
ANSI X3.9-1978
'

programming language FORTRAN

Secretariat

ANSI®
X3.9-1978

Revision of
ANSI X3.9-1966

American National Standard
Programming Language

FORTRAN

Computer and Business Equipment Manufacturers Association

Approved April 3, 1978

American National Standards Institute, Inc

American
National
Standard

An American National Standard implies a consensus of those substantially concerned with its
scope and provisions. An American National Standard is intended as a guide to aid the manu­
facturer, the consumer, and the general public. The existence of an American National Stan­
dard does not in any respect preclude anyone, whether he has approved the standard or not,
from manufacturing, marketing, purchasing, or using products, processes, or procedures not
conforming to the standard. American National Standards are subject to periodic review and
users are cautioned to obtain the latest editions.

CAUTION NOTICE: This American National Standard may be revised or withdrawn at any
time. The procedures of the American National Standards Institute require that action be
taken to reaffirm, revise, or withdraw this standard no later than five years from the date
of publication. Purchasers of American National Standards may receive current information
on all standards by calling or writing the American National Standards Institute.

Published by

American National Standards Institute
1430 Broadway, New York, New York 10018

Copyright© 1~78 by American National Standards Institute, Inc
All rights reserved.

No part of this publication may be reproduced in any form,
in an electronic retrieval system or otherwise, without
the prior written permission of the publisher.

Printed in the United States of America

P6M778/1650

Foreword (This Foreword is not a part of American National Standard Programming Language FORTRAN, ANSI X3.9-
1978.)

American National Standard Programming Language FORTRAN, ANSI X3.9-1978, specifies the
form and establishes the interpretation of programs expressed in the FORTRAN language. It con·
sists of a full language and a subset language. Its purpose is to promote portability of FORTRAN
programs for use on a variety of data processing systems.

It is suggested that the designation FORTRAN 77 be used to distinguish this standard from pre·
vious FORTRAN standards and any possible future revisions.

FORTRAN 77 is a revision of American National Standard FORTRAN, ANSI X3.9-1966. It de­
scribes two levels of the FORTRAN language, referred to as FORTRAN and Subset FORTRAN.
FORTRAN is the full language and appears on the righthand pages; Subset FORTRAN is a sub­
set of the full language and appears on the lefthand pages. Because FORTRAN 77 includes the
subset, American National Standard Basic FORTRAN, ANSI X3. l 0.1966, has been withdrawn.

This standard was approved as an American National Standard by the American National Stan­
dards Institute on April 3, 1978.

Suggestions for improvement of this standard will be welcome. They should be sent to the Amer­
ican National Standards Institute, 1430 Broadway, New York, N.Y. 10018.

This standard was processed and approved for submittal to ANSI by the American National Stan·
dards Committee on Computers and Information Processing, X3. Committee approval of this
standard does not necessarily imply that all committee members voted for its approval~ At the
time it approved this standard, the X3 Committee had the following members:

J. F. Auwaerter, Chairman
R M. Brown, Vice-Chairman
W. F. Hanrahan, Secretary

Organization Name of Representative

Addressograph Multigraph Corporation ...•.••.....•.......•..•.•. (Representation Vacant)
Air Transport Association•••.......•.....•...•..•••... F. C. White

C. Hart (Alt)
American Library Association•.••.... J. R. Rizzolo

J. C. Kountz (Alt)
M. S. Malinconico (Alt)

American Nuclear Society . . • . . . • . • • • • . • • . . . • . M. L. Couchman
M. K. Butler (Alt)
D. R. Vondy (Alt)

Association of American Railroads •..•.•....•••..••...••..••.•. R. A. Petrash
Association of Computer Programmers and Analysts •....•..••..•••..•. L. A. Ruh

T. G. Grieb (Alt)
V. J. Van Dyke (Alt)

Association for Computing Machinery • • • . . . • . . • • . • . • . . . • • . . • P. Skelly
J. A. N. Lee (Alt)
H. E. Thiess (Alt)

Association of Data Processing Service Organizations J. B. Christiansen
Association for Educational Data Systems•......•.•........ R. Liquori
Association for Systems Management• W. R. McPherson, Jr

R. hwin (Alt)
Association of Time Sharing Users . . • • . . . • . . • • . . • . • . . W. G. Madison

H. Segal (Alt)
Burroughs Corporation • • • • . • E. Lohse

J. S. Foley (Alt)
J. F. Kalbach (Alt)

California Computer Products, Inc • . . • R. C. Derby
Computer and Communications Industry Association •..•........•...... N. J. Ream

A. G. W. Biddle (Alt)
Control Data Corporation • . . • . • • C. E. Cooper

G. I. Williams (Alt)
Data General Corporation • • . . • . . • • . . • • . . • . . • • H. Kaikow

J. Saxena (Alt)

Organization Name of Representative

Datapoint Corporation ...•...•.............•.............. ll W. Swanson
R. J. Stout (Alt)

Data Processing Management Association • . . . • • . . . A. E. Dubnow
E. J. Palmer (Alt)

Digital Equipment Computer Users Society •...............•....... P. Caroom
B. Ham (Alt)

Digital Equipment Corporation ...•.....•.•.•......... : P. W. White
A. R. Kent (Alt)

Edison Electric Institute ..•...•..•...•..•.................. S. P. Shrivastava
J. L. Weiser (Alt)

General Services Administration • . • • • D. L. Shoemaker
M. W. Burris (Alt)

GUIDE International • • . • • . • • • . . • • T. E. Wiese
L. Milligan (Alt)
D. Stanford (Alt)

Harris Corporation • • • . • • . • . . . T. H. Buchert
Honeywell Information Systems, Inc•.••.•.......... T. J. McNamara

E. H. Clamons (Alt)
Institute of Electrical and Electronics Engineers, Communications Society (Representation Vacant)
Institute of Electrical and Electronics Engineers, Computer Society .•........ T. Feng (Alt)
International Business Machines Corporation R. J. Holleman

C. A. Thorn (Alt)
Itel Corporation .•....................................•. R. A. Whitcomb

R. Baechler (Alt)
Joint Users Group T. E. Wiese

R. McQuillian (Alt)
Life Office Management Association . • R. E. Ricketts

J. F. Foley, Jr (Alt)
Litton Industries I. Danowitz
National Association of State Information Systems ...•..........•..... G. I. Theis

J. L. Lewis (Ah)
National Bureau of Standards •..................•............ ll S.White, Jr

R. E. Rountree (Alt)
National Communications System M. L. Cain

G. W. White (Alt)
National Machine Tool Builders Association ..•..•................... 0. A. Rodriques
NCR Corporation . • . • R. J. Mindlin

A. R. Daniels (Alt)
T. W. Kern (Alt)

Olivetti Corporation of America. • • E. J. Almquist
Printing Industries of America, Inc•...•...... N. Scharpf

E. Rudd (Alt)
Recognition Equipment, Inc•.................... H. F. Schantz

W. E. Viering (Alt)
Scientific Apparatus Makers Association A. Savitsky

J. E. French (Alt)
SHARE Inc .. T. B. Steel, Jr

E. Brubaker (Alt)
R.H. Wahlen (Alt)

Society of Certified Data Processors•...• T. M. Kurihara
A. E. Dubnow (Alt)

Sperry UNIVAC•........•...•..•............ M. W. Bass
C. D. Card (Alt)

Telephone Group•..•......... V. N. Vaughan, Jr
S. M. Garland (Alt)
E. A. Patrick (Alt)

3M Company•........•.... , . ••.•..... R. C. Smith
U.S. Department of Defense•... W. L. McGreer

W. C. Rinehuls (Alt)
W. B. Robertson (Alt)

U.S. Department of Health, Education, and Welfare .••......•......... W. R. McPherson, Jr
W. Frederic (Alt)

VIM • . • • . • • . • E. Heinze
M. R. Speers (Alt)
S. W. White (Alt)

Xerox Corporation•.............•....•...•......•.•. J. L. Wheeler
A. R. Machell (Alt)

Subcommittee X3J3 on FORTRAN, which developed this standard, had the following members:

F. Engel, Jr, Chairman
M. Greenfield, Vice-Chairman
L W. Campbell, Secretary
J. C. Noll, International Representative

J.C. Adams
J. T. Bagwell
C. B. Bailey
N. H. Barth
G. M. Bauer
G. A. Beck
G. T. Boswell
W. S. Brainerd
R. F. Brender
J. R. Coleman
J. J. Daly
D. C. Dillon
W.R. Earley
D.R. Eaton
J. T. Engle
D. L Eriksson
J. c. Flint
M. F. Freeman
C. A.Giammo
T. A. Gibson
R. B. Grove
D. E. Hamilton
J. K. Harkins
D. A. Herington
F. E. Holberton
S. Hue
F. J. Infante
G. W. Johnson
A. R. Jones
R. A. Karp
M. D. Kelley
E.W. Klein
D.T.Laird

R. G. Langsner
J.E. Lauer
S. E. Lovell
N. H. Marshall
B. A. Martin
J. T. Martin
J. H. Matheny
L. P. Meissner
J. J. Mimmack
H. R.Moore
D. J. Olsen
R. L. Page
D. I. Paterson
B. W. Puerling
R.R. Ragan
M.A. Rainer
C. H. Sampson
R. J. Saunders
W. Schenk
R. R. Schieber
J. C. Schwebel
E. H. Senn
K. C. Shih
R. W. Signor
R. T. Slavinski
B. J. Swain
J. F. Thorlin
R. B. Upshaw
D.R. Vondy
J.M. Watson
V. B. Wayland
M. D. Weldon
D.R. Young

Contents SECTION PAGE

l. Introduction. 1-1
1.1 Purpose . 1-1
1. 2 Processor . 1-1
1.3 Scope. 1-1
1.4 Conformance. 1-2
1.5 Notation Used in This Standard . 1-3
1.6 Subset Text. 1-4

2. FORTRAN Terms and Concepts. 2-1
2.1 Sequence . 2-1
2.2 Syntactic Items .. 2-1
2.3 Statements, Comments, and Lines . 2-2
2.4 Program Units and Procedures . 2-2
2. 5 Variable . 2-3
2.6 Array . 2-3
2. 7 Substring . 2-3
2.8 Dummy Argument .. 2-4
2.9 Scope of Symbolic Names and Statement Labels 2-4
2.10 List .. 2-4
2.11 Definition Status . 2-4
2.12 Reference . 2-5
2.13 Storage .. 2-5
2.14 Association . 2-6

3. Characters, Lines, and Execution Sequence 3-1
3.1 FORTRAN Character Set. 3-1
3.2 Lines ... 3-2
3.3 Statements . 3-3
3.4 Statement Labels . 3-3
3.5 Order of Statements and Lines . 3-3
3.6 Normal Execution Sequence and Transfer of Control 3-5

4. Data Types and Constants . 4-1
4.1 Data Types , 4-1
4.2 Constants .. 4-2
4.3 Integer Type , . 4-3
4.4 Real Type . 4-3
4.5 Double Precision Type 4-3
4.6 Complex Type . 4-4
4. 7 Logical Type . 4-4
4.8 Character Type .. 4-5

5. Arrays and Substrings. 5-1
5.1 Array Declarator . 5-1
5.2 Properties of an Array. 5-2
5.3 Array Element Name. 5-4
5.4 Subscript .. 5-4
5.5 Dummy and Actual Arrays. 5-7
5.6 Use of Array Names . 5-8
5. 7 Character Substring . 5-9

6. Expressions . 6-1
6.1 Arithmetic Expressions 6-1
6.2 Character Expressions • • 6-7
6.3 Relational Expressions • 6-9

SECTION PAGE

6.4 Logical Expressions 6-10
6. 5 Precedance of Operators . 6-14
6.6 Evaluation of Expressions 6-15
6.7 Constant Expressions 6-20

7. Executable and Nonexecutable Statement Classification 7-1
7.1 Executable Statements ~ 7-1
7.2 Nonexecutable Statements. 7-1

8. Specification Statements. 8-1
8.1 DIMENSION Statement . 8-1
8. 2 EQUIV ALEN CE Statement . 8-1
8.3 COMMON Statement . 8-3
8.4 Type-Statements . 8-5
8.5 IMPLICIT Statement 8-7
8.6 PARAMETER Statement . 8-8
8.7 EXTERNAL Statement 8-9
8.8 INTRINSIC Statement 8-9
8.9 SAVE Statement ... 8-10

9. DATA Statement .. 9-1
9 .1 Form of a DAT A Statement . 9-1
9.2 DATA Statement Restrictions 9-1
9.3 Implied-DO in a DATA Statement 9-2
9.4 Character Constant in a DATA Statement 9-3

10. Assignment Statements .. 10-1
10.1 Arithmetic Assignment Statement 10-1
10.2 Logical Assignment Statement 10-2
10.3 Statement Label Assignment (ASSIGN) Statement 10-2
10.4 Character Assignment Statement 10-2

11. Control Statements•............. 11-1
11.1 Unconditional GO TO Statement 11-1
11.2 Computed GO TO Statement 11-2
11.3 Assigned GO TO Statement 11-2
11.4 Arithmetic IF Statement 11-2
11. 5 Logical IF Statement 11-3
11.6 Block IF Statement .. 11-3
11. 7 ELSE IF Statement .. 11-4
11.8 ELSE Statement ... 11-5
11.9 END IF Statement .. 11-5
11.10 DO Statement ... 11-5
11.11 CONTINUE Statement 11-9
11.12 STOP Statement : 11-9
11.13 PAUSE Statement .. 11-9
11.14 END Statement ... 11-10

12. Input/Output Statements .. 12-1
12.1 Records ... 12-1
12.2 Files ... 12-2
12.3 Units ... 12-6
12.4 Format Specifier and Identifier 12-7
12.5 Record Specifier ... 12-8
12.6 Error and End-of-File Conditions 12-8

SECTION PAGE

12.7 Input/Output Status, Error, an.d End-of-File Specifiers 12-9
12.8 READ, WRITE, and PRINT Statements 12-10
12.9 Execution of a Data Transfer Input/Output Statement 12-13
12.10 Auxiliary Input/Output Statements 12-18
12.11 Restrictions on Function References and List Items 12-29
12.12 Restriction on Input/Output Statements 12-29

13. Format Specification ... 13-1
13.1 Format Specification Methods 13-1
13.2 Form of a Format Specification 13-2
13.3 Interaction Between Input/Output List and Format 13-3
13.4 Positioning by Format Control 13-4
13.5 Editing .. 13-5
13.6 List-Directed Formatting 13-13

14. Main Program .. 14-1
14.1 PROGRAM Statement. 14-1
14.2 Main Program Restrictions 14-1

15. Functions and Subroutines 15-1
15.1 Categories of Functions and Subroutines 15-1
15.2 Referencing a Function 15-1
15.3 Intrinsic Functions : 15-2
15.4 Statement Function 15-4
15.5 External Functions .. 15-6
15-6 Subroutines ... 15-9
15.7 ENTRY Statement 15-11
15.8 RETURN Statement 15-13
15.9 Arguments and Common Blocks 15-15
15.10 Table oflntrinsic Functions 15-22

16. Block Data Subprogram ... 16-1
16.1 BLOCK DATA Statement 16-1
16.2 Block Data Subprogram Restrictions 16-1

17. Association and Definition 17-1
17 .1 Storage and Association . 17-1
17.2 Events That Cause Entities to Become Defined 17-3
17.3 Events That Cause Entities to Become Undefined 17-4

18. Scope and Oasses of Symbolic Names _ 18-1
18.1 Scope of Symbolic Names 18-1
18.2 Classes of Symbolic Names 18-2

Tables
Table 1 Subscript Value -. 5-6
Table 2 Type and Interpretation of Result for x 1 + x2 • 6-5
Table 3 Type and Interpretation of Result for x 1 ** x 2 ••••••••••••••••••.•• 6-6
Table 4 Arithmetic Conversion and Assignment of e to v • • • . • • . . • • . . • • . • . • . . 10-1
Table 5 Intrinsic Functions .. 15-22

Fig. 1 Required Order of Statements and Comment Lines . 3-4

Appendixes
Appendix A Criteria, Conflicts, and Portability. A-1

Al Criteria. A-1
A2 Conflicts with ANSI X3.9-1966 A-1

SECTION PAGE

A3 Standard Items Thatlnhibit Portability • . A-4
A4 Recommendation for Enhancing Portability . A-S

Appendix B Section Notes .. B-1
Bl Section 1 Notes .. B-1
B2 Section 2 Notes . B-2
B3 Section 3 Notes . B-2
B4 Section 4 Notes . B-3
BS Section S Notes . B-3
B6 Section 6 Notes ·· . B-3
B7 Section 7 Notes . B-4
B8 Section 8 Notes . B-4
B9 Section 9-Notes .. B-S
BIO Section 10 Notes ~ B-S
Bl I Section 11 Notes•........................... B-S
Bl 2 Section 12 Notes . B-6
B13 Section 13 Notes ... B-11
B14 Section 14 Notes ... B-13
BIS Section IS Notes ... B-13
B16 Section 16 Notes ... B-IS
Bl 7 Section 17 Notes ... B-15
BIS Section 18 Notes ... B-15

Appendix C Hollerith .. C-1
Cl Hollerith Data Type C-1
C2 Hollerith Constant . C-1
C3 Restrictions on Hollerith Constants . C-1
C4 Hollerith Constant in a DATA Statement C-2
CS Hollerith Format Specification C-2
C6 A Editing of Hollerith Data C-2
C7 Hollerith Constant in a Subroutine Reference . C-3

Appendix D Subset Overview , D-1
DI Background ... D-1
D2 Criteria . D-2

D2.1 Full Language . • D-2
D2.2 Subset Language· D-2

D3 Summary of Subset Differences • . D-2
D3.1 Section 1: Introduction D-2.
D3.2 Section 2: FORTRAN Terms and Concepts D-2
D3.3 Section 3: Characters, Lines, and Execution Sequence D-2
D3.4 Section 4: Data Types and Constants. D-3
D3.S Section S: Arrays and Substrings D-3
D3.6 Section 6: Expressions D-3
D3. 7 Section 7: Executable and Nonexecutable Statement Classification D-3
D3.8 Section 8: Specification Statements D-3
03.9 Section 9: DATA Statement D-4
03.10 Section 10: Assignment Statements ~ D-4
D3.11 Section 11: Control Statements . D-4
03.12 Section 12: Input/Output Statements . D-4
03.13 Section 13: Format Specification , D-S
D3.14 Section 14: Main,Program D-S
03.lS Section 15: Functions and Subroutines D-S
03.16 Section 16: Block Data Subprogram D-6

SECTION PAGE

03.17 Section 17: Association and Definition D-6
03.18 Section 18: Scope and Oasses of Symbolic Names 0-6
03.19 Sections 1 to 18: Character Type 0-6

D4 Subset Conformance ... ~ . D-7
04.1 Subset Processor Conformance . 0-7
04. 2 Subset Program Conformance . 0-7

Appendix E FORTRAN Statements E-1

Appendix F Syntax Charts .. F-1
Fl Chart Conventions .. F-1
F2 Charts .. F-2
F3 Cross-Reference Index to Syntax Charts•.................... F-29

Index · Index-I

ANSI X3.9-1978 FORTRAN 77

5

1 0

1 5

1. INTRODUCTION

1. 1 PurQose

This standard specifies the form and establishes the
interpretation of programs expressed i n the FORTRAN
language. The purpose of th i s standard i s to promote
portability of FORTRAN programs for use on a variety of
processing systems.

1.Z Processor

The combination of a data processing system and
mechanism by which programs are transformed for use on
data processing system is called a 1;1rocessor in
standard.

1.3 Sco1:1e

data

the
that
th i s

20 1.3.1 Inclusions. This standard specifies:

ZS

30

(1) The form of a program written in the FORTRAN language

(2) Rules for interpreting the meaning of such a program
and its data

(3) The form of writing input data to be processed by
such a program operating on data processing systems

(4) The form of the output data resulting from the use of
such a program on data processing systems

1.3.Z Exclusions. This standard does not specify:

35

40

45

50

55

Page 1-1s

(1) The mechanism by which programs are transformed for
use on a data processing system

(2) The method of transcription of programs or their
input or output data to or from a data processing
medium

(3) The operations required for setup and control of the
use of programs on data processing systems

(4) The results when the rules of this standard fai I to
establish an interpretation

(5) The size or complexity of a program and its data that
wi II exceed the capacity of any specific data
processing system or the capability of a particular
processor

(6) The range or prec1s1on of numeric quantities and the
method of rounding of numeric results

Subset Language

ANSI X3.9-1978 FORTRAN 77

1. INTRODUCTION

1.1 Purpose

This standard specifies the form and establishes the
interpretation of programs expr~ssed in the FORTRAN
language. The purpose of this standard is to promote
portability of FORTRAN programs for use on a variety of data
processing systems.

1.2 Processor

The combination of a data processing system and
mechanism by which programs are transformed for use on
data processing system is ca 11 ed a processor in
standard.

1.3 Scope

1.3.1 Inclusions. This standard specifies:

the
that
th i s

<1> The form of a program written in the FORTRAN language

<2> Rules for interpreting the meaning of such a program

5

10

15

20

and its data 25

(3) The form of writing input data to be processed by
such a program operating on data processing systems

(4) The form of the output data resulting from the use of 30
such a program on data processing systems

1.3.2 Exclusions. This standard does not specify:

(1) The mechanism by which programs are transformed for 15
use on a data processing system

(2) The method of transcription of programs or their
input or output data to or from a data processing
medium 40

(3) The operations required for setup and control of the
use of programs on data processing systems

(4) The results when the rules of this standard fai I to 45
establish an interpretation

<5> The size or complexity of a program and its data that
will exceed the capacity of any specific data
processing system or the cagabi lity of a particular 50
processor

(6) The range or prec1s1on of numeric quantities and the
method of rounding of numeric results

Fut I Language

55

Page 1-1

ANSI X3.9-1978 FORTRAN 77 INTRODUCTION

5

<7> The -physical properties of input/output records,
files, and units

(8) The physical properties and implementation of storage

1. 4 Conformance

The reQuirements, prohibitions, and options specified in
this standard generally refer to permissible forms and

10 relationships for standard-conforming programs rather than
for processors. The obvious exceptions are the optional
output forms produced by a processor, which are not under
the control of a program. The reQuirements, prohibitions,
and options for a standard-conforming process~r usually must

15 be inferred from those given for programs.

An executable program <2.4.2> conforms to this standard if
it uses only those forms and relationships described herein
and if the executable program has an interpretation

20 according to this standard. A program unit <2.4> conforms
to this standard if it can be included in an executable
program in a manner that al lows the executable program to be
standard conforming.

25 A processor conforms to this standard if it executes
standard-conforming programs in a manner that fulfi I Is the
interpretations prescribed herein. A standard-conforming
processor may al low additional forms and relationships
provided that such additions do not conf !ict with the

30 standard forms and relationships. However, a standard-
conforming processor may, al low additional intrinsic
functions (15.10) even though this could cause a conflict
with the name of an external function in a standard­
conforming program. If such a conflict occurs, the

35 processor is permitted to use the intrinsic function unless
the name appears in an EXTERNAL statement within the program
unit. A standard-conforming program must not use intrinsic
functions that have been added by the processor. Note that
a standard~conforming program must not use any forms or

40 relationships that are prohibited by this standard, but a
standard-conforming processor may al low such forms and
relationships if they do not change the proper
interpretation of a standard-conforming program.

45 Because a stand•rd-conforming program may place demands on
the processor that are not within the scope of this standard
or may include standard items that are not portable, such as
external procedures defined by means other than FORTRAN,
conformance to this standard does not ensure that a

50 standard-conforming program wi I I execute consistently on al I
or any standard-conforming processors.

1.4.1 Subset Conformance. This standard describes two
levels of the FORTRAN language, referred to as FORTRAN and

55 subset FORTRAN. FORTRAN is the full language. Subset
FORTRAN is a subset of the ful I language.

Page 1-Zs Subset Language

INTRODUCTION ANSI X3.9-1978 FORTRAN 77

(7) The physical properties of input/output records,
files, and units

(8) The physical properties and implementation of storage

1.4 Conformance

The requirements, prohibitions, and options specified in
this standard generally refer to permissible forms and

5

relationships for standard-conforming programs rather than 10
for processors. The obvious exceptions are the optional
output forms produced by a processor, which are not under
the control of a program. The requirements, prohibitions,
and options for a standard-conforming processor usually must
be inferred from those given for programs. 15

An executable program <2.4.2) conforms to this standard if
it uses only those forms and relationships described herein
and if the executable program has an interpretation
according to this standard. A program unit (2.4) conforms 20
to this standard if it can be included in an executable
program in a manner that a 11 ows the executab I e program to be
standard conforming.

A processor conforms to this standard if it executes 25
standard-conforming programs in a manner that fulfi I Is the
interpretations prescribed herein. A standard-conforming
processor may allow additional forms and relationships
provided that such additions do not conflict with the
standard forms and relationship~. However, a standard- 30
conforming processor may al low additional i"ntrinsic
functions (15.10) even though this could cause a conflict
with the name of an external function in a ~tandard­
conforming program. If such a conflict occurs, the
processor is permitted to use the intrinsic function unless 35
the name appears in an EXTERNAL statement within the program
unit. A standard-conforming program must not use intrinsic
functions that have been added by the processor. Note that
a standard-conforming program must not use any forms or
relationships that are prohibited by this standard, but a 40
standard-conforming processor may al low such forms and
relationships if they do not change the proper
interpretation of a standard-conforming program.

Because a standard-conforming program may place demands on 45
the processor that are not within the scope of this standard
or may include standard items that are not portable, such as
external procedures defined by means other than FORTRAN,
conformance to this standard does not ensure that a
standard-conforming program wi II execute consistently on al I 50
or any standard-conforming processors.

1.4.1 Subset Conformance. This standard dsscribes two
levels of the FORTRAN language, referred to as FORTRAN and
subset FORTRAN. FORTRAN is the ful I language. Subset 55
F 0 RT RAN i s a s u b s e t o f t h e f u I I I a n g u a g e .

Ful I Language Page 1-2

ANSI X3.9-1978 FORTRAN 77 I NTRODU CTI ON

5

1 0

An executable program conforms to the subset level of this
standard if it uses only those forms and relationships
described herein for that level and if the executable
program has an interpretation according to this standard at
that level and would have the same interpretation in the
f u 11 I anguage. A program unit conf arms to the subset I eve I
of this standard if it can be included in an executable
program in a manner that a 11 ows the executab I e program to be
standard conforming at that level.

A subset level processor conforms to the subset level of
this standard if it executes subset I eve I standard­
conformi ng programs in a manner that fulfi I Is the
interpretations prescribed herein for subset FORTRAN. A

15 subset level processor may include an extension that has a
farm and wou Id have an interpretation at the fu 11 I eve I on I y
if t~e extension has the interpretation provided by the ful I
level. A subset level processor may also include extensions
that do not have forms and interpretations in the ful I

20 language.

1 .5 Notation Used in This Standard

In this standard, must is to be interpreted as a
25 requirement; conversely, "must not" is to be interpreted as

a prohibition.

30

35

40

45

50

55

In describing the form of FORTRAN statements or constructs,
the fol lowing metalanguage conventions and symbols are used:

(1) Special characters from the FORTRAN charact~r set,
uppercase letters, and uppercase words are to be
written as shown, except where otherwise noted.

(2) Lowercase letters and lowercase word~ indicate
general entities for which specific entities must be
substituted in actual statements. Once a given
lowercase letter or word is used in a syntactic
specification to represent an entity, all subsequent
occurrences of that letter or word represent the same
entity unti I that letter or word is used in a
subsequent syntactic specification to represent a
different entity.

(3) Br a ck et s , [) , are used to i n di cat e opt i on a I i t elos •

(4) An ellipsis, ...
optional items may
succession.

indicates that
appear one or

the preceding
more times in

(5) Blanks are used to improve readability, but unless
otherwise noted have no significance.

(6) Words or groups
significance are

of words
underlined

that have special
where their meaning is

Page 1-3s Subset Language

I NTRODU CTI ON ANSI X3.9-1978 FORTRAN 77

An executable program conforms to the subset level of this
standard if it uses only those forms and relationships
described herein for that level and if the executable
program has an interpretation according to this standard at
that level and would have the same interpretation in the
fu 11 I anguage. A program unit conforms to the subset I eve I
of this standard if it can be included in an executable
program in a manner that a I I ows the executab I e program to be
standard conforming at that I eve I.

A subset level processor conforms to the subset level of
this standard if it executes subset level standard­
conforming programs in a manner that fulfi I Is the
interpretations prescribed herein for subset FORTRAN. A

5

10

subset level processor may include an extension that has a 15
form and wou Id have an interpretation at the fu 11 I eve I on I y
if the extension has the interpretation provided by the ful I
level. A subset level processor may also include extensions
that do not have forms and interpretations in the ful I
language. 20

1.5 Notation Used in This Standard

In this standard, "must" is to be interpreted as a
requirement; conversely, "must not" is to be interpreted as 25
a prohibition.

In describing the form of FORTRAN statements or constructs,
the fol lowing metalanguage conventions and symbols are used:

(1) Special characters from the FORTRAN character set,
uppercase letters, and uppercase words are to be
written as shown, except where otherwise noted.

30

(2) Lowercase letters ,and lowercase words indicate 35
general entities fo'~which specific entities must be
substituted in actu~I statements. Once a given
lowercase letter or word is used in a syntactic
specification to represent an entity, all subsequent
occurrences of that letter or word represent the same 40
entity unti I that letter .or word is used in a
subsequent syntactic specifitation to represent a
different entity.

(3) Brackets, [J, are used to indicate optional items.

(4) An el Ii psis, ... indicates that the preceding
optional items may appear one or more times in
succession.

(5) Blanks are used to improve readability, but unless
otherwise noted have no significance.

(6) Words or groups
significance are

Fut I Language
I

of words
underlined

that have special
where their meaning is

45

50

55

Page 1-3

ANSI X3.9-1978 FORTRAN 77 INTRODUCTION

5

10

1 5

20

described. Titles and the metalanguage symbols
described in 1.5(2) are also underlined.

An example i I lustrates the metalanguage. Given a
description of the form of a statement as:

CALL sub [([.§. [, .§.] ...])]

the fol lowing forms are allowed:

CALL sub
CALL sub ()

CALL sub (.§.)
CALL sub (.§., .§.)
CALL sub (.§., .§., .§.)
etc

When an actual statement is written, specific entities are
substituted for sub and each.§.; for example:

CALL ABCD <X,1.0)

1.6 Subset Text

25 The section titles in the subset description are identical
to the section titles in the full language description.

There are some instances in which a general situation occurs
in the fu 11 I anguage but on I y a restricted case app Ii es to

30 the subset. For example, in 3.6, the "nonexecutable
statements" that may appear between executable statements
may ~nly be FORMAT statements in the subset. In most of
these instances, the more general text of the ful I language
description has been retained in the subset description,

35 even though it is to be interpreted as covering only the
restricted case.

To help find differences between the ful I and subset
languages, vertical bars have been added in the margins

40 where the text of the ful I and subset languages differ.

45

50

55

Page 1,...4s Subset Language

INTRODUCTION ANSI X5.9-1978 FORTRAN 77

described. Titles and the metalanguage symbols
described in 1.5(2) are also underlined.

An example i I lustrates the metalanguage. Given a
description of the form of a statement as:

CALL sub [([.§_ [I .§_] •••])]

the fol lowing forms are allowed:

CALL sub
CALL sub ()

CALL sub (.§_)

CALL sub (.§_I .§_)

CALL sub (.§_I .§_I .§_)

etc

When an actual statement is written, specific entities are
substituted for sub and each.§.; for example:

CALL AB CD (x I 1 • 0)

1.6 Subset Text

5

10

1 5

20

The section titles in the subset description are identical 25
to the section titles in the ful I language description.

There are some instances in which a general situation occurs
in the ful I language but only a restricted case applies to
the subset. For example, in 3.6, the "nonexecutable 30
statements" that may appear between executable statements
may only be FORMAT statements in the subset. In most of
these instances, the more general text of the ful I langu::rne
description has been retained in the subset descriptTon,
even though it is to be interpreted as covering only the 35
restricted case.

To help find differences between the ful I
languages, vertical bars have been added in
where the text of the ful I and subset languages
example, this sentence does not appear in
language text.

Fut I Language

and subset
the margins
differ. For

the subset
40

45

50

55

Page 1-4

ANSI X3.9-1978 FORTRAN 77

5

2. FORTRAN TERMS ANO CONCEPTS

This section introduces basic terminology and concepts,
of which are clarified further in later sections.
terms and concepts of more specialized meaning are
i n trod u c e d i n I ate r sect i on s . The under I i n ed. words
described here and used throughout this standard.

some
Many
also

are

10 2.1 Sequence

A sequence is a set ordered by a one-to-one correspondence
with the numbers 1, 2, through n. The number of elements in
the sequence is n. A sequence may be empty, in which case

15 it contains no elements.

The elements of a nonempty sequence are referred to as the
f~rst element, second element, etc. The nth element, where
n is the number of elements in the sequence, is cal led the

20 last element. An empty sequence has no first or last
element.

2.2 Syntactic Items

25 Letters, digits, and special characters of the FORTRAN
character set C3.1) are used to form the syntactic items of
the FORTRAN language. The basic syntactic items of the
FORTRAN language are constants, symbolic names, statement
labels, keywords, operators, and special characters.

30
The form of a constant is described in Section 4.

A symbolic name takes the form of a sequence of one to six
letters or digits, the first of which must be a letter.

35 Classification of symbolic names and restrictions on their
use are described in Section 18.

A statement label takes the form of a sequence of one to
five digits, one of which must be nonzero, and is used to

40 id-entify a statement C3.4).

A keyword takes the form of a specified sequence of letters.
The keywords that are significant in the FORTRAN language
are described in Sections 7 through 16. In many instances,

45 a keyword or a portion of a keyword also meets the
requirements for a symbolic name. Whether a particular
sequence of characters identifies a keyword or a symbolic
name is implied by context. There is no sequence of
characters that is reserved in al I contexts in FORTRAN.

50
The set of special characters i s described i n 3. 1 . 4. A
special character may be an operator or part of a constant
or have some other special meaning. The interpretation i s
implied by context.

55

Page Z-1s Subset Language

ANSI X3.9-1978 FORTRAN 77

2. FORTRAN TERMS AND CONCEPTS

This section introduces basic terminology and concepts,
of which are clarified further in later sections.
terms and concepts of more specialized meaning are
introduced in later sections. The underlined words
described here and used throughout this standard.

2. 1 Sequence

some
Many
a Is o
are

A sequence is a set ordered by a one-to-one correspondence
with the numbers 1, 2, through n. The number of elements in
the sequence is n. A sequence may be empty, in which case

5

1 0

it contains no elements. 15

The elements of a nonempty sequence are referred to as the
first element, second element, etc. The nth element, where
n is the number of elements in the sequence, is cal led the
last element. An empty sequence has no first or last ZO
element.

Z.2 Syntactic Items

Letters, digits, and special characters of the FORTRAN 25
character set (3.1) are used to form the syntactic items of
the FORTRAN language. The basic syntactic items of the
FORTRAN language are constants, symbolic names, statement
labels, keywords, operators, and special characters.

The form of a constant is described in Section 4.

A symbolic name takes the form of a sequence of one to six
letters or digits, the first of which must be a letter.

30

Classification of symbolic names and restrictions on their 35
use are described in Section 18.

A statement label takes the form of a sequence of one to
five digits, one of which must be nonzero, and is used to
identify a statement <3.4). 40

A keyword takes the form of a specified sequence of letters.
The keywords that are significant in the FORTRAN language
are described in Sections 7 through 16. In many instances,
a keyword or a portion of a keyword also meets the 45
requirements for a symbolic name. Whether a particular
sequence of characters identifies a keyword or a symbolic
name is implied by context. There is no sequence of
characters that is reserved in al I contexts in FORTRAN.

The set
special
or have
implied

of special characters is described in 3.1.4. A
character may be an operator or part of a constant

some other special meaning. The interpretation is
by context.

Fu I I Language

50

55

Page Z-1

ANSI X3.9-1978 FORTRAN 77 FORTRAN TERMS AND CONCEPTS

5

1 0

2.3 Statements. Comments, and Lines

A FORTRAN statement is a sequence of syntactic items, as
described in Sections 7 through 16. Except for assignment
and statement function statements, each statement begins
with a keyword. In this standard, the keyword or keywords
that begin the statement are used to identify that
statement. For example, a DATA statement begins with the
keyword DATA.

A statement is written in one or more lines, the first of
which is called an initial J..i..n..g_ (3.2.2); succeeding lines,
if any, are cal led continuation lines (3.2.3>.

15 There is also a line cal led a comment J..i..n..g_ (3.2.1), which is
not part of any statement and is intended to provide
documentation.

2.3.1 Classes of Statement~. Each statement is classified
20 as executable or nonexecutable <Section 7>. Executable

statements specify actions. Nonexecutable statements
describe the characteristics, arrangement, and initial
values of data; contain editing information; specify
statement functions; and classify program units.

25

30

2.4 Program Units and Procedures

A program unit consists of
optional comment lines.
program or a subprogram.

a sequence of statements and
A program unit is either a main

A main program is a program unit that does not have a
FUNCTION or SUBROUTINE statement as its first statement; it

35 may have a PROGRAM statement as its first statement.

A subprogram is a program unit that has a FUNCTION or
SUBROUTINE statement as its first statement. A subprogram

40 whose first statement is a FUNCTION statement is cal led a
function subprogram. A subprogram whose first statement is
a SUBROUTINE statement is cal led a subroutine subprogram.
Function subprograms and subroutine subprograms are cal led
procedure subprograms.

45

2.4.1 Procedures. Subroutines (15.6), external functions
<15.5), statement functions <15.4), and the intrinsic

50 functions <15.3) are cal led procedures. Subroutines and
external functions are cal led external procedures. External
procedures may also be specified by means other than FORTRAN
subprograms.

55

Page 2-Zs Subset Language

FORTRAN TERMS AND CONCEPTS ANSI X3.9-1978 FORTRAN 77

2.3 Statements, Comments, and Lines

A FORTRAN statement is a sequence of syntactic items, as
described in Sections 7 through 16. Except for assignment
and statement function statements, each statement begins
with a keyword. In this standard, the keyword or keywords
that begin the statement are used to identify that
statement. For example, a DATA statement begins with the
keyword DATA.

A statement is written in one or more lines, the first of
which is cal led an initial ~ <3.2.2); succeeding lines,
if any, are cal led continuation lines (3.2.3).

5

10

There is also a line cal led a comment line <3.2.1), which is 15
not part of any statement and is intended to provide
documentation.

2.3.1 Classes of Statements. Each statement is classified
as executable or nonexecutable <Section 7). Executable 20
statements specify actions. Nonexecutable statements
describe the characteristics, arrangement, and initial
values of data; contain editing information; specify
statement functions; classify program units; and specify
entry points within subprograms. 25

2.4 Program Units and Procedures

A program unit consists of a sequence of statements and
optional comment lines. A program unit is either a main 30
program or a subprogram.

A main program is a program unit that does not have a
FUNCTION, SUBROUTINE, or BLOCK DATA statement as its first
statement; it may have a PROGRAM statement as its first 35
statement.

A suborooram is a program unit that has a FUNCTION,
SUBROUTINE, or BLOCK DATA statement as its first statement.
A subprogram whose first statement is a FUNCTION statement
is cal led a function subprogram. A subprogram whose first
statement is a SUBROUTINE statement is cal led a subroutine
subprogram. Function subprograms and subroutine subprograms
are cal led procedure subprograms. A subprogram whose first
statement is a BLOCK DATA statement is cal led a block data
subprogram.

2.4.1 Procedures. Subroutines <15.6), external functions
<15.5), statement functions <15.4), and the intrinsic

40

45

functions <15.3) are cal led procedures. Subroutines and 50 .
external functions are cal led external procedures. Function
subprograms and subroutine subprograms may specify one or
more external functions and subroutines, respectively
(15.7). External procedures may also be specified by means
other than FORTRAN subprograms. 55

Ful I Language Page 2-2

ANSI X3.9-1978 FORTRAN 77 FORTRAN TERMS -AND CONCEPTS

5

2.4.2 Executable Program. An executable program is a
collection of program units that consists of exactly one
main program and any number, including none, of subprograms
and external procedures.

2.5 Variable

A variable is an entity that has both a name and a type. A
variable name is a symbolic name of a datum. Such a datum

10 may be identified, defined <2.11>, and referenced <2.12>.
Note that the usage in this standard of the word "variable"
is more restricted than its normal usage, in that it does
not include array elements.

15 The type of a variable is optionally specified by the
appearance of the variable name in a type-statement (8.4).
If it is not so specified, the type of a variable is implied
by the first letter of the variable name to be integer or
real <4.1.Z>, unless the initial letter type implication is

ZO changed by the use of an IMPLICIT statement (8.S>.

At any given time during the execution of an executable
program, a variable is either defined or undefined <2.11).

ZS Z.6 Array

An array is a nonempty sequence of data that has a name and
a type. The name of an array is a symbolic name.

30 2.6.1 Array Elements. Each of the elements of an array is
cal led an array element. An array name qualified by a
subscript is an array element name and identifies a
particular element of the array (5.3). Such a datum may be
identified, defined <2.11>, and referenced <2.12). The

35 number of array elements in an array is specified by an
array declarator CS.1).

An array element has a type. The type of al I array elements
within an array is the same, and is optionally specified by

40 the appearance of the array name in a type-statement <8.4).

45

If it is not so specified, the type of an array element is
implied by the first letter of the array name to be integer
or real <4.1.2), unless the initial letter type implicaticrn
is changed by the use of an IMPLICIT statement (8.S>.

At any given time during the
program, an array element
<2.11>.

execution of an exe~utable
is either defined or undefined

50 2.7 Substring

55

A character datum is a nonempty sequence of characters. A
substring is a contiguous portion of a character datum.
Substring names are not included in the s~bset.

Page Z-3s Subset Languag_e

FORTRAN TERMS AND CONCEPTS ANSI X3.9-1978 FORTRAN 77

2.4.2 Executable Program. An executable program is a
collection of program units that consists of exactly one
main program and any number, including none, of subprograms
and external procedures.

2.5 Variable

A variable is an entity that has both a name and a type. A
variable name is a symbolic name of a datum. Such a datum

5

may be identified, defined (2.11), and referenced (2.12). 10
Note that the usage in this standard of the word "variable"
is more restricted than its normal usage, in that it does
not include array elements.

The type of a variable is optionally specified by the 15
appearance of the variable name in a type-statement (8.4).
If it is not so specified, the type of a variable is implied
by the first letter of the variable name to be integer or
real <4.1.2), unless the initial letter type implication is
changed by the use of an IMPLICIT statement (8.5). 20

At any given time during the execution of an executable
program, a variable is either defined or undefined <2.11>.

2.6 Array

An array is a nonempty sequence of data that has a name and
a type. The name of an array is a symbolic name.

2.6.1 Array Elements. Each of the elements of an array
cal led an array element. An array name qualified by
subscript is an array element name and identifies
particular element of the array <5.3). Such a datum may
identified, defined (2.11), and referenced <2.12).
number of array elements in an array is specified by
array declarator <5.1).

is
a ~

a
be

The
an

An array element has a type. The type of al I array elements
within an array is the same, and i5 optionally specified by

25

30

35

the appearance of the array name in a type-statement <8.4). 40
If it 1s not so specified, the type of an array element is
implied by the first letter of the array name to be integer
or real (4.1.2), unless the initial letter type implicat~on
is changed by the use of an IMPLICIT statement <8.5).

At any given time during the
program, an array element
<2.11>.

2.7 Substring

execution of an executable
is either defined or undefined

A character datum is a nonempty sequence of characters. A
substring is a contiguous portion of a character datum. The
form of a substring name used to identify, define (2.11), or

45

50

reference (2.12) a substring is described in 5.7.1. 55

Ful i Language Page 2-3

ANSI X3.9-1978 FORTRAN 77 FORTRAN TERMS AND CONCEPTS

5
2.8 Dummy Argument

A dummy argument in a procedure is a symbolic name. A
symbolic name dummy argument identifies a variable, array,
or procedure that becomes associated <2.14) with an actual
argument of each reference <2.12) to the procedure <15.2,

10 15.4.2, 15.5.2, and 15.6.2).

15 Each dummy argument name that is classified as a variable,
array, or dummy procedure may appear wherever an actual name
of the same class <Section 18) and type may appear, except
where explicitly prohib.ited.

20 2.9 Scope of Symbolic Names and Statement Labels

2'. 5

The scope of a symbolic name (18.1) is an executable
program, a program unit, or a statement function statement.

The name of the main program and the names of external
functions, subroutines, and common blocks have a scope of an
executable program.

30 The names of variables, arrays, constants, statement
functions, intrinsic functions, and dummy procedures have a
scope of a program unit.

The names of variables that appear as dummy arguments in a
35 statement function statement have a scope of that statement.

40
Statement labels have a scope of a program unit.

2.10 List

45 A list is a nonempty sequence <2.1) of syntactic entities

50

55

separated by commas. The entities in the list are called
li.il. items.

2.11 Definition Status

At any given time during the execution of an executable
program, the definition status of each variable or array
element is either defined or undefined <Section 17).

Page 2-4s Subset Language

FORTRAN TERMS AND CONCEPTS ANSI X3.9-1978 FORTRAN 77

At any given time during the execution of an executable
program, a substring is either defined or undefined <2.11).

2.8 Dummy Argument

A dummy argument in a procedure is either a symbolic name or
an asterisk. A symbolic name dummy argument identit~es a
variable, array, or procedure that becomes associated <2.14)
with an actual argument of each reference <2.12) to the

5

procedure <15.2, 15.4.2, 15.5.2, and 15.6.2). An asterisk 10
dummy argument indicates that the corresponding actual
argument is an alternate return specifier <15.6.2.3, 15.8.3,
and 15.9.3.5).

Each dummy argument name that is classified as a variable, 15
array, or dummy procedure may appear wherever an actual name
of the same class <Section 18> and type may appear, except
where explicitly prohibited.

2.9 Scope of Symbolic Names and Statement Labels

The scope of a symbolic name <18.1> is an executable
program, a program unit, a statement function statement, or
an implied-DO list in a DATA statement.

The name of the main program and the names of block data
subprograms, external functions, subroutines, and common
blocks have a scope of an executable program.

20

25

The names of variables, arrays, constants, statement 30
functions, intrinsic functions, and dummy procedures have a
scope of a program unit.

The names of variables that appear as dummy arguments in a
statement function statement have a scope of that statement. 35

The names of variables that appear as the DO-variable of an
implied-DO in a DATA statement have a scope of the implied­
DO I i st .

Statement labels have a scope of a program unit.

2.10 List

40

A~ is a nonempty sequence <2.1> of syntactic ent1t1es 45
separated by commas. The entities in the list are called
~items.

2.11 Definition Status

At any given time during the execution of
program, the definition status of each
element, or substring is either defined
<Section 17>.

Ful I Language

an executable
variable, array

or undefined

so

55

Page 2-4

ANSI X3.9-1978 FORTRAN 77 FORTRAN TERMS AND CONCEPTS

5

10

1 5

20

A defined entity ~as a value. The value of a defined entity
does not change unti I the entity becomes undefined or is
redefined with a different value.

If a variable or array element is undefined, it does not
have a predictable value.

A previously defined variable or array element may become
undefined. Subsequent definition of a defined variable or
array element is permitted, except where it is explicitly
prohibited.

A character variable or character array element is defined
if every substring of length one of the entity is defined.

An entity is initially defined if it is assigned a value in
a DATA statement <Section 9). Initially defined entities
are in the defined state at the beginning of execution of an
executable program. Al I variables and array elements not

25 initially defined, or associated <2.14) with an initially
defined entity, are undefined at the beginning of execution
of an executable program.

An entity must be defined at the time a reference to it is
30 executed.

2.12 Reference

A variable or array element reference is the appearance of a
35 variable or array element name, respectively, in a statement

in a context requiring the value of that entity to be used
during the execution of the executable program. When a
reference to an entity is executed, its current value is
avai I able. In this standard, the act of defining an entity

40 is not considered a reference to that entity.

A procedure reference is the appearance of a procedure name
in a statement in a context that requires the actions

45 specified by the procedure to be executed during the

50

execution of the executable program. When a procedure
reference is executed, the procedure must be avai I able.

2.13 Storage

A storage seauence is a sequence of storage units. A
storage unit is either a numeric storage unit or a character
storage unit.

55 An integer, real, or logical datum has one numeric storage
unit in a storage sequence. A character datum has one

Page 2-5s Subset Language

FORTRAN TERMS AND CONCEPTS ANSI X3.9-1978 FORTRAN 77

A defined entity has a value. The value of a defined entity
does not change unti I the entity becomes undefined or is
redefined with a different value.

If a variable, array element, or substring is undefined, it
does not have a predictable value.

A previously defined variable or array element may become
undefined. Subsequent definition of a defined variable or

5

array element is permitted, except where it is explicitly 10
prohibited.

A character variable, character array element, or character
substring is defined if every substring of length one of the
entity is defined. Note that if a string is defined, every 15
substring of the string is defined, and if any substring of
the string is undefined, the string is undefined. Defining
any substring does not cause any other string or substring
to become undefined.

An entity is initially defined if it is assigned a value in
a DATA statement <Section 9). Initially defined entities
are in the defined state at the beginning of execution of an
executable program. Al I variables and array elements not

20

initially defined, or associated <2.14) with an initially 25
defined entity, are undefined at the beginning of execution
of an executable program.

An entity must be defined at the time a reference to it is
executed. 30

2.12 Reference

A variable, array element, or substring reference is the
appearance of a variable, array element, or substring name, 35
respectively, in a statement in a context requiring the
value of that entity to be used during the execution of the
executable program. When a reference to an entity is
executed, its current value is avai I able. In this standard,
the act of defining an entity is not considered a reference 40
to that entity.

A procedure reference is the appearance of a procedure name
in a statement in a context that requires the actions
specified by the procedure to be executed during the 45
execution of th~ executable program. When a procedure
reference is executed, the procedure must be avai I able.

2.13 Storage

A storage sequence is a sequence of storage units. A
storage unit is either a numeric storage unit or a character
storage unit.

50

An integer, real, or logical datum has one numeric storage 55
unit in a storage sequence. A double precision or complex

Fu I I" Language Page 2-5

ANSI X3.9-1978 FORTRAN 77 FORTRAN TERMS AND CONCEPTS

5

character storage .Y...Oi..l in a storage seQuence for each
character in the datum. This standard does not specify a
rel~tionship between a numeric storage unit and a character
storage unit.

If a datum reQuires more than one storage unit in a storage
seQuence, those storage units are consecuttve.

10 The concept of a storage seQuence is used to describe
relationships that exist among variables, array elements,
a r r a y s , a n d c o m m o n b I ·o c k s . T h i s s t a n d a r d d o e s n o t s p e ci f y a
relationship between the stora9e seQuence concept and the
physical properties 6r implementation of storage.

1 5

2.14 Association

Association of entities exists if the same datum may be
20 identified by different symbolic names in the same program

unit, or by the same name or a different name in different
program units of the same executable program <17.1>.

Entities may become associated by the fol lowing:
25

(1) Common association (8.3.4)

(2) EQuivalence association <8.2.2>

30 (3) Argument association (15.9.3)

35

40

45

50

55

Page 2-6s Subset Language

FORTRAN TERMS AND CONCEPTS ANSI X3.9-1978 FORTRAN 77

datum has two numeric storage units in a storage sequence.
A character datum has one character storage unit in a
storage sequence for each character in the datum. This
standard does not specify a relationship between a numeric
storage unit and a character storage unit.

If a datum requires more than one storage unit in a storage
sequence, those storage uni ts are consecutive.

5

The concept of a storage sequence is used to describe 10
relationships that exist among variables, array elements,
arrays, substrings, and common blocks. This standard does
not specify a relationship between the storage sequence
concept and the physical properties or implementation of
storage. 15

2.14 Association

Association of entities exists if the same datum may be
identified by different symbolic names in the, same program 20
unit, or by the same name or a different name in different
program units of the same executable program <17.1).

Entities may become associated by the fol lowing:
25

(1) Common association (8.3.4)

(2) Equivalence association C8.2.2)

<3> Argument association <15.9.3) 30

(4) Entry association (15.7.3)

35

40

45

so

55

Fu I I Language Page 2-6

ANSI X3.9-1978 FORTRAN 77

3. CHARACTERS, LINES, AND EXECUTION SEQUENCE

3.1 FORTRAN Character Set

5 The FORTRAN character set consists of twenty-six Letters,
ten digits, and eleven special characters.

1 0

1 5

3.1.1 Letters.
characters:

A letter is one of the twenty-six

A B C D E F G H I J K L M N 0 P Q R S T U V W X Y Z

3.1.2 Digits. A digit is one of the ten characters:

0 1 2 3 4 5 6 7 8 9

A string of digits is interpreted in the decimal base number
system when a numeric interpretation is appropriate.

20 3.1.3 Alphanumeric Characters. An alphanumeric character
is a letter or a digit.

25

30

35

40

3.1.4 Special Characters.
the eleven characters:

Character

=
+
-
*
I
(

)

,

I

A special character is ~ne of

Name of Character

Blank
Equals
Plus
Minus
Asterisk
Slash
Left Parenthesis
Right Parenthesis
Comma
Decimal Point
Apostrophe

3.1.5 Collating Sequence and Graphics. The order in which
45 the letters are listed in 3.1.1 specifies the collating

sequence for the letters; A is less than Z. The order in
which the digits are listed in 3.1.2 specifies the collating
sequence for the digits; 0 is less than 9. The digits and
letters must not be int~rmixed in the collating sequence;

50 all of the digits must precede A or all of the digits must
fol low Z. The character blank is less than the letter A and
less than the digit 0. The order in which the special
characters are listed in 3.1.4 does not imply a collating
sequence.

55

Page 3-1s Subset Language

ANSI X3.9-1978 FORTRAN 77

3. CHARACTERS, LINES, AND EXECUTION SEQUENCE

3.1 FORTRAN Character Set

The FORTRAN character set consists of twenty-six letters,
ten digits, and thirteen special characters.

3.1.1 Letters.
characters:

A letter is one of the twenty-six

A B C D E F G H I J K L M N 0 P Q R S T U V W X Y Z

3.1.Z Digits. A digit is one of the ten characters:

0 z 3 4 5 6 7 8 9

A string of digits is interpreted in the decimal base number
system when a numeric interpretation is appropriate.

5

10

1 5

3.1.3 Alphanumeric Characters. An alphanumeric character ZO
is a letter or a digit.

3.1.4 Special Characters.
the thirteen characters:

Character

--
+
-
*
I
(

)

,

$
I

;

A special character is one of

Name of Character

Blank
Equals
Plus
Minus
Asterisk
Slash
Left Parenthesis
Right Parenthesis
Comma
Decimal Point
Currency Symbol
Apostrophe
Colon

3.1.5 Collating Seauence and Graphics. The order in which

25

30

35

40

the letters are listed in 3.1.1 specifies the collating 45
sequence for the letters; A is less than Z. The order in
which the digits are listed in 3.1.Z specifies the collating
sequence for the digits; 0 is less than 9. The digits and
letters must not be intermixed in the collating sequence;
al I of the digits must precede A or al I of the digits must 50
fol low Z. The character blank is less than the letter A and
less than the digit 0. The order in which the special
characters are listed in 3.1.4 does not imply a. collating
sequence.

Fu I I Language

55

Page 3-1

ANSI X3.9-1978 FORTRAN 77 CHARACTERS, LINES, ANO EXECUTION SEQUENCE

The graphics used for the forty-seven characters must be as
given in 3.1.1, 3.1.2, and 3.1.4. However, the style of any
graphic is not specified.

5 3.1.6 Blank Character. With the exception of the uses
specified (3.2.2, 3.2.3, 3.3, 4.8, 4.8.1, 13.5.1, and
13.5.2), a blank character within a program unit has no
meaning and may be used to improve the appearance of the
program unit, subject to the restriction on the number of

10 consecutive continuation lines (3.3).

3.2 Lines

A~ in a program unit is a sequence of 72 characters.
15 Al I characters must be from the FORTRAN character set,

except as described in 3.2.1, 4.8, 12.2.2, and 13.2.1.

The character positions in a line are called columns and are
numbered consecutively 1, 2, through 72. The number

20 indicates the sequential position of a character in the
line, beginning at the left and proceeding to the right.
Lines are ordered by the sequence in which they are
presented to the processor. Thus, a program unit consists
of a totally ordered set of characters.

25

30

35

40

3.2.1 Comment Line. A comment ~ is any line
contains a C or an asterisk in column 1, or contains
blank characters in columns 1 through 72. A comment
that contains a C or an asterisk in column 1 may contain
character capable of representation in the processor
columns 2 through 72.

that
only
I in e
any

i n

A comment line does not affect the executable program in any
way and may be used to provide documentation.

A comment line must be followed immediately by an initial
line or another comment line. A comment line must not be
followed by a continuation line. Comment lines may precede
the initial line of the first statement of any program unit.

3.2.2 Initial Line. An initial ~is any line that is
not a comment line·and contains the character blank or the
digit 0 in column 6. Columns 1 through 5 may contain a

45 statement label <3.4), or each of the columns 1 through 5
must contai~ the character blank.

l.

3.2.3 Continuation Line. A continuation~ is any line
that contains any character of the FORTRAN character set

50 other than the character blank or the digit 0 in column 6
and contains only blank characters in columns 1 through 5.
A statement must not have more than nine continuation lines.

55

Pag·e 3-2s Subset Language

CHARACTERS, LINES, AND EXECUTION SEQUENCE ANSI X3.9-1978 FORTRAN 77

Except for the currency symbol, the graphics used for the
forty-nine characters must be as given in 3.1.1, 3.1 .2, and
3.1.4. However, the style of any graphic is not specified.

3.1.6 Blank Character. With the exception of the uses 5
specified (3.2.2, 3.Z.3, 3.3, 4.8, 4.8.1, 13.5.1, and
13.5.2), a blank character within a program unit has no
meaning and may be used to improve the appearance of the
program unit, subject to the restriction on the number of
consecutive continuation lines <3.3). 10

3.2 Lines

A line in a program unit is a sequence of 72 characters.
Al I characters must be from the FORTRAN character set, 15
except as described in 3.2.1, 4.8, 12.2.2, and 13.2.1.

The character posi ti ans in a Ii ne are ca 11 ed co I umns and are
numbered consecutively 1, 2, through 72. The number
indicates the sequential position of a character in the 20
line, beginning at the left and proceeding to the right.
Lines are ordered by the sequence in which they are
presented to the processor. Thus, a program unit consists
of a totally ordered set of characters.

3.2.1 Comment Line. A comment ~ is
contains a C or an asterisk in column 1,
blank characters in columns 1 through 72.
that contains a Coran asterisk in column
character capable of representation in
columns 2 through 72.

any line that
or contains on I y
A comment line

1 may contain any
the processor in

A comment line does not affect the executable program in any
way and may be used to provide documentation.

Comment lines may appear anywhere in the program unit.
Comment lines may precede the initial line of the first
statement of any program unit. Comment lines may appear
between an initial line and its first continuation line or

25

30

35

between two continuation lines. 40

3.2.2 Initial Line. An initial~ is any line that is
not a comment line and contains the character blank or the
digit 0 in column 6. Columns 1 through 5 may contain a
statement label <3.4), or each of the columns 1 through 5 45
must contain the character blank.

3.2.3 Continuation Line. A continuation~ is any line
that contains any character of the FORTRAN character set
other than the character blank or the digit 0 in column 6 50
and contains only blank characters in columns 1 through 5.
A statement must not have more than nineteen continuation
Ii nes.

55

Fu I I Language Page 3-2

ANSI X3.9-1978 FORTRAN 77 CHARACTERS, LINES, AND EXECUTION SEOUE~CE

3.3 Statements

The statements of the FORTRAN language are described in
Sections 7 through 16 and are used to form program units.

5 Each statement is written in columns 7 through 72 of an
initial line and as many as nine continuation lines. An END
statement is written only in columns 7 through 72 of an
initial line. No other statement in a program unit may have
an initial line that appears to be an END statement. Note

10 that a statement must contain no more than 660 characters.
Except as part of a logical IF statement <11.5), no
statement may begin on a line that contains any part of the
previous statement.

15 Blank characters preceding, within, or fol lowing a statement
do not change the interpretation of the statement, except
when they appear within the datum strings of character
constants or the Hor apostrophe edit descriptors in FORMAT
statements. However, blank characters do count as

20 characters in the limit of total characters al lowed in any
one statement.

3.4 Statement Labels

25 Statement labels provide a means of referring to individual
statements. Any statement may be labeled, but only labeled
executable statements and FORMAT statements may be referred
to by the use of statement labels. The form of a statement
label is a sequence of one to five digits, one of which must

30 be nonzero. The statement label may be placed anywhere in
columns 1 through 5 of the initial line of the statement.
The same statement label must not be given to more than one
statement in a program unit. Blanks and leading zeros are
not significant in distinguishing between statement labels.

35
3.5 Order of Statements and Lines

A PROGRAM statement may appear only as the first statement
of a main program. The first statement of a subprogram must

40 be either a FUNCTION or SUBROUTINE statement.

45

50

Within a program unit that permits the statements:

(1) FORMAT statements may appear anywhere;

(2) all specification statements must precede all DATA
statements, statement function statements, and
executable statements;

(3) al I statement function statements must precede al I
executable statements; and

(4) al I DATA statements must appear after the
specification statements and precede al I statement

55 function statements and executable statements.

Page 3-3s Subset Language

CHARACTERS, LINES, AND EXECUTION SEQUENCE ANSI X3.9-1978 FORTRAN 77

3.3 Statements

The statements of the FORTRAN language are described in
Sections 7 through 16 and are used to form program units.
E~ch statement is written in columns 7 through 72 of an 5
initial line and as many as nineteen continuation lines. An
END statement is written only in columns 7 through 72 of an
initial line. No other statement in a program unit may have
an initial line that appears to be an END statement. Note
that a statement must contain no more than 1320 characters. 10
Except as part of a logical IF statement (11.5), no
statement may begin on a line that contains any part of the
previous statement.

Blank characters preceding, within, or fol lowing a statement 15
do not change the interpretation of the statement, except
when they appear within the datum strings of character
constants or the Hor apostrophe edit descriptors in FORMAT
statements. However, blank characters do count as
characters in the limit of total characters al lowed in any 20
one statement.

3.4 Statement Labels

Statement labels provide a means of referring to individual 25
statements. Any statement may be labeled, but only labeled
executable statements and FORMAT statements may be referred
to by the use of statement labels. The form of a statement
label is a sequence of one to five digits, one of which must
be nonzero. The statement label may be placed anywhere in 30
columns 1 through 5 of the initial line of the statement.
The same statement label must not be given to more than one
statement in a program unit. Blanks and leading zeros are
not significant in distinguishing between statement labels.

3.5 Order of Statements and Lines

A PROGRAM statement may appear only as the first statement
of a main program. The first statement of a subprogram must

35

be either a FUNCTION, SUBROUTINE, or BLOCK DATA ~tatement. 40

Within a program unit that permits the statements:

(1) FORMAT statements may appear anywhere;
45

(2) al I specification statements must precede al I DATA
statements, statement function statements, and
executable statements;

(3) a I I statement function statements must precede a I I 50
executable statements;

(4) DATA statements may appear anywhere after the
specification statements; and

55

Fu I I Language Page 3-3

ANSI X3.9-1978 FORTRAN 77 CHARACTERS, LINES, AND EXECUTION SEQUENCE

5

1 0

1 5

20

25

30

35

40

Within the specification
IMPLICIT statements must
statements.

statements of a program unit,
precede al I other specification

The last line of a program unit must be an END statement.

Figure 1

Required Order of Statements and Comment Lines

PROGRAM, FUNCTION, or SUBROUTINE Statement

IMPLICIT Statements

Comment FORMAT Other Specification
Lines Statements Statements

DATA Statements

Statement Function
Statements

Executable Statements

END Statement

Figure 1 is a diagram of the required order of statements
and comment lines tor a program unit. Vertical lines

45 delineate varieties of statements that may be interspersed.
For exa~ple, FORMAT statements may be interspersed with
statement function statements and executable statements.
Horizontal lines delineate varieties of statements that must
not be interspersed. For example, statement function

50 statements must not be interspersed with executable
statements. Note that an END statement is also an
executable statement and must app~ar only as the last
statement of a program unit.

55

Page 3-4s Subset Language

CHARACTERS, LINES, AND EXECUTION SEQUENCE ANSI X3.9-1978 FORTRAN 77

(5) ENTRY statements may appear anywhere except between a
block IF statement and its corresponding END IF
statement, or between a DO statement and the terminal
statement of its DO-loop.

Within the specification statements of a program unit,
IMPLICIT statements must precede al I other specification
statements except PARAMETER statements. Any specification
statement that specifies the type of a symbolic name of a

5

constant must precede the PARAMETER statement that defines 10
that particular symbolic name 6f a constant; the PARAMETER
statement must precede al I other statements containing the
symbolic names of constants that are defined in the
PARAMETER statement.

The last line of a program unit must be an END statement.

Figure 1

Required Order of Statements and Comment Lines

PROGRAM, FUNCTION, SUBROUTINE, or
BLOCK DATA Statement

IMPLICIT
Statements

PARAMETER
Comment FORMAT Statements Other

Lines and Specification
ENTRY Statements

Statements
Statement

Function
DATA Statements

Statements
Executable
Statements

END Statement

Figure is a diagram of the required order of statements
and comment lines for a program unit. Vertical lines

1 5

20

25

30

35

40

delineate varieties of statements that may be interspersed. 45
For example, FORMAT statements may be interspersed with
statement function statements and executable statements.
Horizontal lines delineate varieties of statements that must
not be interspersed. For example, statement function
statements must not be interspersed with executable 50
statements. Note that an END statement is also an
executable statement and must appear only as the last
statement of a program unit.

Fu I I Language

55

Page 3-4

ANSI X3.9-1978 FORTRAN 77 CHARACTERS, LINES, AND EXECUTION SEQUENCE

3.6 Normal Execution Sequence and Transfer of Control

Normal execution sequence is the execution of executable
statements in the order in which they appear in a program

5 unit. Execution of an executable program begins with the
execution of the first executable statement of the main
program. When an external procedure specified in a
subprogram is referenced, execution begins with the first
executable statement that fol lows the FUNCTION or SUBROUTINE

10 statement that specifies the referenced procedure as the
name of a procedure.

A transfer Qi control is an alteration of the normal
execution sequence. Statements that may cause a transfer of

15 control are:

20

25

30

35

40

<1> GO TO

<Z> Arithmetic IF

<3> RETURN

<4> STOP

(5) An input/o~tput statement containing an end-of-file
specifier

(6) A logical IF statement containing any of the above
forms

(7) Block IF and ELSE IF

(8) The last statement, i f any, of an IF-block or ELSE
IF-block

(9) DO

(1 0) The terminal statement of a DO-loop

(11> END

The effect of these statements on the execution sequence is
45 described in Sections 114 12, arrd 15.

The normal execution sequence is not affected by the
appearance of nonexecutable statements or comment lines
between executable statem~nts. Execution of a function

50 reference or a' CALL statement is not considered a transfer
of control in the program unit that contains the reference.
Execution of a RETURN dr END statement in a referenced
procedure, or execution of a transfer of control within a
referenced procedure,· is not considered a transfer of

55 control in the program unit that contains the reference.

Page 3-5s Subset Language

CHARACTERS, LINES, ANO EXECUTION SEQUENCE ANSI X3.9-1978 FORTRAN 77

3.6 Normal Execution Sequence and Transfer of Control

Normal execution sequence is the execution of executable
statements in the order in which they appear in a program
unit. Execution of an executable program begins with the 5
execution of the first executable statement of the main
program. When an external procedure specified in a
subprogram is referenced, execution begins with the first
executable statement that fol lows the FUNCTION, SUBROUTINE,
or ENTRY statement that specifies the referenced procedure 10
as the name of a procedure.~

A transfer Qi control is an alteration of the normal
execution sequence. Statements that may cause a transfer of
control are: 15

<1> GO TO

<2> Arithmetic IF

<3> RETURN

< 4 > STOP

(5) An input/output statement cpntaining
specifier or end-of-file specifiier

(6) CALL w i th an alternate return specifier

(7) A logical IF statement containing any of
forms

(8) Block IF and ELSE IF

(9) The last statement, i f any, of an IF-block
IF-block

(1 0) DO

(11) The terminal statement of a DO-loop

(1 2) END

an error

the above

or ELSE

The effect of these statements on the execution sequence is

20

25

30

35

40

described in Sections 11, 12, and 15. 45

The normal execution sequence is not affected by the
appearance of nonexecutabre statements or comment lines
between executable statements. Execution of a functlon
reference or a CALL statement is not considered a transfer 50
of control in the program unit that contains the reference,
except when control is returned to a statement identified by
an alternate return specifier in a CALL statement.
Execution of a RETURN or END statement in a referenced
procedure, or execution of a transfer of control within a 55

Full Language Page 3-5

ANSI X3.9-1978 FORTRAN 77 CHARACTERS, LINES, AND EXECUTION SEQUENCE

In the execution of an executable program, a procedure
5 subprogram must not be referenced a second time without the

prior execution of a RETURN or END statement in that
procedure.

1 0

1 5

20

25

30

35

40

45

50

55

Page 3-6s Subset Language

CHARACTERS, LINES, AND EXECUTION SEQUENCE ANSI X3.9-1978 FORTRAN 77

referenced procedure, is not considered a transfer
control in the program unit that contains the reference. of I
In the execution
subprogram must
prior execution
procedure.

of an executable program, a procedure
not be referenced a second time withnut the
of a RETURN or END statement in that

5

10

1 5

20

25

30

35

40

45

50

55

Ful I Language Page 3-6

ANSI X3.9-1978 FORTRAN 77

4. DATA TYPES AND CONSTANTS

4.1 Data Tvpes

5 The four types of data are:

(1) Integer

(2) Real
1 0

1 5 (3) Logical

(4) Cha1-acter

Each type is different and may have a different intern~!
20 representation. The type may affect the interpretation of

the operations involving the datum.

4.1.1 Data Type of a Name. The name employed to identify a
datum or a function also identifies its data type. A

25 symbolic name representing a variable, array, or function
must have only one type for each program unit. Once a
particular name is identified with a particular type in a
program unit, that type is imp Ii ed for any usage of the name
in the program unit that requires a type.

30

4.1.2 Type Rules for Data and Procedure Identifiers. A
symbolic name that identifies a variable, array, external
function, or statement function may have its type specified

35 in a type-statement (8.4) as integer, real, logical, or
character, except that a function may not be of type
character. In the absence of an explicit declaration in a
type-statement, the type is implied by the first letter of
the name. A first letter of I, J, K, L, M, or N implies

40 type integer and any other letter implies type real, unless
an IMPLICIT statement (8.5) is used to change the default
implied type.

The data type of an array element name is the same as the
45 type of its array name.

The data type of a function name specifies the type of the
datum supplied by the function reference in an expression.

50 A symbolic name that identifies a specific intrinsic
function in a program unit has a type as specified in 15.10.
An explicit type-statement is not required; however, it is
permitted.

55

Page 4-1s Subset Language

ANSI X3.9-1978 FORTRAN 77

4. DATA TYPES AND CONSTANTS

4. 1 Data Trnes

The s i x types of data are: 5

(1) Integer

(2) Real
10

(3) Double precision

(4) Complex

(5) Logical 1 5

(6) Character

Each type is different and may have a different internal
representation. The type may affect the interpretation of 20
the operations involving the datum.

4.1.1 Data Type of a Name. The name employed to identify a
datum or a function also identifies its data type. A
symbolic name representing a constant, variable, array, or 25
function (except a generic function) must have only one type
for each program unit. Once a particular name is identified
with a particular type in a program unit, that type is
implied for any usage of the name in the program unit that
requires a type. 30

4.1.2 Type Rules for Data and Procedure Identifiers. A
symbolic name that identifies a constant, variable, array,
external function, or statement function may have its type
specified in a type-statement <8.4) as integer, real, double 35
prec1s1on, complex, logical, or character. In the absence
of an explicit declaration in a type-statement, the type is
implied by the first letter of the name. A first letter of
I, J, K, L, M, or N implies type integer and any other
letter implies type real, 'unless an IMPLICIT statement (8.5) 40
is used to change the default implied type.

The data type of an array element name is the same as the
type of its array name. 45

The data type of a function name specifies the type of the
datum supplied by the function reference in an expression.

A symbolic name that identifies a specific intrinsic SO
function in a program unit has a type as specified in 15.10.
An explicit type-statement is not required; however, it is
permitted. A generic function name does not have a
predetermined type; the result of a generic function
reference assumes a type that depends on the type of the 55
argument, as specified in 15.10. If a generic function name

Fu 11 Language Page 4-1

ANSI X3.9-1978 FORTRAN 77 DATA TYPES AND CONSTANTS

S In a program unit that contains an external function
reference, the type of the function is determined in the
same manner as for variables and arrays.

The type of an external function is specified implicitly by
10 its name, explicitly in a FUNCTION statement, or explicitly

in a type-statement. Note that an IMPLICIT statement within
a function subprogram may affect the type of the external
function specified in the subprogram.

15 A symbolic name that identifies a main program, subroutine,
or common block has no data type.

4.1.3 Data Type Properties. The mathematical and
representation properties for each of the data types are

20 specified in the fol lowing sections. For real and integer
data, the value zero is considered neither positive nor
negative. The value of a signed zero is the same as the
value of an unsigned zero.

25 4.2 Constants

A constant is an arithmetic constant, logical constant, or
character constant. The value of a constant does not
change. Within an executable program, al I constants that

30 have the same form have the same value.

35

4.2.1 Data Type of a Constant. The form of the string
representing a constant specifies both its value and data
type.

4.2.2 Blanks in Constants. Blank characters occurring in a
constant, except in a character constant, have no effect on

40 the value of the constant.

4.2.3 Arithmetic Constants.
arithmetic constants.

Integer and real constants are

45 4.2.3.1 Signs of Constants. An unsigned constant is a
constant without a leading sign. A signed constant is a
constant with a leading plus or minus sign. An optionally
signed constant is a constant that may be either signed or
unsigned. Integer and real constants may be optionally

50 signed constants, except where specified otherwise.

55

Page 4-2s Subset Language

DATA TYPES AND CONSTANTS ANSI X3.9-1978 FORTRAN 77

appears in a type-statement, such an appearance is not
sufficient by itself to remove the generic properties from
that function.

In a program unit that contains an external function 5
reference, the type of the function is determined in the
same manner as for variables and arrays.

The type of an external function is specified implicitly by
its name, explicitly in a FUNCTION statement, or explicitly 10
in 9 type-statement. Note that an IMPLICIT statement within
a function subprogram may affect the type of the external
function specified in the subprogram.

A symbolic name that identifies a main program, subroutine, 15
common block, or block data subprogram has no data type.

4.1.3 Data Type Properties. The mathematical and
representation properties for each of the data types are
specified in the following sections. For real, double ZO
prec1s1on, and integer data, the value zero is considered
neither positive nor negative. The value of a signed zero
is the same as the value of an unsigned zero.

4.Z Constants

A constant is an arithmetic constant, logical constant, or
character constant. The value of a constant does not
change. Within an executable program, al I constants that

ZS

have the same form have the same value. 30

4.Z.1 Data Type of a Constant. The form of the string
representing a constant specifies both its value and data
type. A PARAMETER statement (8.6) al lows a constant to be
given a symbolic name. The symbolic name of a constant must 35
not be used to form part of another constant.

4.Z.Z Blanks in Constants. Blank characters occurring in a
constant, except in a character constant, have no effect on
the value of the constant. 40

4.Z.3 Arithmetic Constants. Integer, real, double
precision, and complex constants are arithmetic constants.

4.Z.3.1 Signs of Constants. An unsigned constant is a 45
constant without a leading sign. A signed constant is a
constant with a leading plus or minus sign. An optionally
signed constant is a constant that may be either signed or
unsigned. Integer, real, and double precision constants may
be optionally signed constants, except where specified 50
otherwise.

55

Ful I Language Page 4-Z

ANSI X3.9-1978 FORTRAN 77 DATA TYPES AND CONSTANTS

5

4.3 Integer Txpe

An integer datum is always an exact representation of an
integer value. It may assume a positive, negative, or zero
value. It may assume only an integral value. An integer
datum has one numeric storage unit in a storage sequence.

4.3.1 Integer Constant. The form of an integer constant is
an optional sign followed by a nonempty string of digits.

10 The digit string is interpreted as a decimal number.

4.4 Real Type

A real datum is a processor approximation to the value of a
15 real number. It may assume a positive, negative, or zero

value. A real datum has one numeric storage unit in a
storage sequence.

4.4.1 Basic Real Constant. The form of a basic ~
20 constant is an optional sign, an integer part, a decimal

point, and a fractional part, in that order. Both the
integer part and the fractional part are strings of digits;
either of these parts may be omitted but not both. A basic
real constant may be written with more digits than a

25 processor wi I I use to approximate the value of the constant.
A basic real constant is interpreted as a decimal number.

4.4.2 Real Exponent. The form cf a~ exponent is the
letter E followed by an optionally signed integer constant.

30 A real exponent denotes a power of ten.

4.4.3 Real Constant. The forms of a real constant are:

(1) Basic real constant
35

(2) Basic real constant fol lowed by a real exponent

(3) Integer constant fol lowed by a real exponent

40 The value of a real constant that contains a real exponent
is the product of the constant that precedes the E and the
power of ten indicated by the integer fol lowing the E. The
integer constant part of form (3) may be written with more
digits than a processor wi I I use to approximate the value of

45 the constant.

4.5 Double Precision Type

Double precision type is not included in the subset.
50

55

Page 4-3s Subset Language

DATA TYPES AND CONSTANTS ANSI X3.9-1978 FORTRAN 77

4.3 Integer Type

An integer datum is a I ways an exact representation of an
integer value. It may assume a positive, negative, or zero

integer value. It may assume only an integral value. An
datum has one numeric storage unit in a storage sequence.

4.3.1 Inteoer Constant. The form of an integer constant is
an optional sign fol lowed by a nonempty string of digits.

5

The digit string is interpreted as a decimal number. 10

4.4 Real Type

A real datum is a processor approximation to the value of a
real number. It may assume a positive, negative, or zero 15
value. A real datum has one numeric storage unit in a
storage sequence.

4.4.1 Basic Real Constant. The form of a basic ~
constant is an optional sign, an integer part, a decimal 20
point, and a fractional part, in that order. Both the
integer part and the fractional part are strings of digits;
either of these parts may be omitted but not both. A basic
real constant may be written with more digits than a
processor wi I I use to approximate the value of the constant. 25
A basic real constant is interpreted as a decimal number.

