
o

o

o

Apollo Computer Inc.
330 Billerica Road

Chelmsford, MA 01824

Writing Device
Drivers with
GPI/O Calls

Order No. 000959
Revision 10

Copyright © 1987 Apollo Computer Inc ..
All rights reserved. Printed in U.S.A.

First Printing:
Latest Printing:

November 1981
June 1987

This document was produced using the Interleaf Workstation Publishing Software (WPS). Interleaf and WPS are
., trademarks of Interleaf, Inc.

APOLLO and DOMAIN are registered trademarks of Apollo Computer Inc.

AEGIS, DGR, DOMAIN/BRIDGE, DOMAIN/DFL-100, DOMAIN/DQC-100, DOMAIN/Dialogue, DOMAINIIX,
DOMAIN/Laser-26, DOMAIN/PCI, DOMAIN/SNA, D3M, DPSS, OSEE, GMR, and GPR are trademarks of Apollo
Computer Inc.

MULTIBUS Is a trademark of the Intel Corporation; IMAGEN Is a trademark of the IMAGEN Corporation; ETHERNET Is a
registered trademark of the Xerox Corporation.

Apollo Computer Inc. reserves the right to make changes In specifications and other Information contained In this
publication without prior notice, and the reader should In all cases consult Apollo Computer Inc. to determine whether
any such changes have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF APOLLO COMPUTER INC. HARDWARE PRODUCTS AND
THE LICENSING OF APOLLO COMPUTER INC. SOFTWARE PROGRAMS CONSIST SOLELY OF THOSE SET FORTH IN
THE WRITTEN CONTRACTS BETWEEN APOLLO COMPUTER INC. AND ITS CUSTOMERS. NO REPRESENTATION OR
OTHER AFFIRMATION OF FACT CONTAINED IN THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO
STATEMENTS REGARDING CAPACITY , RESPONSE-TIME PERFORMANCE , SUITABILITY FOR USE OR
PERFORMANCE OF PRODUCTS DESCRIBED HEREIN SHALL BE DEEMED TO BE A WARRANTY BY APOLLO
COMPUTER INC. FOR ANY PURPOSE, OR GIVE RISE TO ANY LIABILITY BY APOLLO COMPUTER INC.
WHATSOEVER.

IN NO EVENT SHALL APOLLO COMPUTER INC. BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS) ARISING OUT OF
OR RELATING TO THIS PUBLICATION OR THE INFORMATION CONTAINED IN IT, EVEN IF APOLLO COMPUTER INC.
HAS BEEN ADVISED, KNEW OR SHOULD HAVE KNOWN OF THE POSSIBILITY OF SUCH DAMAGES.

THE SOFTWARE PROGRAMS DESCRIBED IN THIS DOCUMENT ARE CONFIDENTIAL INFORMATION AND
PROPRIETARY PRODUCTS OF APOLLO COMPUTER INC. OR ITS LICENSORS.

,,-,.-_.-......

/

o

o

C)

o

o

Preface

Writing Device Drivers with GPIIO Calls describes how to write device drivers for Domain nodes, using
the General Purpose Input/Output (GPI/O) software package.

Audience
This manual is intended for programmers who must write drivers for devices that we do not support.
Readers of this manual should be familiar with the hardware of the I/O device and with its software re­
quirements, and should have a working knowledge of Pascal or C.

We've organized this manual as follows:

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Chapter 10

Chapter 11

Chapter 12

Appendix A

Describes the MUL TIBUS interface with Domain nodes, address transla­
tion between MUL TIBUS memory and processor memory, and the rules
for configuring MULTIBUS controllers.

Describes the VMEbus and its interface with our system that will help you
to write drivers for VME devices.

Describes the AT-compatible bus and its interface with our system that
will help you to write drivers for AT devices.

Gives an overview of the major components of I/O software-Le., the ap­
plication, GPI/O software, and the device driver.

Describes the different types of insert files that you can include in your
driver and how to set them up.

Describes the call side of the driver and how to write the routines that be­
long there.

Describes how to transfer data using DMA, memory mapped I/O, and
programmed I/O.

Describes the interrupt side of the driver and different approaches to
processing interrupts.

Describes how to construct a shared driyer.

Describes how to bind and debug the driver.

Describes how to build the device descriptor file.

Describes how to acquire and release the device.

Describes the GPI/O commands that the user invokes to run the driver.

iii Preface

Appendix B

Appendix C

Appendix D

Appendix E

Appendix F

Describes the calling format and parameters of the GPI/O routines.

Provides some tips on setting up the CSR page and using datatypes in C.

Provides performance and timing information that relates to driver exe­
cution on our operating system.

Gives a program listing of a device driver coded in Pascal.

Gives a program listing of a device driver coded in C.

A glossary of terms appears at the back of the manual.

Summary of Technical Changes
This manual [formerly General Purpose Input/Output (GPIO) Reference] has been revised for Revision
10. New technical information to support Software Release 9.6 includes infomation on writing GPI/O
drivers for VME devices. (~

Related Manuals
The Domain Pascal Language Reference, Order No. 000792, describes our implementation of the Pascal
language. Appendix C lists our extensions to Standard Pascal.

The Domain C Language Reference, Order No. 002093, and DOMAIN C Library (CLIB) Reference, Or­
der No. 005805, describe our implementation of the C language.

The Domain System Call Reference, Order No. 007196, describes the calling syntax for the system serv- ~
ices that your driver can call. " _/

Programming with General System Calls, Order No. 005506 describes the general purpose Domain system
calls that you can use to perform system services for your driver.

The Domain System Command Reference, Order No. 002547, describes the command environment as
well as the function and format of the commands that users can invoke.

The Domain Binder and Librarian Reference, Order No. 004977, describes how to use the Domain
binder to combine several object modules (e.g., a call library and an interrupt library) into one executable
object module.

The Domain Language Level Debugger Reference, Order No. 001525, describes how to use DEBUG.

Installing Input/Output (I/O) Devices for DOMAIN Nodes describes the hardware requirements for at­
taching peripheral devices to the DOMAIN system bus.

DNS70-T, DNS80-T, DNS90-T, and DSPSOO-T Technical Reference Manual, Order No. 009491, de­
scribes our implementation of the VMEbus.

The Domain Series 3000 Technical Reference, Order No. 008778, and the Domain Series 3000 Hard­
ware Architecture Handbook, Order No. 007861, describe our implementation of the AT-compatible bus.

Preface iv

o

o

o

o

Problems, Questions, and Suggestions
We appreciate comments from the people who use our system. In order to make it easy for you to com­
municate with us, we provide the User Change Request (UCR) system for software-related comments,
and the Reader's Response form for documentation comments. By using these formal channels, you
make it easy for us to respond to your comments.

You can get more information about how to submit a UCR by consulting the DOMAIN System Command
Reference. Refer to the CRUCR (CREATE_USER_CHANGE_REQUEST) shell command description. You
can view the same description online by typing:

$ HELP CRUCR <RETURN>

For your documentation comments, we've included a Reader's Response form at the back of each
manual.

Documentation Conventions
Unless otherwise noted in the text, this manual uses the following symbolic conventions:

UPPERCASE

lowercase

example

output

}

< >

CTRL/Z

Bold, uppercase words or characters in formats and command descriptions repre­
sent commands or keywords that you must use literally.

Bold, lowercase words or characters in formats and command descriptions repre­
sent values that you must supply.

Bold words in command examples represent literal user keyboard input.

Typewriter font words in command examples represent literal system output.

Square· brackets enclose optional items in formats and command descriptions. In
sample Pascal statements, square brackets assume their Pascal meanings.

Braces enclose a list from which you must choose an item in formats and com­
mand descriptions. In sample Pascal statements, braces assume their Pascal
meanings.

A vertical bar separates items in a list of choices.

Angle brackets enclose the name of a key on the keyboard.

The notation CTRLI followed by the name of a key indicates a control character
sequence. You should hold down <CTRL> while typing the character.

Horizontal ellipsis points indicate that the preceding item can be repeated one or
more times.

Vertical ellipsis points mean that irrelevant parts of a figure or example have been
omitted.

For your documentation comments, we've included a Reader's Response form at the back of each
manual.

v Preface

.... _,./

./

o

o

o

Contents

Part 1 1/0 Hardware and Software

Chapter 1 1/0 Bus Structures: The MULTIBUS

1.1 MULTIBUS Compliance Levels .. 1-2
1.1.1 Bus Control ... 1-3
1.1.2 Data Path ... 1-3
1.1.3 Memory Address Path .. 1-4
1.1.4 I/O Address Path .. 1-4
1.1.5 Interrupt Request Lines ... 1-4
1.1.6 Bus Request Arbitration Resolution ... 1-4

1.2 MULTIBUS Address Translation .. 1-4
1.2.1 Address Translation from Processor to MULTIBUS 1-5

Programmed I/O .. ' 1-5
Memory-Mapped I/O ; .. 1-6

1.2.2 Address Translation from MULTIBUS to Processor: DMA 1-6
1.3 Configuring MULTIBUS Controllers .. 1-7

1.3.1 Nodes with a 16-bit MULTIBUS .. 1-8
Assigning CSR Addresses . 1-8
Configuring Controller Memory . 1-9
Configuring Controller Address Lines .. 1-9
Using Interrupt Request Lines .. 1-10

1.3.2 Nodes with a 20-bit MULTIBUS .. 1-10
Assigning CSR Addresses . 1-10
Configuring Controller Memory . 1-11
Configuring Controller Address Lines .. 1-11
Using Interrupt Request Lines 1-11

1.4 Byte Swapping .. 1-11

Chapter 2 110 Bus Structures: The VMEbus

2.1 Address Space Allocation ... 2-1
2.Z Bus Grant Level .. 2-2
2.3 Address Modifiers ... 2-2
2.4 Interrupt Level ... 2-2
2.5 Status/ID Byte .. 2-3
2.6 Software Considerations .. 2-3

2.6.1 Wiring for DMA: PBU_$WIRE_SPECIAL 2-3
2.6.2 Creating a DDF for a VME Device .. 2-4

Chapter 3 1/0 Bus Structures: The IBM AT-Compatible Bus

3 .1 AT-Compatible Address Space .. 3-1
3.1.1 I/O Address Space ... 3-1
3.1.2 Memory Space ... 3-3

3.2 Unit Numbering ... 3-4
3.3 Testing for Controller Presence .. 3-5
3.4 DMA and IRQ'Lines ... ~ .. 3-5
3.5 Byte Swapping .. 3-5
3.6 Software Considerations .. 3-6

3.6.1 GPI/O Calls for AT-Compatible Devices 3-6

vii Contents

Wiring for DMA: PBU_SWIRE_SPECIAL 3-7
Starting and Stopping a DMA Operation 3-7

3.6.2 Creating a DDF for an AT-Compatible Device 3-7

Chapter 4 Overview of 1/0 Software

4.1 The Application Program ... 4-1
4.2 GPI/O Commands and Routines ... 4-1
4.3 The Device Driver ". 4-3

4.3.1 Driver Functions " ... 4-3
4.3.2 Major Components of a Driver ... 4-4
4.3.3 The Operation of a Driver: A Dry Run of BM_EXAMPLE 4-5

Initialization ... 4-5
Command Processing ... 4-6
Interrupt Handling .. 4-7
Cleanup . 4-7

4.3.4 A Driver Checklist .. 4-8

Part II Writing a Driver

Chapter 5 Insert Files

5.1 System Insert Files .. 5-1
5.2 Driver-Specific Insert Files .. 5-2

5.2.1 Private Insert File .. 5-2
CSR Page ... " 5-2
Driver Control Block ... 5-3
Internal Driver Routines ... 5-4

5.2.2 Public Insert File .. " 5-4
, /'

Chapter 6 Call-Side Routines

6.1 Initialization . 6-1
6.1.1 Initialization Routine Format ... 6-2
6.1.2 Initializing Driver Internal Storage ... 6-3
6.1.3 Testing for Device Presence .. 6-3
6.1.4 Initializing Controller Data Structures .. 6-4

Allocating Hard-Wired Control Blocks on the MULTIBUS 6-4
Defining Page-Aligned Control Blocks ... 6-4

6.2 Command Processing .. 6-5
6.3 Waiting for Device Interrupts .. 6-6

6.3.1 Using PBU_SWAIT ... 6-6
6.3.2 Using PBU_SGET_EC and EC2_SWAIT 6-7

6.4 Performing Clean-up Functions ... 6-8

Chapter 7 Transferring Data

7.1 DMA Transfers ... 7-1
7.1.1 DMA Transfers on the MULTIBUS ... 7-1

Allocating MULTIBUS Address Space ... 7-2
Wiring I/O Buffers " " 7-2
Setting Up the 110 Map " 7-4
Preallocating I/O Resources .. 7-4
Dynamic Resource Allocation .. 7-4
Scatter-Gather Operations ... 7-5

7.1.2 DMA Transfers on the VMEbus .. 7-6
7.1.3 DMA Transfers on the AT-Compatible Bus 7-6
7.1.4 Releasing I/O Resources After Data Transfer 7-9

Contents viii

Unmapping the I/O Buffer on the MULTIBUS 7-10
Unwiring the 1/0 Buffer ... 7-10

('\

U
Deallocating the I/O Map on the MULTIBUS 7-10

7.1. 5 Releasing I/O Resources During Faults 7-10
7.2 Memory-Mapped Transfers ... 7-10

7.2.1 Referencing Controller Memory . 7-11
7.2.2 Mapping Controller Memory ... 7-11
7.2.3 Unmapping Controller Memory ... 7-13

7.3 Programmed 1/0 .. 7-13

Chapter 8 Interrupt-Side Routines

8.1 Dos and Don'ts of the Interrupt Side ... 8-1
8.2 The Interrupt Routine .. 8-2

8.2.1 Interrupt Routine Format .. 8-2
8.2.2 Enabling and Disabling Device Interrupts 8-2
8.2.3 Processing Device Interrupts .. 8-3

Processing by the System Interrupt Handler 8-4

o Processing by the User-Written Interrupt Routine 8-4
8.2.4 Faults in User-Written Interrupt Routines 8-4
8.2.5 Mapping Buffers from the Interrupt Routine 8-5

8.3 Starting an 1/0 Operation ... 8-6

Chapter 9 Shared Drivers

9.1 Controlling Multiple Processes ... 9-1
9.1.1 Mutual Exclusion . 9 - 2
9.1.2 Synchronization ... 9-2

o 9.2 Global Memory ... 9-3
9.3 Initialization and Cleanup ... 9-3
9.4 Fault Handling ... 9-3
9.5 Loading and Unloading .. 9-4
9.6 Multiple-Device Drivers .. 9-4

Chapter 10 Binding and Debugging

10.1 Binding the Device Driver ... 10-1
10.1.1 Using BIND to Page Align Buffers .. 10-2
10.1.2 System Globals ... 10-3

10.2 Debugging the Device Driver ... 10-3
10.2.1 Using DEBUG on Call-Side Routines 10-4
10.2.2 Debugging the Shared Driver ... 10-5

Chapter 11 Device Descriptor File

11.1 Building a DDF in a Shell Script .. 11-2
11.2 Version 2 DDF .. 11-3
11.3 Version 3 DDF .. 11-4

11.3.1 DDF for an AT-Compatible Device .. 11-4
11.3.2 DDF for a VME Device .. 11-6

Chapter 12 Acquiring and Releasing the Device

o 12.1 Acquiring the Device ... 12-1
12.1.1 Using AQDEV .. 12-2
12.1.2 Invoking a Program to Call PBU_SACQUIRE 12-2

12.2 Releasing the Device .. 12-2

ix Contents

Part III Reference Information

Appendix A GPI/O Commands.' • .'.'.'.'.' • .'.' • .' • .'.' • .' ••• .'.' ••• A-l

Appendix B GPI/O Routines .'.'.' • .' • .'.'.'.'.' • .'.'.'.' • .'.'.'.'.'.' • .' • .'.' ~ .' • .' .' .' • .' .' ' • .' •••••• .' .' • .' ••• B-1

B.l Data Types ••• 0 ••• 00.0 •• 0 •••• 0 •• 0 •• 00.0000,. 0 •• 0.0 •• ~ 0 0 •• 0 •• ,0'00000.0.0.0000000 B-1
Bj GPIIO Procedures and Functions •••••••• 0.00,0' •• 000.000 ••• 00 ••• 00.00.0.0 •• 00, •• 0.0 B-l1

Appendix C Programming Information

Col The CSR Page 0, ••••••••••••• 0 •••••• ' ••••• 0 0 • 0 •••• 0 ••• '0 ' ••••• 0 0 ••• 0,0 0 0 •••• 0 0 • 0 0 C-l
C.2 Programming in C ••••••• 00. 0 •••••••••••••••••••• 0 • 0 0 •• 0 ••• 0 •• 0 0 • 0 0 • 0,000. 0 0 0 0 0 0 C-2

C.2.1 Insert Files •••••••••••••••••• 0 •••• 0 ••••••• 0" • 0 0 •••••••••• 0 0 0 0 0 0 0 ••• 0 •• 0 0 C-2
C0202 Type int 0 • 0 • 0 ••••••••• 0 • 0 • 0 •••••• 0 •• 0 0 •••••• 0 •• 0 0 0 0 0 0 0 0 • 0 0 0 •• 0 0 0 0 0 0 0 • 0 •• C-2
C0203 Type char •••••••••••••••••• 0 0 • 0 0 •• 0 ••• 0 • 0 0 0 0 0 ••• 0 0 • 0 0 0 0 0 0 0 • 0 0 0 •••• 0 0 0 0 0 C-3
C.2.4 Boolean Values • 0 •••• 0 •••••• 0 ••••••• 0 0 • 0 ••• 0 •• 0 •• 0 • 0 0 0 ••• 0 0 0 0 0 0 0 0 0 • 0 ••• 0 0 C-3
C020S Universal Pointer Type 00 0 •••••• 0 •• 0 .0' ••• 0 0 0 0 000 00' • 0 •• 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 • 0 0 C-3
C02.6 Defining Globals •• 0 • 0 •• 0 0 0 0 0 0 0 0 0 0 000000000000 0 0 0 0 0 0 0 0 0 0 0 , , , , , , ,', , , , , , , , , , C-4

C03 Considerations for Compiler Optimization 00000000 0 0 0 0 0 0 0 000 0 0 , , , 0 0 0 00 0 0 0 0 0 , 0 0 0 0 0 0 0 C-4

Appendix D Performance Information

Dol DMA Bandwidth 0000000000000000000000000000' 0 0 0 000000000000' 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 D-l
D02 Interrupt Processing Overhead 0 D-l
D03 To Copy or to Wire 0000000000000000000000000.00,00000000000000000000000 0 0 0 0 0 000 D-2
D04 Timing Information 000000000000000. 0'0 0 0 ; "0000000000000 D-3

Appendix E Sample Driver in Pascal

Eol BMoPVToPAS 0000000000000000000.0' 00000000000: 0 0 0000000' E-2
E02 BMoINSoPAS 0 •• 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 E-4
E03 BM_LIBoPAS ,'. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 '0 '~ 0 0 0 0 0 0 0 0 0 0 0 0 '0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 , , 0 0 0 0 0 0 0 0 0 0 E-S
E.4 BM_INT_LIBoPAS • 0 0 0 0 0 • 0 E-13

Appendix F Sample Driver in C

Fol bm_insoc 0 0 , 0 • 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 , 0 0 0 0 0 • 0 F-2
F02 bm_global.c 0 0 0 • 0 0 0 0 .. 0 0 0 • 0,0 •• 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 : 0 0 0 0 0 0 0 0 0 F-S
F 03 bm_initoc 0 0 • 0 0 0 0 •• 0 0 0 0 0 0 • 0 0 • 0 F-S
F04 bm_commandoc 0 0 0 0 0 0000000000000000.0000000000000000000000000' 0' 0 0 0 0000' 0 0 000 F-6
FoS bm_siooc 0 , 0 0 0 0 0 0 0 0 0 , , 0 0 0 0 0 0 , 0 F-8
F06 bm_waitoc 0' 0 0 0 0 0 0 0 0 , , , , 0 0 0 0 0 , , 0 0 , 0 0 0 0 0 0 , , , 0 0 , , 0 , , , 0 0 0 0 , 0 F-9
Fo 7 unwire_bufferoc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 • 0 , , , 0 0 0 0 0 , 0 0 0 0 0 0 , , , F-ll
FoB bm_intoc 00 0 0 0 0 , 0 0 0 0 0 0 0 0 0 0 0 F-12
F09 bm_cleanupoc 0.00000000.000.' 0 0 0 0000000000.' 0 , 0 0 .' 0 0000000000000000.' 0 0 0 0 0 0000000 F-13
FolO makefile .' .' • 0 0 0 0 0 .' .' 0 0 0 0 0 0 0 0 0 0 0 0 0 • .' 0 0 0 0 0 0 0 0 0 0 0 0 0 .' 0 0 0 0 0 .' 0 .' 0 0 0 0 0 .' 0 .' 0 0 0 0 .' .' .' 0 0 0 0 0 , F-14

Glossary • .' .' .' .' .' .' • .' • .' , .' .' .' ••• , .' .' .' .' • .' •• .' .' • .' • .' •••••••••••••• .' .' •••••• .' .". • • • • • • • •• Glossary-l

Index .'.'.'.'.'.'.' •• .'.'.' •••••••••••• .' •••••• ,.' •••••• , •••••••• 0 ••••••••• , •••• .' • .' • • • •• Index-l

Contents x

.--_ /

/~,

G

o

o

Illustrations

Figure Page

1-1 Relationship between Domain Node and Peripheral Controllers 1-2
1-2 Mapping CSR Pages to MULTIBUS I/O Space 1-5
1-3 Mapping Processor Address Space to MULTIBUS Memory Space 1-6
1-4 Mapping MULTIBUS Address Space to Processor Address Space 1-7
1-5 8-Bit Controller CSR Assignment ... 1-9
3-1 CSR Mapping Scheme for AT-Compatible Devices 3-2
3-2 Mapping a 16-bit Address to Processor Address Space 3-3
3-3 Byte Swapping between Processor and AT-Compatible Bus 3-6
4-1 Interaction of I/O Software .. 4-2
4-2 Driver Routines in BM_EXAMPLE ... 4-6
7-1 Mapping Discontiguous Buffers ... 7-6

Table

1-1
1-2
1-3
2-1
3-1
3-2
3-3
4-1
11-1
B-1
D-1
D-2

Tables

Page

MULTIBUS Implementations on Node Models 1-2
MULTIBUS Address Space Used by Domain System-Supplied Devices 1-8
Allocation of Interrupt Request Lines . 1-10
Address Space Allocated for DN5701580-T VME Devices 2-2
1/0 Address Space Allocated for Domain System-Supplied Devices 3-2
Physical Memory Allocated for Domain System-Supplied Devices 3-4
Allocation of Unit Numbers .. 3-4
GPI/O Software .. 4-3
Required Options for Different DDF Versions 11-2
GPI/O Procedures and Functions ... B-11
CPU Times during Interrupt Processing D-2
Timing for DN400, 560, 570-T, 580-T, 3000 and DSP80, 160 Workstations D-4

xi Contents

.. ~_/

o

,0

o

o

Chapter 1

1/0 Bus Structures:
The MUL TIBUS

The I/O bus is the network of signal routes through which device controllers and the processor address
one another and transfer data. The bus is, therefore, the key hardware component of the I/O structure of
a computer system. Figure 1-1 shows the relationship of the I/O bus to a Domain node and a set of
controllers. The processor, memory, and memory management (address translation) subsystems are
linked by an internal bus. Interface hardware connects this internal bus to the I/O bus. User-supplied
and Domain system-supplied device controllers attach to the I/O bus and, through the bus, link to the
node.

Chapters 1, 2, and 3 describe what you need to know about each of the three I/O bus structures that we
support-the Intel MUL TIBUS *, the VMEbus, and the IBM AT-compatible bus-in order to use the
General Purpose Input/Output (GPI/O) software package to write device drivers for the particular I/O bus
implemented on your node.

This chapter describes MUL TIBUS implementations currently available for Domain nodes, the theory of
MUL TIBUS address translation, how to configure a MUL TIBUS controller, and byte swapping. For
detailed information about the MUL TIBUS, refer to IEEE Standard Microcomputer System Bus
(IEEE-796 specification).

*MULTIBUS is a trademark of the Intel Corporation.

1-1 The MULT/BUS

Domain
Processor and Memory

Internal Bus

Display Adapter

I/O Bus

Internal
Mass

Storage

Figure 1-1. Relationship between Domain Node and Peripheral Controllers

1.1 MUL TIBUS Compliance Levels
The MUL TIBUS supports compliance levels that allow for the varying capabilities of different computer
systems. The levels are described in the IEEE Standard Microcomputer System Bus (IEEE-796 specifica­
tion). To see the implementation available for a particular node model, refer to the section on MUL TI­
BUS interfaces in the peripheral installation instructions or refer to the operating guide for the node
model, if one is shipped with the node. If the peripheral installation instructions provide interface infor­
mation for your node model, you will find the MUL TIBUS implementation level available and specific
hardware information for that node type. For node models that have an operating guide, you will find the
same information in it. Table 1-1 lists the MULTIBUS implementation levels that we currently support for
various node models.

Table 1-1. MUL TIBUS Implementations on Node Models

Node Type MULTIBUS Implementation Compliance Level

DN4xx/DN6xx, 16-bit MUL TIBUS, serial MASTER D16 M16 116 YO L
DSP160 Family arbitration priority

DSP80 Family, 20-bit MUL TIBUS, parallel MASTER 016 M20 116 YO L
OSP90 arbitration priority

ON550, ON560, 20-bit MULTIBUS, serial MASTER 016 M20 116 YO L
DN570-T, ON580-T arbitration priority

The MULTIBUS 1-2

/

(

/ '\

o

o

o

o

o

The notation used to specify the compliance level is interpreted as follows:

MASTER D16 Mxx 116 VO L

l L Level-triggered interrupt
sensing

Non-bus-vectored interrupts

8- or 16-bit I/O address path

16- or 20-bit memory address path
(depending on which is specified)

8- and 16-bit data path

Can be bus master or slave

The following sections explain the compliance levels more fully, particularly the two levels that we cur­
rently support:

• MASTER D16 M16 116 VO L

• MASTER D16 M20 116 VO L

1.1.1 Bus Control

A device controller is bus master when it acquires control of the bus, and bus slave when it carries out
commands or decodes addresses presented by another device acting as bus master. Domain nodes with
16-bit MULTIBUS implementation (Le., DSP160, DN420, DN460, DN600, and DN660) allow both the
central processor and any attached controller to act as bus masters. When the processor is bus master, it
can address 32K bytes of MUL TIBUS I/O space and 32K bytes of MUL TIBUS memory space (O-7FFF).
When a controller is bus master, the processor must be the only slave; it responds to addresses in the
range O-FFFF (64K).

Domain nodes with20-bit MULTIBUS implementations (Le., DSP80, DSP80A, DSP90, DN550, and
DN560) als'o allow either processor or controllers to act as bus masters. When the processor is bus master,
it can address 64K bytes of MULTIBUS I/O space and 1M byte of MULTIBUS memory space. When'a
controller is bus master, either the processor or another controller on the MULTIBUS may be the slave;
up to 1M byte of address space is available.

NOTE: Although the full 64K bytes of I/O address space is implemented on nodes with a
20-bit MUL TIBUS, user Control and Status Register (CSR) page addresses are
restricted to the first 16K bytes of MULTIBUS I/O space; refer to section 1.3.2.

1.1.2 Data Path

For all Domain nodes, the MULTIBUS supports either an 8- or a 16-bit bidirectional data path (D16)
for the transfer of data from MUL TIBUS memory or I/O addresses. The bus master drives the data lines
on a write operation, and the slave drives them on a read operation (memory or I/O).

1-3 The MULT/BUS

1.1.3 Memory Address Path

Under compliance level MASTER D16 M16 116 VO L, the MULTIBUS supports 16-bit memory ad­
dresses on the memory address path; whereas under compliance level MASTER D16 M20 116 VO L, the
MULTIBUS supports 20-bit memory addresses. We use the terms 16-bit MULT/BUS or 20-bit MULT/­
BUS to describe nodes whose I/O hardware supports 16- or 20-bit memory addresses.

NOTE: If a node with a 20-bit MUL TIBUS is fully configured with 3M bytes of mem­
ory, the upper half (S12K bytes) of the address space is unavailable for memory­
mapped operations.

1.1.4 I/O Address Path

For all Domain nodes, the MULTIBUS I/O address path supports 8-bit or 16-bit I/O addresses (116).

1.1.5 Interrupt Request Lines

The MUL TIBUS provides eight interrupt request lines: line 0 is the highest priority line and line 7 the
lowest. A device ,generates an interrupt by activating its assigned interrupt request line. The MULTIBUS
on all Domain nodes uses non-bus-vectored interrupts (VO). With this type of interrupt, the device raises
its interrupt line without sending its interrupt vect9r address over the bus; the I/O hardware generates the
interrupt vector address to identify the interrupting device to the processor.

1.1.6 Bus Request Arbitration Resolution

MUL TIBUS devices can arbitrate for bus control by using serial or parallel priority resolution. All Domain
16-bit MUL TIBUS implementations use a serial scheme. Some 20-bit implementations use a parallel
scheme and others use a serial scheme. See the peripheral installation instructions for the priority resolu­
tion scheme used by each node type.

With serial resolution, device controllers are daisy-chained together. The first device in the daisy-chain

~\
I

. ... '/

has highest priority. With parallel resolution, arbitration logic in the I/O hardware determines the device / '\
that gets highest priority, instead of the device's position relative to other controllers. See' the node's /
operating guide or peripheral installation instructions for the priority assignments supplied by our I/O
hardware for nodes that use parallel arbitration resolution.

1.2 MUL TIBUS Address Translation
Device drivers on nodes with a 16-bit MULTIBUS can allocate up to 32 pages of processor address space
to reference MULTIBUS address space; drivers on nodes with a 20':'bit MULTIBUS can allocate up to
1024 pages of processor address space. On any node, the I/O hardware translates addresses between
MULTIBUS and processor memory in units of 1024-byte pages. The method of translation depends upon
whether processor addresses are to be translated into MUL TIBUS addresses (initiated by the processor)
or MULTIBUS addresses into processor addresses (initiated by the controller).

The MULTIBUS 1-4

o 1.2.1 Address Translation from Processor to MUL TIBUS

(J

o

o

o

When the processor acts as bus master, it initiates a read or write to MULTIBUS address space, and I/O
hardware automatically translates the virtual address that refers to processor address space into a physical
address. This physical address refers to either one of two separate address spaces supported by the .
MULTIBUS, depending on the kind of I/O operation:

• I/O space: Used for programmed I/O data transfers

• Memory space: Used for memory-mapped data transfers

Much of what follows concerning pr0,cessor-to-MUL TIBUS address translation depends on this concept
of two separate MUL TIBUS address spaces.

Programmed 1/0
In programmed I/O, data is transferred as single words or bytes by means of Control and Status Registers
(CSRs) on the controller. Device drivers pass or reference data by using these CSRs.

References to the MUL TIBUS I/O space are actually references to a controller's CSRs. A page from
MULTIBUS I/O space is allocated to them and becomes the controller's CSR page. Section 1.3 describes
how to allocate pages of MULTIBUS I/O space for controller CSRs.

When the device is acquired, the GPI/O device acquisition routine, PBU_$ACQUIRE, (or the AQDEV
command) automatically maps the CSR page to processor address space-that is, establishes a correspon­
dence between MUL TIBUS I/O space and processor address space-and passes a pointer to the driver
initialization routine. The device driver can then obtain controller status and activate the controller l?y
using the pointer to read and write to the mapped CSRs. Figure 1-2 shows how CSR pages mapped to
processor address space correspond to MUL TIBUS I/O locations.

Processor
Address Space

Process 1

200400

2D07FF

200400

2007FF L;;;:.;:;:==-r-

Memory
Management
Unit (MMU)

MULTIBUS
1/0 Space ,.._0

_

1K

2K

Unused
I/O

Locations

~ ____ ~ ____ ~16K

Figure 1-2. Mapping CSR Pages to MULT/BUS 110 Space

1-5 The MULT/BUS

Memory-Mapped I/O
In memory-mapped I/O, the controller appears to the processor as so many memory locations, and the
processor performs I/O operations by storing data to or fetching it from controller memory. f------........

Device drivers gain access to areas of MUL TIBUS memory space by calling GPI/O routines. These rou- ./
tines map areas of processor address space and particular sections of MULTIBUS memory space. Device
drivers next call the GPI/O routines that map a controller's memory to processor address space. The
drivers can then read and write to controller memory through reads and writes in processor address space.
Figure 1-3 illustrates how controller memory is mapped to processor address space.

Processor
Address Space

2COOOO

Process 1

2C4000 : ..

2C8000

Process 2

Memory
Management
Unit (MMU)

o

16K

32K

Figure 1-3. Mapping Processor Address Space to MULT/BUS Memory Space

1.2.2 Address Translation from MUL TIBUS to Processor: DMA

A Direct Memory Access (DMA) operation contrasts with programmed 1/0 and memory mapping in that
(1) the controller is the bus master, (2) address translation proceeds from the MUL TIB U S to the proces­
sor, and (3) a bus address (referred to as an iova) is translated into a physical address in processor
memory. Once activated by its device driver, a DMA controller can transfer large amounts of data
directly between processor memory and MULTIBUS address space. The job of translating references to
MUL TIBUS address space into references to processor address space is performed by a data structure
called the I/O map. The I/O map contains entries that each map one page of processor memory. The
device driver calls GPI/O routines to allocate I/O map entries for the DMA. Chapter 7, section 7.1
describes these GPI/O routines in more detail.

For nodes with a 16-bit MULTIBUS, controllers can transfer up to 64 pages of data between the MULTI­
BUS and the processor at one time. For nodes with a 20-bit MULTIBUS, controllers can transfer up to
1024 pages at one time. Figure 1-4 illustrates a DMA transfer of 64 pages of MULTIBUS address space
to two different areas of processor address space.

The MULT/BUS 1-6

/

o

o

Processor
Address Space

200000

207FFF

2COOOO

2C7FFF L2Z2ZL...r-r-

110 Map

MULTIBUS
Address Space o

32K

64K

Figure 1-4. Mapping MULT/BUS Address Space to Processor Address Space

o 1.3 Configuring MUL TIBUS Controllers

o

o

When you supply your own MUL TIBUS controllers for use with a Domain node, you must observe basic
configuration rules. The following subsections summarize controller configuration rules for nodes with a
16- or 20-bit ¥ULTIBUS. Table 1-2 lists the address ranges reserved for Domain system-supplied
devices.

1-7 The MULT/BUS

Table 1-2. MUL TIBUS Address Space Used by Domain System-Supplied Devices

Software

Domain/ComController

Addresses Used

Memory pages 4000 to 7FOO and I/O page OSOO always in use
on a 16-bit MULTIBUS.

ETHERNET* Interlan Board Uses three dynamically allocated memory pages for DMA
I/O address space OSO-OSF every 256 bytes (Le., lS0-lSF,
2S0-2SF, 3S0-3SF, etc.).

FSD-500 Memory pages F400 and FSOO on a 16-bit MULTIBUS
or memory pages 6F400 and 6FSOO on a 20-bit

Magtape

Storage Module Device
(SMD)

MUL TIBUS are used by the mnemonic debugger then
released during operating initialization. The operating system
uses two dynamically allocated memory pages for DMA.

Uses 19 dynamically allocated memory pages for DMA,
plus memory page FCOO (used during initialization then
released) .

Memory pages F400 and FSOO on a 16-bit MULTIBUS or
memory pages 6F400 and 6FSOO on a 20-bit MULTIBUS
always reserved, whether or not SMD is in use.

VERSATEC and IMAGEN* * Uses five dynamically allocated memory pages for DMA;
Printers I/O page 400. reserved.

X.25 Pages 7000-7COO always in use.

* ETHERNET is a registered trademark of the Xerox Corporation.
* * IMAGEN is a registered trademark of the IMAGEN Corporation.

1.3.1 Nodes with a 16-Bit MUL TIBUS
You can connect only one S-bit controller to a 16-bit MULTIBUS; the others must be 16-bit controllers.

Assigning CSR Addresses
Each controller is allocated one page of MULTIBUS I/O space for its set of CSR addresses. MUL TIBUS
I/O space is divided into two 16-page sections. The lower 16-page section is reserved for the CSR pages
of user-supplied controllers; the top 16-page section is reserved for the CSR pages of controllers that we
supply. You can assign the CSR addresses of a 16-bit controller to any page within the 16 pages of MUL­
TIBUS I/O space (0-3FFF hex) allocated to user-supplied controllers. Word (2-byte) and longword
(4-byte) registers must lie on even-byte addresses.

If an S-bit controller is present on your system, its CSR addresses should fall between SO and FF (hex) on
the first page (page 0) of the allocated I/O address space. Of the remaining pages (1 to 15), 16-bit con­
trollers must occupy only the first 12S bytes (0-7F) of each page. This arrangement is necessary because
S-bit controllers respond to any address in the range 0 to FF, modulo 255. For example, an S-bit control­
ler CSR at address SO responds to page 0 addresses of SO, lS0, 2S0, 3S0; page 1 addresses of 4S0, 5S0,
6S0, 7S0; and so on. By restricting S-bit controller CSRs to the range SO-FF, all addresses in the range
0-7F become available to 16-bit controllers. Refer to Chapter 11, section 11.2 for a description of how
to set the address of an S-bit controller CSR.

If you do not have an S-bit controller on your system and never plan to add one, you can configure a
16-bit controller to respond to any addresses (0-3FF) on its CSR page. Again, word and longword regis­
ters must lie on even-byte addresses.

The MULTIBUS 1-8

I"'--~
,)

-, .. -.,/

/--"\

.,"', .. ,/

o

o

o

o

o

Figure 1-5 illustrates the allocation of CSR addresses when an 8-bit controller is present.

CSR Page 0

CSR Page 1

CSR Page 2

"
CSR Page 15

MUL TIBUS 1/0 Space

8-Blt CSRs

16-Blt CSRs
(128 Bytes)

16-Blt CSRs
(128 Bytes)

,

"

o
7F
80

FF

400

47F

800

87F

,

J-----------I 3COO

16-Blt CSRs
(128 Bytes)

t------------I 3C7F

Figure 1-5. 8-Bit Controller CSR Assignment

Configuring Controller Memory
Drivers call GPI/O routines to map a controller's memory to processor address space so that programs can
refer to the controller's memory directly. When configuring controller memory on nodes with a 16-bit
MULTIBUS, the following rules apply:

• Controller memory must begin on a page boundary and must lie completely in the first 32K bytes
(O-7FFF) of MULTIBUS memory space.

• Because of hardware restrictions, the part of the MUL TIBUS memory space occupied by control­
ler memory is permanently unavailable for DMA to or from any controller on the bus.

• Programs can access controller memory, through the MUL TIBUS, but other controllers on the bus
cannot do so (refer to Chapter 7, section 7.2.1).

Configuring Controller Address Lines
On a node with a 16-bit MULTIBUS, up to 64 pages of MULTIBUS address space can be mapped
(through the I/O map) to processor memory. Controller references to MULTIBUS addresses above 64K
are wrapped; the top four bits of addresses on the bus are driven to O. For example, a controller reference

1-9 The MULT/BUS

to 65K appears as a reference to 1K. Consequently, when you have the choice of configuring a controller
to a 16-bit or a 20-bit address path, configure for a ·16-bit address path.

Using Interrupt Request Lines
Of the eight interrupt request lines available on the MULTIBUS, the highest priority line (0) is reserved
for customer devices. The remaining seven interrupt lines are reserved for devices that we supply. Table
1-3 lists the allocation of bus interrupt request lines.

Table 1-3. Allocation of Interrupt Request Lines

Line Owner

0 Customer devices

1 COM-ETH product controller

2 COM-X.25 product controller and
Domain/ComController product

3 Magtape controller

4 Storage module or FSD-500 product
controller

5 VERSATEC printer/plotter controller and
IMAGEN printer with MULTIBUS option

6 Parallel output/line printer (only on 16-bit
MULTIBUS; unused on 20-bit MULTIBUS)

7 Reserved

Since line 6 is used for parallel I/O, it is unavailable for your use. Lines 1 through 5, though reserved for
our use, are available to user-supplied controllers. However, if you assign your device to one of lines 1
through 5 and later acquire one of our supported devices assigned to that line, conflicts will result. Line 0
is reserved for customer devices and will never be used by Domain devices.

A single controller can be configured to request interrupts on more than one request line, but each line
can handle only one controller.

On nodes with a 16-bit MULTIBUS, the processor is solely responsible for acknowledging peripheral de­
vice interrupt requests. Device controllers should never respond to interrupt requests from other periph­
eral devices on the bus.

1.3.2 Nodes with a 20-Bit MUL TIBUS

Nodes with 20-bit MULTIBUS implementations can also handle 8-bit or 16-bit controllers. Of the· de­
vices that can be attached to such nodes, only one can be an 8-bit controller; the others must be 16-bit
controllers.

Assigning CSR Addresses
On nodes with a 20-bit MULTIBUS, 64 pages of MULTIBUS I/O space are available; however, user de­
vices are restricted to the first 16 pages, since Domain system-supplied devices occupy the second 16
pages and addresses 8000-FFFF are reserved for future use. Each controller is allocated one page of the
first 16 pag~s of I/O address space for its set of CSRs (if any). You can assign the addresses of a 16-bit
controller to any page within the first 16 pages (0-3FFF hex). Word (2-byte) and longword (4-byte) reg­
isters must lie on even-byte addresses. If an 8-bit controller is present in your configuration, assign its
CSRs according to the rules outlined in section 1.3.1.

The MULTIBUS 1-10

./

o

o

o

0

o

Configuring Controller Memory
If a node with a 20-bit MULTIBUS is fully configured with 3M bytes of memory, the upper half (512K
bytes) of the address space is available for DMA operations only. Also, if your configuration includes
both 16-bit and 20-bit memory-mapped controllers, you must use caution when configuring 20-bit con­
troller memory into MULTIBUS memory space to avoid possible conflicts with 16-bit controller memory.
For example, a 16-bit controller configured to respond to memory address COOO will also respond to ad­
dresses lCOOO, 2COOO, ... FCOOO. In this case, you must ensure that the MUL TIBUS addresses assigned
to the 20-bit controller do not equal COOO modulo 64K.

Configuring Controller Address Lines
Nodes with a 20-bit MULTIBUS implementation can map up to 1024 pages of MULTIBUSaddress
space through the 110 map to processor memory. As in 16-bit MULTIBUS systems, controller references
to MULTIBUS addresses above 1M byte are wrapped. Consequently, when you have the choice of config­
uring a controller to a 24-bit or a 20-bit address path, configure for a 20-bit address path.

Using Interrupt Request Lines
Nodes with a 20-bit MULTIBUS allocate interrupt request lines in the same way as nodes with a 16-bit
MULTIBUS, except that lines 6 and 7 are also available (although they are reserved for Domain system­
supplied devices). Again, the processor is solely responsible for acknowledging peripheral device interrupt
requests; device controllers should never respond to interrupt requests from other peripheral devices on
the bus. Table 1-3 lists the allocation of bus interrupt lines.

1.4 Byte Swapping
The necessity for byte swapping (exchanging the left and right bytes of a word) arises from the fact that
the Domain processor, which is based on the Motorola 68000 family, orders bytes within a word the oppo­
site of the way Intel processors order them on MULTIBUS controllers. This is how our processor does it:

15 8 7 0

BYTE 0 BYTE 1

and this is how the MUL TIBUS does it:

15 8 7 0

BYTE 1 BYTE 0

We deal with this incompatibility by swapping bytes in hardware during byte transfers. Effectively, theri,
character strings copied as bytes and integers copied as words are preserved, but character strings copied
as words (and words copied as bytes) are byte swapped. The following illustrates this strategy:

1-11 The MULTIBUS

Word Transfer Byte Transfers

o
Processor:

15 o
MULTIBUS:

Pointers to words must be even. Pointers to processor left bytes (byte 0) must be even; pointers to
processor right bytes (byte 1) must be odd.

The GPIIO call PBU_$CONTROL is available for 20-bit MULTIBUS implementations (refer to Appen- i~
dix B for a description of the call). This call gives you control over the byte-swapping hardware so that ./
you can specify other byte/word arrangements than those spelled out above (the pbu_swap_off option
gives you the arrangement described above). By specifying the pbu_swap_words option with this call, you
ensures that all character strings have their byte order preserved regardless of whether they are copied as
words or bytes and that integers are always byte swapped. The following illustrates byte swapping when
pbu_swap_words is specified:

Word Transfer Byte Transfers

o 15 o
Processor:

15 o
MULTIBUS:

By specifying the pbu_swap_bytes option with the PBU_$CONTROL call, you ensure that integers have
their byte order preserved regardless of whether they are copied as words or bytes and that character
strings are always byte swapped. The following illustrates byte swapping when pbu_swap_bytes is
specified:

The MULTIBUS 1-12

,/

o

o

o

o

o

Word Transfer Byte Transfers

Processor:

15 o
MULTIBUS:

It should be noted that single byte transfers always occur on MUL TIBUS data lines 0 through 7 and that
word transfers use all 16 data lines.

1-13 The MULT/BUS

I

~:I

o

o

o

o

o

Chapter 2

I/O Bus Structures:
The VMEbus

This chapter presents information you need to know about the VMEbus in order to use GPI/O software to
write device drivers for VME devices-specifically, address space allocation, grant levels, use of address
modifiers, interrupt levels, and software considerations. For additional information about the VMEbus,
refer to the DNS70-T, DNS80-T, DNS90-T, and DSPSOO-T Technical Reference Manual and the
Motorola VMEbus Specification Manual, Rev. C.l or IEEE Pl014/D1.2.

2.1 Address Space Allocation
Since there is no mapping mechanism between the VMEbus and a customer VME device, there must be
agreement as to what VME addresses are reserved for your controllers. In addition, you must be aware
that, as our allocation of the physical address space on existing and future workstations changes, it may be
necessary for you to modify your controllers to respond to different addresses on different workstations.

The address layout for the DNS70-T and DNS80-T (currently the only released VME-based machines)
is listed in Table 2-1.

2-1 The VMEbus

Table 2-1. Address Space Allocated for DN570/580-T VME Devices

Physical Addresses Resource Address/Data Lines

0OOO-7FFF VME CSRs 16-Bit Addressing
16-Bit Data Path

COOO-DFFF VME CSRs 24-Bit Addressing
16-Bit Data Path

80000-FFFFF User VME 24-Bit Addressing
16-Bit Data Path

200000-2FFFFF User VME 24-Bit Addressing
16-Bit Data Path

310000-3FFFFF pser VME 24-Bit Addressing
16-Bit Data Path

600000-7FFFFF User VME 24-Bit Addressing
32-Bit Data Path

800000-FFFFFF User VME* 24-Bit Addressing
32-Bit Data Path

* Available only on DN570-T workstations.

