
o

o

o

o

o

Apollo Computer Inc.
330 Billerica Road

Chelmsford, MA 01824

DOMAIN/IX
User's Guide

,
Order No. 005803

Revision 01

Copyright © 1986 Apollo Computer Inc.
All rights reserved. Printed in U.S.A.

First Printing: July, 1985
Latest Printing: December, 1986

This document was produced using the Interleaf Workstation Publishing Software (WPS). Interleaf and
WPS are trademarks of Interleaf, Inc.

APOLLO and DOMAIN are registered trademarks of Apollo Computer Inc.

AEGIS, DGR, DOMAIN/BRIDGE, DOMAIN/DFL-100, DOMAIN/DQC-100, DOMAIN/Dialogue, DOMAIN/IX,
DOMAIN/Laser-26, DOMAIN/PCI, DOMAIN/SNA, D3M, DPSS, OSEE, GMR, and GPR are trademarks of
Apollo Computer Inc.

UNIX is a registered trademark of AT&T.

Apollo Computer Inc. reserves the right to make changes in specifications and other information
contained in this publication without prior notice, and the reader should in all cases consult Apollo
Computer Inc. to determine whether any such changes have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF APOLLO COMPUTER INC. HARDWARE
PRODUCTS AND THE LICENSING OF APOLLO COMPUTER INC. SOFTWARE CONSIST SOLELY OF THOSE
SET FORTH IN THE WRITTEN CONTRACTS BETWEEN APOLLO COMPUTER INC. AND ITS CUSTOMERS.
NO REPRESENTATION OR OTHER AFFIRMATION OF FACT CONTAINED IN THIS PUBLICATION,
INCLUDING BUT NOT LIMITED TO STATEMENTS REGARDING CAPACITY , RESPONSE-TIME
PERFORMANCE , SUITABILITY FOR USE OR PERFORMANCE OF PRODUCTS DESCRIBED HEREIN SHALL
BE DEEMED TO BE A WARRANTY BY APOLLO COMPUTER INC. FOR ANY PURPOSE, OR GIVE RISE TO
ANY LIABILITY BY APOLLO COMPUTER INC. WHATSOEVER.

IN NO EVENT SHALL APOLLO COMPUTER INC. BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL
OR CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS)
ARISING OUT OF OR RELATING TO THIS PUBLICATION OR THE INFORMATION CONTAINED IN IT, EVEN IF
APOLLO COMPUTER INC. HAS BEEN ADVISED, KNEW OR SHOULD HAVE KNOWN OF THE POSSIBILITY
OF SUCH DAMAGES.

THE SOFTWARE PROGRAMS DESCRIBED IN THIS DOCUMENT ARE CONFIDENTIAL INFORMATION AND
PROPRIETARY PRODUCTS OF APOLLO COMPUTER INC. OR ITS LICENSORS.

THE SOFTWARE AND DOCUMENTATION ARE BASED IN PART ON THE FOURTH BERKELEY SOFTWARE
DISTRIBUTION UNDER LICENSE FROM THE REGENTS OF THE UNIVERSITY OF CALIFORNIA.

o

o

o

o

o

Preface

Audience
The DOMAINIIX User's Guide is based on various papers normally found in the UNIX
Programmer's Manual supplied by AT&T and the University of California at Berkeley.
Although we've modified the papers where necessary to reflect the DOMAIN@ system
operating environment, we remain aware of the history of the UNIX@ product as a
multiuser system, and have included the more important references to operations con­
ducted at terminals.

This User's Guide is intended for users who are familiar with UNIX software, AEGIS ™

software, and DOMAIN networks. We recommend that you read one of the following
tutorial instructions if' you are not already familiar with the UNIX system:

• Bourne, Stephen W. The UNIX System. Reading: Addison-Wesley, 1982.

• Kernighan, Brian W. and Rob Pike. The UNIX Programming Environment, Englewood
Cliffs, N.J.: Prentice-Hall, 1984.

• Thomas, Rebecca and Jean Yates. A User's Guide to the UNIX System. Berkeley: Os-
borne/McGraw-Hill, 1982.

This document also assumes a basic familiarity with the DOMAIN system. The best
introduction for those who want to use UNIX software on a DOMAIN node is Getting
Started With Your DOMAIN/IX System (Order No. 008017). This manual explains how to
use the keyboard and display, read and edit text, and create and execute programs. It
also shows how to request DOMAIN system services using interactive commands.

Structure of This Manual
The manual is organized as follows:

Chapter 1 Provides an overview of important DOMAINIIX ™ system features.

Chapter 2 Briefly introduces the basic principles of using the shells available
through the DOMAINIIX system.

Chapter 3 Supplies a detailed explanation of Bourne Shell (sh) usage, both System
V and BSD4.2 versions.

Chapter 4 Describes how to use the C Shell (csh), both System V and BSD4.2 ver­
sions.

Chapter 5 Tells how to use the BSD4.2 version of the mail program to communicate
with other users.

i Preface

Related Manuals
Getting Started With Your DOMAIN/IX System (Order No. 008017) is the first volume
you should read. It explains how to log in and out, manage windows and pads, and
execute simple commands. It presents user-oriented examples and includes a glossary
of important terms.

The DOMAIN/IX Support Tools Guide (Order No. 009413) describes the UNIX support
tools and utilities available to DOMAlNIIX users. It contains exten,sive material on
tools such as awk, sed, and yaee, which help process programs; lex and lint, which
help analyze programs; and make and sees, which help maintain programs. It also de­
scribes support tools that preprocess macros (m4) or FORTRAN code (ratfor), perform
arbitrary precision arithmetic (be), operate an interactive desk calculator (de), and pro­
vide terminal screen handling with optimal cursor motion (curses).

The DOMAIN/IX Text Processing Guide (Order No. 005802) describes the UNIX text edi­
tors (ed, ex, and vi) supported by the DOMAlNIIX system. It also contains material on
the formatters troff and nroff, the macro packages -ms, -me, and -mm, and the
preprocessors eqn and tbl.

The DOMAINIIX Command Reference for System V (Order No. 005798) describes all the
UNIX System V shell commands supported by the sys5 version of the DOMAlNIIX
software. This manual documents various general purpose, communications, and graph­
ics commands and application programs. It also describes games available to the Sys­
tem V user.

The DOMAIN/IX Programmer's Reference for System V (Order No. 005799) describes all
the UNIX System V system calls; C, standard I/O, and mathematical library subrou­
tines; file formats; character set tables; and macro packages supported by the sys5 ver­
sion of the DOMAlNIIX software.

The DOMAIN/IX Command Reference for BSD4.2 (Order No. 005800) describes all the
BSD4.2 UNIX shell commands supported by the bsd4.2 version of the DOMAlNIIX
software. This manual documents various general purpose, communications, and graph­
ics commands and application programs. It also describes games available to the Sys­
tem V user.

The DOMAIN/IX Programmer's Reference for BSD4.2 (Order No. 005801) describes all
the BSD4.2 UNIX system calls; C, standard I/O, mathematical, internet network, and
compatibility library subroutines; special files; file formats and conventions; and macro
packages and language conventions supported by the bsd4.2 version of the DOMAlNIIX
software. '

System Administration for DOMAIN/IX BSD4.2 (Order No. 009355) and System Admini­
stration for DOMAIN/IX Sys5 (Order No. 009356) describe the tasks necessary to config­
ure and maintain DOMAlNIIX system software services such as TCPIIP, line printer
spoolers, and UNIX-to-UNIX communications processing. Also explains how to main­
tain file system security, create user accounts, and manage servers and daemons.

The DOMAIN C Language Reference (Order No. 002093) describes C program develop­
ment on the DOMAlN system. It lists the features of C, describes the C library, and
gives information about compiling, binding, and executing C programs.

The DOMAIN System Command Reference (Order No. 002547) gives information about
using the DOMAlN system and describes the DOMAlN commands.

The DOMAIN System Call Reference (Order No. 007196) describes calls to operating
system components that are accessible to user programs.

Preface ii

c:)

Documentation Conventions
C) Unless otherwise noted in the text, this manual uses these symbolic conventions:

o

command Command names and command-line options are set in bold type. These
are commands, letters, or symbols that you must use literally.

output

filename

[]

< >

tD

Typewriter font words in command examples represent literal system out­
put, including prompts.

Italicized terms or characters represent generic, or metanames in example
command lines. They may also represent characters that stand for other
characters, as in dx, where x is a digit. In text, the names of files written
or read by programs are set in italics.

Square brackets enclose optional items in formats and command descrip­
tions.

Angle brackets enclose the name of a key on the keyboard.

The notation t followed by the name of a key indicates a control charac­
ter sequence. Hold down <CTRL> while typing the character.

Horizontal ellipsis points indicate that the preceding item can be repeated
one or more times.

Vertical ellipsis points mean that irrelevant parts of a figure or example
have been omitted.

o Problems, Questions, and Suggestions

o

We appreciate comments from the people who use our system. In order to make it
easy for you to communiCate with us, we provide the User Change Request (UCR) sys­
tem for software-related comments, and the Reader's Response form for documenta­
tion comments. By using these formal channels, you make it easy for us to respond to
your comments.

You can get more information about how to submit a UCR by consulting the DOMAIN
System Command Reference. You can view an on-line description of the command used
to submit a UCR (lcom/crucr) by typing:

010 Icom/help crucr <RETURN>

(Although we use a C Shell prompt in our example, you may type this command from
any type of shell available to users of the DOMAINIIX system.)

For your documentation comments, we've included a Reader's Response form at the
back of each manual.

iii Preface

c

'\".--.~

o

o Contents

Chapter 1 An Overview of the DOMAIN/IX System

1.1 DOMAIN System Architecture .. 1-1
1.2 The User Interface .. 1-2
1.3 Co-resident Software .. 1-2
1.4 The Display and the Display Manager .. 1-2

1.4.1 Pads and Windows .. 1-3
1.4.2 Default Windows and Shells 1-4

o 1.4.3 DM Commands .. 1-4
1.4.4 Regions ... 1-5
1.4.5 Moving the Cursor .. 1-5
1.4.6 Keyboard Mapping .. 1-6
1.4.7 UNIX Key Definitions ... 1-6
1.4.8 DM Environment Variables 1-7

1.5 Support For Multiple UNIX Versions 1-10
1.5.1 Name Space Support .. 1-11

o 1.5.2 Environment Switching .. 1-13
1.6 Setting Up a UNIX-Style Login Sequence 1-14
1. 7 Message of the Day (motd) .. 1-14
1.8 Setting Up Server Processes .. 1-15
1.9 Getting Help ... 1-15
1.10 Other DOMAINIIX Features ... 1-15

1.10.1 The Process Model ~ 1-15
1.10.1 Case Mapping ... 1-16

o 1.10.3 Password and User Identification 1-18
1.10.4 File Protection, Permissions, and Ownership 1-18
1.10.5 Use of the C Compiler ... 1-19

Chapter 2 An Introduction to Shell Usage

2.1 UNIX Shells .. 2-1
2.1.1 Opening a Default UNIX Shell 2-1
2.1.2 Opening Additional UNIX Shells 2-3
2.1.3 Using a Terminal ... 2-3

2.2 Differences Between UNIX and AEGIS Shells 2-4
2.2.1 Command Search Rules ... 2-5
2.2.2 Shell Program Execution ... 2-5
2.2.3 Wildcards ... 2-6

o 2.2.4 Differences in Valid Pathnames 2-7
2.2.5 Inprocess vs. Forked Execution 2-7
2.2.6 Changes in Working Directory 2-7

v Contents

Chapter 3 U sing the Bourne Shell

3.1 Introduction .. 3-1
3.1.1 Special Key Definitions 3-2
3.1.2 Simple Commands .. 3-2
3.1.3 Background Commands .. 3-3
3.1.4 Input/Output Redirection ... 3-3
3.1.5 Pipelines and Filters .. 3-3
3.1.6 Generating Filenames ... 3-4
3.1.7 Quotation ... 3-5
3.1.8 Prompting ... 3-6

3.2 Starting the Bourne Shell .. 3-6
3.3 Shell Procedures .. 3-7

3.3.1 Control Flow Using "for" .. 3-8
3.3.2 Control Flow Using "case" 3-8
3.3.3 Here Documents .. 3-10
3.3.4 Shell Variables ... 3-11
3.3.5 The "test" command .. 3-13
3.3.6 Control Flow Using "while" 3-14
3.3.7 Control Flow Using "if" ... 3-15
3.3.8 Command Grouping ... 3-16
3.3.9 Debugging Shell Procedures 3-17

3.4 Keyword Parameters .. 3-17
3.4.1 Parameter Transmission ... 3-17
3.4.2 Parameter Substitution (bsd4.2) 3-18
3.4.3 Parameter Substitution (sys5) 3-19
3.4.4 Command Substitution .. 3-20
3.4.5 Evaluation and Quoting .. 3-21
3.4.6 Error Handling 3-22
3.4.7 Fault Handling ... 3-23
3.4.8 Command Execution .. 3-25

3.5 Summary of Bourne Shell Grammar 3-26
3.6 Summary of Shell Metacharacters & Reserved Words 3-27

3.6.1 Syntactic .. 3-27
3.6.2 Patterns ... 3-28
3.6.3 Substitution .. 3-28
3.6.4 Quoting ... 3-28
3.6.5 Reserved Words .. 3-28

Chapter 4 Using the C Shell

4.1 Introduction .. 4-1
4.1.1 Special Key Definitions 4-1
4.1.2 Starting the Shell ... 4-2
4.1.3 The Basic Notion of Commands 4-2
4.1.4 Flag Arguments .. 4-3
4.1.5 Output to Files .. 4-3
4.1.6 Metacharacters in the C Shell 4-4
4.1.7 Input From Files; Pipelines 4-4

Contents vi

4.1.8 Filenames ... 4-5

o 4.1.9 Quotation ... 4-8
4.1.10 Terminating Commands .. 4-9

4.2 Starting, Stopping, and Modifying the C Shell 4-10
4.2.1 Opening a C Shell When You Log In 4-10
4.2.2 Login and Logout Scripts .. 4-10
4.2.3 Shell Variables ... 4-12
4.2.4 History .. 4-13
4.2.5 Aliases .. 4-15
4.2.6 More Redirection; » and« 4-16
4.2.7 Background, Foreground, and Suspended Jobs 4-17
4.2.8 Working Directories ... 4-21
4.2.9 Useful Built-In Commands 4-23

4.3 Shell Control Structures and Shell Scripts 4-24
4.3.1 Invocation and the "argv" Variable ~ 4-25

o 4.3.2 Variable Substitution .. 4-25
4.4 Expressions .. 4-26

4.4.1 A Sample Shell Script ... 4-27
4.4.2 Other Control Structures ... 4-28
4.4.3 Supplying Input to Commands 4-30
4.4.4 Catching Interrupts .. 4-31
4.4.5 Additional Options .. 4-31

4.5 Other Shell Features ... 4-32

o 4.5.1 Loops at the Terminal; Vadables as Vectors 4-32
4.5.2 Braces { ... } in Argument Expansion 4-33
4.5.3 Command Substitution .. 4-33

4.6 Summary of C Shell Metacharacters 4-33
4.6.1 Syntactic .. 4-34
4.6.2 Filename .. 4-34
4.6.3 Quotation ... 4-34
4.6.4 Input/Output ... 4-34

o 4.6.5 Expansion/Substitution ... 4-34
4.6.6 Miscellaneous .. 4-35

Chapter 5 Using the BSD4.2 Mail Program

5.1 Introduction .. 5-1
5.1.1 Sending Mail ... 5-2
5.1.2 Receiving Mail ... 5-3

5.2 Maintaining Folders ... 5-7
5.3 Tilde Escapes .. 5-8
5.4 Network Access ... 5-11

5.4.1 ARPANET ... 5-11
5.4.2 Special Recipients .. 5-12
5.4.3 Message Lists 5-12

o 5.5 Summary of Commands .. 5-14
5.6 Custom Options .. 5-18
5.7 Command Line Options : 5-20

vii Contents

5.8 Format of Messages . .. 5-21
5.9 Summary of Commands, Options, and Escapes " 5-22 (~

5.9.1 Commands .. 5-22 '-....J
5.9.2 Options ... 5-23
5.9.3 Tilde Escapes .. 5-24
5.9.4 Command Line Flags ... 5-25

Glossary

Index

Contents viii

(~--\

\ "
\ .. --.~/

o

o

o

o

o

Tables

Table Page

1-1 UNIX Key Definition Files .. 1-6
1-2 Summary of Environment Variables Used by the DOMAINIIX System ... 1-9
1-3 SYSTYPES Supported by the DOMAINIIX System 1-10
1-4 Top-Level DOMAINIIX Directory Organization 1-12
1-5 Filename Case Mapping .. 1-16
1-6 Other Filename Characteristics 1-1 7
2~ 1 SIO Line Characteristics Affected by Running a UNIX Shell 2-3
2-2 Control Characters Defined in a C Shell 2-4
2-3 Control Characters Defined in a Bourne Shell . 2-4
3-1 Some Common Bourne Shell Metacharacters . 3-5
3-2 Evaluation of Bourne Shell Metacharacters by Quoting Mechanisms 3-22
3-3 UNIX Signals Commonly Used by DOMAINIIX Software 3-23

ix Contents

c

o

o

o

o

o

Chapter

An Overview of the
DOMAINIIX System

1

The DOMAlNIIX system is an implementation of the UNIX operating system that runs
on DOMAlN nodes. It supports the DOMAlN distributed file system, and multiple net­
works using bit-mapped, high-resolution displays. In addition to bringing the benefits
of a networked architecture and a true single-level store to the UNIX system, the DO­
MAlNIIX system offers many features seldom found on either time-sharing or worksta­
tion implementations of software.

There are two versions of DOMAlNIIX software. The sys5 version is compatible with
UNIX System V, Release 2 from AT&T Bell Laboratories; the bsd4.2 version is com­
patible with 4.2BSD, from the University of California at Berkeley. We supply both
versions to all DOMAlNIIX customers. In this chapter, we introduce those DOMAlN
system features not found in other UNIX systems. We also explain how to use the
bsd4.2 and sysS UNIX versions concurrently.

1.1 DOMAIN System Architecture
A DOMAlN system comprises two or more nodes connected by a high-speed local
area network. When we mention the term network in this manual, we generally refer to
one that has a ring topology, and uses a token-passing protocol to prevent collisions
between messages being sent from one node to another. However, DOMAlN systems
may also run on other types of networks (e.g., an ETHERNET network). Each node is
a functional workstation, with its own central processor, memory, and memory man­
agement hardware. Programs and data required by processes running on a node may
be demand-paged across the network.

1-1 Overview of the DOMAIN/IX System

This remote paging ability means, for example, that a process running on one node
can invoke a program that resides on the disk of another node to manipulate data that
reside on a third node. You may even create remote- processes (processes that run on
other nodes in the network) that you can manipulate through a window on your node,
thus distributing the computational workload over multiple processors.

Those nodes that have their own mass storage devices may be operated as standalone
computers, and can support additional users (including those connected via serial com­
munications ports). To take advantage of this networked architecture, all DOMAINIIX
software supports a distributed file system. Data and programs on all mounted volumes
in the network are accessible (given the necessary permission~) to any node in the net­
work. The resultant system is one in which an arbitrary number of users can be serv­
iced without adversely affecting performance. Users have the power of a dedicated
processor, memory-management hardware, and a high-resolution bitmapped display at
their disposal. (For more information on DOMAIN architecture, refer to the DO MAIN
System User's Guide.)

1.2 The User Interface
We provide for a more varied user interface by supplying features that significantly
differ from those provided in other UNIX implementations. The most important differ­
ence, from the user's point of view, is the ability of a DOMAIN node to display "win­
dows" into many processes (shells, programs, etc.). These windows have some unique
features not found on the "dumb" terminals largely used in the development of UNIX
System V and 4.2BSD software'.

1.3 Co-resident Software
DOMAINIIX software is co-resident with the DOMAIN system's AEGIS operating sys­
tem, sharing many of the same underlying kernel functions. As a result:

• UNIX programs supplied with the DOMAINIIX system have the same file format as
AEGIS programs

• UNIX Shells provided with DOMAINIIX software can exist on the same screen with
AEGIS Shells

• UNIX commands can be executed in an AEGIS Shell

• AEGIS commands can be executed in a UNIX Shell

Normally, there is no distinction between processes that run UNIX programs and those
that run other DOMAIN programs. UNIX programs and AEGIS programs can coexist
within the same process, even within the same pipeline. In rare cases, naming conflicts
(Le., cases where UNIX and AEGIS programs have the same name) require that you
rename or alias a command.

1.4 The Display and the Display Manager
Your node's display is your "window" into the DOMAIN system. Unlike most dumb
terminals that dedicate their entire display to a single program or process, DOMAIN

Overview of the DOMAINIIX $ystem 1-2

--------------_._. __ ._.-----_._---_ ... -

(~
\., ___ ., i

o

o

o

o

o

nodes let you divide the display screen into multiple environments for running pro­
grams, and reading or editing files. With each new environment you create, the DO­
MAIN system creates a set of display components through which yeu can enter input
and view .output.

What yeu see threugh a window is either a "frame" containing graphics .or a "pad"
centaining text. Refer te the DOMAIN System Command Reference fer mere infermatien
abeut frame mede and graphics. Our primary concern in this sectien is with pads. Get­
ting Started With Your DOMAINIIX System has detailed infermatien en pads, windews,
and wind .ow legends.

1.4.1 Pads and Windows
There are twe principal types .of pads: "edit" pads and "transcript" pads. An edit pad
is a wind .ow inte the buffer that the DM sets up when yeu want te edit a file. A read­
.only edit pad is a special instance .of an edit pad that, either because yeu have .opened
the pad in read-only mede .or because yeu have opened a wind .ow inte a file fer which
yeu lack "write" permissien, deesn't allew yeu te medify the contents .of the buffer.

All shells run in a wind .ow that consists .of an "input pad" and a "transcript pad." The
input pad echoes the standard input, and the transcript pad gives a running transcript
.of the standard output. Because it is unwise (or even illegal) to edit histery, the tran­
script pad is unalterably read-enly. (The .only legal writer is the pregram.) This cembi­
natien .of an input pad and a transcript window is at least the equivalent .of a "termi­
nal, " in the sense that the werd is used in much of this book. In additien, it has fea­
tures that ge far beyend what mest terminals can manage.

An input pad is actually special instance of an edit pad. It can't be made read-only,
and it "grows" as necessary when you type input faster than the shell (.or ether pre­
gram) can use it. Pregrams using input pads read input sequentially, .one line at a
time. As an input line is read, it is screlled up inte the transcript pad, where it re­
mains until the shell is clesed. Even after text has screlled .out .of the tep .of the win­
dew, the transcript pad never leses any infermatien. Using the pad screll keys, yeu can
screll threugh the transcript pad te reviewer cepy text frem any part .of the transcript.

When you stop a shell .or ether pre gram running in a window, the DM nermally cleses
beth the input and transcript pads and displays a

*** Pad Closed ***
message in the windew. Yeu can then issue the DM cemmand we (windew clese, nor­
mally mapped to tN) te remeve the wind .ow frem the screen.

Note: Te save the infermation centained in a transcript pad, de .one .of the following
(see Getting Started With Your DOMAINIIX System fer details en either .of these):

• Cepy all .or part .of the pad inte an edit pad, paste buffer, .or file

• Use the DM's pn (pad name) cemmand te write the pad te a disk file.

Edit pads den't interact with pregrams; they are simply files that yeu can viewer edit
using the DM editer. Yeu can alse .open an edit pad in "read-enly" mede if yeu want
te read rather than te edit it.

1-3 Overview of the DOMAINIIX System

At the top of every window is a "window legend" that displays the name (or number)
of the process running in the window. If the window opens onto a file (Le., if it is an 0
edit pad, read-only or otherwise), the window legend displays the full pathname of the
file and such additional information as the edit mode (insert or typeover), rights (read/
write or read-only), file line number of the top line in the window, and horizontal off-
set if greater than o.

1.4.2 Default Windows and Shells
In addition to the various shells and edit pads that you may open while logged in to a
DOMAIN node, two windows are usually opened by default: one wheri the node is
booted, and another when you log in.

When a node is booted, it normally loads the DM and opens a DM input pad, DM
alarm window, and DM output pad. On a landscape display, these windows are each
one line high and are placed side by side along the bottom of the screen. When no
one is logged in, the DM input pad displays the login prompt:

login:

Note: If your node is not set up for a UNIX-style login (Le., UNIXLOGIN is not set
to 'true'), your login prompt will be the slightly different AEGIS prompt:

please Log In:

(UNIXLOGIN is a DM environment variable that we later detail.)

After you log in, the DM input pad displa'ys this prompt:

Command:

Pressing <CMD> brings the cursor to the DM input window.

The DM output pad (actually, a window into the file /sys/dm/output) is broken into two
windows: the alarm window and the output window. The alarm window appears to the
right of the input window on both landscape and portrait displays. Whenever the DM
writes output to a partially obscured or hidden window, it alerts you by sounding the
node's alarm beeper and displaying a visible alarm in the form of two "bell" charac­
ters in the DM alarm window. The bells are cleared when you <POP> the obscured
window to the top of the window stack.

The DM output window appears at the right of the alarm window on landscape dis­
plays, or at the bottom of portrait displays. The output window displays DM messages
and output from those DM commands (e.g., kd and "=") that generate output.

By default, the DM first opens an AEGIS Shell when you log in, and then executes
your personal login script of DM commands (e.g., user _data/startup_dm.191 in your
home directory). You may, of course, arrange for the DM to open a UNIX Shell in­
stead. For more information about DM startup scripts, see the DOMAIN System User's
Guide.

1.4.3 DM Commands
The DOMAIN System Command Reference documents all DM commands that we cur­
rently support. The DOMAIN/IX Text Processing Guide also covers those used to edit text
or examine transcripts. In general, all DM commands can be

Overview of the DOMAIN/IX System 1-4

c

o

o

o

o

o

• Entered in the DM input window

• Placed in a command file for execution as needed (e.g., at log-in)

• Bound to DOMAIN keyboard keys, via the DM's kd (key definition) command.

1.4.4 Regions
Some DM commands deal with the whole screen, although most pertain to an individ­
ual window, or a region within the pad on which a window opens. Since the concept of
a screen divided into regions may be new, we briefly introduce it here.

When you move the cursor to the DM input window, the DM first notes the cursor's
location on the screen. Thus, it derives information such as the current working direc­
tory of a shell, the location of the cursor in an edit pad, or the current location of a
window that you intend to move or "grow". (Actually, the DM gets this "current con­
text" information from the last place on the screen where an event took place.) The
same is true when you press a key that has been defined to invoke a DM command
sequence. For example, when you press <EDIT>, the DM first notes the current work­
ing directory of the shell window that the cursor last occupied. If you type

edi t fi Ie: foo <RETURN>

the DM looks for a file named foo in the current working directory of that shell. If the
file exists, the DM opens an edit pad onto it. Otherwise, the DM creates foo and opens
a blank edit pad.

Even though you may have many windows open on your screen, the DM assumes that
you can only be actively addressing one at a time. By keeping track of the cursor, the
DM keeps track of your involvement with processes running in windows on your node.
Since it also keeps track of what all processes (even those not occupied by the cursor)
are doing, the DM can also alert you when something occurs in a hidden or partially
obscured window. By operating in this manner, the DM can provide services to all
processes running in windows on your node.

1.4.5 Moving the Cursor
While there are many ways to get the DM to move the cursor, the arrow keys at the
left of the keyboard are the most obvious. Many keyboards are also equipped with a
mouse (which has three programmable function keys) or a touchpad. Both are effective
tools for large-scale cursor movements. See Getting Started With Your DOMAINIIX Sys­
tem for more on the mouse and touchpad.

Explicit DM commands also move the cursor, although they rarely see interactive use.
The arrow keys and the other keys that move the cursor are simply defined at startup
so that these commands are executed. <CMD> moves the cursor to the DM input win­
dow, and <NEXT WNDW> moves the cursor to the next unobscured shell input pad or
read/write edit pad.

Note: The DM considers a window to be obscured if any part of it is covered by an­
other window. If no unobscured shell windows or read/write edit pads appear on
the display, <NEXT WNDW> has no effect. A read-only edit pad isn't a candi­
date for <NEXT WNDW> either.

1-5 Overview of the DOMAINIIX System

1.4.6 Keyboard Mapping
On DOMAlN nodes, nearly all key binding is programmable. The DM normally binds 0
the keys to a default function map when you log in. Although you can change these "-
key bindings any time, it is usually best to begin with the default bindings, and then
"customize" your key definitions as needed. For more information on the DM and
keyboard mapping, see the DOMAIN System Command Reference.

The DOMAlN system supports three types of keyboards: the Low-Profile Model I key­
board, the Low-Profile Model n keyboard, and the 880 (high-profile) keyboard.

Note: The 880 keyboard is no longer shipped with new nodes.

The directory /sys/dm contains the command files that define each type of keyboard:

• std_keys3 keyboard definitions for the Low-Profile Model n keyboard

• std _ keys2 keyboard definitions for the Low-Profile Model I keyboard

• std _keys keyboard definitions for the 880 keyboard

1.4.7 UNIX Key Definitions
Alternate versions of the standard key definitions, modified to provide necessary UNIX
functions, reside in the /sys/dm directory. These alternate versions are named as shown
in Table 1-1. (Equivalent files for the 880 keyboard are sys5_keys and bsd4.2_keys.)

Table 1-1. UNIX Key Definition Files

Filename Contents

sys5_keys2 System V UNIX keyboard definitions for the
Low-Profile Model I keyboard

bsd4.2_keys2 BSD 4.2 UNIX keyboard definitions for the
Low-Profile Model I keyboard

unix_keys2 Generic UNIX keyboard definitions for the
Low-Profile Model I keyboard

sys5_keys3 System V UNIX keyboard definitions for the
Low-Profile Model II keyboard

bsd4.2_keys3 BSD 4.2 UNIX keyboard definitions for the
Low-Profile Model II keyboard

unix_keys3 Generic UNIX keyboard definitions for the
Low-Profile Model II keyboard

The BSD4.2 and the System V definitions files include commands that bind various
keys to certain version-specific (or shell-specific) features. They are described in detail
in Chapters 3 and 4 of this manual, which deal with the Bourne Shell and the C Shell,
respectively. Initially, none of these key definitions files are automatically invoked, al­
though you may arrange for them to be, as we shall explain later.