4.4.2 Real Exponent. The form of a~ exponent is the
letter E fol lowed by an optionally signed integer constant.
A real exponent denotes a power of ten. 30

4.4.3 Real Constant. The forms of a~ constant are:

(1) Basic real constant
35

(2) Basic real constant fol lowed by a real exponent

(3) Integer constant fol lowed by a real exponent

The value of a real constant that contains a real exponent 40
is the product of the constant that precedes the E and the
power of ten indicated by the integer fol lowing the E. The
integer constant part of form (3) may be written with more
digits than a processor wi I I use to approximate the value of
the constant. 45

4.5 Double Precision Type

A double precision datum is a processor approximation to the
va!ue of a real number. The precision, although not 50
specified, must be greater than that of type real. A double
precision datum may assume a positive, negative, or zero
value. A double precision datum has two consecutive numeric
storage units in a storage sequence.

Fu I I Language

55

Page 4-3

ANSI X3.9-1978 FORTRAN 77 DATA TYPES AND CONSTANTS

5

10

15

20

4.5.1 Double Precision Exponent. Double precision type is
not included in the subset.

4.5.2 Double Precision Constant.
not included in the subset.

Double precision type is

25 4.6 Complex Type

30

35

40

45

so

55

Complex type is not included in the subset.

4.6.1 Complex Constant. Complex type is not included in
the subset.

4.7 Logical Type

A logical datum may assume only the values true or false. A
logical datum has one numeric storage unit in a storage
seQuence.

Pag·e 4-4s Subset Language

DATA TYPES AND CONSTANTS ANSI X3.9-1978 FORTRAN 77

4.5.1 Double Precision Exponent. The form of a double
precision exponent is the letter D fol lowed by an optionally
signed integer constant. A double precision exponent
denotes a power of ten. Note that the form and
interpretation of a double prec1s1on exponent are identical
to those of a real exponent, except that the letter D is
used instead of the letter E.

4.5.2 Double Precision Constant.
precision constant are:

The forms of a double

(1) Basic real constant fol lowed by a double precision
exponent

5

1 0

(2) Integer constant fol lowed by a double precision 15
exponent

The value of a double precision constant is the product of
the constant that precedes the D and the power of ten
indicated by the integer fol lowing the D. The integer 20
constant part of form (2) may be written with more digits
than a processor wi I I use to approximate the value of the
constant.

4.6 Complex Type

A complex datum is a processor approximation to the value of
a complex number. The representation of a complex datum is
in the form of an ordered pair of real data. The first of

25

the pair represents the real part of the complex datum and 30
the second represents the imaginary part. Each part has the
same degree of approximation as for a real datum. A complex
datum has two consecutive numeric storage units in a storage
sequence; the first storage unit is the real part and the
second storage unit is the imaginary part. 35

4.6.1 Complex Constant. The form of a complex constant is
a left parenthesis fol lowed by an ordered pair of real or
integer constants separated by a comma, and fol lowed by a
right parenthesis. The first constant of the pair is the 40
real part of the complex constant and the second is the
imaginary part.

4.7 Logical Type

A logical datum may assume only the values true or false. A
logical datum has one numeric storage unit in a storage
sequence.

Fu I I Language

45

50

55

Page 4-4

ANSI X3.9-1978 FORTRAN 77 DATA TYPES AND CONSTANTS

5

1 0

4.7.1 Logical Constant~ The forms and values of a logical
constant are:

Form Value

.TRUE. true

.FALSE. false

4.8 Character Type

A character datum is a string of characters. The string may
consist of any characters capable of representation in the

15 processor. The blank character is valid and significant in
a character datum. The length of a character datum is the
number of characters in the string. A character datum has
one character storage unit in a storage sequence for each
character in the string.

20

25

Each character in the string has a character position that
is numbered consecutively 1, Z, 3, etc. The number
indicates the sequential pos1t1on of a character in the
string, beginning at the left and proceeding to the right.

4.8.1 Character Constant. The form of a character constant
is an apostrophe fol lowed by a nonempty string of characters
fol lowed by an apostrophe. The string may consist of any
characters capable of representation in the processor. Note

30 that the delimiting apostrophes are not part of the datum
represented by the constant. An apostrophe within the datum
string is represented by two consecutive apostrophes with no
intervening blanks. In a character constant, blanks
embedded between the delimiting apostrophes are significant.

35
The length of a character constant is the number of
characters between the delimiting apostrophes, except that
each pair of consecutive apostrophes counts as a single
character. The delimiting apostrophes are not counted. The

40 length of a character constant must be greater than zero.

45

50

55

Page 4-5s Subset Language

DATA TYPES AND CONSTANTS ANSI X3.9-1978 FORTRAN 77

4.7.1 Logical Constant. The forms and values of a logical
constant are:

Form Value

.TRUE. true

.FALSE. false

4.8 Character Type

A character datum is a string of characters. The string may
consist of any characters capable of representation in the

5

10

processor. The blank character is valid and significant in 15
a character datum. The length of a character datum is the
number of characters in the string. A character datum has
one character storage unit in a storage sequence for each
character in the string.

Each character in the string has a character position that
is numbered consecutively 1, Z, 3, etc. The number
indicates the sequential position of a character in the
string, beginning at the left and proceeding to the right.

4.8.1 Character Constant. The form of a character constant
is an apostrophe fol lowed by a nonempty string of characters
fol lowed by an apostrophe. The string may consist of any
characters capable of representation in the processor. Note

20

ZS

that the delimiting apostrophes are not part of the datum 30
represented by the constant. An apostrophe within the datum
string is represented by two consecutive apostrophes with no
intervening blanks. In a character constant, blanks
embedded between the delimiting apostrophes are significant.

The length of a character constant is the number of
characters between the delimiting apostrophes, except that
each pair of consecutive apostrophes counts as a single
character. The delimiting apostrophes are not counted. The

35

length of a character constant must be greater than zero. 40

45

50

55

Fu I I Language Page 4-5

ANSI X3.9-1978 FORTRAN 77

5. ARRAYS AND SUBSTRINGS

An array is a nonempty sequence of data. An array element
is one member of the sequence of data. An array name is the

5 symbolic name of an array. An array element name is an
array name qualified by a subscript (5.3).

An array name not qualified by a subscript identifies the
entire sequence of elements of the array in certain forms

10 where such use is permitted (5.6); however, in an
EQUIVALENCE statement, an array name not qualified by a
subscript identifies the first element of the array (8.2.4).

An array element name identifies one element of the
15 sequence. The subscript value <Table 1) specifies the

element of the array being identified. A different array
element may be identified by changing the subscript value of
the array element name.

20 An array name is local to a program unit <18.1.Z>.

25

30

35

Substrings are not included in the subset.

5.1 Array Declarator

An array declarator specifies a symbolic
identifies an array within a program unit and
certain properties of the array. Only one array
for an array name is permitted in a program unit.

name that
specifies

declarator

5.1.1 Form of an Array Declarator. The form of an array
declarator is:

.§..(Ji [,Ji] .•.)

where: .§.. is the symbolic name of the array

is a dimension declarator

40 The number of dimensions of the array is the number of
dimension declarators in the array declarator. The minimum
number of dimensions is one and the maximum is three.

45
5.1.1.1 Form of a Dimension Declarator.
dimension declarator is:

The form of a

where Ji is an integer constant or an integer variable name,
50 called the upper dimension bound. The lower dimension bound

is one. The upper dimension bound of the last dimension may
be an asterisk in assumed-size array declarators <5.1.2).
Integer variables may appear in dimension bounds only in
adjustable array declarators <5.1.2).

55

Page 5-1s Subset Language

ANSI X3.9-1978 FORTRAN 77

5. ARRAYS AND SUBSTRINGS

An array is a nonempty sequence of data. An array element
is one member of the sequence of data. An array name is the
symbolic name of an array. An array element name is an 5
array name qualified by a subscript (5.3).

An array name not qualified by a subscript identifies the
entire sequence of elements of the array in certain forms
where such use is permitted <5.6); however, in an 10
EQUIVALENCE statement, an array name not qualified by a
subscript identifies the first element of the array <8.2.4).

An array element name identifies one element of the
sequence. The subscript value <Table 1) specifies the 15
element of the array being identified. A different array
element may be identified by changing the subscript value of
the array element name.

An array name is local to a program unit (18.1.2). 20

A substring is a contiguous portion of a character datum.

5.1 Array Declarator

An array declarator specifies a symbolic name that
identifies an array within a program unit and specifies
certain properties of the array. Only one array declarator
for an array name is permitted in a program unit.

5.1.1 Form of an Array Declarator. The form of an array
declarator is:

.§.. (.Q_ [,.Q.J ...)

where: .§.. is the symbolic name of the array

is a dimension declarator

25

30

35

The number of dimensions of the array is the number of 40
dimension declarators in the array declarator. The minimum
number of dimensions is one and the maximum is seven.

5.1.1.1 Form of a Dimension Declarator.
dimension declarator is:

where: .9.1 is the lower dimension bound

.9.a is the upper dimension bound

The form of a

The lower and upper dimension bounds are arithmetic
expressions, cal led dimension bound expressions, in which

45

50

al I constants, symbolic names of constants, and variables 55
are of type integer. The upper dimension bound of the last

Fu 11 Language Page 5-1

ANSI X3.9-1978 FORTRAN 77 ARRAYS AND SUBSTRINGS

5

If a variable that appears in a dimension bound is not of
default implied integer type <4.1 .2), it must be specified
as integer by an IMPLICIT statement or a type-statement

10 prior to its appearance in a dimension bound.

5.1.1.Z Value of Dimension Bounds. The value of the upper
dimension bound m~st be greater than or equal to one. An

15 upper dimension bound of an asterisk is always greater than
or equal to one.

20

5.1.Z Kinds and Occurrences of Array Declarators. Each
array declarator is either a constant array declarator, an
adjustable array declarator, or an assumed-size array

ZS declarator. A constant array declarator is an array
declarator in which each of the dimension bounds is an
integer constant. An adjustable array declarator is an
array declarator that contains one or more variables. An
assumed-size array declarator is a constant array declarator

30 or an adjustable array declarator, except that the upper
dimension bound of the last dimension is an asterisk.

Each array declarator is either an actual array declarator
35 or a dummy array declarator.

5.1.Z.1 Actual Array Declarator. An actual array
declarator is an array declarator in which the array name is
not a dummy argument. Each actual array declarator must be

40 a constant array declarator. An actual array declarator is
permitted in a DIMENSION statement, type-statement, or
COMMON statement <Section 8).

5.1.Z.Z Dummy Array Declarator. A dummy array declarator
45 is an array declarator in which the array name is a dummy

argument. A dummy array declarator may be either a constant
array declarator, an adjustable array declarator, or an
assumed-size array declarator. A dummy array declarator is
permitted in a DIMENSION statement or a type-statement but

50 not in a COMMON statement. A dummy array declarator may
appear only in a function or subroutine subprogram.

5.2 Properties of an Array

55 The fol lowing properties of an array are specified by the
array declarator: the number of dimensions of the array, the

Page 5-Zs Subset Language

ARRAYS AND SUBSTRINGS ANSI X3.9-1978 FORTRAN 77

dimension may be an asterisk in assumed-size array
declarators (5.1.2>. A dimension bound expression must not
contain a function or array element reference. Integer
variables may appear in dimension bound expressions only in
adjustable array declarators <5.1.2>. 5

If the symbolic name of a constant or variable that appears
in a dimension bound expression is not of default implied
integer type (4.1.2>, it must be specified as integer by an
IMPLICIT statement or a type-statement ~rior to its 10
appearance in a dimension bound expression.

5.1.1.2 Value of Dimension Bounds. The value of either
dimension bound may be positive, negative, or zero: however,
the value of the upper dimension bound must be greater than 15
or equal to the value of the lower dimension bound. If only
the upper dimension bound is specified, the value of the
lower dimension bound is one. An upper dimension bound of
an a!terisk is always greater than or equal to the lower
dimension bound. 20

5.1.2 Kinds and Occurrences of Array Declarators. Each
array declarator is either a constant array declarator, an
adjustable array declarator, or an assumed-size array
declarator. A constant array declarator is an array 25
declarator in which each of the dimension bound expressions
is an integer constant expression (6.1.3.1). An adiustable
array declarator is an array declarator that contains one or
more variables. An assumed-size array declarator is a
constant array declarator or an adjustable array declarator, 30
except that the upper dimension bound of the last dimension
is an asterisk.

Each array declarator is either an actual array declarator
or a dummy array declarator. 35

5.1.2.1 Actual Array Declarator. An actual array
declarator is an array declarator in which the array name is
not -a dummy argument. Each actual array declarator must be
a constant array declarator. An actual array declarator is 40
permitted in a DIMENSION statement, type-stat~ment, or
COMMON statement <Section 8).

5.1.2.2 Dummy Array Declarator. A dummy array declarator
is .an array declarator in which the array name is a dummy 45
argument. A dummy array declarator may be either a constant
array declarator, an adjustable array declarator, or an
assumed-size array declarator. A dummy array declarator is
permitted in a DIMENSION statement or a type-statement but
not in a COMMON statement. A dummy array declarator may 50
appear only in a function or subroutine subprogram.

5.2 Properties of an Array

The fol lowing properties of an array are specified by the 55
array declarator: the number of dimensions of the array, the

Full Language Page 5-2

ANSI X3.9-1978 FORTRAN 77 ARRAYS AND SUBSTRINGS

5

1 0

size and bounds of each dimension, and therefore the number
of array elements.

The properties of an array in a program unit are specified
by the array declarator for the array in that program unit.

5.2.1 Data Type of an Array and an Array Element. An array
name has a data type (4.1.1). An array element name has the
same data type as the array name.

5.2.2 Dimensions of an Array. The number of dimensions of
an array is equal to the number of dimension declarators in
the array declarator.

15 The size ..Q.i. ~ dimension is the value of~ where~ is the
value of the upper dimension bound.

20

25
The size of a dimension whose upper bound is an asterisk is
not specified.

The number and size of dimensions in one array declarator
30 may be different from the number and size of dimensions in

another array declarator that is associated by common,
equivalence, or argument association.

35

40

45

50

55

5. 2. 3 Size of an Array. The size ..Q.i. an array i s equal to
the number of elements i n the array. The size of an array
i s equal to the product of the s i ze s of the dimensions
specified by the array declarator for that array name. The
size of an assumed-size dummv array (5 . 5) i s determined as
follows:

(1) If the actual argument corresponding to the dummy
array is a noncharacter or character array name, the
size of the dummy array is the size of the actual
argument array.

<2> If the actual argument corresponding to the dummy
array· name is a noncharacter or character array
element name with a subscript value of Lin an array
of size A• the size of the dummy array is A+ 1 - L·

Page 5-3s Subset Language

ARRAYS AND SUBSTRINGS ANSI X3.9-1978 FORTRAN 77

size and bounds of each dimension, and therefore the number
of array elements.

The properties of an array in a program unit are specified
by the array declarator for the array in that program unit.

5.2.1 Data Tvoe of an Array and an Array Element. An array
name has a data type (4.1.1). An array e I ement name has the
same data type as the array name.

5.2.2 Dimensions of an Array. The number of dimensions of
an array is equal to the number of dimension declarators in
the array declarator.

The size Qi.~ dimension is the value:

.d.2 - .Q_ I + 1

where: .Q. 1 is the value of the lower dimension bound

.Q.2 is the value of the upper dimension bound

Note that if the value of the lower dimension bound is one,
the size of the dimension is .Q. 2 •

The size of a dimension whose upper bound is an asterisk is
not specified.

The number and size of dimensions in one array declarator

5

10

1 5

20

25

may be different from the number and size of dimensions in 30
another array declarator that is associated by common,
equivalence, or argument association.

5.2.3 Size of an Array. The size Q_i_ E.J1 array is equal to
the number of elements in the array. The size of an array 35
is equal to the product of the sizes of the dimensions
specified by the array declarator for that array name. The
size of an assumed-size dummy array <5.5) is determined as
follows:

(1) If the actual argument corresponding to the dummy
array is a noncharacter array name, the size of the
dummy array is the size of the actual argument array.

(2) If the actual argument corresponding to the dummy
array name is a noncharacter array element name with
a subscript value of Lin an array of size x, the
size of the dummy array is x + 1 - £.

(3) If the actual argument is a character array name,
character array element name, or character array
element substring name and begins at character
storage unit i of an array with£ character storage

40

45

50

units, then the size of the dummy array is 55

Ful I Language Page 5-3

ANSI X3.9-1978 FORTRAN 77 ARRAYS AND SUBSTRINGS

If an assumed-size dummy array has n dimensions, the product
5 of the sizes of the first n - 1 dimensions must be less than

or equal to the size of the array, as determined by one of
the immediately preceding rules.

5.2.4 Array Element Ordering. The elements of an array are
10 ordered in a sequence <2.1). An array element name contains

a subscript <5.4.1) whose subscript value <5.4.3) determines
which element of the array is identified by the array
element name. The first element of the array has a
subscript value of one; the second element has a subscript

15 value of two; the last element has a subscript value equal
to the size of the array.

Whenever an array name unqualified by a subscript is used to
designate the whole array <5.6), the appearance of the array

20 name implies that the number of values to be processed is
equal to the number of elements in the array and that the
elements of the array are to be taken in sequential order.

5.2.5 Array Storage Sequence. An array has a storage
25 sequence consisting of the storage sequences of the array

elements in the order determined by the array element
ordering. The number of storage units in an array is x*~.
where xis the number of the elements in the array and~ is
the number of storage units for each array element.

30

35

40

5.3 Array Element Name

The form of an array element name is:

.2. <2 [,2J ...)

where: .2. is the array name

<2 [,2J. ..) is a subscript (5.4.1>

2 is a subscript expression <5.4.2)

The number of subscript expressions must be equal to the
number of dimensions in the array declarator for the array

45 name.

5.4 Subscript

5.4.1 Form of a Subscript. The form of a subscript is:
50

where 2 is a subscript expression.

55 Note that the term "subscript" includes the parentheses that
delimit the list of subscript expressions.

Page 5-4s Subset Language

ARRAYS AND SUBSTRINGS ANSI X3.9-1978 FORTRAN 77

INT<<~+ 1 - i> I ll:!.>, where
element of the dummy array.

is the length of an I
If an assumed-size dummy array has n dimensions, the product
of the sizes of the first.n - 1 dimensions must be less than 5
or equal to the size of the array, as determined by one of
the immediately preceding rules.

5.2.4 Array Element Ordering. The elements of an array are
ordered in a sequence <2.1). An array element name contains 10
a subscript (5.4.1) whose subscript value (5.4.3) determines
which element of the array is identified by the array
element name. The first element of the array has a
subscript value of one; the second element has a subscript
value of two; the last element has a subscript value equa~ 15
to the size of the array.

Whenever an array name unqualified by a subscript is used to
designate the whole array <5.6), the appearance of the array
name implies that the number of values to be processed is 20
equal to the number of elements in the array and that the
elements of the array are to be taken in sequential order.

5.2.5 Array Storage Sequence. An array has a storage
sequence consisting of the storage sequences of the array 25
elements in the order determined by the array element
ordering. The number of storage units in an array is A*Z·
where A is the number of the elements in the array and z is
the number of storage units for each array element.

5.3 Array Element Name

The form of an array element name is:

30

I <1 [,1l ... } 35

where: I is the array name

<1 [,11 .. ~> is a subscript (5.4.1)

1 is a subscript expression (5.4.2}

The number of subscript expressions must be equal to the
number of dimensions in the array declarator for the array

40

name. 45

5.4 Subscript

5.4.1 Form of a Subscript. The form of a subscript is:
50

where 1 is a subscript expression.

Note that the term "subscript'' includes the parentheses that 55
delimit the list of subscript expressions.

Ful I Language Page 5-4

ANSI X3.9-1978 FORTRAN 77 ARRAYS AND SUBSTRINGS

5

5.4.2 Subscript Expression. A subscript expression is an
integer expression. A subscript expression must not contain
array element references and function references.

Within a program unit, the value of each subscript
10 expression must be greater than or equal to one. The value

of each subscript expression must not exceed the
corresponding upper dimension bound declared for the array
in the program unit. If the upper dimension bound is an
asterisk, the value of the corresponding subscript

15 expression must be such that the subscript value does not
exceed the size of the dummy array.

5.4.3 Subscript Value. The subscript value of a subscript
20 is specified in Table 1. The subscript value determines

which array element is identified by the array element name.
Within a program unit, the subscript value depends on the
values of the subscript expressions in the subscript and on
the dimensions of the array specified in the array

25 declarator for the array in the program unit. If the
subscript value is L· the Lth element of the array is
identified.

30

35

40

45

50

55

Page 5-5s Subset Language

ARRAYS AN~ SUBSTRINGS ANSI X3.9-1978 FORTRAN 77

5.4.2 Subscript Expression. A subscript expression is an
integer expression. A subscript expression may contain
array element references and function references. Note that
a restriction in the evaluation of expressions (6.6)
prohibits certain side effects. In particular, evaluation 5
of a function must not alter the value of any other
subscript expression within the same subscript.

Within a program unit, the value of each subscript
expression must be greater than or equal to the 10
corresponding lower dimension bound in the array declarator
for the array. 1he value of each subscript expression must
not exceed the corresponding upper dimension bound declared
for the array in the program unit. If the upper dimension
bound is an asterisk, the value of the corresponding 15
subscript expression must be such that the subscript value
does not exceed the size of the dummy array.

5.4.3 Subscript Value. The subscript value of a subscript
is specified in Table 1. The subscript value d~termines 20
which array element is identified by the array element name.
Within a program unit, the subscript value depends on the
values of the subscript expressions in the subscript and on
the dimensions of the array specified in the array
declarator for the array in the program unit. If the 25
subscript value is £, the Lth element of the array is
identified.

Fu1 I language

30

35

40

45

50

55

Page 5-5

ANSI X3.9-1978 FORTRAN 77 ARRAYS AND SUBSTRINGS

Table

Subscript Value

5
n Dimension Subscript Subscript

Declarator Value

10 1 (d I) (S I) SI

2 <d1,d2) (s1,S2) 1+(s 1-1>
1 5 +<s2-1>*d1

3 <d1,d2,d3) (S1,S2,S3) 1+(s 1-1>
20 +<s2-1)*d1

+(s3-1)*d1 *d2

25

30

35

40 Notes for Table 1:

45

50

55

I

I·

Page 5-6s

(1) n is the number of dimensions, 1 ~ n ~ 3.

(2) di is the
dimension.

value of the upper bound of the ith
di is also the size of the ith dimension.

(3) s; is the integer value of the ith
expression.

subscript

Subset Language

ARRAYS AND SUBSTRINGS ANSI X3.9-1978 FORTRAN 77

Table

Subscript Value

n Dimension Subscript Subscript
Declarator Value

1 <j.:k1> (S I) 1+(s 1-j 1)

2 <i1:k1.i2:k2> (S1,S2) 1+<s.-j 1)
+<s2-j2)*d1

3 <i1:k1.i2:k2.iJ:k3) (s1,S2,S3) 1+(s 1-j 1)
+<s2-i2>*d1
+(s3-iJ)*d2*d1

. .
.
.

-.

n <i1:k., ... ,jn:kn) (s 1, ... ,sn> 1+<s1-i1>
+<s2-i2>*d1
+(s3-iJ)*d2*d1
+ ...
+(sn-in>*dn-1

dn-2 ... *d1

Notes for Table 1 :

(1) n i s the number of dimensions, 1 ~ n ~ 7.

(2) j i i s the value of the lower bound of the i th
dimension.

(3) k i i s the value of the upper bound of the i th
dimension.

(4) If only the upper bound is specified, then j; = 1.

<S> s; is the integer value of the· ith
expression.

subscript

s

10

1 s

20

2S

30

3S

40

4S

so

(6) d; = k;-j;+1 is the size of the ith dimension.
the value of the lower bound is 1, then d; = k;.

If I SS

Fu I I Language Page S-6

ANSI X3.9-1978 FORTRAN 77 ARRAYS ANO SUBSTRINGS

5

10

Note that a subscript of (1), <1,1>, or (1,1,1) has a
subscript value of one and identifies the first element of
the array. A subscript of the form (d 1 , ••• ,dn> identifies
the last element of the array; its subscript value is equal
to the number of elements in the array.

The subscript value and the subscript expression value are
not necessarily the same. In the example:

DIMENSION A<10>.B<10,10)
A<Z> = 8<1,Z>

A<Z> identifies the second element of A, the subscript is
15 <Z> with a subscript value of two, and the subscript

expression is Z with a value of two. 8(1,Z) identifies the
eleventh element of 8, the subscript is <1,Z) with a
subscript value of eleven, and the subscript expressions
are 1 and Z with values of one and two.

zo
5.5 Dummy and Actual Arrays

A dummy array is an array for which the array declarator is
a dummy array declarator. An assumed-size dummy array is a

ZS dummy array for which the array declarator is an assumed­
size array declarator. A dummy array is permitted only in a
function or subroutine subprogram <Section 15).

An actual array i s an array for which the array declarator
30 i s an actual array declarator. Each array i n the main

program i s an actual array and must have a constant array
declarator. A dummy array may be used as an actual
argument.

35 5.~.1 Adiustable Arrays and Adlustable Dimensions. An
adlustable array is an array for which the array declarator
is an adjustable array declarator. In an adjustable array
declarator, those dimension declarators that contain a
variable name are cal led adjustable dimensions.

40
An adjustable array declarator must be a dummy array
declarator. The array name must appear in the dummy
argument list of the subprogram, A variable name that
appears in a dimension bound of an array must also appear as

45 a name either in the dummy argument list or in a common
block in that subprogram.

At the time of execution of a reference to a function or
50 subroutine conta1n1ng an adjustable array in its dummy

argument list, each actual argument that corresponds to a
dummy argument appearing in a dimension bound for the array
and each variable in common appearing in a d1mension bound
for the array must be defined with an integer value. The

55 values of those dummy arguments or variables in common
determine the size of the corresponding adjustable dimension

Page 5-7s Subset Language

ARRAYS AND SUBSTRINGS ANSI X3.9-1978 FORTRAN 77

Note that a subscript of the form (j 1 , ••• ,jn) has a I
subscript value of one and identifies the first element of
the array. A subscript of the form (k 1 , ••• ,k 0) identifies
the last element of the array; its subscript value is equal
to the number of elements in the array. 5

The subscript value and the subscript expression value are
not necessarily the same, even for a one-dimensional array.
In the example:

DIMENSION A<-1:8),8(10,10)
A<2> = 8<1,2)

A(2) identifies the fourth
(2) with a subscript value
expression is 2 with a value
eleventh element of 8, the
subscript value of eleven,
are 1 and 2 with values of one

5.5 Dummy and Actual Arrays

element of A, the subscript is
of four, and the subscript
of two. 8<1,2> identifies the
subscript is (1,2) with a
and the subscript expressions
and two.

A dummy array is an array for which the array declarator is
a dummy array declarator. An assumed-size dummy array is a

10

1 5

20

dummy array for which the array declarator is an assumed- 25
size array declarator. A dummy array is permitted only in a
function or subroutine subprogram <Section 15).

An actual array i s an array for which the array declarator
i s an actual array declarator. Each array i n the main
program i s an actual array and must have a constant array
declarator. A dummy array may be used as an actual
argument.

30

5.5.1 Adjustable Arrays and Adjustable Dimensions. An 35
adjustable array is an array for which the array declarator
is an adjustable array declarator. In an adjustable array
declarator, those dimension declarators that contain a
variable name are cal led adjustable dimensions.

An adjustable array declarator must be a dummy array
dee I arator. At I east one dummy argument Ii st of the
subprogram must contain the name of the adjustable array. A
variable name that appears in a dimension bound expression

40

of an array must also appear as a name either in every dummy 45
argument list that contains the array name or in a common
block in that subprogram.

At the time of execution of a reference to a function or
subroutine containing an adjustable array in its dummy 50
argument list, each actual argument that corresponds to a
dummy argument appearing in a dimension bound expression for
the array and each variable in common appearing in a
dimension bound expression for the array must be defined
with an integer value. The values of those dummy arguments 55
or variables in common, together with any constants and

Fu! I Language Page 5-7

ANSI X3.9-1978 FORTRAN 77 ARRAYS AND SUBSTRINGS

for the execution of the subprogram. The sizes of the
adjustable dimensions and of any constant dimensions
appearing in an adjustable array declarator determine the
number of elements in the array and the array element

5 ordering. The execution of different references to a
subprogram or different executions of the same reference
determine possibly different properties (size of dimensions,
dimension bounds, number of elements, and array element
ordering) for each adjustable array in the subprogram.

10 These properties depend on the values of any actual
arguments and variables in common that are referenced in the
adjustable dimensions in the subprogram.

15
During the execution of an ext~rnal procedure in a
subprogram conta1n1ng an adjustable array, the array
properties of dimension size, lower and upper dimension
bounds, and array size (number of elements in the array) do

20 not change. However, the variable involved in an adjustable
dimension may be redefined or become undefined during
execution of the external procedure with no effect on the
above-mentioned properties.

25 5.6 Use of Array Names

30

35

40

45

50

55

In a program unit, each appearance of an array name must be
in an array element name except in the following cases:

<1> In a list of dummy arguments

<2> In a COMMON statement

(3) In a type-statement

<4> In an array declarator. Note that although the form
of an array declarator may be identical to that of an
array element name, an array declarator is not an
array element name.

<5> In an EQUIVALENCE statement

(6) In a DATA statement

(7) In the list of actual arguments in a reference to an
external procedure

(8) In the list of an input/output statement if the array
is not an assumed-size dummy array

Page 5-8s Subset Language

ARRAYS AND SUBSTRI~GS ANSI X3.9-1978 FORTRAN 77

symbolic names of constants appearing in the dimension bound
expression, determine the size of the corresponding
adjustable dimension for the execution of the subprogram.
The sizes of the adjustable dimensions and of any constant
dimensions appearing in an adjustable array declarator 5
determine the number of elements in the array and the array
element ordering, The execution of different references to
a subprogram or different executions of the same reference
determine possibly different properties <size of dimensions,
dimension bounds, number of elements, and array element 10
ordering) for each adjustable array in the subprogram.
These properties depend on the values of any actual
arguments and variables in common that are referenced in the
adjustable dimension expressions in the subprogram.

During che execution of an external procedure in a
subprogram containing an adjustable array, the array
properties of dimension size, lower and upper dimension
bounds, and array size <number of elements in the array) do

15

not change. However, the variables involved in an 20
adjustable dimension may be redefined or become undefined
during execution of the external procedure with no effect on
the above-mentioned properties.

5.6 Use of Array Names

In a program unit, each appearance of an array name must be
in an array element name except in the fol lowing cases:

25

<1> In a list of dummy arguments 30

<2> In a CUMMON statement

(3) In a type-statement

(4) In an array declarator. Note that although the form
of an array declarator may be identical to that of an
array element name, an array declarator is not an
array element name.

<5> In an EQUIVALENCE statement

(6) In a DATA statement

35

40

(7) In the list of actual arguments in a reference to an 45
externa I procedure

<8> In the list of an input/output statement if the array
is not an assumed-size dummy array

(9) As a unit identifier for
input/output statement
assumed-size dummy array

an internal tile in
if the array is not

an
an

<10) As the format identifier in an input/output statement I
if the array is not an assumed-size dummy array

50

55

Ful I Language Page 5-8

ANSI X3.9-1978 FORTRAN 77 ARRAYS AND SUBSTRINGS

5.7 Character Substring

5 Substrings are not included in the subset.

10 5.7.1 Substring Name. Substrings are not included in the
subset.

15

20

25

30

35

40

45

50

55

5.7.2 Substring Expression. Substrings are not included in
the subset.

Page 5-9s Subset Language

ARRAYS AND SUBSTRINGS ANSI X3.9-1978 FORTRAN 77

<11) In a SAVE statement

5.7 Character Substring

A character substring is a contiguous portion of a character
datum and is of type character. A character substring is
identified by a substring name and may be assigned values
and referenced.

5.7.1 Substring Name. The forms of a substring name are:

JI... ([~I) : [~i!)

where: y is a character variable name

~ <2 [,2J ...) is a character array element name

5

10

1 5

~ 1 and ~2 are each an integer expression and are 20
called substring expressions

The value ~ 1 specifies the leftmost character pos1t1on of
the substring, and the value ~2 specifies the rightmost
character pos1t1on. For example, A<2:4) specifies 25
characters in pos1t1ons two through four of the character
variable A, and B<4,3)(1:6) specifies characters in
positions one through six of the character array element
B(4,3).

The values of ~ 1 and ~2 must be such that:
30

where ~ is the length of the character variable or array 35
element (8.4.2). If~. is omitted, a value of one is implied
for ~ 1 • I f ~z i s om i t t e d , a v a I u e of ~ i s i mp I i e d for ~z .
Both ~ 1 and ~z may be omitted; for example, the form y(:) is
equivalent toy, and the form ~<2 [,2J. ..)(:) is equivalent
to ~<2 [,2J ...). The length of a character substring is 40
~i! - ~. '!' 1.

5.7.2 Substring Expression. A s~bstring expression may be
any integer expression. A substring expression may contain
array element references and function references. Note that 45
a restriction in the evaluation of expressions (6.6)
prohibits certain side effects. In particular, evaluation
of a function must not alter the value of any other
expression within the same substring name.

Ful I Language

so

55

Page 5-9

ANS1 X3.9~1978 FORTRAN 77

6. EXPRESS I o~s

This section describes the formation, interpretation, and
evaluation rules for arithmetic, character, relational; and

5 logical expressions. An expression is formed from operands,
operators, ~nd parentheses.

6.1 Arithmetic Expressions

10 An arithmetic expression is used to express a numeric
computation. Evaluation of an a~ithmetic expression produces
a numeric value.

The simplest form of an arithmetic expression is an unsigned
15 arithmetic constant, arithmetic variable reference,

arithmetic array element reference, or arithmetic furiction
reference. More complicated arithmetic expressions may be
formed by using one or more arithmetic operands together
with arithmetic op~rators and parentheses. Arithmetic

20 operands must identify values of type integer or real.

6.1.1 Arithmetic Operators. The five arithmetic operators
25 are:

30

35

40

45

50

55

Operator Representing

** Exponentiation
I Division
* Multiplication
- Subtraction or Negation
+ Addition or Identity

Each of the operators **• I, arid * operates on a pair of
operands and is written between the two operands. Each of
the operators +and - either:

<1> operates on a pair of operands and is writte~ between
the two operands, or

<2> operates on a single operand and
preceding that operand.

i s written

6.1~2 Form and Interpretation of Arithmetic Expressions.
The interpretation of the expression formed with each of the
a r i t h m e t i c o p e r a t o r s i n e a c h .f o r m o f u s e i s a s f o I I o w s :

Page 6-1s Subset Language

ANSI X3.9-1978 FORTRAN 77

6. EXPRESSIONS

This section describes the formation, interpretation, and
evaluation rules for arithmetic, character, relational, and
lo~ical e~pressions. An expression is formed from operands, 5
operators, and parentheses.

6.1 Arithmetic Expressions

An arithmetic expression is used to express a numeric 10
computation. Evaluation of an arithmetic expression produces
a numeric value.

The simplest form of an ati.thmetic expression is an unsigned
arithmetic constant, symbolic name of an arithmetic 15
constant, arithmetic variable reference, arithmetic array
element reference, or arithmetic function reference. More
complicated arithmetic expressions may be formed by using
one or more arithmetic operands together with arithmetic
operators and parentheses. Arithmetic operands must 20
identify values of type integer, real, double precision, or
complex.

6.1.1 Arithmetic Operators. The five arithmetic operators
ar.e:

Operator Representing

** Exponentiation
I Division .
* Mu.I ti-plication
- Subtraction or Negation
+ Addition or I d·en tit y

Each of the operators **• /, and* operates on a pair of
operands and is written between the two operands. Each of
the operators+ and - either:

<1> operates on a pair of operands and is written between
the two operands, or

<2> operates on a single operand and i s written
preceding that operand.

6.1.2 Form and Interpretation of Arithmetic Expressions.
The interpretation of the expression formed with each of Jhe
arithmetic operators in each form of use is as fol lows:

Fu 11 Language

25

30

35

40

45

50

55

Page 6-t

ANSI X3.9-1978 FORTRAN 77 EXPRESSIONS

5

10

15

20

25

Use of Operator Interpretation

XI ** X2 Exponentiate "XI to the power X2
\

XI I X2 Divide XI by X2

XI t X2 Multiply XI and X2

XI - X2 Subtract X2 from XI

- X2 Negate X2

XI + X2 Add XI and X2

+ X2 Same as X2

where: x 1 denotes the operand to the left of the operator

x2 denotes the operand to the right of the operator

The interpretation of a division may depend on the data
types of the operands (6.1.5).

A set of formation rules is used to establish the
interpretation of an arithmetic expression that contains two
or more operators. There is a precedence among the
arithmetic operators, which determines the order in which

30 the operands are to be combined unless the order is changed
by the use of parenthe~es. The precedence of the arithmetic
operators is as follows:

35

40

45

Operator Precedence

** Highest
t and I Intermediate
+ and - Lowest

For example, in the expression

- A ** 2

the exponentiation operator (tt) has precedence over the
negation operator <->: therefore, the operands of the
exponentiation operator are combined to form an expression
that is used as the operand of the negation operator. The

50 interpretation of the above expression is the same as the
interpretation of the.expression

- CA ** 2)

55 The arithmetic operands are:

Page 6,...2s Subset Language

EXPRESSIONS ANSI X3.9-1978 FORTRAN 77

Use of Operator Interpretation

XI * * X2 Exponentiate XI to the po~er X2

XI I X2 Divide XI by X2

XI * X2 Multiply XI and X2

XI - X2 Subtract X2 from XI

- X2 Negate X2

XI + X2 Add XI and X2

+ X2 Same as X2

where: XI denotes the operand to the left of the operator

X2 denotes the operand to the right of the operator

The interpretation of a division may depend on the data
types of the operands (6.1.5).

A set of formation rules is used to establish the
interpretation of an arithmetic expression that contains two
or more operators. There is a precedence among the
arithmetic operators, which determines the order in which

5

10

1 5

20

25

the operands are to be combined unless the order is changed 30
by the use of parentheses. The precedence of the arithmetic
operators is as follows:

Operator Precedence

** Highest
* and I Intermediate
+ and - Lowest

For example, in the expression

- A ** 2

the exponentiation operator <**) has precedence over the
negation operatbr <->: therefore, the operands of the
exponentiation operator are combined to form an expression
that is used as the operand of the negation operator. The

35

40

45

interpretation of the above expression is the same as the 50
interpretation of the expression

- CA ** 2>

The arithmetic operands are: 55

Fut I Language Page 6-2

ANSI X3.9-1978 FORTRAN 77 EXPRESSIONS

5

10

1 5

20

25

30

(1) Primary

<2> Factor

(3) Term

(4) Arithmetic expression

The formation rules to be applied in establishing the
interpretation of arithmetic e~pressions are in 6.1.2.1
through 6.1.2.4.

6.1.2.1 Primaries. The primaries are:

(1) Unsigned arithmetic constant (4.2.3)

(2) Arithmetic variable reference <2.5)

(3) Arithmetic array element reference <5.3)

(4) Arithmetic function reference (15.2)

(5) Arithmetic
(6.1.2.4)

expression enclosed

6.1.2.2 Factor. The forms of a factor are:

(1) Primary

(2) Primary ** factor

in parentheses

Thus, a factor is formed from a sequence of one or more
35 primaries separated by the exponentiation operator. Form

(2) indicates that in interpreting a factor containing two
or more expon~ntiation operators, the primaries are combined
from right to left. For example, the factor

40 2tt3tt2

45

50

has the same interpretation as the factor

6.1.2.3 Term .. The forms of a~ are:

(1) Factor

<2> Term I factor

(3) Term * factor

Thus, a term is formed from a sequence of one or more
55 factors separated by either the multiplication operator or

the division operator. Forms (2) and (3) indicate that in

Page 6-3s Subset Language

EXPRESSIONS ANSI X3.9-1978 FORTRAN 77

<1> Primary

<2> Factor

<3> Term

<4> Arithmetic expression

The formation rules to be applied in establishing the
interpretation of arithmetic expressions are in 6.1.2.1
through 6.1.2.4.

6.1.2.1 Primaries. The primaries are:

<1> Unsigned arithmetic constant <4.2.3>

<2> Symbolic nBme of an arithmetic constant <8.6)

(3) Arithmetic variable reference <2.5)

(4) Arithmetic array element reference <5.3)

(5) Arithmetic function reference (15.2)

(6) Arithmetic
(6.1.2.4)

expression enclosed

6.1.2.2 Factor. The forms of a factor are:

in parentheses

5

10

15

20

25

(1) Primary 30

<2> Primary ** factor

Thus, a factor is formed from a sequence of one or more
primaries separated by the exponentiation operator. Form 35
<2> indicates that in interpreting a factor containing two
or more exponentiation operators, the primaries are combined
from right to left. For example, the factor

2**3**2 40

has the same interpretation as the factor

45
6.1.2.3 Term. The forms of a term are:

(1) Factor

<2> Term I factor 50

(3) Term * factor

Thus, a term is formed from a sequence of one or more
factors separated by either the multiplication operator or 55
the division operator. Forms <2> and <3> indicate that in

Fu I I Language Page 6-'3

ANSI X3.9-1978 FORTRAN 77 EXPRESSIONS

interpreting a term containing two or more multiplication or
division operators, the factors are combined from left to
right.

5 6.1.2.4 Arithmetic Expression. The forms of an arithmetic
exoression are:

10

15

<1> Term

<2> + term

<3> - term

(4) Arithmetic expression + term

(5) Arithmetic expression - term

Thus, an arithmetic expression is formed from a sequence of
one or more terms separated by either the addition operator

20 or the subtraction operator. The first term in an
arithmetic expression may be preceded by the identity or the
negation operator. Forms (4) and <5> indicate that in
interpreting an arithmetic expression conta1n1ng two or more
addition or subtraction operators, the terms are combined

25 from left to right:

Note that these formation rules do not permit expressions
containing two consecutive arithmetic operators, such as
Att-8 or A+-8. However, expressions such as Att(-8) and

30 A+(-8) are permitted.

35

40

45'

6.1.3 Arithmetic Constant Expression.
constant expression is an arithmetic
each primary is an arithmetic constant
constant expression enclosed in
exponentiation operator is not permitted
is of type integer. Note that variable,
function references are not al lowed.

An arithmetic
expression in which

or an arithmetic
parentheses. The
unless the exponent
array element, and

6.1.3.1 Integer Constant Expression. An integer constant
expression is an arithmetic constant expression in which
each constant is of type integer. Note that variable, array
element, and function references are not al lowed.

The fol lbwing are examples of integer constant expressions:

3
50 -3

-3+4

6.1.4 Type and Interpretation of Arithmetic Expressions.
The data type of a constant is determined by the form of the

55 constant <4.2.1). The data type of an arithmetic variable
reference, arithmetic array element reference, or arithmetic

Page 6-4s Subset Language

EXPRESSIONS ANSI X3.9-1978 FORTRAN 77

;nterpret;ng a term conta1n1ng two or more multiplicat;on or
d;v;s;on operators, the factors are combined from left to
dght.

6.1.2.4 Ar;thm~t;c Exgression. The forms of an arithmet;c
~xgression are:

(1> Term

(2) + term

(3) - term

(4) Arithmetic expression + term

(5) Arithmetic express.ion - term

Thus, an arithmetic expression is formed from a sequence of
one or more terms separated by either the addition operator

5

10

15

or the subtraction operator. The first term in an 20
arithmetic expression may be preceded by the identity or the
negation operator. Forms (4) and (5) indicate that in
interpreting an arithmetic expression conta1n1ng two or more
addition or subtraction operators, the terms are combined
from left to right. 25

Note that these formation rules do not permit expressions
containing two consecutive arithmetic operators, such as
Att-8 or A+-8. However, expressions such as A**(-8} and
A+C-8) are permitted. 30

6.1.3 Arithmetic Constant Exgression. An arithmetic
constant exgression is an arithmetic expression in which
each primary is an arithmetic constant, the symbolic name of
an arithmetic constant, or an arithmetic constant expression 35
enclosed in parentheses. The exponentiation operator is not
permitted unless the exponent is of type integer. Note that
variable, array element, and function references are not
allowed.

6.1.3.1 Integer Constant Exgression. An integer constant
exgression is an arithmetic constant expression in which
each constant or symbolic name of a constant is of type
integer. Note that variable, array element, and function

40

references are not al lowed. 45

The fol lowing are examples of integer constant expressions:

3
-3 50
-3+4

6.1.4 Tyge and Intergretation of Arithmetic Exgressions.
The data type of a constant is determined by the form of the
const»nt <4.2.1). The data type of an arithmetic variable 55
reference, symbolic name of an arithmetic constant,

Full language Page 6-4

ANSI X3.9-1978 FORTRAN 77 EXPRESSIONS

5

10

1 5

20

25

30

35

40

45

50

55

function reference is determined by the name of the datum or
function <4.1.2>. The data type of an arithmetic expression
conta1n1ng one or more arithmetic operators is determined
from the data types of the operands.

Integer expressions
expressions whose
respectively.

and real
values are

expressions are arithmetic
of type integer and real,

When the operator + or - operates on a single operand, the
data type of the resulting expression is the same as the
data type of the operand.

When an arithmetic operator operates on a pair of operands,
the data type of the resulting expression is given in Tables
2 and 3. In these tables, each letter I or R represents ~n
operand or result of type integer or real, respectively.

The type of the result is indicated by the
precedes the equals, and the interpretation
the expression to the right of the equals.
type-conversion function described in 15.10.

Table 2

or R that
is indicated by

REAL is the

Type and Interpretation of Result for x1 + x2

X2 I 2 R2
XI

I I I = I I + I 2 R = REAL<I 1> + R2

R1 R = R1 + REAL<I2> R = R1 + R2

Page 6-5s Subset Langua.ge

EXPRESSIONS ANSI X3.9-1978 FORTRAN 77

arithmetic array element reference, or arithmetic function
reference is determined by the name of the datum or function
C4.1.2>. The data type of an arithmetic _expression
containing one or more arithmetic operators is determined
from the data types of the operands. 5

Integer expressions, real expressions, double orecision
expressions, and complex expressions are arithmetic
expressions whose values are of type integer, real, double
precision, and complex, respectively. 10

When the operator + or - operates on a single operand, the
data type of the resulting expression is the same as the
data type of the operand.

When an arithmetic operator operates on a pair of operands,
, t h e d a t a t y p e o f t h e r e s u I t i n g e x'p r e s s i o n i s g i v e n i n Ta b I e s

2 and 3. In these tables, ~ach letter I, R, 0, or C
represents an operand or result of type integer, real,

15

double precision, or somplex, respectively. 20

The type of the result is indioated by the I, R, D, or C
that precedes the equals, and the interpretation is
indicated by the expression to the right of the equals.
REAL, DBLE, and CHPLX are the type-conversion functions 25
described in 15.10.

Table 2

Type and Interpretation of Result for Xa + x2 30

Xz I 2 R2
X a

35
I a I = I a + 12 R = REAL< Ia> + Ra

Ra R = Ra + REAL< Iz > R = Ra + Rz

Da D = Da + DBLE<I2> D = Da + DBLE<R2> 40

(a C=Ca+CHPLXCREALCI 2>,0.> c = Ca + CHPLX<Rz,O.>

45
X2 D2 C2

X a

I a D = DBLE<Ia> + D2 C=CHPLXCREAL<Ia>.O.>+C2
, 50

Ra D = DBLE<Ra > + D2 G = CHPLX<Ra ,0. > + C2

o. D = Da + D2 Prohibited

ca Prohibited c = (a + C2 55

Ful I language Page 6-5

ANS,J X3. 9-1978 FORTRAN 77 EXPRESSIONS

5

10

15

20

25

30

35

40

Tables giving the type and interpretation of expressions
involving -, *• and I may be obtained by replacing al I
occurrences of + in Table 2 by - *• or /, respectiveJy.

Table 3

Type and Interpretation of Result for x1**X 2

X2 I 2 R2
XI

I I I = l1**I2 R = REAL< I I)* *R2

R, R = R1**I2 R = R1**R2

Except for a value raised to an integer power, Tables 2 and
3 specify that if two operands are of different type, the
operand that differs in type from the result of the
operati~n is converted to the type of the result and then

45 the operator operates on a pair of operands of the same
type. When a primary of type real is raised to an integer
power, the integer operand need not be converted. If the
value of 12 is negative, the interpretation of 11**1 2 is the
same as the interpretation of 1/Cl 1**IABSCl 2)), which is

50 subject to the rules for integer division <6.1.5>. For
example, 2**(-3) has the value of 1/(2tt3), which is zero.

The type and interpretation of an expression that consist~
55 of an operator operating on either a single operand or a

pair of operands are independent of the context -in which the

Page 6-6s Subset Language

EXPRESSIONS ANSI X3.9-1978 FORTRAN 77

Tables giving the type and interpretation of expressions
involving -, *• and I may be obtained by rep1acing al I
occurrences of+ in Table 2 by - *• or /, respectively.

Table 3

Type and Interpretation of Result for x1**Xa

Xa I a Ra
XI

I I I = I1**Ia R = REAL< I I)* *R2

R, ~ R = R1**Ia R = R1**Ra

o, D = D1**I2 D = D1**DBLE<Ra>

Ci c = C1**Ia c = C1ttCMPLX<Ra,O.>

Xa Da Ca
XI

I I D = DBLE <I I)* *Da C=CMPLXCREAL<I 1 >,0.>**Ca

R, D = DBLE<R1>**Da c = CMPLX<R 1 ,0.)ttCa

o, D = D1**Da Prohibited

c, Prohibited c = C 1 **Ca

5

10

15

20

25

30

Four entries in Table 3 specify an interpretation to be a 35
complex value raised to a complex power. In these cases,
the value of the expression is the "principal value"
determined by X1**Xa = EXP<xa*L00·{)()1)), where EXP and LOG
are functions described in 15.1g.

Except for a value raised to an integer power, Tables 2 and
3 specify that if two operands are of different type, the
operand that differs in type from the result of the
operation is converted to the type of the result and then

40

. the operator operates on a pair of operands of the same 45
type. When a primary of type real, double prec1s1on, or
complex is raised to an integer power, the integer operand
need not be converted. If the value of I 2 is negative, the
interpretation of I1**I 2 is the same as the interpretation
of 1/CI1**ABS<I 2 >>, which is subject to the rules for 50
integer divi~ion <6.1.51. For example, 2tt(-3) has the
value of 1/C2tt3), which is zero.

Tne type and interpretation of an expression that consists
of an operator operating on either a single operand or a 55
pair of operands are independent of the context in which the

Full Language Page 6-6

ANSI X3.9-1978 FORTRAN 77 EXPRESSIONS

expression appears. In particular, the type and
interpretation of such an expression are independent of the
type of any other operand of any larger expression in which
it appears. For example, if Xis of type real, J is of type

5 integer, and INT is the real-to-integer conversion function,
the expression INT<X+J) is an integer expression and X+J is
a real expression.

6.1.5 Integer Division. One operand of type integer may be
10 divided by another operand of type integer. Although the

mathematical Quotient of two integers is not necessarily an
integer, Table ~ specifies that an expression involving the
division operator with two operands of type integer is
interpreted as an expression of type integer. The result of

15 such a division is cal led an integer quotient and is
obtained as fol lows: If the magnitude of the mathematical
Quotient is less than one, the integer Quotient is zero.
Otherwise, the integer Quotient is the integer whose
magnitude is the largest integer that does not exceed the

20 magnitude of the mathematical Quotient and whose sign is the
same as the sign of the mathematical Quotient. For example,
the value of the expression <-8)/3 is <-2>.

25
6.2 Character Expressions

A character expression
string. Evaluation of a
result of type character.

is used to express
character expression

a character
produces a

30 The simplest form of a character expression is a character
constant, character variable reference, or character array
element reference.

35

6.2.1 Character Operator. The concatenation operator is
not included in the subset.

40

45

50

55

Page 6-7s Subset Language

EXPRESSIONS ANSI X3.9-1978 FORTRAN 77

expression appears. In particular, the type and
interpretation of such an expression are independent of the
type of any other operand of any larger expression in which
it appears. For example, if Xis of type real, J is of type
integer, and INT is the real-to-integer conversion function, 5
the expression INT<X+J) is an integer expression and X+J is
a real expression.

6.1.5 Integer Division. One operand of type integer may be
divided by another operand of type integer. Although the 10
mathematical quotient of two integers is not necessarily an
integer, Table Z specifies that an expression involving the
division operator with two operands of type integer is
interpreted as an expression of type integer. The result of
such a division is cal led an integer quotient and is 15
obtained as fol lows: If the magnitude of the mathematical
quotient is less than one, the integer quotient is zero.
Otherwise, the integer quotient is the integer whose
magnitude is the largest integer that does not exceed the
magnitude of the mathematical quotient and whose sign is the ZO
same as the sign of the mathematical quotient. For example,
the value of the expression <-8)/3 is (-2).

6.Z Character Expressions

A character expression
string. Evaluation of a
result of type character.

is used to express
character expression

a character
produces a

ZS

The simplest form of a character expression is a character 30
constant, symbolic name of a character constant, character
variable reference, character array element reference,
character substring reference, or character function
reference. More complicated character expressions may be
formed by using one or more character operands together with 35
character operators and parentheses.

6.Z.1 Character Operator. The character operator i·s:

Operator Representing

II Concatenation

The interpretation of the expression formed with
character operator is:

Use of Operator Interpretation

XI II X2 Concatenate XI w i th X2

40

45
the I

50

where: x 1 denotes the operand to the left of the operator 55

Ful I language Page 6-7

ANSI X3.9-1978 FORTRAN 77 EXPRESSIONS

5

6.2.2 Form and lnteroretation of Character Expressions. A
10 character expression must identify a value of type

character.

1 5

6.2.2.1 Character Primaries. The character primaries are:

20 (1) Character constant (4.8.1)

(2) Character variable reference (2.5)
25

(3) Character array element reference (5.3)

30

(4) Character expression enclosed in parentheses
(6.2.2.2)

35 6.2.2.2 Character Expression. The form of a character
expression i s :

(1) Character primary

40

45

50

55

Page 6-8s Subset Language

EXPRESSIONS ANSI X3.9-1978 FORTRAN 77

x2 denotes the operand to the right of the operator

The result of a concatenation operation is a character
string whose value is the value of x 1 concatenated on the
right with the value of x2 and whose length is the sum of 5
the lengths of x 1 and x2 • For example, the value of 'AB' II
'COE' is the string ABCDE.

6.2.2 Form and Interpretation of Character Expressions. A
character expression and the operands of a character 10
expression must identify values of type character. Except
in a character assignment statement <10.4), a character
expression must not involve concatenation of an operand
whose length specification is an asterisk in parentheses
<8.4.2) unless the operand is the symbolic name of a 15
constant.

6.2.2.1 Character Primaries. The character primaries are:

(1) Character

(2) Symbolic

(3) Character

(4) Character

(5) Character

(6) Character

(7) Character
<6.2.2.2)

constant (4.8.1)

name of a character constant (8. 6)

variable reference (2. 5)

array element reference (5 . 3)

substring reference (5. 7)

function reference (15.2)

expression enclosed i n parentheses

20

25

30

6.2.2.2 Character Expression.
expression are:

The forms of a character I 35

(1) Character primary

(2) Character expression // character primary 40

Thus, a character expression is a sequence of one or more
character primaries separated by the concatenation operator.
Form (2) indicates that in a character expression containing
two or Jore concatenation operators, the primaries are 45
combined from left to right to establish the interpretation
of the expression. For example, the formation rules specify
that the interpretation of the character expression

'AB' II 'CD' II 'EF' 50

is the same as the interpretation of the character
expression

<'AB' II 'CD') fl 'EF' 55

Fu I I Language Page 6-8

ANSI X3.9-1978 FORTRAN 77 EXPRESSIONS

5

Parentheses have no effect on the value of a character
expression.

6.2.3 Character Constant Expression. A character constant
expression is a character expression in which each primary
is a character constant or a character constant expressiori
enclosed in parentheses. Note that variable, array element,

10 and function references are not al lowed.

1 5

20

6.3 Relational Expressions

A relational expression i s used to compare the values of t WO

arithmetic expressions or two character expressions. A
relational expression may not be used to compare the value
of an arithmetic expression with the value of a character
expression.

Relational expressions may appear only within logical
expressions. Evaluation of a relational expression produces
a result of type logical, with a value of true or false.

25 6.3.1 Relational Operators. The relational operators are:

30

35

40

45

50

Operator Representing

. LT. Less than

. LE. Less than or equal to

. EO. Equal to

. NE. Not equal to

. GT. Greater than

.GE. Greater than or

6.3.2 Arithmetic Relational Expression.
arithmetic relational expression is:

~1 re I op ~2

equal to

The form of an

I where: ~1 and ~2 arB each an integer or real expression

re lop is a relational operator

6.3.3 Interpretation of Arithmetic Relational Expressions.
An arithmetic relational expression is interpreted as having
the logical value true if the values of the operands satisfy
the relation specified by the operator. An arithmetic

55 relational expression is interpreted as having the logical

Page 6-9s Subset Language

EXPRESSIONS ANSI X3.9-1978 FORTRAN 77

The value of the character expression in this example is the
same as that of the constant 'ABCDEF'. Note that
parentheses have no effect on the value of a character
expression.

6.2.3 Character Constant Exoression. A character constant
expression is a character expression in which each primary
is a character constant, the symbolic name of a character
constant, or a character constant expression enclosed in

5

parentheses. Note that variable, array element, substring, 10
and function references are not a 11 owed.

6.3 Relational Expressions

A relational expression is used to compare the values of two 15
arithmetic expressions or two character expressions. A
relational expression may not be used to compare the value
of ~n arithmetic expression with the value of a character
expression.

Relational expressions may appear only within logical
expressions. Evaluation of a relational expression produces
a result of type logical, with a value of true or false.

6.3.1 Relational Operators. The relational operators are:

Operator Representing

. LT. Less than

. LE. Less than or equal to

. EQ. Equal to

. NE. Not equal to

. GT. Greater than

.GE. Greater than or equal to

6.3.2 Arithmetic Relational Expression.
arithmetic relational expression is:

~1 re I op ~2

where: ~ 1 and ~2 are each an integer,
precision, or complex expression

relop is a relational operator

The form of an

rea I, double I

A complex operand is permitted only when the relational
operator is .EQ. or .NE.

6.3.3 Interpretation of Arithmetic Relational Expressions.
An arithmetic relational expression is interpreted as having
the logical value true if the values of the operands satisfy
the relation specified by the operator. An arithmetic

20

25

30

35

40

45

50

relational expression is interpreted as having the logical 55

Fu I I Language Page 6-9

ANSI X3.9-1978 FORTRAN 77 EXPRESSIONS

5

10

1 5

20

value false if the values of the operands do not satisfy the
relation specified by the operator.

If the two arithmetic expressions are of different types,
the value of the relational expression

is the value of the expression

where 0 (zero) is of the same
((~ 1)-(~2)), and relop is the same
both expressions.

type as the expression
relational operator in

6.3.4 Character Relational Expression.
character relational expression is:

where: ~ 1 and ~2 are character expressions

The form of a

25 relop is a relational operator

6.3.5 Interpretation of Character Relational Expressions.
A character relational expression is interpreted as the
logical value true if the values of the operands satisfy the

30 relation specified by the operator. A character relational
expression is interpreted as the logical value false if the
values of the operands do not satisfy the relation specified
by the operator.

35 The character expression ~ 1 is considered to be less than ~2
i f the v a I u e of ~ 1 precedes the v a I u e of ~2 i n the co I I at i n g
sequence; ~ 1 i s greater than ~2 i f the v a I u e of ~ 1 fo I I ow s
the v a I u e of ~2 i n the co I I at i n g sequence < 3 . 1 . 5) . Note that
the collating sequence depends partially on the processor;

40 however, the result of the use of the operators .EO. and
.NE. does not depend on the collating sequence. If the
operands are of unequal length, the shorter operand is
considered as if it were extended on the right with blanks
to the length of the longer operand.

45
6.4 Logical Expressions

'··

A logical expression is used to express a logical
computation. Evaluation of a logical expression produces a

50 result of type logical, with a value of true or false.

The simplest form of a logical expression is a logical
constant, logical variable reference, logical array element
reference, logical function reference, or relational

55 expression. More complicated logical expressions may be

Page 6-10s Subset Language

EXPRESSIONS ANSI X3.9-1978 FORTRAN 77

value false if the values of the operands do not satisfy the
relation specified by the operator.

If the two arithmetic expressions are of different types,
the value of the relational expression

~1 re I oc ~2

is the value of the expression

where 0 (zero) is of the same type as the expression
((~ 1)-(~2)), and relop is the same relational operator in

5

1 0

both expressions. Note that the comparison of a double 15
precision value and a complex value is not permitted.

6.3.4 Character Relational Expression.
character relational expression is:

~. re I op ~2

where: ~ 1 and ~2 are character expressions

The form of a

20

relop is a relational operator 25

6.3.5 Interpretation oi Character Relational Expressions.
A character relational expression is interpreted as the
logical value true if the values of the operands satisfy the
relation specified by the operator. A character relational 30
expression is interpreted as the logical value false if the
values of the operands do not satisfy the relation specified
by the operator.

The ch a r act er express i on ~ 1 i s cons i de red to be I es s than ~2 , 3 5
if the value of~. precedes the value of ~2 in the collating
sequence; ~ 1 i s greater than ~2 i f the v a I u e of ~ 1 f o I I ow s
the v a f u e of ~2 i n the co I I at i n g sequence (3. 1 . 5) . Note that
the collating sequence depends partially on the processor;
however, the result of the use of the operators .EQ. and 40
.NE. does not depend on the collating sequence. If the
operands are of unequal length, the shorter operand is
considered as if it were extended ori the right with blanks
to the I ength of the I anger operand.

6.4 Logical Expressions

A logical expression is used to express a logical
computation. Evaluation of a logical expression produces a

45

result of type logical, with a value of true or false. 50

The simplest form of a logical expression is a logical
constant, symbolic name of a logical constant, logical
variable reference, logical array element reference, logical
function reference, or rel~tional expression. More 55
complicated logical expressions may be formed by using one

Fu 11 Language Page 6-10

ANSI X3.9-1978 FORTRAN 77 EXPRESSIONS

5

1 0

1 5

formed by using one or more logical operands together with
logical operators and parentheses.

6.4.1 Logical Operators. The logical operators are:

Operator Representing

. NOT . Logical Negation

. AND. Logical Conjunction

. OR. Logical Inclusive Disjunction

6.4.Z Form and Interpretation of Logical Expressions. A
set of formation rules is used to establish the
interpretation of a logical expression that contains two or
more logical operators. There is a precedence among the

ZO logical operators, which determines the order in which the
operands are to be combined unless the order is changed by
the use of parentheses. The precedence of the logical
operators is as fol lows:

25
Operator Precedence

.NOT . Highest

. AND.
30 .OR. Lowest

For example, in the expression
35

40

45

50

55

A .OR. B .AND. C

the .AND.
operator;
expression
expression

The logical

operator
therefore,

i s the

A . OR. < B

operands

has
the

same

.AND.

are:

(1) Logical primary

(2) Logical factor

(3) Logical term

(4) Logical disjunct

(5) Logical expression

Page 6-11s

higher precedence than the .OR.
interpretation of the above
as the interpretation of the

C)

Subset Language

EXPRESS IONS ANSI X3.9-1978 FORTRAN 77

or more logical operands together with logical operators and I
parentheses.

6.4.1 Logical Ooerators. The logical operators are:

Operator Representing

. NOT. Logical Negation

.AND. Logical Conjunction

.OR. Logical Inclusive Disjunction

.EQV. Logical Equivalence

.NEQV. Logical Nonequivalence

6.4.2 Form and Interpretation of Logical Expressions. A
set of formation rules is used to esxablish the
interpretation of a logical expression that contains two or
more logical operators. There is a precedence among the

5

10

1 5

logical operators, which determines the order in which the 20
operands are ~o be combined unless the order is changed by
the use of parentheses. The precedence of the logical
operators is as fol lows:

Operator Precedence

. NOT. Highest

.AND .

. OR.
.EQV. or .NEQV. Lowest

For example, in the expression

A .OR. B .AND. C

the .AND. operator has higher precedence than the
operator; therefore, the interpretation of the
expression is the same as the interpretation of
expression

A .OR. CB .AND. C>

The logical operands are:

(1) Logical primary

(2) Logical factor

(3) Logical term

(4) Logical disjunct

(5) Logical expression

.OR.
above

the

25

30

35

40

45

50

55

Fu I I Language Page 6-11

ANSI X3.9-197l FORTRAN 77 EXPRESSIONS

The formation rules
interpretation of a
through 6.4.2.5.

to be applied in
logical expression

establishing the
are in 6.4.2.1

5 6.4.2.1 Logical Primaries. The logical orimaries are:

10

1 5

20

25

30

<1> Logical constant C4.7.1>

CZ> Logical variable reference CZ.5>

<3> Logical array element reference <5.3>

(4) Logical function reference C15.Z>

C5> Relational expression (6.3>

C6> Logical expression enclosed in parentheses (6.4.2.5>

6.4.2.2 Logical Factor. The forms of a logical factor are:

(1) Logical primary

<2> .NOT. logical primary

6.4.2.3 Logical Term. The f~rms of a logical term are:

<1> Logical factor

<Z> Logical term .AND. logical factor

Thus, a logical term is a sequence of logical factors
separated by the .AND. operator. Form <2> indicates that in

35 interpreting a logical term containing two or more .AND.
operators, the logical factors are combined from left to
right.

40

45

6.4.2.4 Logical Disjunct.
are:

<1> Logical term

The forms of a I ogi ca I disjunct

<2> Logical disjunct .OR. logical term

Thus, a logical disjunct is a sequence of logical terms
separated by the .OR. operator. Form CZ> indicates that in
interpreting a logical disjunct containing two or more .OR.
operators, the logical terms are combined from left to

50 right.

55

' Page 6-12s Subset Language

EXPRESSIONS ANSI X3.9-1978 FORTRAN 77

The formation rules
interpretation of a
through 6.4.2.5.

to be applied in
logical expression

establishing the
are in 6.4.2.1

6.4.2.1 Logical Primaries. The logical primaries are:

(1> Logical constant (4.7.1>

(2) Symbolic name of a I og i. ca I constant (8. 6)

(3) Logical variable reference (2. 5)

(4) Logical array element reference (5 . 3)

(5) Logical function reference <15.2)

(6) Relational expression (6.3)

<7> Logical &xpression enclosed in parentheses <6.4.2.5)

6.4.2.2 Logical Factor. The forms of a logical factor are:

<1> Logical primary

<2> .NOT. logical primary

6.4.2.3 Logical Term. T~e forms of a logical term are:

(1) Logical factor

(2) Logical term .AND. logical factor

Thus, a logical term is a sequence of logical factors
separated by the .AND. operator. Form (2) indicates that in

5

10

1 5

20

25

30

interpreting a togical term containing two or more .AND. 35
operators, the logical factors are combined from left to
right.

6.4.2.4 Logical Disiunct. The forms of a logica~ disiunct
are: 40

(1) Logical term

(2) Logical disjunct .OR. logic'al t'erm

Thus, a logical disjunct is a sequence of logical terms
separated by the .OR. operator. Form <2> iridicates that in
interpreting a logicat disjunct containing two or more .OR.
operators, the logical terms are combined from left to

45

right. 50

55

Ful I Language Page 6-12

ANSI X3.9-1978 FORTRAN 77 EXPRESSIONS

5

1 0

1 5

20

25

30

35

6.4.2.5 Logical Expression.
expression is:

(1) Logical disjunct

The form of a logical

The logical equivalence operators, ,EQV. and .NEQV., are not
included in the subset.

6.4.3 Value of Logical Factors, Terms, Disjuncts, and
Expressions. The value of a logical factor involving

.~OT. is shown below:

X2 .NOT. X2

true false
false true

The value of a logical term involving .AND. is shown below:

x l X2 X1 .AND. X2

true true true
true fa Is e false
fa I se true fa I se
false false fa Is e

The value of a logical disjunct involving .OR. is shown
40 below:

XI X2 x l . OR. X2

45 true true true
true false true
false true true
false fa I se false

50

55

Page 6-13s Subset Language

EXPRESSIONS ANSI X3.9-1978 FORTRAN 77

6.4.Z.5 Logical Exoression.
expression are:

The forms of a "logical

(1) Logical disjunct

<Z> Logical expression .EQV. logical disjunct

(3) Logical expression .NEQV. logical disjunct

Thus, a logical expression i s a sequence of logical
disjuncts separated by either the .EQV. operator or the
.NEQV. operator. Forms (z) and (3) indicate that in
interpreting a logical expression conta1n1ng t WO or more
. EQV. or .NEQV . operators, the logical disjuncts are
combined from left to right.

6.4.3 Value of Logical Factors. Terms. Disjuncts, and
Expressions. The value of a logical factor involving

.NOT. is shown below:

X2 .NOT. X2

true false
false true

The value of a logical term involving .AND. is shown below:

XI X2 XI .AND. x 2

true true true
true fa Is e false
fa Is e true false
fa Is e fa I se false

The value of a logical disjunct involving .OR. is shown

5

10

1 5

zo

ZS

30

35

below: 40

XI x 2 XI .OR. X2

true true true 45
true fa I se true
false true true
false fa I se false

50

55

Fu I I Language Page 6-13

ANSI X3.9-1978 FORTRAN 77 EXPRESSIONS

5

10

l
15

20

25 6.4.4 Logical Constant Expression. A logical constant
exoression is a logical expression in which each primary is
a logical constant, a relational expression in which each
primary is a constant expression, or a logical constant
expression enclosed in parentheses. Note that variable,

30 array element, and function references are not al lowed.

6.5 Precedence of Operators

35 In 6.1.2 and 6.4.2 precedences have been established among
the arithmetic operators and the logical operators,
respectively. No precedence has been established among the
relational operators. The precedences among the various
operators are:

40

Operator Precedence

Arithmetic Highest
45 Relational

logical Lowest

50 An exp~ession may contain more than one kind of operator.

55

For example, the logic"al expression

L • OR. A + 8 • GE. C

where A, 8, and C are
logical, contains an

of type real, and L
arithmetic operator,

is of type
a relational

Page 6-14s Subset Language

EXPRESSIONS ANSI X3.9-1978 FORTRAN 77

The value
below~

of a logical expression involving .EOV. is shown I

XI X2 XI .EOV. X2

true true true
true false false
fa Is e true false
fa I se fa Is e true

The value of a logical expression involving .NEOV. is
below:

XI X2 XI .NEOV. X2

true true false
true false true
false true true
false false false

shown I

5

10

1 5

zo

6.4.4 Logical Constant Exoression. A logical constant ZS
expression is a logical expression in which each primary is
a logical constant, the symbolic name of a logical constant,
a relational expression in which each primary is a constant
expression, or a logical constant expression enclosed in
parentheses. Note that variable, array element, and 30
function references are not al lowed.

6.5 Precedence of Operators

In 6.1.Z and 6.4.Z precedences have been established among 35
the arithmetic operators and the logical operators,
respectively. There is only one character operator. No
precedence has been established among the relational
operators. The precedences among the various operators are:

Operator Precedence

Arithmetic Highest
Character
Relational
Logical Lowest

40

45

An expression may contain more than one kind of operator. 50
For example, the logical expression

L . OR. A + B . GE. C

where A, 8, and C are
logical, contains an

Full language

of type rea I, and L
arithmetic operator,

is of type
a relational

55

Page 6-14

ANSI X3.9-1978 FORTRAN 77 EXPRESSIONS

5

10

1 5

20

25

30

operator, and a logical op~rator. This expression would be
interpreted the same as the expression

L .OR. <<A + B> .GE. C>

6.5.1 Summary of Interpretation Rules. The order in which
primaries are combined using operators is determined by the
following:

(1) Use of parentheses

<2> Precedence of the operators

(3) Right-to-left interpretation of exponentiations in a
factor

(4) Left-to-right interpretation of multiplications and
divisions in a term

(5) Left-to-right interpretation of add:tions and
subtractions in an arithmetic expression

(6) Left-to-right interpretation of conjunctions in a
logical term

(7) Left-to-right interpretation of disjunctions in a
logical disjunct

35 6.6 Evaluation of Expressions

This section applies to arithmetic, character, relational,
and logical expressions.

40 Any variable, array element, or function referenced as an
operand in an expression must be defined at the time the
reference is executed. An integer operand must be defined
with an integ~r value rather than i statement label value.
Note that if a character string is referenced, al I of the

45 referenced characters must be defined at the time· the
reference is executed.

Any arithmetic operation whose,resul~ is not mathematically
defined is prohibited in the execution nf an executable

50 program. Examp I es are di vi ding by z'er'o and raising a zero­
va I ued primary to a zero-valued or ·negative-valued power.
Raising a negative-valued primary to a real power is also
prohibited.

55 The execution of a function reference in a ~tatement may not
alter the value of any other entity withih the statement in

Page 6-15s Subset .Language

EXPRESSIONS ANSI X3.9-1978 FORTRAN 77

operator, and a logical operator. This expression would be
interpreted the same as the expression

L .OR. <<A + B> .GE. C>

6.5.1 Summary of Interpretation Rules. The order in which
primaries are combined using operators is determined by the
following:

-<1> Use of parentheses

<2> Precedence of the operators

<3> Right-to-left interpretation of exponentiations in a

5

10

factor 15

(4) Left-to-right interpretati~n of multiplications and
divisions in a term

(5) Left-to-right interpretation of addition~ and
subtractions in an arithmetic expression

(6) Left-to-right interpretation of concatenations i n a
character expression

(7) Left-to-right interpretation of conjunctions in a
logical term

(8) Left-to-right interpretation of disjunctions in a
logical disjunct

I

<9> Left-to-right interpretation of logical
in a logical expression

equivalences I
6.6 Evaluation of Expressions

This section applies to arithmetic, character, relational,
and logical expressions.

20

25

30

35

Any variable, array element, function, or character 40
substring referenced as an operand in an expression must be
defined at the time the reference is executed. An integer
operand must be defined with an integer value rather than a
statement label value. Note that if a character string or
substring is referenced, al I of the referenced characters 45
must be defined at the time the reference is executed.

Any arithmetic operation whose result is not mathematically
defined is prohibited in the execution of an executable
program. Examples are dividing by zero and raising a zero- 50
valued primary to a zero-valued or negative-valued power.

' Raising a negative-valued primary to a real or double .,
precision power is also prohibited.

The execution of a function reference in a statement may not 55
alter the value of any other entity within the statement in

Fu I I Language Pa~t1 6-15

ANSI X3.9-1978 FORTRAN 77 EXPRESSIONS

which the function reference appears. The execution of a
function reference in a statement may not alter the value of
any entity in common (8.3) that affects the value of any
other function reference in that statement. However,

5 execution of a function reference in the expression~ of a
logical IF statement <11.5) is permitted to affect entities
in the statement~ that is executed when the value of the
expression~ is true. If a function reference causes
definition of an actual argument of the function, that

10 argument or any associated ent1t1es must not appear
elsewhere in the same statement. For example, the statements

1 5

A<I> = F<I>

Y = G<X> + X

are prohibited if the reference to F defines I or the
reference to G defines X.

20 The data type of an expression in which a function reference
appears does not affect the evaluation of the actual
arguments of the function. The data type of an expression
in which a function reference appears is not affected by the
evaluation of the actual arguments of the function.

25

Any execution of an array element reference requires the
30 evaluation of its subscript. The data type of an expression

in which a subscript appears does not affect, nor is it
affected by, the evaluation of the subscript.

35

40 6.6.1 Evaluation of Operands. It is not necessary for a
processor to evaluate al I of the operands of an expression
if the value of the expression can be determined otherwise.
This principle is most often applicable to logical
expressions, but it applies to all expressions. For

45 example, in evaluating the logical expression

X .GT. Y .OR. L<Z>

where X, Y, and Z are real, and Lis a logical function, the
50 function reference L<Z> need not be evaluated if Xis

greater than Y. If a statement contains a function
reference in a part of an expression that need not be
evaluated, al I entities that would have become defined in
the execution of that reference become undefined at the

55 completion of evaluation of the expression containing the
function reference. In the example above, evaluation of the

Page 6-16s Subset Language

EXPRESSIONS ANSI X3.9-1978 FORTRAN 77

which the function reference appears. The execution of a
function reference in a statement may not alter the value of
any entity in common (8.3) that affects the value of any
other function reference in that statement. However,
execution of a function reference in the expression~ of a 5
logical IF statement <11.5) is permitted to affect ent1t1es
in the statement~ that is executed when the value of the
expression e is true. If a function reference causes
definition -of an actual argument of the function, that
argument or any associated entities must not appear 10
elsewhere in the same statement. For example, the statements

A<I) = F<I)

Y = G<X) + X

are prohibited if the reference to F defines I or the
reference to G defines X.

1 5

The data type of an expression in which a function reference 20
appears does not affect the evaluation of the actual
arguments of the function. The data type of an expression
in which a function reference appears is not affected by the
evaluation of the actual arguments of the function, except
that the result of a generic function reference assumes a 25
data type that depends on the data type of its arguments as
specified in 15.10.

Any execution of an array element reference requires the
evaluation of its subscript. The data type of an expression 30
in which a subscript appears does not affect, nor is it
affected by, the evaluation of the subscript.

Any execution of a substring reference requires the
evaluation of its substring expressions. The data type of 35
an expression in which a substring name appears does not
affect, nor is it affected by, the evaluation of the
substring expressions.

6.6.1 Evaluation of Operands. It is not necessary for a 40
processor to evaluate al I of the operands of an expression
if the value of the expression can be determined otherwise.
This principle is most often applicable to logical
expressions, but it applies to all expressions. For
example, in evaluating the logical expression 45

X .GT. Y .OR. L<Z)

where X, Y, and Z are real, and Lis a logical function, the
function reference L(Z) need not be evaluated if X is 50
greater than Y. If a statement contains a function
reference in a part of an expression that need not be
evaluated, all ent1t1es that would have become defined in
the execution of that reference become undefined at the
completion of evaluation of the expression containing the 55
function reference. In the example above, evaluation of the

Ful I Language Page 6-16

ANSI X3.9-1978 FORTRAN 77 EXPRESSIONS

expression causes Z to become undefined if L defines its
argument.

6.6.2 Order of Evaluation of Functions. If a statement
5 contains more than one function reference, a processor may

evaluate the functions in any order, except for a logical IF
statement and a function argument list containing function
references. For example, the statement

10 Y = F<G<X>>

where F and G are functions, requires G to be evaluated
before F is evaluated.

