ANSI X3.124-1985
(includes ANSI X3.124.1-1985)

American National Standard

for information systems —

computer graphics —
graphical kernel system (GKS)
functional description

[Te]
o0
(=2}
i
<
N
-
™M
x
7
2
¢

®

american national standards institute, inc.
1430 broadway, new york, new york 10018 -

This standard has been adopted for Federal Government use.

Details concerning its use within the Federal Government are contained in Federal Infor-
mation Processing Standards Publication 120, Graphical Kernel System (GKS). For a
complete list of the publications available in the Federal Information Processing Stan-
dards Series, write to the Standards Processing Coordinator (ADP), Institute for Com-
puter Sciences and Technology, National Bureau of Standards, Gaithersburg, MD 20899.

ANSI®
X3.124-1985

(includes ANSI X3.124.1-1985)

American National Standard
for Information Systems —

Computer Graphics -
Graphical Kernel System (GKS)
Functional Description

Secretariat

Computer and Business Equipment Manufacturers Association

Approved June 24, 1985

American National Standards Institute, Inc

Abstract

The graphical kernel system (GKS) is a set of basic functions for computer graphics program-
ming useable by many graphics producing applications. This standard (1) allows graphics appli-
cation programs to be easily transported between installations, (2) aids graphics applications
programmers in understanding and using graphics methods, and (3) guides device manufacturers
on useful graphics capabilities.

This standard defines an application level programming interface to a graphics system. Hence,
it contains functions for (1) outputting graphical primitives, (2) controlling the appearance of
graphical primitives with attributes, (3) controlling graphical workstations, (4) controlling trans-
formations and coordinate systems, (5) generating and controlling groups of primitives called
segments, (6) obtaining graphical input, (7) manipulating groups of device-independent instruc-
tions called metafiles, (8) inquiring the capabilities and states of the graphics system, and
(9) handling errors. Twelve upwardly compatible levels of conformance are defined, addressing
the most common classes of equipment and applications.

American
National
Standard

Published by

Approval of an American National Standard requires verification by ANSI that the re-
quirements for due process, consensus, and other criteria for approval have been met by
the standards developer.

Consensus is established when, in the judgment of the ANSI Board of Standards Review,
substantial agreement has been reached by directly and materially affected interests. Sub-
stantial agreement means much more than a simple majority, but not necessarily unanim-
ity. Consensus requires that all views and objections be considered, and that a concerted
effort be made toward their resolution.

The use of American National Standards is completely voluntary; their existence does not
in any respect preclude anyone, whether he has approved the standards or not, from man-
ufacturing, marketing, purchasing, or using products, processes, or procedures not con-
forming to the standards.

The American National Standards Institute does not develop standards and will in no cir-
cumstances give an interpretation of any American National Standard. Moreover, no per-
son shall have the right or authority to issue an interpretation of an American National
Standard in the name of the American National Standards Institute. Requests for inter-
pretations should be addressed to the secretariat or sponsor whose name appears on the
title page of this standard.

CAUTION NOTICE: This American National Standard may be revised or withdrawn at
any time. The procedures of the American National Standards Institute require that
action be taken to reaffirm, revise, or withdraw this standard no later than five years from
the date of approval. Purchasers of American National Standards may receive current infor-
mation on all standards by calling or writing the American National Standards Institute.

American National Standards Institute
1430 Broadway, New York, New York 10018

Copyright © 1985 by American National Standards Institute, Inc

All rights reserved.

No part of this publication may be reproduced in any form,
in an electronic retrieval system or otherwise, without
the prior written permission of the publisher.

Printed in the United States of America

PC2M387/40

(This Foreword is not part of American National Standard X3.124-1985.)
Foreword

This American National Standard provides a set of basic functions for computer graphics
programming. These functions taken as a whole are called the graphical kernel system
(GKS). The design of this standard is based on the work of many groups. Much of the
early design methodology was developed at the Werkshop on Graphics Standards Meth-
odology held in May 1976 in Seillac, France, under IFIP WGS5 .2 sponsorship. GKS itself
was originally developed by Deutsches Institut fiir Normung (DIN), the West German
standardization institute, in 1978 and was subsequently refined extensively between 1980
and 1982 by Working Group 2 of the Subcommittee on Programming Languages of the
Technical Committee on Information Processing of the International Organization for
Standardization (ISO TC 97/SC5/WG2). The resulting International Standard (Informa-
tion Processing — Computer Graphics — Graphical Kernel System (GKS) Functional
Description, ISO 7942-1985) was the basis for this American National Standard. The de-
velopment of the GKS was heavily influenced by the work of the Graphic Standards
Planning Committee of the Special Interest Group on Computer Graphics of the Associa-
tion for Computing Machinery (ACM SIGGRAPH GSPC). This work, known as the Core
System Proposal, was published and widely distributed in 1977 and again (in a revised
version) in 1979.

This American National Standard on GKS is identical to ISO 7942-1985 (GKS) in almost
all areas, All functional capabilities of ISO GKS are found in the ANSI GKS . The ANSI
GKS does, however, differ in the following ways:

(1) A new minimal output level (denoted m) is defined.

(2) A new section defining a conforming program and a conforming implementation
replaces a more restrictive conformance statement found in the body of the ISO GKS
standard document.

(3) Several of the Annexes in the ISO GKS document have been modified. Also, the
word “Annex” has been changed to “Appendix.”

(4) The default for ASFs is INDIVIDUAL.

(5) The data records for INPUT have been defined.

Appendix G contains a detailed list of all the differences betwen ANSI X3.124-1985 and
ISO 7942-1985.

This standard is supplemented by a derivative standard, American National Standard for
Information Systems — Computer Graphics — Graphical Kernel System (GKS) FORTRAN
Binding, ANSI X3.124.1-1985. ANSI X3.124-1985 corresponds to ISO 7942-1985 in
that it represents the functional aspects of GKS. ANSI X3.124.1-1985 contains specifica-
tions not present in this standard, namely, the syntax for using GKS functions and data
types from American National Standard Programming Language FORTRAN, ANSI X3.9-
1978, colloquially known as FORTRAN ’77. Three additional language bindings of GKS
are under development by Technical Committee X3H3: Pascal, Ada, and C. These stan-
dards, when approved by X3 and ANSI, will be published as ANSI X3.124.2,X3.124.3,
and X3.124 .4, respectively. Internationally, these language bindings of GKS will be pub-
lished as parts of a multipart ISO standard, currently known as ISO/DP 8651-1984.

This standard was developed by Technical Committee X3H3 of Accredited Standards
Committee X3 under two projects authorized by X3; namely, project 268D and project
362D. More specifically, GKS, as a whole, meets the goals of project 268D, while the
minimal output level m found in this American National Standard, but not present in
ISO 7942-1985, meets the goals of project 362D.

This standard was approved as an American National Standard by the American National
Standards Institute on June 24, 1985.

Suggestions for improvement of this standard will be welcome. They should be sent to
the Computer and Business Equipment Manufacturers Association, 311 First Street, NW,
Suite 500, Washington, DC 20001.

This standard was processed and approved for submittal to ANSI by Accredited Standards
Committee on Information Processing Systems, X3. Committee approval of the standard
does not necessarily imply that all committee members voted for its approval. At the time
it approved this standard, the X3 Committee had the following members:

Edward Lohse, Chair
Catherine A. Kachurik, Administrative Secretary

Organization Represented Name of Representative
American Library Association. o oo Paul Peters
American Nuclear SOCIEtY v v v v i i i e e e e e e e e e Geraldine C. Main
D. R. Vondy (Alt)
AMP Incorporated e Patrick E. Lannan
Edward Kelly (Alt)
Association of AmericanRailroads0 L. R. A. Petrash
Association for Computing Machinery 0. Kenneth Magel

Jon A. Meads (Alt)
Association of the Institute for Certification of

Computer Professionals Thomas M. Kurihara
Ardyn E. Dubnow (Alt)
AT&T Corporation v vt vt e et e e e e e e e e e e Henry L. Marchese

Stuart H. Garland (Alt)
Richard Gibson (Alt)

AT&T Information Systems. v i it i et e Herbert V. Bertine
Paul D. Bartoli (Alt)
Burroughs Corporation. i e Ira R. Purchis
Stanley Fenner (Alt)
Control Data Corporation i ittt e e e Charles E. Cooper
Keith Lucke (Alt)
Cooperating Users of Burroughs Equipment. Thomas Easterday
Donald Miller (Alt)
Data General Corporation o v v it it i e John Pilat
Lyman Chapin (Alt)
Data Processing Management Association Christian G. Meyer
Digital Equipment Computer Users Society Paula Morin
Digital Equipment Corporation.o v vttt ittt Lois C. Frampton

Gary S. Robinson (Alt)
Delbert L. Shoemaker (Alt)

General ElectricCompany i e William R. Kruesi
General Services Administration William C. Rinehuls
Larry L. Jackson (Alt)
GUIDE International. e Frank Kishenbaum
Thomas F. O’Leary, Jr (Alt)
Harris Corporation ottt i i e Sam Mathan
Rajiv Sinha (Alt)
Hewlett-Packard. e Donald C. Loughry
Honeywell Information Systems, Thomas J. McNamara
David M. Taylor (Alt)
IBM Corporation i e e e e e e e e e Mary Anne Gray
Robert H. Follett (Alt)
IEEE Computer SOCIetY v v v v i e et e e e e e e e e e e Sava I. Sherr

David Gelperin (Alt)
Thomas A. Varetoni (Alt)

Lawrence Berkeley Laboratory 0 it David F. Stevens

John S. Colonias (Alt)
Life Office Management Association James J. Merrick

James F. Foley, Jr (Alt)
Moore Business Forms Delmer H. Oddy
National Bureau of Standards Robert E. Rountree

James H. Burrows (Alt)
National Communications System Marshall L. Cain

George W. White (Alt)
NCR Corporation.o v i vt e e e e e e e e e e et Thomas W. Kern

A. R. Daniels (Alt)
Perkin-Elmer Corporation e Christopher Beling

Russ Lombardo (Alt)
Prime Computer,Inc. Andrew F. Burlingame

Jacqueline Barbour (Alt)
Recognition Technology Users Association HerbertF.Schantz

G. W. Wetzel (Alt)

Organization Represented

SHARE, INC. e e e e e

Sperry Corporation. e
Texas Instruments, Inc. e

BMCOMPANY . . v v v et e
Travelers Insurance Companies, Inc

U.S. Department of Defense

Wang Laboratories, Inc. o e e

Xerox Corporation L e

Name of Representative

Thomas B. Steel

Daniel Schuster (Alt)
Marvin W. Bass

Presley Smith

Richard F. Trow, Jr (Alt)
J. Wade Van Valkenburg
Joseph T. Brophy

Belkis Leong-Hong

Fred Virtue (Alt)

Chris Tanner

Madeleine Sparks (Alt)
Marsha Hayek

Joseph St. Amand (Alt)
John L. Wheeler

Arthur R. Machell (Alt)

Technical Committee X3H3 on Computer Graphics, which developed the draft proposals,
which held the U.S. Technical Advisory Group responsibilities for ISO TC 97/SC5/WG2,
and through which this standard was completed, had the following members:

Peter R. Bono, Chair
(Athena Systems)

Barry Shepherd, Vice-Chair

(IBM)

Randall L. Simons, Secretary

(Sandia, NM)
Janet Chin, International
Representative
(Tymshare, Inc)

David C. Bailey
(Sanders Associates)

Jerry Bedrick
(Wang Laboratories)

John Blair
(Mindset Corporation)

Robert Bruns
(Megatek)

Albert Bunshaft
(RPI)

Debbie Cahn
(LBL)

Fred Canfield
(Systonetics, Inc)

George S. Carson
(GSC Associates)

Tom Clarkson
(GSS)

Bruce Cohen
(Intel)

Geraldine Cuthbert
(Harris)

Warren Dale
(Calma)

Richard Ehlers
(E&S)

Sam Gill
(Benson)

Jim Hargrove
(Data General)

Terry Harney
(Hughes Aircraft)

Lofton Henderson
(NCAR)

Margaret Journey
(Precision Visuals)

Jim Kearney
(US Army)

Fred Langhorst
(Digital Research)

Olga Lapczak
(Norpak)

Allen Leinwand
(Olivetti)