2.2 Bus Grant Level
VME devices should use bus grant level 2.

2.3 Address Modifiers
The current DN570-T and DN580-T VME interface defines the following address modifiers for all refer­
ences to VME controllers:

• 2D: 16-bit addressing

• 3D: 24-bit addressing

• OD: 32-bit addressing

Domain system-supplied controllers also use these address modifiers for DMA activity.

We recommend that the address modifiers that a device uses be held in two program-Ioadable registers,
one for slave responses and the other for master requests. In the initial power-on/reset state of the device,
it should be possible to load these registers by using any address modifier.

2.4 Interrupt Level
Customer VME devices are currently assigned to VME interrupt level 5. The VME interrupt level used by
a customer device should be jumperable to allow for possible changes in interrupt level allocation on
future workstations.

The VMEbus 2-2

./

\.

o 2.5 StatusllO Byte

o

o

0

o

A VME controller presents a status/ID byte during a VME interrupt acknowledge cycle. The operating
system uses this byte to distinguish between mUltiple VME devices and by GPI/O as the unit number
identifying the device. Status/ID bytes F8 through FE (coressponding to unit numbers 8 through 14) are
available for customer devices; status/ID bytes FO through F7 and FF are reserved.

The Device Descriptor File (DDF) for a VME device defines the bottom nibble of the status/ID as the
device unit number.

2.6 Software Considerations
GPI/O software supports memory-mapped I/O, programmed I/O, and DMA operations on the VMEbus.

There is no DMA address translation hardware (Le., I/O map) for the VMEbus; the following GPI/O calls
are, therefore, not applicable to drivers that support VME devices:

• PBU[21_SALLOCATE_MAP

• PBU[21_SFREE_MAP

• PBU[21_SMAP

• PBU[21_SUNMAP

In addition, the following GPI/O calls are not applicable to VME devices and cannot be used in drivers for
VME devices:

• PBU_SDEVICE_INTERRUPTING

• PBU _ SDISABLE_DEVICE

• PBU_SENABLE_DEVICE

• PBU_SCONTROL

• PBU_SDMA_START

• PBU_$DMA_STOP

Otherwise, you use GPI/O software when writing drivers for VME devices just as you would for MUL TI­
BUS devices. Extensions to the GPI/O package to accommodate the VMEbus in no way limit the current
facilities of GPI/O.

2.6.1 Wiring for DMA: PBU _ $WIRE _SPECIAL
Since there is no mapping hardware between the customer's device and the VMEbus, device drivers
should call PBU_$WIRE_SPECIAL (instead of PBU_$WIRE) to wire buffers for DMA operations. This
call returns a list of physical (Le., VME) addresses at which the buffer is located. The customer's driver
or controller hardware uses the addresses to perform the necessary scatter-gather operations. Refer to
Appendix B for a full description of this call.

2-3 The VMEbus

2.6.2 Creating a DDF for a VME Device
To create a DDF for a VME device, you must specify the -VME option with the CRDDF command. This
option indicates to GPIIO that the device in question resides on the VMEbus. It is recommended that this
option be the first specified when building a new DDF. Valid unit numbers when the -VME option is
specified are in the range 8 to 14 (PBU _ $MIN_ VME _UNIT to PBU _ $MAX _ VME _UNIT) .

If the - VME option is specified, the specification of a CSR page is optional. If a CSR page is specified, it
must ~e page-aligned and in the range 0000-7COO (A16) or COOO-DCOO (A24).

Refer to Appendix A for a full description of the CRDDF command and the - VME option and to Chapter
11, section 11.3.2 for an example of the CRDDF command with the -VME option.

The VMEbus 2-4

. ,/

o

o

o

o

c

Chapter 3

I/O Bus Structures: The IBM
AT-Compatible Bus

This chapter presents information you need to know about the IBM AT-compatible bus in order to use
GPI/O software to write device drivers for AT-compatible devices-specifically, I/O address and memory
space allocation, unit numbering, bus timeout, DMA and interrupt lines, byte swapping, and software
considerations. For additional information about the AT-compatible bus, refer to the Domain Series
3000 Technical Reference.

3.1 AT-Compatible Address Space
The phy~ical address space on the AT-compatible bus that is available to the user consists of 110 address
space, which is reserved for device CSRs, and memory address space, which is reserved for memory­
mapped controllers. The following subsections describe these two address spaces in detail. For additional
information on the AT-compatible bus address space, refer to the Domain Series 3000 Hardware Archi­
tecture Handbook.

3.1.1 I/O Address Space
The I/O address space (O-3FF) is reserved for device CSRs. Table 3-1 lists the address ranges within this
area that are reserved for Domain system-supplied devices and those that are available for customer
devices. If your system is not configured with the system-supplied device that occupies a particular
address range, then you may use that range for your own device.

3-1 IBM AT-Compatible Bus

Table 3-1. 1/0 Address Space Allocated for Domain System-Supplied Devices

-
B us Address (Hex) Device

OOO-OFF Reserved
100-19F Customer Devices
1AO-1A7 Disk Controller
1A8-210 Customer Devices
218-21F Tape Controller
220-23F Domain Ring Controller
240-2F7 Customer Devices
2F8-2FF Serial-Parallel Expansion

(SPE) option-Serial Line 2
300-310 Ethernet Controller
320-33F Domain Ring Controller
340-377 Customer Devices
378-37F SPE option-Parallel Port
380-3AF Customer Devices
3BO-3BF Monochrome Graphics,

Alternate Color
3CO-3CF Customer Devices
3DO-3DF Color Graphics,

Alternate Monochrome
3EO-3EF Customer Devices
3FO-3F7 f Disk Controller
3F8-3FF SPE-Serial Line 1

To provide protection for system devices and virtual memory support, addresses in the AT-compatible
I/O address space are mapped differently from addresses in MUL TIBUS and VME address space. Ten­
bit consecutive addresses in the I/O address space are mapped into processor address space in groups of
eight bytes: each group is assigned the first eight bytes of a different, but consecutive, page (1024 bytes).
Thus, the first 1024 addresses in AT-compatible address space (0-3FF) map to 128 physical pages
(40000-SFFFF) in processor address space.

An AT-compatible controller using CSR addresses 200 through 217 might have the following type decla-

/'

ration: /-"\

TYPE csr-page_t =
first_eight
next_eight
last_eight
end;

[device] packed record
array[0 .. 7] of char;
array [0 .. 7] of char;
array[O .. 7] of char;

But in our system, the type declaration should be:

TYPE csr-page_t =
first_eight
padl
next_eight
pad2
last_eight
pad3
end;

[device] packed record
array[O .. 7] of char;
array[8 .. bytes-per-page-l]
array[O .. 7] of char;
array[8 .. bytes-per-page-l]
array [0 .. 7] of char;
array[8 .. bytes_per_page-l]

of char;

of char;

of char;

Figure 3-1 illustrates the mapping scheme for the preceding example (CSR_PTR is the pointer that
PBU_SACQUIRE passes to the device initialization routine after mapping the CSR page in driver address
space) .

IBM AT-Compatible Bus 3-2

o

o

C)

0

,0

BUS ADDRESS SPACE

200-_____ ---,

207 t------~
208

20F
210 t------~

21 F L...-_____ ---'

DEVICE DRIVER
ADDRESS· SPACE

.. CSR_PTR -. ":"""'"""'"""' .. ,<>,"'.:.,"',".,,,"':.,,,,":.""".>",:",,"'.:
+007

f

Figure 3-1. CSR Mapping Scheme for AT-Compatible Devices

Sixteen-bit addresses (i.e., so-called AT addresses, which are not supported on the PC bus) extend the
address range beyond the lK byte (O-3FF) range of 10-bit addresses up to 64K bytes (O-FFFF). Such
addresses are "folded" and mapped to different locations on the same set of 128 physical pages as are
occupied by lO-bit addresses. Figure 3-2 shows how the 16 bits of an AT-compatible I/O address are
translated to a processor physical address.

15 10 9 3 2 0

AT

16 10 9 4 3 2 0

CPU

Figure 3-2. Mapping a 16-Bit AT Address to Processor Address Space

We provide a utility, CVT_AT (CONVERT_AT_ADDRESSES), that translates any AT-compatible I/O
address (10- or 16-bit) into the processor physical address to which it is mapped. The command's syntax
and usage are fully described in Appendix A.

3.1.2 Memory Space
The AT-compatible memory space is used for memory-mapped controllers. Addresses are mapped one­
to-one to processor physical address space. Controllers are mapped and unmapped using GPI/O routines
PBU2_SMAP_CONTROLLER and PBU2_SUNMAP _CONTROLLER.

3-3 IBM AT-Compatible Bus

Table 3-2 lists the address ranges within the memory space that are reserved for Domain system-supplied
devices as well as those that are available for customer devices. If your system is not configured with the
system-supplied device that occupies a particular address range, then you may use that range for your own
device. For a more detailed map of memory space usage, refer to the Domain Series 3000 Hardware
Architecture Handbook.

Table 3-2. Physical Memory, Allocated for Domain System-Supplied Devices

Physical Address (Hex) Device

000000-03FFFF Reserved for the System
040000-05FFFF lID Address Space (see Table 3-1)
060000-09FFFF Available for Customer Devices
OAOOOO-OBFFFF Color or Alternate Monochrome Graphics
OCOOOO-ODFFFF Alternate Monochrome Graphics
OEOOOO-OFFFFF Alternate Color Graphics
100000-SFFFFF Main Memory
900000-BFFFFF Available for Customer Devices
COOOOO-CFFFFF PC Co-processor
DOOOOO"':'DFFFFF PC Co-processor Alternate
EOOOOO-F9FFFF Available for Customer Devices
FAOOOO-FDFFFF 'Monochrome Graphics
FEOOOO-FFFFFF Available for Customer Devices

3.2 Unit Numbering
The unit number of an AT-compatible device, is identical with the Interrupt Request (IRQ) line. There
are 16 possible unit numbers, 0 being the highest. But since Domain system-supplied devices also use this
range, not all unit numbers are available for customer devices. The current allocation of unit numbers as
well as the interrupt priority (from highest to lowest) assigned to each unit number are listed in Table 3-3.

Table 3-3. Allocation of Unit Numbers

Unit No. Interrupt
and IRQ Priority Device

0* 1 'j Timer
1* 2 ',J Keyboard
2* Reserved
3 3 '/ Domain Ring Controller
4 12 SPE-Serial Line 1

or User Device
5 13 Tape Controller
6 14 Disk Controller or User Device
7 15 User Device
S* 4 ./ Calendar
9 5 J Ethernet 2, SPE-Serial Line 2,

or User Device
1(.J (6-:~~ -'J Ethernet 1 or User Device
11 (~7-') ~- PC Co-processor or User Device

,:--c:", \

--,----=s.-- 12 t.,S"'; ,: User Device
13*

'-,' ./

Reserved 9
14 10 Disk Controller
15 11 PC Co-processor Alternate

or User Device
*This IR Q line is used b y the p rocessor and is not available on the bus.

IBM AT -Compatible Bus 3-4

,/

o

3.3 Testing for Controller Presence
The AT-compatible bus does not generate bus timeouts. Therefore, you cannot use the GPI/O calls
PBU_$READ_CSR or PBU_$WRITE_CSR to test for controller presence on the bus. Instead, you must
write to an I/O register control bit and check if the appropriate status bites) react as you would expect if
the controller were present on the bus.

3.4 DMA and IRQ Lines
DMA and IRQ lines typically float on AT-compatible controllers. Refer to the device documentation for
specific information on enabling these lines. Generally, however, you should do the following:

• Call PBU_$DMA_START after enabling the DMA lines and PBU_$DMA_STOP before disabling
them (refer to Appendix B for information concerning these GPI/O calls). If the device only does
DMA at your command, you can set a "DMA enable" bit in the driver's initialization routine and
then do PBU_$DMA_START followed by the data transfer command to the device in your
driver.

• Call PBU_$ENABLE_DEVICE after you have set up the controller to have some interrupts en­
abled. Likewise, you should call PBU_$DISABLE_DEVICE before you clear all interrupt en­
ables from the controller. Refer to Appendix B for more information concerning these GPI/O
calls.

3.5 Byte Swapping
The necessity for byte swapping (transposing the order of the bytes in a word) arises from the fact that the

U
(---'" Domain processor orders bytes differently from the way that an AT-compatible controller does. To

compensate for this, I/O hardware performs byte swapping during data transfers according to the following
rules:

o

o

• I/O hardware transposes the bytes of words transferred between the processor and the bus. Thus,
integers and CSRs defined as 16 bits are byte swapped. For example, a CSR that has the follow­
ing internal representation on the AT-compatible controller:

15 7 o

III
L DMA Enable L Device Busy

would look like this on the processor:

7 o 15 8

II
L Device Busy L DMA Enable

• Byte swapping does not occur during byte transfers. Thus, characters are transferred correctly.

Figure 3"":3 illustrates byte swapping between the processor and the AT-compatible bus.

3-5 IBM AT-Compatible Bus

Word Transfer Left Byte Transfer Right Byte Transfer

CPU:

BUS:

Figure 3-3. Byte Swapping between Processor and AT -Compatible Bus

3.6 Software Considerations
GPI/O software supports four kinds of I/O operations on the AT-compatible bus:

• Memory-Mapped I/O.

• Programmed I/O.

• DMA: The processor has the DMA hardware.

• Demand-DMA: The controller has its own DMA hardware and can request external bus master­
ship.

Section 3.6.1 describes the GPI/O routines that drivers can call to perform these operations.

There is no DMA address translation hardware (Le., I/O map) for the AT-compatible bus; the following
GPI/O calls are, therefore, not applicable to drivers that support AT-compatible devices:

• PBU[21_$ALLOCATE_MAP

• PBU[21_$FREE_MAP

• PBU[21_$MAP

• PBU[21_$UNMAP

Otherwise, you use GPI/O software when writing drivers for AT-compatible devices just as you would for
MULTIBUS devices.

3.6.1 GPI/O Calls for AT-Compatible Devices
Three GPI/O calls are specially designed for use with AT-compatible devices:

• PBU_$WIRE_SPECIAL

• PBU_$DMA_START

• PBU_$DMA_STOP

IBM AT-Compatible Bus 3-6

.. /

o

o

o

The following paragraphs briefly describe when and how to use these calls. For a full description of the
calls, refer to Appendix B.

Wiring for DMA: PBU_$WIRE_SPECIAL
Since there is no mapping hardware between the customer's device and the AT-compatible bus, drivers
for AT-compatible devices should call PBU_$WIRE_SPECIAL (instead of PBU_$WIRE) to wire buffers
for DMA operations when the controller has demand-DMA capability (refer to the next paragraph for
DMA operations with controllers that do not have on-board DMA hardware). This call returns a list of
physical addresses at which the buffer is located. The customer's driver or controller hardware uses the
addresses to perform the necessary scatter-gather operations.

Use PBU2_$UNWIRE to unwire buffers that have been wired with PBU_$WIRE_SPECIAL.

Starting and Stopping a DMA Operation
Performing a DMA operation with an AT-compatible device that does not have demand-DMA capability
(Le., cannot request to become an external bus master) requires two GPI/O routines:
PBU_$DMA_START and PBU_$DMA_STOP. These are paired functions that must surround each
DMA operation, whether successful or not. PBU_$DMA_START prepares DMA hardware for the con­
troller's operation. After the driver calls PBU_$DMA_START, the controller can begin its operation.
When the controller indicates that the operation has completed, the driver next calls PBU_$DMA_STOP
to get status from DMA hardware to ensure that the hardware has completed its share of the operation as
well. The driver must call PBU_$DMA_STOP even if the controller reports an error. The driver may
ignore the status returned by PBU_$DMA_STOP, but if the controller had a problem, it is likely that the
DMA operation did not run to completion. The call to PBU_$DMA_STOP must, in any case, be made
so that software can reset its knowledge of who is using the DMA channel.

NOTE: Data transferred in one DMA operation must not exceed lK byte and must not
cross page boundaries.

Use PBU2_$WIRE and PBU2_$UNWIRE to wire buffers that are to be transferred via
PBU_$DMA_START and PBU_$DMA_STOP, just as you would with MULTIBUS devices.

3.6.2 Creating a DDF for an AT-Compatible Device
To create a Device Descriptor File (DDF) for an AT-compatible device, you must specify the -AT option
with the CRDDF command. This option-indicates to GPI/O software that the device in question resides
on the AT-compatible bus. It is recommended that this option be the first specified when building a new
DDF. Valid unit numbers when -AT is specified are in the range 0-15, excepting those assigned to
Domain system-supplied devices (refer to section 3.2 and Table 3-3).

The -DMA_CHANNEL option can be used with AT-compatible devices to specify the DMA channel
number that a controller will use. This option is provided only as a means of passing the channel number
to the driver; GPI/O software makes no use of this field .

. Refer to Appendix A for a full description of the CRDDF command and the -AT option and to Chapter
11, section 11.3.1 for an example of the CRDDF command with the -AT option.

3-7 IBM AT-Compatible Bus

'.

,/

o

o

o

o

o

Chapter 4

Overview of 1/0 Software

The major components of I/O software are

• One or more application programs (user written)

• General Purpose I/O (GPI/O) routines and commands (supplied by us)

• Device driver routines (user written)

The following sections briefly describe these components and show the relationships among them. Figure
4-1 shows the relationships among the application program, the device driver, and the GPI/O routines
and commands.

The last section of this chapter provides a driver component checklist for your use when writing a driver.

4.1 The Application Program
The application program can consist of one or more programs. For example, application programs can
call a device server, which is a collection of programs that perform device-specific processing before call­
ing the device driver to perform an I/O operation. In other cases, the application program is the device
driver itself.

4.2 GPI/O Commands and Routines
The GP I/O commands and routines create the environment in which a device driver runs. They control
the acquisition and release of the device, create and delete the mapping between a device's memory or
registers and processor address space, and set up the mechanisms to facilitate data transfers to and from a
device. Table 4-1 lists the files associated with GPI/O software product. The individual commands are
fully described in Appendix A, the routines in Appendix B.

4-1 An Overview of I/O Software

A
P
p
L
I
C
A
T
I

0
N

------ - -----_._. --

C
A
L
L

S
I
D
E

PBU_$ACQUIRE

Other
Driver

Routines

PBU_$RELEASE

DEVICE DRIVER

Private
Storage

for
Call &

Interrupt
Sides

GPI/O
ROUTINES

(PBU Manager)

System
Interrupt
Handler

Figure 4-1. Interaction of 110 Software

An Overview of 110 Software 4-2

I
N
T
E
R
R
U
P
T

S
I
D
E

PROCESS
SPACE

SYSTEM
SPACE

,~
I)
_-.... /

/-~

/

./

o

o

o

o

o

Table 4-1. GPIIO Software

File Contents

llib/pbu_int_lib Library to be bound with user-written
interrupt routine(s)

llib/pbulib GPIIO routines and interface to internal
GPI/O manager, automatically installed at
system startup

Icom/aqdev AQDEV (ACQUIRE_DEVICE) command

Icom/rldev RLDEV (RELEASE_DEVICE) command

Icom/crddf CRDDF (CREATE_DDF) command

Icom/cvt_at CVT_AT (CONVERT_AT_ADDRESSES)
command

Isys/ins/pbu.ins.pas Insert file for Pascal programs using GPIIO
routines

Isys/ins/pbu.ins.c Insert file for C programs using GPIIO
routines

I sys/helpl syscalls/pbu. hlp Help file for GPIIO routines

Isys/help/pbu.hlp Command index to GPIIO commands

Isys/help/aqdev.hlp Help file for the AQDEV command

Isys/help/rldev.hlp Help file for the RLDEV command

Isys/helpl crddf . hlp Help file for the CRDDF command

I domain _ examples/ gpio _examples Directory containing sample drivers

4.3 The Device Driver
The device driver is a user-written program, or set of programs, that controls a peripheral device on be­
half of an application program.

4.3.1 Driver Functions

In general, a device driver performs the following functions:

• Ensures that the device is physically present on the bus

• Initializes the driver control block

• Allocates resources required for data transfers

• Processes 110 requests from the application into device-specific commands

• Reads controller status registers

• Responds to device interrupts

4-3 An Overview of I/O Software

• Responds to device time-out conditions

• Responds to requests to cancel an I/O operation

• Performs status checking and error logging

• Returns status from the device to the application that made the I/O request.

4.3.2 Major Components of a Driver

To carry out these functions, a device driver may include the folloWing routines:

• An initialization routine called during device acquisition. This routine creates controller data
structures and readies the device for I/O operations. You must include this routine in your driver,
using the calling sequence described in Chapter 6, section 6.1.1.

• One or more interrupt routines called by the System Interrupt Handler to respond to device inter-
rupts. This routine is optional. If you decide to write an interrupt routine, use the calling sequence I/~
described in Chapter· 8, section 8.2.1.

• A clean-up routine called during device release (by PBU_SRELEASE). This routine ensures that
no I/O is in progress to or from the device and that the device will not generate any further inter­
rupts. You write the clean-up routine according to the calling sequence specified in Chapter 6,
section 6.4. Although this routine is optional, we strongly recommend that you include it in your
device driver.

In addition, a driver may include one or more of the following routines:

• A validation routine that checks device-specific parameters of an I/O request.

• 110 pre-processing routines that allocate the needed 110 data structures, depending upon the type
of transfer and the type of bus.

• A data transfer routine.

• A wait routine that waits for an interrupt or device timeout while the 110 operation is in progress.

• Command handling routines that process commands from the application.

Which of these routines you decide to include in your driver and how you implement them depends, of
course, on the requirements of the device and the application. To help you with the design of your driver,
Part II of this book describes the driver components in detail and exp~ains how to construct them by using
GPIIO routines. Part III provides reference information, such as the format and syntax of GPI/O com­
mands and routines, performance information, and so on. You may also find it helpful to refer to the fol­
lowing online sample drivers, located in subdirectories of /DOMAIN_EXAMPLES/GPIO_EXAMPLES:

• Versions in C and Pascal of a device driver for a hypothetical "bulk memory" device, in subdirec­
tories BM_EXAMPLE and BM_EXAMPLE.C (see also the program listings in Appendixes E
[Pascal] and F [C])

• A device driver for an Interlan controller, in subdirectory INTERLAN_EXAMPLE

• A device driver for a 3COM controller, in subdirectory THREECOM_EXAMPLE

• A shared driver for the SPE board, in subdirectory SHARED_EXAMPLE

• A device driver for an AT-compatible device, in subdirectory AT_EXAMPLE

An Overview of 110 Software 4-4

\... /

,/

o

o

u

o

o

To make the device driver accessible to user programs, you must bind the routines as described in Chapter
10, section 10.1. If your driver includes one or more interrupt routines, you must bind them separately
from the other routines.

You specify the pathname(s) of the device driver and the entry points of the initialization, interrupt, and
clean-up routines using the CRDDF (CREATE_DDF) command. This command establishes a DDF that
describes the device to the system and allows GPI/O routines to call driver routines. See Chapter 11 and
Appendix A for information about the purpose of the DDF, how to build the DDF with the CRDDF com­
mand, and the options available with the CRDDF command.

When a user process acquires the device (see Chapter 12), the driver routines are loaded into its address
space so that application programs can call them. The set of driver routines that programs can actively call
constitutes the call side of the driver, whereas the interrupt routine(s) and associated data structures make
up the interrupt side of the driver.

4.3.3 The Operation of a Driver: A Dry Run of 8M_EXAMPLE

You may find the online sample driver in BM_EXAMPLE a good place to begin familiarizing yourself with
a driver. In order to give you a feel for how it functions, the following paragraphs step you through a typi­
cal DMA operation. The driver was written for a hypothetical bulk memory MUL TIBUS device in order
to illustrate the general design of a driver and to demonstrate the use of GPI/O routines. For these rea­
sons, the driver and the fictitious controller for which it was written were kept simple: the controller has
five 8-bit registers and can perform read and write DMA operations. However, BM_EXAMPLE is a
compilable, functioning driver and includes all the major components. Figure 4-2 illustrates how these
components relate to each other as well as to the application and GPI/O routines. A slightly reorganized
version of the BM_EXAMPLE driver appears in Appendixes E (Pascal) and F (C).

Note that names of driver routines begin with BM (Bulk Memory), whereas names of GPI/O routines all
begin with PBU (Peripheral Bus Unit). Also, names of driver routines that do not include a dollar ($) sign
(e.g., BM_COMMAND) are internal subroutines that are not referenced outside the module in which
they are defined.

Initialization
After the device has been acquired, the PBU Manager (a collection of routines that are internal to the op­
erating system and· manage GPI/O resources) activates the driver's initialization routine, BM_$INIT. This
routine does the following:

• Initializes the driver control block (BMCB)

• Calls PBU_$WRITE_CSR to determine if the device is physically present on the bus

• Calls PBU_$ALLOCATE_MAP to allocate an area of the I/O map for mapping buffers to MUL­
TIBUS address spa~e

The BM_$INIT routine then returns control to the PBU Manager. The driver is now ready to accept I/O
commands from the application.

4-5 An Overview of 110 Software

SYSTEM

I AQDEV I I RLDEV
APPLICATION INTERRUPT

HANDLER

~
PBU··MANAGER -

v
~, I

~, I I : I I BM_$CLEANUP I BM_$READ ~,

II C I I BM_$INT
BM_$WRITE A N

L ~ I T S L ~F ~, ~,- ~,

I ~ E I
sl BM_$INIT I I BM_$WAIT J I BM_$SIO I R BM_COMMAND I .. , R 0 I U E

0 I p
E

~~ ~~ I
T

UNWIRE_BUFFER I I
I

~, ~, ~, ~F ~,

DEVICE REGISTERS, DEVICE MEMORY, OR GPI/O ROUTINES

-~
PERIPHERAL CONTROLLER

Figure 4-2. Driver Routines in 8M_EXAMPLE

Command Processing
The application calls one of the command-handling routines, BM_SREAD or BM_SWRITE, depending
on the type of 1/0 operation. Either routine immediately calls an internal routine, BM_COMMAND,
which in turn calls the following routines:

• PBU _SWIRE, to make the I/O buffer permanently resident in processor address space so that it is
unavailable to the operating system's page-replacement mechanisms

• BM_SSIO, to start up the DMA operation

• PBU_SENABLE_DEVICE, to allow the controller to issue interrupts

An Overview of 110 Software 4-6

" . ./

o

o

o

o

o

When the driver's data transfer routine, BM_$SIO, is called, it does the following:

• Calls PBU_$MAP, which maps the I/O buffer into MULTIBUS address space

• Issues the read or write command to the controller via the CSR page

Program control then passes from BM_$SIO through BM_COMMAND and BM_$READ/WRITE to the
application. The application calls the driver's wait routine, BM_$WAIT, which in turn calls the following
GPI/O routines:

• PBU_$WAIT, to wait either for the eventcount to advance (for information about eventcounts,
refer to Chapter 6, section 6.3) or for a specified interval to pass, whichever comes first

• PBU_$UNMAP, to unmap the I/O buffer from MULTIBUS address space

• PBU_$UNWIRE (called via an internal routine, UNWIRE_BUFFER), to unwire the I/O buffer

The BM_$WAIT routine then returns a status code to the application that indicates whether or not the
I/O operation was complete.

Interrupt Handling
When the I/O operation is complete, the device issues an interrupt which is intercepted by the System In­
terrupt Handler. The System Interrupt Handler then transfers program control to the driver's interrupt
routine, BM_$INT. This routine -rirst determines whether any more data remains to be transferred. If
there is, BM_$INT calls BM_$SIO to start the next data transfer and enables the controller interrupt
logic. Once all data has been transferred, BM_$INT advances the eventcount and returns program control
to the PBU Manager.

Cleanup
The PBU Manager calls the driver's clean-up routine, BM_$CLEANUP, when either the application calls
PBU_$RELEASE or the user inserts the End-Of-File (EOF) mark (under the DM, this is usually done by
pressing CTRL/Z). Initially, BM_$CLEANUP determines if an 1/0 operation is still in progress. If so, it
either resets the controller or calls BM_$WAIT, depending on what the application specifies. Regardless
of whether an I/O operation is still in progress, BM_$CLEANUP calls the following GPI/O routines:

• PB U_$ FREE_MAP , to release the area of the I/O map previously allocated by
PBU_$ALLOCATE_MAP

• PBU_$DISABLE_DEVICE, to prevent the controller from issuing any more interrupts

The BM_$CLEANUP routine then returns program control to the PBU Manager, thus concluding opera­
tion of the driver.

4-7 An Overview of I/O Software

4.3.4 A Driver Checklist

Following is a checklist of components that can be included in a driver. Italicized items must be included.
Whether or not you decide to include any of the other items depends on the device you are supporting,
the application, and your convenience.

o Insert files (Chapter 5)

o System Insert Files (section 5.1)

o CSR Page (subsection 5.2.1)

o Driver Control Block (subsection 5.2.1)

o Call-Side Library (Chapter 6)

o Initialization Routine (section 6.1)

o Command-Processing Routine (section 6.2)-required if the device is to be under the
control of the application

o Wait Routine (section 6.3)-necessary if your driver has an interrupt routine

o Clean-Up Routine (section 6.4)-highly recommended

o Data-Transfer Routine (Chapter 7)-can be installed in either the call-side library or (if
one exists) the interrupt-side library

o Interrupt Library (Chapter 8)-required only if your driver has an interrupt routine

o Interrupt Routine (section 8.2)-required if your device (1) handles interrupts and (2)
performs asynchronous transfers

OSlO Routine (section 8.3)-must be installed in the interrupt-side library if called by any
interrupt-side routine; otherwise, can be included as part of the data-transfer routine in
the call-side library

o Device Descriptor File (DDF)-(Chapter 11)

An Overview of I/O Software 4-8

r·".

o

o

o

C)

Chapter 5

Insert Files

Insert Jiles are included in the driver to enable it to reference certain resources-either system calls that
reside outside the driver (e.g., GPI/O routines) or routines and data structures that exist within the driver
and which both call-side and interrupt-side routines can reference. To reference any of these resources,
you must specify the pathname of the insert file (using the %INCLUDE directive in Pascal and #include
keyword in C) in the module where the calling routine resides. This chapter describes which system insert
files to include in the driver and explains how to set up driver-specific insert files. For a description of in­
sert files in general and available system calls, refer to Programming with General System Calls.

NOTE: Unlike Pascal, the C programming language is case sensitive; therefore, all sys­
tem procedure names (such as GPI/O routines) must be lowercase, consistently
with their appearance in the system insert files. Likewise, any global names in C
that are accessed by GPI/O routines must be lowercase.

5.1 System Insert Files
Two system insert files must be included in any GPI/O device driver:

• ISYS/INS/BASE.INS,lan·: Base definitions for the particular language in which the driver is
written

• ISYS/INS/PBU .INS.lan: GPI/O routines

Other insert files that you might want to include are

• ISYS/INS/VFMT.INS.lan: Variable formatting (VFMT) calls

• ISYS/INS/ERROR.INS.lan: Error reporting calls

·Substitute either .PAS (Pascal) or .C (C) for .Ian.

5-1 Insert Files

5.2 Driver-Specific Insert Files
Driver-specific insert files serve as links between the call side and the interrupt side of the driver and be­
tween the driver and the application. They fall into two categories: public and private. Public insert files
declare data structures and driver routines that the application can use, whereas private insert files declare
the structures and routines to which the driver alone refers. This division between public and private is
admittedly an artificial distinction, and you may wish to ignore it by creating only one driver-specific insert
file,· especially if your driver is simple and straightforward. But creating two insert files does have the ad­
vantage of presenting to the user, who may not care to know the inner workings of the driver, only what is
pertinent to interfacing the application with the driver. At any rate, we have followed the distinction here,
and the next subsections describe public and private insert files separately.

Examples of public and private insert files appear in the BM_EXAMPLE in Appendix E, sections E.1 and
E.2.

5.2.1 Private Insert File

The private insert file connects the call and interrupt sides of the driver. It is where you declare those in-
ternal components (flags, pointers, records, etc.) that are common to both sides. The three most imp or- ,/'--"\
tant of these components-the CSR page, the driver control block, and internal driver routines-are de-
scribed below.

CSR Page
The CSR page is,a record that defines the controller's internal registers that the driver needs to access,
such as the command, status, and address registers. It is through the CSR page that the driver reads and
writes to those registers. For this reason, it is important to set up each field in the CSR page so that it ex­
actly matches the position of the corresponding register in controller memory. This procedure ensures
against, for example, the driver writing to what it takes to be a write-only command register when in fact it
is a read-only status register.

Following is an example of a CSR page as declared in a private insert file:

mm_csr-page_t = [device] packed record case integer of
o : (command

status
pad_1
r_data
pad_2
int_status
pad_3
pad_4
d_data
int_enable
pad_5
pad_6
pad_7
pad_B
pad_9
d_data

1: (all
end;

char;
char;
char;
char;
char;
char;
char;
char;
char;
char;
char;
char;
char;
char;
char;
char) ;
array [0 .. 1023] of char);

The [device] attribute in this example is designed for use in a device driver to protect against any unde­
sired compiler optimization. Its function is explained more fully in Appendix C, section C.3. The record
itself is of the variant type so that, in this case, the CSR page can be accessed either as a whole or register
by register; it could, however, just as well have been constructed of fixed parts only, depending upon the
requirements of the driver. Each field is of the char data type because each register consists of eight bits­
the space allocated to the char data type. (Use of the char data type, or arrays of chars, to specify fields

Insert Files 5-2

o

o

o

o

ensures that the compiler does not perform improper compressions.) If any of the registers should consist
of a set of single-bit flags, each flag should be declared as a Boolean. The field all is declared as an array
of 1024 chars because that is the space allocated to any CSR page. Finally, pads are used where appropri­
ate to maintain proper spacing between registers. Note that pad_S through pad_9 could also have been
coded as an array:

pads: array [5 .. 9] of char;

In this CSR page, the interrupt enable register (int_enable), a write-only register, is offset at 09 hex from
the base address. If we were to remove the pads from the CSR page record, int_enable would then be off­
set at OS hex. Any attempt to write to this register would result in a bus time-out error since we would ac­
tually be trying to write to a'read-only register, the interrupt status register (int_status), which is offset at
OS hex. If you are in any doubt about the positioning of fields within the CSR page, you should use the
compiler's -MAP option so that you can check the field displacements within the CSR page definition.

The record that defines the CSR page is referenced as a pointer; for this reason, a declaration such as the
following also appears in the private insert file:

mm_csr-page_ptr_t = record case integer of
o : (c Amm_csr_page_t);
1 : (p : pbu_$csr_page-ptr_t);
end;

The pointer in this example is declared as a variant record so that it can be used in two different contexts,
either in the driver or in a GPI/O routine.

For tips on setting up the CSR page, refer to Appendix C, section C.1.

Driver Control Block
Although the driver control block is optional, you may find it useful to include one in your driver as a stor­
age area to be used for communication between the call and interrupt sides. It contains information that
is shared by different driver routines and continuously updated, such as status flags, buffer address and
length, and so on. The nature and layout of this information depend upon the requirements of the driver
and the convenience of the programmer. It should be noted that, for drivers written in Pascal, if the con­
trol block is referenced by the interrupt side, it must be allocated (using the DEFINE clause) in the inter­
rupt library; for drivers written in C, refer to Appendix C, subsection C.2.6.

The driver control block in BM_EXAMPLE is declared in BM.PVT.PAS as follows:

TYPE bm_$bmcb_t = RECORD
pbu_unit_number : pbu_$unit_t;
flags : bm_$flags_t;
pad: SET OF 0 .. 7;
ddf-ptr pbu_$ddf-ptr_t;
csr-ptr bm_$csr-page-ptr_t;
bm_iova pbu_$iova_t;

bufaddr bm_$both_t;
buflen : bm_$buf_Ien_t;
bm_address : bm_$bm_address_t;
command : char;
rem_len: bm_$buf_Ien_t;
status : bm_$status_t;
sio_status : status_$t;

io_addr : bm_$both_t;
io_len bm_$buf_Ien_t;
end; {of bm_$bmcb_t }

5-3

{ define communications area }
{ number of this pbu device }
{ a byte of flags }
{ a byte of padding }
{ pointer to mapped ddf }
{ pointer to mapped csr page }
{ start of our area of i/o address

space }
{ address of start of buffer }
{ total length of buffer }
{ address of start of bm area }
{ current command (read or write) }
{ length remaining to read or write}
{ status from last interrupt }
{ status from bm_$sio called from

interrupt side }
{ address of last i/o transfer }
{ length of last i/o transfer }

Insert Files

Internal Driver Routines
The only routines that must be referenced (using the EXTERN clause) in the private insert file are those
functions and procedures that are shared by the call and interrupt sides but not by the application. These
routines must be allocated in the interrupt side. In BM_EXAMPLE, there is only one such routine:
BM_SSIO. However, you may wish to list all external routines (except those already referenced in the
public insert file; refer to subsection 5.2.2) for documentation purposes.

If you are writing your driver in C, you needn't be as concerned about where to allocate global routines;
refer to Appendix C, subsection C.2.6.

5.2.2 Public Insert File

The public insert file is a convenience for the user, who wants to know only what is necessary to interface
the driver with the application. It therefore typically contains device status codes that the user may want
to access and any user-callable routines within the driver, such as status-checking routines and user-vis­
ible entry points. The three user-callable routines listed in the BM_EXAMPLE public insert file,
BM.INS.PAS, are BM_S READ , BM_SWAIT, and BM_SWRITE. /~

Insert· Flies 5-4

o

o

0

o

o

Chapter 6

Call-Side Routines

This chapter describes the following call-side routines:

• Initializa tion

• Command Processing

• Wait

• Clean-Up

The data-transfer routine, which may be included in either the call-side library or the interrupt-side li­
brary, is treated separately in Chapter 7.

For information on fault handling, refer to the descrption of the PFM calls in the DOMAIN System Call
Reference.

NOTE: Unlike Pascal, the C programming language is case sensitive; therefore, all sys­
tem procedure names (such as GPI/O routines) must be lowercase, consistently
with their appearance in the system insert files. Likewise, any global names in C
that are accessed by GPIIO routines must be lowercase.

6.1 Initialization
The device acquisition routine, PBU _ $ACQUIRE, calls the driver initialization routine to perform the
functions necessary to ready a controller for I/O operations. Typically, these functions include

• Initializing any internal storage for the device driver and writing to it the device unit number and
pointers to the CSR page and the DDF.

• Accessing the DDF (if necessary) to determine how the controller is configured on the system.

6-1 Cal/-Side Routines

• Ensuring that the controller is present on the bus.

• Allocating I/O resources and saving pointers to these resources within the driver's control block.
The resources allocated depend upon the method of data transfer used by the controller and the
type of bus.

• Performing controller-specific initialization. This step can include setting up any initialization con­
trol blocks or data structures that the controller requires.

• Enabling device interrupts.

It should be noted that the initialization routine need not return after it initializes the device: it can per­
form all required device I/O, service requests from other processes, and so on.

Chapter 7 describes resource allocation for DMA and memory-mapped I/O, and Chapter 8, subsection
8.2.2 describes device enabling and disabling. The following subsections give more information about the
required calling format for the initialization routine, initializing driver storage, testing for controller pres­
ence, and setting up controller-specific data structures. For an example of an initialization routine, see
the BM_$INIT routine in Appendix E, section E.3 (Pascal) and Appendix F, section F.3 (C).

6.1.1 Initialization Routine Format

The initialization routine is called by GPI/O software and must, therefore, conform to the following calling
sequence:

FORMAT

INPUT PARAMETERS

unit

OUTPUT PARAMETER

status

The device unit number in PBU_$UNIT_T format.

A virtual address of the DDF in PBU_$DDF _PTR T format. This data type is
described in Appendix B, section B .1.

The virtual address of the device's CSR page in PBU_$CSR_PAGE_PTR_T
format.

Completion status in STATUS_$T format.

If the initialization routine returns a nonzero status, PBU_$ACQUIRE unloads the driver, releases the de­
vice, and returns an error status to its caller.

If you are writing your driver in C, you should bear in mind that GPIIO software is written in Pascal and
therefore passes parameters by reference, whereas routines written in C expect parameters to be passed by
value. To compensate for this discrepancy, the initialization routine (and any other routine called by
GPI/O software) must declare each parameter with the indirection operator (*) so that your routine gets

Cal/-Side Routines 6-2

'\ ./

o

o

o

o

o

the value of the parameter and not its address. Refer to the example of the initialization routine written in
C in Appendix F, section F.3. For additional information on programming in C, refer to Appendix C,
section C.2.

6.1.2 Initializing Driver Internal Storage

Some device drivers may require an internal storage area, such as a driver control block, to be used for
communication between their call and interrupt sides. (The interrupt side of the driver allocates this stor­
age area, using the DEFINE clause; if you are writing your driver in C, refer to Appendix C, subsection
C.2.6.) If a storage area has been defined, it should be initialized by the initialization routine. (When
PBU _SACQUIRE maps the page that contains the device's CSRs into user-process address space, it
passes a pointer to the CSR page to the initialization routine. If the initialization routine has stored the
pointer, your program can refer to the CSR page as necessary.) The routine can then optionally store
pointers to the mapped CSR page and DDF within it. During an I/O transfer, the call and interrupt rou­
tines can read and write to it such information as I/O buffer location and length, current transfer status
(read or write), interrupt status, and other statistics.

In BM_EXAMPLE, the initialization routine (BM_SINIT) initializes the control block BMCB with the
following assignments:

bmcb.pbu_unit_number := unit;
bmcb.ddf-ptr := ddf_ptr;
bmcb.csr-ptr.p := csr_ptr;

{ unit number to pass pbu manager}
{ pointer to mapped ddf }
{ pointer to mapped controller page }

6.1.3 Testing for Device Presence

If a device is not present on the bus (MUL TIBUS or VMEbus only) or if the driver attempts to reference
a nonexistent CSR, the system generates a bus time-out error and returns the application program .to the
shell command level (unless it has specified a fault handler; refer to Chapter 7, subsection 7.1.5). The in­
itialization routine can test for a device's presence by reading or writing to its CSR with the routines
PBU_SREAD_CSR or PBU_SWRITE_CSR. If the read or write request causes a bus time-out error, the
routines suppress normal bus time-out handling and instead return an error status to the driver. In this
way, the driver can retain control even if the device is not responding or does not exist. (Device drivers
can also use PBU_SREAD_CSR and PBU_SWRITE_CSR to refer to addresses on a memory-mapped
controller; see Chapter 7, subsection 7.2.2.)

NOTE: The AT-compatible bus does not generate bus time-out errors, which means
that you cannot use PBU_SREAD/WRITE_CSR to test for device presence; in­
stead, you must tweak the appropriate device register and see if it responds as
you would expect if the device were present.

In the following segment from BM_EXAMPLE, BM_SINIT calls PBU_SWRITE_CSR in order to test for
device presence and to initialize it. After PBU_SWRITE_CSR returns, BM_SINIT checks status fora
nonzero value, indicating that the device was not present; if status is nonzero, program control returns to
PBU_SACQUIRE.

pbu_Swrite_csr(bmcb.pbu_unit_number,
bmcb.csr-ptr.cA.command,
ord(bm_init_cmd),
false,

status);

{ number of this device }
{ the command register }
{ initialization command}
{ do a byte, not word write to

command reg }
{ returned status }

IF status. all <> 0 THEN BEGIN {controller probably not there if error}
IF status.all = pbu_Sbus_timeout THEN status. all .- bm Sno_controller

ELSE status. fail .- true;
RETURN;
END;

6-3 Cal/-Side Routines

In the next example (taken from IDOMAIN_EXAMPLES/GPIO_EXAMPLESIAT_EXAMPLE), the
driver tests for the presence of the floppy controller on the AT-compatible bus by issuing a device-spe­
cific command. The SPECIFY command is used to initalize the controller, but it also be used to test for
device presence, since the only reason that the command might fail would be if the device were not re­
sponding. Thus, in the following segment, the driver assumes that, if the return status (Le., STS) from the
call to PROC_CMD_STS is set at any other value than OK, the device is not present:

f.command := specify;
proc_cmd_sts(spec_cmds, 3, 0, sts);
IF sts <> ok THEN
BEGIN

END;

error_$print(status) ;
RETURN;

{ tell the floppy what it looks like}
{ guess it's not there}

6.1.4 Initializing Controller Data Structures

Certain controllers, particularly those based on Intel 8089 110 processors, may need to use initialization
control blocks or other data structures that are located at preset, or hard-wired, memory addresses. Dur­
ing initialization, the controller makes DMA references to these control blocks that are indistinguishable
from normal DMA transfers to and from processor memory. If a controller uses hard-wired addresses
during initialization, the initialization routine must first allocate memory for these addresses.

Allocating Hard-Wired Control Blocks on the MULTIBUS
The initialization routine allocates hard-wired addresses by calling the routine PBU_$ALLOCATE_MAP,
specifying the memory's starting address within MUL TIBUS memory and giving a length, which must be
in 1024-byte increments. As stated in Chapter 1, subsection 1.2.2, each 110 map entry maps one page of
MUL TIBUS memory address space. PBU _$ALLOCATE_MAP allocates the 110 map entries that corre­
spond to the MULTIBUS address specified in the call, thereby reserving the addresses occupied by the
control blocks.

For example, if a controller refers to MUL TIBUS address FFF6 for an initialization control block, the in­
itialization routine calls PBU_$ALLOCATE_MAP and specifies MULTIBUS address FCOO (because it is
a page-aligned address) and a length of 1024. Because the routine specifies a particular address, the
force_flag parameter must be set to "true"; see Appendix B for a syntactic description of the GPIIO call
PBU_$ALLOCATE_MAP. If the driver needs to allocate two pages of address space in addition to the
page required during initialization, it specifies a MULTIBUS address of F400 (FCOO-800) and a length of
3072.

Controllers that use hard-wired control blocks during initialization greatly reduce the flexibility with which
the 110 map can be allocated. Moreover, if several peripheral devices are simultaneously in use, the
MUL TIBUS address that the controller requires might already be allocated to another controller. Since
most controllers allow you to specify hard-wired MULTIBUS addresses by setting switches on the control­
ler, you should refer to the information in Table 1-2 to avoid setting MULTIBUS addresses that Domain
controllers are likely to use.

NOTE: We make no guarantee that the addresses currently used by DOMAIN control­
lers will not change.