15 In a statement that contains more than one function
reference, the value provided by each function reference
must be independent of the order chosen by the processor for
evaluation of the function references.

20 6.6.3 Integrity of Parentheses. The sections that fol low
state certain conditions under which a processor may
evaluate an expression different from the one obtained by
applying the interpretation rules given in 6.1 through 6.5.
However, any expression contained in parentheses must be

25 treated as an entity. For example, in evaluating the
expression A*<B*C), the product of Band C must be evaluated
and then multiplied by A; the processor must not evaluate
the mathematically equivalent expression <A*B)*C.

30 6.6.4 Evaluation of Arithmetic Expressions. The rules
given in 6.1.2 specify the interpretation of an arithmetic
expression. Once the interpretation has been established in
accordance with those rules, the processor may evaluate any
mathematically equivalent expression, provided that the

35 integrity of parentheses is not violated.

Two arithmetic expressions are mathematically equivalent if,
for al I possible values of their primaries, their
mathematical values are equal. However, mathematically

40 equivalent arithmetic expressions may produce different
computational results.

The mathematical definition of integer division is given in
6.1.5. The difference between the value of the expression

45 5/2 and 5./2. is a mathematical difference, not a
computational difference.

The fo 11 owing are ex amp I es of expressions, a I ong with
allowable alternative forms that may be used by the

50 processor in the evaluation of those expressions. A, B, and
C represent arbitrary real operands; I and J represent
arbitrary integer operands; and X, Y, and Z represent
arbitrary arithmetic operands.

55

Page 6-17s Subset Language

EXPRESS IONS ANSI X3.9-1978 FORTRAN 77

expression causes Z to become undefined if L defines its
argument.

6.6.Z Order of Evaluation of Functions. If a statement
contains more than one function refefence, a processor may 5
evaluate the functions in any order, except for a logical IF
statement and a function argument list containing function
references. For example, the statement

Y = F<G<X)) 10

where F and G are functions, requires G to be evaluated
before F is evaluated.

In a statement that contains more
reference, the value provided by each
must be independent of the order chosen
evaluation of the function references.

than one function
function reference

by the processor for

1 5

6.6.3 Integrity of Parentheses. The sections that fol low ZO
state certain conditions under which a processor may
evaluate an expression different from the one obtained by
applying the interpretation rules given in 6.1 through 6.5.
However, any expression contained in parentheses must be
treated as an entity. For example, in evaluating the 25
expression A*<B*C), the product of Band C must be evaluated
and then multiplied by A; the processor must not evaluate
the mathematically equivalent expression <A*B)*C.

6.6.4 Evaluation of Arithmeti~ Expressions. The rules 30
given in 6.1.Z specify the interpretation of an arithmetic
expression. Once the interpretation has been established in
accordance with those rules, the processor may evaluate any
mathematically equivalent expression, provided that the
integrity of parentheses is not violated. 35

Two arithmetic expressions are mathematically equivalent if,
for al I possible values of their primaries, their
math em at .i ca I v a I u es are e qua I . However , math em at i ca I I y
equivalent arithmetic expressions may produce different 40
computational results.

The mathematical definition of integer division is given in
6.1 .5. The difference between the value of the expression
5/Z and 5./Z. is a mathematical difference, not a 45
computational difference.

The following are examples of expressions, along with
allowable alternative forms that may be used by the
processor in the evaluation of those expressions. A, 8, and 50
C represent arbitrary real, double prec1s1on, or complex
operands; I and J represent arbitrary integer operands; and
X, Y, and Z represent arbitrary arithmetic operands. <Note
that Table Z prohibits combinations of double precision and
complex data types.) 55

Ful I language Page 6-17

ANSI X3.9-1978 FORTRAN 77 EXPRESSIONS

Expression Allowable Alternative Form

X+Y Y+X
5 XtY Y*X

-X+Y Y-X
X+Y+Z X+CY+Z)
X-Y+Z X-CY-Z>
X*B/Z X*<B/Z)

10 X*Y-X*Z. X* <Y-Z >
A/B/C A/CB*C)
A/5.0 0.2*A

15 The fol lowing are examples of expressions along ~ith
forbidden forms that must not be used by the processor in
the evaluation of those expressions.

20 Expression Nona I lowable Alternative
Form

112 O. 5 *I
X*l/J Xt{l/J)

25 I/J/A I/CJtA)
CXtY>-<X*Z) X*<Y-Z>
XtCY-Z> XtY-X*Z

30 In addition to the parentheses required to establish the
desired interpretation, parentheses may be included to
restrict the alternative forms that may be used by the
processor in the actual evaluation of the expression. This
is useful for control ling the magnitude and accuracy of

35 intermediate values developed during the evaluation of an
expression. For example, in the expression

A+CB-C>

40 the term <B-C> must be evaluated and then added to A. Note
that the inclusion of parentheses may change the
mathematical value of an expression. For example, the two
expressions:

45

so

55

A* I/ J

AtCI/J)

may have different mathematical values if
factors ·of integer data type.

and J are

Each operand of an arithmetic operator has a data type that
may depend on the order of evaluation used by the pr-0cessor.
For example, in the evaluation of the expression

J+R+I

Page 6-18s Subset language

EXPRESSIONS ANSI X3.9-1978 FORTRAN 77

Expression Allowable Alternative Form

X+Y Y+X
XtY YtX 5
-X+Y Y-X
X+Y+Z X+CY+Z)
X-Y+Z X-<Y-Z>
XtB/Z Xt<B/Z>
XtY-X*Z X*<Y-Z> 10
A/B/C A/<BtC)
A/5.0 0.2*A

The following are examples of expressions along with 15
forbidden forms that must not be used by the prbcessor in
the evaluation of those expressions.

Expression Nonallowable Alternative 20
Form

I/2 0. 5 *I
Xtl/J Xt(I/J)
II JI A l/(JtA) 25
CXtY>-CXtZ) Xt<Y-Z>
Xt(Y-Z) XtY-XtZ

In addition to the parentheses required to establish the 30
desired interpretation, parentheses may be included to
restrict the alternative forms that may be used by the
processor in the actual evaluation of the expression. This
is usefu I for contra 11 i ng the magnitude and accuracy of
intermediate values developed during the evaluation of an 35
expression. For example, in the expression

A+<B-C>

the term <B-C> must be evaluated and then added to A.
that the inclusion of parentheses may change
mathematical value of an expression. For example, the
expressions:

AtI/J

At(I/J)

Note
the
two

may have different mathematical values if
factors of integer data type.

and J are

Each operand of an arithmetic operator has a data type that
may depeod on tha order of evaluation use~ by the pro.cessor.
For example, in the evaluation of the expr~ssion

D+R+I

40

45

50

55

Fu 11 Language Page 6-18

ANSI X3.9-1978 FORTRAN 77 EXPRESSIONS

where J, R, and I represent terms of integer, real, and
integer data type, respectively, the data type of the
operand that is added to I may be either integer or real,
depending on which pair of operands CJ an~ R, Rand I, or J

5 and I> is added first.

6.6.5 Evaluation of Character Expressions. The rules given
in 6.2.2 specify the interpretation of a character
expression as a string of characters. A processor needs to

10 evaluate only as much of the character expression as is
reQuired by the context in which the expression appears.

15

20 6.6.6 Evaluation of Relational Expressi~ns. The rules
given in 6.3.3 and 6.3.5 specify the interpretation of
relational expressions. Once the interpretation of an
expression has been established in accordance with those
rules, the processor may evaluate any other expression that

25 is relationally equivalent. For example, the processor may
choose to evaluate the relational expression

I . GT. J

30 where I and J are integer variables, as

J - I .LT. 0

Two relational expressions are relationally eQuivalent if
35 their logical values are eQual for all pos_sible values of

their primaries.

6.6.7 Evaluation of Logical Expressions. The rules given
in 6.4.2 specify the interpretation of a logical expression.

40 Once the interpretation of an expression has been
established in accordance with those rules, the ~rocessor
may evaluate any other expression that is lct-Q_ical ly
equivalent, provided that the integrity of parentheses is
not violated. For example, the processor may choose to

45 evaluate the logical expression

50

55

L 1 .AND. L2 .AND. L3

where L1, L2, and L3 are logical variables, as

L1 .AND. CL2 .AND. L3)

Two logical expressions are logically eQuivalent if their
values are equal for al I possible values of their primaries.

Page 6-19s Subset Language

EXPRESSIONS ANSI X3.9-1978 FORTRAN 77

where D, R, and I represent terms of double prec1s1on, real,
and integer data type, respectively, the data type of the
operand that is added to I may be either double precision or
real, depending on which pair of operands CD and R, Rand I,
or D and J) is added first. 5

6.6.5 Evaluation of Character Expressions. The rules given
in 6.Z.Z specify the interpretation of a character
expression as a string of characters. A processor needs to
evaluate only as much of the character expression as is 10
required by the context in which the expression appears.
For example, the statements

CHARACTER*Z C1,CZ,C3,CF
C1 = CZ II CFCC3) 15

do not require the function CF to be evaluated, because only
the value of CZ is needed to determine the value of C1.

6.6.6 Evaluation of Relational Expressions. The rules ZO
given in 6.3.3 and 6.3.5 specify the interpretation of
relational expressions. Once the interpretation of an
expression has been established in accordance with those
rules, the processor may evaluate any other expression that
is relationally equivalent. For example, the processor may ZS
choose to evaluate the relational expression

I . GT. J

where I and J are integer variables, as 30

J - I .LT. 0

Two relational expressions are relationally equivalent if
their logical values are equal for al I possible values of 35
their primaries.

6.6.7 Evaluation of Logical Expressions. The rules given
in 6.4.Z specify the interpretation of a logical expression.
Once the interpretation of an expression has been 40
established in accordance with those rules, the processor
may evaluate any other expression that is logically
equivalent, provided that the integrity of parentheses is
not violated. For example, the processor may choose to
evaluate the logical expression 45

L1 .AND. LZ .AND. L3

where L1, LZ, and L3 are logical variables, as

L1 .AND. CLZ .AND. L3)

Two I o g i ca I express i on s are I o g i ca I I y e qui v a I en t i f the i r
values are equal for al I possible values of their primaries.

50

55

Fu I I Language Page 6-19

ANSI X3.9-1978 FORTRAN 77 EXPRESSIONS

6.7 Constant Exoressions

A constant expression is an arithmetic constant expression
(6.1.3), a character constant expression <6.2.3), or a

5 logical constant expression (6.4.4). Constant expressions
are defined in the subset but the concept is not used.
Certain contexts in the subset require an unsigned or
optionally signed constant; however, every context that
permits a constant expression, other than an unsigned or

10 optionally signed constant, also permits a general
expression.

15

20

25

30

35

40

45

so

55

Page 6-ZOs Subset Language

EXPRESSIONS ·ANSI X3.9-1978 FORTRAN 77

. '

6.1 Constens Expr~ssjons

A con s t.an·i ., x ores s i on i s an a r i t h me t i c c o n s t a n t e x pr e s s i o n
<6.1.H, a charac.ter constant·· expression <6.2.3>, or a
togicaJ tori~tant expression (6.4.4). 5

1 0

1 5

20

25

30

35

40

45

50

55

Full Language Page 6-20

ANSI X3.9-1978 FORTRAN 77

7. EXECUTABLE AND NONEXECUTABLE STATEMENT CLASSIFICATION

Each statement is classified as executable or nonexecutable.
Executable statements specify actions and form an execution

5 sequence in an executable program. Nonexecutable statements
specify characteristics, arrangement, and initial values of
data; contain editing information; specify statement
functions; and classify program units. Nonexecutable
statements are not part of the execution seq_uence.

10 Nonexecutable statements may be labeled, but such statement
labels must not be used to control the execution sequence.

1 5

20

25

30

35

40

7.1 Executable Statements

The fol lowing statements are classified as executable:

(1) Arithmetic, logical, statement label <ASSIGN>, and
character assignment statements

(2) Uncondi ti ona I GO TO, assigned GO TO, and computed GO
TO statements

(3) Arithmetic IF and logical IF statements

(4) Block IF, ELSE IF, ELSE, and END IF s t a t ·e m e n t s

(5) CONTINUE statement

(6) STOP and PAUSE statements

(7) DO statement

(8) READ and WRITE statements

(9) REWIND, BACKSPACE, ENDFILE, and OPEN statements

<10) CALL and RETURN statements

(11) END statement

7.2 Nonexecutable Statements

45 The fol lowing statements are classifted as nonexecutable:

50

55

Page 7-1s

<1> PROGRAM, FUNCTION, and SUBROUTINE statements

<2> DIMENSION, COMMON, EQUIVALENCE, IMPLICIT, EXTERNAL,
INTRINSIC, and SAVE statements

<3> INTEGER, REAL, LOGICAL, and CHARACTER type-statements

(4) DATA statement

Subset Language

ANSI X3.9-1978 FORTRAN 77

7. EXECUTABLE AND NONEXECUTABLE STATEMENT CLASSIFICATION

Each statement is classified as executable or nonexecutable.
Executable statements specify actions and form an execution
sequence in an executable program. Nonexecutable statements 5
specify characteristics, arrangement, and initial values of
data; contain editing information; specify statement
functions; classify program units; and specify entry points
within subprograms. Nonexecutable statements are not part
of the execution sequence. Nonexecutable statements may be 10
labeled, but such statement labels must not be used to
control the execution sequence.

7.1 Executable Statements

The following statements are classified as executable:

(1) Arithmetic, logical, statement label <ASSIGN), and
character assignment statements

(2) Unconditional GO TO, assigned GO TO, and computed GO
TO statements

(3) Arithmetic IF and logical IF statements

(4) Block IF, ELSE IF, ELSE, and END IF statements

(5) CONTINUE statement

(6) STOP and PAUSE statements

(7) DO statement

(8) READ, WRITE, and PRINT statements

(9) REWIND, BACKSPACE, ENDFILE, OPEN, CLOSE, and INQUIRE
statements

C10> CALL and RETURN statements

(11> END statement

7.2 Nonexecutable Statements

The fol lowing statements are classified as nonexecutable:

<1> PROGRAM, FUNCTION, SUBROUTINE, ENTRY, and BLOCK DATA
statements

1 5

20

25

30

35

40

45

C2) DIMENSION, COMMON, EQUIVALENCE, IMPLICIT, PARAMETER, 50
EXTERNAL, INTRINSIC, and SAVE statements

C3) INTEGER, REAL, DOUBLE PRECISION, COMPLEX, LOGICAl,
and CHARACTER type-statements

(4) DATA statement

Full Language

55

Page 7-1

A~St X3.9-1978 FORTRAN 77 STATE~ENT CLASSIFICATION

<5> FORMAT sta~ement

(o) Statement funct1on statement

10

15

20

25

30

35

40

45

50

55

Page 7-2c. Subset Language

STATEHENT CLASSIFICATION ANSI X3.9-1978 FORTRAN 77 .

<5> FORMAT statement

(6) Statement function statement

5

10

15

20

25

30

35

40

45

50

55

Fut I Language Page 7-2

ANSI X3.9-1978 FORTRAN 77

5

10

1 5

20

25

30

8. SPECIFICATION STATEMENTS

There are eight kinds of specification stat~ments:

C1> DIMENSION

C.2> EQUIVALENCE

C3> COMMON

C4) INTEGER, REAL, LOGICAL, and CHARACTER type-statements

C5> IMPLICIT

C6> EXTERNAL

C7> INTRINSIC

C8> SAVE

Al I specification statements are nonexecutable.

8.1 DIMENSION Statement

A DIMENSION statement is used to specify the symbolic names
and dimension specifications of arrays.

The form of a DIMENSION statement is:

DIMENSION A<d> [,A<d>l ...

35 where each A<d> is an array declarator C5.1).

Each symbolic name A appearing in a DIMENSION statement
declares A to be an array in that program unit. Note that
array declarators may also appear in COMMON statements and

40 type-statements. Only one appearance of a symbolic name as
an array name in an array declarator in a program unit is
permitted.

45

50

8.2 EQUIVALENCE Statement

An EQUIVALENCE statement is used to specify the sharing of
storage units by two or more entities in a program unit.
This causes association of the entities that share the
storage units.

If the equivalenced entities are of different data types,
the EQUIVALENCE statement does not cause type conversion or
imply mathematical equivalence. If a variable and an array
are equivalenced, the variable does not have array

55 properties and the array does not have the properties of a
variable.

Page 8-1s Subset Language

ANSI X3.9-1978 FORTRAN 77

8. SPECIFICATION STATEMENTS

C1> DIMENSION

C2) EQUIVALENCE

C3> COMMON

C4) INTEGER, REAL, DOUBLE PRECISION, COMPLEX,
and CHARACTER type-statements

C5> IMPLICIT

(6) PARAMETER

C 7> EXTERNAL

C 8 > IN TR INS I C

(9) SAVE

Al I specification statements are nonexecutable.

8.1 DIMENSION Statement

LOG I CAL, I

A DIMENSION statement is used to specify the symbolic n~mes
and dimension specifications of arrays.

The form of a DIMENSION statement is:

DIMENSION I<4> [,I<4>J ...

5

10

15

20

25

30

where each I<4> is an array declarator (5.1). 35

Each symbolic name A appearing in a DIMENSION statement
declares A to be an array in that program unit. Note that
array declarators may also appear in COMMON statements and
type-statements. Only one appearance of a symbolic name as 40
an array name in an array declarator in a program unit is
permitted.

8.2 EQUIVALENCE State~ent

An EQUIVALENCE statement is used to specify the sharing of
storage units by two or more entities in a program unit.
This causes association of th~ entities that share the
storage units.

If the eQuivalenced entities are of different data types,
the EQUIVALENCE statement does not cause type conversion or
imply mathematical eQuivalence. If a variable and an array
are eQuivalenced, the variable does not have array

45

50

properties and the array does not have the properties of a 55
variable.

Full Language Page 8-1

ANSI X3.9-1978 FORTRAN 77 SPECIFICATION STATEMENTS

5

10

15

8.2.1 Form of an EQUIVALENCE Statement.
EQUIVALENCE statement is:

The form of an

EQUIVALENCE <nlist) [,(nlist>J ...

where each nlist is a list <2.10) of variable
element names, and array names. Each list must
least two names. Names of dummy arguments of
procedure in a subprogram must not appear in the
variable name is also a function name (15.5.1),
must not appear in the list.

names, array
contain at
an external
list. If a
that name

Each subscript expression in a list nlist must be an integ~r
constant.

8.2.2 Equivalence Association. An EQUIVALENCE statement
s.pecifies that the storage seQuences of the entities whose
names appear in a list nlist have the same first storage
unit. This causes the association of the entities in the

20 list nlist and may cause association of other entities
<17.1>.

8.2.3 Eauivalence of Character Entities. An entity of type
character may be eQuivalenced only with other entities of

25 type character. The -1engths of the eQuivalenced entities
must be the same.

An EQUIVALENCE statement specifies that the storage
seQuences of the character entities whose names appear in a

30 list nlist have the same first character storage unit. This
causes the association of the entities in the list nlist and
may cause association of other entities <17.1>.

35

40

45

8.2.4 Array Names and Array Element Names. If an array
50 element riame appears in an EQUIVALENCE statement, the Aumber

of subscript expressions must be the same as the number of
dimensions specifi~d in the array declarator for the array
name.

55

Page 8-2s Subset Language

SPECIFICATION STATEMENTS ANSI X3.9-1978 FORTR~N 77

8.2.1 Form of an EQUIVALENCE Statement.
EQUIVALENCE statement is:

The form of an

EQUIVALENCE <nlist) [,(nlist)J ...

where each nlist is a list <2.10) of variable names, array
element names, array names, and character substring names.
Each list must contain at least two names. Names of dummy
arguments of an external procedure in a subprogram must not

5

appear in the list. If a variable name is also a function 10
name (15.5.1), that name must not appear in the list.

Each subscript expression or substring expression in a
nlist ~ust be an integer constaht expression.

I i st I
8.2.2 Equivalence Association. An EQUIVALENCE statement
specifies that the storage seQuences of the entities whose
names appear in a list nlist have the same first storage
unit. This causes the association of the entities in the
list nlist and may cause association of other entities
<17.1>.

8.2.3 Equivalence of Character Entities. An entity of type
character may be eQuivalenced only with other entities of
type character. The lengths of the eQuivalenced entities are I
not reQ~ired to be the same. .

An EQUIVALENCE statement specifies that the storage
seQuences of the character entities whose names appear in a
list nlist have the same first character storage unit. This
causes the association of the entities in the list nlist and
may cause association of other ent1t1es <17.1>. Any
adjacent characters in the associated entities may also have
~he same character storage unit and thus may also be
associated. In the example:

CHARACTER At4, 8*4, C<2>*3
EQUIVALENCE <A,CC1)), <B,CC2))

the association of A, 8, and C can
illustrated as:

lo1102lo3lo4lo5lo6101I

be graphi ca 11 y

15

20

25

30

35

40

1-----A-----I 45

l--C<1>-~l==~~z~==i--I
8.2.4 Array Names and Array Element Names. If an array
element name appears in an EQUIVALENCE statement, the number 50
of subscript expressions must be the same as the number of
dimensions specified in the array declarator tor the array
name.

Ful I Language

55

Page 8-2

ANSI X3.9-1978 FORTRAN 77 SPECIFICATION STATEMENTS

The use of an array name unQualified by a subscript in an
EQUIVALENCE statement has the same effect as using an array
element name that identifies the first element of the array.

5 8.2.5 Restrictions on EQUIVALENCE Statements. An
EQUIVALENCE statement must not specify that the same storage
unit is to occur more than once in a storage seQuence. For
example,

10 DIMENSION A<2>
EQUIVALENCE <A<1>,B>, <A<2>,B>

is prohibited, because it would specify the same storage
unit for A<1> and A<2>. An EQUIVALENCE statement must not

15 specify that consecutive storage units are to be
nonconsecutive. For example, the fol lowing is prohibited:

REAL A<2), R<3>
EQUIVALENCE <A<1>,R<1>>, <A<2>,R<3>>

20

8.3 COMMON Statement

The COMMON statement provides a means of associating
25 entities in different program units. This allows different

program units to define and reference the same data without
using arguments, and to share storage units.

8.3.1 Form of a COMMON Statement. The form of a COMMON
30 statement is:

35

40

45

COMMON [/[£.Q.J/J nlist [[,J/[.~_Q)/ nlistJ. ..

where: £Q is a common block name (18.2.1)

nlist is a list (2.10) of variable names, array
names, and array declarators. Only one
appearance of a symbolic name as a variable name,
array name, or array declarator is permitted in
a 11 such Ii sts within a program unit. Names of
dummy arguments of an external procedure in a
subprogram must not appear in the list. If a
variable name is also a function name (15.5.1),
that name must not appear in the list.

Each omitted £Q specifies the blank common block. If the
first £Q is omitted, the first two slashes are optional.

In each COMMON statement, the entities whose names appear in
50 an nlist fol lowing a block name £Qare declared to be in

common block £.Q.. If the first cb is omitted, all ent1t1es
whose names appear in the first nlist are specified to be in
blank common. Alternatively, the appearance of two slashes
with no block name between them declares the entities whose

55 names appear in the list nlist that follows to be in blank
common.

Page 8-3s Subset Language

SPECIFICATION STATEMENTS ANSI X3.9-1978 FORTRAN 77

The use of an array name unqualified by a subscript in an
EQUIVALENCE statement has the same effect as using an array
element name that identifies the first element of the array.

8.2.5 Restrictions on EQUIVALENCE Statements. An 5
EQUIVALENCE statement must not specify that the same storage
unit is to occur more than once in a storage sequence. For
example,

DIMENSION A<2> 10
EQUIVALENCE <A< 1) I 8) I <A<2> I B>

is prohibited, because it would specify the same storage
unit for A<1> and AC2). An EQUIVALENCE statement must not
specify that consecutive storage units are to be 15
nonconsecutive. For example, the following is prohibited:

REAL A<2>
DOUBLE PRECISION D<2>
EQUIVALENCE <A<1>,D<1)), <A<2>,DC2)) 20

8.3 COMMON Statement

The COMMON statement provides a means of associating
entities in different program units. This allows different 25
program units to define and reference the same data without
using arguments, and to share storage units.

8.3.1 Form of a COMMON Statement. The form of a COMMON
statement is:

COMMON [/[£b_J/J nlist [[,J/[£Q_J/ nlistl ...

where: tl is a common block name <18.2.1)

nlist is a list <2.10> of variable names, array
names, and array declarators. Only one
appearance of a symbolic name as a variable name,
array name, or array declarator is permitted in

30

35

all such lists within a program unit. Names of 40
dummy arguments of an external procedure in a
subprogram must not appear in the list. If a
variable name is also a function name <15.5.1),
that name must not appear in the list.

Each omitted tl specifies the blank common block. If the
first tl is omitted, the first two slashes are optional.

In each COMMON statement, the entities whose names appear in

45

an nlist fol lowing a block name tl are declared to be in 50
common block £Q.. If the first cb is omitted, all entities
whose names appear in the first nlist are specified to be in
blank common. Alternatively, the appearance of two slashes
with no block name between them declares the entities whose
names appear in the list nlist that follows to be in blank 55
common.

Ful I Language Page 8-3

ANSI X3.9-1978 FORTRAN 77 SPECIFICATION STATEMENTS

Any common block name tl or an omitted tl for blank common
may occur more than once in one or more COMMON statements in
a program unit. The list nlist following each successive
appearance of the same common block name is treated as a

5 continuation of the list for that common block name.

10

If a character variable or character array is in a common
block, all of the entities in that common block must be of
type character.

8.3.2 Common Block Storage Sequence. For each common
block, a common block storage sequence is formed as fol lows:

<1> A storage sequence is formed consisting of the
15 storage sequences of all entities in the lists nlist

for the common block. The order of the storage
sequence is the same as the order of the appearance
of the lists nlist in the program unit.

20

25

(2) The storage sequence formed i n (1) i s extended to
include a I I storage uni ts of any storage sequence
associated w i th i t by equivalence association. The
sequence may be extended only by adding storage units
beyond the last storage uni t . Entities associated
w i th an entity i n a common block are considered to be
in that common block.

8.3.3 Size of a Common Block. The size Qi~ common block
is the size of its common block storage sequence, including

30 any extensions of the sequence resulting from equivalence
association.

Within an executable program, al I named common blocks that
have the same name must be the same size. Blank common

35 blocks within an executable program are not required to be
the same size.

8.3.4 Common Association. Within an executable program,
the common block storage sequences of al I common blocks with

40 the same name have the same first storage unit. Within an
executable program, the common block storage sequences of
al I blank common blocks have the same first storage unit.
This results in the association <17.1> of entities in
different program uni ts.

45

50

8.3.5 Differences between Named Common and Blank Common. A
blank co~~on block has the same properties as a named common
block, except for the following:

<1> Execution of a RETURN or END statement sometimes
causes entities in named common blocks to become
undefined but never causes entities in blank common
to become undefined <15.8.4>.

55 <2> Named common blocks of the same name must be of the
same size in al I program units of an executable

Page &-4s Subset Language

SPECIFICATION STATEMENTS ANSI X3.9-1978 FORTRAN 77

Any common block name~ or an omitted~ for blank common
may occur more than once in one or more COMMON statements in
a program unit. The list nlist fol lowing each successive
appearance of the same common block name is treated as a
continuation of the list for that common block name.

If a character variable or character array is in a common
block, al I of the entities in that common block must be of
-type character.

8.3.Z Common Block Storage Sequence. For each common
block, a common block storage sequence is formed as fol lows:

(1) A storage sequence is formed consisting of the

5

10

storage sequences of al I entities in the lists nlist 15
for the common block. The order of the storage
sequence is the same as the order of the appearance
of the lists nlist in the program unit.

(Z) Th e s t o r a g e s e q u e n c e fo r m e d i n --' (1) i s e x t e n d e d t o Z 0
include al I storage units of any storage sequence
associated with it by equivalence association. The
sequence may be extended only by adding storage units
beyond the last storage unit. Entities associated
with an entity in a common block are considered to be 25
in that common block.

8.3.3 Size of a Common Block. The size .2.i A common block
is the size of its comm-0n block storage sequence, including
any extensions of the sequence resulting from equivalence 30
association.

Within an executable program, al I named common blocks that
have the same name must be the same size. Blank common
blocks within an executable program are not required to be 35
the same size.

8.3.4 Common Association. Within an executable program,
the common block storage sequences of al I common blocks with
the same name have the same first storage unit. Within an 40
executable program, the common block storage sequences of
al I blank common blocks have the same first storage unit.
This results in the association (17.1) of entities in
different program units.

8.3.5 Differences between Named Common and Blank Common. A
blank common block has the same properties as a named common
block, except for the following:

45

(1) Execution of a RETURN or END statement sometimes 50
causes entities in named common blocks to become
undefined but neve~ causes entities in blank common
to become undefined (15.8.4).

CZ> Named common b1ocks of the same name mu~t be -0f the 55
same size in al I program units of an executable

Fu LI Language Page 8-4

ANSI X3.9-1978 FORTRAN 77 SPECIFICATION STATEMENTS

5

program in which they appear, but blank common blocks
may be of different sizes.

8.3.6 Restrictions on Common and Equivalence. An
10 EQUIVALENCE statement must not cause the storage seQuences

of two different common blocks in the same program unit to
be associated. EQuivalence association must not cause a
common block storage seQuence to be extended by adding
storage units preceding the first storage unit of the first

15 entity specified in a COMMON statement for the common block.
For example, the fol lowing is not permitted:

COMMON /XIA
REAL B<2>

20 EQUIVALENCE CA,8<2>>

8.4 Type-Statements

A type-statement is used io override or confirm implicit
25 typing and may specify dimension information.

The appearance of the symbolic name of a variable, array,
external function, or statement function in a type-statement
specifies the data type for that name for al I appearances in

30 the program unit. Within a program unit, a name must not
have its type explicitly specified more than once.

A type-statement that confirms the type of an intrinsic
35 function whose name appears in the Specific Name column of

Table 5 is not reQuired, but is permitted.

40
The name of a main program or subroutine must not appear in
a type-statement.

8.4.1 INTEGER. REAL. POUBLE PRECISION. COMPLEX. and LOGICAL
45 Type-Statements. An INTEGER, REAL, or LOGICAL type-

statement is of the form:

.u..o. Y.. [,y_] •••

50 where: .U..O. is one of INTEGER, REAL, or LOGICAL

y_ is a variable name, arra, name, array decl~rator,
function name, or dummy procedure nam~ <18.2.11>

55 DOUBLE PRECISION and COMPLEX type-statements are not
included in the subset.

Page 8-5s Subset Language

SPECIFICATION STATEMENTS ANSI X3.9-1978 FORTRAN 77

program in which they appear, but blank common blocks
may be of different sizes.

<3> Entities in named common blocks may be initially
defined by means of a DATA statement in a block data 5
subprogram, but entities in blank common must not be
initially defined <Section 9).

8.3.6 Restrictions on Common and Equivalence. An
EQUIVALENCE statement must not cause the storage sequences 10
of two different common blocks in the same program unit to
be associated. Equivalence association must not cause a
common block storage sequence to be extended by adding
storage units preceding the first storage unit of the first
entity specified in a COMMON statement for the common block. 15
For example, the following is not permitted:

COMMON !XIA
REAL B<Z>
EQUIVALENCE <A,B<Z>> 20

8.4 Type-Statements

A type-statement is used to override or confirm implicit
typing and may specify dimension information. ZS

The appearance of the symbolic name of a constant, variable,
array, external function, or statement function in a type­
statement specifies the data type for that name for al I
appearances in the program unit. Within a program unit, a 30
name must not have its type explicitly specified more than
once.

A type-statement that confirms the type of an intrinsic
function whose name appears in the Specific Name column of 35
Table 5 is not required, but is permitted. If a generic
function name appears in a type-statement, such an
appearance is not sufficient by itself to remove the generic
properties from that function.

The name of a main program, subroutine, or block data
subprogram must not appear in a type-statement.

8.4.1 INTEGER. REAL. DOUBLE PRECISION. COMPLEX. and LOGICAL

40

Tvoe-Statements. An INTEGER, REAL, DOUBLE PRECISION, 45
COMPLEX, or LOGICAL type-statement is of the form:

.!:iQ ::6 [, .Y.] • • •

where: .!:lQ is one of INTEGER, REAL, DOUBLE
COMPLEX, or LOGICAL

PRECISION,

is a variable name, array name, array declarator,
symbolic name of a constant, function name, or
dummy procedure name <18.Z.11)

Fu I I Language

50

55

Page 8-5

ANSI X3.9-1978 FORTRAN 77 SPECIFICATION STATEMENTS

5

8~4.2 CHARACTER Type-Statement. The form of a CHARACTER
type-statement is:

CHARACTER [* .il.n. [I)) !l.§.!11 [I .!JJU!!.] •••

where: .!l.i.!!!. is of one of the forms:

:i.. [tilJl)

10 .l [(~)) [*il.n.)

15

20

25

30

:t.. is a variable name

is an array name

A<~> is an array declarator

lJil1. is the length (number
character variable or
and is called the length
be an unsigned~ nonzero,

of characters> of a
character array element,
specification. len must
integer constant.

A length lM immediately following the word CHARACTER is the
length specification for each entity in the statement not

35 having its own length specification. A length specification
immediately following an entity is the length specification
for only that entity. Note that for an array the length
specified is for each array element. If a length is not
specified for an entity, its length is one.

40

45

50

55

Page 8-6s Subset Language

SPECIFICATION STATEMENTS ANSI X3.9-1978 FORTRAN 77

8.4.2 CHARACTER Type-Statement.
type-statement is:

The form of. a CHARACTER

CHARACTER Ct.!Jta. C,JJ nam C,.!!A!n.l ...

where: .!lA!n. is of one of the forms:

~ CC,g)l (tlenl

is a variable name, symbolic name of a
function name, or dummy procedure name

is an array name

A<~> is an array declarator

constant, I

IM is the length <number of characters) of a

5

1 0

15

character variable, character array element, 20
character constant that has a symbolic name, or
character function, and is ca 11 ed the I ength
specification. IM is one of the following:

(1) An unsigned, nonzero, integer constant

(2) An integer
enclosed in
value

constant expression (6.1.3.1)
parentheses and with a positive

(3) An asterisk in parentheses, (t)

A length l.fill. immediately following the word CHARACTER is the
length specification for each entity in the statement not

25

30

having its own length specification. A length specification 35
immediately fol lowing an entity is the length specification
for only that entity. Note that for an array the length
specified is for each array element. If a length is not
specified tor an entity, its length is one.

An entity declared in a CHARACTER statement must have a
length specification that is an integer constant expression,
unless that entity is an external function~ a dummy argument
of an external procedure, or a character constant that has a

40

symbolic name. 45

If a dummy argument has al.fill. of (t) declared, the dummy
argument assumes the length of th• associated actual
argument for each reference of the subroutine or function.
If the associated actual argument is an array name, the 50
length assumed by the dummy argument is the length of an
array element in the associated actual argument array.

If an external function has a ill!. of (t) declared in a
function subpr-0gram, tha function name must appear a~ the 55
name of a function in a FUNCTiON or ENTRY statement in the

Full Language Page 8-6

ANSI X3.9-1978 FORTRAN 77 SPECIFICATION STATEMENTS

10

1 5

20 8.5 IMPLICIT Statement

An IMPLICIT statement is used to change or confirm· the
default implied integer and real typing.

25 The form of an IMPLICIT statement is:

30

35

40

45

IMPLICIT .il.Q. <A LAL .. > [,.11.Q. <A [,.§.J. •• > J. ••

I where: .ll.Q. is one of INTEGER, REAL,
[*ill]

LOGICAL, or CHARACTER

is either a single letter or a range of single
letters in alphabetical order. A range is
denoted by the first and last letter of the range
separated by a minus. Writ,ng a range of letters
.§. 1 - .§.2 has the same effect as writing a list of
the single letters .§. 1 through .§.2 •

ill is the length of the character entities and is an
unsigned, nonzero, integer constant.

If ill is not specified, the length i~ one.

50 An IMPLICIT statement specifies a type for al I variables,
arrays, external functions, and statement functions that
begin with any letter that appears in the specification,
either as a single letter or included in a range cif letters.
IMPLICIT statements do not change the type of any intrinsic

55 functions. An IMPLICIT statement applies only to the
program unit that contains it.

Page 8-7s Subset Language

SPECIFICATION STATEMENTS ANSI X3.9-1978 FORTRAN 77

same subprogram. When a reference to such a function is
executed, the function assumes the length specified in the
referencing program unit.

The length specified for a character function in the program S
unit that references the function must be an integer
constant expression and must agree with the length specified
in the subprogram that specifies the function. Note that
there a I ways is agreement of I ength if a iln of (*) is
specified in the subprogram that specifies the function. 10

If a character constant that has a symbolic name has a iln
of (t) declared, the constant assumes the length of its
corresponding constant expression in a PARAMETER statement.

The length specified for a character statement function or
statement function dummy argument of type character must be
an integer constant expression.

8.S IMPLICIT Statement

An IMPLICIT statement is used to change or confirm the
default implied integer and real typing.

The form of an IMPLICIT statement is:

IMPLICIT .1.:iQ <I [.IL ..) [,llQ. <I LIL ..) J. ..

where: .1-l.Q is one of INTEGER, REAL, DOUBLE PRECISION,

1 s

20

2S

COMPLEX, LOGICAL, or CHARACTER [tiln.l 30

is either a single letter or a range of single
letters in alphabetical order. A range is
denoted by the first and last letter of the range
separated by a minus. Writing a range of letters
I1 - I 2 has the same effect as writing a list of
the single letters I1 through I2·

iln is the length of the character entities and is

3S

one of the following: 40

(1) An unsigned, nonzero, integer constant

(2) An integer
enclosed in
value

constant expression <6.1.3.1>
parentheses and with a positive

If len is not specified, the length is one.

4S

An IMPLICIT statement specifies a type for al I variables, SO
arrays, symbolic names of constants, external functions, and
statement functions that begin with any letter that appears
in the specification, either as a single letter or included
in a range of letters. IMPLICIT statements do not change
the type of any intrinsic functions. An IMPLICIT state~ent SS
applies only to the program unit that contains it.

Ful I Language Page 8-7

ANSI X3.9-1978 FORTRAN 77 SPECIFICATION STATEMENTS

Type specification by an IMPLICIT statement may be
overridden or confirmed for any particular variable, array,
external function, or statement function name by the
appearance of that name in a type-statement. An explicit

5 type specification in a FUNCTION statement overrides an
IMPLICIT statement for the name of that function subprogram.
Note that the length is also overridden when a particular
name appears in a CHARACTER statement.

10

1 5

Within the specification statements of a
IMPLICIT statements must precede al I other
statements. A program unit may contain
IMPLICIT statement.

program unit,
specification

more than one

The same letter must not appear as a single letter, or be
included in a range of letters, more than once in al I of the
IMPLICIT statements in a program unit.

20 8.6 PARAMETER Statement

The PARAMETER statement is not included in the subset.

25

30

35

40

45

50

55

Page 8-8s Subset Language

SPECIFICATION STATEMENTS ANSI X3.9-1978 FORTRAN 77

Type specification by an IMPLICIT statement may be
overridden or confirmed for any particular variable, array,
symbolic name of a constant, external function, or statement
function name by the appearance of that name in a type-
statement. An explicit type specification in a FUNCTION 5
statement overrides an IMPLICIT statement for the name of
that function subprogram. Note that the length is also
overridden when a particular name appears in a CHARACTER or
CHARACTER FUNCTION statement.

~ithin the specification statements of a program unit,
IMPLICIT statements must precede al I other specification
statements except PARAMETER statements. A program unit may
contain more than one IMPLICIT statement.

The same letter must not appear as a single letter, or be
included in a range of letters, more than once in al I of the
IMPLICIT statements in a program unit.

8.6 PARAMETER Statement

A PARAMETER statement is used to give a constant a symbolic
name.

The form of a PARAMETER statement is:

PARAMETER (Q=~ [,Q=~J ...)

where: Q is a symbolic name

~ is a constant expression (6.7)

If the symbolic name Q is of type integer, real, double
prec1s1on, or complex, the corresponding expression~ must

10

1 5

20

25

30

be an arithmetic constant expression <6.1.3). If the 35
symbolic name Q is of type character or logical, the
corresponding expression~ must be a character constant
expression (6.2.3) or a logical con~tant expression <6.4.4),
respectively. ,

Each Q is the symbolic name Qi~ constant that becomes
defined with the value determined from the expression~ that
appears on the right of the equals, in accordance with the
rules for assignment statements <10.1, 10.2, and 10.4).

Any symbolic name of a constant that appears in an
expression~ must have been defined previously in the same
or a different PARAMETER statement in the same program unit.

40

45

A symbolic name of a constant must not become defined more 50
than once in a program unit.

If a symbolic name of a constant is not of default implied
type, its type must be specified by a type-statement or
IMPLICIT statement prior to its first appearance in a 55
PARAMETER statement. If the length specified for the

Ful I Language Page 8-8

ANSI X3.9-1978 FORTRAN 77 SPECIFICATION STATEMENTS

5

10

1 5

20
8.7 EXTERNAL Statement

An EXTERNAL statement is used to identify a symbolic name as
representing an external procedure or dummy procedure, and
to permit such a name to be used as an actual argument.

ZS The form of an EXTERNAL statement is:

EXTERNAL .QI.Q£ [,.Q.LQ£J .•.

where each .QI.Q£ is the name of an external procedure or
30 dummy procedure.

Appearance of a name in an EXTERNAL statement declares that
name to be an external pr-0cedure name or dummy procedure
name. If an external procedure name or a dummy procedure

35 name is used as an actual argument in a program unit, it
must appear in an EXTERNAL statement in that program unit.
Note that a statement function name must not appear in an
EXTERNAL statement.

40 If an intrinsic function name appears in an EXTERNAL
statement in a program unit, that name becomes the name of
some external procedure and an intrinsic function of the
same name is not avai I able for reference in the program
uni t.

45

50

55

Only one appearance of a symbolic name in al I of the
EXTERNAL statements of a program unit is permitted.

8.8 INTRINSIC Statement

An INTRINSIC statement is used to identify a symbolic name
as representing an intrinsic function <15.3). It also
permits a name that represents a specific intrinsic function
to be used as an actual argument.

Page 8-9s Subset Language

SPECIFICATION STATEMENTS ANSI X3.9-1978 FORTRAN 77

symbolic name of a constant of type character is not the
default length of one, its length must be specified in a
type-statement or IMPLICIT statement prior to the first
appearance of the symbolic name of the constant. Its length
must not be changed by subsequent statements including 5
IMPLICIT statements.

Once such a symbolic name is defined, that name may appear
in that program unit in any subsequent statement as a
primary in an expression or in a DATA statement (9.1). A 10
symbolic name of a constant must not be part of a format
specification. A symbolic name of a constant must not be
used to form part of another constant, for example, any part
of a complex constant.

A symbolic name in a PARAMETER statement may identify only I
the corresponding constant in that program unit.

8.7 EXTERNAL Statement

An EXTERNAL statement is used to identify a symbolic name as
r~presenting an external procedure or dummy procedure, and
to permit such a name to be used as an actual argument.

The form of an EXTERNAL statement is:

EXTERNAL~[,~] ...

15

20

25

where each~ is the name of an external procedure, dummy I
procedure, or block data subprogram. 30

Appearance of a name in an EXTERNAL- statement declares that
name to be an external procedure nam~, dummy procedure name,
or block data subprogram name. If an external procedure
name or a dummy procedure name is used as an actual argument 35
in a program unit, it must appear in an EXTERNAL statement
in that program unit. Note that a statement function name
must not appear in an EXTERNAL statement.

If an intrinsic function name appears in an
statement in a program unit, that name becomes the
some external procedure and an intrinsic function
same name is no~ avai I able for reference in the
unit.

EXTERNAL
name of
of the
program

Only one appearance of a symbolic name in al I of the
EXTERNAL statements of a program unit is permitted.

8.8 INTRINSIC Statement

An INTRINSIC statement is used to identify a symbolic name
as representing an intrinsic function <15.3). It also
permits a name that represents a specific intrinsic function
to be· used as an actual argument.

Ful I Language

40

45

50

55

Page 8-9

ANSI· X3.9-1978 FORTRAN 77 SPECIFICATION STATEMENTS

TKe form of an INTRINSIC statement is:

INTRINSIC fun [,funl ...

5 where each fun is an intrinsic function name.

Appearance of a name 1n an INTRINSIC statement declares that
name to be an intrins1c function name. If a specific name
of an intrinsic function is used as an actual argument in a

10 program unit, it must appear in an INTRINSIC statement in
that program unit. The names of intrinsic functions for
type conversion <INT, IFIX, IDINT, FLOAT, SNGL, REAL,
ICHAR>, lexical relationship CLGE, LGT, LLE, LLT>, and for
choosing the largest or smallest value CMAXO, AMAX1, AMAXO,

15 MAX1, MINO, AMIN1, AMINO, MIN1> must not be used as actual
arguments.

20

25

Only one appearance of a symbolic name in al I of the
INTRINSIC statements of a program unit is permitted. Note
that a symbolic name must not appear in both an EXTERNAL and
an INTRINSIC statement in a program unit.

8.9 SAVE Statement

A SAVE statement is used to retain the definition status of
30 an entity after the execution of a RETURN or END statement

in a subprogram. Within a function or subroutine
subprogram, an entity specified by a SAVE staJement does not
become undefined as a result of the execution of a RETURN or
END statement in the subprogram. However, such an entity in

35 a common block may become undefined or redefined in another
program unit.

40

45

50

The form of a SAVE statement is:

where each A is a named common block name preceded and

. I fo 11 owed by a s I ash. Redundant appearances of an item are
not permitted.

Dummy argument names, procedure names, variable names, array
names, an~ names of entities in a common block must not
appear in a SAVE statement.

The appearance of a common block name precede~ and fol lowed
by a slash in a SAVE ~tatement has the effect of specifying

55 al I of the entities in that common block.

Page 8-lOs Subset Language

SPECIFICATION STATEMENTS ANSI X3.9-1978 FORTRAN 77

The form of an INTRINSIC statement is:

INTRINSIC fun [,funJ. ..

where each fun is an intrinsic function name. 5

Appearance of a name in an INTRINSIC statement declares that
name to be an intrinsic function name. If a specific name
of an intrinsic function is used as an actual argument in a
program unit, it must appear in an INTRINSIC statement in 10
that program unit. The names of intrinsic functions for
type conversion <INT, IFIX, IDINT, FLOAT, SNGL, REAL, DBLE,
CMPLX, ICHAR, CHAR), lexical relationship <LGE, LGT, LLE,
LLT>, and for choosing the largest or smallest value <MAX,
MAXO, AMAX1, DMAX1, AMAXO, MAX1, MIN, MINO, AMIN1, DMIN1, 15
AMINO, MIN1> must not be used as actual arguments.

The appearance of a generic function name in an INTRINSIC
statement does not cause that name to lose its generic
property. 20

Only one appearance of
INTRINSIC statements of a
that a symbolic name must
an INTRINSIC statement in

8.9 SAVE Statement

a symbolic name in al I of the
program unit is permitted. Note
not appear in both an EXTERNAL and
a program unit.

A SAVE statement is used to retain the definition status of

25

an entity after the execution of a RETURN or END statement 30
in a subprogram. W~thin a function or subroutine
subprogram, an entity specified by a SAVE statement does not
become undefined as a result of the execution of a RETURN or
END statement in the subprogram. However, such an entity in
a common block may become undefined or redefined in another 35
program unit.

The form of a SAVE statement is:

SAVE [_g_ [,_g_J ••• J 40

where each _g_ is a named commDn block name preceded and
followed by a slash, a variable name, or an array name.
Redundant appearances of an item are not permitted.

Dummy argument names, procedure names, and names of ent1t1es
in a common block must not appear in a SAVE statement.

A SAVE statement without a list is treated as though it

45

contained the names of a 11 a 11 owab I e i terns in that program 50
unit.

The appearance of a common b I ock name preceded and fa 11 owed
by a slash in a SAVE statement has the effect of specifying
al I of the entities in that common block. 55

Fu I I Language Page 8-10

ANSI X3.9-1978 FORTRAN 77 SPECIFICATION STATEMENTS

5

If a particular common block name is specified by a SAVE
statement in a subprogram of an executable program, it must
be specified by a SAVE statement in every subprogram in
which that common block appears.

A SAVE statement is optional in a main program and has no
effect.

If a named common block is specified in a SAVE statement in
10 a subprogram, the current values of the entities in the

common block storage sequence <8.3.3>. at the time a RETURN
or END statement is executed are made avai I able to the next
program unit that specifies that common block name in the
execution sequence of an executable program.

1 5

20

If a named common block i s specified i n the main program
Uni t I the current values of the common block storage
sequence are made avai I able to each subprogram that
specifies that named common block; a SAVE statement i n the
subprogram has no effect.

The definition status of each entity in the named common
block storage sequence depends on the association that has
been established for the common block storage sequence (17.2

25 and 17.3).

30

The execution of a RETURN statement or an END statement
within a subprogram causes all ent1t1es within the

35 subprogram to become undefined except for the fol lowing:

40

45

50

55

Page 8-11s

(1) Entities specified by SAVE statements

(2) Entities i n blank common

(3) Initially defined ent1t1es that have neither been
redefined nor become undefined

(4) Entities in
subprogram
unit that
indirectly,

a named common block that appears in the
and appears in at least one other program
is referencing, either directly or
that subprogram

Subset Language

SPECIFICATION STATEMENTS ANSI X3.9-1978 FORTRAN 77

If a particular common block name is specified by a SAVE
statement in a subprogram of an executable program, it must
be specified by a SAVE statement in every subprogram in
which that common block appears.

A SAVE statement is optional in a main program and has no
effect.

If a named common block is specified in a SAVE statement in

5

a subprogram, the current values of the ent1t1es in the 10
common block storage sequence (8.3.3) at the time a RETURN
or END statement is executed are made avai I able to the next
program unit that specifies that common block name in the
execution sequence of an executable program.

If a named common block is specified in the main program
unit, the current values of the common block storage
sequence are made avai I ab I e to each subprogram that
specifies that named common block; a SAVE statement in the

1 5

subprogram has no effect. 20

The definition status of each entity in the named common
block storage sequence depends on the association that has
been established for the common block storage sequence <17.2
and 17.3). 25

If a local entity that is specified by a SAVE statement and
is not in a common block is in a defined state at the time a
RETURN or END statement is executed in a subprogram, that
entity is defined with the same value at the next reference 30
of that subprogram.

The execution of a RETURN statement or an END statement
within a subprogram causes a 11 entities within the
subprogram to become undefined except for the fol lowing: 35

<1> Entities specified by SAVE statements

<2> Entities in blank common

(3) Initially defined ent1t1es that have neither been
redefined nor become undefined

(4) Entities in
subprogram
unit that
indirectly,

a named' common block that appears in the
and app~ars in at Jeast one other program
is referencing, either directly or
that subprogram

40

45

50

55

Full Language Page 8-11

ANSI X3.9-1978 FORTRAN 77

5

10

9. DATA STATEMENT

A DATA statement is used to provide initial values for
variables, arrays, and array elements. A DATA statement is
nonexecutable and may appear in a program unit after the
specification statements and before any statement .function
statements or executable statements.

Al I initially defined entities are
executable program begins execution.
initially defined, or associated with an
entity, are undefined at the beginning
executable program.

defined when an
All entities not
initially defined
of execution of an

15 9.1 Form of a DATA Statement

20

25

30

35

40

The form of a DATA statement is:

DATA nlist /clist/ [[,] nlist /clist/J ...

where: nlist is a list (2.10) of variable names, array
names, and array element names

clist is a list of the form:

.2. [,_g_] •••

where _g_ is one of the forms:

£ is a constant

L is a nonzero, unsigned, integer constant.
The L*£ form is equivalent to L successive
appearances ot the constant £.

9.2 DATA Statement Restrictions

Names of dummy arguments, functions, and entities in common
45 (including entities associated with an entity in common)

must not appear in the list nlist.

50 There must be the same number of items specified by each
list nlist and its cqrresponding list clist. There is a
one-to-one correspondence between the items specified by
nlist and the constants specified by clist such that the
first item of nlist corresponds to the first constant of

55 clist, etc. By this correspondence, the initial value is
established and the entity is initially defined. If an

Page 9-1s Subset Language

ANSI X3.9-1978 FORTRAN 77

9. DATA STATEMENT

A DATA statement is used to provide initial values for
variables, arrays, array elements, and substrings. A DATA
statement is nonexecutable and may appear in a program unit 5
anywhere after the sp&cification statements, if any.

All initially defined entities are defined when an
executab I e program begins execution. A 11 entities not 10
initiaJly defined, or associated with an initially defined
entity, are undefined at the beginning of execution of an
executable program.

9.1 Form of a DATA Statement

The form of a DATA statement is:

DATA nlist /clist/ [[,] nlist /clist/J ...

where: nlist is a list (2.10) of variable names, array
names, array element names, substring names, and
implied-DO lists

clist is a list of the form:

.§_ [,.§_] •••

where.§. is one of the forms:

£
L*£

£ is a constant
constant

L is a nonzero,
the symbolic
L*£ form is
appearances of

9.2 DATA Statement Restrictions

Names of dummy arguments, functions, and ent1t1es in blank

1 5

20

25

30

common (including entities associated with an entity in 45
blank common) must not appear in the list nlist. Names of
entities in a named common block may appear in the list
nlist only within a block data subprogram.

There must be the same number of items specified by each 50
list nlist and its corresponding list clist. There is a
one-to-one correspondence between the items specified by
nlist and the constants specified by clist such that the
first item of nlist corresponds to the first constant of
clist, etc. By this correspondence, the initial value is 55
established and the entity is initially defined. If an

Full Language Page 9-1

ANSI X3.9-197& FORTRAN 77 DATA STATEMENT

5

10

1 5

array name without a subscript is in the list, there must be
one constant for each element of that array. The ordering
of array elements is determined by the array element
subscript value (5.2.4).

The type of the nlist entity and the type of the
corresponding clist constant must agree.

Any variable or array element may be initially defined
20 except for:

25

30

35

40

45

50

55

(1) an entity that is a dummy argument,

(2) an entity in common, which includes an
associated with an entity in common, or

entity

(3) a variable in a function subprogram whose name is
also the name of the function subprogram.

A variable or array element must not be
more than once in an executable program.
are associated, only one may be initially
statement in the same executable program.

initially defined
If two ent1t1es
defined in a DATA

Each subscript expression in the list nlist must be an
integer constant.

9.3 Implied-DO in a DATA Statement

Implied-DO lists in DATA statements are not included in the
subset.

Page 9-2s Subset Language

DATA STATEMENT ANSI X3.9-1978 FORTRAN 77

array name without a subscript is in the list, there must be
one constant for each element of that array. The ordering
of array elements is determined by the array element
subscript value (5.2.4).

The type of the nlist entity and the type of the
corresponding clist constant must agree when either is of
type character or logical. When the nlist entity is of type
integer, real, double prec1s1on, or complex, the

5

corresponding clist constant must also be of type integer, 10
real, double precision, or complex; if necessary, the clist
constant is converted to the type of the nlist entity
according to the rules for arithmetic conversion <Table 4).
Note that if an nlist entity is of type double precision and
the clist constant is of type real, the processor may supply 15
more prec1s1on derived from the constant than can be
contained in a real datum.

Any variable, array element, or substring may be initially I
defined except for: 20

(1) an entity that is a dummy argument,

(2) an entity in blank common, which includes an entity
associated with an entity in blank common, or 25

(3) a variable in a function subprogram whose name is
also the name of the function subprogram or an entry
in the function subprogram.

A variable, array element, or substring must not be
initially defined more than once in an executable program.
If two entities are associated, only one may be initially
defined in a DATA statement in the same executable program.

Each subscript expression in the list nlist must be an
integer constant expression except for implied-DO-variables
as noted in 9.3. Each substring expression in the list
nlist must be an integer constant exp~ession.

9.3 Implied-DO in a DATA Statement

The form of an implied-DO list in a DATA statement is:

dlist, i = m.1 • .!!!.2 [,fil.3 J)

where: dlist is a list of array element names and implied-DO
I i st s

30

35

40

45

i is the name of an integer variable,
implied-DO-variable

ca I I ed the I 50

m. 1 , m_ 2 , fil3 are each an integer constant expression,
except that the expression may contain implied-
DO-variables of other implied-DO lists that have 55
this implied-DO list within their ranges

Fu I! Language Page 9-2

ANSI X3.9-1978 FORTRAN 77 DATA STATEMENT

5

10

20

9.4 Character Constant in a DATA Statement

25 An entity in the list nlist that corresponds to a character
constant must be of type character.

If the length of the character entity in the list nlist is
greater than the length of its corresponding character

30 constant, the additional rightmost characters in the
entity are initially defined with blank characters.

The length of the character entity in the list nlist must be
greater than or equal to the length of its corresponding

35 character constant.

Note that initial definition of a character entity causes
definition of al I of the characters in the entity, and that

40 each character constant initially defines exactly one
variable or array element.

45

50

55

Pag~ 9-3s Subset Language

DATA STATEMENT ANSI X3.9-1978 FORTRAN 77

The range of an implied-DO list is the list dlist. An
iteration count and the values of the implied-DO-variable
are established from m1 , m2 , and fill exactly as for a DO-loop
(11.10), except that the iteration count must be positive.
When an implied-DO list appears in a DATA statement, the 5
l~st items in dlist are specified once for each iteration of
the implied-DO list with the appropriate substitution of
values for any occurrence of the implied-DO-variable i. The
appearance of an implied-DO-variable name in a DATA
statement does not affect the definition status of a 10
variable of the same name in the same program unit.

Each subscript expression in the list dlist must be an
integer constant expression, except that the expression may
contain implied-DO-variables of implied-DO lists that have 15
the subscript expression within their ranges.

The following is an example of a DATA statement that
contains implied-DO lists:

DATA CC XCJ,J), 1=1,J), J=1 ,5) I 15*0. I

9.4 Character Constant in a DATA Statement

20

An entity in the list nlist that corresponds to a character ZS
constant must be of type character.

If the length of the character entity in the list nlist is
greater than the length of its corresponding character
constant, the additional rightmost characters in the 30
entity are initially defined with blank characters.

If the length of th9 character entity in the list nlist is
less than the length of its corresponding charact~r
constant, the additional rightmost characters in the 35
constant are ignored.

Note that initial definition of a character entity causes
definition of al I of the characters in the entity, and that
each character constant initially defines e~actly one 40
variable, array element, or substring.

45

50

55

Fu I I /language Page 9-3

ANSI X3.9-1978 FORTRAN 77

5

10

15

20

25

10. ASSIGNMENT STATEMENTS

Completion of execution of an assignment statement causes
definition of an entity.

There are four kinds of assignment statements:

(1) Arithmetic

<2> Logical

(3) Statement label <ASSIGN>

(4) Character

10.1 Arithmetic Assignment Statement

The form of an arithmetic assignment statement is:

where: y_

Y... = ..§.

is the name oi a variable or array element of
type integer or real

is an arithmetic expression

Execution of an arithmetic assignment statement causes the
evaluation of the expression _g_ by the rules in Section 6,
conversion of _g_ to the type of y_, and definition and

30 assignment of y_ with the resulting value, as established by
the rules in Table 4.

Table 4

35 Arithmetic Conversion and Assignment of _g_ toy_

Type of Y... Type of ..§. Value
Assigned

40
Integer Integer ..§.

Real Real ..§.

45 Integer Real IN T<_g_>

Real Integer REALC_g_)

50 The INT and REAL functions in the "Value Assigned" column of
Table 4 are intrinsic functions described in the "Specific
Name" column of Table 5 (15.10).

55

Page 10-1s Subset Language

ANSI X3.9-1978 FORTRAN 77

10. ASSIGNMENT STATEMENTS

Completion of execution of an assignment statement causes
definition of an entity.

There are four kinds of assignment statements:

(1) Arithmetic

<Z> Logical

(3) Statement label <ASSIGN)

(4) Character

10.1 Arithmetic Assignment Statement

The form of an arithmetic assignment statement is:

5

1 0

1 5

y = ~ 20

where: y is the name of a variable or array element of
type integer, real, double precision, or complex

is an arithmetic expression

Execution of an arithmetic assignment statement causes the
evaluation of the expression~ by the rules in Section 6,
conversion of e to the type of y, and definition and

ZS

assignment of y with the resulting value, as established by 30
the rules in Table 4.

Table 4

Arithmetic Conversion and Assignment of~ toy 35

Type of y Value
Assigned

40
~nteger I NT<~>

Real REAL<~)

Double Precision DBLEC~) 45

Complex CMPLX(~)

The functions in the "Value Assigned" column of Table 4 are 50
generic functions described in Table 5 <15.10).

55

Ful I Language Page 10-1

ANSI X3.9-1978 FORTRAN 77 ASSIGNMENT STATEMENTS

5

1 0

10.2 Logical Assignment Statement

The form of a logical assignment statement is:

where: y is the. name of a logical variable or
array element

is a logical expression

logical

Execution of a logical assignment statement causes the
evaluation of the logical expression~ and the assignment
and definition of y with the value of~· Note that ~ must

15 have a value of either true or false.

20

25

10.3 Statement Label Assignment <ASSIGN> Statement

The form of a statement label assignment statement is:

ASSIGN 2. TO i

where: 2. is a statement label

i is an integer variable name

Execution of an ASSIGN statement causes the statement label
2. to be assigned to the integer variable i. The statement
label must be the label of a statement that appears in the

30 same program unit as the ASSIGN statement. The statement
label must be the label of an executable statement or a
FORMAT statement.

Execution of a statement label assignment statement is the
35 only way that a variable may be defined with a statement

label value.

A variable must be defined with a statement" label value when
referenced in an assigned GO TO statement (11.3) or as a

40 format identifier <12.4) in an input/output statement.
While defined with a statement label value, the variable
must not be referenced in any other way.

An integer variable defined with a statement label value may
45 be redefined with the same or a different statement label

value or an integer value.

10.4 Character Assignment Statement

5-0 The form of a character assignment statement is:

55
I where: y

Page 1'Q-2s

is the name of a character variable or characte~
array element

Subset Language

ASSIGNMENT STATEMENTS ANSI X3.9-1978 FORTRAN 77

10.2 Logical Assignment Statement

The form of a logical assignment statement is:

where: .Y.

.Y. = .§.

is the name of a logical variable or logical
array element

is a logical expression

Execution of a logical assignment statement causes the
evaluation of the logical exp~ession _g_ and the assignment
and definition of .Y. with the value of _g_. Note that _g_ must

5

10

have a value of either true or false. 15

10.3 Statement Label Assignment <ASSIGN) Statement

The form of a statement label assignment statement is:

ASSIGN ~ TO i

where: ~ is a statement label

i is an integer variab~e name

Execution of an ASSIGN statement causes the statement label
~ to be assigned to the integer variable i. The statement
label must be the label of a statement that appears in the

20

25

same program unit as the ASSIGN statement. The statement 30
label must be the label of an executable statement or a
FORMAT statement.

Execution of a statement label assignment statement is the
only way that a variable may be defined with a statement 35
label value.

A variable must be defined with a statement label value when
referenced in an assigned GO TO statement <11.3) or as a
format identifier <12.4) in an input/output statement. 40
While defined with a statement label value, the variable
must not be referenced in any other way.

An integer variable defined with a statement label value may
be redefined with the same or a different statement label 45
value or an integer value.

10.4 Character Assignment Statement

The form of a character assignment statement is:

where: .Y. is the name of a character variable,
array element, or character substring

Fu I I Language

50

character I
55

Page 10-2

ANSI X3.9-1978 FORTRAN 77 ASSIGNMENT STATEMENTS

~ is a character expression

Execution of a character assignment statement causes the
evaluation of the expression ~ and the assignment and

5 definition of y with the value of~- None of the character
positions being defined in y may be referenced in~- y and
~may have different lengths. If the length of y is greater
than the length of ~. the effect is as though e were
.extended to the right with blank characters unti I it is the

10 same length as y and then assigned. If the length of y is
less than the length of~. the effect is as though~ were
truncated from the right unti I it is the same length as y
and then assigned.

1 5

20

25

30

35

40

45

so

55

Page 10~3s Subset Language

ASSIGNMENT STATEMENTS ANSI X3.9-1978 FORTRAN 77

A is a character expression

Execution of a character assignment statement causes the
evaluation of the expres~ion e and the assignment and
definition of y with the vaAue of A· None of the characte~ 5
positions being defined in y may be referenced in A· y and
A may have differe~t lengths. If the length of y is greater
than the length of A, the effect is as though e were
extended to the right with blank characters unti I it is the
same length as y and then assigned. If the length of y is 10
less than the length of A. the effect is as though A were
truncated from the right unti I it is the same length as y
and then assigned.

Only as much of the value of A must be defined as is needed 15
to define y. In the example:

CHARACTER A*Z, 8*4
A=B

the assignment A=8 requires that the substring 8<1:2) be
defined. It does not require that the substring 8(3:4) be
defined.

zo

If vis a substring, A is assigned only to the substring. 25
The definition status of substrings not specified by y is
unchanged.

30

35

40

45

50

55

Ful I Language Page 10-3

ANSI X3.9-1978 FORTRAN 77

5

10

1 5

20

25

30

35

11. CONTROL STATEMENTS

Control statements may be used to control the execution
sequence.

There are sixteen control statements:

(1) Uncondi ti ona I GO TO

(2) Computed GO TO

(3) Assigned GO TO

(4) Arithmetic IF

(5) Logical IF

(6) Block IF

(7) ELSE IF

(8) ELSE

(9) END IF

(1 0) DO

(11) CONTINUE

(12) STOP

(13) PAUSE

(14) END

(1 5) CALL

<16) RETURN

40 The CALL and RETURN statements are described in Section 15.

45

11.1 Unconditional GO TO Statement

The form of an unconditional GO TO statement is:

GO TO j_

where j_ is the statement label of an executable statement
that appears in the same program unit as the unconditional

50 GO TO statement.

55

Execution of an unconditional GO TO statement causes a
transfer of control so that the statement identified by the
statement label is executed next.

Page 11-1s Subset Language

ANSI X3.9-1978 FORTRAN 77

11. CONTROL STATEMENTS

Control statements may be used to control the execution
sequence.

There are sixteen control statements:

(1) Uncondi ti ona I GO TO

(2) Computed GO TO

(3) Assigned GO TO

(4) Arithmetic IF

(5) Logical IF

(6) Block IF

(7) ELSE IF

(8) ELSE

(9) END IF

(1 0) DO

(11) CONTINUE

(12) STOP

(13) PAUSE

(1 4) END

(1 5) CALL

<16) RETURN

5

1 0

1 5

20

25

30

35

The CALL and RETURN statements are described in Section 15. 40

11.1 Unconditional GO TO Statement

The form of an unconditional GO TO statement is:

GO TO i

where i is the statement label of an executable statement
that appears in the same program unit as the unconditional

45

GO TO statement. 50

Execution of an unconditional GO TO statement causes a
transfer of control so that the statement identified by the
statement I abe I is executed next.

55

Ful I Language Page 11-1

ANSI X3.9-1978 FORTRAN 77 CONTROL STATEMENTS

5

1 0

11.2 Computed GO TO Statement

The form of a computed GO TO statement is:

I where: i

GO TO <2 [,2l ... > [,] i

is an integer variable name

is the statement label of an executable statement
that appears in the same program unit as the
computed GO TO statement. The same statement
label may appear more than once in the same
computed GO TO statement.

15 Execution of a computed GO TO statement causes a transfer of
control so that the statement identified by the ith
statement label in the list of statement labels is executed
next, provided that 1 ~ i ~ n. where n is the number of
statement labels in the list of statement labels. If i<1 or

20 i>n, the execution sequence continues as though a CONTINUE
statement were executed.

25

30

35

11.3 Assigned GO TO Statement

The form of an assigned GO TO statement is:

where: i is an integer variable name

is the statement label of an executable statement
that appears in the same program unit as the
assigned GO TO statement. The same statement
label may appear more than once in the same
assigned GO TO statement.

At the time of execution of an assigned GO TO statement, the
variable i must be defined with the value of a statement

40 label of an executable statement that appears in the same
program unit. Note that the variable may be defined with a
statement label value only by an ASSIGN statement C10.3) in
the same program unit as the assigned GO TO statement. The
execution of the assigned GO TO statement causes a transfer

45 of control so that the statement identified by that
statement label is executed next.

If the parenthesized list is present, the statement label
assigned to i must be one of the statement labels in the

50 list.

11.4 Arithmetic IF Statement

The form of an arithmetic IF statement is:
55

IF (_g_) di I 22 I dJ

Page 11-Zs Subset Language

CONTROL STATEMENTS ANSI X3.9-1978 FORTRAN 77

11.2 Computed GO TO Statement

The form of a computed GO TO statement is:

GO TO C2 [,2J ...) [,Ji 5

where: i is an integer expression

is the statement label of an executable statement
that appears in the same program unit as the
computed GO TO statement. The same statement
label may appear more than once in the same
computed GO TO statement.

1 0

Execution of a computed GO TO statement causes evaluation of 15
the expression i. The eva I uati on of i is fo 11 owed by a
transfer of control so that the statement identified by the
ith statement label in the list of statement labels is
executed next, provided that 1 ~ i ~ n. where n is the
number of statement labels in the list of statement labels. 20
If i<1 or i>n, the execution sequence continues as though a
CONTINUE statement were executed.

11.3 Assigned GO TO Statement

The form of an assigned GO TO statement is:

where: i

GO TO i [[I] C2 [,2] ...)]

is an integer variable name

is the statement label of an executable statement
that appears in the same program unit as the
assigned GO TO statement. The same statement
label may appear more than once in the same
assigned GO TO statement.

At the tim• of execution of an assigned GO TO statement, the
variable i must be defined with the value of a statement

25

30

35

label of an executable statement that appears in the same 40
program unit. Note that the variable may be defined with a
statement label value only by an ASSIGN statement C10.3) in
the same program unit as the assigned GO TO statement. The
execution of the assigned GO TO statement causes a transfer
of control so that the statement identified by thpt 45
statement label is executed next.

If the parenthesized list is present, the statement label
assigned to i must be one of the statement labels in the
list. 50

11.4 Arithmetic IF Statement

The form of an arithmetic IF statement is:
55

IF (~) di I 22 I d3

Ful I Language Page 11-2

ANSI X3.9-1978 FORTRAN 77 CONTROL STATEMENTS

s

I where: _g_ is an integer or real expression

..2.1 , ..2.2 , and _2.3 are each the statement I ab e I of an
executable statement that appears in the same
program unit as the arithmetic IF statement. The
same statement label may appear more than once in
the same arithmetic IF statement.

10 Execution of an arithmetic IF statement causes evaluation of
the expression _g_ fol lowed by a transfer of control. The
statement identified by 21. 2 2 , or _2.3 is executed next as
the value of _g_ is less than zero, equal to zero, or greater
than zero, respectively.

1 s

20

2S

11.S Logical IF Statement

The form of a logical IF statement is:

IF (_g_) ll

where: _g_ is a logical expression

ll is any executable statement except a DO,
block IF, ELSE IF, ELSE, END IF, END, or another
logical IF statement

Execution of a logical IF statement causes evaluation of the
expression _g_. If the value of _g_ is true, statement ll is

30 executed. If the value of _g_ is false, statement ll is not
executed and the execution sequence continues as though a
CONTINUE statement were executed.

Note that the execution of a function reference in the
3S expression _g_ of a logical IF statement is permitted to

affect entities in the statement ll·

11.6 Block IF Statement

40 The block IF statement is used with the END IF statement
and, optionally, the ELSE IF and ELSE statements to control
the execution sequence.

The form of a block IF statement is:
4S

IF (_g_) THEN

where _g_ is a logical expression.

SO 11.6.1 IF-Level. The IF-'level of a statement ..2. is

n1 - n2

where n 1 is the number of block IF statements from th~
SS beginning of the program unit up to and including 2, and n 2

Page 11-3s Subset Language

CONTROL STATEMENTS ANSI X3.9-1978 FORTRAN 77

where: ~ is an integer, real,
expression

or double precision I
~., ~2, and ~J are each the statement I abe I of an

executable statement that appears in the same
program unit as the arithmetic IF statement. The
same statement label may appear more than once in
the same arithmetic IF statement.

5

Execution of an arithmetic IF statement causes evaluation of 10
t h e e x p r e s s i o n ~ fo I I o w e d b y a t r a n s f e r o f c o n t r o I . Th e
statement identified by ~ 1 , ~ 2 , or ~J is executed next ,as
the value of~ is less than zero, equal to zero, or greater
than zero, respectively.

11.5 Logical IF Statement

The form of a logical IF statement is:

1 5

IF <~> il 20

where: ~ is a logical expression

il is any executable statement except a DO,
block IF, ELSE IF, ELSE, END IF, END, or another 25
logical IF statement

Execution of a logical IF statement causes evaluation of the
expression ~- If the value of~ is true, statement il is
executed. If the value of~ is false, statement il is not 30
executed and the execution sequence continues as though a
CONTINUE statement were executed.

Note that the execution of a function reference in the
expression ~ of a logical IF statement is permitted to 35
affect entities in the statement il-

11.6 Block IF Statement

The block IF statement is used with the END IF statement 40
and, optionally, the ELSE IF and ELSE statements to control
the execution sequence.

The form of a block IF statement is:
45

IF (~) THEN

w h e r e ~ i s a I o g i c a I e x pr e s s i o n .

11. 6. 1 I F- Leve I . Tti e I F- I eve I of a statement ..s_ i s 50

fl. I - !12

where .n. 1 is the number of block IF statements from the
beginning of the program unit up to and including~. and .n. 2 55

Fut I Language Page 11-3

ANSI X3.9-1978 FORTRAN 77 CONTROL STATEMENTS

5

is the number of END IF statements in the program unit up to
but not including~.

The IF-level of every statement must be zero
The IF-level of each block IF, ELSE IF, ELSE,
statement must be positive. The IF-level
statement of each program unit must be zero.

or positive.
and END IF

of the END

11.6.Z IF-Block. An IF-block consists of al I of the
10 executable statements that appear fol lowing the. block IF

statement up to, but not including, the next ELSE IF, ELSE,
or END IF statement that has the same IF-level as the
block IF statement. An IF-block may be empty.

15 11.6.3 Execution of a Block IF Statement. Execution of a
block _IF statement causes evaluation of the expression.§...
If t~e value of .§.. is true, normal execution sequence
continues with the first statement of the IF-block. If the
value of.§.. is true and the IF-block is empty, control is

20 transferred to the next END IF statement that has the same
IF-level as the block IF statement. If the value of ~ is
false, control is transferred to the next ELSE IF, ELSE, or
END IF statement that has the same IF-level as the block IF
statement.

ZS
Transfer of control into an IF-block from outside the IF­
block is prohibited.

If the execution of the last statement in the IF-block does
30 not result in a transfer of control, control is transferred

to the next END IF statement that has the same IF-level as
the block IF statement that precedes the IF-block.

11. 7 ELSE IF Statement
35

The form of an ELSE IF statement is:

ELSE IF (.§..) THEN

40 where.§.. is a logical expression.

11.7.1 ELSE IF-Block. An ELSE IF-block consists of al I of
the executable statements that appear fol lowing the ELSE IF
statement up to, but not including, the next ELSE IF, ELSE,

45 or END IF statement that has the same IF-level as the
ELSE IF statement. An ELSE IF-block may be empty.

11.7.2 Execution of an ELSE IF Statement. Execution of an
ELSE IF statement causes evaluation of the expression.§... If

50 the value of.§.. is true, normal execution sequence continues
with the first statement of the ELSE IF-block. If the value
of .§.. is true and the ELSE IF-block is empty, control is
transferred to the next END IF statement that has the same
IF-level as the ELSE IF statement. If the value of.§.. is

55 false, control is transferred to ~he next ELSE IF, ELSE, or

Page 11-4s Subset Language

CONTROL STATEMENTS ANSI X3.9-1978 FORTRAN 77

is the number of END IF statements in the program unit up to
but not including~-

The IF-level of every statement must be zero or positive.
The IF-level of each bl6ck IF, ELSE IF, ELSE, and END IF 5
statement must be positive. The IF-level of the END
statement of each program unit must be zero.

11.6.Z IF-Block. An IF-block consists of al I of the
executable statements that appear fol lowing the block IF 10
statement up to, but not including, the next ELSE IF, ELSE,
or END IF statement that has the same IF-level as the
block IF statement. An IF-block may be empty.

11.6.3 Execution of a Block IF Statement. Execution of a 15
block IF statement causes evaluation of the expression -~
If the value of ~ is true, normal execution sequence
continues with the first statement of the IF-block. If the
value of • is true and the IF-block is empty, control is
trahsferred to the next END IF statement that has the same 20
IF-level as the block IF statement. If the value of~ i~
false, control is transferred to the next ELSE IF, ELSE, or
END IF statement that has the same IF-level as the block IF
statement.

Transfer of control into an IF-block from outside the IF­
block is prohibited.

If the execution of the last statement in the IF-block does
not re~ult in a transfer of control, control is transferred 30
to the next END IF statement that has the same IF-level as
the block IF statement that precedes the IF-block.

11.7 ELSE IF Statement
35

The form of an ELSE IF statement is:

ELSE IF <~> THEN

where~ is a logical expression. 40

11.7.1 ELSE IF-Block. An ELSE IF-block consists of al I of
the executable statements that appear fol lowing the ELSE IF
statement up to, but not including, the next ELSE IF, ELSE,
or END IF statement that has the same IF-level as the 45
ELSE IF statement. An ELSE IF-block may be empty.

11.7.Z Execution of an ELSE IF Statement. Execution of ·an
ELSE IF statement causes evaluation of the expression~- If
the value of~ is true, normal execution sequence continues 50
with the first statement of the ELSE IF-block. If the value
of~ is true and the ELSE IF-block is ~mpty, control is
transferred to the next END IF statement that has the same
IF-level as the ELSE IF statement. If the value of ~ is
false, control is transferred to the next ELSE IF, ELSE, or 55

Ful I Language Page ~1-4

ANSI X3.9-1978 FORTRAN 77 CONTROL STATEMENTS

END IF statement that has the same IF-level as the ELSE IF
statement.

Transfer of control into an ELSE IF-block from outside the
5 ELSE IF-block is prohibited. The statement label, if any,

of the ELSE IF statement must not be referenced by any
statement.

If execution of the last statement in the ELSE IF-block does
10 not result in a transfer of control, control is transferred

to the next END IF statement that has the same IF-level as
the ELSE IF statement that precedes the ELSE IF-block.

11.8 ELSE Statement
15

The form of an ELSE statement is:

ELSE

20 11.8.1 ELSE-Block. An ELSE-block consists of al I of the
executable statements that appear following the ELSE
statement up to, but not including, the next END IF
statement that has the same IF-level as the ELSE statement.

