
<J

o

o

o

c

[})OMA~N ~tal~Ctal~

ltalU19JijJ]al9J6 Referrerruce

Apollo Computer Inc.
330 Billerica Road

Chelmsford, MA 01824

Order No. 000792
Revision 04

Copyright © 1986 Apollo Computer Inc.
All rights reserved. Printed in U.S.A.

First Printing:
Latest Printing:
Updated:

September, 1981
January, 1987
December, 1986

This document was produced using the Interleaf Workstation Publishing Software (WPS). Interleaf and WPS are
trademarks of Interleaf, Inc.

APOLLO and DOMAIN are registered trademarks of Apollo Computer Inc.

AEGIS, DGR, DOMAIN/BRIDGE, DOMAIN/DFL-10D, DOMAIN/DQC-100, DOMAIN/Dialogue, DOMAINIIX,
DOMAIN/Laser-26, DOMAIN/PCI, DOMAIN/SNA, D3M, DPSS, DSEE, GMR, and GPR are trademarks of Apollo
Computer Inc.

Apollo Computer Inc. reserves the right to make changes In specifications and other information contained In this
publication without prior notice, and the reader should In all cases consult Apollo Computer Inc. to determine whether
any such changes have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF APOLLO COMPUTER INC. HARDWARE PRODUCTS AND
THE LICENSING OF APOLLO COMPUTER INC. SOFTWARE CONSIST SOLELY OF THOSE SET FORTH IN THE
WRITTEN CONTRACTS BETWEEN APOLLO COMPUTER INC. AND ITS CUSTOMERS. NO REPRESENTATION OR
OTHER AFFIRMATION OF FACT CONTAINED IN THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO
STATEMENTS REGARDING CAPACITY , RESPONSE-TIME PERFORMANCE , SUITABILITY FOR USE OR
PERFORMANCE OF PRODUCTS DESCRIBED HEREIN SHALL BE DEEMED TO BE A WARRANTY BY APOLLO
COMPUTER INC. FOR ANY PURPOSE, OR GIVE RISE TO ANY LIABILITY BY APOLLO COMPUTER INC.
WHATSOEVER.

IN NO EVENT SHALL APOLLO COMPUTER INC. BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS) ARISING OUT OF
OR RELATING TO THIS PUBLICATION OR THE INFORMATION CONTAINED IN IT, EVEN IF APOLLO COMPUTER INC.
HAS BEEN ADVISED, KNEW OR SHOULD HAVE KNOWN OF THE POSSIBILITY OF SUCH DAMAGES.

THE SOFTWARE PROGRAMS DESCRIBED IN THIS DOCUMENT ARE CONFIDENTIAL INFORMATION AND
PROPRIETARY PRODUCTS OF APOLLO COMPUTER INC. OR ITS L1CENSORS.,_ /

c

o.

0

0

o

Preface

The DOMAIN Pascal Language Reference explains how to code, compile, bind, and execute DOMAIN
Pascal programs.

We've organized this manual as follows:

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Appendix A

Appendix B

Appendix C

Appendix D

Appendix E

Audience

Introduces DOMAIN Pascal and provides an overview of its extensions.

Defines DOMAIN Pascal building blocks (like the length of an identifier)
and describes the structure of the main program.

Explains all the DOMAIN Pascal data types.

Contains alphabetized listings describing all the functions, procedures,
statements, and operators that you can use in the code portion of a pro­
gram.

Explains how to declare and call procedures and functions.

Details compiling, binding, debugging, and executing.

Describes how you can break your program into two or more separately­
compiled modules (which can be in DOMAIN Pascal, DOMAIN FOR­
TRAN, or DOMAIN C).

Contains an overview of the I/O resources available to DOMAIN Pascal
programmers.

Covers errors and warnings and how to handle them.

ls a table of DOMAIN Pascal reserved words and predeclared identifiers.

Is an ASCII table.

Describes DOMAIN Pascal's extensions to ISO/ANSI standard Pascal.

Describes DOMAIN Pascal's deviations from ISO/ANSI standard Pascal.

Describes built-in routines available for systems programmers.

We wrote this manual to serve programmers at a variety of levels of Pascal expertise. Our goal is to keep
the writing as simple as possible, but to assume that you know the fundamentals of Pascal programming. If
you are totally inexperienced in a block-structured language like Pascal or PL/I, you probably should
study a Pascal tutorial before using this manual. If you have a little experience with a block-structured lan­
guage, you will probably benefit most by experimenting with the many examples we provide (particularly
in Chapter 4). If you are an expert Pascal programmer, turn to Appendix C first for a list of our exten­
sions to standard Pascal.

iii Preface

Summary of Technical Changes
This manual describes the DOMAIN Pascal compiler available with Software Release 9.5 and supersedes ,/----'\
all earlier documents. The last update to the DOMAIN Pascal manual was at SR9.0. The following list de-
scribes some of the features added to DOMAIN Pascal since SR9. 0: "---. ../

• The compiler reports many new error and warning messages.

• The new built-in functions max and min return the larger and smaller, respectively, of two val­
ues.

• The new built-in procedure discard explicitly discards the computed value of an expression.

• DOMAIN Pascal now supports the ISO/ANSI standard Pascal procedures pack and unpack.

• New compiler optimizations eliminate variable assignments that are never used.

• A new compiler directive, %slibrary, allows the use of precompiled library include files. Also, the
new compiler option -slib allows you to precompile a file so that %slibrary can use it.

• The -opt compiler option now allows you to select a predetermined level of optimization for your
program. You can select from level 0 (which is equivalent to -nopt) to level 3.

• The -cpu compiler option now accepts the following additional arguments for targeting the run­
time CPU: 560 I 330 I 90 I 570 I 580 I 3000.

• Three new routine options are available: nosave, noreturn, and dO_return.

• The volatile attribute has been changed so that the attribute no longer is inherited by an entire
record for which one field is declared volatile. .~ .

• Enumerated type variables can now have a maximum of 2048 elements. The old limit was 256.

• The compiler no longer requires that DOMAIN Pascal source filenames end with .pas.

o A new optional parameter for the open procedure allows you to specify a buffer size.

• A new systems programming function, set_sr, saves the current value of the hardware status regis­
ter and then inserts a new value.

Revisions to Manual
A number of changes have been made to this manual for this revision. To help you find the revisions,
change bars like the one next to this paragraph appear on the revised pages indicating where new informa­
tion has been added or existing information has been revised.

Related Manuals
• Getting Started With Your DOMAIN System (002348) explains the fundamentals of the DOMAIN

system.

• The DOMAIN System User's Guide (005488) provides more detailed information on the DO­
MAIN system.

• The DOMAIN C Language Reference (002093) describes the DOMAIN implementation of the C
language.

Preface iv

. -,/

c

o

o

o

o

o

• The DOMAIN FORTRAN Language Reference (000530) describes the DOMAIN implementation
of FORTRAN.

o The DOMAIN System Command Reference (002547) describes the Shell and Display Manager
(DM) concepts and commands.

o The DOMAIN System Call Reference (007196) describes the system service routines provided by
the operating system, and explains how to call these routines from user programs.

o Programming With General System Calls (005506) covers writing DOMAIN Pascal programs that
use stream calls and many other important system calls.

o The DOMAIN Binder and Librarian Reference (004977) describes how to use the bind utility to
link object modules and the librarian utility to create library files.

() The DOMAIN Language Level Debugger Reference (001525) describes the high-level language
debugger, DEBUG.

• The DOMAIN Software Engineering Environment™ (DSEE) Reference (003016) describes the
DOMAIN DSEE product.

o The DOMAIN@/Dialogue™ User's Guide (004299) describes the DOMAIN/Dialogue product.

Pascal Tutorials

o Jensen, K. and N. Wirth, revised by Mickel, A. and J. Miner. Pascal User Manual and Report.
Third Edition. Springer-Verlag, New York: 1985.

o Grogono, Peter. Programming in Pascal. Revised Edition. Reading, Massachusetts: Addison­
Wesley, 1980.

o Cooper, D., and M. Clancy. Oh! Pascal! New York: WW Norton, 1982.

Problems, Questions, and Suggestions
We appreciate comments from the people who use our system. In order to make it easy for you to com­
municate with us, we provide the User Change Request (UCR) system for software-related comments,
and the Reader's Response form for documentation comments. By using these formal channels you make
it easy for us to respond to your comments.

You can get more information about how to submit a UCR by consulting the DOMAIN System Command
Reference. Refer to the crucr (CREATE_USER_CHANGE_REQUEST) Shell command description. You
can view the same description on-line by typing:

$ help crucr

For your documentation comments, we've included a Reader's Response form at the back of each manu­
al.

v Preface

Documentation Conventions
Unless otherwise noted in the text, this manual uses the following symbolic conventions.

boldface

lowercase

italics

typewriter

Extension

color

{ Braces}

<>

CTRL/Z

Preface

Boldface words or characters in descriptions of statement or keyword
syntax represent the keywords that you must use literally.

Lowercase words or characters in descriptions of statement or keyword
syntax represent values that you must supply.

Italicized words in descriptions of statement or keyword syntax represent
optional items.

Typewriter font is used for examples and for variable, program, and rou­
tine names within text.

The word "Extension" used in a section heading indicates that all the in­
formation described in the section is a DOMAIN Pascal extension to the
ISO standard.

Words printed in color denote user input to a program example or on a
command line. Color also indicates an extension to ISO standard Pascal.

Braces enclose comments in a program or command.

A vertical bar separates items in a list of choices.

Angle brackets enclose the name of a key on the keyboard;
e.g.,<RETURN>.

The notation CTRLI followed by the name of a key indicates a control
character sequence. You should hold down <CTRL> while typing the
character.

Horizontal ellipsis points in descriptions of statements and keyword syn­
tax indicate that the preceding item may be repeated one or more times.
In program examples, horizontal ellipsis points mean irrelevant parts of
the example have been omitted.

Vertical ellipsis points mean that irrelevant parts of a figure or example
have been omitted.

vi

---"'"

'-- /'

c

/~

I

o

o

o

Conienis

Chapter 1 Introduction

1.1 A Sample Program .. 1-1
1.2 On-Line Sample Programs. .. 1-2
1.3 Overview of DOMAIN Pascal Extensions .. 1-4

1.3.1 Extensions to Program Organization .. 1-4
1.3.2 Extensions to Data Types .. 1-4
1.3.3 Extensions to Code ... 1-4
1.3.4 Extensions to Routines .. 1-5
1.3.5 Extensions to Program Development 1-5
1.3.6 External Routines and Cross-Language Communication 1-5
1.3.7 Extensions to I/O ... 1-6
1.3.8 Errors. .. 1-6

Chapter 2 Blueprint of a Program

2.1 Building Blocks of DOMAIN Pascal .. 2-1
2.1.1 Identifiers .. 2-1
2.1.2 Integers .. 2-2
2.1.3 Real Numbers ... 2-2
2.1.4 Comments .. 2-3
2.1.5 Strings .. 2-4
2.1.6 Case Sensitivity .. 2-4
2.1. 7 Spreading Source Code Across Multiple Lines 2-4

2.2 Organization ... 2-5
2.2.1 Program Heading. 2-7
2.2.2 Declarations. .. 2-7

2.2.2.1 Label Declaration Part ... 2-7
2.2.2.2 Const Declaration Part ... 2-8
2.2.2.3 Type Declaration Part .. 2-9
2.2.2.4 Var Declaration Part ... 2-10
2.2.2.5 Define Declaration Part -- Extension 2-10

2.2.3 Routines .. 2-11
2.2.3.1 Routine Heading .. 2-11
2.2.3.2 Declaration Part of a Routine .. 2-11
2.2.3.3 Nested Routines '. .. 2-11
2.2.3.4 Action Part of a Routine. .. 2-12

2.2.4 Action Part of the Main Program .. 2-12
2.3 Global and Local Variables .. ; 2-12
2. 4 Nested Routines .. 2-13

Chapter 3 Data Types

3.1 Data Type Overview ... 3-1
3.2 Integers ... 3-2

3.2.1 Declaring Integer Variables. .. 3-3
3.2.2 Initializing Integer Variables -- Extension. .. 3-3
3.2.3 Defining Integer Constants ~ .. 3-3

vii Contents

3.2.4 Internal Representation of Integers
3.3 Real Numbers

3.3.1 Declaring Real Variables .. .
3.3.2 Initializing Real Variables -- Extension
3.3.3 Defining Real Constants .. .
3.3.4 Internal Representation of Real Numbers

3.4 Booleans
3.4.1 Initializing Boolean Variables -- Extension
3.4.2 Defining Boolean Constants
3.4.3 Internal Representation of Boolean Variables

3.5 Characters .. .
3.5.1 Declaring Character Variables
3.5.2 Initializing Character Variables -- Extension
3.5.3 Defining Character Constants .. .
3.5.4 Internal Representation of Char Variables

3.6 Enumerated Data .. .
3.6.1 Internal Representation of Enumerated Variables

3.7 Subrange Data
3.7.1 Internal Representation of Subranges

3.8 Sets ... '
3.8.1 Declaring Set Variables
3.8.2 Initializing Set Variables -- Extension
3.8.3 Internal Representation of Sets

3.9 Records .. .
3.9.1 Fixed Records .. .
3.9.2 Variant Records
3.9. 3 Unpacked Records and Packed Records .'
3.9.4 Initializing Data in a Record -- Extension
3.9.5 Internal Representation of Unpacked Records
3.9.6 Internal Representation of Packed Records

3.10 Arrays .. .
3.10.1 Initializing Variable Arrays -- Extension

3.10.1.1 Defaulting the Size of an Array -- Extension
3.10.1.2 Using Repeat Counts to Initialize Arrays -- Extension

3.10.2 Internal Representation of Arrays
3. 11 Files -... .
3.12 Pointers

3.12.1 Standard Pointer Type .. .
3.12.2 Univ-.ptr -- Extension .. .
3.12.3 Procedure and Function Pointer Data Types -- Extension
3.12.4 Initializing Pointer Variables -- Extension
3.12.5 Internal Representation of Pointers

3.13 Putting Variables Into Sections -- Extension
3.14 Attributes for Variables and Types -- Extension

3.14.1 Volatile -- Extension
3.14.2 Device -- Extension .. .
3.14.3 Address -- Extension ..
3.14.4 Attribute Inheritance -- Extension
3.14.5 Special Considerations -- Extension

Chapter 4 Code

3-4
3-4
3-4
3-5
3-5
3-6
3-7
3-7
3-8
3-8
3-8
3-8
3-8
3-9
3-9
3-9
3-9
3-10
3-10
3-10
3-10
3-11
3-11
3-12
3-12
3-14
3-15
3-16
3-17
3-18
3-19
3-20
3-21
3-21
3-22
3-23
3-24
3-24
3-25
3-25
3-25
3-26
3-26
3-27
3-27
3-28
3-30
3-30
3-31

4.1 Overview: Conditional Branching .. 4-1
4.2 Overview: Looping ,................................... 4-1
4.3 Overview: Mathematical Operators ... 4-2

4.3.1 Expansion of Operands. .. 4-3
4.3.2 Predeclared Mathematical Functions 4-4

4.4 Overview: I/O .. 4-5

Contents viii

c

c

C)

o

o

C~

4.5 Overview: Miscellaneous Functions, Procedures, and Statements 4-5
4.6 Overview: Systems Programming Routines • .. 4-7
4.7 Encyclopedia of DOMAIN Pascal Code ... 4-8

Abs ... 4-9
Addr -- Extension .. 4-10
And .. 4-12
Arctan .. 4-14
Array Operations .. 4-16
Arshft -- Extension ... 4-19
Begin ... 4-21
Bit Operators -- Extension ... 4-23
Case .. 4-25
Chr ... 4-28
Close -- Extension 4-30
Compiler Directives -- Extension .. 4-32
Cos. .. 4-41
Discard -- Extension .. 4-43
Dispose. .. 4-45
Div ... 4-47
Do ... 4-49
Downto .. 4-50
Else .. 4-51
End .. 4-52
Eof ... 4-54
Eoln .. 4-56
Exit -- Extension ... 4-58
Exp ... 4-60
Expressions .. 4-62
Find -- Extension .. -. 4-63
Firstof -- Extension ... 4-66
For ... 4-68
Get ... 4-70
Goto .. 4-72
If .. 4-76
In .. 4-80
In_range -- Extension ... 4-81
Lastof -- Extension ... 4-83
Ln ... 4-84
Lshft -- Extension .. 4-85
Max -- Extension ... 4-87
Min -- Extension ... 4-90
Mod .. 4-92
New .. 4-94
Next -- Extension. .. 4-99
Nil ... 4-101
Not ... 4-102
Odd ... 4-103
Of .. 4-104
Open -- Extension 4-105
Or .. 4-108
Ord .. 4-110
Pack. .. 4-112
Page .. 4-114
Pointer Operations .. 4-116
Pred .. 4-118
Put ... 4-120
Read, Readln .. 4-123

ix Contents

Record Operations. .. 4-125
Repeat/Until. .. 4-128
Replace -- Extension 4-130
Reset ... 4-131
Return -- Extension. .. 4-133
Rewrite. .. 4-134
Round .. 4-136
Rshft -- Extension .. 4-137
Set Operations. .. 4-139
Sin ... 4-145
Sizeof -- Extension ... 4-147
Sqr ... 4-149
Sqrt .. 4-150
Statements ... 4-151
Succ .. 4-152
Then .. 4-154
To .. 4-155
Trunc .. 4-156
Type Transfer Functions -- Extension .. 4-157
Unpack .. 4-160
Until. .. 4-162
While ... 4-163
With .. 4-165
Write, Writeln 4-169
Xor -- Extension ... 4-174

Chapter 5 Procedures and Functions

5.1 Parameter List .. 5-1
5.2 Parameter Types .. 5 - 3

5.2.1 Variable Parameters and Value Parameters 5-3
5.2.2 In, Out, and In Out -- Extension ... 5-4
5.2.3 Univ -- Universal Parameter Specification -- Extension. .. 5-5

5.3 Routine Options ... 5-8
5.3.1 Forward .. 5-8
5.3.2 Extern -- Extension 5-9
5.3.3 Internal -- Extension '. .. 5-9
5.3.4 Variable -- Extension. .. 5-10

' _. ~./

5.3.5 Abnormal -- Extension ... 5 -11 C"
5
5

.3
3

'76 vNalyaram E-- Ex~ension .. 55-1111 '"
.. osave -- xtenslon.. -

5.3.8 N oreturn -- Extension .. 5 -11
5.3.9 DO_return -- Extension ... 5-11

5.4 Attribute List -- Extension ... 5-12
5.4. 1 Section -- Extension ... 5 -12

5.5 Recursion .. 5-14

Chapter 6 Program Development

6. 1 Compiling .. 6-3
6.1.1 Compiler Output ... 6-3

6.2 Compiler Options ... 6-3
6.2.1 -Align and -Nalign: Longword Alignment 6-5
6.2.2 -B and -Nb: Binary Output .. 6-6
6.2.3 -Comchk and -Ncomchk: Comment Checking 6-6
6.2.4 -Cond and -Ncond: Conditional Compilation 6-7
6.2.5 -Config: Conditional Processing. .. 6-7
6.2.6 -Cpu: Target Workstation Selection 6-8

Contents x

----------.-~~-.-.~.~.---- ~.--~-

()

o

o

6.2.7 -Db, -Ndb, -Dba, -Dbs: Debugger Preparation. .. 6-9
6.2.8 -Exp and -Nexp: Expanded Listing File '. .. 6-10
6.2.9 -Idir: Search Alternate Directories for Include Files 6-10
6.2.10 -ISO and -NISO: Standard Pascal 6-10
6.2.11 -L and -NL: Lising Files .. 6-11
6.2.12 -Map and -Nmap: Symbol Map ... 6-11
6.2.13 -Msgs and -Nmsgs: Informational Messages. .. 6-12
6.2.14 -Opt and -Nopt: Optimized Code .. 6-12
6.2.15 -Peb and -Npeb: Performance Enhancement 6-13
6.2.16 -Slib: Precompilation of Include Files 6-13
6.2.17 -Subchk and -Nsubchk: Subscript Checking 6-14
6.2.18 -Warn and -Nwarn: Warning Messages 6-15
6.2.19 -Xrs and -Nxrs: Register Saving ... 6-15

6.3 Binding. .. 6-15
6.4 Using Libraries ... 6-16
6.5 Executing the Program ... 6-16
6.6 Debugging the Program. .. 6-16

6.6.1 Debug ~ .. 6-16
6.6.2 Traceback (tb) .. 6-17
6.6.3 Crefpas ... 6-17

6.7 The DSEE Product. .. 6-18
6.8 DOMAIN/Dialogue .. 6-19

Chapter 7 External Routines and Cross-Language Communication

7.1 Modules ... 7-1
7.1.1 Module Heading ... 7-2

7.2 Accessing a Variable Stored in Another Pascal Module 7-3
7.2.1 Method 1 .. 7-3
7.2.2 Method 2 .. 7-4

7.2.2.1 Initializing Extern Variable Arrays .. 7-4
7.2.3 Method 3 ... 7-5
7.2.4 Method 4 .. 7-6

7.3 Accessing a Routine Stored in Another Pascal Module. .. 7-6
7.3.1 Extern ... 7-6
7.3.2 Internal .. 7-6
7.3.3 Method A .. 7-7
7.3.4 Method B ... 7-9

7.4 Calling a FORTRAN Routine From Pascal 7-12
7.5 Data Type Correspondence for Pascal and FORTRAN 7-12

7.5.1 Boolean and Logical Correspondence 7-13
7.5.2 Simulating FORTRAN's Complex Data Type 7-13
7.5.3 Array Correspondence .. 7-13

7.6 Passing Data Between FORTRAN and Pascal 7-14
7.7 Calling FORTRAN Functions and Subroutines 7-15

7.7.1 Calling a Function. .. 7-15
7.7.2 Calling a Subroutine ,.................................. 7 -16
7.7.3 Passing Character Arguments ... 7 -17
7.7.4 Passing a Mixture of Data Types .. 7 -18

7.8 Calling a C Routine From Pascal .. 7-20
7.8.1 Reconciling Differences in Argument Passing 7-20
7.8.2 Case Sensitivity Issues ... 7-20

7.9 Data Type Correspondence for Pascal and C .. 7-21
7.9.1 Passing Integers and Real Numbers 7-22
7.9.2 Passing Character Arguments ... 7-22
7.9.3 Passing Arrays ... 7-24
7.9.4 Passing Pointers '. .. 7-26

xi Contents

Chapter 8 Input and Output

8.1 Some Background on DOMAIN I/O .. 8-1
8.1.1 Input Output Stream (lOS) Calls. .. 8-2
8.1.2 VFMT Calls ... 8-2
8.1.3 File Variables and Stream IDs .. 8-3
8.1.4 Default Input Output Streams. .. 8-3
8.1.5 Interactive I/O ... 8-3
8.1.6 Stream Markers. .. 8-5
8.1.7 File Organization. .. 8-5

8.2 Predeclared DOMAIN Pascal I/O Procedures 8-5
8.2.1 Creating and Opening a New File ... 8-5
8.2.2 Opening an Existing File. .. 8-6
8.2.3 Reading From a File. .. 8-6
8.2.4 Writing to a File ... 8-6
8.2.5 Closing a File. .. 8-7

Chapter 9 Errors

9.1 Errors Reported by Open and Find. .. 9-1
9.1.1 Printing Error Messages ... 9-1 0
9. 1. 2 Testing for Specific Errors ... 9 - 2

9.2 Compiler Errors and Warnings. .. 9-4
9.2.1 Error and Warning Message Conventions 9-4
9.2.2 Error and Warning Messages ... 9-5

Appendix A Reserved Words and Predeclared Identifiers

Appendix B ASCII Table

Appendix C Extensions to Standard Pascal

C.l Extensions to Program Organization .. C-1
C .1.1 Identifiers .. C-1
C.l.2 Integers .. C-1
C.l.3 Comments .. C-2
C.l.4 Sections. .. C-2
C .1. 5 Declarations .. C-2
C.l.6 Constants. .. C-2
C.l.7 Labels ... C-3

C.2 Extensions to Data Types. .. C-3
C.2.1 Initializing Variables in the Var Declaration Part. .. C-3
C.2.2 Integers .. C-3
C.2.3 Reals .. C-4
C.2.4 Pointer Types ... C-4
C.2.5 Named Sections ... C-4
C.2.6 Variable and Type Attributes. .. C-4

C.3 Extensions to Code. .. C-4
C.3.1 Bit Operators. .. C-5
C.3.2 Bit-Shift Functions C-5
C.3.3 Compiler Directives. .. C-5
C.3.4 Addr Function .. C-5
C.3.5 Max and Min Functions ... C-5
C.3.6 Discard Procedure .. C-5
C.3.7 I/O Procecures .. C-5
C.3.8 If Statement .. C-6
C.3.9 Loops .. C-6

Contents xii

\
'-..../

c'

o

o

o

o

C.3.10 Range of a Specified Data Type ... C-6
C.3.11 Integer Subrange Testing ... C-7
C.3.12 Extensions to Read and Readln .. C-7
C.3.13 Premature Return From Routines .. C-7
C.3.14 Memory Allocation of a Variable .. C-7
C.3.1S Extensions to With C-7
C.3.16 Type Transfer Functions ... C-8
C.3.17 Extensions to Write and Writeln ... C-8

C.4 Extensions to Routines. .. C-8
C.4.1 Direction of Data Transfer ... " C-8

C.S Universal Parameter Specification. .. C-9
C. S.l Routine Options ... C-9
C. S . 2 Routine Attribute List .. C-9

C.6 Modularity : .. C-l0
C.7 Other Features of DOMAIN Pascal .. C-l0

Appendix D Deviations from Standard Pascal

D.l Deviations From the Standard. .. D-l
D.2 Deviations From Specific Sections of the Standard. .. D-l

Appendix E Systems Programming Routines

E.l Overview
E.2 Restrictions for Use .. .

Disable
Enable
Set_sr .. .

E-l
E-l
E-2
E-3
E-4

Index Index-l

xiii Contents

Illustrations /".-----....\

\•. -_/

Figure Page

1-1 Sample Program .. . 1-1
2-1 Format of Main Program in DOMAIN Pascal 2-5
2-2 Labeled Main Program 2-6
2-3 Nesting Example .. . 2-14
3-1 Program Declaring All Available Data Types 3-2
3-2 16-Bit Integer Format 3-4
3-3 32-Bit Integer Format 3-4
3-4 Single-Precision Floating-Point Format 3-6
3-5 Double-Precision Floating-Point Format ~ 3-7
3-6 Storage of Sample Set 3-12
3-7 Sample Record Layout 3-17
3-8 Sample Packed Record
3-9 POInter Variable Format .. .

3-19 C 3-26
6-1 Steps in DOMAIN Pascal Program Development 6-2
7-1 Format of a Module 7-2
7-2 Method A for Accessing an External Routine 7-8
7 - 3 Method B for Accessing an External Routine 7-9
7 -4 Another Example of Calling External Routines 7-10

/---.....

Contents xiv

---------- _ _.-._.

o

o

o

o

Table

3-1
3-2
3-3
4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9
4-10
6-1
6-2
7-1
7-2
8-1
9-1
9-2
A-1
A-2
B-1
E-1

Tables

Page

Representation of an Enumerated Variable 3-10
Storage of Packed Record Fields _. .. 3-18
Size of One Element of an Array 3-23
DOMAIN Pascal Operators .. 4-2
Order of Precedence in Evaluating Expressions 4-3
Mathematical Functions 4-4
Predeclared I/O Procedures .. 4-5
Miscellaneous Elements ... 4-6
Systems Programming Routines ... 4-7
Keyword Listings in Encyclopedia ... 4-8
Conceptual Listings in Encyclopedia 4-8
Compiler Directives. .. 4-33
Set Operators ... 4-140
DOMAIN Pascal Compiler Options .. 6-4
Arguments to the -cpu Option ... 6-9
DOMAIN Pascal and DOMAIN FORTRAN Data Types 7-12
DOMAIN Pascal and DOMAIN C Data Types 7-21
The Four Default Streams ... 8-3
Common Error Codes Returned by Open .. 9-3
Common Error Codes Returned by Find 9-3
Reserved Words ... A-1
Predeclared Identifiers .. A-2
ASCII Codes : B-2
Systems Programming Routines ... E-1

xv Contents

,,~

I

'----J

c'

(\
\ ,) -..... /

o

C)

o

o

Chapier 1

This manual describes DOMAIN Pascal, which is our version of ISO standard Pascal (ISO 7185-1982
Level 0). Niklaus Wirth developed Pascal in the late 19 60s to serve primarily for teaching and for realizing
efficient, reliable, and portable programs. Since then, Pascal has become a widely used commercial lan­
guage. Pascal contains a small set of constructs, and it is fairly easy to learn.

You should be somewhat familiar with Pascal before attempting to use this manual. If you are not, please
consult a good Pascal tutorial. (We've listed some good tutorials in the Preface.) If you are somewhat fa­
miliar with Pascal or if you are expert in a highly block-structured language such as PL/I, then you should
be able to write programs in DOMAIN Pascal after reading this manual.

1.1 A Sample Program
The best way to get started with DOMAIN Pascal is to write, compile, and execute a simple program. Fig­
ure 1-1 shows a simple program that you can use to get started. You are welcome to type in this program
yourself, but you can use the getpas utility (described in the next section) to save some typing.

PROGRAM getting_started;
{A simple program to tryout.}

VAR
x integer16;
y : integer32;

BEGIN
write('Enter an integer -- ');
readln(x);
y := x * 2;
writeln;
writeln(y:l, ' is twice' x:l);

END.

Figure 1-1. Sample Program

1-1 Introduction

Suppose you store the program in file easy. pas. (Although it is not required that the filename end with
the .pas extension, we recommend its use so that you can readily identify Pascal source programs.)

To compile a program, simply enter the Shell command pas followed by the filename. If you do use the
. pas extension, you can include or omit that extension at this step. DOMAIN P(\scal doesn't care which
way you type it. For example, to compile easy. pas, you can enter either of the following commands:

$ pas easy

or

$ pas easy.pas

The compiler creates an executable object in filename easy. bin. To execute this object you merely enter
its name; for example:

$ easy. bin
Enter an integer -- 15

30 is twice 15

1.2 On-Line Sample Programs
Many of the programs from this manual are stored on-line, along with sample programs from other
DOMAIN manuals. These programs illustrate features of the Pascal language, and demonstrate program­
ming with DOMAIN graphics calls and system calls.

The sample programs are stored in one master file (to conserve disk space). To extract a sample program
from this master file, you must execute the getpas program. Getpas prompts you for the name of the sam­
ple program and the pathname of the file to which you want to copy it.

Before you use getpas for the first time, you must create the proper links. If the on-line examples are
stored on your node, you only need to create the following single link:

$ crl -com/getpas /domain_examples/pascal_examples/getpas

However, if the on-line examples are stored on another node, you need to create the following two links:

$ crl /domain_examples/pascal_examples @
$_ //othernode/domain_examples/pascal_examples
$ crl -com/getpas //othernode/domain_examples/pascal_examples/getpas

where othernode is the name of the disk on which the examples are stored. (The @ symbol on the first
line of this example is the AEGIS shell's continuation character. You must include it to continue a com­
mand on another line. In a DOMAIN/IX shell, the backslash (\) is the continuation character.)

Introduction 1-2

(
I

\ .

c

c~

o

o

o

o

o

Once you create the appropriate links, you can execute the getpas program. Here is a getpas demonstra­
tion:

$ getpas
Welcome to getpas -- please wait, initializing master file

Enter the name of the program you want to retrieve, or
enter HELP to get a list of available programs, or
enter QUIT to exit -- getting_started

Program getting_started has been found.

What pathname would you like to store getting_started in?
(default is getting_started.pas) -- easy.pas

Program getting_started written to output file easY.pas

Enter the name of the program you want to retrieve, or
enter HELP to get a list of available programs, or
enter QUIT to exit -- quit

Getpas warns you if you try to write over an existing file.

As stated, many of this manual's sample programs are available from getpas. When one is, the name of
the program appears just after the program listing. You simply have to run getpas and request the appro­
priate program_name.

1-3 Introduction

1.3 Overview of DOMAIN Pascal Extensions
DOMAIN Pascal supports many extensions to ISO/ANSI standard Pascal. The purpose of this section is to / -~
provide an overview of these extensions. For a complete list of all the extensions, see Appendix C. From
Chapter 2 to Chapter 5, all extensions to the standard are marked in color like this or are noted explicitly
in text as an extension. For a list of all omissions from the standard, see Appendix D.

Naturally, the more you take advantage of DOMAIN Pascal extensions, the less portable your code will
be. Therefore, if you are very concerned with portability, you should avoid using the following features.

1.3.1 Extensions to Program Organization
Chapter 2 describes the organization of a DOMAIN Pascal program contained within one file. Following is
an overview of the extensions described within the chapter. You can:

• Specify an underscore U or dollar sign ($) in an identifier.

• Specify integers in any base from 2 to 16.

• Specify comments in three ways.

• Specify that the compiler assign the code or data in your program to nondefault named sections.

• Declare the label, const, type, and var declaration parts in any order.

• Declare a define part, which is in addition to label, const, type, and var declaration parts.
(Chapter 7 details this extension more fully.)

• Use constant expressions when declaring constants, as long as the components of the expressions
are constants.

• Use both identifiers and integers as labels;

1.3.2 Extensions to Data Types
Chapter 3 describes the data types supported by DOMAIN Pascal. DOMAIN Pascal supports the following
extensions that allow you to:

c

• Specify two additional pointer types. The first is a special pointer to procedures and functions. (''-'\
The second is a universal pointer type that will hold a pointer to a variable of any data type. "-. __

• Initialize static variables in the var declaration part of your program.

• Group variables into named sections for better runtime performance.

• Specify variable and type attributes that let you better control compiler optimization.

1.3.3 Extensions to Code
Chapter 4 describes the action portion of your program. DOMAIN Pascal supports the following exten­
sions to executable statements:

• An addr function that returns the address of a specified variable

• Bit operators or functions for bitwise and, not, or, and exclusive or operations

• Three bit-shift functions (rshft, arshft, and lshft)

Introduction 1-4

o

o

o

o

• An open procedure for opening files and a close procedure for closing files

• Many compiler directives that enable features like include files and conditional compilation

• A discard procedure for explicitly discarding an expression's value and so suppressing some com­
piler optimizations

• An exit statement for jumping out of the current loop

• A find procedure for locating a specified element in a file

• A firstof and a lastof function for returning the first and last possible value of a specified data
type

• Some additional capabilities for the if statement

• An in_range function for determining whether a specified value is within the defined range of an
integer subrange or enumerated type

• A max and a min function for finding the greater and lesser of two specified expressions

• A next statement for skipping over the current iteration of a loop

• A replace procedure that allows you to modify an existing element in a file

• A return statement for causing a premature return to a calling procedure or function

• A sizeof function for returning the size (in bytes) that a specified data type requires in storage

• Additional type transfer functions that transform the data type of a variable or expression into
some other data type

• Some additional capabilities for the with statement

1.3.4 Extensions to Routines
Chapter 5 describes procedures and functions (routines). This chapter documents extensions that allow
you to:

• Specify the direction of parameter passing with the special in, out, and in out keywords.

• Use the univ keyword to suppress parameter type checking.

• Specify routine attribute clauses and routine options clauses to control how the compiler processes
a routine.

1.3.5 Extensions to Program Development
Chapter 6 explains how to compile, bind, debug, and execute your program. Program development tools
are an implementation-dependent feature of a Pascal implementation; that is, there is no standard for
these tools.

1.3.6 External Routines and Cross-Language Communication
Chapter 7 explains how to write a program that accesses code or data written in another separately-com­
piled module or library. It also describes how to access routines written in DOMAIN FORTRAN or
DOMAIN C. The entire chapter describes implementation-dependent features.

1-5 Introduction

1.3.7 Extensions to I/O
Chapter 8 describes input and output from a DOMAIN Pascal programmer's point of view. DOMAIN
Pascal supports all the standard I/O procedures. In addition, it supports the open, close, find, and re­
place procedures. As a further extension to the standard, DOMAIN Pascal permits you to easily access
the operating system's I/O and formatting system calls.

1.3.8 Errors
Chapter 9 lists compiletime and runtime error messages and explains how to deal with them. Error mes­
sages are an implementation-dependent feature of Pascal.

Introduction 1-6

\ " ,/,'

c

!~

\ ,

Chapier 2

o

This chapter describes the building blocks and organization of a DOMAIN Pascal program.

o 2.1 Building B,locks of DOMAIN Pascal

o

o

When describing a language implementation, it is customary to describe the basic building blocks or ele­
ments of that implementation. This section defines identifiers, integers, real numbers, comments, and
strings. It also explores case-sensitivity and spreading source code across multiple lines.

2.1.1 Identifiers
In this manual, the term "identifier" refers to any sequence of characters that meets the following criteria:

• The first character is a letter

• The remaining characters are any of the following:

A .. Z and a .. z
0 .. 9
_ (underscore)
$ (dollar sign)

2-1 Blueprint of a Program

An identifier can be any length, but DOMAIN Pascal ignores any characters beyond the 32nd. Therefore,
DOMAIN Pascal cannot distinguish between the following two identifiers (the column ruler at the top is
there to help you with character counting):

{ ruler:
{

123
1234567890123456789012345678901234

Accounts_receivable_kansas_city_kn
Accounts_receivable_kansas_city_mo

Identifiers are case-insensitive.

2.1.2 Integers

}
}

The first character of an integer must be a positive sign (+), a negative sign (-), or a digit. Each succeed­
ing character must be a digit. (See the "Integers" section in Chapter 3 for a description of the range of
various integer data types.)

An unsigned integer must begin with a digit. Each succeeding character must be a digit.

Note that Pascal prohibits two consecutive mathematical operators. If you want to divide 9 by negative 3,
you might be tempted to use the following expression:

9 DIV -3

However, this produces an error, since Pascal interprets the negative sign as the subtraction operator (and
that makes two mathematical operators in a row). Where the sign of an integer can be confused for an ad­
dition or subtraction operator, enclose the integer with parentheses. Thus, the correct expression for 9 di­
vided by negative 3 is:

9 DIV (-3)

Pascal assumes a default of base 10 for integers. If you want to express an integer in another base, use the
following syntax:

base#value

For base, enter an integer from 2 to 16. For value, enter any integer within that base. If the base is
greater than 10, use the letters A through F (or a through f) to represent digits with the values 10 through
15.

For example, consider the following integer constant declarations:

half_life .- 5260; /* default (base 10) */
hexograms .- 16#1c6; /* hexadecimal (base 16) */
luck .- 2#10010; /* binary (base 2) */
wheat· .- 8#723; /* octal (base 8) */

2.1.3 Real Numbers
DOMAIN Pascal supports the standard Pascal definition of a real number, which is

integer. unsigned _integerEinteger

In other words, a valid real number mayor may not contain a decimal point. If the number contains a
decimal point, you must specify at least one digit to the left of the decimal point and at least one digit to
the right of the decimal point. To express expanded notation (powers of 10), use the letter e or E followed
by the exponent; for example:

Blueprint of a Program 2-2

~--./

c

C)

o

o

o

o

5.2 means +5.2
5.2EO means +5.2
-5.2E3 means -5200.0
5.2E-2 means +0.052

Compare the right and wrong way for writing decimals in your program:

.5 {wrong}
0.5 {right}
5El {right}

Note that although using .5 in your source code causes an error at compiletime, entering .5 as input data
to a real variable does not cause an error at runtime.

2.1.4 Comments
You can specify comments in any of the following three ways:

{ comment}
(* comment *)
"comment"

(The spaces before and after the comment delimiters are for clarity only; you don't have to include these
spaces. If you use a compiler directive within comment delimiters you cannot use spaces; see the listing for
"Compiler Directives" in Chapter 4 for details.) For example, here are three comments:

{ This is a comment. }
(* This is a comment. *)
"This is a comment."

Unlike standard Pascal, the comment delimiters of DOMAIN Pascal must match. For example, a com­
ment that starts with a left brace doesn't end until the compiler encounters a right brace. Therefore, you
can nest comments, for example:

{ You can (*nest*) comments inside other comments. }

Standard Pascal does not permit nested comments. If you want to use unmatched comment delimiters, as
standard Pascal allows, you must compile with the -iso switch. Chapter 6 describes this switch.

The DOMAIN Pascal compiler ignores the text of the comment, and interprets the first matching delimit­
er as the end of the comment.

Use quotation marks to set off comments only if you are converting existing applications to the DOMAIN
system. In all other programs, you should use either of the other two methods.

Note that Pascal comments can stretch across multiple lines; for example, the following is a valid com­
ment:

{ This is a comment
that stretches across
multiple lines. }

NOTE: You can use the -comchk compiler option (described in Chapter 6) to warn you
if a new comment starts before an old one finishes. This option can help you find
places where you forgot to close a comment.

2-3 Blueprint of a Program

2.1.5 Strings
We refer to strings throughout this manual. In DOMAIN Pascal, a string is a sequence of characters that
starts and ends with an apostrophe. Unlike an identifier, you can use any printable character within a
string. Here are some sample strings:

'This is a string.'
, 18'

'b[2-{q"%pl'
'can"t'

To include an apostrophe in a string, write the apostrophe twice; for example:

'I can"t do it.'
'Then don"t try!'

NOTE: Within a string, DOMAIN Pascal treats the comment delimiters as ordinary
characters rather than as comment delimiters.

2.1.6 Case Sensitivity
DOMAIN Pascal, like standard Pascal, is case-insensitive to keywords and identifiers (Le., variables, con­
stants, types, and labels), but case-sensitive to strings. That is, DOMAIN Pascal makes no distinction be­
tween uppercase and lowercase letters except within a string. For example, the following three uses of the
keyword begin are equivalent:

BEGIN
begin
Begin

However, the following two character strings are not equivalent:

'The rain in Spain';
'THE RAIN IN SPAIN';

2.1.7 Spreading Source Code Across Multiple Lines
In Pascal, you can start a statement or declaration at any column and spread it over as many lines as you
want. However, note that you cannot split a token (keyword, identifier, or string) across a line. For exam­
ple, consider the writeln statement which can take character strings as an argument. The following use of
writeln is wrong because it splits the string across a line:

WRITELN('This is an uninteresting
long string');

Instead, the line should appear this way:

WRITELN('This is an uninteresting long string');

NOTE: By default, any text file you open for reading can have a maximum of 256 char­
acters per line. You can specify an optional buffer size when you open the file,
however, to change that default.

Blueprint of a Program 2-4

c

c

o

o

o

o

o

2.2 Organization
You can write a DOMAIN Pascal program in one file or across several files. This section explains the
proper structure for a program that fits into one file. Chapter 7 details the structure for a program that is
spread over several files.

A DOMAIN Pascal program takes the format shown in Figure 2-1.

""'" Label decl part ..., - --Const decl part

~~
Type decl part

Var decl part

program heading - declarations)~ --
routines ~ - • Begin

action routine heading

End. declarations "'"' -
nested routines

Begin

action

End;

Figure 2-1. Format of Main Program in DOMAIN Pascal

Note that routines are themselves declarations.

Figure 2-2 is a labeled program designed to help you understand the structure of a DOMAIN Pascal pro­
gram.

2-5 Blueprint of a Program

PROGRAM labeled; {program heading}

{start of the declaration part of the main program. }
{These declarations will be global to the entire program.}

LABEL {LABEL declaration part}
finish;

CONST {CONST declaration part}
axiom 'Clarity is wonderful!';

TYPE {TYPE declaration part}
flavors (mint, lime, orange, beige);

VAR {VAR declaration part}
x, y, z : integer;
ice_cream: flavors;

{End of the declaration part of the main program.}

{start of the roots procedure.}
Procedure roots; {routine heading}

{start of the declaration part of roots.}
{These declarations will be local to roots.}

VAR {VAR declaration part}
q : real;

{End of the declaration part of roots.}

BEGIN {start of the action part of roots.}
write('Enter a number -- '); readln(q);
writeln('The square root of ' ,q:-l, ' is ' ,sqrt(q»;

END; {End of the action part of roots.}
{End of the roots procedure.}

BEGIN {start of the action part of the main program.}
writeln(axiom);
x := 5; y:= 7; z:= x + 5;
if z > 100 then goto finish;
for ice_cream := mint to beige do

writeln(ice_cream);
roots;

finish:
END. {End of the action part of the main program.}

Figure 2-2. Labeled Main Program

The following subsections detail the parts of a program.

Blueprint of a Program 2-6

o

o

o

o

o

2.2.1 Program Heading
Your program must contain a program heading. The program heading has the following format:

In DOMAIN Pascal, as in standard Pascal, you must supply a name for the program. Name must be an
identifier. This identifier has no meaning within the program, but is used by the binder, the librarian, and
the loader. (See the DOMAIN Binder and Librarian Utility manual for details on these utilities.)

In standard Pascal you can supply an optional file_list to the program heading. The file_list specifies the
external files (including standard input and output) that you are going to access from the program. How­
ever, unlike standard Pascal, the file_'ist in a DOMAIN Pascal program has no effect on program execu­
tion; the compiler ignores it. (For details on I/O, see Chapter 8.)

COde_section_name and data_section_name are optional elements of the program heading. Use them to
specify the names of the sections in which you want the compiler to store your code and data. A section is
a named contiguous area of memory in which all entities share the same attributes. (See the DOMAIN
Binder and Librarian Reference for details on sections and attributes.) By default, DOMAIN Pascal as­
signs all the code in your program to the PROCEDURE$ section and all the data in your program to the
DATA$ section. To assign your code and data to nondefault sections, specify a code_section_name and a
data_section_name.

NOTE: In addition to nondefault code and data section names for the entire program,
you can also specify a nondefault section name for a procedure, a function, or a
group of variables. See Chapter 5 for an explanation of how to assign section
names to procedures and functions, and see Chapter 3 to learn how to assign
section names to groups of variables.

Let's now consider some sample program headings. Despite the options available, most DOMAIN Pascal
program headings can look as simple as the following:

Program trapezoids;

Those of you desiring to write standard Pascal programs will also probably want to supply a file _list as in
the next example:

Program trapezoids (input, output, datafile);

Finally, those of you wanting to capitalize on certain runtime features may wish to define your own section
names. For example, if you want the compiler to store the code into section mycode and the data into
section myda ta, you would issue the following program heading:

Program trapezoids, mycode, mydata;

2;2.2 Declarations
The declarations part of a program is optional. It can consist of zero or more label declaration parts,
const declaration parts, type declaration parts, and var declaration parts. DOMAIN Pascal allows you to
specify these parts in any order.

2.2.2.1 Label Declaration Part

You define labels in the label declaration part. A label has only one purpose -- to act as a target for a
goto statement. In other words, the statement

GOTO 40;

only works if you have defined 40 as a label.

2-7 Blueprint of a Program

The format for a label declaration part is

label
label1, ... labelN;

A label is either an identifier or an unsigned integer. If there are multiple labels, you must separate them
with commas. Remember, though, to put a semicolon after the final label.

For example, the following is a sample label declaration:

LABEL
40, reprompt, finish, 9999;

See Chapter 4 for a description of the goto statement.

2.2.2.2 Canst Declaration Part

You define constants in the const declaration part. A constant is a synonym for a value that will not (and
cannot) change during the execution of the program. The const declaration part takes the following syn­
tax:

canst
identifier1 = value1 ;

identifierN = valueN;

An identifier is any valid DOMAIN Pascal identifier. A value must be a real, integer, string, char, or set
constant expression. Value can also be the pointer expression nil.

For example, here is a sample const declaration part:

CONST
pi = 3.14;
cup = 8;
key = 'Y';
blank ";
words = 'To be or not to be';
v owe 1 s = [' a', ' e', ' i', ' 0', ' u'] ;
ptr1 = nil;

{A real number.}
{An integer.}
{A character.}
{A character.}
{A string.}
{A set.}
{A pointer.}

The preceding sample involves simple expressions; however, you can also specify a more complex expres­
sion for value. Such an expression can contain the following types of terms:

• A real number, an integer, a character, a string, a set, a Boolean, or nil

• A constant that has already been defined in the const declaration part (note that you cannot use a
variable here)

o Any predefined DOMAIN Pascal function (e.g., chr, sqr, lshft, sizeof, but only if the argument
to the function is a constant)

• A type transfer function

Blueprint of a Program 2-8

----------.-... ~~-.--...

o

o

o

o

o

You can optionally separate these terms with any of the following operators:

Operator

+, -, *

Data Type of Operand

Integer, real, or set

/ Real

mod, diy, I, &, - Integer

Chapter 4 describes these operators.

For example, the following const declaration part defines eight constants:

CONST
x 10;
y = 100;
z = x + y;
current_year
leap_offset
bell
pathname
pathname_Ien

1994;
(current_year mod 4);
chr(7);
'//et/go_home';
sizeof(pathname);

2.2.2.3 Type Declaration Part

Chapter 3 details the many predeclared data types DOMAIN Pascal supports. In addition to these Pascal­
defined data types, you can create your own data types in the type declaration part. After creating your
own data type, you can then declare variables (in the var declaration part) that have these data types. The
format for a type part is as follows:

type
identifier1 = data_type1 ;

identifierN = data_typeN;

An identifier is any valid DOMAIN Pascal identifier. A data_type is any predeclared DOMAIN Pascal
data type (like integer or real), any data type that you create, or the identifier of a data type that you cre­
ated earlier in the type declaration part. For example, here is a sample type declaration part:

TYPE
long = integer32; {A predeclared DOMAIN Pascal
student_name = array[l .. 20] of long; {A user-defined
colors = (magenta, beige, mauve); {A user-defined
hue = set of colors; {A user-defined
table = array [magenta .. mauve] of real; {A user-defined

2-9

data type.}
data type.}
data type.}
data type.}
data type.}

Blueprint of a Program

2.2.2.4 Var Declaration Part

Declare variables in the var declaration part. A variable has two components -- a name and a data type.
The format for the var declaration part is:

var
identifier list1 : data_type1;

identifier _listN : data_typeN;

An identifierJist consists of one or more identifiers separated by commas. Each identifier in the identifi­
er_list has the data type of data_type. Data_type must be one of these:

• A predeclared DOMAIN Pascal data type

• A data type you declared in the type declaration part

• An anonymous data type (that is, a data type you declare for the variables in this identifier Jist 0
only) ~. j

For example, consider the following type declaration part and var declaration part:

TYPE
names = array[1 .. 20] of char;
colors = (red, yellow, blue);

VAR
counter, x, y integer;

angles real;

char;

{integer is a predeclared DOMAIN Pascal
data type.}

{real is a predeclared DOMAIN Pascal
data type.}

{char is a predeclared DOMAIN Pascal
data type.}

couch_colors
evil

colors;
boolean;

{colors is defined in the TYPE part. }

mystery_guest
seniors
pet

{boolean is a predeclared DOMAIN Pascal
data type.

names; {names is defined in the TYPE part.
67 .. 140; {An anonymous subrange data type.
(cat, dog); {An anonymous enumerated data type.

}
}
}

In the preceding example, note that counter, x I and yare three variables that have the same data
type (integer).

2.2.2.5 Define Declaration Part -- Extension

In addition to the const, type, var, and label declaration parts of standard Pascal, DOMAIN Pascal also
supports an optional define declaration part, which is described in Chapter 7.

Blueprint of a Program 2-10

/-",

o

o

o

o

o

2.2.3 Routines
A program can contain zero or more routines. There are two types of routines in DOMAIN Pascal: proce­
dures and functions. A routine consists of three parts: a routine heading, an optional declaration part, and
an action part.

2.2.3.1 Routine Heading

Routine headings take the following format:

attribute_list procedure name (parameter_list); routine_options;

or

attribute_list function name (parameter-1ist) data_type; routine_options

where:

o attribute_list is optional. Inside the attribute_list, you can specify nondefault section names for
the routine's code and data. For a description, see Chapter 5.

• name is an identifier. You call the routine by this name.

• parameter _list is optional. It is here that you declare the names and data types of all the parame­
ters that the routine expects from the caller. See Chapter 5 for details on the parameter_list.

• data_type is the data type of the value that the function returns. The difference between a proce­
dure and a function is that the name of a procedure is simply a name, but the name of a function
is itself a variable with its own data_type. You must assign a value to this variable at some point
within the action part of the function. (It is an error if you don't.) You cannot assign a value to
the name of a procedure. (It is an error if you do.)

o routine_options is an optional element of the routine heading. You can specify characteristics of
the routine such as whether or not it can be called from another routine. Chapter 5 describes the
routine_options.

2.2.3.2 Declaration Part of a Routine

The optional declaration part of a routine follows the same rules (with one exception) as the optional dec­
laration part under the program heading. The constants, data types, variables, and labels are local to the
routine declaring them and to any routines nested within them. (See the "Global and Local Variables"
and "Nested Routines" sections at the end of this chapter for details.)

The one difference between the declaration part of a routine and the declaration part of the main pro­
gram is that the declaration part of, a routine cannot contain a define declaration part.

2.2.3.3 Nested Routines

You can optionally nest one or more routines within a routine. See the "Nested Routines" section at the
end of this chapter for details.

2-11 Blueprint of a Program

2.2.3.4 Action Part of a Routine

The action part of a routine starts with the keyword begin and finishes with the keyword end. Between
begin and end you supply one or more DOMAIN Pascal statements. (See Chapter 4 for a description of
DOMAIN Pascal statements.) You must place a semicolon after the final end in a routine. For example,
consider the following sample action part of a routine:

BEGIN
x := x * 100;
writeln(x);

END;

2.2.4 Action Part of the Main Program
The action part of the main program is almost identical to the action part of a routine. Both start with be­
gin, both finish with end, and both contain DOMAIN Pascal statements in between. The only difference
is that you must place a period (rather than a semicolon) after the final end in the main program. For ex­
ample, consider the following sample action part of the main program:

BEGIN
x := x * 100;
writeln(x);

END.

2.3 Global and Local Variables
The declarations in the declaration part of the main program are global to the entire program. The decla­
rations in the declaration part of a routine are local to that routine (assuming no nesting). For example,
consider the following program. In it, variable g is global and variable I is local to procedure addlOO;

Program scope;
VAR

g : integer16;

Procedure addlOO;
VAR

I : integer16;
BEGIN

I .- g + 100;

END;

BEGIN
g := 10;
addlOO;

END.

Blueprint of a Program

{Variable I is accessible within this procedure only,}
{while g is global and so is accessible anywhere. }

{Variable g is accessible because it is global. }
{Call the procedure. }

{Variable I is not accessible here because it is}
{local to procedure addlOO. }

2-12

c

r~
\..... ..

~.
\ i '---_ .. /

o

o

o

o

What happens when you specify a local variable with the same name as a global variable? To answer this
question, here are two more programs. In the program on the left (global_example), x is declared as a
global variable. In the program on the right (local_example), x is declared twice. The first declaration
specifies x as a global variable. The second declaration declares x as local to procedure convert.

Program global_example;

VAR {global declarations}
x : integer16;

PROCEDURE convert;

BEGIN
x := -10;
writeln('In convert, x=',x:l);

END;

BEGIN {main}
x := +10;
convert;
writeln('In main, x=' ,x:1);

END.

Program local_example;

VAR {global declarations}
x : integer16;

PROCEDURE convert;
VAR {local declarations}

x : integer16;
BEGIN

x := -10;
writeln('In convert, x=' ,x:l);

END;

BEGIN {main}
x := +10;
convert;
writeln(In main, x=', x:l);

END.

If you execute these programs, you get the following results:

Execution of global_example
In convert, X= -10
In main, X= -10

Execution of local_example
In convert, X= -10
In main, X= 10

In program local_example, within procedure convert, the declaration of the local variable x overrides
the global declaration of x. Within convert, the fact that the local variable and the global variable have
the same name (x) prevents procedure convert from accessing the global variable x at all.

Both programs are available on-line and are named global_example and local_example.

2.4 Nested Routines
A nested routine is a routine that is declared inside another routine. A nested routine can access any de­
clared object (label, constant, type, or variable) in a routine outside it. The reverse is not true; that is, a
routine cannot access an object in a routine nested inside it. Thus, the purpose of nesting routines is to
create a hierarchy of access. You might view declared objects in the following way:

• Global to the entire program.

• . Local to a single routine.

• Local to the routine it is defined in and to all routines nested within it (i. e., neither truly local nor
truly global). This is termed an "intermediate level" object.

Note that the main program is itself a routine, and that all routines are nested at least one level inside it. A
routine can call any routine nested one level inside it, but cannot explicitly call any routine nested two or
more levels inside it. A routine can also call any routine at its level or outside it, though a routine cannot
explicitly call the main program.

For example, consider the program in Figure 2-3. Procedure one is nested inside the main program. Pro­
cedures twoa and twob are both nested inside procedure one. The most-nested procedures (twoa and

2-13 Blueprint of a Program

twob) can access the most variables. The least-nested procedure (the main program) can access the least
number of variables.

Program nesting_example;

VAR
g : integer16;

procedure one;
VAR

1 : integer16;

procedure twoa;
VAR

n1 : integer16;
BEGIN {twoa}
{can access g, I, and n1.}

n1 := 1 + g + 500;
END; {twoa}

procedure twob;
VAR

n2 : integer16;
BEGIN {twob}
{can access g, I, and n2.}

n2 := 1 + g + 1000;
END; {twob}

BEGIN {one}
{can access g and I.}

1 := g + 10;
twob;

END; {one}

BEGIN {main program}
{can only access g.}

g := 1;
g := g * 2;
one;

END. {main program}

Figure 2-3. Nesting Example

Note that the main program can call procedure one, but cannot call procedure twoa or twob (since they
are nested two levels inside it). Procedure one can call procedure twoa or twob. Procedure twob can
call procedure twoa or one. In Pascal, you cannot make a forward reference to a routine unless you de­
clare the routine with the forward option (described in Chapter 5). If you used forward in this example,
procedure twoa could call twob or one.

Blueprint of a Program 2-14

,,- ---",

\" ... -'

,~
. \

I

------_.-.• _._. '---

o

o

o

Cha~oier 3

This chapter explains DOMAIN Pascal data objects. Here, we explain how you declare variables using the
predeclared DOMAIN Pascal data types, and how you can define your own data types. In addition, this
chapter shows how DOMAIN Pascal represents data types internally.

3.1 Data Type Overview
The data types of DOMAIN Pascal can be sorted into three groups -- simple, structured, and pointer.
The following list shows the supported simple data types:

• INTEGERS -- DOMAIN Pascal supports the three predeclared integer data types integer, inte­
ger16, and integer32.

• REAL NUMBERS -- DOMAIN Pascal supports the three predeclared real number data types
real, single, and double.

• BOOLEAN -- DOMAIN Pascal supports the predeclared data type boolean.

• CHARACTER -- DOMAIN Pascal supports the predeclared char data type.

• ENUMERATED -- DOMAIN Pascal supports enumerated data types.

• SUBRANGE -- DOMAIN Pascal supports a subrange of scalar data types. The scalar data types
are integer, Boolean, character, and enumerated.

You can use the simple data types to build the following structured data types:

• SETS -- DOMAIN Pascal permits you to create a set of elements of a scalar data type.

• RECORDS -- DOMAIN Pascal supports the record and packed record data types.

• ARRAY -- DOMAIN Pascal supports the array data type. It also supports a predeclared charac­
ter array type called string.

3-1 Data Types

• FILES -- DOMAIN Pascal supports the file and text data types.

You can declare· a pointer data type that points to any of the previous data types, or you can declare one
of these other pointer data types:

o U niv _ptr -- DOMAIN Pascal supports a predeclared universal pointer data type that is compat­
ible with any pointer type.

o PROCEDURE AND FUNCTION DATA TYPES -- DOMAIN Pascal supports a special data type
that points to procedures and functions.

The program shown in Figure 3-1 contains sample declarations of all the data types. This program is avail­
able on-line and is named sample_types.

PROGRAM sample_types;

TYPE
real_pointer = Areal;
writers = (Amy, David, Phil);
element = record
atomic_number INTEGER16;
atomic_weight SINGLE;
half_life DOUBLE;

end;

VAR
i1 INTEGER;
i2 INTEGER16;
i3 INTEGER32;
r1 REAL;
r2 SINGLE;
r3 DOUBLE;
consequences : BOOLEAN;
onec : CHAR;

{This is a pointer type. }
{This is an enumerated type.}
{This is a record type. }

teenage_years: 13 .. 19; {teenage_years is a subrange variable.}
good_writers : writers; {good_writers is an enumerated variable.}
tw SET OF writers; {tw is a set variable.}
e element; {e is a record variable.}
cat_nums : array[l .. 5] of INTEGER16; {cat_nums is an array variable.}

c'

(
\.

a_sentence: STRING; {a_sentence is an array variable of 80 characters.} C'
hamlets_soliloquy: TEXT; {hamlets_soliloquy is a text file variable.}
periodic_table: FILE OF element; {periodic_table is a file variable.}
r1_ptr real_pointer; {r1_ptr is a pointer variable.}
Any_Ptr UNIV_PTR; {Any-ptr is a universal pointer variable.}
pp APROCEDURE(IN x INTEGER);

BEGIN
writeln('Greetings.') ;

END.

{pp is a pointer to a procedure variable.}

Figure 3-1. Program Declaring All Available Data Types

3.2 Integers
This section explains how to declare variables as integers, how to initialize integer variables, and how to
define integer constants. It also explains how DOMAIN Pascal represents integers internally.

Data Types 3-2

o

o

'0

o

o

3.2.1 Declaring Integer Variables
DOMAIN Pascal supports the following three predeclared integer data types:

• Integer -- Use it to declare a signed 16-bit integer. A signed 16-bit integer variable can have any
value from -32768 to +32767.

• Integer16 -- Use it to declare a signed 16-bit integer. (Integer and integer16 have identical
meanings.)

• Integer32 -- Use it to declare a signed 32-bit integer. A signed 32-bit integer variable can be any
value from -2147483648 to +2147483647.

For example, consider the following integer declarations:

VAR
X, y, z : INTEGER;
quarts : INTEGER16;
social_security_number : INTEGER32;

If you want to define unsigned integers, you must use a subrange declaration (refer to the" Subrange" sec­
tion later in this chapter).

3.2.2 Initializing Integer Variables -- E}{tension
DOMAIN Pascal permits you to initialize the values of integers within the variable declaration in most
cases. You initialize a variable by placing a colon and equal sign (:=) immediately after the data type. For
example, the following excerpt initializes X and Y to 0, and Z to 7000000:

VAR
X,Y
Z

INTEGER16 .- 0;
INTEGER32 .- 7000000;

If the variable declaration occurs within a procedure or function, you cannot initialize the variable at the
declaration unless it has been declared static. This is because storage within routines is dynamic and so
variables in them do not necessarily retain their values between executions. For example, the following is
incorrect:

FUNCTION do_nothing(IN OUT x : INTEGER) : BOOLEAN;
VAR

init_value : INTEGER := 0; {Wrong!}

This is the correct way to initialize the variable at its declaration in a routine:

init_value : STATIC INTEGER := 0;

See Chapter 7 for more information on the static attribute.

3.2.3 Defining Integer Constants
When you declare an integer constant, DOMAIN Pascal internally represents the value as a 32-bit inte­
ger. For example, in the following declarations, DOMAIN Pascal represents both poco and grande as
32-bit integers.

CONST
poco 6;
grande = 6000000;

3-3 Data Types

You can specify an integer constant anywhere in the range -2147483648 to +2147483647.

It is also possible to compose constant integers as a mathematical expression. (Refer to the "Const Decla­
ration Part" section in Chapter 2 for details.)

The predeclared integer constant maxint has the value +32767.

3.2.4 Internal Representation of Integers
DOMAIN Pascal represents a 16-bit integer (types integer and integer16) as two contiguous bytes, as
shown in Figure 3-2. Bit 15 contains the most significant bit (MSB), and bit 0 contains the least significant
bit (LSB). If the integer is signed, bit 15 contains the sign bit.

15 (MSB) 0 (LSB)
I~ ----------B-y-te---O---------~----------B-y-t-e-1---------~1

Figure 3-2. 16-Bit Integer Format

DOMAIN Pascal represents a 32-bit integer (type integer32) in four contiguous bytes as illustrated in Fig­
ure 3-3. The most significant bit in the integer is bit 31; the least significant bit is bit O. If the integer is
signed, bit 31 contains the sign bit.

31 (MSB) 16

Byte 0 Byte 1

Byte 2 Byte 3

15 o (LSB)

Figure 3-3. 32-Bit Integer Format

3.3 Real Numbers
This section describes how to declare variables as real numbers, how to define real numbers as constants,
and how DOMAIN Pascal represents real numbers internally.

3.3.1 Declaring. Real Variables
DOMAIN Pascal supports the following real data types:

• Real -- Use it to declare a signed single-precision real variable. DOMAIN Pascal represents a
single-precision real number in 32 bits. A single-precision real variable has approximately seven
significant digits.

• Single -- Same as real.

• Double -- Use it to declare a signed double-precision real variable. DOMAIN Pascal represents
a double-precision real number in 64 bits. A double-precision real variable has approximately 16
significant digits.

Data Types 3-4

-- --- -_ .. _ _----- --------------

c

c

o

o

o

For example, consider the following declarations:

VAR
1, m, n : REAL;
winning_time : SINGLE;
cpu_time : DOUBLE;

3.3.2 Initializing Real Variables -- Extension
DOMAIN Pascal permits you to initialize the values of real numbers within the variable declaration in
most cases. You initialize a value by placing a colon and equal sign (:=) immediately after the data type.
For example, the following excerpt initializes variable pi to 3.14:

VAR
pi : SINGLE := 3.14;

If you declare a variable as single or real, and if you attempt to initialize it to a number with more than
seven significant digits, then DOMAIN Pascal rounds (it does not truncate) the number to the first seven
significant digits. For example, if you try to initialize pi this way

VAR
pi : SINGLE := 3.1415926535;

DOMAIN Pascal rounds pi to 3.141593.

As with integers, if the variable declaration occurs within a procedure or function, you cannot initialize the
variable at the declaration unless it has been declared static. This is because storage within routines is dy­
namic and so variables in them do not necessarily retain their values between executions. For example,
the following is incorrect:

FUNCTION do_nothing(IN OUT x : REAL) : BOOLEAN;
VAR

init_value : REAL := 0.0; {Wrong! }

This is the correct way to initialize the variable at its declaration in a routine:

init_value : STATIC REAL := 0.0;

o See Chapter 7 for information on the static attribute.

0

3.3.3 Defining Real Constants
When you use a real number as a constant, DOMAIN Pascal automatically defines the constant as a dou­
ble-precision real number. This is true even if the constant can be accurately represented' as a single-pre­
cision real number. However, when you use a real constant in a mathematical operation with a single-pre­
cision number, DOMAIN Pascal automatically rounds the constant to a single-precision number to pro­
duce a more accurate result. The following fragment defines four valid (and one invalid) real constants:

CONST
N 24.57; { Valid real number. }
N2 2E19; { Valid, symbolizes 2.0 * (1019) }
G 6.67E-11; { Valid, symbolizes 6.67 * (10-11) }
X .5; { Not a valid real number because it does }

{ not contain a digit to the left of the }
{ decimal point. }

X2 0.5; { Valid real number.}

3-5 Data Types

------_._--

3.3.4 Internal Representation of Real Numbers
Single-precision floating-point numbers (types real and single) occupy four contiguous bytes of a long
word, as shown in Figure 3-4. DOMAIN Pascal uses the IEEE standard format for representing 32-bit /--'\
real values. Bit 31 is the sign bit with" 1" denoting a negative number. The next eight bits contain the ex- '-'_'_/
ponent plus 127. The remaining 23 bits contain the mantissa of the number without the leading 1.
(DOMAIN Pascal stores the mantissa in magnitude form, not in two's-complement.)

31 30 22 16

$ I Exponent + 127 I Mantissa

Mantissa (cont.)

15 o

Figure 3-4. Single-Precision Floating-Point Format

For example, Pascal represents +100.5 in the following manner:

0100001011001001
0000000000000000

The number breaks into sign, exponent, and mantissa as follows:

sign
exponent
significant part of mantissa

o (positive)
10000101 (133 in decimal)
1001001

The exponent is 133; 133 is equal to 127 plus 6. Therefore, you can view the mantissa bits as follows:

bit 22 represents 2 to the fifth power
bit 21 represents 2 to the fourth power
bit 20 represents 2 to the third power

bit 16 represents 2 to the negative first power.

You get 100.5 by adding (26 + 25 + 22 + 2_1).

A number with a negative exponent is stored differently. Pascal represents 5E-2 as follows:

0011110101001100
1100110011001101

The number breaks into sign, exponent, and mantissa as follows:

sign
exponent
significant part of mantissa

Data Types

o (positive)
01111010 (122 in decimal)
10011001100110011001101

3-6

c

. -'--'-'--.- -----

o

o

o

o

The exponent is 122; 122 is equal to 127 plus -5. Therefore, you can view the mantissa bits as follows:

bit 22 represents 2 to the -6 power
bit 21 represents 2 to the -7 power
bit 20 represents 2 to the -8 power

bit 0 represents 2 to the -29 power

You get 5E-2 by adding 2_5 + 2_6 + 2-9 and so on.

DOMAIN Pascal represents double-precision floating-point numbers (type double) in eight bytes of a
long word (64 bits). Figure 3-5 illustrates the format. The first bit (bit 63) contains the sign bit. The next
11 bits contain the exponent plus 1023. The remaining 52 bits hold the mantissa, without the leading 1.

63 62 51 48

$ I Exponent + 1 023 I Mantissa

Mantissa (cont.)

Mantissa (cont.)

Mantissa (cont.)

15 o

Figure 3-5. Double~Precision Floating-Point Format

3.4 Booleans
A Boolean variable can have only one of two values -- true or false. This section describes how you de­
clare Boolean variables, how you define Boolean constants, and how DOMAIN Pascal represents Boolean
variables internally.

3.4.1 Initializing Boolean Variables -- Extension
DOMAIN Pascal permits you to initialize the values of Boolean variables within the variable declaration in
most cases. You initialize a value by placing a colon and equal sign (:=) immediately after the data type.
For example, the following excerpt declares liar to be a Boolean variable with an initial value of false:

VAR
liar : boolean := false;

If the variable declaration occurs within a procedure or function, you cannot initialize the variable at the
declaration unless it has been declared static. This is because storage within routines is dynamic and so
variables in them do not necessarily retain their values between executions. For example, the following is
incorrect:

FUNCTION do_nothing(IN OUT x
VAR

liar : BOOLEAN := false;

INTEGER) : BOOLEAN;

{Wrong! }

3-7 Data Types

This is the correct way to initialize the variable at its declaration in a routine:

liar: STATIC BOOLEAN := false;

See Chapter 7 for information on the static attribute.

3.4.2 Defining Boolean Constants
To define a Boolean constant, simply write the name of the constant, followed by an equal sign, and con­
cluding with either true or false. For instance, the following excerpt defines constant virtue and sets it
to true:

CONST
virtue = true;

Notice that you do not enclose true or false inside a pair of apostrophes.