To put any key-definition file into effect, execute the cmdf (command file) command
at the Display Manager prompt, where the filename argument is one of the key defini-

Overview of the DOMAINIIX System 1-6

o

o

o

o

o

tions files mentioned earlier. For example, this invokes the BSD4.2 version UNIX key
definitions on a Low-Profile Modell keyboard:

Command: cmdf Isys/dm/bsd4.2_keys2 <RETURN>

When the keyboard is remapped to bsd4. 2_keys2 , the following keys are redefined:

<SHELL> This DM function key executes the DM command cp Ibin/start_csh,
which creates a C Shell and runs a personal UNIX log-in file (.login).

<TAB>

<READ>

<EDIT>

tl

tD

tZ

tJ

When shifted, this key inserts a literal ASCn tab character.

This DM function key, which calls the DM to read a file, displays a dif­
ferent prompt -- "read file: " rather than "Read file: ". Also, arguments
supplied as input are treated with case-sensitivity.

This DM function key, which calls the DM editor, takes a different
prompt -- "edit file: " rather than "Edit file: ". Also, arguments supplied
as input are treated with case-sensitivity.

This control-key sequence generates an interrupt signal.

This control-key sequence produces an end-of-file (EOP) signal.

This control-key sequence generates a suspend signal.

This control-key sequence breaks a previous suspend signal (produced by
using tZ).

On a Low-Profile Model 1 keyboard, invoking the System V (sys5 _ keys2) or the generic
UNIX key definitions (unix_keys2) produces similar results. <TAB>, <READ>, and
<EDIT>, and the tl and tD control-key sequences, work as described above, but these
other keys behave differently:

<SHELL> This key executes cp Ibin/start_sh, which creates a Bourne Shell and
runs a personal UNIX log-in file (.profile).

tZ

tJ

This control key sequence produces an EOP signal.

This control key sequence does nothing.

1.4.8 DM Environment Variables
UNIX users should be familiar with the concept of environment variables, process­
wide ASCn strings that assume the general form

name = value

Environment variables are maintained by the kernel's process manager and are made
available to AEGIS programs as well as to UNIX programs. Typically, you initialize
these variables in one of the command files that the DM reads when the node is
booted, and later when you log in.

For processes that use multiple program levels, environment variables are markreleased
so that, while a new program level inherits all environment variables from a previous
level, a new level can't affect the environment variables of a previous level. When a
new process is created, all environment variables of the creating process are inherited

1-7 Overview of the DOMAIN /IX System

by the new process. All process creation mechanisms (e.g., pgm_Sinvoke, fork, vfork)
provide for this inheritance.

Note: Environment variables still existing in a process when an AEGIS Shell is created
are automatically inherited by that shell. The Bourne and C Shells handle envi-
ronment variables as defined by UNIX semantics. (See Chapters 3 and 4.)

When a new process is created by the Display Manager, that process inherits all envi-
ronment variables from the current context process. The DM also inherits environment
variables when cv (read file) and ce (edit file) are used.

Environment variables defined in the DM startup file are inherited by all server proc­
esses created during DM startup, and by the first process you create at login.

Note: After the first user process is created, the DM inherits environment variables
from the current context process (and passes them to new processes) as de­
scribed above.

o

A program interface for environment variable usage is defined in the /sys/ins/ev.ins.?* C~
files. C language programs may manipulate environment variables. through these inter-
faces. Alternatively, C programs may use the UNIX calls getenv(3) and putenv(3) or
access the external environ variable. All interfaces are compatible with one another;
e.g., a variable defined with putenv(3) may be read using ev_Sget_var.

Certain environment variables are well-known. Some are predefined by the system at
login; others have special significance to system software or other special attributes.
Table 1-2 shows the environment variables used by the DOMAINIIX system. C\

Cl
i ,.-

Overview of the DOMAINIIX System 1-8

------------ --_ .. _._-------_ .. _._-----

Table 1-2. Summary of Environment Variables Used by the DOMAIN/IX System

o
Variable Name Description

USER User's login name.

LOGNAME Synonomous with USER. The synonyms are provided to sup-
port both versions of DOMAIN/IX.

PROJECT Project (group) ID under which the user logged in.

ORGANIZATION An additional group ID that the user may specify.

NODEID The unique node identifier for the node on which the process
is running; expressed in hexadecimal.

o NODETYPE The type of node on which the process is running.

HOME The user's home directory pathname, established at login.

TERM The device name of the "terminal" in use. We define this
(Predefined) for the sake of C or UNIX programs that are terminal-

dependent. Values for our displays are of the form
"apollo_xxx". See /bsd4.2/etc/termcap for a list of all
valid terminal types.

o SHELL The pathname of the shell in which the process is running
(Le., /bin/sh, /bin/csh)

TZ The timezone string. Like TERM, this variable is defined

(Predefined) for the sake of C or UNIX programs. The value format is
SSSnDDD, where SSS is the standard timezone name (e.g.,
EST), n is the difference in hours between the standard
timezone and UTC, and DDD is the daylight time zone name.

o COMPILESYSTYPE Defines the target UNIX system version.

SYSTYPE UNIX system version in use (Le., bsd4.2, sys5, bsd4.1, sys3)

UNIXLOGIN Specifies that a UNIX -style login sequence is to be used in
place of the DOMAIN login sequence. This feature is
available in the Display Manager, Server Process Manager,
and /com/login. Valid values for UNIXLOGIN are true and
false. Only used at startup, not in shells environment.

PROJLIST Specifies multiple groups to which a user belongs. This
variable is automatically set only if UNIXLOGIN is true and
SYSTYPE = bsd4.2. System V users may still manually set
this variable to get the multiple group feature. Only used at
startup, not in shells environment.

NAMECHARS Specifies a set of characters to which special semantics are
values described later in this chapter.

o
1-9 Overview of the DOMAINIIX System

1.5 Support For Multiple UNIX Versions
The two versions of the UNIX operating system supported by DOMAINIIX software
provide a variety of similar - though seldom identical - system services through kernel
and library functions. Often, while function x exists in both the sys5 and the bsd4.2 en­
vironments, the semantics of the function, and sometimes even its arguments, may be
subtly different.

Let's consider the kernel function setpgrp(2). AT&T Systems ill and V define it as:

,int setpgrp 0
to "set the process group id of the calling process to the process id of the calling proc­
ess and return the new process group id." 4.1BSD and 4.2BSD define a function with
the same name and similar semantics, but a different calling sequence:

setpgrp (pid, pgrp)
int pid, pgrp ;

"sets the process group of the specified pgrp. Zero is returned if successful; -1 is re­
turned and errno is set on a failure."

Nearly every non-trivial C program written to run under the UNIX operating system
assumes the run-time environment to be UNIX software of a certain lineage (AT&T or
Berkeley), or even a specific version (AT&T System V or 4.2BSD). The UNIX version
acts as a modifier of the compile-time environment, and, to a greater extent, of the
environment in which the program executes. Our multiple version support is based on
this assumption.

At compile time, you select the version of UNIX software for which your program is
targeted. This version selector is an environment variable called SYSTYPE. The value
of SYSTYPE determines, among other things, which version of lusrlinclude the compiler
goes to when it needs an include file. The object module produced by the compiler is
stamped with the SYSTYPE in effect when the module was compiled. When the pro­
gram is executed, the loader checks this stamp and makes sure that the proper seman­
tics and calling sequences are used when invoking system and library functions.

Table 1-3. SYSTYPES Supported by the DOMAINIIX System

sys5

bsd4.2

sys3

bsd4.1

any

AT&T System ~, Release 2

Berkeley 4.2BSD

AT&T System III (for backward compatibility)

Berkeley 4.1BSD (for backward compatibility)

Program is independent of a particular UNIX
version (highly unlikely)

You may express the targeted version or "systype" to the C compiler by including it in
the source file itself. Use the #systype directive (supported by DOMAIN C compiler)
followed by one of the values in Table 1-3. The #systype statement should be the first
non-comment statement in the source. Here's an example:

Overview of the DOMAINIIX System 1-10

C)

c~

(),
-"

o

o

o

o

o

#systype II SyS5"
mainO
{
setpgrp 0
}

Note that the "systype" string is placed in double quotes; the C compiler complains if
you don't follow this rule. You can also specify the "systype" on the compiler com­
mand line. For the DOMAIN C compiler, Icorn/cc, use the form -systype value. For
the DOMAINIIX system interface to Icorn/cc, Ibin/cc, use the form -Tvalue. For exam­
ple, in an AEGIS Shell, type:

$ cc berkprog.c -systype bsd4.2 <RETURN>

In a C Shell, enter this:

% cc - Tsys5 bellprog.c <RETURN>

If you specify one "systype" on the command line and a different one in the file, the
compiler objects. If you don't explicitly specify a "systype" in the source text or on the
command line, the value of SYSTYPE is inherited from an environment variable called
COMPILESYSTYPE.

If the COMPILESYSTYPE environment variable exists, its value, which must be one of
the strings listed above, is used. If COMPILESYSTYPE doesn't exist, the "systype" is
inherited from the SYSTYPE environment variable. For example, to compile all pro­
grams to run in a sys5 environment, set COMPILESYSTYPE in a sys5 Bourne Shell:

COMPILESYSTYPE = sys5 <RETURN>
export COMPILESYSTYPE <RETURN>

In a C Shell, the line is:

% setenv COMPILESYSTYPE sys5 <RETURN>

As long as COMPILESYSTYPE is thus set, all C programs are compiled to run in the
sys5 environment. For backward compatibility, if neither COMPILESYSTYPE nor SYS­
TYPE environment variables exist, the object file is stamped as having a SYSTYPE of
sys3 (AT&T System llI).

Note: Any newly-created process that takes its context from a process in which an en­
vironment variable was defined and exported recognizes the new variable. Proc­
esses already created (or those created later) that don't take their context from
the process where the variable was defined won't apply the variable. See Chap­
ters 3 and 4.

1.5.1 Name Space Support
The UNIX file system has traditionally contained a small number of system directories
with well-known names (lusr, Ibin, letc, Ide v , and Itmp). The structure and content of
these directories differ between versions of UNIX software. To support identical1y­
named AT&T and Berkeley versions of these directories on the same DOMAIN file sys­
tem, we use "variant" links. These links allow a portion of the link text to be replaced
by an environment variable.

1-11 Overview of the DOMAINIIX System

Symbolic links placed in your node's root directory during the installation procedure let
programs use either the sysS or bsd4.2 versions of the Ibin, lete, and lusr directories
(/tmp and Idev are common to both). Normally, the links to Ibin, lusr, and lete are cre­
ated by the installation script; if, at some time, you need to re-create them, use In(l).

For example, to create a SYSTYPE-dependent link for Ibin, type this:

% In -s '1$ (systype)lbin' Ibin <RETURN>

Note: The single quotes around the link text are required, to prevent the dollar sign
from being interpreted as a shell metacharacter.

The SYSTYPE environment variable is used to select the UNIX file system variant, and
therefore, commands, libraries, spool directories, and so on. Table 1-4 shows the top­
level DOMAINIIX directory organization.

Table 1-4. Top-Level DOMAIN/IX Directory Organization

Name Object Type Major Subdirectories

fusr variant link -
!bin variant link -
fete variant link -
fdev ordinary link -
!bsd4.2 directory fusr, !bin, fete

!bsd4.1 directory fusrfinclude
fsys5 directory fusr, !bin, fete

fsys3 directory fusrfinclude
Itmp ordinary link -

Note: In the table above, ordinary links are those that don't contain the name of an
environment variable. In the case of Idev and Itmp, these should be links to your

0 1

C:

c'

node's 'node_dataldev and 'node_dataltmp files respectively. (\
,--,/

The variant links for sys3 and bsd4.1 are limited to lusrlinelude. References to other
sys3 directories are resolved as they would be for sysS. References to other bsd4.1 di­
rectories are resolved as they would be for bsd4.2. This ensures that programs com­
piled to run in the sys3 or bsd4.1 environments get the proper include files, but it
means that when you invoke a sys3 or bsd4.1 environment for interactive use, you do
not get the "old" versions of, for example, commands and macro packages.

Each node's Itmp directory is usually a link to 'node_dataltmp. One of the less obvious
side effects of this can be easily illustrated. For example, the following two command
lines executed on node l/foo both list the contents of l/foo' s 'node _ dataltmp directory:

% Is Itmp
cattoc
% Is Ilfoo/tmp
cattoc
%

<RETURN>
ipc.out

<RETURN>
ipc.out

Overview of the DOMAINIIX System 1-12

toc143

toc143 o

o

o

o

(~

o

To list the contents of //foo/tmp, you need to be more explicit:

% Is IIfoo/sys/node_data/tmp <RETURN>
dirs In
%

1.5.2 Environment Switching
The object-module stamping scheme, described earlier, lets you execute System V pro­
grams from any BSD4.2 shell and vice versa, without any knowledge of the UNIX ver­
sion for which the program was targeted. When you invoke a program stamped with a
systype other than any, the SYSTYPE environment variable for the process in which the
program is running is set to the value found in the object module. This ensures that
programs of one UNIX version that depend on certain system files continue to work
when executed from a process running in another version. The /etc/systype program dis­
plays the version stamp of the specified object files.

A shell's SYSTYPE value defines the version (sys5, bsd4.2) of system directories that
are searched when a command name is given; hence, it defines the version of the
command that is executed.

To simplify the execution of a version x command from a version y shell, we provide a
"set-version" command. See ver(8) in the DOMAINIIX Command Reference for BSD4.2,
or ver(lM) in the DOMAINIIX Command Reference for System V. You can use ver in the
following three ways:

• To display the current value of SYSTYPE, execute ver with no arguments. For ex­
ample, the following checks SYSTYPE and finds it to be set to bsd4.2:

% ver <RETURN>
bsd4.2

• To change SYSTYPE to value, thereby changing the version of subsequently exe­
cuted commands, use the form ver value. For example, the first command line sets
the SYSTYPE to sys5, and the second command line executes a sys5 version of Is
(SYSTYPE remains the same until it is reset):

% ver sysS
% Is
prog.c
prog.o
testfile
%

<RETURN>
<RETURN>

(Set SYSTYPE to sys5)
(Do an Is)

Note: Using ver with a single argument of either sys5 or bsd4.2 simply changes the
value of SYSTYPE. If you execute the command

B $ ver sysS <RETURN>

in a bsd4.2 Bourne Shell, it is equiv,Hent to saying

B$ SYSTYPE=sysS <RETURN>

1-13 Overview of the DOMAINIIX System

• To execute the value version of command without changing SYSTYPE, use the form
ver value command. For example, the first command executes the sysS version of ~
id{l), while the second command line executes the bsd4.2 version (the default, in ~/)
this case) of Is{l):

% ver sys5 id <RETURN>
uid=212(kate) gid=38(unix)
% Is <RETURN>
prog.c prog.o testfile

1.6 Setting Up a UNIX-Style Login Sequence
You may arrange for the OM, Server Process Manager, and Icomllogin to use a UNIX­
style login sequence by including the following in a OM startup file:

put this line in I node _ datal startup
if you want to use a UNIX-style login sequence C
env UNIXLOGIN true _,.

When UNIXLOGIN is true:

• the prompt is changed to "login: "

• the rejection message is changed to "login incorrect"

'. upon successful login, the file letcldmmsg is displayed in the OM output window

BS04.2 users whose UNIXLOGIN is set to true are automatically placed in their pro­
ject lists at login. Although multiple groups do not exist in other implementations of
System V software, OOMAINIIX System V users can get the multiple group feature by
manually setting the PROJLIST variable.

In addition, the "backup" group (%.backup) is special-cased out of the project list in
UNIXLOGIN. This eliminates the possibility of login problems that would otherwise
occur if you had multiple accounts (one of which is a backup account) and the shell
you invoke with the login had no execute rights for %.backup. In such a case, you
would not be allowed to invoke the shell if the first account matched was the
%.backup account. The "sys_admin" and "locksmith" accounts are also special-cased
out of the project list to prevent similar problems.

1.7 Message of the Day (motd)
Regardless of how UNIXLOGIN is set, the specified UNIX Shell (/bin/sh or /bin/csh)
reads an acceptance message from /etc/motd and then displays it in the transcript pad
of the shell window. To suppress the display of the /etc/motd file, use the -s (silent)
switch when invoking a shell. The following key definition creates new windows with­
out printing the message of the day:

kd 15s cp Ibin/start_sh '-s' ke

If letc is a variant link (the usual case), the SYSTYPE variable must be set to bsd4.2
or sysS; otherwise, the OM cannot locate /etclmotd. If etc/motd isn't found at startup, a C)
standard AEGIS login acceptance message, minus the "project" and "organization"
fields, appears in the OM output window.

Overview of the DO MAINIIX System 1-14

o

o

1.8 Setting Up Server Processes
The /etc/rc file (normally a link to 'node_data/etc.rc) is a file of commands to be exe­
cuted at boot time. Many of these commands invoke server processes that must be in­
voked by the super-user ("root"). On DOMAIN systems, 'node_data/etc.rc is executed
by the /etc/run_rc command. Note, however, that SYSTYPE must be set early in the
startup, before trying to run /etc/run_rc.

put this line in I node_data/startup if you want to run
I node data/etc. rc whenever the node is booted
cps /etc/run _rc

The 'node_data/etc.rc file must be owned by "root" and have a UNIX file system mode
of 4755 (Le., have the setuid bit on). The run_rc program runs this file as "root",
then may exec another file, 'node_data/etc.rc.local, to which any user may add com­
mands that do not have to run (and will not be run) with a user ID of "root". For
more information, see the manual page for rc(8) or rc(lM).

1.9 Getting Help
For information about available UNIX commands, system calls, and functions, use the
man(l) command. This command lets you select and display on-line versions of refer­
ence material from the DOMAIN/IX Command Reference, the DOMAINIIX Programmer's
Reference, and the DOMAINIIX System Administration manuals. For example, to display
the manual page for the command who(l), type this in any UNIX Shell: o % man who <RETURN>

o

o

The man command then opens a read window containing a formatted version of the
manual page(s) on the who(l) command. See the DOMAINIIX Text Processing Guide for
more information on how to scroll through and search for patterns (keywords) in these
windows. While the manual page is displayed, you may continue to execute shell com­
mands (including other man commands). When you're finished reading the manual
page, type tN or press <EXIT> to close the window.

Note: The man command uses the symbolic links in effect for the SYSTYPE of the
shell in which it is executed. When man is executed in a shell with a SYSTYPE
of sysS, manual pages are read from /sysS/usrlcatman. When executed in a shell
with a SYSTYPE of bsd4.2, they are taken from /bsd4.2/usr/man.

If no manual page is available for the particular command, call, or function that you
specify, man outputs the message "No manual entry for ... "

1.10 Other DOMAINIIX Features
This section contains miscellaneous facts that will be especially helpful if you plan to
develop applications software to run on your DOMAIN system.

1.10.1 The Process Model
Some implementations of UNIX versions use a one-program-per-process execution
model. In this model, invocation of a new program causes a separate process to be

1-15 Overview of the DOMAIN/IX System

created using the fork(2) system call. The DOMAIN system, on the other hand, favors
a mUltiple-programs-per-process model in which an invoked program runs at a new
program level in the invoking process. The DOMAINIIX C Shell includes support for a 0
shell variable called inprocess. When set, it specifies in-process execution (the standard .~
DOMAIN process model); when unset (the default value), it specifies the traditional
process model.

You can set inprocess as a DM environment variable. In fact, we recommend doing this
if you plan to access, from the C Shell, objects managed under the DOMAIN Software
Engineering Environment (DSEE). To set inprocess in the DM, put the following line in
any DM command file read before the C Shell is started (e.g., 'node_data/startup):

env INPROCESS 'true'

If inprocess is set in this way, the C Shell runs as if your .cshrc contained this line:

set INPROCESS

If an "env INPROCESS" line isn't present in a DM startup-file, or is not set to 'true'
or 'TRUE', the shell variable inprocess determines the process model used by a shell. C
Remember, however, that the C Shell uses unset as the default value of inprocess. The
C Shell doesn't export inprocess to the DM if you set it in .cshrc or .login files.

Each process model has certain advantages and disadvantages. Chapter 4, which de­
scribes the C Shell, supplies details about the use of inprocess, including a summary of
associated benefits and drawbacks.

1.10.2 Case Mapping
DOMAINIIX component names may contain any ASCII character except slash and null.
Uppercase alphabetics and certain other characters are stored as two-character escape
sequences. Component names are limited to 32 characters, including escape characters.
A component name consisting exclusively of uppercase alphabetics is limited to 16
characters, since each character is stored as a two-character escape sequence. Table
1-5 shows filename case mapping considerations. Any character not listed in the first
column is passed unchanged to the DOMAIN naming server.

Note: In some cases, a character requires an escape only if it is used as the first char­
acter of a component name.

Table 1-5. Filename Case Mapping

Character in Sequence in Sequence if character
UNIX name AEGIS name is first component

<space> : - 00 -
: • 0 ..
A-Z :a-:z :a-:z

a-z a-z a-z
, , .'
- - : -
\ :1 :1
o.

Overview of the DOMAIN/~X System 1-16

o

o

o

o

o

In addition to the mapping rules summarized thus far, the control characters t A - t_
(hex 01-lF) are mapped using the representation

:#xx

where xx is the hex value of the control character. For example, a pathname compo­
nent AbtC is mapped as

:ab:#03

When a pathname component includes an uppercase alphabetic, backslash, colon, or
initial dot/tilde, that character adds two characters to the total number of characters in
the component. See Table 1-6 for some examples.

Table 1-6. Other Filename Characteristics

UNIX name AEGIS name
Length

(characters)

README :r:e:a:d:m:e 12

L-devices :l-devices 9

passwd passwd 6

.cshrc :.cshrc 7

An AEGIS Shell displays uppercase letters and other characters that require an escape
in their escaped form. If you need to create an uppercase (or other escaped) character
in an AEGIS Shell, you must escape it with a colon when you create the name.

By default, all characters except slash and null are mapped and stored in component
names. We provide an additional feature of special meanings for the tilde (-), back­
slash (\), and backquote ('). Use the NAME CHARS environment variable to ensure
that any or all of these characters retain the following special meanings when read by
the naming server:

tilde home directory (or "naming directory' ')

backs lash parent directory

backquote "this_node/sys" (e.g., 'node_data)

Note: Although the DOMAINIIX system kernel automatically sets

env NAMECHARS '-\1'

that default setting is overridden by any "env NAMECHARS" line that you in­
clude in your DM startup file. Thus, to retain the ability to access the naming
directory with a leading tilde and the parent directory with a backs lash, and to
reference 'node_data, set NAME CHARS to the string -'\ by including the above
line in a DM startup file. Also, remember not to begin filenames with a back­
quote or tilde character.

1-17 Overview of the DOMAINIIX System

The most obvious symptoms of an undefined backquote relate to the naming server's
inability to find the directory 'node_data. This results in such problems as the failure
of server daemons to start at boot time (they are invoked from 'node_dataletc.rc) and (\

"'-_.,) an inability to find Idev (a link to 'node_dataldev) and Itmp (a link to 'node_dataltmp).

Where references using special characters are coded into programs, we recommend
that a network-wide standard be established for the value of NAMECHARS. For pro-
grams that are to be transported to other networks or systems, take special care with
respect to this feature.

1.10.3 Password and User Identification
The process of login verification and home-directory setting are always handled by the
DOMAIN system's login mechanism, but we provide a way to generate an letclpasswd
file so that UNIX programs that need to access it can do so. To ensure that users at a
site have accounts on both the DOMAIN network registry and in Ie tcIpasswd, your sys­
tem administrator must invoke crpasswd(8) or crpasswd(lM) each time a new user
account is added or changes must be made to letclpasswd. See System Administration for
DOMAlNIIX BSD4.2 or System Administration for DOMAlNIIX Sys5 for further informa­
tion on this.

Users should not tamper with the letclpasswd file themselves, because of the danger of
removing it accidentally. If this happens, UNIX user IDs assigned by a subsequent run
of crpasswd may not map correctly to system UIDs held in Isyslnode_datalacl_cache.
One result of such a mapping inconsistency is that chmod(l) changes the owner of a
file as well as the access mode.

All DOMAIN network registry in~ormation must be case correct. Otherwise, case sensi­
tive programs will report that your home directory cannot be found.

1.10.4 File Protection, Permissions, and Ownership
The normal protection mechanism in the DOMAIN environment is the access control
list (ACL). Every object (file, directory, etc.) has an ACL associated with it. The ACL
mechanism includes support for all of the access modes normally associated with the
UNIX system, including directory search and delete-from-directory.

We provide a default_acl(2) system call that allows programs to specify either UNIX
access mode or ACL as the means of object protection. When the default is to use
ACLs, the system assigns all files, pipes, and directories created with creat(2),
mknod(2) , open(2) , and mkdir(2) an ACL corresponding to the value of the mode
specified in the call, modified by the current umask(l) value.

Note: If an object's ACL specifies more than one "group" owner, its UNIX access
mode shows group rights for only one of the groups. In this case, ownership is
determined by a uid sort (the "first" group owner in the access control list is
given ownership) and is therefore non-deterministic.

Objects created in (or moved into) directories with a nil or unset initial file or initial
directory ACL can have "DOMAINIIX ACLs" applied to them automatically. We pro­
vide a special program, called sup, that converts the protection scheme of your pre-

Overview of the DO MAIN I IX System 1-18

c

r::
......_ .. ~., ..

o

o

C)

o

o

SR9.5 directories from ACLs to DOMAINIIX modes. Note, however, that this program
should never be run on software installed by DOMAIN system installation programs
(e.g., /bin, /usr, /etc), For additional information, see sup(8) in System Administration for
DOMAIN/IX BSD4.2 or sup(lM) in System Administration for DOMAINIIX SYSS.

The DOMAIN system's single-level store requires that file system objects must be
readable if they are to be executable or writeable. When you produce a file via
creat(2) , it is readable and writeable by the owner, regardless of the mode you specify
with create Use chmod(l) to change these permissions if necessary, but be aware that
if you use it to make a file "execute only" or "write only" for owner or any group,
the "read" bits are also turned on. For example:

Is -I <RETURN>
foo -rwxrwxrwx 1 bob doc 9755 May 23 11:04 foo
chmod 111 foo <RETURN>
Is -I foo <RETURN>
-r-xr-xr-x 1 bob doc 9755 May 23 11:04 foo
chmod 555 foo <RETURN>
Is -I foo <RETURN>
-r-xr-xr-x 1 bob doc 9755 May 23 11:05 foo

Note: In an AEGIS Shell, C Shell, or System V Bourne Shell, the super-user can exe­
cute a file that has no specified execute rights for user, group, or others (e.g., a
file with permissions set to rw-rw-r--).

Unless the initial file ACL of the current working directory is nil, the DM ignores the
current umask(l) value when assigning rights to a file it creates. Instead, it uses the
default file ACL. If the default file ACL does not specify an owner, UNIX programs
consider its owner to be "<none>".

Note: If using the DM editor to create .login, .cshrc, or .profile files, remember that
UNIX Shells will read these only if they're owned by the user opening the shell.

Using chmod(l) on an object owned by "<none>" resets the owner ID of that object to
that of the user running the chmod command. The DOMAINIIX implementation of
chmod also changes the "last time modified" associated with that file. Although the
chown(l) command is normally used to change owner ID on a file, it is a privileged
command in the bsd4.2 version of DOMAINIIX software (Le., can only be run by su­
per-user).

1.10.5 Use of the C Compiler
The DOMAINIIX C compiler uses the DOMAIN common code generation mechanism,
and it produces a non-standard a.out file. The DOMAIN C compiler (/comlcc) provides
some unique options not offered along with the standard UNIX C compiler. See the
DOMAINC Language Reference for further details.

When invoked, the C compiler invokes /usr/lib!cc (a soft link to !com!cc). Since it is not
hard-coded to !com/cc, the DOMAINIIX C compiler provides for greater flexibility and
ease in linking to alternate C compilers. It should also be noted that both cc and the
UNIX link editor, Id(l), look for /usr/lib/bind (a soft link to !com/bind). For further in­
formation about the DOMAINIIX C compiler, see the DOMAIN/IX Command Reference.

1-19 Overview of the DO MAIN/IX System

c)

o

o

o

Chapter 2

Introduction to Shell Usage

The DOMAINIIX system supports several types of shells, including two UNIX shells
(the Bourne Shell and the C Shell), and the standard shell used by the DOMAIN sys­
tem's AEGIS operating system (the AEGIS Shell). Since we supply both the sys5 and
bsd4.2 versions upon installation of DOMAINIIX software, we provide two versions of
the Bourne- Shell. The C Shell is also available to both sys5 and bsd4.2 users.

Although each shell provides for 110 redirection, pipes, shell procedures (scripts), and
metacharacters (wildcards), the implementation of these features frequently varies. This
chapter highlights the subtle differences between shells, alerting you to shell character­
istics that, while similar on the surface, may produce somewhat different results. Chap­
ters 3 and 4 provide in-depth information about the Bourne and C Shells, respectively.
The AEGIS Shell is detailed in the DO MAIN System User's Guide.

2.1 UNIX Shells
This section explains how to start a UNIX Shell on a DOMAIN node or on a terminal
connected to a DOMAIN node.

2.1.1 Opening a Default UNIX Shell
You may arrange to have the DM (Display Manager) open a UNIX Shell whenever any
user logs in to the node, or only when you log in to the node.

If you want every user to get a UNIX shell when they log in, add a start_sh or
start_csh command line to one of the following files:

2-1 An Introduction to Shell Usage

• For a node that has its own disk: /sys/node_data/startup _login. type (where type is the
type of display the node has)

• For a diskless node: /sys/node_data.xxxx/startup on the partner node (where xxxx is
the node ID of your node)

If you would like to get a UNIX shell only when you log in to the node, edit your own
user_data/startup _login. type file.

The file below is for a node that has a 19-inch landscape display (e.g., a DN 320). It
is executed whenever anyone logs in to this node. We have added lines that create a
process running Ibin/start_sh, one that runs Ibin/start_csh, and another that runs the
/etc/rc file. The pound signs (#) indicate comment lines. In addition, actual command
lines in the file have been set in bold face to make them stand out in this example. (In
practice, the DM has no such capability.)

STARTUP LOGIN.19L
executed for every user logging in to this node.