25

30

An ELSE~block may be empty.

An END IF statement of the same IF-level as the ELSE
statement must appear before the appearance of an ELSE IF or
ELSE statement of the same IF-level.

11.8.2 Execution of an ELSE Statement.
ELSE statement has no effect.

Execution of an

Transfer of control into an ELSE-block from outside the
ELSE-block is prohibited. The statement label, if any, of

35 an ELSE statement must not be referenced by any statement.

11.9 END IF Statement

The form of an END IF statement is:
40

END IF

Execution of an END IF statement has no effect.

45 For each block IF statement there must be a corresponding
END IF statement in the same program unit. A corresponding
.f1ill lE statement is the next END IF statement that has the
same IF-level as the block IF statement.

50 11.10 DO Statement

A DO statement is used to specify a loop, cal led a DO-loop.

55

Page 11-5s Subset Language

CONTROL STATEMENTS ANSI X3.9-1978 FORTRAN 77

END IF statement that has the same IF-level as the E~SE IF
statement.

Transfer of control into an ELSE IF-block from outside the
E L SE I F - b I o c k i s p r o h i b i t e d . Th e s t a t em en t I ab e I , i f an y ,
of the EtSE IF statement must not be referenced by any
statement.

If execution of the last statement in the ELSE IF-block does

5

not result in a transfer of control, control is transferred 10
to the next END IF statement that has the same IF-level as
the ELSE IF statement that precedes the ELSE IF-block.

11.8 ELSE Statement
1 5

The form of an ELSE statement is:

ELSE

11.8.1 ELSE-Block. An ELSE-block consists of al I of the ZO
executab.I e statements that appear fo I I owing the ELSE
statement up to, but not including, the next END If
statement that has the same IF-level as the ELSE statement.
An ELSE-block may be empty.

An END IF statement of the same IF-level as the ELSE
statement must appear before the appearance of an ELSE IF or
ELSE statement of the same IF-level.

11.8.Z Execution of an ELSE Statement.
ELSE statement has no effect.

Execution of an

Transfer of control into an ELSE-block from outside the
ELSE-block is prohibited. The statement label, if any, of

ZS

30

an ELSE statement must not be referenced by any statement. 35

11.9 END IF Statement

The form of an END IF statement is: ...
40

END IF

Executi~n of an END IF statement has no effect.

For each bJock IF statement there must be a corresponding 45
END IF statement in the same program unit. A corresponding
END 1£ statement is the next END IF statement that has the
same IF-level as the block IF statement.

11.10 DO Statement 50

A DO statement is used to specify a loop, called a DO-loop.

55

Ful I language
/

Page 11-5

ANSI X3.9-1978 FORTRAN 77 CONTROL STATEMENTS

5

10

1 5

The form of a DO statement is:

where: i

i

~.'

DO i C,l i = ~ •• ~2 C,~3]

is the statement label of an executabl~
statement. The statement identified by i• cal led
the terminal statement of the DO-loop, must
f o 11 ow the DO statement in the sequence of
statements within the same program unit as the DO
statement.

i s the name of an integer variable, ca I I ed the
DO-variable

~2' and ~3 are each an integer constant or
integer variable name

The terminal statement of a DO-loop must not be an
unconditional GO TO, assigned GO TO, arithmetic IF,

20. block IF, ELSE IF, ELSE, END IF, RETURN, STOP, END, or DO
statement. If the terminal· statement of a DO-looo is a
logical IF statement, it may contain any executable
statement except a DO, block l,F, ELSE IF, ELSE, END IF, END,
or another logical IF statement.

25

30

35

40

11,10.1 Range of a DO-Loop. The ranee of ~ DO-loop
consists of al I of the executable statements that appear
fol lowing the DO statement that specifies the DO-loop, up to
and including the terminal statement of the DO-loop.

If a DO statement appears within the range of a DO-loop, the
range of the DO-loop specified by that DO statement must be
contained entirely within the range of the outer DO-loop.
More than one DO-loop may have the same terminal statement.

If a DO statement appears within an IF-block, ELSE IF-block,
or ELSE-block, the range of that DO-loop must be contained
entirely within that IF-block, ELSE IF-blocK, or ELSE-block,
respectLvely.

If a block IF statement appears within the range of a DO­
loop, the corresponding END IF statement must also appear
within the range of that DO-loop.

45 11.10.2 Active and Inactive DO-Loops. A DO-loop is either
active or inactive. Initially inactive, a DO-loop becomes
active only when its DO statement is executed.·

Once active, the DO-loop becomes inactive only when:
50

(1) its iteration count is tested (11.10.4) and
determined to be zero,

<2> a RETURN statement is executed within its range,
55

Page 11-6s Subset Language

CONTROL STATEMENTS ANSI X3.9-1978 FORTRAN 77

The form of a DO statement is:

D 0 i [I] i = ~I I ~2 [I ~3]

where: i i s the statement label of an executable
statement. The statement identified by i1 ca I I ed
the terminal statement of the DO-loop, must
f o I Io w the DO statement i n the sequence of
statements within the same program uni t as the DO
statement.

l.. i s the name of an integer, real, or double
precision variable, ca I I ed the DO,...variable

~I• ~2 I and ~3 are each an integer, r ea I , or double
precision expression

The terminal statement of a DO-loop must not be an
unconditional GO TO, assigned GO TO, arithmetic IF,

s

10

I
1 s

block IF, ELSE IF, ELSE, END IF, RETURN, STOP, END, or DO 20
statement. If the terminal statement of a DO-loop is a
logical IF statement, it may contain any executable
statement except a DO, block IF, ELSE IF, ELSE, END IF, END,
or another logical IF statement.

11.10.1 Range of a DO-Loop. The range Qi_ ~ DO-loop
consists of al I of the executable statements that appear
fol lowing the DO statement that specifies the DO-loop, up to
and including the terminal statement of the DO-lo-0p.

If a DO statem~nt appears within the range of a DO-loop, the
range of the DO-loop specified by that DO statement must be
contained entirely within the range of the outer DO-loop.
More than one DO-loop may have the same terminal statement.

If a DO statement appears within an IF-block,
or ELSE-block, the range of that DO-loop must
entirely within that IF-block, ELSE IF-block,
respectively.

ELSE IF-block,
be contained

or ELSE-block,

If a block IF statement appears within the range of a DO­
loop, the corresponding END IF statement must also appear
within the range of that DO-loop.

ZS

30

3S

40

11.10.Z Active and Inactive DO-Loops. A DO-loop is either 4S
active or inactive. Initially inactive, a DO-loop becomes
active only when its DO statement is executed.

Once active, the DO-loop becomes inactive only when:
so

(1) its iteration count is tested (11.10.4) and
determined to be zero,

CZ) a RETURN statement is executed within its range,
SS

Fu I I Language Page 11-6

ANSI X3.9-1978 FORTRAN 77 CONTROL STATEMENTS

5

<3> control is transferred to a statement that is in the
same program unit and is outside the range of the DO­
loop, or

(4) any STOP statement in
executed, or execution
reason <12.6>.

the executable program is
is terminated for any other

Execution of a function reference or CALL statement that
10 appears in the range of a DO-loop does not cause the DO-loop

to become inactive.

15 When a DO-loop becomes inactive, the DO-variable of the DO­
loop retains its last defined value.

20

25

30

35

40

11.10.3 Executing a DO Statement.
a DO statement is to perform
seQuence:

The effect of
the fol lowing

executing
steps in

(1) The i n i ti a I par am et er !!!. 1 , the term i n a I par am et er !!!.2 ,
and the incrementation parameter !!!.J are established
from ~ 1 , ~2 • and ~3• respectively. If ~3 does not
appear, !!!.3 has a value of one. !!!.J must not have a
value of zero.

<2> The DO-variable becomes defined with the value of the
initial parameter !!!.1·

<3> The iteration count is established and is the value
of the expression

Note that the iteration count is zero whenever:

!!!.1 > !!!.2 and !!!.3 > 0, or

!!!.1 < !!!.2 and !!!.3 < 0 .

At the completion of execution of the DO statement, loop
45 control p~ocessing begins.

11.10.4 Loop Control Processing. Loop control processing
determines if further execution of the range of the DO-loop
is reQuired. The iteration count is tested. If it is not

50 zero, execution of the first statement in the range of the
DO-loop begins. If the iteration count is zero, the DO-loop
becomes inactive. If, as a result, all1 of the DO-loops
sharing the terminal statement of this DO-loop are inactive,
normal execution continues with. execution of the next

55 executable statement fol lowing the terminal statement.
Ho~ever, if some of the DO-loops sharing the terminal

Page 11-7s Subset Language

CONTROL STATEMENTS ANSI X3.9-1978 FORTRAN 77

(3) control is transferred to a statement that is in the
same program unit and is outside the range of the DO­
I oop, or

(4) any STOP statement in
exe~uted, or execution
reason <12.6>.

the executable program is
is terminated for any other

Execution of a function reference or CALL statement that

5

appears in the range of a DO-loop does not cause the DO-loop 10
to become inactive, except when control is returned by means
of an alternate return specifier in a CALL statement to a
statement that is not in the range of the DO-loop.

When a DO-loop becomes inactive, the DO-variable of the DO- 15
loop retains its last defined value.

11.10.3 Executing a DO Statement.
a DO statement is to perform
seQuence:

The effect of executing
the fo I I owing steps in

(1) The initial parameter fil 1, the terminal parameter fil 2 ,
and the incrementation parameter fill are establish~d
by evaluating ~1. ~2• and ~l• respectively,

20

including, if necessary, conversion to the type of 25
the DO~variable according to the rules for arithmetic
conversion <Table 4). If ~l does not appear, fill has
a value of one. fill must not have a value of zero.

(2) The DO-variable becomes defined with the value of the 30
initial parameter fil1·

(3) The iteration count is established and is the value
of the expression

MAX< I NT< <fil2 - fil1 + fill> /fill>, o >

Note that the iteration COJ..Hlt is zero whenever:

fil1 > fil2 and fill > 0, or

fil/ < fil2 and fill < 0.

At the completion of execution of the DO statement, loop

35

40

control processing begins. 45

11.10.4 loop Control Processing. loop control processing
determines if further execution of the range of the DO-loop
is reQuired. The iteration count is tested. If it is not
zero, execution of the first statement in the range of the 50
DO-loop begins. If the iteration count is zero, the DO-loop
becomes inactive. If, as a result, all of the DO-loops
sharing the terminal statement of this DO-loop are inactive,
no""Nnal execu.tion continues with execution of the next.
executable statement fol lowing the terminal statement. 55
However, if some of the DO-loops sharing the terminal

Full language Page 11-7

ANSI X3.9-1978 FORTRAN 77 CONTROL STATEMENTS

statement are active, execution continues with
incrementation processing, as described in 11.10.7.

11.10.5 Execution of the Range. Statements in the range of
5 a DO-loop are executed unti I the terminal statement is

reached. Except by the incrementation described in 11.10.7,
the DO-variable of the DO-loop may neither be redefined nor
become undefined during execution of the range of the DO­
loop.

10
11.10.6 Te~minal Statement Execution. Execution of the
terminal statement occurs as a result of the normal
execution seQuenc~ or as a result of transfer of control,
subject to the restrictions in 11.10.8. Unless execution of

15 the terminal statement results in a transfer of control,
execution then continues with incrementation processing, as
described in 11.10.7.

20

25

30

35

40

45

50

55

11.10.7 Incrementation Processing.
processing has the ef feet of the fo 11 owing
in seQuence:

Incrementation
steps performed

(1) The DO-variable, the iteration count, and the
incrementation parameter of the active DO-loop whose
DO statement was most recently executed, are selected
for processing.

<2> The value of the DO-variable is incremented by the
value of the incrementation parameter fill·

<3> The iteration count is decremented by one.

(4) Execution continues with loop control processing
<11.10.4) of the same DO-loop whose iteration count
was decremented.

For example:

N=O
DO 100 1=1,10
J=I
DO 100 K= 1I5
L=K

100 N=N+1
101 CONTINUE

After execution of these stateme~ts and at the execution of
the CONTINUE statement, 1=11, J=NO, K=6, L=5, and N=50.

Page 11-8s Subset Language

CONTROL STATEMENTS ANSI X3.9-1978 FORTRAN 77

statement are active, execution continues with
incrementation processing, as described in 11.10.7.

11.10.5 Execution of the Range. Statements in the range of
a DO-loop are executed unti I the terminal statement is
reached. Except by the incrementation described in 11.10.7,
the DO-variable of the DO-loop may neither be redefined nor
become undefined during execution of the range of the DO­
loop.

11.10.6 Terminal Statement Execution. Execution of the
terminal statement occurs as a result of the normal
execution sequence or as a result of transfer of control,
subject to the restrictions in 11.10.8. Unless execution of

5

10

the terminal statement results in a transfer of control, 15
execution then continues with incrementation processing, as
described in 11.10.7.

11.1b.7 Incrementation Processing.
processing has the effect of the fol lowing
in sequence:

Incrementation
steps performed

(1) The DO-variable, the iteration count, and the
incrementation parameter of the active DO~loop whose

20

DO statement was most .recently executed, are selected 25
for processing.

<2> The value of the DO-variable is incremented by the
value of the incrementation parameter fil3.

(3) The iterati~n count is decremented by one.

(4) Execution continues with loop control processing
<11.10.4) of the same DO-loop whose iteration count

30

was decremented. 35

For example:

N=O
DO 100 I=1,10
J=I
DO 1-00 K=1,5
L=K

100 N=N+1
101 CONTINUE

After execution of these statements and at the execution of
the CONTINUE statement, I=11, J=10, K=6, L=5, and N=50.

40

45

50

55

Ful I Language Page 11-8

ANSI X3.9-1978 FORTRAN 77 CONTROL STATEMENTS

5

10

1 5

20

Also consider the following example:

N=O
DO 200 1=1,10
J=I
DO 200 K=5,1
L=K

200 N=N+1
201 CONTINUE

After execution of these statements and at the execution of
the CONTINUE statement, 1=11, J=10, K=5, and N=O. L is not
defined by these statements.

11.10.8 Transfer into the Range of a DO-Loop.
control into the range of a DO-loop from outside
is not permitted.

11.11 CONTINUE Statement

The form of a CONTINUE statement is:

CONTINUE

Transfer of
the range

25 Execution of a CONTINUE statement has no effect.

30

35

40

If the CONTINUE statement is the terminal statement of a DO­
loop, the next statement executed depends on the result of
the DO-loop incrementation processing <11.10.7>.

11.12 STOP Statement

The form of a STOP statement is:

STOP Cnl

where .!l is a string of not more than five digits, or is a
character constant.

Execution of
execution of
termination,
accessible.

a
the

the

STOP statement causes termination of
executable program. At the time of

digit string or character constant is

45 1~.13 PAUSE Statement

50

The form of a PAUSE statement is:

PAUSE Cnl

where .!l is a string of not more than five digits, or is a
character constant.

Execution of a PAUSE statement causes a cessation of
55 execution of the executable program. Execution must be

resumable. At the time of cessation of execution, the digit

Page 11-9s Subset Language

CONTROL STATEMENTS ANSI X3.9-1978 FORTRAN 77

Also consider the following example:

N=O
DO ZOO 1=1,10
J=I
DO ZOO K= 5 I 1
L=K

zoo N=N+1
Z01 CONTINUE

After execution of these statements and at the execution of
the CONTINUE statement, 1=11, J=10, K=5, and N=O. Lis not
defined by these statements.

11.10.8 Transfer into the Range of a DO-Loop.
control into the range of a DO-loop from outside
is not permitted.

11.11 CQNTINUE Statement

The form of a CONTINUE statement is:

CONTINUE

Execution of a CONTINUE statement has no effect.

Transfer of
the range

If the CONTINUE statement is the termi na I statement of a D0-
1 oop, the next statement executed depends on the result of
the DO-loop incrementation processing <11.10.7).

11.1Z STOP Statement

The form of a STOP statement is:

5

10

1 5

zo

Z5

30

STOP [fi] 35

where n is a string of not more than five digits, or is a
character constant.

Execution of
execution of
termination,
accessible.

a
the

the

STOP statement causes termination of
executable program. At the time of

digit string or character constant is

11.13 PAUSE Statement

The form of a PAUSE statement is:

PAUSE CnJ

where n is a string of not more than five digits, or is a
character constant.

Ex~£ution of a PAUSE statement causes a cessation of

40

45

50

execution of the executable program. Execution must be 55
resumable. At the rime of cessation of execution, the digit

Full language Page 11-9

ANSI X3.9-1978 FORTRAN 77 CONTROL STATEMENTS

5

string or character constant is accessible.
execution is not under control of the program.
is resumed, the execution sequence continues
CONTINUE statement were executed.

11.14 END Statement

Resumption of
If execution

as though a

The END statement indicates the end of the sequence of
statements and comment lines of a program unit <3.5). If

10 executed in a function or subroutine subprogram, it has the
effect of a RETURN statement (15.8). It executed in a main
program, it terminates the execution of the executable
program.

15 The form of an END statement is:

END

An END statement is written only in columns 7 through 72 of
20 an initial line. An END statement must not be continued.

No other statement in a program unit may have an initial
line that appears to be an END statement.

The last line of every program unit must be an END
25 statement.

30

35

40

45

50

55

Page 11-10s Subset Language

CONTROL STATEMENTS ANSI X3.9-1978 FORTRAN 77

string or character constant is accessible.
execution is not under control of the program.
is resumed, the execution sequence continues
CONTINUE statement were executed.

11.14 END Statement

Resumption of
If execution

as though a

The END statement indicates the end of the sequence of
statements and comment lines of a program unit <3.5). If

5

executed in a function or subroutine subprogram, it has the 10
effect of a RETURN statement <15.8). If executed in a main
program, it terminates the execution of the executable
program.

The form of an END statement is:

END

An END statement is written only in columns 7 through 72 of

1 5

an initial line. An END statement must not be continued. 20
No other statement in a program unit may have an initial
line that appears to be an END statement.

The last line of every program unit must be an END
statement. 25

30

35

40

45

50

55

Ful I Language Page 11-10

ANSI X3.9-1978 FORTRAN 77

12. INPUT/OUTPUT STATEMENTS

Input statements provide the means of transferring data from
external media to internal storage or from an internal file

5 to internal storage. This process is cal led reading.
Output statements provide the means of transferring data
from internal storage to external media or from 1nternal
storage to an internal file. Th1s process is called
writing. Some input/output statements specify that editing

10 of the data is to be performed.

In addition to the statements that transfer data, there are
auxiliary input/output statements to manipulate the external
medium, or to describe the properties of the connection to

15 the external medium.

20

25

30

There are six input/output statements:

C1> READ

C2> WRITE

C3> OPEN

C 4 > BACKSPACE

C5) ENDFILE

35 C6> REWIND

The READ and WRITE statements are il1A transfer inout/output
statements C12.8). The OPEN, BACKSPACE, ENDFILE, and REWIND
statements are auxiliary jnout/output statements (12.10>.

40 The BACKSPACE, ENDFILE, and REWIND statements are .1.i.1Jt
positioning input/output statements C12.10.4).

45
12.1 Records

A record is a sequence C2.1) of values or a sequence of
characters. For example, a punched card is usually
considered to be a record. However, a record does not
necessarily correspond to a physical entity. There are

50 three kinds of records:

C1) Formatted

(2) Unformatted
55

C3> Endfi le

·page 12-1 s Subset Language

ANSI X3.9-1978 FORTRAN 77

12. INPUT/OUTPUT STATEMENTS

Input statements provide the means of transferring data from
external media to internal storage or from an internal file
to internal storage. This process is cal led reading. 5
Output statements provide the means of transierring data
from internal storage to external media or from internal
storage to an internal file. This process is cal led
writing. Some input/output statements specify that editing
of the data is to be performed. 10

In addition to the statements that transfer data, there are
auxiliary input/output statements to manipulate the external
medium, or to inquire about or describe the properties of
the connection to the external medium. 15

There are nine input/output statements:

(1) READ

(2) WRITE

(3) PRINT

(4) OPEN

(5) CLOSE

(6) INQUIRE

(7) BACKSPACE

(8) ENDFILE

(9) REWIND

The READ, WRITE, and PRINT statements are data transfer
input/cutout statements C12.8>. The OPEN, CLOSE, INQUIRE,
BACKSPACE, ENDFILE, and REWIND statements are auxi I iary

20

25

30

35

input/output statements <12.10). The BACKSPACE, ENDFLLE, 40
and REW1IND statements are file positioning input/output
statements <12.10.4).

12.1 Records

A record is a seQuence <2.1> of values or a seQuence of
characters. For example, a punched card is usually
considered to be a record. However, a record does not
necessarily correspond to a physical entity. There are

45

three kinds of records: 50

<1> Formatted

<2> Unformatted
55

<3> Endfi le

.Fu.I.I Language Page 12-1

ANSJ X3.9-1978 FORTRAN 77 INPUT/OUTPUT STATEMENTS

12.1.1 Formatted Record. A formatted record consists of a
seQuence of characters that are capable ot representation in
the processor. The I ength of a formatted record ·is measured
in characters and depends primarily on the number of

5 characters put into the record when it is written. However,
it may depend on the processor and the external medium. The
length may be zero. Formatted records may be read or
written only by formatted input/output statements <12.8.1).

10 Formatted records may be prepared by some means other than
FORTRAN; for example, by some manual input device.

12.1.2 Unformatted Record. An unformatted record consists
of a sequence of values in a processor-dependent form and

15 may contain both character and noncharacter data or may
contain no data. The length of an unformatted record is
measured in processor-dependent units and depends on the
output list <12.8.2> used when it is written, as wel I as on
the processor and the external medium. The length may be

20 zero.

Unformatted records may be read or written
unformatted input/output statements (12.8.1).

only by

25 12.1.3 Endfile Record. An endfile record is written by an
ENDFILE statement. An endfi le record may occur only as the
last record of a file. An endfile record does not have a
length property.

30 12.2 Files

A .f.i.!.g_ is a sequence <2.1) of records.

There are two kinds of files:
35

(1) External

<2> Internal

40 12.2.1 Fi le Existence. At any given time, there is a
processor-determined set of files that are said to exist fo~
an executable program. A file may be known to th·e
processor, yet not exist for an executable program at a
particular time. For example, security reasons may prevent

45 a file from existing for an executable program. A file may
exist and contain no records; an example is a newly created
file not yet written.

To create .i. .f.i.!.g_ means to cause a f i I e to exist that did not
50 previously exist. To delete .i. .f.i.!.g_ means to terminate the

existence of the file.

Al I input/output statements may refer to files that exist.
The OPEN, WRITE, and ENDFILE statements may also refer to

55 files that do not exist.

Page 12-2s Subset Language

INPUT/OUTPUT STATEMENTS ANSI X3.9-1978 FORTRAN 77

12.,.1 Formatted Record. A formatted record consists of a
sequence of characters that are capable of representation in
the processor. The length of a formatted record is measured
in characters and depends primarily on the number of
characters put into the record when it is written. However, 5
it may depend on the proc~ssor and the external medium. The
length may be zero. Formatted records may be read or
written only by formatted input/output statements (12.8.1).

Formatted records may be prepared by some means other than 10
FORTRAN; for example, by some manual input device.

12.1.2 Unformatted Record. An unformatted record consists
of a sequence of values in a processor-dependent form and
may contain both character and noncharacter data or may 15
contain no data. The length of an unformatted record is
measured in processor-dependent units and depends on the
output list (12.8.2> used when it is written, as wel I as on
the processor and the external medium. The length may be
zero. 20

Unformatted records may b~ read or written
unformatted input/output statements <12.8.1).

only by

12.1.3 Endfile Record. An endfile record is written by an 25
ENDFILE statement. An endfi I e record may occur on I y as the
last record of a file. An endfi le record does not have a
length property.

12.2 Files 30

A file is a sequence <2.1> of records.

There are two kinds of files:
35

(1) External

<2> Internal

12.2.1 Fi le Existence. At any given time, there is a 40
processor-determined s~t of files that are said to exist for
an executable program. A file may be known to the
processor, yet not e~ist for an executable program at a
particular time. For example, security reasons may prevent
a file from existing for an executable program. A file may 45
exist and ctintain no records; an example is a newly creat~d
file not yet written.

To create .!l ii.Lg_ means to cause a file to exist that did not
previously exist. To delete A ii.Lg_ means to terminate the 50
existence of the file.

Al I input/output statements may refer to tiles that exist.
The INQUIRE, OPEN, CLOSE, WRITE, PRINT, and ENDFILE
statements may also refer to files that do not exist. 55

Ful I language Page 12-2

ANSI X3.9-1978 FORTRAN 77 INPUT/OUTPUT STATEMENTS

5

10

12.2.2 Fi le Properties. At any given time, there is a
processor-determined set .Q.f al lowed access methods, a
processor-determined ~ .Q.f al lowed forms, and a processor­
determined ~ .Q.f al lowed record lengths for a file.

File names are not included in the subset.

12.2.3 File Position. A file that is connected to a unit
<12.3> has a position property. Execution of certain
input/output statements affects the position of a file.
Certain circumstances can cause the position of a file to

15 become indeterminate.

20

The initial point of a file is the position just before the
first record. The terminal point is the position just after
the last record.

If a file is positioned within a record, that record is the
current record; otherwise, there is no current record.

Let n be the number of records in the file. If 1 < i ~ n
25 and a file is positioned within the ith record or between

the <i-1>th record and the ith record, the <i-1>th record is
the preceding record. If n ~ 1 and a file is positioned at
its terminal point, the preceding record is the nth and last
record. If n=O or if a file is positioned at its initial

30 point or within the first record, there is no preceding
record.

If 1 ~ i < n and a file is positioned within the ith record
or between the ith and <i+1)th record, the <i+1)th record is

35 the MU record. If n ~ 1 and the file is positioned at its
injtial point, the first record is the next record. If n=O
or if a file is positioned at its terminal point or within
the nth and last record, there is no next record.

40 12.2.4 Fi le Access. There are two methods of accessing the
records of an external file: seQuential and direct. Some
files may have more than one al lowed access method; other
files may be restricted to one access method. For example,
~ processor may al low only seQuential access to a file on

45 magnetic tape. Thus, the set of al lowed access methods
depends '1n the file and the processor.

50

55

The method of accessing the file is determined when the file
is connected to a unit <12.3.2>.

An internal file must be accessed seQuentially.

12.2.4.1 Sequential Access. When conne~ted for seQuential
access, a file has the fol lowing properties:

Page 12-3s Subset Language

INPUT/OUTPUT STATEHENTS ANSI X3.9-1978 FORTRAN 77

12~2.2 Fi le Prooerties. At any given time, there is a
processor-determined ll.1. Qf. al lowed access methods, a
processor~determined ll.1. .Q.i. al lowed forms, and a processor­
determined ..i§.1. .Q.i. al lowed record lengths for a file;

A file may have a name; a file that has a name is cal led a·.
named .tiJ.Jt. The name of a named file is a character string.
The set of allowable names is processor dependent and may be
empty.

12.2.3 F"e Position. A file that is connected to a unit
<12.3> has a position property. Execution of certain
input/output statements affects the position of a file.
Certain circumstances can cause the position of a file to

5

10

become indeterminate. 15

The initial point of a file is the position just before the
first record. The terminal point is the positidn just after
.the last record.

If a file is positioned within a record, that record is the
current record; otherwise, there is no current record.

Let n be the number of records in the file. If 1 < i ~ n

20

and a file is positioned within the ith record or between 25
the <i-1>th record and the ith recot'd, the <i-1>th record is
the preceding record. If n ~ 1 and a file is positioned at
its terminal point, the preceding record is the nth and last
record. If n=O or if a file is positioned at its initial
point ·or within the fir~t record, there is no preceding 30
record.

If 1 ~ i < n and a file is positioned within the ith record
or between the ith and <i+1)th record, the <i+1)th record is·
the Mil record. If .n. ~ 1 and the file is positioned at its 35
initial point, the first rec-0rd is the next record. If n=O
or if a file is positioned at its terminal point or within
the nth and last record, there is no next record.

12.2.4 Fi1e Access. There are two methods of accessing the 40
records of an external file: seQuential and direct. Some
fi !es may have more than one al lowed access method; other
files may be restricted to one access method. For example,

·a processor may allow only seQuential access to a file on
magnetic tape. Thus, the set of al lowed access methods 45
depends on xh~ file and the processor.

The method of accessing the file is determined when the ti le
is c-0nnected to a u~it <12.3.2>.

An internal file must be accessed seQuential ly.

12.2.4.1 Sequential Alccep. Whin connected for seQuential
a~~ess, a file has the fct'l low1ng properties:

50

55

~ Fu I f. Language Page 12-3

ANSI X3.9-1978 FORTRA~ 77 INPUT/OUTPUT STATEMENTS

5

10

15

20

25

30

35

40

45

50

55

<1> The order of the records is the order in which they
were written if the direct access method is not, a
member of the set of al lowe'd access methods for the
file. If the direct access method is also a member
of the set of al lowed access methods for the file,
the order of the records is the same as that
specified for direct access <12.2.4.2>. The first
record accessed by seQuential access is the record
whose record number is 1 for direct access. The
second record accessed by seQuential access is the
record whose record number is 2 for direct access,
etc. A record that has not been written since the
file was created must not be read.

<2> The records of the file are either al I formatted or
al I unformatted, except that the last record of the
file may be an endfi le record.

(3) The records of the file must not be read or written
by direct access input/output statements <12.8.1>.

12.2.4.2 Direct Access. When connected for direct access,
a file has the fol lowing properties:

<1> The order of the records is the order of their record
numbers. The records may be read or wrftten in any
order.

<2> The records of the file are al I unformatted. If the
seQuential access method is also a member of the set
of al lowed access methods for the file, its endfi le
record, if any, is not considered to be ~art of the
file while it is connected for direct access. If the
seQuential access method is not a member of the set
of al lowed access methods for the file, the file must
not contain an endfi le record.

<3> Reading and writing records is accomplished only by
direct access input/output statements <12.8.1>.

(4) Al I records of the file have the same length.

< 5 > Each record of t he f i I e i s uni Que I y i dent i f i e d by a.
positive integer called the record number. The
record number of a record is specified when the
record is written. Once established, the record
number of a record can never be changed. Note that a
record'may not be deleted; howev~r. a record may be
rewritten.

<6> Records need not be read or wri~ten in the order of
their record numbers. Any record may be written into
the file while it is connected <12.3.2> to a unit.
For example, it is per~issible to writ~ record 3,
even though records 1 and 2 have not been written.

Page- 12-4s .Subset language

INPUT/OUTPUT STATEMENTS ANSI X3.9-1978 FOR'f\RAN 77

(1) The order of the records is the order in which they
were written if the direct access method is 11not a
member of the set of al lowed access methods for\11

• the
f i I e . I f t h e d i r e c t a c c e s s me t h o d i s a I s o a mle m be r
of the set of al lowed access methods for the file, S
the order of the records is the same as that
specified for direct access (12.2.4.2). The first
record accessed by seQuential access-J1 s the record
whose record number is 1 for direct access. The
second record accessed by seQuential access is the 10
record whose record number is 2 for direct access,
etc. A record that has not been written since the
file was created must not be read.

<2> The records of the file are either al I formatted or 15
al I unformatted, except that the last record of the
f i I e m a y b e a n e n d f i I e r e c o r d .

(3) The records of the file must not be read or written
by direct access input/output statements <12.8.1>. 20

12.2.4.2 Dir~ct Access. When connected for direct access,
a file has the fol lowing properties:

(1) The order of the records is the order of their record 25
numbers. The records may be read or written in any
order.

<2> The records of the fi I e are either. a 11 formatted or
al I unformatted. If the sequenti~I access method is 30
a I so a member of the set of a 11 owed access methods
for the file, its endfile record, if any, is not
considered to be part of the file while it is
connected for direct access. If the seQuential
access method is not a member of the set of al lowed 35
access methods for the file, the file must not
contain an endfi le record.

<3> Reading and writing records is accomplished only by
direct access input/output statements <12.8.1). 40

(4) Al I records of the file have the same length.

(5) Each record of the file is uniQuely identified by a
positive integer cal led the record number. Jhe 45
record number of a record is specified when the
record is written. Once established, the record
number of a record can never be changed. Note that a
record may not be deleted; however, a record may be
rewritten. SO

(6) Records need not be read or written in the order of
their record numbers. Any record may be written into
the file while it is connected (12.3.2) to a unit.
For example~ it is permissible to write record 3, 55
even though records 1 and 2 have not been written.

Ful I Language Page 12-4

ANSI X3.9-1978 FORTRAN 77 INPUT/OUTPUT STATEME~TS

5

Any record may be read from the f i I e whi I e it is
connected to a unit, provided that the record was
written since the file was created.

12.2.5 Internal Files. Internal files provide a means of
transferring and converting data from internal storage to

10 internal storage.

15

20

25

30

35

40

45

50

55

12.2.5.1 Internal Fi le Prooerties. An internal file has
the following properties:

<1> The file is a character variable or character array
element.

<2> A record of an internal file is a character variable
or character array element.

(3) The file consists of a single record whose length is
the same as the length of the variable or array
element.

(4) The variable or array element that i s the record of
the internal f i I e becomes defined by writing the
record. If the number of characters written in a
record i s less than the length of the record, the
remaining portion of the record i s f i I I ed with
blanks.

(5) A.record may be read only i f the variable or array
element that is the record i s defined.

(6) A variable or array element that is a record of an
internal file may become defined Cor undeflned> by
m~ans other than an output statement. For example,
th~ variable or array element may become defined by a
character assignment statement.

(7) An internal file is always positioned at the
beginning of the record prior to data transfer.

Page 12-5s Subset Language

INPUT/OUTPUT STATEMENTS ANSI X3.9-1978 FORTRAN 77

Any record may be read from the file while it is
connected to a unit, provided that the record was
written since the file was created.

<7> The records of the file must not be read or
using list-directed formatting.

written I
12.2.5 Internal Files. Internal files provide a means of
transferring and converting data from internal storage to

5

internal storage. 10

12.2.5.1 Internal Fi le Properties.
the following properties:

An internal file has

(1) The file is a character variable, character array 15
element, char~cter array, or character substring.

<2> A record of an internal file is a character variable,
character array element, or character substring.

(3) If the file is a character variable, character array
element, or character substring, it consists of a
single record whose length is the same as the length
of the variable, array element, or substring,

20

respectively. If the file is a character array, it 25
is treated as a sequence of character array elements.
Each array element is a record of the file. The
ordering of the records of the file is the same as
the ordering of the array elements in the array
(5.2.4>. Every record of the file has the same 30
length, which is the length of an array element in
the array.

(4) The variable, array element, or substring that i s the
record of the internal f i I e becomes defined by 35
writing the record. If the number of characters
written i n a record i s less than the length of the
record, the remaining portion of the record i s f i II ed
with blanks.

40
(5) 'A record may be read only i f the variable, array

element, or substring that i s the record i s defined.

(6) A variJble, array element, or substring that is a
record of an internal file may become defined <or 45
undefined) by means other than an output statement.
For example, the variable, array element, or
substring may become defined by a character
assignment statement.

50
(7) An internal file is always positioned at the

beginning of the first record prior to data transfer.

55

Ful I Language Page 12-5

ANSI X3.9~1978 FORTRAN 77 INPUT/OUTPUT STATEMENTS

5

10

1 5

12.2.5.2 Internal File Restrictions. An internal file has
the following restrictions:

(1) Reading and writing records is accomplished only by
sequential access formatted input/output statements
(12.8.1>.

<Z> An auxiliary input/output statement must not specify
an internal file.

1Z.3 Units

A unit is a means of referring to a file.

1Z.3.1 Unit Existence. At any given time, there is a
processor-determined set of units that are said to exist for
an executable program.

ZO Al I input/output statements may refer to units that exist.

1Z.3.Z Connection of a Unit. A unit has a property of
Z5 being connected or not connected. If connected, it r~fers

to a file. A unit may become connected by preconnection or
by the execution of an OPEN statement. The property of
connection is symmetric: if a unit is connected to a file,
the file is connected to the unit.

30

35

40

Preconnection. means that the unit is connected to a file at
the beginning of execution of the executable program and
therefore may be referenced by input/output statements
without the prior execution of an OPEN statement.

Al I input/output statements except OPEN must reference a
unit that is connected to a file and thereby make use of or
affect that file.

A file may be connected and not exist.
preconnected new file.

An example is a

A unit must not be connected to more than one file at the
same time, and a file must not be connected to more than one

45 unit at the same time.

50

55

Page 12-6s Subset Language

INPUT/OUTPUT STATEMENTS ANSI X3.9-1978 FORTRAN 77

12.2.5.2 Internal Fi le Restrictions.
the following restrictions:

An internal file has

<1> Reading and writing records is accomplished only by
sequential access formatted input/output statements
<12.8.1> that do not specify list-directed
formatting.

C2> An auxiliary input/output statement mu$t not specify

5

an internal file. 10

12.3 Units

A unit is a means of referring to a file.

12.3.1 ·Unit Existence. At any given time, there is a
processor-determined set of units that are said '\o exist for
an executable program.

1 5

Al I input/output statements may refer to units that exist. 20
The INQUIRE and CLOSE statements may also refer to units
that do not exist.

12.3.2 Connection of a Unit. A unit has a property of
being connected or not connected. If connected, it refers 25
to a file. A unit may become connected by preconnection or
by the execution of an OPEN statement. The property of
connection is symmetric: if a unit is connected to a file,
the f i I e is connected to the unit.

Preconnection means that the unit is connected to a file at
the beginning of execution of the executable program and
therefore may be referenced by input/output statements
without the prior execution of an OPEN statement.

Al I input/output statements except OPEN, CLOSE, and INQUIRE
must reference a unit that is connected to a file and
thereby make use of or affect that file.

A file may be connected and not exist.
preconnected new file.

An example is a

A unit must not be connected to more than one file at the
same time, and a file must not be connected to more than one

30

35

40

unit at the same time. However, mean~ are provided to 45
change the status of a unit and to connect a unit to a
different file.

After a unit has been disconnected by the execution of a
CLOSE statement, it may be connected again within the same 50
executable program to the same file or a different file.
After a file has been disconnected by the execution of a
CLOSE statement, it may be connected again within the same
executable program to the same unit or a different unit.
Note, however, that the only means to refer to a file that 55
has been disconnected is by its name in an OPEN or INQUIRE

Ful I Language Page 12-6

ANSI X3.9-1978 FORTRAN 77 INPUT/OUTPUT STATEMENTS

12.3.3 Unit Specifier and Identifier. The form of a unit
5 soecifier is:

.
where .Y. is an external unit identifier or an internal file

10 identifier.

15

20

An external unit identifier is used to refer to an external
file. An internal file identifier is used to refer to an
internal file.

An external unit identifier is one of the following:-

<1> An integer constant i or integer variable i whose
value must be zero or positive

<2> An asterisk, identifying a particular processor­
determined external unit that is preconnected for
formatted sequential access <12.9.2)

25 The external unit identif~ed by the value of i is the same
external unit in al I program units oi the executable
program. In the example:

30

35

SUBROUTINE A
READ (6 > X

SUBROUTINE B
N=6
REWIND N

the value 6 used in both program uni~s identifies the same
externa I unit.

40 An external unit identifier in an auxiliary input/output
statement <12.10) must not be an asterisk.

45

50

55

An internal ~identifier is the name of a character
variable or character array element.

The unit specifier must be the first item in a list of
specifiers.

12.4 Format Specifier and Identifier

The form of a format specifier is:

i

Subset Language

INPUT/OUTPUT STATEMENTS ANSI X3.9-1978 FORTRAN 77

statement. Therefore, there may be no means of reconnecting
an unnamed file once it is disconnected.

12.3.3 Unit Specifier and Identifier. The form of a unit
specifier is: 5

[UNIT =l .!!

where .!! is an external unit identifier or an internal file
identifier. 10

An external unit identifier is used to refer to an external
file. An internal file identifier is used to refer to an
internal file.

An external unit i.dentifier is one of the fol lowing:

(1) An integer expression i whose valuB must be
positive

zero

(2) An asterisk, identifying a particular processor­
determined external unit that is preconnected for
formatted sequential access <12.9.2)

The external unit identified by the value of i is
externa I unit in a 11 program uhi ts of the
program. In the example:

SUBROUTINE A
READ C6) X

SUBROUTINE B
N=6
REWIND N

the same
executable

the value 6 used in both program units identifies the same
externa I unit.

1 5

20

25

30

35

An e~ternal unit identifier in an auxiliary input/output 40
statement <12.10) must not be an asterisk.

An internal~ identifier
variable, character array,
character substring.

is the name of
character array

a character
element, or

If the optional characters UNIT= are omitted from the unit
specifier, the unit specifier must be the first item in a
list of specifiers.

12 . 4 Form at Spec i f i er and Iden ti f i er

The form of a format specifier is:

45

50

CFMT =l i 55

Ful I Language Page 12-7

ANSI X3.9-1978 FORTRAN 77 INPUT/OUTPUT STATEMENTS

5

10

15

20

25

30

35

where 1 is a format identifier.

A format identifier identifies a format. A format
identifier must be one of the fol lowing:

(1) The statement label
appears in the same
identifier.

of a FORMAT
program unit

statement that
as the format

<2> An integer variable name that has been assigned the
statement label of a FORMAT statement that appears in
the same program unit as the format identifier
(10.3).

(3) A character constant <13.1.2).

If present, the format specifier must be the second item in
the control information list and the f~rst item must be the
unit specifier.

12.5 Record Specifier

The form of a record specifier is:

REC = !.1l

where !J1 is an integer constant or integer variable whose
value is pos1t1ve. It specifies the number of the record
that is to be read or written in a file connected for direct

40 access.

12.6 Error and End-of-File Conditions

The set of input/butput error conditions is processor
45 dependent.

50

An end-of-file condition exists if either of the following
events occurs:

(1) An endfi le record is encountered during the
of a file connected for sequential access.
case, the file is positioned after the
record.

reading
In this
endfile

55 <2> An attempt is made to read a record beyQnd the end of
an internal file.

Page 12-8s Subset Language

INPUT/OUTPUT STATEMENTS ANSI X3.9-1978 FORTRAN 77

where i is a format identifier.

A format identifier identifies a format. A format
identifier must be one of the following:

(1) The statement label
appears in the same
identifier.

of a FORMAT
program unit

statement that
as the format

5

<2> An integer variable name that has been assigned the 10
statement label of a FORMAT statement that appears in
the same program unit as the format identifier
(10.3).

(3) A character array name <13.1.2>. 15

(4) Any character expression except a character
expression involving concatenation of an operand
whose length specification is an asterisk in
parentheses unless the opetand is the symbolic name 20
of a constant. Note that a character constant is
permitted.

<5> An asterisk, specifying list-directed f-0rmatting.

If the optional characters FMT= are omitted from the format
specifier, the format specifier must be the second item in
the control information list and the first item must be the
unit specifier without the optional characters UNIT=.

12.5 Record Specifier

The form of a record specifier is:

REC = .LO.

wh e r e .LO. i s a n i n t e g e r e x p r e s s i o n w h o s e v & I u e i s p o s i t i v e .
It specifies the number of the record that is to be read or
written in a file connected for direct access.

12.6 Error and End-of-Fi le Conditions

The set of input/output error conditions is processor

25

30

35

40

dependent. 45

An end-of- f i I e con di t i on ex i s t s i f e i t her of t he fo I I ow i n g
events occurs:

(1) An endfi le record is encountered during the
of a file connected for sequential access.
case, the file is positioned after the
record.

reading
In this
endfi le

50

(2) An attempt is made to read a record beyond the end of 55
an internal file.

Fu I I Language Page 12-8

ANSI X3.9-1978 FORTRAN 77 INPUT/OUTPUT STATEMENTS

5
If an end-of-file condition occurs during execution of a
READ statement, execution of the READ statement terminates
and the entities specified by the input list and implied-DO­
variables in the input list become undefined. Note that

10 variables appearing only in subscripts and implied-DO
parameters in an input list do not become undefined when the
entities specified by the list become undefined.

15 If an error condition occurs during execution of an output
statement, execution of the output statement terminates and
implied-DO-variables in the output list become undefined.

20

25

If an error condition occurs
input/output statement, or if
occurs during execution of a READ
contain an end-of-file specifier
executable program is terminated.

during execution of an
an end-of-f i I e condition
statement that does not
<12.7.2>, execution of the

12.7 Input/Output Status. Error. and End-of-Fi le Specifiers

The input/output status specifier is not included in the
30 subset.

35

40

45

so

55

12.7.1 Error Specifier.
included in the subset.

Page 12-9s

The error specifier is not

Subset Language

INPUT/OUTPUT STATEMENTS ANSI X3.9-1978 FORTRAN 77

If an error condition occurs during
input/output statement, execution of
statement terminates and the position of
indeterminate.

execution of an
the input/output

the file becomes

If an error condition or an end-of-file condition occurs
during execution of a READ statement, execution of the READ
statement terminates and the entities specified by the input
list and implied-DO-variables in the input list become

s

undefined. Note that variables and array elements appearing 10
only in subscripts, substring expressions, and implied-DO
parameters in an input list do not become undefined when the
entities specified by the list become undefined.

If an error condition occurs during execution of an output 1S
statement, execution of the output statement terminates and
implied-DO-variables in the output list become undefined.

If an error conditi6n occurs during execution of an
input/output statement that contains neither an input/output 20
status specifier C12.7> nor an error specifier <12.7.1), or
if an end-of~fi le condition occurs during execution of a
READ statement that contains neither an input/output status
specifier nor an end-of-file specifier <12.7.2), execution
of the executable program is terminated. 2S

12.7 Input/Output Status. Error. and End-of-Fi le Specifiers

The form of an input/output status specifier is:
30

IOSTAT = ill.
where ios is an integer variable or integer array element.

Execution of an input/output statement containing this 3S
specifier causes ios to become defined:

(1) with a zero value if neither an error condition nor
an end-of-file condition is encountered by the

.processor, 40

(2) with a processor-dependent positive integer value
an error condition is enc~untered, or i f I

(3) with a processor-dependent negative integer value if 4S
an end-of-file condition is encountered and no error
condition is encountered.

12.7.1 Error Specifier. The form of an error specifier is:

ERR = ~
where~ is the statement label of an
that appears in the same program
specifier.

executable
unit as

statement
the error

50

SS

Fu I I Language Page 12-9

ANSI X3.9-1978 FORTRAN 77 INPUT/OUTPUT STATEMENTS

5

10

15

20

25

30

35

40

45

50

12.7.2 End-of-File Specifier. The form of an end-of-file
specifier is:

END = ~

whe~e ~ is the statement label of an executable statement
that appears in the same program unit as the end-of-file
specifier.

If a READ statement contains an end~of-fi I~ specifier and
the processor encounters an end-of-file condition and no
error condition during execution of the statement:

(1) execution of the READ statement terminates, and

<2> execution continues with the statement labeled~-

12.8 READ. WRITE. and PRINT Statements

The READ statement is the data transfer input statement.
The WRITE statement is the data transfer output statement.
The forms of the data transfer input/output statements are:

READ Cci list) [iolistl

WRITE Cci list> [iolistl

where: ci list is a control information list ()2.8.1> that
55 includes:

Page 12-10s Subset Language

INPUT/OUTPUT STATEMENTS ANSI X3.9-1978 FORTRAN 77

If an input/output statement contains an error specifier and
the processor encounters an error condition during execution
of the statement:

(1) execution of the input/output statement terminates,

<2> the position of the flle specified in the
input/output statement becomes indete~minate,

5

(3) if the input/output statement contains an 10
input/output status specifier <12.7), the variable or
array element ios becomes defined with a processor­
dependent positive integer value, and

(4) execution continues with the statement labeled~-

12.7.2 End-of-File Specifier. The form of an end-of-file
specifier is:

END = ~
where ~ is the statement label of an executable statement
that appears in the same program unit as the end-of-file
specifier.

If a READ statement contains an end-of-file specifier and
the processor encounters an end-of-file condition and no
error condition during execution of the statement:

1 5

20

25

(1) execution of the READ statement terminates, 30

<2> if the READ statement contains an input/output status
specifier <12.7), the variable or array element ios
becomes defined with a processor-dependent negative
integer value, and 35

<3> execution continues with the statement labeled~-

12.8 READ. WRITE. and PRINT Statements

The READ statement is the data transfer input statement.
The WRITE and PRINT statements are the data transfer output
statements. The forms of the data transfer input/output
statements are:

READ Cci list) [iolist]

READ i [,iolistJ

WRITE <ci list> CiolistJ

PRINT i C,iolistJ

where: ci list is a control information list <12.8.1) that

40

45

50

includes: 55

Fut I Language Page 12-10

ANSI X3.9-1978

5

10

15

•

FORTRAN 77 INPUT/OUTPUT STATEMENTS

(1) A reference to the source or destination of
the data to be transferred

<2> Optional specification of editing processes

(3) Optional specifiers that determine the
execution seQuence on the occurrence of
certain events

(4) Optional speci fi ca ti on to identify a record

iolist is an input/output list (12.8.2> specifying
the data to be transferred

20 The PRINT statement and READ statement without a ci list are
not included in the subset.

12.8.1 Control Information List. A control information
~. ci list, is a list <2.10) whose list items may be any

25 of the following:

30

35

40

45

..Y.
i
REC = £....!l
END = ~

A control information list must contain exactly one unit
specifier (12.3.3), at most one for~at specifier (12.4), at
most one record specifier <12.5>, and at most one end-of­
fi le specifier <12.7.2>.

-
If the control i~i-0rmation list contains a format specifier,
the statement is a formatted input/outout statement;
otherwise, it is an unformatted input/output statement.

If the control information list contains a record specifier,
the state~ent is a direct access input/output statement;
otherwise, it is a sequential access input/output statement.

50 The unit specifier must be the first item in the control
information list.

If present, the format specifier must be the second item in
55 the control information list and the first item must be the

unit specifier.

P a g·e 1 2 -11 s Subset Language

INPUT/OUTPUT STATEMEN1S ANSI ~3.9-1978 FORTRAN 77

1

<1> A reference to the source or destination of
the data to be transferred

<2> Optional specification of editing processes

C3) Optional specifiers that determine the
execution sequence on the occurrence of
certain events

(4) Optional specification to identify a record

(5) Optional specification to provide the return
of the input/output status

is a format identifier <12.4>

iolist is an input/output list (12.8.2> specifying
the data to be transferred

12.8.1 Control Information List. A control information
list, cilist, is a list <2.10) whose 11st items may be any

5

10

15

20

of the fol lowing: 25

CUNIT =J .Y.
CFMT =J 1
REC = .r:.n. 30
IOSTAT = ios
ERR = A
END = A

A control ~nformation list must contain exactly one unit
specifier <12.3.3), at most one format specifier C12.4), at
most one record specifier <12.5), at most one input/output
status specifier <12.7), at most one error specifier

35

(12.7.1>, and at most one end-of-file specifier <12.7.2>. 40
(

If the control information list contains a format specifier,
the statement is a formatted, inout/output statement:
otherwise, it is an unformatted input/cutout statement.

If the control information list contains a record specifier,
the statement is a direct access inout/outout statement:
otherwise, it is a seguential access input/output statement.

45

If the optional characters UNIT= are omitted from the unit 50
specifier, the unit specifier must be the first item in the
control information list.

If the optional characters FMT= are omitted from the format
sp~ciifier, the format specifier mus~ be the second Jitem in 55 •

Fu I I Language Page 12-11

ANSI X3.9-1978 FORTRAN 77 INPUT/OUTPUT STATEMENTS

A control information list must not contain both a record
5 specifier and an end-of-file specifier, or both a format

specifier and a record specifier.

10

1 5

In a WRITE statement, the control information list must not
contain an end-of-file specifier.

If the unit specifier specifies an
control information list must contain a
and must not contain a record specifier.

internal
format

file, the
identifier

12.8.2 Input/Output List. An input/output lia.l. iolist,
20 specifies the entities whose values are transferred by a

data transfer input/output statement.

An input/output list is a list <2.10) of input/output list
items and implied-DO lists <12.8.2.3>. An input/cutout lia.l

25 i1JUn. is either an input list item or an output list item.

30

35

40

If an array name appears as an input/output
treated as· if a 11 of the e I ements of
specified in the order given by array
<5.2.4>. The name of an assumed-size dummy
appear as an input/output list item.

list item, it is
the array were
element ordering
array must not

12.8.2.1 Input List Items.
of the following:

An input lia.l i1JUn. must be one

<1> A variable name

(2) An array element name

<3> An array name

Only input list items may appear as input/output list items
45 in an input statement.

50

55

12.8.2.2 Output List Items.
one of the fol lowing:

<1> A variable name

<2> An array element name

(3) An array name

Page 12-12s

An cutout .l.J.il i1JUn. must be

Subset language

INPUT/OUTPUT STATEMENTS ANSI X3.9-1978 FORTRAN 77

the control information list and the first item must be the I
unit specifier without the optional characters UNIT=.

A control information list must not contain both a record
specifier and an end-of-file specifier. 5

If the format identifier is an asterisk, the statement is a
list-directed inout/output statement and a record specifier
must not be present.

In a WRITE statement, the control information list must not
contain an end-of-file specifier.

If the unit specifier specifies an internal file, the

10

control information list must contain a format identifier 15
other than an asterisk and must not contain a record
specifier.

12.8.2 Input/Output List. An input/output l.iil, iolist,
specifies the entities whose values are transferred by a 20
data transfer input/output statement.

An input/output list is a list <2.10) of input/output list
items and implied-DO lists <12.8.2.3>. An input/outout ~
item is ei·ther an input list item or an output list item. 25

If an array name appears as an input/output list item, it is
treated as if al I of the elements of the array were
specified in the order given by array element ordering
(5.2.4>. The name of an assumed-size dummy array must not 30
appear as an input/output list item.

12.8.2.1 !neut List Items.
of the following:

<1> A variable name

<2> An array element name

An input l.iil i.LJu!L must be one

<3> A character substring name

(4) An array name

Only input list items may appear as input/output list items

35

40

in an input statement. 45

12.8.2.2 Output List Items.
one of the fol lowing:

<1> A variable name

<2) An array element name

An Q..Y..!QY..l l.iil i.LJu!L m u s t b e

50

<3> A character substring name
55

<4> An array name

Ful I Language Page 12-12

ANSI X3.9-1978 FORTRAN 17 INPUT/OUTPUT STATEMENTS

5

10

15

20

12.8.2.3 Imolied-DO List. An implied-DO liil is of the
form:

(dlist, l = I1• I2 [,IJ])

where: 1, I1• I 2 , and Il are as specified for the DO
statement <11.10)

dlist is an input/output list

The range of an implied-DO list is the list dlist. Note
that dlist may contain implied-DO lists. The iteration
count and the values of the DO-variable l are established
from I 1, ~2 , and Il exactly as for a DO-loop. In an input

25 statement, the DO-variable 1, or an associated entity, must
not appear as an input list item in dlist. When an implied-
00 list appears in an input/output list, the list items in
dlist are specified once for each iteration of the implied­
DO list with appropriate substitution of values for any

30 occurrence of the DO-variable 1.

12.9 Execution of a Data Transfer Input/Output Statement

The effect of executing a data transfer input/output
35 statement must be as if the fol lowing operations were

performed in the order specified:

40

45

50

55

Page 12-13s

(1) Determine the direction of data transfer

<2> Identify the un.i t

(3) Establi~h the format if any is specified

<4> Position the file prior to data transfer

(5) Transfer data between the file and the entities
specified by the input/output list <if any)

<6> Po~ition the file after data transfer

Subset Language

INPUT/OUTPUT STATEMENTS ANSI X3.9-1978 FORTRAN 77

(5) Any other expression except a character expression
involving concatenation of an operand whose length
specification is an asterisk in parentheses unless
the operand is the symbolic name of a constant

Note that a constant, an expression involving operators or
function references, or an expression enclosed in
parentheses may appear as an output list item but must not
appear as an input list item.

12.8.2.3 Imolied-DO List. An imolied-DO list is of the
form:

(d I i s t I i = ~I I ~2 [I ~3])

where: i, ~1 • ~2 , and ~3 are as specified for the DO
statement <11.10>

dlist is an input/output list

The range of an implied-DO list is the list dlist. Note
tha~ dlist may contain implied-DO lists. The iteration
count and the values of the DO-variable i are established
from ~ 1 , ~2 • and ~3 exactly as for a DO-loop. In an input

5

10

15

20

statement, the DO-variable i. or an associated entity, must 25
not appear as an input list item in dlist. When an implied-
DO list appears in an input/output list, the list items in
dlist are specified once for each iteration of the implied-
DO list with appropriate substitution of values for any
occurrence of the DO-variable i. 30

12.9 Execution of a Data Transfer Inout/Output Statement

The effect of executing a data transfer input/output
sta.tement must be as if the fo 11 owing operations were 35
performed in the order specified:

<1> Determine the direction of data transfer

<2> Identify the unit 40

<3> Establish the format ii any is specified

<4> Position the file prior to data transfer

<5> Transfer data between the file and the entities
specified by the input/output list (if any)

(6) Position the file after data transfer

<7> Cause t1re specified integer variable or array element
in the input/output status specifier (if any) to
become defined

45

50

55

Ful I Language Page 12-13

ANSI X3.9-1978 FORTRAN 77 INPUT/OUTPUT STATEMENTS

12.9.1 Direction of Pata Transfer. Execution of a READ
statement causes values to be transferred from a ff le to the
entities specified by the input list, if one is specified.

5 Execution of a WRITE statement causes values to be
transferred to a file from the entities specified by the
output list and format specification (if any). Executio~ of
a WR IT E s t a t em e nt fo r a f i I e t h a t d o e s n o t e x i s t c r e a t e s t h e
file, unless an error condition occurs.

10
12.9.2 Identifying a Unit. A data transfer input/output
statement includes a unit specifier that identifies an
external unit or an internal file. A READ statement that
contains an asterisk as the unit identifier specifies a

15 particular processor-determined unit. A WRITE statement
that contains an asterisk as the unit identifier specifies
some other processor-determined unit. Thus, each data
transfer input/output statement identifies an external unit
or an internal file.

20

The unit identified by a data transfer input/output
25 statement must be connected to a file wh~n execution of the

statement begins.

12.9.3 Establishing a Format. If the control information
list contains a format identifier, the format specification

30 identified by the format identifier is established.

On output, if an internal file has been specified, a format
35 specification <13.1) that is in the file or is associated

<17.1) with the file must not be specified.

12.9.4 Fi le Position Prior to Data Transfer. The
positioning of the file prior to data transfer depends on

40 the method of actess: seQuential or direct.

If the file contains an endfi le record, the file must not be
po~itioned after the endfi le record prior to data transfer.

45 12.9.4.1 Sequential Access. On input, the file is
positioned at the beginning of the neKt record. This record
becomes the current record. On output, a ne~ record is
created and becomes the last record of the file.

50 An internal file is always positioned at the beginning of
the record of the file. This record becomes the current
record.

55

Page 12-14s Subset Language

INPUT/OUTPUT STATEMENTS. ANSI X3.9-1978 FORTRAN 77

12.9.1 Direction of Data Transfer. Execution of a READ
statement causes values to be tra~sferred from a file to the
entitiei specified by the input list, if one is specified.

Execution of a WRITE or PRINT statement causes values to be 5
transferred to a file from the entities specified by the
output list and format specification (if any). Execution of
a WRITE or PRINT statement for a file that does not exist
creates the file, unless an error condition occurs.

12.9.2 Identifying a Unit. A data transfer input/output
statement that contains a control information list <12.8.1)
includes a unit specifier that identifies an external unit
or an internal file. A READ statement that does not contain

10

a control information list specifies a particular processor- 15
determined unit, which is the same as the unit identified by
an asterisk in a READ statement that contains a control
information lis!. A _PRINT_sta!ement sp~cifies some oth~r
processor-determ1ned un1t, wh1ch is the same as the unit
identified by an asterisk in a WRITE statement. Thus, each 20
data transfer input/output statement identifies an external
unit or an internal file.

The unit identified by a data transfer input/output
statement must be connected to a file when execution of the 25
statement begins.

12.9.3 Establishing a Format. If the control information
list contains a format identifier other than an asterisk,
the format specification identified by the format identifier 30
is established. If the format identifier is an asterisk,
list-directed formatting is established.

On output, if an internal file has been specified, a format
specification <13.1) that is in the file or is associated 35
<17.1> with the file must not be specified.

12.9.4 Fi le Position Prior to Pata Transfer. The
positioning of the file prior to data transfer depends on
the method of access: sequential or direct. 40

If the file contains an endfi le record, the file must not be
positioned after the endfi le record prior to data transfer.

12.9.4.1 Seguential Access. On input, the file is 45
positioned at the beginning of the next record. This record
becomes the current record. On output, a new record is
created and becomes the last record of the file.

An internal file
the first record of
current record.

is always positioned at the beginning of
the file. This record becomes the I 50

55

Fut I Language Page 12,..14

ANSI X3.9-1978 FORTRAN 77 ·INPUT/OUTPUT STATEMENTS

5

12.9.4.2 Direct Access. For direct access, the file is
positioned at the begin~ing of the record specified by the
rec-0rd specifier <12.5). This record becomes the current
record.

1 2 . 9 . 5 Data Trans fer·. Data are t ran S· fer red bet ween records
and entities specified by the input/output list. The list
items are processed in the order of the input/output list.

10 Al I values needed to determine which entities are specified
by an input/output list item are determined at the beginning
of the processing of that item.

Al I values are transmitted to or from the entities specified
15 by a list item prior to the processing of any succeeding

list item. In the example,

READ <3> N, A<N>

20 two values are read: one is assigned to N, and the second is
assigned to A<N> for the new value of N.

An input list item, or an entity associated with it
<17.1.3), must not contain any portion of the established

25 format specification.

If an internal file has been specified, an input/output list
item must not be in the file or associated with the file.

30 A DO-variable becomes defined at the beginning of processing
of the items that constitute the range of an implied-DO
I i st.

On output, every entity whose value is to be transferred
35 must be defined.

On input, an attempt to read a record of a file connected
for direct access that has not previously been written
causes al I entities specified by the input list to become

40 ~ndefined.

12.9.5.1 Unformatted Data Transfer. During unformatted
data transfer, data are transferred without editing between
the current record and the entities sp~cLfie~ by the

45 input/output list. Exactly one record is read or written.

On input, the file must be positioned so that the record
read is an unformatq1d record or an endfi le record.

50 On input, the number of values reQuired by the input list
must be less than or eQual to the number of values in ·the
record.

On input, the type of each value in the re~ord must agree
55 with the type of the corresponding entity in the input list.

If an entity in the input list is of type character, the

Page 12-15s Subset Language

INPUT/OUTPUT STATEMENTS ANSI X3.9-1978 FORTRAN 77

12.9.4.2 Direct Access. For direct access, the file is
positioned at the beginning of the record specified by the
record specifier <12.5). This record becomes the current
record.

12.9.5 Pata Transfer. Data are transferred between records
and entities specified by the input/output list. The list
items are processed in the order of the input/output list.

5

Al I values needed to determine which entities are specified 10
by an input/output list item are determined at the beginning
of the processing of that item.

Al I values are transmitted to or from the entities specified
by a list item prior to the processing of any succeeding 15
list item. In the example,

READ C3> N, ACN>

two values are read: one is assigned to N, and the second is 20
assigned to ACN> for the new value of N.

A~ input list item, or an entity associated with it
<17.1.3), must not contain any portion of the established
format specification. 25

If an internal file has been specified, an input/output list
item must not be in the file or associated with the file.

A DO-variable becomes defined at the beginning of processing 30
of the items that constitute the range of an implied-DO
I i st.

On output, every entity whose value is to be transferred
must be defined. 35

On input, an attempt to read a record of a fi I e connected
for direct access that has not previously been written
causes al I entities specified by the input list to become
undefined. 40

12.9.5.1 Unformatted Data Transfer. During unformatted
data transfer, data are transferred without editing between
the current record and the entities specified by the
input/output list. Exactly one record is read or written. 45

On input, the file must be positioned so that the record
read is an unformatted record or an endfi le record.

On input, the number of values reQuired by the input list
must be less than or eQual to the number of values in the
record.

On input, the type of each value in the record must agree
with the type of the corresponding entity in the input list, I
except that one complex value may correspond to two real

50

55

Fut I Language Page 12-15

ANSI X3.9-1978 FORTRAN 77 INPUT/OUTPUT STATEMENTS

5

"

length of the character entity must agree with the length of
the character value.

On output to a file connected for direct access, the output
list must not specify more values than can fit into a
record.

10 On output, if the file is connected for direct access and
the values specified by the output list do not fi I I the
record, the remainder of the record is undefined.

If the file is connected for formatted input/output,
15 unformatted data transfer is prohibited.

The unit specified must be an external unit.

12.9.5.2 Formatted Data Transfer. During formatted data
20 transfer, data are transferred with editing between the

entities specified by the input/output list and the file.
The current record and possibly additional records are read
or written.

25 On in'Put, the file must be positioned so that the record
re-ad is a formatted record or an endfi le record.

30

35

40

45

50

55

If the fi I~ is connected for unformatted input/output,
formiH,ted data transfer is prohibited.

12.9.5.2.1 Using a Format Specification. If a format
specification has been established, format control (13.3) is
initiated and editing is performed as described in 13.3
through 13.5.

On input, the input list and format specification must not
require more characters from a record than the record
contains.

Page 12-16s Subset Language

INPUT/OUTPUT STATEMENTS ANSI X3.9-1978 F~RTRAN 77

list entities or two real values may correspond to one
complex list entity. If an entity in the input list is of
type character, the length of the character entity must
agree with the length of the character value.

On output to a file connected for direct access, the output
list must not specify more values than can fit into a
record.

5

On output, if the file is connected for direct access and 10
the values specified by the output list do not fi I I the
record, the remainder of the record is undefined.

If the file is connected for formatted input/output,
unformatted data transfer is prohibited. 15

The unit specified must be an external unit.

12.9.5.2 Formatted Data Transfer. During formatted data
transfer, data are transferred with editing between the 20
entities specified by the input/output list and the file.
The current record and possibly additional records are re&d
or written.

On input, the file must be positioned so that the record 25
read is a formatted record or an endfi le record~

If the file is connected for unformatted input/output,
formatted data transfer is prohibited.

12.9.5.2.1 Using a Format Specification. If a format
specification has been established, format control <13.3> is
initiated and editing is performed as described in 13.3
through 13.5.

On input, the input list and format specification must not
require more characters from a record than the record
contains.

30

35

If the file is connected for direct access, the record 40
number is increased by one as each succeeding record is read
or written.

On output, if the file is connected for direct access or is
an internal file and the characters specified by the output 45
list and format do not fi I I a record, blank characters are
added to fi I I the record.

On output, if the file is connected for direct access or is
an internal file, the output list and format specification 50
must not specify more characters for a record than can fit
into lhe record.

55

Ful I Language Page 12-16

ANSI X3.9-1978 FORTRAN 77 INPUT/OUTPUT STATEMENTS

5

10

1 5

20

12.9.5.2.2 List-Directed Formatting.
formatting is not included in the subset.

12.9.5.2.3 Printing of Formatted Records.
information i n a formatted record to
determined by the processor i s ca I I ed
formatted record i s printed, the f i rs t
record i s not printed. The remaining
record, i f any, are printed i n one line
left margin.

Li st-directed

The transfer of
certain devices
grinting. I f a

character of the
characters of the

beginning at the

The first character of such a record determines vertical
spacing as follows:

Character Vertical Spacing Before Printing

Blank One Line
0 Two Lines
1 To Fi rs t Line of Next Page
+ No Advance

25 If there are no characters in the record <13.5.4>, the
vertical spacing is one line and no characters other than
blank are printed in that line.

30

12.9.6 File Position After Data Transfer. If an end-of­
f i I e con di t i on ex i st s as a res u I t of read i n g an end f i I e

35 record, the file is positioned after the endfile record.

If no error condition or end-of-file condition exists, the
file is positioned after the last record read or written and
that record becomes the preceding record. A record written

40 on a file connected for sequential access becomes the last
record of the file.

If the file is positioned after the endfile record,
execution of a data transfer input/output statement is

45 prohibited. However, a BACKSPACE or REWIND statement may be
used to reposition the file.

50

55

12.9.7 Ingut/Outgut Status Sgecifier Definition. The
input/output status specifier is not included in the subset.

Page 12-17s Subset Language

INPUT/OUTPUT STATEMENTS ANSI X3.9-1978 FORTRAN 77
\

12.9.5.2.2 List-Directed Formatting. If
formatting has been established, editing is
described in 13.6.

list~directed
performed as

12.9.5.2.3 Printing of Formatted Records. The transfer of 5
information in a formatted record to certain devices
determined by the processor is cal led orinting. If a
formatted record is printed, the first character of the
record is not printed. The remaining characters of the
record, if any, are printed in one line beginning at the 10
left margin.

The first character of such a record determines vertical
spacing as follows:

Character Vertical Spacing Before Printing

Blank One Line
0 Two Lines
1 To First Line of Next Page
+ No Advance

1 5

20

If there are no characters in the record <13.5.4), the 25
vertical spacing is one line and no characters other than
blank are printed in that line.

A PRINT statement does not imply that printing wi I I occur,
and a WRITE statem~nt does not imply that printing wi I I not 30
occur.

12.9.6 Fi le Position After D~ta Transfer. If an end-of­
fi le condition exists as a result of reading an endfile
record, the file is positioned after the endfile record. 35

If no error condition or end-of-file condition exists, the
file is positioned after the last record read or written and
that record becomes the preceding record. A record written
on a f i I e connected for sequenti a I access becomes the I ast 40
record of the file.

If the file is positioned after the endfi le record,
execution of a data transfer input/output statement ,s
prohibited. However, a BACKSPACE or REWIND statement may be 45
used to reposition the file.

If an error condition exists, the position of the file is
indeterminate.

12.9.7 Input/Output Status Specif,er Definition. If
data transfer input/output statement contaiMs
input/output status specifier, the integer variable or
element ios becomes defined. If no error condition or
of-file condition exists, the value of .iQi is zero.
e _r r or c on d i t i on e x i s t s , t h e v a I u e o f i o s i s po s i t i v e •

the
an

array
end-

If an
If an

50

55

Fu 11 Languag.e Page 12-17

ANSI X3.9-1978 FORTRAN 77 INPUT/OUTPUT STATEMENTS

5

1 0

15

20

25

12.10 Auxiliary lnput/Outout Statements

12.10.1 OPEN Statement. An OPEN statement may be used to
connect <12.3.2) an existing file to a unit, create a file
<12.2.1> that is preconnected, or create a file and connect
it to a unit.

The form of an OPEN statement is:

OPEN <olist>

where olist is a list <2.10> of specifiers:

Q

ACCESS = 'DIRECT'
RECL = .tl

30 olist must contain exactly one external unit specifier
<12.3.3> and must contain exactly one of each of the other
specifiers. The specified unit is connected to a processor­
determined file. <See, however, 12.10.1.1.)

35 The other specifiers are described as fol lows:

40

45

50

55

Page 12-18s Subset Language

INPUT/OUTPUT STATEMENTS ANSI X3.9-1978 FORTRAN 7~

end-of-file condition exists and no error condition
the value of ill is negative.

12.10 Auxi1iary Inout/Outout Statements

exists, I

12.10.1 OPEN Statement. An OPEN statement may be used to
connect (12.3.2) an existing file to a unit, create a file
<12.2.1) that is preconnected, create a file and connect it

Lto a unit, or change certain specifiers of a connection

5

bet .. een a file and a unit. 10
"

The form of an OPEN statement is:

OPEN Colist>

where olist is a list <2.10> of specifiers:

CUNIT =l !!..
IOSTAT = ios
ERR = i
FILE = fin
STATUS = ..tl.§.
ACCESS = ~
FORM = .im.
RECL = LL
BLANK = blnk

olist must contain exactly one external
<12.3.3) and may contain at most one of each
specifiers.

The other specifiers are described as fbl lows:

IOSTAT = ios

unit specifier
of the other

is an input/output status specifier <12.7).
Execution of an OPEN statement conta1n1ng this

15

20

25

3-0

35

specifier causes ios to become defined with a zero 40
value if no error condition exists or with a
processor-dependent pos1t1ve integer value if an
error condition exists.

ERR = i 45

is an error specifier <12.7.1).

FILE = fin

fin is a character expression whose value when
t r a i I i n g b I a n k s a r e r e m o v e d i s t h e n a m e' o f t h e
to be connected to the specified unit. The file
must be a name that is al lowed by the processor.
this specifier is omitt~d ·and the unit is

Ful I language

50
any

f i I e
name

If
not ~55

Page 12-18

ANSI X3.9-1978 FORTRAN 77 INPUT/OUTPUT STATEMENTS

5

10

15

20

25

30

35

40

45

50

55

ACCESS = 'DIRECT'

specifies the access method for the connection of the
file as direct <12.2.4>. For an existing file, the
specified access method must be included in the set
of al lowed access methods for the file <12.2.4>. For
a new file, the processor creates the file with a set
of allowed access methods that includes the specified
method.

Page 12-19s Subset Language

INPUT/OUTPUT STATEMENTS ANSI X3.9-1978 FORTRAN 77

connected to a file, it
processor-determined file.

STATUS = sta

becomes connected to a
<See also 12.10.1.1.>

sta is a character expression whose value when any
trailing blanks are removed is OLD, NEW, SCRATCH, or
UNKNOWN. If OLD or NEW is specified, a FILE=
specifier must be given. If OLD is specified, the

5

file must exist. If NEW is specified, the file must 10
not exist. Successful execution of an OPEN statement
with NEW specified creates the file and changes the
status to OLD <12.10.1.1). If SCRATCH is specified
with an unnamed file, the file is connected to the
specified unit for use by the executable program but 15
is deleted <12.2.1> at the execution of a CLOSE
statement referring to the same unit or at the
termination of the executable program. SCRATCH must
not be specified with a named file. If UNKNOWN is
specified, the status is processor dependent. If 20
this specifier is omitted, a value of UNKNOWN is
assumed.

ACCESS = ace

ace is a character expression whose value when any
trai Ii ng b I an ks are removed is SEQUENTIAL or DIRECT.
It specifies the access method for the connection of
the file as being sequential or direct <12.2.4). If

25

this specifier is omitted, the assumed value is 30
SEQUENTIAL. For an existing file, the specified
access method must be inc I uded in the set of a 11 owed
access methods for the file <12.2.4>. For a new
file, the processor creates the file with a set of
al lowed access methods that includes the specified 35
method.

FORM = i.m.

i.m. is a character expression whose value when any 40
trailing blanks are removed is FORMATTED or
UNFORMATTED. It specifies that the file is being
connected for formatted or unformatted input/output,
respectively. If this specifier is omitted, a value
of UNFORMATTED is assumed if the file is being 45
connected for direct access, and a value of FORMATTED
is assumed if the file is being connected for
sequential access. For an existing file, the
specified form must be included in the set of allowed
forms for the file <12.2.2>. For a new file, the .50
processor creates the file with a set of allowed
forms that includes the specified form.

55

Ful I language Page 12-19

ANSI X3.9-1978 FORTRAN 77 INPUT/OUTPUT STATEMENTS

RECL = .tl
.tl is an integer constant or integer variable whose
value must be positive. It specifies the length of

5 each record in a file being connected for direct
access. The length is measured in processor­
determined units. For an existing file, the value of
.tl must be included in the set of al lowed record
lengths for the file <12.2.2>. For a new file, the

10 processor creates the file with a set of allowed
record lengths that includes the specified value.
This specifier must be given when a file is being
connected for direct access.

15

20

25

30

35

The unit specified must exist.

A unit may be connected by execution of an OPEN statement in
40 any program unit of an executable program and, once

connected, may be referenced in any program unit of the
executable program.

12.10.1.1 Open of a Connected Unit. If a unit is connected
45 to a file that exists, execution of an OPEN statement for

that unit is ~ot permitted.

50

55

Page 12-ZOs Subset Language

INPUT/OUTPUT STATEMENTS ANSI X3.9-1978 FORTRAN 77

RECL = tl

tl is an integer expression whose value must be
pos1t1ve. It specifies the length of each record in
a file being connected for direct access. If the 5
file is being connected for formatted input/output,
the length is the number of characters. If the file
is being connected for unformatted input/output, the
length is measured in processor-dependent units. For
an existing file, the value of tl must be included in 10
the set of a 11 owed record I engths for the f i I e
<12.2.2>. For a new file, the processor creates the
file with a set of al lowed record lengths that
includes the specified value. This specifier must be
given when a file is being connected for direct 15
access; otherwise, it must be omitted.

BLANK = blnk

.!:LLn1. is a character expression whose value when any 20
trailing blanks are removed is NULL or ZERO. If NULL
is specified, al I blank characters in numeric
formatted input fields on the specified unit are
ignored, except that a field of al I blanks has a
value of _zero. If ZERO is specified, all blanks 25
other than leading blanks ar~ treated as zeros. If
this specifier is omitted, a value of NULL is
assumed. This specifier is permitted only for a file
being connected for formatted input/output.

The unit specifier is required to appear; all other
specifiers are optional, except that the record length tl
must be specified if a file is being connected for direct
access. Note that some of the specifications have an

30

assumed value if they are omitted. 35

The unit specified must exist.

A unit may be connected by execution of an OPEN statement in
any program unit of an executable program and, once 40
connected, may be referenced in any program unit of the
executable program.

12.10.1.1 Ooen of a Connected Unit. If a unit is connected
to a file that exists, execution of an OPEN statement for 45
that unit is permitted. If the FILE= specifier is not
included in the OPEN statement, the file to be connected to
the unit is the same as the file to which the unit is
connected.

If the file to be connected to the unit does not exist, but
is the same as the file to which the unit is preconnected,
the properties specified by the OPEN statement become a part
of the connection.

50

55

Ful I Language Page 12-20

ANSI X3.9-197& FORTRAN 77

10

15

20

25

30

35

40

45

50

55

12.10.2 CLOSE Statement.
included in the subset.

· Page 12-21 s

INPUT/OUTPUT STATEMENTS

The CLOSE statement is not

Subset Language

INPUT/OUTPUT STATEMENTS ANSI X3.9-1978 FORTRAN 77

If the f i I e to be connected to the unit is not the same as
the file to which the unit is connected, the effect is as if
a CLOSE statement <12.10.2> without a STATUS= specifier had
been executed for the unit immediately prior to the
execution of the OPEN statement. 5

If the file to be connected to the unit is the same as the
file to which the unit is connected, only the BLANK=
specifier may have a value different from the one currently
in effect. Execution of the OPEN statement causes the new 10
value of the BLANK= specifier to be in effect. The position
of the f i I e is unaffected.

If a file is connected to a unit, execution of an OPEN·
statement on that file and a different unit is not 15
permitted.