Defining Page-Aligned Control Blocks
Device drivers for controllers using hard-wired initialization control blocks or AT-compatible and VME
controllers that need to align a lK-byte buffer must also ensure that the data area used to define the con­
trol blocks is page aligned by allocating a buffer at least one page larger than the required size. The follow­
ing program allocates a page-aligned buffer for a data area less than or equal to one page, and then sets
the sixth byte in the page to 0 (Ubytes-per-page" is defined in pbu.ins.pas):

Cal/-Side Routines 6-4

o

o

o

o

o

PROGRAM TOUCH_PAGE;
%nolist;
%include '/sys/ins/base.ins.pas';
%include '/sys/ins/pbu.ins.pas';
%list;

TYPE controller_t = RECORD { Define the controller's page}
page: ARRAY[O .. bytes-per-page - 1]OF char;
end;

TYPE temp = RECORD CASE INTEGER OF { Dummy type for }
0: (p Acontroller_t); { manipulating pointer }
1: (i : integer32);
end;

VAR buffer: ARRAY[0 .. bytes-per-page*2-1]OF char;
pointer : temp;

BEGIN
pointer.p := addr(buffer); { point to start of buffer}

END.

pointer.i := (pointer.i + bytes-per-page - 1)
& (-bytes-per_page); {round up to page}

WITH pointer.pA: controller DO BEGIN
controller.page[5] .- chr(O);
END;

You can also page align control blocks and data buffers when you bind the driver by using the -ALIGN
option; refer to Chapter 10, subsection 10.1.1.

6.2 Command Processing
The driver's command-processing routine (or any other driver routine that performs command process­
ing) is the application's entry point into the driver: it receives I/O requests from the application and, on
the basis of those requests, passes the appropriate command to the device. There are several ways to set
up command processing in the driver. The driver may include routines for each kind of I/O request that
the application may issue; one routine may handle all requests, or the initialization routine may do all
command processing-it all depends upon the requirements of the application and the kinds of I/O that
the peripheral device services.

Command processing in BM_EXAMPLE is performed by two types of routines: (1) command-specific
routines that the application can call and (2) an internal routine that is called by the command-specific
routines to perform any common processing before passing control to the routine that starts the I/O opera­
tion. BM_$READ and BM_$WRITE are the command-specific routines, and BM_COMMAND is the
internal routine (see Appendix E, section E.3 [Pascal] and Appendix F, .section F.4 [C]). Depending on
whether the application wants the controller to do a read or write operation, it calls one of the two com­
mand-specific routines, passing as parameters the data buffer to be transferred, its address, and the bulk
memory address. These. two routines pass the same parameters, along with the specific controller com­
mands, to BM_COMMAND. First, BM_COMMAND takes care of any processing common to both read
and write commands, such as checking to see that the controller has been initialized and is not busy and
validating buffer length and address. Next, BM_ COMMAND wires down the buffer by calling
PBU_$WIRE (wiring ensures that no buffers are removed from memory, or "paged out," during the I/O
operation) and then calls BM_$SIO to start the I/O operation. The following program segment from
BM_COMMAND shows how it prepares for the call to BM_$SIO (the expressions in the assignment state­
ments were passed to BM_COMMAND as parameters by one of the command-specific routines):

6-5 Cal/-Slde Routines

----_ .. __ .--_._--_ - -_

bmcb.command .- command; { command to perform }
bmcb.io_addr .- bmcb.bufaddr; { first address to transfer }
bmcb.rem_len .- len; { length "remaining" to transfer }
bmcb.bm_address := bm_address; { where to start in bulk memory }
bm_$sio(status); { start up the i/o operation }

Finally, just before returning, BM_COMMAND enables interrupts by calling PBU_$ENABLE_DEVICE.

6.3 Waiting for Device Interrupts
The function of a wait routine is to defer any driver activity until either an interrupt occurs (usually indi­
cating the end of an I/O operation) or a ~pecified time-out value elapses. Wait routines, or for that mat­
ter any other driver routine, can wait for interrupts from a device by calling either PBU _$ WAIT alone or
both PBU_$GET_EC and EC2_$WAIT. The wait routine in BM_EXAMPLE is BM_$WAIT; see Ap­
pendix E, section E.3 (Pascal) and Appendix F, section F.6 (C).

6.3.1 Using PBU_$WAIT

Drivers (and their applications) use PBU _ $W AIT if they need to wait for only three events:

• Device interrupt

• Device timeout

• Quit fault from the terminal user

~\

\..,, ___ ,/'i

PBU_$WAIT waits for any or all of the these events by checking for either of the following conditions: \,

• The System Interrupt Handler has advanced the device's eventcount since the last call to
PBU_$WAIT. If the eventcount is advanced, PBU_$WAIT returns immediately. Eventcounts
are fully described in Chapter 8, section 8.3.

• A positive time-out value. If the time~out value is less than or equal to 0, PBU_$WAIT returns.
Otherwise, the routine waits for the specified interval or until the System Interrupt Handler re­
quests an eventcount advance.

PBU_$WAIT contains an internal flag that indicates whether or not the System Interrupt Handler has ad­
vanced the device's eventcount. When PBU_$WAIT returns, it resets this flag to indicate an eventcount
advance.

The caller can also permit quit faults (CTRL/Qs) to terminate the wait state by specifying a parameter to
PBU_$WAIT; refer to Appendix B for a description of PBU_$WAIT calling format.

The BM_$WAIT routine in BM_EXAMPLE specifies "index" as the output parameter of PBU_$WAIT.
Depending on whether the value of index is 0, 1, or 2, BM_$WAIT then determines which of the three
events occurred and acts accordingly. The following segment illustrates how BM _ $W AIT handles this
task:

IF NOT bmcb.flags.done THEN BEGIN

pbu_timeout := timeout; {value in seconds}
IF pbu_timeout = 0 THEN pbu_timeout .- 3600 * 1000 {default to 1 hour}

ELSE pbu_timeout := pbu_timeout * 1000;

index := pbu_$wait(
bmcb.pbu_unit_number, { number of this pbu device}
pbu_timeout, { number of milliseconds to wait}

Call-Side Routines 6-6

')
/'

I

o

o

o

o

o

true,
status) ;

{ true means allow quits while waiting}
{ returned status }

IF status. all <> 0 THEN BEGIN
status. fail .- true;
RETURN;

{ he didn't like something}

END;

END {of not done }

ELSE index .- 0;

CASE index OF

0: BEGIN

{ transfer already complete }

bm_status.all := bmcb.status.all;
IF bmcb.status.all = bm_$sio_error THEN status := bmcb.sio status
ELSE IF bmcb.status.all <> bm_$status_ok THEN status.all :=

bm.;..$io_error;
rem_len .- bmcb.rem_len; { residual count }
END;

1: status.all .- bm_$timeout;

END; {of CASE }

6.3.2 Using PBU_$GET_EC and EC2_$WAIT

A device driver or one of its applications may want to wait for more events than device interrupt, time­
out, or quit fault. For example, an application may be simultaneously handling a peripheral device and
fielding commands from the terminal. In this case, the application uses system routines PBU_SGET_EC
and EC2_SWAIT to wait for a variety of events, including device interrupt.

The driver routine or application specifies as arguments to PBU_SGET_EC the unit number of the device
and a key that indicates which eventcount to get (currently, the key must be PBU_SGET_DEVICE_EC).
PBU_SGET_EC returns a value that identifies the device's eventcount. Drivers need to call
PBU_SGET_EC only once during the time the device is acquired; they should store the returned pointer
for subsequent use. However, no errors occur if PBU_SGET_EC is called more than once.

Next, the application or driver routine constructs two lists:

• A list of identifiers for any eventcounts to be waited on, including the identifier returned by
PBU_SGET_EC

• A list of satisfaction values for each eventcount

The routine (or application) specifies these lists as parameters to EC2_SWAIT. This system routine waits
until one of the eventcounts reaches its corresponding satisfaction value and returns an index value that
indicat~s which eventcount was satisfied.

The following example shows how to wait for device interrupt with EC2_SWAIT. (For a description of
EC2_SWAIT and the other eventcount routines, refer to DOMAIN System Call Reference.)

ec_ptr_Iist[i] := dev_ec_ptr; { pointer returned by PBU_$GET_EC }
ec_val_Iist[i] := ec2_$read(dev_ec_ptrA)+1; { value of ec to wait for}
IF NOT op_already_done THEN BEGIN

ec_index := ec2_$wait(ec_ptr_Iist,ec_val_Iist,status);
IF ec_index = i THEN op_already_done := false;
END;

6-7 Cal/-Side Routines

In the example, op_already_done is a flag that the user-written interrupt routine sets when an interrupt is
received from the device. The example procedure checks the flag after it calculates the eventcount value
to wait for. In· general, whenever a program waits for an eventcount, it must provide a method (other than
the eventcount itself) by which it can identify whether or not the desired event has already occurred~

NOTE: The variable returned by PBU_$GET_EC is an EC_$PTR_T, which is not a nor­
mal pointer. Do not assume that it contains a virtual address.

The driver can go about other business while an I/O operation is in progress. In this case, the driver
should return an eventcount for the application to wait upon while the driver is off doing something else.

6.4 Performing Clean-Up Functions
User-written device drivers can optionally supply a clean-up routine to perform device-specific clean-up
functions before a device is released. The routine PBU_$RELEASE obtains the entry point of the clean­
up routine from the DDF and calls the routine during device release. The clean-up routine in BM_EX­
AMPLE is called BM_$CLEANUP; refer to Appendix E, section E.3 (Pascal) and Appendix F, section
F.9 (C). --"

Functions performed by the clean-up routine include

• Ensuring that no I/O is in progress when the device is released. The routine can perform this func­
tion either by waiting for any outstanding device I/O to complete or aborting any outstanding I/O.

• Clearing any pending interrupts from the device.

• Deciding whether or not to cancel the release process.

• For AT-compatible device drivers, ensuring that the last call to PBU_$DMA_START had a cor­
responding call to PBU_$DMA_STOP.

• Releasing any acquired I/O resources.

The clean-up routine is bound with the other call-side routines.

The clean-up routine is called by GPI/O software and must, therefore, conform to the following calling se­
quence:

FORMAT

cleanup_routine_name (unit, force_flag, status)

INPUT PARAMETERS

unit

Cal/-Slde Routines

The device unit number in PBU_$UNIT_T format.

A Boolean value that indicates whether or not the clean-up routine can abort
the device release operation. If this parameter is set to true, the device is re­
leased regardless of the status returned by the clean-up routine. If this flag is
set to false, the clean-up routine can abort the release procedure by returning
a nonzero status code. Upon receipt of the status, PBU_$RELEASE aborts
device release and returns to its caller. This flag is the same as the force_flag
parameter for PBU_$RELEASE.

6-8

o

o

o

o

o

OUTPUT PARAMETER

status Completion status in STATUS_$T format.

If you are writing your driver in C, you should bear in mind that GPI/O software is in written Pascal and
therefore passes parameters by reference, whereas routines written in C expect parameters to be passed by
value. To compensate for this discrepancy, the clean-up routine (and any other routine called by GPI/O
software) must declare each parameter with the indirection operator (*) so that your routine gets the value
of the parameter and not its address. Refer to the example of the clean-up routine written in C in Appen­
dix F, section F.9. For additional information on programming in C, refer to Appendix C, section C.2.

6-9 Cal/-Side Routines

o

o

o

o

o

Chapter 7

Transferring Data

Data can be transferred between the application and the device by means of DMA, memory mapping, or
programmed I/O-which method you use depends on the kind of controller your driver supports. GPI/O
routines are designed to facilitate the transfer, no matter what method you use.

We provide two kinds of calls, PBU_$ and PBU2_$, for several GPI/O operations. PBU_$ calls are re­
served for nodes with a 16-bit MULTIBUS; PBU2_$ calls are for use with the 20-bit MULTIBUS, AT­
compatible bus, and VMEbus. This manual refers to a PBU_$ routine and its PBU2_$ counterpart as
PBU [2]_$routine_name.

NOTE: Unlike Pascal, the C programming language is case sensitive; therefore, all sys­
tem procedure names (such as GPI/O routines) must be lowercase, consistently
with their appearance in the system insert files. Likewise, any global names in C
that are accessed by GPI/O routines must be lowercase.

7.1 DMA Transfers
A DMA transfer to or from processor memory occurs when a DMA controller makes memory references
to bus address space. We support DMA transfers on the MULTIBUS, AT-compatible bus, and VMEbus.
The following subsections describe how to use GPI/O routines to prepare for a DMA transfer on any of
these buses. You should also refer to Chapters 1 (MULTIBUS), 2 (VMEbus), and 3 (AT-compatible)
for additional bus-specific information.

7.1.1 DMA Transfers on the MUL TIBUS

As mentioned in Chapter 1, the I/O map translates memory references to MUL TIBUS address space into
processor memory references. Before the controller can initiate memory references, the device driver
must establish an association between the pages of MULTIBUS address space and the pages of processor
memory, known as mapping an I/O buffer.

Transferring Data

The driver maps an I/O buffer by

• Allocating MUL TIBUS address space for the controller

• Wiring the pages of the I/O buffer

• Setting up the 1/0 map to establish mapping between processor memory and MULTIBUS address
space.

NOTES: If a device driver has specified a 20-bit MULTIBUS address and is running on
a node with a 16-bit MULTIBUS, the GPI/O routines will return an error indi­
cation because the 16-bit MULTIBUS supports only 16-bit MULTIBUS ad­
dresses.

PBU2_$ routines used with MULTIBUS devices take addresses and lengths
specified as 4-byte integers rather than 2-byte integers. Drivers running on
nodes equipped with a 16-bit MULTIBUS can also use PBU2_$ routines; but
on nodes with a 20-bit MULTIBUS, a driver must not call a PBU_$ routine for
which there is a PBU2_$ counterpart. For this reason, it may be convenient al­
ways to use the PI!U2_$ routine, where one is available, so that the same driver
can run on either 16-bit or 20-bit MULTIBUS nodes.

Allocating MUL TIBUS Address Space
All controllers use the same MULTIBUS address space to access processor memory. The region is 64K
bytes in size for nodes with a 16-bit MULTIBUS and 1024K bytes for nodes with a 20-bit MULTIBUS.
Since I/O buffers concurrently in use by controllers must not overlap in MUL TIBUS address space, the
device driver must ensure against overlap by allocating a section of MULTIBUS address space for the
controller. You use the GPI/O routine PBU[21_$ALLOCATE_MAP to allocate the section for the con­
troller. The driver specifies the length of the I/O buffer to PBU[21_$ALLOCATE_MAP; the routine lo­
cates a portion of the I/O map that matches the given length and returns the -address of the first page of
MUL TIBUS memory allocated to the buffer.

If another device is active when the driver calls PBU[2]_$ALLOCATE_MAP, either the requested
amount of I/O map space may be unavailable or a hard-wired MUL TIBUS address may already be in use
(refer to Chapter 6, subsection 6.1.4). In this case, the driver has several choices:

• Wait for an interval and then retry the operation

• Report the error to the application program

• Inform the interactive user that the requested system resources are unavailable

The following call to PBU_$ALLOCATE_MAP (from the initialization routine of BM_EXAMPLE) allo­
cates an area of the I/O map corresponding to the 'largest block (32K bytes) that the driver ever reads or
writes. The constant BM_$BLOCK_LEN is declared in BM.INS.PAS as having a value of 32768;
BMCB.BM_IOVA contains the start of the allocated area of MULTIBUS address space.

bmcb.bm_iova .- pbu_$allocate_map(
bmcb.pbu_unit_number,
bm_$block_len,

Wiring 110 Buffers

false,
0,
status) ;

{ number of this pbu device }
{ maximum block size we'll use}
{ don't need a specific iova }
{ forced iova would go here }
{ returned status }

A buffer is wired when it is permanently resident in processor memory and is, therefore, unavailable to
the MMU's paging operations. Device drivers for MULTIBUS devices must wire their I/O buffers be­
cause the I/O map cannot handle the movement or absence of pages during an I/O operation.

Transferring Data 7-2

1,_._ /

o

o

o

o

o

A device driver wires an I/O buffer by calling the routine PBU[2]_$WIRE, specifying the buffer to be
wired and its length. A page that is part of a wired buffer cannot be wired again. If a page of the requested
buffer is already wired, PBU[2]_$WIRE returns an error indication to the driver.

The BM_COMMAND routine in BM_EXAMPLE calls PBU_$WIRE just before sending the read or write
command to the routine, as follows:

bmcb.buflen := len;

pbu_$wire(bmcb.pbu_unit_number,
buffer,
bmcb.buflen,
status);

IF status. all <> 0 THEN BEGIN;
status. fail .- true;
RETURN;
END;

{

{
{
{
{

{

save length of buffer to wire

number of this pbu unit}
buffer to wire }
length to wire (in bytes) }
returned status }

give up if something wrong }

bmcb.flags.buffer_wired := true; { remember we wired the buffer}

}

The size of a node's main memory determines the maximum number of 1024-byte pages that can be
wired by all drivers in the system. To determine the approximate maximum number of wired pages, sub­
tract 256 from the number of pages of memory that the node has. For example, for a node with one
megabyte of main memory, 1024 pages minus 256 (pages) equals 768, so drivers must wire fewer than 768
pages. The absolute maximum number of pages that can be wired is 4096.

The driver can also wire an I/O buffer by defining a permanently allocated storage area in the interrupt
routine and copying data to or from it for I/O. If the storage area is allocated in the interrupt module, it is
wired by virtue of being allocated in the interrupt side, which is itself wired; therefore, no call to
PBU[2]_$WIRE need ever be made. In the following example, the storage area is part of the driver con­
trol block, which is DEFINEd in the interrupt side (drivers written in C do not require the DEFINE
clause; refer to Appendix C, subsection C.2.6).

The private insert file specifies the dimensions of the buffer:

CaNST buflen = 4096; { buffer length in bytes }
buflast = buflen - 1; { index of last byte in buffer }
hdrlen = 4' , { # bytes in buffer header }

TYPE buf_t = ARRAY [0 .. temp_buflast] OF char; { buffer to wire

The buffer itself (BUF) is declared as an area of the control block:

TYPE control_block_t
unit:
ddf_ptr:
csr_ptr:

RECORD;
pbu_$unit_t;
pbu_$ddf_ptr_t;
csr_page_ptr_t;

{ control block for driver }

{ buffer to wire }

VAR dev_$cb:

The interrupt library DEFINEs the buffer, as well as any other routines and data structures that must be
be wired there:

DEFINE dev_$sio,
dev_$cb;

When the device is acquired and the interrupt side becomes wired, DEV _$CB.BUF is also wired-and,
therefore, cannot be paged out-so that data from the application's buffer can be copied to or from it for
DMA operations.

7-3 Transferring Data

----------- ------ ---

For timing considerations in wiring and unwiring an I/O buffer, refer to Appendix D, section D.3.

Setting Up the 1/0 Map
After the driver has allocated pages of MUL TIBUS address space for the buffer and wired the buffer into
processor memory, it must establish the mapping between the buffer and the pages of MULTIBUS ad­
dress space by calling the GPI/O routine PBU[21_$MAP. This routine takes three arguments:

• The I/O buffer

• The I/O buffer's length

• A MULTIBUS address within any page of the area allocated by PBU[21_$ALLOCATE_MAP

PBU[21_$MAP establishes the displacement within MULTIBUS address space for the buffer and returns
an address that corresponds to the start of the buffer.

If the buffer you want to map is permanently wired, you can call PBU[21_$MAP in the initialization rou­
tine, just after calling PBU[21_$ALLOCATE_MAP; otherwise, you should call it in one of the command­
processing routines or in the start I/O routine. In the following (from BM_EXAMPLE), PBU_$MAP is
called in the start I/O routine (BM_$SIO), just before touching the controller's command register. The
return value (CSR.IOVA) is the buffer's address, which is written to the controller's address register:

csr.iova := pbu_$map(bmcb.pbu_unit_number,
bmeb.bufaddr,

Preallocating 110 Resources

bmeb. io_len,
bmeb.bm_iova,

status);

{ number of this pbu unit}
{ virtual address of buffer }
{ length of buffer }
{ iova we got from

pbu_$alloeate_map }
returned status }

A device driver does not need to allocate and deallocate I/O map entries for each I/O operation. Instead,
when it initializes the device, the driver can allocate a portion of the I/O map that corresponds to the larg­
est buffer that will be used during I/O transfers. The driver can map buffers via the allocated I/O map en­
tries until the device is released.

Similarly, the device driver can "permanently" wire and map an I/O buffer at device initialization for the
duration of driver execution. During device initialization, the initialization routine can call the routines
PBU[21_$ALLOCATE_MA:P, PBU[21_$WIRE, and PBU[21_$MAP to establish a correspondence be­
tween this preallocated buffer and a section of MULTIBUS address space. The routine saves the MULTI­
BUS address returned by PBU[21_$MAP. To perform a DMA transfer, the driver copies data into the
preallocated buffer, loads the address returned by PBU[21_$MAP into the controller's DMA registers,
and initiates the transfer. The user-written clean-up routine frees the allocated I/O map space. Appendix
D, section D.3 discusses some performance advantages of a permanently wired buffer.

Another way to preallocate I/O resources is to define a preallocated buffer in the interrupt side of the
driver, as described in an earlier subsection, "Wiring I/O Buffers."

Dynamic Resource Allocation
Drivers for applications that move data directly to or from a file system object mapped into processor ad­
dress space usually wire and unwire a buffer for each I/O operation. For example:

map file jnto address space;
i := 0;
WHILE i < number _of_pages_in_file DO BEGIN

wire pages i to i+n-l;
do i/o;
unwire pages i to i+n-l;
i := i+n;
END;

Transferring Data 7-4

./

o

o

()

o

o

Note that the driver need not wire any pages used by the interrupt routine, as they are wired when the
driver is installed into user-process address space during device acquisition. Sometimes, however, the de­
vice driver may attempt to wire a buffer in the DAT A$ section of an application program that shares a
page with the DATA$ section of the interrupt routine. Because this page has already been wired,
PBU_$WIRE returns an error. In this case, the driver can wire the buffer by

• Placing the buffer in dynamic storage (the stack)

• Placing the buffer in a mapped object (which will always be page-aligned)

• Declaring a dummy array of one page immmediately following the buffer declaration

Scatter-Gather Operations
A scatter-gather I/O operation consists of reading (scattering) or writing (gathering) a single block of data
in MULTIBUS address space to or from discontiguous buffers in processor address space. For example,
when the operating system reads a DOMAIN disk block, it places the 32-byte header in supervisor mem­
ory and the 1024 bytes of data elsewhere in memory.

PBU[2]_$MAP can be used to implement limited forms of scatter-gather by observing the following rules:

1. The end of the first section of data to be read or written must fall on a page-aligned boundary.

2. The driver should map each subsequent section to a MULTIBUS address that is one page higher
than the MUL TIBUS page address of the previous section.

3. All blocks of data following the first section must be an integral number of pages in length and
must start on page-aligned boundaries. (The last section need not end on a page boundary.)

The following discussion of an example shows how to apply the rules when mapping a block of data to dis­
contiguous buffers. In this example, the block has a 5C-byte header and lAO bytes of data.

First, the driver calls PBU[2]_$ALLOCATE_MAP, which reserves an area of the I/O map and returns
the address of the first available page in MULTIBUS memory-in this example, 3000.

Next, the driver calls PBU[2]_$MAP, specifying iova 3000, the length 5C, and buffer address
2A9FA4-thestart of the area in processor address space where the header is to be transferred. The
buffer address is obtained by subtracting the length of 5C from a page-aligned address in processor ad­
dress space (2AAOOO), giving the starting address 2A9FA4. This procedure satisfies rule 1 by ensuring
that the first section ends on a page-aligned boundary. PBU[2]_$MAP returns the header's starting ad­
dress (33A4) in MUL TIBUS address space.

The lAO bytes of data are to be transferred to a buffer at address 2E4400, thus satisfying rule 3, which re­
quires each subsequent section to start on a page boundary. The driver calls PBU[2]_$MAP, specifying
iova 3400, the length of the data lAO, and the address 2E4400. PBU_$MAP returns a MULTIBUS ad­
dress 3400 for the data, in accordance with rule 2, which requires the driver to map each subsequent
block to a MUL TIBUS address that is one page higher than the MUL TIBUS address of the previous
block.

Figure 7-1 illustrates this example of mapping to discontiguous buffers.

