
o

o

o

o

o

Programming with DOMAIN
3D Graphics Metafile

Resource

Apollo Computer Inc.
330 Billerica Road

Chelmsford, MA 01824

Order No. 005807
Revision 00

Software Release 9.0

Copyright © 1985 Apollo Computer Inc.
All rights reserved. Printed in U.S.A.

First Printing: November 1985
Latest Printing:
Updated:

This document was produced using the Interleaf Workstation Publishing Software (WPS). Interleaf and
WPS are trademarks of Interleaf, Inc.

APOLLO and DOMAIN are registered trademarks of Apollo Computer Inc.

AEGIS, DGR, DOMAIN/Bridge, DOMAIN/Dialogue, DOMAIN/IX, DOMAIN/Laser-26, DOMAIN/PCI,
DOMAIN/SNA, DOMAIN/VACCESS, D3M, DPSS, OSEE, GMR, and GPR are trademarks of Apollo
Computer Inc.

Apollo Computer Inc. reserves the right to make changes in specifications and other information
contained in this publication without prior notice, and the reader should in all cases consult Apollo
Computer Inc. to determine whether any such changes have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF APOLLO COMPUTER INC. HARDWARE
PRODUCTS AND THE LICENSING OF APOLLO COMPUTER INC. SOFTWARE CONSIST SOLELY OF THOSE
SET FORTH IN THE WRITTEN CONTRACTS BETWEEN APOLLO COMPUTER INC. AND ITS CUSTOMERS.
NO REPRESENTATION OR OTHER AFFIRMATION OF FACT CONTAINED IN THIS PUBLICATION,
INCLUDING BUT NOT LIMITED TO STATEMENTS REGARDING CAPACITY , RESPONSE-TIME
PERFORMANCE, SUITABILITY FOR USE OR PERFORMANCE OF PRODUCTS DESCRIBED HEREIN SHALL
BE DEEMED TO BE A WARRANTY BY APOLLO COMPUTER INC. FOR ANY PURPOSE, OR GIVE RISE TO
ANY LIABILITY BY APOLLO COMPUTER INC. WHATSOEVER.

IN NO EVENT SHALL APOLLO COMPUTER INC. BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL
OR CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS)
ARISING OUT OF OR RELATING TO THIS PUBLICATION OR THE INFORMATION CONTAINED IN IT, EVEN IF
APOLLO COMPUTER INC. HAS BEEN ADVISED, KNEW OR SHOULD HAVE KNOWN OF THE POSSIBILITY
OF SUCH DAMAGES.

THE SOFTWARE PROGRAMS DESCRIBED IN THIS DOCUMENT ARE CONFIDENTIAL INFORMATION AND
PROPRIETARY PRODUCTS OF APOLLO COMPUTER INC. OR ITS LICENSORS.

C~

(~
'---- ./

c-'

o

o

o

o

o

Preface

Programming with DOMAIN 3D Graphics Metafile Resource describes concepts and program­
ming techniques for the DOMAIN 3D Graphic~ Metafile Resource (3D GMR) package.

We've organized this manual as follows:

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Chapter 10

Chapter 11

Chapter 12

Chapter 13

Chapter 14

Presents an overview of the 3D Graphics Metafile Resource
and compares it with other DOMAIN graphics packages.

Describes the structure and creation of 3D GMR application
programs.

Describes drawing primitives.

Describes the use of drawing and color attributes.

Describes modeling routines.

Describes attribute classes and blocks.

Describes how to establish viewing parameters.

Describes the different display modes and how to use views
and viewports.

Describes display-time features: displaying a file, using
double buffering, refresh states, and using attribute blocks
and classes.

Describes interactive techniques: cursor control, input con­
trolling, picking, and highlighting.

Describes how to edit a metafile.

Describes the use of color.

Describes how to optimize performance, list 3D GMR restric­
tions and limitations, and compares 2D GMR with 3D GMR.

Describes output to hardcopy display devices.

iii Preface

Related Manuals
For detailed descriptions of 3D GMR routines and data types, see the DOMAIN 3D
Graphics Metafile Resource Call Reference (005812).

Programming with DOMAIN 2D GMR Metafile Resources (005696) describes how to write
programs that use the DOMAIN 2D Graphics Metafile Resource.

Programmer's Guide to DOMAIN Graphics Primitives (005808) describes how to write
graphics programs using DOMAIN Graphics Primitives.

Programming With General System Calls (005506) describes how to write programs that use
standard DOMAIN systems calls.

The DOMAIN Language Level Debugger Reference (001525) describes the high-level lan­
guage debugger.

c

For language-specific information, see the DOMAIN FORTRAN Language Reference ("'"
(000530),. the DOMAIN Pascal User's Guide (000792), and the DOMAIN C Language "'-_ .. '
Reference (002093).

3D GMR creates POSTSCRIPT files for hardcopy output to laser printers that support
POSTSCRIPT. If you want to modify the POSTSCRIPT files see the POSTSCRIPT Lan­
guage Reference (007765).

Problems, Questions, and Suggestions
We appreciate comments from the people who use our system. In order to make it easy
for you to communicate with us, we provide the User Change Request (UCR) system for
software-related comments, and the Reader's Response form for documentation com­
ments. By using these formal channels you make it easy for us to respond to your com­
ments.

You can get more information about how to submit a UCR by consulting the DO MAIN
System Command Reference. Referto the CRUCR (CREATE_USER_CHANGE_REQUEST) Shell
command descr'iption. You can view the same description on-line by typing:

$ HELP CRUCR <RETURN>

For your documentation comments, we've included a Reader's Response form at the back
of each manual.

Preface iv

Documentation Conventions o Unless otherwise noted in the text, this manual uses the following symbolic conventions.

UPPERCASE

lowercase

example

output

o
]

{ }

o
< >

CTRL/Z

o

o

Bold, uppercase words or characters in formats and command
descriptions represent commands or keywords that you must use
literally.

Bold, lowercase words or characters in formats and command
descriptions represent values that you must supply.

Bold or color words in command examples represent literal user
keyboard input.

Typewriter font words in command examples represent literal system
output.

Square brackets enclose optional items in formats and command
descriptions. In sample Pascal statements, square brackets assume
their Pascal meanings.

Braces enclose a list from which you must choose an item in formats
and command descriptions. In sample Pascal statements, braces as­
sume their Pascal meanings.

A vertical bar separates items in a list of choices.

Angle brackets enclose the name of a key on the keyboard.