12.10.2 CLOSE Statement. A CLOSE statement is used to
terminate the connection of a particular file to a unit.

The form of a CLOSE statement is:

CLOSE < c I I is t >

20

where cllist is a list <2.10> of specifiers: 25

[UNIT =l .Y.
IOSTAT = ios
ERR = ~· 30
STATUS = ..ti.§.

clli~t must contain exactly one external unit specifier
<12.3.3> and may contain at most one of each of the other 35
specifiers.

The other specifiers are described as follows:

IOSTAT = ~ 40

is an input/output status specifier <12.7>.
Execution of a CLOSE statement containing this
specifier causes iQ.i to become defined with a zero
value if no error condition exists or with a 45
processor-dependent positive integer value if an
error condition exists.

ERR = 3..
50

is an error specifier <12.7.1>.

STATUS = .tl.A

.tl.A is a character expression whose value when any 55
trailing blanks are removed is KEEP or DELETE . .tl.A

Ful I language Page 12-21

ANSI X3.9-1978 FORTRAN 77 INPUT/OUTPUT STATEMENTS

s

10

1 s

20

2S

30

12.10.2.1 lmpl,c,t Close at Term,nat,on of Execut,on. At
term,nat,on of execut,on of an executable program for

3S reasons other than an error cond,t,on, al I un,ts that are
connected are closed.

40

4S

so

SS

12.10.3 INQUIRE Statement.
,ncluded ,n the subset.

Page 12-'22s

The INQUIRE statement ,s not

Subset Language

INPUT/OUTPUT STATEMENTS ANSI X3.9-1978 FORTRAN 77

determines the disposition of the file th't is
~onnected to the specified unit. KEEP must not be
specified for a file whose status prior to execution
of the CLOSE statement is SCRATCH. If KEEP is
speclfied for a file that exists, the file continues 5
to exist after the execution of the CLOSE statement.
If KEEP is specified for a file that does not exist,
the file wi I I not exist after the execution of the
CLOSE statement. If DELETE is specified, the file
wi 11 not exl'st after execution of the CLOSE 10
statement. If this specifier is omitted, the assumed
value is KEEP, unless the file status prior to
execution of the CLOSE statement is SCRATCH, in whteh
case the assumed value is DELETE.

Execution of a CLOSE statement that refers to a unit may
occur in any program unit of an executable program and need
not occur in the same program unit as the execution of a~
OPEN statement referring to that unit.

Execution of a CLOSE statement specifying a unit ~hat does
not exist or has no file connected to it is permitted and
affects no file. ·

15

20

After a unit has been disconnected by execution of a CLOSE 25
statement, it may be connected again within the sam~
executable program, either to the same file or to a
different file. After a file has been disconnected by
execution of a CLOSE statement, it may be connected again
within the same executable program, either to the same unit 30
or to a different unit, provided that the file still exi!ts.

12.10.2.1 Imolicit Close at Termination of Ex~cution. At
termination of execution of an executable program for
reasons other than an error condition,. al I units th,t are 35
connected are closed. Each unit is closed with st&-tus KEEP
unless the file status prior to termination of exe1fution was
SCRATCH, in which case the unit is closed. with status
DELETE. ·Note that the effect is as though a CLOSE statement
without a STATUS= specifier were executed dn each connec~ed 40
unit.

12.10.3 INQUIRE Statement. An INQUIRE statement may be
used to inQuire about properties ~1 a particular named file
or of the connection to a particular unit. There are two 45
forms of the INQUIRE statement: inQuire by file and inQuire
by unit. Al I value as~ignm•hts are done according to the
rules for assignment statements.

The INQUIRE)statement may be executed before, while, or 50
.after a file is connected to a unit. All values assigned by
the INQUIRE statement are those that are current at the time
the statement is executed.

55

Ful I Language Page ·12-~2

ANSl X3.9-1978 FORTRAN 77 INPUT/OUTPUT STATEMENTS

5

10

15

20

25

30

I .

12.10.3.1 . INQUIRE by Fi le. The INQUIRE statement is not
included in the subset.

12.10.3.2 INQUIRE by Unit.
included in the subset.

The INQUIRE statement is not

'35 12.10.3.3 Inquiry Specifiers. The INQUIRE statement is not
included in the subset.

40

45

50

55

Page 12-23s Sub~et Language

INPUT/OUTPUT STATEMENTS ANSI X3~9-1978 FORT~AN 77

12. 10. 3. 1 INQUIRE by Fi I e.
statement is:

The form of an INQUIRE by f i I e I
INQUIRE Cl f Ii st>

where if list is a list <2.10> of specifiers that must
contain exactly one file spe~ifier and may ~ontain other
inQuiry specifiers. The if list may contain at most one of
each of the inQuiry specifiers described in 12.10.3.3.

The form of a file specifier is:

FILE = fin

where fin is a character expression whose value when any
trailing blanks are removed specifies the name of the file
being inQuired about. The named file need not exist or be
connected to a unit. The value of .ii.a. must be of a form
acceptable to the processor as a file name.

12.10.3.2 INQUIRE by Unit. The form of an INQUIRE by unit
statement is:

INQUIRE (iulist>

where iulist is a list <2.10) of specifiers that must
contain exactly one external unit specifier <12.3.3) and may
contain other inQuiry specifiers. The iulist may contain at
most one of each of the inQuiry specifiers described in

-I
5

10

1 5

20

25

12.10.3.3. The unit specified need not exist or be 30
connected to a file. If it is connected to a file, the
inQuiry is ·being made about the connection and about the
f i I e connected.

12.10.3.3
specifiers
statement:

lnauiry Soecifiers.
may be used in

The
either'

following inQuiry
form of the INQUIRE

35

40

45

50

55

Full Language Page 12-23

ANSI X3.9-1978 FORTRAN 77 INPUT/OUTPUT STATEMENTS

The INQUIRE statement ,snot ,ncluded ,n the subset.

5

10

15

20

25

30

35

40

45

50

55

Page 12-24s Subset Language

INPUT/OUTPUT STATEMENTS ANSI X3.9-1978 FORTRAN 77

IOSliAT = i OS

ERR = ~
EXIST = ll
OPENED = Q.Q.
NUMBER = num
NAMED = nmd
NAME = .1.n.
ACCESS = ace
SEQUENTIAL = ~
DIRECT= dir
FORM = .i.!!1
FORMATTED = fmt
UNFORMATTED = unf
RECL = .r:.tl
NEXTREC = nr.
BLANK = blnk

The specifiers are described as follows:

IOSTAT = ill

is an input/output status specifier (12.7>.

5

10

1 5

20

Execution of an INQUIRE statement containing this 25

ERR = ~

specifier causes ios to become defined with a zero
value if no error condition exists or with a
processor-dependent pos1t1ve integer value if an
error condition exists.

is an error specifier (12.7.1).

EXIST = ll
ll is a logical variable or logical array element.
Execution of an INQUIRE by file statement causes ll
to be assigned the value true if there exists a file

30

35

with the specified name; otherwise, ll is assigned 40
the value false. Execution of an INQUIRE by unit
statement causes ll to be assigned the value true if
the specified unit exists; otherwise, ll is assigned
the value false.

OPENED = Q.Q.

Q.Q. is a logical variable or logical array element.
Execution of an INQUIRE by file statement causes Q.Q.

45

to be. assigned the value true if the file specified 50
is connected to a unit; otherwise, Q.Q. is assigned the
value false. Execution of an INQUIRE by unit
statement causes Q.Q. to be assigned the value true if
the specified unit is connected to a f1 le; otherwise,

Q.Q. is assigned the value false. 55

Fut I Language Page 12-24

ANSI X3.9-1978 FORTRAN 77 INPUT/OUTPUT STATEMENTS

I The INQUIRE statement is not included in the subset.

5

10

15

to

25

30

35

40

45

50

55

Page 12-25s Subset language

INPUT/OUTPUT STATEMENTS ANSI X3.9-1978 FORTRAN 77

NUMBER =..D..YJ!l.

..D..YJ!l. is an integer variable or integer array element
that is assigned the value of the external unit
identifier of the unit that is currently connected to 5
the file. If there is no unit connected to the file,

..D..YJ!l. becomes undefined.

NAMED = .o..m.d.

nmd is a logical variable or logical array element
that is assigned the value true lf the file has a
name: otherwise, it is assigned the value false.

NAME = in.

in. is a character variable or character array element
that is assigned the value of the name of the file,
lf the file has a name: otherwise, it becomes

10

15

undefined. Note that if this specifier appears in an 20
INQUIRE by f i I e statement, its va I ue is not
necessarily the s~me as the name given in the FILE=
specifier. For e~ample, the processor may return a
file name Qualified by a user identification.
However, the value returned must be suitable for use 25
as the value of a FILE= specifier in an OPEN
statement.

ACCESS = ace

~ is a character .variable or character array
element that is assigned the value SEQUENTIAL if the
file is connected for seQuential access, and DIRECT
if the file is connected for direct access. If there

30

is no connection, ace becomes undefined. 35

SEQUENTIAL = llll I
llJl is a character variable or character array
element that is assigned the value YES if SEQUENTIAL 40
1s included in the set of allowed access methods for
the file, NO if SEQUENTIAL is not included in the set
of al lowed access methods for the file, and UNKNOWN
if the processor is unable to determine whether or
not SEQUENTIAL is included in the set of allowed 45
access methods for the file.

DIRECT = dir

.d.i.r.. is a character variable or character array 50
element that is assigned the value YES if DIRECT is
included in the set of al lowed access methods for the
file, NO if DIRECT is not included in the set of
allowed access methods for the file, and UNKNOWN if
the processor is unable to determine whether or not 55

Fu 11 Language Page 12-25

ANSI X3.9-1978 FORTRAN 77 INPUT/OUTPUT STATEMENTS

The INQUIRE statement is not included in the subset.

5

10

15

20

25

30

35

40

45

50

55

Page 12-26s Subset Language

INPUT/OUTPUT STATEMENTS ANSI X3.9-1978 FORTRAN 77

DIRECT is included in the set of allowed access
methods for the f'i I e.

FORM = i.m.

i.m. is a character variable or character array element
that is assigned the value FORMATTED if the file is
connected for formatted input/output, and is assigned
the value UNFORMATTED if the file is connected for

5

unformatted input/output. If there is no connection, 10
i.m. becomes undefined.

FORMATTED = .im.1.

fmt is a character variable or character a~ray 15
element that is assigned the~value YES if FORMAT~ED
is included in the set of allowed forms for the ftl-.
NO if FORMATTED is not included in the set of allowe'd
fo r m s fo r t h e f i I e , ~ n d UN K N 0 W N i f t h e p r o c e s s o r i '$.
unable to determine whether or not FORMATTED is 20
included in the set of al lowed forms for the file.

UNFORMATTED = unf

.w:U. is a . character vari ab I e or character array 25
element that is assigned the value YES if UNFORMATTED
is included in the set of allowed forms for the file,
NO if UNFORMATTED is not incl~ded in the set of
allowed forms for the file, and UNKNOWN if the
processor is unable to determine whether or not 30
UNFORMATTED is included in the set of allowed forms
for the file.

RECL = ill.
ill. is an integer vari ab I e or integer array e'I ement
that is assigned the value of the record length of
the file connected for direct access. If the file is
connected for forma-r'ted inputtoutput, the length is

35

the number of characters. If the file is connected 40
for unformatted input/output, the length is measured
in processor-dependent units. If there is no
connection or if the connection is not for direct
access, ill. becomes undefined.

NEXTREC = .n..r..

.n..r.. is an integer variable or integer· array element
that is assigned the value n+1, where i is the record

45

number of the I ast record read or written on the f i I e 50
connected for direct acces~. If ther file is
connected bu~ no records have been read or written
since the connection, .n..r.. is assigned the value 1. If
the file is not co.nnected for direct access or if the
position of the file is indeterminate because of a 55
previous error condition, .n..r.. becomes undefined.

Full Language Page 12-26

ANSI X3.9-1978 FORTRAN 77 INPUT/OUTPUT STATEMENTS

s

10

15

20

25

30

35

40

45

so

S'S

I The INQUIRE statement is not included in the subset.

12.10.4 Flle Positioning Statements. The forms of the flle
positioning statements are:

BACKSPACE .Y.

ENDFILE .Y.

REWIND .Y.

where: .Y. is an external unit idenlifier <12.3.3>

Page 12-27s Subset Language

INPUT/OUTPUT STATEMENTS ANSl X3.9-1978 FORTRAN 77

aLANK = .b..1.tl

.b1.n!. is a character variable or character array
element that is assigned the value NULL if nul I blank
control is in effect for the file connected for 5
formatted input/output, and is assigned the value
Z ER 0 if z' r o b I a n k c o n t r o I i s i n e ff e c t fo r t h e f i I e
c o n n e c t e d f o r fo r m a t t e d i n p u t I o u t p u t . I f t h e r e 'i s n o
connection, or if the connection is not for formatted
input/output, .bJ.n..k. becomes undefined. 10

A variable or array element that may become defined or
undefined as a result of its use as a specifier in an
INQUIRE statement, or any associated entity, must not be
referenced by any other specifier in the same INOUIRE 15
statement.

Execution of an INOUIRE by file statement causes the
specifier variables or array elements nmd, in.,~. dir,
fmt, and unf to be assigned values only if the value of fin 20
is acceptable to the processor as a flle name and if there
exists a file by that name; otherwise, they become
undefined. Note that .D...Y.!ll. becomes defined if and only if od
becomes defined with the value true. Note also that the
specifier variables or array elements~. fm., fil, .n.r.. and 25
.b.1.n..k. may become defined only if .Q.Q. becomes defined with the
value true.

Execution of an INOUIRE by unit statement causes the
specifier variables or array elements .D...Y.!ll.· nmd, in., ace, 30
~. dir, fm., i.!ll, .Ylli, fil, .n.r.. and blnk to be assigned
values only if the specified unit exists and if a file is
connected to the unit; otherwise, they become undefined.

If an ~rror condition occurs during execution of an INOUlRE 35
statement, all of the inQuiry specifier variables and array
elements except ios become undefined.

Note that the specifier variables or array elements 1l.!. and
.l2.d. always become defined unless an error condition occurs. 40

12.10.4 Fi le Positioning Statements. The forms of the file
positioning s~atements are1

BACKSPACE Q 45
BACKSPACE Ca I_ is t >

ENOFILE Q
ENDFILE <alist>

50
REWIND Q
REWIND Calist>

where: Q is an e*ternal unit identifier C12.3.3)
55

alist is -a list (2.10> of specifiers:

full Language ·Page 12-27

ANSI X3.9-1978 FDRf~AN 77 INPUT/OUTPUT STATEMENTS

5

10

15

The external unit specified by a BACKSPACE, ENDFILE, or
REWIND statement must be connected for sequential access.

20 12.10.4.1 BACKSPACE Statement. Execution of a BACKSPACE
statement causes the file connected to the specified unit to
be positioned before the preceding record. If there 1s no
preceding record, the position of the file is not changed.
Note that if the preceding record is an endfi le record, the

25 file becomes positioned before the endfile record.

30

Backspacing a file that is connected but does not exist is
prohibited.

12.10.4.2 ENDFILE Statement. Execution of an ENDFILE
statement writes an endfi le record as the next record of the

35 file. The file is then positioned after the endfile record.

40

If the file may also be connected for direct access, ohly
those records before the endfi le record are considered to
have been written. Thus, only those records may be read
during subsequent direct access connections to the file.

After execution of an ENDFILE statement, a BACKSPACE or
REWIND itatement must be used to reposition the file prior
to execution of any data transfer input/outp~t statement.

45 Execution of an ENDFILE statement for a file that is
connected but does not exist creates the file.

12.10.4.3 REWIND Statement. Execution of a REWIND
statement causes the specified file to be positioned at its

50 initial point. Note that if the file is already positioned
at its initial point, execution of this statement has no
effect on the po s i ti on of the f i I e.

~xecution of a REWIND statement for a file that is connected
55 but does not exist is permitted but has no effect.

Page 12-28s Subset Language

INPUT/OUTPUT STATEMENTS ANSI X3.9-1978 FORTRAN 77

alist must contain
<12.3.3) and may
specifiers.

CUNIT =J .Y.
IOSTAT = ios
ERR = ~

exactly one external unit specifier
contain at most one of each of the other

The external unit specified by a BACKSPACE, ENDFILE, or
REWIND statement must be connected for seQuential access.

Execution of a file positioning statement containing an

5

10

input/output status specifier causes ios to become d~Jined 15
with a zero value if no error condition exists or with a
processor-dependent positive integer value if an error
condition exists.

12.10.4.1 BACKSPACE Statement. Execution of a BACKSPACE 20
statement causes the file connected to the specified unit to
be positioned before the preceding record. If there is no
preceding record, the position of the file is not changed.
Note that if the preceding record is an endfi le record, the
file becomes positioned before the endfi le record. 25

Backspacing a file that is connected but does not exist is
prohibited.

Backspacing over records
formatting is prohibited.

written using list-directed I
12.10.4.2 ENDFILE Statement. Execution of an E.NDFILE
statement writes an endfi le record as the next record of the

30

file. The file is then positioned after the endfile record. 35
If the file may also be connected for direct access, only
those records before the endfi le record are considereq to
have been written. Thus, only those records may be read
during subseQuent direct access connections to the file.

After execution of an ENDFILE statement, a BACKSPACE or
REWIND statement must be used to reposition the file prior
to execution of any data transfer input/output statement.

40

Execution of an ENDFILE statement for a file that is 45
connected but does not exist creates the file.

12.10.4.3 REWIND Statement. Execution of a REWIND
statement causes the specified file to be positioned at its
,nitial point. Note that if the fi Ii is already positioned 50
at its initial point, execution of this statement has no
effect on the position of the file.

Execution of a REWIND statement for a file that is connected
but does not exist is permitted but has no effect. 55

Fut I Language Page 12-28

ANSI X3.9-197! FORTRAN 77 INPUT/OUTPUT STATEMENTS

10

1 5

20

25

30

35

40

45

50

55

t2.t1 Restrtctions -0n Function References and list Items

Function references in input/output statements are not
included in the subset.

12.12 .Restriction on Inout/Outo~t Statements

If a unit, or a file c·onnected
of the prop~rties reQuired
input/output statements, those
the unit.

to a unit, does not have al I
for th~ execution of certain
statements must not refer to

Page 12-29s Subset language

INPUT/OUTPUT STATEMENTS ANSI X3.9-1978 FORTRAN 77

12.11 Restrictions on Function References and List Items

A function must not be referenced within an expression
appearing anywhere in an input/output statement if such a
reference causes an input/output statement to be executed. 5
Note that a restriction in the evaluation of expressions
C6.6) prohibits certain side effects.

12.12 Restriction on Input/Output Statements

If a unit, or a file connected
of the properties reQuired
input/output statements, those
the unit.

to a unit, does not have al I
for the execution of certain
statements must not refer to

10

15

20

25

30

35

40

45

50

55

Ful I Language Page 12-29

ANSI X3.9~1978 FORTRAN 77

13. FORMAT SPECIFICATION

A format used in conjunction with formatted input/butput
statements prbvides ,information that directs the editing

5 between the internal representation and the character
strings of a record or a seQuence of records in the file.

~--""

A format specification provides explicit editing
information.

10

13.1 Format Specification Methods

15 Format specifications may be given:

20

25

<1> In FORMAT statements

(2) As character constants

13.1.1 FORMAT Statement. The form of a FORMAT statement
i s :

FORMAT .ll

where .ll is a format specification, as described in 13.2.
The statement must be labeled.

30 13.1.2 Character Format Specification. The format
identifier <12.4> in a formatted input/output statement may
be a character constant if the leftmost character posittons
of the specified constant co~stitute a format specification.

35

A character form~t specification must be of the form
described in 13.2. Note that the form begins with a left

40 parenthesis and ends with a right parenthesis. Character
data may fol low the right parenthesis that ends the format
specification, with no effect on the format specification.
Blank characters may precede the format specification.

45

so

55

Page 13-1s Subset Language

ANSI X3.9-1978 FORTRAN 77

13. FORMAT SPECIFIEATION

A format used in conjunction with formatted input/output
statements provides information that directs the editing
between the internal representation and the character 5
strings of a record or a sequence of records in the file.

A format specification provides explicit editing
information.
input/output
(13.6).

An asterisk (*) as a format identifier in an
statement indicates Ii st-directed fornfatti ng

13.1 Format Specification Methods

Format specifications may be given:

(1) In FORMAT statements

(2) As values of character arrays, character
or other character expressions

variables, I
13.1.1 FORMAT Statement.
i s :

The form of a FORMAT statement

FORMAT .li

where .li is a format specification, as described in 13.2.
The statement must be labeled.

10

15

20

25

1 3 . 1 . 2 Ch a r a c t e r F o r ma t Sp e c i f i c a t i on . I f t h e f or~ a t 3 0
identifier <12.4> in a formatted input/output statement is a
character array name, character variable name, or other
character expression, the leftmost character positions of
the specified entity must be in a defined state with
character data that constitute a format specification when 35
the statement is executed.

A character format specification must be of the form
described in 13.2. Note that the form begins with a left
parenthesis and ends with a right parenthesis. Character 40
data may fol low the right parenthesis that ends the format
specification, with no effect on the format specification.
Blank characters may precede the format specification.

If the format identifier is a character array name, the 45
length of the format specification may exceed the length of
the first element of the array; a character array format
specification is considered to be a concatenation of al I the
array elements of the array in the order given by array
element ordering (5.2.4>. However, if a character array 50
element name is specified as a format identifier, the length
of the format specification must not exceed the length of
the array element.

55

Ful I Language Page 13-1

ANSI X3.9-1978 FORTRAN 77 FORMAT SPECIFICATION

s

10

15

20

25

30

13.2 Form of a Format S~ecification

< [flist] ->

where f list is a list <2.10). The forms of the f list items
are:

where:~ is a r~peatable edit descriptor <13.2.1>

11.li!i is a nonrepeatable edit descriptor (13.2.1>

il is a format specification with a nonempty list
f I i st

.r. is a nonzero, unsigned, integer constant cal led a
repeat specification

The comma used to separate list item~ in the list f list may
be omitted as follows:

(1) Between a P
following For

edit descriptor and an
E edit descriptor (13.5.9)

immediately

<2> Before or after a slash edit descriptor <13.5.4>

At most three levels of parenthesis nesting are permitted
35 within the outermost parentheses.

40

45

50

55

13.2.1 Edit Desctiotors. An
repeatable edit descriptor
descriptor.

JtiAi.1 descriptor is either a
or a nonrepeatable edit

The forms of a repeatable JtiAi.l descriptor are:

IJt

F Ji • .Q.
EJt • .d.
EJt • .d.E~

I ~here: I, F, E, L, and A indicate the manner of editing

Page 13,..zs Subset Language

FORMAT SPECIFICATION ANSI X3.9-1978 FORTRAN 77

13.2 Form of a Format Specification

The form of a format specification is:

[f list]

where f list is a list <2.10). The forms of the f list items
are:

where:~ is a repeatable edit descriptor <13.2.1)

~is a nonrepeatable edit descriptor <13.2.1)

5

10

1 5

~ is a format specification with a nonempty list 20
f I i st

r. is a nonzero, unsigned, integer constant cal led a
repeat specification

The comma used to separate list items in the list f list may
be omitted as fol lows:

(1) Between a P edit descriptor and an immediately

25

following F, E, D, or G edit descriptor <13.5.9) 30

<2> Before or after a slash edit descriptor (13.5.4)

(3) Before or after a colon edit descriptor <13.5.5)

13.2.1 Edit Descriptors. An edit descriptor is either a
repeatable edit descriptor or a nonrepeatable edit
descriptor.

The forms of a repeatable edit descriptor are:

IJt
lji . .fil
FJi.Q
EJi . .Q.
EJt . .9.El!
DJi.Q
GJi . .9.
GJt . .9.El!
LJi
A
Ali

where: I I FI E, D, G, LI and A indicate the manner of
editing

35

40

45

50

I 55

Ful I Language Page 13-2

ANSI X3.9-1978 FORTRAN 77 FORMAT SPECIFICATION

~ and ~are nonzero, unsigned, intege~ constants

~is an unsigned integer constant

5 The forms of a nonrepeatable ..e..9..i.1. descriptor are:

10

15

20

25

30.

I where

11X
I

lP
BN
BZ

h I _n

.b.n

apostrophe, H, X, slash, P, BN, and BZ
manner of editing

is one of the chijracters
representation by the processor

indicate

cap ab l.e

11 is a nonzero, unsigned, integer constant

l is an optionally signed integer constant

13.3 lnt•ractio~ Between Input/Output list and Format

the

of

The beginning of formatted dat~ transfer uling a format
.3~ specification <12.9.5.2.1> initiates format control. Each

action of format control depends on inf~rmation jointly
provided by:

(1> the next edit - descriptor contained in the format
40 specification, and

(2) the next item in the input/output I i st I if one
exists.

45 If an input/~utput list specifi~s al least one li~t item~ at
lea~t one repeatable edit descriptor must exist in the
format specification. Note that an. empty format
specification of the form () may be used only if no list
items are spec-ified: in this case, one input rec.ord is

50 skipped or one output recotd contai~ing no charatters is
written. Except for an edit descriptor preceded by~ repeat
specification, L M. and a format specification preceded by

.~ repeat specification, L<flist), a format specification is
interpreted from left to right. A format specification or

55 edit descriptor preceded by a repeat specifi~ation Lis
processed as a list of L format specifications or edit

Page 13-3s Subset language

FORMAT SPECIFICATION ANSI X3.9-1978 FORTRAN 77

~and~ are nonzero, unsigned, integer constants

~and fil are unsigned integer constants

The forms of a nonrepeatable edit descriptor are:

1 .h1 .h2
nH.h 1.h2
T.£
TL.£
TR.£
nX
I

s
SP
SS
lP
BN
BZ

h I _n

.hn

where: apostrophe, H, T, TL, TR, X, slash, colon, S, SP,
P, BN, and BZ indicate the manner of editing

h i s one of the characters capable
representation by the pro\;essor

I!. and .£ are nonzero, unsigned, integer constants

l i s an optionally signed integer constant

13.3 Interaction Between Input/Output List and Format

SS, I
of

The beginning of formatted data transfer using a format
specification <12.9.5.2.1) initiates format control. Each
action of format control depends on information jointly
provided by:

<1> the next edit descriptor contained in thB format

5

1 0

1 5

20

25

30

35

specificat'ion, and 40

<2> the next item in the input/output list, if one
exists.

If an input/output list specifies at least one list item, at 45
least one repeatable edit descripto~ must exist in the
format specification. Note that an empty format
specification of the form<) may be used only if no list
items are specified; in this case, one input record is
skipped or one output record containing no characters is 50
written. Extept for an edit descriptor preceded by a repeat
specification, L ~. and a format specification preceded by
a repeat specification, L<f list), a format specification is
interpreted from left to right. A format specification or
edit descriptor preceded by a repeat specification Lis 55
processed as a list of L format specifications or edit

Ful I Language Page 13-3

ANSI X3.9-1978 FORTRAN 77 FORMAT SPECIFICATION

5

descriptors identical to the format specification or edit
descriptor without the repeat specification. Note that an
omitted repeat specification is treated the same as a repeat
specification whose value is one.

To each repeatable edit descriptor interpreted in a format
specification, there corresponds one item specified by the
input/output Jist <12.8.2>. To each P, X, H, BN, BZ, slash,
or apostr-0phe edit descriptor, there is no corresponding

10 item specified by the input/output list, and format contr-01
communicates information difectly with the record.

15
Whenever format control encounters a repeatable edit
descriptor in a format specification, it deter~ines whether
there is a corresponding item specified by the input/output
list. If there is such an item, it transmits appropriately

20 edited information between the item and the record, and then
format control proceeds. If there is no corresponding item,
format control terminates.

25

30

35

40

45

50

55

If format control encounters the rightmost parenthesis of a
complete format specification and another list item is not
specified, format control terminates. However, if another
list item is specified, the file is positioned at the
beginning of the next record and format control then reverts
to the beginning of the format specification terminated by
the last preceding right parenthesis. If there is no such
preceding right parenthesis, format control reverts to the
first left parenthesis of the format specification. If such
reversion occurs, the reused portion of the format
specification must contain at least one repeatable edit
descriptor. If format control reverts to a parenthesis that
is preceded by a repeat specification, the repeat
specification is reused. Reversion of format control, of
itself, has no effect on the scale factor (13.5.7> or the BN
or BZ edit descriptor blank control <13.5.8>.

13.4 Positioning by Format Control

After each IJ F, E, L, A, H, or apostrophe edit
is processed, the file is positioned after
character read or written in the current record.

descriptor
the last

After each X or slash edit descriptor is processed, the file
is positioned as described in 13.5.3 and 13.5.4.

Page 13-4s Subset Language

FORMAT SPECIFICATION ANSI X3.9-1978 FORTRAN 77

descriptors identical to the format specification or edit
descriptor without the repeat specification. Note that an
omitted repeat specification is treated the same as a repeat
specification whose value is one.

To each repeatable edit descriptor interpreted in a format
specification, there corresponds one item specified by the
input/output list <12.8.2>, except that a list item of type
complex requires the interpretation of two F, E, D, or G

5

edit descriptors. To each P, X, T, TL, TR, S, SP, SS, H, 10
BN, BZ, slash, colon, or apostrophe edit descriptor, there
is no corresponding item specified by the input/output list,
and format control communicates information directly with
the record.

Whenever format control encounters a repeatable edit
descriptor in a format specification, it determines whether
there is a corresponding item specified by the input/output
list. If there is such an item, it transmits appropriately

15

edited information between the item and the record, and then 20
format control proceeds. If there is no corresponding item,
format control terminates.

If iormat control encounters a colon edit descriptor in a
format specification and another list item is not specified, 25
format control terminates.

If format control encounters the rightmost parenthesis of a
complete format specification and another list item is not
specified, format control terminates. However, if another 30
I i s t i t em i s s p e c i f i e d , t1te f i I e, i s po s i t i one d a t th e
beginning of the next record and format control then reverts
to the beginning of the format specification terminated by
the last preceding right parenthesis. If there is no such
preceding right parenthesis, format control reverts to the 35
first left parenthesis of the format specification. If such
reversio~ occurs, the reused portion of the format
specificatlon must contain at least one repeatable edit
descriptor. If format control reverts to a parenthesis that
is preceded by a repeat specification, the repeat 40
specification is reused. Reversion of format control, of
itself, has no effect on the scale factor· (13.5.7), the S,
SP, or SS edit descriptor sign control (13.5.6), or the BN
or BZ edit descriptor blank control <13.5.8>~

13.4 Positionjng by Format Control

After each I, F, E, D, G, L, A, H, or apostrophe edit
descriptor is processed, the file is positioned after the

45

last character read or written in the current record. 50

After each T, TL, TR, X, or slash edit descriptor is
processed, the file is positioned as described in 13.5.3 and
13.5.4.

55

Fut I language Page 13-4

ANSI X3.9-1978 FORTRAN 77 FORMAT SPECIFICATION

If format control reverts as described in 13.3, the file is
positioned in a manner identical to the way it is positioned
when a slash edit descriptor is processed (13.5.4).

5 During a read operation, any unprocessed characters of the
record are skipped whenever the next record is read.

13.5 Editing

10 Edit descriptors are used to specify the form of a record
and to direct the editing between the characters in a record
and internal representations of data.

1 5
A field is a part
written on output when
L, A, H, or apostrophe
the size in characters

of a record that is read on input or
format control processes one I, F, E,
edit descriptor. The field width is
of the field.

The internal representation of a datum corresponds to the
20 internal rep~esentation of a constant of the corresponding

type <Section 4).

13.5.1 Apostroohe Editing. The apostrophe edit descriptor
has the form of a character constant. It causes characters

25 to be written from the . enclosed characters <including
blanks) of the edit descriptor itself. An apostrophe edit
descriptor must not be used on input.

The width of the field is the number of characters contained
30 in, but not including, the deli~iting apostrophes. Within

the fi~ld, two consecutive apostrophes with no intervening
blanks are counted as a single apostrophe.

13.5.2 H Editing. The nH edit descriptor causes character
35 information to be written from then characters <including

blanks) fol lowing the H of the nH edit descriptor in the
format specification itself. An H edit descriptor must not
be used on input.

40 Note that if an H edit descriptor occurs within a character
constant and includes an apostrophe, the apostrophe must be
represented by two consecutive apostrophes, which are
counted as one character in specifying n.

45 13.5.3 Positional Editing. The X edit descriptor specifies
the position at which the next character wi I I be trans~itted
to or from the record.

50

The pos1t1on ,specified by an X edit descriptor is forward
55 from the cufrent position. On input. a position beyond the

Page 13-5s Subset Language

FORMAT SPECIFICATION ANSI X3.~-1978 FORTRAN 77

If format control reverts as described in 13.3, the fi'le is
positioned in a manner identical to the way it is positioned
when a slash edit descriptor is processed (13.5.4).

During a read operation, any unprocessed characters of the
record are skipped whenever the next record is read.

13.5 Editing

5

Edit descriptors are used to specify the form of a record 10
and to direct the editing between the characters in a record
and internal representations of data.

A field is a part of a record that is read on input or
wrjtten on output when format control processes one I, F, E, . 15
0, G, L, A, H, or apostrophe edit descriptor. The field
width is the size in characters of the field.

The internal representation of a datum corresponds to the
internal representation of a constant of the corresponding 20
type <Section 4).

13.5.1 Apostrophe Editing. The apostrophe edit descriptor
has the form of a character constant. It causes characters
to be written from the enclosed characters <including 25
blanks) of the edit descriptor itself. An apostrophe edit
descriptor must not be used on input.

The width of the field is the number of characters contained
in, but not including, the delimiting apostrophes. Within 30
the field, two consecutive apostrophes with no intervening
blanks are counted as a single apostrophe.

13.5.2 H Editing. The nH edit descriptor causes character
information to be written from then characters (including 35
blanks) fol lowing the Hof the nH edit descriptor in the
format specification itself. An H edit descriptor must not
be used on input.

Note that if an H edit descriptor occurs within a character 40
constant and includes an apostrophe, the apostrophe must be
represented by ·two· consecutive apostrophes, which are
counted as one character in specifying n.

13.5.3 Positional Editing. The T, TL, TR, and X edit 45
descriptors sp~cify the position at which the next character
wi II be transmitted to or from the record.

The position specified by a T edit descriptor may be in
either direction from the current po~ition. On input, this 50
al low~ portions of a record to be processed more than once,
possibly with different editing.

The pos1t1on specified by an X edit descriptor is forward
from the current position. On input, a position beyond the 55

Ful I Language Page 13-5

ANSI X3.9-1978 FORTRAN 77 FORMAT SPECIFICATION

last character of the record may be specified if no
characters are transmitted from such positions.

On output, an X edit descriptor does not by itself cause
5 characters to be transmitted and therefore does not by

itself affect the length of the record. If characters are
transmitted to positions at or after the position specified
by an X edi.t descriptor, positions skipped are filled with
blanks. The result is as if the entire record were

10 initially filled with blanks.

1 5

13.5.3.1 T. TL. and TR Editing. The T, TL, and TR edit
20 descriptors are not included in the subset.

25

30

35

40

13.5.3.2 X Editing. The nX edit descriptor indicates that
the transmission of the next character to or from a record
is to occur at the position n characters forward from the
current position.

13.5.4 Slash Editing. The slash edit descriptor indicates
the end of data transfer on the current record.

On input from a file connected for sequential access, the
45 rema1n1ng portion of the current record is skipped and the

file'jis positioned at the beginning of the next record.
This record becomes the current record. On output to a file
connected for sequential access, a new record is created and
becomes the last and current record of the file.

50
Note that a record that contains no characters may be
written on output. If the file is an internal file or a
file connected for direct access, the record is filled with
blank characters. Note also that an entire record may be

55 skipped on input.

Page 13-6s Subset language

FORMAT SPECIFICATION ANSI X3.9-1978 FORTRAN 77

last character of the record may be specified if no
characters are transmitted from such positions.

On output, a T, TL, TR, or X edit descriptor does not by
itself cause characters to be transmitted and therefore does 5
not by itself affect the length of the record. If
characters are transmitted to positions at or after the
position specified by a T, TL, TR, or X edit descriptor,
positions skipped and not previously fi I led are fi I led with
blanks. The result is as if the entire record were 10
initially filled with blanks.

On output, a character in the record may be replaced.
However, a T, TL, TR, or X edit descriptor never directly
causes a character already placed in the record to be 15
replaced. Such edit descriptors may result in positioning
so that subsequent editing causes a replacement.

13.5.3.1. T. TL. and TR Editing. The T.£ edit descriptor
indicates that the transmission of the next character to or 20
from a record is to occur at the ,£th character position.

The TL.£ edit descriptor indicates that the transmission of
the next character to or from the record is to occur at the
character position.£ characters backward from the current ZS
position. However, if the current position is less than or
equal to position.£, the TL.£ edit descriptor indicates that
the transmission of the next character to or from the record
is to occur at position one of the current record.

The TR.£ edit descriptor indicates that the transmission of
the next character to or from the record is to occur at the
character position .£ characters forward from the current
position.

13.5.3.Z X Editing. The nX edit descriptor indicates that
the transmission of the next character to or from a record
is to occur at the position .!l characters forward from the
current position.

13.5.4 Slash Editing. The slash edit descriptor indicates
the erid of data transfer on the curr~nt record.

On input from a file connected for sequentia'I access, the

30

35

40

rema1n1ng portion of the current record is skipped and the 45
file is positioned at the beginning of the next record.
This record becomes the current rec~rd. On output to a fiJe
connected for sequential access, a new record is created an~
becomes the last and current record of the file.

Note that a record that contains no characters may be
written on output. If the file is an. internal file or a
file connected for direct access, the record is filled with
blank characters. Note also that an entire record may be

50

skipped on input, 55 ·

Fu 11 Languj:lge Page 13-6

ANSI X3.9-1978 FORTRAN 77 FORMAT SPECIFICATION

5
13.5.5 Colon Editing. The colon edit descriptor is not
included in the subset.

10
13.5.6 S. SP. and SS Editing. The S, SP, and SS edit
descriptors are not included in the subset.

15

20

25

13.5.7 P Editing. A scale factor is specified by a P edit
30 descriptor, which is of the form:

.k.P

where .k. is an optionally signed integer constant, cal led the
35 scale factor.

13.5.7.1 Scale Factor. The value of the scale factor is
zero at the beginning of execution of each input/output
statement. It applies to al I subsequently interpreted F and

40 E edit descriptors unti I another scale factor is
encountered, and then that scale factor is established.
Note that reversion of format control <13.3) does not affect
the established scale factor.

45 The scale factor .k. affects the appropriate editing in the
fol lowing manner:

50

55

Page 13-7s

<1> On input, with F and E editing (provided that no
exponent exists in the field) and F output editing,
the scale factor effect is that the externally
represented number equals the internally represented
number multiplied by 10**.k..

<2> On input, with F and E editing, the scale factor has
no effect if there is an exponent in the field.

Subset Language

FORMAT SPECIFICATION ANSI X3.9-1978 FORTRAN 77

For a file connected for direct access, the record number is
increased by one and the file is positioned at the beginning
of the record that has that record number. This record
becomes the current record.

13.5.5 Colon Editing. The colon edit .descriptor terminates
forma~ control if there are no more items in the
input/output list <13.3>. The colon edit descriptor has no
effect if there are more items in the input/output list.

13.5.6 S. SP. and SS Editing. The S, SP, and SS edit
descriptors may be used to control optional plus characters
in numeric output fields. At the beginning of execution of
each formatted output statement, the processor has the

5

10

option of producing a plus in numeric output fields. It an 15
SP edit descriptor is encountered in a format specification,
the processor must produce a plus in any subsequent position
that normally contains an optional plus. If an SS edit
descriptor is encountered, the processor must not produce a
plus in any subsequent position that normally contains an 20
optional plus. If an S edit descriptor is encountered, the
option of producing the plus is restored to the processor.

The S, SP, and SS edit descriptors affect only I, F, E, D,
and G editing during the execution of an output statement. 25
Th~ S, SP, and SS edit descriptors have no effect during the
execution of an input statement.

13.5.7 P Editing. A scale factor is specified by a P edit
descriptor, which is of the form: 30

iP

where 1 is an optionally signed integer constant, called the
scale factor. 35

13.5.7.1 Scale Factor. The value of the scale factor is
zero at the beginning of execution of each input/out~ut
statement. It appli~s to al I subsequently interpreted F, E,
D, and G edit descriptors unti I another scale factor is 40
encountered, and then that scale factor is established.
Note that reversion of format control <13.3> does not affect
the established scale factor.

The scale factor 1 affects the appropriate editing in the 45
fo 11 oi;.i ng manner:

<1> On input, with F, E, D, and G editing (provided that
no exponent exists in the field) and' F output
editing, the scale facto~ e~fect is that the 50
externally represented number equals the internally
represented number multiplied by 10**1.

CZ> On input, with F, E, D, and G editing, the scale
fac~or has no effect if there is an exponent in the 55
fie Id.

Ful I Language Page 13-7

ANSI X3.9-1978 FORTRAN 77 FORMAT SPECIFICATION

5

10

(3) On output, with E editing, the basic real constant
(4.4.1) part of the quantity to be produced is
multiplied by 10**1 and the exponent is reduced by 1.

13.5.8 BN and BZ Editing. The BN and BZ edit descriptors
may be used to specify the interpretation of blanks, other

15 than leading blanks, in numeric input fields. At the
beginning of execution of each formatted input statement,
such blank characters are interpreted as zeros. If a BN
edit descriptor is encountered in a format specification,
al I such blank characters in succeeding numeric input fields

20 are ignored. The effect of ignoring blanks is to treat the
input field as if blanks had been removed, the remaining
portion of the field right-justified, and the blanks
replaced as leading blanks. However, a field of al I blanks
has the value zero. If a BZ edit descriptor is encountered

25 in a format specification, al I such blank characters in
succeeding numeric input fields are treated as zeros.

30 The BN and BZ edit descriptors affect only I,
editing during execution of an input statement.
no effect during execution of an output statement.

F, and E
They have

13.5.9 Numeric Editing. The I, F, and E edit descriptors
35 are used to specify input/output of integer and real data.

40

45

50

The following general rules apply:

(1) On input, leading blanks are not significant. The
interpretation of blanks, other than leading blanks,
is determined by any BN or BZ blank control that is
currently in effect for the unit (13.5.8). Plus
signs may be omitted. A field of al I blanks is
considered to be zero.

<2J On input, with F and E editing, a decimal point
appearing in the input field overrides ~he portion of
an edit descriptor that spec~fies the decimal point
location. The input field may have more digits than
the processor uses to approximate the value of the
datum.

(3) On output, the representation of a positive or zero
55 internal value in the field may be prefixed with a

plus, as control led by the processor. The

Page 13-8s Subset Language

FORMAT SPECIFICATION ANSI X3.9-1978 FORTRAN 77

C3> On output, with E and D editing, the basic real
constant (4.4.1) part of the Quantity to be pro~uced
is multiplied by 10**1 and the exponent is red~ed by
l.

(4) On output, with G editing, the effect of the scale
factor is suspended unless the magnitude of the datum
to be edited is outside the range that permits the
use of F editing. If the use of E editing is
reQuired, the scale factor has the same effect as
with E output editing.

13.5.8 BN and BZ Editing. The BN and BZ edit descriptors
may be used to specify the interpretation of blanks, other

5

10

than leading blanks, in numeric input fields. At the 15
beginning of execution of each formatted input statement,
such blank characters are interpreted as zeros or are
ignored, depending on the value of the BLANK= specifier
C12.10.1> currently in effect for the unit. If a BN edit
descriptor is encountered in a format specification, all 20
such blank characters in succeeding numeric input fields are
tgnored. The effect of ignoring blanks is to treat the
input field as if blanks had been removed, the remaining
portion of the field right-justified, and the blanks
replaced as leading blanks. However, a field of al I blanks 25
has the value zero. If a BZ edit descriptor is encountered
in a format specification, al I such blank characters in
succeeding numeric input fields are treated as zeros.

The BN and BZ edit descriptors affect only I, F, E, D, and G 30
editing during execution of an input statement. They have
no effect during exec~tion of an output statement.

13.5.9 Numeric Editing. The I, F, E, 0,
descriptors are used to specify input/output
real, double prec1s1on, and complex data.
genera I r u I es. a pp I y :

and G edit
of integer,

The fol lowing

(1) On input, leading blanks are not significant. The

35

interpretation of blanks, other than leading blanks, 40

(2)

is determined by a combination of any BLANK=
specifier and any BN or BZ blank control that is
currently in effect for the unit C13.5.8J. Plus
signs may be omitted. A field af al I blanks is
considered to be zero. 45

On input, with F, E, D, and G
point appearing in the input
portion of an edit descriptor
decimal point location. The
more digits than the processor·
the value of the datum.

editing, a decimal
field overrides t~e

that specifies the
input field may have

uses to approximate
50

(3) On output, the rep~esentation of a positive or zero
internal value in the field may be prefixed with a 55
plus, as .controlled by the S, SP, and SS edit

Fut I Language Page 13-8

ANSI X3.9-1978 FORTRAN 77 FORMAT SPECIFICATION

5

10

1 5

20

25

30

35

representation of a negative internal value in the
field must be prefixed with a minus. How~ver, the
processor must not produce a negative signed zero in
a formatted output record.

(4) On output, the representation is right-justified in
the field. If the number of characters produced by
the editing is smaller than the field width, leading
blanks wi I I be inserted in the field.

(5) On output, if the number of characters produced
exceeds the field width or if an exponent exceeds its
specified length using the E~.4E~ edit descriptor,
the processor wi I I fi I I the entire field of width ~
with asterisks. However, the processor must not
produce asterisks if the field width is not exceeded
when optional characters are omitted.

13.5.9.1 Integer Editing. The I~ edit descriptor indicates
that the field to be edited occupies~ positions. The
specified input/output list item must be of type integer.
On input, the specified list item wi I I become defined with
an integer datum. On output, the specified list item must
be defined with an integer datum.

In the input field, the character string must be in the form
of an optionally signed integer constant, except for the
interpretation of blanks C13.5.9, item C1)).

The output field for the I~ edit descriptor consists of zero
or more leading blanks fol lowed by a minus if the value of
the internal datum is negative, or an optional plus
otherwise, followed by the magnitude of the internal value

40 in the form of an unsigned integer constant without leading
zeros. Note that an integer constant always consists of at
least one digit.

45

50

55

13.5.9.2 Real and Double
edit descriptors specify
input/output list item
descriptor must be real.

Page 13-9s

Precision Editing. The F and E
the editing of real d~ta. An
corresponding to an F or E edit
An input Ii st i tern wi 14 become

Subs-et Language

FORMAT SPECIFICATION ANSI X3.9-1978 FORTRAN 77

descriptors <13.5.6) or the processor. The
representation of a negative internal value in the
field must be prefixed with a minus. However, the
processor must not produce a negative signed zero in
a formatted output record. 5

(4) On output, the representation is right-justified in
the field. If the number of characters produced by
the editing is smaller than the field width, leading
blanks wi I I be inserted in the field. 10

(5) On output, if the number of characters produced
exceeds the field width or if an exponent exceeds its
specified length using the E~.dEI or G~.dEI edit
descriptor, the processor wi I I fi I I the entire field 15
of width ~ with asterisks. However, the processor
must not produce asterisks if the field width is not
exceeded when optional characters are omitted. Note
that when an SP edit descriptor is in effect, a plus
is not optional (13.5.6). 20

13.5.9.1 Integer Editing. The I~ and l~.fil edit descriptors
indicate that the field to be edited occupies~ positions.
The specified input/output list item must be of type
integer. On input, the specified list item wi I I become 25
defined with an integer datum. On output, the specified
list item must be defined with an integer datum.

On input, an l~.fil edit descriptor is treated identically to I
an I~ edit descriptor. 30

In the input field, the character string must be in the form
of an optionally signed integer constant, except for the
interpretation of blanks (13.5.9, item <1>>.

The output field for the I~ edit descriptor consists of zero
or more leading blanks fol lowed by a minus if the value of
the internal datum is negative, or an optional plus
otherwise, followed by the magnitude of the internal value

35

in the form of an unsigned integer constant without leading 40
zeros. Note that an integer constant always consists of at
least one digit.

The output field for the l~.fil edit descriptor is the same as
for the I~ edit descriptor, except that the unsigned integer 45
constant consists of at least fil digits and, if necessary,
has leading zeros. The value of fil must not exceed the value
of ~- If fil is ze~o and the value of the internal datum is
zero, the output field consists of only blank characters,
regardless of the sign control in eft~ct. 50

13.5.9.2 Real and Double Precision Editing. The F, E, D,
and G edit descriptors specify the editing of real, double
prec1s1on, and complex data. An input/output list item
corresponding to an F, E, D, or G edit descriptor must be 55
real, double precision, or complex. An input lis-t item will

Fu I I Language Page 13-9

ANSI X3.9-1978 FORTRAN 77 FORMAT SPECIFICATION

defined with a real datum.
defined with a real datum.

An output list item must be

5 13.5.9.2.1 F Editinci. The F~.~ edit descriptor indicates
that the fiefd occupies~ positions, the fractional part of
which consists of~ digits.

The input field consists of an optional sign, followed by a
10 string of digits optionally cnntaining a decimal point. If

the decimal point is omitted, the rightmost~ digits of the
string, with leading zeros assumed if necessary, are
interpreted as the fractional part of the value represented.
The string of digits may contain more digits than a

15 processor uses to approximate the value of the constant.

20

25

The basic form may be fo 11 owed by an exponent of one of the
following forms:

(1) Signed integer constant

(2) E followed by zero or more blanks, fo I Io wed by an
optionally signed integer constant

(3) D followed by zero or more blanks, fo I I owed by an
opt i ona I I y signed integer constant

An exponent containing a D is processed identically to an
exponent containing an E.

30 The output field consists of blanks, if necessary, fol lowed
by a minus if t~e internal value is negative, or an optional
plus otherwise, fol lowed by a/string of digits that contains
a decimal point and represents the magnitude of the ~nternal
value, as modified by the established scale factor aMd

35 rounded to~ fractional digits. Leading zeros are not
permitted except for an optional zero immediately to the
left of the decimal point if the magnitude of the value in
the output field is less than one. The optional zero must
appear if there would otherwise be no digits in the output

40 field.

13.5.9.2.2 E and D Editing. The E~.~ and E~.~E~ edit
descriptors indicate that the external field occupies ~
pos1t1ons, the fractional part of which consists of~

45 digits, unless a scale factor greater than one is in effect,
and the exponent part consists of~ digits. The ~ has no
e ff 'ec t on i n p u t .

The form of the input field is the same as for F editing
50 <13.5.9.2.1).

The form of the output field for a scale factor of zero is:

55
where: ± signifies a plus or a minus C13.5.9>

Page 13-10s Subset Language

•
FORMAT SPECIFICATION ANSI X3.9-1978 FORTRAN 77

become defined with a datum whose type is the same as that
of the Ii st item. An output Ii st item must be defined with
a datum whose type is the same as that of the list item.

13.5.9.2.1 F Editing. The F~.Q edit descriptor indicates 5
that the field occupies~ pos1t1ons, the fractional part of
which consists of Q digits.

The input field consists of an optional sign, followed by a
string of digits optionally containing a decimal point. If 10
the decimal point is omitted, the rightmost Q digits of the
string, with leading zeros assumed if necessary, are
interpreted as the fractional part of the value represented.
The string of digits may contain more digits than a
processor uses to approximate the value of the constant. 15
The basic form may be fo 11 owed by an exponent of one of the
following forms:

(1) Signed integer constant

(2) E followed by zero or more blanks, fol lowed by an
optionally signed integer constant

(3) D followed by zero or more blanks, followed by an
optionally signed integer constant

An exponent containing a Dis processed identically to an
exponent containing an E.

20

25

The output field consists of blanks, if necessary, followed 30
by a minus if the internal value is negative, or an optional
plus otherwise, fol lowed by a string of digits that contains
a decimal point and represents the magnitude of the internal
val~e, as modified by the established scale factor and
rounded to Q fractional digits. Leading zeros are not 35
permitted except for an optional zero immediately to the
left of the decimal point if the magnitude of the value in
the output field is less than one. The optional zero must
appear if there would otherwise be no digits in the output
field. 40

13.5.9.2.2 E and D Editing. The E~.Q, D~.Q, and E~.QE~
edit descriptors indicate that the external field occupies~
positions, the fractional part of which consists of Q
digits, unless a scale factor greater than one is in effect, 45
and the exponent part consists of~ digits. The~ has no
effect on input.

The form of the input field is the same as for F editing
(13.5.9.2.1>. 50

The form of the output field for a scale factor of zero is:

55
where: ± signifies a plus or a minus (13.5.9)

Ful I Language Page 13-10

• ANSI X3.9-1978 FORTRAN 77 FORMAT SPECIFICATION

5

10

1 5

20

x1x2 ... xd are the .Q.most significant digits of the
value of the datum after rounding

fil.Q is a deci ma I exponent, of one of the fo I I owing
forms:

Edit Absolute Value Form of
Descriptor of Exponent Exponent

EJi.Q lfil.Rl~99 E±z1Z2 or ±Oz1Z2

99< lfil.RI ~999 ±Z1Z2Zl

EJi.QE.§.. lfil.Ql ~(10**.§..)-1 E±z1Z2 · · ·Ze

where z is a digit. The sign in the exponent is required.
A plus sign must be used if the exponent value is zero. The

25 form EJi.Q must not be used if !JU.QI > 999.

The scale factor i controls the decimal normalization
<13.5.7). If -.Q. < i ~ 0, the output field contains exactly
Iii leading zeros and Q - Iii significant digits after the

30 decimal point. If 0 < i < .Q. + 2, the output field contains
exactly i significant digits to the left of the decimal
point and .Q. - i + 1 significant digits to the right of the
decimal point. Other values of i are not permitted.

35

40

45

50

55

13.5.9.2.3 G Editing.
included in the subset.

Page 13-11s

The G edit descriptor is not

Subset Language

FORM~T SPECIFICATION ANSI X3.9-1978 FORTRAN 77

x1x2 ... xd are the .Q. most significant digits of' the
value of the datum after rounding

llQ. is a deci ma I exponent, of one of the fa I I owing
forms:

Edi t Absolute Value Form of
Descriptor of Exponent Exponent

EJi.Q lllQ.I ~99 E±.£1.£2 or ±0.£1.£2

99< lllQ.I ~999 ±.£ 1.£2.£3

EJi.QE.§. lllQ.I ~ < 1 o**.§.>-1 E±.£1.£2 .. ·-'-e

DJi.Q lllQ.I ~99 D±.£ 1.£2 or E±.£1.£2
or ±0.£1.£2

99< lllQ.I ~999 ±_£ 1.£2.£3

where .£ is a digit. The sign in the exponent is required.
A plus sign must be used if the exponent value is zero. The

5

1 0

1 5

20

forms EJi.Q and DJi.Q must not be used if lllQ.I > 999. 25

The scale factor l controls the decimal normalization
(13.5.7). If -.Q. < l ~ 0, the output field contains exactly
Ill leading zeros and .Q. - Ill significant digits after the
decimal point. If 0 < l < .Q. + 2, the output field conta~ns
exactly l significant digits to the left of the decimal
point and .Q. - l + 1 significant digits to the right of the
decimal point. Other values of l are not permitted.

30

13.5.9.2.3 G Editing. The GJi.Q and GJi.QE.§. edit descriptors 35
indicate that the external field occupies Ji positions, the
fractional part of which consists of .Q. digits, unless a
scale factor greater than one is in effect, and the exponent
part consists of.§. digits.

G input editing is the same as for F editing <13.5.9.2.1).

The method of representation in the output field depends on
the magnitude of the datum being edited. Let N be the

40

magnitude of the internal datum. If N < 0.1 or N ~ 10**Q, 45
GJi.Q output editing is the same as lPEJi.Q output editing and
GJi.QE.§. output editing is the same as lPEJi.QE.§. output
editing, where l is the scale factor currently in effect.
If N is greater than or equal to 0.1 and is less than 10**Q,
the scale factor has no effect, and the value of N 50
d e t e r m i n e s t h e e d i t i n g a s· f a I I a w s :

55

Fu 11 Language Page 13-11

ANSI X3.9-1978 FORTRAN 77 FORMAT SPECIFICATION

5

10

15

20

13.5.9.2.4 Comolex Editing. Complex type is not included
25 in the subset.

30

13.5.10 L Editing. The L~ edit descriptor indicates that
the field occupies~ positions. The specified input/output

35 list item must be of type logical. On input, the list item
wi I I become defined with a logical datum. On output, the
specified list item must be defined with a logical datum.

The input field consists of optional blanks, optionally
40 fol lowed by a decimal point, fol lowed by a T for true or F

for false. The T or F may be followed by additional
characters in the field. Note that the logical constants
.TRUE. and .FALSE. are acceptable input forms.

45 The output field consists of~ - 1 blanks followed by a Tor
Fi as the value of the internal datum is true or false,
respectively.

13.5.11 A Editing. The A[~] edit descriptor is used with
50 an input/output list item of type character. On input, the

input list item wi I I become defined with character data. On
outputt the output list item must be defined with character
delta.

55 If a field width~ is specified with the A edit descriptor,
the field consists of~ charact-ers. If a field width ~ is

Page 13-12s S'u b s e t Language

FORMAT SPECIFICATION ANSI X3.9-1978 FORTRAN 77

Magnitude of Datum Equivalent Conversion

O.HN<1 F <.H.-.n.> . .rJ., .n.<'.Q.')
s

HN<10 F (Ji-.n.). <Q.-1) I .n.<'.Q.')
. .
. .
. .

10tt(Q.-2>~N<10tt(Q.-1> F (Ji-.n.). 1 I .n.<'.Q.') 10

10tt(Q.-1>~N<10ttQ. F (Ji-.n.). 0 I .n.<'.Q.')

1 s
where: .Q. is a blank

.n. is 4 for GJi . .9. and ~+2 for GJi.Q.E~

Note that the scale factor has no effect unless the 20
magnitude of the datum to be edited is outside of the range
that permits effective use of F editing.

13.S.9.2.4 Complex Editing. A complex datum consists of a
pair of separate real data; therefore, the editing is 2S
specifi~d by two successively interpreted F, E, D, or G edit
descriptors. The first of the edit descriptors specifies
the real part; the second specifies the imaginary part. The
two edit descriptors may be different. Note that
nonrepeatable edit descriptors may appear between the two 30
successive F, E, 0, or G edit descriptors.

13.S.10 L Editing. The L.H. edit descriptor indicates that
the field occupies Ji positions. The specified input/output
list item must be of type logical. On input, the list item 3S
wi I I become defined with a logical datum. On output, the
specified list item must be defined with a logical datum.

The input field consists of optional blanks, optionally
followed by a decimal point, followed by a T for true or F 40
for false. The T or F may be followed by additional
characters in the field. Note that the logical constants
.TRUE. and .FALSE. are acceptable input forms.

The output field consists of Ji - 1 blanks fol lowed by a Tor 4S
F, , as the value of the internal datum is true or false,
res.pectively.

13.S.11 A Editing. The A[Ji] ,edit descriptor is used with
an input/output list ~tem of type character. On input, the SO
input list item wi I I become defined with character data. On
output, the output list item must be defined with character
data.

If a field width Ji is spe~ified with the A edit descriptor, SS
the field c.onsists of Ji characters. If a field width Ji is

Fut I Language Page 13-12

ANSI X3.9-1978 FORTRAN 77 FORMAT SPECIFICATION

not specified with the A
characters in the field is
i nputJoutput Ii st item.

edit descriptor, the number of
the length of the character

5 Let l..rul be the length of the input/output list item. If the
specified field width~ for A input is greater than or equal
to l..rul, the rightmost l..rul characters wi I I be taken from the
input field. If the specified field width is less than~.
the~ characters wi I I appear left-justified with .!A.n.-~

10 trailing blanks in the internal representation.

If the specified field width~ for A output is greater than
l..rul, the output field wi 11 consist of ~-1..rul blanks fol lowed
by the l..rul characters from the internal representation. If

15 the specified field width~ is less than or equal to .1.An,
the output field wi I I consist of the leftmost~ characters
from the internal representation.

13.6 List-Directed Formatting
20

List-directed formatting is not included in the subset.

25

30

35

40

45

50

55

Page 13-13s Subset Language

FORMAT SPECIFICATION ANSI X3.9-1978 FORTRAN ?t

not specified with the A
characters in the field is
input/output list item.

edit descriptor, the numb~r of
the length of the character

Let l.fill be the length of the input/output list item. If the 5
specified field width~ for A input is greater than or equal
to l.fill, the rightmost l.fill characters wi I I be taken from the
input field. If the specified field width is less than len,
the~ characters wi I I appear left-justified with len-~
trailing blanks in the internal representation. 10

If the specified field width~ for A output is greater than
l.fill, the output field will consist of ~-1.fill blanks followed
by the l.fill characters from the internal representation. If
the specified field width~ is less than or equal to J..fill, 15
the output field wi I I consist of the leftmost~ characters
from the internal representation.

13.6 List-Directed Formatting

The characters in one or more list-directed records
constitute a sequence of values and value separators. The
end of a record has the same effect as a blank character,
unless it is within a character constant. Any sequence of

20

two or more consecutive blanks is treated as a single blank, 25
unless it is within a character constant.

Each value is either a constant, a nul I value, or of one of
the forms:

L*£

L*

30

where r is an unsigned, nonzero, integer constant. The .L*£ 35
form is equivalent to L successive appearances of the
constant £, and the .L* form is equivalent to L successive
nul I values. Neither of these forms may contain embedded
blanks, except where permitted within the constant£.

A value separator i s one of the fol lowing:

(1) A comma optionally preceded by one or more contiguous
blanks and optionally fol lowed by one or more
contiguous blanks

(2) A slash optionally preceded by one or more contiguous
blanks and optionally fo I Io wed by one or more
contiguous blanks

(3) One or more contiguous blanks between two constants
or fol lowing the last constant

40

45

50

I
55

Ful I Language Page 13-13

ANSI X3.9-1978 FORTRAN 77

5

10

15

20

25

30

35

-40

45

50

55

13.6.1 List-Directed Input.
not included in the subset.

Page 13-14s

FORMAT SPECIFICATION

Subset Language

FORMAT SPECIFICATION ANSI X3.9-1978 FORTRAN 77

13.6.1 List-Directed Input. Input forms acceptable to
format specifications for a given type are acceptable for
list-directed formatting, except as noted below. The form
of the input value must be acceptable for the type of the
input list item. Blanks are never used as zeros, and 5
embedded blanks are not permitted in constants, except
within character constants and complex constants as
specified below. Note that the end of a record has the
effect of a blank, except when it appears within a character
constant. 10

When the corresponding input list item is of type real or
double precision, the input form is that of a numeric input
field. A numeric input field is a field suitable for F
editing (13.5.9.Z> that is assumed to have no fractional 15
digits unless a decimal point appears within the field.

When the corresponding list item is of type complex, the
input form consists of a I ef t parenthesis fo 11 owed by an
ordered pair of numeric input fields separated by a comma, 20
and fol lowed by a right parenthesis. The first numeric
input field is the real part of the complex constant and the
second is the imaginary part. Each of the numeric input
fields may be preceded or fol lowed by blanks. The end of a
record may occur between the real part and the comma or ZS
between the comma and the imaginary part.

When the corresponding list item is of type logical, the
input form must not include either slashes or commas among
the optional characters permitted for L editing <13.5.10). 30

When the corresponding list item is of type character, the
input form consists of a nonempty string of characters
encPosed in apostrophes. Each apostrophe within a character
constant must be represented by two consecutive apostrophes 35
without an intervening blank or end of record. Character
constants may be continued from the end of one record to the
beginning of th~ next record. The end of the record does
not cause a blank or any other character to become part of
the constant. The constant may be continued on as many 40
records as needed. The characters blank, comma, and slash
may appear in character constants.

Let ill!. be the I en gt h of the I i st i te m, and I et ii be the
I ength of the character constant. If ill!. is I ess than or 45
eQual to Ji, the leftmost len characters of the constant are
transmitted to the list item. If ill!. is greater than Ji, the
constant is transmitted to the leftmost w characters of the
list item and the remaining len-ii characters of the list
item are fi I led with blanks. Note that the effect is as 50
though the constant were assigned to the list item in a
character assignment statement <10.4).

A nul I value is specified by having no characters between
·successive value separators, no characters preceding the 55
first value separator in the first record read by each

Fu! I language Page 13-14

ANSI X3.9-1978 FORTRAN 77

5

1 0

1 5

20

25

30

35

40

45

50

55

13.6.2 List-Directed Output.
not included in the subset.

Page 13-15s

FORMAT SPECIFICATION

List-directed formatting is

Subset Language

FORMAT SPECIFICATION ANSI X3.9-1978 FORTRAN 77

execution of a list-directed input statement, or the L*
form. A nul I value has no effect on the definition status
of the corresponding input list item. If the input list
item is defined, it retains its previous value; if it is
undefined, it remains undefined. A nul I value may not be 5
used as either the real or imaginary part of a complex
constant, but a single nul I value may represent an entire
complex constant. Note that the end of a record fol lowing
any other separator, with or without separating blanks, does
not specify a nul I value. 10

A slash encountered as a value separator during execution of
a list-directed input statement causes termination of
execution of that input statement after the assignment of
the previous value. If there are additional items in the 15
input list, the effect is as if null values had been
supplied for them.

Note that al I blanks in a list-directed input record are
considered to be part of some value separator except for the ZO
fol lowing:

(1) Blanks embedded in a character constant

<Z> Embedded blanks surrounding the real or imaginary ZS
part of a complex constant

(3) Leading blanks in the first record read by each
execution of a list-directed input statement, unless
immediately fol lowed by a slash or comma 30

13.6.Z List-Directed Output. The form of the values
produced is the same as that required for input, except as
noted otherwise. With the exception of character constants,
the values are separated by one of the fol lowing: 35

(1) One or more blanks

(2) A comma optionally preceded by one or more blanks and
optionally fol lowed by one or more blanks

The processor may begin new records as necessary, but,
except for complex constants and character constants, the
end of a record must not occur within a constant and blanks
must not appear within a constant.

Logical output constants are T for the value true and F for I
the value false.

Integer output constants are produced with the effect of
I~ edit descriptor, for some reasonable value of~-

an I
Real and double prec1s1on constants are produced with the
effect of either an F edit descriptor or an E edit
descriptor, depending on the magnitude x of the value and a
range 1 0 ** .Q. 1 ~ x < 1 0 * * .Q.2 , where 41 and 42 are processor -

40

45

50

55

Fu I I Language Page 13-15

ANSI X3.9-1978 FORTRAN 77 FORMAT SPECIFICATl-ON

List-directed formatting is not included 1n the ~ubset.

5

10

1 5

20

25

30

35

40

45

50

55

Page 13-16s Subset Language

FORMAT SPECIFICATION ANSI X3.9-1978 FORTRAN 77

dependent integer values. If the magnitude A is within this
range, the constant is produced using OPF~.Q: otherwise,
1PE~.QE~ is used. Reasonable processor-dependent values of
~. Q, and~ are used for each of the cases involved.

Complex constants are enclosed in parentheses, with a comma
separating the real and imaginary parts. The end of a
record may occur between the comma and the imaginary part
only if the entire constant is as long as, or longer than,

5

an entire record. The only embedded blanks permitted within 10
a complex constant are between the comma and the end of a
record and one blank at the beginning of the next record.

Character constants produced are not delimited by
apostrophes, are not preceded or fol lowed by a value 15
separator, have each internal apostrophe represented
externally by one apostrophe, and have a blank character
inserted by the processor for carriage control at the
beginning of any record that begins with the continuation of
a character constant from the preceding record. 20

If two or more successive values in an output record
produced have identical values, the processor has the option
of producing a repeated constant of the form L*£ instead of
the sequence of identical values. 25

Slashes, as value separators, and nul I
produced by list-directed formatting.

values are not

Each output record begins with a blank character to
carriage control when the recdrd is printed.

provide I 30

35

40

45

50

55

Full Language Page 13-16

ANSI X3.9-1978 FORTRAN 77

14. MAIN PROGRAM

A main program is a program unit that does not have a
S FUNCTION or SUBROUTINE statement as its first statement. It

may have• PROGRAM statement as its first statement.

There must be exactly one main program in an executable
10 program. Execution of an executable program begins with the

execution of the first executable 5tatement of the main
program.

14.1 PROGRAM Statement.
1 s

The form of a PROGRAM statement is:

PROGRAM Q9..!!!.

20 where Q9..!!!. is the symbolic name of the main program in which
the PROGRAM statement appears.

A PROGRAM statement is not reQuired to appear in an
executable program. If it does appear, it must be the first

ZS statement of the main program.

The symbolic name Q9..!!!. is global <18.1.1> to the executable
program and must not be the same as the name of an external
procedure or common block in the same executable program.

30 The name Q9..!!!. must not be the same as any local name in the
main program.

14.Z Main Program Restrictions

3S The PROGRAM statement may appear only as the first statement

40

4S

so

SS

of a main program. A main program may contain any other
statement except a FUNCTION, SUBROUTINE, or RETURN
statement. The appearance of a SAVE statement in a main
program has no effect.

A main program may not be referenced from a subprogram or
from itself.

Page 14-ls Subset Language

ANSI X3.9-1978 FORTRAN 77

14. HAIN PROGRAM

A main program is a program unit that does not have a
FUNCTION, SUBROUTINE, or BLOCK DATA statement as its first 5
statement. It may have a PROGRAM statement as its first
statement.

There must be exactly one main program in an executable
program. Execution of an executable program begins with the 10
execution of the first executable statement of the main
program.

14.1 PROGRAM Statement

The form of a PROGRAM statement is:

PROGRAM Q.9..!!l.

1 5

where Q.9..!!l. is the symbolic name of the main program in which 20
the PROGRAM statement appears.

A PROGRAM statement is not required to appear in an
executable program. If it does appear, it must be the first
statement of the main program. 25

The symbolic name Q.9..!!l. is global <18.1.1> to the executable
program and must not be the same as the name of an external
procedure, block data subprogram, or common block in the
same executable program. The name Q.9..!!l. must not be the same 30
as any local name in the main program.

14.2 Main Program Restrictions

The PROGRAM statement may appear only as the first statement 35
of a main program. A main program may contain any other
statement except a BLOCK DATA, FUNCTION, SUBROUTINE, ENTRY,
or RETURN statement. The appearance of a SAVE statement in
a main program has no effect.

A main program may not be referenced from a subprogram or
from itself.

40

45

50

55

Ful I Language Page 14-1

ANSI X3.9-1978 FORTRAN 77

s

1 0

1 s

20

25

30

35

40

1S. FUNCTIONS AND SUBROUTINES

1S.1 Categories of Functions and Subroutines

1S.1,1 Procedures. Functions and subroutines
orocedures. There are four categories of procedures:

(1 > Intrinsic functi ans

<2> Statement functions

(3) External functions

(4) Subroutines

are

Intrinsic functions, statement functions, and external
functions are referred to collectively as functions.

External functions and subroutines are referred to
collectively as external procedures.

1S.1.2 External Functions. There are two categories of
external functions:

(1) External functions specified in function subprograms

(2) External functions specified by means other than
FORTRAN subprograms

15.1.3 Subroutines.
subroutines:

There are two categories

<1> Subroutines specified in subroutine subprograms

of

<2> Subroutines specified by means other than FORTRAN
subprograms

1S.1.4 Dummy Procedure. A dummy procedure is a dummy
argument that is identified as a procedure <18.2.11>.

15.2 Referencing a Function

A function is referenced in an expression and supplies a
value to the expression. The value supplied is the value of

45 the function.

An intrinsic function may be referenced in the main program
or in any procedure subprogram of an executable program.

SO A statement function may be referenced only in the program
unit in which the statement function statement appears.

An external function specified by a function subprogram may
be refere~ced within any other procedure subprogram or the

SS main program of the executable program. A subprogram must
not reference itself, either directly or indirectly.

Page 1S-1s Subset Language

ANSI X3.9-1978 FORTRAN 77

15. FUNCTIONS AND SUBROUTINES

15.1 Categories of Functions and Subroutines

15.1.1 Procedures. Functions and subroutines
orocedures. There are four categories of procedures:

<1> Intrinsic functions

<2> Statement functions

{3) External functions

{4) Subroutines

are

Intrinsic functions, statement functions, and external
functions are referred to collectively as functions.

External functions and subroutines are referred to
collectively as external procedures.

15.1.2 External Functions. There are two categories of
external functions:

5

10

15

20

<1> External functions specified in function subprograms 25

<2> External functions specified by means other than
FORTRAN subprograms

15.1.3 Subroutines.
subroutines:

There are two categories

{1) Subroutines specified in subroutine subprograms

of 30

<2> Subroutines specified by means other than FORTRAN 35
subprograms

15.1.4 Dummy Procedure. A dummy procedure is a dummy
argument that is identified as a procedure <1&.2.11>.

15.2 Referencing a Function

A function is referenced in an expression and supplies a
value to the expression. The value supplied is the value of

40

the function. 45

An intrinsic function may be referenced in the main program
or in any procedure subprogram of an executable program.

A statement function may be referenced only in the program 50
unit in which the statement function statement appears.

An external function specified by a function subprogram may
be referenced within any other procedure subprogram or the
main program of the executable program. A subprogram must 55
not reference itself, either directly or indirectly.

Ful I Language Page 15-1

ANSI X3.9-1978 FORTRAN 77 FUNCTIONS AND SUBROUTINES

5

An external function specified by means other than a
subprogram may be referenced within any procedure subprogram
or the main program of the executable program.

15.2.1 Form of a Function Reference. A function reference
10 is used to reference an intrinsic function, statement

function, or external function.

1 5

20

The form of a function reference is:

fun ([.§. [,.§.] ••• J)

where: fun is the symbolic name of a function or a dummy
procedure

is an actual argument

The type of the result of a statement function or external
function reference is the same as the type of the function
name. The type is specified in the same manner as for

25 variables and arrays (4.1.2). The type of the result of an
intrinsic function is specified in Table 5 (15.10). A
function must not be of type character.

15.2.2 Execution of a Function Reference. A function
30 reference may appear only as a primary in an arithmetic or

logical expression. Execution of a function reference in
an expression causes the evaluation of the function
identified by fun.

35 Return of control from a referenced function completes

40

45

execution of the function reference. The value of the
function is avai I able to the referencing expression.

15.3 Intrinsic Functions

Intrinsic functions are supplied by the processor and have a
special meaninQ. The specific names that identify the
intrinsic functions, their function definitions, type of
arguments, and type of results appear in Table 5.

An IMPLICIT statement does not change the type of an
intrinsic function.

50 15.3.1 Specific Names and Generic Names. Only a specific
intrinsic function name may be used as an actual argument
when the argument is an intrinsic function.

55

Page 15-2s Subset Language

FUNCTIONS AND SUBROUTINES ANSI X3.9-1978 FORTRAN 77

An external function specified by means other than a
subprogram may be referenced within any ·procedure subprogram
or the main program of the executable program.

If a character function is referenced in a program unit, the
function length specified in the program unit must be an
integer constant expression.

15.2.1 Form of a Function Reference.
is used to reference an intrinsic
function, or external function.

The form of a function reference is:

fun < [.§. [,.§.] ••• l)

A function
function,

reference
statement

where: fun is the symbolic name of a function or a dummy
procedure

is an actual argument

The type of the resu~t of a statement function or external
function reference is the same as the type of the function
name. The type is specified in the same manner as for

5

10

1 5

20

variables and arrays (4.1.2>. The type of the result of an 25
intrinsic function is specified in Table 5 <15.10>.

15.2.2 Execution of a Function Reference. A function
reference may appear only as a primary in an arithmetic, 30
logical, or character expression. Execution of a function
reference in an expression causes the evaluation of the
function identified by fun.

Return of control from a referenced function completes 35
execution of the function reference. The value of the
function is avai I able to the referencing expression.

15.3 Intrinsic Functions

Intrinsic functions are supplied
special m~aning. The specific
intrinsic functions, their
definitions, type of arguments,
in Table 5.

by the processor and have a
names that identify the

generic names, function
and type of results appear

An IMPLICIT ·statement does not change the type of an
intrinsic function.

40

45

15.3.1 Specific Names and Generic Names. Generic names 50
simplify the referencing of intrinsic functi6ns, because the
same function name may be used with more than one type of
argument. Only a specific intrinsic function name ·may be
used as an actual argument when the argument is an intrinsic
function. 55

Ful I Language Page 15-2

ANSI X3.9-1978 FORTRAN 77 FUNCTIONS AND SUBROUTINES

5

10

1 5

For those intrinsic functions that have more than one
argument, al I arguments must be of the same type.

If the specific name of an intrinsic function appears in the
dummy argument list of a function or subroutine in a
subprogram, that symboltc name does not identify an
intrinsic function in the program unit. The data type
identified with the symbolic name is specified in the same
manner as for variables and arrays (4.1.2).

A name in an INTRINSIC statement must be the specific name
of an intrinsic function.

20 15.3.2 Referencing an Intrinsic Function. An intrinsic
function is referenced by using its r~ference as a primary
in an expression. For each intrinsic function described in
Table 5, execution of an intrinsic function reference causes
the actions specified in Table 5, and the result depends on

25 the values of the actual arguments. The resulting value is
avai I able to the expression that contains the function
reference.

The actual arguments that constitute the argument list must
30 agree in order, number, and type with the specification in

Table 5 and may be any expression of the specified type.

35

A specific name of an intrinsic function that appears in an
INTRINSIC statement may be used as an actual argument in an

40 external procedure reference: however, the names of
intrinsic functions for type conversion, lexical
r e I a t i o n s h i p , a n d f o r c h o o s i n g t h e I a r g e s t o r s ma I I e s t v a ru e
must not be used as actual arguments. Note that su~h an
appwarance does not cause the intrinsic function to be

45 classified as an external function (18.2.10).

15.3.3 Intrinsic Function Restrictions. Arguments for
which the result is not mathematically defined or exceeds
the numeric range of the processor cause the result of the

50 function to become undefined.

55

Re s t r i c t i on s o n t he r a n g e o f a r gum en t s and r e s u 'I t s f o r
intrinsic functions are described in 15.10.1.

Page 15-3s Subset Language

FUNCTIONS AND SUBROUTINES ANSI X3.9-1978 FORTRA~ 77

If a gener;c name
function, the type of
functions performing
absolute value with a
type of the argument.

is used to reference an intrinsic
the result <except for intrinsic

type conversion, nearest integer, and
complex argument) is the same as the

For those intrinsic functions that have more than one
argument, al I arguments must be of the same type.

