, they need not be the
same; they are:

DXSIZE
x magnificaflon

= IX SIZE

f’ t D Y SIZEy magni ca n
— I_Y_SIZE

You can extend the usefulness of the routine by using it in
conjunction with normal FORTRAN-PLUS enhanced
commands — you can extract INPUT from a larger image
using get_mat, and put the magnified INPUT into a buffer
larger than DESTINATION using set_mat.

2.10 amt_gra_put_characters

amt_grayut_characters puts coloured text in one of
the initialised fonts into the nominated display buffer.

Typical calling sequence:

INTEGER 0?, X, Y, COLOUR, NUM_IN_STRING, IFONT, lEER

CHARACTER STRING(NOCR)

L CALL AMT GRA PUT_CHARACTERS fX, Y, STRING, NUM_IN_STRING, COLOUR, IFONT, 0?, lEER)

The routine takes the arguments:

20 manll7.01 AMT

2. 10: amt_grayut_characters 27

Argument Description

x The x co-ordinate of the top-left-hand cornet of the start of the displayed
character string

y The y co-ordinate of the top-left-hand corner of the start of the displayed
character string

STRING The character string to be sent to the display buffer

NUM IN_STRING The number of characters to be displayed; only the first NUM_IN_STRING
characters from STRING will be displayed. NTJM IN STRING should not
be larger than NOcR, the number of characters reserved for STRING

COLOUR The pixel value of the requited display of STRING

IFONT The identifiet for the font to be used to display STRING; the identifier will
have been returned by an earlier call to amt gra mit font. The
identifier for the default font is 0

OP The option to be used to combine the character string pixels with the
existing pixels in the display buffer. See below for details

IER The error indicator, which is set on exit from the routine; 0 implies successful
completion of the routine. See page 50 in appendix A for details of the
meaning of a non-zero error code

All coordinates should be in the range 0 to 1023; if part of a
character is outside the range, then the character will be
clipped to the edge of the screen. Only the least significant
pxl bits of COLOUR are used, all others are ignored.

Parameter OP is used much as Op in routine
amt_gra_rasterop (see page 29) and can take one of
two values:

Value of OP Effect

1 Replace — Each pixel making up the character cells containing the characters being
written to the buffer over-writes the relevant existing pixel in the display buffer

2 XOR — Each pixel making up the character cells containing the characters being written
to the buffer is combined with the relevant existing pixel in the display buffer via a
bit-by-bit exclusive-or operation on the two pixel values

amt gra_put characters creates a box for each
character it writes to the screen, the background colour of the
box having a pixel value of 0, and the character shape a pixel
value of COLOUR. If several characters are being written to
the screen, their boxes are joined up to form a rectangular strip
holding the required text string. The strip-plus-string is
combined with the existing image in the screen buffer in a way
defined by the OP parameter.

how to get text with no apparent To write text of pixel value A, having a transparent’
background strip background strip, over a region with existing pixel value B you

would use an OP of 2 in your call to

DAP Series: Low-level graphics library manl 17.07 21

22 Chapter 2: Details of routines

amtgrayut_characters. You need to work out the
COLOUR to be supplied on the call; t is the exclusive-OR of
A and B. (Since the XOR operation is reversible, if COLOUR is
XOR (A,B) then XOR (COLOOR,B) produces A once mote.)

an example, with hUT of 4 For example, suppose you are using mapped colour and you
have set the active colour look-up table by running
amtgra_set_lut with an ILUT of 4 (see section 2.20 on
page 33 for details), and that the existing image in the display
buffer has a uniform pixel value of 1, producing a plain red
background; under this look-up table, a pixel value of 0
produced the colour black.

Suppose that you want to put white characters on the screen,
needing a pixel value of 7 with the ILUT=4 look-up table. If
you use an OP of 1 in amt_grayut_characters, that
is replacing the existing image with the characters and their
strip, the result on the screen would be a plain red
background, into which is cut a black strip containing your
white text string. If you specify an OP of 2, that is XOR-ing on
a bit-by-bit basis the pixel values of the existing image with
those of the characters and their strip, the result on the screen
would be cyan letters (with a pixel value of 6, the XOR of 7 with
1) on a red background, with no black strip surrounding the
letters. To get white letters on a plain red background with no
black strip, you would need to specify a COLOUR of 6 (cyan),
and an OP of 2.

2.17 amt_graputdots

amt_gra_put_dots generates a scatter plot of
individually-coloured single pixel dots in your nominated
display buffer.

Typical calling sequence:

(INTEGER xf*N0D),Y(*NOD),cOLoUR(*N0D),IERR

LOGICAL MASK(*NOD)

CALL ANT GRAPUT DOTS fX, Y, MASK, coLOUR, IERR)

The routine takes the arguments:

Argument Description

x The variable holding the x co-ordinates of the required dots

Y The variable holding the y co-ordinates of the required dots

MASK The logical variable defining which dots are to be added to the display buffet; dots in
locations corresponding to .TRUE.s in MASK are added

COLOUR The variable holding the pixel values of the required dots

22 manll7.Q1 AMT

2. 72: amt_grayut_frame 23

IER The error indicator, which is set on exit from the routine; 0 implies successful completion
of the routine. See page 50 in appendix A for details of the meaning of a non-zero error
code

NOD, the number of dots to be drawn, can take any positive
integer value. The number of dots that you can draw in one
call to the subroutine is only limited by possible array memory
limitations caused by the size of vectors you have to declare
for X, Y, COLOUR, and MASK.

All co-ordinates should be in the range 0 to 1023; if either the
x or y co-ordinate is out of range, the dot will not be drawn.
Only the least significant pxl bits of COLOUR are used, all
others are ignored (pxl being 1, 2, 4 or 8 for mapped colour;
or 3, 6, 12 or 24 bits for direct colour).

Although it may seem most natural to specify the co-ordinates
and so on of the required dots as components in vectors (as
above), you could equally well have used matrices to hold the
various sets of parameters for the dots.

For example, if you had used the sequence:

INTEGER NS (*A, *3) ,WE(*A, *3) ,HUE f*A, *3) ,ERR0R CODE
LOGICAL FILTER(*A,*B)

CALL AMT GRA PUT DOTS (NS, WE, FILTER, HUE, EBROR CODE)

You would potentially generate (A XE) individually-coloured
dots, although mask FILTER might have stopped some
being generated.

You can use amt_gra_set_colour_regime
(see page 31) to specify how the dots are to be combined with
the existing image in the display buffer; the default in the
current gralib implementation is for the pixels of the dots to
replace the existing pixels.

2.12 amt_grayut_frame

amt_gra_put_frame copies the image in the nominated
display buffer to the framestore for output to the DAP monitor
screen, and frees the buffer for preparation of the next image.

Typical calling sequence:

INTEGER lEER

L CALL ANT GBA PUT FRP,NE f lEER)

The routine’s only argument:

IEPR The error indicator, which is set on exit from the routine; 0 implies successful completion
of the routine. See page 50 in appendix A for details of the meaning of a non-zero error
code

DAP Series: Low-level graphics library man 777.07 23

24 Chapter 2; Details of routines

The routine copies the data in your display buffer into the
hardware framestore; control does not return from
amt_gra_yut_frame until all the data has been copied.

Data transfer time for a full 10242 pixel display buffer is
20 milliseconds for 8-bit pixels and 60 milliseconds for 24-bit
pixels. Although the data transfer is independent of screen
refresh, the system makes sure that the image is not displayed
until the transfer is complete.

