ANSI X3.9-1978

American National Standard

programming language FORTRAN

di

american national standards institute, inc.
1430 broadway, new york, new york 10018

ANSI®
X3.9-1978

Revision of
ANSI X3.9-1966

American National Standard
Programming Language
FORTRAN

Secretariat

Computer and Business Equipment Manufacturers Association

Approved April 3, 1978

American National Standards Institute, Inc

American
National
Standard

An American National Standard implies a consensus of those substantially concerned with its
scope and provisions. An American National Standard is intended as a guide to aid the manu-
facturer, the consumer, and the general public. The existence of an American National Stan-
dard does not in any respect preclude anyone, whether he has approved the standard or not,
from manufacturing, marketing, purchasing, or using products, processes, or procedures not
conforming to the standard. American National Standards are subject to periodic review and
users are cautioned to obtain the latest editions.

CAUTION NOTICE: This American National Standard may be revised or withdrawn at any
time. The procedures of the American National Standards Institute require that action be
taken to reaffirm, revise, or withdraw this standard no later than five years from the date
of publication. Purchasers of American National Standards may receive current information
on all standards by calling or writing the American National Standards Institute.

Published by

American National Standards Institute
1430 Broadway, New York, New York 10018

Copyright © 1978 by American National Standards Institute, Inc
All rights reserved.

No part of this publication may be reproduced in any form,
in an electronic retrieval system or otherwise, without
the prior written permission of the publisher.

Printed in the United States of America

P6M778/1650

Forewor

d (This Foreword is not a part of American National Standard Programming Language FORTRAN, ANSI X3.9-

1978.)

American National Standard Programming Language FORTRAN, ANSI X3.9-1978, specifies the
form and establishes the interpretation of programs expressed in the FORTRAN language. It con-
sists of a full language and a subset language. Its purpose is to promote portability of FORTRAN
programs for use on a variety of data processing systems.

It is suggested that the designation FORTRAN 77 be used to distinguish this standard from pre-
vious FORTRAN standards and any possible future revisions.

FORTRAN 77 is a revision of American National Standard FORTRAN, ANSI X3.9-1966. It de-
scribes two levels of the FORTRAN language, referred to as FORTRAN and Subset FORTRAN.
FORTRAN is the full language and appears on the righthand pages; Subset FORTRAN is a sub-
set of the full language and appears on the lefthand pages. Because FORTRAN 77 includes the
subset, American National Standard Basic FORTRAN, ANSI X3.10-1966, has been withdrawn.

This standard was approved as an American National Standard by the American National Stan-
dards Institute on April 3, 1978.

Suggestions for improvement of this standard will be welcome. They should be sent to the Amer-
ican National Standards Institute, 1430 Broadway, New York, N.Y. 10018.

This standard was processed and approved for submittal to ANSI by the American National Stan-
dards Committee on Computers and Information Processing, X3. Committee approval of this
standard does not necessarily imply that all committee members voted for its approval. At the
time it apprdved this standard, the X3 Committee had the following members:

J. F. Auwaerter, Chairman
R. M. Brown, Vice-Chairman
W. F. Hanrahan, Secretary

Organization : Name of Representative
Addressograph Multigraph Corporation.o v vt i i, (Representation Vacant)
Air Transport Association v v v ittt i e e e e e e F. C. White

C. Hart (Alt)
American Library Association i i i i i J. R. Rizzolo

J. C. Kountz (Alt)
M. S. Malinconico (Alt)
American Nuclear SOCIetY . . « o ¢« v v e vt v bttt et it e e e e M. L. Couchman
M. K. Butler (Alt)
- D. R. Vondy (Alt)
Association of American Railroads o . 0t it ittt i e e R. A. Petrash
Association of Computer Programmersand Analysts L. A. Ruh
: T. G. Grieb (Alt)
V. J. Van Dyke (Alt)
Association for Computing Machineryt P. Skelly
J. A. N. Lee (Alt)
H. E. Thiess (Alt)

Association of Data Processing Service Organizations. J. B. Christiansen
Association for Educational DataSystemso L. R. Liquori
Association for Systems Management. 0 i e W. R. McPherson, Jr
) R. Irwin (Alt)
Association of Time Sharing Userso it v it v it ettt i nn oo W. G. Madison
H. Segal (Alt)

Burroughs Corporation« o v v v it ittt i e e e e E. Lohse
. : J. S. Foley (Alt)
J. F. Kalbach (Alt)

California Computer Products, Inc i R. C. Derby
Computer and Communications Industry Association N. J. Ream
. ' A. G. W. Biddle (Alt)
Control DataCorporationttt ittt eenennnn C. E. Cooper
G. L. Williams (Alt)
Data General Corporation . . . v v v v v v vttt ittt e e e e H. Kaikow

J. Saxena (Alt)

Organization
Datapoint Corporation .

Data Processing Management Association
Digital Equipment Computer Users Society
Digital Equipment Corporation

Edison Electric Institute

...................................

.........................

...............................

...................................

General Services Administration. ¢t i ittt it i et e e e e

GUIDE International

Harris Corporation

Honeywell Information Systems, Inc

Institute of Electrical and Electronics Engineers, Communications Society
Institute of Electrical and Electronics Engineers, Computer Society
International Business Machines Corporation

Itel Corporation

Joint Users Group

Life Office Management Association

Litton Industries

National Association of State Information Systems
National Bureau of Standards
National Communications System

National Machine Tool Builders Association

NCR Corporation

...................................

...........................

...................................

Olivetti Corporationof America.o v v vt ittt it i it ie e

Printing Industries of America, Inc
Recognition Equipment, Inc

Scientific Apparatus Makers Association

SHARE Inc

Society of Certified Data Processors

Sperry UNIVAC

Telephone Group

3M Company

...................................

U.S. Department of Defense

...................................

...................................

Name of Representative

H. W. Swanson

R. J. Stout (Alt)

A. E. Dubnow

E. J. Palmer (Alt)
P. Caroom

B. Ham (Alt)

P. W. White

A. R. Kent (Alt)

S. P. Shrivastava

J. L. Weiser (Alt)
D. L. Shoemaker
M. W. Burris (Alt)
T. E. Wiese

L. Milligan (Alt)

D. Stanford (Alt)
T. H. Buchert

T. J. McNamara

E. H. Clamons (Alt)
(Representation Vacant)
T. Feng (Alt)

R. J. Holleman

C. A. Thorn (Alt)
R. A. Whitcomb

R. Baechler (Alt)
T. E. Wiese

R. McQuillian (Alt)
R. E. Ricketts

J. F. Foley, Jr (Alt)
1. Danowitz

G. L. Theis

J. L. Lewis (Alt)

H. S.'White, Jr

R. E. Rountree (Alt)
M. L. Cain

G. W. White (Alt)
O. A. Rodriques

R. J. Mindlin

A. R. Daniels (Alt)
T. W. Kern (Alt)

E. J. Almquist

N. Scharpf

E. Rudd (Alt)

H. F. Schantz

W. E. Viering (Alt)
A. Savitsky

J. E. French (Alt)
T. B. Steel, Jr

E. Brubaker (Alt)
R. H. Wahlen (Alt)
T. M. Kurihara

A. E. Dubnow (Alt)
M. W. Bass

C. D. Card (Alt)

V. N. Vaughan, Jr
S. M. Garland (Alt)
E. A. Patrick (Alt)
R. C. Smith

W. L. McGreer

W. C. Rinehuls (Alt)
W. B. Robertson (Alt)
W. R. McPherson, Jr
W. Frederic (Alt)

E. Heinze

M. R. Speers (Alt)
S. W. White (Alt)

J. L. Wheeler

A. R. Machell (Alt)

Subcommittee X3J3 on FORTRAN, which developed this standard, had the following members:

F. Engel, Jr, Chairman

M. Greenfield, Vice-Chairman

L. W. Campbell, Secretary

J. C. Noll, International Representative

. C. Adams

. T. Bagwell
. B. Bailey

. H. Barth

. M. Bauer

. A. Beck

. Boswell
. Brainerd
. Brender
. Coleman

]
43
253

. Dillon

. Earley -

. Eaton
. Engle
Enksson

HUHUQUHHW€OOOZOHH
P

pr;»mﬁr*wwO'

. Freeman

. Glammo
Gibson

. Grove
Hamilton
. Harkins

. Herington
. Holberton

o
H

. Infante

. Johnson
. Jones

. Karp

. Kelley

. Klein

. Laird

OEg@pQInIo-RgR-a0R

HEgprEs

Matheny
Meissner
Mimmack
Moore

Olsen
Page
Paterson

.R.

.

.L.

. L

. W. Puerling
. R. Ragan
LA,

. H.
LT

. S

. G.
.E.
.E.
. H.
. A. Mattm
.T.
.H.
. P.
T

Rainer
Sampson
Saunders

chenk

. R. Schieber
. C. Schwebel
. H. Senn

. C. Shih

. W. Signor

. T. Slavinski
. J. Swain

. F. Thorlin

. B. Upshaw
. R. Vondy

. M. Watson

. B. Wayland
. D. Weldon
. R. Young

UZ<'-‘UN"‘wFUWNN"‘W€WOZWWUWUE“‘F“""‘W2C”"‘W

Contents SECTION ‘ PAGE

L Introduction ittt i i e e e et 1-1
Ll PUurposeoiiii i e e e 1-1
1.2 PrOCESSOT . .ot o vttt ittt it e it i e e e 1-1
13 SC0PE . « v ei et i e e e e 1-1
1.4 Conformance.voiietie ettt ettt 1-2
1.5 Notation Usedin This Standard, 1-3
1.6 Subset TeXt. ... v it r it it e it e e 1-4

2. FORTRAN Termsand Concepts. v v v vt ii i it ineieie et iin e 2-1
2.1 SequenCe e e e 2-1
2.2 SyntacticItemsttt ittt e e e 2-1
2.3 Statements, Comments,and Lines 2-2
2.4 Program Unitsand Procedures iiuiiin... 2-2
2.5 Variable e e e e e e 2-3
2.6 AITAY . . . e e e e e e 2-3
2.7 SubString e 2-3
2.8 Dummy Argument e e 2-4
2.9 Scope of Symbolic Names and Statement Labels 2-4
200 LAt .ot e e e e e 2-4
2.11 Definition Statuso e e 2-4
2,12 Referenceottt i e e 2-5
P 1 T}) V- 2-5
2,14 ASSOCIAtION v it e e e e 2-6

3. Characters, Lines, and Execution Sequence. 3-1
3.1 FORTRANC Character Set. i ittt ittt 3-1
3.2 LANeS & vttt e e e e e e e e 3-2
33 Statements e 3-3
34 Statement Labels e, 3-3
3.5 Order of Statementsand Lines, 3-3
3.6 Normal Execution Sequence and Transfer of Control 3-5

4. Data Typesand Constants u vttt i e it ne et ettt eeeen e 4-1
4.1 DataTypes . ..o v vt e e e e 4-1
4.2 Constants e e e e 4-2
4.3 Integer Type e e e et e 4-3
44 Real Typeottt e e 4-3
4.5 Double Precision Type. i e 4-3
4.6 Complex Typeottt et et e 4-4
4.7 Logical Type . . .« ot ittt i e e e e 4-4
4.8 Character Typeo v ittt e e 4-5

S. Arraysand Substrings e e e e 5-1
5.1 Array Declaratort e e 5-1
5.2 Propertiesofan Array e 5-2
53 ArrayElement Name. ittt 5-4
5.4 Subscript e e 54
5.5 Dummy and Actual Arrays.o it e 5-7
56 Useof Array Namesot it it it ettt e e 5-8
5.7 Character Substring e 5-9

6. BXPIessionsvi ittt e e e e e e 6-1
6.1 Arithmetic Expressions e 6-1
6.2 Character EXpressionsoviin ittt 6-7

6.3 Relational Expressions0 iiueninnrinnnnnnn, 6-9

SECTION PAGE

6.4 Logical Expressions e e e et e e a e 6-10
6.5 Precedance of OPeratorsc.uuiiuniunueneeeennennnn 6-14
6.6 Evaluationof Expressionso, 6-15
6.7 Constant EXpressionscuuiiiiniiinniiinneenneennnns 6-20

7. Executable and Nonexecutable Statement Classification PR 7-1
7.1 Executable Statements e ee e 7-1
7.2 Nonexecutable Statements. i, 7-1

8. Specification Statements. i e e e 8-1
8.1 DIMENSION Statementcootuteeunrennneenneeenann 8-1
82 EQUIVALENCE Statement vvitiienteneneeneneennanans 8-1
83 COMMON Statementouveueeeenneneeneennenneneans 8-3
8.4 Type-Statementsoieitiniiiiineen it 8-5
8.5 IMPLICIT Statement.co... e e e 8-7
8.6 PARAMETER Statement.ouviieiunneennneeneennn 8-8
8.7 EXTERNALStatement..........cciiitetineneennenennenns 8-9
8.8 INTRINSICStatementttt nnnenenans 8-9
8.9 SAVEStatementciiiiiiiiiiiitiiniiieea 8-10

9. DATA Statement.o vttt et ittt e ettt e tte et ettt 9-1
9.1 FormofaDATAStatement............. .0ttt eunennennns 9-1
9.2 DATA Statement Restrictions 9-1
9.3 Implied-DOina DATAStatement.............. ... 9-2
9.4 Character Constant ina DATA Statement 9-3
10. Assignment Statements.ttt ittt e 10-1
10.1 Arithmetic Assignment Statement 10-1
10.2 Logical Assignment Statement 10-2
10.3 Statement Label Assignment (ASSIGN) Statement 10-2
10.4 Character Assignment Statement.ttt 10-2
11. Control Statementso v vttt it ie e e i teee ettt 11-1
11.1 Unconditional GO TO Statementc.0tiiiueeneennnn. 11-1
11.2 Computed GOTO Statementan, 11-2
11.3 Assigned GOTO Statementccviiiin i ennenn 11-2
11.4 Arithmetic IF Statement i, 11-2
11.5 Logical IF Statementttt eenneenns 11-3
11.6 BlockIF Statement.ot v ittt ittt it eeeiieae e 11-3
11.7 ELSEIF Statement.ottt ittt it ittt ieeee e 11-4
11.8 ELSEStatementttt iieeneenanannn 11-5
11.9 ENDIFStatementttt te it iennannn 11-5
11.10 DO Statement i it ittt ittt ettt ettt e e 11-5
11.11 CONTINUE Statementt enenennenenenenenenns 11-9
11.12 STOP Statement: ... iiiinenenenennnnn e 11-9
11.13 PAUSE Statementttt et et iteeaneeeananns 11-9
11.14 END Statementttt ittt ettt et e 11-10
12. Input/Output Statementsiv e i e s it ee e eeeeneeennns 12-1
12,1 ReCOrds . ..o ittt i i e e e e e e e e 12-1
12,2 Files ..o e e e e e 12-2
123 Units . . .o e e e e e e e 12-6
124 Format Specifier and Identifier 12-7
12.5 Record Specifier i 12-8