The notation CTRLI followed by the name of a key indicates a con­
trol character sequence. You should hold down <CTRL> while
typing the' character.

Horizontal ellipsis points indicate that the preceding item can be
repeated one or more times.

Vertical ellipsis points mean that irrelevant parts of a figure or ex­
ample have been omitted.

v Preface

Contents

Chapter 1 Introduction

1.1 3D GMR Features .. 1-1
1.1.1 Storage .. 1-1
1.1.2 Modeling and Viewing .. 1-2
1.1.3 Editing .. 1-3
1.1.4 Input/Output ... 1-3

1.2 The Metafile .. 1-3
1.3 3D GMR Routines .. 1-5

1.3.1 Edit-Time Routines ... 1-5
1.3.2 Display-Time Routines .. 1-5

1.4 Displaying 3D Metafiles ... 1-6
1.4.1 Establishing a Display Mode. .. 1-6
1.4.2 Viewports and Views. .. 1-7

1.5 Coordinate Systems 1-9
1.5.1 Modeling Coordinates ... 1-11
1.5.2 World Coordinates .. 1-11
1.5.3 Viewing Coordinates .. 1-12
1.5.4 Logical Device Coordinates .. 1-13
1.5.5 Device Coordinates "................................. 1-14

1.6 Data Types. .. 1-14
1.7 Using Color .. 1-14
1. 8 3D GMR and Other DOMAIN Graphics Packages 1-15

2 Controlling 3D Metafiles

2.1 Organization of Metafiles .. . 2-1
2.1.1 A Programming Analogy .. . 2-2
2.1.2 Metafile Contents versus Display-Time Parameters 2-3

2.2 Structure of 3D GMR Application Programs 2-4
2.3 Structure Hierarchy 2-5
2.4 Controlling the 3D Graphics Metafile Package 2-6

2.4.1 Borrow Mode 2-7
2.4.2 Direct Mode .. . 2-7
2.4.3 Main-Bitmap Mode .. . 2-8
2.4.4 No-Bitmap Mode .. . 2-8

2.5 Controlling Files 2-8
2.6 Controlling Structures 2-9
2.7 Structure Characteristics 2-11
2.8 Displaying Structures 2-13

Contents vi

c

("
\''-- .

C

C

o

o

o

o

o

2.9 Writing 3D Application Programs. .. 2-14
2.9.1 Including Insert Files .. 2-14
2.9.2 Declaring Variables ... 2-14
2.9.3 Initializing the 3D GMR Package 2-15
2.9.4 Perparing an Algorithm to Perform A Task 2-15
2.9.5 Terminating a 3D GMR Session. .. 2-15

2.10 Running 3D GMR .. 2-15
2.11 A Sample Program ... 2-15

3 U sing Drawing Primitives

3.1 Polylines 3-2
3.2 Multilines .. 3-2
3.3 Polygons ... 3-2
3.4 Polymarkers .. 3-3
3.5 Mesh .. 3-4
3.6 Text. .. 3-5
3.7 Examples Using Polylines and Mesh 3-6

4 U sing Direct Attributes

4.1 Attributes and Structure Hierarchy 4-2
4.2 Direct Attribute Elements ... 4-4

4.2.1 Line Types .. 4-4
4.2.2 Basic Color Attributes ... 4-4
4.2.3 Polymarker Attributes ... 4-7
4.2.4 Text Attributes ... 4-8
4.2.5 Name Sets .. 4-9

4.3 A Program Using Text Attributes 4-11

5 Using Modeling Routines

5.1 Instancing .. 5-1
5.1.1 Instancing and Attributes. .. 5-3
5.1.2 Instancing and Attribute Class Elements .. 5-4

5.2 Modeling Transformations .. 5-4
5.3 Sample Routines .. 5-6

5.3.1 Building a Modeling Matrix 5-6
5.3.2 Moving an Object to a New Location on the Screen. 5-8
5.3.3 Creating Objects Using Instancing 5-10

6 Attribute Classes and Attribute Blocks

6.1 Attribute Source Flags ... 6-2
6.2 Invoking Attribute Classes .. 6-2
6.3 Assigning Attributes to an Attribute Class. .. 6-4
6.4 Creating Attribute Blocks 6-5
6.5 Assigning Attributes to Attribute Blocks 6-6
6.6 Reading Attribute Blocks ... 6-7

vii Contents

6.7 Copying and Deleting Attribute Blocks 6-8
6.8 Mixing Attribute Elements and Attribute Classes
6.9 Modifying Attributes at Display-time

6-8 CI 6-9
6.10 Sample Routines .. . 6-9

6.10.1 Creating Menu Structures and Associating an Aclass Element 6-10
6.10.2 Creating Attribute Blocks 6-10
6.10.3 Assigning the Italics and Reverse Video Ablocks 6-12
6.10.4 Clearing and Refreshing a Viewport 6-12

7 Viewing Parameters

7.1 Specifying the Projection Type 7-4
7.1.1 Parallel Projection .. . 7-5
7.1.2 Perspective Projection .. . 7-6

7.2 Specifying the View Plane 7-6
7.3 Specifying the Viewing Coordinate System 7-8
7.4 Specifying the View Volume

7.4.1 Orthographic Projection View Volume
7-11 C 7-11

7.4.2 Perspective Projection View Volume 7-14
7.4.3 Routines that Set and Modify the View Volume 7-16
7.4.4 Modifying Perspective Projections 7-17

7.5 Copying View Parameters 7-19
7.6 Application Specific Viewing Transformations 7-19
7.7 A Viewing Parameter Example 7-20

8 Displays and Viewports r'"
~,

8.1 Viewports 8-1
8.2 Device Coordinate Systems .. . 8-3

8.2.1 Device Limits 8-4
8.2.2 Device Limits and Window Grow Operations 8-6

8.3 Window to Viewport Mapping .. . 8-8
8.4 Coordinate Transformation Routines 8-9
8.5 Viewport Routines .. .

8.5.1 Changing a Viewport's Appearance
8.5.2 Using Multiple Viewports

8-10 r-~",

8-10 ~"
8-11

8.6 Sample Procedures 8-12
8.6.1 Initialize 3D GMR 8-12
8.6.2 Procedures to Change a View 8-13

9 Display-Time Features

9.1 Displaying a Structure ... 9-1
9.2 Refreshing the Display ... 9-1

9.2.1 User Defined Refresh ... 9-2
9.2.2 Establishing a Refresh State '. .. 9-3
9.2.3 Setting and Clearing the Background Color 9-3