3.4.3 Internal Representation of Boolean Variables

, ,I

"-_/

DOMAIN Pascal represents Boolean values in one byte. The system sets all eight bits to 1 for true and (""
sets all eight bits to 0 for false. However, a Boolean field in a packed record will have a different alloca- ~j'
tion (see the "Internal Representation of Packed Records" section later in this chapter for details).

3.5 Characters
This section describes how you declare a variable as a character data type, how you define characters as
constants, and how DOMAIN Pascal represents characters internally.

3.5.1 Declaring Character Variables
Use the char type to declare a variable that holds one character; for example:

VAR

To declare a variable that holds more than one character you must use an array or the predefined type
string (both of which are detailed in the" Arrays" section later in this chapter).

3.5.2 Initializing Character Variables -- Extension
DOMAIN Pascal permits you to initialize the values of character variables within the variable declaration
in most cases. You initialize a value by placing a colon and equal sign (:=) immediately after the data type.
For example, the following excerpt declares cl as a char variable with an initial value of a: .

VAR
cl : CHAR := 'a';

Notice that you must enclose the character in apostrophes.

If the variable declaration occurs within a procedure or function, you cannot initialize the variable at the
declaration unless it has been declared static. This is because storage within routines is dynamic and so
variables in them do not necessarily retain their values between executions. For example, the following is
incorrect:

FUNCTION do_nothing(IN OUT x
VAR

best_grade: CHAR := 'A';

Data Types

INTEGER) : BOOLEAN;

{wrong! }

3-8

~,
I

"'-•... ,/

o

(J

o

o

This is the correct way to initialize the variable at its declaration in a routine:

best_grade: STATIC CHAR := 'A';

See Chapter 7 for information on the static attribute.

3.5.3 Defining Character Constants
There are two common methods of assigning character constants. The first is to simply enclose a character
inside a pair of apostrophes; for example

CONST
c1 = 'b';

This first method only works if the character is printable, but the second method works for all ASCII
characters (printable or not). The second method uses the chr function (which is detailed in Chapter 4).
As an example, suppose you want constant bell to contain the bell ringing character. The bell ringing
character has an ASCII value of 7, so to assign this value to constant bell you can make the following
declaration:

CONST
bell CHR(7);

3.5.4 Internal Representation of Char Variables
DOMAIN Pascal stores the ASCII value of a char variable in one 8-bit byte.

3.6 Enumerated Data
An enumerated data type consists of an ordered group of identifiers. The only value you can assign to an
enumerated variable is one of the identifiers. Here are declarations for four enumerated variables:

VAR
citrus (lemon, lime, orange, carambola, grapefruit);
primary_colors (red, yellow, blue);
Beatles (John, Paul, George, Ringo);
German_speaking_countries : (GDR, FRG, Switzerland, Austria);

In the code portion of your program, you can only assign the values red, yellow, or blue to variable
primary_colors.

Notice that the elements of an enumerated type must be identifiers. Identifiers cannot begin with a digit,
so, for example, the following declaration produces an "Improper enumerated constant syntax" error:

VAR
(2, 3, 5, 7, II, 13); {error}

3.6.1 Internal Representation of Enumerated Variables
DOMAIN Pascal represents an enumerated variable in one 16-bit word. In this word, DOMAIN Pascal
stores an integer corresponding to the ordinal position of the current value of the enumerated variable.
For example, consider the following declaration:

VAR
pets: (cats, dogs, dolphins, gorillas, pythons);

3-9 Data Types

, Pets has five elements; DOMAIN Pascal represents those five elements as integers from 0 to 4 as shown
in Table 3-1.

Table 3-1. Representation of an Enumerated Variable

pets .- cats 0000000000000000
pets .- dogs 0000000000000001
pets .- dolphins 0000000000000010
pets .- gorillas 0000000000000011
pets .- pythons 0000000000000100

3.7 Subrange Data
A variable with the subrange type has a valid range of values that is a subset of the range of another type
called the base type. When you define a subrange, you specify the lowest and highest possible value of the
base type. You can specify a subrange of integers, characters, or any previously-defined enumerated type.
The following fragment declares four different subrange variables:

TYPE
mountains = (Wachusett, Greylock, Washington, Blanc, Everest);
{Mountains is an enumerated type.}

VAR {The following four variables all have subrange types.}
teenage_years 13 .. 19; {Subrange of INTEGER.}
positive_integers 1 .. MAXINT; {Subrange of INTEGER.}
capital_letters 'A' .. 'Z'; {Subrange of CHAR.}
small_mountains Wachusett .. Washington; {Subrange of MOUNTAINS.}

Currently, DOMAIN Pascal does not support subrange checking. For example, if you try to assign the
value 25 to teenage_years, DOMAIN Pascal does not report an error. However, you can use the
in_range function to determine whether 25 is within the declared subrange. (See Chapter 4 for informa­
tion on the in_range function.)

3.7.1 Internal Representation of Subranges
The storage allocation for subrange variables is the same as that for their base types. However, a subrange
field in a packed record will have a different allocation (see the "Internal Representation of Packed Re­
cords" section later in this chapter for details).

3.8 Sets
A set in DOMAIN Pascal is virtually identical to a set in standard mathematics. For instance, DOMAIN
Pascal can compute unions and intersections of DOMAIN Pascal set variables just like you can find un­
ions and intersections of two mathematical sets. Refer to the" Set Operations" listing in Chapter 4 for in­
formation on using sets in the action part of your program.

3.8.1 Declaring Set Variables
The format for specifying a set variable is as follows:

set of boolean I char I enumerated_type I subrange_type

Data Types 3-10

~~- -.~---~-~---------------

o

o

o

o

o

For example, consider the following set declarations:

TYPE

VAR

very
lowints

(ochen, sehr, tres, muy);
O .. 100;

{Char is base type.} ASCII_values : set of char;
possibilities : set of boolean;
capital_letters: set of 'A' .. 'Z';
lots : set of very;
digits: set of lowints;

{Boolean is base type.}
{Subrange of CHAR is base type.}
{Enumerated type is base type.}
{lowints is base type.}

If the base type is a subrange of integers, then the low end of the subrange cannot be a negative number.
Also, the high end of the subrange cannot exceed 255.

If the base type is an enumerated type, the enumerated type cannot contain more than 2048 elements.

NOTE: DOMAIN Pascal lets you declare packed set variables or packed set types.
However, the packed designation does not affect the amount of memory the
compiler uses to represent the set; that is, the compiler ignores the designation.
Furthermore, specifying a packed set triggers the following warning message:

Warning: SET cannot be PACKED.

3.8.2 Initializing Set Variables -- Extension
In most cases, you can initialize set variables with an assignment statement in the variable declaration. For
example, consider the following set variable initializations:

TYPE
unstable_elements = (U, PI, Ei, Ra, Xe);

VAR
letters : set of CHAR : = ['A', 'E', ' I', '0', 'U'];
humanmade_elements : set of unstable_elements := [PI, Ei];

If the variable declaration occurs within a procedure or function, you cannot initialize the variable at the
declaration unless it has been declared static. This is because storage within routines is dynamic and so
variables in them do not necessarily retain their values between executions. For example, the following is
incorrect:

FUNCTION assign_grades(IN OUT score: INTEGER) : BOOLEAN;
VAR

grades: set of CHAR := ['A', 'B', 'C', 'D', 'E'];

This is the correct way to initialize the variable at its declaration in a routine:

grades: STATIC set of CHAR:= ['A', 'B', 'C', 'D', 'E'];

See Chapter 7 for information on the static attribute.

{Wrong! }

Refer to the "Set Operations" listing in Chapter 4 for more information on set assignment.

3.8.3 Internal Representation of Sets
A set can contain up to 256 elements; their ordinal values are 0 to 255. Sets are stored as bit masks, with
one bit representing one element of the set. The number of bits that DOMAIN Pascal allocates to a set is

3-11 Data Types

the number of elements in the set, rounded up to a multiple of 16 bits. That is, a set occupies the mini­
mum number of words that provides one bit per element. Consequently, the minimum storage size for a
set is one word (16 bits) and the maximum size is 16 words (25 6 bits).

For example, suppose you define an enumerated type named Greek_letters, with values Alpha,
Beta, Gamma, and so forth, up to Omega. You can then declare a set of Greek_let ters as follows:

VAR
Greek_alphabet : SET of Greek_letters

Greek_alphabet has 24 values, and therefore, Greek_alphabet requires at least 24 bits. The nearest
word boundary is 32 bits, so DOMAIN Pascal allocates 32 bits (2 words) for the variable. It then stores
the values this way:

15 7 o 15 3 2 0

~megal I ~~m-I Beta I Alpha I
Word 1 Word 2

Figure 3-6. Storage of Sample Set

If the base type of the set is a subrange of integers or a subrange of char, then the ordinal value of the high
end of the subrange determines the amount of space required to store the set. For example, consider the
following two set declarations:

TYPE
possible_values
small_letters

VAR

80 .. 170;
'a' .. 'z';

pos set of possible_values;
sma set of small_letters;

DOMAIN Pascal stores variable pos in 11 words (176 bits). That is because the highest ordinal value of
the base type (possible_values) is 170. The next word boundary up from 170 is 176.

DOMAIN Pascal stores variable sma in eight words (128 bits). In the base type (small_letters), the
ordinal value of z is 122. The next word boundary up from from 122 is 128.

3.9 Records
A record variable is composed of one or more different components (called fields) which may have differ­
ent types. DOMAIN Pascal supports the two standard kinds of records: fixed records and variant records.
The following subsections describe both kinds.

Data Types 3-12

C

o

o

o

o

o

3.9.1 Fixed Records
A fixed record consists of zero or more fields. Each field can have any valid DOMAIN Pascal data type.
To declare a fixed record type, issue a declaration of the following format:

type
record_name = record

field 1 ,.

fieldN,.
end;

Each field has the following format:

field_name1, ... field_nameN : datatype;

For example, consider the following three record declarations:

TYPE
student = record {Contains two fields.}

end;

element

end;

weather

end;

name array[l .. 30] of char;
id INTEGER16;

record
name
symbol

{Contains four fields.}
array[l .. 15] of char;

atomic_number
atomic_weight

array[l .. 2] of char;
1 .. 120;
real;

record {Contains five fields.}
station array[l .. 3] of char;
sky_condition (fair, ptly_cloudly, cloudy);
windspeed 1 .. 100;
winddirection 1 .. 360;
pressure single;

VAR
new_students
noble_gases
w1

student;
element;
weather;

3-13 Data Types

Note that you can declare a record type as the data type of a field. For example, notice the changes in the
declaration of the record weather:

TYPE
wind = record

end;

weather

end;

speed: 1 .. 100;
direction: 1 .. 360;

record
station
sky_condition
gradient
pressure

array[1 .. 3] of char;
(fair, ptly_cloudly, cloudy);
wind;
single;

NOTE: A common mistake is to misuse the equal sign (=) and the colon (:). When de­
claring a record in the type declaration part, put an equal sign between the re­
cord_name and the keyword record. When declaring a record in the var decla­
ration part, put a colon between them. When specifying a field (whether in a
type declaration part or a var declaration part), put a colon between the
field_name and its data type.

3.9.2 Variant Records
A variant record is a record with multiple data type possibilities. When you declare a variant record, you
specify all the possible data types that the record can have. You also specify the condition for selecting
among the mUltiple possibilities.

Here is another way of viewing the distinction between fixed records and variant records. The system
views a fixed record variable at runtime as having the same group of data types from one use of the vari­
able to another. However, the system views a variant record variable at runtime as having a flexible group
of data types from one use of the variable to another.

The variant record has the following format:

type
record_name = record

fixedyarl;
variant_part;

end;

The fixedyart of a variant record is optional. It looks just like a fixed record. In other words, the
fixedyart consists of one or more fields each having the following format:

field_name1, ... field_nameN : datatype;

The variant_part of a variant record takes the following format:

case tag_field data_type of
constantlist1 : (field; ... fieldN);

constantlistN: (field; ... fieldN);

The constantlist is one or more constants that share the same data_type. For instance, if data_type is in­
teger, then every constant in constantlist must be an integer. You associate one or more fields with each

Data Types 3-14

c

o

C)

o

o

constantlist. With one exception, each field has the same syntax as a field in the fixed part. The one ex­
ception is that fieldN can itself be a variant_part.

Note that you can optionally associate a tag_field with the data_type. The tag_field is simply an identifier
followed by a colon (:). You can use the tag_field to select the desired variant at runtime. For more infor­
mation on tag_fields, see the "Record Operations" listing in Chapter 4.

Consider the following declaration for variant record type worker. Worker contains a fixed part and a
variant part. The fixed part contains two fields (employee and id_number). The data_type of the vari­
ant part is worker_groups, which is an enumerated type. Wo has two possible values, exempt and
non_exempt. When wo is exempt, the field name is yearly_salary which is an integer32 data type,
and when wo is non_exempt, the field name is hourly_wage which has a real data type.

TYPE
worker_groups = (exempt, non_exempt); {enumerated type}
worker = record {record type}

employee: array[I .. 30] of char; {field in fixed part}
id_number : integerl6; {field in fixed part}

CASE wo worker_groups OF {variant part}
exempt: (yearly_salary integer32);
non_exempt: (hourly_wage: real);

end;

My_code is a variant record that does not contain a fixed part. The data type of the variant part is inte­
ger, so the case portion qeclares integer constants. Choosing 1, 2, 3, and 4 as the constants is totally arbi­
trary; you could pick any four integers. These constants serve no purpose except to establish the fact that
there are four choices. The fields themselves provide four different ways to view the same 4-byte section
of main memory.

my_code = record
CASE integer OF {variant part}

end;

I (all array[l .. 4] of char);
2 (first_half: array[I .. 2] of char;

second_half: array[l .. 2] of char);
3 (xl integer16;

x2 : boolean;
x3 : char);

4 (raIl: single);

NOTE: The preceding example shows four parts that take up exactly four bytes. How­
ever, it is perfectly valid to declare parts that take up differing numbers of bytes.

3.9.3 Unpacked Records and Packed Records
DOMAIN Pascal supports regular (unpacked) records and "packed" records. You declare a packed re­
cord by putting the keyword packed prior to record in the record declaration; for example:

VAR
student : PACKED record

ages 10 .. 20;
grade (seventh, eighth, ninth, tenth, eleventh, twelfth);
graduating boolean;

end;

The advantage to declaring a packed record is that it can save space. The disadvantage is that you cannot
pass a field from a packed record as an argument to a procedure (including predeclared procedures like
read). The next subsection details the space savings of packing. Note that you should not directly manipu-

3-15 Data Types

late fields in a packed record. If you want to perform some operation that changes the value of an existing
field in a packed record, use the following steps:

1. Assign the value of the field to a variable of the same type.

2. Perform the operation on the variable.

3. Assign the value of the variable to the field of the packed record.

3.9.4 Initializing Data in a Record -- Extension
DOMAIN Pascal permits you to initialize a record in the variable declaration portion of the program un­
less that declaration comes within a procedure or function and the record has not been declared static.
(See Chapter 7 for information on the static attribute.) You can initialize some or all of the fields in a re­
cord.

To initialize a field in a record, enter a declaration with the following format

var
name_of_record_variable : type_of_record :=

[init,

init];

where init is a statement having one of the following formats:

field name := initiaLvalue

or

initial_value

If you choose the second format, DOMAIN Pascal assumes that the initiaL value applies to the next
field_name in the record definition. For example, consider the following record initialization:

TYPE
messy

VAR

record
rx real;
c : char;
abc: array[l .. 3] of integer;
case integer of

o (i32: integer32);
1 (iI6: integer);
2 (hb, lb : char);

end;

very MESSY:=

Data Types

[c : = 'X' I

[-1, -2, -3] I

rx := 123.456,
'Y' I

lb . - ' a' I

hb := 'z'];

3-16

c'

("
\" ... /

o

o

o

o

o

The preceding example initializes field c to 'X'. The next declaration [-1, -2, -3] applies to field abc
(because it follows field c). Field rx gets initialized to 123.456. Then, field c gets reinitialized to 'Y' (be­
cause it follows field rx). Finally, the third field in the variant portion of the record gets initialized, with
field 1 b getting the value 'a' and field hb getting set to 'z'.

3.9.5 Internal Representation of Unpacked Records
In a record, DOMAIN Pascal allocates the same amount of space for each field that it would have re­
quired if it were not part of the record. The compiler aligns fields of Boolean, character, and character ar­
ray types on byte boundaries. It aligns fields of other types on word boundaries. The compiler aligns the
record itself on a word boundary.

For example, consider the following unpacked record type definition:

VAR

end;

record
entry
new
next

integer16;
boolean;
"idx_rec;

Figure 3-7 shows how DOMAIN Pascal stores variables of this type.

In this figure, the first 16 bits of the structure contain the value of the first field, entry. The next eight
bits holds the Boolean value of new, followed by one unused byte. The 32-bit address field, next, starts
on the next word boundary.

Because of alignment requirements, the order in which you declare fields of the record can have a sub­
stantial impact upon the actual amount of memory required to store the record. In general, to minimize
memory requirements, declare those fields that have the same size to be adjacent to each other.

15 o
Entry

New I Unused

Next (bytes 1 and 2)

Next (bytes 3 and 4)

Figure 3-7. Sample Record Layout

3-17 Data Types

3.9.6 Internal Representation of Packed Records
Table 3-2 shows the space required for fields in packed records.

Table 3-2. Storage of Packed Record Fields

Data Type of Field

Integer, Integer16

Integer32, Real, Single

Double

Boolean

Char

Enumerated

Subrange

Set

Array

Pointer

Space Allocation

16 bits; word-aligned.

32 bits; word-aligned.

64 bits; word-aligned.

1 bit; bit-aligned.

8 bits; byte-aligned.

Number of bits required for largest ordinal value;
bit-aligned.

Subrange of Char fields require eight bits; all
other subrange fields take up the number of bits
required for their extreme values. Subrange of Char
fields are byte-aligned. All other subrange fields are
bit-aligned.

If fewer than 32 elements, then exactly one bit per
element; if more than 32 elements, then same size as
unpacked set. Bit-aligned.

Never packed; requires the same space as an array
outside of a packed record. (See the "Internal Represen­
tation of Arrays" section.)

32 bits.

c

DOMAIN Pascal always starts the first field of a packed record on a word boundary. After the first field, C"
if the exact number of bits required for the next field crosses zero or one 16-bit boundary, the field starts ./
in the next free bit. If the field would cross two or more 16-bit boundaries, it starts at the next 16-bit
boundary. Pascal allocates fields left to right within bytes and then by increasing byte address.

The minimum size of a packed record is 16 bits.

In packed records, characters are byte-aligned. Structured types, except for sets, are aligned on word
boundaries. Sets are aligned only if they cross two or more 16-bit boundaries.

Data Types 3-18

(~,
·1

'---_/

()

~)
'-../

o

o

The following type declaration, along with Figure 3-7, illustrates the storage of a packed record type.

TYPE
Shapes = (Sphere, Cube, Ovoid, Cylinder, Tetrahedron);
Uses = (Toy, Tool, Weapon, Food);
Characteristics = PACKED RECORD

end;

Mass
Shape
B

Purpose
Low_temp
Class

Real;
Shapes;
Boolean;
SET OF Uses;
-100 .. 40;
"A" .. "Z";

The fields require the following number of bits:

Mass 32 bits (word-aligned)
Shape 3 bits (bit-aligned)
B 1 bit (bit-aligned)
Purpose 4 bits (bit-aligned)
Low_temp 8 bits (bit-aligned)
Class 8 bits (word-aligned)

(The variable low_temp requires eight bits because it can take a range of 140 values (-100 to +40) and
seven bits can represent only 128 values.)

DOMAIN Pascal represents fields in the same order you declared them, as shown in Figure 3-8.

15 13 12 11 87 o

Mass

Mass

Shape Is I Purpose Low_temp

Class Unused

Figure 3-8. Sample Packed Record

In this example, the order of field declaration has been chosen very carefully. The whole record takes up
only eight bytes, and out of the eight bytes, only eight bits are unused. If the fields had been declared in a
different order, the record might have taken up 10 or 12 bytes.

3.10 Arrays
Like standard Pascal, DOMAIN Pascal supports array types. An array consists of a fixed number of ele­
ments of the same data type. This data type is called the component type. The component type can be any
predeclared or user-declared data type.

You specify the number of elements the array contains through an index type. The index type must be a
subrange expression. DOMAIN Pascal permits arrays of up to seven dimensions. You specify one sub­
range expression for each dimension.

3-19 Data Types

This fragment includes declarations for five arrays:

TYPE
{elements is an enumerated type.}
elements = (H, He, Li, Be, B, C, N, 0, FI, Ne);

VAR
{Here are the five array declarations.}
test_data arraY[l .. 100] of INTEGER16;
atomic_weights array [H .. Be] of REAL;

array[l .. 15] of CHAR;
STRING;

{Range defined in TYPE}
{declaration. }

last_name
a_thought
lie_test array[l .. 4, 1 .. 2] of BOOLEAN; {2-dimensional array. }

Notice that variable a_thought is of type string. String is a predefined DOMAIN Pascal array type.
DOMAIN Pascal defines string as follows:

TYPE
string = array[1 .. 80] of CHAR;

In other words, string is a data type of 80 characters. Use string to handle lines of text conveniently.

See the "Array Operations" listing in Chapter 4 for a description of array bound checking.

3.10.1 Initializing Variable Arrays -- Extension
DOMAIN Pascal permits you to initialize the components in an array within the variable declaration state­
ment unless that declaration is in a function or procedure and the array has not been declared static. (See
Chapter 7 for more information on the static attribute.) DOMAIN Pascal initializes only those compo­
nents for which it finds initialization data. It does not initialize the other components. For example, if an
integer array consists of 10 components and you specify six initialization constants, then DOMAIN Pascal
initializes the first six components and leaves the remaining four components uninitialized.

The method you use to initialize an array depends on the type of the array.

If the component type of the array is char, then you specify an assignment operator (:=) followed by a
string. For example, consider the following initializations:

CONST
msg1 = 'This is message 1';

VAR
sl
s2
blank_line

.- 'Quoted strings are ok'; array[1 .. 40] of CHAR
array[l .. 30] of CHAR .­ msg1;
STRING .- chr(10); {New line}

If the component type is something other than char, you must initialize the components of the array indi­
vidually. (If the component type is char, you can initialize the components individually, but it's usually
easier to do it as a string.) You do this by specifying an assignment operator (:=) followed by the values of
the components in the array. You must enclose these values inside a pair of brackets and separate each
value with commas. For example, consider the following array initializations:

VAR
I array[l .. 6] of INTEGER16 := [1, 2, 4, 8, 16, 32];
R array[l .. 3] of SINGLE := [-5.2, -7.3, -2E-3];
B array[1 .. 5] of BOOLEAN := [true, false, true, true, true];

The following fragment demonstrates how to provide initialization data for two 2-dimensional arrays (12
and B2). 12 has two subrange index types (1..2 and 1. .6). The first index type comprises two values, so

Data Types 3-20

/

--------------_._--------------------------------

o

o

o

o

o

you must supply two rows of brackets. The second scalar is 1 .. 6, so you must specify six values for each
row.

VAR
12 array [1 .. 2, 1 .. 6] of INTEGER16

B2 array[l .. 4, 1 .. 3] of BOOLEAN .-

.- [
[1, 2, 3, 4, 5, 6] ,
[7, 5, 9, 1, 2, 8] ,

] ;

[true, true, true],
[true, false, false],
[false, true, false],
[false, false, false],

] ;

3.10.1.1 Defaulting the Size of An Array -- Extension

When you initialize an array in the var declaration part of a program, you can let DOMAIN Pascal deter­
mine the size of the array for you. To accomplish this, put an asterisk (*) in place of the upper bound of
the array declaration. For example, in the following fragment, the upper bound of ini t4 is 18; the upper
bound of ini t5 is 22; and the upper bound of ini t6 is 4. The compiler defines the upper bound once
it has counted the number of initializers.

CONST
msg5 'And this is message 5.';

VAR
init4
init5
init6

ARRAY[I .. *] of CHAR := 'This is message 4.';
ARRAY [1 .. *] of CHAR := msg5;
ARRAY[I .. *] of INTEGER16 := [1, -17, 35, 46];

NOTE: You can only use an asterisk in the index type if you supply an initialization value
for the array. For example, the following fragment causes a "Size of TABLE1 is
zero" warning:

VAR
tablel array[I .. *] of integerl6;

3.10.1.2 Using Repeat Counts to Initialize Arrays -- Extension

It is quite tedious to individually initialize every component in a large array. However, DOMAIN Pascal
provides a repeat count feature that simplifies initialization.

There are two forms of repeat counts. The first form takes the following syntax:

n of constant

This form tells the compiler to initialize n components of the array to the value of constant. N can be an
integer or an expression that evaluates to an integer. The following initializations demonstrate this form of
the repeat count:

CaNST
x

VAR
a
b

50;

array[l .. 1024] of INTEGER16 .- [512 OF 0, 512 OF -1];
array[I.~400] of REAL := [x of 3.14, 400-x OF 2.7];

3-21 Data Types

In the preceding example, DOMAIN Pascal initializes the first 512 values of array a to 0 and the second
512 values to -1. DOMAIN Pascal also initializes the first 50 components of array b to 3.14 and the re­
maining 350 components to 2.7.

The second form of the repeat count takes the following syntax:

* of constant

The asterisk C*) tells DOMAIN Pascal to initialize the remainder of the components in the array to the
value of constant. The following initializations demonstrate this form of the repeat count:

VAR
c array[l .. 2000] of INTEGER16 := [* of 0] ;
d array[1 .. 50] of BOOLEAN := [12 of true, * of false];

In the preceding example, DOMAIN Pascal initializes all 2000 components in array c to O. DOMAIN
Pascal also initializes the first 12 components of array d to true and the remaining 38 components to
false.

---.,.,.,

You can use repeat counts to initialize multidimensional arrays; however, you must initialize a multidimen-
sional array column by column rather than all at once. For example, compare the right and wrong ways to C/
initialize a 2-dimensional array:

VAR
x array[1 .. 2, 1 .. 5] of INTEGER16 .- [10 of 0] ; {wrong}
y array[1 .. 2, 1 .. 5] of INTEGER16 .- [* of 0] ; {wrong}
z array[1 .. 2, 1 .. 5] of INTEGER16 .- [

[5 of 0],
[5 of 0],

] ; {right} /-------.
'\

q array[l .. 2, 1 .. 5] of INTEGER16 .- [

[*. of 0] , "--_./.
[* of 0] ,

] ; {right}

3.10.2 Internal Representation of Arrays
With two exceptions, the total amount of memory required to store an array equals the number of ele-
ments in the array times the amount of space required to store one element. The amount of space for one l~"·
element depends on the component type of the array, as shown in Table 3-3. ."-

The two exceptions to this rule are arrays of booleans and chars. If the component type of the array is
either boolean or char, the storage space for an array declaring an odd number of elements is represented
in an even number of bytes. For example, if you declare boolean array b as ,

VAR
b : array[l .. 5] of boolean;

DOMAIN Pascal reserves six bytes of memory for b.

r.l

Data Types 3-22

o

o

o

o

o

Table 3-3. Size of One Element of an Array

Base Data Type Size of One Element

Integer16 or Integer 16 bits

Integer32 32 bits

Single or Real 32 bits

"
Double 64 bits

Boolean 8 bits

Char 8 bits

Subrange size of base type of subrange

Enumerated 16 bits

Given a 2-dimensional array of the following declaration:

a : array[l .. 2, 1 .. 3] of integer16;

DOMAIN Pascal represents it in the following order:

a[l,l] first
a[1,2] second
a[1,3] third
a[2,1] fourth
a[2,2] fifth
a[2,3] sixth

3.11 Files
When you open a file for I/O access, you must specify a file variable that will be the pseudonym for the
actual pathname of the file. Thereafter, you specify the file variable (not the pathname) to refer to the
file. DOMAIN Pascal supports the file data type and the text data type. (Throughout this manual, the
word "file," in boldface type, means the file data type, and the word "file," in roman type, means a disk
file.)

A variable with the text type specifies a DOMAIN file with the VASC (unstructured ASCII) attribute. For
example, the following declaration establishes variable f1 as a synonym for a VASC file:

VAR
f1 : text;

VASC files contain sequences of ASCII characters representing variable-length lines of text. You can
read or write entire lines of a VASC file. You can read from or write to a VASC file the values of a vari­
able of any type. Chapter 8 describes VASC files in more detail.

You specify a file variable with the following format:

variable: file of base_type;

A variable with the file type specifies a file composed of values having the base_type. That is, the only
permissible values in such a file all have the same data type, that of the base_type. The base_type can be

3-23 Data Types

any type except a pointer, file, or text type. The file variable type creates a DOMAIN record-structured
file whose record size is the size of the data type. Chapter 8 describes record-structured (rec) files in
more detail. For example, the following declaration creates a file type corresponding to a file that consists
entirely of student records:

TYPE
student = record

name array[l .. 30] of char;
id integer32;

FILE OF student;

The DOMAIN operating system stores each occurrence of student in 38 bytes: 30 bytes for name, 4
bytes for id, and 4 bytes (system supplied) for a record count field.

If you redefine the text data type (for example, in a type statement), it loses its VASC attribute. For ex­
ample, if you specify the following declaration:

TYPE
text = FILE OF char;

then text is no longer a VASC type. It is a record file with a record size of one byte.

For more information on DOMAIN file types, see Programming With General System Calls.

3.12 Pointers
A pointer variable points to a dynamic variable. In DOMAIN Pascal, the value of a pointer variable is a
variable's virtual address. DOMAIN Pascal supports the pointer type declaration of standard Pascal as
well as a special univ _ptr data type and procedure and function pointer types. This section details the (. ~,
declaration of pointer types. You should also refer to the "Pointer Operations" listing of Chapter 4 for in-
formation on using pointers in your programs. ~ ... /'

3.12.1 Standard Pointer Type
To declare a pointer type, use the following format:

type
name_of _type = "typename

r',
You can specify any data type for typename. The pointer type can point only to variables of the given ~ ,
type. For example, consider the following pointer type and variable declarations:

TYPE
ptr_to_int16 = "integer16; {Points only to integer16 variables.}
ptr_to_real = "real; {Points only to real variables.}

VAR

studentptr = "student; {Points only to student record variables.}
student = record

name: array[l .. 25] of char;
id : integer;
next_student : studentptr;

end;

x integer16;
p_x : ptr_to_int16;
half_life : real;
p_half_life : ptr_to_real;
Brown_Univ : student;

Data Types 3-24

o

o

o

o

o

3.12.2 Univ _ptr -- Extension
The predeclared data type univ_ptr is a universal pointer type. A variable of type univ_ptr can hold a
pointer to a variable of any type. You can use a univ_ptr variable in the following contexts only:

• Comparison with a pointer of any type

• Assignment to or from a pointer of any type

• Formal or actual parameter for any pointer type

• Assignment to the result of a function

Note that you cannot de-reference a univ_ptr variable. De-referencing means finding the contents at the
logical address that the pointer points to. You must use a variable of an explicit pointer type for the de­
reference. Please see the "Pointer Operations" listing in Chapter 4 for more information on univ_ptr.

3.12.3 Procedure and Function Pointer Data Types -- Extension
DOMAIN Pascal supports a special pointer data type that points to a procedure or a function. By using
procedure and function data types, you can pass the addresses of routines obtained with the addr
predeclared function. (See the addr listing of Chapter 4 for a description of this function.) You may only
obtain the addresses of top-level procedures and functions; you cannot obtain the addresses of nested or
explicitly declared internal procedures and functions. (See Chapter 5 for details about internal proce­
dures.)

Procedure and function pointer type declarations are the same as regular procedure and function declara­
tions, except for the following:

• The procedure or function has no identifier; in other words, the procedure or function does not
have a name.

• The type declaration begins with an up-arrow (just like standard pointer types).

For example, consider the following variable declarations:

VAR
i,j : INTEGER;
func-ptr AFUNCTION(a: char) : INTEGER32;
proc-ptr : APROCEDURE(x,y,z real;

quarts: integer16);

3.12.4 Initializing Pointer Variables -- Extension
DOMAIN Pascal permits you to initialize the values of pointer variables within its variable declaration in
most cases. You initialize a value by placing a colon and equal sign (:=) immediately after the data type.
For example, the following fragment declares my_ptr as a type ptr_to_int16 with an initial value of
NIL:

TYPE
ptr_to_int16 = Ainteger16;

VAR
my_ptr : ptr_to_int16 := NIL;

3-25 Data Types

If the variable declaration occurs within a procedure or function, you cannot initialize the variable at the
declaration unless it has been declared static. This is because storage within routines is dynamic and so
variables in them do not necessarily retain their values between executions. For example, the following is
incorrect:

TYPE
ptr_to_int16 = ~integer16;

FUNCTION do_nothing(IN OUT x : INTEGER)
VAR

BOOLEAN;

{Wrong! }

This is the correct way to initialize the variable at its declaration in a routine:

my_ptr : STATIC ptr_to_int16 := NIL;

See Chapter 7 for information on the static attribute.

3.12.5 Internal Representation of Pointers
DOMAIN Pascal stores pointer variables in the 32-bit structure shown in Figure 3-9.

31 16

Address

Address

15 o

Figure 3-9. Pointer Variable Format

A pointer to a procedure or function (a DOMAIN Pascal extension) points to the starting address of that
routine.

3a 13 Putting Variables ~nio Sections -- (Extension
A "section" is a named area of code or data. At runtime, the code or data in a particular section occupies
contiguous logical addresses. By default, all variables that you declare in a var declaration part are stored
in the DATA$ section. However, DOMAIN Pascal lets you assign variables to sections other than
DAT A$. Named data sections are synonym,?us with named common blocks in FORTRAN.

To specify a data section, place the section name (any valid identifier) after the reserved word var. You
must enclose the section name inside parentheses. That is, use the following format to declare a section
name for a var declaration part.

var (section_name)
identifier Iist1 : data_type1;

identifier _listN : data_typeN;

All the variables named in all the identifierJists will be stored in section_name. Since you can put multi­
ple var declaration parts in the same program, you can create multiple named sections. If you do not
specify a section_name, DOMAIN Pascal puts the variables in the DATA$ section.

Data Types 3-26

-----------_. __ ._._----- --

o

o

o

o

o

--------.--------------- -------------------------~-------------------------------

DOMAIN Pascal allocates variables defined in a var declaration part sequentially within the specified sec­
tion. If more than one var declaration specifies the same section name, the subsequent declarations are
considered to be continuations of the first declaration.

By forcing certain variables into the same section, you can reduce the number of page faults and thus
make your program execute faster. For example, suppose you declare the following three variables:

VAR
integer16;
array[l .. 5000] of integer16;
single;

Further suppose that whenever you need the value of x, you also need the value of y. By default,
DOMAIN Pascal places x, b_data, and y inside the DATA$ section. The DATA$ section encompasses
10 pages (1 page = 1024 bytes). There is no way to ensure that x and y will be on the same page in
DATA$ because DOMAIN Pascal might place b_data in between x and y. However, by putting x and
y in the same named section, you can improve the odds to over 99%. For example, to put x and y into
section important, you must issue the following declarations:

VAR (important)
x INTEGER16;
y : REAL;

{will go into section "important"}
{will go into section "important"}

array[l .. 5000] of INTEGER16; {will go into section "DATA$"}

Sections are very important at bind time. For complete information on the DOMAIN binder, see the
DOMAIN Binder and Librarian Reference.

3.14 Attributes 10r Variables and Types -- lE}{iension
DOMAIN Pascal supports attributes for variables and types. These attributes supply additional information
to the compiler when you declare a variable or a type.

DOMAIN Pascal currently supports three of these attributes: volatile, device, and address. The volatile
and device attributes enable you to turn off certain optimizations that would otherwise ruin programs that
access device registers or shared memory locations. The address attribute associates a variable with a spe­
cific virtual address.

You specify these attributes immediately prior to the type; that is, immediately after the colon or equal
sign. You must place them inside a pair of brackets; for example:

TYPE
int_array = [VOLATILE] array[l .. 10] of integer;

VAR
x : [DEVICE] integer16;

To specify more than one attribute for a particular data type or variable, separate the attributes with com­
mas.

The following subsection detail the attributes.

3.14.1 Volatile -- Extension
Volatile informs the compiler that memory contents may change in a way that the compiler cannot pre­
dict. There are two situations, in particular, where this might occur:

• The variable is in a shared memory location accessed by two or more processes.

3-27 Data Types

• The variable is accessible through two different access paths. (That is, multiple pointers with dif­
ferent base types refer to the same memory locations.)

In both of these situations, it is crucial that you tell the compiler not to perform certain default optimiza­
tions.

For example, the following module causes optimizations leading to erroneous code:

Module volatile_example;

VAR
p : "'integer;

Procedure Init(VAR v
BEGIN

p . - addr (v) ;
END;

Procedure Update;
BEGIN

integer);

p'" .- p'" + 1; {anonymous path.}
END;

Procedure Top;
VAR

i : integer;
BEGIN

Init(i);
i := 0; {Visible modification. }
while i < 10 do

update;
{Visible reference. }
{Hidden modification to i.}

END;

However, you can prevent these destructive optimizations if you change the declaration of variable ito:

VAR
i [volatile] integer;

3.14.2 Device -- Extension
Device informs the compiler that a device register (control or data) is mapped to a specific virtual ad­
dress. Device prevents the same optimizations that volatile prevents, and it also prevents two other op­
timizations.

By default, the compiler optimizes certain adjacent references by merging them into one large reference.
The device attribute prevents this optimization.

For example, consider the following fragment:

VAR
a,b : integer16;

BEGIN
a .- 0;
b := 0;

By default, the compiler optimizes the two 16-bit assignments by merging them into one 32-bit assign­
ment. (That is, at runtime, the system assigns a 32-bit zero instead of assigning two 16-bit zeros.) By
specifying the device attribute, you suppress this optimization.

Data Types 3-28

/~

"--'

o

o

o

o

o

The device attribute also prevents the compiler from generating gratuitous read-modify-write references
for device registers. That is, specifying a variable as device causes the compiler to avoid using instructions
that do unnecessary reads.

Now, consider an example. Suppose kb in the following fragment is a device register that accepts charac­
ters from the keyboard.

TYPE
keyboard

VAR
c, cl
kb

BEGIN

char;

char;
"keyboard;

c .- kb";
cl . - kb";

The purpose of the program is to read a character from the keyboard and store it in c, then read the next
character and store it in cl. However, the compiler, unaware that the value of kb can be changed outside
of the block, optimizes the code as follows. It stores the value of kb in a register, and thus assigns both c
and cl identical values. Obviously, this is not what the programmer intended since DOMAIN Pascal as­
signs the same character to both c and cl. To ensure that DOMAIN Pascal reads kb twice, declare it as:

TYPE
keyboard = [DEVICE] char;

Another situation when normal optimization techniques can change the meaning of a program is in loop­
invariant expressions. For instance, using the keyboard example again, suppose you have the program seg­
ment:

TYPE
keyboard char;

VAR
x integer;
c char;
kb "keyboard;

while (x < 10) do
begin
c := kb";
foo(c) ;
x := x + 1;
end;

The purpose of the block is to read 10 successive characters from the keyboard and pass each to a func­
tion called foo. However, to the compiler, it looks like an inefficient program since c will be assigned the
same value 10 times. To optimize the program, the compiler may translate it as if it had been written:

c := kb";
while (x<10) do

begin
foo(c);
x := x + 1;
end;

3-29 Data Types

To ensure that the compiler does not optimize your program in that manner, declare kb as follows:

TYPE
keyboard = [DEVICE] char;

VAR
kb : .. keyboard;

In addition to suppressing optimizations, you can also use device to specify that a device is' either exclu­
sively read from or exclusively written to. You achieve this by using the read and write options which have
the following meanings:

• Device(read) -- This attribute specifies read-only access for this variable or type. That is, if you
attempt to write to this variable, the compiler flags the attempt as invalid and issues an error mes­
sage. Although the syntax is available, the read and write options currently have no effect. They
will be implemented in a future release of DOMAIN Pascal.

• Device(write) -- This attribute specifies write-only access for this variable or type. That is, if you
attempt to read from this variable, the compiler flags the attempt as invalid and issues an error
message. Although the syntax is available, the read and write options currently have no effect.
They will be implemented in a future release of DOMAIN Pascal.

• Device(read, write) -- This attribute specifies both read and write access for this variable. This
attribute is identical to the device attribute without any options.

• Device (write, read) -- Same as device(read, write).

For example, here are some sample declarations using the device attributes:

TYPE
truth_array: [DEVICE] array[l .. lO] of boolean;

VAR
c
c2
t

[DEVICE(read)] char; {read-only access.}
[DEVICE(write)] char; {write-only access.}
truth_array; {read and write access.}

3.14.3 Address -- Extension
Address takes one required argument.

/ "'-.
I

The address specifier binds a variable to the specified virtual address, specified by a constant. You can C
only use address in a var declaration, not in a type declaration.

Address is useful for referencing objects at fixed locations in the address space (such as device registers,
the PEB page, or certain system data structures). Typically, the compiler generates ABSOLUTE address­
ing modes when accessing such an operand. You cannot specify define, extern, or static when you use
this option.

Using address by itself (without device or volatile) does not suppress any compiler optimizations. You
should use it in conjunction with volatile or device. The example below associates the variable peb_page
with the hexadecimal virtual address FF7000.

VAR
pebyage [ADDRESS (16#FF7000), DEVICE(read)] char;

3.14.4 Attribute Inheritance -- Extension
Types and variables inherit the device attribute, and in some cases the volatile attribute, from more
primitive data types. If you define a data type ,in terms of a more primitive data type declared with device

Data Types 3-30

c

o

()

o

o

or volatile, the new data type may inherit the attributes of that more primitive data type. For example, in
the following declarations, resource inherits the volatile attribute from semaphore:

TYPE
semaphore
resource

[VOLATILE] integer;
array[l .. 10] of semaphore;

If you define a record type as volatile or device, all the fields within the record inherit the attribute. And
if you designate anyone field within a record as having the device attribute, the entire record itself inher­
its the device attribute. However, the same is not true for a volatile field within a record; the entire re­
cord is not considered volatile just because one field is declared that way. Consider the following:

TYPE
lock
queue

end;
VAR

[VOLATILE] integer;
RECORD
key : lock;
users : integer;

wait : queue;

In this example, all references to wai t. key are volatile, because the lock type is declared as volatile, but
references to wai t. users are not volatile. If you want all the fields to be volatile, insert the following af­
ter the record definition:

volque = [VOLATILE] queue;

NOTE: Pointer types do not inherit the device or volatile attributes of their base type.
However, when pointer variables are de-referenced, the system applies any at­
tributes of their base type.

3.14.5 Special Considerations -- Extension
It is usually incorrect to associate an attribute with a pointer type. For example, declaring a pointer to a
device register by means of the following declaration is almost certainly incorrect:

VAR
iodata : [DEVICE] Ainteger16;

The memory location of iodata is normally on the stack or in the DATA$ section. You don't want to
make the local variable a device, you want to make the local variable a pointer to a device. Specify the
following declarations instead:

TYPE
DevInt

VAR
iodata

[DEVICE] integer;

ADevInt;

3-31 Data Types

('
\'---

o

o

Chapiter

This chapter describes the statements, procedures, functions, and operators constituting the action part of
a DOMAIN Pascal program or routine. The beginning of the chapter provides an overview of what's avail­
able. The remainder of the chapter is a DOMAIN Pascal encyclopedia complete with many, manyexam­
ples. If you are a Pascal beginner, you should read a good Pascal tutorial textbook before trying to use this
chapter.

The overview of DOMAIN Pascal is divided into the following categories:

• Conditional branching

• Looping

• Mathematical operators

• Input and output

• Miscellaneous functions and procedures

• Systems programming functions and procedures

4.1 Overview: Conditional Branching
DOMAIN Pascal supports the two standard Pascal conditional branching statements -- if and case.

4.2 Overview: Looping
DOMAIN Pascal supports for, repeat, and while -- the three looping statements of standard Pascal. All
three looping statements support the next and exit extensions. Next causes a jump to the next iteration of
the loop, and exit transfers control to the first statement following the end of the loop.

4-1 Code

4.3 Overview: Mathematical Operators
DOMAIN Pascal supports all the standard arithmetic, logical, and set operators, as well as three additional
operators for bit manipulation. Table 4-1 lists these operators.

Table 4-1. DOMAIN Pascal Operators

Type Operator Meaning

Integer + Addition
- Subtraction
* Multiplication
/ Division (Real values)
div Division (Integer values)
mod Modulus arithmetic (returns remainder

of an integer division)

Bit & Bitwise and
1 Bitwise or
- Bitwise negation

Set + Set union
* Set intersection
- Set exclusion
= Set equality
<> Set inequality
<= First operand is subset of second
>= First operand is superset of second
in First operand is element of second

Boolean and Logical and
or Logical or
not Logical negation

All Types = Equal to
<> Not equal to
> Greater than
>= Greater than or equal to
< Less than
<= Less than or equal to

Code 4-2

('

o

o

,0

o

o

When evaluating expressions, DOMAIN Pascal uses the order of precedence rules found in Table 4-2.
The expressions grouped together have the same precedence. Note that some operators work as both
mathematical operators and as set operators. Nevertheless, the precedence rules are the same no matter
how the operator is used.

Table 4-2. Order of Precedence in Evaluating Expressions

Operator Order of Precedence

- not highest precedence

& * / div

1
mod and

I + - or

= <> > lowest precedence
>= <
<= in

DOMAIN Pascal permits the mixing of real and integer types in arithmetic expressions. For such mixed
operations, DOMAIN Pascal promotes the integers to reals before performing the operation.

4.3.1 Expansion of Operands

The compiler computes operands smaller than 32 bits with 32 bits of precision when necessary to achieve
correct arithmetic. This means integer16 operands sometimes are expanded to integer32 before calcula­
tions. These data expansions produce more accurate results; however, the compiler tries to avoid the extra
code produced by data expansion where possible.

4-3 Code

4.3.2 Predeclared Mathematical Functions

In addition to the mathematical operators, you can also use any of the predeclared mathematical func­
tions listed in Table 4-3. Note that although the arctan, cos, exp, In, sin, and sqrt functions permit inte­
ger arguments, the compiler converts an integer argument to a real number before calculating the func­
tion. Therefore, when possible, it is better to supply real, rather than integer, arguments to these func­
tions.

Table 4-3. Mathematical Functions

Function Argument(s) Result Meaning

abs(x) int or real same type as x Absolute value of x.

arctan (x) int or real real Arctangent of x.

arshft(x,n) both are ints int Shifts the bits in x to the right n
places. Preserves the sign of x.

cos (x) int or real real Cosine of x.

exp(x) int or real real Exponential function e raised to the
x power.

In (x) int or real real Natural log of x; x > 0

Ishft(x,n) both are ints int Shifts the bits in x to the left
n places.

odd (x) int boolean True if x is an odd value.

round (x) real int Round x up or down to nearest
integer.

rshft(x,n) both are ints int Shifts the bits in x to the right
n places.

sin (x) int or real real Sine of x.

sqr(x) int or real same type as x Square of x.

sqrt(x) int or real real Square root of x.

trunc(x) real int Truncates x to nearest integer.

xor(x,n) both are ints int Bit exclusive or.

Code 4-4

c

~. "'_/

-----------_ .. ------ ------_._----

o

o

o

o

4.4 Overview: 1/0
DOMAIN Pascal supports the I/O procedures described in Table 4-4. For details on these routines, con­
sult the encyclopedia later in this chapter and see Chapter 8.

Name

close

eof

eoln

find

get

open

page

put

read

readln

replace

reset

rewrite

write

writeln

Table 4-4. Predeclared 110 Procedures

Action

Closes a file.

Tests whether the stream marker is pointing to the end
of the file.

Tests whether the stream marker is pointing to the end
of a line.

Sets the stream marker to the specified record.

Reads from a file.

Opens a file for future access.

Inserts a formfeed (page advance) into a file.

Writes to a file.

Reads information from the specified file (or from the
keyboard) into the specified variables. After reading the
information, read positions the stream marker so that it
points to the character or component immediately after
the last character or component it read.

Similar to read except that after reading the information,
readln positions the stream marker so that it points to the
character or component immediately after the next
end-of-line character.

Substitutes a new record component for an existing record.

Specifies that an open file be open for reading only.

Specifies that an open file be open for writing only, or
tells the system to open a temporary file.

Writes the specified information to the specified file
(or to the screen).

Same as write except that writeln always appends a
linefeed to its output.

4.5 Overview: Miscellaneous Routines and Statements
Several DOMAIN Pascal elements do not fit neatly into categories. We've listed these elements in Table
4-5.

4-5 Code

Code

Element

addr

char

discard

dispose

exit

firstof

goto

in_range

lastof

max

min

new

next

nil

ord

pack

pred

return

sizeof

succ

type transfer functions

unpack

with

Table 4-5. Miscellaneous Elements

Action

Returns the address of the specified variable.

Finds the character whose ASCII value equals the
specified number.

Explicitly discards a computed value.

Deallocates the storage space that a dynamic record
was using.

Transfers control to the first statement following a
for, while, or repeat loop.

Returns the first possible value of a type or a variable.

Uncondionally jumps to the first command following
the specified label.

Tells you whether the specified value is within the
defined range of an enumerated variable.

Returns the last possible value of a type or a variable.

Returns the larger of two expressions.

Returns the smaller of two expressions.

Allocates space for storing a dynamic record.

Transfers control to the test for the next iteration of a
for, while, or repeat loop.

A special pointer value that points to nothing.

Finds the ordinal value of a specified integer, Boolean,
enumerated,- or char data type.

Copies unpacked array elements to a packed array.

Finds the predecessor of a specified value.

Causes program control to jump back to the calling
procedure or function.

Returns the size (in bytes) of the specified data type.

Finds the successor of a specified value.

Permits you to change the data type of a variable or
expression in the code portion of your program.

Copies packed array elements to an unpacked array.

Lets you abbreviate the name of a record. With is
standard, but DOMAIN Pascal includes an extension
that supports a name tag.

4-6

C~

-----_. __ . __ ._--- ._----_._---------------------

o

o

o

o

4.6 Overview: Systems Programming Routines
Several DOMAIN Pascal routines are available for systems programmers' use. Table 4-6 lists these rou­
tines. Because only a few programmers will need to use these routines, they are not described in the ency­
clopedia section that follows. Instead, they appear in Appendix E.

Table 4-6. Systems Programming Routines

Routine Action

disable Turns off the interrupt enable in the hardware status register.

enable Turns on the interrupt enable in the hardware status register.

set_sr Saves the current value of the hardware status register and then
inserts a new one.

4-7 Code

4.7 Encyclopedia of DOMAIN Pascal Code
The remainder of this chapter contains an alphabetical listing of each of the keywords that you can use in ~---...

the action part of a DOMAIN Pascal program or routine. It also contains listings for several other Pascal ~
concepts. Table 4-7 provides the keyword listings, and Table 4-8 contains the conceptual listings. ,_.J

Code

Table 4-7. Keyword Listings in Encyclopedia

abs get pred

addr goto put

and if then else read

arctan in repeat

arshft in_range replace

begin lastof reset

case In return

chr lshft rewrite

close max round

cos min rshft

discard mod sin

dispose new sizeof

div next sqr

end nil sqrt

eof not succ

eoln odd trunc

exit open unpack

exp or while

find ord with

firstof pack write

for page xor

Table 4-8. Conceptual Listings in Encyclopedia

array operations

bit operations

compiler directives

expressions

pointer operations

4-8

record operations

set operations

statements

type transfer functions

C

(-,'

c:~

Abs

Abs -- Returns the absolute value of an argument.

o
FORMAT

abs (number) {abs is a function.}

Arguments

number Any real or integer expression.

Function Returns o The abs function returns a real value if number is real and an integer value if number is an integer.

o

o

o

DESCRIPTION

The abs function returns the absolute value of the argument. The absolute value is the number's dis­
tance from O. Note that number cannot be -2147483648 (which is the lowest negative integer).

EXAMPLE

program abs_example;
VAR

x INTEGER;
y REAL;

BEGIN
x := -3;
y := -456.78;
WRITELN (x, y) ;

END.

Using This Example

x := ABS(x);
y : = AES (y) ;

If you execute the sample program named abs_example, you get the following output:

3 4. 567800E+02

4-9 Code

Addr

Addr -- Returns the address of the specified variable. (Extension)

FORMAT

addr(x)

Argument

x

Function Returns

{addr is a function.}

Can be a variable declared as any data type except as a procedure or function
data type having the internal attribute. X can also be a string constant but it can-'
not be a constant of any type other than string.

The addr function returns an univ_ptr value. (Chapter 3 describes the univ_ptr data type.)

DESCRIPTION

Use addr to return the address at which variable x is stored. Addr is of particular use with variables de­
fined as pointers to functions or procedures.

('"
\.--,.",,/

c

Using addr can prevent some compiler optimizations. If you apply addr to a variable that is local to a (-"',.,
routine, and the variable is not a set, record, or array, you do not get optimizations and register allo- ~

cation for that variable or any expressions using the variable. This means'the routine's code might be
larger and slower than it otherwise would be.

Applying addr to a variable is equivalent to declaring the variable volatile. See Chapter 3 for more in­
formation on volatile.

Refer to the "Pointer Operations" listing later in this chapter for an example of addr.

EXAMPLE

Program addr_example;

TYPE

VAR

BEGIN

"'real;

real;
ptr_to_real;

write ('Enter a real number -- '); readln(y);
{ Set ptr_to_y to the address at which y is stored. }

ptr_to_y := ADDR(y) ;
{ Set y2 to the contents stored at y's address; i.e., set y2 equal to y. }

y2 := ptr_to_y"';
writeln(y2);

END.

Code 4-10

.---,-., , •.• _.,---,-------

o

o

o

u

Using This Example

Following is a sample run of the program named addr_example:

Enter a real number -- 5.3
5.300000E+OO

4-11

Addr

Code

And

And -- Calculates the logical and of two Boolean arguments.

FORMAT

x and y {and is an operator.}

Arguments

X, Y Any Boolean expressions.

Operator Returns

The result of an and operation is a Boolean value.

DESCRIPTION

Sometimes and is called Boolean multiplication. Use it to find the logical and of expressions X and y.
Here is the truth table for and:

x y Result

true true true

true false false

false true false
false false false

(See also the listings for the logical operators or and not later in this encyclopedia).

Code

NOTE: Some programmers confuse and with "&". "&" is a bit operator; it causes
DOMAIN Pascal to perform a logical and on all the bits in its two arguments.
For example, compare the following results:

the result of (true and false) is false
, the result of (75 & 15) is 11

(Refer to "Bit Operators" later in this encyclopedia.)

NOTE: Don't confuse and with the and then option of the if statement. Refer to the if
listing later in this encyclopedia.

4-12

c

o

o

o

o

o

EXAMPLE

Program and_example;

CONST
g

VAR

6.6732e-ll;

massI, mass2, radius, force

BEGIN

And

single;

writeln('This program finds the gravitational force between two objects.');
write('Enter the mass of the first object (in Kg) -- '); readln(massl);
write('Enter the mass of the second object (in Kg) -- '); readln(mass2);
write('Enter the dist. between their centers (in M) -- '); readln(radius);

if (massl > 0.0) AND (mass2 > 0.0)
then force := (g * massl * mass2) / sqr(radius)
else begin

writeln('The data you have entered seems inappropriate');
return;

end;
writeln('The force between these two objects is

END.

Using This Example

This program is available on-line and is named and_example.

4-13

force:9:7, ' N');

Code

Arctan

Arctan -- Returns the arctangent of a specified number.

FORMAT

arctan (number) {arctan is a function.}

Argument

number Any real or integer expression.

Function Returns

The arctan function returns a real value for the angle in radians.

DESCRIPTION

The arctan function returns the arctangent (in radians) of number. The arctangent of a number has
the following relationship to the tangent:

y = arctan(x) means that x = tan(y)

Note that Pascal does not support a predeclared tangent function. However, you can find tangent(x)
by dividing sin (x) by cos (x) .

EXAMPLE

PROGRAM arctan_example;

{ This program demonstrates the ARCTAN function. }

CONST
degrees-per_radian

VAR
q, answer_in_radians
answer_in_degrees

BEGIN
q := 2.0;

180.0 / 3.14159;

REAL;
INTEGER16;

{First, find the arctangent of 2.0 in radians. }
answer_in_radians := ARCTAN(q);
writeln(~The arctan of ~, q:5:3, ~ is~, answer_in_radians:6:3, ' radians');

C,'
~/

c

C~

{Now, convert the answer to degrees. }
answer_in_degrees := round(answer_in_radians * degrees-per_radian); C·
writeln('The arctan of " q:5:3, ' is " answer_in_degrees:1, ' degrees'); _/1

END.

Code 4-14

o

o

o

o

o

Using This Example

If you execute the sample program named arctan_example, you get the following output:

The arctan of 2.000000E+OO in radians is 1.107149E+OO
The arctan of 2.000000E+OO in degrees is 63

4-15

Arctan

Code

Array Operations

Array Operations

Chapter 3 explains how to declare and initialize an array. In this listing, we explain how to use arrays in
the code portion of your program.

ASSIGNING VALUES TO ARRAYS

To assign a value to an array variable, you must supply the following information:

• The name of the array variable.

• An index expression enclosed in brackets. The value of the index expression must be within
the declared subrange of the index type.

• A value of the component type.

For example, the following program fragment assigns values to three arrays:

TYPE
{elements is an enumerated type.}
elements = (H, He, Li, Be, B, C, N, 0, Fl, Ne);
student = record

id integer16;
class : (freshman, sophomore, junior, senior);

end;

VAR
{Here are three
test_data
atomic_weights
lie_test
class

BEGIN
test_data [37]

array declarations.}
array[l .. 100] of INTEGER16;
array[H .. Be] of REAL;
array[l .. 4, 1 .. 2] of BOOLEAN;
array[l .. 500] of student;

.- 9018;
atomic_weights [He] .- 4.0;
lie _test[3, 2] .- true;
student [30] .id .- 8245;
student [30] .class .- senior;

Code 4-16

{2-dimensional array}

,~

c

o

o

o

0

()

Array Operations

There are a few exceptions to the rule that you must supply an index expression.

The first exception is that you can assign a string to an array of char variable without specifying an in­
dex expression; for example, consider the following assignments to greeting and farewell:

CONST
hi "aloha" ;

VAR
greeting, farewell array[1 .. 12] of CHAR;

BEGIN
greeting .- hi;
farewell .- "a bientot";

The only restriction on this kind of assignment is that the number of bytes in the string must be less
than or equal to the declared number of declared components in the array. For example, you cannot
assign the string 'auf wiedersehen' to farewell because the string contains 15 bytes and the array is
declared as only 12 bytes. If you do try that assignment, the compiler reports:

Assignment statement expression is not compatible with the
assignment variable.

There is' a second exception to the rule that you must specify an index expression when assigning a
value to an array. The exception is that you can assign the value· of one array to another array if both
arrays are declared identically. For example, in the following program fragment, a and b are declared
identically, though c and d are uniquely declared:

CONST
quote "ottawa!";

VAR
a array [1 .. 20] of
b array [1 .. 20] of
c array [1 .. 21] of
d array [1 .. 19] of

BEGIN

CHAR;
CHAR;
CHAR;
CHAR;

a .- quote; {Assign the string 'ottawa' to array a.
b .- a; {This is a valid assignment.
c .- a; {This is not a valid assignment because a and c

{ have different declared lengths.
d .- a; {This is not a valid assignment because a and d

{ have different declared lengths.

}
}
}
}
}
}

The assignment b : = a causes DOMAIN Pascal to assign all components of array a to the corre­
sponding indices in array b; that is, b . - a is equivalent to the following 20 assignments:

b[1] .- a[1];
b[2] .- a[2];

b[20] .- a[20];

NOTE: In standard Pascal, before assigning a string to an array, you must explicitly pad
the string to the length of the array. DOMAIN Pascal will pad the string for you,
so you don't have to do it.

4-17 Code

Array Operations

USING ARRAYS

You can specify an array component wherever you can specify a component variable of the same data
type. In other words, if the compiler expects a real number, you can specify any real expression includ­
ing a component of an array of real numbers.

NOTE: You can specify an array of char variable as an argument to read, readln,
write, or writeln. However, you cannot specify any other component type of ar­
ray as an argument to one of these procedures.

EXAMPLE

PROGRAM array_example;

{ This simple example reads in five input values, assigns the values to }
{ elements of an array, and then finds their mean. }

CONST
5 ;

VAR
a : array[l .. number_of_elements] of single;
running_total : single := 0.0;
n : integer16;

BEGIN
for n := 1 to number_of_elements do

begin
write('Enter a value -- ');
readln(a[n]);

end;

for n := 1 to number_of_elements do
running_total := running_total + a[n] ;

writeln(chr(10), 'The mean is " running_total/number_of_elements:3:1);

END.

Using This Example

Following is a sample run of the program named array_example:

Enter a value 4.3
Enter a value 10.3
Enter a value 9.5
Enter a value 6.2
Enter a value 1.5

The mean is 6.4

Code 4-18

c

o

o

o

o

o

Arshft

Arshft -- Shifts the bits in an integer to the right by a specified number of bits.
Preserves the sign of the integer. (Extension)

FORMAT

arshft(num, sh) {arshft is a function.}

Arguments

num, sh Must be integer expressions.

Function Returns

The function returns an integer value.

DESCRIPTION

Arshft does an arithmetic right shift of an integer. That is, it preserves the sign bit of num and then
shifts the other bits sh positions to the right.

If num is a 16-bit integer and if the result of the function is to be stored in a 16-bit integer variable,
then arshft expands num to a 32-bit integer, performs the shift, and then converts it back to a 16-bit
integer.

First examine how arshft shifts a positive integer. Consider the effect of arshft on the 16-bit positive
integer +100 in the following table:

unshifted
ARSHFT(+100,1)
ARSHFT(+100,2)
ARSHFT(+100,3)

0000000001100100
0000000000110010
0000000000011001
0000000000001100

+100
+50
+25
+12

Notice three things in the preceding table. First, the sign bit (the left-most bit) never changes. Second,
notice that the bits move to the right. Third, notice that the bits do not wrap around from right to left;
the absolute value always gets smaller.

Now, examine how arshft shifts a negative integer. Consider the effect of arshft on the 16-bit negative
integer -100 in the following table:

unshifted
ARSHFT(-100,1)
ARSHFT (-100,2) .
ARSHFT(-100,3)

1111111110011100
1111111111001110
1111111111100111
1111111111110011

-100
-50
-25
-13

In contrast to the preceding table, notice that arshft fills the left-most bits with ones rather than zeros
as the right-most bits are shifted off the right end of the number.

Results are unpredictable if sh is negative.

4-19 Code

Arshft

EXAMPLE

PROGRAM arshft_example;

{ This program compares ARSHFT with RSFHT. }

VAR
integer32 .- 0;

BEGIN
write('Enter a positive or negative integer -- '); readln(original_number);

for spaces_to_shift .- 1 to 5 do
BEGIN

writeln;
writeln('When shifted " spaces_to_shift:l, ' spaces.');

r := RSHFT(original_number, spaces_to_shift);
writeln(' The rshft result is " r:l);

ar := ARSHFT(Original_number, spaces_to_shift);
writeln(' The arshft result is " ar:l);

END;
END.

Using This Example

This program is available on-line and is named arshft_example.

Code 4-20

,
'---

o

o

o

o

o

Begin

Begin -- Marks the start of a compound statement.

FORMAT

Begin is a reserved word.

DESCRIPTION

Begin and end bracket a sequence of Pascal statements. A program must contain at least as many
ends as begins. (Note that a program can contain more ends then begins.) You must use a begin/end
pair to bracket a compound statement. (Refer to the "Statements" listing later in this encyclopedia.)

4-21 Code

Begin

EXAMPLE

{This program does very little work, but does have lots of BEGINs and ENDS.}

TYPE

VAR

student = record
age : 6 .. 12;
id : integer16;

end; {student record definition}

x : integer32;

PROCEDURE do_nothing;
BEGIN {do_nothing}

writeln('You have triggered a procedure that does absolutely nothing.');
writeln('Though it does do nothing with elan.');

END; {do_nothing}

FUNCTION do_next_to_nothing(var y
BEGIN {do_next_to_nothing}

do_next_to_nothing := abs(y);
END; {do_next_to_nothing}

BEGIN {main procedure}
write('Enter an integer -- ');
if x < 0

then BEGIN

integer32) integer32;

read In (x) ;

writeln('You have entered a negative number!! I');
writeln('Its absolute value is " do_next_to_nothing(x) :1);

END
else if x = 0

then BEGIN

else

writeln('You have entered zero');
do_nothing;

END

writeln('You have entered a positive number!! !');
END. {main procedure}

Using This Example

This program is available on-line and is named begin_end_example.

Code 4-22

c

("I

o

o

o

o

Bit Operators

Bit Operators -- Calculates "and", "or", and "not" on a bit by bit basis. (Exten­
sion)

FORMAT

op1 & op2
op1 I op2
-op1

Arguments

op1, op2

Operator Returns

{& (an ampersand) is bit and.}
{! (an exclamation point) is bit or.}
{- (a tilde) is bit not.}

Must be integer expressions.

All three operators return integer results.

DESCRIPTION

DOMAIN Pascal supports three bit operators, all of which are extensions to standard Pascal. The op­
erators perform operations on a bit by bit level using the following truth tables:

& (and) (or) - (not)

bit x bit x bit x of bit x bit x bit x of bit x bit x of
of opl of op2 result of opl of op2 result of opl result

0 0 0 0 0 0 0 1

0 1 0 0 1 1 1 0
1 0 0 1 0 1
1 1 1 1 1 1

Don't confuse these bit operators with the logical operators. Bit operators take integer operands; logi­
cal operators take Boolean operands.

In addition to the three bit operators, DOMAIN Pascal supports the following bit functions: lshft,
rshft, arshft, and xor. All of these functions have their own listings in the encyclopedia.

NOTE: If one of the operators is declared as integer32, and the other operator is de­
clared as integer16, DOMAIN Pascal extends the integer16 to an integer32 be­
fore calculating the answer.

NOTE: When performing these bitwise operations, DOMAIN Pascal treats the sign bit
just as it treats any other bit.

4-23 Code

Bit Operators

EXAMPLE

PROGRAM bit_operators_example;

{ This program demonstrates bitwise AND, OR, and NOT. }

CaNST
{ The 2# prefix specifies a base 2 number. }

x 2#0000000000001010; {10}
y = 2#0000000000010111; {23}

VAR
resultl, result2, result3 integerl6;

BEGIN

END.

resultl .- x & y;
result2 .- x ! y;
result3 .- -x;

Using This Example

writeln(x:l, ' AND " y:l, ' = " resultl:l);
writeln(x:l, ' OR " y:l, ' = " result2:1);
writeln('NOT " x:l, ' = " result3:1);

If you execute the sample program named bi t_operators_example, you get the following output:

10 AND 23 = 2
10 OR 23 = 31
NOT 10 = -11

Code 4-24

o

o

o

o

o

Case

Case -- A conditional branching statement that selects among several state­
ments based on the value of an ordinal expression.

FORMAT

There are two different forms of the case statement. Here, we describe the use of case in the body of
your program. The other use of case is in the variable or type declaration portion of the program. (See
the "Variant Records" section in Chapter 3 for details on this use.)

Case takes the following syntax:

case expr of {case is a statement.}

end;

constantlist1 stmnt1 ;

constantlistN : stmntN;
otherwise stmnt_list;

Arguments

expr Any ordinal expression (variable, constant, etc.) The ordinal types are integer,
Boolean, char, enumerated, and subrange. You cannot specify an array as an
expr, though you can specify an element of an array (assuming the element has
an ordinal type). Also, you cannot specify a record, though you can specify a
field of the record (assuming the field has an ordinal type).

constantlist

stmnt

One or more values (separated by commas) having the same data type as expr.

A simple statement or a compound statement (refer to the" Statements" listing
later in this encyclopedia).

stmnt list

DESCRIPTION

One or more statements associated with the optional otherwise clause. (The oth­
erwise clause tells the system to execute stmnt_list if expr matches none of the
constants in any of the constantlists.) Unlike a compound statement, you do not
have to bracket the stmnt-,ist with a begin/end pair (though doing so does not
cause an error).

The case statement performs conditional branching. It is very useful in situations involving a multi-way
branch. When the value of expr equals one of the constants in a constantlist, the system executes the
associated stmnt.

Note that case and if/then/else serve nearly identical purposes. The differences between case and if/
then/ else are:

• Case can only compare ordinal values. If/then/else can compare values of any data type.

• The system can sometimes execute a case statement faster than an equivalent if/then/else
statement. That's because the DOMAIN Pascal compiler sometimes translates a case state­
ment into a dispatch table and always translates an if/then/else statement into a series of con­
ditional tests.

4-25 Code

Case

Also, note that a case statement is often more readable than an if/then/else statement. For instance,
compare the following if/then/else statement to its equivalent case statement:

IF grade = 'A' THEN
write('Excellent')

ELSE IF grade = 'B' THEN
wri te (' Good')

ELSE IF grade = 'c' THEN
wri te (' Average')

ELSE IF grade = 'D' THEN
write (' Poor')

ELSE IF grade = 'F' THEN
write('Failing');

Otherwise -- Extension

CASE grade OF

end;

'A' write('Excellent');
'B' write('Good');
'c' write('Average');
'D' write('Poor');
'F' write('Failing');

DOMAIN Pascal supports an extension to the standard Pascal case statement. This extension is the
otherwise clause. The otherwise clause tells the system to execute stmntJist if expr matches none of
the constants in any of the constantlists. For example, you can write the preceding case example like
this:

CASE grade OF
'A' write('Excellent');
'B' write('Good');
'c' write('Average');
'D' write('Poor');
OTHERWISE write('Failing');

end;

Notice that you do not put a colon C:) after the keyword otherwise.

As mentioned earlier, the begin/end pair is optional in an otherwise clause. Therefore, the following
two case statements are equivalent:

CASE number OF
I, 2, 3 : writeln('Good');
OTHERWISE writeln('Great.');

writeln('Encore.');
end;

Code

CASE number OF
1, 2, 3 : writeln('Good');
OTHERWISE begin

writeln('Great');
writeln('Encore');

end;
end;

4-26

c

C ',
/

(~ u

o

o

o

o

EXAMPLE

PROGRAM case_example;
VAR

a_letter
sale
price

char;
boolean;
array[l .. 5] of char;

BEGIN

END.

write('Is whole wheat bread on sale today? -- ');
readln(a_letter);

CASE a_letter OF
'y', 'Y'
'n', 'N'

OTHERWISE

end; {CASE}

if sale then

sale := true;
begin

sale := false;
writeln('Remember to tell them it"s organic.');

end;
begin

end;

writeln('You have made a mistake');
writeln('Please rerun the program');
return;

price .- '$1.99'
else

price .- '$2.99';
writeln('Mark it as' price:5);

Using This Example

This program is available on-line and is named case_example.