K. C. Leung
(Computer Sciences)
Chris Mannhardt
(BNR)
Tom Morrissey
(Hewlett-Packard)
Paul Norman
(Imlac Corporation)
Brian Plunkett
(Houston Instrument)
Tom Powers
(DEC)
L. Preheim
JPL)
Richard F. Puk
(Puk Consulting Services)
Tom Reed
(LANL)
Jeff Rowe
(Lawrence Livermore
National Laboratory)
Kurt Schmucker
(NSA)
Chuck Seum
(CDC)
David Shuey
(McAuto)
Mark Skall
(NBS)
Elaine Sonderegger
(SIGGRAPH)
Norman Soong
(Sperry)
Madeleine Sparks
(SDC)
Richard Stout
(SAD
David Straayer
(Tektronix)
Meredith L. Whyles
(Amoco Production)
Thomas Wright
(ISSCO)

Contents

0 Introduction
0.1 Conformance
1 Scope and Field of Application
2 References
3 Definitions
4 The Graphical Kernel System
4.1 The Standard
4.1.1 Specification
4.1.2 Registration
4.2 Introduction
4.3 Concepts
4.4 Graphical output
4.4.1 Output primitives
4.4.2 Output primitive attributes
4.4.3 Polyline attributes
4.4.4 Polymarker attributes
4.4.5 Text attributes
4.4 .6 Fill area attributes
4.4.7 Cell array attributes
4.4.8 Generalized Drawing Primitive attributes
4.4.9 Colour
4.5 Workstations
4.5.1 Workstation characteristics
4.5.2 Selecting a workstation
4.5.3 Deferring picture changes
4.5.4 Clearing the display surface
4.5.5 Elimination of primitives outside segments
4.5.6 Sending messages to a workstation
4.6 Coordinate systems and transformations
4.6.1 Normalization transformations
4.6.2 Clipping
4.6.3 Workstation transformations
4.6.4 Transformation of locator input
4.6.5 Transformation of stroke input
4.7 Segments
4.7.1 Introduction to segments
4.7.2 Segment attributes
4.7.3 Segment transformations
4.7.4 Clipping and WD SS
4.7.5 Workstation Independent Segment Storage
4.7.6 WISS functions and clipping
4.8 Graphical input
4.8.1 Introduction to logical input devices
4.8.2 Logical input device model
4.8.3 Operating modes of logical input devices
4.8.4 Measures of each input class
4.8.5 Input queue and current event report
4.8.6 Initialisation of input devices
4.9 GKS Metafile interface
4.10 GKS levels
4.10.1 Introduction
4.10.2 The level structure
4.10.3 Level functionality

Contents

4.11 States of GKS and inquiry functions 67
4.11.1 Description of states 67
4.11.2 Inquiry functions 68

4.12 Error handling 69
4.12.1 Reserved errors 70

4.13 Special interfaces between GKS and the application program 72

5 GKS Functions 73

5.1 Notational Conventions 73

5.2 Control Functions 74

5.3 Output Functions 82

5.4 Output A ttributes 89
5.4.1 Workstation Independent Primitive Attributes 89
5.4.2 Workstation Attributes (Representations) 100

5.5 Transformation Functions ; 107
5.5.1 Normalization Transformation 107
5.5.2 Workstation Transformation 109

5.6 Segment functions 111
5.6.1 Segment manipulation functions 111
5.6.2 Segment attributes 115

5.7 Input Functions 119
5.7.1 Initialisation of Input Devices 119
5.7.2 Setting Mode of Input Devices 128
5.7.3 Request Input Functions 131
5.7.4 Sample Input Functions 135
5.7.5 Event Input Functions ; 138

5.8 Metafile Functions 142

5.9 Inquiry Functions 144
5.9.1 Introduction 144
5.9.2 Inquiry Function for Operating State Value 144
5.9.3 Inquiry Functions for GKS Description Table 145
5.9.4 Inquiry functions for GKS state list 146
5.9.5 Inquiry functions for workstation state list 153
5.9.6 Inquiry functions for workstation description table 170
5.9.7 Inquiry functions for segment state list 189
5.9.8 Pixel inquiries 190
5.9.9 Inquiry function for GKS error state list 192

5.10 Utility Functions 193

5.11 Error Handling 195

6 GKS data structures 197

6.1 Notation and data types 197

6.2 Operating state 199

6.3 GKS description table 200

6.4 GKS state list 201

6.5 Workstation state list 203

6.6 Workstation description table 206

6.7 Segment state list 210

6.8 GKS error state list 211

A Function lists 213

A.1 Alphabetic 213

A .2 Order of appearance 216
A.2.1 Control functions5.2 216
A.2.2 Output functions5.3 ; : 216
A.2.3 Output attributes5.4 217

A.2.4 Transformation functions5.5 217

Contents

A.2.5 Segment functions5.6
A.2.6 Input functions5.7
A.2.7 Metafile functions5.8
A.2.8 Inquiry functions5.9
A.2.9 Utility functions5.10
A.2.10 Error handling5.11
A.3 Ordered by level
A.3.1 Level ma
A.3.2 Level mb
A.3.3 Level mc
A.3.4 Level 0a
A.3.5 Level 0b
A.3.6 Level Oc
A.3.7 Level 1a
A.3.8 Level 1b
A.3.9 Level 1c
A.3.10 Level 2a
A.3.11 Level 2b
A.3.12 Level 2¢
A .4 Ordered by state
A.4.1 Functions allowed in state GKCL
A.4.2 Functions allowed in state GKOP
A .4.3 Functions not allowed in state WSOP
A.4.4 Functions not allowed in state WSAC
A .4.5 Functions not allowed in state SGOP

A.5 Applicability to workstation groups
B Error list

B.1 Implementation dependent

B.2 States

B.3 Workstations

B.4 Transformations

B.5 Output attributes

B.6 Output primitives

B.7 Segments

B.8 Input

B.9 Metafiles

B.10 Escape

B.11 Miscellaneous

B.12 System

B.13 Reserved errors
C Interfaces

C.1 Introduction

C.2 Language Binding

C.3 Implementation

D Allowable differences in GKS implementations

D.1 Introduction
D .2 Global differences
D .3 Workstation dependent differences
E Metafile structure
E.1 Metafiles
E.1.1 Introduction
E.1.2 ISO 8632
E.1.3 Metafile designed for GKS
E.2 File format and data format

218
218
219
219
221
221
221
221
222
222
223
223
223
224
224
225
225
225
225
225
225
225
226
226
226
226
231
231
231
231
231
232
232
233
233
233
233
233
233
234
235
235
235
236
239
239
239
240
243
243
243
243
244
244

Contents

E.3 Generation of metafiles
E.4 Interpretation of metafiles
E.4.1 Introduction
E.4.2 Control items
E.4.3 Output primitives
E.4.4 Output primitive attributes
E.4.5 Workstation attributes
E.4.6 Transformations
E.4.7 Segment manipulation
E.4.8 Segment attributes
E.5 Control items
E.6 Items for output primitives
E.7 Items for output primitive attributes
E.8 Items for workstation attributes
E.9 Items for transformations
E.10 Items for segment manipulation
E.11 Items for segment attributes
E.12 User items
F GKS functions summary
F.1 Control functions
F.2 Output functions
F.3 Output attributes
F.3.1 Workstation independent primitive attributes
F.3.2 Workstation attributes (representations)
F.4 Transformation functions
F.4.1 Normalization transformation
F.4.2 Workstation transformation
F.5 Segment functions
F.5.1 Segment manipulation functions
F.5.2 Segment attributes
F.6 Input functions
F.6.1 Initialisation of input devices
F.6.2 Setting mode of input devices
F.6.3 Request input functions
F.6.4 Sample input functions
F.6.5 Event input functions
F.7 Metafile functions
F.8 Inquiry functions
F.9 Utility functions
F.10 Error handling -
G Differences Between ANS GKS and ISO GKS

245
248
248
248
248
248
248
248
248
248
248
251
252
255
256
256
257
258
259
259
259
260
260
261
261
261
261
262
262
262
262
262
263
263
263
264
264
265
265
265
267

American National Standard
for Information Systems -

Computer Graphics —
Graphical Kernel System (GKS)
Functional Description

0 Introduction

The Graphical Kernel System (GKS) provides a set of functions for computer graphics pro-
gramming. GKS is a basic graphics system that can be used by the majority of applications that
produce computer generated pictures.

The main reasons for introducing a standard for basic computer graphics are:
a) to allow application programs involving graphics to be easily portable between different
installations;
b) to aid the understanding and use of graphics methods by application programmers;
c) to serve manufacturers of graphics equipment as a guideline in providing useful combina-
tions of graphics capabilities in a device.
In order to reach these main objectives, the GKS design was based on the following require-
ments:
d) GKS should include all the capabilities that are essential for a broad spectrum of graph-
ics, from simple passive output to highly interactive applications.

e) The whole range of graphics devices, including vector and raster devices, microfilm
recorders, storage tube displays, refresh displays and colour displays should be controllable
by GKS in a uniform way.
f) GKS should provide all the capabilities required by a majority of applications without
becoming unduly large.
These requirements were used to formulate a number of principles that were used to judge
specific design alternatives. Thus it was possible to contribute to the overall design goais while
focussing on certain aspects. Five design aspects were identified, each having a group of princi-
ples

g) Design goals: The following principles should not be violated by any technical design:

1) consistency: the mandatory requirements of GKS should not be mutually contradic-
tory;

2) compatibility: other standards or commonly accepted rules of practice should not be
violated;

3) orthogonality: the functions or modules of GKS should be independent of each otker,
or the dependency should be structured and well defined.

h) Functional capabilities: The following principles were used to define the extent of GKS:

1) completeness: all functions that a majority of applications want to use on a given level
of functionality should be included,

Page 1

2) minimality: functions that are unnecessary for applications of a given level of func-
tionality should not be provided;

3) compactness: an application should be able to achieve a desired result by a set of
functions and parameters that is as small as possible;

4) richness: a rich set of functions offers an extensive range of facilities that stretches
beyond the basic functions and includes higher order capabilities.

It is obvious that there is a trade off between the principles in this group. Therefore, the func-
tions of GKS are organized in twelve levels. An implementation of GKS provides at least the
functions of one of these levels. While the lowest level contains only a minimal set of func-
tions, higher levels are allowed to extend beyond the basic needs towards greater richness.
i) User interface design: The following principles were used to define the user interface
design:

1) user friendliness: GKS should allow the design of a desirable user interface;

2) clarity: the concepts and functional capabilities of GKS should be easily understand-
able, especially by the application programmer;

3) error handling: failure of system functions or modules, caused by errors of the system
itself or by the application program, should be treated in such a way that the error reac-
tion is clearly understandable and informative to the application programmer and that the
impact on the system and the application program is as small as possible.

Clarity and sound error handling are essential parts of user friendliness. Error handling is
an integral part of GKS. To aid clarity, the system and its state can be presented to the user
in an easily comprehensible manner.

Clarity applies not only to the system design but also to the system description. To this end,
the GKS specification is divided into a general description, a description of the underlying
logical data structures representing the state of the system, and a description of the func-
tions and their effects on these data structures.

j) Graphics devices: The following principles are associated with the range of graphics dev-
ices that can be addressed by GKS:

1) device independence: GKS functions should be designed to allow an application pro-
gram, using these functions, to address facilities of quite different graphics output and
input devices without modification of the program structure;

2) device richness: the full capabilities of a wide range of different graphics output and
input devices should be accessible from the functions of GKS.

These principles led to a fundamental concept underlying the GKS architecture: the concept
of multiple independent graphical workstations connected to and driven by GKS. The appli-
cation program can inquire the capabilities of every workstation. The GKS design includes
escape functions that are easily identifiable within an application program and can be used to
access special facilities of a particular device.

k) Implementation: The last group of principles is related to the implementation of GKS:

1) implementability: it should be possible to support the GKS functions in most host
languages, on most operating systems and with most graphics devices;

2) language independence: it should be possible to access the standard facilities of GKS
from all ISO standard programming languages;

3) efficiency: GKS should be capable of being implemented without time consuming
algorithms;

4) robustness: the operator and application programmer should be protected in the best
possible way from hardware or software failure of the system.

Page 2

The five groups of principles are interconnected. For example, design goals and functional
capabilities both contribute to user friendliness. Efficiency is also important when considering
response time in an interactive environment. Some principles may be conflicting, such as rich-
ness versus minimality, comprehensive error handling versus efficiency, and compactness
versus device richness. Compromises needed to be made to achieve the overall design objec-
tive: GKS should have an easily comprehensible structure and a set of functions that enables a
vast majority of computer graphics users to design portable, device independent application pro-
grams addressing the whole range of computer graphics equipment.

