
C)

o

o

DOMAIN/IX Programmer's Reference

for BSD4.2

Apollo Computer Inc.
330 Billerica Road

Chelmsford, MA 01824

Order No. 005801
Revision 01

Apollo Computer Inc. reserves the right to make changes in specifications and other
information contained in this publication without prior notice, and the reader should, in
all cases, consult Apollo Computer Inc. to determine whether any such changes have
been made.

THE TERMS AND CONDmONS GOVERNING THE SALE OF APOLLO COMPUTER
INC. HARDWARE PRODUCTS AND THE UCENSING OF APOLLO COMPUTER
INC. SOFfWARE CONSIST SOLELY OF THOSE SET FORTH IN THE WRITTEN
CONTRACTS BETWEEN APOLLO COMPUTER INC. AND ITS CUSTOMERS. NO
REPRESENTATION OR OTIIER AFFIRMATION OF FACT CONTAINED IN TIllS
PUBLICATION, INCLUDING BUT NOT LIMITED TO STATEMENTS REGARDING
CAPACITY, RESPONSE-TIME PERFORMANCE, SUITABILITY FOR USE OR
PERFORMANCE OF PRODUCTS DESCRIBED HEREIN SHALL BE DEEMED TO BE
A WARRANTY BY APOLLO COMPUTER INC. FOR ANY PURPOSE, OR GIVE RISE
TO ANY LIABILITY BY APOLLO COMPUTER INC. WHATSOEVER.

IN NO EVENT SHALL APOLLO COMPUTER INC. BE UABLE FOR ANY
INCIDENTAL, INDIRECT, SPECIAL, OR CONSEQUENTIAL DAMAGES
WHATSOEVER (INCLUDING BUT NOT UwrnD TO LOST PROFITS) ARISING
OUT OF OR RELATING TO TIllS PUBUCATION OR TIIE INFORMATION
CONTAINED IN IT, EVEN IF APOLLO COMPUTER INC. HAS BEEN ADVISED,
KNEW, OR SHOULD HAVE KNOWN OF THE POSSIBIUTY OF SUCH DAMAGES.

THE SOFfWARE PROGRAMS DESCRffiED IN TIllS DOCUMENT ARE
CONFIDENTIAL INFORMATION AND PROPRIETARY PRODUCTS OF APOLLO
COMPUTER INC. OR ITS LICENSORS.

THIS SOFfWARE AND DOCUMENTATION ARE BASED IN PART ON TIIE
FOURTH BERKELEY SOFfW ARE DISTRIBUTION UNDER LICENSE FROM TIIE

REGENTS OF THE UNIVERSITY OF CAUFORNIA.

© 1986, 1987 Apollo Computer Inc. All rights reserved.
Printed in U.S.A.

First Printing: December 1986

This document was fonnatted on a DOMAIN System using the troff text formatter
distributed with DO~ /Ix software.

APOLLO and DOMAIN are registered trademarks of Apollo Computer Inc.

AEGIS, DGR, DOMAIN/Bridge, DOMAIN/DFL-100, DOMAIN/DQC-100, DOMAIN/Dialogue,
DOMAIN/IX, DOMAIN/Laser-26, DOMAIN/pCI, DOMAIN/SNA, D3M, DPSS, DSEE,
EtherBridge, GMR, and GPR are trademarks of Apollo Computer Inc.

DEC, PDP, and VAX are trademarks of Digital Equipment Corporation.

TEKTRONIX is a registered trademarlcs of Tektronix, Inc.

HP is a trademarlc of Hewlett-Packard, Inc.

\
............ '"

o

o

o

o

o

PREFACE
The DOMAI~/Ix1M Programmer's Reference Manualfor BSD4.2 consists of material
on system calls, library functions, special (e.g., device) files, and other information of
interest to programmers developing applications that run on DOMAIN/IX or other
implementations of the UNIX ~ Operating System.

Audience

This Programmer's Reference Manual is intended for system and applications pro­
grammers and other knowledgeable users who are familiar with BSD4.2 UNIX
software and DOMAIN networks. We recommend that you read one of the following
tutorial introductions if you are not already familiar with the UNIX operating system.

• Bourne, Stephen W. The UNIX System. Reading: Addison-Wesley, 1982.

• Kernighan, Brian W. and Rob Pike. The UNIX Programming Environment, Engle­
wood Cliffs, Prentice-Hall, 1984.

• Thomas, Rebecca and Jean Yates. A User Guide to the UNIX System. Berkeley:
OsbomelMcGraw-Hill, 1982.

This document also assumes a basic familiarity with the DOMAIN/lX system. The best
introduction to the DOMAIN/lX system is Getting Started With Your DOMAIN/IX Sys­
tem (Order No. 008017). This manual explains how to use the keyboard and display,
read and edit text, and manipulate files. It also shows how to request DOMAIN system
services using interactive commands.

The Structure of This Document

This manual includes the following sections.

Section 2

Section 3

Section 4

Section 5

Section 7

provides reference material on system calls.

provides reference material on library functions.

provides reference material on devices and other "special" files.

provides reference material on file formats.

is a collection of mi ~cellaneous information.

UNIX is a Registered Trademark of AT&T.

1

Preface

Sections 1 (user commands) and 6 (games) are in the DOMAIN/IX Command Refer­
ence Manual. Section 8 (administrative commands) is in the DOMAIN/IX
Administrator's Reference Manual.

Related Volumes

The DOMAIN/IX User's Guide (Order No. 005803, revision 01) is the first volume you
should read. It explains how DOMAIN/IX works, and contains extensive material on the
Bourne Shell, C Shell, and Mail.

The DOMAIN/IX Text Processing Guide (Order No. 005803) describes the UNIX text
editors (ed, ex, and vi) supported by DOMAIN/IX. It also contains material on the for­
matters troff and nroff, the macro packages ms, me, and mm, and the preprocessors
eqn and tbl.

The DOMAIN/IX Support Tools Guide (Order No. 009413) describes various
DOMAIN/IX utilities (e.g.awk(I), lex(1), yacc(I), etc.) that can help with development
and maintenance of programs.

The DOMAIN/IX Command Reference for System V (Order No. 005798, revision 01)
describes all the UNIX System V shell commands supported by the sys5 version of
DOMAIN/IX.

The DOMAIN/IX Programmer's Reference for System V (Order No. 005799, revision
01) describes all the UNIX System V system calls and library functions supported by
the sys5 version of DOMAIN/IX.

The DOMAIN/IX Administrator's Reference for System V (Order No. 009356)
describes all the UNIX System V system administrator commands and provides detailed
information on system registries and servers supported by the sys5 version of
DOMAIN/IX.

The DOMAIN/IX Command Reference for BSD4.2 (Order No. 005800, revision 01)
describes all the BSD4.2 UNIX shell commands supported by the bsd4.2 version of
DOMAIN/IX.

The DOMAIN/IX Administrator's Reference for BSD4.2 (Order No. 009355) describes
all the UNIX System V system administrator commands and provides detailed informa­
tion on system registries and servers supported by the sys5 version of DOMAIN/IX.

The DOMAIN C Language Reference (Order No. 002093) describes C program
de\-elopment on the DOMAIN system. It lists the features of C, describes the C
library, and gives information about compiling, binding, and executing C programs.

The DOMAIN System Command Reference (Order No. 002547) gives information
about using the DOMAIN system and describes the DOMAIN commands found in the
/com directory.

The two-volume DOMAIN System Call Reference (Volume I Order No. 007196 revi­
sion 0 I, Volume II Order No. 007194 revision 01) describes calls to operating system

11

u

o

o

o

o

Preface

components that are accessible to user programs.

Documentation Conventions

Unless otherwise noted in the text, this manual uses the following symbolic conven­
tions.

bold

Italics

We use bold type to emphasize keywords in text and command-line
examples. A keyword can be any of:

• The name of an executable system object (command or shell script)
and any options (switches, regular expressions, or real pathnames)
that command or shell script accepts. For example, Is -la, or man
Is.

• The name of a callable function, including all syntactically required
punctuation. For example, open (path, j/ags, mode).

• Any system object that has its own reference manual entry. For
example, passwd(4).

We do not use bold type for general emphasis. In our ASCII help files,
bold type looks the same as Roman type.

We use Italics to emphasize:

• Names or pathnames of system objects. For example /etc/passwd or
/tmp.

• Names we use as stand-ins for names and/or values that you must
supply. For example, man /00, " ... prints filename on standard out­
put. .. ," open (path,j/ags, mode). An example command line like

Is [options1 [file(s)1

indicates that Is is a keyword that can be followed with one or more
options and an optional file or files.

By extension, this font usage appears in command options and option
arguments:

-n number Number of times to do this function

as well as in function arguments

#include <syslfile .h>

open(path, flags, mode)
char *path;
int j/ags, mode;

We also use italics to indicate the title of a publication, such as the

iii

Preface

DOMAIN/IX Command Reference Manual. We do not use Italic type
for general emphasis. In our ASCII help files, Italic type is underlined.

pica Where possible, we use the constant-width pica font (or another "type­
writer" style font) in code fragments, shell or DM scripts, and scripts
for conunands like aWk(l) and sed(1). In our ASCII help files, pica
type looks the same as Roman type.

name(1)

[brackets]

<KEY>

i<KEY>

Where a filename or command name is followed by a number or
number-letter pair in parentheses, that number indicates the section (and,
if a letter is included, the subsection) of the reference manual set in
which you can find reference information on the named command or
file. For example, you can find reference information on the lex(1)
command in Section 1 of the DOMAIN/IX Command Reference Manual
and infonnation on the /etc/passwd(4)· file in Section 4 of the
DOMAIN/IX Programmer's Reference Manual.

We use brackets to delimit optional command line switches (options)
and arguments. Brackets are also shell metacharacters that delimit a
range or character class.

We enclose the name of a keyboard key in brackets. For example,
<ESC> or <AGAIN>. The < and·> symbols are also shell metachanic­
ters used for redirection of input or output.

A control function that you execute by pressing the <CTRL> key and
the named <KEY> at the same time. For example, i <D> sends an
End-Of-File.

<CTRL><KEY> Same as i <KEY>.

Horizontal ellipses indicate that the preceding item can be repeated an
arbitrary number of times. For example

troff file ...

means that you can say

troff file] file2 file3

and so on.

We use vertical ellipses to indicate that an irrelevant portion of text has
been omitted from an example.

Note that, when we begin a sentence with the name of a filesystem object, we always
capitalize the first letter of the name unless this would result in an ambiguity.

iv

I~
\
"-.. _/

c

C~:

CJ

o

Preface

Problems, Questions, and Suggestions

We appreciate comments from the people who use our system. In order to make it
easy for you to communicate with us, we provide the User Change Request (UCR)
system for software-related comments, and the Reader's Response form for documen­
tation comments. By using these fonnal channels, you make it easy for us to respond
to your comments.

You can get more information about how to submit a UCR by consulting the DOMAIN
System Command Reference. Refer to the CRUCR (Create User Change Request)
command. You can also get more infonnation by typing:

/com/help crucr

in any UNIX or AEGIS shell. There is a Reader's Response form at the back of this
manual. We'd appreciate it if you would take the time to fill it out when you're ready
to comment on this document.

v

CONTENTS (2) DOMAIN/IX BSD4.2 CONTENTS (2)

o
intro - introduction to system calls and error numbers .. 2-1
accept - accept a connection on a socket .. 2-10
access - detennine if a file can be accessed .. 2-12
bind - bind a naIlle to a socket .. 2-14
brk, sbrk - change data segment size ... 2-15
chdir - change current working directory .. 2-16
chmod - change mode of file ... 2-17
chown _ change owner or group of a file .. 2-19
close - delete a descriptor ... 2-21
connect - initiate a connection on a socket ... 2-23
creat - create a new file (obsolete) .. 2-25
default_ad - change default file protection environment ... 2-27
dup, dup2 - duplicate a descriptor .. 2-28
execve - execute a file .. 2-29
_exit - tenninate a process ... 2-32
fcntl - file control .. 2-33
flock - place or remove an advisory lock on an open file .. 2-35
fork - create a new process .. 2-37
fsync - synchronize a file's in-core state with that on disk .. 2-39
getdtablesize - get descriptor table size .. 2-40
getgid, getegid - get group identity ... 2-41

C) getgroups - get group access list ... 2-42
gethostid, sethostid - get/set unique identifier of current host .. 2-43
gethostname, sethostname - get/set naIlle of current host .. 2-44
getitimer, setitimer - get/set value of interval timer ; 2-45
getpagesize - get system page size .. 2-47
getpeername - get naIlle of connected peer .. 2-48
getpgrp - get process group ... 2-49
getpid, getppid - get process identification ... 2-50

o getpriority, set priority - get/set prograIll scheduling priority ... 2-51
getrlimit - control maximum system resource consumption .. 2-53
getrusage - get infonnation about resource utilization ... 2-55
getsockname - get socket naIlle ... 2-57
getsockopt, setsockopt - get/set options on sockets ... 2-58
gettimeofday, settimcofday - get/set date and time ... 2-60
getuid, geteuid - get user identity ... 2-62
ioctl - control device ... 2-63
kill - send signal to a process ... 2-64
killpg - send signal to a process group .. 2-65
link - make a hard link to a file ... 2-66
listen - listen for connections on a socket ... 2-68
Iseek - move read/write pointer .. 2-69
mkdir - make a directory file ... 2-71
mknod - make a special file ... 2-73

o
2-i

CONTENTS (2) DOMAIN/IX BSD4.2 CONTENTS (2)

mount, umount - mount or remove file system ... 2-75
open - open a file for reading or writing, or create a new file ... 2-77
pi pe - create an interprocess communication channel. .. 2-80
ptrace - process trace ... 2-81
read, readv - read input ... 2-84
readlink - read value of a symbolic link ... 2-86
reboot - reboot system or halt processor ... 2-87
recv, recvfrom, recvmsg - receive a message from a socket .. 2-88
rename - change the name of a file ... 2-91
rmdir - remove a directory file .. 2-93
select - synchronous I/O multiplexing ... 2-95
send, sendto, sendmsg - send a message from a socket .. 2-97
set_sbrk_size - define memory available for allocation (obsolete) 2-99
set_version, get_version - set/get system version (obsolete) ... 2-100
setgroups - set group access list .. 2-101
setpgrp - set process group .. 2-1 02
setregid - set real and effective group ID ... 2-103
setreuid - set real and effective user ID .. 2-104
shutdown - shut down part of a full-duplex socket connection ... 2-105
sigblock - block signals .. 2-106
sigpause - atomically release blocked signals and wait for interrupt. 2-1 07
sigsetmask - set current signal mask ... 2-1 08
sigstack - set and/or get signal stack context. ... 2-1 09
sigvec - software signal facilities ... 2-110
socket - create an endpoint for communication .. 2-115
socketpair - create a pair of connected sockets .. 2-117
soft_link, soft_unlink - create or delete soft links ... 2-118
stat, Istat, fstat - get file status .. 2-119
symlink - make symb.olic link to a file ... 2-122
sync - update super-block ... 2-123
truncate - truncate a file to a specified length .. 2-124
umask - set/get file creation mask .. 2-126
unlink - remove directory entry ... 2-127
utimes - set file times ... 2-129
vfork - spawn a new process in a more efficient way .. 2-131
wait, wait3 - wait for process to terminate ... 2-133
write, writev - write on a file .. 2-135

2-ii

('
\
,-.~ ..

o

o

o

o

INTRO(2) DOMAIN/IX BSD4.2 INTRO (2)

NAME
intro - introduction to system calls and error numbers

USAGE
#include <errno.h>

DESCRIPTION
In this section of the Programmer's Reference Manual, we describe all of the UNIX
system calls available under the bsd4.2 version of DOMAIN/IX. Typically, these calls
return zero or some positive integer when they succeed, and -1 (or another "impossi­
ble" return value) if they fail. Details are provided in the individual descriptions.

As with normal arguments, all return codes and values from functions are of type int
(integer) unless. othelWise noted. In addition, an error number is also made available
in the external variable errno. Since errno is not cleared on successful calls, it should
be tested only after an error has occurred.

In this introduction, we list the various values and meanings for errno, and also pro­
vide a glossary of the terms we use in this section and subsequent sections of this
manual.

ERROR NUMBERS
The following is a complete list of the errors and their names as given in <errno.h>.

Kernel Errors

o unused

1 EPERM Not owner
Typically this error indicates an attempt to modify a file in some way that is
forbidden to anyone but the file's owner or the super-user. It also may indicate
an attempt by an ordinary user to do something permitted only to the super­
user.

2 ENOENT No such file or directory
This error occurs when a file name is specified and the file should exist but
doesn't, or when one of the directories in a path name does not exist.

3 ESRCH No such process
The process whose number was given to kill(2) does not exist or is already
dead.

4 EINTR· Interrupted system call

Revision 01

An asynchronous signal (such as interrupt or quit), which the user has elected
to catch, occurred during a system call. If execution is resumed after process­
ing the signal, it will appear as if the interrupted system call returned this error
condition.

2-1

INTRO(2) DOMAIN/IX BSD4.2 INTRO(2)

2-2

5 EIO I/O error
Some physical I/O error occurred during a read(2) or write(2). Occasionally,
this error occurs on a call following the one to which it actually applies.

6 ENXIO No such device or address
I/O on a special file refers to a subdevice which does not exist, or attempts to
read/write beyond the limits of the device. It may also occur when, for exam­
ple, an illegal tape drive unit number is selected.

7 E2BIG Arg list too long
An argument list longer than 10240 bytes is presented to execve(2).

8 ENOEXEC Exec format error
A request is made to execute a file which, although it has the appropriate per­
missions, is not of the correct type.

9 EBADF Bad file number
A file descriptor refers to no open file, or a read (write) request is made to a
file which is open only for writing (reading).

10 ECHILD No children
A wait was executed by a process with no living or unwaited-for children.

11 EAGAIN No more processes
A fork(2) was attempted when the system's process table was full.

12 ENOMEM Not enough memory
During an exec(2), break(2), or sbrk(2), a program asks for more memory than
the system is able to supply.

13 EACCES Pennission denied .
An attempt was made to access a file in a way forbidden by the protection sys­
tem.

14 EFAULT Bad address
The system encountered a hardware fault in attempting to access the arguments
of a system call.

15 ENOTBLK Block device required
A non-block file was mentioned where a block device was required.

16 EBUSY Device busy
An attempt was made to acquire a device that is already acquired or an release
a device on which there is an active file directory.

17 EEXIST File exists
An existing file was mentioned in an inappropriate context, e.g. Iink(2).

Revision 01

c

C)

o

o

o

INTRO(2) DOMAIN/IX BSD4.2 INTRO (2)

18 EXDEV Cross-device link:
An attempt was made to create a hard link to a file on another device.

19 ENODEV No such device
An attempt was made to apply an inappropriate system call to a device; e.g.
read a write-only device.

20 ENOTDIR Not a directory
Something that is not a directory was specified where a directory is required,
for example in a path name or as an argument to chdir(2).

21 EISDIR Is a directory
An attempt was made to to write on a directory.

22 EINV AL Invalid argument
Some invalid argument: dismounting a non-mounted device, mentioning an
unknown signal in signal, reading or writing a file for which seek has gen­
erated a negative pointer. Also set by math functions, see intro(3).

23 ENFILE File table overflow
The system's table of open files is full. No more opens can succeed unless a
currently-open file is first closed.

24 EMFILE Too many open files
A process has exceeded the DOMAIN System limit of 128 open file descrip­
tors.

25 ENOTIY Not a character device
The file mentioned in an ioctl(2) is not a terminal or one of the other devices to
which these calls apply.

26 ETXTBSY Text file busy
An attempt was made to execute a shell script that is currently open for writ­
ing, or to write to a shell script that is being executed.

27 EFBIG File too large
The size of a file exceeded the maximum file size set by ulimit(2).

28 ENOSPC No space left on device
A write was attempted to an ordinary file when there was no free space left on
the device.

29 ESPIPE illegal seek
An Iseek was issued to a pipe.

30 EROFS Read-only file system

Revision 01

An attempt was made to modify a file or directory resident on a device
mounted read-only.

2-3

INTRO(2) DOMAIN/IX BSD4.2 INTRO (2)

2-4

31 EMLINK Too many links
An attempt was made to establish more than 1000 hard links to a file.

32 EPIPE Broken pipe
A write was attempted on a pipe for which there is no process to read the data.
This condition nonnally generates a SIGPIPE signal. This error is returned
only if SIGPIPE is ignored.

~ath Library Errors

33 EDOM Math argument
The argument of a function in the math package (3M) is out of the domain of
the function.

34 ERANGE Result too large
The value of a function in the math package (3M) is unrepresentable within
machine precision.

Interprocess Communication Errors

35 EWOULDBLOCK Operation would block
An operation that would cause a process to block was attempted on a object in
non-blocking mode (see ioctl).

36 EINPROGRESS Operation now in progress
An operation that takes a long time to complete (such as a connect(2» was
attempted on a non-blocking object (see ioctl).

37 EALREADY Operation already in progress
An operation was attempted on a non-blocking object which already had an
operation in progress.

38 ENOTSOCK Socket operation on non-socket
A socket operation was attempted on something that is not a socket.

39 EDEST ADDRREQ Destination address required
A required address was omitted from an operation on a socket.

40 EMSGSIZE Message too long
A message sent on a socket was larger than thl. internal message buffer.

41 EPROTOTYPE Protocol wrong type for socket
A protocol was specified which does not support the semantics of the socket
type requested. For example you cannot use the ARPA Internet UDP protocol
with type SOCK_STREAM.

42 ENOPROTOOPT Bad protocol option
A bad option was specified in a getsockopt(2) or setsockopt(2) call.

Revision 01

o

o

o

INTRO(2) DOMAIN/IX BSD4.2 INTRO (2)

43 EPROTONOSUPPORT Protocol not supported
The requested protocol is not supported on the system.

44 ESOCKTNOSUPPORT Socket type not supported
The support for the socket type has not been configured into the system or no
implementation for it exists.

45 EOPNOTSUPP Operation not supported on socket
An operation was attempted on a socket type that does not support it (e.g., try­
ing to accept(2) a connection on a datagram socket.)

46 EPFNOSUPPORT Protocol family not supported
The protocol family has not been configured into the system or no implementa­
tion for it exists.

47 EAFNOSUPPORT Address family not supported by protocol family
Th specified address was incompatible with the requested protocol. For exam­
ple, you shouldn't necessarily expect to be able to use PUP Internet addresses
with ARPA Internet protocols.

48 EADDRINUSE Address already in use
Only one usage of each address is normally permitted.

49 EADDRNOTAVAIL Can't assign requested address
Normally results from an attempt to create a socket with an address not on this
machine.

50 ENETDOWN Network is down
A socket operation encountered a dead network.

51 ENETUNREACH Network is unreachable
A socket operation attempted to reach a socket on an unreachable network.

52 ENETRESET Network dropped connection on reset
The host you were connected to crashed and rebooted.

53 ECONNABORTED Software caused connection abort
A connection abort was caused by your host machine.

54 ECONNRESET Connection reset by peer
A connection was forcibly closed by a peer. This nonnally results from the
peer executing a shutdown(2) call.

55 ENOBUFS No buffer space available
An operation on a socket or pipe failed because the system lacked sufficient
buffer space. .

Revision 01 2-5

INTRO(2) DOMAIN/IX BSD4.2 INTRO(2)

56 EISCONN Socket is already connected
A connect(2) was requested to a socket that is already connected, or a
sendto(2) or sendmsg(2) request on a connected socket specified a destination
other than the connected party.

57 ENOTCONN Socket is not connected
An request to send or receive data failed because the specified socket is not
connected.

58 ESHUTDOWN Can't send after socket shutdown
A request to send data failed because the socket had already been shut down
(see shutdown(2».

59 unused

60 ETIMEDOUT Connection timed out
A connect request failed because the connected party did not properly respond
after a period of time. (The timeout period is dependent on the communication
protocol.)

61 ECONNREFUSED Connection refused
No connection could be made because the target machine actively refused it.
This usually results from trying to connect to a service which is inactive on the ("
foreign host. ', __ _

62-74 unused

75 EHOSTUNREACH Host is unreachable
An attempt was made to reach an unreachable host.

76 ENOTEMPTY Directory not empty
An attempt was made to remove a directory that. is not empty.

DEFINITIONS

2-6

Process ID - Each active process in the system is uniquely identified by a positive
integer called a process ID. The range of this ID is from 1 to 30,000.

Parent process ID - A new process is created by a currently active process; see
fork(2). The parent process ID of a process is the process ID of its creator.

Process Group ID - Each active process is a member of a process group that is
identified by a positive integer called the process group ID. This is the process ID of
the group leader. This grouping permits the signalling of related processes (see
killpg(2» and the job control mechanisms of csh(1).

Revision 01

o

o

o

o

o

INTRO(2) DOMAIN/IX BSD4.2 INTRO (2)

Tty Group ID - Each active process can be a member of a terminal group that is
identified by a positive integer called the tty group ID. This grouping is used to arbi­
trate between multiple jobs contending for the same terminal; see csh(I), and tty(4).

User ID and Group ID - Each user on the system is identified by a positive integer
termed the user ID.

Each user is also a member of one or more groups. One of these groups is dis­
tinguished from others and used in implementing accounting facilities. The positive
integer corresponding to this distinguished group is termed the real group ID.

All processes have a user ID and group ID. These are initialized from the equivalent
attributes of the process which created it.

Effective User Id, Effective Group Id, and Access Groups - Access to system
resources is governed by three values: the effective user ID, the effective group ID,
and the group access list.

The effective user ID and effective group ID are initially the process's real user ID
and real group ID respectively. Either may be modified through execution of a set­
user-ID or set-group-ID file (possibly by one its ancestors); see execve(2).

The group access list is an additional set of group ID's used only in determining
resource accessibility. Access checks are performed as described below in "File
Access Permissions".

Super-user - A process is recognized as a super-user process and is granted special
privileges if its user ID is O.

Special Processes - On DOMAIN systems, the processes with process ID's 1-11 are
considered "special." Process 1 is normally Display Manager (DM) on DOMAIN
nodes and the Server Process Manager (SPM) on DOMAlN Server Processors. It is
the ancestor of every other process in the system. It is used to control the process
structure. Other special processes include the Null Process (usually process 2), the
Clock, the Page Purifier, and the network service processes.

Descriptor - This is an integer assigned by the system when a file is referenced by
open(2), dup(2), or pipe(2) or a socket is referenced by socket(2) or socketpair(2)
which uniquely identifies an access path to tha: file or socket from a given process or
any of its children.

Filename - Names consisting of up to 32 characters may be used to name an ordi­
nary file, special file, or directory.

Revision 01 2-7

INTRO(2) DOMAIN/IX BSD4.2 INTRO(2)

2-8

These characters may be selected from the set of all ASCII characters excluding 0
(null) and 47 (slash).

Note that it is generally unwise to use *, ?, [or] in filenames. These characters have
special meaning to the shell.

Pathname - A pathname is a null-terminated character string that includes zero or
more directory names separated by slashes, optionally followed by a file nrune. The
total length of a path name must be less than {P ATHNAME_MAX} characters.

If a path name begins with a slash, the path search begins at the node's entry (root)
directory. If a path name begins with a double slash, the path search begins at the net­
work root, a list of all nodes on the network. Otherwise, the search begins from the
current working directory. A slash by itself names the node's entry directory. A null
pathname refers to the current directory.

Directory - A directory is a special type of file which contains entries that are refer­
ences to other files. Directory entries are referred to as links. By convention, each
directory contains at least two links, "." and " .. ", referred to as "dot" and "dot-dot"
respectively. Dot is a link to the directory itself and dot-dot is a link to its parent
directory. DOMAIN/IX does not currently observe this convention.

Root Directory and Current Working Directory - Each process has associated with
it a concept of a root directory and a current working directory for the putpose of
resolving path name searches. A process's root directory need not be the node's root
directory.

File Access Permissions - Every file in the file system has a set of access permis­
sions. These pennissions are used in determining whether a process may perform a
requested operation on the file (such as opening a file for writing). Access perririssions
are established at the time a file is created. They may be changed at some later time
through the chmod(2) call.

File access is broken down according to whether a file may be: read, written, or exe­
cuted. Directory files use the execute permission to control if the directory may be
searched.

File access permissions are intetpreted by the system as they apply to three different
classes of users: the owner of the file,those users in the file's group, anyone else.
Every file has an independent set of access permissions for each of these classes.
When an access check is made, the system decides if permission should be granted by
checking the access information applicable to the caller.

Revision 01

c

o

o

o

o

INTRO(2) DOMAIN/IX BSD4.2 INTRO (2)

Read, write, and execute/search pennissions on a file are granted to a process if:

• The process's effective user ID is that of the super-user.

• The process's effective user ID matches the user ID of the owner of the file
and the owner' pennissions allow the access.

• The process's effective user ID does not match the user ID of the owner of
the file, and either the process's effective group ID matches the group ID of
the file, or the group ID of the file is in the process's group access list, and
the group permissions allow the access.

• Neither the effective user ID nor effective group ID and group access list of
the process match the corresponding user ID and group ID of the file, but
the permissions for "other users" allow access.

Otherwise, pennission is denied.

Note: DOMAIN/IX also supports Access Control Lists (ACLs), a different,
finer-grained protection mechanism. ACLs and their interaction with the
standard UNIX protection mechanism are described in detail in the
DOMAIN/IX Administrator's Reference Manual.

Sockets and Address Families - A socket is an endpoint for communication between
processes. Each socket has queues for sending and receiving data.

Sockets are typed according to their communications properties. These properties
include whether messages sent and received at a socket require the name of the
partner, whether communication is reliable, the fonnat used in naming message reci­
pients, etc.

Each instance of the system supports some collection of socket types; consult
socket(2) for more information about the types available and their properties.

Each instance of the system supports some number of sets of communications proto­
cols. Each protocol set supports addresses of a certain fonnat. An Address Family is
the set of addresses for a specific group of protocols. Each socket has an address
chosen from the address family in which the socket was created.

RELATED INFORMATION
intro(3), perror(3)

Revision 01 2-9

ACCEPT(2) DOMAIN/IX BSD4.2 ACCEPT(2)

NAME
acce pt - accept a connection on a socket

USAGE
#inc1ude <sys/types.h>
#inc1ude <sys/socket.h>

ns = accept(s, addr, addrlen) .
int ns, S;
struct sockaddr *addr;
int *addrlen;

DESCRIPTION
Accept takes the first connection from the queue of connections waiting at a socket s,
creates a new socket with the properties of the original one, and allocates a file
descriptor, ns, for the new socket. The original socket s was created with socket (2)
and was bound to an address with bind(2). S is now listening for connections after a
Iisten(2).

If there are no connections waiting and the socket is not marked as non-blocking,
accept blocks the caller until a connection is present. If the socket is marked as non­
blocking and no connections are waiting, accept returns an error (see below). The
new accepted socket, ns, may not accept more connections. The original socket s,
however, remains open.

The argument addr is a result parameter, which is filled in with the address of the con­
necting entity. The environment in which communications take place determines the
exact format of the addr parameter. Addrlen is a value-result parameter; it should ini­
tially contain the amount of space that addr points to; upon return, it contains the
actual length (in bytes) of the address returned. You can use this call with
connection-based socket types, currently with SOCK_STREAM.

You may select(2) a socket for the purposes of doing an accept by selecting it for
read.

RETURN VALUE
A successful accept returns a non-negative integer, which is the descriptor for the
accepted socket. Otherwise, accept returns -1 and sets errno as indicated below.

ERRORS

2-10

The accept will fail if:

[EBADF]

[ENOTSOCK]

The descriptor is invalid.

The descriptor refers to a file, not a socket.

Revision 01

c:~

CI

C)

o

o

ACCEPT(2) DOMAIN/IX BSD4.2 ACCEPT (2)

The socket is not of the type SOCK_STREAM. [EOPNOTSUPP]

[EFAULT] The addr parameter is not in a writable part of the user address
space.

[EWOULDBLOCK] The socket is marked as non-blocking and no connections are
waiting.

RELATED INFORMATION
bind(2), connect(2), Iisten(2), select(2), socket(2)

Revision 01 2-11

ACCES~(2) DOMAIN/IX BSD4.2 ACCESS (2)

NAME
access - determine if a file can be accessed

USAGE
#include <sys/file.h>

#define R_ OK 4
#define W _OK 2
#define X_OK 1
#define F _ OK 0

/* test for read permission * /
/* test for write permission * /
/* test for execute (search) pennission */
/* test for presence of file * /

accessible = access(path, mode)
int accessible;
char *path;
iot mode;

DESCRIPTION
Access checks the given file path for access rights according to mode, which is an
inclusive OR of the bits R_OK, W _OK, and X_OK. Specifying mode as F _OK (i.e.,
zero) tests whether the directories leading to the file can be searched and whether the
file' exists.

Access uses the real user ID and the group access list (including the real group ID) to
verify permission, making it useful in set-UID programs.

Note that access only checks access bits. A directory may appear writable according
to access, but an attempt to open it for writing will fail (although files may be created
there); a file may look executable, but execve(2) will fail unless the file is in the
proper format.

RETURN VALUE
A successful access returns zero. If path cannot be found, or if any of the desired
access modes would not be granted, access returns -1 and sets errno as indicated
below.

ERRORS

2-12

Access to the file is denied if one or more of the following are true:

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT]

[ENOENT]

[EPERM]

The argument pathname was too long.

Read, write, or execute (search) permission is requested for a null path­
name, or the named file does not exist.

The argument contains a byte with the high-order bit set.

Revision 01

,~
I
\ -

c

()
''''-../

o

o

(j

ACCESS(2) DOMAIN/IX BSD4.2 ACCESS (2)

[ELOOP] The call encountered too many symbolic links in translating the path­
name.

[EROFS] Write access is requested for a file on a read-only file system.

[EACCES] Permission bits of the file mode do not pennit the requested access; or
search pennission is denied on a component of the path prefix. The
owner of a file has permission checked with respect to the "owner"
read, write, and execute mode bits. Members of the file's group (other
than the owner) have permission checked with respect to the "group"
mode bits, and all others have permissions checked with respect to the
"other" mode bits.

[EFAULT] Path points outside the process's allocated address space.

RELATED INFORMATION
chmod(2), stat(2)

Revision 01 2-13

BIND(2) DOMAIN/IX BSD4.2 BIND(2)

NAME
bind - bind a name to a socket

USA(;E
#include <sys/types.h>
#include <sys/socket.h>

bind(s, name, namelen)
int s;
struct sockaddr *name;
int namelen;

DESCRIPTION
Bind assigns a name to an unnamed socket. When a socket is created with socket(2),
it exists in a name space (address family) but has no name assigned. Bind requests
that name be assigned to the socket. The rules used in name binding vary among
communications environments.

RETURN VALUE
A successful bind returns zero. Otherwise, bind returns -1 and sets errno as indicated

\ i

'-"/

below. ("
, '

ERRORS
Bind will fail if:

[EBADF]

[ENOTSOCK]

S is not a valid descriptor.

S is not a socket.

[EADDRNOT A V AIL] The specified address is not available from the local machine.

[EADDRINUSE]

[EINVAL]

[EACCESS]

[EFAULT]

RELATED INFORMATION

The specified address is already in use.

The socket is already bound to an address.

The requested address is protected, and the current user has
inadequate pennission to access it.

The name parameter is not in a valid part of the user address
space.

connect(2), Iisten(2), socket(2), getsockname(2)

2-14 Revision 01

o

o

o

C)

C
...,'

\
)

..J

BRK(2) DOMAIN/IX BSD4.2

NAME
brk, sbrk - change data segment size

USAGE
caddr _t brk(addr)
caddr _t addr;

caddr _t sbrk(incr)
int incr;

DESCRIPTION

BRK(2)

The system's idea of the lowest data segment location not used by the program is
called the break. Brk sets the break to addr (rounded up to the next multiple of the
system's page size). Locations greater than addr and below the stack pointer are not
in the address space and will therefore cause a memory violation if the program
attempts to access them.

In the alternate function sbrk, incr more bytes are added to the program's data space
and a pointer returns to the start of the new area.

When a program begins execution with an execve(2), the break is set at the highest
location defined by the program and data storage areas. Consequently, programs that
grow their data area are the principal clients of sbrk.

RETURN VALUE
A successful call to brk or sbrk returns zero and sets or extends the break. Otherwise,
it returns -1 and sets errno as indicated below.

ERRORS
S b rk will fail if one of the following is true:

[ENOMEM] The system's memory limit was exceeded.

[ENOMEM] The maximum possible size of a data segment (compiled into the sys­
tem) was exceeded.

RELATED INFORMATION
execve(2), malloc(3)

Revision 01 2-15

CHDIR(2) DOMAIN/IX BSD4.2 CHDIR (2)

NAME
chdir - change current working directory

USAGE
chdir(path)
char *path;

DESCRIPTION
Chdir sets path, which must be the name of a directory, as the current working direc­
tory. This becomes the starting point for resolving pathnames not beginning with a
slash (j).

In order for a directory to become the current directory, a process must have execute
(search) access to the directory.

RETURN VALUE
A successful chdir returns zero. Otherwise, it returns -1 and sets errno as indicated
below.

ERRORS

2-16

Chdir will fail and the current working directory will not change if one or more of the
following are true:

[ENOTDIR] A component of the pathname is not a directory.

[ENOENT] The directory named does not exist.

[ENOENT] The argument pathname is too long.

[EPERM] The argument contains a byte with the high-order bit set.

[EACCES] Search permission is denied for any component of the pathname.

[EFAULT] Path points outside the process's allocated address space.

[ELOOP] The call encountered too many symbolic links in translating the path­
name.

Revision 01

o

o

o

C)

CHMOD(2) DOMAIN/IX BSD4.2 CHMOD(2)

NAME
chmod - change mode of file

USAGE
chmod(path, mode)
char *p'ath;
int mode;

fchmod(fd, mode)
char *path;
int fd, mode;

DESCRIPTION
The chmod systenl call changes the mode of the file named by path to mode.
Fchmod does the same thing to file descriptor fd. Modes are constructed from the
logical OR of the following octal values.

04000 set user ID on execution
02000 set group ID on execution
00400 read by owner
00200 write by owner
00100 execute (search on directory) by owner
00070 read, write, execute (search) by group
00007 read, write, execute (search) by others

Only the owner of a file (or the super-user) may change the mode.

Writing or changing the owner of a file turns off the set-user-ID and set-group-ID bits.
This makes the system somewhat more secure by protecting set-user-ID (set-group-ID)
files from remaining set-user-ID (set-group-ID) if they are modified.

NOTES
The DOMAIN System's single level store architecture requires that all filesystem
objects be readable in order to be writable or executable. Since write-only or
execute-only files would be unusable in DOMAIN/lX, modes that specify 02 (write­
only) or 01 (execute-only) are ORed with 0400 to force read permission. This applies
to the owner, group, and world portions of the mode word. For example, if mode
0631 were specified, the mode applied to the file would actually be 0675.

RETURN VALUE
A successful call to either chmod or fchmod returns zero. A failed call returns -1 and
sets errno as indicated· below.

Revision 01 2-17

CHMOD(2) DOMAIN/IX BSD4.2 CHMOD(2)

ERRORS
Chmod will fail and the file mode will be unchanged if:

[EPERM]

[ENOTDIR]

[ENOENT]

[ENOENT]

[EACCES]

[EPERM]

[EROFS]

[EFAULT]

[ELOOP]

The argument contains a byte with the high-order bit set.

A component of the path prefix is not a directory.

The pathname is too long.

The named file does not exist.

Search permission is denied on a component of the path prefix.

The effective user ID does not match the owner of the file and the
effective user ID is not the super-user.

The named file resides on a read-only file system.

Path points outside the process's allocated address space.

The call encountered too many symbolic links in translating the
pathname.

Fchmod will fail if:

[EBADF]

[EINVAL]

[EROFS]

The descriptor is not valid.

F d refers to a socket, not to a file.

The file resides on a read-only file system.

RELATED INFORMATION
open(2), chown(2)

2-18 Revision 01

~,
I
"-- ..

c

'-..._ ... '

~,

" . '-..• -.

o

o

o

C)

o

CHOWN(2) DOMAIN/IX BSD4.2 CHOWN(2)

NAME
chown - change owner or group of a file

USAGE
chown(path, owner, group)
char *path;
int owner, group;

fchown(fd, owner, group)
int fd, owner, group;

DESCRIPTION
Chown (fchown) sets the owner and group of the object specified by path (or file
descriptor fd). Only the super-user may execute this call.

On some systems, chown clears the set-user-ID and set-group-ID bits on the file to
prevent accidental creation of set-user-ID and set-group-ID programs owned by the
super-user.

Fchown is particularly useful when used in conjunction with the file-locking primitives
(see ftock(2».

You may set either the owner or the group ID without changing the other. Set the ill
you do not want to change to -1.

RETURN VALUE
A successful call returns zero. A failed call returns -1 and sets errno as indicated
below.

ERRORS
Chown will fail and the file will be unchanged if:

[EINVAL]

[ENOTDIR]

[ENOENT]

[EPERM]

[ENOENT]

[EACCES]

[EPERM]

[EROFS]

Revision 01

The argument path does not refer to a file.

A component of the path prefix is not a directory.

The argument pathname is too long.

The argument contains a byte with the high-order bit set.

The named file does not exist.

Search permission is denied on a component of the path prefix.

The effective user ID does not match the owner of the file and the
effective user ID is not the super-user.

The named file resides on a read-only file system.

2-19

CHOWN(2)

[EFAULT]

[ELOOP]

DOMAIN/IX BSD4.2 CHOWN(2)

Path points outside the process's allocated address space.

The call encountered too many symbolic links in translating the
pathname.

Fchown will fail if:

[EBADF]

[EINVAL]

. F d does not refer to a valid descriptor.

Fd refers to a socket, not a file.

RELATED INFORMATION
chmod(2), flock(2)

2-20 Revision 01

~

~_ ••. ,I

o

o

CLOSE(2) DOMAIN/IX BSD4.2 CLOSE(2)

NAME
close - delete a descriptor

USAGE
c1ose(d)
int d;

DESCRIPTION
Close deletes descriptor d from the per-process object reference table. If this is the
last reference to the underlying object, then the object will be deactivated. For exam­
ple, on the last close of a file the current seek pointer associated with the file is lost;
on the last close of a socket(2), the associated naming infonnation and any queued
data are discarded; on the last close of a file holding an advisory lock, the lock is
released; see ftock(2).

All of a process's descriptors close automatically upon an exit(2), but since there is a
limit on the number of active descriptors per process, close is necessary for programs
that use many descriptors.

When a process forks (see fork(2)), all descriptors held by the forked child process
refer to the same objects as they did in the parent. If a new process is then run using
execve(2), the process normally inherits these descriptors. Most of the descriptors can
be rearranged with dup2(2) or deleted with close before the execve is attempted.
However, if some of these descriptors are needed in case the execve fails, you must
arrange to close them. if the execve succeeds. Use fcntl(2) as shown here:

fcntl(d, F _SETFD, 1)

to arrange for descriptor d to be closed after a successful execve, and

fcntl(d, F _SETFD, 0)

to restore the default, i.e., that the descriptor does not close.

RETURN VALUE
A successful call returns zero. A failed call returns -1 and sets errno as indicated
below.

ERRORS
Close will fail if:

[EBADF] d is not an active descriptor.

Revision 01 2-21

CLOSE(2) DOMAIN/IX BSD4.2 CLOSE(2)

RELATED INFORMATION
accept(2), flock(2), open(2), pipe(2), socket(2), socketpair(2), execve(2), fcntl(2)

2-22 Revision 01

o

o

CONNECT(2) DOMAIN/IX BSD4.2 CONNECT (2)

NAME
connect - initiate a connection on a socket

USAGE
#include <sys/types.h>
#include <sys/socket.h>

connect(s, name, namelen)
int s;
struct sockaddr *name;
int name len;

DESCRIPTION
The parameter s specifies a socket. If s is of the type SOCK_DGRAM, then this call
pennanently specifies the peer to which datagrams will be sent; if it is of the type
SOCK_STREAM, then this call attempts to make a connection to another socket. The
other socket is specified by name, which is an address in the communications space of
the socket. Each communications space interprets the name parameter in its own ·way.

RETURN VALUE
A successful connect returns zero. A failed call returns -1 and sets errno as indicated
below.

ERRORS
The call fails if:

[EBADF]

[ENOTSOCK]

[EADDRNOT AVAIL]

[EAFNOSUPPORT]

[EISCONN]

[ETIMED0 UT]

[ECONNREFUSED]

[ENETUNREACH]

Revision 01

S is not a valid descriptor.

S is a descriptor for a file, not a socket.

The specified address is not available on this machine.

Addresses in the specified address family cannot be used
with this socket.

The socket is already connected.

Connection establishment timed out without establishing a
connection.

The attempt to connect was forcefully rejected.

This host cannot reach the network.

2-23

CONNECT (2)

[EADDRINUSE]

[EFAULT]

[EWOULDBLOCK]

DOMAIN/IX BSD4.2 CONNECT (2)

The address is already in use.

The name parameter specifies an area outside the process
address space.

The socket is non-blocking, and the connection cannot be
completed immediately.

RELATED INFORMATION
accept(2), select(2), socket(2)

2-24 Revision 01

C)

o

C)

o

CREAT(2) DOMAIN/IX BSD4.2 CREAT(2)

NAME
creat - create a new file (obsolete)

USAGE
creat(name, mode)
char *name;

DESCRIPTION
This interface has been made obsolete by open(2).

Creat creates a new file or prepares to rewrite an existing file called name, given as
the address of a null-terminated string. If the file did not exist, it is created with
mode, as modified by the process's mode mask (see umask(2». Also see chmod(2)
for the construction of the mode argument.

If the file did exist, its mode and owner remain unchanged, but it is truncated to zero
length. The file is also opened for writing, and its file descriptor is returned.

NOTES
The mode given is arbitrary; it need not allow writing. In the past, a mode that did not
allow writing let programs construct a simple exclusive locking mechanism. This
function has been replaced by the O_EXCL mode of open(2), and by the flock(2)
facility.

The DOMAIN System's single level store architecture requires that all filesystem
objects be readable by their owner. Since DOMAIN/IX does not allow write-only or
execute-only files, modes 00100 (write only by owner) and 00200 (execute only by
owner) are effectively ORed with 00400 to force read permission for the owner.

RETURN VALUE
A successful call returns a non-negative integer file descriptor that only permits writ­
ing. A failed call returns-l and sets errno as indicated below.

ERRORS
Creat will fail and the file will not be created or truncated if one of the following
occur:

[EPERM]

[ENOTDIR]

[EACCES]

[EACCES]

[EACCES]

Revision 01

The argument contains a byte with the high-order bit set.

A component of the path prefix is not a directory.

A needed directory does not have search permission.

The file does not exist and the directory in which it would be
created is not writable.

The file exists, but it is unwritable.

2-25

CREAT(2)

[EISDIR]

[EMFILE]

[EROFS]

[ENXIO]

[ETXTBSY]

[EFAULT]

[ELOOP]

[EOPNOTSUPP]

DOMAIN/IX BSD4.2 CREAT (2)

The file is a directory.

There are already too many files open.

The named file resides on a read-only file system.

The file is a character-special or block-special file, and the asso­
ciated device does not exist.

The file is a pure procedure (shared text) file that is being exe­
cuted.

Name points outside the process's allocated address space.

The call encountered too many symbolic links in translating the
pathname.

The file was a socket (not currently implemented).

RELATED INFORMATION
open(2), write(2), c1ose(2), chmod(2), umask(2)

2-26 Revision 01

\ '

c

o

o

DEFAULT_ACL (2) DOMAIN/IX BSD4.2 DEFAULT_ACL(2)

NAME
default_acl - change default file protection environment

USAGE
#include <default_acl.h>

int default_acl(switch)
int switch;

DESCRIPTION
The DOMAIN/IX system call default_acl allows programs to change the default file
protection environment between access mode and access control list (ACL). Values
for the switch argument are defined in the include file <default_acl.Jl>. They are:

Use the default ACL contained in the directory when creating a
new file, pipe, or directory.

Use the access mode supplied in the call, modified by the current
umask value.

Use the default for the environment in which the program is run­
ning. Unless the containing directory has a nil initial file acl (set
using sup(8)), the default for programs running in an AEGIS
environment is to use the intial file ACL. If the containing
directory has a nil initial file acl, the default for programs run­
ning in an AEGIS environment is the same as for those running
in a DOMAIN/IX environment. In all cases, the default for pro­
grams running in a DOMAIN/IX environment is to use the
appropriate access mode.

(----~'\

"--'J RELATED INFORMATION
chmod(2) sup(8)

o
Revision 01 2-27

DUP(2) DOMAIN/IX BSD4.2 DUP(2)

NAME
dup, dup2 - duplicate a descriptor

USAGE
newd = dup(oldd)
int newd, oldd;

dup2(oldd, newd)
int oldd, newd;

DESCRIPTION
Dup duplicates an existing object descriptor. The argument oldd is a small, non­
negative integer index in the per-process descriptor table. The value must be less than
the size of the table, which is returned by getdtablesize(2). The new descriptor newd
returned by the call is the lowest-numbered descriptor that the process is not currently
using.

The object that the descriptor refers to does not distinguish between references to oldd
and newd in any way. Thus, if newd and oldd are duplicate references to an open file,
read(2), write(2) and Iseek(2) calls all move a single pointer into the file. If a
separate pointer into the file is desired, you must create a different object reference to
the file by issuing an additional open(2) call.

In the second fonn of the call, the value of the newd desired is specified. If this
descriptor is already in use, the descriptor is deallocated first, as if a close(2) call had
been done first.

RETURN VALUE
A successful call to either dup or dup2 returns zero. A failed call returns -1 and sets
errno as indicated below.

ERRORS
Dup and dup2 fail if:

[EBADF]

[EMFILE]

Oldd or newd is not a valid active descriptor.

Too many descriptors are active.

RELATED INF()RMATION
accept(2), open(2), close(2), pipe(2), socket(2), socketpair(2), getdtablesize(2)

2-28 Revision 01

\.

o

o

o

EXECVE(2) DOMAIN/IX BSD4.2 EXECVE(2)

NAME
execve - execute a file

USAGE
execve (name, argv, envp)
char *name, *argv[], *envp[];

DESCRIPTION
Execve transfonns the calling'process into a new process. The new process is con­
structed from an ordinary file called the "new process file." This file is either an exe­
cutable object file, or a file of data for an interpreter. An executable object file con­
sists of an identifying header, followed by pages of data representing the initial pro­
gram (text) and initialized data pages. You can initialize additional pages with with
zero data with the header.

An interpreter file be gins with a line of the form

#! interpreter

where interpreter is the full pathname of the desired interpreter, for example

#! Ibin/sh

When you execve an interpreter file, the system runs execve on the specified inter­
preter, giving it the name of the original file as an argument and shifting over the rest
of the original arguments.

There is no return from a successful execve because the calling process's core image is
overwritten by the new process.

The argument argv is an array of character pointers to null-terminated character strings
that comprise an argument list to be made available to the new process. By conven­
tion, at least one argument must be present in this array, and the first element of this
array should be the name of the executed program (Le., the last component of name).

The argument envp is also an array of character pointers to null-terminated strings.
These strings pass information that is not in the fonn of direct arguments to the com­
mand.

Descriptors that were open in the calling process remain open in the new process,
except those for which the c1ose-on-exec flag is set; see c1ose(2). Execve does not
affect descriptors that remain open.

Revision 01 2-29

EXECVE(2) DOMAIN/IX BSD4.2 EXECVE(2)

Ignored signals remain ignored across an execve, but signals that are caught are reset
to their default values. The signal stack is reset to undefined; see sigvec(2) for more
infonnation.

Each process has "real" user and group IDs as well as "effective" user and group IDs.
The real ID identifies the person using the system; the effective ID detennines the
user's access privileges. Execve changes the effective user and group ID to the owner
of the executed file if the file has the "set-user-ID" or "set-group-ID"modes. The real
user ID is not affected.

The new process also inherits the following attributes from the calling process:

process ID
parent process ID
process group ID
access groups
working directory
control terminal
resource us ages
interval timers
resource limits
file mode mask
signal mask

see getpid (2)
see getppid (2)
see getpgrp (2)
see getgroups (2)
see chdir (2)
see tty (4)
see getrusage(2)
see getitimer (2)
see getrlimit(2)
see umask (2)
see sigvec (2)

When the executed program begins, it is called as follows:

main (argc, argv, envp)
int argc;
char **argv, **envp;

where argc is the number of elements in argv (the "arg count") and argv is the array
of character pointers to the arguments themselves.

Envp is a pointer to an array of strings that constitutes the environment of the process.
A pointer to this array is also stored in the global variable environ. Each string con­
sists of a name, an "=", and a null-terminated value. The array of pointers ends with
a null pointer. The shell passes an environment entry for each global shell variable
defined when the program is -called.

NOTES

2-30

If a program is "set-user-ID" to a non-super-user, but is executed when the real
"user-ID" is "root," then the program has the powers of a super-user as well.

Revision 01

(~

~ ,._-- '

o

o

o

EXECVE(2) DOMAIN/IX BSD4.2 EXECVE(2)

RETURN VALUE
A successful execve never returns. A failed call returns -1 and sets errno as indicated
below.

ERRORS
Execve will fail and return to the calling process if one or more of the following are
true:

[ENOENT]

[ENOTDIR]

[EACCES]

[EACCES]

[EACCES]

[ENOEXEC]

[ETXTBSY1

[ENOMEM]

[E2BIG]

[EFAULT]

[EFAULT]

One or more components of the new process file's pathname do not
exist.

A component of the new process file is not a directory.

Search pennission is denied for a directory listed in the new process
file's path prefix.

The new process file is not an ordinary file.

The new process file mode denies execute permission.

The new process file has the appropriate access pennission, but has
an invalid magic number in its header.

The new process file is a pure procedure (shared text) file that is
currently open for writing or reading by some process.

The new process requires more virtual memory than is allowed by
the imposed maximum (getrlimit(2».

The number of bytes in the new process's argument list is larger
than the system-imposed limit of {ARG_MAX} bytes.

The new process file is not as long as the size value indicated in its
header.

Path, argv, or envp point to an illegal address.

RELATED INFORMATION
exit(2), fork(2), execl(3)

Revision 01 2-31

EXIT (2) DOMAIN/IX BSD4.2 EXIT(2)

NAME
_exit - tenninate a process

USAGE
_exit (status)
int status

DESCRIPTION
The _exit system call tenninates a process with the following consequences:

• All of the descriptors open in the calling process are closed.

• If the parent process of the calling process is executing a wait or is
interested in the SIGCHLD signal, it is notified of the calling process's ter­
mination and the low-order eight bits of status are made available to it; as
detailed in the entry for wait(2).

• The parent process ID of all of the calling process's existing child processes
are also set to 1. This means that the initialization process (see intro(2»
inherits each of these processes as well.

Most C programs call the library routine exit(3), which perfonns clean-up actions in
the standard I/O library before calling _exit.

RETURN VALUE
This call never returns.

RELATED INFORMATION
fork(2), wait(2), exit(3)

2-32 Revision 01

c)

o

C)

CI

FCNTL(2) DOMAIN/IX BSD4.2 FCNTL(2)

NAME
fcntl - file control

USAGE
#include <fcntl.h>

res = fcntl(jd, cmd, arg)
int res;
int jd, cmd, arg;

DESCRIPTION
Fcntl provides various types of control over file descriptors. Several varieties of cmd
are provided, which operate on fd as follows.

F_GETFD

F_SETFD

F_GETFL

F_SETFL

F_GETOWN

F_SETOWN

Revision 01

Return a new descriptor that:

o is the lowest-numbered available descriptor greater than or equal
to arg,

• references the same object as the original fd,

o shares the same file pointer if the object was a file,

o has the same access mode (read, write or read/write) as the origi­
nalfd,

o has the same file-status flags (Le., both file descriptors share the
same file status flags),

o sets the close-on-exec flag associated with the new file descriptor
to remain open across execve(2) system calls.

Get the close-on-exec flag associated with the file descriptor fd. If
the low-order bit is zero, the file will remain open across exec; oth­
erwise, the file will close upon execution of exec.

Set the close-on-exec flag associated with fd to the low-order bit of
arg (zero or 1, as above).

Get descriptor status flags, as described below.

Set descriptor status flags.

Get the process ID or process group currently receiving SIGIO and
SIGURG signals; process groups are returned as negative values.

Set the process or process group to receive SIGIO and SIGURG sig­
nals; you can specify process groups by supplying a negative arg;

2-33

FCNTL(2) DOMAIN/IX BSD4.2 FCNTL(2)

otherwise arg is interpreted as a process ID.

The flags for the F _GETFL and F _SETFL flags are as follows:

FNDELAY

FAPPEND

Non-blocking I/O; if no data is available to a read(2) call, or if a
write(2) operation would block, the call returns -1 and sets errno to
the value EWOULDBLOCK.

Force each write to append at the end of file (corresponds to the
O_APPEND flag of open(2).)

RETURN VALUE
The value returned upon successful completion depends on cmd as follows:

F _DUPFD returns a new file descriptor.

F _ GETFD returns the value of the close-on-exec flag (only the low-order bit is
defined).

F _ GETFL returns the values of the applicable flags.

F _GETOWN returns the value of file descriptor owner.

All others return some value other than -1

Otherwise, rcntl returns -1 and sets errno as indicated below.

ERRORS
Fcntl will fail if one or more of the following are true:

[EBADF]

[EMFILE]

[EINVAL]

Fd is not a valid open file descriptor.

Cmd is F _DUPFD and the maximum allowed number of file descrip­
tors are currently open.

Cmd is F _DUPFD and arg is negative or greater than the maximum
allowable number (see getdtablesize(2».

RELATED INFORMATION
close(2), execve(2), getdtablesize(2), open(2), sigvec(2)

2-34 Revision 01

o

o

()

o

FLOCK(2) DOMAIN/IX BSD4.2

NAME
flock - place or remove an advisory lock on an open file

USAGE
#include <sys/file.h>

#define
#define
#define
#define

LOCK_SH 1
LOCK_EX 2
LOCK_NB 4
LOCK_UN 8

flock(fd, operation)
int fd, operation;

DESCRIPTION

/* shared lock */
/* exclusive lock */
/* don't block when locking */
/* unlock */

FLOCK(2)

Flock applies or removes an advisory lock on the file identified by the descriptor fd.
A lock is applied by specifying an operation parameter which is the· (inclusive) OR of
LOCK_SH or LOCK_EX and, possibly, LOCK_NB. To unlock an existing lock,
operation Kshould be LOCK_UN.

Advisory locks allow cooperating processes to perform consistent operations on files,
but do not guarantee consistency. (Processes may still access files without using
advisory locks, and this may result in inconsistencies).

The locking mechanism allows two types of locks: "shared" locks and "exclusive"
locks. Multiple shared locks may be applied to a file at any time. At no time are
multiple exclusive locks, or a combination of shared and exclusive locks, allowed on a
file.

A shared lock may be upgraded to an exclusive lock (or an exclusive lock turned into
a shared lock) by specifying the appropriate lock type; this releases the previous lock
and applies the new one.

Requesting a lock on an object that is already locked normally causes the caller to
blocked until the lock can be acquired. If LOCK_NB is included in operation, such
calls will fail and return the error EWOULDBLOCK instead.

N()TES
Locks are on files, not file descriptors. That is, file descriptors duplicated through
dup(2) or fork(2) do not result in multiple instances of a lock, but rather multiple
references to a single lock. If a process holding a lock on a file forks and the child
explicitly unlocks the file, the parent will lose its lock.

Revision 01 2-35

FLOCK(2) DOMAINjlX BSD4.2 FLOCK(2)

Processes that are blocked waiting for a lock may be awakened by signals.

All processes that use advisory locks on a given file must be running on the same
node.

RETURN VALUE
A successful call returns zero. A failed call returns -1 and sets errno as indicated
below.

ERR()RS
The flock call fails if:

[EWOULDBLOCK] The file is locked and the LOCK_NB option was specified.

[EBADF]

[EINVAL]

The argument fd is an invalid descriptor.

The argument fd refers to an object other than a file.

RELATED INFORMATION
open(2), close(2), dup(2), execve(2), fork(2)

2-36 Revision 01

o

o

FORK(2) DOMAIN/IX BSD4.2 FORK(2)

NAME
fork - create a new process

USAGE
pid = forkO
iot pid;

DESCRIPTION
Fork creates a new process that is a descendant of the process that calls fork. With
the following exceptions, the new (child) process is an exact copy of the calling

, (parent) process.

• The child process has a unique process ID.

• The child process has a different parent process ID (Le., the process ID of the
parent process).

• The child process has its own. copy of the parent's descriptors. These descriptors
reference the same underlying objects, so that, for instance, file pointers in file
objects are shared between the child and the parent. A Iseek(2) on a descriptor in
the child process, for example, can affect a subsequent read(2) or write(2) by the
parent. Shells copy descriptors in this way to establish standard input and output .
for newly created processes, as well as to set up pipes.

• The child process's resource utilizations are set to zero; see getrlimit(2).

NOTES
On DOMAIN systems, fork may produce unexpected or undesired results when called
from an mbx server process, or form a process using gpr or gpio. .

RETURN VALUE
Upon successful completion, fork returns zero to the child process and returns the
child's process ID to the parent process. Otherwise, -1 is returned to the parent pro­
cess, no child process is created, and errno is set to indicate the error.

ERR()RS
Fork will fail and no child process will be created if either of the following is true:

[EAGAIN] The system-imposed limit on the total number of processes under execu­
tion would be exceeded.

[EAGAIN] The system-imposed limit on the total number of processes under execu­
tion by a single user would be exceeded.

Revision 01 2-37

FORK(2)

RELATED INFORMATION
execve(2), wait(2)

2-38

DOMAIN/IX BSD4.2 FORK(2)

Revision 01

/ •.. --........,,
("

\,~_/

\",-, .'

o

o

o

FSYNC (2) DOMAINjlX BSD4.2 FSYNC (2)

NAME
fsync - synchronize a file's in-core state with that on disk

USAGE
fsync(fd)

int fd;

DESCRIPTION
Fsync causes all modified data and attributes of the object referenced by fd to be
moved to a permanent (typically disk) storage device. This normally force-writes all
modified copies of buffers for the associated file.

Fsync should be used by programs that require a file to be in a known state; for exam­
ple in building a simple transaction facility.

RETURN VALUE
A successful call returns zero. A failed call returns -1 and sets errno as indicated
below.

ERRORS
The fsync fails if:

[EBADF] Fd is not a valid descriptor.

[EINV AL] Fd refers to a socket, not to a file.

Revision 01 2-39

G ETDT ABLESIZE (2) DOMAIN/IX BSD4.2

NAME
getdtablesize - get descriptor table size

USAGE
nds = getdtablesizeO
int nds;

DESCRIPTION

GETDTABLESIZE (2)

Each process has a fixed size descriptor table that is guaranteed to have at least 20
slots. The entries in the descriptor table are all small integers. The lowest-numbered
descriptor is zero.

RETURN VALUE
The call getdtablesize returns a non-negative integer (the size of the descriptor table).

RELATED INFORMATION
close(2), dup(2), open(2)

2-40 Revision 01

'-...... /

/,.,- ,
I

o

o

o

o

(J

GETGID(2) DOMAIN/IX BSD4.2

NAME
getgid, getegid - get group identity

USAGE
gid = getgidO
int gid;

egid = getegidO
int egid;

DESCRIPTION

GETGID(2)

Getgid reports the real group ID of the current process; getegid reports the effective
group ID.

The real group ID is set at log-in time. The effective group ID detennines additional
access pennission during execution of a "set-group-ID" process. It is for such
processes that getgid is most useful.

RETURN VALUE
Getgid reports the process's real group ID. "Getegid reports the process's effective
group ID.

RELATED INFORMATION
getuid(2), setregid(2), setgid(3)

Revision 01 2-41

GETGROUPS (2) DOMAINjIX BSD4.2 GETGROUPS (2)

NAME
getgroups - get group access list

USAGE
#include <sys/param.h>

ngroups = getgroups(gidsetlen, gidset)
int ngroups, gidsetlen, *gidset;

DESCRIPTION
Getgroups obtains the current group access list of the user process and stores it in the
array gidset. The parameter gidsetlen indicate's the number of entries that may be
placed in gidset. Getgroups returns the actual number of groups returned in gidset.
No more than NGROUPS, as defined in <sys/param.h>, will ever be returned.

RETURN VALUE
A successful call returns zero. A failed call returns -1 and sets errno as indicated
below.

ERRORS
The possible errors for getgroup are:

[EINV AL] The argument gidsetlen is smaller than the number of groups in the
group set.

[EFAULT] The arguments ngroups or gidset specify invalid addresses.

RELATED INFORMATION
setgroups(2), initgroups(3X)

2-42 Revision 01

("
,--_" I

o

u·

o

GETHOSTID (2) DOMAIN/IX BSD4.2

NAME
gethostid, sethostid - get/set unique identifier of current host

USAGE
hostid = gethostidO
int hostid;

sethostid(hostid)
int hostid;

DESCRIPTION

GETHOSTID (2)

Sethostid establishes a 32-bit identifier for the current processor .. This identifier is
intended to be unique among all UNIX systems in existence; it is normally a DARPA
Internet address for the local machine. Use of this call is limited to the super-user,
and typically occurs only at boot time.

Gethostid returns the 32-bit identifier for the current processor.

RETURN VALUE
Upon successful execution, gethostid returns the 32-bit identifier for the current pro­
cessor.

RELATED INFORMATI()N
hostid(1), gethostname(2)

Revision 01 2-43

GETHOSTNAME (2) DOMAIN/IX BSD4.2 GETHOSTNAME (2)

NAME
gethostname, sethostname - get/set name of current host

USAGE
gethostname(name, namelen)
char *name;
int name len;

sethostname(name, namelen)
char *name;
int namelen;

DESCRIPTION
Gethostname returns the standard host name for the current processor, as previously
set by sethostname. The parameter namelen specifies the size of the name array. The
returned name is null-terminated, unless insufficient space is provided in namelen.

Sethostname sets the name of the host machine to be name, which has length
namelen. Use of sethostname is restricted to the super-user. It is typically used only
when the system is booted.

NOTES
On some systems, host names are limited to 255 characters. DOMAIN/IX has no such
limitation.

RETURN VALUE
A successful call returns zero. A failed call returns -1 and sets errno as indicated
below.

ERRORS
These calls may return one or more of the following errors:

[EFAULT] The name or namelen parameter gave an invalid address.

[EPERM] The caller was not the super-user.

RELATED INFORMATION
gethostid(2)

2-44 Revision 01

I

'--._----/

c

C)

C)

o

GETITIMER(2) DOMAIN/IX BSD4.2 GETITIMER (2)

NAME
getitimer, setitimer - get/set value of interval timer

USAGE
#include <sys/time.h>

#define ITIMER_REAL
#define ITIMER_ VIRTUAL
#define ITIMER_PROF

getitimer(which, value)
int which;
struct itimerval *value;

setitimer(which, value, ovalue)
int which;
struct itimerval *value, *ovalue;

DESCRIPTION

o
1
2

/* real time intervals */
/* virtual time intervals */
/* user and system virtual time */

The system provides each process with three interval timers, defined in <sys/time.h>.
The getitimer call returns the current value for the timer specified in the argument
which, while the setitimer call sets the value of a timer. (Getitimer may also return
the previous value of the timer.)

A timer value comes from the itimerval structure:

struct itimerval (

} ;

struct timeval it_interval;
struct timeval it_value;

/* timer interval * /
/* current value * /

If it_value is non-zero, it indicates the time to the next timer expiration. If it_interval
is non-zero, it specifies a value to be used in reloading it_value when the timer
expires. Setting it_value to zero disables a timer. Setting it_interval to zero causes a
timer to be disabled after its next expiration (assuming it_value is non-zero).