4-27

Case

Code

Chr

Chr -- Returns the character whose ASCII value corresponds to a specified ordi-
nal number. r"

FORMAT

chr(number) {chr is a function.}

Argument

number An integer.

Function Returns

The chr function returns a value with the char data type.

DESCRIPTION

The chr function returns the character that has an ASCII value equal to the value of the low eight bits
of number. Appendix B contains an ASCII table.

Chr produces a character with the bit pattern

number & 16#FF

Usually, number is between 0 and 127, in which case the character that chr returns is simply the char­
acter that has the ASCII value of number. If number is greater than 127, chr returns the character
having the ASCII value of

number MOD 256

See the mod listing later in this encyclopedia.

Note that the ord function is the inverse of chr when ord's argument type is char. (See the ord listing
later in this encyclopedia.)

Code 4-28

"'-/

c'

o

o

o

o

EXAMPLE

PROGRAM chr_example;

{ This program demonstrates three uses for the CHR function.

VAR
capital_letter 65 .. 90;
y : CHAR;
age : 10 .. 99;
c_array: array[1 .. 2] of char;

BEGIN
{ First, we'll use CHR to convert an integer to its ASCII value. }

write('Enter an integer from 65 to 90 -- ');
readln(capital_letter) ;
y := CHR(capital_Ietter) ;
writeln(capital_letter:1, ' corresponds to the' y:1, ' character');
writeln;

{ Second, we'll use CHR to ring the node bell. }
write(chr(7»;

Chr

}

{ The graphics primitive function gpr $text writes character arrays to the }
{display. But suppose you want gpr_$text to write an integer. In order to }
{ accomplish this task, you would write a routine similar to the following }
{ which converts a 2-digit integer into a 2-character array. Note that }
{ 48 is the ASCII value for the '0' character, 49 for the '1' character, }
{ and so on up to 57 for the '9' character. }

write('Enter an integer from 10 to 99 -- '); readln(age);
c_array[l] := CHR«age DIV 10) + 48);
c_array[2] := CHR«age MOD 10) + 48);
writeln('The first digit is " c_array[l] :1);
writeln('The second digit is ,c_array[2] :1);
writeln('The entire array is " c_array);

END.

Using This Example

Following is a sample run of the program named chr_example:

Enter an integer from 65 to 90 -- 83
83 corresponds to the S character

Enter an integer from 10 to 99 -- 71
The first digit is 7
The second digit is 1
The entire array is 71

4-29 Code

Close

Close -- Closes the specified file. (Extension)

FORMAT

close (filename) {close is a procedure.}

Argument

filename A file variable.

DESCRIPTION

Use the close procedure to close the file filename that you opened with the open procedure. By clos- C
ing, we mean that the operating system unlocks it. When a program terminates (naturally or as a result ,./
of a fatal error), the operating system automatically closes all open files. So the close procedure is op-
tional.

You cannot close the predeclared files input and output, but if you try, DOMAIN Pascal does not is­
sue an error.

If filename is a temporary file, CLOSE(iilename) deletes it.

Please see Chapter 8 for an overview of I/O.

Code

NOTE: For permanent text files, your program should issue a writeln to the file just be­
fore closing it in order to flush the file's internal output buffer. If you don't in­
clude that writeln, the last line of the file may not be written.

4-30

c

i 0
,

o

o

o

o

EXAMPLE

PROGRAM close_example;
{ This program demonstrates the CLOSE procedure. }

CONST
pathname

VAR
class
name
status

begin

'primates';

text; {a file variable}
array[l .. 20] of char;
integer32;

writeln('This program writes data to file "primates"');

open(class, pathname, 'NEW', status);
if status = 0 then

rewrite(class)
else

return;

{Open a file for writing.}

writeln('Enter the names of the children in your class -- ');
writeln('The last entry should be "end"');
repeat

readln (name) ;
if name <> 'end' then

writeln(class, name)
else

exit;
until false;

CLOSE(class); {Close the file for writing.}

{ }
{ Execute some time-consuming routines that do not access 'primates'. }
{ }

{NOW, re-open the file for reading.}
open(class, pathname, 'OLD', status);
reset(class);

writeln;
writeln('Here are the names you entered:');
repeat

readln(class, name);
writeln(name);

until eof(class);

CLOSE(class);
end.

Using This Example

This program is available on-line and is named close_example.

4-31

Close

Code

Compiler Directives

Compiler Directives -- Specify a variety of special services including conditional
compilation and include files. (Extension)

FORMAT

The DOMAIN Pascal compiler understands the directives shown in Table 4-9. All directives begin
with a percent sign (%). You can specify a directive anywhere a comment is valid. To use a directive,
specify its name inside a comment or as a statement. For example, all of the following formats are
valid:

{%directive}
(* %directive *)
%directive

l
~--."

/'

If you specify a directive within a comment, the percent sign must be the first character after the de- C~ ... \
limiter (where spaces count as characters). In addition, you do not need to put a semicolon at the end _.
of the directive.

You must place a semicolon after some directives if you use them as statements. Those directives are:

• %debug;

• %eject;

• %include 'pathname'; ('
• %list;

\,- .

• %nolist;

• %slibrary 'pathname';

c
Code 4-32

o

o

o

o

Directives

'* %config

%debug;

%eject;

'* %eIse

'* %eIseif predicate %then

'* %elseifdef predicate %then

'* %enable;

'* %endif

'* %error 'string'

'* %exit

'* %if predicate %then

'* %ifdef predicate %then

%include 'pathname';

%Iist;

Compiler Directives

Table 4-9. Compiler Directives

Action

Lets you easily set up a warning message if you forget
to compile with the -config compiler option.

Directs DOMAIN Pascal to compile lines prefixed by
this directive when you use the -cond compiler
option. If you don't use -cond when you compile,
lines prefixed with %debug don't get compiled.

Directs DOMAIN Pascal to put a formfeed in the
listing file at this point.

Specifies that a block of code should be compiled if
the preceding %if predicate %then is false.

Directs the compiler to compile the code up until the
next %eIse, %eIseif, or %endif directive, if and
only if the predicate is true.

Checks whether additional predicates have been
declared with a %var directive.

Sets compiler directive variables to true.

Marks the end of a conditional compilation area of
the program.

Prints 'string' as an error message whenever you
compile.

Directs the compiler to stop conditionally processing
the file.

Directs the compiler to compile the code up until the
next %else, %elseif, or %endifdirective, if and
only if the predicate is true.

Checks whether a predicate was previously declared with
a %var directive.

Causes DOMAIN Pascal to read input from the
specified file.

Enables the listing of source code in the listing file.

'* is a directive described in "DIRECTIVES ASSOCIATED WITH THE -CONFIG OPTION."

4-33 Code

Compiler Directives

Table 4-9. Compiler Directives (continued)

Directives Action

%nolist; Disables the listing of source code in the listing file.

%slibrary 'pathname' ; Causes DOMAIN Pascal to incorporate a precompiled
library into the program.

"* %var Lets you declare variables that you can then use as
predicates in compiler directives.

%warning 'string' Prints 'string' as a warning message whenever you

compile.

"* is a directive described in "DIRECTIVES ASSOCIATED WITH THE -CONFIG OPTION."

DIRECTIVES ASSOCIATED WITH THE -CON FIG OPTION

This subsection describes the following compiler directives: %if, %then, %elseif, %else, %endif, %if­
def, %elseifdef, %var, %enable, %config, %error, %warning, and %exit.

C/
"

The conditional directives mark regions of source code for conditional compilation. This feature allows C
you to tailor a source module for a specific application. You invoke conditional processing by using the -'
-config option when you compile. Unlike the other compiler directives, conditional directives cannot
be used as comments.

Several of the directives take a predicate. A predicate can consist of special variables (declared with
the %var directive) and the optional Boolean keywords not, and, or or. Given that color and mono
are special variables, here are some possible predicates:

• color

• NOT (color)

• mono OR color

• (mono AND color)

%If predicate %then

If the predicate is true, DOMAIN Pascal compiles the code after %then and before the next %else,
%elseif, or %endif directive.

Code 4-34

C"

o

o

o

o

o

Compiler Directives

For example, to specify that a block of code is to be compiled for a color node, you might choose an
attribute name such as color to be the predicate. Then write:

%VAR color {Tell the compiler that 'color' can be used in a predicate.}

%IF color %THEN

Code

%ENDIF;

To set color to true, you can either use the %enable directive in your source code or the -config op­
tion in your compile command line.

%Else

The %else directive is used in conjunction with %if predicate %then. %EIse specifies a block of code
to be compiled if the predicate in the %if predicate %then clause evaluates to false. For example, con­
sider the following fragment:

%VAR color {Tell the compiler that 'color' can be used in a predicate.}

%IF color %THEN

Code

%ELSE {Compile this code if color is false.}

Code

%ENDIF;

%Elseif predicate %then

%Elseif predicate %then is used in conjunction with %if predicate %then. It serves an analogous
pupose to the Pascal statement

else if cond then statement

For example, suppose you want to compile one sequence of statements if the program is going to run
on a color node, and another sequence of statements if the program is going to run on a monochro­
matic node. To accomplish that, you could organize your program in the following way:

%VAR color mono {Tell the compiler that 'color' and 'mono' can be }
{used in a predicate. }

%IF color %THEN {Compile the following code if color is true.}

Code for color nodes

%ELSEIF mono %THEN {Compile the following code if mono is true.}

Code for monochromatic nodes

%ENDIF;

4-35 Code

Compiler Directives

To set color or mono to true, you can either use the %enable directive in your source code or the
-config option in your compile command line. If color and mono are both true, DOMAIN Pascal
compiles the code for color nodes since it appears first. Note that you can put multiple %elseif direc­
tives in the same block.

%Endif

The %endif directive tells the compiler where to stop conditionally processing a particular area of
code.

%Ifdef predicate %then

Use %ifdef predicate %then to check whether a variable was already declared with a %var directive. If
you accidentally declare the same variable more than once, DOMAIN Pascal issues an error message.
%Ifdef is a way of avoiding this error message. %Ifdef is especially helpful when you don't know if an
include file declares a variable.

For example, consider the following use of %ifdef:

%INCLUDE ~bitmap_init.ins~; {Source code that mayor may not have used }

%IFDEF not (color) %THEN
%VAR color

%ENDIF;

{%VAR to declare the variable ~color~. }

{If color has not been declared }
{with %VAR, declare it now. }

NOTE: The difference between %if and %ifdef is the following. Variables in an %if
predicate are considered true if you set them to true with %enable or -config;
however, variables in an %ifdef predicate are considered true if they have been
declared with %var.

%Elseifdef predicate %then

%EIseifdef is to %ifdef as %elseif is to %if. Use %elseifdef predicate %then to check whether or not
additional variables were declared with %var; for example:

%INCLUDE ~bitmap_init.ins~; {Source code that mayor may not have }

%IFDEF not (color) %THEN
%VAR color

%ELSEIFDEF not (mono) %THEN
%VAR mono

%ENDIF;

Code

{used %VAR to declare the variables }
{~color~ or ~mono.~ }

{If color has not been declared with
{%VAR, declare it now.

{If mono has not been declared with
{%VAR, declare it now.

4-36

}
}

}
}

c

c

C·I

o

o

o

o

Compiler Directives

%Var

The %var directive lets you declare variable and attribute names that will be used as predicates later in
the program. You cannot use a name in a predicate unless you first declare it with the %var directive.
The following example declares the names code. old and code. new as predicates:

%VAR code. old code. new

The compiler preprocessor issues an error if you attempt to declare with %var the same variable more
than once. (Use %ifdef or %elseifdef to avoid this error.)

%Enable

Use the %enable directive to set a variable to true. (%Enable and the -config compiler switch per­
form the same function.) You create variables with the %var directive. If you do not specify a particu­
lar variable in an %enable directive or -config switch, DOMAIN Pascal assumes that it is false. For
example, the following example declares three variables code. sr9, code. sr8, and code. sr7, and
sets code. sr9 and code. sr7 to true:

%VAR code.sr9
%ENABLE code.sr9

code.sr8 code.sr7
code.sr7

The compiler preprocessor issues an error message if you attempt to set (with %enable or -config) the
same variable to true more than once .

. %Config

The %config directive is a predeclared attribute name. You can only use %config in a predicate. The
DOMAIN Pascal preprocessor sets %config to true if your compiler command line contains the -con­
fig option, and sets %config to false if your compiler command line does not contain the -config op­
tion. The purpose of the %config directive is to remind you to use the -config option when you com­
pile; for example:

%IF color %THEN

{This is the code for color nodes.}

%ELSEIF mono %THEN

{This is the code for monochromatic nodes.}

%ELSEIF %config %THEN
%warning('You did not set color or mono to true.');

%ENDIF

NOTE: Do not attempt to declare %config in a %var directive.

4-37 Code

Compiler Directives

%Error 'string'

This directive causes the compiler to print 'string' as an error message. You must place this directive on
a line all by itself. For example, suppose you want the compiler to print an error message whenever you
compile with the -config mono option. In that case, set up your program like this:

%VAR color mono

%IF color %THEN

{Code for color node.}

%ELSEIF mono %THEN
%ERROR 'I have not finished the code for a monochromatic node.'

%ENDIF

If you do compile with the -config mono option, DOMAIN Pascal prints out the following error mes­
sage:

(0011) %ERROR 'I have not finished the code for a monochromatic node.'
******** Line 11: Conditional compilation user error.
1 error, no warnings, Pascal Rev n.nn

NOTE: Because of the error, DOMAIN Pascal qoes not create an executable object.

%Warning 'string'

This directive causes the compiler to print 'string' as a warning message. You must place this directive
on a line all by itself. For example, suppose you want the compiler to print a warning message when­
ever you forget to compile with the -config color option. In that case, set up your program like this:

%VAR color mono

%IF color %THEN

{Code for color node.}

%ELSE
%WARNING 'You forgot to use the -CONFIG color option.'

%ENDIF

Then, if you don't compile with the -config color option, DOMAIN Pascal prints out the following er­
ror message:

(0011) %WARNING 'You forgot to use the -CONFIG color option.'
******** Line 11: Warning: Conditional compilation user warning.
No errors, 1 warning, Pascal Rev n.nn

A warning does not prevent the compiler from creating an executable object.

%Exit

%Exit directs the compiler to stop conditionally processing the file. For example, if you put %exit in
an include file, DOMAIN Pascal only reads in the code up until %exit. (It ignores the code that ap­
pears after %exit.)

%Exit has no effect if it's in a part of the program that does not get compiled.

Code 4-38

-----------------------------_._-----_• -........ - _.-

o

o

o

o

o

Compiler Directives

DIRECTIVES NOT ASSOCIATED WITH THE -CON FIG OPTION

The remaining compiler directives are not specifically associated with the -config compiler option.

%Debug;

The %debug directive marks source code for conditional compilation. The "condition" is the compiler
switch -condo If you do compile with the -cond switch, DOMAIN Pascal compiles the lines that begin
with %debug. If you do not compile with the -cond switch, DOMAIN Pascal does not compile the
lines that begin with %debug. The reason this directive is called %debug is that it can help you debug
your program. For instance, consider the following fragment:

value := data + offset;
%DEBUG; writeln('Current value is " value:3);

The preceding fragment contains one %debug directive. If you compile with the -cond option, then
the system executes the writeln statement at runtime. If you compile without the -cond option, the sys­
tem does not execute the writeln statement at runtime. Therefore, you can compile with the -cond op­
tion until you are sure the program works the way you want it to work, and then compile without the
-cond option to eliminate the (now) superfluous write In message.

The %debug directive applies to one physical line only, not to one DOMAIN Pascal statement. There­
fore, in the following example, %debug applies only to the for clause. If you compile with -cond,
DOMAIN Pascal compiles both the for statement and the writeln procedure. If you compile without
-cond, DOMAIN Pascal compiles only the writeln procedure (and thus there is no loop).

%DEBUG; FOR j := 1 to max_size do
WRITELN(barray[j]);

If you %debug within a line, text to the left of the directive is always compiled, and text to the right of
the directive is conditionally compiled.

%Eject;

The %eject directive does not affect the .bin file; it only affects the listing file. (The -I compiler option
causes the compiler to create a listing file.) The %eject directive specifies that you want a page eject
(formfeed) in the listing file. The statement that follows the %eject directive appears at the top of a
new page in the listing file.

%Include 'pathname';

Use the %inelude directive to read in a file ('pathname') containing DOMAIN Pascal source code.
This file is called an include file. The compiler inserts the file where you placed the %include direc­
tive.

Many system programs use the %inelude directive to insert global type, procedure, and function decla­
rations from common source files, called insert files. The DOMAIN system supplies insert files for your
programs that call system routines. The insert files are stored in the /syslins directory; see Chapter 6
for details.

DOMAIN Pascal permits the nesting of include files. That is, an include file can itself contain an %in­
elude directive.

The compiler option -idir enables you to select alternate pathnames for insert files at compiletime. See
Chapter 6 for details.

NOTE: This directive has no effect if it's in a part of the program that does not get com­
piled.

4-39 Code

Compiler Directives

%List; and %nolist;

The %list and %nolist directives do not affect the .bin file, they only affect the listing file. (The -I
compiler option causes the compiler to create a listing file.) %List enables the listing of source code in
the listing file, and %nolist disables the listing of source code in the listing file. For example, the fol­
lowing sequence disables the listing of the two insert files, and then re-enables the listing of future
source code:

%NOLIST;
%INCLUDE '/sys/ins/base.ins.pas';
%INCLUDE '/sys/insjios.ins.pas';
%LIST;

%List is the default.

%Slibrary 'pathname';

The %slibrary directive is analogous to the %include directive. While %include tells the compiler to
read in DOMAIN Pascal source code, %slibrary tells it to read in previously-compiled code.

The %slibrary directive tells the compiler to read in a precompiled library residing at 'pathname'. The
compiler inserts the precompiled library where you place the %slibrary directive. The compiler acts as
if the files that were used to produce the precompiled library were included at this point, except that
any conditional compilation will have already occurred during precompilation.

Precompiled libraries can only contain declarations; they may not contain routine bodies and may not
declare variables that would result in allocating storage in the default data section, DA T A$. This
means the declarations must either put variables into a named section, or must use the extern variable (- -,
allocation clause. See Chapter 3 for more information about named sections, and Chapter 7 for details \""_"""
on extern.

Use the -slib compiler option (described in Chapter 6) to precompile a library and then insert -slib's
result in 'pathname'. For example, if you create a precompiled library called mystuff. ins. plb, this
is how to include it in your program:

%SLIBRARY'mystuff.ins.plb';

Precompiled library pathnames by default end in .plb.

Code 4-40

Cos "-- Calculates the cosine of the specified number.

o
FORMAT

cos (number) {cos is a function.}

Argument

number Any real or integer value in radians (not degrees).

Function Returns o The cos function returns a real value (even if number is an integer).

C

o

o

DESCRIPTION

The cos function calculates the cosine of number.

EXAMPLE

PROGRAM cos_example;

{ This program demonstrates the COS function. }

CaNST

VAR

pi = 3.1415926535;

degrees : INTEGER;
q, cl, c2, radians REAL;

BEGIN
q := 0.5;
c1 := COS(q); {Find the cosine of one-half radians. }
writeln('The cosine of' q:5:3,' radians is " c1:5:3);

{ The following statements show how to convert from degrees to radians. }
{ More specifically, they find the cosine of 14 degrees.}

END.

degrees := 14;
radians := «degrees * PI) / 180.0);
c2 := COS (radians) ;
writeln('The cosine of " degrees:1, ' degrees is c2:5:3);

4-41

Cos

Code

Cos

Using This Example

If you execute the sample program cos_example, you get the following output:

The cosine of 0.500 radians is 0.878
The cosine of 14 degrees is 0.970

Code 4-42

("

c

(\ u

o

o

o

o

Discard

Discard -- Explicitly discards the return value of an expression. (Extension)

FORMAT

discard (exp) {discard is a procedure.}

Argument

exp Any expression, including a function call.

DESCRIPTION

In its effort to produce efficient code, the compiler sometimes issues warning messages concerning op­
timizations it performs. Those optimizations might not be right for your particular situation. For exam­
ple, if you compute a value but never use it, the compiler may eliminate the computation, or the as­
signment of the value, and issue a warning message.

However, there are times when you call a function for its side effects rather than its return value. You
don't need the value, but a Pascal function must always return a value to retain legal program syntax.
You can't eliminate the function call without adversely affecting your program, but if you don't use the
value, the compiler's optimizer automatically discards the return value and issues a warning message.

Since you know the' return value is useless, in such a case you may want to eliminate this particular
warning message. DOMAIN Pascal's discard procedure explicitly throws away the value of its exp and
so gets rids of the warning. For example, to call a function that returns a value in argl without check­
ing that value, use discard as follows:

DISCARD(my_function(argl»;

4-43 Code

Discard

EXAMPLE

PROGRAM discard_example;

VAR
payment, monthly_sal : real;

{ The following function figures out whether a user can afford the }
{ mortgage payments for a given house based on the rule that no more }
{ than 28% of one's gross monthly income should go to housing costs. }

FUNCTION enough(in payment
in out monthly_sal

VAR
amt_needed : real;

BEGIN
writeln;
amt_needed .- monthly_sal * 0.28;

if amt_needed < payment then
begin
enough := false;
monthly_sal := payment / (0.28);

real;
real) boolean;

writeln ('Your monthly salary needs to be' monthly_sal:6:2);
end

else
begin

END;

enough := true;
writeln('Amazing! You can afford this house.');
end

{end function enough}

BEGIN {main program}
write ('How much is the monthly payment for this house? ');
readln (payment);
write ('What is your gross monthly salary? ');
readln (monthly_sal);

{ The function enough can change the value of the global variable }
{ monthly_sal, so the function call is important, but its return }
{ value is not. DISCARD that return value. }

DISCARD (enough(payment,monthly_sal»;
END.

Using This Example

Following is a sample run of the program named discard_example:

How much is the monthly payment for this house? 928
What is your gross monthly salary? 2400

Your monthly salary needs to be 3314.29

Code 4-44

o

o

o

o

o

Dispose

Dispose -- Deallocates the storage space that a dynamic variable was using.
(Also refer to the listing for New.)

FORMAT

Dispose is a predeclared procedure that takes one of two formats. The format you choose depends on
the format you use to call the new procedure. If you create a dynamic variable with the short form of
new, then you must use the short form for dispose, which is:

dispose(p) {dispose is a procedure.}

If you create a dynamic variant record with the long form of new, then you must use the long form of
dispose, which is:

dispose(p, tag1 . . tagN);

Arguments

tag

p

One or more constants. The number of constants in a dispose call must match
the number of constants in the new call.

A variable declared as a pointer. After you call DISPOSE (p), DOMAIN Pascal
sets p to nil.

DESCRIPTION

If P is a pointer, then DISPOSE (p) causes Pascal to deallocate space for the occurrence of the record
that p points to. Deallocating means that Pascal permits the memory locations occupied by the dynamic
record to be occupied by a new dynamic record. For example, consider the following declarations:

TYPE

VAR

employeepointer = Aemployee;
employee = record

first_name array[l .. 10] of char;
last_name array[1 .. 14] of char;
next_emp employeepointer;

end;

current_employee : employeepointer;

To store employee records dynamically, call NEW(current_employee) for every employee. If an
employee leaves the company, and you want to delete his or her record, you can call DISPOSE (cur­
rent_employee). Dispose returns the storage occupied by that record for reuse by a subsequent new
call.

If you create a dynamic record using a long-form new procedure, then you must call dispose with the
same constants. For example, if you create a dynamic record by calling NEW (widget , 378, true),
then to deallocate the stored record, you must call DISPOSE (widget, 378, true).

4-45 Code

Dispose

Note that the dispose procedure merely de allocates the record. If this disconnects a linked list, then it
is up to you to reset the pointers. If some other variable points to this record and another program uses
dispose to deallocate the record, then you get erroneous results. The moral: use dispose carefully.

NOTE: If you call DISPOSE(p) when p is nil, DOMAIN Pascal reports an error. It is
also an error to call dispose when p points to a block of storage space that you
already deallocated with dispose. Finally, if you use a pointer copy that points to
deallocated space, the results are unpredictable.

EXAMPLE

For a sample program that uses dispose, refer to the new listing later in this encyclopedia.

Code 4-46

C\
-'/

C
'·'

--

c

o
Div -- Calculates the quotient (excluding the remainder) of two integers.

FORMAT

d1 div d2

Arguments

d1, d2

Operator Returns

{div is an operator.}

Any integer expression.

Div

o The result of a div operation is always an integer.

DESCRIPTION

The expression (d1 DIV d2) produces the integer (nonfractional) result of dividing d1 by d2. Div
uses the division rules of standard mathematics regarding negatives. For example, consider the follow-
ing results:

o 9 DIV 3 is equal to 3 -9 DIV 3 is equal to -3
10 DIV 3 is equal to 3 -10 DIV 3 is equal to -3
11 DIV 3 is equal to 3 -11 DIV 3 is equal to -3
12 DIV 3 is equal to 4 -12 DIV 3 is equal to -4
13 DIV 3 is equal to 4 -13 DIV 3 is equal to -4

9 DIV (-3) is equal to -3 -9 DIV (-3) is equal to 3
10 DIV (-3) is equal to -3 -10 DIV (-3) is equal to 3
11 DIV (-3) is equal to -3 -11 DIV (-3) is equal to 3
12 DIV (-3) is equal to -4 -12 DIV (-3) is equal to 4

o 13 DIV (-3) is equal to -4 -13 DIV (-3) is equal to 4

To find the remainder of an integer division operation, use the mod operator. (See the mod listing
later in this encyclopedia.)

See the NOTE in the "Expressions" listing later in this encyclopedia for information on using binary
and unary operators together.

o
4-47 Code

Div

EXAMPLE

PROGRAM div_example;
{ This program converts a 3-digit integer to a 3-character array. }
{ Note that the character 0 has an ASCII value of 48, the character 1 }
{ has an ASCII value of 49, and so on up until the character 9 which has }
{ an ASCII value of 57. }

VAR
x
digits

100 .. 999;
array[l .. 3] of char;

BEGIN
write('Enter a three-digit integer -- ');
readln(x);

digits[l] :=chr(48 + (xDIV100»;
x := x MOD 100;
digits [2] .- chr(48 + (x DIV 10»;
digits [3] := chr(48 + (x MOD 10»;

writeln(digits);
END.

Using This Example

This program is available on-line and is named di v_example.

Code 4-48

c

Do

Do -- Refer to the For or While listings later in this encyclopedia.

o

o

o

o

o
4-49 Code

Downto

Downto -- Refer to If later in this encyclopedia.

c

c
Code 4-50

Else

Else -- Refer to If later in this encyclopedia.

o

o

o

o

o
4-51 Code

End

End -- Signifies the end of a group of Pascal statements.

FORMAT

End is a reserved word.

DESCRIPTION

End is the terminator for a sequence of Pascal statements. A Pascal program must contain at least as
many ends as begins.

Pascal requires a begin/end pair to bracket a compound statement. (Refer to the" Statements" listing
later in this encyclopedia.)

Pascal requires end (without an accompanying begin) in the following situations:

• To terminate a case command.

• To terminate a record declaration.

Inexperienced Pascal programmers often wonder whether or not to put a semicolon (;) after an end in
an if/then/else statement. Just remember the following rule: never put a semicolon after an end if it
appears before the reserved word else.

Code 4-52

c

c

o

o

o

o

o

End

EXAMPLE

{This program does very little work, but does have lots of BEGINs and ENDs.}

TYPE

VAR

student = record
age: 6 .. 12;
id : integer16;

end; {student record definition}

x : integer32;

PROCEDURE do_nothing;
BEGIN {do_nothing}

writeln('You have triggered a procedure that does absolutely nothing.');
writeln('Though it does do nothing with elan.');

END; {do_nothing}

FUNCTION do_next_to_nothing(var y
BEGIN {do_next_to_nothing}

do_next_to_nothing := abs(y);
END; {do_next_to_nothing}

BEGIN {main procedure}
write('Enter an integer -- ');
if x < 0

then BEGIN

integer32) integer32;

readln(x) ;

writeln('You have entered a negative number!! I');
writeln('Its absolute value is " do_next_to_nothing(x):l);

END
else if x = 0

then BEGIN
writeln('You have entered zero');
do_nothing;

END
else

writeln('You have entered a positive number!! I');
END. {main procedure}

Using This Example

This program is available online and is named begin_end_example.

4-53 Code

Eof

Eof -- Tests the current file position to see if it is at the end of the file.

FORMAT

eof(filename) {eof is a function.}

Argument

filename A file variable symbolizing the pathname of an open file. Filename is an optional
argument. If you do not specify filename, DOMAIN Pascal assumes that the file
is standard input (input) .

Function Returns C~,
The eaf function returns a Boolean value.

DESCRIPTION

The eaf function returns true if the current file position is at the end of file filename; otherwise, it re­
turns false. With one exception, filename must be open for either reading or writing when you call eaf.
The one exception occurs when filename is input; for a description of this exception, see the "Interac­
tive I/O" section in Chapter 8.

Code 4-54

o
EXAMPLE

PROGRAM eof_example;

CONST
title_of_poem

VAR

, annabel_lee' ;

poetry
stat
a_line

text;
integer32;
string;

BEGIN

{Open file anabel_lee for reading.}

open(poetry, title_of-poem, 'OLD', stat);
if stat = 0 then

reset (poetry)
else

("' .~ return;

o

o

o

{Read each line from the file and write each line to the screen. }
{Halt execution when end of file is reached. }

while not EOF(poetry) do
begin

END.

readln(poetry, a_line);
writeln(output, a_line);
end;

Using This Example

This program is available on-line and is named eof_example.

4-55

Eof

Code

Eoln

Eoln -- Tests the current file position to see if it is pointing to the end of a line.

FORMAT

eoln(f)

Argument

f

Function Returns

{eoln is a function.}

A variable having the text data type. F is optional; if you do not specify it, eoln
tests the standard input (input) file.

The function returns a Boolean value.

DESCRIPTION

The eoin function returns true when the stream marker points to an end-of-line character; otherwise,
with two exceptions, eoin returns false. The two exceptions are:

Code

• Eoin causes a runtime error if f was not opened for reading (with reset) or for writing (with
rewrite). However, you do not need to open input or output for reading or for writing. (See
the "Interactive I/O" section in Chapter 8 for details on input and output.)

• Eoin causes a runtime error if EOF (f) is true.

4-56

C~

C'~

C)

o

o

o

o

EXAMPLE

PROGRAM eoln_example;

CONST
title_of_poem

VAR
poetry
stat
a_char

BEGIN

text;
integer32;
char;

{ Open file annabel_lee for reading. }
open(poetry, title_of_poem, 'OLD', stat);
if stat = 0

then reset(poetry)
else return;

{ Read in the first line of the poem one character at a time, }
{ and write each character to the screen. }

END.

repeat
read(poetry, a_char);
writeln(output, a_char);

until EOLN(poetry);

Using This Example

This program is available on-line and is named eoln_example.

4-57

Eoln

Code

Exit

Exit -- Transfers control to the first statement following a For, While, or Repeat
loop. (Extension) /~

FORMAT

Exit is a statement that neither takes arguments nor returns values.

DESCRIPTION

Use exit to terminate a loop prematurely; that is, to jump out of the loop you're in. In nested loops,
exit applies to the innermost loop in which it appears. You can use exit within a for, while, or repeat
loop only. If exit appears elsewhere in a program, DOMAIN Pascal issues an error.

It is preferable to use exit for jumping out of a loop prematurely rather than goto. That's because goto C
inhibits some compiler optimizations that exit does not. ./

EXAMPLE

PROGRAM exit_example;

VAR
integer16;
real;

i, j
data
geiger array[l .. 5, 1 .. 3] of real .- [[* of 0.0], [* of 0.0] ,];

BEGIN
for i := 1 to 4 do

begin
writeln;
for j := 1 to 3 do

begin
writeln(chr(10), 'Enter the data for coordinates', i:2,' ',', j:1);
write('(or enter -1 to jump down to the next row) -- ');
readln(data);

END.

Code

if data = -1 then
EXIT

else
geiger[i,j]

end; {for j}
end; {for i}

data;

4-58

c

Exit

Using This Example

I~
Following is a sample run of the program named exi t_example:

U Enter the data for coordinates 1,1
(or enter -1 to jump down to the next row) -- 1.2

Enter the data for coordinates 1,2
(or enter -1 to jump down to the next row) -- -1

Enter the data for coordinates 2,1
(or enter -1 to jump down to the next row) -- 3.2

Enter the data for coordinates 2,2
(or enter -1 to jump down to the next row) -- 1.2

Enter the data for coordinates 2,3
(or enter -1 to jump down to the next row) -- 4.3

0 Enter the data for coordinates 3,1
(or enter -1 to jump down to the next row) -- -1

Enter the data for coordinates 4,1
(or enter -1 to jump down to the next row) -- 1.3

Enter the data for coordinates 4,2

0 (or enter -1 to jump down to the next row) -- 4.2

Enter the data for coordinates 4,3
(or enter -1 to jump down to the next row) -- -5

o

o
4-59 Code

Exp

Exp -- Calculates the value of e, the base of natural logarithms, raised to the
specified power. (See also Ln.)

FORMAT

exp (number) {exp is a function.}

Argument

number Any real or integer expression.

Function Returns

The exp function returns a real value.

DESCRIPTION

The exp function returns e raised to the power specified by number.

e to 16 significant digits is 2.718281828459045.

Pascal does not support an exponentiation function. However, you can use the exp and In functions to
simulate exponentiation. Just remember the following formula:

a b = EXP (b * LN (a))

See the In listing later in this encyclopedia.

Code 4-60

C_."

o

o

o

o

o

EXAMPLE

PROGRAM exp_example;
{This example demonstrates the use of EXP in calculating the}
{exponential growth of bacteria. }

CaNST
cl 0.3466;

VAR
starting_quantity : INTEGER;
ending_quantity, elapsed_time: REAL;

BEGIN
write('How many bacteria are there at zero hour? -- ');
readln(starting_quantity);
write('How many hours pass? -- ');
readln(elapsed_time);

ending_quantity := starting_quantity * EXP(cl * elapsed_time);

writeln('There will be approximately', ending_quantity:l,' bacteria.');
END.

Using This Example

Following is a sample run of the program named exp_example:

How many bacteria are there at zero hour? -- 10500
How many hours pass? -- 5.6
There will be approximately 7.3l3705E+04 bacteria.

4-61

Exp

Code

Expressions

Expressions

Throughout this encyclopedia, we refer to expressions. Here, we define expressions. An expression
can be any of the following:

• A constant declared in a const declaration part

• A variable declared in a var declaration part

• A constant value

• A function call

• Anyone of the above preceded by a unary operator appropriate to its data type

• Any two of the above separated by a binary operator appropriate to their data types

You can organize expressions into more complex expressions with parentheses. For example, the odd
function requires an integer expression as an argument. The following program fragment demonstrates
several possible arguments to odd:

CONST
century := 100;

VAR
x, y

result
integer;
boolean;

BEGIN

Code

result .- ODD(century);
result .- ODD(x);
result .- ODD(15);
result .- ODD(sqrt(25»;
result .- ODD(x + y) ;
result .- ODD«x * 3) + sqr(y»;

{a constant}
{a variable}
{a value}
{a function}
{an operation}
{several operations}

NOTE: You cannot follow a binary operator with a unary operator of lower precedence.
For example, consider the following proper and improper expressions:

9 DIV -3 {improper expression}
9 DIV (-3) {proper expression}
5 * ~100 {improper expression}
5 * (-100) {proper expression}

Table 4-2 in the beginning of this chapter shows the order of precedence of op­
erators.

4-62

c'

c'

c

o

o

o

o

o

Find

Find -- Sets the file position to the specified record. (Extension)

FORMAT

find (file_variable, record_number, error_status); {find is a procedure.}

Arguments

file_variable

record_number

error status

DESCRIPTION

Must be a variable having the file data type. File_variable cannot be a variable
having the text data type.

Must be an integer between 1 and n or between -1 and -n, where 1 denotes the
first record of the file and n denotes the last record.

Must be declared as a variable with the integer32 data type. DOMAIN Pascal re­
turns a hexadecimal number in error_status which has the following meaning:

o -- no error or warning occurred.

greater than 0 -- an error occurred.

less than 0 -- a warning occurred.

NOTE: Your program is responsible for handling the error. We detail error han­
dling in Chapter 9.

Before reading this, make sure you are familiar with the description of I/O in Chapter 8.

When you open a file for reading, the operating system sets the stream marker to the beginning of the
file. You can call read to move this stream pointer sequentially, or you can call find to move it ran­
domly.

Before you can call find, you must have first opened the file symbolized by file_variable for reading.
(See Chapter 8 for a description of opening files for reading.) When you call find, DOMAIN Pascal
sets the stream marker to point to the record specified by record_number.

If you specify a record_number between 1 and n, where n is the number of records in the file, find lo­
cates that number record. If record_number is between -1 and -n, find counts backward from the
end of the file to locate the proper record. For example, if there are five records in the file and you
specify -4 for record_number, DOMAIN Pascal counts back four from the end of the file and re­
trieves record number 2.

If you specify zero for record_number, DOMAIN Pascal returns an error code in error_status.

If you specify a record_number that is one greater than the number of records stored in the file,
DOMAIN Pascal does not return an error code, but does not change the stream marker either.

After executing a find, DOMAIN Pascal sets the stream marker to point to the beginning of the next
record. For example, if record_number is 2, then after executing a find, DOMAIN Pascal sets the
stream marker to point to record 3.

Frequently, programmers use the find procedure with the replace procedure (which is described later
in this encyclopedia).

4-63 Code

Find

NOTE: The term "record", means one occurrence in a DOMAIN record-structured
(rec) file, which mayor may not be a DOMAIN Pascal record type.

EXAMPLE

{ This program demonstrates the FIND and REPLACE procedures. }

%NOLIST; {We need these include files for error checking.
%INCLUDE '/sys/ins/base.ins.pas';
%INCLUDE '/sys/ins/error.ins.pas';
%INCLUDE '/sys/ins/streams.ins.pas';
%LIST;

CONST
pathname 'his101';

TYPE

VAR

student

class
a_student

RECORD
name
age

END;

st
more_corrections
particular_record
n

array[1 .. 12] of char;
integer16;

FILE OF student;
student;
status_$t;
char;
integer16 := 0;
integer16;

PROCEDURE print_records;
BEGIN

END;

n := 0;
writeln(chr(10), 'Here are the records stored in the file:');
reset(class);
repeat

n := n + 1;
read(class, a_student);
writeln('record " n:2, ,

until eof(class);
a_student.name, a_student. age) ;

PROCEDURE correct_errors;
BEGIN

Code

write('Enter the number of the record you wish to change -- ');
readln(particular_record);

if particular_record = n+1 then
writeln ('There are only' n:2, ' records in the file.')

else
BEGIN
FIND(class, particular_record, st.all);
if st. code = 0 then

BEGIN
write('What should this name be -- '); readln(a_student.name);

4-64

(
"---- /

o

o

o

o

o

END;

write(~What should this age be -- ~); readln(a_student.age);
class A. : = a_student;
REPLACE (class) ;
END

else if st.code = stream_$end_of_file then
BEGIN
write (~You specified a number greater than the number of ~);
writeln (~records in the file.~);
END

else
error_$print(st);

END;

BEGIN {main procedure}

END.

open(class, pathname, ~OLD~, st.all);
if st.code = 0 then

BEGIN
repeat
print_records;
write(~Do you want to correct any records? (enter y or n) -- ~);

readln(more_corrections);
if more_corrections = ~y~ then

correct_errors
else

exit;
until false;
END

else if st.code = stream_$name_not_found then
writeln(~Did you remember to run put_example to create hisl0l?~)

else
error_$print(st);

Using This Example

Following is a sample run of the program named find_and_replace_example:

Here are the records you have entered:
record 1 Kerry 28
record 2 Barry 26
record 3 Jan 25
Do you want to correct any records? (enter y or n) -- y
Enter the number of the record you wish to change -- 2
What should this name be -- Sandy
What should this age be -- 27

Here are the records you have entered:
record 1 Kerry 28
record 2 Sandy 27
record 3 Jan 25
Do you want to correct any records? (enter y or n) -- n

4-65

Find

Code

Firstof

Firstof -- Returns the first possible value of a type or a variable. (Extension)

FORMAT

firstof(x) {firstof is a function.}

Argument

x Is either a variable or the name of a data type. The data type can be a
predeclared DOMAIN Pascal data type, or it can be a user-defined data type. X
cannot be a record, file, or pointer type.

C-"··
-_/

Function Returns C
The firstof function returns a value having the same data type as x.

DESCRIPTION

The firstof function returns the first possible value of x according to the following rules:

Data Type of x Firstof returns

integer or integer16 -32767
integer32 -2147483647
char The character represented by CHR (0)

called nul.

boolean False.

enumerated The first (leftmost) identifier in the

data type declaration.

array The lower bound of the subrange that C'
defines the array's size.

The firstof function is particularly useful for finding the first element of an enumerated type (as in the
example).

Code 4-66

--- ----------- --~

c

o

o

o

o

o

EXAMPLE

PROGRAM firstof_lastof_example;

TYPE
astronomers

VAR
stargazers

BEGIN

(aristotle, galileo, newton, tycho, kepler);

astronomers;

writeln('The following is a list of great astronomers:');
for stargazers := firstof(astronomers) to lastof(astronomers) do

writeln(stargazers) ;

END.

Using This Example

Firstof

If you execute the sample program named firstof_lastof_example, you get the following output:

The following is a list of great astronomers:
ARISTOTLE

GALILEO
NEWTON

TYCHO
KEPLER

4-67 Code

For

For -- Repeatedly executes a statement a fixed number of times ..

FORMAT

for index_variable:= start_exp to I downto stop_exp do
stmnt; {for is a statement}

Arguments

index_variable

start_exp

stop_exp

stmnt

DESCRIPTION

Any variable declared as an ordinal type. The ordinal types are enumerated, sub­
range, integer, Boolean, and char. Note that index_variable cannot be a real
number. As an extension to standard Pascal, DOMAIN Pascal permits the in­
dex _variable to be declared in a scope other than the scope of the routine imme­
diately containing the for loop.

An expression matching the type of the index_variable.

An expression matching the type of the index_variable.

A simple statement or compound statement. (Refer to the" Statements" listing
later in this encyclopedia.)

For, repeat, and while are the three looping statements of Pascal. With for, you explicitly define both
a starting and an ending value to the index_variable.

When executing a for loop, Pascal initializes the index_variable to the value of the start_exp, and then
either increments (to) or decrements (downto) the value of the index_variable by 1 until its value
equals that of the stop_expo When the index_variable equals the value of the stop_exp, Pascal exe­
cutes the statements in the loop one final time before exiting the loop.

("
~._/

If index_variable is an integer or subrange variable, for incr~ments or decrements its value by 1 for c. '
each cycle. If index_variable is a char variable, then for increments or decrements its ASCII value by
1 for each cycle. If index_variable is an enumerated variable, then incrementing means selecting the
next element in sequence and decrementing means selecting the preceding element. If index_variable
is a Boolean, then true has a value greater than false.

The keyword to causes incrementing; the keyword downto causes decrementing.

If you want to jump out of a for loop prematurely (Le., before the value of the index_variable equals
the value of the stop _ exp) , you have the following choices:

o Execute an exit statement to transfer control to the first statement following the for loop.

• Execute a goto statement to transfer control to outside of the loop.

In addition to these measures, you can also execute a next statement to skip the remainder of the
statements in the loop and proceed to the next iteration. Here are some tips for using the for state­
ment:

• Within the stmnt, you are not allowed to change the value of the index_variable .

Code 4-68

c'

o

o

o

o

For

• If you set up a meaningless relationship between the start_9xp and the stoP_9XP (for exam­
ple, FOR X 8 TO 5 or FOR X : = 10 DOWNTO 20), Pascal does not execute the loop
even once.

EXAMPLE

PROGRAM for_example;

VAR
time, year, zeta: integer16 := 0;
hurricanes : (king, donna, cleo, betsy, inez);
scores: array[l .. 5, 1 .. 3] of integer16;
i, j : integer16;

BEGIN

{If you do not use a BEGIN/END pair, FOR assumes that the loop consists of }
{the first statement following it. }

FOR time := 1 TO 3 DO
writeln(time);

{TO create a loop consisting of multiple statements, enclose the loop in }
{a BEGIN/END pair. }

FOR time := 21 TO 30 DO
begin
year := year + time;
writeln(year:5); {Write a running total. }
end;

{Here~s an example of DOWNTO. }
FOR time := year DOWNTO (year - 100) DO

zeta := zeta + (time * 3);

{Here~s an example of an enumerated index_variable. }
FOR hurricanes := donna TO inez DO .

writeln(hurricanes);

{And finally, we use nested FOR loops to load a 2-dimensional array. }
FOR i := 1 TO 5 DO

END.

begin {for i}
FOR j := 1 TO 3 DO

begin {for j}
write(~Enter the score for player ~ ,i:1,~ game ~ ,j:1,~ -- ~);

readln(scores[i,j]);
end; {for j}

writeln;
end; {for i}

Using This Example

This program is available on-line and is named for_example.

4-69 Code

Get

Get -- Advances the stream marker to the next component of a file.

FORMAT

get (f) {get is a procedure.}

Argument

A variable having the file or text data type.

DESCRIPTION

If f is a file variable, calling get causes the operating system to advance the stream marker so that it
points to the next record in the file. If f is a text variable, calling get causes the operating system to ad­
vance the stream marker so that it points to the next character in the file.

After calling get to advance the stream marker, you can use another statement to read in the data that
the stream marker points to and assign it to a variable from your program. Therefore, the sequence for
reading in data looks like the following:

GET(f); { Advance the stream marker. }
variable := fA; { Set variable equal to whatever the stream marker}

{ points to. }

For example, the following program fragment demonstrates input via the get procedure:

VAR
primes
poem
a_number
a_letter

file of integer16;
text;
integer16;
char;

BEGIN

GET(primes);
a_number .- primes A; {Set a_number equal to next record in primes.

GET (poem) ;
a_letter .- poemA; {Set a_letter equal to next character in poem. }

Note that the two statements

GET (poem) ;
a_letter := poem A; { Set a_letter equal to next character in poem.

are identical to the single statement

READ (poem, a_letter);

Also notice that unlike read, get allows you to save the contents of fA.

Code 4-70

}

c

',-.

o

o

o

o

Get

You must open f for reading (with reset) before calling get. If EOF (f) is true, calling GET (f) causes
a "read past end of file" error trap.

EXAMPLE

PROGRAM get_example;

{ This program demonstrates the GET procedure. }
{ File 'his101' must exist before you run get_example. }
{ To create 'his101', you must run put_example. }

%NOLIST;
%INCLUDE '/sys/ins/base.ins.pas';
%INCLUDE '/sys/ins/error.ins.pas';
%INCLUDE '/sys/ins/streams.ins.pas';
%LIST;

CONST
file_to_read_from

TYPE
student

record

'his101';

name array[l .. 12] of char;

VAR

age integer16;
end;

class
a_student
st

file of student;
student;
status_$t;

BEGIN
{Open a file for reading.}

open(class, file_to_read_from, 'OLD', st.all);
if st.code = 0

then reset(class)
else if st.code = stream_$name_not_found

then begin
writeln('Did you forget to run put_example?');
return;

end
else error_$print(st);

{Now that the rec file is open, read all the records from it. }
repeat

a_student := class A

;

GET (class) ;
write(chr(10), a_student.name);
writeln(a_student.age:2) ;

until eof(class);
END.

Using This Example

This program is available on-line and is named get_example.

4-71 Code

Goto

Goto -- Unconditionally jump to a specified label in the program.

FORMAT

goto Ibl; {goto is a statement.}

Argument

Ibl Is an unsigned integer or identifier that you have previously declared as a label.
(For information on declaring labels, see the "Label Declaration Part" section in
Chapter 2.)

DESCRIPTION

A goto statement breaks the normal sequence of program execution and transfers control to the state­
ment immediately following Ibl.

A declared Ibl usually is local to the block in which it is declared. That is, if you know you declared a
label, but the compiler still reports the following error, you must move your label declaration to the
correct procedure or function:

(Name_of_Label) has not been declared in routine (name_of_routine)

It is illegal to use goto to jump inside a structured statement (for example, a for, while, case, with, or
repeat) from outside that statement. This means a fragment like this produces an error:

if error_flag = true then
goto cleanup;

for i .- 1 to 10 do
begin

cleanup:

end;

{WRONG! }

{close for statement}

It is illegal to jump into an if/then/else statement if you compile with the -iso option. See Chapter 6
for more details.

Gotos are useful for handling exceptional conditions (such as an unexpected end of file). However,
the compiler usually generates better code if you use exit rather than goto to jump out of a loop pre­
maturely.

Nonlocal gotos, whose target Ibl is in the main program or some other routine at a higher level, have a
great effect on the generated code. They generally· shut off most compiler optimizations on the code
near the target Ibl. In order to produce the most efficient code, you should try to use goto as infre­
quently as possible.

Code 4-72

o

o

o

o

o

NOTE: You cannot jump into a structured statement from outside that statement. For
example, the following contains two jumps that are always wrong and one jump
that is incorrect if you compile with the -iso switch:

PROGRAM bad_gotos;
VAR

z,x,value
a char

LABEL
900;

PROCEDURE foo;
LABEL

100;

BEGIN

integer16;
char;

for x := 1 to 100 do
begin
writeln ('value', x);

100: write ('Enter a value ');
readln(value);
Z := Z + value;

Gata

end;
GOTO 100; {ILLEGAL: cannot jump to a label inside}

{the for loop. }
END;

BEGIN
write ('Do you want to use the program? ');
readln (a_char);

if a_char = 'y' then
GOTO 100

'n' then

{ILLEGAL: cannot jump to a label in
{another routine.

}
}

else if a_char
GO TO 900 {ILLEGAL IF COMPILED WITH -ISO SWITCH:}

{cannot jump to a label that's inside}
{another statement. }

else if a_char = '0' then
writeln ('0 is not a legal response')

else
900: writeln ('ok, we won"t use the program');

END.

4-73 Code

Goto

Note that you can use go to to jump directly from a nested routine to an outer routine. For example,
procedure xxx issues a valid goto in the following program:

Program non_local_goto;
Label

900;

Procedure xxx;
BEGIN

GO TO 900;

END;

BEGIN

900: writeln('back in main program.');

END.

EXAMPLE

PROGRAM goto_example;

TYPE
possible_values 10 .. 25;

VAR
x possible_values;

LABEL
100;

BEGIN
writeln('You will now enter the experimental data.', chr(10»;

100:

END.

Code

write('Please enter the obtained value for x -- ');
readln (x) ;
if in_range(x) then

writeln('This value seems possible.')
else

begin
writeln('This value seems suspicious.');
GOTO 100;
end;

4-74

-----------_._--------_. -

c

c

Goto

Using This Example

o Following is a sample run of the program named goto_example:

You will now enter the experimental data.

Please enter the obtained value for x -- 35
This value seems suspicious.
Please enter the obtained value for x -- 17
This value seems possible.

o

o

o

o
4-75 Code

If

If -- Tests one or more conditions and executes one or more statements ac­
cording to the outcome of the tests.

FORMAT

You can use if, then, and else in the following two ways:

if cond then stmnt; {first form}

if cond then stmnt1 else stmnt2; {second form}

Arguments

cond

stmnt

DESCRIPTION

Any Boolean expression.

A simple statement or a compound statement. (Refer to the" Statements" listing
in this encyclopedia.) Note that stmnt can itself be another if statement.

The if and case statements are the two conditional branching statements of Pascal.

In an if/then statement, if cond evaluates to true, Pascal executes stmnt. If cond is false, Pascal exe- C
cutes the first statement following stmnt. ..

In an if/then/else statement, if cond is true, Pascal executes stmnt1. However, if cond is false, Pascal
executes stmnt2.

You often use an if statement to evaluate multiple conditions. To do so, just remember that a stmnt
can itself be an if statement. For example, consider the following if statement which evaluates multiple
conditions:

IF age < 3 THEN
price = 0.0

ELSE IF (age >= 3) AND (age <= 6) THEN
price = 1.00

ELSE IF (age> 6) AND (age <=12) THEN
price 2.00

ELSE
price 4.00;

Inexperienced Pascal programmers (and even some of the experienced ones) often forget where to put
semicolons in an if/then/else statement. Just remember that you never put a semicolon immediately
prior to an else.

"And Then" and "Or Else" -- Extension

The if statement of DOMAIN Pascal supports an and then and or else extension to standard Pascal.
You can use and then and or else wherever you'd use and and or in a cond except that and then and
or else cannot be contained inside parentheses.

Code 4-76

c

o

o

o

o

o

If

When you use and or or, there is no guarantee that Pascal will evaluate the Boolean expressions of a
cond in the order that you write them. For example, in the following if/then command, Pascal may
test «y DIV x) > 0) before it tests (x <> 0):

IF (x <> 0) AND «y DIV x) > 0)
THEN

However, using and then or or else guarantees that DOMAIN Pascal evaluates the Boolean expres­
sions of a cond in the order that you write them. And then and or else also guarantee" short-circuit"
evaluation; that is, at runtime, the system only evaluates as many expressions as is necessary. For ex­
ample, if you change and to and then, you guarantee that DOMAIN Pascal checks that x does not
equal 0 before actually dividing by x:

IF (x <> 0) AND THEN «y DIV x) > 0)
THEN

And then forces DOMAIN Pascal to evaluate Boolean expressions in textual order until one of them is
false. On a false, DOMAIN Pascal skips the remaining Boolean expressions. If all of them are true, the
cond is true.

Or else forces DOMAIN Pascal to evaluate Boolean expressions in textual order until one of them is
true. If one of the Boolean expressions is true, DOMAIN Pascal skips over the remaining tests.

Note that and and or force DOMAIN Pascal to test all Boolean expressions in the condo Thus, and
then and or else can be more efficient than and and or in some cases.

Standard Pascal does allow you to ensure the order of Boolean evaluation in a cond; however, the
DOMAIN Pascal extension is much easier. For example, compare the standard Pascal code on the left
with its functional equivalent on the right:

Standard Pascal

IF c1 THEN
IF c2 THEN

s1;

DOMAIN Pascal

IF c1 AND THEN c2 THEN
s1;

NOTE: When using and then or or else, you cannot enclose the conds in parentheses.
For example, the following if statement causes an error:

IF «c1 = c2) AND THEN (c3 = c4»

4-77 Code

If

EXAMPLE

PROGRAM if_example;
{This program demonstrates IF/THEN and IF/THEN/ELSE.}
VAR

y, age, of_age, root_ratings : integer16;
tree (ficus, palm, poinciana, frangipani, jacaranda);
grade : char;

BEGIN
write('Enter an integer -- '); readln(y);
IF y < a THEN

wri teln (' Its absolute value equals " (abs (y)) : 3) ;

write('Enter an age -- '); readln(age);
IF age > 18 THEN

writeln(' An adult')
ELSE

begin
of_age .­
writeln('
end;

18 - age;
A minor for another ' of_age:1,' years.');

write('Enter a grade -- '); readln(grade);
IF (grade = 'A') OR (grade = 'B') THEN

writeln(' Good work')
ELSE IF (grade = 'C') OR (grade = 'D') THEN

begin
writeln(' Satisfactory work');
writeln(' Though 'improvement is indicated.');
end

ELSE IF (grade = 'F') THEN
writeln(' Failing work');

write('Enter the name of a tropical tree -- '); readln(tree);
IF (tree = poinciana) OR (tree = jacaranda) THEN

begin
writeln(' Blossoms in June and July.');
root_ratings := 9;
end

ELSE IF tree = palm THEN
root_ratings .- 8

ELSE
root_ratings .- 2;

{USAGE I}

{USAGE 2}

{USAGE 3}

{USAGE 4}

{ Imagine a pointer variable which may be NIL or valid. If it is NIL, }
{ you do not want to dereference it, because the compiler generates an }
{ access violation. It would be wrong to code it in the following way}
{ because there is no way to be sure which expression the compiler }
{ will evaluate first: }
{ IF (ptr <> NIL) AND (ptrA = 100) THEN ... }
{ However, coding it the following way ensures the correct order: }
{ IF (ptr <> NIL) AND THEN (ptrA = 100) THEN ... }
END.

Code 4-78

r"
~'-.'

o

o

o

o

o

Using This Example

Following is a sample run of the program named if_example:

Enter an integer -- -10
Its absolute value equals 10
Enter an age -- 13

A minor for another 5 years.
Enter a grade -- B

Good work
Enter the name of a tropical tree -- poinciana

Blossoms in June and July.

4-79

If

Code

In

In -- Evaluates an expression to see if it is a member of a specified set.

FORMAT

exp in setexp {in is a set operator.}

Arguments

setexp A set expression.

exp An expression of the same data type as the elements constituting the base type of
setexp.

Operator Returns

The result of an in operation is always Boolean.

DESCRIPTION

Use in to determine if exp is an element in set setexp. In returns either true or false.

EXAMPLE

PROGRAM in_example;
{ This program prompts the user for a word, then counts the number of }
{ ordinary vowels (a, e, i, 0, and u) in the word. }

VAR
word
count_of_vowels
x

BEGIN

array [1 .. 20] of char
integer16 := 0;
integer16;

write('Enter a word -- ');
read In (word) ;
for x := 1 to 20 do

if wo r d [x] IN [, a', ' e', ' i', ' 0', ' u']

[* of ' '];

then count_of_vowels := count_of_vowels + 1;
writeln('This word contains' count_of_vowels:1, ' ordinary vowels.');

END.

Using This Example

Following is a sample run of the program named in_example:

Enter a word -- computers
This word contains 3 ordinary vowels.

Code 4-80

c

c

o

o

o

o

In_range -- Determines whether or not a specified value is within the defined
integer subrange. (Extension)

FORMAT

{in_range is a function.}

Argument

x A variable having a scalar (i.e., integer, Boolean, char, enumerated, or subrange)
data type. For most practical purposes, x must be an enumerated or a subrange
variable.

Function Returns

The in_range function returns a Boolean value.

DESCRIPTION

The in_range function returns true if the value of x is within its defined range; otherwise, it returns
false. The following program fragment demonstrates a possible use of in_range. We want to use
in_range in this example, because it generates very efficient code:

TYPE
small_int = -7 .. 7;

VAR
x : integer16;

BEGIN
readln(x) ;
if IN_RANGE(small_int(x»

then
else ...

4-81 Code

EXAMPLE

TYPE
possible_temperature_range 48 .. 97;

VAR

BEGIN

possible_temperature_range;
boolean;

repeat
write('Enter the current air temp. (in deg. fahrenheit) -- ');
readln(air_temp);
if not IN_RANGE(air_temp) then

begin
writeln('This temperature is out of the historical range.');
writeln;
stop .- false;

end
else begin

writeln('This value is within the historical range.');
stop .- true;

end;
until stop;

END.

Using This Example

Following is a sample ex' cution of the program named in_range_example:

Enter the current air temp. (in deg. fahrenheit) -- 100
This temperature is out of the historical range.

Enter the current air temp. (in deg. fahrenheit) -- 47
This temperature is out of the historical range.

Enter the current air temp. (in deg. fahrenheit) -- 52

Code 4-82

c

o

Lastof

Lastof -- Returns the last possible value of a type or a variable. (Extension)

FORMAT

lastof(x)

Argument

x

{Iastof is a function.}

Either a variable or the name of a data type. The data type can be a predeclared
DOMAIN Pascal data type, or it can be a user-defined data type. X cannot be a
record, file, or pointer type.

o Function Returns

o

o

o

The lastof function returns a value having the same data type as x.

DESCRIPTION

The lastof function returns the final possible value of x according to the following rules:

Data Type Lastof Returns

integer or integer16 32767

integer32 2147483647

char A symbol indicating an unprintable

character; however,

ORD (LASTOF (char)) returns 255.

boolean " True. .

enumerated The last (right-most) identifier in the

data type declaration.

array The upper bound of the subrange that

defines the array's size.

The lastof function is particularly useful for finding the last value in an enumerated type.

EXAMPLE

See the example in the firstof listing earlier in this encyclopedia.

4-83 Code

Ln

Ln -- Calculates the natural logarithm of a specified number.

FORMAT

In (number) {In is a function.}

Argument

number Any real or integer expression that evaluates to a positive number.

Function Returns

The In function always returns a real value (even if number'is an integer).

DESCRIPTION

The In function returns the natural logarithm of number. Refer to the exp listing earlier in this ency­
clopedia for a practical definition involving In.

EXAMPLE

PROGRAM In_example;
{ Each radioactive isotope has a unique K constant.}
{ This program uses LN and empirical data to calculate the k constant.}
VAR

starting_quantity, ending_quantity: real;
elapsed_time, k : real;

BEGIN

END.

write(~Enter the quantity at time zero -- ~);

readln(starting_quantity) ;
write(~Enter the elapsed time (t) -- ~);

readln(elapsed_time);
write(~Enter the quantity at time (t) -- ~);

readln(ending_quantity);
k := LN(starting_quantity/ending_quantity) * (1.0 / elapsed_time);
writeln(~The k constant for this radioactive element is ~, k);

USing This Example

Following is a sample run of the program named In_example:

Enter the quantity at time zero -- 1230
Enter the elapsed time (t) -- 47
Enter the quantity at time t -- 753
The k constant for this radioactive element is 0.010

Code 4-84

c

\....-

- ------- .. -----------

o

o

o

o

o

Lshft

Lshft -- Shifts the bits in an integer a specified number of bit positions to the
left. (Extension)

FORMAT

Ishft (num, sh) {Ishft is a function.}

Arguments

num, sh Integer expressions.

Function Returns

The Ishft function returns an integer value.

DESCRIPTION

The Ishft function shifts the bits in num to the left sh places. Lshft does not wrap bits around from the
left edge to the right; instead, Ishft shifts zeros in on the right. For example, consider the following re­
sults:

VAR
i, n INTEGER16;

BEGIN
i := 2000;
LSFHT(i, 1);
LSHFT (i, 3);
L SHFT (i, 7);

{ 2#0000011111010000
{ 2#0000111110100000
{ 2#0011111010000000
{ 2#1110100000000000

Results are unpredictable if sh is negative.

Compare Ishft to rshft and arshft.

10#+2000 }
10#+4000 }
10#+16000 }
10#-6144 }

4-85 Code

Lshft

EXAMPLE

PROGRAM Ishft_example;

VAR
unshifted_integer, shifted_integer, shift_left, x : integer16;
choice 0 .. 15;
drink_info: array[O .. 6] of integer16 := [* of 0];

BEGIN

{In the following subroutine, LSHFT acts as a multiplier according to the}
{equation LSHFT(num,sh) = num * (2 to the sh power). Beware of overflow}
{when you use LSHFT for this purpose. }

unshifted_integer := 15; {15 is 0000000000001111 in binary}
shift_left := 3;
shifted_integer := LSHFT(unshifted_integer, shift_left);
writeln(unshifted_integer:5, ' times 2 to the' shift_left:1,

, power =' shifted_integer: 1) ;

{The result will be 120.}
{120 is 0000000001111000 in binary.}

{You can also use LSHFT to pack information more effectively. For }
{example, suppose you asked 24 people to name their favorite soft }
{drink from a list of 16 possibilities. Since we can represent 16 }
{possibilities in 4 bits, we can store 4 people's responses in one }
{16-bit word in the following manner: }
{ }
{Bit # 0 3 4 7 8 11 12 15 }
{ --- }
{ Response 1 Response 2 Response 3 Response 4 I}
{ --- }
{ }
{Therefore, we will only need six 16-bit words to store the data }
{rather than 24 16-bit words. The following code uses the LSHFT }
{function to accomplish this data reduction. }

writeln;
for x := 0 to 23 DO

BEGIN
write('Enter the preference (0-15) of client'

x: 1, ' -- ');
readln(choice) ;
drink_info[x div 4] := drink_info[x div 4] !

LSHFT(choice, (4 * (x mod 4») ;
writeln(DRINK_INFO[x DIV 4]);

END;
{You can also achieve this sort of packing with packed records. }

END.

Using This Example

This program is available on-line and is named Ishft_example.

Code 4-86

c

o

o

o

o

o

o

o

Max

Max -- Returns the larger of two expressions. (Extension)

FORMAT

max(exp1,exp2) {max is a function.}

Arguments

exp1, exp2 Any valid expression.

DESCRIPTION

DOMAIN Pascal's max function returns the larger of the two input expressions. Exp1 and exp2 must
be the same type or must be convertable to the same type by Pascal's default conversion rules (for ex­
ample, integer converted to a real).

If exp1 and exp2 are unsigned scalars or pointers, DOMAIN Pascal performs an unsigned comparison.
(The scalar data types are integers, Boolean, character, and enumerated.) If they are real, single, or
double, a floating-point comparison is done, while if they are signed integers, DOMAIN Pascal per­
forms a signed comparison.

See also min.

4-87 Code

Max

EXAMPLE

program max_example;

var
i : integer16;
x,y,newx,newy,high,newhigh:real;

begin

{ This program allows the user to calculate interest yields on }
{ amounts deposited in two savings accounts that have different }
{ interest rates. The first pays 6.55 Annual Percentage Rate (APR), }
{ and the second pays 8.75% APR. After figuring how much would be }
{ in each account after five years, the program then rolls the money }
{ in the account with the highest balance over into a Certificate }
{ of Deposit account which pays 11% APR, and then the interest it }
{ would earn in five more years is calculated. }

write ('Enter the initial deposit for account 1: ') ;
read In (x) ;
write ('Enter the initial deposit for account 2: ') ;
readln (y) ;

newx .- x;
newy .- y;

for i := 1 to 5 do
begin
x := newx;
newx := x + (x * 0.0655);
y := newy;
newy .- y + (y * 0.0875);
end;

writeln;

{ Figure interest for first }
{ five years on both accounts.}

writeln (' Account 1 balance after 5 years at 6.55%: ' newx:7:2);
writeln (' Account 2 balance after 5 years at 8.75%: " newy:7:2);

high := MAX (newx,newy); { Find the maximum interest yield.}

newhigh .- high;
for i := 1 to 5 do

begin
high := newhigh;
newhigh .- high + (high * 0.11);
end;

writeln;
writeln (' Highest account after 5 more years in CDs at 11%: ' newhigh:7:2);

end.

Code 4-88

-----" "----- ---------

C~

Max

Using This Example

o Following is a sample run of the program named max_example:

Enter the initial deposit for account 1: 1000
Enter the initial deposit for account 2: 900

Account 1 balance after 5 years at 6.55%: 1373.31
Account 2 balance after 5 years at 8.75%: 1368.95

Highest account after 5 more years in CDs at 11%: 2314.10

o

o

o

o
4-89 Code

Min

Min -- Returns the smaller of two expressions. (Extension)

c
FORMAT

min (exp1 ,exp2) {min is a function.}

Arguments

exp1, exp2 Any valid expression.

DESCRIPTION

DOMAIN Pascal's min function returns the smaller of the two input operands. Exp1 and exp2 must be 0
the same type or must be convertable to the same type by Pascal's default conversion rules (for exam- __ /
pIe, integer converted to a real).

If exp 1 and exp2 are unsigned scalars or pointers, DOMAIN Pascal performs an unsigned comparison.
(The scalar data types are integers, Boolean, character, and enumerated.) If they are real, single, or
double, a floating-point comparison is done, while if they are signed integers, DOMAIN Pascal per­
forms a signed comparison.

See also max.

Code 4-90

c

c~

o

0

o

o

o

EXAMPLE

program min_example;

var
storenum : integer;
lowprice, x, y, newprice1, newprice2 real;

begin
{ The program finds the lowest discounted price for an item that two}
{ stores sell. The stores have different regular prices and are }
{ featuring different discount rates: 18% at the first, and 15% at }
{ the second. }

write ("Enter the regular price at the
readln (x) ;
write ("Enter the regular price at the
readln (y) ;

newprice1 .- x - (x * 0.18) ;
newprice2 .- y - (y * 0.15) ;

lowprice := MIN(newprice1,newprice2) ;
if lowprice = newprice1 then

storenum .- 1
else

storenum .- 2;

first store: ') ;

second store: ') ;

write ("The best discounted price is at store number" storenum:1);
writeln (" and it is ", lowprice:6:2);
end.

Using This Example

Following is a sample run of the program named min_example:

Enter the regular price at the first store: 1599.99
Enter the regular price at the second store: 1515.15
The best discounted price is at store number 2 and it is 1287.88

4-91

Min

Code

Mod

Mod -- Calculates the remainder upon division of two integers.

FORMAT

d1 mod d2 {mod is an operator.}

Arguments

d1, d2

Operator Returns

Any integer expressions.

The mod operator returns an integer value.

DESCRIPTION

DOMAIN Pascal's mod operator works like standard Pascal's mod operator when d1 is positive. When
d1 is negative and you compile without the -iso switch, DOMAIN Pascal's mod operator works in a
nonstandard manner.

When d1 is Positive

The expression (dl MOD d2) produces the remainder of d1 divided by d2. Therefore, the expression
(dl MOD d2) always evaluates to an integer from 0 up to, but not including, I d21. For example, con­
sider the following results:

9 MOD 3 is equal to 0
10 MOD 3 is equal to 1
11 MOD 3 is equal to 2
12 MOD 3 is equal to 0
13 MOD 3 is equal to 1
13 MOD -3 is equal to 1

(To find the quotient (Le., nonfractional) portion of the division, use the div operator described ear­
lier in this encyclopedia.)

Code 4-92

C~

('
'---

0

o

C)

o

o

Mod

When d1 is Negative

If d1 is negative, then (d1 MOD d2) equals

-1 * remainder of Id11 divided by Id21

For example, consider the following results:

-9 MOD -3 is equal to 0 -9 MOD 3 is equal to 0
-10 MOD -3 is equal to -1 -10 MOD 3 is equal to -1
-11 MOD -3 is equal to -2 -11 MOD 3 is equal to -2
-12 MOD -3 is equal to 0 -12 MOD 3 is equal to 0
-13 MOD -3 is equal to -1 -13 MOD 3 is equal to -1

Compiling With the -iso Switch

If you compile with the -iso switch (described in Chapter 6), mod follows the standard Pascal rules.
That is, mod returns a value result such that:

result := d1 - (d1 DIV d2) * d2

Since a negative modulus is illegal under standard Pascal rule's, if resul t is negative, then:

result := result + d2

EXAMPLE

PROGRAM mod_example;
{This program uses the MOD function to find the coming leap years.}

CaNST
cycle

VAR

4' ,

remainder, year

BEGIN

integer16;

for year := 1985 to 1999 do
begin

remainder .- year MOD cycle;
if remainder = 0

then writeln(year:4, ' is a leap year');
end;

END.