Assumes that the file Inode_data/startup includes the line:
env SYSTYPE 'sys5'

Open an Aegis Shell in a rectangular window
at the the left of the screen (commented out).
#(O,500)dr;(799,955)cp Icom/sh

Open a Bourne Shell in the upper left-hand
corner of the screen. (SYSTYPE is syS5).
(O,O)dr;(430,300)cp Ibin/start_sh

Open a bsd4.2 C Shell. (SYSTYPE in this shell will be bsd4.2).
(500,O)dr; (1023,500)cp Ibsd4.2/bin/start_ csh

Execute the user's personal startup file (it may contain
other key definitions or may start other processes).
cmdf user _ data/startup _ dm.191

Note: In this file, we assume that the environment variable SYSTYPE has already been
. set in the DM command file 'node_datalstartup.type. Instructions for doing this

are in the first chapter of this manual.

As you can see, the second cp command explicitly referenced /bsd4.2/bin, since the
Display Manager would override another env command with the SYSTYPE value it in­
herited from the C Shell process.

The default sys5 Bourne Shell prompt is a pound sign (#) followed by a. space. The de­
fault bsd4.2 Bourne Shell prompt is the character sequence

B$

followed by a space. The default C Shell prompt is a percent sign (%) followed by a
space. Any of these prompts can be changed from within the shell.

An Introduction to Shell Usage 2-2

o

C~I

u

o

o

o

o

2.1.2 Opening Additional UNIX Shells
In addition to the shells created at login, you may need to create (and remove) other
shells while you are logged in. If you have invoked one of the key definitions files dis­
cussed in Chapter 1, you may simply press (shifted) <SHELL>. The unix_keys and
sys5_keys files redefine this key to invoke a Bourne Shell. The bsd4.2_keys file redefines
this key t6 invoke a C Shell.

If necessary, you can change the definition of <SHELL>. The unix_keys file normally
includes this line, which opens a login Bourne Shell (lbin/start_sh):

kd ISs cp Ibin/start_ sh ke

If you prefer to have <SHELL> open a C Shell instead, change the line to

kd ISs cp Ibin/start csh ke

As an alternative to using <SHELL>, you can simply tell the DM to create a process
and run a shell in it. To create a process that runs a Bourne Shell, press <CMD> and
enter the DM command

Command: cp Ibin/start_sh <RETURN>

To create a process that runs a C Shell, press <CMD> and enter the DM command

Command: cp Ibin/start_csh <RETURN>

The Display Manager creates the specified shell process in a window with a transcript
pad and input pad. The SYSTYPE inherited from the most recent cursor position deter­
mines which /bin is used. You may also specify /sys5/bin or /bsd4.2/bin to force crea­
tion of a shell with a given SYSTYPE.

2.1.3 Using a Terminal
To access a DOMAIN node via a tty device (an ASCn terminal), you must use a dif­
ferent procedure for creating a UNIX Shell accessible via either a hard-wired or phone
line connection to a DOMAIN node's SIO (Serial Input Output) line.

From a shell running on the node to which the device is connected, type

start_sh /dev/sion <RETURN>

where n is the number of the SIO (Serial Input/Output) line to which the terminal is
connected. You can get the same results by going to the DM input window and typing

Command: cpo Ibin/start_sh Idev/sion <RETURN>

The resulting shell process is called sh.n for Bourne Shells, or csh.n for C Shells; n is
the UNIX 'process ID. Running a UNIX Shell on an SID line affects SIO line character­
istics as shown in Table 2-1.

Table 2-1. 510 Line Characteristics Affected by Running a UNIX Shell

Option Meaning

-QUIT Quits enabled; default char t]
-INT Interrupts enabled; default char t C
-NOSUSP Process suspension not enabled

-DCD_ENABLE Loss of data carrier detect causes hangup fault 9

2-3 An Introduction to Shell Usage

The last close of the SID line causes the node's serial I/O hardware to drop the DTR
(Data Terminal Ready) signal. This causes most modems to hang up the phone. For -~
more information about SID line characteristics, see the tctl command in the DOMAIN (.J;
System Command Reference.

Note: Be aware that DOMAlN system serial line architecture sometimes causes unpre­
dictable results if you attempt to use a terminal that doesn't expect eight-bit
characters.

When the start_sh and start_csh programs are used to start a UNIX shell on an SID
line, they bind various functions (signals) to control characters as noted in Tables 2-2
and 2-3.

Table 2-2. Control Characters Defined in a C Shell

erase
kill
interrupt
suspend
eaf
quit

tH (backspace)
tV
tC
t z
tD
t\

Table 2-3. Control Characters Defined in a Bourne Shell

erase tH (backspace)
kill tV
interrupt DEL
eaf tD
quit t\

When you log in via the siologin process, the initial shell that appears is determined by
a line in the file -user _data/startup_she Put the pathname to the shell you want to use
in this file. For example:

OM file -user_data/startup _ sh
this example runs a sys5 Bourne Shell
/sysS/bin/start_sh

2.2 Differences Between UNIX and AEGIS Shells
Differences between the AEGIS and UNIX Shells affect the following areas:

• command search rules

• shell program execution

• wildcards

• pathname mapping

• command names and functions

c

A program is said to be running in the AEGIS environment if it has been invoked in C
an AEGIS Shell, and in a UNIX environment invoked in a UNIX Shell. Nearly all /'
AEGIS commands reside in the !com directory.

An Introduction to Shell Usage 2-4

o
2.2.1 Command Search Rules
You should be familiar with the material on SYSTYPE and multiple version support in
Chapter 1 of this manual. Command search rules are modified by the SYSTYPE envi­
ronment variable.

Each shell, AEGIS as well as UNIX, has a built-in command search path. The exact
path depends on the shell. UNIX shells look in these places for commands:

• the current directory, then

• /bin, then

• /usr/bin and

• (C Shells only) lusrlucb.

You can change the default search rules in any of our UNIX Shells by setting the shell
variable called PATH. For more detail, see Chapters 3 and 4. o In the AEGIS Shell, the default command search proceeds in this order:

o

o

• working directory (.), then

• personal command directory (-com), and

• AEGIS command directory (/com).

AEGIS Shells don't recognize the PATH variable, but you can change AEGIS Shell
command search rules with the shell command csr (command search rules). To add
the directory Isys51bin to the AEGIS Shell's command search path, execute the follow­
ing AEGIS shell built-in command:

$ csr -a /sysS/bin

Note: Since csr is built in to the AEGIS shell, you can't execute it from a UNIX shell.

For convenience, you may want to change the AEGIS environment search rules so that
the AEGIS Shell searches the /bin directory after it has searched the Icom directory.

2.2.2 Shell Program Execution
A shell program (shell script), is a text file that contains a series of AEGIS or UNIX
commands. You can specify which shell (Bourne, C, or AEGIS) is to interpret and exe­
cute a shell program by starting the first line of each shell script with the character
sequence #1 followed by the pathname of the desired shell, as shown here:

#I/com/sh Specifies an AEGIS Shell script.

#J/binlsh

#!lbin/csh

Specifies a Bourne Shell script. In this case, the Bourne Shell used is the
one found in /SYSTYPElbin. If you need to be more specific, you may
say:

#1 /bsd4.2/bin/sh Specifies a bsd4.2 Bourne Shell.

#1 /sys5/binlsh Specifies a sys5 Bourne Shell.

Specifies a C Shell script.

2-5 An Introduction to Shell Usage

The following example shows how this line is used in a Bourne Shell script:

#! /bin/sh

for i do

case.

esac
done

The shell interpreter directive #! must appear as the first line of the file in order to be
interpreted correctly (remember that this information is case-sensitive), and it must
comprise the first two characters of the line. Any amount of white space may appear
between the exclamation point and the shell pathname.

The C Shell invokes Ibinlsh (the Bourne Shell) to interpret shell scripts when there is
no explicit #! shell designation. In other shells, a script with no shell specification line
is interpreted (with unpredictable results) by the shell in which it was invoked.

Furthermore, attempts to pass arguments to a subshell (e.g., one invoked to handle a
shell script) fail if the invoking shell is !cornish or Isys5lbinlsh. In an AEGIS or System
V Bourne Shell script, the command line

#! /bin/sh -n

invokes the Bourne Shell with no arguments. The -n (name) option is ignored.

2.2.3 Wildcards
Every shell has its own metacharacters (wildcards). Chapters 3 and 4 detail the
wildcard-handling mechanisms of the Bourne and C Shells. The DO MAIN System Com­
mand Reference has complete information on AEGIS Shell wildcards. The differences
between the way that AEGIS Shells and UNIX Shells handle wildcards are significant.
Differences even among the various UNIX shells are are important considerations. For
that reason, we recommend that you use wild carding with caution.

While all UNIX shells perform some type of wildcard expansion, the AEGIS Shell
passes wildcards to commands unmodified. AEGIS commands call a handler to per­
form wildcard expansion, whereas UNIX commands expect a command line that has
already been expanded by the shell.

As a result of this, the following precepts should govern your use of wildcards when
executing a UNIX command in an AEGIS Shell, or vice-versa:

• If you're executing an AEGIS command in a UNIX shell, protect the AEGIS
wildcard characters with the shell's quote mechanism. This differs from shell to
shell. (See Chapters 3 and 4.)

• If you're executing a UNIX command in an AEGIS Shell, don't use wildcards.

An Introduction to Shell Usage 2-6

----------.---~-~--~----

C~'
../

o

o

o

o

2.2.4 Differences in Valid Pathnames
Some differences exist between the characters that are legal in an AEGIS pathname
and those that are legal in a UNIX pathname. However, we perform filename mapping
at the system call level with open(2), creat(2) , chdir(2), and so on, so that you can
specify pathnames containing a greater variety of characters than those allowed in the
AEGIS environment.

All UNIX commands implemented by DOMAINIIX software - as well as the AEGIS
commands cc, pas, and ftn (the C, Pascal, and FORTRAN compilers respectively) -
perform filename mapping when invoked in a UNIX shell.

2.2.5 Inprocess vs. Forked Execution
Normally, AEGIS and Bourne Shells run a command in their own process rather than
by forking a child process. The shells run a command in a separate process only if the
command is part of a pipeline or if it is explicitly directed to run in the background.
To support job control in the C Shell, we include a shell variable that determines the
process model used by that shell.

This variable, called INPROCESS, controls whether or not the C Shell runs a command
as a forked child or as part of the shell process itself. Its default value is "unset",
meaning that the C Shell always forks a new process to run a new command. When
the C Shell is unset, certain limitations apply. See Chapter 4 of this manual for more
information.

2.2.6 Changes in Working Directory
The AEGIS wd (working directory) command is ineffective in any UNIX Shell, that is,
it does not set the shell's working directory, but only sets its own. If a program uses
wd to change the current working directory, the shell returns to the original working
directory after it executes the command.

2-7 An Introduction to Shell Usage

o

Chapter 3

Using the Bourne Shell

o

o 3.1 Introduction
The Bourne Shell (named for its inventor, S. R. Bourne) is a language that provides a
programmable interface to to the DOMAINIIX system. Its features include control-flow
primitives, parameter passing, variables, and string substitution. Constructs such as

• case

• if-then-else, and o · for

o

are supported, as is two-way communication between the shell and commands. String­
valued parameters, typically filenames or flags, may be passed to a command. In addi­
tion, commands set a return code that may be used to determine control-flow. The
standard output from a command may also serve as shell input.

The shell can modify the environment in which commands run. Input and output can
be redirected to files, and processes that communicate through "pipes" can be invoked.
Commands are found by searching directories in the file system in a user-defined se­
quence. Commands can be read either from the keyboard, or from a file, which allows
command procedures to be stored for later use.

The shell is both a command language and a programming language that provides an
interface to the UNIX operating system. The first part of this chapter covers most of
the everyday requirements of shell users. Later sections describe those features of the
shell primarily intended for use within shell procedures, including control-flow primi­
tives and string-valued variables provided by the shell. Knowing another programming

3-1 Using the Bourne Shell

language might help you understand this section better. The last section describes the
more advanced features of the shell.

For the sake of simplicity, we use the System V Bourne Shell in our examples (note
the "#" prompt), although these examples will also work using the BSD4.2 version of
the Bourne Shell.

3.1.1 Special Key Definitions
The keys on DOMAIN node keyboards are bound to the functions they execute (see
Chapter 1). If you have not done so already, you should now invoke one of the sys5
key definitions files. These files bind various keys to Bourne Shell functions. To invoke
these definitions, press <CMD> and enter the following DM command

Command: cmdf Isys/dmlfile <RETURN>

where file is either

• sys5 _keys2 if you have a Low-Profile Model I

• sys5_keys3 if you have a Low-Profile Model II keyboard

• sys5 _keys if you have an 880 (high-profile) keyboard

Key definitions unique to sys5 _keys (over those provided in unix_keys) are as follows:

part ot Isys/dm/sys5_keys
A d is mapped to eet
kd Ad eet ke
A\ is mapped to quit
kd 'A\' dq ke

The key definitions files for the Low-Profile keyboards also include these entries, along
with one other:

del is mapped to interrupt
kd del dq -i ke

3.1.2 Simple Commands
Simple commands consist of one or more words separated by blanks. The first word is
the name of the command to be executed; any remaining words are passed as argu­
ments to the command. For example,

who <RETURN>

is a command that prints the names of everybody currently logged in to a node in the
network. The command

Is -I <RETURN>

prints a list of files in the current directory. The -1 argument tells Is to print status in-
formation, size, and the creation date of each file. (~

Using the Bourne Shell 3-2

o

o

3.1.3 Background Commands
When the Bourne Shell executes a command, it normally runs it from within the shell
process, waits for it to finish, then prompts for more input. You may also have the
shell run a command and accept additional input before the command finishes. Thus,

ee pgm.e& <RETURN>

calls the C compiler to compile the file pgm.c. The trailing ampersand (&) is an opera­
tor that instructs the shell not to wait for the command to finish. To help you keep
track of such a process, the shell reports its process number following its creation. Use
the ps(l) command to get a list of currently active processes.

3.1.4 Input/Output Redirection
Most commands produce output on the standard output (normally, the screen).

Note: In our documentation, we use "terminal" interchangeably with "node," (or, usu­
ally, "the node's keyboard"). The term "screen" refers to the transcript pad of
the window in which the Bourne Shell is running. .

This output may be redirected to a file by writing, for example,

Is -I >file <RETURN>

The shell interprets the notation >file and does not pass it as an argument to Is. If file
doesn't exist, the shell creates it; otherwise, the original contents of file are replaced
with the output from Is. You may also append output to a file by using this notation: o # Is -I »file <RETURN>

o

o

Here too, file is created if it does not already exist.

The standard input of a command may be taken from a file instead of the terminal by
writing, for example,

we <.file <RETURN>

The command we(l) reads its standard input (in this case, redirected from file) and
prints the number of characters, words, and lines found. If only the number of lines is
required, then this could be used:

we -I <.file <RETURN>

3.1.5 Pipelines and Filters
The standard output of one command may be connected to the standard input of an­
other by writing the "pipe" operator, a vertical line (I), as in

Is -I I we <RETURN>

Two commands connected in this way constitute a "pipeline" and the overall effect is
the same as

Is -I >file; we <.file <RETURN>

except that no file is used. Instead, the two processes are connected by a pipe and are
run in parallel. Pipes are unidirectional, and synchronization is achieved by halting we
when there is nothing to read and halting Is when the pipe is full.

3-3 Using the Bourne Shell

Many UNIX commands are called "filters." A filter is a command that reads its stan­
dard input, transforms it in some way, and prints the result as output. One such filter,
grep(l) , selects from its input those lines that contain some specified string. Thus, 0

Is I grep old <RETURN>

prints those lines, if any, of the output from Is that contain the string old. Another use­
ful filter is sort(l), which can be used, for example, to print an alphabetically sorted

I

list of logged-in users as shown here:

who I sort <RETURN>

A pipeline may consist of more than two commands. For example,

Is I grep old I wc -I <RETURN>

prints the number of filenames in the current directory containing the string old.

3.1.6 Generating Filenames
Many commands accept filenames as arguments. For example, this prints information
relating to the file main.c:

Is -I main.c <RETURN>

The shell provides a means of generating a list of filenames that match a pattern; e.g.,

Is -I *.c <RETURN>

generates, as arguments to Is, all filenames in the current directory that end in .c. In
this context, the asterisk is a metacharacter "pattern" that matches any string including
the null string. In general, patterns are specified as follows:

*

?

[...]

Matches any string of characters including the null string.

Matches any single character.

Matches anyone of the enclosed characters.

A pair of characters separated by a dash (-) matches any character lexically between (-
the pair. For example, consider the following: '-_./

[a-z] * Matches all names in the current directory beginning with one of
the letters a through z. ..

lusr/fred/testl? Matches all one-character names in the directory lusr/fredltest. If
no filename matches the pattern, then the pattern is passed, un­
changed, as an argument.

This mechanism is useful both to save typing and to select names according to some
pattern. It may also be used to find files. For example,

echo lusr/fred/* 1* . bin <RETURN>

finds and prints the names of all files of the form filename. bin in sub-directories of
lusrljred. The echo(l) command simply prints its arguments, separated by blanks. Us­
ing this l~st feature can be expensive, requiring, in this case, a scan of all sub-directo­
ries of lusr/fred.

Using the Bourne Shell 3-4

o

o

o

o

o

There is one exception to the general rules given for patterns.The period (.) at the
start of a filename must be explicitly matched. Therefore,

echo * <RETURN>

echoes all filenames in the current directory not beginning with a period. This echoes
all those filenames beginning with a period:

echo . * <RETURN>

It avoids inadvertent matching of the names "." and " .. " which mean "the current di­
rectory" and "the parent directory," respectively. (Notice that Is suppresses listing of
information for the files "." and " .. ".)

Note: AEGIS commands perform their own wildcard expansion, with rules differing
from those used by the Bourne Shell. Unquoted wildcards used in the Bourne
Shell are expanded according to the Bourne Shell's rules, then passed to the
command being executed. When executing an AEGIS command from a Bourne
Shell, you may need to protect certain shell metacharacters with quotes so that
they are passed unmodified to the AEGIS command.

3.1.7 Quotation
As we have mentioned, characters that have a special meaning to the shell are called
metacharacters. A complete list of Bourne Shell metacharacters appears at the end of
this chapter, but some of the more common ones are shown in Table 3-1 below.

Table 3-1. Some Common Bourne Shell Metacharacters

<
>
*
?
&
I

Redirects input
Redirects output
Matches any set of characters
Matches any single character
Designates a background command
Designates a pipe

A character preceded by a backslash (\) is said to be "quoted" and loses any special
meaning it may otherwise have had. Since the backslash is elided, echo, used as
shown, returns the following strings

echo \? <RETURN>
?
echo \ \ <RETURN>
\

To allow long strings to be continued over more than one line, the shell ignores the
sequence \newline. The backslash is convenient for quoting single characters. When
more than one character needs quoting, we recommend the easier method of enclosing
the string between single quotes. For example,

echo xx'****'xx <RETURN>
xx****xx

3-5 Using the Bourne Shell

The quoted string may not contain the single quote character ('), but it may contain
newlines, which are preserved. We recommend this simple quoting for casual use. A
third quoting mechanism, which uses double quotes to prevent interpretation of some 0
but not all metacharacters, is discussed in a later section.

3.1.8 Prompting
The shell issues a prompt when it is ready for more input. The default sys5 Bourne
Shell prompt is a pound sign (#) followed by a space. The default bsd4.2 Bourne Shell
prompt is B$ followed by a space. Either prompt may be changed. For example, to set
the prompt to the string yesdear, type this:

PS1=yesdear <RETURN>

If a newline is typed and further input is needed, the shell issues the secondary
prompt, a greater-than symbol (» followed by a space. If this happens unexpectedly,
type an interrupt to return the main shell prompt. You may also change this prompt.

For example,

PS2=nodear <RETURN>

sets the prompt to the string nodear.

3.2 Starting the Bourne Shell
When you log in to a DOMAIN node, the DM (Display Manager) looks in several
places for information about what windows to open and what processes to start (see
Getting Started With Your DOMAINIIX System and the DOMAIN System User's Guide for
more detailed information). It normally opens an AEGIS Shell, then looks for the file

your _home_directory/user _data/startup _ dm . display _type

where display_type matches the type of display in use (e.g., 19L or color). If you in­
clude a command line such as

(O,200)dr; (S40,600)cp /sysS/bin/start_sh -n bourne_shell

in your startup _dm file, the DM automatically opens a sys5 Bourne Shell when you log
in. Since we included the -n option, the process is named "bourne_shell."

Note: In the example line above, we specified

/sysS/bin

as the /bin to use. See Chapter 1 's information on multiple version support for
further details.

You may also define a key or function key to open a Bourne Shell. This DM command
defines the shifted L5 key (labeled <SHELL» so that pressing <SHlFT> <SHELL>
opens a Bourne Shell:

kd ISs cp /bin/start sh ke

Here, since no /bin is specified, /$(SYSTYPE)/bin supplies the start_sh(l) command.

Using the Bourne Shell 3-6

r~
'--, ,

o
When you log in, the shell sets the working directory to your home directory and be­
gins reading commands from the file named .profile in this directory. The shell as­
sumes that any file called .profile in your home directory contains commands, and thus
reads it first, before reading commands from the terminal or any other file. Every
Bourne Shell you start reads from this file.

Note: If you use the DM editor to create your .profile, you should then use ehown(l)
to make yourself the owner of your .profile and ensure that the file is read. (Use
the System V version of ehown, since you must be super-user in order to use
the BSD4.2 version.) .

3.3 Shell Procedures
The shell may be used to read and execute commands contained in a file, e.g.,

sh file [argument(s)] <RETURN> o calls the shell to read commands from file. Such a file is called a shell procedure or
shell script. Arguments may be supplied with the call and are referred to in file using
the positional parameters $1, $2, ... $9. For example, if the file wg contains

who I grep $1

then

sh wg fred <RETURN> o is equivalent to

o

o

who I grep fred <RETURN>

Files have three independent attributes: read, write, and execute. Use the UNIX com­
mand ehmod(l) to make a file executable. For example,

ehmod +x wg <RETURN>

ensures that the file wg has execute status. Following this, the command

wg fred <RETURN>

is equivalent to

sh wg fred <RETURN>

This allows shell procedures and programs to be used interchangeably. Besides provid­
ing names for positional parameters, the number of positional parameters in the call is
available as $#. The name of the file being executed is available as $0.

A special shell parameter $ * is used to substitute for all positional parameters except
$0. Typically, this is used to provide some default arguments, as in the following,
which simply prepends some arguments to those already given:

nroff -T4S0 -em $* <RETURN>

3-7 Using the Bourne Shell

3.3.1 Control Flow Using "for"

Shell procedures are frequently used to loop through the arguments ($1, $2, ...) exe- C)
cuting commands once for each argument. For example, consider the following pro-
gram that searches a file of corporate phone numbers containing lines of the form

tony 8756
bob 9934
sherry 4368

richard 5335

If this file is called lusrllibltelnos, then the text of the shell procedure tel is

#! Ibin/sh
for i
do grep $i lusr/lib/telnos; done

This command line prints those lines in lusrlUbltelnos that contain the string sherry

tel sherry <RETURN>

while this prints those lines containing sherry followed by those for richard:

tel sherry richard <RETURN>

The for loop notation is recognized by the shell and has the general form

for name in wI w2 ...
do command-list
done

A command-list is a sequence of one or more simple commands separated or termi­
nated by a newline or semicolon. Furthermore, the shell only recognizes reserved
words like do and done when they follow a newline or semicolon. The shell variable
name is set to the words wI w2 ... in turn each time the command-list following do is
executed. If in wI w2 ... is omitted, then the loop is executed once for each positional
parameter; that is, in $* is assumed.

Another example of the use of the for loop is the create command whose text is

#! Ibin/sh
for i do >$i; done

The command line

create alpha beta <RETURN>

ensures that two empty files alpha and beta exist and are empty. The notation >file
may be used on its own to create or clear the contents of a file. Notice also that a
semicolon (or newline) is required before done.

3.3.2 Control Flow Using "case"
The Bourne Shell's case statement provides a multiway branching mechanism, e.g.,

Using the Bourne Shell 3-8

c

('
\. .!

c

(j

o

o

0

o

#1 Ibin/sh
case $# in

1) cat »$1 ;;
2) cat »$2 <$1 ::
*) echo 'usage: append [from] to' :;

esae

is an append command. When called with one argument as in

append file

$# is the string 1 and the standard input is copied onto the end of file using the cat
command. When called with two arguments as in

append file1 file2

the contents of file1 are appended to file2. If the number of arguments supplied to ap­
pend is other than 1 or 2, then a message is printed indicating proper usage.

The general form of the ease command is

case word in
pattern) command-list;;

esae

The shell attempts to match word with each pattern in the order in which the patterns
appear. If a match is found, the associated command-list is executed and execution of
the case is complete. Since a single asterisk (*) is the pattern that matches any string,
it can be used for the default case.

Note: The shell doesn't check to see that only one pattern matches the ease argument.
The first match found by the shell defines the set of commands to be executed.

In this example, the commands following the second asterisk (*) are never executed.

#1 Ibin/sh
case $# in

*) ... "
"

*) .. , "
"

esae

The case construction may also be used to distinguish between different forms of an
argument. The following example is a fragment of a ecCl) command:

#1 Ibin/sh
for i
do case $i in

done

-[oes]) ;;
- *) echo 'unknown flag $i' :;
* ,c) llib/cO $i ... :;
*) echo 'unexpected argument $i'
esae

3-9 Using the Bourne Shell

To allow the same commands to be associated with more than one pattern, the case
command provides for alternative patterns separated by a pipe character (D. Thus,

case $i in
-xl-Y) '"

esac

is equivalent to

case $i in
-[xY])

esac

The usual quoting conventions apply, so that

case $i in
\?) .. ,

matches a question mark (?).

3.3.3 Here Documents
The shell procedure tel, illustrated previously, uses the file lusrllibltelnos to supply the
data for grep(l). Alternatively, this data may be included within the shell procedure as
a "here document." For example,

#1 Ibin/sh
for i
do grep $i «I

I
done

richard 5335
sherry 4368

In this case, the shell takes the lines between «~I and! as the standard input for grep.
The exclamation point (!) is arbitrary. The here document is terminated by a line that
consists of the character (or string) following the lesser-than characters «<).

Parameters are substituted in the document before it is made available to grep as illus­
trated by the following procedure called edg.

#1 Ibin/sh
ed $3 «%
g/$1 lsi 1$2/g
w
%

The call

edg string1 string2 file <RETURN>

is then equivalent to the ed commands

Using the Bourne Shell 3-10

o

CI

Ci

u

o

o

o

o

ed file «% <RETURN>
glstringllsl/string2/g <RETURN>
w <RETURN>
% <RETURN>

and changes all occurrences of stringl in file to string2. To prevent substitution, use a
backslash (\) to quote the special dollar sign character ($) as in

ed $3 «+ <RETURN>
1,\sl1/$2/g <RETURN>
w <RETURN>
+ <RETURN>

This version of edg is equivalent to the first except that ed(l) prints a question mark if
no occurrences of the string $1 appear. You can entirely prevent substitution within a
here document by quoting the terminating string. For example,

grep $i «\#

The document is presented without modification to grep. If parameter substitution is
not required in a here document, this latter form is more efficient.

3.3.4 Shell Variables
The shell provides string-valued variables. Variable names begin with a letter and con­
sist of letters, digits, and underscores.

Note: Use the set command to examine all variables that are currently set.

Variables may be given values by writing, for example,

user=fred box=mOOO acct=mhOOOO

assigns values to the variables user, box, and acct. A variable may be set to the null
string. The following line sets the variable null to the null string:

null=

The value of a variable is substituted by preceding its name with a dollar sign ($). For
example, the following line echoes fred:

echo $user

Variables may be used interactively to provide abbreviations for frequently used
strings. For example, this moves the file pgm from the current directory to the direc­
tory lusrlfredlbin:

b=/usr/fredlbin
mv pgm $b

A more general notation is available for parameter (or variable) substitution, as in

echo ${user}

which is equivalent to

3-11 Using the Bourne Shell

echo $user

and is used when the parameter name is followed by a letter or digit. For example, 0
tmp=/tmp/ps
ps a >${tmp}a

directs the output of ps(l) to the file /tmp/psa, whereas this causes the value of the
variable tmpa to be substituted:

ps a >$tmpa

Except for $?, which is set after every command, the Bourne Shell sets these variables
when invoked:

$?

$#

The exit status (decimal string return code) of the most-recently-executed com­
mand. Most commands return a zero if they execute successfully, and a non­
zero status otherwise. Testing the value of return codes is dealt with later under
if and while commands.

The number of positional parameters (in decimal). This is used, for example, in
the append command to check the number of parameters.

$$ The process number of this shell (in decimal). Since process numbers are
unique among all existing processes, this string is frequently used to generate
unique temporary filenames. For example,

ps a >/tmp/ps$$

rm /tmp/ps$$

$! The decimal process number of the last process run in the background.

$- The current shell flags, such as -x and -v.

Some variables have special meaning to the shell. Avoid using them elsewhere.

Note: Those shell variables unique to the sys5 Bourne Shell are flagged with the indi­
cator [sys5]. The bsd4.2 version of the Bourne Shell doesn't recognize these.

$ MAIL When used interactively, the shell looks at the file specified by this
variable before it issues a prompt. If the specified file has been
modified since last examined, the shell prints the message "you
have mail" before prompting for the next command. This variable
is typically set in the file .profile in your home directory, e.g.,

$MAILCHECK

$ MAl LPATH

$MAIL=/usr Imaillfred

Specifies how often (in seconds) the shell checks for mail. The de­
fault value is 600 seconds. If $MAILCHECK is set to 0, the shell
checks before each prompt. [sys5]

A colon-separated list of filenames. If this parameter is set, the
shell announces the arrival of mail in any of the specified files.
Each filename can be followed by a percent sign (%) and a mes­
sage printed when the modification time changes. The default mes­
sage is "you have mail". [sys5]

Using the Bourne Shell 3-12

c'

c

0

0

0

0

o

$CDPATH Specifies the search path for the cd command. [sys5]

$HOME The default argument for the cd command. The current directory
is used to resolve filename references not beginning with a slash
(I), and is changed using the cd command. For example,

cd lusr/fred/bin <RETURN>

makes the current directory /usr/fred/bin. The command cd with no
argument is equivalent to

cd $HOME <RETURN>

This variable is also typically set in the the user's .profile.