0.1 Conformance

An implementation conforms to a specific level of this standard if it provides, at least, all the
functions specified in that level, but not all the functions of the next higher level. Any func-
tion specified by the standard that is provided by an implementation must execute according to
the semantics specified in this standard. In addition, an implementation may provide functions
not specified in any level of this standard as long as these extensions do not cause standard
functions to execute incorrectly. These extensions should be constructed to obey the philoso-
phy of GKS.

A program conforms to a specific level of this standard if it does not use any functions outside
of that level.

To conform to the standard, an implementation or program that is written for a language for

which a standard binding has been developed must use the syntax specified in that language
binding.

Page 3

1 Scope and Field of Application

This American National Standard specifies a set of functions for computer graphics program-
ming, the Graphical Kernel System (GKS). GKS is a basic graphics system for applications
that produce computer generated two dimensional pictures on line graphics or raster graphics
output devices. It supports operator input and interaction by supplying basic functions for
graphical input and picture segmentation. It allows storage and dynamic modification of pic-
tures. A fundamental concept in GKS is the workstation, consisting potentially of a number of
input devices and a single output device. Several workstations can be used simultaneously. The
application program is allowed to adapt its behaviour at a workstation to make best use of
workstation capabilities. This standard includes functions for storage on and retrieval from an
external graphics file. Last, but not least, the functions are organized in upward compatible lev-
els with increasing capabilities.

For certain parameters of the functions, GKS defines value ranges as being reserved for regis-
tration or future standardization. The meanings of these values will be defined using the pro-
cedures established in an International Standard under development (Procedures for registration
of graphical items).

Part 1 of GKS defines only a language independent nucleus of a graphics system. For integra-
tion into a language, GKS is embedded in a language dependent layer containing the language
conventions, for example, parameter and name assignment. Language bindings are contained
in Part 2.

The appendicies are given for information; they do not form part of the specification.

Page 4

2 References

ANSI X3.4-1977
ISO 7942

ISO 646
ISO 2022

ISO 2382/13
1SO 6093 1)

15O 8632 1)

1) In course of preparation

7-bit coded character set for information processing interchange

Information Processing, Graphical Kernel System (GKS), Functional
Description

7-bit coded character set for information processing interchange

Information processing - ISO 7-bit and 8-bit coded character sets - Code
extension techniques

D ata processing - Vocabulary - Section 13: Computer Graphics

Information processing - Representation of numeric values in character
strings for information interchange

Information processing - Computer graphics - Metafile for transfer and
storage of picture description information

Part 1 : Functional description
Part 2 : Character encoding
Part 3 : Binary encoding

Part 4 : Clear text encoding

Page 5

3 Definitions

This section gives the definition of the important terms of the Graphical Kernel System (GKS).
NO;I'E. As far as possible, commonly accepted graphics terminology is used.

3.1 acknowledgement: Output to the operator of a logical input device indicating that a trigger
has fired.

3.2 aspect ratio: A ratio of x to y used to describe the shape of a rectangle in a particular coor-
dinate system (for example, of a workstation window or a workstation viewport).

3.3 aspects of primitives: Ways in which the appearance of a primitive can vary. Some aspects
are controlled directly by primitive attributes; some can be controlled indirectly through a bun-
dle table. Primitives inside segments have an aspect controlled through the segment containing
them, for example highlighting; primitives outside segments do not.

3.4 attribute: A particular property that applies to a display element (output primitive) or a seg-
ment. Examples: highlighting, character height. In GKS, some properties of workstations are
called workstation attributes.

3.5 baseline: A horizontal line within a character body (see figure 3) which, for many character

definitions, has the appearance of being a lower limit of the character shape. A descender
passes below this line. All baselines in a font are in the same position in the character bodies.

3.6 bundle index: An index into a bundle table for a particular output primitive. It defines the
workstation dependent aspects of the primitive.

3.7 bundle table: A workstation dependent table associated with a particular output primitive.
Entries in the table specify all the workstation dependent aspects of a primitive. In GKS, bun-
dle tables exist for the following output primitives: polyline, polymarker, text and fill area.

3.8 capline: A horizontal line within a character body (see figure 3) which, for many character
definitions, has the appearance of being the upper limit of the character shape. An ascender
may pass above this line and in some languages an additional mark (for example an accent)
over the character may be defined above this line. All caplines in a font are in the same posi-
tion in the character bodies.

3.9 cell array: A GKS output primitive consisting of a rectangular grid of equal size rectangular
cells, each having a single colour.

NOTE. These cells do not necessarily map one-to-one with pixels.

3.10 centreline: A vertical line bisecting the character body (see figure 3).

3.11 character body: A rectangle used by a font designer to define a character shape (see figure
3). All character bodies in a font have the same height.

3.12 cholce device: A GKS logical input device providing a non-negative integer defining one of
a set of alternatives.

3.13 clipping: Removing parts of display elements that lie outside a given boundary, usually a
window or viewport.

3.14 colour table: A workstation dependent table, in which the entries specify the values of the
red, green and blue intensities defining a particular colour.

3.15 coordinate graphics; line graphics: Computer graphics in which display images are gen-
erated from display commands and coordinate data.

3.16 device coordinate (DC): A coordinate expressed in a coordinate system that is device
dependent. In GKS, DC units are metres on a device capable of producing a precisely scaled
image and appropriate workstation dependent units otherwise.

3.17 device driver: The device dependent part of a GKS implementation intended to support a
graphics device. The device driver generates device dependent output and handles device
dependent interaction.

Page 6

Definitions

3.18 device space: The space defined by the addressable points of a display device.

3.19 display device; graphics device: A device (for example refresh display, storage tube
display, plotter) on which display images can be represented.

3.20 display image; picture: A collection of output primitives or segments that are represented
together at any one time on a display surface.

3.21 display space: (1) That portion of the device space corresponding to the area available for
displaying images. (2) The working space of an input device such as a digitiser.

3.22 display surface; view surface: In a display device, that medium on which display images
may appear.

3.23 echo: The immediate notification of the current value provided by an input device to the
operator at the display console.

3.24 escape: A function in GKS used to access implementation or device dependent features,
other than for the generation of graphical output, that are not otherwise addressed by GKS.
3.25 feedback: Output indicating to the operator the application program’s interpretation of a
logical input value.

3.26 fill area: A GKS output primitive consisting of a polygon (closed boundary) which may be
hollow or may be filled with a uniform colour, a pattern, or a hatch style.

3.27 flll area bundle table: A table associating specific values for all workstation dependent
aspects of a fill area primitive with a fill area bundle index. In GKS, this table contains entries
consisting of interior style, style index, and colour index.

3.28 Generalized Drawing Primitive (GDP): An output primitive used to address special
geometrical workstation capabilities such as curve drawing.

3.29 GKS level: Two values from the sets (m,0,1,2) and (a,b,c) which together define the
minimal functional capabilities provided by a specific GKS implementation.

3.30 GKS Metafile (GKSM): A sequential file that can be written or read by GKS and is used
for long-term storage (and for transmittal and transferral) of graphical information.

3.31 halfline: A horizontal line between the capline and the baseline within the character body
(see figure 3), about which a horizontal string of characters in a font would appear centrally
placed in the vertical direction. All halflines in a font are in the same position in the character
bodies.

3.32 hatch: One possible method of filling the interior of a polygon specified by a fill area prim-
itive. The interior is filled with an arrangement of one or more sets of parallel lines.

3.33 highlighting: A device independent way of emphasizing a segment by modifying its visual
attributes. For example, blinking.

3.34 implementation mandatory: Implementation mandatory describes a property that is
required to be realized identically on all workstations of all implementations of GKS.

3.35 input class: A set of input devices that are logically equivalent with respect to their func-
tion. In GKS, the input classes are: LOCATOR, STROKE, VALUATOR, CHOICE, PICK and
STRING.

3.36 inquiry function: A GKS function whose purpose is to return values depending on the
current state of GKS or on some fixed property of the GKS implementation. There is no effect
on the state of GKS or on the display image.

3.37 locator device: A GKS logical input device providing a position in world coordinates and a
normalization transformation number.

3.38 logical input device: A logical input device is an abstraction of one or more physical dev-

ices that delivers logical input values to the program. Logical input devices in GKS can be of
type LOCATOR, STROKE, VALUATOR, CHOICE, PICK and STRING.

Page 7

Definitions

3.39 logical input value: A value delivered by a logical input device.
3.40 marker: A glyph with a specified appearance which is used to identify a particular location.

3.41 measure: A value (associated with a logical input device), which is determined by one or
more physical input devices, and 2 mapping from the values delivered by the physical devices.
The logical input value delivered by a logical input device is the current value of the measure.

3.42 MI: An abbreviation for GKS metafile input, a category of workstation.
3.43 MO: An abbreviation for GKS metafile output, a category of workstation.

3.44 normalization transformation; viewing transformation; window-to-viewport
transformation: A transformation that maps the boundary and interior of a window to the
boundary and interior of a viewport. In GKS, this transformation maps positions in world coor-
dinates to normalized device coordinates.

3.45 normalized device coordinates (NDC): A coordinate specified in a device independent
intermediate coordinate system, normalized to some range, typically 0 to 1. In GKS, during an
intermediate state the coordinates may lie outside the defined range, but associated clipping
information ensures that the output does not exceed the coordinate range [0,1] X|{0,1].

3.48 operator: Person manipulating physical input devices so as to change the measures of logi-
cal input devices and cause their triggers to fire.

3.47 output primitive; graphic primitive; display element: A basic graphic element that.can be
used to construct a display image. Output primitives in GKS are polyline, polymarker, text, fill
area, cell array, and generalized drawing primitive.

3.48 pick device: A GKS logical input device providing the pick identifier attached to an output
primitive and the associated segment name.

3.49 plick identifler: A name, attached to individual output primitives within a segment, and
returned by the pick device. The same pick identifier can be assigned to different output primi-
tives.

3.50 pixel; picture element: The smallest element of a display surface that can be indepen-
dently assigned a colour or intensity.
3.51 polyline: A GKS output primitive consisting of a set of connected lines.

3.52 polyline bundle table: A table associating specific values for all workstation dependent
aspects of a polyline primitive with a polyline bundle index. In GKS, this table contains entries
consisting of linetype, linewidth scale factor, and colour index.

3.53 polymarker: A GKS output primitive consisting of a set of locations, each to be indicated
by the same type of marker.

3.54 polymarker bundle table: A table associating specific values for all workstation dependent
aspects of a polymarker primitive with a polymarker bundle index. In GKS, this table contains
entries consisting of marker type, marker size scale factor, and colour index.

3.55 primitive attribute: An attribute that applies to output primitives as opposed to attributes
that apply to other aspects of the graphical system such as segments. Primitive attribute values
(for output primitives) are selected by the application in a workstation independent manner,
but can have workstation dependent effects.)

3.56 prompt: Output to the operator indicating that a specific logical input device is available.

3.57 raster graphics: Computer graphics in which a display image is composed of an array of
pixels arranged in rows and columns.

3.58 rotation: Turning all or part of a display image about an axis. In GKS, this capability is

Page 8

Definitions

restricted to segments.

3.59 scaling; zooming: Enlarging or reducing all or part of a display image by multiplying the
coordinates of display elements by a constant value. In GKS, this capability is restricted to seg-
ments. ‘ ’

NOTE. For different scaling in two orthogonal directions two constant values are required.

3.60 segment: A collection of display elements that can be manipulated as a unit.

3.61 segment attributes: Attributes that apply only to segments. In GKS, segment attributes
are visibility, highlighting, detectability, segment priority, and segment transformation.

3.62 segment priority: A segment attribute used to determine which of several overlapping seg-
ments takes precedence for graphic output and input.

3.63 segment transformation: A transformation that causes the display elements defined by a
segment to appear with varying position (translation), size (scale), and /or orientation (rotation)
on the display surface.

3.64 string device: A GKS logical input device providing a character string as its result.

3.85 stroke device: A GKS logical input device providing a sequence of points in world coordi-
nates, and a normalization transformation number.

3.66 text: A GKS output primitive consisting of a character string.

3.87 text bundle table: A table associating specific values for all workstation dependent aspects
of a text primitive with a text bundle index. In GKS, this table contains entries consisting of
text font and precision, character expansion factor, character spacing and colour index.