Using This Example

If you execute the sample program named mod_example, you get the following output:

1988 is a leap year
1992 is a leap year
1996 is a leap year

4-93 Code

New

New -- Allocates space for storing a dynamic variable.

FORMAT

new(p) {Short form. New is a procedure.}

new(p, tag1, ... tagN) {Long form.}

Arguments

tag

p

An input argument that names one or more constants. Tag is valid only if p" is a
record. The maximum number of tags is the number of tag fields in the record to
which p points.

A pointer variable used for input and output. Pascal creates a dynamic variable of
the type to which p points. After allocating this variable, Pascal returns the ad­
dress of the newly allocated dynamic variable into p. The contents of the address
pointed to is undefined. If there was insufficient address space or disk space re­
maining to satisfy the request for dynamic memory, then DOMAIN Pascal returns
the value nil in p.

DESCRIPTION

New causes Pascal to allocate enough space for storing one occurrence of a dynamic variable. You use
new to create dynamic space and dispose (described earlier in this encyclopedia) to deallocate the dy­
namic space.

You can use the short form of new to allocate any kind of dynamic variable. The long form of new is
only useful for allocating dynamic variant records.

The Short Form

Consider the following record declaration:

TYPE
employeepointer = "employee;
employee = record

first_name array[l .. 10] of char;
last_name array[l .. 14] of char;
next_emp employeepointer;

end;

VAR
current_employee : employeepointer;

f"
\.......-./

If you want to store employee records dynamically, then you must call NEW(current_employee) for
every occurrence of an employee. To allocate space for 100 employees, call NEW(current_em- ('"
ployee) 100 times. You can assign values to an employee record only after Pascal has allocated space "-
for an occurrence.

Code 4-94

o

o

o

o

o

New

The Long Form

Pascal uses tag1 .. tagN to help determine the amount of space to allocate for a variant record.
Tag1 . . tagN corresponds to the tag fields of the variant record. For example, consider the type declara­
tion for the following variant record:

TYPE
emp_stat (exempt, nonexempt);
workerpointer Aworker;
worker = record

first_name array[l .. 10] of char;

VAR

last_name array[l .. 14] of char;
next_emp workerpointer;
CASE emp_stat OF

end;

exempt (salary
nonexempt : (wages

plant

current_worker : workerpointer;

integer16) ;
single;
array[l .. 20] of char);

Because worker contains a tag field, you have the option of passing the value of a constant to new;
for example:

NEW (current_worker , exempt)

Since tag1 is exempt, when DOMAIN Pascal allocates space for one worker record, it allocates two
bytes for the variant portion (since integer16 takes up only two bytes). If tag1 had been nonexempt,
DOMAIN Pascal would have allocated the space necessary (24 bytes) to hold it.

Note that the number of constants you pass to new must be less than or equal to the number of tag
fields in the record declaration.

For machines with a larger address space (DNx60 machines, DN3000, etc.), you can access that larger
amount of space by performing the following two steps:

1. Use new to allocate a large amount of memory (such as a megabyte) at the beginning of the
program's execution.

2. Immediately after allocating the memory, use dispose to deallocate it.

These steps cause the operating system to increase the number of memory pages it allocates to your
program. You should only use this technique if it is possible that your program may run out of address
space.

4-95 Code

New

EXAMPLE

Program build_a_linked_list;
{ The following example uses NEW and DISPOSE to create and disassemble a }
{ linked list. For a description of the theory of linked lists, consult}
{ a Pascal tutorial. }

TYPE
studentpointer = ~ student;
student record

name: array[l .. 30] of char;
age : integer16;
next_student : studentpointer;

end;

VAR
base
a_name
an_age
option
done

studentpointer;
array[l .. 30] of char;
integer16;
char;
boolean;

Procedure print_list; { Print the linked list in order. }
VAR

ns : studentpointer;
BEGIN

ns := base;
writeln;
while ns <> NIL do

with NS~ do
begin

writeln(name, , age);
ns .- next_student;

end;
END;

Procedure Enter_data;
VAR

ns, previous: studentpointer;
BEGIN

base := nil;

repeat
write('Enter the name of a student (or end to stop) -- ');
readln(a_name) ;
if a_name 'end' then

begin
NEW(ns); { Allocate space for a new occurrence of a student.}

write('Enter his or her age -- '); readln(an_age);

if base = nil
then base := ns
else previous~.next_student .- ns;

{ Initialize fields of new record. }
ns~.name := a_name;

Code 4-96

{Set base to first record.}
{Add record to end of list}

c:'

c

o

o

o

o

o

nsA.age := an_age;
nsA.next_student .- nil;

previous := ns;
end

{ Save pointer to this new student.}

until a_name
END;

'end';

Procedure delete_a_student;
VAR

ns, previous: studentpointer;
BEGIN

previous .- base;
ns := base;

write('What is the name of the student you want to delete? -- ');
readln(a_name);

while ns <> nil do

END;

begin
if ns A.name = a_name then

begin
if ns = base then

{Delete record.}

base := nsA.next_student
else

previousA.next_student .- nsA.next_student;
DISPOSE(ns) ;
exit;

end
else

begin
previous := ns;
ns := nsA.next_student;

end; {if}
end; {while}

{delete_a_student}

BEGIN {main}
base := nil;
enter_data;
print_list;

repeat
if base = nil then return;
write('Do you want to delete a student from the list? (y or n) -- ');
readln(option);
done := not (option in ['y', 'Y']);
if not done then

begin .
delete_a_student;
print_list;

end
until done;

END.

4-97

New

Code

New

Using This Example

Following is a sample run of the program named build_a_linked_list:

Enter
Enter
Enter
Enter
Enter
Enter
Enter

Kerry
Jan
Lance

the
his
the
his
the
his
the

name of a student (or
or her age -- 28
name of a student (or
or her age -- 27
name of a student (or
or her age -- 29
name of a student (or

end to

end to

end to

end to

stop)

stop)

stop)

stop)

28
27
29

Kerry

Jan

Lance

end

Do you want to delete a student from the list? (y or n) -- y
What is the name of the student you want to delete? -- Jan

Kerry
Lance

28
29

Do you want to delete a student from the list? (y or n) -- n

Code 4-98

~\
,I . .-/

c.~

o

o

o

o

o

Next

Next -- Jump to the next iteration of a For, While, or Repeat loop. (Extension)

FORMAT

Next is a statement that neither takes arguments nor returns values.

DESCRIPTION

You use next to skip over the current iteration of a loop. You can only use next within a for, while, or
repeat loop. If next appears elsewhere in a program, DOMAIN Pascal issues an error. Next tells
DOMAIN Pascal to ignore the remainder of the statements within the body of the loop for one itera­
tion. For instance, consider the following example:

FOR x := 5 to 35 do
begin

if (x MOD 10)

end;

o then NEXT;

When x is 10, 20, or 30, DOMAIN Pascal ignores the statements following the next. You can use a
go to statement instead of a next statement. For example, you can rewrite the preceding example to
look like the following:

FOR x := 5 to 35 do
begin

if (x MOD 10)

100: end;

o then GOTO 100;

4-99 Code

Next

EXAMPLE

PROGRAM next_example;
{ This program counts the occurrences of the digits 0 through 9 in a line
{ of integers and real numbers.

CONST
blank - ' '. - ,
decimal_point

VAR
dig: char;

, " . . ,

count_digits: array[48 .. 57] of integer16 .- [* of 0];
x : integerl6;

BEGIN
writeln("Enter a line of integers and real numbers:");
repeat

read(dig);
if «dig = blank) or (dig = decimal_point» then NEXT;
write(dig, ' ");
count_digits[ord(dig)] .- count_digits[ord(dig)] + 1;

until eoln;
writeln;
for x := 48 to 57 do
writeln(count_digits [x] :2, ' of the digits were"

END.

Using This Example

Following is a sample run of the program named next_example:

Enter a line of integers and/or real numbers.
1741374.13 33 821
1 7 4 1 3 7 4 1 3 3 8

0 of the digits were Os
4 of the digits were Is
1 of the digits were 2s
4 of the digits were 3s
3 of the digits were 4s
0 of the digits were 5s
0 of the digits were 6s
2 of the digits were 7s
1 of the digits were 8s
0 of the digits were 9s

Code. 4-100

chr (x) : 1, "s");

c'

C~,

o

o

o

o

o

Nil

Nil -- A special pOinter value that pOints to nothing.

FORMAT

Nil is a reserved word. You can only use it in expressions. Nil is a pointer value; therefore, you must
assign it to or compare it to a pointer variable. Nil is guaranteed never to point to an object.

DESCRIPTION

Use nil when you must assign a value to a pointer, but you don't know what that value should be. For
example, when creating a linked list, you can set the last record in the list to point to nil. Then, when
walking through the list, you can easily find the end of the list by checking for nil.

EXAMPLE

For a sample program that uses nil, refer to the listing for new earlier in this chapter.

4-101 Code

Not

Not -- Returns true if an expression evaluates to false.

FORMAT

not b {not is a unary operator.}

Arguments

b

Operator Returns

Any Boolean expression.

The result of a not operation is always a Boolean value.

DESCRIPTION

If b evaluates to false, then not b evaluates to true. If b evaluates to true, then not b evaluates to false.

Note that you can put and or or immediately before not. Note the order of precedence in an expres­
sion like the following:

a AND NOT b actually means a AND (NOT b)

Another potentially confusing expression is the following:

NOT a AND b actually means (NOT a) AND b

Please refer to the order of precedence rules at the beginning of this chapter.

EXAMPLE

PROGRAM not_example;
VAR

pet_lover, timid : boolean;

BEGIN
writeln(~Career aptitude test.~, chr(lO»;
write(~You like pets (true or false) ~); readln(pet_lover);
write(~You are timid (true or false) -- ~); readln(timid);

if pet_lover and NOT timid
then writeln(~Have you considered becoming a lion tamer?~)
else writeln(~Plastics ... there~~s a great future in plastics.~);

END.

Using This Example

This program is available on-line and is named not_example.

Code 4-102

c

c ..

-------------_ _.-------- - .. ~ .. - .. --- .. ---------

Odd -- Tests whether the specified integer is an odd number.

o
FORMAT

odd(i) {odd is a function.}

Argument

Any integer expression.

Function Returns o The odd function returns a Boolean value.

o

o

o

DESCRIPTION

Odd returns true if i is an odd integer and false if i is an even integer.

EXAMPLE

PROGRAM odd_example;

VAR
i integer;

BEGIN
write('Enter an integer -- ');
readln(i) ;

if ODD(i)
then writeln(i:1, ' is an odd number.')
else writeln(i:1, ' is an even number.');

END.

Using This Example

Following is a sample run of the program named odd_example:

Enter an integer -- 14
14 is an even number.

4-103

Odd

Code

Of

Of -- Refer to Case earlier in this encyclopedia.

c

Code 4-104

l0

o

o

o

Open

Open -- Opens a file so that you can eventually read from or write to it. (Exten­
sion)

FORMAT

open (file_variable, pathname, file_history, error_status, buffer_size); {open is a procedure.}

Arguments

file_variable

path name

A variable having the text or file data type.

The name of the file that you want to open. Path name is a string constant or
string variable, that you specify in any of the following five ways:

o Enter a DOMAIN pathname as defined in Getting Started With Your
DOMAIN System.

o Enter a string in the form '''n', where n is an integer from 1 to 9. N corre­
sponds to the ordinal value of the arguments that the user passes to the
program when he or she executes or debugs the program. For example,
suppose you compile DOMAIN Pascal source code to create executable
object file sample. bin. You can pass the two arguments xxx and yyy

by executing the program as follows:

$ sample. bin xxx yyy

The preceding command line causes DOMAIN Pascal to assign xxx to
'''1' and yyy to '''2'.

• Enter a string in the form' * prompt-string' . At runtime, DOMAIN Pascal
prints the prompt-string at standard output, and then reads the user's re­
sponse from standard input. (The response should be the name of the file
to be opened.) The prompt-string can contain any printable character
except blanks; DOMAIN Pascal stops printing at the first blank it en­
counters. An asterisk by itself tells DOMAIN Pascal to read the response
from standard input without printing a prompt at standard output.

• A string in the form' -STDIN' or '-STDOUT'. These strings correspond
to the streams that the operating system opens automatically. However,
specifying one of these strings does not cause an error. (See Chapter 8
for an explanation of streams.)

• A variable or constant containing any of the preceding items.

A variable or string that tells the open procedure how to open the file. The vari­
able or string must have one of the following three values:

• 'NEW' -- If the file exists, DOMAIN Pascal reports an error. If the file
does not exist, DOMAIN Pascal creates the file and then opens it.

• 'OLD' -- If the file exists, DOMAIN Pascal opens it. If the file does not
exist, DOMAIN Pascal reports an error.

4-105 Code

Open

DESCRIPTION

• 'UNKNOWN' -- If the file exists, DOMAIN Pascal opens it. If the file
does not exist, DOMAIN Pascal creates the file and then opens it.

Remember to enclose the file_history within apostrophes (e.g., 'NEW').

An optional argument. If you specify an error_status, it must have an integer32
data type. At runtime, DOMAIN Pascal returns a hexadecimal number into
error _status which has the following meaning:

o -- no error or warning occurred.

greater than 0 -- an error occurred.

less than 0 -- a warning occurred.

Your program is responsible for handling any errors. We detail error handling in
Chapter 9.

An optional argument that may only be specified for files of type text.
Buffer_size must be at least as long as the longest line in the file being read; if it is
shorter, the excess characters in a line are truncated. If the file is open for writing
only, you don't need to specify a large buffer_size. No data is lost even if a line
being written is longer than buffer_size. The default size is 256 bytes.

Before you can read from or write to a file, you must first open it for I/O operations. To open a perma­
nent file, you must use the open procedure. To open a temporary file, use the rewrite procedure with­
out using an open procedure.

After you've opened a file, you then specify whether it is available for reading (by calling reset) or for
writing (by calling rewrite). Note that you do not need to open the standard input (input) and stan­
dard output (output) files before attempting to read from or write to them. They are always open.

When your program terminates, the operating system automatically closes all opened files; however,
please refer to the description of the close procedure earlier in this chapter.

For a complete overview of DOMAIN I/O, see Chapter 8.

EXAMPLE

Program open_example;

{ This program uses a variety of techniques to open three files. }
{ In order for it to work properly, you must pass the pathname of a }
{ file as the first argument on the execution or debug command line. }
{ For example, if you compile this program to create open_example. bin, }
{ then you could invoke the program with the following command: }
{ $ open_example. bin //arnie/nouveau/comps }

%NOLIST;
%INCLUDE '/sys/ins/base.ins.pas';
%INCLUDE '/sys/ins/error.ins.pas';
%LIST;

CONST
name_of_file
file3

Code

, annabel_lee' ;
'*filename--';

4-106

~-- .'

,~ u

o

o

VAR
poem, paragraph, stanza
statrec

text;
status_$t;

BEGIN

{ Open an existing file.}
OPEN(poem, name_of_file, 'OLD', statrec.all);

{ If there was no error on open, then specify that the file be }
{ open for reading. }

if statrec.all = 0
then reset(poem)
else writeln('Difficulty opening

{ Open a new file. The pathname of the new file will be the first}
{ argument that you pass on the execution or debug command line. }

OPEN (paragraph, '~l', 'NEW', statrec.all);
{ If there was no error on open, then specify that the file be open}
{ for writing. If there was an error, print the error code. }

if statrec.all = status_$ok
then rewrite(paragraph)
else writeln('Got error code' statrec.all,' on open.');

{ Open a file that mayor may not exist. Prompt user for name of
{ file at runtime.

OPEN(stanza, file3, 'UNKNOWN', statrec.all);
{ A slightly more sophisticated method of error reporting is to use
{ the system call ERROR_$PRINT to print the error message.
{ NOTE: In order to call ERROR_$PRINT, you must specify both
{ /sys/ins/base.ins.pas and /sys/ins/error.ins.pas as %INCLUDE

if statrec.all = status_$ok
then rewrite(stanza)
else ERROR_$PRINT(statrec);

END.

Using This Example

This program is available on-line and is named open_example.

4-107

Open

}
}

}
}
}

files.}

Code

Or

Or -- Calculates the logical or of two Boolean arguments.

FORMAT

x or y {or is an operator.}

Arguments

X, Y Any Boolean expressions.

Operator Returns

The result of an or operation is always a Boolean value.

DESCRIPTION

Use or to find the logical or of expressions X and y. Here is the truth table for or:

x y Result

true true true

true false true
false true true
false false false

Compare or to and and not (which are described elsewhere in this encyclopedia). You should also see
the description of or else, which is described in the if listing earlier in this encyclopedia.

Code

NOTE: Some programmers confuse or with the exclamation point (!) operator. ! is a bit
operator; it causes DOMAIN Pascal to perform a logical or on all the bits in its
two arguments. For example, compare the following results:

(true OR false) is equal to true
(75 ! 15) is equal to 79

Refer to the "Bit Operators" listing earlier in this encyclopedia.

4-108

c

o

o

o

o

Or

EXAMPLE

PROGRAM or_example;

VAR
tall, good_jumper, good_athlete boolean;

BEGIN
writeln('Career aptitude test.', chr(10»;

write('You are taller than 1.95 meters (true or false) -- '); readln(tall);
write('You can jump high (true or false) -- '); readln(good_jumper);
write('You are athletic (true or false) -- '); readln(good_athlete);

if (taIlOR good_jumper) AND good_athlete

END ..

then writeln(chr(10), 'Have you considered playing pro basketball.')
else writeln(chr(10), 'Computers are a stable field.');

Using This Example

This program is available on-line and is named or_example.

4-109 Code

Ord

Ord -- Returns the ordinal value ofa specified integer, Boolean, char, or enu­
merated expression.

FORMAT

ord (x) {ord is a function.}

Argument

x Any scalar (Le., integer, Boolean, char, or enumerated) expression.

Function Returns

The ord function returns an integer value.

DESCRIPTION

The ord function returns the ordinal value of x according to the following rules:

Data Type of x Ord Returns

Integer Numerical value of x.

Boolean 0 if x is false and 1 if x is true.

Char x's ASCII value. Appendix B contains

an ASCII table.

Enumerated An integer representing x's position

within the enumeration declaration.

For instance, in program ord_example

below, ORD (rice) returns 0,

ORD (tofu) returns 1, and so on up

until ORD (tamar i), which returns 4.

Note that the chr function is the inverse of ord.

Code 4-110

c

o

o

o

o

o

EXAMPLE

PROGRAM ord_example;

TYPE
macro (rice, tofu, seaweed, miso, tamari);

VAR
c char;
e macro;

BEGIN
c : = ' d' ;
WRITELN('The ordinal value of' c, ' is

e := seaweed;
WRITELN('The ordinal value of " e:7, ' is

END.

Using This Example

ORD (c) : 3) ;

ORD (e) : 1) ;

If you execute the sample program named ord_example, you get the following output:

The ordinal value of d is 100
The ordinal value of SEAWEED is 2

4-111

Ord

Code

Pack

Pack -- Copies an unpacked array to a packed array.

FORMAT

pack(unpacked_array, index, packed_array) {pack is a procedure.}

Arguments

unpacked_array

index

packed_array

DESCRIPTION

An array that has been defined without the keyword packed.

A variable that is the same type as the array bounds (integer, boolean, char, or
enumerated) of unpacked_array. Index designates the array element in un­
packed_array from which pack should begin copying.

An array that has been defined using the keyword packed.

Pack copies an unpacked array to a packed one. However, data access with unpacked arrays generally
is faster since data elements are always aligned on word boundaries.

c

Unpacked_array and packed_array must be of the same type, and for every element in packed_array, ('
there must be an element in unpacked_array. That is, if you have the following type definitions '\..._

TYPE
x array[i .. j] of single;
y packed array[m .. n] of single;

the subscripts must meet these requirements:

j - index >= n - m {"index" as set in the call to pack}

For example, it is legal to use pack on two arrays defined like this:

TYPE
big_array
small_array

VAR

array[l .. 100] of integer;
packed array[l .. 10] of integer;

grande
petite

big_array;
small_array;

You use index to indicate the array element in unpacked_array from which pack should begin copy­
ing. For instance, given the previous variable declarations and assuming variable i is an integer, this
fragment

i := 1;
pack (grande , i, petite);

tells pack to begin copying at grande [1] . Pack keeps copying until it reaches the highest index value
that peti te can take -- which in this case is 10. The remaining elements in grande are not copied.

Code 4-112

o

o

o

o

0

Pack

Index can take a value outside of packed_array's defined subscripts. That is, if in the example above,
i equals 50, pack copies these values this way:

peti te [1] . - grande [50] ;
petite[2] .- grande [51] ;

petite[10] := grande [59] ;

See the listing for unpack later in this encyclopedia.

EXAMPLE

PROGRAM pack_example;

TYPE
uarray
parray

array[l .. 50] of integer16;
packed array[l .. 10] of integer16;

VAR
full_range
sub_range
i, j

BEGIN

uarray;
parray;
integer16;

for i := 1 to 50 do
full_range[i] .- i;

j := 20;
PACK(full_range, j, sub_range);

writeln ('The packed array now contains: ');
for i := 1 to 10 do

writeln (' sub_range [' , i:2, '] = " sub_range[i] :2);

END.

Using This Example

If you execute the sample program named pack_example, you get the following output:

The packed array now contains:
sub_range [1] 20
sub_range [2] 21
sub_range [3] 22
sub_range [4] 23
sub_range [5] 24
sub_range [6] 25
sub_range [7] 26
sub_range [8] 27
sub_range [9] 28
sub_range [10] 29

4-113 Code

Page

Page -- Insert a formfeed (page advance) into a file.

FORMAT

page(f)

Argument

f

DESCRIPTION

{page is a procedure.}

A text variable. F is optional. If you do not specify f, page assumes that the file is
standard output (output).

Use the page procedure to insert a formfeed(ASCII character 12) into the file specified by f. Page is
useful for formatting text that will be printed or for text that meets fixed-length window dimensions. If
you print the file on a line printer, the printer advances to the next page when it encounters the
formfeed.

Before calling page, you must open the file named in f for writing. See Chapter 8 for a description of
opening files.

Code 4-114

c

c

o

o

o

o

o

EXAMPLE

PROGRAM page_example;
{This program demonstrates the PAGE procedure.}

CONST
lines_in_a_page 54; {Our printer prints 54 lines to a page.}

VAR
information
statint
x

text;
integer32;
integer16;

BEGIN

{ Create a file and open it for writing; exit on error. }
open(information, 'square_root_table', 'NEW', statint);
if statint = 0 then

rewrite (information)
else

begin
writeln('Pascal reports error', statint, ' on OPEN.');
return;
end;

{Print the square roots from 1 to 200, inserting}
{formfeeds where needed. }

END.

for x := 1 to 200 do
begin
writeln(information, 'The square root of' x:3, ' is
if «x mod lines_in_a_page) = 0) then

PAGE (information) ;
end;

Using This Example

This program is available on-line and is named page_example.

4-115

sqrt(x» ;

Page

Code

Pointer Operations

Pointer Operations

Chapter 3 explains how to declare pointer types. Here, we describe how to use pointers in the action
part of your program.

DESCRIPTION

You can do the following things with a pointer variable:

• Use the addr function to assign the virtual address of a variable to the pointer variable.

• Compare or assign the value of one pointer variable to another compatible pointer variable.

• De-reference a pointer variable. De-referencing means that you find the contents of the vari­
able to which the pointer variable was pointing.

The following program fragment does all three things:

Program test;

TYPE
pi ~integer16;

VAR
pi; plquart, p2quart

quartl, quart2 integer16 .- 5;

BEGIN
plquart .- addr(quartl);
p2quart .- plquart;
quart2 .- p2quart~;

END.

Manipulating Virtual Addresses -- Extension

DOMAIN Pascal supports type transfer functions that are quite useful in manipulating virtual ad­
dresses. For example, you cannot directly write a pointer value to a text file; however, you can use a
type transfer function to transfer the address to an integer32 value (which can be written). For exam­
ple, compare the right and wrong ways to write the virtual address of quartl to output:

writeln(plquart);
writeln(integer32(plquart»;

Code

{wrong}
{right}

4-116

Ci

o

o

r")
'-..../

o

o

Pointer Operations

Involdng Procedure and Function Pointers -- Extension

You de-reference a procedure or function pointer like any other pointer; that is, with the up-arrow
C'). In this way, functions can return pointers to other functions; for example:

TYPE

VAR

retbool = Afunction : boolean;
retfunptr = Afunction : retbool;

xp : retbool;
rf : retfunptr;
flag : boolean;

FUNCTION myfunc; retbool;

rf := ADDR(myfunc) ;
xp : = rfA;
flag : = XpA;

The expression rf A invokes the myfunc function, which returns a pointer to a function that returns a
Boolean value. You cannot use the following assignment

flag : = r f A A ;

because you cannot de-reference the return value of a function call.

Addressing Procedure and Function Pointers -- Extension

To obtain procedure and function addresses, use the predeclared function addr. Thus, there is no am­
biguity about a function reference, especially one with no parameters. It is either invoked by name
only, or its address is taken by the addr function.

Although the addr function has been declared to return a univ_ptr, the compiler adds extra type
checking whenever you try to pass a procedure or function address to a specific procedure or function
pointer. In the assignment pptr : = addr (proc2) from the following program fragment, the declara­
tion for proc2 must exactly match the template for the procedure type of pptr. If not, the compiler
reports an error. If, however, the assignment is to a univ_ptr, like xxx . - addr (funcI), the com­
piler cannot do this extra type checking.

VAR
xxx

pptr
UNIV_PTR;
AProcedure(IN i, j

OUT a
VAR r

integer;
char;
real); EXTERN;

BEGIN

xxx .- funcI; {This is a call.}

xxx .- addr(funcI); {This takes the address.}

pptr := addr(proc2); {This takes the address and checks.}

4-117 Code

Pred

Pred -- Returns the predecessor of a specified ordinal value.

FORMAT

pred(x) {pred is a function.}

Argument

x An integer, Boolean, char, or enumerated expression.

Function Returns

The pred function returns a value having the same data type as x.

DESCRIPTION

Pred returns the predecessor of x according to the following rules:

Data Type of x Pred Returns

Integer The numerical value equal to x - 1.

Boolean False -- even if x already equals false.

Char The character with the ASCII value

one less than the ASCII value of x. If

this character (x-1) does not exist,

DOMAIN Pascal cannot detect the

error.

Enumerated The identifier to the left of x in the

type declaration. If x is the left-most

identifier, pred' s return value is

undefined.

PRED (FIRSTOF (x» generally is undefined; however, DOMAIN Pascal does not report an error.
DOMAIN Pascal also doesn't report an error if you specify an integer value that is outside the range of
the specified integer type. Therefore, your program should test for an out-of-bounds condition.

Compare the pred function to the succ function.

Code 4-118

c=

c

r-.
(

'--

(-

o

o

o

o

o

EXAMPLE

PROGRAM pred_example;
TYPE

jours = (lundi, mardi, mercredi, jeudi, vendredi, samedi, dimanche);

VAR
i
cl, c2
semaine

BEGIN

integer;
char;
jours;

i := 53; cl:= 'n'; semaine
writeln('The predecessor of '
c2 := pred(cl);
writeln('The predecessor of '
writeln('The predecessor of '

END.

Using This Example

:= vendredi;
i:2, ' is " pred(i):2);

cl:l, ' is " c2);
semaine:8, ' is' pred(semaine):8);

If you execute the sample program named pred_example, you get the following output:

The predecessor of 53 is 52
The predecessor of n is m
The predecessor of VENDREDI is JEUDI

4-119

Pred

Code

Put

Put -- Writes to a file.

c
FORMAT

put (f) {put is a procedure.}

Argument

A variable having the file or text data type.

DESCRIPTION

If f is a file variable, then put (f) appends one record to the file symbolized by f. If f is a text vari- ,/'--'\
able, then put (f) appends one character to the file symbolized by f. ~_/
Before calling put (f), you must assign a record or character to f". So the sequence for writing out data
looks like the following:

fA := record_or_character;
PUT (f) ;

For example, the following program fragment demonstrates output via the put procedure:

VAR
primes
poem
a_number
a_letter

file of integer16;
text;
integer16;
char;

BEGIN

Code

a_number := 17;
primes A := a_number;
PUT(primes); { Append 17 to the file symbolized by primes. }

a_letter :=
poemA .­
PUT (poem) ;

'Q' ;

a_letter;
{ Append 'Q' to the file symbolized by poem. }

4-120

c

c

--_._--

o

o

o

o

o

Note that the three statements

a letter := 'Q';
poem'" .- a_letter;
PUT (poem) ; { Append 'Q' to the file symbolized by poem. }

are identical to the two statements

a_letter := 'Q';
write(poem, a_letter);

You must open f for writing (with rewrite) before calling put.

NOTE: When you want to close the file on which you were performing puts, your pro­
gram should issue a wri teln to the file just before closing it. This is in order to
flush the file's internal output buffer. If you don't include the writeln, the last
line of the file may not be written.

4-121

Put

Code

Put

EXAMPLE

PROGRAM put_example;

{ This program builds a file of student records in file 'his101'. }

CONST
file_to_write_to

TYPE
student

record

'his101';

name array[l .. 12] of char;

VAR

age integer16;
end;

class
a_student
iostat

FILE OF student;
student;
integer32;

BEGIN
{ Opens file his101 for writing. }

open(class, file_to_write_to, 'NEW',
if iostat = 0

then rewrite(class)
else return;

repeat
{ Prompt users for input.

writeln;

iostat);

write('Enter the name of a student -- ');
readln(a_student.name) ;
if a_student.name = 'end' then exit;
write('Enter the age of this student -- ');
readln(a_student.age);

{ Append each record to the end of the rec file.
class A := a_student;
PUT(class);

until false;
END.

Using This Example

This program is available on-line and is named put_example.

Code 4-122

}

c

c

('

c

o

o

o

o

Read, Readln

Read, Readln -- Reads information from the specified file (or from the keyboard)
into the specified variable(s).

FORMAT

read (f, var1, ... , varN); {read is a procedure.}

and

readln (f, var1, ... , varN); {readln is a procedure.}

Arguments

f

var

DESCRIPTION

A variable having a file data type. For read, f can be a text or a file variable.
However, for readln f must be a text variable. F is optional. If you do not specify
f, DOMAIN Pascal reads from standard input (input), which is usually the key­
board.

One or more variables separated by commas. Var can be any real, integer, char,
Boolean, subrange, or enumerated variable. (Boolean and enumerated are exten­
sions to the standard.) Var can also be an array variable (see" Array Operations"
earlier in this encyclopedia), an element of an array, or a field of a record vari­
able.

Read and readln perform input operations. (Refer to the get listing earlier in this encyclopedia.) You
use read or readln to gather one or more pieces of data from f and store them into var1 through varN.
Read and readln store the first piece of gathered data into var1 , the second piece into var2, and so on
until varN.

Before calling read or readln, you must open the file symbolized by f for reading. Chapter 8 explains
how to do that.

There is a subtle, but important, difference between read and readln. After a read, the stream marker
points to the character or component after the last character or component it read from the file. In
contrast, after a readln, the stream marker points to the character or record after the next end-of-line
character in the file. In other words, after getting the data for varN, readln skips over the remainder of
the current line in the input file. (Note that var1 through varN may themselves cover several lines of
data in the file.) If you call readln and var is a record variable, the compiler reports an error; how­
ever, it is not an error to call read with the same variable -- as long as the record variable is the base
type of f.

If you call read or readln when eof(f) is true, the operating system reports an error.

4-123 Code

Read, Readln

EXAMPLE

PROGRAM read_example;

{ This program demonstrates READLN by reading from the poem stored in
{ pathname 'annabel_lee'.

CONST
pathname

VAR

'annabel lee'· - ,

string;
text;

a_line
poem
title
st
count, n

array[l .. 60] of char;
integer32;
integer16;

BEGIN

{ Open the file for reading.
open(Poem, pathname, 'OLD', st);
if st = 0

then reset(poem)
else begin

writeln('Cannot open
return;

end;

readln(poem, title);

pathname) ;

writeln('Which line of' title);
write('do you want to retreive? -- ');
readln (n) ;

END.

for count := 1 to (n + 1) do
readln(poem, a_line);

writeln(output, a_line);

Using This Example

Following is a sample run of the program named read_example:

Which line of Annabel Lee
do you want to retreive? -- 3
That a maiden there lived whom you may know

Code 4-124

-------------- ----

}
}

}

\ ..

r-­
I

o

o

o

o

o

Record Operations

Record Operations

In Chapter 3 you learned how to declare record types and variables. This section explains how to refer
to records in the action part of your program.

Referring to Fixed Records

In the action part of your program, you specify a field of a fixed record in the following way:

record_name . field_name

For example, consider the following declaration of a fixed record variable:

VAR
student

n
id

end;

record
array[l .. 26] of char;
integer16;

You can assign values to the two fields with the following statements:

student.n .- 'Herman Melville';
student.id := 37;

If the data type of the field is itself a record, you must specify the ultimate field in the following way:

record_name . field_name . field_name

For example, consider the following record within a record declaration:

TYPE
name = record

first array[1 .. 10] of char;
middle array[l .. 10] of char;
last array[1 .. 16] of char;

end;

VAR

student : record
n name;
id : integer16;

end;

You can assign values to all four fields with the following statements:

student.n.first .- 'Kerry' ;
student.n.middle .- 'Bruce';
student.n.last .- 'Raduns';
student.id .- 134;

4-125 Code

Record Operations

Variant Records

In the "Variant Records" section of Chapter 3, the variant records worker and my_code were de-
clared as follows: C,~:
TYPE

worker_groups = (exempt, non_exempt); {enumerated type}

worker = record {record type}
employee: array[l .. 30] of char;
id_number : integerl6;

{field in fixed
{field in fixed
{variant part} CASE wo : worker_groups OF

exempt : (yearly_salary
non_exempt : (hourly_wage

end;

record

integer32);
real) ;

CASE integer OF {variant part}

end;

I (all array[I .. 4] of char);
2 (first_half: array[l .. 2] of char;

second_half: array[I .. 2] of char);
3 (xl integerl6;

x2 : boolean;
x3 : char);

4 (raIl: single);

part}
part}

VAR
w worker;

mc my_code;

The following fragment assigns values to w:

write('Enter the person"s name -- '); readln(w.employee);
write('Enter the person"s id number -- '); readln(w.id_number);
write('Enter pay status (exempt or non_exempt) -- '); readln(w.wo);
if W.wo = exempt

then begin
write('Enter yearly salary -- '); readln(w.yearly_salary);

end
else begin

write('Enter hourly wage -- '); readln(w.hourly_wage);
end;

NOTE: Suppose you execute the preceding fragment and load values into w. employee,
w. id_number, w.wo, and w.hourly_wage. Note that the compiler won't pro­
tect you from mistakenly trying to access w. year ly _salary rather than
w. hourly_wage.

The following fragment assigns values to mc. (Notice that we do not use the constants 1, 2, 3, and 4 to
specify these fields.)

write('Enter two characters -- '); readln(mc.first_half);
write('Enter two more characters -- '); readln(mc.second_half);
writeln('Together, the four characters are " mc.all);

Code 4-126

c

c

C'

o

o

o

o

o

Record Operations

Arrays of Records

A common way to store records is as an array of records. You must use the following format to specify
a field in an array of records:

array_name [component] . field_name

For example, given the following declaration for school:

TYPE

VAR

student = record
age: 11 .. 20;
class: 7 .. 12;
name: array[1 .. 20] of char;

end;

school: array[l .. 1000] of student;

you can specify the SOOth record as:

school [500] . age := 15;
school [500] .class := 10;
school [500] . name := 'John Donne';

4-127 Code

Repeat/Until

Repeat/Until -- Executes the statements within a loop until a specified condition
is satisfied. (

FORMAT

repeat
stmnt; .

until cond;

Arguments

stmnt

cond

DESCRIPTION

{repeat is a statement.}

An optional argument. For stmnt, specify a simple statement or a compound
statement. (Ordinarily, you must bracket a compound statement with a begin/
end pair; however, the begin/end pair is optional within a repeat statement.)

Any Boolean expression.

Repeat marks the start of a loop; until marks the end of that loop. At runtime, Pascal executes stmnt
within that loop until cond is true. As long as cond is false, Pascal continues to execute the statements
within the loop.

The following list describes two methods of jumping out of a repeat loop prematurely (Le., before the
condition is true):

o Use exit to transfer control to the first statement following the repeat loop.

• Use goto to transfer control outside the loop.

In addition to these measures, you can also execute a next statement to skip the remainder of the

"--,,

r,
(
\
'-.._--

c

statements in the loop for one iteration. (--"

'-- /

Code 4-128

o

o

o

o

Repeat/Until

EXAMPLE

PROGRAM repeat_example;
{ This program demonstrates two different REPEAT loops. }
{ Compare it to while_example. }

VAR
num
test_completed
i

integer16;
boolean;
integer32;

BEGIN
write('Enter an integer -- '); readln(num);

REPEAT
num := num + 10;
writeln(num, sqr(num»;

UNTIL (num> 101);

writeln;
test_completed := false;
REPEAT

write('Enter another integer (or 0 to stop the program) -- ');
readln(i);
if i = 0 then

test_completed := true
else

writeln('The absolute value of' i:1,' is abs(i):l);
UNTIL test_completed;

END.

Using This Example

Following is a sample run of the program named repeat_example:

Enter an integer -- 70
80 6400
90 8100

100 10000
110 12100

Enter another integer (or 0 to stop the program) 4
The absolute value of 4 is 4
Enter another integer (or 0 to stop the program) -5
The absolute value of -5 is 5
Enter another integer (or 0 to stop the program) 0

{ Now, consider a second run of repeat_example. This time, the user enters}
{ an integer greater than 101. In contrast to while_example, the program }
{ still will execute the loop once: }

Enter an integer -- 102
112 12544

Enter another integer (or 0 to stop the program) -- 0

4-129 Code

Replace

Replace -- Substitutes a new record for an existing record in a file. (Extension)

'----- .

FORMAT

replace (file_variable) {replace is a procedure.}

Argument

file_variable A file variable.

DESCRIPTION

Use the replace procedure to replace an element in the file specified by file_variable. You can only C
use replace on DOMAIN record-structured (rec) files; you cannot use it to replace an element in an ._-/
UASC file.

Before calling replace you must do the following:

1. Open the file for reading. (Chapter 8 explains how to do this.)

2. Specify the record that you wish to replace. To do this, you can use the find procedure (de­
scribed earlier in this chapter).

3. Store the replacement record by entering a statement of the format: file_variable" := replace­
ment_record;

The replace procedure permits a program to rewrite file components -- for example, to correct errors
-- while the file is open for read access. The program need not close the file and reopen it.

NOTE: In this context, "record" means an occurrence in a DOMAIN record-structured
file, which mayor may not be a DOMAIN Pascal record type. (The occurrence
might just as easily be an integer type.)

EXAMPLE

For a full example of replace, see the example for the find procedure that appears earlier in this ency­
clopedia.

Code 4-130

o

o

o

o

o

Reset

Reset -- Makes an open file available for reading.

FORMAT

reset (filename) {reset is a procedure.}

Argument

filename A variable having the text or file data type.

DESCRIPTION

Before you can read data from a file other than standard input, you must reset the file. If the file is a
temporary file and does not already exist, reset creates an empty file. If the file is not a temporary file,
it must already exist, and you must have previously opened it using open. The open procedure tells the
system to open a file for some type of I/O operation; reset tells the system to allow you to read from
the file, but prevents you from modifying the file. (See the description of the find procedure for one
exception to this rule.)

Filename must symbolize an open file.

Calling reset sets the stream marker to point to the beginning of the file. Therefore, filename" will con­
tain the first character or component of the file. You can change the stream marker by reading from
the file (with read, readln, or get) or by calling the find procedure.

If the file is empty when you call reset, then filename" is totally undefined. That is, there is no way to
predict what the value of filename" will be.

To open the file for write access you must call rewrite instead of reset.

4-131 Code

Reset

EXAMPLE

PROGRAM reset_example;
{ Demonstrates reset. After opening a file (with OPEN), the program}
{ reads the first line of the file and writes it to standard output. }

{ We need the two include files in order to use status_$t and
{ error_Sprint.
%NOLIST;
%INCLUDE '/sys/ins/base.ins.pas';
%INCLUDE '/sys/ins/error.ins.pas';
%LIST;

CONST
pathname_of_file , annabel lee'· - ,

VAR
assignment
openstatus
a_line

BEGIN

text;
status_$t;
string;

{Open the file for reading.
open(assignment, pathname_of_file, 'OLD', openstatus.all);
if openstatus.all = status_$ok

then RESET(assignment)
else begin

error_$print(openstatus); {print any error
return;

end;
{See Chapter 9 for a discussion of error handling.

{Read the first line of the file.
read In (assignment , a_line);

{Write this line to standard output (usually the transcript pad).
writeln(output, a_line);

END.

Using This Example

This program is available on-line and is named reset_example.

Code 4-132

}
}

}

o

Return

Return -- Causes program control to jump back to the calling procedure or func­
tion. (Extension)

FORMAT

Return is a statement that takes no arguments and returns no values.

DESCRIPTION

Ordinarily, after DOMAIN Pascal executes the last statement in a routine, it returns control to the call­
ing routine. However, you can use return to jump back prematurely (Le., before the last statement) to
the calling procedure or function. You can use return anywhere in the body of a procedure or func-
tion. . o Using return in the main procedure causes the program to terminate.

o

o

o

EXAMPLE

PROGRAM return_example;
{This program demonstrates the RETURN statement. }
VAR

Ph : single;

Procedure check_Ph;
BEGIN

END;

if (Ph < 2.0) or (Ph> 14.0) then
begin
writeln('You have entered an invalid result.');
RETURN;
end

else if (Ph <= 4.5) then
writeln('You have entered a valid (but suspicious) result.')

else {Ph> 4.5}
writeln('You have entered a valid result.');

writeln('Thank you for your cooperation.');

BEGIN {main procedure}

END.

write('Enter the Ph of the test sample -- '); readln(Ph);
check_Ph;

Using This Example

This program is available on-line and is named return_example.

4-133 Code

Rewrite

Rewrite -- Makes an open file available for writing only.

FORMAT

rewrite (filename) {rewrit~ is a procedure.}

Argument

filename A variable having the text or file data type.

DESCRIPTION

Before you can write data to a permanent file other than standard output, you must do two things.
First, you must open the file with the open procedure. Second, you must call the rewrite procedure.
Open tells the system to open a file for some type of 110 operations; rewrite tells the system to allow
you to modify the open file. Filename must symbolize an open file.

To open a temporary file for writing, you merely have to call the rewrite procedure (i.e., don't call the
open procedure). t'

NOTE: Rewrite clears an existing file of its entire contents. To avoid inadvertently eras­
ing an important file, you might consider using the file_history value 'NEW'
when you call open.

Rewrite sets the stream marker to the beginning of the file. Each call to write, writeln, or put ad­
vances the stream marker.

After calling rewrite, the file is empty. Therefore, the value of filename" is totally undefined. That is,
there is no way to predict what its value will be.

To open the file for read access you must call reset instead of rewrite.

Code 4-134

C._."

c

c

c·

----_ .. ----~.--..... -.. -----.- --------

o

o

(J

o

o

EXAMPLE

PROGRAM rewrite_example;

{ The program will prompt you for the name of the file to open. }
{ Using OPEN and REWRITE, the program will open a file for writing.
{ Then, you will be given a chance to write to the file. }

Rewrite

{ We need the two include files in order to use status_$t and error_$print. }
%NOLIST;
%INCLUDE '/sys/ins/base.ins.pas';
%INCLUDE '/sys/ins/error.ins.pas';
%LIST;

VAR
name_of_file
profound
openstatus
a_line

array[l .. 50] of char;
text;
status_$t;
string;

BEGIN

{ Prompt the user for the name of a file to open. }
write('What is the pathname of the file you want to write to -- ');
readln(name_of_file);

Open the file for writing.
open (profound , name_of_file, 'NEW', openstatus.all);
if openstatus.all = status_$ok

then REWRITE(profound)
else begin

error_$print(openstatus); {Print an error message. }
return;

end;
See Chapter 8 for a discussion of error handling. }

{ Prompt the user. }
writeln('Now enter a line of text.');
readln(a_line);

{ Write the line out to the open file. }
writeln (profound , a_line);

END.

Using This Example

This program is available on-line and is named rewri te_example.

4-135 Code

Round

Round -- Converts a real number to the closest integer.

FORMAT

round(n) {round is a function.}

Argument

n Any real expression.

Function Returns

The round function returns an integer value.

DESCRIPTION

The round function rounds (up or down) n to the closest integer. If the decimal part of n is equal to or
greater than .5, the round function rounds up. (Compare round to trunc.)

EXAMPLE

PROGRAM round_example;

VAR
x REAL;
y INTEGER;

BEGIN
x .- 54.2; y .- ROUND (x) ; WRITELN (y) ;

x .- 54.5; y .- ROUND (x) ; WRITELN (y) ;

x .- 54.8; y .- ROUND (x) ; WRITELN (y) ;

END.

Using This Example

If you execute the sample program named round_example, you get the following output:

Code

54
55
55

4-136

c

c

o

o

o

o

o

Rshft

Rshft -- Shifts the bits in an integer a specified number of spaces to the right.
(Extension)

FORMAT

rshft (num, sh) {rshft is a function.}

Arguments

num, sh Integer expressions.

Function Returns

The rshft function returns an integer value.

DESCRIPTION

The rshft function shifts the bits in num to the right sh places. Rshft does not wrap bits around from
the right edge to the left; instead, rshft shifts zeros in from the left end.

Rshft does not preserve the sign bit. The sign bit moves to the right just like every other bit. This
means that if num is negative and is a 32-bit integer, the result of an rshft is always positive. Of
course, if num already is positive, the result of an rshft will still be positive.

If num is a 16-bit signed integer and if the result of the function is to be stored in a 16-bit integer vari­
able, then rshft sign-expands num to a 32-bit integer, performs the shift, and converts it back to a
16-bit integer. The expansion and contraction means that for a 16-bit negative num where sh is less
than or equal to 16, rshft always returns a negative number.

Consider this example. Suppose num is 16 bits and equals -9. You perform an rshft with sh equaling 3
and put the result back in a 16-bit integer. Here's what happens at each step:

Before the rshft
convert to 32-bit integer
Rshft 3 bits
convert back to 16-bit integer

1111111111110111 = -9
11111111111111111111111111110111
00011111111111111111111111111110

1111111111111110 = -2

If you print the rshft result before it is converted back to 16 bits, you get the number represented in
the third step above which, of course, is a different number than the final result. Write your code like
this' to get that 32-bit result

writeln(rshft(num,3»;

instead of like this

answer := rshft(num,3);
writeln(answer) ;

Results are unpredictable if sh is negative.

Compare rshft to lshft and arshft.

{Assume answer is a 16-bit integer.}

4-137 Code

Rshft

EXAMPLE

See the example shown in the arshft listing earlier in this encyclopedia.

c

Code 4-138

o

o

0

o

Set Operations

Set Operations

In Chapter 3 you learned how to declare set variables. This section explains how to use set variables in
the code portion of your program.

ASSIGNMENT

To assign value(s) to a set variable, use one of the following formats:

set_variable := [];
set_variable := [el, el, ... e/];
set_variable := [el .. el];
set_variable := set_expression set_operator set_expression;

The brackets are mandatory. EI must be an expression. with a value having the same data type as the
base type of the set variable.

(The set_operators are detailed later in this listing.)

The following program fragment shows seven possible set assignments for the paint set:

TYPE
colors (white, beige, black, red, blue, yellow, green);

VAR
c : colors; {enumerated variable}
paint!, paint2, paint3, paint4, paint5, paint6, paint7 SET OF colors;

BEGIN
c := blue;
paint! .- [] ; {Null set.}
paint2 .- [raja] ; {Illegal assignment.}
paint3 .- [red] ;
paint4 .- [beige, green, black] ;
paint5 .- [white green] ; {All seven elements.}
paint6 .- [beige .. blue] ; {beige, black, red, and blue.}
paint7 .- [c] ; {blue.}

4-139 Code

Set Operations

SET OPERATORS

Table 4-10 shows the seven set operators DOMAIN Pascal supports. The following subsections de­
scribe these operators individually.

Table 4-10. Set Operators

Set Operator Operation

+ Union of two sets

* Intersection of two sets
- Set exclusion

= Set equality
<> Set inequality

<= Subset

>= Superset
in Inclusion

Union

The union of two sets is a set containing all members of both sets. In the following example, paint3
contains the union of sets paintl and paint2:

TYPE
colors = (white, beige, black, red, blue, yellow, green);

VAR
c : colors;
paintl, paint2, paint3 SET OF colors [] ;

BEGIN
paintl .- [white, black, red];
paint2 .- [black, yellow];
paint3 .- pairitl + paint2;

{paint3 will contain white, black, red, and yellow.}

If there are duplicates (e.g., black), the resulting set does not store the duplicate value twice. Thus,
paint3 contains black only once.

Code 4-140

c

c

("
I

\ ...

-------------------_ .. - - - ------------

o

o

o

Set Operations

Intersection

The intersection of two sets is a set containing only the duplicate elements. In the following example,
paint3 contains the intersection of sets paintl and paint2:

TYPE
colors = (white, beige, black, red, blue, yellow, green);

VAR
c : colors;
paintl, paint2, paint3 SET OF colors .- [];

BEGIN
paintl .- [white, black, red];
paint2 .- [black, yellow];
paint3 .- paintl * paint2;

{paint3 will contain black.}

Set Exclusion

Pascal finds the result of a set exclusion operation by starting with all the elements in the left operand
and crossing out any of the elements that are duplicated in the right operand. The following program
fragment demonstrates two set exclusion operations:

TYPE
colors = (white, beige, black, red, blue, yellow, green);

VAR
c : colors;
paintl, paint2, paint3 SET OF colors .- [];

BEGIN
paintl .- [white, black, red];
paint2 .- [black, yellow];

paint3 .- paintl - paint2;
{paint3 will contain white and red.}

paint3 := paint2 - paintl;
{paint3 will contain yellow.}

4-141 Code

Set Operations

Set Equality and Inequality

The result of a set equality (=) or inequality «» operation is a Boolean value. If two set variables con-
tain exactly the same elements (or are both null sets), then = is true and <> is false. The following pro- ('
gram fragment demonstrates set equality: \,-/

TYPE

VAR

colors (white, beige, black, red, blue, yellow, green);

c : colors;
paintl, paint2 SET OF colors .- [];

BEGIN
paintl .- [white, black, red];
paint2 [black, yellow];
if paintl = paint2

then writeln('The two sets contain the same elements.');
else writeln('The two sets do not contain the same elements.');

Subset

The result of a subset operation «=) is a Boolean value. If the first operand is a subset of the second
operand, then the result is true; otherwise, the result is false.

TYPE

VAR

colors = (white, beige, black, red, blue, yellow, green);

c : colors;
paintl, paint2 SET OF colors .- [];

BEGIN

Code

paintl .- [white, black, red];
paint2 .- [white, red];
if paint2 <= paintl {this is true}

then writeln ('Paint2 is a subset of paintl');

4-142

c

c

o

o

o

o

Set Operations

Superset

The result of a superset operation (>=) is a Boolean value. If the first operand is a superset of the sec­
ond operand, then the result is true; otherwise, the result is false.

TYPE

VAR

colors = (white, .beige, ~lack, red, blue, yellow, green);

c : colors;
paintl, paint2 SET OF colors .- [];

BEGIN
paintl .- [white, black, red];
paint2 .- [white, red];
if paintl >= paint2 {this is true.}

then writeln('Paintl is a superset of paint2.');

Inclusion

See the separate in listing earlier in this encyclopedia.

4-143 Code

Set Operations

EXAMPLE

PROGRAM set_example;
{This program demonstrates I/O with set variables. You cannot }
{use a set variable as an argument to any of the predeclared }
{Pascal I/O procedures, so you must use a somewhat roundabout }
{method involving the base type of the set. }

TYPE
possible_ingredients

(sugar, nuts, chips, milk, flour, carob, salt, bkg_soda);
VAR

pi
cookies
answer

possible_ingredients;
set of possible_ingredients .- [];
char;

BEGIN
{Read the proper cookie ingredients and store }
{them in the cookies variable. }

for pi := sugar to bkg_soda do
begin
write('Should the recipe contain' pi:4, '? (y or n) -- ');
readln(answer);
if (answer = 'y') or (answer = 'Y') then

cookies .- cookies + [pi];
end; {for}

{Write the list of ingredients. }

END.

writeln(chr(lO), 'The ingredients are: ');
for pi := sugar to bkg_soda do

if pi IN cookies then
writeln(pi) ;

Using This Example

Following is a sample run of the program named set_example:

Should the recipe contain SUGAR? (y or n) -- y
Should the recipe contain NUTS? (y or n) -- y
Should the recipe contain CHIPS? (y or n) -- y
Should the recipe contain MILK? (y or n) -- n
Should the recipe contain FLOUR? (y or n) -- y
Should the recipe contain CAROB? (y or n) -- n
Should the recipe contain SALT? (y or n) -- y
Should the recipe contain BKG_SODA? (y or n) -- y

The ingredients are:
SUGAR

NUTS
CHIPS
FLOUR

SALT
BKG_SODA

Code 4-144

.- ... ---.-... ------.---~---------

C~:

c-

C

o

o

o

o

o

Sin

Sin -- Calculates the- sine of the specified number.

FORMAT

sin (number) {sin is a function.}

Argument

number Any real or integer expression.

Function Returns

The sin function returns a real value (even if number is an integer).

DESCRIPTION

The sin function calculates the sine of a number. This function assumes that the argument (number) is
a radian measure (as opposed to a degree measure). (Refer also to the cos listing earlier in this ency­
clopedia.)

EXAMPLE

PROGRAM sin_example;
{This program demonstrates the SIN function.}

CONST
pi

VAR

BEGIN

3.1415926535;

write('Enter an angle in radians -- ');
readln(angle_in_radians) ;
c1 := SIN (angle_in_radians) ;

REAL;

writeln('The sine of " angle_in_radians:5:3, ' radians is c1:5:3);

{The following statements show how to convert from degrees to radians. }
write('Enter another angle (in degrees) -- ');
readln(angle_in_degrees) ;
converted_to_radians := «angle_in_degrees * pi) / 180.0);
c2 := SIN(cOnverted_to_radians);
writeln('The sine of " angle_in_degrees:5:3, ' is " c2:5:3);

END.

4-145 Code

Sin

Using This Example

Following is a sample run of the program named sin_example:

Enter an angle in radians -- 1.0
The sine of 1.000 radians is 0.841
Enter another angle (in degrees) 14.2
The sine of 14.200 is 0.245

Code 4-146

C/
.-"

c

o

o

o

o

o

Sizeof

Sizeof -- Returns the size (in bytes) of the specified data object. (Extension)

FORMAT

The sizeof function has two formats:

sizeof(x) {first form}

sizeof(x, tag1, ... tagN) {second form}

Arguments

x The name of a type (standard or user-defined), a variable, a constant, or a
string.

tag One or more constants corresponding to the fields in a variant record. You spec­
ify these tags only if you want to find the size of a variant record. The number of
tags can be no greater than the number of tag fields in the variant record.

Function Returns

The function returns an integer value.

DESCRIPTION

Sizeof returns an integer equal to the number of bytes that the program uses to store x.

You must often supply a string and its length as input arguments when calling a procedure or function.
You can use sizeof to calculate the string's length, although the way you call sizeof affects the answer
you get. For example, if your code includes the following:

VAR
length : integer;
animal : string;

animal .- 'wildebeest';
length := SIZEOF(animal);

sizeof returns 80 because animal is declared to be a string, and string is defined as being an array
of 80 chars. However, if you call the function this way:

length := SIZEOF('wildebeest');

sizeof returns a value of 10.

4-147 Code

Sizeof

To find the size of a specified variant record, you must pass both the name of the variant record type
(or variable), and tag fields. For example, consider the following record declaration:

TYPE
worker_stat = (exempt, nonexempt);
worker = record

name: array[1 .. 24] of char;
case worker_stat of

exempt (salary integer16);
nonexempt

end;
end;

(wages
plant

single;
array[1 .. 20] of char);

To find the size of a record if worker_stat equals exempt, call sizeof as follows:

SIZEOF(worker_stat, exempt)

To find the size of a record if worker_stat equals nonexempt, call size of as follows:

SIZEOF(worker_stat, nonexempt)

EXAMPLE

PROGRAM sizeof_example;
{ This program demonstrates the SIZEOF function. }

CONST
tree

TYPE
'ficus';

VAR

student = RECORD

end;

name
age
id

array[1 .. 19] of char;
integer16;
integer32;

t2 integer16;

BEGIN

wri teln (' The size
wri teln (' The size
writeln('The size
writeln('The size

END.

of
of
of
of

constant tree is " SIZEOF(tree) :1);
variable t2 is " SIZEOF(t2) :1);
an integer32 variable is " SIZEOF(integer32) :1);
a student record is " SIZEOF(student) :1);

Using This Example

If you execute the sample program named sizeof_example, you get the following output:

The size of constant tree is 5
The size of variable t2 is 2
The size of an integer32 variable is 4
The size of the student record type is 26

Code 4-148

C.
--

c

o

Sqr

Sqr -- Calculates the square of a specified number.

FORMAT

sqr(n) {sqr is a function.}

Argument

n Any integer or real expression.

Function Returns

The sqr function returns an integer if n is an integer, and returns a real number if n is real.

DESCRIPTION

The sqr function calculates n * n. A potential problem for users is that the square of a large integer16
value often exceeds the maximum value (32,767) for integer16 variables. If this error is possible in
your program, assign the square of an integer16 variable to an integer32 variable.

o EXAMPLE

o

o

PROGRAM sqr_example;

VAR
i_short
i_long
r1, r2

BEGIN

: integer16;
: integer32;

: real;

write('Enter an integer -- '); readln(i_short);
i_long := SQR(i_short);
writeln('The square of " i_short:1, ' is " i_long: 1) ;

write('Enter a real number -- '); readln(r1);
r2 := SQR(r1);
writeln('The square of " rl:l, ' is " r2:1);

END.

Using This Example

Following is a sample run of the program named sqr_example:

Enter an integer -- 1100
The square of 1100 is 1210000
Enter a real number ~- -5.23
The square of -5.230000E+00 is 2.735290E+Ol

4-149 Code

Sqrt

Sqrt -- Calculates the square root of a specified number.

FORMAT

sqrt(n) {sqrt is a function.}

Argument

n Any integer or real expression that evaluates to a number greater than zero.

Function Returns

The sqrt function returns a real value (even if n is an integer).

DESCRIPTION

The sqrt function calculates the square root of n.

EXAMPLE

PROGRAM sqrt_example;

VAR
i_long
r_single
r_double

BEGIN

integer32;
single;
double;

write('Enter an integer -- '); readln(i_long);
r_double := SQRT(i_long);
writeln('The square root of " i_long:l, ' is " r_double);

write('Enter a real number -- '); readln(r_single);
r_double := SQRT(r_single);
writeln('The square root of' r_single, ' is " r_double);

END.

Using This Example

Following is a sample run of the program named sqrt_example:

Enter an integer -- 24
The square root of 24 is 4. 898979663848877E+00
Enter a real number 24.0
The square root of 2.400000E+Ol is 4. 898979663848877E+00

Code 4-150

"--.,

c'

c

o

o

o

o

o

Statements

Statements

Throughout this encyclopedia, we refer to statements, both simple and compound. Here, we define
statement.

Statement

When a format requires a statement, you must enter one of the following:

• An assignment statement like x : = 5 or x . - y + z. An assignment statement can also be
a call to a function like x : = ORO (" a").

• A procedure call like WRITELN ("hi") .

• A goto, if/then, if/then/else, case, for, repeat, while, with, exit, next, or return state­
ment.

• A compound statement.

• An empty statement.

Simple and Compound Statements

When the format part of a listing in this chapter says that a command requires a simple statement, it
just means that we require one statement (see above). A compound statement is a group of zero or
more statements bracketed by the keywords begin and end. In other words, a compound statement
has the following format:

begin
statement 1 ;

statementN
end;

The action part of a routine is itself a compound statement. A statement can be preceded by a label
(but not every label is accessible; see the goto listing earlier in this chapter).

4-151 Code

Succ

Succ -- Returns the successor of a specified ordinal value.

FORMAT

succ(x) {succ is a function.}

Argument

x Must be an integer, Boolean, char, or enumerated expression.

Function Returns

The succ function returns a value having the same data type as x.

DESCRIPTION

The succ function returns the successor of x according to the following rules:

Data Type of x Succ Returns

Integer The numerical value equal to x + 1.

Boolean True -- even if x already equals true.

Char ' The character with the ASCII value

one greater than the ASCII value of x.
Enumerated The identifier to the right of x in the

type declaration.

c·

SUCC (LASTOF (x» generally is undefined; however, DOMAIN Pascal does not report an error.
DOMAIN Pascal also doesn't report an error if you specify an integer value that is outside the range of
the specified integer type. Therefore, your program should test for an out-of-bounds condition. ~

"'-..
Compare the succ function to the pred function.

c
Code 4-152

o

o

o

o

EXAMPLE

PROGRAM succ_example;

TYPE
jours (lundi, mardi, mercredi, jeudi, vendredi, samedi, dimanche);

VAR
int : integer;
ch : char;
semaine : jours;

BEGIN
int := succ(53); writeln('The successor to 53 is " int:l);
ch := succ('q'); writeln('The successor to q is " ch);

Succ

semaine .- succ(jeudi); writeln('The successor to jeudi is' semaine:8);
END.

Using This Example

If you execute the sample program named succ_example, you get the following output:

The successor to 53 is 54
The successor to q is r
The successor to jeudi is VENDREDI

4-153 Code

Then

Then -- Refer to If earlier in this encyclopedia.

c

Code 4-154

To

To -- Refer to For earlier in this encyclopedia.

o

o

o

o

o
4-155 Code

Trunc

Trunc -- Truncates a real number to an integer.

FORMAT

trunc(n) {trunc is a function,}

Argument

n Any real value,

Function Returns

The trunc function returns an integer,

DESCRIPTION

The trunc function removes the fractional part of n to create an integer, (Compare trunc to round,)

EXAMPLE

PROGRAM trunc_example;
VAR

x REAL;
y INTEGER;

BEGIN
x ,- 54,2; y ,- TRUNC(x) ;
x ,- 54,5; y ,- TRUNC(x) ;
x ,- 54,8; y ,- TRUNC(x) ;

END,'

Using This Example

WRITELN (y) ;

WRITELN (y) ;

WRITELN (y) ;

If you execute the sample program named trunc_example, you get the following output:

54
54
54

Compare these results to the results of executing program round_example,

Code 4-156

(
"-. ..•.. ,/

'--

o

o

o

o

o

Type Transfer Functions

Type Transfer Functions -- Permits you to change the data type of a variable or
expression in the code portion of your program. (Extension)

FORMAT

transfer_function (x) {Type transfer functions are functions.}

Arguments

transfer_function The name of any predeclared DOMAIN Pascal data type or any user-defined
data type that has been declared in the program.

x An expression.

DESCRIPTION

DOMAIN Pascal type transfer functions enable you to change the type of a variable or expression
within a statement. To perform a type transfer function, use any user-created or standard type name
as if it were a function name in order to "map" the value of its argument into that type.

With one exception, the size of the argument must be the same as the size of the destination type.
(Chapter 3 describes the sizes of each data type.) This size equality is required because the type trans­
fer function does not change any bits in the argument. DOMAIN Pascal just "sees" the argument as a
value of the new type. The one exception is that integer subranges are always compatible regardless of
their sizes.

It is important to remember that type transfer functions do not convert any value. Consider the follow­
ing data type declarations:

VAR
i INTEGER32;
r REAL;

The following assignment converts the value of variable i to a floating-point number:

r := i;

However, in the following assignment, DOMAIN Pascal "sees" the bits in i as if they were actually
representing a floating-point number. In this case, there is a transfer, but no conversion:

r : = real (i) ;

Note that there are restrictions on the data types to which you can convert a given DOMAIN Pascal
data type. For example, you get an error if you try the following:

i := r;

In such a case, there's no way for DOMAIN Pascal to know what you want to do with the portion of r
after the decimal point. Use the trunc or round functions (described earlier in this encyclopedia) in­
stead.

4-157 Code

Type Transfer Functions

A practical application of type transfer functions is in controlling the bit precision of a computation.
For example, consider the following program fragment:

VAR
x, y : integer16;

BEGIN
if x + y > 5

then .

By default, the compiler expands operands x and y to 32-bit integers and performs 32-bit addition
before making the comparison to 5. However, by using the following type transfer function, we can
produce more efficient code:

VAR
x, y : integer16;

BEGIN
if INTEGER16(x + y) > 5

then ...

The disadvantage to using the type transfer function in the preceding fragment is that it ignores the
possibility of integer overflow.

Code 4-158

('

(\

o

o

o

o

o

Type Transfer Functions

EXAMPLE

PROGRAM type_transfer_functions_example;
{ This program demonstrates two uses of type transfer functions. }

TYPE
car_manufacturers
pointer_to_word
word

VAR

(volvo, fiat, nissan, dodge, porsche);
"'word;
array[l .. lO] of char;

ordinal_value_of_car : integer16;
car, actual_value_of_car : car_manufacturers;
name, rename word:= [* of ' '];
namepointer : pointer_to_word;

BEGIN

{ Here, we convert an ordinal value into an enumerated value.}
car := dodge;
ordinal_value_of_car := ord(car);
actual_value_of_car := CAR_MANUFACTURERS(ordinal_value_of_car);
writeln('The actual value of ordinal value', ordinal_value_of_car:l,

, is " actual_value_of_car:7);

{ It is illegal to perform mathematical operations on a pointer variable. }
{ However, by using type transfer functions you can temporarily make }
{ a pointer variable into an integer32 variable so that you can perform }
{ mathematical operations on it. Then, after using the integer in a math }
{ calculation, you can transfer the integer back to a pointer type by using}
{ a second type transfer function. This routine prints the final eight }
{ characters in the specified name. }

END.

write('Enter a name that is 10 characters long -- '); readln(name);
namepointer := addr(name); {get starting address of name array}
namepointer := UNIV_PTR(INTEGER32(namepointer) + 2);
rename := namepointer"';
writeln('The last eight characters of the name are rename:8);

Using This Example

If you execute the sample program named t tf_example, you get the following output:

The actual value of ordinal value 3 is DODGE
Enter a name that is 10 characters long -- CALIFORNIA
The last eight characters of the name are LIFORNIA

4-159 Code

Unpack

Unpack -- Copies a packed array to an unpacked array.

FORMAT

unpack(packed_array, unpacked_array, index) {unpack is a procedure.}

Arguments

unpacked_array

packed_array

index

DESCRIPTION

An array that has been defined without the keyword packed.

An array that has been defined using the keyword packed.

A variable that is the same type as the array bounds (integer, boolean, char, or
enumerated) of unpacked_array. Index designates the array element in un­
packed_array to which unpack should begin copying.

Unpack copies the elements in a packed array to an unpacked one. Data access with unpacked arrays
generally is faster since data elements are always aligned on word boundaries.

('
"-- ... /

Unpacked_array and packed_array must be of the same type, and for every element in packed_array, ('
there must be an element in unpacked_array. That is, if you have the following type definitions

TYPE
x array[i .. j] of single;
y packed array[m .. n] of single;

the subscripts must meet these requirements:

j - index >= n - m {"index" as set in the call to unpack}

For example, it is legal to use unpack on two arrays defined like this:

TYPE
big_array
small_array

VAR

array[l .. 100] of integer;
packed array[l .. 10] of integer;

grande
petite

big_array;
small_array;

You use index to indicate the array element in unpacked_array to which unpack should begin 'copy­
ing. For instance, given the previous variable declarations and assuming variable i is an .integer, this
fragment

i := 1;
unpack(petite, grande, i);

tells unpack to begin copying into grande [1]. Unpack keeps copying until it has exhausted all of (~ "
peti te's elements -- in this case 10. Unpack always copies all of its packed_array's elements, re- \.-
gardless of how many elements are defined for unpacked_array.

Code 4-160

o

o

o

o

o

Unpack

Index can take a value outside of packed_array's defined subscripts. That is, if in the example above,
i equals 50, unpack copies these values this way:

grande [50] := petite[l] ;
grande [51] := petite[2] ;

grande [59] := petite[lO];

See the listing for pack earlier in this encyclopedia.

EXAMPLE

PROGRAM unpack_example;

TYPE
uarray
parray

array[l .. 50] of integer16;
packed array[l .. 10] of integer16;

VAR
full_range
sub_range
i, j

BEGIN

uarray;
parray;
integer16;

for i := 1 to 10 do
sub_range[i] .- i;

j := 30;

UNPACK(sub_range, full_range, j);
writeln ('The unpacked array now contains: ');
for i := 30 to 39 do

writeln ('full_range[', i:2, '] = " full_range[i] :2);

END.

Using This Example

If you execute the sample program named unpack_example, you get the following output:

The unpacked array now contains:
full_range [30] 1
full_range [31] 2
full_range [32] 3
full_range [33] 4
full_range [34] 5
full_range [35] 6
full_range [36] 7
full_range [37] 8
full_range [38] 9
full_range [39] 10

4-161 Code

Until

Until -- Refer to Repeat earlier in this encyclopedia.

('

c

c
Code 4-162

CJ

o

(~

o

o

While

While -- Execute the statements within a loop as long as the specifi,ed condition
is true.

FORMAT

while condition do
stmnt;

Arguments

condition

stmnt

DESCRIPTION

{while is a statement.}

Any Boolean expression.

A simple statement or a compound statement. (Refer to "Statements" earlier in
this encyclopedia.)

For, repeat, and while are the three looping statements of Pascal. With while, you specify the condi­
tion under which Pascal continues looping.

While marks the beginning of a loop. As long as condition evaluates to true, Pascal executes stmnt.
When condition becomes false, Pascal transfers control to the first statement following the loop.

To jump out of a while loop prematurely (Le., before the condition is true), do one of the following
things:

o Use exit to transfer control to the first statement following the while loop.

o Use goto to transfer control outside the loop.

In addition to these measures, you can also call the next statement to skip the remainder of the state­
ments in the loop for one iteration.

4-163 Code

While

EXAMPLE

PROGRAM while_example;
{ This program contains two while loops. }
{ Compare it to repeat_example. }
VAR

num
test_completed
i

BEGIN

integer16;
boolean;
integer32;

write('Enter an integer -- '); read In (num) ;
WHILE (num < 101) DO

BEGIN
num := num + 10;
writeln(num, sqr(num»;
END;

writeln;
test_completed := false;
WHILE test_completed = false DO

BEGIN
write('Enter an integer (enter a 0 to stop the program) -- ');
readln(i);

END.

if i = 0 then
test_completed := true

else
writeln('The absolute value of' i:1,' is

END;

Using This Example

Following is a sample run of the program named while_example:

Enter an integer -- 70
80 6400
90 8100

100 10000
110 12100

Enter an integer (enter a 0 to stop the program) 4
The absolute value of 4 is 4
Enter an integer (enter a 0 to stop the program) -5
The absolute value of -5 is 5
Enter an integer (enter a 0 to stop the program) 0

abs(i):l);

{NOW, consider a second run of while_example. In contrast to repeat_example, }
{while_example does not execute the loop even once when x > 101. }
Enter an integer -- 102

Enter an integer (enter a 0 to stop the program) -- 0

Code 4-164

c

c

o

o

o

o

o

With -- Lets you abbreviate the name of a record.