Time values smaller than the resolution of the system clock (4 f..lseconds on DOMAIN
systems) are rounded up to this resolution.

The ITIMER_REAL timer decrements in real time and delivers a SIGALRM signal
when it expires.

~eviSion 01 2-45

GETITIMER (2) DOMAIN/IX BSD4.2 GETITIMER (2)

The ITWER_ VIRTUAL timer decrements in process virtual time. It runs only when
the process is executing, and delivers a SIGVT ALRM signal when it expires.

The ITIMER_PROF timer decrements both in process virtual time and wheri the sys­
tem is running on behalf of the process. It is designed to be used by interpreters in
statistically profiling the execution of interpreted programs. Each time the
ITIMER_PROF timer expires, the SIGPROF signal is delivered. Because this signal
may interrupt in-progress system calls, programs using this timer must be prepared to
restart interrupted system calls.

NOTES
Three macros for manipulating time values are defined in <sys/time.h>. Timerclear
sets a time value to zero, timerisset tests if a time value is non-zero, and timercmp
compares two time values (>= and <= do not work with this macro).

RETURN VALUE
A successful call returns zero. A failed call returns -1 and sets errno as indicated
below.

ERRORS
The possible errors are:

[EFAULT] The value structure specified a bad address.

[EINV AL] A value structure specified that a time was too large to be handled.

RELATED INF()RMATION
sigvec(2), gettimeofday(2) select(2)

2-46 Revision 01

c

C)

o

o

GETPAGESIZE (2) DOMAIN/IX BSD4.2 GETPAGESIZE (2)

NAME
getpagesize - get system page size

USAGE
page size = getpagesizeO
int pagesize;

DESCRIPTION
Getpagesize returns the number of bytes in a page, which is the granularity of many
of the memory management calls.

The page size is a system page size, which may not be the same as the underlying
hardware page size.

RETURN VALUE
This call returns the number of bytes in a page.

RELATED INFORMATION
sbrk(2), pagesize(1)

Revision 01 2-47

GETPEERNAME(2) DOMAIN/lX BSD4.2

NAME
getpeername - get name of connected peer

USAGE
getpeername(s, name, namelen)
int S;
struct sockaddr *name;
int *namelen;

DESCRIPTION

GETPEERNAME (2)

Getpeername returns the name of the peer connected to socket s. The namelen 1-'

parameter should be initialized to indicate the amount of space name points to. On \,
return, it contains the actual size of the name returned (in bytes).

RETURN VALUE
A successful call returns zero. A failed call returns -1 and sets errno as indicated
below.

ERRORS
The call succeeds unless:

[EBADF]

[ENOTSOCK]

[ENOTCONN]

[ENOBUFS]

[EFAULT]

The argument s is not a valid descriptor.

The argument s is a file, not a socket.

The socket is not connected.

Insufficient system resources were available.

The name parameter points to memory that is not in a valid part
of the process address space.

RELATED INFORMATION
bind(2), socket(2), getsockname(2)

2-48 Revision 01

(
~\",.-. "

C)

o

o

GETPGRP(2)

NAME
getpgrp - get process group

USAGE .
pgrp = getpgrp(pid)
int pgrp, pid;

DESCRIPTION

DOMAIN/lX BSD4.2 GETPGRP(2)

Getpgrp returns the process group of the specified process. If pid is zero, then the
call applies to the current process.

Process groups are used to distribute signals, and by tenninals to arbitrate requests for
their input. Processes that have the same process group as the tenninal are foreground
and may read, while others will block and send a signal if they attempt to read.

Programs like csh(1) use this call to create process groups used in implementing job
control. The TIOCGPGRP and TIOCSPGRP calls described in tty~4) are used to get
or set the process group of the control terminal.

RELATED INFORMATION
setpgrp(2), getuid(2), tty(4)

Revision 01 2-49

GETPID(2) DOMAIN/IX BSD4.2

NAME
getpid, getppid - get process identification

USAGE
pid = getpidO
long pid;

ppid = getppidO
long ppid;

DESCRIPTION

GETPID(2)

Getpid returns pid, the process ID of the current process. It is used most often with
the host identifier gethostid(2) to generate uniquely-named temporary files.

Getppid returns ppid, the process ID of the parent of the current process.

RETURN VALUE
A successful getpid returns the process ID of the current process.

RELATED INFORMATION
gethostid(2)

2-50 Revision 01

'''-, ... '

/-----..,
I

\ '- .~.

o

o

o

GETPRIORITY (2) DOMAIN/IX BSD4.2 GETPRIORITY (2)

NAME
getpriority, setpriority - get/set program scheduling priority

USAGE
#include <sys/resource.h>
#define PRIO_PROCESS
#define PRIO_PGRP
#define PRIO_USER

prio = getpriority(which, who)
int prio, which, who;

setpriority(which, who, prio)
int which, who,prio;

DESCRIPTION

o
1
2

/* process */
/* process group */
/* user id */

The scheduling priority of the process, process group, or user, as indicated by which
and who can be obtained with the getpriority call and set with the setpriority call.
The which parameter can be one of PRIO_PROCESS, PRIO_PGRP, or PRIO_USER.
The who parameter is interpreted relative to which (a process identifier for
PRIO_PROCESS, process group identifier for PRIO_PGRP, and a user ID for
PRIO_USER). Prio is a value in the range -20 to 20. The default priority is zero;
lower priorities cause more favorable scheduling.

The getpriority call returns the highest priority (lowest numerical value) held by any
of the specified processes. The set priority call sets the priorities of all of the specified
processes to the specified value. Only the super-user may lower priorities.

RETURN VALUE
Since get priority can legitimately return the value -1, it is necessary to clear the exter­
nal variable errno prior to the call, then check it afterward to detennine if a returned
-1 is an indication of error or a legitimate priority value.

A successful setpriority call returns zero. A failed set priority call returns -1 and sets
errno as indicated below.

ERRORS
Getpriority and setpriority may return one of the following errors:

[ESRCH] No process was located using the which and who values specified.

[EINVAL] Which was not one of PRIO_PROCESS, PRIO_PGRP, or PRIO_USER.

Revision 01 2-51

GETPRIORITY (2) DOMAIN/IX BSD4.2 GETPRIORITY (2)

In addition to the errors indicated above, setpriority may fail with one of the follow­
ing errors returned:

[EACCES] A process was located, but neither its effective nor real user ID matched
the effective user ID of the caller.

[EACCES] A non super-user attempted to change a process priority to a negative
value.

RELATED INFORMATION
nice(l), fork(2), renice(8)

2-52 Revision 01

c

o

o

o

(:=)

o

GETRLIMIT (2) DOMAIN/IX BSD4.2 GETRLIMIT (2)

NAME
getrlimit - control maximum system resource consumption

USAGE
#include <sys/time.h>
#include <sys/resource.h>

getrlimit(resource, rip)
int resource;
struct rlimit *rlp;

DESCRIPTION
Limits on the consumption of system resources by the current process and each pro­
cess it creates may be obtained with the getrlimit call.

The resource parameter is one of the following:

RLIMIT_FSIZE

RLIMIT_DATA

Maximum amount of CPU time (in milliseconds) to be used by
each process. Currently, this is always RLIMIT _INFINITY.

Largest size, in bytes, of any single file that may be created.

Maximum size, in bytes, of the data segment for a process; this
defines how far a program may extend its break with the sbrk(2)
system call.

Maximum size, in bytes, of the stack segment for a process; this
defines how far a program's stack segment may be extended.

Largest size, in bytes, of a core file that may be created.
Currently, this is always O.

Maximum size, in bytes, to which a process's resident set size
may grow. Currently, this is always RLIM:IT_INFINITY. A
limit is imposed on the amount of physical memory to be given
to a process; if memory is tight, the system will prefer to take
memory from processes ~hich are exceeding their declared
resident set size.

A resource limit is specified as a soft limit and a hard limit. When a soft limit is
exceeded a process may receive a signal (for example, if the CPU time is exceeded),
but it will be allowed to continue execution until it reaches the hard limit (or modifies
its resource limit). The rlimit structure is used to specify the hard and soft limits on a
resource,

struct rlimit {

Revision 01 2-53

GETRLIMIT (2) DOMAIN/IX BSD4.2 GETRLIMIT (2)

} ;

int
int

rlim_cur;
rlim_max;

/* current (soft) limit */
/* hard limit * /

An "infinite" value for a limit is defined as RLIMIT_INFINITY (Ox7fffffff).

The system refuses to extend data or stack space when the limits would be exceeded in
the normal way: a break(2) call fails if the data space limit is reached, or the process
is killed when the stack limit is reached (since the stack cannot be extended, there is
no way to send a signal).

RETURN VALUE
A successful call returns zero. A failed call returns -1 and sets errno as indicated
below.

ERRORS
[EFAULT] The address specified for rip is invalid.

RELATED INFORMATION
csh(1), quota(2)

2-54 Revision 01

,,-'" I \

: I
\'-./"

.r-...... (.
I

I,

'-..

C)

o

u

GETRUSAGE (2) DOMAIN/IX BSD4.2 GETRUSAGE (2)

NAME
getrusage - get information about resource utilization

USAGE
#include <sys/time.h>
#include <sys/resource.h>

#define RUSAGE_SELF 0 1* calling process */
#define RUSAGE_CHILDREN -1 /* terminated child processes */

getrusage(who, rusage)
int who;
struct rusage *rusage;

DESCRIPTION
The getrusage call returns infonnation describing the resources used by the current
process or all of its terminated child processes. The who parameter is one of'
RUSAGE_SELF and RUSAGE_CHILDREN. If rusage is non-zero, the buffer it
points to will be occupied by the following structure:

struct rusage {
struct timeval ru_utime; 1* user time used *1
struct timeval ru_stime; 1* system time used *1
int ru_maxrss;
int ru_ixrss; 1* integral shared memory size *1
int ru_idrss; 1* integral unshared data size *1
int ru_isrss; 1* integral unshared stack size *1
int ru_minflt; 1* page reclaims *1
int ru_majflt; 1* page faults *1
int ru_nswap; 1* swaps *1
int ru_inblock 1* block input operations *1
int ru_oublock; 1* block output operations *1
int ru_msgsnd; 1* messages sent *1
int ru_msgrcv; 1* messages received *1
int ru_nsignals; 1* signals receiveJ *1
int ru_nvcsw; 1* voluntary context switches *1
int ru_nivcsw; 1* involuntary context switches *1

} ;

Currently, only the following fields are meaningful to DOMAIN/lX operations:

Revision 01

Total amount of time spent executing in user mode.

Number of page faults serviced that required liD activity.

2-55

GETRUSAGE (2) DOMAIN/IX BSD4.2 GETRUSAGE (2)

Number of signals delivered.

The remaining fields are returned as zero. Moreover, the only information returned
about chil? processes is user time (ru_time); all other fields are returned as zero.

CAUTIONS
There is no way to obtain information about a child process that has not yet ter­
minated.

RELATED INFORMATI()N
gettimeofday(2)
wait(2)

2-56 Revision 01

o

f)
\ .
'-.-/

o

o

o

GETSOCKNAME(2) DOMAIN/IX BSD4.2 GETSOCKNAME (2)

NAME
getsockname - get socket name

USAGE
getsockname(s, name, namelen)
int s, name len;
struct sockaddr *name;

DESCRIPTION
Getsockname re~rns the current name for the specified socket s. The namelen
parameter should be initialized to indicate the amount of space that name points to.
On return, it contains the size, in bytes, of the name.

RETURN VALUE
A successful call returns zero. A failed call returns -1 and sets errno as indicated
below.

ERRORS
The call succeeds unless:

The argument s is not a valid descriptor.

The argument s is a file, not a socket.

Insufficient system resources were available.

[EBADF]

[ENOTSOCK]

[ENOBUFS]

[EFAULT] The name parameter points to memory that isn't in a valid part
of the process's address· space.

RELATED INFORMATION
bind(2), socket(2)

Revision 01 2-57

GETSOCKOPT (2) DOMAIN/IX BSD4.2 GETSOCKOPT(2)

NAME
getsockopt, setsockopt - get/set options on sockets

USAGE
#include <sys/types.h>
#include <sys/socket.h>

getsockopt(s, level, optname, optval, optlen)
int s, level, optname;
char *optval;
int *optlen;

setsockopt(s, level, optname, optval, optlen)
int s, level, optname;
char *optval;
int *optlen;

DESCRIPTION
Getsockopt and setsockopt manipulate options associated with socket s. Options may
exist at multiple protocol levels; they are always present at the uppermost "socket"
level.

When manipulating socket options, the level at which the option resides and the name
of the option must be specified. To manipulate options at the socket level, level is
specified as SOL_SOCKET. To manipulate options at any other level, the protocol
number of the appropriate protocol controlling the option is supplied. For example, to
indicate that an option is to be interpreted by the TCP protocol, level should be set to
the protocol number of TCP; see getprotoent(3N).

The parameters optval and optlen are used to access option values for setsockopt. For
getsockopt, optval and optlen identify a buffer in which the value for the requested
option(s) is to be returned. For getsockopt, optlen is a value-result parameter, initially
containing the size of the buffer pointed to by optval, and modified on return to indi­
cate the actual size of the value returned. If no option value is to be supplied or
returned, optval may be designated as zero.

Optname and any specified options are passed uninterpreted to the appropriate protocol
module for interpretation. The include file <sys/socket.h> contains definitions for
socket level options; see socket(2).

RETURN VALUE

2-58

A successful call returns zero. A failed call returns -1 and sets errno as indicated
below.

Revision 01

o

o

o

o

GETSOCKOPT (2) DOMAIN/IX BSD4.2 GETSOCKOPT (2)

ERRORS
These calls succeed unless:

[EBADF] The argument s is not a valid descriptor.

[ENOTSOCK] The argument s is a file, not a socket.

[ENOPROTOOPT] The option is unknown.

[EFAULT] Options are not in a valid part of process address space.

RELATED INFORMATION
socket(2), getprotoent(3N)

Revision 01 2-59

GETTIMEOFDA Y (2) DOMAIN/IX BSD4.2 GETTIMEOFDAY (2)

NAME
gettimeofday, settimeofday - get/set date and time

USAGE
#include <sys/time.h>

gettimeofday(tp, tzp)
struct timeval *tp;
struct timezone *tzp;

settimeofday(tp, tzp)
struct timeval *tp;
struct timezone *tzp;

DESCRIPTION
Gettimeofday returns the system's idea of the current Greenwich time and the current
time zone. Time returned is expressed in seconds and microseconds since midnight,
January 1, 1970.

The structures pointed to by tp and tzp are defined in <sys/time.h > as:

struct timeval {

} ;

u_Iong tv_sec;
long tv_usee;

struct time zone {

/* seconds since Jan. 1, 1970 */
/* and microseconds * /

int tz_minuteswest; /* of Greenwich * /
int tz_dsttime; /* type of dst correction to apply */

};

The timezone structure indicates the local time zone (measured in minutes of time
westward from Greenwich), and a flag that, if nonzero, indicates that Daylight Saving
time applies locally during the appropriate part of the year.

Settimeofday is illegal on DOMAIN/IX systems. Any attempt to set the time returns
an error.

NOTES
Time is not correct to the microsecond values.

2-60. Revision 01

,~
I
\.. .'

o

o

r--,
U

o

GETTIMEOFDAY (2) DOMAIN/IX BSD4.2 GETTIMEOFDA Y (2)

RETURN VALUE
A successful call returns zero. A failed call returns -1 and sets errno as indicated
below.

ERRORS
The following error codes may be set in errno:

[EF A UL T] An argument address referred to invalid memory.

[EPERM] On DOMAIN/IX Systems, an attempt was made to use settimeofday.
On other systems, an unprivileged process attempted use settimeofday.

RELATED INFORMATION
date(l), ctime(3)

Revision 01 2-61

GETUID(2) DOMAIN/IX BSD4.2

NAME
getuid, geteuid - get user identity

USAGE
uid = getuidO
int uid;

euid = geteuidO
int euid;

DESCRIPTION

GETUID(2)

Getuid returns the real user ID of the current process, geteuid the effective user ID.

The real user ID (uid) identifies the account that is logged in. The effective user ID
(euid) gives the process additional pennissions during execution of "set-user-ID" mode
processes, which use getuid to determine the real user-ID of the process which
invoked them.

RETURN VALUE
If successful, these calls return the real user ID and effective user ID, respectively, of
the current process.

RELATED INF()RMATION
getgid(2), setreuid(2)

2-62 Revision 01

,~'

\" •.... /

o

o

o

o

o

IOCTL(2) DOMAIN/IX BSD4.2 IOCTL(2)

NAME
ioctl - control device

USAGE
#include <sys/ioctl.h>

ioctl(d, request, argp)
int d, request;
char *argp;

DESCRIPTION
loctl calls perfonn a variety of functions on open descriptors. They are typically used
to control the characteristics of character-special files (e.g., tenninals).

An ioctl request specifies whether the argument is an "in" parameter or an "out"
parameter, as well as the size of the argument argp in bytes. Macros and definitions
used in specifying an ioetl request are in the file <sys/ioctl.h>.

NOTES
When ioctl is used in programs that deal with DOMAIN System Display Manager
pads, setting the mode to RAW has the immediate effect of putting the pad into raw
mode. Other ioctl modes have no effect, but are stored and will be inherited by the
vt100 program· if it is subsequently invoked in that pad.

RETURN VALUE
A successful call returns zero. A failed call returns -1 and sets errno as indicated
below.

ERRORS
loetl will fail if one or more of the following are true:

[EBADF] D is not a valid descriptor.

[ENOTIY] D is not associated with a character-special device.

[ENOTIY] The specified request does not apply to the kind of object that the
descriptor d references.

[EINV AL] Request or argp is not valid.

RELATED INFORMATI()N
execve(2), fentl(2)

Revision 01 2-63

KILL(2) DOMAIN/IX BSD4.2 KILL(2)

NAME
kill - send signal to a process

USAGE
kill(pid, sig)
int pid, sig;

DESCRIPTION
Kill sends signal sig to the process identified by the process number pid. Sig may be
one of the signals specified in sigvec(2), or it may be zero, in which case error check­
ing (e.g., to see if the process specified by pid exists) is perfonned but no signal is
actually sent.

Both the sending and receiving processes must have the same effective user ID. The
only exception is the signal SIGCONT, which kill can always send to any child or
grandchild of the current process. In all other cases, the use of kill is restricted to the
super-user.

If the process number is zero, sig is sent to all other processes in the sender's process
group; this is a variant of kiUpg(2).

If the process number is -1 and the user is the super-user the signal is sent to all
processes running on the machine, with the exception of system processes and the pro­
cess sending the signal.

Processes may send signals to themselves.

RETURN VALUE
A successful call returns zero. A failed call returns -1 and sets errno as indicated
below.

ERRORS
Kill will fail and no signal will be sent in the following instances:

[EINV AL] Sig is not a valid signal number.

[ESRCH] No process can be found '.vith the specified pid.

[EPERM] The sending process is not the super-user and its effective user ID does
not match the effective user-ID of the receiving process.

RELATED INFORMATI()N
getpid(2), getpgrp(2), killpg(2), sigvec(2)

2-64 Revision 01

---~ I '
\ :
\.. ,.

I

".---­(,

\, '"

c.:

o

C)

o

u

o

KILLPG(2) DOMAIN/IX BSD4.2 KILLPG(2)

NAME
killpg - send signal to a process group

USAGE
killpg(pgrp, sig)
int pgrp, sig;

DESCRIPTI()N
Killpg sends the signal sig to the process group pgrp. Sig must be one of the signals
defined in sigvec(2).

The sending process and all processes in the process group must have the same
effective user ID. The only exception is the signal SIGCONT, which killpg may
always send to any child or grandchild of the current process. In all other cases, use
of killpg is restricted to the super-user.

RETURN VALUE
A successful call returns zero. A failed call returns -1 and sets errno as indicated
below.

ERRORS
Killpg will fail arid no signal will be sent in any of the following cases:

[EINV AL] Sig is not a valid signal number.

[ESRCH] No process was found with the specified pid.

[EPERM] The sending process is not the super-user and one or more of the target
processes has a different effective user ID than the sending process.

RELATED INFORMATION
kill(2), getpgrp(2), sigvec(2)

Revision 01 2-65

LINK(2) DOMAIN/IX BSD4.2

NAME
link - make a hard link to a file

USAGE
link(namel, name2)
char *namel, *name2;

DESCRIPTION

LINK (2)

Link creates a hard link to namel; the new link takes the name name2. Namel must
exist before the call to link is made.

Both namel and name2 must be in the same file system. On DOMAIN Systems,
namel cannot be a directory. Both the old and the new link have the same rights to (~
the underlying object. ,_--'

RETURN VALUE
A successful call returns zero. A failed call returns -1 and sets errno as indicated
below.

ERRORS

2-66

Link will fail and no link will be created if one or more of the following is true:

[EPERM] Either pathname contains a byte with the high-order bit set.

[ENOENT] Either pathname is too long.

[ENOTDIR] A component of either path prefix is not a directory.

[ENOENT] A component of either path prefix does not exist.

[EACCES] A component of either path prefix denies search pennission.

[ENOENT] The file named by namel does not exist.

[EEXIST] The link named by name2 already exists.

[EPERM] The file named by namel is a directory and the effective user ID is not
super-user.

[EXDEV] The link named by name2 and the file named by namel are on different
file systems.

[EACCES] The requested link requires writing in a directory mode that denies write
pennission.

[EROFS] The requested link requires writing in a directory on a read-only file
system.

[EFAULT] One of the pathnames specified lies outside the process's allocated

Revision 01

c

o

o

o

o

LINK(2) DOMAIN/IX BSD4.2 LINK(2)

[ELOOP]

address space.

The call encountered too many symbolic links in translating the path­
name.

RELATED INFORMATION
symlink(2), unlink(2)

Revision 01 2-67

LISTEN (2) DOMAINJIX BSD4.2

NAME
listen - listen for connections on a socket

USAGE
listen(s, backlog)
int s, backlog;

DESCRIPTI()N

LISTEN (2)

To accept connections, a socket is created with socket(2), a backlog for incoming con­
nections is specified with listen(2), and the connections are accepted with accept(2).

The backlog parameter defines the maximum length of the queue of pending connec- (-''''\
tions. If a connection request arrives and the queue is full, the client will receive the " __ /
error ECONNREFUSED.

NOTES
The maximum value for backlog is five.

The listen call applies only to sockets of the type SOCK_STREAM or
SOCK_PKTSTREAM.

RETURN VALUE
A successful call returns zero. A failed call returns -1 and sets errno as indicated
below.

ERRORS
The call fails if:

[EBADF]

[ENOTSOCK]

[EOPNOTSUPP]

The argument s is not a valid descriptor.

The argument s is not a socket.

The socket type is unsupported by listen (it is not one of type
SOCK_STREAM or SOCK_PKTSTREAM).

RELATED INF()RMATION
accept(2), connect(2), socket(2)

2-68 Revision 01

o

o

LSEEK(2) DOMAINjlX BSD4.2 LSEEK(2)

NAME
Iseek - move read/write pointer

USAGE
#define L_SET 0 /* set the seek pointer */
#define L_INCR 1 /* increment the seek pointer */
#define L_XTND 2 /* extend the file size */

pos = Iseek(d, offset, whence)
int pos;
int d, offset, whence;

DESCRIPTION
The descriptor d refers to a file or device open for reading and/or writing. Lseek sets
the file pointer of d as follows:

• If whence is L_SET, the pointer is set to offset bytes.

• If whence is L_INCR, the pointer is set to its current location plus offset.

• If whence is L_XTND, the pointer is set to the size of the file plus offset.

Upon successful completion, Iseek returns the resulting pointer location, measured in
bytes from the beginning of the file.

The whence values are defined in <sys/file.h>.

NOTES
If Iseek goes far beyond the end of a file, and then writes, it creates a gap that occu­
pies no physical space and reads as zeros.

Some devices are incapable of seeking. The value of the pointer associated with such
a device is undefined.

RETURN VALUE
Upon successful completion, a non-negative integer (the current file pointer value) is
returned. Otherwise, a value of -1 is returned and errno is set to indicate the error.

ERRORS
Lseek will fail and the file pointer will remain unchanged if:

[EBADF] D is not an open file descriptor.

(ESPIPE] D is associated with a pipe or a socket.

[EINVAL] Whence is not a proper value.

[EINV AL] The resulting file pointer would be negative.

Revision 01 2-69

LSEEK(2)

RELATED INFORMATION
dup(2), open(2)

2-70

DOMAIN/IX BSD4.2 LSEEK(2)

Revision 01

c~:

r--,
I

\' , .. -,,-

C)

o

o

o

MKDIR (2) DOMAIN/IX BSD4.2 MKDIR(2)

NAME
mkdir - make a directory file

USAGE
mkdir(path, mode)
char *path;
int mode;

DESCRIPTION
Mkdir creates a new directory file with the name path. Mode sets the new directory's
mode. (The protection part of the mode is modified by the process's mode mask; see
umask(2».

The directory's owner ID is set to the process's effective user ID. The directory's
group ID is set to that of the parent directory in which it is created.

The low-order 9 bits of mode are modified by the process's file mode creation mask;
all bits set in the process's file mode creation mask are cleared. See umask(2).

NOTES
The DOMAIN System's single level store architecture requires that all filesystem
objects be readable in order to be writable or executable. Since write-only or
execute-only files would be unusable in DOMAIN/IX, modes that specify 02 (write­
only) or 01 (execute-only) are ORed with 0400 to fors;e read permission. This applies
to the owner, group, and world portions of the mode word. For example, if mode
0631 were specified, the mode applied to the file would actually be 0675.

RETURN VALUE
A successful call returns zero. A failed call returns -1 and sets errno as indicated
below.

ERRORS
Mkdir will fail and no directory will be created if:

[EPERM] The path argument contains a byte with the high-order bit set.

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] A component of the path prefix does not exist.

[EROFS]

[EEXIST]

Revision 01

The named file resides on a read-only file system.

The named file already exists.

2-71

MKDIR(2) DOMAIN/IX BSD4.2 MKDIR (2)

[EFAULT] Path points outside the process's allocated address space.

[ELOOP] The call encountered too many symbolic links in translating the path­
name.

[EIO] An I/O error occurred while the call was writing to the file system.

RELATED INFORMATION
chmod(2), stat(2), umask(2)

2-72 Revision 01

"'----

\ 0
,

o

o

o

o

MKNOD(2) DOMAIN/IX BSD4.2 MKNOD(2)

NAME
mknod - make a special file

USAGE
mknod(path, mode, dey}
char *path;
int mode, dey;

DESCRIPTION
Mknod creates a new file whose name is path. Mode sets the mode of the new file,
including the special file bits. (The protection part of the mode is modified by the
process's mode mask; see umask(2)).

If mode indicates a block or character special file, dey is a configuration-dependent
specification of a character or block I/O device. If mode does not indicate a block
special or character special device, dey is ignored.

Use of mknod is limited to the super-user.

Mode is interpreted as follows:

0170000 file type; one of the following:
0010000 fifo special
0040000 directory
0100000 ordinary file
0000000 ordinary file

0004000 set user ID on execution

0002000 set group ID on execution

0000777 access pennissions; constructed from the following
0000400 read by owner
0000200 write by owner
0000100 execute (search on directory) by owner
0000070 read, write, execute (search) by group
0000007 read, write, execute (search) by others

The owner ID of the file is set to the effective user ID of the process. The group ID
of the file is set to the effective group ID of the process.

Revision 01 2-73

MKNOD(2) DOMAIN/IX BSD4.2 MKNOD(2)

Values of mode other than those above are undefined, and should not be used. The
low-order 9 bits of mode are modified by the process's file mode creation mask: all
bits set in the process's file mode creation mask are cleared. See umask(2).

NOTES
The DOMAIN System's single level store architecture requires that all filesystem
objects be readable in order to be writable or executable. Since write-only or
execute-only files would be unusable in DOMAIN/lX, modes that specify 02 (write­
only) or 01 (execute-only) are ORed with 0400 to force read permission. This applies
to the owner, group, and world portions of the mode word. For example, if mode
0631 were specified, the mode applied to the. file would actually be 0675.

RETURN VALUE
A successful call returns zero. A failed call returns -1 and sets errno as indicated
below.

ERR()RS
Mknod will fail if:

[EPERM]

[EPERM]

The process's effective user ID is not super-user.

The pathname contains a character with the high-order bit set.

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] A component of the path prefix does not exist.

[EROFS] The named file resides on a read-only file system.

[EEXIST] The named file exists.

[EFAULT] Path points outside the process's allocated address space.

[ELOOP] The call encountered too many symbolic links in translating the path­
name.

RELATED INFORMATION
chmod(2), stat(2), umask(2)

2-74 Revision 01

o

o

o

MOUNT(2) DOMAIN/IX BSD4.2 MOUNT(2)

NAME
mount, umount - mount or remove file system

USAGE
mount(special, name, rwjlag)
char *special, *name;
int rwflag;

umount(special)
char * special;

DESCRIPTION
The mount call announces to the system that a removable file system has been
mounted on the block-structured special file special; and that from now on, references
to file name will refer to the root file on the newly-mounted file system. The parame­
ters special and name are pointers to null-terminated strings containing the appropriate
pathnames.

The name must not already exist; it is created by the mount call and exists only for
the duration of the file system mount.

The rwflag argument controls write access to the special file system. If rwflag is 0,
writing is allowed. If it is non-zero, writing is prohibited. Physically write-protected
file systems must be mounted read-only or errors will occur when access times are
updated, whether or not any explicit write is attempted.

The umount call announces to the system that the special file no longer contains a
removable file system. The associated file is removed.

RETURN VALUE
The mount call returns 0 or -1.

o Specified operation was successful.

-1 The special file is inaccessible, already mounted, or not an appropriate file;
name does not exist or is in use; or there are already too many file systems
mounted.

The umount call returns 0 or -1.

o Specified operation was successful.

-1 The special file is inaccessible or does not have a mounted file system, or there
are active files in the mounted file system.

Revision 01 2-75

MOUNT(2) DOMAINjlX BSD4.2 MOUNT(2)

ERRORS
Under the following conditions, mount fails:

[NODEV] Special does not exist.

[ENOTBLK] Special is not a block device.

[ENXIO] The major device number of special is out of range (this indicates no
device driver exists for the associated hardware).

[EPERM] The pathname contains a character with the high-order bit set.

[ENOTDIR] A component of the path prefix in name is not a directory.

[EROFS] Name resides on a read-only file system.

[EBUSY]

[EBUSY]

[EBUSY]

[EBUSY]

[EBUSY]

Name already exists.

No space remains in the mount table.

The super-block for the file system had a bad magic number or an out­
of-range block size.

Not enough memory was available to read the cylinder group informa­
tion for the file system.

An I/O error occurred while reading the super block or cylinder group
information.

Under the following conditions, umount fails:

[NODEV] Special does not exist.

[ENOTBLK] Special is not a block device.

[ENXIO] The major device number of special is out of range (no device driver
exists for the associated hardware).

[EINV AL] The requested device is not in the mount table.

[EB USY] A process is holding a reference to a file located on the file system.

Note that the error codes are not always informative. Many types of errors (e.g., no
space in the mount table, not enough memory, etc.) return the same value (e.g.,

. EBUSY) to the caller.

RELATED INFORMATION
mkdisk(8), mount(8), umount(8)

2-76 Revision 01

C)

(---..
\
!

.~

o

C)

o

OPEN(2) DOMAIN/IX BSD4.2

NAME
open - open a file for reading or writing, or create a new file

USAGE
#include <sys/file.h>

open(path, flags, mode)
char *path;
int flags, mode;

DESCRIPTION

OPEN (2)

Open opens the file named by path for reading and/or writing, as specified by the flags
argument and returns a descriptor for that file. The flags argument may indicate that
the file is to be created if it does not already exist (the O_CREAT flag). In this case,
the file is created with mode mode, as described in chmod(2) and as modified by the
process's umask value (see umask(2)).

Path is the address of a null-terminated string of ASCII characters representing a path­
name. The flags are formed from the logical OR of the following values:

O_RDONLY
O_WRONLY
O_RDWR
O_NDELAY
O_APPEND
O_CREAT
O_TRUNC
O_EXCL

open for reading only
open for writing only
open for reading and writing
do not block on open
append on each write
create file if it does not exist
truncate size to zero
error if create and file exists

Opening a file with ° _APPEND set causes each write on the file to be appended to
the end. If 0_ TR UNC is specified and the file exists, the file is truncated to zero
length. If O_EXCL is set with O_CREAT and the file already exists, the open returns
an error. This can be used to implement a simple exclusive access locking mechan­
ism. If the ° _NDELA Y flag is specified and the open call would result in the process
being blocked for some reason (e.g., waiting for carrier on a dial-up line), the open
returns immediately. The first time the process attempts to perform I/O on the open
file, it will block.

NOTES
The DOMAIN System's single level store architecture requires that all file system
objects be readable in order to be writable or executable. Since write-only or
execute-only files would be unusable in DOMAIN/IX, modes that specify 02 (write­
only) or 01 (execute-only) are ORed with 0400 to force read permission. This applies
to the owner, group, and world portions of the mode word. For example, if mode

Revision 01 2-77

OPEN(2) DOMAIN/IX BSD4.2 OPEN(2)

0631 were specified, the mode applied to the file would actually be 0675.

No process may have more than {OPEN_MAX} file descriptors open simultaneously.

RETURN VALUE
Upon successful completion, a non-negative integer file. descriptor is returned. The file
pointer used to mark the current position within the file is set to the beginning of the
file.

The new descriptor is set to remain open across execve system calls; see close(2). A
failed call returns -1 and sets errno as indicated below.

ERRORS

2-78

The named file is opened unless one or more of the following are true:

[EPERM] The pathname contains a character with the high-order bit set.

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] O_CREAT is not set and the named file does not exist.

[EACCES] A component of the path prefix denies search pennission.

[EACCES] The required pennissions (for reading and/or writing) are denied for the
named flag.

[EISDIR]

[EROFS]

[EMFILE]

[ENXIO]

The named file is a directory, and the arguments specify that it is to be
opened for writing.

The named file resides on a read-only file system, and the file is to be
modified.

{OPEN_MAX} (usually 20) file descriptors are currently open.

The named file is a character-special or block-special file, and the dev­
ice associated with this special file does not exist.

[ETXTBSY] The file is a pure procedure (shared text) file that is being executed, and
the open call requests write access.

[EF A UL T] Path points outside the process's allocated address space.

[ELOOP] The call encountered too many symbolic links in translating the path­
name.

[EEXIST]

[ENXIO]

o _EXCL was specified and the file exists.

The 0 _NDELA Y flag is given, and the file is a communications device
on which no carrier is present.

Revision 01

OPEN(2) DOMAIN/IX BSD4.2 OPEN(2)

o
RELATED INFORMATU)N

chmod(2), close(2), dup(2), Iseek(2), read(2), write(2), umask(2)

\ 0--.

o

o
Revision 01 2-79

PIPE (2) DOMAIN/IX BSD4.2 PIPE (2)

NAME
pipe - create an interprocess communication channel

USAGE
pipe(fildes)
int fildes[2];

DESCRIPTION
The pipe system call creates an I/O mechanism called a pipe. The file descriptors
returned can be used in read(2) and write(2) operations. When the pipe is written
using the descriptor fildes[t], up to 5120 bytes of data are buffered before the writing
process is suspended. A read(2) using the descriptor fildes[O] will pick up the data.

It is assumed that after the pipe has been set up, two or more cooperating processes
(created by subsequent fork(2) calls) will pass data through the pipe with read and
write calls.

The shell has a syntax that allows users to set up a linear array of processes connected
by pipes.

Read calls on an empty pipe (one with no buffered data and no writers) return an end­
of-file.

Attempts to write to a pipe that has no readers will generate a SIGPIPE signal.

NOTES
Deadlock will occur if more than 5120 bytes are necessary in any pipe among a loop
of processes.

RETURN VALUE
A successful call returns zero. A failed call returns -1 and sets errno as indicated
below.

ERRORS
The pi pe call will fail if:

[EMFILE] Too many descriptors are active.

[EFAULT] The fildes buffer is in an invalid area of the process's address space.

RELATED INF()RMATION
sh(l), read(2), write(2), fork(2), socketpair(2)

2-80 Revision 01

\,~

~~ /

o

(J

o

o

PTRACE(2) DOMAIN/IX BSD4.2 PTRACE(2)

NAME
ptrace - process trace

USAGE
#include <signal.h>

ptrace(request, pid, addr, data)
int request, pid, *addr, data;

DESCRIPTION
Ptrace provides a means by which a parent process may control the execution of a
child process and examine and change its core image. Its primary use is for the imple­
mentation of breakpoint debugging. There are four arguments whose interpretation
depends on a request argument. Generally, pid is the process ID of the traced process,
which must be a child (no more distant descendant) of the tracing process. A process
being traced behaves normally until it encounters some signal whether internally gen­
erated like "illegal instruction" or externally generated like "interrupt". See sigvec(2)
for the list. Then the traced process enters a stopped state and its parent is notified via
wait(2). When the child is in the stopped state, its core image can be examined and
modified using ptrace. If desired, another ptrace request can then cause the child
either to terminate or to continue, possibly ignoring the signal.

The value of the request argument determines the precise action of the call:

Note: Where two numbers are associated with a request (an artifact of imple­
mentations with separate instruction and data space), either number may
be used.

Request zero can only be used in the child. Non-zero requests can only be used by
the parent. For each non-zero request, pid is the process ID of the child. The child
must be in a stopped state before these requests are made.

o Child trace flag. This is the only request that can be issued by the child. It
stipulates that the child should be left in a stopped state upon receipt of a signal
rather than the state specified by any Junc; argument associated with a signal(2)
call in the child. The pid, addr, and data arguments are ignored, and a return
value is not defined for this request. Peculiar results will ensue if the parent
does not expect to trace the child.

1, 2 return the word at location addr in the address space of the child. On
DOMAIN Systems, either request 1 or request 2 may be used with identical
results. If addr is not the start address of a word, a value of -1 is returned to
the parent process and the parent's errno is set to E10.

3 return the word at offset addr into the child's USER area in the system's

Revision 01 2-81

PTRACE(2) DOMAIN/IX BSD4.2 PTRACE(2)

2-82

address space (see <.sys/user.h» to the parent process. (Only 16 bits can be
read.) If addr is not the start address of a word or is outside the USER area, a
value of -1 is returned to the parent process and the parent's errno is set to
EIO.

4, 5 write the value given by the data argument into the address space of the child
at location addr. Upon successful completion, the value written into the
address space of the child is returned to the parent. If addr is a location in a
pure procedure space and another process is executing in that space, or if addr
is not the start address of a word, these requests will fail, a value of -1 will be
returned to the parent process, and the parent's errno will be set to EIO.

6

7

write one of the following entries, where data is a 16-bit value to be written
and addr is the location of the entry in the child's USER area:

M68xxx processor registers (AO-A 7, DO-D7).

The condition codes (bits 0-7) of the Processor Status Word

This request causes the child to resume execution. If the data argument is 0,
all pending signals including the one that caused the child to stop are canceled
before it resumes execution. If the data argument is a valid signal number, the
child resumes execution as if it had incurred that signal, and any other pending
signals are canceled. The addr argument must be equal to 1 for this request.
Upon successful completion, the value of data is returned to the parent. If
data is not 0 or a valid signal number, this request will fail, a value of -1 will
be returned to the parent process, and the parent's errno will be set to EIO.

8 This request causes the child to terminate with the same consequences as
_exit(2).

9 This request sets the trace bit in the Processor Status Word of the child (bit 15
on M68xxx processors) and then executes the same steps as listed above for
request 7. The trace bit causes an interrupt upon completion of one machine
instruction. This effectively allows single stepping of the child. The trace bit is
turned off after interrupt.

To forestall possible fraud, ptrace inhibits the set-user-id facility on subsequent
exec(2) calls. If a traced process calls exec, it will stop before ex~cuting the first

Revision 01

(
"---,,

,--- '

o

C)

o

o

PTRACE(2) DOMAIN/IX BSD4.2 PTRACE(2)

instruction of the new image showing signal SIGTRAP.

NOTES
The error indication, -1, can be is a legitimate function value. Errno, see intro(2), can
be used to disambiguate.

RETURN VALUE
A successful call returns zero. A failed call returns -1 and sets errno as indicated
below.

ERRORS
[EINV AL] The request code is invalid.

[EINV AL] The specified process does not exist.

[EINV AL] The given signal number is invalid.

[EFAULT] The specified address is out of bounds.

[EPERM] The specified process cannot be traced.

RELATED INFORMATION
wait(2), sigvec(2)

Revision 01 2-83

READ(2) DOMAIN/IX BSD4.2 READ(2)

NAME
read, ready - read input

USAGE
cc = read(d, buf, nbytes)
int cc, d;
char *but;
int nbytes;

#include <sys/types.h>
#include <sys/uio.h>

cc = readv(d, iov, iovcnt)
int cc, d;
struct iovec *iov;
int iovcnt;

DESCRIPTION

2-84

Read attempts to read nbytes of data from the object specified by the descriptor d into
the buffer pointed to by but. Readv perfonns the same action, but scatters the input
data into the iovcnt buffers specified by the members of the iovec array: iov[O), iov[l),
... , iov[iovcnt-l].

For readv, the iovec structure is defined as

struct iovec {
caddr_t
int

} ;

iov_base;
iov_len;

Each iovec entry specifies the base address and length of an area in memory where
data should be placed. Readv will always completely fill an area before proceeding to
the next.

On objects that permit seeking, the read starts at a position given by the pointer asso­
ciated with d; see Iseek(2). Upon return from read, the pointer increments by the
number of bytes actually read.

Objects that do not pennit seeking always read from the current position. The value
of the pointer associated with such an object is undefined.

Revision 01

o

o

o

o

READ (2) DOMAINjlX BSD4.2 READ (2)

Upon successful completion, read and ready return the number of bytes actually read
and placed in the buffer. The system guarantees to read the number of bytes requested
only if the descriptor refers to a file in which that many bytes remain before the end­
of-file.

If the returned value is zero, then the call reached an end-of-file.

RETURN VALUE
A successful call returns the number of bytes actually read. A failed call returns -1
and sets errno as indicated below.

ERRORS
Read and ready will fail if one or more of the following are true:

[EBADF]

[EFAULT]

[EINTR]

D is not a valid file descriptor open for reading.

B uf points outside the allocated address space.

A read from a slow device was interrupted before any data
arrived by the delivery of a signal.

[EWOULDBLOCK] The file descliptor is marked as non-blocking, and a read would
block.

In addition, ready may return one of the following errors:

Iovcnt was less than or equal to zero or greater than 16.

One of the iov _len values in the iov array was negative.

[EINVAL]

[EINVAL]

[EINVAL] The sum of the iov _len values in the iov array overflowed a 32-
bit integer.

RELATED INFORMATI()N
dup(2), open(2), pipe(2), socket(2), socketpair(2)

Revision 01 2-85

READLINK (2) DOMAIN/IX BSD4.2 READLINK(2)

NAME
readlink - read value of a symbolic link

USAGE
cc = readlink(path, buf, bu/siz)
int cc;
char *path, *bu/;­
int bu/siz;

DESCRIPTION
Readlink places the contents of symbolic link named by path into the buffer but,
which has size butsiz. The contents of the link are not null-terminated when they are
returned.

RETURN VALUE
A successful call returns the number of characters in buj. A failed call returns -1 and
sets errno as indicated below.

ERRORS
Readlink will fail and the mode of path will be unchanged if:

[EPERM] The path argument contains a byte with the high-order bit set.

[ENOENT] The pathname is too long.

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] The named file does not exist.

[ENXIO] The named file is not a symbolic link.

[EACCES] Search permission is denied on a component of the path prefix.

[EPERM] The effective user ID does not match the owner of the file and the
effective user ID is not the super-user.

[EINV AL] The named file is not a symbolic link.

[EF AUL T] But extends outside the process's allocated address space.

[ELOOP] The call encountered too many symbolic links in translating the path­
name.

RELATED INFORMATION
stat(2), Istat(2), symlink(2)

2-86 Revision 01

/~

1\,_/.',1

o

o

C)

REBOOT(2) DOMAIN/IX BSD4.2

NAME
reboot - reboot system or halt processor

USAGE
#include <sys/reboot.h>

reboot(howto)
int howto;

DESCRIPTION

REBOOT(2)

The reboot call is nonnally invoked in the event of unrecoverable system failures.
The howto parameter is a mask of options· passed to the bootstrap program. The bits
of howto contain RB _HALT, which causes the processor to halt with no reboot taking
place. Currently, the system call interface only pennits RB _HALT to be passed to the
reboot program.

RETURN VALUES
A successful call never returns. A failed call returns -1 and sets errno as indicated
below.

ERRORS
[EPERM] The caller is not the super-user.

RELATED INFORMATION
halt(8), reboot(8)

Revision 01 2-87

RECV (2) DOMAIN/IX BSD4.2 RECV(2)

NAME
recv, recvfrom, recvmsg - receive a message from a socket

USAGE
#include <sys/types.h>
#include <sys/socket.h>

cc = recv(s, buj, len, flags)
int cc, s;
char *buj;
int len, flags;

cc = recvfrom(s, buf, len, flags, from, fromlen)
int cc, s;
char *buj;
int len, flags;
struct sockaddr *from;
int *fromlen;

cc = recvmsg(s, msg, flags)
int cc, s;
struct msghdr msg[];
intflags;

DESCRIPTION

2-88

Recv, recvfrom, and recvmsg receive messages from a socket.

The recv call may be used only on a connected socket (see connect(2», while
recvfrom and recvmsg may be used to receive data on a socket whether it is con­
nected or not.

If from is non-zero, the source address of the message is filled in. Fromlen is a
value-result parameter, initialized to the size of the buffer associated with from, and
modified on return to indicate the actual size of the address stored there. The length
of the message is returned in cc. If a message is too long to fit in the buffer supplied,
excess bytes may be discarded, depending on the type of socket from which the mes­
sage is received; see socket(2).

If no messages are available at the socket, the receive call waits for a message to
arrive, unless the socket is non-blocking (see ioctl(2», in which case a cc of -1 is
returned and the external variable errno is set to EWOULDBLOCK.

Revision 01

f~

'" ._ .. '

o

o

o

RECV (2) DOMAIN/IX BSD4.2 RECV (2)

The select(2) call may be used to detennine whether more data has arrived.

The flags argument to a send call comes from the logical OR of one or more of the
values,

#define MSG_PEEK Oxl
#define MSG_OOB Ox2

/* peek at incoming message * /
/* process out-of-band data */

The recvmsg call uses a msghdr structure to minimize the number of directly supplied
parameters .. This structure has the following form, as defined in <sys/socket.h>:

struct msghdr {

} ;

caddr_t
int
struct
int
caddr_t
int

msg_name; /* optional address */
msg_namelen; /* size of address */
iov *msg_iov; /* scatter/gather array */
msg_iovlen; /* # elements in msg_iov * /
msg_accrights; /* access rights sent/received */
msg_accrightslen;

Here ms~name and msg_namelen specify the destination address if the socket is
unconnected; ms~name may be given as a null pointer if no names are desired or
required. The msg_iov and msg_iovlen describe the scatter/gather locations, as
described in read(2). Access rights to be sent along with the message are specified in
msg_accrights, which has length ms~accrightslen.

RETURN VALUE
A successful call returns the number of bytes received. A failed call returns -1 and
sets errno as indicated below.

ERRORS
The calls fail if:

[EBADF]

[ENOTSOCK]

The argument s is an invalid descriptor.

The argument s is not a socket.

[EWOULDBLOCK] The socket is marked non-blocking and the receive operation
would block.

[EINTR]

[EFAULT]

Revision 01

The receive was interrupted by delivery of a signal before any
data was available for the receive.

The call specified that data was to be received into a non-existent
or protected part of the process address space.

2-89

RECV (2)

RELATED INFORMATION
read(2), send(2), socket(2)

2-90

DOMAIN/IX BSD4.2 RECV (2)

Revision 01

~

(
"'--_. '

o

o

o

o

o

RENAME(2) DOMAlN/IX BSD4.2 RENAME(2)

NAME
rename - change the name of a file

USAGE
rename(from, to)
char *from, *to;

DESCRIPTION
Rename causes the link named from to be renamed with name to. If a file named to
existed before the call to rename, it is removed. Both from and to must be objects of
the same type (that is, both directories or both non-directories), and both must reside
on the same file system.

Rename guarantees that an instance of to will always exist, even if the system should
crash in the middle of the operation.

RETURN VALUE
A successful call returns zero. A failed call returns -1 and sets errno as indicated
below.

ERRORS
Rename will fail and neither of the argument files will be affected if any of the fol­
lowing are true:

[ENOTDIR] A component of either path prefix is not a directory.

[ENOENT] A component of either path prefix does not exist.

[EACCES] A component of either path prefix denies search pennission.

[ENOENT] The file named by from does not exist.

[EPERM] The file named by from is a directory and the effective user ID is not
super-user.

[EXDEV] The link named by to and the file named by from are on different logi­
cal devices (i.e., file systems). Note that this error code will not be
returned if the implementation pennits cross-device links.

[EACCES] The requested link requires writing in a directory with a mode that
denies write pennission.

[EROFS] The requested link requires writing in a directory on a read-only file
system.

[EFAULT] Path points outside the process's allocated address space.

[EINVAL] From is a parent directory of to.

Revision 01 2-91

RENAME(2)

RELATED INFORMATION
open(2)

2-92

DOMAIN/IX BSD4.2 RENAME (2)

c
Revision 01

C)

C)

o

o

RMDIR(2) DOMAIN/IX BSD4.2 RMDIR(2)

NAME
rmdir - remove a directory file

USAGE
rmdir(path)
char *path;

DESCRIPTION
Rmdir removes the directory file named by path. The directory must be empty (a
directory that only contains the entries "." and " .. " is considered to be empty).

RETURN VALUE
A successful call returns zero. A failed call returns -1 and sets errno as indicated
below.

ERRORS
The named file is removed unless one or more of the following are true:

[ENOTEMPTY]

[EPERM]

[ENOENT]

[ENOTDIR]

[ENOENT]

[EACCES]

[EACCES]

[EBUSY]

[EROFS]

[EFAULT]

[ELOOP]

Revision 01

The named directory is not empty.

The pathname contains a character with the high-order bit set.

The pathname is too long.

A component of the path prefix is not a directory.

The named file does not exist.

A component of the path prefix denies search permission.

Write permission is denied on the directory containing the link to
be removed.

The directory to be removed is the mount point for a mounted
file system.

The directory entry to be removed resides on a read-only file
system.

Path points outside the process's allocated address space.

Too many symbolic links were encountered in translating the
pathname.

2-93

RMDIR(2)

RELATED INFORMATION
mkdir(2), unlink(2)

2-94

DOMAIN/IX BSD4.2 RMDIR(2)

Revision 01

C)

C)

o

SELECT(2) DOMAIN/IX BSD4.2 SELECT(2)

NAME
select - synchronous I/O multiplexing

USAGE
#include <sys/time.h>

nfound = select(nfds, readfds, writefds, execptfds, timeout)
int nfound, nfds, *readfds, *writefds, *execptfds;
struct timeval *timeout;

DESCRIPTION
Select examines the I/O descriptors specified by the bit masks readfds, writefds, and
execptfds to see if they are ready for reading, writing, or if they have an exception
condition pending, respectively. The bit "1«f" in the mask represents the file
descriptor f. Nfds descriptors are checked, i.e., the function examines the bits from
zero through nfds-1 in the masks. Select returns, in place, a mask of those descriptors
that are ready. The total number of ready descriptors is returned in nfound.

If timeout is a non-zero pointer, it specifies a maximum interval to wait for the selec­
tion to complete. If timeout is a zero pointer, select blocks indefinitely. To poll all of
the I/O descriptors without waiting, the timeout argument should be non-zero, and
should point to a zero-valued timeval structure.

Any of readfds, writefds, and execptfds may be set to zero where these descriptors are
not of interest.

NOTES
The descriptor masks are always modified on return, even if the call returns as the
result of the time-out.

RETURN VALUE
Select returns the number of descriptors that are contained in the bit masks, or -1 if an
error occurred. If the time limit expires, then select returns zero.

ERRORS
An error return from select indicates:

[EBADF]

[EINTR]

Revision 01

One of the bit masks specified an invalid descriptor.

A signal was delivered before any of the selected events occurred or the
time limit expired.

2-95

SELECT(2) DOMAIN/IX BSD4.2 SELECT(2)

RELATED INFORMATI()N
accept(2), connect(2), getitimer(2), read(2), write(2), recv(2), send(2)

2-96 Revision 01

o

o

o

o

SEND (2) DOMAIN/IX BSD4.2

NAME
send, sendto, sendmsg - send a message from a socket

USAGE
#include <sys/types.h>
#incIude <sys/socket.h>

cc = send(s, msg, len, flags)
int cc, s;
char *msg;
iot len, flags;

cc = sendto(s, msg, len, flags, to, tolen)
int cc, s;
char *msg;
iot len, flags;
struct sockaddr *to;
iot tolen;

cc' = sendmsg(s, msg, flags)
iot cc, s;
struct msghdr msg[];
iotflags;

DESCRIPTION

SEND(2)

Send, seodto, and sendmsg transmit messages to another socket. Send can be used
only when the socket is connected, while seodto and sendmsg can be used at any
time.

The address of the target is given by to,' and tolen specifies its size. The length of the
message is given by len. If the message is too long to pass through the underlying
protocol, the error EMSGSIZE is returned and the message is not transmitted. The
value -1 may be returned for some locally-detected errors.

If no message space is available at the socket to hold the message to be transmitted,
send normally blocks, unless the socket has been placed in non-blocking I/O mode.
The seiect(2) call may be used to determine when it is possible to send more data.

The flags parameter may be set to MSG_OOB to send out-of-band data on sockets that
support this form (e.g., SOCK_STREAM).

Revision 01 2-97

SEND(2) DOMAIN/IX BSD4.2 SEND (2)

See recv(2) for a description of the msghdr structure.

RETURN VALUE
A successful call returns the number of characters sent. A failed call returns -1 and
sets errno as indicated below.

ERRORS
[EBADF]

[ENOTSOCK]

[EFAULT]

[EMSGSIZE]

An invalid descriptor was specified.

The argument s is not a socket.

An invalid user space address was specified for a parameter.

The socket requires that message be sent in one piece. The size
of the message to be sent made this impossible.

[EWOULDBLOCK] The socket is marked non-blocking and the requested operation
would block.

RELATED INFORMATION
recv(2), socket(2)

2-98 Revision 01

o

o

o

DOMAIN/IX BSD4.2

NAME
set_sbrk_size - define memory available for allocation (obsolete)

USAGE
set_sbrk_size (newsize)
int newsize;

DESCRIPTION
The DOMAIN/IX SR9.0 function set_sbrk_size, which defined the amount of memory
available for allocation by the memory allocation functions sbrk(2); brk(2), malloc(3),
realloc(3), and calloc(3), is obsolete.

The amount of memory available to these functions is now limited only by the amount
of virtual address space available to the process. Any set_sbrk_size call that may be
in the program is ignored.

We include set_sbrk_size here for backward compatability. However, we do not
encourage its continued use, and we cannot promise its continued support.

RELATED INFORMATION
brk(2), sbrk(2), calloc(3), malloc(3), realloc(3) environ(7)

Revision 01 2-99

SET_VERSION (2) DOMAIN/IX BSD4.2 SET_VERSION (2)

NAME
set_version, get_version - set/get system version (obsolete)

USAGE
set_version(string)
char * string;

get_version (cp)
char cp[16];

DESCRIPTION
These calls are obsolete. We include them in this release for compatability only.
However, we do not encourage their continued use, and we cannot promise their con­
tinued support.

The DOMAIN/IX function set_version allows programs to specify the version of
DOMAIN/IX - AT&T UNIX System V or Berkeley 4.2 UNIX - that will be used
to define arguments and semantics for certain system and library functions. Valid
string arguments are "bell" and "berkeley". The default version is "bell". The
selected version is inherited across program invocation, exec(2), and by forked chil­
dren.

The DOMAIN/IX function get_version returns a string identifying the version of
UNIX (Bell UNIX System V or Berkeley UNIX) currently interpreting arguments and
semantics for certain system and library functions. It returns either "bell" or "berke­
ley" .

RELATED INFORMATION
getpgrp(2), setpgrp(2)

2-100 Revision 01

(-----'
I, '
'~--....... '

C)

~'-, u

o

o

o

SETGROUPS (2) DOMAIN/IX BSD4.2

NAME
setgroups - set group access list

USAGE
#include <sys/param.h>

setgroups(ngroups, gidset)
int ngroups, * gidset;

DESCRIPTION

SETGROUPS (2)

Setgrou ps sets the group access list of the current user process to the one specified by
the array gidset. The parameter ngroups indicates the number of entries in the array
and must be no more than NGROUPS, as defined in <sys/param.h>.

Only the super-user can set new groups.

RETURN VALUE
A successful call returns zero. A failed call returns -1 and sets errno as indicated
below.

ERRORS
The setgroups call fails if:

[EPERM] The caller is not the super-user.

[EFAULT] The address specified for gidset is outside the process's legal address
space.

RELATED INFORMATION
getgroups(2), initgroups(3X)

Revision 01 2-101

SETPGRP(2) DOMAIN/IX BSD4.2 SETPGRP(2)

NAME
setpgrp - set process group

USAGE
setpgrp(pid, pgrp)
iot pid, pgrp;

DESCRIPTION
Setpgrp sets the process group of the specified process pid to the specified pgrp. If
pid is zero, then the call applies to the current process.

If the caller is not the super-user, then the affected process must have the same
effective user-ID as the caller, or must be a descendant of the calling process.

RETURN VALUE
A successful call returns zero. A failed call returns -1 and sets errno as indicated
below.

ERRORS
Setpgrp fails and the process group is not altered if any of the following occurs:

[ESRCH]

[EPERM]

The requested process does not exist.

The effective user ID of the requested process is different from that of
the caller, and the process is not a descendant of the calling process.

RELATED INFORMATION
getpgrp(2)

2-102 Revision 01

c'

o

o

o

o

SETREGID(2) DOMAIN/IX BSD4.2

NAME
setregid - set real and effective group ID

USAGE
setregid(rgid, egid)
int rgid, egid;

DESCRIPTION

SETREGID (2)

For the current process, setregid sets the real group ID to rgid and the effective group
ID to egid. Only the super-user may change the real group ID of a process. Other
users may only change the effective group ID to the real group ID.

If you supply a value of -1 for either rgid or egid, the system substitutes the current
ID in place of the -1 parameter.

RETURN VALUE
A successful call returns zero. A failed call returns -1 and sets errno as indicated
below.

ERRORS
[EPERM] The current process is not the super-user and a change other than chang­

ing the effective group-ID to the real group-ID was specified.

RELATED INFORMATION
getgid(2), setreuid(2), setgid(3)

Revision 01 2-103

SETREUID (2) DOMAIN/IX BSD4.2

NAME
setreuid - set real and effective user ID

USAGE
setreuid(ruid, euid)
int ruid, euid;

DESCRIPTI()N

SETREUID (2)

For the current process, setreuid sets the real user ID to ruid and the effective user ID
to euid. Only the super-user may change the real user ID of a process. Other users
may only change the effective user ID to the real user ID.

RETURN VALUE
A successful call returns zero. A failed call returns -1 and sets errno as indicated
below.

ERR()RS
[EPERM] The current process is not the super-user and a change other than chang­

ing the effective group-ID to the real group-ID was specified.

RELATED INFORMATION
getuid(2), setregid(2), setuid(3)

2-104 Revision 01

o

o

o

SHUTDOWN (2) DOMAIN/IX BSD4.2

NAME
shutdown - shut down part of a full-duplex socket connection

USAGE
shutdown(s, how)
int s, how;

DESCRIPTI()N

SHUTDOWN (2)

The shutdown call closes down all or part of a full-duplex connection on the socket
associated with s. The how parameter may be any of:

o no further receives are allowed.

1 no further sends are allowed.

2 no further sends or receives are allowed.

DIAGNOSTICS
A successful call returns zero. A failed call returns -1 and sets errno as indicated
below.

ERRORS
The call succeeds unless:

[EBADF]

[ENOTSOCK]

[ENOTCONN]

S is not a valid descriptor.

S is a file, not a socket.

The specified socket is not connected.

RELATED INFORMATION
connect(2), socket(2)

Revision 01 2-105

SIGBLOCK(2)

NAME
sigblock - block signals

USAGE
sigblock(mask);
int mask;

DESCRIPTION

DOMAIN/IX BSD4.2 SIGBLOCK (2)

Sigblock adds the signals specified in mask to the set of signals currently being
blocked from delivery. Signal i is blocked if the ith bit in mask is a 1.

You cannot block SIGKILL, SIGSTOP, orSIGCONT.

RETURN VALUE
The previous set of masked signals is returned.

RELATED INFORMATION
kill(2), sigvec(2), sigsetmask(2),

2-106 Revision 01

(
'---- .

o

o

o

o

SIGPAUSE(2) DOMAIN/IX BSD4.2

NAME
sigpause - atomically release blocked signals and wait for interrupt

USAGE
sigpause(sigmask)
int sigmask;

DESCRIPTION

SIGPAUSE(2)

Sigpause assigns sigmask to the set of masked signals, then waits for a signal to
arrive. On return, the set of masked signals is restored. Sigmask is usually set to zero
to indicate that no signals should be blocked. Sigpause always terminates by being
interrupted, and always returns EINTR.

In normal usage, a signal may be blocked using sigblock(2); to begin a critical section;
variables modified on the occurrence of the signal are examined to determine that there
is no work to be done, and the process pauses by using sigpause with the mask
returned by sigblock.

RETURN VALUE
Sigpause returns EINTR.

RELATED INFORMATION
sigblock(2), sigvec(2)

Revision 01 2-107

\

SIGSETMASK (2) DOMAIN/IX BSD4.2

NAME
sigsetmask - set current signal mask

USAGE
sigsetmask(mask);
int mask;

DESCRIPTION

SIGSETMASK (2)

Sigsetmask sets the current signal mask (those signals that are blocked from delivery).
Signal i is blocked if the ith bit in mask is a 1.

You cannot block SIGKILL, SIGSTOP, or SIGCONT.

RETURN VALUE
The previous set of masked signals is returned.

RELATED INFORMATION
kill(2), sigvec(2), sigbIock(2), sigpause(2)

2-108 Revision 01

~,

I

I~

o

c)

o

o

SIGSTACK(2) DOMAIN/IX BSD4.2 SIGST ACK (2)

NAME
sigstack - set and/or get signal stack context

USAGE
#include <signal.h>

struct sigstack {
caddr_t
int

} ;

sigstack(SS, oss);

ss_sp;
ss_onstack;

struct sigstack *ss, *oss;

DESCRIPTION
Sigstack allows you to define an alternate stack on which to process signals. The
DOMAIN/IX implementation of sigstack is a no-op, included for compatability with
existing programs.

If ss is non-zero, it specifies a "signal stack" on which to deliver signals and tells the
system whether the process is currently executing on that stack.

NOTES
DOMAIN/IX does not implement a signal stack. Calls to sigstack always return 0,
and the stack context is never changed.

RETURN VALUE
A successful call returns zero. A failed call returns -1 and sets errno as indicated
below.

ERRORS
Sigstack will fail and the signal stack context will remain unchanged if the following
occurs:

[EFAULT] Either ss or oss points to memory that is not a valid part of the
process's address space.

RELATED INFORMATION
sigvec(2), setjrnp(3)

Revision 01 2-109

SIGVEC (2) DOMAIN/IX BSD4.2 SIGVEC (2)

NAME
sigvec - software signal facilities

USAGE
#include <signal.h>
struct sigvec {

int (*sv_handler)O;
int sv _mask;
int sv _onstack;

} ;

sigvec(sig, vec, ovec)
int sig;
struct sigvec *vec, *ovec;

DESCRIPTION

2-110

The system defines a set of signals that may be delivered to a process. Signal delivery
resembles the occurrence of a hardware interrupt: the signal is blocked, the current
process context is saved, and a new one is built. A signal may be blocked, ignored, or
delivered to a handler, as the process .requires. A process may also specify a default
action for the system to take when a given signal occurs. Normally, signal handlers
execute on the current stack of the process.

All signals have the same priority. While a signal routine executes, the signal that
triggered it is blocked, although other signals may occur. A global signal mask defines
the set of signals currently blocked from delivery to a process. The signal mask for a
process is initialized from that of its parent (normally zero). It may be changed with a
sigblock(2) or sigsetmask(2) call, and when a signal is delivered to the process.

When a signal condition arises for a process, the signal is added to a set of signals
pending for the process. If the signal is not currently blocked by the process, then it is
delivered to the process. When a signal is delivered, the current state of the process is
saved, a new signal mask is calculated (as described below), and the signal handler is
invoked: The call to the handler is arranged so that, if the signal handling routine
returns, the process will normally resume execution in the state it was in before the
signal's delivery. If the process wishes to resume in a different context, then it must
arrange to restore the previous context itself.

When a signal is delivered to a process, a new signal mask is installed for the duration
of the process's signal handler (or until a sigblock or sigsetmask call is made). This
mask is formed by taking the current signal mask, adding the signal to be delivered,
and including, with a logical OR, the signal mask associated with the handler to be
invoked.

Revision 01

~, (.

'-.

C1

.. ~ ... -'"

o

o

o

SIGVEC(2) DOMAIN/IX BSD4.2 SIGVEC (2)

Sigvec assigns a handler for a specific signal. If vee is non-zero, it specifies a handler
routine and mask to be used when delivering the specified signal. Further, if
sv _onstack is 1, some systems will deliver the signal to the process on a signal stack,
as specified with sigstack(2). (This feature is not implemented in DOMAIN/IX.) If
ovee is non-zero, the previous handling information for the signal is returned to the
user.

The following is a list of all signals with names as in the include file <signal.h >:

SIGHUP 1
SIGINT 2
SIGQUIT 3
SIGILL 4
SIGTRAP 5
SIGIOT 6
SIGEMT 7
SIGFPE 8
SIGKlLL 9
SIGBUS 10
SIGSEGV 11
SIGSYS 12
SIGPIPE 13
SIGALRM 14
SIGTERM 15
SIGUSRI 16

~

SIGUSR2 17
SIGCLD 18
SIGAPOLLO 19
SIGSTOP 20t
SIGTSTP 21t
SIGCONT 22-
SIGCHLD 23-
SIGTIIN 24t
SIGTIOU 25t
SIGIO 26
SIGTINT 26
SIGXCPU 27
SIGXFSZ 28
SIGVTALRM 29
SIGPROF 30
SIGURG 31-

Revision 01

hang-up
interrupt
quit
illegal instruction
trace trap
lOT instruction
EMT instruction
floating -point exception
kill (cannot be caught, blocked, or ignored)
bus error
segmentation violation
bad argument to system call
write on a pipe with no one to read it
alarm clock
software termination signal
user-defined signal 1
user-defined signal 2
death of a child
DOMAIN System fault with no UNIX System equivalent
stop, cannot be caught, held, or ignored
stop signal generated from keyboard
continue after stop
child status has changed
background read attempted from control terminal
background write attempted to control terminal
I/O is possible on a descriptor
input record is available at control terminal
cpu time limit exceeded
file size limit exceeded
virtual time alarm
profiling timer alarm
urgent condition present on socket

2-111

SIGVEC (2) DOMAIN/IX BSD4.2 SIGVEC (2)

Once a signal handler is installed, it remains installed until another sigvec call is made,
or an execve(2) is perfonned. The default action for a signal may be reinstated by set­
ting sv _handler to SIG_DFL; this default is termination except for signals marked
with a bullet (e) or a dagger (t). Signals marked with a bullet are discarded if the
action is SIG_DFL; signals marked with a dagger cause the process to stop. If
sv _handler is SIG_IGN, the signal is subsequently ignored, and pending instances of
the signal are discarded.