3.68 text font and precision: An aspect of text in GKS, having two components, font and pre-
cision, which together determine the shape of the characters being output, on a particular
workstation. In addition, the precision describes the fidelity with which the other text aspects

match those requested by an application program. In order of increasing fidelity, the precisions
are: STRING, CHAR and STROKE.

3.689 translation; shift: The application of a constant displacement to the position of all or part
of a display image. In GKS, this capability is restricted to segments.

3.70 trigger: A physical input device or set of devices that an operator can use to indicate
significant moments in time.

3.71 valuator device: A GKS logical input device providing a real number.

3.72 viewport: An application program specified part of normalized device coordinate space. In
GKS, this definition is restricted to a rectangular region of normalized device coordinate space
used in the definition of the normalization transformation.

3.73 window: A predefined part of a virtual space. In GKS, this definition is restricted to a rec-
tangular region of the world coordinate space used for the definition of the normalization
transformation.

3.74 workstation: GKS is based on the concept of abstract graphical workstations, which pro-
vide the logical interface through which the application program controls physical devices.

3.75 Workstation Dependent Segment Storage (WDSS): Segment storage on a workstation
that is used for graphical output. Segments cannot be transferred from WDSS to another
workstation.

3.76 Workstation Independent Segment Storage (WISS): A special workstation type, where
segments can be stored and later transferred to other workstations.

3.77 workstation mandatory: Workstation mandatory describes a property that is required to be
realized identically on all workstations of 2 GKS implementation.

3.78 workstation transformation: A transformation that maps the boundary and interior of a

workstation window into the boundary and interior of a workstation viewport (part of display
space), preserving aspect ratio. In GKS, this transformation maps positions in normalized

Page 9

Definitions

device coordinates to device coordinates. The effect of preserving aspect ratio is that the inte-
rior of the workstation window may not map to the whole of the workstation viewport.

3.79 workstation viewport: A portion of display space currently selected for output of graphics.

3.80 workstation window: A rectangular region within the normalized device coordinate system
which is represented on a display space.

3.81 world coordinate (WC): A device independent Cartesian coordinate system used by the
application program for specifying graphical input and output.

Page 10

4 The Graphical Kernel System

4.1 The Standard

4.1.1 Specification

The set of functions known as the Graphical Kernel System shall be as described in sections 4,
5 and 8. These functions are organized in twelve upward compatible levels with increasing
capabilities as described in 4.10.

4.1.2 Registration

For certain parameters of the functions, GKS defines value ranges as being reserved for regis-
tration or future standardization. The meanings of these values will be defined using the pro-
cedures established in an International Standard under development (Procedures for registration
of graphical items). These procedures do not apply to values and value ranges defined as being
workstation or implementation dependent; these values and ranges are not standardized.

Page 11

Introduction The Graphical Kernel System

4.2 Introduction

The Graphical Kernel System (GKS) provides a functional interface between an application
program and a configuration of graphical input and output devices. The functional interface
contains all basic functions for interactive and non-interactive graphics on a wide variety of
graphics equipment.

The interface is at such a level of abstraction that hardware peculiarities are shielded from the
application program. As a result a simplified interface presenting uniform output primitives
(POLYLINE, POLYMARKER, TEXT, FILL AREA, CELL ARRAY, GENERALIZED
DRAWING PRIMITIVE), and uniform input classes (LOCATOR, STROKE, VALUATOR,
CHOICE, PICK, STRING) is obtained.

In 4.3 the concepts of basic output, input and the organization of input and output sequences
are outlined. A central concept both for structuring GKS and for realizing device independence
is introduced, called the workstation.

The facilities for picture manipulation and change are introduced via the segment facilities, the
dynamic attributes and the transformations. The integral control over all these methods for
change is further explained in 4.5.3 on workstations.

The concept of multiple workstations allows simultaneous output to and input from various
display systems. Facilities for internal and external storage are provided by special workstations
together with the possibility of transferring graphical entities directly from the special worksta-
tion for internal storage to other workstations.

Not every GKS implementation needs to support the full set of functions. Twelve levels are
defined to meet the different requirements of graphics systems. Each GKS implementation
provides at least the functions of one level. The levels are upward compatible.

Part 1 of GKS defines only a language independent nucleus of a graphics system. For integra-
tion into a language, GKS is embedded in a language dependent layer containing the language
conventions, for example, parameter and name assignment. Language bindings are contained
in Part 2.

The layer model represented in figure 1 illustrates the role of GKS in a graphics system. Each
layer may call the functions of the adjoining lower layers. In general the application program
uses the application oriented layer, the language dependent layer, other application dependent
layers, and operating system resources. All workstation capabilities that can be addressed by
GKS functions are used only via GKS.

Page 12

The Graphical Kernel System Introduction

Application Program

Application Oriented Layer

Language Dependent Layer

Graphical Kernel System

|

OPERATING SYSTEM

Other Resources Graphical Resources

Figure 1. Layer model of GKS

Page 13

Concepts The Graphical Kernel System

4.3 Concepts

The graphical output that is generated by GKS is built up from two groups of basic elements
called output primitives and primitive attributes. The output primitives are abstractions of basic
actions a device can perform, such as drawing lines, and printing character strings. The attri-
butes control the aspects of the output primitives on a device, such as linestyle, colour, charac-
ter height and pick identifier. Non-geometric aspects, such as colour but not character height,
can be controlled for each workstation individually, to make best use of its capabilities.

The graphical information that is input from a device, as a result of operator actions, is mapped
by GKS onto six classes of input each represented by a data type referred to as a logical input
value. An instance of such a device representation is called a logical input device. The effect
of input actions on the display surface, such as prompts and echoes, is controlled by GKS for
each logical input device individually.

The two abstract concepts (abstract output and abstract input) are the building blocks of a so-
called abstract workstation. A workstation of GKS represents a unit consisting of zero or one
display surfaces and zero or more input devices, such as keyboard, tablet and lightpen. The
workstation presents these devices to the application program as a configuration of abstract dev-
ices thereby shielding the hardware peculiarities.

The geometrical information (coordinates) contained in output primitives, attributes and logical
input values (locators and strokes) can be subjected to transformations. These transformations
perform mappings between three coordinate systems, namely:

a) World Coordinates (WC), used by the application programmer;

b) Normalized Device Coordinates (NDC), used to define a uniform coordinate system for
all workstations;

¢) Device Coordinates (DC), one coordinate system per workstation, representing its display
space coordinates.

Output primitives and attributes are mapped from WC to NDC by normalization transforma-
tions, from NDC to NDC by segment transformations (see next paragraph), and from NDC to
DC by workstation transformations. Locator input is mapped by an inverse workstation
transformation from DC to NDC and by one of the inverse normalization transformations from
NDC to WC.

Output primitives and primitive attributes may be grouped together in a segment. Segments are
the units for manipulation and change. Manipulation includes creation, deletion, and renaming.
Change includes transforming a segment, making a segment visible or invisible, and highlight-
ing a segment. Segments also form the basis for workstation independent storage of pictures at
run time. Via this storage, which is set up as a special workstation called workstation indepen-
dent segment storage, segments can be inserted and transferred to other workstations.

The attributes which control the appearance of parts of the picture (output primitives, seg-
ments, prompt and echo types of input devices) on the display surface are organized in a uni-
form manner. Two groups of attributes apply to the appearance of each output primitive: prim-
itive attributes (that are workstation independent) and workstation attributes. Primitive attri-
butes are specified modally and are bound to a primitive when it is created. The primitive attri-
butes include all geometric aspects of primitives, such as character height for text and pattern
size for fill area. In addition, the non-geometric aspects of primitives are controlled by the
primitive attributes in one of two ways. Either a single attribute is used to specify 2ll the non-
geometric aspects of the primitive by an index which points to a workstation dependent
representation (set of values) or one attribute is used to specify each of the non-geometric
aspects of the primitive in a workstation independent way. The former is referred to as bun-
dled specification and the latter is referred to as individual specification.

Page 14

The Graphical Kernel System Concepts

Workstation attributes include the actual representations on a workstation pointed to by indices
used in bundled specification of non-geometric aspects. For example, the representations (or
bundles) for polyline each contain values of linetype, linewidth scale factor and colour index.
Workstation attributes also specify the colour and pattern tables and the control over deferral of
picture change. Workstation attributes can be reset dynamically.

The appearance of segments is controlled by segment attributes, which are segment transforma-
tion, visibility, highlighting, segment priority, and detectability. These may be reset dynami-
cally. Segment attributes can be a basis for feedback during manipulations (for example,
highlighting).

The attributes which control the operation of logical input devices can be specified either upon
initialisation or as part of input device setting, depending upon the attributes. Through initiali-
sation, an initial value, a prompt and echo technique, and an area on the screen for echoing can
be specified. A data record may further provide device specific attributes. Through input dev-
ice setting, the operating mode may be selected and the echo may be switched on or off. The
operating modes of logical input devices specify who (operator or application program) has the
initiative: SAMPLE input is acquired directly by the application program; REQUEST input is
produced by the operator in direct response to the application program; EVENT input is gen-
erated asynchronously by the operator and is collected in a queue for the application program.

At run time GKS can be in one of five different operating states. Associated with each state
are the set of GKS functions allowed in this state, and a set of state variables. The operating
state concept and the state variables allow for proper specification of initialisations (for exam-
ple, at OPEN WORKSTATION) and the effect of various functions, especially with respect to
the maintenance of device independence. One special set of functions called inquiry functions
is allowed in all states. They give read-only access to the state lists. In this way useful infor-
mation can be provided when errors occur. Other inquiry functions allow read-only access to
the workstation descriptions, to allow the application program to adapt to particular workstation
capabilities. Inquiry functions never cause errors. Instead they return information specifying
whether a valid inquiry was made. :

GKS provides an interface to a system for filing graphical information for the purpose of exter-
nal long term storage and exchange. The interface consists of a GKS Metafile output worksta-~
tion, which writes to a so-called graphics metafile (which is sequential), and a GKS Metafile
input workstation, which reads from the metafile. In addition to the normal functions for out-
put to workstations, a GKS Metafile output workstation may accept items containing non-
graphical information. Input from a metafile is controlled by read and interpret functions which
have the same effect as invoking the corresponding functions directly from the application pro-
gram,

Page 15

Graphical output The Graphical Kernel System

4.4 Graphical output

4.4.1 Output primitives
The graphical information that is generated by GKS and routed to all active workstations is
built up of basic pieces called output primitives. GKS provides six output primitives:

a) POLYLINE: GKS generates a set of connected lines defined by a
point sequence.

b) POLYMARKER: GKS generates symbols of one type centred at gi'ven
positions.

c¢) TEXT: GKS generates a character string at a given position.

d) FILL AREA: GKS generates a polygonal area which may be hollow
or filled with a uniform colour, a pattern, or a hatch
style.

e) CELL ARRAY: GKS generates an array of pixels with individual colours.

f) GENERALIZED GKS addresses special geometrical output capabilities of a

DRAWING workstation such as the drawing of spline curves, circu-
PRIMITIVE(GDP): lar arcs, and elliptic arcs. The objects are characterized

by an identifier, a set of points and additional data.
GKS applies all transformations to the points but leaves
the interpretation to the workstation.

4.4.2 Output primitive attributes

Each output primitive potentially has three types of attribute (geometric, non-geometric and
identification). The first two attribute types determine the exact appearance of the output prim-
itive while the third attribute type is used in connection with input. The values of these attri-
butes are set modally and are recorded in the GKS state list. A separate GKS function is pro-
vided for each primitive attribute (except the ASFs: see later in this subsection), to allow the
application program to specify the value of an attribute without unnecessarily specifying the
values of other attributes. During creation of an output primitive (that is, when one of the
GKS output primitive functions is invoked) these values are bound to the primitive and cannot
be changed afterwards.

Attributes of the first type control the geometric aspects of primitives; these are aspects which
affect the shape or size of the whole primitive (for example, CHARACTER HEIGHT for
TEXT). Hence, they are sometimes referred to as geometric attributes. Attributes of this type
are workstation independent and, if they represent coordinate data (points or displacements),
are expressed in world coordinates (for example, CHARACTER HEIGHT is expressed in worid
coordinates but TEXT PATH takes one of a set of enumerated values). They are defined
separately for each primitive and a primitive may have zero, one or many geometric attributes.