12.6 Error and End-of-File Conditions e e e e e e 12-8

SECTION PAGE

12.7 Input/Output Status, Error, and End-of-File Specifiers 12-9
12.8 READ, WRITE, and PRINT Statementso eeu.n.. 12-10
12.9 Execution of a Data Transfer Input/Output Statement 12-13
12.10 Auxiliary Input/Output Statementscveeeu... 12-18
12.11 Restrictions on Function References and List Items 12-29
12.12 Restriction on Input/Qutput Statements.c..... 12-29
13. Format Specificationttt ittt ieeeenennans 13-1
13.1 Format Specification Methods, 13-1
13.2 Form of a Format Specification, 13-2
13.3 Interaction Between Input/Output List and Format 13-3
13.4 Positioningby FormatControl uiiiinnenn... 13-4
135 Bditing.ottt it i it i e i e e e 13-5
13.6 List-Directed Formatting00ttt innnnennnn. 13-13
14, Main Programottt it e i e e 14-1
14.1 PROGRAM Statement. N 14~1
14.2 Main Program Restrictions e PN 14-1
15. Functions and Subroutines e e 15-1
15.1 Categories of Functions and Subroutines 15-1
152 Referencinga Function i 15-1
15.3 Intrinsic Functions :............. S e 15-2
154 Statement Function i 15-4
15,5 External Functions.ttt tinennneuneneans 15-6
15-6 SUDIOULINES.ot i i i ittt e 15-9
157 ENTRY Statementttt ittt iinnnen.. 15-11
15.8 RETURN Statement................... e et e 15-13
159 Argumentsand Common Blocks 15-15
15.10 Table of Intrinsic Functionsttt iinennn. 15-22
16. Block Data Subprogramcciiiiiniiiiiiiiiiiiiiaa 16-1
16.1 BLOCK DATA Statementc..uuiiniunenennenneneens 16-1
16.2 Block Data Subprogram Restrictions 16-1
17. Association and Definition i 17-1
17.1 Storage and AsSOCIation. ittt it e e 17-1
17.2 Events That Cause Entities to Become Defined. 17-3
17.3 Events That Cause Entities to Become Undefined 17-4
18. Scope and Classes of Symbolic Names e e e et et e e 18-1
18.1 Scopeof SymbolicNames, 18-1
18.2 Classes of Symbolic Names.ttt ennnennn. 18-2
Tables
Table1 Subscript Value i 5-6
Table 2 Type and Interpretation of Result forx; +x5 6-5
Table 3 Type and Interpretation of Result forx; **x5, 6-6
Table 4 Arithmetic Conversion and Assignment ofetov 10-1
Table 5 Intrinsic Functions. ittt 15-22
Fig. 1 Required Order of Statements and Comment Lines. 3-4
Appendixes
Appendix A Criteria, Conflicts, and Portability. A-1
Al Criteria. ittt it e et e e A-1

SECTION PAGE
A3 Standard Items That Inhibit Portability A-4
A4 Recommendation for Enhancing Portability A-5

Appendix B SectionNotesot e e B-1
Bl Section 1 NoOtesciiiiiiiiiinee ittt eietnannnennnns B-1
B2 Section 2 NOtes .. .o vi ittt i e e et e e B-2
B3 Section 3 NoOtes vi ittt i e e e e e e e B-2
B4 Section 4 NOtes .. .ot v vttt it it e e e e e e e B-3
B5 Section SNoOtesottt it i e e e e e e B-3
B6 Section 6 NOTES . . . v vttt it i e e e e e B-3
B7 Section 7INOteS . .. v v ittt it ittt e e e B-4
B8 Section 8 NOTeS . . .o v v v ittt it i e e e e e B-4
B Section O NS . . v v vt ittt e e e e e e B-5
B10 Section IONOtES . . ot vv v tir et i eeee e e B-5
Bl1l Section 11 Noteso v ittt ittt ettt e e e ieeene e B-5
Bl12 Section 12 Notes . .. oottt it ittt ittt e e B-6
B13 Section I13Notesvii ittt i e e B-11
Bl4 Section 14 Notes i ittt ittt ittt ettt e e B-13
B15 Section ISNotes P B-13
B16 Section 16 Notes i vttt ittt it it et et et e B-15
B17 Section 17 NOtes . .. ittt ittt et et et e e e e e B-15
B18 Section 18 NOteso i ittt ittt it et et e e e B-15

Appendix C Hollerith. i i i i i i i C-1
Cl HollerithDataTypeottt ittt e iiennnnn . C-1
C2 Hollerith Constant ittt ittt te e C-1
C3 Restrictions on Hollerith Constantscovvurruneenn. s C-1
C4 Hollerith Constant in a DATA Statement C-2
C5 Hollerith Format Specification C-2
C6 AEditingof HollerithDatac.c0uuiin e, .. C-2
C7 Hollerith Constant in a Subroutine Reference C-3

Appendix D Subset OVerview iti ittt iie ., D-1
D1 Background.t e e, D-1
D2 Criteria.o ittt it e e e i e e e e e D-2

D21 Fulllanguagei ittt iiniiinnnennnen, D-2
D2.2 SubsetLanguage, D-2
D3 Summary of Subset Differences, D-2
D3.1 Section 1: Infroduction.0ttt ev.. D=2
D3.2 Section 2: FORTRAN Terms and Concepts D-2
D3.3 Section 3: Characters, Lines, and Execution Sequence D-2
D3.4 Section 4: Data Typesand Constants., D-3
D3.5 Section 5: Arraysand Substrings, D-3
D3.6 Section 6: EXpressionscuiiiiiiiiiiiiiiii., D-3
D3.7 Section 7: Executable and Nonexecutable Statement Classification D-3
D3.8 Section 8: Specification Statements, D-3
D3.9 Section 9: DATA Statementtuueteunnnennn. D-4
D3.10 Section 10: Assignment Statements.cc.vo.... D-4
D3.11 Section 11: Control Statements e e e e e D4
D3.12 Section 12: Input/Output Statementscoeeeeeen... D-4
D3.13 Section 13: Format Specification D-5
D3.14 Section 14: Main.Programt iiiiinn... D-5
D3.15 Section 15: Functions and Subroutines D-5

D3.16 Section 16: Block Data Subprogramccu.... D-6

SECTION PAGE

D3.17 Section 17: Association and Definition D-6
D3.18 Section 18: Scope and Classes of Symbolic Names D-6
D3.19 Sections 1 to 18: Character Type e e e e D-6

D4 Subset CONfOrmance v vt e et e et ie et atee e iiee s D-7
D4.1 Subset Processor Conformanceccovivun.nn. D-7

D4.2 Subset Program Conformance0iven.... D-7
Appendix E FORTRAN Statementsot uttnn e etinnnnennnnnn E-1
Appendix F Syntax Charts i, F-1
F1 Chart Conventionsc.citiuuttine e eeneeennennn.. F-1
F2 Charts i et e et e F-2
F3 Cross-Reference Index to Syntax Charts F-29

ANST X3.9-1978 FORTRAN 77

1.1
5 Thi

1. INTRODUCTION

Purpose

S

standard specifies the form and establishes the

interpretation of programs expressed in the FORTRAN
language. The purpose of this standard is to promote
portability of FORTRAN programs for use on a variety of data
processing systems.

10
1.2 Processor
The combination of a data processing system and the
mechanism by which programs are transformed for use on that
15 data processing system is called a processor in this
standard.
1.3 Scope
20 1.3.1 Inclusions. This standard specifies:
(1) The form of a program written in the FORTRAN language
(2) Rules for interpreting the meaning of such a program
25 and its data
(3) The form of writing input data to be processed by
such a program operating on data processing systems
30 (4) The form of the output data resulting from the use of
such a program on data processing systems
1.3.2 Exclusions. This standard does not specify:
35 (1) The mechanism by which programs are transformed for
use on a data processing system
(2) The method of transcription of programs or their
input or output data to or from a data processing
40 medium
(3) The operations required for setup and control of the
use of programs on data processing systems
45 (4) The results when the rules of this standard fail to
establish an interpretation
"~ (5) The size or complexity of a program and its data that
will exceed the capacity of any specific data
50 processing system or the capability of a particular
processor
(6) The range or precision of numeric quantities and the
method of rounding of numeric results
55

Page 1-1s

Subset Language

ANST X3.9-1978 FORTRAN 77

1. INTRODUCTION

1.1 Purpose

This

standard specifies the form and establishes the

interpretation of programs expressed in the FORTRAN
language. The purpose of this standard is to promote
portability of FORTRAN programs for use on a variety of data
processing systems.

1.2 Processor

The

combination of a data processing system and the

mechanism by which programs are transformed for use on that

data processing system 1is called a processor in this
standard.
1.3 Scope
1.3.1 Inclusions. This standard specifies:
(1) The form of a program written in the FORTRAN language
(2) Rules for interpreting the meaning of such a program
and its data
(3) The form of writing input data to be processed by
such a program operating on data processing systems
(4) The form of the output data resulting from the use of
such a program on data processing systems
1.3.2 Exclusions. This standard does not specify:
(1) The mechanism by which programs are transformed for
use on a data processing system
(2) The method of transcription of programs or their
input or output data to or from a data processing
medium
(3) The operations required for setup and control of the
use of programs on data processing systems
(4) The results when the rules of this standard fail to
establish an interpretation
(5) The size or complexity of a program and its data that
will exceed the capacity of any specific data
processing system or the capability of a particular
processor
(6) The range or precision of numeric quantities and the

method of rounding of numeric results

Full Language

10

15

20

25

30

35

40

45

50

55

Page 1-1

ANST X3.9-1978 FORTRAN 77 INTRODUCTION

10

15

20

25

30

35

40

45

50

55

(7) The physical properties of 1input/output records,
files, and units

(8) The physical properties and implementation of storage

1.4 Conformance

The requirements, prohibitions, and options specified in
this standard generally refer to permissible forms and
relationships for standard-conforming programs rather than
for processors. The obvious exceptions are the optional
output forms produced by a processor, which are not under
the control of a program. The requirements, prohibitions,
and options for a standard-conforming processor usually must
be inferred from those given for programs.

An executable program (2.4.2) conforms to this standard if
it wuses only those forms and relationships described herein
and it the &executable program has an interpretation
according to this standard. A program unit (2.4) conforms
to this standard if it can be included 1in an executable
program in a manner that allows the executable program to be
standard conforming.

A processor conforms to this standard if it executes
standard-conforming programs in a manner that fulfills the

interpretations prescribed herein. A standard-conforming
processor may allow additional forms and relationships
provided that such additions do not conflict wWwith the
standard forms and relationships. However, a standard-

conforming processor may . allow additional intrinsic
functions (15.10) even though this could cause a conflict
with the name of an external function in a standard-
conforming program. If such a <conflict occurs, the
processor is permitted to use the intrinsic function unless
the name appears in an EXTERNAL statement within the program
unit. A standard-conforming program must not use 1intrinsic
functions that have been added by the processor. Note that
a standard-conforming program must not wuse any forms or
relationships that are prohibited by this standard, but a
standard-conforming processor may allow such forms and
relationships it they do not change the proper
interpretation of a standard-conforming program.

Because a standard-conforming program may place demands on
the processor that are not Wwithin the scope of this standard
or may include standard items that are not portable, such as
external procedures defined by means other than FORTRAN,
conformance to this standard does not ensure that a
standard-conforming program Wwill execute consistently on all
or any standard-conforming processors.

1.4.1 Subset Conformance. This standard describes two

ievels of the FORTRAN language, referred to as FORTRAN and
subset FORTRAN. FORTRAN is the full language. Subset

FORTRAN is a subset of the full language.

Page 1-2s Subset Language

INTRODUCTION ANST X3.9-1978 FORTRAN 77

(7) The physical properties of input/output records,
files, and units.

(8) The physical properties and implementation of storage
1.4 CLonformance

The requirements, prohibitions, and options specified in
this standard generally refer to permissible forms and
relationships for standard-conforming programs rather than
for processors. The obvious exceptions are the optional
output forms produced by a processor, which are not wunder
the control of a program. The requirements, prohibitions,
and options for a standard-conforming processor usually must
be inferred from those given for programs.

An executable program (2.4.2) conforms to this standard if
it wuses only those forms and relationships described herein
and if° the executable program has an interpretation
according to this standard. A program unit (2.4) conforms
to this standard if it can be included in an executable
program in a manner that allows the executable program to be
standard conforming.

A processor conforms to this standard if it executes
standard-conforming programs in a manner that fulfills the
interpretations prescribed herein. A standard-conforming
processor may allow additional forms and relationships
provided that such additions do not <conflict with the
standard forms and relationshipe. However, a standard-
conforming processor may allow additional intrinsic
functions (15.10) even though this could cause a conflict
with the name of an external function in a standard-
conforming program. If such a conflict occurs, the
processor is permitted to use the intrinsic function unless
the name appears in an EXTERNAL statement within the program
unit. A standard-conforming program must not use intrinsic
functions that have been added by the processor. Note that
a standard-conforming program must not wuse any forms or
relationships that are prohibited by this standard, but a
standard-conforming processor may allow such forms and
relationships if they do not change the proper
interpretation of a standard-conforming program.

Because a standard-conforming program may place demands on
the processor that are not Wwithin the scope of this standard
or may include standard items that are not portable, such as
external procedures defined by means other-than FORTRAN,
conformance to this standard does not ensure that a
standard-conforming program wWill execute consistently on all
or any standard-conforming processors.

1.4.1 Subset Conformance. This standard describes two
levels of the FORTRAN language, referred to as FORTRAN and
subset FORTRAN. FORTRAN is the full Jlanguage. Subset

FORTRAN is a subset of the full language.

Full Language

10

15

20

25

30

35

40

45

50

55

Page 1-2

ANST X3.9-1978 FORTRAN 77 INTRODUCTION

10

15

20

25

30

35

40

45

50

55

An executable program conforms to the subset level of this
standard if it wuses only those forms and relationships
described herein for that level and if the -executable
program has an interpretation according to this standard at
that level and would have the same interpretation 1in the
full language. A program unit conforms to the subset level
of this standard if it can be included in an executable
program in a manner that allows the executable program to be
standard conforming at that level.

A subset level processor conforms to the subset level of
this standard if it &executes subset level standard-
conforming programs in a manner that fulfills the
interpretations prescribed herein for subset FORTRAN. A
subset level processor may include an extension that has a

form and would have an interpretation at the full level only
if the extension has the interpretation provided by the full
level. A subset level processor may also include extensions

that do not have forms and interpretations in the full
language. ‘

1.5 Notation Used in This Standard

In this standard, “must”™ is to be interpreted as a
requirement; conversely, "must not” is to be interpreted as
a prohibition.

In describing the form of FORTRAN statements or constructs,
the following metalanguage conventions and symbols are used:
»
(1) Special characters from the FORTRAN <character set,
uppercase letters, and uppercase wWords are to be
written as shown, except where otherwise noted.

(2) Lowercase letters and |owercase words indicate
general entities for which specific entities must be
substituted in actual statements. Once - a given
lowercase letter or word is wused 1in a syntactic
specification to represent an entity, all subsequent
occurrences of that letter or word represent the same
entity wuntil that ‘letter or wWword 1is wused 1in a
subsequent syntactic specification to represent a
different entity.

(3) Brackets, [], are used to indicate optional items.
(4) An ellipsis, ... , indicates that the preceding
optional items may appear one or more times in

succession.

(5) Blanks are used to improve readability, but wunless
otherwise noted have no significance.