This type of output lets you update the picture on the screen
at random times.

2.13 amt_gra_put_lines

ant grayut lines draws individually- coloured simple
lines in the nominated display buffer.

Typical calling sequence:

fINTEGER XSTART(*NOL) , YSTART (*NQL) ,XFINISH(*NOL) , YFINISH(NOL)

INTEGER COL0URf*NOL),IERR

LOGICAL MASK(*NOL)

CALL ANT GRA PUT LINES (XSTART, YSTART, XFINISH, YFINISH, MASK, COLOUR, lEER)

The routine takes the arguments:

Argument Description

XSThRT The variable holding the x co-ordinates of one end of the required lines

YSTART The variable holding the y co-ordinates of one end of the required lines

)FINISH The variable holding the x co-ordinates of the other end (to XSTART, YST.ART) of the
required lines

YFINISH The variable holding the y co-ordinates of the other end (to XSTART, YST.ART) of the
required lines

MASK The logical variable defining which lines are to be added to the display buffer; lines in
locations corresponding to .TRUE.s in MASK are added

COLOUR The variable holding the pixel values of the required lines

IER The error indicato which is set on exit from the routine; 0 implies successful completion
of the routine. See page 50 in appendix A for details of the meaning of a non-zero error
code

NOL, the number of lines to be drawn, can take any positive
integer value. The number of lines that you can draw in one
call to the subroutine is only limited by possible array memory
limitations caused by the size of vectors you have to declare
for XSTART, XFINISH, YSTART, YFINISH, COLOUR, and
MASK.

24 manll7.O7 AMT

2.74: amt_grayut_lut 25

All co-ordinates should be in the range 0 to 1023 and any line
for which either start or end points are out of range will not be
drawn and you will get an error report, although execution will
continue.

Only the least significant pxl bits of COLOUR are used, all
others are ignored (pxl being 1, 2, 4 or 8 for mapped colour;
or 3, 6, 12 or 24 bits for direct colour).

Although it may seem most natural to specify the start and end
co-ordinates and so on of the-required lines as components
in vectors (as above), you could equally well have used
matrices to hold the various sets of parameters for the lines.

You can use alELt_gra_set_colour_regime
(see page 31) to specify how the lines are to be combined with
the existing image in the display buffet; the default in the
current gralib implementation is for the pixels of the
rectangles to beR.NKed with the existing pixels according to
their pixel values.

2.14 amt_grayut_1ut

amtgra_putlut loads a colour look-up table from array
store into the graphics hardware, giving the advanced user
full control over the mapping of colour indices to actual
displayed colours, for both mapped and direct colour.

Typical calling sequence:

INTEGER LOT (256,3),IERR

CALL T GRA PUT_LOT C LUT, IERR)

The routine takes the arguments:

Argument Description

LUT Specifies the area of store from which a look-up table is to be loaded

IEPR The error indicator, which is set on exit from the routine; 0 implies successful completion
of the routine. See page 49 in appendix A for details of the meaning of a non-zero error
code

amtgraut1ut copies the look-up table entries from
the integer array LUT into the graphics hardware. The current
gralib implementation assumes that the entries in the array
are LUT (red-values, 1), LUT (green-values, 2), and
LUT (blue-values, 3). There are 256 elements in each
sub-array; the values in any element should lie between 0 and
255, with 0 meaning black and 255 meaning maximum
brightness for that colour.

mapped and direct colour If 8-bit mapped colour is being used, then corresponding
elements in the three arrays together specify the colour that
maps to the single index used to access the arrays.

DAP Series: Low-level graphics library man 777.07 25

26 Chapter 2: Details of routines

For 24-bit direct colour, the three arrays holding the colour
brightness information are accessed independently by three
separate indices, each array entry providing a translation for
a single colour channel.

look-up tables with mapped colour For 8-bit colour, if the value of a pixel isO then the three look-up
tableentriesfl,1),(1,2)and(1,3)areaccessedtofind
out the actual colour and brightness to be displayed on the
screen at that point; pixel value 255 accesses the three entries
corresponding to (256,1), (256, 2) and (256,3).

look-up tables with direct colour The 24-bit look-up tables similarly links pixel value 0 to the
three entries 1, 1; 1, 2, and 1, 3. The mapping of pixel values
onto the red, green and blue arrays is implementation-
dependent; in the current implementation the least significant
8 bits access the blue array, the middle 8 bits the green array,
and the most significant 8 bits the red array.

Hence pixel value 255 corresponds to array entries 1, 1; 1, 2;
and 256, 3. Similarly pixel value 265 corresponds to array
entries 1,1; 10,2; and 1,3, and pixel value (256—1)
corresponds to array entries 256, 1; 256,2; and 256, 3.

for mapped and direct colour Equal values in element n in the red, green and blue arrays of
the look-up table produces a colour ranging from black
through grey to white on the screen as that value goes from 0
to 255.

Note that for low-precision graphics, which use shorter pixel
lengths, the entries indexed are spread evenly across the
whole palette. Hence the 16 possible values for 4-bit pixels
index the entries (1, 17,33 241) in the palette, while 1-bit
(bilevel) images use only the first and the 129th entries.

By default, the 8-bit grey scale palette accessed by an ILUT
of 1 in amt gra set lut is loaded when you call
amtgrainitgraphiCs.

2.15 amt_grayut_rectang1es

amt_grayut rectangles draws rectangles in the
nominated display buffer. The sides of the rectangles are
parallel to the co-ordinate axes. Each rectangle is individually
specified in terms of position, size and colour by
corresponding components in the relevant variables.

Typical calling sequence:

INTEGER Xl C *NOR) ,Y1 (*NOR) ,X2 (*NOR) ,Y2 C *NOR)

INTEGER COLOUR (Qp)
, lEER

LOGICAL MASK (*NOR)

CAI.i AMT CRA PUT RECTP,NGLES f Xl, Y1,X2, Y2, MASK, COLOUR, lEER) J
26 man 177.07 AMT

2. 75: amt_grayut_rectangles 27

The routine takes the arguments:

Argument Description

xl The variable holding the x co-ordinates of one corner of the required rectangles

fl The variable holding the y co-ordinates of one corner of the required rectangles

x2 The variable holding the x co-ordinates of the opposite cornet (opposite to Xl, Yl) of
the required rectangles

Y2 The variable holding the y co-ordinates of the opposite corner (opposite to Xl, Yl) of
the required rectangles

MASK The logical variable defining which rectangles are to be added to the display buffer;
rectangles in locations corresponding to TRUEs in MASK are added

COLOUR The variable holding the pixel values of the required rectangles

IERR The error indicato which is set on exit from the routine; 0 implies successful completion
of the routine. See page 50 in appendix A for details of the meaning of a non-zero error
code

You can specify either pair of opposite corners of the required
rectangles; their order is not significant.

NOR, the number of rectangles to be drawn, can take any
positive integer value. The number of rectangles that you can
draw in one call to the subroutine is only limited by possible

V array memory limitations caused by the size of vectors you
have to declare for Xl, X2, Yl, Y2, COLOUR, and MASK.

The values of Xl, Yl, X2 and Y2 should all be in the range 0
to 1023; a rectangle whose centre (co-ordinates (Xl+X2)12,
(Y1+Y2)12) is off-screen will not be drawn and you will get an
error report, although execution will continue.
amt_gra_put_rectangles is a special case of
amtgrayutwidelines, and
amt_gra2ut_rectangles’s error messages (given in
appendix A, on page 50) sometimes only make sense in a
amt_grayut_lines context.