Current values of (workstation independent) geometric attributes, which are expressed in world
coordinates, are stored in world coordinates. When they are bound to their respective primi-
tives, the values are subject to the same transformations as the geometric data contained in the
definition of the primitive. Hence, current values are unaffected by changes in the normaliza-
tion transformation and the workstation transformation.

Attributes of the second type control the non-geometric aspects of primitives; these are aspects

Page 16

The Graphical Kernel System Graphical output

which merely affect a primitive’s appearance (for example, linetype for POLYLINE, or colour
index for all primitives except CELL ARRAY) or the shape or size of the component parts of
the primitive (for example, marker size scale factor for POLYMARKER). Non-geometric
aspects do not represent coordinate data. The non-geometric aspects of a primitive may be
specified in one of two ways, namely via a bundle or individually.

For specification of aspects via a bundle, there is one attribute per primitive, called the
<primitive> INDEX. This attribute is an index into a bundle table, each entry of which con-
tains all the non-geometric aspects of the primitive. There is a separate bundle table for each
primitive with the exception of GENERALIZED DRAWING PRIMITIVE and CELL ARRAY
(see later in this subsection). The non-geometric aspects are workstation dependent in this
method of specification and each workstation has its own set of bundle tables (stored in the
workstation state list). The values in a particular bundle (or entry in the bundle table) may be
different for different workstations.

For individual specification of aspects, there is a separate attribute for each non-geometric
aspect. As with the attributes controlling the geometric aspects, these attributes are workstation
independent and are stored in the GKS state list. Since each non-geometric aspect only occurs
in one primitive bundle type, each of these attributes applies to only one primitive type.

For a given non-geometric aspect, the values that can be assigned to the appropriate bundle
component are the same as the values that can be assigned to the corresponding attribute for
individual specification. Since the bundles are set separately for each workstation, the values of
their components are restricted to the valid values for that workstation. In the case of indivi-
dual attribute specification, such restrictions are not imposed. Default actions for the display of
a primitive are defined to occur if it is created with a value of an individually specified attribute
that is invalid on a particular workstation.

As indicated above, GENERALIZED DRAWING PRIMITIVE (GDP) and CELL ARRAY do
not have associated bundle tables nor corresponding individually specified attributes. The GDP
may use the most appropriate bundle tables or sets of individually specified attributes for each
GDP function. For example, if one GDP function is essentially a FILL AREA, then the fill
area bundle table or the set of individually specified fill area attributes would be used. CELL
ARRAY contains colour index information as part of its definition but has no other non-
geometric aspects and so does not use a bundle table nor does it have a set of individually
specified attributes.

The method of specification of the non-geometric aspects of a primitive may be chosen
separately for each aspect. A further group of primitive attributes, called ASPECT SOURCE
FLAGS (ASFs), take the values INDIVIDUAL and BUNDLED to specify the choice. As with
the other primitive attributes, these attributes are workstation independent and are stored in the
GKS state list. There is one ASF for each non-geometric aspect of each primitive. The initial
values of all the ASFs are the individual. The flags may be set at any time when GKS is open
by the function SET ASPECT SOURCE FLAGS. This enables some non-geometric aspects of
a primitive to be specified individually and others via a bundle.

When a primitive is displayed, the values of the non-geometric aspects with which it is
displayed are determined as follows.
a) If the ASF for an aspect is INDIVIDUAL, the value used on all workstations is the value
of the corresponding individually specified attribute of that primitive.
b) If the ASF for an aspect is BUNDLED, the value used on a workstation is obtained via
the bundle table for that primitive on the workstation; the corresponding component of the
bundle, pointed to by the bundle index, is used.

Page 17

Graphical output The Graphical Kernel System

Colour is specified as an index into a separate colour table. There is only one colour table per
workstation into which all the colour indices point. Similarly, other entries in a bundle, or
corresponding individually specified attributes, may be indices either into another workstation
table (for example, style index when interior style PATTERN is used) or into a fixed list (for
example, linetypes for polyline).

There is precisely one attribute of the third type per primitive, namely PICK IDENTIFIER.
This is used for identifying a primitive, or a group of primitives, in a segment when that seg-
ment is picked.

The attributes which apply to each output primitive (attributes controlling non-geometric
aspects, geometric attributes and PICK IDENTIFIER) are:

¢) POLYLINE: POLYLINE INDEX
LINETYPE
LINEWIDTH SCALE FACTOR
POLYLINE COLOUR INDEX
LINETYPE ASF
LINEWIDTH SCALE FACTOR ASF
POLYLINE COLOUR INDEX ASF
PICK IDENTIFIER

d) POLYMARKER: POLYMARKER INDEX
MARKER TYPE
MARKER SIZE SCALE FACTOR
POLYMARKER COLOUR INDEX
MARKER TYPE ASF
MARKER SIZE FACTOR ASF
POLYMARKER COLOUR INDEX ASF
PICK IDENTIFIER

e) TEXT: TEXT INDEX
TEXT FONT AND PRECISION
CHARACTER EXPANSION FACTOR
CHARACTER SPACING
TEXT COLOUR INDEX
TEXT FONT AND PRECISION ASF
CHARACTER EXPANSION FACTOR ASF
CHARACTER SPACING ASF
TEXT COLOUR INDEX ASF
CHARACTER HEIGHT
CHARACTER UP VECTOR
TEXT PATH
TEXT ALIGNMENT
PICK IDENTIFIER

f) FILL AREA: FILL AREA INDEX
FILL AREA INTERIOR STYLE
FILL AREA STYLE INDEX
FILL AREA COLOUR INDEX
FILL AREA INTERIOR STYLE ASF
FILL AREA STYLE INDEX ASF
FILL AREA COLOUR INDEX ASF
PATTERN SIZE

Page 18

The Graphical Kernel System Graphical output

PATTERN REFERENCE POINT
PICK IDENTIFIER

g) CELL ARRAY: PICK IDENTIFIER

h) GENERALIZED Zero or more of the sets e) to i) except that
DRAWING PRIMI- PICK IDENTIFIER is always an attribute
TIVE:

Figure 2 shows the binding of the attributes.

The attributes for each primitive, other than PICK IDENTIFIER, are described in 4.4.3 to
4.4.8. PICK IDENTIFIER is described in more detail in 4.7.1. In the descriptions, attributes
appear in upper case (for example, the attributes CHARACTER HEIGHT and PICK IDENTIF-
IER); aspects appear in both upper and lower case, according to their context. Geometric
aspects are always controlled by geometric attributes and so appear in upper case (for example,
the aspect CHARACTER HEIGHT). Non-geometric aspects may be controlled via a <primi-
tive> INDEX or by individually specified attributes. Non-geometric aspects appear in lower
case unless the corresponding individually specified attributes are being used which appear in
upper case (for example, the aspect linetype but the individually specified attribute LINE-
TYPE).

The entries in the bundle, pattern, and colour tables may be set separately for each worksta~
tion. Some standard definitions for table entries are contained in the workstation description
table and are used as initial values. The application program may select a standard definition or
may define the values of a specific entry explicitly. Only the most commonly used (or antici-
pated) combinations of values need be predefined for each output type workstation. At least
those predefined entries with indices up to the minimum number of predefined entries at a
given level (see 4.10.3) are distingishable from each other. Other combinations of values can
be specified by the SET <primitive | PATTERN | COLOUR> REPRESENTATION function,
possibly after inquiring the workstation capabilities. The tables, which are on every workstation
of category OUTPUT, OUTIN or MO (i.e. they are workstation attributes), are:

polyline bundle table
polymarker bundle table
text bundle table

fill area bundle table
pattern table

colour table

The values in these tables may be (dynamically) changed. In fact, the only way of changing the
aspects of a primitive which are stored in a bundle table is by changing that table. However,
note that a change in a bundle table entry can only be reflected in a displayed primitive if the
values of the corresponding ASFs (of that primitive) for the aspects in the bundle table are
BUNDLED. The entry ‘dynamic modification accepted’ in the workstation description table
indicates which changes:

i) lead to an implicit regeneration (may be deferred) (IRG);
j) can be performed immediately (IMM).

The deferral state is explained in more detail in 4.5.3. If changes can be performed immedi-
ately, those changes may affect primitives outside segments in addition to those inside seg-
ments.

Page 19

Graphical output The Graphical Kernel System

4.4.8 Polyline attributes

Polyline has no geometric attributes. The representation of polyline on the workstation is con-
trolled by the POLYLINE INDEX, or the set of individually specified polyline attributes
(LINETYPE, LINEWIDTH SCALE FACTOR, and POLYLINE COLOUR INDEX) or some
combination of the two, depending upon the values of the ASFs for linetype, linewidth scale
factor and polyline colour index. The POLYLINE INDEX is a pointer into the polyline bundle
table, each entry of which contains values for linetype, linewidth scale factor and polyline
colour index.

Linetypes 1 to 4 are solid, dashed, dotted and dashed-dotted. Every workstation of category
OUTPUT or OUTIN realizes linetypes 1 to 4 with recognizable styles. Linetypes greater than 4
are reserved for registration or future standardization. Linetypes less than 0 may be available
but their styles are implementation dependent. The linetype specifies a sequence of line seg-
ments and gaps which are repeated to draw a polyline. It is workstation dependent whether this
sequence is restarted or continued at the start of the polyline, at the start of a clipped piece of
a polyline, and at each vertex of a polyline.

Page 20

1 9%eq

GKS GKS SEGMENT WORKSTATION PICTURE
FUNCTIONS STATE LIST STATE LIST STATE LIST
SET i » WORKSTATION
INQUIRE } < »{ SEGMENT ATTRIBUTES
PRIMITIVE ATTRIBUTES
ATTRIBUTES POLYLINE REPR.
SEGMENT POLYMARKER REPK
POLYLINE TRANSKFORMATIO! TEXT REPR.
ATTRIBUTES *| | VISIBILITY FiLL AREA REPR
POLYMARKER | | miGHuIGHTING § | DATIEIN REPR.
ATTRIBUTES COLOUR REPR.
SEGMENT 'DEFERRAL STATH
TEXT . PRIORITY LTI
ATTRIBUTES DETECTABILITY TIANSFORMATION
FILL AREA
ATTRIBUTES
PICK
IDENTIFIER
POLYLINE ﬁ__;,. SEGMENTS sxcgusgxg
POLYMARKER Y, | STORAGE|
TEXT Y|V, v WORKSTATION
FILL AREA ‘L;J / VIEWPORT
CELL ARRAY >
~SEGMENTS
GDP. YYVY '» \‘

* Note: PICK IDENTIFIER is separated from the olher attributes
for a primitive only in this figure.
See 4.4.2 lor a [ull list.

sRnQUNT Jo 3utpmy - 7 arndi g

wNshg (putay] reoydes) ayy,

ndyno eojyders

Graphical output The Graphical Kernel System

The linewidth is calculated as a nominal linewidth multiplied by the linewidth scale factor. This
value is mapped by the workstation to the nearest available linewidth.

4.4.4 Polymarker attributes

Polymarker has no geometric attributes. The representation of polymarker at the workstation is
controlled by the POLYMARKER INDEX, or the set of individually specified polymarker attri-
butes (MARKER TYPE, MARKER SIZE SCALE FACTOR, and POLYMARKER COLOUR
INDEX) or some combination of the two, depending upon the values of the ASFs for marker
type, marker size scale factor, and polymarker colour index. The POLYMARKER INDEX is a
pointer into the polymarker bundle table, each entry of which contains values for marker type,
marker size scale factor and polymarker colour index.

Marker types 1 to 5 are dot, plus sign, asterisk, circle, and diagonal cross each centred on the
positions they are identifying. Every workstation of category OUTPUT or OUTIN realizes
marker types 1 to 5 with recognizable shapes at the given positions. Marker types greater than
5 are reserved for registration or future standardization. Marker types less than 0 may be avail-
able but their forms are implementation dependent.

The marker size is calculated as a nominal size multiplied by the marker size scale factor. This
size is mapped by the workstation to the nearest available size. Marker type 1 is always
displayed as the smallest displayable dot.

The marker is visible if, and only if, the marker position is within the clipping rectangle. The
clipping of partially visible markers is workstation dependent.

4.4.5 Text attributes

Text has the geometric attributes CHARACTER HEIGHT, CHARACTER UP VECTOR,
TEXT PATH, and TEXT ALIGNMENT which are specified and used as described in this sub-
section.