(6) Words or groups of words that have special
significance are wunderlined where their meaning is

Page 1-3s Subset Language

INTRODUCTION ANST X3.9-1978 FORTRAN 77

An executable program conforms to the subset level of this
standard if it wuses only those forms and relationships
described herein for that level and if the executable
program has an interpretation according to this standard at
that level and would have the same interpretation 1in the
full" language. A program unit conforms to the subset level
of this standard if it can be included in an executable

program in a manner that allows the executable program to be

standard conforming at that level.

A subset level processor conforms to the subset level of
this standard if it executes subset level standard-
conforming programs in a manner that fulfills the

interpretations prescribed herein for subset FORTRAN. A
subset level processor may include an extension that has a
form and would have an interpretation at the full level only
if the extension has the interpretation provided by the full
level. A subset level processor may also include extensions
that do not have forms and interpretations in the full
language.

1.5 Notation Used in This Standard

In this standard, “"must”™ is to be interpreted as a
requirement; conversely, "must not” is to be interpreted as
a prohibition.

In describing the form of FORTRAN statements or constructs,
the following metalanguage conventions and symbols are used:

(1) Special characters from the FORTRAN character set,
uppercase letters, and uppercase words are to be
written as shown, except where otherwise noted.

(2) Lowercase letters .and lowercase words indicate

10

15

20

25

30

35

general entities for which specific entities must be

substituted in actual statements. Once a given
lowercase letter or word 1is wused. in a syntactic
specification to represent an entity, all subsequent
occurrences of that letter or word represent the same
entity wuntil that letter .or word 1is wused in a
subsequent syntactic specification to represent a
different entity.

(3) Brackets, [1, are used to indicate optional items.

- , indicates that the preceding

(4) An ellipsis,
jtems may appear one or more times in

optional
succession.

(5) Blanks are used to improve readability, but unless
otherwise noted have no significance.

(6) Words or groups of words that have special
significance are underlined where their meaning is

Full Language
S

40

45

50

55

Page 1-3

ANSI X3.9-1978 FORTRAN 77 INTRODUCTION

10

15

20

25

30

35

40

45

50

55

described. Titles and the metalanguage symbols
described in 1.5(2) are also underlined.

An example illustrates the metalanguage. Given a
description of the form of a statement as:

CALL sub [C [a [, al...1)]

the following forms are allowed:

CALL sub

CALL sub O

CALL sub (a)

CALL sub (a, a)
CALL sub (a, a, a)
etc

When an actual statement is written, specific entities are
substituted for sub and each a; for example:

CALL ABCD (X,1.0)
1.6 Subset Text

The section titles in the subset description are identical
to the section titles in the full language description.

There are some instances in which a general situation occurs
in the full language but only a restricted case applies to
the subset. For example, in 3.6, the “nonexecutable
statements” that may appear between executable statements
may only be FORMAT statements in the subset. In most of
these instances, the more general text of the full language
description has been retained in the subset description,
even though it is to be interpreted as covering only the
restricted case.

To help find differences between the full and subset
languages, vertical bars have been added in the margins
where the text of the full and subset languages differ.

Page 1~4s Subset Language

INTRODUCTION ANSI X3.9-1978 FORTRAN 77

described. ~ Titles and the metalanguage symbols
described in 1.5(2) are also underlined.

An example illustrates the metalanguage. Given a
description of the form of a statement as:

CALL sub [¢ [a [, al...1)]

the following forms are allowed:

CALL
CALL
CALL
CALL
CALL s
etc

0]
c
(=g

@)

(a)
(a,
(a,

n
c
o

(@]
C
(o

n
c
(o

a
8

c
o

. a)

When an actual statement is written, specific entities are
substituted for sub and each a; for example:

CALL ABCD (X,1.0)
1.6 Subset Text

The section titles in the subset description are jidentical
to the section titles in the full language description.

There are some instances in which a general situation occurs
in the full language but only a restricted case applies to
the subset. For example, in 3.6, the “nonexecutable
statements” that may appear between executable statements
may only be FORMAT statements in the subset. In most of
these instances, the more general text of the full language
description has been retained in the subset description,
even though it is to be interpreted as covering only the
restricted case.

To help find differences between the full and subset
languages, vertical bars have been added in the margins
where the text of the full and subset languages differ. For
example, this sentence does not appear in the subset
language text.

Full Language

10

15

20

25

30

35

40

45

50

55

Page 1-4

ANSI X3.9-1978 FORTRAN 77

10

15

20

25

30

35

40

45

50

55

2. FORTRAN TERMS AND CONCEPTS

This section introduces basic terminology and concepts, some

of which are clarified further in later sections. Many
terms and concepts of more specialized meaning are also
introduced in later sections. The wunderlined. words are

described here and used throughout this standard.

2.1 Sequence

A sequence is a set ordered by a one-to-one correspondence
with the numbers 1, 2, through n. The number of elements in
the sequence is n. A sequence may be empty, in which case
it contains no elements.

The &elements of a nonempty sequence are referred to as the
first element, second element, etc. The nth element, where

n is the number of elements in the sequence, is called the

last element. An empty sequence has no first or last
element.

2.2 Syntactic Items

Letters, digits, and special characters of the FORTRAN
character set (3.1) are used to form the syntactic items of-.
the FORTRAN language. The basic syntactic items of the
FORTRAN language are constants, symbolic names, statement
labels, keywords, operators, and special characters.

The form of a constant is described in Section 4.

A symbolic name takes the form of a sequence of one to six
letters or digits, the first of which must be a letter.
Classification of symbolic names and restrictions on their
use are described in Section 18.

A statement label takes the form of a sequence of one to
five digits, one of which must be nonzero, and is used to
identify a statement (3.4).

A keyword takes the form of a specified sequence of letters.
The keywords that are significant in the FORTRAN language
are described in Sections 7 through 16. In many instances,
a keyword or a portion of a keyword also meets the
requirements for a symbolic name. Whether a particular
sequence of characters identifies a keyword or a symbolic
name is implied by context. There is no sequence of
characters that is reserved in all contexts in FORTRAN.

The set of special characters is described in 3.1.4. A
special character may be an operator or part of a constant
or have some other special meaning. The interpretation 1is

implied by context.

Page 2-1s Subset Language

ANSI X3.9-1978 FORTRAN 77

2. FORTRAN TERMS AND CONCEPTS

This section introduces basic terminology and concepts, some

of which are clarified further in later sections. Many
terms and concepts of more specialized meaning are also
introduced in later sections. The wunderlined words are

described here and used throughout this standard.

2.1 Sequence

A sequence is a set ordered by a one-to-one correspondence
Wwith the numbers 1, 2, through n. The number of elements in
the sequence is n. A sequence may be empty, in which case
it contains no elements.

The elements of a nonempty sequence are referred to as the
first element, second element, etc. The nth element, where
n is the number of elements in the sequence, is called the
last element. An empty sequence has no first or last
element.

2.2 Syntactic Items

Letters, digits, and special <characters of the FORTRAN
character set (3.1) are used to form the syntactic items of
the FORTRAN language. The basic syntactic items of the
FORTRAN language are constants, symbolic names, statement
labels, keywords, operators, and special characters.

The form of a constant is described in Section 4.

A symbolic name takes the form of a sequence of one to six
letters or digits, the first of which must be a letter.
Classification of symbolic names and restrictions on their
use are described in Section 18.

A statement label takes the form of a sequence of one to
five digits, one of which must be nonzero, and is used to
identify a statement (3.4).

A keyword takes the form of a specified sequence of letters.
The keywords that are significant in the FORTRAN language
are described in Sections 7 through 16. In many instances,
a keyword or a portion of a keyword also meets the
requirements for a symbolic name. Whether a particular
sequence of characters identifies a keyword or a symbolic
name 1s implied by context. There is no sequence of
characters that is reserved in all contexts in FORTRAN.

The set of special characters is described in 3.1.4. A
special character may be an operator or part of a constant
or have some other special meaning. The interpretation 1is
implied by context. .

Full Language

10

15

20

25

30

35

40

45

50

55

Page 2-1

ANST X3.9-1978 FORTRAN 77 FORTRAN TERMS AND CONCEPTS

10

15

20

25

30

35

40

45

50

55

2.3 Statements, Comments, and Lines

A FORTRAN statement 1is a sequence of syntactic items, as
described in Sections 7 through 16. Except for assignment
and statement function statements, each statement begins
with a keyword. In this standard, the keyword or keywords
that begin the statement are wused to identify that
statement. For example, a DATA statement begins with the
keyword DATA.

A statement is written in one or more lines, the first of
which is called an initial line (3.2.2); succeeding Ilines,
if any, are called continuation lines (3.2.3).

There is also a line called a comment line (3.2.1), which is
not part of any statement and s intended to provide
documentation.

2.35.17 Classes of Statements. FEach statement is classified

as executable or nonexecutable (Section 7). Executable
statements specify actions. Nonexecutable statements
describe the characteristics, arrangement, and initial

values of data; <contain editing information; specify
statement functions; and classify program units.

2.4 Program Units and Procedures

A program unit consists of a sequence of statements and
optional —comment lines. A program unit is either a main
program or a subprogram.

A main program is a program unit that does not have a
FUNCTION or SUBROUTINE statement as its first statement; it
may have a PROGRAM statement as its first statement.

A subprogram is a program wunit that has a FUNCTION or
SUBROUTINE statement as its first statement. A subprogram
whose first statement is a FUNCTION statement is called a
function subprogram. A subprogram whose first statement is

a SUBROUTINE statement is called a subroutine subprogram.
Function subprograms and subroutine subprograms are called
procedure subprograms.

2.4.1 Procedures. Subroutines (15.6), external functions

(15.5), statement functions (15.4), and the intrinsic
functions (15.3) are called procedures. Subroutines and

external functions are called external procedures. External
procedures may also be specified by means other than FORTRAN
subprograms. |

Page 2-2s Subset Language

FORTRAN TERMS AND CONCEPTS ANST X3.9-1978 FORTRAN 77

2.3 Statements, Comments, and lLines

A FORTRAN statement 1is a sequence of syntactic items, as
described in Sections 7 through 16. Except for assignment
and statement function statements, each statement begins
with a keyword. In this standard, the keyword or keywords
that begin the statement are wused to identify that
statement. For example, a DATA statement begins with the
keyword DATA.

A statement -is wWritten in one or more lines, the first of
which is called an initial Jine (3.2.2); succeeding I|ines,
if any, are called continuation lines (3.2.3).

There is also a line called a comment line (3.2.1), which is
not part of any statement and is intended to provide
documentation.

2.3.17 CLlasses of Statements. Each statement is classified

as executable or nonexecutable (Section 7). Executable
statements specify actiaons. Nonexecutable statements
describe the characteristics, arrangement, and initial

values of data; contain editing information; specify
statement functions; classify program wunits; and specify
entry points Wwithin subprograms.

2.4 Program Units and Procedures

A program wunit consists of a sequence of statements and
optional comment lines. A program unit 1is either a main
program or a subprogram.

A main program is a program unit that does not have a
FUNCTION, SUBROUTINE, or BLOCK DATA statement as its first
statement; it may have a PROGRAM statement as its first
statement.

A subprogram is a program wunit that has a FUNCTION,
SUBROUTINE, or BLOCK DATA statement as its first statement.
A subprogram whose first statement is a FUNCTION statement
is called a function subprogram. A subprogram whose first

statement is a SUBROUTINE statement is called a subroutine

subprogram. Function subprograms and subroutine subprograms
are called procedure subprograms. A subprogram whose first
statement is a BLOCK DATA statement is called a block data

subprogram.

2.4.1" Procedures. Subroutines (15.6), external functions
(15.5), statement functions (15.4), and the intrinsic
functions (15.3) are <called procedures. Subroutines and
external functions are called external procedures. Function
subprograms and subroutine subprograms may specify one or
more external functions and subroutines, respectively
(15.7). External procedures may also be specified by means
other than FORTRAN subprograms.

Full Language

10

15

20

25

30

35

40

45

50

55

Page 2-2

ANST X3.9-1978 FORTRAN 77 - FORTRAN TERMS AND CONCEPTS

10

15

20

25

30

35

40

45

50

55

2.4.2 Executable Program. An executable program is a
collection of program units that consists of exactly one

main program and any number, including none, of subprograms
and external procedures.

2.5 Variable

A variable is an entity that has both a name and a type. A
variable name 1is a symbolic name of a datum. Such a datum
may be identified, defined (2.11), and referenced (2.12).
Note that the usage in this standard of the word “variable”
is more restricted than its normal usage, in that it does
not include array elements.

The type of a variable 1is optionally specified by the
appearance of the variable name in a type-statement (8.4).
If it is not so specified, the type of a variable is implied
by the first letter of the variable name to be integer or
real (4.1.2), unless the initial letter type implication is
changed by the use of an IMPLICIT statement (8.5).

At any given time during the execution of an executable
program, a variable is either defined or undefined (2.11).

2.6 Array

An array is a nonempty sequence of data that has a name and
a type. The naeme of an array is a symbolic name.

2.6.1 Array Elements. Each of the elements of an array is
called an array element. An array name qualified by a
subscript is an array element name and identifies a
particular element of the array (5.3). Such a datum may be
identified, defined (2.11), and referenced (2.12). The
number of array elements in an array is specified by an
array declarator (5.1).

An array element has a type. The type of all array elements
within an array is the same, and is optionally specified by
the appearance of the array name in a type-statement (8.4).
If it 1is not so specified, the type of an array element is
implied by the first letter of the array name to be integer
or real (4.1.2), unless the initial letter type implication
is changed by the use of an IMPLICIT statement (8.5).

At any given time during the execution of an executable
program, an array element 1is either defined or undefined
2.11).

2.7 Substring

A character datum is a nonempty sequence of <characters. A
substring is a contiguous portion of a character datum.
Substring names are not included in the subset.

Page 2-3s Subset Language

FORTRAN TERMS AND CONCEPTS ANSI X3.9-1978 FORTRAN 77

2.4.2 Executable Program. An executable program is a
collection of program units that consists of exactly one
main program and any number, including none, of subprograms
and external procedures.

2.5 Variable

A variable is an entity that has both a name and a type. A
variable name 1is a symbolic name of a datum. Such a datum
may be identified, defined (2.11), and referenced (2.12).
Note that the usage in this standard of the word “variable”
is more restricted than its normal usage, in that it does
not include array elements.

The type of a variable 1is optionally specified by the
appearance of the variable name in a type-statement (8.4).
If it is not so specified, the type of a variable is implied
by the first letter of the variable name to be integer or
real (4.1.2), unless the initial letter type implication s
changed by the use of an IMPLICIT statement (8.5).

At. any given time during the execution of an executable
program, a variable is either defined or undefined (2.11).

2.6 Array

An array is a nonempty sequence of data that has a name and
a type. The name of an array is a symbolic name.

2.6.1 Array Elements. Each of the elements of an array is
called an array element. An array name qualified by a
subscript is an array element name and identifies a

particular element of the array (5.3). Such a datum may be
jdentified, defined (2.11), and referenced (2.12). The
number of array elements in an array is specified by an
array declarator (5.1).

An array element has a type. The type of all array elements
within an array is the same, and is optionally specified by
the appearance of the array name in a type-statement (8.4).
If it 1is not so specified, the type of an array element is
implied by the first letter of the array name to be integer
or real (4.1.2), unless the initial letter type implication
is changed by the use of an IMPLICIT statement (8.5).