Although it may seem most natural to specify the co-ordinates
of the corners and so on of the required rectangles as
components in vectors (as above), you could equally well
have used matrices to hold the various sets of parameters for
the rectangles.

You can use amt_gra_setcolourregime
(see page 31) to specify how the rectangles are to be
combined with the existing image in the display buffer; the
default in the current gralib implementation is for the pixels
of the rectangles to replace the existing pixels.

DAP Series: Low-level graphics library man 777.07 27

28 Chapter 2: Details of routines

2.76 amt_grayut_wide_lines

amtgra_put_wide_lines draws individually-coloured
lines in the nominated display buffer. On a high resolution
screen the amt gra_put lines routine may not create a
bold enough line. amt gra_put wide lines creates a
heavier line.

Typical calling sequence:

INTEGER Xl (*NO) ,Yl f*NO) ,y (*NO) ,Y2 f*NOWL) ,W(*NOWL) ,HWID f*NOWL)

& VWID (*DqT) ,COLOURf*NOWL) , IERR

LOGICAL MASK f*NOWL)

CALL ANT GA PUT WIDELINES (Xl, Yl, X2, Y2, W, W, MASK, COLOUR, IERR):

CALL ANT GRA PUT WIDE LINES (Xl, Yl, X2 ,Y2, HWID, VWID, MASK, COLOUR, lEER)

The routine takes the arguments:

Argument Description

xl The variable holding the x co-ordinates of one end of the required lines

Y2 The variable holding the y co-ordinates of one end of the required lines

X2 The variable holding the x co-ordinates of the other end (to Xl, Y2) of the required lines

Y2 The variable holding they co-ordinates of the other end (to Xl, Y2) of the required lines

HWID The horizontal extent of the rectangular brush that is to create the lines

VWID The vertical extent of the rectangular brush that is to create the lines

w The horizontal and vertical extents of the rectangular brush that is to create the lines

MASK The logical variable defining which lines are to be added to the display buffer; lines in
locations corresponding to .TRUE.s in MASK are added

COLOUR The variable holding the pixel values of the required lines

IERR The error indicator, which is set on exit from the routine; 0 implies successful completion
of the routine. See page 50 in appendix A for details of the meaning of a non-zero error
code

NOWL, the number of wide lines to be drawn, can take any
positive integer value. The number of wide lines that you can
draw in one call to the subroutine is only limited by possible
array memory limitations caused by the size of vectors you
have to declare for Xl, X2, Yl, Y2, W, (or EWID and VWID),
COLOUR, and MASK.

Wide lines are drawn with a rectangular brush whose centre
follows the path between the start and end points.

The routine would generally be called with the same vector of
widths, w, supplied for both the horizontal and the vertical

28 manl 77.07 AMT

2. 77: amtgrara5terop 29

brush extents (as in the first call to
arnt grayut wide lines above). This would yield
symmetrical lines drawn with square brushes. Due to the use
of the ‘smeared square’ algorithm, diagonal lines may be as
much as times as wide as horizontal or vertical lines.

other uses for routine You can use amt_grayut_wide_lines to draw more
general shapes by specifying different horizontal and vertical
widths for the rectangular brush. This technique is shown in
the second call to arnt_gra_put wide lines in the
calling sequence above.

A line with a horizontal width of zero will be drawn with a brush
that consists merely of a vertical line, resulting in a
parallelogram with one pair of edges vertical. Similarly, you
can draw parallelograms with one pair of edges horizontal by
setting their vertical widths to zero.

Although it may seem most natural to specify the start and end
co-ordinates and so on of the required lines as components
in vectors (as above), you could equally well have used
matrices to hold the various sets of parameters for the lines.

You can use amt_gra_set_colour_regime
(see page 31) to specify how the wide lines are to be
combined with the existing image in the display buffer; the
default in the current gralib implementation is for the pixels
of the lines to replace the existing pixels.

2.17 amt_gra_rasterop

amt_gra_rasterop copies image data to your nominated
display buffer from another part of array store.

Typical calling sequence:

INTEGERn INPUT(*I_X_SIZE, *I_y_SIZE)

INTEGER 0?, IEBR, XOUT, YOUT

CALL AMT GRARASTEROP (INPUT, XOUT, YOUT, OP, IERR)

The routine takes the arguments:

Argument Description

INPUT The input image.

I_X SIZE is the horizontal size of the image to be copied, and is measured in pixels.

IYSIZE is the vertical size of the image to be copied, and is measured in pixels

X_OUT The column address, in pixels, of the left edge of the receiving region in the display
buffet

YOUT The tow address, in pixels, of the top edge of the receiving region in the display buffer

OP The combination function (see below)

DAP Series: Low-level graphics library man 777.07 29

30 Chapter 2: Details of routines

Argument Description

IEPR The error indicator, which is set on exit from the routine; 0 implies successful completion
of the routine. See page 50 in appendix A for details of the meaning of a non-zero error
code

The sketch in the margin illustrates some aspects of what the
routine does.

The routine copies an input image (held in a data area in your
program block) to a region of the same size in your display
buffet.

The input image need not be the same size as the buffer. The
location of the input image is in general different from that of
the buffer. There is no restriction on the positions of the edges
of the input or output regions — that is, they do not have to lie
on tile boundaries.

The OP parameter specifies how input pixels are combined
with pixels in the display buffer. OP takes either of the following
values:

Rep(ace — Each pixel of the input region over-writes the corresponding pixel of
the display buffer region

2 XOR — Each pixel of the input region is combined with the corresponding pixel of
the display buffer region by a bit-by-bit exclusive-or operation onthe two pxl-bit
pixel values

The top left corner of the output region (specified by XOUT,
YOUT) should be on the screen, but the other corners of the
region need not be, and if they are not the resultant image in
the display buffer will be clipped accordingly.

caution You can use the display buffer itself as the input image, but if
you do, you should make sure that the input and output regions
do not overlap — if they do, the effect is undefined.

2.18 amt_gra_RGB_vat and
amt_gra_RGB_vals

These colour construction functions make the construction of
24-bit red, green and blue (RGB) colour values easier.
amt_gra_RGB_val generates a single colour value, while
amtgra_RGB_vais returns a vector or matrix of colour
values.

A typical use of these colour construction functions:

INTEGER R,G,3, RVMf*300,*300),GVMf*300,*300),3VM(*300,*300),
& X(*300,*300),Yf*300,*300),IERR

INTEGER*3 COLOUR
INTECER*4 COLMAT f *300, *300)

dspIay buffer

Value of OP Effect

t
30 manl 77.01 AMT

2. 19: ant_gra_set_colour_regime 31

LOGICAL MASK(*300,*300)

EXTERNAL INTEGER*4 SCALAR FUNCTION ANTGRARGBVAL
EXTERNAL INTEGER* 4 VECTOR FUNCTION ANTGRAR.G3VALS
DIMENSION ANT GRA LIB RGB VALS (*, *)

COLOUR = ANT GRARGB VAL fR, G, B)
COLMAT = ANT GRARGB VALS fRVM, GyM, BVM)

CALL ANT GRA CLEAR SCREEN fRGB VAL(R, G, B) , IERR)
CALL ANT GRA PUT DOTS fX, Y, MASK, COLMAT, IERR)

The functions take the arguments:

Argument Description

R The brightness of the red component in the pixel value being constructed; only the
bottom 8 bits of R are used to construct the value

G The brightness of the green component in the pixel value being constructed; only the
bottom 8 bits of G are used to construct the value

B The brightness of the blue component in the pixel value being constructed; only the
bottom 8 bits of B are used to construct the value

RVM The brightness of the red components in the set of pixel values being constructed; only
the bottom 8 bits of each component of RVM are used to construct the value

GVM The brightness of the green components in the set of pixel values being constructed;
only the bottom 8 bits of each component of GVM are used to construct the value

BVM The brightness of the blue components in the set of pixel values being constructed; only
the bottom 8 bits of each component of BVM are used to construct the value

which would cleat the screen to a colour whose primaries were
specified in R, G and B, and would then put 9,000
different-colour dots on the screen.