9.3 Using Double Buffering .. 9-4
9.4 Viewport-based Visibility Criteria .. 9-4

9.2.1 Using Visibility Features 9-5 C\
... ,,/

Contents viii

o

o

o

o·

o

9.4.2 Culling .. 9-6
9.4.3 Structure Mask and Visibility 9-6
9.4.4 Structure Value and Visibility. .. 9-7
9.4.5 Name Sets and Visibility ... 9-8
9.4.6 Summary of Viewport Visibility Features 9-11

9.5 Viewport Picking Eligibility ... 9-12
9.6 Attributes and Display-Time Operations 9-13
9.7 Clipping Text ... 9-14

10 Interactive Techniques

10.1 Workplanes ... 10-1
10.2 Controlling the Cursor .. 10-3
10. 3 Using Input Operations .. 10-4

10.3.1 Event Types .. 10-5
10.3.2 Event Reporting ... 10-7

10.4 Picking ... 10-8
10.4.1 Picking Methods ... 10-10
10.4.2 Limiting the Pick Search. .. 10-13

10.5 Echoing. .. 10-16
10.5.1 Pick Echo and Instance Echo 10-16
10.5.2 Setting the Highlighting Attribute Block 10-17

11 Editing Metafiles

11.1 Structure Editing ... 11-1
11.2 Element Editing. .. 11-2
11.3 Insert and Replace Modes ... 11-3

11.3.1 Insert Mode ... 11-3
11.3.2 Replace Mode ... 11-3

11.4 Deleting .. 11-4
11.4.1 Deleting Structures .. 11-4
11.4.2 Deleting Elements ... 11-5

11.5 Erasing ... 11-6
11.6 Copying .. 11-6
11.7 Reflecting Editing Changes ... 11-7

11.7.1 Viewport Refresh States .. 11-7
11.7.2 Dynamic Mode .. 11-8

12 Using Color

12.1 3D GMR Color 12-1
12.2 Color ID and Intensities ... 12-2
12.3 Using RGB and HSV Color Models 12-4
12.4 Redefining the Color Map Directly .. 12-8
12.5 Using Double Buffering Routines for the Display. .. 12-9
12.6 Default Color Maps and Range Tables. .. 12-10

ix Contents

13 Programming Techniques

13.1 Using Tags. .. 13-1
13.2 Optimizing Performance. .. 13-2

13.2.1 Creating Hierarchical Metafiles 13-2
13.2.2 Improving Rendering Performance. .. 13-5
13.2.3 Other Tips to Improve Performance.............................. 13-6

13.3 3D GMR Restrictions and Limitations 13-7
13.4 Comparison of 2D GMR and 3D GMR 13-8
13.5 Using 3D GMR and GPR Together. .. 13-9

14 Output

14.1 Printing ... " 14-1

APPENDICES

Appendix A Sample Pascal Programs
Appendix B Sample FORTRAN Programs
Appendix C Sample C Programs

GLOSSARY

INDEX

Contents x

c

o

o

o

o

o

1-1

1-2

1-3

1-4

1-5

1-6

1-7

2-1

2-2

2-3

2-4

2-5

3-1

3-2

4-1

4-2

4-3

4-4

5-1

5-2

5-3

5-4

Illustrations

3D GMR Architecture .. 1-3

Metafiles, Structures, and Elements ' 1-4

Direct Mode Displays within a DM Window .. 1-7

The Viewing Pipeline .. 1-9

Modeling Coordinates to Screen Coordinates 1-10

Examples of Right-handed World Coordinate Systems 1-11

The UVN Coordinate System 1-13

Example of Hierarchical Structure 2-2

A Metafile with Two Top-Level Structures 2-3

Structure Visibility and Pickability 2-12

Instan,ced Structures ... 2-13

Example 1 ... 2-16

A Mesh with 5x4 Quadrilaterals Requires 30 Points 3-4

Anchor Point and Text Path 3-6

Attributes and Instancing 4-2

Polymarker Scale 1.5 .. 4-8

Name Sets and Viewport Filters 4-10

Sample Text Output .. 4-11

Combined Rotation, Translation, and Scaling 5-2

The Viewing Pipeline .. 5-5

Building a Modeling Matrix '. .. 5-7

The Jack Metafile ... 5-10

7-1 The Viewing Pipeline .. 7-1

7-2 Projection Types .. 7-5

7-3 Specifying the View Plane in a Right-Handed System 7-7

7-4 Right- and Left-handed Viewing Coordinate Systems 7-9

7-5 Determining the V Axis of the UVN Coordinate System 7-9

7-6 A Left-handed Viewing Coordinate System 7-10

7-7 A Right-handed Viewing Coordinate System 7-11

7-8

7-9

Right-handed Orthographic Projection View Volume 7-12

Right-handed Orthographic Projection View Volume 7-13

xi Contents

7-10 The Default View Volume 7-14

7-11 Right-handed Perspective Projection View Volume 7-15

7 -12 Right-handed Perspective Projection View Volume 7-16

7 -13 Specifying the View Window Off Center on the View Plane 7-18

7 -14 A Viewing Parameter Example 7-20

8-1 Two Viewports Created within Default LDC Limits 8-3

8-2 Maximum Device Limits and Device Limits 8-5

8-3 Device Limits Mapped to Logical Device Limits 8-6

8-4 Window Grow Operations 8-7

8-5 Viewport to LDC Mapping 8-8

8-6 The Viewing Pipeline 8-9

9-1

9-2

9-3

9-4

Structure Visibility Criteria 9-5

Primitive Visibility Criteria 9-5

Structure Mask Example 9-7

Structure Value Example .. 9-8

9-5 Name Set Visibility Criteria. .. 9-9

9-6 Using Name Sets. .. 9-9

9-7 Clipping Text by Anchor Point 9-14

10-1

10-2

Work Plane .. 10-2

Cursor Patterns ... 10-4

10-3 Cursor Origin .. 10-4

10-4 Two Structures for Picking 10-10

10-5 Picking Example .. 10-12

10-6 Pick Aperture .. 10-13

10-7

11-1

Name Set Visibility and Pick Criteria 10-15

Assembly .. 11-5

12-1 Setting the Color Binding 12-3

12-2 The Fractional Part of Hue 12-5

12-3 Color Binding .. 12-6

12-4 An Element of the Color Map 12-8

12-5

13-1

13-2

13-3

14-1

Contents

Double-Buffer Allocation - 8 Planes 12-9

A Single-Structure Metafile 13-3

A Hierarchical Metafile .. 13-4

Increased Performance 13-5

Output of GMR_$PRINT_ VIEWPORT 14-2

xii

CI

I

I

C'