7-5 Transferring Data

2A9COO

2AAOOO

I
I

Processor
Address Space

2E4400 .,.,......"...."....,,,.....,.,......,,.....,.,......,,....~ __J

~~~~i~ 2E45AO 

3000 

1/0 Map 

MULTIBUS 
Address Space 

Figure 7-1. Mapping Discontiguous Buffers 

7.1.2 DMA Transfers on the VMEbus 

The following restrictions apply to DMA operations on the VMEbus: 

• Because there is no address translation mechanism for the VMEbus, a driver for a VME device 
must not make any calls to PBU[2]_$ALLOCATE_MAP or PBU[2]_$MAP. 

• The driver wires its I/O buffer by calling PBU_$WIRE_SPECIAL, specifying as arguments the 
buffer to be wired and its length. The routine returns a list of physical addresses, which the driver 
sends to the device. 

• Our system operates on page (1024 bytes) boundaries. This means that, because there is no map­
ping mechanism between the VME device and physical memory, the device must support scatter­
gather (and the driver must be able to implement scatter-gather) if it is to perform a DMA opera­
tion of more than 1024 bytes or if the transfer is to cross a page boundary. 

7.1.3 DMA Transfers on the AT-Compatible Bus 

Because there is no address translation mechanism for the AT-compatible bus, a driver for an AT device 
must not make any calls to PBU[21_$ALLOCATE_MAP or PBU[21_$MAP. And since the DMA hard­
ware does not provide for scatter-gather operations, the amount of data that can be transferred in one 
continuous DMA operation must not exceed lK byte, must lie within a page boundary, and must not cross 
page boundaries. (Methods of aligning a buffer on a page boundary are discussed in Chapter 6, subsec­
tion 6.1.4, and Chapter 10, subsection 10.1.1. If the DMA hardware being used is the system DMA on 
the mother board rather than the DMA on the device, the driver must wire its I/O buffer by calling the 
routine PBU2_$WIRE. Devices having their own DMA hardware (so-called demand-DMA devices) 
must call PBU_$WIRE_SPECIAL, specifying as arguments the buffer to be wired and its length. The 
routine returns a list of physical addresses, which the driver sends to the device for its DMA hardware. 

Transferring Data 7-6 

/~. 



o 

C) 

o 

o 

Drivers for AT-compatible devices that do not have their own DMA hardware but use the DMA hardware 
on the mother board must call PBU_$DMA_START and PBU_$DMA_STOP to start and stop a DMA 
. operation. It is important that these two calls surround each DMA operation. If you make a call to 
PBU_$DMA_START without a subsequent call to PBU_$DMA_STOP, the channel you specified in 
PBU_$DMA_START becomes unavailable for any additional DMA activity; the next time you attempt to 
call PBU_$DMA_START, you will get a CHANNEL_IN_USE error message. If you get this message, 
however, you can call PBU_$DMA_STOP to release the channel. 

Drivers for devices using their own DMA hardware must call PBU_$DMA_START once, specifying the 
PBU_DMA_CASCADE option. This option reserves the DMA channel and provides bus arbitration. 
PBU_$DMA_STOP must be called when the device is released. 

NOTE: DMA lines typically float on the AT-compatible bus; refer to Chapter 3, section 
3.4 for important information on enabling and disabling DMA lines. 

The following program segments are from a driver for an AT-compatible device. Included here are parts 
of the call-side transfer routine (DMA_DATA), which initiates the DMA operation, and the interrupt 
routine (DEV _$INT), which services device interrupts and stops the DMA operation. The driver assumes 
that the data to be transferred is page aligned, but it does include a check to determine if the amount of 
data to be transferred exceeds the lK-byte limit per DMA operation. If the amount of data exceeds lK, 
the interrupt routine restarts the DMA operation for the next lK block of data and continues to do so un­
til all of the data has been transferred. 

First, the transfer routine: 

PROCEDURE dma_data { DMA data to/from the controller 
IN cb_ptr: dev_cb_ptr_t; { control block pointer } 
IN dir_read: boolean; { a flag: 

True = read data from device 
False = write data to device } 

IN va: univ_ptr; virtual address (pointer) to the 
the buffer to read/write } 

IN len: pinteger; length to dma in bytes } 
OUT status: status_$t return status 
) ; 

VAR 
dma_buf_ptr: Astring; 
dma_dir: pbu_$dma_direction_t; 
st: status_$t; 
cnt: pinteger; 

begin 
with cb_ptrA:cb, cb.csr_ptrA:csr do begin 

cb.dma_complete := false; { no DMA started yet} 
{ Enable the DMA request on the device before calling start dma. This 

must be done because the DMA line will float unless the dma enable bit 
is set. } 

cb.dev_control:= cb.dev_control + 
[dma_ienable, dma_enable]; { DMA interrupt enable, DMA enable 

csr.dev_control .- cb.dev_control; { write the driver's copy to the 
csr page } 

, if dir_read then cb.dma_dir := pbu_dma_read; 
else cb,dma_dir := pbu~dma_write; 

{if true, DMA read} 
{if false, DMA write} 

{ Check that that the data to DMA is in 1K chunks. } 

cb.dma_buf_ptr := va; 
if cnt > 1024 then begin; 

cb.dma_remainder .- cnt - 1024; 

7-7 Transferring Data 



cnt := 1024; 
end 

else cb.dma_remainder := 0; 

{ Call the PBU routine to setup and enable the DMA controller on the 
CPU board. } 

pbu_$dma_start (cb.pbu_unit, cb.dma_chan, cb.dma_dir, 
cb.dma_buf_ptrA, cnt, [], status); {start DMA } 

if status.code <> status_$ok then 
goto dma_fail; 

{ Wait for the DMA to complete. The interrupt routine will call 
pbu_$dma_stop if DM~ goes to completion. } 

while not cb.dma_complete do 
if (pbu_$wait (cb.pbu_unit, dey_timeout, true, status) <> 0) 

then exit; 
if not cb.dma_complete then begin { interrupt did not happen ... } 

status.all := dev_$dma_timeout; { ... DMA timed out ... } 

discard(pbu_$dma_stop (cb.pbu_unit, 
cb.dma_chan, st»; { ... so abort DMA. The discard function 

allows us to throwaway the value that 
this function returns-we don't need 
it-without the compiler complaining. } 

cb.dev control := cb.dev_control -
[dma_ienable, dma_enable]; {turn off device's DMA enables} 

' . ./ 

csr.dev_control := cb.dev_control; {write the driver's copy out to -~ 

the csr page } 
end; { if not cb.dma_complete } 

end; {with cb_ptrA, cb.csr_ptr A } 
return; 

end { dma_data }; 

Next, the interrupt routine (we omit some device-specific code at the beginning of the routine that checks 
for a command-complete interrupt): 

FUNCTION dev_$int: pbu_$interrupt_return_t; {device interrupt routine} 

var 
st: status_$t; 

begin 
dev_$int := [pbu_$interrupt_advance, 

pbu_$interrupt_enable]; 
with dev_$cb[O] :cb, cb.csr_ptrA:csr do 

{ default return} 
begin 

Check for DMA-complete interrupt. It is necessary to disable the DMA 
channel before disabling DMA on the device, because as soon as DMA is 
disabled on the device, the DMA request lines will float, causing spurious 
DMA cycles if the DMA channel were still enabled. } /~'\ 

if csr.dev_status.dma_done then begin 
discard (pbu_$dma_stop(cb.pbu_unit, cb.dma_chan, 

Transferring Data 7-8 



o 

o 

('--

U 

o 

o 

cb.dma_stop_stat»; { The discard function allows us to 
throwaway the value that this function 
returns - we don~t need it - without 
the compiler complaining. 

{ Make sure we don~t try to DMA more than 1K at a time. 
cb.dma_remainder is initialized in dma_data and is updated here. } 

if cb.dma_remainder <> 0 then begin { more to do } 
dev_$int := [pbu_$interrupt_enable]; 

{ adjust the buffer pointer to the 1K block } 

cb.dma_buf_ptr := univ_ptr (integer32 (cb.dma_buf_ptr) + 
1024) ; 

{ check to see if we have more than 1k left to transfer } 

if cb.dma_remainder > 1024 then begin 
cnt := 1024; 
cb.dma_remainder .- cb.dma_remainder - 1024; 
end 

else begin 
cnt := cb.dma_remainder; 
cb.dma_remainder .- 0; 
end; 

{ start up the DMA channel for the next 1K block 

cb.dev control .- cb.dev_control - [dma_enable, 
dma_ienable] ; { disable DMA interrupt 

and DMA } 
csr.dev_control .- cb.dev_control; copy to CSR page } 

cb.dma_complete .- true; { flag dma complete 
end; { if - then - else cb.dma remainder <> 0 } 

end; { if csr.dev_status.dma_done 
end; { with dev_$cb[O] , cb.csr_ptrA } 

end; { dev_$int } 

For another example of a DMA data transfer on the AT-compatible bus, see IDOMAIN_EXAMPLESI 
GPIO_EXAMPLES/AT_EXAMPLE. This driver lets the System Interrupt Handler do all the interrupt 
processing. Also, to speed up the entire I/O operation, it uses a technique known as double buffering: it 
allocates and wires two buffers, and while the driver is waiting for the device to complete its DMA into 
one buffer, it is copying the contents of the other buffer into the application's file. 

7.1.4 Releasing 1/0 Resources After Data Transfer 

The driver uses GPI/O routines to release I/O resources following the completion of a DMA transfer. The 
following paragraphs describe what routines to call and how to use them. (Those paragraphs that apply 
only to the MUL TIBUS are so indicated). 

7-9 Transferring Data 



Unmapping the I/O Buffer on the MUL TIBUS 
Device drivers do not need to unmap an I/O buffer after a data transfer. If the driver re-calls 
PBU [2]_$MAP and specifies the same area of the I/O map, the operation effectively unmaps the previ­
ously mapped buffer. A driver usually unmaps an I/O buffer with PBU[2]_$UNMAP to protect it from er­
roneous references by a controller. The MULTIBUS address specified as an argument to the call 
PBU[2]_$UNMAP must be the address returned by PBU[2]_$MAP. 

Unwiring the I/O Buffer 
Device drivers that have wired their buffers using PBU[2]_$WIRE or PBU_$WIRE_SPECIAL must un­
wire them with PBU[2]_$UNWIRE unless they are going to use them again for another I/O operation. If 
the buffer is a file system object into which data has been read, the driver should ensure that the data is 
sa ved when the file is closed by 

• Copying the buffer to another area in memory before unwiring it, or 

• Setting to "true" the modify_flag argument to PBU[2]_$UNWIRE so that PBU[2]_$UNWIRE 
marks each page of the buffer as having been modified before unwiring it ,---" 

Deallocating the I/O Map on the MUL TIBUS 
Because each MUL TIBUS device can have only one piece of the I/O map allocated to it at a time, the 
device driver must call PBU[2]_$FREE_MAP to deallocate I/O map entries before it can call 
PBU[2]_$ALLOCATE_MAP again. However, the driver need not allocate the I/O map dynamically. Re­
fer to subsection 7.1.1 for more information about I/O resource allocation. 

7.1.5 Releasing 1/0 Resources During Faults 

If a device driver has allocated I/O resources and a synchronous or asynchronous fault occurs, the allo­
cated resources (I/O map entries, wired buffers, or mapped memory) are not deallocated unless the appli­
cation program or driver establishes a clean-up handler or the process terminates. 

The application or driver uses the system function PFM_$CLEANUP to establish its own fault handling 
routine. The device driver should also contain a clean-up routine that deallocates I/O resources and dis­
ables the device. The driver should monitor the allocation of I/O resources, including 

• The area of the I/O map that has been allocated (applicable only to the MULTIBUS) 

• Locations and sizes of wired buffers 

• Bus memory addresses and sizes of mapped buffers 

When a fault occurs, the application's fault handler, as one of its functions, calls the driver clean-up rou­
tine to release any allocated I/O resources. 

If the initialization routine contains the entire application, the application need not establish a fault han­
dler. The AQDEV command (through PBU_$ACQUIRE) establishes a fault handler before calling the in­
itialization routine, so that any fault during initialization causes the device to be released, thereby releasing 
any allocated resources. 

7.2 Memory-Mapped Transfers 
A memory-mapped controller contains on-board memory that can store data received from external de­
vices.However, the controller itself does not transfer the blocks of data to processor address space, as "it 
would if it performed DMA; instead, the device driver moves the data to or from controller memory. The 
3COM controller is an example of a memory-mapped controller. 

Transferring Data 7-10 



o 

o 

o 

o 

o 

Before a device driver can refer to controller memory, it must associate the area of controller memory 
with an area of processor address space. Device drivers running on a node equipped with a 16-bit MUL­
TIBUS call GPI/O routines PBU_$MAP_CONTROLLER and PBU_$UNMAP_CONTROLLER to map 
and unmap controller memory to and from processor address space. Drivers for 20-bit controllers running 
on nodes with a 20-bit MULTIBUS call the two GPI/O routines PBU2_$MAP _CONTROLLER and 
PBU2_$UNMAP _CONTROLLER. Drivers for VME and AT-compatible devices call the two GPI/O rou­
tines PBU2_$MAP _CONTROLLER and PBU2_$UNMAP _CONTROLLER. 

NOTE: If a node with a 20-bit MUL TIBUS is fully configured with 3M bytes of mem­
ory, only 512K bytes of the MULTIBUS address space is available for memory­
mapped operations. 

7.2.1 Referencing Controller Memory 

Certain restrictions apply when referencing controller memory on the MULTIBUS, VMEbus, and AT­
compatible bus. 

For the MULTIBUS: 

• Controller memory must be page aligned and must occupy only the first 32K of MULTIBUS 
memory space on nodes with a 16-bit MULTIBUS and 1M byte on nodes with a 20-bit MULTI­
BUS. (For more controller configuration information, see Chapter 1, section 1.3). 

• The area of MULTIBUS memory space occupied by the controller memory is permanently un­
available to DMA operations by any controller. 

• On the 16-bit MULTIBUS, neither the memory-mapped controller nor any other controller can 
use the MULTIBUS to read or write to memory on the memory-mapped controller. The reason 
for this restriction is that the I/O hardware interprets memory references on the bus as DMA ref­
erences to processor memory. If the reference is a memory write, the data is transferred to both 
controller memory and processor memory, causing a bus time--out error if the I/O map has not 
been set up correctly. If the reference is a memory read, the I/O hardware and the controller si­
multaneously become bus masters, resulting in corrupted data. 

This restriction does not apply to the 20-bit MULTIBUS. 

For the VMEbus: 

• Controller memory must be page aligned. 

• Controller memory must lie within the area reserved for it in processor physical address space; re­
fer to Table 2-1. 

• The area of memory space occupied by controller memory is permanently unavailable to DMA 
operations by any controller. 

For the AT-compatible bus: 

• Controller memory must be page aligned. 

• Controller memory must occupy user-available locations in processor physical address space; re­
fer to Table 3-2. 

7.2.2 Mapping Controller Memory 

The device driver calls PBU [21_$MAP _CONTROLLER to map c'ontroller memory to processor address 
space. PBU[21_$MAP _CONTROLLER returns a virtual address that represents the start of the mapped 

7-11 Transferring Data 



area in processor address space. Any subsequent reads or writes to this area will read or write directly to 
controller memory. The driver can use PBU_$READ_CSR and PBU_$WRITE_CSR to reference the 
mapped memory. These routines suppress normal bus time-out generation if part of the memory is not 
responding. 

NOTE: The AT-compatible bus does not generate bus timeouts, which means that you 
cannot use PBU_$READ/WRITE_CSR to test for controller presence; instead, 
you must tweak the appropriate device register and see if it responds in a predict­
able fashion to determine if the device is present. 

The following segment is· from the initialization routine for a driver supporting a memory-mapped control­
ler. The routine calls PBU_$MAP_CONTROLLER and PBU_$READ_CSR to test if the controller is pre­
sent on the bus and, if it is, to initialize it; CBP has been declared as a pointer to the driver control block. 

with cbpA do begin 

end; 

if status.all <> status_$ok then begin; 
status. fail .- true; 
return; 
end; 

{ Read the status regi.ster with· read_csr to see if the controller 
is really there. } 

pbu_$read_csr (pbu_unit, mem_ptrA.csr, 
i, false, status); 

if status. all = pbu_$bus_timeout then begin 
status.all .- dev_$no_controller; 
return; 
end; 

if status.all <> status_$ok then begin 
status. fail .- true; 
return; 
end; 

flags := flags + [init]; tell everyone we're initialized} 

{ Issue a reset command to the controller, then go online. From here on in, 
we depend on dev_$cleanup to clean up if we get an error. } 

dev_$set_mode (unit, dev_$reset, [], status); 
if status. all <>. status_$ok then return; 
dev_$set_mode (unit, dev_$online, [], status); 
if status.all <> status_$ok then return; 

The following precautions apply only to the MULTIBUS: 

• PBU[2]_$MAP _CONTROLLER makes the area of MULTIBUS memory space allocated to the 
controller unavailable for any subsequent DMA operations. Note that the MUL TIBUS addresses 
required for the controller may already be allocated for a DMA transfer. To prevent this situation 
from occurring, application programs should acquire memory-mapped devices before DMA de­
vices. 

Transferring Data 7-12 



o 

o 

o 

o 

o 

• Because the hardware has no indication that a memory-mapped controller is present until 
PBU[21_$MAP _CONTROLLER is called, the I/O map allocation routines may allocate, for the 
memory-mapped controller or for another controller, an liD map area that overlaps the area allo­
cated to the memory-mapped controller. As a precaution, you should configure the controller 
memory to occupy the high end of MULTIBUS memory space (O-7FFF on nodes with a 16-bit 
MUL TIBUS, O-FFFFF on nodes with a 20-bit MULTIBUS), since the I/O map allocation rou­
tines allocate I/O map areas from low addresses to high addresses. 

• If the driver of a memory-mapped controller needs to perform a DMA transfer, it can call 
PBU[2]_$ALLOCATE_MAP to allocate another area of the I/O map. However, the device 
driver must call PBU[21_$MAP_CONTROLLER before calling PBU[21_$ALLOCATE_MAP. 

7.2.3 Unmapping Controller Memory 

Drivers must call PBU[2]_$UNMAP _CONTROLLER to unmap controller memory. If the driver needs to 
retain an image of the controller memory, it must copy the memory to another area of processor address 
space before calling PBU[2]_$UNMAP_CONTROLLER. 

7.3 Programmed 1/0 
In programmed I/O, the processor transfers the data data one word (or byte) at a time, testing a device 
register following each transfer to determine if it was complete. A device for any bus may perform pro­
grammed liD, provided it is equipped with the necessary interface. 

Writing a data transfer routine using programmed I/O is much the simplest of the three methods-there 
are no buffers to allocate and wire (and deallocate and unwire), no I/O map (in the case of the MULTI­
BUS) to set up, no calls to PBU_$DMA_START/STOP (in the case of the AT-compatible bus). But on 
the MULTIBUS and VMEbus, programmed I/O is also generally the slowest, since (1) the rate of transfer 
is limited to one word or byte at a time, (2) the transfer itself is under the control of software rather than 
hardware, and (3) the device must inform the processor after each transfer. In the case of the AT-com­
patible bus, however, programmed I/O is appreciably faster than DMA because the processor is so much 
faster than the DMA hardware on the mother board and because DMA transfers on the AT-compatible 
bus are limited to 1K byte. Thus, given the choice, you may wish to opt for programmed I/O, especially in 
drivers for slow (e.g., serial lines) or fast (e.g., hard disk) buffered devices, and reserve DMA for devices 
of intermediate speed (e.g., floppy disk). 

7-13 Transferring Data 



... ", 



o 

o 

o 

o 

c 

Chapter 8 

Interrupt-Side Routines 

The interrupt side differs from the call side in that all memory on the interrupt side is wired to prevent 
paging. How this affects what you can and cannot do with the interrupt side is the subject of section 8.1. 
Not all drivers require an interrupt side. Whether or not you include one in your driver depends on 
whether you want the driver or the System Interrupt Handler to handle interrupts. Refer to subsection 
8.2.3 for a comparison of the way that the System Interrupt Handler processes interrupts with the way a 
user-written interrupt routine does. Also, refer to Appendix D, section D.2 for interrupt-processing 
times. If you decide to include an interrupt routine in your driver, then the interrupt side must be bound 
separately from the call side; refer to Chapter 10, section 10.1. 

Included in this chapter is a description of the Start I/O (SIO) function. Although an I/O operation may 
be started in the call side of the driver, it must be started in the interrupt side if the interrupt routine is go­
ing to call it. 

NOTE: Unlike Pascal, the C programming language is case sensitive; therefore, all sys­
tem procedure names (such as GPI/O routines) must be lowercase, consistently 
with their appearance in the system insert files. Likewise, any global names in C . 
that are accessed by GPI/O routines must be lowercase. 

8.1 Dos and Don'ts of the Interrupt Side 
The interrupt side differs from the call side because it is wired to protect the address space occupied by 
the interrupt routine from memory management paging operations. This means that, for drivers written in 
Pascal, any routine or data structure referenced by the interrupt routine must be installed and DEFINEd 
in the same module as the interrupt routine. As a result, the interrupt side is set up somewhat differently 
from the call side. (This restriction does not apply to drivers written in C; refer to Appendix C, subsection 
C.2.6.) 

No interrupt-side routine must ever reference unwired memory, shared nonglobal memory, or global 
memory. This restriction applies to referencing'library routines such as PGM and VFMT calls and doing 
reads or writes in Pascal or C. Such references could cause a page fault, thus aborting interrupt processing 

8-1 Interrupt-Side Routines 



and generating a fault in the driver process; refer to subsection 8.2.4. The only GPI/O routines that an in­
terrupt-side routine can call are PBU_$MAP, PBU2_$MAP, PBU_$UNMAP, PBU2_$UNMAP, 
PBU_$DEVICE_INTERRUPTING (which determines whether an interrupt has occurred), 
PBU_$DMA_START, and PBU_$DMA_STOP. 

Because any reference that an interrupt-side routine makes to globals must be resolved internally to the 
interrupt library, all routines and data structures referenced in the interrupt side must be allocated there. 
Thus, for example, you must allocate the driver control block (using the DEFINE clause, if your driver is 
written in Pascal) within the interrupt side in order to reference it there. The same holds true for rou­
tines. To ensure that the interrupt side makes no unresolved references, we recommend that you specify 
the -SYS option when you bind the interrupt library. This option produces a listing of all system globals 
that cannot be resolved within the input object module; a successful binding should result in the message, 
"All globals are resolved" (refer to Chapter 10, subsection 10.1.2). 

NOTE: PBU_$ACQUIRE and AQDEV will refuse to load an interrupt library having un­
resolved globals. 

A driver can contain several interrupt routines to handle a device that interrupts on more than one request 
line. However, the size of the interrupt module-the interrupt routine(s) and any other procedures bound 
with it-must not exceed 32K bytes, including procedure, data, and debug information. ,/ " 

8.2 The Interrupt Routine 
Drivers handle interrupts by performing the following functions: 

• Enabling and disabling interrupts from the device 

• Waiting for interrupts from the device 

• Processing (optionally) device interrupts with one or more interrupt routines 

The following subsections discuss these functions as well as other aspects of interrupt routines. 

8.2.1 Interrupt Routine Format 

The interrupt routine is called by GPI/O software and must, therefore, conform to the following format: 

FUNCTION interrupt_routine (unit: pbu_$unit_t) : pbu_$interrupt_t; 

The input parameter, unit, is optional (for more information, refer to Chapter 9, section 9.6). The output 
parameter, return_flags, is a set of flags in PBU_$INTERRUPT_FLAGS_T format that specify actions 
that the System Interrupt Handler is to perform. Possible values are 

• PBU_$INTERRUPT_ADVANCE, which directs the System Interrupt Handler to advance the de­
vice's eventcount 

• PBU_$INTERRUPT_ENABLE, which directs the System Interrupt Handler to re-enable inter­
rupts from the device 

8.2.2 Enabling and Disabling Device Interrupts 

On all buses except the VMEbus, a hardware interrupt mask register controls the processor's receipt of in­
terrupts. Each bit within the register corresponds to one of the interrupt lines (0-7). Resetting the bit pre­
vents the processor from receiving interrupts from the device. If the device requests an interrupt and the 
interrupt mask bit is reset, the interrupt is taken when the bit is set. 

Interrupt-Side Routines 8-2 



o 

o 

o 

o 

o 

. Device interrupts are automatically disabled under the following conditions: 

• At system initialization (all device interrupts disabled) 

• After the device is acquired 

• When the System Interrupt Handler intercepts an interrupt from the device, regardless of whether 
the driver includes a user-written interrupt routine 

• When the device is released 

• During system shutdown 

When the device driver requires that the processor receive interrupts from the device, it enables interrupts 
by calling the routine PBU_$ENABLE_DEVICE. This routine clears the device's interrupt mask bit, per­
mitting the processor to receive interrupts from the device. Calling the routine PBU_$DISABLE_DEVICE 
sets the interrupt mask bit, which prevents receipt of device interrupts. 

Any of the routines that make up the call side of the driver can call PBU_$ENABLE_DEVICE and 
PBU_$DISABLE_DEVICE to prevent the interrupt routine from running during the execution of critical 
sections of code. The interrupt routine can optionally enable interrupts by setting the appropriate return 
value, but it cannot call PBU_$ENABLE_DEVICE or PBU_$DISABLE_DEVICE. In BM_EXAMPLE, 
BM_COMMAND calls PBU_$ENABLE_DEVICE just after it calls BM_$SIO to start the I/O operation, 
and BM_$CLEANUP calls PBU_$DISABLE_DEVICE as part of the release routine. In AT_EXAMPLE 
(which does not have an interrupt routine), interrupts are first enabled in the device initialization routine 
(START_FLOP) and re-enabled after each call to PBU_$WAIT in driver routine PROC_CMD_STS. 

Of course, the controller itself may provide its own means of enabling and disabling interrupts that the 
driver can directly access. Refer to the controller documentation. 

NOTE: Interrupt lines typically float on the AT-compatible bus; refer to Chapter 3, sec­
tion 3.4 for important information on enabling and disabling interrupts. 

8.2.3 Processing Device Interrupts 

Processing a device interrupt proceeds through three stages: 

1. When an interrupt occurs, control is transferred to the System Interrupt Handler. 

2. If a user-written interrupt routine exists, the System Interrupt Handler transfers control to this 
routine for further interrupt processing~ 

3. The user-written interrupt routine returns control to the System Interrupt Handler, which returns 
from the interrupt. 

The System Interrupt Handler synchronizes operations with driver routines using eventcounts. An 
eventcount is an EC2_$EVENTCOUNT type that programs can define to count the occurrence of a spe­
cific event. The eventcount may be shared among two or more processes, any of which can increment the 
eventcount to mark the passing of an event. 

Each device has an associated eventcount. The System Interrupt Handler can advance this eventcount to 
indicate that an interrupt has occurred. The driver's call side waits for an interrupt to occur by waiting for 
this eventcount to advance, as does the BM_$WAIT routine in BM_EXAMPLE. Thus, the device's 
eventcount provides the method by which the interrupt handler can signal to the driver's call side that an 

. interrupt has completed. Programming with General System Calls describes eventcounts in detail. 

8-3 Interrupt-Side Routines 



Depending on the requirements of the device and your driver, you may decide to let the System Interrupt 
Handler do all of the interrupt processing and not include an interrupt side in your driver. The advantage 
of not including an interrupt side is that you decrease the time it takes for program control to return from 
the System Interrupt Handler to the call side. For an example of a driver that does not have an interrupt 
side, see IDOMAIN_EXAMPLES/GPIO_EXAMPLES/AT_EXAMPLE. For information about interrupt 
processing overhead, refer to Appendix D, section D.2. 

Processing by the System Interrupt Handler 
When the System Interrupt Handler gains control, it performs the following functions: 

• After determining which device has requested the interrupt, it disables further interrupts from the 
device by resetting the appropriate bit in the interrupt mask register. 

• If a user-written interrupt routine exists; the System Interrupt Handler transfers control to it. Oth­
erwise, the handler advances the eventcount associated with the device and exits. Note that in the 
latter case the handler does not enable interrupts from the device when it exits, and the driver 
must make another call to PBU_$ENABLE_DEVICE if it wants to re-enable interrupts. 

Processing by the User-Written Interrupt Routine 
The user-written interrupt routine performs device-specific interrupt processing. Typically, these func­
tions include 

• Reading the device's status register(s) by referencing offsets into the CSR page 

• Writing to the device's CSRs to acknowledge the interrupt 

• Saving information about the interrupt for use by other driver functions 

• Determining whether or not the device must perform more I/O, and restarting the device or call­
ing an SIO routine 

• In the case of the MULTIBUS, calling PBU[21_$MAP to map a new I/O buffer 

• Determining whether any other driver functions should be notified of the interrupt 

• Determining whether or not to re-enable interrupts from the device 

• Determining whether or not to advance the eventcount associated with the device 

For an example of a user-written interrupt, refer to Appendix E, section E.4 (Pascal) and Appendix F, 
section F. 8 (C). 

8.2.4 Faults in User-Written Interrupt Routines 

As noted in section 8.1, a user-written interrupt routine is not allowed to generate any faults. If a fault 
does occur during interrupt processing, the operating system takes the following actions: 

1. It locates the process owning the device, and saves fault diagnostic information at thelow end of 
the interrupt routine's stack. 

2. It generates an asynchronous fault for the owner process. The fault status is 
fault_$pbu_user_int_fault (in ISYS/INS/FAULT.INS.lan). ,- '" 

3. It discontinues processing of the interrupt, advances the eventcount for the device, and resumes 
the interrupted process. 

Interrupt-Side Routines 8-4 



o 

o 

o 

o 

o 

4. When the owning process next gains control, it receives the fault status that the system generated 
in Step 2. 

At the command level in the owning process, information about the fault can be obtained by using the 
FST (Fault_Status) command, as in the following example: 

$ # This sequence gives the fault info for the owning process: 
$ # 
$ fst -a 
Fault Diagnostic Information 
Fault status 00120017: 
fault in user-space interrupt handler for pbu device (OS/fault handler) 
User Fault PC 0001AB5A 
00-07: 00120017 00000030 00000004 00000074 FFFF0003 00000004 00000003 00000005 
AO-A7: 0020851C 00E10CB8 00E10DD2 00EOF25E 00EOF25E 00049064 00276BEO 00276BCO 
Supervisor ECB 00000000 
Supervisor SR 0000 
Supervisor PC 00000000 
$ # 
$ # ... and this sequence tells what happened to the interrupt routine: 
$ # 
$ fst -a -u <unit_number> 
Fault Diagnostic Information 
Fault Status = 00120001: 
odd address error (OS/fault handler) 
Access Addr 00000001 
IR FFFC 
Acc. Info 1101 
User Fault PC 002B8222 
00-07: 00000004 00000001 00000000 FFFF0004 FFFFFFFF FFFFFFFF OOOOFFFF 00000001 
AO-A7: 002B82C4 002C876E 00000001 00276B04 00E47DEO 002B82D4 002C875E 002C874E 
Supervisor ECB 00000000 
Supervisor SR 0000 
Supervisor PC 00000000 

The User Fault PC, along with a map of the interrupt library and the information printed by AQDEV with 
the -DB option, can be used to isolate the logic that caused the fault. 

8.2.5 Mapping Buffers from the Interrupt Routine 

Drivers for MUL TIBUS devices that need to queue more data buffers than they can transfer at one time 
can facilitate transfers by calling PBU[21_SMAP (and PBU[21_SUNMAP) from their interrupt routines. 
An outline of this sequence of events follows: 

1. The driver's resource allocation routines obtain the data to be transferred and wire down the 
needed buffers until they reach the limit set by PBU[21_SWIRE (refer to Chapter 7, subsection 
7.1.1). 

2. The driver calls PBU[21_SMAP to map the first buffer and starts the I/O transfer. 

3. When the interrupt routine gains control at the end of the first transfer, it saves the ending status. 
If there is another buffer waiting to be transferred, the interrupt routine calls PBU[21_SMAP and 
starts another I/O transfer. 

8-5 Interrupt-Side Routines 



Mapping buffers from the interrupt routine en~ures a minimal delay between data transfer startups, be-
cause the interrupt routine need not reactivate the call side of the driver until an entire sequence of I/O ,/~ 

has finished. 

Note that DMA drivers for AT-compatible devices can use this same technique, except that they would 
call PBU_$DMA_START and PBU_$DMA_STOP instead of PBU[2]_$MAP and PBU[2]_$UNMAP. 

8.3 Starting an 1/0 Operation 
The SIO routine is that part of the driver which actually performs the data transfer. The mechanics of the 
data transfer have already been described in Chapter 7. What needs to be said here is an explanation of 
why you might want to include an SIO routine in the interrupt side. Why, then? Mainly because the 
driver may have more data to transfer than can be handled in one I/O operation and because the interval 
between I/O operations is shorter when the interrupt side interacts directly with the SIO routine rather 
than going through the call side. In any case, if the interrupt routine (or any routine installed in the inter­
rupt-side library) calls the SIO routine, then it must be installed in the interrupt-side library. 

In the sample driver in BM_EXAMPLE, the SIO routine (BM_$SIO) is called by both call and interrupt 
sides and is, therefore, included in the interrupt side; refer to Appendix E, section E.4 (Pascal) and Ap­
pendix F, section F.S (C). 

Interrupt-Side Routines 8-6 

/ 



o 

o 

o 

o 

o 

Chapter 9 

Shared Drivers 

This chapter describes how to design and write shared device drivers. A shared driver allows different 
processes to multiplex different operations on such devices as the Ethernet controller. 

The general organization of a shared driver is the same as for a private driver, consisting of a call side, 
interrupt side, and insert files. Likewise, the program CRDDF creates a DDF for a shared driver in the 
same way as it does for a private driver: arguments to the program specify the unit number, call and 
interrupt libraries, initialization and clean-up entry points, interrupt entry points, and other useful infor­
mation. 

But whereas the private driver resides in user private address space where it is accessible only to the 
process assigned to that address space, the shared driver resides in global address space where it is accessi­
ble to any process that wants it. This difference impacts the design of the shared driver, which must be 
capable of handling calls from multiple processes and keeping them separate from each other. 

See IDOMAIN_EXAMPLES/GPIO_EXAMPLES/SHARED_EXAMPLE -for an example of a shared 
driver. 

9.1 Controlling Multiple Processes 
The chief design consideration of a shared driver is how to control multiple processes attempting to access 
the same procedure or data structure. Specifically, a shared driver must be designed to perform these 
functions: 

• Mutual excluslon-that is, preventing two or more processes from getting into the call library at 
the same time and tripping over each other 

• Synchronization among client processes where one may be controlling resources on which oth­
ers ne~d to wait 

9-1 Shared Drivers 



9.1.1 Mutual Exclusion 

Any routines in the call-side library that update shared data structures, including those that actually 
control the device, must be protected with mutual exclusion (MUTEX) locks-that is, surrounded by calls 
to MUTEX_SLOCK and MUTEX_SUNLOCK. This precaution ensures that only one process can be 
executing in the body of a procedure at a time. A procedure designed for mutual exclusion would typi­
cally look like this: 

procedure P (parameters); 
var lock: mutex_lock_rec_t; 
begin 

if mutex_$lock(lock,wait_time) then 
begin 

end {P}; 

{ body of procedure } 

mutex~$unlock (lock); 
end 

It should be noted that prior to releasing the lock-either for the purpose of waiting or upon exiting-the 
procedure must restore the state of all shared data structures to something that is "safe" for any other 
process. 

If in the body of the procedure a process needs to wait on an event, the procedure must provide a means 
of releasing the lock so that another process can begin execution and satisfy the wait condition, as in the 
following: 

mutex_$unlock (lock); 
eC2_$wait (eventcount); 
discard (mutex_$lock(lock»; 

9.1.2 Synchronization 

As described in Chapter 8, GPI/O software provides one built-in eventcount per device as a means of 
synchronizing device operations with driver routines. But a shared driver typically needs multiple 
eventcounts-for example, per client process, per socket, or per queue. The driver's interrupt handler 
must also be able to advance one or more of these eventcounts selectively. The following GPI/O calls 
provide this functionality: 

• PBU_SALLOCATE_EC 

• PBU_SRELEASE_EC 

• PBU_SADVANCE_EC 

The first two are paired calls that manage the allocation from a special pool of eventcounts in wired space 
in the nucleus. The third enables an interrupt handler to selectively advance a particular eventcount 
based on the type of interrupt, data received, etc. All three routines use ordinary EC2_SPTR_T 
eventcount pointers; thUS, the ordinary EC2_S ... routines can be used. (Note, however, that only 
eventcounts from the special pool can be advanced by an interrupt handler.) For a full description of 
these calls, refer to Appendix B. 

Shared Drivers 9-2 



o 

o 

o 

o 

o 

The interrupt handler decides which eventcount to advance based on status or the results of the device, 
then advances that particular eventcount, awakening whatever process is waiting for that particular event. 
For example, a network device supports multiple devices, each waiting on an eventcount for a particular 
packet. When a packet comes in, the interrupt handler decides which process it is destined for by check­
ing the packet type or other information in the packet. It then advances the appropriate eventcount, 
which notifies the process that its packet has arrived. 

The procedures PBU_$WAIT and PBU_$GET_EC work as they do for private drivers. PBU_$GET_EC 
returns the pointer to the built-in eventcount in the device control table entry. This is advanced under 
control of the return value from the interrupt handler. The procedure PBU_$WAIT can be used to wait 
on this eventcount and a timeout. However, it should only be used in a shared driver under the protec­
tion of a MUTEX lock. It is subject to a race condition so that, if two processes try to call it at approxi­
mately the same time, one waits while the other does not. The behavior is likely to appear unpredictable 
to the developer of a device driver. 

9.2 Global Memory 
Because shared drivers reside in global memory, they are like global libraries in that they must be loaded 
at system initialization and unloaded at system shutdown. However, a shared driver differs from a global 
library in that a shared driver has read-write "state" and its data sections are loaded into ~iteable global 
virtual memory, making it accessible to all processes. Read-write data structures for shared drivers can be 
declared in a data section of the call or interrupt library, or allocated dynamically by calling the routines 
RWS_$ALLOC_RW _POOL and RWS_$ALLOC_HEAP _POOL. If you call either procedure in a shared 
driver, you must specify RWS_$GLOBAL_POOL as an input parameter (for private drivers, specify 
RWS_$STD_POOL). 

There is only one copy of the data for the entire system, not one per process (as with the ... _IM­
PURE_DATA$ sections for ordinary global libraries) or one read-only section per system (as with 
DA T A$ and ... _PURE _ DA T A$ sections). Any routines and variables that are exported by both the 
call-side and interrupt-side libraries are entered in the system-wide Known Global Table (KGT) so that 
they are visible and accessible to all processes and, therefore, corruptible by all processes. 

If you wish to avoid filling up the KGT and generating long, unique variable names, you should put all 
variables in a named common section (i.e., overlay section) in the insert file; only one entry will be stored 
in the KGT rather than one for each variable. You should be forewarned, however, that if an overlay 
section contains initialization data, it is reinitialized each time a program containing that section is loaded. 

9.3 Initialization and Cleanup 
All driver initialization occurs ·when the driver is loaded (i.e., at system inititdization), and 'all cleanup 
occurs when the driver is unloaded (Le., at system shutdown). In other words, there is no per-process 
initialization or cleanup for shared drivers. Each procedure in a shared driver must be so· designed that it 
restores the module invariant (i.e., doesn't leave the procedure in an inconsistent state) before releasing 
the lock and allowing another process to begin execution. 

9.4 Fault Handling 
If the interrupt handler in a private driver takes a fault, the fault is reflected back to the process that owns 
the driver. In a shared driver, however, the fault is reflected back to the process that last touched the 
driver. The reason for this difference is that in a shared driver you don't want the fault to reflect back to 
the owning process, which is the DM or the SPM. As a result, if an interrupt handler generates a fault, 
the fault may not be sent back to the offending process. 

9-3 Shared Drivers 



----- .... _ ....... _ ..... . 

9.5 Loading and Unloading 
Unlike private drivers, which are dynamically loaded, shared drivers must be loaded at system initializa­
tion. To load a shared driver, you place the DDF for the shared device in the directory IDEVI 
GLOBAL_DEVICES. Immediately after loading the global libraries, the system searches the directory 
IDEV/GLOBAL_DEVICES for shared device drivers and calls PBU_$ACQUIRE for each DDF it finds. 
If it finds non-DDF objects, it writes a message into the IDEV/SIO file for display on the screen or 
terminal, identifying them and the fact that ~hey were not loaded. The list of global devices is recorded 
(by unit number) in PBU_$GLOBAL_UNITS. This read-only variable is initialized during system initiali­
zation and is readable by all processes. Thus, a driver can discover if it is loaded globally by testing 
whether its unit number is in that set. Devices are initialized in ascending order of unit number. 

A status code is returned for any DDF that cannot be loaded, and the DDF is ignored. Files in the 
directory that are not DDFs are also ignored. 

During system initialization for the DM or SPM and immediately after all libraries are initialized, the 
driver initialization routine is called for each global device. As mentioned, devices are initialized in 
ascending order of unit number. If a driver initialization routine returns bad status, system initialization is 
immediately suspended and an error message is displayed. The system cannot be restarted until either the 
problem is corrected or the device's DDF is removed from the directory IDEV/GLOBAL_DEVICES. 
Note that DDFs can be removed with the DELETE_FILE (DLF) command to the phase II shell (i.e., the 
boot shell). 

When the system exits, it calls the clean-up routine of each shared driver to gracefully release each 
device. Devices are called in descending order of unit number so that they are released in Last-In 
First-Out (LIFO) order. 

9.6 Multiple-Device Drivers 
The GPI/O software package allows the same driver (either shared or private) to support more than one 
device. A node configured with two Ethernet controllers, for example, can be supported either by two 
independent drivers or by the same driver. In the latter case, the same call and interrupt libraries service 
both devices, using common data structures to control them. This holds true, whether or not the devices 
are shared. 

Each individual device is specified by its own DDF. The DDF specifies the interrupt level, CSR page, 
entry points for the initialization and clean-up routines, and other vital information for the device. 
Different DDFs may point to the same call and interrupt modules. Specifying the MULTIPLE option with 
the CRDDF command ensures that PBU_$ACQUIRE doesn't load multiple copies of the same library. 
Note, however, that the initialization and clean-up entry points are called individually, for each device. 

The interrupt handler has an input parameter, PBU_$UNIT_T, that identifies the unit that this handler 
services so that it knows which registers to read, which data structures to work on, and so on. Thus, one 
interrupt routine can support mUltiple devices at different interrupt levels and decide dynamically which 
one has interrupted. This parameter is passed to the interrupt handler at interrupt time. The procedure 
signature of an interrupt handler is 

FUNCTION Interrupt_handler (unit: pbu_$unit_t): pbu_$interrupt_return_t; 

Shared Drivers 9-4 

/ 
( , 

( "'\ 



o 

o 

o 

o 

o 

Chapter 10 

Binding and Debugging 

1 0.1 Binding the Device Driver 
The purpose of binding is to create a single output object file out of the several modules that make up your 
driver. As input, the bind operations take the call-side and the interrupt-side (if one exists) routines. 
The output of the bind becomes the input for the DDF's CALL_LIBRARY and INTERRUPT_LIBRARY 
parameters. Follow the instructions in this section to produce, the proper input for the DDF. (Chapter 11 
and Appendix A describe how to build the DDF and the DDF parameters.) 

During device acquisition, PBU_$ACQUIRE reads the DDF to find the pathname in CALL_LIBRARY' 
and uses the pathname to install the device driver into user-process address space, making it accessible to 
user programs. Specifi'cation of INTERRUPT_LIBRARY is optional, depending on whether you have writ­
ten interrupt routines for the driver. 

If the driver does support one or more interrupt routines, you use two bind operations to produce two 
separate executable modules. The first module is the call-side module (input for CALL_LIBRARY in the 
DDF); the other is the interrupt-side module (input for INTERRUPT_LIBRAR~ in the DDF). For con­
venience, you can write a shell script to perform the two bind operations. This section provides a sample 
shell script. 

The call-side module contains the call-side routines. For input to the bind, use the binary file produced in 
a successful compilation of the module(s) that contain the call-side routines, including the device initiali­
zation routine, driver routines, and optional clean-up routine. In the sample shell script below, this mod­
ule is called CALL_SIDE.BIN. 

10-1 Debugging and Binding 



The interrupt-side module contains the interrupt-side routine(s), bound with the GPIIO source library 
ILIB/PBU_INT_LIB. The interrupt-side module also contains any communication areas (e.g., a driver 
control block) to be shared between the interrupt routine(s) and the call-side routines. For input to the 
bind, use 

• The system binary file ILIB/PBU_INT_LIB. 