FORMAT

With is a statement that takes the following format:

with v1, v2, ... vN do
stmnt;

This format is equivalent to:

with v1 do
with v2 do

Arguments

with vN do
stmnt;

With

v1 A record expression; that is, v1 must evaluate to a record. For example, it might
be the name of a record, a pointer to a record, or a particular component in an
array of records.

v2, ... vN

stmnt

DESCRIPTION

Optional record references or references that are qualified by v1, ... v(N-1).

A simple or compound statement. (Refer to the" Statements" listing earlier in this
chapter.)

Use with to abbreviate a reference to a field in a record. With works in the following manner. Suppose
that X is a field within record MATHVALUES. Ordinarily, you must specify the full name MATHVALUES. X
whenever you want to refer to the contents of field X. However, by using the statement

WITH MATHVALUES

you can simply specify X to refer to the contents of the field. Moreover, suppose that record MATH­
VALUES contains a field called TRIGONOMETRY which itself contains a field named Y. By specifying

WITH MATHVALUES, TRIGONOMETRY

you can refer to Y as Y rather than as MATHVALUES. TRIGONOMETRY. Y. Note that DOMAIN Pascal
evaluates the expression v1 only once, and this evaluated expression is implied within the body of the
with statement.

4-165 Code

With

Now consider a fragment demonstrating with:

TYPE
P = Abasketball_team;

VAR
bb = basketball_team;

BEGIN
WITH pA DO

BEGIN
mascot
p

.- 'tiger';

.- nil;

END;

.- 198.2; height
bb.mascot .- 'lion';

Note two things about the preceding example. First, changing p does not affect access to the record
identified by the with statement. Second, you can reference other records of the same type by com- C .. . ,'
pletely qualifying the reference.

Extension to Standard Pascal

DOMAIN Pascal supports the standard format of with and also supports the following alternative for­
mat:

with v1 :identifier1, v2:identifier2, ... vN:identifierN do
stmnt;

This is very similar to the standard format for with. In this extension, the identifier is a pseudonym for
the record reference v. To specify a record, 'use the identifier instead of the record reference v. Fur­
thermore, to specify a field in a record, use identifier.field_name rather than merely field_name.

For example, given the following record declaration:

VAR
basketball_team : record

mascot array[1 .. 15] of char;
height : single;

end;

consider the following three methods of assigning values:

readln(basketball_team.mascot);
readln(basketball_team.height);

WITH basketball_team DO
begin

end;

readln(mascot);
readln(height);

WITH basketball_team : B DO
begin

end;

Code

readln(B.mascot);
readln(B.height);

{Not using WITH.}
{Not using WITH.}

{Using standard WITH.}

{Using extended WITH.}

4-166

/-­
I
\
'-

c'

r--"
f

o

o

o

o

o

With

This feature is useful for working with long record names when two records contain fields that have the
same names. (See the example at the end of this listing.)

EXAMPLE

PROGRAM with_example;
{ This program demonstrates the WITH statement. }

TYPE

VAR

name = record
first: array[1 .. 10] of char;
last: array[1 .. 14] of char;

end;
documentation_department = record

their_name name;
current_project : string;

end;

documentation_department;

BEGIN
writeln('In this routine, you enter data about Apollo documentors.');

{ First, we demonstrate the standard use of WITH. }
WITH our_technical_writers, their_name DO

BEGIN
write('Enter the first name of the writer -- ');
readln(first) ;

write('Enter the last name of the writer -- ');
readln(last) ;

write('Enter a brief description of his or her current project-- ');
readln(current_project);

END; {with}

writeln;

{ Next, we demonstrate the DOMAIN Pascal extensions to WITH. }
{ Use of the identifiers Wand E permits a distinction between the records
{ inside the scope of the WITH statement. }

END.

WITH our_technical_writers W, our_editors : E DO
BEGIN

write('Enter the first name of the editor -- ');
readln(E.their_name.first) ;

write('Enter the last name of the editor -- ');
readln(E. their_name. last) ;

E.current_project .- W.current_project;
END;

Using This Example

This program is available on-line and is named wi th_example.

4-167 Code

Write, Writeln

Write, Writeln -- Writes the specified information to the specified file (or to the
screen).

FORMAT

write (f, exp1 :field_width, ... , expN:fie/d_width) {write and writeln are procedures.}

and

writeln(f, exp1 : field_width, ... , expN:fie/d_width)

Arguments

f

exp

DESCRIPTION

A variable having either the text or file data type. F is optional. If you do not
specify f, DOMAIN Pascal writes to standard output (output) which is usually the
transcript pad. (Note that output has a text data type.)

One or more expressions separated by commas. An expression can be any of the
following:

• A string constant

• An integer, real, char, Boolean, or enumerated expression

• An element of an array

• The name of an array variable whose base type is char

• A field of a record variable (assuming that the field is itself one of the
previous four items)

Note that exp cannot be a set variable.

An integer expression that specifies the number of characters that write or
writeln uses to output the value of this argo Field_width is optional. Its effect de­
pends on the data type of the exp to which it applies. (We detail these effects in
the next section.) Note that you can specify field_width only if the f has the text
data type.

Write and writeln are output procedures. (Put is also an output procedure; see the put listing earlier
in this encyclopedia.) Write and writeln both write the values of arguments exp1 through expN to the
file specified by f. At runtime, Pascal writes the value of exp1 first, the value of exp2 second, and so
on until expN.

Write and writeln are identical in syntax and effect except that writeln appends a newline character
after writing the exps but write does not. In addition, when using write, f can have a file or text data
type; however, when using writeln, f must have a text data type only.

Before calling write or writeln to write to an external file, you must open the file for writing. Chapter 8
details this process. Note that you do not need to open the standard output (output) file before writing
to it.

Code 4-168

c

c

o

o

o

o

o

Write, Writeln

Following the call to write, r is totally undefined.

The following paragraphs explain the output rules that DOMAIN Pascal uses to print the value of an
expo

Char Variables, Array of Char Variables, and String Constants

The following list shows the default field_widths for char variables, array of char variables, and string
constants:

• If exp is a char variable, the default field_width is 1.

• If exp is an array of char variable, the default field_width is the declared length of the array.
For example, if you declare an array named Oslo_array as

Oslo_array: array[l .. 10] of char;

then the default field_width is 10.

• If exp is a string constant, the default field_width is the number of characters in the string.

If you do specify a field_width, here's how write and writeln interpret it:

What DOMAIN Pascal does

= default Writes a value with no leading or

trailing blanks.

> default Adds leading blanks.

< default Truncates the excess characters at the

end of the array of string.

= -1 Truncates any trailing blanks in the

array. Standard Pascal issues an error

if you specify a negative field_width.

For example, notice how the field_widths in the following writeln statements affect output. (The first
two lines of output form a column ruler to help you notice columns.)

4-169 Code

Write, Writeln

DOMAIN Pascal Statements

VAR
name

BEGIN

array [1 .. 20] of char; ,
grade : char;

name := 'Zonker Harris
grade := 'F';

WRITELN(name, grade);
WRITELN(name:-l, grade);
WRITELN(name:4, grade);
WRITELN(name:25, grade);

Integer Values

, . ,

Output

1 2 3
123456189012345618901234561890
Zonker Harris F
Zonker HarrisF
ZonkF

Zonker Harris F

The default field_width for an integer value is 10 spaces. This default applies to integer, integer16, in- C:
teger32, and subrange variables, and to elements of an array that have one of these types as a base
type. It also applies to record fields that have one of the aforementioned types.

If you specify a field_width greater than the number of digits in the integer value, DOMAIN Pascal
prints the value with leading blanks.

If you specify a field_width less than or equal to the number of digits in the integer value, DOMAIN
Pascal writes the value without leading or trailing blanks. Note that specifying a field_width never
causes DOMAIN Pascal to truncate the written value.

For example, consider an integer16 variable named small_int with a value of 452 and an integer32
variable named large_int with a value of 70,600,100. Notice how the field_widths in the following
writeln statements affect output. (The first two lines of output form a column ruler to help you notice
columns.)

DOMAIN Pascal Statements

WRITELN(Small_int);
WRITELN(large_int);
WRITELN(small_int:5);
WRITELN(small_int:l);

Real Values

Output

1 2 3
123456189012345618901234561890

452
10600100
452

452

For real exp you can supply no field_width, a one-part field_width, or a two-part field_width. Here are
the rules:

Code

• If you don't supply a field_width, DOMAIN Pascal uses 13 spaces to write a single-precision
value and 22 spaces to write a double-precision value.

o If you supply a one-part field_width, DOMAIN Pascal adds or removes digits from the frac­
tional part.

• If you supply a two-part field_width, DOMAIN Pascal interprets the first part of the
field_width as the total number of characters to print and the second part of the field_width as

4-170

c

o

o

o

o

o

Write, Writeln

the number of digits to print following the decimal point. Note that the second part of the
field_width has priority over the first part. For instance, suppose that you request a total width
(the first part) of 5 characters and a fractional width (the second part) of 7 characters. Since
DOMAIN Pascal cannot satisfy both parts, it will satisfy only the second part.

If you don't supply a two-part field_width, DOMAIN Pascal always leaves one leading space for posi­
tive numbers; none for negative numbers.

If there is not enough room for all the digits in the number, DOMAIN Pascal rounds the value rather
than truncating it.

For example, suppose that a single-precision real variable named veloci ty has a value of 43.54893.
The following table shows how various writeln statements affect output. (The first two lines of output
form a column ruler to help you notice columns.)

DOMAIN Pascal Statements

WRITELN(velocity);
WRITELN(velocity:20) ;
WRITELN(velocity:1) ;
WRITELN(velocity:15:4);
WRITELN(velocity:7:4);
WRITELN(velocity:7:2);
WRITELN(velocity:3:0);
WRITELN(velocity:1:5);

Enumerated and Boolean Values

Output

1 2 3
123456789012345678901234567890

4.354893E+Ol
4. 3548930000000E+01
4.4E+01

43.5489
43.55

44.
43.54893

43.5489

DOMAIN Pascal keeps the same rules for writing enumerated and Boolean values. For both types, the
default field_width is 15. Here's what happens if you specify your own field_width:

• If you specify a field_width less than 15, DOMAIN Pascal subtracts a suitable number of lead­
ing blanks.

o If you specify a field_width greater than 15, DOMAIN Pascal adds a suitable number of lead­
ing blanks.

Note that DOMAIN Pascal never truncates any of the characters in the value (even if the field_width is
less than the number of characters).

4-171 Code

Write, Writeln

The following example shows how various field_widths affect output. (The first two lines of output form
a column ruler to help you notice columns.)

DOMAIN Pascal Statements

VAR
colors
evil

(red, brown, magenta);
boolean;

Output

123
123456789012345678901234567890

BEGIN
colors := brown;
WRITELN(colors);
WRITELN(colors:8);
WRITELN(colors:1);

evil := true;
WRITELN(evil) ;
WRITELN(evil:2);

EXAMPLE

PROGRAM write_example;

brown
brown

true

brown

true

{ This example reads one input line from the keyboard and writes it to }
{ filename 'truth'.}

CaNST
pathname

VAR
a_line
wisdom
statint

BEGIN

'truth';

string;
text;
integer32;

open(wisdom, pathname, 'NEW', statint);
if statint <> 0 then

return
else rewrite(wisdom);

WRITE('Enter a sentence of truth -- ');
readln(a_line);
WRITELN(wisdom, a_line);
WRITELN(wisdom, chr(10) , chr(10) , chr(9) ,

{ ASCII 10 is a linefeed. ASCII 9 is a tab.

END.

Using This Example

'Thank You', chr(7»;
ASCII 7 is the bell. }

This program is available on-line and is named wri te_example.

Code 4-172

r
~--

Xor

Xor -- Returns the exclusive or of two integers. (Extension)

o
FORMAT

xor(int1, int2) {xor is a function.}

Arguments

int1, int2 Integer expressions.

Function Returns o The xor function returns an integer value.

()

o

()

DESCRIPTION

Use the xor function to take the bitwise exclusive or of int1 and int2. The xor function belongs to the
bitwise class consisting of &, !, and -, and does not belong to the Boolean operator class consisting of
and, or, and not. When matching bits for an xor function, DOMAIN Pascal uses the following truth
table:

bit x bit x bit x of
of op1 of op2 result

0 0 0

0 1 1

1 0 1
1 1 0

4-173 Code

Xor

EXAMPLE

PROGRAM xor_example;

{This program finds the exclusive or of two integers by using XOR. }

VAR
iI, i2, result integerl6;

BEGIN
write('Enter an integer -- '); readln(il);
write('Enter another integer '); readln(i2);
result := XOR(il, i2);
writeln('The exclusive or of' il:l,' and', i2:I, ' is

result:l) ;
END.

Using This Example

Following is a sample run of the program named xor_example:

Enter an integer -- 6
Enter another integer -- 20
The 'exclusive or of 6 and 20 is 18

Code 4-174

c

C"

o

o

o

o

Chapter 5

This chapter explains how to declare and call procedures and functions. The term "routine", which ap­
pears throughout this chapter, means either procedure or function. The terms "parameter" and "argu­
ment" also appear throughout this chapter. In this case, argument means the data passed to a routine,
while parameter means the templates for the data that the called routine receives.

Chapter 2 mentioned that routine headings take the following format:

attribute_list procedure name (parameter_list); routine_options;

or

attribute_list function name (parameter_list) : data_type; routine_options

This chapter details the parameter_list, routine_options, and attribute_list.

5.1 Parameter List
You can declare a routine with or without parameters. If you declare it without parameters, you cannot
pass any arguments to the routine. If you declare it with parameters, you specify the data type of each ar­
gument that can be passed to the routine.

You specify parameters within a parameter list. You can specify a maximum of 65 parameters within the
list. A parameter list has the following format:

(param_type1 par list1 data_type1;

The param_type is optional; for information, see the "Parameter Types" section later in this chapter.

5-1 Procedures and Functions

A par_list consists of one or more parameters that have the same data_type. Thus, the combination

par_list : data_type

is similar to a variable declaration. Like a variable declaration, each parameter in par_list must be a valid
identifier. Also, each data type must be a predeclared DOMAIN Pascal or user-defined data type. That
is, you cannot specify an anonymous data type. (See the "Var Declaration Part" section in Chapter 2 for
more information on anonymous data types.)

You can use a parameter in the action part of the routine just as you would use any variable. Consider the
following sample routine declarations:

{ Declare a procedure with no parameter list. }
Procedure simple;

{ Declare a procedure with a parameter list that has two parameters. }
Procedure conCa integer;

b : real);

{ Declare a function with a parameter list that has two parameters}
{ sharing the same data type. }

Function anger(x,y : boolean) : integer16;

{ Declare a function with a parameter list that has three parameters. }
Function big (quart integer16;

volume real;
cost single): single;

The following routine declaration is wrong because it uses an anonymous data type:

Procedure range(small_range : O .. 10); {WRONG! }

To call a routine, simply specify its name. If the procedure has a parameter list, you must also specify ar­
guments. The data type of each argument, with two exceptions, must match the data type of its corre­
sponding parameter. For example, if the second parameter is declared as integer16, the second argument
must be an integer16 value. The following examples call the routines that were previously declared:

{ Call simple with no arguments. }
simple;

{ Call con with two arguments. The first argument must be an integer, }
{ and the second argument must be a real number. }

con(14, 5.2);

{ Call anger with two Boolean arguments. Variable answer must have }
{ been declared as an integer. }

answer := anger(true, false);

{ Call big with three arguments. Assume that pints is an integer and }
{ price is a real number. }

if big(pints * 2, 4.23E3, price) > 1.40
then ...

Procedures and Functions 5-2

o

o

o

o

o

DOMAIN Pascal supports many features that let you specify precisely how a routine is to be called. The
remainder of this chapter details these features.

5.2 Parameter Types
A param_type is optional. If you do not include one, you are in effect passing a value parameter. Value
parameters are discussed in this section. If you want to specify a param_type, it must be one of the follow­
ing:

o var (Le., a variable parameter)

• in

• out

• in out

The following subsections describe each of these.

5.2.1 Variable Parameters and Value Parameters
In standard Pascal, you pass arguments to and from routines as variable parameters or value parameters.
(DOMAIN Pascal supports both methods plus certain extensions described later in this subsection.) The
following examples illustrate the distinction between variable parameters and value parameters.

Pascal regards variable parameters as synonyms for the variable you pass to them. In var _parame­
ter_example below, variable parameter n becomes a synonym for argument x; that is, whatever hap­
pens to n in adde also happens to x. Note that you can only pass a variable as an argument to a variable
parameter. You cannot pass a value.

Pascal does not regard value parameters as synonyms to the arguments you pass to them. In
value_parameter_example, value parameter n takes on a copy of the value of x within adde; there­
fore, whatever happens to n in ad de has no affect on the value of x. Note that you can pass variables,
values, or expressions as arguments to a routine with value parameters.

Program var_parameter_example;

VAR
x integer16;

PROCEDURE adde(VAR n
BEGIN

n := n + 100;

integer16) ;

writeln('In adde, n=' ,n:4);
END;

BEGIN {main}
x := +10;
adde(x) ;
writeln('In main, x=' ,x:4);

END.

Program value_parameter_example;

VAR
x integer16;

PROCEDURE adde(n
BEGIN

n := n + 100;

integer16) ;

writeln('In adde, n=' ,n:4);
END;

BEGIN {main}
x := +10;
adde(x) ;
writeln('In main, x=' ,x:4) ;

END.

Both programs are available on-line and are named var_parameter_example and value_parame­
ter_example.

5-3 Procedures and Functions

Here are the results you get from each program:

Execution of var yarameter _example

In addc, n= 110
In main, X= 110

Execution of valueyarameter _example

In addc, n= 110
In main, X= 10

~ -~ ~ The only difference between the two programs is the keyword var in the procedure declaration statement
of var_parameter_example. This keyword identifies n as a variable parameter; the absence of var
identifies n as a value parameter.

5.2.2 In, Out, and In Out -- Extension
In standard Pascal, you cannot specify the direction of parameter passing. However, DOMAIN Pascal
supports extensions to overcome this problem. You can use the following keywords in your routine decla­
ration:

• In -- This keyword tells the compiler that you are going to pass a value to this parameter, and
that the routine is not allowed to alter its value. If the called routine does attempt to change its
value (that is, use the parameter on the left side of an assignment statement), the compiler issues
an "Assignment to IN argument" error.

• Out -- This keyword tells the compiler that you are not going to pass a value to the parameter,
but that you expect the routine to assign a value to the parameter. It is incorrect to try to use the
parameter before the routine has assigned a value to it,. although the compiler does not issue a
warning or error in this case.

If the called routine does not attempt to assign a value to the parameter, the compiler may issue a
"Variable was not initialized before this use" warning. This could occur if your routine only as­
signs a value to the parameter under certain conditions. If that is the case, you should designate
the parameter as var instead of out.

In some cases, the compiler cannot determine whether or not all paths leading to an out parame­
ter assign a value to it. If that happens, the compiler does not issue a warning message.

• In out -- This keyword tells the compiler that you are going to pass a value to the parameter, and
that the called routine is permitted to modify this value. It is incorrect to call the routine before
assigning a value to the parameter, although the compiler does not issue a warning or error in this

c:-

c

~:~~~.The compiler also doesn't complain if the called routine does not attempt to modify this C
For example, consider the following program:

PROGRAM in_out_example;
{This program demonstrates the IN, OUT, and IN OUT parameters.}
VAR

leg1, leg2
hypotenuse
temp real;
unit : char;

: integer16;
single;

PROCEDURE pythagoras(IN
IN
OUT

BEGIN

leg1 : integer16;
leg2 : integer16;

hypotenuse.: single);

hypotenuse .- sqrt«leg1 * leg1) + (leg2 * leg2»;
END;

Procedures and Functions 5-4

u

o

o

o

o

FUNCTION boiling(IN OUT temp
IN unit

BEGIN
if unit' F'

real;
char) boolean;

then temp := (temp - 32) * 0.55555;
if temp >= 100

END;

BEGIN

then boiling := true
else boiling := false;

write('Enter the first leg of a triangle -- '); readln(legl);
write('Enter the other leg of the triangle -- '); readln(leg2);
pythagoras(legl, leg2, hypotenuse);
writeln('Hypotenuse of the triange is " hypotenuse);

writeln(chr(lO), chr(lO) , 'Assume 1 Atm. pressure');
write('Enter the water temperature '); readln(temp);
write('Is this temp. in Fahrenheit or Celsius (F or C) -- ');
readln(unit);

if boiling(temp, unit)
then writeln(temp:5:l, ' degree water will boil!')
else writeln(temp:5:l, ' degree water will not boil.');

END.

This program is available on-line and is named in_out_example.

NOTE: The compiler checks for misuses of in, out, and in out at compiletime, but the
system does not check for such errors at runtime.

5.2.3 Univ -- Universal Parameter Specification -- Extension
Univ is a special parameter type that you specify immediately prior to the data_type (rather than prior to
the par Jist) .

By default, DOMAIN Pascal checks that the argument you pass to a routine has the same data type as the
parameter you defined for the routine. However, you can tell DOMAIN Pascal to suppress this type
checking. You do this by using the keyword univ prior to a type name in a parameter list. By using univ,
you can pass an argument that has a different data type than its corresponding parameter.

5-5 Procedures and Functions

Univ is especially useful for passing arrays. For example, the following program would be incorrect with­
out the keyword univ. That's because little_array and big_array have different data types:

TYPE

VAR
large_array
medium_array
little_array
sum

array[l .. 50] of integer32;

array[l .. 50] of integer32;
array[l .. 25] of integer32;
array[l .. 10] of integer32;
integer32;

Procedure sum_elements(in b UNIV big_array;
integer16;
integer32);

BEGIN

END;

BEGIN {main}

in array_size
out sum

sum_elements (little_array, 10, sum);
END.

In addition to the procedure call listed above, you could also make either of the following calls to proce­
dure sum_elements:

sum_elements (medium_array, 25, sum);

or

sum_elements (large_array, 50, sum);

Procedures and Functions 5-6

(.-~

._---------- --_ -

o

o

o

o

c

Use univ carefully I It can cause problems if improperly used. The most frequent source of trouble is a
difference in size between the argument and parameter data types. The data type of the parameter deter­
mines how the called routine treats the data passed to it. Typically, routines that use univ parameters have
another parameter that supplies additional information about the size or type of the actual parameter. In
the preceding example, the array _s i ze parameter gives the size of the array parameter passed. The fol­
lowing example shows another possible misuse of univ:

Program univ_example;

{This example demonstrates poor use of UNIV.}
{The program uses UNIV to pass two double-precision arguments to two}
{single-precision parameters. The calculation of 'mean' will not be}
{correct because single- and double-precision real numbers have }
{different bit patterns for exponent and mantissa. Furthermore, }
{the compiler will not warn you about this problem., }

VAR
double;

Procedure average(s,t
VAR

UNIV single);

mean
BEGIN

double;

mean := (s + t) / 2.0;
writeln('The average is

END;
mean) ;

BEGIN {main}

END.

write('Enter the first value -- '); readln(first_value);
write('Enter the second value -- '); readln(second_value);
average (first_value , second_value);

NOTE: To prevent some problems that result from suppressing type checking, explicitly
declare univ parameters as in, out, in out, or var.

When you pass an expression argument (as opposed to a variable argument) to a univ parameter,
DOMAIN Pascal extends the expression to be the same size as the univ parameter. In addition, the com­
piler issues the following message:

Expression passed to UNIV formal lVAA1E was converted to lVE~TYPE.

5-7 Procedures and Functions

5.3 Routine Options
As mentioned in the beginning of this chapter, you can optionally specify routine_options at the end of
the routine declaration. DOMAIN Pascal supports the following routine options: C

• forward

0 extern

0 internal

0 variable

0 abnormal

0 val_param

0 nosave

0 noreturn

0 dO_return

Use one of the following formats to specify one or more of these options:

routine_option1,' ... routine_optionN;

or

options(routine_option1, ... routine_optionN);

The two formats are equivalent; the first format is shorter, and the second format is more readable. Note,
however, that you can only use format, extern, internal, and val_param with the first format.

Here are some examples:

FUNCTION eggs_and_ham(letter char) char; INTERNAL;

or

FUNCTION eggs_and_ham(letter : char) : char; OPTIONS(INTERNAL);

PROCEDURE sam_i_am(x, y : real); EXTERN; ABNORMAL;

or

PROCEDURE sam_i_am(x, y : real); OPTIONS (EXTERN, ABNORMAL);

The remainder of this section explains the routine options.

5.3.1 Forward
The forward option is a feature of standard Pascal and DOMAIN Pascal. By default, you can only call a
routine that was previously declared in the program. The forward option tells the compiler that the proce­
dure is declared past (forward) of the statement that calls it.

C'

For example, in the following program, procedure convert_degrees_to_radians is declared as for- ~'
ward. This allows procedure find_tangent to call procedure convert_degrees_to_radians even ,,--_,
though find_tangent precedes it in the file.

Procedures and Functions 5-8

o

o

o

o

o

PROGRAM forward_example;

{This program demonstrates the FORWARD attribute.}

Function convert_degrees_to_radians(d : real) : real; FORWARD;

VAR
degrees, tangent real;

Procedure find_tangent(IN degrees
out tangent

VAR
radians: real;

BEGIN

real;
real) ;

radians
tangent .-

.- convert_degrees_to_radians(degrees);
sin(radians) / cos(radians);

END;

Function convert_degrees_to_radians; { No parameters here! }
CONST

degrees_per_radian = 57.2958;
BEGIN

convert_degrees_to_radians .- (d / degrees_per_radian);
END;

BEGIN
write('Enter a value in degrees -- ');
readln(degrees);
find_tangent (degrees , tangent);
writeln('The tangent of " degrees:6:'3, ' is

END.
tangent: 6: 3) ;

This program is available on-line and is named forward_example.

If it weren't for the forward option, the compiler would issue the following error:

CONVERT_DEGREES_TO_RADIANS has not been declared in routine
FIND_TANGENT

. Note that this program declares procedure convert_degrees_ to_radians, its parameters, and the for­
ward option in the declaration part of the main program, not in the routine heading. The routine heading
declares procedure convert_degrees_to_radians without declaring parameters or options. You must
declare routines this way when using the forward option.

5.3.2 Extern -- E}(tension
Extern is an extension to standard Pascal. It tells the compiler that the routine is possibly defined outside
of this source code file. (Chapter 7 details extern. See also define, which is also detailed in Chapter 7.)

5.3.3 Internal -- Extension
Internal is an extension to standard Pascal. By default, all top-level routines defined in a module be­
come global symbols. But if you declare the routine with the internal option, the compiler makes the rou­
tine a local symbol. (Chapter 7 details internal.)

5-9 Procedures and Functions

5.3.4 Variable -- E)(tension
Variable is an extension to standard Pascal. By default, you must pass the same number of arguments to
a routine each time you call the routine. However, the variable option allows you to pass a variable num- ("
ber of arguments to the routine. You might want to specify an argument count as the first parameter. ../

For example, consider the following program.

PROGRAM variable_attribute_example;

{ This program demonstrates the routine attribute called VARIABLE which }
{ allows you to pass a variable number of arguments to a routine. }

VAR
first_value, second_value
preC1S1on : real;
answer : char;

real;

Procedure average(arg_count : integer16;
d1, d2 real;
p : real);
options(VARIABLE); {We can pass up to four arguments.}

VAR
mean: real;

BEGIN
mean .- (d1 + d2) / 2.0;
if arg_count = 3

then writeln('The mean
else if (arg_count = 4) and

then writeln('The mean
else if (arg_count = 4) and

then writeln('The mean
else

is mean:4:1, , to a precision
(p = 0.01)

is , mean:4:2, , to a precision ,
(p = 0.001)

is , mean:4:3, , to a precision ,

writeln('Improper argument count or precision');
END;

BEGIN {main}

of 0.1')

of .01')

of .001')

writeln('This program calculates
write('Enter the first value
write('Enter the second value
write('Do you want to specify

the mean of two real numbers.');
'); readln(first_value);
'); readln(second_value);

a precision (enter y or n) -- ');
readln(answer);
if answer = 'y' then

else
END.

begin

end

write('Please enter the precision (.01 or .001) -- ');
readln(precision);
average (4 , first_value, second_value, precision);

average (3 , first_value, second_value);

This program is available on-line and is named variable_attribute_example.

Procedures and Functions 5-10

(~

('

~,
I

"'-_.

o

o

o

o

u

5.3.5 Abnormal -- E}(tension
Abnormal is an extension to standard Pascal. It warns the compiler that a routine can cause an abnormal
transfer of control. This option affects the way the compiler optimizes the calling routine, but does not af­
fect the way the compiler optimizes the called routine (Le., the routine that is declared abnormal).

For example, the following use of abnormal causes the compiler to be careful about optimizing around
any cleanup handler:

FUNCTION pfm_$cleanup(clean_up_record) : status_$T; OPTIONS (ABNORMAL) ;

5.3.6 Val_param -- Extension
Val_param is an extension to standard Pascal. By default, Pascal passes arguments by r~ference. How­
ever, when you use the val_param option, you tell DOMAIN Pascal to pass arguments by value when
possible.

This option is useful when you are writing a routine that calls a DOMAIN C routine, since C passes all ar­
guments by value. See Chapter 7 and the DOMAIN C Language Reference for more details.

5.3.7 Nosave -- Extension
Nosave is an extension to standard Pascal. You should use it with a Pascal program call to an assembly
language routine that doesn't follow the usual conventions for preserving these registers:

• Data registers D2 through D7

• Address registers A2 through A4

• Floating-point registers FP2 through FP7

Nosave indicates that the contents of these registers will not be saved when the assembly language routine
finishes executing and returns to the Pascal program. However, the assembly language routine must always
preserve register AS, which holds the pointer to the current stack area. It also must always preserve A6,
which holds the address of the current stack frame. That is, the called routine must preserve AS and A6
even if you use nosave.

5.3.8 Noreturn -- Extension
Noreturn is an extension to standard Pascal. This routine specifies an unconditional transfer of control;
once a procedure or function with no return is called, control can never return to the caller. The routine
marked noreturn is executed, and the program terminates.

When you specify this keyword, the compiler may optimize the code it generates so that any return se­
quence or stack adjustments after the call to the routine marked noreturn are eliminated as being un­
reachable code.

5.3.9 DO return -- E}(tension
DO_return is an extension to standard Pascal. By default, a Pascal function returning the value of a
pointer type variable puts that value in address register AO. DO_return causes the compiler to put the
value in AO and data register DO.

You should use dO_return if your Pascal function returns a pointer to a C or FORTRAN program, be­
cause those languages expect to see function results in DO. The option has no effect on any Pascal routines
that call the function. Those Pascal routines should still expect to see the function's result returned in AO.

Note: The second character in this option is a zero, not a capital O.

5-11 Procedures and Functions

5.4 Attribute list -- IElctension
As noted in the beginning of this chapter, you can declare an optional routine attribute _list at the begin­
ning of a routine heading. With this list, you can specify a nondefault section name for the code and data
of a routine, or you can prevent the compiler from incorrectly optimizing nested internal procedures. The
attribute_list affects a routine body, while the routine_options affect the routine interface.

The attribute _list consists of one or more routine attributes enclosed by brackets. DOMAIN Pascal cur­
rently supports the section routine attribute.

5.4.1 Section -- Extension
By using the routine attribute section, you can specify a nondefault section name for the code and data in
a routine. A "section" is a named contiguous area of an executing object. (Refer to the DOMAIN Binder
and Librarian Reference for full details on sections.) By default, the compiler assigns code to the PROCE­
DURE$ section and data to the DAT A$ section. Thus, by default, all code from every routine in the pro­
gram is assigned to PROCEDURE$, and all static data from every routine in the program is assigned to
DATA$. However, DOMAIN Pascal permits you to override the default of PROCEDURE$ and DATA$
on a routine-by-routine basis. (You can also override the defaults on a variable-by-variable or module­
by-module basis.) This makes it possible to organize the runtime placement of routines so that logically
related routines can share the same page of main memory and thus reduce page faults. Likewise, you can
declare a rarely-called routine as being in a separate section from the frequently-called routines.

To override the default sections, preface your routine heading with a phrase of the following format:

[section (codesect, datasect)] procedure ...

or

[section (codesect, datasect)] function ...

Procedures and Functions 5-12

C'
,/

c

C\
"

('

o

o

o

o

If you omit either the codesect or the datasect, the present default continues to take effect. For exam­
ple, consider the following fragment:

Program example;
VAR stat: integer;

PROCEDURE top;
VAR datI : static integer;
BEGIN

END;

In DATA$ }

{ In PROCEDURE$}
{ IN DATA$ }

In PROCEDURE$}

[SECTION(npc,npd)] FUNCTION foobarl : REAL; {
VAR seed : static real; {
BEGIN

{
END;

In "npc" }
In "npd" }

In "npc"

[SECTION (error_rout_c, error_rout_d)] PROCEDURE xxx; { In error_rout_c }
VAR check: static integer32; { In error_rout_d }
BEGIN

END;

FUNCTION regular : integer; { In PROCEDURE$
VAR dat2 : static real; { In DATA $
BEGIN

{ In PROCEDURE$
END;

[SECTION(npc,npd)] PROCEDURE foobar2;
VAR seedling: static real;
BEGIN

END;

BEGIN {main}

}
}

}

{ In PROCEDURE$ }
END;

{ In "npc" }
{ In "npd" }

{ In "npc" }

Nested routines inherit the section definitions of their outer routine unless they specify their own section
definitions. For example, if the foobarl function contained nested routines, DOMAIN Pascal defaults
to placing their code and static data into the "npc" and "npd" sections respectively.

5-13 Procedures and Functions

5.5 Recursion
A recursive routine is a routine that calls itself. DOMAIN Pascal, like standard Pascal, supports recursive ~

routines. The following example demonstrates a recursive method for calculating factorials: !

PROGRAM recursive_example;
{ Demonstrates recursion by calculating a factorial. }

VAR
x, y : integer32;

Function factorial(n
BEGIN

if n = 0

integer32)

then factorial .- 1

integer32;

else factorial .- n * factorial(n-1); {factorial calls itself.}
END;

BEGIN {main}
writeln('This program finds the factorial of a specified integer.');
write('Enter a positive integer (from 0 to 16) '); readln(x);
y := factorial(x);
writeln('The factorial of " x:l, ' is " y:l);

END.

Procedures and Functions 5-14

·c

('

o

o

o

o

o

Chapier 6

This chapter describes how to produce an executable object file (Le., finished program) from DOMAIN
Pascal source code. Briefly, you create an executable object file in the following steps:

1. Compile all source code files that make up the program. The compiler creates one object file for
each source code file.

2. If your program consists of multiple object files, you must bind them together with the DOMAIN
binder utility. If your program consists of only one object file, there is no need to bind. The
DOMAIN binder resolves external references; that is, it connects the different object files so that
they can communicate with one another. Before binding, you may wish to package related object
files into a library file with the DOMAIN librarian utility.

3. You can either debug your program (with the DOMAIN language level debugger) or you can exe-
cute it. .

Figure 6-1 illustrates this process.

This chapter details the compiler and provides brief overviews of the binder, librarian, and debugger.

In addition to this process, you can also use the DOMAIN Software Engineering Environment (DSEE)
system to develop DOMAIN Pascal programs. This chapter provides a short overview of the DSEE sys­
tem. Also, this chapter contains an introduction to DOMAIN/Dialogue, which is a product that simplifies
the writing of user interfaces.

6-1 Program Development

Find Yes
Errors

Yes

Edit
Source
File (s)

Compile
Source
File(s)

Execute
Object

File

(End)

Yes

xxx. [pas]

xxx.bin
xxx. 1st

Bind
Object
Files

Figure 6-1. Steps in DOMAIN Pascal Program Development

Program Development 6-2

Bound
File

c

c

o

o

G

o

o

6.1 Compiling
You compile a file of DOMAIN Pascal source code by entering a command of the following format in any
AEGIS or DOMAIN/IX Shell:

$ pas source_pathname option1 ... optionN

(Throughout this chapter we show commands with a variety of shell prompts. All commands work exactly
the same in any shell, although, of course, you must remember that DOMAIN/IX shells are case-sensi­
tive.)

Source_pathname is the pathname of the source file you want to compile. You can compile only one
source file at a time. In order to simplify your search for Pascal source programs, we recommend that
source_pathname end with a .pas suffix, but if you use the suffix, you need not specify it in the compile
command line.

Your compile command line can contain one or more of the options listed in Table 6-1. Note that you
cannot abbreviate these options.

For example, consider the following three sample compile command lines, all of which compile source
code file circles. pas:

no options -->
one option -->
four options -->

$ pas circles
% pas circles -1
$ PAS circles -map -exp -cond -cpu 460

6.1.1 Compiler Output
If there are no errors in the source code and the compilation proceeds normally, the compiler creates an
object file in your current working directory.

By default, DOMAIN Pascal gives the object file the same pathname as the source pathname, but with the
.bin suffix. For example, if your source code is stored in file test. first, the following command line
produces an object file called test. first. bin in your working directory.

$ pas test. first

There is one exception. If your source-pathname ends with .pas, the compiler replaces that suffix with
.bin. So if your source code is stored in extra test. pas, the following command produces the object file
extra test. bin in your working directory:

$ pas extratest

If you want the object file to have a nondefault name, use the -b pathname option. For example:

$ PAS test -b //good/compilers/newtest

The preceding command produces an object file called newtest. bin in directory / /good/compilers.

6.2 Compiler Options
DOMAIN Pascal supports a variety of compiler options. Table 6-1 summarizes the options, while the fol­
lowing sections describe all the options in detail.

6-3 Program Development

Table 6-1. DOMAIN Pascal Compiler Options

Option

* -align

-nalign

* -b pathname

-nb

-comchk

* -ncomchk

-cond

* -ncond

-config var1 ... varN

-cpu id

-ndb

* -db

-dbs

-dba

-exp

* -nexp

-idir dir1 ... dirN

-iso

* -niso

-I pathname

* -nl

* denotes a default option.

Program Development

What It Causes the Compiler to Do

Align data on longword boundaries. This helps the DNx60
processors execute programs more efficiently.

Suppress alignment.

Generate a binary file (that is, an executable file) at
program_name.bin or pathname.bin.

Suppress creation of binary file.

Issue a warning if comments are not paired correctly.

Suppress checking for paired comments.

Compile lines prefixed with the %debug compiler directive.

Ignore lines prefixed with the %debug compiler directive.

Set special conditional compilation variables to true.

Generate code for a particular CPU. Values for id are:
160, 460, 560, 660, 330, 90, 570, 580, 3000, any and
peb. Any is the default.

Suppress creating debugging information. The debugger
cannot debug such a program.

Generate minimal debugging information. When you debug
this program, you can set breakpoints, but you can't
examine variables.

Generate full runtime debug information and optimize the
source code in the executable object file. (Implies -opt 3.)

Generate full runtime debug information but don't optimize
the source code in the executable object file.

Generate assembly language listing (implies -1).

Suppress creating assembly language listing.

Search for an include file in alternate directories.

Compile the program using ISOI ANSI Standard Pascal rules
for certain DOMAIN Pascal features that deviate from the
standard.

Compile the program using DOMAIN Pascal features.

Generate a listing file at program_name. 1st or
pathname./st.

Suppress creation of listing file.

6-4

c

c'

0

0

0

0

o

Table 6-1. DOMAIN Pascal Compiler Options (continued)

Option

-map

'* -nmap

'* -msgs

-nmsgs

'* -opt n

-nopt

-peb

'* -npeb

-slib pathname

-subchk

'* -nsubchk

'* -warn

-nwarn

'* -xrs

-nxrs

'* denotes a default option.

What It Causes the Compiler to Do

Generate symbol table map (implies -I).

Suppress creation of symbol table map.

Generate final error and warning count message.

Suppress creating final error and warning count message.

Optimize the code in the executable object to the nth level.
n is an optional specifier that must be between 0 and 3. If
n is omitted, or the entire switch is omitted, optimize to level 3.

Suppress optimizing the code in the executable object. This
is an obsolete switch; use -opt 0 instead.

Generate in-line code for the Performance Enhancement
Board. This is an obsolete switch; use -cpu peb instead.

Suppress creating in-line code for Performance Enhancement
Board. This is an obsolete switch; use -cpu any instead.

Treat the input as in include file and produce a precompiled
library of include files at program_name.plb or pathname. plb.

Generate extra subscript checking code in the executable
object file. This code signals an error if a subscript is outside
the declared range for the array.

Suppress subscript checking.

Display warning messages.

Suppress warning messages.

Save registers across a call to an external procedure or function.

Do not assume that calls to external routines have saved the
registers.

The following pages detail each of these options.

6.2.1 -Align and -Nalign: Longword Alignment
The -align option is the default.

A standard part of DOMAIN software is the "loader," which loads sections of object modules into mem­
ory at runtime. At SR8.0 and later releases, the loader loads each section on a longword boundary, en­
suring longword alignment. Longword (32-bit) alignment can enhance performance on DNx60 worksta­
tions and those with the M68020 microprocessor. By default, DOMAIN Pascal ensures longword align­
ment on all workstations, but performance improvements are only seen on DNx60 workstations and those
with the M68020 processor. To suppress longword alignment, use the -nalign option.

6-5 Program Development

If your target workstation is a DNx60, recompile any object modules that were compiled with an early
(pre-SR8.0) version of DOMAIN Pascal.

6.2.2 -B and -Nb: Binary Output
The -b option is the default.

If you use the -b option, and if your source code compiles with no errors, DOMAIN Pascal creates an ob­
ject file with the source pathname and the .bin suffix. If you specify a pathname as an argument to -b,
then DOMAIN Pascal creates an object file at pathname.bin.

If you use the -nb option, DOMAIN Pascal suppresses creating an object file. Consequently, compilation
is faster than if you had used the -b option. Therefore, -nb can be useful when you want to check your
source code for grammatical errors, but you don't want to execute it.

Given that error-free DOMAIN Pascal source code is stored in file test. pas, here are some sample
command lines:

$ pas test
{DOMAIN Pascal creates test. bin}

% pas test -b
{DOMAIN Pascal creates test. bin}

$ pas test -b jest
{DOMAIN Pascal creates jest. bin}

B$ pas test -b jest.bin
{DOMAIN Pascal creates jest. bin}

% pas test -nb
{DOMAIN Pascal doesn't create an object file}

6.2.3 -Comchk and -Ncomchk: Comment Checking
- N comchk is the default.

If you compile with -ncomchk, the compiler does not check to see if you've balanced your comment de-

('\

I'
,-~

limiters. Consequently, if you forget to close an open comment, the compiler will probably misinterpret a t, \
piece of code as part of a comment. If you compile with the -ncomchk option, you get the default results. " __

If you compile with the -comchk option, the compiler checks to see that comment pairs are balanced;
that is, that there are no extra left comment delimiters before a right comment delimiter. The left com-
ment delimiters are {, (*, and"; the right comment delimiters are }, *), and". If you compile with
-comchk, the compiler returns a warning for every additional left comment delimiter.

For example, the following fragment produces weird results because of an unclosed comment:

{This comment should be closed, but I forgot to do it!

x := 0; {We need this statement.}

However, if you compile with -comchk, the compiler returns the following warning message:

Warning: Unbalanced comment; another comment start found
before end.

Note that -comchk causes the compiler to look only for the same kind of left comment delimiter. For ex­
ample, if you start the comment with (*, the compiler does not flag any extra {.

Program Development 6-6

c

.... -~--.... ~~~~~~~~~~~

o

o

o

o

o

6.2.4 -Cond and -Ncond: Conditional Compilation
-Ncond is the default.

The -cond option invokes conditional compilation. If you compile with -cond, DOMAIN Pascal com­
piles the lines of source code marked with the %debug directive. (Refer to the "Compiler Directives" list­
ing in Chapter 4 for details on %debug.)

If you compile with -ncond, DOMAIN Pascal treats the lines of source code marked with %debug as
comments.

You can simulate the action of this switch with the -config compiler option. For new program develop­
ment, you should use the -config syntax, since this option is considered obsolete.

6.2.5 -Config: Conditional Processing
Use the -config option to set conditional variables to true. (Refer to the "Compiler Directives" listing of
Chapter 4 for details on the conditional variables.)

You declare these conditional variables with the %var compiler directive. By default, their value is false.
You can set their value to true with the %enable directive (described in the "Compiler Directives" listing)
or with the -config option. The format of the -config option is

-config var1 ... varN

where var must be a conditional variable declared with %var. For example, consider the following pro­
gram:

PROGRAM config_example;

{ You can use this program to experiment with the}
{ -CONFIG compiler option. }

VAR
x, y, Z integer16 .- 0;

BEGIN
writeln(~The start of the program.~);

%VAR first, second, third
%IF first %THEN

x := 5;
writeln(x,y,z);

%ENDIF

%IF second %THEN
y := 10;
writeln(x,y,z) ;

%ENDIF

%IF third %THEN
Z := 15;
writeln(x,y,z);

%ENDIF

writeln(~The end of the program~);
END.

6-7 Program Development

This program is available on-line and is named config_example.

First, notice what happens when you compile without -config.

$ pas config_example
No errors, no warnings, Pascal Rev n.nn
$ config_example.bin
The start of the program.
The end of the program

Now, use the -config option to set conditional variables first and third to true. Here's what happens:

$ pas config_example -config first third
No errors, no warnings, Pascal Rev n.nn
$ config_example.bin
The start of the program.
500
5 o 15

The end of the program

To simulate the action of the -cond compiler switch, enclose the section of code you want conditionally
compiled in an %if config_variable %then structure. Then use -config to set config_variable to
true when you want to compile that section of code.

6.2.6 -Cpu: Target Workstation Selection

c:

c

Use the -cpu option to select the target workstations that the compiled program can run on. If you
choose an appropriate target workstation, your program might run faster; however, if you choose an inap­
propriate target workstation, the runtime system will issue an error message telling you that the program
cannot execute on this workstation. DOMAIN Pascal can generate code in four possible modes: C

• Code that will run on a DSP160, DN460, or DN660 workstation

• Code that will run on a workstation with the M68020 microprocessor and the M68881 floating­
point co-processor

• Code that will run on a workstation with- a Performance Enhancement Board (PEB)

• Code that will run on any Apollo workstation

You select the code generation mode through the argument that you specify immediately after -cpu. Ta­
ble 6-2 shows the possible arguments and the code generation mode that they select.

Program Development 6-8

- --~-------------~---~-

o

o

o

o

o

-cpu 160
-cpu 460
-cpu 660

-cpu 90
-cpu 330
-cpu 560
-cpu 570
-cpu 580
-cpu 3000

-cpu peb

-cpu any

Table 6-2. Arguments to the -cpu Option

I-------__ .. ~ Generates code for the DSP160, DN460, and
DN660 workstations.

--
Generates code for workstations with a
M68020 processor and a M68881 floating­
point unit (includes the DSP90, DN330,
DN560, DN570, DN580, and DN3000).

Generates code for workstations with a PEB
(includes the DN100, DN320, DN400, and the
DN600, when equipped with an optional PEB).

t--------..... ~ Generates code for any workstation.

Note that there are many possible arguments to -cpu; however, many of them are synonyms. For exam­
ple, -cpu 330 produces exactly the same code as -cpu 560.

The advantage of compiling with -cpu any is that the resulting program can run on any Apollo worksta­
tion. This is how Apollo compiles the programs that appear in your Icorn or Ibin directories. -cpu any is
the default.

The advantage of the processor-specific code generation modes is that the compiler generates code opti­
mized for that particular processor, which makes the programs so compiled run faster. The advantage is
seen mostly in programs that make heavy use of floating-point. Programs that make heavy use of 32-bit
integer multiply and divide might also show significant improvement.

6.2.7 -Db, -Ndb, -Dba, -Dbs: Debugger Preparation
- Db is the default.

Use these switches to prepare the compiled file for debugging by the DOMAIN Language Level Debugger
(debug). DOMAIN Pascal stores the debugger preparation information within the executable object file,
so in general, the more debugger information you request, the longer your executable object file.

If you use the -ndb option, the compiler puts no debugger preparation information into the . bin file. If
you try to debug such a .bin file with debug, the system reports the following error message:

?(debug) The target program has no debugging information.

If you use the -db option, the compiler puts minimal debugger preparation information into the . bin file.
This preparation is enough to enter the debugger and set breakpoints, but not enough to access symbols
(e.g., variables and constants).

If you use the -dbs option, the compiler puts full debugger preparation information into the. bin file. This
preparation allows you to set breakpoints and access symbols. When you use the -dbs option, the compil­
er sets the -opt option. (You can override this with the -nopt or -opt 0 option.)

The -dba option is identical to the -dbs option except that when you use the -dba option, the compiler
sets the -nopt option (even if you specify -opt).

For more complete details on these four options, see the DOMAIN Language Level Debugger Reference.

6-9 Program Development

6.2.8 -Exp and -Nexp: Expanded Listing File
-Nexp is the default.

If you compile with the -exp option, the compiler generates an expanded listing file. This listing file con­
tains a representation of the generated assembly language code interleaved with the source code.

If you compile with the -nexp option, the compiler does not generate a listing file (unless you use the
-map or -1 options).

6.2.9 -Idir: Search Alternate Directories For Include Files
The -idir option specifies the directories in which the compiler should search for include files if you spec­
ify such files using relative, rather than absolute, pathnames. (Absolute pathnames begin with a slash (I),
double slash (1/), tilde (-), or period (.).)

Without the -idir option, DOMAIN Pascal searches for include files in the current working directory. For
example, if your working directory is / /nord/minn and your program includes this directive:

%INCLUDE 'mytypes.ins.pas'

DOMAIN Pascal searches for that relative pathname at / /nord/minn/mytypes . ins. pas. However,
when you use -idir, the compiler first searches for the file in your working directory, and if it doesn't find
the file, it looks in the directories you list as -idir arguments. When it finds the include file, the search
ends. This capability is useful if you have include files stored on multiple nodes or in multiple directories
on your node.

For example, consider the following compile command line:

$ pas test -idir //ouest/hawaii

This command line causes the compiler to search for mytypes. ins. pas at / /ouest/hawaii/
mytypes. ins. pas if it can't find / /nord/minn/mytypes. ins. pas.

You can put up to 63 pathnames following.an -idir option. Separate each pathname with a space.

6.2.10 -ISO and -NISO: Standard Pascal
The -niso option is the default.

DOMAIN Pascal implements a few features differently than ISO standard Pascal. The -iso switch lets you
tell the compiler to use standard Pascal rules for some of these features.

If you use the option, the compiler flags as an error a goto statement that jumps into an if/then/else state­
ment. For example, the following is incorrect under the -iso switch:

label
bad_jump;

if num > 0 then
{statement}

else
bad_jump:

{next statement};

goto bad_jump;

{WRONG}

This structure is permitted, although not encouraged, under DOMAIN Pascal.

Program Development 6-10

c~

C1

j

c

o

o

o

o

o

Compiling with -iso also has an effect on comments. With it, comment delimiters no longer are required
to match up, which means that the following becomes valid:

{ This comment starts with one type of delimiter and ends with another. *)

-Iso also tells the compiler to use ISO rules with the mod operator. DOMAIN Pascal implements mod us­
ing the Jensen and Wirth semantics; see the mod listing in Chapter 4 for details.

6.2.11 -L and -NL: Listing Files
The -01 option is the default.

The -1 option creates a listing file. The listing file contains the following:

• The source code complete with line numbers. Note that line numbers start at 1 and move up by 1
(even if there is no code at a particular line in the source code). Further note that lines in an in­
clude file are numbered separately.

• Compilation statistics.

o A section summary.

o A count of error messages produced during the compilation.

The format for the -1 option is

-I pathname

If you specify a pathname following -I, the compiler creates the listing file at pathname.lst. If you omit a
pathname, the compiler creates the listing file with the same name as the source file. If the source file
name includes the . pas suffix, .1st replaces it. If the source file name does not include . pas, .Ist is ap­
pended to the end of the name.

The -01 option suppresses the creation of the listing file. (See also -map and -exp.)

6.2.12 -Map and -Nmap: Symbol Map
The -omap option is the default.

If you use the -map option, DOMAIN Pascal creates a map file. A map file contains everything in the
listing file (-I) plus a special symbolic map. The special symbolic map consists of two sections.

The first section describes all the routines in the cpmpiled file; for example, here is a sample first section:

001 EXAMPLE Program(Proc = 00005A,Ecb = 000030,Stack Size = 0)
002 DO_NOTHING Procedure(Proc = OOOOOO,Ecb = 000020,Stack Size = 8)
003 DO_SOMETHING Function(Proc = 00003E,Ecb = OOOOOC,Stack Size = 8)

The preceding data tells you that the compiled file contains a main program (called example), a proce­
dure (called do_nothing), and a function (called do_something). There are three pieces of data inside
each pair of parentheses. The first piece tells you the start address in hexadecimal bytes from the start of
a section. The second piece is the offset (in bytes) of the routine entry point. The third piece is the size
(in hexadecimal bytes) of the stack. The second and third pieces of data probably are of interest to sys­
tems programmers only.

For example, in the sample first section, the starting address of the main program was offset 16#5A bytes
from the beginning of the PROCEDURE$ section. The offset relative to the beginning of the data section
of the main program's routine entry point is 16#30 bytes. Its stack size is 0 bytes.

6-11 Program Development

The second section lists all the variables, types, and constants in the compiled program. For example,
here is a sample second section:

002 A
002 A2
001 BI
001 BILBOA
001 Q

001 R5
001 S
001 X
001 Y
003 Z

Var(-000008/S): CHAR
Var(-000006/S): CHAR
Type= ARRAY[l .. 2] OF INTEGER16
Const='The rain'
Var(+000002/MICROS): CHAR
Var(+000004/MICROS): DOUBLE
Var(+OOOOOC/MICROS): BI
Var(/MICROS): INTEGER16
Var(/D): INTEGER16
Var(+OOOOlO/S): INTEGER16

The map tells you, for example, that R5 is a Var (variable) that is stored +000004 bytes from the begin­
ning of the MICROS section. It also tells you that R5 has the data type double. Also, note that ID means
the DATA$ section, and IS means the stack.

If you specify -nmap, DOMAIN Pascal does not create the special symbol map.

6.2.13 -Msgs and -Nmsgs: Informational Messages
The -msgs option is the default.

If you use the -msgs option, the compiler produces a final compilation report having the following format:

XX errors, YY warnings, Pascal Rev n.nn

If you use -nmsgs, the compiler suppresses this final report.

6.2.14 -Opt and -Nopt: Optimized Code
The "-opt option is the default.

If you use the -opt option, the compiler optimizes the generated code. If you use the Debugger (de­
scribed in the "Debug" section of this chapter) to debug an optimized program, you may run into prob­
lems because of a fuzzy mapping between source code and generated machine code. See the DOMAIN
Language Level Debugger Reference for more details.

c

As part of the -opt compiler option, you can specify a predefined level of optimization. The syntax is: ('

-opt n

where n is an integer between 0 and 3. The higher the number, the more optimization that will be done. If
you omit n or omit the -opt switch alltogether, the compiler defaults to level 3. If you specify level 0, that
is equivalent to -nopt and -nopt tells the compiler not to optimize the generated code.

Following is a brief description of the optimizations you get at each level between 1 and 3. For a detailed
discussion of compiler optimization techniques, consult a general compiler textbook.

-opt 1 Perform limited global common subexpressions and dead code elimination. Transform inte­
ger multiplication by a constant into shift and add operations, where appropriate. Perform
simple tree transformations, and possibly merge assignment statements.

-opt 2 Perform reaching definitions and global constant folding. (Also includes all of -opt 1.)

When the compiler examines code for reaching definitions, it determines whether or not a
variable is assigned a value before it uses the value it was last assigned. If there are mUltiple

Program Development 6-12

~/

c'

0

o

o

o

o

assignments without intervening uses, the compiler eliminates any unused assignments. For
example:

x .-

if a
x

else
x

l' ,

< b
.-

.-

then
a

b;

{Assignment eliminated because the compiler }
{reaches the next assignment of x before this}
{value is used. }

The constant folding that the compiler performs at this level of -opt means that constants
are evaluated at compiletime and replaced with their computed values. For instance,
2*3.14159 is replaced by 6.28318. Likewise, expressions which will always evaluate to
true or false are constant folded and conditional code around them eliminated. For exam­
ple:

VAR
small_range: O .. 10;

if small_range < 0 then
{statements};

{small_range can never be less than 0 }
{so the compiler constant folds the if }
{expression to false, and generates no }
{code for "statements". }

-opt 3 Perform live analysis of local variables, redundant assignment statement elimination, global
register allocation, and instruction reordering. Also, remove invariant arithmetic expressions
from loops, and use the common subexpression (CSE) algorithm to search exhaustively for
common subexpressions. -Opt 1 makes a limited search for CSEs. (Also includes all of
-opt 1 and 2.)

Live analysis of local variables involves determining whether the value assigned to a variable
in a routine can then be used in that routine. If it can, the variable is considered live; other­
wise, it is dead, and there's no need to keep the value in a register. Making optimum use of
registers speeds program execution.

Because the compiler does more work at each higher level of optimization, it often takes longer to compile
at those higher levels. Therefore, if you are just developing your program, and are compiling to find syntax
errors, you might want to compile using a low number. Then, when the program is ready, you can compile
with a higher number and so take advantage of all the optimizations.

6.2.15 -Peb and -Npeb: Performance Enhancement
-Npeb is the default.

The -peb option is identical to the -cpu peb option described earlier in this chapter.

If you specify -npeb, DOMAIN Pascal does not generate code optimized for the PEB.

NOTE: For SR8 and later revisions of DOMAIN Pascal, use the -cpu peb option in­
stead of the -peb option. We do not guarantee support for -peb and -npeb af­
ter SR9.

6.2.16 -Slib: Precompilation of Include Files
Because there usually are a number of common tasks most programs must perform, DOMAIN Pascal pro­
grams often contain include files. Frequently used files include /sys/ins/base.ins.pas and

6-13 Program Development

/syslins/error.ins.pas. But it would be time-consuming to compile such files every time a program in which
they were included was compiled. The -slib option allows you to precompile an include file. Then when
you insert that file in your program with the %slibra"ry compiler directive (described in Chapter 4), the
compiler knows that the file already has been compiled and doesn't bother to parse it again.

The syntax for -slib is:

-slib pathname

If you specify a pathname following -slib, the compiler creates the precompiled file at pathname. plb.
When no pathname is present, and the name of the input program file ends in . pas, -slib replaces that
ending with .plb and creates the file at program_name.plb. If the input filename does not end in .pas,
-slib appends .plb to the name.

For example, suppose you want to precompile the file mystuff. ins. pas. This command precompiles it
and puts the result in mystuff. ins. plb.

% pas mystuff.ins -slib

I~

~.,

There are some restrictions on what files can contain if they are going to be precompiled. They can only
contain declarations; they may not contain routine bodies and may not declare variables that would result C
in the allocation of storage in the default data section, DA T A$. This means the declarations must either .---'
put variables into a named section, or must use the extern variable allocation clause. See Chapter 3 for
more information about named sections, and Chapter 7 for details on extern.

Any conditional compilation directives in the files you slib are executed during precompilation.

If you have several files that you want to combine into a single precompiled library, you can create a con­
tainer file with a series of %include directives. For example, to combine some frequently used include
files into the single precompiled library jsysjinsjdomain. plb, you can create a file systemstuff. pas
which contains the following:

{ Files we often use together. }

%include 'jsysjinsjbase.ins.pas';
%include 'jsysjinsjerror.ins.pas';
%include 'jsysjinsjvfmt.ins.pas';

Then use -slib as follows to create the precompiled, combined library.

$ pas systemstuff -slib jsysjins/domain

You can include the new precompiled library in any program. For example:

PROGRAM errortest;
%SLIBRARY'jsysjins/domain.plb';

BEGIN

END.

6.2.17 -Subchk and -Nsubchk: Subscript Checking
-Nsubchk is the default.

If you use -subchk, the compiler generates additional code at every subscript to check that the subscript is
within the declared range of the array. This extra code slows your program's execution speed.

Program Development 6-14

c

------------------------_.---_. __ ._-----

o

o

o

o

o

If you use -nsubchk, the compiler does not generate this extra code.

6.2.18 -Warn and -Nwarn: Warning Messages
-Warn is the default.

If you use -warn, the compiler reports all warning messages.

If you use -nwarn, the compiler suppresses reporting warning messages (though it does report on the total
number of warnings that would have been issued).

We strongly recommend that you avoid using -nwarn. Warnings are issued when the compiler believes it
knows what the program meant to say, and so thinks it can still generate the right code. But the compiler
isn't always right, and if you use -nwarn, you won't see the messages that could indicate where the com­
piler got confused.

6.2.19 -Xrs and -Nxrs: Register Saving
-Xrs is the default.

This option controls whether the compiler believes that the contents of registers are saved across a call to
an external routine or a call through a procedure-ptr or function-ptr variable. If you use -xrs, the com­
piler assumes registers are saved, while if you use -nxrs, it does not assume registers are saved.

In either case, the compiler always saves register contents when it enters a routine and restores those con­
tents to the registers when it exits the routine.

The primary use for this option is when your program contains calls back to subprograms compiled with
pre-SR9.5 compilers. In such a case, you should isolate the portion of your new code that calls the older
subprograms, and separately compile that new code with the -nxrs option.

6.3 Binding
If your program consists of more than one separately-compiled object file, you must use the binder. If
your program consists of only one object file, you do not have to use the binder (though using it causes no
harm).

Use the binder utility to combine an object file with other object files to which it refers. The main purpose
of the binder is to resolve external references. An external reference is a symbol (Le., variable, constant,
or routine) that you refer to in one object file and define in another. To invoke the binder, enter a com­
mand line of the following format:

$ bind pathname1 .. . pathnameN option1 ... optionN

A pathname must be the pathname of an object file (created by a compiler) or a library file (created by
the librarian). Your bind command line must contain at least one pathname.

Your bind command line can also contain zero or more binder options, the most important of which is -b.
If you use the -b option, the binder generates an executable object file. If you forget to use the -b op­
tion, the binder won't generate an output object file.

For example, suppose you write a program consisting of three source code files -- TEST_MAIN. PAS,
MODl. PAS, and MOD2. PAS. To compile the source code, you issue the following three commands:

$ pas TEST_MAIN

$ pas MODl
$ pas MOD2

6-15 Program Development

The DOMAIN Pascal compiler creates TEST_MAIN. BIN, MODI. BIN, and MOD2. BIN. To create an exe­
cutable object, bind the three together with a command like the following:

$ bind TEST_MAIN.BIN MODI.BIN MOD2.BIN -B T3

This command creates an executable object file in filename T3.

Refer to the DOMAIN Binder and Librarian Reference for a complete discussion of the binder and its op­
tions.

6.4 Using Libraries
As mentioned in the previous section, you can put library files on the bind command line. You create li­
brary files with the DOMAIN Librarian utility which is detailed in the DOMAIN Binder and Librarian Ref­
erence.

Actually, the DOMAIN system supports several different kinds of libraries. In addition to library files, the
DOMAIN system also supports user-defined installed libraries, system-defined installed libraries, system­
defined global libraries, and the user-defined global library. All are detailed in the DOMAIN Binder and
Librarian Reference.

On some operating systems, you must bind language libraries and system libraries with your own object
files. On the DOMAIN system, there is no need to do this as the loader binds them automatically when
you execute the program.

6.5 Executing the Program
To execute a program, simply enter its pathname. For example, to execute program T3, just enter

$ T3

The operating system searches for a file named T3 according to its usual search rules, then calls the
loader utility. The loader utility is user transparent. It binds unresolved external symbols in your executa­
ble object file with global symbols in the language and system libraries. Then, it executes the program.

By default, standard input and standard output for the program are directed to the keyboard and display.
You can redirect these files by using the Shell's redirection notation (described in the DOMAIN System
User's Guide). For example, to redirect standard input when you invoke T3, type

$ T3 <TRADING DATA

The character "<" redirects standard input to the file TRADING_DATA. You can redirect standard output
in a similar fashion, for example:

$ T3 >results

This command uses the character ">" to redirect standard output for T3 to the file results.

6.6 Debugging the Program
The DOMAIN system supports three tools to help you debug a DOMAIN Pascal program -- debug, tb,
and crefpas. '

6.6.1 Debug
You can use the language level debugger (debug) utility to debug your program. This utility allows you to
set breakpoints so you can step through a program examining variables and finding bugs. In order to fully

Program Development 6-16

("

c

o

o

o

o

o

debug your program, you must use the -dba or -dbs options when you compile. (We recommend -dbs.)
You don't have to use any special options when you bind. To invoke the debugger, simply enter a com­
mand of the format:

$ debug object_file

where object_file is the name of an executable object file. For example:

$ debug T3

The DOMAIN Language Level Debugger Reference details the debugger.

6.6.2 Traceback (tb)
If you execute the program and the system reports an error, you can use the tb (traceback) utility to find
out what routine triggered the error. To invoke tb, enter the command

$ tb

immediately after a faulty execution of the program.

For example, suppose you invoke T3, encounter an error, and then invoke tb. The whole sequence might
look like the following:

$ T3
Enter a real number -- x
?(sh) 1./t1.bin" - invalid read data (library/Pascal)
In routine "ERROR" line 366.
$ TB
invalid read data (from library / Pascal)
In routine II ERROR II line 366
Called from "PAS_$READ" line 1602
Called from II SAMPLE II line 11

Tb first reports the error, which in this case is

invalid read data (from library / Pascal)

Then, tb shows the chain of calls leading from the routine in which the error occurred all the way back to
the main program block. For example, routine ERROR reported the error. ERROR was called by the
PAS_$READ routine. And, PAS_$READ was called by line 11 of the SAMPLE routine. Since ERROR and
PAS_$READ are system routines, it is probable that the error occurred at line 11 of the SAMPLE routine.

The DOMAIN System Command Reference details the tb utility.

6.6.3 Crefpas
Crefpas produces a cross-reference list of the identifiers (other than DOMAIN Pascal reserved words)
used in a DOMAIN Pascal source program. The listing is in four parts, each part beginning on a new page.
The first part lists the program, with line numbers added. The second part lists begin, repeat, and case
statements, with their associated ending statement lines identified. The third part lists begin, repeat, and
case statements and their associated ending statements, but with the ending statements listed first. The
fourth part lists all identifiers (other than DOMAIN Pascal reserved words) and the line numbers on
which they appear. Appearances in declaration sections are flagged with a 'D'.

Insert files are not included in the cross-reference listing.

6-17 Program Development

To invoke crefpas, enter a command of the following format:

% crefpas pathname -I list_file

For pathname, enter the Pascal source file to be cross-referenced.

By default, crefpas sends output to pathname.lst. If pathname ends in .pas, then .1st replaces .pas.
However, you can redirect the output with the -I list_file option. (Crefpas automatically appends the .1st
suffix to list_file if it is absent.)

Now consider an example. Suppose a program stored in source code file TEST. PAS has a begin state­
ment on line 20, a repeat statement on line 25, a case statement on line 30, and the associated ending
statements on lines 50, 40, and 35, respectively. The command

% crefpas TEST -1 list_it

produces the following analysis in the file 1 i s t _ it. 1 s t :

Part 1

(The normal program listing, with line numbers added.)

Part 2

20>B>50,#####25>R>40#####30>C>35

Part 3

35<C<30#####40<R<25#####50<B<20

Part 4

(The list of all identifiers with their line numbers.)

6.7 The OSEE Product
The DSEE (DOMAIN Software Engineering Environment) package is a support environment for software
development. DSEE helps engineers develop, manage, and maintain software projects; it is especially use­
ful for large-scale projects involving a number of modules and developers. You can use DSEE for:

• Source code and documentation storage and control

• Audit trails

• Release and Engineering Change Order (ECO) control

• Project histories

• Dependency tracking

• System building

This chapter described a traditional program development cycle (Le., compiling, building libraries, bind­
ing, debugging); the DSEE product provides some sophisticated enhancements to this cycle. For informa­
tion on the optional DSEE product, see the DOMAIN Software Engineering Environment (DSEE) Refer­
ence.

Program Development 6-18

C,'

c

c

- ------------~~-----------------

o

o

o

o

o

6.8 DOMAIN/Dialogue
DOMAIN/Dialogue is a tool for defining the interface to an application program and specifying how the
interface should be presented to users of the application. The primary advantage of DOMAIN/Dialogue is
that it lets you create interfaces separately from the application code. For the user interface,
DOMAIN/Dialogue lets you:

• Focus more time and attention on the interface than is possible when it is intertwined with the ap­
plication code.

G Develop modular interfaces that are consistent in design from application to application because
they are developed with the same set of tools.

• Use an iterative approach to interface design. A program's user interface can be rapidly
prototyped and modified without affecting the application code. Successive testing and refinement
are relatively easy, making it possible to fine-tune the interface.

• Develop multiple user interfaces to a program, allowing users to choose a style of interaction with
which they feel most comfortable.

For the application, DOMAIN/Dialogue enables you to:

• Write less code. Because DOMAIN/Dialogue handles interactions with the user, the application
designer does not have to provide the code for doing so.

• Achieve a modular approach to writing code that promotes phased and iterative application devel­
opment independent of user interface development.

For details about DOMAIN/Dialogue, see the DOMAIN/Dialogue User's Guide.

6-19 Program Development

c:

C~
"

c

o

o

o

o

Chapter

lE J~~ e W f(I) ~ ~ R (Q) rLn~ i f(I) e ~ tal f(I) (0]
Cw(Q)~~-ltalUll91lUJ~ge
Co m m lUI f(I) i C~~ i (0) fI1

7

This chapter describes how to create and call Pascal modules and how to call FORTRAN and C routines
from a DOMAIN Pascal program. Briefly, this chapter covers the following topics:

• Creating Pascal modules

• Accessing a Pascal variable or routine stored in a separately compiled module

• Accessing FORTRAN routines from a Pascal program

• Accessing C routines from a Pascal program

7.1 Modules
It is usually a good idea to break a large Pascal program into several separately compiled modules. After
you compile each module, you can bind the resulting object files into one executable object file. (See
Chapter 6 for details about binding.)

Every program must consist of one main program and zero or more modules. Chapter 2 contains a de­
scription of the main program's format. A main program must begin with the keyword program. A mod­
ule begins with the keyword module. It takes the format shown in Figure 7-1.