$ PATH A list of directories that contain commands. Each time a command
is executed by the shell, a list of directories is searched for an
executable file. If the $PATH variable isn't set, the current direc-
tory, /$ (SYSTYPE) Ibin , and /$(SYSTYPE)/usr/bin are searched by de-
fault. Otherwise, $PATH consists of directory names separated by
colons (:). For example,

PATH=:/usr/fredlbin:lbin:/usr/bin <RETURN>

specifies that the current directory (the null string before the first
colon), /usr/fred/bin, /bin and /usr/bin are to be searched in that or-
der.

Thus, individual users can have "private" commands that are ac-
cessible independently of the current directory. If the command
name contains a slash (/), this directory search is not used. The
shell makes a single attempt to execute the command.

$PSI The primary shell prompt string; by default, a pound sign (#).

$PS2 The shell prompt when further input is needed; by default, a
greater-than character (».

$IFS The set of characters used by blank interpretation.

3.3.5 The "test" Command
The test command has a number of uses in shell programs. For example,

test -f name <RETURN>

returns zero exit status if name exists and non-zero exit status otherwise. In general,
test evaluates a predicate and returns the result as its exit status. Some of the more
frequently used test arguments are given here. See test(l) for a complete specification.

test s

test -f name

test -r name

test -w name

true if s is non-null

true if name is a file that exists

true if name is a readable file

true if name is a writable file

3-13 Using the Bourne Shell

test -d name

test -1 name

true if name is a directory that exists

true if name is a soft link

Note: In determining whether an object is a soft link, test -d name also returns true if
name is a soft link that points to a directory. Furthermore, test -f name returns
true if name is a soft link that points to a file. If name is a soft link that points
to a non-existent object, then test -f name returns false while test -1 name re­
turns true.

3.3.6 Control Flow Using "while"
The actions of the for loop and the case branch are determined by data available to
the shell. A while or until loop and an if-then-else branch are also provided. The ac­
tions of while, until, and if-then-else are determined by the exit status returned by
commands. A while loop has the general form

while command-list
do command-list
done

The value tested by the while command is the exit status of the last simple command
following while. Each time around the loop, command-list is executed. If a zero exit
status is returned, then command-list is executed; otherwise, the loop terminates. Thus,

lI! /bin/sh
while test $1
do III

shift
done

is equivalent to

#! /bin/sh
for i
do ...
done

Shift is a shell command that renames the positional parameters $2, $3, ... as $1, $2,
... and loses $1.

You can also use the while/until loop to make the shell wait until an external event
occurs, before running commands. An until loop reverses the termination c~gdition.
For example, this does a loop every five minutes until file exists (presumably another
process creates the file):

#! /bin/sh
until test -f file
do sleep 300; done
commands

Using the Bourne Shell 3-14

o

c

3.3.7 Control Flow Using "if" o The Bourne Shell also provides a general conditional branch of the form

it command-list

o

o

o

then command-list
else command-list
ti

that tests the value returned by the last simple command following if. The if command
may be used along with the test command to test for the existence of a file as in

it test -t file
then process file
else do something else
ti

A multiple test if command, of the form

it ...
then ...
else it ...
then ...
else it ...

ti
ti
ti

may be written using an extension of the if notation as

it ...
then .. .
elit .. .
then .. .
elit .. .

ti

The following shows the touch(1) command, which changes the "last modified" time
for a list of files. The command may be used along with make(l) to force recompila­
tion of a list of files.

3-15 Using the Bourne Shell

#1 /bin/sh
flag=
for i
do case $i in

-c) flag=N ;;
*) if test -f $i
then In $i junk$$; rm junk$$
elif test $flag
then echo file \'$i\' does not exist
else >$i
fi
esac

done

The -c flag in this command forces subsequent files to be created if they don't already
exist. Otherwise, an error message would be printed. The shell variable flag is set to a
non-null string if the -c argument is found. These commands make a link to the file
and then remove it, thus causing the last modified date to be updated:

In ... ; rm ...

The sequence

if command1
then command2
fi

may be written as

command1 && command2

Conversely,

command1 II command2

executes command2 only if command1 fails. In each case, the value returned is that of
the last simple command executed.

3.3~8 Command Grouping
Commands may be grouped in one of the following two ways:

{ command-list; }
(command-list)

In the first example, command-list is simply executed; the second executes command­
list as a separate process. For example, this command line executes rm junk in the
directory x without changing the current directory of the invoking shell:

(cd X; rm junk) <RETURN>

The commands

cd X; rm junk <RETURN>

have the same effect, but they leave the invoking shell in the directory x.

Using the Bourne Shell 3-16

o

c'

(
----.."

" ' '-/

o

o

o

o

o

3.3.9 Debugging Shell Procedures
The shell provides two tracing mechanisms to help when debugging shell procedures.
The first is invoked within the procedure as

set -v <RETURN>

(-v for verbose), causing lines of the procedure to be printed as they are read. This
helps isolate syntax errors. Invoke it without modifying the procedure by specifying

sh -v proc <RETURN>

where proc is the name of the shell procedure. This flag may be used along with the
-n flag, which prevents execution of subsequent commands.

Note: Using set -n at a terminal renders the terminal useless until you type an end­
of-file (EOF).

The command

set -x <RETURN>

produces an execution trace. Following parameter substitution, each command is
printed as it is executed. Both flags may be turned off by typing

set - <RETURN>

and the current setting of the shell flags is available as

$-

3.4 Keyword Parameters
Shell variables may be given values by assignment or when a shell procedure is in­
voked. An argument to a shell procedure of the form name=value that precedes the
command name causes value to be assigned to name before execution of the procedure
begins. The value of name in the invoking shell isn't affected. For example, this exe­
cutes command with user set to fred:

user=fred command

The -k flag causes arguments of the form name=value to be interpreted in this way
anywhere in the argument list. Such names are sometimes called keyword parameters.
If any arguments remain, they are available as the $1, $2, ... positional parameters.

You may also use the set command to set positional parameters from within a proce­
dure. For example,

set - *
sets $1 to the first filename in the current directory, $2 to the next, and so on. The
dash (-) ensures correct treatment when the first filename begins with a dash.

3.4.1 Parameter Transmission
When a shell procedure is invoked, both positional and keyword parameters may be
supplied with the call. Keyword parameters are also made available implicitly to a shell
procedure by specifying in advance that such parameters are to be exported. Thus,

3-17 Using the Bourne Shell

export user box <RETURN>

marks the variables user and box for export. When a shell procedure is invoked, all
exportable variables are copied for use within the invoked procedure. Modification of
such variables within the procedure doesn't affect the values in the invoking shell. A
shell procedure may not usually modify the state of its caller without an explicit re­
quest on the part of the caller. Shared file descriptors are an exception to this rule.

Note: Any new process created that takes its context from the process in which a vari-
able was defined and exported will recognize the new variable. Processes al­
ready created (or those created later) that don't take their context from the
process where the variable was defined won't apply the variable.

Names whose values are intended to remain constant may be declared readonly. The
form of this command is the same as that of the export command:

readonly name ...

Subsequent attempts to set readonly variables are illegal.

3.4.2 Parameter Substitution (bsd4.2)

In the bsd4.2 version of Ibin/sh, the null string replaces any unset shell parameter. For
example, if the variable d is not set,

B$ echo $d <RETURN>

or

B$ echo ${d} <RETURN>

echoes nothing. A default string may be given as in

B$ echo ${d-.} <RETURN>

which echoes the value of the variable d if it is set and a period (.) otherwise. The de­
fault string is evaluated using the usual quoting conventions so that

B$ echo ${d-'*'} <RETURN>

echoes an asterisk (*) if the variable d is not set. Similarly,

B$ echo ${d-$l} <RETURN>

echoes the value of d if it is set and the value (if any) of $1 otherwise. A variable
may be assigned a default value using the notation

B $ echo $ {d=.} <RETURN>

which substitutes the same string as

B$ echo ${d-.} <RETURN>

and if d were not previously set then it is set to the string".". (The notation ${ ... = ••• }

is not available for positioneil parameters.)

o

C

If there is no sensible default, then the notation CI
B$ echo ${d?message} <RETURN>

Using the Bourne Shell 3-18

------------------ ---

o

o

o

o

echoes the value of the variable d if it has one; otherwise, the shell prints message and
abandons the shell procedure. If message is absent, then a standard message is printed.
A shell procedure that requires some parameters to be set might start as follows:

#1 /bin/sh
: ${user?} ${acct?} ${bin?}

The colon (:) is a command that is built in to the shell and does nothing once its argu­
ments have been evaluated. If any of the variables user, acct, or bin are not set, the
shell abandons execution of the procedure.

3.4.3 Parameter Substitution (sys5)

The sys5 version of /bin/sh uses two types of parameters: positional and keyword. If pa­
rameter is a digit, it is a positional parameter . Use the set command to assign a value
to a positional parameter. Keyword parameters (also called variables) may be assigned
values as follows:

name = value [name = value] ...

No pattern-matching is performed on value. A function and a variable can't have the
same name.

$ {parameter} Substitute the value, if any, of the parameter. The braces are re­
quired only when parameter is followed by a letter, digit, or under­
score that is not to be interpreted as part of its name. If parameter
is * or @, all the positional parameters, starting with $1, are sub­
stituted (separated by spaces). Parameter $0 is set from argument
zero when the shell is invoked.

$ {parameter:-word} If parameter is set and is non-null, substitute its value; otherwise,
substitute word.

${parameter:=word} If parameter is not set or is null, set it to word; substitute the value
of the parameter. Positional parameters can't be assigned this way.

${parameter:?word} If parameter is set and is non-null, substitute its value; otherwise,
print word and exit from the shell. If word is omitted, print the
message "parameter null or not set".

${parameter:+word} If parameter is set and is non-null, substitute word; otherwise sub­
stitute nothing.

In the above, word is not evaluated unless it is to be used as the substituted string, so
that, in the following example, pwd is executed only if d is not set or is null:

echo ${d:-'pwd'} <RETURN>

If you omit the colon from the above expressions, the shell only checks to see whether
or not parameter is set. o The sys5 Bourne Shell automatically sets the following parameters:

The number of positional parameters in decimal.

3-19 Using the Bourne Shell

Flags supplied to the shell on invocation or by the set command.

? The decimal value returned by the last synchronously executed command.

$ The process number of this shell.

The process number of the last command invoked in background.

3.4.4 Command Substitution
The standard output from a command can be substituted in a way similar to that al­
lowed for parameters. The command pwd prints on its standard output the name of
the current directory. For example, if the current directory is usr/jred/bin, then the
command

d='pwd' <RETURN>

is equivalent to

d=/usr/fredlbin <RETURN>

The shell takes the entire string between opening single quotes (grave accents,' ... ') as
the command to be executed and replaces it with the output from the command. The
command is written using the usual quoting conventions except that a grave accent (')
must be escaped with a backslash (\). For example,

Is 'echo "$1'" <RETURN>

is equivalent to

Is $1 <RETURN>

Command substitution occurs in all contexts where parameter substitution occurs (in­
cluding here documents), and the treatment of the resulting text is the same in both
cases. This mechanism allows string processing commands to be used within shell pro­
cedures. An example of such a command is basename(l), which removes a specified
suffix from a string. For example,

basename main.c .c <RETURN>

prints the string main. Its use is illustrated by the following fragment from a cc(l)
command that sets B to the part of $A with the suffix .c stripped:

case $A in

* .c) B='basename $A .c'

esac

Here are some composite examples:

for i in 'Is -t'; do ... Sets the variable i to the names of files in time or­
der, most recent first.

set 'date'; echo $6 $2 $3, $4

Using the Bourne Shell

Prints the date. For example,

1984 Dec 14, 23:59:59

3-20

o

c

c'

o

o

3.4.5 Evaluation and Quoting
The shell is a macro processor that provides parameter substitution, command substitu­
tion and filename generation for the arguments to commands. This section discusses
the order in which these evaluations occur and the effects of the various quoting
mechanisms. '

Commands are parsed initially according to the grammar given in the summary of
Bourne Shell grammar in the next section. Before a command is executed, the follow­
ing substitutions occur:

• parameter substitution (e.g., $user).

• command substitution (e.g., 'pwd'). Only one evaluation occurs, so that if, for ex­
ample, the value of the variable X is the string $y, then the following echoes $y:

echo $X

Following these substitutions, the resulting characters are broken into non-blank words.
Thus, "blanks" are the characters of the string $IFS. By default, this string consists of
blank, tab and newline. The null string isn't regarded as a word unless quoted, e.g.,

echo " <RETURN>

passes on the null string as the first argument to echo, whereas

echo $null <RETURN>

U calls echo with no arguments if the variable null is not set or set to the null string.

o

o

Each word is then scanned for the file pattern characters *, ? and [...] and an alpha­
beticallist of filenames is generated to replace the word. Each such filename is a
separate argument.

The evaluations just described also occur in the list of words associated with a for
loop. Only substitution occurs in the word used for a case branch.

In addition to the quoting mechanisms described earlier using backslash (\) and the
' ... ' string, a third quoting mechanism is provided using double quotes. Within double
quotes, parameter and command substitutions occur but filename generation and the
interpretation of blanks does not. The following characters have a special meaning
within double quotes and may be quoted using a backslash (\):

$

"
\

parameter substitution
command substitution
ends the quoted string
quotes the special characters $, " \

For example, this passes the value of the variable x as a single argument to echo:

echo "$x" <RETURN>

Similarly,

echo "$*" <RETURN>

passes the positional parameters as a single argument and is equivalent to

3-21 Using the Bourne Shell

echo "$1 $2 .•. " <RETURN>

The notation $@ is the same as $* except when it is quoted.

echo "$@" <RETURN>

passes the positional parameters, unevaluated, to echo and is equivalent to

echo "$1" "$2" ••• <RETURN>

Table 3-2 below gives, for each quoting mechanism, the shell metacharacters that are
evaluated. In this table,

• t indicates a sequence used as a terminator,

• y indicates a sequence in which the metacharacter is interpreted,

• n indicates a sequence in which the metacharacter is not interpreted.

Table 3-2. Evaluation of Bourne Shell Metacharacters by Quoting Mechanisms

Quote Metacharacter

,
\ $ *

, " .
,

,
n n n n n t

" Y Y n Y t n

Among other things, this table shows that the sequence \$ is not interpreted (is passed
as a literal $), the sequence \' can be used to terminate a string, and the sequence "$
preserves the meta-meaning of the dollar sign ($). Where more than one evaluation of
a string is required, the built-in command eval may be used. For example, if the vari­
able X has the value $y, and if y has the value pqr, then this echoes the string pqr:

o

o

eval echo $X <RETURN> C:
In general, eval evaluates its arguments (as do all commands) and treats the result as
input to the shell. The input is read and the resulting command(s) ~xecuted. Thus,

wg='eval wholgrep' <RETURN>
$wg fred <RETURN>

is equivalent to

wholgrep fred <RETURN>

Here, eval is required since there is no interpretation of metacharacters, such as a pipe
character (I), following substitution.

3.4.6 Error Handling
How errors detected by the shell are treated depends on the type of error and whether
the shell is being used interactively. An interactive shell is one whose input and output

Using the Bourne Shell 3-22

o

o

o

0

o

are connected to a terminal as determined by gtty(2). A shell invoked with the -i flag
is also interactive.

Execution of a command may fail for any of the following reasons:

• Input/output redirection won't work (e.g., a file doesn't exist or can't be created).

• The command itself doesn't exist or cannot be executed.

• The command terminates abnormally.

• The command terminates normally but returns a non-zero exit status.

In every case, the shell goes on to execute the next command. Except in the last case,
the shell prints an error message. All remaining errors cause the shell to exit from a
command procedure. An interactive shell returns to read another command from the
terminal. Such errors include the following:

• Syntax errors (e.g., if ... then ... done).

• A signal such as interrupt. The shell waits for the current command, if any, to fin-
ish execution and then either exits or returns to the terminal.

• Failure of any of the built-in commands such as cd.

The shell flag -e causes the shell to terminate if any error is detected.

Many of the UNIX signals used by DOMAlNIIX software are described in Table 3-3.
The signals in this list of potential interest to shell programs are 1, 2, 3, 14, and 15.
For a complete list, see signal(2) or signal(3C).

Table 3-3. UNIX Signals Commonly Used by DOMAIN/IX Software

1 hangup
2 interrupt
3* quit
4* illegal instruction
5* trace trap
6* lOT instruction
7* EMT instruction
8* floating point exception
9 kill
10* bus error
11* segmentation violation
12* bad argument to system call
13 write on a pipe with no one to read it
14 alarm clock
15 software termination (from kill(l))
19 DOMAlN system fault with no UNIX equivalent

3.4.7 Fault Handling
Shell procedures normally terminate when an interrupt is received from the terminal.
The trap command is required for necessary clean-up activity (e.g., removal of tempo­
rary files). For example, this line sets a trap for signal 2 (terminal interrupt):

3-23 Using the Bourne Shell

trap 'rm Itmp/ps$$; exit' 2

If this signal is received, it executes the commands

rm Itmp/ps$$; exit

Exit is another built-in command that terminates execution of a shell procedure. It is
required to keep the shell from resuming execution of the procedure at the place
where it was interrupted, once the trap has been taken.

UNIX signals can be ignored (never sent to the process); they can be caught, allowing
the process to decide what action to take; or they can be left to cause process termina­
tion with no further action. If a signal is ignored on entry to a shell procedure, for ex­
ample, by being invoked in the background, then trap commands (and the signal) are
ignored. The following modified version of touch(l) shows the use of trap in removing
the junk$$ file:

#1 Ibin/sh
flag=
trap 'rm -f junk$$; exit' 1 2 3 15
for i
do case $i in

-c) flag=N ;;
*) if test -f $i
then In $i junk$$; rm junk$$
elif test $flag
then echo file \' $i\' does not exist
else >$i
fi
esac

done

The trap command appears before the creation ,of the temporary file; otherwise, the
process could die without removing the file. Since there is no signal 0, it is used by
the shell to indicate the commands to be executed on exit from the shell procedure.

A procedure may, itself, elect to ignore signals by specifying the null string as the ar­
gument to trap. The following fragment, taken from the nohup command,

trap " 1 2 3 15

causes hangup, interrupt, quit, and kill to be ignored by the procedure and by invoked
commands. Traps may be reset by saying

trap 2 3

which resets the traps for signals 2 and 3 to their default values. A list of the current
values of traps may be obtained by writing

trap

c

C~

The shell procedure called scan (below) illustrates trap usage where there is no exit in
the trap command. The scan takes each directory in the current directory, prompts
with it~ name, ~nd th~n edxeIncutes comman.ds tYPded ah~lthe term~naltuhntil an etnd

d
of file CI

or an Interrupt IS receIve. terrupts. are Ignore w 1 e executIng e reques e com-
mands, but cause termination when scan is waiting for input.

Using the Bourne Shell 3-24

o
#1 /bin/sh
d='pwd'
for i in 111

do if test -d $d/$i
then cd $d/$i
while echo "$i:"

trap exit 2
read x
do trap : 2: eval $x: done

fi
done

Read x is a built-in command that reads one line from the standard input and places
the result in the variable x. The command returns a non-zero exit status if an end-of­
file is read or an interrupt is received.

o 3.4.8 Command Execution

o

o

o

To run a command other than a built-in, the shell first creates a new program level in
the shell process. The execution environment for the command includes input, output,
and the states of signals, and is established before the command is executed. A built­
in command exec creates a new program level in the shell process. For example, a
simple version of the nohup command looks like this:

trap I I 1 2 3 15
exec $*

Trap turns off the signals specified so they are ignored by subsequently created com­
mands; exec runs the specified command as a new program level in the shell process.

Most forms of input/output redirection have already been described. In the following
examples, word is only subject to parameter and command substitution. No filename
generation or blank interpretation takes place; thus, for example,

echo ... >*.c

writes its output into a file whose name is c. Input output specifications are evaluated
left to right as they appear in the command.

> file

» file

< file

« file

The standard output (file descriptor 1) is sent to file, which is created if
it doesn't already exist.

The standard output is sent to file. If the file exists, output is appended
(by seeking to the end); otherwise, the file is created.

The standard input (file descriptor 0) is taken from the file.

The standard input is taken from the lines of shell input that follow up to
but not including a line consisting only of file. If file is quoted, no inter­
pretation of the document occurs. If file isn't quoted, parameter and com­
mand substitution occur and a backs lash (\) is used to quote the charac­
ters \ $, and the first character of word. In the latter case, \newline is
ignored (c.f. quoted strings).

3-25 Using the Bourne Shell

>& digit

<& digit

The file descriptor digit is duplicated using the system call dup(2), and
the result is used as the standard output.

The standard input is duplicated from file descriptor digit.

<&- The standard input is closed.

>&- The standard output is closed.

If any of the above are preceded by a digit, the file descriptor created is that specified
by the digit instead of the default 0 or 1. For example, this runs command with mes­
sage output (file descriptor 2) redirected to file:

command ... 2>file

and this runs command with its standard output and message output merged:

command ... 2>&1

Cj

File descriptor 2 is created by duplicating file descriptor 1, but usually results in a
merge of the two streams. The environment for a command run in the background C:
such as

list *.c I lpr & <RETURN>

is modified in two ways. First, the default standard input for such a command is the
empty file /dev/null. This prevents two parallel processes (the shell and the command)
from trying to read the same input (a rather chaotic situation). For example,

ed file & <RETURN>

allows both the editor and the shell to read from the same input at the same time. The
environment of a background command is further modified by turning off the quit and
interrupt signals so that they are ignored by the command. Thus, by convention, a sig­
nal set to 1 (ignored) is never changed, even for a short time. Note also that the shell
command trap has no effect on an ignored signal.

3.5 Summary of Bourne Shell Grammar
item: word
input-output
name = value

simple-command: item
simple-command item

command: simple-command
(command-list)
{ command-list }
for name do command-list done
for name in word ... do command-list done
while command-list do command-list done
until command-list do command-list done
case word in case-part ... esac
if command-list then command-list else-part fi

Using the Bourne Shell 3-26

o

o

o

o

0

pipeline: command
pipeline I command

andor: pipeline
andor && pipeline
andor II pipeline

command-list: andor
command-list ;
command-list &
command-list ; andor
command-list & andor

input-output: > file
< file
» word
« word

file: word
& digit
&-

case-part: pattern) command-list ;;

pattern: word
pattern I word

else-part: elif command-list then command-list else-part
else command-list
empty

empty:

word: a sequence of non-blank characters

name: a sequence of letters, digits, or underscores starting with a letter

digit: 0 1 2 3 4 5 6 7 8 9

3.6 Summary of Shell Metacharacters & Reserved Words

3.6.1 Syntactic

I pipe symbol

&& 'andf' symbol

II 'orf' symbol

. command separator , .

.. case delimiter
"
& background commands

() command grouping

3-27 Using the Bourne Shell

<

«

>

»

input redirection

input from a here document

output creation

output append

3.6.2 Patterns

*
?

match any character(s) including none

match any single character

[...] match any of the enclosed characters

3.6.3 Substitution
$ { ... } substitute shell variable
, , substitute command output

3.6.4 Quoting
\ quote the next character
, , quote the enclosed characters except for '

" " quote the enclosed characters except for $, \ "

3.6.5 Reserved Words

• if

• then

• else

• elif

• fi

• case

• in

• esac

• for

• while

• until

• do

• done

· {}

Using the Bourne Shell 3-28

c

o

o

o

o

o

Chapter 4

Using the C Shell

The primary purpose of any shell is to translate command lines typed at a terminal
into useful work, something the shell usually accomplishes by invoking another pro­
gram. The C Shell (Ibin/csh) is one of several shells available to users of the DOMAIN/
IX system. We provide the C Shell in both bsd4.2 and sys5 DOMAINIIX versions.

This chapter introduces the more commonly-used features of the C Shell. The csh(l)
documentation in the DOMAIN/IX Command Reference provides a full description of all
features of this shell.

Note: Chapter 1 describes how to invoke shells in either the sys5 or the bsd4.2 envi­
ronment. The process is nearly transparent to the user (requiring only that you
set the SYSTYPE environment variable). However, it has implications for those
developing new software and, to a somewhat lesser extent, people (and shells)
running programs. Make sure that you have read Chapter 1 before you begin.

4.1 Introduction
This chapter includes several examples. We recommend that you try them all, to de­
velop a variety of experiences with the C Shell.

4.1.1 Special Key Definitions
The DOMAINIIX system provides special files that bind various keys to functions used
by the C Shell. These key definitions files are introduced in Chapter 1. To invoke a
particular set of key definitions, press <CMD> and enter this DM command:

Command: cmdf /sys/dm/file <RETURN>

4-1 Using the C Shell

where file is one of the following:

• bsd4.2_keys2 (sysS_keys2) if you have a Low-Profile Model I keyboard 0
• bsd4.2_keys3 (sysS_keys3) if you have a Low-Profile Model IT keyboard

• bsd4.2_keys (sysS_keys) if you have an 880 (high-profile) keyboard.

Special key definitions (beyond those provided in unix_keys) included in these files are:

part of Isys/dm/bsd4.2_keys (lsys/dm/sys5_keys)
AZ is changed from unix_keys eef to suspend
kd AZ dq -c 120028 ke (for job control in the csh)
A d is mapped to eef
kd Ad eef ke
A\ is mapped to quit
kd 'A\' dq ke .
Aj is mapped to unsuspend (if you AZ a non-csh and want to wake it):
ke Aj dq -c 12002b ke C

In addition to the lines above, those files used for the Low-Profile keyboards include
the line:

A C is changed from cut to interrupt
kd AC dq -i ke

4.1.2 Starting the Shell
To start a C Shell on a DOMAIN node, log in and type the DM command

Command: cp Ibin/start_csh <RETURN>

In the case of the line above, Ibin resolves to /$ (SYSTYPE)/bin , as shown in Chapter 1.

The DM opens a window and runs the C Shell in it. With the start_csh command, you
may supply the coordinates where the DM will locate the upper left and lower right
corners of the window. You may even give the process a name, as in this line:

Command: (O,200)dr; (540,600)cp Ibin/start_csh -n c_shell <RETURN>

This command line opens up a small window near the left side of the screen and dis­
plays the name c _shell in the window legend.

4.1.3 The Basic Notion of Commands
A shell acts primarily as a medium through which you invoke other programs. While
the shell has a set of built-in functions that it performs directly, most commands to
the shell cause execution of programs that reside elsewhere (are not part of the shell).

A command consists of a word or words that the shell interprets as a command name
followed by optional arguments. Thus, the command

% mail kate <RETURN>

consists of a command name (mail), followed by an argument (kate). The shell looks
in every directory for a file named mail. Upon finding something called mail, the shell
assumes it to be an executable file, (and so requests that the system execute the file.

Using the C Shell 4-2

c

o

o

o

o

o

The rest of the words on the command line are assumed to be arguments and are
passed to the command when it is executed. In this case, we specified the argument
kate which mail interprets as the name of a user to whom mail is to be sent. In nor­
mal usage, we might invoke mail as follows:

% mail kate <RETURN>
Is there a meeting today? And is it at 1:00?
bob
*** EOF ***
EOT
%

Here we typed a message to send to kate and ended this message with a tD, which
sent an end-of-file (EOF) to the Mail program.

Mail, in turn, echoed "EDT" (end-of-transmission), transmitted the message to kate,
and exited. The shell, noticing that Mail was finished, prompted for input by display­
ing a percent sign (%), which indicated its readiness for further orders.

This is the essential pattern of all interactions with DOMAINIIX software via the C
Shell. You type a complete command, and the shell executes it. When command exe­
cution completes, the shell prompts for a new command. If you run, for example, the
vi(l) editor for an hour, the shell waits for you to finish editing, and then prompts you
for further orders.

4.1.4 Flag Arguments
While many arguments to commands specify objects such as filenames, some argu­
ments invoke optional capabilities of the command. By convention, such arguments be­
gin with a dash (-). Thus, the command

% Is <RETURN>

produces a list of the files in the current working directory. The Is (1) command has
many options, including -s, the size option. If you include -s on a Is command line,

% Is -s <RETURN>

Is lists the size of each file in blocks of (normally) 1024 ·characters. Consult the DO­
MAINIIX Command Reference to determine available options for each command.

4.1.5 Output to Files
Commands that normally read input or write output on the screen can optionally be
told to get their input from a file or to send their output to a file. Suppose you wish to
save the current date in a file called now. This command

% date <RETURN>

prints the current date on the transcript pad of the shell into which date(l) was typed,
because the screen (transcript pad) is the default standard output, and date always
prints the d~te on the standard output.

The shell lets you redirect the standard output of a command through a notation using
the greater-than (» metacharacter and the name of the file where output is to be
placed.

4-3 Using the C Shell

Thus, the command

% date > now <RETURN>

runs the date command and redirects the standard output to a file called now rather
than to the default standard output (the screen). The current date and time are written
to the file now. No output appears on the screen. It is important to know that date is
unaware that its output is going to a file rather than to the screen. The shell performs
this redirection before the command begins executing.

The file now need not have existed before the date command above was executed; the
shell would have created the file (in the current working directory) if it did not exist.

Note: If you redirect standard output into an existing file, that file is overwritten un-
less the shell variable noclobber has been set. See the discussion of noclobber
in the next section.

4.1.6 Metacharacters in The C Shell
The C Shell uses a number of characters to perform special functions. In general, most
characters that are neither letters nor digits have special meaning to the shell. Since
these special characters may also be used literally, the shell provides a means of quot-
ing that lets you strip these metacharacters of any special meaning.

Metacharacters normally have effect only when the shell is reading input. You needn't

c

worry about placing shell metacharacters in a letter you are sending via mail, or when
supplying text or data to some other program. Note that the shell is only reading input C
when it is displaying its prompt.

Note: AEGIS commands perform their own wildcard expansion, with rules that differ
from those used by the C Shell. Unquoted wildcards used in the C Shell are ex­
panded according to the C Shell's rules, then passed to the command being exe­
cuted. If executing an AEGIS command from a C Shell, you may need. tpApro­
tect certain shell metacharacters with quotes so that they are passed unmodified
to AEGIS commands. (~

4.1.7 Input From Files; Pipelines
The standard input of a command can be redirected so that it is taken from a file, in­
stead of the keyboard (default standard input). This is often unnecessary, since most
commands read from a file whose name is given as an argument. You could use this

% sort < data <RETURN>

to run to run the sort(l) command with standard input, where the command normally
reads its input, from the file data. But, it is easier and just as legal to type this

% sort data <RETURN>

letting the sort command open the file data and sort it.

