
Order, No.' 005097
. ,', Revision .00

Software Release ,9.0

;~:~~"< ",,<',,";> ,','::'::<" ',::v

prqgrsl11ming .•. >fI1(ittt ..•• • ••.• • ?i ..•..•
DOMAIN<20',Graphics ... Me.tafile::R~~olJrc~

Programming with DOMAIN 2D Graphics Metafile
Resource

Apollo Computer Inc.
330 Billerica Road

Chelmsford, MA 01824

Order No. 005097
Revision 00

Software Release 9.0

Copyright © 1985 Apollo Computer Inc.

All rights reserved.

Printed in U.S.A.

First Printing: July, 1985

This document was produced using the SCRIBE ® document preparation system. (SCRIBE is a
registered trademark of Unilogic, Ltd.)

APOLLO and DOMAIN are registered trademarks of Apollo Computer Inc.

AEGIS, DOMAIN/IX, DOMAIN/Dialogue, D3M, DPSS, DGR, GMR, GPR, and DSEE are
trademarks of Apollo Computer Inc.

Apollo Computer Inc. reserves the right to make changes in specifications and other information
contained in this publication without prior notice, and the reader should in all cases consult
Apollo Computer Inc. to determine whether any such changes have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF APOLLO COMPUTER INC. HARDWARE

PRODUCTS AND THE LICENSING OF APOLLO COMPUTER INC. SOFTWARE CONSIST SOLELY OF THOSE

SET FORTH IN THE WRITTEN CONTRACTS BETWEEN APOLLO COMPUTER INC. AND ITS CUSTOMERS. NO

REPRESENTATION OR OTHER AFFIRMATION OF FACT CONTAINED IN THIS PUBLICATION, INCLUDING

BUT NOT LIMITED TO STATEMENTS REGARDING CAPACITY, RESPONSE-TIME PERFORMANCE,

SUITABILITY FOR USE OR PERFORMANCE OF PRODUCTS DESCRIBED HEREIN SHALL BE DEEMED TO BE A

WARRANTY BY APOLLO COMPUTER INC. FOR ANY PURPOSE, OR GIVE RISE TO ANY LIABILITY BY

APOLLO COMPUTER INC. WHATSOEVER.

IN NO EVENT SHALL APOLLO COMPUTER INC. BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL OR

CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS) ARISING

OUT OF OR RELATING TO THIS PUBLICATION OR THE INFORMATION CONTAINED IN IT, EVEN IF APOLLO

COMPUTER INC. HAS BEEN ADVISED, KNEW OR SHOULD HAVE KNOWN OF THE POSSIBILITY OF SUCH

DAMAGES.

THE SOFTWARE PROGRAMS DESCRIBED IN THIS DOCUMENT ARE CONFIDENTIAL INFORMATION AND

PROPRIETARY PRODUCTS OF APOLLO COMPUTER INC. OR ITS LICENSORS.

Preface

Programming With DOMAIN 2D Graphics Metafile Resource describes the DOMAIN®two­
dimensional graphics metafile resource system (2D GMR)and explains how to use this system in
developing graphics application programs. Detailed descriptions of the user-callable routines for
the DOMAIN 2D Graphics Metafile Resource are included in the DOMAIN System Call
Reference, Volume 1.

Audience

This manual is for programmers who use the DOMAIN 2D Graphics Metafile Resource to develop
application programs. It is assumed that users of this manual have some knowledge of computer
graphics and have experience in using the DOlvWN system.

Organization of this Manual

This manual contains fifteen chapters and six a,ppendices. Cross-references in the manual indicate
the chapter number and the section number. For example, a reference to Section 3.6 refers to
Chapter 3 and Section 3.6 in the chapter.

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Presents an overview of the graphics metafile package and a comparison with
other DOMAIN graphics packages.

Describes the DOlvWN display, the 2D GMR™bitmap, and the effect of
initialization mode on the display of graphic images. Coordinates systems are
defined.

Presents the structure of 2D GMR application programs, including controlling
files and segments and instancing segments. The chapter concludes with a
basic sample program.

Describes the draw and fill primitives and explains how to insert them in
segment. The procedure for displaying all or part of a file or segment is
described. Instancing and transformation routines are presented with a
program to illustrate their use.

Describes the use of individual attribute commands, explains how to use
attributes in relation to instancing, and provides a program to illustrate these
functions.

Explains how to insert text and text attributes into a segment. Font families
and their use are described, along with techniques for creating stroke fonts.
Programs illustrate the use of routines.

Describes the use of the primary segment in displaying a metafile. The chapter
also includes discussion of seg:ment characteristics and coordiantes data types.

Describes the display environment and coordinate systems used with the
graphics metafile package. Viewing routines are presented with a sample
program to illustrate their use.

iii Preface

Chapter 9

Chapter 10

Chapter 11

Chapter 12

Chapter 13

Chapter 14

Chapter 15

Appendix A

Appendix B

Appendix C

Appendix D

Appendix E

Appendix F

Provides an overview of functions used for interactive editing. The routine for
changing the editing mode is described and illustrated with a sample program.

Describes the following interactive functions: replacing commands, establishing
a refresh state, picking commands and segments, using input operations and
event reporting, controlling the cursor, and reading a metafile. Program
examples illustrate many of these functions.

Explains how to extend the 2D GMR to include GPRTlroutines and user-defined
primitives. This extension to the 2D GMR package is illustrated with a sample
program.

Describes the routines and the external file format used in generating hard-copy
output of graphics data.

Describes the use of attribute classes and blocks, and explains how to tie
attribute blocks to attribute classes for the entire display and for individual
viewports. Programming examples illustrate the use of attribute routines.

Describes advanced display techniques including using color and changing the
viewport border and background. Programming examples illustrate these
techniques.

Describes the use of tags. The chapter also presents techniques for optimizing
performance in using 2D GMR. Relationships of the DOMAIN graphics
packages are discussed.

Presents a glossary of graphics terms in relation to the 2D GMR package.

Illustrates the 880 and low-profile keyboards and keyboard charts.

Presents an example of a program that prints out the entire contents of a
metafile in readable form.

Contains a Pascal program with attributes and instancing.

Contains the programming examples presented in the manual translated into
C.

Contains the programming examples presented m the manual translated into
FORTRAN.

Additional Reading

For information about using DOMAIN Graphics Primitives, see Programming With DOMAIN
Graphics Primitives (order no. 005808) and the DOMAIN System Call Reference, Volume 1
(order no. 007196) and Volume 2 (order no. (007194).

For information on DOMAIN Core Graphics, see Programming with DOMAIN Core Graphics
(order no. 001955).

For information about using the DOMAIN system, see the DOMAIN System Command
Reference (order no. 002547). For information about the software components of the operating

Preface iv

system and user-callable system routines, see the DOMAIN System User's Guide (order no.
005488). For language-specific information, see the DOMAIN FOm'RAN User's Guide (order
no. 000530), DOMAIN C Language Reference (order no. 002093), and DOMAIN Pascal
Language Reference (order no. 000792). For information about the high-level language debugger,
see the DOMAIN Language Level Debugger Reference (order no. 001525).

On-Line Sample Programs

The programs from this manual are stored on-line, along with sample programs from other
DOMAIN manuals. We include sample programs in Pascal, C, and FORTRAN. All programs in
each language have been stored in master files (to conserve disk space). There is a master file for
each language.

To access any of the on-line sample programs, you must create one or more of the following links:

For Pascal examples: $ CRL -COM/GETPAS /DOMAIN_EXAMPLES/PASCAL_EXAMPLES/GETPAS

For C examples: $ CRL -COM/GETCC /DOMAIN_EXAMPLES/CC_EXAMPLES/GETCC

For FORTRAN examples: $ CRL -COM/GETFTN /DOMAIN_EXAMPLES/FTN_EXAMPLES/GETFTN

To extract a sample program from these master files, all you have to do is execute one of the
following programs:

To get a Pascal program: $ GETPAS

To get a C program: $ GETCC

To get a FORTRAN program: $ GET FTN

These programs will prompt you for the name of the sample program and the pathname of the
file to copy it to. Here is a demonstration:

$ GETPAS
Enter the name of the program you want to retrieve -- STAR MOVE
What file would you like to store the program in? -- STAR MOVE.PAS

Done.
$

You can also enter the information on the command line in the following format:

For example, here is an alternate version of our earlier demonstration:

$ GETPAS STAR_MOVE STAR_MOVE.PAS

GETPAS, GETCC, and GETFTN will warn you if you try to write over an existing file.

For a complete list of on-line DOMAIN programs in a particular language, enter one of the
following commands:

v Preface

$ GETP AS HELP
$ GETCC HELP
$ GETFTN HELP

Documentation Conventions

Unless otherwise noted in the text, this manual uses the following symbolic conventions.

UPPERCASE

lowercase

[]

{ }

CTRL/Z

<>

Uppercase words or characters in formats and command descriptions represent
commands or keywords that you must use literally.

Lowercase words or characters in formats and command descriptions represent
values that you must supply.

Square brackets enclose optional items in formats and command descriptions.
In sample Pascal statements, square brackets assume their Pascal meanings.

Braces enclose a list from which you must choose an item in formats and
command descriptions. In sample Pascal statements, braces assume their
Pascal meanings.

The notation CTRL/ followed by the name of a key indicates a control
character sequence. You should hold down the < CTRL > key while typing the
character.

Angle brackets indicate a key to be pressed.

Problems) Questions, and Suggestions

We appreciate comments from the people who use our system. In order to make it easy for you
to communicate with us, we provide the User Change Request (UCR) system for software-related
comments, and the Reader's Response form for documentation comments. By using these formal
channels you make it easy for us to respond to your comments.

You can get more information about how to submit a UCR by consulting the DOMAIN System
Command Reference manual. Refer to the CRUCR (Create User Change Request) Shell
command description. You can view the same information on-line by typing:

$ HELP CRUCR <RETURN>

For your comments on documentation, a Reader's Response form is located at the back of this
manual.

Preface vi

Contents

Chapter 1 Introduction

1.1. What 2D GMR Provides the Application Developer
1.2. Data Types
1.3. Storage and Display
1.4. Extendable Package
1.5. Graphics Metafiles and Other DOMAIN Graphics Packages
1.6. Processing Model: Viewing Pipeline
1.7. Strategies for Developing Applications

Chapter 2 Displaying Graphic Images

2.1. Elements of the DOMAIN Display
2.2. Viewing the Pictures Created by 2D G11R
2.3. Coordinate Systems

Chapter 3 Developing Application Programs

3.1. Structure of 2D G11R Application Programs
3.2. Controlling the 2D G11R Package
3.3. Controlling Files
3.4. Controlling Segments
3.5. Primary Segment
3.6. Using World Coordinates
3.7. Writing 2D G11R Application Programs
3.8. A Program to Draw a Rectangle

Chapter 4 Using Basic Modeling Routines

4.1. Using Draw and Fill Primitives
4.2. Displaying Files and Segments
4.3. Displaying Part of a File/Segment
4.4. Using Instancing
4.5. Using Transformations
4.6. A Program Using Primitives and Instancing
4.7. Instances with Arbitrary Transformations
4.8. A Technique Using Arbitrary Transformations

vii

1-1

1-1
1-6
1-6
1-7
1-7

1-11
1-13

2-1

2-1
2-2
2-5

3-1

3-1
3-3
3-5
3-6
3-7
3-7
3-8
3-9

4-1

4-1
4-2
4-3
4-3
4-5
4-5

4-10
4-10

Contents

Chapter 5 Using Attributes

5.1. Using Draw and Fill Attributes
5.1.1. Line Attributes
5.1.2. Fill Attributes

5.2. Using Color Map Attributes
5.2.1. Raster Operation Attributes

5.3. Using Attributes and Instancing
5.4. A Program with Attributes and Instancing

Chapter 6 Using Modeling Routines: Text

6.1. Using Text
6.2. Inserting Text
6.3. Using Text Attributes
6.4. Identifying Font Families
6.5. A Program Including Text
6.6. Editing Fonts and Font Families
6.7. Creating Stroke Font Files

6.7.1. Defining Characters
6.7.2. Defining Character Width
6.7.3. Font Defaults
6.7.4. Limitations

6.8. A Procedure to Define a Font
6.9. Program With Stroke and Pixel Fonts

Chapter 7 Using Segment Characteristics

7.1. Primary Segment
7.2. Setting Segment Characteristics
7.3. Coordinate Data Types

Chapter 8 The Displaying Process

8.1. Hardware and Coordinate Systems
8.2. Display Coordinates and Mode
8.3. Using Multiple Viewports
8.4. Segment Visibility Criteria
8.5. Displaying a File/Segment
8.6. Displaying Part of a File/Segment
8.7. Changing the View
8.8. Refreshing the Display
8.9. Program to Change the View

Contents viii

5 .. 1

5-1
5-2
5-2
5-2
5-3
5-5
5-6

6-1

6-1
6-1
6-2
6-2
6-3
6-6
6-7
6-7
6-7
6-8
6-8
6-8
6-9

7-1

7-1
7-2
7-3

8-1

8-1
8-2
8-4
8-5
8-6
8-7
8-8
8-8
8-9

Chapter 9 Developing Interactive Applications

9.1. Making Your Application Easy to Use
9.2. Changing the Picture
9.3. An Interactive Program

Chapter 10 Routines for Interactive Applications

10.1. Editing Modes
10.2. Establishing a Refresh State
10.3. Controlling the Cursor
lOA. Using Input Operations

1004.1. Event Types
1004.2. Event Reporting

10.5. Using Picking
10.5.1. Picking Without an Aperture
10.5.2. Picking With an Aperture

10.6. Setting the Pick Aperture
10.7. Picking and Listing Segments
10.8. Picking a Command
10.9. Controlling What is Picked
10.10. Editing Metafiles
10.11. Deleting and Copying

10.11.1. Deleting
10.11.2. Copying

10.12. Program with Picking
10.13. Program Technique: Locator Events and Cursor Tracking
10.14. Reading Commands

Chapter 11 Using Within-GPR Mode

11.1. Extending the 2D GMR Package
11.1.1. Borrow, Direct, and Main-Bitmap Modes
11.1.2. Within-GPR Mode

11.2. Displaying User-Defined Primitives
11.3. Program Using Within-GPR Mode
11.4. Migration Steps from GPR to 2D GMR

Chapter 12 Output

12.1. Printing
12.2. External File Format

ix

9-1
9-2
9-3

10-1

10-1
10-2
10-3
10-4
10-4
10-5
10-6
10-6
10-6
10-8
10-8

10-10
10-12
10-12
10-13
10-13
10-13
10-13
10-20
10-21

11-1

11-1
11-1
11-,(
11-3
11-4

11-11

12-1

12-1
12-1

Contents

Chapter 13 Attribute Classes and Blocks

13.1. Terms Used with Attributes
13.2. Using Attribute Classes
13.3. Creating Attribute Blocks
13.4. Modifying Attribute Blocks
13.5. Reading Attribute Blocks
13.6. Copying Attribute Blocks
13.7. Instancing and Attributes
13.8. Mixing Attribute Commands and Attribute Classes
13.9. Attributes and Viewing Operations

13.9.1. Tying Ablocks to Aclasses for the Entire GM Bitmap
13.9.2. Tying Ablocks to Aclasses for Individual Viewports
13.9.3. Summary of Procedures

13.10. Summary
13.11. Program with Attribute Classes and Blocks

Chapter 14 Advanced Display Techniques

14.1. Using the Color Map
14.1.1. The Color Map: A Set of Color Values
14.1.2. Changing the Color Map

14.2. Using Viewport Techniques
14.3. Program with Advanced Viewing Techniques

Chapter 15 Programming Techniques

15.1. Using Tags
15.2. Program Technique: Using Tags
15.3. Optimizing Performance

15.3.1. Sorting by Location in the Picture
15.3.2. Segment Size
15.3.3. Rectangles and Rotations
15.3.4. Compacting Files
15.3.5. Releasing and Acquiring the Display
15.3.6. Long Identifiers
15.3.7. Color Map on Color Nodes
15.3.8. Fault Handlers

15.4. For Users of Both 2D GMR and GPR
15.5. For Previous Users of DOMAIN Core Graphics

Appendix A Glossary

Oontents x

13-1

13-1
13-1
13-2
13-3
13-4
13-4
13-4
13-5
13-6
13-6
13-6
13-7
13-7
13-8

14-1

14-1
14-1
14-5
14-5
14-6

15-1

15-1
15-1
15-2
15-2
15-2
15-3
15-3
15-3
15-3
15-3
15-4
15-4
15-4

A-I

Appendix B Keyboard Charts B-1

Appendix C Program to Read the Contents of a Metafile C-l

Appendix D Program: Instances and Attributes D-l

Appendix E C Program Examples E-l

Appendix F FORTRAN Program Examples F-l

Index Index-l

xi Contents

Illustrations

Figure 1-1. 2D GMR Library of Routines 1-5

Figure 1-2. Relationship of DOMAIN Graphics: GPR and Oore 1-9

Figure 1 ... 3. Relationship of DOMAIN Graphics: 2D GMR and GPR 1-10

Figure 1-4. Graphics Pipeline 1-11

Figure 2-1. A Raster Graphic System 2-1

Figure 2-2. Borrow Mode: Screen and GM Bitmap 2-3

Figure 2-3. Direct Mode: Screen, GM Bitmap, and Viewport 2-4

Figure 2-4. Borrow Mode: Viewport 2-4

Figure 2-5. Borrow Mode: View Scaled 2-5

Figure 2-6. Borrow Mode: Viewport and View Moved 2-5

Figure 2-7. 2D GMR Ooordinate System 2-6

Figure 3-1. Example of Hierarchical Structure 3-2

Figure 3-2. Display of File: Hierarchy with Instancing 3-3

Figure 3-3. Drawing a Rectangle 3-9

Figure 4-1. Multiple Views Shown in Different Viewports 4-4

Figure 4-2. Four Filled Rectangles within a Box 4-6

Figure 6-1. Inserting Text 6-3

Figure 7-1. Hierarchical Structure and the Primary Segment 7-1

Figure 7-2. Instancing and the Primary Segment 7-2

Figure 10-1. Oursor Pattern and Position 10-3

Figure 10-2. Instancing and Picking 10-7

Figure 10-S. Instancing and Picking Segments 10-9

Figure 14-1. The Pixel Value Used as an Index into the Oolor Map 14-3

Figure B-1. Low-Profile Keyboard Ohart - Translated User Mode B-2

Figure B-2. Low-Profile Keyboard B-3

Figure B-3. 880 Keyboard B-4

Figure B-4. 880 Keyboard Chart - Translated User Mode B-5

Figure D-1. A Picture Oreated Using Instances and Attributes D-2

xii Illustrations

Tables

Table 1-1. Capabilities of the 2D GMR Package 1-2

Table 1 ... 2. 2D GMR Package and the Metafile 1-4

Table 1-3. Graphics Metafile Package and a Word Processor 1-7

Table 3-1. Five Display Modes 3-4

Table 5-1. Default Attribute Settings 5-1

Table 5-2. Raster Operations and Their Functions 5-4

Table 5 ... 3. Raster Operations: Truth Table 5-5

Table 10-1. Event Types 10-5

Table 10-2. Search Rules for Picking 10-9

Table 10-3. Example of Picking and Listing Segments 10-10

Table 10-4. Search Rules for Picking a Command 10-11

Table 13-1. " No-Change II Attribute Values 13-5

Table 14-1. Example of Gray-Scale Color Values and Visible Intensities 14-2

Table 14-2. Default Color Map 14-4

Table 14-3. Color Map Entries and Mode 14-4

xiii Tables

Chapter 1
Introduction

The DOMAIN 2D Graphics Metafile Resource package (hereafter referred to as 2D GMR) and this
manual are intended for programmers who wish to develop graphics applications packages. The
DOMAIN 2D GMR package provides a versatile, efficient tool for developing a graphics
applications system that stores and displays picture data.

The purpose of this manual is to present concepts, procedures, and examples for users of the 2D
GMR package. For a complete description of the user-callable routines of the 2D GMR package,
see Volume 1 of the DOMAIN System Call Reference. The information in this manual is
intended for programmers with some familiarity with computer-based graphics. The explanations
and examples are provided for programmers with limited experience, as well as for those who
have worked extensively with computer graphics.

1.1. What 2D GMR Provides the Application Developer

The 2D GMR package is a collection of routines that provide the ability to create, display, edit,
and store device-independent files of picture data. The package provides routines for developing
and storing picture data and displaying the graphic output of that data. The 2D GMR package
provides you with the necessary support to build a graphics system "with a memory. If The
package integrates graphics output capabilities with file handling and editing capabilities.

The standard form of data storage in this package is a metafile. A metafile is a device­
independent collection of picture data (vector graphics and text) that can be displayed. The
metafiles you create are stored and available for you to redisplay, revise, and reuse. They are not
static copies of display bitmaps; rather, metafiles contain lists of commands used to build a
graphic image.

The Table 1-1 summanzes the capabilities of the 2D GMR package and explains what these
enable you to do.

1-1 Introduction

Table 1-1. Capabilities of the 2D GMR Package

2D GMR Capability: Enables you to do this:

STORAGE

Graphics system with a memory

Virtual storage of metafiles

Integrate graphic data, nongraphic
data, display characteristics,
editing, file storage, and
hard-copy output.

Store files up to 256 megabytes.

MODELING/VIEWING

Commands

Segmentation

Nested segmentation

Instancing

Scaling

Translation

Multiple viewports

Flexibility in data types

A range of commands for drawing
and filling

Attributes

Blocks of attributes

Introduction

Describe the least divisible element
of a picture.

Group commands that make up separate
items of a picture; name the items;
reuse the items.

Have items include other items.

Use a single sequence of commands
multiple times with different
transformations and attributes applied.

Make the displayed picture larger
or smaller.

Move the displayed picture.

Look at more than one part of the
picture simultaneously; make changes
and see the change in each view.

Supply coordinate data as 16- or
32-bit integers or as single-precision
real numbers.

Draw lines and arcs; draw and
fill circles and polygons

Establish characteristics
such as line style and background
before and during display.

Create a data structure that holds a
collection of values that specify
attributes.

1-2

Table I-I. Capabilities of the 2D GMR Package (continued)

EDITING

Editing commands within segments Create interactive application easily;
while viewing change picture details interactively

Identifying and picking segments Choose the focus of interactivity
and commands

INPUT/OUTPUT

Accepting coordinate input from Use input devices such as a mouse
logical devices or puck with easy interface

Output to external file Transfer data to hard-copy devices

Within a metafile, commands are grouped into segments. Each segment is a named entity
consisting of a sequence of commands. A segmentcan be referred to from another segment, in a
manner analogous to a subroutine call.

Individual commands within segments of the metafile describe the least divisible components of
the picture. Commands are categorized as primitive commands, attribute commands, instance
commands, and tag commands. These commands are defined as follows:

• Primitive commands: Describe the single least divisible, displayable components of a
picture. These components are, for example, polylines (lists of linked line segments),
rectangles, circles, and text.

• Attribute commands: Contain values that specify the manner in which components of
the picture are to be drawn, for example, the line style or text size. Attribute values
may be modified individually or in blocks.

• Instance commands: Cause references to be made to other segments. Instancing
allows multiple uses of a single sequence of commands, with different transformations
applied.

• Tag commands: Provide comments within the file that do not affect the picture.

Every command is part of some segment. There are no commands outside of all segments.

Applications programs call 2D GMR routines to edit and display files. These routines are
categorized into modeling routines and viewing routines:

• Modeling routines: Control and edit metafiles.

• Viewing routines: Affect the form in which picture data within metafiles is displayed.

Please note our usage of the words "command" and "routine:"

1-3 Introduction

• A command is a part of a metafile.

• A routine is a procedure or function which operates on metafiles.

• The 2D GMR package is a collection of routines that can edit commands within
metafiles, or can affect ;how these commands are to be displayed. Each command is a
single element of a picture as stored in the metafile.

The distinction between the 2D GMR package and the metafiles it creates is summarized in Table
1-2.

Table 1-2. 2D GMR Package and the Metafile

DOMAIN 2D Graphics Metafile Resource

A collection of routines that the programmer can call:

Modeling Routines:

Viewing Routines:

Control and edit Metafiles

Affect how the picture data
in the metafile is displayed

A graphics metafile contains segments.

A segment contains commands.

A command is a primitive command or

an attribute command or

an instance command or

a tag command.

You call modeling routines to affect the state of the metafile package, or to affect the contents of
the files. Modeling routines create, open, and close files and segments, and insert, read, copy, and
delete commands within segments. For each type of command that can occur in a metafile, a
routine is provided to insert that command into the file; another routine is provided to read the
parameters of that command from the file.

Using viewing routines, you may display the images produced by the data in a file. You can then
edit the file and display the revised image. In all display modes except one (within-GPR),
coordinates are device-independent. This independence allows convenient display of the output of
the file (or regions of it) on the screen, or on another device such as a printer. The exception to
device independence is the display mode called within-GPR.

Data from input devices, such as a touch pad or a mouse, may be processed and used to help build
files.

Introduction 1-4

The 2D GMR package does not operate directly on bitmaps (unlike other DOMAIN graphics
packages). Instead, the 2D GMR routines modify either the contents of a metafile or the manner
in which the metafile is displayed. The 2D GMR package then handles the conversion of the
metafile to a bitmap for display or for hard-copy output (see Figure 1-1).

I Application
2D GMR Modeling Viewing
Interface Commands Commands

I
2D GMR Modeling I Viewing
Library I
of I
Routines I

_____ - 1 Bitmap I

I
I

Metafile

Figure 1-1. 2D GMR Library of Routines

The 2D GMR package is a library primarily containing two types of routines:
modeling and viewing. These two types of routines operate on metafiles as
follows:

Modeling routines modify the metafile. Viewing routines read the metafile
and display it based on viewing parameters.

1-5 Introduction

1.2. Data Types

For flexibility in modeling and for speed in storing data, you may supply coordinate data to the
2D GMR package in three formats:

• 16-bit integers

• 32-bit integers

• Single-precision real numbers

Different routines exist to accept data in these different forms, as described in Section 7.3. You
may supply data in different formats to different commands within a segment.

1.3. Storage and Display

The 2D GMR package manages both storage and display of picture data. It differs from graphics
packages that do not store an image for later display in the same way that a word processor
differs from a typewriter.

The structure of the metafile package is analogous to the structure of a word processor or text
editor, as outlined in Table 1-3. Modeling routines edit metafiles by inserting, changing, and
inquiring about commands within the metafile. They let you build a file, as when you type
characters into a text file that is open for editing.

Viewing routines control the form in which metafiles are displayed. These routines let you look
at a file, but change only how it is displayed. This is similar to the commands <MOVE> and
<GROW> used for a window. These routines do not change the contents of a file, but they
change such characteristics of the displayed image as placement and size.

Introduction 1-6

Table 1-3. Graphics Metafile Package and a Word Processor

20 GMR Package Word Processor

The package manages files of
picture data.

Files contain segments.

Segments contain commands.

Some modeling routines add
commands to a file.

Some modeling routines delete
commands or copy segments.

Viewing routines change what
part of the file is displayed.

1.4. Extendable Package

The processor manages files of text.

Files contain lines.

Lines contain characters.

Typing alphanumeric keys
adds characters to a file.

Some control keys delete characters
or copy lines.

Some control keys change what
part of the file is displayed.

The 2D Gl\.1R package is extendable. This means that you can use additional routines to mix 2D
Gl\.1R routines calls and GPR routines. The 2D Gl\.1R package provides two options to allow you
to expand it for your application .

• Within-GPR Mode: A subset of 2D Gl\.1R routines can operate in conjunction with
GPR applications. This allows you to use 2D Gl\.1R files within a GPR-based
application. Within-GPR mode can provide 2D Gl\.1R display advantages without
rewriting existing GPR-based user interfaces. This mode also provides a migration
path from GPR to 2D Gl\.1R (see Chapter 11) .

• User-Defined Commands: Commands that you define within 2D Gl\.1R allow you to
specify additional display routines for commands that you define.

1.5. Graphics Metafiles and Other DOMAIN Graphics Packages

The DOMAIN system also has two other graphics packages: DOMAIN Graphics Primitives (GPR)
and DOMAIN Core Graphics. The graphics primitives library is built into your DOMAIN system.
The routines (primitives) that make up the library let you manipulate the least divisible graphic
elements to develop high-speed graphics operations. These elements include lines and polylines,
text with various fonts, and pixel values. For a detailed description of graphics primitives, see
the Programming with DOMAIN Graphics Primitives and the DOMAIN System Call
Reference.

The DOMAIN system also has an optional Core graphics package. The Core graphics package
provides a high-level graphics environment in which to build portable graphics application

1-7 Introduction

systems. For a detailed description of Core graphics, see the Programming with DOMAIN Core
Graphics.

For a description of some of the most significant differences between 2D G1vfR and GPR, and
betweeen 2D G1vfR and Core, see Chapter 15. The distinctive characteristics of the three systems
are as follows:

• Graphics Meta/iles: Commands are stored in device-independent files of picture
data. The 2D G1vfR system lets you create, edit, display, and store picture data.
Storage and rapid redisplay functions are combined into one package. This allows
rapid interactive editing and redisplay. Coordinates are device-independent, providing
flexibility in the development and use of application programs.

• Graphics Primitives: The function calls cause changes to be made to a bitmap.
There is no memory of the calls performed except to the limited extent of being able
to save a static image at any given time. Storing the bitmap in a file does not save
the sequence of graphics commands that were used to create that bitmap. Therefore,
redrawing usually requires that an application program itself keep track of and
reexecute the calls. GPR display coordinates are device-dependent.

• Core Graphics: The functions in this package conform to an industry standard. The
functions include modeling and viewing capabilities. The Core package stores
segments only for redisplay during the same session; no permanent copy is created.
These segments cannot contain instances of other segments. Coordinates are device­
independent, providing flexibility in the development and use of application programs.

The 2D G1vfR package is distinct from the graphics primitives (GPR) package in this way: GPR
operations are performed directly to the output device, while 2D G1vfR operations read, modify,
or display a metafile (see Figures 1-2 and 1-3). The 2D G1vfR package initializes the GPR
package for graphics display purposes; however, the use of 2D G1vfR and GPR commands within
a single program is allowed in only one 2D G1vfR display mode. This mode is discussed in Section
11.1.2.

Introduction 1-8

- -

Application

Application
Data Base

...... ----......... :::===== Display
Data Base

User/Developer -,,... - - - - - - - - - - - - - _-------..

GPR

Application

- -, , -- - -

CORE ...
"

GPR

"

EJ

DOMAIN System

+

GPR commands
package

Application
Data Base

Display
Data Base

(Simple Segments,
Temporary)

User/Developer

DOMAIN System

t

CORE

Figure 1-2. Relationship of DOMAIN Graphics: GPR and Core

1-9 Introduction

Application

-~, - - --

GMR

~,

GPR

,r

B

Holistic
~f-------"~ ~pplication/Displa~ ..

Data Base

(Nested segments
and instancing,

permanent)

User/Developer

DOMAIN System

•

GM

Figure 1-3. Relationship of DOMAIN Graphics: 2D GMR and GPR

Introduction 1-10

1.6. Processing Model: Viewing Pipeline

Viewing
Parameters

Metafile

Graphics
Pipeline Bitmap

Figure 1-4. Graphics Pipeline

The illustration of the viewing pipeline in Figure 1-4 includes a bitmap. This is a three­
dimensional array of bits that can be mapped into one-dimensional address space in several ways:

• Bitmaps in virtual address space may be permanent, residing in the network-wide
pathname space.

• Bitmaps may exist in device frame buffers.

• Bitmaps may have associated color lookup tables.

In most applications, the user must perform several operations to display part or all of the
graphics data. The graphics package performs most or all of these steps:

• Creates graphics and nongraphics databases.

• Allows modification of databases.

• Allows display of the graphics data including translation, rotation, scaling, and
incremental updating of interaction with the display.

• The display process in a graphics application requires reading graphics commands,
transforming database coordinates to display coordinates, and displaying graphic
entities.

The 2D Gl\1R package performs the steps of the display process as follows:

1-11 Introduction

• Viewing routines call a segment to be displayed in a viewport.

• The display process executes commands in that segment: reads commands, transforms
coordinates, and performs display operations.

Instance commands cause commands in another segment to be processed. This can include
combining the old transformation and the instance transformation. The display process executes
the command in the instanced segment and then restores the old transformation; the process
continues executing commands in the instancing segment.

Basic Interactive Processing Model

These are the requirements for the basic graphics processing loop:

• Wait for an input event.

• Change structures or viewing parameters.

• Redisplay the scene through the viewing pipeline.

In a windowing system, these factors can cause complication. Input feedback may have to use the
display while the pipeline is running. Several windows may want to share the use of the pipeline.

The viewing pipeline is designed to handle both the processing and the complications. A series of
graphics processing instructions flows through the pipeline. A pipeline stage in the process acts
on the instruction in one of the following ways:

• Ignores the instruction and passes it on.

• Reads the instruction, updates state (for example, the clipping window), and does not
pass the instruction on.

• Transforms the operands and passes the instruction on.

• Converts it to one or more other instructions and passes them on.

The pipeline stages are as follows (not all are relevant to 2D GI\1R):

• Fetch the instruction.

• Transform the data.

• Clip the view space.

• Execute the projection.

• Clip the screen space.

• Process the drawing.

• Output to the bitmap or display screen.

Introduction 1-12

1.7. Strategies for Developing Applications

This :,ection provides a brief overview of programming strategies. For a more detailed discussion,
see Section 15.3.

The ~~D GMR package has many features to aid you in developing application packages. The
user works in world coordinates that are device-independent. Transformations to images are
performed as commands are displayed.

Segm,entation includes nested segmentation. This means that instanced segments can themselves
be instanced.

The database is optimized for display.

• The command format is optimized for the graphics hardware.

• Segment bounds are stored internally. This allows off-screen segments to be skipped
without reading individual commands.

• Special commands, such as the rectangle command, are designed for speed.

2D GI\1R is in use for a variety of applications. One example is an application that creates a
building layout, including floor plans, ducting, and text to describe these parts of the layout. In
such a layout, different segments are used for chairs, tables, and desks. These can then be
combined by using separate segments for standard rooms and instancing these segments. The
floor plan, ducts, and wiring can each have its own segment as well. Text can be contained in a
separate segment. Instancing of segments and characteristics such as visibility of segments can
chang:e what is displayed.

2D GI\1R is highly effective for applications that develop printed-wiring boards. This type of
application lends itself to the use of separate segments for components and for each collection of
connections. When a connection crosses layers, the data can be put into multiple segments.

The approach to applications is to put different classes of data into different segments and to
make use of characteristics of segments to change the display. When you are dividing a database
into segments, you need to take the following into consideration:

• What elements are repeated.

• What parts of the picture are logically connected. Groups of related segments can be
visible or pickable. Segments can be assigned different colors or other attributes when
you instance them.

• What is the optimum size for fastest output.

1-13 Introduction

Chapter 2
Displaying Graphic Images

This chapter describes the DOMAIN display, the GM bitmap, and the effed of initialization mode
on the display of graphic images. Coordinates systems are defined.

2.1. Elements of the DOMAIN Display

The DOMAIN display is a bit-mapped raster-scan device consisting of these main components:
bitmap, display controller, and monitor (see Figure 2-1).

bitmap

0000001000000
0000010100000
0000100010000 1------- scan line
0001111111000
0010000000100
0100000000010
1000000000001

Bitmap

display
controller

Figure 2-1. A Raster Graphic System

monitor

The bitmap (also called a frame buffer) is a data structure used to store values for each point or
pixel in a raster. On monochrome displays, there is one bit per pixel. This one-to-one mapping
between bits in the bitmap and pixels in the raster has this function: a bit value of 1 turns a pixel

2-1 Displaying Graphic Images

on, and a bit value of 0 turns a pixel off. On a color display, more bits are assigned to each pixel
to specify color through a color table and pixel values.

GM Bitmap

With the 2D GMR package, you do not have to write data directly to the bitmap. Instead, you
use the GM bitmap that is established when you initialize the 2D GMR package. The
characteristics of this bitmap depend upon the initialization mode. In direct mode, the GM
bitmap is part of the Display Manager window in which the package was initialized. In borrow
mode, this is the entire current display. In main-bitmap mode, this is a main-memory bitmap
(see Section 3.2).

In 2D GMR, instancing of segments performs the equivalent of bit block transfers and related
operations. The 2D GMR package allows you to build your graphics database efficiently and to
reuse data with attributes and transformations applied.

Display Controller and Monitor

The display controller is the interface between the bitmap and the display monitor or screen. Its
function is to read successive bytes of data from the bitmap and convert this data (O's and l's) to
appropriate video signals, which can then be displayed. The display monitor allows you to view
the information you have stored in a bitmap.

2.2. Viewing the Pictures Created by 2D GMR

This section describes the process of displaying the picture data in the metafile. Display modes
are explained, along with the following terms particular to the displaying process: GM bitmap,
viewport, and view.

GM bitmap is established when you initialize the 2D GMR package. Within the initialization
routine, you establish one of five display modes: borrow, direct, main-bitmap, no-bitmap, and
within-GPR.

• Borrow mode: Uses the entire screen. In borrow mode, the GM bitmap is usually the
entire screen.

• Direct mode: Displays within a Display Manager window. In direct mode, the GM
bitmap is the part of the Display Manager window in which 2D GMR was initialized.

• Main-bitmap mode: Displays within a bitmap allocated in main memory. The GM
bitmap is this main-memory bitmap.

• No-bitmap mode: Allows editing of files without display. There is no GM bitmap.

• Within-GPR mode: Displays the output of the metafile within a bitmap that you
initialize using routines of the DOMAIN Graphics Primitives package. There is no
GM bitmap.

The viewing routines of the 2D GMR package control the form in which metafiles are displayed.
When a viewing routine calls for display, the 2D GMR package performs some or all of the
commands in the metafile. In all display modes except within-GPR, the picture data is displayed
in viewports which are controlled by the 2D GMR package. When you use within-GPR mode,

Displaying Graphic Images 2-2

you must specify the exact placement of the picture data within a graphics primitives bitmap
under your control. The viewports of the 2D GMR package are not used in this mode.

In the 2D GMR package, a viewport is part or all of the GM bitmap (see Figure 2-2 through
Figure 2-6). Each viewport provides a separate view of the output of a metafile or a segment of a
metafile. You can see different pictures or parts of pictures in different viewports. Moving the
viewport on the GM bitmap does not change the view; the view moves with the viewport.

The view is the part of a picture that is currently seen through a viewport. Moving or scaling a
view affects what you see in the viewport (see Figure 2-2 through Figure 2-6). For example, the
view may be of a tree. You can move the tree to a new position in the viewport and you can
change the size of the tree. The viewport remains the same part of the GM bitmap unless you
explicitly change it.

To control the appearance of the view by moving or changing the size of the image, you use
viewing transformation routines. These include routines for translating, scaling, and rotating an
image in the view.

viewport

screen and GM bitmap

/
In borrow mode, the GM bitmap Is
usually the whole screen.

Figure 2-2. Borrow Mode: Screen and GM Bitmap

You can choose to display any segment within a metafile. You can also make other segments
referred to (instanced) by this segment be visible or not. Thus, any or all of the segments in a
file may be displayed in a particular view. For example, the file may contain a picture with a
house, a sign, and trees. You can specify that you want to see the entire file as a view in a
viewport. In a different viewport, you may also want to view only the trees, only the sign, or
only the house without the sign and trees.

A practical example comes from an architectural application. In developing an architectural
design with the 2D GMR package, you may want to display all of a floor plan including details
such as ducting and pipes. Alternatively, you may want a less cluttered view showing the floor
plan without these details. You can have either one or the other view by choosing the segments
you want displayed in the viewport you specify.

2-3 Displaying Graphic Images

r

"-

viewport
/

.!

OM window
and GM bitmap

'"

...I

In direct mode, the
GM bitmap is the user-available
portion of the OM window.

Figure 2-3. Direct Mode: Screen, GM Bitmap, and Viewport

GM bitmap and screen

/
"-_________ -+-viewport

Figure 2-4. Borrow Mode: Viewport

In using the 2D GMR package, you may want to add data while a program is running. You can
do this with input routines, which let you generate certain types of data through the keys or
buttons on a mouse or puck. This data can be used to calculate parameters for routines that
change the appearance of the display (see Chapter 9).

You can use pick routines to select a single entity from a file, either a segment or a command.
As you edit the metafile, you can use the pick routines to select the command you want to
change. You can also specify that certain elements not be picked. This can protect a basic
picture while you change some elements in it (see Section 10.9).

Displaying Graphic Images 2-4

o GM bitmap

/
'--________-- viewport

Figure 2-5. Borrow Mode: View Scaled

o
D

'--________ ... 1-4----,-- viewport moved, view the same

Figure 2-6. Borrow Mode: Viewport and View Moved

2.3. Coordinate Systems

The coordinate system of the 2D GMR package has x increasing to the right and y increasing up.
You can develop a picture in terms of the world coordinates that you are accustomed to using for
drafting and design (see Figure 2-7).

2-5 Displaying Graphic Images

+Y

(0.0, 0.0) +X

Figure 2-7. 2D GMR Coordinate System

You may use different coordinates in different segments of the picture you develop. You can then
specify the relationship of these coordinates when you use instance commands to combine the
segments. These different coordinate systems provide flexibility in modeling and displaying
graphic images.

In the 2D GMR package, you use world coordinates to create and store a collection of data which
generates a picture. The graphics metafile package converts your device-independent world
coordinates to device coordinates when it displays the metafile. This allows the same file to be
displayed on different DOMAIN nodes without requiring changes in your application program.

This support across devices (device independence) is based on the separation of coordinate systems
built into the 2D GMR package. You can use world coordinates to define objects in the two­
dimensional world; the package converts these to device coordinates that relate directly to the
screen or main-memory bitmap.

Displaying Graphic Images 2-6

Chapter 3
Developing Application Programs

This chapter presents the structure of 2D GMR application programs, including controlling files
and segments and instancing segments. The chapter concludes with a basic sample program.

3.1. Structure of 2D GMR Application Programs

The 2D GMR package builds files of picture data stored as collections of 2D GMR commands.
Each file of picture data is divided into segments, each of which consists of a sequence of
commands (primitive commands, attribute commands, and references to other segments). Every
command in a metafile is part of some segment.

The basic structure of a 2D GMR program is as follows:

It Initialize the 2D GMR package.

• Create a file.

It Create a segment within the file.

It Put commands in the segment, for example, to draw a rectangle.

• Display the segment. That is, perform the commands in the segment which make a
picture appear on the display.

• Close the metafile .

.. Terminate the 2D GMR session.

An application program that uses the routines of the 2D GMR package must first initialize the
2D GMR package. Once the 2D GMR package is initialized, the next step is to create a metafile
or to open a previously created one. You must open a file to display or to edit it. You can
create or edit segments within this open file; you can insert and delete commands within the
segments of the open file.

Once you establish a segment, you may edit and redisplay it. Editing a segment is analogous to
editing a line of text with an editor. Every command in a metafile is part of some segment, just
as every character in a text file is part of some line.

Segments may contain primitive commands, attribute commands, instance commands, and tag
commands.

Primitive commands describe the indivisible, displayable components of a picture, for example,
polylines (lists of linked line segments), rectangles, circles, and text.

Attribute commands describe how subsequent components of the picture are to be drawn. For
example, one attribute can change the line style from solid to dotted. Another attribute can
change the text size. Attribute values may be modified individually or in blocks.

3-1 Developing Application Programs

Tag commands are comments in the metafile that do not affect the picture. Tag commands
provide a convenient way to track information in the database.

Instance commands cause references to be made to other segments, allowing multiple uses of a
single sequence of commands with different transformations applied. Instance commands allow
multiple copies of an object to be conveniently drawn in different locations, at different sizes, or
with different attributes or color. Instancing of one segment by another segment establishes a
hierarchy of segments in the metafile.

Instances can refer to segments which themselves contain instances. This nested segmentation IS

illustrated in Figure 3-1 and Figure 3-2.

These figures show the structure and display of a file with the following structure. The segment
at the top of the hierarchy is "scene." When you display segment "scene, II the image is made
using the entire contents of the file, that is the complete hierarchy of that file. Segment "scene"
instances segment "house. II Segment II scene II instances segment "tree" three times. The
instances include data for scaling and translation. The result is three trees of different sizes in
different locations. Segment "house I. instances and translates segment "window" eight times.
This results in eight windows at different locations. Segment II house II also instances segment
"door" and segment "text." This puts the sign "Grand Motel" on the house. See Appendix D
for the program used to create this figure.

The hierarchical structure and instancing speed your development of graphic images by allowing
you to do the following:

• Reuse segments by changing transformations .

• View all or part of a metafile.

SCENE

/~
HOUSE TREE

A\~
WINDOW DOOR TEXT

Figure 3-1. Example of Hierarchical Structure

Developing Application Programs 3-2

EEEa EaEa
GRAND MOTEL

EEEE EEEE

Figure 3-2. Display of File: Hierarchy with Instancing

3.2. Controlling the 2D GMR Package

NOTE: This manual describes the routines of the 2D G~ package in conceptual and
procedural terms. For a detailed description of the parameters of these routines, see Volume 1 of
the DOMAJN System Call Reference.

Functions:

GM_$INIT
GM_$TERMINATE

To use the 2D GIvIR package, you must initialize it. At the end of a program that uses 2D GMR,
you must terminate the package.

GM $INIT initializes the 2D GivlR package. Within this routine, you establish one of five
modes. The choice of mode depends on the purpose of your program and the environment in
which you want the program to run. For example, direct mode is desirable if you want the
Display Manager environment to be available while this program is running and displaying.

The 2D GMR package does not require that you operate directly on a bitmap (a three­
dimensional array of bits having height, width, and depth). Instead when you establish either of
two of the five modes (borrow and direct), the 2D GIvIR package creates a bitmap for display
purposes.

The five modes of the 2D GIvIR package are borrow, direct, main-bitmap, no-bitmap, and within­
GPR as shown in Table 3-1.

3 .. 3 Developing Application Programs

Borrow

Direct

Main-bitmap

No-bitmap

Within-GPR

Table 3-1. Five Display Modes

On the full screen, which is temporarily borrowed from the Display Manager

Within a Display Manager window, which is acquired from the Display
Manager

Using a bitmap allocated in main memory without a display bitmap. This
corresponds to no-display mode in the Graphics Primitives package.

Without a main-memory or display bitmap

Using a bitmap specified by routines of the DOMAIN Graphics Primitives
package

In borrow mode, the 2D GMR package borrows the full screen and the keyboard from the Display
Manager and uses the display driver directly through 2D GMR software. All windows disappear
from the screen. The Display Manager continues to run during this time. However, it does not
write the output of any other processes to the screen or read any keyboard input until the 2D
GMR package is terminated. Input you have typed ahead into input pads can be read by the
related processes while the display is borrowed.

Borrow mode has the advantage of using the entire screen. However, because borrow mode takes
over the entire display from the Display Manager, other processes are not immediately available.

Direct mode is similar to borrow mode, but the 2D GMR package borrows a window from the
Display Manager instead of borrowing the entire display. The 2D GMR package acquires control
of the display each time it must generate graphics output within the borrowed window. All other
processes are handled normally by the Display Manager.

Direct mode offers a graphics application the performance and unrestricted use of display
capabilities found in borrow mode. In addition, direct mode permits the application to coexist
with other activities on the screen. Direct mode is the preferred mode for most interactive
graphics applications.

In main-bitmap mode, the 2D GMR package creates a main-memory bitmap, but does not create
a display bitmap. To display the file on the screen, you must terminate main-bitmap mode and
reinitialize in borrow or direct mode.

This mode allows you to create user-available bitmaps larger than the full display.

No-bitmap mode allows you to build a file without a main-memory bitmap or display. No
viewing operations may be performed in this mode. To display the file, you must terminate no­
bitmap mode and reinitialize in borrow or direct mode.

This mode provides the most efficient way to create a metafile from a data base when you do not
need to be simultaneously monitoring a graphic display of the picture.

Developing Application Programs 3-4

Within-GPR mode allows you to retain control of the display. You may layout the display by
using the routines of the graphics primitives package. To use this mode, do the following:

• First, initialize the GPR package with GPR_$INIT.

• You may call GPR routines as you wish.

• Next, initialize the 2D GMR package using GM_ $INIT and specifying within-GPR
mode.

• You may call GPR routines or certain 2D GMR routines. All 2D GMR routines that
establish or edit metafiles are available. A certain set of 2D GMR display routines is
available (see Section 11.1.2).

• In this mode, 2D GMR displays to the display bitmap that you have established
within the graphics primitives package and uses your GPR-specified attribute blocks.

The 2D GMR viewport routines are not available.

GM_ $TERMINATE closes the 2D GMR package and closes the display. The package closes any
files and segments which have been left open, saving all changes.

3.3. Controlling Files

Functions:

GM $FlLE CREATE
GM=$FlLE=OPEN
GM $FlLE CLOSE
GM=$FlLE=SELECT

Mter initializing the 2D GMR package, you must create and open a file using
GM _ $F~E _ CREATE or open an existing file using GM _ $F~E _ OPEN. This becomes the
current file. Within this file, you create segments into which you insert and store commands.

When you use the routine GM_$F~E_ CREATE, you give the file a pathname; the package
assigns an identification number as an output parameter of the routine. This identification
number is an output parameter when you open an existing file using GM _ $F~E _ OPEN . You
use this identification number for reference if you have more than one file open at a time.

To read or edit an existing file, you must open it with GM_ $F~E _ OPEN.

You may have more than one file open at a time. When you open a file while another file is
open, the newly opened file becomes the current file, and the context of the old file (for example,
current segment, current command) is saved. You may switch among open files using
GM $F~E SELECT.

You can perform many normal Shell functions on these files. You can copy (cpf), move (mvf),
and delete (dlf) them, but you cannot concatenate (catf) them.

When you close the current file, the package is left with no current file; you must then select a

3-5 Developing Application Programs

file in order to proceed. Upon completion of editing or using a file, you must close it with
GM $FlLE CLOSE.

3.4. Controlling Segments

Functions:

GM $SEGMENT CREATE
GM=$SEGMENT=OPEN
GM_$SEGMENT_INQ_ID
GM $SEGMENT INQ CURRENT
GM=$SEGMENT=INQ=NAME
GM_$SEGMENT_INQ_COUNT
GM_$SEGMENT_RENAME
GM_$SEGMENT_CLOSE
GM_$SEGMENT_DELETE

The commands within a file are grouped into segments. You must open a segment before you can
add commands to it. You can create a new segment with GM_$SEGMENT _ CREATE or open
an existing segment for redisplay or editing with GM_ $ SEGMENT _ OPEN. This new or newly
opened segment becomes the current segment. Only one segment per file may be open at a time.

When you create a segment, you give it a name that must be different from all other segment
names in the file. The 2D GMR package assigns the segment an identification number. You can
use this returned segment identification number to create references to (instances of) this segment
within other segments, or to view this segment (see Section 4.2). The identification number of a
segment is stored so that it is retained after you terminate the 2D GMR package.

You also have the option of not naming the segment. To do this, you assign the value 0 to the
name length parameter. You then use the segment id number to specify an instance of the
segment.

Note that viewing operations are independent of editing operations. A segment need not be open
in order to display it.

Use GM_$SEGMENT _ CLOSE to close the current segment. You can specify whether or not
you want to save the changes you have made.