o

o

o

14-2 Output of GMR_$PRINT_DISPLAY 14-3

Tables

2-1 Four Display Modes ... 2-7

3-1 Marker Types .. 3-3

3-2 Point Array in C, FORTRAN, and Pascal '... 3-5

4-1 Default Attribute Settings. .. 4-3

4-2 Default Colors for Color Nodes 4-6

4-3 Default Colors for Monochrome Nodes 4-6

4-4

6-1

6-2

Marker Types .. 4-7

Using Attribute Classes .. 6-1

Elements in the Metafile 6-3

12-1 Single-Buffer Mode Default Color Map For 4 plane system 12-10

12-2 Single-Buffer Mode Default Color Map For 8 plane system 12-11

12-3 Single-Buffer Mode Default Color Range Table .. ". 12-11

12-4

12-5

12-6

Double-Buffer Mode, 8-Plane System, Default Color Map 12-12

Double-Buffer, 8-Plane System, Default Color Range 12-13

Double-Buffer Mode, 4-Plane System, Default Color Map 12-14

12-7 Double-Buffer Mode, 4-Plane System, Default Color Range 12-14

13-1 Maximum Space Available to User Programs .. 13-8

xiii Contents

o

~\

U

o

o

Chapter 1

Defining 3D GMR

The DOMAIN 3D Graphics Metafile Resource package and this manual are intended for
programmers who develop graphics applications packages dealing with three-dimensional
data. The 3D Graphics Metafile Resource package provides a versatile, efficient tool for
developing a graphics applications system that stores and displays picture data.

The information in this manual is intended for programmers with some familiarity with
computer graphics. The explanations and examples are provided for programmers with
limited experience as well as those who have worked extensively with computer graphics.

The 3D Graphics Metafile Resource package (hereafter referred to as 3D GMR) is a col­
lection of routines that provide the ability to create, display, edit, and store device-inde­
pendent files of picture data. The package provides routines for developing and storing
picture data and displaying the graphic output of that data.

1.1 3D GMR Features
This section briefly describes the major features of 3D GMR.

1.1.1 Storage

3D GMR provides the necessary support to build a graphics system "with a me~ory." The
package integrates graphics output capabilities with file handling and editing capabilities.

3D GMR allows for virtual storage for its metafiles. Storage capacity can be as much as
240 megabytes depending on the node you are using (see Chapter 13).

1-1 Defining 3D GMR

1.1.2 Modeling and Viewing

3D GMR provides the following modeling and viewing capabilities:

• Floating-point data provides maximum flexibility and range.

• Views represent 3D objects in world coordinate space as wire frames, as a collec­
tion of polygons, or both. You can project orthographic and perspective views and
establish clipping.

• Multiple viewports allow you to look at more than one part of the picture simul­
taneously. You can make changes and see the change in each view. You may also
choose to display different files in different viewports. Up to 64 different view­
ports can be displayed at one time.

• Instancing functions allow you to use a single sequence of elements multiple times
with different transformations and attributes applied.

• Transformation functions rotate, scale, and translate by means of floating-point
transformation matrices.

• Attribute functions establish characteristics such as color, intensity, and text
height before and during display.

• Blocks of attributes are data structures that hold a collection of values that
specify attributes.

• Color features allow you to specify color attributes in the file or in attribute blocks
at display time.

• Graphic functions draw polylines, multilines, and polymarkers, and draw and fill
polygons and meshes. Solid, dashed, dotted, and dashed-dotted line types are sup­
ported for polylines and multilines. Five types of polymarkers are supported.

• Echo features allow you to visually differentiate user-~elected objects during an in­
teractive editing session.

• Dynamic mode allows fast redrawing of an object that is dynamically changing
(for example, rubber-banding a line).

• Stroke text functions draw text of arbitrary orientations and sizes.

Defining 3D GMR 1-2

c

c'

o

o

o

o

1.1.3 Editing

3D GMR uses device-independent files that yo~ can edit as you would a text file. You
can also edit the details of an image interactively. The 3D GMR package lets you easily
choose the focus of interaction to facilitate your development of interactive applications.

1.1.4 Input/Output

3D GMR accepts coordinate data from input devices such as a mouse or bitpad puck with
a simple interface. The package also provides for the transfer of data to hard-copy out­
put devices (see Chapter 14).

1.2 The Metafile
The standard form of data storage in the 3D GMR package is a metafile. A metafile is a
device-independent collection of picture data (vector graphics and text) that can be dis­
played. The metafiles you create are stored and available for you to redisplay, revise, and
reuse. They are not static copies of display bitmaps; rather, metafiles contain lists of ele­
ments used to build a graphic image. Figure 1-1 shows how the metafile fits into the 3D
GMR architecture.

User Input

+
User ..--rD

Output ~

User Display Interface
,,~

"
Application

Bitmap
(Display

Calls to Memory)
Graphics
Procedures

"
3D Graphics Graphics

Metafile Resource Graphics Metafile - Metafile -
Processor

(3D GMR)

Figure 1-1. 3D GM R Architecture

1-3 Defining 3D GMR

The metafile is made up of structures and elements as defined below. Figure 1-2 shows
the relationship between the metafile, structure, and element.

Metafile Structure Element

structure 1 --.. element 1 --..1 primitive element

structure 2 element 2 or

structure 3 element 3
attribute element

or
• • • • instance element • •

or

tag element

Figure 1-2. Meta files, Structures, and Elements

The terms introduced in Figure 1-2 are defined here:

element

primitive element

attribute element

instance element

tag element

structure

Defining 3D GMR

The smallest atomic components of the picture. Elements are
categorized as primitive elements, attribute elements, instance
elements, and tag elements.

Describes the indivisible, displayable components of a picture.
Primitive elements include polylines (linked line segments),
multilines (unlinked line segments), polygons, polymarkers,
meshes, and text.

Contains values that specify the manner in which components
of the picture are to be drawn; for example, text height or the
type and color of lines. Attribute values may be modified in­
dividually or in blocks.

References other structures. Instancing allows multiple uses
of a single sequence of elements, with different transforma­
tions applied. In this way, you can build a description of a
large, complex model from a collection of simple pieces.

Stores application-specific information that 3D GMR ignores
(for example, a part number).