7-1 External Routines

--... Define part .., - Label decl part --
~,

Const decl part ~,

module heading
Type decl part

~ declarations
Var decl part

"'
routines --.... - ~

routine heading
declarations ~ -nested routines

Begin

action
End;

Figure 7-1. Format of a Module

At runtime, the start address of the program is the first statement in the main routine of the main pro­
gram.

The format of a module is very similar to the format of the main program shown in Figure 2-1. The differ­
ences between the formats are:

• A module takes a module heading rather than a program heading. (See the next section for a de­
scription of the module heading.)

• A module can contain zero or more routines; each routine must have a name. That is, the main
program always contains one main (unnamed) routine, but a module must consist of named rou­
tines only.

• The declarations part of a module may contain a define part. The "Method 2" section of this
chapter describes the define part.

7 .1.1 Module Heading
The module heading is similar to a program heading except that it starts with the keyword module instead
of program, and that it cannot take a fileJist. Therefore, the module heading takes the following format:

Name must be an identifier. The name you pick has no effect on the module.

Code_section_name and data_section_name are optional elements of the module heading. Use them to
specify nondefault section names for the code and data in the module. A section is a named contiguous
area of memory that shares the same attributes. (See the DOMAIN Binder and Librarian Reference for
details on sections and attributes.) By default, DOMAIN Pascal assigns all the code in your module to the
PROCEDURE$ section and all the data in your module to the DATA$ section. To assign your code and
data to nondefault sections, specify a code_section_name and a data_section_name.

Chapter 2 described the format of a main program, this chapter describes the format of a module, and
Chapter 6 detailed the method for compiling and binding modules and main programs. The following sec­
tions explain how to write your source code so that the separately compiled units can communicate with
one another.

External Routines 7-2

c

c-'

._._-'-_ .. __ .. _ ---

c~

o

c

o

7.2 Accessing a Variable Stored in Another Pascal
Module

DOMAIN Pascal provides four methods for accessing the value of a variable stored in a separately com­
piled file. The trick to the first three methods is using the correct variable_allocation_clause when declar­
ing variables. The optional variable_allocation_clause precedes the data type in a var declaration part as
shown below:

var (section_name)
identifier-,ist1 variable_allocation_clause data_type1;

identifier _listN : variable_allocation_clauseN data_typeN;

For variable_allocation_clause, you must enter one of the following three identifiers:

o Define -- tells Pascal to allocate the variable in a static data area and make its name externally
accessible.

o Extern -- tells Pascal to not allocate the variable because it is possibly allocated in a separately
compiled module or program.

o Static -- tells Pascal to allocate the variable in a static data area and keep its name local to this
module or program. Use the static clause when a variable needs to retain its value from one exe­
cution of a routine to the next. For example, the following fragment declares x as a statically al­
located variable:

VAR
x : static integer16;

After the execution of the routine in which x is declared, x still retains its value.

The following sections demonstrate three of the four methods for accessing a variable stored in another
DOMAIN Pascal module.

7.2.1 Method 1
The following fragments demonstrate the first method for accessing an externally stored variable:

program Math; module Sub2;
var var

x : EXTERN integer16; x : DEFINE integer16 .- 8' ,

Procedure twoa;
BEGIN BEGIN

writeln(x) ; {access x} wri teln (x) ; {access x}
END. END;

This method uses the variable allocation clauses extern and define to make the value of x available to
both Math and Sub2. The extern clause in Math tells the compiler that variable x is probably defined
somewhere outside of Math. The define clause in Sub2 tells the compiler that x is defined within Sub2;
the ":= 8" tells the compiler to initialize x to 8. If x is not initialized, the writeln(x) statement gener­
ates totally undefined output.

When you bind, the binder matches the external reference to x in program Ma th with the global symbol x
defined in module Sub2. Note that you can specify x as an extern in as many modules as you want; how-

7-3 External Routines

ever, you should only define x in one module. If you define x in more than one module, the binder re­
ports an error.

7.2.2 Method 2
The following fragments demonstrate the second method for ac;cessing an externally stored variable:

program Math;
var

x :" EXTERN integer16;

BEGIN
writeln(x); {access x}

END.

module Sub2;
var

x
DEFINE

EXTERN integer16;

x := 8;

Procedure twoa;
BEGIN

writeln(x); {access x}
END;

Method 2 introduces the define statement. The define statement is similar to the define variable alloca-

-----­(

\

tion clause. The define statement in Sub2 serves two purposes. First, it tells the compiler that x is de- C
fined in module Sub2. Second, it tells the compiler that the initial value of x is 8. ,/

The define statement takes the following syntax:

define
variable1 := initial_value 1 ;

variableN := initia/_valueN;

Notice that the initial_value is optional. If you do not provide an initial_value, the value of variable is to­
tally undefined; that is, there is no way to predict what the variable's initial value .will be.

NOTE: Order is crucial. If you use Method 2, the var declaration part must precede the
define statement. (However, see Method 3 later in this chapter.)

Putting a define statement in module Sub2 may appear contradictory at first. After all, a define statement
means "it's defined here" and an extern clause implies "it's defined somewhere else." It seems strange,
but this apparent contradiction can actually simplify programming. For example, suppose the extern (---.'"
clause is stored in an %include file. When writing an %include file, there is no way to tell where it's going ~
to end up. It may just end up in a file with a matching define statement. If it does, no harm is done.

7.2.2.1 Initializing Extern Variable Arrays
The "Initializing Variable Arrays" section in Chapter 3 contained a lengthy section on initializing variable
arrays. The following paragraphs explain how to initialize an array variable that has the extern variable
allocation clause.

Ordinarily the -subchk compiler option causes the compiler to generate code to check that subscripts are
within the defined range of an array. However, if you do not specify initialization data for an extern array
variable, the compiler does not generate this extra code when you compile with -subchk. The compiler
cannot check subscripts because the upper bound is not known. If there is data initialization with the ex­
tern declaration, the data is ignored until the variable is defined in a file. However, since the upper bound
is known, the compiler can perform sUbscript checking.

When you let the compiler determine the upper bound of the array, make sure that variable declarations
do not share the same type declaration. If they do, the first data initialization for that variable sets the size
for all other variables. All initialized variables are then checked against that size, just as if you had speci­
fied a constant upper bound.

External Routines 7-4

o

o

o

o

o

For example, consider the following fragment:

VAR
table!, table2
table3
table4

EXTERN array[! .. *] of char;
EXTERN array[! .. *] of char;
EXTERN array[! .. *] of char;

DEFINE
table! .- 'This table sets the size,';
table2 .- 'so this table will be truncated';
table3 .- 'But separate variable declarations';
table4 .- 'solve the problem.';

In the preceding example, variables table! and table2 share the same anonymous type declaration.
Since table! precedes table2, DOMAIN Pascal uses the defined size of table! to set the size for ta­
ble2. In this case, table! is a 26-character string. Therefore, the compiler truncates the string" so
this table will be truncated" to its first 26 characters. Variables table3 and table4 are de­
clared separately, so their initializations do not affect each other.

For arrays with a base type of char, DOMAIN Pascal issues a warning message when it encounters trunca­
tion (as for table2). However, if the array has a base type other than char, the compiler issues an error
message when it encounters truncation.

7.2.3 Method 3
The following fragments demonstrate the third method for accessing an externally stored variable:

program Math;
VAR

x : EXTERN integer!6;

BEGIN
writeln(x); {access x}

END.

module Sub2;
DEFINE

x;
VAR

x : EXTERN integer!6

Procedure twoa;
BEGIN

writeln(x); {access x}
END;

8;

Method 3 is similar to Method 2 except that the initialization (:= 8) is done in the var declaration part
rather than in the define statement.

NOTE: Order is crucial. If you use Method 3, the define statement must precede the
var declaration part.

7-5 External Routines

-----_._-----------

7.2.4 Method 4
The following fragment demonstrates this fourth method for accessing an externally stored variable:

Program Math;
VAR (my_sec)

x integer16:= 5;
y real:= 6.2;
q array[1 .. 3] of char .- ~cat';

BEGIN
writeln(x, y, z);

END.

Module Sub2;
VAR (my_sec)

x integer16;
y real;
q array[l .. 3] of char;

Procedure twoa;
BEGIN

writeln(x, y, z);
END;

Notice that the variables in each module occupy the same nondefault section name, my_sec. This means
that at runtime, the variables x, y, and q from Math occupy the same memory locations as x, y, and
q from Sub2. Therefore, whatever is assigned to x in Math, can be retrieved in Sub2, and vice versa.

There's no requirement that the variables in Sub2 have the same names as the variables in Math. How­
ever, it does make your program far easier to understand if you do give them the same names. Taking this
philosophy one step further, you could greatly simplify variable declaration by putting a named var decla­
ration part into a separate file and using %include to put it into every module.

You should preserve the order of declarations from one module to the next. For example, suppose the
variable declarations look like this:

Program Math;
VAR (my_sec)

x integer16:= 5;
y real:= 6.2;
q array[l .. 3] of char := 'cat';

Module Sub2;
VAR (my_sec)

y real-;
x integer16;
q array[l .. 3] of char;

If you try to access x or y in Sub2, you get garbage results at runtime. That's because when compiling
Sub2, the compiler sees y as being the first four bytes in my_sec. However, when compiling Math, the
compiler sees y as being bytes 2 through 5 in my_sec.

External Routines 7-6

c

o

o

o

o

o

7.3 Accessing a Routine Stored in Another Pascal
Module

DOMAIN Pascal provides two methods for accessing a procedure or function stored in a different module
or program. This section explains both methods, but first describes the extern and internal routine op­
tions, which are both critical to that description.

7.3.1 Extern
The routine option extern serves exactly the same purpose for routines that the variable allocation clause
extern serves for variables. Namely, it specifies that a routine is possibly defined in a separately compiled
file. By specifying a routine as extern, you can call it even if it is defined in another file.

Chapter 5 describes the format of routine options. Extern is like any other routine option, except that
when you use extern, you put the routine heading at the end of the main declaration part of the program
or module.

7.3.2 Internal
By default, all routine names in modules are global symbols, and all routine names in main programs are
local symbols. A routine name from the main program can never become a global symbol. However, you
can make a routine name from a module into a local symbol by specifying the routine option internal. See
the "Routine Options" section in Chapter 5 for details on the syntax rules of routine options.

7.3.3 Method A
Figure 7-2 demonstrates the first method for accessing an externally stored routine.

In Figure 7-2, program math refers to function exponent; however, function exponent is stored in
module math2. Therefore, function exponent is declared as an extern in program math. There is no
need to do anything special to module math2 because the compiler automatically makes exponent a
global symbol in math2. At bind time, the binder resolves external symbol exponent with global symbol
exponent.

If you want to keep exponent local to module math2, you can make the following change to the source
code:

change
to

-->
-->

FUNCTION exponent (number, power
FUNCTION exponent (number, power

7-7

INTEGER16)
INTEGER16)

REAL;
REAL; INTERNAL;

External Routines

PROGRAM math;

VAR
n, p : integer16;
answer: real;

FUNCTION exponent(n,p : integer16) : real; EXTERN;
{exponent is defined outside this file.}

BEGIN
writeln('The main program calls a separately-compiled routine in');
writeln('order to calculate the value of an integer raised to an');
writeln('integer power.');
writeln;
write('Enter an integer -- '); readln(n);
write('Raised to what power -- '); readln(p);
answer := exponent(n,p);
writeln(n:1, ' raised to the', p:1, ' power is' answer:1);

END.

MODULE math2;

{ You must bind this module with program math. }

VAR
number, power, count
run : INTEGER32;

INTEGER16;

FUNCTION exponent (number, power
BEGIN

INTEGER16)

END;

writeln('This is mod 2');
if power = 0 then exponent := 1;
run := 1;
for count := 1 to abs(power) do

run := run * number;
if power > 0

then exponent .- run
else exponent .- (1 / run);

REAL;

Figure 7-2. Method A for Accessing an External Routine

External Routines 7-8

c'

c

o

o

o

o

o

7.3.4 Method 8
Figure 7-3 demonstrates the second method for accessing an externally-stored routine.

PROGRAM math;

VAR
n, p : integer16;
answer: real;

FUNCTION exponent(n,p : integer16) : real; EXTERN;
{exponent is defined outside this file.}

BEGIN
writeln('The main program calls a separately-compiled routine in');
writeln('order to calculate the value of an integer raised to an');
writeln('integer power.');
writeln;
write('Enter an integer -- '); readln(n);
write('Raised to what power -- '); readln(p);
answer := exponent(n,p);
writeln(n:1, ' raised to the', p:1, ' power is' answer:1);

END.

MODULE math2;

{ You must bind this module with program math. }

DEFINE
exponent;

FUNCTION exponent (number, power INTEGER16)

VAR
number, power, count
run: INTEGER32;

INTEGER16;

FUNCTION exponent;
BEGIN

END;

writeln('This is mod 2');
if power = 0 then exponent := 1;
run := 1;
for count := 1 to abs(power) do

run := run * number;
if power > 0

then exponent .- run
else exponent .- (1 / run);

REAL; EXTERN;

Figure 7-3. Method B for Accessing an External Routine

7-9 External Routines

Under Method B you call external routines exactly as you do in Method A. Therefore, program math is
unchanged from Method A. However, you must make the following three changes in module math2:

• DEFINE exponent; -- Use a define statement to tell the compiler that exponent is a global
symbol defined in module rna th2. With one exception, define takes the syntax described in the
"Accessing a Variable Stored in Another Pascal Module" section earlier in this chapter. The one
exception is that you cannot assign an initial value to a procedure or. function symbol.

• FUNCTION exp (number, power : INTEGER16) : REAL; EXTERN; -- Copy the function
declaration from program math. Since this line should be an exact copy of the function declara­
tion in the calling module, you should put this line into a separate file and %include it into both
the module and the program. That way, you only keep one version of the function declaration.

• FUNCTION exponent; -- Notice that there are no arguments here; only the name of the func­
tion.

Figure 7-4 consists of one main program and two modules. The main program calls two external routines
stored in the two modules. The two modules access some variables that the main program defines.

Program relativityl;

CONST
speed_of_light = 2.997925e8;

{ Both of the following routines are defined in another file: }
Procedure convert_mph_to_light(IN speed_in_mph real;

OUT fraction_of_c : real); EXTERN;
Function contracted_len~th(IN rest_length: real;

IN fraction_of_c: real) : real; EXTERN;

VAR
speed_in_mph, fraction_of_c, rest_length: real;
c : DEFINE real := speed_of_light; {Make the value of c globally known.}

BEGIN
write('Enter the speed of the object (in mph) -- ');
readln(speed_in_mph);
convert_mph_to_light(speed_in_mph, fraction_of_c);

write('What is the rest length of the object (in meters) -- ');
readln(rest_length);
write('It will be perceived in the rest frame of reference as ');
writeln(contracted_length(rest_length, fraction_of_c):8:6, ' meters');

END.

Figure 7-4. Another Example of Calling External Routines

External Routines 7-10

c

('

c

o

o

o

o

o

Module relativity2;
DEFINE

convert_mph_to_light;

real; Procedure convert_mph_to_light(IN speed_in_mph
OUT fraction_of_c real); EXTERN;

VAR
speed_in_mph, speed_in_mps, fraction_of_c, percentage
c : EXTERN real;

real;

{ The following procedure converts a speed (given in miles per hour) }
{ into a percentage of the speed of light. }
Procedure convert_mph_to_light;
BEGIN

speed_in_mps := (0.44444 * speed_in_mph);
fraction_of_c := speed_in_mps / c;
percentage := (100 * fraction_of_c);
writeln('This speed is " percentage: 8:6, ' percent of c.');

END;

Module relativity3;

DEFINE
contracted_length;

Function contracted_length(IN rest_length
IN fraction_of_c

real;
real) real; EXTERN;

VAR
rest_length: real;
speed_in_mps : real;

{ This function calculates the relativistic length contraction. }
Function contracted_length;
BEGIN

contracted_length .- rest_length * sqrt(l - sqr(fraction_of_c));
END;

Figure 7-4. Another Example of Calling External Routines (Continued)

Suppose you store program relativity1 in file relativity1.pas, module relativity2 in file
relati vi ty2. pas, and module relati vi ty3 in file relati vi ty3. pas. To compile the three files,
enter the following three commands:

$ pas relativity1
$ pas relativity2
$ pas relativity3

You must now bind them together by entering a command like the following:

$ bind relativity. bin relativity2.bin relativity3.bin -b einstein

7-11 External Routines

Here is a sample execution of the program:

$ einstein
Enter the speed of the object (in mph) -- 4500000
This speed is 0.667121 percent of c.
what is the rest length of the object (in meters) -- 10
It will be perceived in the rest frame of reference as 9.999778 meters

7.4 Calling a FORTRAN Routine From Pascal
DOMAIN Pascal permits you to call routines written in DOMAIN FORTRAN source code. To accomplish
this, perform the following steps:

1. Write source code in DOMAIN Pascal that refers to an external routine. Compile with the
DOMAIN Pascal compiler. DOMAIN Pascal creates an object file.

2. Write source code in DOMAIN FORTRAN. Compile with the DOMAIN FORTRAN compiler.
DOMAIN FORTRAN creates an object file.

3. Bind the object file(s) the Pascal compiler created with the object file(s) the FORTRAN compiler
created. The binder creates one executable object file.

4. Execute the object file as you would execute any other object file.

The following sections describes steps 1 and 2. For information on steps 3 and 4, see Chapter 6.

NOTE: The following sections explain how to call DOMAIN FORTRAN from DOMAIN
Pascal. If you want to learn how to call Pascal from FORTRAN, see the
DOMAIN FORTRAN Language Reference.

7.5 Data Type Correspondence for Pascal and
FORTRAN

There is really no difference between making a call to a FORTRAN function or subroutine and making a
call to an extern Pascal routine. However, before passing data between DOMAIN Pascal and DOMAIN
FORTRAN, you must understand how Pascal data types correspond to FORTRAN data types. Table 7-1
lists these correspondences.

Table 7-1. DOMAIN Pascal and DOMAIN FORTRAN Data Types

DOMAIN Pascal DOMAIN FORTRAN

Integer, Integer16 Integer*2

Integer32 Integer, Integer*4

Real, Single Real, Real*4

Double Double Precision, Real*8

Char Character* 1

Boolean record Logical

Set set emulation calls

user-declared record Complex

Array array (with restrictions)

Pointer Pointer statement

External Routines 7-12

c'

o

o

o

o

o

The integer, real, and character data types in both languages correspond very well to each other. For ex­
ample, Pascal's integer16 data type is identical to FORTRAN's integer*2 data type, and a real in one
language is exactly the same as a real in the other.

There is a difference in what the keyword integer means in the two languages. Integer in DOMAIN Pas­
cal is a 2-byte entity, while in DOMAIN FORTRAN, integer is four bytes by default. To avoid any confu­
sion, you should use the specific integer data types (integer16, integer32, integer*2, and integer*4)
rather than the generic integer.

Unlike Pascal, DOMAIN FORTRAN doesn't actually support a set data type. However, you can make
special set emulation calls from within a DOMAIN FORTRAN program. Therefore, you can pass a set
variable as an argument from a Pascal program and use the set emulation calls within your FORTRAN
program.

7.5.1 Boolean and Logical Correspondence
Pascal's boolean data type and FORTRAN's logical data type serve identical purposes, namely, to hold a
value of true or false. However, boolean takes up one byte of main memory while logical takes up four
bytes with the first byte being where the true or false value is set. To make the data types match up, you
should create Co record type in Pascal that contains one boolean for the "real" value, and three place­
holding booleans. That is:

TYPE
boolrec = record

real_bool
a,b,c

end;

boolean;
boolean;

7.5.2 Simulating FORTRAN's Complex Data Type
Unlike FORTRAN, DOMAIN Pascal doesn't support a predeclared complex data type. However, you
can easily declare a Pascal record type that emulates complex. In FORTRAN, complex consists of two
single-precision real numbers. Therefore, you could define a complex Pascal record as follows:

TYPE
complex = record

r
imaginary

end;

single;
single;

7.5.3 Array Correspondence
Single-dimensional arrays (including boolean/logical arrays when you make the adjustments described
above) of the two languages correspond perfectly; for example:

In DOMAIN Pascal

x
x
x

Array[l .. lO] of CHAR
Array[l .. 50] of INTEGER16
Array[l .. 20] of DOUBLE

In DOMAIN FORTRAN

character*lO x
integer*2 x(50)
real*8 x(20)

The one exception is that you cannot declare a DOMAIN FORTRAN char array of unspecified length as
a parameter. For example, do not specify an array like the following as a parameter in the DOMAIN
FORTRAN program:

CHARACTER*(*) x

7-13 External Routines

Multidimensional arrays in the two languages do not correspond very well. The tricky part is that Pascal
represents multidimensional arrays differently than FORTRAN. To represent arrays in DOMAIN Pascal,
the right-most element varies fastest. For example, DOMAIN Pascal represents the six elements of an
array [1 .. 2, 1 .. 3] in the following order: C~

1,1
1,2
1,3
2,1
2,2
2,3

However, the left-most element varies fastest in DOMAIN FORTRAN arrays. Therefore, DOMAIN
FORTRAN represents the six elements of an array (2 , 3) in the following order:

1,1
2,1
1,2
2,2
1,3
2,3

Obviously this can lead to confusion if you pass a multidimensional Pascal array as an argument to a
DOMAIN FORTRAN parameter. However, there is a way to avoid this confusion. Simply declare the ar­
ray dimensions of the DOMAIN FORTRAN parameter in reverse order. For example, instead of declar­
ing integer*4 array (2,3), declare integer*4 array (3,2). Following are two more examples:

Argument In Pascal Parameter In FORTRAN

x array[l .. 5, 1 .. 10] of real real*4 x(10,5)

x array[l .. 2, 1 .. 3, 1 .. 4] of real real*4 x(4,3,2)

7.6 Passing Data Between FORTRAN and Pascal
There are two ways to pass data between a DOMAIN Pascal program and a DOMAIN FORTRAN func­
tion or subroutine. You can either establish a common section o(memory for sharing data, or you can
pass the data as an argument to a routine. The next section demonstrates the second method, while the
following paragraphs demonstrate the first method.

Earlier in this chapter you learned how to use a named section to pass data between two separately com­
piled Pascal modules. A named section in DOMAIN Pascal is identical to the named common area of
DOMAIN FORTRAN. If you give a named section the same name as a named common area, the binder
establishes a section of memory for sharing data.

For example, suppose that you want both a Pascal program and a FORTRAN function or subroutine to
access two variables -- a 16-bit integer and an 8-byte (double-precision) real number. In the DOMAIN
Pascal program, you can declare the two variables as follows:

VAR (my_sec)
x INTEGER16;
d : DOUBLE;

If you want the value of these two variables to be accessible from the DOMAIN FORTRAN program, de­
clare them as follows in the FORTRAN program:

INTEGER*2 x
REAL * 8 d
COMMON /my_sec/ x,d

External Routines 7-14

c

C

c

o

o

o

o

o

Remember to preserve the same order of variable declaration in the common statement that you did in
the var declaration part. For example, you will get peculiar runtime results if you declare your common
statement as

COMMON /my_sec/ d,x

7.7 Calling FORTRAN Functions and Subroutines
This section demonstrates how to call a DOMAIN FORTRAN function or subroutine from a DOMAIN
Pascal program. Calling DOMAIN FORTRAN from DOMAIN Pascal is trivial; the only possible complica­
tion is that the data types of the arguments and parameters may not correspond perfectly. (See the" Data
Type Correspondence" section earlier in this chapter for ways to remedy the data type mismatches.)

DOMAIN Pascal supports a variety of parameter types including value parameters, variable parameters,
in, out, and in out parameters. DOMAIN FORTRAN supports only one kind of parameter type, and it is
equivalent to the in out parameter type in DOMAIN Pascal. That is, DOMAIN FORTRAN accepts what­
ever value(s) you pass to it, and in turn, always passes a value back.

7.7.1 Calling a Function
The following shows a DOMAIN Pascal program that calls the DOMAIN FORTRAN function listed after
it. The call is trivial since DOMAIN Pascal's single data type corresponds perfectly to the real*4 data
type of DOMAIN FORTRAN.

program pascal_fortran1;
{ This program calls an external function named HYPOTENUSE. Although it will}
{ end up calling a FORTRAN version of that function, this same source code }
{ could call a Pascal version of HYPOTENUSE. }
VAR

leg1, leg2 : single;

function hypotenuse (in out leg1, leg2 single) single; extern;

BEGIN

writeln ('This program calculates the hypotenuse of a right');
writeln ('triangle given the length of its two legs.');
write ('Enter the length of the first leg -- ');
read In (leg1);
write ('Enter the length of the second leg -- ');
readln (leg2);

writeln ('The length of the hypotenuse is: hypotenuse(leg1,leg2):5:2);

END.

* This is a FORTRAN function for calculating the hypotenuse of a
* right triangle. You don't have to do anything special to this file
* to make it callable by Pascal. In fact, this function could just
* as easily be called by a FORTRAN program.

real*4 function hypotenuse (11 , 12)
real*4 11, 12 {real*4 corresponds to the Pascal data type single.}
hypotenuse = sqrt«ll * 11) + (12 * 12»
end

7-15 External Routines

These programs are available on-line and are named pascal_fortranl and hypotenuse.

7.7.2 Calling a Subroutine
A function in Pascal corresponds to a function in FORTRAN. A procedure in Pascal corresponds to a
subroutine in FORTRAN. In the following example, HYPOTENUSE changes from a function to a subrou­
tine and the Pascal program changes to reflect that it is expecting an external procedure. Note that the
Pascal program could actually be calling a Pascal procedure. There's nothing in the program that desig­
nates the language in which the called procedure is written.

program pascal_fortran2;

VAR
legl, leg2, result: real;

procedure hypotenuse (in out legl, leg2, result real) extern;

BEGIN

writeln ('This program calculates the hypotenuse of a right');
writeln ('triangle given the length of its two legs.');
write ('Enter the length of the first leg -- ');
readln (legl);
write ('Enter the length of the second leg -- ');
readln (leg2);

hypotenuse(legl,leg2,result);
writeln ('The length of the hypotenuse is: result:5:2) ;

END.

* This is a FORTRAN subroutine for calculating the hypotenuse of a
* right triangle.

subroutine hypotenuse(ll, 12, result)
real*4 11, 12, result

result = sqrt«ll * 11) + (12 * 12))
end

These programs are available on-line and are named pascal_fortran2 and hypot_sub.

External Routines 7-16

c

c

o

o

o

o

o

7.7.3 Passing Character Arguments
Passing arguments when two languages' data types match exactly is relatively easy, but passing them when
they don't often means you need to do extra work.

If y~u pass a string of chars from DOMAIN Pascal to DOMAIN FORTRAN, you should add an extra pa­
rameter to the Pascal routine heading. This is because FORTRAN adds an implicit string length argument
whenever it passes a character string back to a calling routine. Suppose your Pascal program includes the
following:

TYPE

VAR
name = array[l .. 10] of char;

first_name
len

name;
integer16;

procedure change_name(in out first_name name;
in out len integer16); extern;

change_name(first_name,len); {Assume "change_name" is a FORTRAN subroutine.}

This Pascal routine heading includes an "extra" parameter for the length of first_name that FORTRAN
will add when Pascal calls the routine. The length argument must be of type integer16 because
FORTRAN's implicit length argument is an integer*2.

The FORTRAN routine heading does not explicitly include the length argument. For this example, it
would look like this:

subroutine change_name(first_name)
character*lO first_name

If you send multiple strings to DOMAIN FORTRAN and you include FORTRAN's implicit length argu­
ments in the Pascal parameter list, the length parameters must always appear at the end of the routine
heading. That is, it is not correct to list them as stringl, lenl, string2, len2, etc. For instance:

{ Pascal program fragment. }
TYPE

fn array[l .. 10] of char;
In array[1 .. 20] of char;

procedure process_name(in out
in out

first_name
middle_initial

in out last name
in out lenl, len2, len3

fn;
char;
In;
integer16); extern;

process_name (first_name, middle_initial, last_name, lenl, len2, len3);

* FORTRAN subroutine fragment.
subroutine process_name (first_name, middle_initial, last_name)

character*10 first_name
character middle_initial
character*20 last_name

7-17 External Routines

7.7.4 Passing a Mixture of Data Types
The following DOMAIN Pascal program and DOMAIN FORTRAN subroutine demonstrate passing a va-
riety of data types. C

program pascal_fortran3;
{ This program demonstrates passing arguments of several different }
{data types to a FORTRAN subroutine. }

TYPE

VAR

last_names = array[l .. 10] of char;
two_by_four = array[l .. 2, 1 .. 4] of integer16;
complex = record

boolrec

age
lying
name
multi

c

r
imaginary

end;
record

bool_var
a,b,c

end;

real;
real;

boolean;
boolean;

integer32 := 1000000;
boolrec;
last_names := 'Tucker';
two_by_four := [[5,8,11,14]

[100, 103, 106, 109]];
complex := [4.53, 0.98];

count1, count2, len: integer16;

procedure print_vals (in age : integer32; in lying: boolrec;
in name: last_names; in multi two_by_four;
in c : complex);

{ This procedure prints the values of the variables. }

BEGIN

writeln ('Age = " age:5);
writeln ('Lying = " lying.bool_var:5);
writeln ('Name = " name);

writeln ('Multi = ');
for count1 := 1 to 2 do

begin
for count2 := 1 to 4 do

write(multi[count1,count2] :5);
writeln;
end; {for}

writeln ('Complex c.r:4:2, ',', c.imaginary:5:2);

END; {end procedure print_vals}

{ Note "extra" len argument in the parameter list of mixed_types.}

procedure mixed_types (in out age: integer32; in out lying: boolrec;

External Routines

in out name : last_names; in out multi : two_by_four;
in out c : complex; in out len : integer16); extern;

7-18

-------------.... --~-----~-----------------------

o

o

o

0

0

BEGIN {main program}
lying.bool_var := true;
writeln (chr(10) , 'Before calling FORTRAN', chr(10»;
print_vals(age, lying, name, multi, c);

mixed_types (age, lying, name, multi, c, len);
writeln (chr(10), 'After calling FORTRAN', chr(10»;
print_vals(age, lying, name, multi, c);

END.

* This is a FORTRAN subroutine for assigning new values to arguments
* passed in from a Pascal program. It demonstrates how to pass a
* variety of data types.

subroutine mixed_types (a,l,n,m,c)
integer*4 a { Declare variables.}
logical 1
character*10 n
integer*2
complex

m(4,2), count
c

* Make reassignments.
a a * 2
1 .false.
n 'Carter'

do count = 1,4
m(count,l)

end do

c = (2.0, -2.0)
end

m(count,l) + 1000

These programs are available on-line and are named pascal_fortran3 and mixed_types. If you com­
pile, bind, and execute these programs, you get the following output:

Before calling FORTRAN

Age = 1000000
Lying = TRUE
Name = Tucker
Multi

5 8 11 14
100 103 106 109

Complex = 4.53, 0.98

After calling FORTRAN

Age = 2000000
Lying = FALSE
Name = Carter
Multi

1005 1008 1011 1014
100 103 106 109

Complex = 2.00,-2.00

7-19 External Routines

7.8 Calling a C Routine from Pascal
In addition to allowing you to call FORTRAN routines, DOMAIN Pascal permits you to call routines writ- (-
ten in DOMAIN C source code. To accomplish this, perform the following steps:_ ~

1. Write source code in DOMAIN Pascal that calls a routine. Compile it with the DOMAIN Pascal
compiler. DOMAIN Pascal creates an object file.

2. Write source code in DOMAIN C. Compile it with the DOMAIN C compiler. DOMAIN C creates
an object file.

3. Bind the object file(s) the Pascal compiler created with the object file(s) the C compiler created.
The binder creates one executable object file.

4. Execute the object file as you would execute any other object file.

The remainder of this chapter describes steps 1 and 2. For information on steps 3 and 4, see Chapter 6.

NOTE: The following sections explain how to call DOMAIN C from DOMAIN Pascal.
If you want to learn how to call Pascal from C, see the DOMAIN C Language
Reference.

7.8.1 Reconciling Differences in Argument Passing
Pascal usually passes arguments by reference, while C usually passes them by value. In order to pass argu­
ments by reference correctly, you must declare your parameters in C to be pointers so that they can take
the addresses Pascal passes in. The examples in the following sections demonstrate how to do this.

c

If you want to pass your Pascal arguments by value, you must use the val_param routine option in your /~-',

procedure or function heading. Chapter 5 describes val_paramo (,_

7.8.2 Case Sensitivity Issues
When the DOMAIN Pascal compiler parses a program, it makes all identifier names uppercase, regardless
of the way you type the names in your source code. In contrast, when the DOMAIN C compiler parses a
program, it inverts the case of all identifiers. So if your C source code includes the following

double square_num(a,b)
float' *a,*b;

the compiler converts the function name square_num and the variables a and b to SQUARE_NUM, A,
and B. But if the function heading looks like this

double SQUARE_NUM(A,B)
float *A,*B;

the compiler converts SQUARE_NUM, A, and B to square_num, a, and b. It is important to under­
stand this when you are calling C from Pascal. In order to make identifier names match up at bind time,
you should always use lowercase letters in your C subprograms. That way, the C compiler will invert them
to uppercase and they will match the always-uppercased identifier names in the Pascal program.

External Routines 7-20

C'

o

o

o

o

o

7.9 Data Type Correspondence for Pascal and C
Before you try to pass data between DOMAIN Pascal and DOMAIN C, you must understand how Pascal
data types correspond to C data types. Table 7-2 lists these correspondences.

Table 7-2. DOMAIN Pascal and DOMAIN C Data Types

DOMAIN Pascal DOMAIN C

char char
integer, integer16 short
integer32 int, long
real, single float
double double
enumerated types enum
record struct
variant record union
pointer(") pointer(*)

boolean none
set none

none unsigned char
0 .. 65335 unsigned short
0 .. 4295967295 unsigned long

As the table shows, the integer, real, and character data types in both languages correspond very well. For
example, Pascal's integer16 data type is identical to C's short data type, and a double variable in Pascal
is the same as a double in C.

However, there are some important differences. DOMAIN C has no equivalent types for Pascal's boolean
or set types, although you can simulate these types.

There also is a C type that has no Pascal equivalent. There is no easy way to simulate C's unsigned char
type in Pascal. Therefore, if you pass an unsigned char value to a Pascal program, it is interpreted as a
signed value. This only makes a difference when the high-order bit is set.

7-21 External Routines

7.9.1 Passing Integers and Real Numbers
Since the Pascal and C integer and real data types match up so well, it is fairly easy to pass data of these
types between the two languages. Make sure that all arguments agree in type and size, either by declara- C'
tion or by casting. /

The example below shows a Pascal program that solicits the values for two sides of a right triangle. It then
sends those values into the C function, which computes and returns the length of the hypotenuse. Thear-
guments for the triangle's sides are 32 bits each, while the result is 64 bits.

PROGRAM pascal_cI;
{ This program calls a C function that calculates the hypotenuse of }
{ a right triangle when a user supplies the lengths of two sides. }

VAR
legI, leg2 : single;

function hypot_c(in out legl, leg2 single) double; extern;

BEGIN

writeln ('This program calculates the hypotenuse of a right triangle ');
writeln ('given the length of its two sides.');
write ('Enter the lengths of the two sides: ');
readln (legI,leg2);

writeln ('The triangle"s hypotenuse is: hypot_c(legl,leg2) :5:2);

END.

/**/
/* This is a C function for finding the hypotenuse of a */
/* right triangle. The arguments must be declared as pointers.*/
#include <math.h>
double hypot_c(a,b)

float *a,*b;
{
double result;
result = sqrt«*a * *a) + (*b * *b»;
return(result);
}

These programs are available on-line and are named pascal_cI and hypot_c. Following is a sample
execution of the bound program.

This program calculates the hypotenuse of a right triangle
given the length of its two sides.
Enter the lengths of the two sides: 3 4
The triangle's hypotenuse is: 5.00

7.9.2 Passing Character Arguments
Passing arguments when two languages' data types match exactly is relatively easy, but passing them when
they don't often means you have to do extra work.

You must do extra work when you pass character strings between the languages. C automatically appends
a null character, \0, to the end of every string, so if your Pascal program is going to print a string it re-

External Routines 7-22

-------- ... ---_ -----

c

c

c

o

o

o

o

o

ceives from C, you must remember to take care of the null. You can strip it off either in your C routine or
in Pascal; the sample program in this section shows how to strip it off in C.

The following Pascal program sends two strings to a C routine that prompts a user for new values and then
sends the new string values back.

PROGRAM pascal_c2;
{ This program demonstrates passing character variables to and }
{ getting them back from a C routine. }

TYPE

VAR

fn array[1 .. 10] of char;
In array[1 .. 15] of char;

first_name fn;
last_name In;

procedure pass_char(in out first_name
in out last name

BEGIN
first_name := 'Sherlock';
last_name := 'Holmes';

fn;
In); extern;

writeln ('Before calling C, this is the name: " first_name, last_name);
pass_char (first_name, last_name);
writeln ('After calling C, this is the name: " first_name, last_name);

END.

/***********************************~**********************************/
/* This C routines takes two strings, prompts a user for new values, */
/* and strips off the null characters before sending the strings back.*/
#include <stdio.h>
pass_char (first_name, last_name)

char *first_name, *last_name;

{
short i, j;
char hold_first [10] , hold_last [15] ;

printf ("\nEnter the first name and last name of a detective: ");
scanf ("%S%S", hold_first, hold_last);

/* Strip off the null character C automatically appends to any string */
/* and blank out any previously used places in the name strings. */
for (i = 0; hold_first [i] ! = .. \0'; i++)

first_name[i] = hold_first[i];
for (j = i; j < 10; j++)

first_name[j] = ' ';

for (i = 0; hold_last[i] != '\0'; i++)
last_name[i] = hold_last[i] ;

for (j = i; j < 15; j++)
last_name[j] ";

}

7-23 External Routines

These programs are available on-line and are named pascal_c2 and pass_char. Following is- a sample
execution of the bound program.

Before calling C, this is the name: Sherlock Holmes

Enter the first name and last name of a detective: Philip Marlowe
After calling C, this is the name: Philip Marlowe

7.9.3 Passing Arrays
Single-dimensional arrays (except for boolean arrays) of the two languages correspond fairly well. The
major difference is that in C, array subscripts always begin at zero, while Pascal allows the programmer to
determine the subscript at which the array begins. In order to make arrays match up, you should define
your Pascal subscripts to begin at zero. For example:

In DOMAIN Pascal

x array[O .. 9] of char
x array[O .. 49] of integer
x = array[0 .. 19] of single

In DOMAIN C

char x[10]
short x[50]
float x[20]

With such declarations, the following code fragments access the identical elements in an array:

In DOMAIN Pascal

for i := 0 to 9 do
my_array[i] .- i;

In DOMAIN C

for (i = 0; i < 10; i++)
my_array[i] = i;

('
'''---- ..

As described earlier, Pascal by default passes arguments by reference, so when it sends an array argument C ... ·,
to a routine, it actually is sending the address of the first element in the array. C gets that address when _
you declare the array variable in C to be a pointer. This means you don't have to specify the size of a sin­
gle-dimensional array that your C subprogram receives from Pascal. That is, if your Pascal program in-
cludes the following

type
x = array[O .. 9] of integer32;

var
my_array : x;

your C routine heading can look like this:

pass_array (my_array)
long *my_array;

External Routines

/*Notice that there's no indication of the
array's dimensions.

7-24

*/

I~.

~-

o

o

o·

o

o

The following example shows a Pascal program that loads five user-entered scores into a single-dimen­
sional array and then sends that array to a C procedure to compute the average. Notice that the argument
size determines the dimension of the array; the C declaration of the array contains no dimensioning in­
formation.

PROGRAM pascal_c3;
{ This program demonstrates passing a single-dimensional }
{ array to a C routine. }

TYPE
scores array[O .. 4] of integer;

VAR
grades
i, j
result
size

scores;
integer;
single;
integer := 5;

procedure single_dim(out result
in size
in grades

BEGIN

single;
integer;
scores); extern;

writeln ('Enter', size:1, ' integer test scores separated by spaces.');
for i := ° to 4 do

read(grades[i]);
readln;

single_dim(result, size, grades);
writeln ('C computed the average of the test scores, and it is:

result:5:2);

END.

/**/
single_dim(result,size,grades)

float *result;
short *size, *grades;

{
short i,total;
total = 0;
for (i = 0; i < *size; i++)

total += grades[i];
*result = total / 5.0;
}

/* Add up array values */
/* and then compute */
/* average. */

These programs are available on-line and are named pascal_c3 and single_dim. Following is a sam­
ple execution of the bound program.

Enter 5 integer test scores separated by spaces.
85 92 100 79 96
C computed the average of the test scores, and it is: 90.40

Multidimensional arrays in the two languages also correspond fairly well. Both languages store such arrays
in the same order; that is, the right-most subscript varies fastest. So these two arrays would be stored iden­
tically:

In DOMAIN Pascal.

x = array[O .. 1,0 .. 2] of integer32;

7-25

In DOMAIN C

long *x[2] [3] ;

External Routines

7.9.4 Passing Pointers
Passing pointers between Pascal and C is fairly straightforward. In both cases, pointers are 4-byte entities.
The following example shows a simple linked-list application. The Pascal program creates the first element C
of the list and then calls the C routine append to add new elements to the list. The routine printlist is /
a Pascal routine that prints the entire list. In addition to illustrating how to pass pointers, this example also
shows the correspondence of Pascal records to C structures.

PROGRAM pascal_c4;
TYPE

VAR

link "list;
list record

data : char;
p : link;
end;

last_let
val

char := 'z';
char;

base, first link;

procedure append(in
in

procedure printlist;

base
val

link;
char); extern;

{ printlist prints the data in each member of the linked list. }

BEGIN

while base <> nil do
begin
writeln(base".data);
base . - base". p ;
end;

END; {end procedure printlist}

c

C-'-BEGIN {main program} .
base := nil;
new(first);

first".data := 'a'; { Assign value to first element of the list. }
first".p := base; { The first element is also the last, so set}

{ pointer to nil. }
base := first; { Base points to the beginning of the list. }

val := 'b';
append(base,val);
append(base,last_Iet);

printlist;

END.

External Routines

{ Call procedure to print contents of list.

7-26

c

-----------.------------ ---------------

o

o

o

o

o

/**/
/* C routine that appends items to a linked list. */

#module pass-pointers_c
#include <stdio.h>

typedef struct
{
char data;
struct list *next;
} list;

void append (base, val)
list **base;
char *val;

{
list *newdata, *last_rec;

last_rec = *base; /* Point temp variable last_rec at */
/* the beginning of the list. */

newdata = (list*)malloc(sizeof(list»; /* Allocate memory for new element. */

while (last_rec->next != NULL)
last_rec = last_rec->next;

last_rec->next = newdata;
newdata->data *val;
newdata->next = NULL;

}

/* Walk to the end of the list. */

/* Add new data. */

These programs are available on-line and are named pascal_c4 and append. If you compile and bind
the programs, and execute the result, you get this output:

a
b
z

7-27 External Routines

c

r

c

o

o

o

o

Chapter 8

You may have turned to this chapter first if you are new to DOMAIN Pascal yet experienced with other
Pascals. After all, I/O is the most system-dependent aspect of any Pascal. I/O on DOMAIN Pascal may
only partially resemble I/O on some other Pascal. These are necessary differences because each imple­
mentation of Pascal must take advantage of the features of the host operating system.

DOMAIN Pascal supports the following three methods of performing I/O:

• Input Output Stream (lOS) calls

• VFMT calls

• Predeclared DOMAIN Pascal I/O procedures

In general, you can perform all your I/O with the predeclared DOMAIN Pascal I/O procedures. How­
ever, the other two methods can be very useful in certain circumstances.

This chapter provides a brief overview of all three methods, along with some background information that
may aid you in whatever method you choose.

8.1 Some Background on DOMAIN 1/0
This section describes some information that may be helpful in understanding how I/O works on the DO­
MAIN system. It's only a brief sketch; the full details are published in Programming With General System
Calls. Before describing the mechanics of DOMAIN I/O here, there is a brief description of lOS calls and
VFMT calls.

8-1 Input and Output

1

8.1.1 Input Output Stream (IOS)Calis
lOS calls are system calls that perform I/O. You can easily make lOS calls from your DOMAIN Pascal
program. lOS calls can:

• Create a file

• Open or close a file

• Write to or read from a file

• Change a file's attributes (a file's attributes include name, length, type uid, accessibility, etc.)

• Access magnetic tape files or serial lines

lOS calls are more primitive than the predeclared DOMAIN Pascal I/O procedures. Consequently, they
give you more control over I/O, but they are harder to use. Therefore, for simple I/O needs you are prob­
ably better off using the predeclared DOMAIN Pascal I/O procedures. If you want to do something out of
the ordinary, then you will most likely need to use lOS calls.

Chapter 3 of Programming With General System Calls details lOS.

8.1.2 VFMT Calls
VFMT calls are special system calls that format input and output. Since the Pascal language does not sup­
port elaborate formatting features, you may find it useful to make a VFMT call in situations such as the
following:

c

• A variable_ contains a hexadecimal value and you wish to prompt your user with its ASCII equiva-
lent. ('

1,,-_-
• You want to tabulate results in fixed columns using scientific notation.

• You need to parse an input line without worrying about whether the user separates the arguments
with spaces or semicolons.

VFMT is a set of tools for converting data representations between formats.

VFMT performs two classes of operations -- encoding and decoding. Encoding means taking program­
defined variables and producing text strings that represent the values of the variables, in a format that you
specify. These encoded values are then often written to output for viewing. Decoding means taking text
(typically typed by the user), interpreting it in a way that you specify, and storing the apparent data values
in program-defined variables.

The VFMT calls allow you to format the following kinds of data:

• ASCII characters

• 2-byte or 4-byte integers interpreted as signed or unsigned integers in octal, decimal, or hexa­
decimal bases

• single- and double-precision reals in floating-point and scientific notations

This includes the following DOMAIN Pascal data types: char, integer16, integer32, single, and double.

Chapter 8 of Programming With General System Calls details VFMT calls. In addition, you can use get­
pas (see Chapter 1) to obtain copies of several sample programs that contain VFMT calls.

The remainder of this section is devoted to explaining certain aspects of DOMAIN I/O that you may find
useful.

Input and Output 8-2

('
'----

o

o

o

o

o

8.1.3 File Variables and Stream IDs
All of the predeclared DOMAIN Pascal I/O procedures take a file variable as an argument. The file vari­
able is a synonym for a temporary or permanent pathname to the file. If you are using lOS calls rather
than the DOMAIN Pascal I/O procedures, you refer to a pathname by its lOS ID rather than by its file
variable. A stream ID is a number assigned by the operating system when you open a file or device. Since
DOMAIN Pascal I/O procedures in your source code ultimately translate to lOS calls at runtime, a file
variable in your source code becomes a lOS ID at runtime. The system can support up to 128 I/O streams
per process.

8.1.4 Default Input Output Streams
Every process starts out with the I/O streams shown in Table 8-1. DOMAIN Pascal deals in file variables,
not lOS IDs, so the table also shows the names of the file variables corresponding to these streams. You
need not explicitly declare these; the system opens these streams automatically as described in the next
subsection.

Stream Name

8.1.5 Interactive I/O

Table 8-1. The Default Streams

File Variable Name

Input

Output

Description

If you do not explicitly specify a file variable
for a DOMAIN Pascal input procedure, the
compiler reads from input. By default, input is
the process input pad, but you can redirect this
stream with the < character. *

If you do not explicitly specify a file variable
for a DOMAIN Pascal output procedure, the
compiler assumes output. By default, the sys­
tem associates this stream with the process
transcript pad, but you can redirect this stream
with the > character. *

This is just another input stream available for
you to use. (It has nothing to do with errors.)
By default, errin is the process input pad, but
you can redirect this stream with the <? charac­
ter sequence. *

DOMAIN Pascal sends errors to this stream.
By default, this is the transcript pad, but you
can redirect this stream with the >? character
sequence. *

DOMAIN Pascal uses the following system for interactive processing of the standard input (input) and
standard output (output) files. DOMAIN Pascal does not actually open input and output until the pro­
gram first refers to them. When DOMAIN Pascal finds the first reference to input in your program, it

* The DOMAIN System User's Guide explains how to redirect I/O.

8-3 Input and Output

calls reset(input). Reset expects to fill the file buffer variable with the first char of a text file, which
means that reset (input) can cause a request for input. For example, consider the following program:

PROGRAM lazy;
VAR

c
BEGIN

char;

while not eof(input) do
begin

{This program is WRONG!}

write('enter a letter or an EOF --');
readln (c) ;
end;

END.

If you run this program, you might expect results like the following:

enter a letter or an EOF
enter a letter or an EOF
enter a letter of an EOF

A
Z
<EOF>

However, in reality, the program does not produce those expected results. That's because the first refer­
ence to input is in the eof function. This causes the system to perform a reset (input) prior to the test for
eof. Reset expects to fill the file buffer, so the test for eof actually results in a request for input. There­
fore, running the program results in the following:

A
enter a letter or an EOF
enter a letter or an EOF

Z
<EOF>

To eliminate this problem, you must take advantage of a feature of reset known as delayed access. De­
layed access means that data will not be supplied to fill the input buffer at the reset, but rather at the next
reference to the file. Since reset initiates delayed access, and since eof and eoln cause the file buffer to
be filled, you must place the first prompt for input be/ore any tests for eof or eoln. The data you enter in
response to the prompt is retained until you make another reference to the input file.

The following shows how to use delayed access to make the previous example work correctly:

PROGRAM interactive;
VAR

c
BEGIN

char;

write ('enter a letter or an EOF -- ');
while not eof(input) do

END.

begin
readln(c) ;
write ('enter a letter or an EOF -- ');
end;

Input and Output 8-4

('
'-_ .. '

('

c'

o

o

o

o

8.1.6 Stream Markers
When you open a file, the operating system assigns a stream marker to the file. A stream marker is a
pointer that points to the current position inside the open file. As you read from or write to the file, the
operating system moves the stream marker forward in the file. The stream marker points to the byte (or
record) that the system can next access. When you open the file with the DOMAIN Pascal open proce­
dure, the stream marker initially points to the beginning of the file. Using lOS calls, you can open the file
with the stream marker initially pointing to the end of file so that you can append to the file.

If you are using lOS calls, you directly control the stream marker. If you are using DOMAIN Pascal I/O
procedures, you control the stream marker indirectly through the procedures you call.

8.1.7 File Organization
The DOMAIN operating system supports the following four types of file organization:

• UASC context delimited ASCII record files ("UASC file" for short)

• Fixed-length records files ("rec file" for short)

• Variable-length records files

• No defined record structure files

Using stream calls, you can create any of the four types of files. However, using DOMAIN Pascal, you can
create only the first two types.

A UASC file is an ordinary text file. The system stores a text file as a 32-byte header followed by ASCII
characters. The operating system makes no attempt to organize or structure the data in a text file. That is,
'908' is stored in the three bytes it takes to hold the AS CII values of digit '9', digit '0', and digit '8',
rather than structuring it into the value of integer 908.

It is a DOMAIN Pascal restriction that each line of a text file be no longer than 256 characters. By line,
we mean all the characters between two end-of-line characters. No text file can have more than 32767
lines.

A rec file consists of zero or more "records." The term record is confusing here. In this context it does
not necessarily mean a Pascal record variable. Instead, it means a collection of some data type. When you
create a rec file with DOMAIN Pascal I/O procedures, the data type of the record is the same as the base
type of the file variable. In a fixed-length record file, each record must be of the same type, and must be
of the same size.

8.2 Predeclared DOMAIN Pascal 1/0 Procedures
The encyclopedia of DOMAIN Pascal code in Chapter 4 details the syntax of each of the predeclared
DOMAIN Pascal I/O procedures. This section tries to provide a global view of these procedures.

8.2.1 Creating and Opening a New File
You can create a permanent file or a temporary file. The operating system deletes a temporary file as soon
as the program that created it ends. Permanent files last beyond program execution. In fact, they last until
you explicitly delete them.

To create a permanent file, you call the open procedure and specify 'NEW' as the file_history. This not
only creates the file, but opens it for future access as well.

To create a temporary file, you call the rewrite procedure.

Both open and rewrite take a file or text variable as an argument. If the file variable has the text data
type, then DOMAIN Pascal creates an UASC file. If the file variable has the file data type, DOMAIN
Pascal creates a rec file.

8-5 Input and Output

8.2.2 Opening an Existing File
To open an existing file for future access, you call the open procedure and specify either 'OLD' or 'UN­
KNOWN' as the file_history.

Note that you do not have to explicitly open the Shell transcript pad. It is already open. (See the "Default
Input Output Streams" section earlier in this chapter for details.)

8.2.3 Reading From a File
In order to read from an open file, you must call the reset procedure. Reset tells the system to treat the
open file as a read-only file (with the one exception being the replace procedure). You can change the
open file to a write-only file with the rewrite procedure.

After calling reset, you are free to call any or all of the three input procedures that DOMAIN Pascal sup­
ports, namely, read, readln, and get. All three procedures read information from the specified file and
assign it the specified variable (s). The following list describes the differences among the three procedures:

• Get can access both rec files and UAse files. Use it to assign the contents of the next record or
character in a file to a file buffer variable.

• Read can access both rec files and UAse files. Use it to read information from the specified file
into the given variables. After reading a record (if a rec file) or character (if a UASe file), read
positions the stream marker to point to the next record or character in the file.

• Readln can access UASe files only. It is similar to read except that after reading the information,
readln sets the stream marker to the character immediately after the next end-of-line character.

It is often useful to know when the stream marker has reached the end of the line or the end of the file.
You can use eo In to test for the end of line, and eof to test for the end of file in UASe files.

c

DOMAIN Pascal supports the find procedure as an extension to standard Pascal. Use it to set the stream ('
marker to point to a particular record in a rec file. This procedure permits you to skip randomly through a --
rec file, while the other read procedures imply a sequential path.

8.2.4 Writing to a File
In order to write to a file, you must call the rewrite procedure. (If you used rewrite to open a temporary
file, then you don't have to call rewrite again.) The rewrite procedure tells the system to treat the open
file as a write-only file. You cannot read from this file unless you call reset.

Once the file has been opened for writing, you can call any of these four standard Pascal output proce­
dures: write, writeln, put, and page. Write, writeln, and put are the output mirrors to read, readln,
and get. Using write, writeln, or put causes DOMAIN Pascal to write the specified information from the
specified variable(s) to the specified file. Here are the differences among the four procedures:

• Put can access both ree files or UASe files. Use it to assign the contents of the file buffer variable
to the next file position, causing the contents to be written to the file.

• Write can access both rec files and UASe files. Use it to write information from the specified
variables into the specified file. After writing a record (if a rec file) or character (if a U ASe file),
write positions the stream marker to point to the next record or character in the file.

• Writeln can access VASe files only. It is similar to write except that after writing the information,
writeln sets the stream marker to the character immediately after the next end-of-line character.

• Page can access UASe files only. Use it to insert a formfeed (page advance) into the file.

In addition to the standard Pascal output procedures, DOMAIN Pascal also supports the replace proce­
dure. Use the replace procedure to substitute a new record for an existing record in a rec file. replace has·

Input and Output 8-6

('

c

o

o

o

o

o

the distinction of being an output procedure that you can call only when the file has been open for input.
In other words, before you call replace, you must first call open and reset to open the file for reading.
Replace is usually used with find. Use find to skip through a rec file looking for a particular record, then
use replace to modify the record in its place.

8.2.5 Closing a File
When a program terminates (naturally or as a result of a fatal error), the operating system automatically
"closes" all open files. "Closing" means that the operating system unlocks the file. When the operating
system closes a rec file, it automatically preserves any changes made to the rec file. However, when the
operating system closes a text file that was open for output, there is a possibility that some modif~cations
won't be preserved. To ensure that all modifications are kept, make sure that the last output operation on
the file is a writeln.

DOMAIN Pascal supports a close procedure whose purpose is to close a specified open file. Since the op­
erating system does this automatically at the end of the program, you ordinarily don't have to call close.
However, it is good programming practice to close all open files as soon as your program is finished using
them. Open files tie up process resources and may cause your program to needlessly lock a file that an­
other program wants to access.

8-7 Input and Output

c~

(~
,---. '

c

o

o

o

o

o

Chapier 9

The majority of this chapter is devoted to detailing compiler errors and warnings. However, we start this
chapter with a discussion of the errors reported by the predeclared procedures open and find.

9.1 Errors Reported by Open and Find
The open and find procedures are the only two predeclared DOMAIN Pascal routines that return an er­
ror status parameter. This parameter tells you whether or not the call was successful. If the call was suc­
cessful, the operating system returns a value of 0 in the error status parameter. If the call was not success­
ful, the operating system returns a number symbolizing the error. Your program is responsible for han­
dling the error. You may wish to print the error and terminate execution. Possibly, you may wish to code
your program so that it can take appropriate action when it encounters an error.

This error status parameter is identical to the error status parameter returned by all system calls. This is
more than coincidental since open and find are executed as stream calls at runtime. For complete details
on using the error status parameter, refer to Programming With General System Calls. For an overview
relevant to open and find, read the following section.

9.1.1 Printing Error Messages
To print an error message generated by an errant open or find, you must do the following:

• Put the following two include directives in your program just after the program heading:

%INCLUDE '/sys/ins/base.ins.pas';
%INCLUDE '/sys/ins/error.ins.pas';

Make sure you put base. ins. pas before error. ins. pas.

9-1 Errors

• Declare the error status parameter with the status_$t data type; for example,

VAR
{status_$t is declared in base.ins.pas}

• Specify the error status parameter as the all field of the error status variable; for example,

OPEN(f, pathnamel, 'NEW', err_stat.all);

• Call the error_$print procedure with the error status parameter as its sole argument; for ex­
ample,

error_$print(err_stat);
{The error_$print procedure is defined in error.ins.pas}

The following program puts all the steps together:

Program test;

%INCLUDE '/SYS/INS/BASE.INS.PAS';
%INCLUDE '/SYS/INS/ERROR.INS.PAS';

VAR

BEGIN

text;
status_$t;

OPEN(f, 'grok', 'OLD', err_stst.all);
Error_$print(err_stat);

END.

The error_$print procedure writes the error or warning message to stdout. If there is no error or
warning, error_$print writes the following message to stdout:

status 0 (OS)

9.1.2 Testing For Specific Errors
The previous subsection introduced the status_$t data type and its all field. This section describes
another field in status_$t -- the code field. The code field of status_$t contains a number that
corresponds to a particular error. To test for a specific error, compare this code field against expected er­
rors. Table 9-1 lists the common error codes returned by open and Table 9-2 lists the common error
codes returned by find. The symbolic names come from the /syslins/streams.ins.pas file. To use these
symbolic names, all you have to do is list this file as an include file.

Errors 9-2

c

c\

c

c

o

o

o

o

o

Table 9-1. Common Error Codes Returned By Open

Code Symbolic Name Cause of Error

1 stream_$not_open You specified a file_history of 'NEW', but the
pathname existed. Furthermore, the type UID (rec
file or USAC) of this existing file differed from the
type UID of the file you were trying to open.

14 stream _ $already _exists You specified a file _history of 'NEW', but the
pathname already exists.

21 stream_$name_not_found You specified a file_history of 'OLD', but the
pathname does not exist.

28 stream_$object_not_found You specified a file_history of 'OLD', but the
operating system cannot locate the disk containing
the pathname. (Indicates network problems.)

45 stream_$insufficient_rights The ACL of the pathname prohibits you from
opening the file.

Table 9-2. Common Error Codes Returned By Find

Code Symbolic Name Cause of Error

1 stream_ $not_open You called find, but without the file being
open.

9 stream_ $end_of_file You specified a record number greater than the
number of records in the file.

For example, consider the following program fragment, which tries to first open pathname my _bookl. If
this pathname exists, the program then attempts to open pathname my _book2.

Program test;

%INCLUDE '/sys/ins/base.ins.pas';
%INCLUDE '/sys/ins/error.ins.pas';
%INCLUDE '/sys/ins/streams.ins.pas';

VAR

BEGIN

fl, f2
st

text;
status_$t;

open(fl, 'my_baakl', 'NEW', st.all);
if st.code = stream_$already_exists then

open(f2, 'my_baak2', 'NEW', st.all);

9-3 Errors

9.2 Compiler Errors and Warnings
When you compile a program, the compiler reports errors and warnings.

An error indicates a problem severe enough to prevent the compiler from creating an executable object
file .

. A warning is less severe than an error; a warning does not prevent the compiler from creating an executa­
ble object file. The warning message tells you about a possible ambiguity in your program for which the
compiler believes it can generate the correct code.

The following pages list the common DOMAIN Pascal compiler error and warning messages, and suggest
ways to handle them. In addition, remember the cardinal rule of Pascal debugging:

LOOK FOR MISSING SEMICOLONS

For example, suppose the compiler reports an error at line 50. Further, suppose that you stare at line 50
in disbelief, knowing full well that you have written a perfect statement. In frustration, you pick up this
manual and throw it out the window. A friend comes in, looks at you, looks at your program, and says
"You forgot a semicolon at line 49." The day is saved, you get the promotion, and you send the technical
writer a note of apology.

9.2.1 Error and Warning Message Conventions
The error and warning messages listed in the rest of this chapter follow these conventions:

• Keywords in the message text are capitalized, since that's the way they appear on your screen. In
the accompanying explanatory text, they are lowercase bold, as they are elsewhere in this manual.

c

c'

• Italicized words in the message text indicate values that the compiler fills in when generating the ~,

Errors

message. For example, suppose your program contains the following: "'-_.

PROGRAM err_test;
VAR

num integer17;

Because the fragment includes an undefined data type (integer17), it triggers Error 23, which
reads:

23 ERROR Identifier has not been declared in routine name_of_routine.

When you compile, identifier and name_of_routine are filled in like this:

(0003) num integer17;
******** Line 3: [Error 023] INTEGER17 has not been-declared in

routine ERR_TEST.

9-4

('
'-

o

o

o

o

o

9.2.2 Error and Warning Messages
Following are DOMAIN Pascal's compiler error and warning messages.

1 ERROR

2 ERROR

3 ERROR

4 ERROR

6 ERROR

7 ERROR

8 ERROR

10 ERROR

U nterminated comment.

You started a comment, but you did not close it, or you closed it with the
wrong delimiter. Comment delimiters must match unless you compile with
the -iso switch. If you don't compile with that switch and you start a com­
ment with {, you must end it with}. Similarly, if you start a comment with
(*, you must end it with *). If you start a comment with", you must end it
with ft.

Improper numeric constant.

You specified a base that fell outside the legal range of 2 to 16. For example,
you cannot specify a number in base 32. Perhaps you mistakenly specified
the integer first and the base second. (See the "Integers" section in Chapter
2 for an explanation of base.)

Unterminated character string.

You started a string with an apostrophe ('), but you forgot to end it with an
apostrophe. See Chapter 2 for a definition of string.

Bad syntax (token).

The compiler encountered token when it was expecting to find something
else.

Period expected at end of program (symbol).

You must finish the program with an end statement followed by a period.
symbol is the final character that the compiler found in your source code.
Typically, symbol is /EOF/ (an end-of-file character) or a semicolon. The
most frequent cause of this error is putting a semicolon rather than a period
after the final end.

Text following end of program (token).

You have put some text other than a comment after the end of the program.
The phrase "END. " marks the end of the program. You can put comments
after the end of the program, but you cannot put anything else there.

PROGRAM or MODULE statement expected (token).

The first noncomment in your source code must be either a program heading
or a module heading. The compiler found token instead of a program or
module heading. DOMAIN Pascal also issues this error when there is some
sort of mistake in your program or module heading. Chapter 2 describes the
program heading. Chapter 7 describes the module heading.

Semicolon expected at end of program/module statement (token).

You forgot to end your program or module heading with a semicolon.
DOMAIN Pascal encountered token when it was expecting a semicolon.

9-5 Errors

11 ERROR

12 ERROR

13 ERROR

14 WARNING

15 ERROR

16 ERROR

Errors

Improper declarations syntax (token).

DOMAIN Pascal found an unexpected token when processing a declaration
part.

Improper CONST statement syntax (token).

You made a mistake when declaring a constant. See Chapter 2 for the correct
format. Token is the invalid token that DOMAIN Pascal encountered. A
possible trigger for this error is that you tried to declare two identifiers for the
same constant value as in the (ollowing example:

CONST
X,Y = 5;

Improper TYPE statement syntax (token).

You made a mistake in the type declaration part of your program. DOMAIN
Pascal encountered token when it was expecting something else. See Chapter
2 for the correct format of the type declaration part. A possible trigger for
this error is that you used the wrong symbol to associate the identifier with its
type as in the following example:

TYPE
long := integer32;

Datatype cannot be PACKED.

You used the keyword packed in front of some data type other than record.
The only data type DOMAIN Pascal packs is record. Datatype is the data
type you tried to pack. In order to conform to the ISO standard, DOMAIN
Pascal recognizes the packed syntax for data types other than record, but it
does not actually pack those other data types.

Improper type specification token.

You made some mistake when specifying a data type in the var declaration
part. Token identifies the unexpected part of the var declaration part. For
example, the following declaration triggers this error because r is a variable,
not a data type:

VAR
r : real;
data: array[l .. 10] of r;

See Chapter 2 for a complete description of the var declaration part.

Improper enumerated constant syntax (message).

All constants in an enumerated type must be valid identifiers. See Chapter 2
for a definition of identifier . Message identifies the first character or token
that did not conform to the rules for identifiers.

9-6

c

----------------------- --------------

17 ERROR

o
18 ERROR

19 ERROR

o

20 ERROR

o

o 21 ERROR

. 22 ERROR

o

OF expected in SET specification (token).

When you declared a set type or set variable, you forgot to specify the key­
word of in between the word set and the base type. Refer to Chapter 3 for
information on declaring set types. DOMAIN Pascal encountered token
rather than the keyword of.

Improper ARRAY specification syntax (token).

You declared an array incorrectly. See Chapter 3 for details on declaring ar­
rays. TOKEN is the token that DOMAIN Pascal encountered when it ex­
pected to find something else.

Improper RECORD specification syntax (token).

You declared a record incorrectly. See Chapter 3 for details on declaring re­
cords. DOMAIN Pascal encountered token when it expected to find some­
thing else. A common trigger of this error is a type declaration such as the
following:

TYPE
student = record

a integer32;
b = boolean; {cause of error. '=' should be ':'}

end;

Improper pointer specification (token).

You declared a pointer incorrectly. See Chapter 3 for details on pointing re­
cords. DOMAIN Pascal encountered token when it expected to find some­
thing else. The following type declaration triggers this error, because the up­
arrow (A) can only appear before a type name, not a type specification:

TYPE

Improper VAR statement syntax (token).

In a variable declaration, you probably forgot to specify a semicolon after the
data type. Perhaps you specified a comma instead of a semicolon, or perhaps
you did not specify any punctuation mark at all. This error also occurs if you
begin an identifier with a digit (0-9) or dollar sign ($).

Parameter list must only be specified when the procedure or function is
declared as FORWARD.

You specified the parameter list for this routine in two places: first when you
specified forward or extern and second in the routine heading itself. To
correct this error, eliminate the second parameter list.

9-7 Errors

23 ERROR

24 ERROR

25 ERROR

26 ERROR

29 ERROR

30 ERROR

31 ERROR

Errors

Identifier has not been declared in routine name_of_routine.

Several conditions can trigger this error. You might have used identifier in the
code portion of name _of _routine without identifier being accessible to this ("
routine. Study the "Global and Local Variables" and "Nested Routines" sec- .. /
tions in Chapter 2 to learn about the scope of declared identifiers.

Another possible trigger for this error is that you tried to make a forward call
to a procedure without declaring the procedure with the forward attribute.
(See the "Routine Attribute List" section in Chapter 5 for details on the for­
ward attribute.)

This error also can occur if you specify a data type that either is invalid or
that you've forgotten to define in the type section of your program.

Multiple declaration of identifier, previous declaration was on line
line_number.

You declared identifier (which could be a data type, variable, constant, label,
or routine) more than once.

Improper MODULE structure (token).

The compiler was expecting to encounter a procedure or function de clara -
tion, but found token instead. Remember, that unlike a program, the action
part of a module must always be contained inside a named routine.

Number of array subscripts exceeds limit of seven.

DOMAIN Pascal supports arrays of up to seven dimensions.

Subrange bound (token) is not scalar.

You were trying to declare an array or subrange, but one of the bounds of the (
subrange was not a scalar. The scalar types are integer, Boolean, char, enu-'
merated, and subrange. The token is the token that DOMAIN Pascal en-·
countered when it was searching for a scalar expression.

Lower bound of subrange (lower _bound) is not of the same type as the
upper bound (upper _bound) .

You were trying to declare an array or subrange, but the data type of
lower _bound is not the same data type as that of upper _bound. The types
must match.

Lower bound of subrange (left_scalar) is greater than the upper bound
(right_scalar) .

You were trying to declare an array or subrange, but you set the value of the
left_scalar to a higher value than the value of the right_scalar. The left_sca­
lar must be lower than the right_scalar.

9-8

C::
._,/

32 ERROR

o
33 ERROR

34 ERROR

35 ERROR

o

o
36 ERROR

o 37 ERROR

38 ERROR

o

Base type (type) of SET is not scalar.

You tried to declare a nonscalar type as the base type of a set variable or
type. The scalar types are integer, char, Boolean, enumerated, and sub­
range. Type is the token that DOMAIN Pascal encountered instead of a sca­
lar type.

SET elements must be positive (-).

You tried to declare a set with a base type of integer or subrange, but
DOMAIN Pascal discovered a negative number in the base type.

SET exceeds limit of 256 elements ((token)).

DOMAIN Pascal cannot store a set that exceeds 256 elements. See the "In­
ternal Representation of Sets" section in Chapter 3 for details.

Improper use of (identifier), only a TYPE defined name is valid here.

The compiler was expecting a data type, but you specified an identifier in­
stead. Possibly, you tried to create a pointer variable with improper declara­
tions like the following!

VAR
x integer;
y "'x;

See the" Standard Pointer Type" section in Chapter 3 for details on setting
up pointer types.

Multiple declaration of variable in parameter list.

You declared variable more than once in the parameter list of a procedure or
function.

PROCEDURE/FUNCTION name required (token).

You used the keyword procedure or function without specifying a valid iden­
tifier immediately after it. See the "Identifiers" section in Chapter 2 for a
definition of a valid identifier. Token is either the name of the invalid identi­
fier or the null set (if you did not supply any name at all).

Improper PROCEDURE/FUNCTION declaration (token).

You were probably confusing procedure with function. A function has a data
type, and a procedure does not; therefore, the following declaration triggers
this error:

procedure one (r2 single) real;

9-9 Errors

39 ERROR

40 ERROR

42 ERROR

43 ERROR

Errors

Improper parameter declaration (token).