‘vais either a matrix or vector Note that amt_gra_RGB_vals can be either a matrix
function function or a vector function.

These RGB vai(s) functions can be used whenever a colour
(or set of colours) is requited.

You can use them as arguments to gralib routines such as
amt_gra_clear_screen, amt_gra_put_dots or
amt_gra_wide_lines.

Again, you can use the FORTRAN-PLUS command set mat
and graith’s amt_gra_RGB_val to assign different
colours directly to different areas of a 24 bit display buffer.

219 amt_gra_set_colour_,regime
amt_gra_set_colour_regime lets you choose how
pixels are to be combined when new graphics object(s) are
added to an existing image in the nominated display buffer. In

DAP Series: Low-level graphics library man 777.07 31

32 Chapter 2: Details of routines

the simplest case the existing pixels are overwritten, but other
options are available.

Typical calling sequence:

INTEGER 0?, lEER

L CAlL ANT GRASET COLOURREGIME (0?, lEER)

The routine takes the arguments:

Argument Description

OP Defines how pixels from new object(s) are to be combined with the existing image in the
display buffer; takes a value in the range 1 to 7:

Value of OP Colouring option

1 Replace — New values over-write the existing values in each relevant pixel

2 XOR — A logical exclusive-OR operation is carried out between the bit patterns of the
new and existing pixel values to derive the final values for each pixel

3 Rank — For mapped colour only: the new and existing values held in each pixel are
compared and the higher of the two values is used. If you try to use this option in direct
colour, you will get an IERof—171 (SetColourRegime: Bad Rule for Mapped Colour)

4 Add — The new and existing pixel values are added. The resultant will wrap around if
the sum exceeds the maximum possible. This option was provided for mapped colour
(where the maximum value is 255), but will work in direct colour.

In direct colour, where the 24-bit composite pixel values are added, you may get strange
effects it the sum of any pair of the separate colour components exceeds 255. For
example: in the current gralib implementation the red 8-bit component is the most
significant in the 24-bit value, followed by the green, then the blue. If you Add to a colour
of white (255 for each of the red, green and blue components) a colour of very dark blue
(with colour components of 0, 0 and 1 for red, green and blue), then the resultant colour
is black — because the resultant 24-bit pixel value is 0!

In mapped colour, for example: 10 (old) + 255 (new) = 9.

5 Sub — The new pixel value is subtracted from the existing one. The resultant will wrap
around if the difference is less than 0. As with Add, this option was provided for mapped
colour, but will work in direct colour, possibly producing strange results, as suggested
above.

In mapped colour, for example: 5 (old) — 6 (new) = 255

6 RGBadd — For direct colour only. Here each colour channel is added separately, and
any excessive values are clampedto 255 in order to prevent overflow between channels
or wrap around. For example, for 24 bit direct colour the RED channel might be added
as 10 fold) + 253 (new) = 255

7 RGBsub — For direct colour only. As for RGBadd, but results are clamped to a minimum
of 0 for each colour component

32 manhl7.O1 AMT

2.20: amt_gra_setlut 33

IER The error indicator, which is set on exit from the routine; 0 implies successful completion
of the routine. See page 51 in appendix A.for details of the meaning of a non-zero error
code

The Rank option is designed for use with a colour look-up
table that maps darker background colours to lower pixel
values, and brighter foreground colours to higher values. By
encoding the intended precedence (maybe of 3-D depth) into
the pixel values, overlapping objects will maintain the required
visibility, regardless of the order in which they are drawn.

Note that some gralib routines let you specify a colouring
operation explicitly, which then temporarily overrides (but
does not change) the current regime.

The default colour regime is not constant for all routines.
Replace is used for amt_graut_dots,
amt_gra_put_rectangles and
amt gra_put wide lines, but Rank is used for
amt grayut lines. You should call
amt_gra_set_colour_regime explicitly rather than
relying on the default regimes, since these may change in
future releases of gralib.

2.20 amt_gra_set_lut

amtgrasetlut loads one of the tour AMT-supplied
standard colour look-up tables into the graphics hardware.

Typical calling sequence for the amtgra_setlut
routine is:

INTEGER 1LUTf256,3), IERR

P,NTGRASETLUT (ILUT, IERR)

The routine takes the arguments:

Argument Description

ILUT Specifies which of the four AMT-supplied standard palettes are to be loaded. See below
for details of the different palettes

IER The error indicator, which is set on exit from the routine; 0 implies successful completion
of the routine. See page 49 in appendix A for details of the meaning of a non-zero error
code

It is difficult to calculate the red, green and blue component
values that will generate a particular colour, and tedious to
specify 256 of them. Where colour is being used to
discriminate between different displayed objects, or as a
means of displaying a range of data values, it is often enough
to select one of gralib’s preset colour palettes (that is,
colour look-up tables) using the amtgra_set_lut
routine.

DAP Series: Low-level graphics library mani 17.01 33

34 Chapter 2: Details of routines

The palettes are of most use in mapped colour mode, and are
described below in terms of mapped colour pixel values:

Value of Palette produced
IIUT

1 A grey scale — pixel value 0 gives black, 255 gives white (maximum brightness)

2 ‘Glowing coals’ — a colour scale starting at black (pixel value 0), moving through red,
orange and yellow, and ending at white (pixel value 255). This palette is intended as an
alternative to the grey scale of ItUT=1

3 A rainbow — a colour scale starting at red (pixel value 0) and running through a range
of rainbow colours — red, orange, yellow, green — to blue (pixel value 255)

4 A repeated colour scale — the 8 colours black, red, green, blue, yellow, magenta, cyan,
white are repeated 32 times to provide the complete 256-colour palette. Hence pixel
value (0 modulo 8) gives black, (1 modulo 8) gives red, ... (10 modulo 8) gives green,
and so on. Note that this palette is unsuitable for shorter pixel lengths (1, 2 or 4 bits)
since all displayed colours will be the same

Note that the routines that manipulate the colour look-up table
are not generallay useful in direct colour mode. However, as
noted in chapter 1, direct colour 24-bit pixel values are also
‘translated’ by the look-up table.

uses for look-up table with direct One use for this 24-bit translation is to re-allocate the 24 colour
colour bits, using less than 24 bits to hold colour information, and

using the spare’ bit(s) to hold other information — perhaps a
flag to say it the pixel is part of a character, or it the pixel is to
change colour with some condition, which would be defined
elsewhere in the code.

A mote esoteric use modifies the colours shown on the monitor
screen to compensate for non-linear performance of the
monitor’s cathode ray tube or its screen phosphors, or of the
amplifiers feeding the tube. This technique is called gamma
correction.

2.21 amt_gra_start_sequence

amtgra_start_sequence initiates repeated copying
to framestore of the nominated display buffer, so that changes
can be continuously reviewed.