A sequence (linear list) of elements, usually specifying a part
or piece of the entire physical or graphical object. Structures
may be uniquely named and are usually meant to be grouped
together in a logical or geometrical fashion.

1-4

o

o

Within a metafile, elements are grouped into structures. A structure can be referenced as
a group from another structure, in a manner analogous to a subroutine call. This
reference to a structure is called an instance of that structure.

Every element is part of some structure. There are no elements outside of all structures.

1.3 3D GMR Routines
Applications programs call graphics metafile routines to edit and display files. These
routines are categorized as edit-time and display-time routines.

1.3.1 Edit-Time Routines

You call edit-time routines to affect the state of the metafile package, or to affect the con­
tents of the files. Editing routines create, open, and close files and structures, and insert,
read, copy, and delete elements within structures.

For each type of element that can occur in a metafile, the 3D GMR package has the fol­
lowing:

• One routine to insert that type of element into a file

o Another routine to read the parameters of that type of element from an existing
element in the file

o For example:

o

o

GMR_$LI NE_COLOR
GMR_$INQ_LINE_COLOR

One point bears emphasizing. The 3D GMR editing routines do not operate directly on
bitmaps. Instead, these routines modify either the contents of a metafile or the manner in
which a metafile is displayed. The changes to the metafile may result in changes to a bit­
map for display or for hard-copy output.

1.3.2 Display-Time Routines

Using display-time routines, you can display the images produced by the data in a file.
You can then edit the file and display the revised image. In all display modes, coor­
dinates are device-independent. This independence allows convenient display of the out­
put of the file (or regions of it) on the screen or on another device such as a printer.

Data from input devices, such as a touchpad or a mouse, may be processed and used to
help build files.

1-5 Defining 3D GMR

1.4 Displaying 3D Metafiles
This section briefly describes display modes, views, and viewports.

1.4.1 Establishing a Display Mode

Within the initialization routine, you establish one of the following four display modes:

• Borrow mode permits use of the entire screen

• Dir.ect mode displays within a Display Manager (DM) window

• Main-bitmap mode displays within a bitmap allocated in main memory

• No-bitmap mode allows editing of files without display

The display-time routines of the graphics metafile package control the form in which
metafiles are displayed. When a viewing routine calls for display, the 3D GMR package
performs a top-down search (a traversal) through a structure and its instanced structures,
generating picture data in accordance with the primitive, attribute, and instance elements
encountered. In borrow, direct, and main-bitmap modes, the picture data is rendered in
viewports that are controlled by the graphics metafile package.

A viewport is part or all of the available display (see Figure 1-3).

Defining 3D GMR 1-6

o

o

o

C)

o

o

Screen Display Manager windows

Viewports

Figure 1-3. Direct Mode Displays within a OM Window

1.4.2 Viewports and Views

Viewing routines control the form in which metafiles are displayed. These routines allow
you to look at a file, but change only how it is displayed. This is similar to the commands
<MOVE> and <GROW> used for a window. These routines do not change the contents of a
file, but they change such characteristics of the displayed image as placement and size.

Each viewport provides a separate view of the object (the output of a structure and its in­
stanced substructures in a metafile). You can see different orientations or portions of the

1-7 Defining 3D GMR

object in different viewports. Moving the viewport on the screen or Display Manager win­
dow does not change the view; the view moves with the viewport.

Moving, scaling, or otherwise changing a view affects what you see in the viewport but C:
does not change the viewport itself (see Chapter 8).

The 3D GMR package assigns each viewport a unique identification number. The
package allows you to specify background color, border width, and border color.

Changing the View
Viewing transformation routines control the appearance of the view by moving or chang­
ing the size of the image. These routines allow you to make the following changes to an
image in the view:

• Changing the projection

• Setting clipping planes

• Translating, scaling, or rotating

Selective Display
You can choose to display any structure within a metafile in a given viewport. You can
also make other structures referred to (instanced) by this structure visible or not in
several ways. Thus, any or all of the structures in a file may be displayed in a particular
view.

C
-~

.--~"

A practical example comes from a mechanical application. In developing an aircraft C
design with the 3D GMR package, you may want to display all of the plane with the inter-
nal hydraulic and electrical systems. Alternatively, you may want a less cluttered view
showing only the airframe without the internal systems. You can display any combination
of structures in a view by creating and displaying a structure containing all those struc-
tures you want displayed in the viewport you specify, or by setting the visibility of struc-
tures off.

Using structure visibility is the most efficient way to select items for display. A more ('----"
general but less efficient method is to classify the primitives in structures by using name "-__ -
sets. Attributes used to add and remove names from the current name set allow you to
control visibility and pick eligibility within a structure.

You can also set visibility criteria based on structure size. You can specify that structures
smaller than a given size not be displayed in a particular viewport. This is called culling
and is described in Chapter 9 along with other viewport-based visibility features.

User Input
You can add data to a metafile while a program is running using input routines. Input
routines let you generate certain types of data through the keys or buttons on a mouse or
puck (see Chapter 10). This data can be used to calculate parameters for routines which
change the appearance of the display.

Defining 3D GMR 1-8

o
Selecting Individual Elements
The process of interactively selecting items of interset on the display is known as picking.
You can use pick routines to select a single element from a file and to retrieve the path
through the hierarchy of structures to that element (see Chapter 10). As you edit the
metafile, you can use the pick routines to select the element you want to change. You can
also specify that certain elements not be pickable. This can protect a basic picture while
you change some elements in it, or can facilitate picking a structure in a cluttered picture.

1.5 Coordinate Systems
The 3D GMR package has five coordinate systems:

• Modeling coordinates

• World coordinates

• Viewing coordinates

• Logical device coordinates

o Device coordinates

These coordinate systems are used to transform 3D coordinate information to 2D display
data (see Figure 1-5). These transformations make up the viewing pipeline (see Figure n 1-4).

~

3D Element data (modeling coordinates)

Modeling Transformations

3D I
World C ordinates

o Viewing Transformation

3D Viewing Coordinates

Window to Viewport Transformation

3D Logical Device Coordinates

Viewport to Screen Transformation

20 Device Coordinates

o Figure 1-4. The Viewing Pipeline

1-9 Defining 3D GMR

3D Modeling Coordinates

z

Screen

Display
Manager
window

Viewport

y

~------+--------x

Figure 1-5. Modeling Coordinates to Screen Coordinates

Defining 3D GMR 1-10

c

o

o

o

o

o

1.5.1 Modeling Coordinates

Primitive elements (graphical objects and text) are defined using modeling coordinates.
Conceptually, each structure has its own modeling coordinate system (MCS). This lets
you position instanced (sub)structures relative to the parent structure. The relationship
between the MCS of a parent structure and the MCS of one of its instanced structures is
determined by a transformation that you supply to the instance element in the parent
structure.