At any given time during the execution of an -executable
program, an array element 1is either defined or undefined
(2.11).

2.7 Substring

A character datum is a nonempty sequence of ~characters. A
substring is a contiguous portion of a character datum. The
form of a substring name used to identify, define (2.11), or
reference (2.12) a substring is described in 5.7.1.

Full Language

10

15

20

25

30

35

40

45

50

55

Page 2-3

ANST X3.9-1978 FORTRAN 77 FORTRAN TERMS AND CONCEPTS

10

15

20

30

35

40

45

50

55

2.8 Dummy Argument

A dummy argument in a procedure is a symbolic name. A
symbolic name dummy argument identifies a variable, array,
or procedure that becomes associated (2.14) with an actual
argument of each reference (2.12) to the procedure (15.2,
15.4.2, 15.5.2, and 15.6.2). :

Each dummy argument name that is classified as a variable,
array, or dummy procedure may appear wherever an actual name
of the same class (Section 18) and type may appear, except
where explicitly prohibited.

2.9 Scope of Symbolic Names and Statement lLabels

The scope of a symbolic name (18.1) 1is an executable
program, a program unit, or a statement function statement.

The name of the main program and the names of external
functions, subroutines, and common blocks have a scope of an
executable program.

The names of variables, arrays, constants, statement
functions, intrinsic functions, and dummy procedures have a
scope of a program unit.

The names of variables that appear as dummy arguments in a
statement function statement have a scope of that statement.

Statement labels have a scope of a program unit.

2.10 List

A list is a nonempty sequence (2.1) of syntactic entities
separated by commas. The entities in the list are called
list items.

2.11 Definition Status

At any given time during the execution of an executable
program, the definition status of each variable or array
element is either defined or undefined (Section 17).

Page 2-4s Subset Language

FORTRAN TERMS AND CONCEPTS ANSI X3.9-1978 FORTRAN 77

At any given time during the execution of an executable
program, a substring is either defined or undefined (2.11).

2.8 Dummy Argument

A dummy argument in a procedure is either a symbolic name or
an asterisk. A symbolic name dummy argument identifies a
variable, array, or procedure that becomes associated (2.14)
with an actual argument of each reference (2.12) to the
procedure (15.2, 15.4.2, 15.5.2, and 15.6.2). An asterisk
dummy argument indicates that the <corresponding actual
argument is an alternate return specifier (15.6.2.3, 15.8.3,
and 15.9.3.5).

Each dummy argument name that is classified as a variable,
array, or dummy procedure may appear wherever an actual name
of the same class (Section 18) and type may appear, except
where explicitly prohibited.

2.9 Scope of Symbolic Names and Statement Labels

The scope of a symbolic name (18.1) 1is an executable
program, a program unit, a statement function statement, or
an implied-D0 list in a DATA statement.

The name of the main program and the names of block data
subprograms, external functions, subroutines, and common
blocks have a scope of an executable program.

The names of wvariables, arrays, constants, statement

functions, intrinsic functions, and dummy procedures have a
scope of a program unit.

The names of variables that appear as dummy arguments in a
statement function statement have a scope of that statement.

The names of variables that appear as the DO-variable of an
implied-DO0 in a DATA statement have a scope of the implied-
DO list.

Statement labels have a scope of a program unit.

2.10 List

A list is a nonempty sequence (2.1) of syntactic entities
separated by commas. The entities in the list are called

list jtems.

2.11 Definition Status

At any given time during the execution of an executable
program, the definition status of weach variable, array

element, or substring 1is either defined or undefined

(Section 17).

Full Language

10

15

20

25

30

35

40

45

50

55

Page 2-4

ANST X3.9-1978 FORTRAN 77 FORTRAN TERMS AND CONCEPTS

10

15

20

25

30

35

40

45

50

55

A defined entity has a value. The value of a defined entity
does not change until the entity becomes undefined or 1is
redefined with a different value.

If a variable or array element is undefined, it does not
have a predictable value.

A previously defined variable or array element may become
undefined. Subsequent definition of a defined variable or
array element is permitted, except where i1t is explicitly
prohibited.

A character variable or character array element is defined
if every substring of length one of the entity is defined.

An entity is initially defined if it is assigned a value in
a DATA statement (Section 9). Initially defined entities
are in the defined state at the beginning of execution of an
executable program. All variables and array elements not
initially defined, or associated (2.14) with an initially
defined entity, are undefined at the beginning of execution
of an executable program.

An entity must be defined at the time a reference to it is
executed.

2.12 Reference

A variable or array element reference is the appearance of a
variable or array element name, respectively, in a statement
in a context requiring the value of that entity to be wused
during the &execution of the executable program. When a
reference to an entity is executed, 1its current value s
available. In this standard, the act of defining an entity
is not considered a reference to that entity.

A procedure reference is the appearance of a procedure name
in a statement in a context that requires the actions
specified by the procedure to be executed during the
execution of the executable progranm. When a procedure
reference is executed, the procedure must be available.

2.13 Storage

A storage sequence 1is a sequence of storage wunits. A
storage unit is either a numeric storage unit or a character
storage unit.

An integer, real, or logical datum has one numeric storage

| unit in a storage sequence. A character datum has one

Page 2-5s Subset Language

FORTRAN TERMS AND CONCEPTS ANST X3.9-1978 FORTRAN 77

A defined entity has a value. The value of a defined entity
does not <change wuntil the entity becomes undefined or is
redefined with a different value. ‘

If a variable, array element, or substring is undefined, it
does not have a predictable value.

A previously defined variable or array element may become
undefined. Subsequent definition of a defined variable or
array element 1is permitted, except where it is explicitly
prohibited.

A character variable, character array element, or character
substring is defined if every substring of length one of the
entity 1is defined. Note that if a string is defined, every
substring of the string is defined, and if any substring of
the string is undefined, the string is undefined. Defining
any substring does not cause any other string or substring
to become undefined.

An entity is initially defined if it is assigned a value in

a DATA statement (Section 9). Initially defined entities
are in the defined state at the beginning of execution of an
executable program. All variables and array elements not

initially defined, or associated (2.14) with an initially
defined entity, are undefined at the beginning of execution
of an executable program.

An entity must be defined at the time a reference to it 1is
executed.

2.12 Reference

A variable, array element, or substring reference is the
appearance of a variable, array element, or substring name,
respectively, in a statement in a context requiring the
value of that entity to be used during the execution of the
executable program. When a reference to an entity is
executed, its current value is available. In this standard,
the act of defining an entity is not considered a reference
to that entity.

A procedure reference is the appearance of a procedure name
in a statement 1in a context that requires the actions
specified by the procedure to be executed during the
execution of the executable program. When a procedure
reference is executed, the procedure must be available.

2.13 Storage

A storage sequence is a sequence of storage units. A
storage unit is either a numeric storage unit or a character
storage unit.

An integer, real, or logical datum has one numeric storage

unit in a storage sequence. A double precision or complex |

Full” Language

10

15

20

25

30

35

40

45

50

55

Page 2-5

ANST X3.9-1978 FORTRAN 77 FORTRAN TERMS AND CONCEPTS

10

15

20

25

30

35

40

45

50

55

character storage wunit in a storage sequence for each
character in the datum. This standard does not specify a
relationship between a numeric storage unit and a character
storage unit.

[f a datum requires more than one storage unit in a storage
sequence, those storage units are consecutive.

The concept of a storage sequence is used to describe
relationships that exist among variables, array elements,
arrays, and common blocks. This standard does not specify a
relationship between the storage sequence concept and the
physical properties or implementation of storage.
2.14 Association
Association of entities exists if the same datum may be
identified by different symbolic names in the same program
unit, or by the same name or a different name in different
program units of the same executable program (17.1).
Entities may become associated by the following:

(1) Common association (8.3.4)

(2) Equivalence association (8.2.2)

(3) Argument association (15.9.3)

Page 2-6s Subset Language

FORTRAN TERMS AND CONCEPTS ANST X3.9-1978 FO

datum has two numeric storage units in a storage sequence.
A character datum has one character storage unit in a
storage sequence for each character in the datum. This
standard does not specify a relationship between a numeric
storage unit and a character storage unit.

If a datum requires more than one storage unit in a storage
sequence, those storage units are consecutive.

The concept of a storage sequence is wused to describe
relationships that exist among variables, array elements,
arrays, substrings, and common blocks. This standard does
not specify a relationship between the storage sequence
concept and the physical ©properties or implementation of
storage.
2.14 Association
Association of entities exists if the same datum may be
identified by different symbolic names in the same program
unit, or by the same name or a different name in different
program units of the same executable program (17.1).
Entities may become associated by the following:

(1) Common association (8.3.4)

(2) Equivalence association (8.2.2)

(3) Argument association (15.9.3)

(4) Entry association (15.7.3)

Full Language

RTRAN 77

10

15

20

25

30

35

40

45

50

55

Page 2-6

ANSI X3.9-1978 FORTRAN 77

10

15

20

25

30

35

40

45

50

55

3. CHARACTERS, LINES, AND EXECUTION SEQUENCE
3.1 FORTRAN Character Set

The FORTRAN character set consists of twenty-six letters,
ten digits, and eleven special characters.

3.17.1 Letters. A letter is one of the twWenty-six
characters:

ABCDEFGHI JKLMNOPGRSTUVWXY?Z

3.17.2 Digits. A digit is one of the ten characters:

012345673829

A string of digits is interpreted in the decimal base number
system when a numeric interpretation is appropriate.

3.1.3 Alphanumeric Characters. An alphanumeric character
is a letter or a digit.

3.17.4 Special Characters. A special character is one of
the eleven characters:

Character Name of Character

Blank

Equals

Plus

Minus

Asterisk

Slash

Left Parenthesis
Right Parenthesis
Comma

Decimal Point
Apostrophe

- oA~ x | 4+ 1

3.1.5 Collating Seaquence and Graphics. The order in which
the letters are |listed in 3.1.% specifies the <collating
sequence for the letters; A is less than Z. The order in
which the digits are listed in 3.1.2 specifies the collating
sequence for the digits; 0 is less than 9. The digits and
letters must not be intermixed in the <collating sequence;

all of the digits must precede A or all of the digits must
follow 2. The character blank is less than the letter A and
less than the digit 0. The order in which the special

characters are ltisted in 3.1.4 does not imply a collating
sequence.

Page 3-1s Subset Language

ANST X3.9-1978 FORTRAN 77

3. CHARACTERS, LINES, AND EXECUTION SEQUENCE
3.1 FORTRAN Character Set

The FORTRAN character set consists of twenty-six letters,
ten digits, and thirteen special characters.

3.17.1 Lletters. A letter is one of the twenty-six
characters:

ABCDEFGHI JKLMNOPOBRSTUVHWKXY?Z
3.1.2 Digits. A digit is one of the ten characters:
0123445673829

A string of digits is interpreted in the decimal base number
system when a numeric interpretation is appropriate.

3.1.3 Alphanumeric Characters. An alphanumeric character

is a letter or a digit.

3.1.4 Special Characters. A special character is one of
the thirteen characters:

Character Name of Character

Blank

Equals

Plus

Minus

Asterisk

Slash

Left Parenthesis
Right Parenthesis
Comma

Decima! Point
Currency Symbol
Apostrophe

Colon

N~ |+ 0l

9 .

3.1.5 Collating Sequence and Graphics. The order in which
the letters are listed in 3.1.1 specifies the collating
sequence for the letters; A is less than Z. The order in
which the digits are listed in 3.1.2 specifies the collating
sequence for the digits; 0 is less than 9. The digits and
letters must not be intermixed in the collating sequence;

all of the digits must precede A or all of the digits must
follow Z. The character blank is less than the letter A and
less than the digit 0. The order in Wwhich the special

characters are listed in 3.1.4 does not imply a collating
sequence.

Full Language

10

15

20

25

30

35

40

45

50

55

Page 3-1

ANSI X3.9-1978 FORTRAN 77‘ CHARACTERS, LINES, AND EXECUTION SEGUENCE

10

15

20

25

30

35

40

45

50

55

The graphics used for the forty-seven characters must be as
given in 3.1.1, 3.1.2, and 3.1.4. However, the style of any
graphic is not specified.

3.1.6 Blank Character. With the exception of the uses
specified (3.2.2, 3.2.3, 3.3, &.8, &.8.1, 13.5.1, and
13.5.2), a blank character wWwithin a program unit has no
meaning and may be used to improve the appearance of the
program unit, subject to the restriction on the number of
consecutive continuation lines (3.3).

3.2 Lines

A line in a program unit is a sequence of 72 characters.
All characters must be ~from the FORTRAN character set,
except as described in 3.2.1, 4.8, 12.2.2, and 13.2.1.

The character positions in a line are called columns and are
numbered consecutively 1, 2, through 72. The number
indicates the sequential position of a character in the
line, beginning at the left and proceeding to the right.
Lines are ordered by the sequence in which they are
presented to the processor. Thus, a program wunit consists
of a totally ordered set of characters.

3.2.17 Comment lLine. A comment line is any |ine that
contains a C or an asterisk in column 1, or contains only
blank characters in <columns 1 through 72. A comment line
that contains a C or an asterisk in column 1 may contain any
character capable of representation in the oprocessor in
columns 2 through 72.

A comment |line does not affect the executable program in any
way and may be used to provide documentation.

A comment line must be followed immediately by an initial
line or another comment |line. A comment line must not be
followed by a continuation |line. Comment lines may precede
the initial line of the first statement of any program unit.

3.2.2 Initial Line. An initial line is any line that s
not a comment line and contains the character blank or the
digit 0 in column 6. Columns 1 through 5 may contain a
statement label (3.4), or each of the columns 1 through 5
must contain the character blank.

3.2.3 CLContinuation Line. A continuation line is any Iline
that contains any character of the FORTRAN character set
other than the character blank or the digit 0 in column 6
and contains only blank characters in columns 1 through 5.
A statement must not have more than nine continuation lines.

Page 3-2s Subset Language

CHARACTERS, LINES, AND EXECUTION SEGUENCE ANSI X3.9-1978 FORTRAN 77

Except for the currency symbol, the graphics used for the
forty-nine characters must be as given in 3.1.1, 3.1.2, and
3.1.4. However, the style of any graphic is not specified.

3.1.6 Blank Character. MWith the &exception of the wuses 5
specified (3.2.2, 3.2.3, 3.3, 4.8, 4.8.1, 13.5.1, and
13.5.2), a blank character within a program wunit has no
meaning and may be wused to improve the appearance of the
program unit, subject to the restriction on 'the number of
consecutive continuation lines (3.3). 10

3.2 Lines

A line in a program unit is a sequence of 72 characters.
All characters must be from the FORTRAN ~character set, 15
except as described in 3.2.1, 4.8, 12.2.2, and 13.2.1.

The character positions in a |line are called columns and are
numbered consecutively 1, 2, through 72. The number
indicates the sequential position of a ~character in the 20
line, beginning at the left and proceeding to the right.
Lines are ordered by the sequence in which they are
presented to the processor. Thus, a program unit consists
of a totally ordered set of characters.