Note: If you merely type

% sort <RETURN>

Using the C Shell 4-4

\..~-

c

o
then the sort program sorts lines from its standard input, the keyboard. Since
you are not redirecting the standard input, the program sorts lines as you type
them on the terminal, until you type a tD to indicate an end-of-file.

Another useful feature of the C Shell is its ability to connect the standard output of
one command to the standard input of another using a mechanism known as ~ pipe­
line. For instance, the command

% Is -s <RETURN>

normally produces a list of the files in the current directory and lists the size of each
file in blocks of 1024 characters. To help determine which of your files is largest, you
may want to have the list sorted by size rather than by name. Although Is has no such
option, you can pipe the output of Is to the sort command and use some of sort's op­
tions to get a list of files sorted in size order.

The -n option of sort specifies a numeric sort rather than an alphabetic sort. Thus, o % Is -s I sort -n <RETURN>

o

o

o

tells the C Shell to run the Is command with the -s option, and then pipe the resulting
output to the sort command run with the -n (numeric sort) option. The output of this
combination of commands is a list of files sorted by size, with the smallest file first.
You could then use the -r reverse sort option and the head(1) command in combina­
tion with the previous command, as shown here:

% Is -s I sort -n -r I head -S <RETURN>

This sequence takes a list of files sorted alphabetically, each with the size in blocks,
and pipes this list to the standard input of sort. Sort, in turn, sorts the list numerically
in reverse order (largest first). The sorted list is piped to the command head which
then displays the first five lines of the list, giving you names and sizes of the five larg­
est files in the current directory.

Commands separated by pipe (I) characters are connected together by the shell. The
standard output of the command to the left of the pipe is connected to the standard
input of the command to the right of the pipe. The leftmost command in a pipeline
normally takes its standard input from the keyboard. The rightmost places its standard
output on the screen.

4.1.8 Filenames
Many commands need the names of files as arguments. Both DOMAlNIIX and AEGIS
pathnames consist of a number of components separated from each other by the slash
(I). Each component except the last names a directory in which the next component
resides, in effect specifying the path of directories to follow to reach the file.

Thus, the pathname letclsystype specifies a file in the directory etc, which is a subdirec­
tory of the node's entry directory, or "slash" (I). Within this directory the file named is
systype, a program that returns the value of the SYSTYPE environment variable. A
pathname that begins with a slash is said to be an absolute pathname, since it is speci­
fied from the absolute top of the node's directory hierarchy.

4-5 Using the C Shell

Note: A node's directory hierarchy begins one level below the network root, or "dou-
ble slash" (II) directory, so a truly "absolute" pathname must always begin with 0
two slashes followed by the name of the node's entry directory as in

Ilice/tmp

When the shell sees a pathname that does not begin with a slash, it assumes that it
should start looking in the current working directory. When you log in, the working di­
rectory is set to your home directory. From there, you can move to (and work in)
other directories by using the cd(l) command. Pathnames not beginning with a slash
are said to be relative to the working directory since they are found by starting in the
working directory and descending to lower levels of directories for each component of
the pathname. If the pathname contains no slashes, the shell assumes that the path­
name is the name of a file contained in the current working directory. Absolute path­
names, by contrast, are unrelated to the working directory.

Most filenames consist of a number of alphanumeric characters and periods, While all
printing characters except a slash (I) may appear in UNIX filenames, it is inconvenient
to have most non-alphabetic characters in filenames, since many of them have special
meaning to the shell. The period or dot (.), while not a C Shell metacharacter, is often
used to separate the extension of a filename from the base of the name. Thus

prog.c prog.o prog.errs prog.output

are four related files. Their names share a common base portion (that part of the
name which is left when a trailing period and following characters that are not periods

C, ... ~,'

are stripped off). The file prog.c might be the source for a C program, the file prog.o 0
the corresponding object file, the file prog.errs the errors resulting from a compilation \ ___ //'
of the program and the file prog.output the output of the program itself.

To refer to all four of these files in a command, use the notation

prog. *

The shell expands prog. * into a list of names that begin with prog. before the com­
mand to which it is an argument is executed. The asterisk (*) here matches any se-
quence (including the empty sequence) of characters in a filename. The names that (~~
match are alphabetically sorted and placed in the argument list of the command. Thus, '-_/

% echo prog. * <RETURN>

echoes the names

prog.c prog.errs prog.o prog.output

Note that the names are in sorted order here, and a different order than we list them
above. The echo(l) command receives four words as arguments, even though only one
argument is supplied to the shell. The shell generates the four words by filename e~­
pansion of the one input word.

The C Shell also expands other characters. The question mark (?) matches any single
character in a filename. Thus,

echo? ?? ???

echoes a line of filenames; first those with one-character names, then those with two­
character names, and finally those with three-character names. The filenames of each

Using the C Shell 4-6

o
length are sorted independently (Le., the output to the screen is a list of one-character
filenames, followed by a list of two-character filenames, followed by a list of three­
character filenames).

The shell also matches any single character from a sequence of characters delimited by
brackets. Thus,

prog. [co]

matches both prog.c and prog.o. You can also place two characters around a dash (-)
in this notation to denote a range. Thus, to troff(l) five chapters of a book that exists
in the files chap. 1 , chap.2 and so on, type the command line

% troff chap.[1-5] <RETURN>

which would pass the names

chap.1 chap.2 chap.3 chap.4 chap.5 o to troff for processing. The above notation is equivalent to

o

o

o

chap. [12345]

-Note: If a list of argument words to a command (an argument list) contains filename
expansion syntax, and if this filename expansion syntax fails to match any ex­
isting filenames, then the shell considers this to be an error and prints the diag­
nostic message

No match.

and does not execute the command.

Files beginning with a period (.) are treated specially. Neither an asterisk (*), nor a
question mark (?), nor square brackets ([]) match it. This prevents accidental match­
ing of the filenames "." and " .. " in the working directory, where they have special
meaning to the system. It also prevents matching of other files such as .cshrc which
are not normally visible in a directory listing. (We discuss .cshrc in a later section.)

Another filename expansion mechanism gives access to the pathname of the home di­
rectory of other users. Normally, this notation consists of a tilde (-) followed by an­
other user's login name. For instance, the word -kate maps to the absolute pathname
of user kate's home directory, as shown here:

% cd -kate <RETURN>
% pwd <RETURN>
% Ilice/kate

A special case of this notation consists of a tilde alone. The tilde is the default home
directory character. The shell expands this notation into the pathname of your home
directory. For example, the command

% Is -a - <RETURN>

lists all the files in your home directory. Likewise, the command

% cp thatfile - <RETURN>

expands to

4-7 Using the C Shell

% cp thatfile Ilyour _home_directorylthatfile

You may change this character by setting the shell variable homedirchar to some other 0
character. For example, to change the home directory character to a pound sign (#):

% set homedirchar = # <RETURN>

To revert to the default, unset homedirchar.

Note: If you use the DM environment variable NAME CHARS (see Chapter 1) to as­
sign DOMAIN naming server metameanings to the tilde, the naming server ex­
pands the tilde into the pathname of your home directory, followed by a slash.
It does not, however, expand the input -name into user name's home directory.
To pass the tilde to the naming server (rather than the C Shell), escape it.

The shell also has a mechanism that uses left and right brace characters ({ }) for ab­
breviating a set of words that have common parts but can't be abbreviated by other
mechanisms because they are not files (or are files that, while created by the program
being invoked, do not exist yet). This mechanism is described in a later section. C
4.1.9 Quotation
We have already described a number of the metacharacters used by the shell. These
metacharacters pose a problem in that we cannot use them directly as parts of words.
Thus, the command

% echo * <RETURN>

does not echo the asterisk (*). It either echoes a sorted list of all filenames in the cur­
rent working directory, or prints the message "No match" if no files exist in the work­
ing directory.

The recommended mechanism for placing a character that is neither a number, a digit,
slash, period, nor dash in an argument word to a command is to enclose it in single
quotes ('), as in the following example:

% echo ,*, <RETURN>

One special character, the exclamation point (0, is used by the history mechanism of
the shell and cannot be escaped by the normal means of placing it within single
quotes. The exclamation point and the single quote should be preceded by a single
backslash (\) to escape their special meaning. Thus,

% echo \'\! <RETURN>

prints

.. !

These two mechanisms let you include any printing character in an argument to a shell
command. They can be combined, as in

% echo \"*' <RETURN>

which prints

.. *

Using the C Shell 4-8

c

o

o

o

o

since the first backslash escaped the first single quote and the asterisk was enclosed in
single quotes.

Note: The DM environment variable NAMECHARS (see Chapter 1) may be used to
assign DOMAIN naming server metameanings to the tilde, grave accent, and
backslash. When used in a pathname component, then, these characters are in­
terpreted not as a literal, but according to the naming server's rules.

4.1.10 Terminating Commands
When you are executing a command and the shell is waiting for it to complete, there
are several ways you can force it to stop executing. For instance, if you type

% cat /etc/passwd <RETURN>

the system prints a list of all users of the system. This is likely to continue for several
minutes unless you stop it. You can send an INTERRUPT signal to the cat(l) com­
mand by typing t I.

Note: The DM command files for UNIX key definitions define t I as the UNIX inter­
rupt key. You must execute one of these command files for this definition to be
effective.

Since cat doesn't try to avoid or to otherwise handle this signal, the INTERRUPT ter­
minates cat. The shell notices its termination and prompts you again. If you hit IN­
TERRUPT again, the shell repeats its prompt since it is designed to effectively ignore
INTERRUPT signals.

Many programs terminate when they get an end-of-file from their standard input. The
mail program in an earlier example terminated when it received a tD (which generates
an end-of-file) from the standard input. The C Shell normally terminates when it re­
ceives an end-of-file. When this happens, the messages

% *** EOF ***
logout
*** Pad Closed ***

are left on the transcript pad and the window is closed. Since this means that typing
tD one too many times can accidentally log you out of a window, the shell has a

. mechanism for preventing this. This ignoreeof option is discussed in the next section.

If a command has its standard input redirected to come from a file, it normally termi­
nates when it reaches the end of this file. If you execute

% mail kate < prepared.text <RETURN>

the mail command terminates when it sees the EOF at the end of the file prepared.text
from which it is getting input. Another way to accomplish the same thing is to type

% cat prepared. text I mail kate <RETURN>

since the cat command then writes the text through the pipe to the standard input of
the mail command. When the cat command completes, it terminates, closing down the
pipeline, and the mail command receives an end-of-file from cat and terminates. You
can also stop these commands by typing t I.

4-9 Using the C Shell

If you write or run programs that are not fully debugged, it may be necessary to stop
them somewhat ungracefully. This can be done by typing tQ, which sends a QUIT sig-
nal. The shell displays the message 0

Quit

and the number (if any) of the job that quit.

Commands running in the background ignore INTERRUPT and QUIT signals. To stop
them, use the kiU(l) command (covered in a later section).

4.2 Starting, Stopping, and Modifying the C Shell
This section includes information on starting the C Shell and arranging for it to set
certain variables to convenient values every time you log in.

4.2.1 Opening a C Shell When You Log In
When you log in to a DOMAlN node, the DM looks in several places for information
about what windows to open and what processes to start (see Getting Started With Your
DOMAIN/IX System and the DOMAIN System Command Reference for more detailed in­
formation). It normally opens an AEGIS shell, then looks for the file

your _home_directory/user _data/startup _ dm.display _type

where display_type matches the type of display in use (e.g., 191 or color). If you in­
clude a command line such as this

(0,200)dr; (540,600) cp /bin/start_csh -n c_shell

in your startup_dm file, the DM automatically opens a C Shell when you log in.

You may also define a key or function key to open a C Shell. The following DM com­
mand defines the shifted L5 key - L5 is labeled <SHELL> - so that when you press
<SHIFf> <SHELL>, a C Shell is opened:

kd 15s cp /bin/start_ csh ke

Note: Since no /bin is named, the start_csh command comes from /$ (systype)/bin.

4.2.2 Login and Logout Scripts
When you log in, the C Shell sets the working directory to your home directory and be­
gins reading commands from a file . cshrc in this directory. Every C Shell started with
the command /bin/csh reads from this file. In addition, you may create a file called
.login in your home directory that the C Shell reads (after it reads .cshrc) if it is started
with the /bin/start_csh(l) command. Neither of these files is required. If neither exists,
the shell uses its own defaults.

Note: When you use the DM editor to create files, you aren't automatically named as
file owner. In fact, "<none>" is listed as owner. Thus, if you create your .cshrc r----\
or .login using the DM editor, you must also make yourself the owrier of these ,,-./1
files. Otherwise, they are not read. Although normally used to change file per-

Using the C Shell 4-10

o

o

o

o

o

missions, executing the chmod(l) command on the file (taking care to not really
change file permissions) also provides the DM with your name as file owner.
Actually, the command that is normally used to change ownership is chown(8) ,
but since its use is restricted to super-user, chmod is a reasonable substitute if
used correctly. If you insist on using chown to change file ownership, you may
use the sysS version taking care to supply the pathname /sysS/bin/chown, e.g.:

% /sysS/bin/chown user .cshrc <RETURN>

where user is the name of the user to whom you are assigning ownership.

As an example of a .cshrc file, consider the following listing:

set history= 10
set prompt='% '
set path = (.%/eom lusr/ueb Ibin lusr/bin leom)
set noclobber
set ignoreeof
set inproeess
set homedirehar='%'
alias cd 'ed \! * :Is'
alias 10 logout

This file begins with a series of set commands that the shell interprets directly. These
particular set commands establish the following conditions in the C Shell:

• The shell maintains a "history list" of the last 10 commands.

• The prompt is a percent sign followed by a space.

• The shell searches for a command in the following places, in this order:

current directory (.)

home_directory/com

lusr/ucb

Ibin

lusr/bin

leom

Note: The sysS version of the C Shell does not search /usr/ucb, because i~ is not
. included in the structure of the /sysS directory. Thus, if you're using

the sysS C Shell, and you've included /usrlucb in the path set in your
.cshrc, this subdirectory will be completely ignored by the shell.

• The variable noclobber is set, forcing the shell to notify you whenever you redirect
output into a file that already exists.

• The variable ignoreeof is set. The shell does not terminate (close the window or, if
you are using a terminal, log you off) when it receives an end-of-file from stan­
dard input.

4-11 Using the C Shell

• The variable inprocess is set, forcing in-process (rather than forked) execution of
commands. (The default value of inprocess is unset.) See more on inprocess below.

• The variable homedirchar is set to make the home directory character a percent
(%) rather than the default, tilde (-).

The next two commands are alias commands that, in effect, rename command se-
quences. Here, the c91)1mand cd is aliased to change to the specified directory, then .,',
list its contents. And, since the variable ignoreeof is set, the string "10" is defined as
having the alias logout, allowing the closing up of the shell window with a minimum
of typing.

Note: You may override noclobber if it is set by using the syntax

>!

For example, to overwrite the contents of a file named now with the current
date, you can do so even if noclobber is set. The command line

date >! now

does it. The ">!" is a special meta syntax indicating that clobbering the file is
allowed. Note that the space between the exclamation point the the now is criti­
cal here, as !now is an invocation of the history mechanism, and has a totally
different effect.

You can set inprocess as a DM environment ,variable. In fact, we recommend that you
do this if you plan to access DSEE-managed objects from the C Shell. In order to set
inprocess in the DM, put the following line in any DM command file read before the
C Shell is started (e.g., 'node_data/startup):

env INPROCESS 'true'

If inprocess is set in this way, the C Shell runs as if you had '''set inprocess" in your
.cshrc file. If an "env INPROCESS" line is not found (or is not set to 'true' or 'TRUE')
in a DM start-up file, the process model used by a shell is determined by the shell
variable inprocess. The C Shell will, by default, have inprocess unset. Note that the C
Shell does not export inprocess to the DM if you set it in your .cshrc or .login file(s).

4.2.3 Shell Variables
The shell maintains a number of variables. In the .cshrc file just shown, the variable
history had a value of 10. In fact, each shell variable has as its value an array of zero
or more strings. The set command assigns values to variables. Set has several fonns,
the most useful of which is

set name=value

Shell variables let you store values that can then be made available, via the substitu­
tion mechanism, to commands. The shell variables most commonly referenced are,
however, those to which the shell itself refers. By changing the values of these vari­
ables, you can directly affect the behavior of the shell.

One of the most important variables is path. It contains a sequence of directory names
where the shell searches for commands. If you execute the set command with no argu­
ments, the shell displays the values of all variables currently set.

Using the C Shell 4-12

c

c

o

o

o

o

o

Note: The shell examines each directory in the specified path and determines what
commands are contained there. Except for the current directory, which the shell
treats specially, this means that if commands are added to a directory in your
search path after you have started the shell, they are not necessarily found by
the shell. To use a command that has been added in. this way, type

% rehash <RETURN>

This command causes the shell to recompute its internal table of command loca­
tions, so that it finds the newly added command. Since the shell has to look in
the current directory for each command, placing rehash at the end of the path
specification works equally well and reduces overhead.

Other useful built-in variables are home, which shows your home directory, and cwd,
which contains your current working directory. Ignoreeof is one of several variables
capable of having no value other than unset or set. Thus, to set this variable, type

set ignoreeof

To unset it, type this:

unset ignoreeof

The variable noclobber is another "boolean" variable. It can only assume two states.

Note: Any newly-created process that takes its context from the process in which a
variable was defined and exported will recognize the variable. Existing processes
(or those created later) that don't take their context from the process in which a
variable was defined won't apply the variable.

4.2.4 History
The shell can maintain a history list into which it places the words of previous com­
mands. This history mechanism lets you reuse commands or words from them in form­
ing new ones. Use this mechanism to repeat commands or to correct minor typing mis­
takes in them. Here's how the C Shell's history mechanism is typically used:

4-13 Using the C Shell

% cat bug.e <RETURN>
main ()
{
printf ("hello) ;
}
% ee !$ <RETURN>
cc bug.c
"bug. c" ,
"bug. c",
% ed!$
ed bug.c

line 4:newline in string or char constant
line 5: syntax error

<RETURN>

29
4s/);/"&/p
printf ("hello") ;
w
30
q
% !e
cc bug.c
% a.out
hello% !e
ed bug.c
30

<RETURN>

<RETURN>

4s/lo/lo\\n/p
printf("hello\n");
w
32
q
% !e -0 bug <RETURN>
cc bug.c -0 bug
% size a.out bug <RETURN>
a.out: 2784+364+1028 = 4176b = Ox1050b
bug: 2784+364+1028 = 4176b = Ox1050b
% Is -I !* <RETURN>
Is -1 a.out bug
-rwxr-xr~x 1 kate 3932 Dec 19 09:41 a.out
-rwxr-xr-x 1 kate 3932 Dec 19 09:42 bug
% bug <RETURN>
hello
% Dum bug.e I spp <RETURN>
spp: Command not found.
% "spp"ssp <RETURN>
num bug.c I ssp
1 main ()
3 {
4 printf("hello\n");
5 }
% !! I prf <RETURN> .
num bug.c I ssp I prf

Using the C Shell 4--14

c

o

o

o

o

o

This example shows a very simple C program with some bugs. To begin, we use
cat(l) to print the file bug.c onto the screen. Then, we attempt to run the C compiler,
cc(l), referring to the file again as 1$, which is an invocation of the history mecha­
nism that means "use the last argument to the previous command." The exclamation
point is the metacharacter that invokes the history mechanism and the dollar sign
stands for the last (most recent) argument read by the shell. The shell echoes the com­
mand, as it would have been typed without using the history mechanism, and then
executes it.

Since the compilation yielded error diagnostics, we invoke the line editor, ed(l) to fix
the bug. Then the file is recompiled, this time referring to the cc command simply as
!c. The notation !x tells the shell to repeat the most recently submitted command that
begins with character x. If specificity is necessary (for example, if other commands
starting with c had been used recently), we can invoke the history mechanism by typ­
ing Icc. If further caution is needed, the form !cc:p prints the last command that
started with "cc," without appending the <RETURN> that executes it.

After this recompilation, a run of the resulting a.out file reveals that a bug still exists,
so we reinvoke the editor, and then the C compiler. This time, we add the -0 bug
switch to the cc command line, telling the compiler to place the resultant binary in the
file bug rather than a.out. In general, the history mechanisms may be used anywhere in
the formation of new commands, and other characters may be placed before and after
the substituted commands.

We then run the size(l) command to see how large the object files were, and then an
Is -1 command with the same argument list, denoting the argument list \/ *. Finally, we
run the bug program to see that its output was indeed correct.

To make a numbered listing of the program we run the num program on the file bug.c.
To remove blank lines in the output, we run it through the filter ssp, but misspell it as
spp. To correct this, we use a shell substitute, placing the old text and new text be­
tween caret C') characters. This is similar to the substitute command in the editor. We
then repeat the same command with II, but send its output to the line printer.

Note: On DOMAIN nodes, <AGAIN> is often defined to copy all text between the cur­
sor position and the next EOL into the "next input window." In fact, the DM's
cut-and-paste facilities may be more effective than the history mechanism in
certain situations. See Getting Started With Your DOMAIN/IX System and the DO­
MAINIIX Text Processing Guide for more on the DM's cut-and-paste facility.

You can repeat a command from the history list by other means. The history com­
mand prints out a number of previous commands accompanied by the numbers with
which they can be referenced. You can also refer to a previous command by searching
for a string that appeared in it. See csh(l) in the DOMAIN/IX Command Reference for a
complete description of these mechanisms.

4.2.5 Aliases
The shell has an alias mechanism that helps in transforming input commands. It can
be used to simplify the commands you type, to supply default arguments to com­
mands, or to do transformations on commands and their arguments. The alias mecha-

4-15 Using the C Shell

nism is similar to a macro facility. Some of the features obtained by aliasing can also
be obtained using shell command files, but these take place in another instance of the
shell and cannot directly affect the current shell's environment or involve commands
such as cd, which must be done in the current shell. For example, if you'd like the
command Is to always show sizes of files (Le, do -s), use the following alias:

% alias~~ -s <RETURN>

Or, you can create a "new" command called dir that does the same thing, by typing

% alias dir Is -s <RETURN>

Thus, the alias mechanism can be used to provide short names for commands, to sup­
ply default arguments, and to define new short commands in terms of other com­
mands. You can also define aliases that contain multiple commands or pipelines, show­
ing where the arguments to the original command are to be substituted using the facili­
ties of the history mechanism. For example, the alias for cd in our .cshrc example

% alias cd 'cd \!* ;Is' <RETURN>

causes the shell to automatically do an Is after every cd. We enclose the entire alias
definition in single quotes (') to prevent most substitutions from occurring and to pre­
vent the semi-colon (;) from being recognized as a metacharacter. The exclamation
point (!) here is escaped with a backslash (\) to prevent it from being interpreted when
the alias command is typed in. The '\! *' here substitutes the entire argument list to the
pre-aliasing cd command, without giving an error message if no arguments are sup­
plied. The semi-colon is used to indicate that one command is to be done first, fol­
lowed by the next. Similarly, the definition

% alias whois 'grep \!" letc/passwd' <RETURN>

defines a command which looks up its first argument in the password file.

Note: The C Shell reads the .cshrc file each time it is invoked. If you put many com­
mands there, shells tend to start slowly. We recommend that you limit the num­
ber of aliases in this file. Ten aliases cause no perceived delay. Fifty aliases
cause a noticeable delay in starting up shells, and make the system seem slug­
gish when you execute commands from within the editor and other programs.

4.2.6 More Redirection; » and >&
In addition to the standard output, commands also have a diagnostic output (or "error
output") that is normally directed to the screen even when the standard output is redi­
rected to a file or a pipe. If you need to redirect the diagnostic output to the same
place as you redirect standard output (e.g., if you want to redirect the output of a
long-running command into a file and need to have a record of any error diagnostics
produced while the command was running), use the notation

command >& file

The >& here tells the shell to route both the diagnostic output and the standard output
into file. Similarly, you can give the command

command 1& prf

Using the C Shell 4-16

01

c

C~

(~
"---"

o
to route both standard and diagnostic output through the pipe to the Icom/prf print
spooler.

Note: This notation can be used when noclobber is set and file already exists:

command >&! file

Finally, it is possible to use the form

command » file

to place output at the end of an existing file.

Note: If noclobber is set, an error results if file does not exist; otherwise, the shell
creates file if it doesn't exist. A form

command »! file

can be used if it's necessary to override noclobber's error message.

o 4.2.7 Background, Foreground, and Suspended Jobs

o

o

o

When one or more commands are connected via pipes or as a sequence, of commands
separated by semicolons, the shell creates a single job consisting of all commands so
connected. A single command without pipes or semicolons is, of course, the simplest
job. Usually, every line typed to the shell creates a job.

If you type the ampersand (&) metacharacter at the end of a command line, the job
generated by that command line is started as a background job. Thus, the shell does
not wait for it to complete but immediately prompts and is ready for another com­
mand. The job runs "in the background" at the same time that normal jobs, called
foreground jobs, continue to be read and executed by the shell one at a time. Thus,

% du > usage & <RETURN>

runs the duel) program, which reports on the disk usage of your working directory (as
well as any directories below it), puts the output into the file usage, and returns imme­
diately with a prompt for the next command without waiting for du to finish. The du
program continues executing in the background until finished, and the shell continues
accepting input from you. When a background job terminates, the shell types a mes­
sage before the next prompt, telling you that the job is completed. In the following ex­
ample, the du job finishes sometime during the execution of the mail(l) command. Its
completion is reported just before the prompt after the mail job is finished.

% du > usage & <RETURN>
[1] 503
% mail kate <RETURN>
How can I tell when a background job is finished?
bob

*** EOF ***
EOT
[1] - Done du > usage
%

If the job hadn't terminated normally, you might have gotten a message such as
"Killed". To have terminations of background jobs reported at the time they occur

4-17 Using the C Shell

(possibly interrupting the output of other foreground jobs), set the notify variable. If
you had done this for the previous example, the "Done" message might have appeared
in the middle of the message to kate. Background jobs are unaffected by any signals
from the keyboard (e.g., STOP, INTERRUPT, QUIT).

On DOMAIN systems, you can invoke a C Shell with or without the ability to suspend
and then restart a process, or move it into or out of the foreground. The C Shell's
ability to handle this kind of job control is determined by the state of the shell variable
inprocess, which may be set or unset. (You may also invoke a C Shell with inprocess
unset by including the -j switch on the csh or start_csh command line.) You can only
use the fg, bg, and stop commands if inprocess is unset.

Note: If you create a C Shell as a remote process by using the DOMAIN system crp
(create process) command, you won't have access to any of the job control fea­
tures, regardless of the setting of inprocess.

When inprocess is set (default condition), these limitations apply:

• Icom/tb always returns the message "no traceback available."

• Libraries loaded with the inlib command (built-in to the AEGIS Shell)
are unavailable to programs running in an environment where inprocess
is unset.

• Icom/las only lists the address space occupied by itself.

• Icom/lopstr shows only those streams that the C Shell has open.

Whether or not inprocess is set, information about all running jobs is recorded in a
table maintained by the C Shell. In this table, the shell stores the names, arguments,
and process numbers of all commands in the job. It also notes the working directory in
which the job was started. Each job in the table is either running in the foreground
with the shell waiting for it to terminate, running in the background, or suspended.

Only one job can be running in the foreground. Simultaneously, several jobs can be
either running in the background or suspended. As each job is started, it is given a
"job number." This number is used in conjunction with the commands below to sus­
pend or kill the job. The job number assigned to a job remains the same until the job
terminates, at which time the job number is available for reuse.

When a job is started in the background, the shell displays the job's number, as well
as the process numbers of all its (top level) commands. This job, for example,

% Is -s I sort -n > usage & <RETURN>
[2] 65 66
%

runs the Is program with the -s option, and pipes this output into the sort program
with the -n option which puts its output into the file usage. Since an ampersand ap­
pears at the ,end of the line, these two programs start together as a background job.
After starting the job, the shell prints the job number (e.g., 2) in brackets followed by
the job's process numbers, then prompts for a new command.

To suspend a foreground job, send a STOP signal to the shell process. If you invoke
the bsd4.2_keys key definitions, suspend is mapped to tZ. This sends a STOP signal to

Using the C Shell 4-18

o

c

o

o

o

o

o

the job that's currently running in the foreground. To suspend a background job, use
the stop command. When jobs are suspended, they merely stop any further progress
until started again, either in the foreground or the backgound. The shell notices when a
job stops and reports this fact, much like it reports the termination of background jobs.
For foreground jobs, this looks like

% du > usage <RETURN>
<tZ>
Stopped
%

The shell displays the "Stopped" message when it notices that a job (in this case, the
du program) has stopped. When you use the stop command on a background job, the
shell prints a slightly different message:

% sort usage & <RETURN>
[1] 23
% stop %1 <RETURN>
[1] + Stopped (signal) sort usage
%

Suspending foreground jobs can be very useful when you need to temporarily change
what you are doing (execute other commands) and then return to the suspended job.
Also, foreground jobs can be suspended, then continued as background jobs using the
bg command, allowing you to continue other work and stop waiting for the foreground
job to finish. In this sequence, we start du in the foreground, stop it before it finishes,
then continue it in the background:

% du > usage
<tZ>
Stopped
% bg
[1] du > usage &
%

<RETURN>

<RETURN>

All job control commands can take an argument that identifies a particular job. All job
name arguments must begin with a percent (%), since some of the job control com­
mands also accept process numbers. To get the numbers of all running or suspended
processes, use ps(l).

The default job (when no argument is given) is called the "current job" and is identi­
fied by a plus sign (+) in the output of the jobs command. When only one job is
stopped or running in the background, it is always the current job. No argument is
needed in this case. If you stop a jo.b running in the foreground, it becomes the cur­
rent job and the existing current job becomes the previous job, identified by a dash (-)
in the output of jobs. When the current job terminates, the previous job becomes the
current job.

When given, the argument to jobs is one of the following:

%- the previous job

%n where n is the job number

4-19 Using the C Shell

%pre!

%?string

where pre! is some unique prefix of the command name and arguments
of one of the jobs

where ~tring is a string found in only one of the command lines that set
up a job.

The jobs command lists the table of jobs, giving the job number, commands, and
status ("Stopped" or "Running") of each background or suspended job. With the -I
option, the process numbers are also given.