You can retrieve the name and identification number of the current segment using
GM_$SEGMENT_INQ_CURRENT. Use GM_$SEGMENT_INQ_ID to retrieve the
identification number of any existing segment in the current file for which you know the segment
name. Use GM_$SEGMENT _INQ_NAME to retrieve the name of any existing segment in the
current file for which you know the identification number.

You can retrieve the number of segments and maximum segment identification number in a file
by using GM _ $SEGMENT _ INQ _ COUNT. This allows you to reopen a file and determine the
range of segment identification numbers in the file. You can then obtain a list of segment names
using GM_$SEGMENT_INQ_NAME.

You may want to rename a segment before, or during the process of, editing it. To do this, use
GM_$SEGMENT _RENAME. You may rename any segment, not just the current segment.
You can also assign the value of zero to the name length parameter and then rely on the segment
id to identify the segment and to create instances of the segment.

Developing Application Programs 3-6

GM _ $ SEGMENT _ DELETE deletes the current segment. You must open a segment before you
can delete it. If there are any references to {instances of} this segment in other segments of this
file, the segment is not deleted.

The routine GM_ $ SEGMENT _ COPY copies the entire contents of another segment into the
current segment. GM $SEGMENT COPY is an editing function and is described in more
detail in Section 10.11.2.

Primary Segment

Functions:

GM $FILE SET PRIMARY SEGMENT
GM=$FILE=INQ=PRlMARY=SEGMENT

The segments in the metafile have a hierarchical structure. The primary segment can be thought
of as the root for the hierarchy of segments in the metafile. As such, the primary segment is
assumed to be the start of the picture. When the routine GM_$DISPLAY _FILE is called, the

segment is displayed.

The first segment you create becomes the primary segment. In Figure 3-1, the primary segment is
alscene. tI When you display II scene, II you see the entire picture. The segments are instanced
according to the hierarchy established by the primary segment.

Using GM_$FILE_SET _PRIMARY _SEGMENT, you can specify that you want another
segment as the primary segment. For example, with "housel! as the primary segment in Figure

you see the following upon display: house, door, eight windows, and sign. You do not see
any trees.

If you instance the primary segment from a segment which is not itself instanced, the primary
segment is changed to the instancing segment. If you instance this segment from a segment
which is itself instanced, the primary segment is changed to the highest-numbered segment not
instanced by any other segment.

Use GM_$FILE_SET _PRIMARY _SEGMENT to change the primary segment number. Use
GM_$FILE_INQ_PRllv1ARY _SEGMENT to retrieve the number of the primary segment.

Using World Coordinates

Coordinate data is supplied to the 2D GMR package as world coordinates. This means that you
may define coordinates in the most appropriate form for the application. This flexibility allows
for a separate collection of nongraphics data attached to the graphics data.

The coordinate data that you supply is device-independent. The capabilities of the display device
are not a matter of concern at the time you are building the file.

When the file is displayed, the transformation from the device-independent coordinates stored in
the file to the display coordinates is performed every time the file is displayed as part of the
display process. The file coordinates are left alone; the process of viewing does not cause any of
the coordinates in the database to be changed.

3-7 Developing Application Programs

It is useful to keep in mind the needs of the nongraphics data when you decide on the form of the
graphics data. This is up to the application developer who can define whatever coordinates are
desired for storage in the metafile. The coordinates are transformed in the metafile to the user­
defined coordinates; they are not transformed to some intermediary coordinates first.

With care, you may define different coordinate systems in different segments. For example, some
of the segments that are part of the metafile may have coordinates that are millimeters and
others that are meters. You must remember, however, at the time you are making reference from
one segment to another to perform the action that will convert (coerce) from one coordinate
system to the other (see Section 7.3).

2D GMR Application Programs

The steps required to produce a 2D GMR application program are presented with a sample
program in the sections below.

Including In8ert File8

To write 2D GMR application programs, you must include two insert files for the language you
are using. The first insert file allows you to use system routines:

FORTRAN Isys/ins/base.ins.ftn

Pascal Isys/ins/base.ins.pas

C Isys/ins/base.ins.c

The second insert file allows you to use 2D GMR routines:

FORTRAN I sys lins I gmr .ins.ftn

Pascal Isys/ins/gmr.ins.pas

C I sys lins I gmr .ins.c

Declaring Variable8

To use 2D GMR calls, you must declare the variables used as parameters so that they correspond
to the data types of the DOMAlN system. For information on data types, see the 2D GMR Data
Types section at the beginning of "2D GMR Calls" in the DOMAIN SY8tem Gall Reference,
Volume 1.

Initializing the 2D G MR Package

To execute 2D GMR calls in an application program, you must first initialize the package. To do
this, call GM_ $INIT in the application program.

Preparing an Algorithm to Per form a Ta8k

The next step in the development of a 2D GMR application program is to prepare an algorithm
using 2D GMR routines to accomplish the task at hand (for an example, see Section 3.8).

Developing Application Program8 3-8

Terminating a 2D G MR Session

To end a 2D GMR session, use GM_ $TERMINATE. In terminating the session, this routine
closes any open files and saves the changes. The routine also closes any open segments and saves
the changes.

3.8. A Program to Draw a Rectangle

The program in this section demonstrates how to initialize the 2D GMR package, create a
metafile, create a segment, and draw a rectangle (see Figure 3-3).

200,50 .---,

100,30

Figure 3-3. Drawing a Rectangle

An additional insert file, /sys/ins/time.ins.pas, is included in this program so that the routine
time $wait is available. This routine is not part of 2D GMR, but is useful to keep a figure
displayed on the screen.

GM_ $INIT initializes the 2D GMR package in direct mode. Bitmap _size, an input parameter
in GM_ $INIT, is assigned dimensions of 1024 x 1024. This ensures that the entire window is
used as a viewport. When you assign bitmap _ size dimensions of 500 x 500 and run the program
in a large window, only a portion of the window is used: the top left-most 500 x 500 pixels. The
input parameter n _ planes is initialized to 8. This is the maximum number of available planes for
eight-plane color nodes. On monochrome nodes and four-plane color nodes, this value is
interpreted as 1 or 4, respectively.

GM_$FILE_ CREATE opens a metafile in the current working directory and makes it current.
The metafile is opened in overwrite mode, which deletes the previous version if one existed. The
concurrency parameter, gm_$1w, allows anyone to read the file, but only one person to write to
the file.

GM $SEGMENT CREATE opens a segment within the metafile. The segment IS named
rectang _ seg.

3-9 Developing Application Programs

GM_$RECTANGLE_16 draws a rectangle using I6-bit coordinate data. The coordinates of the
corners of the rectangle are passed to the routine in two records: pti and pt2.

GM_$DISPLAY _FILE displays the contents of the metafile on the screen. This routine will
display all segments contained within a metafile. Because the file contains only one segment, this
is the only segment displayed. In this case, GM $DISPLA Y SEGMENT would produce the
same results.

GM $SEGMENT CLOSE and GM $FILE CLOSE close the segment and the file,
respectively.

program draw rectangle;
%nolist; -
%include ·/sys/ins/base.ins.pas·;
%include ·/sys/ins/gmr.ins.pas·;
%include ·/sys/ins/time.ins.pas·;
%list;

CONST

VAR

BEGIN

one second
five seconds
ten seconds

=
=
=

250000;
5 * one_second;
10 * one_second;

file id
segment_id
st

integer;
gm_$segment_id_t;
status_$t;

pt1,
i

pt2 gm_$point16_t; { Array of two 2-byte integers}
integer32;

bitmap_size gm_$point16_t := [1024,1024J;
time_$clock_t; pause

high_plane integer := 8;

pt1.x - 100;
pt1.y - 30;
pt2.x - 200;
pt2.y - 50;

gm $init(
gm $direct
,stream_$stdout
,bitmap_size
,high_plane
,st
);

gm_$file_create(
'gmfile'
,SIZEOF('gmfile')
,gm $overwrite
,gm-$lw
,file_id
,st

{ Define the coordinates of the
rectangle to be drawn. }

{ Initialize 2D GMR. }

{ Create and name a metafile. }

Developing Application Program8 3-10

) ;

gm _ $segment _ cre'ate
C'rectang_seg'
,sizeofC'rectang_seg')
,segment_id
,st
) ;

gm_$rectangle_16
(ptl
,pt2
,false
,st
) ;

gm_$display_file
(

st
) ;

pause.low32
pause.high16
time_$wait(

- five_seconds;
- o'

time_$relative
,pause
,st
) ;

gm_$segment_close(
true
,st
) ;

gm $file close(- -
true
,st
);

gm_$terminate(
st
) ;

END.

Extending the Rectangle Program

{ Create and name a segment. }

{ Insert the rectangle. }

{ Display the file. }

{ Close the segment.}

{ Close the metafile. }

{ Terminate 2D GMR. }

Try changing the operation mode in GM _ $INIT to gm _ $borrow. If you initialize the bitmap
with dimensions of 1024 x 1024, the viewport will use the whole display. If the dimensions you
provide are smaller, only a portion of the display will be used for the viewport.

3-11 Developing Application Programs

Chapter 4
Using Basic Modeling Routines

This chapter describes the draw and fill primitives and explains how to insert them in a segment.
The procedure for displaying all or part of the file or segment is described. Instancing and
transformation routines are presented with a program to illustrate their use.

4.1. Using Draw and Fill Primitives

Functions:

GM_$POLYLINE_2D[16,32,REAL]
GM $RECTANGLE [16,32,REAL]
GM-$CIRCLE [16,32,REAL]
GM=$CURVE_2D[16,32,REAL]
GM_$PRIMITlVE_2D[16,32,REAL]

Draw and fill primitives are modeling routines that insert single primitive commands into the
current segment of the metafile. When the 2D GMR package reads these commands in the course
of displaying a file, they cause something to be drawn. The primitive commands include drawing
line segments, rectangles, circles, and curves, and filling areas. Generally, one primitive command
is inserted into the metafile each time one of these primitive routines is called. These commands
include parameters that describe the object to be drawn.

GM_ $POL YLlNE _ 2D[16,32,REAL] routines insert a command to draw a polyline (list of linked
line segments). The polyline may be open, closed, or closed and filled. In a closed polyline, the
first and last points are connected, forming a polygon.

GM_ $RECTANGLE _ [16,32,REAL] routines insert a command to draw a rectangle. The
routine accepts two diagonally opposite corner points of the rectangle. The rectangle command in
the file may fill the area of the rectangle or draw only the outline of it.

GM_ $CIRCLE _ [16,32,REAL] routines insert a command to draw a circle. The routine accepts
the center point and the radius of the circle. The circle command in the file may fill the circle or
may draw only the outline of it.

GM_$CURVE_2D[16,32,REAL] routines insert a command to draw a specified curve.

GM_$PRIMITIVE_2D[16,32,REAL] routines insert a command to draw a type of displayed
item that you define. You define the following for the command that is placed into the file: a list
of points, a list of parameters, and a type number. You connect the type number in the
command with a display routine that you define using GM_$PRIMITIVE_DISPLAY _2D (see
Section 11. 2).

This routine is unlike the other draw and fill primitive routines m that you must write the
display routine that displays these primitive commands.

4-1 Using Basic Modeling Routines

4.2. Displaying Files and Segments

Functions:

GM_$D ISPLAY_F lLE
GM_$DISPLAY_SEGMENT

In borrow, direct, and main-bitmap modes, the 2D GMR package produces graphics output in the
GM bitmap (the screen, Display Manager window, or main-memory bitmap established when the
2D GMR package was initialized). You can see graphics output or other processes through
viewports, which are part or all of the GM bitmap. The view is the picture that you can see in a
viewport. Moving or scaling a view moves or scales what you see through the viewport.

When you initialize the 2D GMR package, the command GM _ $INIT establishes a single
viewport that fills the GM bitmap. You may want to change the size of the viewport or create
additional viewports.

You can divide the GM bitmap into multiple, nonoverlap ping viewports. You can specify that
you want parts of the metafile displayed and moved independently in separate viewports.

In viewing the graphics output of the 2D GMR package, you can use viewing routines to control
what is displayed and how it appears. These routines do not affect the contents of the file. You
can display all of a file or segment, display part of a file or segment, change attributes associated
with the view, or change the color map.

When you display an entire file or segment, the view, or picture, is centered in the viewport.
When you display part of a segment or file, you establish the physical bounds of the part that
you want displayed. The 2D GMR package then centers and scales that part in the viewport.
Files or segments may only be displayed in viewports; space on the display that is outside of
viewports is always empty.

You can affect the appearance of the picture by inserting attributes into the file individually to
change, for example, the line style from solid to dashed (see Chapter 5). Or you can change
attributes more efficiently by inserting an attribute class command into the file. Then, by
associating different attribute blocks with the class, you can change the view . You can also
display the same file or segment differently in different viewports. To do this, you associate an
attribute class with different attribute blocks in different viewports (see Section 13.9).

You can display the entire file or segment. The picture is automatically centered in the current
viewport, with a scale calculated so that 95% of the viewport is filled in one dimension and does
not overflow the viewport in the other dimension.

GM_$DISPLAY _FILE displays the entire current file In the current viewport. The primary
segment of the file is displayed.

GM $DISPLA Y SEGMENT displays the specified segment, but not the entire file, In the
current viewport.

Using Basic Modeling Routines 4-2

4.3. Displaying Part of a File/Segment

Functions:

GM_$D ISPLAY_F ILE_PART
GM_$DISPLAY_SEGMENT_PART

You may want to see only part of a graphic image you have developed. For example, you may
want to see only the wheel of a car, not the entire body of the car that you have been modeling.

To get part of an image in a view, you use GM_$DISPLAY _SEGMENT _PART or
GM_$DISPLAY _FILE_PART to specify, in segment coordinates, the part of the segment (or
file) you want displayed. That part of the segment (or file) is centered in the current viewport
with a scale automatically set so that the specified part of the file is displayed as follows: One of
the two dimensions fills the viewport, and the other dimension does not overflow the viewport.

This allows you to look at the entire file or segment in one viewport and a smaller part of a file
or segment in another viewport. The same file or segment can appear in different viewports
simultaneously (see Figure 4-1).

GM $DISPLAY FILE PART displays part of the current file III the current viewport.
Bounds are in segment coordinates of the primary segment.

GM $DISPLAY SEGMENT PART displays part of the specified segment III the current
viewport.

4.4. Using Instancing

You can use instance routines to insert instance commands into the current segment of a metafile.
These commands are references to other segments of the metafile. These references, called
instances, provide an economical and efficient way to reuse a set of commands. An instance
command includes transformation data (translation, scale, or general two-dimensional
transformation). This data relates the coordinate system of the instanced segment to the
coordinate system of the instancing segment. This transformation data is collected by the 2D
GMR package from the parameters in the instance routine. A segment can contain multiple
instances of the same segment, with different attributes and transformation matrices. By
interspersing instance commands and attribute commands, you may display different instances
with different attributes.

You can define world coordinates as 32-bit and the coordinates of all or some of the segments as
16-bit. In instancing a segment multiple times, you point to the data in that segment more than
once. When you instance a segment, for example, the segment with the tree in Figure 3-2, you
can scale, rotate, and move it. In addition, you can use attributes to change the line width, line
style, background, fill value, or other characteristics of the picture.

4-3 Using Basic Modeling Routines

View 2

You can define
Multiple views ...

... and
show them
anywhere
on the
screen.

Figure 4-1. Multiple Views Shown in Different Viewports

Using Basic Modeling Routines 4-4

When you instance a segment using any GM _ $INSTANCE ... routine, a copy of the instanced
segment is not made. Instead, the commands in the instanced segment are displayed, performing
the logical equivalent of a subroutine call. When you want to change an instanced segment, you
must open that segment and edit it. You cannot edit an instanced segment from an instancing
segment.

Instancing of segments may be nested; an instanced segment may contain instances of other
segments. However, a segment may not instance itself. An instance may be of any other segment
in the file, except that circular instancing is prohibited (instancing a segment which directly or
indirectly instances the current segment). For example, if segment II house II contains an instance
of segment "door," then you may not insert an instance of segment II house II into segment
It door. "

A segment must exist before you can instance it.

4.5. Using Transformations

Functions:

GM $INSTANCE TRANSLATE 2D[16,32,REAL]
GM=$INSTANCE=SCALE_2D[16,32,REAL]

GM_$INSTANCE_ TRANSLATE_2D[16,32,REAL] routines insert a reference to a segment's
identification into the current segment. You must give the (x,y) coordinates of the translation to
apply to the referenced segment. This reference is unsealed and unrotated.

GM_$INSTANCE_SCALE_2D[16,32,REAL] routines insert a reference to a segment's
identification into the current segment. You must give the (x,y) coordinates of the translation
and the scale to apply to the referenced segment. When the command is processed, scaling is
performed before translation. This reference is unrotated.

Note that point (0,0) in the coordinates of the instanced segment remains stationary through
scaling. Therefore, segments that will be transformed in this way should be centered around
(0,0).

When displayed, the segment is scaled by the given scale factor, then translated by the amount
(x,y) in segment coordinates of the instancing segment.

4.6. A Program Using Primitives and Instancing

The program in this section draws the design in Figure 4-2.

The program uses two segments: small_ rec and large _ rec. The segment small_ rec draws a
small, filled rectangle with dimensions of 100 x 100. The segment large _ rec draws a large,
unfilled rectangle with dimensions of 500 x 500, instances the segment small_ rec four times, and
draws two polylines connecting the four filled rectangles.

The routine GM_ $INSTANCE _ TRANSLATE copies the contents of the instanced segment (in
this case, small_rec) and translates it to the position provided. This routine is used four times
to produce four rectangles.

4-5 Using Basic Modeling Routines

Figure 4-2. Four Filled Rectangles within a Box

The routine GM _ $POL YLINE draws a polyline between the end points provided.

The routine GM_$DISPLAY _SEGMENT displays the segment large_rec. When this segment
is displayed, the four instances of small_ rec are automatically displayed because they have been
instanced within large _ rec.

program draw_rectangle;
"nolist;
"include ·/sys/ins/base.ins.pas·;
"include '/sys/ins/gmr.ins.pas·;
"include ·/sys/ins/time.ins.pas·;
"list;

CONST

VAR

one_second = 250000;
five seconds = 5 * one_second;
ten seconds = 10 * one_second;

file id
small id
large_id
st
pt1, pt2

integer;
gm_$segment_id_t;
gm_$segment_id_t;
status_$t;
gm_$point16_t;
integer32; i

bitmap_size
position
positions
pattern
pause

gm_$point16_t := [1024,1024];
gm_$point16_t;
gm_$point_array16_t;
gm_$draw_pattern_t;
time_$clock_t;

BEGIN

gm_$init
(gm_$direct

Using Basic Modeling Routines

{ Initialize 2D GMR. }

4-6

,stream_$stdout
,bitmap_size
,8
,st
) ;

gm_$file_create
('gmfile'

ptl.x -
ptl.y -
pt2.x -
pt2.y -

,6
,gm_$overwrite
,gm_$lw
,file_id
,st
);

100;
100;
200;
200;

gm_$segment_create
('small_rec'
,sizeof('small_rec')
,small_id
,st
);

gm $rectangle 16
- (ptl -

,pt2
,true
,st
) ;

gm_$segment_close
(true
,st
);

{ Create and name a metafile. }

{ Create and name a segment. }

{ Draw a rectangle. }

{ Close the segment. }

ptl.x - 100;
{ Define the coordinates of the rectangle }
{ to be drawn. }

ptl.y - 100;
pt2.x - 600;
pt2.y - 600;

gm_$segment_create
('large_rec'
,sizeof('large_rec')
,large_id
,st
) ;

gm $draw style
- (gm_$solid

,4
,pattern

4-7 Using Basic Modeling Routines

,0
,st
) ;

gm_$rectangle_16
(ptl
,pt2
,false
,st

{ Draw a rectangle. }

); { Instance the small rectangle}
{ four times. }

position.x - 100;
position.y - 100;

gm_$instance_translate_2d16
(small_id
,position
,st
) ;

position.x - 300;
position.y - 300;

gm $instance translate 2d16
- (small_id -

,position
,st
) ;

position.x - 300;
position.y - 100;

gm $instance translate 2d16
- (small_id -

,position
,st
);

position.x - 100;
position.y - 300;

gm $instance translate 2d16
- (small_id -

,position
,st
) ;

positions [1] .x -
positions [1] .y -
positions [2] .x -
positions [2] .y -

gm_$polyline_2d16
(2

300;
300;
400;
400;

Using Basic Modeling Routines

{ Draw two polylines connecting }
{ the four rectangles. }

4-8

END.

,positions
,fa.lse
,fa.lse
,st
) ;

positions [1] .X -
positions [1] .y -
positions [2] .X -
positions [2] .y -

gm_$polyline_2d16
(2
,positions
,false
,false
,st
);

gm_$segment_close
(true
,st
) ;

300;
400;
400;
300;

gm $display segment
- (large_id

,st
) ;

pause.low32 five_seconds;

pause.high16 0;

{ Close the segment. }

{ Keep figure displayed on the }
{ screen for five seconds. }

time_$wait(time_$relative, pause, st);

gm_$file_close
(true
,st
) ;

gm $terminate
- (

st
) ;

{ Close the metafile. }

{ Terminate 2D GMR. }

4-9 U8ing Ba8ic Modeling Routine8

4.7. Instances with Arbitrary Transformations

Function:

GM_$INSTANCE_TRANSFORM_2D[16,32,REAL]

GM_ $INSTANCE _ TRANSFORM_2D[16,32,REAL] routines insert a reference to a segment's
identification into the current segment. Within this routine, you must specify a general 2 by 2
transformation matrix (that is, rotation, scale, reflection, and skewing) and give the (x,y)
coordinates of the translation to apply to the referenced segment. When the command is
processed, the 2 by 2 matrix is applied before the translation.

A sample transformation matrix follows:

The input to this routine is a 2x2 transformation matrix, which has the following form:

xx XY Sx * cos (A)

===>

yx yy Sx *-sin(A)

Sy * sin (A)

Sy * cos (A)

Sx = Scale in
X direction

where: Sy = Scale in
Y direction

A = Angle of
rotation

The point (0,0) in the coordinates of the instanced segment remains stationary through reflection,
rotation, and scaling. Therefore, you should center segments that will be transformed in these
ways around (0,0).

When displayed, the segment is rotated and scaled by the 2x2 matrix. The segment is then scaled
by the given scale factor and then translated by the amount (x,y) in segment coordinates of the
instancing segment.

4.8. A Technique Using Arbitrary Transformations

In the program hotel.pas in Appendix D, the segment "house" is instanced into the segment
II scene.! by using GM_$INSTANCE_ TRANSLATE:

p[l].X
p [1].y

- 0;
o·

GM $INSTANCE TRANSLATE 2D16
- (sid_house -

, p [1]
, status
);

GM_ $INSTANCE _ TRANSLATE allows you to instance a segment without changing the
segment's scale or orientation. GM_ $INSTANCE _ SCALE allows you to change the scale as
well. (This is used for the trees in the same example program.) Even more general
transformations are possible with GM _ $INSTANCE _ TRANSFORM.

Using Basic Modeling Routines 4-10

The following program fragment replaces the GM_$INSTANCE_ TRANSLATE command (used
to instance the segment II house II into the segment IIscene ll

) with a
GM $INSTANCE TRANSFORM command. Note the extra argument:

p[1].x
p[1].y

o·
- O·

gm $instance transform 2d16
- (sid_house -

matrix
I P [1]

status
) ;

The argument "matrix" is declared as "gm _$rotate_rea12x2_t." (The name of this type is
misleading in that the matrix may be any 2x2 matrix, not just a rotation matrix. The only
restriction is that the matrix must have a nonzero determinant.) Some examples are given here
for reference. Try substituting them into the example program hotel.pas in Appendix D.

To translate only, set the matrix (to the identity matrix) as follows:

matrix.xx - l'
matrix.xy - 0;
matrix.yx - 0;
matrix.yy - 1 ;

To translate and scale only, set the matrix as follows:

matrix.xx - scale;
matrix.xy - 0;
matrix.yx - O·

matrix.yy - scale;

To rotate the house counterclockwise through an angle of 1 radian (about 57 degrees), set the
matrix as follows:

matrix.xx - COS(1);

matrix.xy - - SIN(1);

matrix.yx - SIN(1) ;

matrix.yy - COS(1);

To rotate the house counterclockwise through an angle of 1 radian and scale uniformly, set the
matrix as follows:

matrix.xx - COS(1) * scale;
matrix.xy - - SIN(1) * scale;
matrix.yx - SIN(1) * scale;
matrix.yy - COS(1) * scale;

4-11 Using Basic Modeling Routines

To rotate the house counterclockwise through an angle of 1 radian, and scale independently in the
x and y directions, set the matrix as follows:

matrix.xx - COS(1) * scale x;
matrix.xy - - SIN(1) * scale_y;
matrix.yx - SIN(1) * scale x; -
matrix.yy - COS(1) * scale -y;

To skew the house, as if there were a strong wind blowing from left to right, you might set the
matrix as follows:

matrix.xx - 1·
matrix.xy - 1·
matrix.yx - 0;
matrix.yy - 1;

Using Basic Modeling Routines 4-12

Chapter 5
Using Attributes

This chapter describes the use of individual attribute commands, explains how to use attributes in
relation to instancing, and provides a program to illustrate these functions.

5.1 .. Using Draw and Fin Attributes

A metafile can contain attribute commands to change individual attributes. These attributes
determine such characteristics as the style and pixel value used in drawing lines and filling areas.
The plane mask attribute allows you to specify which planes of a bitmap can be modified by any
graphics operation and which planes are protected from modification.

Each of the routines described in this section inserts a command into the current segment to
change one attribute. When the segment is displayed, all subsequent primitive commands in the
segment are displayed with this new value of the changed attribute. This new attribute value also
applies to the segments subsequently instanced from this segment, but never to the segment that
instanced this segment (see the examples in Section 5.3).

Attribute commands inserted into a segment of the metafile take precedence over any other
means of changing attributes. See Ohapter 13 for descriptions of other ways of changing
attributes.

The default attribute settings are shown in Table 5-1.

ATTRIBUTE

Draw Style
Draw Value
Fill Value

Table 5-1.

Fill Background Value

Fill Pattern
Text Value

Text Background Value

Text Size

Font Family ID Number
Plane Mask

Draw Raster Op

Default Attribute Settings

DEF AULT VALUE

Solid line
1
1
-2 (same as viewport background)

All l's
1

-2 (same as viewport background)

10.0

1
All planes can be modified

3 (set all destination bit values
to source bit values)

5-1 U8ing Attribute8

5.1.1. Line Attributes

Functions:

GM_$ 0 RAW_VALUE
GM_$DRAW_STYLE

Line attributes determine the pixel value, style, and width of lines used in modeling commands.

GM _ $DRA W _ VALUE inserts a command to set the pixel value used when lines are drawn.

GM_$DRAW _STYLE inserts a command to set the line style used to display unfilled polylines
and rectangles. Line style can be either solid or a specified pattern.

5.1.2. Fill Attributes

Functions:

GM_$FILL_VALUE
GM_$FILL_BACKGROUND_VALUE
GM_$FILL_PATTERN

Fill attributes determine the appearance of filled areas.

GM_$F~L_ VALUE inserts a command to set the pixel value used when filling an area.

GM_$FILL_BACKGROUND _VALUE inserts a command to set the pixel value used in
unfilled parts of a pattern that fills an area. For example, in a checkerboard pattern with only
alternate squares filled, this attribute sets the appearance of the unfilled squares.

GM_$F~L_PATTERN inserts a command to set the pattern used to fill the interior of filled
areas. The default fill pattern is all 1 's, indicating that the fill value is to be used for all pixels in
the area being filled. With any other pattern of 1 's and O's, the fill background value is used for
pixels corresponding to O's in the pattern.

5.2. Using Color Map Attributes

Function:

GM $PLANE MASK specifies which planes of a bitmap can be modified by any graphics
operation and which planes are protected from modification.

Color map operations are described in Section 14.1.

Using Attributes 5-2

5.2.1. Raster Operation Attributes

Function:

GM_$DRAW_RASTER_OP

Raster operation attributes allow you to specify two conditions that determine what appears in
the bitmap:

It What you are drawing.

It What was there in the GM bitmap.

There are sixteen different rules for combining old values and values being drawn to create new
values. A different raster operation code exists for each of these sixteen rules (see Section 5-2).

A raster operation specifies how to combine source pixel values and destination pixel values to
form new destination values. The source values are determined by GM_$DRAW _VALVE. The
value of each new destination bit is assigned by a Boolean function of the previous value of each
destination bit and the value of the corresponding source bit.

Sixteen raster operations form the set of rules for combining bit values. Assigning a raster
operation code alters no values. The raster operation code controls how values are logically
combined when a program subsequently draws, fills, or writes text. Table 5-2 lists the op codes,
symbolic constants, and logical functions for the sixteen raster operations. The symbolic
constants are available in the insert files for Pascal, FORTRAN, and C. Table 5-3 is a truth table
of the raster operations.

GM $DRA W RASTER OP inserts a command to set the logical raster operation to be
performed when any nonfilled primitive is drawn.

5-3 Using Attributes

OP
CODE

o

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Ta.ble 5-2. Raster Operations and Their Functions

CONSTANT LOGICAL FUNCTION

GM_$ROP_ZEROS Assign 0 to all new destination values.

GM_$ROP_SRC_AND_DST Assign source AND destination to new
destination.

GM_$ROP_SRC_AND_NOT_DST Assign source AND complement of destina­
tion to new destination.

GM_$ROP_SRC Assign all source values to new destina­
tion. (Default)

GM_$ROP_NOT_SRC_AND_DST Assign complement of source AND destina­
tion to new destination.

GM_$ROP_DST Assign all destination values to new
destination.

GM_$ROP_SRC_XOR_DST Assign source EXCLUSIVE OR destination
to new destination.

GM_$ROP_SRC_OR_DST Assign source OR destination to new
destination.

GM_$ROP_NOT_SRC_AND_NOT_DST Assign complement of source AND
complement of destination to new
destination.

GM_$ROP_SRC_EQUIV_DST

GM_$ROP_NOT_DST

GM_$ROP_SRC_OR_NOT_DST

GM_$ROP_NOT_SRC

GM_$ROP_NOT_SRC_OR_DST

GM_$ROP_NOT_SRC_OR_NOT_DST

GM_$ROP_ONES

Assign source EQUIVALENCE destination to
new destination.

Assign complement of destination to new
destination.

Assign source OR complement of
destination to new destination.

Assign complement of source to new
destination.

Assign complement of source OR
destination to new destination.

Assign complement of source OR complement
of destination to new destination.

Assign 1 to all new destination values.

Using Attributes 5-4

Table 5-3. Raster Operations: Truth Table

SOURCE DESTINATION RESULTANT BIT VALUES FOR THE FOLLOWING OP CODES:
BIT BIT
VALUE VALUE 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

5.3. Using Attributes and Instancing

Attribute commands change the attributes for all subsequent primitive commands in the segment.
These changed attributes also apply to all primitive commands in segments subsequently
instanced from this segment. If an attribute command occurs in a segment that is instanced from
another segment, it only affects the subsequent commands in instanced segment, never the
instancing segment. The program fragment below provides an example.

The following sequence of routines sets up two segments:

gm_$segment_createC'bottom',6,bottomid,status);
gm $rectangle 16Cpointl,point2,false,status);
gm-$draw value(2,status); - -gm $circle 16(center,radius,false,status); - -gm_$segment_close(true,status);

gm_$segment_create('top' ,3,topid,status);
gm $draw value(4,status); - -
gm $instance translate 2d16(bottomid,translate2,status);
gm-$rectangle 16(point3,point4,false,status); - -
gm_$segment_close(true,status);

These two segments will then contain the following commands:

'TOP': DRAW VALUE (4)
INSTANCE ('BOTTOM')
RECTANGLE (POINT3,POINT4,DONT_FILL)

'BOTTOM': RECTANGLE (POINT1,POINT2,DONT_FILL)
DRAW VALUE (2)
CIRCLE (CENTER,RADIUS,DONT_FILL)

When a viewing routine displays segment 'TOP', it does the following:

• Draws the rectangle (pointl,point2) using draw value 4, since that attribute was set
by the instancing segment and has not been changed.

5-5 Using Attributes

• Draws the circle using draw value 2, the most recent value assigned in this segment .

• Draws the rectangle (point3,point4) using draw value 4, since attribute values changed
by the instanced segment are restored to their previous values before returning control
to the instancing segment.

5.4. A Program with Attributes and Instancing

The program presented in this section modifies the program presented in Section 4.6.

The program in this section uses two segments: small_rec and large_rec. The segment
small_ rec draws a small filled rectangle with dimensions of 100 x 100. The segment large _ rec
draws a large unfilled rectangle with dimensions of 500 x 500, instances the segment small_ rec
four times, and draws two poly lines connecting the four filled rectangles.

The routine GM_ $INSTANCE _ TRANSLATE copies the contents of the instanced segment (in
this case, small_rec) and translates it to the position provided. This routine is used four times
to produce four rectangles.

The routine GM_ $POL YLINE draws a polyline between the endpoints provided.

The routine GM_$DISPLAY _SEGMENT displays the segment large_rec. When this segment
is displayed, the four instances of small_ rec are automatically displayed because they have been
instanced within large _rec.

The program presented in this section changes the program presented in Section 4.6 as described
below.

In this program, the rectangle drawn by the segment small_rec is no longer filled, and the value
of the line drawing attribute is changed. In the segment large _ rec the line drawing attribute is
changed as well.

In segment small_rec, the routine GM_ $DRAW _STYLE changes the line style to
gm _ $dotted. This is the simplest way to produce dotted or dashed lines, provided the style is
acceptable. The parameter gm_ $dotted causes every other pixel in the line to be illuminated.

In segment large_rec, GM_$DRAW _STYLE also changes the line style. This time the style is
defined so that each dash is twelve pixels long, and each space between the dashes is four pixels
long. The line style is defined in the array "pattern" (see the variable declaration section of the
program). This is an eight-element character array. Char(2#11111111) sets eight bits on, and
char(2#11110000) sets four bits on and four off. Only sixteen bits of this array are used to define
the line-style.

The line attribute used in small_ rec (the instanced segment) is not affected by the line attribute
in large _ rec (the instancing segment).

program draw_rectangle;
"nolist;
"include ·/sys/ins/base.ins.pas·;
"include ·/sys/ins/gmr.ins.pas·;
"include ·/sys/ins/time.ins.pas·;
"list;

U8ing Attributes 5-6

CONST

one second = 250000;
five seconds = 5 * one_second;

VAR

BEGIN

file id
small id
large_id
st
ptl, pt2
i
bitmap_size
position
positions
pattern
pause

gm $init

integer;
gm $segment id t;
gm-$segment-id-t;
status_$t; - -
gm_$point16_t;
integer32;
gm_$point16_t := [1024,1024];
gm_$point16_t;
gm_$point_array16_t;
gm $draw pattern t;
time_$cIock_t; -

{ Initialize 2D GMR. }
(gm_$direct
,stream_$stdout
,bitmap_size
,8
,st
) ;

gm_$file_create

ptl.x -
ptl.y -
pt2.x -
pt2.y -

(' gmfile'
,6
,gm_$overwrite
,gm_$lw
,file_id
,st
);

100;
100;
200;
200;

gm $segment create
- ('small rec'

,sizeof('small_rec')

,st
);

gm $rectangle 16
- (ptl -

,pt2
,true
,st
) ;

gm_$segment_close
(true

{ Create and name a metafile. }

{ Create and name a segment.' }

{ Draw a rectangle. }

{ Close the segment. }

5-7 Using Attributes

,st
);

ptl.X - 100;
ptl.y - 100;
pt2.x - 600;
pt2.y - 600;

gm_$segment_create
('large rec'
,sizeof('large rec')
,large_id
,st
) ;

gm_$dra",_style
(gm_$solid
,4
,pattern
,0
,st
);

gm $rectangle 16
- (ptl -

{ Draw an unfilled rectangle. }

,pt2
,false
,st
);

position.x .- 100;
position.y 100;

gm $instance translate 2d16
- (small_id -

,position
,st
) ;

position.x 300;
position.y 300;

gm $instance translate 2d16
- (small_id -

,position
,st
) ;

position.x - 300;
position.y 100;

gm_$instance_translate_2d16
(small_id
,position
,st
);

Using Attributes

{ Instance and move the small rectangle. }

5-8

pos1t1on.x 100;
pos1t1on.y - 300;

gm $1nstance translate 2d16
- (small_id -

.position

.st
) ;

pos1t1ons[1] .X -
posit1ons[1] .y -
pos1t1ons[2] .X -
pos1t1ons[2] .y -

gm $polyl1ne 2d16
- (2-

.pos1tions

.false

.false

.st
) ;

positions [1] .X -
positions [1] .y -
pos1t1ons[2] .X -
pos1t1ons[2] .y -

gm $polyl1ne 2d16
- (2-

.pos1tions

.false

.false

.st
) ;

gm_$segment_close
(true
.st
) ;

300;
300;
400;
400;

300;
400;
400;
300;

gm_$d1splay_segment
(large_id
.st
) ;

pause.low32 five_seconds;
pause.high16 - 0;
time_$wait

(time_$relative
. pause

st
) ;

gm $file close - -

{ Close the segment. }

{ D1splay the figure for five seconds. }

{ Close the metafile. }

5-9 Using Attributes

END.

(true
,st
) ;

gm $termina.te
- (

st
) ;

Using Attributes

{ Termina.te 2D GMR. }

5-10

Chapter 6
Using Modeling Routines: Text

This chapter explains how to insert text and text attributes into a segment. Font families and
their use are described along with techniques for creating stroke fonts. Programs to illustrate the
routines are included.

6.1. Using Text

A modeling routine of the 2D G:N.lR package inserts text into the file. The text string with its size
is inserted into the current segment.

A font is a related set of characters used for text. In programming terms, a font is data that
graphically describes a set of related character images. These images may be developed by
specifying the pixels that make up each character in a bitmap (pixel fonts), or by specifying the
end points of vectors that make up each character (stroke fonts). Both pixel and stroke fonts can
be stored in named files on a node. Discussion of both types is included in this chapter.

Families of text fonts provide a convenient way to display text in different sizes as the displayed
picture grows and shrinks. A font family is a group of fonts of the same style with a range of
sizes. During display operations, the 2D G:N.lR package selects a font of the appropriate size from
the font family.

6.2. Inserting Text

Functions:

GM_ $ TEXT _ 2D[16,32,REAL] inserts a text string into the current segment. The routine
includes specification of the length and the starting point of the string, in segment coordinates.

The text is placed as follows: The first character of the text string is placed at the location you
specify. This means that the origin of this character, as defined in the font, is placed at the
specified location. Usually, the origin is the lower left-hand corner, excluding descenders.

You may also specify the direction (in degrees) in which text is to be written. A value of 0.0
indicates left to right. Other values indicate clockwise rotation. For example, -90 degrees
indicates bottom to top.

You may not insert text until you have included at least one font family in the metafile (see
Section 6.4).

6-1 Using Modeling Routines: Text

6.3. Using Text Attributes

Functions:

GM $TEXT VALUE
GM=$TEXT=BACKGROUND_VALUE
GM_$TEXT_SIZE
GM_$FONT_FAMILY

A program can set text attributes. These attributes determine the pixel value, font family, and
size of text. Attributes can be set individually or in other ways. For a list of default attribute
settings, see Table 5-1. For a discussion of attribute classes and attributes in viewing operations,
see Chapter 13.

GM_ $ TEXT _ VALUE specifies the pixel value to be used in writing text.
GM $TEXT BACKGROUND VALUE changes the background pixel value to be used in
writing text. These attributes are for pixel fonts only. Stroke fonts use GM $DRA W VALUE
to establish pixel values.

GM _ $ TEXT _ SIZE specifies the maximum height of a character from the the font family you
have specified.

GM $FONT FAMILY specifies the font family to use in writing text. Font families are
explained below.

6.4. Identifying Font Families

Functions:

GM_$FONT_FAMILY_INCLUDE
GM $FONT FAMILY INQ ID
GM=$F ONT=FAM I LY=RENAME
GM_$FONT_FAMILY_EXCLUDE

A font family is a collection of fonts, each of a different size. The file names of the fonts are
listed in a font family file. This is an ASCII file, listing file names of fonts, one font per line.
You may build your own font family files that list names of pixel font files or stroke font files.

In a font family file, lines which start with "#" are treated as comments and ignored. Currently,
fonts must be listed in order of size from largest to smallest. For example, a font family file can
include these lines:

/sys/ dm/fonts/f9x15
/sys/ dm/fonts/f7x13
/sys/dm/fonts/f5x9
/sys/ dm/fonts/f5x7

During a display operation, the 2D G1v1R package selects a font of the appropriate size from the
font family.

U8ing Modeling Routine8: Text 6-2

To use a font family in writing text, use GM_$FONT_FAM1LY _INCLUDE. You specify the
font family's pathname and pathname length, and the type of font (pixel or stroke). All fonts
within the font family file must be of the specified type. The 2D GMR package returns the font
family identification number . You can then use this identification number in referencing the font
family. Use GM_$FONT _FAMILY _INQ_ID to retrieve the font family identification
number of a font family you have already included.

To eliminate a reference to a font family, use GM_$FONT_FAMILY~EXCLUDE. There must
be no references to the font family you want to exclude. Otherwise, the reference is not
eliminated.

A font family identification may be referred to only if it has been included.

GM $FONT FAMILY RENAME changes the font family file corresponding to this
identification number.

6.5. A Program Including Text

The program in this section draws the design in Figure 6-1.

This is the top of the rectangle.

Figure 6-1. Inserting Text

6-3 Using Modeling Routines: Text

This program draws an unfilled rectangle with the text strings "This is the top of the rectangle,"
and "This is the side of the rectangle." The routine GM $FONT FAMILY INCLUDE
specifies which font family to use in the metafile. You must create your own font families. For
example, you can create a Display Manager file with the name font _ families and place the names
of the fonts you want to use in this file. In the file you could write the following font names that
are pathnames to specific fonts:

/sys/dm/fonts/f9X15
/sys/dm/fonts/f7x13
/sys/dm/fonts/f5x9
/sys/dm/fonts/f5x7

The routine GM_ $ TEXT _SIZE specifies the maximum height of a character from the font
family that you are using. The value of 14 specified in this program allows the use of text up to
size 14. The default maximum text size is 10.

The routine GM_ $ TEXT _2D16 inserts a text string into the segment at the specified location.
The first time that this routine is used, the second parameter (rotate) is listed as 0.0. This writes
the text string horizontally ("This is the top of the rectangle"). The second time that this
routine is called, the rotation is set at -90. This causes the text string to be written from bottom
to top ("This is the side of the rectangle").

%nolist;
%include ·/sys/ins/base.ins.pas·;
%include ·/sys/ins/gmr.ins.pas·;
%include ·/sys/ins/time.ins.pas·;
%list;

CONST

one second = 250000;
five seconds = 5 * one_second;

VAR

file id
segment_id
st
pt1, pt2,point
i
bitmap_size
ffid
pause

BEGIN

gm $init
(gm_$direct
,1
,bitmap_size
,8
,st
);

integer;
gm_$segment_id_t;

status_$t;
gm_$point16_t;

integer32;
gm_$point16_t := [1024,1024];

integer;
time_$clock_t;

{ Initialize 2D GMR.}

Using Modeling Routines: Text 6-.4

gm $file create { Create and name a metafile. }
- ('gmfile'

,6
,gm_$overwrite
,gm_$1w
,file_id
,st
) ;

gm_$segment_create { Create and name a segment. }
(, rectang_ seg • ,
sizeof('rectang_seg')
,segment_id
,st
) ;

gm_$font_family_include { Load the font family. }
('font families'
, SIZEOF('font families')
, gm $pixel -
, ffid

st
) ;

gm_$text_size
(14.0
, st
);

point.x 5;
point.y 510;

gm_$text_2d16 { Display a line of text. }
(point, 0.0

'This is the top of the rectangle.'
, SIZEOF('This is the top of the rectangle.')

st
) ;

point.x
point.y

5·

- 50;

gm_$text_2d16
(point

-90.0

{ Display a line of text. }

'This is the side of the rectangle.'
, SIZEOF('This is the side of the rectangle. ')

st
) ;

pt1.x - 10;
{ Define the coordinates of the }
{ rectangle to be drawn. }

pt1.y - 30;
pt2.x - 400;
pt2.y - 500;

gm_$rectangle_16
(pt1

{ Draw the recta.ngle. }

6-6 Using Modeling Routines: Text

END.

Ipt2
.false
1 St
) ;

gm_$segment_close
(true
1 S t
);

gm $display file
- (st -

) ;

{ Close the segment. }

{ Display the file. }

{ Display the figure for five seconds. }
pause.low32 - five_seconds;
pause.high16 - O·
time_$wait

(time_$relative
I pause
I st
);

gm_$file_close
(true
1 S t
) ;

gm_$terminate
(st
) ;

{ Close the metafile. }

{ Terminate 2D GMR. }

6.6 .. Editing Fonts and Font Families

To change the names of font families already included in a metafile, you must open the metafile
and use GM $FONT FAM~Y RENAME.

Three mechanisms are available for altering the form in which text appears on the screen:

• You can use a different font family in the metafile. To do this, open the metafile and
use GM_ $FONT _F AM~ Y _RENAME. This causes a different font family name to
be associated with this metafile.

• You can change the list of fonts which make up a font family. To do this, open the
ASCII file which lists the fonts in the font family. Edit this ASCII file using the text
editor. This causes different fonts to be associated with this font family name.

• You can change the characters in the font. To create and edit stroke fonts, see the
next section. To edit pixel fonts, use EDFONT, which allows you to interactively edit
and view character font files. For a description of EDFONT, see the DOMAIN
System Oommand Reference manual.

Using Modeling Routines: Text 6-6

6.7 .. Creating Stroke Font Files

A stroke font file is a metafile. It is created and edited using normal metafile routines.

6.7.1. Defining Characters

The characters or icons of a stroke font are made up of primitive commands, like any other
metafile segment. Each character has its own segment in a metafile. The set of characters (the
font) is stored in a metafile.

You may define any or all of the 256 possible characters in a font, including the space character.
The segment name for each character must be a one-character name. This name must be either
the character that the segment defines or a nonprintable ASCII value for special icon definition.

A stroke font metafile may not contain attributes or instances, only primitives and tags. If any
attribute or instance command is found in a stroke font segment, the specified character is
treated as nonexistent.

When a text string is displayed, each character is displayed based on the following:

• Y = 0 is the baseline along which text is displayed.

• Y = 1000 is to be scaled to the current text size.

• The start of the next character is defined as the start of the old character, plus the
horizontal size of the old character, plus an intercharacter spacing of 200.

6.7.2. Defining Character Width

The default width of a character is the maximum x value used in defining the segment (segment
bounds). In a segment for an individual character, you can use a tag command to change the
width of a character. A tag consists of WIDTH followed by a number to indicate the character
width you want. (Separate the word WIDTH and the value by a space.) This tag command
must precede any other commands in the segment. Descriptor tags in a stroke font file must be
entered in the file in capital letters, for example, WIDTH.

The tag WIDTH is also used to define the space character (chr(32)), which contains only the
WIDTH tag command. If a text string being displayed includes a nonexistent character (one for
which there is no segment), the space character is displayed instead. If you have not defined a
space character, nothing is displayed, and words within a string will run together.

6-7 Using Modeling Routines: Text

6.7.3. Font Defaults

To set values applicable to every character and icon in the stroke font file, you can create an
additional segment with the name DATA (the length of the segment name = 4). In this segment,
only certain tag commands are recognized.

The following is a list of key words and their default values. You can change these values using
tag commands in the segment DATA.

Key Word

HEIGHT
CHAR _ OFFSET
MIN SIZE

Definition of Terms

Default Value

1000
200

o

• HEIGHT: The maximum y value above the origin, in coordinates of the character
segment. This value is used to scale text in this font to fit the current text size.

• CHAR OFFSET: The x offset between the end of a character and the start of the
next character, in coordinates of the character segment. This value is used for spacing
between characters in a string.

• MIN SIZE: The minimum height, in pixels, for which to use this font. If a
transformation causes the character HEIGHT on the screen to be less than
MIN _SIZE, this font is not used.

The DATA segment need not appear in any specific location in the stroke file. You may omit the
DATA segment if you wish to use default values.

6.7.4. Limitations

The following limitations apply to the maximum number of font families and the maxImum
number of font files within families and overall.

You may specify a maximum of eight font families. Overall the font families, you may specify a
maximum of 32 font files. If different font families specify the same font file, 2D GMR does not
recognize the redundancy, so each reference counts as a separate font file.

A font family of stroke text may specify only two stroke text font files; a font family of pixel text
may specify any number of pixel text font files (up to the overall limit of 32 font files).

6.8. A Procedure to Define a Font

This program example defines a stroke font. To define a font with equal spacing between
characters, tag each character with an equal WIDTH and center each character definition between
o and WIDTH in x. Adjust the CHAR _ OFFSET accordingly.

To define a proportionally spaced font, set the minimum x value to 0 and assign a value to

Using Modeling Routines: Text 6-8

WIDTH for each character. (Use uppercase for the value WIDTH). Alternatively, you can omit
the specification of WIDTH. In this case, the maximum x of the character is the WIDTH, and
the CHAR _ OFFSET is used to separate the characters in a string.

The following examples show the use of tags with character and icon definition:

gm_$segment_create('A', 1, segment_id, st);
point_array [1] .x - 0;
point_array [1] .y 0;
point_array [2] .x - 400;
pOint_array [2] .y 1000;
pOint_array [3] .x - 800;
pOint_array [3] .y - 0;
gm_$polyline_2d16 (3, point_array, false, false, st);
point_array [1] .x - 200;
pOint_array [1] .y 500;
pOint_array [2] .x - 600;
pOint_array [2] .y 500;
gm_$polyline_2d16 (2, point_array, false, false, st);
gm_$segment_close(true, st);

gm_$segment_create(' " 1, segment_id, st);
gm_$tag('WIDTH 800', 9, st);
gm_$segment_close(true, st);

gm $segment create ('DATA' , 4, segment id, st);
gm-$tag('MIN SIZE 15', 12, st); -
gm=$segment_close(true, st);

6.9. Program With Stroke and Pixel Fonts

The following program loads a pixel font family file and a stroke font family file and then shifts
back and forth between them using an attribute block and attribute class command. The
purpose of this program is to illustrate the use of the two types of text. The attribute block and
attribute class command provide an easy way to change text size. For a discussion of attribute
blocks and attribute classes, see Chapter 13.

The first part of the program shows the effect of changing text size with pixel and stroke fonts
One segment containing text is created and then redisplayed with different text sizes. The text
size is changed using an attribute block.

The second part of the program creates a new segment and then instances the original text
segment using GM_$INSTANCE_ TRANSFORM_2D16. The instance command is replaced
again and again with different angles of rotation to illustrate the effect on the text. The program
shows that rotated pixel text snaps to the nearest 90 degrees, whereas stroke text rotates
smoothly.