Given the hierarchy of structures, the MCS of any instance of a structure is related to the
MCS of the root instanced from a single (root) structure by a composite modeling trans­
formation. This composite transformation results from composing (e.g., matrix multiply­
ing) all the transformations along the path of the instance elements from the root to the
instance in question.

1.5.2 World Coordinates

The modeling coordinate system of the highest level structure displayed in a viewport is
especially important. Because of this importance, it is given a special name: the world
coordinate system.

By definition, the world coordinate system is a right-handed, three-dimensional Cartesian
coordinate system. It may help to think of this coordinate system as having x, y, and z
axes with one of two possible orientations:

1. x increasing to the right, y increasing up, and z increasing forwards in the image
(see Figure 1-6a).

2. x increasing forwards, y increasing to the right, and z increasing up in the image
(see Figure 1-6b).

In both cases, (x X y = z), where X is the vector cross-product.

y z

(a) (b)

Figure 1-6. Examples of Right-handed World Coordinate Systems

1-11 Defining 3D GMR

--_ .. _----_._---- --_.

1.5.3 Viewing Coordinates

The viewing coordinate system (also called the UVN system) may be oriented and posi­
tioned anywhere in world coordinate space. The UVN system has two main uses:

1. It is used to specify the clipping volume that determines the geometrical portion of
the object to be displayed in a view.

2. It defines the view plane that is used to transform 3D world coordinates to 2D logi­
cal device coordinates.

Figure 1-7 shows one possible UVN coordinate system. You specify most of the viewing
parameters in world coordinates because they control the portion of the world coordinate
system to be mapped to the viewport on the screen. For a detailed description of the
UVN coordinate system, see Chapter 7.

Defining 3D GMR 1-12

C::

o

o

o

o

y ~eye
y R

Observation position R = Reference Point

N = View plane normal

y V

z x

Figure 1-7. The UVN Coordinate System

1.5.4 Logical Device Coordinates

Logical device coordinates are a device-independent coordinate system used to specify
the composition of images to the graphics system. The viewport in which an image is dis­
played is defined in logical device coordinates (LDC). The application program specifies
the range for logical device coordinates. The default range is from 0 to 1 in all directions.

In 3D GMR, viewport boundaries are specified in logical device coordinates. By default,
the logical device coordinates use a square portion of the device. The coordinate range
can be changed, and the portion of the device that is used can be inquired and changed
(see Chapter 8).

1-13 Defining 3D GMR

1.5.5 Device Coordinates

Device coordinates are used by the display device. For direct, borrow, and main-bitmap
modes, these are bitmap coordinates. The device range is set so that it is within the bit­
map for direct, borrow, and main-bitmap mode.

The device coordinate system can usually be ignored by the user, as the 3D GMR package
maps to the Display Manager window or screen. In performing this mapping, the 3D
GMR package converts the device-independent world coordinates that you specify to
device coordinates when it renders the metafile. This allows the same file to be displayed
on different types of DOMAIN nodes without requiring changes to your application
program. It also allows you to set viewport bounds within the Display Manager window.

This support across devices (device-independence) is based on the separation of coor­
dinate systems built into the 3D GMR package. You can use modeling coordinates to
define objects in the three-dimensional world. The 3D GMR package converts these to
device coordinates that relate directly to the screen or main-memory bitmap.

1.6 Data Types
The 3D GMR package uses single-precision, floating-point coordinate data to provide
maximum flexibility and range.

1 .7 Using Color
The 3D GMR package allows you to set and change color in two ways:

1. Include color attribute elements in the metafile to establish color for particular
modeling elements (polylines, multilines, polygons, polymarkers, meshes, and
text).

2. Establish color by using another set of routines at display time (attribute block
routines). This allows you to change color without editing the metafile.

The 3D GMR color scheme is designed to give you a flexible combination of automatic
and controllable color selection. Color assignments to primitive elements are handled
through the attribute elements associated with color identification numbers.

The binding of these color identification numbers to meaningful color definitions is per­
formed at display time. This scheme allows you to respecify a color map allocation to
smooth out an image or emphasize an area of interest without editing the metafile.

Defining 3D GMR 1-14

C)

o
I

I

o

o

o

o

1.8 3D GMR and Other DOMAIN Graphics Packages
The DOMAIN system also has three other graphics packages:

• DOMAIN 2D Graphics Metafile Resource (2D GMR)

• DOMAIN Graphics Primitives (GPR)

• DOMAIN Core Graphics

2D GMR is a standard library on the DOMAIN system. 2D GMR is similar in concept
and orientation to 3D GMR.

The graphics primitives library (GPR) is built into your DOMAIN system. The routines
(primitives) that make up the library let you manipulate the least divisible graphic ele­
ments to develop high-speed graphics operations. These elements include lines and
polylines, text with various fonts, and pixel values. For a detailed description of graphics
primitives, see Programming with DOMAIN Graphics Primitives and the DOMAIN System Call
Reference.

The DOMAIN system also has an optional Core graphics package. The Core graphics
'package provides a high-level graphics environment in which to build portable graphics
application systems. For a detailed description of Core graphics, see Programming With
DOMAIN Core Graphics.

The distinctive characteristics of the three systems are as follows:

• Graphics Metafiles: The Graphics Metafile Resource includes both 2D and 3D
GMR. Picture data is stored in device-independent files. Both packages let you
create, edit, display, and store picture data. Storage and rapid redisplay functions
are combined into one package. This allows rapid interactive editing and
redisplay. Coordinates are device-independent, providing flexibility in the
development and use of application programs. See Chapter 13 for a comparison
of 2D and 3D GMR.

• Graphics Primitives: The GPR function calls cause changes to be made to a bitmap
to create a graphic image. There is no memory of the calls performed except to the
limited extent of being able to save a static image at any given time. Storing the
bitmap in a file does not save the sequence of graphics commands used to create
the image on the bitmap. Therefore, rect'rawing usually requires that an application
program itself keep track of and re-execute the calls. GPR display coordinates are
device-dependent. See Chapter 13 for information on intermingling GPR and 3D
GMR routines.