25
3.2.17 Comment Line. A comment line is any |ine that
contains - a C or an asterisk in column 1, or contains only
blank characters in columns 1 through 72. A comment |ine
that contains a C or an asterisk in column 1 may contain any
character capable of representation in the processor in 30
columns 2 through 72.

A comment |ine does not affect the executable program in any
way and may be used to provide documentation.
35
Comment lines may appear anywhere in the program unit.
Comment lines may precede the initial line of the first
statement of any program unit. Comment Ilines may appear
between an initial line and its first continuation line or
between two continuation l|ines. 40

3.2.2 Initial Line. An initial line is any line that 1is

not a comment line and contains the character blank or the

digit 0 in column 6. Columns 1 through 5 may contain a
statement label (3.4), or each of the columns 1 through 5 45
must contain the character blank.

3.2.3 Continuation Line. A continuation line is any line
that contains any character of the FORTRAN character set
other than the character blank or the digit 0 in <column 6 50

and contains only blank characters in columns 1 through 5.
A statement must not have more than nineteen continuation
lines.

55

Full Language Page 3-2

ANSI X3.9-1978 FORTRAN 77 CHARACTERS, LINES, AND EXECUTION SEQUENCE

10

15

20

25

30

35

40

45

50

55

3.3 Statements

The statements of the FORTRAN Ianguage are described in
Sections 7 through 16 and are used to form program units.
Each statement. is written in columns 7 through 72 of an
initial line and as many as nine continuation |lines. An END
statement is written only in columns 7 through 72 of an
initial line. No other statement in a program unit may have
an initial |line that appears to be an END statement. Note
that a statement must contain no more than 660 characters.
Except as part of a logical IF statement (11.5), no
statement may begin on a line that contains any part of the
previous statement.

Blank characters preceding, within, or folloWwing a statement
do not change the interpretation of the statement, except
when they appear wWwithin the datum strings of character
constants or the H or apostrophe edit descriptors in FORMAT
statements. However, blank characters do count as
characters in the |imit of total characters allowed in any
one statement.

3.4 Statement lLabels

Statement labels provide a means of referring to individual
statements. Any statement may be labeled, but only labeled
executable statements and FORMAT statements may be referred
to by the use of statement labels. The form of a statement
label is a sequence of one to five digits, one of which must
be nonzero. The statement label may be placed anywhere in
columns 1 through 5 of the initial line of the statement.
The same statement label must not be given to more than one
statement in a program unit. Blanks and leading zeros are
not significant in distinguishing between statement l|abels.

3.5 0Order of Statements and lLines

A PROGRAM statement may appear only as the first statement
of a main program. The first statement of a subprogram must
be either a FUNCTION or SUBROUTINE statement.

Within a program unit that permits the statements:
(1) FORMAT statements may appear anywhere;
(2) all specification statements must precede all DATA
statements, statement function statements, and

executable statements;

(3) all statement function statements must precede all
executable statements; and

(4) all DATA statements must appear after the
specification statements and precede all statement
function statements and executable statements.

Page 3-3s Subset Language

CHARACTERS, LINES, AND EXECUTION SEGQUENCE ANSI X3.9-1978 FO

3.3 Statements

The statements of the FORTRAN language are described in
Sections 7 through 16 and are used to form program wunits.
Each statement is written in columns 7 through 72 of an
initial |line and as many as nineteen continuation |lines. An
END statement is written only in columns 7 through 72 of an
initial line. No other statement in a program unit may have
an initial line that appears to be an END statement. Note
that a statement must contain no more than 1320 <characters.
Except as part of a logical IF statement (11.5), no
statement may begin on a line that contains any part of the
previous statement.

Blank characters preceding, within, or following a statement
do not ~change the interpretation of the statement, except
when they appear within the datum strings of character
constants or the H or apostrophe edit descriptors in FORMAT
statements. However, blank characters do count as
characters in the |limit of total characters allowed in any
one statement.

3.4 Statement labels

Statement labels provide a means of referring to individual
statements. Any statement may be labeled, but only labeled
executable statements and FORMAT statements may be referred
to by the use of statement labels. The form of a statement
label is a sequence of one to five digits, one of which must
be nonzero. The statement |label may be placed anywhere in
columns 1 through 5 of the initial line of the statement.
The same statement label must not be given to more than one
statement in a program unit. Blanks and leading zeros are
not significant in distinguishing between statement labels.

3.5 O0Order of Statements and lLines

A PROGRAM statement may appear only as the first statement
of a main program. The first statement of a subprogram must
be either a FUNCTION, SUBROUTINE, or BLOCK DATA statement.
Within a program unit that permits the statements:
(1) FORMAT statements may appear anywhere;
(2) all specification statements must precede all DATA
statements, statement function statements, and

executable statements;

(3) all statement function statements must precede all
executable statements;

(4) DATA statements may appear anywhere after the
specification statements; and

Full Language

RTRAN 77

15

20

25

30

35

45

50

55

Page 3-3

ANSI X3.9-1978 FORTRAN 77 CHARACTERS, LINES, AND EXECUTION SEGUENCE

5
Within the specification statements of a program wunit,
IMPLICIT statements must precede all other specification
statements.

10

15
The last |line of a program unit must be an END statement.

Figure 1
20 Required Order of Statements and Comment Lines
PROGRAM, FUNCTION, or SUBROUTINE Statement
25 IMPLICIT Statements
Comment FORMAT Other Specification
Lines Statements Statements
30 DATA Statements
Statement Function
Statements
35 Executable Statements
END Statement

40
Figure 1 is a diagram of the required order of statements
and comment lines for a program unit. Vertical lines

45 delineate varieties of statements that may be interspersed.
For example, FORMAT statements may be interspersed with
statement function statements and executable statements.
Horizontal lines delineate varieties of statements that must
not be interspersed. For example, statement function

50 statements must not be interspersed with executable
statements. Note that an END statement 1is also an
executable statement and must appear only as the last
statement of a program unit.

55

Page 3-4s Subset Language

CHARACTERS, LINES, AND EXECUTION SEQUENCE ANSI X3.9-1978 FORTRAN 77

(5) ENTRY statements may appear anywhere except between a
block IF statement and 1its corresponding END IF
statement, or between a DO statement and the terminal
statement of its DO-loop.

Within the specification statements of a program unit,
IMPLICIT statements must precede all other specification
statements except PARAMETER statements. Any specification
statement that specifies the type of a symbolic name of a
constant must precede the PARAMETER statement that defines
that particular symbolic name 6f a constant; the PARAMETER
statement must precede all other statements containing the
symbolic names of <constants that are defined in the
PARAMETER statement.

The last |line of a program unit must be an END statement.
Figure 1

Required Order of Statements and Comment Lines

PROGRAM, FUNCTION, SUBROUTINE, or
BLOCK DATA Statement

IMPLICIT

Statements
PARAMETER
Comment FORMAT Statements Other
Lines and Specification
ENTRY Statements
Statements

Statement

Function
DATA Statements

Statements
Executable
Statements

END Statement

Figure 1 is a diagram of the required order of statements
and comment lines for a program unit. Vertical lines
delineate varieties of statements that may be interspersed.
For example, FORMAT statements may be interspersed with
statement function statements and executable statements.
Horizontal |ines delineate varieties of statements that must

not be interspersed. For example, statement function
statements must not be interspersed with executable
statements. Note that an END statement s also an

executable statement and must appear only as the last
statement of a program unit.

Full Language

10

15

20

25

30

35

40

45

50

55

Page 3-4

ANSI X3;9-1978 FORTRAN 77 CHARACTERS, LINES, AND EXECUTION SEGUENCE

10

15

20

25

30

35

40

45

50

55

3.6 Normal Execution Sequence and Transfer of Control

Normal execution sequence 1is the execution of executable

statements in the order in which they appear in a program

unit. Execution of an executable program begins with the
execution of the first executable statement of the main
program. When an external procedure specified in a

subprogram is referenced, execution begins with the first
executable statement that follows the FUNCTION or SUBROUTINE
statement that specifies the referenced procedure as the
name of a procedure.

A transfer of control 1is an alteration of the normal
execution sequence. Statements that may cause a transfer of
control are:

(1) GO TO

(2) Arithmetic IF
(3) RETURN

(4) STOP

(5) An input/output statement containing an end-of-file
specifier

(6) A logical IF statement containing any of the above
forms

(7) Block IF and ELSE IF

(8) The last statement, if any, of an IF-block or ELSE
IF-block

(9) DO

(10) The terminal statement of a DO-loop

(11) END

The effect of these statements on the execution sequence 1is
described in Sections 11, 12, and 15.

The normal execution sequence 1is not affected by the
appearance of nonexecutable statements or comment lines
between executable statements. Execution of a function
reference or a CALL statement is not considered a transfer
of control in the program unit that contains the reference.
Execution of a RETURN or END statement in a referenced
procedure, or execution of a transfer of control within a
referenced procedure, is not considered a transfer of
control in the program unit that contains the reference.

Page 3-5s Subset Language

CHARACTERS, LINES, AND EXECUTION SEQUENCE ANSI X3.9-1978 FORTRAN 77

3.6 Normal Execution Seaquence and Transfer of Control

Normal execution sequence is the execution of executable
statements in the order in which they appear in a program
unit. Execution of an executable program begins wWith the
execution of the first wexecutable statement of the main
program. When an external procedure specified in a
subprogram is referenced, execution begins with the first
executable statement that follows the FUNCTION, SUBROUTINE,
or ENTRY statement that specifies the referenced procedure
as the name of a procedure.

A transfer of control is an alteration of the normal
execution sequence. Statements that may cause a transfer of
control are:

(1) GO TO

(2) Arithmetic IF
(3) RETURN

(4) STOP

(5) An input/output statement containing an error
specifier or end-of-file specifier

(6) CALL with an alternate return specifier

(7) A logical IF statement containing any of the above
forms

(8) Block IF and ELSE IF

(9) The last statement, if any, of an IF-block or ELSE
IF-block

(10) DO
(11) The terminal statement of a DO-loop
(12) END

The effect of these statements on the execution sequence 1is
described in Sections 11, 12, and 15.

The normal execution sequence is not affected by the
appearance of nonexecutable statements or comment |ines
between &executable statements. Execution of a function
reference or a CALL statement is not considered a transfer
of ~control in the program unit that contains the reference,
except when control is returned to a statement identified by
an alternate return specifier in a CALL statement.
Execution of a RETURN or END statement in a referenced
procedure, or execution of a transfer of <control wWwithin a

Full Language

10

15

20

25

30

35

40

45

50

Page 3-5

ANST X3.9-1978 FORTRAN 77 CHARACTERS, LINES, AND EXECUTION SEQUENCE

10

15

20

25

30

35

40

45

50

55

In the execution of an executable program, a procedure
subprogram must not be referenced a second time without the
prior execution of a RETURN or END statement in that
procedure.

Page 3-6s Subset Language

CHARACTERS, LINES, AND EXECUTION SEQUENCE ANSI X3.9-1978 FORTRAN 77

referenced procedure, is not considered a transfer of
control in the program unit that contains the reference.

In the execution of an executable program, a procedure
subprogram must not be referenced a second time without the 5
prior execution of a RETURN or END statement in that
procedure.

10

15

20

25

30

35

40

45

50

55

Full Language Page 3-6

ANSI X3.9-1978 FORTRAN 77

10

15

20

25

30

35

40

45

50

55

4. DATA TYPES AND CONSTANTS

4.1 Data Types

| The four types of data are:

(1) Integer

(2) Real

(3) Logical

(4) Character
Each type is different and may have a different internal
representation. The type may affect the interpretation of

the operations involving the datum.

4.1.1 Data Type of a Name. The name employed to identify a

datum or a function also identifies 1its data type. A
symbolic name representing a variable, array, or function
must have only one type for each program unit. Once a

particular name is identified with a particular type in a
program unit, that type is implied for any usage of the name
in the program unit that requires a type.

4.1.2 Type Rules for Data and Procedure Identifiers. A
symbolic name that identifies a variable, array, external
function, or statement function may have its type specified
in a type-statement (8.4) as integer, real, logical, or
character, except that a function may not be of type

character. In the absence of an explicit declaration in a
type-statement, the type is implied by the first letter of
the name. A first letter of I, J, K, L, M, or N implies

type integer and any other letter implies type real, unless
an IMPLICIT statement (8.5) is used to change the default
implied type.

The data type of an array element name is the same as the
type of its array name.

The data type of a function name specifies the type of the
datum supplied by the function reference in an expression.

A symbolic name that identifies a specific intrinsic
function in a program unit has a type as specified in 15.10.
An explicit type-statement is not required; however, it is
permitted.

Page 4-1s Subset Language

ANST X3.9-1978 FORTRAN 77

4. DATA TYPES AND CONSTANTS

4.1 Data Types

The six types of data are:
(1) Integer
(2) Real
(3) Double pfecision
(4) Complex
(5) Logical
(6) Character

Each type is different and may have a different internal
representation. The type may affect the interpretation of
the operations involving the datum.

4.1.1 Data Type of a Name. The name employed to identify a
datum or a function also 1identifies 1its data type. A
symbolic name representing a constant, variable, array, or
function (except a generic function) must have only one type
for each program unit. Once a particular name is identified
with a particular type in a program unit, that type is
implied for any usage of the name in the program unit that
requires a type.

4.1.2 JType Rules for Data and Procedure Identifiers. A
symbolic name that identifies a constant, variable, array,
external function, or statement function may have 1its type
specified in a type-statement (8.4) as integer, real, double
precision, complex, logical, or character. In the absence
of an explicit declaration in a type-statement, the type 1is
implied by the first letter of the name. A first letter of
I, J, K, L, M, or N implies type 1nteger and any other
letter implies type real, unless an IMPLICIT statement (8.5)
is used to change the default implied type.

The data type of an array element name is the same as the
type of its array name.

The data type of a function name specifies the type of the
datum supplied by the function reference in an expression.

A symbolic name that identifies a specific intrinsic
function in a program unit has a type as specified in 15.10.
An explicit type-statement is not required; however, it s
permitted. A generic function name does not have a
predetermined type; the result of a generic function
reference assumes a type that depends on the type of the
argument, as specified in 15.10. If a generic function name

Full Language

10

15

20

25

30

35

40

45

50

55

Page 4-1

ANST X3.9-1978 FORTRAN 77 DATA TYPES AND CONSTANTS

10

15

20

25

30

35

40

45

50

55

In a program wunit that contains an external function
reference, the type of the function is determined in the
same manner as for variables and arrays.

The type of an external function is specified implicitly by
its name, explicitly in a FUNCTION statement, or explicitly
in a type-statement. Note that an IMPLICIT statement within
a function subprogram may affect the type of the external
function specified in the subprogram.

A symbolic name that identifies a main program, subroutine,
or common block has no data type.

4.1.3 Data Type Properties. The mathematical and
representation properties for each of the data types are
specified in the following sections. For real and integer
data, the value =zero 1is considered neither positive nor
negative. The value of a signed zero is the same as the
value of an unsigned zero.

4.2 CLonstants

A constant s an arithmetic constant, logical constant, or
character constant. The wvalue of a constant does not
change. Within an executable program, all constants that
have the same .form have the same value.

4.2.1 Dats Type of a Constant. The form of the string
representing a constant specifies both its value and data
type.

4.2.2 Blanks in Constants. Blank characters occurring in a
constant, except in a character constant, have no effect on
the value of the constant.