Typical calling sequence:

(INTEGER FREQUENcY, IERR

L CALL AMT GRA START SEQUENCE (FREQUENCY, IERR)

The routine takes the arguments:

34 manl 77.07 AMT

2.22: amt_gra_stop_graphics 35

Argument Description

FREQUENCY Specifies the time interval, in units of of a second, between successive outputs of
an image

IERR The error indicator, which is set on exit from the routine; 0 implies successful completion
of the routine. See page 50 in appendix A for details of the meaning of a non-zero error
code

At intervals of FP.EQUENCY/60 seconds, the copying process
is automatically repeated, until routine
amt_gra_stop_sequence is called (see section 2.23 on
page 36 for details).

uses of the routine You will find this routine of use when you want to update the
picture on the screen at regular intervals. The screen is
refreshed from framestore 60 times a second; a value of 20 for
FREQUENCY would lead to a screen display of 3 different
pictures a second, FREQUENCY can take any value from 1 to
(231_ 1), but for 8-bit colour precision and a 1024 by 1024 pixel
displayed image a value of 1 gives the same effect as 2, since
the time needed to transfer the 1 Mbyte of your image to
framestore (20 milliseconds) is greater than the time to refresh
the screen (1/60 seconds, or 16.67 milliseconds).

For 24 bit colour precision, the minimum achievable
FREQUENCY for a full-screen displayed image is 4, giving 15
different pictures per second, since the transfer time is
increased to 60 milliseconds.

If you declare a display buffet of less than 8 or 24-bit precision,
or define a displayed image smaller than 1024 by 1024, you
can output mote images per second. See
amt_gra_define_image on page 13 for more details.

There is no synchronisation between any subsequent
changes you make to the contents of your display buffet and
the regulat system-controlled data copying from the buffet to
framestote. As a tesult strange effects may appear on the
screen if you ate writing to part of the display buffer at the
same time as that part of the buffer is being copied to
ftamestore.

2.22 amt_gra_stop_graphics

amt_gra_stop_graphics stops video output and
releases hardware resoutces.

Typical calling sequence:

(±NTEGER IERR

CALL ANT GRA STOP GRAPHICS (IERR)

DAP Series: Low-level graphics library man 177.07 35

36 Chapter 2: Details of routines

IERR

The routines one argument:

The error indicator, which is set on exit from the routine; 0 implies successful completion
of the routine. See page 49 in appendix A for details of the meaning of a non-zero error
code

2.23 amt_gra_stop_sequence

amt_gra_stop_sequence stops the repeated display-
buffer-to-framestore copying that was previously initiated by a
call to amt_gra_start_sequence.

Typical calling sequence:

2.24

(INTEGER IERR

LIJL ANT GRA STOP SEQUENCE (IEBR)

The routine’s one argument:

IERR The error indicator, which is set on exit from the routine; 0 implies successful completion
of the routine. See page 50 in appendix A for details of the meaning of a non-zero error
code

The system finishes any buffer-to-f ramestore copying it was
carrying out whan the call was issued; the final image
transferred remains in the framestore — and therefore on the
screen — on exit from the routine. .

CALL ANT GRA TURN OFF ERROR MESSAGES

See amt gra_turn on error messages below for
details of the format of the error messages.

2.25 amt_gra_turn_on_error_messages

By default, errors detected by graphics routines cause a
diagnostic report to be output. If you have previously turned
off this report by a call to
amt_gra_turn_off_error_messages, then calling
amt_gra_turn_on_error messages turns the report
on again.

Typical calling sequence:

amt_gra_turn_off_error_messages

amt_gra_turn_off_error_messages turns off the
outputting of messages relating to errors detected by the

. graphics routines. By default the messages are output.

Typical calling sequence:

36 manl 77.01 AMT

2.25: amt_gra_turn_on_error_messages 37

[CALL NT GRA TURN ON ERROR MESSAGES

Currently the diagnostic report messages are output using the
standard FORTRAN-PLUS Trace facility. The form of the
display depends on the value of the psa.m environment
variable Pattern mode (for more details, see [1] or [2], the
version of DAP Series: Program Development relevant to your
host).

For example, if the default value of Pattern mode (TRUE)
is current, the message:

Too many errors

might produce the output:

FORTRAN-PLUS Trace
FORTRAN-PLUS Subroutine TEST at Line 4 in File myprog.df

Character Scalar Static Data MESS in 8 bits
dimensions: (1: 15)

(1:15) Too many errors
End of Report

It Pattern mode is set to FALSE, then the same TRACE
output would appear as:

(FORTRAN-PLUS Trace
FORTRAN-PLUS Subroutine TEST at Line 4 in File myprog.df

Character Scalar Static Data MESS in 8 bits
dimensions: (1: 15)

(1: 3) T, (*2)

(4:12) , m, a, n, y, , e, r (*2)

(13:15) o, r, S

End of Report

DAP Series: Low-level graphics library manl 77.07 37

38

.

.

.
38 manhl7.Q1 AMT

39

Chapter 3

Examples

The first example in this chapter is a fragment of DAP code;
examples 2 and 3 show complete programs that will run on a
DAP connected to a Sun or VAX host.

3.1 Example 1
This example program fragment shows the type of graphics
calls required to set up a regular series of frames.

entry subroutine graphics
common/pic/picture(*1024, *1024)
integer*1 picture
integer ierr,monitor, frequency
data monitor/li, frequency/li
call amt_gra_init_graph±cs (monitor, picture, 8, ierr)
call amt gra clear_screen (0, ierr)
call amtgra_start_sequence (frequency, ±err)
call compute and displayyicture
call amtgra_stop_sequence (ierr)
call amtgra_stop_graphics (ierr)
return
end

This fragment could form part of a program: the subroutine
compute_and_displayjicture would do whatever
was necessary for the job in hand.

3.2 Example 2
This example produces a picture with a user-defined look-up
table and a single call to amt grayut frame.

Note the error checking that is carried out every time a call to
a gralib routine is issued.

Note also that the yellow ‘wedge’ produced by the program
only reaches half maximum brightness on the screen.

The display buffer (picture) is defined as integer*l.
The maximum positive integer that picture can hold is 127;
128 to 255 — the numbers needed to specify a brightness
greater than halt maximum — are stored as the negative
numbers — 128 to —1, in two’s complement form, and
recognosed by the hardware in that form. You may care to

DAP Series: Low-level graphics library man 777.07 39

40 Chapter 3: Examples

modify the code so that a wedge going to full brightness is
produced. Section 3.4 at the end of this chapter suggests one
possible way to modify the code.

DAP program

c
entry subroutine graphics

C
C Set up space for image
C

common/pic/picture(*1024, *1024)
integer*l picture

c
C Set up space for a look—up table and a working vector
C

common/tables/rgb (256,3)
integer rgb
integer ierr, monitor
integer vindex (*1024)
data monitor/—li

C
C Create a look-up table to produce shades of yellow
C

do 1 i=l,256
rgb(i,l)=i
rgb(i2)=i
rgbfi,3)=0

1 continue
C
C Start graphics
C

call amt gra mit graphics (monitor, picture, 8, ierr)
C
C Check to see if an error has occurred
C

if(ierr.lt.0)pause 1
C
C Load up the look-up table
C

call amt graput lut C rgb, ierr)
C
C Check to see if an error has occurred
C

if(ierr.lt.0)pause 2
C
C Compute ‘test wedge’ picture, going from black at left
C to max brightness of 1/2 full yellow at right
C

call index vec (vindex)
vindex = vindex — 1
picture = matr(vindex/8,1024)

C

40 manll7.01 AMT

3.2: Example 2 41

C Now put out the picture to the screen
C

call amt gra_put_frame (ierr)
C

C
C Check to see if an error has occurred
C

if(ierr.lt.O)pause 3
C
C Pause program execution - to allow the
C user to see the picture!
C

pause 4
C
C When ready, the user has to type ‘q’
C to exit psam and exit the program.
C
C Now switch off
C

call amt gra stop graphics fierr)
iffierr.lt.O)pause 5
return
end

You only need a skeleton host program to run the DAP
program; a suitable one is shown below. The program
assumes that the DAP code is in tile ex2d.