Text also has two implicitly specified geometric attributes CHARACTER WIDTH and CHAR-
ACTER BASE VECTOR. These are implicitly specified by the functions SET CHARACTER
HEIGHT and SET CHARACTER UP VECTOR respectively. They otherwise behave like ordi-
nary geometric attributes (their values are bound to TEXT primitives when the primitives are
created and cannot be changed afterwards and these values are subject to the same transforma-
tions as the geometric data contained in the definition of the primitive).

The representation of text at the workstation is controlled by the TEXT INDEX, or the set of
individually specified text attributes (TEXT FONT AND PRECISION, CHARACTER EXPAN-
SION FACTOR, CHARACTER SPACING, and TEXT COLOUR INDEX) or some combina~
tion of the two, depending upon the values of the ASFs for text font and precision, character
expansion factor, character spacing and text colour index. The TEXT INDEX is a pointer into
the text bundle table, each entry of which contains values for text font and precision, character
expansion factor, character spacing and text colour index.

Precise control of the appearance of TEXT on a workstation is provided by the following
aspects: CHARACTER HEIGHT, CHARACTER WIDTH, character expansion factor, TEXT
PATH, CHARACTER UP VECTOR, CHARACTER BASE VECTOR, character spacing and
TEXT ALIGNMENT. However, the use of these values in displaying text is determined by the
setting of the text font and precision aspect (font and precision are two components of the
same aspect). The CHARACTER HEIGHT specifies the nominal height of a capital letter
character. The CHARACTER WIDTH specifies the nominal width of a character; the actual
width depends upon the width to height ratio of the character indicated by the font designer
and may vary from character to character. The character expansion factor specifies the

Page 22

The Graphical Kernel System Graphical output

deviation of the width to height ratio of the character from the ratio indicated by the font
designer. The CHARACTER UP VECTOR gives the up direction of a character. The CHAR-
ACTER BASE VECTOR gives the direction of the baseline of a character. Only the directions,
not the lengths, of these vectors are relevant. TEXT PATH has the possible values RIGHT,
LEFT, UP and DOWN. It specifies the writing direction of the text string. For RIGHT, the text
string is written along a baseline in the direction of the CHARACTER BASE VECTOR. For
LEFT, the baseline direction is the opposite direction of the CHARACTER BASE VECTOR.
For UP, the character path coincides with the direction of the CHARACTER UP VECTOR.
For DOWN, it is the opposite direction of the CHARACTER UP VECTOR. For the UP and
DOWN text path directions the characters are arranged so that the centres of the character
bodies are on a straight line in the direction of the CHARA CTER UP VECTOR.

The character spacing value specifies how much additional space is to be inserted between two
adjacent character bodies. If the value of character spacing is zero, the character bodies are
arranged one after the other along the TEXT PATH, without any additional space between. A
positive value of character spacing will insert additional space between character bodies. A
negative value of character spacing will cause adjacent character bodies to overlap. Character
spacing is specified as a fraction of the font nominal character height.

The effect of the aspects CHARACTER HEIGHT, CHARACTER WIDTH, character expan-
sion factor, TEXT PATH, character spacing and text font is to define an (imaginary) rectangle
with its sides parallel to the x and y axes, enclosing the text. The bounds of this enclosing rec-
tangle are as follows. For TEXT PATH = LEFT or RIGHT, the height of the rectangle is the
height of the character body of the specified font; the left side of the rectangle is the left side of
the character body of the leftmost character and the right side of the rectangle is the right side
of the character body of the rightmost character. For TEXT PATH = UP or DOWN, the top
of the rectangle is the top of the character body of the topmost character and similarly, the bot-
tom of the rectangle is the bottom of the bottommost character; the width of the rectangle is
the width of the widest character in the specified font.

The effect of the CHARACTER UP VECTOR and CHARACTER BASE VECTOR attributes is

to transform the enclosing rectangle, thus defining an enclosing parallelogram, the text extent
parallelogram (the rectangle has been rotated and sheared).

Page 23

Graphical output The Graphical Kernel System

A
'y
centre
/line
cap 4 - = =} - = -4 -topline : i m
line 4 | wa— body ® =
o | [. ‘ kern
o= 1 I
e — halfline
-5
eS| |
=
13) | |
S — 5
De -
I I kern
I |
4.-----——-:--bottomline l

left right

Figure 3. Font description coordinate system

The TEXT ALIGNMENT attribute controls the positioning of this text extent parallelogram in
relation to the text position. For simplicity the TEXT ALIGNMENT is described in terms of
the default CHARACTER UP VECTOR and CHARACTER BASE VECTOR, when the text
extent parallelogram is actually a rectangle. The horizontal component of TEXT ALIGNMENT
has four values: LEFT, CENTRE, RIGHT and NORMAL. If the horizontal component is
LEFT, the left side of the text extent parallelogram passes through the text position. Similarly,
if the value is RIGHT, the right side of the text extent parallelogram passes through the text
position. If the horizontal component is CENTRE, the text position lies midway between the
left and right sides of the text extent parallelogram. Thus, if TEXT PATH = UP or DOWN,
the straight line passing through the centrelines of the characters also passes through the text
position. The vertical component of TEXT ALIGNMENT has six values: TOP, CAP, HALF,
BASE, BOTTOM and NORMAL. These each correspond to one of the font specific horizontal
lines in the definition of a character (see figure 3). A value of TOP causes the top of the text
extent parallelogram to pass through the text position. A value of CAP causes the text position
to lie on the capline of the whole string (TEXT PATH = LEFT or RIGHT) or on the capline
of the topmost character in the string (TEXT PATH = UP or DOWN). A value of HALF
causes the text position to lie on the halfline of the whole string (TEXT PATH = LEFT or
RIGHT) or on a line halfway between the halflines of the top and bottom characters (TEXT
PATH = UP or DOWN). A value of BASE causes the text position to lie on the baseline of
the whole string (TEXT PATH = LEFT or RIGHT) or on the baseline of the bottom character
in the string (TEXT PATH = UP or DOWN). A value of BOTTOM causes the bottom of the
text extent parallelogram to pass through the text position.

In the general case, the orientation referred to as horizontal is that of the CHARACTER BASE
VECTOR with RIGHT representing direction of that vector and LEFT being opposite to it.
Similarly the orientation referred to as vertical is that of the CHARACTER UP VECTOR with
UP representing the direction of that vector and DOWN being opposite to it.

Page 24

The Graphical Kernel System Graphical output

Either component of TEXT ALIGNMENT can take the value NORMAL. For each value of
TEXT PATH, the effect of a particular component being NORMAL is equivalent to one of the
other values of that component. In each case, the equivalent alignment value is chosen to
achieve a natural alignment for that TEXT PATH value. The complete list of equivalent values
is:

TEXT PATH | NORMAL Horizontal and Vertical Alignments

RIGHT (LEFT, BASE)

LEFT (RIGHT, BASE)

UP (CENTRE, BASE)

DOWN (CENTRE, TOP)

The initial values of the geometric text attributes are:

CHARACTER HEIGHT WC | 0.01 (ie 1% of the height of the default
window)

CHARACTER UP VECTOR | WC | (0,1)

TEXT PATH RIGHT

TEXT ALIGNMENT (NORMAL, NORMAL)

and the initial values of the implicitly specified geometric text attributes are:

CHARACTER WIDTH WC | 0.01 (ie the same value as the initial
value of CHARACTER HEIGHT)
CHARACTER BASE VECTOR | WC | (1,0)

Text font and precision together constitute one aspect. The text font value is used to select a
particular font on the workstation. Every workstation supports at least one font that is able to
generate a graphical representation of the characters defined in ANSI X3.4-1977 (commonly
referred to as ASCII). This is font number 1. Font numbers greater than 1 are reserved for
registration or future standardization. Font numbers less than 0 may be supported but are
implementation dependent.

The text precision value is used to select the ‘closeness’ of the text representation at the works-
tation in relation to that defined by the workstation independent text attributes and the
transformation and clipping currently applicable. The text precision value has the following
possible values:

a) STRING: The TEXT character string is generated in the requested text font and is
positioned by aligning the TEXT output primitive at the given text position.
CHARACTER HEIGHT, CHARACTER WIDTH and character expansion
factor are evaluated as closely as reasonable, given the capabilities of the
workstation. CHARACTER UP VECTOR, CHARACTER BASE VECTOR,
TEXT PATH, TEXT ALIGNMENT and character spacing, need not be
used. Clipping is done in an implementation and workstation dependent
way.

b) CHAR: The TEXT character string is generated in the requested text font. For the
representation of each individual character, the aspects CHARACTER
HEIGHT, CHARACTER WIDTH, the up direction of the CHARACTER
UP VECTOR, the baseline direction of the CHARACTER BASE VECTOR,
and character expansion factor are evaluated as closely as possible, in a
workstation dependent way. The spacing used between character bodies is
evaluated exactly; the character body, for this purpose, is an ideal character
body, calculated precisely from the text aspects and the font dimensions.
The position of the resulting text extent parallelogram is determined by the
TEXT ALIGNMENT and the text position. Clipping is performed at least
on a character by character basis.

Page 25

Graphical output The Graphical Kernel System

¢) STROKE: The text character string in the requested text font is displayed at the text
position by applying all text aspects. The character string is clipped exactly at
the clipping rectangle.

STROKE precision does not necessarily mean vector strokes; as long as the representation
adheres to the rules governing STROKE precision, the font may be realized in any form, for
example by raster fonts.

A GKS output level m implementation need only support STRING text precision, and level 0
need only support text precisions STRING and CHAR. All text precisions must be supported
above output level 0. A workstation may use a higher precision than the one requested for this
purpose, i.e., if STROKE precision is supported in a particular font, the implication is that both
STRING and CHAR precision are available in that font. However, it is not necessary for a
workstation to support all precisions for a given font (i.e. for a given font, STROKE can be
missing or both STROKE and CHAR can be missing). Text font and precision are workstation
mandatory. That is, for any GKS level supporting a STROKE precision font, every workstation
of a particular installation supports at least one STROKE precision text font. This is font
number 1, containing the character set defined by ANSI X3.4-1977. This implies that, for
STROKE precision text, some sort of software character generator is required for those imple-
mentations that have inadequate hardware. Not all workstations need to support all fonts, but
for those that do, the same font number is used to select that font on all workstations of a par-
ticular installation.

Fonts are defined only within the GKS implementation. The font designer specifies the shape
of the symbol representing each character in a local 2D cartesian font coordinate system. Fonts
are either monospaced or proportionally spaced. Each character in a font coordinate system has
an associated character body, a font baseline, a font halfline, a capline and a centreline (see
figure 3). For monospaced fonts, the character bodies of all characters have the same size. For
proportionally spaced fonts, the width of the bodies may differ from character to character. The
character body edges are parallel to the axes of the font coordinate system. The font baseline,
the font halfline and the capline are parallel to the x-axis of the font coordinate system, and
within the vertical extent of the body. The position of the font halfline is defined by the font
designer for use in aligning text strings. The centreline is parallel to the y-axis and bisects the
body. Their exact positions are specified by the font designer.

The height of a character in the font coordinate system is given by the height from the font
baseline to the capline. The width of a character is given by the width of the character body.
The width of a character may include space on either side of the character and this space is gen-
erally evenly split between the left and right sides of the character. It is assumed that the char-
acters lie within their body, except that kerned characters may exceed the side limits of the
character body.

In general, the top limits of the bodies for a font are identical with, or very close to, the typo-
graphical capline or ascender line, and the bottom limit to the descender line. The space, if any,
between the topline and the capline may be used for an additional mark over the character, for
example an accent. However, these and other details are purely for the use of the font
designer. The intention is only that characters placed with their bodies touching in the horizon-
tal direction should give an appearance of good normal spacing, and characters touching in the
vertical direction will avoid clashes between ascenders and descenders (typographically ‘set
solid’).

Since the values of CHARACTER HEIGHT, CHARACTER WIDTH, CHARACTER UP
VECTOR and CHARACTER BASE VECTOR are given in world coordinate units, but the
characters are generated on the workstation in device coordinates, using the workstation depen-
dent font and precision, the geometric attributes need to be transformed in such a way that the

Page 26

The Graphical Kernel System Graphical output

workstation can generate the characters in the way intended.