PROGRAM text;

%NOLIST;
%INCLUDE '/sys/ins/base.ins.pas·;

6-9 Using Modeling Routines: Text

%INCLUDE ·/sys/ins/gmr.ins.pas';
%INCLUDE '/sys/ins/pfm.ins.pas·;
%INCLUDE ·/sys/ins/time.ins.pas·;
%LIST;

CONST

VAR

aclass1
second
cos delta
sin delta

status
sid text
sid_top
file id
ffid_pixel
ffid stroke
ablock id
p
q
dbounds
i
j
text size

=
=
=
=

1 ;
500000;
COS(
SIN(

0.25) ;
0.25) ;

status_$t;
gm_$segment_id_t;
gm_$segment_id_t;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
gm_$point16_t;
gm_$point16_t;
gm_$boundsreal_t;
INTEGER;
INTEGER;
REAL;

text size delta -
rotate
translate

REAL;
gm_$rotate_reaI2x2_t;
gm_$point16_t;

pause time_$clock_t;

PROCEDURE check
(IN status
);

BEGIN
IF status.all <> status_$ok
THEN pfm_$error_trap(status);
END;

BEGIN

p.x - 1024;
p.y - 1024;

gm $init
- (gm_$direct

1

, P
8
status

) ;
check(status);

gm_$file_create
('gmfile'

6
, gm_$overwrite

Using Modeling Routines: Text 6-10

{ Initialize the 2D GMR package. }

{ Create and name metafile. }

, gm_$lw
, file id

status
) ;

check(status);

gm $viewport set refresh state
- (gm_$refresh_wait -

, status
) ;

check(status);

gm_$font_family_include
('ffO'

3
, gm_$pixel
, ffid_pixel
, status
) ;

check(status);

gm_$font_family_include
('ffs'

3
, gm_$stroke

ffid stroke
status

) ;
check(status);

gm_$ablock_create
(1
, ablock_id
, status
);

check(status);

gm_$ablock_assign_display
(aclassl
, ablock_id
, status
) ;

check(status);

gm_$segment_create
(

) ;

o
sid text
status

check(status);

gm $aclass
(aclassl
, status
) ;

check(status);

p.x := - 5;

{ Set viewport refresh state. }

{ Include pixel font family. }

{ Include stroke font family. }

{ Create an ablock. }

{ Ablock id = aclassl. }

{ Create a text segment. }

{ Add an aclass command }

6-11 Using Modeling Routines: Text

p.y - - 5'
q.x - + 5;
q.y - + 5'

gm $rectangle 16
- (p -

• q
• FALSE
· status
) ;

check(status);

.- + 10; p.x
p.y .- 0;

gm $text 2d16
- (p -

• 0.0
• 'Left to Right'
• 13
• status
) ;

check(status);

p.x o·
p.y - 10;

gm $text 2d16
- (p -

• 90.0
• 'Top to Bottom'
· 13
• status
) ;

check(status);

.- - 10; p.x
p.y .- 0;

gm $text 2d16
- (p -

• 180.0
• 'Right to Left'
• 13
• status
) ;

check(status);

p.x.- 0;
p.y .- + 10;

gm_$text_2d16
(p
• -90.0
• 'Bottom to Top'
• 13
· status
) ;

check(status);

Using Modeling Routines: Text

{ Add an unfilled rectangle. }

{ Add Left to Right text }

{ Add Top to Bottom text. }

{ Add Right to Left text. }

{ Add Bottom to Top text. }

6-12

gm_$segment_close
(true
I status
) ;

check(status);

dbounds.xmin -
dbounds.ymin -
dbounds.xmax -
dbounds.ymax -

-
-
+
+

50.0;
50.0;
50.0;
50.0;

- pause.low32
pause.high16

- second DIV 4;
o·

text size := 10;
text size delta := 1.0;

{ Close the segment. }

{ * * Illustrate different text sizes with pixel and stroke text. * * }

FOR j - 1 TO 2
DO BEGIN

IF j = 1
THEN gm_$ablock_set_font_family

(ablock_id
I ffid_pixel
I status

ELSE gm_$ablock_set_font_family
(ablock_id
I ffid_stroke
I status
) ;

check(status);

FOR i := 1 TO 20
DO BEGIN

IF text size >= 10.0

{ Set ablock to pixel font family. }

{ Set ablock to stroke font family. }

THEN text size delta ABS(text size delta
ELSE IF text size <= ABS(text_size=delta)
THEN text size delta := + ABS(text_size_delta);

text size := text size + text_size_delta;

gm_$ablock_set_text_size
(ablock id
I text_size
I status
) ;

check(status);

gm_$display_file_PART
(dbounds
I status
) ;

check(status);

{ Change ablock text size. }

{ Display the file. }

time_$wait { Admire it for a momemt. }

6-13 Using Modeling Routines: Text

(time_$relative
, pause

status
) ;

check(status);

END;

END;

gm_$segment_create
(

o
, sid_top

status
) ;

check(status);

rotate.xx -
rotate.xy -
rotate.yx -
rotate.yy -

translate.x
translate.y

1.0;
0.0;
0.0;
1.0;

o·
- O·

gm_$instance_transform_2d16
(sid text

rotate
, translate

status
) ;

check(status);

gm_$modelcmd_set_mode
(gm_$modelcmd_replace
, status
) ;

check(status);

{ Create top segment. }

{ Define identity matrix. }

{ Zero translation }

{ Instance text segment into }
{ top segment. }

{ Go into replace mode. }

{ * * Illustrate different text angles with pixel and stroke text. * * }

FOR j 1 TO 2
DO BEGIN

IF j = 1
THEN gm $ablock set font family

(ablock id- - -
, ffid_pixel
, status
)

ELSE gm_$ablock_set_font_family
(ablock id
, ffid_stroke
, status
) ;

check(status);

FOR i := 1 TO 40

Using Modeling Routines: Text 6-14

{ Set ablock to pixel font family. }

{ Set ablock to stroke font }
{ family. }

DO BEGIN

WITH rotate
DO BEGIN

xx - cos delta -
yx - cos delta -
xy - - yx;
yy - + xx;
END;

* xx +

* yx +

gm $instance transform 2d16
- (sid text -

END;

rotate
, translate
, status
) ;

check(status);

gm $display file PART
- (dbounds -

, status
) ;

check(status);

time_$wait
(time_$relative
, pause
, status
) ;

check(status);

END;

gm $segment close
- (TRUE -

, status
) ;

check(status);

gm $file close
- (true

, status
) ;

check(status);

gm $terminate
- (status

) ;
check(status);

END.

sin -
sin -

{ Increment the rotation matrix. }

delta * xy;
delta * yy;

{ Change the angle of the instance }
{ transform}

{ Display the file. }

{ Admire it for a moment. }

{ Close the top segment. }

{ Close the file. }

{ Terminate the 2D GMR package. }

6-15 Using Modeling Routines: Text

Chapter 7
Using Segment Characteristics

This chapter describes the use of the primary segment in displaying a metafile. Characteristics
that can be associated with a segment are discussed and illustrated with a program. The formats
for coordinate data are described.

7 .. 1. Primary Segment

Functions:

GM_$F lLE_SET_PR I MARY_SEGMENT
GM_$FlLE_INQ_PRlMARY_SEGMENT

The segments in the metafile have a hierarchical structure. The primary segment can be thought
of as the root for the hierarchy of segments in the metafile. AB such, the primary segment is
assumed to be the start of the picture. When the routine GM_ $DISPLAY _FILE is called, the
primary segment is displayed.

The first segment you create becomes the primary segment. In Figure 7-1, the primary segment is
II scene. .. When you display II scene," you see the entire picture. The segments are instanced
according to the hierarchy established by the primary segment.

SCENE

/~
HOUSE TREE

II\~
WINDOW DOOR TEXT

Figure 7-1. Hierarchical Structure and the Primary Segment

Using GM _ $FILE _ SET _ PRllv1ARY _ SEGMENT, you can specify that you want another
segment as the primary segment. For example, with "house" as the primary segment in Figure
7-1, you see the following upon display: house, door, eight windows, and sign. You do not see
any trees.

If you instance the primary segment from a segment that is not itself instanced, the primary
segment is changed to the instancing segment. If you instance the primary segment from a
segment that is itself instanced, the root of the instancing tree becomes the primary segment (see
Figure 7-1).

Use GM_$FILE_SET _PRllv1ARY _SEGMENT to change the primary segment number. Use
GM_$FILE_INQ_PRllv1ARY _SEGMENT to retrieve the number of the primary segment.

7-1 U8ing Segment Gharacteri8tic8

New Primary Segment

Old Primary Segment

Figure 7-2. Instancing and the Primary Segment

7.2. Setting Segment Characteristics

Functions:

GM_$SEGMENT_SET_VISIBLE
GM_$SEGMENT_INQ_VISIBLE
GM_$SEGMENT_SET_PICKABLE
GM_$SEGMENT_INQ_PICKABLE
GM_$SEGMENT_SET_TEMPORARY
GM_$SEGMENT_INQ_TEMPORARY

Segment characteristics, such as visible and pickable, are associated with a segment rather than
being controlled by commands contained within a segment. The visible value lets you specify that
a segment be visible or invisible when you display the file. The pickable value lets you specify
that a segment be eligible or ineligible for selection during a search. The name of the segment,
which you assign when you call GM_ $ SEGMENT _ CREATE, is also a segment characteristic.

GM_ $ SEGMENT _SET _ VISIBLE assigns a value at which the specified segment can be seen
when you display the file. This value is used with the visible threshold and visible mask during
display operations. This enables you to display a picture without segments of it that may clutter
it. For example, you may want to see a picture with or without text. You can place text in a
separate segment and then change the visible value of that segment to make it visible or invisible.

GM _ $SEGMENT _ INQ _ VISIBLE returns the visible value of the specified segment.

GM_ $ SEGMENT _SET _PICKABLE assigns a pickable value to the specified segment. This
pickable value is used with the pick threshold and pick mask during pick operations (see Chapter
10). GM_ $SEGMENT _INQ_PICKABLE returns the pickable value of the specified segment.

GM_$SEGMENT _SET _ TEMPORARY sets the current segment as temporary or permanent.
A temporary segment is deleted when the file is closed. A temporary segment is useful for picture

Using Segment Characteristics 7-2

data that you want to display but not store. This allows you to add a graphic element, such as
enclosing boxes or a superimposed grid, which you do not want to store in the metafile.

GM_$SEGMENT _INQ_ TE:MPORARY indicates whether the current segment is set to
temporary or permanent.

7 .. 3. Coordinate Data Types

Functions:

GM_$DATA_COERCE_SET_REAL
GM_$DATA_COERCE_INQ_REAL

For your convenience, the 2D GMR package has multiple formats for your input of coordinate
data. For efficiency, the 2D GMR package converts, or coerces, the coordinate data you supply
to a different format. You need to know about 2D GMR data storage conventions because
inappropriate mixing of formats can result in a loss of precision in stored data. However, you can
use coordinate data types in the following ways without concern for loss of precision.

You will not lose precision if:

• You only supply 16-bit integer data to a segment .

• You only supply 32-bit integer data to a segment, and store it III 32-bit segment­
exponent format.

If you wish to supply data in other forms or combinations, you should be aware of the
conventions described on the paragraphs below.

You may supply coordinate data to the modeling routines of the 2D GMR package as 16- or
32-bit integers, or as single-precision real numbers. Different routines exist to accept data in
these different forms. These routines are generally referred to in this document as groups. For
example, GM_ $POL YLlNE _ 2D[16,32,REAL] refers to a group of three routines:

GM_$POLYLINE_2D16
GM_$POLYLINE_2D32
GM_$POLYLINE_2DREAL

Each of these routines differs only in the data types of its coordinate parameters. Each routine
with a data type (16, 32, or REAL) in its name indicates the type of variable or array you use to
supply coordinate data to the 2D GMR package.

There are two internal data storage formats: 16-bit segment-exponent and 32-bit segment­
exponent. In either format, the following occurs:

• All data within a segment is stored with a common binary exponent. This is stored as
a characteristic of the segment .

• 16-bit or 32-bit signed integers are used to store values to be multiplied by the
common binary exponent. The choice is made by the data type specified in the name
of the routine, for example, GM_$POLYLINE_2D16 or GM_$POLYLlNE_2D32.

7-3 Using Segment Characteristics

You can store 16-bit and 32-bit data in the same segment. The 16 most significant bits of 32-bit
data correspond to the 16 bits of 16-bit data, and the 16 least significant bits simply add more
precision. This is analogous to the extra bits of precision provided by using double-precision real
numbers instead of single-precision real numbers.

When you insert numbers larger than those you originally supplied, the existing values may be
shifted. When you supply new values that are too large to be stored using the current exponent,
the 2D GMR package changes the exponent, and shifts all existing values to conform to this new
exponent.

You can use GM_$DATA_ COERCE_SET _REAL to indicate that coordinate data supplied in
one form is to be coerced into another form for storage. For example, you can send data to the
package as real variables, but store data in the file in 32-bit segment-exponent format. To
retrieve the storage format to which real coordinates are being converted, use
GM_ $DATA_ COERCE _INQ_REAL.

Currently, you must use GM_$DATA_COERCE_SET_REAL(GM_$32,STATUS) prior to
calling any GM_ $... REAL command. The package does not currently store real data as such.

One feature of this storage format is that you may mix integer and real data within a segment.
For example, you can insert a coordinate value (5.5) into a segment that previously contained
integers, without adding to the processing required to display the integer data.

You should avoid storing data in the metafile with more precision than you need because the
more complex calculations affect performance. You may mix data storage types within a
segment, but not within individual commands. For example, you may find it necessary to use
32-bit storage format for coordinate transformations to preserve precision through multiple
coordinate transformations; but 16-bit storage format may be adequate for the primitive
commands within these instanced segments.

You can lose precision of original data in these cases:

• When you coerce real data to 16-bit segment-exponent format for storage, the least
significant bits are dropped immediately.

CD When you have stored 16-bit integer coordinate data in 16-bit segment-exponent
format, and subsequently insert 32-bit integer or real data of absolute value larger
than 32767. Low order bits of the original data will then be truncated. For example,
o and 1 both become O.

• When you have stored 16-bit or 32-bit integer coordinate data in 32-bit segment­
exponent format, and subsequently insert real data of absolute value greater than the
largest 32-bit signed integer.

You will not lose precision if:

• You only supply real data to a segment, coerce it to 32-bit segment-exponent format
for storage, and supply data which ranges only over a factor of 128.

Using Segment Characteristics 7-4

Chapter 8
The Displaying Process

This chapter describes the display environment and coordinate systems used with the graphics
metafile package. Viewing routines are presented with a sample program to illustrate their use.

8.1. Hardware and Coordinate Systems

Functions:

GM_$INQ_CONFIG
GM_$INQ_BITMAF_SIZE
GM_$COORD_SEG_TO_BITMAP_2D
GM_$COORD_BITMAP_TO_SEG_2D
GM_$COORD_PlXEL_TO_SEG_2D
GM_$COORD_SEG_TO_PlXEL_2D

The 2D GMR package is generally independent of the display environment. This means that you
can run most programs that include 2D GMR routines on any DOMAIN node without modifying
the program. The 2D GMR package rescales viewports and views according to the size of the GM
bitmap, so that programs containing viewing routines will display all viewports for any GM
bitmap.

When you use the 2D GMR routines, you can easily change program execution from one display
mode to another by changing one option in the initialization routine GM _ $INIT.

You can determine the configuration of the display device using GM _ $INQ _ CONFIG . You can
use this information to assign different attributes to a color display than to a monochromatic
display.

GM_ $INQ_ CONFIG returns the current configuration of the display device. Possible values
are the following:

GM $BW 800xl024 4-bit two-board black-and-white portrait.

GM $BW l024x800 4-bit two-board black-and-white landscape.

GM $COLOR l024xl024x4 4-bit two-board color configuration.

GM $COLOR l024xl024x8 8-bit three-board color configuration.

GM $COLOR l024x800x4 4-bit two-board color configuration .

. GM $COLOR l024x800x8 8-bit two-board color configuration.

GM_$INQ_BITMAP _SIZE returns the size of the GM bitmap in pixels, and the number of
planes in the GM bitmap.

8-1 The Displaying Process

This section an overview of
;:'UDs4~qtleIllt sections in this,." " ...

'-'''''HJlG,1-' coordinates to segment coordinates

coordinates (of the viewport

Ih",..,."."n,'n coordinates used in within-GPR

coordinates to GPR

and view changes.
routines for these functions in more detail.

When you use the 2D GlvIR in display modes, you do
not have to refer to coordinates in a 2D GlvIR package handles all the
transformations from world coordinates on the screen. The only
exception to this is that you the size of the GM in the routine GM $INIT. After
that specification, the references to coordinates on the display are in terms of fractions of the
size of the GM fJ"'~'''.u,,,,I-''

The term refers to that was established as a result of the
initialization command. The coordinates are from 0 to 1 left to right and from 0 to 1 bottom to
top. X increases to the y increases Coordinate locations within the GM bitmap are
QV",,,a."""',,.rlI as fractions of the GM whether it is square or nonsquare.

Every time you n.",nl"'"

world coordinates to
metafile. The 2D GlvIR
from the process.

if you
the size of the

variables in a way that is
·U1<>unn..n,,.i-,,, or that deal with locator
or fractional coordinates, not device or

2D GlvIR calculates the transformation of the
each coordinate and processes the commands in the

a.u." uo'v>.:> the transformations for any changes that result

by popping windows, or by
recalculates all transformation

commands that adjust the size of
aO'W-1.naep'en(leIllli coordinates. These are world

You may subdivide the GM into but overlapping viewports are not
As a includes its the borders may not overlap either. When the 2D

pa,cK~:l.ge is initialized, one viewport is created, and it is assigned the number one. This
is defined to fill the GM that is, it is given bounds of (0,0) through (1,1), in

terms of fraction-or-bitmap coordinates. This viewport becomes the current viewport. Before
creating any additional viewports, you must change the bounds of viewport 1 to make room on
the screen for another viewport.

To change the dimensions of the use $VIEWPORT SET BOUNDS. To
redefine the viewport with this VU'VH "'. you must provide the coordinates of any two diagonally
opposite corners. Note that if the GM is not square, the units in the x and y directions
are different. For if the its by 500(y), 0.01 means 10 pixels in the x
direction, but 5 pixels in the y direction.

The Displaying Process

An image displayed in the viewport is not physically moved on the screen as a result of a
GM $VIEWPORT SET BOUNDS command. That is, the transformation from world
coordinates to bitmap coordinates does not change. If you make the viewport smaller, the object
is displayed the same size on the screen. However, you will see less of it or less blank space
around it.

To change the size of what is displayed on the screen, you can use one of several teCnnlQUles.
way is to use GM_$VIEWPORT _SET _BOUNDS, followed by GM_
The segment will be displayed into that viewport and fill the new bounds.

Once you have used GM_ $VIEWPORT _SET _BOUNDS to reduce viewport 1, you can call
GM_ $VIEWPORT _ CREATE. The current viewport is the last viewport that you created or
selected. It is the implied viewport for GM_ $DISPLAY _FILE,
GM_$VIEWPORT_SET_BOUNDS, and Before you go
from one viewport to another, get the number of the current viewport so that you can return to
it easily. GM_ $VIEWPORT _INQ_ CURRENT returns the number of the current viewport.

You may want to write an application program that does not require the units on the
display. Instead, you have the program display the whole segment and allow the user to specify
scaling parameters by using function keys or a locator input device to move the data on the
screen. To do this, you use the routines GM_$VIEW _ TRANSLATE, GM_$VIEW _SCALE,
and GM $VIEW TRANSFORM.

GM_ $VIEW _ TRANSLATE does not change the scale of the displayed data; the routine moves
the image on the screen, translating the view in the current viewport by (x,y). X and yare
expressed in the view transform as fractions of the GM bitmap, not fractions of the viewport.

If the viewport fills the entire screen, you need not be concerned about the difference between
fractions of the GM bitmap and the viewport. If you have a smaller viewport, you will have to
get the size of the viewport. For example, in an application program, you may want to define the
box-left button to slide the image to the left by half the viewport. You must first call
GM_$VIEWPORT _INQUffiE_BOUNDS to get the bounds of the current segment. You can
then calculate the difference between xmax and xmin for that viewport, divide by 2, and use that
as input to the GM_ $VIEW _ TRANSLATE routine.

GM_$VIEW _SCALE and GM_$VIEW _ TRANSFORM change the scale of what is viewed in
the current viewport. These routines can either scale or transform the view in the current
viewport. In both of these routines, the specified point in the GM bitmap is fixed during the
operation. When the user moves the cursor and indicates increasing or diminishing the size of the
image, the locator input data is returned in fraction-of-bitmap coordinates. This means that all
points are scaled around this fixed point to allow either a scale factor or an arbitrary 2D
transformation around this fixed point.

With GM_$VIEW _ TRANSFORM, you use a two-dimensional transformation (2 by 2
transformation in an array of four real values).

You can avoid using the transformation by calling GM _ $VIEW _ SCALE. The following
example shows rescaling the screen by a factor "scale" and moving the point (point.x,point.y) to
the center of the viewport, all in one operation. (The coordinates on the screen are expressed as
fractions of the GM bitmap.) This example is for a 50-degree rotation:

8-3 The Displaying Process

{ Assumes scale not equal to 1.0 }

GM $VIEWPORT INQ BOUNDS (vbounds, status);
vcenter_x :=-0.5-* (vbounds.xmax + vbounds.xmin);
vcenter y := 0.5 * (vbounds.ymax + vbounds.ymin);
pOintl.X := (vcenter x - point.x * scale)/(1.0 - scale);
pointl.y := (vcenter_y - point.y * scale)/(1.0 - scale);
GM_$VIEW_SCALE(scale, pointl,status);

These routines allow relative view changes without tracking the view transformation or the
displayed image. For example, the user can move the cursor to a viewport; the locator of input
data tells the 2D GMR package what the coordinates are, in fractions of bitmap coordinates, and
what the viewport number is. With the viewport number from the input data, the 2D GIvfR
package can make that viewport the current viewport and then use the fixed point as a reference
for scaling or transformation.

8.3. Using Multiple Viewports

Functions:

GM_$VIEWPORT_CLEAR
GM_$VIEWPORT_CREATE
GM $VIEWPORT SET BOUNDS
GM-$VIEWPORT-INQ-BOUNDS
GM-$VIEWPORT-SELECT
GM-$VIEWPORT-DELETE
GM-$VIEWPORT-INQ CURRENT
GM-$VIEWPORT-MOvE
GM-$VIEWPORT-SET BORDER SIZE
GM=$VIEWPORT=INQ=BORDER=SIZE

When you initialize the 2D GMR package in direct, borrow, and main-bitmap modes, the package
does the following:

ED Creates one viewport.

ED Makes the viewport fill the GM bitmap .

• Assigns number 1 to the viewport.

ED Makes number 1 the current viewport.

To use multiple viewports, you create additional viewports with GM_ $VIEWPORT _ CREATE.
The 2D GMR package assigns numbers to viewports as they are created.

The current viewport is the last viewport created or selected. The current viewport is changed
each time you call GM $VIEWPORT CREATE or GM $VIEWPORT SELECT.
GM_ $VIEWPORT _ CLEAR clears the current viewport. Only planes enabled by the current
value of the plane mask are affected.

Several routines which interact with viewports operate on the current viewport. These routines
include GM _ $VIEWPORT _ SET _ BOUNDS, GM _ $VIEWPOR T _ REFRESH,
GM_$DISPLAY _FILE, and GM_$DISPLAY _SEGMENT.

The Displaying Process 8-4

GM _ $VIEWPORT _ INQ _ BOUNDS returns the bounds of the current viewport as fractions of
the GM bitmap. Space outside of all viewports is empty.

GM...,.. $VIEWPORT _MOVE translates the current viewport, carrying the VIew with it. The
translation is expressed in fractions of the display bitmap size.

GM_$VIEWPORT _INQ_ CURRENT returns the number of the current viewport. When
GM _ $INPUT _ EVENT _ WAIT collects locator data, it also returns the number of the viewport
to tell what viewport you are in.

GM $VIEWPORT DELETE deletes a viewport. Because viewports may not overlap, you
must delete all but one viewport if a single viewport is to fill the entire GM bitmap. If you delete
the current viewport, there is no current viewport and you must select or create a current
viewport before calling routines that operate on the current viewport.

GM_$VIEWPORT _SET _BORDER_SIZE sets the border size of the current viewport to the
specified values, either in pixels or in fraction-of-bitmap coordinates. This routine sets sizes of
the four edges independently, for each viewport.

GM_$VIEWPORT _INQ_BORDER_SIZE returns the border SIze of the current viewport,
either in pixels or in fraction-of-bitmap coordinates.

The default border type is in pixels, and the default width is 1,1,1,1. Viewport borders are drawn
with color value 1 for compatibility with monochrome nodes. Also for this compatibility, the 2D
GMR package sets the color map for color value 1 to white.

With a color node, you may want to use the viewport background color, instead of a border, to
differentiate viewports from the overall display or the window background. Changing the color
map to black is usually not practical because the cursor is also set to color value 1. An
alternative is to create the viewport, set the border width to 0 pixels, and then refresh the
viewport.

8 .. 4. Segment Visibility Criteria

Functions:

GM_$VISIBLE_SET_MASK
GM $VISIBLE INQ MASK
GM=$VISIBLE=SET=THRESHOLD
GM_$VISIBLE_INQ_THRESHOLD

You can establish two criteria for segment visibility. You may use a threshold to eliminate
segments with visible values too small. You may also use a mask to eliminate segments missing
certain bits in their visible values.

To assign visible values to segments, use GM_$SEGMENT _SET _ VISIBLE (see Section 7.2).

A segment is displayed only if it meets both the visible mask and threshold criteria. The visible
mask criterion requires that at least one bit be 11111 in both the segment's visible value and the
visible mask. The visible threshold criterion requires that the segment's visible value be greater
than the visible threshold.

8-5 The Displaying Process

One use for this pair of methods is to set the lowest bit (1) in the visible value in all segments
containing, for example, a floor plan; the next lowest bit (2) containing data for ducting; and and
the next bit (4) containing data for electrical systems. Higher bits can be used to give larger
visible values to larger segments.

With the above settings, visible masks with the following values perform in this way:

1 displays only the floor plan
2 displays only ducting
5 displays the floor plan and electrical data
7 displays all three groups of data

If a segment does not satisfy both of the segment visibility criteria, none of that segment IS

displayed. Any segment which it instances is not checked for visibility and is not displayed.

In borrow, direct, and main-bitmap modes, you may assign separate visible mask and threshold
values to each viewport. Thus, different viewports can display separate parts of a data base.
Within-GPR mode has only one visible mask and one visible threshold value.

GM _ $VISIBLE _ SET _ THRESHOLD establishes a minimum segment visible value. Segments
with smaller visible values are not displayed. The default value is 1, in which case all segments
of nonzero visible value satisfy the threshold criterion.

GM_$VISIBLE_SET _MASK allows you to base segment visibility on individual bits within
the visible value for each segment. If any bit is 1 in both the mask and the segment visible
number, the segment may be visible. The default value is 16#7FFFFFFF, in which case all
segments of nonzero visible value satisfy the mask criteria.

GM and GM _ $VISIBLE _ INQ _ MASK return the current
value of these ."' ,..'" '-,.,.. for the specified viewport.

Functions:

You can the entire file or segment. The picture is automatically centered in the current
viewport, with a scale calculated so that 95% of the viewport is filled in one dimension amd does
not overflow the viewport in the other.

A segment from one file can be displayed in one viewport. A segment from another open file can
be displayed in another viewport. But only one segment may be displayed in any viewport, and
it may not instance segments in other files. To display the contents of more than one segment in
the single viewport, build a new segment including instances of the other segments.

GM_$DISPLAY _FILE displays the entire current file in the current viewport. The primary
segment of the file is displayed.

The Displaying Process 8-6

GM $DISPLAY _ SEGMENT displays the specified
current viewport.

but not the entire file, III the

GM $DISPLAY SEGMENT is used in within-GPR mode only. It displays the
specified segment, with the specified transformation, in the current CPR-specified bitmap (see
Chapter 11).

8.6 .. Displaying

Functions:

GM_$D ISPLAY_F ILE_PART
GM_$DISPLAY_SEGMENT_PART

a

Only one segment may be displayed per viewport, but you can specify what part of that segment
is displayed or change the part of that segment that is displayed. You may want to see only part
of a graphic image you have developed. For you may want to see only the wheel of a
car, not the entire body of the car that you have been modeling.

To get part of an image in a view, you use or
GM_$DISPLAY _FILE_PART to specify in segment coordinates the part of the segment (or
file) you want displayed. That part of the segment (or file) is centered in the current viewport
with a scale automatically set so that the specified part of the file is displayed as follows: One of
the two dimensions fills the viewport, and the other dimension does not overflow the viewport.

This allows you to look at the entire file or segment in one and a smaller part of a file
or segment in another viewport. The same file or can appear in different viewports (see
Figure 4-1.

You may want the contents of a segment to be much smaller than the This is possible
because the 2D GMR package uses the rectangular bounds that you specify, not the current
bounds of the coordinate data within the In this way, you can override this coordinate
data based on coordinates within the se~~ment.

The 2D GMR package then sets the view transformation from world coordinates of that segment
to display pixels so that one dimension fills the current (not 95%). The other
dimension is centered in the viewport and does not overflow it. This means that if the aspect
ratio of the region you defined is different than the aspect ratio the viewport, you will see more
than the area you requested. It will continue to display all the way out to the edge of the
viewport. But you are guaranteed that this entire bounded will be viewed in
the viewport, and one dimension or the other will fill the entire viewport.

GM_$DISPLAY _FILE_PART displays
Bounds are in segment coordinates of the

GM $DISPLAY SEGMENT PART
viewport.

of the

the current viewport.

segment III the current

The Displaying Process

8.7. Changing the View

Functions:

GM $VIEW TRANSLATE
GM-$VIEW-SCALE
GM-$VIEW-TRANSFORM
GM=$VIEW=TRANSFORM_RESET

Changing the view causes the picture in the current viewport to be redisplayed, with the picture
translated or scaled.

GM $VIEW TRANSLATE translates the view in the current viewport by (x,y) in bitmap
coordinates. The amount of translation is expressed in fractions of the size of the GM bitmap.

GM_ $VIEW _SCALE rescales the display in the current viewport, multiplying the current view
transformation by the specified scale factor. The point (x,y) on the screen is kept fixed during
this rescaling. This point is expressed in bitmap coordinates, that is, fractions of the size of the
GM bitmap.

GM_ $VIEW _ TRANSFORM rescales the display in the current viewport, multiplying the
current view transformation by the specified transform factor. The point (x,y) on the screen is
kept fixed during this rescaling. This point is expressed in bitmap coordinates, that is, fractions
of the size of the GM bitmap.

GM_$VIEW _ TRANSFORM_RESET restores the view transformation in the current viewport
to the value that was assigned to it at the time of the last call to
GM_$DISPLAY _FILE[_PART] or GM_$DISPLAY _SEGMENT[_PART], adjusted for any
GM_$VIEWPORT_MOVE calls or any changes to the GM bitmap. This allows you to
manipulate the view experimentally and still restore it to its form at the time you displayed it.

8.8. Refreshing the Display

Functions:

GM $DISPLAY REFRESH
GM=$VIEWPORT_REFRESH
GM_$REFRESH_SET_ENTRY

These routines enable an application program to keep up with changes to a file or segment. The
routines are especially useful after you have made multiple changes to a file or segment.

GM_$DISPLAY _REFRESH updates the display in all viewports, except viewports III the
GM_ $REFRESH_INHIBIT refresh state (see Section 10.2).

GM_ $VIEWPORT _REFRESH updates the display in the current viewport. This routine
redisplays the contents of the viewport and is useful after you have made multiple changes to a
file or segment.

GM_ $REFRESH_SET _ENTRY specifies a user-defined routine to be called when the display
is refreshed as a result of using a DM refresh window command or pressing <POP>.

The Di8playing Proce88 8-8

8.9. Program to Change the View

This program opens and displays an existing file and' then changes the view scale to shrink the
viewport. (For an existing file, you may use the program in Appendix D). As viewports may not
overlap, this makes room for a second viewport. The second viewport is created, and the file is
displayed in it. The view scale is then changed for the second viewport.

To illustrate the ease of switching between viewports, the first viewport it selected as the current
viewport. This viewport is moved and made smaller to allow for the creation of a third viewport.
The file is displayed in this third viewport, and the view scale is changed.

PROGRAM course2;

%NOLIST;
%INCLUDE '/sys/ins/base.ins.pas';
%INCLUDE '/sys/ins/gmr.ins.pas';
%LIST;

VAR
status status_$t;

name name_$pname_t;
length INTEGER;

vpid2 INTEGER;
vpid3 INTEGER;
file id INTEGER;

rtransl gm_$pointreal_t;
b gm $boundsreal t; - -

bitmap_size gm_$point16_t;

i INTEGER;

BEGIN

WRITE ('File name: ') ;
READLN(name);

{ Input the name of the file to be displayed, }
for example, PROGRAM hotel. }

length := LASTOF(name);
WHILE (name[length] = ' ,) AND (length> 0)
DO length := length - 1;

bitmap_size.x - 1024;
bitmap_size.y 1024;
gm_$init

(gm_$direct
. stream_$stdout
, bitmap_size

8
status

) ;

gm_$file_open
(name
, length

8-9 The Displaying Process

, gm_$r
, gm_$lw

file id
status

);

gm_$display_file
(status
) ;

rtransl.x := 0.0;
rtransl.y := 1.0;
gm_$view_scale

(0.25
, rtransl
, status
);

FOR i := 1 TO 10
DO gm_$view_scale

(1.05
, rtransl
, status
) ;

rtransl.x := 0.1;
rtransl.y := 0.8;
FOR i := 1 TO 10
DO gm_$view_scale

(0.92
, rtransl
, status
) ;

b.xmin 0.0;
b.ymin 0.6;
b.xmax 0.38;
b.ymax 1.0;
gm_$viewport_set_bounds

(b
, status
);

b.xmin 0.4;
b.ymin 0.0;
b.xmax 1.0;
b.ymax 0.6;
gm_$viewport_create

(b
, vpid2
, status
) ;

gm_$display_file
(status
) ;

rtransl.x
rtransl.y

- 0.7;
0.3;

The Di8playing Proce88

{ Now display the file. }

{ Change the view scale. }

{ Shrink the viewport. }

{ Create a second viewport. }

{ Display the file in the second viewport. }

{ Change the view scale in the second viewport. }

8-10

FOR i := 1 TO 10
DO gm_$view_scale

(1.05
, rtransl
, status
) ;

FOR i := 1 TO 3
DO gm $view scale

(-0.85 -

, rtransl
, status
) ;

gm_$viewport_select
(1
, status
) ;

rtransl.x := 0.0;
rtransl.y := 0.9;
FOR i := 1 TO 10
DO gm_$view_scale

(1.05
, rtransl
, status
) ;

FOR i := 1 TO 3
DO gm $view scale

(-0.9 -
, rtransl
, status
);

gm_$viewport_select
(vpid2
, status
) ;

rtransl.x := 0.0;
rtransl.y := -0.4;
gm_$view_translate

(rtransl
, status
) ;

b.xmin - 0.4;
b.ymin - 0.4;
b .xmax 1.0;
b . ymax - 1. 0 ;
gm_$viewport_set_bounds

(b
, status
) ;

b.xmin - 0.0;
b.ymin - 0.0;
b.xmax - 1. 0;

{ SWitch back to the first viewport. }

{ SWitch back to the second viewport. }

{ Translate the second viewport. }

{ Shrink the second viewport. }

{ Create a third viewport. }

8-11 The Displaying Process

b.ymax := 0.2;
gm_$viewport_create

(b

• vpid3
· status
) ;

gm_$display_file
(status
);

gm_$viewport_in~bounds
(b

· status
) ;

{ Display the file in the third viewport. }

rtransl.x := 0.9;
rtransl.y := 0.1;
FOR i := 1 TO 20
DO gm_$view_scale

{ Change the view scale in the third viewport. }

(0.9
· rtransl
· status
);

gm $file close
- (true

• status
) ;

gm $terminate
(status
);

END.

The Displaying Process

{ Close the file. }

8-12

Chapter 9
Developing Interactive Applications

This chapter provides an overview of functions used for interactive editing. The routine for
changing the editing mode is described and illustrated with a sample program; Other interactive
functions are described in more detail in Chapter 10.

9.1. Making Your Application Easy to Use

To make your application program easy to use, the 2D Gl\1R package provides the tools for
interaction between your program and your user. The 2D Gl\1R package has routines to establish
editing modes, to accept input, and to refresh the display to accommodate change to an image
and the screen.

The routines GM_$VIEWPORT_SET_REFRESH_STATE and
GM_$VIEWPORT _INQ_REFRESH_STATE allow you to control the frequency at which the
display in a viewport is refreshed. With these routines, you can change the metafile and have the
package automatically update one or more viewports to incorporate these changes, without calling
a refresh routine. One use of this feature is in a rubberbanding procedure when you are trying to
find the right place to put a line (see Sections 9.2 and 10.2).

The 2D Gl\1R package has routines to control cursor activity, position, and appearance. These
routines help establish an easy user interface. The cursor routines are described in Section 10.3).

The routines GM_ $ INPUT _ENABLE and GM_ $ INPUT _DISABLE enable graphics programs
to accept input from various input devices. The input routines can be used to synchronize
program execution around input events. These input routines function only in direct mode and in
borrow mode. In within-GPR mode, you must use GPR input routines (see Section 11.1.2).

When you use input routines, you may specify whether the process is to wait until an enabled
event occurs or to return a GM_ $NO _EVENT event type if no event has occurred. To do this,
you use the routine GM _ $INPUT _ EVENT _ WAIT. For at. description of these routines, see
Sections 10.4.1 and 10.4.2.

Pick operations allow you to find and select segments within the metafile or commands within the
current segment. One pick routine enables highlighting of commands. For a description of the
pick routines, see Section 10.5).

Editing commands allow you to insert, delete, and replace commands easily (see Section 10.10).
The pick routines enable access to the segments and commands that you want to edit.

The user environment of interactive applications is improved by 2D Gl\1R routines that delete
commands from a file, erase the contents of an entire segment, and copy segments (see Section
10.11).

A set of routines enables you to find out the type of command in a file. Each of these inquiring
routines is designed to read back the contents of a command from the file and return the values
stored in the file, in the form originally used to store that command in the file. For a description
of these routines, see Section 10.14 and Appendix C.

Q-l Developing Interactive Applications

Q.2. Changing the Picture

Functions:

GM_$MODELCMD_SET_MODE
GM_$MODELCMD_INQ_MODE

You can change the appearance of a picture by changing the commands in the segment that
defines the picture. To do this, you use editing routines to change parameters of commands in
the segment. The editing functions in 2D Gl\1R include replacing one command with another,
replacing one parameter within a command with another, and rubberbanding a command to
experiment with its placement. To perform these editing functions, use
GM_ $MODELGMD _SET _MODE and GM_ $MODELCMD _INQ_MODE. These routines
supercede GM_$REPLACE_SET_FLAG and GM_$REPLACE_INQ_FLAG. You may still
use the GM_ $REPLACE ... routines to set and replace flags in programs that include these
routines. New programs, however, should use the new routines.

The new routines have the following three types and procedures; the rubberbanding mode is a
new type without equivalence in the GM _ $REPLACE ... routines:

GM $MODELGMD INSERT
Insert the current command at the current position after the current command
in the currently open segment. This is equivalent to
GM_$REPLACE_SET _FLAG (false).

GM $MODELCMD REPLACE
Replace the current command at the current position in the currently open
segment. This is equivalent to GM_$REPLACE_SET _FLAG (true).

GM $MODELGMD RUBBERBAND
Temporarily move (rubberband) the current command. The current command
is erased, the screen is updated, and the command is redrawn. This action does
not change the metafile.

These editing modes change the meaning of the 2D Gl\1R modeling routines. In insert and replace
modes, a call to the modeling routines indicates that a command is to be respectively inserted or
replaced at the current position in the currently open segment. In rubberbanding mode, calls to
the modeling routines update a special internal "rubberbanding command. II This command is
not contained in any segment, but is treated as if it were contained in the currently open
segment. In particular, the coordinates of the command are in the coordinate system of the open
segment.

To edit an instanced segment, you must open it. You cannot edit an instanced segment from an
instancing segment.

In rubberbanding mode, a call to a modeling routine causes the following three actions to occur:

• The rubberband command is XOR'ed onto the screen. (Thus erasing it.)

• The rubberband command is updated according to the modeling command.

• The rubberband command is XOR'ed onto the screen. (Thus drawing it.)

Rubberband mode and the current insert and replace modes have some important differences.

Developing Interactive Applications 9-2

Rubberbanding makes no permanent change to the screen and makes no change at all to the
metafile. Rubberbanding is simply a method by which an application program can interactively
get information from the user by means of a pointing device. After getting the information, the
application program must then insert or replace the command with the desired values of changes.

The GM $REFRESH UPDATE refresh state is often valuable in conjunction with replace
mode. For more information on refresh states, see Section 10.2.

9.3. An Interactive Program

The following program creates one segment containing sixteen filled polyline commands. The
user can then pick and move the commands. The program illustrates the following:

• The modeling command GM_$POLYLlNE_2D16 is used in all three model
command modes: gm _ $modelcmd _ insert, gm _ $modelcmd _ replace, and
gm _ $modelcmd _ rubberband.

• Partial refresh is used. When you run the program, move one of the polygons over
another, then move it again to another location. You will see that partial refresh may
not accurately update the viewport (see Section 10.2).

• Command highlighting is used to show which command is picked.

• GM_$PICK_ COMMAND returns a picked command only if the command intersects
the pick aperture. Note that a nonzero pick aperture makes picking somewhat easier.
A nonzero pick aperature is essential when there are horizontal or vertical lines to
pick (see Section 10.5).

PROGRAM star_move;

{ The following keys are enabled and perform the following actions:

P Toggle to pick/replace a command
Q Quit
~X Abort rubberbanding (command is NOT replaced)

}

%NOLIST;
%INCLUDE '/sys/ins/base.ins.pas';
%INCLUDE '/sys/ins/error.ins.pas';
%INCLUDE '/sys/ins/gmr.ins.pas';
%INCLUDE '/sys/ins/pfm.ins.pas·;
%LIST;

CONST

VAR

ctrlx = CHR(16#18);

stars x = 4;
stars_y = 4'

ev_type

9-3 Developing Interactive Applications

character
bitmap_pos
viewport_id
segment_pos
status

fluSh_ev_type
flush character
flush_bitmap_pos
flush_viewport_id
flush_segment_pos
flush status

i
j
k

star
vertices
closed
filled

last_segment_pos
delta

file id
sid

n instances
bounds

command_picked

bitmap_size
pick_aperture

PROCEDURE check;
BEGIN

CHAR;
gm_$pointreal_t;
INTEGER;
gm_$pointreal_t;
status_$t;

gm $event t; - -
CHAR;
gm_$pointreal_t;
INTEGER;
gm $pointreal t;
status_$t; -

INTEGER;
INTEGER;
INTEGER;

gm_$point_array16_t;
INTEGER;
BOOLEAN;
BOOLEAN;

gm $pointreal t;
gm-$point16 t; - -

INTEGER;
gm_$segment_id_t;

INTEGER32;
gm_$boundsreal_t;

BOOLEAN;

gm $point16 t := [1024, 1024];
gm=$pointreal_t := [4.0, 4.0];

IF status.all <> status_$ok
THEN pfm_$error_trap(status);
END;

BEGIN

gm_$init
(gm_$direct

1
, bitmap_size

8
, status
) ;

check;

{ Initialize the 2D GMR package. }

gm_$file_create { Create a 2D GMR file named ·stars.gmr.· }
(·stars.gmr·
, SIZEOF(·stars.gmr·)
, gm_$overwrite
, gm_$lw

file id

Developing Interactive Applications 9-4

. status
);

check;

gm $data coerce set real
- (gm=$32 - -

. status
);

check;

gm_$segment_create
(

o
sid
status

);
check;

star [1] .x - 000;
star [1] .y - 000;
star [2] . x - 400;
star [2] .y - 300;
star [3] .x - 000;
star [3] .y - 300;
star [4] .x - 400;
star [4] .y - 000;
starE 5] .x - 200;
star [5] .y - 400;
closed - TRUE;
filled - TRUE;
vertices := 5;

gm $modelcmd set mode
- (gm_$modelc~d_insert

. status
);

check;

FOR i := 1 TO stars x
DO BEGIN

FOR j := 1 TO stars_y
DO BEGIN

gm_$polyline_2d16
(vertices

star
closed
filled
status

);

check;
FOR k := 1 TO vertices

{ Coerce REAL data to INTEGER32. }

{ Create an unnamed segment. }

{ Define a filled polyline. }

{ Set model command mode to insert. }

{ Insert polylines into the segment. }

DO starE k].y := starE k].y + 600;
END;.

FOR k := 1 TO vertices
DO BEGIN

star [k] .x - star [
star [k] .y - star [
END;

END;

k] .x + 600;
k].y- 600 * starsJ;

Q-5 Developing Interactive Applications

gm $display segment
- (sid -

• status
);

check;

gm $viewport set refresh state
- (gm_$reireSh_partiai

I status
) ;

check;

gm_$cursor_set_active
(TRUE

. status
) ;

check;

gm_$input_enable
(gm_$keystroke
, [ctrlx

'P'
• 'Q'

, 'p'

]
status

) ;
check;

gm_$input_enable
(gm_$locator
I []

I status
) ;

check;

FALSE;

REPEAT

gm $input event wait
- (TRuE -

,ev_type
, character
, bitmap_pos
, viewport_id
, segment_pos
, status
) ;

check;

IF ev_type = gm_$locator
THEN REPEAT

gm_$input_event_wa.it
(FALSE
, flush_ev_type
, flush_character
I flush_bitmap_pos

Developing Interactive Applications

{ Display the segment. }

{ Set the refresh state to partial. }

{ Make the cursor active. }

{ Enable keys ~XI PI and Q. }

{ Enable locator events. }

{ Wait for an event. }

{ Flush the queue. }

9-6

, flush_viewport_id
, flush_segment_pos
, flush status
) ;

IF flush_ev_type <> gm_$no_event
THEN BEGIN

ev_type
character
bitmap_pos
viewport_id
segment_pos
status
check;
END;

- flush_ev_type;
flush_character;
flush_bitmap_pos;

- flush_viewport_id;
flush_segment_pos;
flush_status;

UNTIL flush_ev_type <> gm_$locator;

CASE ev_type OF { Do case event type. }

gm_$keystroke:

CASE character OF

'P' ,

'p' :
IF NOT command_picked
THEN BEGIN

gm_$pick_set_center
(segment_pos
, status
) ;

check;
gm_$pick_set_size

(pick_aperture
, status
) ;

check;
gm_$pick_segment

(gm_$clear
sid

);

n instances
bounds
status

{ Set the pick center. }

{ Set the pick aperture. }

{ Clear the old pick list. }

check;
gm_$pick_segment { Set up pick at the top segment. }

(gm_$setup
sid

) ;

n instances
bounds
status

IF status.all = status_$ok
THEN BEGIN

gm_$pick_command
(gm_$start
, status
) ;

check;

9-7

{ Initialize the pick_command. }

Developing Interactive Applications

gm_$pick_command
(gm_$cnext
, status
) ;

command_picked
END;

IF command_picked

{ Pick a command. }

status.all = status_$ok;

THEN BEGIN
gm_$pick_highlight_command

(gm_$outline
{ Highlight the picked }
{ command. }

, 1.0
, status
);

check;
gm_$in~polyline_2d16

(vertices
, star
, closed
· filled
, status
) ;

check;

{ Inquire about the }
{ picked polyline. }

gm_$modelcmd_set_mode {Change to rubberband mode. }
(gm_$modelcmd_rubberband
· status
) ;

check;
gm $cursor set active

- (FALSE -
· status
) ;

check;

{ Turn off the cursor. }

last_segment_pos - segment_pos;
END;

END

ELSE BEGIN

gm_$modelcmd_set_mode { Change to replace mode. }
(gm_$modelcmd_replace
, status
);

check;
gm_$polyline_2d16 { Replace the polyline. }

(vertices
, star

closed
filled

. status
) ;

check;
gm_$cursor_set_active

(TRUE
. status
) ;

check;
command_picked - FALSE;
END;

Developing Interactive Applications 9-8

{ Turn the cursor on. }

ctrlx:
BEGIN

'q' :

command_picked := FALSE;
gm_$modelcmd_set_mode { Turn off rubberband mode. }

(gm_$modelcmd_replace
, status
);

check;
gm_$cursor_set_active { Turn the cursor on. }

(TRUE
, status
);

check;
END;

EXIT; { Quit. }

END;

gm_$locator:
IF command_picked
THEN BEGIN

delta.x := ROUND(segment_pos.x - last_segment_pos.x);
delta.y := ROUND(segment_pos.y - last_segment_pos.y);
last_segment_pos := segment_pos;
FOR 1 := 1 TO vertices
DO BEGIN

star[i].x - star[i] .x + delta.x;
star[i] .y star[i] .y + delta.y;
END;

gm_$polyline_2d16 { Move XOR-rubberband. }
(vertices

star
closed
filled
status

);

check;
END

ELSE BEGIN

END;

gm_$cursor_set_position(bitmap_pos, status);
check;
END;

UNTIL FALSE;

gm_$segment_close
(TRUE
, status
) ;

check;

{ Close the segment. }

9-9 Developing Interactive Applications

gm_$file_close
(TRUE
, status
) ;

check;

gm_$terminate
(status
) ;

check;

END.

Developing Interactive Applications

{ Close the file. }

{ Terminate the session. }

9-10

Chapter 10
Routines for Interactive Applications

This chapter describes the following interactive functions: replacing commands, establishing a
refresh state, controlling the cursor, using input operations and event reporting, picking
operations, editing a metafile, and reading a metafile. Examples illustrate many of these
functions.

10.1. Editing Modes

Functions:

GM_$MODELCMD_SET_MODE
GM_$MODELCMD_INQ_MODE
GM_$REPLACE_SET_FLAG
GM_$REPLACE_INQ_FLAG

The routine GM_$MODELCMD _SET _MODE establishes the editing mode to replace, insert,
or move (rubberband) a command (see Section 9.2).

The GM_ $MODELCMD ... routines supercede the two replace routines described in this section.
GM_$REPLACE_SET _FLAG and GM_$REPLACE_INQ_FLAG are still useable in
programs that include them. The new routines are recommended for new programs.

GM_$MODELCMD _SET _MODE (gm_$modelcmd_replace,*) puts the 2D GMR package in
a mode in which commands are replaced (overwritten) within the file, not inserted. In the replace
state, the current command is continually replaced. This IS equivalent to
GM_$REPLACE_SET_FLAG (true).

In replace mode, you can only replace a command with a command of the same type. Calling a
routine that attempts to write any other command type to the file will not affect the file and will
reset the mode to GM $MODELCMD INSERT.

GM_$MODELCMD _INQ_MODE tells you whether the 2D GMR package is in the (normal)
insert, replace, or rubberband mode. GM_ $MODELCMD _INQ_MODE relates to
GM_$REPLACE_INQ_FLAG in this way:

Mode Returned Flag Returned Status

GM $MODELCMD INSERT False 0 - -
GM_$MODELCMD_REPLACE True 0

GM_$MODELCMD_RUBBERBAND ? Illegal value

As the list above indicates, you can use the old GM_ $REPLACE _FLAG routine for two of the
modes, but not with rubberband mode.