5

If the specific name or generic name of an intrinsfc 10
function appears in the dummy argument list of a function or
lubroutine in a subprogram, that symbolic name does not
identify an intrinsic function in the program u~it. The
data type identified with the symbolic name is specified in
the same manner as for variables and arrays <4.1.2). 15

A name in an INTRINSIC statement must be the specific name
or generic name of an intrinsic function.

15.3.2 Referencing an Intrinsic Function. An intrinsic 20
function is referenced by using its reference as a primary
in an expression. For each intrinsic function described in
Table 5, execution of an intrinsic function reference causes
the actions specified in Table 5, and the result depends on
the values of the actual arguments. The resulting value is 25
avai I able to the expression that contains the function
reference.

The actual arguments that constitute the argument list must
agree in order, number, and type with the specification in 30
Table 5 and may be any expression of the specified type. An
actual argument in an intrinsic function reference may be
any expression except a character expression involving
concatenation of an operand whose length specification is an
asterisk' in parentheses unless the operand is the symbolic 35
name of a constant.

A specific name of an intrinsic function that appears in an
INTRINSIC statement may be used as an actual argument in an
external procedure reference: however, the names of 40
intrinsic functions for type conversion, lexical
relationship, and for choosing the largest or smallest value
must not be used as actual arguments. Note that such an
appearance does not cause the intrinsic function to be
classified as an external function <18.2.10>. 45

15.3.3 Intrinsic Fu~ction Restrictions. Arguments for
which the result is not mathematically defined or exceeds
the numeric range of the processor cause the result of the
function to become undefined. 50

Restrictions on the range of arguments and results for
intrinsic functions are described in 15.10.~.

55

F~I I language Page 15-3

ANSI X3.9-1978 FORTRAN 77 FUNCTIONS AND SUBROUTl~ES

15.4 Statement Function

A statement functfon ~s a procedure spec4fied by a single
statement that is similar in form to an arithmetic or

5 logical assignment statement. A statement function

10

~tatement must appear only after the specificat.ion
statements and before the first executable statement of the
program unit in which it is referenced <3.5).

A statement function statement
nonexecutable statement; it is not a
execution sequence.

is classified as a
part of the normal

15.4.1 Form of a Statement Function Statement. The form of
15 a statement function statement is:

ill ([.Q_ [,.Q.] •••]) = ~

where: fun is the symbolic name of the statement function
20

.Q. is a statement function dummy argument

~ is an expression

25 The relationship between ill and ~ must conform to the
assignment rules in 10.1 and 10.2. Note that the type of
the expression may be different from the type of the
statement function name.

30 Each ~is a variable name cal led a statement function dummy
argument. The statement function dummy argument list serves
only to indicate order, number, and type of arguments for
the statement function. The variable names that appear as
dummy arguments of a statement function have a scope of that

35 statement <18.1>. A given symbolic name may appear only
once in any statement function dummy argument list. The
symbolic name of a statement function dummy argument may be
used to identify other dummy arguments of the same type in
different statement function statements. The name may also

40 be used to identify a variable of the same type appearing
elsewhere in the program unit, including its appearance as a
dummy argument in a FUNCTION or SUBROUTINE statement. The
name must not be used to identify any other entity in the
program unit except a common block.

45

50

Each primary of the expression ~ must be one of the
fol lowing:

<1> A constant

<Z> A variable reference

55 (3) An array element reference

Page 15-4s Subset Language

FUNCTIONS AND SUBROUTINES ANSI X3.9-1978 FORTRAN 77

15.4 Statement Function

A statement function is a procedure specified by a single
statement that is similar in form to an arithmetic, logical,
or ch•racter assignment statement. A statement function
stat•ment must appear only after the specification
statements and before the first executable statement of the
program unit in which it is referenced (3.5).

A statement function statement is
nonexecutable statement; it is not
execution sequence.

classified as a
a part of the normal

15.4.1 Form of a Statement Function Statement. The form of

5

10

a statement function statement is: 15

fun < [.Q_ [,.Q.]. ••]) = ~

where: fun is the symbolic name of the statement function

.Q. is a statement function dummy argument

~ is an expression

The relationship between fun
assignment rules in 10.1,
type of the expression may be
statement function name.

and ~ must conform to the
10.2, and 10.4. Note that the
different from the type of the

20

25

Each~ is a variable name called a statement function dummy 30
argument. The statement function dummy 'argument list serves
only to indicate order, n~mber, and type of arguments for
the statement function. The variable names that appear as
dummy arguments of a statement function have a scope of that
statement <18.1>. A given symbolic name may appear only 35
once in any statement function dummy argument list. The
symbolic name of a statement function dummy argument may be
used to identify other dummy arguments of the same type in
different statement function statements. The name may also
be used to identify a variable of the same type appearing 40
elsewhere in the program unit, including its appearance as a
dummy argument in a FUNCTION, SUBROUTINE, or ENTRY
statement. The name must not be used to identify any other
entity in the program unit except a common block.

Ea~h primary of the expression ~ must be one of the
following:

(1) A constant

<2> The symbolic name of a constant

<3> A variable reference

(4) An array element reference

45

50

55

Ful I Language · Page 15.,.4

ANSI X3~9-1978 FORTRAN 77 FUNCTIONS AND SUBROUTINES

5

10

<4> An intrinsic function reference

<5> A reference to a statement function for which the
statement function statement appears in preceding
lines of the program unit

(6) An external function reference

<7> A dummy procedure reference

<8> An expression enclosed in parentheses that me~ts al I
of the reQuirements specified for the expression~

Each variable reference may be either a reference to a dummy
15 argument of the ·statement function or a reference to a

variable that appears within the same program unit as the
statement function statement.

If a statement function dummy argument name is the same as
20 the name of another entity, the appearance of that name in

the expression of a statement function statement is a
reference to the statement function dummy argument. A dummy
argument that appears in a FUNCTION or SUBROUTINE statement
may be referenced in the expression of a statement function

25 statement within the subprogram.

30 15.4.2 Referencing a Statement Function. A statement
function is referenced by using its fun~tion reference as a
primary in an expression.

35

40

45

Execution of a statement function reference results in:

<1> evaluation of actual arguments that are expressions,

CZ> association of actual arguments with the
corresponding dummy arguments,

<3> evaluation of the expression~. and

(4) conversion, if necessary, of an arithmetic expression
value to the type of the statement function according
to the assignment rules in 10.1.

The resulting value is avai I able to the expression that
50 contains the function reference.

The actual arguments, which constitute the argument list,
must agree in order, number, and type with the corresponding
dummy arguments. An actual argument in a state~ent function

55 reference may be any expression.

Page 15-5s Subset Language

FUNCTIONS AND SUBROUTINES ANSI X3.9-1978 FORTRAN.77

(5) An intrinsic function reference

(6.) A reference to a statement function for which the
statement function statement appears in preceding
lines of the program unit

(7) An external function reference

(8) A dummy procedure reference

(9) An expression enclosed in parentheses that meets al I
of the requirements specified for the expression~

Each variable reference may be either a reference to a dummy

5

10

argument of the statement function or a reference to a 15
variable that appears within the same program unit as the
statement function statement.

If a statement function dummy argument name is the same as
the name of another entity, the appearance of that name in ZO
the expression of a statement function statement is a
reference to the statement function dummy argument. A dummy
argument that appears in a FUNCTION or SUBROUTINE statement
may be referenced in the expression of a statement function
statement within the subprogram. A dummy argument that ZS
appears in an ENTRY statement that precedes a statement
function statement may be referenced in the expression of
the statement function statement within the subprogram.

15.4.Z Referencing a Statement Function. A statement 30
function is referenced by using its function reference as a
primary in an expression.

Execution of a statement function reference results in:

(1) evaluation of actual arguments that are expressions,

<Z> association of actual arguments w i th the
corresponding dummy arguments,

(3) evaluation of the expression~. and

(4) conversion, if necessary, of an arithmetic expression
value to the type of the statement function according

35

40

to the assignment rules in 10.1 or a change, if 45
necessary, in the length of a ch~racter expression
value according to the rules in 10.4.

The resulting value is avai I able to the expression that
contains the function reference. 50

The actual arguments, which constitute the argument list,
must agree in order, number, and type with the corresponding
dummy arguments. An actual argument in a statement function
reference may be any expression except a character 55
expression involving concatenation of an operand whose

Fut I Language Page 15-5

ANSI X3.9-1978 FORTRAN 77 FUNCTIONS AND SUBROUTINES

When a statement function reference is executed, its actual
5 arguments must be defined.

10

15.4.3 Statement Function -Restrictions. A statement
function may be referenced only in the program unit that
contains the statement function statement.

A statement function statement must not contain a reference
to another statement function that appears fol lowing the
reference in the sequence of lines in the program unit. The
symbolic name used to identify a statement function must not

15 appear as a symbolic name in any specification statement
except in a type-statement (to specify the type of the
function> or as the name of a common block in the same
program unit.

20 An external function reference in the expression of a
statement function statement must not cause a dummy argument
of the statement function to become undefined or redefined.

The symbolic name of a statement function is a local name
25 <18.1.2> and must not be the same as the name of any other

entity in the program unit except the name of a common
block.

30
The symbolic name
actual argument.
statement.

of a statement function may not be an
It must not appear in an EXTERNAL

A statement function statement in a function subprogram must
not contain a function reference to the name of the function

35 subprogram.

A statement function must not be of type character.

The length specification of a statement function dummy
40 argument of type character must be an integer constant.

45

15.5 External Functions

An external functiorr is specified
unit that references it. An
procedure an-cl may be specified in
by some other means.

externally to the program
external function is a

a function subprogram or

50 15.5.1 Function Subprogram and FUltCTION Statement. A
function subprogram specifies an external function. A
function subprogram is a program unit that has a FUNCTION
statement as its first statement. The form of a function
subprogram is as described in 2.4 and 3.5, except as noted

55 in 15.5.3 and 15.7.4.

Page 15-bs Subset Language

FUNCTIONS AND SUBROUTINES ANSI X3.9-1978 FORTRAN 77

length specification is an asterisk in parantheses unless
the operand is the symbolic name of a constant.

When a statement function reference is executed, its actual
arguments must be defined.

15.4.3 Statement Function Restrictions. A statement
function may be referenced only in the program unit that
contains the statement function ~tatement.

A statement function statement must not contain a reference
to another statement function that appears fol lowing the
reference in the sequence of lines in the prDgram unit. The
symbolic name used to identify a statement function must not

5

1 0

appear as a symbolic name in any specification statement 15
except in a type-statement (to spBcify the type of the
function) or as the name of a common block in the same
program unit.

An external function reference in the expression of a 20
statement function statement must not cause a dummy argument
of the statement function to become undefined or redefined.

The symbolic name of a statement function is a local name
<18.1.2> and must not be the same as the name of any other 25
entity ·in the program unit except the name of a common
block.

The symbolic name of a statement function
actual argument. It must not appear
statement.

may not be an
in an EXTERNAL

A statement function statement in a function subprogram must
not contain a function reference to the name of the function

30

subprogram or an entry name in the function subprogram. 35

The length specification of a character statement function
or statement function dummy argument of type character must 40
be an integer constant expression.

15.5 External Functions

An external function is specified
unit that references it. An
procedure and may be specified in
by some other means.

ex terna 11 y to the program
external function is a

a function subprogram or

45

15.5.1 Function Subprogram and FUNCTION Statement. A 50
function subprogram specifies one or more external functions
<15.7>. A function subprogram is a program unit that has a
FUNCTION statement as its first statement. The form of a
function subprogram is as described in 2.4 and 3.5, except
as noted in 15.5.3 and 15.7.4. 55

Ful I Language Page 15-6

ANSI X3.9-1978 FORTRAN 77 FUNCTIONS AND SUBROUTINES

The f~rm of a FUNCTION statement Is:

[1.:lJll FUNCTION ill C C.d. C,.d.l ••• l

5 where: 1.:l1l is one of INTEGER, REAL, or LOGICAL

10

15

20

ill is the symbolic name of the function subprogram
in which the FUNCTION statement appears. ill is
an external function™·

is a var1able name, array name, or dummy
procedure name • .d. is a dummy argument.

The symbolic name of a function subprogram must appear as a
variable name in the function subprogram. During every

25 execution of the external function, this variable must
beciome defined and, once defined, may be referenced or
become redefined. The value of this variable when a RETURN
or END statement is executed in the subprogram is the value
of the function.

30

35 An external function in a function subprogram may define one
or more of Its dummy arguments to return values in addition
to the value of the function.

15.5.2 Referencing an EKternal Function. An external
40 function is referenced by using its reference as a primary

In an expression.

45

50

15.5.2.1 Execution of an External Function Reference~
Execution of an external function reference results in:

<1> evaluation of actual arguments that .are expressions,

<2> association of actual arguments with the
corresponding dummy arguments, and

<3> the actions spe~ified by the referenced function.

Th~ type of the function name in the function reference must
be the same as the type of the funct~on name in the

55 referenced fun~tfon. Note that an ext~rnal function must
not be of type character.

Page 15-7s Subset Language

FUNtTIONS AND SUBROUTINES ANSI X3.9-1978 FORTRAN 77

The form of a FUNCTION statement is:

[1.l.Q.l FUNCTION iY..n. < C4 C,41 .•• l

where: .1.ll is one of INTEGER, REAL, DOUBLE PRECISION, 5
COMPLEX, LOGICAL, or CHARACTER (tlenl where ten
is the length specification of the result of the
character function. ..!...fill may have any of the
forms allowed in a CHARACTER statement <8.4.2)
except that an integer constant expression must 10
not include the symbolic name of a constant. If
a length is not specified in a CHARACTER FUNCTION
statement, ~he character function has a length of
one.

fun is the symbolic name of the function subprogram
in which the FUNCTION statement appears. 1Y..n. is
an externa I function name.

is a variable name, array name, or dummy
procedure name. 4 is a dummy argument.

The symbolic name of a function subprogram or an associated
entry name of the same type must appear as a variable name

1 5

20

in the function subprogram. During every execution of the 25
external function, this variable must become defined and,
once defin~d. may be referenced or become redefined. The
value of this variable when a RETURN· or END statement is
executed in the subprogram is the value of the function. If
this variable is a character variable with a length 30
specification that is an asterisk in parentheses, it must
not appear as an operand for concatenation except in a
character assignment statement <10.4).

An external function in a function subprogram may define one 35
or more of its dummy arguments to return values in addition
to the value of the function.

15.5.2 Referencing an External Function. An external
function is referenced by using its reference as a primary 40
in an expression.

15.5.2.1 Execution of an External Function Reference.
Execution of an external function reference results in:

(1) evaluation of actual arguments that are expressions,

<2> association of actual arguments w i th the
corre~ponding dummy arguments, and

(3) the actions specified by the referenced function.

The type of the function name in the function reference must
be the same as the type of the function name in the

45

50

referenced function. The length of the character function 55

Fut I Language Page 15-7

ANSI X3.9-1978 FORTRAN 77 FUNCTIONS AND SUBROUTINES

5
When an external
function must be
executable program.

function reference is executed, the
one of the external functions in the

15.5.2.2 Actual Arguments for an External Functton. The
actual arguments in an external function refe~ence must

10 agree ih order, number, and type with the corresponding
dummy arguments irt the referenced function. The use of a
subroutine name as an actual argument is an exception to the
rule reQuiring agreement of type because subroutine names do
not have a type.

15

20

25

30

35

40

An actual argument. in an exterhal itinction reference must be
one of the following:

(1) An expression

<2> An array name

(4) An external procedure name

<5> A dummy procedure name

Note that an actual argument in a function reference may be
a dummy argument that appears in a dummy argument list
within the subprogram containing the reference.

15.5.3 Function Subprogram Restrictions. A FUNCTION
statement must appear only as the first statement of a
function subprogram. A function subprogram may contain any
other statement except a SUBROUTINE or PROGRAM statement.

The symbolic name of an external function is a glob~I name
(18.1.1> and must not be the same as any other global name
or any local name, except a variable name, in the function

45 subprogram.

Within a function subprogram, the symbolic name of a
function specified by the FUNCTION statement must not appear
in any other nonexecutable statement, except a type-

50 statement. In an executable statement, such a name may
appear only as a variable.

If the type of a function is specified in a FUNCTION
statement, the function name must not appear in a type-

55 statement. Note that a name must not have its type.
explicitly specified more than once in a program unit.

· Page 15-8s Subset Language

FUNCTIONS AND SUBROUTINES ANSI X3.9-1978 FORTRAN 77

in a character function reference must be the same as the
length of the character function in the referenced function.

When an external
function must be one
executable program.

function
of the

re·ference
external

is executed,
functions in

the
the

15.5.2.2 Actual Arguments for an External Function. The
actual arguments in an external function reference must

5

agree in order, number, and type with the corresponding 10
dummy arguments in the referenced function. The use of a
subroutine name as an actual argument is an exception to the
rule requiring agreement of type because subroutine names do
not have a type.

An actual argument in an external function reference must be
one of the fol lowing:

(1) except a character expression
of an operand whose

An expression
concatenation
specification
the operand is

involving
length
unless is an asterisk in parentheses

the symbolic name of a constant

(2) An array name

(3) An intrinsic function name

(4) An external procedure name

(5) A dummy procedure name

Note that an actual argument in a function reference may be
a dummy argument that appears in a dummy argument list
within the subprogram containing the reference.

15.5.3 Function Subprogram Restrictions. A FUNCTION
statement must appear only as the first statement of a
function subprogram. A function subprogram may contain any
other statement except a BLOCK DATA, SUBROUTINE, or PROGRAM

15

20

25

30

35

statement. 40

The symbolic name of an external function is a global name
<18.1.1) and must not be the same as any other global name
or any local name, except a variabl~ name, in the function
subprogram. 45

Within a function subprogram, the symbolic name of a
function specified by a FUNCTION or ENTRY statement must not
appear in any other nonexecutable statement, except a type-
statement. In an executable statement, such a name may 50
appear only as a variable.

If the type
statement,
statement.
explicitly

of a function is specified in a FUNCTION
the function name ·must not appear in a type­
Note that a name must not have its type

specified more than once in a program unit.
55

Fu I I Language Page 15-8

ANSI X3.9-1978 FORTRAN 77 FUNCTIONS AND SUBROUTINES

A function subprogram name must not be of type character.

5

In a function subprogram, the symbolic name of a dummy
10 argument is local to the program unit and must not appear in

an EQUIVALENCE, SAVE, INTRINSIC, DATA, or COMMON statement,
except as a common block name.

1 5

A function specified in a subprogram may be referenced
ZO within any other procedure subprogram or the main program of

ZS

the executable program. A function subprogram must not
reference itself, either directly or indirectly.

15.6 Subroutines

A subroutine is specified externally to the program unit
that references it. A subroutine is a procedure and may be
specified in a subroutine subprogram or by some other means.

30 15.6.1 Subroutine Subprogram and SUBROUTINE Statement. A
subroutine subprogram specifies a subroutine. A subroutine
subprogram is a program unit that has a SUBROUTINE statement
as its first statement. The form of a subroutine subprogram
is as described in Z.4 and 3.5, except as noted in 15.6.3

35 and 15.7.4.

The form of a SUBROUTINE statement is:

SUBROUTINE ~ [< [_Q. [,.Q.l •.• l > l
40

where: sub is the symbolic name of the subroutine subprogram
in which the SUBROUTINE statement appears. ~
is a subroutine™·

45 is a variable name, array name, or dummy
procedure name . .Q. is a dummy argument.

Note that if there are no dummy arguments, either of the
50 forms~ or~() may be used in the SUBROUTINE statement.

A subroutine that is specified by either form may be
referenced by a CALL statement of the form CALL ~ or CALL
sub().

55 One or more dummy arguments of a subroutine in a subprogram
may become defined or redefined to return results.

Page 15-9s Subset Language

FUNCTIONS AND SUBROUTINES ANSI X3.9-1978 FORTRAN 77

If the name of a function subprogram is of type character,
each entry name in the function subprogram must ba of type
character. If the name of the function subprogram or any
entry in the subprogram has a length of (t) declared, al I
such entities must have a length of (t) declared; otherwise, 5
al I such ent1t1es must have a length specification of the
same integer value.

In a function subprogram, the symbolic name of
argument is local to the program unit and must not
an EQUIVALENCE, PARAMETER, SAVE, INTRINSIC, DATA,
statement, except as a common block name.

a dummy
appear in
or COMMON

A character dummy argument
asterisk in parentheses
concatenation, except in a
C10.4).

whose length specification is an
must not appear as an operand for
character assignment statement

A function specified in a subprogram may be referenced

10

15

within any other procedure subprogram or the main program of 20
the executable program. A function subprogram must not
reference itself, either directly or indirectly.

15.6 Subroutines

A subroutine is specified externally to the program unit
that references it. A subroutine is a procedure and may be
specified in a subroutine subprogram or by some other means.

25

15.6.1 Subroutine Subprogram and SUBROUTINE Statement. A 30
subroutine subprogram specifies one or more subroutines
C15.7). A subroutine subprogram is a program unit that has
a SUBROUTINE.statement as its first statement. The form of
a subroutine subprogram is as described in 2.4 and 3.5,
except as n~ted in 15.6.3 and 15.7.4. 35

The form of a SUBROUTINE statement is:

SUBROUTINE~ CC C~ C,~J ... J >J

where: 3J!..b. is the symbolic name of the subroutine subprogram
in which the SUBROUTINE statement appears. ~
is a subroutine~-

is a variable name, array name, or dummy
procedure name, or is an asterisk C15.9.3.5). ~
is a dummy argument.

Note that if there are no dummy arguments, either of the

40

45

forms sub or sub<> may be used in the SUBROUTINE statement. 50
A subroutine that is specified by either form may be
referenced by a CALL statement of the form CALL ll..b_ or CALL
~().

One or more dummy arguments of a subroutine in a subprogram 55
may become defined or redefined to return results.

Fut I Language Page 15-9

ANSI X!.~-1978 FORTRAN 77 FUNCTIONS AND SUBROUTINES

5

15.6.2 Subroutine Reference. A subroutine is referenced by
a CALL statement.

15.6.2,1 Form of a CALL Statement.
statement is:

CALL sub [C CA [,Al ••• J > l

The form of a CALL

where: sub is the symbolic name of a subroutine or dummy
10 procedure

15

20

A is an actual argument

15.6.2.2 Execution of a CALL Statement.
CALL statement results in

Execution of a

<1> evaluation of actual arguments that are expressions,

C2> association of actual arguments with the
corresponding dummy arguments, and

C3) the actions specified by the referenced subroutine.

Return of ~ontrol from the referenced subroutine completes
25 execution of the CALL statement.

A subroutine specified in a subprogram may be referenced
within any other procedure subprogram or the main program of
the executable program. A subprogram must not reference

30 itself, either directly or indirectly.

35

When a CALL statement is executed, the referenced subroutine
must be one of the subroutines specified in subroutine
subprograms or by other means in the executable program.

15.6.2.3 Actual Arguments for a Subroutine. The actual
arguments in a subroutine reference must agree in order,
numb~r. and type with the corresponding dummy arguments in
the dummy argument list of the referenced subroutine. The

40 use of a subroutine name as an actual argument is an
exception to the rule requiring agreement of type.

An actual argument in a subroutine reference must be one of
45 the following:

(1) An expression

50

<2> An array name

C3) An intrinsic function name
55

<4> An external procedure name

Page 15-10s Subset Language

FUNCTIONS AND SUBROUTINES ANSI X3.9-1978 FORTRAN 77

15.6.2 Subroutine Reference. A subroutine is referenced by
a CALL statement.

15.6.2.1 Form of a CALL Statement.
statement is:

CALL sub CC [JI. [,Jl.l. .. J)J

The form of a CALL

where: ~is the symbolic name of a subroutine or dummy

5

procedure 10

A is an actual argument

15.6.2.2 Execution of a CALL Statement.
CALL statement results in

Execution of a

(1) evaluation of actual arguments that are expressions,

<2> association of actual arguments with the
corresponding dummy arguments, and

(3) the actions specified by the referenced subroutine.

Return of control from the referenced subroutine completes

1 5

20

execution of the CALL statement; 25

A subroutine specified in a subprogram may be referenced
within any other procedure subprogram or the main program of
the executable program. A subprogram must not reference
itself, either directly or indirectly. 30

When a CALL statement is executed, the referenced subroutine
must be one of the subroutines specified in subroutine
subprograms or by other means in the executable program.

15.6.2.3 Actual Arguments for a Subroutine. The actual
arguments in a subroutine reference must agree in order,
number, and type with the corresponding dummy arguments in
the dummy argument list of the referenced subroutine. The

35

use of a subroutine name or an alternate return specifier as 40
an actual argument is an exception to the rule requirin~
agreement of type.

An actual argument in a subroutine reference must be one of
the fol lowing: 45

except a character expression
of an operand whose

(1) An expression
concatenation
specification
the operand is

involving
length
unless is an asterisk in parentheses

the symbolic name of a constant

<2> An array name

(3) An intrinsic function name

(4) An external procedure name

50

55

Ful I Language Page 15-10

ANSI X3.9-1978 FORTRAN 77 FUNCTIONS AND SUBROUTINES

5

(5) A dummy procedure name

Note that an actual argument in a subroutine reference may
be a dummy argument name that appears in a dummy argument

10 list within the subprogram containing the reference.

15.6.3 Subroutine Suborogram Restrictions. A SUBROUTINE
15 statement must appear only as the first statement of a

subroutine subprogram. A subroutine subprogram may contain
any other statement except a FUNCTION or PROGRAM statement.

20 The symbolic name of a subroutine is a global name <18.1.1)
and must not be the same as any other global name or any
local name in the program unit.

In a subroutine subprogram, the symbolic name of a dummy
25 argument is local to the program unit and must not appear in

an EQUIVALENCE, SAVE, INTRINSIC, DATA, or COMMON statement,
except as a common block name.

30

35

40

45

50

55

15.7 ENTRY Statement

The ENTRY statement is not included in the subset.

15.7.1 Form of an ENTRY Statement. The ENTRY statement is
not included in the subset.

Page 15-11s Subset Language

FUNCTIONS AND SUBROUTINES ANSI X3.9-1978 FORTRAN 77

(5) A dummy procedure name

(6) An alternate return soecifier, of the form *~. where
i is the statement label of an executable statement
that appears in the same program unit as the CALL
statement C15.8.3>

Note that an actual argument in a subroutine reference may
be a dummy argument name that appears in a dummy argument

5

list within the subprogram containing the reference. An 10
asterisk dummy argument must not be used as an actual
argument in a subprogram reference.

15.6.3 Subroutine Suborogram Restrictions. A SUBROUTINE
statement must appear only as the first statement of a 15
subroutine subprogram. A subroutine subprogram may contain
any other- statement except a BLOCK DATA, FUNCTION, or
PROGRAM statement.

The symbolic name of a subroutine is a global
and must not be the same as any other global
local name in the program unit.

name C18.1.1>
name or any

In a subroutine subprogram, the symbolic name of a dummy

20

argument is local to the program unit and m~st not appear in 25
an EQUIVALENCE, PARAMETER, SAVE, INTRINSIC, DATA, or COMMON
statement, except as a common block name.

A character dummy argument whose length specification is an
asterisk in parentheses must not appear as an operand for 30
concatenation, except in a character assignment statement
(10.4).

15.7 ENTRY Statement

An ENTRY statement permits a procedure reference to begin
with a particular executable statement within the function
or subroutine subprogram in which the ENTRY statement
appears. It may appear anywhere within a function

35

subprogram after the FUNCTION statement or within a 40
subroutine subprogram after the SUBROUTINE statement, except
that an ENTRY statement must not appear between a block IF
statement and its corresponding END IF statemen~. or between
a DO statement and the terminal statement of its DO-loop.

Optionally, a subprogram may have one or more
statements.

ENTRY

An ENTRY statement is classified as a nonexecutable
statement.

15.7.1 Form of an ENTRY Statement. The form of an ENTRY
statement is:

ENTRY ll C < C.Q. [,.Q.l ••• l > l

45

50

55

Ful I Language Page 15-11

ANSI X3.9-1978 FORTRAN 77 FUNCTIONS AND SUBROUTINES

5

1 0

1 5

20

25

30

35

40

45

50

55

15.7.2 Referencing External Procedure by Entry Name. The
ENTRY statement is not included in the subset.

15.7.3 Entry Association.
included in the subset.

The ENTRY statement is not

Page 15-12s Subset Language

FUNCTIONS AND SUBROUTINES ANSI X3.9-1978 FORTRAN 77

where: .fill is the symbolic name of an entry in a function or
subroutine subprogram and is cal led an entry
~· If the ENTRY statement appears in a
subroutine subprogram, en is a subroutine !.l..fil!!Ji.
If the ENTRY statement appears in a function
subprogram, fill is an external function~-

is a variable name, array name, or dummy
procedure name, or is an asterisk. ~is a dummy
argument. An asterisk is permitted in an ENTRY
statement only in a subroutine subprogram.

Note that if there are no dummy arguments, either of the
forms .fill or .fill() may be used in the ENTRY statement. A
function that is specified by either form must be referenced
by the form .fill() (15.2.1>. A subroutine that is specified
by either form may be referenced by a CALL statement of the
form CALL .fill or CALL .fill().

The entry name .fill in a function subprogram may appear in a I
type-statement.

15.7.2 Referencing External Procedure by Entry Name. An
entry name in an ENTRY statement in a function subprogram
identifies an external function within the executable
program and may be referenced as an external function
(15.5.2>. An entry name in an ENTRY statement in a
subroutine subprogram identifies a subroutine within the
executable program and may be referenced as a subrouti.ne
<15.6.2).

When an entry name .fill is used to reference a procedure,
execution of the procedure begins with the first executable
statement that fol lows the ENTRY statement whose entry name
is .fill.

An entry name is avai table for reference in any program unit
of an executable program, except in the program unit that
contains the entry name in an ENTRY statement.

The order, number, type, and names of the dummy arguments in
an E~TRY statement may be different from the order, number,
type, and names of the dummy arguments in the FUNCTION
statement or SUBROUTINE statement and other ENTRY statements

5

10

1 5

20

25

30

35

40

in the same subprogram. However, each reference to a 45
function or subroutine must use an actual argument list that
agrees in order, number, and type with the dummy argument
list in the corresponding FUNCTION, SUBROUTINE, or ENTRY
statement. The use of a subroutine name or an alternate
return specifier as an actual argument is an exception to 50
the rule reQuiring agreement of type.

15.7.3 Entry Association.
all variables whose names
associated with each other
whose name is also the

Fu I I Language

Within a function subprogram,
are also the names of entries are
and with the variable, if any,

name of the function subprogram
55

Page 15-12

A~SI X3.9~1978 FORTRAN 77 FUNCTIONS ANO SUBROUTINES

5

10

15

20

25

30

35

40

45

50

15.7.4 ENTRY Statement Restrictions.
is not included in the subset.

15.8 RETURN Statement

The ENTRY statement

A RETURN statement causes return of control to the
55 referencing program unit and may appear only in a function

subprogram or subroutine subprogram.

Page 15-13s Subset Language

FUNCTIONS AND SUBROUTINES ANSI X3.9-1978 FORTRAN 77

<17.1.3). Therefore, any such variable that becomes defined
causes al I associated variables of the same type to become
defined and al I associated variables of different ~ype to
become undefined. Such variables are not required to be of
the same type unless the type is character, but the variable 5
whose name is used to reference the function must be in a
defined state when a RETURN or END statement is executed in
the subprogram. An associated variable of a different type
must not become defined during the execution of the function
reference. 10

15.7.4 ENTRY Statement Restrictions. Within a subprogram,
an entry name must not appear both as an entry name in an
ENTRY statement and as a dummy argument in a FUNCTION,
SUBROUTINE, or ENTRY statement and must not appear in an 15
EXTERNAL statement.

In a function subprogram, a variable name that is the same
as an entry name must not appear in any statement that
precedes the appearance of the entry name in an ENTRY 20
statement, except in a type-statement.

If an entry name in a function subprogram is of type
character, each entry name and the name of the function
subprogram .must be of type character. If the name of the 25
function subprogram or any entry in the subprogram has a
length of (t) declared, al~ such entities must have a length
of (t) declared: otherwise, al I such entities must have a
length specification of the .same integer value.

In a subprogram, a name that appears as a dummy argument in
an ENTRY statement must not appear in an executable
statement preceding that ENTRY statement unless it also
appears in a FUNCTION, SUBROUTINE, or ENTRY statement that

30

precedes the executable statement. 35

In a subprogram, a name that appears as a dummy argument in
an ENTRY statement must not appear in the expression of a
statement function statement unless the name is also a dummy
argument of the s·tatement function, ~pp~ars in a FUNCTION or 40
SUBROUTINE statement, or appears in an ENTRY statement that
precedes the statement function ~tatement.

If a dummy argument appears in an executable statement, the
execution of the executable statement is permitted during 45
the execution of a reference to the function or subroutine
only \f the dummy argument appears in the dummy argument
list of the procedure name referenced. Note that the
association of dummy arguments with actual arguments is not
retained between references to a function or subroutine. 50

15.8 RETURN Statement

A RETURN statement causes return of control
referencing program unit and may appear only in a
subprogram or subroutine subprogram.

Ful I language

55

Page 15-13

ANSI X3.9-1978 FORTRAN 77 FUNCTIONS AND SUBROUTINES

5

10

15.8.1 Form of a RETURN Statement. The form of a RETURN
statement is:

RETURN

15.8.2 Execution of a RETURN Statement. Execution of a
RETURN statement terminates the reference of a function or

15 subroutine subprogram. Such subprograms may contain more
than one RETURN statement; however, a subprogram need not
contain a RETURN statement. Execution of an END statement
in a function or subroutine subprogram has the same effect
as executing a RETURN statement in the subprogram.

20

25

30

35

40

45

50

55

In the execution of an executable program, a function or
subroutine subprogram must not be referenced a second time
without the prior execution of a RETURN or END stateme~t in
that procedure.

Execution of a
causes return
program unit.
defined and is

Execution of
causes return
program unit.
unit completes

RETURN statement in a function subprogram
of control to the currently referencing

The value of th& function <15.5) must be
avai I ab I e to the referencing program unit.

a RETURN statement in
of control to the
Return of control to

execution of the CAlL

a subroutine subprogram
currently referencing

the referencing program
statement.

Execution of a RETURN statement terminates the association
between the dummy arguments of the external procedure in the
subprogram and the current actual arguments.

15.8.3 Alternate Return.
in the subset.

Alternate return is not included

Page 15-14s Subset Language

FUNCTIONS AND SUBROUTINES ANSI X3.9-1978 FORTRAN 77

15.8.1 Form of a RETURN Statement. The form of a RETURN
statement in a function subpr0gram is:

RETURN

The form of a RETURN statement in a subroutine subprogram
i s :

RETURN [_g_J

where _g_ is an integer expression.

15.8.2 Execution of a RETURN Statement. Execution of a
RETURN statement terminates the reference of a function or

5

10

subroutine subprogram. Such subprograms may contain more 15
than one RETURN statement; however, a subprogram need not
contain a RETURN statement. Execution of an END statement
in a function or subroutine subprogram has the same effect
as executing a RETURN statement in the subprogram.

In the execution of an executable program, a function or
subroutine subprogram must not be referenced a second time
without the prior execution of a RETURN or END statement in
that procedure.

Execution of a
causes return
program unit.
defined and is

Execution of
causes return
program unit.
unit completes

RETURN statement in a function subprogram
of control to the currently referencing

The value of the function (15.5) must be
available to the referencing program unit.

a RETURN statement in
of control to the
Return of control to

execution of the CALL

a subroutine subprogram
currently referencing

the referencing program
statement.

Execution of a RETURN statement terminates the association
between the dummy arguments of the external procedure in the
subprogram and the current actual arguments.

20

25

30

35

15.8.3 Alternate Return. If _g_ is not specified in a RETURN 40
statement, or if the value of _g_ is less than one or greater
than the number of asterisks in the SUBROUTINE or subroutine
ENTRY statement that specifies the currently referenced
name, control returns to the CALL statement that initiated
the subprogram reference and this completes the execution of 45
the CALL statement.

If 1 ~ _g_ ~ n, where n is the number of asterisks in the
SUBROUTINE or subroutine ENTRY statement that specifies the
currently referenced name, the value of _g_ identifies the _g_th 50
asterisk in the dummy argument list. Control is returned to
the statement identified by the alternate return specifier
in the CALL statement that is associated with the _g_th
asterisk in the dummy argument list of the currently
referenced name. This completes the execution of the CALL 55
statement.

Fu I I Language Page 15-14

ANSI X3.9-1978 FORTRAN 77 FUNCTIONS AND SUBROUTINES

5

10

. 1 5

15.8.4 Definition Status. Execution 6f a RETURN statement
<or END statement> within a subprogram causes al I entities
within the subprogram to become undefined, except for the
following:

(1) Entities specified by SAVE statements

<Z> Entities in blank common

(3) Initially defined entities that have neither been
redefined or become undefined

(4) Entities in
subprogram
unit that
indirectly,

a named common block that appears in the
and appears in at least one other program
is referencing, either directly or
the subprogram

Note that if a named common block appears in the main
program, the entities in the named common block do not

20 become und~fined at the execution of any RETURN statement in
the executable program.

15.9 Arguments and Common Blocks

25 Arguments and common blocks provide means of· communication
between the referencing program unit and the referenced
procedure.

30

35

Data may be communicated to a statement function or
intrinsic function by an argument list. Data may be
communicated to and from an external procedure by an
argument I i st or common blocks. Procedure names may be
communicated to an external procedure only by an argument
I i st.

A dummy argument appears in the argument list of a
procedure. An actual argument appears in the argument list
of a proced~re reference.

40 The number of actual arguments must be the same as the
number of dummy arguments in the procedur~ referenced.

15.9.1 Dummy Arguments. Statement functions, function
subprograms, and subroutine subprograms use dummy arguments

45 to indica~e the types of actual arguments and whether each
argum~nt is a single value, array of values, or procedure.
Note th~t a statement function dummy argument may be only a
variable.

50 Each dummy argument is classifi~d as a variable, array, or
dummy procedure. Dummy argument names may appear wherever
an aetual name of the same class <Se6tion 18) and type may
appear, except where they are explicitly pro-hibited.

55

Page 15-15s Subset Language

FUNCTIONS AND SUBROUTINES ANSI X3~9-1978 FORTRAN 77

15.8.4 Definition Status. Execution of a RETURN statement
Cor END statement) within a subprogram causes al I entities
within the subprogram to become undefined, except for the
fol lowing:

(1) Entities specified by SAVE statements

CZ> Entities in blank common

5

(3) Initially defined ent1t1es that have neither been 10

(4)

redefined or become undefined

Entities in
subprogram
unit that
indirectly,

a named common block that appears in the
and appears in at least one other program
is referencing, either directly or
the subprogram

Note that if a named common block appears in the main
program, the entities in the named common block do not

1 5

become undefined at the execution of any RETURN statement in 20
the executable program.

15.9 Arguments and Common Blocks

Arguments and common blocks provide means of communication 25
between the referencing program unit and the referenced
procedure.

Data may be" communicated to a statement function or
intrinsic function by an argument I i st . Data may be
communicated to and from an external procedure by an
argument I i st or common blocks. Procedure names may be
communicated to ah external procedure only by an argument
I i st .

A dummy argument appears in the argument list of a
procedure. An actual argument appears in the argument list
of a procedure reference.

30

35

The number of actual arguments must be the same as the 40
number of dummy arguments in the procedure referenced.

15.9.1 Dummy Arguments. Statement functions, function
subprograms, and subroutine subprograms use dummy arguments
to indicate the types of actual arguments and whether each 45
argument is a single value, array of values, procedure, or
statement label. Note that a statem~nt function dummy
argument may be only a variable.

Each dummy argument is classified as a variable, array, 50
dummy procedure, or asterisk. Dummy argument names may
appear wherever an actual name of the same class <Section
18> and type may appear, ex~ept where they are explicitJy
prohibited.

55

Fu I I Language Page 15-15

ANSI X3~9-1978 FORTRAN 77 FUNCTIONS AND SUBROUTINES

Dummy argument names of type integer may appear in
adjustable dimensions in dummy array declarators (5.5.1>.
Dummy argument names must not appear in EQUIVALENCE, DATA,
SAVE, INTRINSIC, or COMMON statements, except as common

5 block names. A dummy argument name must not be the same as
the pro~edure name appearing in a FUNCTION, SUBROUTINE, or
statement function statement in the same program unit.

10 15.9.Z Actual Arguments. Actual arguments specify the
entities that are to be associated w;th the dummy arguments
for a particular reference of a subroutine or function. An
actual argument must not be the name of a statement function
in the program unit containing the reference. Actual

15 arguments may be constants, function references, expressions
involving operators, and expressions enclosed in parentheses
if and only if the associated dummy argument is a variable
that is not defined during execution of the referenced
external procedure.

20

25

The type of each actual argument must agree with the type of
its associated dummy argument, except when the actual
argument is a subroutine name <15.9.3.4).

15.9.3 Association of Dummy and Actual Arguments. At the
execution of a function or subroutine reference, an
association is estabiished between the corresponding dummy
and actual arguments. The first dummy ar·gument becomes

30 associated with the first actual argument, the second dummy
argument becomes associated with the second actual argument,
etc.

Al I appearances within a function or subroutine subprogram
35 of a dummy argument whose name appears in the dummy argument

list of the procedure name referenced become associated with
the actual argument when a reference to the function or
subroutine is executed.

40 A valid association occurs only if the type of the actual
argument is the same as the type of the corresponding dummy
argument. A subroutine name has no type and must be
associated with a dummy procedure name.

45

If an actual argument is an expression, it is evaluated just
before the association of arguments takes place.

50 If an actual argument is an 3rray element name, its
subscri~t is evaluated just before the association of
arguments takes place. Note that the subscript value
remains constant as long as that association of arguments
persists, even if the subscript contains variables that are

55 redefined during the association.

Page 15-16s Subset Language

FUNCTIONS AND SUBROUTINES ANSI X3.9-1978 FORTRAN 77

Dummy argument names of type integer may appear in
adjustable dimensions in dummy array declarators (5.5.1).
Dummy argument names must not appear in EQUIVALENCE, DATA,
PARAMETER, SAVE, INTRINSIC, or COMMON statements, except as
common block names. A dummy argument name must not be the
same as the procedure name appearing in a FUNCTION,
SUBROUTINE, ENTRY, or statement function statement in the
same program unit.

5

15.9.2 Actual Arguments. Actual arguments specify the 10
entities that are to be associated with the dummy arguments
for a particular reference of a subroutine or function. An
actual argument must not be the name of a statement function
in the program unit containing the reference. Actual
arguments may be constants, symbolic names of constants, 15
function references, expressions involving operators, and
expressions enclosed in parentheses if and only if the
associated dummy argument is a variable that is not defined
during execution of the referenced external procedure.

The type of each actual argument must agree with the type of
its associated dummy argument, except when the actual
argument is a subroutine name <15.9.3.4) or an alternate
return specifier (15.6.2.3).

15.9.3 Association of Dummy and Actual Arguments. At the
execution of a function or subroutine reference, an
association is established between the corresponding dummy
and actual arguments. The first dummy argument becomes

20

25

associated with the first actual argument, the second dummy 30
argument becomes associated with the second actual argument,
etc.

Al I appearances within a function or subroutine subprogram
of a dummy argument whose name appears in the dummy argument 35
list'of the procedure name referenced become associated with
the actual argument when a reference to the function or
subroutine is executed.

A valid association occurs only if the type of the actual 40
argument is the same as the type of the corresponding dummy
argument. A subroutine name has no type and must be
associated with a dummy procedure name. An alternate return
specifier has no type and must be associated with an
asterisk. 45

If an actual argument is an expression, it is evaluated just
before the association of arguments takes place.

If an actual argument is an array element name, its 50
subscript is evaluated just before the association of
arguments takes place. Note that the subscript value
remains constant as long as that association of arguments
persists, even if the subscript contains variables that are
redefined during the association. 55

Fu I I Language Page 15-16

ANSI X3.9-1978 FORTRAN 77 FUNCTIONS AND SUBROUTINES

5

If an actual argument is an external procedure name, the
10 procedure must be available at the time a reference to it is

executed.

If an actual argument becomes associated with a dummy
argument that appears in an adjustable dimension (5.5.1),

15 the actual argument must be defined with an integer value at
the time the procedure is referenced.

A dummy argument is undefined if it is not currently
associated with an actual argument. An adjustable array is

20 undefined if the dummy argument array is not currently
associated with an actual argument array or if any variable
appearing in the adjustable array declarator is not
currently associated with an actual argument and is not in a
common block.

25
Argument assoc1ation may be carried through more than one
level of procedure reference. A valid association exists at
the last level only if a valid association exists at al I
intermediate levels. Argument association within a program

30 unit terminates at the execution of a RETURN or END
statement in the program unit. Note that there is no
retention of argument association between one reference of a
subprogram and the next reference of the subprogram.

35 15.9.3.1 Length of Character Dummy and Actual Arguments.

40

If a dummy argument is of type character, the associated
actual argument must be of type character and the length of
the dummy argument must be equal to the length of the actual
argument.

If a dummy argument of type character is an array name, the
45 restriction on length is for each array element.

50

55

Page 15-17s Subset Language

FUNCTIONS AND SUBROUTINES ANSI X3.9-1978 FORTRAN 77

If an actual argument is a character substring name, its
subst~ing expressions are evaluated just before the
association of arguments takes place. Note that the value
of each of the substring expressions remains constant as
long as that association of arguments persists, even if the 5
substring expression contains variables that are redefined
during the association.

If an actual argument is an external procedu~e name, the
procedure must be avai I able at the time a reference to it is 10
executed.

If an actual argument becomes associated with
argument that appears in an adjustable dimension
the actual argument must be defined with an integer
the time the procedure is referenced.

a dummy
(5.5.1>,
value at

A dummy argument is undefined if it is not currently
associated with an actual argument~ An adjustable array is

1 5

undefined if the dummy argument arr•y is not currently 20
associated with an actual argument array or if any variable
appearing in the adjustable array declarator is not
currently associated with an actual argument and is not in a
common block.

A~gument association may be carried through more than one
level of procedure reference. A valid association exists at
the last level only if a valid association exists at al I
intermediate levels. Argument association within a program

25

unit terminates· at the execution of a RETURN or END 30
statement in th~ program unit. Note that there is no
retention of argument association between one reference of a
subprogram and the next reference of the subprogram.

15.9.3.1 Length of Character Dummy and Actual Arguments. 35
If a dummy argument is of type character, the associated
actual argument must be of type character and the length of
the dummy argument must be less than or equal to the iength
of the actual argument. If the length l.Jul of a dummy
argument of type character is less than the length of an 40
associated actual argument, the leftmost .l~.n characters of
the actual argument are associated with the dummy argument.

If a dummy argument of type character is an array name, the
restriction on length is for the entire array and not for 45
~ach array element. The length of an array element in the
dummy argument array may be different from the length of an
array element in an as~ociated actual argument array, ar~ay
element~ or array element substring, but the dummy argument
array must not extend beyond the enci of the associated 50
actual argument array.

If an actual argument is a character substring, the length
of the actual argument is the length of the substring. If
an actual argument is the concatenation of two or more 55

Full Language Page 15-17

ANSI X3.9-1978 FORTRAN 77 FUNCTIONS AND SUBROUTINES

15.9.3.2 Variables as Dummy Arguments~ A dummy argument
5 that is a variable may be associated with an actual argument

that ls a variable, array element, or expression.

If the actual argument is a variable name or array element
name, the associated dummy argument may be defined or

10 redefined within the subprogram. If the actual argument is
a constant, a function reference, an expression involving
operators, or an expression enclosed in parentheses, the
associated dummy argument must not be redefined within the
subprogram.

1 5

15.9.3.3 Arrays as Dummy Arguments. Within a program unit,
the array declarator given for an array provides al I array
declarator information needed for the array in an execution

20 of the program unit. The number and size of dimensions in
an actual argument array declarator may be different from
the number and size of the dimensions in an associated dummy
argument array declarator.

25 A dummy argument that is an array may be associated with an
actual argument that is either an array or an array element.

If the actual argument is a noncharacter or character array
3-0 name, the size of the dummy argument array ~ust not exceed

the size of the actual argument array, and each actual
argument array element becomes associated with the dummy
argument array element that has the same subscript value as
the actual argument array element. Note that association by

35 array elements exists for character arrays because there
must be agreement in length between the actual argument and
the dummy arg~ment array elements.

40
If the actual. argument is a noncharacter or charac;ter array
element name, the size of the dummy argument array must not
exceed the size of the actual argument array plus one minus
the subscript value of the array element. When an actual

45 argument is a noncharacter or character array element name
with a subscript value of ~. the dummy argument array
element with a subscript value of il becomes associated with
the actual argument array element that has a subscript value
of~+ il - 1 <Table 1, 5.4.3).

50

55

Page 15-18s Subset Language

FUNCTIONS AND SUBROUTINES ANSI X3.9-1978 FORTRAN 77

operands,
operands.

i ts length is the sum of the lengths of the I
15.9.3.2 Variables as Dummy Arguments. A dummy argument
that is a variable may be associated with an actual argument 5
that is a variable, array element, substring, or expression.

If the actual argument is a variable name, array element
name, or substring name, the associated dummy argument may
be defined or redefined within the subprogram. If the 10
actual argument is a constant, a symbolic name of a
constant, a function reference, an expression involving
operators, or an expression enclosed in parentheses, the
associated dummy argument must not be redefined within the
subprogram. 15

15.9.3.3 Arrays as Dummy Arguments. Within a program unit,
the array declarator given for an array provides al I array
declarator information needed for the array in an execution
of the program unit. The number and size of dimensions in 20
an actual argument array declarator may be different from
the number and size of the dimensions in an associated dummy
argument array dealarator.

A dummy argument that is an array may be associated with an ZS
actual argument that is an array, array element, or array
element substring.

If the actual argument is a noncharacter array name, the
size of the dummy argument array must not exceed the size of 30
the actual argument array, and each actual argument array
element becomes associated with the dummy argument array
e I em en t that h a's the same subs c r i pt v a I u e as the act u a I
argument array element. Note that association by array
elements exists for character arrays if there is agreement 3S
in length between the actual argument and the dummy argument
array elements; if the lengths do not agree, the dummy and
actual argument array elements do not consist of thE same
characters, but an association sti I I exists.

If the actual argument is a noncharacter array element name,
the size of the dummy argument array must not exceed the
size of the actual argument array plus one minus the
subscript value of the array element. When an actual

40

argument is a noncharacter array element name with a 4S
subscript value of n. the dummy argument array element with
a subscript value of fil becomes associated with the actual
argument array element that has a subscript value of
n+.Q.2- 1<Table1, S.4.3).

If the actual argument is a character array name, character
array element name, or character array element substring
name and begins at character storage unit acu of an array,
character storage unit dcu of an associated dummy argument

so

array becomes associated with character storage unit S5
acu + dcu - 1 of the actual argument array.

Ful I Language Page 1S-18

ANSI X3.9-1918 FORTRAN 77 FUNCTIONS AND SUBROUTINES

5

15.9.3.4 Procedures as Dummy Argument5. A dummy argument
that is a dummy procedure may be associated only with an
actual argument that is an intrinsic function, external
function, subroutine, or another dummy procedure.

If a dummy argument is used as if it were an external
function, the associated actual argument must be an
intrinsic function, external function, or dummy procedure.
A dummy argument that becomes associated with an intrinsic

10 function never has any automatic typing propertyi even if
the dummy argument name appears in Table 5 <15.10).
Therefore, the type of the dummy argument must agree with
the type of the result of al I specific actual argume~ts that
become associated with the dummy argument. If a dummy

15 argument name is used as if it were an external function and
that name also appears in Table 5, the intrinsic function
corresponding to the dummy argument name is not avai I able
for referencing within the subprogram.

20 A du~my argument that is used as a procedure name in a
function reference and is associated with an intrinsic
function must have arguments that agree in order; number,
and type with those specified in Table 5 for the intrinsic
function.

25

30

35

If a dummy argument appears in a type-statement and an
EXTERNAL statement, the actual argument must be the name of
an intrinsic function, external function, or dummy
procedure.

If the dummy argument is referenced as a subroutine, the
actual argument must be the name of a subroutine or dummy
procedure and must not appear in a type-~tatement or be
referenced· as a function.

Note that it may not be possible to determine in a given
program unit whether a dummy procedure is associated with a
function or a subroutine. If a procedure name appears only
in a dummy argument list, an EXTERNAL statement, and an

40 actual argument list, it is not possible to determine
whether the symbolic name becomes ~ssociated with a function
or subroutine by examination of the subprogram alone.

15.9.3.5 Asterisks as Dummy Arguments. A dummy arg~ment
45 that is an asterisk is not included in the subset.

50

55

Page 15-1~s Subset Langu~ge

FUNCTIONS AND SUBROUTINES ANSI X3.9-1978 FORTRAN 77

15.9.3.4 Procedures as Dummy Arguments. A dummy argument
that is a dummy procedure may be associated only with an
actual argument that is an intrinsic function, external
function, subroutine, or another dummy procedure.

If a dummy argument is used as if it were an external
function, the asso~iated actual argument must be an
intrinsic function, external function, or dummy procedure.
A dummy argument that becomes associated with an intrinsic

5

function never has any automatic typing property, even if 10
the dummy argument name appears in Table 5 <15.10).
Therefore, the type of the dummy argument must agree with
the type of the result of al I specific actual arguments that
become associated with the dummy argument. If a dummy
argument name is used as if it were an external function and 15
that name also appears in Table 5, the intrinsic function
corresponding to the dummy argument name is not avai I ab I e
for referencing within the subprogram.

A dummy argument that is used as a procedure name in a 20
function reference and is associated with an intrinsic
function must have argument~ that agree in order, number,
and type with those specified in Table 5 for the intrinsic
function.

If a dummy argument appears in a type-statement and an
EXTERNAL statement, the actual argument must be the name of
an intrinsic function, external function, or dummy
procedure.

If the dummy
actua I argument
orocedure and
referenced as a

argument is referenced as a subroutine, the
must be the name of a subroutine or dummy
must not appear in a type-statement or be
function.

Note that it may not be possible to determine in a given
program unit whether a dummy procedure is associa~ed with a
function or a subroutine. If a procedure name appears only
in a dummy argument list, an EXTERNAL statement, and an

25

30

35

actual argument list, it is not possible to determine 40
whether the symbolic name becomes associat~d with a function
or subroutine by examination of the subprogram alone.

15.9.3.5 Asterisks as Dummy Arguments. A dummy argument
that is an asterisk may appear only in the dummy argument 45
list of a SUBROUTINE statement or an ENTRY statement in a
subroutine subprogram.

A dummy argument that is an asterisk may be associated only
with an actual argument that is an alternate return 50
specifier in the CALL statement that identifies the current
referencing name. If a d~mmy argument is an asterisk, the
corresponding actual argument must be an alternate return
specifier.

55

F_ul I Language Page 15-19

ANSI X3.9-1978 FORTRAN 77 FUNCTIONS AND SUBROUTINES

1 5 . 9-. 3 . 6 Rest r i ct i on s on Ass o ci at i on of Ent i t i es . I f a
subprogram reference causes a dummy argument in the
referenced subprogram to become associated with an-0ther
dummy argument in the referenced subprogiam, neither dummy

5 argument may become defined during execution of that
subprogram. For example, if a subroutine is headed by

SUBROUTINE XYZ <A,B>

10 and is referenced by

CALL XYZ <C,C>

then the dummy arguments A and Beach become associated with
15 the same actual argument C and therefore with each other.

Neither A nor B may become defined during this execution of
subroutine XYZ or by any procedures referenced by XYZ.

If a subprogram reference causes a dummy argument to become
20 associated with an entity in a common block in the

referenced subprogram or in a subprogram referenced by the
referenced subprogram, neither the dummy argument nor the
entity in the common block may become defined within the
subprogram or within a subprogram referenced by the

25 referenced subprogram. For example, if a subroutine
contains the statements:

30

35

SUBROUTINE XYZ <A>
COMMON c

and i s referenced by a program uni t that contains the
statements:

COMMON B
CALL XYZ < B >

then the dummy argument A becomes associated with the actual
argument 8, which is associated with C, which is in a common
block. Neither A nor C may become defined during execution

40 of the subroutine XYZ or by any procedures referenced by
XYZ.

15.9.4 Common Blocks. A common block provides a means of
communication between external procedures or between a main

45 program and an external procedure. The variables and arrays
in a common block may be defined and- referenced in al I
subprograms that contain a declaration of that common block.
Because association is by storage rather than by name, the
names of the variables and arrays may be different in the

50 different subprograms. A reference to a datum in a common
bl-0ck is proper if the datum is in a defined state of the
same type as the type of the name used to reference the
datum. However, an integer variable that has been assigned
a statement label must not be referenced in any program unit

55 other than the one in which it was assigned <10.3).

Page 15-20s Subset Language

FUNCTIONS AND SUBROUTINES ANSI X3.9-1978 FORTRAN 77

15.9.3.6 Restrictions on Association of Entities. If a
subprogram reference causes a dummy argument in the
referenced subprogram to become associated with another
dummy argument in the referenced subprogram, neither dummy
argument may become defined during execution of that
subprogram. For example, if a subroutine is headed by

SUBROUTINE XYZ <A,B>

and is referenced by

CALL XYZ < C, C >

then the dummy arguments A and Beach become associated with

5

10

the same actual argument C and therefore with each other. 15
Neither A nor B may become defined during this execution of
subroutine XYZ or by any procedures referenced by XYZ.

If a subprogram reference causes a dummy argument to become
associated with an entity in a common block in the 20
referenced subprogram or in a subprogram referenced by the
referenced subprogram, neither the dummy argument nor the
entity in the common block may become defined within the
subprogram or within a subprogram referenced by the
referenced subprogram. For example, if a subroutine ZS
contains the statements:

SUBROUTINE XYZ <A>
COMMON C

and is referenced by a program unit that contains the
statements:

COMMON B

30

CALL XYZ CB> 35

then the dummy argument A becomes associated with the actual
argument B, which is associated with C, which is in a common
block. Neither A nor C may become defined during execution
of the subroutine XYZ or by any procedures referenced by 40
XYZ.

15.9.4 Common Blocks. A common block provides a means of
communication between external procedures or between a main
program and an external procedure. The variables and arrays 45
in a common block may be defined and referenc~d in al I
subprograms that contain a declaration of that common block.
Because association is by storage rather than by name, the
names of the variables and arrays may be different in the
diHerent subprograms. A reference to a datum in a common 50
block is proper if the datum is in a defined state of the
same type as the type of the name used to reference the
datum. Howeveri an integer variable that has been assigned
a statement label must not be referenced in any program unit
other.than the one in which it was assigned (10.3). 55

Fu I I Language Page 15-20

ANSI X3.9-1978 FORTRAN 77 FUNCTIONS AND SUBROUTINES

No difference in data type is permitted between the defined
state and the type of the reference.

5 In a subprogram that has declared a named common block, the
entities in the block remain defined after the execution of
a RETURN or END statement if a common block of the same name
has been decl~red in any prog.ram unit that is currently
referencing the subprogram, either directly or indirectly.

10 Otherwise, such entities become undefined at the execution
of a RETURN or END statement, except for those that are
specified by SAVE statements and those that were initially
defined by DATA statements and have neither been redefined
nor become undefined.

1 5
Execution of a RETURN or END statement does not cause
entities in blank common or in any named common block that
appears in the main program to become undefined.

20 Common blocks may be used also to reduce the total number of
storage units required for an executable program by causing
two or more subprograms to share some of the same storage
units. This sharing of storage is permitted if the rules
for defining and referencing data are not violated.

25

30

35

40

45

50

55

Page 15-21 s Subset Language

FUNCTIONS AND SUBROUTINES ANSI X3.9-1978 FORTRAN 77

No difference in data type is permitted between the defined
state and the type of the reference, except that either part
of a complex datum may be referenced also as a real datum.

In a subprogram that has declared a named common block, the 5
entities in the block rema,n defined after the execution of
a RETURN or END s.tatement ,f a common block of the same name
has been declared in ariy program un,t that is currently
refer end ng the subprogram, e, ther d, rect I y or ind, re ct I y.
Otherwise, s~ch entities become undef,ned at the execut,on 10
of a RETURN or E~D statement, except for those that are
specHied by SAVE statements and those that were inh,al ly
def,ned by DATA statements and have ne,ther been redefined
~or become undef,ned.

Execut,on of a RETURN or END statement does not cause
ent,t,es ,n blank common or ,n any named common block that·
appears ,n the main program to become undef,ned.

1 5

Common blocks may be used also to reduce the total number of 20
storage units requ,red for an executable program by caus,ng
two or more subprograms to share some of the same storage
units. Th,s sharing of storage is permitted if the rules
for defining and referencing data are not violated.

25

30

35

40

45

50

55

Ful I Language Page 15-21

ANSI X3.9-1978 FORTRAN 77

15.10 Table of Intrinsic Functions

Intrinsic Function Definition

10 Type Conversion Conversion
to Integer
int <.11.>
See Note 1

15
Conversion
to Real
See Note 2

20

Conversion
to Double
See Note 3

25

Conversion
to Complex
See Note 4

30

Conversion
to Integer
See Note 5

35
Conversion
to Character
See Note 5

40 Truncation int (Ji.)
See Note 1

Nearest Whole int (Ji.+. 5 > if
Number i-n t <.11.-. 5 > if

45
Nearest Integer int C.11.+. 5> if

int (Ji.-. 5 > if

Absolute Value I .a. I
50

See Note 6
<.11.r.•+Ji.•). ,.

55

Page 15-ZZs

FUNCTIONS AND SUBROUTINES

Tab I e 5
Intrinsic Functions

Number of Generic
Arguments Name

1

1

1

1

!.~ 0 1
J. (0

.11.~0 1

.ii.<O

1

Specific Type of
Name Argument Function

INT Real Integer
!FIX Real Integer

REAL Integer Real
FLOAT Integer Real

!CHAR Character Integer

AINI Reel Reel

ANINT Reel Real

NINI Reel Integer

JABS Integer Integer
ABS Reel Real

Subset Language

FUNCTIONS AND SUBROUTINES

15.10 Table of Intrinsic Functions

Intrinsic Function Definition

Type Conversion Conversion
to Integer
int <.a.>
See Note 1

Conversion
to Real
See Note 2

Conversion
to Double
See Note .. 3

Conversion
to Complex
S.ee Note 4

Conversion
to Integer
See Note 5

Conversion.
to Character
See Note 5

Truncation int <.1.>
See Note 1

Nearest Whole int CJ.+. 5> if
Number lntCr.5> if

Nearest Integer int(J.+.5) if
int<r.5> ; f

Absolute Value l.1. I
See Note 6
<.11.r.2+.1.1!> .,.

Ful I Language

Tab I e 5
Intrinsic Functions

Number of Generic
Arguments Name

1 INT

1 REAL

1 OBLE

1 or 2 CHPLX

1

1

1 AINI

J.~ 0 1 AN!NI
J. < 0

J.~ 0 1 NINI
.1.<0

1 ABS

ANSI X3.9~1978 FORTRAN 77

5

Specific Type of
Name Argument Function

-c-
- Integer Integer 10
INT Real Integer
!FIX Real Integer
!DINT Double Integer - Complex Integer

15
REAL Integer Real
FLOAT Integer Real
- Real Real
SNGL Double Real
- Complex Real 20

- Integer Double
- Real Double
- Double Doub.I e
- Complex Double 25

- Integer Complex
- Real Conip!ex
- ·Doub I e Complex
- Complex Complex 30

!CHAR Character Integer

35
CHAR Integer Character

AINI Real Real 40
DINT Double Double

AN!NT Real Real
DNINT Double Double

45
NINI Real Integer
ION I NT Double Integer

!ABS Integer Integer
ABS Real Real 50
DABS Double Double
CABS Complex Real

55

Page 15-22

ANSI X3.9-1978 FORTRAN 77 FUNCTIONS AND SUBROUTINES

5
Intrinsic Function

Remaindering

10

Transfer of Sign

15
Positive Difference

20 Double Precision
Product

Choosing Largest
Value

25

30 Choosing Smallest
Value

35

Length

40 Index of
a Substring

45 Imaginary Part of
Complex Argument

Conjugate of a
Complex Argument

50
Square Root

55

Page 15-23s

Table 5 <continued)
Intrinsic Functions

Number of Generic
Definition Arguments Name

.!!. 1-int(J1.1fJ1.z)•J1.2 2
See Note 1

!f~! I if .!l.z ~ 0 2
i f .!I.a < 0

.!1.1 -.!I.a i f .!1.1) .!1.2 2
0 i f .!1.1 ~.!!..

.!1.1 •.!I.a

max(J!. 1,Jl.a•···) ~2

min(J!. 1,J!.z, ...) ~2

Length of
Character Entity

Location of 2
Substring .!I.a
in String J.1
See Note 10

.Ii
See Note 6

(J.!.,-.tl>
See Note 6

(J.)1(1 1

Specific Type of
Name Argument Function

110D Integer Integer
Al10D Real Real

!SIGN Integer Integer
SIGN Real Rea I

ID 111 Integer Integer
Dl11 Real Real

11AXO Integer Integer
Al1AX1 Real Real

AMAXO Integer Real
MAX1 Real Integer

111NO Integer Integer
Al1IN1 Real Real

AMINO Integer Real
MIN1 Real Integer

SORT Real Real

Subset Language

FUNCTIONS AND SUBROUTINES

Intrinsic Function

Remaindering

Transfer of Sign

Positive Difference

Double Precision
Product

Choosing Largest
Value

Choosing Smallest
Value

Length

Index of
a Substring

!magi nary Pert of
Complex Argument

Conjugate of 8
Complex Argument

Square Root

Full Language

Definition

Table 5 <continued)
Intrinsic Functions

Number of Generl c
Arguments Name

.ll 1 -Ii n t <.ll 1 /JI.a >*.I.a 2 llOD
See Note 1

!f~! I if .I.a ~ 0 2 SIGN
if .ll.2 < 0

.ll.1 -.ll.2 if .ll.1 >.1.2 2 Diii
0 if .!!.1 ~.!!.a

.i.1 *.I.a 2

max<.11.1 • .11.a, ... > ~2 MAX

mi n(Jl.1 ,Jl.2 , ••• > ~2 lllN

Length of 1
Character Entity

Location of 2
Substring .I.a
in String .!!.1
See Note 10

ai 1
See Note 6

(.ll.£.., -.!!.i> 1
See Note 6

<.11.>.,. 1 SORT

ANSI X3.9-1978 FORTRAN 77

Specific Type of 5
Name Argument Function

1100 Integer Integer
AllOD Reel Real
DllOD Double Double 10

!SIGN Integer ln.teger
SIGN Real Reel
DS!GN Double Double

15
!Dill Integer Integer
Dill Real Reel
DDIM Double Double

DPROD Real Double zo

11AXO Integer Integer
AllAX1 Real Reel
DllAX1 Double Double 25

AllAXO Integer Real
11AX1 Real Integer

lllNO Integer Integer 30
AlllN1 Real Real
DHIN1 Double Double

AMINO Integer Real
lllN1 Real Integer 35

LEN Character Integer

INDEX Character Integer 40

AlllAG Complex Real 45

CON JG Complex Complex

50
SORT Real Real
DSORT Double Double
CS ORT Complex Complex

55

Page 15-23

ANSI X3.9-1978 FORTRAN 77

Intrinsic Function Definition

Exponential e**A

10

Natural Logarithm log<_g)

15
Common Logarithm log10<.!!.>

Sine sin<.!!.>
20

Cosine COS(.!!_)

25

Tangent tan<.!!.>

30 Arcsine arcs in(.!!_)

Arccosine arccos(.a_)

35
Arctangent arctan<.a.>

arctan(_a. 1 1.!!.z)
40

Hyperbolic Sine s i nh <.a.>

45 Hyperbolic Cosine cosh(.a_)

Hyperbolic Tangent tanh (.a_)

50

55

Page 15-Z4s

FUNCTIONS AND SUBROUTINES

Table 5 <continued)
Intrinsic Functions

Number of Generic
Arguments Name

1

1

1

1

1

1

1

1

1

2

1

1

1

Specific Type of
Name Argument Function

EXP Real Real

ALOG Real Real

ALOG10 Real Real

SIN Real Real

cos Real Real

TAN Real Real

ASIN Real Real

ACOS Real Real

ATAN Real Real

ATAN2 Real Real

SINH Real Real

COSH Real Real

TANH Real Real

Subset Language

FUNCTIONS AND SUBROUTINES

Intrinsic Function Definition

Exponential e* *A

Natural Logarithm I og <Al

Common Logarithm log10C.§.)

Sine sin(.§.)

Cosine cos(.§.)

Tangent tan(.§.)

Arcsine arcsi n(.§.)

Arccosine arccos(.§.)

Arctangent arctan(.§.)

arctan(.§. 1 IA•)

Hyperbolic Sine sinh(.§.)

Hyperbolic Cosine cash(.§.)

Hyperbo Ii c Tangent tanh(.§.)

Fu 11 Language

Table S (continued)
Intrinsic Functions

Number of Generic
Arguments Name

1 EXP

1 LOG

1 LOG10

1 SIN

1 cos

1 TAN

1 ASIN

1 ACOS

1 ATAN

z AT ANZ

1 SINH

1 COSH

1 TANH

ANSI X3.9-1978 FORTRAN 77

Specific Type of
Name Argument Function

EXP Real Real
DEXP Double Double
CEXP Complex Complex 10

ALDG Real Real
DLOG Double Double
CLOG Complex Complex

1 s
ALOG10 Real Real
DLOG10 Double Double

SIN Real Real
DSIN Double Double zo
CSIN Complex Complex

cos Real Real
DCOS Double Double
ccos Complex Complex ZS

TAN Real Real
DTAN Double Double

ASIN Real Real 30
DASIN Double Double

ACOS Real Real
DA COS Double Double

35
ATAN Real Real
DATAN Double Double

AT ANZ Real Real
DAT ANZ Double Double 40

SINH Real Real
DSINH Double Double

COSH Real Real 45
DCOSH Double Double

TANH Real Real
DTANH Double Double

50

55

Page 15-24

ANSI X3.9-1978 FORTRAN 77

5
Intrinsic Function Definition

Lexically Greater .l!.1 ~ .l!.2
Than or Equal See Note 12

10
Lexi ca I I y Greater .l!.1) .l!.2

Than See Note 12

Lexically Less .l!.1 ~ .l!.2
15 Than or Equal See Note 12

Lexically Less .l!.1 < .l!.2
Than See Note 12

20

25

30

35

40

45

50

55

Page 15-25s

FUNCTIONS AND SUBROUTINES

Table 5 <continued>
Intrinsic Functions

Number of Generic
Arguments Name

2

2

2

2

Specific Type of
Name Argument Function

LGE Character Logical

LGT Character Logical

LLE Character Logical

LLT Character Logical

Subset Language

FUNCTIONS AND SUBROUTINES

Intrinsic Function Definition

Lexically Greater .l!.1 ~ .l!.a
Than or Equal See Note 12

Lexi ca 1 l_y Greater .l!.1 > .l!.2
Than See Note 12

Lexically Less .l!.1 ~ .l!.2
Than or Equal See Note 12

Lexical iy Less .l!.1 < .l!.2
Than See Note 12

Ful I Language

Table 5 (continued)
Intrinsic Functions

Number of Generic
Arguments Name

2

2

2

2

ANSI X3.9-1978 FORTRAN 77

Specific Type of 5
Name Argument Function

LGE Character Logical

10
LGT Character Logical

LLE Character Logical
15

LLT Character Logical

20

25

30

35

40

45

50

55

Page 15-25

ANSI X3.9-1978 FORTRAN 77 FUNCTIONS AND SUBROUTINES

Notes for Table 5:

5

10

1 5

20

25

30

35

40

45

50

55

Page 15-26s

(1) For I of type rea I, there are two cases: if III <1,
int(.§.)=0: if IIl~1. int(.§.) is the integer whose
magnitude is the largest integer that does not exceed
the magnitude of I and whose sign is the same as the
sign of ..§... For example,

int<-3.7> = -3

For I of type r ea I , IFIX<I> i s the same as INT<.§.>.

(2) For I of type integer, REAL<I> i s as much precision
of the significant part of I as a real datum can
contain.

For I of type integer, FLOAT<I> i s the same as
REAL <I>.

(3) Thi s note does not apply to the subset.

(4) This note does not apply to the subset.

(5) ICHAR provides a means of converting from a character
to an integer, based on the position of the character
in the processor collating sequence. The first
character in the collating sequence corresponds to
position 0 and the last to position n-1, where n is
the number of characters in the collating sequence.

The value of ICHAR<I> is an integer in the range:
0 ~ ICHAR<I> ~ n-1, where I is an argument of type
character of length one. The value of I must be a

Subset Language

FUNCTIONS AND SUBROUTINES ANSI X3.9-1978 FORTRAN 77

Notes for Table 5:

(1) For I of type integer, int<•>=•· For I of type real
or double precision, there are two cases: if III < 1,
int<I>=O; if III ~ 1, int(I) is the integer whose
magnitude is the largest integer that does not exceed
the magnitude of I and whose sign is the same as the
sign of I· For example,

int<-3.7> = -3

For I of type complex, int(I) is the value obtained
by applying the above rule to the real part of I·

For I of type real, IFIX<I> is the same as INT<I>.

<Z> For I of type real, REAL<I> is a. For I of type
integer or double prec1s1on, REAL<I> is as much
precision of the significant part of I as a resl

5

1 0

1 5

datum can contain. For I of type complex, REAL<I> is ZO
the real part of I·

For I of type integer~ FLOAT<I> is the same as
REAL <I>.

(3) For I of type double precision, DBLE<I> is I· For I
of type integer or real, DBLE<I> is as much precision
of the significant part of I as a double precision
datum can contain. For I of type complex, DBLE<I> is

ZS

as much precision of the significant part of the real 30

(4)

part of I as a double precision datum can contain.

CMPLX may have one or t WO arguments. I f there i s one
argument, i t may be of type integer, real, double
precision, or complex. I f there are t WO arguments, 35
they must both be of the same type and may be of type
integer, real, or double precision.

For I of type comp I ex, CMPLX<I) is I· For I of type
integer, real, or double precision, CMPLX(a) is the 40
complex value whose real part is REAL(I) and whose
imaginary part is zero.

CMPLX<I11I2> is the complex value whose real part is
REAL(I 1) and whose imaginary part is REAL<I2). 45

(5) !CHAR provides a means of converting from a character
to an integer, based on the position of the character
in the processor collating sequence. The first
character in the collating sequence corresponds to 50
position 0 and the last to position .n.-1, where n is
the number of characters in the collating sequence.

The value of ICHAR(I) is an integer in the range:
0 ~ ICHAR<I> ~ .n.-1, where I is an argument of type 55
character of length one. The value of I must be a

Ful I Language Page 15-26

ANSI X3.9-1978 FORTRAN 77 FUNCTIONS AND SUBROUTINES

5

1 0

1 5

20

25

30

35

40

45

so

55

character capable of representation in the processor.
The position of that character in the co 11 ati ng
sequence is the value of !CHAR.

Fer any characters £1 and £2 capable of
representation in the processor, (£ 1 .LE. £ 2) is true
if and only if CICHARC£ 1) .LE. ICHARC£2)) is true,
and (£ 1 . E 0. £ 2) i s true i f and on I y i f
<ICHARC£ 1) .EO. ICHARC£2)) is true.

The CHAR function is not included in the subset.

(6) This note does not apply to the subset.

<7> Al I angles are expressed in radians.

(8) This note does not apply to the subset.

(9) Al I arguments in an intrinsic function reference must
be of the same type.

(10) The INDEX function is not included in the subset.

<11> There are some names in Table 5 of the ful I language
that must not be used as intrinsic function names in
a standard-conforming program at the subset level.
If such a name is used as an external function name,
the name must appear in an EXTERNAL statement in each
program unit that references the external function.
The only names in Table 5 that may be used as
specific names of intrinsic functions are the
following:

ABS AMINO cos IDIM LLT REAL
ACOS AMIN1 COSH IFIX MAXO SIGN
AINT AMOD DIM INT MAX1 SIN
ALOG AN I NT . EXP ISIGN MOD SINH
ALOG10 ASIN FLOAT LGE MINO SORT
AMAXO ATAN IABS LGT M IN1 TAN
AMAX1 ATAN2 I CHAR LLE NINT TANH

Page 15-27s Subset Language ~

FUNCTIONS AND SUBROUTINES ANSI X3.9-1978 FORTRAN 77

character capable of representation in the processor.
The position of that character in the collating
sequence is the value of !CHAR.

For any characters £ 1 and £ 2 capable of
representation in the processor, (£ 1 •. LE. £ 2) is true
if and only if CICHARC£ 1) .LE. ICHARC£2)) is true,
and (£ 1 .EO. £ 2) is true if and only if
CICHARC£ 1) .EO. ICHARC£2» is true.

CHAR<i> returns the character in the ith position of
the processor collating sequence. The value is of
type character of length one. i must be an integer
expression whose value must be in the range

5

10

o ~ i ~ n-1. 15

ICHARCCHAR<i>> = i for 0 ~ i ~ n-1.

CHARCICHARC£)) = £ for any character
representation in

£ capable of
the processor.

C6> A complex value is expressed as an ordered pair of
reals, <AI...tl>, where AL is the real part and tl is
the imaginary part.

C7) Al I angles are expressed in radians.

<8> The result of a function
principal value.

of type complex i s the I
(9) Al I arguments in an intrinsic function reference must

be of the same type.

C10) INDEXC~ 1 .~2) returns an integer value indicating the

20

25

30

starting position within the character string~. of a 35
substring identical to string ~2 . If ~ 2 occurs more
than once in ~ 1 , the starting postion of the first
occurence is returned.

If ~2 does not occur
returned. Note that
LENC~ 1 > < LEN<~2>.

in ~I I

zero
the value zero is

is returned if

C11) The value of the argument of the LEN function need

40

not be defined at the time the function reference is 45
executed.

50

55

Ful I Language Page 15-27

ANSJ X3.9-1978 FORTRAN 77 FUNCTIONS AND SUBROUTINES

s

1 0

1 s

20

2S

30

3S

40

4S

so

SS

<12) LGE<At•A2) returns the value true if At=A2 or if At
fo I I ows A2 in the co I I at i ng sequence described in
American National Standard Code for Information
Interchange, ANSI X3.4-1977 <ASCII>, and otherwise
returns the value false.

LGT<At.A2) returns the value true if At fol lows A2 in
the collating sequence described in ANSI X3.4-1977
<ASCII), and otherwise returns the value false.

LLE<At·A2) returns the value true if A1=A 2 or if At
precedes A2 in the collating sequence described in
ANSI X3.4-1977 <ASCII>, and otherwise returns the
value false.