You did not specify the parameter list of your procedure or function in the
correct manner. A common cause of this error is using semicolons incor­
rectly in the parameter list. (See Chapter 5 for details on parameter lists.)
DOMAIN Pascal encountered token when it was expecting something else
(probably a semicolon).

Colon expected in FUNCTION declaration (token).

You forgot to put a colon before the type specification of the function; for ex­
ample, compare the right and wrong ways to declare a function:

FUNCTION pyth_theorem(a
FUNCTION pyth_theorem(a

integer16)
integer16)

DOMAIN Pascal found token instead of a colon.

FUNCTION type specification required.

real; {Wrong! }
real; {Right}

You forgot to specify a data type for the function itself; for example, compare
the right and wrong ways to declare a function:

{wrong} FUNCTION pyth_theorem(a
{right} FUNCTION pyth_theorem(a

CASE type is not scalar.

integer16) ;
integer16) : real;

You specified an expression in a case statement that did not have a scalar
data type. The scalar data types are integer, Boolean, char, enumerated, and
subrange. For example, the following case statement triggers this error:

VAR
r : real;

BEGIN
CASE r OF {error: r is real, but should have been

integer or integer subrange. }
1 : writeln('One');
2 : wri teln.('Two') ;

end;

9-10

44 ERROR

o

45 ERROR

o

o 46 ERROR

o
47 ERROR

48 ERROR

49 ERROR

o

Constant is not of the correct type for the CASE on line number.

You specified a constant in a case statement that was not the same data type
as the expression of the case statement. For example, the following case
statement triggers this error:

VAR

r integer16;

CASE r OF
1.5 wrfteln('One') ;

2 writeln('Two');
end;

{error: 1.5 is a real;
it should be integer.}

(Constant) is outside the subrange of the CASE on line number.

In a CASE statement, you specified a constant that was not within the de­
clared range of the case. For example, the following case statement triggers
this error because the constant 5 is outside the declared subrange 0 to 3.

VAR
x : O •• 3;

BEGIN
CASE x OF

5 . {error}

Constant has already occurred as a CASE constant on line number.

You specified the same constant more than once in the same case statement.
For example, the following case statement triggers this error because constant
6 appears twice:

CASE r OF
4
5,6,7
6

end;

writeln('square root is rational');
writeln('square root is irrational');
wri teln (' even') ; {error}

Token is not a valid option specifier.

You specified token in an OPTIONS clause, but token is not a valid option.
See the "Routine Options" section in Chapter 5 for details.

Include file name must be quoted (token).

You used the %include directive but forgot to put the name of the include
file in apostrophes. Token is the token that DOMAIN Pascal found when it
was expecting to find an apostrophe.

Too many include files.

Note that this error can be triggered by include files nested within include
files. To correct this error, you can break the program into separately com­
piled modules.

9-11 Errors

50 ERROR

51 ERROR

52 ERROR

53 ERROR

54 ERROR

55 ERROR

56 ERROR

Errors

Token is not a recognized option.

You specified token as a compiler directive, but token is not a valid compiler
directive. Refer to the "Compiler Directives" listing in Chapter 4 for a de- C
scription~ Possibly, you put a superfluous percent sign (%) in your program. ..,./
Another possibility is that you specified token on your compile command line
as a compiler option. If you do this, the operating system returns this error
message. See Chapter 6 for a complete list of compiler options. Possibly,
you caused this error by trying to compile two files at once, and the compiler

,interpreted the second file as an (invalid) option.

Include file pathname is not available.

You specified a pathname for an include file, but either it does not exist or
network problems prevent the compiler from accessing it.

Semicolon expected following option specifier (token).

You specified compiler directive %debug or %eject but forgot to specify a
semicolon immediately after the directive. See the "Compiler Directives"
listing in Chapter 4.

Multiple declaration of identifier in RECORD field list.

You specified the same field twice in a record declaration. For example, the
following record declaration triggers this error because x is declared twice:

r = record
x Boolean;
x : integer16; {error}

end;

Array bound type is not scalar (data type).

You specified datatype as the index type of an array. However, datatype must
be a scalar data type. The scalar data types are integer, char, enumerated,
subrange, and Boolean.

Improper LABEL statement syntax (token).

Labels must be unsigned integers or identifiers, but DOMAIN Pascal found
token instead.

Multiple definition of element, previous definition was on line number.

You declared the same element (Le., variable, data type, constant, label, pro­
cedure, or function) twice.

9-12

c

57 ERROR

o

58 ERROR

o
59 ERROR

o

60 ERROR

o
61 ERROR

62 ERROR o

Improper usage of identifier. only a LABEL name is valid here.

You used identifier as a label. but you had already declared it as a variable.
type. or constant. Possibly. you accidentally put a colon (:) immediately fol­
lowing the identifier in the action part of your program. The colon could
cause the compiler to interpret the identifier as an illegal label. Perhaps you
meant to specify a statement like the following:

x := 8;

but you forgot the equal sign and ended up specifying the following instead:

x : 8;

Constant is declared as a CONST name. and cannot be assigned a value.

You mistakenly tried to assign a value to a constant. Perhaps you should
have declared constant as a variable rather than as a constant.

Improper use of identifier. only a VAR name is valid here.

You tried to assign a value to an identifier that is not a valid variable. Possi­
bly, you tried to assign a value to a type rather than a variable. For example.
code like the following causes this error:

TYPE
int integer32;

VAR
q int;

BEGIN
int .- 8; {wrong}

q .- 8; {right}

Improper use of identifier. only a VAR or CONST name is valid here.

You tried to assign the value of a data type or label to a variable. Identifier
must be a variable or a constant.

Token is not an ARRAY.

You specified an expression of the format

TOKEN [. .]

This format is reserved for specifying a particular element of an array; how­
ever. token is not an array variable. Possibly, you were trying to call a proce­
dure or function and used brackets rather than parentheses.

Variable is not a pointer variable.

You tried to dereference a variable that was not declared as a pointer vari­
able. (See the "Pointer Operations" listing of Chapter 4.)

9-13 Errors

63 ERROR

64 ERROR

65 ERROR

66 ERROR

67 ERROR

68 ERROR

69 ERROR

70 ERROR

Errors

Token is not a RECORD.

DOMAIN Pascal was expecting a record variable, but it found token instead.
(See the "Record Operations" listing of Chapter 4.) C
Token is not a field of record.

DOMAIN Pascal was expecting a field of the record variable, but it found to­
ken instead.

Too many subscripts to array _variable.

You declared array_variable as an n-dimensional array, but you have speci­
fied more than n subscripts for the array at this line.

Kind_of_declaration declaration must precede internal PROCEDURE and
FUNCTIONS declarations.

You stuck a routine in the middle of a declaration part. A nested routine C'
must come at the end of a declaration part (not in the beginning or the mid- --/
dIe).

Improper use of identifier, only a FUNCTION name is valid here.

You probably had no intention of calling a function and are puzzled as to why
you got this message. If you used a statement of the form

IDENTIFIER (TOKEN)

then DOMAIN Pascal assumed that you were trying to call a function. Possi­
bly, you were trying to access an array, but you used parentheses instead of
brackets.

The types of operand1 and operand2 are not compatible with the operator
operator.

You made a mistake such as specifying (21.0 DIV 3.0). (It's a mistake be­
cause div only accepts integer operands.) See Chapter 4 for a complete list
of operators and their valid operands.

The type of operand is not compatible with the operator operator.

You made a mistake such as specifying an expression like:

(NOT 3.0)

It's a mistake because not only accepts Boolean operands. See the beginning
of Chapter 4 for a summary of operators.

Incompatible operands [operand1,operand2] to the operator operator.

See Table 4-1 for a summary of operators.

9-14

c

C)
.-//

71 ERROR

o
72 WARNING

73 ERROR

o

74 ERROR

o
75 ERROR

o
77 ERROR

79 ERROR

o

Subscript expr to array name_ol_array is not of the correct type.

See the" Array Operations" listing in Chapter 4.

No path to statement (name_ol_statement), or no branch generated for it.

The program never reaches this statement; therefore, the compiler does not
generate any code for it. Sometimes a goto statement triggers this warning.

Statement expression is not Boolean.

You were using a non-Boolean expression in a manner reserved for Boolean
expressions. For example, the following program fragment triggers this error
because variable int is an integer, not a Boolean:

VAR
int : integer;
b Boolean;

if int then ... {error, int is not a Boolean expr. }
if int=9 then ... {no error, int=9 is a Boolean expr.}
if b then ... {no error, b is a Boolean expr. }

FOR statement index variable is not scalar.

The scalar data types are integer, Boolean, char, enumerated, and subrange.
If you specify an index variable with a data type other than one of these five
types, DOMAIN Pascal issues this error. See the for listing in Chapter 4.

FOR statement initial value expression is not compatible with the index
variable.

You specified a start_expression of a different data type than the index vari­
able. See the for listing in Chapter 4.

FOR statement limit value expression is not compatible with the index
variable.

You specified a stop expression of a different data type than the index vari­
able. See the for listing in Chapter 4.

Assignment statement expression is not compatible with the assignment
variable.

You tried to assign the value of an expression to a variable, but the data type
of the value and the variable were not compatible. In general, the data type
of the expression must match the data type of the variable; however, there
are a few exceptions. For example, you can assign an integer expression to a
real variable (though you cannot do the reverse). In most cases, this error is
just a simple programming mistake, but if you do intend to assign a value to a
variable of a different data type, refer to the "Type Transfer Functions" list­
ing of Chapter 4.

9-15 Errors

81 ERROR

82 ERROR

83 ERROR

84 ERROR

85 ERROR

86 ERROR

87 ERROR

89 ERROR

Errors

Too many arguments to routine.

You attempted to call routine, but you tried to pass more arguments to rou-
tine than it was expecting. The number of arguments cannot exceed the C
number of parameters declared in the parameter list of the routine. See ... /
Chapter 5 for details on parameter passing.

Too few arguments to routine.

You attempted to call routine, but you tried to pass fewer arguments to rou­
tine than it was expecting. If you want to pass n arguments to a routine de­
claring more than n parameters, you must use the variable routine attribute
(which is described in the "Variable" section in Chapter 5).

Argument n to routine is not compatible with the declared argument type.

You tried to call routine, but the Nth argument in the call does not have the
same data type as the Nth parameter. You can suppress this error by using
the univ routine attribute. See Chapter 5 for details on parameter passing.

Argument n to routine is not within the declared argument subrange.

You tried to pass a subrange expression as the Nth argument to call routine,
but the value of the expression was not within the declared range of the sub­
range.

Improper use of element, only a PROCEDURE name is valid here.

DOMAIN Pascal assumed you were trying to call a procedure, but element is
not a procedure. Any statement having the following format is assumed to be
a procedure call:

IDENTIFIER (anything);

Unrecognized statement (token).

The compiler could not classify a statement into one of the basic categories of
DOMAIN Pascal statements (such as assignment, procedure call, function.
call, goto, repeat, etc.). Possibly, you misspelled a keyword, or perhaps you
forgot to close the previous statement with a semicolon.

GOTO label expected (token).

You forgot to specify a label immediately after the keyword goto. DOMAIN
Pascal expected a declared variable, but found token instead. See the go to
listing of Chapter 4.

The value of number is outside the range of valid set elements.

c~

c

C:

You tried to assign a number greater than 256 to a set. See the "Set Opera-
tions':, listin.g in. ChCahPter 4 f

3
0r

f
de.tafils on ~SSignindg vallu~s to sets, and sdee th.e C,..

" Sets sectIon In apter or In ormatIon on ec anng set types an van-
abIes.

9-16

91 ERROR

o
92 ERROR

93 ERROR

o
94 ERROR

95 ERROR

o
96 ERROR

o
97 ERROR

98 ERROR

o

Function type must only be specified when the function is declared
FORWARD.

You specified a function as forward, but you mistakenly specified the data
type of the function twice. You must only specify the data type of the func­
tion once. Specify the data type when you specify forward. See the "For­
ward" section in Chapter 5 for an explanation of forward.

(Option) specifier is not valid when defining a procedure/function previ­
ously declared to be FORWARD.

If option is forward, then you probably declared forward twice for the same
routine. Possibly, you declared a routine as forward, but you also used the
routine with both define and extern. If option is extern, then you probably
declared extern twice for the same routine.

Improper use of the DEFINE statement.

See Chapter 7 for a complete description of the define statement.

Improper DEFINE statement structure.

See Chapter 7 for a complete description of the define statement.

Multiple declaration of element in DEFINE statement.

You used define to define the same element twice. See Chapter 7 for a com­
plete description of the define statement.

Constant value cannot be evaluated at compile time.

You specified an expression in a const declaration that the compiler could
not reduce to a constant. For example, the following declarations trigger this
error because x is not a constant:

VAR
x integer;

CONST
ax : addr(x);

Label label is never defined.

You declared a label in the label declaration part of a routine, but you never
specified this label inside the code portion of the routine. Possibly, you de­
clared the label in the label declaration part of a routine, but specified this
label inside the code portion of another routine. See Chapter 2 for a descrip­
tion of labels, and see the goto listing in Chapter 4 for a description of the
goto statement.

Improper PROCEDURE/FUNCTION structure (token).

Refer to Chapter 2 for the rules on routine structure. Possibly, you put a pe­
riod instead of a semicolon at the end of a routine.

9-17 Errors

99 ERROR

100 ERROR

101 ERROR

102 ERROR

103 ERROR

105 ERROR

106 ERROR

107 ERROR

109 ERROR

Errors

BEGIN expected in routine name_ol_routine; found "token".

The code portion of a routine must start with the keyword begin. DOMAIN
Pascal discovered token instead of begin. Refer to Chapter 2 for the rules on C/
routine structure. Note that every routine (including the main program) must
at least include the keywords begin and end.

END expected; found "token".

You forgot to mark the finish of a routine with an end statement. Ignore the
line number the error is reported at; the compiler usually does not discover
this error until the end of the program. See Chapter 2 for the rules on pro­
gram structure.

Statement separator expected (token).

DOMAIN Pascal discovered two statements with nothing to separate them.
You probably made one of the following three mistakes. First, you forgot a
semicolon. Second, you forgot a closing end in a compound statement. ~
Third, you forgot an else in an if/then/else statement. ,, ___ /

Improper argument list (token).

You forgot to specify a ")" to terminate a type transfer function. See the
"Type Transfer Functions" listing in Chapter 4.

THEN expected in IF statement (token).

You forgot the then part of an iflthen/else statement. For details on then, C
see the if listing in Chapter 4.

OF expected in CASE statement «token)).

A case statement must begin with the format

CASE expr OF

but you forgot the keyword of. See the case listing in Chapter 4.

CASE label expected (token).

In a case statement, you specified a statement without specifying a constant.
Possibly, you forgot to conclude the case statement with end. See the case
listing in Chapter 4.

END/OTHERWISE expected in CASE statement (token).

You probably forgot to conclude a simple statement with a semicolon or a
compound statement with an end.

DO expected in WHILE statement (token).

You forgot to specify the keyword do following the condition in a while state­
ment.

9-18

c~

c

110 ERROR

o
111 ERROR

112 ERROR

113 ERROR

o
114 ERROR

115 ERROR

o 116 ERROR

o
117 ERROR

120 ERROR

121 ERROR

o

UNTIL expected in REPEAT statement (token).

DOMAIN Pascal found token instead of until in a repeat statement. Refer
to the repeat listing in Chapter 4.

:= expected in FOR statement (token).

DOMAIN Pascal found token instead of := in a for statement. Refer to the
for listing in Chapter 4.

TO or DOWNTO expected in FOR statement (token).

DOMAIN Pascal found token instead of to or downto. Refer to the for list­
ing in Chapter 4.

DO expected in FOR statement (token).

DOMAIN Pascal found token instead of do. Refer to the for listing in Chap­
ter 4.

Improper WITH statement (token).

Refer to the with listing in Chapter 4.

DO expected in WITH statement (token).

Refer to the with listing in Chapter 4.

Improper expression (expression).

A variety of situations could have caused this error. Probably, DOMAIN
Pascal was expecting a keyword, and you either did not enter a keyword, or
you did not enter a keyword that was appropriate to the situation. Expression
is the inappropriate expression. For example, you can trigger this error by
using the keyword if without using the keyword then. Another possibility is
that you forgot a semicolon on the line preceding the line that the compiler
reported the error. Another possibility is that you began an identifier with a
digit or dollar sign ($) rather than a character.

Identifier expected (token).

DOMAIN Pascal was expecting an identifier and found token instead. Chap­
ter 2 defines identifiers.

OF expected in FILE declaration (token).

You used the keyword file without following it with the keyword OF. See
Chapter 3 for details on declaring file types.

Expression/constant cannot be passed as argument n to routine.

You specified an expression or constant as the nth argument to routine.
However, the nth parameter of routine is declared as var or in out, and you
can only pass variables as arguments to such a parameter.

9-19 Errors

122 ERROR

123 ERROR

124 ERROR

125 ERROR

126 ERROR

127 ERROR

128 ERROR

129 ERROR

Errors

Improper use of identifier.

You probably tried to call a predeclared procedure as a function or a
predeclared function as a procedure. See Chapter 5 for a description of the C'
difference between calling procedures and calling functions. ~./

Attempted assignment to (variable), a FOR-index variable, or formal pa­
rameter marked as IN.

You either tried to assign a value to variable inside a routine that declared it
as in, or you tried to modify a FOR loop's index variable inside the loop. If
you did the former, you can correct this error by changing the in parameter
to in out or var. If your error was attempting to modify a for loop's index
variable, you can eliminate the code inside the loop that modifies the vari­
able.

Routine requires TEXT file parameter.

You specified a file of variable as an argument to routine, but routine re- ('''-
quires a text variable instead. '- '

Procedure requires FILE parameter.

You specified an illegal file parameter for open or close. Only identifiers are
legal file parameters. Former FORTRAN programmers might have triggered
this error by using an integer as a file parameter. Possibly, you forgot to
specify any file parameter at all.

Procedure cannot be performed on INPUT file.

The standard input file (input) cannot be an argument to rewrite, put, or
page. See the "Default Streams" section in Chapter 8 for details on input.

Procedure cannot be performed on OUTPUT file.

The standard output file (output) cannot be an argument to reset, get, eof,
or eoln. See the "Default Streams" section in Chapter 8 for details on out­
put.

Argument to identifier is not a pointer reference.

A predeclared procedure (typically new or dispose) requires an argument of
a pointer type.

Operand operandI is not compatible with (routine).

You tried to read a value into an expression; for example, consider the fol­
lowing statements:

READ(x + 1);
READLN(x + 1);
READLN(x); x .- x + 1;

9-20

{wrong}
{wrong}
{right}

('

130 ERROR

o

131 ERROR

132 ERROR

o
133 ERROR

o
135 ERROR

o
136 ERROR

o

Fraction width specified for operand (element) that is not of a REAL
type.

In a write or writeln statement, you specified a two-part field width for a
nonreal expression. If the expression is real, you can specify an optional
one- or two-part field width, but if the expression is not real, then you can
only specify an optional one-part field width. See the write listing in Chapter
4 for a complete description of field widths.

Field width specifier is not permitted.

You can only specify a field width for a write or writeln statement. If you
specify a field width for any other statement, DOMAIN Pascal issues this er­
ror. When you call a procedure or function, DOMAIN Pascal interprets any
colon (:) inside the call as a field width.

Field width specifier (token) is not INTEGER.

DOMAIN Pascal was expecting to find an integer field width, but found token
instead. Remember, you format real numbers with a two-part field (not a
decimal). Note that when you call a procedure or function, DOMAIN Pascal
interprets any colon (:) inside the call as a field width. So, possibly you trig­
gered this error with an inadvertent colon.

Type of operand (identifier) is not compatible with the routine operation.

You tried to read or write an aggregate variable (such as an array or record)
to or from a text (VASC) file. You can correct this mistake by specifying a
rec file instead of an VASC file. If you must use a text file, you can correct
the error by specifying a field (if a record) or an element (if an array) rather
than the full aggregate.

Improper file mode in OPEN.

The file mode is the third argument to the predeclared open procedure. The
file mode must be a character string, a string constant, or a variable whose
data type is an array of char:. See the open listing in Chapter 4 for details on
file modes.

Improper status argument in procedure.

You specified a status argument to procedure that had a data type other than
integer32. A common mistake is to misuse a status_$t variable. For ex­
ample, compare the right and wrong ways to use such a variable in an open
procedure:

%INCLUDE '/sys/ins/base.ins.pas';
VAR

st
fl, f2

status_$t;
text;

OPEN(fl, 'angerl', 'NEW', st);
OPEN(f2, 'anger2', 'NEW', st.all);

{wrong}
{right}

Refer to the open and find listings in Chapter 4 for details on syntax.

9-21 Errors

137 ERROR

138 ERROR

139 ERROR

140 ERROR

141 ERROR

142 ERROR

143 ERROR

144 ERROR

Errors

Procedure cannot be used on a text file.

The first argument to find or replace must be a variable of type file. You
have mistakenly specified a variable of type text. Refer to the find or re­
place listings in Chapter 4 for details.

Record number is not integer in FIND.

The second argument to the find procedure is the record number, and this
argument must be an integer expression. Refer to the find listing in Chapter
4 for details on syntax.

Improper parameter list in PROGRAM statement "1.

You made a mistake in your program heading. If you specified a file list in
the program heading, then make sure that you specified the files as identifiers
(and not as strings). For example, compare the following two file lists:

PROGRAM test(input, output); {right}
PROGRAM test('input', 'output'); {wrong}

Compiler failure, unknown tree node.

The error is in the compiler, not in your code. Please contact your customer
support representative or mail us a VCR. (You can use the Shell command
crucr to create a VCR form.)

Compiler failure, unknown top node.

The error is in the compiler, not in your code. Please contact your customer
support representative or mail us a VCR. (You can use the Shell command
crucr to create a VCR form.)

Compiler failure, no temp space.

c

('

The error is in the compiler, not in your code. Please contact your customer
support representative or mail us a VCR. (You can use the Shell command ('~
crucr to create a VCR form.)

Compiler failure, lost value of node.

The error is in the compiler, not in your code. Please contact your customer
support representative or mail us a VCR. (You can use the Shell command
crucr to create a VCR form.)

Compiler failure, registers locked.

The error is in the compiler, not in your code. Please contact your customer
support representative or mail us a VCR. (You can use the Shell command
crucr to create a VCR form.)

9-22

145 ERROR

o
146 ERROR

147 ERROR

o
148 ERROR

149 ERROR

o

150 ERROR

o
151 ERROR

152 ERROR

o

Compiler failure, no emit inst.

The error is in the compiler, not in your code. Please contact your customer
support representative or mail us a VCR. (You can use the Shell command
crucr to create a VCR form.)

Compiler failure, procedure too large.

The routine you are trying to compile may have exceeded compiler imple­
mentation limits. Try to break the routine into multiple routines and modules
and then recompile. If the problem still persists, please contact your customer
support representative or mail us a VCR. (You can use the Shell command
crucr to create a VCR form.)

Compiler failure, inst disp too large.

The error is in the compiler, not in your code. Please contact your customer
support representative or mail us a VCR. (You can use the Shell command
crucr to create a VCR form.)

Compiler failure, obj module too large.

The error is in the compiler, not in your code. Please contact your customer
support representative or mail us a VCR. (You can use the Shell command
crucr to create a VCR form.)

Compiler failure, no free space.

The compiler ran out of dynamic memory while compiling your program. Try
to break the program into multiple routines and modules and then recompile.
If the problem still persists, please contact your customer support representa­
tive or mail us a VCR. (You can use the Shell command crucr to create a
VCR form.)

Compiler failure, short branch optimization.

The error is in the compiler, not in your code. Please contact your customer
support representative or mail us a VCR. (You can use the Shell command
crucr to create a VCR form.)

Routine was declared FORWARD on line number and never defined.

You specified routine as forward, but you did not define it in your program.
See the "Forward" section in Chapter 5 for details on forward.

Section name (identifier) conflicts with procedure or data section name.

You specified identifier as a section name for a var declaration part; how­
ever, identifier is a reserved section name. Please pick another name in­
stead, or remove the section name completely. See the "Putting Variables
Into Sections" section in Chapter 3 for details on naming sections.

9-23 Errors

153 ERROR

154 ERROR

155 WARNING

157 ERROR

158 ERROR

159 ERROR

160 ERROR

161 ERROR

Errors

Improper section name specification token.

You were declaring a section name for a group of variables, but you specified
token rather than an identifier as the name of the section. See the "Putting
Variables Into Sections" section in Chapter 3 for details on naming sections.

Conflicting storage allocation specifications.

You declared a variable as static and as belonging to a nondefault section
name. It cannot be declared as both at the same time.

Constant subsc~ipt (value_of_constant) to array name_of_array is out of
range.

The value_of_constant was not within the declared range of name_of_array.
You must either use a different constant or expand the declared range of the
array. See the" Arrays" section in Chapter 3 for a description of array decla-
ration.

Identifier was declared in a DEFINE statement but never defined.

You used identifier in a define statement, but forgot to use it as the name of
a procedure, function, or variable. See Chapter 7 for an explanation of the
define statement.

Improper OPTIONS specification (token).

C

C

You made a mistake while declaring OPTIONs for a routine. Probably, you C'"
specified token instead of a valid routine attribute. Possibly, you forgot to
mark the end of an OPTIONs clause with a semicolon. The valid routine at-
tributes are listed in Chapter 5.

Duplicate OPTIONS specification (routine_attribute).

You specified the same routine attribute twice in an OPTIONs clause. You
can only specify it once. The "Routine Options" section in Chapter 5 de­
scribes the OPTIONs clause.

Conflicting OPTIONS specification (routine_attribute).

You specified several routine attributes in an OPTIONs clause; however, rou­
tine_attribute cannot appear in the same OPTIONs clause as one of the pre­
vious routine attributes. For example, you cannot specify both forward and
extern in the same OPTIONs clause. You can also trigger this error by mis­
takenly using the same routine attribute twice. The "Routine Options" section
in Chapter 5 describes the OPTIONs clause.

Unrecognized OPTIONS specification (token).

You specified token inside an OPTIONs clause, but token is not a valid rou­
tine attribute (described in Chapter 5).

9-24

(~

162 WARNING

o
163 ERROR

164 ERROR

o

165 ERROR

o
166 ERROR

o
168 ERROR

169 ERROR

170 ERROR

o

Conditional compilation user warning.

You triggered a warning-level problem through misuse of the conditional
compiler directives. More specific messages will follow this one. See the
"Compiler Directives" listing of Chapter 4 for details on the conditional com­
pilation directives.

Conditional compilation user error.

You triggered an error-level problem through misuse of the conditional com­
piler directives. More specific messages will follow this one. See the "Com­
piler Directives" listing of Chapter 4 for details on the conditional compilation
directives.

Conditional compilation syntax error; look at prior "(PreProc)" message.

" (PreProc)" is an abbreviation for the DOMAIN Pascal preprocessor. This
error is telling you that the preprocessor found an error and passed it along to
the compiler. The preprocessor found an error in a conditional compilation
directive. (The conditional compilation directives are %var, %if, %then,
%else, %config, %elseif, %elseifdef, %enable, %endif, and %ifdef.) Pos­
sibly, you used a conditional compilation variable without having first de­
clared it (with a %var directive). Another possibility is that you used an op­
erator other than and, or, and not in a predicate. See the "Compiler Direc­
tives" listing in Chapter 4 for details.

Conditional compilation not balanced.

Probably, you forgot to end an %if directive with the %end directive. (Mak­
ing this mistake may trigger several other errors including Error 6: "Period
expected at end of program.") See the "Compiler Directives" listing in
Chapter 4 for details.

Compiler failure, data frame overflow.

The error is in the compiler, not in your code. Please contact your customer
support representative or mail us a VCR. (You can use the Shell command
crucr to create a VCR form.)

Compiler failure, register consistency.

The error is in the compiler, not in your code. Please contact your customer
support representative or mail us a VCR. (You can use the Shell command
crucr to create a VCR form.)

Compiler failure, no temp created.

The error is in the compiler, not in your code. Please contact your customer
support representative or mail us a VCR. (Y ou can use the Shell command
crucr to create a VCR form.)

Compiler failure, improper forward label at token.

The error is in the compiler, not in your code. Please contact your customer
support representative or mail us a VCR. (You can use the Shell command
crucr to create a VCR form.)

9-25 Errors

171 ERROR

173 ERROR

174 ERROR

175 ERROR

176 ERROR

177 ERROR

178 ERROR

179 ERROR

180 ERROR

Errors

Compiler failure, pseudo pc consistency.

The error is in the compiler, not in your code. Please contact your customer
support representative or mail us a VCR. (You can use the Shell command
crucr to create a VCR form.)

Cannot take the address of internal routine identifier.

You cannot pass identifier as an argument to the addr function, because it is
an internal routine. An internal routine is any routine declared in the main
program, any routine nested inside another routine, or any routine specified
with the routine option internal.

Ptr is keyword1 type but operand is a keyword2.

You tried to assign a value that has a data type other than what the pointer is
expecting. Remember that in DOMAIN Pascal, unless you use univ _ptr, a
pointer can only point to a value of the specified data type. See Chapter 3 for
a discussion of pointer types.

Incompatible function return types.

A pointer to a function is expecting a value of a particular data type to be re­
turned to it, but you mistakenly tried to return a value of a different data type
to it. See Chapter 3 for a discussion of pointer types.

Incompatible VARIABLE arguments options.

Possibly, there is a mismatch between a pointer to a procedure or function,
and the pointer value you are actually trying to assign to it.

Incompatible number of parameters.

Possibly, there is a mismatch between a pointer to a procedure or function,
and the pointer value you are actually trying to assign to it.

Incompatible ECB options.

Possibly, there is a mismatch between a pointer to a procedure or function,
and the pointer value you are actually trying to assign to it.

Incompatible parameter passing conventions for parameter identifier.

Possibly, there is a mismatch between the parameter-passing conventions de­
clared for a pointer to a procedure or function, and the pointer value you are
actually trying to assign to it.

Incompatible types specified for parameter identifier.

Possibly, there is a mismatch between the parameter-passing conventions de­
clared for a pointer to a procedure or function, and the pointer value you are
actually trying to assign to it.

9-26

C:

c

c

--------------- -----------------------------

181 ERROR

o
183 ERROR

184 ERROR

185 ERROR

o
188 ERROR

o
190 ERROR

o
191 WARNING

192 ERROR

o

INTERNAL option is illegal for PROCEDURE" or FUNCTION" types.

You mistakenly tried to use the routine option internal in a procedure or
function pointer.

"[" expected; "token" found.

The compiler was expecting to encounter a left bracket" [", but found token
instead.

"]" expected; "token" found.

The compiler was expecting to encounter a right bracket "]", but found token
instead.

Illegal type of constant" token" for variable" identifier" .

You were trying to initialize variable identifier, but you mistakenly specified a
value token that did not have the same type as identifier. The compiler will
not perform automatic type transfers for variable initializations in the var
declaration part.

Dynamic variable identifier cannot be initialized.

By default, all variables declared in routines other than the main program will
be allocated dynamically. You cannot initialize dynamic variables in the var
declaration part. If you want to get around this problem, you can use the
variable allocation clause static to force the compiler to store a routine vari­
able nondynamically (i.e., statically). If you use static, the compiler lets you
initialize the variable.

Cannot initialize null array identifier.

You specified a null array (i.e., an array that takes up no space in main mem­
ory) which by itself would only cause a warning; however, you mistakenly
tried to initialize the null array.

String initializer too long for name_of_array; truncated to fit.

You tried to initialize name_of_array with a string that had too many charac­
ters. The compiler is warning you that you lost one or more characters of the
string in the initialization. To avoid this, you should probably use an asterisk
in the index expression of the array. The asterisk tells the compiler to figure
out how many characters the string requires and declares the array accord­
ingly. See the "Defaulting the Size of an Array" section in Chapter 3 for de­
tails.

Variable name is not EXTERN; cannot DEFINE it.

You declared name in a var declaration part, and you tried to define it in a
define statement. You can only specify name in a define statement if you
also declare it as an extern variable. (See Chapter 7 for details.)

9-27 Errors

193 WARNING

194 WARNING

195 ERROR

196 WARNING

197 ERROR

198 ERROR

199 ERROR

200 ERROR

201 ERROR

Errors

Space filling is NOT done for arrays greater than number bytes.

You are assigning all the elements of a string to a larger array of char. The
compiler is warning you that the remaining elements in the larger array may C
have garbage values in them. That is, it won't blank pad the remaining ele- _.-./
ments in the array.

Unbalanced comment; another comment start found before end.

You specified two comment start delimiters without specifying a comment end
delimiter in between them. You can suppress this warning with the
-ncomchk compiler option (described in Chapter 6.) Refer to the "Com­
ments" section in Chapter 2 for details on comments.

Lower bound must be an integer value for upper bound of "*".

You used an asterisk (*) to force the compiler to determine the number of
elements in the array, but you mistakenly specified a noninteger value as the
lower bound of the array. For example, consider the right and the wrong way C
to use the asterisk: . '

VAR
x
x

array [1 .. *] of char .- 'HELLO';
array['a' .. *] of char .- 'HELLO';

Size of array is zero.

{right}
{wrong}

You specified an array whose index makes no sense. For example, you
specified an enumerated value for the lower bound and an asterisk for the
upper bound. (See Chapter 3 for details on array declaration.)

Illegal repeat count usage; valid for array elements only.

See the "Using Repeat Counts to Initialize Arrays" section in Chapter 3.

Illegal type for repeat count (token); must be integer.

See the "Using Repeat Counts to Initialize Arrays" section in Chapter 3 for
details on using repeat counts.

Illegal repeat count value (token); must be greater than zero.

See the "Using Repeat Counts to Initialize Arrays" section in Chapter 3 for
details on using repeat counts.

Repeat count too large by number for array.

See the "Using Repeat Counts to Initialize Arrays" section in Chapter 3 for
details on using repeat counts.

OF expected for repeat count.

See the "Using Repeat Counts to Initialize Arrays" section in Chapter 3 for
details on using repeat counts.

9-28

C'

c

202 ERROR

o
203 ERROR

204 ERROR

205 ERROR o
206 ERROR

o 207 ERROR

o 208 ERROR

209 WARNING

o

Illegal use of "*,, repeat count for variable array identifier.

See the "Using Repeat Counts to Initialize Arrays" section in Chapter 3 for
details on using repeat counts.

":=" expected in record initialization.

You were trying to initialize a record field with a value, but you forgot the as­
signment phrase (:=). Perhaps you mistakenly used (=) instead of (:=).

Too many initializers for record init; field list exhausted at constant
value _of_constant.

If a record has n fields, you tried to initialize more than n fields. You can
only initialize n or less than n fields. See the "Initializing Data in a Record"
section in Chapter 3 for details.

Size of type_transfer Junction is not the same as the size of datatype.

You misused a type transfer function. The size (in bytes) of the datatype and
the type_transfer Junction must be equal. Chapter 3 details the sizes of all
data types.

:= expected in assignment statement (token).

Probably, you made a mistake on the left side of an assignment statement
that involved a type transfer function.

Constant cannot be passed as argument n to routine.

You tried to pass a constant as the nth argument to routine; however, the nth
parameter in routine was declared as var, out, or in out. There are three
ways to get around this problem. First, you can change var, out, or in out to
in. Second, change var, out, or in out to a value parameter. Third, change
the constant to a variable. See Chapter 5 for a complete explanation of pa­
rameters.

Expression (operator = token) cannot be passed as argument n to routine.

You mistakenly tried to pass an expression as the nth argument to routine.
The problem is that the nth parameter of routine is a var, out, or in out pa­
rameter. You should probably change the parameter to become a value pa­
rameter. See Chapter 5 for a complete explanation of parameters.

Large (number _of_bytes bytes) copy of argument name_of_arg will be
done when routine is invoked.

You are trying to pass a large data structure (probably an array) as a value pa­
rameter. This is going to take up a lot of CPU time at runtime. You should
change the value parameter to a variable, in or out parameter. Chapter 5 de­
scribes the various kinds of parameters.

9-29 Errors

210 WARNING

211 WARNING

212 ERROR

213 ERROR

214 ERROR

Errors

Routine name_of.;...routine needs number bytes of stack, which approaches
the maximum stack size of max_size bytes.

You are trying to pass a large data structure (probably an array) as a value pa- C
rameter. Consequently, your program will probably execute quite slowly.
You should change the value parameter to a var, in, out, or in out parame-
ter. The" Parameter Types" section in Chapter 5 describes all the parameter
types.

Routine name needs number bytes of stack, which exceeds the maximum
stack size of max_size bytes.

You probably have a large data structure (usually an array) in your code, and
you may be trying to pass the structure as a value parameter. For example, an
arra y like this

VAR
big_array: array[l .. 100000] of integer32;

might exceed the maximum stack size.

If you try to run the program, you will probably get an "access violation" er­
ror. If the structure is a value parameter, you should change it to a var, in,
out, or in out parameter. The "Parameter Types" section in Chapter 5 de­
scribes all the parameter types.

c~

This warning can occur when you compile a program on one type of worksta- C. ---,
tion, but not occur when you compile on another type. For example, your
program might work fine on a DN460 but when you compile it on a DN330
this warning might occur. This is because of the difference in virtual address
space available on different nodes.

Function name returns more than 32K bytes.

The data type of the function consumes more than 32K bytes of memory.
Probably, the data type of the function is a large array. Instead of passing the ('.
information back through the function, you should pass it back through a pa- -
rameter.

Illegal FOR statement index variable; identifier is a record or an array ref­
erence.

DOMAIN Pascal does not permit a component of a record or an element of
an array to be the index-variable in a for statement.

Size of argument n to routine is not equal to the expected size of number
bytes.

You tried to pass a string as the nth argument to routine, but the nth parame­
ter of routine was expecting a larger or smaller string. You must either
change the size of the argument to match the size of the parameter, or you
must declare the parameter as univ. See the "Univ" section in Chapter 5 for
details.

9-30

---------------- -------

228 ERROR

o
234 ERROR

235 WARNING

o
236 ERROR

o 237 ERROR

238 ERROR

o
240 WARNING

241 ERROR

o

Too many initializ~rs for array init; "]" expected, "token" found.

You specified more data for the array than the array can hold. (See Chapter
3 for details on declaring arrays.)

Compiler failure, too many nodes.

This program is so large that the compiler cannot optimize it. You can try re­
compiling with -opt 0 (see Chapter 6), but we recommend that you reduce
the size of the program by breaking it up into modules. Chapter 7 explains
modules.

Potential illegal use of FOR index variable (identifier) outside of FOR
stmt.

DOMAIN Pascal forbids the use of the value of the index-variable after nor­
mal termination of a for loop. The compiler generates this message if a for
loop has no premature exits (exit or go to) and the value of the index-vari­
able is used outside the loop.

Floating-point constant "number" conversion problem.

Number was so large that the compiler encountered an overflow error when it
tried to convert it from a double to a single, from a double to an integer, or
from a single to an integer.

Compiler failure, unexpected data init construct: token.

The error is in the compiler, not in your code. Please contact your customer
support representative or mail us a VCR. (You can use the Shell command
crucr to create a VCR form.)

Type _of_routine 1 identifier was previously declared as a type_of _routine2.

You specified identifier as a forward procedure, but in the routine heading,
you specified it as a function. Or, you specified identifier as a forward func­
tion, but· in the routine heading, you specified it as a procedure. You must
declare it as a procedure in both places or as a function in both places.

Size of constant (value) is greater than the number of bits (number) in
packed field name; constant has been truncated.

Value is outside the declared subrange of name. You must specify a value
that falls within the declared range, redeclare name, or omit the keyword
packed from the record declaration. (See the "Records" section in Chapter
3 for details on space allocation in packed and unpacked records.)

Dividing by zero in a compile-time constant expression.

You, following the same mistaken path that Einstein once trod, have tried to
divide by zero.

9-31 Errors

242 ERROR

243 WARNING

244 WARNING

245 ERROR

246 WARNING

247 ERROR

248 ERROR

249 ERROR

250 WARNING

Errors

Size of a PROCEDURE or FUNCTION is undeterminable.

You mistakenly specified the name of a routine as an argument to the sizeof
function. See the sizeof listing in Chapter 4 for a list of its legal arguments. C,
Variable name was not initialized before this use.

The compiler is warning you of the possibility of a garbage result when using
the value of variable name. To solve this problem, you must assign a value to
name. If name was declared as an out parameter, then you should probably
change it to an in out parameter.

UNIV parameter name should not be passed as a value-parameter.

You specified a univ parameter as a value parameter. You should explicitly
declare univ parameters as in, out, in out, or var. (See the "Univ" section
in Chapter 5 for details on univ.) At runtime, the called routine copies the
value parameter. Since the site of the parameter and the argument might dif­
fer, using a univ value parameter might cause runtime problems.

Compiler Failure, Store Elimination Error

The error is in the compiler, not in your code. Please contact your customer
support representative or mail us a UCR. (You can use the Shell command
crucr to create a UCR form.)

Expression passed to UNIV formal name was converted to new type .

See the "Univ" section in Chapter 5 for details on this warning message.

Compiler failure, implementation restriction: Identifier-list contains too
many names.

This is an implementation restriction. You specified too many identifiers in
an enumerated type. (See the "Enumerated Data" section in Chapter 3 for
details on declaring enumerated types.)

Compiler failure, limit exceeded; limitation_message.

The limitation_message explains the problem.

Too many nested pointer references for debug tables.

This is an implementation restriction. The symbol table (used by the debug­
ger) cannot process a record containing pointers to other records in a chain
longer than 256 elements.

Name_oJ_statement statement was constant-folded at compile time.

Several conditions can cause the compiler to constant-fold a statement. One
of the more common is because the DOMAIN Pascal compiler (SR9 or later)
recognizes an attempt to compare a negative number to an unsigned subrange
variable. When it recognizes such an attempt, it optimizes the code and is­
sues a warning message. For example; consider the following fragment:

9-32

o

o

o

o

o

VAR
x O •. 65535;

BEGIN

IF x -1 THEN RETURN;

END;

The compiler generates no code for the if/then statement because it knows
that a negative value of x is not possible.

When the compiler notes such a contradiction, it issues warning messages.
These messages come from the following three groups:

(IFIWHILEICASE) statement was constant-folded at
compile-time.

Comparison is false
Comparison is true

<= becomes
> becomes <>
>= becomes =

< becomes <>

For example, if you compile the following program:

Program warning_test;
VAR

x : O .. 100;
BEGIN

write('Enter an integer -- '); readln(x);
if x <= 0 then writeln('hi');

END.

The compiler issues the following two warning messages:

<= becomes =
and

IF statement was constant-folded at compile-time.

The first message tells you that the compiler is going to optimize the iflthen
statement. The second message tells you that the compiler is going to code
the <= as an = because a < condition is not possible.

If you write the if/then statement in the program as

if x < 0 then writeln('hi');

the compiler prints a "Comparison is false" warning message because it is ap­
parent to the compiler that there is no way that x < 0 can ever be true. In
such a case, the compiler generates no code for the then part of the state­
ment.

9-33 Errors

251 ERROR Conflicting use of section name (name_oI_section).

You specified name_oI_section as both a code section name and a data sec-

~ tion name. It cannot be both. See the" Section" section in Chapter 5 for de-
tails. ~

252 ERROR Compiler failure, invalid use of multiple sections and non-local goto to
label name_oI_label.

The error is in the compiler, not in your code. Please contact your customer
support representative or mail us a VCR. (You can use the Shell command
crucr to create a VCR form.)

253 ERROR Compiler failure, bad address constant.

The error is in the compiler, not in your code. Please contact your customer
support representative or mail us a VCR. (Y ou can use the Shell command
crucr to create a VCR form.)

254 ERROR Compiler failure, invalid use of multiple sections and up-level referencing
(,I
'--./

in routine A 1.

The error is in the compiler, not in your code. Please contact your customer
support representative or mail us a VCR. (You can use the Shell command
crucr to create a VCR form.)

255 WARNING <= becomes =.

("
See the description of WARNING message number 250.

256 WARNING > becomes <>.

See the description of WARNING message number 250.

257 WARNING Comparison is false.

See the description of WARNING message number 250. C~

258 WARNING Comparison is true.

See the description of WARNING message number 250.

259 WARNING >= becomes =.

See the description of WARNING message number 250.

260 WARNING < becomes <>.

See the description of WARNING message number 250.

t"-,~

~,

Errors 9-34

262 WARNING

o

263 ERROR

o

o

o 264 ERROR

265 ERROR

o

Value-parameter name was not specified in call to FUNCTION or
PROCEDURE identifier declared OPTIONS (VARIABLE) .

You forgot to specify a value for the argument corresponding to parameter
name. You might get runtime access violations since the called procedure
copies value parameters into temporary storage, and the procedure has a
variable number of parameters. You can correct this problem in one of two
ways. You can assign a value to the argument, or you can change the value
parameter to a var, in, or in out parameter.

Only records may have variant tags.

Variant tags give you the capability to create records with variable sizes. For
example, consider the following:

TYPE
emp_stat
workerpointer
worker = record

first_name
last_name

(exempt, nonexempt);
"worker;

array[l .. 10] of char;
array[l .. 14] of char;

next_emp workerpointer;
CASE emp_stat OF

exempt (salary integer16) ;
single; nonexempt : (wages

plant array[l .. 20] of char);
end;

VAR
current_worker : workerpointer;

The emp_stat field is a variant tag field because it uses different amounts of
storage depending on its value. The function sizeof and the procedures new
and dispose can use variant tags -- for example, NEW (current_worker ,
exempt) -- but only when such tags are part of a record variable. This er­
ror occurs if you try to use a variant tag that is not part of a record.

Too many variant tags specified for record.

You used more variant tags in the routines new, dispose, and sizeof than are
present in the record type variable. (See the "Variant Records" section of
Chapter 3 for a description of variant tags.)

Type of tag name incompatible with variant.

The value you supplied when specifying a variant tag field is not one of the
choices listed in the field declaration of the record variable. (See the "Vari­
ant Records" section of Chapter 3 for a description of variant tags.)

9-35 Errors

266 ERROR

267 WARNING

268 WARNING

269 ERROR

270 ERROR

271 ERROR

Errors

No variant with value of tag name exists.

The value you supplied for a variant tag in the routines new, dispose, or r-
size of is not one of the choices listed in the field declaration of the record (
variable. For example, you would get this error if you used the record decla- "'--_/
ration listed at ERROR message number 263, and then included this line in
your program:

NEW(current_worker, salaried)

The error would occur because salaried is not one of the choices for the
variant tag emp_stat. (See the "Variant Records" section of Chapter 3 for a
description of variant tags.)

Tokenl should not be followed by token2; the tokenl will be ignored.

This usually appears when you have a misplaced semicolon. You might have
put a semicolon (tokenl) before the reserved word else (token2).

Missing operator or statement terminator; inserted token to continue pars­
ing.

The compiler generates this message when it is attempting to recover from er­
rors and so continue parsing. It acts as if the missing token (usually a semico­
lon) were present, generates this message, and then goes on. To eliminate
this message, insert the necessary delimiter(s) in your program and recom­
pile.

Variables in libraries must be external.

The variables declared in a precompiled library file must be accessible to a
program that uses the file. However, if your precompiled library contains
static and/or define variables, the calling program cannot access those vari­
ables because they are not explicitly external. Such variables are not permit­
ted. To eliminate this error, eliminate the static or define identifier from the
library precompilations.

Compiled library failure, illegal object type.

The error is in the compiler, not in your code. Please contact your customer
support representative or mail us a VCR. (You can use the Shell command
crucr to create a VCR form.)

File is not a library pathname.

Pathname, which is supposed to specify a precompiled source library file,
either is not a precompiled library at all, or is a precompiled library file whose
data has been corrupted. Verify pathname. If it is incorrect, make the ap­
propriate fix to your code. If it is correct, precompile it again to try to get rid
of the corrupted data.

9-36

c

c

- -~-----------.---------------

272 ERROR

o

273 ERROR

274 ERROR

o

276 ERROR

o
277 ERROR

o
278 WARNING

o

Library is incompatible because it was generated by a more recent version
of compiler.

Library files are not guaranteed to be forward compatible. For example, if
you use libraries that the newest compiler produced in a program you compile
with an older compiler, the two may be incompatible. To correct this you can
use the newer compiler to compile your source program, or use an older com­
piler to produce the precompiled libraries.

Bodies of PROCEDUREs/FUNCTIONs may not be declared in LIBRARY
MODULES.

The routines defined in a precompiled library file must be accessible to a pro­
gram that uses the file. However, such routines are not accessible unless they
are marked with the extern attribute (described in Chapter 7). A routine in
your precompiled library file was not marked extern.

FORWARD PROCEDURE/FUNCTION declarations are not allowed in
LIBRARY MODULES.

Forward declarations of procedures or functions are not allowed in a
precompiled library file because such routines are not accessible to a program
that uses the file. Rewrite your code to eliminate the forward declaration
and recompile.

":" not permitted after OTHERWISE.

You put a colon (:) after the keyword otherwise in a DOMAIN Pascal case
statement. Otherwise is a clause, not a label, so it does not take a colon.

Labels not permitted at MODULE level.

Since a module (described in Chapter 7) consists of named routines only, a
label can only be declared within the scope of one of those routines. That is,
there is no "main program" in a module with which a label at module level
can be associated. However, you declared a label at module level. To cor­
rect this error, declare the label within the scope of the program block, or
inside one of the routines in the module.

Identifier has already been used in another context in current scope.

Pascal forbids the redeclaration of a name that has already been used within
a program block. For example, the following code fragment declares a con­
stant ten at program level. Within procedure bo, ten is used to initialize
variable hold. Ten then is illegally redeclared as a variable of type real.

PROGRAM illegal;
CONST ten := 10;
PROCEDURE bo;

VAR hold integer.- ten;
ten real;

9-37

{ This is illegal! }

Errors

279 WARNING

280 WARNING

281 FATAL

283 ERROR

284 ERROR

285 ERROR

286 ERROR

Errors

Value assigned to identifier is never used; assignment is eliminated by op­
timizer.

If identifier's value has side effects, such as in a function call or in a refer­
ence to variables with the device attribute, the value still is computed, and
the optimizer only eliminates the assignment to identifier. However, if there
are no side effects, the optimizer also eliminates the value's computation.

In most cases, you can simply eliminate the value assignment to identifier to
get rid of this warning. However, there are times when you need to call a
function, but are not interested in the value it returns and so don't use that
value. In that case, use ,the discard function to explicitly eliminate the value
assignment. See Chapter 4 for a description of the discard function and
Chapter 3 for information about the device attribute.

Current semantics for subrange of CHAR is incompatible with SR9.

Earlier versions of the compiler (SR9 and before) incorrectly use 16 bits to
store a subrange of char, but SR9.5 only uses eight bits to store the subrange.
The difference in the number of bits the compiler versions use can introduce
incompatibilities among compilation units and data files. Therefore, this
warning message has been added for the SR9. 5 release only to indicate that a
potential source of trouble exists.

Too many compilation errors -- compilation terminated.

The errors in your program have caused an access violation in the compiler
and so compilation cannot continue. Correct the problems already indicated
and recompile.

EXTERN PROCEDURES/FUNCTIONS may not be DEFINED in PRO­
GRAM name.

A main program (which contains the program heading) may reference exter­
nally declared routines, but it may not define any global entry points. Your
program tried to define one or more such points.

FILE parameters may not be passed by value paramname.

Pascal forbids passing a file variable as a value parameter. To eliminate this
error, change paramname's declaration to var. The "Parameter Types" sec­
tion in Chapter 5 describes all the parameter types.

GOTO transfers control to a structured statement outside 'of its scope to­
ken.

Your code includes an erroneous goto into a structured statement. Structured
statements include case, while, repeat, for, and with.

Maximum line length (argument 5 to OPEN) must be an INTEGER.

You gave a value that is not an integer for the buffer_size argument to the
open statement. The value must be an integer. See the listing for open in
Chapter 4 for more details.

9-38

c

C~

287 ERROR

o
288 ERROR

289 WARNING

o
294 ERROR

o 295 ERROR

o

Maximum line length (argument 5 to OPEN) may only be specified for
TEXT files.

An <,?pen statement may only include the buffer size argument if you are
opening a text file. However, you included the argument for an open of some
other file type.

Base types of tokenl and token2 are incompatible.

This error occurs if you try to use the pack or unpack built-in procedures on
two arrays that have different base data types. Those types must be the same.
For example, if one is an array of integer32, the other must be an array of
integer32.

Must overflow bounds of array (token]) in order to match PACKED ar­
ray.

This error can occur if you are using the pack or unpack built-in procedures.
F or every element in the packed array there must be a corresponding ele­
ment in the unpacked array. See the listings for pack and unpack in Chapter
4 for more details.

PROCEDURE may not be called in this context (token).

It is illegal to use a procedure name (token) in the argument list of a call to
another routine. This is because all of a routine's arguments must have or re­
solve to values, and while a function returns a value, a procedure does not.

Modulus must be >= zero (token).

This error can only occur if you compile with the -iso switch. The error oc­
curs if the compiler can detect that the result of a mod function will be nega­
tive. The modulus must be greater than or equal to zero.

9-39 Errors

C'

c'

c

c

o

o

0

(' U

Appendi}{

fJ®~®rrvce(Q] W(Q)rr©]~ ~[iI}©]
~ rr®co] ®~ ~ at rreco] ~ co] (9 [iI)~ ~~ ~ ® rr ~

A

This appendix lists the reserved words and predeclared identifiers in DOMAIN Pascal.

Reserved words, listed in Table A-1, are names of statements, data types, and operators. You can use re­
served words only with their reserved meanings (and within strings and comments). You cannot use a re­
served word as an identifier.

Table A-I. Reserved Words

and end not set

array file of then

begin for or to

case function packed type

const go to procedure until

div if program var

do in record while

downto label repeat with

else mod

A-1 Reserved Words and Predeclared Identifiers

Table A-2 lists the predeclared identifiers. These identifiers name types, functions, procedures, values,
and files. You can redefine predeclared identifiers; however, doing so means that you can no longer use
the identifier for its original meaning within the scope of the redefinition.

Table A-2. Predeclared Identifiers

abs false next rshft

addr find nil set_sr

arctan firstof odd sin

arshft forward open single

boolean get ord sizeof

char in_range otherwise sqr

chr input out sqrt

close integer output static

cos integer16 page string

define integer32 pred succ

disable internal put text

discard lastof read true

dispose In readln trunc

double Ishft real univ

enable max replace univ_ptr

eof maxint reset val_param

eoln min return write

exit module rewrite writeln

exp new round xor

extern

Reserved Words and Predeclared Identifiers A-2

\ ...

c'

c

c

c

o

o

o

o

Appendb{

DOMAIN Pascal uses the ASCII character set for representing character data. Table B-1 shows the deci­
mal, octal, and hexadecimal values for all ASCII characters.

8-1 ASCII Table

Table B-1. ASCII Codes

oct dec hex character oct dec hex character

0 0 0 NUL "@ 40 32 20 space
1 1 1 SOH "A 41 33 21 !
2 2 2 STX "B 42 34 22 "
3 3 3 ETX "C 43 35 23 #
4 4 4 EOT "D 44 36 24 $
5 5 5 ENQ "E 45 37 25 0/0
6 6 6 ACK "F 46 38 26 &
7 7 7 BEL "G 47 39 27 ,
10 8 8 BS "H 50 40 28 (
11 9 9 TAB "I 51 41 29)
12 10 A LF "J 52 42 2A *
13 11 B VT "K 53 43 2B + c
14 12 C FF "L 54 44 2C ,
15 13 D CR "M 55 45 2D -
16 14 E SO "N 56 46 2E · 17 15 F SI "0 57 47 2F /
20 16 10 DLE "P 60 48 30 0
21 17 11 DC1 "Q 61 49 31 1
22 18 12 DC2 "R 62 50 32 2 c
23 19 13 DC3 "S 63 51 33 3
24 20 14 DC4 "T 64 52 34 4
25 21 15 NAK "U 65 53 35 5
26 22 16 SYN "V 66 54 36 6
27 23 17 ETB "W 67 55 37 7
30 24 18 CAN "X 70 56 38 8
31 25 19 EM "Y 71 57 39 9
32 26 1A SUB "z 72 58 3A · ·
33 27 1B ESC "[73 59 3B · ,
34 28 1C FS "I 74 60 3C <
35 29 1D GS "] 75 61 3D =
36 30 1E RS "" 76 62 3E >
37 31 1F US " 77 63 3F ? -

~ l,,··

ASCII Table 8-2

Table B-1. ASCII Codes (continued)

o oct dec hex character oct dec hex char

100 64 40 @ 140 96 60 ,

101 65 41 A 141 97 61 a
102 66 42 8 142 98 62 b
103 67 43 C 143 99 63 c
104 68 44 0 144 100 64 d
105 69 45 E 145 101 65 e
106 70 46 F 146 102 66 f
107 71 47 G 147 103 67 9
110 72 48 H 150 104 68 h
111 73 49 I 151 105 69 i

o 112 74 4A J 152 106 6A j
113 75 48 K 153 107 68 k
114 76 4C L 154 108 6C I
115 77 40 M 155 109 60 m
116 78 4E N 156 110 6E n
117 79 4F 0 157 111 6F 0

120 80 50 P 160 112 70 P

o 121 81 51 Q 161 113 71 q
122 82 52 R 162 114 72 r
123 83 53 S 163 115 73 s
124 84 54 T 164 116 74 t
125 85 55 U 165 117 75 u
126 86 56 V 166 118 76 v

o 127 87 57 W 167 119 77 w
130 88 58 X 170 120 78 x
131 89 59 Y 171 121 79 Y
132 90 5A Z 172 122 7A z
133 91 58 [173 123 78 {
134 92 5C \ 174 124 7C I
135 93 50] 175 125 70 }
136 94 5E " 176 126 7E -
137 95 5F 177 127 7F "del -

o
8-3 ASCII Table

('\
'-_/

c

c

--_._ _----_ ---

o

o

()

o

0

Appendix

rE~~ertil~~(Q)rtil~ ~(Q) S~talrtil©]~rr©1
[P)tal~Cal~

This appendix describes DOMAIN Pascal's extensions to ISO standard Pascal.

C.1 Extensions to Program Organization

c

Chapter 2 describes the elements that make up a Pascal program. This section describes the extensions to
standard Pascal.

C.1.1 Identifiers
Although an identifier must begin with a letter, you can include underscores L) or dollar signs ($) in the
name. For example, mailing_$lists is a legal identifier.

C.1.2 Integers
You can specify integers in any base from 2 to 16. To do so, use the following syntax:

base#Value

For base, enter an integer from 2 to 16. For value enter any integer within that base. If the base is
greater than 10, use the letters A through F (or a through f) to represent digits with the values 10 through
15.

For example, consider the following integer constant declarations:

half life .- 5260; /* default (base 10) */
hexograms .- 16#1c6; /* hexadecimal (base 16) */
luck .- 2#10010; /* binary (base 2) */
wheat .- 8#723; /* octal (base 8) */

C-1 Extensions to Standard Pascal

C.1.3 Comments
You can specify comments in any of the following three ways:

{ comment}
(* comment *)
"comment"

(The spaces before and after the comment delimiters are for clarity only; you don't have to include these
spaces.) For example, here are three comments:

{ This is a comment. }
(* This is a comment. *)
"This is a comment."

Unlike standard Pascal, the comment delimiters of DOMAIN Pascal must match. For example, a com­
ment that starts with a left brace doesn't end until the compiler encounters a right brace. Therefore, you
can nest comments, for example:

{ You can (*nest*) comments inside other comments. }

The DOMAIN Pascal compiler ignores the text of the comment, and interprets the first matching delimit­
er as the end of the comment.

Standard Pascal does not permit nested comments. If you want to use unmatched comment delimiters, as
standard Pascal allows, you must compile with the -iso switch. Chapter 6 describes that switch.

Finally, DOMAIN Pascal permits you to put compiler directives inside comment delimiters. However, if
you do so, you cannot use spaces; see the listing for "Compiler Directives" in Chapter 4 for details.

C.1.4 Sections
DOMAIN Pascal allows you to assign code and data in your program to a nondefault section. A section is
a named contiguous area of main memory.

C.1.S Declarations
You can declare the label, const, type, and var declaration parts in any order. You can specify the decla­
ration parts an unlimited number of times.

In addition to label, const, type, and var declaration parts, you can also declare a define part (which is
detailed in Chapter 7).

C.1.6 Constants
You can set a constant equal to a real, integer, string, char, or set expression. The constant can also be
the pointer expression nil. The expression can contain the following types of terms:

• A real number, an integer, a character, a string, a set, a Boolean, or nil

• A constant that has already been defined in the const declaration part (note that you cannot use a
variable here)

c

C~

• Any predefined DOMAIN Pascal function (e.g., chr, sqr, lshft, sizeof), but only if the argument
to the function is a constant r

• A type transfer function

Extensions to Standard Pascal C-2

o

o

o

o

o

You can optionally separate these terms with any of the following operators:

Operator

+, -, *

/

mod, div, I, &, -

Data Type of Operand

Integer, real, or set

Real

Integer

For example, the following const declaration part defines eight constants:

CONST
x 10;
y = 100;
z = x + y;
current_year
leap_offset
bell
pathname
pathname_len

C.1.7 Labels

1994;
(current_year mod 4);
chr(7);
'//et/go_home';
sizeof(pathname);

In standard Pascal, only integers can be used as labels. In DOMAIN Pascal, you can use both identifiers
and integers as labels.

C.2 Extensions to Data Types
Chapter 3 describes the data types supported by DOMAIN Pascal. This section describes the extensions
that DOMAIN Pascal supports.

C.2.1 Initializing Variables in the Var Declaration Part
DOMAIN Pascal lets you initialize variables in the var declaration part. You can initialize integer, real,
Boolean, char, subrange, set, enumerated, array, record, and pointer variables with an assignment state­
ment following the data type; for example:

VAR
x integer:= 17;
r real:= 5.3E-14;
a array[l .. 7] of char := 'Wyoming';

For arrays in particular, DOMAIN Pascal supports many extensions for simplifying initialization. See
Chapter 3 for details.

C.2.2 Integers
DOMAIN Pascal supports the following two nonstandard predeclared integer data types:

• Integer16 -- Use it to declare a signed 16-bit integer. (Integer and integer16 have identical
meanings.)

• Integer32 -- Use it to declare a signed 32-bit integer. A signed 32-bit integer variable can be any
value from -2147483648 to +2147483647.

C-3 Extensions to Standard Pascal

C.2.3 Reals
DOMAIN Pascal supports the following two nonstandard predeclared real data types:

• Single -- Same as real.

• Double -- Use it to declare a signed double-precision real variable. DOMAIN Pascal represents
a double-precision real number in 64-bits. A double-precision real variable has approximately 16
significant digits.

C.2.4 Pointer Types
In addition to the standard pointer type, DOMAIN Pascal supports a univ _ptr type and a special pointer
type that points to procedures and functions.

The predeclared data type univ _ptr is a universal pointer type. A variable of type univ _ptr can point to a
variable of any type. You can use a univ_ptr variable in the following contexts only:

• Comparison with a pointer of any. type

• Assignment to or from a pointer of any type

• Formal or actual parameter for any pointer type

e. Assignment to the result of a function

DOMAIN Pascal supports a special pointer data type that points to a procedure or a function. By using
procedure and function data types, you can pass the addresses of routines obtained with the addr
predeclared function. (See the addr listing of Chapter 4 for a description of this function.) You may only
obtain the addresses of top-level procedures and functions; you cannot obtain the addresses of nested or
explicitly declared internal procedures and functions. (See Chapter 5 for details about internal proce­
dures.)

C.2.5 Named Sections

c

c

By default, DOMAIN Pascal stores all variables declared in the var declaration part at the program or (' .. '
module level to the DA T A$ section. However, DOMAIN Pascal enables you to assign variables to sections .
other than DATA$. Named variable sections are synonymous with named common blocks in FORTRAN.

C.2.6 Variable and Type Attributes
DOMAIN Pascal supports attributes for variables and types. These attributes supply additional information
to the compiler when you declare a variable or a type.

DOMAIN Pascal currently supports three of these attributes: volatile, device, and address. The volatile
and device attributes enable you to turn off certain optimizations that would otherwise ruin programs that
access device registers or shared memory locations. The address attribute associates a variable with a spe­
cific virtual address.

C.3 Extensions to Code
Chapter 4 describes the action part (the executable block) of a Pascal program. This section describes the
extensions.

Extensions to Standard Pascal C-4

c

o

o

o

o

o

C.3.1 Bit Operators
DOMAIN Pascal supports three bit operators for bitwise and, not, and or operations. These operators per­
form Boolean operations by comparing the bits in each bit position of two integer arguments. For details
on these three operators see the "Bit Operators" listing in Chapter 4. In addition to these three bit opera­
tors, DOMAIN Pascal supports an xor function which performs a bitwise exclusive or operation on two in­
tegers.

C.3.2 Bit-Shift Functions
DOMAIN Pascal supports the following three bit-shift functions:

o Rshft, which shifts the bits in an integer a specified number of spaces to the right.

o Arshft, which shifts the bits in an integer a specified number of spaces to the right and preserves
the sign of the integer.

o Lshft, which shifts the bits in an integer a specified number of spaces to the left.

For syntax details, see the rshft, arshft, and lshft listings in Chapter 4.

C.3.3 Compiler Directives
DOMAIN Pascal supports the compiler directives shown in Table 4-9 in Chapter 4.

You can place a directive anywhere in your program. To use a directive, specify its name in a comment or
as a statement. For example, all of the following formats are valid:

{%directive}
(* %directive *)
%directive

If you specify a directive within a comment, the percent sign must be the first character after the delimiter.
(Spaces count as characters.)

C.3.4 Addr Function
DOMAIN Pascal supports an addr function that returns the virtual address of the specified variable or
routine. For syntax details, see the addr listing of Chapter 4.

C.3.5 Max and Min Functions
DOMAIN Pascal supports a max and a min function for finding the larger and smaller of two operands,
respectively.

C.3.6 Discard Procedure
DOMAIN Pascal supports a discard procedure for explicitly discarding the computed value of an expres­
sion. It usually is used with a function (which in standard Pascal must return a value) for which the value
is not needed. The optimizer may eliminate the computation and issue a warning message if the return
value isn't used, but discard explicitly throws away the computed value and so eliminates the warning
message.

C-5 Extensions to Stanpard Pascal

C.3.7 I/O Procedures
DOMAIN Pascal supports the I/O procedures of standard Pascal, plus the following four procedures:

• Open, which opens permanent files for 1/0 access.

• Close, which explicitly closes an open file.

• Find, which locates a specific element in a record-structured file.

• Replace, which modifies an existing element in a record-structured file.

As in standard Pascal, you can create a temporary file with the rewrite procedure; however, by using the
open procedure, you can create a permanent file. (Here, "permanent" means a file that exists even after
the program terminates.)

When a program terminates, the operating system automatically closes any open files. However, because
an open file can clog system resources, DOMAIN Pascal provides a close procedure that allows you to
close a file from within your program.

The find procedure locates records from a record-structured file. Records here refer to the elements in a C
file whose file variable was declared as a file of data type. By using replace in combination with find, you
can replace an existing record. -./

From a DOMAIN Pascal program, you can easily access Input Output Stream calls (known as lOS calls)
and formatting calls (known as VFMT calls).

For syntax details, see the open, close, find, and replace listings in Chapter 4. For an overview of 1/0
(including lOS calls and VFMT calls), see Chapter 8.

C.3.S If Statement
DOMAIN Pascal supports an and then and or else extension to the if statement. You can use and then
and or else to guarantee that DOMAIN Pascal will evaluate the Boolean expressions of a condition in the
order that you write them. They also guarantee "short-circuit" evaluation; that is, at runtime, the system
will only evaluate as many expressions as is necessary. For details, see the if listing in Chapter 4.

C.3.9 Loops
DOMAIN Pascal supports for, While, and repeat, which are the three looping statements of standard Pas­
cal. DOMAIN Pascal also supplies the following two additional statements for further control within a
loop:

o A next statement for skipping over the current iteration of a loop

• An exit statement for unconditionally jumping out of the current loop

For syntax details, see the next and exit listings of Chapter 4.

C.3.10 Range of a Specified Data Type
DOMAIN Pascal supports

• A firstof function for returning the first possible value of a specified data type

• A lastof function for returning the last possible value of a specified data type

For syntax details, see the firstof and lastof listings in Chapter 4.

Extensions to Standard Pascal C-6

c

o

o

o

o

o

C.3.11 Integer Subrange Testing
By default, DOMAIN Pascal does not check the value of input data to see that it falls within the defined
range of a variable declared as a subrange of integers. To ensure subrange checking, call the in_range
function. For syntax details, see the in_range listing in Chapter 4.

C.3.12 Extensions to Read and Readln
In addition to allowing input into any real, integer, char, or subrange variable, as standard Pascal allows,
DOMAIN Pascal's read and readln also allow input to a Boolean or enumerated variable.

C.3.13 Premature Return From Routines
As in standard Pascal, DOMAIN Pascal returns control to the calling routine after executing the last line
in the called routine. If you want to return to the calling routine before reaching the last line, you can is­
sue a return statement. For syntax details, see the return listing in Chapter 4.

C.3.14 Memory Allocation of a Variable
DOMAIN Pascal supports a sizeof function. This function returns the size (in bytes) that a data type
(predeclared or user-defined), variable, constant, or string inhabits in main memory.

C.3.15 Extensions to With
DOMAIN Pascal supports the standard format of with and also supports the following alternative format:

with v1 :identifier1, v2:identifier2, ... vN:identifierN do
stmnt:

An identifier is a pseudonym for the record variable v. To specify a record, use the identifier instead of
the record variable v. Furthermore, to specify a field in a record, use identifier.field_name rather than
v.field name.

For example, given the following record declaration

basketball_team = record
mascot array[1 .. 15] of char;
height single;

end;

consider the following three methods of assigning values:

readln(basketball_team.mascot);
readln(basketball_team.height);

{Not using WITH.}
{Not using WITH.}

WITH basketball_team DO
begin

readln(mascot);
readln(height);

{Using standard WITH.}

end;

WITH basketball_team: B DO {Using extension to WITH.}
begin

readln(B.mascot);
readln(B.height);

end;

C-7 Extensions to Standard Pascal

The extension is useful for working with long record names when two records contain fields that have the
same names.

C.3.16 Type Transfer Functions
DOMAIN Pascal supports type transfer functions which enable you to change the type of a variable or ex­
pression within a statement. To perform a type transfer function, use any user-created or standard type
name as if it were a function name in order to "map" the value of its argument into that type.

With one exception, the size of the argument must be the same as the size.of-the destination type. (Chap­
ter 3 describes the size of each data type). This size equality is required because the type transfer function
does not change any bits in the argument. DOMAIN Pascal just "sees" the argument as a value of the new
type. The one exception is that integer subranges are compatible.

C.3.17 Extensions to Write and Writeln
DOMAIN Pascal allows you to specify a negative field width for chars, strings, and arrays of chars. Also,
if you specify a one-part field width for a real number, DOMAIN Pascal adds or removes leading blanks.
See the listing for write and writeln in Chapter 4 for details.