10-1 Routines for Interactive Applications

10.2. Establishing a Refresh State

Functions:

GM $VIEWPORT SET REFRESH STATE
GM=$VIEWPORT=INQ=REFRESH=STATE

GM_$VIEWPORT _SET _REFRESH_STATE allows you to control the frequency at which
the display in a viewport is refreshed. This routine allows you to change the metafile and have
the package automatically update one or more viewports to incorporate these changes, without
calling a refresh routine. One use of this feature is in a rubberbanding procedure when you are
trying to find the right place to put a line.

GM_$VIEWPORT _SET _REFRESH_STATE allows you to specify the refresh state of the
current viewport. GM_$VIEWPORT_INQ_REFRESH_STATE returns the value of the
refresh state of the current viewport. These routines have the following types and procedures:

GM $REFRESH_ INHffiIT
Changing commands in the file does not immediately affect this viewport. In
borrow mode, the viewport is redrawn only when you call
GM $VIEWPORT REFRESH. In direct mode, the viewport is redrawn
only when you call GM_$VIEWPORT _REFRESH, or when the display is
refreshed as the result of a DM command that causes the window to be
redrawn. Thus, calling GM_$DISPLAY _REFRESH does not affect a
viewport in this refresh state.

GM_$REFRESH_ WAIT
(Default) Changing commands in the file does not immediately affect this
viewport. In borrow mode, the viewport is redrawn only when you call
GM $VIEWPORT REFRESH or GM $DISPLAY REFRESH. In direct
mode, the viewport is redrawn only when you call
GM_$VIEWPORT_REFRESH or GM_$DISPLAY _REFRESH or when the
display is refreshed as the result of a DM command that causes the window to
be redrawn.

GM $REFRESH PARTIAL
Every time you change any command in the file, the following occurs: Inserted
primitive commands are added, and deleted primitive commands are erased,
but underlying data is not rewritten. This provides faster interactive drawing.
You should, however, periodically clean up the accumulating inaccuracies by
calling GM_ $VIEWPORT _REFRESH to redisplay the viewport.

GM $REFRESH_ UPDATE
Every time you change any command in the file, this viewport is completely
corrected.

Partial refresh has two aspects and uses in applications packages -- partial refresh (erase) and
partial refresh (draw):

• Partial refresh (erase) is used when you call GM_ $COMMAND _DELETE or when
you replace a command to erase the old command. The command is erased by
redrawing it in the background color. This may partially erase other commands that
overlap the erased command.

Routine8 for Interactive Application8 10-2

• Partial refresh (draw) means drawing a command without regard to precedence.
Partial refresh (draw) is used when the application calls a modeling routine while in
replace or insert mode.

Partial refresh does not always update the viewport accurately. For completely accurate
incremental updating, set the viewport state to GM_ $REFRESH_ UPDATE. Extensive use of
partial refresh may eventually force a call to GM_$VIEWPORT _REFRESH.

10 .. 3. Controlling the Cursor

Functions:

GM_$CURSOR_SET_ACTlVE
GM_$CURSOR_SET_PATTERN
GM_$CURSOR_SET_POSITION
GM_$CURSOR_INQ_ACTlVE
GM_$CURSOR_INQ_PATTERN
GM_$CURSOR_INQ_POSITION

The cursor is a key element in an interactive program. The 2D GMR package has routines to
control cursor activity. position and appearance.

GM $CURSOR SET ACTIVE turns the cursor on and off. Initially, the cursor is off.

GM_$CURSOR_SET _PATTERN establishes a new cursor pattern (up to 16x16 pixels). The
cursor pattern is defined as a sequence of rows of bits from top to bottom. Within the cursor
pattern, you can specify which pixel is to be considered the cursor origin. You specify the
number of pixels that are to be displayed to the left of, and above, the cursor position established
by GM_$CURSOR_SET _POSITION (see Figure 10-1).

x-offset 2---+­
(pixelS to the

y-offset 2 (lines above origin)

left of the origin
origin)

Figure 10-1. Cursor Pattern and Position

You must place a cursor pattern smaller than 16x16 in the high-order bits of the first words of
the pattern:

10-3 Routines for Interactive Applications

VAR
{ A cursor pattern smaller than 16x16 starts in the high order bits,

and starts in word 1 of the array }

cursor_pattern1 : gm_$cursor_pattern_t

cursor size

- [16#8080,16#4100,16#2200,16#1400,
16#800,16#1400,16#2200,16#4100,16#8080] ;

gm_$cursor_set_pattern(gm_$bitmap,cursor_size,
cursor_pattern1,cursor_origin, status);

GM_$CURSOR_SET _POSITION moves the cursor to a position that you specify as fractions
of the size of the GM bitmap.

GM_$CURSOR_INQ ... routines return the current values of the cursor parameters.

10.4. Using Input Operations

The 2D GMR package includes a set of routines that enable graphics programs to accept input
from various input devices. The input routines can be used to synchronize program execution
around input events. These input routines function only in direct and in borrow mode.

In within-GPR mode, you must use GPR input routines (see Chapter 11).

10.4.1. Event Types

Functions:

GM_$INPUT_ENABLE
GM_$ I NPUT_D I SABLE

An event occurs when input is generated in a window (direct mode) or in the borrowed display
(borrow mode). The 2D GMR package supports several classes of events, called event types.
Programs use an input routine to select the type of event to be reported to them; this operation is
called enabling an event type. The event types are the following:

GM_ $INPUT _ENABLE enables a single type of input event. To enable multiple input types,
call this procedure multiple times. No input events are enabled as a default"

GM_ $INPUT _DISABLE disables a single type of input event. To disable multiple input types,
call this procedure multiple times.

Routines for Interactive Applications 10-4

Table .10-1. Event Types

Keystroke A keystroke event occurs when you type a keyboard character. Programs can
select a subset of keyboard characters, called a keyset, to be recognized as

keystrqke events. In direct mode, keys that do not belong to the keyset are
processed normally by the Display Manager. In borrow mode, keys not
belonging to the keyset are ignored.

Button A button event occurs when you press a button on the mouse or bitpad puck.

Locator A locator event occurs when you move the mouse or the bitpad puck, or use
the touchpad.

Locator stop A locator stop event occurs when you stop moving the mouse or bitpad puck,
or stop using the touchpad.

Window transition event
In direct mode, the cursor may move into and out of the window in which the
GM bitmap resides. When the cursor leaves the window, the input routines
report to the program an event of type GM_ $LEFT _ WINDOW; when the
cursor enters the window, the routines report an event type of
GM $ENTERED WINDOW. - -

10.4.2. Event Reporting

Function:

GM_$INPUT_EVENT_WAIT

When you enable an event type, the input routines will report each event of the enabled type to
the program, along with a cursor position. This position is in bitmap coordinates, that is, in
fractions of the GM bitmap.

When you call GM_$INPUT _EVENT _ WAIT, you may specify whether the process is to wait
until an enabled event occurs or to return a GM_ $NO _EVENT event type if no event has
occurred. The first argument of the routine controls this choice. (These alternatives are similar
to the choice between the routines GPR $EVENT WAIT and
GPR_$COND_EVENT_ WAIT.)

In borrow mode, events that have not been enabled are ignored. In direct mode, all events
outside the Display Manager window in which 2D GMR is running are handled by the Display
Manager. In addition, events that have not been enabled are passed to the Display Manager.

If the enabled event type is keystroke or button, the input routines return an ASCII character
from the enabled keyset. When defining a keyset for a keystroke event, consult the system insert
files /SYS/INS/KBD.INS.PAS, /SYS/INS/KBD.INS.FTN, and /SYS/INS/KBD.INS.C. These
files contain the definitions for the non-ASCII keyboard keys in the range 128 through 255. For a
sample keyboard chart, see Appendix B.

The input routines report button events as ASCII characters. II Down II transitions range from
"a" to "d il

; "up" transitions range from "A" to liD". The three mouse keys start with (a/A) on
the left side. As with keystroke events, button events can be selectively enabled by specifying a
button keyset.

10-5 Routines for Interactive Applications

Locator events report coordinates of the locator input, expressed in fraction-of-GM-bitmap
coordinates. If the program has not enabled locator events, then at the next occurrence of an
enabled event, the 2D GMR software reports the locator final cursor position to the program,
along with the enabled event.

10.5. Using Picking

Pick operations allow you to find and select segments within the metafile or to find and select
commands within the current picked segment. Picking may be done with or without respect to a
pick aperture.

10.5.1. Picking Without an Aperture

When you perform picking without an aperture, you use only GM_$PICK_ COMMAND; and
you may only use the options GM_$STEP, GM_$START, and GM_$END. These options to
GM_$PICK_ COMMAND allow you to move about in the currently open segment and to
change which command is the current command, that is, the command before which new
modeling commands will be inserted.

10.5.2. Picking With an Aperture

The search for segments or commands can be limited to a specified range of coordinates. This
range is called the pick aperture. Before starting to pick, you can define the pick aperture using
the routines GM $SET PICK CENTER and GM $SET PICK SIZE. The coordinates
and size used to set the pick aperture are in the coordinate system of the top-level segment in the
viewport, that is, the coordinate system which GM_ $INPUT _EVENT _ WAIT uses to report
locator events. The pick aperture is initialized to center (0,0) and size (0,0).

Picking with an aperture requires two steps.

1. Use GM _ $PICK _ SEGMENT to define an instance path to the desired segment.

2. Using this instance path, you may use GM_ $PICK_ COMMAND to pick individual
commands within the picked segment.

Because a given segment may be instanced many times, an instance path to the segment is
necessary to specify which instance is intended. Consider the following example. Suppose
segment A is a stick man which is instanced twice into segment B and viewed in the viewport as
shown in Figure 10-2:

Routines for Interactive Applications 10- 6

Figure 10-2. Instancing and Picking

The IIX" is the pick center. Note that without specifying an instance path, that is, without
specifying which instance is to be considered, the pick is ambiguous. It is unclear whether the left
arm or the right arm has been selected.

When picking with an aperture, use the following general sequence of operations:

1. Close any open segment. (This is not always necessary, but you must do it before
step 5.)

2. Call GM_ $PICK_SEGMENT (gm_ $setup, *) to initialize segment picking.

3. Call GM $PICK SET CENTER and GM $PICK SET SIZE to define the
pick aperture.

4. Call GM_ $PICK_SEGMENT (appropriate option, for example, gm_ $down, *)

5. Determine whether a segment was picked, and if so, whether it is of interest. If a
segment was not picked or the picked segment is not of interest, go back to step 4 or
step 3.

6. Open the picked segment.

7. Call GM_ $PICK_ C011MAND (gm_ $start, *) to initialize command picking.

9. Determine whether a command was picked, and if so, whether it is of interest. If a
command was not picked or the picked command is not of interest, go back to step 8;
or if you are at the end of the segment, close the segment and go back to step 4 or
step 3.

10. Edit the picked and open segment. If you want to edit interactively using a locator

10-7 Routine8 for Interactive Application8

device, then use GM_$PICK_ TRA.NSFORM_POINT to convert coordinates from
the top-level segment, that is, as reported by GM_ $INPUT _EVENT _ WAIT, to the
coordinate system of the open segment.

11. Close the segment when you have completed editing.

Setting the Pick Aperture

Functions:

GM_$PICK_SET_CENTER
GM_$PICK_SET_SIZE
GM_$PICK_INQ_CENTER
GM_$PICK_INQ_SIZE

Setting the center and size of the pick aperture defines the part of coordinate space to use in
searches. The size of the pick aperture may be large, small, or zero.
GM_$PICK_SET _ CENTER sets the center of the pick aperture in segment coordinates.
GM_$PICK_INQ_ CENTER returns the center of the pick aperture.

GM_$PICK_SET _SIZE sets the x and y tolerances for the pick aperture, in segment
coordinates. GM _ $PICK _ INQ _ SIZE returns the x and y tolerances for the pick aperture.

10.7. Picking and Listing Segments

Functions:

GM_$PICK_SEGMENT
GM_$PICK_INQ_LIST
GM $PICK HIGHLIGHT SEGMENT
GM=$PICK=TRANSFORM=POINT

GM_$PICK_SEGMENT looks for segments within the pick aperture. The search for segments
follows one of eight rules shown in Table 10-2:

If a segment is found, it becomes the current picked segment and the last segment on the list of
picked segments. If no segment is found, the list of picked segments is unchanged.

While a segment is in the list of picked segments, you may not delete or edit it. A picked
segment must be open before you can pick commands in it. Therefore, if the open segment is not
the picked segment, you must close it. You can then open the picked segment to make it the
current segment.

GM_ $PICK_INQ_LIST returns the current list of picked segments. The first segment in the
list is the segment in which the segment picking process was initialized. For example, assume
that your file contains segments that instance other segments, as shown in Figure 10-3:

Routines for Interactive Applications 10-8

Table 10-2. Search Rules for Picking

GM $SETUP Make the viewport primary segment of the current viewport the start of the
list of picked segments. The rest of the list is emptied.

GM $DOWN Find the first segment within the current picked segment that, when instanced,
falls within the pick aperture.

GM $NEXT Find the next segment within the segment one higher in the list of picked
segments, that falls within the pick aperture.

GM $UP Move up one level in the list of picked segments.

GM $TOP Proceed to the top segment in the list of picked segments, destroying the rest of
the list of picked segments.

GM $CLEAR Clear the entire list of picked segments, allowing all segments to be edited or
deleted.

GM $BOTTOM Perform GM_ $DOWN repeatedly until a segment is reached for which
GM_$DOWN finds nothing.

GM $NEXTBOTTOM
Perform GM_$BOTTOM. If nothing is found, perform GM_$NEXT, or one
or more GM_$UP's followed by a GM_$NEXT, until a GM_$NEXT finds a
segment. When a GM_ $NEXT finds a segment, perform a GM_ $BOTTOM
from there.

1
/ \

2 3

/ \
4 5

/ /
6 8

/
7

Figure 10-3. Instancing and Picking Segments

If segment 1 is the viewport primary segment of the current viewport, then calling
GM _ $PICK _ SEGMENT with the following sequence of options will change the current picked
segment and the list of picked segments, as indicated in Table 10-3.

To find all lowest-level segments in the pick aperature, one at a time use the GM $SETUP
option, then GM_ $BOTTOM, then GM $NEXTBOTTOM until no further segments are
found.

You can generate a list of pickable segments directly instanced by another segment by picking
that segment, then using GM_ $DOWN, then using GM $NEXT repeatedly until no more
matches are found.

10-9 Routines for Interactive Applications

Table 10-3. EX8.mple of Picking and Listing Segments

New Current
Option Picked Segment List of Picked Segments

GM_$SETUP 1 1

GM_$DOWN 2 1,2

GM_$DOWN 4 1,2,4

GM_$NEXT 5 1,2,5

GM_$UP 2 1,2

GM_$BOTTOM 7 1,2,4,6,7

GM_$NEXTBOTTOM 8 1,2,5,8

GM_$NEXTBOTTOM 3 1,3

GM_$TOP 1 1

GM_$CLEAR none none

GM_$PICK_HIGHLIGHT _SEGMENT highlights the picked segment on the display. Only
one instance of a segment is highlighted.

GM $PICK TRANSFORM POINT allows you to convert viewport segment coordinates to
the segment coordinates of an instance of the picked segment. While any segment may be edited,
GM_ $INPUT _EVENT _ WAlT still reports the locator position in viewport (that is, top level)
segment coordinates. This presents no problem if only translations are involved. However, if
scaling or rotation is used, particularly with multilevel instancing, then going from the viewport
segment coordinates to the open segment coordinates is more difficult. This call facilitates that
conversion.

10 .. 8. Picking a Command

Functions:

GM $PICK COMMAND
GM=$PICK=HIGHLIGHT_COMMAND

Pick routines let you select a single entity from a file, either a segment or a command. .As you
edit a segment, you can use the pick routines to select the command you want to change.

In editing a file, you may want to change some segments of it and protect others from change.
You can do this by using pick mask and pick threshold routines to protect a basic picture while
you change some elements in it.

You may only edit commands within the current segment. The current segment has a current
command. When you open or create a segment, that segment becomes the current segment, and

Routine8 for Interactive Application8 10-10

the last command in the current segment becomes the current command. You can append new
commands to this current command.

The routine GM $PICK C011MAND can change the current command. When the pick­
command procedure finds a command, it becomes the current command. You can then read or
edit that command.

When you insert a new command into the metafile, it is placed just after the current command,
and it becomes the current command. Thus, if you follow an insertion with a deletion, the last
command you inserted is deleted. For a description of editing procedures, see Section 10.10.

GM_$PICK_ C011MAND looks for commands within the current segment by following one of
four search rules shown in Table 10-4:

Table 10-4. Search Rules for Picking a Command

GM_$CNEXT

GM_$ S TART

(Next command) Find the next command which falls
within the pick aperture. moving forward in the
segment.

(Forward one step) Find the next command in the
segment. independent of the pick aperture.

Make the current command the blank space at the start
of the segment. This allows a search to proceed from
the start of the segment. or j.t allows commands to be
inserted at the start of the segment.

Make the final command in the segment the current command.
This allows you to insert additional commands at the end
of the segment.

You may want to search for the next command within a viewport. You can use GM _ $CNEXT
to find the next command in a segment that falls within the pick aperture. The search may be in
a segment that contains commands for several graphic images. The searching process, however, is
for commands that fall within the pick aperture.

Instance commands are treated like any other commands in this context. To pick "into" an
instanced segment, use GM_$PICK_SEG1V1ENT.

GM _ $PICK _ HIGIll .. ,1GHT _ C011MAND highlights the current command on the display.

10-11 Routines for Interactive Applications

10.9. Controlling What is Picked

Functions:

GM $PICK SET THRESHOLD
GM-$PICK-INQ-THRESHOLD
GM-$PICK-SET-MASK
GM=$PICK=INQ=MASK

You can establish the criterion for picking and not picking segments in two ways: by using a
threshold to eliminate segments with pickable values too small; or by using a mask to eliminate
segments missing certain bits in their pickable values.

To assign pickable values to segments, use GM_$SEGMENT _SET _PICKABLE (see Section
7.2).

A segment is picked only if it meets the pick mask and threshold criteria and the pick aperture
criterion. The pick mask criterion requires that at least one bit be &II &I in both the segment's
pickable value and the pick mask. The pick threshold criterion requires that the segment's
pickable value be greater than the pick threshold.

A use for this pair of methods is to give segments containing text even pickable values and
segments without text odd values, and to give large segments large pickable values. Then you
can use the pick mask to make text segments nonpickable (pick mask = 1), and the pick threshold
to avoid searching for small objects.

GM $PICK SET THRESHOLD establishes a mmlmum segment pickable value. Segments
with smaller pickable values are ignored in searches. The default value is 1, in which case all
segments of nonzero pickable values are pickable.

GM_ $PICK_SET _MASK allows you to base segment pickability on individual bits within the
pickable value for each segment. If any bit is 1 in both the mask and the segment pickable
number, the segment is pickable. The default value is 16#7FFFFFFF, in which case all segments
of nonzero pickable value are pickable.

GM_ $PICK_INQ_ THRESHOLD and GM_ $PICK_INQ_MASK enable you to ascertain the
current value of these parameters.

10.10. Editing Metafiles

The 2D GMR package includes commands for efficient editing of files. These commands allow
you to insert, delete, and replace commands easily. The pick routines described in this chapter
give ready access to the segments and commands that you want to edit.

When you open a segment, the last command in the segment becomes the current command,
allowing new commands to be appended. You may use GM_ $PICK_ COMMAND to change the
current command. You can then insert new commands at that point in the segment, or you can
then use the editing commands to read, delete, or replace the command.

Using the pick and editing commands is analogous to using editing commands in a text editor. In
editing text, you move the cursor to just after a character that you want to change. You then

Routine8 lor Interactive Application8 10-12

backspace over the item you want to delete. Similarly, you use the command
GM_$PICK_ COMMAND to make a particular command the current command. You can then
use GM_ $COMMAND _DELETE to delete the command. Thus, picking a command and then
calling GM_$COMMAND _DELETE deletes the command you just picked.

10.11. Deleting and Copying

The routines for deleting and copying facilitate the use of interactive applications by making it
easy to manipulate the contents of segments and to copy files.

10.11.1. Deleting

Function:

GM_$COMMAND_DELETE
GM_$SEGMENT_ERASE

GM $COMMAND DELETE deletes the current command. Mter the current command is
deleted, the previous command in the current segment becomes the current command. If the first
command in the segment is deleted, the blank space at the start of the segment becomes the
current command. You must then change the current command before deleting any more
commands.

GM_ $SEGMENT _ERASE deletes all commands in the current segment and leaves the segment
open so that you may insert new commands.

10.11.2. Copying

Function:

GM_$SEGMENT_COPY

GM $SEGMENT COPY copies the entire contents of another segment into the current
segment.

Note the difference between GM $ SEGMENT _ COPY and the GM $INSTANCE... routines.
GM_ $ SEGMENT _ COPY leaves you with two copies of the segment, allowing you to modify
the two copies separately. The GM_ $INSTANCE ... routines leave you with one copy of the
segment and a reference to that segment, so that all displayed instances can be changed by
modifying the single instanced segment.

10.12. Program with Picking

The program in this section illustrates the use of all the pick functions and shows the required
order of their use. You can use this program with any metafile, for example with the metafile
·'hotel.gm" created by the hotel program in Appendix D.

The listing of insert files at the top of the program includes gpr.ins.pas. This file gives access to
the DOMAIN Graphics Primitives (GPR) routines. In general, the mixing of 2D GMR and GPR

10-13 Routines for Interactive Applications

is not recommended unless you specify within-GPR mode with the routine GM_ $INIT. Here the
GPR routine provides the best way to release the display that 2D GMR must acquire. The GPR
routine releases the display to allow writing output to a stream.

In addition, the program illustrates creating two windows: one as a transcript pad for text and
one for display of graphics. You create an extra window with pad _ $create. The command
returns a stream id which you then use as the unit parameter in GM_ $INIT.

The routine GM _ $INPUT _ ENABLE provides translation for function keys to create an easy
user interface.

The program pick.pas illustrates the use of the various options to GM_$PICK_SEGMENT and
GM_ $PICK_ C01VfMAND. The program prompts the user for a metafile pathname, creates a
pad in which to display the metafile, then allows the user to make calls to
GM $PICK SEGMENT and GM $PICK C01VfMAND. Status information from the calls is
echoed in the original window.

The following keyboard map is used:

key

C, c
H, h

0, 0

P, P

Q, q

Fl
F2
F3
F4
F5
F6
F7
Fa

Fl shifted
F2 shifted
F3 shifted
F4 shifted

PROGRAM pick;

%NOLIST;

action taken by program

GM_$SEGMENT_CLOSE(picked_segment, *
GM_$PICK_HIGHLIGHT_SEGMENT(picked_segment, *
GM $PICK HIGHLIGHT COMMAND(picked command, *
GM=$SEGMENT_OPEN(picked sement, *­
GM_$PICK_SET_CENTER(current mouse position, *
GM_$PICK_SET_SIZE(4x4, *
quit

GM_$PICK_SEGMENT(gm $clear, *
GM_$PICK_SEGMENT(gm_$setup, *
GM $PICK SEGMENT(gm_$top, *
GM=$PICK=SEGMENT(gm_$next, *
GM $PICK SEGMENT(gm_$up, *
GM=$PICK=SEGMENT(gm_$down, *
GM_$PICK_SEGMENT(gm $bottom, *
GM_$PICK_SEGMENT(gm $nextbottom, *

GM_$PICK_COMMAND(gm_$cnext, *
GM $PICK COMMAND(gm_$step, *
GM=$PICK=COMMAND(gm_$start, *
GM_$PICK_COMMAND(gm_$end, *

%INCLUDE ·/sys/ins/base.ins.pas·;
%INCLUDE ·/sys/ins/pfm.ins.pas·;
%INCLUDE ·/sys/ins/pad.ins.pas·;
%INCLUDE ·/sys/ins/error.ins.pas·;
%INCLUDE ·/sys/ins/gpr.ins.pas·;
%INCLUDE ·/sys/ins/gmr.ins.pas·;
%LIST;

{ <- !!! }

CONST

Routines for Interactive Applications 10-14

VAR

cmd cnext
cmd_step

cmd start

cmd end

seg_clear
seg_setup
seg_top
seg_next

seg_up

seg_down

sag_bottom

seg_nextbottom

show window
strid

name
length
size
file id
sid

ev_type
key
bitmap_pos
viewport_id
segment_pos
status

=
=

=

=

=
=
=
=

=

=

=

=

flush_ev_type
flush_key
flush_bitmap_pos
flush_viewport_id
flush_segment_pos
flush status

pick box
seg_id
ninstances
bounds

search command
search_segment

CHAR (
CHAR (

CHAR (

CHAR (

CHAR (
CHAR (
CHAR (
CHAR (

CHAR (

CHAR (

CHAR (

CHAR (

16#DO) ; { Next command inside pick aperture }

16#D1); { Forward one command in segment);
ignore pick aperture }

16#D2) ; { Backward to before first command in
segment); ignore pick aperture }

16#D3) ; { Forward to last command in segment);
ignore pick aperture }

16#CO);
16#C1) ;
16#C2);
16#C3) ; { Next occurrence at this level inside

pick aperture }
16#C4) ; { Next higher level in segment

hierarchy }-
16#C5) ; { Next lower level segment inside

pick aperture }
16#C6) ; { Lowest level segment

aperture }
16#C7) ; { Lowest level

aperture }

pad $window desc t; - --
stream_$id_t;

name_$pname_t;
INTEGER;

segment

gm_$point16_t:= 1024, 1024];
INTEGER;
gm_$segment_id_t;

gm $event t; - -
CHAR;
gm_$pointreal_t;
INTEGER;
gm_$pointreal_t;
status_$t;

gm_$event_t;
CHAR;
gm_$pointreal_t;
INTEGER;
gm $pointreal t;
status_$t; -

gm_$pointreal_t;
gm_$segment_id_t;
INTEGER32;
gm_$boundsreal_t;

gm_$search_command_t;
gm_$search_segment_t;

inside pick

inside pick

ARRAY gm_$search_command_t] OF string
'PICK_CMD_NEXT%'

, 'PICK_CMD_STEP%'
, 'PICK_CMD_START%'

10-15 Routines for Interactive Applications

, 'PICK_CMD_END%'
];

ARRAY gm $search segment t] OF string -
'PICK_SEG_CLEAR%' -

, 'PICK_SEG_SETUP%'
, 'PICK_SEG_TOP%'
, 'PICK SEG NEXT%'
, 'PICK=SEG=UP%'
, 'PICK_SEG_DOWN%'
, 'PICK_SEG_BOTTOM%'
, 'PICK_SEG_NEXT_BOT%'
];

PROCEDURE squawk

VAR

(IN status UNIV status_$t
IN key UNIV error_$string_t
IN str UNIV error_$string_t
IN a1,a2,a3,a4,a5,a6,a7,a8,a9,a10: UNIVerror_$integer32

); OPTIONS(VARIABLE);

i
ac~rel_cnt

unobscured
st
keylen

INTEGER;
INTEGER;
BOOLEAN;
status _ $t,;
INTEGER;

BEGIN

keylen := 1;
WHILE (key[keylen <> '%') AND (keylen < SIZEOF(key))
DO keylen := keylen +

error_$print_format(status, stream_$stdout, 'I', key, keylen-1,
str, a1,a2,a3,a4,a5,a6,a7,a8,a9,a10);

FOR i := ac~rel_cnt - 1 DOWNTO 0
DO unobscured gpr_$acquire_display(st);

END;

BEGIN

WRITE ('File name: ') ;
READLN(name);

length := LASTOF(name);
WHILE (name[length] = ' ,) AND (length> 0)
DO length := length - 1;

show_window. top - O·

show window. left - O·
show window. width - 1023;
show_window. height - 600;

Routines for Interactive Applications 10-16

pad_$create_window(", 0, pad_$transcript, 1, show_window, strid,
status);

IF status.all <> status_$ok THEN pfm_$error_trap(status);

pad_$set_auto_close(strid, 1, TRUE, status);
IF status.all <> status_$ok THEN pfm_$error_trap(status);

pad_$set_scale(strid, 1, 1, status);
IF status.all <> status_$ok THEN pfm_$error_trap(status);

gm_$init(gm_$direct, strid, size, 8, status);
IF status.all <> status_$ok THEN pfm_$error_trap(status);

gm $file open(name, length, gm $wr, gm $1w, file id, status);
IF-status.all <> status_$ok THEN pfm_$error_trap(-status);

gm_$display_file(status);
IF status.all <> status_$ok THEN pfm_$error_trap(status);

gm_$cursor_set_active(TRUE, status);
IF status.all <> status_$ok THEN pfm_$error_trap(status);

gm_$input_enable
(gm_$keystroke
, ['e', 'H', '0', 'P', 'Q', 'c', 'h', '0', 'p', 'q'

, cmd_cnext, cmd_step, cmd_start, cmd_end
, seg_clear, seg_setup, seg_top, seg_next
, seg_up, seg_down, seg_bottom, seg_nextbottom

status
) ;

IF status.all <> status_$ok THEN pfm_$error_trap(status);

gm_$input_enable(gm_$locator, [], status);
IF status.all <> status_$ok THEN pfm_$error_trap(status);

INTEGER32(seg_id) := -1;

REPEAT

gm_$input_event_wait(TRUE, ev_type, key, bitmap_pos, Viewport_id,
segment_pos, status);

IF status.all <> status_$ok THEN pfm_$error_trap(status);

IF ev_type = gm_$locator
THEN REPEAT

gm_$input_event_wait(FALSE, flush_ev_type, flush_key,
flush_bitmap_pos, flush_viewport_id,
flush_segment_pos. flush status);

IF flush_ev_type <> gm $no event
THEN BEGIN

ev_type := flush_ev_type;
key - flush_key;
bitmap_pos flush_bitmap_pos;
viewport_id flush_viewport_id;
segment_pos - flush_segment_pos;
status - flush_status;

10-17 Routines for Interactive Applications

IF status.all <> status_$ok THEN pfm_$error_trap(status);
END;

UNTIL flush_ev_type <> gm $locator;

IF ev _type = gm _ $loca'ljor
THEN BEGIN

gm_$cursor_set_position(bitmap_pos, status);
IF status.all <> status_$ok THEN pfm_$error_trap(status);

END

ELSE IF ev_type = gm_$keystroke
THEN CASE key OF

'C', 'c':
BEGIN

gm_$segment_close(FALSE, status);

squawk(status, 'SEGMENT CLOSE~', 'Segment id = ~8ZLH%$',
seg_id); -

IF status.all = status $ok
THEN INTEGER32(seg_id-) := -1;

END;

'H', 'h':
BEGIN

gm_$pick_highlight_segment(gm_$outline, 1.0, status);
gm_$pick_highlight_command(gm $outline, 1.0, status);

END;

'0', '0':

BEGIN

gm_$segment_open(seg_id, status);
squawk(status, 'SEGMENT_OPEN~', 'Segment id = %8ZLH%$',

seg_id);

END;

'p', 'p':
BEGIN

squawk(status, 'PICK_SET_CENTER%', 'Center = (%WF. %WF)%$'.
segment_pos.x, segment_pos.y);

IF status.all = 0
THEN BEGIN

pick_box.x .­
pick_box.y

Routine8 for Interactive Application8

4.0;
4.0;

10-18

END;

'Q'I .tq':
EXIT;

gm $pick set size(pick box, status);
squawk(status, 'PICK_SET_SIZE%', 'Size = (%WF, %WF)%$',

pick_box.x, pick_box.y);

END;

cmd_cnext, cmd_step, cmd_start, cmd end:
BEGIN

search command gm_$search_command_t(ORD(key) -
ORD(cmd cnext));

squawk(status, pick_command_name[search command], '%$');

IF status.all = status $ok
THEN gm_$pick_highlight_command(gm_$outline, 1.0, status);

END;

seg_clear, seg_setup, seg_top, seg_next, seg_up, seg_down,
seg_bottom, seg_nextbottom:
BEGIN

END;

search_segment gm_$search_segment_t(ORD(key) -
ORD(seg_clear));

gm_$pick_segment(search segment, seg_id, ninstances, bounds,
status-);

IF status.all <> status_$ok
OR ELSE search_segment = gm_$clear
OR ELSE search_segment = gm_$setup
THEN squawk(status, pick_segment_name[search_segment], '%$')
ELSE BEGIN

END;

squawk(status, pick_segment_name[search_segment],
'SEGMENT ID = %8ZLH NINSTANCES = %8LD%$' ,
seg_id, ninstances);

gm_$pick_highlight_segment(gm $outline, 1.0, status);

END

UNTIL FALSE;

gm_$terminate
(status
) ;

10-19 Routines for Interactive Applications

IF status.all <> status_$ok THEN pfm_$error_trap(status);

END.

10.13. Program Technique: Locator Events and Cursor Tracking

Processing a long queue of input events can slow the tracking of the cursor. The following
program fragment provides a technique for disposing of the queue by reading an input event,
taking action on that event, and then emptying the input queue of further locator data.

This technique is especially useful for dragging and rubberbanding an image. In this type of
operation, locator data is likely to come in faster than it can be processed, but a redraw should
only be done at the most recent cursor position.

GM_$INPUT_EVENT_WAIT
(TRUE
, ev_type

character
, bitmap_pos
, viewport_id
, segment_pos

);
check;

status

IF ev_type = gm $locator

THEN REPEAT
GM $INPUT EVENT WAIT

- (FALSE -
, flush_ev_type
, flush_character
, flush_bitmap_pos
, flush_viewport_id
, flush_segment_pos
, flush status
) ;

{ Wait for an event. }

{ Flush the queue to make sure you have
the most recent locator event. }

IF flush_ev_type <> gm $no event
THEN BEGIN

ev_type
character
bitmap_pos
viewport_id
segment_pos
status
check;
END;

flush_ev_type;
flush_character;

- flush_bitmap_pos;
- flush_viewport_id;
- flush_segment_pos;
- flush_status;

UNTIL flush_ev_type <> gm_$locator;

Routines for Interactive Applications 10-20

10.14. Reading Commands

Functions:

GM_$INQ_ACLASS
GM_$INQ_CIRCLE_[16,32,REAL]
GM $INQ COMMAND TYPE
GM=$INQ=CURVE_2D[16,32,REAL]
GM $INQ DRAW RASTER OP
GM=$INQ=DRAW=STYLE -
GM_$INQ_DRAW_VALUE
GM_$INQ_FILL_BACKGROUND_VALUE
GM_$INQ_FILL_PATTERN
GM_$INQ_FILL_VALUE
GM $INQ FONT FAMILY
GM-$INQ-INSTANCE SCALE 2D[16,32,REAL]
GM-$INQ-INSTANCE-TRANSFORM 2D[16,32,REAL]
GM-$INQ-INSTANCE-TRANSLATE-2D[16,32,REAL]
GM-$INQ-PLANE MASK -
GM-$INQ-POLYLINE 2D[16,32,REAL]
GM-$INQ-PRIMITIvE 2D[16,32,REAL]
GM=$INQ=RECTANGLE=[16,32,REAL]
GM $INQ TAG
GM=$INQ=TEXT_2D[16,32,REAL]
GM $INQ TEXT BACKGROUND VALUE
GM=$INQ=TEXT=SIZE -
GM_$INQ_TEXT_VALUE

Each modeling routine that puts a command into the file has a corresponding inquiring routine.
Each of these inquiring routines is designed to read back the contents of a command from the file
and return the values stored in the file, in the form originally used to store that command in the
file. The GM_ $INQ ... routine has the same syntax and parameters as the routine used to insert
the command into the file, except that some of the parameters are output parameters rather than
input parameters.

To inquire about a command, you must use GM_ $PICK_ COM:MAND to make that command
the current command. Then use GM_$INQ_ COM:MAND _ TYPE to determine the type of
command and the data storage type. You can then call the appropriate GM_$INQ ... routine to
read the parameters of this particular command.

You must read the command using an appropriate data type. That is, you must use 16-bit
inquire routines to read data stored in 16-bit storage format. You must use 32-bit integer or real
inquire routines to read data stored in 32-bit storage format.

See Appendix C for an example of a program that prints out the entire contents of a metafile in a
form you can read.

10-21 Routines for Interactive Applications

Chapter 11
Using Within-GPR Mode

This chapter explains how to extend the 2D GMR package to include GPR routines and user­
defined primitives. This extension to the 2D GMR package is illustrated with a sample program.

11.1. Extending the 2D GMR Package

The 2D GMR package has four modes of display that use only 2D GMR routines and commands.
In addition, the 2D GMR package has a mode that allows you to extend the package to use a
bitmap of the graphics primitives (GPR) package. This mode requires the use of GPR routines
within the 2D GMR environment.

11.1.1. Borrow, Direct, and Main-Bitmap Modes

In borrow, direct, and main-bitmap modes, the 2D GMR package produces graphics output in the
GM bitmap (the screen, Display Manager window, or main-memory bitmap established when the
2D GMR package was initialized). You can see graphics output or other processes through
viewports, which are part or all of the GM bitmap. The view is the picture that you can see in a
viewport. Moving or scaling a view moves or scales what you see through the viewport.

When you initialize the 2D GMR package, the command GM _ $INIT establishes a single
viewport that fills the GM bitmap. You may want to change the size of the viewport or create
additional viewports.

You can divide the GM bitmap into multiple viewports. You can specify that you want parts of
the metafile displayed and moved independently in separate viewports.

11.1.2. Within-GPR Mode

When you use within-GPR mode, the 2D GMR package produces graphics output in the current
GPR bitmap. When using 2D GMR in this mode, you may use the following display routines:

• The four routines that set and inquire about criteria for segment visibility (Section
8.4).

• The routine GM $DISPLAY SEGMENT GPR 2D.

• The two routines linking attribute blocks to the display (Section 13.9.1).

A program that uses within-GPR mode must first initialize the graphics primitives package
before it initializes the 2D GMR package. In within-GPR mode, you retain control of the display.
This means that you must layout viewports or other types of user interface using GPR viewing
routines. In this mode, most of the 2D GMR viewing routines are not available.

In within-GPR mode is an application based on the graphics primitive package. Therefore, all
coordinates established in this mode are device-dependent and use the standard graphics
primitives coordinates. When you call a viewing routine to display a segment in a particular part

11-1 Using Within-GPR Mode

of the GPR bitmap, you must specify the transformation from world coordinates (that is,
segment coordinates) to bitmap-pixel coordinates. Two routines are available to help you make
the conversion from world, or segment, coordinates to bitmap-pixel coordinates:
GM $COORD SEG TO PIXEL 2D and GM $COORD PIXEL TO SEG 2D.

The key command for displaying m within-GPR mode is
GM $DISPLAY SEGMENT GPR 2D. You can only call this routine from within-GPR
mode. This command causes a specified segment to be displayed with the specified
transformation. The segment and the transformation are specified as parameters of this
command.

The segment is displayed into the current GPR bitmap. This bitmap is the one that was current
at the time the 2D GMR package was initialized. For the attributes required for display, the
current bitmap uses the attribute block that is current at the time of display. These attributes
include the clipping window and the plane mask, which must be supplied by this GPR attribute
block. The 2D GMR package does not control placement of graphics in within-GPR mode. The
package may, in fact, write to the entire DM window unless you have established a clipping
window and a plane mask.

GM_$DISPLAY _SEGMENT _ GPR_2D, unlike the display routines used in borrow, direct,
and main-memory display routines, does not clear the display before drawing. If you want the
display cleared, you must call GPR _ $CLEAR.

When you use within-GPR mode, you can use 2D GMR attribute commands, attribute class
commands, and attribute blocks. The current GPR attribute block specifies the starting values of
these attributes. If any attributes are changed as the display process performs the commands in
the metafile, the returned state of the GPR attribute block is undefined. Because the 2D GMR
package does not necessarily return attributes to their original state, you will probably want to
copy a separate GPR attribute block before calling GM_ $DISPLAY _SEGMENT _ GPR_2D.

The following summarizes what routines are available and not available in within-GPR mode.

Graphics metafile routines available in within-GPR mode:

• Modeling routines, including editing routines.

• Attribute routines, including GM_ $ABLOCK_ASSIGN _DISPLAY.

• Display routine GM_ $DISPLAY _SEGMENT _ GPR_2D; no other display routine.

• Segment visibility criteria routines.

• Picking routines.

• Output routines for creating hard copy.

Graphics metafile routines unavailable in within-GPR mode:

• Viewport routines and viewing routines.

• Refresh routines. (2D GMR does not track data).

• Color map routines. (Use GPR routines.)

Using Within-GPR Mode 11-2

• Cursor routines. (Use GPR routines.)

CD Input routines. (Use GPR routines.)

CD Set refresh procedure. (Use GPR routines.)

11.2. Displaying User-Defined Primitives

Function:

GM_$PRIMITIVE_DISPLAY 2D

GM _ $PRTh1ITIVE _ D ISPLA Y _ 2D assigns the specified user-defined routine to the specified
user-defined primitive number. This causes (GM _ $PRTh1ITrvE _ 2D) commands using this user­
defined primitive number to be displayed (at display time) using this routine.

When your routine is called during the display operation, it is passed an array of transformed
points (in screen coordinates) and an array of untransformed parameters. Your routine must use
only GPR primitive commands.

The following program fragments define a user-defined primitive and the insert commands that
use the primitive.

{ This procedure defines the operation to be performed
when displaying. }

PROCEDURE WIDE_LINE(IN n_points : integer;

VAR
k : integer;
width: integer;

IN points : UNIV gm_$point_array16_t;
IN n_param : integer;
IN param : UNIV gm_$arrayreal_t;
OUT st : status_$t);

BEGIN
width := trunc(param[l]);

gpr_$move(points[l] .x-width, points [1] .y-width, st);
for k := 2 to n_points do

gpr_$line(points[k] . x-width, points[k] .y-width, st);

gpr_$move(points[l] . x-width, points [1] .y+width, st);
for k := 2 to n_points do

gpr_$line(points[k] .x-width, points[k] .y+width, st);

gpr_$move(points[l] .x+width, points [1] .y-width, st);
for k := 2 to n_points do

gpr_$line(points[k] .x+width, points[k] .y-width, st);

gpr_$move(points[l] .x+width, points [1] .y+width, st);
for k := 2 to n points do

gpr $line(po1nts[k] .x+width, points[k] .y+width, st);

11-3 Using Within-CPR Mode

END;

{ Main program }

VAR

{ Connect this procedure with this primitive type. }

prim ptr := addr(wide line);
gm_$primitive_display=2d(Wide_line_type,prim_ptr,st);

{ Insert a command to use this primitive type. }

11.3. Program Using Within-GPR Mode

The following program initializes GPR and then initializes the 2D GMR package with fewer
planes. Next the program draws a grid using GPR and displays a metafile over the grid. The
program moves the metafile on the display. Next, the program adds a user-defined primitive
command to the file and defines a user-defined display routine.

PROGRAM course4;

%NOLIST;
%INCLUDE '/sys/ins/base.ins.pas';
%INCLUDE '/sys/ins/time.ins.pas';
%INCLUDE '/sys/ins/gpr.ins.pas·;
%INCLUDE ·/sys/ins/gmr.ins.pas·;
%LIST;

CONST

VAR

repeats = 10;
space = 25;
one_second = 250000;
opcode_try_it = 1;

bitmap_size
init_bitmap_desc
st

gpr $offset t;
gpr=$bitmap=desc_t;
status_$t;

k
m
m1
n

Using Within-GPR Mode

INTEGER;

11-4

{

n1

file id
sid1
sid2
sid3
ptl
pt2
transl
rotate
rtransl
ptarray
arrayreal
pause

INTEGER;

INTEGER;

gm_$point16_t;
gm_$rotate_rea12x2_t;
gm_$pointreal_t;
gm_$point_array16_t;
ARRAY [1 .. 2] OF real;
time_$clock_t;

{ The actual definition of t7 __ try_it must be in a different
Pascal module because ADDR(t7 __ try_it) is needed. }

PROCEDURE t7 __ try_it

VAR

(IN n_points
IN points
IN n_param
IN param
OUT st

); EXTERN;

k
width

INTEGER;
INTEGER;

INTEGER
UNIV gm_$point_array16_t
INTEGER
UNIV gm_$arrayreal_t
status_$t

BEGIN

width := TRUNC(param[1]);

gpr_$move
(points [1] .x - width

points [1] .y - width
st

) ;
FOR k - 2 TO n_points
DO gpr_$line

(pOints [k] .X - width
points [k] .y - width
st

);

gpr_$move
(points [1] .x - width

points [1] .y + width
st

);
FOR k - 2 TO n_points
DO gpr_$line

(points [k] . x - width
points [k] .y + width
st

);

11-5 U8ing Within-CPR Mode

}
BEGIN

gpr_$move
(points[1].x + width
points[1].y - width
st
) ;

FOR k := 2 TO n_points
DO gpr_$line

(points[k].x + width
points[k].y - width
st
) ;

gpr $move
-(points[1].x + width

points[1].y + width
st
);

FOR k := 2 TO n_points
DO gpr $line

(points [k].x + width
points[k].y + width
• st
) ;

END;

bitmap_size.x_size
bitmap_size.y_size

- 1024;
1024;

gpr_$init
(gpr_$borrow
stream_$stdout
I bitmap_size

7
I init_bitmap_desc
• st
);

gm_$init
(gm_$within_gpr
I stream_$stdout
· pt1

3
st

);

gpr_$set_draw_value
(9

· st
) ;

m1 - 0;
FOR m - 1 TO 8
DO BEGIN

m1 - ml + 100;
nl - 0;
FOR n - 1 TO 8

Using Within-GPR Mode

{ Initialize GPR with 8 planes. }

{ Initialize 2D GMR with 3 planes. }

{ Set GPR draw value to 9. }

{ Draw a grid in the GPR plane. }

11-6

DO BEGIN
nl := nl + 100;
gpr_$move

(ml
, nl
, st
);

gpr_$line
(ml+1
, nl+l
, st
);

END;
END;

pause.low32 := 5 * one_second;
pause.high16 - O·

time_$wait
(time_$relative
, pause
, st
);

gpr_$set_draw_value
(1

st
);

gpr_$set_plane_mask
([0 .. 2]

, st
);

gm_$file_create
('gmfile'
, 6
, gm_$overwrite
, gm_$lw

file id
, st
) ;

gm_$segment_create
('box'
, 3
, sid1

st
) ;

pt1.x - O·
pt1. Y - 0;
pt2.x - 10;
pt2.y - 10;
gm_$rectangle_16

(pt1
, pt2

{ You must reset the GPR draw value }
{ because 2D GMR will use it. }

{ Change the plane mask so use of }
{ gpr_$clear does not destroy the grid. }

{ Create a 2D GMH. file. }

{ Create segment 'box. '}

{ Add unfilled rectangle to 'box.' }

11-7 Using Within-CPR Mode

I FALSE
I st
) ;

gm_$segment_close
(TRUE
I st
) ;

gm_$segment_create
('row'

3
I sid2

st
) ;

transl.x
transl.y

- 0;
0;

FOR k := 1 TO repeats
DO BEGIN

{ Close segment 'box.' }

{ Create segment 'row.' }

{ Instance segment 'box' }
{ repeated times. }

transl.x := transl.x + space;
gm_$instance_translate_2d16

END;

(sid1
I transl
I st
) ;

gm_$segment_close
(TRUE
I st
);

gm_$segment_create
('block'

5

) ;

sid3
st

transl.x
transl.y

o·
250;

FOR k := 1 TO repeats
DO BEGIN

{ Close segment 'row.' }

{ Create segment 'block.' }

{ Instance segment 'row' }
{ repeated times. }

transl.x := transl.x + 1 .
transl.y := transl.y - space;
gm_$instance_translate_2d16

END;

(sid2
I transl
I st
) ;

gpr_$clear
(0
I st
) ;

Using Within-GPR Mode

{ Clear the screen. }

11-8

rotate.xx - + 0.75;
rotate.xy - 0.00;
rotate.yx - 0.00;
rotate.yy - 0.75;
rtransl.x - + 100.00;
rtransl.y - + 500.00;

gm $display segment gpr 2d
- (sid3 - --

rotate
, rtransl

st
) ;

time_$wait
(time_$relative
, pause
, st
);

gpr $clear
-(0

, st
);

rtransl.x - 200.0;
rtransl.y 500.0;

gm_$display_segment_gpr_2d
(sid3

, rotate
, rtransl

st
);

time_$wait
(time_$relative
, pause
, st
);

ptarray [1] .x - 0;
ptarray [1] .y - 300;
ptarray [2] . x - 100;
ptarray [2] .y - 300;
ptarray [3] . x - 100;
ptarray [3] .y - 400;

arrayreal[1] - 5.0;

gm_$primitive_2d16
(opcode_try_it

3
ptarray
1
arrayreal
st

);

{ Display the rotated and translated }
{ segment 'block.' }

{ Wait a moment. }

{ Clear the screen. }

{ Display segment 'block' }
{ at a new location }

{ Wait a moment. }

{ Set parameters for the primitive }
{ command. }

{ Add the primitive command to }
{ segment 'block.' }

11-9 Using Within-CPR Mode

gm_$primitive_display_2d
(opcode try it
, ADDR(t7 __ try_it)
, st
) ;

gpr_$clear
(0
, st
);

gm_$display_segment_gpr_2d
(sid3

rotate
rtransl
st

) ;

time_$wait
(time_$relative
, pause
, st
) ;

gm_$segment_close
(TRUE
, st
);

gm_$file_close
(TRUE
, st
) ;

gm $terminate
(st
) ;

END.

Analyzing the Program

{ Define the display routine for }
{ the primitive command. }

{ Clear the screen. }

{ Display segment 'block' (includes}
{ primitive command). }

{ Wait a moment. }

{ Close segment 'block.' }

{ Close the file. }

{ Terminate the 2D GMR package. }

Within-GPR mode requires you to initialize GPR before calling 2D GMR. In doing so, you retain
control of the display. This means you must layout viewports and other parts of the interface.
Most of the 2D GMR viewing routines are not available; you must use corresponding GPR
routines instead.

When a viewing routine is called to display a segment in part of the GPR bitmap, you must
specify the transformation from world coordinates to bitmap-pixel coordinates. In within-GPR
mode, all the coordinates are device··dependent and use the standard GPR coordinates.

The routine GM_$DISPLAY _SEGMENT _ GPR_2D is the key to the display operation. This
routine is only available from within-GPR mode and is the only routine that has this limitation.
This routine displays a segment that is specified as one of the parameters of the routine. The
transformation is also specified in the routine.

The segment is displayed in the current GPR bitmap. This is the bitmap established when GPR

Using Within-GPR Mode 11-10

and 2D Gl\1R were initialized. At the time of display, the attributes in the current GPR attribute
block are used. The clipping window and the plane mask are established by this GPR attribute
block. The 2D Gl\1R package may write to the entire Display Manager window unless you have
established a clipping window and a plane mask.

Unlike the borrow, direct, and main-memory display routines,
GM $DISPLAY SEGMENT GPR 2D does not clear the display before drawing. If you
want the display cleared, call GPR _ $CLEAR.

In within _ GPR mode, you can use 2D GMR attribute commands, attribute class commands, and
attribute blocks. The GPR attribute block that you establish specifies the starting values of these
attributes. During a 2D GMR display operation, 2D GMR attribute commands may change the
GPR attribute values. However, if you use commands that change attributes during the 2D GMR
display operation, the final state of the initial GPR attribute block is undefined. The 2D GMR
package does not restore the starting values. Consequently, if you are going to use any 2D GMR
commands that may change the GPR attribute block, you may want to make a copy of the GPR
attribute block before calling GM_$DISPLAY _SEGMENT _ GPR_2D.