If a caught signal occurs during certain system calls and causes the call to tenninate
prematurely, the call is automatically restarted. This is especially likely to occur dur­
ing a read(2) or write(2) on a slow device (e.g., a terminal) and during a wait(2).

After a fork(2) or vfork(2), the child inherits all signals, the signal mask, and the sig­
nal stack.

Execve(2) resets all caught signals to default action; ignored signals remain ignored;
the signal mask remains the same; and the signal stack state is reset.

NOTES

2-112

The signal stack feature is not implemented on DOMAIN Systems. Calls to sig­
stack(2) always return O. Stack context is not changed.

DOMAIN systems send the signal SIGAPOLLO whenever a fault occurs that is not
otherwise mapped into a signal. Typical generators of SIGAPOLLO include network
failures, display-acquire timeouts, and disk full errors.

The system does not allow the mask specified in vee to block SIGKILL, SIGSTOP, or
SIGCONT.

The handler routine can be declared as follows:

handler(sig, code, scp)
int sig, code;
struct sigcontext * scp;

Here, sig is the signal number into which the hardware faults and traps are mapped as
defined below. Code is a 32-bit value. If the signal is SIGAPOLLO, code is the
DOMAIN System status code describing the fault. (To generate a list of DOMAIN
System status codes and brief explanations of their meanings, run the command
/systest/ssr _util/all_stcode.) Otherwise, code is a value associated with one of the con­
stants listed below. Scp is a pointer to the sigcontext structure (defined in
<signal.h», which is used to restore the context from before the signal.

Revision 01

..... ---.~ ..

o

o

o

o

SIGVEC (2) DOMAIN/IX BSD4.2 SIGVEC (2)

DOMAIN System Hardware traps are mapped to signals and codes as indicated below.
All of these symbols are defined in <signal.h >:

Hardware condition

Arithmetic traps:
Integer overflow
Integer division by zero
Floating overflow trap
Floating/decimal division by zero
Floating underflow trap
Decimal overflow trap
Subscript-range
Floating overflow fault
Floating divide by zero fault
Floating underflow fault

Length access control
Protection violation
Reserved instruction
Customer-reserved instr.
Reserved operand
Reserved addressing
Trace pending
Bpt instruction

RETURN VALUE

Signal

SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGSEGV
SIGBUS
SIGILL
SIGEMT
SIGILL
SIGILL
SIGTRAP
SIGTRAP

Code

FPE_INTOVF _TRAP
FPE_INTDIV _TRAP
FPE_FLTOVF _TRAP
FPE_FLTDIV _TRAP
FPE_FLT~D_TRAP

FPE_DECOVF _1RAP
FPE_SUBRNG_1RAP
FPE_FLTOVF _FAULT
FPE_FLTDIV _FAULT
FPE_FLT~D_FAULT

ILL_PRIVIN_FAULT
ILL_RESOP _FAULT

A successful call returns zero. A failed call returns -1 and sets errno as indicated
below.

ERRORS
Sigvec will fail and no new signal handler will be installed if one of the following
occurs:

[EF A UL T] Either vee or ovee points to memory that is not a valid part of the
process's address space.

[EINV AL] Sig is not a valid signal number.

[EINV AL] An attempt is made to ignore or supply a handler for SIGKILL or SIG­
STOP.

[EINV AL] An attempt is made to ignore SIGCONT (by default, SIGCONT is
ignored).

Revision 01 2-113

SIGVEC (2) DOMAIN/IX BSD4.2 SIGVEC (2)

RELATED INFORMATION
kilI(l), kilI(2), sigblock(2), sigsetrnask(2), sigpause(2) sigstack(2), sigvec(2),
setjrnp(3), Uy(4)

2-114 Revision 01

o

o

o

o

SOCKET(2) DOMAIN/IX BSD4.2

NAME
socket - create an endpoint for communication

USAGE
#include <sys/types.h>
#include <sys/socket.h>

s = socket(af, type, protocol)
int s, af, type, protocol;

DESCRIPTION

SOCKET(2)

Socket creates an endpoint for communication and returns a descriptor.

The at parameter specifies the address fonnat according to which addresses specified
by later operations at the socket should be interpreted. These fonnats are defined in
the include file <sys/socket.h>. The only fonnat currently available is:

AF_INET (ARPA Internet addresses),

The socket has the indicated type, which specifies the semantics of communication.
Possible type s are:

SOCK_STREAM
SOCK_DGRAM

Type SOCK_STREAM provides sequenced, reliable, two-way connection-based byte
streams with an out-of-band data transmission mechanism. Type SOCK_DGRAM
supports datagrams (Le., connectionless, unreliable messages of a fixed (typically
small) maximum length).

The protocol specifies a particular protocol to be used with the socket. Nonnally, only
a single protocol exists to support a particular socket type using a given address for­
mat. However, many protocols may exist, in which case a particular protocol must be
specified in this manner. The protocol number to use is particular to the "communica­
tion environment" in which communication is to take place; see services(5) and proto­
cols(5).

Sockets of type SOCK_STREAM are full-duplex byte streams, similar to pipes. A
stream socket must be connected before any data can be sent or received on it. A con­
nection to another socket is created with a connect(2) call. Once connected, data may
be transferred using read(2) and write(2) calls or some variant of the send(2) and
recv(2) calls. When a session is over, a close(2) is perfonned. Out-of-band data may
also be transmitted as described in send(2) and received as described in recv(2).

Revision 01 2-115

SOCKET(2) DOMAIN/IX BSD4.2 SOCKET (2)

The communications protocols used to implement a SOCK_S1REAM ensure that data
is not lost or duplicated. If a piece of data for which the peer protocol has buffer
space cannot be successfully transmitted within a reasonable length of time, the con­
nection is considered broken and calls will indicate an error with a return of -1 and
with ETWEDOUT as the specific code in the global variable errno. The protocols
may keep sockets active by forcing transmissions roughly every minute in the absence
of other activity. An error is indicated if no response can be elicited on an otherwise
idle connection for a extended time period (e.g., 5 minutes). A SIGPIPE signal is
raised if a process sends on a broken stream; this causes processes that do not handle
the signal to exit.

SOCK_DGRAM sockets allow the sending of datagrams to correspondents named in
send(2) calls. You may receive datagrams at such a socket with recv(2). (---",

An fcntl(2) call can be used to specify a process group that will receive a SIGURG
signal when the out-of-band data arrives.

RETURN VALUE
A successful call returns a descriptor referencing the socket. A failed call returns -1
and sets errno as indicated below.

ERRORS
The socket call fails if:

[EAFNOSUPPORT] The specified address family is not supported in this ver­
sion of the system.

[ESOCKTNOSUPPORT] The specified socket type is not supported in this address
family.

[EPROTONOSUPPORT] The specified protocol is not supported.

[EMFILE]

[ENOBUFS]

The per-process descriptor table is full.

No buffer space is available. The socket cannot be
created.

RELATED INFORMATION

2-116

accept(2), bind(2), connect(2), getsockname(2), getsockopt(2), ioctl(2), Iisten(2),
recv(2), select(2), send(2), shutdown(2), socketpair(2)

Revision 01

o

c'

o

SOCKETPAIR (2) DOMAIN/IX BSD4.2 SOCKETPAIR (2)

NAME
socketpair - create a pair of connected sockets

USAGE
#include <sys/types.h>
#include <sys/socket.h>

socketpair(d, type, protocol, sv)
int d, type, protocol;
int sv[2];

DESCRIPTION
The socket pair call creates an unnamed pair of connected sockets in the specified
domain d, of the specified type, and using the optionally specified protocol. The
descriptors used in referencing the new sockets are returned in sv[O] and sv[l]. The
two sockets are indistinguishable.

DIAGNOSTICS
A successful call returns zero. A failed call returns -1 and sets errno as indicated
below.

ERRORS
The call succeeds unless:

[EMFILE]

[EAFNOSUPPORT]

[EPROTONOSUPPORT]

[EOPNOSUPPORT]

[EFAULT]

RELATED INFORMATION
read(2), write(2), pipe(2)

Revision 01

Too many descriptors are in use by this process.

The specified address family is not supported on this
machine.

The specified protocol is not supported on this machine.

The specified protocol does not support creation of socket
pairs.

The address sv does not specify a valid part of the pro­
cess address space.

2-117

SOFT_LINK (2) DOMAINIIX BSD4.2

NAME
soft_link, soft_unlink - create or delete soft links

USAGE
int soft_link(linktext, pathname)
char *linktext, *pathname;

int soft_unlink(pathname)
char *pathname;

DESCRIPTION

SOFT_LINK (2)

ThDOeMDAINOMAIN/IX system
ft

Clink all soft_l~nk '~l]}inkeates a ,:'sh0ft" link£ to a sPhecifiehnd file. °fn C~
systems, a so contaInS text t at re erences t e pat arne 0 an

object. A "hard" link to an object is, in most cases, indistinguishable from the object
itself.

The pathname argument is the pathnarne of the link to be created or deleted. The link­
text argument is the pathnarne of the file to which the link points. The file narned by
linktext need not exist.

The system call soft_unlink deletes a soft link, leaving the object to which the link
points intact. To delete a hard link, use unlink(2).

DIAGNOSTICS
A successful call returns zero. A failed call returns -1 and sets errno as indicated
below.

RELATED INFORMATION
Iink(2), symlink(2), unlink(2)

2-118 Revision 01

'. '-.-

o

o

o

STAT(2) DOMAIN/IX BSD4.2 STAT (2)

NAME
stat, Istat, fstat - get file status

USAGE
#include <sys/types.h>
#include <sys/stat.h>

stat(path, buj}
char *path;
struct stat * buf;

Istat(path, buf)
char *path;
struct stat *buf;

fstat(fd, buf)
intfd;
struct stat *buf;

DESCRIPTION
Stat obtains information about the file path. Read, write, or execute permission of the
named file is not required, but all directories listed in the pathname leading to the file
must be traversable.

Lstat is like stat, except in the case where the named file is a symbolic link. In this
case, Istat returns information about the link, while stat returns information about the
file to which the link refers.

Fstat obtains the same informatiot:l about the open file to which fd refers (similar to
the information returned by an open call).

In all cases, buf is a pointer to a stat structure into which information about the file is
placed. The contents of this structure are:

struct stat {

Revision 01

dev_t
ino_t
u_short
short
short
short
dev_t
off_t
time_t

st_dev;
st_ino;
st_mode;
st_nlink;
st_uid;
st~id;
st_rdev;
st_size;
st_atime;

/* device inode resides on * /
/* this inode' s number * /
/* protection * /
/* number or hard links to the file * /
/* user-id of owner */
/* group-id of owner * /
/* the device type, for inode that is device * /
/* total size of file * /
/* file last access time * /

2-119

STAT(2) DOMAIN/IX BSD4.2 STAT(2)

2-120

int st_spare 1 ;
time_t st_mtime; /* file last modify time */
int st_spare2;
time_t st_ctime; /* file last status change time */
int st_spare3;
long st_blksize; /* optimal blocksize for file system i/o ops * /
long st_blocks; /* actual number of blocks allocated * /
long st_spare4[2];

} ;

Time when file data was last read or modified. Changed by the follow­
ing system calls: mknod(2), utimes(2), read(2), and write(2). For rea­
sons of efficiency, st_atime is not set when a directory is searched.

Time when data was last modified. It is not set by changes of owner,
group, link count, or mode. Changed by the following system calls:
mknod(2), utimes(2), write(2).

Time when file status was last changed. It is set both both by writing
and changing the i-node. Changed by the following system calls:
chmod(2) chown(2), link(2), mknod(2), unlink(2), utimes(2), write(2).

The status infonnation word st_mode has bits:

#deftne S_IFMT
#define S_IFDIR
#define S _IFCHR
#define S_IFBLK
#define S _IFREG
#define S_IFLNK
#deftne S _IFSOCK
#define S_ISUID
#deftne S _ISGID
#define S_ISvrX
#define S_IREAD
#deftne S _IWRITE
#deftne S_IEXEC

0170000
0040000
0020000
0060000
0100000
0120000
Oi40000
0004000
0002000
0001000
0000400
0000200
0000100

/* type of file * /
/* directory * /
/* character special * /
/* block special * /
/* regular */
/* symbolic link * /
/* socket */
/* set user id on execution * /
/* set group id on execution * /
/* save swapped text even after use * /
/* read permission, owner * /
/* write permission, owner * /
/* execute/search permission, owner * /

The mode bits 0000070 and 0000007 encode group and others pennissions (see
chmod(2)).

Revision 01

/-----''\

()
.............

(~,

\,-_ ..•

o

o

o

o

STAT(2) DOMAIN/IX BSD4.2 STAT(2)

Whenfd is associated with a pipe, fstat reports an ordinary file with an inode number,
restricted pennissions, and a length (that may not be correct).

N()TES
Applying fstat to a socket returns a zeroed buffer.

The fields in the stat structure currently marked st_sparel, st_spare2, and st_spare3
are . intended to allow future expansion of inode time stamps to 64 bits. Their
existence may cause problems for programs that depend on the time stamps being con­
tiguous (in calls to utimes(2».

RETURN VALUE
A successful call returns zero. A failed call returns -1 and sets errno as indicated
below.

ERRORS
Stat and Istat will fail if one or more of the following are true:

[ENOTDIR] A component of the path prefix is not a directory.

[EPERM] The pathname contains a character with the high-order bit set.

[ENOENT] The pathname is too long.

[ENOENT] The named file does not eXIst.

[EACCES] Search permission is denied for a component of the path prefix.

[EFAULT] But or path points to an invalid address.

[ELOOP] The call encountered too many symbolic links in translating the path­
name.

Fstat will fail if one or both of the following are true:

[EBADF] Fd is not a valid open file descriptor.

[EFAULT] Butpoints to an invalid address.

RELATED INFORMATION
chmod(2), chown(2), utimes(2)

Revision 01 2-121

SYMLINK(2) DOMAIN/IX BSD4.2 SYMLINK(2)

NAME
symlink - make symbolic link to a file

USAGE
symlink(name}, name2)
char *name}, *name2;

DESCRIPTION
Symlink creates a symbolic link named name2 that references the object named by
name} (name2 is the name of the file created, and name} is the string used in creating
the symbolic link). Either name may be an arbitrary pathname; the files need not be
on the same file system.

RETURN VALUE
A successful call returns zero. A failed call returns -1 and sets errno as indicated
below.

ERRORS
The symbolic link is made unless on or more of the following are true:

[EPERM] Either namel or name2 contains a character with the high-order bit set.

[ENOENT] One of the pathnames specified is too long.

[ENOTDIR] A component of the name2 prefix is not a directory.

[EEXIST] Name2 already exists.

[EACCES] A component of the name2 path prefix denies search permission.

[EROFS] The file name2 would reside on a read-only file system.

[EFAULT] Either name} or name2 points outside the process's allocated address
space.

[ELOOP] The call encountered too many symbolic links in translating the path­
name.

RELATED INFORMATION
Iink(2), unlink(2)

2-122 Revision 01

(~I

C)

C)

o

o

SYNC (2) DOMAIN/IX BSD4.2 SYNC (2)

NAME
sync - update super-block

USA(;E
void syncO

DESCRIPTION
The sync system call force writes information in memory to disk.

The sync operation is not actually necessary on DOMAIN hardware, because the sys­
tem buffers are automatically written to disk at shutdown. We provide it in the
interest of ensuring compatibility with other implementations.

RELATED INFORMATION
fsync(2), sync(8), update(8)

Revision 01 2-123

TRUNCATE(2) DOMAIN/IX BSD4.2 TRUNCATE (2)

NAME
truncate - truncate a file to a specified length

USAGE
truncate(path, length)
char *path;
int length;

ftruncate(jd, length)
int jd, length;

DESCRIPTION
Truncate truncates the file named by path to a maximum of length bytes in size.
Ftruncate does the same thing for the file referenced by jd, which must be open for
writing.

If the file was larget than length, the extra data is lost.

NOTES
Partial blocks discarded as the result of truncation are not zero-filled; this can leave
holes in files which do not read as zero.

RETURN VALUE
A successful call returns zero. A failed call returns -1 and sets errno as indicated
below.

ERRORS

2-124

Truncate succeeds unless:

[EPERM] The pathname contains a character with the high-order bit set.
I

[ENOENT] The pathname is too long.

[ENOTDIR] A component of the path prefix of path is not a directory.

[ENOENT] The named file does not exist.

[EACCES] A component cf the path prefix denies search permission.

[EISDIR]

[EROFS]

The named file is a directory.

The named file resides on a read-only file system.

[ETXTBSY] The file is a pure procedure (i.e., shared text) file that is being executed.

[EFAULT] Path points outside the process's allocated address space.

Revision 01

I'~
(

\ -.,

c

o

(J

()

o

o

TRUNCATE (2) DOMAIN/IX BSD4.2

Ftruncate succeeds unless:

[EBADF] Fd is not a valid descriptor.

[EINV AL] Fd refers to a socket, not a file.

RELATED INFORMATION
open(2)

Revision 01

TRUNCATE (2)

2-125

UMASK(2) DOMAIN/IX BSD4.2

NAME
umask - set/get file creation mask

USAGE
int umask(cmask)
int cmask;

DESCRIPTION

UMASK(2)

U mask sets the process's file mode creation mask to cmask and returns the previous
value of the mask. Only the low-order 9 bits of cmask and the file mode creation
mask are used.

RETURN VALUE
The previous value of the file mode creation mask is returned.

RELATED INFORMATI()N
mkdir(1), sh(l), chmod(2), creat(2), mknod(2), open(2)

2-126 Revision 01

(
\ , "---.. /

\,, _____ ,.,t

C:\I

o

o

o

o

UNLINK(2) DOMAIN/IX BSD4.2

NAME
unlink - remove directory entry

USAGE
unlink(path)
char *path;

DESCRIPTION

UNLINK(2)

Unlink removes the entry for the file path from its directory. If this entry was the last
link to the file and no process has the file open, the system reclaims all resources asso­
ciated with the file. If a process has the file open, the system waits until the file is
closed before reclaiming resources, even though the directory entry has disappeared.

RETURN V ALlJE
A successful call returns zero. A failed call returns -1 and sets errno.

ERRORS
The unlink succeeds unless:

[EPERM] The path contains a character with the high-order bit set.

[ENOENT] The pathname is too long.

[ENOTDIR] A component of the path prefix is not a directory.

The named file does not exist. [ENOENT]

[EACCES]

[EACCES]

Search permission is denied for a component of the path prefix.

Write pennission is denied on the directory containing the link to be
removed.

[EPERM] The named file is a directory and the effective user ID of the process is
not the super-user.

[EB USY] The entry to be unlinked is the mount point for a mounted file system.

[EROFS] The named file resides on a read-only file system.

[EFAULT] Path points outside the process's allocated address space.

[ELOOP] The call encountered too many symbolic links in translating the path­
name.

Revision 01 2-127

UNLINK(2)

RELATED INFORMATION
close(2), Iink(2), rmdir(2)

2-128

DOMAIN/IX BSD4.2 UNLINK(2)

Revision 01

o

0

o

UTIMES(2) DOMAIN/IX BSD4.2 UTIMES(2)

NAME
utimes - set file times

USAGE
#include <sys/times.h>

utimes(file, tv)
char *file;
struct timeval tv[2];

DESCRIPTION
The utimes call uses the "accessed" and "updated" times in that order from the tv
vector to set the corresponding recorded times for file.

The caller must be the owner of the file or the super-user. The "inode-changed" time
of the file is set to the current time.

RETURN VALUE
A successful call returns zero. A failed call returns -1 and sets errno as indicated
below.

ERRORS
Utimes will fail if one or more of the following are true:

[EPERM]

[ENOENT]

[ENOENT]

[ENOTDIR]

[EACCES]

[EPERM]

[EACCES]

[EROFS]

[EFAULT]

[ELOOP]

Revision 01

The pathname contains a character with the high-order bit set.

The pathname is too long.

The named file does not exist.

A component of the path prefix is not a directory.
,

A component of the path prefix denies search permission.

The process is not super-user and not the owner of the file.

The effective user ID of the caller is not super-user or the owner of the
file.

The file system containing the file is mounted read-only.

Tv points outside the process's allocated address space.

The call encountered too many symbolic links in translating the path­
name.

2-129

UTIMES(2)

RELATED INFORMATION
stat(2)

2-130

DOMAIN/lX BSD4.2 UTIMES(2)

Revision 01

/~ (,

\.-//

~.
\, ,
'--.-~.

o

o

o

VFORK(2) DOMAIN/IX BSD4.2 VFORK(2)

NAME
vfork - spawn a new process in a more efficient way

USAGE
pid = vforkO
int pid;

DESCRIPTION
Vfork creates new processes without fully copying the address space of the old pro­
cess. This conserves resources in a paged environment. Vfork is primarily useful
when the purpose of fork(2) is to create a new system context for an execve(2).
Vfork differs from fork in that the child borrows the parent's memory and thread of
control until a call to execve or an exit (either by a call to exit(2) or abnormally.) The
parent process is suspended while the child is using its resources.

Vfork returns zero in the child's context and (later) the PID of the child in the
parent's context.

Vfork can normally be used just like fork. However, it is illegal to return from the
procedure that called vfork while running in the child process, since by so doing,
vfork would be attempting to return to a non-existent stack frame. Be careful, also, to
call _exit rather than exit if you can't execve, since exit will flush and close standard
I/O channels, and thereby affect the parent process's standard I/O data structures.
(Even with fork, it is better not to call exit since buffered data is then flushed twice.)

NOTES
In a future release, this system call may be eliminated in favor of a more effective pro­
cess creation mechanism.

To avoid possible deadlocks, processes that are children in the middle of a vfork are
never sent SIGTTOU or SIGTTIN signals; rather, output or ioctls are allowed, and
input attempts result in an end-of-file indication.

RETURN VALUE
Upon successful completion, vfork returns zero to the child process and returns the
child's process ID to the parent process. Otherwise, -1 is returned to the parent pro­
cess, no child process is created, and errno is set to indicate the error.

ERRORS
Vfork will fail and no child process will be created if one or more of the following is
true:

[EAGAIN] The system-imposed limit on the total number of processes under execu­
tion would be exceeded.

[EAGAIN] The system-imposed limit on the total number of processes under

Revision 01 2-131

VFORK(2) DOMAIN/IX BSD4.2 VFORK(2)

execution by a single user would be exceeded.

RELATED INFORMATION
fork(2), execve(2), sigvec(2), wait(2),

\

2-132 Revision 01

C)

o

C)

o

WAIT(2) DOMAIN/IX BSD4.2 WAIT(2)

NAME
wait, wait3 - wait for process to tenninate

USAGE
#include <sys/wait.h>

pid = wait(status)
int pid;
union wait * status;

pid = wait(O)
int pid;

#include <sys/time.h>
#include <sys/resource.h>

pid = wait3(status, options, rusage)
int pid;
union wait * status;
int options;
struct rusage *rusage;

DESCRIPTION
Wait forces its caller to delay until a signal is received or until one of its child
processes terminates. If any child process has died since the last wait, wait returns
immediately and gives the process ID and exit status of one of the terminated children.
If there are no children, the caller also returns immediately with the value -1.

Upon return from a successful wait call, status is nonzero, and the high byte of status
contains the low byte of the argument to exit supplied by the child process; the low
byte of status contains the termination status of the process. A more precise definition
of the status word is given in <sys/wait.h>.

Wait3 provides an alternate interface for programs that must not block when collecting
the status of child processes. The status parameter is defined as above. The options
parameter is one of

WNOHANG

WUNTRACED

Revision 01

the call should not block if there are no processes that
wish to report status.

only children of the current process that are stopped due
to a SIGTTIN, SIGTTOU, SIGTSTP, or SIGSTOP signal
should have their status reported.

2-133

WAIT(2) DOMAIN/IX BSD4.2 WAIT(2)

If rusage is non-zero, a summary of the resources used by the terminated process and
all its children is returned (this information is currently not available for stopped
processes).

When the WNOHANG option is specified and no processes wish to report status,
wait3 returns a PID of zero. The WNOHANG and WUNTRACED options may be
combined by ()R'ing the two values.

NOTES
See sigvec(2) for a list of termination statuses (signals); zero status indicates normal
termination. A special status (0177) is returned for a stopped process that has not ter­
minated and can be restarted.

If the parent process terminates without waiting on its children, the children become
orphans. On DOMAIN Systems, the parent process ID of all orphan processes is set
to that of the Display Manager (process 1), even though no real parent-child relation­
ship exists between the two (e.g., the DM cannot be made to wait on these "chil­
dren").

Wait and wait3 are automatically restarted when a process receives a signal while
awaiting termination of a child process.

RETURN VALUE
If wait returns due to a stopped or terminated child process, the process ID of the
child is returned to the calling process. Otherwise, -1 is returned and errno is set to
indicate the error.

Wait3 returns -1 if there are no children not previously waited for. It returns zero if
WNOHANG is specified and there are no stopped or exited children.

ERRORS
Wait will fail and return immediately if one or more of the following are true:

[ECHILD] The calling process has no existing unwaited-for child processes.

[EFAULT] The status or rusage arguments point to an illegal address.

RELATED INFORMATION
exit(2)

2-134 Revision 01

,,---',
(,

1\,_- .,.'

o

o

o

WRITE(2) DOMAIN/IX BSD4.2

NAME
write, writev - write on a file

USAGE
write(d, buf, nbytes)
int d;
char *but;
int nbytes;

#include <sys/types.h>
#include <sys/uio.h>

writev(d, iov, ioveclen)
int d;
struct iovec *iov;
int ioveclen;

DESCRIPTION

WRITE(2)

W rite attempts to write nbytes of data to the object referred to by the descriptor d
from the buffer pointed to by but. W ritev perfonns the same action, but gathers the
output data from the iovlen buffers specified by the members of the iovec array: iov[O] ,
iov[l], etc.

On objects that allow seeking, the write starts at a position given by the pointer asso­
ciated with d; see Iseek(2). Upon return from write, the pointer is incremented by the
number of bytes actually written.

On objects that do not allow seeking, the write always occurs at the current position.
The value of the pointer associated with such an object is undefined.

NOTES
In DOMAIN/IX, write does not' clear setuid.

RETURN VALUE
Upon successful completion, these calls return the number of bytes actually written.
Otrerwise, -1 is returned and errno is set to indicate the error.

ERRORS
Write will fail and the file pointer will remain unchanged if one or more of the fol­
lowing are true:

[EBADF]

[EPIPE]

Revision 01

D is not a valid descriptor open for writing.

An attempt was made to write to a pipe that is not open for reading by
any process.

2-135

,.

WRITE(2) DOMAIN/IX BSD4.2 WRITE(2)

[EPIPE] An attempt was made to write to a pipe or socket of type
SOCK_STREAM that is not connected to a peer socket.

[EFBIG] An attempt was made to write a file that exceeds the process's file size
limit or the maximum file size.

[EFAULT] Part of iov or data to be written to the file points outside the process's
allocated address space.

RELATED INFORMATION
Iseek(2), open(2), pipe(2)

2-136 Revision 01

/,,--...., ,
(

\ ,

o

o

C)

0

0

0

INDEX(2) DOMAIN/IX BSD4.2 INDEX(2)

This is a topical index for Section 2 of the DOMAIN/IX Programmer's Reference
Manual for BSD4.2. For a pennuted index of all reference infonnation, see Appendix
A of this manual.

I/O multiplexing 2-95
access rights 2-12
address fonnat, internet 2-115
advisory file locks 2-35
bit masks 2-95
break, setting 2-15
change directory 2-16
change file access mode 2-17
child process 2-21, 2-32, 2-37,2-133
closing a file 2-21
cpu 2-55
data segment size, changing 2-15
date 2-60
default file protection 2-27
devices, control of 2-63
directories

unlinking 2-127
system call to create 2-71
removing 2-93

effective group ID 2-41
executing files 2-29
file access mode, to change 2-17
file access time, setting 2-129
file creation mask 2-126
file descriptor table size 2-40
file descriptors 2-95

control of 2-33
deleting 2-21
duplicating 2-28
new process 2-29

file execution 2-29
file locks 2-35
file modified time, setting 2-129
file systems, mounted 2-75
file

hard link to 2-66
read/write pointer 2-69
access rights 2-12
changing group of 2-19
changing owner of 2-19

Revision 01 2-137

INDEX (2) DOMAIN/lX BSD4.2 INDEX (2)

(\1
creating 2-25 \,,-_..-/

creating 2-77
default protection 2-27
links to 2-118
links to 2-122
mounting 2-75
opening for read or write 2-77
removing 2-75
renaming 2-91
status of 2-119
synchronizing 2-39
truncating 2-124
writing on 2-135

r---" group ID, setting 2-101 ! I

group, changing 2-19
\"' __ /'

host identifier 2-43
hostname 2-44
interpreter file 2-29
interval timer 2-45
links 2-66, 2-118, 2-122
memory 2-55
messages, receive from socket 2-88 ~

I

name binding 2-14 I
I

owner, changing 2-19
'--

page size, system 2-47
parent process 2-21,2-32, 2-37, 2-133
parent process ID, getting 2-50
permissions 2-13,2-17, 2-27
pipe, system call to create 2-80
pointer, seek 2-69
process ID, getting 2-50 ,r--',

(

process group 2-49, 2-102 I,
'-., '

process groups, signalling 2-65
process

parent 2-37
to create 2-37,2-131
to signal 2-64
to terminate 2-32
trace execution of 2-81
forking 2-131
terminating 2-133

processor
rebooting 2-87

program scheduling priority 2-51

~'
......... ~

2-138 Revision 01

,..

o

o

o

o

o

INDEX(2) DOMAIN/IX BSD4.2

rebooting
program scheduling priority
read input
real group ID
reboot
signal handler
signal mask, setting
signals
socket connections

peer name of
send message from
accepting
creating
initiating
naming
paired
receiving from
shutting down
get name of
get/set options

soft links, creating/deleting
special files, making
stack, signal
symbolic link, to read
system page size, get
system resources, control of
terminating a process
time
time intervals, user and system
user ID
working directory, changing

Revision 01

2-87
2-51
2-84
2-41
2-87
2-110
2-108
2-106, 2-110
2-68
2-48
2-97
2-10
2-115
2-23
2-14
2-117
2-88
2-105
2-57
2-58
2-118
2-73
2-109
2-86
2-47
2-53
2-32
2-60
2-45
2-62,2-104
2-16

INDEX (2)

2-139

,f'\

c_~

o

o

o

o

o

CONTENTS (3) DOMAIN/IX BSD4.2 CONTENTS (3)

intro - introduction to library functions .. .3-1
abort - generate a fault ... 3-8
abs - integer absolute value .. 3-9
atof, atoi, atol - convert ASCII to numbers3-10
bcopy, bcmp, bzero, ffs - bit and byte string operations ... 3-11
crypt, encrypt - a one-way hashing encryption algorithm ... 3-12
ctime, localtime, gmtime, asctime, timezone - convert date and time to ASCII 3-13
isalpha, isupper, islower, isdigit,

isalnum, isspace, ispunct, isprint, iscntrl, isascii - character classification macros 3-15
opendir, readdir, telldir, seekdir, rewinddir, closedir

- di!ectory operations ... 3-16
ecvt, fcvt, gcvt - output conversion ... 3-18
end, etext, edata - last location in program .. 3-19
execl, execv, execle, execlp, execvp, exect, environ - execute a file 3-20
exit - tenninate a process after flushing any pending output .. 3-23
frexp, Idexp, modf - split into mantissa and exponent3-24
getenv - get the value of an environment variable ... 3-25
getgrent, getgrgid, getgrnam, setgrent, endgrent - get group file entry3-26
getlogin - get log-in name .. 3-28
getpass - read a password .. 3-29
getpwent, getpwuid, getpwnam, setpwent, endpwent - get password file entry 3-30
getwd - get current working directory pathname3-32
insque, remque - insert or remove an element in a queue .. 3-33
malloc, free, realloc, calloc, alloca - memory allocator .. 3-34
mktemp - make a unique filename .. 3-36
perror, sys_errlist, sys_nerr - system error messages3-37
popen, pclose - initiate I/O to and from a process3-38
psignal, sys_siglist - system signal messages ... 3-39
qsort - quicker sort ... 3-40
random, srandom, initstate, setstate

- better random number generator and associated routines3-41
re_comp, re_exec - regular expression handler3-43
scandir - scan a directory ... 3-44
setjmp, longjmp - non-local goto .. 3-45
setuid, seteuid, setruid, setgid, setegid, setrgid

- set user and group ID .. 3-46
sleep - suspend execution for interval .. .3-47
strcat, strncat, strcmp, strncmp, strcpy,

strncpy, strlen, index, rindex - string operations ... 3-48
swab - swap bytes ... 3··50
system - issue a shell command ... 3-51
ttyname, isatty - find name of a tenninal .. .3-52
valloc - aligned memory allocator ... 3-53
varargs - variable argument list ... 3-54

3-i

CONTENTS (3) DOMAINjlX BSD4.2 CONTENTS (3)

intro - introduction to compatibility library functions .. 3-56
alarm - schedule signal after specified time (obsolete) .. 3-57
getpw - get name from user ID (obsolete) .. 3-58
nice - set program priority (obsolete) .. 3-59
pause - Stop until signal ... 3-60
rand, srand - random number generator (obsolete) .. .3-61
signal - simplified software signal facilities3-62
sUy, gUy - set/get tenninal state (obsolete} ... 3-66
time, ftime ~ get date and time (obsolete) .. .3-67
times - get process times .. 3-68
uti me - set file times (obsolete) ... 3-69
intro - introduction to mathematical library functions .. 3-70
exp, log, 10gIO, pow, sqrt - exponential, logarithm, power, square root3-71
fabs, floor, ceil - absolute value, fioor, ceiling functions .. .3-72
gamma - log gamma function .. 3-73
hypot, cabs - Euclidean distance ... 3-74
jO, jl, jn, yO, yl, yn - Bessel functions .. 3-75
sin, cos, tan, asin, acos, atan, atan2 - trigonometric functions .. 3-76
sinh, cosh, tanh - hyperbolic functions ... 3-78
intro - introduction to network library functions .. 3-79
htonl, htons, ntohl, ntohs - convert values between host and network byte order3-80
gethostent, gethostbyaddr, gethostbyname,

sethostent, endhostent - get network host entry .. 3-81
getnetent, getnetbyaddr, getnetbyname, setnetent, endnetent

- get network entry ... 3-83
getprotoent, getprotobynumber, getprotobyname, setprotoent, endprotoent

- get protocol entry ... 3-85
getservent, getservbyport, getservbyname, setservent, endservent

- get service entry ... 3-87
inet_addr, inet_network, inet_ntoa, inet_makeaddr, inet_lnaof, inet_netof

- Internet address manipulation routines ... 3-89
setuid, seteuid, setruid, setgid, setegid, setrgid - set user and group ID 3-91

~"

l .. -,"
stdio - standard buffered input/output package ... 3-92
fclose, fflush - close or flush a stream ... 3-95
ferror, feof, clearerr, fileno - stream status inquiries3-96
fopen, freopen, fdopen - open a stream ... 3-97
fread, fwrite - buffered binary input/output3-99
fseek, ftell, rewind - reposition a stream .. 3-100
getc,. getchar, fgetc, getw - get character or word from stream3-101
gets, fgets - get a string from a stream .. 3-1 03
printf, fprintf, sprintf - fonnatted output conversion3-104
putc, putchar, fputc, putw - put character or word on a stream .. 3-107
puts, fputs - put a string on a stream .. 3-108
scanf, fscanf, sscanf - fonnatted input conversion .. .3-109

3-ii

.',----

CONTENTS (3) DOMAIN/IX BSD4.2 CONTENTS (3)

o
setbuf, setbuffer, setlinebuf - assign buffering to a stream3-112
ungetc - push character back into input stream .. 3-114
vprintf, vfprintf, vsprintf - print fonnatted output of a varargs argument list 3-115
intro - introduction to miscellaneous library functions .. .3-117
assert - program verification .. 3-118
curses - screen functions with optimized cursor motion .. 3-119
dbminit, fetch, store, delete, firstkey, nextkey - database subroutines 3-122
°n·t . 't'al' l' t 3 124 I I grou ps - ml 1 lZe group access IS ... -

open pi, erase, label, line, circle, arc, move,
cont, point, linemod, space, closepl - graphics interface ... 3-125

rcmd, rresvport, ruserok - routines for returning a stream to a remote command3-127
,r"'\ rexec - return stream to a remote command ... 3-129
~/ tgetent, tgetnum, tgetfiag, tgetstr, tgoto, tputs

- terminal independent operation routines ... ~ 3-130

o

3-iii

\'--

('
\ ,
'-.. ./

C)

o

o

o

INTRO(3) DOMAIN/IX BSD4.2 INTRO (3)

NAME
intro - introduction to library functions

DESCRIPTION
This section describes functions implemented (on DOMAIN/IX Systems) in the
libraries /lib/clib and /lib/unixlib. In this section, functions are grouped alphabetically
by subsection. The subsections in this section reflect the original UNIX system library
structure, under which these routines were distributed across a larger number of
libraries.

(3) These are the standard C library functions. (On DOMAIN Systems, cUb also
includes all the functions described in section 2.)

(3M) These functions constitute the math library (included in clib). They are
automatically loaded as needed. Declarations for these functions may be
obtained from the include file <math.h>.

(3N) These functions constitute the internet network library (included in clib)

(3S) These functions constitute the "standard I/O package", see intro(3S). Declara­
tions for these functions may be obtained from the include file <stdio.h>.

(3X) These are miscellaneous functions.

(3C) Routines included for compatibility with other systems. In particular, a number
of system call interfaces provided in previous releases of DOMAIN/IX have
been included for source code compatibility. The manual entry for each com­
patibility routine indicates the proper interface to use.

DIAGNOSTICS

FILES

Math functions (3M) may return conventional values when the function is undefined
for the given arguments or when the value is not representable. In these cases the
external variable errno (see intro(2)) is set to the value EDOM (domain error) or
ERANGE (range error). The values of EDOM and ERANGE are defined in the
include file <math.h>.

/lib/clib

/lib/unixlib

The C language library

UNIX System calls.

LIST OF FUNCTIONS
Name Appears on Page

abort.3

Description

generate a fault abort
abs
acos
alarm

Revision 01

abs.3
sin.3m
alarm.3c

integer absolute value
trigonometric functions
schedule signal after specified time

3-1

INTRO (3) DOMAIN/IX BSD4.2 INTRO (3)

/~
(
\ '-.. _./

asctime ctime.3 convert date and time to Ascn
as in sin.3m trigonometric functions
assert assert.3x program verification
atan sin.3m trigonometric functions
atan2 sin.3m trigonometric functions
atof atof.3 convert ASCn to numbers
atoi atof.3 convert ASCn to numbers
atol atof.3 convert ASCn to numbers
cabs hypot.3m Euclidean distance
calloc malloc.3 memory allocator
ceil floor.3m absolute value, floor, ceiling functions
clearerr ferror.3s stream status inquiries r----"""'\
closedir directory .3 directory operations , '

sin.3m trigonometric functions
'--_./

cos
cosh sinh.3m hyperbolic functions
ctime ctime.3 convert date and time to ASCn
curses curses.3x screen functions with optimal

cursor motion
dbminit dbm.3x database subroutines
delete dbm.3x database subroutines
ecvt ecvt.3 output conversion ~'-'"

I '

edata end.3 last locations in program "-
end end.3 last locations in program
endgrent getgrent.3 get group file entry
endhostent gethostent.3n get network host entry
endnetent getnetent.3n get network entry
endprotoent getprotoent.3n get protocol entry
endpwent getpwent.3 get password file entry
endservent getservent.3n get service entry
environ execl.3 execute a file l~' etext end.3 last locations in program \. ~-- ;'

exec execl.3 execute a file
exece execl.3 execute a file
execl execl.3 execute a file
execle exed.3 execute a file
execlp execl.3 execute a file
exect execl.3 execute a file
execv execl.3 execute a file
execvp exec!. 3 execute a file
exit exit. 3 terminate a process after flushing

any pending output
exp exp.3m exponential, logarithm, power, square root
fabs floor.3m absolute value, floor, ceiling functions
fclose fclose.3s close· or flush a stream r-----, ,

~j'.

3-2 Revision 01

INTRO(3) DOMAIN/IX BSD4.2 INTRO(3)

c)
fcvt ecvt.3 output conversion
feof ferror.3s stream status inquiries
ferror ferror.3s stream status inquiries
fetch dbm.3x database subroutines
fflush fclose.3s close or flush a stream
fgetc getc.3s get character or word from stream
fgets gets.3s get a string from a stream
fileno ferror.3s stream status inquiries
firstkey dbm.3x database subroutines
floor floor.3m absolute value, floor, ceiling functions
fprintf printf.3s formatted output conversion

0
fputc putc.3s put character or word on a stream
fputs puts.3s put a string on a stream
fread fread.3s buffered binary input/output
free malloc.3 memory allocator
frexp frexp.3 split into mantissa and exponent
fscanf scanf.3s formatted input conversion
fseek fseek.3s reposition a stream
ftell fseek.3s reposition a stream
ftime time.3c get date and time

0
fwrite fread.3s buffered binary input/output
gamma gamma.3m log gamma function
gcvt ecvt.3 output conversion
getc getc.3s get character or word from stream
getchar getc.3s get character or word from stream
getenv getenv.3 value for environment name
getgrent getgrent.3 get group file entry
getgrgid getgrent.3 get group file entry
getgmam getgrent.3 get group file entry

0 gethostbyaddr gethostent.3n get network host entry
gethostbyname gethostent.3n get network host entry
gethostent gethostent.3n get network host entry
getlogin getlogin.3 get login name
getnetbyaddr getnetent.3n get network entry
getnetbyname getnetent.3n get network entry
getnetent getnetent.3n get network entry
getpass getpass.3 read a password
getprotobyname getprotoent.3n get protocol entry
getprotobynumber getprotoent.3n get protocol entry
getprotoent getprotoent.3n get protocol entry
getpw getpw.3c get name from uid
getpwent getpwent.3 get password file entry
getpwnam getpwent.3 get password file entry

0
getpwuid getpwent.3 get password file entry

Revision 01 3-3

INTRO(3) DOMAIN/IX BSD4.2 INTRO(3)

/'-..... \

(\

\, •. _./.,

gets gets.3s get a string from a stream
getservbyname getservent.3n get service entry
getservbyport getservent.3n get service entry
getservent getservent.3n get service entry
getw getc.3s get character or word from stream
getwd getwd.3 get current working directory pathname
gmtime ctime.3 convert date and time to ASCII
gtty stty.3c set and get tenninal state (defunct)
htonl byte order :3n convert values between host and

network byte order
htons byteorder.3n convert values between host and

network byte order
hypot hypot.3m Euclidean distance (~\

index string.3 string operations ',--
inet_addr inet.3n Internet address manipulation routines
inet_Inaof inet.3n Internet address manipulation routines
inet_makeaddr inet.3n Internet address manipulation routines
inet_netof inet.3n Internet address manipulation routines
inet_network inet.3n Internet address manipulation routines
initgroups initgroups.3x initialize group access list
initstate random.3 better random number generator
insque insque.3 insert/remove element from a queue

~~

isalnum ctype.3 character classification macros \'"

is alpha ctype.3 character classification macros
isascii ctype.3 character classification macros
isatty ttyname.3 find name of a tenninal
iscntrl ctype.3 character classification macros
isdigit ctype.3 character classification macros
islower ctype.3 character classification macros
isprint ctype.3 character classification macros

("""---"'"

ispunct ctype.3 character classification macros
"

isspace ctype.3 character classification macros
' _

isupper ctype.3 character classification macros
ldexp frexp.3 split into mantissa and exponent .
localtime ctime.3 convert date and time to ASCII
log exp.3m exponential, logarithm, power, square root
log10 exp.3m exponential, logarithm, power, square root
longjmp setjmp.3 non-local goto
malloc malloc.3 memory allocator
mktemp mktemp.3 make a unique file name
modf frexp.3 split into mantissa and exponent
nextkey dbm.3x database subroutines
nice nice.3c set program priority
ntohl byte order .3n convert values between host and

C
3-4 Revision 01

INTRO(3) DOMAIN/IX BSD4.2 INTRO(3)

.,.--\ L)
network byte order

ntohs byte order .3n convert values between host and
network byte order

opendir directory .3 directory operations
pause pause.3c stop until signal
pelose popen.3 initiate I/O to/from a process
perror perror.3 system error messages
popen popen.3 initiate I/O to/from a process
pow exp.3m exponential, logarithm, power, square root
printf printf.3s formatted output conversion
psignal psignal.3 system signal messages
putc putc.3s put character or word on a stream

0 putchar putc.3s put character or word on a stream
puts puts.3s put a string on a stream
putw putc.3s put character or word on a stream
qsort qsort.3 quicker sort
rand rand.3c random number generator
random random. 3 better random number generator
rcmd rcmd.3x routines for returning a stream to

a remote command
re_comp regex.3 regular expression handler

0 re_exec regex.3 regular expression handler
readdir directory .3 directory operations
realloc malloc.3 memory allocator
remque insque.3 insert/remove element from a queue
rewind fseek.3s reposition a stream
rewinddir directory .3 directory operations
rexec rexec.3x return stream to a remote command
rindex string. 3 string operations

0
rresvport rcmd.3x routines for returning a

stream to a remote command
ruserok rcmd.3x routines for returning a

stream to a remote command
scandir scandir.3 scan a directory
scanf scanf.3s formatted input conversion
seekdir directory .3 directory operations
setbuf setbuf.3s assign buffering to a stream
setegid setuid.3 set user and group ID
seteuid setuid.3 set user and group ID
setgid setuid.3 set user and group ID
setgrent getgrent.3 get group file entry
sethostent gethostent.3n get network host entry
setjmp setjmp.3 non-local goto
setnetent getnetent.3n get network entry

0
Revision 01 3-5

INTRO (3) DOMAIN/IX BSD4.2 INTRO(3)

r'"
\ I

getprotoent.3n get protocol entry
'~-_../

setprotoent
setpwent getpwent.3 get password file entry
setrgid setuid.3 set user and group ID
setruid setuid.3 set user and group ID
setservent getservent.3n get service entry
setstate random. 3 better random number generator
setuid setuid.3 set user and group ID
signal signal.3c simplified software signal facilities
sin sin.3m trigonometric functions
sinh sinh.3m hyperbolic functions
sleep sleep.3 suspend execution for interval
sprintf. printf.3s formatted output conversion
sqrt exp.3m exponential, logarithm, power, square root ~"

srand rand.3c random number generator
I '
,
'-_ .. /

srandom random. 3 better random number generator
sscanf scanf.3s formatted input conversion
stdio intro.3s standard buffered input/output package
store dbm.3x database subroutines
strcat string.3 string operations
strcmp string.3 string operations
strcpy string.3 string operations
strlen string.3 string operations (-~"

strncat string.3 string operations
" strncmp string.3 string operations

strncpy string.3 string operations
stty stty.3c set and get terminal state (defunct)
swab swab.3 swap bytes
sys_errlist perror.3 system error messages
sys_nerr perror.3 system error messages
sys_siglist psignal.3 system signal messages

(' system system.3 issue a Shell command
tan sin.3m trigonometric functions "

tanh sinh.3m hyperbolic functions
telldir directory .3 directory operations
tgetent termcap.3x terminal independent operation routines
tgetfiag termcap.3x . terminal independent operation routines
tgetnum termcap.3x terminal independent operation routines
tgetstr termcap.3x terminal independent operation routines
tgoto termcap.3x terminal independent operation routines
time time.3c get date and time
times times.3c get process times
timezone ctime.3 convert date and time to ASCII
tputs termcap.3x terminal independent operation routines
ttyname ttyname.3 find riame of a terminal

C'
3-6 Revision 01

o

o

o

INTRO(3) DOMAIN/IX BSD4.2 INTRO(3)

ungetc
utime
valloc
varargs

ungetc.3s
utime.3c
valloc.3
varargs.3

RELATED INFORMATION

push character back into input stream
set file times
aligned memory allocator
variable argument list

intro(3C), intro(3S), intro(3M), intro(3N), nm(l), Id(l), cc(l), intro(2)

Revision 01 3-7

ABORT(3)

NAME
abort - generate a fault

USAGE
abortO

DESCRIPTION

DOMAIN/IX BSD4.2 ABORT(3)

Abort executes an instruction that is illegal in user mode. This sends a signal that ter­
minates the process. You may examine the remains of the aborted process using the
/com/tb command.

NOTES
The abort function does not flush standard I/O buffers. Use fflush(3S) to accomplish
this.

DIAGNOSTICS'
Usually "lOT trap" from the shell.

RELATED INFORMATION
sigvec(2), exit(2)

3-8 Revision 01

\
'-. .•. -

o

()
',-./

u

o

ABS (3) DOMAIN/IX BSD4.2 ABS(3)

NAME
abs - integer absolute value

USAGE
abs(i)
int i;

DESCRIPTION
Abs returns the absolute value of its integer operand.

N()TES
Applying the abs function to the most negative integer generates a result that is the
most negative integer. That is,

abs(Ox80000000)

returns Ox80000000 as a result .

. RELATED INFORMATION
floor(3M)

Revision 01 3-9

ATOF(3) DOMAIN/IX BSD4.2 ATOF(3)

NAME
atof, atoi, atol- convert ASCn to numbers

USAGE
double atof(nptr)
char *nptr;

atoi(nptr)
char *nptr;

long atol(nptr)
char *nptr;

DESCRIPTION
These functions convert the string that nptr points to into floating, integer, and long
integer representation, respectively. The first character that the function does not
recognize ends the string.

Atof recognizes an optional string of spaces, then an optional sign, then a string of
digits which may contain a decimal point, then an optional "e" or "E", followed by an
optionally signed integer.

Atoi and atol recognize an optional string of spaces, then an optional sign, and then a
string of digits.

N()TES
None of these functions has provisions for overflow.

RELATED INFORMATION
scanf(3S)

3-10 Revision 01

\ ,,- .. , .. '

o
BSTRING(3) DOMAIN/IX BSD4.2

NAME
beopy, bemp, bzero, ffs - bit and byte string operations

USAGE
beopy(bl, b2, length)
char *bl, *b2;
int length;

bemp(bl, b2, length)
char *bl, *b2;
int length;

bzero(b, length)
char *b;
int length;

ffs(i)
int i;

BSTRING(3)

U
,r-",) DESCRIPTI()N

The functions beopy, bemp, and bzero operate on variable length strings of bytes.
They do not check for null bytes as the routines in string(3) do.

o

Beopy copies length bytes from string bl to string b2.

Bemp compares byte string bl against byte string b2, returning zero,if they are identi­
cal, non-zero otherwise. Both strings are assumed to be length bytes long.

Bzero places length zero bytes in the string bl.

Ffs returns the index of the first bit set in its argument. A zero return indicates a zero
argument. Bits are numbered starting at 1.

NOTES
The bemp and beopy routines take parameters in reverse order from stremp and
strepy. For example,

strepy (foo, bar)

copies foo to bar, while

bepy (foo, bar, 3)

copies bar to foo.

Revision 01 3-11

CRYPT(3) DOMAIN/IX BSD4.2 CRYPT(3)

NAME
crypt, encrypt - a one-way hashing encryption· algorithm

USAGE
char *crypt(key, salt)
char *key, *salt;

void encrypt(block)
char *block;

DESCRIPTION
The password encryption function, crypt, is based on a one-way hashing encryption
algorithm with variations partly intended to frustrate hardware implementations of a
key search.

The key parameter represents a user's typed password. The salt parameter is a two­
character string chosen from the set [a-zA-ZO-9./]; this string is used to perturb the
hashing algorithm in one of 4096 different ways, after which the password is used as
the key to encrypt repeatedly .a constant string. The returned value points to the
encrypted password. The first two characters are the salt itself.

The encrypt entry provides rather primitive access to the actual hashing algorithm. '
The argument to the encrypt entry is a character array of length 64 containing only
the characters with numerical value 0 and 1. The argument array is modified in place,
becoming a similar array that represents the bits of the argument after exposure to the
hashing algorithm using the key set by crypt.

Note: Per international agreement not to export encryption devices, the standard
UNIX system decryption methods are not supported on the DOMAIN/IX sys­
tem.

NOTES
The return value points to static data that are overwritten by each call.

RELATED INFORMATION
Iogin(I), passwd(I), getpass(3), passwd(4)

3-12 Revision 01

I
I

'-_.-

r
'-_ .. -"

o

o

CTIME(3) DOMAIN/IX BSD4.2 CTIME(3)

NAME
ctime, localtime, gmtime, asctime, timezone - convert date and time to ASCII

USAGE
char *ctime(clock)
long *clock;

#include <sys/time.h>

struct tm *Iocaltime(clock)
long *clock;

struct tm *gmtime(clock)
long *clock;

char *asctime(tm)
struct tm *tm;

char *timezone(zone, dst)

DESCRIPTION
Ctime converts a time denoted by clock, such as the value returned by time(2), into
ASCII and returns a pointer to a 26-character string in the following fonn.

Thu May 29 10:32:03 1986\n\0

All fields have constant width. Localtime and gmtime return pointers to structures
containing the individual components of the time. Localtime corrects for the time
zone and daylight savings time (if necessary); gmtime converts directly to GMT,
which is the time DOMAIN/IX uses. Asctime converts a time from the structures to
ASCII and returns a pointer to a 26-character string.

Revision 01 3-13

CTIME(3) DOMAIN/lX BSD4.2 CTIME(3)

The structure declaration from the include file is:

struct tm {
int tm_sec;
int tm_min;
int tm_hour;
int tm_mday;
int tm_mon;
int tm-year;
int tm_wday;
int tm-yday;
int tm_isdst;

} ;

These quantities give the time on a 24-hour clock, day of month (1-31), month of year
(0-11), day of week (Sunday = 0), year minus (-) 1900, day of year (0-365), and a flag
that is non-zero if daylight savings time is in effect.

When local time is necessary, the program consults the system to determine the time
zone and whether the U.S.A., Australian, Eastern European, Middle European, or
Western European daylight savings time adjustment is appropriate. The program (~"
understands some of the peculiarities in time conversion over the past 10-20 years; if \, ___ .
necessary, this understanding can be extended.

Timezone returns the name of the time zone associated with its first argument, which
is measured in minutes westward from Greenwich. If the second argument is zero, the
standard zone name is used; otherwise, the Daylight Savings Zone. If the required
name does not appear in a table built into the routine, the difference from GMT is pro­
duced; e.g., in Afghanistan

timezone(-(60*4+30), 0)

is appropriate because Afghanistan is four and a half hours ahead of GMT. This call
would produce the string GMT +4:30.

NOTES
The return values point to static data whose content is overwritten by each call.

RELATED INFORMATION
gettimeofday(2), time(3C)

3-14 Revision 01

()

C)

o

o

C)

CTYPE(3) DOMAIN/IX BSD4.2 CTYPE(3)

NAME
isalpha, isupper, islower, isdigit, isalnum, isspace, ispunct, isprint, iscntrl, isascii -
character classification macros

USAGE
#include <ctype.h>

isalpha(c)

isascii(c)

DESCRIPTION
These macros classify ASell-coded integer values by table lookup. Each is a predi­
cate that returns zero for false, and non-zero for true. Isascii is defined on all integer
values; the rest are defined only where isascii is true and on the single non-AS ell
value EOF (see stdio(3S».

isalpha

isupper

islower

isdigit

isalnum

isspace

ispunct

isprint

iscntrl

Revision 01

c is a letter

c is an uppercase letter

c is a lowercase letter

c is a digit

c is an alphanumeric character

c is a space, tab, carriage return, newline, or formfeed

c is a punctuation character (neither control nor alphanumeric)

c is a printing character, code 040(8) (space) through 0176 (tilde)

c is a delete character (0177) or ord'; . ..rlary control character (less than
040).

3-15

DIRECTORY (3) DOMAIN/IX BSD4.2 DIRECTORY (3)

NAME
opendir, readdir, telldir, seekdir, rewinddir, c10sedir - directory operations

USAGE
#include <sys/dir.h>

DIR *opendir(jilename)
char *filename;

struct direct *readdir(dirp)
DIR *dirp;

long telldir(dirp)
DIR *dirp;

seekdir(dirp, loe)
DIR *dirp;
long loe;

rewinddir(dirp)
DIR *dirp;

c1osedir(dirp)
DIR *dirp;

DESCRIPTION

3-16

Opendir opens the directory named by filename and associates a "directory stream"
with it. Opendir returns a pointer that identifies the directory stream in subsequent
operations. Opendir returns a NULL pointer if filename cannot be accessed, or if
malloc(3) cannot allocate enough memory to hold the entire DIR structure.

Readdir returns a pointer to the next directory ,entry. It returns NULL upon reaching
the end of the directory, or upon detecting an invalid seekdir operation.

Telldir returns the current location associated with the directory stream.

Seekdir sets the position of the ,next readdir operation on the directory stream. The
new position reverts to the one associated with the directory stream when the telldir
operation was performed. Values returned by telldir are good only for the lifetime of
the D IR pointer from which they are derived. If the directory is closed and then reo­
pened, the telldir value may be invalidated due to undetected directory compaction. It
is safe to use a previous telldir value immediately after a call to opendir and before
any calls to readdir.

Revision 01

\, __ ./

G

o

o

DIRECTORY (3) DOMAIN/IX BSD4.2 DIRECTORY (3)

Rewinddir resets the position of the named directory stream to the beginning of the
directory.

Closedir closes the named directory stream and frees the structure associated with the
DIR pointer.

EXAMPLE
Sample code that searches a directory for entry "name" is:

len = strlen(name);
dirp = opendir(". ");
for (dp = readdir(dirp); dp != NULL; dp = readdir(dirp»

if (dp->d_namlen == len && !strcmp(dp->d_name~ name» (
closedir(dirp);

}
closedir(dirp);

return FOUND;

return NOT_FOUND;

RELATED INFORMATION
open(2), c1ose(2), read(2), Iseek(2)

Revision 01 3-17

ECVT(3) DOMAIN/IX BSD4.2 ECVT(3)

NAME
ecvt, fcvt, gcvt - output conversion

USAGE
char *ecvt(value, ndigit, deept, sign)
double value;
int ndigit, *deept, * sign;

char *fcvt(value, ndigit, deept, sign)
double value;
int ndigit, *deept, * sign;

char *gcvt(value, ndigit, buj)
double value;
char *but

DESCRIPTION
Ecvt converts the value to a null-tenninated string of ndigit ASCII digits and returns a
pointer to the string. The position of the decimal point relative to the beginning of the
string is stored indirectly through deept (negative means to the left of the returned
digits). If the sign of the result is negative, the word that sign points to is non-zero;
otherwise, it is zero. The low-order digit is rounded.

F cvt is similar to ecvt, except that the correct digit has been rounded for FORTRAN
F-fonnat output of the number of digits specified by ndigits.

Gcvt converts the value to a null-tenninated ASCII string in but and returns a pointer
to buj. It attempts to produce ndigit significant digits in FORTRAN F fonnat if possi­
ble; otherwise, it produces E fonnat, ready for printing. Trailing zeros may be
suppressed.

NOTES
The return values P9int to static data that each call overwrites.

RELATED INFORMATION
printf(3)

3-18 Revision 01

()

o

o

END(3) DOMAIN/IX BSD4.2

NAME
end, etext, edata - last location in program

USAGE
extern end;
extern etext;
extern edata;

DESCRIPTION

END (3)

These names refer neither to routines nor to locations with interesting contents. The
address of etext is the first address above the program text, edata above the initialized
data region, and end above the uninitialized data region.

When execution begins, the program break coincides with end, but it is reset by the
routines brk(2), malloc(3), standard input/output stdio(3), the profile (-p) option of
cc(l), and so on. The current value of the program break is reliably returned by cal­
ling sbrk(O).

RELATED INFORMATION
brk(2)
malloc(3)

Revision 01 3-19

EXECL(3) DOMAIN/IX BSD4.2 EXECL (3)

NAME
execl, execv, execle, execlp, execvp, exect, environ - execute a file

USAGE
execl(name, argO, argl, ... , argn, 0)
char *name, *argO, *argl, ... , *argn;

execv(name, argv)
char *name, *argv[];

execle(name, argO, argl, ... , argn, 0, envp)
char *name, *argO, *argl, ... , *argn, *envp[];

exect(name, argv, envp)
char *name, *argv[], envp[];

extern char **environ;

DESCRIPTION

3-20

These routines provide various interfaces to the execve system call. Refer to
execve(2) for a full description of their properties; only brief descriptions are provided
here.

Exec in all its forms overlays the calling process with the named file, then transfers to
the entry point of the core image of the file. There can be no return from a successful
exec; the calling core image is lost.

The name argument is a pointer to the name of the file to be executed. The pointers
arg[O], arg[l], ... , address null-tenninated strings. In most cases, arg[O] is the name of
the file.

Two interfaces are available. Execl is useful when a known name with known argu­
ments is being called; the arguments to execl are the character strings that comprise
the file (name) and the arguments. The first argument is usually the same as the
filename (or its last component). A zero argument ends the argument list.

The execv version is useful when the number of arguments is not known in advance;
the arguments to execv include the name of the file to be executed and a vector of
strings containing the arguments. The last argument string must be followed by a zero
pointer.

Revision 01

o

o

o

o

EXECL(3) DOMAIN/IX BSD4.2 EXECL(3)

FILES

The exect version is used when the executed file is to be manipulated with ptrace(2).
It forces the child to stop after executing its first instruction. The parent (which must
expect to trace the child) may then adjust the child's state.

When a C program is executed, it is called as follows:

main(argc, argv, envp)
int argc;
char **argv, **envp;

where argc is the argument count and argv is an array of character pointers to the
arguments themselves. The first member of the array points to a string containing the
name of the file.

Argv is directly usable in another execv because argv[argc] is zero.

Envp is a pointer to an array of strings that constitute the environment of the process.
Each string consists of a name, an equals sign (=), and a null-terminated value. The
array of pointers is terminated by a null pointer. The shell passes an environment
entry for each global shell variable that is defined when the program is called. The C
run-time start-off routine places a copy of envp in the global cell environ, which
exec v and execl use to pass the environment to any subprograms executed by the
current program.

Execlp and execvp are called with the same arguments as execl and execv, but dupli­
cate the shell's actions in searching for an executable file in a list of directories. The
directory list is obtained from the environment.

/bin/sh shell, invoked if command file found by execlp or execvp

DIAGN()STICS
A return constitutes the diagnostic if any of the following hold true:

• name cannot be found

• name is not executable

• naf,le is not an object module

• maximum memory was exceeded

• the arguments require too much space

Revision 01 3-21

EXECL(3) DOMAIN/IX BSD4.2 EXECL(3)

The return value is -1. Even if the caller is the super-user, at least one of the
execute-pennission bits must be set for a file to be executed.

RELATED INFORMATION
execve(2), fork(2), csh(l)

3-22 Revision 01

('
"-..

c

o

C)

o

o

EXIT (3) DOMAIN/IX BSD4.2

NAME
exit - tenninate a process after flushing any pending output

USAGE
exit(status)
int status;

DESCRIPTION

EXIT (3)

Exit tenninates a process after calling the standard I/O library function _cleanup to
flush any buffered output. Exit never returns.

RELATED INFORMATION
exit(2)

Revision 01 3-23

FREXP(3C) DOMAIN/IX BSD4.2

NAME
frexp, Idexp, modf - split into mantissa and exponent

USAGE
double frexp (value, eptr)
double value;
int *eptr;

double Idexp (value, exp)
double 'value;

double modf (value, iptr)
double value, *iptr;

DESCRIPTION

FREXP(3C)

Frexp returns the mantissa of a double value as a double quantity, x, of magnitude
less than 1, and stores (indirectly through eptr) an integer n such that value = x*2**n.

Ldexp returns the quantity value*2**exp.

~\
I, :'
1,., / "---'

Modf returns the positive fractional part of value and stores the integer part indirectly r. ~'.
through iptr.

3-24 Revision 01

___ J'. _____ _

("'
\
\...._- .. '

/""-.......
(,I

\ / /

o

o

GETENV(3) DOMAIN/IX BSD4.2 GETENV(3)

NAME
getenv - get the value of an envirorunent variable

USAGE
char *getenv(name)
char *name;

DESCRIPTION
Geten v searches through the list of envirorunent variables for a string of the form:

name=value

If it finds an entry, getenv returns a pointer to the null-terminated string value. If it
cannot find an entry for name, getenv returns the value zero (NULL).

RELATED INFORMATION
execve(2)

Revision 01 3-25

GETGRENT(3) DOMAIN/IX BSD4.2 GETGRENT(3)

NAME
getgrent, getgrgid, getgrnam, setgrent, endgrent - get group file entry

USA(;E
#include <grp.h>

struct group *getgrent()

struct group *getgrgid(gid)
int gid;

struct group *getgrnam(name)
char *name;

setgrent()

endgrent()

DESCRIPTION

3-26

Getgrent, getgrgid and getgrnam return pointers to an object with the following
structure, which contains the broken-out fields of a line in the group file.

struct group {

} ;

char *gr_name;
char * gr_passwd;
int gr~id;

char **gr_mem;

struct group *getgrentO, *getgrgidO, *getgmamO;

The members of this structure are:

gr_name The name of the group.

gr _passwd The encrypted password oi the group (always null on DOMAIN/IX Sys­
tems).

gr~id The numerical group-ID.

gr_mem Null-tenninated vector of pointers to the individual member names.

Revision 01

o

o

o

o

GETGRENT(3) DOMAIN/IX BSD4.2 GETGRENT (3)

Getgrent simply reads the next line while getgrgid and getgrnam search until a
matching gid or name is found (or until EOF is encountered). Each routine picks up
where the others leave off so successive calls may be used to search the entire file.

A call to setgrent has the effect of rewinding the group file to allow repeated searches.
Endgrent may be called to close the group file when processing is complete.

NOTES
All infonnation is contained in a static area so it must be copied if it is to be saved.

On DOMAIN/IX Systems, /etc/group is built from registry infonnation by the program
crpasswd(8).

DIAGNOSTICS
A null pointer (0) is returned on EOF or error.

FILES
/etc/group the group file

RELATED INFORMATION
getlogin(3), getpwent(3), group(5), crpasswd(8)

Revision 01 3-27

t

GETLOGIN(3) DOMAIN/IX BSD4.2 GETLOGIN (3)

NAME
getJogin - get log-in name

USAGE
char *getJoginO

DESCRIPTION
GetJogin returns a pointer to the user's log-in name. It may be used in conjunction
with getpwnam to locate the correct password file entry when several log-in names
share the same user ID.

If getJogin is called within a process that is not attached to a terminal, it returns
NULL. To detennine the log-in name, first call getJogin; if it fails, call
getpwuid(getuidO).

NOTES
The return values point to static data, which each call overwrites.

DIAGNOSTICS
Returns NULL (zero) if name is not found.

RELATED INFORMATION
getpwent(3), getgrent(3), getpwuid(3)

3-28 Revision 01

. ______ . .It ____ _

o

o

()

o

GETPASS(3)

NAME
getpass - read a password

USAGE
char *getpass(prompt)
char *prompt;

DESCRIPTION

DOMAINjIX BSD4.2 GETPASS(3)

Getpass prompts for a password with the null-terminated string prompt, then disables
echoing of input characters. On DOMAIN Systems, get pass reads a password from an
input pad (the local equivalent of Idevltty) or, if the standard input is an SIO line, from
Idevlsio? If neither of these files can be read, getpass reads a password from the
standard input.

Getpass returns a pointer to a null-terminated string of at most eight characters.