LLT<At1A2) returns the value true if At precedes A2

in the collating sequence described in ANSI X3.4-1977
<ASCII), and otherwise returns the value false.

The operands for LGE, LGT, LLE, and LLT must be of
the same length.

If either of the character entities being compared
contains a character that is not in the ASCII
character set, the result is processor-dependent.

1S.10.1 Restrictions on Range of Arguments
Restrictions on the range of arguments and
intrinsic functions are as fol lows:

and Results.
resu I ts for

(1) Remaindering: The result for MOD and AMOD is
undefined when the value of the second argument is
zero.

<2> Transfer of Sign: If the value of the first argument
of ISIGN or SIGN is zero, the result is zero, which
is neither positive or negative (4.1.3>.

(3) Square Root: The value of the argument of SORT must
be greater than or equal to zero.

(4) Logarithms: The value of the argument of ALOG and
ALOG10 must be greater than zero.

Page 15-28s Subset Language

FUNCTIONS AND SUBROUTINES ANSI X3.9-1978 FORTRAN 77

<12) LGE<Aa.Az> returns the value true if I1=Az or if Ia
f o I I o w s Az i n t h e c o I I a t i n g s e Q u enc e de s c r i bed i n
American National Standard Code for Information
Interchange, ANSI X3.4-1977 <ASCII>, and otherwise
returns the value false.

LGT<I 1 .A2 > returns the va I ue true if Ia fo 11 ows Iz in
the collating seQuence described in ANSI X3.4-1977
<ASCII>. and otherwise returns the value false.

LLE<Ia.Iz> returns the value true if ••=•2 or if Ia
precedes Iz i n the co I I at i n g s e Que n c e des c r i bed i n
ANSI X3.4-1977 <ASCII>, and otherwise returns the
value false.

LLTCI 1 ,I2) returns the value true if Ia precedes I 2

in the collating seQuence described in ANSI X3.4-1977
<ASCII>, and otherwise returns the value false.

5

1 0

1 5

If the operands for LGE, LGT, LLE, and LLT are of 20
uneQual length, the shorter operand is considered as
if it were extended on the right with blanks to the
length of the longer operand.

If either of the character entities being compared 25
contains a character that is not in the ASCII
character set, the result is processor-dependent.

15.10.1 Restrictions on Range of Arguments and Results.
Restrictions on the range of arguments and results for
intrinsic functions when referenced by their specific names
are as fol lows:

<1> Remaindering: The result for MOD, AMOD, and DMOD is

30

undefined when the value of the second argument is 35
zero.

(2) Transfer of Sign: If the value of the first argument
of !SIGN, SIGN, or DSIGN is zero, the result is zero,
which is neither positive or negative (4.1.3). 40

(3) SQuare Root: The value of the argument of SQRT and
OS ORT must be greater than or eQual to zero. The
resu It of CS ORT i s the principal value w i th the real
part greater than or eQual to zero. When the real 45
part of the resu It i s zero, the imaginan part i s
greater than or eQual to zero.

(4) Logarithms: The value of the argument of ALOG, DLOG,
ALOG10, and DLOG10 must be greater than zero. The 50
value of the argument of CLOG must not be <0.,0.).
The range of the imaginary part of the result of CLOG
is: -n < imaginary part ~ n. The imaginary part of
the result is n only when the real part of the
argument is less than zero and the imaginary part of 55
the argument is zero.

Fu I I Language Page 15-28

ANSI X3.9-1978 FORTRAN 77 FUNCTIONS AND SUBROUTINES

5

1 0

1 5

20

25

30

35

40

45

so

55

Page 15-29s

CS> Sine, Costne, and Tangent: The absolute value of the
argument of SIN, COS, and TAN is not restricted to be
less than 2tr.

(6) Arcsine: The absolute value of the argument of ASIN
must be less than or eQual to one. The range of the
result is: -tr/2 ~ result ~ tr/2.

(7) Arccosine: The absolute value of the argument of ACOS
must be less than or eQual to one. The range of the
result is: 0 ~ result ~ tr.

<8> Arctangent: The range of the result for ATAN is: -tr/2
~ result ~ tr/Z. If the value of the first argument
of ATANZ is positive, the result is positive. If the
value of the first argument is zero, the result is
zero if the second argument is positive and tr if the
second argument is negative. If the value of the
first argument is negative, the result is negative.
If the value of the second argument is zero, the
absolute value of the result is tr/2. The arguments
must not both have the value zero. The range of the
result for ATANZ is: -tr < result ~tr.

Subset Language

FUNCTIONS AND SUBROUTINES ANSI X3.9-1978 FORTRAN 77

<5> Sine, Cosine, and Tangent: The absolute value of the
argument of SIN, DSIN, COS, DCOS, TAN, and OTA~ is
not restricted to be less than Zn.

(6) Arcsine: The absolute value of the argument of
and DASIN must be less than or eQual to one.
range of the result is: -n/2 ~result ~ n/2.

ASIN
The

<7> Arccosine: The absolute value of the argument of ACOS
and DACOS must be less than or eQual to one. The 10
range of the result is: 0 ~ result ~ n.

(8) Arctangent: The range of the result for ATAN and
DATAN is: -n/2 ~ result ~ n/2. If the value of the
first argument of ATANZ or DATANZ is positive, the 15
result is positive. If the value of the first
argument is zero, the result is zero if the second
argument is positive and n if the second argument is
negative. If the value of the first argument is
negative, the result is negative. If the value of 20
the second argument is zero, the absolute value of
the result is n/2. The arguments must not both have
the value zero. The range of the result for ATANZ
and DATANZ is: -n < result ~ n.

The above restrictions on arguments and results al~o apply
to the intrinsic functions when referenced by their generic
names.

25

30

35

40

45

50

55

Ful I Language Page 15-29

ANSI X3.9-1978 FORTRAN 77

16. BLOCK DATA SUBPROGRAM

I Block data subprograms are not in~luded in the subset.

5

10
16.1 BLOCK DATA Statement

The BLOCK DATA statement is not included in the subset.

1 5

zo

25
16.2 Block Data Subprogram Restrictions

Block data subprograms are not included in the subset.

30

35

40

45

50

55

Page 16-1s Subset Language

ANSI X3.9-1978 FORTRAN 77

16. BLOCK DATA SUBPROGRAM

Block data subprograms are used to provide initial values
for variables and array elements in named common blocks. -

A block data subprogram is a program unit that has a BLOCK
DATA statement as its first statement. A block data
subprogram is nonexecutable. There may be more than one
block data subprogram in ~n executable program.

16.1 BLOCK DATA Statement

The form of a BLOCK DATA statement is:

5

10

BLOCK DATA [sub] 15

where sub is the symbolic name of the block data subprogram
in which the BLOCK DATA statement appears.

The optional name sub is a global name (18.1.1> and must not 20
be the same as the name of an external procedure, main
program, common block, or other block data subprogram in the
same executable program. The name sub must not be the same
as any local name in the subprogram.

16.2 Block Data Su~orogram Restrictions

The BLOCK DATA statement must appear only as the first
statement of a block data subprogram. The only other

25

statements that may appear in a block data subprogram are JO
IMPLICIT, PARAMETER, DIMENSION, COMMON, SAVE, EQUIVALENCE,
DATA, END, and type-statements. Note that comment lines are
permitted.

I f a n e n t i t y i n a n a m e d c o mm o n b I .o c k i s i n i t i a I I y d e f i n e d , 3 5
al I ent1t1es h~ving storage units. in the common block
storage sequence must be specified even if they are not al I
initially defined. More than one named common block may
have ent1t1es initially defined in a single block data
subprogram. 4-0

Only an entity .in a named common block may be initially
defined in a block data subprogram. Note that entitias
associated with an entity in a common block are considered
to be in that common block. 45

The same
than one
program.

named
block

common block ma.y not be specified in more
data subprogram in the same- executabla

There must not be more than one
subprogram in an executable program.

data I unnamed b~ock
50

55

Fut I Language Page 16-1

ANSI X3.9-1978 FORTRAN 77

17. ASSOCIATION AND DEFINITION

17.1 Storage and Association

S Storage sequences are used to describe relationships that
exist among variables, array elements, common blocks, and
arguments.

17.1.1 Storage Sequence. A storage sequence is a sequence
10 <2.1) of storage units. The size Qi~ storage sequence is

the number of storage units in the storage sequence. A
storage unit is a character storage unit or a numeric
storage unit.

15 A variable or array element of type integer, real, or
logical has a storage sequence of one numeric storage unit.

20

A variable or array element of type character has a storage
25 sequence of character storage units. The number of

character storage units in the storage sequence is the
length of the character entity. The order of the sequence
corresponds to the ordering of character positions <4.8).

30
Each array and common block has a storage sequence (5.2.5
and 8.3.2).

17.1.2 Association of Storage Sequences. Two storage
35 sequences s 1 and s 2 are associated if the ith storage unit

of s 1 is the same as the jth storage unit of s 2 • This
causes the (i+k)th storage unit of s 1 to be the same as the
(j+k)th storage unit of s 2 , for each integer k such that
1 ~ i+k ~ size of s 1 and 1 ~ j+k ~ size of s 2 •

40
17.1.3 Association of Entities. Two variables or array
elements are associated if their storage sequences are
associated. Two entities are totally associated if they
have the same storage sequence. Partial association of

45 character entities is prohibited.

The definition status and value of an entity affects the
definition status and value of any associated entity. An

50 EQUIVALENCE statement, a COMMON statement, or a procedure
reference (argument association) may cause association of
storage sequences.

An EQUIVALENCE statement causes association of ent1t1es only
SS within one program unit, unless one of the equivalenced

entities is also in a common block (8.3).

Page 17-1s Subset Language

ANSI X3.9-1978 FORTRAN 77

17. ASSOCIATION AND DEFINITION

17.1 Storage and Association

Storage seQuences are used to describe relationships that 5
exist among variables, array elements, substrings, common
blocks, and arguments.

17.1.1 Storage Sequence. A storage sequence is a seQuence
<2.1) of storage units. The size .Q.f. A storage sequence is 10
the number of st-0rage units in the storage seQuence. A
storage unit is a character storage unit or a numeric
storage unit.

A variable or array element of type integer, real, or 15
logical has a storage seQuence of one numeric storage unit.

A variable or array element of type double precision or
complex has a storage seQuence of two numeric storage units.
In a complex storage seQuence, the real part has the first 20
storage unit and the imaginary part has the second storage
unit.

A variable, array element, or substring of type character
has a storage seQuence of character storage units. The 25
number of character storage units in the storage seQuence is
the length of the character entity. The order of the
seQuence corresponds to the ordering o.f character positions
(4. 8).

Each array and common block has a storage seQuence (5.2.5
and 8.3.2).

17.1.2 Association of Storage Sequences. Two storage

30

seQuences s 1 and s 2 are assdciated if the ith storage unit 35
of s 1 is the same as the]th storage unit of s 2 • This
causes the (i+k)th storage unit of s 1 to be the same as the
(j+k)th storage unit of s 2 , for each integer k such that
1 ~ i+k ~ size of s 1 and 1 ~ j+k ~ size of s 2 •

17.1.3 Association of Entities. Two variables, array
elements, or substrings are associated if their storage
seQuences are associated. Two entities are totally
associated if they have the same storage seQuence. Two

40

entities are oartial ly associated if they are associated but 45
not totally associated.

The definition status and value of an entity affects the
definition status and value of any associated entity. An
EQUIVALENCE statement, a COMMON statement, an ENTRY 50
statement (15.7.3), or a procedure reference (argument
association) may cause association of storage seQuences.

An EQUIVALENCE statement causes association of entities only
within one program unit, unless one of the eQuivalenced 55
entities is also in a common block <8.3).

Ful I Language Page 17-1

ANSI X3;9-1978 FORTRAN 77 ASSOCIATION AND DEFINITION

Arguments and COMMON statements cause entities in one
program unit to become associated with entities in another
program unit (8.3 and 15.9). Note that association between
actual and dummy arguments does not imply association of

5 storage seQuences except when the actual argument is the
name of a variable, array element, or array.

10

1 5

20

25

30

35

40

45

50

55

In the example:

REAL AC4),8
EQUIVALENCE <A<2>,B>

the second storage unit of A and the storage unit of
specified as the same. The storage seQuences
i I lustrated as:

storage unit

A<2> and Bare totally associated.

B are
may be

Page 17-2s Subset Language

ASSOCIATION AND DEFINITION ANSI X3.9-1978 FORTRAN 77

Arguments and COMMON statements cause entities i n one
program uni t to become associated with entities i n another
program unit (8. 3 and 1 5 .. 9) . Note that association between
actual and dummy arguments does not imply association of
storage sequences except when the actual argument i s ·the
name of a variable, array element, array, or substring.

In a function subprogram, an ENTRY statement causes the
entry name to become associated with the name of the

5

function subprogram which appears in the FUNCTION statement. 10

Partial association may exist only between two character
entities or between a double precision or complex entity and
an entity of type integer, real, logical, double precision,
or complex. 15

Except for character entities, partial association may occur
only through the use of COMMON, EQUIVALENCE, or ENTRY
statements. Partial association must not occur through
argument association, except for arguments of type 20
character.

In the example:

REAL A(4),8
COMPLEX .C(2)
DOUBLE PRECISION D
EQUIVALENCE <C<2),A(2),8), <A,DI

the third storage unit of C, the second storage unit of
the storage unit of 8, and the second storage unit of D
specified as the same. The storage sequences may
i I lustrated as:

storage unit l--~-c!1)~--
I A (1)

3 I 4
----C<Z>--­

A(2) A(3)
--8--

1-----D-----

5

A (4) I

A,
are

be

A(2) and B are totaily associated. The following are
partially associated: A(1) and C(1), A(2) and C(2), A(3) and
C(2), Band C(2), A(1) and D, A(2) and D, Band D, C(1) and
D, and C(2) and D. Note that although C(1) and C<2> are

25

30

35

40

each associated with D, C(1) and C<2) are not associated 45
with each other.

Partial association of character entities occurs when some,
but not al I, of the storage units of the entities are the
same. In the example: 50

CHARACTER A•4,8•4,C•3
EQUIVALENCE <A<2:3),8,C)

A, B, and C are part i a I I y assoc i ate d .

Fu I I Language

55

Page 17-2

ANSI X3.9-1978 FORTRAN 77 ASSOCIATION AND DEFINITION

5

10

1 5

20

25

30

35

40

45

50

55

17.2 Events That Cause Entities~to Become Defined

Variables and array elements become defined as fol lows:

(1) Execution of an arithmetic, logical, or character
assignment statement causes the entity that precedes
the equals to become defined.

(2) As execution of an input
entity that is assigned a
type from the input medium
time of such assignment.

statement proceeds, each
value of its corresponding

becomes defined at the

(3) Execution of a DO statement causes the DO-variable to
become defined.

(4) Beginning of execution of action specified by an
implied-DO list in an input/output statement causes
the implied-DO-variable to become defined.

(5) A DATA statement causes ent1t1es to become initially
defined at the beginning of execution of an
executable progra~.

(6) Execution of an ASSIGN statement causes the variable
in the statement to become defined with a statement
label value.

(7) When an entity of a given type becomes defined, al I
totally associated entities of the same type become
defined except that entities totally associated with
the variable in an ASSIGN statement become undefined
when the ASSIGN statement is executed.

(8) A reference to a subprogram causes a dummy argument
to become defined if the corresponding actual
argument is defined with a value that is not a
statement label value. Note that there must be
agreement between the actual argument and the dummy
argument <15.9.3).

Page 17-3s Subset Language

ASSOCIATION AND DEFINITION ANSI X3.9-1978 FORTRAN 77

17.2 Events That Cause Entities to Become Defined

Variables,
fol lows:

array elements, and substrings become defined

(1) Execution of an arithmetic, I ogi ca I, or character
assignment statement causes the entity that precedes
the equals to become defined.

(2) As execution of an input
entity that is assigned a
type from the input medium
time of such assignment.

statement proceeds, each
value of its corresponding

becomes defined at the

5

1 0

(3) Execution of a DO statement causes the DO-variable to 15
become defined.

(4) Beginning of execution of action specified by an
implied-DO list in an input/output statement causes
the implied-DO-variable to become defined. 20

(5) A DATA statement causes ent1t1es to become initially
defined at the beginning of execution of an
executable program.·

(6) Execution of an ASSIGN statement causes the variable
in the statement to become defined with a statement
label value.

25

(7) When an entity of a given type becomes defined, all 30
totally associated entities of the same type become
defined except that entities totally associated with
the variable in an ASSIGN statement become undefined
when the ASSIGN statement is executed.

(8) A reference to a subprogram ~auses a dummy argument
to become defined i f the corresponding actual
argument i s defined IN i th a value that i s not a
statement label value. Note that there must be
agreement between the actual argument and the dummy
argument (15.9.3).

(9) Execution of an input/output statement containing an
input/output status specifier causes the specified

40

integer variable or array element to become defined. 45

<10) Execution of an INQUIRE statement causes any entity
that is assigned a value during the execution of the
statement to become defined if no error condition
exists. 50

(11) When a complex entity becomes defined, all partially
associated real entities become defined.

<12) When both parts of a complex entity become defined as 55
a result of partially associated real or complex

Fu 11 Language Page 17-3

ANSI X3.9-1978 FORTRAN 77 ASSOCIATION AND DEFINITION

5

10

1 5

20

25

30

35

40

45

50

55

17.3 Events That Cause Entities to Become Undefined

Variables and array elements become undefined as fol lows:

(1) All entities are undefined at the beginning of
execution of an executable program except those
entities initially defined by DATA statements.

<2> When an entity of a given type becomes defined, al I
totally associated entities of different type become
undefined.

(3) Execution of an ASSIGN statement causes the variable
in the statement to become undefined as an integer.
Entities that are associated with the variable become
undefined.

(4) When the evaluation of a function causes an argument
of the function or an entity in common to become
defined and if a reference to the function appears in
an expression in which the value of the function is
not needed to determine the value of the expression,
then the argument or the entity in common becomes
undefined when the expression is evaluated <6.6.1).

CS> The execution of a
statement within a
within the subprogram
the following:

RETURN statement or an END
subprogram causes al I entities
t~ become undefined except for

Ca) Entities in blank common

(b) Initially defined entities that have neither been
redefined nor become undefined

Cc) Entities specified by SAVE statements

Page 17-4s Subset Language

ASSOCIATION ANO DEFINITION ANSI X3.9-1978 FORTRAN 77

entities becoming defined, the complex entity becomes
defined.

<13) When al 1. characters of a character entity become I
defined, the character entity becomes defined. 5

17.3 Events That Cause Entities to Become Undefined

Variables, array elements, and substrings become undefined
as fol lows: 10

<1> Al I entities are undefined at the beginning of
executi-0n of an executable program except those
entities initially defined by DATA statements.

<2> When an entit~ of a given type becomes defined, al I
tot a 11 y associated entities of different type become
undefined.

1 5

(3) Execution of an ASSIGN statement causes the variable 20
in the statement to become undefined as an integer.
Entities that are associated with the variable become
undefined.

(4) When an entity of type other than character becomes 25
defined, all partially associated entities become
undefined. However, when an entity of type real is
partially associated with an entity of type complex,
the complex entity does not become undefined when the
real entity becomes defined and the real entity does 30
not become undefined when the complex entity becomes
defined. When an entity of type complex is partially
associated with another entity of type complex,
definition ·of one entity does not cause the other to
~ecome undefined. 35

(5) When the evaluation of a function causes an argument
of the function or an entity in common to become
defined and if a reference to the function appears in
an expression in which the value of the function is 40
not needed to determine the value of the expression,
then the argument or the entity in common becomes
undefined when the expression is evaluated (6.6.1>.

Cb) The execution of a
statement within a
within the subprogram
the following:

RETURN statement or an END
subprogram causes al I entities
to become undefined except for

(a) Entities in blank common

(b) Initially defined entities that have neither been
redefined nor become undefined

Cc) Entities specified by SAV.f statements

45

50

55

Ful I Language Page 17-4

ANSI X3.9-1978 FORTRAN 77 ASSOCIATION AND DEFINITION

5

10

15

zo

25

30

35

40

45

50

55

Page 17-5s

(d) Entities in a named common block that appears in
the subprogram and appears in at least one other
program unit that is either directly or
indirectly referencing the subprogram

(6) When an end-of-file condition occurs during execution
of an input statement, all of the entities specified
by the input list of the statement become undefined.

(7) Execution of a direct access input statement that
specifies a record that has not been previously
written causes al I of the entities specified by the
input list of the statement to become undefined.

(8) When an entity becomes undefined as a result of
c o n d i t i o n s d e s c r i b e d i n (4) t h r .o u g h (7) , a I I t o t a I I y
·associated entities become undefined.

Subset Language

ASSOCIATION AND DEFINITION ANSI X3.9-1978 FORTRAN 77

(d) Entities in a named common block that appears in
the subprogram and appears in at least one other
program unit that is either di re ct I y or
indirectly referencing the subprogram

(7) W h e n a n e r r or c o n d i t i o n o r e n d - o f - f i I e c o n d i t i o n
occurs during execution of an input statement, al I of
the entities specified by the input list of the
statement become undefined.

(8) Execution of a direct access input statement that
specifies a record that has not been previous I y
written causes all of the entities specified by the
input list of the statement to become undefined.

(9) Execution of an INQUIRE statement may cause entities
to become undefined <12.10.3).

(10) When any character of a character entity becomes

5

10

1 5

undefined, the character entity becomes undefined. 20

(11> When an entity becomes undefined as a resu It of
condi ti ans described i n (5) through (1 0) I a I I totally
associated ent1t1es become undefined and a I I
partially associated ent1t1es of type other than 2 5.
character become undefined.

30

35

40

45

50

55

Fu I I Language Page 17-5

ANSI X3.9~1978 FORTRAN 77

18. SCOPE AND CLASSES OF SYMBOLIC NAMES

A symbolic name consists of one to six alphanumeric
characters, the first of which must be a letter. Some

5 sequences of characters, such as format edit descriptors and
keywords that uniquely identify cert~in statements, for
example, GO TO, READ, FORMAT, etc, are not symbolic names in
such occurrences nor do they form the first characters of
symbolic names in such occurrences.

10

1 5

20

18.1 Scope of Symbolic Names

The scope of a symbolic name is an executable program, a
program unit, or a statement function statement.

The name of the main program and the names of external
functions, subroutines, and common blocks have a scope of an
executable program.

The names of variables, arrays, statement functions,
intrinsic functions, and dummy procedures have a scope of a
program unit.

25 The names of variables that appear as dummy arguments in a
statement function statement have a scope of that statement.

30

18.1.1 Global Entities. The main program, common blocks,
subprograms, and external procedures are global entities of
an executable program. A symbolic name that identifies a

35 global entity must not be used to identify any other global
entity in the same executable program.

40

45

50

55

18.1.1.1 CLasses of Global Entities.
one of the f o I I ow i ng c I asses i s a
executable program:

<1> Common block

(2) External function

<3> Subroutine

(4) Main program

18. 1 . 2 local Entities. The symbolic

A symbolic name in
global entity in an

name of a local entity
identifies that entity i n a single program uni t. Within a
program uni t, a symbolic name that i s i n one class of
entities local to the program unit must not also be in
another class of entities local to the program uni t.

Page 18-1s Subset language

ANSI X3.9-1978 FORTRAN 77

18. SCOP~AND CLASSES OF SYMBOLIC NAMES

A symbolic name consists of one to six alphanumeric
characters, the first of which must be a letter. Some
seQuences of characters, such as format edit descriptors and 5
keywords that uniQuely identify certain statements, for
•xample, GO TO, READ, FORMAT, etc, are not symbolic names in
such occurrences nor do they form the first characters of
symbolic names in such occurrences.

18.1 Scope of Symbolic Name~

The scope of a symbolic name is an executable program, a
program unit, a statement function statement, or an

10

implied-DO list in a DATA statement. 15

The name of the main program and the names of
subprograms, external functions, subroutines,
blocks have a scope of an executable program.

block data
and common

The names of variables, arrays, constants, statement
functions, int~insic functions, and dummy procedures have a
scope of a program unit.

20

The names of variables that appear as dummy arguments in a 25
statement function statement have a scope of that statement.

The names of variables that appeah as the DO-variable of an
implied-DO in a DATA statement have a scope of the implied-
DO list. 30

18.1.1 Global Entities. The main program, common blocks,
subprograms; and external procedures are global entities of
an executabl~ program. A symbolic name that identifies a
global entity must not be used to identify any other global 35
entity in the same executable program.

18.1.1.1 Classes of Global Entities_.
one of the following classes is a
executable program:

<1> Common block

(2) External function

(3) Subroutine

(4) Main program

A symbolic name in
global entity in an

40

45

<5> Block data subprogram 50

18.1.2 Local Entities. The symbolic name of a local entity
identifies that entity in a single program unit. Within a
program unit, a symbolic name that is in one class of
entities local to the program unit must not also be in 55
another class of entities local to the program unit.

Ful I Language Page 18-1

ANSI X3.9-1978 FORTRAN 77 SCOPE AND CLASSES OF SYMBOLIC NAMES

However, a symbolic name that identifies a local entity may,
in a different program unit, identify an entity of any class
that is eithe~ local to that program unit or global to the
executable program. A symbolic name that identifies a

5 global entity in a program unit must not be used to identify
a local entity in that program unit, except for a common
block name and an external function name <18.2.1 and
18.2.2).

10

15

20

25

30

18.1.2.1 Classes of Local Entities.
of the following classes is a local
uni t.

<1> Array

(2) Variable

<3> Statement function

(4) Intrinsic function

(5) Dummy procedure

A symbolic name in one
entity in a program

A symbolic name that is a dummy argument of a procedure is
classified as a variable, array, or dummy procedure. The
specification and usage must not violate the respective
class rules.

18.2 Classes of Symbolic Names

In a program unit, a symbolic name must not be in more than
one c I ass except as noted in the f o I I owing paragraphs of

35 this section. There are no restrictions on the appearances
of the same symbolic name in different program units of an
executable program other than those noted in this section.

18.2.1 Common Block. A symoolic name is the name of a
40 common block if and only if it appears as a block name in a

COMMON statement <8.3).

A common block name is global to the executable program.

45 A common block name in a program unit may also be th~ name
of any local entity other than an intrinsic function or a
local variable that is also an external function in a
function subprogram. If a name is used for both a common
block and a local entity, the appearance of that name in any

50 context other than as a common block name in a COMMON or
SAVE statement identifies only the local entity. Note that
an intrinsic function name may be a common block name in a
~rogram unit that does not reference the intrinsic function.

55

Page 18-2s Subset langua.ge

SCOPE AND CLASSES OF SYMBOLIC NAMES ANSI X3.9-1978 FORTRAN 77

However, a symbolic name that identifies a local entity may,
in. a different program unit, identify an entity of any class
that is either local to that program unit or global to the
executable · progra•. A symbolic name that identifies a
global entity in a program unit must not be used to identify 5
a local entity in that program unit, except for a common
block name and an external function name <18.2.1 and
18.2.2).

18.1.2.1 Classes of Local Entities.
of the f o I I ow i ng c I asses i s a Io ca I
uni t.

(1) Array

<2> Variable

<3> Constant

(4) Statement function

(5) Intrinsic function

(6) Dummy procedure

A symbolic name in one
entity in a program

A symbolic name that is a dummy argument of a procedure is
classified as a variable, array, or dummy procedure. The
specification and usage must not violate the respective
class rules.

18.2 Classes of Symbolic Names

In a program unit, a symbolic name must not be in more than
one class except as noted in the fol lowing paragraphs of

10

1 5

20

25

30

this section. There are no restrictions on the appearances 35
of the same symbolic name in different program units of an
executable program other than those noted in this section.

18.2.1 Common Block. A symbolic name is the name of a
common block if and only if it appears as a block name in a 40
COMMON statement <8.3).

A common block name is global to the executable program.

A common ~lock nam~ in a program unit may also be the name 45
of any local entity other than a constant, intrinsic
function, or a local variable that is also an external
function in a function subprogram. If a name is used for
both a common block and a local entity, the appearance of
that na~e in any context other than as a common block name 50
in a COMMON or SAVE statement identifies only the local
entity. Note that an intrinsic function name may be a
common block name in a program unit that does not reference
the intrinsic function.

55

F1,1 I I Language Page 18-2

ANSI X3.9-1978 FORTRAN 77 SCOPE AND CLASSES OF SYMBOLIC NAMES

5

1 0

1 5

20

25

30

35

18.2.2 External Function.
an external functi~n if
conditions:

A symbolic name is the name of
it meets either of the to I I owing

(1) The name appears immediately fol lowing the word
FUNCTION in a FUNCTION statement.

<2> It is not an array name, character variable
statement function name, intrinsic function
dummy argument, or subroutine name, and
appearance is immediate I y f o 11 owed by a
parenthesis except in a type-statement, in
EXTERNAL statement, or as an actual argument.

name,
name,
every

left
an

In a function subprogram, the name of a function that
appears immediately after the word FUNCTION in a FUNCTION
statement must also be the name of a va~iable in that
subprogram (15.5.1>.

An external function name is global to the executable
program.

18.2.3 Subroutine. A symbolic name is the name of a
subroutine if it meets either of the following conditions:

(1) The name appears immediately fol lowing the word
SUBROUTINE in a SUBROUTINE statement.

(2) The name appears immediately fol lowing the word CALL
in a CALL statement and is not a dummy argument.

A subroutine name is global to the executable program.

18.2.4 Main Program. A symbolic name is the name of a main
40 program if and only if it appears in a PROGRAM statement in

the main program.

A main program name is global to the executable program.

45 18.2.5 Block Data Subprogram. Block data subprograms are
not included in the subset.

50

55

18.2.6 Array. A symbolic name is the name of an array if
it appea?s as the array name in an array declarator <5.1> in
a DIMENSION, COMMON, or type-statement.

An array name is I oca I to a program unit.

Page 18-3s Subset Language

SCOPE AND CLASSES OF SYMBOLIC NAMES ANSI X3.9-1978 FORTRAN 77

18.2.2 External Function.
an external function if
conditions:

A symbolic name is the name of
it meets either of the fol lowing

<1> The name appears immediately fol lowing the word 5
FUNCTION in a FUNCTION statement or the word ENTRY in
an ENTRY statement within a function subprogram.

<2> It i s not an array name, character variable name,
statement function name, intrinsic function name,
dummy argument, or subroutine name, and every
appearance i s immediately fol lowed by a left
parenthesis except i n a type-statement, i n an
EXTERNAL statement, or as an actual argument.

In a function subprogram, the name of a function that
appears immediately after the word FUNCTION in a FUNCTION
statement or immediate,ly after the word ENTRY in an ENTRY
statement may also be the name of a variable in that

1 0

1 5

subpragram <15.5.1>. At least one such function name must 20
be the name cf a variable in a function subprogram.

An external function name is global to the executable
program.

18.2.3 Subroutin~. A symbolic name is the name oi a
subroutine if it meets either of the fol lowing conditions:

<1> The name appears immediately fol lowing the word

25

SUBROUTINE in a SUBROUTINE statement or the word 30
ENTRY in an ENTRY statement within a subroutine
subprogram.

<Z> The name appears immediately fol lowing the word CALL
in a CALL statement and is not a dummy argument. 35

A subroutine nam& is global to the executable program.

18.2.4 Main Proaram. A symbolic name is the name of a main
program if and only if it appears in a PROGRAM statement in 40
the main program.

A main program name is global to the executable program.

18.2.5 Block Data Subprogram. A symbolic name is the name 45
of a block data subprogram if and only if it appears in a
BLOCK DATA statement.

A block data subprogram name is global
program.

to the executable I
18.2.6 Arrav. A symbolic name is the name tif an array if
it appears as the array name in an array declarator <5.1> In
a DIMENSION, COMMON, or type-statement.

An array name is local to a program unit.

50

55

Full Language Page 18-3

ANSI X3~9-1978 FORTRAN 77 SCOPE AND CLASSES OF SYMBOLIC NAMES

5

10

15

20

I
I

An array naine may be· t·he same as a common b I ock naine.

18.2.7 Variable. A sym.boJic name is the name of a variable
if it.meets all of the following conditions:.

C1> It does not appear in an INTRINSIC or EXTERNAL
statement.

<2 > I t i s not the name of an array , sub rout i n e, or ma i n
program.

(3) It appears other than as the name oi a common blo~k
or the name of an external tunttion in a FUNCTION
statement.

<4> It is never immediately followed by a left
pa r e n t h e s i s u n I e s s i t i s i m m e d i a t e I y p r. e c e d e d b y t h e
ward FUNCTION in a FUNCTION statement.

A variable name in the dummy a.rgument list of a statement
25 function statement is local to th~ st•tement iunction

30

statement in which it occurs. Not~ that the use of a name
that appears in Table 5 as a dummy argument of a statement
function removes it from the clas~ of intrinsic functions.
A I I o t her var i ab I e names are I o ca I to a pr o gr a In uni t.

A statement function dummy argument nam~ may also be the
name,of a variable or cpmmon block 1n the program unit. The

35 appearance of the nain~ in any context other than as a dummy
arguinent of the statement function identifies the local
varia~le or common block. The statement function dummy
argument name and local varia~le name have the same type
and, if of type character, both have t.h~ same constant

4.0 length.·

45

50

55

I 18.2.8 Constant. Symbo1ic
·. included in the subset.

18.2.9 Statement Function.
a statement function if

Page 18-4s

names of constan.ts are not

A symbolic name is the name of
a stateinent. function statement

Subset Language

SCOPE AND CLASSES OF SYMBOLIC NAMES ANSI X3.9-1978 FORTRAN 77

An array name may be the same as a common block name.

18.2.7 Variable. A symbolic name is the name of a variable
if it meets all of the following conditions:

<1> It does not appear in a PARAMETER, INTRINSIC, or
EXTERNAL statement.

<2> It is not the name of an array, subroutine, main

5

program, or block data subprogram. 10

(3) It appears other than as the name of a common block,
the name of an external function in a FUNCTION
statement, or an entry name in an ENTRY statement in
an external function. 15

(4) It is never immediately followed by a left
parenthesis unless it is immediately preceded by the
word FUNCTION in a FUNCTION statement, is immediately
preceded by the word ENTRY in an ENTRY statement, or 20
is at the beginning of a character substring name
(5.7.1>.

A variable name in the dummy argument list of a statement
function statement is local to the statement function 25
statement in which it occurs. Note that the use of a name
that appears in Table 5 as a dummy argument of .a statement
function removes it from the class of intrinsic functions.
A variable name that appears as an implied-DO-variable in a
DATA statement is local to the implied-DO list. All other 30
variable names are local to a program unit,

A statement function dummy argument name may also be the
name of a variable or common block in the program unit. The
appearance of the name in any context other than as a dummy 35
argument of the statement function identifies the local
variable or common block. The statement function dum~y
argument name and local variable name have the same type
and, if of type character, both have the same constant
length. 40

The name of an implied-DO~variable in a DATA statement may
a1so be the name of a variable or common block in the
program unit. The appearance of the name in any context
other than as an im~lied-00-variable in the DATA statement 45
identifies the ~ocal variable or common block. The implied-
00-variable and the local variable have the same type.

18.2.8 Constant. A symbolic name is the name of a constant
if it appears as a symbolic name in a PARAMETER statement. 50

The symbolic name of a constant is local to a program unit.

18.2.9 Statement Function.
a statement function if

Fu I I Language

A symbolic name is the name of
a statement funttion statement 55

Page 18-4

ANSI X3.9-1978 FORTRAN 77 StOPE AND (LASSES OF SYMBOLIC NAMES

5

1 0

15

20

25

30

35

40

(15.4) is present for that symbolic name and it is not an
array name.

A statement function name is local to a program unit. A
statement function name may be the same as a common block
name.

18.2.10 Intrinsic Function.
an intrinsic function if
conditions:

A symbolic name is the name of
it meets al I of the fol lowing

(1) The name appears in the Specific Name column of Table
5 and in the list of subset intrinsic functions in
Note 11 of Table 5.

(2) It is not an array name, statement function name,
subroutine name, or dummy argument name.

(3) Every appearance of the symbolic name, except in an
INTRINSIC statement, a type-statement, or as an
actual argument, is immediately fol lowed by an actual
argument list enclosed in parentheses.

An intrinsic function name is local to a program unit.

18.2.11 Dummy Procedure. A symbolic name is the name of a
dummy procedure if the name appears in the dummy argument
list of a FUNCTION or SUBROUTINE statement and meets one or
more of the fo I I owing conditions:

<1> It appears in an EXTERNAL statement.

CZ> It appears immediately following the word CALL in a
CALL statement.

(3) It is not an array name or character variable name,
and every appearance is immediate I y fo I I owed by a
left parenthesis except in_ a type-statement, in an
EXTERNAL statement, in a CALL statement, as a dummy
argument, as an actual argument, or as a common block
name in a COMMON or SAVE statement.

A dummy procedure name is local to a program unit.

45 A dummy procedure must not be of type character.

50

55

Page 18-5s Subset Language

SCOPE AND CLASSES OF SYMBOLIC NAMES ANSI X3.9-1978 FORTRAN 77

<15.4) is present for that symbolic name and it is not an
array name.

A statement function name is local to a program unit. A
statement function name may be the same as a common block 5
name.

18.2.10 Intrinsic Function.
an intrinsic fu~ction if
conditions:

A symbolic name is the name of
it meets all of the following

<1> The name appears in the Specific Name column or the
Generic Name column of Table 5.

(2) It is not an array name, statement function name,
subroutine name, or dummy argument name.

(3) Every appearance of the symbolic name, except
INTRINSIC statement, a type-statement, or
actual argument, is immediately fol lowed by an
argument list enclosed in parentheses.

An intrinsic function name is local to a program unit.

in an
as an
actual

18.2.11 Dummy Procedure. A symbolic name is the name of a
dummy procedure if the name appears in the dummy argument
list of a FUNCTION, SUBROUTINE, or ENTRY statement and meets
one or more of the following conditions:

<1> It appears in an EXTERNAL statement.

<2> It appears immediately fol lowing the word CALL in a
CALL statement.

C3> It is not an array name or character variable name,
and every appearance is immediately fol lowed by a
left parenthesis except in a type-statement, in an
EXTERNAL statement, in a CALL statement, as a dummy

10

1 5

20

25

30

35

argument, as an actual argument, or as a common block 40
name in a COMMON or SAVE statement.

A dummy procedure name is local to a program unit.

45

50

55

Fu! I Language Page 18-5

APPENDIXES

<These Appendixes are not part of American National Standard
Programming Language FORTRAN, ANSI X3.9-1978, but are
included for information purposes only.)

ANSI X3.9-1978 FORTRAN 77

APPENDIX A: CRITERIA, CONFLICTS, AND PORTABILITY

A1 Criteria

The principal criteria used in developing this FORTRAN 5
standard were:

<1> Interchangeability of
processors

FORTRAN programs between

<Z> Compatibility with ANSI X3.9-1966, al lied standards,
and existing practices

<3> Consistency and simplicity to user

(4) Suitability for efficient processor operation
wide range of computing eQuipment of
structure and power

<5> Allowance for future growth in the language

for a
varying

(6) Achievement of capabi Ii ti es not current I y avai I ab I e,
but needed for processes appropriately expressed in
FORTRAN

(7) Acceptability by a significant portion of users

<8> Improved ability to use FORTRAN programs and data in
conjunction with other languages and environments

AZ Conflicts with ANSI X3.9-1966

An extremely important consideration in the preparation of
this standard was the minimization of conflicts with the

1.0

15

20

25

30

previous standard, ANSI X3.9-1966. This standard includes 35
changes that create conflicts with ANSI X3.9-1966 only when
such change~ were necessary to correct an error in the
previous standard or to add to the power of the FORTRAN
language in a significant manner. The following is a list
of known conflicts: 40

<1> A line that contains only blank characters in columns
1 through 72 is a comment line. ANSI X3.9-1966
allowed such a line to be the initial line of a
statement.

<Z> Columns 1 through 5 of a continuation line must
contain blanks. A published interpretation of ANSI
X3.9-1966 specified that columns 1-5 of a

45

continuation line may .contain any character from the 50
FORTRAN character set except that column 1 must not
contain a C.

(3) Hollerith
permitted
the use

constants and Hal lerith data are not
in this standard. ANSI X3.9-1966 permitted
of Hollerith constants in DATA and CALL

55

Full Language Page A-1

ANS(X3.9-1978 FORTRAN 77 APPENDIX A: CRITERIA, CONFLICTS

statements, the use of noncharacter list items in
formatted input/output statements with A edit
descriptors, and the referencing of noncharacter
arrays as formats. Note that the H edit (field)

5 descriptor is permitted; it is not a Hollerith
constant.

(4) The value of each comma-separated subscript
expression in a subscript must not exceed its

10 corresponding upper bound declared for the array name
in the program unit. In the example:

15

DIMENSION AC10,5>
Y=AC11,1>

The reference to AC11,1) is not permitted for the
array AC10,5>. ANSI X3.9-1966 permitted a subscript
expression to exceed its corresponding upper bound if
the maximum subscript value for the array was not

20 exceeded.

(5) Only an array that is declared as a one-dimensional
array in the program unit may have a one-dimensional
subscript in an EQUIVALENCE statement. In the

25 example:

DIMENSION BC2,3,4), CC4,8>
EQUIVALENCE CBC23), CC1,1>>

30 8<23) is not permitted. ANSI X3.9~1966 permitted
arrays that were declared as two- or three­
dimensional arrays to appear in an EQUIVALENCE
statement with a one-dimensional subscript.

35 (6) A name must not have its type explicitly specifieQ
more than once in a program unit. ANSI X3.9-1966 did
not explicitly have such a prohibition.

(7) This standard does not permit a transfer of control
40 into the range of a DO-loop from outside the range.

The range of a DO-loop may be entered only by the
execution of a DO statement. ANSI X3.9-1966
permitted transfer of control into the range of a DO­
loop under certain conditions. This involved the

45 concept referred to as "extended range of a DO."

50

55

Page A-2

(8) A labeled END statement could
initial line of a statement
standard-conforming program.

conflict with the
in an ANSI X3.9-1966

(9) A record must not be written after an endfi le record
in a seQuential file. ANSI X3.9-1966 did not
prohibit this, but provided no interpretation for the
reading of an endfile record.

Ful I Language

APPENDIX A: CRITERIA, CONFLICTS ANSI X3.9-1978 FORTRAN 77

<10) A sequential file may not contain both formatted and
unformatted records. A published interpretation of
ANSI X3.9-1966 specified that this was permitted.

<11) Negative values for input/output unit identifiers are 5
prohibited in this standard. ANSI X3.9-1966 did not
explicitly prohibit them for variable unit
identifiers.

<12> A simple 1/0 list enclosed in parentheses i s
prohibited from appearing in an 1/0 li~t.

This requires that parentheses enclosing more than
one IIO list item must mark an implied DO-loop. The

1 0

restriction was imposed to eliminate potential 15
syntactic ambiguities introduced by complex constants
in list-directed output lists. As al I the
parentheses referred to are redundant, a program can
be made conforming with this standard by deleting
redundant parentheses enclosing more than one list 20
item in an I/O list.

<13) The definition of an entity associated with an entity
in an input list occurs at the same time as the
definition of the list entity. ANSI X3.9-1966 25
delayed the definition of such an associated entity
unti I the end of execution of the input statement.

(14) Reading into an H ed i t (field) descriptor i n a FORMAT
statement i s prohibited i n th i s standard.

(1 5) The range of a scale factor for E, D, and G output
fields i s restricted to reasonable values. ANSI
X3.9-1966 had no such restriction, but did not
provide a clear interpretation of the meaning of the
unreasonable values.

<16) A processor must not produce a numeric output field
containing a negative zero. ANSI X3.9-1966 required

30

35

this if the internal value of a real or double 40
precision datum was negative.

(17) On output, the I edit descriptor must not produce
unnecessary leading zeros.

(18) On output, the F edit descriptor must not produce
unnecessary leading zeros, other than the optional
leading zero for a value less than one.

45

(19) Fol lowing the E or D in an E or D output field, a + 50
or is required immediately prior to the exponent
field. This improves compatibility with American
National Standard for the Representation of Numeric
Values in Character Strings for Information
Interchange, ANSI X3.42-1975. ANSI X3.9-1966 55

Fu I I Language Page A-3

ANSI X3.9-1978 FORTRAN 77 APPENDIX A: CRITERIA, CONFLICTS

permitted a blank as a replacement for + in the
exponent sign.

<20) An intrinsic function name that is used as an actual
5 argument must appear in an INTRINSIC statement rather

than an EXTERNAL statement. Note that the intrinsic
function class includes the basic external function
class of ANSI X3.9-1966.

10 <21) The appearance of an intrinsic function name in a
type-statement that conflicts with the type specified
in Table 5 is not sufficient to remove the name from
the intrinsic function class. In ANSI X3.9-1966,
this condition was sufficie~t to remove the name from

15 the intrinsic function class.

<22) More intrinsic function names have been added and
could conflict with the names of subprograms. These
names are ACOS, ANINT, ASIN, CHAR, COSH, DACOS,

20 DASIN, DCOSH, DDIM, DINT, DNINT, DPROD, DSINH, DTAN,
DTANH, !CHAR, IDNINT, INDEX, LEN, LGE, LGT, LLE, LLT,
LOG, LOG10, MAX, MIN, NINT, SINH, and TAN.

<23) The units of the arguments and results of the
25 intrinsic functions (and basic external functions)

were not specified in ANSI X3.9-1966 and are
specified in this standard. The range of the
arguments and results has also been specified. These
specifications may be different from those used on

30 some processors conforming to ANSI X3.9-1966.

<24) An executable program must not contain more than one
unnamed block data subprogram. ANSI X3.9-1966 did
not have this prohibition and could be interpreted to

35 permit more than one.

A3 Standard Items That In hi bit Portabi Ii ty

Although the primary purpose of this standard is to promote
40 portabi Ii ty of FORTRAN programs, there are some items in it

that tend to inhibit portability.

45

(1) Procedures writte~ in languages other than FORTRAN
may not be portable.

(2) Because the collating sequence has not been
completely specified, character relational
expressions do not necessarily have the sa.rne value on
al I processors. However, the intrinsic functions

50 LGE, LGT, LLE, and LLT can be used to provide a more
portable comparison of character entities.

(3) CharaGter data, H edit descriptors, apostrophe edit
descriptors, and comment lines may include characters

55 that are acceptable to one processor but unacceptable
to another processor.

Page A-4 Fu I I Language

APPENDIX A: CRITERIA, CONFLICTS ANSI X3.9-1978 FORTRAN 77

(4) N o e x p I i c i t r e Q u i r em e n t s a r e s p e ci f i e d fo r f i I e
names. A file name that is acceptable to one
processor may be unacceptable to another processor.

(5) Input/output unit numbers and unit capabi Ii ties may 5
vary among processors.

A4 Recommendation for Enhancing Portabi Ii ty

To enhance the development of portable FORTRAN programs, a 10
producer should provide some means of identifying
nonstandard syntax supported by his processor. Alternatives
for doing this include appropriate documentation, features
of the processor, and other means.

1 5

20

25

30

35

40

45

50

55

Ful I Language Page A-5

ANSI X3.9-1978 FORTRAN 77

APPENDIX B: SECTION NOTES

81 Section 1 Notes

What this standard cal Is a processor is any mechanism that 5
can carry out the actions of a program. Commonly, this may
be any of these:

(1) The combined actions of a computer <hardware), its
operating system, a compiler, and a loader 10

<2> An interpreter

(3) The mind of a human, perhaps with the help of paper
and penci I 15

When you read this standard, it is important to keep its
point of view in mind. The standard is written from the
point of view of a programmer using the language, and not
from the point of view of the implementation of a processor. 20
This point of view affects the way you should interpret the
standard. For example, in 3.3 the assertion is made:

a statement must contain no more than 1320
characters." 25

This means that if a programmer writes a longer statement,
his program is not standard conforming. Therefore, it wi I I
get different treatment on different processors. Some
processors wi I I accept the program, and some wi I I not. Some 30
may even seemingly accept the program but process it
incorrectly. The assertion means that al I standard­
conforming processors must accept statements up to 1320
characters long. That is the only inference about a
standard-conforming processor that can be made from the 35
assertion.

The assertion does not mean that a standard-conforming
processor is prohibited from accepting longer statements.
Accepting longer statements would be an extension. 40

The assertion does not mean that a
processor must diagnose statements
characters, although it may do so.

standard-conforming
longer than 1320

In general, a standard-conforming processor is one that
accepts al I standard-conforming programs and processes them
according to the rules of this standard. Thus, the
specification of a standard-conforming processor must be

45

inferred from this document. 50

In some places, explicit prohibitions or restrictions are
stated, such as the above statement-length restriction.
Such assertions restrict what programmers can write in
standard-conforming programs and have no more weight in the 55
s tan d a rd t ha n an o-m i t t e d feature . For exam p I e , t here i s no

Fu I I Language Page B-1

ANSI X3.9-1978 FORTRAN 77 APPENDIX B: SECTION NOTES

mention anywhere in the standard of double precision
integers. Because it is omitted, programmers must not use
this feature in standard-conforming programs. A standard­
conforming processor may or may not provide it or diagnose

5 its use. Thus, an explicit prohibition <such as statements
longer than 1320 characters) and an omission <such as double
precision integers) are equivalent in this standard.

10

1 5

20

25

30

82 Section 2 Notes

Some of the terminology used in this document is different
from that used to describe other programming languages. The
fo I I owing i ndi cat es terms f ram other I anguages that are
approximately equvialent to some FORTRAN terms ..

FORTRAN

Variable
Array Element
Subscript Expression
Subscript
Dummy Argument

Actual Argument

Other Languages

Simple Variable
Subscripted Variable
Subscript
<none)
Formal Argument, Formal

Parameter
Actua I Parameter

In particular, the FORTRAN terms "subscript" and "subscript
expression should be studied carefully by readers who are
unfamiliar with this standard <5.4>.

The term "symbolic name" is frequently shortened to
throughout the standard.

83 Section 3 Notes

name

35 A partial collating sequence is specified. If possible, a
processor should use the American National Standard Code for
Information Interchange, ANSI X3.4-1977 <ASCII>, sequence
for the complete FORTRAN character set.

40 When a continuation line rollows a
continuation line is part of the current
not a continuation of the comment line.
not part of a statement.

comment I ine, the
statement; it is
A comment line is

45 The standard does not restrict the number of consec~tive
comment lines. The limit of 19 continuation lines perllfltted
for a statement should not be construed as being a
limitation on the number of consecutive comment lines.

50 There are 99999 unique statement labels and a processor must
accept 99999 as a statement label. However, a processor may
have an implementation limit on the total number oi unique
statement labels in one program unit (3.4).

55

Page 8-2 Ful I Language

APPENDIX B: SECTION NOTES ANSI X3.9-1978 FORtRAN 77

Blanks and leading zeros are not significant in
distinguishing between statement labels. For example, 123,
1 23, and 0123 are al I forms of the same statement label.

84 Section 4 Notes

A processor must not consider a negative zero to be
d i f f e r e n t f r o m a p o s i t i v e z ei'.' o .

5

ANSI X3.9-1966 used the term "ctl{)stant" to mean an unsigned 10
constant . Thi s standard uses t,h e term .. constant .. to have
its more normal meaning of an optionally signed constant
when describing arithmetic constants. The term "unsigned
constant" is used wherever a leading sign is not permitted
on an arithmetic constant. 15

A character constant is a representation of a character
value. The delimiting apostrophes are part of the
representation but not part of the value; double apostrophes
are used to represent a single embedded apostrophe. For 20
example:

Character Character
Constant Value

'CAT' CAT
'ISN"T' ISN'T

I I I I SN I I I IT' I I I I SN I IT I

Note that the value of the character constant '' 'ISN''' 'T'''
is a representation of another character constant.

25

30

Some programs that used an extension to ANSI X3.9-1966 that 35
permitted a Hollerith constant delimited by apostrophes
instead of the nH form do not conform to this standard.

85 Section 5 Notes

For the array declarator A<2,3), the use of the array name A
in the proper context, such as in an input/output list,
specifies the fol lowing order for the array elements:
A<1,1), A<2,1), A<1,2), A<2,2); A<1,3), A<2 1 3).

86 Section 6 Notes

If V is a vafiable name, the interpretation and value of V,
+V, and (V) are the same. However, the three forms may not

40

45

always be used interchangeably. For example, the forms +V 50
and <V) may not be used as list items of a READ statement or
as actual arguments of a procedure reference if the
procedure defines the corresponding dummy argument.

55

Ful I Language Page 8-3

ANSI X3.9-1978 FORTRAN 77 APPENDIX B: SECTION NOTES

87 Section 7 Notes

Although DIMENSION statements, type-statements, and
statement function statements are classified as

5 nonexecutable statements, they may contain references that
are executed. Expressions containing variables in DIMENSION
statements and type-statements may be evaluated whenever a
reference to the program unit is executed. The expression
in a statement function statement is evaluated whenever a

10 function reference to the statement function is executed.

88 Section 8 Notes

If a processor al lows a one-dimensional subscript for a
15 multidimensional array in an EQUIVALENCE statement, the

interpretation should be as though the subscript expression
were the leftmost one and the missin~ subscript expressions
each have their respective lower dimension bound value.

20 ANSI X3.9-1966 permitted two- and three-dimensional arrays
to have a one-dimensional subscript in an EQUIVALENCE
statement. The fol lowing table can be used to convert a
one-dimensional subscript to the corresponding
multidimensional subscript:

25

..!l Dimension Subscript Subscript
Value

30 1 (d I) s (s)

z <d1,d2> s C1+MODCs-1,d1>.
1+Cs-1)/d1>

35 3 <d1,d2,d:s> s C1+MODCs-1,d1>.
1+MODC (s-1)/d1 ,d2),
1+Cs-1)/Cd1*d2>>

40 Each expression in the last cblumn of the table is eval.uated
according to the rules for integer expressions.

A processor
should al low

45 statement.

that allows
their names

add i ti on a I
to appear

intrinsic
in an

functions
INTRINSIC

As an extension to ANSI X3.9-1966, many processors permitted
the retention of certain values at the completion of
execution of a subprogram, such as local variables and

50 arrays, initially defined data that had been changed, and
named common blocks not specified in the main program,
whereas other processors prohibited the retention of such
values. In ANSI X3.9-1966 such entities were undefined at
the completion of execution of the subprogram, and therefore

55 a standard-conforming program could not retain these values.
The SAVE statement provides a facility for data retention.

Page 8-4 Fu I I Language

APPENDIX 8: SECTION NOTES ANSI X3.9-1978 FORTRAN 77

89 Section 9 Notes

An entity is "initially deflned" only by a DATA statement.
An assignment statement may define or redefine an entit~ but
it does not "initially define" the entity. 5

Initially defined entities
undefined at the execution
they are assigned any value,
during the execution of the
15.8.4).·

810 Section 10 Notes

in a subprogram may become
of a RETURN or END statement if
including their initial value,
executable program <see 8.9 and

Al I four types of implied arithmetic conversion are
permitted in an arithmetic assignment statement.

811 Section 11 Notes

10

1 5

A logical IF statement must not contain another logical IF 20
statement or a block IF statement; however, it may contain
an arithmetic IF statement. The following is allowed:

IF (logical expr.) IF (arithmetic expr.) ~ •• ~2 .~J

A processor is not required to evaluate the iteration count
in a DO-loop if the same effect is achieved without
evaluation. However, the processor must allow redefinition
of variables and array elements that appear after the equals

25

in a DO statement during the execution of the DO-loop 30
without affecting the number of times the DO~loop is
executed and without affecting the value by which the DO­
variable is incremented.

It J1 > J2, ANSI X3.9-1966 does not al ldw execution of the 35
following DO statement:

DO 100 J=J1 ,JZ

Some processors that al lowed such a case executed the range 40
of the DO-loop once, whereas other processors did not
execute the range of the DO-loop. This standard al lows such
a case and requires that the processor execute the range of
the DO-loop zero times. The fol lowing change to the DO
statement wi I I require that the processor execute the range 45
at least once:

DO 100 J=J1,MAX<J1,JZ>

References to function procedures and ~ubroutine procedures 50
may appear within the range of a DO-loop or within an IF­
block, ELSE IF-block, or ELSE-block. Execution of a
function reference or a CALL statement is not considered a
transfer of control in the program unit that contains the
reference, except when cont r -0 'I i s returned to a statement 5 5
identified by an alternate return specifier in a CALL

Fu I I Language Page 8-5

ANSI X3.9-1978 FORTRAN 77 APPENDIX B: SECTION NOTES

5

statement. Execution of a RETURN or END statement in a
referenced procedure, or execution of a transfer of control
within a referenced procedure, is not considered a transfer
of control in the program unit that contains the reference.

The CONTINUE statement is an executable statement that has
no ef feet of i tse If. It can serve as an executab I e
statement on which to place a statement label when no effect
of execution is desired. For example, it can serve as the

10 statement referred to by a GO TO statement or as the
terminal statement of a DO-loop. Although the CONTINUE
statement has no effect of itself, it causes execution to
continue with incrementation processing when it is the
terminal statement of a DO-loop.

1 5
The standard does not define the term "accessible" in the
STOP or PAUSE statement in order to a 11 ow a wide I ati tu de in
adapting to a processor environment. Some processors may
use the n in the PAUSE or STOP statement for documentation

20 only. Other processors may display then to the user or to
the operator. In order not to confine its use, the meaning
of "accessible" is purposely left vague.

25
B12 Section 12 Notes

What is cal led a "record" in FORTRAN is commonly cal led a
"I ogi ca I record... There is no concept in FORTRAN of a
"physical record."

30 An endfi le record does not necessarily have any physical
embodiment. The processor may use a record count or other
means to register the position of the file at the time an
ENDFILE statement is executed, so that it can take
appropriate action when that position is again reached

35 during a read operation. The endfi le record, however it is
implemented, is considered to exist for the BACKSPACE
statement.

An internal file permits data to be transferred with
40 conversion between internal storage areas using the READ and

WRITE statements. This facility was implemented as an
extension to ANSI X3.9-1966 on many processors as ENCODE and
DECODE statements. Specifying the READ and WRITE statements
to perform this process avoids such confusion as: "Is

45 ENCODE Ii ke READ or is it Ii ke WRITE?"·

This standard accommodates, but it does not require, file
cataloging. To do this, several concepts are introduced.

50 In ANSI X3.9-1966 many properties were given to a unit that
in this standard are given to the connection of a file to a
unit. Also, additional properties are introduced.

Before any input/output can be performed on a f~le, it must
55 be connected to a unit. The unit then serves as a

designator for that file as long as it is connected. To be

Page B-6 Fu I I Language

APPENDIX B: SECTION NOTES ANSI X3.9-1978 FORTRAN 77

connected does not imply that "buffers" have or have not
been al located, that "file-control tables" have or have not
been fi I led out, or that any other method of implementation
has been used. Connection means that (barring some other
fault) a READ or WRITE statement can be executed on the 5
unit, hence on the file. Without a connection, a READ or
WRITE statement cannot be executed.

Totally independent of the connection state is the property
of existence, this being a file property. The processor
"knows" of a set of files that exist at a given time for a
given executable program. This set would include tapes
ready to read, files in a catalog, a keyboard, a printer,
etc. The set may exclude files inaccessible to the
executable program because of security, because they are
already in use by another executable program, etc. This
standard does not specify which files exist, hence wide
latitude is available to a processer to implement security,
locks, privilege techniques, etc. Existence is a convenient
concept to designate al I of the files that an executable
program. can potentially process.

Al I four combinations of connection and existence may occur:

Connect Ex i st Examples

Yes
I

Yes A card reader loaded and
ready to be read

Yes No A printer before the f i rs t
I i n e i s written

No Yes A f i I e named 'JOE' i n
the catalog

No No A reel of tape destroyed
i n the f i re last week

Means are provided to create, delete, connect, and
disconnect files.

A file may have a name. The form of a file name is not

1 0

1 5

20

25

30

35

40

specified. If a system does not have some form of 45
cataloging or tape labeling for at least some of its fi Jes,
al I file names wi 11 disappear at the termination of
execution. This is a valid implementation. Nowhere does
this standard require names to survive for any period of
time longer than the execution time span of an executable 50
program. Therefore, this standard does not impose
ca::aloging as a prerequisite. The naming feature is
intended to a 11 ow use of a cat a I ogi ng system where one
exists.

55

Fu I I Language Page B-7

•

ANSI X3.9-1978 FORTRAN 77 APPENDIX B: SECTION NOTES

A file may become connected to a unit in either of two ways:
preconnection or execution of an OPEN statement.
Preconnection is performed prior to the beginning of
execution of an executable program by means external to

5 FORTRAN. For example, it may be done by job control action
or by processor established defaults. Execution of an OPEN
statement is not required to access preconnected files.

The OPEN statement provides a means to access existing files
10 that are not preconnected. An OPEN statement may be used in

either of two ways: with a file name (open by name) and
without a file name (open by unit). A unit is given in
either case. Open by name connects the specified file to
the specified unit. Open by unit connects a processor-

15 determined default file to the specified unit. <The default
file may or may not have a name.)

Therefore, there are three ways a file may become connected
and hence processed: preconnection, open by name, and open

ZO by unit. Once a file is connected, there is no means in
standard FORTRAN to determine how it became connected.

In subset FORTRAN, sequential access may be performed only
on preconnected files, and direct access only on files that

ZS are opened by unit.

An OPEN statement may also be used to create a new file. In
fact, any of the foregoing three connection methods may be
performed on a file that does not exist. When a unit is

30 preconnected, writing the first record creates the file.
With the other two methods, execution of the OPEN statement
creates the file.

When a unit becomes connected to a file, either by execution
35 of an OPEN statement or by preconnection, the fol lowing

connection properties may be established:

40

45

50

(1) An access method, which is sequential or direct, is
established for the connection.

CZ) A form, which is formatted or unformatted, is
established for a connection to a file that exists or
is created by the connection. For a connection that
results from execution of an OPEN statement, a
default form <which depends on the access method, as
described in 12.10.1> is established if no form is
specified. For a preconnected file that exists, a
form is established by preconnection. For a
preconnected file that does not exist, a form may be
established, or the establishment of a form may be
delayed until the file is created (for example, by
execution of a formatted or unformatted WRITE
statement).

55 (3) A record length may be established. If the atcess
method is direct, the connection e~tablishes a record

Page 8-8 Ful I Language

APPENDIX B: SECTION NOTES ANSI X3.9-1978 FORTRAN 77

length, which specifies the length of each record of
the file. A connection for sequential access does
not have this property.

(4) A blank significance property, which is ZERO or NULL, 5
is established for a connection for which the form is
formatted. This property has no effect on output.
For a connection that results from execution of an
OPEN statement, the blank significance property is
NULL by default if no blank significance property is 10
specified. For a preconnected file, the property is
established by preconnection.

The blank significance property of the connection is
effective at the beginning of each formatted input 15
statement. During execution of the statement, any BN
or BZ edit descriptors encountered may temporarily
change the effect of embedded and trailing blanks.

A processor has wide latitude in adapting these concepts and 20
actions to its own cataloging and job control conventions.
Some. processors may require job control action to specify
the set of fi I es that exist or that wi 11 be created by an
executable program. Some processors may require no job
control action prior to execution. This standard enables 2~
processors to perform a dynamic open, close, and file
creation, but it does not require such capabi Ii ti es of the
processor.

The meaning of open in contexts other than FORTRAN may 30
include such things as mounting a tape, console messages,
spooling, label checking, security checking, etc. These
actions may occur upon job control action external to
FORTRAN, upon execution of an OPEN statement, or upon
execution of the first read or write of the file. The OPEN 35
statement describes properties of the connection to the file
and may or may not cause physical activities to take place.
It is a place for an implementation to define properties of
a file beyond those required in standard FORTRAN.

Similarly, the actions of dismounting a tape, protection,
etc. of a "close" may be implicit at the end of a run. The
CLOSE statement may or may not cause such actions to occur.
This is another place to extend file properties beyond those

40

of standard FORTRAN. Not~. however, that the execution of a 45
CLOSE statement on unit 10 fol lowed by an OPEN statement on
the same unjt to the same file or to a different fi.le is a
permissible sequence of events. The processor may not deny
this sequence solely because the implementation chooses to
do the physical act of closing the file at the termination 50
of execution of the program.

This standard does not address problems of security,
protection, locking, and many other concepts that may be
part of the concept of "right of access ... Such concepts are 55
considered to be in the province of an operating system.

Fu I I Language Page B-9

ANSI X3.9-1978 FORTRAN 77 APPENDIX B: SECTION NOTES

5

The OPEN and INQUIRE statements can be extended naturally to
consider these things.

Possible access methods for a f i I e are: sequential and
direct. The processor may implement t WO different types of
f i I es, each with i ts own access method. I t may a Is o
implement one type of f i I e w i th two different access
methods.

10 Direct access to files is of a simple and commonly avai I able
type, that is, fixed-length records. The key is a positive
integer.

Keyword forms of specifiers are used because there are many
15 specifiers and a positional notation is difficult to

remember. The keyword form sets a style for processor

20

ZS

extensions. The UNIT= and FMT= keywords are offered for
completeness, but their use is optional. Thus,
compatibility with ANSI X3.9-1966 is achieved.

Format specifications may be included in READ and WRITE
statements, as in:

READ C UNIT=10, FMT='CI3,A4,F10.Zl') K,ALPH,X

ANSI X3.9-1966 al lowed a standard-conforming program to
write an endfile record but did not allow the reading of an
endfile record. In this standard, the END= specifier allows
end-of-file detection and continuation of execution of the

30 program.

List-directed input/output al lows data editing according to
the type of the list item instead of by a format specifier.
It also al lows data to be free-field, that is, separated by

35 commas or blanks.

List-directed input/output is record oriented to or from a
formatted sequential file. Each read or write begins with a
new record. The form of list-directed data on a sequential

40 output file is not necessarily suitable for list-directed
input. However, there are no mandatory errors specified for
reading list-directed data previously written. The results
may not be guaranteed because of the syntax using
apostrophes for character data or the L*~ form of a repeated

45 constant. Al I other applications should work, and
attempting to read previously written list-directed output
is not prohibited in a standard-conforming program.

If no list items are specified in a list-directed
50 input/output statement, one input record is skipped or one

empty output record is written.

An example of a restriction on input/output statements
(12.12> is that an input statement may not specify that data

55 are to be read from a printer.

Page B-10 Fu I I Language

APPENDIX B: SECTION NOTES ANSI X3.9-1978 FORTRAN 77

813 Section 13 Notes

The term "edit descriptor" in this standard was "field
descriptor" in ANSI X3.9-1966.

If a character constant is used as a format identifier in an
input/output statement, care must be taken that the value of
the character constant is a valid format specification. In
particular, if the format specification contains an

5

apostrophe edit descriptor, two apostrophes must be written 10
to delimit the apostrophe edit descriptor and four
apostrophes must be written for each apostrophe that occurs
within the apost~ophe edit descriptor. For example, the
text:

2 ISN'T 3

may be written by various combinations of output statements
and format specifications:

WRITEC6,100> 2,3
100 FORMAT<1X,I1,1X,'ISN''T',1X,I1>

WRITEC6,'C1X,l1,1X, I I ISN'' I 'T' I ,1X,l1)') 2,3

WRITEC6,200> 2,3
200 FORMATC1X,I1,1X,5HISN'T,1X,I1>

WRITEC6, 'C1X,I1,1X,5HISN' 'T,1X,l1)') 2,3

WRITEC6, I <A> I) I 2 ISN"T 3'

WRITEC6,'C1X,I1,A,l1)') 2, I ISN"T I 3

1 5

20

25

30

Note that two consecutive apostrophes in an H edit 35
descriptor within a character constant are counted as only
one Hollerith character.

The T edit descriptor includes the carriage control
character in lines that are to be printed. T1 specifies the 40
carriage control character, and T2 specifies the first
character that is printed.

The length of a record is not always specified exactly and
may be processor dependent. 45

The number of records read by a formatted input statement
can be determined f ram the fo I I owing ru I e: A record is read
at the beginning of the format scan <even if the input list
is empty), at each slash edit descriptor encountered in the 50
format, and when a format rescan occurs at the end of the
format.

The number of records written by
statement can be determined from the
record is written when a slash

a formatted output
fol lowing rule: A
edit descriptor is

55

Ful I language Page B-11

ANSI X3.9-1978 FORTRAN 77 APPENDIX B: SECTION IOTES

encountered in the format, when a format rescan occurs at
the end of the format, and at completion of execution of the
output statement (even if the output list is empty). Thus,
the occurrence of n successive slashes between two other

5 edit descriptors causes n - 1 blank lines if the records are
printed. The occurrence of n slashes at the beginning or
end of a complete format specification causes n blank lines
if the records are printed. However, a complete format
specification containing n slashes <n 2 0) and no other edit

10 descriptors causes n + 1 blank lines if the records are
printed. For example, the statements

1-5

PRINT 3
3 FORMAT</)

will write two records that cause two blank lines if the
records are printed.

The fol lowing examples i I lustrate list-directed input. A
20 blank character is represented by Q.

25

30

Example 1:

Prbgram: J=3
READ *I I
READ *,J

Sequential input file:

record 1: Q1Q,4bbbbb
record 2: ,2bbbbbbbb

Result: 1=1, J=3

35 Explanation: The second READ statement reads the second

40

45

50

record. The initial comma in the record designates a null
value; therefore, J is not redefined.

Example 2:

Program: CHARACTER A*8, B*1
READ * I A, B

Sequential input f i I e :

record 1 : 'bbbbbbbb'
record 2: 'OXY'Q'Z'

Result: A='bbbbbbbb' I B='O'

Explanation: The end of a record cannot occur between two
apostrophes representing an embedded apostrophe in a
character constant; therefore, A is set to the character
constant 'bbbbbbbb'. The end of a record acts as a blank,

55 which in this case is a value separator because it occurs
between two constants.

Page B-12 Fu I I Language

APPENDIX B: SECTION NOTES ANSI X3.9-1978 FORTRAN 77

814 Section 14 Notes

The name of a main program has no explicit use within the
FORTRAN language. It is avai I able for documentation and for
possible use within a computer environment. 5

815 Section 15 Notes

A FUN CT ION
function,
specifies
SUBROUTINE
each ENTRY
additional

statement specifies the name of an external
and each ENTRY statement in a function subprogram
an additional external function name. A
statement specifies the name of a subroutine, and
statement in a subroutine subprogram specifies an
subroutine name.

The intrinsic function names IFIX, IDINT, FLOAT, and SNGL
have been retained to support programs that conform to ANSI
X3.9-1966. However, future use of these intrinsic function
names is not recommended.

For the specific functions that define the maximum and
minimum values with a function type different from the
argument type <AMAXO, MAX1, AMINO, and MIN1), it is
recommended that an expression containing the generic name

10

1 5

20

preceded by a type conversion function be used, for example, 25
REAL<MAXC.§. 1, .§. 2 , •••))for AMAX0<.§.1, .§.2 , •••),so that these
specific function names may be deleted in a future revision
of this standard.

This standard provides that a standard-conforming processor 30
may supply intrinsic functions in addition to those defined
in Table 5 <15.10). Because of this, care must be taken
when a program is used on more than one processor because a
function name not in Table 5 may be classified as an
external function name on one processor and as an intrinsic 35
function name on another processor in the absence of a
declaration for that name in an ~EXTERNAL or INTRINSIC
statement.

To guard against this possibility, it is suggested that any 40
external functions referenced in a program should appear in
an EXTERNAL statement in every program unit in which a
reference to that function appears. If a program unit
references a processor-supplied intrinsic function that does
not appear in Table 5, the name of the function should 45
appear in an INTRINSIC statement in the program unit.

so

55

Fu I I Language Page B-13

ANSI X3.9-1978 FORTRAN 77 APPENDIX B: SECTION NOTES

5

1 0

1 5

zo

ZS

30

35

40

The distinction between external functions (~ser defined)
and intrinsic functions (processor defined) may be clarified
by the following table:

Different Processor Dennitions
<Table 5 extended)

Processor 1 Processor z Processor 3

Different Intrinsic Intrinsic
User Integer Complex (none)
Specifications FROG FROG

Y=FROGCA> Intrinsic Intrinsic External
Integer Complex Real
FROG FROG FROG

INTRINSIC FROG Intrinsic Intrinsic
Y=FROGCA> Integer Complex Undefined

FROG FROG

INTEGER FROG Intrinsic External
Y=FROGCA> Integer Undefined Integer

FROG FROG

INTRINSIC FROG Intrinsic
INTEGER FROG Integer Undefined Undefined
Y=FROGCA) FROG

EXTERNAL FROG External External External
Y=FROGCA) Real Real Real

FROG FROG FROG

EXTERNAL FROG External External External
INTEGER FROG Integer Integer Integer
Y=FROGCA> FROG FROG FROG

If a generic name is the same as the specific name of an
intrinsic function for a specified type of argument, a
reference to the function with an argument of that type may

45 be considered to be either a specific or generic function
reference.

The use. of the concatenation operator with operands of
nonconstant length has been restricted to the assignment

50 statement so that a processor need not implement dynamic
storage allocation.

When a character array is an actual argument, the array is
considered to be one string of characters and there need not

55 be correspondence between the actual array elements and the

Page 8-14 Fu I I Language

APPENDIX B: SECTION NOTES ANSI X3.9-1978 FORTRAN 77

dummy array elements. Only subset FORTRAN requires such
correspondence.

The intrinsic functions !CHAR and CHAR provide a means of
converting between a character and an integer, based on the 5
position of the character in the processor collating
sequence. The first character in the collating sequence
corresponds to position 0 and the last to position n - 1,
wher~ n is the number of characters in the collating
sequence. 10

Many processors provide a collating sequence that is the
same as the ordering of the internal representation of the
character (where the internal representation may be regarded
as either a representation of a character or of some 15
integer). For example, for a seven-bit character, the
internal representation of the first character is 1 0000000 1

binary CO decimal) and the last character is 1 1111111 1

binary <127 decimal). For such a processor, !CHAR returns
the value of an internal character representation, 20
considered as an integer. CHAR takes an appropriate smal I
integer and returns the character- having the same internal
representation.

816 Section 16 Notes

The name of a block data subprogram has no explicit use
within the FORTRAN language. It is avai I able for
documentation and for possible use within a computer
environment.

817 Section 17 Notes

The size of an array is the number of elements <5.2.3), but

25

30

the storage sequence of the array also has a size, which may 35
be different from the number of elements <17.1.1).

The definition of character entities occurs on a character­
by-character basis. The use of substrings or partially
associated entities permits individual characters or groups 40
of characters within an entity to become defined or
undefined.

818 Section 18 Notes

There is no explicit means for declaring an entity to be a
variable. An entity becomes a variable if it is used in a
manner that does not cause it to be exclusively something
else. Note that the name of a variable may also be the name

45

of a common block, except when the name of the variable is 50
also the name of a function.

55

Ful I Language Page 8-15

ANSI X3.9-1978 FORTRAN 77

APPENDIX C: HOLLERITH

The character data type was added to provide a character
data processing capability that is superior to the Hollerith
data capability that existed in ANSI X3.9-1966. 5

The Hollerith data type has been deleted. For processors
that extend the standard by al lowing Hollerith data, the
fol lowing rules for programs are recommended:

C1 Hollerith Data Type

Hollerith is a data type; however, a symbolic name must not
be of type Hollerith. Hol lerlth data, other than constants,

10

are identified under the guise of a name of type integer, 15
real, or logical. They must not be identified under the
guise of type character. No recommendation is made
regarding Hollerith under the guise of double precision or
complex.

A Hollerith datum is a string of characters. The string may
consist of any characters capable of representation in the
processor. The blank character is significant in a
Hollerith datum. Hollerith data may have an internal

20

representation that is different from that of other data 25
types.

An entity of type integer, real, or logical may be defined
with a Hollerith value by means of a DATA statement CC4> or
READ statement CC6>. When an entity is defined with a 30
Hollerith value, its totally associated entities are also
defined with that Hollerith value. When an entity of type
integer, real, or logical is defined with a Hollerith value,
the entity and its associates become undefined for use as an
integer, real, or logical datum. 35

CZ Hollerith Constant

The form of a Hollerith constant is a nonzero, unsigned,
integer constant n fol lowed by the letter H, fol lowed by a 40
string of exactly n contiguous characters. The string may
consist of any characters capable of representation in the
processor. The string of n characters is the Ho 11 eri th
datum.

In a Hollerith constant, blanks are significant only in the
n characters fol lowing the letter H.

C3 Restrictions on Hollerith Constants

A Hollerith constant may appear only in a DATA statement and
in the argument list of a CALL s~atement.

45

50

55

Fu I I Language Page C-1

ANSI X3.9-1978 FORTRAN 77 APPENDIX C: HOLLERITH

5

C4 Ho 11 eri th Constant in a DATA Statement

An integer, real, or logical entity may be initially defined
with a Hollerith datum by a DATA statement.

A Hollerith constant may appear in the list clist, and the
corresponding entity in the list nlist may be of type
integer, real, or logical.

10 For an entity of type integer, real, or logical, the number
of characters n in the corresponding Hollerith constant must
be less than or equal tog, where Q is the maximum number of
characters that can be stored in a single numeric storage
unit at one time. If n is less than g, the entity is

15 initially defined with then Hollerith characters extended
on the right with Q - n blank characters.

Note that each Hollerith constant initially defines exactly
one variable or array element. Also note that g is

20 processor dependent.

CS Hollerith Format Specification

A format specification may be an array name of type integer,
25 real, or logical.

30

The leftmost characters of the specified entity must contain
Hollerith data that constitute a format specification when
the statement is executed.

The format specification must be of the form described in
13.2. It must begin with a left parenthesis and must end
with a right parenthesis. Data may fol low the right
parenthesis that ends the format specification and have no

35 effect. Blank characters may precede the format
specification.

40

A Hollerith format specification must not contain an
apostrophe edit descriptor or an H edit descriptor.

C6 A Editing of Hollerith Data

The AH edit descriptor may be used with Hal lerith data when
the rnput/output list item is of type integer, real, or

45 logical. On input, the input list item will become defined
with Hollerith data. On output, the list item must be
defined with Hollerith data.

Editing is as d~scribed for AH editing of character data
50 except that .l.fill is the maximum number of characters that can

be stored in a single numeric storage unit.

55

Page C-2 Fu I I Language

APPENDIX C: HOLLERITH ANSI X3.9-1~78 FORTRAN 77

C7 Hollerith Constant in a Subroutine Reference

An actual argument in a subroutine reference may be a
Hal lerith constant. The corresponding dummy argument must
be of type integer, real, or logical. Note that this is an 5
exception to the rule that requires that the type bf the
actual and dummy argument must agree.