11.4. JMigration Steps from GPR to 2D GMR

Moving from GPR to GMR can involve three steps:

.. Use within-GPR mode with only one segment .

.. Use within-GPR mode and store graphics data in 2D GI\1R .

.. Use the 2D GMR package fully with viewports and viewing.

U8ing One Segment

When you use within-GPR mode and have only one segment, the result is a simple display list
processor. Information from a database is converted into graphics commands that are put into
one segment. This segment is displayed, and the procedure is repeated. This first step
demonstrates some of the characteristics of the 2D GMR package, but does not enhance
performance.

You can display this single segment with multiple transformations. The more you redispaly this
segment, the more useful it is in terms of display speed. When you are through with this
segment, you can erase it and go on to the next.

You can also create a second or third segment, approaching the second step in the migration.
You can use incremental redisplay in this mode when appending data: a command is put into the
segment and written to the screen, and the process is repeated. You cannot erase any of the
image, but you can continuously display a new segment on top of old segments. When you use
within-G.pR mode, the previous image is not deleted before drawing a new image. Unless you use
the segment multiple times, 2D GMR in this mode does not enhance performance.

Storing Graphic8 Data in 2D G MR

At this stage, 2D GMR provides the advantage of rapid redisplay . You can redisplay an image
multiple! times at rapid display speed. In this mode you still use your exisitng GPR user
interface.

11-11 U8ing Within-GPR Mode

A more useful approach is to store the graphics data in 2D GMR, but still use within-GPR. You
can use all the 2D GMR modeling routines and create a collection of segments for redisplay as
needed. You can use transformation routines to redisplay segments rapidly. In addition, the
instance commands are all available. This allows rapid redisplay speed without rewriting an
existing GPR user interface.

U8ing the 2D G MR package

The final step is to use the 2D GMR package completely.

U8ing Within-GPR Mode 11-12

Chapter 12
Output

The chapter describes the routines and external file format used in generating hard-copy output
of graphics data.

12.1. Printing

Functions:

GM_$PRINT_FlLE
GM_$PRINT_FlLE_PART

The print file routines enable you to generate files for printing on a hard-copy device. These
routines copy part or all of a 2D GMR to a bitmap, then store that bitmap in a GMF (graphics
map file) or in a 2D GMR vector command file.

You can specify the size in pixels of the bitmap you want created. For a GMF, you may also
specify the scale at which the output device (e.g., printer) is to attempt to print the bitmap. You
may print GMFs using the Shell command PRF with the -PLOT option. You may print 2D
GMR vector command files by writing a driver for a particular device, using the format
information provided in the next section.

The format for vector command files is described in this chapter. For a description of GMF
routines, see the DOMAIN System Gall Reference, Volume 1.

GM_$PRINT _F~E converts the current metafile to the specified file for subsequent printing
on a hard-copy device.

GM _ $PRINT _ F~E _ PART converts part of the current metafile to the specified file for
subsequent printing on a hard-copy device. The part converted is within the physical bounds you
specify, in terms of segment coordinates of the primary segment of the metafile.

12.2. External File Format

You can create 2D GMR vector command files using GM _ $PRINT _ ... routines. The format of
these files is described in this section. Using this format, you can write a device driver for
printing vector command files on a hard-copy output device of your choice, for example a pen
plotter.

The file created looks like a sequence of 2D GMR commands as stored in a 2D GMR segment.
The command formats and op codes are described below. All output coordinate data is (x,y)
pairs of 16-bit integers.

12-1 Output

The file or segment is flattened into a single list of commands. All coordinates are transformed
to display coordinates in accordance with the size parameter of the GM_ $PRINT _'" routine
that you used to create the vector command file. In the GM_ $OUTI file, the origin of
coordinates is the top left, not the bottom left as in the metafile. The GM_ $OUTI file is scaled
to the size parameter, using the standard 95% rule that one dimension fills 95% of the size block,
and the other dimension does not overflow the block.

Individual commands are not clipped to the display size; your display driver must perform this
function itself.

The following occurs in the translation to the vector command file:

• All instance commands are resolved.

• Stroke text commands are decomposed into individual primitive commands.

• Attribute class commands are decomposed into individual attribute commands.

• Tag commands are discarded.

Nonvector commands, such as pixel text commands, are passed through untouched; your device
driver may use them or throw them away.

Format Detail8

The vector command file begins with a 32-byte file header that contains the length of the
command portion of the file (that is, everything but this header) and the size you specified when
creating the file.

HEADER

bytes 0-3

bytes 4-5

bytes 6-7

bytes 8-31

length of command portion of the file,
in bytes (4-byte integer)

the x size specified when creating the file
(2-byte integer)

the y size specified when creating the file
(2-byte integer)

unused

The command portion of the file starts with byte 32. It contains command op codes and data,
interspersed. All op codes are 16-bit integers; all coordinate data is 16-bit integers. All op codes
are aligned on 16-bit word boundaries.

The formats of the commands (their op codes and their data) are as follows:

COMMANDS

END OF FILE

bytes 0-1 16#0000 (op code for end-of-file)

Output 12-2

TOTAL LENGTH OF COMMAND = 2 bytes

POLYLINE

bytes 0-1 16#0020 (op code for polyline)

bytes 2-3 number of points (2-byte integer)

bytes 4-5 first x-coordinate (2-byte integer)

bytes 6-7 first y-coordinate (2-byte integer)

bytes 8-11, ... : additional (x,y) pairs, each a pair
of 2-byte integers

TOTAL LENGTH OF COMMAND = 4 * (n_points + 1) bytes

CLOSED POLYLINE

bytes 0-1 : 16#0021 (op code for closed polyline)

bytes 2- ... : same as POLYLINE

TOTAL LENGTH OF COMMAND = 4 * (n_points + 1) bytes

FILLED POLYLINE

bytes 0-1 : 16#0022 (op code for filled polyline)

bytes 2- ... : same as POLYLINE

TOTAL LENGTH OF COMMAND = 4 * (n_points + 1) bytes

RECTANGLE

bytes 0-1 16#0030 (op code for rectangle)

bytes 2-3 first x-coordinate (2-byte integer)

bytes 4-5 first y-coordinate (2-byte integer)

bytes 6-7 second x-coordinate (2-byte integer)

bytes 8-9 second y-coordinate (2-byte integer)

TOTAL LENGTH OF COMMAND = 10 bytes

FILLED RECTANGLE

bytes 0-1 : 16#0031 (op code for filled rectangle)

12-3 Output

bytes 2-9 : same as RECTANGLE

TOTAL LENGTH OF COMMAND = 10 bytes

CIRCLE

bytes 0-1 16#0040 (op code for circle)

bytes 2-3 center x-coordinate (2-byte integer)

bytes 4-5 center y-coordinate (2-byte integer)

bytes 6-7 radius (2-byte integer)

TOTAL LENGTH OF COMMAND = 8 bytes

FILLED CIRCLE

bytes 0-1 16#0041 (op code for filled circle)

bytes 2-7 same as CIRCLE

TOTAL LENGTH OF COMMAND = 8 bytes

bytes 0-1

bytes 2-3

bytes 4-5

bytes 6-7

bytes 8-9

16#0050 (op code for curve)

curve type (2-byte integer;
o = parametric cubic spline,
1 = 3-pt arc)

number of pOints (2-byte integer)

number of parameters (2-byte integer)

first x-coordinate (2-byte integer)

bytes 10-11 : first y-coordinate (2-byte integer)

bytes 12-15, ... : additional (x,y) pairs, each a pair
of 2-byte integers

bytes (4*n_points + 12) -- ...

TOTAL LENGTH OF COMMAND =

first parameter
(real)

additional parameters,
each a real value

8 + 4 * (n_points + n_parameters) bytes

Output 12-4

USER-DEFINED PRIMITIVE

bytes 0-1 16#0060 (op code for user-defined primitive)

bytes 2-3 user-defined primitive type
(values assigned by user)

bytes 4- ... : same as CURVE

TOTAL LENGTH OF COMMAND =
8 + 4 * (n_points + n_parameters) bytes

PIXEL TEXT

bytes 0-1 16#0070 (op code for pixel text)

bytes 2-3 text location x-coordinate (2-byte

bytes 4-5 text location y-coordinate (2-byte

bytes 6-9 text rotation in degrees (real)

integer)

integer)

bytes 10-11 : number of characters (2-byte integer)

byte 12 : first character

bytes 13- ... : additional characters

If the number of characters is odd, an unused byte
is appended to keep sUbsequent commands aligned on
16-bit word boundaries.

TOTAL LENGTH OF COMMAND = 12 + n characters bytes,
plus 1 if n characters is odd

DRAW VALUE

bytes 0-1 16#0080 (op code for draw value)

bytes 2-5 draw value (4-byte integer)

TOTAL LENGTH OF COMMAND = 6 bytes

DRAW STYLE

bytes 0-1

bytes 2-3

16#0081 (op code for draw style)

draw style (2-byte integer;
o = solid,
1 = dotted,
2 = patterned)

for solid: ignored

12-5 Output

for dotted: length of solid and blank portions
of line

for patternE~d:
bytes 4-5 replication factor; the number of times

each bit in the pattern is to be repeated
(2-byte intE~ger)

bytes 6-7 number of bits in the pattern
(2-byte intE~ger)

bytes 8-15 the pattern of bits; only the first n_bits
of the bi t~; are significant (an array of
4 2-byte integers)

TOTAL LENGTH OF COMMAND = 16 bytes

DRAW RASTER OP

bytes 0-1 16#0082 (op code for draw raster op)

bytes 2-3 draw raster op (2-byte integer)

TOTAL LENGTH OF COMMAND = 4 bytes

PLANE MASK

bytes 0-1

bytes 2-3

16#0083 (op code for plane mask)

plane mask; see description for FORTRAN users
in the description of GM $PLANE MASK in
Chapter 16 (2-byte integer)

TOTAL LENGTH OF COMMAND = 4 bytes

FILL VALUE

bytes 0-1 16#0090 (op code for fill value)

bytes 2-5 fill value (4-byte integer)

TOTAL LENGTH OF COMMAND = 6 bytes

FILL BACKGROUND VALUE

bytes 0-1 16#0091 (op code for fill background value)

bytes 2-5 fill background value (4-byte integer)

TOTAL LENGTH OF COMMAND = 6 bytes

Output 12-6

FILL PATTERN

bytes 0-1 : 16#0092 (op code for fill pattern)

{ FORMAT : OP CODE scale size pattern }
If fill pattern is solid (that is. no fill pattern).
these two bytes are zero. and the other bytes are
ignored.

bytes 2-3 scale; the number of times each bit in the
pattern is to be repeated (2-byte integer)
(Currently. always 1)

bytes 4-5 x size; the number of bits in each row of
the pattern (2-byte integer)
(Currently. always 32)

bytes 6-7 Y size; the number of rows in the pattern
(2-byte integer)
(Currently. always 32)

bytes 8-135 the pattern of bits (32 4-byte integers;
each represents one row of the pattern)

TOTAL LENGTH OF COMMAND = 136 bytes

TEXT VALUE

bytes 0-1 16#00AO (op code for text value)

bytes 2-5 text value (4-byte integer)

TOTAL LENGTH OF COMMAND = 6 bytes

TEXT BACKGROUND VALUE

bytes 0-1 16#00A1 (op code for text background value)

bytes 2-5 text background value (4-byte integer)

TOTAL LENGTH OF COMMAND = 6 bytes

TEXT SIZE

bytes 0-1 16#00A2 (op code for text size)

bytes 2-3 text size in display pixels (2-byte integer)

TOTAL LENGTH OF COMMAND = 4 bytes

12-7 Output

FONT FAMILY

bytes 0-1 16#00A3 (op code for font family)

bytes 2-3 font family id number (2-byte integer)

TOTAL LENGTH OF COMMAND = 4 bytes

Output 12-8

Chapter 13
Attribute Classes and Blocks

This chapter describes the use of attribute classes and blocks and explains how to tie attribute
blocks to attribute classes for the entire display and for individual viewports. Programming
examples illustrate the use of attribute routines.

13 .. 1. Terms Used with Attributes

Ohapter 5 describes how to insert attribute commands into the metafile to affect the appearance
of subsequent primitive commands when they are displayed. You can use these attribute
commands to change characteristics such as text size, line style, and background. The display of
these primitive commands is in accordance with the values you assign to the attributes.

The 2D GMR package also has a more powerful mechanism for handling attributes: attribute
classes. The following is an outline of the procedure for using attribute classes. The references
direct you to sections describing the parts of the procedure.

• Create attribute classes (aclasses) (Section 13.2).

• Assign attributes to attribute blocks (ablocks) (Sections 13.3 through 13.5).

• Assign attribute blQcks to attribute classes for display (Section 13.9).

A program at the end of this chapter illustrates the use of attribute classes and blocks. Before
reading in detail, skim through this entire chapter for a sense of the relationship of the steps in
the process. Then go back and read in detail.

Terms Defined

• An attribute class command in a metafile indicates that you want the attribute values
changed to values you defined elsewhere. You define the attribute values to which the
command corresponds either elsewhere in the file, or when the file is displayed.

• An attribute block is a collection of attribute values. You can use an attribute block
to assign attribute values to attribute classes when the file is displayed.

13.2. Using Attribute Classes

Function:

GM_$ACLASS

Attribute classes allow you to use attributes by changing between collections of attributes, rather
than changing each attribute each time. This is useful, for example, when you want to display
different layers of a printed circuit board using different attributes. You can assign each layer a
distinct attribute class number. You can then include in the file numerous commands to switch to
a new attribute class.

13-1 Attribute Classes and Blocks

Attribute class commands in a segment are signals to the 2D GMR package to switch among
collections of attributes. These collections are read from attribute blocks as the segment is being
displayed. You use attribute block routines to define the attributes associated with each
collection when the file is displayed (see Sections 13.3 through 13.6).

The GM_ $ACLASS routine inserts into the metafile a command indicating that the attributes
currently associated with that attribute class are to be used when displaying subsequent primitive
commands. For example:

gm $aclass(5,status);
gm $circle 16(center,10,false,status); - -
gm_$aclass(7,status);
gm $circle 16(center,20,false,status); - -

The above sequence of routines inserts into the metafile four commands (use aclass 5, draw a
circle of radius 10, use aclass 7, draw a circle of radius 20). When this sequence of commands is
displayed, the small circle is displayed using the attributes associated with aclass 5, and the large
circle and subsequent commands are displayed using the attributes associated with aclass 7.

At the start of a file, the default attribute class number is 1. This default is used until another
class is designated using the command GM_ $ACLASS.

An attribute class is a means of referring to a collection of attribute values. The particular
attribute values are defined elsewhere.

The procedure for assigning attributes to an attribute class is as follows. You may define
attribute blocks and then use viewing routines to associate attribute blocks with attribute classes.
Your input to the viewing routines is the identification of the attribute class and the attribute
block to associate with the class. This association of attribute class and attribute block may be
for the display as a whole or for individual viewports (see Section 13.9).

The above procedure allows you to attach attribute classes to different sets of attributes. The
choice of attributes depends on the type of node you are using.

This procedure also allows the user of the application to do the following:

• Interactively modify attributes used to display the file without affecting the contents
of the file .

• Assign different attributes to an attribute class in different viewports.

If you do not assign attribute values to a particular attribute class, the default attribute values
are used (see Table 3-1).

Creating Attribute Blocks

Function:

To associate collections of attributes with attribute class numbers, you must first build an
attribute block.

Attribute Ola88c8 and Block8 13-2

The attribute values in an attribute block define a set of characteristics that affect the
appearance of the picture. An attribute block is a data structure that holds a collection of
attribute values in a form allowing you to modify or inquire about individual attributes. These
attributes include draw, fill, and text values; raster op codes; and the plane mask.

Attribute block 1 contains the default collection of attribute values to which the package is
initialized (see Table 3-1) . You can use attribute block 1 as a starting point for creating new
attribute blocks. However, you may not modify this default attribute block 1.

To create a collection of attributes, you first define an attribute block using the routine
GM_ $ABLOCK_ CREATE. GM $ABLOCK CREATE creates an attribute block identical
to a specified existing attribute block, such as the default (ablock 1), and assigns a new ablock
identification number to it. You then change attribute values m it using
GM_$ABLOCK_SET ... routines. For example:

gm $ablock create(l,ablockid,status); - -gm $ablock set draw value (ablockid,2,status); - - - - -

These routines create a new ablock, which the 2D GMR package assigns the identification number
II ablockid. 18 This new ablock contains all of the default attribute values except for the draw
value, which has been changed to 2 by the second routine above.

You can then use the routine GM_$ABLOCK_ASSIGN_DISPLAY (defined in Section 13.9) to
associate this new ablock with a particular aclass. For example, to associate this ablock
.. ablockid It with aclass 5, use the following:

When commands are subsequently displayed, a command to .. use aclass 5 II causes this collection
of attribute values to be applied when subsequent primitive commands are displayed.

You can use the routine GM_ $ABLOCK_ASSIGN _ VIEWPORT (described in Section 13.9) to
associate a single aclass with different ablocks in different viewports.

13.4. Modifying Attribute Blocks

Functions:

GM_$ABLOCK_SET DRAW VALUE
GM_$ABLOCK_SET_DRAW_STYLE
GM_$ABLOCK_SET_DRAW_RASTER_OP
GM_$ABLOCK_SET_FILL_VALUE
GM_$ABLOCK_SET_FILL_PATTERN
GM_$ABLOCK_SET_PLANE_MASK
GM_$ABLOCK_SET_TEXT_VALUE
GM_$ABLOCK_SET_TEXT_BACKGROUND_VALUE
GM_$ABLOCK_SET_TEXT_SIZE
GM_$ABLOCK_SET_FONT_FAMILY

To change attributes in an attribute block, you use a different routine for each attribute to be
changed, identifying the attribute block that you want to change.

13-3 Attribute Classes and Blocks

For each attribute, there is a -no-change- value (usually -1). When an attribute class refers to
an attribute block with this value, the previous attribute value remains unchanged. This allows
you to define attribute blocks that keep certain values constant while you change others. In this
way, you can preserve existing attributes across changes in the attribute class without having to
set the attributes explicitly each time.

A complete set of these -no-change" attribute values is stored in attribute block O. Thus,
assigning attribute block 0 to an attribute class would be a null operation; that is, it would
change no attribute values. As with attribute block 1, you may copy attribute block 0, but not
change it. For a list of these uno-change" attribute values, see Table 13-1.

13.5. Reading Attribute Blocks

Functions:

GM $ABLOCK INQ DRAW VALUE
GM-$ABLOCK-INQ-DRAW-STYLE
GM-$ABLOCK-INQ-DRAW-RASTER OP
GM-$ABLOCK-INQ-FILL-VALUE -
GM-$ABLOCK-INQ-FILL-PATTERN
GM-$ABLOCK-INQ-PLANE MASK
GM-$ABLOCK-INQ-TEXT VALUE
GM-$ABLOCK-INQ-TEXT-BACKGROUND VALUE
GM-$ABLOCK-INQ-TEXT-SIZE -
GM=$ABLOCK=INQ=FONT=FAMILY

The routines listed above return the current values of an individual attribute In the specified
attribute block.

The default attribute values are shown in Table 3-1. The .. no-change" attribute values are shown
in Table 13-1.

13.6. Copying Attribute Blocks

Functions:

GM_$ABLOCK_COPY

Once you have assigned attributes to the attribute block, you may want to copy these attributes
to an existing attribute block. To do this, use GM_ $ABLOCK_ COPY. To establish a new
attribute block identical to it, use GM_ $ABLOCK_ CREATE as described previously.

13.7. Instancing and Attributes

Chapter 5 explains that commands that change individual attribute values affect all subsequent
commands in that segment. The same applies to a GM $ACLASS command: the command

Attribute Classes and Blocks 13-4

Table 13-1. "No-Change" Attribute Values

ATTRIBUTE VALUE

Draw Style GM_$SAME_DRAW_STYLE

Draw Value -1

Fill Value -1

Fill Background Value -3

Fill Pattern (scale = -1)

Text Value -1

Text Background Value -3

Text Size -1.0

Font Family ID Number -1

Plane Mask (change = false)

Draw Raster Dp -1

changes the attribute values applied to all subsequent commands in that segment. This includes
any other segments referenced using instance commands. When display of the segment containing
the GM_ $ACLASS command is completed, the previous attribute class is restored before the
display of commands in the instancing segment continues.

In other words, like attribute commands and segment transformations, attribute values are
affected forward and downward in the hierarchy of segments and commands, but never upward.
This allows different instancing segments to apply different attributes to a particular instanced
segment.

13.8. Mixing Attribute Commands and Attribute Classes

When an attribute command is encountered, it overrides all data for that attribute in all
attribute classes. Subsequent changes of attribute class do not affect that attribute. For
example:

gm $draw value (4, status); - -
gm_$aclass (any_class, status);

Mter the two commands above, the draw value will be 4 regardless of the draw value in the
attribute block that you have assigned to the attribute class any _ class. The draw value 4 is
effectively copied into the current definition of all attribute classes. The draw value remains in
effect until the end of the current segment is reached.

13-5 Attribute Classes and Blocks

13.9. Attributes and Viewing Operations

To change attributes, you may insert individual attribute commands into a file (see Chapter 5).
Alternatively, you can insert attribute classes into a file, as described in this chapter . You can
define attribute blocks and apply them to attribute classes, either for the GM bitmap, or in
individual viewports. You can also apply a particular attribute block to one or more viewports
(see Section 13.11 for a program example).

13.9.1. Tying Ablocks to Aclasses for the Entire GM Bitmap

Functions:

GM_$ABLOCK_ASS IGN_D I SPLAY
GM_$ABLOCK_INQ_ASSIGN_DISPLAY

You can change all attributes at once on the GM bitmap as a whole. To do this, use
GM_ $ACLASS to insert commands into the file to change the attribute class to be used. In this
routine, you specify an attribute class identification. The command is not effective until you
associate it with an attribute block.

You can assign attribute blocks to attribute class numbers for display purposes using
GM_$ABLOCK_ASSIGN_DISPLAY. Your input to the display routine is this same aclass
identification along with the identification of the attribute block you want to use. When
commands are being displayed, the following occurs: When an II ACLASS" command IS

encountered, the attributes of the attribute block assigned to this class are subsequently used.

You may develop a program that creates attribute blocks and assigns them to attribute classes.
You can use such a program to display pictures that you have already created. At the time you
view the file, you use GM_$ABLOCK_ASSIGN_DISPLAY to associate the attribute class you
identified with the attribute block you want used.

GM_$ABLOCK_ASSIGN_DISPLAY assigns an attribute block (by number) to an attribute
class, for the entire display.

GM_$ABLOCK_INQ_ASSIGN __ DISPLAY returns the current attribute block number
assigned to a particular attribute class for the display.

13.9.2. Tying Ablocks to Aclasses for Individual Viewports

Functions:

GM $ABLOCK ASSIGN VIEWPORT
GM=$ABLOCK=INQ_ASSIGN_VIEWPORT

You can change all attributes at once for individual viewports of the display. The attributes in
each viewport may be different. To change the attributes used in a viewport, do the following:

• Use GM _ $ACLASS to insert; commands into the file to specify the attribute class you
want used. In this routine, you specify an attribute class identification. The
command is not effective until you associate it with an attribute block.

Attribute Classes and Blocks 13-6

• You can view the file using GM_$ABLOCK __ ASSIGN_ VIEWPORT. Your input to
the display routine is this same attribute class identification, along with the
identification of the attribute block and the viewport.

Note that if an attribute block is specified for a viewport, it overrides the specification of an
attribute block for the GM bitmap.

GM_ $ABLOCK_ASSIGN _ VIEWPORT assigns an attribute block (by number) to an attribute
class, for the specified viewport.

GM_$ABLOCK_INQ_ASSIGN_ VIEWPORT returns the current attribute block number
assigned to a particular attribute class, for the specified viewport.

13.9.3. Summary of Procedures

Use the following procedures to establish attribute blocks and assign them to the GM bitmap.

• Use GM_ $ABLOCK_ CREATE to create an attribute block equivalent to the source
block you identify. The routine returns the attribute block identification number.

• Change the attribute block with the calls GM _ $ABLOCK _ SET.... In these calls,
you specify the value of the attribute and identify the attribute block to which it
belongs.

• Use GM_$ABLOCK_ASSIGN_DISPLAY to assign the attribute block to a class for
the GM bitmap. This assignment is used for all viewports until you assign an
attribute block to a class for a particular viewport using
GM $ABLOCK ASSIGN VIEWPORT.

• You may subsequently change attribute values in the assigned attribute blocks. When
you next display the picture, the result is the following: the new attribute values
assigned to this attribute block are used whenever an attribute class command
associated with the attribute block is encountered.

13.10. Summary

The 2D GMR package provides three techniques for modifying attributes. The first technique
assigns individual attribute values within a file.

• Change one attribute at a time within the file. To do this, put commands into the
file to change individual attributes.

The next two techniques associate attributes with attribute classes only when the file is displayed.
Neither the attribute values nor the class assignment is stored in the file.

• Change all attributes at once on the display as a whole. To do this, use
GM_ $ACLASS to put commands into the file to specify the attribute class you want
used. Then while viewing the file, change the collection of attributes assigned to
attribute classes. To make this change, use GM_$ABLOCK_ASSIGN_DISPLAY,
as described in Section 13.9.

13-7 Attribute Classes and Blocks

• Change all attributes at once for individual viewports of the display. The attributes in
each viewport may be different. To do this, use GM_ $ACLASS to put commands
into a file to specify the attribute class. Then while viewing the file, change the
collection of attributes assigned to attribute classes for individual viewports. To make
this change, use GM_ $ABLOCK_ASSIGN _ VIEWPORT, as described in Section
13.9.

13.11. Program with Attribute Classes and Blocks

The following program creates a hierarchy of segments including instance commands. It displays
the file in three viewports; adds attribute class commands to the file; assigns attribute blocks to
attribute classes; displays the segments; closes the file; and terminates the package.

PROGRAM courseS;

%NOLIST;
%INCLUDE '/sys/ins/base.ins.pas';
%INCLUDE '/sys/ins/time.ins.pas';
%INCLUDE '/sys/ins/gmr.ins.pas';
%LIST;

CONST

aclass1d1 = 1; { Defa.ult
aclassid2 = 2;

aclass }

vpid1 = 1; { Initial viewport
one second = 250000; -

VAR

bitmap_size gm_$pOint1S_t;
status status_$t;

b gm $boundsreal t; - -
vpid2
vp1d3 INTEGER;

file id INTEGER; -sid1
sid2
sid3 gm_$segment_id_t;
ablockid1
ablockid2
ablockid3 INTEGER;
ablockid4
ablockid5
ablockidS INTEGER;

pt1
pt2 gm_$point1S_t;

pattern gm _ $dra'w _pattern _ t;
pause time_$clock_t;

Attribute Cla88e8 and Block8 13-8

}

BEGIN

bitmap_size.x
bitmap_size.y .-

gm $init
- (gm_$borrow

1024;
1024;

, stream_$stdout
, bitmap_size

8
, status
) ;

b.xmin - 0.00;
b.ymin 0.00;
b.xmax 0.49;
b.ymax 0.49;
gm $viewport set bounds

- (b --

, status
) ;

b.xmin 0.51;
b.ymin 0.00;
b.xmax 1.00;
b.ymax - 0.49;
gm_$viewport_create

(b
, vpid2
, status
) ;

b.xmin 0.00;
b. ymin - 0.51;
b.xmax - 1.00;
b . ymax 1 . 00 ;
gm_ $viewport _ cre:ate

(b
, vpid3
, status
) ;

gm_$file_create
('gmfile'
, 6
, gm_$overwrite
, gm_$lw
, file_id
, status
);

gm $segment create
- ('bottom'

, 6
, sid1
, status
);

pt1.x := 0;

{ Initialize the 2D GMR package. }

{ Create viewport 1. }

{ Create viewport 2. }

{ Create viewport 3. }

{ Create and name a metafile. }

{ Create segment 'bottom.' }

13-9 Attribute Classes and Blocks

ptl.y 30;
pt2.x 10;
pt2.y 40;
gm_$rectangle_16

(pt1
pt2

FALSE
status

) ;

gm_$draw_style
(gm_$solid
0
pattern

o
status

) ;

pt1.x := 20;
pt2.x := 30;
gm_$rectangle_16

(ptl
pt2
FALSE
status
) ;

gm $segment close
- (TRUE -

status
);

gm $segment create
- ('top ,-

3
sid2

status
);

ptl.x o·
ptl.y 0;
pt2.x 10;
pt2.y 10;
gm $rectangle 16

- (ptl -

• pt2
• FALSE

status
);

{ Add a rectangle to segment 'bottom.' }

{ Change the draw style to solid. }

{ Add a rectangle to segment 'bottom.' }

{ Close segment 'bottom.' }

{ Create segment 'top.'. }

{ Add a rectangle to segment 'top.' }

gm_$instance_translate_2d16 { Instance segment 'bottom' into segment 'top.' }
(sid1
ptl
· status
);

ptl.x := 20;
pt2.x := 30;
gm_$rectangle_16

Attribute Glasses and Blocks

{ Add a rectangle to segment 'top.' }

13-10

(pt1
· pt2
• FALSE
· status
) ;

gm_$segment_close
(TRUE

• status
) ;

gm_$display_file
(status
) ;

gm_$viewport_select
(vpid2
• status
) ;

gm_$display_file
(status
) ;

gm $viewport select
- (vpidl -

• status
) ;

gm_$display_file
(status
) ;

{ Close segment 'top.' }

{ Display the file in viewport 3. }

{ Select viewport 2. }

{ Display the file in viewport 2. }

{ Select viewport 1. }

{ Display file in viewport 1}

pause.low32 := 5 * one_second;
pause.high16 := 0;
time $wait

"(time_$relative
· pause
• status
);

gm $ablock create
- (1 -

· ablockidl
• status
) ;

gm $ablock set draw style
- (ablockid1 -

· gm_$dotted
• 5
· pattern

o
· status
) ;

{ Create ablockidl. }

{ Give ablockid1 the dotted line style }
{ with repetition factor = 5. }

gm $ablock assign viewport {Assign ablockid1 to aclassid1 in viewport 1. }
- (aclassid1 -

· vpid1
· ablockid1

13-11 Attribute Classes and Blocks

• status
);

gm $ablock create
- (1 -

• ablockid2
· status
) ;

gm_$ablock_set_draw_stYle
(ablockid2
• gm_$dotted
• 10
· pattern
• 0
• status
) ;

{ Create ablockid2. }

{ Give ablockid2 the dotted line style }
{ with repetition factor = 10. }

gm_$ablock_assign_viewport {Assign ablockid1 to aclassid2 in viewport 2. }
(aclassidl
· vpid2
• ablockid2
· status
) ;

gm $ablock create
- (1 -

• ablockid3
• status
) ;

gm_$ablock_set_draw_style
(ablockid3
• gm_$dotted
• 20
• pattern
· 0
· status
) ;

{ Create ablockid3. }

{ Give ablockid3 the dotted line style. }
{ with repetition factor = 20 }

gm_$ablock_assign_viewport {Assign ablockid3 to aclassidl in viewport 3. }
(aclassidl
• vpid3
• ablockid3
· status
) ;

gm_$display_refresh
(status
);

time_$wait
(time_$relative
• pa.use
· status
) ;

gm_$segment_create
('new'

Attribute Cla88e8 and Block8

{ Refresh display to see the effects of }
{ the attribute blocks. }

{ Create segment 'new.'. }

13-12

) ;

3
sid3
status

ptl.x - O·
pt1.y 0;
pt2.x - 10;
pt2.y 10;
gm_$rectangle_16

(ptl
· pt2

FALSE
status

);

gm_$aclass
(aclassid2
: status
) ;

ptl.x := 20;
pt2.x := 30;
gm_$rectangle_16

(pt1
, pt2

FALSE
status

);

gm_$segment_close
(TRUE

I status
) ;

gm $ablock create
- (1 -

· ablockid4
· status
) ;

gm_$ablock_set_draw_style
(ablockid4
· gm_$dotted

30
· pattern

o
status

) ;

{ Add a rectangle to segment 'new.' }

{ Add an aclass command to segment 'new.' }

{ Add a rectangle to segment 'new.' }

{ Close segment 'new.' }

{ Create ablockid4. }

{ Give ablockid4 the dotted line style }
{ with repetition factor = 30. }

gm_$ablock_assign_viewport {Assign ablockid4 to aclassid2 in viewport 1. }
(aclassid2
· vpidl

ablockid4
status

);

gm_$ablock_create
(1

{ Create ablockid5. }

13-13 Attribute Classes and Blocks

· ablockid5
· status
);

gm_$ablock_set_draw_style
(ablockid5
• gm_$dotted

40
· pattern

o
· status
) ;

{ Give ablockid5 the dotted line style }
{ with repetition factor = 40. }

gm_$ablock_assign_viewport {Assign ablockid5 to aclassid2 in viewport 2. }
(aclassid2
· vpid2
· ablockid5
• status
) ;

gm $ablock create
- (1 -

• ablockid6
, status
) ;

gm_$ablock_set_draw_style
(ablockid6
• gm_$dotted
• 50
· pattern

o
• status
) ;

{ Create ablockid6. }

{ Give ablockid6 the dotted line style }
{ with repetition factor = 50. }

gm_$ablock_assign_viewport {Assign ablockid6 to aclassid2 in viewport 3. }
(aclassid2
· vpid3

ablockid6
· status
);

gm_$display_segment
(sid3
· status
);

gm_$viewport_select
(vpid2
· status
);

gm_$display_segment
(sid3
· status
) ;

gm_$viewport_select
(vpid3

Attribute Glasses and Blocks

{Display segment 'new' in viewport 1. }

{ Select viewport 2. }

{ Display segment 'new' in viewport 2. }

{ Select viewport 3. }

13-14

I status
) ;

gm $display segment
- (sid3 -

I status
) ;

time $wait
"(time_$relative
. pause
I status
) ;

gm $file close
- (TRUE

I status
) ;

gm $terminate
- (status

) ;

END.

{ Display segment 'new' in viewport 3. }

{ Close the file. }

{ Terminate the 20 GMR package. }

13-15 Attribute Classes and Blocks

Chapter 14
Advanced Display Techniques

This chapter describes advanced display techniques including using color as well as viewport
border and background. Programming examples illustrate these techniques.

Using the Color Map

Graphics programs use a color map to specify color and intensity (gray-scale) values. A program
can redefine the color map to assign colors to pixel values. (On a monochromatic node, you can
only switch the definitions of black and white). To assign different colors to lines or other
graphic entities, a program must draw them using different pixel values and then assign the
appropriate colors to these pixel values. You can assign a pixel value (color map index) to the
draw value attribute, the text value attribute, the text background value attribute, and the fill
value attribute.

In within-GPR mode, you must call GPR routines to assign values to, or read values from, the
color map.

14.1.1. The Color Map: A Set of Color Values

The color map is a display feature, not an attribute. This means that you cannot specify a color
map in a metafile. However, the color map can be stored as tag data and read by an application
program. You can specify only one color map for the display.

A color map is a set of color values, each representing a color and intensity. A color value is an
encoding of a particular visible color/intensity, based on the RGB (red/green/blue) color model.
The RGB color model defines red, green, and blue as primary colors. All other colors are
combinations of these primaries, including the three secondary colors (cyan, magenta, and
yellow).

Each color value consists of three component values, each a real number in the range 0.0 to 1.0.
The first real number is the value for the red component of the color; the second, the green
component; and the third, the blue component. A value of 0.0 specifies the absence of the
primary color, and a value of 1.0 specifies full intensity of that primary color.

On a color display, the red, green, and blue component values are displayed as accurately as
possible, depending on the possible color values available on the node. For a detailed description
of color and display configurations, see Programming with DOMAIN Graphics Primitives.

On a monochrome display, you may either assign black (0.0, 0.0, 0.0) to 0 and white (1.0, 1.0,
1.0) to 1, or vice versa.

If all three component values are equal, the color value is a shade of gray, as Table 14-1 shows.

14-1 Advanced Display Techniques

Table 14-1. Example of Gray-Scale Color Values and Visible Intensities

Color Value Visible Color/Intensity

R value G value B value

1.0 1.0 1.0 white
0.75 0.75 0.75 light gray
0.5 0.5 0.5 medium gray
0.25 0.25 0.25 dark gray
0.0 0.0 0.0 black

A color map consists of a set of color map entries; each entry is a color value associated with an
index. Though the association between color values and visible colors/intensities cannot be
changed, a program can establish and change the association between indexes and color values by
changing the entries in the color map. In this way, a program can select the set of
colors/intensities to constitute a color map for a particular application, and associate them with
particular indexes.

For an eight-plane color display, the color map has 256 entries, with index values 0-255. For a
four-plane color display, the color map has 16 entries, with index values 0-15. For all displays,
all entries are set to default values at the initialization of the 2D GMR package (see Figure 14-1).

Advanced Di8play Technique8 14-2

,,,nil
.I111H
1un ..
Httllt

'"''''
""'" ,,,,,,,
'"'''' "'"'' .UUH

8 BIT PLANES

1111 1110

1111 1111

8 PLAN ES, WITH COLOR MAP

RED GREEN BLUE

0000 0000f========7===========+==========~

DIM
YELLOW

256
SIMULTANEOUS
COLORS

Figure 14-1. The Pixel Value Used as an Index into the Color Map

14-3 Advanced Display Techniques

Table 14-2 shows the default color map.

Table 14-2. Default Color Map

Monochromatic displays have only the first two color map entries.
Four-plane color displays have only the first sixteen color
map entries.

Color Table Color Value Resultant Visible
Index Color/Intensity

R G B

0 0.0 0.0 0.0 black
1 1.0 1.0 1.0 white
2 0.0 1.0 0.0 green
3 0.0 0.0 1.0 blue
4 0.0 1.0 1.0 cyan
5 1.0 1.0 0.0 yellow
6 1.0 0.0 1.0 magenta
7 1.0 1.0 1.0 white

8-15 Contain colors used by the Display Manager
to display windows.

16-255 0.0 0.0 0.0 I black

In direct mode, a program cannot modify color map entries 0 and 7-15. Thus, the color map
entries that may be changed are the following (Table 14-3):

Table 14-3. Color Map Entries and Mode

Borrow mode Direct Mode

Monochromatic display 0-1 0-1
4-plane color display 0-15 1-6
8-plane color display 0-255 1-6, 16-255

Advanced Display Techniques 14-4

14.1.2. Changing the Color Map

Functions:

GM $DISPLAY SET COLOR MAP
GM=$DISPLAY=INQ=COLOR=MAP

GM_$DISPLAY _SET _ COLOR_MAP changes a specified number of values in the color map.

GM_ $DISPLAY _INQ_ COLOR_MAP retrieves a specified number of values in the color map.

14.2. Using Viewport Techniques

Functions:

GM_$VIEWPORT_SET_BACKGROUND_VALUE
GM_$VIEWPORT_INQ_BACKGROUND_VALUE

As discussed in Section 13.9, attribute blocks can be assigned to attribute classes for individual
viewports. The attribute class assignment can include a plane mask. If the plane mask assigned
to attribute class 1 does not enable all planes in the GM bitmap, the following occurs. Not all
planes are cleared before displaying into that viewport. (This is true for borrow, direct, and main­
bitmap modes). You can use this characteristic to include a background grid that is not
constantly erased and redrawn. This technique also makes it possible to superimpose two
segments into the same viewport.

The following describes some additional techniques to use with viewports.

GM_ $VIEWPORT _SET _BORDER_SIZE sets the border size of the current viewport to the
specified values, either in pixels or in fraction-of-bitmap coordinates. This routine sets sizes of
the four edges independently, for each viewport.

The default border type is in pixels, and the default width is 1,1,1,1. Viewport borders are drawn
with color value 1 for compatibility with monochrome nodes. Also for this compatibility, the 2D
GMR package sets the color map for color value 1 to white.

With a color node, you may want to use the viewport background color to differentiate viewports
from the overall display or the window background. Changing the color map to black is usually
not practical because the cursor is also set to color value 1. An alternative is to create the
viewport, set the border width to 0 pixels, and then refresh the viewport.

To change the viewport background value, you can use a procedure like the following:

CD Assign a background pixel value for each viewport. The default is O. The pixel value
displayed is affected by the plane mask assigned to attribute class 1.

CD Change the color by changing the color map. The default fill and text background
values are -2. This sets them equal to the viewport background value.

GM_$VIEWPORT _SET _BACKGROUND _ VALUE sets the pixel value used for the
background of the specified viewport. GM_$VIEWPORT _INQ_BACKGROUND _ VALUE
returns the pixel value set for the background of the specified viewport.

14-5 Advanced Display Techniques

14.3. Program with Advanced Viewing Techniques

The following program changes the color map values; assigns a plane mask to viewports; displays
a grid; changes the plane mask; assigns viewport background values; displays segments in more
than one viewport; closes the file; and terminates the package.

PROGRAM course6;

%NOLIST;
%INCLUDE ·/sys/ins/base.ins.pas·;
%INCLUDE ·/sys/ins/time.ins.pas·;
%INCLUDE ·/sys/ins/gmr.ins.pas·;
%INCLUDE ·/sys/ins/pfm.ins.pas·;
%LIST;

CONST

repeats = 10;
space = 25;
one second = 250000;

VAR

gm_$point16_t;
status_$t;

b
vpid2
vpid3
vpid4

ablockid
k
m
n
color_array

file id
sid1
sid2
sid3
sid4
ptl
pt2
transl
rtransl

PROCEDURE check
(IN status
) ;

BEGIN

INTEGER;

INTEGER;
INTEGER;

INTEGER;
ARRAY [8 .. 15] OF gm_$color_entry_t;

IN1EGER;

gm_.$segment_id_ t;

gm_$point16_t;
gm_$pointreal_t;

IF status.all <> status_$ok
THEN pfm_$error_trap(status);
END;

Advanced Display Techniques 14-6

PROCEDURE wait

VAR
pause
status

BEGIN

time_$clock_t;
status_$t;

BEGIN

pause.low32 := 5 * one_second;
pause.high16 := 0;
time_$wait { Wait five seconds. }

(time_$relative
. pause
. status
);

check(status);
END;

bitmap_size.x
bitmap_size.y

1024;
- 1024;

gm $init
- (gm $borrow

{ Initialize the 2D GMR package. }

· stream_$stdout
· bitmap_size

8
st

) ;

gm $file create
- ('gmfile'

6
· gm_$overwrite
· gm_$lw

file id
· st
) ;

gm_$segment_create
('grid'

4

);

sid1
st

{ Create a file. }

{ Create segment 'grid.' }

pt1.X := O· { 'Grid' points are zero-sized rectangles. }
FOR m := 1 TO 8
DO BEGIN

ptl.x - ptl.x + 100;
ptl.y - 0;
FOR n - 1 TO 8
DO BEGIN

ptl.y := ptl.y + 100;
gm_$rectangle_16

(pt1
. ptl

FALSE
st

) ;

14-7 Advanced Display Techniques

END;
END;

gm_$segment_close
(TRUE
st
) ;

b.xmin 0.0;
b.ymin 0.0;
b.xmax 0.49;
b.ymax 0.49;
gm_$viewport_set_bounds

(b
st
);

b.xmin 0.51;
b.ymin 0.0;
b.xmax 1.0;
b . ymax 0 .49 ;
gm $viewport create

- (b -

vpid2
st
) ;

b.xmin 0.0;
b.ymin 0.51;
b . xmax 0 .49 ;
b.ymax - 1.0;
gm_$viewport_create

(b
vpid3
st
) ;

b.xmin 0.51;
b.ymin 0.51;
b.xmax 1.0;
b.ymax 1.0;
gm $viewport create

- (b -

. vpid4
st
) ;

FOR k - 8 TO 15
DO WITH color_array [
DO BEGIN

red - 1.0;
green - 1.0;
blue - 0.0;
END;

k]

gm_$display_set_color_map
(8
8
color_array

Advanced Display Techniques

{ Close segment 'grid.' }

{ Shrink viewport 1. }

{ Create viewport 2. }

{ Create viewport 3. }

{ Create viewport 4. }

{ Red + green = yellow. }

{ Set color values 8 to 15 to yellow. }

14-8

I st
);

gm_$ablock_create
(1
I ablockid
, st
) ;

gm $ablock set draw value
- (abloCkid- -

, 9
, st
) ;

gm_$ablock_assign_display
(gm_default_aclass
, ablockid
, st
) ;

gm_$display_file
(st
) ;

wait;

gm_$ablock_copy
(1
, ablockid
, st
) ;

gm_$ablock_set_plane_mask
(ablockid
, TRUE
, [0 .. 2

st
) ;

gm $segment create
- ('box'-

3
, sid2
· st
) ;

pt1.x 0;
pt1.y - O·
pt2.x - 10;
pt2.y - 10;
gm_$rectangle_16

(pt1
· pt2
• FALSE

st
) ;

{ Create an ablock. }

{ For the ablock. set the draw value to 9. }

{ Assign the ablock to the default aclass. }

{ Display 'grid' in viewport 4. }

{ Wait a moment. }

{ Reset the ablock to default attributes. }

{ For the ablock, set plane mask to [0,1.2]. }

{ Create segment 'box.' }

{ Add a rectangle to 'box.' }

{ Close segment 'box.' }

14-9 Advanced Display Techniques

(TRUE
, st
) ;

gm_$segment_create
('row'

3
sid3
st

) ;

transl.y := 0;
transl.x := 0;
FOR k := 1 TO repeats
DO BEGIN

{ Create segment 'row.' }

{ Instance segment 'box' into segment 'row. '}

transl.x := transl.x + space;
gm_$instance_translate_2d16

END;

(sid2
, transl
, st
) ;

gm $segment close
- (TRUE -

, st
) ;

gm_$segment_create
('block'

5
, sid4
, st
) ;

transl.y := 50;
FOR k := 1 TO repeats
DO BEGIN

transl.x := k ;

{ Close segment 'row.' }

{ Create segment 'block.' }

{ Instance segment 'row' into segment 'block.' }

transl.y := transl.y - space;
gm_$instance_translate_2d16

END;

(sid3
, transl
, st
) ;

gm_$segment_close
(TRUE
, st
) ;

gm_$display_segment
(sid4
, st
);

wait;

Advanced Display Techniques

{ Close segment 'block.' }

{ Display segment 'block' in viewport 3. }

{ Wait a moment. }

14-10

rtransl.x := 0.5;
rtransl.y := 1.0;
gm $view scale

- (0.25
, rtransl
, st
) ;

rtransl.x := -0.06;
rtransl.y := 0.0;
FOR k := 1 TO 5
DO gm_$view_translate

(rtransl
, st
) ;

rtransl.x := 0.5;
rtransl.y := 0.5;
FOR k := 1 TO 5
DO gm $view scale

(-0.85 -

, rtransl
, st
);

wait;

{ For viewport 3, zoom out. }

{ For viewport 3, pan from left to right. }

{ For viewport 3, pan diagonally towards }
{ the lower left. }

{ Wait a moment. }

gm_$viewport_set_background_value
(vpid2

{ For viewport 2, set the }
{ background value. }

, 2
, st
) ;

gm_$viewport_select
(vpid2
, st
);

gm_$display_segment
(sid3
, st
) ;

wait;

gm_$viewport_set_background_value
(vpid3
, 3
, st
) ;

gm $viewport select
- (vpid3 -

, st
) ;

gm $display segment
- (sid4 -

, st

{ Select viewport 2. }

{ Display segment 'row' in viewport 2. }

{ Wait a moment. }

{ For viewport 3, set background}
{ value to 2. }

{ Select viewport 3. }

{ Display segment 'block' in viewport 3. }

14-11 Advanced Display Techniques

);

wa.it;

gm_$file_close
(TRUE

• st
) ;

gm $terminate
- (st

) ;

END.

Advanced Display Techniques

{ Wait a moment. }

{ Close the file. }

{ Terminate the 2D GMR package. }

14-12

Chapter 15
Programming Techniques

This chapter presents techniques for using tags and for optimizing performance when you use the
2D GMR package. Some of the relationships of the DOMAIN Core Graphics, the DOMAIN
Graphics Primitives package and the DOMAIN 2D GMR Resource package are discussed.

15.1. Using Tags

Functions:

GM $TAG
Gt.($TAG _ LOCATE

Tags provide a mechanism to access the database at a particular place. For example, you may
have another database running alongside the 2D GMR package. You can use a tag to flag a place
in a segment for accessing information in another database.

GM $TAG inserts a comment into the metafile.

GM_ $ TAG _LOCATE locates a comment within a specified range of segments in the current
metafile. The routine returns the identification of the lowest-numbered segment that the
comment is found in.

This routine uses the wildcard options of the command line parser. For a description of the
command line parser, see the DOMAIN System Command Reference.

15.2. Program Technique: Using Tags

Tags are especially usful with large metfiles. The following program fragment illustrates the use
of tags.

{ The current segment is 'assembly_sid.' A part is instanced into
the assembly. followed by a tag with the part's unique part number. }

gm_$instance_translate_2d16
(part_Sid
· location
· status
);

gm_$tag
(part_number
· part_number_len

{ Segment defining part }
{ Location of par't }

{ ASCII string with part number}
{ Length of ASCII string }

15-1 Programming Techniques

, status
) ;

{ Later, the user needs to find the part with the given part number: }

gm_$tag_locate
(part_number
, part_number_len

o
. gm_$max_segment - 1
. assembly_sid

status
) ;

15.3. Optimizing Performance

{ ASCII string with part number}
{ Length of ASCII string }
{ Lacking more specific information. }
{ search all segments. }
{ Output the segment id containing the

part. }

This section presents some techniques for optimizing performance in the applications you build
with the 2D GMR package.

15.3.1. Sorting by Location in the Picture

The 2D GMR package keeps track of the rectangular bounds of each segment in a segment header
attached to the segment data. When displaying a file, the 2D GMR package can therefore rapidly
reject segments that do not overlap the current viewport, without examining individual
commands within those segments.

You can, therefore, improve performance by sorting order-independent commands into segments
based on their location in the picture. By grouping commands into segments with relatively
small bounds, you can increase the number of segments that can be completely ignored during
display.

The 2D GMR package cannot sort data for you because the package assumes that commands
must be executed in the order you specify.

15.3.2. Segment Size

For files with many (hundreds or thousands) of segements, use unnamed segments. This avoids
the overhead of checking for duplication of names.

Programming Techniques 15-2

15.3.3. Rectangles and Rotations

If you regularly apply rotations other than 90 or 180 degrees to rectangles, use the
GM_ $POL YLlNE ... routines, not the GM_ $RECTANGLE ... routines. With rectangle routines,
the picture is not drawn incorrectly; however, the picture is displayed faster with polyline
commands.

15.3.4. Compacting Files

To reduce storage space for old files, you can develop a compacting utility using
GM_$FILE_ COMPACT. For a description of this routine and an example of such a utility, see
GM_$FILE_ COMPACT in DOMAIN System Call Reference, Volume 1.