NOTES
The return value points to static data that is overwritten by each call.

Revision 01 3-29

GETPWENT(3) DOMAIN/IX BSD4.2 G ETPWENT (3)

NAME
getpwent, getpwuid, getpwnam, setpwent, endpwent - get password file entry

USA(;E.
#include <pwd.h>

struct passwd *getpwentO

struct passwd *getpwuid(uid)
int uid;

struct passwd *getpwnam(name)
char *name;

int setpwentO

int endpwentO

DESCRIPTION

(",.---.... "
\\, _ .. .

Getpwent, getpwuid and getpwnam each return a pointer to an ob1ect with the fol-
lowing structure. It contains the broken:-out fields of a line in the ;assword file. (- "

3-30

struct passwd (/* see getpwent(3) * /
char *pw_name;
char *pw _passwd;
int pw_uid;
int pw~id;
int pw_quota;
char *pw _comment;
char *pw~ecos;

char' *pw_dir;
char *pw_shell;

};

struct passwd *getpwentO, *getpwuidO, *getpwnamO;

The fields pw_quota and pw_comment are unused. The rest are described in the
manual entry for passwd(5).

Revision 01

"-

C~'

C)
GETPWENT (3) DOMAIN/IX BSD4.2 GETPWENT (3)

Getpwent reads the next line (opening the file if necessary); setpwent rewinds the file;
endpwent closes it.

Getpwuid and getpwnam search /etc/passwd from the beginning until a matching uid
or name is found (or until EOF is encountered).

NOTES
All information is contained in a static area so it must be copied if it is to be saved.

On DOMAIN/IX Systems, /etc/passwd is built from registry infonnation by the pro­
gram crpasswd(8).

/'-...., DIAGN()STICS
,,-) Null pointer (zero) returned on EOF or error.

FILES
/etc/passwd the password file

RELATED INFORMATION
getiogin(3), getgrent(3), passwd(5), crpasswd(8)

o

o

o
Revision 01 3-31

GETWD(3) DOMAIN/IX BSD4.2

NAME
getwd - get current working directory pathname

USAGE
char *getwd(pathname)
char *pathname;

DESCRIPTI()N

GETWD(3)

Getwd copies the absolute pathname of the current working directory to pathname and
returns a pointer to the result.

NOTES
Maximum pathname length is MAXP ATHLEN characters (1024).

DIAGNOSTICS
Getwd returns zero and places a message in pathname if an error occurs.

3-32 Revision 01

C)

o

o

INSQUE (3) DOMAIN/IX BSD4.2 INSQUE(3)

NAME
insque, remque - insert or remove an element in a queue

USAGE
struct qelem {

} ;

struct qelem *q_forw;
struct qelem *q_back;
char q_data[];

insque(elem, pred)
struct qelem *elem, *pred;

remque(elem)
struct qelem *elem;

DESCRIPTION
Insque and rem que manipulate queues built from doubly linked lists. Each element
in the queue must be in the form of struct qelem. Insque inserts elem in a queue
immediately after pred; remque removes an entry elem from a queue.

Revision 01 3-33

MALLOC(3) DOMAIN/IX BSD4.2 MALLOC(3)

NAME
malloc, free, realloc, calloc, alloca - memory allocator

USAGE
char *malloc(size)
unsigned size;

free(ptr)
char *ptr;

char *realloc(ptr, size)
char *ptr;
unsigned size;

char *calloc(nelem, elsize)
unsigned nelem, elsize;

char *alloca(size)
int size;

DESCRIPTION

3-34

Malloc and free provide simple, general-purpose memory allocation functions. Malloc
returns a pointer to a block of at least size bytes that begins on a word boundary.

The argument to free is a pointer to a block previously allocated by malloc; this space
is made available for further allocation, but its contents are left undisturbed.

Malloc maintains multiple lists of free blocks according to size, allocating space from
the appropriate list. It calls sbrk (see brk(2» to get more memory from the system
when there is no ~uitable space already free.

Realloc changes the size of the block to which ptr points, to size bytes and returns a
pointer to the (possibly moved) block. The contents will be unchanged, up to the
lesser of the new and old sizes.

In order to be compatible with older versions, realloc also works if ptr points to a
block freed since the last call of malloc, realloc, or calloc; sequences of free, malloc,
and realloc have been used in the past to attempt storage compaction. This procedure
is no longer recommended.

Calloc allocates space for an array of nelem elements of size elsize. The space is ini­
tially filled with zeros.

Revision 01

Cj

o

MALLOC(3) DOMAIN/IX BSD4.2 MALLOC(3)

Alloca allocates size bytes of space in the stack frame of the caller. This temporary
space is automatically freed on return.

Each of the allocation routines returns a pointer to space suitably aligned for storage of
any type of object.

N()TES
In previous versions of DOMAIN/lX, malloc incorrectly added space for a terminal
null when allocating storage for a string. This behavior has changed at this release.
Malloc no longer allocates the extra byte of storage, so programs that failed to allow
for the null at the end of a string are likely to fail with a reference to an illegal
address.

If the space assigned by malloc is overrun, or if a random number is handed to free,
problems will result.

When realloc returns zero, the block that ptr points to may be destroyed.

Alloca is machine-dependent; its use is discouraged.

DIAGN()STICS
Malloc, realloc and calloc return a null pointer (zero), if there is no available memory,
or if the arena has been detect ably corrupted by storing outside the bounds of a block.

RELATED INF()RMATION
brk(2), sbrk(2), environ(7)

Revision 01 3-35

MKTEMP(3) DOMAIN/IX BSD4.2

NAME
mktemp - make a unique filename

USAGE
char *mktemp(template)
char *template;

DESCRIPTION

MKTEMP(3)

Mktemp generates and returns the address of a unique, usually temporary, filename
based on template. The template should look like a filename with six trailing Xs, for
example

t = mktemp("/tmp/tfXXXXXX");

The XS will be replaced with the current process ID and a unique letter.

NOTES
It is possible to run out of letters.

RELATED INFORMATION
getpid(2)

3-36 Revision 01

(--,\
I

\,-..•.. "'~

\'"

o

C)

PERROR(3) DOMAIN/IX BSD4.2

NAME
perror, sys_errlist, sys_nerr - system error messages

USAGE
perror(s)

char *s;

int sys_nerr;
char *sys_errlist[];

DESCRIPTI()N

PERROR(3)

Perror produces a short error message on the standard error file that describes the
error that a C program encountered during its most recent call to the system. The
argument string s is printed first, followed by a colon, the message, and a new-line.
The argument string is the name of the program that caused the error. The error
number is taken from the external variable errno, which is set when errors occur.

The vector of message strings, sys_errlist, is provided to simplify the message for­
mats. Use errno as an index into this table to get the message string without the new­
line. Sys_nerr is the number of messages provided for in the table; it should be
checked, because new error codes may be added to the system before they are added
to the table.

NOTES
Errno is only set when an error occurs. It is not cleared when a valid call is made.

RELATED INFORMATION
psignal(3)

Revision 01 3-37

POPEN(3) DOMAIN/IX BSD4.2 POPEN(3)

NAME
popen, pclose - initiate I/O to and from a process

USAGE
#include <stdio.h>

FILE *popen(command, type)
char· *command, *type;

pclose(stream)
FILE *stream;

DESCRIPTI()N
The . arguments to popen are pointers to null-terminated strings that contain a shell
command line and an I/O mode, respectively. The I/O mode is either "r" for reading
or "w" for writing. Popen creates a pipe between the calling process and the com~
mand to be executed. The value returned is a stream pointer that can be used (as
appropriate) to write to the standard input of the command or read from its standard
output.

A stream opened by popen should be closed by pclose, which waits for the process
associated with it to terminate and returns the exit status of the command.

Because open files are shared, an "r" command may act as an input filter, and a "w"
as an output filter.

NOTES
Buffered reading before opening an input filter may leave the standard input of that
filter in the wrong position. Similar problems with an output filter may be forestalled
by careful buffer flushing with fflush; see fclose(3).

Popen always calls sh, never csh.

DIAGNOSTICS
Popen returns a null pointer if files or processes cannot be created, or if the shell can­
not be accessed.

Pclose returns -1 if stream is not associated with a command opened by popen.

RELATED INF()RMATION
pipe(2), fopen(3S), fclose(3S), system(3), wait(2), sh(l)

3-38 Revision 01

I

\
'"

('I
\ i ""--

o

o

o

PSIGNAL(3) DOMAIN/IX BSD4.2

NAME
psignal, sys_siglist - system signal messages

USAGE
psignal(sig, s)
unsigned sig;
char *s;

char *sys_siglist[];

DESCRIPTION

PSIGNAL(3)

Psignal produces a short message on the standard error file describing the indicated
signal. The message consists of the argurpent string s, a colon, the name of the signal,
and a newline. In practice, S is usually the name of the program that incurred the sig­
nal. The signal number should be one of those found in /usr/include/signal.h.

A vector of message strings, sys_siglist, is provided to simplify variant fonnatting of
signal names. The signal number can be used as an index into this table to get the
signal name without the newline. The "define NSIG" defined in signal.h is the
number of messages provided for in the table; it should be checked, because assign­
ment of signals to numbers may change, and new signals may be added to the system
before they are added to the table.

RELATED INFORMATION
sigvec(2), perror(3)

Revision 01 3-39

QSORT(3) DOMAIN/IX BSD4.2 QSORT(3)

NAME
qsort - quicker sort

USAGE
qsort(base, nel, width, compar)
char *base;
int (*compar)();

DESCRIPTION
Qsort is an implementation of a quicker-sort algorithm. The first argument is a
pointer to the base of the data; the second is the number of elements; and the third is
the width of an element in bytes.

The last argument is the name of the comparison routine to be called; the routine is
called with two arguments that are pointers to the two elements being compared. The
routine must return an integer less than, equal to, or greater than zero, depending on
whether the first argument (i.e., the first element being compared) is to be considered
less than, equal to, or greater than the second.

RELATED INFORMATION
sort(l)

3-40 Revision 01

,,--,/

C)

o

o

RANDOM (3) DOMAIN/IX BSD4.2 . RANDOM (3)

NAME
random, srandom, initstate, setstate - better random number generator and associ­
ated routines

USAGE
long random()

srandom(seed)
int seed;

char *initstate(seed, state, n)
unsigned seed;
char * state;
int n;

char *setstate(state)
char *state;

DESCRIPTION
Random implements a non-linear additive feedback random number generator. It uses
a default table of 31 long integers to return successive pseudo-random numbers in the
range from 0 to 231

- 1. The period of this random number generator is very large,
approximately 16*(231_1).

Randomlsrandom have (almost) the same calling sequence and initialization proper­
ties as rand/srand. The difference is that rand(3) produces a much less random
sequence - in fact, the low dozen bits generated by rand go through a cyclic pattern.
All the bits generated by random are usable. For example,

random()&01

will produce a random binary value.

Unlike srand, srandom does not return the old seed, because the amount of state
information used is much more than a single word. (Two other routines are provided
to deal with restarting/changing random number generators). Like rand(3), however,
random will produce a sequence of numbers that can be duplicated by calling sran­
dom with 1 as the seed.

The initstate routine allows a state array, passed in as an argument, to be initialized
for future use. The size of the state array (in bytes) is used by initstate to decide how
sophisticated a random number generator it should use - the more state, the better the
random numbers will be. (Current "optimal" values for the amount of state informa­
tion are 8, 32, 64, 128, and 256 bytes; other amounts will be rounded down to the

Revision 01 3-41

RANDOM(3) DOMAIN/IX BSD4.2 RANDOM (3)

nearest known amount. Using less than 8 bytes will cause an error). The seed for the
initialization (which specifies a starting point for the random number sequence and
provides for restarting at the same point) is also an argument. Initstate returns a
pointer to the previous state information array.

Once a state has been initialized, the setstate routine provides for rapid switching
between states. Setstate returns a pointer to the previous state array; its argument
state array is used for further random number generation until the next call to initstate
or setstate.

Once a state array has been initialized, it may be restarted at a different point, either
by calling initstate (with the desired seed, the state array, and its size) or by calling
both setstate (with the state array) and srandom (with the desired seed). The advan­
tage of calling both setstate and srandom is that the size of the state array does not
have to be remembered after it is initialized.

With 256 bytes of state information, the period of the random number generator is
greater than 269

, which should be sufficient for most purposes.

NOTES
Random is about two thirds as fast as rand(3C). However, random does produce a
more random number or numbers.

DIAGNOSTICS
If initstate is called with less than 8 bytes of state information, or if setstate detects
that the state information has been garbled, error messages are printed on the standard
error output.

RELATED INFORMATION
rand(3C)

3-42 Revision 01

I~"'\\

o

o

o

REGEX(3) DOMAIN/IX BSD4.2 REGEX (3)

NAME
re_comp, re_exec - regular expression handler

USAGE
char *re_comp(s) char *s;

re_exec(s) char *s;

DESCRIPTION
Re_comp compiles a string into an internal fonn suitable for pattern matching.
Re_exec checks the argument string against the last string passed to re_comp.

Re_comp returns zero if the string s was compiled successfully; otherwise it returns a
string containing an error message. If re_comp is passed zero or a null string, it
returns without changing the currently compiled regular expression.

Re_exec returns 1 if the string s matches the last compiled regular expression, zero if
the string s failed to match the last compiled regular expression, and -1 if the compiled
regular expression was invalid (indicating an internal error).

A string passed to either re_comp or re_exec may have trailing or embedded newline
characters, and is null-terminated. With that exception, recognized regular expressions
are the ones described in the manual entry for ed(1).

DIAGNOSTICS
Re_exec returns -1 for an internal error.

Re_comp returns one of the following strings if an error occurs:

No previous regular expression,
Regular expression too long
unmatched \(
missing]
too many \(\) pairs
unmatched \)

RELATED INFORMATION
ed(1), ex(1), grep(1), sed(1)

Revision 01 3-43

SCANDIR(3) DOMAIN/IX BSD4.2 SCANDIR(3)

NAME
scandir - scan a directory

USAGE
#include <sys/types.h>
#include <sys/dir.h>

scandir(dirname, namelist, select, compar)
char *dirname;
struct direct *(*namelist[]);
int (*select)();
int (*compar)();

alphasort(dl, d2)
struct direct **dl, **d2;

DESCRIPTION
Scandir reads the directory dirname and builds (using malloc(3») an array of pointers
to directory entries. It returns the number of entries in the array and a pointer to the
array through name list .

The select parameter is a pointer to a user-supplied subroutine that scandir calls to
select the entries to be will be included in the array. The select routine is passed a
pointer to a directory entry, and should return a non-zero value if the directory entry is
to be included in the array. If select is null, then all the directory entries will be
included.

The compar parameter is a pointer to a user-supplied subroutine that is passed to
qsort(3) to sort the completed array. If this pointer is null, the array is not sorted.
Alphasort is a routine which can be used for the compar parameter. It sorts the array
alphabetically.

The memory allocated for the array can be deallocated with free (see malloc(3)) by
freeing each pointer in the array and then the array itself.

DIAGNOSTICS
Returns -1 if the directory cannot, be opened for reading or if malloc(3) cannot allocate
enough memory to hold all the data structures.

RELATED INFORMATION
directory(3), malloc(3), qsort(3),

3-44, Revision 01

o

/-......
(\
V

o

~.

u

o

SETJMP(3) DOMAIN/IX BSD4.2 SETJMP(3)

NAME
setjrnp, longjrnp - non-local goto

USAGE
#include <setjrnp.h>

setjrnp(env)
jrnp_buf env;

longjrnp(env, val)
jrnp_buf env;

_setjrnp(env)
jrnp_buf env;

_Iongjrnp(env, val)
jrnp_buf env;

DESCRIPTION

-I

These routines are useful for dealing with errors and interrupts encountered in a low­
level subroutine of a program.

Setjrnp saves its stack environment in env for later use by longjrnp. It returns a value
of zero.

Longjrnp restores the environment saved by the last call of setjrnp. It then returns in
such a way that execution continues, as if.the call of setjrnp had just returned the
value val to the function that invoked setjrnp. Setjrnp itself must not have returned in
the interim. All accessible data has values as of the time longjrnp was called.

Setjrnp and longjrnp save and restore the signal mask sigsetrnask(2), while _setjrnp
and _Iongjrnp manipulate only the stack and registers.

RELATED INFORMATION
sigvec(2), sigstack(2), signal(3C)

Revision 01 3-45

SETUID (3) DOMAIN/IX BSD4.2 SETUID(3)

NAME
setuid, seteuid, setruid, setgid, setegid, setrgid - set user and group ID

USAGE
setuid(uid)
seteuid(euid)
setruid(ruid)

setgid(gid)
setegid(egid)
setrgid(rgid)

DESCRIPTION
Setuid (setgid) sets both the real and effective user ID (group ID) of the current pro­
cess to the ID specified in the function.

Seteuid (setegid) sets the effective user ID (group ID) of the current process.

Setruid (setruid) sets the real user ID (group ID) of the current process.

Only the super-user may use these calls, unless the argument is the real or effective ID
of the caller. .

DIAGNOSTICS
Zero is returned if the user (group) ID is set; -1 is returned otherwise.

RELATED INFORMATION
setreuid(2), setregid(2),getuid(2), getgid(2)

3-46 Revision 01

,r--" (,

'- -- -

r-".
I
\.~ ... ,

o

o

SLEEP(3) DOMAIN/IX BSD4.2

NAME
sleep - suspend execution for interval

USAGE
sleep(seconds)
unsigned seconds;

DESCRIPTION

SLEEP(3)

Sleep suspends the current process from execution for the prescribed number of
seconds. The actual suspension time may be up to 1 second less than that requested,
since scheduled wakeups occur at fixed I-second intervals, which may be further
extended by an arbitrary amount because of other system activity.

The routine is implemented by setting an interval timer and pausing until it times out.
The previous state of this timer is saved and restored. If the sleep interval requested
exceeds the time remaining on the previous timer, the process sleeps only until that
timer times out (the signal is sent 1 second later).

RELATED INFORMATION
setitimer(2), sigpause(2)

Revision 01 3-47

STRING (3) DOMAIN/IX BSD4.2 STRING(3)

NAME
strcat, strncat, strcmp, strncmp, strcpy, strncpy, strlen, index, rindex - string
operations

USA(;E
#include <strings.h>

char *strcat(sl, s2)
char *sl, *s2;

char *strncat(sl, s2, n)
char *sl, *s2;

strcmp(sl, s2)
char *sl, *s2;

strncmp(sl, s2, n)
char *sl, *s2;

char *strcpy(sl, s2)
char *sl, *s2;

char *strncpy(sl, s2, n)
char *sl, *s2;

strlen(s)
char *s;

char *index(s, c)
char *s, c;

char *rindex(s, c)
char *s, c;

DESCRIPTION

3-48

These functions operate on null-tenninated strings. They do not check for overflow of
any receiving string.

Strcat appends a copy of string s2 to the end of string sl. Strncat copies at most n
characters. Both return a pointer to the null-tenninated result.

Revision 01

('-,
\ , ,_./

o

o

STRING (3) DOMAIN/IX BSD4.2 STRING(3)

Strcmp compares its arguments and returns an integer greater than, equal to, or less
than zero, according to whether sl is lexicographically greater than, equal to, or less
than s2. Strncmp makes the same comparison but looks at a maximum of ncharac­
ters.

Strcpy copies string s2 to sl, stopping after the null character has been moved.
Strncpy copies exactly n characters, truncating or null-padding s2; the target may not
be null-terminated if the length of s2 is n or more. Both return sl.

Strlen returns the number of non-null characters in s.

Index (rindex) returns a pointer to the first (last) occurrence of character c in string s,
or zero if c does not occur in the string.

Revision 01 3-49

SWAB(3)

NAME
swab - swap bytes

USAGE
swab(from, to, nbytes)
char *from, *to;

DESCRIPTION

DOMAIN/IX BSD4.2 SWAB(3)

Swab copies nbytes bytes from a place pointed to by from to the position specified by
to, exchanging adjacent even and odd bytes. It is useful when moving binary data
among various machines.

N()TES
Nbytes should be even.

3-50 Revision 01

(-~'"

\''',,"--0'/'

(~
I
\,

o
SYSTEM (3S) DOMAIN/IX SYS5

NAME
system - issue a shell command

USAGE
system(string)
char *string;

DESCRIPTION

SYSTEM (3S)

System causes string to be sent to sh(l) as input, as if string had been typed at a shell
prompt by a user. The current process waits until the shell has completed, then returns
the exit status of the shell. r",

'--./ DIAGNOSTICS

~\

U

C)

Exit status 127 indicates that the shell couldn't be executed.

RELATED INFORMATION
sh(I), exec(2)

Revision 01 3-51

TTYNAME(3) DOMAIN/IX BSD4.2 TTYNAME(3)

NAME
ttyname, isatty - find name of a tenninal

USA(;E
char *ttyname(filedes)

isatty(jiledes)

DESCRIPTION
Ttyname returns a pointer to the null-tenninated pathname of the tenninal device asso­
ciated with file descriptor jiledes (this is a system file descriptor and has nothing to do
with the standard I/O FILE typedet).

Isatty returns 1 if jiledes is associated with a tenninal device; otherwise, it 'returns
zero.

NOTES
The return value points to static data whose content is overwritten by each call.

FILES
/dev/*

DIA(;NOSTICS

various devices

Ttyname returns a null pointer (zero) if jiledes does not describe a tenninal device in
directory /dev.

RELATED INFORMATION
ioctl(2)

3-52 Revision 01

" J \, .

//"- -,
I

" '--

,~,

o
VALLOC (3) DOMAIN/IX BSD4.2

NAME
valloc - aligned memory allocator

USAGE
char *valloc(size)
unsigned size;

DESCRIPTION

VALLOC (3)

Valloc allocates size bytes, aligned on a page boundary. It is implemented by calling
malloc(3) with a slightly larger request, saving the true beginning of the block allo­
cated, and returning a properly aligned pointer.

r---'\
U DIAGNOSTICS

o

o

Valloc returns a null pointer (zero) if there is no available memory, or if the arena has
been detect ably corrupted by storing outside the bounds of a block.

Revision 01 3-53

VARARGS(3) DOMAIN/IX BSD4.2 VARARGS(3)

NAME
varargs - variable argument list

USAGE
#inelude <varargs.h>

function (va_alist)
va_del
va_list pvar;
va_start(pvar);
f = va_arg(var, type);
va_end(pvar);

DESCRIPTION
This set of macros provides a way to write portable procedures that accept variable
argument lists. Routines with variable argument lists (such as printf(3» that do not
use varargs are inherently difficult to port, since different machines use different
argument-passing conventions.

Va_start(pvar)

is used in 'a function header to declare a variable argument list.

is a declaration for va_alist. Note that there is no semicolon
after va_del.

is a type that can be used for the variable pvar, which is used to
traverse the list. One such variable must always be declared.

is called to initialize pvar to the beginning of the list.

Va_arg(pvar, type) will return the next argument in the list pointed to by pvar.
Type is the expected type of the argument. Different types can
be mixed, but the routine should know what type of argument is
expected, since it cannot be determined at runtime.

is used to finish up.

Multiple traversals, each bracketed by va_start ... va_end, are possible.

NOTES

3-54

It is up to the calling routine to determine how many arguments there are, since it is
not possible to determine this from the stack frame. For example, exeel passes a zero
to signal the end of the list. Printf can tell from the fonnat how many arguments are
supposed to be there.

Revision 01
c'

C)

o

o

o

VARARGS(3) DOMAIN/IX BSD4.2

EXAMPLE
#inc1ude <varargs.h>
execl(va_alist)
va_del
(

va_list ap;
char *file;
char *args[100];
int argno = 0;

va_start(ap);
file = va_arg(ap, char *);
while (args[argno++] = va_arg(ap, char *»

va_end(ap);
return execv(file, args);

Revision 01

VARARGS(3)

3-55

INTRO(3C) DOMAIN/IX BSD4.2 INTRO(3C)

NAME
intro - introduction to compatibility library functions

DESCRIPTION
These functions constitute a compatibility library. They are part of tUb/cUb, and are
automatically loaded as needed by the C compiler cc(l). Many of these routines have
been rendered obsolete by newer ones. They are included here so that older programs
will compile and run, but their use in new programs should, for the most part, be
avoided. Manual entries for "obsolete" functions also name the newer, preferred,
function.

LIST OF FUNCTIONS
Name Appears on Page Description

alann alann.3c schedule signal after specified time
ftime time.3c get date and time
getpw getpw.3c get name from uid
gtty stty.3c set and get tenninal state (defunct)
nice nice.3c set program priority
pause pause.3c stop until signal
rand rand.3c random number generator
signal signal.3c simplified software signal facilities
srand rand.3c random number generator
stty stty.3c set. and get tenninal state (defunct)
time time.3c get date and time
times times.3c get process times
utime utime.3c set file times

3-56 Revision 01

Cj

o

o

ALARM(3C) DOMAIN/IX BSD4.2

NAME
alarm - schedule signal after specified time (obsolete)

USAGE
alarm(seconds)
unsigned seconds;

DESCRIPTION
This interface has been made obsolete by setitimer(2).

ALARM(3C)

Alarm causes the signal SIGALRM (see signal(3C», to be sent to the invoking pro­
cess after the number of seconds specified by the argument. Unless caught or ignored
by the program, the signal terminates the process.

Alann requests are not stacked; successive calls reset the alarm clock. If seconds is
set to zero, any pending alann request is cancelled. Because of scheduling delays,
when the signal is caught, the program may not resume execution immediately. The
largest legal value for seconds is 2147483647.

RETURN VALUE
The return value is the amount of time remaining until any alann that may have been
pending.

RELATED INFORMATION
sigpause(2), sigvec(2), signal(3C), sleep(3)

Revision 01 3-57 .

1'0.

" ---

GETPW(3C) DOMAIN/IX BSD4.2

NAME
getpw - get name from user ID (obsolete)

USAGE
getpw(uid, buj)
char *buj;

DESCRIPTI()N
Getpw has been made obsolete by getpwuid(3).

GETPW(3C)

Getpw searches the password file for the (numeric) uid and fills in buj with the
corresponding null-terminated line; it returns non-zero if uid is not found.

FILES
/etc/passwd the password file

DIAGNOSTICS
Returns non-zero on an error.

RELATED INFORMATION
getpwent(3)

3-58 Revision 01

/,--.......~.

\". __ ._-/

o

o

o

NICE (3C) DOMAIN/IX BSD4.2 NICE(3C)

NAME
nice - set program priority (obsolete)

USAGE
nice(incr)

DESCRIPTION
This interface has been made obsolete by setpriority(2).

The amount incr increases the scheduling priority of the process. Positive priorities
get less service than nonnal. Priority 10 allows long-running programs to operate
without adversely affecting the entire system's perfonnance.

The priority is limited to the range -20 (most urgent) to 20 (least).

The priority of a process passes to a child process spawned by fork (2). To recall a
privileged process to nonnal priority from an unknown state, call nice with arguments
-40 (goes to priority -20 because of truncation), 20 (to get to zero), then zero succes­
sively.

RELATED INFORMATION
nice(l), setpriority(2), fork(2), renice(8)

Revision 01 3-59

___ t'o

PAUSE(3C)

NAME
pause - stop until signal

USAGE
pause()

DESCRIPTI()N

DOMAIN/IX BSD4.2 PAUSE(3C)

Pause never returns nonnally. It causes a program to give up control and wait for a
signal from kill(2) or an interval timer; see setitimer(2). When a signal handler that
was started during a pause tenninates, the pause call will return.

RETURN VALUE
This function always returns -1.

ERRORS
Pause always sets errno to:

[EINTR] The call was interrupted.

RELATED INFORMATION
kill(2), select(2), sigpause(2)

3-60 Revision 01

',,-....• /

!~
I

\ /

o

o

RAND(3C) DOMAIN/IX BSD4.2

NAME
rand, srand - random number generator (obsolete)

USAGE
srand(seed)
int seed;

rand()

DESCRIPTION

RAND (3C)

The newer random(3) should be used in new applications; rand remains for compati­
bility.

Rand uses a multiplicative congruential random number generator with period 232 to
return successive pseudo-random numbers in the range from 0 to 231_1.

The generator is reinitialized by calling srand with 1 as argument. It can be set to a
random starting point by calling srand with any integer as an argument.

RELATED INFORMATION
random(3)

Revision 01 3-61

SIGNAL(3C) DOMAIN/IX BSD4.2 SIGNAL (3C)

NAME
signal - simplified software signal facilities

USAGE
#include <signal.h>

(*signal(sig, func)()
void (*func)();

DESCRIPTION

3-62

Signal is a simplified interface to the more general sigvec(2) facility.

A signal is generated by some abnormal event, initiated by a user at a terminal (quit,
interrupt; stop), by a program error (bus error, etc.), by request of another program
(kill), or when a process is stopped because it wishes to access its control tenninal
while in the background (see tty(4». Signals are optionally generated when a process
resumes after being stopped, when the status of child processes changes, or when input
is ready at the control tenninal. Most signals cause termination of the receiving pro­
cess if no action is taken; some signals instead cause the process receiving them to be
stopped, or are simply discarded if the process has not requested otherwise. The SIG­
KILL and SIGSTOP signals cannot be caught or ignored. Signal allows all other sig­
nals to be ignored, or to generate an interrupt to a specified location. The following is
a list of all signals with names as in the include file <signal.h>:

SIGHUP 1
SIGINT 2
SIGQUIT 3
SIGILL 4
SIGTRAP 5
SIGIOT 6
SIGEMT 7
SIGFPE 8
SIGKILL 9
SIGBUS 10
SIGSEGV 11
SIGSYS 12
SIGPIPE 13
SIGALRM 14
SIGTERM 15
SIGUSRI 16
SIGUSR2 17
SIGCLD 18
SIGAPOLLO 19
SIGSTOP 20t

hang-up
interrupt
quit
illegal instruction
trace trap
lOT instruction
EMT instruction
floating-point exception
kill (cannot be caught, blocked, or ignored)
bus error
segmentation violation
bad argument to system call
write on a pipe with no one to read it
alarm clock
software tennination signal
user-defined signal 1
user-defined signal 2
death of a child
DOMAIN System fault with no UNIX equivalent
stop, cannot be caught, held, or ignored

Revision 01

C:

o

o

o

SIGNAL (3C)

SIGTSTP 21t
SIGCONT 22-
SIGCHLD 23-
SIGTTIN 24t
SIGTTOU 25t
SIGIO 26
SIGTINT 26
SIGXCPU 27
SIGXFSZ 28
SIGVTALRM 29
SIGPROF 30
SIGURG 31-

DOMAIN/IX BSD4.2

stop signal generated from keyboard
continue after stop
child status has changed
background read attempted from control terminal
background write attempted to control tenninal
I/O is possible on a descriptor
input record is available at control terminal
cpu time limit exceeded
file size limit exceeded
virtual time alarm
profiling timer alarm
urgent condition present on socket

SIGNAL(3C)

If June is SIG_DFL, the default action for signal sig is reinstated. This default is ter­
mination, except for signals marked with - or t. Signals marked with - are discarded
if the action is SIG_DFL; signals marked with t cause the process to stop. If June is
SIG_IGN, the signal is subsequently ignored and pending instances of the signal are
discarded. Otherwise, when the signal occurs further occurrences of the signal are
automatically blocked and June is called.

A' return from the function unblocks the handled signal and continues the process at
the point it was interrupted. Unlike previous signal facilities, the handler June remains
installed after a signal has been delivered.

During certain system calls, if a caught signal occurs and the call tenninates prema­
turely, the call is automatically restarted. In particular, this can occur during a read or
write(2) on a slow device (such as a terminal) and during a wait(2).

The value of signal is the previous (or initial) value of June for the particular signal.

After a fork(2) or vfork(2) the child inherits all signals. Execve(2) resets all signals
caught to the default action; ignored signals are not affected.

NOTES
DOMAIN systems send the signal SIGAPOLLO whenever a fault occurs that is not
otherwise mapped into a signal. Typical generators of SIGAPOLLO include network
failures, display-acquire timeouts, and disk full errors.

The handler routine can be declared:

handler(sig, code, sep)

Here sig is the signal number, into which the hardware faults and traps are mapped as
defined below. Code is a 32-bit value; one of the values listed above or, if the signal is
SIGAPOLLO, the DOMAIN System status code describing the fault. To generate a

Revision 01 3-63

SIGNAL (3C) DOMAIN/IX BSD4.2 SIGNAL(3C)

list of DOMAIN System status codes and brief explanations of their meanings, run the
command /systest/ssr _utii/aIl_stcode. Scp is a pointer to the struct sigcontext used
by the system to restore the process context from before the signal. Compatibility
mode faults are distinguished from the other SIGILL traps by having PSL_ CM set in
the psI.

The following defines the mapping of hardware traps to signals and codes. All of
these symbols are defined in <signal.h>:

Hardware condition

Arithmetic traps:
Integer overflow
Integer division by zero
Floating overflow trap
Floating/decimal division by zero
Floating underflow trap
Decimal overflow trap
Subscript-range
Floating overflow fault
Floating divide by zero fault
Floating underflow fault

Length access control
Protection violation
Reserved instruction
Customer-reserved instr.
Reserved operand
Reserved addressing
Trace pending
Bpt instruction

Signal

SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIG~PE

SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGSEGV
SIGBUS
SIGILL
SIGEMT
SIGILL
SIGILL
SIGTRAP
SIGTRAP

Code

FPE_INTOVF _TRAP
FPE_INTDIV _TRAP
FPE_FLTOVF _TRAP
FPE_FLTDIV _TRAP
FPE_FLTUND_TiU\P
FPE_DECOVF _TRAP
FPE_SUBRNG_TRAP
FPE_FLTOVF _FAULT
FPE_FLTDIV _FAULT

, FPE_FLTUND_FAULT

ILL_PRIVIN_FAULT
ILL_RESOP _FAULT

RETURN VALUE
The previous action is returned on a successful call. Otherwise, -1 is returned and
errno is set to indicate the error.

ERRORS

3-64

Signal will fail and no action will take place if one of the following occur:

[EINVAL]

[EINVAL]

Sig is not a valid signal number.

An attempt is made to ignore or supply a handler for SIGKILL or SIG­
STOP.

[EINVAL] An attempt is made to ignore SIGCONT (by default SIGCONT is
ignored).

Revision 01

~\

\,. /'

SIGNAL (3C) DOMAIN/IX BSD4.2 SIGNAL(3C)

C)
RELATED INFORMATION

kill(I), kill(2), sigvec(2), sigblock(2), sigsetrnask(2), sigpause(2) sigstack(2),
setjrnp(3), tty(4)

o

o

o
Revision 01 3-65

STTY(3C) DOMAIN/IX BSD4.2

NAME
stty, gtty - set/get tenninal state (obsolete)

USAGE
#include <sgtty.h>

stty(fd, buj)
int fd;
struct sgttyb * buf;

gtty(fd, buj)
int fd;
struct sgttyb *buf;

DESCRIPTI()N
This interface has been made obsolete by ioctl(2).

STTY(3C)

Stty sets the state of the tenninal associated with fd. (;tty retrieves the state of the
tenninal associated with fd. To set the state of a tenninal, the call must have write
pennission.

The stty call is actually

ioctl(fd, TIOCSETP, buj)

and the gUy call is

ioctl(fd, TIOC(;ETP, buj)

See ioctI(2) and tty(4) for explanations.

RETURN VALUE
A successful call returns. zero. A failed call returns' -1 and sets errno.

RELATED INFORMATION
ioctl(2)

3-66 Revision 01

/"""--.....,
,I

1\. __ . ../.,

o

\ 0
_-"

o

o

o

TIME(3C) DOMAIN/IX BSD4.2 TIME(3C)

NAME
time, ftime - get date and time (obsolete)

USAGE
long time(O)

long time(tloc)
long *tloc;

#include <sys/types.h>
#include <sys/timeb.h>
ftime(tp)
struct timeb *tp;

DESCRIPTION
These interfaces have been made obsolete by gettimeofday(2).

Time returns the time since 00:00:00 GMT, Jan. 1, 1970, measured in seconds.

If tloc is nonnull, the return value is also stored in the place to which tloc points.

The ftime entry fills in a structure pointed to by its argument, as defined by
<sys/timeb.h>:

struct time b
{

};

time_t time;
unsigned short millitm;
short timezone;
short dstflag;

The structure contains the time since the epoch in seconds, up to 1000 milliseconds of
more-precise interval, the local time zone (measured in minutes of time westward from
Greenwich), and a flag that, if nonzero, indicates that Daylight Saving time applies
locally during the appropriate part of the year.

RELATED INFORMATION
date(1), gettimeofday(2), settimeofday(2), ctime(3C)

Revision 01 3-67

TIMES(3C) DOMAIN/IX BSD4.2 TIMES(3C)

NAME
times - get process times

USAGE
#include <sys/types.h>
#include <sys/times.h>

times(buffer)
str~ct tms *buffer;

DESCRIPTION
Times returns time-accounting infonnation for the current process and for any ter­
minated child processes of the current process. All times are in 11HZ seconds, where
HZ is 60.

This is the structure returned by times:

struct tms {

} ;

time_t tms_utime;
time_t tms_stime;
time_t tms_cutime;
time_t tms_cstime;

/* user time * /
/* system time * /
/* user time, children * /
/* system time, children * /

The "children" times are the sum of the children's process times and their children's
times.

On DOMAIN Systems, the system time is always returned as. 0, since it is considered
part of the user time.

RELATED INFORMATION
time(I), wait3(2), time(3c)

3-68 Revision 01

1/' ... - \

I

'\,,-_ .•. /

C)

o

o

o

UTIME(3C) DOMAIN/IX BSD4.2

NAME
utime - set file times (obsolete)

USAGE
#include <sys/types.h>

utime(jile, timep)
char *jile;
time_t timep[2];

DESCRIPTION
This interface has been made obsolete by utimes(2).

UTIME(3C)

The utime call uses the "accessed" and "updated" times in that order from the timep
vector to set the corresponding recorded times for file.

The caller must be the owner of the file or the super-user. The "inode-changed" time
of the file is set to the current time.

RELATED INFORMATION
utimes(2), stat(2)

Revision 01 3-69

INTRO{3M) DOMAIN/IX BSD4.2 INTRO{3M)

NAME
intro - introduction to mathematical library functions

DESCRIPTION
These math functions are a part of llib/clib. Declarations for these functions may be
obtained from the include file <.math.h>.

LIST OF FUNCTIONS
Name Appears on Page Description

acos sin.3m trigonometric functions
as in sin.3m trigonometric functions
atan sin.3m trigonometric functions
atan2 sin.3m trigonometric functions
cabs hypot.3m Euclidean distance
ceil floor.3m absolute value, floor, ceiling functions
cos sin.3m trigonometric functions
cosh sinh.3m hyperbolic functions
exp exp.3m exponential, logarithm, power, square root
fabs floor.3m absolute value, floor, ceiling functions
floor floor.3m absolute value, floor, ceiling functions
gamma gamma.3m log gamma function
hypot hypot.3m Euclidean distance
jO jO.3m bessel functions
jl jO.3m bessel functions
jn jO.3m bessel functions
log exp.3m exponential, logarithm, power, square root
log10 exp.3m exponential, logarithm, power, square root
pow exp.3m exponential, logarithm, power, square root
sin sin.3m trigonometric functions
sinh sinh.3m hyperbolic functions
sqrt exp.3m exponential, logarithm, power, square root
tan sin.3m trigonometric functions
tanh sinh.3m hyperbolic functions
yO jO.3m bessel functions
yl jO.3m bessel functions
yn jO.3m bessel functions

3-70 Revision 01

o

o

o

o

EXP(3M) DOMAIN/IX BSD4.2 EXP(3M)

NAME
exp, log, loglO, pow, sqrt - exponential, logarithm, power, square root

USAGE
#include <math.h>

double exp(x)
double X;

double log(x)
double X;

double loglO(x)
double X;

double pow(x, y)
double X, y;

double sqrt(x)
double X;

DESCRIPTION
Exp returns the exponential function of x.

Log returns the natural logarithm of X; loglO returns the base 10 logarithm.

Pow returns xY•

Sqrt returns the square root of x.

DIAGNOSTICS
When the correct value would overflow, exp and pow return HUGE and sets errno to
ERANGE.

Pow returns zero and sets errno to EDaM when the second argument is negative and
not an integer, and when both arguments are zero.

Log returns zero when X is zero or negative; errno is set to EDaM.

Sqrt returns zero when X is negative; errno is set to EDaM.

RELATED INFORMATION
hypot(3M), sinh(3M).

Revision 01 3-71

FLOOR(3M) DOMAIN/IX BSD4.2

NAME-
fabs, floor, ceil- absolute value, floor, ceiling functions

USAGE
#include <math.h>

double floor(x)
double X;

double ceil(x)
double X;

double fabs(x)
double X;

DESCRIPTION
Fabs returns the absolute value I X I.

Floor returns the largest integer not greater than x.

Ceil returns the smallest integer not less than x.

RELATED INFORMATION
abs(3)

3-72

FLOOR(3M)
,----~

/ \
I

" " ~ --.",./

Revision 01

o

o

o

o

GAMMA(3M) DOMAIN/IX BSD4.2

NAME
gamma - log gamma function

USAGE
#include <math.h>

double gamma(x)
double x;

DESCRIPTION

GAMMA(3M)

Gamma returns In I r(I x I) I. The sign of r(I x I) is returned in the external integer
signgam.

EXAMPLE
The following C program might be used to calculate r:

y = gamma(x);
if (y > 88.0)

errorO;
y = exp(y);
if(signgam)

y =-y;

DIAGNOSTICS
HUGE is returned for negative integer arguments.

NOTES
There is no positive indication of error.

Revision 01 3-73

HVPOT(3M) DOMAIN/IX BSD4.2

NAME
hypot, cabs - Euclidean distance

USAGE
#include <math.h>

double hypot(x, y)
double x, y;

double cabs(z)
struct { double x, y;} z;

DESCRIPTION
Hypot and cabs return

sqrt(x*x + y*y),

The functions include allowances for unwarranted overflows.

RELATED INFORMATION
exp(3M)

3-74

,

HVPOT(3M)

c'
Revision 01

o

C)

o

o

o

JO(3M) DOMAIN/IX BSD4.2

NAME
jO, jl, jn, yO, yl, yn - Bessel functions

USAGE
#include <math.h>

double jO(x)
double X;

double jl(x)
double x;

double jn(n, x)
double x;

double yO(x)
double x;

double yl(x)
double x;

double yn(n, x)
double x;

DESCRIPTION

JO (3M)

These functions calculate Bessel functions of the first and second kinds for real argu­
ments and integer orders.

DIAGNOSTICS
Negative arguments cause yO, yl, and yn to return -HUGE and set errno to EDaM.

Revision 01 3-75

SIN (3M) DOMAIN/IX BSD4.2 '

NAME
sin, cos, tan, asin, acos, atan, atan2 - trigonometric functions

USAGE
#include <math.h>

double sin(x)
double X;

double cos(x)
double X;

double tan(x)
double X;

double asin(x)
double X;

double acos(x)
double X;

double atan(x)
double X;

double atan2(x, y)
double X, y;

DESCRIPTION

SIN (3M)

Sin, cos, and tan return trigonometric functions of radian arguments. The magnitude
of the argument should be checked by the caller to make sure the result is meaningful.

Asin returns the arcsine in the range -1t/2 to 1t/2.

Acos returns the arccosine in the range zero to 1t.

Atan returns the arctangent of X in the range -1t/2 to 1t/2.

Atan2 returns the arctangent of x/y in the range -1t to 1t.

NOTES
The value of tan for arguments greater than about 231 is meaningless.

3-76 Revision 01

(~
")
\........../

o

C)

SIN(3M) DOMAIN/lX BSD4.2 SIN (3M)

DIAGNOSTICS
Arguments of magnitude greater than one cause asin and acos to return value zero;
errno is set to EDOM. The value of tan at its singular points is HUGE, and errno is
set to ERANGE.

Revision 01 3-77

SINH(3M) DOMAIN/IX BSD4.2

NAME
sinh, cosh, tanh - hyperbolic functions

USAGE
#include <math.h>

double sinh(x)

double cosh(x)
double x;

double tanh(x)
double x;

DESCRIPTION
These functions compute the specified hyperbolic functions for a real x.

DIAGNOSTICS
Sinh and cosh return +/- HUGE when the correct value would overflow.

3-78

SINH(3M)

Revision 01

"'------, (\

., .. _._ ,;'

.~
\ .

\._'

INTRO(3N) DOMAIN/IX BSD4.2 INTRO(3N)

o
NAME

intro - introduction to network library functions

DESCRIPTION
This section describes functions that are applicable to the DARPA Internet network.

LIST OF FUNCTIONS
Name Appears on Page Description

endhostent gethostent.3n get network host entry
endnetent getnetent.3n get network entry
endprotoent getprotoent.3n get protocol entry
endservent getservent.3n get service entry
gethostbyaddr gethostent.3n get network host entry
gethostbyname gethostent.3n get network host entry
gethostent gethostent.3n get network host entry
getnetbyaddr getnetent.3n get network entry
getnetbyname getnetent.3n get network entry
getnetent getnetent.3n get network entry
getprotobyname getprotoent.3n get protocol entry
getprotobynumber getprotoent.3n get protocol entry
getprotoent getprotoent.3n get protocol entry
getservbyname getservent.3n get service entry
getservbyport getservent.3n get service entry
getservent getservent.3n get service entry
htonl byteorder .3n convert values between host

and. network byte order
htons byte order .3n convert values between host

and network byte order
inet_addr inet.3n Internet address manipulation routines
inet_lnaof inet.3n Internet address manipulation routines
inet_makeaddr inet.3n Internet address manipulation routines
inet_netof inet.3n Internet address manipulation routines
inet_network inet.3n Internet address manipulation routines
ntohl byteorder .3n convert values between host

and network byte order
ntohs byte order .3n convert values between host

and network byte order
sethostent gethostent.3n get network host entry
setnetent getnetent.3n get network entry
setprotoent getprotoent.3n get protocol entry
setservent getservent.3n get service entry

o
Revision 01 3-79

BYTEORDER (3N) DOMAIN/IX BSD4.2 BYTEORDER (3N)

NAME
htonl, htons, ntohl, ntohs - convert values between host and network byte order

USAGE
#include <sys/types.h>
#include <netinet/in.h>

netlong = htonl(hostlong);
u_long netlong, hostlong;

netshort = htons(hostshort);
u_short netshort, hostshort;

hostlong = ntohl(netlong);
u_long hostlong, netlong;

hostshort = ntohs(netshort);
u_short hostshort, netshort;

DESCRIPTION
These routines handle conversion of 16- and 32-bit quantities between network byte
order and host byte order. On some machines (including DOMAIN Systems), these
routines are defined as null macros in the include file <netinet/in.h>.

These routines are most often used in conjunction with Internet addresses and ports as
returned by gethostent(3N) and getservent(3N).

RELATED INFORMATION
gethostent(3N), getservent(3N)

3-80 Revision 01

(~

\, .. _ "

o

C)

o

o

GETHOSTENT (3N) DOMAIN/IX BSD4.2 GETHOSTENT (3N)

NAME
gethostent, gethostbyaddr, gethostbyname, sethostent, endhostent - get network
host entry

USAGE
#include <netdb.h>

struct hostent *gethostentO

struct hostent *gethostbyname(name)
char *name;

struct hostent *gethostbyaddr(addr, len, type)
char *addr;
int len, type;

sethostent(stayopen)
int stayopen

endhostentO

DESCRIPTION
Gethostent, gethostbyname, and gethostbyaddr all return a pointer to an object with
the following structure, which contains the separated fields of a line in the network
host database, letclhosts.

stnict hostent {

};

char *h_name;
char **h_aliases;
int h_addrtype;
int h_Iength;
char *h_addr;

1* official name of host *1
1* alias list *1
1* address type *1
1* length of address *1
1* address *1

The members of this structure are:

h_name

h_aliases

h_addrtype

h_Iength

Revision 01

Official name of the host.

A zero-terminated array of alternate names for the host.

The type of address being returned; currently always AF _INET.

The length, in bytes, of the address.

3-81

GETHOSTENT (3N) DOMAIN/lX BSD4.2 GETHOSTENT (3N)

A pointer to the network address for the host. Host addresses
are returned in network byte order.

Gethostent reads the next line of the file, opening the file if necessary.

Sethostent opens and rewinds the file. If the stayopen flag is non-zero, the host data­
base will not be closed after each call to gethostent (either directly, or indirectly
through one of the other "gethost" calls). .

Endhostent closes the file.

Gethostbyname and gethostbyaddr sequentially search from the beginning of the file
until a matching host name or host address is found, or until EOF is encountered.
Host addresses are supplied in network byte order.

NOTES
All information is kept in a static area, so it must be copied if you wish to save it.
These functions only understand the Internet address format.

FILES
/etc/hosts list of known host systems

DIAGNOSTICS
Null pointer (zero) returned on EOF or error.

RELATED INFORMATION
hosts(5)

3-82 Revision 01

(~~

'----

o

o

o

GETNETENT (3N) DOMAIN/IX BSD4.2 GETNETENT(3N)

NAME
getnetent, getnetbyaddr, getnetbyname, setnetent, endnetent - get network entry

USAGE
#include <netdb.h>

struct netent *getnetentO

struct netent *getnetbyname(name)
char *name;

struct netent *getnetbyaddr(net, addrtype)
long net;
int addrtype;

setnetent(stayopen)
int stayopen

endnetentO

DESCRIPTION
Getnetent, getnetbyname, and getnetbyaddr each return a pointer to an object with
the following structure, which contains the various fields of a line in the network data­
base, /ete/networks.

struct netent {

} ;

char *n_name;
char **n_aliases;
int n_addrtype;
long n_net;

/* official name of net * /
/* alias list * /
/* net number type*/
/* net number * /

The members of this structure are:

n_name

n_aliases

n_addrtype

Revision 01

The official name of the network.

A zero-terminated list of alternate names for the network.

The type of the network number returned; currently only
AF_INET.

The network number. Network numbers are returned in machine
byte order.

3-83

GETNETENT (3N) DOMAIN/lX BSD4.2 G ETNETENT (3N)

Getnetent reads the next line of the file, opening the file if necessary.

Setnetent opens and rewinds the file. If the stayopen flag is non-zero, the net database
will not be closed after each call to getnetent (either directly, or indirectly through one
of the other "getnet" calls).

Endnetent closes the file.

Getnetbyname and getnetbyaddr search sequentially from the beginning of the file
until a matching net name or net address is found or until EOF is encountered. Net­
work numbers are supplied in host order.

NOTES
All information is kept in a static area, so it must be copied if you wish to save it.
These functions only understand the Internet al1dress format. If addrtype is supplied, it
must be AF _!NET.

DIA(;NOSTICS
Null pointer (zero) returned on EOF or error.

FILES
/etc/networks database of reachable networks

3-84 Revision 01

o

o

~-" u

GETPROTOENT (3N) DOMAIN/IX BSD4.2 GETPROTOENT (3N)

NAME
getprotoent, getprotobynumber, getprotobyname, setprotoent, endprotoent - get
protocol entry

USAGE
#include <netdb.h>

struct protoent *getprotoentO

struct protoent *getprotobyname(name}
char *name;

struct protoent *getprotobynumber(proto}
int proto;

setprotoent(stayopen)
int stay open

endprotoentO

DESCRIPTION
Getprotoent, getprotobyname, and getprotobynumber each return a pointer to an
object with the following structure, which contains the fields of a line in the network
protocol database, /etc/protocols.

struct protoent {

};

char *p_name;
char - **p_aliases;
long p_proto;

/* official name of protocol * /
/* alias list * /
/* protocol number * /

The members of this structure are:

p_name

p_aIiases

p_proto

The official name of the protocol.

A zero-terminated list of alternate names for the protocol.

The protocol number.

Getprotoent reads the next line of the file, opening the file if necessary.

Revision 01 3-85

GETPROTOENT (3N) DOMAIN/IX BSD4.2 GETPROTOENT (3N)

Setprotoent opens and rewinds the file. If the stayopen flag is non-zero, the net data­
base will not close after each call to getprotoent (either directly or indirectly through
one of the other "getproto" calls).

Endprotoent closes the file.

Getprotobyname and getprotobynumber search sequentially, from the beginning of
the file, until a matching protocol name or number is found or until EOF is encoun­
tered.

NOTES
All information is kept in a static area, so you must copy it if you wish to save it.
These functions only understand the Internet protocol (IP).

DIAGNOSTICS
Null pointer (zero) returned on EOF or error.

FILES
/ etc/protocols database of available protocols

3-86 Revision 01

(,.,-,
'---,- '

o

o

GETSERVENT(3N) DOMAIN/IX BSD4.2 GETSERVENT(3N)

NAME
getservent, getservbyport, getservbyname, setservent, endservent - get service entry

USAGE
#include <netdb.h>

struct servent *getserventO

struct servent *getservbyname(name, proto)
char *name, *proto;

struct servent *getservbyport(port, proto)
int port;
char *proto;

setservent(stayopen)
int stayopen

endserventO

DESCRIPTION
Getservent, getservbyname, and getservbyport each return a pointer to an object
with the following structure, which contains the fields of a line in the network services
database, /etc/services.

struct servent {
char
char
long
char

} ;

*s_name;
**s_aliases;
s_port;
*s_proto;

/* official name of service * /
/* alias list * /
/* port service resides at * /
/* protocol to use */

The members of this structure are:

s_name

s_aliases

Revision 01

The official name of the service.

A zero-terminated list of alternate names for the service.

The port number at which the service resides. Port numbers are
returned in network-byte order.

The name of the protocol to use when contacting the service.

3-87

GETSERVENT (3N) DOMAIN/IX BSD4.2 GETSERVENT (3N)

Getservent reads the next line of the file, opening the file if necessary.

Setservent opens and rewinds the file. If the stayopen flag is non-zero, the net data­
base will not be closed after each call to getservent (either directly or indirectly
through one of the other "getserv" calls).

Endservent closes the file.

Getservbyname and getservbyport search sequentially , from the beginning of the
file, until a matching protocol name or port number is found or until EOF is encoun­
tered. If a protocol name is also supplied (non-NULL), searches must also match the
protocol.

N()TES
All information is kept in a static area, so you must copy it if you wish to save it.

DIA(;NOSTICS
Null pointer (zero) is returned on EOF or error.

FILES
/etc/services database of available services

RELATED INFORMATION
getprotoent(3N)

3-88 Revision 01

(~\
I I
\~ ,//

\.

,~ /

o

INET (3N) DOMAIN/lX BSD4.2 INET(3N)

NAME
inet_addr, inet_network, inet_ntoa, inet_makeaddr, inet_lnaof, inet_netof - Inter­
net address manipulation routines

USAGE
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

struct in_addr inet_addr(cp)
char *cp;

int inet_network(cp)
char *cp;

char *inet_ntoa(in)
struct inet_addr in;

struct in_addr inet_makeaddr(net, Ina)
int net, Ina;

int inet_lnaof(in)
struct in_addr in;

int inet_netof(in)
struct in_addr in;

DESCRIPTION
The routines inet_addr and inet_network interpret character strings that represent
numbers expressed in the Internet standard "." (dot) notation, and return numbers suit­
able for use as Internet addresses and Internet network numbers, respectively. The
routine inet_ntoa takes an Internet address and returns an ASCn string that represents
the address in "." notation. The routine inet_makeaddr takes an Internet network
number and a local network address and constructs an Internet address from it. The
routines inet_netof and inet_lnaof break apart Internet host addresses, and return the
network number and local network address part, respectively.

All Internet addresses are returned in network byte order. All network numbers and
local address parts are returned as machine-fonnat integer values.

Revision 01 3-89

INET(3N) DOMAIN/IX BSD4.2 INET(3N)

INTERNET ADDRESSES
Values specified using the "." notation take one of the following fonns:

a.b.c.d

a.b.c

a.b

a

When four parts are specified, each is intetpreted as a byte of data and
assigned, from left to right, to the four bytes of an Internet address.

When a three-part address is specified, the last part is intetpreted as a
16-bit quantity and placed in the rightmost two bytes of the network
address. This makes the three-part address fonnat convenient for speci­
fying Class B network addresses as "128 .net.host" .

When a two-part address is supplied, the last part is intetpreted as a 24-
bit quantity and placed in the rightmost three bytes of the network
address. This makes the two-part address fonnat convenient for specify­
ing Class A network addresses as "net.host".

When only one part is given, the value is stored directly in the network
address without any byte rearrangement.

All numbers supplied as "parts" in a "." notation may be decimal, octal, or hexade­
cimal, and are specified according to C language conventions. (I.e., a leading Ox or
OX implies hexadecimal; otherwise, a leading zero implies octal. Numbers without a
leading zero are intetpreted as decimal).

NOTES
The string returned by inet_ntoa resides in a static memory area that is overwritten.

DIAGNOSTICS
Inet_addr and jnet_network return the value -1 for erroneous requests.

RELATED INFORMATION
gethostent(3N), getnetent(3N)

3-90 Revision 01

~"\

\ ' ,,"

C'
___ .i

o

o

C)

o

o

SETUID(3) DOMAIN/IX BSD4.2 SETUID (3)

NAME
setuid, seteuid, setruid, setgid, setegid, setrgid - set user and group ID

USAGE
setuid(uid)
seteuid(euid)
setruid(ruid)

setgid(gid)
setegid(egid)
setrgid(rgid)

DESCRIPTION
Setuid (setgid) sets both the real and effective user ID (group ID) of the current pro-
cess to the ID specified in the function.

Seteuid (setegid) sets the effective user ID (group ID) of the current process.

Setruid (setruid) sets the real user ID (group ID) of the current process.

Only the super-user may use these calls, unless the argument is the real or effective
ID.

DIAGNOSTICS
Zero is returned if the user (group) ID is set; -1 is returned otherwise.

RELATED INFORMATION
setreuid(2), setregid(2), getuid(2), getgid(2)

Revision 01 3-91

INTRO(3S) DOMAIN/IX BSD4.2 INTRO (3S)

NAME
stdio - standard buffered input/output package

USAGE
#include <stdio.h>

FILE * stdin;
FILE *stdout;
FILE *stderr;

DESCRIPTION
The functions described in section 3S constitute a user-level buffering scheme. The
in-line macros getc and putc(3S) handle characters quickly. The higher level routines
gets, fgets, scanf, fscanf, fread, puts, fputs, printf, fprintf, fwrite all use getc and
putc; they can be freely intennixed.

A file with associated buffering is called a stream, and is declared to be a pointer to
the defined type FILE. Fopen(3S) creates certain descriptive data for a stream and
returns a pointer to designate the stream in all further transactions. There are three
nonnally open streams with constant pointers declared in the include file and associ­
ated with the standard open files:

stdin standard input file

stdout

stderr

standard output file

standard error file

The constant "pointer" NULL (0) designates no stream at all.

The integer constant EOF (-1) is returned upon end-of-file or error by integer functions
that deal with streams.

Any routine that uses the standard input/output package must include the header file
/usr/include/stdio.h, which contains pertinent macro definitions. The functions and
constants mentioned in sections labeled 3S are declared in the include file and need no
further declaration. The constants, and the following "functions," are implemented as
macros; they cannot be redeclared: getchar, putc, putchar, feof, ferror, fileno.

NOTES

3-92

The standard buffered functions do not interact well with certain other library and sys­
tem functions, especially vfork(2) and abort(2).

Revision 01

/~',

0

0

0

INTRO(3S) DOMAIN/IX BSD4.2 INTRO(3S)

DIAGNOSTICS
The value EOF is returned unifonnly to indicate that a FILE pointer has not been ini­
tialized with fopen, input (output) has been attempted on an output (input) stream, or
that a FILE pointer designates corrupt or otherwise unintelligible FILE data.

For purposes of efficiency, this implementation of the standard library has been
changed to line buffer output to a terminal by default. It attempts to do this tran­
sparently by flushing the output whenever a read(2) from the standard input is neces­
sary. This is almost always transparent, but may cause confusion or malfunctioning of
programs which use standard I/O routines but use read(2) themselves to read from the
standard input.

In cases where a large amount of computation is done after printing part of a line on
an output terminal, it is necessary to fftush(3S) the standard output before going off
and computing or else the output will not appear.

LIST OF FUNCTIONS
Name Appears on Page Description

clearerr ferror.3s stream status inquiries
fclose fclose.3s close or flush a stream
fdopen fopen.3s open a stream
feof ferror.3s stream status inquiries
ferror ferror.3s stream status inquiries
fflush fclose.3s close or flush a stream
fgetc getc.3s get character or word from stream
fgets gets.3s get a string from a stream
fileno ferror.3s stream status inquiries
fopen fopen.3s open a stream
fprintf printf.3s formatted output conversion
fputc putc.3s put character or word on a stream
fputs puts.3s put a string on a stream
fread fread.3s buffered binary input/output
freopen fopen.3s open a stream
fscanf scanf.3s formatted input conversion
fseek fseek.3s reposition a stream
ftell fseek.3s reposition a stream
fwrite fread.3s buffered binary input/output
getc getc.3s get character or word from stream
getchar getc.3s get character or word from stream
gets gets.3s get a string from a stream
getw getc.3s get character or word from stream
printf printf.3s formatted output conversion
putc putc.3s put character or word on a stream
putchar putc.3s put character or word on a stream

Revision 01 3-93

INTRO(3S)

puts
putw
rewind
scanf
setbuf
sprintf
sscanf
ungetc

puts.3s
putc.3s
fseek.3s
scanf.3s
setbuf.3s
printf.3s
scanf.3s
ungetc.3s

RELATED INFORMATION

DOMAIN/IX BSD4.2

put a string on a stream
put character or word on a stream
reposition a stream
fonnatted input conversion
assign buffering to a stream
fonnatted output conversion
fonnatted input conversion
push character back into input stream

open(2), c1ose(2), read(2), write(2), fread(3S), fseek(3S),

3-94

INTRO(3S)

\""

c
Revision 01

o

o

o

o

o

FCLOSE(3S) DOMAIN/IX BSD4.2 FCLOSE(3S)

NAME
fclose, fflush - close or flush a stream

USAGE
#include <stdio.h>

int fclose(stream)
FILE * stream;

int fflush(stream)
FILE *stream;

DESCRIPTION
Fclose forces any buffers for the named stream to be emptied, and the file to be
closed. Buffers allocated by the standard input/output system are freed.

Fclose is perfonned automatically upon a call to exit(2).

Fflush causes any buffered data for the named output stream to be written to that file.
The stream remains open. .

These functions return zero for success, and EOF if any errors were detected.

RELATED INFORMATION
close(2), fopen(3S), setbuf(3S).

Revision 01 3-95

FERROR(3S) DOMAIN/IX BSD4.2 FERROR (3S) .

NAME
ferror, feof, c1earerr ~ fileno - stream status inquiries

USAGE
#include <stdio.h>

feof(stream)
FILE *stream;

ferror(stream)
FILE * stream;

c1earerr(stream)
FILE * stream;

fileno(stream)
FILE *stream;

DESCRIPTION
Feof returns a non-zero indicator when end of file (EOF) is read on the input stream;
otherwise, it returns zero.

Ferror returns non-zero when an error has occurred in reading· or writing on the
named stream; if no error has occurred, it returns zero.

Clearerr resets the error indication on the named stream. Unless cleared by clearerr,
the error indication lasts until the stream is closed.

Fileno returns the integer file descriptor associated with the stream; see open(2).

These functions are implemented as macros; they cannot be redeclared.

RELATED INFORMATION
fopen(3S), open(2)

3-96 Revision 01

o

o

()

FOPEN(3S) DOMAIN/IX BSD4.2

NAME
fopen, freopen, fdopen - open a stream

USAGE
#include <stdio.h>

FILE *fopen(ftlename, type)
char *filename, *type;

FILE *freopen(filename, type, stream)
char *filename, *type;
FILE *stream;

FILE *fdopen(fildes, type)
char *type;

DESCRIPTION

FOPEN(3S)

Fopen opens filename and associates a stream with it. Fopen returns a pointer that
identifies the stream in later operations.

Type is a character string with one of the following values:

r , open for reading

w create for writing

a append: open for writing at end of file, or create for writing

In addition, each type may be followed by a plus sign (+) to have the file opened for
reading and writing. "r+" positions the stream at the beginning of the file, "w+"
creates or truncates it, and "a+" positions it at the end. Both reads and writes may be
used on read/write streams, with the limitation that an fseek, rewind, or reading an
end-of-file must be used between a read and a write, or between a write and a read.

Freopen substitutes the file named for the open stream. It returns the original value
of stream. The original stream is closed.

Freopen is typically used to attach the preopened constant names, stdin, stdout, and
stderr to specified files.

Fdopen associates a stream with a file descriptor obtained from open, dup, creat, or
pipe(2). The type of stream must agree with the mode of the open file.

Revision 01

FOPEN(3S) DOMAIN/IX BSD4.2 FOPEN(3S)

DIAGN()STICS
Fopen and freopen return a null pointer if filename cannot be accessed.

RELATED INFORMATION
open(2), fclose(3)

3-98 Revision 01

,~
I :
\~.'

()

o

o

()

o

FREAD(3S) DOMAIN/IX BSD4.2 FREAD(3S)

NAME
fread, fwrite - buffered binary input/output

USAGE
#include <stdio.h>

fread(ptr, sizeoj(*ptr), nitems, stream)
FILE * stream;

fwrite(ptr, sizeof(*ptr), nitems, stream)
FILE *stream;

DESCRIPTION
Fread reads, into an array referenced by ptr, nitems items of data of the type of *ptr
from the named input stream. It returns the number of items actually read.

If stream is stdin and the standard output is line-buffered, then any partial output line
will be flushed before any call is made to read(2) to satisfy the fread.

Fwrite appends a maximum of nitems of data of type *ptr beginning at ptr to the
named output stream. It returns the number of items actually written.

DIAGNOSTICS
Fread and fwrite return zero upon end of file (EOF) or error.

RELATED INFORMATION
read(2), write(2), fopen(3S), getc(3S), putc(3S), gets(3S), puts(3S), printf(3S),
scanf(3S)

Revision 01 3-99

FSEEK(3S) DOMAIN/IX BSD4.2

NAME
fseek, ftell, rewind - reposition a stream

USAGE
#include <stdio.h>

fseek(stream, offset, ptrname)
FILE *stream;
long offset;

long ftell(stream)
FILE * stream;

rewind(stream)

DESCRIPTION

FSEEK(3S)

Fseek sets the position of the next input or output operation on the stream. The new
position is set at offset bytes from the beginning, the current position, or the end of the
file, according to whether ptrname has been set to the value 0, 1, or 2, respectively.

Fseek cancels any of the effects of ungetc(3S).

Ftell returns the current value of the offset, in bytes, relative to the beginning of the
file associated with the named stream.

Rewind(stream) is equivalent to fseek(stream, OL, 0).

DIA(iNOSTICS
Fseek returns -Ion an unsuccessful seek.

RELATED INFORMATION
Iseek(2), fopen(3S)

3-100 Revision 01

o

GETC(38) DOMAIN/IX BSD4.2

NAME
getc, getchar, fgetc, getw - get character or word from stream

USAGE
#include <stdio.h>

int getc(stream)
FILE * stream;

int getcharO

int fgetc(stream)
FILE *stream;

int getw(stream)
FILE *stream;

DESCRIPTION
Getc returns the next character from the input stream.

GetcharO is identical to getc(stdin).

GETC (38)

The function fgetc operates like getc, and may be used to save object text.

Getw returns the next 32-bit integer word from the input stream. It returns the con­
stant EOF on end-of-file or error, but since that is a good integer value, feof and
ferror(3S) should be used to check the success of getw. Getw does not assume any
special alignment in the file.

NOTES
The EOF return from getchar is incompatible with that used in early versions (1-6) of
the UNIX System.