Host program

program ex2host

external dapcon
integer dapcon, dconres

C
C Connect to the DP, and load it with the executable file in ‘ex2d’.
C

dconres=dapcon (‘ex2d’)
if C dconres .ne. 0) pause 1

C
C Pass control to the DAP entry subroutine ‘graphics’.
C

call dapent (‘graphics’)

C
C On return from the DAP, release all DAP resources for other users
C

call daprel
end

DAP Series: Low-level graphics library man 777.07 47

42 Chapter 3: Examples

3.3 Example 3
Now an example pf a more complex host and DAP program;
as with example 2, the DAP part of the program can be run on
any model of DAP that is fitted with any type ot video board.

Host program

C This is the FORTRAN code for the host part of the program to
C generate a test card on the DA? monitor screen.
C

program testgrid

integer finish

C
C Initialise the system - that is, set up the parameters for the default
C test card, then connect to the DAP.
C

call mit

100 continue

C
C Plot the test card
C

call plotcard

C
C Having displayed the default grid and background, offer the chance
C to change parameters and display a new test card.
C

write f*,*)
write f*,) ‘To change the parameters and re—display, select 0’
write (*,*)

write (*,*) ‘To exit, select 1’
write f*,*)
read f*,*) finish

if (finish.eq.1) goto 200

call getparams

goto 100

C
C Pass control to the DAP entry subroutine ‘cease’, which will close
C close the DAP down. On return from the DAP release it.
C

42 manhl7.O1 AMT

33: Example 3 43

200 call dapentf’cease’)
call daprel

stop
end

C

subroutine mit

C
C Load the parameters for the initial test card into the COMMON blocks
C ‘colours’ and ‘linesep’
C
C Connect to the DAP, load into the DAP the object code in file ‘ex3d’,
C and pass control to the DAP at entry subroutine ‘mit’
C

common/colours/gridcol (3) ,bgcol (3)
integer gridcol, bgcol

common/linesep/spacing
integer spacing

external dapcon
integer dconres, dapcon

gridcol(l) =255
gridcol(2)=255
gridcol(3)=255

bgcol(l)=0
bgcol (2) =100
bgcol(3)=0

spacing=32

dconres=dapcon (‘ex3d’)
if (dconres .ne. 0) pause 101

call dapent(’init’)

return
end

C

subroutine getpa rams

common/colours/gridcol (3) ,bgcol (3)
integer gridcol, bgcol

common/linesep/ spacing
integer spacing

DAP Series: Low-level graphics library man 717.07 43

44 Chapter 3: Examples

write f*,*)

read (*,*)

write f*,*)

write (*,*)

write (*,*)

write (*,*)

read (*,*)

write f*,*)
read (*,*)

write f*,*)

read f*,*)

write (*,*)

write (*,*)

write (*,*)

write (*,*)

write (*,*)

read (*,*)

write f*,*)
read f*,*)
write (*,*)

read (*,*)

write (*,*)

write f,*)

return
end

‘Now choose the colour of the background:’
I

‘First the red component (0—255):’
bgcol(1)

‘Next the green component (0-255):’
bgcol (2)

‘Last the blue component (0—255):’
bgcol (3)

‘Lastly, choose the colour of the grid lines:
I I

‘First the red component (0-255):’
gridcol (1)

‘Next the green component (0-255):’
gridcol (2)

‘Last the blue component (0-255):’
gridcol (3)

I I

C

C
subroutine plotcard

C Pass the test card parameters to the DPP, and pass control to the
C DAP entry subroutine ‘plot’.
C

common/colours/gridcol (3) ,bgcol (3)
integer gridcol, bgcol

common/linesep/spacing
integer spacing

call dapsen (‘colours’ ,gridcol,6)
call dapsen(’linesep’ ,spacing,1)
call dapent (‘plot’)

return
end

‘First, choose the spacing between grid lines:’
spacing

44 manhl7.Q1 AMT

3.3: Example 3 45

DAP program

C This is the FORTRAN-PLUS enhanced code for the DAB part of the program
C to generate a te5t card on the DAB monitor screen.
C

entry subroutine mit

common/screen/picture
integer*l picture f *1024, *1024)
integer error_rep

call amt_gra_init_graphics f-i, picture, 8, error_rep)
if terror_rep.ne.0) pause 1

return
end

C
C

entry subroutine plot

integer error_rep

call setscreen

call drawlines

call amt_gra_put_frame (error_rep)
if ferror_rep.ne.0) pause 7

return
end

C

subroutine setscreen

integer lut (256,3), error_rep

common/colours/gridcolf 3) ,bgcolt3)
integer gridcol,bgcol

C

C Convert the test card colours, in COMMON block ‘colours’, from host to
C DAB mode.
C

call convhtod(gridcol, 6)

C

DAP Series: Low-level graphics library man 777.07 45

46 Chapter 3: Examples

C
C Load the required background and grid line colour components into the
C in scalar array ‘lut’, and specify ‘lut’ as the current look-up table.
C

do 10 i=i,3
lutfi, i)=bgcolfi)
lutf2, i)=gridcol Ci)

10 continue

call amt_gra_put_lut flut, error_rep)
if (error_rep.ne.0) pause 2

call amt gra clear screen (0, error_rep)
if (error_rep.ne.0) pause 3

return
end

C

subroutine drawlines

common/i inesep/ spacing
integer spacing, error_rep
integer coords (*1024)

C
C Convert the test card grid line spacing, in COt1MON block ‘linesep’,
C from host to DAP mode.
C

call convhtod (spacing, 1)

C
C Put steps of 1 in the vector ‘coords’, then change them to steps of
C the required grid line spacing. Finally, set the last component that
C will be used in the vector to be equal to 1023 - to generate the
C right-hand and bottom lines of the grid.
C

call index vec (coords)
coords= C coords -1) *spacing
coords (1023)=l023

C
C Call the routines to draw the grid lines: first the vertical lines,
C then the horizontal lines. The lines are drawn from top to bottom, from
C left to right.
C
C vec(0,l024) generates a 1024-component vector, each component being
C 0. Only those lines whose ‘coords’ co—ordinates are less than 1024
C are plotted; the colour of each line is specified by 1 in the look-up
C table.

46 manhl7.O7 AMT

3.4: Example 2 alternative solution 47

call amtgra_putlines(coords,vecfo,1024),coords,vecflO23,1024),
& coords.lt.1024,vec(l,1024),error rep)

if (error rep.ne.0) pause 5

call amtgra_putlines(vec(0,1024),coords,vecflO23,l024),coords,
& coords.lt.1024,vec (1, 1024) ,error rep)

if (error rep.ne.0) pause 6

return
end

C

C

entry subroutine cease

integer error_rep

call amt gra stop graphics (error_rep)
if (error rep.ne.0) pause 8

return
end

3.4 Example 2 alternative solution
- As mentioned on page 39, you need to use a number in the

range —128 to —ito specify brightness in the range ½ to full.
In example 2, only zero to ½ brightness was specified; one
way to modify the DAP program in example 2 so as to produce
a full-brightness wedge is given below. The changes — a new
line and then a changed line — are marked with a vertical line
in the margin on the next page.