C.4 Extensions to Routines
Chapter 5 describes procedures and functions. The term "routine" means either procedure or function.
Also, the term "argument" refers to the data passed to a routine while "parameter" means the templates
for the data to be received.

The following subsections describe DOMAIN Pascal's extensions to routine calling.

C.4.1 Direction of Data Transfer
In standard Pascal, you cannot specify the direction of parameter passing. However, DOMAIN Pascal
supports extensions to overcome this problem. You can use the following keywords in your routine decla­
ration:

• In -- This keyword tells the compiler that you are going to pass a value to this parameter, and
that the routine is not allowed to alter its value. If the called routine does attempt to change its
value (Le., use it on the left side of an assignment statement), the compiler issues an "Assignment
to IN argument" error.

• Out -- This keyword tells the compiler that you are not going to pass a value to the parameter,
but that you expect the routine to assign a value to the parameter. It is incorrect to try to use the
parameter before the routine has assigned a value to it, although the compiler does not issue a
warning or error in this case.

If the called routine does not attempt to assign a value to the parameter, the compiler may issue a
"Variable was not initialized before this use" warning. This could occur if your routine only as­
signs a value to the parameter under certain conditions. If that is the case, you should designate
the parameter as var instead of out.

In some cases, the compiler cannot determine whether all paths leading to an out parameter as­
sign a value to it. If that happens, the compiler does not issue a warning message.

Ci
./

c

• In out -- This keyword tells the compiler that you are going to pass a value to the parameter, and
that the called routine is permitted to modify this value. It is incorrect to call the routine before
assigning a value to the parameter, although the compiler does not issue a warning or error in this C"· " ..
case. The compiler also doesn't complain if the called routine does not attempt to modify this
value.

Extensions to Standard Pascal C-8

o

o

o

o

o

c.s Universal Parameter Specification
By default, DOMAIN Pascal and standard Pascal check to ensure that the argument you pass to a routine
has the same data type as the parameter you defined for the routine. As an extension, you can tell
DOMAIN Pascal to suppress this type checking. You do this by using the keyword univ prior to a type
name in a parameter list. By using univ, you can pass an argument that has a different data type than its
corresponding parameter.

Univ is especially useful for passing arrays.

C.S.1 Routine Options
Standard Pascal supports a forward option. DOMAIN Pascal supports the forward option, and also sup­
ports the following routine options:

• Extern -- By default, Pascal expects a called routine to be defined within the source code file
where it is called. The extern option tells the compiler that the routine is possibly defined outside
of this source code file.

• Internal -- By default, all routines defined in modules become global symbols. But, if you de­
clare the routine with the internal option, the compiler makes the routine a local symbol.

• Variable -- By default, you must pass the same number of arguments to a routine each time you
call the routine. However, by using the variable option in a routine declaration, you can pass a
variable number of arguments to the routine.

• Abnormal -- This option warns the compiler that a routine can cause an abnormal transfer of
control.

• Val_param -- By default, DOMAIN Pascal passes arguments by reference. However, by using
the val_param option, you tell DOMAIN Pascal to pass arguments by value.

• Nosave -- This option indicates that the contents of data registers D2 through D7, address regis­
ters A2 through A4, and floating-point registers FP2 through FP7 will not be saved when a called
assembly language routine finishes and returns to the DOMAIN Pascal program. However, two
registers are preserved: AS, ,which holds the pointer to the current stack area, and A6, which
holds the address of the current stack frame.

• Noreturn -- This option specifies an unconditional transfer of control; once a routine marked
noreturn is called, control can never return to the caller.

• DO_return -- By default, a Pascal function returning the value of a pointer type variable puts that
value in address register AO. DO_return tells the compiler to put the value in AO and data register
DO.

C.S.2 Routine Attribute List
You can specify a routine attribute list when you declare a routine. Within the routine attribute list, you
can specify a nondefault section name.

A "section" is a named contiguous area of an executing object. (Refer to the DOMAIN Binder and Li­
brarian Reference for full details on sections.) By default, the compiler assigns code to the PROCEDURE$
section and data to the DATA$ section. Thus, by default, all code from every routine in the program is
assigned to PROCEDURE$, and all data from every routine in the program is assigned to DA T A$. How­
ever, DOMAIN Pascal permits you to override the default of PROCEDURE$ and DATA$ on a routine­
by-routine basis. (You can also override the defaults on a variable-by-variable or module-by-module ba­
sis.) This makes it possible to organize the runtime placement of routines so that logically related routines
can share the same page of main memory and thus reduce page faults. Conversely, you can declare a
rarely called routine as being in a separate section from the frequently called routines.

C-9 Extensions to Standard Pascal

e.6 Modularity
DOMAIN Pascal allows you to break your program into separately compiled source files. After compiling
all the source files, you can bind the resulting objects into one executable object file. Chapters 6 and 7 C
document the details. . ./

C.7 Other Features of DOMAIN Pascal
DOMAIN Pascal supports many other features, such as the ability to call routines written in other
DOMAIN languages. However, the remaining features are all implementation-dependent features, and
not actual extensions.

Extensions to Standard Pascal C-10

C~

('

o

o

o

0

o

Appenai}{

DeV~ca1~~(Q)U1~ Flr(Q)m
S~Bllill©]COlrrd ~a~CCBl~

D

This appendix describes DOMAIN Pascal's deviations from ISO standard Pascal, and documents the sec­
tions in the ISO standard document to which DOMAIN Pascal does not completely adhere.

D.1 Deviations From the Standard
DOMAIN Pascal does not include certain features of standard Pascal, and this list documents the devia-
tions:

0

0

G

•

Identifiers in standard Pascal may be longer than 32 characters and still be considered unique.

DOMAIN Pascal ignores the file list in the program heading.

DOMAIN Pascal allows arrays of up to seven dimensions only.

Although DOMAIN Pascal recognizes the packed syntax, it does not support packed arrays or
packed sets.

D.2 Deviations From Specific Sections of the Standard
The following lists the sections in the ISO standard document to which DOMAIN Pascal does not com­
pletely adhere, and the reason it does not adhere to that section.

6.1.2

6.1.5

You may redeclare NIL.

You are not required to include a sequence of digits after a period in a float­
ing-point number.

0-1 Deviations from Standard Pascal

6.1.8

6.2.2

6.4.3.3

6.4.5

6.4.6

6.5.5

6.6.3.3

6.6.3.5, 6.6.3.6

6.6.3.6

You are not required to leave a blank between a number and a word-type
operator. For example, DOMAIN Pascal accepts the following:

result := 10mod 1;

The following type of declaration works under DOMAIN Pascal:

TYPE
rec

end;

record
ptr
my_var

my_var = rec;

"my_var;
integer

There is no requirement that all values of a tag-type in a record appear as
case constants.

DOMAIN Pascal does not detect a reference to an inactive variant field.
Also, it does not mark variant fields as inactive when a new variant tag be­
comes active.

Subrariges of the same type that are defined with different ranges are consid­
ered identical.

DOMAIN Pascal considers structurally identical types to be identical. For ex­
ample, the following are identical under DOMAIN Pascal:

TYPE
first = array[l .. 20] of integer32;
second = array[l .. 20] of integer32;

Also, DOMAIN Pascal ignores the keyword packed, so structurally identical
sets are considered identical.

You may assign structured types containing a file component to each other.

You may make an assignment from an integer expression that includes a
value outside one of the variables' declared subranges. Also, you may pass an
integer argument that is outside the corresponding parameter's declared sub­
range. In addition, DOMAIN Pascal considers sets of different subranges
from the same enumerated type to be compatible for assignment and as pa­
rameters.

DOMAIN Pascal does not detect when a field variable passed as a var pa­
rameter is modified. It also does not detect a modification to a file variable
when a reference to the buffer exists.

You may pass the selector of a variant or a component of a packed variable
as a var parameter. Also, DOMAIN Pascal accepts a procedure call like the
following where x is declared in the procedure heading as being a var pa­
rameter:

proc_name ((x)) ;

DOMAIN Pascal treats integer and subrange of integer as identical.

DOMAIN Pascal considers the following to be identical:

VAR

a
b

integer;
integer;

VAR

a,b integer;

Deviations from Standard Pascal 0-2

C"l
,-/

o

c

c

o

o

o

o

o.

6.6.5.2

6.6.5.3

6.6.5.4

6.6.6.2

6.6.6.3

6.6.6.4

6.7.2.2

6.7.2.4

6.8.1

6.8.3.5

6.8.3.9

DOMAIN Pascal does not detect a put of an undefined buffer variable at
compiletime. It does not consider a read of an enumerated type to be an er­
ror, or an assignment from a file variable of an enumerated type followed by
a get to be an error. You may write an integer expression that includes a
value outside one of the variables' declared subranges. Also, you may make
an assignment from an integer expression that includes a value outside one of
the file variables' declared subranges.

You may dispose a pointer that is active because it has been de-referenced
as a parameter or in a with block. In addition, DOMAIN Pascal does not re­
port an error if you use a pointer variable after you have disposed of it or if
you dispose of a dangling pointer (that is, a pointer with an address assigned
to another pointer).

You also may use a record allocated with a long form of new as an operand in
an expression or as a variable in an assignment statement. You may pass as
an argument a variable that was allocated with new and that uses variant tags.

DOMAIN Pascal does not report an error if you use different tags for a vari­
able in new and dispose. It also does not detect the activation of a variant on
a variable that new allocated with a different tag, or if your program includes
illegal variant tags in a dispose.

The pack procedure accepts a normal array where packed is expected, and a
packed array where a normal array is expected.

In pack, DOMAIN Pascal does not detect an uninitialized component in the
unpacked array. Similarly, in unpack, DOMAIN Pascal does not detect an
uninitialized component in the packed array.

On some nodes, the sqr function does not detect overflow.

On some nodes, trunc and round do not detect overflow.

Succ, pred, and chr do not detect overflow.

DOMAIN Pascal does not detect an overflow or underflow on integer arith­
metic. Also, it allows you to supply a negative value for j in an expression
like the following:

i mod j

DOMAIN Pascal does not detect operations on overlapping sets with incom­
patible elements.

DOMAIN Pascal permits jumps between branches of a case statement and
from one structured statement into the middle of another.

DOMAIN Pascal does not detect the lack of a case statement constant corre­
sponding to a runtime case value.

DOMAIN Pascal does not detect an underflow of an assignment from pred to
a for statement index variable. Also, it does not issue an error if there is an
overflow in the final value of a for statement index variable.

DOMAIN Pascal does not detect the possibility that an inner block will
change the value of a for statement's index variable. Also, DOMAIN Pascal
allows a non-local variable, a formal parameter, or a value parameter to be
used as a for statement's index variable. You also can use a program level
global variable as the index variable for a for statement that resides in an in­
ner block.

0-3 Deviations from Standard Pascal

6.9.1

6.9.3.1

6.10

DOMAIN Pascal does not detect an overflow of a subrange boundary for a
read statement.

You may supply a nonpositive field width or a nonpositive fractional-digits
field width to a write or writeln.

You don't have to declare input and output in a program heading to use
them in the program. You can, however, repeat parameters in a program
heading (e.g., program testing (output, output);) or redeclare pro­
gram parameters as some type other than a file. Also, you don't have to de­
clare program parameters in the var declaration part of your program.

Deviations from Standard Pascal 0-4

c~

c

c-

c

-- ------------------------------

o

o

o

o

o

Appendi}{

Sy~~em~ ~w({j)9JWtalmm~Ii19J
R(a){u~~ll1e~

E

DOMAIN Pascal includes several routines designed specifically for systems programmers' use. Systems
programmers are those who need to do very low-level work in their programs and who need direct access
to specific registers and bits within those registers. They frequently wi-ite some programs in Pascal and
some in assembly language.

If you are a systems programmer, you might use these routines when writing device drivers, or when doing
other low-level manipulations of the hardware status register.'

E.1 Overview
Table E-l briefly describes the available systems programming routines, all of which are extensions to
standard Pascal. A more complete explanation follows.

Table E-l. Systems Programming Routines

Routine Action

disable Turns off the interrupt enable in the hardware status register.

enable Turns on the interrupt enable in the hardware status register.

set sr Saves the current value of the hardware status register and then
inserts a new value.

E-1 Systems Programming Routines

E.2 Restrictions for Use
All the routines described in this appendix generate privileged instructions and may only be executed from C
supervisor mode. If you try to run a program using one of these routines while in user mode, you get a I

privilege-violation error. -_/

C~

'.

c
Systems Programming Routines E-2

o

o

o

o

o

Disable -- Turns off the interrupt enable in the hardware status register. (Exten­
sion)

FORMAT

disable {disable is a procedure.}

Argument

Disable takes no arguments.

DESCRIPTION

Disable is a built-in procedure for systems programmers' use. It turns off the interrupt enable in the
hardware status register and should be used with its complementary procedure enable.

By turning off the interrupt enable, disable allows you to prevent an interrupt from coming in while the
program is in a critical section. After the critical section finishes, you should use enable to turn the in­
terrupt enable back on.

The disable-enable pair look like this in code:

disable;

{ Critical section. }
{ No interrupts allowed while this section is executing. }

enable;

If you mistakenly use only disable, your program will essentially grind to a halt since no interrupt sig­
nals will be able to get to it. You should only use the disable-enable pair around very small sections of
code.

E-3 Systems Programming Routines

Enable -- Turns on the interrupt enable in the hardware status register. (Exten­
sion)

FORMAT

enable {enable is a procedure.}

Argument

Enable takes no arguments.

DESCRIPTION

Enable is a built-in procedure for systems programmers' use. It turns on the interrupt enable in the
hardware status register and usually is used with its complementary procedure disable.

By turning on the interrupt enable, enable allows your program to receive interrupts. Usually, disable
will have been used to prevent the reception of interrupts during a critical section of code. After the
critical section finishes, enable lets the interrupts flow.

The disable-enable pair look like this in code:

disable;

{ Critical section. }
{ No interrupts allowed while this section is executing. }

enable;

Because the interrupt enable is turned on by default, there is no effect if you mistakenly use only en­
able in your program.

Systems Programming Routines E-4

C~

c

c

o

o

o

o

c

Set sr -- Saves the current value of the hardware status register and then in­
serts a new one. (Extension)

FORMAT

oldsr := set_sr(newsr); {set_sr is a function.}

Argument

oldsr

newsr

DESCRIPTION

The old value of the hardware status register.

The new value of the hardware status register.

Set_sr is a built-in function for systems programmers' use. It reads the hardware status register (SR)
and replaces its current value with newsr. The original value then is assigned to oldsr. This translates to
assembly language code something like this:

move.w
move.w
move.w

SR,dO
newsr,SR
dO,oldsr

The function eliminates six instructions in what often was a time-critical path.

E-5 Systems Programming Routines

~----- .. -.---.-----

C~

c

C 1

" .~ .

o

o

o

o

o

The letter I means "and the following page"; the letters II mean "and the following pages". Symbols are
listed at the beginning of the index.

Symbols

(* *) (parentheses/asterisks)
as comment delimiters 2-3, 6-6

& (ampersand)
as bit operator 4-23

differences from and 4-12
, (apostrophe)

including in string 2-4
* (asterisk)

as default array size indicator
3-21

as indefinite repeat count
indicator 3-22

@ (at sign)
as continuation character 1-2

\ (backslash)
as continuation character 1-2

{} (braces)
as comment delimiters 2-3, 6-6

,. (caret) (See Up-arrow)
(colon)

and designating field widths
4-168ff

and otherwise clause of case
4-26

in case statement 4-25
in record declarations 3-14
in routine headings 5 -1 f
in variable declarations 2-10

$ (dollar sign)
as AEGIS shell prompt 1-2
in identifier names 1-4, 2-1

" (double quotes)
as comment delimiters 2-3, 6-6

= (equal sign)
in record declarations 3-14
in type declarations 2-9

(exclamation point)

as bit operator 4-23
differences with or 4-108

> (greater than)
as standard output redirection

character 6-16
< (less than)

as standard input redirection
character 6-16

() (parentheses)
and extensions to if 4-76f
as section name delimiters 3-26
in enumerated declarations 3-9
using to organize complex

expressions 4-62
% (percent sign)

as compiler directive indicator
4-32

(period)
and record field names 4-125

(semicolon)
and compiler directives 4-32
and else part of an if 4-76
and use with end 4-52

[] (square brackets)
and nondefault section names

5-12
and set assignment 4-139
in array declarations 3-20
in array initialization 3-20f
in record initialization 3-16

- (tilde)
as bit operator 4-23

_ (underscore)
in identifier names 1-4, 2-1

,. (up-arrow)
and de-referencing a procedure

or function pointer 4-117
in pointer declarations 3-24

\0 (DOMAIN C null character)
and passing strings 7-22f

Index-1

A

Abbreviating record names 4-165 ff
Abnormal routine option 5-11
Abs function 4-9
Absolute pathnames 6-10

. Absolute value. function 4-9
Access

of variables 2-12
of variables in nested routines

2-13f
Accessing routines

in separate modules 7-7ff
Accessing variables 7-3ff
Accuracy

and expansion of operands 4-3
Action part

of a program 2-12, 4-1ff
of a routine 2-12

Addr function 4-10
as extension C-5

Address attribute 3-30
Address registers

and dO_return 5-11
and nosave 5-11

Addresses
and procedure or function

pointers 4-117
manipulating with pointers 4-116
passing using pointers 3-25
returning with addr 4-10

AEGIS shell
and compilin"g 6-3
continuation character 1-2

-align compiler option 6-5
Allocating space

for machines with more address
space 4-95

with new 4-94 f
Ampersand (&)

as bit operator 4-23
differences from and 4-12

And operator 4-12f
with not 4-102

And then
extension to if 4-76f

example 4-77f
Anonymous data types 2-10

and parameters 5-2
restrictions in routine headings

5-2
Apostrophe (')

including in string 2-4
Arctan function 4-14
Arctangent

function 4-14
relationship with tangent 4-14

Arguments
and calling a routine 5-2
and cross-language

communication 7-14
and passing arrays 7-14, 7-24f
definition 5-1
differences in C and Pascal 7-20
passing a variable number 5-10
passing by reference 5-11

and arrays 7-24
and C 7-20
and FORTRAN 7-15

passing by value 5-11
and C 7-20

passing characters to C 7-22f
passing characters to FORTRAN

7-17
example 7-18f

restrictions when passing 5-3
Arithmetic operators

list 4-2
Arithmetic right shift 4-19 f
Arrays 3-19ff

Index-2

and C and Pascal 7-24ff
and FORTRAN and Pascal 7-13f
as parameters

and univ 5-6
assigning values to 4-16f

strings 4-17
data types supported 3-1
defaulting the size of 3-21
example of assignments 4-16f
first value 4-66
how to use 4-16ff
indexes 4-16f

and pack procedure 4-112
and unpack procedure 4-160

initializing 3-20f
example 4-80 , 4-86

initializing externally stored 7-4 f
internal representation 3-22f
last value 4-83
of records

assigning values to 4-127
packed

and pack procedure 4-112
and unpack procedure 4-160

c:

c

c

c

o

o

o

o

o

example 4-113 , 4-161
passing to C 7-24ff
size of one element 3-23
storage 3-22f

in C 7-25
in FORTRAN 7-14

string 3-20
subscript checking 6-14 f
subscripts

default starting point in C 7-24
unpacked

and pack procedure 4-112
and unpack procedure 4-160

using repeat counts to initialize
3-2H

Arshft function 4-19 f
ASCII character set

and chr 4,-28
and ord 4-110
for character variables 3-9

ASCII table B-Hf
Assembly language

and nosave routine option 5-11
with -exp 6-10

Assignments
of integer values 2-2
of variables to sections 3-26f
to arrays 4-16f

Asterisk (*)
as default array size indicator

3-21
as indefinite repeat count

indicator 3-22
At sign (@)

as continuation character 1-2
Attributes

inheritance of 3-30f
of routines 5-12f
variable and type 3-27ff

address 3-30
and pointers 3-31
device 3-28ff
volatile 3-27f

Average computation sample
program 7-25

B

-b compiler option 6-6
and compiler output 6-3

Backslash (\)
as continuation character 1-2

Begin 4-21f
and case statement 4-26
and compound statements 4-151
example 4-22, 4-53

.bin suffix 6-6
of Pascal object file 6-3

Binary
expressing integer in 2-2

example 4-24
Binary output compiler option 6-6
Binding a program 6-1, 6-15 f

example 7-11
Bit operations (See also Bit

operators)
arithmetic right shift 4-19f
exclusive or 4-173
left shift 4-85f
right shift 4-137f

Bit operators
differences between "&" and

"and" 4-12
differences between "I" and "or"

4-108
differences from logical operators

4-23
example 4-24
extensions C-5
overview 4-23f

Bit precision
controlling with type transfer

functions 4-158
Blanks

and compiler directives 4-32
Boolean data type 3-1, 3-7f

and pred' s value 4-118
and succ's value 4-152
and write and writeln 4-171f
correspondence with logical 7-13
first value 4-66
initializing 3-7f
internal representation 3-8
last value 4-83

Boolean expressions
and logical and 4-12f
and logical not 4-102
and logical or 4-108
and repeat/until 4-128
and while loops 4-163

Braces ({})
as comment delimiters 2-3, 6-6

Branching

Index-3

and case statement 4-25ff
and if 4-76

types supported 4-1

c

Calling a routine 5-2
Caret (A) (See Up-arrow)
Case sensitivity 2-4

and calling C from Pascal 7-20
and compiling in DOMAIN/IX

shell 6-3
and strings 2-4

Case statement 4-25ff
and deviations from standard

D-3
differences from if/then/else

4-25f
example 4-26f
in variant record declarations

3-14
summary 4-1

Changes to manual vi
Changing a parameter

and in out 5-4
Changing data types 4-157ff

restrictions 4-157
Char data type (See Character data

type)
Character data type 3-1, 3-8f

and arrays 4-17f
and chr 4-28
and pred' s value 4-118
and succ's value 4-152
and write and writeln 4-169f
first value 4-66
initializing 3-8
internal representation 3-9
last value 4-83

Character representation
in ASCII B-1 ff

Character strings
and case sensitivity 2-4
definition 2-4
passing to C 7-22f
passing to FORTRAN 7-17

example 7-18f
Chr function 4-28f

example 4-29
Close procedure 4-30f

summary 8-7
Closing a file 4-30f, 8-7

and flushing the buffer 4-121,
4-30

Code
extensions to

summary 1-4f, C-4ff
Code generation modes 6-8f
Colon (:)

and designating field widths
4-168ff

and otherwise clause of case
4-26

in case statement 4-25
in record declarations 3-14
in routine headings 5-lf
in type declarations 2-10

-comchk compiler option 6-6
Comment delimiters

matching 6-6
requirements with -iso 6-11
using compiler directives in 4-32

Comments 2-3
and -iso compiler option 6-11
checking with compiler option

6-6
delimiters in strings 2-4
extensions to 1-4, 2-3, C-2

Common blocks
and cross-language

communication 7-14f
Communication

between programming languages
7-1ff

Compiler directives 4-32ff
as extensions C-5
examples 4-34ff
list 4-33f
using within comments 2-3, 4-32

Compiler errors 9-5ff
Compiler optimizations

and abnormal routine option
5-11

and discard 4-43
and goto 4-72
and noreturn routine option 5 -11
and using exit 4-58
preventing with addr 4-10
suppressing 3-28ff
techniques 6-12

Compiler options
-align 6-5

Index-4

array subscript checking 6-14f
-b 6-6

and compiler output 6-3
binary output 6-6
-comchk 6-6

------- -~--.-- ..

c:

c

('\

c

o

o

o

o

o

-cond 6-7
and -config 6-8

conditional compilation 6-7
-config 6-7f

and -cond 6-7
-cpu 6-8f
-db debugger preparation 6-9
-dba debugger preparation 6-9
-dbs debugger preparation 6-9
-exp 6-10
expanded listing file 6-10
-idir 6-10
-iso 6-10f
-1 6-11
list of 6-4f
listing file 6-11
-map 6-11f
-msgs 6-12
-nalign 6-5
-nb 6-6
-ncomchk 6-6
-ncond 6-7
-ndb debugger preparation 6-9
-nexp 6-10
-niso 6-10f
-nl 6-11
-nmap 6-11f
-nmsgs 6-12
-nopt 6-12f
-npeb 6-13
-nsubchk 6-14f
-nwarn 6-15
-nxrs 6-15
-opt 6-12f

and debugger preparation 6-9
optimization 6-12f
-peb 6-13
register saving 6-15
searching for include files 6-10
-slib 6-13f

syntax 6-14
-subchk 6-14f

and extern arrays 7-4f
target workstation selection 6-8f
-warn 6-15
warning messages 6-15
-XfS 6-15

Compiler output
and working directory 6-3

Compiling 1-2
code generation modes 6-8f

command to use 6-3
conditionally 4-34ff

and %debug directive 4-39
stopping 4-36

creating executable object 1-2,
6-3

errors generated 9-4ff
pas command 6-3
precompilation with -slib 4-40,

6-13f
warnings generated 9-4ff
with -config option and compiler

directives 4-34
Complex data type

simulating in Pascal 7-13
Component type

of an array 3-19
Compound statements 4-151

and begin 4-21
terminating with end 4-52

Concepts
in encyclopedia 4-8

-cond compiler option 6-7
and -config 6-8
and %debug directive 4-39

Conditional action
with branching statements 4-1
with case statement 4-25ff
with if 4-76

Conditional compilation 6-7
and compiler directives 4-34ff

stopping 4-36
and %debug directive 4-39

-config compiler option 6-7f
and compiler directives 4-34ff
and -cond 6-7

%config directive 4-37
Const declaration part 2-8f
Constants

and case statement 4-25
declaring 2-8f
declaring Boolean types 3-8
declaring character types 3-9
declaring integer types 3-3f
declaring real number types 3-5f
extensions C-2f

Conventions
documentation vi

in error messages 9-4
Converting a number to a character

using chr 4-28

Index-5

Copying an array
using pack 4-112
using unpack 4-160

Copying sample programs
using getpas 1-2f

Cos function 4-4lf
Cosine function 4-41 f
-cpu compiler option 6-8f
Creating a new file 4-105, 8-5

example 4-107
with reset 4-131

Crefpas utility 6-17f
example 6-18

Critical section
and disable E-3
and enable E-4

Cross-language communication 1-5,
7-1ff

Cross-reference listing file
creating with crefpas 6-17f

Current iteration of a loop
skipping 4-99

D

DO_return routine option 5-11
DATA $

and nondefault sections 3-26f
and %slibrary directive 4-40
and symbol map file 6-11
as default data section 2-7, 7-2
overriding this default section

5-12f
restrictions with -slib 6-14

Data
passing between FORTRAN and

Pascal 7-14f
Data registers

and dO_return 5-11
and nosave 5-11

Data types (See also individual data
type listings)

and parameters 5-2
and routine headings 5-2
and write and writeln 4-169ff
anonymous 2-10
arrays

and FORTRAN and Pascal
7-13f

of records 4-127
overview 3-19ff
using 4-16ff

Boolean
and FORTRAN and Pascal

7-13
overview 3-7f

changing 4-157ff
character

and arrays 4-17f
overview 3-8f

checking
suppressing with univ 5-5f

correspondence for C and Pascal
7-21ff
list 7-21

correspondence for FORTRAN
and Pascal 7 -12ff
list 7-12

declaring 3-lff
declaring user-defined types 2-9
enumerated

overview 3-9f
extensions to 1-4, C-3f
file 3-23
finding size of 4-147f
first possible values 4-66
integer

and FORTRAN and Pascal
7-13

overview 3-2ff
passing to C 7-22

last possible values 4-83
of for loop variables 4-68
pointer

overview 3-24ff
real number

overview 3-4ff
passing to C 7-22

records 3-12ff
using 4-125ff

sets
overview 3-10ff
using 4-139ff

subrange 3-10
text 3-23
those supported 3-1

-db debugger compiler option 6-9
-dba debugger compiler option 6-9
-dbs debugger compiler option 6-9
Deallocating space

with dispose 4-45f
%debug directive 4-39

as conditional compilation
designator 6-7

Debugger 6-16f

Index-6

c

c

C:

o

o

o

o

o

and compiler options 6-9
Debugging a program 6-16ff

and %debug directive 4-39f
Declaration part order

extensions to 1-4, C-2
Declarations

extensions C-2
in routines 2-11
overview 2-7ff

Declaring
arrays 3-19f
Boolean constants 3-8
Boolean data types 3-7
character constants 3-9
character variables 3-8
constants 2-8f
data types 3-1ff
enumerated variables 3-9
integer constants 3-3f
integer variables 3-3
labels 2-7f
real number constants 3-5
real number variables 3-4f
sets 3-10f
subrange variables 3-10
user-defined data types 2-9
variables 2-10
variables in modules 7-3f

Decrementing loop index variables
4-68

Defaults
array subscripts in C 7-24
code section 2-7
data section 2-7
field widths with write and write In

4-169ff
global symbols and internal 5-9
local symbols and internal 5-9
text file line length 2-4

Define declaration part 2-10, 7-3
example 7-3f
syntax 7-4

Defining routines in separate files
5-9

Delayed access
and input!output8-4

Deleting file contents
with rewrite 4-134

De-referencing a pointer 4-116f
procedure or function types

4-117

restrictions 3-25
Deviations

from specific sections of the
standard D-1 ff

from standard Pascal D-lff
Device attribute 3-28 ff

and attribute inheritance 3-30f
Device drivers

and systems programming
routines E-1

Directives
compiler (See Compiler

directives)
Disable E-3
Discard procedure 4-43f

as extension C-5
Discarding

a computed value 4-43
storage space with dispose 4-45f

Dispose procedure 4-45f
and new 4-94f

Div operator 4-47f
Division

modulus
example 4-48 , 4-93

using div 4-47f
using mod 4-92f

Documentation conventions vi
in error messages 9-4

Dollar sign ($)
as AEGIS shell prompt 1-2
in identifier names 1-4, 2-1

DOMAIN C
and dO _return routine option

5-11
and valyaram routine option

5-11
calling from DOMAIN Pascal

7-20ff
data types' correspondence to

Pascal 7-21ff
list 7-21

differences in argument passing
7-20

null character (\0)
and passing strings 7-22f

struct 7-27
DOMAIN FORTRAN

Index-7

and dO _return routine option
5-11

calling a subroutine 7-16
calling from DOMAIN Pascal

7-12ff

complex data types
simulating in Pascal 7-13

data types' correspondence to
Pascal 7 -12ff
list 7-12

logical data types 7-13
DOMAIN Pascal l-1ff

and -iso compiler option 6-10f
extensions to standard 1-4ff
predeclared identifiers

list A-2
reserved words

list A-l
DOMAIN Software Engineering

Environment 6-18
DOMAIN/Dialogue 6-19
DOMAIN/IX shell

and compiling 6-3
continuation character 1-2

Double data type
internal representation 3-7
overview 3-4

Double quotes (")
as comment delimiters 2-3, 6-6

Double-precision data type
internal representation 3-7

Downto
using to decrement 4-68

DSEE (See DOMAIN Software
Engineering Environment)

Dynamic storage
allocating with new 4-94f
deallocating with dispose 4-45f

Dynamic variables (See variables
dynamic)

E

E

as explicit exponent 2-2
E constant

and exp function 4-60
%eject directive 4-39
Eliminating warning messages

with discard 4-43
Else clause of if 4-76f

example 4-78
%else directive 4-35
%elseif predicate %then directive

4-35
%elseifdef predicate %then directive

4-36

%enable directive 4-35, 4-37
Enable E-4
Encyclopedia of DOMAIN Pascal

code 4-8ff
End 4-52f

and begin 4-21
and case statement 4-25f
and compound statements 4-151
example 4-22, 4-53
in record declarations 3-13f
without accompanying begin 4-52

End of file
and read and readln 4-123
and reset 8-4
testing for 4-54

End of line
and readln 4-123
and writeln 4-168
testing for 4-56

%endif directive 4-36
Enforcing order evaluation 4-77
Enumerated data types 3-1, 3-9f

and firstof 4-66
and index variables 4-68
and in_range 4-81
and lastof 4-83
and pred's value 4-118
and sets 4-139ff
and succ's value 4-152
and write and write In 4-171f
first value 4-66
internal representation 3-9f
last value 4-83

Eof function 4-54f
Eoln function 4-56f
Equal sign (=)

in record declarations 3-14
in type declarations 2-9

Equality
in sets 4-142

%error directive 4-38
Error status

and opening files 4-106
example 4-132, 4-135

Error _ $print
and error messages 9-2
example 4-132, 4-135

Errors 1-6, 9-1ff

Index-8

and find procedure 4-63, 9-3
and open procedure 9-3
compiler 9-5ff
passing parameters 5-4f

C ~ -,.-

c . .'
/

c

o

c

o

o

o

printing 9-lf
with %error 4-38

testing for specific 9-2f
when testing for end of line 4-56

Example
abbreviating record names 4-166f
absolute value 4-9
accessing routines in separate

modules 7-8ff
addr function 4-10
allocating dynamic storage 4-96f
and operator 4-13
arctan function 4-14
arithmetic right shift 4-19 f
array assignments 4-16f, 4-18
array declarations 3-20
array of records 4-127
arshft 4-19f
begin 4-22, 4-53
bit operators 4-24
building a linked list 7-26f
calling a FORTRAN function

7-15
calling a FORTRAN subroutine

7-16
calling a routine 5-2
calling C from Pascal 7-22ff
calling FORTRAN from Pascal

7-15ff
case statement 4-26f
changing data types 4-157ff
character strings 2-4
chr function 4-29
close 4-31
closing a file 4-31
comments 2-3
compiler directives 4-34ff
compiling 6-3
constant declarations 2-8f, 4-13f
converting a number to a

character 4-29
cosine 4-41
crefpas utility 6-18
declaring all data types 3-2
device attribute 3-29f
direction of parameter passing

5-4f
discard procedure 4-44
division 4-48
end 4-22, 4-53
end of file 4-55
end of line 4-57

Index-9

enumerated data type
declarations 3-9

eof 4-55
eoln 4-57
error_Sprint 4-132, 4-135, 9-2
exclusive or 4-174
exit 4-58
exp function 4-61
externally stored variables 7-3f
find procedure 4-64
finding length of an object

4-144f
finding the maximum 4-88
finding the minimum 4-91
firstof function 4-67
fixed record declarations 3-13
for loops 4-18, 4-69
forward routine option 5-9
function 4-22, 4-44, 5-5, 5-14
get procedure 4-71
if statement 4-76ff
in operator 4-144, 4-80
%include directive 4-71
initializing arrays 4-80, 4-86
in_range function 4-82
integer assignments 2-2
integer data type declarations 3-3
label declarations 2-8, 4-73f
lastof function 4-67
left shift 4-85f
%list and %nolist directives 4-71
In function 4-84
logarithms 4-84
logical, and 4-13
logical not 4-102
logical or 4-109
loops 4-100, 4-164, 4-58, 4-69
lshft 4-85f
max function 4-88
membership in a set 4-144, 4-80
min function 4-91
modulus division 4-48, 4-93
new procedure 4-96f
next 4-100
nondefault section names 3-27,

5-13
not operator 4-102
odd function 4-103
open procedure 4-106f
opening a file 4-106f
or operator 4-109
ord function 4-111

otherwise clause of case 4-26f
pack procedure 4-113
packed arrays 4-113, 4-161
packed record declarations 3-15
packed record layout 3-19
page procedure 4-115
parameter list 5-2f
passing a variable number of

arguments 5-10
passing arrays to C 7-25
passing character strings to C

7-23
passing pointers 7-26f
pointer data types 4-116f, 4-96f
pointer declarations 3-24ff
pred function 4-119
procedures 4-64, 5-9
program headings 2-7
put procedure 4-120ff
readln 4-124
real number data type

declarations 3-5
real numbers 2-3
real numbers' internal

representation 3-6f
record data type declarations

3-13ff, 4-45, 4-94
record initialization 3-16 f
repeat/until 4-129, 4-31
reset procedure 4-132, 4-31
return statement 4-133
returning the address of a

variable 4-10
rewrite 4-135
right shift 4-137f
round function 4-136
routine headings 5-2
routine options 5-8
rshft 4-137f, 4-20
set data type declarations 3-11
set operators 4-140ff, 4-80
sine 4-145
sizeof function 4-148
square root function 4-150
squaring a number 4-149
subrange data type declarations

3-10
succ function 4-153
traceback utility 6-17
truncating 4-156
type declarations 2-9
type transfer functions 4-159

universal parameters 5-6f
unpack procedure 4-161
value parameters 5-3
variable parameters 5-3
variable routine option 5-10
variant record declarations 3-15
volatile attribute 3-28
while loops 4-164, 4-97
with statement 4-166f
write and writeln 4-14, 4-169ff,

4-172
writing to a file 4-120ff
xor function 4-174

Example programs (See Sample
programs)

Exclamation point (I)
as bit operator 4-23

differences with or 4-108
Exclusive or 4-173f

example 4-174
Executable object file 1-2, 6-1

and .bin suffix 6-3, 6-6
and compiler directives 4-38
and %eject directive 4-39
and %list and %nolist directives

4-40
creating 6-6
creating with binding 6-16

Executing a program 6-16
%exit directive 4-38
Exit statement 4-58f

example 4-58
Exiting from a loop 4-128, 4-163,

4-58, 4-68, 4-99
-exp compiler option 6-10
Exp function 4-60f, 4-61
Expanded notation 2-2
Expansion of operands 4-3

and arshft 4-19
and bit operations 4-23
and rshft4-137
and type transfer functions 4-158
and univ 5-7

Exponent
expressing explicitly 2-2

Exponentiation
simulating 4-60

Expressions 4-62
discarding computed value 4-43
using nil in 4-101

Extensions C-1 ff
abnormal routine option 5-11

Index-10

c~

o

o

o

o

o

additional functions and
procedures 1-4f

addr function 4-10
address attribute 3-30
arithmetic right shift 4-19
array initialization 3-20f
arshft 4-19
assigning variables to sections

3-26f
attribute inheritance 3-30f
attributes

variable and type 3-27ff
bit operators 4-23
Boolean initialization 3-7f, C-Hf
changing data types 4-157ff
character initialization 3-8
close procedure 4-105ff, 4-30f
code 1-4
comments 2-3
compiler directives 4-32ff
dO_return routine option 5-11
data types 1-4
declaration part order 1-4
device attribute 3-28ff
direction of parameter passing

5-4f
discard procedure 4-43f
exclusive or 4-173
exiting from a loop 4-58, 4-99
extern routine option 5-9
finding the length of an object

4-147f
firstof function 4-66
if statement 4-76f
in_range function 4-81f
integer initialization 3-3
internal routine option 5-9
lastof function 4-83f
left shift 4-85
loops 4-1
lshft 4-85
next statement 4-99
nondefault section names 5-12f
noreturn routine option 5-11
nosave routine option 5-11
order of declaration parts 2-7
otherwise clause of case 4-25f
overview C-1 ff
passing a variable number of

arguments 5 -10
pointer data types 3-25f
pointer initialization 3-25f

pointer operations 4-116 f
program organization 1-4
real number initialization 3-5
record initialization 3-16f
replace procedure 4-130
right shift 4-137
routine attributes 5 -12 f
routines 1-5
rshft 4-137
set initialization 3-11
sizeof function 4-147f
standard Pascal 1-4ff, C-Hf
type transfer functions 4-157ff
universal parameters 5-5f
valyaram routine option 5 -11
variable routine option 5-10
volatile attribute 3-27f
with statement 4-166f

example 4-166f
xor function 4-173

Extern routine option 5-9
and routines in separate modules

7-7
and variables in separate modules

7-3
example 7-3f

External references
resolving with binding 6-15

External routines 1-5, 7-3 ff

F

Factorial computation sample
program 5-14

Field widths
for write and write In 4-169ff

File data type 3-2, 3-23
and find procedure 4-63

Filenames
and .pas extension 1-2, 6-3

Files 3-23f

Index-11

closing 4-30f, 8-7
creating 4-105, 8-5
deleting contents with rewrite

4-134
end of 4-54

and read and readln 4-123
and reset 8-4

end of line 4-56
finding a specific record 4-63
getting the next record 4-70
inserting a formfeed 4-114

example 4-115

,nodifying
allowing with rewrite 4-134

opening 4-105ff, 8-5f
example 4-122
methods supported 4-105f

organization types supported 8-5
overview· 3-23 f
reading 4-123, 8-6
record-structured 3-24

and replace 4-130
replacing a record in 4-130
temporary 8-5
text 8-5
types supported 8-5
VAse 8-5
variable

and input/output 8-3
writing to 4-120f, 4-168, 8-6

and rewrite 4-134
Find procedure 4-63ff

common errors returned 9-3
example 4-64
summary 8-7

Finding the maximum 4-87
Finding the minimum 4-90
Finding whether an integer is odd

4-103
Firstof function 4-66f

and pred' s value 4-118
example 4-67

Fixed record files 8-5
Fixed records 3-13

assigning values to 4-125
Floating point

and target workstation selection
6-8f

M68881 co-processor 6-8f
Floating-point numbers

definition 2-2
Floating-point registers and nosave

5-11
For 4-68f

and deviations from standard
D-3

and exit 4-58
and next 4-99
example 4-18, 4-69
summary 4-1

Format of module 7-2
Format of program 2-5ff
Formatting output

and VFMT input/output method
8-2

Formfeed
and %eject directive 4-39
inserting in a file 4-114

Forward routine option 5-8f
and nested routines 2-14
example 5-9

Functions (See also Routines) 2-11
and nondefault section names

5-12
arctan 4-14
calling 5-2
calling FORTRAN 7-15
differences from procedures 2-11
discarding a return value 4-43
example 4-22, 4-44, 5-5
headings 2-11, 5-1
mathematical

list 4-4
recursive

example 5-14
returning from 4-133

G

Get procedure 4-70f
example 4-71
similarities to read 4-70
summary 8-6

getpas 1-2f
demonstration 1-3

Global symbols
and internal routine option 5-9

Global variables 2-12ff
Goto 4-72ff

and declaring target labels 2-7
comparing with exit 4-58
comparing with next 4-99
example 4-73f
reasons to use sparingly 4-72
requirements with -iso 6-10
using with nested routines 4-74

Greater than (»
as standard output redirection

character 6-16

H

Hardware status register E-3ff
setting a new value E-5

Headings
of modules 7-2

Index-12

CI

c

c

c~

r

o

o

o

o

o

of program 2-7
of routines 2-11, 5-1

Hexadecimal
expressing integer in 2-2

Hierarchy of access
in nested routines 2-13

Identifiers 1-4, 2-1£
and declaring constants 2-8
and deviations from standard

D-1
and reserved words A-1
extensions C-1

-idir compiler option 6-10
If 4-76ff

differences from case 4-25f
example 4-22
extensions C-6
summary 4-1

%if predicate %then directive 4-34f
%ifdef predicate %then directive

4-36
In operator 4-80

example 4-144, 4-80
In out parameters 5-4f
In parameters 5-4f
%include directive 4-39

and -slib 6-14
example 4-71

Include files 4-39
and %exit directive 4-38
and -idir 6-10
and %ifdef directive 4-36
precompiling with -slib 6-13f

Incrementing loop index variables
4-.68

Index type
of an array 3-19

Indexes (See also Subscripts) 3-19f
in for loops 4-68f
of arrays 4-16f

Inequality
in sets 4-142

Inheritance of variable and type
attributes 3-30f

Input and Output (See
Input/Output)

Input Output Streams
and stream markers 8-5
ID 8-3

overview 8 - 2
Input standard input stream 8-3
Input/Output

and delayed access 8-4
and deviations from standard

D-3
and put procedure 4-120ff
and read and readln 4-123
and replace 4-130
and reset procedure 4-131£
and rewrite 4-134
and write and write In 4-168ff
close procedure 4-30f
extensions to 1-6, C-6
finding a specific record 4-63
getting the next record 4-70
Input Output Streams 8-2
methods supported 8-1
open procedure 4-105ff
overview 8-1£f
procedures

and array assignment 4-18
procedures supported

list 4-4
requesting with reset 8-4
VFMT 8-2
writing to a file 4-134

Input/Output default streams 8-3
In_range function 4-81£

and subrange data types 3-10
as extension C-7
example 4-82

Integer data types 3-1
and pred' s value 4-118
and succ's value 4-152
and write and writeln 4-170 .
declaring 3-3
extensions C-3
first values 4-66
initializing 3-3
internal representation 3-4
last values 4-83
meaning in FORTRAN and

Pascal 7-13
overview 3-2ff
passing to C 7-22
passing to FORTRAN 7-13

Integer16 3-3

Index-13

and expansion of operands 4-3
and sqr function 4-149
internal representation 3-4

Integer32 3-3

and error status 4-63

and expansion of operands 4-3

and sqr function 4-149

first value 4-66

internal representation 3-4

last value 4-83

Integers

definition 2-2
expressing in other bases 2-2

extensions C-1

rounding to nearest 4-136
truncating to 4-156

Interfaces

designing with
DOMAIN/Dialogue 6-19

Internal representation

arrays 3-22f

Boolean data type 3-8

character data type 3-9

enumerated data types 3-9f

integer data types 3-4

packed records 3-18

pointer data types 3-26

real number data types 3-6f

sets 3-11£

subrange data types 3-10

unpacked records 3-17

Internal routine option 5-9

and routines in separate modules
7-7

International Standards Organization
(See ISO)

Interrupt enable

controlling E-3f

Intersection of sets 4-141
I/O (See Input/Output)

lOS (See Input Output Streams)

-iso compiler option 6-10f

and comments 2-3

and goto 4-72f

and mod 4-92f

ISO standard Pascal 1-1

and -iso compiler option 6-10f

and mod operator 4-92f

deviations from D-1ff

extensions

overview C-1£f

J

Jumping out of a loop 4-128,
4-163, 4-68

with exit 4-58
with next 4-99

K

Keywords (See also Reser.ved words)
in encyclopedia 4-8

L

-1 compiler option 6-11
Labels

and goto 4-72
declaring 2-7f
example 4-73f
extensions C-3
syntax 2-8

Lastof function 4-83f
and succ's value 4-152
example 4-67

Left shift 4-85f
Length

finding with sizeof 4-147
example 4-147f

of character string
implicit argument 7-17, 7-23

of record
specifying when opening a file

4-106
Less than «)

as standard input redirection
character 6-16

Libraries
precompiling with -slib 4-40,

6-13f
using 6-16

Limits

Index-14

elements in a set 3-11
elements in enumerated set type

3-11
identifier length 2-2
length of line 8-5
lines in file 8-5
maximum storage for a set 3-12
minimum size of packed record

3-18
minimum storage for a set 3-12
number of dimensions in an

array 3-19
number of parameters 5-1

c

c

~.
\ /

o

o

o

o

o

number of pathnames with -idir
6-10

subranges of integers in set type
3-11

Lines
end of 4-S6

and readln 4-123
and write In 4-168

Linked list 7-26ff
and dispose 4-46
and nil pointer 4-101
building 4-96

Links
creating 1-2

%list directive 4-40
List

linked 7-26ff
and dispose 4-46
and nil pointer 4-101
building 4-96

Listing file
and %eject directive 4-39
and -exp 6-10
and -1 6-11
and %list and %nolist directives

4-40
cross-reference 6-17f

Ln function 4-84
example 4-84

Local symbols
and internal routine option 5-9

Local variables 2-12ff
Locating a specific record 4-63
Logarithms

natural
and e 4-60

and In 4-84
Logical and 4-12f
Logical not 4-102
Logical operators

and 4-12f
list 4-2
not 4-102
or 4-108f

Logical or 4-108f
Longword alignment

compiler option 6-S
Loops

decrementing 4-68
example 4-100, 4-164, 4-S8,

4-69

exiting prematurely 4-128,
4-163, 4-S8, 4-68, 4-99

extensions C-6
for 4-68f
incrementing 4-68
repeat/until 4-128f
skipping current iteration 4-99
summary 4-1
terminating prematurely 4-128,

4-163, 4-58, 4-68
while 4-163f

Lowercase and uppercase characters
and calling C from Pascal 7-20
sensitivity to 2-4

Low-level calls (See Systems
programming routines)

Lshft function 4-8Sf
.1st suffix

for listing file 6-11

M

M68020 microprocessor 6-8f
M68881 floating-point co-processor

6-8f
Main program (See Program)
Mantissa

of real number 3-6f
-map compiler option 6-11f
Mapping file

and -map option 6-11f
Markers

of streams 8-S
Mathematical functions

list 4-4
Mathematical operators

allowed in constant declarations
2-9

consecutive 2-2, 4-62
list 4-2

Max function 4-87f
as extension C-S

Maximum
finding with max 4-87

Maximums (See Limits)
Membership in a set

determining 4-80
Messages

errors 1-6, 9-1ff
Min function 4-90f

as extension C-S
Minimum

finding with min 4-90

Index-15

Minimums (See Limits)
Miscellaneous statements

list 4-5f
Mixing

numeric types in expressions 4-3
Mod operator 4-92f

and --iso . compiler option 6-11
example 4-48, 4-93

Modifying a file
allowing with rewrite 4-134

Modifying a parameter
and in out 5-4

Modifying a record
with replace 8-6f

Modules 7-1 ff
differences from programs 7-2
headings 7-2

Modulus division 4-92f
example 4-48, 4-93

-msgs compiler option 6-12
Multiple object files

and binding 6-1

N

-nalign compiler option 6-5
Natural logarithms

and e 4-60
calculating with In 4-84

-nb compiler option 6-6
-ncomchk compiler option 6-6
-ncond compiler option 6-7
-ndb debugger compiler option 6-9
Nested comments 2-3
Nested include files 4-39
Nested loops

and exit 4-58
example 4-58, 4-69

Nested routines 2-13f
and goto 4-74
and nondefault section names

5-13
New procedure 4-94ff

and dispose 4-45f
example 4-96f

-nexp compiler option 6-10
Next statement 4-99f

and for loops 4-68
and repeat/until loops 4-128
and while loops 4-163
example 4-100

Nil pointer 4-101

and calling dispose 4-46
and new

example 4-97
example 7-26

-niso compiler option 6-10f
-nl compiler option 6-11
-nmap compiler option 6-11f
-nmsgs compiler option 6-12
%nolist directive 4-40
Nondefault section names 5-12f

and accessing externally stored
variables 7-6

and passing data 7-14f
example 5-13

-nopt compiler option 6-12f
N oreturn routine option 5 -11
Nosave routine option 5-11
Not operator 4-102
-npeb compiler option 6-13
-nsubchk compiler option 6-14 f
-nwarn compiler option 6-15
-nxrs compiler option 6-15

o

Object file
and .bin suffix 6-3, 6-6
creating 6-6
executable 6-1 (See also

Executable object file)
Octal

expressing integer in 2-2
Odd function 4-103
Odd numbers 4-103
On-line sample programs 1-2f
Open procedure 4-105ff

and close 4-30
and reset 4-131
common errors returned 9-3
difference from rewrite 4-106
example 4-122
summary 8-5f

Opening a file 4-105ff, 8-5f
and error status 4-106
and reset 4-131
and rewrite 4-134
example 4-106f, 4-122
methods supported 4-105f
specifying buffer size 4-106

Operators

Index-16

allowed in constant declarations
2-9

and 4-12f

C'
/'

c

('

c

o

o

o

o

o

div 4-47f
mathematical

consecutive 2-2, 4-62
list 4-2

mod 4-92f
not 4-102
or 4-108f
set 4-80

-opt compiler option 6-12f
and debugger preparation 6-9

Optimization techniques 6-12
Optimizations

compiler 6-12f
and discard 4-43
and goto 4-72
levels of 6-12f
preventing with addr 4-10
suppressing 3-28ff

Options
compiler (See Compiler options)
routines (See Routine options)

Or else
extension to if 4-76f

Or operator 4-108f
with not 4-102

Ord function 4-110 f
example 4-111

Order of precedence
of operators 4-3

and organizing expressions
4-62

Organization of program
overview 2-5ff

Otherwise clause of case 4-26
example 4-26f

Out of bounds condition
and pred function 4-118
and succ function 4-152

Out parameters 5-4f
Output (See Input/Output)
Output standard output stream 8-3

p

Pack procedure 4-112f
example 4-113
valid index values 4-112

Packed arrays
and deviations from standard

D-1
and pack procedure 4-112
and unpack procedure 4-160

example 4-113, 4-161
Packed records 3-15 f

internal representation 3-18
Packed

warning with sets 3-11
Page advance

inserting in a file 4-114
Page procedure 4-114 f

example 4-115
summary 8-6

Parameter list
example 5-2f
format 5-lf

Parameters
and C and Pascal 7-20
and cross-language

communication 7-14
and passing characters 7-7
and routine headings 5-lf
arrays

and univ 5-6
definition 5-1
difference between variable and

value 5-3f
in 5-4f
in out 5-4f
out 5-4f
passing direction 5-4f
types of 5-3f
universal 5-5f

cautions 5-7
example 5-6f

value 5-3f
variable 5-3f

Parentheses 0
and extensions to if 4-76f
as section name delimiters 3-26
in enumerated declarations 3-9
using to organize complex

expressions 4-62
Parentheses/asterisks (* *)

as comment delimiters 2-3, 6-6
pas compiler command 6-3
.pas suffix

of Pascal source code 6-3
with -1 option 6-11

Pascal (See DOMAIN Pascal)
Passing arguments

Index-17

and valyaram 5-11
and variable routine option 5-10
restrictions 5-3

Passing parameters
specifying direction 5-4f

Pathnames
absolute 6-10
and -1 option 6-11
of file to open 4-105
of Pascal source code 6-3
relative 6-10

-peb compiler option 6-13
PEB (See Performance

Enhancement Board)
Percent sign (%)

as compiler directive indicator
4-32

Performance Enhancement Board
6-8, 6-13

Period (.)
and record field names 4-125

Pointer data types 3-2, 3-24ff
and address registers 5-11
and attribute inheritance 3-31
and dispose 4-45f
and new 4-94f
and passing arguments 7-20

example 7-22ff
and stream markers 8-5
and type transfer functions 4-159
and variable and type attributes

3-31
example 4-116f, 4-96f
extensions to 1-4, C-4
initializing 3-25f
internal representation 3-26
nil 4-101
nil value and dispose 4-46
passing to C 7-26ff
procedure and function types

3-25
restrictions for de-referencing

3-25
standard 3-24
univytr 3-25, 4-117

and addr 4-10
using 4-116f

Precedence
of mathematical operators 4-3

and organizing expressions
4-62

Precompilation of include files 4-40,
6-13f

Precompiled libraries 4-40
Pred function 4-118f

example 4-119
Predecessor of a value

returning 4-118
Predeclared data types

and declaring variables 2-10
Predeclared files

closing 4-30
Predeclared identifiers A-2
Predicate

in compiler directives 4-34ff
definition 4-34

Previously declared routines
and forward 5-8f

Printing
a file

and inserting a formfeed
4-114

a warning message
with %warning 4-38

an error message
with %error 4-38

error messages 9-1£
PROCEDURE$

and symbol map file 6-11
as default code section 2-7, 7-2
overriding this default section

5-12f
Procedures (See also Routines) 2-11

and nondefault section names
5-12

calling 5-2
calling FORTRAN 7-16
differences from functions 2-11
example 4-133, 4-22, 4-64,

5-9
headings 2-11, 5-1
returning from 4-133

Program
action part 2-12
as routine

and nesting 2-13
differences from modules 7-2

Program development
extensions 1-5
steps 6-2

Program heading 2-7
Program organization

extensions 1-4
overview 2-5ff

Programming languages
commu~ication between 7 -1£f

Index-18

c

c

c

o

o

o

o

o

Put procedure 4-120ff
example 4-120ff
summary 8-6

Q

Quotient
calculating using div 4-47f

R

Range
finding whether a value is in

4-81
of a data type

extensions C-6
of integer data types 3-3
of real number data types 3-4

Read and readln 4-123f
example 4-124
extensions C-7
similarities to get 4-70
summary 8-6

Reading a file 4-123, 8-6
and reset 4-131

Real number data types 3-1
and write and writeln 4-170f
declaring 3-4 f
extensions C-4
initializing 3-5
internal representation 3-6f
overview 3-4 ff
passing to C 7-22

Real numbers
definition 2-2

Records 3-12ff
abbreviating names using with

4-165ff
and dispose 4-45f
and new 4-94f
assigning values to 4-125f
data types supported 3-1
finding a specific one 4-63
fixed 3-13

differences from variant 3-14
using 4-125

fixed-length 8-5
getting the next 4-70
initializing 3-16f
internal representation 3-17f
packed 3-15 f
packed record storage 3-18

replacing occurrence of 4-130
shortening names 4-165ff
unpacked 3-15 f
using 4-125ff
using to simulate complex 7-13
variable-length 8-5
variant 3-14 f

and size of 4-147f
using 4-126

Record-structured files 3-24
and replace 4-130

Recursion
and routines 5 -14

Redirected standard input 6-16
Redirected standard output 6-16
Registers

and dO_return 5-11
indicating those saved 5-11
saving 6-15

Relative pathnames 6-10
Remainder

of division
and mod 4-92f

Repeat counts
and array initialization 3-21f

Repeat/until 4-128f
and exit 4-58
and next 4-99
contrasting with while 4-129,

4-164
example 4-129, 4-31
summary 4-1

Replace procedure 4-130
example 4-64
summary 8-6f

Replacing a record in a file 4-130
Request for input 8-4
Reserved words A-1
Reset procedure 4-131f

and input/output 8-3f
and using get 4-71
example 4-132, 4-31

Retaining values of routine variables
7-3

Retrieving sample programs
using getpas 1-2f

Return statement 4-133
as extension C-7
example 4-133

Returning
from a routine 4-133
the address of a variable 4-10

Index-19

the length of an object 4-147f
the ordinal value of an

expression 4-110
the predecessor of a value 4-118
the size of an object 4-147f
the successor of a value 4-152

Rewrite procedure 4-134f
and temporary files 8-5
calling before put 4-121
difference from open 4-106
example 4-135

Right shift 4-137f
Round function 4-136, 4-136
Rounding a number 4-136

and write and write In 4-171
Routine

as a term 5-1
Routine options

abnormal 5-11
dO_return 5-11
example of forward 5-9
examples 5-8
extensions C-9
extern 5-9

and routines in separate
modules 7-7

format of 5-8
forward 5-8f
internal 5-9

and routines in separate
modules 7-7

noreturn 5 -11
nosave 5-11
vatparam 5-11
variable 5-10

Routines (See also Functions and
Procedures)

accessing those in separate
modules 7-7 ff
example 7-8ff

action part 2-12
and nondefault section names

5-12
and universal parameters 5-5f
arguments 5-1£f
attributes 5-12f
calling 5-2
extensions to 1-5, C-8f
headings 2-11, 5-1

example 5-2
nested 2-13f

and nondefault section names
5-13

options 5-8ff
parameters 5-1 ff
recursion 5-14
summary 2-11 ff

Rshft function 4-137f
example 4-20

Running a program 6-16

s
Sample programs 1-1£f

abs_example 4-9

Index-20

addr_example 4-10
and_example 4-13
append 7-27
arctan_example 4-14
array_example 4-18
arshft_example 4-20
begin_end_example 4-22, 4-53
bit_operators_example 4-24
build_a_linked_list 4-96f
building a linked list 7-26f
calling C from Pascal 7-22ff
calling FORTRAN from Pascal

7-15ff
case_example 4-27
chr_example 4-29
close_example 4-31
config_ example 6-7
cos_example 4-41
cosine 4-41
discard_example 4-44
div _example 4-48
division 4-48
eof_example 4-55
eoln_example 4-57
exit_example 4-58
exp_example 4-61
find_and_replace_example 4-64f
firstof _lastof _example 4-67
for_example 4-69
forward_example 5-9
get_example 4-71
global_example 2-13
goto _example 4-74
hypot_c 7-22
hypotenuse 7-15
hypot_sub 7-16
if_example 4-78
in_example 4-80
in_out_example 5-4f

c

c

o

o

o

o

o

in_range_example 4-82
labeled 2-6
In_example 4-84
local_example 2-13
logarithms 4-61, 4-84
lshft_example 4-86
math 7-8
math27-8
max_example 4-88
min_example 4-91
mixed_types 7-19
mod_example 4-93
modulus division 4-93
nesting_example 2-14
new procedure 4-96f
next_example 4-100
not_example 4-102
odd_example 4-103
on-line 1-2f
open_example 4-106f
ord _example 4-111
or_example 4-109
pack_example 4-113
page_example 4-115
pascal_c1 7-22
pascal_c2 7-23
pascal_c3 7-25
pascal_c4 7-26f
pascal_fortran1 7-15
pascal_ fortran2 7-16
pascal_fortran3 7-18f
pass_char 7-23
passing arrays to C 7-25
passing characters to C 7-23
pred_example 4-119
put_example 4-122
read_example 4-124
recursive_example 5-14
relativity1 7-10
relativity2 7-11
relativity3 7-11
repeat_example 4-129
reset_example 4-132
return_example 4-133
rewrite_example 4-134
round_example 4-136
sample_types 3-2
scope of variables 2-13
set_example 4-144
sine 4-145
sin_example 4-145

single_dim 7-25
size of _example 4-148
sqr_example 4-149
sqrt_example 4-150
structure summary 2-6
succ _example 4-153
trunc_example 4-156
type_transfer_functions_example

4-159
universal parameters 5-7
univ_example 5-7
unpack_example 4-161
value -parameter_example 5-3
variable_attribute_example 5-10
var -parameter_example 5 - 3
while_example 4-164
with_example 4-167
write_example 4-172
xor _example 4-174

Scope of variables 2-12ff
Sections (See also PROCEDURE$

and DATA$)
assigning variables to 3-26f
extensions C-4
nondefault

and routines C-9
as extension C-2

overriding defaults 5-12f
Semicolon (;)

and compiler directives 4-32
and else part of an if 4-76
and use with end 4-52

Set exclusion 4-141
Set operators

examples 4-140ff
list 4-2, 4-140
using 4-140ff

Sets 3-10ff
and subsets 4-142
and supersets 4-143
assigning values to 4-139
data types supported 3-1
equality and inequality 4-142
examples 4-139ff
exclusion 4-141
in operator 4-80
initializing 3-11
internal representation 3-11f
intersection 4-141
union of 4-140
using 4-139ff

Set_sr E-5

Index-21

Shell 1-2
continuation character 1-2

Shell prompts
and compiling 6-3

Shift
extensions C-5
using arshft 4-19f
using lshft 4-85f
using rshft 4-137f

Sign bit
and arshft 4-19
and rshft 4-137
of real number 3-6f

Simple data types 3-1
Sin function 4-145f
Sine function 4-145f
Single data type

internal representation 3-6
overview 3-4

Single-precision real number
internal representation 3-6

Size
defaulting for arrays 3-21
of array elements 3-23

Sizeof function 4-147f
as extension C-7
example 4-148

-slib compiler option 6-13f
and %slibrary directive 4-40
syntax 6-14

%slibrary directive 4-40
and -slib 6-14

Source code
pathname 6-3

Spaces (See Blanks)
Spreading source code across lines

2-5
Sqr function 4-149

example 4-149
Sqrt function 4-150

example 4-150
Square brackets ([])

and nondefault section names
5-12

and set assignment 4-139
in array declarations 3-20
in array initialization 3-20f
in record initialization 3-16

Square root function 4-150
Squaring a number 4-149
Stack adjustments

and noreturn 5-11
Stack area

preserving 5-11
Stack frame 5-11
Standard input

and close 4-30
and testing for end of file 4-54
and testing for end of line 4-56
redirected 6-16

Standard input stream 8-3
Standard output

and close 4-30
redirected 6-16

Standard output stream 8-3
Standard Pascal (See ISO standard

Pascal)
Statements 4-151

and begin 4-21
and end 4-52
and if 4-76
compound 4-151
miscellaneous

list 4-5f
Static attribute 7-3

and Boolean initialization 3-7f
and character initialization 3-8f
and integer initialization 3-3
and pointer initialization 3-26
and real number initialization 3-5
and set initialization 3-11

Status_St data type
and error messages 9-2

Stopping a program
with return 4-133

Storage
allocating with new 4-94f
de allocating with dispose 4-45f
of array elements 3-22f

in C 7-25
in FORTRAN 7-14

of packed record fields 3-18
Stream marker 8-5

advancing with get 4-70
and end of line 4-56
and finding a record 4-63
positioning with reset 4-131
setting with rewrite 4-134

Streams
default input/output 8-3
markers 8-5

String
as predefined array type 3-20

Index-22

c

c~

c

('

o

o

o

o

o

example 4-124
Strings 7-22f (See also Character

strings)
and case sensitivity 2-4
definition 2-4
finding length of 4-147

Structural compatibility
and deviations from standard

D-2ff
Structured data types 3-1
Structured statements

and goto 4-72f
-subchk compiler option 6-14 f

and extern arrays 7-4f
Subrange data types 3-1, 3-10

and in_range 4-81
internal representation 3-10

Subroutines
calling FORTRAN 7-16

Subscripts
of arrays 4-16f
of C arrays 7-24

Subsets of sets 4-142
Succ function 4-152f

example 4-153
Successor of a value

returning 4-152
Summary of Technical Changes iv
Supersets 4-143
Supervisor mode E-2
Switch

compiler (See Compiler options)
Symbol map file

and -map option 6-1lf
Systems programming routines

disable E-3, E-lff
enable E-3
list 4-7, E-1
set_sr E-3

T

Tag fields
and allocating storage with new

4-95
and records 3-14 f
and sizeof 4-147f

TB utility (See Traceback)
Technical changes

summary iv

Terminating a loop 4-128, 4-163.
4-68

with exit 4-58
Terminating a program

and closing files 8-7
with return 4-133

Terminating a routine 4-133
Terminating statements

with end 4-52
Text data type 3-23
Text files 8-5
Tilde (-)

as bit operator 4-23
Traceback utility 6-17
Transfer of control

abnormal 5-11
unconditional 5 -11

Trunc function 4-156
example 4-156

Truncating a number 4-156
Truncating strings 7-5
Truth table

for and 4-12
for exclusive or 4-173
for or 4-108

Type attributes (See Attributes
variable and type)

Type checking
suppressing with univ 5-5f

Type declaration part 2-9
Type transfer functions 4-157ff

and manipulating addresses
4-116

and pointers 4-159
as extensions C-8
example 4-159
restrictions 4 -157

Typographical conventions (See
Documentation conventions)

u

UASC files
and text files 3-23
restrictions using replace 4-130

Underscore U
in identifier names 1-4. 2-1

Union of sets 4-140
Universal parameters 5-5f

cautions 5-7
example 5-6f

Index-23

Universal pointer type 3-25, 4-117
and addr function 4-10

Univytr (See Universal pointer
type)

Unpack procedure 4-160f
example 4-161
valid index values 4-160

Unpacked arrays
and pack procedure 4-112
and unpack procedure 4-160

Unpacked records 3-15f
internal representation 3-17

Unreachable code and noreturn
5-11

Unstructured ASCII (See UASC
files)

Until (See Repeat/until)
Up-arrow (A)

and de-referencing a procedure
or function pointer 4-117

in pointer declarations 3-24
Uppercase and lowercase characters

and calling C from Pascal 7-20
sensitivity to 2-4

User interfaces
and DOMAIN/Dialogue 6-19

User mode E-2
User-defined data types

and parameters 5-2
declaring 2-9
declaring variables of 2-10

v

Valyaram routine option 5-11
and passing arguments to C 7-20

Value parameters 5-3f
Var declaration part 2-10

and modules 7-3f
and nondefault sections 3-26f

%var directive 4-36f
and %config 4-37
and -config 6-7
example 6-7

Var parameters 5-3f
Variable attributes (See Attributes

variable and type)
Variable length record files 8-5
Variable parameters 5-3f
Variable routine option 5-10

Variables
accessing those in separate

modules 7-3ff
and nested routines 2-13f
assigning to sections 3-26f
declaring 2-10
declaring in modules 7-3f
declaring with %var 4-36
dynamic

allocating storage for 4-94
de allocating storage for 4-45

global 2-12ff
initializing

extensions C-3
local 2-12ff
reading values into 4-123
retaining values with static 7-3
scope of 2-12ff
writing values into 4-168

Variant records 3-14f
and dispose 4-45f
and new 4-94f
and sizeof 4-147f
assigning values to 4-126

VFMT input/output method
overview 8-2

Virtual addresses
manipulating with pointers 4-116

Volatile attribute 3-27f
and attribute inheritance 3-30f

w
-warn compiler option 6-15
%warning directive 4-38
Warning messages

compiler option 6-15
eliminating with discard 4-43
printing 9-1£

with %warning 4-38
While 4-163f

and exit 4-58
and next 4-99
contrasting with repeat/until

4-129, 4-164
example 4-164, 4-97
summary 4-1

Widths
of fields

for write and writeln 4-169ff
With statement 4-165ff

example 4-166f
extensions 4-166f, C-7f

Index-24

c

c'

("

c

o

o

o

o

o

Witticism

attempted 9-4

Word boundaries

and packed records 3-18

Words

and internal representation of
sets 3-11f

Working directory

and compiler output 6-3

and -idir 6-10

Write and writeln 4-168ff

and Boolean data type 4-171f

and character data type 4-169f

and closing a file 4-30

and enumerated data types
4-171f

and integers 4-170
and put 4-121
and real numbers 4-170f
examples 4-133, 4-169ff, 4-172
extensions C-8
summary 8-6

Writing to a file 4-134, 4-168, 8-6
with put 4-120f

x
Xor function 4-173f

example 4-174
-xrs compiler option 6-15

Index-25

c

c~

('

c

------ -------------~

o

o

o

o

o

Reader's Response

Please take a few minutes to send us the information we need to revise and improve our manuals from
your point of view.

Document Title: DOMAIN Pascal Language Reference
Order No.: 000792 Revision: 04 Date of Publication: January, 1987

What type of user are you?
__ System programmer; language
__ Applications programmer; language _________ _

__ System maintenance person __ Manager/Professional

__ System Administrator Technical Professional
__ Student Programmer Novice

Other

How often do you use the DOMAIN system? _______________________ _

What parts of the manual are especially useful for the job you are doing? ___________ _

What additional information would you like the manual to inc1ude? ______________ _

Please list any errors, omissions, or problem areas in the manual. (Identify errors by page, section, figure,
or table number wherever possible. Specify additional index entries.} _____________ _

Your Name Date

Organization

Street Address

City State Zip

No postage necessary if mailed in the U.S.

FOLD

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 78 CHELMSFORD, MA 01824

POSTAGE WILL BE PAID BY ADDRESSEE

APOLLO COMPUTER INC.
Technical Publications
P.O. Box 451
Chelmsford, MA 01824

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

0

S-
o .,
0'
a:
SI)

0"
::J
IC

a.
2-
CD
a.

::J
CD

---,
FOLD

C~

c

('

c