• Core Graphics: The functions in this package conform to an industry standard. The
functions include modeling and viewing capabilities. The Core package stores seg­
ments only for redisplay during the same session; no permanent copy is created.
These segments cannot contain instances of other segments. Z-coordinates are

1-15 Defining 3D GMR

device-independent, providing flexibility in the development and use of application
programs.

/~\

3D GMR is distinct from the graphics primitives (GPR) package in this way: GPR opera- ~j/

tions are performed directly to the output device; 3D GMR operations read, modify, or
display a metafile.

c

c'
Defining 3D GMR 1-16

~-------.--------------------------------------

o

o

o

o

o

Chapter 2

Controlling 3D Metafiles

This chapter describes the organization of metafiles and the basic procedure for
developing programs using 3D GMR. The chapter also presents routines for controlling
the 3D GMR package and its files and structures.

2.1 Organization of Metafiles
As described in Section 1.2, a metafile is divided into structures that are each a series of
elements. The basic organization of a metafile is hierarchical (see Figure 2-1). This
top-down organization is fundamental to the efficient use of 3D GMR (see Section 2.3).

2-1 Controlling 3D Meta/iles

structure 1

structure 2 structure 3

structure 4 structure 5

structure 7

structure 6

Figure 2-1. Example of Hierarchical Structure

In Figure 2-1, the main structure directly or indirectly references six other (sub)
structures. Structure 1 instances structure 2 four times and structure 3 five times.
Structure 2 in turn instances structure 4 and structure 5. Structure 5 instances structure 6
and structure 7. Each structure is created only once in the metafile. Each time a structure
is needed, an instance routine (similar to a subroutine call) references it. See Chapter 5
for more information on instancing.

2.1.1 A Programming Analogy

A metafile is analogous to a computer program in many ways, including the following:

• Metafiles are like binary files or executable images

• Structures are like program subroutines

Controlling 3D MetaJiles 2-2

o

o

o

o

o Elements are like CPU instructions

• Tag elements are like comments or debugging information that is put into the
executable image

• Instances are like call subroutine instructions

A metafile need not have a single "main structure" as in Figure 2-1. A metafile can have
several top-level structures, as shown in Figure 2-2. In this way a metafile is similar to a
system library that has several entry points.

A given structure may be instanced more than once by another structure. A structure can
also be instanced by more than one structure (see Figure 2-2).

Assembly 1 Assembly 2
,

subassembly1 I subassembly2 subassembly3

I basic basic basic basic
component 1 component 2 component 3 component 4.

Figure 2-2. A Metafile with Two Top-Level Structures.

For example, you may have a structure that represents a screw. Many different parts of
the model may use this screw. The system keeps track of the path from the original screw
to each instance of it. If you change the original structure, all instanced structures are
also changed automatically. Changing the size of all the screws of one type in the model
requires changing only the original structure.

Recursive instancing is not supported. There are no conditional flow of control features
(for example, if statements) to exit a recursive instancing loop.

2.1.2 Metafile Contents versus Display-Time Parameters

The metafile stores information about the physical objects that are being modeled. This
information is stored independently of how the objects are viewed. For example, the
following items are stored in the metafile:

2-3 Controlling 3D Metafiles

• Modeling transformations (4x3 matrices) associated with instance elements

• Elements specifying geometric shapes

• Attribute elements specifying, for example, how to color surfaces

The metafile specifies the coordinates of the geometry and many of the parameters used
for rendering the image. However, the application can control many details of what is
viewed at display time without editing the metafile. The following are some of the
display-time features that the application can specify:

• The viewing transformation and the global modeling transformation. Together
these transformations determine the position, orientation, and scale of the
geometry, as well as the reference point from which it is viewed.

• The colors associated with the color identificatio-n numbers used in the file.

• Attribute blocks that provide a level of indirection in specifying attributes.

NOTE: The application can store viewing information in the metafile by
using tags (see Chapter 13).

2.2 Structure of 3D GMR Application Programs
The basic procedure for developing a graphics metafile program is as follows:

• Initialize the graphics metafile package, specifying a display mode and bitmap.

• Open or create one or more 3D GMR files.

• To make changes (edit the metafile):

1. Open a structure in a metafile.
2. Move to some location in the structure.

a. Examine the element at that location
or

b. Delete the element at that location
or

c. Insert a new element at that location or replace it.
2. Close the structure.

Controlling 3D Metafiles 2-4

i""
\
\ '

c

o

C"\
)

o

o

o

• To view the metafile:
1. Create one or more viewports (or use defaults).
2. Establish viewing parameters (or use defaults).
3. Assign a structure to the viewport.
4. Refresh the viewport.

• To edit and view changes interactively, see Chapters 9 and 11.

• To use locator input to select or pick items in the view, see Chapter 10.

o Close the metafile(s).

• Terminate the 3D GMR package.

An application program that uses the routines of the graphics metafile package must first
initialize the 3D GMR package. Once the 3D GMR package is initialized, the next step is
to create a metafile or to open a previously created one. You must open a file to display
or edit it. You can create or edit structures within this open file; you can insert and delete
elements within the structures of the open file.

Once you establish a structure, you may edit and redisplay it. Editing a structure is
analogous to editing a line of text with an editor. Every element in a metafile is part of
some structure, just as every character in a text file is part of some line.

2.3 Structure Hierarchy
The following statement emphasizes a fundamental principle of 3D GMR:

Organizing structures in a logical or spatial hierarchy can greatly increase performance.

When you instruct 3D GMR to render a metafile (either for display or picking), it
performs a top-down search (called a traversal). By organizing structures in a top-down
manner, you greatly increase the efficiency of this search. The search procedure can
disregard entire portions or subtrees of the metafile. The following are some of the
features that are affected by the hierarchy of structures:

. • Reusing structures by changing transformations (instancing). This decreases the
size of the metafile and allows quick updating of repeatedly used objects.

• Viewing all or part of a metafile. For example, if all electrical components of a an
assembly are in separate structures, you can turn off all of these components by
setting the visibility mask of the appropriate subtrees (see Chapter 9).

• Increasing the speed of refreshing viewports. Clipping is a time consuming part of
viewport refreshing. Entire subtrees can become ineligible for clipping.

• Echoing an entire subtree or any portion of it.

2-5 Controlling 3D Metajiles

See Chapter 13 more information.

2.4 Controlling the 3D Graphics Metafile Package
Routines:

GMR_$INIT

GMR_$TERMINATE

To use the graphics metafile package, you must initialize it. At the end of a program
which uses graphics metafiles, you must terminate the package.