15.3.5. Releasing and Acquiring the Display

The listing of insert files at the top of the program "hotel.gm II in Appendix D includes
gpr.ins.pas. This file gives access to the DOMAIN Graphics Primitives (GPR) routines. In
general, the mixing of 2D GMR and GPR is not recommended unless you specify within-GPR
mode with the routine GM_ $INIT. Here the GPR routine provides the best way to release the
display that 2D GMR must acquire. The GPR routine releases the display to allow writing
output to a stream.

Mixing 2D GMR and GPR calls m other ways or In other contexts IS not recommended or
supported.

15.3.6. Long Identifiers

In C and FORTRAN, identifiers may be no longer than a maximum of 32 characters. In C
programs, the compiler truncates the name to 32 characters. In FORTRAN programs, you need
to shorten the following routine names to 32 characters as illustrated:

1
12345678901234567890123456789012 1 34567890
---------------------------------1---------
GM_$ABLOCK_INQ_FILL_BACKGROUND_V 1 ALUE
GM_$ABLOCK_INQ_TEXT_BACKGROUND_V 1 ALUE
GM_$ABLOCK_SET_FILL_BACKGROUND_V 1 ALUE
GM_$ABLOCK_SET_TEXT_BACKGROUND_V 1 ALUE
GM_$INQ_INSTANCE_TRANSFORM_2DREA 1 L
GM_$INQ_INSTANCE_TRANSLATE_2DREA 1 L
GM $VIEWPORT INQ BACKGROUND VALU 1 E
GM=$VIEWPORT=SET=BACKGROUND=VALU 1 E

15.3.7. Color Map on Color Nodes

The 2D GMR package currently sets color 1 to white on color nodes for portability of
applications developed on monochrome nodes. The viewport borders and the cursor are drawn
with color 1. For nonwhite cursors and viewport boundaries on color nodes, use
GM_ $DISPLAY _SET _ COLOR_MAP to respecify color 1.

15-3 Programming Techniques

When 2D GMR terminates, it currently resets color 1 to whatever it was when the package was
initialized. This is true of color nodes only. If you use 2D GMR in borrow mode, the entire color
map is reset when the packge terminates. (The resetting is not by 2D GMR, but by GPR.)

15.3.8. Fault Handlers

The 2D GMR package has its own I'clean-up" handler that terminates 2D GMR whenever faults
are encountered. It is not necessary for an application to install its own fault handler for this
purpose. In fact, an application-installed fault handler will not work because 2D GMR will no
longer be initialized by the time the fault handler is called.

15.4. For Users of Both 2D GMR and GPR

The 2D GMR functions are similar to DOMAIN Graphics Primitives (GPR) in many ways. The
2D GMR package has new routines for handling files, segments, and viewing.

There are a few major differences between 2D GMR routines and similar GPR routines. Two
examples are the coordinate systems used and the use of defined points, rather than current
position.

Coordinate SY8tem8

The 2D GMR package uses the coordinate system that is standard in mathematics textbooks (+x
is to the right; +y is up). This is different from GPR, which like most raster display devices uses
+y as down).

Thus, if only positive coordinates are used, (0,0) is at the bottom left of the bitmap, not the top
left as in GPR.

The only cases in which 2D GMR uses +y as down is in its definition of cursor patterns and in
the output of GM _ $PRINT ... routines.

Defined Point8 and Current P08ition

The 2D GMR package requires that all coordinates be specified for each command. There is no
.. current position II kept from one command to the next, as there is in GPR. Thus, with the 2D
GMR segment, you can insert or delete commands without affecting the interpretation of
coordinate data in other commands in the segment.

Number of Plane8 Initialized

The input parameter to GM_ $INIT is the number of planes to be initialized (that is, 1 or 8), not
the number of the highest plane, as in GPR _ $INIT (that is, ° or 7).

15.5. For Previous Users of DOMAIN Core Graphics

The 2D GMR functions are similar to Core in many ways. Both allow you to define coordinates
in one coordinate system and display them in another.

Programming Technique8 15-4

There are a few major differences between 2D Gl\.1R routines and similar Core routines. Two
examples are the number of segments displayed and the use of defined points rather than current
position.

Segments Displayed

In Core, multiple segments can be displayed in one viewport.

The 2D GMR package keeps only one segment in a viewport. If you wish to display more than
one segment in a viewport, you must create a new segment and insert into it instances of all the
segments you want to display.

When you use the 2D Gl\.1R package and specify within-GPR mode, you may display multiple
segments in the GPR bitmap.

De fined Points and Current Position

The 2D GMR package requires that all coordinates be specified for each command. There is no
II current position" kept from one command to the next, as there is in Core. Thus, with the 2D
GMR segment, you can insert or delete commands without affecting the interpretation of
coordinate data in other commands in the segment.

~emporary Segments

In Core, a temporary segment is put on the screen. No copy of the segment is kept.

In 2D GMR, a "temporary segment" is different. It is a segment that is stored like any other
segment while the file is open; however, it is deleted when the file is closed.

Core Imaging and Viewing ~rans formations

In Core, you can specify a viewing transform to be applied to data that you have already
supplied to the Core package. This transform is applied before the Core package stores the data
as a display list. Core also provides an image transform, which is applied to stored data at
display time.

2D GMR provides no mechanism analogous to the Core viewing transform described in the
previous paragraph. In the 2D GMR package, the data is always stored untransformed as you
supply it.

Incremental Display

In Core, every time you execute a command, the display is immediately updated.

In GM _ $REFRESH _ WAIT (default) or GM _ $REFRESH _ INHIBIT refresh states, the display
is not updated each time you add data to the file. Incremental display can occur only in
GM_ $REFRESH_ UPDATE and GM $REFRESH PARTIAL refresh states, and only in
GM $BORROW and GM $DIRECT mode.

15-5 Programming ~echniques

Appendix A
Glossary

Ablock See Attribute block.

Aclass See Attribute class.

Attribute A characteristic of the manner in which a primitive graphic operation is to be
performed (for example, line type or text value).

Attribute block A data structure that holds a collection of values of attributes.

Attribute class A means for referring to a collection of attribute values from within a metafile,
with the particular attribute values defined elsewhere in the file or when the
file is displayed.

Attribute command

Bit plane

Bitmap

A command in a metafile that affects the form in which subsequent primitive
commands are to be displayed.

A one-bit-deep layer of a bitmap. On a monochromatic display, displayed
bitmaps contain one plane. On a color display, displayed bitmaps may contain
more planes, depending on the hardware configuration and the number of bits
per pixel.

A three-dimensional array of bits having width, height, and depth. When a
bitmap is displayed, it is treated as a two-dimensional array of sets of bits.
The color of each displayed pixel is determined by using the set of bits in the
corresponding pixel of the frame-buffer bitmap as an index into the color table.

Bitmap coordinates

Borrow mode

Button

Color map

Color table

Coordinates of points inside the GM bitmap, expressed as fractions of the GM
bitmap. The lower left corner is referred to as (0.0, 0.0); the upper right corner
as (1.0, 1.0). Note that if the GM bitmap is not square, the units in the x and
y directions are different.

A mode for use with the 2D GMR package whereby a program borrows the
entire screen from the Display Manager and performs graphics operations by
directly calling the display driver. The display is on the full screen, which is
temporarily borrowed from the Display Manager.

A logical input device used to provide a choice from a small set of alternatives.
A physical device of this type is the selection buttons on a mouse.

See Color table.

A set of color table entries, each of which can store one color value. Each color
value contains red, green, and blue component values. Each entry is accessed
by a color table index.

A-l Glossary

Color table entry One location in a color table. Each entry stores one color value that can be
accessed by a corresponding color table index.

Color table index An index to a particular color table entry.

Color value

Command

The numeric encoding of a color. A color value is stored in a color table entry.
Each color value consists of three component values: the first stores the value
of the red component of the color, the second stores the value of the green
component of the color, and the third stores the value of the blue component.
Each component value is specified as a real number in the range 0.0 to 1.0,
where 0.0 is the absence of the primary color and 1.0 is the full intensity color.

A single element of a picture as stored in a metafile. Commands are categorized
as primitive commands, attribute commands, instance commands, and tag
commands.

Current command

Current file

The command in the current segment after which new commands are to be
inserted. It is also the command that you can inquire about, replace, or delete.
When you open a segment, the last command becomes the current command,
allowing new commands to be appended. You may use
GM_$PICK_ CO:MN1AND to change the current command.

The file currently being operated on. The current file can be changed by
selecting another previously opened file or by opening (creating) an additional
file.

Current picked segment

Current segment

The segment selected by the pick-segment operation. It. is used as a base for
further pick-segment operations.

The segment currently open for editing.

Current viewport The currently selected viewport. The current viewport can be changed by
selecting another existing viewport or by creating a new viewport.

Direct mode

Display

Display Manager

A mode for use of the 2D GMR package whereby the package performs
graphics operations in a window borrowed from the Display Manager. Direct
mode allows graphics programs to coexist with other activities on the screen.

The entire monitor screen.

The program that manages the display and allocates Display Manager
windows.

Display Manager window

File

Glossary

One section of the display, provided by the Display Manager. This window
does not include the edges reserved by the Display Manager.

See Metafile.

A-2

Font One set of alphanumeric and special characters. The font in which text is to be
displayed is determined by the package using the user-selected font family and
text size attributes.

Font family A list of similar fonts of differing size. The 2D GMR user creates an ASCII file
containing this list.

Font family file An ASCII file listing the fonts in the font family, one font per line.

GM bitmap The bitmap in which the 2D GMR package is initialized. In direct mode, this
is part of the Display Manager window in which the package was initialized. In
borrow mode, this is the entire current display. In main-bitmap mode, this is a
main-memory bitmap.

Input device A device such as a function key, touchpad, or mouse that enables a user to
provide input to a program.

Input event An input primitive that is created by a user's interaction with a device such as
a keyboard, button, mouse, or touchpad.

Instance command
A command in a metafile that calls for another segment to be displayed, with a
particular transformation applied. This is similar to a subroutine call.

Instanced segment The segment referred to by an instance command in another segment.

Instancing segment

Keyboard

Line style

The segment that contains the instance command that refers to the instanced
segment.

A logical input device used to provide character or text string input. One
physical device of this type is the alphanumeric keyboard.

An attribute that specifies the style of lines and polylines (for example, solid or
dotted).

List of picked segments

Locator

The linked sequence of instancing and instanced segments selected by a series of
pick-segment operations, starting with the viewport primary segment (or
primary segment in no-bitmap mode) and ending with the current picked
segment.

A logical input device used to specify one position m coordinate space (for
example, a touchpad~ data tablet, or mouse).

Logical input device
An abstraction that refers to any of a group of physical input devices that
provide similar input data. For example, the logical input device "button" can
refer to physical buttons on a mouse, or to physical buttons on a data tablet
puck.

A-3 Glossary

Metafile

Mode

Main-bitmap mode
A mode for use with the 2D GMR package whereby a program runs III a
bitmap allocated in main memory, without using the display.

A device-independent collection of picture data that can be displayed. (Also
referred to as a file.)

One of four modes for use of the 2D GMR package, selected when the 2D GMR
package is initialized. See Borrow mode, Direct mode, Main-bitmap mode, and
No-bitmap mode.

Modeling routines Graphics metafile routines used to insert commands into metafiles or to edit
metafiles.

No-bitmap mode A mode for use with the 2D GMR package whereby a program runs without a
main-memory or display bitmap. Viewing routines may not be performed in
this mode.

Open file Any of the files that have been opened during this session and have not yet
been closed. More than one file may be open at one time.

Pick aperture The region in segment coordinate space within which pick routines will search
for commands and segments.

Pick mask A number that is compared bit by bit with a segment's pickable value to
determine if the segment is pickable. If any bit is 11111 in both the segment's
pickable number and the pick mask, the segment may be picked (see also Pick
threshold and Pick aperture). If not, the segment is not picked.

Pick operation The process of selecting commands or segments.

Pick threshold A number that is compared to a segment's pickable value to determine if the
segment is pickable. If the segment's pickable number is greater than or equal
to the pick threshold, the segment may be picked (see also Pick mask and Pick
aperture). If not, the segment is not picked.

Pickable value A number assigned to each segment that is used to determine whether a
segment is to be considered during pick-segment operations.

Picture The entire contents of a file as drawn; it may be larger or smaller than either
the GM bitmap or viewport.

Picture element A single element of a two-dimensional displayed image or of a two-dimensional
location within a bitmap. It is commonly called a pixel.

Pixel See Picture element.

Pixel value The set of bits at a two-dimensional location within a bitmap. A pixel value is
used as an index to the color map.

Polyline A linked set of line segments.

Glossary A-4

Primary segment The segment that is the logical start of the file for display purposes. The
routine GM_ $DISPLAY _FILE assumes that you wish to display this segment
and all of the segments that it instances.

Primitive command

Routine

Scan line

Segment

A command in a metafile that describes a single least divisible graphic
operation of a stored picture (for example, lines, polylines, and text). See also
User-defined primitive.

One of the procedures or functions of the 2D GMR package. Routines are
categorized as modeling routines and viewing routines.

A row of pixels; one horizontal line of a bitmap.

A collection of commands in the metafile that can be referred to as a group.
See also current segment.

Segment-exponent format

Tag command

A format for storage of coordinate data, similar to floating point. Instead of
an exponent and a mantissa for each coordinate, there is one exponent for the
entire segment and a separate 16-bit or 32-bit mantissa for each coordinate.

A command in a metafile that contains a comment. The comment data can be
retrieved by the user, but is ignored when the file is displayed.

User-defined Primitive

View

A primitive routine, exclusive to within-GPR mode. This type of routine IS

defined and specified by the user.

The part of a picture that is currently seen through a viewport. For example,
translating or scaling a view affects what is visible through the viewport.

Viewing routines Graphics metafile routines used to control the form in which metafiles are
displayed.

Viewport Allor part of the window, excluding its border if one exists. The viewport is
the physical It hole It in the window through which graphic output or other
processes are visible. Moving the viewport within the GM bitmap does not
scale the view.

Viewport primary segment
The segment currently displayed within a viewport. Other segments that are
instanced directly or indirectly by this segment may also be displayed.

A-5 Glossary

Appendix B
Keyboard Charts

The following two charts and figures give the 8-bit ASCII values generated for two DOMAIN
keyboards: 880 and low-profile. These charts include characters used in keystroke events. The
columns represent the four highest-order bits of an 8-bit value. The rows represent the four
lowest-order bits of an 8-bit value. For a more complete description of conventions for naming
keys, see the DOMAIN System Command Reference.

B-1 Keyboard Charts

o 1 2 3 4 5 6 7 a 9 A B C D E F

o "'SP "'p SP 0 @ p " P Rl RIU FI FlS FlU FIC

1 "'A "Q ! 1 A Q a q Ll R2 LIU R2U F2 F2S F2U F2C

2 "'B "'R n 2 B R b r L2 R3 L2U R3U F3 F3S F30 F3:

3 "'c "'s # 3 C S c s L3 R4 L30 R4U F4 F4S F4U F4C

4 "'D "'T $ 4 D T d t L4 R5 L4U R5U F5 F5S FSU FSC

5 "'E LJ % 5 E U e u L5 BS L5U R2S F6 F6S F6U F6C

6 "'F "V & 6 F V f v L6 CR L6U R3S F7 F15 F7U F7C

7 "'G "'w , 7 G W 9 w L7 TAB L70 R4S Fa F~ Fal FOC

a "'H "'X (a H x h x La SI'AB Lal R~S RlS LBS LlA LOO

9 "'I "y) 9 I Y i y L9 crAB L9:.1 LlS L98 L2A L2AIJ

"'J "'z * . J Z j z LA LAU L15 lAS L3A L3AU . A

B "'K ESC + ; K ['R { LB LBU L3S rns R6 R6U

C L "'\ , < L \ 1 I LC Leu L4S LCS LlAS

D "'M "'] - = M] In } LD L[U L5S IDS L2AS

r~ "'- > N "" LE LEU L6S LES LJAS . n E

F "'0 "'? / ? 0 0 DEL LF Lt--U L15 LPS R6S

o 1 2 3 4 5 6 7 a 9 A B C D E F

Figure B-l. Low-Profile Keyboard Chart - Translated User Mode

Program to Read the Oontents of a Metafile B-2

D
Figure B-2. Low-Protile Keyboard

B-3 Program to Read the Contents of a Metafile

Figure B-3. 880 Keyboard

Program to Read the Contents of a Metafile B-4

o 1 2 3 4 5 6 7 8 A B C D E F

o ... , "'p Sp 0 @ p ,
P Rl RlU FI FIS FlU FIC

1 "'A "'Q ! 1 A Q a q Ll R2 LIU R2U F2 F2S F2U F2C

2 t3 R n 2 B R b r L2 R3 L2U R:lJ F3 FlS F:lJ F3:

3 "'c "s # 3 C S c s L3 R4 L:lJ R4U F4 F4S F4U F4C

4 D "'T $ 4 D T d t L4 R5 L4U R5U F5 FSS FSU F:C

5 E LJ % 5 E U e u L5 BS L5U F6 F6S F6U F6C

6 "F "V & 6 F V f v L6 CR L6U F7 F7S F7U F7C

7 G W J 7 G W 9 w L7 TAB L7U F8 Fas F8J Fa:

a AH "X (a H x h x La STAB Loo NO N8 NOO NSJ

9 1 x) 9 I Y i y L9 crAB L:U Nl N9 NIU N:lJ

A
A
J "z * : J Z j z LA LAD N2 N. N2U N.U

--..

B "K ~ [+ ; K [k { LB LBU N3 N= NlJ N=U

c L A\ , < L \ 1 I LC LOJ N4 N+ N4U N+U

D "M A] - = M] m } LD LDU N5 N- NSU N-U

'1'I "'-) N A ,-

LE Lill N6 N* N6U N*U . n E

.... 0 AI I ? 0
....

LF LFU N7 NI N7U N/U 0 F

o 1 2 3 4 5 6 7 B 9 A B C D E F

Figure B-4. 880 I<eyboard Chart - Translated User Mode

B-5 Program to Read the Contents of a Metafile

Appendix C
Program to Read the Contents of a Metafile

The following program prints out the entire contents of a metafile in a form you can read.

{ tread.pas }

program tread;
%nolist;
%include '/sys/ins/base.ins.pas·;
%include '/sys/ins/error.ins.pas·;
%include ·/sys/ins/gmr.ins.pas·;
%list;

VAR
st : status_$t;
name: array [1 .. 100] of char;
lname : integer;
file_id : integer;

num_seg, max_seg_id, seg, seg_id
ctype : gm_$command_type_t;
dtype : gm_$data_type_t;
i, j : integer;
k : integer32;
r : real;
ptl, pt2 : gm_$point16_t;
rptl, rpt2 : gm_$pointreal_t;
rot : gm_$rotate_reaI2x2_t;
pt : gm_$point_array16_t;
rpt : gm_$point_arrayreal_t;

fill, close : boolean;
style : gm_$line_style_t;
pattern : gm_$draw_pattern_t;
mask : gm_$plane_mask_t;
rotate : real;

procedure check; { internal }

begin
if C st.all <> status $ok) then

error $print Cst);
end; { procedure check }

BEGIN
gm_$initCgm_$no_bitmap,l,ptl,l,st); check;
gm_$file_openC'gmfile' ,6,gm_$wr,gm_$lw,file_id,st); check;

gm_$segment_in~countCnum_seg, max_seg_id, st); check;
for seg := 0 to max_seg_id do

begin

C-l Program to Read the Oontents of a Metafile

gm_$segment_in~nameCseg,name,lname,k,st);

if (st. all = gm_$segment_id_invalid) then
NEXT;

check;
writeln;
writeln(' segment', seg, . name:lname);

gm_$segment_openCseg,st); check;
gm_$pick_commandCgm_$start,st); check;
gm_$pick_commandCgm_$step,st); check;
while C st.all = 0) do

begin
gm_$in~command_type(ctype, dtype, st); check;
case (ctype) of

gm_$taclass :
begin
gm_$in~aclass(i.st);
writelnC'aclass " i);
end;

gm_$tcircle_2d :
begin
if (dtype = gm_$16) then

begin
gm_$in~circle_16(ptl,i,fill,st); check;
writeln('circle 16 ptl.x, ptl.y);
writelnC' " i);
end

else if (dtype = gm_$32) then
begin
gm_$in~circle_real(rptl,r,fill,st); check;
writeln(acircle real , rptl.x, rptl.y);
wri teln (' " r);
end;

if (fill) then
writeln(,

else
writeln('

end;
gm_$tdraw_raster_op

begin

filled')

not filled a);

gm_$in~draw_raster_op(i,st); check;
writeln(adraw raster op a, i);
end;

gm_$tdrawstyle :
begin
gm_$in~draw_style(style,i,pattern,j,st); check;
writelnCadraw style a, style, i);
end;

gm_$tdrawvalue :
begin
gm_$in~draw_valueCk,st); check;
writelnC'draw value " k);
end;

gm $tfillbvalue :
begin
gm_$in~fill_background_value(k,st); check;
writeln(afill background value a, k);
end;

gm_$tfillvalue :

Program to Read the Contents of a Metafile C-2

begin
gm_$in~fill_valueCk,st); check;
writelnC'fill value', k);
end;

gm_$tfontfamily :
begin
gm_$in~font_familyCi,st); check;
writelnC'font family', i);
end;

gm_$tinstance_scale_2d
begin
if C dtype = gm_$16) then

begin
gm_$in~instance_scale_2d16Cseg_id,r,ptl,st); check;
writelnC'instance scale 2d16' seg id, r);
writelnC' " ptl~X, ptl.y);
end

else if C dtype = gm_$32) then
begin
gm_$in~instance_scale_2drealCseg_id,r,rptl,st); check;
writelnC'instance scale 2dreal' seg_id, r);
writelnC' " rptl.x, rptl.y);
end;

end;
gm_$tinstance_trans_2d

begin
if C dtype = gm_$16) then

begin
gm_$in~instance_translate_2d16Cseg_id,ptl,st); check;
writelnC'instance translate 2d16' seg_id);
writelnC' " ptl.x, ptl.y);
end

else if C dtype = gm_$32) then
begin
gm_$in~instance_translate_2drealCseg_id,rptl,st); check;
writelnC'instance translate 2dreal' seg_id);
writelnC' " rptl.x, rptl.y);
end;

end;
gm_$tinstance_transform_2d :

begin
if C dtype = gm_$16) then

begin
gm_$in~instance_transform_2d16Cseg_id,rot,ptl,st); check;
writelnC'instance transform 2d16' seg_id);
writelnC' rot.xx,rot.xY,rot.yx,

rot.yy);
writelnC' ptl.x, ptl.y);
end

else if C dtype = gm_$32) then
begin
gm_$in~instance_transform_2dreal(seg_id,rot,rptl,st); check;
writelnC'instance transform 2dreal' seg_id);
writelnC' rot.xx,rot.xY,rot.yx,

rot.yy);
writelnC' rptl.x, rptl.y);
end;

end;
gm_$tplanemask

0-3 Program to Read the Contents of a Metafile

begin
gm_$in~plane_maskCmask,st); check;
writelnC'plane mask", integer16Cmask));
end;

gm_$tpolyline_2d :
begin
if C dtype = gm_$16) then

begin
gm_$in~polyline_2d16Ci,pt,close,fill,st); check;
writelnC'polyline 2d16 ');
for j := 1 to i do

writelnC' pt[j] .X, pt[j] .y);
end

else if C dtype = gm_$32) then
begin
gm_$in~polyline_2dreal(i,rpt,close,fill,st); check;
writelnC'polyline 2dreal ");
for j := 1 to i do

writelnC' rpt[j] .X, rpt[j] .y);
end;

if C close) then
wri te (' closed, ,)

else
write ('

if C fill) then
writelnC' filled")

else
writelnC" not filled');

end;
gm_$trectangle :

begin
if C dtype = gm_$16) then

begin

not closed, ");

gm_$in~rectangle_16Cptl,pt2,fill,st); check;
writelnC'rectangle 16' ptl.x, ptl.y);
writelnC" " pt2.x, pt2.y);
end

else if C dtype = gm_$32) then
begin
gm_$in~rectangle_reaICrptl,rpt2,fill,st); check;
writelnC'rectangle real', rptl.x, rptl.y);
writelnC' ", rpt2.x, rpt2.y);
end;

if C fill) then
writeln('

else
writeln(,

end;
gm_$ttag :

begin

filled')

not filled');

gm_$in~tag(name,lname,st); check;
writelnC>tag , I name:lname);
end;

gm_$ttext_2d :
begin
if C dtype = gm_$16) then

begin
gm_$in~text_2d16Cptllrotate,name,lname,st); check;
writelnC'text 2d16 " ptl.x, ptl.y);

Program to Read the Contents of a Metafile 0-4

wri teln(' , rotate, name:lname);
end

else if (dtype = gm_$32) then
begin
gm_$in~text_2dreal(rptl,rotate,name,lname,st); check;
writeln('text 2dreal " rptl.x, rptl.y);
writeln(' " rotate, name:lname);
end;

end;
gm_$ttextbvalue

begin
gm_$in~text_background_value(k,st); check;
writeln('text background value ., k);
end;

gm_$ttextsize :
begin
gm_$in~text_size(r,st); check;
writeln('text size', r);
end;

gm_$ttextvalue :
begin
gm_$in~text_value(k,st); check;
writeln('text value ., k);
end;

end;
gm_$pick_command(gm_$step,st);
end;

gm_$segment_close(false,st); check;
end;

gm $file close(true,st); check;
gm-$terminate(st); check;
END.

0-5 Program to Read the Contents of a Metafile

Appendix D
PrograIn: Instances and Attributes

The program in this appendix displays a file as it is being created and edited. The file creates the
picture in Figure D-l.

PROGRAM hotel;

%NOLIST;
%INCLUDE '/sys/ins/base.ins.pas';
%INCLUDE '/sys/ins/error.ins.pas';
%INCLUDE '/sys/ins/pfm.ins.pas';
%INCLUDE '/sys/ins/gmr.ins.pas·;
%INCLUDE '/sys/ins/time.ins.pas';
%LIST;

CONST

VAR

one second = 250000;
five seconds = 5 * one_second;

status

file id -
font file id

sid scene
sid door -
sid window
sid_sign
sid tree -
sid house

pattern
p
center
radius

i

pause

PROCEDURE check;
BEGIN

INTEGER;
INTEGER;

gm_$segment_id_t;
gm_$segment_id_t;
gm_$segment_id_t;
gm_$segment_id_t;
gm_$segment_id_t;
gm_$segment_id_t;

gm_$draw_pattern_t;
gm_$point_array16_t;
gm_$point16_t;
INTEGER;

INTEGER;

IF status.all <> status_$ok
THEN pfm_$error_trapC status);
END;

BEGIN

p[1].x - 1024; { Intialize the 2D GMR package. }

D-l Program: Instances and Attributes

EaEa EaEa
GRAND MOTEL

EaEa EaEa

Figure D-l. A Picture Created Using Instances and Attributes

Program: Instances and Attributes D-2

p[1].y := 1024;
gm_$init

(gm_$direct
, stream $stdout
, p[1]-

);
check;

8
status

gm_$file_create
(, hotel. gm'

8
, gm_$overwrite
, gm_$lw
, file id
, status
) ;

check;

gm $font family include
- ('ffO' -

3
, gm_$pixel
, font_file id

status
) ;

check;

gm_$data_coerce_set_real
(gm_$32
, status
) ;

check;

gm_$segment_create
(

);
check;

o
sid door
status

p[1].x 0;
p[l].y -0·
p[2].x - 36;
p[2].y 80;
gm $rectangle 16

- (p[1] -

, p [2]
, TRUE
, status
) ;

check;

gm $fill value
- (0 -

, status
);

{ Create a 2D GMR file. }

{ Load a font family. }

{ Set the data coerce function. }

{ Create the segment for the door. }

{ Construct the door. }

{ Construct the door knob. }

D-3 Program: Instances and Attributes

check;

p [1]. x : = 30;
p[1].y := 38;
p[2].x := 33;
p[2].y := 41;
gm $rectangle 16

- (p[1] -

, p [2]
, TRUE
, status
);

check;

gm_$segment_close
(TRUE
, status
);

check;

gm_$segment_create
(

o
sid window

, status
) ;

check;

p[1].x O·
p[1].y 0;
p[2] .x 36;
p[2].y 36;
gm $rectangle 16

- (p[1] -

, p [2]
, FALSE
, status
);

check;

p[1].x := 0;
p [1].y 18;
p [2] . x : = 36;
p[2].y := 18;
gm $polyline 2d16

- (2 -

, P
FALSE
FALSE

, status
) ;

check;

p [1]. x : = 18;
p[1].y := 0;
p[2].x := 18;
p[2].y := 36;
gm_$polyline_2d16

(2

Program: In8tance8 and Attribute8

{ Create the segment for the windows. }

D-4

, p
, FALSE
, FALSE

status
) ;

check;

gm_$segment_close
(TRUE

, status
);

check;

gm_$segment_create
(

, 0
sid_sign

, status
);

check;

gm_$text_size
(14.0
, status
) ;

check;

p[1 J.x := 0;
p[1 J.y := 0;
gm $text 2d16

- (P [-1]

, 0.0
, 'GRAND MOTEL'

11
, status
) ;

check;

gm_$segment_close
(TRUE
, status
) ;

check;

gm_$segment_create
(

o
sid house

, status
);

check;

p[1 J.x O·
p[1 J.y 0;
p[2 J.x - 480;
p[2 J.y - 260;
gm_$rectangle_16

(p [1]
, P [2]

{ Create the segment for the sign. }

{ Create the segment for the house. }

{ Build the house. }

D-5 Program: Instances and Attributes

• FALSE
· status
) ;

check;

p [1]. x -10;
p [1]. y 255;
p[2] .X 240;
p[2].y := 380;
p[3].x := 490;
p[3].y := 255;
gm_$polyline_2d16

(3

· P
• FALSE
• FALSE
· status
) ;

check;

p[1] .X -
p[1] .y -
p[2] .X -
p[2] .y -

300;
350;
300;
370;

p[3] .X := 330;
p [3] .y - 370;
p[4] .X := 330;
p [4] . y := 335;
gm_$polyline_2d16

(4
P
FALSE

• FALSE
· status
) ;

check;

center.x := 240;
center.y := 195;
radius := 45;
gm $circle 16

- (center
· radius
• FALSE
· status
) ;

check;

p[1] .X -
p[1] .y -
p[2] .X -
p[2] .y -
p[3] .X -
p[3] .y -
p[4] .X -

center.x
center.y;
center.x
center.y;
center.x;
center.y
center.x;

-

+

-

p[4] .y - center.y +
gm_$polyline_2d16

(4
P

radius;

radius;

radius;

radius;

Program: Instances and Attributes

{ Build the roof. }

{ Build the chimney. }

{ Build the round window. }

D-6

• TRUE
• FALSE
• status
) ;

check;

p[5].x .- p[2] .x;
p[5] .y p[2] .y;
p[2].x p[3] .x;
p[2] .y p[3] .y;
gm_$polyline_2d16

(2

· P
FALSE

• FALSE
• status
) ;

check;

gm_$polyline_2d16
(2

• P [4]
• FALSE
• FALSE
· status
) ;

check;

p[1].x := 222;
p[1].y := 0;
gm $instance translate 2d16

- (sid_door -
• p [1]
· status
) ;

check;

p [1]. x : = 50;
P [1]. y : = 40;
gm_$instance_translate_2d16

(sid window
• p [1]
· status
) ;

check;

p [1]. x : = 118;
gm_$instance_translate_2d16

(sid window
· p[1]
· status
) ;

check;

p[1].x := 326;
gm_$instance_translate_2d16

(sid window
• p[1]
• status

{ Instance and position the door. }

{ Instance and position the windows. }

D-7 Program: Instances and Attributes

);
check;

p[1].x := 394;
gm $instance translate 2d16

- (sid window -
, p[1]
, status
);

p[1].y := 1~0;
gm $instance translate 2diE;

- (sid_window -
, p [1]
, status
) ;

p[1].x := 326;
gm_$instance_translate_2d16

(sid window
, p [1]
, status
) ;

check;

p[1].x := 118;
gm $instance translate 2d16

- (sid window -
, p [1]
, status
) ;

check;

p [1]. x : = 50;
gm $instance translate 2d16

- (sid window -
, p [1]
, status
) ;

check;

p[1].x .- 172;

p[1].y 120;
gm $instance translate 2d16

- (sid sign -
, p [1]
, status
) ;

check;

gm_$segment_close
(TRUE
, status
) ;

check;

gm_$segment_create
(..

Program: Instances and Attributes

{ Instance and position the segment}
{ for the sign. }

{ Create the segment for the trees. }

D-8

· 0
• sid_tree
· status
);

check;

p[1].x O·
p[1] .y' := O·
p[2].x := 0;
p[2].y := 150;
gm $polyline 2d16

- (2 -

· P
· FALSE
· FALSE
· status
) ;

check;

p [1]. x : = 12;
p[2].x := 12;
gm $polyline 2d16

- (2 -

• P
· FALSE

FALSE
status

) ;
check;

p[1].x := 6;
p[1].y := 200;
gm_$circle_16

(p [1]
50

· FALSE
· status
);

check;

gm $draw style
- (gm=$dotted

2

· pattern
o

· status
);

p[1].x 0;
p [1]. Y 180;
p[2] .x -40;
p[2] .y 200;
gm_$polyline_2d16

(2

· P
FALSE

);

FALSE
status

D-9 Program: Instances and Attributes

p [1]. x : = 12;
p[2].x := 52;
gm_$polyline_2d16

(2

· P
• FALSE
• FALSE
• status
) ;

check;

p[1].x :=4;
p[1].y := 190;
p[2].x := -20;
p[2].y := 230;
gm_$polyline_2d16

(2

• P
• FALSE

FALSE
status

) ;
check;

p[1].x := 8;
p[1].y := 190;
p[2].x := 32;
p[2].y := 230;
gm_$polyline_2d16

(2

· P
• FALSE
• FALSE

status
);

check;

p[1].x := 6;
p[1].y := 195;
p[2].x := 6;
p[2].y := 240;
gm $polyline 2d16

- (2 -

· P
• FALSE
• FALSE
• status
) ;

check;

p[1].x := 0;
p[1].y := 170;
p[2].x := 0;
p[2].y := 150;
gm_$polyline_2d16

(2

· P
• FALSE
• FALSE

Program: In8tance8 and Attribute8 D-IO

, status
) ;

check;

p [1]. x : = 12;
p[2].x := 12;
gm_$polyline_2d16

(2

, P
FALSE
FALSE
status

) ;
check;

gm_$segment_close
(TRUE

, status
) ;

check;

gm_$segment_create
(

) ;
check;

o
sid scene
status

p[1].x := 0;
p[1].y := 0;
gm_$instance_translate_2d16

(sid_house
, p [1]
, status
);

check;

p[l].x -85;

p[1].y - -25;
gm_$instance_scale_2d16

(Sid_tree
2.0

, P [1]
status

) ;

p[1].x := 530;
p [1]. y : = 55;
gm_$instance_scale_2d16

(Sid_tree
0.75

, P [1]

);

check;

status

p[1].x - 610;

{ Create the segment called "scene." }

{ Instance the segment for the house. }

{ Instance, translate, and scale}
{ the segment for the trees. }

D-ll Program: Instances and Attributes

p[1].y := 105;
gm $instance scale 2d16

- (Sid_tree -
· 0.85
• P [1]
• status
);

check;

gm_$segment_close
(TRUE

• status
);

check;

gm_$display_segment
(sid_scene
• status
) ;

check;

pause.low32
pause.high16
TIME $WAIT

five_seconds;
0;

(time_$relative
· pause
• status
) ;

check;

gm_$file_close
(TRUE

• status
) ;

check;

gm $terminate
- (status

) ;
check;

END.

Program: In8tance8 and Attribute8

{ Now display the completed scene. }

{ Admire the scene for five seconds. }

{ Close and save the file. }

{ Terminate the 2D GMR package. }

D-12

Appendix E
C Program Examples

This Appendix contains the programming examples presented in the manual translated into C.

A Program to Draw a Rectrangle

The following program demonstrates how to initialize the 2D GMR package, create a metafile,
create a segment, and draw a rectangle (see Section 3.8 and Figure 3-3).

/* PROGRAM draw_rectangle */

#nolist
#include <stdio.h>
#include "/sys/ins/base.ins.c"
#include "/sys/ins/gmr.ins.c"
#include "/sys/ins/time.ins.c"
#list

250000 #define one second
#define five seconds
#define ten seconds

(5 * one_second)
(10 * one_second)

file id;
segment_id;
st;

/* 4-byte integer
short
gm_$segment_id_t
status_$t
gm_$point16_t
long
gm_$point16_t
time_$clock_t

ptl, pt2; /* array of two 2-byte integers */
i;
bitmap_size = {1024,1024};

MainO
{

pause;

/* Define the coordinates of the rectangle to be drawn. *1
ptl.x = 100;

/*

1*

ptl.y = 30;
pt2.x = 200;
pt2.y = 50;

Initialize 2D GMR. *1

gm_$init(gm_$direct,
(short) 1.
bitmap_size,
(short)8,
stL

Create and name a metafile. */

gm $file create("gmfile".
- - (short)6,

gm_$overwrite,
gm_$lw,

E-l C Program Examples

1* Create and name a segment. *1

gm $segment create("rectang seg".
- - strlen(~rectang_seg").

segment_id,
st);

1* Insert the rectangle *1
gm_$rectangle_16(pt1.

pt2.
false.
st);

1* Display the file. *1

1* Keep the figure displayed on the screen for five seconds.*1
pause.low32 = five_seconds;
pause.high16 = 0;
time_$wait(time_$relative.

pause.
st);

1* Close the segment.*1
gm_$segment_close(true.

st);

1* Close the metafile. *1
gm_$file_close(true.

st);

gm_$terminate(st);
}

o Program Example8 E-2

A Program U8ing Primitive8 and In8tancing

The following program draws the design in Figure 4-2 using primitives and instancing (see
Section 4.6).

/* PROGRAM four rec */

#nolist
#include <stdio.h>
#include "/sys/ins/base.ins.c"
#include "/sys/ins/gmr.ins.c"
#include "/sys/ins/time.ins.c"
#list

250000 #define one second
#define five seconds
#define ten seconds

(5 * one_second)
(10 * one_second)

short
gm_$segment_id_t
gm $segment id t
status_$t - -

file_id;
small_id;
large_id;
st;

/* 4-byte integer

gm_$point16_t
long

pt1, pt2;
i'
bitmap_size
position;
positions;
pattern;
pause;

/* array of two 2-byte integers */

= {1024,1024}; gm $point16 t
gm=$point16=t
gm_$point_array16_t
gm $draw pattern t
time_$clock_t -

/* array of two 2-byte integers */

mainO
{

/* Initialize 20 GMR. */
gm $init(gm_$direct,

(short) 1,
bitmap size,
(short)8,
st) ;

/*Create and name a metafile.*/

gm $file create("gmfile",
- - (short)6,

gm_$overwrite.
gm_$1w.
file_id.
st) ;

/* Create and name a segment. */

gm_$segment_create("small_rec".
(short)strlen("small_rec"),
small_id.
st);

E-3 C Program Examples

1*

1*

1*

1*

Define the coordinates of the rectangle. *1
ptl.x = 100;
ptl.y = 100;
pt2.x = 200;
pt2.y = 200;

Draw one small rectangle. *1

gm_$rectangle_16(ptl.
pt2.
true.
st);

Close the segment. *1

gm_$segment_close(true.
st) ;

gm_$segment_create("large_rec".
(short)strlen("large_rec").
large_id.
st);

Define the coordinates of the rectangle. *1
ptl.x = 100;
ptl.y = 100;
pt2.x = 600;
pt2.y = 600;

1* Draw a rectangle. *1
gm_$rectangle_16(ptl.

pt2.
false.
st);

1* Instance the small rectangle four times. *1
position.x = 100;
position.y = 100;

gm_$instance_translate_2d16(small_id.
position.
st);

position.x = 300;
position.y = 300;

gm_$instance_trans~ate_2d16(small_id.
position.
st);

position.x = 300;
position.y = 100;

gm_$instance_translate_2d16(small_id.
position.
st);

position.x = 100;
position.y = 300;

o Program Examples E-4

gm_$instance_translate_2d16(small_id,
position,
st) ;

1* Draw two polylines connecting four rectangles. *1
positions [0] .X = 300;
positions [0] .y = 300;
positions [1] .X = 400;
positions [1] .y = 400;
gm_$polyline_2d16(2,positions,false,false,st);

positions [0] .X = 300;
positions [0] .y = 400;
positions [1] .X = 400;
positions [1] .y = 300;

gm_$polyline_2d16((short)2,
positions,
false,
false,
st) ;

1* Close the segment. *1
gm_$segment_close(true,

st);

gm_$display_segment(large_id,
st);

1* Keep figure displayed on the screen for five seconds. *1
pause.low32 = five seconds;
pause.high16 = 0;

time_$wait(time_$relative,
pause,
st);

1* Close the metafile. *1
gm_$file_close(true,

st);

1* Terminate 2D GMR. *1
gm_$terminate(st);

}

E-5 C Program Examples

A Program with Attributes and Instancing

The following program modifies the program above by adding an attribute command (see Section
5.4).

/* PROGRAM draw_rectangles */

#nolist
#include <stdio.h>
#include "/sys/ins/base.ins.c"
#include "/sys/ins/gmr.ins.c"
#include "/sys/ins/time.ins.c"
#list

250000 #define one second
#define five seconds
#define ten seconds

(5 * one_second)
(10 * one_second)

short
gm_$segment_id_t
gm_$segment_id_t
status_$t
gm_$point16_t

file_id;
small_id;
large_id;
st;

/* 4-byte integer

ptl, pt2; /* array of two 2-byte integers */
long i'
gm_$point16_t
gm_$point16_t
gm_$point_array16_t
gm $draw pattern t
time_$clock_t -

bitmap_size = {1024, 1024};
position; /*array of two 2-byte integers */
positions;
pattern = {'\377', '\360'};
pause;

mainO
{

/* Initialize 2D GMR. */

/*

gm_$init(gm_$direct,
(short) 1,
bitmap_size,
(short)8,
st);

Create and name a metafile. */

gm_$file_create("gmfile",
(short)6,
gm_$overwrite,
gm_$lw,
file_id,st);

/* Create and name a segment. */

gm_$segment_create("small_rec",
(short)strlen("small_rec"),
small_id,
st);

gm_$draw_style(gm_$dotted,
(short)4,
pattern,
(short)O,

C Program Examples E-6

st);

1* Define the coordinates of
ptl.x = 100;
ptl.y = 100;
pt2.x = 200;
pt2.y = 200;

I*Draw one small rectangle.*1
gm_$rectangle_16(ptl,

pt2,
false,
st) ;

the

1* Close the segment. *1
gm_$segment_close(true,st);

rectangle. *1

gm_$segment_create("large_rec",
(short)strlen("large_rec"),
large_id,st);

1* Instance the small rectangle four times. *1
position.x = 100;
position.y = 100;

gm_$instance_translate_2d16(small_id,
position,
st) ;

position.x = 300;
position.y = 300;

gm_$instance_translate_2d16(small_id,
position,
st);

position.x = 300;
position.y = 100;

gm_$instance_translate_2d16(small_id,
position,
st) ;

position.x = 100;
position.y = 300;

gm_$instance_translate_2d16(small_id,
position,
st);

gm_$draw_style(gm_$patterned,
(short) 1,
pattern,
(short) 16,
st);

1* Define the coordinates of the rectangle. *1
ptl.x = 100;
ptl.y = 100;

E-7 C Program Examples

pt2.X = 600;
pt2.y = 600;

1* Draw a rectangle. *1

gm_$rectangle_16(pt1,
pt2,
false,
st);

1* Draw two polylines connecting four rectangles. *1
positions [0] .x = 300;
positions [0] .y = 300;
positions [1] .X = 400;
positions [1] .y = 400;

gm_$polyline_2d16((short)2,
positions,
false,
false,
st);

positions [0] .x = 300;
positions [0] .y = 400;
positions [1] .x = 400;
positions [1] .y = 300;

gm_$polyline_2d16((short)2,
positions,
false,
false,
st) ;

1* Close the segment. *1

gm_$segment_close(true,
st);

gm_$display_segment(large_id,
st);

1* Keep figure displayed on the screen for five seconds. *1
pause.low32 = five seconds;
pause.high16 = 0;

time_$wait(time_$relative,
pause,
st);

1* Close the metafile. *1

gm_$file_close(true,
st);

1* Terminate 2D GMR. *1
gm_$terminate(st);

}

C Program Example8 E-8

A Program Including Text

The following program draws the design in Figure 6-1. This is a rectangle with horizontal and
vertical text strings (see Section 6.5).

#nol1st
#1nclude <std10.h>
#1nclude "/sys/1ns/base.1ns.c"
#1nclude "/sys/1ns/gmr.1ns.C"
#1nclude "/sys/1ns/t1me.1ns.C"
#l1st

#define one second
#def1ne five seconds

250000
(5 * one_second)

file_1d;
segment_id; /* 4-byte integer */
st;

short
gm_$segment_1d_t
status_$t
gm_$po1nt16_t
long
gm_$po1nt16_t
short
t1me_$clock_t

pt1. pt2.po1nt; /* array of two 2-byte integers */
1;
bitmap_size = {1024.1024};
ffid;
pause;

mainO
{

/*In1tial1ze 2D GMR.*/

/*

gm_$in1t(gm_$d1rect.
(short) 1.
bitmap_size.
(short)8.
st);

Create and name a metafile. */

gm_$file_create("gmfile".
(short)6.
gm_$overwrite.
gm_$1w.
f1le_1d.
st);

/* Create and name a segment. */

gm_$segment_create("rectang_seg".
(short)strlen("rectang_seg").
segment_id.
st);

/*Load the font family.*/

"font families".
(short)strlen(lfont_fam1lies").
gm_$pixel.
ff1d.
st);

E-9 C Program Examples

gm_$text_size((float)14.0.
st);

point.x = 5;
point.y = 510;

gm_$text_2d16 (point.
(float)O.O •

point.x = 5;
point.y = 50;

"This is the top of the rectangle. II •

(short)strlen("This is the top of the rectangle. ").
st);

gm_$text_2d16 (point.
(float)-90.0.
"This is the side of the rectangle. ".
(short)strlen("This is the side of the rectangle. ").
st);

1* Define the coordinates of the rectangle to be drawn. *1
pt1.x = 10;
pt1.y = 30;
pt2.x = 400;
pt2.y = 500;

gm_$rectangle_16(ptl.
pt2.
false.
st) ;

I*Close the segment.*1

gm_$segment_close(true.
st) ;

1* Display the file. *1

1* Keep figure displayed on the screen for five seconds. *1
pause.low32 = five seconds;
pause.high16 = 0;

time_$wait(time_$relative.
pause.
st);

1* Close the metafile. *1

}

gm_$file_close(true.
st);

gm $terminate(st);

o Program Examples E-IO

A Program With Stroke and Pixel Fonts

The following program loads a pixel font family file and a stroke font family file and then shifts
back and forth between them using an attribute block and attribute class command (see Section
6.9). The purpose of this program is to illustrate the use of the two types of text. The attribute
block and attribute class command provide an easy way to change text size. For a discussion of
attribute blocks and attribute classes, see Chapter 13.

/* PROGRAM text */

#nolist
#include <stdio.h>
#include <math.h>
#include "/sys/ins/base.ins.c"
#include "/sys/ins/gmr.ins.c"
#include "/sys/ins/pfm.ins.c"
#include "/sys/ins/time.ins.c"
#list

#define aclass1
#define second
#define cos delta
#define sin delta

status_$t
gm_$segment_id_t
gm_$segment_id_t
short
short
short
short
gm_$point16_t
gm_$point16_t
gm_$boundsreal_t
short
short
float
float

1
500000
(float)cos(0.25)
(float)sin(0.25)

status;
Sid_text;
Sid_top;
file_id;
ffid_pixel;
ffid_stroke;
ablock_id;
p;
q;
dbounds;
i;
j ;
text_size;
text_size_delta;

gm_$rotate_rea12x2_t rotate;
gm_$point16_t translate;
time $clock t pause;
/**/
mainO
{

p.x = 1024;
p.y = 1024;

/* Initialize the 2D GMR package. */

gm_$init(gm $direct,
(short) 1,
p,
(short)8,
status);

check(status);

/* Create and name a metafile. */

E-ll C Program Examples

gm_$file_create("gmfile",
(short)6,

check(status);

gm $overwrite,
gm $1w,
file_id,
status);

1* Set the viewport refresh state. *1
gm_$viewport_set_refresh_state(gm_$refresh_wait,

status);

check(status);

1* Include a pixel font family. *1
gm_$font_family_include("ffO",

(short)3,
gm_$pixel,
ffid_pixel,
status);

- check(status) ;

1* Include a stroke font family. *1
gm_$font_family_include("ffs",

(short)3,
gm $stroke,
ffid_stroke,
status);

check(status);

1* Create an ablock. *1
gm_$ablock_create((short) 1,

ablock_id,
status);

check(status);

1* Set the ablock id = aclass1.. *1
gm_$ablock_assign_display(aclassl,

ablock_id,
sta.tus);

check(status);

1* Create a text segment. *1
gm_$segment_create((char *)NULL,

(short)O,
Sid_text,
status);

check(status);

1* Add an aclass command. *1
gm_$aclass(aclassl,

status);

check(status);

o Program Examples E-12

p.x = - 5;
p.y = - 5;
q.x = 5;
q.y = 5;

1* Add a unfilled rectangle. *1

gm_$rectangle_16(p,

check(status);

p.x = 10;
p.y = O'

q,
false,
status);

1* Add Left to Right text. *1

gm_$text_2d16(p,
(float)O.O,
"Left to Right",
(short) 13,
status);

check(status);

p.x = O'
p.y = - 10;

1* Add Top to Bottom text. *1

gm_$text_2d16(p,

check(status);

p.X = - 10;
p.y = O'

(float)90.0,
"Top to Bottom",

(short) 13,
status);

1* Add Right to Left text. *1

gm $text 2d16(p,
- - (float)180.0,

"Right to Left",
(short) 13,
status);

check(status);

p.x = 0;
p.y = 10;

1* Add Bottom to Top text. *1

gm_$text_2d16(p,
(float)-90.0,

E-13 o Program Examples

"Bottom to Top",
(short) 13,

status);

check(status);

1* Close the segment. *1
gm_$segment_close(true,

status);

check(status);

dbounds.xmin = - 50.0;
dbounds.ymin = - 50.0;
dbounds.xmax = 50.0;
dbounds.ymax = 50.0;

pause.low32 = second I 4'
pause.high16 = 0;

text_size = 10.0;
text size delta = 1.0;

1* * * Illustrate different text sizes with pixel and stroke text. * * *1

for(j=O; j<2; j++)
{

if (j == 1)

1* Set ablock to pixel font family. *1

else

gm_$ablock_set_font_family(.ablock_id,
ffid pixel,
status);

1* Set ablock to stroke font family. *1

gm_$ablock_set_font_family(ablock_id,
ffid stroke,
status);

check(status);

for(i=O; i<20; i++)
{

if(text_size >= 10.0)
text size delta = -(fabs«double)text_size delta));

else
if(text_size <= fabs«double) text_size_delta))

text size delta = fabs«double) text size delta);

1* Change ablock text size. *1

C Program Examples E-14

gm_$ablock_set_text_size(ablock_id,
text_size,
status);

check(status);

1* Display the file. *1
gm_$display_file_part(dbounds,

status);

check(status);

1* Admire it for a momemt. *1

time_$wait(time_$relative,
pause,
status);

check(status);
}/* end for i *1

}/* end for j*1

1* Create top segment. *1
gm $segment create((char *)NULL,

- - (short)O,

check(status);

1* Identity matrix *1
rotate.xx = 1.0;
rotate.xy = 040;
rotate.yx = 0.0;
rotate.yy = 1.0;

1* Zero translation *1
translate.x = o·
translate.y = 0;

sid_top,
status);

1* Instance text segment into top segment. *1

gm_$instance_transform_2d16(sid_text,
rotate,
translate,
status);

check(status);

1* Go into replace mode. */

gm_$modelcmd_set_mode(gm_$modelcmd_replace,
status);

check(status);

1* * * Illustrate different text angles with pixel and stroke text. * * *1

for(j=O; j<2; j++)

E-15 o Program Examples

{

if (j -- 1)

1* Set ablock to pixel font family. *1

else

gm_$ablock_set_font_family(ablock_id,
ffid pixel,
status);

1* Set ablock to stroke font family. *1

gm_$ablock_set_font_family(ablock_id,
ffid_stroke,
status);

check(status);

for(i=O; i<40; i++)
{

1* Increment rotation matrix. *1
rotate.xx = cos delta * rotate.xx + sin delta * rotate.xy;
rotate.yx = cos delta * rotate.yx + sin delta * rotate.yy;
rotate.xy = -rotate.yx;
rotate.yy = rotate.xx;

1* Change the angle of the instance transform. *1

gm_$instance_transform_2d16(sid_text,
rotate,
translate,
status);

check(status);

1* Display the file. *1

gm_$display_file_part(dbounds,
status);

check(status);

1* Admire it for a moment. *1

time_$wait(time_$relative,
pause,
status);

check(status);

}/*end for i *1
}/* end for j *1

1* Close the top segment. *1

gm_$segment_close(true,
status);

G Program Examples E-16

check(status);

1* Close the file. *1
gm_$file_close(true,

status);

check(status);

1* Terminate the 20 GMR package. *1

gm_$terminate(status);

check(status);
}

1**1
check(status)

status $t status;
{ -

}

if(status.all != status_$ok)
pfm_$error_trap(status);

E-l'1 C Program Examples

Program to Change the View

This program opens and displays an existing file and then changes the view scale to shrink the
viewport. {For an existing file, you may use the program called a1hotel" in Appendix D . As
viewports may not overlap, this makes room for a second viewport. The second viewport is
created, and the file is displayed in it. The view scale is then changed for the second viewport
(see Section 8.9).