Because it is iinplemented as a macro, getc treats a stream argument with side effects
incorrectly. Specifically, "getc(*f++);" doesn't work the way you might expect.

DIAGNOSTICS
These functions return the integer constant EOF on end-of-file or upon read error. A
stop with message "Reading bad file" means an attempt has been made to read from a
stream that has not been opened for reading by fopen(3S).

Revision 01 3-101

GETC (3S) DOMAIN/IX BSD4.2

RELATED INFORMATION
fopen(3S), putc(3S), gets(3S), scanf(3S), fread(3S), ungetc(3S)

3-102

GETC(3S)

Revision 01

/'-----...,

\''--''''''

\',,, . -~

()

()

C)

GETS (3S) DOMAIN/IX BSD4.2

NAME
~ets, fgets - get a string from a stream

USAGE
#include <stdio.h>

char *gets(s)
char *s;

char *fgets(s, n, stream)
char *s;
FILE *stream;

DESCRIPTION

GETS (3S)

Gets reads a string into s from the standard input stream stdin. The string ends with a
newline character, which is replaced in s by a null character. Gets returns its argu­
ment.

Fgets reads at most n -1 characters from stream into the string s. It stops at the first
newline character, even if n characters have not yet been read. The last character read
into s is followed by a null character. Fgets returns its first argument.

NOTES
Gets deletes a newline from the string it reads; fgets keeps it.

DIAGNOSTICS
Gets and fgets return the constant pointer NULL on end-of-file or error.

RELATED INFORMATION
puts(3S), getc(3S), scanf(3S), fread(3S), ferror(3S)

Revision 01 3-103

PRINTF(3S) DOMAIN/IX BSD4.2 PRINTF(3S)

NAME
printf, fprintf, sprintf - fonnatted output conversion

USAGE
#include <stdio.h>

printf(format [, arg 1 ...)
char *format;

fprintf(stream, format [, arg 1 ...)
FILE *stream;
char *format;

sprintf(s, format [, arg 1 ...)
char * s, *format; .

DESCRIPTION

3-104

These functions write fonnatted output on a string or stream. Printf writes its output
on the standard output stream stdout. Fprintf writes its output on the named output
stream. Sprintf writes its "output," followed by a NULL character, into the string s. ,f-~

I,

The format argument to each of these functions controls conversion, fonnat, and print-
ing of the remaining arguments. Format is a character string that contains ordinary
characters and conversion specifiers. The ordinary characters are simply copied to the
output. Each conversion character is introduced by a % sign, and controls conversion
and printing of an argo

The first conversion specifier affects the first arg. The second conversion specifier
affects the second arg, and so on through an arbitrary number of conversion specifiers
and args

Following the %, a conversion specifier may include:

• An optional minus sign (-), which specifies left adjustment of the converted value
in the indicated field.

• An optional digit string specifying a field width; if the converted value has fewer
characters than the field width it will be blank-padded on the left (or right, if the
left-adjustment indicator has been given) to make up the field width; if the field
width begins with a zero, the value will be padded with zero instead of blanks. A
field width may be specified by an asterisk (*) instead of a digit string. In this
case, an integer arg supplies the field width.

• An optional period (.), which serves to separate the field width from the next digit
string.

Revision 01

o

o

o

PRINTF(3S) DOMAIN/IX BSD4.2 PRINTF(3S)

• An optional digit string specifying a precision (number of digits to appear after the
decimal point) for e- and f-conversion, or the maximum number of characters to be
printed from a string. A precision may also be specified as an asterisk (*) instead
of a digit string. In this case, an integer arg supplies the field width.

• an optional pound sign (#) specifying that the value should be converted to an
"alternate form." This option has no effect on c, d, S, and u conversions. For 0

conversions, the precision of the number is increased to force the first character of
the output string to a zero. For x(X) conversion, a non-zero result has the string
Ox (OX) prepended to it. For e, E, f, g, and G, conversions, the result will always
contain a decimal point, even if no digits follow the point (normally, a decimal
point only appears in the results of those conversions if a digit follows the decimal
point). For g and G conversions, trailing zeros are not removed from the result as
they would otherwise be.

• The character I, which specifies that a following d, 0, x, or u corresponds to a long
integer arg.

• One of the following characters, which indicates the type of conversion to be
applied.

d

o

The integer arg is converted to decimal notation.

The integer arg is converted to octal notation.

x The integer arg is converted to hexadecimal notation.

f

e

The float or double arg is converted to decimal notation in the style
[-Jddd.ddd where the number of d's after the decimal point is equal to the
precision specification for the argument. If the precision is missing, six
digits are given; if the precision is explicitly zero, no digits and no decimal
point are printed.

The float or double arg is converted in the style [-Jd.ddde±dd, where there
is one digit before the decimal point and the number after is equal to the
precision specification for the argument; when the precision is missing, six
digits are produced.

g The float or double arg is printed in style d, in style f, or in style e, which­
ever gives full precision in minimum space.

C The character ar g is printed.

S Arg is taken to be a string (character pointer) and characters from the string
are printed until a null character is encountered or until the number of char­
acters indicated by the precision specification is reached; however if the
precision is zero or missing, all characters up to a null are printed.

Revision 01 3-105

PRINTF(3S) DOMAIN/IX BSD4.2 PRINTF(3S)

u The unsigned integer arg is converted to decimal and printed. The result
will be in the range zero through 4294967295, the maximum value of an
unsigned int.

% Print a percent sign (%); no argument is converted.

In no case does a non-existent or small field width cause truncation of a field; padding
takes place only if the specified field width exceeds the actual width. Characters gen­
erated by printf are printed by putc(3S).

EXAMPLES
To print a date and time in the form "Sunday, July 3, 10:02", where weekday and
month are pointers to null-terminated strings: ("-,

',-.. /

printf("%s, %s %d, %02d:%02d", weekday, month, day, hour, min);

To print 1t to 5 decimal places:

printf("pi = %.5f', 4*atan(1.0»;

RELATED INFORMATION
putc(3S), scanf(3S), ecvt(3)

3-106 Revision 01

.~,
I

\ " . '--

PUTC (3S) DOMAIN/IX BSD4.2

NAME
pute, putehar, fpute, putw - put character or word on a stream

USAGE
#include <stdio.h>

int pute(c, stream)
char c;
FILE * stream;

putehar(c)

fputc(c, stream)
char c;
FILE *stream;

putw(w, stream)
FILE *stream;

PUTC (3S)

~\ DESCRIPTION
U The macro Pute appends the character c to the named output stream. It returns the

character written.

Putehar(c) is defined as pute(c, stdout).

Fpute behaves like pute, but is a function rather than a macro.

Putw appends word (i.e., int) w to the output stream. It returns the word written.
Putw neither assumes nor causes special alignment in the file.

NOTES
Because it is implemented as a macro, pute treats a stream argument with side effects
improperly. In particular, "pute(e, *f++);" doesn't work correctly.

An error generated by a pute call can appear long after the erroneous call is executed.

DIAGNOSTICS
These functions return the constant EOF upon error. Since this is a good integer, you
must use ferror(3S) to detect putw errors.

RELATED INFORMATION
fopen(3S), fclose(3S), gete(3S), puts(3S), printf(3S), fread(3S)

Revision 01 3-107

PUTS (3S) DOMAIN/IX BSD4.2

NAME
puts, fputs - put a string on a stream

USAGE
#include <stdio.h>

puts(s)
char *s;

fputs(s, stream)
char *s;
FILE *stream;

DESCRIPTI()N

PUTS (3S)

Puts copies the null-tenninated string s to the standard output stream stdout and
appends a newline character.

Fputs copies the null-tenninated string s to the named output stream.

Neither routine copies the terminal null character.

RELATED INFORMATION
fopen(3S), gets(3S), putc(3S), printf(3S), ferror(3S), fread(3S)

3-108 Revision 01

/~-'"'
i I

.......... __ ._ . .l

o

o

o

o

SCANF(3S) DOMAIN/IX BSD4.2 SCANF (3S)

NAME
scanf, fscanf, sscanf - fonnatted input conversion

USAGE
#include <stdio.h>

scanf(format [,pointer 1 ...)
char *format;

fscanf(stream, format [,pointer 1 ...)
FILE * strealn;
char *format;

sscanf(s, format [,pointer 1 ...)
char * s, *format;

DESCRIPTION
Scanf reads from the standard input stream stdin. Fscanf reads from the named input
stream. Sscanf reads from the character string s. Each function reads characters,
interprets them according to the prescribed format, and stores the results in its argu­
ments. Each expects as arguments a control string format, described below, and a set
of pointer arguments that indicate where the converted input should be stored.

The control string usually contains conversion specifications, which are used to direct
interpretation of input sequences. The control string may contain:

• Blanks, tabs, or newlines, which match optional white space in the input.

• An ordinary character (not %) which must match the next character of the input
stream.

• Conversion specifications, consisting of the percent character (%), an optional
assignment-suppressing asterisk character (*), an optional numerical maximum field
width, and a conversion character.

A conversion specification controls conversion of the next input field; the result is
placed in the variable that the corresponding argument points to, unless assignment
suppression, indicated by an asterisk (*), is specified. An input field is defined as a
string of non-space characters; it extends to the next inappropriate character or until
the field width, if specified, is exhausted.

The conversion character indicates the interpretation of the input field; the correspond­
ing pointer argument must usually be of a restricted type. The following conversion
characters are legal:

% a single % is expected in the input at this point; no assignment is done.

Revision 01 3-109

SCANF (3S) DOMAIN/IX BSD4.2 SCANF(3S)

3-110

d a decimal integer is expected; the corresponding argument should be an integer
pointer.

o an octal integer is expected; the corresponding argument should be an integer
pointer.

x a hexadecimal integer is expected; the corresponding argument should be an
integer pointer.

s a character string is expected; the corresponding argument should be a character
pointer pointing to an array of characters large enough to accept the string and
a terminating ''\D'', which will be added. The input field is terminated by a
space character or a newline.

c a character is expected; the corresponding argument should be a character
pointer. The normal skip over space characters is suppressed in this case; to
read the next non -space character, try "% 1 s " . If a field width is given, the
corresponding argument should refer to a character array. The indicated
number of characters is read.

e, f a floating point number is expected; the next field is converted accordingly and
stored through the corresponding argument, which should be a pointer to a
float. The input format for floating point numbers is an optionally signed
string of digits possibly containing a decimal point, followed by an optional
exponent field consisting of an E or e followed by an optionally signed integer.

indicates a string not to be delimited by space characters. The left bracket is
followed by a set of characters and a right bracket; the characters between the
brackets define a set of characters making up the string. If the first character is
not a circumflex ("), the input field is all characters until the first character not
in the set between the brackets; if the first character after the left bracket is ",
the input field is all characters until the first character that is in the remaining
set of characters between the brackets. The corresponding argument must point
to . a character array.

The conversion characters d, 0, and x may be capitalized or preceded by I to indicate
that a pointer to long rather than to int is in the argument list. Similarly, the conver­
sion characters e or f may be capitalized or preceded by I to indicate a pointer to dou­
ble rather than to float. The conversion characters d, 0, and x, with a preceding h,
indicate a pointer to short rather than to int.

The scanf functions return the number of successfully matched and assigned input
items. This can be used to decide how many input items were found. The constant
EOF is returned upon end of input. Note that this is different from zero, which means
that no conversion was done. If conversion was intended, a return of zero means it
did not take place due to an inappropriate character in the input.

Revision 01

,r---.,
(,

o

o

o

SCANF(3S) DOMAIN/lX BSD4.2

EXAMPLES
The following call

int i; float x; char name[50];
scanf("%d%f%s", &i, &x, name);

when presented with the following input line

25 54.32E-1 thompson

SCANF(3S)

will assign the value 25 to i, the value 5.432 to x, and place the string "thompson\O" in
name.

In another example, the call:

int i; float x; char name[50];
scanf("%2d%f%*d%[1234567890]", &i, &x, name);

given the input data

56789 0123 56a72

will assign 56 to i, 789.0 to x, skip "0123", and place the string "56\0" in name. The
next call to getchar will return "a".

NOTES
The success of literal matches and suppressed assignments can not be detennined
directly.

DIAGNOSTICS
The scanf functions return EO F on end of input, and a short count for missing or ille-
gal data items.

RELATED INFORMATION
atof(3), getc(3S), printf(3S)

Revision 01 3-111

SETBUF(3S) DOMAINjlX BSD4.2 SETBUF (3S)

NAME
setbuf, setbuffer, setlinebuf - assign buffering to a stream

USAGE
#include <stdio.h>

setbuf(stream, buj)
FILE *stream;
char *but;

setbuffer(stream, buf, size)
FILE *stream;
char *but;
int size;

setlinebuf(stream)
FILE *stream;

DESCRIPTION

3-112

Three types of buffering are available: unbuffered, block-buffered, and line-buffered.
When an output stream is unbuffered, infonnation appears on the destination file or
tenninal as soon as written; when it is block-buffered, many characters are saved up
and written as a block; when it is line-buffered, characters are saved up until a newline
is encountered or input is read from stdin. Fflush (see fclose(3S)) may be used to
force the block out early. Normally, all files are block-buffered. A buffer is obtained
from malIoc(3) upon the first getc(3S) or putc(3S) calion a file. If the standard
stream stdout refers to a terminal, the output is line-buffered. The standard stream
stderr is always unbuffered.

Setbuf is used after a stream has been opened, but before it is read or written. The
character array buf is used instead of an automatically allocated buffer. If but is the
constant pointer NULL, input/output will be completely unbuffered. A manifest con­
stant B U FS IZ tells how big an array is needed, as shown here.

char buf[BUFSIZ];

Set buffer , an alternate fonn of setbuf, is used after a stream has been opened, but
before it is read or written. The ·character array but whose size is determined by the
size argument is used instead of an automatically allocated buffer. If but is the con­
stant pointer NULL, input/output will be completely unbuffered.

Revision 01

o

o

SETBUF(3S) DOMAIN/IX BSD4.2 SETBUF(3S)

Setlinebuf is used to change stdout or stderr from block-buffered or unbuffered to
line-buffered. Unlike setbuf and setbuffer, it can be used at any time that the file
descriptor is active.

A file can be changed from unbuffered or line-buffered to block-buffered by using
freopen (see fopen(3S». A file can be changed from block-buffered or line-buffered
to unbuffered by using freopen followed by· setbuf with a buffer argument of NULL.

RELATED INFORMATI()N
fopen(3S), getc(3S), putc(3S), malloc(3), fclose(3S), puts(3S), printf(3S), fread(3S)

Revision 01 3-113

UNGETC(3S) DOMAIN/lX BSD4.2

NAME
ungetc - push character back into input stream

USAGE
#include <stdio.h>

ungetc(c, stream)
FILE * stream;

DESCRIPTION

UNGETC(3S)

Ungetc pushes the character c back into the named input stream. That character will
be returned by the next gete calion that stream. Ungete returns c.

One character of pushback is guaranteed, provided that something has been read from
the stream and the stream is actually buffered. Attempts to pute an EOF are rejected.

Fseek(3S) erases all memory of pushed-back characters.

DIAGNOSTICS
Ungetc returns EOF if it can't push a character back onto the named stream.

RELATED INFORMATION
gete(3S), setbuf(3S), fseek(3S)

3-114 Revision 01

o

r'1 Vi

o

o

o

VPRINTF (3S) DOMAIN/IX BSD4.2 VPRINTF (3S)

NAME
vprintf, vfprintf, vsprintf - print fonnatted output of a varargs argument list

USAGE
#include <stdio.h>
#include <varargs.h>

int vprintf(format, ap)
char *format;
va_list ap;

int vfprintf(stream, format, ap)
FILE *stream;
char *format;
va_list ap;

int vsprintf(s, format, ap)
char * s, *format;
va_list ap;

DESCRIPTION
Vprintf, vfprintf, and vsprintf are analogous to printf(3S), fprintf(3S), and
sprintf(3S) respectively, with one exception. Instead of being called with a variable
number of arguments, they are called with an argument list as defined by varargs(5).

EXAMPLE
The example on the next page demonstrates how vfprintf could be used to write an
error routine.

Revision 01 3-115

VPRINTF (38) DOMAIN/IX BSD4.2 VPRINTF (3S) \

#inc1ude <stdio.h>
#include <varargs.h>

/*
*
*
*
*/

error should be called like
error(function_name, fonnat, arg1, arg2 ...);

/* VARARGSO */
void
error(va_alist)
/* Note that the function_name and fonnat arguments cannot be
* separately declared because of the definition of varargs.
*/

va_del
(

va_list args;
char *fmt;

va_start(args);
/* print out name of function causing error * /
(void)fprintf(stderr, "ERROR in %s: ", va_arg(args, char *»;
fmt = va_arg(args, char *);
/* print out remainder of message * /
(void) vfprintf(fmt, args);
va_end(args);
(void)abort();

RELATED INFORMATION
vprintf(3X), varargs(5).

3-116 Revision 01

,~,

I

\.

\ '-_.-

C·
,..

C)

o

o

o

o

INTRO(3X) DOMAINjIX BSD4.2 INTRO(3X)

NAME
intro - introduction to miscellaneous library functions

DESCRIPTION
These functions constitute minor libraries and other miscellaneous run-time facilities.
They include device-independent plotting functions, terminal-independent screen
management routines for two dimensional non-bitmap display terminals, functions for
managing databases with inverted indexes, and sundry routines used in executing com­
mands on remote machines.

LIST OF FUNCTI()NS
Name Appears on Page Description

assert assert.3x program verification
curses curses.3x screen functions with "optimal" cursor motion
dbminit dbm.3x database subroutines
delete dbm.3x database subroutines
fetch dbm.3x database subroutines
firstkey dbm.3x database subroutines
initgroups initgroups.3x initialize group access list
nextkey dbm.3x database subroutines
rcmd rcmd.3x routines for returning a stream

to a remote command
rexec rexec.3x return stream to a remote command
rresvport rcmd.3x routines for returning a stream

to a remote command
ruserok rcmd.3x routines for returning a stream

to a remote command
store dbm.3x database subroutines
tgetent termcap.3x terminal independent operation routines
tgetftag termcap.3x terminal independent operation routines
tgetnum termcap.3x terminal independent operation routines
tgetstr termcap.3x terminal independent operation routines
tgoto termcap.3x terminal independent operation routines
tputs termcap.3x terminal independent operation routines

Revision 01 3-117

· .. -----_.- ----_._---_._----_ _ ... - .. __ •..•.

ASSERT (3X) DOMAIN/IX BSD4.2 ASSERT(3X)

NAME
assert - program verification

USAGE
#include <sdtio.h>
#include <assert.h>

assert(expression)

DESCRIPTION
Assert is a macro that indicates that expression is expected to be true at this point in
the program. It causes an exit(2) with a diagnostic comment on the standard output
when expression is false (zero). Compiling with the cc(l), option -DNDEBUG
effectively deletes assert from the program.

DIAGNOSTICS
"Assertion failed: file f line n".

3-118

F is the name of the source file, and n is the line
number of the assert statement in the source file.

Revision 01

i---'\
\, '_ ,'

c

o

o

o

CURSES (3X) DOMAINjlX BSD4.2 CURSES(3X)

NAME
curses - screen functions with optimized cursor motion

USAGE
cc [flags] files -Icurses -Itermcap [libraries]

DESCRIPTION
These routines provide a means of updating screens of dumb (and not-so-dumb) termi­
nals in a reasonably optimal way. The routines keep an image of the current screen,
and you set up an image of a new one. Then the refresh() tells the routines to make
the current screen look like the new one. In order to initialize the routines, the routine
initscr() must be called before any of the other routines that deal with windows and
screens are used. The routine endwin() should be called before exiting.

FUNCTIONS
addch(ch)
addstr(str)
box(win,vert,hor)
crmodeO
c1earO
c1earok(scr,boolj)
c1rtobotO
c1rtoeolO
delchO
deletelnO
delwin(win)
echoO
endwinO
eraseO
getchO
getca p(name)
getstr(str)
gettmodeO
getyx(win,y,x)
inchO
initscrO
insch(c)
insertinO
leaveok(win,boolj)
longname(termbuf,name)
move(y,x)
mvcur(lasty,lastx,newy,newx)
newwin(lines,cols,beginJ,begin_x)
nlO

Revision 01

add a character to stdscr
add a string to stdscr
draw a box around a window
set cbreak mode
clear stdscr
set clear flag for scr
clear to bottom on stdscr
clear to end of line on stdscr
delete a character
delete a line
delete win
set echo mode
end window modes
erase stdscr
get a char through stdscr
get tenninal capability name
get a string through stdscr
get tty modes
get (y,x) coordinates
get char at current (y ,x) coordinates
initialize screens
insert a char
insert a line
set leave flag for win
get long name from termbuj
move to (y,x) on stdscr
actually move cursor
create a new window
set newline mapping

3-119

CURSES (3X) DOMAIN/IX BSD4.2 CURSES(3X)

3-120

nocrmodeO
noechoO
nonlO
norawO
overlay(winl ,win2)
overwrite(winl,win2)
printw(jint,argl,arg2, ...)
rawO
refresh 0
resettyO
savettyO
scanw{jint,argl,arg2, ...)
scroll(win)
scrollok(win,booif)
seUerm(name)
standendO
standoutO
subwin(win,lines,cols,begin~,begin_x)
touchwin(win)
unctrl(ch)
waddch(win,ch)
waddstr(win,str)
wclear(win)
wclrtobot(win)
wclrtoeol(win)
wdelch(win,c)
wdeleteln(win)
werase(win)
wgetch(win)
wgetstr(win,str)
winch(win)
winsch(win,c)
winsertln{ win)
wmove(win,y,x)
wprintw(win,fmt,argl ,arg2, ...)
wrefresh(win)
wscanw(win,fmt,argl,arg2, ...)
wstandend(win)
wstandout(win)

unset cbreak mode
unset echo mode
unset new line mapping
unset raw mode
overlay winl on win2
overwrite winl on top of win2
printf on stdscr
set raw mode
make current screen look like stdscr
reset tty flags to stored value
stored current tty flags
scanf through stdscr
scroll win one line
set scroll flag
set term variables for name
end standout mode
start standout mode
create a subwindow
"change" all of win
printable version of ch
add char to win
add string to win
clear win
clear to bottom of win
clear to end of line on win
delete char from win
delete line from win
erase win
get a char through win
get a string through win
get char at current (y,x) in win
insert char into win
insert line into win
set current (y,x) coordinates on win
printf on win
make screen look like win
scanfthrough win
end standout mode on win
start standout mode on win

Revision 01

,) , ,-"/

~~.

('

o

o

o

o

o

CURSES (3X) DOMAIN/IX BSD4.2

RELATED INFORMATION
DOMAIN/IX Support Tools Guide
ioctl(2), getenv(3), tty(4)

Revision 01

CURSES (3X)

3-121

DBM (3X) DOMAINjlX BSD4.2

NAME
dbminit, fetch, store, delete, firstkey, nextkey - database subroutines

USAGE
typedef struct {

char *dptr;
int dsize;

} datum;

dbminit(file)
char *file;

datum fetch(key)
datum key;

store(key, content)
datum key, content;

delete(key)
datum key;

datum firstkeyO

datum nextkey(key)
datum key;

DESCRIPTION

DBM (3X)

These functions maintain key/content pairs in a database. The functions will handle
very large (a billion blocks) databases and will find a keyed item in one or two file ("

3-122

system accesses. You must link with libdbm.a, using the loader option -Idbm, to '~_,
access these functions.

The datum typedef decsribes the keys and contents. A datum specifies a string of
dsize bytes pointed to by dptr. Both arbitrary binary data and nonnal ASCII strings
are allowed. The database is stored in two files. One file is a directory containing a
bit map and has ".dir" as its suffix. The second file contains all data and has" .pag"
as its suffix.

Before you can access a database, you must open it with dbminit. At the time of this
call, the files file.dir and file.pag must exist. (An empty database is created by creat­
ing zero-length" . dir " and ".pag" files.)

Revision 01

c

o

o

o

o

DBM(3X) DOMAIN/IX BSD4.2 DBM(3X)

Once open, fetch accesses data stored under a key; store places data under a key.
Delete removes a key (and its associated contents). A linear pass through all keys in a
database may be made, in an (apparently) random order, by use of firstkey and next­
key. Firstkey will return the first key in the database. With any key, nextkey will
return the next key in the database.

EXAMPLE
This code will traverse the database:

for (key = firstkeyO; key.dptr != NULL; key = nextkey(key»

FILES
/ibdbm.a library of database routines

NOTES
The ".pag" file will contain holes; its apparent size is about four times larger than its
content. These files cannot be copied by normal means (cp, cat, tp, tar, ar) without
filling in the holes.

Dptr pointers returned by these subroutines point into static storage that subsequent
calls change.

The sum of the sizes of a key/content pair must not exceed the internal block size
(currently 1024 bytes). Moreover, all key/content pairs that hash together must fit on a
single block. Store will return an error if a disk block fills with inseparable data.

Delete does not physically reclaim file space, although it does make it available for
reuse.

The order of keys that firstkey and nextkey present depends on a hashing function.

DIAGNOSTICS
All functions that return an int on success indicate errors with negative values. A zero
return indicates that the function was successful. Routines that return a datum indi­
cate errors with a null (0) dptr.

Revision 01 3-123

INITGROUPS (3X) DOMAIN/IX BSD4.2

NAME
initgroups - initialize group access list

USAGE
initgroups(name, basegid)
char *name;
int basegid;

DESCRIPTION

INITGROUPS(3X)

Initgroups reads through the group file and sets up, using the setgroups(2) call, the
group access list for th~ user specified in name. The basegid is included automatically

/--"'<
. \

I I

\"--<"~/

in the groups list. Typically, this value is the group number from the password file. r----

NOTES
Initgroups uses the routines based on getgrent(3). If the invoking program uses any
of these routines, the group structure will be overwritten in the call to initgroups.

The Jete/group file must be kept up-to-date. On DOMAIN/IX Systems, the program
/etc/crpasswd handles this chore.

DIAGNOSTICS
Initgroups returns -1 if the process is not super-user.

FILES
Jete/group the group file

RELATED INFORMATION
setgroups(2), crpasswd(8)

3-124 Revision 01

o

o

o

C)

o

PLOT(3X) DOMAIN/IX BSD4.2 PLOT(3X)

NAME
openpl, erase, label, line, circle, arc, move, cont, point, linemod, space, closepl -
graphics interface

USAGE
openplO

eraseO

label(s)
char s[];

line(xl, yl, x2, y2)

circle(x, y, r)

arc(x, y, xO, yO, xl, yl)

move(x, y)

cont(x, y)

point(x, y)

linemod(s)
char s[];

space(xO,yO,xl,yl)

closepl()

DESCRIPTION
These subroutines generate graphic output in a relatively device-independent manner.
See p!ot(5) for a description of their effect. Openpl must be used before any of the
others to open the device for Wl:ting. Closepl flushes the output.

String arguments to label and linemod are null-tenninated and do not contain new­
lines.

Various flavors of these functions exist for different output devices. They are obtained
by the following Id(1) options:

-Iplot produce a device-independent graphics stream on standard output for
plot(l) filters

Revision 01 3-125

PLOT(3X) DOMAIN/IX BSD4.2 PLOT(3X)

-Igmr produce a DOMAIN 2D Graphics Metafile Resource (2DGl\1R) file.

FILES
libplot.a library of plotting functions

RELATED INF()RMATION
plot(5), plot(lG), graph(lG)

3-126 Revision 01

r---' r

\ '---/

o

o

o

RCMD(3X) DOMAIN/IX BSD4.2 RCMD(3X)

NAME
rcmd, rresvport, ruserok - routines for returning a stream to a remote conunand

USAGE
rem = rcmd(ahost, inport, loeuser, remuser, emd, fd2p);
char **ahost;
u_short inport;
char *loeuser, *remuser, *cmd;
int *fd2p;

s = rresvport(port);
int *port;

ruserok(rhost, superuser, ruser, luser);
char *rhost;
int superuser;
char *ruser, *luser;

DESCRIPTION
Rcmd is used by the super-user to execute a command on a remote machine using a
dubious authentication scheme based on reserved port numbers. Rresvport returns a
descriptor to a socket with an address in the privileged port space. Ruserok is used
by servers to authenticate clients requesting service with rcmd. All three functions are
present in the same file and are used by the rshd(8) server (among others).

Rcmd looks up the host *ahost using gethostbyname(3N). It returns -1 if the host
does not exist. Otherwise *ahost is set to the standard name of the host and a connec­
tion is established to a server residing at the well-known Internet port inport.

If the call succeeds, a socket of type SOCK_STREAM is returned to the caller, and
given to the remote command as stdin and stdout. If fd2p is non-zero, then an auxili­
ary channel to a control process will be set up, and a descriptor for it will be placed in
*fd2p. The control process will return diagnostic output from the conunand (unit 2)
on this channel, and will also accept bytes on this channel as being UNIX signal
numbers, which it forwards to the process group of the conun~.,d. If fd2p is zero, then
the stderr (unit 2 of the remote conunand) will be made the sam~ as the stdout and
no provision will be made for sending arbitrary signals to the remote process, although
you may be able to get its attention by using out-of-band data.

The protocol is described in detail in rshd(1M).

Revision 01 3-127

RCMD(3X) DOMAIN/IX BSD4.2 RCMD(3X)

The rresvport routine is used to obtain a socket with a privileged address bound to it.
This socket is suitable for use by rcmd and several other routines. Privileged
addresses consist of a port in the range zero to 1023. Only the super-user is allowed
to bind an address of this sort to a socket.

Ruserok takes a remote host's name, as returned by a gethostent(3N) routine, two
usernames and a flag indicating if the local username is the super-user. It then checks
the files /etc/hosts.equiv and, possibly, .rhosts in the current working directory (nor­
mally the local user's home directory) to see if the request for service is allowed. A 1
is returned if the machine name is listed in hosts.equiv, or the host and remote user­
name are found in the ruserok returns zero. If the superuser flag is 1, the check of
host.equiv is bypassed.

N()TES
There is no way to specify options to the socket call that rcmd makes.

RELATED INFORMATION
rlogin(l), rsh(1), rexec(3X), rexecd(8), rlogind(8), rshd(8)

3-128 Revision 01

~\ .
.... _-,,"

o

C)

o

o

o

REXEC (3X) DOMAIN/IX BSD4.2

NAME
rexec - return stream to a remote command

USAGE
rem = rexec(ahost, inport, user, passwd, emd, fd2p);
char **ahost;
u_short inport;
char *user, *passwd, *emd;
iot *fd2p;

DESCRIPTION

REXEC (3X)

Rexec looks up the host *ahost using gethostbyname(3N). It returns -1 if the host
does not exist. Otherwise *ahost is set to the standard name of the host. If a user­
name and password are both specified, then these are used to authenticate to the
foreign host; otherwise the environment and then the user's .netre file in the user's
home directory are searched for appropriate information. If all this fails, the user is
prompted for the information.

Inport specifies which well-known DARPA Internet port to use for the connection; it
will normally be the value returned from the call

getservbyname(exec, tcp)

(see getserveot(3N». The protocol for connection is described in detail in rexecd(8).

If the call succeeds, a socket of type SOCK_STREAM is returned to the caller, and
given to the remote conunand as stdin and stdout. If fd2p is non-zero, then a auxili­
ary channel to a control process will be set up, and a descriptor for it will be placed in
*fd2p. The control process will return diagnostic output from the conunand (unit 2)
on this channel, and will also accept bytes on this channel as being signal numbers to
be forwarded to the process group of the command. If fd2p is zero, then the stderr
(unit 2 of the remote conunand) will be made the same as the stdout, and no provision
will be made for sending arbitrary signals to the remote process, although you may be
able to get its attention by using out-of-band data.

NOTES
There is no way to specify options to the socket call that rexec makes.

RELATED INFORMATION
rcmd(3X), rexecdm(8)

Revision 01 3-129

TERMCAP (3X) DOMAIN/IX BSD4.2 TERMCAP(3X)

NAME
tgetent, tgetnum, tgetflag, tgetstr, tgoto, tputs - tenninal independent operation rou­
tines

USAGE
char PC;
char *BC;
char *UP;
short ospeed;

tgetent(bp, name)
char *bp, *name;

tgetnum(id)
char *id;

tgetflag(id)
char *id;

char *
tgetstr(id, area)
char *id, **area;

char *
tgoto(em, desteol, destline)
char *em;

tputs(ep, affent, oute)
register char * ep;
int affent;
int (* oute)();

DESCRIPTION

3-130

These functions extract and use entries from the tenninal capability database
/ete/termeap, described in termcap(5). These are low level routines; for a higher-level
package, see curses(3X).

Tgetent extracts the entry for tenninal name and puts it into the buffer pointed to by
bp. Bp should be a character buffer of size 1024 and must be retained through all sub­
sequent calls to tgetnum, tgetflag, and tgetstr. Tgetent returns -1 if it cannot open the
termcap file, zero if the tenninal name given does not have an entry, and 1 if all goes
well. It will look in the environment for a TERMCAP variable. If it finds one, and
the value does not begin with a slash, and the tenninal type name is the same as the

Revision 01

C~/

,r--" (,

\ " .. --.~ .. "

/"--"'\

(

',-"

o

o

o

TERMCAP (3X) DOMAIN/IX BSD4.2 TERMCAP(3X)

FILES

environment string TERM, it reads the TERM CAP string instead of termeap file. If it
does begin with a slash, it assumes the string is a pathname to be used instead of
/ete/termeap. This can speed up entry into programs that call tgetent, as well as to
help debug new terminal descriptions or to make one for your terminal if you can't
write on /ete/termeap.

Tgetnum gets the numeric value of entry id, returning -1 if it is not given for the ter­
minal. Tgetflag returns 1 if the specified capability is present in the terminal's entry,
zero if it is not. Tgetstr gets the string value of capability id, placing it in the buffer
at area, and advancing the area pointer. It decodes all abbreviations for this field
described in termcap(5) except for cursor addressing and padding information.

Tgoto returns a cursor addressing string decoded from em to go to column desteol in
line destline. It uses the external variables UP (from the up capability) and Be (if bc
is given rather than bs) if necessary to avoid placing \0, "D, or "@ in the returned
string. (Programs that call tgoto should tum off the XT ABS bit(s), since tgoto may
now output a tab. Programs using termcap should, in general, tum off XTABS since
some terminals use II for other functions, such as nondestructive space.) If an
incomprehensible % sequence is given, tgoto returns "OOPS".

Tputs decodes the leading padding information of the string ep; affent gives the
number of lines affected by the operation, or 1 if this is not applicable, outc is a rou­
tine which is called with each character in tum. The external variable os peed should
contain the output speed of the terminal as encoded by sUy(3). The external variable
PC should contain a pad character to be used (from the pc capability) if a null C@) is
inappropriate.

/usr/lib/libtermeap.a

/ete/termcap

library of termcap routines.

terminal capabilities database

RELATED INFORMATION
ex(1), vi(l), curses(3X), termcap(5)

Revision 01 3-131

INDEX (3) DOMAIN/IX BSD4.2 INDEX (3)

3-132

This is a topical index for Section 3 of the DOMAIN/IX Progra!"1mer's Reference
Manual for BSD4.2. For a pennuted index of all reference infonnation, see Appendix
A of this manual.

/etc/group file
/etc/tenncap
ASCII character classification
Bessel functions
I/O

3-124
3-130
3-15
3-75

buffered binary 3-99
standard buffered 3-92

Internet 3-79,3-129
Internet addresses 3-89
Shell commands, from a process 3-51
abort a process 3-8
absolute value, calculating 3-9
alarm process 3-57
argument list, variable 3-54, 3-115
bit string operations 3-11
buffered I/O 3-99
byte order conversions, between host and network3-80
byte string operations 3-11
byte swapping 3-50
calculations

hypoteneuse
log gamma

conversion
ASCII to numbers

3-74
3-73

3-10
between host and network order 3-80
fonnatting input 3-109
to ASCn 3-18

current working directory, get 3-32
cursor motion routines 3-119
databases

network
network services
subroutines for

date, convert to ASCII
directories

scanning
system calls to operate on
current working

effective and real IDs
encryption

3-83
3-87
3-122
3-13

3-44
3-16
3-32
3-46, 3-91
3-12

Revision 01

, i
"''--..... ./

\ ~ '

INDEX(3) DOMAIN/IX BSD4.2 INDEX (3)

0
environment list 3-25
environment name, get 3-25
error messages, system 3-37
exec 3-20
execution, suspending 3-47
exponent, to calculate 3-24
expression, assertion 3-118
fault 3-8
filenames, generating unique 3-36
files, execution of 3-20
group ID, setting 3-46, 3-91
group file 3-26

"..--. ... \ group file entry, getting 3-26 ()
"--'" linked lists 3-33

log gamma 3-73
log-in name, get 3-28
login 3-12
macros, ASCII character c1assification3-15
macros, argument list 3-54
mantissa, to calculate 3-24
mathematical functions

0 absolute value 3-72
Bessel 3-75
ceiling functions 3-72
exponents 3-71
floor 3-72
hyperbolic 3-78
logarithm 3-71
power 3-71

C) square root 3-71
trigonometric 3-76

memory allocation
aligned 3-53
subroutines for 3-34

messages, system signal 3-39
network

protocol entries 3-85
get entry 3-83
get host attributes 3-81
set host attributes 3-81

non-local goto 3-45
output conversion

formatting 3-104
to ASCII 3-18

0
Revision 01 3-133

INDEX(3) DOMAIN/IX BSD4.2 INDEX(3)

/-,,\
~ ..

~/

password 3-12
to read 3-29

password file 3-28, 3-30, 3-124
pause 3-60
pipes 3-38
process ID 3-36
process times, getting 3-68
process, terminate a 3-8, 3-23

suspend temporarily 3-47
program priority, changing 3-59
program verification 3-118
ptrace, and exect 3-20
queue, adding or removing elements 3-33 r-,\
random number generator 3-41, 3-61 (

'-_/
real and effective IDs 3-46, 3-91
regular expressions, handling 3-43
screen updates 3-119
sending a signal to a process 3-57
service entries, getting 3-87
signal 3-60
sorting 3-40
stack, save/restore 3-45 (',

standard I/O, introduction 3-92 \\

stream
get a string from 3-103
buffering 3-112
closing 3-95
errors on 3-96
flushing 3-95
get character or word from 3-101
opening 3-97

;'--""
I,

output to 3-104 '---~

putting a string on 3-108
putting character back onto input3-114
putting characters or words on 3-107
repositioning 3-100
returning to a remote command 3-127
status of 3-96

string operations 3-11, 3-48
swapping bytes 3-50
system signal messages 3-39
termcap 3-130
terminals

finding name of 3-52

r '-_.-/

3-134 Revision 01

INDEX(3) DOMAIN/IX BSD4.2 INDEX(3)

o
routines for independent operation of3-130

time, convert to ASCII 3-13
user ID 3-46, 3-58, 3-91
varargs 3-115

o

o

o
Revision 01 3-135

r~' ,-_."

CONTENTS (4) DOMAIN/IX BSD4.2 CONTENTS (4)

special files - introduction' to special files .. .4-1
mtio - tape device files ... 4-2
null - data sink .. ; ... 4-3
pty - pseudo tenninal driver ... 4-4
tty - general tenninal interface ... 4-6
networking - introduction to networking facilities .. .4-21
inet - Internet protocol frunily .. 4-26
arp - Address Resolution Protocol ... 4-27·
tcp - Internet Transmission Control Protocol .. 4-28
udp - Internet User Datagrrun Protocol ... 4-30

o

o
4-i

c

o

o

o

o

INTRO(4) DOMAIN/IX BSD4.2 INTRO(4)

NAME
special files - introduction to special files

DESCRIPTION
This section describes various special files found in the /dev directory. With a few
exceptions, these files are devices or pseudo-devices, and reside in the directory /dev.
On DOMAIN Systems, /dev is typically a link to 'node_data/dev.

Revision 01 4-1

MTIO(4) DOMAIN/IX BSD4.2 MTIO(4)

NAME
mtio - tape device files

DESCRIPT[()N

FILES

4-2

The files in /dev/r?t* refer to tape I/O devices. These files are created using the
/com/edmtdesc (edit magtape descriptor) command.

The block length associated with /dev/rmt* files is 1024 bytes. Cartridge tape
(/dev/rct*) files have a block length of 512 bytes. If you need to change the block
length (or change or examine any other parameter of a magtape descriptor file) use
/com/edmtdesc.

Tape device filenames are:

/dev/rmt8

/dev/rmt12

/dev/rct8

/dev/rct12

magtape, rewind on file close

magtape, no rewind on file close

cartridge tape, rewind on file close

cartridge tape, no rewind on file close

Revision 01

I,----~.

II- '
'-...-/

(~

"'-. _,

NULL(4) DOMAIN/IX BSD4.2 NULL (4)

o
NAME

null - data sink

DESCRIPTION
Data written on a null special file is discarded.

Reads from a null special file always return zero bytes.

FILES
/dev/null

o

C)

o

o
Revision 01 4-3

PTY(4) DOMAIN/IX BSD4.2 PTY (4)

NAME
pty - pseudo tenninal driver

USAGE
pseudo-device pty

DESCRIPTION

4-4

The pty driver provides support for a device-pair tenned a pseudo terminal. A pseudo
tenninal is a pair of character devices, a "master" device and a "slave" device. The
slave device provides processes with an interface identical to that described in tty(4).
However, whereas all other devices which provide the interface described in tty have
some hardware device behind them, the slave device has, instead, another process
manipulating it through the master half of the pseudo tenninal. That is, anything writ­
ten on the master device is given to the slave device as input and anything written on
the slave device is presented as input on the master device.

On DOMAIN/IX Systems, the program /etc/crpty creates pty pairs (see crpty(8». If
invoked with no optional "count," 16 pseudo tenninal pairs are configured.

The following ioctl(2) calls apply only to ptys:

TIOCSTOP Stops output to a tenninal (e.g. like typing "S). Takes no parameter.

TIOCSTART
Restarts output (stopped by TIOCSTOP or by typing "S). Takes no
parameter.

TIOCPKT Enable/disable packet mode. Packet mode is enabled by specifying (by
reference) a nonzero parameter and disabled by specifying (by refer­
ence) a zero parameter. When applied to the master side of a pseudo
terminal, each subsequent read(2) from the tenninal will return data
written on the slave part of the pseudo tenninal preceded by a zero byte
(symbolically defined as TIOCPKT _DATA), or a single byte reflecting
control status infonnation. In the latter case, the byte is an inclusive-or
of zero or more of the bits:

TIOCPKT _FLUSHREAD
whenever the read queue' for the tenninal is
flushed.

TIOCPKT _FLUSHWRITE

TIOCPKT _STOP

TIOCPKT _ST ART

whenever the write queue for the tenninal is
flushed.

whenever output to the tenninal is stopped
with a "S.

whenever output to the tenninal is restarted.

Revision 01

c

o

o

o

o

PTY(4) DOMAIN/IX BSD4.2 PTY (4)

FILES

TIOCPKT _DOSTOP whenever t_stope is "S and t_starte is "Q.

TIOCPKT _NOST()P whenever the start and stop characters are not
"S/"Q.

This mode is used by rlogin(1) and rlogind(8C) to implement a
remote-echoed, locally "S/"Q flow-controlled remote login with proper
back-flushing of output; it can be used by other similar programs.

TIOCREMOTE

/dev/pty[p-r] [O-9a-f]

/dev/tty[p-r] [O-9a-f]

A mode for the master half of a pseudo terminal, independent of
TIOCPKT. This mode causes input to the pseudo terminal to be
flow controlled and not input edited (regardless of the terminal
mode). Each write to the control terminal produces a record
boundary for the process reading the terminal. In normal usage,
a write of data is like the data typed as a line on the terminal; a
write of zero bytes is like typing an end-of-file character.
TIOCREMOTE can be used when doing remote line editing in a
window manager, or whenever flow-controlled input is required.

master pseudo terminals

slave pseudo terminals

Revision 01 4-5

TTY (4) DOMAIN/IX BSD4.2 TTY(4)

NAME
tty - general tenninal interface

USAGE
#include <sgtty.h>

DESCRIPTION
This manual entry normally describes the special file Idevltty, as well as the system's
terminal drivers. While DOMAIN Systems do not support Idevltty as such,
DOMAIN/IX software supports a large subset of the UNIX System tty interface over
SIO (Seriall/O) lines (fdevlsio*), in vt100 windows (DM windows controlled by the
leom/vtl00 process), and over pty(4), or pseudo-tty, connections. However, it is prob­
ably most common for users to log in to the Display Manager (DM) and transact their
business via a shell that echos standard input in an "input pad," writes output to a
"transcript pad," and, in general, supports only a small subset of tty functionality.

In this entry, we describe the abstract tty interface. Entries for specific devices
describe the subset of tty functionality that those devices support.

Note Any applicable "default" key bindings mentioned in this entry can be
put into effect for the DM by executing one of the Isysldmlbsd4.2_keys?
key definitions files.

Line Disciplines

4-6

There are two "line disciplines" that affect the handling of tty's:

old The old (standard) line discipline, used by Ibin/sh, and where needed for com­
patibility with older (version 7) UNIX systems.

new A newer tenninal driver, with features for job control required by the C Shell,
Ibin/esh.

Line discipline switching is accomplished with the TIOCSETD ioetl:

int Idise = LDISC;

ioetl(f, TIOCSETD, &Idise);

where LDISC is OTIYDISC for the standard tty driver or NTIYDISC for the new
driver. The standard (old) tty driver is discipline 0 by convention. The current line
discipline can be obtained with the TIOCGETD ioetl. Pending input is discarded
when the line discipline is changed.

Revision 01

(~
\.... __ .'

\.

o

o

(J

o

o

TTY(4) DOMAIN/IX BSD4.2 TTY(4)

All DOMAIN System serial communications ports can use either line discipline.

The Control Ter",inal
When a terminal file is opened, it causes the process to wait until a connection is esta­
blished. These files are typically opened by the login process and become the user's
standard input and output file.

If a process that has no control terminal opens a terminal file, then that terminal file
becomes the control terminal for that process. The control terminal is thereafter inher­
ited by a child process during a fork(2), even if the control terminal is closed.

The file /dev/tty is, in each process, a synonym for the "control terminal" associated
with that process. It is useful for programs that wish to be sure of writing messages
on the terminal no matter how output has been redirected, or when a program requires
a handy file name for output.

A process can remove the association it has with its controlling terminal by opening
the file /dev/tty and issuing a

ioct1(f, TIOCNOITY, 0)

This is often desirable in server processes.

Process Groups

Modes

Command processors such as csh(l) can arbitrate the terminal between different
"jobs" by placing related jobs in a single process group and associating this process
group with the terminal. A terminal's associated process group may be set using the
TIOCSPGRP ioctl.

ioct1(fildes, TIOCSPGRP, &pgtp);

or examined using TIOCGPGRP, which returns the current process group in pgrp.
The new terminal driver aids in this arbitration by restricting access to the terminal by
processes which are not in the current process group; see Job Access Control below.

The terminal drivers have three major modes, characterized by the amount of process­
ing on the input and output characters.

cooked The normal mode. In this mode lines of input are collected and input
editing is done. The edited line is made available when it is completed
by a newline or when the t_brkc character, normally an EOT, is
entered. A carriage return is usually made synonymous with newline in
this mode, and is replaced with a newline whenever it is typed. All
driver functions (input editing, interrupt generation, output processing
such as delay generation and tab expansion, etc.) are available in this

Revision 01 4-7

TTY(4)

RAW

CBREAK

DOMAIN/IX BSD4.2 TTY (4)

mode.

This mode eliminates all input processing and makes all input characters
available as they are typed; no output processing is done either.

This mode eliminates the character, word, and line editing input facili­
ties, making the input character available to the user program as it is
typed. Flow control, literal-next and interrupt processing are still done
in this mode. Output processing is done.

The style of input processing can also be very different when the terminal is put in
non-blocking I/O mode; see the FNDELAY flag as described in fcntl(2). In this case
a read(2) from the control terminal will never block, but rather return an error indica­
tion (EWOULDBLOCK) if there is no input available.

A process may also request a SIGIO signal be sent it whenever input is present. To
enable this mode the FASYNC flag should be set using fcntL

Input Editing
A UNIX System terminal ordinarily operates in full-duplex mode. Characters may be
typed at any time, even while output is occurring. Input characters are only lost when
the system's character input buffers become completely choked, which is rare, or when
the user has accumulated the maximum allowed number of input characters that have
not yet been read by some program. Currently this limit is 256 characters. In RAW
mode, the terminal driver throws away all input and output without notice when the
limit is reached. In CBREAK or cooked mode it refuses to accept any further input
and, if in the new line discipline, sounds the tenninal bell.

Input characters are normally accepted in either even or odd parity with the parity bit
being stripped off before the character is given to the program. By clearing either the
EVEN or ODD bit in the flags word it is possible to have input characters with that
parity discarded (see the Summary below).

In all of the line disciplines, it is possible to simulate tenninal input using the C

4-8

TIOCSTI ioctl, which takes as its third argument the address of a character. The sys-
tem pretends that this character was typed on the argument tenninal, which must be
the control terminal unless the caller is the super-user

Input characters are normally echoed by putting them in an output queue as they
arrive. This may be disabled by clearing the ECHO bit in the flags word using the
stty(3C) call or the TIOCSETN or TIOCSETP ioctls (see the Summary below).

In cooked mode, tenninal input is processed in units of lines. A program attempting
to read will normally be suspended until an entire line has been received (see the
description of SIGTTIN in Job access control and of FIONREAD in Summary, both
below). No matter how many characters are requested in the read call, at most one
line will be returned. It is not, however, necessary to read a whole line at once; any

Revision 01

c~

o

()

()

o

TTY (4) DOMAINjlX BSD4.2 TTY (4)

number of characters - even one - may be requested in a read without losing infor­
mation.

During input, line editing is normally done, with the DELETE character (normally
mapped to the <BACK SP ACE> key) logically erasing the last character typed and the
character tu logically erasing the entire current input line. These characters never
erase beyond the beginning of the current input line or a tD. These characters may be
entered literally by preceding them with '\'; the '\' will normally be erased when the
character is typed.

The drivers normally treat either a carriage return or a newline character as terminating
an input line, replacing the return with a newline and echoing a return and a line feed.
If the CRMOD bit is cleared in the local mode word then the processing for carriage
return is disabled, and it is simply echoed as a return, and does not terminate cooked
mode input.

In the new driver there is a literal-next character, iv, which, in both cooked and
CBREAK mode, removes any special meaning that would otherwise be attached to the
character it immediately precedes. While use of tv is a preferable method of escap­
ing erase and kill characters, '\' retains its old function in the new line discipline.

The new terminal driver also provides two other editing characters in normal mode.
The word-erase character, normally iw, erases the preceding word, but not any spaces
before it. For the purposes of tw, a word is defined as a sequence of non-blank char­
acters, with tabs counted as blanks. Finally, the reprint character, normally iR,
retypes the pending input beginning on a new line. Retyping occurs automatically in
cooked mode if characters that would normally be erased from the screen are fouled
by program output.

Input Echoing and Redisplay
The terminal driver has several modes for handling the echoing of terminal input, con­
trolled by bits in a local mode word.

Hardcopy Terminals

When a hardcopy terminal is in use, the LPRTERA bit is normally set in the local
mode word. Characters which are logically erased are then printed out backwards pre­
ceded by '\' and followed by '/' in this mode.

CRT Terminals

When a CRT terminal is in use, the LCRTBS bit is normally set in the local mode
word. The terminal driver then echoes the proper number of erase characters when
input is erased; in the normal case where the erase character is a "H this causes the
cursor of the terminal to back up to where it was before the logically erased character
was typed. If the input has become fouled due to interspersed asynchronous output,
the input is automatically retyped.

Revision 01 4-9

TTY (4) DOMAIN/IX BSD4.2 TTY (4)

Erasing Characters from a CRT

When a CRT tenninal is in use, the LCRTERA bit may be set to cause input to be
erased from the screen with a "backspace-space-backspace" sequence when character
or word deleting sequences are used. A LCRTKIL bit may be set as well, causing the
input to be erased in this manner on line kill sequences as well.

Echoing of Control Characters

If the LCTLECH bit is set in the local state word, then non-printing (control) charac­
ters are normally echoed as "X (for some X) rather than being echoed unmodified;

. delete is echoed as "?

The normal modes for use on CRT terminals are speed-dependent. At speeds less than
1200 baud, LCRTERA and LCRTKILL processing can be quite slow, sostty normally
just sets LCRTBS and LCTLECH; at speeds of 1200 baud or greater all of these bits
are normally set. Stty summarizes these option settings and the use of the new termi­
nal driver as "newcrt."

()utput Processing

4-10

When one or more characters are written, they are actually transmitted to the terminal
as soon as previously-written characters have finished typing. (As noted above, input
characters are nonnally echoed by putting them in the output queue as they arrive.)
When a process produces characters more rapidly than they can be typed, it will be
suspended when its output queue exceeds some limit. When the queue has drained
down to some threshold the program is resumed. Even parity is normally generated on
output. The EOT character is not transmitted in cooked mode to prevent terminals that
respond to it from hanging up; programs using RAW or CBREAK mode should be
careful.

The terminal drivers provide necessary processing for cooked and CBREAK mode out­
put including delay generation for certain special characters and parity generation.
Delays are available after backspaces iH, form feeds iL, carriage returns iM, tabs iI
and newlines iJ. The driver will also optionally expand tabs into spaces, where the
tab stops are assumed to be set every eight columns, and optionally convert newlines
to carriage returns followed by newline. These functions are controlled by bits in the
tty flags word; see the Summary below.

The terminal drivers provide for mapping between upper and lower case on terminals
lacking lower case, and for other special processing on deficient terminals.

Finally, in the new terminal driver, there is a output flush character, normally "0,
which sets the LFLUSHO bit in the local mode word, causing subsequent output to be
flushed until it is cleared by a program or more input is typed. This character has
effect in both cooked and CBREAK modes and causes pending input to be retyped if
there is any pending input. An ioctl to flush the characters in the input or output
queues, TIOCFLUSH, is also available.

Revision 01

~---! .

o

o

o

TTY (4) DOMAIN/IX BSD4.2 TTY (4)

Uppercase-Only Terminals and Hazeltines
If the LCASE bit is set in the tty flags, then all upper-case letters are mapped into the
corresponding lower-case letter. To generate an uppercase letter. precede it by '\'.
Upper case letters are preceded by a '\' when output. In addition, the following
escape sequences can be generated on output and accepted on input:

Character Escape Sequence

\'

\!

\"

\(

\)

To deal with Hazeltine tenninals, which do not understand that tilde C) has been made
into an ASCII character, the LTILDE bit may be set in the local mode word; in this
case the character - will be replaced with the character' on output.

Flow Control
There are two characters (the stop character, nonnally is, and the start character, nor­
mally iQ) which cause output to be suspended and resumed respectively. Extra stop
characters typed when output is already stopped have no effect, unless the start and
stop characters are made the same, in which case output resumes.

A bit in the flags word may be set to put the tenninal into TANDEM mode. In this
mode the system produces a stop character (default is) when the input queue is in
danger of overflowing, and a start character (default iQ) when the input has drained
sufficiently. This mode is useful when the tenninal is actually another machine that
obeys the conventions.

Line Control and Breaks
There are several ioctl calls available to control the state of the terminal line. The
TIOCSBRK ioctl will set the break: bit in the hardware interface causing a break: con­
dition to exist; this can be cleared (usually after a delay with sleep(3)) by TIOCCBRK.
Break: conditions in the input are reflected as a null character in RAW mode or as the
interrupt character in cooked or CBREAK mode. The TIOCCDTR ioctl will clear the
data tenninal ready condition; it can be set again by TIOCSDTR.

When the carrier signal from the dataset drops (usually because the user has hung up
his tenninal) a SIGHUP hangup signal is sent to the processes in the distinguished pro­
cess group of the terminal; this usually causes them to tenninate (the SIGHUP can be
suppressed by setting the LNOHANG bit in the local state word of the driver.) Access
to the tenninal by other processes is then nonnally revoked, so any further reads will
fail, and programs that read a terminal and test for End-Of-File on their input will

Revision 01 4-11

TTY (4) OOMAIN/IX BS04.2 TTY (4)

terminate appropriately.

When using an ACU it is possible to ask that the phone line be hung up on the last
close with the TIOCHPCL ioctl; this is normally done on the outgoing line.

Interrupt Characters
There are several characters that generate interrupts in cooked and CBREAK. mode; all
are sent to the processes in the control group of the terminal, as if a TIOCGPGRP
ioctl were done to get the process group and then a kill pg(2) system call were done,
except that these characters also flush pending input and output when typed at a termi­
nal (a fa TIOCFLUSH). The characters shown here are the defaults; the field names in
the structures (given below) are also shown. The characters may be changed .. TP 1 i
Note Any applicable "default" key bindings mentioned in this entry can be put into
effect for the OM by executing one of the /sys/dm/bsd4.2_keys? key definitions files.

IC t_intrc (ETX) generates a SIGINT signal. This is the normal way to stop a
process which is no longer interesting, or to regain control in an interactive
program.

1\

IZ

t_quitc (FS) generates a SIGQUIT signal. This is used to cause a program to
terminate and produce a core image, if possible, in the file core in the current
directory.

t_suspc (EM) generates a SIGTSTP signal, which is used to suspend the
current process group.

IY t_dsuspc (SUB) generates a SIGTSTP signal as IZ does, but the signal is sent
when a program attempts to read the IY, rather than when it is typed.

Job Access Control

4-12

When using the new terminal driver, if a process which is not in the distinguished pro­
cess group of its control terminal attempts to read from that terminal its process group
is sent a SIGTTIN signal. This signal normally causes the members of that process
group to stop. If, however, the process is ignoring SIGTTIN, has SIGTTIN blocked, or
is in the middle of process creation using vfork(2)), the read will return -1 and set
errno to EIO.

When using the new terminal driver with the LTOSTOP bit set in the local modes, a
process is prohibited from writing on its control terminal if it is not in the dis­
tinguished process group for that terminal. Processes which are holding or ignoring
SIGTTOU signals or which are in the middle of a vfork are excepted and allowed to
produce output.

Revision 01

\

'--_ ...

\ _-

C:

o

(~\

\..._)

0

TTY (4) DOMAIN/IX BSD4.2 TTY (4)

Summary of Modes
There are 4 different structures which contain various portions of the driver data.
(This is an unfortunate side effect of the evolution of the tty driver.) The first of these
(sgttyb) contains that part of the information largely common between version 6 and
version 7 UNIX systems. The second contains additional control characters added in
version 7. The third is a word of local state added in 4BSD, and the fourth is another
structure of special characters added for the new driver. In the future a single struc­
ture rnay be made available to programs which need to access all this information;
most programs need not concern themselves with all this state.

Basic modes: sgtty

The basic ioctls use the structure defined in <sgtty.h>:

struct sgttyb {

} ;

char sg_ispeed;
char sg_ospeed;
char sg_erase;
char sg_kill;
short sg_flags;

The sg_ispeed and sg_ospeed fields describe the input and output speeds of the device
according to the following table, which corresponds to the DEC DH-11 interface. If
other hardware is used, impossible speed changes are ignored. Symbolic values in the
table are as defined in <sgtty.h>.

BO 0 (hang up dataphone)
B50 1 50 baud
B75 2 75 baud
BI10 3 110 baud
B134 4 134.5 baud
B150 5 150 baud
B200 6 200 baud
B300 7 300 baud
B600 8 600 baud
B1200 9 1200 baud
B1800 10 1800 baud
B2400 11 2400 baud
B4800 12 4800 baud
B9600 13 9600 baud
EXTA 14 External A
EXTB 15 External B

Revision 01 4-13

TTY (4) DOMAIN/IX BSD4.2 TTY (4)

4-14

Code conversion and line control required for mM 2741 's (134.5 baud) must be
implemented by the user's program. The half-duplex line discipline required for the
202 dataset (1200 baud) is not supplied; full-duplex 212 datasets work fine.

The sg_erase and sg_kill fields of the argument structure specify the erase and kill
characters respectively. (Defaults are <BACK SPACE> and iu.)

The sgJlags field of the argument structure contains several bits that detennine the
system's treatment of the tenninal:

ALLDELAY 0177400 Delay algorithm selection
BSDELA Y 0100000 Select backspace delays (not implemented):
BSO 0
BSI 0100000
VTDELAY 0040000 Select fonn-feed and vertical-tab delays:
FFO 0
FFI 0100000
CRDELA Y 0030000 Select carriage-return delays:
CRO 0
CR1 0010000
CR2 0020000
CR3 0030000
TBDELA Y 0006000 Select tab delays:
TAB 0 0
TAB 1 0001000
TAB 2 0004000
XTABS 0006000
NLDELAY 0001400 Select new-line delays:
NLO 0
NL1 0000400
NL2 0001000
NL3 0001400
EVENP 0000200 Even parity allowed on input and generated on output
ODDP 0000100 Odd parity allowed on input and generated on output
RAW 0000040 Raw mode: wake up on all characters, 8-bit interface
CRMOD 0000020 Map CR into LF; output LF as CR-LF
ECHO 0000010 Echo (full duplex)
LCASE 0000004 Map upper case to lower on input

and lower to upper on output .
CBREAK 0000002 Return each character as soon as typed
TANDEM 0000001 Automatic flow control

Revision 01

o

o

o

o

o

TTY (4) DOMAIN/IX BSD,4.2 TTY (4)

The delay bits specify how long transmission stops to allow for mechanical or other
movement when certain characters are sent to the tenninal.· In all cases a value of 0
indicates no delay.

Backspace delays are currently ignored but might be used for exceptionally slow termi­
nals.

If a fonn-feed/vertical tab delay is specified, it lasts for about 2 seconds.

Carriage-return delay type 1 lasts about .08 seconds and is suitable for the Tenninet
300. Delay type 2 lasts about .16 seconds and is suitable for the VT05 and the TI
700. Delay type 3 is suitable for the concept-100 and pads lines to be at least 9 char­
acters at 9600 baud.

New-line delay type 1 is dependent on the current column and is tuned for Teletype
model 37's. Type 2 is useful for the VT05 and is about .10 seconds. Type 3 is unim­
plemented and is O.

Tab delay type 1 is dependent on the amount of movement and is tuned to the Tele­
type model 37. Type 3, called XT ABS, is not a delay at all but causes tabs to be
replaced by the appropriate number of spaces on output.

Input characters with the wrong parity, as determined by bits 200 and 100, are ignored
in cooked and CBREAK mode.

RAW disables all processing except output flushing with LFLUSHO; full 8 bits of
input are given as soon as it is available; all 8 bits are passed on output. A break con­
dition in the input is reported as a null character. If the input queue overflows in raw
mode all data in the input and output queues are discarded; this applies to both new
and old drivers.

CRMOD causes input carriage returns to be turned into new-lines, and output and
echoed new-lines to be output as a carriage return followed by a line feed.

In CBREAK mode, programs can read each character as soon as typed, instead of
waiting for a full line; all processing is done except the input editing: character and
word erase and line kill, input reprint, and the special treatment of \ and EOT are dis­
abled.

TANDEM mode causes the system to produce a stop character (default "S) whenever
the input queue is in danger of overflowing, and a start character (default iQ) when
the input queue has drained sufficiently. It is useful for flow control when the "tenni­
nal" is really another computer which understands the conventions.

Note: The same "stop" and "start" characters are used for both directions of
flow control; the t_stope character is accepted on input as the character
that stops output and is produced on output as the character to stop
input, and the t_starte character is accepted on input as the character

Revision 01 4-15

TTY(4) DOMAINjlX BSD4.2 TTY(4)

4-16

Basic ioctls

that restarts output and is produced on output as the character to restart
input.

A large number of ioctl calls apply to terminals. Some have the general form:

#include <sgtty.h>

ioctl(fildes, code, arg)

struct sgttyb *arg;

The applicable codes are:

TIOCGETP Fetch the basic parameters associated with the terminal, and store
in the pointed-to sgttyb structure.

TIOCSETP

TIOCSETN

Set the parameters according to the pointed-to sgttyb structure.
The interface delays until output is quiescent, then throws away
any unread characters, before changing the modes.

Set the parameters like TIOCSETP but do not delay or flush
input. Input is not preserved, however, when changing to or
from RAW.

With the following codes arg is ignored.

TIOCEXCL
Set "exclusive-use" mode: no further opens are permitted until the file has been
closed.

TIOCNXCL
Tum off "exclusive-use" mode.

TIOCHPCL
When the file is closed for the last time, hang up the tenninal. This is useful
when the line is associated with an ACU used to place outgoing calls.

With the following codes arg is a pointer to an int.

TIOCGETD
arg is a pointer to an int into which IS placed the current line discipline
number.

TIOCSETD
arg is a pointer to an int whose value becomes the current line discipline
number.

Revision 01

~.
(

'''-- .-'

o

o

o

o

o

TTY (4) DOMAIN/IX BSD4.2 TTY (4)

TIOCFLUSH
If the int pointed to by arg has a zero value, all characters waiting in input or
output queues are flushed. Otherwise, the value of the int is treated as the logi­
cal OR of the FREAD and FWRITE defined in <sys/file.h>; if the FREAD bit
is set, all characters waiting in input queues are flushed, and if the FWRITE bit
is set, all characters waiting in output queues are flushed.

For the remaining calls, the arguments, where required, are described; arg should oth­
erwise be given as O.

TIOCSTI
the argument points to a character which the system pretends had been typed
on the terminal. (Not supported on DOMAIN/lX.)

TIOCSBRK
the break bit is set in the terminal.

TIOCCBRK
the break bit is cleared.

TIOCSDTR
data terminal ready is set.

TIOCCDTR
data terminal ready is cleared.

TIOCSTOP
output is stopped as if the "stop" character had been typed.

TIOCSTART
output is restarted as if the "start" character had been typed.

TIOCGPGRP
arg is a pointer to an int into which is placed the process group ID of the pro­
cess group for which this terminal is the control terminal.

TIOCSPGRP
arg is a pointer to an int (typically a process ID); the process group whose pro­
cess group ID is the value of this int becomes the process group for which this
tenninal is the control terminal.

TIOCOUTQ
returns in the int pointed to by arg the number of characters queued up to be
output to the tenninal.

FIONREAD

Revision 01

returns in the int pointed to by arg the number of immediately readable charac­
ters from the argument unit. This works for files, pipes, and tenninals.

4-17

TTY (4) DOMAIN/IX BSD4.2 TTY (4)

4-18

Tchars

The second structure associated with each tenninal specifies characters that are special
in both the old and new tenninal interfaces: The following structure is defined in
<sys/iocti.h>, which is automatically included in <sgtty.h>:

struct tchars {

};

char t_intrc;
char t_quitc;
char t_startc;
char t_stopc;
char t_eofc;
char t_brkc;

/* interrupt * /
/* quit */
/* start output * /
/* stop output * /
/* end-of-file */
/* input delimiter (like nl) */

The default values for these characters are

t_intrc (interrupt) i?
t_quit (quit) 1\

t_startc (start output) iQ
t_stopc (stop output) is
t_eofc (end-of-file) iD
t_brkc (input delimiter) -1

A character value of -1 eliminates the effect of that character. The t_brkc character,
by default -1, acts like a new-line in that it tenninates a "line," is echoed, and is
passed to the program. The "stop" and "start" characters may be the same, to pro­
duce a toggle effect. It is probably counterproductive to make other special characters
(including erase and kill) identical. The applicable ioctl calls are:

TIOCGETC Get the special characters and put them in the specified structure.

TIOCSETC Set the special characters to those given in the structure.