% du > usage &
[1] 33
% Is -s I sort -n > myfile &
[2] 34

<RETURN>

<RETURN>

% mail ers <RETURN>
<tZ>

o

Stopped
% jobs <RETURN> C
[1] - Running du > usage
[2] Running Is -s I sort -n > myfile
[3] + Stopped mail ers
% fg %Is <RETURN>
Is -s I sort -n > myfile
% more myfile <RETURN>

The fg moves a job into the foreground. If the job is suspended, it is restarted. If the ("
job is already running in the background, it continues to run, but becomes the fore- \,--../
ground job; consequently, it can accept signals or input from the terminal. In the above
example, we use fg to change the Is job from the background to the foreground since
we want to wait for it to finish before looking at its output file.

The bg command runs a suspended job in the background. It is usually used after
stopping the currently running foreground job with the STOP signal. The combination
of the STOP signal and the bg command changes a foreground job to a background
job. The stop command suspends a background job. C~'
The kill command terminates a background or suspended job immediately. In addition
to jobs, kill may be given process numbers as arguments. Thus, in the example above,
the running du command can be terminated as shown here:

% kill % 1 <RETURN>
[1] Terminated du > usage
%

The notify command (not the variable mentioned earlier) indicates that the termination
of a specific job should be reported at the time it finishes, instead of waiting for the
next prompt.

If a job running in the background tries to read input from the terminal, it is automati­
cally stopped. When such a job is then run in the foreground, input can be given to
the job. If desired, the job can be run in the background again until it requests input C~'
again. This is illustrated in the following sequence where the s (substitute) command
in the text editor might take a long time:

Using the C Shell 4-20

o

o

o

o

o

% ed bigfile <RETURN>
120000
1,$s/thisword/thatwordl <RETURN>
<tZ>
Stopped
% bg <RETURN>
[1] ed bigfile &
%

. . . some foreground commands . . .
[1] Stopped (tty input) ed bigfile
% fg <RETURN>
ed bigfile
w
120000
q
%

<RETURN>

<RETURN>

After we issue the s command, we stop the ed job with tZ, and then put it in the
background using bg. Some time later when the s command is finished, ed tries to
read another command and is stopped because jobs in the background cannot read
from the terminal. The fg command returns the ed job to the foreground where it can
once again accept commands from the terminal.

Note: The jobs command only prints jobs started in the currently executing shell. It
knows nothing about background jobs started in other shells. Use ps(l) to find
out about background jobs not started in the current shell.

4.2.8 Working Directories
The shell is always in a particular working directory. The "change directory" com­
mand, cd, changes the working directory of the shell. It's useful to make a directory
for each project you work on, then place all files related to that project in that direc­
tory. The "make directory" command, mkdir(l), creates a new directory. The "print
working directory" command, pwd(l), reports the absolute pathname of the working
directory of the shell, Le., the directory in which you are located. Thus, in this exam­
ple, we create the directory newdocs and then move to it:

% pwd
Ilice/kate

<RETURN>

% mkdir newdocs <RETURN>
% cd newdocs <RETURN>
% pwd <RETURN>
Ilice/kate/newdocs
%

No matter where you move to in a directory hierarchy, you can return to your "home"
directory by typing the cd command with no arguments:

% cd <RETURN>

The name .. ("dot dot") always means the directory above the current one. Thus,

4-21 Using the C Shell

% cd .. <RETURN>

changes the shell's working directory to the parent of (the directory immediately above) 0
the current directory. The name can be used in any pathname; thus,

% cd . .Iprograms <RETURN>

moves you to the directory programs contained in the directory above the current one.
If you have several directories for different projects under your home directory, this
shorthand notation makes it easier to switch between them.

The shell always remembers the pathname of its current working directory in the vari­
able cwd. The shell can also be requested to remember the previous directory when
you change to a new working directory. If the "push directory" command, pushd, is
used in place of the cd command, the shell saves the name of the current working di­
rectory on a directory stack before changing to the new one. You can see this list at
any time by typing the "directories" command dirs.

% pushd newpaper/references <RETURN>
%/newpaper/references -
% pushd lusrllib/tmac <RETURN>
lusr/lib/tmac -/newpaper/references -
% dirs <RETURN>
lusr/lib/tmac -/newpaper/references &
% popd <RETURN>
%/newpaper/references -
% popd <RETURN>
%
%

The list is printed in a horizontal line, reading left to right, with a tilde as shorthand
for your home directory. The directory stack is printed whenever more than one entry
is on it and it has changed. It is also printed by a dirs command. Dirs is usually faster

c

o

and more informative than pwd since it shows the current working directory, as well as C
any other directories remembered in the stack. /:,'

The pushd command with no argument alternates the current directory with the first
directory in the list. The "pop directory" command, popd, used without an argument,
returns you to the directory you were in prior to the current one, discarding the previ-
ous current directory from the stack (forgetting it). Typing popd several times in a se-
ries takes you backward through the directories you had been in (changed to) via the
pushd command. Other options to pushd and popd manipulate the contents of the di-
rectory stack and change to directories not at the top of the stack. See csh(l) in the
DOMAlNIIX Command Reference for details.

Since the shell remembers the working directory in which each job was started, it
warns you when it thinks you might be restarting a foreground job that has a different
working directory than the current working directory of the shell. Thus, if you start a
background job, change the shell's working directory, t?en bringfahbaCkgrOunld job i?to C)
the foreground,' the shell warns you that the working directory 0 t e current y running
foreground job is different from that of the shell.

Using the C Shell 4-22

o
% dirs -I
Ilice/kate
% cd myproject
% dirs
%/myproject
% ed prog.c
1143
<tZ>
Stopped
% cd ..
% Is
myproject
textfile
% fg
ed prog.c

<RETURN>

<RETURN>
<RETURN>

<RETURN>

<RETURN>
<RETURN>

<RETURN>
(working dir is: -Imyproject) o This way the shell warns you of an implied change of working directory, even though

no cd command was issued. In our example, the ed job is still in licelkatelmyproject
even though the shell changes to licelkatel. A similar warning is given when such a
foreground job terminates or is suspended (using the STOP signal) since a return to
the shell implies a change of working directory.

o

o

o

% fg <RETURN>
ed prog.c
. . . after some editing
q <RETURN>
working dir is now: -
%

(working dir is: -Imyproject)

These messages are sometimes confusing if you use programs that change their own
working directories, since the shell assumes that a job stays in the same directory
where it started. The -I option of jobs types the working directory of suspended or
background jobs when it is different from the current working directory of the shell.

4.2.9 Useful Built-In Commands
We now describe some useful built-in shell commands and explain their usage.

The alias command is used to assign new aliases and to show existing aliases. With no
arguments, it prints a list of the current aliases. With a single argument, such as

% alias Is <RETURN>

alias shows the current alias for that argument (Le., Is).

The echo command prints its arguments. It is often used in shell scripts or as an inter­
active command to see what filename expansions produce.

The history command shows the contents of the history list. The numbers given with
the history events help to reference previous events that are difficult to reference using
the contextual mechanisms introduced above. Also, a shell variable called prompt tells
the C Shell to use a specific character or string as the prompt. Thus, if you type

4-23 Using the C Shell

---------------------------- ----

% set prompt='\! %' <RETURN>

the shell prepends the number of the current command in the history list to the per- 0
cent sign. Note that the exclamation point had to be escaped here even within single
quotes (').

The logout command can be used to terminate a login shell in which ignoreeof is set.

The rehash command causes the shell to recompute a table of command locations.
You must use rehash if you add a command to a directory in the current shell's
search path. If a command isn't in the search path when the hash table is computed,
the shell probably won't know that it exists.

The repeat command can be used to repeat a command several times. Thus, to make
five copies of the file one in the file five, you could do this:

% repeat 5 cat one »five <RETURN>

The setenv command can be used to set variables in the C Shell environment. Thus, C'
setenv TERM vt100

sets the value of the environment variable TERM to "vt100". To print out the environ­
ment, use printenv as shown here:

% printenv <RETURN>
USER=kate
LOGNAME=kate
PROJECT=none
ORGANIZATION=doc
NODEID=1054
PATH=:-com:/usr/ucb:/bin:/com:/usr/bin
SYSTYPE=bsd4.2
TERM=apollo_19L
NODETYPE=DN300
TZ=EST5EDT
HOME=llice/kate

The source command forces the current shell to read commands from a file. Thus, use

source . cshrc

after making a change to the.cshrc file to have the change take effect immediately.
The unalias command cancels aliases. Unset removes shell variables, and unsetenv
removes environment variables.

4.3 Shell Control Structures and Shell Scripts
This section describes how to place commands in special files ("shell scripts") that in­
voke shells for reading and executing commands.

Using the C Shell 4-24

c

o

o

o

o

o

4.3.1 Invocation and the "argv" Variable
To run a C Shell script, you may type

% csh scriptname args <RETURN>

where scriptname is the name of the file containing a group of csh commands and args
denotes a a sequence of optional arguments. The shell places these arguments in the
variable argv and then begins to read commands from the script. These arguments
placed in argv are made available as if they were ordinary shell variables. If you make
the file scriptname executable by typing

% chmod 755 scriptname <RETURN>

and place the line

I/bin/csh

as the first line of the file scriptname, a C Shell is automatically invoked to execute
scriptname when you type

scriptname

In general, you should always start a shell script with a line of the the form

Ishell

where shell is the name of the shell that is to execute the script. Legal shells are:

Ibin/csh

Ibin/sh

Icom/sh

the C Shell

the Bourne shell

the AEGIS shell

If the file does not begin with a pound sign (#), the shell in which you invoked the
script tries to execute it, with unpredictable results.

4.3.2 Variable Substitution
After each input line is broken into words and history substitutions are made, the input
line is parsed into distinct commands. Before each command is executed, the shell
does variable substitution on these words. Variable substitution is keyed by the dollar
sign ($), and is a procedure by which the shell replaces the names of variables by
their values. Thus,

echo $argv

when placed in a command script causes the current· value of the variable argv to be
echoed to the output of the shell script. It is an error for argv to be unset at this point.

The C Shell provides a number of notations for accessing components and attributes of
variables. The notation

$?name

expands to 1 if name is set and to 0 otherwise. It is the fundamental mechanism used
for checking whether particular variables have been assigned values. All other forms of
reference to undefined variables cause errors.

4-25 Using the C Shell

The notation

$#name

expands to the number of elements in the variable name. To illustrate this, consider
the following:

% set argv=(a b c) <RETl)RN>
% echo $?argv <RETURN>
1
% echo $#argv <RETURN>
3
% unset argv <RETURN>
% echo $?argv <RETURN>
0
% echo $argv <RETURN>
undefined variable: argv.
%

It is also possible to access the components of a variable that has several values. Thus,
this gives the first component of argv or in the example above a:

$argv[1]

Similarly,

$argv[$#argv]

gives c, and

$argv[1-2]

gives a b. Other notations useful in shell scripts are

$n

where n is an integer as a shorthand for

$argv[n]

the nth parameter and

$*

which is a shorthand for

$argv

The form $$ expands to the process number of the current shell. This process number
is unique in the system, and can be used in generation of unique temporary filenames.
The form $< is replaced by the next line of input read from the shell's standard input
(not the script it is reading). This is useful for writing shell scripts that are interactive,
reading commands from the terminal, or even writing a shell script that acts as a fil­
ter, reading lines from its input file. Thus, the sequence

#!/bin/csh

echo 'yes or no?\c'
set a=($<)

Using the C Shell 4-26

o

c

c

o

o

o

o

o

writes out the prompt yes or no? without a newline and then reads the answer into the
variable a. In this case, $#a is 0 if either a blank line or end-of-file (tD) is typed.

For compatibility with the way older shells handled parameters,

$argv[n]

yields an error if n is not in the range

1-$#argv

while $n never yields an out-of-range subscript error. It is never an error to give a
subrange of the form

n-

If the given variable has less than n components, no words are substituted. A range of
the form

m-n

returns an empty vector without giving an error when m exceeds the number of ele­
ments of the given variable, provided the subscript n is within range.

4.4 Expressions
It's important to be able to evaluate expressions in the shell based on the values of
variables. All the arithmetic operations of C are available in the shell with the same
precedence that they have in C. In particular, the operations == and != compare strings
and the operators && and II implement the boolean and/or operations. The special op­
erators =- and ! - are similar to == and != except that the string on the right side can
have pattern matching characters (e.g., ., ?, or [D, and the test is whether the string
on the left matches the pattern on the right.

The shell also allows file inquiries of the form

-? filename

where the question mark is replaced by a number of single characters. For instance,
the expression primitive

-e filename

tells whether the file filename exists. Other primitives test for read, write, and execute
access to the file, whether it is a directory, or has non-zero length. You can test
whether a command terminates normally, by a primitive of the form

{command}

which returns true (Le., 1) if the command succeeds (exits normally with exit status
0), or 0 if the command terminates abnormally or with exit status non-zero. If you
need more detailed information about the execution status of a command, execute it,
then examine the $status variable.

Note: Since $status is set by every command, you must save a particular command's
$status if you can't examine it immediately following the command's execution.

4-27 Using the C Shell

4.4.1 A Sample Shell Script

The following shell script, called copyc, uses the C Shell's expression mechanism and n
some of its control structures: '-...-/'

I/bin/csh
Copyc copies those C programs in the specified list
to the directory -backup if they differ from the files already in -backup

set noglob
foreach i ($argv)

if ($i 1- * .c) continue # not a .c file so do nothing

if (I -r -backup/$i:t) then
echo $i:t not in backup ... not cp\'ed
continue
endif

cmp -s $i -backup/$i:t # to set $status

if ($status 1= 0) then
echo new backup of $i
cp $i -backup/$i:t

c

endif
end C

This script uses the foreach command, which causes the shell to execute the com-
mands between the foreach and the matching end for each of the values given be-
tween the left and right parentheses with the named variable (Le., i set to successive
values in the list). Within this loop, you may use the command break to stop executing
the loop and continue to prematurely terminate one iteration and begin the next. After
the foreach loop the iteration variable (i in this case) has the value it was assigned at
the last iteration. C
Here, we set the variable noglob to prevent filename expansion of the members of
argv. This is recommended if the arguments to a shell script are filenames that have
already been expanded or if arguments may contain filename expansion metacharac-
ters. You can also quote each use of a dollar sign variable expansion, though this is
rather tedious.

The other control construct used here is a statement of the form

if (expression) then
command

endif

Note: The placement of the these keywords is not flexible. The following two formats C
are unacceptable to the C Shell:

Using the C Shell 4-28

--------- -~----~-----------------------------

o

o

o

o

o

#this won't work
if (expression)
then
command

endif

#nor will this
if (expression) then command endif

The shell does have another form of the if statement:

if (expression) command

For the sake of appearance, this can be written with an escaped newline:

if (expression) \
command

The command must not involve a pipe (I), ampersand (&), or semi-colon (;). It must
not be another control command. In the second form, the final backslash (\) must im­
mediately precede the end-of-line.

The more general if statements above also admit a sequence of else-if pairs followed
by a single else and an endif, as shown here:

if (expression) then
commands
else if (expression) then
commands

else
commands
endif

Another important mechanism used in shell scripts is the colon (:) modifier. We can
use the modifier :r here to extract a root of a filename, or :e to extract the extension.
Thus, if the variable i has the value /mnt/foo.bar, then

% echo $i $i:r $i:e <RETURN>
Imnt/foo.bar Imnt/foo bar
%

shows how the :r modifier strips off the trailing .bar and the the :e modifier leaves
only the bar. Other modifiers take off the last component of a pathname and leave the
head :h, or all but the last component of a pathname and leave the tail :t. (These
modifiers are fully described under csh(l) in the DOMAINIIX Command Reference.) You
can also use the command substitution mechanism, described in the next major sec­
tion, to perform modifications on strings.

Note: The C Shell allows only one colon modifier on a dollar sign substitution. Thus,
this doesn't produce the results that one would otherwise expect:

% echo $i $i:h:t <RETURN>
la/b/e la/b:t
%

4-29 Using the C Shell

Finally, we note that the pound sign (#) lexically introduces a shell comment in shell
scripts (but not from the terminal). All subsequent characters on the input line after a Ci
pound sign are discarded by the shell. This character can be quoted using a single
quote (') or backs lash (\) to place it in an argument word.

4.4.2 Other Control Structures
The shell also has control structures while and switch similar to those of C. These
take the' forms

and

while (expression)
commands
end

switch (word)

case str1:
commands
breaksw

case strn:
commands
breaksw

default:
commands
breaksw

endsw

Note: The C Shell uses breaksw to exit from a switch, while break exits a while or

C)

foreach loop. A common mistake in C Shell scripts is the use of break rather (~
than breaksw in switches. \'----"'.

Finally, csh allows a goto statement, with labels that look the same as they do in C:

loop:
commands
gata loop

4.4.3 Supplying Input to Commands
By default, commands run from shell scripts receive the standard input of the shell
that is running the script. This allows shell scripts to participate in pipelines, but man­
dates extra notation for commands that are to take in-line data.

Thus, we need a metanotation for supplying in-line data to commands in shell scripts. (\
As an example, consider this script that runs the editor to delete leading blanks from \ __ //
the lines in each argument file:

Using the C Shell 4-30

o

o

#l/bin/csh
deblank, a script to remove leading blanks
foreach i ($argv)
ed - $i « 'EOF'
1 ,$s/" [] * II
w
q
'EOF'
end
0/0

The « 'EOP' notation means that the standard input for the ed command is to come
from the text in the shell script file up to the next line consisting of exactly the 'EOP'
itself. The fact that the EOP is quoted causes the shell to forego variable substitution
on the intervening lines. In general, if any part of the word following the "«" that the
shell uses to terminate the text to be given to the command is quoted, then variable
substitutions are not performed. In this case, since we used the form "1,$" in our edi­
tor script, we needed to ensure that this dollar sign did not trigger a substitution.We
could also have ensured this by preceding the dollar sign here with a backslash, i.e.,

1,\$s/t[] * II

but quoting the EOP terminator is a more reliable way of achieving the same result.

o 4.4.4 Catching Interrupts

o

o

If your shell script creates temporary files, you may wish to catch interruptions of the
shell script so that you can clean up these files. To do this, use the construct

onintr label

where label is a label in the program. If an interrupt is received, the

shell does a "goto label. " You can then remove the temporary files and use exit (built
in to the shell) to exit the shell script. To exit with a non-zero status, type

exit(1)

to exit with status 1.

4.4.5 Additional Options
Other features of the shell are useful to writers of shell procedures. The verbose and
echo options and the related -v and -x command line options can help trace the ac­
tions of the shell. The -n option causes the shell to read commands but not to execute
them, something which may be useful during debugging.

The double quote (") mechanism allows only some of the expansion mechanisms dis­
cussed thus far to occur on the quoted string, and serves to make this string into a sin­
gle word as a single quote (') does.

4-31 Using the C Shell

4.5 Other Shell Features
The C Shell features discussed in this section are less commonly used. In particular Ci
circumstances, it may be necessary to know the exact nature and order of different
substitutions performed by the shell. The precise meaning of certain combinations of
quotations is also important at times. Furthermore, the shell has many command line
option flags mostly used in the writing of UNIX programs, and debugging of shell
scripts. See csh(l) in the DOMAIN/IX Command Reference for more information.

4.5.1 Loops at the Terminal; Variables as Vectors
Occasionally, the foreach control structure may be used at a terminal to aid in per­
forming a number of similar commands. For instance, to count the number of files in
several directories (dir 1, dir2, and dir3) that had the characters" .TS" or ".EO" at the
beginning of a line, you could use several command lines:

% grep -c '''\.TSI.EQ' dirt <RETURN>
3
% grep -c '''\.TSI.EQ' dir2 <RETURN>
5
% grep -c '''\.TSI.EQ' dir3 <RETURN>
6

or you could use foreach to do this more easily:

% foreach i ('dirt', 'dir2' 'dir3') <RETURN>
? grep -c '''\.TSI.EQ' $i <RETURN>
? end <RETURN>
3
5
6
%

C

c

Here, the shell prompts for input with a question mark (?) when reading the body of ~
the loop. Variables containing lists of filenames or other words are also useful in \,._'-"
loops. You can, for example, do the following:

% set a=('ls ')
% echo $a
csh.n csh.rm
% Is
csh.n
csh.rm
% echo $#a
2

%

<RETURN>
<RETURN>

<RETURN>

<RETURN>

The set command here gave the a variable a list of all the filenames in the current di­
rectory as value. You can then iterate these names to perform any chosen function.

The output of a command within backquotes (') is converted by the shell to a list of
words . You can also place the backquoted string within double quotes to take each

Using the C Shell 4-32

.----_._-----------

c

o

o

o

(non-empty) line as a component of the variable; preventing the lines from being split
into words at blanks and tabs. A modifier :x can be used later to expand each compo­
nent of the variable into another variable splitting it into separate words at embedded
blanks and tabs.

4.5.2 Braces { ... } in Argument Expansion
Another form of filename expansion involves the brace characters ({ }), which specify
that the delimited strings separated by a comma (,) are to be consecutively substituted
into the containing characters and the results expanded left to right. Thus,

A{str1 ,str2, ... strn}B

expands to

Astr1 B Astr2B ... AstrnB

This expansion occurs before the other filename expansions,and may be applied re­
cursively (nested). The results of each expanded string are sorted separately, left to
right order being preserved. The resulting filenames need not exist if no other expan­
sion mechanisms are used. This means that this mechanism can be used to generate
arguments that are not filenames, but have common parts. For example,

% mkdir -/{hdrs,retrofit,csh} <RETURN>

makes subdirectories hdrs, retrofit, and csh in your home directory. This is most useful
when the common prefix is longer than shown in this example, i.e.,

chown root /usr/{ucb/{ex,edit},lib/{ex??* ,how_ex}}

4.5.3 Command Substitution
A command enclosed in backquotes (') is replaced, just before filenames are ex­
panded, by the output from that command. Thus, you may type

% set pwd='pwd' <RETURN> o to save the current directory in the variable pwd, or

o

% ex 'grep -I TRACE * .c' <RETURN>

to run the editor eX(1), supplying as arguments filenames ending in .c that have the
string TRACE in them.

Note: Command expansion also occurs in input redirected with "«" and within dou­
ble quoted (") notations. See the DOMAIN/IX Command Reference for details.

4.6 Summary of C Shell Metacharacter~
This section lists the metacharacters recognized by the C Shell. Many of these charac­
ters also have special meaning in expressions. See the information on csh(l) in the
DOMAIN/IX Command Reference for a complete list.

Note: If you use the DM environment variable NAME CHARS (see Chapter 1) to as­
sign DOMAIN naming server metameanings to tilde, grave accent, or backslash

4-33 Using the C Shell

-- and you use one of those characters (escaped) in a pathname component -­
the character is interpreted not as a literal, but according to the naming server's
rules.

4.6.1 Syntactic
Separates commands to be executed sequentially

Separates commands in a pipeline

() Brackets expressions and variable values

& Follows commands to be executed in background

4.6.2 Filename
I Separates components of a file's pathname

?

*
[]

{ }

Separates root parts of a filename from extensions

Expansion character matching any single character

Expansion character matching any sequence of characters

Expansion sequence matching any single character from a set

Used at the beginning of a filename to indicate home directories

Specifies groups of arguments with common· parts

4.6.3 Quotation
\ Prevents metameaning of following single character

Prevents metameaning of a group of characters

" Like a single quote ('), but allows variable and command expansion

4.6.4 Input/Output
< Indicates redirected input

> Indicates redirected output

4.6.5 Expansion/Substitution
$ Indicates variable substitution

t

Indicates history substitution

Precedes substitution modifiers

Used in special forms of history substitution

Indicates command substitution

Using the C Shell 4-34

c

4.6.6 Miscellaneous

o # Begins shell comment

Prefixes option (flag) arguments to commands

% Prefixes job name specifications

o

o

o

o
4-35 Using the C Shell

o

o

o

o

o

o

5.1 Introduction

Chapter

Using the BSD4.2
Mail Program

5

Mail gives DOMAINIIX users a simple way to communicate with other users of their
DOMAIN system, or with users at other sites to which their DOMAIN system can con­
nect (e.g., via ARPANET or USENET). The Mail program divides incoming mail into
its constituent messages and lets you deal with these messages in any order. In addi­
tion, Mail provides a set of editing commands for preparing messages, building mail­
ing lists, and sending mail.

The Mail program we describe in this chapter is the one included with the bsd4.2 ver­
sion of DOMAINIIX software. It resides in the Ibsd4.2lusrlucblMail file. The sys5 ver­
sion has its own mail program, Ibinlmail. It is described in the DOMAINIIX Command
Reference for System V under mail(l). Before reading this chapter, you should take the
time to become familiar with a UNIX shell, any of the available text editors, and some
of the common UNIX commands.

The bsd4.2 mail system accepts incoming messages for you from other people and col­
lects them in a file, called your system mailbox. When you log in, the system tells you
if there are any messages waiting in your system mailbox. If you are a C Shell user,
you can request that the shell notify you of the arrival of new mail, but the shell must
know where to find your mailbox. Your system mailbox is located in the directory lusrl
spool/mail in a file with your login name. If your login name is sam, you can make
csh(l) notify you of new mail by including the following line in your .cshrc file:

set mail=/usrlspool/mail/sam

5-1 Using the BSD4.2 Mail Program

When you read your mail using Mail, it reads your system mailbox and separates that
file into the individual messages that have been sent to you. You can then read, reply
to, delete, or save these messages. Each message includes the name of the sender and 0
the date on which it was sent.

5.1.1 Sending Mail
To send a message to a user whose login name is root, use the shell command:

% Mail root <RETURN>

then type your message. When you reach the end of the message, hit <RETURN> and
then an EOF (End Of File), usually mapped to tZ. The DM (Display Manager) echoes

*** EOF ***

and sends an End-of-File signal to Mail. This causes Mail to echo

EOT

and return you to the shell.

Note: This chapter assumes that, if you are using a DOMAIN node, the sequence tZ
is mapped to the DM command eef (insert End-Of-File). As noted above, when
you type the key mapped to eef, the DM echoes the string

*** EOF ***

and sends an End-Of -File to the shell, which p~sses it along to Mail.

The next time the person to whom the message was addressed logs in, this message
appears in the shell transcript pad:

You have mail.

If, while composing a message, you decide not to to send it after all, you can kill it
with an INTERRUPT signal (tl). Typing a single tl causes Mail to display the message

(Interrupt -- one more to kill letter)

Typing a second tl causes Mail to save your partial letter on the file dead.letter in your
home directory and to abort the letter. Once you've sent mail to someone, it isn't easy
to cancel the message.

The message your recipient reads consists of the message you typed preceded by a line
telling them who sent the message (your login name) and the date and time sent. To
send the same message to others, list their login names on the Mail command line.
For example, this sends the reminder to users sam, bob, and john:

% Mail sam bob john <RETURN>
Tuition fees are due next Friday. Don't forget!!
<tZ>

EOT
%

EOF ***

Using the BSD4.2 Mail Program 5-2

c

c

o

o

o

o

o

5.1.2 Receiving Mail
If, when you log in, you see this message

You have mail .

you can read the mail simply by typing the following:

% Mail <RETURN>

Mail responds by displaying its version number and date and then listing the messages
you have waiting. Then, it displays a prompt and awaits your command. The messages
are numbered starting with 1, and you must refer to a specific message by its number.
Mail keeps track of which messages are new (received since you last read your mail)
and read (have been read by you). New messages are marked with an N in the header
listing, and old (but unread) messages are marked with a U. Mail tracks new/old and
read/unread messages by putting a header field called Status into your messages.

To look at a specific message, use the type command (you cart abbreviate it to t). For
example, if you have the following messages:

N 1 root
N 2 sam

Wed Sep 21 09:21 "Tuition fees"
Tue Sep 20 22:55

you can examine the first message by giving this command:

type 1 <RETURN>

which causes Mail to display:

Message 1:
From root Wed Sep 21 09:21:45 1978
Subject: Tuition fees
status: R

Tuition fees are due next wednesday. Don't forget!!

Many Mail commands that operate on messages take a message number as an argu­
ment, in the manner of the type command. For these commands, there is a notion of
a current message. When you enter the Mail program, the current message is initially
the first one. Thus, you can often omit the message number and use the abbreviated
form of the type command. For example, this types the current message:

t <RETURN>

As a further shorthand, you can type a message by simply giving its message number.
Hence, this types the first message:

1 <RETURN>

Suppose you want to read the messages in your mailbox in order, one after another.
You can read the next message in Mail by simply hitting <RETURN>. As a special
case, you can type a newline as your first command to Mail to type the first message.

If, after typing a message, you want to immediately send a reply, use the reply com­
mand. Reply, like type, takes a message number as an argument. Mail then begins a
message addressed to the user who sent you the "current message." You may type

5-3 Using the BSD4.2 Mail Program

your letter in reply, followed by a tZ at the beginning of a line, as before. Mail ech­
oes "EOT", then types the ampersand prompt to indicate its readiness to accept an-
other command. In our example, if, after typing the first message, you wished to reply 0
to it, you might give the command:

reply <RETURN>

Mail responds by printing

To: root
Subject: Re: Tuition fees

and waiting for you to enter your letter. You're now in the message collection mode
described earlier. Mail gathers up your message until you terminate the message by
typing tZ. Note that it copies the subject header from the original message. This is
u~eful in that corre~pondence about a particular matter tends to retain the same sub­
ject heading, making it easy to recognize. If there are other header fields in the mes-
sage, the information in them is also used. For example, if a letter has a To: header C
that lists several recipients, Mail arranges to send your reply to the same people as ,
well. Similarly, if the original message contains a Cc: (carbon copies to) field, Mail
sends your reply to all those users, too. Mail normally doesn't send the message to
you, even if your name appears in the To: or Cc: field, unless you explicitly ask to be
included. We cover this subject in more detail later.

After typing in your letter, the dialog with Mail might look like this:

reply <RETURN>
To: root
Subject: Tuition fees

Thanks for the reminder
*** EOF ***
EOT
&

The reply command (abbreviated to r) is especially useful for sustaining extended con­
versations over the message system, with other "listening" users receiving copies of the
conversation.

At times, you may receive a message that was sent to several people and want to reply
only to the person who sent it. Reply with a capital R does the trick.