/* PROGRAM coures2 */

#nolist
#include <stdio.h>
#include "/sys/ins/base.ins.c"
#include "/sys/ins/gmr.ins.c"
#list

status_$t
name_$pname_t
short
short
short
short
gm_$pointreal_t
gm_$boundsreal_t
gm_$point16_t
short

mainO
{

status;
name;
length;
vpid2;
vpid3;
file_id;
rtransl;
b;
bitmap_size;
i'

printf("File name: \n");
gets(name);
length = strlen(name);

bitmap_size.x = 1024;
bitmap_size.y = 1024;

gm_$init(gm_$direct,
stream_$stdout,
bitmap size,
(short)8,
status);

gm_$file_open(name,
length,
gm_$r,
gm_$lw,
file id,
status);

/* Now display the file. */

/* Change the view scale. */
rtransl.x = 0.0;

C Program Examples E-18

1*

1*

rtransl.y = 1.0;

gm_$view_scale((float)0.25,
rtransl,
status);

for(i=O; i<10; i++)
gm_$view_scale((float)1.05,

rtransl,
status);

rtransl.x = 0.1;
rtransl.y = 0.8;
for(i=O; i<10; i++)

gm_$view_scale((float)0.92,
rtransl,
status);

Shrink the viewport. *1
b.xmin = 0.0;
b.ymin = 0.6;
b.xmax = 0.38;
b.ymax = 1.0;

gm_$viewport_set_bounds(b,
status);

Create a second viewport. *1
b.xmin = 0.4;
b.ymin = 0.0;
b.xmax = 1.0;
b.ymax = 0.6;

gm_$viewport_create(b,
vpid2,
status);

1* Display file in second viewport. *1
gm_$display_file(status);

1* Change view scale in second viewport. *1
rtransl.x = 0.7;
rtransl.y = 0.3;
for(i=O; i<10; i++)

gm_$view_scale((float)1.05,
rtransl,
status);

for(i=O; i<3; i++)
gm_$view_scale((float)0.85,

rtransl,
status);

1* Switch back to first viewport. *1

gm_$viewport_select((short) 1,
status);

E-19 o Program Examples

rtransl. x = 0.0;
rtransl.y = 0.9;
for(i=O; i<10; i++)

gm_$view_scale((short)1.05.
rtransl.
status);

for(i=O; i<3; i++)
gm_$view_scale((float)0.9,

rtransl.
statm~);

1* SWitch back to second viewport. *1
gm_$viewport_select(vpid2 ..

status);

1* Translate the (second) viewport. *1
rtransl.x = 0.0;
rtransl.y = -0.4;

gm_$view_translate(rtransl.
status);

1* Shrink the second viewport. *1
b . xmin = 0.4;

1*

b.ymin = 0.4;
b . xmax = 1.0;
b . ymax = 1. 0 ;

gm_$viewport_set_bounds(b,
status);

Create a third viewport. *1
b.xmin = 0.0;
b.ymin = 0.0;
b.xmax = 1.0;
b.ymax = 0.2;

gm_$viewport_create(b.
vpid3.
statue;) ;

1* Display file in third viewpc)rt. *1
gm_$display_file(status);

gm_$viewport_in~bounds(b,
status);

1* Change view scale in third viewport. *1
rtransl.x = 0.9;
rtransl. y = 0.1;
for(i=O; i<20; i++)

gm_$view_scale((float)0.9,
rtransl.
status);

1* Close the file. *1

C Program Example8 E-20

}

status);

gm $terminate(status);

E-21 C Program Examples

An Interactive Program

The following program creates one segment containing sixteen filled polyline commands. The
user can then pick and move the commands and demonstrate three model command modes (see
Section 9.3).

/* PROGRAM star_move */

/* The following keys are enabled and perform the following actions: */

Toggle to pick/replace a command
Quit
Abort rubberbanding (command is NOT replaced)

#nolist
#include <stdio.h>
#include <math.h>
#include "/sys/ins/base.ins.C"
#include "/sys/ins/error.ins.c"
#include "/sys/ins/gmr.ins.c"
#include "/sys/ins/pfm.ins.c"
#list

#define SETSIZE

#define ctrlx
#define stars x
#define stars_y

gm_$event_t
char
gm_$pointreal_t
short
gm_$pointreal_t
status_$t
gm_$event_t
char
gm_$pointreal_t
short
gm_$pointreal_t
status_$t
short
short
short
gm_$point_array16_t
short
boolean
boolean
gm_$pointreal_t
gm_$point16_t

(short)256

'\030'
4
4

ev_type;
character;
bitmap_pos;
viewport_id;
segment_pos;
status;
flush_ev_type;
flush_character;
flush_bitmap_pos;
flush_viewport_id;
flush_segment_pos;
flush_staotus;
i'
j;
k'
star;
vertices;
closed;
filled;
last_segment_pos;
delta;
file_id;
sid;
n_instances;
bounds;
command_picked;

short
gm_$segment_id_t
long
gm_$boundsreal_t
boolean
gm_$point16_t bitmap_size = { 1024, 1024 };

C Program Examples E-22

gm_$pointreal_t
gm_$keyset_t

pick_aperture = { 4.0, 4.0 };
keyset;

1**1
check(status)

status $t status;
{ -

}

if(status.all != status_$ok)
pfm_$error_trap(status);

1**1
mainO
{

1* Initialize the 2D GMR package. *1
gm_$init(gm_$direct,

(short) 1,
bitmap size,
(short)8,
status);

check(status);

1* Create a file named "stars.gmr". *1
gm_$file_create("stars.gmr",

(short)strlen("stars.gmr"),
gm_$overwrite,
gm_$lw,
file_id,
status);

check(status);

1* Coerce REAL data to INTEGER32. *1
gm_$data_coerce_set_real(gm_$32,

status);

check(status);

1* Create an unnamed segment. *1

1*

gm $segment create((char *)NULL,
- - (short)O,

check(status);

sid,
status);

Define a filled polyline. *1
star [0] .X = 000;
star [0] .y = 000;
star[1] .X = 400;
star [1] . y = 300;
star [2] .X = 000;
star [2] .y = 300;
star [3] .X = 400;
star [3] .y = 000;
star [4] .X = 200;
star [4] . y = 400;

E-23 C Program Examples

closed = true;
filled = true;
vertices = 5;

1* Set model command mode to INSERT. *1
gm_$modelcmd_set_mode(gm_$modelcmd_insert.

status);

check(status);

1* Insert polylines into the segment. *1
for(i=O; i<stars_x; i++)
{

for(j=O; j<starsJ; j++)
{

gm_$polyline_2d16(vertices,
star,
closed,
filled,
status);

check(status);

for(k=O; k < vertices; k++)
star[k] .y = star[k] .y + 600;

}/* end for j *1
for(k =0; k < vertices; k++)
{

star[k] .x = star[k] .X + 600;
star[k] .y = star[k] .y - 600 * stars_y;

}/* end for k *1
}/* end for i *1

1* Display the segment. *1
gm_$display_segment(sid,

statlls);

check(status);

1* Set the refresh state to partial. *1
gm_$vievport_set_refresh_state(gm_$refresh_partial,

status);

check(status);

1* Make the cursor active. *1
gm_$cursor_set_active(true,

sta.tus);

check(status);

1* Enable keys -X, P, and Q. *1

lib_$init_set(keyset. SETSIZE);

lib $add to set(keyset, SETSIZE, ctrlx);
lib-$add-to-set(keyset, SETSIZE, 'p.);
lib-$add-to-set(keyset, SETSIZE, 'Q');
lib=$add=to=set(keyset, SETSIZE, 'p');

C Program Example8 E-24

gm_$input_enable(gm_$keystroke,
keyset,
status);

check(status);

1* Enable locator events. *1

gm_$input_enable(gm_$locator,
OL,
status);

check(status);

command_picked = false;

do
{

1* Wait for an event. *1
gm_$input_event_wait(true,

ev_type,
character,
bitmap_pos,
viewport_id,
segment_pos,
status);

check(status);

if(ev_type == gm_$locator)
do
{

1* Flush the queue. *1

gm_$input_event_wait(false,
flush_ev_type,
flush_character,
flush_bitmap_pos,
flush_viewport_id,
flush_segment_pos,
flush_status);

if(flush_ev_type != gm_$no_event)
{

ev_type = flush_ev_type;
character = flush_character;
bitmap_pos = flush_bitmap_pos;
viewport_id = flush_viewport_id;
segment_pos = flush_segment_pos;
status = flush_status;
check(status);

}/* end if *1
}while(flush_ev_type -- gm_$locator);I* end do *1

1* Do case event type. *1
switch (ev_type)
{

E-25 C Program Examples

case gm_$keystroke:

switch (character)
{

case 'p':
case 'p':

if(1 command_picked)
{

1* Set the pick center. *1
gm_$pick_set_center(segment pos,

status);

check(status);

1* Set the pick aperture. *1
gm_$pick_set_size(pick_aperture,

status);

check(status);

1* Clear old pick list. *1
gm_$pick_segment(gm_$clear,

sid,
n_instances,
bounds,
status);

check(status);

1* Setup pick at top segment. *1
gm_$pick_segment(gm_$setup,

sid,
n_instances,
bounds,
status);

if(status.all -- status_$ok)
{

1* Initialize pick_command. *1

1* Pick a command. *1

gm_$pick_command(gm $start,
status);

check(status);

gm_$pick_command(gm $cnext,
status);

command_picked = (status.all -- status_$ok);
}/* c~nd if *1

if(command picked)
{ -

1* Highlight the picked command. *1

C Program Examples

gm_$pick_highlight_command(gm_$outline,
(float)1.0,
status);

E-26

check(status);

1* Inquire about the picked polyline. *1

gm_$in~polyline_2d16(vertices,
star,
closed,
f:i.lled,
status);

check(status);

1* Change to rubberband mode. *1

gm_$modelcmd_set_mode(gm_$modelcmd_rubberband,
status);

1* Turn off the cursor. *1

check(status);

gm_$cursor_set_active(false,
status);

check(status);
last segment pos = segment_pos;

}/* end if *1 -
}/* end if (!command_picked) *1
else
{

1* Change to replace mode. *1

gm_$modelcmd_set_mode(gm_$modelcmd_replace,
status);

check(status);

1* Replace the polyline. *1

gm_$polyline_2d16(vertices,
star,
closed,
filled,
status);

check(status);

1* Turn the cursor on. *1

gm_$cursor_set_active(true,
status);

check(status);
command_picked = false;

}/* end else *1
break;

case ctrlx:

command_picked = false;

E-27 o Program Examples

1* Turn off rubberband mode. *1

gm_$modelcmd_set_mode(gm_$modelcmd_replace,
status);

check(stat,us) ;

1* Turn the cursor on. *1

1* Quit. *1

case
case

}/*

gm_$cursor_set_active(true,
status);

check (stat,us) ;
break;

'Q' :
'q' :

closeO;
exit(O);
break;
end swi tcll character *1

case gm_$locator:

if (command_picked)
{/**1

delta.x = (short)floor«double)(segment_pos.x - last_segment_pos.x + 0.5));
delta.y = (short)floor«double)(segment_pos.y - last_segment_pos.y + 0.5));
last segment pos = segment pos;

- - for(i=O; i < vertices; i++)
{

star[i].x = star[i].x + delta.x;
star[i] .y = star[i] .y + delta.y;
}/* end for *1

1* Move XOR-rubberband. *1
gm_$polyline_2d16 (vertices,

star,
closed,
filled,
status);

check (sta1~us) ;
}/* end if *1

else
{

gm_$cursor_set_position(bitmap_pos,
status);

check(status);
}/* end else *1
break;

}/* end switch *1
}while(true);I* end do *1

}/* end maine) *1

closeO
{

C Program Examples E-28

1* Close the segment. *1
gm_$segment_close(true,

status);

check(status);

1* Close the file. *1
gm_$file_close(true,

status);

,check (status) ;

1* Terminate the session. *1

gm_$terminate(status);

check(status);
}/* end close */

C Program Examples

A Program with Attribute Classes and Blocks

The following program creates a hierarchy of segments including instance commands. It displays
the file in three viewports; adds attribute class commands to the file; assigns attribute blocks to
attribute classes; displays the segments; closes the file; and terminates the package (see Section
13.11).

/* attributes */
/* PROGRAM courseS */

#nolist
#include <stdio.h>
#include "/sys/ins/base.ins.c"
#include "/sys/ins/time.ins.c"
#include "/sys/ins/gmr.ins.c"
#list

#define aclassid1
#define aclassid2
#define vpidl
#define one second

1

2
1
250000

gm_$point16_t
status_$t
gm_$boundsreal_t
short

bitmap_size = {1024,1024};
st;
b;

vpid2,vpid3;
file_id; short

gm_$segment_id_t
short
short
gm_$point16_t
short

sid1,sid2,sid3;
ablockidl,ablockid2,ablockid3;
ablockid4,ablockid5,ablockid6;
pt1,pt2;
lint;

gm $draw pattern t
time_$clock_t -

pattern; /* bit pattern */
pause;

mainO
{

gm_$init(gm_$borrow,
(short) 1,
bitmap_size,
(short)8,
st) ;

/* Create three viewports. */
b.xmin = 0.0;
b.ymin = 0.0;
b.xmax = 0.49;
b . ymax = 0.49;

gm_$viewport_set_bounds(b,
st) ;

b.xmin = 0.51 ;
b.ymin = 0.0;
b.xmax = 1.0;
b.ymax = 0.49;

C Program Examples E-30

gm_$viewport_create(b,
vpid2,
st);

b.xmin = 0.0;
b.ymin = 0.51;
b.xmax = 1.0;
b.ymax = 1.0;

gm_$viewport_create(b,
vpid3,
st) ;

1* Display segments. *1

gm $file create("gmfile",
- - (short)6,

gm $overwrite,
gm_$lw,
file_id,
st);

gm _ $segment _create (.1 bot tom" ,
(short)6,
sid1,
st);

ptl.x = O·
pt1.y = 30;
pt2.x = 10;
pt2.y = 40;

gm_$rectangle_16(ptl,
pt2,
false,
st);

gm_$draw_style(gm_$solid,
(short)O,
pattern,
(short)O,
st);

ptl.x = 20;
pt2.x = 30;

gm_$rectangle_16(ptl,
pt2,
false,
st) ;

gm_$segment_close(true,
st);

gm $segment create("top",
- - (short)3,

pt1.x = 0;

sid2,
st);

E-31 C Program Examples

pt1.y = 0;
pt2.x = 10;
pt2.y = 10;

gm_$rectangle_16(pt1.
pt2,
false.
st);

gm_$instance_translate_2d16(sid1,
pt1.
st);

ptl.x = 20;
pt2.x = 30;

gm_$rectangle_16(ptl.
pt2.
false.
st);

gm_$segment_close(true.
st);

1* Display segments in the other two viewports. *1

gm_$viewport_select(vpid~~.
st);

gm_$viewport_select(vpid~,
st);

gm_$display_file(st);

pause.low32 = 5 * one second;
pause.high16 = 0;
time _ $wai t (time _ $relati ve " pause. st) ;

1* Assign different attributes to each viewport. *1

gm_$ablock_create((short) 1.
ablockid1,
st);

gm_$ablock_set_draw_style(ablockid1.
gm $dotted.
(short)5,
pattern,
(short)O,
st) ;

gm_$ablock_assign_viewport(aclassid1.
vpid1.
ablockid1.
st);

G Program Examples E-32

ablockid2.
st);

gm_$ablock_set_draw_style(ablockid2.
gm_$dotted.
(short) 10.
pattern.
(short)O.
st) ;

gm_$ablock_assign_viewport(aclassid1.
vpid2.
ablockid2.
st) ;

gm_$ablock_create((short) 1.
ablockid3.
st);

gm_$ablock_set_draw_style(ablockid3.
gm_$dotted.
(short)20.
pattern.
O.
st);

gm_$ablock_assign_viewport(aclassidl.
vpid3.
ablockid3,
st);

time_$wait(time_$relative.
pause.
st) ;

1* Add an attribute class command. *1

gm_$segment_create("new" ,
(short)3,
sid3,
st) ;

ptl.x = o·
ptl.y = o·
pt2.x = 10;
pt2.y = 10;

gm_$rectangle_16(ptl,
pt2,
false,
st);

gm_$aclass(aclassid2,
st);

pt1.x = 20;
pt2.x = 30;

E-33 G Program Examples

gm_$rectangle_16(ptl,
pt2,
false,
st);

gm_$segment_close(true,
st);

1* Assign attribute blocks to the attribute class. *1

gm_$ablock_create((short) 1.,
ablockid4,
st);

gm_$ablock_set_draw_style(ablockid4,
gm $dotted,
(short)30,
pattern,
(short)O,
st) ;

gm_$ablock_assign_viewport(aclassid2,
vpid1,
ablockid4,
st);

gm_$ablock_create((short)1,
ablockid5,
st);

gm_$ablock_set_draw_style(ablockid5,
gm_$dotted,
(short)40,
pattern,
(short)O,
st);

gm_$ablock_assign_viewport(aclassid2,
vpid2,
ablockid5,
st);

gm_$ablock_create((short) 1,
ablockid6,
st) ;

gm_$ablock_set_draw_style(ablockid6,
gm $dotted,
(short)50,
pattern,
(short)O,
st);

gm_$ablock_assign_viewport(aclassid2,
vpid3,
ablockid6,
st) ;

C Program Example8 E-34

}

st);

gm_$viewport_select(vpid2,
st) ;

gm_$display_segment(sid3,
st);

gm_$viewport_select(vpid3,
st);

gm_$display_segment(sid3,
st);

time_$wait(time_$relative,
pause,
st);

gm_$file_close(true,
st);

gm_$terminate(st);

E-35 C Program Examples

Program with Advanced Viewing Techniques

The following program changes the color map values; assigns a plane mask to viewports; displays
a grid; changes the plane mask; assigns viewport background values; displays segments in more
than one viewport; closes the file; and terminates the package (see Section 14.3).

/* PROGRAM course6 */

#nolist
#include <stdio.h>
#include "/sys/ins/base.ins.c"
#include "/sys/ins/time.ins.c"
#include "/sys/ins/gmr.ins.c"
#include "/sys/ins/pfm.ins.c"
#list

#define gm_default_aclass
#define repeats

1
10

#define space
#define one second

#define planeO
#define plane1
#define plane2

gm_$point16_t
status_$t
gm_$boundsreal_t
short
short
short

1
2
4

25
250000

bitmap_size;
st;
b;
vpid2, vpid3, vpid4;
ablockid;
k'

short m ,n;
gm_$color_entry_t color_array[8];
short file_id;
gm_$segment_id_t sid1, sid2, sid3 , sid4;
gm_$point16_t pt1. pt2, transl;
gm_$pointreal_t rtransl;
gm_$plane_mask_t mask;
/**/
check(status)

status $t status;
{ -

}

if(status.all != status_$ok)
pfm_$error_trap(status);

/**/
waitO
{

time_$clock_t
status_$t

pause;
status;

pause.low32 = 5 * one_second;
pause.high16 = 0;

o Program Examples E-36

1* Wait five seconds. *1
time_$wait(time_$relative,

pause,

}

status);
check(status);

1**1
mainO
{

1*

1*

bitmap_size.x = 1024;
bitmap_size.y = 1024;

Initialize the 2D GMR package. *1

gm $init(gm_$borrow,
stream_$stdout,
bitmap_size,
(short)8,
st);

Create and name a metafile. *1

gm_$file_create("gmfile",
(short)6,
gm_$overwrite.
gm_$lw,
file_id,
st);

1* Create segment 'grid.' *1

gm_$segment_create(IIgrid ll
,

(short)4,
sid1,
st);

1* 'Grid' points are zero-sized rectangles. *1

pt1.x = 0;
for(m=l; m<=8; m++)
{

pt1.x = pt1.x + 100;
pt1.y = 0;
for(n=l; n<=8; n++)
{

pt1.y = pt1.y + 100;

gm_$rectangle_16(pt1,
pt1,
false,
st);

}/* end for n *1
}/* end for m *1

1* Close segment 'grid.' *1

gm_$segment_close(true,
st) ;

E-37 C Program Examples

b.xmin = 0.0;
b.ymin = 0.0;
b.xmax = 0.49;
b.ymax = 0.49;

1* Shrink viewport 1. *1

gm_$viewport_set_bounds(b,
st) ;

b.xinin = 0.51;
b.ymin = 0.0;
b.xmax = 1.0;
b.ymax = 0.49;

1* Create viewport 2. *1

gm_$viewport_create(b,
vpid2,
st) .:

b.xmin = 0.0;
b.ymin = 0.51;
b.xmax = 0.49;
b.ymax = 1.0;

1* Create viewport 3. *1

gm_$viewport_create(b,
vpici3,
st) .:

b.xmin = 0.51;
b.ymin = 0.51;
b.xmax = 1.0;
b.ymax = 1.0;

1* Create viewport 4. *1

gm_$viewport_create(b,
vpid4,
st) .:

1* Red + green = yellow. *1
for(k=O; k<8; k++)
{

}

cOlor_array[k] .red = 1.0;
color array[k] .green = 1.0;
cOlor=array[k] .blue = 0.0;

1* Set color values 8 to 15 to yellow. *1

gm_$display_set_color_map(OL,

C Program Examples

0,
color_array,
st);

E-38

1* Create an ablock. *1

gm_$ablock_create((short) 1,
ablockid,
st) ;

1* For the ablock, set the draw value to 9. *1

gm_$ablock_set_draw_value(ablockid,
(short)9,
st);

1* Assign the ablock to the default aclass. *1

gm_$ablock_assign_display(gm_default_aclass,
ablockid,
st) ;

1* Display 'grid' in viewport 4. *1

1* Wait a moment. *1

waitO;

1* Reset the ablock to default attributes. *1

gm_$ablock_COpy((short) 1,
ablockid,
st);

1* For the ablock, set plane mask to [0,1,2]. *1

mask = (planeO I plane1 plane2);

gm_$ablock_set_plane_mask(ablockid,
true,
mask,
st);

1* Create segment 'box.' *1

1*

gm_$segment_create("box",
(short)3,
sid2,
st) ;

pt1.x = O'
pt1.y = O'
pt2.x = 10;
pt2.y = 10;

Add a rectangle to 'box.

gm_$rectangle_16(pt1,
pt2,
false,
st) ;

*1

E-39 C Program Examples

1* Close segment 'box.' *1

gm_$segment_close(true,
st);

1* Create segment 'row.' *1

(short)3,
sid3 ..
st);

1* Ins-cance segment 'box' into segment 'row.' *1
transl.y = 0;
transl.x = 0;
for(k=O; k<repeats; k++)
{

transl.x = transl.x + space;
gm_$instance_translate_2d16(sid2,

transl,
st);

}

1* Close segment 'row.' *1

gm_$segment_close(true,
st) ;

1* Create segment 'block.' *1

gm_$segment_create("block",
5,
sid4,
st);

1* Instance segment 'row' intc) segment 'block.' *1

transl.y = 50;
for(k=O; k<repeats; k++)
{

transl.x = k ;
transl.y = transl.y - space;
gm_$instance_translate_2d16(sid3,

}

1* Close segment 'block.' *1

transl,
st);

1* Display segment 'block' in viewport 3. *1

gm_$display_segment(sid4.
st);

1* Wait a moment. *1
waitO;

o Program Examples E-40

rtransl.x = 0.5;
rtransl.y = 1.0;

1* For viewport 3, zoom out. *1

gm_$view_scale((float)0.25,
rtransl,
st) ;

rtransl.x = -0.06;
rtransl.y = 0.0;

1* For viewport 3, pan from left to right. *1
for(k=O; k<5; k++)

gm_$view_translate(rtransl,

rtransl.x = 0.5;
rtransl.y = 0.5;

st);

1* For viewport 3, pan diagonally towards lower left. *1
for (k=O; k<5; k++)

gm_$view_scale((float)0.85,

1* Wait a moment. *1
waitO;

rtransl,
st);

1* For viewport 2, set the background value to 2. *1

gm_$viewport_set_background_value(vpid2,
2L,
st);

1* Select viewport 2. *1

gm_$viewport_select(vpid2,
st) ;

1* Display segment 'row' in viewport 2. *1

gm_$display_segment(sid3,
st);

1* Wait a moment. *1
waitO;

1* For viewport 3, set background value to 2. *1

gm_$viewport_set_background_value(vpid3,
3L,
st) ;

1* Select viewport 3. *1

gm_$viewport_select(vpid3,
st) ;

E-41 C Program Examples

1* Display segment 'block' in viewport 3. *1

gm_$display_segment(sid4,
st);

1* Wait a moment. *1
waitO;

1* Close the file. *1
gm_$file_close(true,

st);

1* Terminate the 2D GMR package. *1
gm $terminate(st);

}

G Program Example8 E-42

Attributes and Instancing

The following program displays a file as it IS being created and edited. The file creates the
picture in Figure D-l.

/* PROGRAM hotel.pas */

#nolist
#include <stdio.h>
#include "/sys/ins/base.ins.c"
#include "/sys/ins/error.ins.c"
#include "/sys/ins/pfm.ins.c"
#include "/sys/ins/gmr.ins.c"
#include "/sys/ins/time.ins.c"
#list

#define one second
#define five seconds

status_$t
short
short
gm $segment id t
gm=$segment=id=t
gm $segment id t
gm-$segment-id-t
gm=$segment=id=t
gm $segment id t
gm=$draw_pattern_t
gm_$point_array1S_t
gm_$point1S_t
short

250000
(5 * one_second)

status;
file_id;
font file_id;
sid_scene;
sid_door;
sid_window;
Sid_sign;
sid_tree;
sid_house;
pattern;
p;
center;
radius;

short i;
time $clock t pause;
/**/
check(status)

status_$t status;
{

}

if(status.all != status_$ok)
pfm_$error_trap(status);

/**/
mainO
{

/* Intialize GMR package. */
p[O] .x = 1024;
p[O] .y = 1024;

gm $direct.
stream_$stdout.
p[O],
(short)8.
status);

check(status);

E-43 C Program Examples

1* Create and name a metafile. *1

gm_$file_create("hotel.gm ll
,

check(status);

(short)8,
gm_$overwrite,
gm $lw,
file id,
status);

1* Load a font family. *1

gm_$font_family_include(IIffO",
(short)3,
gm_$pixel,
font_file_id,
status);

check(status);

1* Set the data coerce. *1

gm_$data_coerce_set_real(gm $32,
status);

check(status);

1* Create the segment for the door. *1

1*

1*

gm_$segment_create((char *)NULL,
(short)O,
Sid_door,
stat,us) ;

check(status);

Construct the door. *1
p[O] .x = 0;
p[O] .y = O· .
p[l] .x = 36;
p[l] .y = 80;

gm_$rectangle_16(p [0] ,
p [1] ,
true,
status);

check(status);

Construct the door knob.

gm_$fill_value(

check(status);

p[O] .x = 30;
p[O] .y = 38;
p[l] .x = 33;
p[l].y = 41;

OL,
status);

gm_$rectangle_16(p[O],
p [1] ,

*1

o Program Examples E-44

true.
status);

check(status);

gm_$segment_close(true.
status);

check(status);

1* Create the segment for the windows. *1
gm_$segment_create((char *)NULL.

(short)O.
sid_window.
status);

check(status);

p [0] . x = 0;
pro] .y = o·
p [1] . x = 36;
p [1] . y = 36;

gm_$rectangle_16(p [0] .
p [1] .
false.
status);

check(status);

prO] .x = 0;
pro] .y = 18;
p [1] . x = 36;
p [1] . y = 18;

gm_$polyline_2d16((short)2.
p.
false.
false.
status);

check(status);

p [0] . x = 18;
pro] .y = o·
p [1] . x = 18;
p [1] . y = 36;

gm_$polyline_2d16((short)2.
p.
false.
false.
status);

check(status);

gm_$segment_close(true.
status);

check(status);

1* Create the segment for the sign. *1
gm_$segment_create((char *)NULL.

(short)O.

E-45 o Program Example8

check(status);

sid_sign,
status);

gm_$text_size((float)14.0,
status);

check(status);

p[OJ .x = o·
p[OJ .y = 0;

gm_$text_2d16(p[OJ,
(float)O.O,
"GRAND MOTEL II ,

(short) 11,
status);

check(status);

gm_$segment_close(true,
status);

check(status);

1* Create the segment for the house. *1
gm_$segment_create((char *)NULL,

(short)O,
sid_house,
status);

check(status);

1* Build the house. *1
p[o] .X = 0;

1*

p[OJ .y = 0;
p[lJ .x = 480;
p[lJ.y = 260;

gm_$rectangle_16(p[OJ,

check(status);

Build the roof.
p[OJ .x = -10;
p[OJ .y = 255;
p [lJ . x = 240;
p [1J . y = 380;
p[2] .x = 490;
p [2] . y = 255;

*1

p [1J ,
false,
status);

gm_$polyline_2d16((short)3,
p,
false,

C Program Examples E-46

check(status);

false.
status);

1* Build the chimney. *1
pro] .X = 300;
pro] .y = 350;
p[l] .X = 300;
p[l] .y = 370;
p[2] .X = 330;
p[2] .y = 370;
p[3] .X = 330;
p[3] .y = 335;

gm_$polyline_2d16((short)4,
p,

check(status);

false.
false.
status);

1* Build the round window. *1
center.x = 240;
center.y = 195;
radius = 45;

gm_$circle_16(center.
radius.
false.
status);

check(status);

prO] .X = center.x - radius;
p [0] . y = center.y;
p [1] . x = center.x + radius;
p[l] .y = center.y;
p[2] .X = center.x;
p[2] .y = center.y - radius;
p[3] .X = center.x;
p[3] .y = center.y + radius;

gm_$polyline_2d16((short)4,
p.
true,
false,
status);

check(status);

p[4].X = pEl] .x;
p[4] .y = pEl] .y;
p[l].x = p[2] .x;
pEl] .y = p[2] .y;

gm_$polyline_ 2d16((short)2,
p,

E-47 C Program Example8

check(st.atus);

false,
false,
st.at.us);

gm_$polyline_2d16((short)2.
p[3] •
false.
false.
st,atus) ;

check(status);

1* Inst.ance and position t.he door. */
pro] .X = 222;
p[o] .y = 0;

gm_$instance_translate_2d16(sid door.
p[OJ.
status);

check(status);

/* Instance and posit.ion the windows. */
p[o] .x = 50;
pro] .y = 40;

gm_$instance_translate_2d1.6(sid window.
prO].
status);

check(status);

pro] .x = 118;
gm_$inst.ance_t.ranslate_2d16(sid window.

p[O].
status);

check(status);

p[O] .x = 326;
gm_$instance_translate_2d16(sid window.

prO].
status);

check(st.atus);

p[O].x = 394;

gm_$instance_translate_2d:L6(sid window.
p[O].
status);

check(status);

p[O] .y = 180;

gm_$instance_translate_2d16(sid window.
pro].

G Program Example8 E-48

status);

check(status);

p[O] .X = 326;

gm_$instance_translate_2d16(sid window.
p[O].
status);

check(status);

p[O] .x = 118;

gm_$instance_translate_2d16(sid_window.
p [0].
status);

check(status);

p[O] .x = 50;

gm_$instance_translate_2d16(sid window.
p[o].
status);

check(status);

1* Instance and position the segment for the sign. *1
p[O] .x = 172;
p[O] .y = 120;

gm_$instance_translate_2d16(sid sign.
p[O].
status);

check(status);

gm_$segment_close(true.
status);

check(status);

1* Create the segment for the trees. *1
gm $segment create((char *)NULL.

- - (short)O.

check(status);

p[O] .x = o·
p[O] .y = o·
p[1] .x = 0;

sid_tree.
status);

p[l] .y = 150;
gm_$polyline_2d16((short)2.

p.
false.

C Program Examples

check(status);

p[O] .X = 12;
p[l] .X = 12;

false,
status);

gm_$polyline_2d16((short)2,
p,

check(status);

p[O] .X = 6;

false,
false,
status);

p[O] .y = 200;
gm_$circle_16(p[O],

check(status);

(short)50,
false,
status);

gm_$draw_style(gm $dotted.,
(short)2,
pattern,
(short)O,
status);

p[O] .X = 0;
p[O] .y = 180;
p[l] .X = -40;
pEl] .y = 200;

gm_$polyline_2d16((short)2,
p,

check(status);

p[O].x = 12;
pEl] .x = 52;

false,
false,
status);

gm_$polyline_2d16((short)2,
p,

check(status);

pro] .X = 4;
p[O] .y = 190;
p[l] .X = -20;
p[l] .y = 230;

C Program Examples

false,
false,
status);

E-50

gm_$polyline_2d16((short)2,
p,
false,
false,
status);

check(status);

p[O] .X = 8;
p[O] .y = 190;
p[l] .X = 32;
p[l] .y = 230;

gm_$polyline_2d16((short)2.
p.
false.
false,
status);

check(status);

p[O] .X = 6;
p[O] .y = 195;
p[l] .x = 6;
p[l] .y = 240;

gm_$polyline_2d16((short)2.
p,
false,
false,
status);

check(status);

p[O] .x = o·
p[O] .y = 170;
p[l].x = o·
p[l] .y = 150;

gm_$polyline_2d16((short)2.
p.
false,
false.
status);

check(status);

p[O] .x = 12;
p[l] .x = 12;

gm_$polyline_2d16((short)2.
p.
false.
false.
status);

check(status);

gm_$segment_close(true,
status);

E-51 C Program Examples

check(status);

1* Create the segment called scene. *1

gm_$segment_create((char *)NULL.
(short)O.

check(status);

p[O] .x = 0;
p[O] .y = 0;

sid scene.
status);

1* Instance the segment HOUSE. *1

gm_$instance_translate_2d1.6(sid_house.
p [0].
sta.tus);

check(status);

1* Instance. translate. and scale the segment the trees. *1
p[O].x = -85;
p[O] .y = -25;

gm_$instance_scale_2d16(sid tree.
(float)2.0.
p [0].
sta.tus);

p[O] .x = 530;
p[O] .y = 55;

gm_$instance_scale_2d16(sid tree.
(float)0.75.
p [0] .
e;tatus) ;

check(status);

p[O] .x = 610;
p[O] .y = 105;

gm_$instance_scale_2d16(E;id tree.
(float)0.85.
p [0] .
status);

check(status);

gm_$segment_close(true.
status);

check(status);

1* Now display the completed scene. *1

o Program Examples E-52

status);

check(status);

1* Admire the scene for five seconds. *1
pause.low32 = five seconds;
pause.high16 = 0;

time_$wait(time_$relative,
pause,
status);

check(status);

1* Close and save the file. *1

gm_$file_close(true,
status);

check(status);

1* Terminate the 2D GMR package. *1
gm_$terminate(status);

check(status);
}

E-53 C Program Examples

Appendix F
ORTRAN Program Examples

This Appendix contains some of the programming examples presented in the manual translated
into FORTRAN.

A Program to Draw a Rectrangle

The following program demonstrates how to initialize the 2D GMR package, create a metafile,
create a segment, and draw a rectangle (see Section 3.8 and Figure 3-3).

program draw_rectangle
%include '/sys/ins/base.ins.ftn'
%include '/sys/ins/gmr.ins.ftn'
%include '/sys/ins/time.ins.ftn'

integer*2
integer*4
integer*4
integer*2
integer*4
integer*2
integer*2
integer*2

file id
segment_id
st
ptl(2),pt2(2)
i
bitmap_size (2)
pause(3)
high_plane

c { Define the coordinates of the rectangle to be drawn. }
ptl(l) = 100
ptl(2) = 30
pt2(1) = 200
pt2(2) = 50

bitmap_size(l) = 1024
bitmap_size(2) = 1024

c { Initialize 2D GMR. }
call gm $init(

+ gm_$direct
+ ,stream_$stdout
+ ,bitmap_size
+ ,high_plane
+ ,st
+)

c { Create and name metafile. }
call gm_$file_create(

+ 'gmfile'
+ ,int2(6)
+ ,gm_$overwrite
+ ,gm_$lw
+ ,file_id
+ ,st
+)

c { Create and name a segment.}

F-l FOHTRAN Program Examples

call gm_$segment_create
+ ('rectang_seg'
+ ,int2(11)
+ ,segment_id
+ ,st
+)

c { Insert a rectangle. }
call gm_$rectangle_16

+ (ptl
+ ,pt2
+ ,false
+ ,st
+)

c { Display the file. }
call gm_$display_file

+ (
+ st
+)

c { Display the figure for five seconds. }
pause(l) = 0
pause (2) = 20
pause (3) = 0
call time_$wait(

+ time_$relative
+ ,pause
+ ,st
+)

c { Close the segment. }
call gm_$segment_close(

+ true
+ ,st
+)

c { Close the metafile. }
call gm_$file_close(

+ true
+ ,st
+)

call gm $terminate(
+ st
+)

END

FOKrRAN Program Examples F-2

A Program U8ing Primitive8 and In8tancing

The following program draws the design in Figure 4-2 using primitives and instancing (see
Section 4.6).

program draw_rectangle

%nolist
%include '/sys/ins/base.ins.ftn'
%include '/sys/ins/gmr.ins.ftn'
%include '/sys/ins/time.ins.ftn'
%list

c

c

integer*2
integer*4
integer*4
integer*4
integer*2
integer*4
integer*2
integer*2
integer*2
character
integer*2

bitmap size(l) =
bitmap-size(2) =

call gm_$init

file id
small id
large_id
st
pt1(2), pt2(2)
i
bitmap size(2)
position(2)
positions (4)
pattern(8)
pause (3)

1024
1024

+ (gm $direct
+ ,stream_$stdout
+ ,bitmap size
+ ,int2(8)
+ ,st
+)
call error(st)

call gm_$file_create
+ ('gmfile'
+ ,int2(6)
+ ,gm $overwrite
+ ,gm-$lw
+ ,file_id
+ ,st
+)
call error(st)

{ Initialize 2D GMR. }

{ Create and name a metafile. }

c { Define coordinates of a rectangle. }
pt1(1) = 100
pt1(2) = 100
pt2(1) = 200
pt2(2) = 200

F-3 FORTRAN Program Example8

c { Create and name a segment. }

call gm_$segment_create
+ (' small rec'
+ ,int2(9)
+ ,small_id
+ ,st
+)
call error(st)

c { Draw a rectangle. }

call gm_$rectangle_16
+ (pt1
+ ,pt2
+ , . true.
+ ,st
+)
call error(st)

c { Close the segment. }
call gm_$segment_close

+ (.true.
+ ,st
+)
call error(st)

call gm_$segment_create
+ ('large_rec'
+ ,int2(9)
+ ,large_id
+ ,st
+)
call error(st)

call gm_$draw_style
+ (gm_$solid
+ ,int2(4)
+ ,pattern
+ .int2(0)
+ ,st
+)
call error(st)

c { Define the coordinates of the rectangle to be drawn. }
pt1 (1) = 100
pt1 (2) = 100
pt2(1) = 600
pt2(2) = 600

c { Draw an unfille,d rectangle. }
call gm_$rectangle_16

+ (pt1
+ ,pt2
+ ,.false.
+ ,st
+)
call error(st)

FORTRAN Program Examples F-4

position(l) = 100
position(2) = 100

c { Instance the rectange four times. }

+
+
+
+

+
+
+
+

+
+
+
+

+
+
+
+

call gm_$instance_translate_2d16
(small id -
.position
.st
)

call error(st)

position(l) = 300
position(2) = 300

call gm $instance translate 2d16 - - -
(small id -
. position
.st
)

call error (st)

position(l) = 300
position(2) = 100

call gm $instance translate 2d16 - - -
(small id -
.position
.st
)

call error(st)

position(l) = 100
position(2) = 300

call gm_$instance_translate_2d16
(small id -
.position
.st
)

call error(st)

positions(l) = 300
positions(2) = 300
positions(3) = 400
positions(4) = 400

c { Draw a line connecting the rectangles. }
call gm_$polyline_2d16

+ (int2(2)
+ . positions
+ .. false.
+ .. false.
+ .st
+)
call error(st)

positions(l) = 300
positions (2) = 400
positions (3) = 400

F-5 FORTRAN Program Examples

positions(4) = 300

call gm_$polyline_2d16
+ (int2(2)
+ .positions
+ • :false.
+ •. false.
+ .st
+)
call error(st)

c { Close the segment. }
call gm_$segment_close

+ (. true.
+ .st
+)

call error(st)

call gm_$display_segment
+ (large_id
+ .st
+)

call error(st)

c { Display the figure for five seconds. }
pause(1) = 0
pause(2) = 20
pause(3) = 0
call time $wait

+ (-time_$relative
+ pause
+ st
+)
call error(st)

c { Close the metafile.
call gm_$file_close

+ (.true.
+ .st
+)

call error (st)

call gm $terminate
+ (
+ st
+)

call error(st)

END
c ***

subroutine error(st)
integer*4 st

%include '/sys/ins/base.ins.ftn'
%include '/sys/ins/pfm.ins.ftn'

if (st .ne. 0) then

FORTRAN Program Examples F-6

}

call pfm_$error_trap(st)
endif
return
end

F-7 FOKI'RAN Program Examples

A Program Including Text

The following program draws the design in Figure 6-1. This is a rectangle with horizontal and
vertical text strings (see Section 6.5).

%include '/sys/ins/base.ins.ftn'
%include '/sys/ins/gmr.ins.ftn'
%include ·/sys/ins/time.ins.ftn'
%include '/sys/ins/error.ins.ftn'

c

integer*2
integer*4
integer*4
integer*2
integer*4
integer*2
integer*2
integer*2

bitmap_size(1) =
bitmap_size(2) =

call gm $init
+ (gm_$direct

file id
segment_id
st
ptl(2), pt2(2),point(2)
i
bitmap_size (2)
ffid
pause (3)

1024
1024

+ ,stream_$stdout
+ ,bitmap size
+ ,int2(8)
+ ,st
+)

call error(st)

{ Initialize 2D GMR. }

c { Create and name a metafile. }
call gm $file create

+ ('gmfile"7
+ , int2 (6)
+ ,gm_$overwrite
+ , gm_$lw
+ ,file_id
+ ,st
+)

call error(st)

c { Create and name a segment. }
call gm $segment create

+ ('rectang_seg"7,
+ int2(11)
+ ,segment_id
+ ,st
+)

call error(st)

c { Load the font family. }
call gm $font family include

+ ("7font families'

FOHI'RAN Program Examples F-8

+
+
+
+
+

+
+
+

int2(13)
gm_$pixel
ffid.
st

)

call error(st)

call gm $text size - -
(14.0

st
)

call error(st)

point(l) = 5
point(2) = 510

c { Display a line of text. }
call gm $text 2d16

+ (pOint,-O.o
+ ,'This is the top of the rectangle.'
+ int2(33)
+ , st
+)

call error(st)

point(l) = 5
point(2) = 50

c { Display a line of text. }
call gm $text 2d16

+ (point -
+ -90.0
+ 'This is the side of the rectangle.'
+ , int2(34)
+ st
+)
call error(st)

c { Define the coordinates of the rectangle to be drawn. }
ptl(l) = 10
ptl(2) = 30
pt2(1) = 400
pt2(2) = 500

c { Draw a rectangle. }
call gm_$rectangle_16

+ (ptl
+ ,pt2
+ ,false
+ ,st
+)

call error(st)

c { Close the segment. }
call gm_$segment_close

+ (.true.
+ ,st
+)

call error(st)

F-9 FOKI'RAN Program Examples

c {Display the file.}
call gm_$display_file

+ (st
+)

call error(st)

c { Display the figure for five seconds.
pause(l) = 0
pause (2) = 20
pause (3) = 0
call time $wait

+ (time_$relative
+ pause
+ st
+)

call error(st)

c { Close the metafile.
call gm $file close - -

+ (true
+ ,st
+)
call error(st)

c { Terminate 2D GMR.
call gm $terminate

+ (st
+)

call error(st)

END

c ***

subroutine error(st)
integer*4 st

%include ·/sys/ins/base.ins.ftn·
%include ·/sys/ins/pfm.ins.ftn·

if (st .ne. 0) then
call pfm_$error_trap(st)

endif
return
end

FO[(J'RAN Program Example8 F-IO

}

}

}

A Program with Attribute Cla88e8 and Block8

The following program creates a hierarchy of segments including instance commands. It displays
the file in three viewports; adds attribute class commands to the file; assigns attribute blocks to
attribute classes; displays the segments; closes the file; and terminates the package (see Chapter
13).

PROGRAM course5

%INCLUDE '/sys/ins/base.ins.ftn'
%INCLUDE '/sys/ins/time.ins.ftn'
%INCLUDE '/sys/ins/gmr.ins.ftn'

integer*2 aclassid1
integer*2 aclassid2
integer*2 vpid1
integer*2 vpid2
integer*2 vpid3
integer*2 bitmap_size (2)
integer*4 status
real b(4)
integer*2 file id -
integer*4 sid1
integer*4 sid2
integer*4 sid3
integer*2 ablockid1
integer*2 ablockid2
integer*2 ablockid3
integer*2 ablockid4
integer*2 ablockid5
integer*2 ablockid6
integer*2 pt1(2)
integer*2 pt2(2)
character pattern(8)
integer*2 pause (3)

aclassid1 = 1 { Default
aclassid2 = 2
vpidl = 1 { Initial

bitmap_size (1) = 1024
bitmap_size (2) = 1024

c
call gm_$init

+ (gm_$borrow
+ stream_$stdout
+ bitmap_size
+ int2(8)
+ status
+)

b (1) = 0.00
b(2) = 0.00

aclass }

viewport }

{ Initialize the 2D GMR package. }

F-ll FORTRAN Program Examples

b(3) = 0.49
b(4) = 0.49

c { Create viewport 1. }
call gm_$viewport_set_bounds

+ (b
+ status
+)

b (1) = 0.51
b(2) = 0.00
b(3) = 1.00
b(4) = 0.49

c { Create viewport 2. }
call gm_$viewport_create

+ (b
+ vpid2
+ status
+)

b(l) = 0.00
b(2) = 0.51
b(3) = 1.00
b(4) = 1.00

c { Create viewport 3. }
call gm_$viewport_create

+ (b
+ vpid3
+ status
+)

c { Create a file. }
call gm $file create - -

+ ('gmfile'
+ int2(6)
+ gm_$overwrite
+ gm_$lw
+ file id -
+ status
+)

c { Create 'bottom' segment. }
call gm_$segment_create

+ ('bottom'
+ int2(6)
+ sid1
+ status
+)

ptl(l) = 0
ptl(2) = 30
pt2(1) = 10
pt2(2) = 40

c { Add a rectangle to 'bottom' segment. }
call gm_$rectangle_16

FOFITRAN Program Examples F-12

+ (ptl
+ pt2
+ .FALSE.
+ status
+)

c { Change the draw style to solid. }
call gm_$draw_style

+ (gm $solid
+ int2(0)
+ pattern
+ int2(0)
+ status
+)

ptl(l) = 20
pt2(l) = 30

c { Add a rectangle to 'bottom' segment. }
call gm_$rectangle_16

+ (ptl
+ pt2
+ .FALSE.
+ status
+)

c { Close 'bottom' segment. }
call gm_$segment_close

+ (. TRUE.
+ status
+)

c { Create 'top" segment. }
call gm $segment create

+ (-'top'-
+ int2(3)
+ sid2
+ • status
+)

ptl (1) = 0
ptl(2) = 0
pt2(l) = 10
pt2(2) = 10

c { Add a rectangle to "top' segment. }
call gm $rectangle 16

+ (-ptl -
+ , pt2
+ .FALSE.
+ status
+)

c { Instance 'bottom' into 'top' segment. }
call gm_$instance_translate_2d16

+ (sidl
+ ptl
+ status
+)

F-13 FORTRAN' Program Examples

c

c

c

c

c

c

c

c

ptl (1) = 20
pt2(1) = 30

call gm_$rectangle 16
+ (ptl -
+ • pt2
+ • .FALSE.
+ • status
+)

call gm_$segment close
+ (.TRUE.-
+ . status
+)

call gm_$display file
+ (status -
+)

call gm_$viewport_select
+ (vpid2
+ status
+)

call gm_$display file
+ (status -
+)

call gm_$viewport select
+ (Vpidl-
+ • status
+)

call gm_$display file
+ (status-
+)

pause (1) = 0
pause(2) = 20
pause(3) = 0
call time $wait

+ (t1me_$relative
+ • pause
+ • status
+)

call gm_$ablock create
+ (int2(1)-
+ • ablockid1
+ . status
+)

FOKI'RAN Program Examples

{ Add a rectangle to 'top' segment. }

{ Close 'top' segment. }

{ Display the file in viewport 3. }

{ Select viewport 2. }

{ Display the file in viewport 2. }

{ Select viewport 1. }

{ Display file in viewport 1. }

{ Create ablockid1. }

F-14

c { Give ablockidl the dotted line style }

c { with repetition factor = 5. }

call gm_$ablock_set_draw_style
+ (ablockidl
+ gm_$dotted
+ int2(5)
+ pattern
+ int2(0)
+ status
+)

c { Assign ablockidl to aclassidl in viewport 1. }
call gm_$ablock_assign_viewport

+ (aclassidl
+ vpidl
+ ablockidl
+ status
+)

c { Create ablockid2. }

call gm_$ablock_create
+ (int2(1)
+ ablockid2
+ status
+)

c { Give ablockid2 the dotted line style }

c { with repetition factor = 10. }

call gm_$ablock_set_draw_style
+ (ablockid2
+ gm $dotted
+ int2(10)
+ pattern
+ int2(0)
+ status
+)

c { Assign ablockidl to aclassid2 in viewport 2. }
call gm_$ablock_assign_viewport

+ (aclassidl
+ vpid2
+ ablockid2
+ status
+)

c { Create ablockid3. }

call gm $ablock create - -
+ (int2(1)
+ ablockid3
+ status
+)

c { Give ablockid3 the dotted line style. }

c { with repetition factor = 20 }

call gm_$ablock_set_draw_style
+ (ablockid3
+ gm_$dotted
+ int2(20)
+ pattern

F-15 FO KI'RAN Program Example8

+ , int2(0)
+ status
+)

c { Assign ablockid3 to aclassidl in viewport 3. }
call gm $ablock assign viewport

+ (-aclassidl -
+ , vpid3
+ , ablockid3
+ status
+)

c { Refresh display to see the effects of }
c { the attribute blocks. }

call gm_$display_refresh
+ (status
+)

call time_$wait
+ (time_$relative
+ pause
+ status
+)

c { Create 'new· segment. }
call gm $segment create

+ (-'new'-
+ int2(3)
+ , sid3
+ , status
+)

ptl (1) = 0
pt1(2) = 0
pt2(1) = 10
pt2(2) = 10

c { Add a rectangle to 'new' segment. }
call gm $rectangle 16

+ (-pt1 -
+ , pt2
+ , .FALSE.
+ , status
+)

c { Add an aclass command to 'new' segment. }
call gm $aclass

+ (aclassid2
+ , status
+)

pt1(1) = 20
pt2(1) = 30

c { Add a rectangle to 'new' segment. }
call gm_$rectangle_16

+ (pt1
+ , pt2
+ ,.FALSE.