Local Mode

The third structure associated with each tenninal is a local mode word. The bits of the
local mode word are:

LCRTBS
LPRTERA
LCRTERA
LTILDE

000001
000002
000004
000010

Backspace on erase rather than echoing erase
Printing tenninal erase mode
Erase character echoes as backspace-space-backspace
Convert - to ' on output (for Hazeltine tenninals)

Revision 01

~,
(\

\, •... ~,'

o

o

o

o

TTY (4)

LMDMBUF
LLITOUT
LTOSTOP
LFLUSHO
LNOHANG
LETXACK
LCRTKIL
LCTLECH
LPENDIN
LDECCTQ
LNOFLSH

DOMAIN/IX BSD4.2 TTY (4)

000020 Stop/start output when carrier drops
000040 Suppress output translations
000100 Send SIGTTOU for background output
000200 Output is being flushed
000400 Don't send hangup when carrier drops
001000 Diablo style buffer hacking (unimplemented)
002000 BS-space-BS erase entire line on line kill
010000 Echo input control chars as AX, delete as A?
020000 Retype pending input at next read or input character
040000 Only iQ restarts output after is, like DEC systems
100000 Inhibit flushing of pending 1/0 when an interrupt
character is typed.

The applicable ioctl functions are:

TIOCLBIS

TIOCLBIC

TIOCLSET

TIOCLGET

arg is a pointer to an int whose value is a mask containing the
bits to be set in the local mode word.

arg is a pointer to an int whose value is a mask containing the
bits to be cleared in the local mode word.

arg is a pointer to an int whose value is stored in the local mode
word.

arg is a pointer to an int into which the current local mode word
is placed.

Local Special Chars

The final structure associated with each terminal is the [tchars structure which defines
control characters for the new terminal driver. Its structure is:

struct ltchars {
char
char
char
char
char
char

} ;

t_suspc;
t_dsuspc;
t_rpmtc; "
t_flushc;
t_werasc;
t_Inextc;

1* stop process signal *1
1* delayed stop process signal *1
1* reprint line *1
1* flush output (toggles) *1
1* word erase *1
1* literal next character *1

The default values for these characters are:

. t_suspc (stop) iz

t_dsuspc (delayed stop) iv

Revision 01 4-19

TTY (4) DOMAIN/IX BSD4.2 TTY (4)

FILES

t_rpmtc (reprint line) iR

t_flushc (flush output) io
t_werasc (word erase) tw
t_Inextc (literal-next) tv
A value of -1 disables the character.

The applicable ioctl functions are:

TIOCSL TC arg is a pointer to an ltchars structure which defines the new local spe­
cial characters.

TIOCG LTC arg is a pointer to an ltchars structure into which is placed the current
set of local special characters.

/dev/tty

/dev/tty*

/dev/console

not supported on DOMAIN Systems

links to /dev/sio*

not supported on DOMAIN Systems

RELATED INFORMATION
csh(1), stty(1), ioctl(2), sigvec(2), stty(3C), getty(8).

4-20 Revision 01

o

o

o

o

INTRO(4N) DOMAIN/IX BSD4.2

NAME
networking - introduction to networking facilities

USAGE
#include <sys/socket.h>
#include <net/route.h>
#include <net/if.h>

DESCRIPTION

INTRO(4N)

This section briefly describes the 4.2BSD networking facilities available in the bsd4.2
version of DOMAIN/IX. Documentation in this part of section 4 is broken up into
three areas: protocol families, protocols, and network interfaces.

Entries describing a protocol family are marked (4F), while entries describing protocol
use are marked (4P). Hardware support for network interfaces are found among the
standard (4) entries.

All network protocols are associated with a specific protocol family. A protocol fam­
ily provides the basic services a protocol implementation needs in order to function
within a specific network environment. These services may include packet fragmenta­
tion and reassembly, routing, addressing, and basic transport. A protocol family may
support multiple methods of addressing, though the current protocol implementations
do not. A protocol-family is normally comprised of a number of protocols, one per
socket(2) type. It is not required that a protocol-family support all socket types. A
protocol family may contain multiple protocols supporting the same socket abstraction.

A protocol supports one of the socket abstractions detailed in socket(2). A specific
protocol may be accessed either by creating a socket of the appropriate type and proto­
col family, or by requesting the protocol explicitly when creating a socket. Protocols
normally accept only one type of address format, usually determined by the addreSsing
structure inherent in the design of the protocol family/network architecture. Certain
semantics of the basic socket abstractions are protocol specific. All protocols are
expected to support the basic model for their particular socket type, but may, in addi­
tion, provide non-standard facilities or extensions to a mechanism. For example, a
protocol supporting the SOCK_STREAM abstraction may allow more than one byte of
out-of-band data to be transmitted per out-of-band message.

A network interface is similar to a device interface. Network interfaces comprise the
lowest layer of the networking subsystem, interacting with the actual transport
hardware. An interface may support one or more protocol families, and/or address for­
mats. The USAGE section of each network interface entry gives a sample
specification of the related drivers for use in providing a system description. The
DIAGNOSTICS section lists various diagnostic messages generated by errors in device
operation.

Revision 01 4-21

INTRO(4N) DOMAIN/lX BSD4.2 INTRO(4N)

PR()TOCOLS
DOMAIN/lX currently supports only the DARPA Internet protocols fully.

ADDRESSING
Associated with each protocol family is an address fonnat. The following address for­
mats are used by the system:

#define AF_UNIX
#define AF _INET
#define AF _IM:PLINK
#define AF _PUP

1
2
3
4

/* local to host (pipes, portals) * /
/* internetwork: UDP, TCP, etc. */
/* arpanet imp addresses * /
/* pup protocols: e.g. BSP */

ROUTING

4-22

The network facilities provided limited packet routing. A simple set of data structures
comprise a "routing table" used in selecting the appropriate network interface when
transmitting packets. This table contains a single entry for each route to a specific net­
work or host. A user process, the routing daemon, maintains this database with the aid
of two socket-specific ioctl(2) commands, SIOCADDRT and SIOCDELRT. The com­
mands allow the addition and deletion of a single routing table entry, respectively.
Routing table manipulations may only be carried out by super-user.

A routing table entry has the following fonn, as defined in <net/route.h >;

struct rtentry {
u_long
struct
struct
short
short
u_long
struct

} ;

rt_hash;
sockaddr rt_dst;
sockaddr rt~ateway;
rt_flags;
rt_refcnt;
rt_use;
ifnet *rt_ifp;

with rt_flags defined from,

#define RTF_UP
#define RTF_GATEWAY
#define RTF_HOST

Oxl /* route usable */
Ox2 /* destination is a gateway * /
Ox4 /* host entry (net otherwise) */

Revision 01

(~,
(
\ ,,- -'

o

o

o

o

o

INTRO(4N) DOMAIN/IX BSD4.2 INTRO(4N)

Routing table entries come in three flavors: for a specific host, for all hosts on a
specific network, for any destination not matched by entries of the first two types (a
wildcard route). When the system is booted, each network interface autoconfigured
installs a routing table entry when it wishes to have packets sent through it. Normally
the interface specifies the route through it is a "direct" connection to the destination
host or network. If the route is direct, the transport layer of a protocol family usually
requests the packet be sent to the same host specified in the packet. Otherwise, the
interface may be requested to address the packet to an entity different from the even­
tual recipient (i.e., the packet is forwarded).

Routing table entries installed by a user process may not specify the hash, reference
count, use, or interface fields; these are filled in by the routing routines. If a route is
in use when it is deleted (rt_refcnt is non-zero), the resources associated with it will
not be reclaimed until further references to it are released.

The routing code returns EEXIST if requested to duplicate an existing entry, ESRCH
if requested to delete a non-existent entry, or ENOBUFS if insufficient resources were
available to install a new route.

The rt_use field contains the number of packets sent along the route. This value is
used to select among multiple routes to the same· destination. When multiple routes to
the same destination exist, the least used route is selected.

A wildcard routing entry is specified with a zero destination address value. Wildcard
routes are used only when the system fails to find a route to the destination host and
network. The combination of wildcard routes and routing redirects can provide an
economical mechanism for routing traffic.

INTERFACES
Each network interface in a system corresponds to a path through which messages may
be sent and received. A network interface usually has a hardware device associated
with it, though certain interfaces do not.

At boot time each interface which has underlying hardware support makes itself known
to the system during the auto configuration process. Once the interface has acquired its
address it is expected to install a routing table entry so that messages may be routed
through it. Most interfaces require some part of their address specified with an SIOC­
SIFADDR iocd before they will allow traffic to flow through them. On interfaces
where the network-link layer address mapping is static, only the network number is
taken from the iocd; the remainder is found in a hardware specific manner. On inter­
faces which provide dynamic network-link layer address mapping facilities (e.g.,
10Mb/s Ethernets), the entire address specified in the ioctl is used.

Revision 01 4-23

INTRO(4N) DOMAIN/IX BSD4.2 INTRO(4N)

4-24

The following ioctl calls may be used to manipulate network interfaces. Unless
specified otherwise, the request takes an ifrequest structure as its parameter. This
structure has the form

struct ifreq {
char ifr_name[16];
union {

/* name of interface (e.g. "ecO") */

struct sockaddr ifru_addr;
struct sockaddr ifru_dstaddr;
short ifru_flags;

} ifr_ifru;
#defineifr_addr ifr_ifru.ifru_addr /* address * /
#defineifr_dstaddr ifr_ifru.ifru_dstaddr /* other end of p-to-p link * /
#defineifr_ftags ifr_ifru.ifru_flags /* flags */
} ;

SIOCSIFADDR

SIOCGIFADDR

SIOCSIFDST ADDR

Set interface address. Following the address assignment, the
"initialization" routme for the interface is called.

Get interface address.

Set point to point address for interface.

SIOCGIFDSTADDR
Get point to point address for interface.

SIOCSIFFLAGS Set interface flags field. If the interface is marked down, any
processes currently routing packets through the interface are
notified.

SIOCG IFFLAGS Get interface flags.

SIOCGIFCONF Get interface configuration list. This request takes an ifconf
structure (see below) "as a value-result parameter. The ifc_len
field should be initially set to the size of the buffer pointed to by
ifc_buf. On return it will contain the length, in bytes, ot the
configuration list.

/*
* Structure used in SIOCGIFCONF request.
* Used to retrieve interface configuration
* for machine (useful for programs which
* must know all networks accessible).
*/

Revision 01

/~,
(,

",-----/'

INTRO(4N)

o
DOMAIN/IX BSD4.2 INTRO(4N)

struct ifconf {
int ifc_Ien;
union {

/* size of associated buffer * /

caddr_t ifcu_buf;
struct ifreq *ifcu_req;

} ifc_ifcu;
#defineifc_bufifc_ifcu.ifcu_buf /* buffer address */

#defineifc_req ifc_ifcu.ifcu_req
} ;

/* array of structures returned */

1'---., RELATED INFORMATION
L) socket(2), ioctl(2), intro(4), routed(8)

o

o

o
Revision 01 4-25

INET (4F) DOMAIN/IX BSD4.2

NAME
inet - Internet protocol family

USA(;E
#include <sys/types.h>
#include <netinet/in.h>

DESCRIPTI()N

INET(4F)

The Internet protocol family is a collection of protocols layered atop the Internet Pro­
tocol (IP) transport layer, and utilizing the Internet address format. The Internet family
provides protocol support for the SOCK_STREAM and SOCK_DGRAM socket types.

ADDRESSIN(;
Internet addresses are four-byte quantities, stored in network standard format. The
include file <netinet/in.h> defines this address as a discriminated union.

Sockets bound to the Internet protocol family utilize the following addressing structure,

struct sockaddr_in {

} ;

short sin_family;
u_short sin_port;
struct in_addr sin_addr;
char sin_zero[8];

Sockets may be created with the address INADDR_ANY to effect "wildcard" match­
ing on incoming messages.

PR()TOCOLS

~,
(\

~ - ,.'

The Internet protocol family is comprised of the IP transport protocol, Internet Control ('
Message Protocol (ICMP), Transmission Control Protocol (TCP), and User Datagram\,~ ___ .
Protocol (UDP). TCP is used to support the SOCK_STREAM abstraction while UDP
is used to support the SOCK_DGRAM abstraction. The ICMP message and IP proto-
cols are not directly accessible.

RELATED INFORMATION
tcp(4P), udp(4P), ip(4P)

4-26 Revision 01

c

o

o

o

o

ARP(4P) DOMAIN/IX BSD4.2 ARP(4P)

NAME
arp - Address Resolution Protocol

DESCRIPTION
Arp is a protocol used to dynamically map between DARPA Internet addresses and
addresses on the local network.

Arp caches Internet-local net address mappings. When an interface requests a map­
ping for an address not in the cache, arp queues the message which requires the map­
ping and broadcasts a message on the associated network requesting the address map­
ping. If a response is provided, the new mapping is cached and any pending messages
are transmitted. Arp will queue at most one packet while waiting for a mapping
request to be responded to; only the most recently "transmitted" packet is kept.

Revision 01 4-27

TCP(4P) DOMAIN/IX BSD4.2 TCP(4P)

NAME
tcp - Internet Transmission Control Protocol

USAGE
#include <sys/socket.h>
#include <netinet/in.h>

s = socket(AF _INET, SOCK.!...STREAM, 0);

DESCRIPTION
The TCP protocol provides reliable, flow-controlled, two-way transmission of data. It
is a byte-stream protocol used to support the SOCK_STREAM abstraction. TCP uses
the standard Internet address format and, in addition, provides a per-host collection of
"port addresses". Thus, each address is composed of an Internet address specifying
the host and network, with a specific TCP port .on the host identifying the peer entity.

Sockets utilizing the tcp protocol are either "active" or "passive". Active sockets ini­
tiate connections to passive sockets. By default TCP sockets are created active; to
create a passive socket the Iisten(2) system call must be used after binding the socket
with the bind(2) system call. Only passive sockets may use the accept(2) call to
accept incoming connections. Only active sockets may use the connect(2) call to ini­
tiate connections.

Passive sockets may "underspecify" their location to match incoming connection
requests from multiple networks. This technique, termed "wildcard addressing",
allows a single server to provide service to clients on multiple networks. To create a
socket which listens on all networks, the Internet address INADDR_ANY must be
bound. The TCP port may still be specified at this time; if the port is not specified the
system will assign one. Once a connection has been established, the socket's address
is fixed by the peer entity's location. The address assigned the socket is the address
associated with the network interface through which packets are being transmitted and
received. Normally this address corresponds to the peer entity's network.

DIAGNOSTICS

4-28

A socket operation may fail with one of the following errors returned:

[EISCONN]

[ENOBUFS]

[ETIMEDOUT]

[ECONNRESET]

An attempt was made to establish a connection on a con­
nected socket.

The system doesn't have enough memory to hold an
internal data structure;

A connection was dropped after many retransmissions;

The remote peer forced the connection to be closed;

Revision 01

C:

r"
'~-'

C)

o

()

o

o

TCP(4P)

[ECONNREFUSED]

[EADDRINUSE]

[EADDRNOTA VAIL]

RELATED INF()RMATION
intro(4N), inet(4F)

Revision 01

DOMAIN/IX BSD4.2 TCP(4P)

The remote peer actively refused connection establish­
ment (usually because no process is listening to the port).

An attempt was made to create a socket with a port that
has already been allocated.

An attempt is made to create a socket with a network
address for which no network interface exists.

4-29

UDP(4P) DOMAINjIX BSD4.2 UDP(4P)

NAME
udp - Internet User Datagram Protocol

USAGE
#include <sys/socket.h>
#include <netinet/in.h>
s = socket(AF _INET, SOCK_DGRAM, 0);

DESCRIPTI()N
UDP is a simple, unreliable datagram protocol which is used to support the
SOCK_DGRAM abstraction for the Internet protocol family. UDP sockets are connec­
tionless, and are nonnally used with the sendto and recvfrom calls, though the con­
nect(2) call may also be used to fix the destination for future packets (in which case
the recv(2) or read(2) and send(2) or write(2) system calls may be used).

UDP address fonnats are identical to those used by TCP. In particular UDP provides
a port identifier in addition to the nonnal Internet address fonnat. Note that the UDP
port space is separate from the TCP port space (i.e., a UDP port may not be "con­
nected" to a TCP port). In addition broadcast packets may be sent (assuming the
underlying network supports this) by using a reserved "broadcast address"; this
address is network interface dependent.

DIAGNOSTICS

4-30

A udp socket operation may fail with one of the following errors returned:

[EISCONN]

[ENOTCONN]

[ENOBUFS]

[EADDRINUSE]

An attempt was made to establish a connection on a socket
which is already connected, or an attempt was made to send a
datagram with the destination address of a connected socket
specified.

An attempt was made to send a datagram, but no destination
address was specified and the socket hasn't been connected.

The system can't allocate enough memory for an internal data
structure.

An attempt was made to create a socket with a port that has
already been allocated.

[EADDRNOTAVAIL]
An attempt was made to create a socket with a network address
for which no network interface exists.

Revision 01

c

UDP(4P) DOMAIN/IX BSD4.2 UDP(4P)

CJ
RELATED INFORMATION

send(2), recv(2), intro(4N), inet(4F)

o

C)
Revision 01 4-31

INDEX(4) DOMAIN/IX SYS5 INDEX(4)

4-32

This is a topical index for Section 4 of the DOMAIN/IX. Programmer's Reference
Manual for BSD4.2. For a pennuted index of all reference infonnation, see Appendix
A of this manual.

/dev/null
DARPA Internet

address fonnat
protocols

TCP protocol, explained
UDP
User Datagram Protocol
address resolution protocol
magtape
null special file
protocols, address resolution
pseudo tenninal
pty, ioctl calls for
tape, cartridge

4-3
4-27, 4-30
4-26
4-26
4-28
4-30
4-30
4-27
4-2
4-3
4-27
4-4
4-4
4-2

Revision 01

CONTENTS (5) DOMAIN/IX BSD4.2 CO NTENTS (5)

o
intro - introduction to file fonnats ... 5-1
a.out - cc output .. 5-2
aliases - aliases file for sendmail .. 5-3
ar - archive (library) file fonnat ... 5-5
dir - fonnat of directories ... 5-7
fsta b - static infonnation about file systems ... 5-9
group - group file ... 5-10
hosts - host naIlle database ... 5-11
inetd.conf - configuration file for inetd(8C) ... 5-12
mtab - mounted file system table .. 5-14
networks - network naIlle database ... 5-15

o passwd - password file ... 5-16
phones - remote host phone number database .. 5-18
plot - graphics interface .. 5-19
printcap - printer capability data base .. 5-21
protocols - protocol naIlle database ... 5-23
remote - remote host description file ... 5-24
sccsfile - fonnat of Source Code Control System (SCCS) file ... 5-26
services - database of Internet services ... 5-29

o tar - tape archive file format .. 5-30
termcap _ terminal capability database ... 5-32
types - primitive system data types ... 5-35
uuencode - fonnat of an encoded uuencode file ... 5-36

o
5-i

INTRO (5) DOMAIN/IX BSD4.2 INTRO(5)

NAME
intro - introduction to file fonnats

DESCRIPTION
This section describes the fonnats of various system files that you may need to access,
modify, or otherwise understand.

o

o

o
Revision 01 5-1

A.OUT(5) DOMAIN/IX BSD4.2 A.OUT(5)

NAME
a.out - cc output

NOTES
The default name for a file produced by the C compiler, cc(l), is a.out. The
DOMAIN system code generation mechanism produces an a.out file that is substan­
tially different from a.out files -supported on other implementations of the UNIX
operating system.

RELATED INFORMATION
Id(l),nm(l)

5-2 Revision 01

/r---,_

I,

"

c

o

o

o

o

ALIASES (5) DOMAIN/IX BSD4.2 ALIASES (5)

NAME
aliases - aliases file for sendmail

USAGE
lusr/lib/aliases

DESCRIPTION
This file describes user ID aliases used by lusr/lib/sendmail. This file is made up of
an arbitrary number of lines of the form:

The name is the name to alias, and the name_n are the aliases for that name. Lines
beginning with white space are continuation lines. Lines beginning with # are com­
ments.

Aliasing occurs only on local names. Loops cannot occur, since no message will be
sent to any person more than once.

After aliasing has been done, local and valid recipients who have a forward file in
their home directory have messages forwarded to the list of users defined in that file.

This is only the raw data file; the actual aliasing information is placed into a binary
format in the files /usr/lib/aliases.dir and /usr/lib/aliases.pag using the program
newaliases(1). A newaliases command should be executed each time the aliases file
is changed for the change to take effect.

NOTES
Because of restrictions in dbm(3X), a single alias cannot contain more than about
1000 bytes of information. You can get longer aliases by "chaining"; that is, by mak­
ing the last name in the alias be a dummy name that is a continuation alias.

Revision 01 5-3

ALIASES (5) DOMAIN/IX BSD4.2 ALIASES (5)

EXAMPLE
Here's an example of an aliases file:

Aliases in this file will NOT be expanded in the header from
Mail, but WILL be visible over networks or from /bin/mail.

»»»»» The program "newaliases" must be run after
» NOTE » this file is updated or else changes won't
»»»»» get to sendmail.

MAILER-DAEMON:bob
root: bcking

texhax: texhax_list
tusers: t_users_list
msgs: "I/usr/ucb/msgs _sIt
sherry: sar
speedo: mr_earl

RELATED INFORMATION

5-4

DOMAIN/IX Administrator's Reference for BSD4.2 newaliases(l), dbm(3X), send­
mail(8)

Revision 01

o

o

o

o

o

AR(5) DOMAIN/IX BSD4.2 AR(5)

NAME
ar - archive (library) file fonnat

USAGE
#include <ar.h>

DESCRIPTION
The archive command ar combines several files into one.

A file produced by ar has a magic string at the start, followed by the constituent files,
each preceded by a file header. The magic number and header layout as described in
the include file are:

#define ARMAG "!<arch>O
#define SARMAG 8

#define ARFMAG "'\n"

struct ar_hdr {
char
char
char
char
char
char
char

};

ar_name[16];
ar_date[12];
ar_uid[6];
ar~id[6];
ar_mode[8];
ar_size[10];
ar_fmag[2];

The name is a blank-padded string. The ar Jmag field contains ARFMAG to help ver­
ify the presence of a header. The other fields are left-adjusted, blank-padded numbers.
They are decimal except for ar _mode, which is octal. The date is the modification
date of the file at the time of its insertion into the archive.

Each file begins on a even (0 mod 2) boundary; a newline is inserted between files if
necessary. Nevertheless the size given reflects the actual size of the file exclusive of
padding.

There is no provision for empty areas in an archive file.

The encoding of the header is portable across machines. If an archive contains print­
able files, the archive itself is printable.

Revision 01 5-5

AR(5) DOMAIN/IX BSD4.2 AR(5)

NOTES
Filenames lose trailing blanks. Most software dealing with archives takes even an
included blank as a name tenninator.

Archives used mainly as libraries to be searched by the link-editor Id have a different
format.

RELATED INFORMATION
are!), Id(!), nm(1)

5-6 Revision 01

(',
I
\

"

o

C)

o

o

o

DIR (5) DOMAIN/IX BSD4.2 DIR (5)

NAME
dir - format of directories

USAGE
#include <sys/dir.h>

DESCRIPTION
A directory behaves exactly like an ordinary file, except that no user may write into a
directory. The fact that a file is a directory is indicated by a bit in the flag word of its
inode entry The structure of a directory entry as given in the include file is:

Revision 01

#ifndef DEV _BSIZE
#define DEV _BSIZE 1024
#endif

#define DIRBLKSIZ DEV _BSIZE
#define MAXNAMLEN32

struct

} ;

/*

direct {
unsigned long d_ino;
short d_reclen;
short d_namlen;
char d_name[MAXNAMLEN + 1];

* The DIRSIZ macro gives the minimum record length which will hold
* the directory entry. This requires the amount of space in struct direct
* without the d_name field, plus enough space for the name with a terminating
* null byte (dp->rl_narnlen+ 1), rounded up to a 4 byte boundary.
*/

#undef DIRSIZ
#define DIRSIZ(dp) \
«sizeof (struct direct) - (MAXNAMLEN+l» + «(dp)->d_namlen+l + 3) &- 3»

/*
* Definitions for library routines operating on directories.
*/

typedef struct _dirdesc {

} DIR;

int dd_fd;
long dd_loc;
long dd_size;
char dd_buf[DIRBLKSIZ];

5-7

DIR (5) DOMAIN/IX BSD4.2 DIR (5)

#ifndef NULL
#define NULL 0
#endif
extern DIR *opendirO;
extern struct direct *readdirO;
extern long telldirO;
extern void seekdirO;
#define rewinddir(diIp) seekdir«dirp), (long)O)
extern void c1osedirO;

N()TES

5-8

On many UNIX systems, the first two entries in each directory are for. (dot) and ..
(dotdot). The first is an entry for the directory itself. The second is for the parent
directory. The meaning of dotdot is modified for the root directory of the master file
system; there is no parent, so dotdot has the same meaning as dot.

While the dot and dotdot directory entries do not exist in the bsd4.2 version of
DOMAIN/lX, the naming server recognizes. as "this directory" and .. as "the parent
directory of this directory." When dot is II (the network root), dot and dotdot are the
same.

Revision 01

I

\.

o

o

o

FSTAB (5) DOMAIN/IX BSD4.2 FSTAB(5)

NAME
fsta b - static infonnation about filesystems

USAGE
#include <fstab.h>

DESCRIPTION

FILES

The file letel/stab contains descriptive infonnation about the various file systems. On
DOMAIN systems, it is a link to 'node_datalete.Jstab. Programs read this file. They
do not write to it. It is created during the installation process.

The order of records in /stab is important because mount(8) and umount(8) sequen­
tially iterate through the file in perfonning their respective functions.

The special file name is the block special filename, and not the character special
filename. If a program needs the character special filename, the program must create it
by appending an "r" after the last "I" in the special filename.

If fs_type is "rw" or "ro" then the file system whose name is given in the fs_file field
is nonnally mounted read-write or read-only on the specified special file.

If fs_type is specified as "xx" the entry is ignored. This is useful to show disk parti­
tions that are currently not used.

#define FSTAB_RW "rw"
#define FSTAB_RO "ro"
#define FSTAB_XX "xx"

struct fstab {
char
char
char
int
int

};

*fs_spec;
*fs_file;
*fs_type;
fs_freq;
fs_passno;

/* read-write device * /
/* read-only device */
/* ignore totally *1

/* block special device name * /
/* file system path prefix * /
/* rw ,ro,or xx */
/* dump frequency, in days;currently unused *1
/* pass number on parallel dump;currently unused *1

letel/stab static infonnation on file systems (nonnally a link to
'node_datalete.Jstab.

Revision 01 5-9

GROUP(5) DOMAIN/IX BSD4.2 GROUP(5)

NAME
group - group file

DESCRIPTION
The file fete/group contains, for each group, the following information:

• group name

• numerical group ID

• a comma-separated list of all users allowed in the group

This is an Ascn file. The fields are separated by colons; each group is separated
from the next by a newline. If the password field is null, no group password is
demanded.

This file resides in the fete directory, and normally has general read permission.

NOTES

FILES

On DOMAIN Systems, the group file is created from network registry information by
the crpasswd(8) program.

fete/group group information file

RELATED INFORMATION
setgroups(2), initgroups(3X), passwd(5). crpasswd(8)

5-10 Revision 01

c

o

o

o

HOSTS(5) DOMAIN/IX BSD4.2 HOSTS (5)

NAME
hosts - host name database

DESCRIPTION

FILES

The /etc/hosts file contains infonnation regarding the known DARPA Internet hosts
with which your DOMAIN node can communicate (usually via TCP/lP). For each
host a single line should be present with the following information:

official host name
Internet address
aliases

Items are separated by any number of blanks and/or tab characters. A # character
indicates the beginning of a comment; characters between a # and the next newline are
not intetpreted by routines which search the file. This file is nonnally created from the
official host database maintained at the Network Information Control Center (NIC),
though local changes may be required to bring it up to date regarding unofficial aliases
and/or unknown hosts.

Network addresses are specified in the conventional "." notation using the inet_addrO
routine from the Internet address manipulation library, inet(3N). Host names may con­
tain any printable character other than a field delimiter, newline, or comment character.

/etc/hosts database of internet hosts

RELATED INFORMATION
gethostent(3N)

Revision 01 5-11

INETD.CONF (5) DOMAIN/IX BSD4.2 INETD.CONF (5)

NAME
inetd.conf - configuration file for inetd(8C)

DESCRIPTION
This file, nominally /etc/inetd.conf, is, in nearly all installations, a link to the per-node
file 'node_data/etc.inetd.conJ. The Internet superdaemon, inetd(8), reads this file at
boot time and, in some cases, after it gets a hangup signal.

The etc.inetd.conJ file is "free format." All fields must be present in each entry, and
must appear in the order shown below.

service name

socket type

protocol

wait/nowait

Must be must present in /etc/services.

Must be one of stream, dgram, raw, rdm, or seqpacket.

Must be listed in /etc/protocols.

Use wait for single-threaded servers (ones that simply
take over the socket from inetd). Use nowait for multi-
threaded servers (ones which connect directly to the peer,
freeing up the socket for continued use by inetd.)

server program The full pathname to this program (e.g., /etclftpd).

server program arguments A maximum of MAXARGS (normally 5).

Continuation lines, if required, must begin with a space or tab. To allow comments,
inetd ignores any line that has a pound sign (#) in column 1.

EXAMPLES

5-12

We ship a template for inetd.confwith the bsd4.2 version of DOMAIN/IX. Copy this
template from the master DOMAINjIX node at your site to your node's 'node_data
directory using a command line like the one below.

% cp templateJtle \'node_data/etc.inetd.conf

where templateJtle is the file /sys/node_data/etc.inetd.conJ on a DOMAIN/IX adminis­
trative node at your site. Note that in the C and Bourne shells, you must escape the
backquote with a backslash.

The template file includes entries for all internet services available in the bsd4.2 ver­
sion of DOMAIN/IX. All entries are commented out in the template file. Unless you
remove the comment delimiters, inetd will be configured to do nothing. In the exam­
ple file below, comment lines have been removed from the entries for telnetd(8C) and
rlogind(8C).

Revision 01

'-.... ..•.. /

f"
I.

........ ...

o

o

o

INETD.CONF (5) DOMAIN/IX BSD4.2 INETD.CONF (5)

FILES

etc.inetd.conf template
DOMAIN/IX version of 12/04/85

remove # characters to allow services

Run telnetd and/or rlogind on nodes to which
you wish to allow incoming login
#telnet stream tcp nowait
#login stream tcp nowait

/etc/telnetd
/etc/rlogind

Run rshd and/or rexecd on nodes to which
you wish to allow remote command execution
#shell stream tcp nowait /etc/rshd
#exec stream tcp nowait /etc/rexecd

Only one ftpd is needed per ring, but you may want to
run more than one to maximize availability

telnetd
rlogind

rshd
rexecd

#ftp stream tcp nowait /etc/ftpd ftpd

/ete/serviees List of Internet services

/ete/protoeols List of Internet protocols

/ete/inetd

/etelftpd

Internet superdaemon; reads inetd.eonf for configuration data.

FTP daemon

/ete/rexecd Remote execution server

/ete/rlogind Remote log-in daemon

/etc/rshd Remote Shell server

/ete/felnetd DARPA TELNET protocol server

RELATED INFORMATION
inetd(8C), services(5), rexecd(8C), rlogind(8C), rshd(8C), telnetd(8C),

Revision 01 5-13

MTAB (5) DOMAIN/IX BSD4.2 MTAB (5)

NAME
mtab - mounted file system table

USAGE
#include <fstab.h>
#include <mtab.h>

DESCRIPTION

FILES

On DOMAIN/IX systems, the mtab file, letclmtab, is a link to the per-node file
'node_dataletc.mtab. It is created upon installation of DOMAIN/IX software. The file
contains a table of devices mounted by the mount(8) command. Mount adds entries
to this file; umount(8) removes them.

The table is a series of mtab structures, as defined in <mtab.h>. Each entry contains
the null-padded name of the place where the special file is mounted, the null-padded
name of the special file, and a type field, one of those defined in <fstab.h>. The spe­
cial file has all its directories stripped away; that is, everything through the last slash
(I) is discarded. The type field indicates whether the file system is mounted read-only
or read-write.

This table is present for reference purposes only. It does not matter to mount if there
are duplicated entries, nor to u moun t if a name cannot be found.

letclmtab mounted file system table

NOTES
Owners of diskless DOMAIN Nodes can create this file in a 'node_data directory on
their disked partner by running the mkptnr(8) command.

RELATED INFORMATION
mount(8)
umount(8)

5-14 Revision 01

('
\

"-

c

o

u

o

C)

NETWORKS (5) DOMAIN/IX BSD4.2 NETWORKS (5)

NAME
networks - network name database

DESCRIPTION

FILES

The fete/networks file contains infonnation regarding DARPA Internet networks with
which your DOMAIN node can conununicate. For each host a single line should be
present with the following infonnation:

official network name
network number
aliases

Items are separated by any number of blanks and/or tab characters. A # character
indicates the beginning of a conunent; characters between a # and the next newline are
not interpreted by routines which search the file. This file is nonnally created from the
official host database maintained at the Network Infonnation Control Center (NIC),
though local changes may be required to bring it up to date regarding unofficial aliases
and/or unknown hosts.

Network numbers are specified in the conventional "." notation using the
inet_networkO routine from the Internet address manipulation library, inet(3N). Net­
work names may contain any printable character other than a field delimiter, newline,
or comment character.

fete/networks database of reachable networks

RELATED INFORMATION
getnetent(3N)

Revision 01 5-15

PASSWD(S) DOMAIN/IX BSD4.2 PASSWD(S)

NAME
passwd - password file

DESCRIPTION
Passwd contains, for each user account, the following infonnation:

log-in name
numerical user ill
numerical group ID
full name and uid
initial working directory
program to use as shell

All fields but the last are derived from data in the network registry by the
crpasswd(lm) program.' On DOMAIN Systems, /ete/passwd exists soleley to provide
account information in a fonn familiar to UNIX programs and users. It is not used in
verifying passwords at login time and in fact, it includes no passwords at all.

Each field within a user's entry is separated from the next by a colon. Each user is
separated from the next by a newline. Since encrypted passwords are maintained in
the registry and not copied into the password file by crpasswd, the second field is
always null. If the Shell field is null, the Bourne Shell is used.

We supply a program, crpasswd(8), that builds /ete/passwd, fete/group, and
/ete/passwd.map from information in the network registry. To add a new user to the
system, follow the procedures for creating a new account described the DOMAIN/IX
Administrator's Reference for BSD4.2, then update the password file by running
crpasswd. Do not edit the password file unless you need to change the "shell" field.
If you do change this field, run crpasswd after the change is completed.

EXAMPLE

5-16

The line below is a prototypical record in /ete/passwd.

robinson: :uuuu:gg:Sheryl &, xxxxxxxx.xxxxxxxx:/ /home/dir:/bin/csh

This example shows the /ete/passwd entry for user "Sheryl Robinson." It includes her
log-in name, a null field, her user and group ID numbers, her full name and uid
(separated by a comma), home directory, and a shell field that specifies the C Shell.
(If you include an ampersand in the full name field, it will be expanded into the log­
name. This labor-saving feature is, of course, only useful where someone logs in with
some portion of their full name.) The uid is a unique numeric identifier derived from
the time the account was created and the node ID of the node on which the account
was created.

Revision 01

~"
I~
\"" _. -"

c)

C)

o

C)

o

PASSWD(S)

FILES
/etc/passwd

/etc/passwd.map

/etc/group

DOMAIN/IX BSD4.2

the password file

uid-to-userid mapping

the group file

RELATED INFORMATION
getpwent(3), login(1), group(5), crpasswd(8)

Revision 01

PASSWD(S)

5-17

PHONES(5) DOMAIN/IX BSD4.2 PHONES(5)

NAME
phones - remote host phone number database

DESCRIPTION

FILES

The file fete/phones contains the system-wide private phone numbers for the tip(1C)
program. Since phone numbers can be privileged information, this file is normally
protected against general readability. The format of the file is a series of lines of the
form:

system-name phone-number

Where system-name is one of those defined in the remote(5) file and the phone,
number is constructed from the set [0123456789-=]. The "=" and "-" characters
cause some autodialers to pause.

Only one phone number per line is permitted. However, if more than one line in the
file contains the same system-name, ti p(1 C) will attempt to dial each one in tum until
it establishes a connection.

fete/phones phone number database for tip(1C)

RELATED INFORMATION
tip(1C), remote(5)

5-18 Revision 01

c'

o

o

o

o

PLOT(S) DOMAIN/IX BSD4.2 PLOT(S)

NAME
plot - graphics interface

DESCRIPTION
Files of this format are produced by routines described in plot(3X), and are interpreted
for various devices by commands described in plot(lG). A graphics file is a stream of
plotting instructions. Each instruction consists of an ASCII letter usually followed by
bytes of binary information. The instructions are executed in order. A point is desig­
nated by four bytes representing the x and y values; each value is a signed integer.
The last designated point in an I, m, n, or p instruction becomes the "current point"
for the next instruction.

Each of the following descriptions begins with the name of the corresponding routine
in plot(3X).

m

n

p

t

a

c

move: The next four bytes give a new current point.

cont: Draw a line from the current point to the point given by the next four
bytes. See plot(lG).

point: Plot the point given by the next four bytes.

line: Draw a line from the point given by the next four bytes to the point given
by the following four bytes.

label: Place the following ASCII string so that its first character falls on the
current point. The string is terminated by a newline.

arc: The first four bytes give the center, the next four give the starting point,
and the last four give the end point of a circular arc. The least significant coor­
dinate of the end point is used only to detennine the quadrant. The arc is
drawn counter-clockwise.

circle: The first four bytes give the center of the circle, the next two the radius.

e erase: Start another frame of output.

f linemod: Take the following string, up to a newline, as the style for drawing
further lines. The styles are "dotted," "solid," "longdashed," "shortdashed,"
and "dotdashed." Effective only in plot 4014 and plot ver.

Revision 01 5-19

PLOT(5) DOMAIN/IX BSD4.2 PLOT(5)

s space: The next four bytes give the lower left comer of the plotting area; the
following four give the upper right comer. The plot will be magnified or
reduced to fit the device as closely as possible.

Space settings that exactly fill the plotting area with unity scaling appear below
for devices supported by the filters of plot(IG). The upper limit is just outside
the plotting area. In every case the plotting area is taken to be square; points
outside may be displayable on devices whose face isn't square.

RELATED INFORMATION
plot(IG), plot(3X), graph(1G)

5-20 Revision 01

('
"'-._ .. - '

c

o

o

o

o

PRINTCAP (5) DOMAIN/IX BSD4.2 PRINTCAP (5)

NAME
printcap - printer capability data base

USAGE
/etc/printcap

DESCRIPTION
Printcap is a simplified version of the termcap(5) data base. However, printcap is
used solely to describe line printers. The spooling system reads the printcap file
every time it is used, allowing you to add and delete printers dynamically. Each entry
in the data base is used to describe one printer.

The default printer is normally I p, though the environment variable PRINTER may be
used to override this. Each spooling utility supports an option, -Pprinter, to allow
explicit naming of a destination printer.

Refer to the DOMAIN/IX Administrator's Reference Manual for BSD4.2 for a more
complete discussion of how to set up the database for a given printer.

CAPABILITIES
The layout of this file is identical to the layout of /etc/termcap.

Name Type Default Descri ption

af str NULL name of accounting file
br num none if lp is a tty, set the baud rate (iocd call)
cf str NULL cifplot data filter
df str NULL tex data filter (DVI fonnat)
fc num 0 if lp is a tty, clear flag bits (sgtty.h)
ff str \f string to send for a fonn feed
fo bool false print a form feed when device is opened
fs num 0 like 'fc' but set bits
gf str NULL graph data filter (plot (3X) format)
ic bool false driver supports (non standard) iocd

to indent printout (unimplemented)
if str NULL name of text filter which does accounting
If str /dev /console error logging file name
10 str lock name of lock file
lp str /dev/lp device name to open for output
mc num infinite maximum number of copies allowed
mx num 1000 maximum file size (in BUFSIZ blocks),

zero = unlimited
nd str NULL next directory for list of queues (unimplemented)
nf str NULL ditroff data filter (device independent troft)
of str NULL name of output filtering program

Revision 01 5-21

PRINTCAP (5)

pc str

pI num
pw num
px num
py num
rf str
rm str
rp str
rs bool
rw bool
sb bool
sc bool
sd str

sf bool
sh bool
st str
tf str
tr str
vf str
xc num

xs num

NOTES

DOMAIN/IX BSD4.2 PRINTCAP (5)

NULL Command to run instead of directing output
to I p or rp. The command should
behave like a printer. The value supplied
for DOMAIN Systems is:
"/corn/prf -banner off -text -npag -headers off"

66 page length (in lines)
132 page width (in characters)
o page width in pixels (horizontal)
o page length in pixels (vertical)
NULL filter for printing FORTRAN style text files
NULL machine name for remote printer
lp remote printer name argument
false restrict remote users to those with local accounts
false open the printer device for reading and writing
false short banner (one line only)
false suppress multiple copies
/usr/spool/lpd/lp

false
false
status
NULL
NULL
NULL
o

o

spool directory
suppress fonn feeds
suppress printing of burst page header
status file name
troff data filter (phototypesetter)
trailer string to print when queue empties
raster image filter
if lp is a tty, clear local mode bits
(tty(4»
like 'xc' but set bits

\

r

Blank lines in a printcap file will cause Ip-related commands to act as if there is a \'-
"nameless" printer defined there.

If the local line printer driver supports indentation, the daemon must understand how
to invoke it.

RELATED INF()RMATION
Ipq(l), Ipr(I), Iprm(I), Ipc(8), Ipd(8), termcap(5), /com/prf.

5-22 Revision 01

/-",

U

PROTOCOLS (5) DOMAIN/IX BSD4.2 PROTOCOLS (5)

NAME
protocols - protocol name database

DESCRIPTION

FILES

The protocols file contains infonnation regarding the known protocols used in the
DARPA Internet. For each protocol a single line should be present with the following
infonnation:

official protocol name
protocol number
aliases

Items are separated by any number of blanks and/or tab characters. A # character
indicates the begirming of a comment; characters between a # and the next newline are
not intetpreted by routines that search the file.

Protocol names may contain any printable character other than a field delimiter, new­
line, or comment character.

/etc/protocols DARPA Internet protocols database
(r-"",\
"--') RELATED INFORMATION

getprotoent(3N)

o

o
Revision 01 5-23

REMOTE(S) DOMAIN/IX BSD4.2 REMOTE(S)

NAME
remote - remote host description file

DESCRIPTION
Information about systems accessible via tip(1) and is stored in fete/remote, an ASCII
file that is structured somewhat like the termeap(5) file. Each line in the file provides
a description for a single system. Fields are separated by a colon (": "). Lines ending
in a \ character with an immediately following newline are continued on the next line.

The first entry is the name(s) of the host system. If there is more than one name for a
system, the names are separated by vertical bars. After the name of the system comes
the fields of the description. A field name followed by an equal sign ("=") indicates
that a string value follows. A field name followed by a pound sign ("#") indicates
that a numeric value follows.

Entries named "tip*" and "cu*" are used as default entries by tip, and the eu interface
to tip, as follows. When tip is invoked with only a phone number, it looks for an
entry of the form "tip300", where 300 is the baud rate with at the connection is to be
made. When the eu interface is used, entries of the form "cu300" are used.

CAPABILITIES

5-24

Capabilities described below are either strings (str), numbers (num), or Boolean flags
(bool). A string capability is specified by eapability=value; e.g. "dv=/dev/harris". A
numeric capability is specified by eapability#value; e.g. "xa#99". A Boolean capabil­
ity is specified by simply listing the capability.

at (str) Auto call unit type. [DOMAIN/IX supports these values for at: v831
(Racal-Vadic 831), v3451 (Racal-Vadic V3451 or VA212),or ventel (Ventel
212+).

br

em

(num) The baud rate used in establishing a connection to the remote host. This
is a decimal number. The default baud rate is 300 baud.

(str) An initial connection message to be sent to the remote host. For example,
if a host is reached through port selector, this might be set to the appropriate
sequence required to switch to the host.

eu (str) Call unit if making a phone call. Default is the same as the dv field.

di (str) Disconnect message sent to the host when a disconnect is requested by the
user.

du (bool) This host is on a dial-up line.

dv (str) Device(s) to open to establish a connection. If this file refers to a terminal
line, ti p(1) attempts to perform an exclusive open on the device to ensure that
only one user at a time has access to the port.

Revision 01

I

1\... ... , __ ,././'

c

o

o

C)

o

o

REMOTE(5) DOMAIN/IX BSD4.2 REMOTE(5)

el (str) Characters marking an end-of-line. The default is NULL. Tilde ("- ")
escapes are only recognized by tip after one of the characters in el, or after a
carriage-return.

fs (str) Frame size for transfers. The default frame size is equal to BUFSIZ.

hd (bool) The host uses half-duplex communication, local echo should be per­
fonned.

ie (str) Input end-of-file marks. The default is NULL.

oe (str) Output end-of-file string. The default is NULL. When tip is transferring
a file, this string is sent at end-of-file.

pa (str) The type of parity to use when sending data to the host. This may be one
of "even", "odd", "none", "zero" (always set bit 8 to zero), "one" (always set
bit 8 to 1). The default is even parity.

pn (str) Telephone number(s) for this host. If the telephone number field contains
an @ sign, tip searches the file fete/phones file for a list of telephone numbers;
(See phones(5».

tc (str) Indicates that the list of capabilities is continued in the named description.
This is used primarily to share conunon capability infonnation.

EXAMPLE

FILES

This short example demonstrates the use of the capability continuation feature:

UNIX-1200:\
:dv=/dev/siol:el="D"U"C"S"Q"O@:du:at=ventel:ie=#$%:oe="D:br#1200:

arpavaxlax:\
:pn=7654321 %:tc=UNIX-1200

fete/remote remote dial-up host descriptions

RELATED INFORMATION
tip(I), phones(5)

Revision 01 5-25

SCCSFILE (5) DOMAIN/IX BSD4.2 SCCSFILE (5)

NAME
sccsfile - fonnat of Source Code Control System (SCCS) file

DESCRIPTION
An SCCS file is an ASCII file. It consists of six logical parts: the checksum, the delta
table (contains infonnation about each delta), user names (contains log-in names
and/or numerical group IDs of users who may add deltas), flags (contains definitions
of internal keywords), comments (contains arbitrary descriptive infonnation about the
file), and the body (contains the actual text lines intennixed with control lines).

Throughout an secs file there are lines which begin with the ASCII SOH (start of
heading) character (octal 001). This is the control character and is represented
graphically in these pages as @. Any line described below. which is not depicted as (\

5-26

beginning with the control character is prevented from beginning with the control char- _--,/
acter.

Entries of the fonn DDDDD represent a five-digit string (a number between 00000 and
99999).

Each logical part of an SCCS file is described in detail below.

Checksum
The checksum is the first line of an SCCS file. The fonn of the line is:

@hDDDDD.

The value of the checksum is the sum of all characters, except those of the first
line. The @h provides a magic number of (octal) 064001.

Delta table
The delta table consists of a variable number of entries of the form:

@s DDDDD/DDDDD/DDDDD
@d <type> <SCCS ID> yr/mo/da hr:mi:se <pgmr> DDDDD
@iDDDDD .. .
@xDDDDD .. .
@gDDDDD .. .
@m <MR number>

@c <comments> ...

@e

Revision 01

c

(~)

o

o

o

SCCSFILE (5) DOMAIN/IX BSD4.2 SCCSFILE (5)

The first line (@s) contains the number of lines inserted/deleted/unchanged,
respectively. The second line (@d) contains the type of the delta (currently,
nonnal: D, and removed: R), the sees ID of the delta, the date and time the
delta was created, the log-in name corresponding to the real user ill at the time
the delta was created, and the serial numbers of the delta and its predecessor,
respectively.

The @i, @x, and @g lines contain the serial numbers of deltas included,
excluded, and ignored, respectively. These lines are optional.

The @m lines (optional) each contain one MR number associated with the
delta; the @c lines contain comments associated with the delta.

The @e line ends the delta table entry.

User names
The list of log-in names and/or numerical group IDs of users who may add del­
tas to the file, separated by new-lines. The lines containing these log-in names
and/or numerical group IDs are surrounded by the bracketing lines @u and
@U. An empty list allows anyone to make a delta. Any line starting with a !
prohibits the succeeding group or user from making deltas.

Flags Keywords used internally (see admin(1) for more infonnation on their use).

Revision 01

Each flag line takes the fonn:

@f <flag> <optional text>

The following flags are defined:
@f t <type of program>
@fv <program name>
@f i <keyword string>
@fb
@f m <module name>
@f f <floor>
@f c <ceiling>
@f d <default SID>
@fn
@fj
@f I <lock-releases>
@f q <user defined>
@f Z <reserved for use in interfaces>

The t flag defines the replacement for the % Y% identification keyword. The v
flag controls prompting for MR numbers in addition to comments; if the

5-27

SCCSFILE(5) DOMAIN/IX BSD4.2 SCCSFILE (5)

optional text is present it defines an MR. number validity checking program.
The i flag controls the warning/error aspect of the "No ID keywords" message.
When the i flag is not present, this message is only a warning; when the i flag
is present, this message will cause a "fatal" error (the file will not be gotten,
or the delta will not be made). When the b flag is present the -b keyletter may
be used on the get command to cause a branch in the delta tree. The m flag
defines the first choice for the replacement text of the %M% identification key­
word. The f flag defines the "floor" release; the release below which no deltas
may be added. The c flag defines the "ceiling" release; the release above
which no deltas may be added. The d flag defines the default SID to be used
when none is specified on a get command. The n flag causes delta to insert a
"null" delta (a delta that applies no changes) in those releases that are skipped
when a delta is made in a new release (e.g., when delta 5.1 is made after delta
2.7, releases 3 and 4 are skipped). The absence of the n flag causes skipped
releases to be completely empty. The j flag causes get to allow concurrent
edits of the same base SID. The I flag defines a list of releases that are locked
against editing (get(l) with the-e keyletter). The q flag defines the replace­
ment for the %Q% identification keyword. The z flag is used in certain spe­
cialized interface programs.

Comments
Arbitrary text is surrounded by the bracketing lines @t and @T. The com­
ments section typically will contain a description of the file's purpose.

Body The body consists of text lines and control lines. Text lines do not begin with
the control character, control lines do. There are three kinds of control lines:
insert ,delete, and end, represented by:

@IDDDDD
@DDDDDD
@EDDDDD

respectively. The digit string is the serial number corresponding to the delta
for the control line.

RELATED INFORMATION
admin(l), deJta(l), get(l), prs(l)

5-28 Revision 01

/'~""

I 'I

"-... '/

o

u

o

o

o

SERVICES (5) DOMAIN/IX BSD4.2 SERVICES (5)

NAME
se rvices - database of Internet services

DESCRIPTION

FILES

The /etc/services file contains infonnation regarding the known services available in
the Internet. Each service description consists of a single line that includes the follow­
ing infonnation:

official service name
port number
protocol name
aliases

Items are separated by any number of blanks and/or tab characters. The port number
and protocol name are considered a single item. A J separates the port and protocol
(e.g. "512/tcp"). A # indicates the beginning of a comment; characters between a #
and the next newline are not interpreted by routines that search the file.

Service names may contain any printable character other than a field delimiter, new­
line, or comment character.

/etc/services database of Internet services

RELATED INFORMATION
getservent(3N)

Revision 01 5-29

TAR(5) DOMAINjlX BSD4.2 TAR (5)

NAME
tar - tape archive file fonnat

DESCRIPTION
Tar(l) (the tape archiver command) dumps several files into one, typically on a
medium suitable for transportation.

A "tar tape" or file is a series of blocks. Each block is of size TBLOCK. A file on
the tape is represented by a header block that describes the file, followed by zero or
more blocks that give the contents of the file. At the end of the tape, two blocks filled
with binary zeros serve as an end-of-file indicator.

The blocks are grouped for physical I/O operations. Each group of n blocks (where n (-----\
is set by the b keyletter on the tar command line - default is 20 blocks) is written "'-_._'

5-30

with a single system call; on nine-track tapes, the result of this write is a single tape
record. The last group is always written at the full size, so blocks after the two zero
blocks contain random data. On reading, the specified or default group size is used for
the first read, but if that read returns less than a full tape block, the reduced block size
is used for further reads.

The header block looks like:

#define TBLOCK
#define NAMSIZ

512
100

union hblock {

} ;

char dummy[TBLOCK];
struct header {

char name[NAMSIZ];
char mode[8];
char uid[8];
char gid[8];
char size[12];
char mtime[12];
char chksum[8];
char linkflag;
char linkname[NAMSIZ];

} dbuf;

Revision 01

c

o

o

o

o

o

TAR(S) DOMAIN/IX BSD4.2 TAR (S)

Name is a null-tenninated string. The other fields are zero-filled octal numbers in
ASCII. Each field (of width w) contains w-2 digits, a space, and a null, except for size
and mtime, which do not contain the trailing null. Name is the name of the file, as
specified on the tar command line. Files dumped because they were in a directory
that was named in the command line have the directory name as prefix and !filename
as suffix. Mode is the file mode, with the high bit masked off. Uid and gid are the
user and group numbers which own the file. Size is the size of the file in bytes. Links
and symbolic links are dumped with this field specified as zero. Mtime is the
modification time of the file at the time it was dumped. Chksum is a decimal ASCII
value which represents the sum of all the bytes in the header block. When calculating
the checksum, the chksum field is treated as if it were all blanks. Linkflag is ASCII
zero if the file is "nonnal" or a special file, ASCII 1 if it is an hard link, and ASCII 2
if it is a symbolic link. The name linked to, if any, is in linkname, with a trailing null.
Unused fields of the header are binary zeros (and are included in the checksum).

The first time a given i-node number is dumped, it is dumped as a regular file. The
second and subsequent times, it is dumped as a link instead. Upon retrieval, if a link
entry is retrieved, but not the file it was linked to, an error message is printed and the
tape must be manually re-scanned to retrieve the linked-to file.

The encoding of the header is designed to be portable across machines.

NOTES
Names or linknames longer than NAMSIZ produce error reports and cannot be
dumped.

RELATED INFORMATION
tar(l)

Revision 01 5-31

TERMCAP(S) DOMAIN/IX BSD4.2 TERMCAP(S)

NAME
termcap - tenninal capability database

USAGE
/etc/termcap

DESCRIPTION
Termcap is a database describing tenninals, used, e.g., by vi(l) and curses(3X). This
file includes definitions of the capabilities of various tenninals, and details about how
these tenninals handle various operations. Padding requirements and initialization
sequences are included in termcap.

Entries in termcap consist of a number of colon-separated fields. The first entry for
each tenninal gives the names known for the tenninal, separated by I characters. The
first name is always 2 characters long and is used by older version 6 systems which
store the tenninal type in a 16 bit word in a system-wide database. The second name
given is the most common abbreviation for the tenninal, and the last name given
should be a long name fully identifying the tenninal. The second name should contain
no blanks; the last name may well contain blanks for readability.

CAPABILITIES
(P) indicates that padding may be specified
(P*) indicates that padding may be based on the number
of lines affected

Name Type Pad? Description
ae str (P) End alternate character set
al str (P*) Add new blank line
am bool Tenninal has automatic margins
as str (P) Start alternate character set
bc str Backspace if not AU
bs bool Tenninal can backspace with AU
bt str (P) Back tab
bw bool Backspace wraps from column zero to last column
CC str Command character in prototype if terminal settable
cd str (P*) Clear to end of display
ce str (P) Clear to end of line
ch str (P) Like cm but horizontal motion only, line stays same
cl str (P*) Clear screen
cm str (P) Cursor motion
co num Number of columns in a line
cr str (P*) Carriage return (default AM)
cs str (P) Change scrolling region (vt100), like cm
cv str (P) Like ch but vertical only
da bool Display may be retained above

5-32 Revision 01

/~

\.._.,/

(
'I
'-.. _-

('-........

(''--''

C

TERMCAP(5) DOMAIN/IX BSD4.2 TERMCAP(5)

0
dB num Number of millisec of bs delay needed
db bool Display may be retained below
dC num Number of millisec of cr delay needed
dc str (P*) Delete character
dF num Number of millisec of ff delay needed
ell str (P*) Delete line
dm str Delete mode (enter)
dN num Number of millisec of nl delay needed
do str Down one line
dT num Number of millisec of tab delay needed
ed str End delete mode
ei str End insert mode; give ":ei=:" if ie

0 eo str Can erase overstrikes with a blank
ff str (P*) Hardcopy tenninal page eject (default AL)
hc bool Hardcopy tenninal
hd str Half-line down (forward 1/2 linefeed)
ho str Home cursor (if no em)
hu str Half-line up (reverse 1/2linefeed)
hz str Hazeltine; can't print - 's
ic str (P) Insert character
if str N arne of file containing is

0 \ im bool Insert mode (enter); give ":im=:" if ic
in bool Insert mode distinguishes nulls on display
ip str (P*) Insert pad after character inserted
is str Tenninal initialization string
kO-k9 str Sent by "other" function keys 0-9
kb str Sent by backspace key
kd str Sent by tenninal down arrow key
ke str Out of "keypad transmit" mode

0
kh str Sent by home key
k1 str Sent by tenninal left arrow key
kn num Number of "other" keys
ko str Tenncap entries for other non-function keys
kr str Sent by tenninal right arrow key
ks str Put tenninal in "keypad transmit" mode
ku str Sent by tenninal up arrow key
10-19 str Labels on "other" function keys
li num Number of lines on screen or page
11 str Last line, first column (if no em)
rna str Arrow key map, used by vi version 2 only
mi bool Safe to move while in insert mode
m1 str Memory lock on above cursor
ms bool Safe to move while in standout and underline mode
mu str Memory unlock (tum off memory lock).

0
Revision 01 5-33

TERMCAP(5) DOMAIN/IX BSD4.2 TERMCAP(5)

~.
(,
'-...._/

nc bool No correctly working carriage return (DM2500, H2000)
nd str Non-destructive space (cursor right)
n1 str (P*) Newline character (default \n)
ns bool Tenninal is a CRT but doesn't scroll
os bool Tenninal overstrikes
pc str Pad character (rather than null)
pt bool Has hardware tabs (may need to be set with is)
rc str Restore cursor position, type, and attributes
sc str Save cursor position, type, and attributes
se str End stand out mode
sf str (P) Scroll forwards
sg num Number of blank chars left by so or se I~,

so str Begin stand out mode '\ "--_/
sr str (P) Scroll reverse (backwards)
ta str (P) Tab (other than AI or with padding)
tc str Entry of similar tenninal - must be last
te str String to end programs that use em
ti str String to begin programs that use em
uc str Underscore one char and move past it
ue str End underscore mode
ug num Number of blank chars left by us or ue /".---.....""

(
ul bool Terminal underlines even though it doesn't overstrike \,-

up str Upline (cursor up)
us str Start underscore mode
vb str Visible bell (may not move cursor)

(~
I

"'--- .

5-34 Revision 01

u

o

o

TYPES(5) DOMAIN/IX BSD4.2 TYPES (5)

NAME
types - primitive system data types

USAGE
#include <sys/types.h>

DESCRIPTION
The data types defined in the include file are used in the system code; some data of
these types are accessible to user code:

Revision 01 5-35

UUENCODE (5) DOMAIN/IX BSD4.2 UUENCODE(5)

NAME
uuencode - format of an encoded uuencode file

DESCRIPTION
Files output by uuencode(l) consist of a header line, followed by a number of body
lines, and a trailer line. Uudecode(l) will ignore any lines preceding the header or
following the trailer. Lines preceding a header must not, of course, look like a header.

The first 6 characters of the header line must be the string "begin". This string is fol­
lowed by a mode (in octal) and a string which names the remote file. A space
separates the three items in the header line.

The body consists of a number of lines, each at most 62 characters long (including the
trailing newline). These consist of a character count, followed by encoded characters,
followed by a newline. The character count is a single printing character, and
represents an integer, the number of bytes the rest of the line represents. Such integers
are always in the range from 0 to 63 and can be determined by subtracting the charac­
ter space (octal 40) from the character.

Groups of 3 bytes are stored in 4 characters, 6 bits per character. All are offset by a
space to make the characters printing. The last line may be shorter than the normal 45
bytes. If the size is not a multiple of 3, this fact can be determined by the value of the
count on the last line. Extra garbage will be included to make the character count a
multiple of 4. The body is terminated by a line with a count of zero. This line con­
sists of one ASCII space.

The trailer line consists of "end" on a line by itself.

RELATED INFORMATION
uuencode(l), uudecode(l), uusend(l), uucp(l), mail(l)

5-36 Revision 01

(---'\
I "' __ ..• ./

o

o

INDEX (5) DOMAIN/IX BSD4.2 INDEX(5)

This is a topical index for Section 5 of the DOMAIN/IX Programmer's Reference
Manual for BSD4.2. For a permuted index of all reference information, see Appendix
A of this manual.

DARPA Internet
Internet services
archives
configuration
daemons
data types, system
databases

5-11,5-15
5-29
5-5
5-12
5-12
5-35

host name 5-11
network name 5-15
phone numbers of remote hosts 5-18
protocol name 5-23
service name 5-29
terminal capability 5-32

description files, remote host 5-24
devices, special 5-14
directories, format of 5-7
file format

sendmail aliases 5-3
sees 5-26
archive 5-5
group file 5-10
password file 5-16
tape archive 5-30
uuencode 5-36

file systems, mounted 5-14
files, format of directory 5-7
filesystems, static information about 5-9
group file 5-10
mail aliases 5-3
password file 5-16
protocols, Internet 5-23
remote hosts 5-24
system primitives 5-35
tape archive 5-30
terminal capabilities 5-32

Revision 01 5-37

c

o

o

o

Appendix A: Permuted Index

This permuted index covers reference material in the DOMAIN/IX Command Reference
Manual, the DOMAIN/IX Programmer's Reference Manual, and parts of System
Administration for DOMAIN/IX. In addition, there is a topical index located at the end
of each section of these manuals.