While reading your mail, you can send a new message (not a reply) to someone with
the mail command (which can be abbreviated to m). It use the names of the intended
recipients as arguments. Thus, to send a message to frank, specify the following:

mail frank <RETURN>
This is to confirm our meeting next Friday at 4.
<tZ>

EOT
&

EOF ***

Using the BSD4.2 Mail Program 5-4

C~

c

('
\"---~

o

o

o

o

o

Normally, each message you receive is saved in the file mbox in your login directory at
the time you leave Mail. To avoid saving a message in mbox, use the delete command:

delete 1 <RETURN>

This prevents Mail from saving message 1 (from root) in mbox. Besides not saving de­
leted messages, Mail doesn't let you type them, either. Thus, deleted messages disap­
pear altogether, along with their message numbers. The delete command can be abbre­
viated to simply 'd.

Use the set command to tailor many features of Mail.. This command has two forms,
depending on whether you are setting a binary option or a valued option. Binary op­
tions are either on or off. For example, the ask option informs Mail that, each time
you send a message, you want it to prompt for a subject header to be included in the
message. To set the ask option, type

set ask <RETURN>

Another useful Mail option is hold. By default, Mail moves the messages from your
system mailbox to the file mbox in your home directory when you leave Mail. If you
want Mail to keep your letters in the system mailbox instead, set the hold option.

Valued options set numeric or string values that Mail uses to adapt to your tastes. For
example, the SHELL option tells Mail which shell you like to use, specifying

set SHELL=/bin/csh <RETURN>

for example. (Note that no spaces are allowed in the command line.) A complete list
of the Mail options appears at the end of this chapter.

Another important valued option for terminal users is crt. If you use a fast video ter­
minal, you may find that when you print long messages, they scroll by too quickly for
you to read them. With the crt option, you can make Mail print any message larger
than a given number of lines by sending it through the well-known file perusal filter
called more{l). For example,

set crt=24 <RETURN>

pipes any message longer than 24 lines through more.

Note: The crt option is' unnecessary when using Mail on a DOMAIN node, since
scrolling back through the message transcript may be done at leisure.

Mail also provides "aliases", names that stand for one or more real user names. Mail
sent to an alias is actually sent to the list of real users associated with the alias. For
example, an alias can be defined for the members of a project, so that you can send
mail to the whole project by sending mail to just a single name. The alias, command in
Mail defines an alias. Suppose that the users in a project are named Susan, Sally,
Sam, and Steve. To define an alias called project for them, use

alias project susan sally sam steve <RETURN>

The alias command can also be used to provide a convenient name for someone whose
user name is inconvenient. For example, if a user named Cindy Walukiewicz has the
login name walukiewicz _ c, use

5-5 Using the BSD4.2 Mail Program

alias walukiewicz _ c cindy <RETURN>

to avoid typing (and probably misspelling) the longer name walukiewiez_e.

You may create a special file of aliases and options that are placed in effect automati­
cally every time you invoke Mail. When Mail is invoked, it first reads a system-wide
file lusrllibIMait.re, and then a user-specific file, .maitre (found in your home direc-
tory). The system-wide file is maintained by the system administrator and contains set
commands that are applicable to all system users. You may create a .maitre file, set
options, and define individual aliases. A typical .maitre file might look like this:

set ask nosave SHELL=/bin/csh

As you can see, you can set many options in the same set command. The nosave op­
tion is described in another section.

Mail. aliasing is implemented at the system-wide level by the mail delivery system
sendmail(8). (See System Administration for DOMAINIIX BSD4.2 for further details con­
cerning sendmail.) These aliases are stored in the lusrlliblaliases file and are accessible
to all users of the system. The lines in this file have the form:

alias: name1, name2, name3

where alias is the mailing list name and namel, name2, and name3 are the members of
the list. Continue long lists onto the next line by starting the next line with a space or
tab. Remember that you must execute the shell command newaliases after editing lusrl
liblaliases since the delivery system uses an indexed file created by newaliases.

Specifying the -f flag on the command line causes Mail to read messages from a file
other than your system mailbox. For example, if you have a collection of messages in
the file letters, you can use Mail to read them:

% Mail -f letters <RETURN>

You can use all the Mail commands described in this document to examine, modify,
or delete messages from the file letters, which is rewritten when you leave Mail with
the quit command described below.

Since mail that you read is saved in the file mbox in your home directory by default,
you can read mbox in your home directory by simply using

% Mail -f <RETURN>

Normally, messages that you examine using the type command are saved in the file
mbox in your home directory if you leave Mail with the quit command described be­
low. To retain a message in your system mailbox, you can use the preserve command
to tell Mail to leave it there. The preserve command accepts a list of message num­
bers, just like type and may be abbreviated to pre.

Messages in your system mailbox that you don't examine are normally retained in your
system mailbox. To have such a message saved in mbox without reading it, use the
mbox command. For example,

mbox 2 <RETURN>

o

c

c

causes the second message (from sam) to be saved in mbox when the quit command is C'
executed. Mbox is also the way to direct messages to your mbox file if you have set
the hold option described above. Mbox can be abbreviated to mb.

Using the BSD4.2 Mail Program 5-6

o

o

o

o

o

You can leave Mail with the quit command (which can be abbreviated to q). It saves
the messages you have read (typed), but not deleted in the file mbox in your login di­
rectory. Deleted messages are discarded irretrievably, and messages left untouched are
preserved in your system mailbox so that you see them the next time you type:

% Mail <RETURN>

To leave Mail without altering either your system mailbox or mbox, type the x com­
mand (short for exit), which immediately returns you to the shell without changing
anything.

To execute a shell command without leaving Mail, type the command preceded by an
exclamation point, just as in the' vi text editor. For example,

!date <RETURN>

displays the current date without leaving Mail.

Finally, the help command prints. out a brief summary of the Mail commands, using
only the single character command abbreviations.

5.2 Maintaining Folders
Mail includes a simple facility for maintaining groups of messages together in folders.
To use it, you must tell Mail where you wish to keep your folders. Each folder of
messages is a single file. For convenience, all of your folders are kept in a single di­
rectory of your choosing. To tell Mail where your folder directory is, put a line of the
following form· in your .mailrc file:

set folder=letters

If your folder directory does not begin with a slash (/), Mail looks for the folder direc­
tory starting from your home directory. Thus, if your home directory is /usr/joe, the
above example told Mail to find your folder directory in /usr/joelletters.

Anywhere a filename is expected, you can use a folder name, preceded with a plus
sign (+). For example, to put a message into a folder with the save command, use:

save +letters <RETURN>

to save the current message in the letters folder. If the letters folder doesn't yet exist,
it is created. Note that messages retained with the save command are automatically
removed from your system mailbox.

To put a copy of a message in a folder without causing that message to be removed
from your system mailbox, use the copy command, which is identical in all other re­
spects to the save command. For example, this copies the current message into the let­
ters folder and leaves a copy in your system mailbox:

copy +letters <RETURN>

You may use the folder command to direct Mail to the contents of a different folder.
This, for example, directs Mail to read the contents of the letters folder:

folder +letters <RETURN>

5-7 Using the BSD4.2 Mail Program

All commands that you can use on your system mailbox, including type, delete, and
reply, also apply to folders. To inquire which folder you are currently editing, simply 0
use this command:

folder <RETURN>

To list your current set of folders, use the folders command.

To start Mail reading one of your folders, you can use the -f option described above.
For example, this causes Mail to read your classwork folder without looking at your
system mailbox:

% Mail -f +classwork <RETURN>

5.3 Tilde Escapes
While typing in a message, it helps to be able to invoke a text editor on the partially­

cfomp.osedMm:lssage, .dPrinththe messba?l~'. exehcute a
h

s~ledll command'h?rhcio so~e °fthe~ld C
unctIon. al provl es t ese capa 1 Itles t roug tz e escapes, w lC consIst 0 a tl e

(-) at the beginning of a line, followed by a single character which indicates the func­
tion to be performed. For example, to print the text of the message so far, use:

-p <RETURN>

This prints a line of dashes, the recipients of your message, and the text of the mes­
sage so far. Since Mail requires two consecutive tI's to kill a letter, you can use a
single t I to abort the output of -p or any other tilde escape without killing your letter. l

,----............

If you are dissatisfied with the message as it stands, you can invoke a UNIX text edi­
tor on the message using the escape

-e <RETURN>

which causes the message to be copied into a temporary file, then starts the editor. Af­
ter modifying the message to your satisfaction, write it out and quit the editor. Mail
responds with

(continue)

after which you may continue typing text to append to your message, or type tZ to
end the message. A standard text editor is provided by Mail. You can override this
default by setting the valued option EDITOR to something else, e.g.,

set EDITOR=lbin/ex <RETURN>

To use the UNIX screen editor on your current message, you can use the escape

-v <RETURN>

which works like -e, except that vi(l) is invoked instead. A default screen editor is de­
fined by Mail, but you can set the valued option VISUAL to the pathname of a differ­
ent editor.

It's often useful to include the contents of some file in your message; the escape

-r filename <RETURN>

Using the BSD4.2 Mail Program 5-8

c

o

o

o

helps serve this purpose, and causes filename to be appended to your current message.
Mail complains if the file doesn't exist or can't be read. If the read is successful, the
number of lines and characters appended to your message is printed, after which you
may continue appending text. The filename may contain shell metacharacters such as
the asterisk (*) and question mark (?) which are expanded according to the conven­
tions of your shell.

As a special case of -r, the escape

-d <RETURN>

reads in the file dead.letter in your home directory. This may be useful, since Mail
copies the text of your message there when you kill a message with t 1.

To save the current text of your message on a file, use the

-w filename <RETURN>

escape. Mail prints out the number of lines and characters written to the file, after
which you may continue appending text to your message. Shell metacharacters may be
used in the filename, as in -r, and are expanded according to the conventions of your
shell.

If you are sending mail from within Mail's command mode, you can read a message
sent to you into the message you are constructing with the escape:

-m 4 <RETURN>

which reads message 4 into the current message. The text of the message is shifted
right by one tab stop. You can name any non-deleted message or list of messages.
Messages can also be forwarded without shifting by a tab stop with -f. This is the
usual way to forward a message.

If, in the process of composing a message, you decide to add additional people to the
list of message recipients, you can do so with the escape

-t namel name2 ... <RETURN> o You may name as few or many additional recipients as you wish. Note that the users
originally on the recipient list still receive the message; you cannot remove someone
from the recipient list with -to

o

If you wish, you can associate a subject with your message by using the escape

-s Arbitrary string of text <RETURN>

which replaces any previous subject with Arbitrary string of text. The subject, if given, is
sent near the top of the message (prefixed with "Subject:"). You can see what the
message will look like by using -po

If you need to list certain people as recipients of "carbon" copies of a message rather
than of the message itself, use the escape

-c namel name2 ... <RETURN>

The above line adds the named people to the "Cc:" list. Again, you can execute -p to
see what the message will look like.

5-9 Using the BSD4.2 Mail Program

/'

The recipients of the message together constitute the "To:" field, the subject the "Sub-
ject:" field, and the carbon copies the "Cc:" field. To edit these in ways impossible 0
with the -t, -s, and -c escapes, use the escape /'

-h <RETURN>

which prints "To:" followed by the current list of recipients and leaves the cursor at
the end of the line. If you type in ordinary characters, they are appended to the end of
the current list of recipients.

You may use your erase character to erase back into the list of recipients, or your kill
character to erase them altogether. Thus, for example, if your erase and kill characters
are the pound (#) and at (@) symbols,

-h <RETURN>
To: root ers####eve

changes the initial recipients root ers to root eve. When you type a newline, Mail ad-
vances to the "Subject:" field, where the same rules apply. Another newline brings you C
to the "Cc:" field, which may be edited in the same fashion. Another newline leaves
you appending text to the end of your message. You can use -p to print the current
text of the header fields and the body of the message.

Note: In the DOMAINIIX implementation of mail, the -h escape doesn't properly carry
information given on the command line over into the interactive editing session.
The following is an example of what takes place when you use the -h escape:

% mail mary
-h
To:<RETURN>
Subj ect: useful information
Cc: <RETURN>
Bcc: <RETURN>

EOT
No recipients specified
"dead. letter" 6/104

To effect a temporary escape to the shell, the escape

-!command <RETURN>

is used, which executes command and returns you to mailing mode without altering the
text of your message. To filter the body of your message through a shell command in­
stead, use

-Icommand <RETURN>

which pipes your message through the command and uses the output as the new text
of your message. If the command produces no output, Mail assumes that something is
amiss and retains the old version of your message. A frequently-used filter is the com­
mand Ibin/fmt, designed to format outgoing mail.

Using the BSD4.2 Mail Program 5-10

c

c

o
To effect a temporary escape to Mail command mode instead, you can use the

-:Mail command

escape. This is especially useful for retyping the message you are replying to, using,
for example:

-:t <RETURN>

It is also useful for setting options and modifying aliases.

To send a message that contains a line beginning with a tilde, you must escape the
tilde with another tilde. Thus, for example,

--This line begins with a tilde. <RETURN>

sends the line

-This line begins with a tilde. o Finally, the escape

o

o

o

-? <RETURN>

prints out a brief summary of the available tilde escapes.

Mail lets you change the escape character with the escape option. For example,

set escape=] <RETURN>

sets the escape character to a right bracket instead of a tilde. Doing this causes every­
thing previously said about the tilde to apply to the right bracket. Changing the escape
character removes the special meaning of tilde.

5.4 Network Access
This section describes how to send mail to people on other networks. Consult your sys­
tem administrator for information about off-net communications facilities available at
your site.

5.4.1 ARPANET
If your site includes a node that is directly (or even indirectly) connected to the AR­
PANET network, you can send messages to people ·on the Arpanet using a name like

name@host

where name is the login name of the person you're trying to reach and host is the
name of the machine on the ARPANET where name has a login account.

If your intended recipient logs in on a machine connected to yours via uucp(lC), send­
ing mail is more complicated. You must know the list of machines through which your
message must travel to arrive at its intended destination. So, if recipient logs in on a
machine directly connected to yours, you can send mail to recipient using the syntax:

host!name

5-11 Using the BSD4.2 Mail Program

where, again, host is the name of the machine and name is recipient's login name. If
your message must go through an intermediate machine first, you must use the syntax

intermediate!host!name

and so on. It is a feature of uucp that the map of all the systems in the network is not
known anywhere (except where people decide to write it down for convenience). Ask
your system administrator about the machines connected to your site.

5.4.2 Special Recipients
As described previously, you can send mail to either user names or alias names. You
may also send messages directly to files or to programs, using special conventions. If a
recipient name has a slash (f) in it or begins with a plus sign (+), it is assumed to be
the pathname of a file into which to send the message. If the file already exists, the
message is appended to the end of the file. If you want to name a file in your current

c

directory (Le., one for which a slash wouldn't usually be needed) precede the name ('\
with a period and a slash (.f). For example, to send mail to the file memo in the cur- " ___ ,/
rent directory, give the command

% Mail .Imemo <RETURN>

If the name begins with a plus sign, it is expanded into the full pathname of the folder
name in your folder directory. You can use this ability to send mail to files for a vari­
ety of purposes, such as maintaining a journal and keeping a record of mail sent to a
certain group of users. The second example can be done automatically by including the r
full pathname of the record file in the alias command for the group. Using our previ- \ __ /
ous alias example, give the command

alias project sam sally steve susan lusr/project/mail_record

Then, all mail sent to project is saved on the file lusrlprojectlm a il_record , as well as
sent to the members of the project. This file can be examined using Mail -f.

It is sometimes useful to send mail directly to a program. Suppose you write a project
billboard program and want to access it using Mail. To send messages to the billboard
program, you can send mail to the special name 1 billboard, for example. Mail treats
recipient names that begin with a pipe character (I) as a program to which mail is
sent. You may want to create an alias to reference any filename prefaced by a pipe
character.

Note: The shell treats the pipe character specially, so you must quote it on the com­
mand line. You must also present the "I program" as a single argument to
Mail. We recommend that you surround the entire name with double quotes.
This also applies to usage in the alias command. For example, to alias rmsgs to
rmsgs -s you must type:

alias rmsgs "I rmsgs -s" <RETURN>

5.4.3 Message Lists
Several Mail commands accept a list of messages as an argument. Along with type
and delete (already described in a previous section), there is the from command. It

Using the BSD4.2 Mail Program 5-12

c

o

o

o

o

o

prints the message headers associated with the message list passed to it. The from
command is particularly useful iIi conjunction with some of the message list features
described next.

A message list consists of a list of message numbers, ranges, and names, separated by
spaces or tabs. Message numbers may be either decimal numbers that directly specify
messages, or one of the following special characters:

the first message that is not deleted

the current message

$ the last message that is not deleted

Note: The message list is being supplied as an argument to the undelete command,
which operates on deleted messages only, the caret (") operates on the first de­
leted message, and so on.

A range of messages consists of two message numbers (of the form described in the
previous paragraph) separated by a dash. Thus, to print the first four messages, use

type 1-4

and to print all the messages from the current message to the last message, use

type .-$

A name is a username. The usernames given in the message list are collected and
each message selected by other means is checked to make sure it was sent by one of
the named users. If the message consists entirely of user names, then every relevant
(not deleted, deleted) message sent by one those users is selected. Thus, to print every
message sent to you by root, specify the following

type root <RETURN>

As a shorthand notation, simply specify an asterisk (*) to get every relevant message:

type * <RETURN>

prints all undeleted messages,

delete * <RETURN>

deletes all undeleted messages, and

undelete * <RETURN>

undeletes all deleted messages.

You can search for the presence of a word in subject lines with a slash (/). For exam­
ple, to print the headers of all messages that contain the word PAS CAL, specify

from /pascal <RETURN>

Note that subject searching ignores uppercase and lowercase differences.

5-13 Using the BSD4.2 Mail Program

5.5 Summary of Commands
Prefaces a command to be executed by the shell.

Goes to the previous message and prints it. If you give a decimal number
n as an argument, mail goes to the nth previous message and prints it.

Print Like print, but also prints out ignored header fields. See also print and
ignore.

Reply Frames a reply to a one or more messages. (Note the capital R in the
name.) The reply (or replies, if using multiple messages) is sent only to
the person who sent you the message (respectively, the set of people who
sent the messages to which you are replying). You can add people using
the -t and -c tilde escapes. The subject in your reply is formed by prefac­
ing the subject in the original message with "Re:" unless it already began
that way. If the original message included a reply-to header field, the
reply goes only to the recipient named by reply-to. You type in your mes­
sage using the same conventions available to you through the mail com­
mand. The Reply command is especially useful for replying only to the
originator of a message sent to an enormous distribution group.

Type Identical to the Print command.

alias Defines a name to represent a set of other names. Use this to send mes­
sages to a certain group of people without having to retype their names.
For example, this creates an alias project that expands to John, Sue,
Willie, and Kathryn:

alias project john sue willie kathryn

alternates If you have accounts on several machines, you may find it convenient to
use the /usr/lib/aliases on all the machines except one to direct your mail
to a single account. The alternates command is used to inform Mail that

C)

c

each of these other addresses is really you. Alternates takes a list of user C,',
names and remembers that they are all actually you. When you reply to ,

chdir

copy

delete

dt

messages sent to one of these alternate names, Mail doesn't bother to
send a copy of the message to this other address (which would simply be
directed back to you by the alias mechanism). If alternates is given no
argument, it lists the current set of alternate names. Alternates is usually
used in the .mailrc file.

Lets you change your current directory. Chdir takes a single argument -
the pathname of the new working directory. Without an argument, it
changes to your home directory.

Does the same thing that save does, except that it doesn't mark relevant
messages for deletion when you quit.

Deletes a list of messages. (You can reclaim these with u~delete.)

Deletes the current message and prints the next message.

Using the BSD4.2 Mail Program 5-14

c

o

o

o

o

o

edit

else

endif

exit

file

folders

folder

Helps edit individual messages using the text editor. Takes a list of mes­
sages (as described under type) and processes each by writing it into the
file "Messagex" where x is the message number being edited, then invok­
ing the text editor on it. (To make Mail read the message back and re­
move "Messagex", edit the message and execute the editor's "write and
quit" command.) This command may be abbreviated to e.

Marks the end of the then-part of an if statement and the beginning of
the part to take effect if the condition of the if statement is false.

Marks the end of an if statement.

Leaves Mail without updating the system mailbox or the file being read.
Thus, if you accidentally delete messages you should have saved, use exit
to recover.

The same as folder.

Lists the names of the folders in your folder directory.

Switches to a new mail file or folder. With no arguments, it tells you
which file you are currently reading. With an argument, it writes out
changes (such as deletions) you made in the current file and reads the
new file. Some special conventions are recognized for the name:

Previous file read
%
%name
&
+folder

Your system mailbox
Name's system mailbox
Your -/mbox file
A file in your folder directory

from Takes a list of messages and prints the header lines for each one. Thus,

headers

from joe

is the easy way to display all the message headers from joe.

Lists the headers of all messages that you have. These headers tell you
who each message is from, when they were sent, how many lines and
characters each message is, and the subject of each message (if a "Sub­
ject:" header is present). In addition, Mail tags with a "P" the message
header of each message that has been the object of the preserve com­
mand. Messages saved or written are flagged with an asterisk (*). Those
messages deleted are not printed at all. To reprint the current list of
message headers, use the headers command.

Note: If you are using a terminal, headers only lists the first few mes­
sage headers. The number of headers listed depends on the speed
of your terminal. This can be overridden by specifying the number
of headers you want with the window option.

Mail maintains a notion of the current window into your messages
for the purposes of printing headers. Use the z command to move
forward and back a window. Move Mail's notion of the current
window directly to a particular message by using, for example,

5-15 Using the BSD4.2 Mail Program

headers 40 <RETURN>

to move Mail's attention to the messages around message 40. The 0
headers command can be abbreviated to h.

help Prints a brief help message.

hold Arranges to hold a list of messages in the system mailbox, instead of
moving them to the file mbox in your home directory. If you set the bi­
nary option hold, this happens by default.

if Executes commands in your .mailrc file conditionally, depending on

ignore

list

mail

mbox

next

whether you are sending or receiving mail. For example, you may specify

if receive
commands ...
endif

An else form is also available:

if send
commands ...
else
commands ...
endif

Note that the only allowed conditions are receive and send.

Adds the list of header fields named to the ignore list. Does not display
header fields in the ignore list when you print a message. This lets you
suppress printing of certain machine-generated header fields, such as Via
which are not usually of interest. Type and Print display messages in
their entirety, including ignored fields. If ignore is executed with no argu­
ments, it lists the current set of ignored fields.

Lists the valid Mail commands.

Sends mail to one or more people. With the ask option set, Mail prompts
you for a subject to your message. You can type in your message, using
tilde escapes to edit, print, or modify your message. To send the mes­
sage, type tZ at the beginning of a line, or a period (.) alone on a line if
you set the option dot. To abort the message, type two interrupt charac­
ters (tI by default) in a row or use the -q escape.

Indicates that a list of messages be sent to mbox in your home directory
when you quit (default action for messages when hold option isn't set).

Goes to the next message and types it. If given a message list, next goes
to the first such message and types it. Thus,

next root <RETURN>

goes to the next message sent by root and types it. This command can be
abbreviated to simply a newline, which means that one can go to and
type a, message by simply giving its message number or one of these C
magic characters: up-arrow (t), dot (.), or dollar sign ($). So, dot prints
the current message, and "4" prints message 4.

Using the BSD4.2 Mail Program 5-16

preserve

o quit

reply

o
save

o

set

o

shell

o source

Same as hold. Causes a list of messages to be held in your system mail­
box when you quit.

Leaves Mail and updates the file, folder, or system mailbox you were
reading. Messages that you have examined are marked "read" and mes­
sages that existed when you started are marked "old". If you were editing
your system mailbox and if you have set the binary option hold, all mes­
sages that have not been deleted, saved, or mboxed are retained in your
system mailbox. If you were editing your system mailbox and you didn't
have hold set, all messages which have not been deleted, saved, or pre­
served are moved to the file mbox in your home directory.

Frames a reply to a single message. Sends the reply to the originator of a
message, plus all the people (except you) who received the original mes­
sage. You can add people using the -t and -c tilde escapes. The subject
of your reply is formed by prefacing the subject in the original message
with "Re:" (unless it was already prefaced with "Re:"). If the original
message included a reply-to header field, the reply goes only to the re­
cipient named by reply-to. You type in your message using the same
conventions available to you through the mail command.

Lets you save messages on related topics in a file. Takes as argument a
list of message numbers, followed by the name of the file in which to
save the messages. The messages are appended to the named file, allow­
ing you to keep several messages in the file, stored in the order placed
there. The save command can be abbreviated to s. An example of the
save command relative to our running example is:

s 1 2 tuitionmail <RETURN>

Saved messages are not automatically saved in mbox at quit time, nor are
they selected by next, unless explicitly specified.

Sets an option or gives an option a value; used to customize Mail. Op­
tions can be binary, in which case they are on or off, or valued. To set a
binary option option on, do this:

set option

To give the valued option option the value value, do

set option=value

Several options can be specified in a single set command.

Lets you escape to the shell. Invokes an interactive shell and lets you
type commands to it. When you leave the shell, you return to Mail. The
shell used is a default assumed by Mail. You can override this default by
setting the valued option SHELL, e.g.,

set SHELL=/bin/csh <RETURN>

Reads Mail commands from a file. Helps when you are trying to fix your
.mailre file and you need to re-read it.

5-17 Using the BSD4.2 Mail Program

top

type

undelete

unset

visual

Takes a message list and prints the first five lines of each addressed
message. It may be abbreviated to to. To change the number of lines to
be printed, set the valued option toplines. On a terminal, you might prefer
to use a line such as this:

set toplines=10 <RETURN>

Prints a list of messages on your terminal. If you set the option crt to a
number and the total number of lines in the messages you are printing
exceed that specified by crt, the messages are piped through more(l).

Causes a message deleted previously to regain its initial status. Only de-
·leted messages may be undeleted. Abbreviate this command to u.

Reverses the action of setting a binary or valued option.

Invokes a display-oriented editor. Operates much like the edit command.
Both the edit and visual commands assume some default text editors,
which can be overridden by the valued options EDITOR and VISUAL for
the standard and screen editors . You might want to do this:

set EDITOR=/usr/ucb/ex VISUAL=/usr/ucb/vi <RETURN>

write Writes only the message itself (Le., without headers) in the file. This
command has the same syntax as save. Thus, for example, to write the
second message to file.c:

z

w 2 file.c <RETURN>

As suggested by this example, write is useful for such tasks as sending
and receiving source program text over the message system. It can be ab­
breviated to w.

Mail presents message headers in full windows as described under the
headers command. You can move Mail's attention forward to the next
window by giving the

z+ <RETURN>

command. You can move to the previous window with:

z· <RETURN>

5.6 Custom Options
EDITOR

SHELL

VISUAL

This valued option defines the pathname of the text editor to be used in
the edit command and -e. If undefined, a standard editor is used.

This valued option gives the pathname of the shell to be used for the !
command and -! escape. In addition, this shell expands filenames with
shell metacharacters like asterisk ("') and question mark (?) in them.

This valued option defines the pathname of the screen editor to be used
in the visual command and -v escape. If undefined, a standard screen
editor is used.

Using the BSD4.2 Mail Program 5-18

o

o

o

o

o

append

ask

askcc

autoprint

debug

dot

escape

folder

This binary option causes messages saved in mbox to be appended to the
end rather than prepended. Normally, Mail puts messages in mbox in the
same order that the system puts messages in your system mailbox. By set­
ting append, you request that new messages be put at the end of mbox
regardless of the order in which they were received.

This binary option causes Mail to prompt you for the subject of each
message you send. If you respond by typing RETURN, no subject field is

. sent.

This binary option causes you to be prompted for additional carbon copy
recipients at the end of each message. Type RETURN to use the current
list.

This binary option causes the delete command to behave like dp (after
deleting a message, the next one is typed).

This binary option causes debugging information to be displayed. It pro­
duces the same results as the -d command line flag.

This binary option, if set, causes Mail to interpret a period alone on a
line as the terminator of a message you are sending.

This valued option lets you change the escape character used when send­
ing mail. Only the first character of the escape option is used, and it
must be doubled if it is to appear as the first character of a line of your
message. Changing your escape character causes tilde (-) to lose its spe­
cial meaning (and need no longer be doubled at the beginning of a line).

The name of the directory used for storing folders of messages. If this
name begins with a slash (/), Mail considers it an absolute pathname;
otherwise, the folder directory is found relative to your home directory.

hold This binary option causes messages that have been read but not otherwise
dealt with to be held in the system mailbox. This prevents such messages
from being automatically swept into your mbox.

ignore

ignoreeof

keep

keepsave

metoo

This binary option causes tl characters from your terminal to be ignored
and echoed as at signs (@' s) while you are sending mail. All t I charac­
ters retain their original meaning in Mail command mode. Setting the ig­
nore option is equivalent to supplying the -i flag on the command line.

This option, related to dot, causes Mail to refuse acceptance of a tZ as
the end of a message. Ignoreeof also applies to Mail command mode.

This option causes Mail to truncate your system mailbox instead of delet­
ing it when it is empty. This is useful if you elect to protect your mail­
box, which you would do with the shell command:

% chmod 600 lusrlspool/maillyour _login_name <RETURN>

This option causes Mail to retain all saved messages, instead of discard­
ing them as it usually does when you quit.

This binary option lets you receive a copy of all messages you send to
alias. Unless you set metoo, mail sent to an alias in which you are in­
cluded is not sent to you.

5-19 Using the BSD4.2 Mail Program

noheader

nosave

quiet

record

screen

sendmail

toplines

verbose

This binary option suppresses the printing of the version and headers
when Mail is first invoked. Setting this option is the same as using -N
on the command line.

This binary option prevents Mail from copying a partial letter (aborted
with two tl signals) to the file dead. letter in your home directory, which it
normally does unless nosave is set.

This binary option suppresses the printing of the version when Mail is
first invoked, as well as the printing of the message number from the
type command.

This valued option can be set to the name of a file in which outgoing
mail is to be saved. Each new message you send is appended to the end
of the file.

This valued option specifies how many message headers you want
printed. Unless screen is set, Mail determines the number of message
headers to print by looking at the speed of your terminal interface. The
faster the baud rate, the more it prints. Screen overrides this calculation.
The number you set it to also affects scrolling with the z command.

This option alternates the delivery system, when set to the full pathname
of an appropriate program for doing this task.

This valued option defines the number of lines that the top command
prints out instead of the default five lines.