DAP program

C

entry subroutine graphics
C
C Set up space for image
C

common/pic/picture(*1024, *1024)
integer*l picture

C

C Set up space for a look-up table and a working vector
C

common/tables/rgb (256,3)
integer rgb
integer ierr, monitor
integer vindexf*1024)
data monitor/-li

C
C Create a look-up table to produce shades of yellow
C

DAP Series: Low-level graphics library man 777.07 47

48 Chapter 3: Examples

do 1 1=1,256
rgb(i, 1)=i
rgbfi, 2)=i
rgbfi, 3)=O

1 continue
C
C Start graphics
C

call amtgrainitgraphics(monitor,picture,8, ierr)
C
C Check to see if an error has occurred
C

iffierr.lt.0)pause 1
C
C Load up the look-up table
C

call amt gra_put lut frgb, ierr)
C
C Check to see if an error has occurred
C

if(ierr.lt.0)pause 2
C
C Compute ‘test wedge’ picture, going from black at left
C to max brightness of full yellow at right
C

call index vec (vindex)
vindex = vindex — 1
vindex (vindex .ge. 512) = vindex - 1024
picture = matr(vindex/4,l024)

C

C Now put out the picture to the screen
C

call amt_gra_put frame (ierr)
C
C

C Check to see if an error has occurred
C

if(ierr.lt.0)pause 3
C
C Pause program execution - to allow the
C user to see the picture!
C

pause 4
C

C When ready, the user has to type ‘q’
C to exit psam and exit the program.
C
C Now switch off
C

call amt_gra stop graphics (ierr)
iffierr.lt.0)pause 5
return
end

48 manhl7.O1 AMT

49

Appendix A

Library-defined error messages

Error messages are output if the gralib routine
amt gra turn on error messages is active (the
default state), and FORTRAN-PLUS Trace is turned on (also
the default state — see sections 2.24 and 2.25 for more
details).

Errors of the type documented here are unusual but if they do
occur then often several will occur at the same time.
Sometimes there is a single cause for all the errors, that cause
probably being associated with a failure in
amt_gra_init_graphi Cs.

Possible error messages include:

Generic errors

-1 Graphics system not initialised

Errors In amt_gra_Inltgraphlcs

-10 Monitor already in use
—11 Unknown monitor number
-12 Can’t open the monitor

Errors In amt_gra_stop_graphics

-20 Device not open

Errors in amt_gra_set_Iut

-30 The special palette requested is not in the range [1 - 4]
-31 An error has occurred in setting special palette 1
-32 An error has occurred in setting special palette 2
-33 An error has occurred in setting special palette 3
-34 An error has occurred in setting special palette 4

Errors In amtgraput_Iut

-40 An error has occurred in setting the palette

Errors In amtgraget_Iut

—50 An error has occurred in retrieving the palette

DAP Series: Low-level graphics library mani 17.07 49

50 Appendix A; Library-defined error messages

Errors in amt_gra_put_frame

-70 An error has occurred in outputting a frame (PUT)
-71 An error has occurred in outputting a frame (SWAP)
-72 An error has occurred in turning the video on

Errors in amt_gra_start_sequence

-80 Invalid FREQUENCY parameter
—81 An error has occurred in starting sequenced frame output

Errors in amt_g ta_stop_sequence

-90 An error has occurred in stopping sequenced frame output

Errors In amt_gra_clear_screen

-100 The supplied background colour is out of range [0 - 255]

Errors In amt_gra_put lines and in amt_gra_put wide lines and in amt_gra_put_rectangles

-110 No lines set in mask
-ill Some endpoints out of range
—112 There are no endpoints in range for which mask is set
-113 Some requested lines could not be drawn
-114 No lines could be drawn

Errors in amt_graput_dots

-120 Data out of range in X, points not plotted
-121 Data out of range in Y, points not plotted
-122 Data out of range in X and Y, points not plotted

Errors In amt_gra_put_characters

-130 Invalid font number
-131 Font not initialised
-132 Invalid operation code

Errors In amt_gra_rasterop

-140 Rasterop warning: Rasterop area goes beyond input
-141 Rasterop error: Input image size is incorrect
-142 Rasterop error: In width of rasterop area
—143 Rasterop error: In height of rasterop area
-144 Rasterop error: Rasterop area is outside input area
-145 Rasterop error: Rasterop area is outside output area
-146 Rasterop error: Invalid operation code

50 manll7.01 AMT

Appendix A: Library-defined error messages 57

Errors In amt_gra_copy_image

—150 Copyimage error: Negative parameter value
—151 Copyimage error: Parameter out of range
—152 Copyimage error: Parameter not a multiple of DAP size

Errors in amt_gra_set_colour_regime

-170 SetColourRegime: Rule out of range
-171 SetColourRegime: Bad Rule for Mapped Colour

Errors In amt_gra_define_image

-160 WE SIZE out of range
-161 NSSIZE out of range
-162 BITS PER PIXEL out of range
-163 BIT_OFFSET out of range
-164 IMG_X out of range
-165 IMGY out of range
-166 FBNX out of range
-167 FNY out of range

Errors In amt_gra_magnlfy

-180 Invalid X magnification
-181 Invalid Y magnification

System error code

—999 System Error: Unknown error code

DAP Series: Low-level graphics library man 717.07 57

52

.

.

.
52 manhl7.O1 AMT

53

Appendix B

Specification for routine magnify

The routine magnify has been added to the version ot the
gralib library issued with release 3.3 DAP basic software.

magnify belongs to the group of gralib calls that were
available at release 3.2 and earlier, but is not documented in
the latest edition of the relevant manual DAP Series: Low-level
Graphics Library (manOl 7.04).

You might consider including a copy of this sheet in your copy
of manOl7, until such time as the manual is updated.

magnify The routine lets you magnify part (or all) of an image: the
magnification factors in the x and y directions can be different,
but both must be positive integer powers of 2. The N—S
dimension of the magnified sub-image has to be the same as
the N—S dimension of the destination image buffer: the W—E
dimension of the destination buffer has to be as least as large
as the W—E dimension of the magnified sub-image.

A typical calling sequence:

INTEGER I WE SIZE,I NS SIZE,I WE START,I NS START,I WE EXT,I NS EXT,
& DWE SIZE, 0 NS SIZE, WE MAG, NS MAG, PXL, OFFSET

INTEGER*fl INPUT f, , I NS SIZE, I WE SIZE) ,DESTINATIONf, , D NS SIZE, DWE SIZE)

CALL MAGNIFY (INPUT (, , I NS START, I WE START) , DESTINATION, I WEEXT, INS EXT,
& PXL, WE MAG, NS MAC, OFFSET)

magnify takes the arguments:

Argument Description

INPUT The image, a part (or all) of which is to be magnified.

I WE SIZE is the horizontal size of the whole of INPUT, and is measured in units
of tiles.