@: arithmetic on shell variables csh(l)
abort: generate a fault. .. abort(3)
abs: integer absolute value abs(3)

abs: integer absolute value .. abs(3)
fabs, floor, ceil: absolute value, floor, ceiling fu~ctions floor(3M)

accept: accept a connection on a socket. accept(2)
accept: accept a connection on a socket. accept(2)
access: determine if a file can be accessed access(2)

get groups: get group access list. .. getgroups(2)
initgroups: initialize group access list.initgroups(3X)

setgroups: set group access list. : ... setgroups(2)
access: determine if a file can be accessed ... access(2)

pac: printer/plotter accounting information ... pac(8)
fix_cache - repair acl cache hash chains .. fix_cache(8)

flush_cache - clear the node's acl_cache ... flush_cache(8)
sin, cos, tan, asin, acos, atan, atan2: trigonometric functions sin(3M)

sact: print current sees file editing activity ... sact(l)
fortune: print a random adage .. fortune(6)

addroot: add a root ID ... addroot(8)
addbib: create or extend bibliographic database addbib(1)

inecmakeaddr, ineclnaof, inecnetof: Internet address manipulation routines. ineCntoa,inet(3n)
arp: Address Resolution Protocol.. arp(4P)

mailaddr: mail addressing description ... mailaddr(7)
addroot: add a root ID ~ addroot(8)
admin: create and administer sees files admin(1)

admin: create and administer sees files ... admin(1)
intro: introduction to system administration commands .. .intro(8)

update_slave: update auxiliary system administrator's nodes .. update_slave(8)
flock: place or remove an advisory lock on an open file flock(2)

yes: be repetitively affirmative .. yes(l)
basename: strip filename affixes ... basename(l)

crypt, encrypt: a one-way hashing encryption algorithm .. crypt(3)
alias: shell macros ... csh(1)

unalias: remove aliases ... csh(1)
aliases: aliases file for sendmail. aliases(5)

which: locate a program file, including aliases and paths .. which(1)
newaliases: rebuild the database for the mail aliases file .. newaliases(1)

aliases: aliases file for sendmail. ... aliases(5)

Permuted Index A-I

PTX DOMAIN/IX SYS5 PTX

valloc: aligned memory allocator ... valloc(3)
malloc, free, realloc, calloc, alloca: memory allocator .. malloc(3)

malloc, free, realloc, calloc, alloca: memory allocator ... malloc(3)
valloc: aligned memory allocator ... valloc(3)

eyacc: modified yacc allowing much improved error recovery eyacc(l)
limit: alter per-process resource limitations csh(l)

renice: alter priority of running processes renice(8)
else: alternative commands ... csh(l)

lex: generator of lexical analysis programslex(1)
style: analyze surface characteristics of a document. style(1)

tar: tape (and general purpose) archiver tar(1)
sigstack: set and/or get signal stack context. sigstack(2)

whereis: locate binary and/or manual for program whereis(1)
wonns: animate wonns on a display tenninal wonns(6)

rain: animated raindrops display rain(6)
a.out: cc output. ... a.out(5)

apply: apply a command to a set of arguments apply(l)
apply: apply a command to a set of arguments apply(l)
apropos: locate commands by keyword lookup apropos(1)
ar: archive and library maintainer ar(1)
ar: archive (library) file fonnat. ar(5)

number: convert Arabic numerals, to English. ' number(6)
bc: arbitrary-precision arithmetic language bc(1)

graphics openpl, erase, label, line, circle, arc, move, cont, point, linemod, space, closepl: plot(3X)
ar: archive and library maintainer ar(1)

tar: tape archive file fonnat. .. tar(5)
arcv: convert archive files to new fonnat.. arcv(8)

ar: archive (library) file fonnat. ar(5)
tar: tape (and general purpose) archiver .. tar(l)

ranlib: convert archives to random libraries ranlib(1)
arcv: convert archive files to new fonnat arcv(8)

glob: filename expand argument list. ... csh(1)
shift: manipulate argument list. ... : csh(1)
varargs: variable argument list. ... varargs(3)

vsprintf: print fonnatted output of a varargs argument list. vprintf, vfprlntf, vprintf(3S)
apply: apply a command to a set of arguments ... apply(l)

echo: echo arguments ... csh(l)
echo: echo arguments ... ech0(1)

expr: evaluate arguments as an expression expr(1)
be: arbitrary-precision arithmetic language ... bc(l)

@: arithmetic on shell variables csh(1)
arithmetic: provide drill in number' facts arithmetic(6)
arp: Address Resolution Protocol. arp(4P)

expr: evaluate arguments as an expression .. expr(l)
gmtime, asctime, timezone: convert date and time to ASCII. ctime, localtime, .. ctime(3)

ascii: map of ASCII character set. .. ascii(7)
00: octal, decimal, hex, ASCII dump .. od(1)

ascii: map of ASCII character set. ascii(7)
atof, atoi, atol: convert ASCII to numbers ... atof(3)

ctime, localtime, gmtime, asetime, timezone: convert date and time to ASCn.ctime(3)

A-2 Permuted Index

,
,",---,,,

(~

I"-~,, '

PTX DOMAINjIX SYS5 PTX

C)
sin, cos, tan, asin, acos, atan, atan2: trigonometric functions sin(3M)

help: ask for help .. help(l)
assert: program verification assert(3X)

setbuf, setbuffer, setlinebuf: assign buffering to a stream setbuf(3S)
setstate: better random number generator and associated routines. random, srandom, initstate, random(3)

nice, nohup: run a command at a different priority· ... nice(1)
at: execute commands at a later time .. at(1)

at: execute commands at a later time at(1)
sin, cos, tan, asin, acos, atan, atan2: trigonometric functions sin(3M)

sin, cos, tan, asin, acos, atan, atan2: trigonometric functions sin(3M)
atof, atoi, atol: convert ASCII to numbers atof(3)

atof, atoi, atol: convert ASCII to numbers atof(3)

u atof, atoi, atol: convert ASCn to numbers atof(3)
interrupt. sigpause: atomically release blocked signals and wait for sigpause(2)

update_slave: update auxiliary system administrator's nodes update_slave(8)
wait: await completion of process wait(l)

awk: pattern scanning and processing language awk(l)
backgammon: the game of backgammon .. backgammon(6)

backgammon: the game of backgammon backgammon(6)
bg: place job in background .. csh(l)

wait: wait for background processes to complete csh(1)
banner: print large banner on printer ... banner(6)

o banner: ·print large banner on printer banner(6)
printcap: printer capability data base .. printcap(5)

vi: screen-oriented (visual) display editor based on ex : vi(l)
basename: strip filename affixes basename(1)
bc: arbitrary-precision arithmetic language bc(1)

bcopy, bcmp, bzero, ffs: bit and byte string operations bstring(3)
operations. bcopy, hemp, bzero, ffs: bit and byte string bstring(3)

cb: C program beautifier .. cb(l)
jO, jl, jn, yO, yl, yn: Bessel functions ... jO(3M)

routines. random, srandom, initstate, setstate: better random number generator and associated random(3)

o bg: place job in background csh(l)
addbib: create or extend bibliographic database ... addbib(l)

roffbib: run off bibliographic database ... roffbib(l)
sortbib: sort bibliographic database ... sortbib(l)

index for a bibliography; find references in a bibliography. indxbib, lookbib: build inverted1ookbib(l)
indxbib, lookbib: build inverted index for a bibliography; find references in a bibliography1ookbib(1)

install: install binaries ... install(1)
whereis: locate binary and/or manual for program whereis(1)

uuencode,uudecode: encode/decode a binary file for transmission via mail uuencode(lC)
fread, fwrite: buffered binary input/output. ... fread(3S)

bind: bind a name to a socket. ... bind(2)
bind: bind a name to a socket. bind(2)
binmail: send or receive mail among users binmail(1)

cp /bin/starccsh: start a C shell start_csh(l)
cp /bin/starCsh: start a Bourne Shell start_sh(1)

bcopy, bcmp, bzero, ffs: bit and byte string operations bstring(3)

o sigblock: block signals .. sigblock(2)
sigpause: atomically release blocked signals and wait for interrupt. sigpause(2)

Pennuted Index A-3

PTX DOMAIN/IX SYS5 PTX

sum: sum and count blocks in a file ... sum(l)
rc: boot time shell script. ... rc(8)

cp /bin/starCsh: start a Bourne Shell .. start_sh(l)
mille: play Mille Bournes .. mille(6)

switch: multi-way command branch. ... csh(l)
break: exit whi1e/foreach loop csh(1)
breaksw: exit from switch .. csh(l)

fg: bring job into foreground .. csh(l)
brk, sbrk: change data segment size brk(2)

fread, fwrite: buffered binary input/output. fread(3S)
stdio: standard buffered input/output packageintro(3S)

setbuf, setbuffer, setlinebuf: assign buffering to a stream ... setbuf(3S)
references in a bibliography. indxbib,lookbib: build inverted index for a bibliography; findlookbib(1)

ntohs: convert values between host and network byte order. htonl, htons, ntohl, byteorder(3n)
bcopy, hemp, bzero, ffs: bit and byte string operations .. bstring(3)

swab: swap bytes ... swab(3)
heopy, bemp, bzero, ffs: bit and byte string operations bstring(3)

cc: e compiler ... cc(1)
cb: e program beautifier ... cb(1)

indent: indent and format e program sourceindent(1)
lint: a e program verifier .. .lint(1)

xstr: extract strings from e programs to implement shared strings xstr(l)
cp /bin/start_csh: start a e shell. ... start_csh(l)

mkstr: create an error message file by massaging e source ... mkstr(l)
hypot, cabs: Euclidean distance ... hypot(3M)

fix_cache - repair acl cache hash chains .. fix_cache(8)
cal: print calendar ... cal(1)

dc: desk calculator ... dc(l)
cal: print calendar .. cal(l)

calendar: reminder service .. calendar(l)
malloc, free, realloc, calloc, alloca: memory allocator malloc(3)

intro: introduction to system calls and error numbersintro(2)
access: determine if a file can be accessed ... access(2) /--

("
printcap: printer capability data base ... printcap(5)

termcap: terminal capability database .. termcap(5)
\
''---' ,

cribbage: the card game cribbage ... cribbage(6)
case: selector in switch ... csh(1)
cat: catenate and print ... cat(1)

ccat: compress and uncompress files, and then cat them. compact, uncompact, compact(l)
default: catchall clause in switch ... csh(1)

cat: catenate and print. ... cat(1)
catman: format the files for this manual catman(8)
cb: e program beautifier ... cb(l)
cc: e compiler ... cc(l)

a.out: cc output. ... a.out(5)
them. compact, uncompact, ccat: compress and uncompress files, and then cat.compact(1)

cd: change directory .. csh(1)
cd: change working directory cd(1)
cdc: change the delta commentary of an sees delta.cdc(l)

fabs, floor, ceil: absolute value, floor, ceiling functions floor(3M)

A-4 Pennuted Index

PTX o DOMAIN/IX SYS5 PTX

fabs, floor, ceil: absolute value, floor, ceiling functions .. floor(3M)
fix_cache - repair acl cache hash chains ... fix_cache(8)

chdir: change current working directory chdir(2)
brk, sbrk: change data segment size ... brk(2)

default_acl: change default file protection environment. defauICacl(2)
cd: change directory .. csh(1)

chdir: change directory .. csh(1)
chgrp: change group ... chgrp(l)

passwd: change log-in password ... passwd(l)
chmod: change mode .. chmod(l)
chmod: change mode of file .. chmod(2)
urn ask: change or display file creation mask csh(l)

o chown: change owner or group of a file chown(2)
cdc: change the delta commentary of an SCCS delta cdc(1)

rename: change the name of a file ... rename(2)
chown: change the owner of files .. chown(8)

ver: change the version of Shell commands ver(8)
delta: make a delta (change) to an secs file .. delta(1)

set: change value of shell variable csh(1)
cd: change working directory ... cd(l)

pipe: create an interprocess communication channel.. ... pipe(2)
ungetc: push character back into input stream ungetc(3S)

isspace, ispunct, isprint, iscntrl, isascii: character classification macros. isdigit, isalnum, ... ctype(3)
eqnchar: special character definitions for eqn(1) eqnchar(7)

getc, getchar, fgetc, getw: get character or word from stream getc(3S) o
putc, putchar, fputc, putw: put character or word on a stream putc(3S)

ascii: map of ASCII character set. .. ascii(7)
style: analyze surface characteristics of a document. style(1)

tr: translate characters ... tr(1)
chdir: change current working directory chdir(2)
chdir: change directory ... csh(1)

checkeq: check files that use eqn(l) or neqn(l) checkeq(l)
checknr: check nroff/troff files .. checknr(1)

checkeq: check files that use eqn(l) or neqn(1) checkeq(l)
checknr: check nroff/troff files checknr(l)

o
chgrp: change group .. chgrp(1)
chmod: change mode .. chmod(1)
chmod: change mode of file chmod(2)
chown: change owner or group of a file chown(2)
chown: change the owner of files chown(8)

closepl: graphics openpl, erase, label, line, circle, arc, move, cont, point, linemod, space, plot(3X)
ispunct, isprint, iscntrl, isascii: character classification macros. isdigit, isalnwn, isspace, ctype(3)

default: catchall clause in switch ... csh(1)
uuclean: uucp spool directory clean-up ... uuclean(8C)

clear: clear terminal screen clear(1)
clear: clear terminal screen ... clear(1)

flush_cache: clear the node's acl_cache .. flush_cache(8)
ferror, feof, clearerr, fileno: stream status inquiries ferror(3S)

csh: a shell (command interpreter) with C-like syntax .. ; csh(1)
cron: clock daemon .. cron(8) o

Permuted Index A-5

PTX DOMAIN/IX SYS5 PTX

close: delete a descriptor .. close(2)
fc1ose, mush: close or flush a stream .. fclose(3S)

opendir, readdir, telldir, seekdir, rewinddir, closedir: directory operations directory(3)
circle, arc, move, cont, point, linemod, space, closepl: graphics interface. erase, label, line, plot(3X)

cmp: compare two files ... cmp(l)
sccsfile: fonnat of Source Code Control System (SCCS) file sccsfile(5)

col: filter reverse line feeds col(1)
colcrt: filter nroff output for CRT previewing colcrt(l)
colnn: remove columns from a file colnn(1)

colnn: remove columns from a file ... colnn(1)
comb: combine SCCS deltas comb(1)

comb: combine SCCS deltas .. comb(l)
files. comm: select or reject lines common to two sortedcomm(l)

exec: overlay shell with specified command ... csh(l)
time: time command ... csh(l)

routines for returning a stream to a remote command rcmd, rresvport, ruserok: rcmd(3X)
rexec: return stream to a remote command .. rexec(3X)

system: issue a shell command ... system(3)
test: condition command ... test(l)

time: time a command ... time(l)
nice, nohup: run a command at a different priority nice(l)
switch: multi-way command branch ... csh(l)

uux: UNIX-to-UNIX command execution .. uux(1C)
rehash: recompute command hash table ; csh(l)

unhash: discard command hash table .. csh(1)
hashstat: print command hashing statistics csh(1)

nohup: run command immune to hangups csh(1)
csh: a shell (command interpreter) with C-like syntax csh(l)

whatis: describe what a command is ... whatis(l)
sh: command language .. sh(l)

repeat: execute command repeatedly ... csh(l)
onintr: process interrupts in command scripts .. csh(1)

apply: apply a command to a set of arguments apply(l)
goto: command transfer .. csh(l)

else: alternative commands .. csh(l)
intro: introduction to commandsintro(l)

intro: introduction to system administration commandsintro(8)
ver: change the version of Shell commands .. ver(8)

at: execute commands at a later time ... at(1)
apropos: locate commands by keyword lookup apropos(l)

while: repeat commands conditionally ... csh(1)
source: read commands from file .. csh(1)

cdc: change the delta commentary of an SCCS delta. cdc(1)
comm: select or reject lines common to two sorted files comm(1)

socket: create an endpoint for communication .. socket(2)
pipe: create an interprocess communication channel. ... pipe(2)

users: compact list of users who are on the system users(l)
files, and then cat them. compact, uncompact, ccat: compress and uncompresscompact(l)

diff: differential file and directory comparator ... diff(l)
cmp: compare two files .. cmp(1)

A-6 Permuted Index

C'J

o

o

o

o

PTX DOMAINjIX SYS5 PTX

sccsdiff:
diff3: tlrree-way differential file

intro: introduction to
cc: C

yacc: yet another
wait: wait for background processes to

wait: await
compact, uncompact, ccat:

hangman:
test:

endif ternninate
if:

while: repeat commands
inetd.conf:

ifconfig:

tip, cu:
tip, cu:

getpeemame: get name of
socketpair: create a pair of

shutdown: shut down part of a full-duplex socket
accept: accept a

connect: initiate a
listen: listen for

deroff: remove nroff, troff, tbl, and eqn
getrlimit: control maximum system resource
openpl, erase, label, line, circle, arc, move,

Is: list
sigstack: set and/or get signal stack

fcnt1: file
ioct1:

getrlimit:
lpc: line printer

tcp: Internet Transmission
sccsfile: format of Source Code

ternn:
ecvt, fcvt, gcvt: output

printf, fprintf, sprintf: fornnatted output
scanf, fscanf, sscanf: fornnatted input

units:
dd:

number:
arcv:

ranlib:
atof, atoi, atol:

ctime, localtime, gmtime, asctime, timezone:
cvtumap:

htable:
htonl, htons, ntohl, ntohs:

Pennuted Index

compare two versions of an SCCS file sccsdiff(l)
comparison ... diff3(1)
compatibility library functionsintro(3C)
compiler ... cc(1)
compiler-compiler ... yacc(1)
complete .. csh(1)
completion of process .. ~wait(l)
compress and uncompress files, and then cat them.compact(l)
Computer version of the hangman game hangman(6)
condition command ... test(1)
conditional ... csh(1)
conditional statement .. csh(1)
conditionally .. csh(1)
configuration file for inetd(8C) inetd.conf(5)
configure network interface parameters ifconfig(8C)
connect: initiate a connection on a socket. connect(2)
connect to a remote system cu(lC)
connect to a remote system tip(l C)
connected peer ... getpeemame(2)
connected sockets .. socketpair(2)
connection .. shutdown(2)
connection on a socket.. .. accept(2)
connection on a socket.. .. connect(2)
connections on a socket. .. .1isten(2)
constructs ... deroff(1)
consumption ... getrlimit(2)
cont, point, linemod, space, closepl: graphics plot(3X)
contents of directory .. .1s(1)
context. .. sigstack(2)
continue: cycle in loop ... csh(l)
control .. fcnt1(2)
control device .. :ioct1(2)
control maximum system resource consumption getrlimit(2)
control program .. .1pc(8)
Control Protocol. ... tcp(4P)
Control System (SeCS) file sccsfile(5)
conventional names for ternninals ternn(7)
conversion .. ecvt(3)
conversion .. printf(3S)
conversion .. scanf(3S)
conversion prograrn ... units(l)
convert and copy a file ... dd(1)
convert Arabic numerals to English number(6)
convert archive files to new format arcv(8)
convert archives to random libraries ranlib(1)
convert ASCn to numbers .. atof(3)
convert date and time to ASOI. ctime(3)
convert name trees from SR8 to SR9 name mapping.cvtumap(8)
convert NIC standard fornnat host tables ~ ... htable(8)
convert values between host and network byte order.byteorder(3n)

A-7

PTX DOMAIN/IX SYS5 PTX

cp: copy ... cp(l)
rcp: remote file copy ... rcp(lC)

uucp, uunante, uulog: UNIX to UNIX copy ... uucp(lC)
dd: convert and copy a file .. dd(1)
functions. sin, cos, tan, asin, acos, atan, atan2: trigonometric sin(3M)

sinh, cosh, tanh: hyperbolic functions sinh(3M)
wc: word count. ... wc(l)

sum: sum and count blocks in a file .. sum(1)
cp /bin/starccsh: start a C shell start_csh(l)
cp /bin/start_sh: start a Bourne Shell start_sh(1)
cp: copy ... cp(l)

open: open a file for reading or writing, or create a new file .. open(2)
fork: create a new process ... fork(2)

socketpair: create a pair of connected sockets socketpair(2)
ctags: create a tags file .. ctags(1)

socket: create an endpoint for communication socket(2)
mkstr: create an error message file by massaging C source.mkstr(1)

pipe: create an interprocess communication channel. pipe(2)
admin: create and administer SCCS files admin(l)
mkdisk create disk device descriptor files mkdisk(8)

soft_link, soft_unlink: create or delete soft links ... soft_Iink(2)
addbib: create or extend bibliographic database addbib(1)

crpasswd: create password and group files crpasswd(8)
crpty: create psuedo tty device entries crpty(8)

umask: change or display file creation mask .. csh(1)
umask: set/get file creation mask .. umask(2)

cribbage: the card gante cribbage ... cribbage(6)
cribbage: the can! gante cribbage cribbage(6)
cron: clock daemon ... cron(8)
crpasswd: create password and group files crpasswd(8)
crpty: create psuedo tty device entries crpty(8)

coIcrt: filter nroff output for CRT previewing .. colcrt(l)
more, page: file perusal filter for CRT viewing ... more(l)
more, page: file perusal filter for CRT viewing ... page(1)

algorithm. crypt, encrypt: a one-way hashing encryption crypt(3)
syntax. csh: a shell (command interpreter) with C-Iike csh(l)

locate a progrant file, including aliases and paths which: .. which(l)
ctags: create a tags file ... ctags(l)

convert date and time to ASCII. I ctime, localtime, gmtime, asctime, timezone: ctime(3)
tip, cu: connect to a remote system cu(lC)
tip, cu: connect to a remote system tip(1 C)

gethostid, sethostid: get/set unique identifier of current host. ... gethostid(2)
gethostnante, sethostname: get/set nante of current host .. gethostnante(2)

hostid: set or print identifier of current host system ... hostid(l)
hostnante: set or print nante of current host system ... hostnante(l)

jobs: print current job list ... csh(l)
sact: print current SCCS file editing activity sact(1)

sigsetmask: set current signal mask. .. sigsetmask(2)
whoami: print effective current user ID .. whoami(l)

chdir: change current working directory ... chdir(2) c
A-8 Pennuted Index

PTX DOMAIN/IX SYS5 PTX

o
getwd: get current working directory patlmame getwd(3)

motion. curses: screen functions with optimized cursor curses(3X)
curses: screen functions with optimized cursor motion ... curses(3X)

spline: interpolate smooth curve .. spline(lG)
mapping. cvtumap: convert name trees from SR8 to SR9 namecvtumap(8)
continue: cycle in loop .. csh(l)

cron: clock daemon ... cron(8)
Ipd: line printer daemon .. .lpd(8)

routed: network routing daemon ... routed(8C)
writed: daemon for write(1) program writed(8C)

ftpd: DARPA Internet File Transfer Protocol server ftpd(8C)
telnetd: DARPA TELNET protocol server telnetd(8C)

o tftpd: DARPA Trivial File Transfer Protocol server tftpd(8C)
eval: re-evaluate shell data ... csh(l)

printcap: printer capability data base .. printcap(5)
brk, sbrlc: change data segment size .. brk(2)

null: data sink ... null(4)
types: primitive system data types ... types(5)

addbib: create or extend bibliographic database ... addbib(l)
hosts: host name database ... hosts(5)

networks: networlc name database ... networks(5)
phones: remote host phone number database ... phones(5)

(J protocols: protocol name database ... protocols(5)
roffbib: run off bibliographic database ... roffbib(1)

sortbib: sort bibliographic database ... sortbib(1)
termcap: terminal capability database ... termcap(5)

newaliases: rebuild the database for the mail aliases file newaliases(l)
strfile: fortune(6) database loader .. strfile(6)

services: database of Internet services services(5)
join: relational database operator ... join(1)

dbminit, fetch, store, delete, firstkey, nextkey: database subroutines .. dbm(3X)
udp: Internet User Datagram Protocol. ... udp(4P)

o date: print the date ... date(l)
gettimeofday, settimeofday: get/set date and time ... gettimeofday(2)

localtime, gmtime, asctime, timezone: convert date and time to ASCII. ctime, ctime(3)
touch: update date last modified of a file .. touch(1)

date: print the date .. date(l)
database subroutines. dbminit, fetch, store, delete, firstkey, nextkey: dbm(3X)

dbx: debugger .. dbx(1)
dc: desk calculator .. dc(l)
dd: convert and copy a file dd(1)

dbx: debugger .. dbx(l)
od: octal, decimal, hex, ASCII dump od(1)

default: catchall clause in switch csh(1)
defauicacl: change default file protection environment defaulCacl(2)

environment default_acl: change default file protection defaulCacl(2)
eqnchar: special character definitions for eqn(1) ... eqnchar(7)

close: delete a descriptor ... close(2)

o dbminit, fetch, store, delete, firstkey, nextkey: database subroutines dbm(3X)
soft_link, soft_unlink: create or delete soft links ... soft_link(2)

Pennuted Index A-9

PTX DOMAIN/IX SYS5 PTX

tail: deliver the last part of a file tail(l)
cdc: change the delta commentary of an sees delta. .. cdc(l)

delta: make a delta (change) to an sees file delta(1)
cdc: change the delta commentary of an sees delta cdc(1)

nndel: remove a delta from an sees file .. rmdel(l)
delta: make a delta (change) to an sees file delta(l)

comb: combine sees deltas .. comb(1)
mesg: permit or deny messages ... mesg(l)

constructs. deroff: remove nroff, troff, tbl, and eqn deroff(1)
whatis: describe what a command is whatis(1)

mailaddr: mail addressing description ... mailaddr(7)
remote: remote host description file ... remote(5)

close: delete a descriptor ... close(2)
dup, dup2: duplicate a descriptor ... dup(2)

mkdisk - create disk device descriptor files ... mkdisk(8)
getdtablesize: get descriptor table size .. getdtablesize(2)

dc: desk calculator ... dc(l)
file: detennine file type .. file(I)

access: detennine if a file can be accessed access(2)
fold: fold long lines for finite width output device ... fold(1)

ioct1: control device .. .ioct1(2)
mkdisk - create disk device descriptor files ... mkdisk(8)

etpty: create psuedo tty device entries ... crpty(8)
mtio: tape device files ... mtio(4)

df: disk free ... df(l)
ratfor: rational FORmAN dialect .. ratfor(l)

explain: print wordy sentences; thesaurus for diction. diction, .. diction(1)
for diction. diction, explain: print wordy sentences; thesaurus .. diction(l)

diff: differential file and directory comparator diff(l)
diID: three-way differential file comparison dift3(l)

nice, nohup: run a command at a different priority .. nice(l)
diff: differential file and directory comparator diff(1)

diID: three-way differential file comparison dift3(l)
dir: fonnat of directories ... dir(5)

dir: format of directories .. dir(5)
fill, rmdir: remove (unlink) directories or files .. rm(1)

cd: change working directory ... cd(l)
chdir: change current working directory ... chdir(2)

cd: change directory ... csh(1)
chdir: ·change directory ... csh(1)

1s: list contents of directory .. .ls(l)
mkdir: make a directory ... mkdir(1)
scandir: scan a directory ... scandir(3)

uuclean: uucp spool directory clean-up .. uuclean(8e)
diff: differential file and directory comparator ... diff(1)

unlink: remove directory entry ... unlink(2)
mkdir: make a directory file .. mkdir(2)

rmdir: remove a directory file .. rmdir(2)
pwd: working directory name ... pwd(l)

readdir, telldir, seekdir, rewinddir, closedir: directory operations. opendir, directory(3)

A-tO Pennuted Index

~,
(

\ ... -,

c

PTX DOMAIN/lX SYS5 PTX

o
getwd: get current working directory pathname .. getwd(3)

popd: pop shell directory stack ... csh(1)
pushd: push shell directory stack. .. csh(1)

unhash: discard command hash table csh(1)
unset: discard shell variables ... csh(1)

synchronize a file's in-core state with that on disk. fsync: ... fsync(2)
mkdisk - create disk device descriptor files ... ; mkdisk(8)

df: disk free ... df(1)
du: summarize disk usage .. du(1)

mount, 'umount: mount and dismount file system ... mount(8)
rain: animated raindrops display .. rain(6)

vi: screen-oriented (visual) display editor based on ex .. vi(l)
umask: change or display file creation mask. .. csh(1)

man: display reference manual information man(1)
man: display reference manual information man.1.11(12)

worms: animate worms on a display terminal ... worms(6)
systype: display version stamp .. systype(8)

hypot, cabs: Euclidean distance .. hypot(3M)
style: analyze surface characteristics of a document. .. style(1)

refer: find and insert literature references in documents .. refer(1)
shutdown: shut down part of a full-duplex socket connection shutdown(2)

graph: draw a graph .. graph(lG)

o arithmetic: provide drill in number facts .. aritbmetic(6)
pty: pseudo terminal driver .. pty(4)

du: summarize disk usage ... du(1)
0<1: octal, decimal, hex, ASCII dump .. od(l)

dup, dup2: duplicate a descriptor dup(2)
dup, dup2: duplicate a descriptor dup(2)

dup, dup2: duplicate a descriptor .. dup(2)
echo: echo arguments .. csh(1)
echo: echo arguments .. echo(1)

echo: echo arguments .. csh(l)

o echo: echo arguments .. echo(l)
ecvt, fcvt, gcvt: output conversion ecvt(3)
ed: text editor .. ed(1)

end, etext, edata: last location in program end(3)
ex, edit: text editor .. ex(1)

sact: print current SCCS file editing activity ... sact(l)
ed: text editor .. ed(1)

ex, edit: text editor .. ex(1)
ld: link editor1d(l)

sed: stream editor .. sed(1)
vi: screen-oriented (visual) display editor based on ex ... vi(1)

whoami: print effective current user ID ... whoami(l)
setregid: set real and effective group ID ... setregid(2)
setreuid: set real and effective user ill .. setreuid(2)

vfork: spawn a new process in a more efficient way .. vfork(2)
grep, egrep, fgrep: search a file for a pattem grep(1)

insque, remque: insert or remove an element in a queueinsque(3)
soelim: eliminate .so's from nroff input. soelim(1)

Pennuted Index A-Ii

PTX DOMAIN/IX SYS5 PTX

else: alternative commands csh(l)
uuencode: fonnat of an encoded uuencode file ... uuencode{5)

mail. uuencode,uudecode: encode/decode a binary file for transmission via uuencode(1 C)
crypt, encrypt: a one-way hashing encryption algorithm .. crypt(3)

crypt, encrypt: a one-way hashing encryption algorithm ... crypt(3)
end, etext, edata: last location in program end(3)

logout: end session ... csh(l)
end: tenninate loop ... csh(I)

getgrent, getgrgid, getgrnam, setgrent, endgrent: get group file entry getgrent(3)
gethostbyaddr, gethostbyname, sethostent, endhostent: get network host entry. gethostent, gethostent(3n)

endif: tenninate conditional csh(l)
getnetent, getnetbyaddr, getnetbyname, setnetent, endnetent: get network entry getnetent(3n)

socket: create an endpoint for communication socket(2)
getprotobynumber, getprotobyname, setprotoent, endprotoent: get protocol entry. getprotoent, getprotoent(3n)

getpwent, getpwuid, getpwnam, setpwent, endpwent: get password file entry getpwent(3)
getservbyport, getservbyname, setservent, endservent: get service entry. getservent, getservent(3n)

endsw: tenninate switch .. csh(I)
number: convert Arabic numerals to English ... number(6)

crpty: create psuedo tty device entries ... crpty(8)
manx: macros for fonnatting entries in this manual .. manx(7)

getgmam, setgrent, endgrent: get group file entry. getgrent, getgrgid, ... getgrent(3)
sethostent, endhostent: get network host entry. gethostent, gethostbyaddr, gethostbyname, .. gethostent(3n)

getnetbyname, setnetent, endnetent: get network entry. getnetent, getnetbyaddr, getnetent(3n)
setprotoent, endprotoent: get protocol entry. getprotobynumber, getprotobyname, getprotoent(3n) (

getpwnam, setpwent, endpwent: get password file entry. getpwent, getpwuid, getpwent(3) '-... ...

getservbyname, setservent, endservent: get service entry. getservent, getservbyport, getservent(3n)
unlink: remove directory entry ... unlink(2)

environ: environment variables environ(7)
exeel, execv, exeele, execlp, execvp, exect, environ: execute a file ... exeel(3)

setenv: set variable in environment. .. csh(l)
defaulcacl: change default file protection environment ... defaulcacl(2)

printenv: print out the environment. .. printenv(l)
getenv: get the value of an environment variable ... getenv(3)

unsetenv: remove environment variables ... csh(l)
environ: environment variables ... environ(7)

deroff: remove nroff, troff, tbl, and eqn constructs .. deroff(l)
eqn: fonnat mathematical text for troff eqn(l)

eqnchar: special character definitions for eqn(l) ... eqnchar(7)
checkeq: check files that use eqn(1) or neqn(l) .. checkeq(1)

eqnchar: special character definitions for eqn(1) eqnchar(7)
linemod, space, closepl: graphics openpl, erase, label, line, circle, arc, move, cont, point, plot(3X)

mkstr: create an error message file by massaging C source mkstr(l)
perror, sys_errlist, sys_ner: system error messages ... perror(3)

intro: introduction to system calls and error numbersintro(2)
eyacc: modified yacc allowing much improved error recovery .. eyacc(l)

spell, spellin, spellout: find spelling errors .. spell(1)
end, etext, edata: last location in program end(3)

hypot, cabs: Euclidean distance ... hypot(3M)
eval: re-evaluate shell data. csh(1)

expr: evaluate arguments as an expression expr(l)

A-12 Pennuted Index

o

o

o

o

PTX DOMAIN/IX SYS5 PTX

history: print history event list. ... csh(1)
screen-oriented (visual) display editor based on ex. vi: .. vi(1)

ex, edit: text editor .. ex(1)
Ipq: spool queue examination programlpq(l)

exec: overlay shell with specified command csh(1)
environ: execute a file. execl, execv, execle, execlp, execvp, exect, execl(3)

file. execl, execv, execle, execlp, execvp, exect, environ: execute a ... execl(3)
execl, execv, execle, execlp, execvp, exect, environ: execute a file execl(3)

execl, execv, execle, execlp, execvp, exect, environ: execute a file execl(3)
execv, execle, execlp, execvp, exect, environ: execute a file. execl, .. execl(3)

execve: execute a file ... execve(2)
repeat: execute command repeatedly csh(1)

at: execute commands at a later time at(1)
uux: UNIX-to-UNIX command execution .. uux(lC)

sleep: suspend execution for an interval ... sleep(1)
sleep: suspend execution for interval .. sleep(3)
rexecd: remote execution server .. rexecd(8C)

execute a file. execl, execv, execle, execlp, execvp, exect, environ: execl(3)
execve: execute a file .. execve(2)

execl, execv, execle, execlp, execvp, exect, environ: execute a file execl(3)
breaksw: exit from switch .. csh(1)

exit: leave shell. .. csh(l)
_exit: terminate a process ... exit(2)

pending output. exit: terminate a process after flushing any exit(3)
break: exit while/foreach loop ... csh(l)

power, square root. exp, log, loglO, pow, sqrt: exponential, logarithm,.exp(3M)
glob: filename expand argument list. .. csh(1)

expand, unexpand: expand tabs to spaces and vice versa expand(1)
versa. expand, unexpand: expand tabs to spaces and vice expand(1)

diction. diction, explain: print wordy sentences; thesaurus for diction(1)
frexp, ldexp, modf: split into mantissa and exponent.. , .. frexp(3)

exp, log, 10glO, pow, sqrt: exponential, logarithm, power, square root.. exp(3M)
expr: evaluate arguments as an expression expr(1)

expr: evaluate arguments as an expression .. expr(1)
°re_comp, re_exec: regular expression handler ... regex(3)

addbib: create or extend bibliographic database addbib(1)
strings. xstr: extract strings from C programs to implement sharedxstr(l)

recovery. eyacc: modified yacc allowing much improved erroreyacc(1)
functions. fabs, floor, ceil: absolute value, floor, ceiling floor(3M)

networking: introduction to networking facilities .. .intro(4N)
signal: simplified software signal facilities ... signal(3C)

sigvec: software signal facilities : sigvec(2)
arithmetic: provide drill in number facts .. arithmetic(6)

true, false: provide truth values .. true(1)
false, true: provide truth values false(1)

inet: Internet protocol family .. .inet(4F)
abort: generate a fault. ... abort(3)

fclose, fflush: close or flush a stream fclose(3S)
fcnt1: file control. ... fcnt1(2)

ecvt, fcvt, gcvt: output conversion ecvt(3)

Pennuted Index A-13

PTX DOMAIN/IX SYS5 PTX

fopen, freopen, fdopen: open a stream ... fopen(3S)
col: filter reverse line feeds ... col(l)

ferror, feof, clearerr, file no: stream status inquiries ferror(3S)
inquiries. ferror, feof, clearerr, fileno: stream status ferror(3S)

subroutines. dbminit, fetch, store, delete, firstkey, nextkey: database dbm(3X)
head: give first few lines .. head(l)

fclose, fflush: close or flush a stream fclose(3S)
bcopy, hemp, bzero, ffs: bit and byte string operations bstring(3)

fg: bring job into foreground csh(l)
getc, getchar, fgetc, getw: get character or word from stream getc(3S)

gets, fgets: get a string from a stream gets(3S)
grep, egrep, fgrep: search a file for a pattern grep(1)

chmod: change mode of file .. chmod(2)
chown: change owner or group of a file .. chown(2)

colIll1: remove columns from a file .. colrm(l)
source: read commands from file .. csh(l)

ctags: create a tags file .. ctags(l)
dd: convert and copy a file .. dd(1)

delta: make a delta (change) to an sees file .. delta(l)
execle, execlp, execvp, exect, environ: execute a file. execl, execv, ... execl(3)

execve: execute a file .. execve(2)
flock: place or remove an advisory lock on an open file ... flock(2)

fpr: print FORTRAN file .. fpr(l)
get: get a version of an sees file .. get(l)

group: group file .. group(5)
link: make a hard link: to a filelink:(2)

mkdir: make a directory file .. mkdir(2)
mknod: make a special file .. mknod(2)

rebuild the database for the mail aliases file. newaliases: .. newaliases(1)
open a file for reading or writing, or create a new file. open: .. open(2)

passwd: password file .. passwd(5)
pr: print file .. pr(l)

prs: print an sees file .. prs(1)
remote: remote host description file .. remote(5)

rename: change the name of a file .. rename(2)
rev: reverse lines of a file ... rev(l)

Ill1del: remove a delta from an' sees file .. Ill1de1(1)
Ill1dir: remove a directory file .. Ill1dir(2)

sccsdiff: compare two versions of an sees file .. sccsdiff(1)
fOIll1at of Source eode eontrol System (SeeS) file sccsfile: ... sccsfile(5)

size: size of an object file .. size(1)
strings: find the printable strings in an object file .. strings(1)

symbol and line number infonnation from an object file. strip: strip .. striP(l)
sum: sum and count blocks in a file .. sum(l)

symlink: make symbolic link: to a file .. symlink:(2)
tail: deliver the last part of a file .. tail(1)

touch: update date last modified of a file .. touch(1)
unget: undo a previous get of an sees file .. unget(1)

uniq: report repeated lines in a file .. uniq(l)
uuencode: fOIll1at of an encoded uuencode file .. uuencode(5)

A-14 Pennuted Index

~
(

,-- '

o PTX DOMAIN/IX SYS5 PTX

val: validate SCCS file .. val(I)
write, writev: write on a file .. write(2)

diff: differential file and directory comparator diff(1)
mkstr: create an error message file by massaging C source mkstr(l)

access: detennine if a file can be accessed ... access(2)
diff3: three-way differential file comparison .. dift3(I)

fcntl: file control. .. fcntl(2)
rep: remote file copy : ... rcp(IC)

wnask: change or display file creation mask .. csh(1)
umask: set/get file creation mask. ... umask(2)

file: detennine file type ... file(1)

o sact: print current SCCS file editing activity .. sact(1)
getgrgid, getgrnam, setgrent, endgrent: get group file entry. getgrent, ... getgrent(3)

getpwnam, setpwent, endpwent: get password file entry. getpwent, getpwuid, getpwent(3)
grep, egrep, fgrep: search a file for a pattern .. grep(I)

inetdconf: configuration file for inetd(8C) .. .inetd.conf(5)
open: open a file for reading or writing, or create a new file open(2)

aliases: aliases file for sendmail. ... aliases(5)
uuencode,uudecode: encode/decode a binary file for transmission via mail.. uuencode(IC)

ar: archive (library) file fonnat. ... ar(5)
tar: tape archive file fonnat .. tar(5)

o intro: introduction to file fonnats ... intro(5)
which: locate a program file, including aliases and paths which(1)

fsplit: split a multi-routine FORTRAN file into individual files ... fsplit(l)
split: split a file into pieces ... split(1)
more, page: file perusal filter for CRT viewing more(l)
more, page: file perusal filter for CRT viewing page(l)

default_acl: change default file protection environment defaulcacl(2)
stat, lstat, fstat: get file status .. stat(2)

mount, umount: mount or remove file system,.mount(2)
mount, umount: mount and dismount file system .. mount(8)

o hier: file system hierarchy ... hier(7)
mtab: mounted file system table .. mtab(5)

utimes: set file times .. utimes(2)
uusend: send a file to a remote host. ... uusend(I C)

truncate: truncate a file to a specified length .. truncate(2)
ftp: file transfer program .. fip(1C)

ftpd: DARPA Internet File Transfer Protocol server ftpd(8C)
tftpd: DARPA Trivial File Transfer Protocol server tftpd(8C)

file: detennine file type .. file(I)
mktemp: make a unique filename ... mktemp(3)

basename: strip filename affixes ... basename(1)
glob: filename expand argument list. csh(1)

ferror, feof, clearerr, fileno: stream status inquiries ferror(3S)
admin: create and administer SCCS files ... admin(1)

checknr: check nroff/troff files : .. checknr(l)
chown: change the owner of files ... chown(8)

o cmp: compare two files ... cmp(l)
comm: select or reject lines common to two sorted files ... comm(1)

ctpasswd: create password and group files ... ctpasswd(8)

Pennuted Index A-I5

PTX DOMAIN/IX SYS5 PTX

find: find files ... find(l)
split a multi-routine FORTRAN file into individual files. fsplit: .. fsplit(l)

special files: introduction to special files ... intro(4)
mkdisk - create disk device descriptor files ... mkdisk(8)

mtio: tape device files ... mtio(4)
mv: move or rename files ... mv(l)

rm, rmdir: remove (unlink.) directories or files ... rm(l)
sort: sort or merge files ... sort(1)

what: identify SCCS files ... what(l)
compact, uncompact, ccat: compress and uncompress files, and then cat them ... compact(l)

catman: format the files for this manual .. catman(8)
fsync: synchronize a file's in-core state with that on disk fsync(2)

special files: introduction to special filesintro(4)
lpr: print files off..;line .. .1pr(l)

checkeq: check files that use eqn(1) or neqn(1) checkeq(1)
arcv: convert archive files to new format .. arcv(8)

fstab: static information about filesystems .. .fstab(5)
more, page: file perusal filter for CRT viewing .. more(l)
more, page: file perusal filter for CRT viewing .. page(l)

colcrt: filter nroff output for CRT previewing colcrt(l)
col: filter reverse line feeds .. col(1)

plot: graphics filters .. plot(lG)
refer: find and insert literature references in documents ... refer(l)
find: find files ... find(l)

find: find files .. find(l)
look: find lines in a sorted list.look(1)

ttyname, isatty: find name of a terminal .. ttyname(3)
lorder: find ordering relation for an object librarylorder(1)

lookbib: build inverted index for a bibliography; find references in. a bibliography. indxbib,lookbib(1)
spell, spellin, spellout: find spelling errors .. spell(1)

strings: find the printable strings in an object file strings(l)
fold: fold long lines for finite width output device ... fold(1)

head: give first few lines ... head(l)
dbminit, fetch, store, delete, firstkey, nextkey: database subroutines dbm(3X)

fish: play "Go Fish" .. fish(6)
fish: play "Go Fish" .. fish(6)

tee: pipe fitting .. tee(l)
fix_cache - repair acl cache hash chains fix_cache(8)

file. flock: place or remove an advisory lock on an openflock(2)
functions. fabs, floor, ceil: absolute value, floor, ceiling floor(3M)

fabs, floor, ceil: absolute value, floor, ceiling functions .. floor(3M)
fclose, fflush: close or flush a streamfclose(3S)

flush_cache - clear the node's acl_cache flush_cache(8)
exit: terminate a process after flushing any pending output. exit(3)

fint: simple text formatter ... fint(1)
device. fold: fold long lines for finite width output.. fold(1)

fold: fold long lines for finite width output device fold(1)
fopen, freopen, fdopen: open a streamfopen(3S)
foreach: loop over list of names csh(l)

fg: bring job into foreground ... csh(l)

A-16 Permuted Index

rr--'\
\
\,-- ./

o PTX DOMAIN/IX SYS5 PTX

fork: create a new process .. fork(2)
ar: archive (library) file fonnat. .. ar(5)

arcv: convert archive files to new fonnat. .. arcv(8)
tar: tape archive file fonnat. .. tar(5)

indent: indent and fonnat C program sourceindent(1)
htable: convert NIC standard fonnat host tables .. htable(8)

gettable: get NIC fonnat host tables from a host. gettable(8C)
eqn: fonnat mathematical text for troff eqn(l)

uuencode: fonnat of an encoded uuencode file uuencode(5)
dir. fonnat of directories .. dir(5)

sccsfile: fonnat of Source Code Control System (SCCS) filesccsfile(5)
tbl: fonnat tables for moff or troff tbl(1)

o catman: fonnat the files for this manual catman(8)
intro: introduction to file fonnats .. .intro(5)

scanf, fscanf, sscanf: fonnatted input conversion scanf(3S)
printf, fprintf, sprintf: fonnatted output conversion printf(3S)

vprintf, vfprintf, vsprintf: print fonnatted output of a varargs argument list. vprintf(3S)
fint: sitnple text fonnatter .. ftnt(1)

moff: text fonnatting .. moff(1)
troff: text fonnatting and typesetting .. troff(1)

manx: macros for fonnatting entries in this manual manx(7)
ms: text fonnatting macros ... ms(7)

o man: macros for fonnatting manual pages ... man(7)
me: macros for fonnatting papers .. me(7)
ratfor: rational FORTRAN dialect ... ratfor(l)

fpr: print FORTRAN file .. fpr(l)
fsplit: split a multi-routine FORTRAN file into individual files fsplit(1)

fortune: print a random adage fortune(6)
strfile: fortune(6) database loader .. strfile(6)

fpr: print FORTRAN file .. fpr(l)
printf, fprintf, sprintf: fonnatted output conversion printf(3S)

putc, putchar, fputc, putw: put character or word on a stream putc(3S)

o puts, fputs: put a string on a stream puts(3S)
fread, fwrite: buffered binary input/output. fread(3S)

df: disk free ... df(l)
malloc, free, realloc, calloc, alloca: memory allocator malloc(3)

fopen, freopen, fdopen: open a stream fopen(3S)
exponent. frexp, Idexp, modf: split into mantissa and frexp(3)

from: who is my mail from? ... from(l)
scanf, fscanf, sscanf: fonnatted input conversion scanf(3S)

fseek, ftell, rewind: reposition a stream fseek(3S)
individual files. fsplit: split a multi-routine FORTRAN file into fsplit(l)

fstab: static infonnation about filesystems fstab(5)
stat, Istat, fstat: get file status .. stat(2)

on disk. fsync: synchronize a file's in-core state with that...fsync(2)
fseek, ftell, rewind: reposition a stream fseek(3S)

ftp: file transfer program ... ftp(l C)
ftpd: DARPA Internet File Transfer Protocol serverftpd(8C)

o shutdown: shut down part of a full-duplex socket connection shutdown(2)
gamma: log gamma function .. gamma(3M)

Pennuted Index A-17

PTX DOMAIN/IX SYS5 PTX

fabs, floor, ceil: absolute value, floor, ceiling functions .. floor(3M)
intro: introduction to library functions .. intro(3)

intro: introduction to compatibility library functionsintro(3C)
intro: introduction to mathematical library functions .. intro(3M)

intro: introduction to network library functionsintro(3n)
intro: introduction to miscellaneous library functions ... ;intro(3X)

jO, jl, jn, yO, yl, yn: Bessel functions .. jO(3M)
cos, tan, asin, acos, atan, atan2: trigonometric functions. sin, ... sin(3M)

sinh, cosh, tanh: hyperbolic functions .. sinh(3M)
curses: screen functions with optimized cursor motion curses(3X)

fread, fwrite: buffered binary input/output. fread(3S)
hangman: Computer version of the hangman game : .. hangman(6)

trek: trekkie game ... trek(6)
wonn: Play the growing wonn game ... wonn(6)

cribbage: the card game cribbage ... cribbage(6) \ --
backgammon: the game of backgammon ... backgammon(6)

intro: introduction to games ... intro(6)
gamma: log gamma function ... gamma(3M)

gamma: log gamma function gamma(3M)
ecvt, fcvt, gcvt: output conversion ... ecvt(3)

abort: generate a fault. ... abort(3)
srandom, initstate, setstate: better random number generator and associated routines. random, random(3)

lex: generator of lexical analysis programslex(1)
from stream. getc, getchar, fgetc, getw: get character or word getc(3S)

stream. getc, getchar, fgetc, getw: get character or word from getc(3S)
getdtablesize: get descriptor table size getdtablesize(2)

getgid, getegid: get group identity .. getgid(2)
getenv: get the value of an environment variable ... getenv(3)

getuid, geteuid: get user identity .. getuid(2)
getgid, getegid: get group identity getgid(2)

get group file entry. getgrent, getgrgid, getgmam, setgrent, endgrent: getgrent(3)
file entry. getgrent, getgrgid, getgmam, setgrent, endgrent: get group ... getgrent(3)

getgrent, getgrgid, getgmam, setgrent, endgrent: get group file entry .. getgrent(3)
getgroups: get group access list getgroups(2)

endhostent: get network host entry. gethostent, gethostbyaddr, gethostbyname, sethostent, gethostent(3n)
host entry. gethostent, gethostbyaddr, gethostbyname, sethostent, endhostent: get networkgethostent(3n)

sethostent, endhostent: get network host entry. gethostent, gethostbyaddr, gethostbyname, gethostent(3n)
current host. gethostid, sethostid: get/set unique identifier of gethostid(2)

host. gethostname, sethostname: get/set name of current gethostname(2)
timer. getitimer, setitimer: get/set value of interval getitimer(2)

getlogin: get log-in name .. getlogin(3)
get network entry. getnetent, getnetbyaddr, getnetbyname, setnetent, endnetent: .. getnetent(3n)

entry. getnetent, getnetbyaddr, getnetbyname, setnetent, endnetent: get network getnetent(3n)
endnetent: get network entry'. getnetent, getnetbyaddr, getnetbyname, setnetent, ... getnetent(3n)

getpagesize: get system page size getpagesize(2)
getpass: read a password ... getpass(3)
getpeemame: get name of connected peer getpeemame(2)
getpgrp: get process group .. getpgrp(2)
getpid, getppid: get process identification getpid(2)

getpid, getppid: get process identification getpid(2)

A-18 Pennuted Index

o

o

o

o

PTX DOMAIN/lX SYS5 PTX

scheduling priority. getpriority, setpriority: get/set program getpriority(2)
protocol entry. getprotoent, getprotobynumber, getprotobyname, setprotoent, endprotoent: get. getprotoent(3n)

endprotoent: get protocol entry. getprotoent, getprotobynumber, getprotobyname, setprotoent, getprotoent(3n)
setprotoent, endprotoent: get protocol entry. getprotoent, getprotobynumber, getprotobyname, ... getprotoent(3n)

get password file entry. getpwent, getpwuid, getpwnam, setpwent, endpwent:getpwent(3)
entry. getpwent, getpwuid, getpwnam, setpwent, endpwent: get password file .. getpwent(3)

password file entry. getpwent, getpwuid, getpwnam, setpwent, endpwent: get getpwent(3)
consumption. getrlimit: control maximum system resource getrlimit(2)

utilization. getrusage: get information about resource getrusage(2)
gets, fgets: get a string from a stream gets(3S)

entry. getservent, getservbyport, getservbyname, setservent, endservent: get service.getservent(3n)
endservent: get selVice entry. getservent, getservbyport, getservbyname, setservent, getservent(3n)
setservent, endservent: get service entry. getservent, getservbyport, getservbyname, getservent(3n)

gettimeofday, settimeofday: get/set date and time ... gettimeofday(2)
gethostname, sethostname: get/set name of current host. gethostname(2)

getsockopt, setsockopt: get/set options on sockets ... getsockopt(2)
getpriority, setpriority: get/set program scheduling priority getpriority(2)

gethostid, sethostid: get/set unique identifier of current host. gethostid(2)
getitimer, setitimer: get/set value of interval timer getitimer(2)

getsockname: get socket name getsockname(2)
getsockopt, setsockopt: get/set options on sockets .. getsockopt(2)
gettable: get NIC fonnat host tables from a host.. .. gettable(8C)
gettimeofday, settimeofday: get/set date and time .. gettimeofday(2)
getuid, geteuid: get user identity getuid(2)

getc, getchar, fgetc, getw: get character or word from stream getc(3S)
getwd: get current working directory pathname getwd(3)

head: give first few lines ... head(1)
glob: filename expand argument list. csh(l)

ASCII. ctime, localtime, gmtime, asctime, timezone: convert date and time toctime(3)
fish: play "Go Fish" ... fish(6)

setjmp, longjmp: non-local goto .. setjmp(3)
goto: command transfer .. csh(1)

graph: draw a graph .. graph(lG)
graph: draw a graph .. graph(iG)

plot: graphics filters ... plot(1G)
arc, move, cont, point, linemod, space, closepl: graphics interface. erase, label, line, circle, plot(3X)

plot: graphics interface .. p10t(5)
grep, egrep, fgrep: search a file for a pattern grep(1)

chgrp: change group .. chgrp(l)
getpgrp: get process group .. getpgrp(2)

killpg: send signal to a process group ... killpg(2)
setpgrp: set process group .. setpgrp(2)

get groups: get group access list. ... getgroups(2)
initgroups: initialize group access list. .. .initgroups(3X)

setgroups: set group access list. ... setgroups(2)
group: group file ... group(5)

getgrgid, getgrnam, setgrent, endgrent: get group file entry. getgrent, .. getgrent(3)
crpasswd: create password and group files .. crpasswd(8)

group: group file .. group(5)
setruid setgid setegid setrgid: set user and group ID setuid seteuid ... net(3n)

Pennuted Index A-19

PTX DOMAIN/IX SYS5 PTX

setregid: set real and effective group ID .. setregid(2)
setruid, setgid, setegid; setrgid: set user and group ID. setuid, seteuid, .. setuid(3)

getgid, getegid: get group identity .. getgid(2)
groups: show group memberships ... groups(l)

chown: change owner or group of a file .. chown(2)
make: maintain program groups .. make(l)

groups: show group memberships groups(l)
worm: Play the growing worm game ... worm(6)

stop: halt a job or process .. csh(l)
reboot: reboot system or halt processor ... reboot(2)

halt: stop the processor ... halt(8)
rmail: handle remote mail received via uucp rmail(l)

re_comp, re_exec: regular expression handler ... regex(3)
hangman: Computer version of the hangman game.hangman(6)

hangman: Computer version of the hangman game .. hangman(6)
nohup: run command immune to hangups .. csh(l)

link: make a hard link: to a filelink:(2)
fix_cache - repair ad cache hash chains .. fix_cache(8)

rehash: recompute command hash table ... csh(l)
unhash: discard command hash table ... csh(l)
crypt, encrypt: a one-way hashing encryption algorithm crypt(3)

hashstat: print command hashing statistics .. csh(1)
hashstat: print command hashing statistics csh(l)

leave: remind you when you have to leave .. .leave(l)
help: ask for help .. help(l)

help: ask for help .. help(1)
od: octal, decimal, hex, ASCII dump .. 0<1(1)

hier: file system hierarchy .. hier(7)
hier: file system hierarchy .. hier(7)

history: print history event list. ... csh(l)
history: print history event list. csh(l)

sethostid: get/set unique identifier of current host. gethostid, ... gethostid(2)
gethostname, sethostname: get/set name of current host. .. gethostname(2)

gettable: get NIC format host tables from a host. .. gettable(8C)
uusend: send a file to a remote host.. ... uusend(1C)

htonl, htons, ntohl, ntohs: convert values between host and network byte order byteorder(3n)
remote: remote host description file ... remote(5)

gethostbyname, sethostent, endhostent: get network host entry. gethostent, gethostbyaddr, gethostent(3n)
hosts: host name database ... hosts(5)

phones: remote host phone number database phones(5)
ruptime: show host status of local machines ruptime(1C)

hostid: set or print identifier of current host system .. hostid(l)
hostnamc: set or print name of current host system .. hostname(l)

htable: convert NIC standard fonnat host tables .. htable(8)
gettable: get NIC format host tables from a host. ... gettable(8C)

system. hostid: set or print identifier of current host hostid(l)
hostname: set or print name of current host system.hostname(l)
hosts: host name database ... hosts(5)

uptime: show how long a node has been up uptime(l)
htable: convert NIC standard format host tables htable(8) c

A-20 Pennuted Index

o

o

o

o

PTX DOMAIN/IX SYS5 PTX

host and network byte order. htonl, htons, ntohl, ntohs: convert values between .. byteorder(3n)
and network byte order. htonl, htons, ntohl, ntohs: convert values between host byteorder(3n)

sinh, cosh, tanh: hyperbolic functions .. sinh(3M)
hypot, cabs: Euclidean distance hypot(3M)

addroot: add a root ID ... addroot(8)
setruid setgid setegid setrgid: set user and group ID setuid seteuid .. net(3n)

setregid: set real and effective group ID .. ~ setregid(2)
setreuid: set real and effective user ID ... setreuid(2)

setgid, setegid, setrgid: set user and group ID. setuid, seteuid, setruid, setuid(3)
whoanti: print effective current user ID ... whoanti(l)

su: substitute user ID temporarily ... su(1)
getpid, getppid: get process identification. ... getpid(2)

gethostid, sethostid: get/set unique identifier of current host. .. gethostid(2)
hostid: set or print identifier of current host system hostid(l)

what: identify SCCS files .. what(1)
getgid, getegid: get group identity ... getgid(2)

getuid, geteuid: get user identity ... getuid(2)
access: detennine if a file can be accessed .. access(2)

if: conditional statement. .. csh(1)
ifconfig: configure network interface paranteters ifconfig(8C)

notify: request immediate notification ... csh(1)
nohup: run command immune to hangups ... csh(1)

xstr: extract strings from C programs to implement shared strings .. xstr(1)
eyacc: modified yacc allowing much improved error recovery ... eyacc(l)

which: locate a pro grant file, including aliases and paths which(l)
fsync: synchronize a file's in-core state with that on disk fsync(2)

indent: indent and fonnat C program source indent(l)
indent: indent and fonnat C progrant sourceindent(1)

tgetnum, tgetfiag, tgetstr, tgoto, tputs: terminal independent operation routines. tgetent; tenncap(3X)
ptx.: permuted index .. ptx(l)

bibliography. indxbib, lookbib: build inverted index for a bibliography; find references in alookbib(l)
strncat, strcmp, stmcmp, strcpy, stmcpy, strlen, index, rindex: string operations. strcat, string(3)
fsplit: split a multi-routine FORTRAN file into individual files ... fsplit(1)
bibliography; find references in a bibliography. indxbib, lookbib: build inverted index for alookbib(l)

inet: Internet protocol familyinet(4F)
ineclnaof, inecnetof: Internet address inecaddr, inecnetwork, inecntoa, inet_makeaddr,inet(3n)

inetd: Internet superdaemoninetd(8C)
inetd.conf: configuration file for inetd(8C)inetd.conf(5)

inetdconf: configuration file for inetd(8C) inetd.conf(5)
inecaddr, inecnetwork, inecntoa, inecmakeaddr, ineclnaof, inecnetof: Internet addressinet(3n)

address inecaddr, inet_network, ineCntoa, inecmakeaddr, ineClnaof, inecnetof: Internetinet(3n)
inecnetwork, inecntoa, inecmakeaddr, ineClnaof, inecnetof: Internet address manipulation routines . .inet(3n)

inecnetof: Internet address inecaddr, inecnetwork, inet_ntoa, inecmakeaddr, ineclnaof,inet(3n)
Internet address inecaddr, inecnetwork, inecntoa, ineCmakeaddr, ineclnaof, inecnetof:inet(3n)

man: display reference manual information .. man(l)
man: display reference manual infonnation .. man.l.ll(12)
pac: printer/plotter accounting infonnation .. pac(8)

fstab: static infonnation about filesystems fstab(5)
getrusage: get infonnation about resource utilization getrusage(2)

strip: strip symbol and line number infonnation from an object file strip(1)

Pennuted Index A-21

PTX DOMAIN/IX SYS5 PTX

intro: miscellaneous useful infonnation pagesintro(7)
initgroups: initialize group access list.initgroups(3X)

tset: terminal-dependent initialization ... tset(l)
initgroups: initialize group access list. .. initgroups(3X)

connect: initiate a connection on a socket.. connect(2)
popen, pclose: initiate 1/0 to and from a process popen(3)

and associated routines. random, srandom, initstate, setstate: better random number generator .random(3)
read, readv: read input. .. read(2)

soelim: eliminate .so's from nroff input. .. soelim(l)
scanf, fscanf, sscanf: formatted input conversion .. scanf(3S)

ungetc: push character back into input stream ... ungetc(3S)
fread, fwrite: buffered binary input/output. ... fread(3S)

stdio: standard buffered input/output package ... intro(3S)
ferror, feof, clearerr, fileno: stream status inquiries ... ferror(3S)

refer: find and insert literature references in documents refer(1)

~,
I

",--_.~/
insque, remque: insert or remove an element in a queueinsque(3)

queue. insque, remque: insert or remove an element in a .. insque(3)
install: install binaries .. .install(l)

install: install binaries ... install(1)
cont, point, linemod, space, closepl: graphics interface. erase, label, line, circle, arc, move, plot(3X)

plot: graphics interface ... plot(5)
tty: general terminal interface ... tty(4)

ifconfig: configure network interface parametersifconfig(8C)
telnet: user interface to the TELNET protocol. telnet(1 C)

sendmail: send mail over the internet ... sendmail(8)
ineCntoa, inecmakeaddr, ineClnaof, inecnetof: Internet address manipulation routines ... ~ inet(3n)

ftpd: DARPA Internet File Transfer Protocol server ftpd(8C)
inet: Internet protocol familyinet(4F)

services: database of Internet services .. services(5)
inetd: Internet superdaemoninetd(8C)

tcp: Internet Transmission Control Protocol. tcp(4P)
udp: Internet User Datagram Protocol.. udp(4P)

spline: intetpolate smooth curve ... spline(lG)
csh: a shell (command intetpreter) with C-like syntax csh(l)

pipe: create an intetprocess communication channeL pipe(2)
atomically release blocked signals and wait for interrupt. sigpause: ... sigpause(2)

onintr: process interrupts in command scripts csh(1)
sleep: suspend execution for an interval ... sleep(1)

sleep: suspend execution for interval ... sleep(3)
intro: introduction to commandsintro(1)
intro: introduction to compatibility library functions intro(3C)
intro: introduction to file formatsintro(5)
intro: introduction to games .. intro(6)
intro: introduction to library functionsintro(3)
intro: introduction to mathematical library functionsintro(3M)
intro: introduction to miscellaneous library functionsintro(3X)
intro: introduction to network library functionsintro(3n)

networking: introduction to networking facilitiesintro(4N)
special files: introduction to special files intro(4)

intro: introduction to system administration commands ... intro(8)

A-22 Pennuted Index

o PTX DOMAIN/IX SYS5 PTX

intro: introduction to system calls and error numbers intro(2)
in ~ bibliogr:lphy. indxbib, lookbib: build inverted index for a bibliography; ~d rcfercn~s .. 1ookbib(1)

select: synchronous I/O multiplexing .. select(2)
popen, pclose: initiate I/O to and from a process ... popen(3)

ioctl: control deviceioctl(2)
whatis: describe what a command is ... whatis(1)

isascii: isalpha, isupper, islower, isdigit, isalnum, isspace, ispunct, isprint, iscntrl, ctype(3)
isspace, ispunct, isprint, iscntrl, isascii: isalpha, isupper, islower, isdigit, isalnum, ctype(3)

isalnum, isspace, ispunct, isprint, iscntrl, isascii: character classification macros. isdigit, ctype(3)
ttyname, isatty: find name of a tenninal ttyname(3)

isdigit, isalnum, isspace, ispunct, isprint, iscntrl, isascii: character classification macros ctype(3)
iscntrl, isascii: isalpha, isupper, islower, isdigit, isalnum, isspace, ispunct, isprint, ctype(3)

o isprint, iscntrl, isascii: isalpha, isupper, islower, isdigit, isalnum, isspace, ispunct, ctype(3)
islower, isdigit, isalnum, isspace, ispunct, isprint, iscntrl, isascii: character classification ctype(3)
isupper,islower, isdigit, isalnum, isspace, ispunct, isprint, iscntrl, isascii: chruqcter ctype(3)
isalpha, isupper, islower, isdigit, isalnum, isspace, ispunct; isprint, iscntrl, isascii: ctype(3)

system: issue a shell command ... system(3)
ispunct, isprint, iscntrl, isascii: isalpha, isupper, islower, isdigit, isalnum, isspace, ctype(3)

jO, jl, jn, yO, yl, yn: Bessel functions jO(3M)
jO, j 1, jn, yO, y 1, yn: Bessel functions jO(3M)

jO, jl, jn, yO, yl, yn: Bessel functions jO(3M)
bg: place job in background ... csh(l)

o fg: bring job into foreground ... csh(l)
jobs: print current job list. ... csh(l)

stop: halt a job or process .. csh(l)
kill: kill jobs and processes ... csh(1)

lpnn: remove jobs from the line printer spooling queuelpnn(l)
jobs: print current job list. .. csh(1)
join: relational database operator ~.join(l)

msgs: system messages and junk mail program ... msgs(l)
apropos: locate commands by keyword lookup ... apropos(l)

kill: kill jobs and processes .. csh(l)

o kill: kill jobs and processes ~ csh(l)
kill: send signal to a process kill(2)
kill: tenninate a specified process kill(l)

. killpg: send signal to a process group killpg(2)
linemod, space, closepl: graphics openpl, erase, label, line, circle, arc, move, cont, point, plot(3X)

awk: pattern scanning and processing language ... awk(l)
be: arbitrary-precision arithmetic language ... bc(l)

sh: command language ... sh(l)
ld: link editor .. .ld(l)

frexp, ldexp, modf: split into mantissa and exponent. frexp(3)
leave: remind you when you have to leave .. .leave(l)

leave: remind you when you have to leaveleave(1)
exit: leave shell .. csh(1)

~ncate: truncate a file to a specified length ... truncate(2)
lex: generator of lexical analysis programslex(1)

lex: generator of lexical analysis programslex(1)

o ranlib: convert archives to random libraries .. ranlib(l)
lorder: find ordering relation for an object library .. .lorder(l)

Pennuted Index A-23

PTX DOMAIN/IX SYS5 PTX

ar: archive (library) file fonnat. .. ar(5)
intro: introduction to library functionsintro(3)

intro: introduction to compatibility library functionsintro(3C)
intro: introduction to mathematical library functionsintro(3M)

intro: introduction to network library functionsintro(3n)
intro: introduction to miscellaneous library functionsintro(3X)

ar: archive and library maintainer .. ar(1)
limit: alter per-process resource limitations csh(l)

limit: alter per-process resource limitations .. csh(1)
unlimit: remove resource limitiations ... csh(l)

space, closepl: graphics openpl, erase, label, line, circle, arc, move, cont, point, linemod, plot(3X)
col: filter reverse line feeds ... col(I)

strip: strip symbol and line number infonnation from an object file strip(l)
print: pr to tlle line printer ... print(l)

Ipc: line printer control program1pc(8)
Ipd: line printer daemon .. .1pd(8)

Ipnn: remove jobs from tlle line printer spooling queue1pnn(l)
erase, label, line, circle, arc, move, cont, point, linemod, space, c1osepl: graphics interface plot(3X)

head: give first few lines .. head(I)
comm: select or reject lines common to two sorted files comm(1)

fold: fold long lines for finite width output device fold(1)
uniq: report repeated lines in a file .. uniq(1)

look: find lines in a sorted list.1ook(1)
rev: reverse lines of a file ... rev(l)

readlink: read value of a symbolic link ... readlink(2)
Id: link editor1d(I)

link: make a hard link to a file1ink(2)
link: make a hard link to a file .. .1ink(2)

symlink: make symbolic link to a file ... : symlink(2)
In: make links .. .1n(l)

soft_link, soft_unlink: create or delete soft links ... soft_link(2)
lint: a C program verifier1int(1)

glob: filen3lIle expand argument list .. csh(I)
history: print history event list .. csh(I)

jobs: print current job list. ... csh(l)
shift: manipulate argument list .. csh(I)

getgroups: get group access list. ... getgroups(2)
initgroups: initialize group access listinitgroups(3X)

look: find lines in a sorted list. .. .1ook(I)
nm: print n3lIle list .. nm(l)

setgroups: set group access list. ... setgroups(2)
varargs: variable argument- list. ... varargs(3)

print fonnatted output of a varargs argument list. vprintf, vfprintf, vsprintf: vprintf(3S)
Is: list contents of directory .. .1s(1)

foreach: loop over list of names .. csh(1)
users: compact list of users who are on the system users(l)

listen: listen for connections on a socket.1isten(2)
listen: listen for connections on a socket..1isten(2)

refer: find and insert literature references in documents refer(I)
In: make links1n(l)

A-24 Permuted Index

o PTX DOMAIN/IX SYS5 PTX

strfile: fortune(6) database loader ... strfile(6)
and time to ASCII. ctime, localtime, gmtime, asctime, timezone: convert datectime(3)

which: locate a program file, including aliases and paths ... which(l)
whereis: locate binary and/or manual for program whereis(1)
apropos: locate commands by keyword lookup apropos(1)

end, etext, edata: last location in program ... end(3)
flock: place or remove an advisory lock on an open file ... flock(2)

gamma: log gamma function .. gamma(3M)
power, square root. exp, log, 10glO, pow, sqrt: exponential, 10garithm, exp(3M)

syslog: log systems messages .. syslog(8)
square root. exp, log, 10g10, pow, sqrt: exponential, logarithm, power, exp(3M)

exp, log, logl0, pow, sqrt: exponential, logarithm, power, square root.. exp(3M)
rwho: who's logged in on local rnachines rwho(IC)

rlogin: remote log-in .. rlogin(IC)
login: login new user .. csh(1)

getlogin: get log-in name .. getlogin(3)
login: login new user ... csh(l)

passwd: change log-in password ... passwd(1)
rlogind: remote log-in server .. rlogind(8C)

login: sign on .. .1ogin(l)
logout: end session .. csh(l)

o setjmp, longjrnp: non-local goto .. setjmp(3)
look: find lines in a sorted list.look(1)

find references in a bibliography. indxbib, lookbib: build inverted index for a bibliography; .. .1ookbib(l)
apropos: locate commands by keyword lookup .. apropos(1)

break: exit while/foreach loop .. csh(1)
continue: cycle in loop .. csh(1)

end: terminate loop .. csh(l)
foreach: loop over list of names ... csh(1)
library. lorder: find ordering relation for an object. lorder(1)

Ipc: line printer control program1pc(8)

o Ipd: line printer daemon .. .1pd(8)
Ipq: spool queue examination program1pq(l)
Ipr: print files off-line .. .1pr(l)

queue. Iprm: remove jobs from the line printer spooling .. .1prm(1)
Is: list contents of directory1s(1)
Iseek: move read/write pointer1seek(2)

stat, Istat, fstat: get file status ... stat(2)
m4: macro processor ... m4(1)

ruptime: show host status of local machines .. ruptime(l C)
rwho: who's logged in on local machines ... rwho(IC)

rn4: macro processor ... m4(1)
alias: shell macros .. csh(I)

isprint, iscntrl, isascii: character classification macros. isdigit, isalnum, isspace, ispunct, ctype(3)
ms: text formatting macros .. ms(7)

manx: macros for formatting entries in this manual manx(7)
man: . macros for formatting manual pages man(7)

o me: macros for formatting papers me(7)
mt: magnetic tape manipulating program mt(1)

mail: send and receivemail. ... mail(l)