The effect to be achieved is now described. Together with the text coding, a height vector
parallel to the CHARACTER UP VECTOR with length equal to CHARACTER HEIGHT, and
a width vector parallel to the CHARACTER BASE VECTOR with length equal to CHARAC-
TER WIDTH, are passed down the viewing pipeline. These vectors are transformed by the nor-
malization transformation, by a segment transformation if within a segment, and by the works-
tation transformation. They are also stored in segments. Then the vectors can be used by the
workstation character generator. Thus, the shape of individual characters can be transformed by
a normalization transformation that is unequal in x and y and by a segment transformation.

On the workstation, the height of a character is given by the length of the transformed height
vector; the character up direction is given by the direction of the transformed height vector; the
width of a character is given by the length of the transformed width vector multiplied by the
font width to height ratio for the character and by the character expansion factor; the character
base direction is given by the direction of the transformed width vector. The characters are
arranged together in a text extent parallelogram, depending on the values of TEXT PATH and
character spacing. The text extent parallelogram is then positioned according to the value of
TEXT ALIGNMENT and the text position, contained in the definition of the TEXT primitive.

Figures 4 to 7 give examples of the effects of different values of text aspects. Figure 8 gives

examples of the effect of different normalization transformations on the displayed form of the
text.

Page 27

Graphical output The Graphical Kernel System

Examples are illustrated with STROKE precision,
a character expansion factor of 1| and a zero
character spacing.

[3

character height

:i‘-':» " . : D, S
CHARACTER HEIGHT = 1, CHARACTER UP VECTCR = (0.1).
TEXT PATH = RIGHT, TEXT ALIGNMENT = (NORMAL NORMAL)

ol o

CHARACTER HEIGHT = 0.5, CHARACTER UP VECTOR = (0.1)
TEXT PATH = RIGHT, TEXT ALIGNMENT = (NCRMAL NCRMAL)

1

CHARACTER HEIGHT = 1, CHARACTER UP VECTOR = (0,1),
TEXT PATH = RIGHT, TEXT ALIGNMENT = (RIGHT.TOP)

CHARACTER HEIGHT =1
CHARACTER UP VECTOR =

TEXT PATH =DOWN (@.1)

TEXT ALIGNMENT =
(NORMAL,NORMAL)

|

s
| o
IS
[N
|
('
H\Z
|

||
!

™| CHARACTER HEIGHT =1

! CHARACTER UP VECTOR = (—1.0)
TEXT PATH = RIGHT

| TEXT ALIGNMENT = (NORMAL NORMAL)

X text position
------ baseline or centreline

— ——text extent rectangle
(indicated for PATH = DOWN)

‘Note: capline = topline in these

| examples

Figure 4. Effects of changes In geometric text attributes
NOTE. Changed attributes are underlined.

Page 28

The Graphical Kernel System Graphical output

Ixamples are jllustrated with default values of the
gecmetric text attributes and with STROKE precision.

U P

!
[
[]
R -
]

- - -

!
|
‘
|
!
|

CHARACTER EXPANSION FACTOR = 0.75, CHARACTER SPACING = 0

e w2 w- o

CTEARACTER EXPANSION FACTOR = 1, CHARACTER SPACING = 0.3

Figure 5. Effects of changes in non-geometric text aspects
NOTE. Changed aspects are underlined.

Page 29

Graphical output The Graphical Kernel System

CHARACTER EXPANSION FACTOR =1
CHARACTER SPACING =0
CHARACTER HFIGHT =1.414
CHARACTER UP VECTOR = (-1.1)
TEXT PATH = RIGHT

TEXT ALIGNMENT =(NORMAL NORMAL)

CHARACTER EXPANSION FACTOR =1
CHARACTER SPACING = -0.3
o] | CHARACTER HEIGHT = {
k\.,y CHARACTER UP VECTOR =(0,1)
TEXT PATH =LEFT
TEXT ALIGNMENT =(NORMAL.NORMAL)

CHARACTER EXPANSION FACTOR =1
CHARACTER SPACING =0
CHARACTER HEIGHT =1
CHARACTER UP VECTOR =(-1.0)
TEXT PATH =RIGHT

TEXT ALIGNMENT =(CENTRE.TOP)

Note:

halflines of all characters
are shown in this example
CHARACTER EXPANSION FACTOR=1
CHARACTER SPACING =0
CHARACTER HEIGHT =1
CHARACTER UP VECTCR =(0,1)
TEXT PATH =DOWN

TEXT ALIGNMENT =(LEFT.HALF)

4

Figure 8. Effects of combined changes in text aspects
NOTE. Changes from the top example of figures 4 and 5 are underlined.

Page 30

The Graphical Kernel System Graphical output

CHARACTER EXPANSION FACTOR =2.667
CHARACTER SPACING = ~0.333
CHARACTER HEIGHT =1.2

CHARACTER UP VECTOR = (-4.3)

TEXT PATH = UP

TEXT ALIGNMENT =(CENTRE.BOTTOM)

Figure 7. Effects of several changes in text aspects
NOTE. Changes from the top example of figures 4 and 5 are underlined.

Page 31

Graphical output The Graphical Kernel System

World coordinates
CHARACTER UP VECTOR = (-1,1)

After a normalization After a normalization transformeation
transformation which which scales x by a facter of
scales x and y equally. 3 compared with y.

Figure 8. Effects of different normalization transformations on text in STROKE precision

Page 32

The Graphical Kernel System Graphical output

4.4.6 Fill area attributes

Fill area has the geometric attribute PATTERN REFERENCE POINT. It also has two impli-
citly specified geometric attributes PATTERN WIDTH VECTOR and PATTERN HEIGHT
VECTOR. These are implicitly specified by the function SET PATTERN SIZE. Like ordinary
geometric attributes, their values are bound to FILL AREA primitives when the primitives are
created and cannot be changed afterwards and these values are subject to the same transforma-
tions as the geometric data contained in the definition of the primitive. The usage of the fill
area geometric attributes is described later in this subsection.

The representation of fill area at the workstation is controlled by the FILL AREA INDEX, or
the set of individually specified fill area attributes (FILL AREA INTERIOR STYLE, FILL
AREA STYLE INDEX, and FILL AREA COLOUR INDEX) or some combination of the two,
depending upon the values of the ASFs for fill area interior style, fill area style index, and fill
area colour index. The FILL AREA INDEX is a pointer into the fill area bundle table, each
entry of which contains values for the fill area interior style, fill area style index and fill area
colour index.

The fill area interior style is used to determine in what style the area should be filled. It has the
following values:

a) HOLLOW No filling, but draw the bounding polyline, using the fill area colour index
currently selected (either via the fill area bundle or individually, depending
upon the corresponding ASF). The linetype and linewidth are implementa-
tion dependent.

b) SOLID: ’Fill the interior of the polygon using the fill area colour index currently
selected (either via the fill area bundle or individually, depending upon the
corresponding ASF).

c) PATTERN: Fill the interior of the polygon using the fill area style index currently
selected (either via the fill area bundle or individually, depending upon the
corresponding ASF) as an index into the pattern table. In this context, the
fill area style index is sometimes referred to as the pattern index.

d) HATCH: Fill the interior of the polygon using the fill area colour index and the fill
area style index currently selected (either via the fill area bundle or individu-
ally, depending upon the corresponding ASFs). The fill area style index is
used as a pointer into the list of hatch styles, in which case it is sometimes
referred to as the hatch index.

For interior style PATTERN, the pattern is defined by the pattern representation, which
specifies an array (DX XDY) of colour indices, that are pointers into the colour table. The size
and position of the start of the pattern are determined by a pattern box. The pattern box,
which is a parallelogram, is defined by the PATTERN WIDTH VECTOR and the PATTERN
HEIGHT VECTOR located relative to the PATTERN REFERENCE POINT. The pattern box
is conceptually divided into a grid of DX XDY cells. The colour index array is associated with
the cells as follows: the element (1,DY) is associated with the cell having the PATTERN
REFERENCE POINT at one corner; elements with increasing first dimension are associated
with successive cells in the direction of the PATTERN WIDTH VECTOR; elements with
decreasing second dimension are associated with successive cells in the direction of the PAT-
TERN HEIGHT VECTOR. The attributes defining the pattern box are subject to all the
transformations producing a transformed pattern box. The pattern is mapped onto the polygon
by conceptually replicating the transformed pattern box in directions parallel to its sides until
the interior of the complete polygon is covered.

Mapping the transformed pattern cells to the pixels of a raster display is performed by the fol-
lowing rules:

Page 33

Graphical output The Graphical Kernel System

e) If the centre of a pixel lies inside the parallelogram defined by the transformed cell, its
colour is set;

f) The pixel is assigned the colour of the cell corresponding to the pixel's centre.

For a workstation which can implement patterns but not transformable patterns, a suitable
action is to generate non-transformed patterns to fill a polygon.

For interior style HATCH, the hatch index selects among hatch styles: hatch styles greater than
0 are reserved for registration or future standardization; hatch styles less than 0 are workstation
dependent. Whether hatching is affected by transformations or not is workstation dependent.

Interior style HOLLOW is available on every workstation of category OUTPUT or OUTIN. It
is workstation dependent which of the interior styles SOLID, PATTERN and HATCH are avail-
able.

4.4.7 Cell array attributes

Cell array has no attributes other than PICK IDENTIFIER. However, an array of colour
indices, which are pointers into the colour table, is part of the definition of a cell array.

4.4.8 Generalized Drawing Primitive attributes

Generalized Drawing Primitive(GDP) has no explicit geometric attributes. Such information
may be specified in the GDP data record. The representation of the GDP at the workstation is
controlled by zero or more of the sets of polyline, polymarker, text and fill area attributes (see
4.4.2). Whether bundle indices or associated individually specified attributes are used depends
upon the values of the appropriate ASFs. The sets of attributes most appropriate for the
specified GDP function are selected for the GDP as part of the definition of the GDP and are
recorded in the workstation description table. Consiequently, if a GDP is essentially a cell
array, then an array of colour indices would be specified in the GDP data record.

4.4.9 Colour

In GKS, colour is specified in a number of different situations. It may be an aspect of a primi-
tive, in which case it is specified either in the bundle for that primitive or by the individual
colour attribute for that primitive. It may be part of a pattern for FILL AREA, in which case
an array of colours is specified, or it may be part of a primitive itself, namely CELL ARRAY,
when an array of colours is also specified. In each case, the colour is specified as an index into
a colour table on the workstation. On each workstation, there is one colour table into which all
the colour indices point.

The size of the colour table is workstation dependent but entries 0 and 1 always exist. Entry 0
corresponds to the background colour. The background colour is the colour of the display sur-
face after it has been cleared. Entry 1 is the default foreground colour and entries higher than
1 correspond to alternative foreground colours. Entries in the table may be set by the function
SET COLOUR REPRESENTATION which specifies the colour as a combination of red, green,
and blue intensities. The specified colour is mapped to the nearest available by the workstation.
On some workstations it may not be possible to change the background colour, and in this case
the mapping of a specific colour to the nearest available for the background colour may be
different from the mapping of the same colour for the foreground colours.

Some workstations are not capable of displaying colours (for example, workstations only capa-
ble of displaying colours with equal red, green, and blue intensities or workstations only capable
of displaying colours which are different intensities of the same colour); these are referred to as
monochrome workstations. Whether a workstation is capable of colour is recorded in the
‘colour available’ entry in the workstation description table. On monochrome workstations, the
intensity is computed from the colour values in a workstation dependent way. See Appendix D

Page 34

The Graphical Kernel System Graphlcal output

for a recommended algorithm.

Page 35

‘Workstations The Graphical Kernel System

4.5 Workstations

4.5.1 Workstation characteristics

GKS is based on the concept of abstract graphical workstations. These provide the logical inter-
face through which the application program controls physical devices. Certain special worksta-
tions provide facilities for the storage and exchange of graphical information.

For every type of workstation present in a GKS implementation (except for the special worksta-
tions), there exists a workstation description table which describes the capabilities and charac-
teristics of the workstation. The application program can inquire which capabilities are available
and adapt its behaviour accordingly. If a capability is requested that a particular workstation
does not provide, a standard error reaction is defined. Certain minimal capabilities of a works-
tation are detailed in 4.10.

An abstract graphical workstation with maximum capabilities:
a) has one addressable display surface of fixed resolution;

b) allows only rectangular display spaces (the display space does not consist of a number of
separate parts);

c) permits the specification and use of smaller display spaces than the maximum while
guaranteeing that no display image is generated outside the specified display space;

d) supports several linetypes, text fonts, character sizes, etc, to allow output primitives to be
drawn with different aspects;

e) has one or more logical input devices for each input class;
f) permits REQUEST, SAMPLE and EVENT type input;

g) allows logical input devices to be set in REQUEST, SAMPLE or EVENT mode indepen-
dently of each other;

h) stores segments and provides facilities for changing and manipulating them.
In practice, the workstation is not necessarily equipped with all of these capabilities.