INS SIZE is the vertical size of the whole of INPUT, and is measured in units of
tiles

I WE START The horizontal co-ordinate, measured in units of tiles, of the top-left-hand corner of
the part of INPUT to be magnified, and is measured with respect to the top-left-hand
corner of INPUT

DAP Series: Low-level Graphics Library man 777.07 53

54 AppendL B: Specification for routine magnify

I WE EXT

I NS EXT

WE_NAG

NS_MAG

DESTINATION

PXIj

OFFSET

The vertical co-ordinate, measured in units of tiles, of the top-left-hand corner of the
part of INPUT to be magnified, and is measured with respect to the top-left-hand
cornet of INPUT. The pair I WE START and I NS START are optional; if they
are not specified, then the whole of INPUT is magnified. You have to specify both or
none

The horizontal extent, measured in units of tiles, of the part of INPUT to be magnified
The vertical extent, measured in units of tiles, of the part of INPUT to be magnified
The required magnification in the horizontal direction; it need not be the same as
NSNAG, but must be a positive integer power of 2

The requited magnification in the vertical direction; it need not be the same as
WE NAG, but must be a positive integer power of 2

The image buffet to receive the magnified sub-image

DWE SIZE is the horizontal size of the buffer, and is measured in units of tiles.
DWE SIZE has to be at least (WE NAG x I WE SIZE).

DNS SIZE is the vertical size of the buffer, and is measured in units of tiles.
ONS SIZE has to be (NS NAG x INS SIZE).

The length in bits of the pixels in INPUT and DESTINATION
The distance’, in units of tiles, betv’een the last tile in one column of the part of INPUT
to be magnified, and the first tile in the next column

For the routine to work without error the magnified sub-image
has to be no larger than the display buffer

—
, 32,32) on

a DAP 500, — (1,16,16) on a DAP 600

The operation of magnify is illustrated in the diagram on the
opposite page, and might be the result of the call:

INTEGER*1 INPUT(,,8,7),ENDPICf,,12,1O)
INTEGER ?XL

CALL MAGNIFYfINPUTC, ,2,1), DESTINATION, 4,3, PXL, 2,4,5)

In the typical calling sequence given on page 53 values for
the various patameters were supplied in variables. In the call
illustrated here the variables have been replaced by the
values:

IWE SIZE: 7 (tiles)
INS SIZE: 8 (tiles)

DWE SIZE: 10 (tiles)
DNS SIZE: 12 (tiles)

I_WE_START: 1 (tile) IWEEXT: 4 (tiles)
INS START: 2 (tiles) INS EXT: 3 (tiles)

OFFSET (= OFFSET-A + OFFSET-B):

WE NAG: 2
NS_MAG: 4

5

In this case DESTINATION is larger than necessary in the
W-E direction to receive the magnified part of INPUT.

Argument Description

INS_START

54 manl 77.01 AMT

Appendix B: Specification for routine magnify 55

P

address, with respect to point P:
I_WR_SAR, t_NS_S.

INpUr

magnified sub-image

DESTINION

this part of DESTINATION unaffected by

DAP Series: Low-level Graphics Library man 777.01 55

56

.

.

.
56 manllZQl AMT

57

Index
This index lists all the commands and their associated parameters available to you in gralib. All
non-alphabetic entries to the index are grouped together under the ! heading immediately below this
introduction.

[] , meaning of v
,meaning of v

<>,meaning of iv

{ } , meaning of v

A

amt_gra_cliange_screen 11
arat_gra_clear_screen 11
amt_gra_copy_image 12
amt_gra define image 13- 15
aint_gra_get_iut 16
amt_gra_init_font 17
amt_gra_init_graphics 5, 18
amt_gra_magnify 19
amt graut characters 20-21
aint_gra2ut_dots 22
amt_graut_frame 1, 23
amt_gra_put_lines 24
amt_gra_put_lut 25
amt_gra_put_rectangles 26
amt_grayut_wide_lines 27-28
amt_gra_rasterop 29
amt_gra_RGB_val 9, 30
aaut_gra_RGB_vais 9, 30
amt_gra_set_colour_regime 31 -32
amt_gra_set_lut 33
amt_gra_start_seqtience 2, 34
amt_gra_stop_graphiCs 35
amt_gra_stop_sequence 36
amt_gra_turn_off_error_messages

4, 36
amt_gra_turn_on_error_messages

4, 36 - 37

C

Cautions — general note iii
Using co-ordinates 2
Colour construction functions 10

Colour modes 2 - 3
direct colour mode 3
mapped colour mode 3

Command syntax conventions v
Comment form 59
Common block 2
Compilation and linking

In a Sun UNIX environment 6 - 8
In a VAXNMS environment 6

Conventions
syntax v
typographical iv

D

Default colour regime 33
Details of routines 9 - 37
Differences with earlier vesions of gralib 5
Direct colour mode 1, 3
Display buffer 1
DPIO video output system 1

E

Environment variable
Pattern_mode — in psam 37

Error messages 49 -51
Examples 39 - 45

DAP program 39 - 40, 45
host program 41 - 42

F

False colour 1
Frequency 35

G

Glowing coals palette 34
Grey scale palette 34

INTEGER*n display buffer 10
Introduction 1 - 8

DAP Series: Low-level graphics library (enhanced) man 117.01 57

58 Index

L

Look-up table 1
default 3

M

magnify 53-55
Mapped colour mode 1, 3
Multi-programming 5

p

Palette 1,34
Pattern_mode, psam environment variable 37
Psam environment variable 37
pxl— bits per pixel 3

R

Rainbow palette 34
Reader comment form 59
Routines

summary of 9

S

Scalars — no use to hold co-ordinates 11
Screen buffer 1
Screen co-ordinates 2
Signed integer representation 3
Specification for routine magnify 53 - 55
Summary of GRALIB routines 4
Syntax conventions v

T

Trace facility 37
True colour 1
Typographical conventions iv

U

User comment form 59

w
Warnings and cautions — general note iii

58 manhl7.O1 AMT

Reader comment form AMT
Readn9, UK

Any comments you care to make, whether reporting bugs in the manual or making more general comment,
about this or anyAMT publications will help us improve their quality and usefulness. To report bugs, if you have
the time, the ideal way from our point of view is to send us a photo-copy of the relevant page, with the bug
marked on it. If you are in the UK, please use our FREEPOST address to send us the copy.

If you also can spare the time to fill in the mini-questionnaire below that would be doubly useful to us. To send
us this form, please fold it as indicated, and post it — postage is pre-paid for the UK.

Comments

Title of publication: Low level graphics library (enhanced)fman 117.01) / other — please specify:

My name and job title:

My department:

My company:
.

My company address:

My telephone number — country: number:

I found the contents:
I used the publication:

True Partly true Not true

As an introduction to the subject Helpful D

Q To teach myself Accurate 0 0 0

o To teach others Written clearly 0 0 0

o As a reference manual Well illustrated 0 0 0

o Other — please specify Well indexed 0 0 0

Other — please specify 0 0 0

Thank you for your help. May 89

DAP Set/es: Low-level graphics library man 177.01 59

S
ec

on
d

fo
ld

—
Fi

rs
t

fo
ld

-
-1 z

a
a

r

__

N
o

po
st

ag
e

ne
ed

ed
fo

r
po

st
in

g
in

th
e

U
K

.
It

po
st

in
g

ou
ts

id
e

U
K

,
pl

ea
se

st
ic

k
st

am
ps

to
no

rm
al

va
lu

e.

P
ub

li
ca

ti
on

s
M

an
ag

er
A

ct
iv

e
M

em
or

y
T

ec
hn

ol
og

y
Lt

d
F

R
E

E
P

O
S

T
(R

G
14

36
)

R
ea

di
ng

B
er

ks
hi

re
R

G
6

1B
R

U
ni

te
d

K
in

gd
om

I
Pl

O
JP

Ji
t1

ou
iN

3n
J.

fo
ld

.
—

Fi
rs

tf
ol

d

.
•