• The binary file produced in a successful compilation of the interrupt-side module. In the sample 
shell script, this module is named INTERRUPT_SIDE. BIN. 

• Any other areas that the driver's interrupt routine references. 

If you've written a device acquisition program (see Chapter 12, subsection 12.1.2), you should not bind it 
with the driver. 

The sample shell script for device driver binding follows. If you use this script, substitute your own path­
names for those shown in angle brackets. 

von 
# bind the call side of the driver 
# 
bind -allmark <call_side. bin> -b 
# bind the interrupt side 
# 

<call_Iib-pathname> -map <map-pathname> 

bind -allmark -sys -b <interrupt-pathname> -map <map-pathname> - «~I 

<interrupt_side. bin> 
/lib/pbu_int_Iib 
-und 
-end 

10.1.1 Using BIND to Page Align Buffers 

If you have to page align a buffer, you may want to consider using the -ALIGN option. To use this op­
tion, you must declare the area of memory you want page aligned in a specially marked data section and 
then specify (in this order) -ALIGN, the name of that section, and the word PAGE when entering the 
BIND command line. For example, to page align a lK-byte area of memory called DMA_BUFFER, first 
you would declare it 

VAR (buffer_sec) 
dma_buffer : ARRAY[O .. 1023]OF CHAR; 

then you would enter the following command line: 

$ bind -allmark my_calI_side. bin -align buffer_sec page -b mycall_side.lib 
-m my_call_side.map 

NOTE: Arguments to the -ALIGN option must all appear on the same line with 
-ALIGN. 

The driver in IDOMAIN_EXAMPLE/GPIO_EXAMPLE/AT_EXAMPLE uses the -ALIGN option. For 
additional information, refer to the Domain Binder and Librarian Reference. For information about plac­
ing variables in sections, refer to the Domain Pascal Language Reference and to the discussion of C's 
#section command in the Domain C Language Reference. 

Debugging and Binding 10-2 

i 
./ 

\ 



o 

o 

o 

o 

o 

10.1.2 System Globals 

Specifying -SYS causes the binder to list all interrupt routine references to system globals. This list must 
be empty, as PBU_$ACQUIRE will not install an interrupt library with any unresolved globals; refer to 
Chapter 8, section 8.1. The pathnames specified as the - B arguments are those you use for CALL _ LI­
BRARy and INTERRUPT_LIBRARY when you build the DDF; refer to Chapter 11. (If you specify 
-SYS when binding the call-side module, you'll probably notice that several unresolved globals are listed. 
These are external references to globals defined in the interrupt side and will be resolved at runtime.) 

If your driver requires 32-bit mathematics, you may get undefined references to the run-time 32-bit math 
package when binding the driver. If you see a reference to a global name that begins "M$," you should 
try rewriting the expression using 16-bit variables. If this is not suitable, you can bind your driver to a bin­
dable copy of our math package called M$ARITH.BIN, which is provided for this purpose in the GPI/O 
package. Following is an example of a math package call generated by the compiler. The source code is 

int x, y 
foo () 
{ return x*y; } 

When you bind this file specifying the -SYS option, you get the following: 

$ bind junk. bin -sys 
Undefined globals: 

m$mis$lll First referenced in J.BIN 

In this example, m$mis$lll is a compiler-generated call to the math package. To get this global resolved, 
bind your driver to the GPIIO copy of the math package, as follows: 

$ bind junk. bin gpio/m$arith.bin -sys 
All globals are resolved. 

For information about the binder, refer to the Domain Binder and Librarian Reference. For information 
about shell scripts, refer to the Domain System Command Reference. 

1 0.2 Debugging the Device Driver 
You can use the high-level language debugging tool (DEBUG) on the call-side library by following the 
procedure outlined in subsection 10.2.1, but you must not use it on the interrupt-side library. By its very 
nature, an interrupt routine cannot take faults but must run to completion without interruption. Using 
DEBUG on any interrupt-side routine may cause your system to crash during debugging or immediately 
after restarting. 

To make it possible to debug your interrupt routine, follow these guidelines: 

• Debug the interrupt routines as call-side routines, before installing them in the interrupt side. 
That is, write your interrupt routines as you normally WOUld, but for debugging purposes, install 
them in the call-side library, just after the call is made to the wait routine. Then, after you have 
debugged them with DEBUG, you can copy them into the interrupt-side library where they be­
long. 

• There is no way to set breakpoints in an interrupt-side routine. The best way to debug it is to 
make it leave a trail of data and flags about where it has been and then examine the data to see if 
it is what you would expect it to be. 

• Store as many statistics as possible in a control block that is shared by the call and interrupt sides. 
In this way, you can read the control block to determine what the interrupt routine is doing. 

10-3 DebuggIng and Binding 



-------- --- --------- -----

CAUTION: Do not use DEBUG to examine or print any variable touched by the inter­
rupt handler while interrupts are enabled. If you need to see such a vari­
able, stop your call library routine at a point wh~re it has disabled inter­
rupts. You can then look around freely, but be sure that your routine 
touches the data again before enabling interrupts. 

Although you may use DEBUG on shared drivers, there are special considerations when debugging in 
global space. These are discussed in subsection 10.2.2. 

10.2.1 Using DEBUG on Call-Side Routines 

Using DEBUG on call-side routines that are accessible from the application is simple and straightforward. 
Using it on the initialization and clean-up routines, however, takes some imagination, since PBU_SAC­
QUIRE calls each routine before you can stop it to set breakpoints. 

One approach to bebugging the initialization routine is to place a read statement at the beginning of the 
routine, requesting input from the keyboard. Run DEBUG on the program that calls PBU_SACQUIRE; 
this can be either AQDEV or your own device-acquisition program (refer to Chapter 12). At the point 
when your initialization routine begins executing, the read statement asks for input: type CTRL/Q to in­
terrupt DEBUG. At this point, DEBUG is inside the initialization routine, allowing you to use DEBUG's 
TB and ENV commands and set any desired breakpoints. (To resume execution, type something at the 
keyboard to satisfy the read statement.) 

For extensive debugging of your driver, it helps to prepare two copies of the call-side library. The primary 
copy is the one referenced by the DDF and is loaded by AQDEV or some other program you use to call 
PBU_SACQUIRE. The second copy should be bound to an application that serves as a vehicle for debug­
ging. The second copy must use the same data as the primary copy, but it provides a more convenient 
means to set breakpoints and call call-side routines that are accessible from the application. 

To prepare the call-side library for a session with DEBUG, proceed as follows: 

1. Make two copies of the driver's call-side library. In the copy that is to be bound with the applica­
tion, declare the driver's data structure using the EXTERN clause in the VAR section, as follows: 

control_block: EXTERN control_block_t; 

This procedure ensures that the data structure you view in DEBUG is the same one that is being 

\ 

_/ 

continuously updated by the device and not the static copy that DEBUG sees. (-~, 
\- _/ 

NOTE: If your driver includes an interrupt-side library, you will have DEFINEd the data 
structure there; otherwise, you should DEFINE it in the primary copy of the 
call-side library (Le., the copy referenced in the DDF). If you are programming 
in C, there is no need to specify the EXTERN clause with the data structure in 
one copy and the DEFINE clause in another, since all globals live in their own 
private sections; refer to Appendix C, section C.2.6. 

2. Bind the prepared copy of the call-side library directly with the application. This enables you to 
access call-side routines from the application (see section 10.1 on binding). 

3. Create the DDF, using the CRDDF command (see Chapter 11). When invoking the CRDDF 
command, be sure to specify the pathname of the primary copy of the call-side library. 

Debugging and Binding 10-4 



o 

o 

o 

o 

4. Open two process windows on your node. We'll call one of these windows Process_1 and the 
other Process_2. In Process_1, acquire the device, using the AQDEV command (see Chapter 
12) . In Process _2, type the command 

debug -src -proc process_l 

The reason for running DEBUG in a separate process from the one in which the driver is running 
is that the driver must have been acquired before you start running DEBUG; otherwise, DEBUG 
takes PBU_$ACQUIRE rather than your driver as its source. 

5. In Process_1, invoke the name you have given to the bound application and call-side library. 

6. Return to Process_2 and step through your program, using DEBUG. 

7. After debugging, insert the EOF mark to release the device. 

For additional information on using DEBUG and the -PROC option, refer to the DOMAIN Language 
Level Debugger Reference. 

10.2.2 Debugging the Shared Driver 

A device driver that has been designed as globally sharable can always be loaded as a private, non-shared 
driver, which means that it can be debugged in the privacy of its own address space, like an ordinary, 
non-shared GPI/O driver. Thus, you can use the debugging procedure outlined in subsection 10.2.1. 

To debug the driver in global space, work with just one process at a time. Getting the driver to work 
properly for a single process in global space should not be much more difficult to do than in private space. 
You need 

• DEBUG 4 switch to the phase II shell. This causes system initialization to tell where it has loaded 
the driver ano interrupt libraries, how many pages are wired, where the entry points are, etc. (DE­
BUG 4 switch is the same as AQDEV's -DB switch and CRDDF's -DEBUG switch; it generates 
the same information for a private driver as for a shared driver.) 

• The -APOLLO switch on the debugger. This allows you to single step right into the driver in 
global space. 

• Your specially bound version of the target application and call library; refer to subsection 10.2.1. 
This allows you to set breakpoints in the call library routines. Note, however, that this bound 
copy is in private space, even though it uses data in global space. 

To debug the driver as a shared driver, check that it has already been loaded from the directory IDEVI 
GLOBAL_DEVICES. Next, open a process window for each application or instance of an application to 
use the device concurrently, and start a debugger for each of these processes. In the processes, load the 
specially bound versions of the applications with copies of the driver. Among other things, you will. be 
able to track down deadlocks, observe synchronization problems, and notice shared access to data unpro­
tected by locks. 

NOTE: Since the data section of a shared driver is global, the debugger has the same 
data as the processes. Therefore, you don't have to worry about the debugger 
remapping variables and taking a page fault during interrupt handling. 

10-5 Debugging and Binding 



The most reliable approach to debugging shared libraries with state that is common to many processes is to 
test it with a random-number-driven diagnostic application. This application exercises the interface to ~, 
the library, calling the different procedures at random with different values, then comparing the actual \ __ / 
results with the expected ones. The random aspect is important: after enough time, you start to flush out 
synchronization problems. The first round of problems typically shows up within seconds, the second 
round within minutes, but the subtle bugs sometimes take hours or days before they happen. If your 
driver can stand up to a weekend of exercizing by a dozen randomly driven processes without revealing 
any bugs, it has a good chance of surviving a number of real applications concurrently. 

Debugging and Binding 10-6 

1"'---"". 

'--.... -/ 

\, 



o 

o 

o 

o 

o 

Chapter 11 

Device Descriptor File 

The Device Descriptor File (DDF) stores static configuration information about a device, as well as infor­
mation about the driver, that GPIIO software needs to know. Each device connected to a node has one 
associated DDF. You create the DDF by invoking the CRDDF command (s~e Appendix A) and specifying 
a pathname for the DDF, normally in the IDEV directory on the node to which the device is physically at­
tached. The information stored in the DDF comes from the options you specify with the CRDDF 
command. 

The DDF is mapped into user-process address space when the device is acquired. The DDF format is 
completely defined by the type PBU_SDDF _T; refer to Appendix B, section B.1. 

The DDF contains the following information: 

• The device's unit number and the ID of the node to which the device is attached. The device's 
unit number is equal to its lowest assigned interrupt request line number. 

• The pathname of the module containing the user-written call-side routines. AQDEV uses the 
pathname to install the device driver in the address space of the user process from which the call 
to PBU_SACQUIRE was made. 

• The entry point of the device initialization routine. 

• The entry point of the clean-up routine, if one exists. 

• The pathname of a library that contains one or more interrupt routines, if they exist. 

• The stack size required by the interrupt routine (s) . 

• The address of the device's CSR page. 

• The interrupt request line number for the device. 

11-1 Device Descriptor File 



DDFs exist in three versions, which differ from each other according to the options you specify when in­
voking the CRDDF command. If you specify a Version 3 option (e.g., -AT), then the system creates a 
Version 3 DDF. Table 11-1 lists the required options for each version. For a full description of all 
CRDDF options, refer also to Appendix A. 

Table 11-1. Required Options for Different DDF Versions 

Version 1 Options* Version 2 Options Version 3 Options 

-UNIT Version 1 options plus Version 1 and 2 options 

-NODE any of the following: plus any of the following: 

-CALL_LIBRARY -CSR_OFFSET -AT 

-INITIALIZATION_ROUTINE -MEMORY_BASE « 64K) -DEBUG 

-MEMORY_SIZE « 64K) -VME 

-MEMORY_BASE (> 64K) 

-MEMORY_SIZE (> 64K) 

• All Version 1 options are required for a Version 1 DDF; refer to Appendix A. 

11.1 Building a DDF in a Shell Script 
One way to build the DDF is to create a shell script so that, if you need to change the DDF, you can sim­
ply change the shell script and rebuild the DDF. 

NOTE: Do not use the shell comment character (#) within a shell script that builds a 
DDF. 

A shell script called BUILD_BM_DDF.SH for the sample driver in BM_EXAMPLE appears below; it also 
appears in the subdirectory IDOMAIN_EXAMPLES/GPIO_EXAMPLES/BM_EXAMPLE. A brief ex­
planation follows the example. As you read the script, note that it consists mainly of the CRDDF com­
mand and appropriate options read from standard input (this shell script builds a Version 1 DDF): 

von 
dlf /dev/bm 
crddf /dev/bm - «! 
-unit 2 
-node * 
-csryage 400 
-call_library /lib/bm.lib 
-interrupt_library /lib/bm_int.lib 
-initialization_routine bm_Sinit 
-cleanup_routine bm_Scleanup 
-interrupt_routine 2 bm_Sint 
-serial_number 01234567 
-user_info ddf_for_bulk_memory_device 
-display 
-end 

The pathnames specified for CALL_LIBRARY and INTERRUPT_LIBRARY are the call-side and inter­
rupt-side modules generated by two of the BUILD_ ... shell scripts in the BM_EXAMPLE subdirectory. 
See BUILD_CALL_LIB.SH and BUILD_INT_LIB.SH in these directories to see the origin of the path­
names ILIB/BM.LIB and ILIBlBM_INT.LIB. 

You could also use the bind shell script given in Chapter 10, seotion 10.1. If you used this script, you 
would first have to compile the modules BM_LIB.PAS and BM_INT_LIB.PAS. You would use the bi-

Device Descriptor File 11-2 



o 

o 

o 

o 

nary output from the compilations for <CALL_SIDE.BIN> and <INTERRUPT_SIDE. BIN>; you would 
then specify the pathnames /LIB/BM.LIB and /LIB/BM_INT.LIB as <CALL_LIB_PATHNAME> and 
<INTERRUPT_PATHNAME. Note that the shell scripts in the online examples place the modules in the 
/LIB directory. If the shell script you write to bind the device driver specifies pathnames in the /LIB direc­
tory, ensure that the node's Access Control Lists (ACLs) provide you adequate rights to this directory. 
For information about shell scripts, refer to the DOMAIN System Command Reference. 

For the DDF's INITIALIZATION_ROUTINE, CLEANUP_ROUTINE, and INTERRUPT_ROUTINE 
parameters, the shell script provides the name of each routine. Note that these routines are part of the 
modules you specify for the CALL_LIBRARY and INTERRUPT_LIBRARY parameters. You specify their 
names in the shell script to make their entry points available to the GPI/O routines. 

Certain CRDDF options (e.g., REVISION, SERIAL_NUMBER, USER_INFO, DEBUG, and MEM­
ORY_BASE) are not used by any internal software and are intended only for the convenience of the user. 
You can use the DEBUG option to'turn on and off the driver's debugging logic, as in the following 
example: 

if ddf-ptrA.debug then 
begin 

flags := flags + [dbg]; { add debug flag} 
if dbg in flags then 

vfmt_$write2 ('ETHER: Beginning initialization%.', 0, 0); 
end; 

11.2 Version 2 DDF 
GPI/O software creates a Version 2 DDF if you specify any or all of the following options: MEM­
ORY_BASE (less than 64K), MEMORY_SIZE (less than 64K), and CSR_OFFSET. The usefulness of 
Version 2 options is that you can store information that is subject to change in the DDF rather than in the 
driver, where it is more difficult to update. If, for example, your driver supports a memory-mapped con­
troller, instead of coding the driver to include information about memory size and starting address-infor­
mation that you might want to change-you can specify this information with the MEMORY_SIZE and 
MEMORY_BASE options, as in the following BUILD_DDF shell script (from the subdirectory 
/DOMAIN_EXAMPLES/GPIO_EXAMPLES/THREECOM_EXAMPLE): 

von 
dlf /dev/ethernet 
crddf /dev/ethernet - «! 
-unit 0 
-node * 
-memory_base 4000 
-memory_size 2000 
-call_library /lib/ether.lib 
-interrupt_library /lib/ether_int.lib 
-initialization_routine ether_$init 
-cleanup_routine ether_$cleanup 
-interrupt_routine 0 ether_$intO 
-serial_number 
-user_info 
-display 
-end 

11-3 Device Descriptor File 



Then, your driver's initialization routine can fetch this information and store it in the control block. This 
is how the initialization routine in the THREECOM_EXAMPLE driver does it: ~. 

if ddf. version = pbu_$ddf_version_2 then begin \ .. // 
mem_base := ddf.memory_iova; 
mem_len .- ddf.memory_size; 
end 

else begin 
mem_base := 16#6000; 
mem_Ien := 16#2000; 
end; 

The CSR_ OFFSET option allows you to supply information to the driver about the address of the control­
ler's CSR page. In the following example, CSR_OFFSET is used to specify a CSR address that falls within 
the range 80-FF recommended for 8-bit MULTIBUS controllers (see Chapter 1, subsection 1.3.1): 

von 
dlf /dev/comm 
crddf /dev/comm - «~I 

-unit 0 
-node * 
-csr_page 0 
-csr_offset 80 
-call_library /lib/comm.lib 
-interrupt_library /lib/comm_int.lib 
-initialization_routine comm_$init 
-cleanup_routine comm_$cleanup 
-interrupt_routine 0 comm_$intO 
-serial_number 
-user_info 
-display 
-end 

You should note that the information you supply with any Version 2 option is not used by the operating 
system and can be in any form that is useful to the driver. In fact, you can use these options to store any 
kind of information you want. 

11.3 Version 3 DDF 
GPIIO software creates a Version 3 DDF if you specify any or all of the following options: AT, VME, 
DMA_CHANNEL, DEBUG, MEMORY_BASE (greater than 64K), or MEMORY_SIZE (greater than 
64K). The following subsections present shell scripts for building DDFs for an AT-compatible device and 
a VME device. For a full description of all Version 3 options, refer to Appendix A. 

11.3.1 DDF for an AT-Compatible Device 

Following is a sample shell script that builds a DDF for an AT-compatible device. Note that the 
-csryage iovas are supplied by the CVT_AT command (refer to Appendix A). 

Device Descriptor File 11-4 



o 
von 
dlf /dev/at 
crddf /dev/at - «~I 

-at 
-unit 4 
-nodef * 
-csr-page 200 21F 
-dma_channel 7 
-call_library bmlib 
-interrupt_library bmintlib 
-initialization_routine bm_Sinit 
-cleanup_routine bm_Scleanup 
-interrupt_routine 4 bm_Sint 
-serial_number 01234567 
-user_info at_ddf 
-display 
-end 

o The DDF generated by the preceding shell script is: 

0 

0 

o 

S crddf /dev/at -display 

ddf version: 3 
device uid: 00030004.00002CBC (unit 4, node 2CBC) 
controller is an AT device. 
dma channel: 7 
csr page iova: 200-21F 
call library: 
interrupt library: 
initialization entry point: 
cleanup entry point: 
interrupt stack size: 1024 
interrupt routines: 

level 0: [unused] 
level 1: [unused] 
level 2: [unused] 
level 3 : [unused] 
level 4: BM_SINT 
level 5: [unused] 
level 6: [unused] 
level 7: [unused] 
level 8: [unused] 
level 9: [unused] 
level 10: [unused] 
level 11: [unused] 
level 12: [unused] 
level 13: [unused] 
level 14: [unused] 
level 15: [unused] 

serial number: "01234567 
revision: 
user info: 

" 

" " 

bmlib 
bmintlib 
BM_SINIT 
BM_SCLEANUP 

" 

11-5 Device Descriptor File 



11.3.2 DDF for a VME Device 

Following is a sample shell file that builds a DDF for a VME device: 

von 
dlf /dev/vme 
crddf /dev/vme - «~I 

-v me 
-unit 14 
-nodef * 
-csrJ>age COOO 
-call_library bmlib 
-interrupt_library bmintlib 
-initialization_routine bm_$init 
-cleanup_routine bm_$cleanup 
-interrupt_routine 14 bm_$int 
-serial_number 01234567 
-user_info vme_ddf 
-display 
-end 

The DDF generated by the preceding shell script is: 

$ build_vme.sh 
dlf /dev/vme 
crddf /dev/vme - «~I 

New DDF. 
ddf version: 3 
device uid: 0003000E.00002CBC (unit 14, node 2CBC) 
controller is a VME device. 
csr page iova: COOO 
call library: bmlib 
interrupt library: 
initialization entry 
cleanup entry point: 
interrupt stack size: 
interrupt routines: 

bmintlib 
point: BM_$INIT 

BM_$CLEANUP 

ID Fa: [unused] 
ID F9: [unused] 
ID 
ID 
ID 
ID 
ID 

FA: 
FB: 
FC: 
FD: 
FE: 

[unused] 
[unused] 
[unused] 
[unused] 
BM_$INT 

1024 

ID FF: [unused] 
serial number: "01234567 
revision: 
user info: 

Device Descriptor File 

" " 
"vme_ddf 

" 

" 

11-6 

/.-------.. 

./ 

''''', 

" 

/ "\ 
I 



o 

o 

o 

G 

Chapter 

Acquiring and Releasing 
the Device 

12.1 Acquiring the Device 
PBU_SACQUIRE acquires control of the device by performing the following: 

12 

• Mapping the DDF to the address space of the user process from which the call to PBU_SAC­
QUIRE was made. 

• Locking the DDF for the device 

• Loading the device driver into the user-process address space 

• Wiring the interrupt routine, interrupt data, and interrupt stack 

• Mapping the device's CSR page to the user-process address space 

In addition, PBU _SACQUIRE calls the device initialization routine specified in the DDF. For a full de­
scription of AQDEV and PBU_SACQUIRE, refer to Appendixes A and B. 

The application itself cannot call PBU_SACQUIRE; the driver must be loaded before the application in 
order to resolve the application's references to driver entry points. There are, however, two ways to make 
the call: 

• Invoking the AQDEV command 

• Invoking a program that calls PBU_SACQUIRE 

The end result of either is the same; which one you use depends upon how many applications you are 
running. 

12-1 Acquiring and Releasing the Device 



12.1.1 Using AQDEV 

If you plan to execute several application programs that use the device, you should acquire the device with 
the AQDEV command, as in the following: 

$ aqdev /dev/my_dev 
Device 0 acquired. 
$ application_l 
$ application_2 
$ application_3 
$ <CTRL/Z> 
*** EOF *** 
Device 0 released. 
$ 

The AQDEV command invokes PBU_SACQUIRE, which loads the driver into the address space of the 
user process from which the AQDEV command was issued. The application programs are then invoked. 
Because the driver routines have been installed in user-process address space, each application program 
can call the driver routines. 

After installing the device driver, AQDEV creates a new copy of the shell command interpreter. Typing 
CTRL/Z (i.e., inserting the EOF mark) causes the new shell to return control to AQDEV, which unloads 
the driver routines from the user process and releases the device so that the application programs may no 
longer call driver r04tines. 

12.1.2 Invoking a Program to Call PBU_$ACQUIRE 

If you need to run only one application, such as a server, then you can create a device acquisition pro­
gram that calls PBU_SACQUIRE to load the driver and then invokes the application. The application can­
not call PBU_SACQUIRE because the driver must be loaded prior to the application so as to resolve the 
application's references to driver entry points. 

The following program acquires a device, invokes the application, and releases the device: 

program device_acquisition; 
begin 

pbu_$acquire('/dev/my_dev' ... ); 

end. 

pgm_$invoke ('/my_dir/real_application. bin' ... ); 
pbu_$release('/dev/my_dev' ... ); 
pgm_$exit; 

12.2 Releasing the Device 
You can release a device by inserting the EOF mark (under the DM, the EOF mark is bound to CTRL/Z) 
or by calling PBU_SRELEASE. PBU_SRELEASE unwires all wired procedures and data pages, deallo­
cates any I/O map space, unmaps any mapped controller memory, and releases control of the deviCe. If 
the DDF contains the entry point of a clean-up routine, PBU_SRELEASE will call it during device re­
lease. The device acquisition program can call PBU_SRELEASE. But since PBU_SRELEASE unloads 
the driver library, device drivers should not call it. PBU_SRELEASE is fully described in Appendix B. 

Acquiring and Releasing the Device 12-2 



1:J 

o 

o 

o 

c 

Appendix A 

GPI/O Commands 

This appendix describes the use, format, parameters, and options for the four GPI/O commands that the 
user can invoke: AQDEV, CRDDF, CVT_AT, and RLDEV. 

A-1 GPIIO Commands 



AQDEV (ACQUIRE_DEVICE)-Acquires control of a peripheral device. 

FORMAT 

AQDEV path name [-DB] 

ARGUMENT 

pathname 
(required) 

OPTION 

-DB 

DESCRIPTION 

The pathname of the DDF associated with the device to be acquired. The 
pathname normally refers to the a DDF in JDEV directory on the node to 
which the device is physically attached. 

Acquires the device in DEBUG mode. Specifying this option causes AQDEV 
to display the addresses of the DDF and the CSR page, and to display infor­
mation about device driver routines as they are loaded into user-process ad­
dress space. 

The AQDEV command is used to acquire a device at the shell command level. When invoked, AQ­
DEV calls the routine PBU_$ACQUIRE which maps to user-process adq.ress space the DDF, the 
device's CSR page, and device driver routines and associated data structures. 

Currently, the AQDEV command creates a new copy of the shell after it installs the device driver. 
To release the device, type CTRLJZ (i.e., insert the EOF mark), which causes the new shell to re­
turn to the AQDEV command. AQDEV then releases the device. 

ERROR MESSAGES 

ddf has wrong file type 

The file pointed to by the specified pathname is not a DDF. 

name not found 

The file pointed to by the specified pathname does not exist. 

object is not local 

The DDF belongs to a device that is physically connected to another node. 

PBU not present 

No peripheral bus is present,on the system. 

unit in use 

Another process is using the device. 

GPIIO Commands A-2 

\ 

\, /1 

~, 



o EXAMPLE 

o 

o 

o 

o 

$ AQDEV /DEV/MTO -DB 
DDF mapped at 2DOOOO fer 1024 bytes. 
Interrupt stack_size = 1024 
CSR page at 2D8000 
Interrupt library: start address = 000000, n_sects 
Name = PROCEDURE $ , lec = 2BABAE, len = 0002AC 
Name = DATA $ , lec = 2BAEFC, len = 000C6E 
Name = DEBUG$, lec = 2BAE5A, len = 0000A2 
Call library: start address = 000000, n_sects 3 
Name = PROCEDURE $ , lec '= 2E0040, len = 00126C 
Name = DATA $ , lec = 2BBB6A, len = 000190 
Name = DEBUG$, lec = 2E12AC, len = 00051C 
Device 3 acquired. 
$ 

A-3 

3 

GPIIO Commands 



CRDDF (CREATE_DDF)-Creates, displays, or modifies a Device Descriptor File (DDF). 

FORMAT 

CRDDF path name [-option] [-option] ... [-] 

ARGUMENT 

pathname 
(required) 

OPTIONS 

-AT 

The pathname of the DDF to be created. The pathname normally refers to a 
DDF in the IDEV directory on the node to which the device is physically at­
tached. 

Specifies that CRDDF is to read further options from STREAM_$STDIN. 

Specifies that the device resides on the IBM AT-compatible bus. It is recom­
mended that this option be the first specified when building a new DDF. 
Valid unit numbers when -AT is specified must be in the range 0-15 and must 
not be used by DOMAIN system-supplied devices. Specifying this option re­
sults in the generation of a Version 3 DDF. 

-CALL_LIBRARY pathname 

-CHECK 

Specifies the pathname of the call side of the driver. This option is required 
when creating a DDF. 

Checks the DDF to ensure that all required files have been specified. The op­
tions associated with these requirements are CALL_LIBRARY, INTER­
RUPT_LIBRA~Y, INITIALIZATION_ROUTINE, NODE, and UNIT. 

-CLEANUP_ROUTINE entry-name 
Specifies the entry point name of a clean-up routine to be called when the de­
vice is released. 

-CSR_ OFFSET port-number 

GPIIO Commands 

Specifies the offset into the CSR page, in hexadecimal format, at which the 
device's control and status registers are located. Device drivers may use this 
information during controller initialization. Specifying this option results in 
the generation of a Version 2 DDF. 

A-4 

.,,,,/ 



o 

o 

o 

o 

o 

-CSR_PAGE iova Specifies the hexadecimal address of the device's CSR page. If this option is 
omitted, no CSR page is mapped. The following information applies to the 
particular bus structure implemented on your node: 

-DEBUG 

-DISPLAY 

• MULTIBUS: Optional. 

• VMEbus: Optional. If specified, must be page aligned and in the range 
0000-7FFF (16-bit addressing, 16-bit data path) and COOO-DFFF 
(24-bit addressing, 16-bit data path). 

• AT-compatible bus: Optional. If specified, may indicate a range (e.g., 
-csryage 200 21F). If the second parameter is missing, a range of eight 
consecutive bytes is assumed (e.g., "-csr-page 200" assumes a range of 
200-207). Use the CVT_AT command (described in Chapter 3, subsec­
tion 3.1.1) to derive properly aligned iovas. 

Sets a flag (DDF .DEBUG) that can be used to turn on debugging logic in a 
driver. Specifying this option results in the generation of a Version 3 DDF. 

Displays the current contents of the DDF. 

-DMA_CHANNEL channel-number 

-END 

Specifies to the driver the DMA channel number that an AT-compatible con­
troller will use. This option is not required, and any information it includes is 
not used by GPI/O software. Specifying this option results in the generation of 
a Version 3 DDF. 

Closes the updated DDF and exits. 

-INITIALIZATION_ROUTINE entry-name 

Specifies the device driver's initialization routine entry point name. 
PBU_SACQUIRE calls this routine during device acquisition. This option is 
required when creating a DDF. 

-INTERRUPT_LIBRARY pathname 
Specifies the pathname of the device driver's interrupt side. You only need to 
specify this parameter if you have user-written interrupt routines. 

-INTERRUPT_ROUTINE level [entry-name] 
Assigns an interrupt request level to the device and optionally specifies the 
name of an interrupt routine to handle device interrupts at that level. 

The level is required; the name of the interrupt routine is optional. If no rou­
tine is specified, the System Interrupt Handler processes the interrupt and ad­
vances the eventcount associated with the device. A single device may inter­
rupt at several levels with associated interrupt routines, for each level. 

If the -INTERRUPT_ROUTINE option is omitted, interrupts are processed at 
the level equal to the device's unit number. 

-MEMORY_BASE iova 
Specifies the bus address that marks the base of a controller's local memory. 
Device drivers use this information in arguments to the GPI/O routine 
PBU[21_SMAP _CONTROLLER to associate a virtual address with the mem~ 
ory on the controller. Specifying this option with an iova less than 64K results 
in the generation of a Version 2 DDF; if the iova is greater than 64K, a Ver­
sion 3 DDF is generated. 

A-5 GPIIO Commands 



-MEMORY_SIZE length 

-MULTIPLE 

The size, in hexadecimal format, of controller memory. Device drivers use 
this information in arguments to PBU[21_$MAP _CONTROLLER to associate 
a virtual address with the memory on the controller. Specifying this option 
with an iova less than 64K results in the generation of a Version 2 DDF; if 
iova is greater than 64K, a Version 3 DDF will be generated. 

Specifies that the device driver supports more than one device and causes 
PBU _ $ACQUIRE to use copies of previously loaded call-side and interrupt­
side libraries, so as to avoid loading mUltiple copies of the same driver. 

-NODE [node-number I *] 
-NODEF [node-number I *] 

-QUIT. 

Specifies the number, in hexadecimal format, of the node to which the device 
is physically connected. This option is required when creating a DDF. 
-NODEF suppresses the check that makes certain that the node exists. An as­
terisk (*) specifies the local node. 

Causes CRDDF to exit without modifying the original DDF. 

-REVISION [string-B] 
Specifies an optional revision number as an 8-character string. 

-SERIAL_NUMBER [string-16] 

-SHARE 

Specifies an optional serial number as a 16-character string. 

Specifies that the DDF describes a memory-mapped controller that can be 
shared by multiple applications. PBU[21_$MAP _CONTROLLER maps the 
shared controller into global address space, and PBU_$MEM_PTR returns its 
address. Unlike a non-shared controller, a shared controller is not automati­
cally unmapped on abnormal termination of a device driver. 

NOTE: We recommend that a fault handler be established to ensure that the 
controller is unmapped should the. driver terminate without going 
thr<.>ugh the normal device release mechanism. 

-STACK_SIZE decimal-number 
Specifies the number of bytes to be allocated to the interrupt stack (the de­
fault is 1024). 

-UNIT unit_number 

-UPDATE 

Specifies the device unit number. The unit number must match the lowest in­
terrupt level on which the device interrupts. This option is required when cre­
ating a DDF. The following information applies to the particular bus structure 
implemented on your node: 

• MULTIBUS: Must lie in the range 0-5 for a 16-bit controller and 0-7 
for a 20-bit controller. 

• VMEbus: Must lie in the range 8-14. 

• IBM AT-compatible bus: Must lie in the range 0-15 and must not be 
equal to any of our devices. 

Allows modification of an existing DDF. This option must be specified before 
any other option. 

\... ...• / 

~\ 
(, 
'-_/ 

-USER_INFO string-64 (~:) 
Specifies up' to 64 characters of optional.information for use by the device -', __ / 
driver. The string-64 argument is initialized as a field of blanks that you over-
write. 

GPI/O Commands A-6 



o 

o 

o 

o 

o 

-VME Specifies that the device resides on the VMEbus. It is recommended that this 
option be the first specified when building a new DDF. Valid unit numbers 
when -VME is specified must be in the range 8-14. Specifying this option re­
sults in the generation of a Version 3 DDF. 

-20_BIT_ADDRESSING 

DESCRIPTION 

Specifies that the DDF describes a 20-bit controller. You must give this option 
when creating a DDF for a 20-bit controller on a node that has a 20-bit 
MULTIBUS. 

Invoke the CRDDF command at the shell prompt ($) or from a shell command file to create, dis­
play, or modify a device descriptor file. 

You can create different versions of a DDF depending upon which options you specify with the 
CRDDF command. Modifying an existing DDF by adding Version 2 or Version 3 options results in 
the generation of a Version 2 or Version 3 DDF. Refer to Chapter 11, Table 11-1 for a list of the 
relevant options and to Chapter 11, section 11.1 for a discussion of the different DDFs and exam­
ples showing how to create them. Note that all three versions must include the following options: 
UNIT, NODE, CALL_LIBRARY, and INITIALIZATION_ROUTINE. 

The following options are not used by the operating system and are only for the optional use of the 
driver: CSR_OFFSET, DEBUG, DMA_CHANNEL, MEMORY_BASE, MEMORY_SIZE, REVI­
SION, SERIAL_NUMBER, and USER_INFO. 

The entire contents of the DDF are available to the driver's initialization routine by reference 
through the DDF _PTR argument. 

EXAMPLES 

1. Create a Version 1 DDF: 

$ CRDDF /DEV/MTO -
New DDF. 
> -UNIT 3 
> -NODE * 
> -CSR_PAGE 1400 
> -CALL_LIBRARY /LIB/MT.LIB 
> -INITIALIZATION_ROUTINE MT_$INIT 
> -INTERRUPT_LIBRARY /LIB/MT.INT.LIB 
> -INTERRUPT_ROUTINE 3 MT_$INT 
> -CHECK 
No missing fields. 
> -END 
$ 

A-7 GPIIO Commands 



2. Display DDF: 

$ CRDDF /DEV/MTO -DISPLAY !~-'\ 

DDF version: 1 \ ._ ... / 

device UID: 00030003 0000002F (unit 3, node 2F) 
call library: /LIB/MT.LIB 
interrupt library: /LIB/MT.INT.LIB 
initialization entry point: MT_$INIT 
cleanup entry point: MT_$CLEANUP 
interrupt stack size: 1024 
interrupt routines: 

level 0: [unused] 
level 1: [unused] 
level 2: [unused] 
level 3: MT_$INT 
level 4: [unused] 
level 5: [unused] 
level 6: [unused] 
level 7: [unused] (" serial number: 

revision: 
user info: 
$ 

3. Modify existing DDF: 

$ CRDDF /DEV/MTO -UPDATE -INTERRUPT_ROUTINE 3 MT_$SIO 
/---......\ 

GP/IO Commands A-8 



o 

o 

o 

o 

o 

CVT _AT (CONVERT_AT _ADDRESSES)-Converts an AT-Compatible I/O address to a processor 
physical address. 

FORMAT 

ARGUMENTS 

An AT-compatible I/O address (in hexadecimal). 

AT _addrl-AT _addr2 
A range of AT I/O addresses (in hexadecimal). 

DESCRIPTION 

The CVT _AT command converts AT-compatible bus addresses to physical addresses in processor 
address space. The command reports any conflict between the AT address you specify and the ad­
dress of any system-supplied device. It also supplies the iova for so-called AT (Le., 16-bit) ad­
dresses; see example 2 below. 

If one or more addresses are specified, each is translated, and its physical address, page number, 
offset within a page, and the CSR page iova are displayed. If addresses are specified in pairs and 
both fall on the same page, a warning is given. Also, if one of the addresses in the pair is in the 
0-3FF range for 10-bit controllers and the other address is in the 3FF-FFFF range for 16-bit con­
trollers, a warning is given if they would conflict with each other on the bus. 

If a dashed parameter is specified, all addresses between those values are generated and converted. 
Both addresses must be either 10-bit or 16-bit. 

A warning is given if an address conflicts with a known system device control page within processor 
memory. 

EXAMPLES 

1. Translate I/O address 5100: 

$ CVT_AT 5100 
AT Addr DOMAIN Phys Addr 

5100 48140 
DOMAIN PPN 

120 
Page offset 

140 
CSR Iova 

100 

The CVT_AT command converts the I/O address 5100 to the DOMAIN physical address 48140 
and displays a CSR iova of 100. When you create the DDF for the AT-compatible device, use this 
iova (not the I/O address) as input to the CRDDF command option -CSR_PAGE (for example, 
CRDDF /DEY/ATl -CSR_PAGE 100). 

A-9 GPIIO Commands 



2. Translate I/O address lA4: 

$ CVT_AT 1A4 
AT Addr DOMAIN Phys Addr 

1A4 40004 
DOMAIN PPN 

134 
Page offset 

4 
CSR Iova 

1A4 
Warning: Above address (lA4) may occupy same physical page as DOMAIN 
device, if present: winchester (4DOOO). 

The CVT_AT command converts the I/O address lA4 to the DOMAIN address 40004 and issues 
a warning that a conflict between device control pages exists if a Winchester disk is present in the 
configuration. 

3. Translate I/O address 41A4: 

$ CVT_AT 41A4 
AT Addr DOMAIN Phys Addr 

41A4 40104 
DOMAIN PPN 

134 
Page offset 

104 
Csr Iova 

1A4 
Warning: Above address (41A4) may occupy same physical page as DOMAIN 
device, if present: winchester (40000). 

GPIIO Commands A-10 

c 



o 

o 

RLDEV (RELEASE_DEVICE)-Releases a peripheral device. 

FORMAT 

RLDEV {unit-number I ALL} [-FORCE] 

ARGUMENTS 

unit-number 

ALL 

OPTION 

-FORCE 

The unit number of the device to be released. 

Causes RLDEV to release all devices acquired by the current process. 

Causes RLDEV to release the device unconditionally, waiting 1 second (at 
most) for any I/O operations to complete. 

o DESCRIPTION 

o 

The RLDEV command releases one or more devices previously acquired by the AQDEV command 
(or PBU_SACQUIRE). Currently, when you invoke RLDEV, a message appears advising you to 
type CTRL/Z (Le., insert the EOF mark) to release the device. 

ERROR MESSAGES 

device not acquired 

The current process has not acquired any device associated with the specified unit number. 

object is not local 

The DDF belongs to a device that is physically connected to another node. 

A-11 GPIIO Commands 



1\.., .... " ......... / 

\ ... _ .. ,_",..' r 



o 

o 

C) 

Appendix B 

GPI/O Routines 

This appendix describes the calling format, input and output parameters, and usage of the GPIIO routines 
that application programs and user-written device drivers can call. Also described are the data types that 
are used by the routines and error messages. 

B.1 Data Types 
The following are the constants and data types used by GPIIO routines. Records are illustrated to show 
their composition and byte displacements. 

o CONSTANTS 

Name Value Description 

1 Current version of DDF. 

2 Version 2 of DDF. 

3 Version 3 of DDF. 

1 Lowest supported version of DDF. 

o 3 Highest supported version of DDF. 

64 Maximum length of pathnames in DDF. 

8-1 GPIIO Routines 



PBU_$DDF _EP _NAME_LEN 

PBU_$DDF _MAX_LEN 

PBU_$NO_CSR_IOVA 

PBU_$MT_UNIT_NUMBER 

PBU_$SM_UNIT_NUMBER 

PBU_$SMD_UNIT_NUMBER 

PBU_$LPR_UNIT_NUMBER 

PBU_$IIC_UNIT_NUMBER 

PBU _$MT _ UNIT2_NUMBER 

PBU_$MAX_UNIT 

PBU_$MIN_ VME_UNIT 

PBU_$MAX_ VME_UNIT 

PBU_$MAX_AT_UNIT 

BYTES_PER_PAGE 

PBU_$MAX_ VIRTUAL_ADDRESS 

DATA TYPES 

GPIIO Routines 

32 Maximum length of entry point names 
in DDF. 

1024 Maximum length of whole DDF. 

-1 Indicates no CSR page (version 2). 

3 Magtape unit number. 

4 Storage module device unit number. 

4 Storage module device unit number. 

6 Line printer unit number. 

6 Internet interface controller unit 
number. 

7 Placeholder for second magtape unit 
number. 

7 Maximum allowable unit number. 

8 Minimum VME unit number. 

15 Maximum VME unit number. 

15 Maximum AT unit number. 

1024 Bytes per page. 

16#7FFFFFFF Maximum user-space virtual address. 

A 4-byte integer. A pointer to an eventcount. 

An array of up to 1024 characters. A buffer to be mapped. 

A 4-byte integer. A pointer to the CSR page. 

An array of up to 1024 characters. A Control and Status 
Register (CSR) page. 

8-2 

C 

C~ 

(~ 
\. ./ 

C~' 



o 

0 

o 

o 

o 

predefined 
type 

{ 

byte 
offset 

0: 

n: 

0: 

byte 
offset 

0: 

2: 

4: 

5: 
6: 

The name of the driver's interrupt routine entry point. The 
diagram below illustrates this data type: 

~ char 

OR 

I bintegerl 

Field Description 

name 
Interrupt routine entry point. 

flag 
For internal use only. 

field 
name 

name 

flag 

A 4-byte integer. A pointer to a DDF. 

A pevice Descriptor File (DDF). The diagram below illus­
trates the PBU_SDDF _T data type: 

integer 

integer 

binteger 

binteger 

field 
name 

sio_number 

version 

* See the following .. Field Description" for field names of bits. 

8-3 GPI/O Routines 



predefined byte field 
type offset name 

14: device_sn (~ 
30: ca"-'ib_name 

94: int-'ib_name 

158: init_ep 

190: cleanup_ep 

pbu_$ddfJnt-,ist_entry_t 222: int-,ist (" 
"---

pbu $iova t 478: integer csr _page Jova - -
480: integer stack_size 

482: rev 

490: sn (~~', 
\. 

506: userJnfo 

570: integer csr _base_offset 

pbu_$iova_t 572: integer memoryJova 

574: integer memory_size (-,,-\ 

pbu2 _ $iova _ t 576: integer32 csr _page Jova2 
\, .... -./ 

pbu2_$iova_t 580: integer32 memory _iova2 

584: integer32 memory _size2 

588: integer dma_channel 

pbu_$iova_t 590: integer at_ csr _high 

1
592

: 

int-,ist2 

pbu_$ddfJnt-,ist_entry_t 

n: 

(-"'\, 
I 

\ 
" 

GP/IO Routines 8-4 



o 

o 

o 

o 

o 

Field Description 

siD_number 
SIO number in old DDFs. 

version 
DDF version number. 

unit_number 
Unit number of this device. 

flags 
A bit mask containing Boolean values indicating device at­
tributes. The following table lists the bit numbers within the 
mask, the record field names, and a sort description of each 
attribute: 

Bit # Field Name Description 

Bit 0 large 20-bit controller 
Bit 1 share Memory-mapped controller mapped 

in global address space 
Bit 2 vme VME device 
Bit 3 sys Reserved 
Bit 4 debug User debug flag 
Bit 5 at AT-compatible device 
Bit 6 multiple Driver supports multiple devices 
Bit 7 pad 

dev_uid 
Device uid (for locking). 

device_sn 
Unit serial number. 

call_lib _name 
Pathname of call-side library. 

int _lib _name 
Pathname of interrupt-side library. 

init_ep 
Entry point of driver's initialization routine. 

cleanup_ep 
Entry point of driver's clean-up routine. 

int_list 
Interrupt request level and name. 

csr yage _iova 
Address of device CSR page. 

stack_size 
Size (in bytes) of interrupt stack. 

8-5 GPIIO Routines 



GPIIO Routines 

Field Description (cont.) 

rev 
Optional revision number. 

sn 
User-specified serial number. 

user_info 
User-specified information. 

csr _base_offset 
Offset within CSR page of CSR base. 

memory _iova 
Memory-mapped controller base. 

memory_size 
Memory-mapped controller memory size. 

The following fields are valid in Version 3 DDFs only: 

csr -page _iova2 
Address of YME device CSR page. 

memory _iova2 
Memory-mapped controller base. 

memory _size2 
Memory-mapped controller memory size. 

dma_channel 
AT-compatible device channel number. 

at _ csr _high 
High AT-compatible I/O address (if greater than 8-byte 
area). 

int.:....list2 
Interrupt request level and name (YME and AT -compatible 
devices). 

A 2-byte integer. The DMA channel number used by AT­
compatible devices. Possible values are integers between 0 
and 7. 

8-6 

r' 
~- .... 

c' 



o 

o 

o 

o 

o 

A 2-byte integer. Used with PBU_SDMA_START to specify 
a read or write DMA operation. One of the following 
predefined values: 

PBU_DMA_READ 
The AT-compatible controller reads processor memory. 

PBU_DMA_ WRITE 
Processor memory writes to the AT-compatible control­
ler. 

A 2-byte integer. Specifies various DMA modes on the AT­
compatible bus. Any combination of the following 
predefined values: 

PBU_DMA_ADR_DECR 
DMA hardware decrements the address to or from which 
data is transferred. The default is to increment. 

PBU_DMA_AUTO_INIT 
DMA hardware reinitializes itself after completing data 
transfer. 

PBU_DMA_CASCADE 
Sets DMA channel in cascade mode; use with devices 
that can request bus mastership doing DMA with their 
own DMA hardware. 

PBU_DMA_EXT_MEM 
DMA to AT-compatible or XT -compatible extension 
memory. 

A 2-byte integer. Specifies the eventcount to get. Cur­
rently, only the following predefined value is supported: 

PBU_SGET_DEVICE_EC 
Get device EC. 

A 2-byte integer. Flags returned from the device driver's in­
terrupt routine specifying actions that the System Interrupt 
Handler is to perform. One or both of the following 
predefined values: 

PBU_SINTERRUPT_ADVANCE 
Advance the device's eventcount. 

PBU_SINTERRUPT_ENABLE 
Enable interrupts from the device. 

B-7 GPIIO Routines 



GPIIO Routines 

A 2-byte integer. A set of PBU_$INTERRUPT_FLAGS_T. 

A 2-byte integer. A physical address on the I/O bus. 

A 4-byte integer. A physical address on the I/O bus. 

A 2-byt~ integer. Available byte-swapping options when us­
ing PBU_$CONTROL. One or more of the following 
predefined values: 

PBU_MAP_R 
Maps pages of processor memory read-only. 

PBU_MAP_RW 