Each workstation has a type. Each workstation type falls into one of six categories:

OUTPUT | Output
INPUT Input
OUTIN Output and input

WISS Workstation Independent Segment Storage(WISS)
MO GKS Metafile (GKSM) output
MI GKSM input

A workstation of category OUTPUT has only output capabilities. It can display all output prim-
itives, with the possible exception of the GENERALIZED DRAWING PRIMITIVE which is
optional. Minimal requirements for displaying TEXT and FILL AREA primitives are listed in
4.4, and for CELL ARRAY in 5.3.

GKS allows the appearance of output primitives to vary between workstations, thus allowing
advantage to be taken of their differing capabilities. The facilities which allow this variation are:

Page 36

The Graphical Kernel System Workstations

polyline representation (see 4.4)
polymarker representation (see 4.4)
text representation (see 4.4)

fill area representation (see 4.4)
pattern representation (see 4.4)
colour representation (see 4.4)
deferral state (see 4.5.3)

workstation transformation (see 4.6.3)

Figure 2 (see 4.4) illustrates the binding of the workstation attributes.
A workstation of category INPUT has at least one logical input device, but no output capability.

A workstation of category OUTIN has the characteristics of both an OUTPUT and INPUT
workstation. In addition, the existence of a workstation in this category in a GKS implementa-
tion gives rise to additional requirements regarding logical input devices (see 4.8.1).

The last three categories WISS, MO and MI are special GKS facilities that provide a means for
temporarily or permanently storing graphical information. They are treated as workstations for
the purposes of control, but otherwise have quite different characteristics (see 4.7.5 and 4.9).

Section A.5 of appendix A gives a complete listing of all GKS functions which apply directly or
indirectly to each category of workstation.

Actual workstations may provide more capabilities than those listed in the workstation descrip-
tion table. These cannot be used by GKS. However, if the workstation itself provides
sufficient intelligence, the additional capabilities may be accessed via the GENERALIZED
DRAWING PRIMITIVE or ESCAPE functions, or used locally by the workstation operator.
As an example, if a workstation has two display surfaces, the operator may switch locally from
one to the other without notifying GKS or the application program. More than one display sur-
face can be controlled by GKS only by defining a separate workstation for each display surface.

4.5.2 Selecting a workstation

The application program references a workstation by means of a workstation identifier. Con-
nection to a particular workstation is established by the function OPEN WORKSTATION,
which associates the workstation identifier with a workstation type and a connection identifier.
The current state of each open workstation is kept in a workstation state list. Segment manipu-
lation and input can be performed on all open workstations. Output primitives are sent to, and
segments are stored on, all active workstations and no others; an open workstation is made
active by the function ACTIVATE WORKSTATION.

An active workstation is made inactive by the function DEACTIVATE WORKSTATION; an
open workstation is closed by the function CLOSE WORKSTATION.

The following sequence of functions illustrates workstation selection:

Page 37

‘Workstations The Graphical Kernel System

OPEN WORKSTATION (N1,conidl,workstation type A};
OPEN WORKSTATION (N2,conid2,workstation type B);
ACTIVATE WORKSTATION (N1);

Output functions; {generated only on N1}
Input functions; {possible on N1,N2}

ACTIVATE WORKSTATION (N2};
Output functions; {generated on N1,N2}
DEACTIVATE WORKSTATION (N1);

Output functions; {generated only on N2}
Input functions; {possible on N1,N2}

CLOSE WORKSTATION (N1);
DEACTIVATE WORKSTATION (N2);
CLOSE WORKSTATION (N2);

4.5.8 Deferring picture changes

It is desirable that the display of a workstation reflects, as far as possible, the actual state of the
picture as defined by the application program. However, to use the capabilities of a workstation
efficiently, GKS allows a workstation to delay, for a certain period of time, the actions
requested by the application program. During this period, the state of the display may be
undefined.

The function SET DEFERRAL STATE allows the application program to choose that deferral
state which takes into account the capabilities of the workstation and the requirements of the
application program. Two attributes are defined for this purpose. Deferral mode controls the
time at which output functions have their visual effects. Implicit regeneration controls the time
at which picture changes have their visual effects: picture changes in general imply an alteration
not just an addition to the picture.

The concept of deferral refers only to visible effects of GKS functions. Effects on the segment
storage or on the state of the workstation are (conceptually) not deferred.

Deferral mode controls the possible delaying of output functions: for example, data sent to a
device may be buffered to optimize data transfer. The values of deferral mode (in increasing
order of delay) are:

a) ASAP: The visual effect of each function will be achieved on the workstation As Soon
As Possible (ASAP). GKS ensures that the actions necessary to achieve this
visual effect are initiated before control is returned to the application program,
but, owing to possible delays not under the influence of GKS, the actions are
not necessarily completed before control is returned.

b) BNIG: The visual effect of each function will be achieved on the workstation Before
the Next Interaction Globally (BNIG), i.e. before the next interaction with a
logical input device gets underway on any workstation (see 4.8.2). If an interac-
tion on any workstation is already underway, the visual effect will be achieved
as soon as possible.

Page 38

The Graphical Kernel System Workstations

¢) BNIL: The visual effect of each function will be achieved on the workstation Before
the Next Interaction Locally (BNIL), i.e. before the next interaction with a logi-
cal input device gets underway on that workstation (see 4.8.2). If an interaction
on that workstation is already underway, the visual effect will be achieved as
soon as possible.

d) ASTI: The visual effect of each function will be achieved on the workstation At Some
TIme (ASTI).

Deferral applies to the following functions that generate output:

POLYLINE

POLYMARKER

TEXT

FILL AREA

CELL ARRAY

GENERALIZED DRAWING PRIMITIVE
INSERT SEGMENT

ASSOCIATE SEGMENT WITH WORKSTATION
COPY SEGMENT TO WORKSTATION
INTERPRET ITEM

For none of the possible values of deferral mode is it mandatory for an implementation to delay
the visual effect of output functions. If the application program requires a delay, it can achieve
this using the segment storage facility and the visibility attribute. This restriction means that
the buffer for deferred actions can be chosen in an implementation dependent manner.

Certain functions can be performed immediately on some workstations, but on other worksta-
tions imply a regeneration of the whole picture to achieve their effect. For example, an implicit
regeneration is necessary when picture changes require new paper to be put on a plotter. The
entries ‘dynamic modification accepted’ in the workstation description table indicate which
changes:

e) lead to an implicit regeneration (IRG);

f) can be performed immediately (IMM).
If changes can be performed immediately, those changes may aff ect primitives outside segments
in addition to those inside segments. If regeneration occurs, all primitives outside segments
will be deleted from the display surface.

An implicit regeneration is equivalent to an invocation of the function
REDRAW ALL SEGMENTS. Its possible delay is controlled by the implicit regeneration
mode, a single entry in the workstation state list. The values of implicit regeneration mode are:

g) SUPPRESSED: Implicit regeneration of the picture is suppressed, until it is explicitly
requested: the entry ‘new frame necessary at update’ is set to YES.

h) ALLOWED: Implicit regeneration of the picture is allowed.
An implicit regeneration is made necessary, if any of the following occur:

i) if the functions listed below have a visible effect on the display image of the respective
workstation:

1) if the ‘dynamic modification accepted’ entry in the workstation description table is
IRG (implicit regeneration necessary) for the specified representation:

Page 39

‘Workstations The Graphical Kernel System

SET POLYLINE REPRESENTATION

SET POLYMARKER REPRESENTATION
SET TEXT REPRESENTATION

SET FILL AREA REPRESENTATION
SET PATTERN REPRESENTATION

SET COLOUR REPRESENTATION

2) if the ‘dynamic modification accepted’ entry in the workstation description table is
IRG for the workstation transformation:

SET WORKSTATION WIND OW
SET WORKSTATION VIEWPORT

3) if the ‘dynamic modification accepted’ entry in the workstation description table is
IRG for segment priority and this workstation supports segment priority:

i) if primitives are added to open segment overlapping a segment of higher priority:

POLYLINE

POLYMARKER

TEXT

FILL AREA

CELL ARRAY

GENERALIZED DRAWING PRIMITIVE
INSERT SEGMENT

(since only segments have priority, primitives outside segments do not make an
implicit regeneration necessary.)

ii) if the complete execution of one of the following actions would be affected by seg-
ment priority:

DELETE SEGMENT

DELETE SEGMENT FROM WORKSTATION
ASSOCIATE SEGMENT WITH WORKSTATION
SET SEGMENT TRANSFORMATION

SET VISIBILITY

SET SEGMENT PRIORITY

4) if the ‘dynamic modification accepted’ entry in the workstation description table is
IRG for segment transformation:

SET SEGMENT TRANSFORMATION

5) if the ‘dynamic modification accepted’ entry in the workstation description table is
IRG for ‘visibility (visible — invisible)’:

SET VISIBILITY (INVISIBLE)

6) if the ‘dynamic modification accepted’ entry in the workstation description table is
IRG for ‘visibility (invisible — visible)’:

SET VISIBILITY (VISIBLE)

7) if the ‘dynamic modification accepted’ entry in the workstation description table is
IRG for highlighting:

SET HIGHLIGHTING

Page 40

The Graphical Kernel System Workstations

8) if the ‘dynamic modification accepted’ entry in the workstation description table is
IRG for delete segment:

DELETE SEGMENT
DELETE SEGMENT FROM WORKSTATION

j) if any of the above situations occurs as a result of INTERPRET ITEM.

An implicit regeneration has to be done (including deletion of primitives outside segments)
only if one of the functions listed causes a visible effect on the display; for example, if an
invisible segment is deleted, a regeneration need not be done. However, an implementation is
allowed to perform an implicit regeneration in any of the cases listed above.

Deferred actions can be made visible at any time by the use of the UPDATE WORKSTA TION
function or by an appropriate change of the deferral state.

4.5.4 Clearing the display surface
Two capabilities for clearing the display surface are recognized, namely:
a) clear the display surface even if it is empty;
b) ensure that the display surface is clear without clearing the display surface needlessly.

The second capability means that the display surface is only cleared when needed: this would
normally be when the display surface is not clear (i.e. when the ‘display surface empty’ entry in
the workstation state list is NOTEMPTY). The entry ‘display surface empty’ in the workstation
state list is set to NOTEMPTY if output is sent to the device. It may be set to NOTEMPTY
even if output does not appear on the display surface (for example, a GDP primitive which has
been clipped at the device to non-existence).

Both capabilities for clearing the display surface are available to the user through the function
CLEAR WORKSTATION. The second capability is also used in UPDATE WORKSTATION
and REDRAW ALL SEGMENTS ON WORKSTATION.

4.5.5 Elimination of primitives outside segments
Elimination of primitives outside segments occurs in the following situations:
a) if the following GKS functions are invoked:
CLEAR WORKSTATION
REDRAW ALL SEGMENTS ON WORKSTA TION

UPDATE WORKSTATION
if the parameter update regeneration flag is PERFORM and if ‘new frame action neces-
sary at update’ in the workstation state list is YES;

SET DEFERRAL STATE
if ‘implicit regeneration mode’ is ALLOWED and ‘new frame action necessary at update’
is YES;
b) if an implicit regeneration is made necessary (see 4.5.3) and ‘implicit regeneration mode’
is ALLOWED;

¢) if any of the above situations occurs as a result of INTERPRET ITEM.

4.5.6 Sending messages to a workstation

The MESSAGE function allows a character string to be sent to a workstation. The application
program has no control over the position and appearance of the character string and an imple-
mentation is allowed to place the string on a device distinct from, but associated with, the
workstation. The rules to be followed by an implementation are stated in 5.2.

Page 41

‘Workstations The Graphical Kernel System

4.6 Coordinate systems and transformations

4.6.1 Normalization transformations

In GKS, the application programmer can compose his graphical picture from separate parts each
of which, conceptually, is defined with its own world coordinate system (WC). The relative
positioning of the separate parts is defined by having a single normalized device coordinate
space (NDC) onto which all the defined world coordinate systems are mapped. A set of nor-
malization transformations define the mappings from the world coordi