FOKI'RAN Program Examples F-16

+ status
+)

c { Close 'new' segment. }

call gm_$segment_close
+ (. TRUE.
+ status
+)

c { Create ablockid4. }

call gm_$ablock_create
+ (int2(1)
+ ablockid4
+ status
+)

c { Give ablockid4 the dotted line style }

c { with repetition factor = 30. }

call gm_$ablock_set_draw_style
+ (ablockid4
+ gm_$dotted
+ int2(30)
+ pattern
+ int2(0)
+ status
+)

c { Assign ablockid4 to aclassid2 in viewport 1. }

call gm_$ablock_assign_viewport
+ (aclassid2
+ vpidl
+ ablockid4
+ status
+)

c { Create ablockid5. }

call gm_$ablock_create
+ (int2(1)
+ ablock.id5
+ status
+)

c { Give ablockid5 the dotted line style }

c { with repetition factor = 40. }

call gm_$ablock_set_draw_style
+ (ablockid5
+ gm_$dotted
+ int2(40)
+ pattern
+ int2(0)
+ status
+)

c { Assign ablockid5 to aclassid2 in viewport 2. }

call gm_$ablock_assign_viewport
+ (aclassid2
+ vpid2
+ ablockid5
+ status

F-17 FORTRAN Program Examples

+)

c { Create ablockid6. }

call gm $ablock create - -
+ (int2(1)
+ ablockid6
-I- status
-t-)

C { Give ablockid6 the dotted line style }

c { with repetition factor = 50. }

call gm_$ablock_set_draw_style
+ (ablockid6
+ gm_$dotted
+ int2(50)
+ pattern
+ int2(0)
+ status
+)

c { Assign ablockid6 to aclassid2 in viewport 3. }

call gm_$ablock_assign_viewport
+ (aclassid2
+ vpid3
+ ablockid6
+ status
+)

c { Display 'new' segment in viewport 1. }

call gm_$display_segment
+ (sid3
+ status
+)

c { Select viewport 2. }
call gm_$viewport_select

+ (vpid2
+ status
+)

c { Display 'new' segment in viewport 2. }

call gm_$display_segment
+ (sid3
+ status
+)

c { Select viewport 3. }

call gm_$viewport_selec·t
+ (vpid3
+ status
+)

c { Display 'new' segment in viewport 3. }

call gm_$display_segment
+ (sid3
+ status
-I-)

call time $wait -

FORTRAN Program Examples F-18

+ (time_$relative
+ . pause
+ status
+)

c { Close the file. }
call gm_$file_close

+ (. TRUE.
+ status
+)

c { Termin.ate the 2D GMR package. }
call gm_$terminate

+ (status
+)

END

F-19 FOFrTRAN Program Examples

Program with Advanced Viewing Techniques

The following program changes the color map values; assigns a plane mask to viewports; displays
a grid; changes the plane mask; assigns viewport background values; displays segments in more
than one viewport; closes the file; and terminates the package (see Section 14.3).

PROGRAM course6

%INCLUDE '/sys/ins/base. ins. f·tn'
%INCLUDE '/sys/ins/time. ins. f·tn'
%INCLUDE '/sys/ins/gmr.ins.ftn'
%INCLUDE '/sys/ins/pfm.ins.ftn'

integer*2
integer*2
integer*2

integer*2
integer*2
real
integer*2
integer*2
integer*2

integer*2
integer*2
integer*2
integer*2
real
integer*2
integer*4
integer*4
integer*4
integer*4
integer*2
integer*2
integer*2
real

gm_default_aclass = 1
repeats = 10
space = 25

bitmap_size(1) = 1024
bitmap_size(2) = 1024

gm_default_aclass
repeats
space

bitmap_size (2)
st
b(4)
vpid2
vpid3
vpid4

ablockid
k
m
n
color_array(8:15)
file id
sid1
sid2
sid3
sid4
ptl(2)
pt2 (2)
transl(2)
rtransl(2)

c { Initialize the 2D GMR package. }
call gm $init

+ (gm_$borrow
+ stream_$stdout
+ bitmap_size
+ int2(8)
+ st

FORTRAN Program Examples F-20

+)

c { Create and name a metafile. }
call gm $file create - -

+ ('gmfile'
+ int2(6)
+ gm_$overwrite
+ gm_$lw
+ file id
+ st
+)

c { Create segment 'grid.' }
call gm_$segment_create

+ ('grid'
+ int2(4)
+ sidl
+ st
+)

c { 'Grid' pOints are zero-sized rectangles. }
ptl(l) = 0
Do 100 m = 1,8

ptl(l) = ptl(l) + 100
ptl(2) = 0
Do 50 n = 1,8

ptl(2) = ptl(2) + 100
call gm_$rectangle_16

+ (ptl
+ , ptl
+ .FALSE.
+ st
+)

50 continue
100 continue

c { Close segment 'grid.' }
call gm_$segment_close

+ (. TRUE.
+ st
+)

b(l) = 0.0
b(2) = 0.0
b(3) = 0.49
b(4) = 0.49

c { Shrink viewport 1. }
call gm_$viewport_set_bounds

+ (b
+ st
+)

b(l) = 0.51
b(2) = 0.0
b(3) = 1.0
b(4) = 0.49

c { Create viewport 2. }
call gm_$viewport_create

+ (b

F-21 FOKI'RAN Program Examples

+ I vpid2
+ st
+)

b(l) = 0.0
b(2) = 0.51
b(3) = 0.49
b(4) = 1.0

c
call gm_$viewport_create

+ (b
+ vpid3
+ st
+)

b(l) = 0.51
b(2) = 0.51
b(3) = 1.0
b(4) = 1.0

c
call gm_$viewport_create

+ (b
+ vpid4
+ st
+)

c
c FOR k = 8 TO 15
c DO WITH color_array[k]
c DO BEGIN
c
c
c
c
c

red
green
blue
END}

= 1.0
= 1.0
= 0.0

{ Create viewport 3. }

{ Create viewport 4. }

{ Red + green = yellow. }

c { Set color values 8 to 15 to yellow. }
call gm $display set color map

+ (-int4(8) - - -
+ • int2(8)
+ • color_array
+ st
+)

c { Create an ablock. }
call gm $ablock create

+ (-int2(1)-
+ • ablockid
+ st
+)

c { For the ablock. set the draw value to 9. }
call gm $ablock set draw value

+ (-ablockid - -
+ • int4(9)
+ st
+)

c { Assign the ablock to the default aclass. }
call gm_$ablock_assign_display

FORTRAN Program Examples F-22

+ (gm_default_aclass
+ , ablockid
+ st
+)

c { Display 'grid' in viewport 4. }
call gm $display file

+ (-st -
+)

c { Wait a moment. }
call wait

c { Reset the ablock to default attributes. }
call gm_$ablock_copy

+ (int2 (1)
+ ablockid
+ st
+)

c { For the ablock pass the number 7. This turns the}
c { f~rst three bits on in the word. Each bit corresponds}
c { to a plane. }

call gm_$ablock_set_plane_mask
+ (ablockid
+ ,. TRUE.
+ , int2(7)
+ st
+)

c { Create segment 'box.' }
call gm_$segment_create

+ ('box'
+ , int2(3)
+ sid2
+ st
+)

+
+
+

+
+

ptl (1) = 0
ptl(2) = 0
pt2(1) =

call
{ Add a rectangle to 'box.' }

c { Close segment 'box.' }
call gm_$segment_close

+ (.TRUE.
+ st
+

c { Create segment 'row.' }
call gm_$segment_create

+ ('row'

F-23 FORTRAN' Program Example8

+ I int2(3)
+ sid3
+ st
+)

c { Instance segment 'box' into segment 'row.' }
transl (1) = 0
transl(2) = 0
DO 200 k = i.repeats

transl(i) = transl(i) + space
call gm_$instance_translate_2d16

+ (sid2
+ I transl
+ st
+)

200 continue

c { Close segment 'row.' }
call gm_$segment_close

+ (. TRUE.
+ st
+)

c { Create segment 'block.' }
call gm_$segment_create

+ ('block'
+ int2(5)
+ sid4
+ st
+)

c { Instance segment 'row' into segment 'block.' }
transl(2) = 50
DO 300 k = 1.repeats

transl(1) = k
transl(2) = transl(2) - space
call gm_$instance_translate_2d16

+ (sid3
+ I transl
+ , st
+)

300 continue

c { Close segment 'block.' }
call gm_$segment_close

+ (. TRUE.
+ st
+)

c { Display segment 'block' in viewport 3. }
call gm_$display_segment

+ (sid4
+ st
+)

c { Wait a moment. }
call wait

rtransl (1) = 0.5

FOFITRAN Program Examples F-24

rtransl(2) = 1.0
c { For viewport 3, zoom out. }

call gm $view scale
+ (-0.25 -
+ rtransl
+ st
+)

rtransl(l) = -0.06
rtransl(2) = 0.0
DO 400 k = 1,5

c { For viewport 3, pan from left to right. }
call gm_$view_translate

+ (rtransl
+ , st
+)

400 continue

rtransl(l) = 0.5
rtransl(2) = 0.5
DO 500 k = 1,5

c { For viewport 3, pan diagonally towards lower left. }
call gm_$view_scale

+ (0.85
+
+
+

500 continue

rtransl
st

c { Wait a moment. }
call wait

c { For viewport 2, set the background value to 2. }

call gm $viewport set background valu
+ (-Vpid2 - - -
+ , int4(2)
+ st
+)

c { Select viewport 2. }
call gm_$viewport_select

+ (vpid2
+ st
+

c { Display segment 'row' in viewport 2. }
call gm_$display_segment

+ (sid3
+ st
+

c { Wait a moment. }
call wait

c { For viewport 3, set background value to 2. }
call gm_$viewport_set_background_valu

+ (vpid3
+ int4(3)
+ st

F-25 FOHI'RAN Program Examples

+)

c { Select viewport 3. }
call gm_$viewport_select

+ (vpid3
+ • st
+)

c { Display segment 'block' in viewport 3. }
call gm_$display_segment

+ (sid4
+ st
+)

c { Wait a moment. }
call wait

c { Close the file. }
call gm $file close

+ (-. TRUE~
+ , st
+)

c { Terminate the 2D GMR package. }
call gm $terminate

+ (-st
+)

END

subroutine check
+ (status
+)

integer*4 status

IF (status .ne. O)THEN
call pfm_$error_trap(status)
END IF

return
end

subroutine wait

integer*2
integer*4

pause (1) = 0
pause(2) = 20
pause(3) = 0

c { Wait five seconds. }
call time_$wait

pause (3)
status

+ (time_$relative
+ , pause
+ • status
+)
call check(status)
END

FOKrRAN Program Examples F-26

Attribute8 and In8tancing

The following program displays a file as it is being created and edited. The file creates the
picture in Figure D-l.

PROGRAM hotel

%INCLUDE '/sys/ins/base.ins.ft~'

%INCLUDE '/sys/ins/error.ins.ftn'
%INCLUDE '/sys/ins/pfm.ins.ftn'
%INCLUDE '/sys/ins/gmr.ins.ftn'
%INCLUDE '/sys/ins/time.ins.ftn'

integer*4 status
integer*2 file id
integer*2 font file
integer*4 sid scene
integer*4 sid door
integer*4 sid window
integer*4 sid_sign
integer*4 sid tree
integer*4 sid house
character pattern (8)
integer*2 p(12)
integer*2 q(10)
integer*2 center (2)
integer*2 radius
integer*2 i
integer*2 pause (3)

id

integer*2 corner1(2),corner2(2)
integer*2 bitmap_size (2)

c { Intialize 2D GMR package. }
bitmap_size(l) = 1024
bitmap_size(2) = 1024
call GM_$INIT

+ (gm_$direct
+ , stream_$stdout
+ bitmap_size
+ int2(8)
+ status
+)

call check(status)

c { Create and name a metafile.
call GM_$FlLE_CREATE

+ ('hotel.gm'
+ int2(8)
+ gm $overwrite
+ gm_$lw
+ file id
+ status
+)

call check(status)

}

F-27 FORTRAN Program Examples

c { Load a font family. }

call GM_$FONT_FAMILY_include
+ ('font families'
+ int2(13)
+ gm_$pixel
+ font file id -
+ status
+)

call check(status)

c { Set the data coerce. }

call GM_$DATA_COERCE_SET_REAL
+ (gm_$32
+ status
+)

call check(status)

c { Create the segment for the door. }

call GM_$SEGMENT_CREATE
+ (

+ int2(0)
+ sid door
+ status
+)

call check(status)

c { Construct the door. }

corner1 (1) = 0
corner1(2) = 0
corner2(1) = 36
corner2(2) = 80

call GM_$RECTANGLE_ 16
+ (cornerl
+ corner2
+ . TRUE.
+ status
+)

call check(status)

c { Construct the door knob. }

call GM $FILL VALUE
+ (-int4(O)
+ status
+)

call check(status)

corner1 (1) = 30
cornerl(2) = 38
corner2(1) = 33
corner2(2) = 41
call GM_$RECTANGLE_ 16

+ (corner1
+ corner2
+ . TRUE.
+ status
+
call check(status)

FORTRAN Program Examples F-28

call GM_$SEGMENT_CLOSE
+ (. TRUE.
+ status
+)
call check(status)

c { Create the segment for the window. }

call GM_$SEGMENT_CREATE
+ (

+ int2(O)
+ sid window
+ status
+)

call check(status)

cornerl (1) = 0
cornerl(2) = 0
corner2(1) = 36
corner2(2) = 36
call GM_$RECTANGLE_ 16

+ (cornerl
+ corner2
+ .FALSE.
+ status
+)
call check(status)

p(1) = 0
p(2) = 18
p(3) = 36
p(4) = 18
call GM $POLYLINE 2D16

+ (-int2(2) -
+ p
+ .FALSE.
+ .FALSE.
+ status
+)

call check(status)

p(1) = 18
p(2) = 0
p(3) = 18
p(4) = 36
call GM $POLYLINE 2D16

+ (-int2(2) -
+ p
+ , .FALSE.
+ , .FALSE.
+ status
+)

call check(status)

call GM_$SEGMENT_CLOSE
+ (. TRUE.
+ status
+)

call check(status)

F-29 FOm'RAN Program Examples

c { Create the segment for the sign. }
call GM_$SEGMENT_CREATE

+ (
+ int2(0)
+ sid_sign
+ status
+)
call check(status)

call GM $TEXT SIZE
+ (-14.0 -
+ status
+)

call check(status)

p(1) = 0
p(2) = 0
call GM $TEXT 2016

+ (-p -

+ 0.0
+ 'GRAND MOTEL'
+ int2(11)
+ status
+)
call check (status)

call GM_$SEGMENT_CLOSE
+ (. TRUE.
+ status
+)

call check(status)

c { Create the segment for the house. }
call GM_$SEGMENT_CREATE

+ (

+ int2(0)
+ sid house
+ status
+)

call check(status)

c { Build the house. }

+
+ corner2
+ .FALSE.
+ status
+)
call check(status)

c { Build the roof. }
p(l) = -10
p(2) = 255
p(3) = 240
p(4) = 380

FORTRAN Program Example8 F-30

p(5) = 490
P (6) = 255

call GM $POLYLINE 2016
+ (-int2(3) -
+ p
+ .FALSE.
+ .FALSE.
+ status
+
call check(status)

c { Build the chimney. }

p (1) = 300
p(2) = 350
p(3) = 300
p(4) = 370
p(5) = 330
p(6) = 370
p(7) = 330
peS) = 335
call GM $POLYLINE 2016

+ (-int2(4) -
+ p
+ .FALSE.
+ .FALSE.
+ status
+
call check(status)

c { Build the round window. }

center (1) = 240
center(2) = 195
radius = 45

call GM_$CIRCLE_ 16
+ (center
+ radius
+ .FALSE ..
+ status
+)

call check(status)

p (1) = center(l) - radius
p(2) = center(2)
p(3) = center(l)
p(4) = center(2) + radius
p (5) = center (1) + radius
p(6) = center(2)
p(7) = center(l)
peS) = center(2) - radius

c { Draw rectangle inside window. }

call GM_$POLYLINE_2016
+ (int2(4)
+ p
+ . TRUE.
+ .FALSE.
+ status

F-31 FOR:TRAN Program Examples

+)

call check(status)

pC 1) = center(l) radius
pC 2) = center(2)

() -- center (1) + n3.dius
pC 4) = center(2)

c { Draw horizontal line inside window. }

call GM_$POLYLINE_2D16
C int2(2)

+ p
+ .FALSE.
+ .FALSE.
+ status
+)

call check(status)

pC 1) = center(l)
pC 2) = center(2) + na.dius
pC 3) = center (1)

pC 4) = center(2) radius

call GM_$POLYLINE_2D16
+ (int2(2)
+ p
-I- .FALSE.
+ .FALSE.
-I- status
-I-

call check(status)

c { Instance and position the door. }

q C 1) = 222
q(2) = 0
call GM_$INSTANCE_ TRANSLATE 2D16

-I- (sid door
-I- q
+ status
-I-)

call check(status)

c { Instance and position the windows. }
q (1) = 50
q (2) = 40
call GM_$INSTANCE_ TRANSLATE 2D 16

-I- (sid window
+ q
+ status
+)

call check(status)

q(1) = 118
call GM_$INSTANCE_ TRANSLATE 2D16

+ (sid window
+ q
+ status

FOfIT'RAN Program Examples F-32

+)
call check(status)

q (1) = 326
call GM_$INSTANCE_ TRANSLATE 2D16

+ (sid window
+ q
+ status
+)

call check(status)

q (1) = 394
call GM_$INSTANCE_ TRANSLATE 2D16

+ (sid window
+ q
+ status
+)

q(2) = 180
call GM_$INSTANCE_TRANSLATE_2D16

+ (sid window
+ q
+ status
+)

q(1) = 326
call GM_$INSTANCE_TRANSLATE_2D16

+ (sid window
+ q
+ status
+)

call check(status)

q (1) = 118
call GM_$INSTANCE_TRANSLATE_2D16

+ (sid window
+ , q
+ status
+)

call check(status)

q (1) = 50
call GM_$INSTANCE_TRANSLATE_2D16

+ (sid window
+ • q
+ status
+)
call check(status)

c { Instance and position the segment for the sign. }
q (1) = 172
q(2) = 120
call GM_$INSTANCE_TRANSLATE_2D16

+ (sid_sign
+ q
+ status
+)

call check(status)

F-33 FOKI'RAN" Proaram Examples

c

+
+
+

+
+
+
+
+

+
+
+
+
+
+

call GM_$SEGMENT_CLOSE
(. TRUE.

status
)

call check(status)

call GM_$SEGMENT_CREATE
(

0
sid tree
status

)

call check(status)

p(1) = 0
p(2) = 0
p(3) = 0
p(4) = 150
call GM_$POLYLlNE_2D16

(int2(2)
p
.FALSE.
.FALSE.
status

)

call check(status)

p (1) = 12
p(3) = 12
call GM_$POLYLlNE_2D16

+ (int2(2)
+ , p
+ .FALSE.
+ .FALSE.
+ status
+)
call check(status)

p(1) = 6
p(2) = 200
call GM_$CIRCLE_16

+ (p
+ int2(50)
+ . FALSE.
+ status
+)

call check(status)

call GM_$DRAW_STYLE
+ (gm $dotted
+ int2(2)
+ pattern
+ int2(0)
+ status
+

p(1) = 0
p(2) = 180

FOI?TRAN Program Example8

{ Create the segment for the trees. }

F-34

p(3) = -40
p(4) = 200
call GM $POLYLlNE 2D16

+ (-int2(2) -
+ p
+ .FALSE.
+ .FALSE.
+ status
+)

p(1) = 12
p(3) = 52
call GM $POLYLlNE 2D16

+ (-int2(2) -
+ p
+ .FALSE.
+ .FALSE.
+ status
+)

call check (status)

p(1) = 4
p(2) = 190
p(3) = -20
p(4) = 230
call GM $POLYLlNE 2D16

+ (-int2(2) -
+ p
+ .FALSE.
+ .FALSE.
+ status
+)

call check(status)

p(1) = 8
p(2) = 190
p(3) = 32
p(4) = 230
call GM $POLYLINE 2D16

+ (-int2(2) -
+ p
+ .FALSE.
+ .FALSE.
+ status
+)

call check(status)

p(1) = 6
p(2) = 195
p(3) = 6
p(4) = 240
call GM_$POLYLINE_2D16

+ (int2(2)
+ p
+ .FALSE.
+ . FALSE.
+ status
+)

call check(status)

F-35 FORTRAN Program Examples

p(1) = 0
p(2) = 170
p(3) = 0
p(4) = 150
call GM $POLYLINE 2016

+ (-int2(2) -
+ p
+ .FALSE.
+ .FALSE.
+ status
+)
call check(status)

p(1) = 12
p(3) = 12
call GM $POLYLINE 2016

+ (-int2(2) -
+ p
+ .FALSE.
+ .FALSE.
+ status
+)

call check (status)

call GM_$SEGMENT_CLOSE
+ (. TRUE.
+ status
+)
call check (status)

c { Create the segment called scene. }
call GM_$SEGMENT_CREATE

+ (

+ int2(0)
+ sid scene
+ status
+)
call check(status)

c { Instance the segment for the house. }
p(1) = 0
p(2) = 0
call GM $INSTANCE TRANSLATE 2016

+ (-Sid house- -
+ , p
+ status
+)
call check(status)

c { Instance, translate, and scale the segment for the trees. }
p(1) = -85
p(2) = -25
call GM_$INSTANCE_SCALE_2016

+ (sid tree
+ , 2.0
+ , p
+ , status
+)

FOf(fRAN Program Examples F-36

p(1) = 530
p(2) = 55
call GM_$INSTANCE_SCALE_2D16

+ (sid tree
+ 0.75
+ • P
+ status
+)
call check(status)

p(1) = 610
p(2) = 105
call GM $INSTANCE SCALE 2D16

+ (-sid tree - -
+ • 0.85
+ • P
+ status
+)
call check(status)

call GM_$SEGMENT_CLOSE
+ (. TRUE.
+ status
+)
call check(status)

c { Now display the completed scene. }
call GM_$DISPLAY_SEGMENT

+ (sid scene
+ . status
+)

call check (status)

c { Admire the scene for five seconds. }
pause(l) = 0
pause(2) = 20
pause(3) = 0
call TIME $WAIT

+ (t1me_$relative
+ • pause
+ status
+)

call check(status)

c { Close and save the file. }
call GM_$FILE_CLOSE

+ (. TRUE.
+ status
+)
call check(status)

c { Terminate the GMR package. }
call GM_$ TERM I NATE

+ (status
+)

call check(status)

END

F-37 FORTRAN Program Examples

c**
subroutine check(status)
integer*4 status

%include '/sys/ins/base.ins.ftn'
%include '/sys/ins/pfm.ins.ftn'

IF (status .ne. O)then
call pfm_$error_trap(status)
endif

return
end

FORTRAN Program Examples F-38

2D GMR program 3-1

Architectural application 2-3

Attribute 1-2, 5-1, 13-1, 13-5, 13-6

and instancing 5-5

block 13-1, 13-6

class 13-1, 13-5, 13-6

command 1-3,3-1, 5-1, 13-5

default settings 5-1

draw 5-1

fill 5-1

GM bitmap 13-6

instancing 5-1

line style 5-1

plane mask 5-1

precedence 5-1

procedures 13-7

raster operation 5-3

techniques 13-7

terminology 13-1

viewing 13-6

Attribute block 3-5, 12-8, 13-2, 13-4, 13-6

assigning viewport 13-6

copying 13-4

creating 13-2, 13-3

defined 13-3

display 11-1

GPR-specific 3-5

identifying 13-3

modifying 13-3

no-change value 13-4

reading 13-4

Attribute blocks 11-1

Attribute classes 12-8

Attribute commands

and precedence 5-1

Attributes 5-1,5-2,5-5, 13-6

Background

See also Attribute

Background value 5-2, 14-5

Binaryexponent 7-3, 7-4

Bitmap 1-1, 1-5, 2-1, 3-4, 8-1

Index

Index-!

display 3-4

GM 8-1

graphics primitives 2-2, 3-4

main-memory 3-4

pixels 8-1

planes 8-1

size 8-1

See also GM bitmap

Border 8-4

Borrow mode 2-2, 2-3, 3-4, 4-2, 11-1

C example E-l, E-3, E-6, E-g, E-ll, E-22, E-30, E-36, E-43

Character 6-7

default values 6-8

height 6-8

offset 6-8

size 6-8

stroke font 6-7

width 6-7

Characteristics

See also Attribute

Circle 1-2, 1-3, 4-1, 5-5

Color map 5-2, 14-1, 14-6, 15-3, E-36, F-19

4-plane display 14-2

8-plane display 14-2

and mode 14-4

changing 14-4

default 14-4

defined 14-1

index 14-2

intensity 14-1

on color nodes 15-3

Color value 14-1

Command 1-2, 1-3

attribute 1-3

defined 1-3

instance 1-3

primitive 1-3

tag 1-3

Command line parser 15-1

Comment 1-3, 15-1

See also Tag commands, Tags

Compacting files 15-3

Coordinate data 1-6

Index-2

16-bit integers 1-6

32-bit integers 1-6

Single-precision real numbers 1-6

Coordinate data types 7-3

coercing 7-3

groups of 7-3

storing 7-3

Coordinate system 2-5,8-1, 15-4

2D GMR 15-4

bitmap 8-1

current position 15-4

defined point 15-4

GPR 15-4

pixel 8-1

segment 8-1

Coordinates 6-1

segment 6-1

Copying 10-13

instancing 10-13

segment 10-13

See also Editing

Core graphics 1-7, 15-5

Current position 15-5

Current segment 3-7

Cursor 10-3

activating 10-3

pattern 10-3

position 10-3

Curve 4-1

Data 1-2

graphic 1-2

nongraphic 1-2

Data types 1-2, 7-3, 7-4

16-bit integer 7-3, 7-4

32-bit integer 7-3, 7-4

coercing 7-4

coordinate 7-3

mixing 7-4

precision 7-4

real 7-3

real variables 7-4

storing 7-4

Defined points 15-5

Device independence 2- 6

Index-a

Device-independence 1-4, 1-8

Direct mode 2-2,3-4,4-2, 11-1

Display 3-1,3-2,3-4,4-2, 10-2, 15-3

acquiring 15-3

characteristics 1-2

configuration 8-1

file 3-2

hardware 8-1

modes 2-2,3-3, 11-1

refreshing 10-2

releasing 15-3

retaining control of 3-4

Display coordinates 8-2

Display Manager 3-4

Display modes 2-2,3-3,4-2,8-2, 11-1

borrow 3-3

direct 3-3

main-bitmap 3-3

no· bitmap 3-3

within-GPR 3-3

Display techniques 13-15

Displaying 4-2, 4-3, 8-7

attribute block 11-1

attributes 4- 2

current file 4-3, 8-7

current viewport 4-3,8-7

file 4-2

part of file 4-3, 8-7

part of segment 4-3,8-7

refreshing 8-8

segment 4-2

user-defined primitives 11-3

See also Viewing

DOMAIN 2D Graphics Metafile Resource 1-8

DOMAIN Core Graphics 1-8, 15-4

imaging 15-5

incremental display 15-5

DOMAIN graphics packages 1-8

DOMAIN Graphics Primitives 1-7, 1-8, 2-2, 3-4, 15-4

DOMAIN system 1-7

Draw Raster Op 5-1

Draw style 5-1

Draw value 5-1

Drawing 1-2

Drawing attributes 5-1

Index-4

EDFONT 6-6

Editing 1-2, 1-3,3-1, 10-10

erasing 10-13

highlighting a command 10-11

inserting a command 10-11

picking 10-13

picking a command 10-11

Erasing 10-13

Event reporting 10-5

Event types 10-4

button 10-4

keystroke 10-4

locator 10-4

locator stop 10-4

window transition 10-4

External file 1-3

External file format 12-1

Fault handlers 15-4

Files 3-5

closing 3-5

creating 3-5

editing 3-5

opening 3-5

reading 3-5

selecting 3-5

Fill background value 5-1

Fill pattern 5-1

Fill value 5-1

Filling 1-2, 5-2

background 5-2

pattern 5-2

value 5-2

Filling attributes 5-1

Font 6-1

editing 6-6

family 6-1

file 6-1

stroke 6-7

Font family 6-2

excluding 6-2

file 6-2

identifying 6-2

including 6-2

limitations 6-8

Index-5

renaming 6-2

using 6-2

Font family file 6-2, 6-3

editing 6-6

example 6-2

renaming 6-3

stroke 6-6

Font family ID number 5-1

Fonts 6-3

FORTRAN example F-1, F-7, F-10, F-1'9, F-26

GM bitmap 2-3,8-1,8-4,8-8, 13-6

GM $ABLOCK_ASSIGN_DISPLAY 13-6

GM $ABLOCK ASSIGN VIEWPORT 13-6

GM_$ABLOCK_COPY 13-4

GM _ $ABLOCK _ CREATE 13-2

GM_$ABLOCK_INQ_ASSIGN_DISPLAY 13-6

GM_$ABLOCK_INQ_ASSIGN_ VIEWPORT 13-6

GM_$ABLOCK_INQ_DRAW _RASTER_OP 13-4

GM_$ABLOCK_INQ_DRAW _STYLE 13-4

GM_$ABLOCK_INQ_DRAW _VALUE 13-4

GM _ $ABLOCK _ INQ _ FILL _P ATTERN 13-4

GM _ $ABLOCK _ INQ _ FILL _ VALUE 13-4

GM _ $ABLOCK _ INQ _ FONT _ FAMILY 13-4

GM_$ABLOCK_INQ_PLANE_MASK 13-4

GM_$ABLOCK_INQ_TEXT_BACKGROUND_ VALUE 13-4

GM_ $ABLOCK_INQ_ TEXT _SIZE 13-4

GM_$ABLOCK_INQ_TEXT_ VALUE 13-4

GM $ABLOCK SET DRAW _RASTER OP 13-3

GM_$ABLOCK SET_DRAW STYLE 13-3

GM $ABLOCK SET DRAW _ VALUE 13-3

GM_$ABLOCK_SET FILL PATTERN 13-3

GM $ABLOCK SET FILL _ VALUE 13-3

GM $ABLOCK SET_FONT FAMILY 13-3

GM_ $ABLOCK_ SET _PLANE _ MASK 13-3

GM $ABLOCK SET TEXT BAckGROUND VALUE 13-3

GM _ $ABLOCK SET TEXT SIZE 13-3

GM $ABLOCK SET TEXT VALUE 13-3

GM _ $ACLASS 13-1

GM_$CIRCLE_116,32,REAL] 4-1

GM $COMMAND DELETE 10-13

GM _ $COORD _BITMAP TO SEG 2D 8-1

GM $COORD PIXEL TO SEG 2D 8-1

GM _ $COORD _ SEG _ TO _BITMAP 2D 8-1

GM $COORD SEG TO PIXEL 2D 8-1

Index-6

GM_ $CURSOR_INQ_ACTIVE 10-3

GM_$CURSOR_INQ_PATTERN 10-3

GM_$CURSOR_INQ_POSITION 10-3

GM _ $CURSOR _ SET _ ACTIVE 10-3

GM $CURSOR SET PATTERN 10-3

GM $CURSOR SET POSITION 10-3

GM_$CURVE_2D[16,32,REAL] 4-1

GM_ $DATA_ COERCE_INQ_REAL 7-3

GM $DATA COERCE SET REAL 7-3

GM_$DISPLAY _FILE 4-2,8-6

GM_$DISPLAY _FILE_PART 4-3,8-7

GM_$DISPLAY _INQ_COLOR_MAP 14-5

GM $DISPLAY REFRESH 8-8

GM_$DISPLAY _SEGMENT 4-2,8-6

GM_$DISPLAY SEGMENT GPR 2D 8-6

GM_$DISPLAY _SEGMENT_PART 4-3,8-7

GM_$DISPLAY SET COLOR MAP 14-5

GM $DRAW RASTER OP 5-3

GM $DRA W STYLE 5- 2

GM $DRAW VALUE 5-2

GM $FILE CLOSE 3-5

GM $FILE COMPACT 15-3

GM_ $FILE _ CREATE 3-5

GM_$FILE_INQ_PRIMARY _SEGMENT 3-7,7-1

GM $FILE OPEN 3-5

GM _ $FILE _ SELECT 3-5

GM $FILE SET _PRIMARY SEGMENT 3-7,7-1

GM $FILL BACKGROUND VALUE 5-2

GM $FILL PATTERN 5- 2

GM $FILL_ VALUE 5-2

GM_$FONT_FAMILY 6-2

GM $FONT FAMILY EXCLUDE 6-2

GM $FONT FAMILY INCLUDE 6-2

GM_$FONT _FAMILY _INQ_ID 6-2

GM $FONT FAMILY RENAME 6-2

GM_ $INIT 3-3

GM_$INPUT _DISABLE 10-4

GM $INPUT ENABLE 10-4

GM_$INPUT _EVENT _ WAIT 10-5

GM $INQ ACLASS 10-21

GM_$INQ_BITMAP _SIZE 8-1

GM_ $INQ_ CIRCLE_116,32,REALJ 10-21

GM_ $INQ_ COMMAND _ TYPE 10-21

GM_$INQ_ CONFIG 8-1

GM_ $INQ_ CURVE_2D[16,32,REALJ 10-21

Index-7

GM_$INQ_DRAW _RASTER_OP 10-21

GM_$INQ_DRAW _STYLE 10-21

GM _ $INQ _ DRAW _ VALUE 10- 21

GM_$INQ_FILL_BACKGROUND_ VALUEE 10-21

GM_$INQ_FILL_PATTERN 10-21

GM _ $INQ _ FILL _ VALUE 10- 21

GM_$INQ_FONT_FAMILYY 10-21

GM_ $INQ_INSTANCE_SCALE_2D!16,32.REAL] 10-21

GM_$INQ_INSTANCE_ TRANSFORM_2D[16,32,REAL] 10-21

GM_ $INQ_INSTANCE_ TRANSLATE_2D[16,32,REAL] 10-21

GM_$INQ_PLANE_MASK 10-21

GM_$INQ_POLYLINE_2DI16,32,REALJ 10-21

GM_ $INQ_PRIMITIVE_2D[16,32,REALJ 10-21

GM _ $INQ_ RECTANGLE _\16,32,REALJ 10- 21

GM_$INQ_ TAG 10-21

GM_$INQ_ TEXT _2D[16,32,REALJ 10-21

GM _ $INQ_ TEXT _ BACKGROUND _ VALUE 10- 21

GM_ $INQ_ TEXT _SIZE 10-21

GM_$INQ_TEXT_ VALUE 10-21

GM _ $INSTANCE _ SCALE _ 2D[16,32,REALJ 4- 5

GM_ $INSTANCE_ TRANSFORM_2D\16,32,REAL] 4-10

GM_ $INSTANCE_ TRANSLATE_2D\16,32,REALJ 4-5

GM_$MODELCMD _INQ_MODE 9-2,10-1

GM _ $MODELCMD _ SET _ MODE 9- 2, 10-1

GM $PICK COMMAND 10-10

GM _ $PICK _ HIGHLIGHT _ COMWlAND 10-10

GM $PICK HIGHLIGHT SEGMENT 10-8

GM_$PICK_INQ_CENTER 10-8

GM_ $PICK_INQ_LIST 10-8

GM_$PICK_INQ_MASK 10-12

GM_$PICK_INQ_SIZE 10-8

GM_$PICK_INQ_ THRESHOLD 10-12

GM_$PICK_SEGMENT 10-8

GM $PICK SET CENTER 10-8

GM_$PICK_SET_MASK 10-12

GM $PICK SET SIZE 10-8

GM _ $PICK _ SET _ THRESHOLD 10-12

GM_ $PICK_ TRANSFORM POINT 10-8

GM_$PLANE_MASK 5-2

GM_$POLYLINE_2D\16,32,REALJ 4-1

GM_$PRIMITIVE_2D[16,32,REALJ 4-1

GM $PRIMITIVE DISPLAY 2D 11-3

GM $PRINT FILE 12-1

GM_ $PRINT _ FILE _ PART 12-1

GM_$RECTANGLE_\16,32,REALJ 4-1

Index-8

GM_$REFRESH_SET_ENTRY 8-8

GM_$REPLACE_INQ_FLAG 10-1

GM_$REPLACE_SET _FLAG 10-1

GM _ $ SEGMENT CLOSE 3-6

GM_$SEGMENT_COPY 10-13

GM $SEGMENT CREATE 3-6

GM $SEGMENT DELETE 3-6

GM _ $ SEGMENT _ERASE 10-13

GM_$SEGMENT_INQ_COUNT 3-6

GM_ $SEGMENT _INQ_ CURRENT 3-6

GM_$SEGMENT_INQ_ID 3-6

GM_$SEGMENT_INQ_NAME 3-6

GM_$SEGMENT_INQ_PICKABLE 7-2

GM_ $ SEGMENT _INQ_ TEMPORARY 7-2

GM_ $ SEGMENT _INQ_ VIS IDLE 7-2

GM_$SEGMENT OPEN 3-6

GM_ $SEGMENT _RENAME 3-6

GM _ $ SEGMENT SET _ PICKABLE 7-2

GM_$SEGMENT_SET TEMPORARY 7-2

GM $SEGMENT SET _ VIS IDLE 7-2

GM_$TAG 15-1

GM_$TAG_LOCATE 15-1

GM_ $TERMINATE 3-3

GM_$TEXT _2DI16,32,REALJ 6-1

GM $TEXT_BACKGROUND VALUE 6-2

GM _ $TEXT _ SIZE 6-2

GM_$TEXT VALUE 6-2

GM $VIEW SCALE 8-8

GM_ $VIEW TRANSFORM 8-8

GM_$VIEW TRANSFORM_RESET 8-8

GM $VIEW TRANSLATE 8-8

GM_$VIEWPORT_CLEAR 8-4

GM_$VIEWPORT CREATE 8-4

GM $VIEWPORT DELETE 8-4

GM_$VIEWPORT_INQ_BACKGROUND_ VALUE 14-5

GM_ $VIEWPORT _INQ_BORDER_SIZE 8-4

GM_ $VIEWPORT _INQ_BOUNDS 8-4

GM_ $VIEWPORT _INQ_ CURRENT 8-4

GM _ $VIEWPORT _ INQ_ REFRESH _ STATE 10-2

GM $VIEWPORT MOVE 8-4

GM $VIEWPORT _REFRESH 8-8

GM $VIEWPORT SELECT 8-4

GM_$VIEWPORT SET BACKGROUND VALUE 14-5

GM_$VIEWPORT_SET BORDER SIZE 8-4

GM_ $VIEWPORT SET _BOUNDS 8-4

Index· 9

GM_ $VIEWPORT _SET _REFRESH STATE 10-2

GM _ $VISffiLE _ INQ _ MASK 8- 5

GM _ $VISffiLE _ INQ _ THRESHOLD 8- 5

GM_ $VISffiLE _ SET _ MASK 8- 5

GM $VISffiLE_SET THRESHOLD 8-5

Graphics application systems 1-7

Grid 7-3, 14-6, E-36, F-19

Hard copy 1-2, 1-5

Hardware

configuration 8-1

Hierarchical order of segments 3-2

Hierarchy 3-2,3-7, 7-1

start of 3-7,7-1

Highlighting 10-8

Icon 6-9

Initializing 2-2,3-1,3-3

Input 1-3, 9-1, 10-1

devices 9-1, 10-4

disabling 10-4

enabling 10-4

Input devices 1-4

Instance command 1-3,3-1,3-2,4-'3

Instances 4-5

rota.ting 4-3

scaling 4-3

transforming 4-5

translating 4-3, 4-5

Instancing 1-2,3-2,3-7, 5-5, 7-1, 10-8

and attributes 5-1, 5-5

picking segments 10-8

primary segment 3-7, 7-1

Interactive applications 9-1,9-3, E··22

Keyboard 3-4, 10-5

charts 10-5

definitions 10-5

keys 10-5

Limitations

font family 6-8

Line 5-2

attributes 5-2

pixel value 5-2

style 5-2

Line drawing 1-2

Index-10

Line style 5-1

See also Attribute

Logical devices 1-3

Long indentifiers 15-3

Main-bitmap mode 2-2,3-4,4-2, 11-1

Metafile 1-1,3-1

creating 3-1

displaying 3-1

editing 3-1

opening 3-1

Model 1-2

Modeling 6-1

Modeling routines 1-3, 1-6

drawing and filling 4-1

instances 4-3

tags 15-1

text 6-1

Mouse 10-4

Moving, view 2-3

Multiple copies 3-2

See also Instancing

No-bitmap mode 2-2,3-4

Optimizing performance 15-2

Output 11-12

See also Printing

Pascal example 3-9,4-5,5-6,6-3,6-9,8-9,9-3,10-13,

10-20, 11-4, 13-8, 14-6, 15-1, D-1, E-18

Pattern 5-2

Permanence of segment 7-3

Pickability 7-2

Picking 1-3,10-6,10-8, 10-10, 10-12, 10-13

and coordinates 10-6

and pickable mask 7- 2, 10-12

and pickable threshold 7- 2, 10-12

and pickable value 7-2, 10-12

aperture 10-6

center 10-6

command 1-3,2-4, 10-6, 10-10

current picked segment 10-8

instancing 10-8

listing 10-8

pick operations 7-2

routines 2- 4

search rules 10-8

Index-II

segment 1-3, 2-4, 10-6, 10-S

uses of 10-12

Picture 3-7,7-1

Picture data 3-1

Pixel value 5-2

Plane 5-1

Plane mask 5-1, 5-2, S-6

mode 8-6

visibility 8-6

Planes 15-4

Polygon 1-2

Polyline 1-3,4-1,7-3

Precedence

and attribute commands 5-1

Precision 7-3, 7-4

16-bit integer 7-4

32-bit integer 7-4

double 7-3

losing 7-3, 7-4

real 7-4

single 7-3

Primary Segment 3-7,7-1

changing 3-7,7-1

display 3-7, 7-1

in hierarchy 3-7, 7-1

instancing 3-7, 7-1

Primitive 1-7,4-1, 11-3

circle 4-1

curve 4-1

polyline 4-1

rectangle 4-1

user-defined 11-3

Primitive command 1-3,3-1

Primitives 4-1

Printing 12-1

file 12-1

part of file 12-1

Program example

attribute classes and blocks 13-S, E-30, F-10

attributes 5-5

attributes and instancing 5-6, D-1, E-6, E-43, F-26

C E-1

changing the view S-9, E-1S

color map and grid 14-6, E-36, F-19

drawing a rectangle 3-9, E-1, F-1

Index-12

FORTRAN F-1

interactive functions 9-3, E-22

locator events and cursor 10- 20

picking 10-13

primitives and instancing 4-5, E-3, F-3

stroke and pixel fonts 6-9, E-11

stroke font 6-8

tags 15-1

tags and characters 6-9

text 6-3, E"'9, F-7

user-defined primitive 11-4

within-GPR mode 11-4

Programming techniques 14-12

Protecting 5-1

Puck 10-4

Raster operation 5-3

draw value 5-3

Reading commands 10- 21

Real numbers 7-3

Rectangle 1-3,4-1, 5-5, 15-3

rotation 15-3

speed 15-3

Redisplay 3-1

Refresh state 10-2

and mode 10-2

inhibiting 10-2

partial 10-2

updating 10-2

viewport 10- 2

waiting 10-2

See also Display

Refreshing display 8-8

Reusing 3-2, 4-3

See also Instancing

Rotating 2-3, 4-3, 15-3

Routine, defined 1-3

Rubberbanding 9-2,9-3,10-1

Rubberbanding mode 9-2

Scaling 1-2, 2-3, 4-3

Screen 3-4

Search

See also Picking

Search rules 10-8, 10-11

command 10-11

Index-13

segment 10-8

Segment 1-2, 1-3,3-1,3-6,3-7,7-1, 11-1, 15-2, 15-5

bounds 15""2

characteristics 7-2

closing 3-6

copying 3-7

counting 3-6

creating 3-6

current 3-6

deleting 3-6,3-7

identifying 3-6

naming 3-6

opening 3-6

primary 3-7, 7-1

renaming 3-6

size 15-2

temporary 15-5

visibility 11-1

Segment characteristics 7-2

pickable 7- 2

temporary 7-2

visible 7-2

Segmentation 3-2

hierarchical structure 3-2

nested 1-2, 3-2

Storage 1-2

virtual 1-2

Strategies for applications 1-13, 15-2

Stroke font 6-6

defaults 6-8

defining characters 6-7

example 6-8

metafile 6-7

tag definition 6-8

Subroutine 1-3

Tag 6-g

Tag commands 1-3,3-1, 6-7

Tags 15-1

inserting 15-1

locating 15-1

Temporary segment 7-2

Terminating 3-3,3-5

Text 1-1, 1-3, 6-1

attributes 6-2

Index-14

background value 5-1, 6-2

character 6-1

direction 6-1

editor 1-6

file 6-1

font 6-1,6-2

inserting 6-1

size 5-1, 6- 2

value 5-1, 6-2

Text editor 1-6

Touchpad 10-4

Transformation 1-2, 1-3,4-5

rotating 2-3

scaling 2-3

translation 2-3

Transformation matrix 4-10

Transformations 4-10

Translation 1-2, 2-3, 4-5

User-defined primitive 11-3

Vector graphics 1-1

View 1-2, 2-3, 8-8

changing 8-8

moving 2-3

resetting 8-8

scaling 2-3, 8-8

transforming 8-8

translating 8-8

Viewing 1-3, 2-2, 3-2, 4-2, 13-6

all of metafile 3-2

and attributes 13-6

routines 1-3, 1-6, 2-2

Viewing transformations 2-3

Viewport 1-2, 2-3,4-2, 4-3, 8-4, 8-7

border size 8-4

creating 8-4

current 4-3, 8-4, 8-7

deleting 8-4

multiple 8-4

primary segment 8- 2

refreshing 8-8

selecting 8-4

setting bounds 8-4

Visibility 7-2, 8-5

criteria 8" 5

Index-15

mask 7- 2, 8- 5

threshold 7-2, 8-5

value 8-5

Wildcard options 15-1

Within-GPR mode 2-2, 3 4, 11-1

Word processor 1-6

World coordinates 2-6, 4-3

Index-16

READER'S RESPONSE

We use readers' comments in revising and improving our documents.

Document Title: Programming With DOMAIN 2D Graphics .Metafile Resource
Order Number: 005097
Revision: 00
Date of Publication: July, 1985

What is the best feature of this manual?

Please list any errors, omissions, or problem areas in the manual. (Identify errors by page,
section, figure, or table number wherever possible.)

What type of user are you?

___ Systems programmer; language _____________________ _
___ Applications programmer; language _______________ _
___ Manager/Professional

Technical Professional
___ Adminstrative/Support Personnel
___ Student programmer
___ User with little programming experience

Other

How often do you use your system?

Nature of your work on the DOMAIN System:

Your name

Organization

Street Address

City

Date

State Zip/Country

No postage necessary if mailed in the U.S. Fold on dotted lines (see reverse), tape, and mail.

o
5-
o ..,
0'1
0::1
!.l
o
::J

CO
Q.

~
(j)
Q.

::J
CO

FOLD __ J

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 78 CHELMSFORD I MA 01824

POSTAGE WILL BE PAID BY ADDRESSEE

APOLLO COI\IIPUTER INC.
Technical Publications
P.O. Box 451
Chelmsford, MA 01824

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

I
I
1
I
I
I
J

__ --------------------------------------1
FOLD I

I
I
1
1

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	07-01
	07-02
	07-03
	07-04
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	10-21
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	13-11
	13-12
	13-13
	13-14
	13-15
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	14-07
	14-08
	14-09
	14-10
	14-11
	14-12
	15-01
	15-02
	15-03
	15-04
	15-05
	A-01
	A-02
	A-03
	A-04
	A-05
	B-01
	B-02
	B-03
	B-04
	B-05
	C-01
	C-02
	C-03
	C-04
	C-05
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	D-11
	D-12
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	E-10
	E-11
	E-12
	E-13
	E-14
	E-15
	E-16
	E-17
	E-18
	E-19
	E-20
	E-21
	E-22
	E-23
	E-24
	E-25
	E-26
	E-27
	E-28
	E-29
	E-30
	E-31
	E-32
	E-33
	E-34
	E-35
	E-36
	E-37
	E-38
	E-39
	E-40
	E-41
	E-42
	E-43
	E-44
	E-45
	E-46
	E-47
	E-48
	E-49
	E-50
	E-51
	E-52
	E-53
	F-01
	F-02
	F-03
	F-04
	F-05
	F-06
	F-07
	F-08
	F-09
	F-10
	F-11
	F-12
	F-13
	F-14
	F-15
	F-16
	F-17
	F-18
	F-19
	F-20
	F-21
	F-22
	F-23
	F-24
	F-25
	F-26
	F-27
	F-28
	F-29
	F-30
	F-31
	F-32
	F-33
	F-34
	F-35
	F-36
	F-37
	F-38
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	I-09
	I-10
	I-11
	I-12
	I-13
	I-14
	I-15
	I-16
	replyA
	replyB