4.2.3 Arithmetic Constants. Integer and real constants are
arithmetic constants.

4.2.3.17 Signs of Constants. An unsigned constant is a
constant Wwithout a leading sign. A signed constant 1is a
constant wWwith a leading plus or minus sign. An optionally
signed constant is a constant that may be either signed or
unsigned. Integer and real —constants may be optionally
signed constants, except where specified otherwise.

Page 4-2s Subset Language

DATA TYPES AND CONSTANTS ANSI X3.9-1978 FORTRAN 77

appears in a type-statement, such an appearance is not
sufficient by itself to remove the generic properties from
that function.

In a program wunit that contains an external function
reference, the type of the function is determined in the
same manner as for variables and arrays.

The type of an external function is specified implicitly by
jts name, explicitly in a FUNCTION statement, or explicitly
in @ type-statement. Note that an IMPLICIT statement within
.a function subprogram may affect the type of the &external
function specified in the subprogram.

A symbolic name that identifies a main program, subroutine,
common block, or block data subprogram has no data type.

4.1.3 Data Type Properties. The mathematical and
representation properties for each of the data types are
specified in the following sections. For real, double

precision, and integer data, the value zero 1s considered
neither positive nor negative. The value of a signed =zero
is the same as the value of an unsigned zero.

4.2 Constants

A constant 1is an arithmetic constant, logical constant, or
character constant. The value of a constant does not
change. Within an &executable program, all constants that
have the same form have the same value.

4.2.1 Data Type of a Constant. The form of the string
representing a constant specifies both its value and data
type. A PARAMETER statement (8.6) allows a constant to be
given a symbolic name. The symbolic name of a constant must
not be used to form part of another constant.

4.2.2 Blanks in Constants. Blank characters occurring in a
constant, except in a character constant, have no effect on
the value of the constant.

4.2.3 Arithmetic Constants. Integer, real, double
precision, and complex constants are arithmetic constants.

4.2.3.1 Signs of Constants. An unsigned constant s a
constant without a leading sign. A signed constant 1is a
constant with a leading plus or minus sign. An optionally
signed constant is a constant that may be either signed or
unsigned. Integer, real, and double precision constants may
be optionally signed constants, except where specified
otherwise.

Full Language

10

15

20

25

30

35

40

45

50

55

Page 4-2

ANST X3.9-1978 FORTRAN 77 DATA TYPES AND CONSTANTS

10

15

20

25

30

35

40

45

50

55

4.3 Integer Type

An integer datum is always an exact representation of an
integer value. It may assume a positive, negative, or zero
value. It may assume only an integral value. An integer
datum has one numeric storage unit in a storage sequence.

4.3.1 Integer Constant. The form of an integer constant is
an optional sign followed by a nonempty string of digits.
The digit string is interpreted as a decimal number.

-

4.4 Real Type

A real datum is a processor approximation to the value of a
real number. [t may assume a positive, negative, or zero
value. A real datum has one numeric storage unit in a
storage sequence.

4.4.1 Basic Real Constant. The form of "a basic real

constant is an optional sign, an 1integer part, a decimal

point, and a fractional part, in that order. Both the
integer part and the fractional part are strings of digits;
either of these parts may be omitted but not both. A basic
real constant may be wWritten with more digits than a
processor will use to approximate the value of the constant.
A basic real constant is interpreted as a decimal number.

4.4.2 Real Exponent. The form of a real exponent is the
letter E followed by an optionally signed integer constant.
A real exponent denotes a power of ten.

4.4.3 Real Constant. The forms of a real constant are:

(1) Basic real constant
(2) Basic real constant followed by a real exponent
(3) Integer constant followed by a real exponent

The value of a real constant that contains a real exponent
is the product of the constant that precedes the E and the
power of ten indicated by the integer following the E. The
integer constant part of form (3) may be written Wwith more
digits than a processor will use to approximate the value of
the constant.

4.5 Double Precision Type

Double precision type is not included in the subset.

Page 4-3s Subset Language

DATA TYPES AND CONSTANTS ANST X3.9-1978 FORTRAN 77

4.3 Integer Type

An integer datum is always an exact representation of an
integer value. It may assume a positive, negative, or zero
value. It may assume only an integral value. An integer
datum has one numeric storage unit in a storage Ssequence.

4.3.1 Integer Constant. The form of an integer constant is
an optional sign followed by a nonempty string of digits.
The digit string is interpreted as a decimal number.

4.4 Real Type

A real datum is a processor approximation to the value of a
real number. It may assume a positive, negative, or zero
value. A real datum has one numeric storage unit in a
storage sequence.

4.4.1 Basic Real Constant. The form of a basic real
constant is an optional sign, an integer part, a decimal
point, and a fractional part, in that order. Both the

integer part and the fractional part are strings of digits;
either of these parts may be omitted but not both. A basic
real constant may be written with more digits than a
processor will use to approximate the value of the constant.
A basic real constant is interpreted as a decimal number.

4.4.2 Real Exponent. The form of a real exponent is the
letter E followed by an optionally signed integer constant.
A real exponent denotes a power of ten.

4.4.3 Real Constant. The forms of a real constant are:

(1) Basic real constant
(2)»Basic real constant followed by a real exponent
(3) Integer constant followed by a real exponent

The value of a real constant that contains a real exponent
js the product of the constant that precedes the E and the

power of ten indicated by the integer following the E. The
integer constant part of form (3) may be written wWwith more
digits than a processor wWwill use to approximate the value of

the constant.

4.5 Double Precision Type

A double precision datum is a processor approximation to the
value of a real number. The precision, although not
specified, must be greater than that of type real. A double
precision datum may assume a positive, negative, or zero
value. A double precision datum has two consecutive numeric
storage units in a storage sequence.

10

15

20

25

30

35

40

45

50

55

Full Language _ Page 4-3

ANST X3.

10

15

20

25

30

35

40

45

50

55

9-1978 FORTRAN 77 DATA TYPES AND CONSTANTS

4.5.1 Double Precision Exponent. Double precision type is
not included in the subset.

4.5.2 Double Precision Constant. Double precision type is
not included in the subset.

4.6 Complex Type

Complex type is not inciuded in the subset.

4.6.1 CLomplex Constant. Complex type is not included in
the subset. :

4.7 Logical Type

A logical datum may assume only the values true or false. A
logical datum has one numeric storage unit in a storage
sequence.

Page 4-4s Subset Language

DATA TYPES AND CONSTANTS ANSI X3.9-1978 FO

4.5.1 Double Precision Exponent. The form of a double

precision exponent is the letter D followed by an optionally
signed integer constant. A double precision exponent
denotes a power of ten. Note that the form and
interpretation of a double precision exponent are identical
to those of a real exponent, except that the letter D s
used instead of the letter E.

4.5.2 Double Precision Constant. The forms of a double

precision constant are:

(1) Basic real constant followed by a double precision
exponent

(2) Integer constant followed by a double precision
exponent

The value of a double precision constant is the product of
the constant that precedes the D and the power of ten
indicated by the integer following the D. The integer
constant part of form (2) may be written with more digits
than a processor will use to approximate the value of the
constant.

4.6 Complex Type

A complex datum is a processor approximation to the value of
a complex number. The representation of a complex datum is
in the form of an ordered pair of real data. The first of
the pair represents the real part of the complex datum and
the second represents the imaginary part. Each part has the
same degree of approximation as for a real datum. A complex
datum has two consecutive numeric storage units in a storage
sequence; the first storage unit is the real part and the
second storage unit is the imaginary part.

4.6.1 CLomplex Constant. The form of a complex constant is
a left parenthesis followed by an ordered pair of real or
integer constants separated by a comma, and followed by a
right parenthesis. The first constant of the pair is the
real part of the complex constant and the second 1is the
imaginary part.

4.7 Logical Type

A logical datum may assume only the values true or false. A
logical datum has one numeric storage unit in a storage
sequence.

Full Language

RTRAN 77

10

15

20

25

30

35

40

45

50

55

Page 4-4

ANSI X3.9-1978 FORTRAN 77 DATA TYPES AND CONSTANTS

10

15

20

25

30

35

40

45

50

55

4.7 .1 Logical'Constgnt. The forms and values of a logical

constant are:

Form Value
.TRUE. true
.FALSE. false

4.8 Character Type

A character datum is a string of characters. The string may
consist of any characters capable of representation in the
processor. The blank character is valid and significant- in
a - character datum. The length of a character datum is the
number of characters in the string. A character datum has
one character storage unit in a storage sequence for each
character in the string.

Each character in the string has a character position that
is numbered consecutively 1, 2, 3, -etc. The number
indicates the sequential position of a <character 1in the
string, beginning at the left and proceeding to the right.

4.8.1 Character Constant. The form of a character constant
is an apostrophe followed by a nonempty string of characters
followed by an apostrophe. The string may consist of any
characters capable of representation in the processor. Note
that the delimiting apostrophes are not part of the datum
represented by the constant. An apostrophe within the datum
string is represented by two consecutive apostrophes with no
intervening blanks. In a <character constant, blanks
embedded between the delimiting apostrophes are significant.

The length of a character constant 1is the ~number of
characters between the delimiting apostrophes, except that
each pair of consecutive apostrophes counts as a single
character. The delimiting apostrophes are not counted. The
length of a character constant must be greater than zero.

‘Page 4-5s Subset Language

DATA TYPES AND CONSTANTS ANST X3.9-1978 FO

RTRAN 77

4.7.1 Logical Constant. The forms and values of a _logical

constant are:

Form Value
.TRUE. true
.FALSE. false

4.8 Character Type

A character datum is a string of characters. The string may
consist of any characters capable of representation in the
processor. The blank character is valid and significant in
a character datum. The length of a character datum is the
number of characters in the string. A character datum has
one character storage unit in a storage sequence for each
character in the string.

Each character in the string has a character position that
is numbered consecutively 1, 2, 3, etec. The number
indicates the sequential position of a <character in the
string, beginning at the left and proceeding to the right.

4.8.1 Character Constant. The form of a character constant

10

15

20

25

is an apostrophe followed by a nonempty string of characters
followed by an apostrophe. The string may consist of any
characters capable of representation in the processor. Note
that the delimiting apostrophes are not part of the datum
represented by the constant. An apostrophe within the datum
string is represented by two consecutive apostrophes with no
intervening blanks. In a character constant, blanks
embedded between the delimiting apostrophes are significant.

The length of a ~character constant is the number of
characters between the delimiting apostrophes, except that
each pair of consecutive apostrophes <counts as a single
character. The delimiting apostrophes are not counted. The
length of a character constant must be greater than zero.

Full Language

30

35

40

45

50

55

Page 4-5

ANSI X3.9-1978 FORTRAN 77

10

15

20

25

30

35

40

45

50

55

5. ARRAYS AND SUBSTRINGS

An array is a nonempty sequence of data. An array element
is one member of the sequence of data. An array name is the
symbolic name of an array. An array element name is an
array name qualified by a subscript (5.3).

An array name not qualified by a subscript identifies the
entire sequence of elements of the array in certain forms
where such wuse is permitted (5.6); however, in an
EQUIVALENCE statement, an array name not qualified by a
subscript identifies the first element of the array (8.2.4).

An array element name identifies one element of the
sequence. The subscript value (Table 1) specifies the
element of the array being identified. A different array

element may be identified by changing the subscript value of
the array element name.

An array name is local to a program unit (18.1.2).
Substrings are not included in the subset.

5.1 Array Declarator

An array declarator specifies a symbolic name that
identifies an array within a program wunit and specifies
certain properties of the array. Only one array declarator
for an array name is permitted in a program unit.

5.17.17 Form of an Array Declarator. The form of an array
declarator is:

a (d [,dl...)
where: a is the symbolic name of the array
d is a dimension declarator

The number of dimensions of the array 1is the number of
dimension declarators in the array declarator. The minimum
number of dimensions is one and the maximum is three.

5.1.17.1 Form of a Dimension Declarator. The form of a

dimension declarator is:

d

where d is an integer constant or an integer variable name,
called the upper dimension bound. The lower dimension bound
is one. The upper dimension bound of the last dimension may
be an asterisk in assumed-size array declarators (5.1.2).
Integer variables may appear in dimension bounds only in
adjustable array declarators (5.1.2).

Page 5-1s ' Subset Language

ANST X3.9-1978 FORTRAN 77

5. ARRAYS AND SUBSTRINGS

An array is a nonempty sequence of data. An array element

is one member of the sequence of data. An array name is the
symbolic name of an array. An array element name s an
array name qualified by a subscript (5.3).

An array name not qualified by a subscript identifies the
entire sequence of &elements of the array in certain forms
where such wuse is permitted (5.6); however, in an
EQUIVALENCE statement, an array name not qualified by a
subscript identifies the first element of the array (8.2.4).

An array element name identifies one element of the

sequence. The subscript value (Table 1) specifies the
element of the array being identified. A different array

element may be identified by changing the subscript value of
the array element name.

An array name is local to a program unit (18.1.2).

A substring is a contiguous portion of a character datum.

5.1 Array Declarator

An array declarator specifies a symbolic name that
jdentifies an array within a program unit and specifies
certain properties of the array. Only one array declarator
for an array name i1s permitted in a program unit.

5.1.1 Form of an Array Declarator. The form of an array
declarator is:

a (d(,dl...)
where: a- is the symbolic name of the array

d is a dimension declarator
The number of dimensions of the array is the number of
dimension declarators in the array declarator. The minimum
number of dimensions is one and the maximum is seven.

5.17.17.17 Form of a Dimension Declarator. The form of a
dimension declarator is:

(d,:] d.

where: d, 1is the lower dimension bound

2

d, is the upper dimension bound

The lower and wupper dimension bounds are arithmetic
expressions, called dimension bound expressions, in which
all constants, symbolic names of <constants, and variables
are of type integer. The upper dimension bound of the last

Full Language

10

15

20

25

30

35

40

45

50

55

Page 5-1

ANST X3.9-1978 FORTRAN 77 ARRAYS AND SUBSTRINGS

10

15

20

25

30

35

40

45

50

55

If a variable that appears in a dimension bound is not of
default implied 1integer type (4.1.2), it must be specified
as integer by an IMPLICIT statement or a type-statement
prior to its appearance in a dimension bound.

5.1.1.2 Value of Dimension Bounds. The value of the upper
dimension bound must be greater than or equal to one. An
upper dimension bound of an asterisk is always greater than
or equal to one.

5.1.2 Kinds and Occurrences of Array Declarators. Each
array declarator 1is either a constant array declarator, an
adjustable array declarator, or an assumed-size array

declarator. A constant array declarator is an array
declarator in which each of the dimension bounds 1is an
integer constant. An adjustable array declarator is an

array declarator that contains one or more variables. An
assumed-size array declarator is a constant array declarator

or an adjustable array declarator, except that the upper
dimension bound of the last dimension is an asterisk.

Each array declarator is either an actual array declarator
or a dummy array declarator.

5.1.2.1 Actual Array Declarator. An actual array

declarator is an array declarator in which the array name is

not a dummy argument. Each actual array declarator must be
a constant array declarator. An actual array declarator is
permitted in a DIMENSION statement, type-statement, or
COMMON statement (Section 8).