This binary option causes Mail to invoke sendmail with the -v flag, forc­
ing it to go into verbose mode and announce expansion of aliases, etc.
Setting this option is equivalent to invoking Mail with the -v flag.

5.7 Command Line Options
This section describes command line options for Mail.

o

c

c

- N Suppress the initial printing of headers. C
-d Turn on debugging information.

-f file Show the messages in file instead of your system mailbox. If you omit file,

-i

-n

-s string

-u name

-v

Mail reads mbox in your home directory.

Ignore tty interrupt signals. Useful when connecting on noisy phone lines,
which may generate spurious interrupt characters.

Inhibit reading of lusrlUblMail.rc (not very useful; file is usually empty).

Upon sending mail, specify string as the subject of the message being
composed. (Note: If string contains blanks, enclose it in quotation marks.)

Read name's mail instead of your own. Essentially, -u user is a shorthand
way of specifying -f lusrlspool/user.

Use the -v flag when invoking sendmail. (This may also be enabled by
setting the the verbose option.)

Using the BSD4.2 Mail Program 5-20

o
The following command line flags are also recognized, but are intended for use by
programs (not users) invoking Mail:

-T file Arrange to print on file the contents of the article-id fields of all mes­
sages either read or deleted. This option is used by the readnews pro­
gram; you should not use it for reading your mail.

-b number Pass on hop count information. Mail takes the number, increments it, and
passes it with -b to the mail delivery system. A -b is effective only when
sending mail and is used for network mail forwarding.

-r name When doing network mail forwarding, interpret name as the sender of the
message. The name and -r are simply sent along to the mail delivery sys­
tem. Mail waits for the message to be sent and returns the exit status. It
also restricts message formatting.

Note that -b and -r, related to network mail forwarding, are not used in practice since o mail forwarding is handled separately.

o

o

o

5.8 Format of Messages
This section describes the format of messages. Messages begin with a from line, which
consists of the word "From" followed by a user name, followed by anything, followed
by a date in the format returned by the ctime(3) library routine. A possible ctime for­
mat date is:

Tue Dec 1 10:58:23 1981

The ctime date may be optionally followed by a single space and a time zone indica­
tion, which should be three capital letters, such as PDT.

Following the from line are zero or more header field lines, each of the form

name: information

Name can be anything, but only certain header fields are recognized as having any
meaning. The recognized header fields are: article-id, bee, ec, from, reply-to, sender,
subject, and to. Other header fields are also significant to other systems (see, for exam­
ple, the ARPANET message standard for more on this tOPIc). A header field can be
continued onto following lines by making the first character on the following line a
space or tab character.

If headers are present, they must be followed by a blank line. The part that follows is
called the body of the message, and must be ASCn text, not containing null charac­
ters. Each line in the message body must be terminated with an ASCn newline charac­
ter and no line may be longer than 512 characters. If binary data must be passed
through the mail system, we suggest that this data be encoded in a system which en­
codes six bits into a printable character. For example, you could use the uppercase
and lowercase letters, the digits, and the characters comma and period to make up the
64 characters. Then, you can send a 16-bit binary number as three characters. These
characters should be packed into lines, preferably lines about 70 characters long. Long
lines are transmitted more efficiently.

5-21 Using the BSD4.2 Mail Program

The message delivery system always adds a blank line to the end of each message.
This blank line must not be deleted.

The uucp(lC) message delivery system sometimes adds a blank line to the end of a
message each time it is forwarded through a machine.

Note: Some network transport protocols enforce limits to the lengths of messages.

5.9 Summary of Commands, Options, and Escapes
This section summarizes Mail commands, binary and valued options, and tilde es­
capes.

5.9.1 Commands
Single command escape to shell

Back up to previous message

Print Type message with ignored fields

Reply Reply to author of message only

Type Type message with ignored fields

alias Define an alias as a set of user names

alternates List other names you are known by

chdir Change working directory, home by default

copy

delete

dt

endif

edit

else

exit

file

folder

folders

from

headers

help

hold

if

Copy a message to a file or folder

Delete a list of messages

Delete current message, type next message

End of conditional statement; see if

Edit a list of messages

Start of else part of conditional; see if

Leave mail without changing anything

Interrogate/change current mail file

Same as file

List the folders in your folder directory

List headers of a list of messages

List current window of messages

Print brief summary of Mail commands

Same as preserve

Conditional execution of Mail commands

Using the BSD4.2 Mail Program 5-22

o

0

c~:

c'

o

o

o

0

0

ignore

list

local

mail

mbox

next

preserve

quit

reply

save

set

shell

top

type

undelete

unset

visual

Set/examine list of ignored header fields

List valid Mail commands

List other names for the local host

Send mail to specified names

Arrange to save a list of messages in mbox

Go to next message and type it

Arrange to leave list of messages in system mailbox

Leave Mail; update system mailbox, mbox as appropriate

Compose a reply to a message

Append messages, headers included, on a file

Set binary or valued options

Invoke an interactive shell

Print first so many (5 by default) lines of list of messages

Print messages

Undelete list of messages

Undo the operation of a set

Invoke visual editor on a list of messages

write Append messages to a file, but don't include headers

z Scroll to next/previous screenful of headers

5.9.2 Options
EDITOR [valued]

SHELL [valued]

VISUAL [valued]

append [binary]

ask [binary]

askcc [binary]

autoprint [binary]

crt [valued]

debug [binary]

dot [binary]

escape [valued]

folder [valued]

Pathname of editor for -e and edit

Pathname of shell for shell, -! and !

Pathname of screen editor for -v, visual

Always append messages to end of mbox

Prompt user for "Subject:" field when sending

Prompt user for additional "Cc:"s at end of message

Print next message after delete

Minimum number of lines before using more

Print out debugging information

Accept a period (.) alone on line to terminate message input

Escape character to be used instead of a tilde (-)

Directory in which to store folders

5-23 Using the BSD4.2 Mail Program

hold [binary] Hold messages in system mailbox by default

ignore [binary] Ignore t I while sending mail

ignoreeof [binary] Don't terminate letters/command input with tZ

keep [binary] Don't unlink system mailbox when empty

keepsave [binary] Don't delete saved messages by default

metoo [binary] Include sending user in aliases

noheader [binary] Suppress initial printing of version and headers

nosave [binary] Don't save partial letter in dead.letter

quiet [binary] Suppress printing of Mail version & message numbers

record [valued] File to save all outgoing mail in

screen [valued] Size of window of message headers for z, etc.

sendmail [valued] Choose alternate mail delivery system

toplines [valued] Number of lines to print in top

verbose [binary]. Invoke sendmail with the -v flag

5.9.3 Tilde Escapes
-! command

-c name ...

-d

-e

-f messages

-h

-m messages

-p

-q

-r filename

-s string

-t name ...

-v

-w filename

-I command

- string

Execute shell command

Add names to "Cc:" field

Read dead.letter into message

Invoke text editor on partial message

Read named messages

Edit the header fields

Read named messages, right shift by tab

Print message entered so far

Abort entry of letter; like t I

Read file into message

Set "Subject:" field to string

Add names to To: field

Invoke screen editor on message

Write message on file

Pipe message through command

Quote a tilde (-) in front of string

Using the BSD4.2 Mail Program 5-24

0

(~

c'

o

o

o

o

o

5.9.4 Command Line Flags

-N Suppress the initial printing of headers

-T file Artic1e-id's of read/deleted messages to file

-d Turn on debugging

-f file Show messages in file or -Imbox

-h number Pass on hop count for mail forwarding

-i Ignore tty interrupt signals

-n Inhibit reading of lusrlliblMaU.rc

-r name Pass on name for mail forwarding

-s string Use string as subject in outgoing mail

-u name

-v

Read name's mail instead of your own

Invoke sendmail with the -v flag

Note: The -T, -d, -h, and -r flags are for use only by programs that call Mail; they
are not intended to serve the direct needs of users.

5-25 Using the BSD4.2 Mail Program

o

c\

------------- --- --------------

o Glossary

o

o

o

o

Access Rights

Alarm Window

Argument

Background Process

BSD4.2

C Language

Command

Command Argument

Command List

Command Option

Command Procedure

These rights list the people who can use each object in the
network, and specify how each person can use the object
(e.g., permission to read, write, and execute the object).

The Display Manager alarm window appears near the bot­
tom of your screen. It displays a small pair of bells when a
process displays a message in an output window hidden by
an overlapping window.

See Command Argument.

A non-interactive process that runs immune to quit and in­
terrupt signals issued from your node. In this mode, the
shell doesn't wait for a command to terminate before it
prompts you for another command. This lets you start a
task and then go on to another task while the system con­
tinues with the initial one. (Also see Process.)

The version of the DOMAINIIX system that implements
4.2BSD UNIX from the University of California at Berkeley.
(Also see SYSTYPE.)

A general purpose low-level programming language used to
write programs (e.g., numerical, text processing, and
database) and operating systems.

An instruction that you give a program; the name of an ex­
ecutable file that is a compiled program.

A command option or the name of the object upon which the
command acts. Command arguments follow commands on
the same line, although not all commands require an argu­
ment. (Also see Command Option.)

A sequence of one or more simple commands separated or
terminated by a newline or a semicolon.

Information you provide on a command line to indicate the
type of action you want the command to take. (Also see
De/ault.)

See Shell Procedure.

Command Search Path The route that the shell takes in searching through various
directories for command files. A default search path exists
for each of the DOMAINIIX versions. You may add other
directories of executable files which the shell then looks
through on its way to finding a particular command name.

Glossary-l

Control Character

Control Key Sequence

Current Directory (.)

Cursor

Default

Directory

Disk

Diskless Node

Display Manager (DM)

DM Alarm Window

DM Environment
Variables

DM Function Keys

DM Input Window

A special invisible character that controls some portion of
the input and output of the programs run on a node. (Also
see Control Key Sequence.)

A keystroke combination «CTRL> followed by another key)
used as a shorthand way of specifying commands. To enter
a control key sequence, hold <CTRL> down while pressing
another key.

The location, within the hierarchical naming tree, of the
directory that you are working in at a given time. Entering
the UNIX command pwd prints the name of your current
directory. (Also see Working Directory.)

The small, blinking box initially displayed in the screen's
lower left corner. The cursor marks your current typing po­
sition on the screen and indicates which program (shell or
DM) receives your commands.

Most programs give you a choice of one or more options. If
you don't specify an option, the program automatically as­
signs one. This automatic option is called the default. (Also
see Command Option.)

A special type of object that contains information about the
objects beneath it in the naming tree. Basically, it is a file
that stores names and links to files. (Also see File.)

A thin, record-shaped plate that stores data on its magnetic
surfaces. The system uses heads (similar to heads in tape
recorders) to read and write data on concentric disk tracks.
The disk spins rapidly, and the heads can read or write data
on any disk track during one disk revolution.

A node that has no disk for storage, and therefore uses the
disk of another node. (Also see Node and Disk.)

The program that executes commands that start and stop
processes, and commands that open, close, move, or modify
windows and pads.

See Alarm Window.

Values set by either the system or the user to determine how
the Display Manager handles processes started at log-in or
during command execution.

Single keys that invoke DM commands.

The window where you type DM commands (contains the
"Command: " prompt).

Glossary-2

o

c

c~

c'

..... __ _ ... -.. _-_ ... _- _._- ---

o

0

0

0

o

DM Output Window

DOMAIN System

EOF

File

Filter

Foreground

Full Pathname

Function Keys

Group Identification
Number (GID)

Hard Link

Here Document

Home Directory

Initial Working
Directory

Input Pad
Input Window

Insert Mode

The window that displays output messages from DM com­
mands.

A high-speed communications network connecting two or
more nodes. Each node can use the data, programs, and
devices of other network nodes. Each node contains main
memory, and may have its own disk, or share one with
another node.

The End-Of-File character is used to terminate the shell
and close the pad in which the shell was running. It is
generated by pressing t D and is the same as an ASCn EDT
character.

The basic named unit of data stored on disk. A file can
contain a memo, manual, program, or picture. (Also see
Directory.)

A command that reads its input, performs a user-specified
task, and prints the result as output.

A mode of program execution when the shell waits for a
command to terminate before prompting for another.

The pathname of a specific file starting from the network
root directory. (Also see Network Root Directory and Path­
name.)

See DM Function Keys.

A unique number assigned to one or more logins that is used
to identify groups of related users.

A link that points directly to an object (file).

A command procedure of the form "command « eofstring"
which causes the shell to read subsequent lines as standard
input to the command until a line is read consisting of only
the "eofstring". Any arbitrary string can be used for the
"eofstring" .

Your initial working directory . Your user account specifies
the name of your home directory.

The working directory of the first user process created
after you log in.

A pad that accepts commands typed at your keyboard. The
window that displays a program's prompt and any commands
typed.

This mode lets you change text displayed in windows by
repositioning the cursor and inserting characters. The rest of
the line moves right as you insert additional characters.

Glossary-3

Kernel

Keyword Parameter

Link

Link Text

Logging In

Main Memory

Memory

Metacharacter

Mode

Name

Naming Directory

Naming Tree

Network

The resident operating system that controls your node's
resources and assigns them to active processes.

An argument to a command procedure which has the form
"name=value command argl arg2 ... " and lets shell vari­
ables be assigned values when a shell procedure is called.
(Also see Shell Procedure.)

A special type of object that points from one place in the
naming tree to another. (Also see Hard Link and Symbolic
Link.)

The name of the object contained in a symbolic link to
show what is being linked. When you use a link name as a
pathname or as part of a pathname, UNIX Shells substitute
the link text for the link name. (Also see Symbolic Link.)

Initially signing on to the system so that you may begin to
use it. This creates your first user process.

The node's primary storage area. It stores the instruction
that the node is executing, as well as the data it is manipu­
lating.

Any device that can store information.

See Shell Metacharacter.

An absolute mode is an octal number used in conjunction
with the UNIX chmod(l) command to change permissions
of files.

A character string associated with a file, directory, or link.
A name can include various alphanumeric characters, but
never a slash (/) or null character. Remember that certain
characters have special meaning to the shell and must be
escaped if they are used.

Each process uses a naming directory. Like the working
directory, the naming directory points to a certain destina­
tion directory. The system uses your home directory as the
initial naming directory.

A hierarchical tree structure that organizes network objects.

Two or more nodes sharing information.

Network Root Directory The top directory in the network. Each node has a copy of
the network root directory.

Glossary-4

c

C':

Node

o

Node Entry Directory

Object

Operating System

0 Option

Output Window

Pad

0 Parent Directory (..)

Partial Pathname

Partner Node

0
Password

Pathname

o Pipe

A network computer. Each node in the DOMAIN system
can use the data, programs, and devices of other network
nodes. Each node contains main memory, and has its own
disk, or shares one with another node. (Also see Diskless
Node.) We frequently use "terminal" interchangeably with
node (or, usually, "the node's keyboard").

A subdirectory of the network root directory. The top direc­
tory on each node. Diskless nodes share the node entry
directory of their disked partner node. (Also see Network
Root Directory.)

Any file, directory, or link in the network.

A program that supervises the execution of other programs
on your node.

See Command Option.

The window that displays a process' response to your com­
mand.

A temporary, unnamed file that holds the information dis­
played in a window. A window can display an entire pad, or
show only part of the pad. (Also see Window.)

The directory one level above your current working direc­
tory.

The pathname between the current working directory and a
specific file. (Also see Pathname.)

A node that shares its disk with a diskless node. (Also see
Diskless Node.) .

The string you enter at the "J?assword:" prompt upon log­
ging in. As you type your password, the system displays
dots (. . .) instead of the letters in your password. (Also see
User Account.)

A series of names separated by slashes that describe the
path of the operating system in getting from some starting
point in the network to a destination object. Pathnames be­
gin with the starting point's name, and include every direc­
tory name between the starting point and the destination
object. A pathname ends with the destination object's name.
(Also see Full Pathname and Partial Pathname.)

A simple way to connect the output of one program to the
input of another program, so that each program runs as a
sequence of processes.

Glossary-S

Pipeline

Print Server

Process

Program

Process Input Window

A series of filters separated by a pipe (I) character. The
output of each filter becomes the input of the next filter in
the line. The last filter in the line writes to its standard in­
put. (Also see Filter.)

A process that oversees the printing of files submitted to
the print queue. It need only run from the node connected
to the print device(s).

A program that is in some state of execution; the execution
of a computing environment including contents of memory,
register values, name of the current directory, status of
open files, information recorded at login time, and other
such data.

Software that can be executed by a user.

Window in which you type commands after being prompted.

Process Output Window The large window immediately above the process input win­
dow. This window displays commands, along with the

Prompt

Regular Expression

Root Directory

Screen

Script

Secondary Prompt

Shell

Shell Command

Shell Metacharacter

shell's response to them.

A message or symbol displayed by the system to let you
know that it is ready for your input.

A string specifier that can help you find occurrences of
variables, expressions, or terms in programs and docu­
ments. Regular expressions are specified by allowing certain
characters special meaning to the shell.

See Network Root Directory.

See Transcript Pad.

A file that you create that contains one or more shell com­
mands. A script lets you execute a sequence of commands
by entering a single command (the script name). (Also see
Shell Command.)

A notification to the user that the command typed in re­
sponse to the primary prompt is incomplete. By default, a
"> " is the secondary prompt used by UNIX shells.

A command-line interpreter program used to invoke opera­
ting system utility programs.

An instruction you give the system to execute a utility pro­
gram. (Also see Script.)

Any character that has special meaning to a shell. Asterisks,
question marks, and ampersands are a few examples.

Glossary-6

-----------------------------------_ .. --------.. __ ._----

c

c

('
\--------

c

Shell Procedure

o
Software

Standard Input

o Standard Output

Start-up Script

o Symbolic Link

System Administrator

Sys5

o
SYSTYPE

Super-User

Terminal

Transcript Pad

o

An executable file that is not a compiled program. It is a
call to the shell to read and execute commands contained in
a file. A sequence of commands may thus be preserved for
repeated use by saving it in a file which can also be called
a command procedure.

Programs, such as the shell and the DM, that allow you to
perform various tasks.

The standard input of a command is sent to an open file
which is normally connected to the keyboard. An argument
to the shell of the form "< file" opens the specified file as
the standard input, thus redirecting input to come from the
file named instead of the keyboard.

Output produced by most commands is sent to an open file
which is normally connected to the printer or screen. This
output may be redirecte,d by an argument to the shell of the
form "> file" to open the specified file as the standard out­
put.

A file that sets up the initial operating environment on your
node. This file is also known as a "boot script". (Also see
Script.)

A link that points to link text or the pathname of an object
(file). Sometimes also known as a "soft link". (Also see
Link.)

The person responsible for system maintenance at your site.

The version of the DOMAINIIX system that implements
UNIX System V, Release 2, from AT&T Bell Laboratories.
(Also see SYSTYPE.)

A DM environment variable that shows the UNIX system
version currently in use. Valid SYSTYPES for DOMAIN
nodes are "sys5" and "bsd4.2". (Also see DM Environment
Variable.)

See System Administrator.

See Node.

A transcript pad contains a record of your interaction with a
process. The process output window provides a view of its
transcript pad. The term "screen" found in some of our
documentation also refers to the transcript pad of the win­
dow in which a shell is running.

Glossary-7

User Account

User ID

Utilities

Variable

Wildcards

Window

Window Legend

Working Directory

The system administrator defines a user account for every
person authorized to use the system. Each user account
contains the name the computer uses to identify the person
(user ID), and the person's password. User accounts also
contain project and organization names, helping the system
determine who can use the system, and what resources they
can use. (Also see User ID and Password.)

The name the computer uses to identify you. Your system
administrator assigns you your user ID. Enter your user ID
during the log-in procedure when the system displays the
log-in prompt. (Also see User Account.)

Programs provided with the operating system to perform
frequently required tasks, such as printing a file or dis­
playing the contents of a directory. (Also see Command.)

A name that represents a string value. Variables normally
set only on a command line are called parameters. Other
variables are simply names to which the user or the shell
may assign string values.

Special characters that you may use to represent one or
more pathnames. (Also see Shell Metacharacter.)

Openings on the screen for viewing information stored in
the system. Display management software lets you create
several different windows on the screen. Each window is a
separate computing environment in which you may execute
programs, edit text, or read text. Move the windows on your
screen, change their size and shape, and overlap or shuffle
them as you might papers on your desk. (Also see Pads.)

The area of a window that displays window status informa­
tion. For example, the window legend of an edit window
contains such information as the pathname of the file you're
editing, the letter "I" if the window is in insert mode, and
the number of the line at the top of the window. (Also see
Insert Mode.)

The default directory in which a process creates or searches
for objects. (Also see Current Directory.)

Glossary-8

o

o

C~

-----------------------------_. -- .. _.- _-- -- -------~.---------.----------.- ------

o

o

o

o

o

Index

Primary page references are listed first. The letter I means "and the following page"; the
letters il mean "and the following pages". Symbols are listed at the beginning of the
index.

Symbols

& (ampersand)
> (angle bracket)
* (asterisk)
\ (backslash)
{(brace) 4-34

3-3, 4-17, 4-34
3-6
4-7, 4-34
1-17, 3-5

. (dot) 3-5, 4-7
I (pipe) 3-3, 4-5
; (semicolon) 3-20
- (tilde) 1-17, 5-8ff

A

ACL (access control list) 1-18f
AEGIS 1-2
alarm, DM window 1-4
alias

in C Shell 4-15ff
in Mail program 5~12

a.out, DOMAIN format 1-19
argv 4-25ff
ARPANET 5-11ff

8

background execution 3-3
Bourne, S. R. 2-1
Bourne Shell

background execution in
command execution in
command grouping in 3-16
commands (bUilt_in)

test 3-13f
case 3-8ff
do 3-8

3-3
3-25f

Index;. 1

done 3-8
eval 3-22
exec 3-25
exit 3-24
export 3-18
for 3-8
if 3-15f
set 3-17, 3-20
shift 3-14
trap 3-25f
while 3-14

command substitution 3-20
error handling 3-22f
fault handling 3-23ff
filename generation in 3-4
here docs 3-10f
I/O redirection in
parameter substitution
parameter transmission
pipe operator 3-3
prompts 3-6
quotation mechanisms
to debug scripts 3-1 7
to start 3-6f
variables 3-11ff

c

3-3
3-18ff
3-17f

3-5f

case (Bourne Shell command) 2-8ff
cc, compiler output 1-19
ce (DM command) 1-8
<C:MD> 1-4
cmdf (DM command) 1-6, 2-2
C011PILESYSTYPE 1-9, 1-11
control characters 2-4
control key sequences 1-7
cp (DM command) 1-7

crpasswd, program
C Shell

1-18

alias mechanism 4-15ff
built-in commands 4-23f
commands

alias 4-16, 4-23
bg 4-21
echo 4-23
fg 3-21
foreach 4-28
history 4-23
if 4-33
logout 4-24
popd 4-25
printenv 4-24
pushd 4-25
rehash 4-24
repeat 4-24
setenv 4-24
source 4-24
switch 4-30
unset 4-24
unsetenv 4-24
while 4-30

command substitution in 4-33
history mechanism 4-15
input redirection 4-4 f
interrupt handling in 4-31
job control 4-19f
keyboard definitions for 4-1f
output redirection 4-4
quotation mechanisms 4-8f
scripts 4-24ff, 4-28
to open 4-10
to start 4-2
variables

argv 4-25
homedirchar 4-8
inprocess 1-16, 4-12, 4-18
noclobber 4-4
noglob 4-28
notify 4-20
path 4-12
prompt 4-23

variable substitution 4-25ff
.cshrc, C Shell command file 4-10f

Index-2

csr, AEGIS Shell command 2-5
cursor, to move 1-5
cv (DM command) 1-8

o

Display Manager (DM) 1-2ff
commands 1-5ff
editor

ownership of files created by 1-19
pads 1-3

environment variables 1-7f
window alarm 1-4
window legend 1-4

DM startup files 1-4, 1-8, 1-14, 2-2
DOMAIN system architecture 1-1f

E

<EDIT> 1-5, 1-7
end-of-file (EOP) 1-7, 4-31
environment variables

CONIPILESYSTYPE 1-9, 1-11
inherited by DM 1-8
list of 1-9
maintained by DM 1-8
N~C~S 1-9, 1-17
passed to new process 1-9
SYSTYPE 1-9, 1-13, 2-2
UNIXLOGIN 1-9, 1-14

F

file descriptor 2 3-26
file system, DOMAIN distributed 1-1
for (Bourne Shell command) 3-8

H

history list 4-13ff
HOME 1-9

if (Bourne Shell command) 3-15 f
inprocess, C Shell variable 1-8, 2-7, 4-12

c'

c'

o

o

o

o

o

interrupt, from keyboard 1-7
interrupts, C Shell 4-31

J

job, to suspend 1-7, 4-19
job control, C Shell 4-19f
job number 4-19
jobs, C Shell table of 4-20

K

kd (DM command)
keyboard mapping
key definitions

1-4
1-6

for Bourne Shell
for C Shell
standard 1-7

1-7, 3-2
1-7, 4-1f

L

link
to create 1-12
variant 1-11

.login, C Shell command file 4-10f
LOGNAME 1-9

M

mail folders 5-7f
message lists 5-12
message of the day (motd)
message output, to redirect
metacharacter, * 3-4

1-14f
3-3, 4-4

metacharacters 2-6, 4-4, 4-8
motd (message of the day) 1-14f
mouse 1-5

N

NAMECHARS 1-9
name mapping 1-16ff
<NEXT WINDOW> 1-5

Index-3

p

pad 1-3f
password file 1-18
PATH, in AEGIS Shells 2-5
path, in UNIX Shells 2-5
pathname, relative vs. absolute 4-5f
period, in filename 4-7
permissions, for DOMAINIIX 1-18f
pn (DM command) 1-3
<POP> 1-4
. profile 3-7
PROJUST 1-9

R

<READ> 1-7
read/write/execute rights 1-18f
regular expressions, in Bourne Shell

s
semicolon, to separate commands
<SHELL> 1-7, 3-2, 4-1f
shell commands

cc 1-11, 1-19
chmod 1-18f
chown 3-7
echo 3-5
ed 3-26
grep 3-4, 3-8
kill 3-23
Id 1-19
In 1-12
Is 1-12, 1-14, 3-2
mail 4-3, 5-1ff
man 1-15
mkdir 4-21
printenv 4-24
ps 3-3
run rc 1-15
setenv 1-11
sort 3-4
start csh 1-7, 4-2
start sh 1-7, 2-1, 3-2
touch 3-15

3-4

3-16

umask
uucp
ver
wc
who

shell scripts
shell, to open

1-19
5-11
1-13
3-3
1-15, 3-2

2-5f
2-1, 2-3

signals 2-23
SIO line 2-3
standard I/O, to redirect 3-3, 4-4f
substitution, command 3-20, 4-33
substitution, in here doc 3-11
super-user ("root") 1-19
systype, compiler directive 1-11
SYSTYPE 1-12f

T

<TAB> 1-7
terminal 2-3
test (Bourne Shell command) 3-13f
tmp, link to 1-12
touchpad 1-5
transcript pad 1-3

u
UNIXLOGIN
USENET 5-1

v

1-4

ver command 1-13f
version of DOMAINIIX

list of 1-12
to set/change 1-13

w
wc (DM command) 1-3
wd (AEGIS command) 2-7
while (Bourne Shell command) 3-14
wildcards 2-6
window, to pop 1-4
working directory 2-7, 4-22f

Index-4

c

c'

o

o

o

o

o

Reader's Response

Please take a few minutes to send us the information we need to revise and improve our manuals from
your point of view.

Document Title: DOMAIN/IX User's Guide
Order No.: 005803 Revision: 01 Date of Publication: December, 1986

What type of user are you?
__ System programmer; language
__ Applications programmer; language _________ _

__ System maintenance person __ Manager/Professional
__ System Administrator Technical Professional
__ Student Programmer Novice

Other

How often do you use the DOMAIN system? ______________________ _

What parts of the manual are especially useful for the job you are doing?

What additional information would you like the manual to include?

Please list any errors, omissions, or problem areas in the manual. (Identify errors by page, section, figure,
or table number wherever possible. Specify additional index entries.)

Your Name Date

Organization

Street Address

City State Zip

No postage necessary if mailed in the U.S.

FOLD

()
c ..
o .,

--

BU'SINESS REPLY MAIL
FIRST CLASS PERMIT NO. 78 CHELMSFORD, MA 01824

POSTAGE WILL BE PAID BY ADDRESSEE

APOLLO COMPUTER INC.
Technical Publications
P.O. Box 451
Chelmsford, MA 01824

NO POSTAGE
NECESSARY

iF MAILED
IN THE

UNITED STATES

I
I
I
I
I
I

(I,

FOLD
--C--,·

(.'
I
I
I
I
I
I
I
I
I

o

o

o

o

o

Reader's Response

Please take a few minutes to send us the information we need to revise and improve our manuals from
your point of view.

Document Title: DOMAIN/IX User's Guide
Order No.: 005803 Revision: 01 Date of Publication: December, 1986

What type of user are you?
__ System programmer; language
__ Applications programmer; language _________ _

__ System maintenance person __ Manager/Professional
__ System Administrator Technical Professional
__ Student Programmer Novice

Other

Howoft~~~uureilieDOMMN~~em? ______________________ _

What parts of the manual are especially useful for the job you are doing?

What additional information would you like ilie manual to include?

Please list any errors, omissions, or problem areas in the manual. (Identify errors by page, section, figure,
or table number wherever possible. Specify additional index entries.)

Your Name Date

Organization

Street Address

City State Zip

No postage necessary if mailed in the U.S.

FOLD

n
c ..
o .,

--

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 78 CHELMSFORD, MA 01824

POSTAGE WILL BE PAID BY ADDRESSEE

APOLLO COMPUTER INC.
Technical Publications
P.O. Box 451
Chelmsford, MA 01824

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

I
I
I
I
I
I
I

(> _/

~I
('\

'~_/

----"'FO-LO--(=~/I

C
i
'

I
I
I
I
I
I
I
I
I

C)

o

o

o

DOMAIN/IX USER'S GUIDE
ORDER NO. 005803 - REV. 01

INSTRUCTIONS FOR PLACING TABS IN BINDER

NAME

DOMAIN/IX Overview

Introduction to Shells

Using the Bourne Shell

Using the C Shell

Using BSD4.2 Mail

PLACE BEFORE PAGE NO.

1-1

2-1

3-1

4-1

5-1

",.----..

(,--_ ..