Maps pages of processor memory read-write. 

PBU_SWAP_OFF 
Swaps bytes during byte transfers only. 

PBU_SWAP_WORDS 
Preserves byte order for character string transfers; swaps 
bytes for integer transfers. 

PBU_SWAP_BYTES 
Preserves byte order for integer transfers; swaps bytes for 
character string transfers. 

An array of up to 64 UN IV _PTRs. A list of physical ad­
dresses locating the buffer in processor memory. 

A 2-byte integer. Device unit number. Possible values are 
integers between 0 and PBU_$MAX_ VME_UNIT. 

A 2-byte integer. A set of PBU_$UNIT_T. 

A 2-byte integer. Indicates the event that caused 
PBU_$WAIT to return. Possible values are integers between 
o and 2. 

A 2-byte integer. Options when wiring an I/O buffer with 
PBU_$WIRE_SPECIAL. Only one predefined value is cur­
rently available: 

PBU_$WIRED_BUFFER 
Verifies whether the buffer is already wired. 

8-8 



o 

0 

o 

o 

o 

byte 
offset 

0: 

0: 

1 : 

2: 

31 

A status code. The diagram below illustrates the this data 
type: 

o 
integer 

OR 

0 

Field Description 

all 
All 32 bits in the status code. 

fail 

field 
name 

all 

fail 

subsys 

modc 

code 

The fail bit. If this bit is set, the error was not within the 
scope of the module invoked, but occurred within a lower­
level module (bit 31). 

subsys 
The subsystem that encountered the error (bits 24-30). 

mode 
The module that encountered the error (bits 16-23). 

code 
A signed number that identifies the type of error that oc­
curred (bits 0-15). 

8-9 GPIIO Routines 



GPIIO Routines 

byte 
offset 

0: 

4: 

Unique identifier for an object. The diagram below illustrates 
the UID _ $T data type: 

integer32 

integer32 

Field Description 

high 

field 
name 

high 

low 

The high 4 bytes of the UID. 

low 
The low 4 bytes of the UID. 

A 4-byte integer. A universal pointer type. 

8-10 

c 

C; 
----/ 



o B.2 GPI/O Procedures and Functions 

o 

o 

o 

o 

The GPIIO calls described in this section are listed in Table B-1, along with the type of bus each call sup­
ports. 

Table 8-1. GPIIO Procedures and Functions 

GPI/O Call Supported Bus 

PBU_SACQUIRE MULTIBUS, VMEbus, and AT-Compatible Bus 

PBU_SADVANCE_EC MULTIBUS, VMEbus, and AT-Compatible Bus 

PBU_SALLOCATE_EC MULTIBUS, VMEbus, and AT-Compatible Bus 

PBU _SALLOCATE_MAP MULTIBUS 

PBU_SCONTROL MULTIBUS 

PBU _SDEVICE_INTERRUPTING MULTIBUS and AT-Compatible Bus 

PBU_SDISABLE_DEVICE MUL TIBUS and AT-Compatible Bus 

PBU_SDMA_START AT-Compatible Bus 

PBU_SDMA_STOP AT-Compatible Bus 

PBU_SENABLE_DEVICE MULTIBUS and AT-Compatible Bus 

PBU_SFREE_MAP MULTIBUS 

PBU_SGET_EC MULTIBUS, VMEbus, and AT-Compatible Bus 

PBU_SMAP MULTIBUS 

PBU _SMAP _CONTROLLER MULTIBUS 

PBU_SMEM_PTR MUL TIBUS, VMEbus, and AT :-Compatible Bus 

PBU_SREAD_CSR MULTIBUS and VMEbus 

PBU_SRELEASE MULTIBUS, VMEbus, and AT-Compatible Bus 

PBU_SRELEASE_EC MUL TIBUS, VMEbus, and AT -Compatible Bus 

PBU_SUNMAP MULTIBUS 

PBU _SUNMAP _CONTROLLER MULTIBUS 

PBU_SUNWIRE MULTIBUS 

PBU_SWAIT MULTIBUS, VMEbus, and AT-Compatible Bus 

PBU_SWIRE MULTIBUS 

8-11 GPIIO Routines 



Table B-1 (cont.). GPI/O Procedures and Functions 

GPI/O Call Supported Bus 

PBU_SWIRE_SPECIAL AT-Compatible Bus and VMEbus 

PBU_SWRITE_CSR MULTIBUS and VMEbus 

PBU2_SALLOCATE_MAP MULTIBUS 

PBU2_SPREE_MAP MULTIBUS 

PBU2_SMAP MULTIBUS 

PBU2_SMAP _CONTROLLER MULTIBUS, VMEbus, and AT-Compatible Bus 

PBU2_SUNMAP MULTIBUS 

PBU2_SUNMAP_CONTROLLER MUL TIBUS, VMEbus, and AT -Compatible Bus 

PBU2_SUNWIRE MULTIBUS and AT-compatible Bus 

PBU2_SWIRE MULTIBUS, VMEbus, and AT-Compatible Bus 

(~. 

GPIIO Routines B-12 



o 

o 

o 

o 

o 

PBU_$ACQUIRE-Acqulres control of a peripheral device. 

FORMAT 

PBU_$ACQUIRE (path name, namelen, debug_flag, unit, status) 

INPUT PARAMETERS 

pathname 

namelen 

The pathname of the DDF for the device to be acquired. Specify this parame- . 
ter as an array of characters. 

The length in characters of the specified pathname. This is a 2-byte Pascal in­
teger or a' C unsigned short integer. 

A Boolean value that indicates whether load information is printed. See the 
AQDEV command in Appendix A. 

OUTPUT PARAMETERS 

unit The unit number in PBU_$UNIT_T format for use in subsequent calls to PBU 
routines. 

status Completion status in STATUS_$T format. 

DESCRIPTION 

PBU_$ACQUIRE acquires control of a device as follows: 

1. Locates the DDF, using the specified pathname, and maps it into the address space of the user 
process from which PBU_$ACQUIRE was called. 

2. Locks the device's DDF. 

3. ' Copies information from the DDF into internal I/O tables. 

If necessary, PBU_$ACQUIRE also establishes the device driver entry points and data structures 
needed to communicate with the device: 

• Locates the device driver routines and maps them into user-process address space. 

• Wires the interrupt stack and associated interrupt code and data. 

• Maps the CSR page for the device into user-process address space. 

Normally, the AQDEV command calls PBU_$ACQUIRE, but user-written routines can also call it. 
However, PBU_$ACQUIRE cannot be called directly by device drivers or by application programs. 

B-13 GPIIO Routines 



PBU _ $ADVANCE_EC-Advances an eventcount. 

FORMAT 

PBU_$ADVANCE_EC (unit, ptr, status) 

INPUT PARAMETERS 

unit 

ptr 

OUTPUT PARAMETER 

status 

DESCRIPTION 

The device unit number in PBU_SUNIT_T format. This is a 2-byte Pascal in­
teger or C unsigned short integer. 

The eventcount pointer, in EC2_PTR_T format, returned from the GPI/O call 
PBU_SALLOCATE_EC. This is a 4-byte integer. 

Completion status in STATUS _ ST format. 

PBU_SADVANCE_EC advances an eventcount from a special pool of eventcounts in wired mem­
ory. It enables the interrupt handler of a shared driver to selectively advance a particular 
eventcount based on the type of interrupt. See also the descriptions of PBU_SALLOCATE_EC 
and PBU_SRELEASE_EC as well as the discussion of shared drivers in Chapter 9, section 9.1. 

GPIIO Routines 8-14 

c 

(\. 
I 



o PBU_$ALLOCATE_EC-Allocates a new eventcount. 

FORMAT 

ptr := PBU_$ALLOCATE_EC (unit, status) 

INPUT PARAMETER 

unit The device unit number in PBU_SUNIT_T format. This is a 2-byte Pascal in­
teger or C unsigned short integer. 

o OUTPUT PARAMETERS 

o 

o 

o 

ptr 

status 

DESCRIPTION 

Return pointer to a new eventcount, in EC2_PTR_T format. This is a 4-byte 
integer. 

Completion status in STATUS_ST format. 

PBU_SALLOCATE_EC allocates an eventcount from a special pool of eventcounts in wired mem­
ory. It is designed for use with shared drivers occupying global memory. See also the descriptions 
of PBU_SADVANCE_EC and PBU_SRELEASE_EC as well as the discussion of shared drivers in 
Chapter 9, section 9. 1. 

B-15 GPI/O Routines 



PBU_$ALLOCATE_MAP-Allocates an area of MUL TI8US address space. 

FORMAT 

returned_lava := PBU_$ALLOCATE_MAP (unit, length, force_flag, lava, status) 

INPUT PARAMETERS 

unit 

length 

iova 

The unit number of the device in PBU_$UNIT_T format. This is a 2-byte 
Pascal integer or a C unsigned short integer. 

The length in bytes of MUL TIBUS address space for which an area of the I/O 
map is to be allocated. This is a 2-byte Pascal integer or a C unsigned short in­
teger. 

A Boolean value that indicates whether or not a specific MUL TIBUS address 
is to be assigned. For C programs, refer to Appendix C, subsection C.2.4 for 
information about using Boolean values in C. 

If the force_flag parameter is true, the MUL TIBUS address in 
PBU_$IOVA_T format to be assigned as the starting address of the portion of 
MUL TIBUS address space to be allocated. 

OUTPUT PARAMETERS 

returned _ iova 

status 

DESCRIPTION 

The MULTIBUS address in PBU_$IOVA_T format that marks the start of 
MULTIBUS address space allocated by PBU_$ALLOCATE_MAP. 

Completion status in STATUS_$T format. 

PBU_$ALLOCATE_MAP reserves an area of MULTIBUS address space for subsequent DMA 
transfers. The function allocates the number of I/O map entries that correspond to the required 
number of pages of MUL TIBUS memory plus one (to enable mapping of buffers that are not page 
aligned). 

In general, a driver may allocate only one area of the I/O map for a given device at any time. How­
ever, drivers can allocate a second area of the I/O map for a device by calling 
PBU[21_$MAP _CONTROLLER. 

GPIIO Routines 8-16 



o 

o 

o 

o 

C\ 
/' 

PBU_$CONTROL-Speclfies mapping controls. 

FORMAT 

PBU_$CONTROL (unit, opts, old_opts, reserved, status) 

INPUT PARAMETERS 

unit 

opts 

reserved 

The unit number of the device in PBU_SUNIT_T format. This is a 2-byte 
Pascal integer or a C unsigned short integer. 

Specifies one or more of the following options, in PBU_SOPTS_T format: 

• PBU_MAP_R: Pages of processor memory are mapped read-only, i.e., 
a MULTIBUS controller cannot modify the data on the page. 

• PBU....,MAP _RW: Pages of processor memory are mapped read-write. 
This IS the default. 

• PBU _SWAP_OFF: No byte swapping occurs except during byte trans­
fers. This is the default. 

• PBU _SWAP_WORDS: Byte transfers are unchanged; word transfers 
have their bytes reversed. 

• PBU_SWAP_BYTES: Word transfers are unchanged; byte transfers 
are swapped. 

If a null set "[]" is specified, nothing is changed, and the current settings are 
returned in old_opts. 

Reserved for future use; pass in O. 

OUTPUT PARAMETERS 

The previous setting of the options in PBU_SOPTS_T format. 

status Completion status in STATUS_ST format. 

DESCRIPTION 

PBU_$CONTROL modifies the byte-swapping and protection hardware on 20-bit MULTIBUS im­
plementations. The byte-swapping options are fully described in Chapter 1, section 1.4. 

B-17 GPIIO Routines 



PBU _ $DEVICE_INTERRUPTING-Checks for device Interrupts. 

FORMAT 

boolean := PBU_$DEVICE_INTERRUPTING (unit, status) 

INPUT PARAMETER 

unit The device unit number in PBU_SUNIT_T format. This is a 2-byte Pascal in­
teger or a C unsigned short integer. 

OUTPUT PARAMETERS 

boolean 

status 

DESCRIPTION 

A value that indicates (if true) that the device's interrupt line is asserted. For 
C programs, refer to Appendix C, subsection C.2.4 for information about us­
ing Boolean values in C. 

Completion status in STATUS_ST format. 

PBU_SDEVICE_INTERRUPTING reads the current state of the device's interrupt request line. 
This routine can be called from a user-written interrupt routine. Since it reads the current state of 
the interrupt line, the information this routine returns is not always reliable. The interrupt signal 
may disappear before the routine is able to read it. 

PBU_SDEVICE_INTERRUPTING cannot be used with VME devices. 

GPIIO Routines 8-18 

c 

\,. ' 



PBU_$DISABLE_DEVICE-Disables Interrupts from a peripheral device. 

FORMAT 

PBU_$DISABLE_DEVICE (unit, status) 

INPUT PARAMETER 

unit The unit number of the device in PBU_SUNIT_T format. This is a 2-byte 
Pascal integer or a C unsigned short integer. 

o OUTPUT PARAMETER 

() 

o 

status Completion status in STATUS_ST format. 

DESCRIPTION 

PBU_SDISABLE_DEVICE prevents a device from requesting interrupts by setting its interrupt 
mask bit. 

The system automatically disables interrupts from a device 

• After it has been acquired 

• During interrupt processing 

• When the device is released 

PBU_SDISABLE_DEVICE cannot be used with VME devices. 

B-19 GPIIO Routines 



PBU_$DMA_START -Starts a DMA operation. 

FORMAT 

PBU_$DMA_START (unit, channel, direction, buffer, length, opts, status) 

INPUT PARAMETERS 

unit 

channel 

direction 

buffer 

length 

opts 

GPIIO Routines 

The unit number of the device in PBU_SUNIT_T format. This is a 2-byte 
Pascal integer or a C unsigned short integer. 

A 2-byte Pascal integer or a C unsigned short integer ~ in 
PBU_SDMA_CHANNEL_T format. Specifies the number (0 through 7) of 
the channel to be started. 

The direction of the data transfer, in PBU_SDMA_DIRECTION_T format. 
Specify one of the following options: 

• PBU_DMA_READ: Controller to processor memory 

• PBU _DMA_ WRITE: Processor memory to controller 

The buffer to be mapped, specified as a universal array of characters, in 
PBU_SBUFFER_T format. It must be page aligned. 

The length of the buffer in bytes. This is a 2-byte Pascal integer or a C un­
signed short integer and must be greater thad 0 and less than or equal to 1024. 

Specifies one or both of the following options, in PBU_SDMA_OPTS_T for­
mat: 

• PBU_DMA_AUTO_INIT: Specifies that DMA hardware is to reinitial­
ize itself after completing transfer, using the buffer and length parame­
ters supplied with the call. Note that PBU_SDMA_START converts 
the length parameter from bytes to words. For more information, refer 
to the description of "autoinitialize" for the 8237A in Intel's Microsys­
tem Components Handbook, Order No. 230843-002. 

• PBU _DMA_ADR DECR: Specifies that DMA operations decrement 
the address to or lrom which data is transferred. The default is that 
DMA transfers are made to increasing memory addresses. 

• PBU DMA CASCADE: Sets the DMA hardware on the mother 
board in cascade mode so that an AT-compatible device with demand­
DMA capability can use its own DMA hardware (i.e., can request bus 
mastership). It is a way of arbitrating for the AT-compatible bus. You 
must specify this option if you want the device to use its own DMA 
hardware. 

• PBU_DMA_EXT_MEM: Specifies that the DMA transfer is to AT­
compatible or XT -compatible extension memory, not processor mem­
ory. 

8-20 

~, 

\ .. / 

\. 



o 

o 

OUTPUT PARAMETER 

status Completion status in STATUS_ST format. 

DESCRIPTION 

PBU_SOMA_START and PBU_SOMA_STOP are paired functions for use with AT-compatible 
devices. They should surround each OMA operation, whether successful or not. 
PBU_SOMA_START prepares the system OMA hardware for the controller's operation. The 
driver must call this routine before issuing any I/O commands to the device. After 
PBU_SOMA_START is called, the controller can begin its operation. Before calling 
PBU_SOMA_START again, the driver must call PBU_SOMA_STOP. Refer also to the description 
of PBU_SOMA_STOP. 

PBU_SOMA_START can be called from the driver's interrupt side. 

For devices that are bus masters, PBU_SOMA_START must be called with the option 
PBU_OMA_CASCAOE in order to reserve the OMA channel and to provide for proper bus arbi­
tration. 

For addtional information on using this call, refer to Chapter 3, subsection 3.6.1. 

8-21 GPIIO Routines 



PBU_$DMA_STOP-Stops a DMA operation. 

FORMAT 

resid_cnt := PBU_$DMA_STOP (unit, channel, status) 

INPUT PARAMETERS 

unit 

channel 

The unit number of the device in PBU_SUNIT_T format. This is a 2-byte 
Pascal integer or a C unsigned short integer. 

A 2-byte Pascal integer or a C unsigned short integer, in 
PBU_SOMA_CHANNEL_T format. Specifies the number (0 through 7) of 
the channel to be stopped. 

OUTPUT PARAMETERS 

status 

DESCRIPTION 

A 4-byte integer that specifies the residual count in bytes of the amount of 
data (if any) that was not transferred during the last OMA operation. This re­
turn value should always be O. 

Completion status in STATUS_ST format. 

. PBU_SOMA_START and PBU_SOMA_STOP are paired functions for use with AT-compatible 
devices. They should surround each I/O operation, whether successful or not. 
PBU_SOMA_START prepares OMA hardware for the controller's operation. After the controller 
has completed its operation, the driver must next call PBU_SOMA_STOP to get status from OMA 
hardware to ensure that the hardware has completed its operation as well. Even if the controller re­
ports an error, the driver must call PBU_SDMA_STOP. The driver may ignore the status returned 
by PBU_SOMA_STOP, but if the controller had a problem, it is likely that the OMA operation did 
not run to completion. The call to PBU_SOMA_STOP must in any case be made so that software 
can reset its knowledge of who is using the OMA channel. 

PBU_SDMA_STOP can be called from the driver's interrupt side. 

For addtional information on using this call, refer to Chapter 3, section 3.6.1. 

GPIIO Routines B-22 

c 

~. , 
I 

\ 
'-.. _/ 



o PBU_$ENABLE_DEVICE-Enables interrupts from a peripheral device. 

FORMAT 

PBU_$ENABLE_DEVICE (unit, status) 

INPUT PARAMETER 

unit The device unit number in PBU_SUNIT_T format. This is a 2-byte Pascal in­
teger or a C unsigned short integer. 

o OUTPUT PARAMETER 

'0 

o 

o 

status Completion status in STATUS_ST format. 

DESCRIPTION 

PBU_SENABLE_DEVICE enables interrupt requests from a device by clearing its interrupt mask 
bit in the Peripheral Interrupt Controller (PIC). 

Note that a user-written interrupt routine cannot call PBU_SENABLE_DEVICE. The routine can 
optionally enable device interrupts by returning the appropriate function value to the System Inter­
rupt Handler. 

PBU_SENABLE_DEVICE cannot be used with VME devices. 

B-23 GPIIO Routines 



P8U_$FREE_MAP-Releases the I/O map area previously allocated to a device. 

FORMAT 

P8U_$FREE_MAP (unit, status) 

INPUT PARAMETER 

unit The device unit numberin PBU_SUNIT_T format. This is a 2-byte Pascal in­
teger or a C unsigned short integer. 

. .. _ .. /' 

OUTPUT PARAMETER C 
status Completion status in STATUS_ST format. 

DESCRIPTION 

PBU_SFREE_MAP releases the area of the I/O map previously allocated by the GPI/O call 
PBU_SALLOCATE_MAP. 

GPIIO Routines 8-24 

c 



o 

o 

o 

o 

o 

PBU_SGET_EC-Retrieves the eventcount associated with a device. 

FORMAT 

PBU_SGET _EC (unit, key, ecp, status) 

INPUT PARAMETERS 

unit 

key 

The device unit number in PBU_SUNIT_T format. This is a 2-byte Pascal in­
teger or a C unsigned short integer. 

The key that specifies which eventcount to get in PBU_SGET_EC_KEY_T 
format. Currently, the only value allowed is PBU_SGET_DEVICE_EC. 

OUTPUT PARAMETERS 

ecp A pointer to the eventcount for the device in EC2_SPTR_T format. 

status Completion status in STATUS_ST format. 

DESCRIPTION 

PBU_SGET_EC returns an eventcount identifier that the driver or the application can place into a 
list of eventcount identifiers that, they pass to EC2 _ SW AlT. Drivers need only call this routine once 
while the device is acquired and should save the eventcount pointer until the device is released. 
However, no errors occur if drivers call PBU_SGET_EC more than once. 

Drivers (or any other programs) must not rely solely upon eventcounts to indicate the occurrence of 
an event; they should provide an additional mechanism to determine whether an event has oc­
curred. Refer to Chapter 6, subsection 6.3.2. 

B-25 GPIIO Routines 



PBU_$MAP-Maps an 1/0 buffer. 

FORMAT 

returned_lova := PBU_$MAP (unit, buffer, length, lova, status) 

INPUT PARAMETERS 

unit 

buffer 

length 

iova 

The device unit number in PBU_SUNIT_T format. This is a 2-byte Pascal in­
teger or a C unsigned short integer. 

The buffer to be mapped. Specify the buffer as an array of characters. 

The length in bytes of the buffer. This is a 2-byte Pascal integer or a C un­
signed short integer. 

A page-aligned MUL TIBUS address within the 1/0 map area allocated by 
PBU_SALLOCATE_MAP in PBU_SIOVA_T format. This is a 2-byte Pascal 
integer or a C unsigned short integer. 

OUTPUT PARAMETERS 

returned _iova 

status 

DESCRIPTION 

The MUL TIBUS address that marks the start of the buffer in MUL TIBUS ad­
dress space in PBU_SIOVA_T format. This is a 2-byte Pascal integer or a C 
unsigned short integer. 

Completion status in STATUS_ST format. 

PBU_SMAP establishes the mapping between the buffer in processor address space and MULTI­
BUS address space. Drivers must call this routine before using the buffer for I/O operations and 
only after they have called PBU_SALLOCATE_MAP and PBU_SWIRE (the buffer must be wired 
before it can be passed to PBU_SMAP). User-written interrupt routines can call PBU_SMAP. 

The address specified as a parameter to PBU_SMAP need not be the address that PBU_$ALLO­
CATE_MAP returned; the address can lie on any page that corresponds to the allocated area of the 
I/O map. In this way, drivers can map several different buffers into different sections of the allo­
cated I/O map area at the same time. 

GPIIO Routines B-26 

c' 

c 

c 



o 

o 

o 

o 

o 

PBU_$MAP _CONTROLLER-Maps controller memory to processor address space. 

FORMAT 

address := PBU_$MAP _CONTROLLER (unit, iova, length, status) 

INPUT PARAMETERS 

unit 

iova 

length 

The device unit number in PBU_$UNIT_T format. This is a 2-byte Pascal in­
teger or a C unsigned short integer. 

The MUL TIBUS address that marks the start of controller memory in 
PBU_$IOVA_T format. This is a 2-byte Pascal integer or a C unsigned short 
integer. The address must lie on a page boundary and must be smaller than 
32K bytes. 

The length in bytes of controller memory. This is a 2-byte Pascal integer or a 
C unsigned short integer. The length to be mapped must be between 0 and 
32K bytes, and the sum of the length and the MUL TIBUS address must be 
less than 32K bytes. 

OUTPUT PARAMETERS 

address 

status 

DESCRIPTION 

The virtual address of the first byte of the controller's mapped memory in 
UN IV _PTR format. For an equivalent of UNIV _PTR in C, refer to Appendix 
C, subsection C.2.S. 

Completion status in STATUS_$T format. 

PBU_$MAP _CONTROLLER maps controller memory to processor address space. Device drivers 
can map only one area of controller memory per device at a time. Possible errors include: 

• The specified unit number is invalid (PBU_$BAD_UNIT). 

• The device has not been acquired (PBU_$NOT_ACQUIRED). 

• Controller memory has already been mapped (PBU_$ALREADY_MAPPED). 

• The specified MUL TIBUS address is larger than 32K bytes or causes the sum of length and 
address to exceed 32K (PBU_$BAD_IOVA). 

• The specified length is not between 0 and 32K bytes or causes the sum of length and address to 
exceed 32K (PBU_$BAD_LEN). 

Errors can also include those errors generated by PBU_$ALLOCATE_MAP, the most common of 
which is that the requested memory is already allocated. If this error is generated, check the DMA 
devices in the configuration to see if they are using the desired MULTIBUS addresses. 

B-27 GPIIO Routines 



It should be noted that memory that is mapped with PBU_SMAP_CONTROLLER must be un­
mapped with PBU_SUNMAP_CONTROLLER. 

Refer to Chapter 7, section 7.2 for information on referencing controller memory. 

GPIIO Routines 8-28 

c 

c 

c 

o 



o 

o 

o 

o 

o 

PBU_$MEM_PTR-Returns the address and length of a shared controller. 

FORMAT 

address := PBU_$MEM_PTR (pathname, ddf_length, length, status) 

INPUT PARAMETERS 

pathname 

ddf_Iength 

The pathname of the DDF for the shared controller. Specify this parameter as 
an array of characters. 

The length in characters of the specified pathname. This is a 2-byte Pascal in­
teger or a C unsigned short integer. 

OUTPUT PARAMETERS 

address 

length 

status 

DESCRIPTION 

The virtual address of the first byte of the controller's mapped memory in 
UNIV _PTR format. For an equivalent of UNIV _PTR in C, refer to Appendix 
C, section C.2.S. 

The length in bytes of the area for the mapped controller. This is a 4-byte 
Pascal integer or C unsigned long integer. 

Completion status in STATUS_ST format. 

PBU_SMEM_PTR returns the address of a shared memory-mapped controller mapped in global 
address space to any application that wants to use it. The following example shows how to use 
PBU_SMEM_PTR so that a process that wants to access the shared controller can obtain its ad­
dress: 

REPEAT 
mem-pointer := pbu_$mem-ptr(ddf_name, sizeof(ddf_name), mem_Ien, 

status); 
if status.all = pbu_$device_not_mapped then 

time_$wait(time_$relative, delay_time, status2) 
else begin 

error_$print(status); 
goto error_exit; 
end; 

UNTIL status.all = 0 

8-29 GPIIO Routines 



P8U_$READ_CSR-Reads a device's control and status register (CSR). 

FORMAT 

P8U_$READ_CSR (unit, csr, value, word_flag, status) 

INPUT PARAMETERS 

unit 

csr 

The device unit number in PBU_$UNIT_T format. This is a 2-byte Pascal in­
teger or a C unsigned short integer. 

The control and status register to be read in universal character format (Pascal 
type UNIV char or C type char). Refer to Appendix C, section C.t for more 
information. 

A Boolean value that specifies whether a word or byte read is to be performed 
(false=byte read, true=word read). For C programs, refer to Appendix C, sub­
section C.2.4 for information about using Boolean values in C. 

OUTPUT PARAMETERS 

value 

status 

DESCRIPT.ION 

The result of the read, located in the low-order (right-hand) byte if a byte 
read was performed. This is a 2-byte Pascal integer or a C unsigned short 
integer. 

Completion status in STATUS_$T format. 

Device drivers can call PBU_$READ_CSR during initialization to determine whether a device is 
physically present on the bus. If a read to the device's CSR cause"s a bus time-out error, this routine 
suppresses nqrmal bus error handling and sets the status code to reflect the error. 

If the specified CSR does not lie within the device's CSR page, PBU_$READ_CSR returns an error 
value. For a memory-mapped controller, PBU_SREAD_CSR returns an error if the address does 
not lie within the area of processor address space to which the memory has been mapped. 

PBU_$READ_CSR is typically used in the initialization routine, but other call-side routines can call 
it. 

NOTE: Drivers for AT-compatible controllers should not use this call to test if the con­
troller is present on the bus. For more information, refer to Chapter 3, section 
3.3. 

GPI/O Routines 8-30 

(' 
',--. ' 

o 



o 

o 

o 

o 

o 

PBU_$RELEASE-Releases an acquired device. 

FORMAT 

PBU_$RELEASE (unit, force_flag, status) 

INPUT PARAMETERS 

unit 

OUTPUT PARAMETER 

status 

DESCRIPTION 

The device unit number in PBU_$UNIT_T format. This is a 2-byte Pascal in­
teger or a C unsigned short integer. 

A Boolean value that indicates whether or not the clean-up routine can abort 
the device release operation. If this parameter is set to true, the device is re­
leased regardless of the status returned by the clean-up routine. If this pa­
rameter is set to false, the clean-up routine can abort the release procedure by 
returning a nonzero status code. Upon receipt of the status, PBU_$RELEASE 
aborts device release and returns to its caller. 

Completion status in STATUS_$T format. 

To release control of a device, PBU_$RELEASE performs these functions: 

• Unloads the device driver. 

• Unwires all wired procedures and data pages. 

• Deallocates any I/O map areas that are still allocated. 

• Unmaps any mapped controller memory. 

• Calls the user-written clean-up routine whose entry point is specified in the DDF for the de­
vice. This routine ensures that there are no I/O operations in progress and clears any pending 
interrupts generated by the device. 

Currently, PBU_$RELEASE is called only from the AQDEV command or from the device acquisi­
tion program. Since PBU_$RELEASE unloads the driver, it should not be called by driver routines. 

B-31 GPIIO Routines 



PBU_$RELEASE_EC-Returns an eventcount to the system. 

FORMAT 

PBU_$RELEASE_EC (unit, ptr, status) 

INPUT PARAMETERS 

unit 

ptr 

OUTPUT PARAMETER 

status 

DESCRIPTION 

The device unit number in PBU_SUNIT_T format. This is a 2-byte Pascal in­
teger or C unsigned short integer. 

Returns a pointer to a new eventcount, in EC2_PTR_T format. This is a 
4-byte integer. 

Completion status in STATUS_ST format. 

PBU_S,RELEASE_EC releases an eventcount allocated by PBU_SALLOCATE_EC to a special 
pool of eventcounts in wired memory. It is designed for use with shared drivers occupying global 
memory. See also the descriptions of PBU_SADVANCE_EC and PBU_SALLOCATE_EC as well 
as the discussion of shared drivers in Chapter 9, section 9.1. 

GPIIO Routines B-32 

(~ " . 

. __ ./ 

c 

~\ 
'--_/ 



o 

o 

o 

o 

o 

P8U_$UNMAP-Unmaps an 1/0 buffer. 

FORMAT 

P8U_$UNMAP (unit, buffer, length, iova, status) 

INPUT PARAMETERS 

unit 

buffer 

length 

iova 

OUTPUT PARAMETER 

status 

DESCRIPTION 

The device unit number in PBU_SUNIT_T format. This is a 2-byte Pascal in­
teger or a C unsigned short integer. 

The buffer to unmap. Specifies the buffer as an array of characters. 

The length in bytes of the area to be unmapped. This is a 2-byte Pascal inte­
ger or. a C unsigned short integer. 

The MULTIBUS address that marks the start of the buffer in PBU_SIOVA_T 
format. This address must be the address that PBU_SMAP returned (the ac­
tual start of the buffer). 

Completion status in STATUS_ST format. 

PBU_SUNMAP unmaps the buffer from MULTIBUS address space and invalidates the I/O map 
for the space occupied by the buffer. 

Device drivers are under not required to unmap previously mapped buffers; another call to 
PBU_SMAP that specifies the same area of the I/O map effectively unmaps the previously mapped 
buffer. PBU_SUNMAP is used primarily to protect a buffer from erroneous references by a con­
troller. 

PBU_SUNMAP can be called from interrupt-side routines. 

8-33 GPIIO Routines 



PBU_$UNMAP _CONTROLLER-Unmaps a controller's memory from processor address space. 

FORMAT 

PBU_$UNMAP _CONTROLLER (unit, address, length, status) 

INPUT PARAMETERS 

unit 

address 

length 

OUTPUT PARAMETER 

status 

DESCRIPTION 

The device unit number in PBU_SUNIT_T format. This is a 2-byte Pascal in­
teger or a C unsigned short integer. 

The virtual address of the first byte of the controller's mapped memory in 
UNIV _PTR format. For an equivalent of UNIV _PTR in C, refer to Appendix 
C, subsection C.2.S. 

The length in bytes of the area to be unmapped. This is a 2-byte Pascal inte­
ger or a C unsigned short integer. 

Completion status in STATUS_ST format. 

PBU_SUNMAP_CONTROLLER unmaps from processor address space the controller memory 

c 

mapped by PBU_SMAP_CONTROLLER. The whole mapped length must be unmapped. Possible C.". 
errors can include the following: . 

• The specified unit number is invalid. (PBU_SBAD_UNIT). 

• The specified device has not been acquired (PBU_SNOT_ACQUIRED). 

• Controller memory has not been mapped (PBU_SNOT_MAPPED). 

GPIIO Routines B-34 



o 

o 

o 

o 

o 

PBU_$UNWIRE-Unwlres an 1/0 buffer. 

FORMAT 

PBU_$UNWIRE (unit, buffer, length, modify_flag, status) 

INPUT PARAMETERS 

unit 

buffer 

length 

OUTPUT PARAMETER 

status 

DESCRIPTION 

The device unit number in PBU_SUNIT_T format. This is a 2-byte Pascal in­
teger or a C unsigned short integer. 

The buffer to be unwired, specified as a universal array of characters. 

The length in bytes of the buffer. This is a 2-byte Pascal integer or a C un­
signed short integer. 

A Boolean value that indicates whether the buffer pages being unwired should 
be marked as modified by an input I/O operation. This flag is needed because 
DMA does not set the page's modify bit in Memory Management Unit 
(MMU) tables. For more information, see Chapter 7, subsection 7.1.4 ("Un­
wiring the 1/0 Buffer"). For C programs, refer to Appendix C, subsection 
C.2.4 for information about using Boolean values in C. 

Completion status in STATUS_ST format. 

PBU_SUNWIRE makes a buffer previously wired into processor memory with PBU_SWIRE avail­
able for MMU paging operations. 

NOTE: Buffers that are part of a driver's interrupt side must never be unwired. 

B-35 GPIIO Routines 



PBU_$WAIT-Walts for device Interrupt or timeout. 

FORMAT 

Index := PBU_$WAIT (unit, time-out, quit_enable, status) 

INPUT PARAMETERS 

unit 

time-out 

The device unit number in PBU_SUNIT_T format. This is a 2-byte Pascal in­
teger or a C unsigned short integer. 

The length of time in milliseconds that the routine is to wait. This is a 4-byte 
integer (C or Pascal). 

A Boolean value that indicates whether or not quit faults are enabled during 
the wait. When this parameter is set to true, quit faults will terminate the wait 
state; when it is set to false, quit faults are disabled. For information on quit 
faults, refer to Chapter 6,. subsection 6.3.1. For C programs, refer to Appen­
dix C, subsection C.2.4 for information about using Boolean values. 

OUTPUT PARAMETERS 

index 

status 

DESCRIPTION 

A 2-byte Pascal integer or C short integer that corresponds to the event that 
caused PBU_SWAIT to return, in PBU_SWAIT_INDEX_T format. Possible 
values are 

o = Eventcount advanced by the System Interrupt Handler 

1 = Timeout 

2 = Quit fault (CTRL/Q) 

Completion status in STATUS_ST format. 

Device drivers call PBU_SWAIT if they need only to wait for device interrupt, time-out, or quit 
fault. The routine performs these functions: ' 

• Checks the device's eventcount to determine whether the System Interrupt Handler has ad­
vanced it since the last time PBU_SWAIT was called. If an advance has occurred, the routine 
returns. 

c 

c 

• Checks for a positive time-out value. If the time-out value is less than or equal to 0, ,~ 
PBU_SWAIT returns; otherwise, it waits for the specified interval or until the System Interrupt i, 

Handler advances the eventcount. "" ._/ 

To enable and disable quit faults during the wait, use the quit_enable parameter. 

GPIIO Routines B-36 



o 

o 

o 

o 

It] 

PBU_$WIRE-Wires an 1/0 buffer. 

FORMAT 

PBU_$WIRE (unit, buffer, length, status) 

INPUT PARAMETERS 

unit 

buffer 

length 

OUTPUT PARAMETER 

status 

DESCRIPTION 

The device unit number in PBU_SUNIT_T format. This is a 2-byte Pascal in­
teger or a C unsigned short integer. 

The buffer to be' wired, specified as a universal array of characters. 

The length in bytes of the buffer. This is a 2-byte Pascal integer or a C un­
signed short integer. 

Completion status in STATUS_ST format. 

PBU_SWIRE makes the buffer's pages permanently resident in processor memory in preparation 
for an I/O operation. Drivers must wire I/O buffers before mapping them with PBU_SMAP. 

Drivers need not wire interrupt-side buffers with PBU_SWIRE because PBU_SACQUIRE auto­
matically wires the data sections of the driver's interrupt routine(s) when the device is acquired. 
Refer to Chapter 7, subsection 7.1.2. 

PBU_SWIRE returns an error if any page of the specified buffer has already been wired. 

B-37 GPIIO Routines 



P8U_$WIRE_SPECIAL-Wires a buffer and returns its physical addresses. 

FORMAT 

P8U_$WIRE_SPECIAL (unit, opts, buffer, length, pa_list, max_cnt, cnt, status) 

INPUT PARAMETERS 

unit 

opts 

buffer 

length 

The device unit number in PBU_SUNIT_T format. This is a 2-byte Pascal in­
teger or a C unsigned short integer. The unit number must refer to a VME or 
demand-DMA AT-compatible device. 

Specify one of the following options in PBU_SWIRE_SPEC_T format: 

• PBU_SWIRED_BUFFER: Verifies that buffer is already wired and re­
turn error message if it is not. 

• [] : Wires buffer. 

The buffer to be wired, specified as a universal array of characters. 

The length in bytes of the buffer. This is a 4-byte Pascal integer or a C un­
signed short integer. 

The length (number of entries) in the pa_list array. This is a 2_byte Pascal in­
teger or a C unsigned short integer. 

OUTPUT PARAMETERS 

cnt 

status 

GPIIO Routines 

An array of physical addresses in PBU_SPA_LIST_T format. 

The number of entries returned in PA_LIST. This is ct two byte Pasdll integer 
or a C unsigned short integer. 

Completion status in STATUS_ST format. 

8-38 

c 



c 

o 

o 

o 

o 

DESCRIPTION 

PBU_$WIRE_SPECIAL is provided for VME controllers and demand-DMA AT-compatible con­
trollers that use physical addresses to access processor memory. (Demand-DMA controllers can 
request external bus mastership.) Like PBU[2]_$WIRE, PBU_$WIRE_SPECIAL makes the buff­
er's virtual pages permanently resident in processor memory in preparation for an I/O operation. 
(Drivers must wire I/O buffers before starting an I/O operation.) The physical addresses returned 
in pa_list are 32-bit page-aligned physical addresses in processor memory. To obtain the exact 
physical address of the start of the buffer, the byte offset within the page of the start of the buffer 
must be added to the first entry in pa_list: 

buffer_start := pa_list[l] + (ptr(addr(buffer» mod bytes~er~age); 

You should use PBU2_$UNWIRE to unwire buffers wired with PBU_$WIRE_SPECIAL. 

8-39 GPIIO Routines 



PBU_$WRITE_CSR-Wrltes to a device's control and status register. 

FORMAT 

PBU_$WRITE_CSR (unit, csr, value, word_flag, status) 

INPUT PARAMETERS 

unit 

csr 

value 

OUTPUT PARAMETER 

status 

DESCRIPTION 

The device unit number in PBU_SUNIT_T format. This is a 2-byte Pascal in­
teger or a C unsigned short integer. 

The control and status register to be written in universal character format 
(Pascal type UNIV char or C type char). Refer to Appendix C, section C.1 for 
more information. 

The value to write into the CSR. If the routine is to perform a byte-write op­
eration, the value is specified in the low-order (right-hand) byte of the inte­
ger. This is a 2-byte Pascal integer or a C unsigned short integer. 

A Boolean value that specifies whether a word or byte write is to be performed 
(false=byte write, true=word write). For C programs, refer to Appendix C, 
subsection C.2.4 for information about using Boolean values. 

Completion status in STATUS_ST format. 

Device drivers can call PBU_SWRITE_CSR during initialization to determine whether a device is 
physically present on the bus. If a write to the device's CSR causes a bus time-out error, this rou­
tine suppresses normal b~s error handling and sets the status code to reflect the event. 

If the specified CSR does not lie within the device's CSR page, PBU_SWRITE_CSR returns an er­
ror value. For a memory-mapped controller, PBU_SWRITE_CSR returns an error if the address 
does not lie within the processor address space to which the memory has been mapped. 

NOTE: Drivers for AT-compatible controllers should not use this call to test if the con­
troller is present on the bus. For more information, refer to Chapter 3, section 
3.3. 

GPI/O Routines B-40 

C' 

~--.-., 



o 

o 

o 

o 

PBU2_$ALLOCATE_MAP-Allocates area of MULTIBUS address space for a 20-bit controller. 

FORMAT 

returned_iova := PBU2_$ALLOCATE_MAP (unit, length, force_flag, iova, status) 

INPUT PARAMETERS 

unit 

length 

iova 

The unit number of the device in PBU_SUNIT_T format. This is a 2-byte 
Pascal integer or a C unsigned short integer. 

The length in bytes of MUL TIBUS address space for which an area of the I/O 
map is to be allocated. This is a 4-byte integer (in C and Pascal). 

A Boolean value that indicates whether or not a specific MUL TIBUS address 
is to be assigned. For C programs, refer to App"endix C, subsection C.2.4 for 
information about using Boolean values. 

If the force_flag parameter is true, the MUL TIBUS address in 
PBU2_SIOVA_T format to be assigned as the starting address of the portion 
of MUL TIBUS address space to be allocated. This is a 4-byte integer (in C 
and Pascal). 

OUTPUT PARAMETERS 

returned _ iova 

status 

DESCRIPTION 

The MULTIBUS address in PBU2_SIOVA_T format that marks the start of 
MULTIBUS address space allocated by PBU2_SALLOCATE_MAP. This is a 
4-byte integer (in C and Pascal). 

Completion status in STATUS_ST format. 

PBU2_SALLOCATE_MAP reserves an area of the MULTIBUS address space for subsequent 
DMA transfers from a 20-bit controller. The function allocates the number of I/O map entries that 
correspond to the required number of pages of MUL TIBUS memory plus one (to enable mapping 
of buffers that are not page aligned). 

In general, a driver may allocate only one area of the I/O map for a given device at any time. How­
ever, drivers for 20-bit controllers can allocate a second area of the I/O map for a device by calling 
PBU2_SMAP _CONTROLLER. 

B-41 GPIIO Routines 



PBU2_$FREE_MAP-Releases 1/0 map area previously allocated to a 20-blt controller. 

FORMAT 

PBU2_$FREE_MAP (unit, status) 

INPUT PARAMETER 

unit The device unit number in PBU_SUNIT_T format. This is a 2-byte Pascal in­
teger or a C unsigned short integer. 

c 

OUTPUT PARAMETER C' 
status Completion status in STATUS_ST format. 

DESCRIPTION 

PBU2_SFREE_MAP releases the area of the I/O map previously allocated by the call PBU2_SAL­
LOCATE_MAP. 

GPIIO Routines B-42 

C· ..,,,/ 

r'\ 
I 

\",-, -_./" 



o 

o 

o 

o 

o 

PBU2_SMAP-Maps an 1/0 buffer. 

FORMAT 

returned_lova := PBU2_$MAP (unit, buffer, length, lova, status) 

INPUT PARAMETERS 

unit 

buffer 

length 

iova 

The device unit number in PBU_SUNIT_T format. This is a 2-byte Pascal in­
teger or a C unsigned short integer. 

The buffer to be mapped. Specifies the buffer as an array of characters. 

The length in bytes of the buffer. This is a 4-byte integer (in C and Pascal). 

A page-aligned MUL TIBUS address within the 110 map area allocated by 
PBU2_SALLOCATE_MAP in PBU2_SIOVA_T format. This is a 4-byte inte­
ger (in C and Pascal). 

OUTPUT PARAM~TERS 

returned _ iova 

status 

DESCRIPTION 

The MUL TIBUS address that marks the start of the buffer in MUL TIBUS ad­
dress space in PBU2_SIOVA_T format. This is a 4-byte integer (in C and 
Pascal). 

Completion status in STATUS_ST format. 

PBU2_SMAP establishes the mapping between the buffer in processor address space and MUL TI­
BUS address space. Drivers must call this routine before using the buffer for I/O operations and 
only after they have called PBU2_SALLOCATE_MAP and PBU2_SWIRE (I/O buffers must be 
wired before being passed to PBU2_SMAP), 

User-written interrupt routines can call PBU2_SMAP. 

The address specified as a parameter to PBU2_SMAP need not be the address that the call 
PBU2_SALLOCATE_MAP returned, but can lie on any page that corresponds to the allocated 
area of the I/O map. In this way, drivers can' map several different buffers into different sections of 
the allocated I/O map area at the same time. 

B-43 GPIIO Routines 



PBU2_$MAP _CONTROLLER-Maps 20-bit MULTIBUS, AT-compatible, or VME controller memory 
to processor address space. 

FORMAT 

address := PBU2_$MAP _CONTROLLER (unit, lova, length, status) 

INPUT PARAMETERS 

unit 

iova 

length 

The device unit number in PBU_SUNIT_T format. This is a 2-byte Pascal in­
teger or a C unsigned short integer. 

The bus address that marks the start of controller memory in 
PBU2_SIOVA_T format. This is a 4-byte integer (in C and Pascal). The ad­
dress must lie on a page boundary. 

The length in bytes of controller memory. This is a 4-byte integer (in C and 
Pascal). 

OUTPUT PARAMETERS 

address 

status 

DESCRIPTION 

The virtual address of the first byte of the controller's mapped memory in 
UNIV _PTR format. For an equivalent of UNIV _PTR in C, refer to Appendix 
C, subsection C.2.S. 

Completion status in STATUS_ST format. 

PBU2_SMAP_CONTROLLER maps 20-bit MULTIBUS, AT-compatible, or VME controller 
memory to processor address space. Device drivers can map only one area of controller memory 
per device at a time. Possible errors include: 

• The specified unit number is invalid (PBU_SBAD_UNIT). 

• The device has not been acquired (PBU_SNOT_ACQUIRED). 

• Controller memory has already been mapped (PBU_SALREADY_MAPPED). 

Errors can also include those generated by PBU2_SALLOCATE_MAP, the most common of which 
is that the requested memory is already allocated. If this error is generated, check the DMA devices 
in the configuration to see if they are using the desired MUL TIBUS addresses. 

It should be noted that memory that is mapped with PBU2_SMAP _CONTROLLER must be un­
mapped with PBU2_SUNMAP_CONTROLLER. 

Refer to Chapter 7, section 7.2 for 'information on referencing controller memory. 

GPIIO Routines B-44 

c 



o 

o 

o 

o 

o 

PBU2_$UNMAP-Unmaps an 1/0 buffer. 

FORMAT 

PBU2_$UNMAP (unit, buffer, length, iova, status) 

INPUT PARAMETERS 

unit 

buffer 

length 

iova 

OUTPUT PARAMETER 

status 

DESCRIPTION 

The device unit number in PBU_$UNIT_T format. This is a 2-byte Pascal in­
teger or a C unsigned short integer. 

The buffer to unmap. Specifies the buffer as an array of characters. 

The length in bytes of the area to be unmapped. This is a 4-byte integer (in C 
and Pascal). 

The MUL TIBUS address that marks the start of the buffer in 
PBU2_$IOVA_T format. This address must be the address that PBU2_$MAP 
returned (the actual start of the buffer). 

Completion status in STATUS_$T format. 

PBU2_$UNMAP unmaps the buffer from MULTIBUS address space and invalidates the I/O map 
for the space occupied by the buffer. 

Device drivers are not required to unmap previously mapped buffers; another call to PBU2_$MAP 
that specifies the same area of the I/O map effectively unmaps the previously mapped buffer. 
PBU2_$UNMAP is used primarily to protect a buffer from erroneous references by a controller. 

PBU2_$UNMAP can be called from the interrupt side. 

B-45 GPIIO Routines 



PBU2_$UNMAP _CONTROLLER-Unmaps a 20-blt MULTIBUS, AT-compatible, or VME controller's 
memory from processor address space. C 

FORMAT 

PBU2_$UNMAP _CONTROLLER (unit, add~ess, length, status) 

INPUT PARAMETERS 

unit 

address 

The device unit number in PBU_SUNIT_T format. This is a 2-byte Pascal in­
teger or a C unsigned short integer. 

The virtual address of the first byte of the controller's mapped memory in 
UN IV _PTR format. For an equivalent of UNIV _PTR in C, refer to Appendix 
C, subsection C.2.S. I 

length The length in bytes of controller memory. This is a 4-byte Pascal integer or C 
unsigned long integer. 

c 

OUTPUT PARAMETER C, 
status Completion status in STATUS_ST format. 

DESCRIPTION 

PBU2_SUNMAP_CONTROLLER unmaps from processor address space the controller memory C 
mapped by PBU2_SMAP_CONTROLLER. The whole mapped length must be unmapped. Possible _." 
errors can include the following: 

• The specified unit number is invalid (PBU_SBAD_UNIT). 

• The specified device has not been acquired (PBU_SNOT_ACQUIRED). 

• Controller memory has not been mapped (PBU_SNOT_MAPPED). 

GPI/O Routines B-46 



o 

o 

o 

PBU2_$UNWIRE-Unwlres an 1/0 buffer. 

FORMAT 

PBU2_$UNWIRE (unit, buffer, length, modify_flag, status) 

INPUT PARAMETERS 

unit 

buffer 

length 

OUTPUT PARAMETER 

status 

DESCRIPTION 

The device unit number in PBU_$UNIT_T format. This is a 2-byte Pascal in­
teger or a C unsigned short integer. 

The buffer to be unwired, specified as a universal array of characters. 

The length in bytes of the buffer. This is a 4-byte integer (in C and Pascal). 

A Boolean value that indicates whether the buffer pages being unwired should 
be marked as modified by an input I/O operation. This flag is needed because 
DMA does not set the page's modify bit in Memory Management Unit 
(MMU) tables. For more information, see Chapter 7, subsection 7.1.4 ("Un­
wiring the I/O Buffer"). For information about using Boolean values in C, re­
fer to Appendix C, subsection C.2.4. 

Completion status in STATUS_$T format. 

PBU2_$UNWIRE makes a buffer previously wired into processor memory with PBU2_$WIRE and 
PBU_$WIRE_SPECIAL available for MMU paging operations. 

NOTE: Buffers that are part of a driver's interrupt side must never be unwired. 

B-47 GPIIO Routines 



PBU2_$WIRE-Wires an 1/0 buffer. 

FORMAT 

PBU2_$WIRE (unit, buffer, length, status) 

INPUT PARAMETERS 

unit 

buffer 

length 

OUTPUT PARAMETER 

status 

DESCRIPTION 

The device unit number in PBU_SUNIT_T format. This is a 2-byte Pascal in­
teger or a C unsigned short integer. 

The buffer to be wired, specified as a universal array of characters. 

The length in bytes of the buffer. This is a 4~byte integer (in C or Pascal). 

Completion status in STATUS_ST format. 

PBU2_SWIRE makes the buffer's pages permanently resident in processor memory in preparation 
for an I/O operation. Drivers must wire I/O buffers before mapping them with PBU2_SMAP. 

Drivers need not wire interrupt routine buffers with PBU2_SWIRE because PBU_SACQUIRE auto­
matically wires the data sections of the driver's interrupt routine(s) when the device is acquired. 
Refer to Chapter 7, subsection 7.1.2. 

PBU2_SWIRE returns an error if any page of the specified buffer has already been wired. 

GPIIO Routines B-48 



o 

o 

o 

o 

o 

8.3 Error Messages 
Following are possible error messages that can be returned by GPIIO calls. If a message is returned by 
only one call (or set of calls), that call is given in parentheses. 

PBU_$ALL_IN_USE 
All MULTIBUS units are in use. 

PBU_$ALREADY_ACQUIRED 
Unit already acquired. 

PBU_$ALREADY_ALLOCATED 
I/O map already allocated (PBU[21_$ALLOCATE_MAP). 

PBU _$ALREADY_MAPPED 
Controller already mapped (PBU[21_$MAP_CONTROLLER). 

PBU _ $ALREADY _ WIRED 