5.1.2.2 Dummy Array Declarator. A dummy array declarator
is an array declarator in which the array name 1is a dummy
argument. A dummy array declarator may be either a constant
array declarator, an adjustable array declarator, or an
assumed-size array declarator. A dummy array declarator is
permitted in a DIMENSION statement or a type-statement but
not in a COMMON statement. A dummy array declarator may
appear only in a function or subroutine subprogram.

5.2 Properties of an Array

The following properties of an array are specified by the
array declarator: the number of dimensions of the array, the

Page 5-2s Subset Language

ARRAYS AND SUBSTRINGS ANSI X3;9°1978 FORTRAN 77

dimension may be an asterisk in assumed-size array
declarators (5.1.2). A dimension bound expression must not
contain a function or array element reference. Integer

variables may appear in dimension bound expressions only in
adjustable array declarators (5.1.2).

If the symbolic name of a constant or variable that appears
in a dimension bound expression is not of default implied
integer type (4.1.2), it must be specified as integer by an
IMPLICIT statement or a type-statement prior to its
appearance in a dimension bound expression.

5.1.1.2 Value of Dimension Bounds. The wvalue of either
dimension bound may be positive, negative, or zero; however,
the value of the upper dimension bound must be greater than
or equal to the value of the lower dimension bound. If only
the upper dimension bound is specified, the value of the
lower dimension bound is one. An upper dimension bound of
an asterisk is always greater than or equal to the lower
dimension bound.

5.1.2 Kinds and Occurrences of Array Declarators. Each
array declarator is either a constant array declarator, an
adjustable array declarator, or an assumed-size array
declarator. A constant array declarator 1is an array
declarator in which each of the dimension bound expressions
is an integer constant expression (6.1.3.1). An adjustable
array declarator is an array declarator that contains one or
more variables. An assumed-size array declarator 1is a
constant array declarator or an adjustable array declarator,
except that the upper dimension bound of the last dimension
is an asterisk.

Each array declarator is either an actual array declarator
or a dummy array declarator.

5.1.2.1 Actual Array Declarator. An actual array
declarator is an array declarator in which the array name is
not ‘a dummy argument. FEach actual array declarator must be
a constant array declarator. An actual array declarator s
permitted in a DIMENSION statement, type-statement, or
COMMON statement (Section 8).

5.1.2.2 Dummy Array Declarator. A dummy array declarator
is .an array declarator in which the array name is a dummy
argument. A dummy array declarator may be either a constant
array declarator, an adjustable array declarator, or an
assumed-size array declarator. A dummy array declarator is
permitted in a DIMENSION statement or a type-statement but
not in a COMMON statement. A dummy array declarator may
appear only in a function or subroutine subprogram.

5.2 Properties of an Array

The following properties of an array are specified by the
array declarator: the number of dimensions of the array, the

10

15

20

30

35

40

45

50

55

Full Language Page 5-2

ANST X3.9-1978 FORTRAN 77 ARRAYS AND SUBSTRINGS

10

15

20

25

30

35

40

45

50

55

size and bounds of each dimension, and therefore the number
of array elements.

The properties of an array in a program unit are specified
by the array declarator for the array in that program unit.

5.2.1 Data Type of an Array and an Array Element. An array
name has a data type (4.1.1). An array element name has the
same data type as the array name.

5.2.2 Dimensions of an Array. The number of dimensions of
an array is equal to the number of dimension declarators in
the array declarator.

The size of a dimension is the value of d where d is the
value of the upper dimension bound.

The size of a dimension whose upper bound is an asterisk s
not specified.

The number and size of dimensions in one array declarator
may be different from the number and size of dimensions in
another array declarator that 1is associated by common,
equivalence, or argument association.

5.2.3 Size of an Array. The size of an array is equal to
the number of elements in the array. The size of an array
is equal to the product of the sizes of the dimensions
specified by the array declarator for that array name. The
size of an assumed-size dummy array (5.5) is determined as
follows:

(1) If the actual argument corresponding to the dummy
array 1is a noncharacter or character array name, the
size of the dummy array is the size of the . actual
argument array.

(2) If the actual argument corresponding to the dummy
array - name 1is a noncharacter or character array
element name with a subscript value of r in an array
of size x, the size of the dummy array is x + 1 - r.

Page 5-3s Subset Language

ARRAYS AND SUBSTRINGS ' ANSI X3.9-1978 FO

size and bounds of each dimension, and therefore the number
of array elements.

The properties of an array in a program unit are specified
by the array declarator for the array in that program unit.

5.2.1 Data Type of an Array and an Array Element. An array
name has a data type (4.1.1). An array element name has the
same data type as the array name.

5.2.2 Dimensions of an Array. The number of dimensions of
an array is equal to the number of dimension declarators in
the array declarator.

The size of a dimension is the value:

d. - d, + 1
where: d, 1is the value of the lower dimension bound

d, 1is the value of the upper dimension bound
Note that if the value of the lower dimension bound is one,
the size of the dimension is d,.

The size of a dimension whose upper bound is an asterisk is
not specified.

The number and size of dimensions in one array declarator
may be different from the number and size of dimensions in
another array declarator that 1is associated by common,
equivalence, or argument association.

5.2.3 Size of an Array. The size of an array is equal to
the number of elements in the array. The size of an array
is equal to the product of the sizes of the dimensions
specified by the array declarator for that array name. The
size of an assumed-size dummy array (5.5) is determined as
follows:

(1) If the actual argument corresponding to the dummy

array 1is a noncharacter array name, the size of the

dummy array is the size of the actual argument array.

(2) It the actual argument corresponding to the dummy
array name 1S a noncharacter array element name wWith
a subscript value of r in an array of size x, the
size of the dummy array is x + 1 - r.

(3) If the actual argument is a character array name,
character array element name, or character array

element substring name and begins at character
storage wunit t of an array wWwith c character storage
units, then the size of the dummy array is

Full Language

RTRAN 77

10

15

20

25

30

35

40

45

50

55

Page 5-3

ANSI X3.9-1978 FORTRAN 77 ARRAYS AND SUBSTRINGS

10

15

20

25

30

35

40

45

50

55

If an assumed-size dummy array has n dimensions, the product
of the sizes of the first n - 1 dimensions must be less than
or equal to the size of the array, as determined by one of
the immediately preceding rules.

5.2.4 Array Element Ordering. The elements of an array are
ordered in a sequence (2.1). An array element name contains
a subscript (5.4.1) whose subscript value (5.4.3) determines
which element of the array 1is identified by the array
element - name. The first element of the array has a
subscript value of one; the second element has a subscript
value of two; the last element has a subscript value equal
to the size of the array.

Whenever an array name unqualified by a subscript is used to
designate the whole array (5.6), the appearance of the array
name implies that the number of values to be processed is
equal to the number of elements in the array and that the
elements of the array are to be taken in sequential order.

5.2.5 Array Storage Seguence. An array has a storage
sequence consisting of the storage sequences of the array
elements in the order determined by the array element
ordering. The number of storage units in an array 1is x*z,
where x is the number of the elements in the array and 2z is
the number of storage units for each array element.

5.3 Array Element Name

The form of an array element name is:
a (s [,s1...)
where: a is the array name
(s [,8)...) is a subscript (5.4.1)
s is a subscript expression (5.4.2)
The number of subscript expressions must be equal to the

number of dimensions in the array declarator for the array
name.

5.4 Subscript

5.4.1 Form of a Subscript. The form of a subscript is:
(s [,s1...)
where s is a subscript expression.

Note that the term “"subscript” includes the parentheses that
delimit the list of subscript expressions.

Page S5-4s Subset Language

ARRAYS AND SUBSTRINGS ANSI X3.9-1978 FORTRAN 77

INT((c + 1 - t) / 1n), where 1n is the length of an
element of the dummy array.

If an assumed-size dummy array has n dimensions, the product

of the sizes of the first.n - 1 dimensions must be less than 5
or equal to the size of the array, as determined by one of

the immediately preceding rules.

5.2.4 Array Element Ordering. The elements of an array are
ordered in a sequence (2.1). An array element name contains 10
a subscript (5.4.1) whose subscript value (5.4.3) determines
which element of the array 1is 1identified by the array

element name. The first element of the array has a
subscript value of one; the second element has a subscript
value of two; the last element has a subscript value -equal 15

to the size of the array.

Whenever an array name unqualified by a subscript is used to
designate the whole array (5.6), the appearance of the array

name implies that the number of values to be processed is 20
equal to the number of elements in the array and that the
elements of the array are to be taken in sequential order.

5.2.5 Array Storage Sequence. An array has a storage
sequence consisting of the storage sequences of the array 25
elements in the order determined by the array element
ordering. The number of storage units in an array 1is x*z,

where x is the number of the elements in the array and 2z is

the number of storage units for each array element.

30
5.3 Array Element Name
The form of an array element name is:
a (s [,s1...) 35
where: a is the array name
(s [,s)...) is a subscript (5.4.1)
40
s is a subscript expression (5.4.2)
The number of subscript expressions must be equal to the
number of dimensions in the array declarator for the array
name. 45
5.4 Subscript
5.4.1 Form of a Subscript. The form of a subscript is:
50
(s [,s1...)
where s is a subscript expression.
Note that the term “subscript” includes the parentheses that 55

delimit the list of subscript expressions.

Full Language Page 5-4

ANST X3.

10

15

20

25

30

35

40

45

50

55

9-1978 FORTRAN 77 ARRAYS AND SUBSTRINGS

5.4.2 Subscript Expression. A subscript expression is an
integer expression. A subscript expression must not contain
array element references and function references.

Within a program unit, the value of =each subscript
expression must be greater than or equal to one. The value

of each subscript expression must not e€exceed the
corresponding upper dimension bound declared for the array
in the program wunit. If the upper dimension bound is an
asterisk, the value of the corresponding subscript

expression must be such that the subscript value does not
exceed the size of the dummy array.

5.4.3 Subscript Value. The subscript value of a subscript
is specified in Table 1. The subscript value determines
which array element is identified by the array element name.
Within a program unit, the subscript value depends on the
values of the subscript expressions in the subscript and on
the dimensions of +the array specified in the array
declarator for the array in the program wunit. I[If the
subscript value is r, the rth element of the array is
identified.

Page 5-5s Subset Language

ARRAYS AND SUBSTRINGS ANST X3.9-1978 FO

5.4.2 Subscript Expression. A subscript expression 1is an
integer expression. A subscript expression may contain
array element references and function references. Note that
a restriction in the wevaluation of &expressions (6.6)
.prohibits certain side effects. In particular, evaluation
of a function must not alter the value of any other
subscript expression within the same subscript.

Within a program unit, the value of weach subscript
expression must be greater than or equal to the
corresponding lower dimension bound in the array declarator
for the array. The value of each subscript expression must
not exceed the corresponding upper dimension bound declared
for the array in the program unit. If the wupper dimension
bound is an asterisk, the value of the <corresponding
subscript expression must be such that the subscript value
does not exceed the size of the dummy array.

5.4.3 Subscript Value. The subscript value of a subscript
is specified in Table 1. The subscript value determines
which array element is identified by the array element name.
Within a program wunit, the subscript value depends on the
values of the subscript expressions in the subscript and on
the dimensions of the array specified in the array
declarator for the array in the oprogram wunit. [f the
subscript wvalue is r, the rth element of the array is
identified.

Full Language

RTRAN 77

10

15

20

25

30

35

40

45

50

55

Page 5-5

ANSI X3.9-1978 FORTRAN 77 ARRAYS AND SUBSTRINGS

Table 1

Subscript Value

5
n Dimension Subscript Subscript
Declarator Value
10 [| 1] (dp (sy) s,
2 | (d,,d2) (s,,s2) 1+(s,-1)
15 +(Sg_1)*d|
3 (dl,dz,dj) (31,52,53) 1+(S|_1)
20 +(s,-1)xd,
+(S3‘1)*d|*d2
25
30
35
40 Notes for Table 1:
| (1) n is the number of dimensions, 1 < n ¢ 3.
o
_ (2) d3 is the value of the wupper bound of the ith
dimension. dj is also the size of the ith dimension.
50 |
(3) s; is the integer value of the ith subscript
expression.

55 ‘

Page 5-6s Subset Language

ARRAYS AND SUBSTRINGS

ANST X3.9-1978 FORTRAN 77

Table 1
Subscript Value
n Dimension Subscript Subscript
Declarator Value

1 (jl:kl) (S]) 1"'(51“];)

2 (jl:k|,j2:k2) (S],Sz) 1+(S|—j|)
+(sa-ja)*d,

30 Civtkysjactka,jstks) (s1,52,53)|1+(s,-],)
+(sa-j2)xd,
+(s3-j3)xdy*d,

n (jl:klp...,jn:kn) (S],...,Sn) 1’+(5|-j1)
+(sa-j2)*d,
+(s3-j3)*xdo*d,
+.'I .
+(sp=jn)*dn-,
xdp_a¥...xd,

Notes for Table 1:

(1) n is the number of dimensions, 1 ¢ n < 7.

(2) j; is the value of the lower bound of the ith
dimension.

(3) ky is the wvalue of the wupper bound of the ith
dimension.

(4) If only the upper bound is specified, then j; = 1.

(5) s;5 is the 1nteger value of the ith subscript
expression.

(6) dj = k;j-j3+1 is the size of the ith dimension.

Full

the value of the

Language

lower bound is 1,

then dj

= kj.

Ifl

15

20

25

30

35

40

45

50

Page 5-6

ANSI X3.9-1978 FORTRAN 77 ARRAYS AND SUBSTRINGS

10

15

20

25

30

35

40

45

50

55

| Note that a subscript of (1), (1,1), or (1,1,1) has a

subscript value of one and identifies the first element of
the array. A subscript of the form (d,,...,ds) identifies
the last element of the array; its subscript value is equal
to the number of elements in the array.

The subscript value and the subscript expression value are
not necessarily the same. In the example:

DIMENSION AC10),B(10,10)
A(2) = B(1,2)

A(2) identifies the second element of A, the subscript 1is
(2) with a subscript value of two, and the subscript
expression is 2 with a value of two. B(1,2) identifies the
eleventh element of B, the subscript 1is (1,2) wWwith a
subscript value of eleven, and the subscript expressions
are 1 and 2 with values of one and two.

5.5 Dummy and Actual Arrays

A dummy array is an array for which the array declarator is
a dummy array declarator. An assumed-size dummy array is a
dummy array for which the array declarator is an assumed-
size array declarator. A dummy array is permitted only in a
function or subroutine subprogram (Section 15).

An actual array is an array for which the array declarator

is an actual array declarator. Each array in the main
program is an actual array and must have a constant array
declarator. A dummy array may be wused as an actual
argument.

5.5.1 Adjustable Arrays and Adjustable Dimensions. An
adjustable array is an array for which the array declarator
is an adjustable array declarator. In an adjustable array

declarator, those dimension declarators that <contain a
variable name are called adjustable dimensions.

An adjustable array declarator must be a dummy array
declarator. The array name must appear in the dummy
argument |list of the subprogram. A variable name that
appears in a dimension bound of an array must also appear as
a name either in the dummy argument list or in a common
block in that subprogram.