1 0

1 5

20

25

30

35

40

45

50

55

Fu I I Language Page C-3

ANSI X3.9-1978 FORTRAN 77

APPENDIX D: SUBSET OVERVIEW

This Appendix provides an overview of the two levels of
FORTRAN specified in this standard, including the general
criteria used for including or excluding a feature at a 5
given level, and a section-by-section summary of the
principal differences between the ful I language and the
subset.

01 Background

The ful I FORTRAN language described in this document is a
superset of the FORTRAN language described in ANSI X3.9-
1966, with the exceptions previously noted. In formulating

1 0

a subset philosophy, the following existing FORTRAN 15
standards were considered:

<1> American National Standard FORTRAN, ANSI X3.9-1966

(2) American National Standard Basic FORTRAN, ANSI X3.10- 20
1966

<3> International Standard Programming Language FORTRAN,
ISO R1539

The ISO R1539 document describes three levels: basic,
intermediate, and ful I. The ISO R1539 basic level
corresponds closely with ANSI X3.10-1966: the ISO R1539 ful I
level corresponds closely with ANSI X3.9-1966: and the ISO

25

R1539 intermediate level is in between. 30

It was thought that the ISO R1539 basic level and the ANSI
X3.10-1966 had not been sufficiently used, even on smal I
computer systems, to warrant a subset corresponding to that
level. 35

The ISO R1539 intermediate level has been sufficiently used
to warrant a subset of similar capability.

However, it was also thought that some of the capabi Ii ties 40
in the fu 11 I anguage described here, but not part of any
current standard or recommendation, are so important for the
general use of the lang~age that they should be present in
the subset, at least to some degree.

Furthermore, it was thought that the specification of ANSI
X3.10-1966 in such a manner that it is not a subset of ANSI
X3.9-1966 was inconsistent with the primary goal of
promoting program interchange. Consequently, careful

45

attention has been given to ensuring that a program that 50
conforms to the subset of this standard wi I I also conform to
the full language.

55

Fu I I Language Page D-1

ANSI X3.9-1978 FORTRAN 77 APPENDIX D: SUBSET OVERVIEW

5

10

1 5

20

25

30

DZ Criteria

The criteria in DZ.1 and DZ.Z were adopted for the two
levels of FORTRAN within this standard.

DZ.1 Ful I Language. The most notable new elements of the
ful I language that have been included at both levels are:
character data type, mixed-type arithmetic, INTRINSIC
statement, SAVE statement, and direct access 1/0 statements.

DZ.Z Subset Language

(1) The subset must be a proper subset of the ful I
language.

<Z> The subset must be based on ISO R1539 intermediate
level FORTRAN.

(3) The subset must include, at a fundamental level,
those features of the ful I language that
significantly increase the scope of the language.

(4) The elements of the subset must make a minimum demand
on storage requirements, particularly during
execution.

(5) The subset must require a minimum of effort
development and maintenance of a viable
proce-ssor.

03 Summary of Subset Differences

for the
FORTRAN

This section summarizes the differences between the ful I
language and the subset in this standard. It is organized

35 primarily on the basis of the standard itself. The
differences are discussed under the section where each
language element is primarily presented. Of course, a
difference in one section may cause changes in other
sections. Such changes are not noted here.

40
An exception to the above practice is the s~bsetting of the
character data type. The description of character data type
and its usage is so distributed throughout the standard that
a more meaningful summary is produced by collecting the

45 relevant items into a single presentation.

50

03.1 Section 1: Introduction. The subset is the same as
the full language <see also D4>.

D3.Z Section Z: FORTRAN Terms and Concepts. The subset is
the same as the fu 11 I anguage.

03.3 Section 3: Characters, Lines, and Execution Sequence.
55 The subset is the same as the full language except that:

Page D-2 Fu I I Language

APPENDIX D: SUBSET OVERVIEW ANSI X3.9-1978 FORTRAN 77

(1) The character
symbo I ($) or

set does not
the colon (:).

include the currency

<2> Statements may have up to nine continuation lines.

(3) DATA statements must follow all specification
statements and precede al I statement function
statements and executabl~ statements.

5

(4) A comment line must not precede a continuation line. 10

D3.4 Section 4: Data Types and Constants. The subset is
the same as the ful I language except that double precision
and complex data types are not included. Note that each
entity of type character must have a constant length. 15

03.5 Section 5: Arrays and Substrings. The subset is the
same as the fu 11 I anguage except that:

(1) An array declarator must not have an explicit lower 20
bound.

<2> A dimension declarator must be either an integer
constant or an integer variable. <This excludes
integer expressions, but al lows a variable in 25
common.)

(3) An array may have up to three dimensions.

(4) A subscript expression may be
conta1n1ng only integer variables
<This excludes function and
references.)

an expression
and constants.

array element

30

D3.6 Section 6: Expreisions. The subset is the same as the 35
ful I language except that a constant expression is al lowed
only where a general expression is al lowed, the logical
operators .EQV. and .NEQV. are not included, and there are
restrictions on character expressions as described in D3.19.

D3.7 Section 7: Executable and Nonexecutable Statement
Classification. The classification of a statement

in the subset is the same as in the ful I language. However,
the subset does not include PRINT, CLOSE, INQUIRE, ENTRY,

40

BLOCK DATA, PARAMETER, DOUBLE PRECISION, and COMPLEX 45
statements.

D3.8 Section 8: Specification Statements.
the same as the fu 11 I anguage except that:

The subset is

(1) The PARAMETER statement is not included.

<2> Only the names of common blocks (enclosed in slashes)
may appear in the list of a SAVE statement. The form

50

of the SAVE statement without a list is not included. 55

Fu I I Language Page D-3

ANSI X3.9-1978 FORTRAN 77 APPENDIX D: SUBSET OVERVIEW

5

1 0

1 5

D3.9 Section 9: DATA Statement. The subset is the same as
the fu 11 I anguage except that:

(1) Only names of variables, arrays, and array elements
are allowed in the list nlist. Implied-DO lists are
not included.

(2) Values in the list clist must agree in type with
corresponding item in the list nlist.
conversion is not included.

the
Type

Note that DATA statements must fo 11 ow a 11 speci fl ca ti on
statements and precede al I statement function statements and
executable statements.

D3.10 Section 10: Assignment Statements. The subset is the
same as the ful I language except for restrictions on
character type presented in D3.19.

20 D3.11 Section 11: Control Statements. The subset is the

25

30

35

40

45

50

55

same as the fu 11 I anguage except that:

(1) A DO-variable must be
parameters must be
variables.

an integer variable
integer constants or

and DO
integer

(2) In a computed GOTO statement, the index expression
must be an integer variable.

D3.12 Section 12: Input/Output Statements.
the same as the ful I language except that:

(1) The CLOSE statement is not included.

(2) The INQUIRE statement is not included.

The subset is

(3) List-directed READ and WRITE statements are not
included.

(4) An internal file identifier must be a character
variable or character array element.

(5) Formatted direct access files and statements are not
included.

(6) External unit identifiers must be an integer constant
or integer variable.

(7) A format identifier must be the label of a FORMAT
statement, an integer variable that has been assigned
the label of a FORMAT statement, or a character
constant.

(8) The UN IT= and FMT= forms of uni t and format
specifiers are not included.

Page D-4 Fu I I Language

APPENDIX D: SUBSET OVERVIEW ANSI X3.9-1978 FORTRAN 77

(9) The ERR= specifier is not included.

<10) The forms READ f [,iolist] and PRINT f [,iolist] are
not included.

<11) In input/output lists, the implied-DO parameters must

(1 2)

be integer constants and variables. Implied-DO-
variables must be of type integer.

Variable names, array element names, and array names
may appear as input/output list items;
character substring references, and
expressions are not included.

constants,
general

5

1 0

<13) A limited form of OPEN statement is included with the 15
following olist specifiers required, and no others
are allowed:

(a) An integer constant unit identifier

(b) The keyword specifier ACCESS= 'DIRECT'

(c) The record length specifier RECL= Ll, where Ll is
an integer constant

The OPEN statement is included in
the extent needed to connect
access unformatted file. Once
connected to a direct access
reconnected to any other file.

<14) Named files are not included.

the subset only to
a unit to a direct

a unit has been
file, it may not be

03.13 Section 13: Format Specification. The subset is the

20

25

30

same as the fu 11 I anguage except that: 35

(1) The fol lowing edit descriptors are not included:

lJ!.fil T£ s
D!!.Q Tl£ SP
G.!!. Q TR£ SS
G.!!.QE~

(2) At most three levels of parentheses are permitted.

(3) The format scan terminator (colon) is not included.

03.14 Section 14: Main Program. The subset is the same as
the ful I language.

03.15 Section 15: Functions and Subroutines. The subset is
the same as the fu 11 I anguage except that the fo 11 owing are
not included:

(1) The ENTRY statement

40

45

50

55

Fu I I Language Page D-5

ANSI X3.9-1978 FORTRAN 77 APPENDIX D: SUBSET OVERVIEW

(2) Alternate return specifier

(3) Generic function references

5 (4) Intrinsic functions involving arguments or results of
type double precision or complex

Other exclusions are presented in D3.19, most notably an
asterisk character length specifier, character functions,

10 the intrinsic functions LEN, CHAR, and INDEX, and partial
association.

1 5

03.16 Section 16: Block Data Suborogram.
subprograms are not included in the subset.

Block data

D3.17 Section 17: Association and Definition. The subset
is the same as the ful I language except that the concept of
partial association does not apply to the subset.

20 D3.18 Section 18: Scope and Classes of Symbolic Names. The
subset is the same as the ful I language.

D3.19 Sections 1 to 18: Character Type. The primary intent
of the the subset character facility is to provide a minimal

25 character capability that is functionally comparable to what
is possible with most extensions of Hollerith data.

30

35

40

45

50

55

D3.19.1 Character Features in the Subset. The subset
includes the fol lowing character data type features:

(1) Character constants, variables, and arrays, but not
character functions

<2> CHARACTER and IMPLICIT
character ent1t1es and
specification must be an
asterisk)

statements for
their lengths;

integer constant

declaring
a I ength

<not an

<3> Character assignment statements in which the right­
hand side is a variable, array element, or constant

(4) Character
operands

relational expressions in which the
are variables, array elements, or constants

(5) Initialization of character variables, arrays, and
array elements in a DATA statement

(6) Character variables, arrays, and array elements in
output lists

(7) Character variables, arrays, array elements, and
constants as arguments in subprogram references

(8) Character constants (but not variables or array
elements) as a format specification

Page D-6 Fu I I Language .

APPENDIX D: SUBSET OVERVIEW ANSI X3.9-1978 FORTRAN 77

(9) Total, but not partial, association of character
ent1t1es (that is, association of character entities
only of the same length by means of COMMON and
EQUIVALENCE stat~ments or by argument association)

<10) Input/output of character data, both formatted <using
character edit descriptors) and unformatted

D3.19.2 Character Features Not in the Subset. The subset

5

does not include the fol lowing character data type features: 10

<1> Substring reference and definition

<2> Concatenation operator

<3> Use of character variables or array elements as
format specifications

(4) Partial association of character entities

<5> Character functions

<6> The intrinsic functions LEN, CHAR, and INDEX

<7> Character length specification consisting of
asterisk or any expression other than a constant

D4 Subset Conformance

an

1 5

20

25

Conform~nce at the subset level of this standard involves 30
reQuirements that relate to the ful I language for both
processors and programs.

D4.1 Subset Processor Conformance. A standard-conforming
subset processor may include an extension to the subset 35
language that has an interpretation in the ful I language
only if the processor provides the interpretation described
for the ful t language. That is, a standard-conforming
subset processor may not provide an extension that conflicts
with the ful I language. Extensions that do not have f6rms 40
and interpretations in the ful I language are not precl~ded
by this reQuirement.

As an example, a standard-conforming subset processor may
provide a double prec1s1on data type provided that the 45
reQuirements for double precision are fulfi I led.

D4.2 Subset Program Conformance. A program that confdrms
to the subset level of this standard must have the same
interpretation at both the subset level and the ful I 50
language level. The principal implication of this
reQuirem~nt concerns the use of function names that are
identified as specific or generic intrinsic function names
a t t h e f u I I I a n g u a g e I e v e I b u t w h i c h a r e n o t a v a i I a b I ,e a t
the subset level. Examples of such names are DSIN, MIN, and 55
CABS.

Ful I language Page D-7

ANSI X3.9-1978 FORTRAN 77 APPENDIX D: SUBSET OVERVIEW

A subset-conforming program may not use such names as
intrinsic functions because these names are not defined as
intrinsic functions in the subset language. Moreover, a
subset-conforming program may not use such names as external

5 function names unless such names are identified as external
function names by appearing in an EXTERNAL statement. If
such names are not explicitly declared as external, the
names would be classified as external by a subset processor
and as intrinsic by a ful I language processor. Note that

10 the burden of avoiding this situation rests on the program.
A subset-conforming processor is not required to recognize
that a ful I language intrinsic name is being used without
being declared as external. In effect, the ful I set of
names described in Table 5 may be considered as reserved

15 intrinsic function names in the subset even though only a
subset of those names is avai I able for use.

20

25

30

35

40

45

50

55

Page D-8 Ful I Language

ANSI X3.9-1978 FORTRAN 77

5

10

1 5

zo

25

30

35

40

45

50

55

APPENDIX E: FORTRAN STATEMENTS

ASSIGN s TO

BACKSPACE u

CALL sub [([a [,al ...]))

CHARACTER [tlen[,JJ nam [,namJ. ..

Descriptive Heading

Statement Label
Assignment Statement

Fi le Positioning
Statement

Subroutine Reference:
CALL Statement

Character Type­
Statement

COMMON [/[cbJ/Jnlist[[,J/[cbJ/nlistJ ... COMMON Statement

CONTINUE CONTINUE Statement

DATA nlist/clist/ [[,Jnlist/clist/J ... DATA Statement

DIMENSION aCd> [,aCd>J ... DIMENSION Statement

DO Statement

ELSE ELSE Statement

ELSE IF Ce) THEN ELSE IF Statement

END END Statement

END IF END IF Statement

ENDFILE u File Positioning
Statement

EQUIVALENCE Cnlist) [,Cnlist)J ... EQUIVALENCE Statement

EXTERNAL proc [,proc] ... EXTERNAL Statement

FORMAT fs FORMAT Statement

Page E-1s Subset Language

ANSI X3.9-1978 FORTRAN 77

APPENDIX E: FORTRAN STATEMENTS

ASSIGN s TO

BACKSPACE u
BACKSPACE Calist>

BLOCK DATA [sub]

CALL sub [([a [,a] ...])]

CHARACTER [tlen[,]] nam [,namJ. ..

CLOSE <cl list>

Descriptive Heading

Statement Label
Assignment Statement

File Positioning
Statements

BLOCK DATA Statement

Subroutine Reference:
CALL Statement

Character Type­
Statement

CLOSE Statement

COMMON [/[cbJ/Jnlist[[,J/[cbJ/nlistJ ... COMMON Statement

COMPLEX v [,vJ ...

CONTINUE

Complex Type­
Statement

CONTINUE Statement

DATA nlist/clist/ [[,Jnlist/clist/J. .. DATA Statement

DIMENSION a<d> [,a<d>J ...

DOUBLE PRECISION v [,vJ ...

ELSE

ELSE IF Ce> THEN

END

END IF

ENDFILE u
ENDFILE Calist>

ENTRY en [([d [,dJ ... J)J

EQUIVALENCE Cnlist> [,Cnlist>J ...

EXTERNAL proc [,procJ ...

FORMAT f s

Ful I Language

DIMENSION Statement

DO Statement

Double Precision
Type-Statement

ELSE Statement

ELSE IF Statement

END Statement

END IF Statement

File Positioning
gtatements

ENTRY Statement

EQUIVALENCE Statement

EXTERNAL Statement

FORMAT Statement

5

10

1 5

zo

25

30

35

40

45

50

55

Page E-1

ANSI X3.9-1978 FORTRAN 77 APPENDIX E: FORTRAN STATEMENTS

5

10

1 5

20

25

30

35

40

45

50

55

fun ([d [,dJ. .. J) = e

[typJ FUNCTION fun ([d [,dJ ... J)

GO TO i [[,J(s [,sJ ...)J

GO TO s

GO TO (5 [,sJ. ..)[,J

IF < e) 5 t

IF < e) 5 I I 5 2 I 53

IF (e) THEN

IMPLICIT typ (a [,a]. ..)
[I t y p (a [,a]. ..)]. ..

INTEGER v [Iv]. • •

INTRINSIC fun [,fun]. ..

LOGICAL v [Iv]. • •

OPEN (olist)

PAUSE [nJ

PROGRAM pgm

READ <ci list) [iolistJ

Page E-2s

Descriotive Heading

Statement Function
Statement

FUNCTION Statement

Assigned GO TO
Statement

Unconditional GO TO
Statement

Computed GO TO
Statement

Logical IF Statement

Arithmetic IF
Statement

Block IF Statement

IMPLICIT Statement

Integer Type-
Statement

INTRINSIC Statement

Logical Type-
Statement

OPEN Statement

PAUSE Statement

PROGRAM Statement

Data Transfer Input
Statement

Subset Language

APPENDIX E: FORTRAN STATEMENTS

fun C[d [,d] ... J) = e

[typJ FUNCTION fun <Cd C,dJ ... J>

GO TO i [[I] (s [Is] ...)]

GO TO s

GO TO (s [,sJ. ..)[,]

IF (e) st

IF < e) s I I s 2 I SJ

IF <e> THEN

IMPLICIT typ <a [,aL .. >
[It yp (a [,aL .. >L ..

INQUIRE (if list)

INQUIRE <iulist>

INTEGER v [,vJ ...

I~TRINSIC fun [,funJ ...

LOGICAL v [,vJ ...

OPEN <olist>

PARAMETER Cp=e C,p=eJ ... >

PAUSE CnJ

PRINT f [,iolistJ

PROGRAM pgm

READ <ci list) [iolist]

READ f [,iolistJ

Ful I Language

ANSI X3.9-1978 FORTRAN 77

Descriptive Heading

Statement Function
Statement

FUNCTION Statement

Assigned GO TO
Statement

Unconditional GO TO
Statement

Computed GO TO
Statement

Logi ca I IF Statement

Arithmetic IF
Statement

Block IF Statement

IMPLICIT Statement

INQUIRE by File
Statement

INQUIRE by Unit
Statement

Integer Type­
Statement

INTRINSIC Statement

Logical Type­
Statement

OPEN Statement

PARAMETER Statement

PAUSE Statement

Data Transfer Output
Statement

PROGRAM Statement

Data Transfer Input
Statement

Data Transfer Input
Statement

5

10

1 5

20

25

30

35

40

45

50

55

Page E-2

ANSI X3.9-1978 FORTRAN 77

5

1 0

1 5

20

25

30

35

40

45

50

55

REAL v [,vl. ..

RETURN

REWIND u

SAVE a [,aJ. ..

STOP EnJ

SUBROUTINE sub E<Ed E,dJ ... J)J

v = e

v = e

v = e

WRITE <ci list) EiolistJ

Page E-3s

APPENDIX E: FORTRAN STATEMENTS

Descriotive Heading

Real Type-Statement

RETURN Statement

File Positioning
Statement

SAVE Statement

STOP Statement

Subroutine Subprogram
and SUBROUTINE
Statement

Arithmetic Assignment
Statement

Logical Assignment
Statement

Character Assignment
Statement

Data T~ansfer Output
Statement

Subset Language

APPENDIX E: FORTRAN STATEMENTS

REAL v [;vl ...

RETURN [el

REWIND u
REWIND <alist)

SAVE [a [,al. .. l

STOP [nl

SUBROUTINE sub [([d [,dl ... l)l

v = e

v = e

v = e

WRITE < c i I i st) [i o I i st l

Fu I I Language

ANSI X3.9-1978 FORTRAN 77

Descriptive Heading

Real Type-Statement

RETURN Statement

Fi le Positioning
Statements

SAVE Statement

STOP Statement

Subroutine Subprogram
and SUBROUTINE
Statement

Arithmetic Assignment
Statement

Logical Assignment
Statement

Character Assignment
Statement

Data Transfer Output
Statement

5

1 0

1 5

zo

ZS

30

35

40

45

50

55

Page E-3

ANSI X3.9-1978 FORTRAN 77

APPENDIX F: SYNTAX CHARTS

The charts in this Appendix describe the syntax of the FORTRAN
language as specified in this standard.

The charts have been designed for human readability, not as a
basis for parsing. For example, the description of expressions
does not reflect the precedence of operators. Certain syntactic
features are not represented in the charts. These inc~ude:

<1> Use of blanks.

<2> The manner of writing statements on initial
continuation lines.

(3) Comment lines.

lines and

(4) Context-dependent features, such as data type
requirements, uniqueness and completeness of labels
used, actual and dummy argument matching, requirements
for specification statements, restrictions on the use of
statements in a particular context, etc. Some
restrictions of this kind are given in footnotes.

If there is a discrepancy between the syntax charts of this
Appendix and the language as spetified in the sta~dard, the
language syntax is that specified by the standard.

F1 Chart Conventions

In the charts, sequences of lowercase letters and
underscore characters) represent syntactic
Uppercase letters and special characters must appear as

embedded
entities.

written.

In general, names of syntactic items are identical to those used
in the standard. A few names have been shortened (for example,
"statement label" to "label").

The charts are in the form of a "rai I road track" <hence the term
"railroad normal form"). Alternative paths are specified by
"switches" in the path. A number n in a half-circle indicates
that the path may be traversed at most .n. times. A number .n. in a
circle indicates that the path must be traversed exactly .n. times.

For example, a symbolic name takes the form of one to six letters
or digits, the first of which must be a letter. The syntax chart
for a symbolic name is:

symbolic_name:

letter

digit

Fu I I Language Page F-1

ANSI X3.9-1978 FORTRAN 77 APPENDIX F: SYNTAX CHARTS

FZ Charts

2

3

4

5

executable_program:

main_program

function_subprogram

subroutine_subprogram

block_data_subprogram

(1) An executable program must contain one and only one main
program.

An executable program may contain external procedures
specified by means other than FORTRAN.

main_program: program_statement

functibn_subprogram: function_statement

subroutine_subprogram: subroutine_statement

block_data_subprogram:~~~~~ block_data_statement

label format statement

entry_statement

parameter_statement

imp Ii ci t_statement

label format statement

entry_statement

parameter_statement

other_specification_statement

Page F-2 Fu I I language

APPENDIX F: SYNTAX CHARTS ANSI X3 .. 9-1978 FORTRAN 77

label f ormat_statement

entry_statement

data_statement

statement function_statement

label format_statement

entry_statement

data_statement

executable_statement

label

END

(2) A main program may not contain an ENTRY or RETURN
statement.

(5) A block data subprogram may contain only BLOCK
IMPLICIT, PARAMETER, DIMENSION, COMMON,
EQUIVALENCE, DATA, END, and type-statements.

6 other_specification~statement:

dimension_statement

eQuivalence_statement

common_statemen:

type_statement

external statement

intrinsic_statement

save_statement

Fut r Language

DATA,
SAVE,

Page F-3

ANSI X3.9-t978 FORTRAN 77 APPENDIX F: SYNTAX CHARTS

7 executable_statement:

assignment_st atement

goto_statemen t

ari thmeti c_J f statement

8

-
logical_if_st atement

block if stat ement

else_if state ment

else_statemen t

end_if_statem ent

do_statement

continue_stat ement

stop_statemen t

pause_stateme nt

read_statemen t

write_stateme nt

print_stateme nt

rewind_statem ent

backspace_sta tement

endfi le_state ment

open_statemen t

close_stateme nt

inquire_state ment

ca I l_statemen t

return_statement

<7> An END statement is also an executable statement and
must appear as the last statement of a program unit.

program_statement: PROGRAM program_name -.~-

Page F-4 Fu I I Language

APPENDIX F: SYNTAX CHARTS ANSI X3.9-1978 FORTRAN 77

9

10

11

12

13

entry_statement:

L--- function_entry

L____ subroutine_entry

function statement: -
f'-- INTEGER

r--- REAL

r--- DOUBLE PRECISION

f'-- COMPLEX

t-- LOGICAL

!'---- CHARACTER

c*

l

fen_specification

FUNCTION]

function_entry: -- ENTRY _____J_ function_name

~

variable name -

r--- array_name

'--- procedure_name

<11) The parentheses must appear in a FUNCTION statement.

subroutine_statement! -SUBROUTINE!

subroutine_entry: ENTRY ______l_ subroutine_name

i variable name -

t-- array_name

I'-- procedure_name

-t

Fu I I Language Page F-5

ANSI X3.9-1978 FORTRAN 77 APPENDIX F: SYNTAX CHARTS

14

1 5

16

block data statement:

L ;LOCK-DATA block_data_subprogram_name 1
1~------------

dimension statement:

L DIME~SION---.(- array_declarator)

array_declarator: array_name

0 dim_bound_expr :

J l dim_bou:d_expr 3
) -

(16) Only a dummy array declarator <5.1.2.2) may contain an
asterisk.

17 equivalence_statement: EQUIVALENCE

equiv_entity~--,(~

18 equiv entity:
~ -

variable_name

array_element_name

array_name

substring_name

equiv_entity~-).--

l

<18> A subscript or substring expression in an EQUIVALENCE
statement must be an integer constant expression.

Page F-6 Fu I I Language

APPENDIX F: SYNTAX CHARTS

19 common_statement: -- COMMON

I "T~_c_o_m_m_o_n ___ b_l_o_c_k __ n_am_e__,-y- I

20 type_statement:

INTEGER

REAL

DOUBLE PRECISION

COMPLEX -----•

,__LOGICAL

ANSI X3.9-1978 FORTRAN 77

variable_name

.arr ay_name

array_declarator

constant_name

variable_name

array_name

function_name

array_declarator

- CHARACTER --r--. * len_specification

Ful I Language

constant_name

variable_name

array_name

function_name

array_declarator--->-.-------------....

* len_specification

Page F-7

ANSI X3.9-1978 FORTRAN 77 APPENDIX F: SYNTAX CHARTS

21 implicit_statement: IMPLICIT--~

INTEGER

REAL

DOUBLE PRECISION

COMPLEX

LOGICAL

CHARACTER

* len_specification

L"'_r _C ___ ,et_"' 3_ >

----~=i-
22 len_specification:

(*) -1 nonzero_unsigned_int_constant

int_constant_expr

23 parameter statement:

t___ PARA~ETER ~ < --r-- constant_name 0 constant_expr T
--

) -

24 external statement:

L EXTE~NAL
f
~ procedure_name

~~~~~~b-l_o_c_k ___ d_a_ta_subprogram_name 

25 intrinsic statement: 

L_ INT;INSIC 
( function_name ) 

Page F-8 Fu I I Language 



APPENDIX F: SYNTAX CHARTS ANSI X3.9-1978 FORTRAN 77 

26 save statement: 

L SAVE l 
variable name -

~ 
t-- array_name 

'--- I common block name I - -

27 data statement: 

l D~TA 
variable_name 

array_element_name 

array_name 

substring_name 

data_implied_do_list 

I 
~ 

~ 
1--- nonzero _unsigned_int_constant 

l '--- constant name * ......, -

·constant 

l L_ constant name I -
J 

Fu I I Languag.e Page F-9 



ANSI X3.9-1978 FORTRAN 77 APPENDIX F: SYNTAX CHARTS 

28 data_implied_do_list: 

l ( array_element_name 

data_ i mp I i e d_d o_ I i s t 

variable_name = 

~ int_constant_expr T int_constant_expr 
._______,'1',____.....__,.) 

29 assignment statement: 
~ -

variable_name 

array_element_name -l 
substring_name 

--~-ASSIGN label TO variable_name 

30 oto_statement: 

unconditional __ g_o_to---~ 
computed_goto 1 
assigned_goto 

= expression 

31 unconditional_.goto: -- GO TO - label --

32 computed_goto: 

l GO TO C Lobe~ l J integer_expr 

I I 

33 assigned_goto: 

l GO TO variable_name 

l I 

34 arithmetic_if_statement: 

L_ IF < i nt_rea l_dp_expr > I abe I , I abe I , I abe I 

) -

l 

Page F-10 Ful I Language 



APPENDIX F: SYNTAX CHARTS ANSI X3.9-1978 FORTRAN 77 

35 logical_if_statement: 

L IF ( logical_expression ) executable_statement 

<35) The executable statement contained in a logical IF 
statement must not be a DO, block IF, ELSE IF, ELSE, 
END IF, END, or another logical IF statement. 

36 block_if_statement: 

L_ IF ( logical_expression > THEN 

37 else if statement: 

L E~SE IF < logical_expression > THEN 

38 else_statement: ELSE 

39 end_if_statement: - END IF 

40 do statement: 

L DO label 
) I J 

cvariable_name = int_real_dp_expr L , int_real~cip~expr T 
'---------'"I' . .-

41 continue_statement: CONTINUE 

42 stop_statement: -- STOP 

43 pause_statement: -- PAUSE 

dig i t 

character_constant 

Fut I Language Page F-11 



ANSI X3.9-1978 FORTRAN 77 APPENDIX F: SYNTAX CHARTS 

44 

45 

46 

wr1te statement: -
read statement: -
print_ statement: 

Cc control info - -
. . . format_1dent1f1er 

WRITE 
'·• 

READ 

PRINT 
~ + 

I i st ) 

I i l..___ __ o __ I i s_t =1__,__ 
47 control info list: - -

un it_identifier 1'"-~~---....--~~ 

FMT = 
[ 

format identifier 

UNIT = un i t_ i dent i f i er 

REC = i n t eger_expr 

END = lab el 

ERR = lab el 

'-- IOSTAT = L 
variable_name 

array_element_name 

<47) A control info_list must contain exactly one 
unit_identifier. An END= specifier must not appear in a 
WRITE statement. 

48 io list: 
i -
>-~...--~-expression 

r---- a r r a y _name 

- io_implied_do_list 

Page F-12 Fu 11 Language 



APPENDIX F: SYNTAX CHARTS ANSI X3.9-1978 FORTRAN 77 

49 

(48) In a READ statement, an input/output list 
must be a variable name, array element 
substring name. 

io_implied_do_list: 

t____ ( io_list , variable name= 
) 

~ int_real_dp_expr int_real_dp_expr 

l"f' 

50 open_statement: 

L___ OPEN < 

UN IT = unit identifier 

ERR = I abe I 

FILE = character_expression 

STATUS = character_expression 

ACCESS - character_expression 

FORM = character_expression 

RECL = integer_expr 

BLANK= character_expression 

IOSTAT = variable name 

array_element_niwe 

Fu I I Language 

expression 
name, or 

) -

) -

Page F-13 



ANSI X3.9-1978 FORTRAN 77 APPENDIX F: SYNTAX CHARTS 

51 close statement: 

l_-CLOSE < 

~ .It 

UN IT = unit identifier 

ERR = label 

STATUS - char - acter_expression 

- IOSTAT = 

L 
variable name 

array_element_name 

) -

Page F-14 Fu I I Language 



APPENDIX F: SYNTAX CHARTS ANSI X3.9-1978 FORTRAN 77 

52 inquire_statement: 

L_ INQUIRE < 

>----~-UNIT= unit identifier 

FILE = character_expression 

ERR = I abe I 

IOSTAT = ·-~ 

EXIST = --~ 

OPENED -

NUMBER -

NAMED = 

NAME = 

ACCESS -

SEQUENTIAL= 

DIRECT = 

FORM = 

FORMATTED = 

UNFORMATTED= 

RE CL = 
NEXTREC = 

BLANK = 

Fu I I Language 

variable name --~1 

array_element_name 

) -

Page F-15 



ANSI X3.9-1978 FORTRAN 77 APPENDIX F: SYNTAX CHARTS 

53 backspace_statement: 

54 endfi le_statement: 

55 rewind_statement: 

BACKSPACE 

ENDFILE 

REWIND 

unit identifier 

UN IT = unit identifier 

ERR = label 

IOSTAT = -i= variable_name 

array_element_name 

<53,54,55) BACKSPACE, ENDFILE, and REWIND statements must 
contain a unit identifier. 

56 unit identifier: 

integer_expr 

variable_name 

array_name 

array_element_name 

substring_name 

* 
<56) An unit identifier must be of type integer or character, 

or be an asterisk. 

Page F-16 Fu I I Language 



APPENDIX F: SYNTAX CHARTS 

57 !ormat_identifier: 

label 

variable_name 

array_name 

ANSI X3.9-1978 FORTRAN 77 

character_expression 

-t 

(57) A format identifier that is a variable name or array 
name must be of type integer or character. 

58 format_statement: FORMAT format_specification 

59 format_specification: ( fmt_specification l..___........_ _ ____,J 
)-

Ful I language Page F-17 



ANSI X3.9-1978 FORTRAN 77 

60 fmt_specification: 
t l repeat_spec 

Page F-18 

APPENDIX F: SYNTAX CHARTS 

. ( fmt_spec1fication )......, 

• • 
lw 
~.m 

A 
~w 

Lw 
~ 

Fw.d 
~ 

I'- Ew.d 
Lee~ 

I'- Dw.d 

'- Gw. d 
Lee~ 

I- repeat_spec J 
~ 

1"-kP--------------------~--i 

I h I • • • h ft I 

r----- nHh 1 ••• hn 

r------ Tc ----------i 

r------ Tlc -------....a 
r----- TRc --------..1 
r----- nX _______ __, 

----- s ____________ .__, 
E ~ ---...... 

B ---c:-- ~ ----.1 

.---I 

-

Ful I Language 



APPENDIX F: SYNTAX CHARTS ANSI X3.9-1978 FORTRAN 77 

61 repeat_spec: ---. 

62 w: 

63 e: 

64 n: 

65 c: nonzero_unsigned_int_constant --

66 d: 

67 m: unsigned_int_constant 

68 k: integer_constant 

69 h: processor_character 

70 statement_tunction_statement: 

t__ function_name 

l.___( _v_a_r i-a b-1 e=_n~am~e _1 ___ · 
= expression 

71 ca 11 statement: 

72 

t__-CALL subroutine_name 

t ~ 

expression 
~ 

I'-- array_name 

I'-- procedure_name 

'--- * label 

return statement: 

t__ R~TURN 
L integer_expr l 

<72> An alternate return is not allowed in a function 
subprogram. 

Ful I Language Page F-19 



ANSI X3.~-1978 FORTRAN 77 APPENDIX F: SYNTAX CHARTS 

73 ~t:on_reference: 

unc t1 on - name 

J 
+ ~ 

expression 
~ 

r--- array_name 

'----- procedure_name 

) -

74 expression: 

arithmetic _expression 

l c-haracter _expression 

logical_expression 

75 constant _expr: 

arithmetic con st _ex pr -

l character_const_expr 

logical_const_expr 

Page F-20 Fu I I Language 



APPENDIX F: SYNTAX CHARTS ANSI X3.9-1978 FORTRAN 77 

76 arithmetic_expression: 

77 integer expr: 

78 int_real_dp_expr: 

+ 

t 

I 

tt 

unsigned_arithmetic_constant 

constant_name 

variable_name 

array_element_name 

function_reference 

( arithmetic_expression 

<76) A constant name, variable name, array element name, or 
function reference in an arithmetic expression must be 
of type integer, real, double prec1s1on, or complex. 
Tables 2 and 3 (6.1.4> list prohibited combinations 
involving operands of type complex. 

<77> An integer expression is an arithmetic expression of 
type integer. 

(78> An int_real_dp_expression is an arithmetic expression of 
type integer, real, or double precisi-0n. 

Ful I Language Page F-21 



ANSI X3.9-1978 FORTRAN 77 APPENDIX F: SYNTAX CHARTS 

79 arithmetic_const_expr: 

+ 

* 
I 

** 
unsigned_arithmetic_constant 

constant_name 

< arithmetic_const_expr 

(79) A constant name in an arithmetic constant expression 
must be of type integer, real, double precision, or 
complex. Tables 2 and 3 <6.1.4) list prohibited 
combinations involving operands of type complex. The 
right hand operand (the exponent) of the ** operator 
must be of type integer. 

80 int_constant_expr: 

+ 

* 
I 

** 
unsigned_int_constant 

constant name 

< int_constant_expr 

(80) A constant name in an integer constant expression must 
be of type integer. 

Page F-22 Ful I Language 



APPENDIX F: SYNTAX CHARTS ANSI X3.9-1978 FORTRAN 77 

81 dim_bound_expr: 

+ 

* 
I 

* * 
unsigned_int_constant 

constant_name 

variable name 

( dim_bound_expr 

<81) Each variable name in a dimension bound expression must 
be of type integer and must be a dummy argument or in a 
common block. 

82 character_expression: 

character con st ant 

constant_name 

variable_name 

name -array_element 

substring_nam e 

function_refe rence 

character_e xpression ) 

II -
<82) A constant name, variable name, array element name, or 

function reference must be of type character in a 
character expression. 

Ful I Language Page F-23 



ANSI X3.9-1978 FORTRAN 77 APPENDIX F: SYNTAX CHARTS 

83 character_const_expr: 

character_constant 

constant_name 

character_const_expr 

II 

<83) A constant name must be of type character in a character 
constant expression. 

84 logical_expression: 

.AND. 

.OR . 

. EOV. 

. NOT. 

logical_constant 

constant_name 

variable_name 

array_element_name 

function_reference 

relational_expression 

< logical_expression ) 

.NEOV.~----------------------------------~ 

(84) A constant name, variable name, array element name, o~ 
function reference must be of type logical in a logical 
expression. 

85 logical_const_expr: 

.AND. 

.OR. 

.EOV. 

.NOT. 

logical_constant 

constant_name 

relational_expression 

< logical_const_expr ) 

.NEOV.---'~~~~~~~~~~~~~~~~~--...__~ 

Page F-24 Full Language 



APPENDIX F: SYNTAX CHARTS ANSI X3.9-1978 FORTRAN 77 

86 

<85) A constant name must be of type logical in a logical 
constant expression. Also, each primary in the 
relational expression must be a constant expression. 

relational_expression: 

t_ arithmetic_expression 

l_ character_expression 

re l_op 

re l_op 

arithmetic_expression 

L character_expression 

C86) An arithmetic expression of type complex is permitted 
only when the relational operator is .EO. or .NE. 

87 rel_op: 

. LT. 

• LE . 

. EO . 

. NE . 

. GT . 

. GE. 

88 array_element_name: 

l____ array_name ( -r-= integer_e,pr ___ __,f-f'~-.....--__ ) ) -

89 substring_name: 

~ variable_name 

array_element_name 

T integer_expr 

~-----'J 

Fu I I Language 

T ____ i_n_t_e_g_e~r __ e_x_p_r ___ _,J 
) -

Page F-25 



ANSI X3.9-1978 FORTRAN 77 

90 constant_nam e: 

91 var1able_nam e: 

92 array_name: 

93 common_block _name: 

. . 94 program_name 

95 block_data_s ubprogram_name: 

me: 96 

97 

98 

procedure na 

L subr:ut 

L funct1on_name. 

1ne_ name: 

. 

99 symbol1c_name: 

letter 

d 1g1 t 

100 constant: 

APPENDIX F: SYNTAX CHARTS 

symbol1c_name 

s1gn uns1gned_ar1thmet1c ___ c_o_n_s_t_a_n_t~~~-l 
character_constant 1 
log1cal_constant 

101 uns1gned .ar1thmet1c constant: 
~ - -

uns1gned_1nt_constant 

uns1gned_real_constant 

uns1gned_dp_constant 

complex_constant 

Page F-26 Fu I I Language 



APPENDIX F: SYNTAX CHARTS ANSI X3.9-1978 FORTRAN 77 

102 unsigned_int_constant: 

103 nonzero_unsigned_int_constant: 

104 integer_constant: 

sign d; g i t 

(103) A nonzero, unsigned, integer constant must contain a 
nonzero digit. 

105 unsigned_real_constant: 

~unsigned_int constant 

106 unsigned_dp_constant: 

~unsigned_int constant 

107 complex constant: 

~~-unsigned_int_constant 

E integer_constant 

~~-unsigned_int_constant 

D integer_constant 

l ( :-
-.,t..--~~lm~~~~-=5....,..... ..... ~unsi gned_rea l_constant 

sign unsigned_int_const~nt 

108 logical_constant: 

~ .TRUE. --=i 
. FALSE. _.....__ __ 

) -

Ful I Language Page F-'27 



ANSI X3.9-1978 FORTRAN 77 APPENDIX F: SYNTAX CHARTS 

109 character_constant: -- apostrophe 

nonapostrophe_character 

apostrophe apostrophe 

apostrophe 

(109) An apostrophe within a data strirtg is represented by two 
consecutive apostrophes with no intervening blanks. 

110 label: 

111 

112 

113 

114 

115 

116 

[--digit -f5' l 
(110) A label must contain a nonzero digit. 

processor_character: 

~ apostrophe: 

nonapostrophe_character: 

sign: 
l l 
+ -

digit: 
l l l ) l l l l l l 
0 1 2 3 4 5 6 7 8 9 

letter: 
llllllllllllllllllllllllll 
ABCDEFGHIJKLMNOPORSTUVWXYZ 

* I C > = $ 

<111) A blank is a processor character. The set of processor 
characters may include additional characters recognized 
by the processor. 

Page F-28 Ful I Language 



APPENDIX F: SYNTAX CHARTS ANSI X3.9-1978 FORTRAN 77 

F3 Cross-Reference Index to Syntax Charts 

Def. Item: Reference 

112 apostrophe: 109 
79 arithmetic_const_expr: 75, 79 
76 arithmetic_expression: 74, 78, 86 
34 arithmetic_if statement: 7 
16 array_declarator: 15, 19, 20 
88 array_element_name: 18, 27, 28, 29, 47, 50, 51, 52, 55, 56, 

78, 82, 84, 89 
9 2 a r r a y _name : 11 I 1 3 I 1 6 I 1 8 I 1 9 I 2 0 I 2 6 I 2 7 I 4 8 I 5 6 I 5 7 I 71 I 

73 I 88 
33 assigned_goto: 30 
29 assignment_statement: 7 

53 backspace_statement: 7 
14 block_data_statement: 5 
95 block_data_subprogram_name: 14, 24 

5 block_data_subprogram: 1 
36 block if statement: 7 

65 c: 60 
71 ca I !_statement: 7 
83 character_const_expr: 75, 83 

109 character constant: 43, 82, 83, 100 
82 character_expression: 50, 51, 52, 57, 74, 82, 86 
51 close_statement: 7 
93 common_block_name: 19, 26 
19 common_statement: 6 

107 complex constant: 101 
32 computed_goto: 30 
75 constant_expr: 23 
9 0 c 0 n s t ant _name : 2 0 I 2 3 I 2 7 I 7 8 , 7 9 I 8 0 I 8 1 I 8 2 I 8 3 I 8 4 I 8 5 

100 constant: 27 
41 continue_statement: 7 
47 control info list: 46 

66 d: 60 
28 data_implied_do_list: 27, 28 
27 data_statement: 5 

115 digit: 43, 99, 110 
81 dim_bound_expr: 16, 81 
15 dimension_statement: 6 
40 do statement: 7 

63 e: 60 
37 else_if statement: 7 
38 else_statement: 7 
39 end_if_statement: 7 
54 endf i I e_statement: 7 

9 entry_statement: 5 
18 equiv_entity: 17 
17 equivalence_statement: 6 

7 executable statement: 5, 35 
74 expression7 29, 48, 70, 71, 73 

Fu I I language Page F-29 



ANSI X3.9-1978 FORTRAN 77 APPENDIX F: SYNTAX CHARTS 

Def. Item: Reference 

24 external statement: 6 

60 fmt_specification: 59, 60 
57 format_identifier: 46, 47 
59 format_specification: 58 
58 format_statement: 5 
11 function_entry: 9 
9 8 fun ct i o n_n am e : 11 , 2 0 , 2 5 , 7 0 , 7 3 
73 function_reference: 78, 82, 84 
10 function_statement: 3 
3 function_subprogram: 1 

30 goto_statement: 7 

69 h: 60 

21 implicit_statement: 5 
52 inquire_statement: 7 
80 int_constant_expr: 22, 28, 80 
78 int_real_dp_expr: 34, 40, 49 

104 integer constant: 68, 105, 106 
77 integer_expr: 32, 47, 50, 56, 72, 88, 89 
25 intrinsic_statement: 6 
49 io_implied_do_list: 48 
48 io list: 46, 49 

68 k: 60 

110 label: 5, 29, 31, 32, 33, 34, 40, 47, 50, 51, 52, 55, 57, 71 
22 len_specification: 10, 20, 21 

116 letter: 21, 99 
85 logical_const_expr: 75, 85 

108 logical constant: 84, 85, 100 
84 logical_expression: 35, 36, 37, 74, 84 
35 logical_if_statement: 7 

67 m: 60 
2 main_program: 

64 n: 60 
113 nonapostrophe character: 109 
103 nonzero unsigned int constant: 22, 27, 65 

50 open_statement: 7 
6 other_specification_statement: 5 

23 parameter_statement: 5 
43 pause_statement: 7 
46 print_statement: 7 
96 procedure_name: 11, 13, 24, 71, 73 

111 processor character: 69 
94 program_name: 8 

8 program_statement: 2 

Page'F-30 Fu 11 Language 



APPENDIX F: SYNTAX CHARTS ANSI X3.9-1978 FORTRAN 77 

Def. Item: Reference 

4S read_statement: 7 
87 rel_op: 86 
86 relational_expression: 84, 8S 
61 repeat_spec: 60 
72 return_statement: 7 
SS rewind statement: 7 

26 save_statement: 6 
114 sign: 100, 107 

70 statement_function_statement: S 
42 stop_statement: 7 
13 subroutine_entry: 9 
97 subroutine_name: 13, 71 
12 subroutine_statement: 4 

4 subroutine_subprogram: 1 
89 substring_name: 18, 27, 29, S6, 82 
99 symb-0lic_name: 90 

20 type_statement: 6 

31 unconditional_goto: 30 
S6 unit_identifier: 47, SO, S1, 52, SS 

101 unsigned arithmetic constant: 78, 79, 100 
106 unsigned dp constant: 101 
102 unsigned int constant: 67, 80, 81, 101, 10S, 106 
10S unsigned real constant: 101, 107 

91 variable_name: 11, 13, 18, 19, 20, 26, 27, 28, 29, 33, 40, 
47, 49, SO, S1, S2, SS, S6, S7, 70, 78, 81, 82, 84, 89 

62 w: 60 
44 write_statement: 7 

Ful I Language Page F-31 





ANSI X3.9-1978 PO~TRAN 77 

INDEX 

Al I references are to page numbers within a section or 
appendix. For example, 12-4 refers to page 4 in Section 12, 
and A-1 refers to page 1 in Appendix A. 

access 
direct 12-4, 12-15 

input/output statement 12-11 
file 12-3 
seQuential 12-3, 12-14 

input/output statement 12-11 
active DO-loop 11-6 
actual argument 15-16 

for a subroutine 15-10 
for an external function 15-8 
length of ch~racter 15-17 

actual array 5-7 
declarator 5-2 

adjustable array 5-7 
declarator 5-2 

adjustable dimension 5-7 
alphanumeric character 3-1 
alternate return 15-14 

specifier 15-11 
ANSI X3.9-1966, conflicts with A-1 
apostrophe editing 13-5 
argument 15-15 

actual 15-16, 15-8, 15-10, 15-17 
association 15-16 
dummy 2-4, 15-4, 15-15, 15-17, 15-18, 15-19 

arithmetic 
assignment statement 10-1 
constant 4-2 

expression 6-4 
conversion 10-1 
expression 6-1, 

evaluation of 
interpretation 
type of 6-4 

6-4 
6-17 
of 6-4 

IF statement 11-2 
operands 6-Z 
operator 6-1 
relational expression 6-9 

interpretation of 6-9 
array 2-3, 5-1, 18-3 

actual 5-7 
adjustable 5-7 
as dummy argument 15-18 
data type of 5-3 
declarator 2-3, 5-1 

assumed size 5-2 
constant 5-2 

dimension of an 5-3 
dummy 5-7 

Ful I language Page INDEX-1 



ANSI X3.9-1978 FORTRAN 77 

array, CONTINUED 
name 5-1, 8-2 

use of 5-8 
properties of an 5-2 
size of an 5-3 
storage sequence 5-4 

array elemant 2-3, 5-1 
data type of 5-3 
name 5-1, 5-4, 8-2 
ordering 5-4 

ASSIGN statement 10-2 
assigned GO TO statem~nt 11-2 
assignment 

conversion, Table 4 10-1 
statement 

arithmetic 10-1 
character 10-2 
logical 10-2 
statement label 10-2 

associated 
partially 17-1 
totally 17-1 

association 2-6, 17-1 
argument 15-16 
common 8-4 
entry 15-12 
equivalence 8-2 
of entities 17-1 

restriction on 15-20 
of storage sequence 17-1 

assumed size 
array declarator 5-2 
dummy array 5-7 

name, restriction on use of 5-8 
asterisks as dummy argument 15-19 
auxiliary input/output statement 12-1, 12-18 
BACKSPACE statement 12-28 
bisic real constant 4-3 
blank 

character 3-2 
common, differences between named common and 8-4 
in constant 4-2 
control 12-20, 13-8 

block 11-5 
IF 11-4 
IF statement 11-3 

BLOCK DATA 
statement 16-1 
subprogram 2-2, 16-1, 18-3 

name 16-1, B-15 
restriction 16-1 

bound 
lower dimension 5-1 
upper dimension 5-1 
value of dimension 5-2 

CALL statement 15-10 

INDEX 

Page I NDEX-2 Fu I I Language 



INDEX ANSI X3.9-1978 FORTRAN 77 

character 
actual argument, length of 15-17 
alphanumeric 3-1 
assignment statement 10-2 
blank 3-2 
constant 4-5 

expression 6-.9 
in a DATA statement 9-3 

dummy argument, length of 15-17 
entity, equivalence of 8-2 
expression 6-7, 6-8 

evaluation of 6-19 
format specification 13-1 
operator 6-7 
primary 6-8 
relational expression 6-10 

interpretation of 6-10 
set, FORTRAN 3-1 
speci a I 3-1 
storage unit 2-6 
substring 5-9 
type 4-5 

CHARACTER statement 8-6 
classes of 

global entity 18-1 
local entity 18-2 
statement 2-2 
symbolic name 18-2 

close at termination of execution, implicit 12-22 
CLOSE statement 12-21, B-9 
collating sequence 3-1, B-2, B-15 
columns 3-2 
comment 2-2 

line 2-2, 3-2, 8-2 
common 

and equivalence, restriction on 8-5 
association 8-4 
differences between named common and blank 8-4 

common block 15-15, 15-20, 18-2 
size of a 8-4 
storage sequence 8-4 

COMMON statement 8-3 
complex 

constant 4-4 
editing 13-12 
expression 6-5 
type 4-4 

COMPLEX statement 8-5 
computed GO TO statement 11-2 
conditions 

end-of-file 12-8 
error 12-8 

conflicts with ANSI X3.9-1966 A-1 
conformance 1-2 

subset 1-2 
connected unit, open of a 12-20 

Fu I I Language Page INDEX-3 



ANSI X3.9-1978 FORTRAN 77 

connection 
file 12-6, 8-6 
unit 12-6, 8-6 

constant 4-2, 18-4, 8-3 
arithmetic 4-2 
array declarator 5-2 
basic real 4-3 
blank in 4-2 
character 4-5 

in a DATA statement 9-3 
complex 4-4 
data type of a 4-2 
double precision 4-4 
expression 6-20 

arithmetic 6-4 
character 6-9 
integer 6-4 
logical 6-14 

Hollerith C-1 
in a DATA statement C-1 
in a subroutine reference C-2 
restriction on C-1 

integer 4-3 
logical 4-5 
optionally signed 4-2 
real 4-3 
signed 4-2 
signs of 4-2 
symbolic name of a 8-8 
unsigned 4-Z 

continuation line Z-2, 3-2, 8-2 
CONTINUE statement 11-9, 8-6 
control 

blank/zero 12-20, 13-8 
format 13-3 
information list 12-11 
positioning by format 13-4 
processing, loop 11-7 
transfer of 3-5 

conversion 
and assignment, Table 4 10-1 
arithmetic 10-1 

corresponding END IF statement 11-5 
create a file 12-Z 
criteria A-1 
current record 12-3 
DATA statement 9-1 

character constant in a 9-3 
Hollerith constant in a C-1 
implied-DO in a 9-2 
restriction 9-1 

data transfer 12-15 
direction of 12-14 
file position 

after 12-17 
prior to 12-14 

INDEX 

Page INDEX-4 Ful I Language 



INDEX ANSI X3.9-1978 FORTRAN 77 

data transfer, CONTINUED 
formatted 12-16 
input/output statement 12-1 
unformatted 12-15 

data type 4-1 
Hollerith C-1 
of a constant 4-2 
of a name 4-1 
of an array 5-3 
of an array element 5-3 
properties 4-2 

declarator 
actual array 5-2 
adjustable arr~y 5-2 
array 2-3, 5-1 
assumed size array 5-2 
constant array 5-2 
dimension 5-1 
dummy array 5-2 

defined 2-4 
events that cause entity to become 17-3 
initially 2-5 

definition status 2-4, 15-15 
delete a file 12-2 
descriptor, edit 13-2 

nonrepeatable 13-3 
repeatable 13-2 

differences between named common and blank common 8-4 
digit 3-1 
dimension 

bound 
lower 5-1 
upper 5-1 
value of 5-2 

declarator 5-1 
of an array 5-3 
size of a 5-3 

DIMENSION statement 8-1 
direct access 12-4, 12-15 

input/output statement 12-11 
direction of data transfer 12-14 
disjunct, logical 6-12 
division, integer 6-7 
DO 

parameter 11-7 
statement 11-5 

DO-loop 11-5, 8-5 
active 11-6 
inact1ve 11-6 
range of a 11-6 
transf~r into the range of a 11-9 

DO statement 11-5 
executing a 11-7 

Fu I I L'anguage Page INDEX-5 



ANSI X3.9-1978 FORTRAN 77 INDEX 

double precision 
constant 4-4 
editing 13-9 
exponent 4-4 
expression 6-5 
type 4-3 

DOUBLE PRECISION statement 8-5 
dummy argument 2-4, 15-15 

array as 15-18 
asterisks as 15-19 
length of char~cter 15-17 
procedure as 15-19 
statement function 15-4 
variable as 15-18 

dummy array 5-7 
~ssumed size 5-7 

name, restriction on use of 5-8 
declarator 5-2 

dummy procedure 15-1, 18-5 
edit descriptor 13-2 

nonrepeatable 13-3 
repeatable 13-2 

editing 13-5 
A 13-12 
apostrophe 13-5 
BN and BZ 13-8 
colon 13-7 
complex 13-12 
D 13-10 
double pre6ision 13-9 
E 13-10 
F 13-10 
G 13-11 
H 13-5 
integer 13-9 
L 13-12 
numeric 13-8 
of Hollerith data, A C-2 
p 13-7 
positional 13-5 
rea I 13-9 
S, SP, and SS 13-7 
slash 13-6 

·T, TL, and TR 13-6 
x 13-6 

ELSE statement 11-5 
ELSE block 11-5 
ELSE IF statement 11-4 
ELSE IF block 11-4 
END statement 11-10 
END IF statement 11-5 

corresponding 11-5 

Page INDEX-6 Fu I I Language 



INDEX ANSI X3.9-1978 FORTRAN 77 

end-of-f; le 
cond;t;ons 12-8 
spec;f;er 12-10, 12-9 

endf; le record 12-2, B-6, B-10 
ENDFILE statement 12-28 
ent;ty 

assoc;at;on of 17-1 
equ;valence of character 8-2 
global 18-1 
local 18-1 
restr;ct;on on assoc;at;on of 15-20 
to become def;ned, events that cause 17-3 
to become undef;ned, events that cause 17-4 

entry 
assoc;at;on 15-12 
name 15-12 

ENTRY statement 15-11 
restrict;on 15-13 

equ;valence 
assodat;on 8-2 
of character entity 8-2 
restr;ction on common and 8-5 

EQUIVALENCE statement 8-1 
restr;ct;on on 8-3 

error 
cond;t;ons 12-8 
specH;er 12-9 

evaluat;on 
of arithmetic express;on 6-17 
of character expression 6-19 
of expression 6-15 
of funct;on, order of 6-17 
of logical express;on 6-19 
of operands 6-16 
of relational expression 6-19 

events 
that cause ent;ty to become def;ned 17-3 
that cause entity to become undefined 17-4 

executable 
program 2-3 
statement 7-1 

executing a DO statement 11-7 
execut;on 

implicit close at termination of 12-22 
of the range 11-8 
sequence, normal 3-5 
term;nal statement 11-8 

existence 
f; le 12-2, B-7 
unit 12-6 

exponent 
double prec;sion 4-4 
real 4-3 

Fu I I Language Page I NOEX-7 



ANSI X3.9-1978 FORTRAN 77 INDE~ 

expression 
arithmetic 6-1, 6-4 

constant 6-4 
relational 6-9 

character 6-7, 6-8 
constant 6-9 
relational 6-10 

complex 6-5 
constant 6-20 
double precision 6-5 
evaluation of 6-15 

arithmetic 6-17 
character 6-19 
logical 6-19 
relational 6-19 

integer 6-5 
constant 6-4 

interpretation.of 
arithmetic 6-4 
arithmetic relational 6-9 
character relational 6-10 

logical 6-10, 6-12 
constant 6-14 

real 6-5 
relational 6-9 
subscript 5-5 
substring 5-9 
type of arithmetic 6-4 

external 
function 15-1, 15-6, 18-3 

actual argument for an 15-8 
name 15-12, 15-7 
referencing an 15-7 

procedure 2-2, 15-1 
by an entry name, referencing an 15-12 

unit identifier 12-7 
EXTERNAL statement 8-9 
factor 6-3 

logical 6-12 
scale 13-7 

field 13-5 
numeric input 13-14 
width 13-5 

file 12-2 
access 12-3 
connection 12-6, B-6 
create a 12-2 
delete a 12-2 
existence 12-2, B-7 
INQUIRE by 12-23 
internal 12-5 
named 12-3 
position 12-3 

after data transfer 12-17 
prior to data transfer 12-14 

Page INDEX-8 Ful I Language 



INDEX ANSI X3.9-1978 FORTRAN 77 

file, CONTINUED 
positioning statement 12-1, 12-27 
properties 12-3 

format 
control 13-3 

positioning by 13-4 
establishing a 12-14 
identifier 12-7, 12-8 
interaction between input/output list and 13-3 
specification 13-2 

character 13-1 
Hollerith C-2 
methods 13-1 
using a 12-16 

specifier 12-7 
FORMAT statement 13-1 
formatted 

data transfer 12-16 
input/output statement 12-11 
record 12-2 

printing of 12-17 
formatting, list-directed 12-17, 13-13 
FORTRAN 

character set 3-1 
conflicts with ANSI X3.9-1966 A-1 

function 15-1 
actual argument for an external 15-8 
external 15-1, 15-6, 18-3 
intrinsic 15-2, 18-5, B-13 
name, external 15-12, 15-7 
order of evaluation of 6-17 
reference and list item, restriction on 12-29 
referencing a 15-1 
referencing an external 15-7 
subprogram 2-2, 15-6 

restriction 15-8 
FUNCTION statement 15-6 
generic name 15-2 
global 

entity 18-1 
classes of 18-1 

GO TO statement 
assigned 11-2 
computed 11-2 
unconditional 11-1 

Hollerith 
constant C-1 

in a DATA statement C-1 
in a subroutine reference C-2 
restriction on C-1 

data, A editing of C-2 
data type C-1 
format specification C-2 

Fu 11 Language Page INDEX-9 



ANSI X3.9-1978 FORTRAN 77 

identlfier 
external unit 
format 12-7, 
internal file 
unit 12-7 

12-7 
12-8 

12-7 

identifying a unit 
IF 

block 11-4 
level 11-3 
statement 

12-14 

arithmetic 11-2 
block 11-3 
logical 11-3, 8-5 

implicit close at termination of execution 12-22 
IMPLICIT statement 8-7 
imp Ii ed-DO 

in a DATA statement 9-2 
list 12-13 
variable 9-2 

inactive DO-loop 11-6 
incrementation processing 11-8 
initial 

line 2-2, 3-2 
point 12-3 

initially defined 2-5 
input 

field, numeric 13-14 
list item 12-12 
list-directed 13-14, 8-12 

input 12-12 
and format, interaction between 13-3 
item 12-12 

input/output, list-directed, 12-12, 8-10 
input/output statement 

auxiliary 12-1, 12-18 
data transfer 12-1 
direct access 12-11 
formatted 12-11 
list-directed 12-12 
restriction on 12-29 
seQuential access 12-11 
unformatted 12-11 

input/output status specifier 12-9 
definition 12-17 

INQUIRE 
by fi I e 12-23 
by unit 12-23 
statement 12-22 

inQuiry specifier 12-23 
integer 

constant 4-3 
constant expression 6-4 
division 6-7 

INDEX 

Page INDEX-10 Ful I Language 



INDEX ANS I X3. 9-197'8 FORTRAN 1 77 

integer, CONTINUED 
editing 13-9 
expression 6-5 
quotient 6-7 
type 4-3 

INTEGER statement 8-5 
integrity of parentheses 6-17 
interaction between input/output li~t and format 13-3 
internal file 12-5 

identifier 12-7 
properties 12-5 
restriction 12-6 

interpretation 
of arithmetic expression 6-4 
of arithmetic relational expression 6-9 
of character relational expression 6-10 
r~les, summary of 6-15 

intrinsic function 15-2, 18-5, 8-13 
referencing an 15-3 
restriction 15-3 
Table 5 15-22, 8-13 

INTRINSIC statement 8-9 
item 

input list 12-12 
input/output list 12-12 
list 2-4 
output list 12-12 
restriction on function reference and list 12-29 

keyword 2-1, 18-1, 8-10 
length 

of character 
constant 4-5 
actual argument 15-17 
dummy argument 15-17 

o .f r e c o r d 8 - 11 
specification 8-6 

letter 3-1 
level, IF 11-3' 
line 2-2, 3-2 

comment 2-2, 3-2, 8-2 
continuation 2-2, 3-2, 8-2 
initial 2-2, 3-2 
order of 3-3 

list 2-4 
contra I information 12-11 
implied-DO 12-13 
item 2-4 

input 12-12 
output 12-12 
restriction on function reference and 12-29 

list-directed 
formatting 12-17, 13-13 
input 13-14, B-12 
input/output 12-12, 8-10 

statement 12-12 
output 13-15 

Fu I I Language Page INDEX-11 



ANSI X3.9-1978 FORTRAN 77 

local 
entity 18-1 
entity, classes of 18-2 

logical 
assignment statement 10-2 
constant 4-5 

expression 6-14 
disjunct 6-12 
expression 6-10, 6-12 

evaluation of 6-19 
factor 6-12 
IF statement 11-3, B-5 
operands 6-11 
operator 6-11 
primary 6-12 
term 6-12 
type 4-4 

LOGICAL statement 8-5 
loop control processing 
main program 2-2, 14-1, 

restriction 14-1 
name 

array 5-1, 8-2 

11-7 
18-3, B-13 

array element 5-1, 5-4, 8-2 
block data subprogram 16-1, 8-15 
data type of a 4-1 
entry 15-12 
external function 15-12, 15-7 
generic 15-2 
referencing an external procedure by an entry 15-12 
restriction on assumed size dummy array 5-8 
specific 15-2 
subroutine 15-12, 15-9 
substring 5-9 
symbolic 2-1, 8-8, 18-1, 18-2 
use of array 5-8 

named 
common and blank common, differences between 8-4 
file 12-3 

nonexecutable statement 7-1 
nonrepeatable edit descriptor 13-3 
normal execution seQuence 3-5 
number 

of records 12-3, B-11 
record 12-4 

numeric 
editing 13-8 
input field 13-14 
storage unit 2-5 

open of a connected unit 12-20 
OPEN statement 12-18, B-8 
operands 

arithmetic 6-2 
evaluation of 6-16 
logical 6-11 

lNDEX 

Page INDEX-12 Fu I I Language 



INDEX ANSI X3.9-1978 FORTRAN 77 

operator 
arithmetic 6-1 
character 6-7 
logical 6-11 
precedence of 6-14 
relational 6-9 

optionally signed constant 4-2 
order of 

evaluation of functions 6-17 
lines 3-3 
statements 3-3 

ordering, array element 5-4 
output 

list item 12-12 
list-directed 13-15 

PARAMETER statement 8-8 
parentheses, integrity of 6-17 
PAUSE statement 11-9, 8-6 
point 

initial 12-3 
termi na I 12-3 

.Portability, recommendation for enhancing A-5 
position 

after data transfer, file 12-17 
file 12-3 
prior to data transfer, file 12-14 

po s i ti on a I e di ti n·g 13-5 
positioning 

by format control 13-4 
statement, file 12-1, 12-27 

precedence of operator 6-14 
preceding record 12-3 
primary 6-3 

character 6-8 
logical 6-12 

PRINT statement 12-10 
printing 12-17 

of formatted record 12-17 
procedure 2-2, 15-1 

as dummy argument 15-19 
by an entry name, referencing an external 15-12 
dummy 15-1, 18-5 
external 2-2, 15-1 
subprogram 2-2 

processing 
incrementation 11-8 
loop control 11-7 

processor 1-1, 8-1 
program, executable 2-3 
PROGRAM statement 14-1 
program unit 2-2 
properties 

data type 4-2 
file 12-3 
internal file 12-5 
of an array 5-2 

Fu I I Language Page INDEX-13 



ANSI X3.9'.""1978 FORTRAN 77 

quotient, integer 6-7 
range 

of a DO-loop 11-6 
execution of the 11-8 

. transfer into the 11-9 
of argument and results, restriction on 15-32 

READ statement 12-10 
reading 12-1 
real 

constant 4-3 
basic 4-3 

editing 13-9 
exponent 4-3 
expression 6-5 
type 4-3 

REAL statement 8-5 
recommendation for enhancing portability A-5 
record 12-1, 8-6 

current 12-3 
endfile, 12-2, B-6, B-10 
formatted 12-2 
length of 12-2, B-11 
next 12-3 
number 12-4 
number of 12-3, B-11 
preceding 12-3 
printing of formatted 12-17 
specifier 12-8 
unformatted 12-2 

reference 2-5 
and list item, restriction on function 12-29 
Hollerith constant in a subroutine C-2 

referencing 
a function 15-1 
a statement function 
a subroutine 15-10 
an external function 
an external procedure 
an intrinsic function 

relational 
expression 6-9 

arithmetic 6-9 
character 6-10 
evaluation of 6-19 
interpretation 

of arithm~tic 6-9 
of character 6-10 

operator 6-9 

15-5 

15-7 
by an entry name 

15-3 

repeat specification 13-2 
repeatable edit descriptor 13-2 
restriction 

block data subpro9ram 16-1 
DATA statement 9-1 
ENTRY statem-ent 15-13 
function subprogram 15-8 
internal file 12-6 

P-age INDEX-14 

15-12 

INDEX 

Fu 11 Language 



INDEX ANSI X3.9-1978 FORTRAN 77 

restriction, CONTINUED 
intrinsic function 15-3 
main program 14-1 
on association of entities 15-20 
on common and equivalence 8-5 
on EQUIVALENCE statement 8-3 
on function reference and list item 12-29 
on Hollerith constant C-1 
on input/output statement 12-29 
on range of argument and results 15-32 
statement function 15-6 
subroutine subprogram 15-11 

return 
alternate 15-14 
specifier, alternate 15-11 

RETURN statement 15-13 
REWIND statement 12-28 
rules, summary of interpretation 6-15 
S, SP, and SS editing 13-7 
SAVE statement 8-10, 8-4 
scale factor 13-7 
scope 1-1 

of statement label 2-4 
of symbolic name 2-4, 18-1 

separator, value 13-13 
sequence 2-1 

collating 3-1, 8-2, 8-15 
normal execution 3-5 

sequential access 12-3, 12-14 
input/output statement 12-11 

signed 
constant 4-2 

optionally 4-2 
size of 

a common block 8-4 
a dimension 5-3 
a storage sequence 17-1 
an array 5-3 

special character 3-1 
specific name 15-2 
specification 

character format 13-1 
format 13-2 
Ho I I er i th format C-2 
length 8-6 
methods, format 13-1 
repeat 13-2 
using a format 12-16 

specifier 
alternate return 15-11 
end-of-file 12-10, 12-9 
error 12-9 
format 12-7 
input/output status 12-9 
inquiry 12-23 
record 12-8 

Fur I Language Page INDEX-15 



ANSI X3.9-1978 FORTRAN 77 

specifier, CONTINUED 
unit 12-7 

statement 2-2, 3-3 
arithmetic assignment 10-1 
arithmetic IF 11-2 
ASSIGN 10-2 
assigned GO TO 11-2 
BACKSPACE 12-28 
block IF 11-3 
BLOCK DATA 16-1 
CALL statement 15-10 
character assignment 10-2 
CHARACTER 8-5 
classes of 2-2 
CLOSE I 12-21 I B-9 
COMMON 8-3 
COMPLEX 8-5 
computed GO TO 11-2 
CONTINUE 11-9, B-5 
DATA 9-1 
DIMENSION 8-1 
DO 11-5 
DOUBLE PRECISION 8-5 
ELSE 11-5 
ELSE IF 11-4 
END 11-10 
END IF 11-5 
ENDFILE 12-28 
ENTRY 15-11 
EQUIVALENCE 8-1 
executable 7-1 
EXTERNAL 8-9 
file positioning 12-1, 12-27 
FORMAT 13-1 
FUNCTION 15-6 
IMPLICIT 8-7 
INQUIRE 12-22 
INTEGER 8-5 
INTRINSIC 8-9 
logical assignment 10-2 
logical IF 11-3, B-5 
LOGICAL 8-5 
nonexecutable 7-1 
OPEN 12-18, B-8 
order of 3-3 
PARAMETER 8-8 
PAUSE 11-9 I B-6 
PRINT 12-10 
PROGRAM 14-1 
READ 12-10 
REAL 8-5 
RETURN 15-13 
REWIND 12-28 
SAVE 8-10, B-4 
statement label assignment 10-2 
STOP· 11-9, B-6 

INDEX 

Page INDEX-16 Ful I Language 



INDEX ANSI X3.9-1978 FORTRAN 77 

statement, CONTINUED 
SUBROUTINE 15-9 
terminal 11-6 
unconditional GO TO 11-1 
WRITE 12-10 

statement function 15-4, 18-4 
dummy argument 15-4 
referencing a 15-5 
restriction 15-6 

statement label 2-1, 3-3, B-2 
assignment statement 10-2 
scope of 2-4 

STOP statement 11-9, 8-6 
storage 2-5, 17-1 
storage sequence 2-5, 17-1 

array 5-4 
association of 17-1 
common block 8-4 
si~e of a 17-1 

storage unit 2-5, 17-1 
character 2-6 
numeric 2-5 

subprogram 2-Z 
block data Z-2. 16-1, 18-3 
function Z-2, 15-6 
name block data 16-1, 8-15 
procedure 2:...z 
restriction 

block data 16-1 
function 15-8 
subroutine 15-11 

subroutine Z-Z, 15-9 
subroutine 15-1, 15-9, 18-3 

actual argument for a 15-10 
name 15-12, 15-9 
reference, Hollerith constant in a C-Z 
referencing a 15-10 
subprogram 2-Z, 15-9 

restriction 15-11 
subscript 5-4, 8-Z 

expression 5-5 
value 5-5 

Table 1 5-6 
subset 

conformance 1-2 
text 1-4 

substring 2-3 
character 5-9 
expression 5-9 
name 5-9 

symbolic name Z-1 
classes of 18-Z 
of a constant 8-8 
scope of Z-4, 18-1 

syntactic item Z-1 
syntax charts F-1 

Fu I I Language Page INDEX-17 



ANSI X3.9-1978 FORTRAN 77 

T, TL, and TR editing 13-6 
Table 1 subscript value 5-6 
Table 2 type and result for x 1+x 2 6-5 
Table 3 type and result for x 1**x 2 6-6 
Table 4 conversion and assignment 10-1 
Table 5 intrinsic functions 15-22, 8-13 
term 6-3 

logical 6-12 
terminal 

point 12-3 
statement 11-6 

execution 11-8 
transfer 

into the range of a DO-loop 11-9 
of control 3-5 

type 
and result for x1+x 2 , Table 2 6-5 
and result for X1**X2, Table 3 6-6 

INDEX 

character 4-5 • 
complex 4-4 
double precision 4-3 
integer 4-3 
logical 4-5 
of arithmetic expression 6-4 
rea I 4-3 

type-statement 8-5 
unconditional GO TO statement 11-1 
undefined 2-4 

events that cause entity to become 17-4 
unformatted 

data transfer 12-15 
input/output statement 12-11 
record 12-2 

unit 12-6 
connection 12-6, 8-6 
existence 12-6 
identifier, external 12-7 
identifying a 12-14 
INQUIRE by 12-23 
open of a connected 12-20 
specifier 12-7 

unsigned constant 4-2 
upper dimension bound 5-1 
value separator 13-13 
variable 2-3, 11-6, 18-4, 8-15, 8-3 

as dummy argument 15-18 
implied-DO 9-2 

width, field 13-5 
WRITE statement 12-10 
writing 12-1 
zero 4-2, 8-3 

control 12-20, 13-8 

Page INDEX-18 Fu I I Language 









American National Standards 
on Computers 
and Information Processing 

X3.1-1976 Synchronous Signaling Rates for Data Transmission 

X3.2-197o (R1976) Print Specifications for Magnetic Ink Character 
Recognition 

X3.3-1970 (R1976) Bank Check Specifications for Magnetic Ink 
Character Recognition 

X3.4-1977 Code for Information Interchange 

X3.S.1970 Flowchart Symbols and Their Usage in Information 
Processing 

X3.6-1965 (R1973) Perforated Tape Code for Information Interchange 

X3.9-1978 FORTRAN 

X3. 11-1969 Specification for General Purpose Paper Cards for In­
formation Processing 

X3.14-1973 Recorded Magnetic Tape for Information Interchange 
(200 CPI, NAZI) 

X3.15-1976 Bit Sequencing of the American National Standard Code 
for Information Interchange in Serial-by-Bit Data Transmission 

X3.16-1976 Character Structure and Character Parity Sense for Serial­
by-Bit Data Communication in the American National Standard Code 
for Information Interchange 

X3.17-1977 Character Set and Print Quality for Optical Character 
Recognition (OCR-A) 

X3.18-19i4 One-Inch Perforated Paper Tape for Information Inter­
change 

X3.19-1974 Eleven-Sixteenths-Inch Perforated Paper Tape for Infor­
mation Interchange 

X3.20-1967 (R1974) Take-Up Reels for One-Inch Perforated Tape 
for Information Interchange 

X3.21-1967 Rectangular Holes in Twelve-Row Punched Cards 

X3.22-1973 Recorded Magnetic Tape for Information Interchange 
(800 CPI, NAZI) 

X3.23-1974 Programming Language COBOL 

X3.24-1968 Signal Quality at Interface between Data Processing 
Terminal Equipment and Synchronous Data Communication Equip­
ment for Serial Data Transmission 

X3.25-1976 Character Structure and Character Parity Sense for 
Parallel-by-Bit Communication in the American National Standard 
Code for Information Interchange 

X3.26-1970 Hollerith Punched Card Code 

X3.27-1977 Magnetic Tape Labels and File Structure for Informa­
tion Interchange 

X3.28-1976 Procedures for the Use of the Communication Control 
Characters of American National Standard Code for Information 
Interchange in Specified Data Communication Links 

X3.29-1971 Specifications for Properties of Unpunched Oiled Paper 
Perforator Tape 

X3.30-1971 Representation for Calendar Date and Ordinal Date for 
Information Interchange 

X3.31-1973 Structure for the Identification of the Counties of the 
United States for Information Interchange 

X3.32-1973 Graphic Representation of the Control Characters of 
American National Standard Code for Information Interchange 

American National Standards Institute, Inc 
1430 Broadway 
New York, N.Y. 10018 

X3.34-1972 Interchange Rolls of Perforated Tape for Information 
Interchange 

X3.36-1975 Synchronous High-Speed Data Signaling Rates between 
Data Terminal Equipment and Data Communication Equipment 

X3.37-1977 Programming Language APT 

X3.38-1972 Identification of States of the United States (Including 
the District of Columbia) for Information Interchange 

X3.39-1973 Recorded Magnetic Tape for Information Interchange 
(1600 CPI, PE) 

X3.40-1976 Unrecorded Magnetic Tape for Information Interchange 
(9-Track 200 and 800 CPI, NAZI, and 1600 CPI, PE) 

X3.41-1974 Code Extension Techniques for Use with the 7-Bit 
Coded Character Set of American National Standard Code for Infor­
mation Interchange 

X3.42-1975 Representation of Numeric Values in Character Strings 
for Information Interchange 

X3.43-1977 Representations of Local Time of the Day for Informa­
tion Interchange 

X3.44-1974 Determination of the Performance of Data Communica­
tion Systems 

X3.45-1974 Character Set for Handprinting 

X3.46-1974 Unrecorded Magnetic Six-Disk Pack (General, Physical, 
and Magnetic Characteristics) 

X3.47-1977 Structure for the Identification of Named Populated 
Places and Related Entities of the States of the United States for 
Information Interchange 

X3.48-1977 Magnetic Tape Cassettes for Information Interchange 
(3.810-mm [0.150-in] Tape at 32 bpmm [800 bpi]. PEI 

X3.49-1975 Character Set for Optical Character Recognition (OCR-Bl 

X3.50-1976 Representations for U.S. Customary, SI, and Other 
Uriits to Be Used in Systems with Limited Character Sets 

X3.51·1975 Representations of Universal Time, Local Time Differ­
entials, and United States Time Zone References for Information 
Interchange 

X3.52-1976 Unrecorded Single-Disk Cartridge (Front Loading, 
2200 BPI), General, Physical, and Magnetic Requirements 

X3.53-1976 Programming Language PL/I 

X3.54-1976 Recorded Magnetic Tape for Information Interchange 
(6250 CPI, Group Coded Recording) 

X3.55-1977 Unrecorded Magnetic Tape Cartridge for Information 
Interchange, 0.250 Inch (6.30 mm), 1600 bpi (63 bpmm), Phase 
Encoded 

X3.56-1977 Recorded Magnetic Tape Cartridge for Information 
Interchange 4 Track, 0.250 Inch (6.30 mm), 1600 bpi (63 bpmml. 
Phase Encoded 

X3.57-1977 Structure for Formatting Message Headings for lnfor· 
mation Interchange Using the American National Standard Code for 
Information Interchange for Data Communication System Control 

X3.58-1977 Unrecorded Eleven-Disk Pack General, Physical, and 
Magnetic Requirements 

X3.60-1978 Minimal BASIC 

X3/TRl-77 Dictionary for Information Processing (Technical 
Report) 