Page already wired (PBU[21_$WIRE). 

PBU_$BAD_BUFFER 
Bad buffer address. 

PBU_$BAD_CSR_ADDRESS 
CSR address not on CSR page (PBU_$READ/WRITE_CSR). 

PBU_$BAD_CSR_ADDR_IN_DDF 
Invalid CSR page address. 

PBU_$BAD_DDF _TYPE 
Not a DDF (PBU_$ACQUIRE). 

PBU_$BAD_DDF _VERSION 
DDF is wrong version (PBU_$ACQUIRE). 

PBU _ $BAD _DIRECTION 
Bad DMA direction specified (PBU_$DMA_START). 

PBU_$BAD_IOVA 
Bad iova (PBU[21_$MAP). 

PBU_$BAD_LEN 
Length parameter too large or too small. 

PBU_$BAD_PARM 
Bad parameter. 

8-49 GPIIO Routines 



PBU_SBAD_UNIT 
Bad unit number specified in call. 

PBU _SBAD _ UNIT_IN_DDF 
Bad unit number in DDF (PBU_SACQUIRE). 

PBU_SBUFFER_TOO_BIG 
Buffer too big (PBU [2]_ SMAP). 

PBU_SBUS_TIMEOUT 
Read/write CSR caused bus timeout (PBU_SREAD/WRITE_CSR). 

PBU_SCHANNEL_IN_USE 
Requested DMA channel in use (PBU_SDMA_START). 

PBU_SCHANNEL_NOT_IN_USE 
Requested DMA channel not in use (PBU_SDMA_STOP). 

PBU _ SCLEANUP _ROUTINE_MISSING 
Clean-up routine not in driver (PBU_SACQUIRE). 

PBU_SCSR_PAGE_IN_USE 
CSR page in use. 

PBU_SDDF_TOO_BIG 
DDF greater than lK byte in length. 

PBU_SDEVICE_NOT_SHARED 
PBU_SMEM_PTR called for non-shared memory-mapped controller (PBU_SMEM_PTR). 

PBU_SDEVICE_NOT_MAPPED 
Controller not mapped (PBU[2]_SUNMAP_CONTROLLER). 

PBU_SDEVICE_TIMEOUT 
MUL TIBUS device got bus timeout. 

PBU_SDMA_NOT_EOR 
DMA channel not at end of range (PBU_SDMA_STOP). 

PBU_SEC_NOT_ALLOCATED 
Eventcount not allocated to this unit. 

PBU_SILLEGAL_CHANNEL 
Illegal DMA channel number (PBU_SDMA_START). 

PBU_SILLEGAL_TRAP 
Trap 6 from level O. 

GPIIO Routines 8-50 

c 

r 
"---

c 



o 

o 

o 

o 

o 

PBU_SILLEGAL_TRAP_CODE 
Bad trap 6 code. 

PBU_SILLEGAL_USP 
Invalid USP on trap 6. 

PBU _SINIT _ROUTINE_MISSING 
Intialization routine not in driver library (PBU_SACQUIRE). 

PBU_SINTERRUPT_ROUTINE_MISSING 
Interrupt routine not in driver library (PBU_SACQUIRE). 

PBU_SINT_LIB_NOT_FOUND 
Interrupt library name (from DDF) not found (PBU_SACQUIRE). 

PBU_SINT_LIB_TOO_BIG 
Interrupt library larger than 32K bytes (PBU_SACQUIRE). 

PBU_SINT_ VECTOR_IN_USE 
VME interrupt vector in use (PBU_SACQUIRE). 

PBU_SLIB_NOT_FOUND 
Device library not found (PBU_SACQUIRE). 

PBU_SMAP_IN_USE 
Requested I/O map in use (PBU[21_SALLOCATE_MAP). 

PBU_SNO_ROOM 
No room in I/O map (PBU[21_SALLOCATE_MAP). 

PBU_SNO_MORE_ECS 
No more eventcounts available (PBU_SALLOCATE_EC). 

PBU_SNOT_ACQUIRED 
Unit not acquired. 

PBU_SNOT_ALLOCATED 
I/O map not allocated (PBU[21_SFREE_MAP). 

PBU_SNOT_MAPPED 
Buffer not mapped (PBU[21_SUNMAP). 

PBU_SNOT_ VME 
Operation valid for VME device only (PBU _SWIRE_SPECIAL). 

PBU_SNOT_WIRED 
Page not wired (PBU[21_SUNWIRE). 

8-51 GP/IO Routines 



PBU_SOS_PUBLIC_DEVICE 
Unit is publicly owned; can be released by any process. 

PBU_SPA_LIST_OVERFLOW 
List of physical addresses too small (PBU_SWIRE_SPECIAL). 

PBU_SPAGE_NOT_ WIRED 
Buffer page not wired (PBU [21_SMAP). 

PBU_SPBU_NOT_PRESENT 
MUL TIBUS not present in system. 

PBU_SPPN_LIST_OFLO 
Too many PBU Manager pages wired (crash system). 

PBU _SPROTECTION_ VIOLATION 
Bad argument on trap 6. 

PBU_STOO_MANY_ WIRED_PAGES 
Too many wired pages. 

PBU _ SUNEXPECTED _INTERRUPT 
Unexpected interrupt from some device. 

PBU_SUNIT_IN_USE 
Requested unit in use. 

PBU_SUNIT_IS_GLOBAL 
Unit already in use as a global device. 

PBU_SUNSUPPORTED_FUNCTION 
Unsupported function requested. 

PB U_S WRONG_LIBRARY 
Out of date PBULIB. 

STATUS_SOK 
Successful completion. 

GPIIO Routines 8-52 



o 

o 

o 

o 

o 

Append~ C 

Programming Information 

This appendix provides tips, warnings, and rules for Pascal and C programmers who are developing device 
drivers on our operating system. 

C.1 The CSR Page 
In general, use data types of integer and char (for Pascal) or char (for C) when declaring a CSR page be­
cause the compiler word-aligns records (or C structs) and arrays even if they appear inside a packed re­
cord. 

If you want to declare a register as a Pascal set, Pascal or C enumerated type, or C struct, follow these 
steps: 

1. Declare the register as type char and integer (for Pascal) or char (for C) to ensure proper byte 
alignment. 

2. Copy the register into local storage that- contains a variant (in C, a union) for the character or in­
teger type and a variant for the structure. 

3. Operate on the copy of the register in local storage. 

4. Write the modified version back to the actual register. 

Suppose that a CSR has the following internal representation: 

15 14 10 9 5 4 1 0 

RESET COMMAND STATUS MISC 10 I 

C-1 Programming Information 



The following sequence of code illustrates how to define the driver's private copy of this register as a re­
cord in Pascal: 

TYPE csr_t 
TRUE 
FALSE 

[device]packed record case boolean of 
(all: integer); 
(reset : boolean; 
cmd : O .. 31; 
status: 0 .. 31; 
misc : O .. 15; 
mbz : O •• 0) ; 
end; {of esr_t} 

The definition of the copy of this register in C would be: 

typedef union { 
short all; 
struct { 

unsigned int reset :1; 
unsigned int cmd :5; 
unsigned int'status :5; 
unsigned int mise :4; 
unsigned int mbz :1; 

} fields; 
} csr_t Hattribute[device]; 

Declare 8-bit registers within the CSR page as char types. The char type ensures that the registers will be 
byte aligned. If you want to perform arithmetic or bit-manipulation operations on the register, use the ord 
function, which will return the integer value of the char data type. If you are writing your driver in C, see 
subsection C.2.3 for more information about using char types. 

Do not declare 8-bit registers within the CSR page as Pascal sets or Pascal or C enumerated types. If an 
8-bit register within the CSR page is declared as a set or an enumerated type (for example 0 ... 255), the 
compiler generates code that copies the register to a temporary variable and passes the temporary variable 
to the routine. This sequence touches the CSR and may cause a bus timeout if the controller is not re­
sponding. 

C.2 Programming in C 
This section contains several additional hints for C programmers. Before you write a device driver in C, 
refer to the DOMAIN C Language Reference and the DOMAIN C Library (CLIB) Reference for complete 
information about our version of the C language. Use the suggestions in the following subsectIOns to sup­
plement the information in those manuals. An example of a driver coded in C appears in Appendix F. 

C.2.1 Insert Files 

The GPI/O insert file for C programmers is ISYS/INS/PBU.INS.C. Include this file in your C modules by 
using the #include compiler control line (as described in the DOMAIN C Language Reference). You 
should also include the standard C include files listed in the C manual. 

C.2.2 Type int 
In C, type int is four bytes and short int is two bytes. In Pascal, type integer is two bytes. The DOMAIN C 
Language Reference contains a table of corresponding data types in the various languages. 

Programming Information C-2 

c 

c 

c 

o 



o 

o 

o 

o 

c 

C.2.3 Type char 

When you use a char type in C, you must be aware of the effects of the STD_$CALL keyword. This key­
word signals the compiler that the C program and external routines exchange data according to the Do­
main system standard, which is equivalent to that used in Pascal and FORTRAN. The DOMAIN C Lan­
guage Reference describes this keyword fully. 

In the C insert file ISYS/INS/PBU.INS.C, GPI/O-routines that take arguments of type char contain the 
appropriate STD_$CALL keyword. Because of the keyword, the compiler treats an array of char differ­
ently from the way it treats a pointer to a buffer containing char data. Suppose, for example, that you de­
clare a CSR register as an array of char: 

char csr[8l; 

When you use csr as an argument in the routines PBU_$READ_CSR and PBU_$WRITE_CSR, the com­
piler passes to the routines a pointer to the characters in the array csr. 

On the other hand, suppose you wish to use a pointer to a buffer of char data to declare the CSR register. 
As a C programmer, you might expect to use the pointer name in the invocation. Because of the effects of 
the STD_$CALL keyword on the routines that take csr as an argument, however, using the pointer name 
would make the C compiler pass a pointer to the pointer, instead of a pointer to the character or string. 
This would be incorrect. 

Because of the effects of $STD_CALL, you must precede the pointer name with C's indirection operator 
(*). The indirection operator tells the compiler to pass the address of the buffer rather than the address of 
a pointer to the buffer. For example: 

char *CP 

If you use CP instead of *CP, the compiler passes a pointer to a pointer, which is incorrect. 

In summary, if you wish to use a pointer to a buffer to declare a CSR, pass the pointer as 
"*pointer_name" rather than just -"pointer_name." The compiler then properly passes the address of the 
buffer to the routines PBU_$READ_CSR and PBU_$WRITE_CSR. 

C.2.4 Boolean Values 

Although C does not support a Boolean type, certain GPI/O routines take Boolean arguments in which the 
routine expects a value of true or false. As arguments for those routines, you must use the definitions of 
"true" and "false" available in the C include file ISYS/INS/BASE.INS.C. Remember to include this file in 
your device driver program, as described in the DOMAIN C Language Reference. 

In C, any nonzero value is defined as "true"; in Pascal, only a value of FF (hex) is "true." For "true," 
the GPI/O routines expect the Pascal value. "True" is defined in the include file as FF (hex). If you 
don't use the include file definitions, the GPI/O routines may not recognize as "true" the value the C 
compiler gives as "true." 

C.2.S Universal Pointer Type 

DOMAIN Pascal includes a predeclared data type called UNIV _PTR, which is a universal pointer. To 
create an equivalent to this type in C, use a pointer to char, as follows: 

char *ptr; 

C-3 Programming Information 



C.2.6 Defining Globals 

In Pascal, globals reside in the data section of the module in which they are defined. Thus, globals that 
are referenced in the interrupt side of a Pascal driver must be declared there with the DEFINE clause. 
But in C, all globals live in their own private sections. Therefore, you need not be so concerned about 
where to define a global in C, since it is unrel~ted to the module in which the definition is made. As 
shown in the sample C driver in Appendix F, the data structure BMCB is globally declared in 
bm_global.c, and wherever it is referenced elsewhere, it is declared with the EXTERN keyword. 

C.3 Considerations for Compiler Optimization 
In SRB.O and later software revisions, the compiler provides optimization (the -OPT option) by default. 
For correct optimization in device driver modules, you must identify to the compiler variables that are ac­
tually mapped into device registers. The compilers at SRB.O and later software revisions provide attributes 
you may use; this section discusses them. For more specific information about compiler switches, refer to 
the release notes shipped with the compiler software, or to the online version of compiler release notes. 
See also the Language Reference for each compiler product. 

In editions of this manual previous to SRB.O, we suggested using dummy labels to thwart compiler op­
timizations; however, in SRB.O and later software releases, this technique no longer suffices. Instead, you 
use the DEVICE attribute to inform the compiler not to perform certain optimizations in some situations. 

The DEVICE attribute is necessary because certain sequences of references to device registers may not 
generate the desired code. Programs commonly use a register for commands on output and status on in­
put. The example that follows shows the code generated by the compiler without optimization (-NOPT 
option used). 

csr := read_status_command; 
MOVEQ.B #01,D1 
MOVE.B D1,CSR(DB) 

status := csr; 
MOVE.B CSR(DB) , STATUS (DB) 

Using ordinary optimization (without using the DEVICE attribute in the device register type declaration), 
the compiler remembers the value in D 1 and never makes a second reference to the register: 

csr := read_status_command; 
MOVEQ.B #01,D1 
MOVE.B D1,CSR(DB) 

status := csr; 
MOVE.B D1,STATUS(DB) 

The code generated is incorrect because D1, not CSR(DB), is written to STATUS(DB), and the value in 
CSR(DB) (depending on the action of the controller) may not be the same as that in D1. The DEVICE 
attribute informs the compiler that the variable is part of an I/O controller and requires careful handling. 
Specifically, it ensures that the compiler does not omit assignments or use instructions that involve "hid­
den" read cycles. In modules that directly reference device registers mapped into the MUL TIBUS address 
space, use the DEVICE attribute in the declaration of the device register data structure. The compiler 
then will always generate a reference to the register on both reads and writes. 

For example, note the following segment of a type declaration. The example is from the module 
ether.pvt.pas, in the directory /DOMAIN_EXAMPLES/GPIO_EXAMPLES/THREECOM_EXAMPLE. 
(Note that declarations for ETHER_MECSR_T, ETHER_XMIT_BUF _T, and ETHER_RCV _BUF _T ap­
pear earlier in ETHER.PVT.PAS, and the declaration for ETHER_$ADR_T appears in 
ETHER.INS.PAS.) 

ether_memory_t [device] packed record case integer of 
0: (csr: ether_mecsr_t; { control & status 

Programming Information C-4 

c' 

~ 
I, ) 

..... 



o 

o 

o 

o 

o 

1: 
end; 

retran~timr: 
pad_to_adr_rom: 
adr_rom: 
pad_to_adr_ram: 
adr_ram: 
pad_to_tbuf: 
tbuf: 
rbuf: 

registers } 
integer16; { Retransmit timer} 
array [1 .. 16#3FC] of char; 
ether_Sadr_t { + 400 } 
array [1 .. 16#lFA] of char; 
ether_Sadr_t; { + 600 } 
array [1 .• 16#lFA] of char; 
ether_xmit_buf_t; { + 800 } 
array [0 .. 1] of 

(bytes: array 
ether_rcv_buf_t); {+ 1000, +1800 } 

[0 .. 16#lFFF] of char); 

The example that follows shows the same segment written in C. In this example, the pad arrays are called 
pad_l, pad_2, etc., instead of the names used in the Pascal example, but they perform the same functions 
as in the Pascal example. The C example also includes type declarations so that the segment will compile 
on its own. 

typedef shortether_mecsr_t; 
typedef charether_Sadr_t[6]; 
typedef charether_xmit_buf_t[Ox800]; 
typedef charether_rcv_buf_t[Ox800]; 

typedef union { 
struct { 

ether_mecsr t 
short 

/* Control status registers */ 
/* Retransmit timer */ 

csr; 
retran_timer; 
pad_1[Ox3fc] ; 
adr_rom; 
pad_2[Oxlfa] ; 
adr_ram; 
pad_3[Ox1fa] ; 
tbuf; 

char 
ether_Sadr t 
char 
ether_Sadr_t 
char 
ether_xmit_buf_t 
ether_rcv_buf_t 

} fields; 
charbytes[Ox1fff] ; 

rbuf[2] ; 

} ether_memory_t #attribute[device]; 

Use of the DEVICE attribute guarantees that 

/* + 400 */ 

/* + 600 */ 

/* + 800 */ 
/* + 1000, + 1800 */ 

e The compiler does not merge adjacent register references into larger references. For example, 
two MOVE.W instructions do not become a MOVE.L. 

• The compiler does not generate gratuitous read-modify-write references for DEVICE registers. 

• The compiler does not generate CLR or ST instructions when it writes a 0 or -1 to a location de­
fined as having the DEVICE attribute. 

Another attribute, the VOLATILE attribute, informs the compiler that memory contents may change 
without notice. Any register declared with the DEVICE attribute receives the VOLATILE attribute as 
well. 

C-5 Programming Information 



c: 

• I 

~, I 
I 
\"""- .--/ 



o 

o 

C) 

o 

Appendix D 

Performance Information 

This appendix describes hardware and software performance during I/O operations. 

D.1 DMA Bandwidth 
The rate at which a controller on the bus moves data to or from system memory depends upon how long it 
has control of the bus, the bus acquisition time, and the number of words transferred per bus acquisition. 
In turn, bus acquisition time depends upon the current activity of other devices using the bus, such as the 
CPU, ring/disk board, and so on. Bus acquisition time can range from 100 nanoseconds (minimum) to 2 
microseconds (typical) to 1 millisecond (worst case; usually during a ring or disk transfer). Once the con­
troller acquires the bus, it can transfer data over the bus at a rate of 1 microsecond per 16-bit word. 

DMA controllers should not cause excessive DMA overruns. A DMA overrun occurs when a controller 
cannot transfer data to the processor as fast as it is receiving the data and so loses data. If a controller 
does cause an overrun, it must abort the rest of the transfer so that at least one DMA controller can suc­
cessfully complete a transfer when an overrun occurs. 

As a general rule, a controller should not require a long-term average of more than 20 percent of the bus 
bandwidth. No single transfer should take longer than 10 microseconds. This limit prevents a controller 
from unduly interfering with system operation. 

0.2 Interrupt Processing Overhead 
The amount of CPU time required to process a device interrupt depends upon several considerations: 

• Basic system overhead 

• The amount of processing the user-written interrupt routine performs 

• The directives (interrupt enable or eventcount advance) that the user-written interrupt routine 
sends to the System Interrupt Handler through the return_flags parameter 

Table D-1 lists the CPU times in the various stages "Of interrupt processing. All times are given in micro­
seconds. Observed times may vary up to 10 percent depending on the processor, system activity, hardware 
caching, and so on. 

0-1 Performance Information 



Table 0-1. CPU Times During Interrupt Processing 

Interrupt Activity CPU Time 

Interrupt request by device to first instruction of interrupt 125 
routine 

Interrupt routine variable 

Enabling the device (specifying PBU_$INTERRUPT_ENABLE 10 
on return) 

--

Exit to interrupted process with no advance of the device's 110 
eventcount 

Exit to interrupted process with advance, but no one waiting 200 
on eventcount 

Exit to interrupted process with advance, with someone waiting 265 
on eventcount 

Using Table D-1, we can determine that, for example, the total system overhead for an interrupt routine 
that awakens a waiting process is 125 + 265 = 390 microseconds. 

If the only action of the interrupt routine is to advance the eventcount, the routine itself can be elimi­
nated. If no user interrupt routine is specified for the device, the system interrupt handler automatically 
advances the device's eventcount. This requires a total of 260 microseconds if no one is waiting on the 
eventcount, 325 microseconds if someone is waiting. 

0.3 To Copy or to Wire 
When designing a device driver for a DMA controller, you have a choice of how to set up the DMA buff­
ers. Assume that the driver has a routine called WRITE, which an application program calls with the ad­
dress and length of a buffer; WRITE must then perform the appropriate operations to send the data to a 
device. 

The first approach looks like this: 

Driver initialization routine: 
Allocate iomap for largest possible buffer. 

WRITE routine: 
Wire the buffer. (pbu2_$wire) 
Map the buffer. (pbu2_$map) 
start the I/O and wait for completion. 
Unwire the buffer. (pbu2_$unwire) 
Return to caller. 

Performance Information 0-2 

(" 
'''----- . 

C,.. ..... ~ 



o 

o 

o 

o 

o 

On a DSPBO, the total time (ignoring the I/O time) for a buffer N pages in length is 

pbu2_$wire: 
pbu2_$map: 
pbu2_$unwire: 

0.302 (SVC overhead) + 0.605N 
0.295 (SVC overhead) + 0.175N 
0.312 (SVC overhead) + 0.311N 

============================== 
0.909 (SVC overhead) + 1.091N milliseconds 

In the second approach, there is a permanently wired and mapped buffer area, and application data is 
copied into this buffer for each write operation: 

Driver initialization routine: 
Allocate iomap for largest possible buffer. 
Create (ms_$crmapl*) and wire the buffer. 
Map the buffer. 

WRITE routine: 
Copy user~s data into the buffer. 
start the I/O and wait for completion. 

The time for this approach is 

page copy: 0.000 (SVC overhead) + 0.913N milliseconds 

The point is that wiring and unwiring buffers are relatively expensive operations, and you should always 
consider the option of copying data into a permanently allocated and mapped buffer. 

Also keep in mind that the stated times do not include the overhead of any page faults required to get the 
buffer into memory. Such overhead, however, would be the same for both approaches. If data is being 
collected from several noncontiguous buffers for a single DMA operation, copying saves even more time 
because 'PBU2_$WIRE, PBU2_$MAP, and PBU2_$UNWIRE will have to be called for each separate 
buffer. For example, mapping a 5-page buffer with one call to PBU2_$MAP takes 1.561 msec; mapping 
five 1-page buffers takes 2.765 msec. You will notice that PBU2_$UNMAP is not used-refer to the de­
scription of PBU_$UNMAP and PBU2_$UNMAP in Appendix B. If an application requires very large 
buffers (for example, 512K), overall performance may suffer if a buffer is permanently wired. In such 
cases experimentation is required to determine the best approach. 

0.4 Timing Information 
Table D-2 lists the times of certain GPI/O operations for the DN400, DN560, DN3000, DSPBO, and 
DSP160 as of SR9.5. Observed times may vary up to 5 percent depending on other activity in the system. 
The times for PBU_$WIRE do not include any page faults; the pages being wired were all resident in 
physical memory. All times are given in milliseconds. 

NOTE: Using PBU_$READ_CSR or PBU_$WRITE_CSR to read or write to a CSR 
takes around 100 microseconds, depending on the node model. Doing the read/ 
write directly is typically 1-2 instructions or 3-5 microseconds, depending on the 
node model. 

*Refer to DOMAIN System Call Reference 

0-3 Performance Information 



-----_ .... 

Table 0-2. Timing for ON400, 560, 570-T, 580-T, 3000 and OSP80, 160 Workstations 

Model Operation Times 

DN400 (SR9.S) page copy 0.000 ~SVC overheadl + 1.879/page 
pbu2_Swire 0.289 SVC overhead + 0.S09/page 
pbu2 _ Sunwire 0.260 tvc overhead + 0.271/page 
pbu2_Smap 0.252 SVC overhead) + 0.lS0/page 
pbu2_Sunmap 0.383 SVC overhead) + O.OOS/page 

DNS60 (SR9.S) page copy 0.000 ~SVC overhead~ + 0.2SS/page 
pbu2_Swire 0.107 SVC overhead + 0.216/page 
pbu2_Sunwire 0.112 ~svc overhead) + 0.100/page 
pbu2_Smap 0.101 SVC overhead) + 0.056/page 
pbu2 _ Sunmap 0.146 SVC overhead) + 0.004/page 

DNS70-T (SR9.5.1) page copy 0.000 (SVC overhead) + 0.346/page 
pbu2 Swire 0.061 ~SVC overhead~ + 0.106/page 
pbu2:Sunwire 0.079 SVC overhead + 0.108/page 
pbu2_Smap Unsupported Call 
pbu2 _ Sunmap U,nsupported Call 

DNS80-T (SR9.5.1) page copy 0.000 ~SVC overhead~ + 0.328/page 
pbu2_Swire 0.067 SVC overhead + 0.077/page 
pbu2 _ Sunwire 0.073 (SVC overhead) + 0.08S/page 
pbu2_Smap Unsupported Call 
pbu2_Sunmap Unsupported Call 

DN3000 (SR9.5) page copy 0.000 (SVC overhead) + 0.296/page 
pbu2 Swire 0.120 ~SVC overhead~ + 0.136/page 
pbu2=Sunwire 0.105 SVC overhead + 1.277/page 
pbu2_Smap Unsupported Call 
pbu2 _ Sunmap Unsupported Call 

DSP80 (SR9.5) page copy 0.000 ~svc overhead! + 0.913/page 
pbu2 Swire 0.302 SVC overhead + 0.60S/page 
pbu2=Sunwire 0.312 SVC overhead + 0.311/page 
pbu2_Smap 0.295 ~SVC overhead + 0.17S/page 
pbu2 _ Sunmap 0.443 SVC overhead + 0.009/page 

DSP160 (SR9.S) page copy 0.000 tvc overhead) + 0.849/page 
pbu2 Swire 0.159 SVC overhead) + 0.2S2/page 
pbu2=Sunwire 0.239 SVC overhead) + 0.166/page 
pbu2_Smap 0.116 ~SVC overhead) + 0.098/page 
pbu2_Sunmap 0.230 SVC overhead) + 0.004/page 

',_ .... 1 

Performance Information 0-4 



o 

o 

o 

o 

o 

Appendix E 

Sample Driver in Pascal 

This appendix lists the files that make up the online device driver in the subdirectory IDOMAIN_EXAM­
PLES/GPIO_EXAMPLES/BM_EXAMPLE. This version differs from the online version in two respects: 

• Whereas in the on-line version the controller commands are assigned values in the initialization 
routine (BM_$INIT), here they are declared as constants in BM.PVT.PAS. This is permissible 
because the CSR page definitions in BM.PVT.PAS have been marked with the [DEVICE] attrib­
ute. For information on the [DEVICE] attribute, refer to Appendix C, section C.3. 

• A private insert file, BM.PVT.PAS, has been added, and some of the data structures and routines 
formerly in the public insert file, BM.INS.PAS, have been moved over to this new file. This 
change does not affect the running of the driver, but it does show the format of a private insert 
file. 

Both the functional parts and the operation of this driver are fully described in Chapter 4, subsection 
4.3.3, and Figure 4-2. For additional information about the driver and the hypothetical bulk-memory 
controller it supports, refer to the header comments in BM_LIB.PAS (section E.3). An identical version 
of this driver coded in C is listed in Appendix F. 

Four files make up the BM_EXAMPLE driver: 

• Private insert file: BM.PVT.PAS 

• Public insert file: BM.INS.PAS 

• Call-side module: BM_LIB.PAS 

• Interrupt-side module: BM_INT_LIB.PAS 

E-1 Sample Driver in Pascal 



E.1 BM.PVT.PAS 
BM.PVT.PAS declares the private storage area for the interrupt and call sides of the driver. Specifically, it 
declares the controller command constants, the CSR page (BM_$CSR_PAGE_T), the control block used 
by the driver (BM_$BMCB_T), and the internal start I/O routine (BM_$SIO). 

{ BM. PVT. PAS, private definitions for bulk memory device driver} 

{ Define controller commands for loading into csr command register. } 

CONST bm_init_cmd 
bm_read_cmd 
bm_write_cmd 

.- chr(16#00); 
:= chr(16#01); 
.- chr(16#02); 

{ initialization command} 
{ read command } 
{ write command} 

{ Define the bulk memory controller's csr page. (Note: when defining the 
contents of a csr page, watch out for the compiler's rules about packing 
records. In particular, avoid using records inside the csr page record, 
since embedded records are word-aligned, even in a packed record. For 
example, we might have defined the status register to be bm_$status_t (see 
below), but then the compiler would have aligned it at offset 2 in the page 
even though bm_$status_t is only 8 bits wide.) } 

TYPE bm_$csr-page~t [DEVICE] PACKED RECORD 
command : char; { 00 one byte command register at offset 0 } 
status : char; { 01 one byte status register} 
iova : integer; { 02 io virtual address to use for transfer} 
count : integer; { 04 number of bytes to transfer } 
bm_address : bm_$bm_address_t; {06 bulk memory address 

to read/write} 
end; {of bm_$csr-page_t } 

bm_$csr-page-ptr_t = RECORD CASE INTEGER OF 
0: (c ~bm_$csr-page_t); 

l:(p pbu_$csr-page-ptr_t); 
end; {of bm_$csr-page-ptr_t } 

c 

c 

{ Define the bulk memory control block (bmcb). This area is used for l' 
communications between the call and interrupt sides of the bm driver. '-,/ 
Since it is referenced by the interrupt handler, it must be part of the 
interrupt library -- see bm_int_Iib.pas. } 

TYPE bm_$flags_t = PACKED RECORD CASE INTEGER OF { define flags field in 

0: (init : boolean; 
buffer_wired : boolean; 
busy boolean; 
done boolean; 

pad SET OF 0 .. 3); 
l:(all binteger); 

end; { of bm_$flags_t } 

bmcb } 
{ set to true when controller initialized} 
{ set when a buffer is wired } 
{ set to true when operation in progress } 
{ set by interrupt routine when transfer 

completes } 
{ fill out to byte } 

TYPE bm_$status_t = PACKED RECORD CASE INTEGER OF { define status 
register } 

0: (attention : boolean; 
status_modifier boolean; 

{ 1 => change in controller status } 
{ 1 => current status unavailable } 

Sample Driver In Pascal E-2 

o 



o 

o 

o 

o 

o 

control_unit_end : boolean; 
busy : boolean; 
channel_end : boolean; 
device_end : boolean; 
unit_check : boolean; 
unit_exception: boolean); 

1: (all : char); 
end; {of bm_Sstatus_t } 

CONST bm_Sstatus_ok chr(16#OC); 
bm_Ssio_error = chr(16#FF); 

TYPE bm_Sbmcb_t = RECORD 
pbu_unit_number : pbu_Sunit_t; 
flags : bm_Sflags_t; 
pad: SET OF 0 .. 7; 
ddf-ptr pbu_Sddf-ptr_t; 
csr-ptr bm_Scsr-page-ptr_t; 
bm_iova pbu_Siova_t; 

bufaddr bm_Sboth_t; 
buflen : bm_Sbuf_Ien_t; 
bm_address : bm_Sbm_address_t; 
command : char; 

{ 1 => busy condition cleared} 
{ 1 => controller currently busy 
{ 1 => end of operation } 
{ 1 => end of operation } 
{ 1 => parity error in bm 
{ 1 => illegal bm address 

{ normal completion status } 
{ interrupt routine got error 

from bm_Ssio } 

} 
} 

{ define communications area } 
{ number of this pbu device } 
{ a byte of flags } 
{ a byte of padding } 
{ pointer to mapped ddf } 
{ pointer to mapped csr page } 
{ start of our area of i/o 

address space } 
{ address of start of buffer } 
{ total length of buffer } , 
{ address of start of bm area } 
{ current command (read or write) } 

} 

rem_len : bm_Sbuf_Ien_t; 
status : bm_Sstatus_t; 
sio_status : status_St; 

{ length remaining to read or write} 
{ status from last interrupt } 

io_addr : bm_Sboth_t; 
io_len : bm_Sbuf_Ien_t; 
end; {of bm_Sbmcb_t } 

{ status from bm_$sio called from 
int side } 

{ address of last i/o transfer } 
{ length of last i/o transfer } 

{ Define global routines not visible to the user. } 

PROCEDURE bm_Scleanup ( 
IN unit: pbu_Sunit_t; 
IN force :' boolean; 
OUT status status_St 
); EXTERN; 

{ called from pbu_$release } 
{ pbu unit number} 
{ force flag } 
{ returned status } 

PROCEDURE bm_$init ( { called from pbu_$acquire } 
IN unit : pbu_$unit_t; { pbu unit number} 
IN ddf-ptr pbu_$ddf-ptr_t; {pointer to mapped ddf } 
IN csr-ptr : pbu_$csr-page-ptr_t; {pointer to mapped 

csr page } 
OUT status status_$t { returned status } 
);' EXTERN; 

PROCEDURE bm_$sio (OUT status status_$t); EXTERN; { start i/o operation} 

E-3 Sample Driver in Pascal 



E.2 8M.INS.PAS 
BM.INS.PAS is the interface between the application and the driver: it defines error codes, buffer pa­
rameter information, and driver entry points (BM_$READ, BM_$WRITE, and BM_$WAIT). 

{ BM.INS.PAS, insert file for users of bulk memory device} 

{ Error codes from bm manager calls. (We've arbitrarily picked a subsystem 
code of OF.) } 

CONST bm_$no_controller 16#OFOOOOOI 
bm_$not_init 16#OFOOOO02 

bm_$busy 16#OFOOOO03 
bm_$not_ready 16#OFOOOO04 
bm_$bad_address 16#OFOOOO05 

bm_$bad_Iength 16#OFOOOO06 
bm_$bad_bm_address 16#OFOOOO07 
bm_$transfer_not_started 16#OFOOOO08 

b,m_$timeout 16#OFOOOO09 
bm_$quit_during_wait 16#OFOOOOOA 
bm_$io_error 16#OFOOOOOB 

bm_$max_address 2147483647 

32768 ; 

131072 ; 

{ controller not present } 
{ controller not 

initialized} 
{ controller is busy } 
{ unit not ready} 
{ buffer beyond protection 

boundary } 
{ bad buffer length } 
{ bad bm address } 
{ tried to wait before 

read or write} 
{ timeout during wait 
{ quit during wait} 
{ i/o error during 

transfer } 

{ maximum bm address = 
2**31 - 1 } 

} 

{ maximum transfer per i/o 
operation = 32K } 

{ maximum amount to 
transfer per call = 128K 
N.B.: MUST be multiple of 
bm_$block_len 
(see bm_$int)! } 

TYPE bm_$buf_Ien_t = 1 .. bm_$max_Ien; {bm buffer dimension} 

TYPE bm_$buf_t = ARRAY [bm_$buf_Ien_t] OF INTEGER; 
bm_$buf-9tr_t = Abm_$buf_t; 

{ address of block in bulk memory } 

TYPE bm_$both_t = RECORD CASE INTEGER OF 
O:(p: bm_$buf_ptr_t); 

{ for handling buffer pointers } 

1: (i : integer32); 
end; {of bm_$both_t } 

{ Define the application-visible library entry points. } 

PROCEDURE bm_$read ( 

Sample Driver in Pascal 

OUT buffer 
IN buflen 

UNIV bm_$buf_t; 
UNIV bm_$buf_Ien_t; 

E-4 

{ read record } 
{ data buffer } 
{ buffer length } 

c 



o 

o 

o 

o 

o 

IN bm_address : UNIV bm_$bm_address_t; {address in bulk 

OUT status 
); EXTERN; 

PROCEDURE bm_$wait ( { 
IN timeout integer; { 
OUT bm_status : bm_$status_t; 

memory } 
{ returned status } 

wait for transfer completion} 
optional timeout value (secs) } 

OUT rem len: UNIV bm_$buf_Ien_t; 
OUT status status_$t 

{ status from controller } 
{ residual count } 
{ return code } 

); EXTERN; 

PROCEDURE bm_$write ( { write record} 
IN buffer : UNIV bm_$buf_t; { data buffer} 
IN buflen :UNIV bm_$buf_Ien~t; { buffer length} 
IN bm_address : UNIV bm_$bm_address_t; {address in bulk 

memory } 
OUT status status_$t { returned status } 

); EXTERN; 

E.3 BM LIB.PAS 
BM_LIB.PAS consists of the call-side routines that perform initialization (BM_SINIT), clean-up 
(BM_SCLEANUP) , command-processing (BM_SREAD, BM_SWRITE, and BM_COMMAND), and 
wait for interrupt (BM_SWAIT). 

{ BM.PAS, device driver library for bulk memory device} 

{ This module is the device driver library for a hypothetical pbu 
(peripheral bus unit) -- a bulk memory (BM) unit. The intent of the driver 
is to show the general structure of a user-space device driver and to 
demonstrate the use of the pbu manager routines. 

The bulk memory unit is a pbu device whose controller is at address 400 
(hex) in the pbu address space. It has an 8-bit command and status 
registers at addresses 400 and 401, a 32-bit bulk memory address register 
at 402, a 16-bit count register at 406, and a 16-bit i/o virtual address 
(iova) register at 408. The controller interrupts at level 2. 

The controller is initialized by writing 16#00 to the command register. 
Read and write operations are performed by loading the address, count, and 
iova registers the then writing a 16#01 (read) or 16#02 (write;) to the 
command register. status is obtained by reading the status register. 

The bm manager (this module) supports three operations -- read from bulk 
memory, write to bulk memory, and wait for transfer complete. Up to a 128K 
can be transferred with one call, but since the pbu cannot transfer 128K in 
one i/o operation, the interrupt side of the driver (see bm_int_Iib.pas) is 
gi ven the job of blocking large transfers into chunks of size 
bm_$block_len. (Note that bm_$block_len is not the maximum possible, which 
is 64K. The reason for not allowing 64K transfers is that it would require 
we take over the entire iomap. Therefore, if another pbu device is using 
even a single page of the iomap, our call to pbu_$allocate_map would fail.) 

A typical invocation of the bm library might appear as follows: 

VAR data_buffer: ARRAY [0 .. buf_size] OF CHAR; 
status : status_$t; 

E-5 Sample Driver in Pascal 



bm_status : bm_$status_t; 
bytes_left : integer32; 

bm_$write(data_buffer,1024*10,0,status); write 10 pages to bm addr ° 
IF status.all <> ° THEN BEGIN 

error_$print(status); 
GOTO process_error; 
END; 

display error code 

bm_$wait(l,bm_status,bytes_left,status); wait 1 second for completion 

IF status.all <> ° THEN BEGIN 
error_$print(status); display error code 

. IF status.all := bm_$io_error THEN display_status_byte; 
GOTO process_error; 
END; 

MODULE bm; 

DEFINE bm_$cleanup, 
bm_$init, 
bm_$read, 
bm_$wait, 
bm_$write; 

%nolist; . 

} 

%include '/sys/ins/base.ins.pas'; 
%include '/sys/ins/vfmt.ins.pas'; 
%include '/sys/ins/error.ins.pas'; 
%include '/sys/ins/pbu.ins.pas'; 
%include '/sys/ins/pbu_acquire.ins.pas'; 
%list; 
%include 'bm.ins.pas'; 
%include 'bm.pvt.pas'; 
%eject; 

VAR bmcb : EXTERN bm_$bmcb_t; { bulk memory control block (defined 
in bm_int_lib.pas) } 

PROCEDURE unwire_buffer; INTERNAL; 

VAR st : status_$t; 
BEGIN 

{ internal routine to unwire 
a buffer } 

IF NOT bmcb.flags.buffer_wired THEN RETURN; { nothing to do } 

pbu_$unwire(bmcb.pbu_unit_number, { number of this pbu unit 
bmcb.bufaddr.p~, { buffer to unwire } 
bmcb.buflen, { length of buffer } 
bmcb.command = bm_read_cmd, { touch pages if read 

command } 
st) ; { returned status } 

} 

{ If returned status is nonzero, we may have an error on error condition. 
Since we don't want to overlay the error code from the original error, just 

·print the error message here. } 

IF st.all <> ° THEN error_$print(st); 

Sample DrIver In Pascal E-6 

c 

r 
..... _/" 



o 

o 

o 

o 

o 

bmcb.flags.buffer_wired .- false; 

END; {of unwire_buffer } 
%eject; 

{ BM_COMMAND Common internal command processing for read/write 
routines. } 

{ This routine: 

(1) finishes common argument validation; 
(2) wires down the user's buf~er; 
(3) calls the internal bm_$sio routine to start the transfer. } 

PROCEDURE bm_command ( 

IN command : char; 

IN buffer : UNIV bm_$buf_t; 
IN len : bm_$buf_Ien_t; 

IN bm_address : bm_$bm_address_t; 

VAR 

OUT status 

i, j : integer; 
temp : bm_$buf_Ien_t; 
st status_$t; 

BEGIN 

: status_$t) ; INTERNAL; 

{ command byte (read 
or write) } 

{ buffer for transfer 
{ length in bytes of 

buffer } 
{ bulk memory address 

to use } 
{ returned status } 

} 

{ Make sure the controller has been initialized, it's not busy, and that we 
have valid parameters for the transfer. } 

IF NOT bmcb.flags.init THEN BEGIN 
status.all .- bm_$not_init; 
RETURN; 
END; 

IF bmcb.flags.busy THEN BEGIN { make sure controller isn't already 
busy } 

status.all .- bm_$busy; 
RETURN; 
END; 

IF (len <= 0) OR (len> bm_$max_Ien) THEN BEGIN 
status.all .- bm_$bad_Iength; 
RETURN; 
END; 

bmcb.bufaddr:p := addr(buffer); { save address of buffer } 

IF (bmcb.bufaddr.i < 0) OR (bmcb.bufaddr.i+len > 
pbu_$max_virtual_address) THEN BEGIN 

status. all .- bm_$bad_address; 
RETURN; 
END; 

IF (bm_address < 0) OR (bm_address + len> bm_$max_address) THEN BEGIN 
status. all .- bm_$bad_bm_address; 
RETURN; 
END; 

E-7 Sample Driver in Pascal 



._-_._---- -------

{ WiTe down the buffer. } 

bmcb.buflen := len; 

pbu_$wire(bmcb.pbu_unit_number, 
buffer, 
bmcb.buflen, 
status); 

IF status.all <> 0 THEN BEGIN; 
status. fail .- true; 
RETURN; 
END; 

{ 

{ 
{ 
{ 
{ 

{ 

save length of buffer } 

number of this pbu unit } 
buffer to wire } 
length to wire (in bytes) } 
returned status } 

give up if something wrong } 

bmcb.flags.buffer_wired := true; { remember we wired the buffer} 

{ Buffer is all ready. Call the sio routine to map the buffer and load the 
controller registers. (Because bm_$sio is called from the interrupt side of 
the driver, it is defined in bm_int_Iib.pas. } 

bmcb.command .- command; 
bmcb.io_addr .- bmcb.bufaddr; 
bmcb.rem_Ien .- len; 
bmcb.bm_address .- bm_address; 
bm_$sio(status); 
IF status.all <> 0 THEN BEGIN; 

status. fail := true; 
unwire_buffer; 
RETURN; 
END; 

{ command to perform } 
{ first address to transfer } 
{ length "remaining" to transfer 
{ where to start in the bm } 
{ start up the i/o operation } 

{ Enable interrupts from the bm controller. } 

pbu_$enable_device(bmcb.pbu_unit_number, { number of this pbu 
device } 

RETURN; 

END; {of BM_COMMAND } 
%eject; 

status) ; 

{ BM_$CLEANUP -- Cleanup pbu logic. } 

{ returned status } 

PROCEDURE bm_$cleanup (* { called by pbu_$release } 
IN unit : pbu_$unit_t; 
IN force : boolean; 
OUT status : status_$t 

*) ; 

VAR st : status_$t; 
bm_status : bm_$status_t; 
rem_len: bm_$buf_Ien_t; 

BEGIN 

{ If there's an operation in progress, attempt to clean up nicely. } 

IF bmcb.flags.busy THEN 

{ If user said -force, then forceably reset the controller. } 

IF force THEN bmcb.csr_ptr.cA.command .- bm_init_cmd 

Sample Driver in Pascal E-8 

C 

c 

C) 
--.. / 



o 

o 

o 

o 

o 

{ If user didn't say -FORCE, wait 5 seconds for operation to complete. } 

ELSE BEGIN 
bm_$wait(5,bm_status,rem_Ien,status); 
IF status.all <> 0 THEN BEGIN {probably a timeout} 

status."fail := true; { couldn't clear controller} 
RETURN; 
END; {of status <> 0 } 

END; {of ELSE } 

{ Give back our iomap space if we have any. } 

IF bmcb.bm_iova <> 1 THEN BEGIN { (1 is impossible iova--see 
bm_$init) } 

pbu_$free_map (bmcb.pbu_unit_number , {number of this pbu device} 
st); { returned status} 

IF st.all <> 0 THEN error_$print(st); 
bmcb.bm_iova .- 1; { no longer have any iomap space} 
END; 

{ Disable the device to prevent further interrupts. } 

pbu_$disable_device(bmcb.pbu_unit_number, { number of this pbu device} 
status); { returned status} 

bmcb.flags.init := false; { no longer initialized} 

END; {BM_$CLEANUP} 
%eject; 

{ BM_$INIT -- Initialize BM library. } 

PROCEDURE bm_$init (* { called from pbu_$acquire } 
IN unit : pbu_$unit_t; { pbu unit number} 
IN ddf~tr : pbu_$ddf_ptr_t; 
IN csr~tr : pbu_$csr~age~tr_t; 
OUT status status_$t 

*) ; 

{ This routine is called from pbu_Sacquire to device-dependent 
initialization. (Note: pbu_$acquire has already checked that the device 
isn't already acquired, so we don't need to worry about it here.) } 

VAR i : integer; 

BEGIN 

{ Save the information passed by pbu_$acquire in the bmcb. } 

bmcb.pbu_unit_number := unit; 
bmcb.ddf~tr := ddf~tr; 
bmcb.csr~tr.p := csr~tr; 

{ unit number to pass pbu manager} 
{ pointer to mapped ddf } 
{ pointer to mapped controller page } 

{ Initialize the controller. We don't want to try loading the command 
register ourselves yet because if the controller doesn't exist, we'll get a 
bus-timeout fault and be unceremoniously dumped back to shell command 
level. } 

bmcb.flags.all := 0; 
bmcb.bm_iova .- 1; 

{ nothing going on yet and not initialized} 
{ this tells clean-up routine that we 

haven't gotten iomap space yet } 

E-9 Sample Driver in Pascal 



vfmt_$write2('csr page at %lh%.' ,bmcb.csr-ptr.c,O); {*** temp ***} 

pbu_$write_csr(bmcb.pbu_unit_number, 
bmcb.csr_ptr.c~.command, 

ord(bm_init_cmd), 
false, 

status); 

{ number of this pbu device } 
{ the command register } 
{ initialization command} 
{ do a byte, not word write to 

command reg } 
{ returned status } 

IF status.all <> ° THEN BEGIN { controller probably not there if 
error } 

IF status. all = pbu_$bus_timeout THEN 
status.all .- bm_$no_controller ELSE status.fail .- true; 

RETURN; 
END; 

{ Allocate an area of the iomap corresponding to the largest block we are 
going to read or write. } 

bmcb.bm_iova .- pbu_Sallocate_map( 
bmcb.pbu_unit_number, 

false, 

0, 

status) ; 

IF status.all <> 0 THEN BEGIN 
status. fail .- true; 
RETURN; 
END; 

{ number of this pbu 
device } 

{ maximum block size we'll 
use } 

{ don't need a specific 
iova } 

{ forced iova would go 
here } 

{ returned status } 

{ We could enable interrupts from the controller here, but we'll wait until 
we actually start an operation -- see bm_command above. } 

bmcb.flags.init := true; { note we're initialized} 

END; {of BM_SINIT } 
%eject; 

{ BM_SREAD -- Read from bulk memory. } 

PROCEDURE bm_Sread (* 
IN unit : bm_Sunit_t; 
IN buffer: bm_Sbuf_t; 
IN buflen : bm_Sbuf_Ien_t; 
IN bm_address : bm_Sbm_address_t; 
OUT status: status_St; *) ; 

{ This routine reads a block of memory from the bulk memory device into 
Apollo memory. } 

BEGIN 

bm_command (bm~read_cmd, { let bm_command do all the work} 
buffer , buflen , 
bm_address, 
status); 

Sample DrIver In Pascal E-10 



o 

o 

o 

o 

o 

END; {BM_SREAD} 
%eject; 

{ BM_SWAIT -- Wait for completion of read or write operation. } 

PROCEDURE bm_Swait (* { wait for DMA completion } 

*) ; 

IN timeout : integer; 

OUT bm_status : bm_Sstatus_t 
OUT rem len: bm_Sbuf_Ien_t; 
OUT status : status_St 

{ 

{ 
{ 
{ 

optional timeout value 
(secs) } 
status from controller } 
residual count } 
return code } 

{ This routine waits for the completion of a bulk memory transfer. Note 
that for BM_SWAIT a timeout value of zero means wait forever. This is 
unlike PBU_SWAIT, for which a timeout value of zero means return 
immediately. } 

VAR 
pbu_timeout : integer32; 
st : status_St; 
index: pbu_Swait_index_t; 

BEGIN 

IF NOT bmcb.flags.init THEN BEGIN 
status.all .- bm_Snot_init; 
RETURN; 
END; 

IF NOT bmcb.flags.busy THEN BEGIN { shouldn't wait if no transfer 
started } 

status.all .- bm_Stransfer_not_started; 
RETURN; 
END; 

{ Check to see if the operation has already completed ('done' flag set). If 
it is, we don't have to bother calling pbu_Swait. Note that the done flag 
may be set AFTER we check it and BEFORE we call pbu_Swait, but this is ok 
--pbu_Swait will realize that the event we want to wait for has already 
happened and return immediately. } 

status.all := status_Sok; { assume ok for now } 

IF NOT bmcb.flags.done THEN BEGIN 

pbu_timeout .- timeout; { value in seconds } 
IF pbu_timeout = 0 THEN pbu_timeout .- 3600 * 1.000 { default to 

1 hour } 
ELSE pbu_timeout .- pbu_timeout * 1000; 

index := pbu_Swait( 
bmcb.pbu_unit_number, { number of this pbu device} 
pbu_timeout, { number of milliseconds to wait} 
true, { true means allow quits while 

waiting} 
status) ; { returned status } 

IF status. all <> 0 THEN BEGIN { pbu_Swait didn't like 
something } 

status. fail .- true; 
RETURN; 
END; 

E-11 Sample Driver In Pascal 



END {of not done } 

ELSE index := 0; 

CASE index OF 

{ transfer already complete } 

{ If index = 0, the operation completed. Get the ending status and length 
transferred for the caller. } 

0: BEGIN 
bm_status.all := bmcb.status.all; 
IF bmcb.status.all = bm_Ssio_error THEN 

status := bmcb.sio_status 
ELSE IF bmcb.status.all <> bm_Sstatus_ok THEN status.all .-

bm_Sio_error; 
rem_len := bmcb.rem_Ien; 
END; 

{ residual count } 

{ If index 

1: 

I, then the operation did not complete in time. } 

status.all := bm_Stimeout; 

{ If index = 2, the user typed CTRL/Q while we were waiting. Note: the 
standard system fault catcher will blast us directly back to shell command 
level, so we'd never get here. But just in case the fault catcher chooses 
to ignore the quit, we'll handle it. } 

2: status.all:= bm_Squit_during_wait; 

END; {of CASE} 

{ Unmap and unwire the buffer. } 

pbu_Sunmap(bmcb.pbu_unit_number, {number of this pbu unit} 
bmcb.bufaddr.pA, { the buffer} 
bmcb.io_len, { length mapped} 
bmcb.bm_iova, { where it's mapped} 
st); { returned status} 

IF st.all <> 0 THEN error_Sprint(st); 

unwire_buffer; {unwire the buffer regardless of how operation 
completed } 

bmcb.flags.busy .- false; {controller is no longer busy} 

END; {of BM_SWAIT } 
%eject; 

{ BM_SWRITE -- Write a record } 

PROCEDURE bm_Swrite (* 
IN unit : bm_Sunit_t; 
IN buffer: bm_Sbuf_t; 
IN buflen: bm_Sbuf_Ien_t; 
IN bm_address : bm_Sbm_address_t; 
OUT status: status_$t; *) ; 

{ This routine writes a block of processor memory out to the bulk memory 
device. } 

BEGIN 

bm_command(bm_write_cmd, { let bm_command do all the work} 
buffer, 
buflen, 
bm_address,status); 

Sample Driver in Pascal E-12 

c 

~\ 



o 

o 

o 

o 

o 

END; {BM_SWRITE} 
%eject; 

E.4 BM INT LIB.PAS 
BM_INT_LIB.PAS consists of the interrupt routine (BM_$INT) and the start I/O routine (BM_$SIO). 
Since the control block, like BM_$SIO, is referenced by the interrupt routine, it must be DEFINEd here. 

{ BM_INT_LIB.PAS, interrupt handler for bulk memory device} 

MODULE bm_int_lib; 

DEFINE bmcb, {define anything here that the interrupt routine has to 
reference } 

bm_Ssio; 

%nolist; 
%include '/sys/ins/base.ins.pas'; 
%include '/sys/ins/pbu.ins.pas'; 
%include '/sys/ins/pbu_acquire.ins.pas'; 
%include 'bm.ins.pas'; 
%list; 
%include 'bm.pvt.pas'; 
%eject; 

VAR bmcb { bulk memory control block } 

%eject; 
FUNCTION bm_Sint : pbu_Sinterrupt_return_t; 

{ We're called from the System Interrupt Handler when an interrupt is 
received from the device. (Note: we could call pbu_Sunmap here to unmap 
the last buffer, but choose not to: if another portion of the buffer needs 
to be transferred, mapping the new portion (see bm_Ssio) will effectively 
unmap the portion that was just transferred. If there is no more of the 
buffer to be transferred, we will wake up the call side of the driver and 
the bm_Swait routine will unmap the last chunk of the buffer.) } 

VAR st : status_St; 

BEGIN 

WITH bmcb.csr_ptr.c A 

: csr DO BEGIN { shorthand name for csr page } 

{ Since we only enable the controller when we've started a transfer, we're 
pretty sure this is a valid interrupt. For debugging, or if a controller is 
left enabled all the time, it might be prudent to make sure this interrupt 
is expected. Something like: 

if not bmcb.flags.busy then BEGIN 
set_bitchy_flag_for_call_side_or_cause_bus_timeout_error; 
bm_Sint := [] j no advance, no enable 
return; 
END; } 

bmcb.flags.done .- true; 
bmcb.status.all .- csr.status; 

{ transfer completed } 
{ read the status and save for 

call side } 

{ If an error occurred on last transfer, don't try to continue the 
operation. Just wake up the call side to process the bad status. } 

E-13 Sample Driver In Pascal 



IF bmcb.status.all <> bm_Sstatus_ok THEN BEGIN 
bm_Sint := [pbu_Sinterrupt_advance]; 
RETURN; 
END; 

{ advance bm's event count} 

{ Last transfer completed ok. Decrement the length remaining to be 
transferred and see if there's more to do. } 

bmcb.rem_len := bmcb.rem_len - bmcb.io_len; 

IF bmcb.rem_len = 0 THEN BEGIN 
bm_Sint .- [pbu_Sinterrupt_advance]; 

RETURN; 
END; 

{ 

{ 
{ 

decrement length 
remaining to transfer } 