Pennuted Index A-25

PTX DOMAIN/IX SYS5 PTX

encode/decode a binary file for transmission via mail. uuencode,uudecode: uuencode(1C)
mailaddr: mail addressing description mailaddr(7)

newaliases: rebuild the database for the mail aliases file .. newaliases(l)
binmail: send or receive mail among users .. binmail(l)

from: who is' my mail from? .. from(l)
prmail: print out mail in the post office ... prmail(l)

sendmail: send mail over the intemet .. sendmail(8)
msgs: system messages and junk mail program ... msgs(l)

rmail: handle remote mail received via uucp .. rmail(l)
mail: send and receivemail mail(l)
mailaddr: mail addressing description mailaddr(7)

make: maintain program groups .. make(l)
ar: archive and library maintainer ~ ... ar(l)

delta: make a delta (change) to an SCCS file delta(l)
mkdir: make a directory .. mkdir(1)
mkdir: make a directory file ... mkdir(2)

lime make a hard link to a file .. .1ink(2)
mknod: make a special file .. mknod(2)

mktemp: make a unique filename .. mktemp(3)
In: make links .. .1n(l)

make: maintain program groups make(l)
symlink: make symbolic link to a file symlink(2)

script: make typescript of a terminal session script(l)
allocator. malloc, free, realloc, calloc, alloca: memory malloc(3)

man: display reference manual information man(l)
man: display reference manual information man.1.11(12)
man: macros for formatting manual pages man(7)

shift: manipulate argument list ... csh(l)
route: manually manipulate the routing tables route(8C)

mt: magnetic tape manipulating program ... mt(l)
ineclnaof, inecnetof: Internet address manipulation routines. inecntoa, inecmakeaddr, .. inet(3n)

frexp, ldexp, modf: split into mantissa and exponent. ... frexp(3)
catman: format the files for this manual ... catman(8)

manx: macros for formatting entries in this manual ... manx(7)
whereis: locate binary and/or manual for program .. whereis(l)

man: display reference manual information. .. man(1)
man: display reference manual information ... man.1.11(12)

man: macros for formatting manual pages ... man(7)
route: manually manipulate the routing tables route(8C)

. manx: macros for formatting entries in this manual.manx(7)
cvtumap: convert name tr(>es from SR8 to SR9 name mapping ... cvtumap(8)

umask: change or display file creation mask ... csh(l)
sigsetmask: set current signal mask ... sigsetmask(2)

umask: set/get file creation mask ... umask(2)
mkstr: create an error message file by massaging C source ... mkstr(l)

intro: introduction to mathematical library functions intro(3M)
eqn: format mathematical text for trofr.. eqn(1)

getrlimit: control maximum system resource consumption getrlimit(2)
me: macros for formatting papers me(7)

groups: show group memberships .. groups(l)

A-26 Pennuted Index

~

L " /

f"
I
\
"-.. _--

PTX DOMAIN/IX SYS5 PTX o
malloc, free, realloc, calloc, alloca: memory allocator .. malloc(3)

valloc: aligned memory allocator .. valloc(3)
sort: sort or merge files ... sort(l)

mesg: pennit or deny messages mesg(l)
mkstr: create an error message file by massaging C source mkstr(1)

recv, recvfrom, recvmsg: receive a message from a socket.. .. reev(2)
send, sendto, sendmsg: send a message from a socket. ... send(2)

mesg: pennit or deny messages .. mesg(l)
perror, sys_errlist, sys_ner: system error messages .. perror(3)

psignal, sys_siglist: system signal messages .. psignal(3)
syslog: log systems messages .. syslog(8)

msgs: system messages and junk mail program msgs(1)
mille: play Mille Bournes .. mille(6)

mille: play Mille Boumes ... mille(6)
intro: introduction to miscellaneous library functionsintro(3X)

intro: miscellaneous useful infonnation pagesintro(7)
mkdir: make a directory ... mkdir(1)
mkdir: make a directory file mkdir(2)
mkdisk - create disk device descriptor files mkdisk(8)
mknod: make a special file mknod(2)

source. mkstr: create an error message file by massaging Cmkstr(l)
mktemp: make a unique filename mktemp(3)

o chmod: change mode .. chmod(l)
chmod: change mode of file ... chmod(2)

frexp, ldexp, modf: split into mantissa and exponent. frexp(3)
touch: update date last modified of a file ... touch(1)

recovery. eyacc: modified yacc allowing much improved error eyacc(l)
vfork: spawn a new process in a more efficient way .. vfork(2)

more, page: file perusal filter for CRT viewing more(l)
more, page: file perusal filter for CRT viewing page(l)

curses: screen functions with optimized cursor motion .. curses(3X)
mount, umount: mount and dismount file system mount(8)

o mount, umount: mount or remove file system mount(2)
mount, umount: mount and dismount file system ... mount(8)
mount, umount: mount or remove file system mount(2)

mtab: mounted file system table ... mtab(5)
graphics openpl, erase, label, line, circle, arc, move, cont, point, linemod, space, closepl: plot(3X)

mv: move or rename files .. mv(l)
!seek: move read/write pointer1seek(2)

ms: text fonnatting macros ms(7)
msgs: system messages and junk mail program msgs(1)
mt: magnetic tape manipulating program mt(l)
mtab: mounted file system table mtab(5)
mtio: tape device files ... mtio(4)

eyacc: modified yace allowing much improved error recovery eyacc(l)
select: synchronous I/O multiplexing ... select(2)

fsplit: split a multi-routine FORTRAN file into individual files .. fsplit(1)
switch: multi-way command branch csh(l)

o mv: move or rename files ... mv(l)
from: who is my mail from? ... from(l)

Pennuted Index A-27

PTX DOMAIN/IX SYS5 PTX

geUogin: get log-in narne ... getlogin(3)
getsocknarne: get socket narne ... getsocknarne(2)
pwd: working directory narne ... pwd(l)

tty: get tenninal narne ... tty(l)
hosts: host narne database ... hosts(S)

networks: network narne database ... networks(S)
protocols: protocol narne database ... protocols(5)

om: print narne list. ... om(l)
cvtumap: convert narne trees from SR8 to SR9 narne mapping ... cvtumap(8)

rename: change the narne of a file .. rename(2)
ttyname, isatty: find name of a tenninal .. ttyname(3)

getpeemame: get narne of connected peer .. getpeername(2)
gethostname, sethostnarne: get/set narne of current host. .. gethostname(2)

hostname: set or print narne of current host system hostnarne(l)
bind: bind a narne to a socket ... bind(2)

cvtumap: convert narne trees from SR8 to SR9 name mapping cvtumap(8)
foreach: loop over list of narnes ... csh(l)

term: conventional narnes for terminals ... tenn(7)
checkeq: check files that use eqn(l) or neqn(1) ... checkeq(1)

netstat: show network status netstat(1)
ntohl, ntobs: convert values between host and network byte order. htonl, htoDS, byteorder(3n)

getnetbyname, setnetent, endnetent: get network entry. getnetent, getnetbyaddr, getnetent(3n)
gethostbyname, sethostent, endhostent: get network host entry. gethostent, gethostbyaddr, gethostent(3n)

ifconfig: configure network interface parametersifconfig(8C)
intro: introduction to network library functionsintro(3n) c

networks: network narne database•...................................... networks(5)
routed: network routing daemon ... routed(8C)

netstat: show network status .. netstat(1)
networking: introduction to networking facilitiesintro(4N)

networking: introduction to networking facilitiesintro(4N)
networks: network name database networks(5)

open a file for reading or writing, or create a new file. open: .. open(2)
arcv: convert archive files to new fonnat.. ... arcv(8)

fork: create a new process ... fork(2)
vfork: spawn a new process in a more efficient way vfork(2)

login: login new user ... csh(l)
aliases file. newaliases: rebuild the database for the mail newaliases(l)

dbminit, fetch, store, delete, firstkey, nextkey: database subroutines dbm(3X)
gettable: get NIC fonnat host tables from a host gettable(8C)

htable: convert NIe standard format host tables htable(8)
nice, nohup: run a command at a different prioritynice(1)
nice: run low priority process csh(1)
om: print name list. ... om(l)

wall: write to all users on a node ... wall(l)
uptime: show how long a node has been up ... uptime(1)

update auxiliary system administrator's nodes. update_slave: .. update_slave(8)
flush_cache - clear the node's ad_cache ... flush_cache(8)

nice, nohup: run a command at a different priority nice(l)
nohup: run command immune to hangups csh(1)

setjmp, longjmp: non-local goto .. setjmp(3) C"
A-28 Pennuted Index

o

o

o

o

PTX DOMAIN/IX SYS5 PTX

notify: request immediate

soelim: eliminate .so's from
tbl: fonnat tables for

colcrt: filter

deroff: remove
checknr: check

network byte order. htonl, htons,
order. htonl, htons, ntohl,

phones: remote host phone
arithmetic: provide drill in

random, srandom, initstate, setstate: better random
strip: strip symbol and line

atof, atoi, atol: convert ASCn to
intro: introduction to system calls and error

number: convert Arabic
size: size of an

strings: find the printable strings in an
strip symbol and line number infonnation from an

lorder: find ordering relation for an
od:

pnnail: print out mail in the post
lpr: print files

login: sign
crypt, encrypt: a

nohup: run a command at a different priority
a program file, including aliases and paths

file. open:
fopen, freopen, fdopen:

flock: place or remove an advisory lock on an
a new file.

closedir: directory operations.
cont, point, linemod, space, closepl: graphics

tgetstr, tgoto, tputs: tenninal independent
bcopy, bcmp, bzero, ffs: bit and byte string

telldir, seekdir, rewinddir, closedir: directory
strcpy, strncpy, strlen, index, rindex: string

join: relational database
curses: screen functions with

stty: set terminal
getsockopt, setsockopt: get/set

ntohs: convert values between host and network byte
lorder: find

a.out: cc
tenninate a process after flushing any pending

Pennuted Index

notification ... csh(1)
notify: request immediate notification csh(l)
nroff input .. soelim(1)
nroff or troff .. tbl(1)
nroff output for CRT previewing colcrt(1)
nroff: text formatting .. nroff(1)
nroff, troff, tbl, and eqn constructs deroff(1)
nroff/troff files ... checknr(1)
ntohl, ntohs: convert values between host and byteorder(3n)
ntohs: convert values between host and network bytebyteorder(3n)
null: data sink .. nuII(4)
number: convert Arabic numerals to English number(6)
number database .. phones(5)
number facts .. arithmetic(6)
number generator and associated routines random(3)
number infonnation from an object file strip(1)
numbers ... atof(3)
numbers .. .intro(2)
numerals to English .. number(6)
object file ... size(1)
object file ... strings(1)
object file. strip: ... strip(1)
object library .. .lorder(1)
octal, decimal, hex, ASCII dump od(1)
od: octal, decimal, hex, ASCII dump od(1)
office .. pnnail(1)
off-line .. .lpr(1)
on .. .login(1)
one-way hashing encryption algorithm crypt(3)
onintr: process interrupts in command scripts csh(1)

nice, ... nice(1)
which: locate ... which(1)

open a file for reading or writing, or create a new.open(2)
open a stream .. fopen(3S)
open file ... flock(2)
open: open a file for reading or writing, or create .. open(2)
opendir, readdir, telldir, seekdir, rewinddir, directory(3)
openpl, erase, label, line, circle, arc, move, plot(3X)
operation routines. tgetent, tgetnum, tgetflag, tenncap(3X)
operations ... bstring(3)
operations. opendir, readdir, directory(3)
operations. strcat, strncat, strcmp, strncmp, string(3)
operator .. join(1)
optimized cursor motion ... curses(3X)
options ... stty(1)
options on sockets ... getsockopt(2)
order. htonl, htoDS, ntohl, .. byteorder(3n)
ordering relation for an object librarylorder(1)
output. .. a.out(5)
output. exit: .. exit(3)

A-29

PTX DOMAIN/IX SYS5 PTX
(~

"'-_/
ecvt, fcvt, gcvt: output conversion .. ecvt(3)

printf, fprintf, sprintf: fonnatted output conversion .. printf(3S)
fold: fold long lines for finite width output device ... fold(1)

colcrt: filter nroff output for CRT previewing colcrt(l)
vprintf, vfprintf, vsprintf: print fonnatted output of a varargs argument list. vprintf(3S)

foreach: loop over list of names .. csh(l)
sendmail: send mail over the internet .. sendmail(8)

exec: overlay shell with specified command ; csh(l)
chown: change the owne~ of files ... chown(8)

chown: change owner or group of a file .. chown(2)
pac: printer/plotter accounting infonnation pac(8)

stdio: standard buffered input/output package .. intro(3S)
more, page: file perusal filter for CRT viewing more(l)
more, page: file perusal filter for CRT viewing page(l)

getpagesize: get system page size .. getpagesize(2)
pagesize: print system page size .. pagesize(l)

intro: miscellaneous useful infonnation pages .. intro(7)
man: macros for fonnatting manual pages .. man(7)

pagesize: print system page size pagesize(l)
socketpair: create a pair of connected sockets .. socketpair(2)

me: macros for fonnatting papers ... me(7)
ifconfig: configure network interface parametersifconfig(8C)

passwd: change log-in password passwd(1)
passwd: password file .. passwd(5)

getpass: read a password. ... getpass(3)
passwd: change log-in password .. passwd(l)

cIpasswd: create password and group files .. cIpasswd(8)
passwd: password file .. passwd(5)

getpwuid, getpwnam, setpwent, endpwent: get password file entry. getpwent, getpwent(3)
getwd: get current working directory pathname .. getwd(3)

which: locate a program file, including aliases and paths ... which(1)
grep, egrep, fgrep: search a file for a pattern .. grep(l)

awk: pattern scanning and processing language ; .. awk(l)
pause: stop until signal ... pause(3C)

popen, pelose: initiate I/O to and from a process popen(3)
getpeername: get name of connected peer .. getpeername(2)

exit: tenninate a process after flushing any pending output. .. exit(3)
update: update the super-block periodically .. update(8)

mesg: pennit or deny messages .. mesg(l)
ptx: pennuted index .. ptx(l)

limit: alter per-process resource limitations csh(l)
messages. perror, sys_errlist, sys_ner: system error perror(3)

more, page: file perusal filter for CRT viewing more(l)
more, page: file perusal filter for CRT viewing page(l)

phones: remote host phone number database ... phones(5)
phones: remote host phone nwnber database phones(5)

split: split a file into pieces ... split(1)
pipe: create an intetprocess communication channel.pipe(2)

tee: pipe fitting ... tee(l)
bg: place job in background .. csh(l)

A-30 Pennuted Index

PTX DOMAIN/IX SYS5 PTX

o
flock: place or remove an advisory lock on an open file .. flock(2)

fish: play "Go Fish" ... fish(6)
mille: play Mille Bournes .. mille(6)

worm: Play the growing worm game worm(6)
plot: graphics filters .. plot(1G)
plot: graphics interface ... plot(5)

erase, label, line, circle, arc, move, cont, point, linemod, space, closepl: graphics interface ... plot(3X)
Iseek: move read/write pointer1seek(2)

popd: pop shell directory stack ... csh(1)
popd: pop shell directory stack. csh(1)
popen, pclose: initiate I/O to and from a process ... popen(3)

prmai1: print out mail in the post office .. prmail(1)
root. exp, log, 10glO, pow, sqrt: exponential, logarithm, power, square exp(3M)

() exp, log, 10glO, pow, sqrt: exponential, logarithm, power, square root. .. exp(3M)
pr: print file ... pr(l)

print: pr to the line printer .. print(1)
colert: filter nroff output for eRT previewing ... colcrt(l)

unget: undo a previous get of an sees file unget(l)
types: primitive system data typestypes(5)

cat: catenate and print. ... cat(1)
fortune: print a random adage .. fortune(6)

prs: print an sees file ... prs(1)
cal: print calendar ... cal(1)

o hashstat: print command hashing statistics csh(1)
jobs: print current job list. ... csh(1)
sact: print current sees file editing activity sact(l)

whoami: print effective current user ID whoami(l)
pr: print file .. pr(1)

lpr: print files off-line1pr(1)
vprintf, vfprintf, vsprintf: print formatted output of a varargs argument list. .. vprintf(3S)

fpr: print FORTRAN file ... fpr(l)
history: print history event list. .. csh(1)

o
hostid: set or print identifier of current host system hostid(1)

banner: print large banner on printer banner(6)
nm: print name list ... nm(l)

hostname: set or print name of current host system ~ hostname(l)
prmail: print out mail in the post office prmail(l)

printenv: print out the environment. .. printenv(1)
PMt: pr to the line printer .. print(1)

pagesize: print system page size ... pagesize(1)
date: print the date · ... date(l)

diction, explain: print wordy sentences; thesaurus for diction diction(l)
strings: find the printable strings in an object file strings(1)

printcap: printer capability data base printcap(5)
printenv: print out the environment printenv(l)

banner: print large banner on printer ... banner(6)
print: pr to the line printer ... print(l)

printcap: printer capability data bJlSe printcap(5)
lpc: line printer control program .. .1pc(8)

o lpd: line printer daemon1pd(8)

Pennuted Index A-31

PTX DOMAIN/IX SYS5 PTX

lpnn: remove jobs from the line printer spooling queuelpnn(l)
pac: printer/plotter accounting infonnation pac(8)

conversion. printf, fprintf, sprintf: fonnatted output ~ printf(3S)
setpriority: get/set program scheduling priority. getpriority, .. getpriority(2)

renice: alter priority of running processes renice(8)
nice: run low priority process .. csh(l)

nice, nohup: run a command at a different priority ... nice(l)
pnnail: print out mail in the post office prmail(l)

nice: run low priority process ~ .. csh(l)
stop: halt a job or process ... csh(l)
_exit: terminate a process ... exit(2)
fork: create a new process ... fork(2)

kill: tenninate a specified process .. .ki1l(1)
kill: send signal to a process .. .ki1l(2) ("

popen, pc1ose: initiate I/O to and from a process ... popen(3) ",- __
wait: await completion of process ... wait(l)

exit: terminate a process after flushing any pending output. exit(3)
getpgrp: get process group ... getpgrp(2)

killpg: send signal to a process group ... killpg(2)
setpgrp: set process group ... setpgrp(2)

getpid, getppid: get process identification ... getpid(2)
vfork: spawn a new process in a more efficient way vfork(2)

onintr: process interrupts in command scripts csh(1)
ps: process status ... ps(l) (-------"

times: get process times ... times(3C) " __
wait, wait3: wait for process to tenninate .. wait(2)

ptrace: process trace .. ptrace(2)
kill: kill jobs and processes .. csh(1)

renice: alter priority of running processes .. renice(8)
wait: wait for background processes to complete ... csh(1)
awk: pattern scanning and processing language .. awk(1)

halt: stop the processor .. halt(8)
m4: macro processor .. m4(1)

reboot: reboot system or halt processor : .. reboot(2) C
reboot: reboot the processor .. reboot(8)

end, etext, edata: last location in program .. end(3)
ftp: file transfer program .. ftp(lC)

Ipc: line printer control programlpc(8)
Ipq: spool queue examination programlpq(l)

msgs: system messages and junk mail program .. msgs(1)
mt: magnetic tape manipulating program .. mt(l)

talkd: server for talk(1) program .. talkd(8C)
units: conversion program .. units(l)

whereis: locate binary and/or manual for program .. whereis(l)
writed: daemon for write(l) program .. writed(8C)

cb: C program beautifier ... cb(1)
which: locate a program file, including aliases and paths (csh which(1)
make: maintain program groups ... make(l)

getpriority, setpriority: get/set program scheduling priority getpriority(2)
indent: indent and format C program source .. indent(l) C'

A-32 Pennuted Index

o

o

o

o

PTX DOMAIN/IX SYS5 PTX

assert: program verification .. assert(3X)
lint: a C program verifier .. .lint(I)

lex: generator of lexical analysis programslex(1)
xstr: extract strings from C programs to implement shared strings xstr(I)

sup: set UNIX-style protection ... sup(8)
defaulCacl: change default file protection environment ... defaulCac1(2)

atp: Address Resolution Protocol. ... arp(4P)
tep: Internet Transmission Control Protocol. ... tep(4P)

telnet: user interface to the TELNET protocol. ... telnet(1 C)
udp: Internet User Datagram Protocol. ... udp(4P)

getprotobyname, setprotoent, endprotoent: get protocol entry. getprotoent, getprotobynumber, getprotoent(3n)
inet: Internet protocol familyinet(4F)

protocols: protocol name database ... protocols(5)
ftpd: DARPA Internet File Transfer Protocol server ... ftpd(8C)

telnetd: DARPA TELNET protocol server ... telnetd(8C)
tftpd: DARPA Trivial File Transfer Protocol server ... tftpd(8C)

protocols: protocol name database protocols(5)
arithmetic: provide drill in number facts arithmetic(6)
false, true: provide truth values .. false(1)
true, false: provide truth values .. true(1)

prs: print an secs file .. prs(1)
ps: process status ... ps(1)

pty: pseudo terminal driver .. pty(4)
psignal, sys_siglist: system signal messages psignal(3)

crpty: create psuedo tty device entries .. crpty(8)
ptrace: process trace .. ptrace(2)
ptx: permuted index .. ptx(l)
pty: pseudo terminal driver pty(4)

tar: tape (and general purpose) archiver ... tar(l)
ungetc: push character back into input stream ungetc(3S)
pushd: push shell directory stack ... csh(1)

pushd: push shell directory stack csh(1)
puts, fputs: put a string on a stream .. puts(3S)

putc, putchar, fputc, putw: put character or word on a stream putc(3S)
on a stream. putc, putchar, fputc, putw: put character or word ... putc(3S)

stream. putc, putchar, fputc, putw: put character or word on a putc(3S)
puts, fputs: put a string on a stream puts(3S)

putc, putchar, fputc, putw: put character or word on a stream putc(3S)
pwd: working directory name pwd(1)
qsort: quicker sort ... qsort(3)

insque, remque: insert or remove an element in a queueinsque(3)
Iprm: remove jobs from the line printer spooling queuelprm(1)

Ipq: spool queue examination programlpq(l)
qsort: quicker sort .. qsort(3)

rain: animated raindrops display rain(6)
rain: animated raindrops display ... rain(6)

fortune: print a random adage .. fortune(6)
ranlib: convert archives to random libraries .. ranlib(1)

random, srandom, initstate, setstate: better random number generator and associated routines .. random(3)
number generator and associated routines. random, srandom, initstate, setstate: better random random(3)

Pennuted Index A-33

PTX DOMAIN/IX SYS5 PTX

ranlib: convert archives to random libraries ranlib(l)
ratfor: rational FORTRAN dialect ratfor(l)

ratfor: rational FORTRAN dialect ratfor(l)
rc: boot time shell script. .. rc(8)

stream to a remote command. rcmd, rresvport, ruserok: routines for returning a ... rcmd(3X)
rep: remote file copy ... rcp(lC)

getpass: read a password ... getpass(3)
source: read commands from file .. csh(l)

read, readv: read input. .. read(2)
read, readv: read input. ... read(2)

readlink: read value of a symbolic link readlink:(2)
directory operations. opendir, readdir, telldir, seekdir, rewinddir, c1osedir: directory(3)

open: open a file for reading or writing, or create a new file open(2)
readlink: read value of a symbolic link readlink(2)

read, readv: read input. .. read(2)
!seek: move read/write pointerlseek(2)
setregid: set real and effective group 10 setregid(2)
setreuid: set real and effective user 10 ... setreuid(2)
malIoc, free, realloc, calloc, alIoca: memory allocator malloc(3)

swapul: rearrange underlining .. swapul(8)
reboot: reboot system or halt processor reboot(2)
reboot: reboot the processor reboot(8)

reboot: reboot system or halt processor reboot(2)
reboot: reboot the processor .. reboot(8)

newaliases: rebuild the database for the mail aliases file newaliases(1)
recv, recvfrom, recvmsg: receive a message from a socket.. recv(2)

mail: send and receivemail. .. mail(1)
binmail: send or receive mail among users ... binmail(l)

nnail: handle remote mail received via uucp .. nnail(l)
re_comp, re_exec: regular expression handler regex(3)

rehash: recompute command hash table csh(1)
eyacc: modified yace allowing much improved error recovery ... eyacc(1)

socket. recv, recvfrom, r~cvmsg: receive a message from arecv(2)
recv, recvfrom, recvmsg: receive a message from a socket.reev(2)

recv, recvfrom, recvmsg: receive a message from a socket. recv(2)
eval: re-evaluate shell data. ... csh(l)

re_comp, re_exec: regular expression handler regex(3)
documents. refer: find and insert literature references in refer(l)

man: display reference manual infonnation man(1)
man: display reference manual infonnation man~1.11(12)

build inverted index for a bibliography; find references in a bibliography. il,dxbib, lookbib:lookbib(l)
refer: find and insert literature references in documents .. refer{ 1)

re_comp, re_exec: regular expression handler .. regex(3)
rehash: recompute command hash table csh(l)

comm: select or· reject lines common to two sorted files comm(l)
lorder: find ordering relation for an object librarylorder(1) ,

join: relational database operator join(l)
sigpause: atomically release blocked signals and wait for interrupt. sigpause(2)

leave: remind you when you have to leaveleave(l)
calendar: reminder service .. calendar(1)

A-34 Pennuted Index

c

PTX DOMAINjIX SYS5 PTX o
ruserok: routines for returning a stream to a remote command. rcmd, rresvport, rcmd(3X)

rexec: return stream to a remote command ... rexec(3X)
rexecd: remote execution server .. rexecd(8C)

rcp: remote file copy .. rcp(lC)
uusend: send a file to a remote host. ... uusend(lC)

remote: remote host description file remote(5)
phones: remote host phone number database phones(5)
rlogin: remote log-in ... rlogin(lC)

rlogind: remote log-in server .. rlogind(8C)
nnail: handle remote mail received via uucp nnail(1)

remote: remote host description file remote(5)
rsh: remote Shell .. rsh(1 C)

o rshd: remote Shell server ... rshd(8C)
tip, cu: connect to a remote system .. cu(lC)
tip, cu: connect to a remote system .. tip(lC)

nndel: remove a delta from an SCCS file nndel(1)
nndir: remove a directory file .. nndir(2)

unalias: remove aliases ... csh(l)
flock: place or remove an advisory lock on an open file flock(2)

insque, remque: insert or remove an element in a queueinsque(3)
colnn: remove columns from a file colnn(1)
unlink: remove directory entry .. unlink(2)

unsetenv: remove environment variables csh(l)
mount, umount: mount or remove file system .. mount(2)

lpnn: remove jobs from the line printer spooling queue . .lpnn(l)
o

deroff: remove nroff, troff, tbl, and eqn constructs deroff(l)
unlimit: remove resource limitiations csh(1)

nn, nndir: remove (unlink) directories or files nn(1)
insque, remque: insert or remove an element in a queue insque(3)

rename: change the name of a file rename(2)
mv: move or rename files ... mv(l)

renice: alter priority of running processes renice(8)
fix_cache - repair acl cache hash chains fix_cache(8)

while: repeat commands conditionally csh(l) o
repeat: execute command repeatedly csh(l)

uniq: report repeated lines in a file ... uniq(1)
repeat: execute command repeatedly .. csh(l)

yes: be repetitively affinnative .. yes(l)
uniq: report repeated lines in a file uniq(1)

fseek, ftell, rewind: reposition a stream .. fseek(3S)
notify: request immediate notification csh(l)

reset: reset the teletype bits to a sensible state reset(l)
reset: reset the teletype bits to a sensible state reset(l)

arp: Address Resolution Protocol. .. arp(4P)
getrlimit: control maximum system resource consumption .. getrlimit(2)

limit: alter per-process resource limitations ... csh(l)
unlimit: remove resource limitiations .. csh(1)

getrusage: get infonnation about resource utilization .. getlusage(2)
suspend: suspend a shell, resuming its superior ... csh(1)

rexec: return stream to a remote command rexec(3X) o
Pennuted Index A-35

PTX DOMAIN/IX SYS5 PTX

rcmd, rresvport, ruserok: routines for returning a stream to a remote command rcmd(3X)
rev: reverse lines of a file ... rev(l)

col: filter reverse line feeds .. col(l)
rev: reverse lines of a file .. rev(1)

fseek, ftell, rewind: reposition a stream fseek(3S)
opendir, readdir, telldir, seekdir, rewinddir, closedir: directory operations directory(3)

rexec: return stream to a remote command rexec(3X)
rexecd: remote execution server rexecd(8C)

strcmp, stmcmp, strcpy, stmcpy, strlen, index, rindex: string operations. strcat, stmcat, string(3)
rlogin: remote log-in ... rlogin(1C)
rlogind: remote log-in server rlogind(8C)
rm, rmdir: remove (unlink) directories or files rm(l)
rmail: handle remote mail received via uucp rmail(l)
rmdel: remove a delta from an SCCS file rmdel(l)
rmdir: remove a directory file rmdir(2)

rm, rmdir: remove (unlink) directories or files rm(l)
roftbib: run off bibliographic database roftbib(l)

pow, sqrt: exponential, logarithm, power, square root. exp, log, logl0, ... exp(3M)
addroot: add a root ID ... addroot(8)

route: manually manipulate the routing tables route(8C)
routed: network routing daemon routed(8C)

inecnetof: Internet address manipulation routines. inecntoa, inecmakeaddr, ineclnaof,inet(3n)
better random number generator and associated routines. random, srandom, initstate, setstate: random(3)

tgoto, tputs: terminal independent operation routines. tgetent, tgetnum, tgetfiag, tgetstr, termcap(3X)
command. rcmd, rresvport, ruserok: routines for returning a stream to a remote rcmd(3X)

~ _ ...

routed: network routing daemon .. routed(8C)
route: manually manipulate the routing tables ... route(8C)

to a remote command. rcmd, rresvport, ruserok: routines for returning a stream .. rcmd(3X)
rsh: remote Shell ... rsh(1 C)
rshd: remote Shell server .: .. rshd(8C)

nice, nohup: run a command at a different priority nice(l)
nohup: run command immune to hangups csh(l)

nice: run low priority process .. csh(l)
roftbib: run off bibliographic database roftbib(1)

renice: alter priority of running processes .. renice(8)
ruptime: show host status of local machines ruptime(l C)

remote command. rcmd, rresvport, ruserok: routines for returning a stream to a rcmd(3X)
rwho: who's logged in on local machines rwho(lC)
rwhod: system status server rwhod(8C)
sact: print current SCCS file editing activity sact(l)

brk, sbrk: change data segmtfnt size brk(2)
scandir: scan a directory ... scandir(3)

scandir: scan a directory ... scandir(3)
scanf, fscanf, sscanf: formatted input conversion scanf(3S)

awk: pattern scanning and processing language awk(1)
cdc: change the delta commentary of an SCCS delta. ... cdc(l)

comb: combine SCCS deltas ... comb(l)
delta: make a delta (change) to an SCCS file ... delta(1)

get: get a version of an SCCS file ... get(1)
prs: print an SCCS file ... prs(1)

A-36 Pennuted Index

o PTX DOMAIN/IX SYS5 PTX

nndel: remove a delta from an SCCS file ... nndel(l)
~ccsdiff: compare two versions of an SCCS file ... sccsdiff(l)

sccsfile: fonnat of Source Code Control System (SCCS) file .. sccsfile(5)
unget: undo a previous get of an SCCS file ... unget(l)

val: validate SCCS file ... val(l)
sacl: print current SCCS file editing activity ... sact(l)

admin: create and administer SCCS files .. admin(l)
what: identify SCCS files .. what(l)

sccsdiff: compare two versions of an SCCS file sccsdiff(1)
(SCeS) file sccsfile: fonnat of Source Code Control System sccsfile(5)

getpriority, setpriority: get/set program scheduling priority .. getpriority(2)
clear: clear tenninal screen ... clear(l)

o curses: screen functions with optimized cursor motion curses(3X)
ex. vi: screen-oriented (visual) display editor based on vi(l)

rc: boot time shell script. ... rc(8)
script: make typescript of a tenninal session sc~Pt(l)

onintr: process interrupts in command scripts ... csh(1)
grep, egrep, fgrep: search a file for a pattern .. grep(l)

sed: stream editor .. sed(l)
opendir, readdir, telldir, seekdir, rewinddir, c1osedir: directory operations directory(3)

brie, sbrie: change data segment size .. brk(2)
comm: select or reject lines common to two sorted files comm(1)

select: synchronous I/O multiplexing select(2)
case: selector in switch .. csh(1)

uusend: send a file to a remote host. uusend(1 C)
o

send, sendto, sendmsg: send a message from a socket. send(2)
mail: send and receivemail. .. mail(1)

sendmail: send mail over the internet sendmail(8)
binmail: send or receive mail among users binmail(l)

socket. send, sendto, sendmsg: send amessage from a send(2)
kill: send signal to a process .. kill(2)

killpg: send signal to a process group killpg(2)
aliases: aliases file for sendmail. .. aliases(5)

sendmail: send mail over the internet. sendmail(8)
send, sendto, sendmsg: send a message from a socket.. send(2)

send, sendto, sendmsg: send a message from a socket. send(2)
reset: reset the teletype bits to a sensible state .. reset(1)

diction, explain: print wordy sentences; thesaurus for diction diction(1)
ftpd: DARPA Internet File Transfer Protocol server ... ftpd(8C)

rexecd: remote execution server ... rexecd(8C)
rlogind: remote log-in server ... rlogind(8C)

rshd: remote Shell server ... rshd(8C)
rwhod: system status server ... rwhod(8C)

telnetd: DARPA TELNET protocol server ... telnetd(8C)
tftpd: DARPA Trivial File Transfer Protocol server ... tftpd(8C)

talkd: server for talk(1) program .. talkd(8C)
calendar: reminder service .. calendar(1)

services: database of Internet services .. services(5)
services: database of Internet services services(5)

logout: end session .. csh(1) o
Pennuted Index A-37

PTX DOMAIN/IX SYS5 PTX

script: make typescript of a tenninal session .. script(l)
ascii: map of ASCII character set. .. ascii(7)

sigstack: set and/or get signal stack context. sigstack(2)
set: change value of shell variable csh(l)

sigsetmask: set current signal mask ~ .. sigsetmask(2)
utimes: set file times .. utiInes(2)

setgroups: set group access list. ... setgroups(2)
apply: apply a command to a set of arguments .. apply(1)

hostid: set or print identifier of current host system hostid(1)
hostname: set or print name of current host system hostname(l)

setpgrp: set process group ... setpgrp(2)
setregid: set real and effective group ID setregid(2)
setreuid: set real and effective user ID setreuid(2)

stty: set terminal options ... stty(l)
tabs: set terminal tabs .. tabs(1)
sup: set UNIX-style protection ... sup(8)

setuid seteuid setruid setgid setegid setrgid: set user and group ID ... net(3n)
setuid, seteuid, setruid, setgid, setegid, setrgid: set user and group ID ... setuid(3)

setenv: set variable in environment csh(l)
a stream. setbuf, setbuffer, setlinebuf: assign buffering to setbuf(3S)

stream. setbuf, setbuffer, setlinebuf: assign buffering to a setbuf(3S)
setuid seteuid setruid setgid setegid setrgid: set user and group 10 net(3n)

setuid, seteuid, setruid, setgid, setegid, setrgid: set user and group 10 setuid(3)
setenv: set variable in environment csh(l)

and group 10 setuid seteuid setruid setgid setegid setrgid: set user net(3n)
user and group ID. setuid, seteuid, setruid, setgid, setegid, setrgid: set.. setuid(3)

urn ask: set/get file creation maSk .. umask(2)
setuid seteuid setruid setgid setegid setrgid: set user and group ID net(3n)

setuid, seteuid, setruid, setgid, setegid, setrgid: set user and group 10 setuid(3)
getgrent, getgrgid, getgrnam, setgrent, endgrent: get group file entry getgrent(3)

setgroups: set group access list. setgroups(2)
gethostent, gethostbyaddr, gethostbyname, sethostent, endhostent: get network host entry gethostent(3n)

host. gethostid, sethostid: get/set unique identifier of current gethostid(2)
gethostname, sethostname: get/set name of current host. gethostname(2)

getitimer, setitimer: get/set value of intelVal timer getitimer(2)
setjmp, longjmp: non-local goto setjmp(3)

setbuf, setbuffer, setlinebuf: assign buffering to a stream setbuf(3S)
getnetent, getnetbyaddr, getnetbyname, setnetent, endnetent: get network entry getnetent(3n)

setpgrp: set process group ... setpgrp(2)
getpriority, setpriority: get/set program scheduling priority getpriority(2)

getprotoent, getprotobynumber, getprotobyname, setprotoent, endprotoent: get protocol entry getprotoent(3n)
getpwent, getpwuid, getpwnam, setpwent, endpwent: get password file entry getpwent(3)

setregid: set real and effective group ID setregid(2)
setreuid: set real and effective user 10 setreuid(2)

setuid seteuid setruid setgid setegid setrgid: set user and group 10 net(3n)
setuid, seteuid, setruid, setgid, setegid, setrgid: set user and group 10 setuid(3)

ID setuid seteuid setruid setgid setegid setrgid: set user and group net(3n)
group ID. setuid, seteuid, setruid, setgid, setegid, setrgid: set user and setuid(3)

getservent, getservbyport, getservbyname, setservent, endservent: get service entry getservent(3n)
getsockopt, setsockopt: get/set options on sockets getsockopt(2)

A-38 Pennuted Index

o

o

o

o

o

PTX DOMAIN/IX SYS5 PTX

associated routines. random, srandom, initstate,
gettimeofday,

user and group ID
set user and group ID.

nice, nohup: run a command at a different priority
xstr: extract strings from C programs to implement

exit: leave
rsh: remote

cp /bin/start_csh: start a C
cp /bin/starCsh: start a Bourne

system: issue a
csh: a

ver: change the version of
eval: re-evaluate

popd:pop
pushd: push

alias:
suspend: suspend a

rc: boot time
rshd: remote

set: change value of
@: arithmetic on

unset: discard
exec: overlay

groups:
ruptime:
uptime:
netstat:
uusnap:

shutdown:
connection.

login:
pause: stop until

signal: simplified software
sigvec: software

sigsetmask: set current
psignal, sys_siglist: system

sigstack: set and/or get
kill: send

killpg: send
sigblock: block

sigpause: atomically release blocked
wait for interrupt.

Pennuted Index

setstate: better random nwnber generator and random(3)
settimeofday: get/set date and time gettimeofday(2)
setuid seteuid setruid setgid setegid setrgid: set. net(3n)
setuid, seteuid, setruid, setgid, setegid, setrgid: setuid(3)
sh: command language .. sh(1)
... nice(l)
shared strings ... xstr(1)
shell .. csh(1)
Shell ... rsh(1 C)
shell .. start_csh(1)
Shell ... start_sh(1)
shell command ... system(3)
shell (command interpreter) with C-like syntax csh(1)
Shell commands .. ver(8)
shell data .. csh(1)
shell directory stack ~ csh(l)
shell directory stack .. csh(1)
shell macros.~ ... csh(1)
shell, resuming its superior csh(1)
shell script. .. rc(8)
Shell server .. rshd(8C)
shell variable ... csh(1)
shell variables .. ~ csh(1)
shell variables .. csh(1)
shell with specified command csh(1)
shift: manipulate argument list csh(1)
show group memberships. · .. groups(l)
show host status of local macfiines ruptime(1 C)
show how long a node has been up uptime(l)
show network status .. netstat(1)
show snapshot of the UUCP system uusnap(8C)
shut down part of a full-duplex socket connection. shutdown(2)
shutdown: shut down part of a full-duplex socket .. shutdown(2)
sigblock: block signals : sigblock(2)
sign on .. .logio(1)
signal .. pause(3C)
signal facilities ~ signal(3C)
signal facilities ; .. sigvec(2)
signal mask .. sigsetmask(2)
signal messages ... psignal(3)
signal: simplified software signal facilities signal(3C)
signal stack context ... sigstack(2)
signal to a process ... kill(2)
signal to a process group .. killpg(2)
signals .. sigblock(2)
signals and wait for interrupt.. sigpause(2)
sigpause: atomically release blocked signals and sigpause(2)
sigsetmask: set current signal mask sigsetmask(2)
sigstack: set and/or get signal stack context. sigstack(2)
sigvec: software signal facilities sigvec(2)

A-39

PTX DOMAIN/IX SYS5 PTX

c
signal: simplified software signal facilities signal(3C)

trigonometric functions. sin, cos, tan, asin, acos, atan, atanf: sin(3M)
sinh, cosh, tanh: hyperbolic functions sinh(3M)

null: data sink ... null(4)
brk, sbrk: change data segment size ... brk(2)

getdtablesize: get descriptor table size ... getdtablesize(2)
getpagesize: get system page size ... getpagesize(2)

pagesize: print system page size ... pagesize(1)
size: size of an object file .. size(1)

size: size of an object file ... size(l)
sleep: suspend execution for an interval sleep(l)
sleep: suspend execution for interval sleep(3)

spline: interpolate smooth curve ... spline(1 G)
uusnap: show snapshot of the UUCP system uusnap(8C) (

accept: accept a connection on a socket. .. accept(2) \..."_
bind: bind a name to a socket. .. bind(2)

connect: initiate a connection on a socket. .. connect(2)
listen: listen for connections on a socket. .. listen(2)

recv, recvfrom, recvmsg: receive a message from a socket. .. recv(2)
send, sendto, sendmsg: send a message from a socket. .. send(2)

shutdown: shut down part of a full-duplex socket connection .. shutdown(2)
socket: create an endpoint for communication. socket(2)

getsockname: get socket name ... getsockname(2)
socketpair: create a pair of connected sockets socketpair(2) r""

getsockopt, setsockopt: get/set options on sockets ... getsockopt(2) "--
socketpair: create a pair of connected sockets ... socketpair(2)

soelim: eliminate .so's from nroff input. soelim(1)
soft_link, soft_unlink: create or delete soft links .. soft_link(2)

links. soft_link,soft_unlink:create or delete soft soft_link(2)
soft_link, soft_unlink: create or delete soft links soft_link(2)

signal: simplified software signal facilities ... signal(3C)
sigvec: software signal facilities ... sigvec(2)

qsort: quicker sort ... qsort(3) (~_'
tsort: topological sort ... tsort(l)

sortbib: sort bibliographic database ; sortbib(1)
sort: sort or merge files ... sort(l)

sort: sort or merge files ... sort(1)
sortbib: sort bibliographic database sortbib(l)

comm: select or reject lines common to two sorted files ... comm(1)
look: find lines in a sorted list .. .look(1)

soelim: eliminate .so's from nroff input. ... soelim(l)
indent: indent and fonnat C program source ... indent(I)

mkstr: create an error message file by massaging C source ... mkstr(l)
sccsfile: fonnat of Source Code Control System (SCeS) file sccsfile(5)

source: read commands from file csh(l)
line, circle, arc, move, cont, point, linemod, space, closepl: graphics interface. erase, label, plot(3X)

expand, unexpand: expand tabs to spaces and vice versa. ... expand(I)
vfork: spawn a new process in a more efficient way vfork(2)

exec: overlay shell with specified command .. csh(l)
truncate: truncate a file to a specified length .. truncate(2) C'"

A-40 Pennuted Index

PTX DOMAIN/IX SYS5 PTX

kill: tenninate a specified process .. kill(1)
spell, spellin, spellout: find spelling errors spell(1)

spell, spellin, spellout: find spelling errors spell(1)
spell, spellin, spellout: find spelling errors .. ~ spell(1)

spell, spellin, spell out: find spelling errors spell(1)
spline: interpolate smooth curve spline(lG)

split: split a file into pieces .. split(1)
files. fsplit: split a multi-routine FORTRAN file into individualfsplit(l)

frexp, Idexp, modf: split into mantissa and exponent frexp(3)
split: split a file into pieces split(1)

uuclean: uucp spool directory clean-up .. uuclean(8C)
Ipq: spool queue examination program1pq(1)

lprm: remove jobs from the line printer spooling queue .. .1prm(1)

o printf, fprintf, sprintf: formatted output conversion printf(3S)
exp, log, 10glO, pow, sqrt: exponential, logarithm, power, square root exp(3M)

10glO, pow, sqrt: exponential, logarithm, power, square root. exp,log, ... exp(3M)
cvtumap: convert name trees from SR8 to SR9 name mapping cvtumap(8)

cvtumap: convert name trees from SR8 to SR9 name mapping ... cvtumap(8)
generator and associated routines. random, srandom, initstate, setstate: better random number .random(3)

scanf, fscanf, sscanf: formatted input conversion scanf(3S)
popd: pop shell directory stack ... csh(1)

pushd: push shell directory stack ... csh(1)
sigstack: set and/or get signal stack context.. .. sigstack(2)

o systype: display version stamp .. systype(8)
stdio: standard buffered input/output packageintro(3S)

htable: convert NIC standard format host tables htable(8)
cp /bin/start_sh: start a Bourne Shell .. starCsh(1)

cp /bin/starCcsh: start a C shell .. starCcsh(1)
stat, Istat, fstat: get file status stat(2)

reset: reset the teletype bits to a sensible state .. reset(1)
fsync: synchronize a file's in-core state with that on disk. .. fsync(2)

if: conditional statement. ... csh(1)

o
fstab: static information about filesystems fstab(5)

hashstat: print command bashing statistics ... csh(1)
netstat: show Iletwork status .. netstat(1)

ps: process status .. ps(1)
stat, lstat, fstat: get file status .. stat(2)

ferror, feof, clearerr, fileno: stream status inquiries ... ferror(3S)
ruptime: show host status of local machines .. ruptime(1 C)

rwhod: system status server ... rwhod(8C)
stdio: standard buffered input/output packageintro(3S)
stop: halt a job or process .. csh(1)

halt: stop the processor .. halt(8)
pause: stop until signal ... pause(3C)

subroutines. dbminit, fetch, store, delete, firstkey, nextkey: database dbm(3X)
strlen, index, rindex: string operations. strcat, strncat, strcmp, strncmp, strcpy, strncpy, string(3)

rindex: string operations. strcat, stmcat, strcmp, strncmp, strcpy, stmcpy, strlen, index, string(3)
operations. strcat, stmcat, strcmp, strncmp, strcpy, strncpy, strlen, index, rindex: string string(3)

fclose, fflush: close or flush a stream ... fc1ose(3S)

o fopen, freopen, fdopen: open a stream ... fopen(3S)

Pennuted Index A-41

PTX DOMAIN/IX SYS5 PTX
r~
"'-. '

fseek. ftell. rewind: reposition a stream ... fseek(3S)
getchar, fgetc. getw: get character or word from stream. getc .. getc(3S)

gets, fgets: get a string from a stream ... gets(3S)
putchar, fputc, putw: put character or word on a stream. putc, ... putc(3S)

puts, fputs: put a string on a stream ... puts(3S)
setbuffer, setlinebuf: assign buffering to a stream. setbuf, .. setbuf(3S)

ungetc: push character back into input stream · ... ungetc(3S)
sed: stream editor .. sed(1)

ferror, feof, clearerr, fileno: stream status inquiries ... ferror(3S)
rcmd, rresvport, ruserok: routines for returning a stream to a remote command rcmd(3X)

rexec: return stream to a remote command rexec(3X)
strfile: fortune(6) database loader strfile(6)

gets, fgets: get a string from a stream .. gets(3S)
puts. fputs: put a string on a stream .. puts(3S)

bcopy, bcmp, bzem. ffs: bit and byte string operations .. bstring(3)
stmcmp, strcpy, stmcpy, strlen, index, rindex: string operations. strcat, stmcat, strcmp, string(3)

extract strings from C programs to implement shared strings. xstr: ~ xstr(l)
file. strings: find the printable strings in an object strings(1)

strings. xstr: extract strings from C programs to implement shared xstr(l)
strings: find the printable strings in an object file ... strings(1)

basename: strip filename affixes ... basename(l)
from an object file. strip: strip symbol and line number information strip(l)

object file. strip: strip symbol and line number information from an striP(l)
strcat, stmcat, strcmp, stmcmp, strcpy, stmcpy, strlen, index, rindex: string operations string(3)

index, rindex: string operations. strcat, stmcat, strcmp, stmcmp, strcpy, stmcpy, stden, string(3)
string operations. strcat, stmcat, strcmp, strncmp, strCPY, stmcpy, strien, index, rindex: string(3)

strcat, stmcat. strcmp, stmcmp, strcpy, strncpy, strlen, index, rindex: string operations string(3)
sUy: set terminal options ... stty(l)

document. style: analyze surface characteristics of a style(1)
su: substitute user ID temporarily su(1)

fetch. store, delete, firstkey, nextkey: database subroutines. dbminit, .. dbm(3X)
su: substitute user ID temporarily su(1)

sum: sum and count blocks in a file sum(1)
sum: sum and count blocks in a file sum(1)

du: summarize disk usage ... du(1)
c~

sup: set UNIX-style protection sup(8)
sync: update super-block ... sync(2)

sync: update the super-block ~ ... sync(8)
update: update the super-block periodically .. update(8)

inetd: Internet superdaemon .. inetd(8C)
suspend: su~pend a shell, resuming its superior .. csh(1)

style: analyze surface characteristics of a document. style(1)
suspend: suspend a shell, resuming its superior csh(1)

sleep: suspend execution for an intelVal sleep(l)
sleep: suspend execution for intelVal sleep(3)

suspend: suspend a shell, resuming its superior csh(1)
swab: swap bytes ... swab(3)

swab: swap bytes ... swab(3)
swapul: rearrange underlining swapul(8)

breaksw: exit from switch ... csh(1)

A-42 Pennuted Index

PTX DOMAIN/IX SYS5 PTX

case: selector in switch ... csh(1)
default: catchall clause in switch ... csh(l)

endsw: terminate switch ... csh(1)
switch: multi-way command branch. csh(1)

file. strip: strip symbol and line number information from an objectstrip(1)
readlink.: read value of a symbolic link ... readlink(2)

symlink.: make symbolic link to a file ... symlink(2)
symlink.: make symbolic link. to a file symlink(2)
sync: update super-block .. sync(2)
sync: update the super-block sync(8)

disk. fsync: synchronize a file's in-core state with that on fsync(2)
select: synchronous I/O multiplexing select(2)

o csh: a shell (command interpreter) with C-like syntax ... csh(l)
perror, sys_errlist, sys_ner: system error messages perror(3)

syslog: log systems messages syslog(8)
perror, sys_errlist, sys_ner: system error messages perror(3)

psignal, sys_siglist: system signal messages psignal(3)
tip, cu: connect to a remote system .. cu(lC)

hostid: set or print identifier of current host system .. hostid(1)
hostname: set or print name of current host system .. hostname(l)

mount, umount: mount or remove file system .. mount(2)
mount, umount: mount and dismount file system .. mount(8)

o tip, cu: connect to a remote system .. tip(1C)
users: compact list of users who are on the system .. users(1)

who: who is on the system .. who(l)
syslog: log systems messages .. syslog(8)

systype: display version stamp systype(8)
rehash: recompute command hash table ... csh(1)

unhash: discard command hash table ... csh(1)
mtab: mounted file system table ... mtab(5)

getdtablesize: get descriptor table size .. getdtablesize(2)
htable: convert NIC standard format host tables .. htable(8)

o route: manually manipulate the routing tables .. route(8C)
tbl: format tables for Droff or troff ... tbl(1)

gettable: get NIC format host tables from a host. ... gettable(8C)
tabs: set terminal tabs ... tabs(l)

tabs: set terminal tabs ... tabs(1)
expand, unexpand: expand tabs to spaces and vice versa. expand(1)

ctags: create a tags file .. ctags(I)
tail: deliver the last part of a file tail(1)
talk: talk to another user ... talk(1)

talk: talk to another user ... talk(1)
talkd: server for talk(l) program .. talkd(8C)

talkd: server for talk(1) program talkd(8C)
functions. sin, cos, tan, asin, acos, atan, atan2: trigonometric sin(3M)

sinh, cosh, tanh: hyperbolic functions .. sinh(3M)
tar: tape (and general purpose) archiver tar(1)
tar: tape archive file format. .. tar(5)

o mtio: tape device files ... mtio(4)
mt: magnetic tape manipulating program mt(1)

Permuted Index A-43

PTX DOMAIN/IX SYS5 PTX

tar: tape (and general purpose) archiver tar(l)
tar: tape archive file foonat. tar(5)

deroff: remove nroff, troff, tbl, and eqn constructs .. deroff(l)
tbl: foonat tables for nroff or troff.. tbl(l)
tcp: Internet Transmission Control Protocol. tcp(4P)
tee: pipe fitting .. tee(l)

reset: reset the teletype bits to a sensible state reset(l)
operations. opendir, readdir, telldir, seekdir, rewinddir, closedir: directory directory(3)

telnet: user interface to the TELNET protocol. .. telnet(1 C)
telnetd: DARPA TELNET protocol server .. telnetd(8C)

telnet: user interface to the TELNET protocol.. telnet(1 C)
telnetd: DARPA TELNET protocol server telnetd(8C)

su: substitute user ID temporarily ... su(l)
teon: conventional names for teoninals tenn(7)
teoncap: teoninal capability database tenncap(5)

ttyname, isatty: find name of a teoninal .. ttyname(3)
woons: animate woons on a display tenninal .. wonns(6)

tenncap: teoninal capability database tenncap(5)
pty: pseudo teoninal driver ... pty(4)

tgetent, tgetnum, tgetflag, tgetstr, tgoto, tputs: teoninal independent operation routines tenncap(3X)
tty: general teoninal interface .. tty(4)

tty: get teoninal name .. tty(l)
stty: set teoninal options ... stty(1)

clear: clear teoninal screen .. clear(1)
script: make typescript of a teoninal session ... script(l)

tabs: set teoninal tabs .. tabs(l)
tset: teoninal-dependent initialization tset(1)

teon: conventional names for teoninals .. tenn(7)
wait, wait3: wait for process to teoninate .. wait(2)

_exit: teoninate a process .. exit(2)
output. exit: teoninate a process after flushing any pending exit(3)

kill: teoninate a specified process kill(l)
endif: teoninate conditional ... csh(l)

end: teoninate 10op .. csh(l)
endsw: teoninate switch .. csh(1)

test: condition command ... test(l)
ed: text editor .. ed(l)

ex, edit: text editor .. ex(l)
eqn: fonnat mathematical text for troff .. eqn(1)

fint: simple text foonatter ... fint(l)
nroff: text foonatting ... nroff(l)
troff: text foonatting and typesetting troff(1)

ms: text fonnatting macros .. ms(7)
tftpd: DARPA Trivial File Transfer Protocol servertftpd(8C)

teoninal independent operation routines. tgetent, tgetnum, tgetflag, tgetstr, tgoto, tputs: termcap(3X)
independent operation routines. tgetent, tgetnum, tgetflag, tgetstr, tgoto, tputs: terminal termcap(3X)

independent operation routines. tgetent, tgetnum, tgetflag, tgetstr, tgoto, tputs: teoninal termcap(3X)
operation routines. tge tent , tgetnum, tgetflag, tgetstr, tgoto, tputs: terminal independent. tenncap(3X)

routines. tgetent, tgetnum, tgetflag, tgetstr, tgoto, tputs: terminal independent operation tenncap(3X)
ccat: compress and uncompress files, and then cat them. compact, uncompact, compact(l)

A-44 Pennuted Index

PTX DOMAIN/IX SYS5 PTX

o
uncompact, ccat: compress and uncompress files, and then cat them. compact, ... compact(l)

diction, explain: print wordy sentences; thesaurus for diction .. diction(1)
diff3: three-way differential file comparison dift3(1)

at: execute commands at a later time .. at(1)
gettimeofday, settimeofday: get/set date and time .. gettimeofday(2)

time: time a command .. time(l)
time: time command ... csh(l)

rc: boot time shell script. .. rc(8)
time: time a command .. time(l)
time: time command ... csh(l)

gmtime, asctime, timezone: convert date and time to ASCII. ctime,localtime, ctime(3)
getitimer, setitimer: get/set value of interval timer ... getitimer(2)

o times: get process times ... times(3C)
utimes: set file times ... utimes(2)

times: get process times .. times(3C)
ctime, localtime, gmtime, asctime, timezone: convert date and time to ASCII ctime(3)

tip, cu: connect to a remote system cu(IC)
tip, cu: connect to a remote system tip(1C)

tsort: topological sort .. tsort(l)
touch: update date last modified of a file touch(1)

tgetent, tgetnum, tgetflag, tgetstr, tgoto, tputs: terminal independent operation routines termcap(3X)
tr: translate characters ... tr(1)

o ptrace: process trace .. ptrace(2)
goto: command transfer ... csh(l)

ftp: file transfer program .. ftp(IC)
ftpd: DARPA Internet File Transfer Protocol server .. ftpd(8C)
tftpd: DARPA Trivial File Transfer Protocol server .. tftpd(8C)

tr: translate characters .. tr(l)
tcp: Internet Transmission Control Protocol. tcp(4P)

uuencode,uudecode: encode/decode a binary file for transmission via mail. ... uuencode(1C)
cvtwnap: convert name trees from SR8 to SR9 name mapping cvtumap(8)

trek: trekkie game ... trek(6)

o trek: trekkie game .. trek(6)
sin, cos, tan, asin, acos, atan, atan2: trigonometric functions ... sin(3M)

tftpd: DARPA Trivial File Transfer Protocol server ~ tftpd(8C)
eqn: format mathematical text for troff .. eqn(l)

tbl: format tables for nroff or troff .. ' tbl(l)
deroff: remove nroff, troff, tbl, and eqn constructs deroff(1)

troff: text formatting and typesetting troff(1)
true, false: provide truth values true(1)

false, true: provide truth values .. false(1)
truncate: truncate a file to a specified length truncate(2)

truncate: truncate a file to a specified length truncate(2)
false, true: provide truth values ; : false(1)
true, false: provide truth values .. true(l)

tset: terminal-dependent initialization tset(1)
tsort: topological sort .. tsort(1)

ctpty: create psuedo tty device entries ... ctpty(8)
tty: general terminal interface tty(4)
tty: get tenninal narne ... tty(l)

Pennuted Index A-45

PTX DOMAIN/IX SYS5 PTX

ttyname, isatty: find name of a tenninal ttyname(3)
file: detennine file type .. file(l)

types: primitive system data types ... types(5)
types: primitive system data types types(5)

script: make typescript of a tenninal session script(1)
troff: text fonnatting and typesetting .. troff(l)

udp: Internet User Datagram Protocol. · udp(4P)
ul: do underlining .. ul(l)
umask: change or display file creation mask. csh(1)
umask: set/get file creation mask umask(2)

mount, umount: mount and dismount file system mount(8)
mount, umount: mount or remove file system ; mount(2)

unalias: remove aliases ... csh(1)
then cat them. compact, uncompact, ccat: compress and uncompress files, andcompact(l)

compact, uncompact, ccat: compress and uncompress files, and then cat them compact(l)
swapul: rearrange underlining ... swapul(8)

ul: do underlining ... u1(1)
unget: undo a previous get of an SCCS file unget(1)

expand, unexpand: expand tabs to spaces and vice versa expand(1)
unget: undo a previous get of an SCCS file unget(1)
ungetc: push character back into input stream ungetc(3S)
unhash: discard command hash table csh(1)
uniq: report repeated lines in a file uniq(l)

mktemp: make a unique filename ... mktemp(3)
gethostid, sethostid: get/set unique identifier of current host gethostid(2)

units: conversion program .. units(1)
uucp, uuname, uulog: UNIX to UNIX copy .. uucp(1C)

uucp, uuname, uulog: UNIX to UNIX copy .. uucp(1C)
sup: set UNIX-style protection ... sup(8)

uux: UNIX-to-UNIX command execution uux(IC)
unlimit: remove resource limitiations csh(1)

rm, nndir: remove (unlink) directories or files nn(l)
unlink: remove directory entry unlink(2)
unset: discard shell variables csh(1)
unsetenv: remove environment variables csh(1)

uptime: show how long a node has been up ... uptime(l)
update_slave: update auxiliary system administrator's nodes update_slave(8)

touch: update date last modified of a file touch(1)
sync: update super-block. ... sync(2)
sync: update the super-block. ... sync(8)

update: update the super-block periodically update(8)
update: update the super-block periodically update(8)

administrator's nodes. update_slave: update auxiliary system update_slave(8)
uptime: show how long a node has been up uptime(l)

du: summarize disk usage .. du(l)
checkeq: check files that use eqn(1) or neqn(I) .. checkeq(1)

intro: miscellaneous useful infonnation pages .. .intro(7)
login: login new user ... csh(l)

talk: talk to another user ... ta1k(1)
write: write to another user ... write(1)

A-46 Pennuted Index

o PTX DOMAIN/IX SYS5 PTX

setuid seteuid setruid setgid setegid setrgid: set user and group ID ... net(3n)
seteuid, setruid, setgid, setegid, setrgid: set user and group ID. setuid, setuid(3)

udp: Internet User Datagram Protocol.. .. udp(4P)
setreuid: set real and effective user ID ... setreuid(2)

whoami: print effective current user ID ... whoami(1)
su: substitute user ID temporarily ... su(1)

getuid, geteuid: get user identity ... getuid(2)
telnet: user interface to the TELNET protocol. telnet(1 C)

binmail: send or receive mail among users ... binmail(1)
users: compact list of users who are on the system.users(1)

wall: write to all users on a node ... wall(1)

o users: compact list of users who are on the system users(1)
getrusage: get information about resource utilization. " .. getrusage(2)

utimes: set file times ... utimes(2)
uuclean: uucp spool directory clean-up uuclean(8C)

rmail: handle remote mail received via uucp ... rmai1(1)
uuclean: uucp spool directory clean-up uuclean(8C)

uusnap: show snapshot of the UUCP system .. uusnap(8C)
uucp, uuname, uulog: UNIX to UNIX copy uucp(1C)

uuencode: format of an encoded uuencode file ... uuencode(5)
uuencode: format of an encoded uuencode file uuencode(5)

o transmission via mail. uuencode,uudecode: encode/decode a binary file fOrUuencode(1C)
uucp, uuname, uulog: UNIX to UNIX copy uucp(1C)

uucp, uuname, uulog: UNIX to UNIX copy uucp(1 C)
uusend: send a file to a remote host. uusend(1C)
uusnap: show snapshot of the UUCPsystem uusnap(8C)
uux: UNIX-to-UNIX command execution uux(1C)
val: validate SCCS file .. val(1)

val: validate SCCS file ... val(1)
valloc: aligned memory allocator valloc(3)

abs: integer absolute value ... abs(3)

o fabs, floor, ceil: absolute value, floor, ceiling functions floor(3M)
readlink: read value of a symbolic link ... readlink(2)

getenv: get the value of an environment variable getenv(3)
getitimer, setitimer: get/set value of interval timer .. getitimer(2)

set: change value of shell variable ... csh(1)
false, true: provide truth values ... false(1)
true, false: provide truth values ... true(1)

htonl, htons, ntohl, ntohs: convert values between host and network byte order byteorder(3n)
vfprintf, vsprintf: print formatted output of a varargs argument list. vprintf, vprintf(3S)

varargs: variable argument list. , varargs(3)
set: change value of shell variable .. csh(1)

getenv: get the value of an environment variable .. getenv(3)
varargs: variable argument list. ; varargs(3)

setenv: set variable in environment. ... csh(1)
@: arithinetic on shell variables ... csh(1)

unset: discard shell variables ... csh(1)

o unsetenv: remove environment variables , ... csh(1)
environ: environment variables ... environ(7)

ver: change the version of Shell commands ver(8)

Pennuted Index A-47

PTX DOMAIN/IX SYS5 PTX

assert: program verification ... assert(3X)
lint: a C program verifierlint(1)

expand, unexpand: expand tabs to spaces and vice versa ... expand(1)
get: get a version of an SCCS file .. get(l)

ver: change the version of Shell commands ver(8)
hangman: Computer version of the hangman game hangman(6)

systype: display version stamp ... systype(8)
sccsdiff: compare two versions of an SCCS file ... sccsdiff(1)

vfork: spawn a new process in a more efficient way.vfork(2)
varargs argument list. vprintf, vfprintf, vsprintf: print formatted output of a vprintf(3S)

on ex. vi: screen-oriented (visual) display editor based vi(1)
encode/decode a binary file for transmission via mail. uuencode,uudecode: uuencode(1C)

rmail: handle remote mail received via uucp ... rmail(1) ,r''-.
expand, unexpand: expand tabs to spaces and vice versa ... expand(1) \,,--_

more, page: file perusal filter for CRT viewing .. more(1)
more, page: file perusal filter for CRT viewing .. page(l)

vi: screen-oriented (visual) display editor based on ex vi(1)
of a varargs argument list. vprintf, vfprintf, vsprintf: print formatted output vprintf(3S)

argument list. vprintf, vfprintf, vsprintf: print formatted output of a varargs vprintf(3S)
wait: await completion of process wait(l)

wait: wait for background processes to complete csh(1)
sigpause: atomically release blocked signals and wait for interrupt. .. sigpause(2)

wait, wait3: wait for process to terminate wait(2) C
wait: wait for background processes to complete ... csh(1) __
wait, wait3: wait for process to terminate wait(2)

wait, wait3: wait for process to terminate wait(2)
wall: write to all users on a node wall(l)

vfork: spawn a new process in a more efficient way ... vfork(2)
wc: word count. ... wc(l)

whatis: describe what a command is ... whatis(l)
what: identify SCCS files ... what(l)
whatis: describe what a command is whatis(l)

leave: remind you when you have to leaveleave(1) (-"
whereis: locate binary and/or manual for program. whereis(l) ,--

paths. which: locate a program file, including aliases and which(1)
while: repeat commands conditionally csh(1)

break: exit while/foreach loop ... csh(1)
users: compact list of users who are on the system .. users(1)

from: who is my mail from? ... from(1)
who: who is on the system .. who(l)

who: who is on the system who(1)
whoami: print effective current user ID whoami(l)

rwho: who's logged in on local machines rwho(1C)
fold: fold long lines for finite width output device .. .fold(l)

wc: word count. .. wc(l)
getc, getchar, fgetc, getw: get character or word from stream .. getc(3S)

putc, putchar, fputc, putw: put character or word on a stream ... putc(3S)
diction, explain: print wordy sentences; thesaurus for diction diction(l)

cd: change working directory .. cd(1) C
chdir: change current working directory .. chdir(2) _ .

A-48 Pennuted Index

C) PTX PTX DOMAIN/IX SYS5

pwd: working directory name .. pwd(l)
getwd: get current working directory pathname getwd(3)

worm: Play the growing worm game .. worm(6)
worm: Play the growing worm game worm(6)
worms: animate worms on a display terminal worms(6)

worms: animate worms on a display terminal worms(6)
write, writev: write on a file .. write(2)

wall: write to all users on a node wall(1)
write: write to another user ... write(1)

write: write to another user write(1)
write, writev: write on a file write(2)

writed: daemon for write(l) program ... writed(8C)

o writed: daemon for write(l) program writed(8C)
write, writev: write on a file ... write(2)

open: open a file for reading or writing, or create a new file open(2)
shared strings. xstr: extract strings from C programs to implementxstr(1)

jO, jl, jn, yO, yl, yn: Bessel functions jO(3M)
jO, jl, jn, yO, yl, yn: Bessel functions .. jO(3M)

eyacc: modified yacc allowing much improved error recovery eyacc(l)
yacc: yet another compiler-compiler yacc(l)
yes: be repetitively affirmative yes(l)

jO, jl, jn, yO, yl, yn: Bessel functions .. jO(3M)

C)

o

o
Pennuted Index A-49

c

c

o

o

o

o

READER'S RESPONSE FORM

We use readers' comments in revising and improving our documents.

DOMAIN/IX. Programmer's Reference Manual for BSD4.2, Order Number 5801, Revision 01
Date of Publication: December 1986

What is the best feature of this manual?

Please list any errors, omissions, or problem areas in the manual. (Identify errors by page, section, figure, or
table number wherever possible.)

What type of user are you?

Systems programmer; language

Applications programmer; language

Manager/Professional

Administrative/Support Personnel

Student programmer

User with little programming experience

Other

How often do you use the DOMAIN system?

Nature of your work on the DOMAIN system:

Your name

Organization

Street Address

City State

No postage necessary if mailed in the U.S. Fold on dotted lines (see reverse side), tape, and mail.

Date

Zip/Country

0

~
0 .,
0'
0::
i\)

0'
:J
(Q

Co

2
i
Co

:J
tD

FOLD , ___ ----________________________________ J

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 78 CHELMSFORD, MA 01824

POSTAGE WILL BE PAID BY ADDRESSEE

APOLLO COMPUTER INC.
Technical Publications
P.O. Box 451
Chelmsford, MA 01824

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

---,
FOLD

~'\

(
'--

c