At the time of execution of a reference to a function or
subroutine containing an adjustable array in its dummy
argument list, each actual argument that corresponds to a
dummy argument appearing in a dimension bound for the array
and each variable in common appearing in a dimension bound
for the array must be defined with an integer value. The
values of those dummy arguments or variables in common
determine the size of the corresponding adjustable dimension

Page 5-7s Subset Language

ARRAYS AND SUBSTRINGS

Note that a subscript of the form (j,,...,ja) has a
subscript value of one and identifies the first element of
the array. A subscript of the form (k,,...,kn) identifies
the last element of the array; its subscript value is equal
to the number of elements in the array.

The subscript wvalue and the subscript expression value are
not necessarily the same, even for a one-dimensional array.
In the example:

DIMENSION A(-1:8),B(10,10)
AC2) = B(1,2)

A(2) identifies the fourth element of A, the subscript is
(2) with a subscript value of four, and the subscript
expression 1is 2 Wwith a value of two. B(1,2) identifies the
eleventh element of B, the subscript is (1,2) wWith a
subscript value of eleven, and the subscript expressions
are 1 and 2 with values of one and two.

5.5 Dummy and Actual Arrays

A dummy array is an array for which the array declarator is
a dummy array declarator. An assumed-size dummy array is a
dummy array for which the array declarator is an assumed-
size array declarator. A dummy array is permitted only in a
function or subroutine subprogram (Section 15).

An actual array is an array for which the array declarator

is an actual array declarator. Each array in the main
program is an actual array and must have a constant array
declarator. A dummy array may be wused as an actual
argument.

5.5.1 Adjustable Arrays and Adjustable Dimensions. An

adjustable array is an array for which the array declarator
is an adjustable array declarator. In an adjustable array
declarator, those dimension declarators -that contain a
variable name are called adjustable dimensions.

An adjustable array declarator must be a dummy array
declarator. At least one dummy argument Ilist of the
subprogram must contain the name of the adjustable array. A
variable name that appears in a dimension bound expression
of an array must also appear as a name either in every dummy
argument list that contains the array name or 1in a common
block in that subprogram.

At the time of execution of a reference to a function or
subroutine containing an adjustable array in its dummy
argument |ist, weach actual argument that corresponds to a
dummy argument appearing in a dimension bound expression for
the array and each variable in <common appearing in a
dimension bound expression for the array must be defined

with an integer value. The values of those dummy arguments .

or variables in <common, together with any constants and

Ful! Language

I
|

ANST X3.9-1978 FORTRAN 77

10

15

20

25

30

35

40

45

50

55

Page 5-7

ANST X3.

10

15

20

25

30

35

40

45

50

55

9-1978 FORTRAN 77 ARRAYS AND SUBSTRINGS

for the execution of the subprogram. The sizes of the
adjustable dimensions and of any constant dimensions
appearing in an adjustable array declarator determine the
number of elements in the array and the array element
ordering. The execution of different references to a
subprogram or different executions of the same reference
determine possibly different properties (size of dimensions,
dimension bounds, number of <elements, and array element
ordering) for each adjustable array in the subprogram.
These properties depend on the values of any actual
arguments and variables in common that are referenced in the
adjustable dimensions in the subprogram.

During the execution of an external procedure in a
subprogram containing an adjustable array, the array
properties of dimension size, lower and upper dimension
bounds, and array size (number of elements in the array) do
not change. However, the variable involved in an adjustable
dimension may be redefined or become wundefined during
execution of the external procedure Wwith no effect on the
above-mentioned properties.

5.6 Use of Array Names

In a program unit, each appearance of an array name must be
in an array element name except in the following cases:

(1) In a list of dummy arguments

(2) In a COMMON statement

(3) In a type-statement

(4) In an array declarator. Note that although the form
of an array declarator may -be identical to that of an
array element name, an array declarator i5 not an
array element name.

(5) In an EQUIVALENCE statement

(67 In a DATA statement

(7) In the list of actual arguments in a reference to an
<« external procedure

(8) In the list of an input/output statement if the array
is not an assumed-size dummy array

Page 5-8s Subset Language

ARRAYS AND SUBSTRINGS ANST X3.9-1978 FORTRAN 77

symbolic names of constants appearing in the dimension bound
expression, determine the size of the corresponding
adjustable dimension for the execution of the subprogram.
The sizes of the adjustable dimensions and of any <constant
dimensions appearing in an adjustable array declarator
determine the number of elements in the array and the array
element ordering. The execution of different references to
a subprogram or different executions of the same reference
determine possibly different properties (size of dimensions,
dimension bounds, number of elements, and array element
ordering) for each adjustable array in the subprogram.
These properties depend on the values of any actual
arguments and variables in common that are referenced in the
adjustable dimension expressions in the subprogram.

During <che execution of an external procedure in a
subprogram- containing an adjustable array, the array

properties of dimension size, lower and upper dimension
bounds, and array size (number of elements in the array) do
not change. However, the variables involved in an

adjustable dimension may be redefined or become undefined
during execution of the external procedure with no effect on
the above-mentioned properties.

5.6 Use of Array Names

In a program unit, each appearance of an array name must be
in an array element name except in the following cases:

(1) In a list of dummy arguments

(2) In a COMMON statement

(3) In a type-statement

(4) In an array declarator. Note that although the form
of an array declarator may be identical to that of an
array element name, an array declarator is not an
array element name.

(5) In an EQUIVALENCE statement

(6) In a DATA statement

(7) In the |list ot actual arguments in a reference to an
external procedure

(8) In the list of an input/output statement if the array
is not an assumed-size dummy array

(9) As a unit identifier for an internal file in an
input/output statement if the array is not an
assumed-size dummy array

(10) As the format identifier in an input/output statement
if the array is not an assumed-size dummy array

Full Language

10

15

20

25

30

35

40

45

50

55

Page 5-8

ANSI X3.9-1978 FORTRAN 77 ~ ARRAYS AND SUBSTRINGS

5.7 Character Substring

5 Substrings are not included in the subset.

10 5.7.1 Substriné Name. OSubstrings are not included in the
subset.

15

20

25

30
35

40

the subset.

5.7.2 Substring Expression. Substrings are not included in
45 : .

50

55

Page 5-9s . Subset Language

ARRAYS AND SUBSTRINGS ANSI X3.9-1978 FORTRAN 77

(11) In a SAVE statement
5.7 Character Substring

A character substring is a contiguous portion of a character
datum and is of type character. A character substring 1is
jdentified by a substring name and may be assigned values
and referenced.

5.7.1 Substring Name. The forms of a substring name are:

v ([e;]1 ¢ [ead)
a (s [,s]1...0CT[e,]1 : (el
where: v ijs a character variable name

(s [,s1...) is a character array element name

(4]

e, and e, are each an integer expression and are
called substring expressions

The value e, specifies the leftmost character position of
the substring, and the value g, specifies the rightmost
character position. For example, A(2:4) specifies
characters in positions two through four of the <character
variable A, and B(4,3)(1:6) specifies <characters in
positions one through six of the ~character array element
B(4,3).

The values of e, and e, must be such that:

1 <e <e < len
where len 1is the length of the character variable or array
element (8.4.2). If e, is omitted, a value of one is implied
for e,. If e, is omitted, a value of len is implied for ge,.
Both e, and e, may be omitted; for example, the form v(:) is
equivalent to v, and the form a(s [,s]...)(:) is equivalent
to a(s [,s]...). The length of a character substring is

e, - g, + 1.

5.7.2 Substring Expression. A substring expression may be
any integer expression. A substring expression may contain
array element references and function references. Note that
a restriction in the &evaluation of expressions (6.6)
prohibits certain side effects. In particular, evaluation
of a function must not alter the value of any other
expression within the same substring name.

Full Language

10

15

20

25

30

35

40

45

50

55

Page 5-9

ANST X3.9-1978 FORTRAN 77

10

15

20

25

30

35

40

45

50

55

6. EXPRESSIONS

This section describes the formation, 1interpretation, and
evaluation rules for arithmetic, character, relational, and
logical expressions. An expression is formed from operands,
operators, and parentheses.

6.1 Arithmetic Expressions

An arithmetic expression is wused to express a numeric
computation. Evaluation of an arithmetic expression produces
a numeric value.

The simplest form of an arithmetic expression is an unsigned
arithmetic constant, arithmetic variable reference,
arithmetic array element reference, or arithmetic function
reference. More <complicated arithmetic expressions may be
formed by using one or more arithmetic operands together
with arithmetic operators and parentheses. Arithmetic
operands must identify values of type integer or real.

6.1.1 Arithmetic Operators. The five arithmetic operators
r

Operator Representing
* % Exponentiation
Division
* Multiplication
- Subtraction or Negation
+ Addition or Identity

Each of the operators xx, /, and x operates on a pair of
operands and is written between the two operands. Each of
the operators + and - either:

(1) operates on a pair of operands and is Written between
the two operands, or

(2) operates on a single operand and is written
preceding that operand.

6.1.2 Form and Interpretation of Arithmetic Expressions.
The interpretation of the expression formed with each of the
arithmetic operators in each form of use is as follows:

‘Page 6-1s Subset Language

ANSI X3.9-1978 FORTRAN 77

6. EXPRESSIONS

This section describes the formation, interpretation, and
evaluation rules for arithmetic, character, relational, and
logical expressions. An expression is formed from operands,
operators, and parentheses.

6.1 Arithmetic Expressions

An arithmetic expression is wused to express a numeric
computation. Evaluation of an arithmetic expression produces
a numeric value.

The simplest form of an arithmetic expression is an unsigned
arithmetic constant, symbolic name of an arithmetic
constant, arithmetic variable reference, arithmetic array
element reference, or arithmetic function reference. More
complicated arithmetic expressions may be formed by wusing
one or more arithmetic operands together with arithmetic
operators and parentheses. Arithmetic operands must
jdentify values of type integer, real, double precision, or
complex.

6.1.1 Arithmetic Operators. The five arithmetic operators
are:

Operator Representing
* % Exponentiation
/ Division
* Multiplication
- Subtraction or Negation
+ Addition or Identity

Each of the operators *x, /, and * operates on a pair of
operands and is Wwritten between the two operands. Each of
the operators + and - either:

(1) operates on a pair of operands and is Wwritten between
the two operands, or

(2) operates on a single operand and is written
preceding that operand.

6.1.2 Form and Interpretation of Arithmetic Expressions.
The interpretation of the expression formed with each of the
arithmetic operators in each form of use is as follows:

Full Language

10

15

20

25

30

35

40

45

50

55

Page 6-1

ANSI X3.9-1978 FORTRAN 77 EXPRESSIONS

10

15

20

25

30

35

40

45

50

55

Use of Operator Interpretation
X, ** X, Exponentiate X, to the power x,
x, | xa Divide x, by x» |
X1 ¥ Xa Multiply x, and x,
Xy — Xa Subtract x, from x,
- Xa Negate x»
X, * Xa Add x, and x;
+ X, Same as x, A

where: x, denotes the operand to the left of the operator
xa denotes the operand to the right of the operator

The interpretation of a division may depend on the data
types of the operands (6.1.5).

A set of formation rules 1is wused to establish the
interpretation of an arithmetic expression that contains two
or more operators. There is a precedence among the
arithmetic operators, which determines the order in which
the operands are to be combined unless the order is changed
by the use of parentheses. The precedence of the arithmetic
operators is as follows:

Operator Precedence
% Highest

* and / Intermediate

+ and - Lowest

For example, in the expression
- A xx 2

the exponentiation operator (xx) has precedence over the
negation operator (-); therefore, the operands of the
exponentiation operator are combined to form an expression
that is wused as the operand of the negation operator. The
interpretation of the above expression is the same as the
interpretation of the.expression

- (A xx 2)
The arithmetic operands are:

Page 6-2s Subset Language

EXPRESSIONS ANSI X3.9-1978 FORTRAN 77

Use of Operator Interpretation
X, ** Xxp Exponentiate x, to the power x,
x, /I xa Divide x, by x,
X, * Xa Multiply x, and x,;
X1 — Xa Subtract x, from x,
- Xz Negate x;
Xy + Xa Add x, and x,
+ Xa Same as xa

where: x, denotes the operand to the left of the operator
xa denotes the operand to the right of the operator

The interpretation of a division may depend on the data
types of the operands (6.1.5). :

A set of formation rules 1is wused to establish the
interpretation of an arithmetic expression that contains two
or more operators. There is a precedence among the
arithmetic operators, which determines the order in which
the operands are to be combined unless the order is changed
by the use of parentheses. The precedence of the arithmetic
operators is as follows:

Operator Precedence
* % Highest

* and / Intermediate

+ and - Lowest

For example, in the expression
- A xx 2

the exponentiation operator (*xx) has precedence over the
negation operatbr (-); therefore, the operands of the
exponentiation operator are combined to form an expression
that 1is wused as the operand of the negation operator. The
interpretation of the above expression is the same as the
interpretation of the expression

- (A xx 2)
The grithmégig operands are:

Futl Language

10

15

20

25

30

35

40

45

50

55

Page 6-2

ANSI X3.9-1978 FORTRAN 77 EXPRESSIONS

(1) Primary
(2) Factor
5 (3) Term
(4) Arithmetic expression
The formation rules to be applied in establishing the
10 interpretation of arithmetic expressions are in 6.1.2.1
through 6.1.2.4.
6.1.2.1 Primaries. The primaries are:

15 (1) Unsigned arithmetic constant (4.2.3)

(2) Arithmetic variable reference (2.5)

20 (3) Arithmetic array element reference (5.3)
(4) Arithmetic function reference (15.2)
25 (5) Arithmetic expressian enclosed in parentheses
(6.1.2.4)
6.1.2.2 Factor. The forms of a factor are:
30 (1) Primary

(2) Primary xx factor

Thus, a factor is formed from a sequence of one or more

35 primaries separated by the exponentiation operator. Form
(2) indicates that in interpreting a factor <containing two
or more exponentiation operators, the primaries are combined
from right to left. For example, the factor

40 2xx3%xx2

has the same interpretation as‘the factor

2xx(3xx2) -
45
6.1.2.3 Term.. The forms of a term are:
(1) Factor
50 (2) Term / factor

(3) Term * factor
Thus, a term is formed from a sequence of one or more

55 factors separated by either the multiplication operator or
the division operator. Forms (2) and (3) indicate that in

Page 6-3s Subset Language

EXPRESSIONS ANSI X3.9-1978 FORTRAN 77

(1) Primary
(2) Factor
(3) Term 5
(4) Arithmetic expression
The formation rules to be applied in establishing the
interpretation of arithmetic expressions are 1in 6.1.2.1 10
through 6.1.2.4.
6.1.2.1 Primaries. The primaries are:
(1) Unsigned arithmetic constant (4.2.3) 15

(2) Symbolic name of an arithmetic constant (8.6) |

(3) Arithmetic variable reference (2.5)

(4) Arithmetic array element reference (5.3) 20
(5) Arithmetic function reference (15.2)
(6) Arithmetic expression enclosed in parentheses 25
(6.1.2.4)
6.1.2.2 Factor. The forms of a factor are:
(1) Primary 30

(2) Primary xx factor

Thus, a factor is formed from a sequence of one or more
primaries separated by the exponentiation operator. Form 35
(2) indicates that in interpreting a factor containing twWo

or more exponentiation operators, the primaries are combined

from right to left. For example, the factor

2xx3xx? 40

has the same interpretation as the factor

2xx(3x%x2)
45
6.1.2.3 Term. The forms of a term are:
(1) F