we're all done } 
tell call side we're 
done } 

{ There's more to do. Calculate start of the next portion of buffer to be 
transferred and call bm_Ssio to start the transfer. } 

bmcb.io_addr.i := bmcb.io_addr.i + bmcb.io_len; { start of next 
chunk } 

bmcb.bm_address := bmcb.bm_address + bmcb.io_len; {start in bulk 
memory } 

bm_Ssio(bmcb.sio_status); { call internal sio routine to start 
up controller } 

IF bmcb.sio_status.all <> 0 THEN BEGIN {oops -- bm_Ssio had a 
problem } 

{ Note that since we're in an interrupt routine, we can' t do much about 
this error, for example, call error_Sprint. So we'll just save the bad 
status for inspection by the call side of the driver. } 

bmcb.status.all := bm_Ssio_error; 

bm_Sint := [pbu_Sinterrupt_advance]; 
END {of st <> 0 } 

{ fake i/o status to tell him 
to look at sio_status } 

{ wake him up } 

{ The transfer was started ok, so tell pbu interrupt logic to re-enable 
interrupts from the controller. } 

ELSE bm_Sint := [pbu_Sinterrupt_enable]; {want to get another 
interrupt } 

RETURN; 
END; {of WITH csr } 

END; {of BM_$INT } 
%eject; 

{ BM_SSIO -- Start I/O operation to bulk memory controller. 

PROCEDURE bm_Ssio (* OUT status: status_St *); 

{ This routine maps (a part of) the buffer and loads the controller 
registers to start an i/o operation. Since this routine is called from both 
bm_command (in the call side of the driver) and from the interrupt handler, 
it must be loaded with the interrupt handler. } 

BEGIN 

WITH bmcb.csr~tr.cA : csr DO BEGIN 

csr.bm_address .- bmcb.bm_address; 

Sample Driver In Pascal E-14 

{ tell controller where to 
start in bulk memory } 

c 

C; 
./ 



o 

o 

o 

o 

o 

{ If the buffer length is less than or equal to bm_$block_len then we can 
do the whole thing at once. Otherwise, start with a block of length 
bm_$block_len. The interrupt routine will start the next chunk. } 

IF bmcb.rem_Ien <= bm_$block_len THEN bmcb.io_len := bmcb.rem_Ien 
ELSE bmcb.io_len := bm_$block_len; 

csr.count := bmcb.io_len; { give byte count to controller } 

{ Map the buffer through the area of iomap that we 
initialization time and give the co~troller the pbu addre~s. } 

allocated at 

csr.iova := pbu_$map(bmcb.pbu_unit_number, 

bmcb.bufaddr, 

bmcb. io_len, 
bmcb.bm_iova, 

status) ; 

IF status.all <> 0 THEN RETURN; 

{ number of this 
pbu unit} 

{ virtual address of 
buffer } 

{ length of buffer } 
{ iova we got from 

pbu_$allocate_map } 
{ returned status } 

{ All set to start operation. 
register to fire up controller. } 

Set our 

{ if error, just return} 

internal flags and load command 

END; 
%eject; 

bmcb.flags.busy .- true; 

bmcb.flags.done .- false; 
csr.command := bmcb.command; 

END; {of WITH csr } 

{ of BM_$SIO } 

E-15 

{ controller will be busy after 
loading command reg } 

{ transfer hasn't completed yet} 
{ start read or write operation} 

Sample Driver in Pascal 



c 

o 



o 

o 

o 

o 

o 

Appendix F 

Sample Driver in C 

This appendix contains the files that make up the online device driver in the subdirectory IDOMAIN_EX­
AMPLES/GPIO_EXAMPLES/BM_EXAMPLE.C. It differs from the Pascal version in following the C 
convention of devoting each routine to a single function. Hence, this C version consists of more files than 
does the Pascal version. The "makefile" script in section F .10 organizes the files into call and interrupt li­
braries at bind time. 

Both the functional parts and the operation of this driver are fully described in Chapter 4, subsection 
4.3.3, and Figure 4-2. For additional information about the driver and the hypothetical bulk-memory 
controller it supports, refer to section F.1. For information about writing device drivers in C, refer to Ap­
pendix C, section C.2. 

NOTE: Unlike Pascal, the C programming language is casesensitive; therefore, all system 
procedure names (such as GPI/O routines) must be lowercase, consistently with 
their appearance in the system insert files. Likewise, any global names in C that 
are accessed by GPI/O routines must be lowercase. 

The driver consists of nine files (plus the make file ) : 

• bm_ins.c 

• bm_global.c 

• bm_init.c 

• bm_command.c 

• bm_sio.c 

• bm_wait.c 

• unwire_buffer.c 

• bm_int.c 

F-1 Sample Driver in C 



• make file 

F.1 bm ins.c 
The bulk memory unit is a MUL TIBUS controller at address OX400 in MUL TIBUS address space. It has 
8-bit command and status registers at addresses Ox400 and Ox401, a 32-bit bulk memory address register 
at 402, a 16-bit count register at 406, and a 16-bit MULTIBUS (iova) register at 408. The controller in­
terrupts at level 2. The device supports three operations: read from bulk memory, write to bulk memory, 
and wait for transfer complete. Up to a megabyte can be transferred with one call, but since the MULTI­
BUS can transfer only up to 64K in one 1/0 operation, the interrupt side of the driver (this routine) is 
given the job of blocking large transfers into portions of size-BM_SBLOCK_LEN. Note that 
BM_SBLOCK_LEN is not the maximum possible, which is 64K bytes. The reason for not allowing 64K­
byte transfers is that it would require taking over the entire 110 map. Therefore if another MUL TIBUS 
device is using even a single page of the 110 map, our call to PBU_SALLOCATE_MAP would fail. 

This file contains the data structures and constants for the bulk memory device. 

/* Error codes from bm manager calls. (We've arbitrarily picked a 
* subsystem code of OF.) 
*/ 

#define 
#define 

#define 
#define 
#define 

#define 
#define 
#define 

#define 
#define 
#define 

bm_$no_controller 
bm_$not_init 

bm_$busy 
bm_$not_ready 
bm_$bad_address 

bm_$bad_Iength 
bm_$bad_bm_address 
bm_$transfer_not_started 

bm_$timeout 
bm_$quit_during_wait 
bm_$io_error 

OxOFOOOO01 
OxOFOOOO02 

OxOFOOOO03 
OxOFOOOO04 
OxOFOOOO05 

OxOFOOOO06 
OxOFOOOO07 
OxOFOOOO08 

OxOFOOOO09 
OxOFOOOOOA 
OxOFOOOOOB 

/* controller not present */ 
/* controller not 
* initialized 
*/ 
/* controller is busy */ 
/* unit not ready */ 
/* buffer beyond 
* protection boundary 
*/ 
/* bad buffer length */ 
/* bad bm address */ 
/* tried to wait before 
* read or write 
*/ 
/* timeout during wait */ 
/* quit during wait */ 
/* i/o error during 
* transfer 
*/ 

2147483647 /* maximum bm address 
* 2**31 - 1 
*/ 

32768 /* maximum transfer per 
* i/o operation = 32K 
*/ 

131072 /* maximum amount to 
* transfer per call = 128K N.B.: MUST be 
* multiple of bm_$block_len (see bm_$int)! 

/* 

("" 
"'-._._./ 

c 

typedef int bm_$buf_Ien_t; /* bm buffer dimension */ 0 
typedef int bm_$buf_t [bm_$max_Ien] ; __ ) 
typedef bm_$buf_t *bm_$buf_ptr_t; 
typedef int bm_$bm_address_t; /* address of block in bulk memory */ 

Sample Driver in C F-2 



o 

0 

o 

o 

o 

typedef union { 
bm_$bufJ>tr_t 
int 

} bm_$both_t; 

p; 
i; 

/* for handling buffer pointers */ 

/**************** ALL PRIVATE DEFINITIONS FOLLOW ******************/ 

/* commands for csr command register */ 

#define BM_INIT_CMD 
#define BM_READ_CMD 
#define BM_WRI TE_CMD 

#define bm_$status_ok 

#define bm_$sio_error 

/* 

(unsigned char)OxOO 
(unsigned char)OxOl 
(unsigned char)Ox02 

(unsigned char)OxOc 

(unsigned char)Oxff 

/* normal completion 
* status 
*/ 

/* inter~upt routine got 
* errOl from bm_$sio 
*/ 

* Define the bulk memory controller's csr page. (Note: when defining the 
* contents of a csr page, watch out for the compiler's rules about packing 
* records. In particular, avoid using records inside the csr page record, 
* since embedded records are word-aligned, even in a packed record. For 
* example, we might have defined the status register to be bm_$status_t 
* (see below), but then the compiler would have aligned it at offset 2 in 
* the page, even though bm_$status_t is only 8 bits wide. 
*/ 

typedef struct { 
unsigned char 

unsigned char 
short 

short 
bm_$bm_address t 

command; 

status; 
iova; 

count; 
bm_address; 

} bm_$csrJ>age_t #attribute[device]; 

typedef union { 
bm_$csrJ>age_t *c; 
pbu_$csrJ>ageJ>tr_t p; 

} bm_$csrJ>ageJ>tr_t; 

/* 

/* 00 one byte command register at 
* offset 0 
*/ 

/* 01 one byte status register */ 
/* 02 io virtual address to use for 

* transfer 
*/ 

/* 04 number of bytes to transfer */ 
/* 06 bulk memory address to 

* read/write 
*/ 

* Define the bulk memory control block (bmcb). This area is used for 
* communications'between the call and interrupt sides of the bm driver. 
*/ 

typedef union { 
struct { 

unsigned int 

unsigned int 

init: 1; 

buffer_wired 

F-3 

/* set to true when controller 
* initialized 
*/ 

1; /* set when a buffer is wired */ 

Sample Driver In C 



unsigned int 

unsigned int 

unsigned int 
} b; 
char all; 

} bm_$flags_t; 

busy 

done 

pad 

1; 

1; 

4' I 

/* set when an operation is in 
* progress 
*/ 

/* set by interrupt routine when 
* transfer completes 
*/ 

/* fill out to byte? */ 

/* status register definition */ 

typedef union { 
struct { 

unsigned int 

} b; 

unsigned int 

unsigned int 

unsigned int 

unsigned int 
unsigned int 
unsigned int 
unsigned int 

unsigned char 
} bm_$status_t; 

attention: 1; /* 1 => change in 
* controller status 
*/ 

status_modifier 1; /* 1 => current status 
* unavailable 
*/ 

control_unit_end 1; /* 1 => busy condition 

busy l' I 

channel_end: 1; 
device_end: 1; 
unit_check : 1; 
unit_exception 

all; 

l' I 

* cleared 
*/ 

/* 1 => controller currently 
* busy 
*/ 

/* 1 => end of operation */ 
/* 1 => end of operation */ 
/* 1 => parity error in bm */ 
/* 1 => illegal bm address */ 

/* define communications area */ 

typedef struct { 
pbu_$unit_t 

bm_$flags_t 
char 
pbu_$ddfJ>tr_t 
bm_$csrJ>ageJ>tr_t 
pbu_$iova_t 

bm_$both_t 
bm_$buf_Ien_t 
bm_$bm_address_t 
unsigned char 
bm_$buf_Ien_t 

bm_$status_t 
status_$t 

Sample Driver in C 

pbu_unit_number; /* number of this pbu (peripheral 
* bus unit) device 

fiags; 
pad; 
ddfJ>tr; 
csrJ>tr; 
bm_iova; 

bufaddr; 
buflen; 
bm_address; 
command; 
rem_len; 

status; 
sio_status; 

F-4 

/* 

/* a byte of padding */ 
/* pointer to mapped ddf */ 
/* pointer to mapped csr page */ 
/* start of our area of i/o 
* address space 
*/ 

/* address of start of buffer */ 
/* total length of buffer */ 
/* address of start of bm area */ 
/* current command (read or write) */ 
/* length remaining to read or 
* write 
*/ 

/* status from last interrupt */ 
/* status from bm_$sio called from 
* int side 
*/ 

c 

c: 

c' 

o 



o 

o 

o 

o 

o 

bm_$both_t 
bm_$buf_Ien_t 

} bm_$bmcb_t; 

F.2 bm_global.c 

io_addr; 
io_len; 

/* address of last i/o transfer */ 
/* length of last i/o transfer */ 

The bm_global.c file contains all global data for the call side of the driver. 

#include "/sys/ins/base.ins.c" 
#include "/sys/ins/pbu.ins.c"; 
#include "bm.ins.c" 

bmcb; /* The bulk memory control block is globally 
* defined in this file only. All other files 
* referencing bmcb do so using the keyword extern. 
*/ 

F.3 bm init.c 
The bm_init.c routine is called from PBU_SACQUIRE and performs device-dependent initialization. 
Since this routine is called by GPIIO software, its parameters are passed in as pointers and must therefore 
be dereferenced with the indirection operator (*). 

#include "/sys/ins/base.ins.c" 
#include "/sys/ins/pbu.ins.c" 
#include "bm.ins.c" 

/* Since this routine is called from Pascal, all parameters are passed by 
* reference. 
*/ 

void 
bm_$init(unit, ddf-ptr, csr-ptr, status) 
pbu_$unit_t 
pbu_$ddf-ptr_t 
pbu_$csr_page_ptr_t 

*unit; 
*ddf-ptr; 
*csr-ptr; 
*status; 

/* pbu unit number */ 

status_$t 
{ 

bmcb; 

printf("unit = %d\n", *unit); /* dereference unit to print the value */ 

/* Save information passed by pbu_$acquire in the bmcb. */ 

bmcb.pbu_unit_number = *unit; 
bmcb.ddf-ptr = *ddf-ptr ; 
bmcb.csr-pt1'p = *csr-ptr; 

I 

/* 

/* unit number to pass pbu manager */ 
/* pointer to mapped ddf */ 
/* pointer to mapped controller page*/ 

* Initialize the controller. We don't want to try loading the command 
* register ourselves yet because if the controller doesn't exist, 
* we'll get a bus-timeout fault and be unceremoniously dumped back to 
* shell command level. 
*/ 

bmcb.flags.all = 0; 
bmcb.bm_iova 1; 

/* nothing going on yet and not initialized */ 
/* this tells cleanup routine that we haven't 

* gotten iomap space yet 
*/ 

F-5 Sample Driver in C 



printf("csr page at %X\n", bmcb.csrytr.c); 

pbu_$write_csr(bmcb.pbu_unit_number, /* number of this pbu device */ 
bmcb.csrytr.c->command, /* the command register */ 
BM_INIT_CMO, /* initialization command */ 
false, /* do a byte, not word write to 

* command reg 
*/ 

*status); /* returned status. Because status was previously 
/* declared as a pointer, it must be dereferenced. 
*/ 

if (status->all pbu_$bus_timeout) { /* controller probably not 
* there if error 

status->all = bm_$no_controller; 
return; 

} else if (status->all != 0) { 
status->s.fail = 1; 
return; 

} 

*/ 

/* Allocate an area of the iomap corresponding to the largest block we 
* are going to read or write. 
*/ 

bmcb.bm_iova pbu_$allocate_map(bmcb.pbu_unit_number, /* number of 
* this device 
*/ 

c 

c 

bm_$block_len, /* maximum block size we'll use */ C-" 
false, /* don't need a specific iova */ ./ 
0, /* forced iova would go here */ 
*status); /* returned status. */ 

if (status->all != 0) { 
status->s.fail = 1; 
return; 

} 

/* 
* We could enable interrupts from the controller here, but we'll 
* wait until we actually start an operation -- see bm_command. 
*/ 

bmcb.flags.h.init 1; /* note we're initialized */ 
} 

F.4 bm command.c 
The bm_command.c routine performs argument validation, wires down the user's buffer, and calls the in­
ternal bm_sio.c routine to start the transfer. 

#include "/sys/ins/base.ins.c" 
#include "/sys/ins/pbu.ins.c" 
#include "bm. ins. c"· 

void 
bm_command (command , buffer, len, bm_address, status) 
unsigned char command; /* read or write */ 

Sample Driver in C F-6 

o 



o 

o 

o 

o 

o 

bm_$buf_t 
bm_$buf_len_t 
bm_$bm_address_t 
status_$t 

*buffer; 
len; 
bm_address; 
*status; 

/* buffer for transfer */ 
/* length in bytes of buffer */ 
/* bulk memory address to use */ 

{ 
extern bm_$bmcb_t 

/* 

bmcb; 

* Make sure the controller has been initialized, it's not busy, 
* and that we have valid parameters for the transfer. 
*/ 

if (!bmcb.flags.b.init) { 
status->all = bm_$not_init; 
return; 

} 

if (bmcb.flags.b.busy) { /* make sure it isn't already busy */ 
status->all = bm_$busy; 
return; 

} 

if «len <= 0) I I (len> bm_$max_Ien» { 
status->all = bm_$bad_Iength; 
return; 

} 

if «bmcb.bufaddr.i < 0) I I (bmcb.bufaddr.i+len> 
pbu_$max_virtual_address» { 

status->all bm_$bad_address; 
return; 

} 

if «bm_address < 0) I I (bm_address + len> bm_$max_address» { 
status->all = bm_$bad_bm_address; 
return; 

} 

/* Wire down the buffer. */ 

bmcb.bufaddr.p = buffer; 
bmcb.buflen = len; 

/* save address of buffer */ 
/* save length of buffer */ 

pbu_$wire(bmcb.pbu_unit_number, buffer, bmcb.buflen, status); 

if (status->all != 0) { 
status->s.fail = 1; 
return; 

} 

bmcb.flags.buffer_wired = 1; /* remember we wired the buffer */ 

/* 
* Buffer is all ready. Call the internal sio routine to map the 
* buffer and load the controller registers. 
*/ 

bmcb.command 
bmcb. io_addr 

command; 
bmcb.bufaddr; 

bmcb.rem_Ien len; 
bmcb.bm_address = bm_address; 

bm_$sio(status); 

F-7 

/* command to perform */ 
/* first address to transfer */ 
/* length "remaining" to transfer */ 
/* where to start in the bm */ 

/* start up the op~ration */ 

Sample Driver in C 



if (status->all != 0) { 
status->fail = 1; 
unwire_buffer(); 

} 

/* Enable interrupts from the bm controller. */ 

} 

/* These next two routines should probably be macros for maximum 
* performance. 
*/ 

/* This routine reads a block of memory from the bulk memory device into 
* processor memory. 
*/ 

void 
bm_Sread(buffer, buflen, bm_addr, s) 
bm_Sbuf_t buffer; 
bm_Sbuf_Ien_t buflen; 
bm_Sbm_address_t bm_addr; 
status_St *s; 
{ 

} 

/* This routine writes a block of processor memory out to the bulk memory 
* device. 
*/ 

void 
bm_Swrite(buffer, 
bm_Sbuf_t 
bm_Sbuf_Ien_t 
bm_Sbm_address_t 
status_St 
{ 

} 

F.S bm sio.c 

buflen, bm_addr, s) 
buffer; 
buflen; 
bm_addr; 
*s; 

The bm_sio.c routine starts the I/O operations for the bulk memory device. It maps (a part of) the buffer 
and loads the controller registers to start an I/O operation. 

#include "/sys/ins/base.ins.c" 
#include "/sys/ins/pbu.ins.c" 
#include "bm.ins.c" 

void 
bm_Ssio(status) 
status_St *status; 
{ 

bmcb; 

bmcb.csr-ptr.c->bm_address = bmcb.bm_address; /* tell controller 

Sample Driver in C F-8 

* where to start in 
* bulk memory 
*/ 

C I 

c 

c' 



o 

o 

o 

o 

o 

} 

/* 
* If the buffer length is less than or equal to bm_$block_len then we 
* can do the whole thing at once. Otherwise, start with a block of 
* length bm_$block_len. The interrupt routine will start the next 
* chunk. 
*/ 

bmcb.io_len = (bmcb.rem_len <= bm_$block_len) ? bmcb.rem_len : 
bm_$block_len; 

bmcb.csr-ptr.c->count = bmcb.io_len; /* give byte count to 
* controller 
*/ 

/* 
* Map the buffer through the area of iomap that we allocated at 
* initialization time and give the controller the pbu address. 
*/ 

bmcb.csr_ptr.c->iova 

bmcb.bufaddr, 
bmcb. io_len, 
bmcb.bm_iova, 
status); 

if (status->all != 0) 
return; 

/* 

/* number of 
* device 
*/ 

/* virtual address of buffer */ 
/* length of buffer */ 
/* iova we-got from pbu_$allocate_map */ 
/* returned status */ 

* All set to start operation. Set our internal flags and load 
* command register to fire up controller. 
*/ 

bmcb.flags.b.busy 1; /* controller will be busy after loading 
* command reg 
*/ 

bmcb.flags.b.done = 0; /* transfer hasn't completed yet */ 
bmcb.csr-ptr.c->command = bmcb.command; /* start read or write 

* operation 
*/ 

F.6 bm wait.c 
The bm_wait.c routine waits for the completion of a read or write operation. Note that for bm_wait.c a 
time-out value of 0 means wait forever. This is unlike PBU_SWAIT, for which a time-out value of 0 
means return immediately. 

#include "/sys/ins/base.ins.c" 
#include "/sys/ins/pbu.ins.c" 
#include "bm.ins.c" 

void 
bm_$wait (timeout , bm_status, rem_len, status) 
short 
bm_$status_t 
bm_$buf_len_t 
status_$t 

timeout; 
*bm_status; 
*rem len' - , 
*status; 

/* controller status */ 
/* residual count */ 

F-9 Sample Driver in C 



{ 
extern bm_$bmcb_t 

int 
pbu_$wait_index_t 
status_$t 

bmcb; 

pbu_timeout; 
index; 
st; 

/* If there's an operation in progress, attempt to clean up nicely. */ 

if (!bmcb.flags.b.init) { 
status->all = bm_$not_init; 
return; 

} 

if (!bmcb.flags.b.busy) { /* don't wait if no transfer started */ 
status->all = bm_$transfer_not_started; 
return; 

} 

/* 
* Check to see if the operation has already completed ('done' flag 
* set). If it is, we don't have to bother calling pbu_$wait. Note 
* that the done flag may be set AFTER we check it and BEFORE we call 
* pbu_$wait, but this is ok -- pbu_$wait will realize that the event 
* we want to wait for has already happened and return immediately. 
*/ 

status->all = status_$ok; /* assume o.k. */ 

if (!bmcb.flags.done) { 
pbu_timeout timeout; /* value in seconds */ 
pbu_timeout = (pbu_timeout == 0) ? (3600 * 1000) 

index = pbu_$wait(bmcb.pbu_unit_number, 

(pbu_timeout * 
1000) ; 

pbu_timeout, /* number of milliseconds to wait */ 
true, /* true means allow quits while waiting */ 
*status); 

if (status->all != 0) { 
status->fail 1; 
return; 

} 
} else 

/* he didn't like something */ 

index = 0; /* transfer already complete */ 

switch (index) { 
case 0: 

/* the operation completed. Get ending status and length 
* transferred for caller. 
*/ 

bm_status->all = bmcb.status.all; 
if (bmcb.status.all == bm_$sio_error) 

*status = bmcb.sio_status; . 
else if (bmcb.status.all != bm_$status_ok) 

status->all = bm_$io_error; 
*rem_len = bmcb.rem_len; /* residual count */ 
break; 

case 1: 
/* operation did not complete in time. */ 
status->all = bm_$timeout; 
break; 

Sample Driver in C F-10 

c 

c 

c 



o 

o 

} 

case 2: 
/* 

* user typed control-q while we were waiting. Note: the standard 
* system fault catcher will blast us directly back to shell 
* command level, so we'd never get here. But just in case the 
* fault catcher chooses to ignore the quit, we'll handle it. 
*/ 
status->all = bm_$quit_during_wait; 
break; 

default: 

} 

printf("Invalid index value %d\n", index); 
break; 

/* Unmap and unwire the buffer. */ 

pbu_$unmap(bmcb.pbu_unit_number, 
*bmcb.bufaddr.p, /* the buffer */. 
bmcb.io_len, /* length mapped */ 
bmcb.bm_iova, /* where it's mapped */ 
st); /* returned status */ 

if (st.all != 0) 
error_$print(st); 

unwire_buffer(); /* unwire the buffer regardless of how operation 
* completed 
*/ 

bmcb.flags.busy 0; /* controller is no longer busy */ 

o F.7 unwire buffer.c 

o 

o 

Th unwire_buffer.c routine unwires a buffer. 

#include "/sys/ins/base.ins.c" 
#include "/sys/ins/error.ins.c" 
#include "/sys/ins/pbu.ins.c" 
#include "bm.ins.c" 

void 
unwire_buffer() 
{ 

extern bm_$bmcb_t 
status_$t 

bmcb; 
st; 

if (!bmcb.flags.b.buffer_wired) 
return; /* nothing to do */ 

pbu_$unwire(bmcb.pbu_unit_number, 
*bmcb.bufaddr.p, 
bmcb.buflen, 
bmcb.command BM_READ_CMD, /* touch pages if read command */ 
st); 

/* 
* If returned status is non-zero, we may have an error on error 
* condition. Since we don't want to overlay the error code from 
* the original error, just print the error message here. 
*/ 

F-11 Sample Driver in C 



} 

if (st.all != 0) 
error_$print(st); 

bmcb.flags.b.buffer_wired 0; 

F.8 bm int.c 
Th bffi_int.c routine handles interrupts is the driver's interrupt routine. 

#include "/sys/ins/base.ins.c" 
#include "/sys/ins/pbu.ins.c" 
#include "bm.ins.c" 

pbu_$interrupt_return_t 
bm_$int () 
{ 

extern bm_$bmcb_t 
extern bm_$bmcb_t 

bmcb; 
bm_$sioO; 

/* 
* We're called from the internal pbu interrupt handler when an 
* interrupt is received from the device. (Note: we could call 
* pbu_$unmap here to unmap the last buffer, but choose not to: if 
* another portion of the buffer needs to be transferred, mapping the 
* new portion (see bm_$sio) will effectively unmap the portion that 
* was just transferred. If there is no more of the buffer to be 
* transferred, we will wake up the call side of the driver and the 
* bm_$wait routine will unmap the last portion of the buffer. 

* 
* Since we only enable the controller when we've started a transfer, 
* we're pretty sure this is a valid interrupt. For debugging, or if a 
* controller is left enabled all the time, it might be prudent to make 
* sure this interrupt is expected. 
*/ 

bmcb.flags.b.done = 1; /* transfer: completed */ 
/* read status and save 
* for call side 

bmcb.status.all = bmcb.csr~tr.c->status; 

*/ 

/* 
* If an error occurred on last transfer, don't try to continue the 
* operation. Just wake up the call side to process the bad status. 
*/ 

if (bmcb.status.all != bm_$status_ok) 
return(pbu_$interrupt_advance); 

/* 

/* advance bm's event count */ 

* Last transfer completed ok. Decrement the length remaining to be 
* transferred and see if there's more to do. 
*/ 

bmcb.rem_len - bmcb.io_len; /* decrement length 
* remaining to transfer 
*/ 

if (bmcb.rem_len == 0) /* we're all done */ 
return(pbu_$interrupt_advance); /* tell call side we're done */ 

Sample Driver In C F-12 

c 



o 

o 

o 

o 

} 

/* 
* There~s more to do. Calculate start of the next chunk of buffer to be 
* transferred and call bm_$sio to start the transfer. 
*/ 

bmcb.io_addr.i = bmcb.io_addr.i + bmcb.io_len; /* start of next chunk */ 
bmcb.bm_address bmcb.bm_address + bmcb.io_len; /* start in bulk 

* memory 
*/ 

/* call internal sio routine to start up 
* controller 
*/ 

if (bmcb.sio_status.all != 0) { /* oops -- bm_$sio had a problem */ 

} 

/* 
* Note that since we're on in an interrupt routine, we can't do 
* much about this error, for example, call error_Sprint. So we'll 
* just save the bad status for inspection by the call side of the 
* driver. 
*/ 

bmcb.status.all = bm_$sio_error; 
return(pbu_$interrupt_advance); /* wake him up */ 

/* 
* The transfer was started ok, so tell the pbu interrupt logic to 
* re-enable interrupts from the controller. 
*/ 

return(pbu_$interrupt_enable); /* want to get another interrupt */ 

F.9 bm_cleanup.c 
The bm_cleanup.c routine is called by PBU_$RELEASE when the user issues the RLDEV command. 
Since this routine is called by GPIIO software, its parameters are passed in as pointers and must therefore 
be dereferenced with the indirection operator (*). 

#include "/sys/ins/base.ins.c" 
#include "/sys/ins/pbu.ins.c" 
#include "bm.ins.c" 

void 
bm_$cleanup 
pbu_$unit_t 
char 
status_$t 

(unit, force, status) 
*unit; 

{ 

*force; 
*status; 

extern bm_$bmcb_t 

status_$t 
bm_$status_t 
bm_$buf_Ien_t 

/* 

bmcb; 

st; 
bm_status; 
rem_len; 

* If there's an operation in progress, attempt to clean up nicely. 
*/ 

F-13 Sample Driver in C 



if (bmcb.flags.b.busy) { 

/* If user said -force, then forceably reset the controller. */ 
if (force) 

bmcb.csr-ptr.c->command = BM_INIT_CMD; 
else { 

bm_$wait(S, &bm_status, &rem_Ien, status); 
if (status->all != 0) { /* probably a timeout */ 

status->fail = 1; /* couldn't clear controller */ 
return; 

} 
} 

} 

/* Give back our iomap space if we have any. */ 

if (bmcb.bm_iova != 1) { /* (1 is impossible iova -- see bm_$init) */ 
pbu_$free_map (bmcb.pbu_unit_number , st); 
if (st.all != 0) 

error_$print(st); 
bmcb.bm_iova = 1; /* no longer have any iomap space */ 

} 

/* Disable the device to prevent further interrupts. */ 

pbu_$disable_device(bmcb.pbu_unit_number, *status); 
bmcb.flags.init = 0; /* no longer initialized */ 

F.10 makefile 
The makefile script organizes the files that make up the driver into the call and interrupt libraries when 
the driver is bound. 

all: bm_call.lib bm_int.lib 
bm_call.lib: bm_init.bin bm_cleanup.bin bm_command.bin 

bind -allmark bm_init.bin bm_cleanup.bin bm_command.bin 
-b bm_call.lib -map -sys 

bm_int.lib: bm_sio.bin bm_int.bin bm_global.bin 
bind -allmark bm_sio. bin bm_int. bin bm_global. bin /lib/pbu_int_Iib 

-b bm_int.lib -map -sys 
bm_cleanup.bin: bm_cleanup.c bm.ins.c 

/com/cc bm_cleanup.c -ndb 
bm_command.bin: bm_command.c bm.ins.c 

/com/cc bm_command.c -ndb 
bm_read.bin: bm_read.c bm.ins.c 

/com/cc bm_read.c -ndb 
bm_write.bin: bm_write.c bm.ins.c 

/com/cc bm_write.c -ndb 
bm_sio.bin: bm_sio.c bm.ins.c 

/com/cc bm_sio.c -ndb 
bm_int.bin: bm_int.c bm.ins.c 

/com/cc bm_int.c -ndb 
bm_global.bin: bm_int.c bm.ins.c 

/com/cc bm_global.c -ndb 

listing: 
pr -e bm.ins.c bm_global.c bm_int.c bm_sio.c I prf -s //goliath 

Sample Driver in C F-14 

c 



o 

o 

o 

o 

o 

Glossary 

acquire a device 

address translation unit 

asynchronous fault 

bus 

bus master 

bus slave 

byte swapping 

call side 

clean-up routine 

control and status register 
(CSR) 

CSR 

CSR page 

data structure 

DDF 

demand-DMA 

To reserve a particular device for exclusive use. Application programs 
can acquire a device only when that device is not acquired by any other 
programs. 

A hardware function that handles virtual-memory address translation op­
erations in DOMAIN system nodes. See also memory management 
unit. 

A fault that is unrelated to program or hardware action. Asynchronous 
faults include the quit fault, which is generated when you type CTRL/Q to 
exit from a program, and the process stop fault, generated when you log 
out. See also fault. 

A network of signal routes through which device controllers and the proc­
essor address one another and pass data; one of the buses that we cur­
rently support (MUL TIBUS, VMEbus, and AT-compatible bus). 

The hardware component that currently controls the bus. When a con­
troller acquires the bus, it becomes bus master. 

The hardware component that decodes addresses and acts on commands 
from the bus master. 

Rearranging the left and right bytes of a word to compensate for the dif­
ference between the way our processor orders bytes and the way a con­
troller does. 

The set of routines and procedures within a device driver that programs 
actively call to perform operations. A device driver's call side is bound 
separately from its interrupt side. See also interrupt side. 

The device driver routine called during device release to ensure that no 
I/O is in progress and that the device will not generate further interrupts. 
The clean-up routine is a call-side routine. 

A control and status register for a device or controller. Control and status 
registers are located in bus 1/0 space. 

See control and status register. 

A page of bus I/O space that contains the control/status registers for a 
particular device or controller. A device or controller's CSR page is 
loaded into user-process address space when the device is acquired. 

Any table, list, queue, or array whose format and access conventions are 
well defined for reference by one or more programs. 

'See device descriptor file. 

The capability of certain AT-compatible devices to request external bus 
mastership. Such devices have on-board DMA hardware. 

Glossary-1 



-----------------

device One drive and its controlling logic (for example, a storage module de­
vice). In this document, the terms device and controller are synonymous. 

device descriptor file (DDF) A data structure that describes the device to the system. Each device has 
one associated DDF. 

device driver 

device interrupt 

The set of user-written routines and procedures that handle I/O opera­
tions to and from a peripheral device. The device driver is composed of a 
call side and an interrupt side, bound in separate modules. 

A signal sent to the processor by a peripheral device through an interrupt 
request line. 

direct memory access (DMA) A type of I/O transfer where a device transfers data directly to processor 
memory. 

DMA 

DMA controller 

DMA overrun 

eventcount 

fault 

fault handler 

See direct memory access. 

A controller that performs direct memory access I/O transfers. 

A condition in which a device cannot transfer data to the processor as 
fast as it is receiving it, and so loses data. 

A 32-bit integer that processes establish to count the occurrence of an 
event or events. The eventcount is the primary method of interprocess 
synchronization. 

A fatal error from which a program cannot recover. 

The routine that performs clean-up services after a fault occurs and be­
fore the program exits. Both application programs and device drivers can 
contain fault handling routines. 

general purpose input/output The set of routines and commands that application programs and device 
(GPIIO) software drivers use to perform I/O operations on a peripheral device. 

hard-wired memory 

initialization routine 

interrupt 

interrupt mask register 

interrupt request line 

interrupt routine 

interrupt side 

interrupt stack 

Device data structures or CSRs that are located at preset, fixed addresses. 

The device driver routine that readies a device for I/O operations. The 
initialization routine is a call-side routine. 

See device interrupt. 

A register that determines whether or not the processor will receive an in­
terrupt from a given device. Each bit within the register corresponds to 
an interrupt line. When clear, the proces's can receive interrupt requests 
on the line; when set, the processor does not receive the request. See 
also interrupt request line. 

Lines that devices use to generate interrupt requests to the processor. 

The device driver routine that performs device-specific interrupt process­
ing. The interrupt routine is part of the driver's interrupt side. 

The part of a device driver that is called by the System Interrupt Handler 
in response to an interrupt condition. The interrupt side is composed of 
one or more user-written interrupt routines and data. 

Wired memory that contains scratch storage, saved registers, and subrou­
tine addresses used by a device driver. The default interrupt stack size is 
1024 bytes (one page). 

Glossary-2 

c 

c -' 

o 



c 

o 

o 

o 

o 

interrupt vector 

1/0 map 

110 space 

iova 

mapping an 1/0 buffer 

memory management unit 
(MMU) 

The address generated that identifies an interrupting device to the proc­
essor. 

A data structure used to map MUL TIBUS memory to processor memory. 
Each entry within the I/O map maps one page of MUL TIBUS memory to 
processor memory. 

The region of the bus address space that contains device CSRs. 

A virtual address that is mapped into the physical address space of any of 
the buses that we support. 

The process by which a device driver establishes an association between 
pages of MUL TIBUS memory and the pages of a buffer within process 
address space. 

The hardware component that handles virtual memory translation opera­
tions within DOMAIN system nodes. Also called the Address Transla­
tion Unit. 

memory-mapped controller A controller that contains on-board memory in which it stores data from 
external devices. 

memory-mapped 110 

memory space 

Data transfers to and from the local memory of memory-mapped con­
trollers. Device drivers must map the local memory to virtual address 
space before they can read and write to it. 

The region of the bus address space that contains memory locations. 

MMU See memory management unit. 

non-bus-vectored interrupt A type of interrupt where the device raises its interrupt request line but 
does not send an interrupt vector over the bus. See also interrupt 
vector. 

offset 

page 

paging 

PHU 

PHU Manager 

peripheral interrupt 
controller (PIC) 

PIC 

processor memory 

programmed 1/0 

scatter-gather 

serial priority resolution 

A fixed displacement from the beginning of a data structure. 

1024 bytes; the unit of measure in our system. 

Moving pages of virtual memory to and from physical memory. The 
MMU controls paging operations. 

Peripheral bus unit, synonymous with MULTIBUS device. 

The collection of routines that are internal to the operating system and 
manage GPI/O resources. 

The hardware component that arbitrates interrupt requests sent by 
devices along their interrupt request lines. 

See peripheral interrupt controller. 

The main memory of a DOMAIN node. 

Data transfers of single words or bytes through CSRs. 

Contiguous disk transfer to andlor from discontiguous pages of memory. 

A method of bus arbitration where position in the card cage determines a 
controller's bus request arbitration priority level. 

Glossary-3 



synchronous fault 

System Interrupt Handler 

A fault that occurs as a result of program or hardware errors, such as 
floating-point overflow or disk errors. See also asynchronous fault, 
fault. 

The part of the operating system that processes device interrupts. 

user-process address space The area of virtual address space in which a process executes. When a 
device is acquired, its device driver, CSR page, and other I/O data struc­
tures are loaded into user-process address space. 

virtual address The 32-bit integer that identifies a "location" in virtual address space. 
The MMU translates virtual addresses to physical addresses. 

virtual address space The set of all possible virtual addresses that a program executing within a 
process can use to identify the location of an instruction or data. 

wired memory One or more pages of virtual address space that are made permanently 
resident in processor memory and therefore cannot be paged out by the 
MMU. 

wiring a buffer Making the pages of a buffer ineligible for virtual memory paging opera­
tions. Device drivers must wire the pages of an I/O buffer before initiating 
a DMA transfer. 

Glossary-4 



() 

o 

o 

o 

o 

Index 

The letter I means "and the following page"; the letters II mean "and the following pages". Entries 
beginning with numbers are listed first. 

Numbers 

32-bit mathematics 10-3 
8-bit register C-2 

A 

Access Control List (ACL) 11-3 
acquiring device 12-H, Glossary-l 

AQDEV 12-2 
device acquisition program 12-2 

address translation unit Glossary-l 
application program 4-1, 12-H 
AQDEV command 1-5, 7-10, 8-2, 

10-4, 11-1, 12-H, A-2 
DB option 8-5, A-2 
error messages A-2 
example A-3 

asynchronous fault Glossary-1 
AT-compatible bus 3-1ff, A-9, 

B-20ff, B-39, B-44, B-46 
bus mastership 3-7 
bus timeout 3-5 
byte swapping 3-5ff 
Control and Status Register 3-Hf 
converting addresses A-9 
CRDDF 3-7 
CSR page 3-2, A-5 
DDF 3-7, 11-4f 
demand-DMA 3-6f, 7-6f 
DMA 3-6f 
DMA channel 3-7 
DMA lines 3-5 
DMA transfers 7-6ff, 7-13 
Domain system-supplied devices 

3-2 
floating IRQ and DMA lines 3-4 
GPI/O calls 3-3, 3-5ff 
interrupt request (IRQ) lines 3-4 f 
I/O address space 3-1 
I/O address space allocation 3-2 

mapping CSRs 3-2f 
memory space 3-3 
memory space allocation 3-4 
memory-mapped controller 3-2 
memory-mapped I/O 3-3 
programmed I/O 3-6 
referencing controller memory 

7-11 
scatter-gather 3-7 
testing for controller presence 

3-5 
unit numbers 3-4, 3-7 

AT_EXAMPLE 4-4 
DMA transfer 7-9 
interrupt handling 8-3f 
page aligning buffers 10-2 
testing for device presence 6-4 

autoinitialize B-20 

8 

BIND command 10-2 
ALIGN option 10-2 
SYS option 8-2, 10-3 

binding 4-5, 10-Hf 
system globals 10-3 
unresolved globals 10-3 

BM_EXAMPLE 4-4££ 
allocating address space 7-2 
building a DDF 11-2 

Index-1 

C version F -1 ff 
cleanup 4-7 
command processing 4-6, 6-5f 
control block 5 - 2 
GPI/O calls 4-5ff 
initialization 4-5, 6-2f 
insert files 5-2££ 
interrupt handling 4-7, 8-3 
listing E-l ff 
Pascal version E-l ff 
SIO routine 8-6 
testing for device presence 6-3 
wait routine 6-6f 



wiring 7-2f 
BM_EXAMPLE.C 4-4 

listing F -1ff 
buffer 

double 7-9 
mapping Glossary-3 
permanently wired 7-4 
wiring 7-2ff, D-3, Glossary-4 

bus 1-1, Glossary-l 
bus acquisition time D-l 
bus master Glossary-l 
bus slave Glossary-l 
bus timeout 5-3, 7-10, C-2 

MUL TIBUS 6-3 
byte swapping l-l1ff, 3-5ff, 

Glossary-l 

c 

C programming 6-1f, 10-4, C-2ff 
Booleans C-3 
char C-3 
clean-up routine 6-9 
enumerated type C-2 
globals C-4 
indirection operator (*) 6-2, C-3 
initialization routine 6-2 
insert file C-2 
int C-2 
pointer C-3 
STD_SCALL C-3 
struct C-l 
union C-l 

call side 4-5, 6-1ff, Glossary-l 
binding 10-1 
debugging 10-4f 
example in Pascal E-5ff 

CHANNEL_IN_USE message 7-7 
char data type 5-2, C-1f 
clean-up routine 4-4, 7-10, 
Gloss~ry-l 

driver entry point 6-8, 11-1, 
11-3, 12-2 

example in C F-1f 
example in Pascal E-8f 
format 6-8f 
functions 6-8 

checklist 4-8 
command processing 6-5 

example in C F-6ff 
example in Pascal E-7ff 

compiler considerations C-2, C-4 

._ ... _. __ .... _._ .. _._---

Control and Status Register 1-3, 
1-5, Glossary-l 

control block 5-3, 6-3f, 7-3, 8-2 
hard-wired 6-4 
page-aligned 6-5 

copying I/O buffers D-3 
CPU times D-1f 
CRDDF command 4-5, 9-1, ll-lff, 

A-4ff 
AT option 3-7, A-4 
CSR_OFFSET option 11-3 
MULTIPLE option 9-4 
other options 11-2ff, A-4 
VME option 2-4, A-7 

CSR page 5-f, 11-1, A-2, A-9, 
C-l, Glossary-l 

examples 5-3, C-2 
CSR (see Control and Status 

Register) 
CTRL/Q 6-6, 10-3, B-36 
CTRL/Z 4-7, 12-2, A-2, A-11 
CVT_AT command 3:-3, A-9f 

D 

data structure Glossary-1 
data transfers 7 -1ff 
DDF 4-5, 9-4, 10-Hf, 11-lff, 

A-2ff, Glossary-l 
building a DDF 11-2ff 
functions 11-1 
options 11-2 
Version 1 11-2ff 
Version 2 11-2ff 
Version 3 11-2, 11-4ff 

DEBUG command 10-3ff 
PROC option 10-4 

debugging 10-3ff 
DEFINE clause 5-3, 6-3, 7-3, 

8-1f, C-4 
demand-DMA 3-6f, B-20, B-39, 

Glossary-1 
IDEV directory 11-1, A-2, A-4 
IDEV/GLOBAL_DEVICES 9-3f, 

10.:..4 
device Glossary-2 
device acquisition program 10-2, 

12-2 
DEVICE attribute 5-2, C-4f 
Device Descriptor File (see DDF) 
device driver 4-3, Glossary-2 

Index-2 

checklist 4-8 
components 4-4. 4-8 

c 



o 

o 

o 

o 

entry points 4-5, 11-3, 12-1 
functions 4-3 
online examples 4-4 

device interrupt (see interrupt) 
device timeout 6-6f 
10EV ISIO 9-4 

direct memory access (see DMA) 
disabling device interrupts 8-2f 
discontiguous buffers 7-5 f 
DMA 3-6f, Glossary-2 

bandwidth 0-1 
controller Glossary-2 
overrun Glossary-2, 0-1 
transfers 7 -Hf 

Domain/ComController 1-8 
double buffering 7-9 

E 

EC2_$EVENTCOUNT 8-3 
EC2_PTR_T 9-2 
EC2_$WAIT 6-7, B-25 
EC_$PTR_T 6-8 
enabling device interrupts 8-2f 
EOF mark 4-7, 12-2, A-2, A-11 
ERROR calls 5-1 
ETHERNET Interlan controller 1-8 
eventcount 6-6f, 8-3, B-14f, B-25, 

B-32, Glossary-2 
EXTERN clause 5-4, 10-3, C-4 

F 

fault Glossary-2 
fault handler Glossary-2 
fault handling 6-1 

by driver 7-10 
FSO-500 1-8 
FST command 8-5 

G 

global memory 9-1, 9-3 
globals 8-2, 10-3, C-4 
GPI/O calls B-1Hf 
GPI/O commands A-Hf 
GPI/O datatypes B-Hf 
GPI/O error messages B-49ff 
GPIO software 4-Hf, Glossary-2 

H 

hard-wired memory Glossary-2 

IMAGEN printer 1-8 
initialization routine 4-4, Glossary-2 

called by PBU_$ACQUIRE 12-1 
driver entry point 11-1, 11-3 
example in C F-5f 
example in Pascal E-9f 
format 6-2 
functions 6-1 

insert file 
device-specific 5 - 2 
example in C F-2ff 
example in Pascal E-2ff 
general 5-1 
private 5-1 
public 5-4 
system 5-1 

integer data type (Pascal) C-1 
INTERLAN_EXAMPLE 4-4 
internal storage 6-3 
interrupt Glossary-2 

enabling 8-2f 
disabling 8-2f 
mask bit 8-2 
mask register 8-2, Glossary-2 
processing overhead 0-1f 
request line 11-1, Glossary-2 
side 4-5, 5-3, 8-1ff, Glossary-2 

binding 10-2 
debugging 10-3 
example in Pascal E-13ff 
maximum size of 8-2 

stack Glossary-2 
re-enabling 8-3 
routine 4-4, 11-1, Glossary-2 

example in C F-1f 
faults in 8-4 
format 8-~ 
functions 8-2, 8-4 
GPI/O calls 8-1 
mapping buffers 8-5 
processing interrupts 8-4 
return flags 8-2 
wiring 8-1 

vector Glossary-3 
waiting for 6-6ff 

I/O map (see under MULTIBUS) 
I/O requests 6-5 
I/O software 4-1 
I/O space 1-5ff, 3-Hf, Glossary-3 
I/O virtual address (see iova) 

Index-3 



iova 1-6, A-9, Glossary-3 

K 

KGT (see known global table) 
known global table 9-3 

L 

ILIB directory 11-2f 
ILIB/PBU_INT_LIB 10-2 
loading 

private driver 12-if 
shared driver 9-4 

magtape 1-S 
make file (in C) F-14 
mapping 1-5 

M 

buffers in interrupt routine 8-5 
controller memory 7-11 
CSR page 12-1 
DDF 12-1 
I/O buffer Glossary-3 

M$ARITH.BIN 10-3 
memory 

hard-wired Glossary-2 
processor Glossary-3 
wiring 7-2ff, 7-6 

memory management unit 
Glossary-3 

paging operations 7-2 
memory space Glossary-3 
memory-mapped controller 7-10ff, 

B-29, Glossary-3 
memory-mapped I/O 1-6, 3-3, 

7-10, Glossary-3 
MMU (see memory management 

unit) 
MULTIBUS l-iff 

address space 1-6, 6-5 
address translation 1-4f 
allocating address space 7-2 
bus control 1-3 
bus master 1-3 
bus request arbitration 1-4 
bus slave 1-3 
bus timeout 6-3 
byte swapping l-1iff 
compliance levels 1-2f 
configuring address lines 1-9, 

1-11 

configuring controller memory 
1-9, 1-11 

configuring controllers 1-7 f 
Control and Status Register 1-3, 

1-5 
controller 

S-bit l-Sff, 11-3f 
16-bit 1-4, l-Sff, 7-if, 7-lif 
20-bit 1-4, 1-10f, 7-if, 7-lif 

CSR addresses 1-7, 1-9 
CSR page 1-6, A-5 
data bus 1-12 
data lines 1-12 
data path 1-3 
DDF 11-2f 
de allocating 1/0 map 7-10 
DMA transfers 1-6, 7-iff 
Domain system-supplied devices 

1-S 
dynamic resource allocation 7-4f 
implementations 1-2 
interrupt request lines 1-4, 1-10 
I/O address path 1-4 
I/O map 1-6, 7-2, 7-4, 7-11, 

7-13, Glossary-3 
I/O space 1-3, 1-5 
mapping I/O buffer 7-1 
memory address p~th 1-3 
memory space 1-5, 1-9 
memory-mapped controllers 1-10 
memory-mapped I/O 1-6, 7-1if 
parallel resolution 1-4 
pre allocating I/O resources 7-4 
processor address space 

allocation 1-4 
programmed I/O 1-5 
referencing controller memory 

7-11 
scatter-gather 7-5 
serial resolution 1-4' 
unit numbers A-6 
unmapping buffer 7-10 
wiring I/O buffer 7-2ff 

MULTIBUS,data bus 1-12 
multiple-device drivers 9-4 
MUTEX_$LOCK 9-2 
MUTEX_$UNLOCK 9-2 

N 

node ID 11-1 
non-bus-vectored interrupt 

Glossary-3 

Index-4 

c 

c 



.. :J 

o 

o 

o 

o 

o 

offset Glossary-3 
online sample drivers 4-4 
ord function (Pascal) C-2 

packed record C-1 
page Glossary-3 

alignment 6-5, 10-2 
boundary 1-9 
fault 8-1 

paging Glossary-3 
parallel resolution 1-4 
passing parameters 6-2 
PBU Glossary-3 

p 

PBU Manager 4-5, Glossary-3 
PBU2_$ calls 7-H 
PBU2_$ALLOCATE_MAP 7-2, 

7-4f, B-41 
PBU2_$FREE_MAP B-42 
PBU2_$MAP 7-4f, 8-5, B-43, D-3 
PBU2_$MAP_CONTROLLER 3-3, 

7-1lff, B-44 
errors B-44 

PBU2_$UNMAP 7-9, 8-5, B-45, 
D-3 

PBU2_$UNMAP _CONTROLLER 
3-3, 7-11, 7-13, B-46 

errors B-46 
PBU2_$UNWIRE 3-7, 7-9, B-47, 

D-3 
PBU2_$WIRE 3-7, 7-3f, 8-5, 

B-48, D-3 
PBU_$ACQUIRE 1-5, 3-2, 6-1ff, 

7-10, 8-2, 8-5, 9-4, 10-1, 10-3f, 
11-1, A-2, B-13, B-37 

functions 12-1 
steps in acquiring device B-13 

PBU_$ADVANCE_EC 9-2, B-14 
PBU_$ALLOCATE_EC 9-2, B-15 
PBU_$ALLOCATE_MAP 6-4, 7-2, 

7-4f, B-16 
PBU_$CONTROL 1-12, B-17 

byte swapping options B-17 
PBU_$DDf_T 11-1 
PBU_$DEVICE_INTERRUPTING 

B-18 
PBU_$DISABLE_DEVICE 3-5" 

8-2f, B-19 
PBU_DMA_CASCADE option 7-7, 

B-20 

PBU_$DMA_START 3-5ff, 7-7ff, 
7-13, 8-5, B-20 

PBU_$DMA_STOP 3-5ff, 7-7ff, 
7-13, 8-5, B-22 

PBU_$ENABLE_DEVICE 3-5, 
8-2f, B-23 

PBU_$FREE_MAP B-24 
PBU_$GET_EC 6-7, 9-3, B-25 
PBU_$GLOBAL_UNITS 9-4 
PBU_$INTERRUPT_FLAGS_T 8-2 
PBU_$MAP 7-4f, 8-5, B-26 
PBU_$MAP_CONTROLLER 3-3, 

7-11ff, B-27 
errors B-27 

PBU_$MEM_PTR B-29 
PBU_$READ_CSR 6-3, 7-12, B-30 

D-3 
PBU_$RELEASE 4-4, 12-2, B-31 

functions B-31 
PBU_$RELEASE_EC 9-2, B-32 
PBU_$UNIT_T 9-4 
PBU_$UNMAP 7-9, 8-S,B-33 
PBU _ $UNMAP _CONTROLLER 

3-3, 7-11, 7-13, B-34 
errors B-34 

PBU_$UNWIRE 3-7, 7-9, B-35 
PBU_$WAIT 6-6, 9-3, B-36 
PBU_$WIRE 3-7, 7-3f, 8-5, B-37 
PBU_$WIRE_SPECIAL 3-6f, 7-6, 

B-38 
PBU_$WRITE_CSR 6-3, 7-12, 

B-40 D-3 
performance information D-lff 
peripheral interrupt controller 

Glossary-3 
PFM_$CLEANUP 7-10 
PGM calls 8-1 
phase II shell 9-4, 10-5 
PIC (see peripheral interrupt 

controller) 
pointer 

CSR page 5-3 
universal C-3 

programmed I/O 1-5, 3-6, 7-13, 
Glossary-3 

Q 

quit fault 6-6, 6-8, B-36 

R 

re-enabling device interrupts 8-3 
referencing controller memory 7-11 

Index-5 



releasing device 12-2 
CTRL/Z 12-2 
device acquisition program 12-2 

releasing I/O resources 
abnormal 7-9 
normal 7-9 

RLDEV command A-11 
error messages A-11 

RWS_SALLOC_HEAP_POOL 9-3 
RWS_SALLOC_POOL 9-3 
RWS_SGLOBAL_POOL 9-3 
RWS_SSTD_POOL 9-3 

s 
scatter-gather 2-3, 3-7, 7-5ff, 

Glossary-3 
serial priority resolution 1-4, 

Glossary-3 
set (Pascal) C-2 
shared controller B-29 
shared driver 9-1ff, B-14f, B-32 

cleanup 9-3 
DDF 9-1, 9-3 
debugging 10-4ff 
eventcount 9-2 
fault handling 9-3 
functions 9-1 
global libraries 9-3 
global memory 9-1, 9-3 
initialization 9-3 
interrupt routine 9-4 
loading 9-4 
MUTEX locks 9-1, 9-3 
mutual exclusion 9-H 
synchronization 9-Hf 
unloading 9-4 

SHARED_EXAMPLE 4-4, 9-1 
shell script 

binding 10-1 
building a DDF 11-2 

SIO routine 8-6 
example in C F-8f 
example in Pascal E-14f 

starting an I/O operation (see SIO 
routine) 

storage module device 1-8 
synchronous fault Glossary-4 
system globals 8-1 
System Interrupt Handler 4-4, 4-7, 

6-6, 7-9, 8-1ff, B-36, Glossary-4 
functions 8-4 

processing interrupts 8-4 

T 

testing for device presence 3-5, 6-3f 
THREECOM_EXAMPLE 4-4 

building a DDF 11-3f 
CSR page C-4 
memory-mapped I/O 7-10 

timing information D-3f 
DN3000 D-4 
DN400 D-4 
DN560 D-4 
DN570-T D-4 
DN580-T D-4 
DSP160 D-4 
DSP80 D-4 

touchyage program 6-5 

u 

unit number 11-1 
UNIV _PTR C-4 
unloading the driver 12-2 

private driver 12-2 
shared driver 9-4 

unmapping controller memory 7-13 
unresolved globals 8-2 
unwiring 3-7, 7-10 
User Fault PC 8-5 
user-process address space 

Glossary-4 

v 

variant record (Pascal) 5-3, C-1 
VERSATEC printer 1-8 
VFMT calls 5-1, 8-1 
virtual address Glossary-4 
virtual address space Glossary-4 
VMEbus 2-Hf 

Index-6 

address layout (DN5701580-T) 
2-H 

address modifier 2-2 
address space assignments 2-2, 

B-39 
bus grant level 2-2 
CRDDF 2-4 
CSR page A-5 
DDF 2-4, 11-6 
DMA transfers 2-3, 7-6 
GPI/O calls 2-3 
interrupt request line 2-2 

c 



o 

o 

o 

memory-mapped 1/0 2-3, 7-11 
PBU_$WIRE_SPECIAL 2-3 
programmed I/O 2-3 
referencing controller memory 

7-11 
scatter-gather 2-3 
status/lD byte 2-3 
unit number 2-3, A-6 
wiring 2-3 

VOLATILE attribute C-S 

w 

wait routine 6-6 

example in C F-9ff 
example in Pascal E-11 

wired memory Glossary-4 
wiring 3-7 

interrupt routine 8-1 

interrupt side 7-3 
I/O buffer 7-2f, D-3, Glossary-4 
maximum number of pages 7-3 

x 

X.2S 1-8 

Index-7 



/....-.- -', 

"'---- ' 

c 