GMR_$INIT initializes the graphics metafile package. Within this routine, you establish
the display mode. The choice of mode depends on the purpose of your program and the
environment in which you want the program to run. For example, direct mode is
desirable if you want the Display Manager environment to be available while this program
is running and displaying.

The graphics metafile package does not require that you operate directly on a bitmap. A
bitmap (also called a frame buffer) is a data structure used to store values for each point
or pixel in a raster. This data structure is a three-dimensional array of bits having height,
width, and depth.

With the 3D GMR package, you use the bitmap established when you initialize the
package. The characteristics of this bitmap depend upon the initialization mode. The ~
four modes of the graphics metafile package are shown in Table 2-1. -_/

o
Controlling 3D Metafiles 2-6

Table 2-1. Four Display Modes

Display Mode Description

Borrow On the full screen, which is temporarily
borrowed from the Display Manager.

Direct Within a Display Manager window, which
is acquired from the Display Manager.

C) Main-bitmap Using a bitmap allocated in main memory
without a display bitmap.

No-bitmap Without a main memory or display bitmap.

o 2.4.1 Borrow Mode

o

o

In borrow mode, the 3D GMR package borrows the full screen and the keyboard from the
Display Manager and uses the display driver directly through 3D GMR software. All
windows disappear from the screen. The Display Manager continues to run during this
time. However, it does not write the output of any other processes to the screen or read
any keyboard input until the 3D GMR package is terminated. Input you have typed ahead
into input pads can be read by the related processes while the display is borrowed.

Borrow mode has the advantage of using the entire screen. However, because borrow
mode takes over the entire display from the Display Manager, other processes are not
immediately available.

2.4.2 Direct Mode

Direct mode is similar to borrow mode, but the 3D GMR package borrows a Display
Manager window instead of borrowing the entire display. The 3D GMR package acquires
control of the display each time it must generate graphics output within the borrowed
window. All other processes are handled normally by the Display Manager.

Direct mode offers a graphics application the performance and unrestricted use of display
capabilities found in borrow mode. In addition, direct mode permits the application to

2-7 Controlling 3D Metafiles

coexist with other activities on the screen. Direct mode is the preferred mode for most ('\ \,'---.-/'
interactive graphics applications.

2.4.3 Main-Bitmap Mode

In main-bitmap mode, the 3D GMR package creates a main memory bitmap, but does
not create a display bitmap. To display the file on the screen, you must terminate
main-bitmap mode and reinitialize in borrow or direct mode.

This mode allows you to create user-available bitmaps larger than the full display. It is
similar to no-display mode in the Graphics Primitives package.

2.4.4 No-Bitmap Mode

No-bitmap mode allows you to build a file without a main memory bitmap or display. No
viewing operations may be performed in this mode. To display the file, you must
terminate 3D GMR and reinitialize it in borrow or direct mode.

This mode provides the most efficient way to create a metafile from a database when you
do not need to be simultaneously monitoring a graphic display of the picture.

2.5 Controlling Files
Routines:

GMR_$FILE_CREATE

GMR_$FILE_OPEN

GMR_$FILE_CLOSE

GMR_$FILE_SELECT

After initializing the graphics metafile package, you must create and open a file using
GMR_$FILE_CREATE or open an existing file using GMR_$FILE_OPEN. This becomes the
current file. Within this file, you create structures into which you insert and store
elements.

When you use the routine GMR_$FILE_CREATE, you give the file a pathname and the 3D
GMR package assigns an identification number.

To read or edit an existing file, you must open it with GMR_$FILE_OPEN. Upon
completion of editing or using a file, you must close it with GMR_$FILE_CLOSE.

You may have more than one file open at a time. When you open a file while another file
is open, the newly opened file becomes the current file and the context of the old file is
saved.

Controlling 3D Metafiles 2-8

C'I

o

o

o

o

You may switch among open files for editing, viewing, and copying purposes using
GMR_$FILE_SELECT. However, you cannot switch to another open file while a structure is
open (close the structure first and then use GMR_$FILE_SELECT). When you close the
current file, the package is left with no current file; you must then select a file in order to
proceed.

You can perform many normal Shell functions on these files. You can copy (cpf), move
(mvf) , and delete (dlf) them, but you cannot concatenate (catf) them.

The following routines either require or return a file_id argument:

• GMR_$FILE_CREATE creates a file and returns the file_ide

• GMR_$FILE_OPEN opens an existing file and returns the file_ide

• GMR_FILE_SELECT allows switching between open files for editing, viewing,
and copying.

• GMR_$STRUCTURE_COPY copies the contents of one structure into another
structure. You can copy either within the current file or (with some limitations)
between files. When copying between files, file_id identifies the source file.

• GMR_$VIEWPORT_INQ_STRUCTURE returns the structure_id and the file_id of the
structure assigned to a particular viewport for display.

2.6 Controlling Structures
Routines:

GMR_$STRUCTURE_CREATE

GMR_$STRUCTURE_OPEN

GMR_$STRUCTURE_INQ_OPEN

GMR_$STRUCTURE_CLOSE

GMR_$STRUCTURE_COPY

GMR_$STRUCTURE_DELETE

GMR_$STRUCTURE_ERASE

GMR_$STRUCTURE_SET_NAME

GMR_$STRUCTURE_INQ_NAME

GMR_$STRUCTURE_INQ_ID

GMR_$STRUCTURE_INQ_COUNT

G~R_$STRUCTURE_INQ_INSTANCES

GMR_$STRUCTURE_INQ_BOUNDS

GMR_$INSTANCE_TRANSFORM_FWD_REF

The elements within a file are grouped into structures. You must open a structure before
you can add elements to it.

2-9 Controlling 3D Metafiles

You can create a new structure with GMR_$STRUCTURE_CREATE or
GMR_$INSTANCE_TRANSFORM_FWD_REF. The former is the easiest way to create a new
structure. The latter allows you to forward reference an as yet undefined structure when
inserting an instance element (see Chapter 5).

GMR_$STRUCTURE_OPEN opens an existing structure for redisplay or editing. This
structure becomes the current open structure. The element index is set to 0 (see Chapter
11).

GMR_$STRUCTURE_OPEN has a boolean parameter that allows you to specify whether or
not to create a back-up version of the structure before opening it (back_up = TRUE
creates a back-up version). Use back_up = FALSE whenever appropriate since creating
back-up versions takes up free space and can cause the metafile to grow . Use back_up =

TRUE mainly when a structure is going to be opened for a lengthy period of interactive
editing that the user may want to retract.

GMR_$STRUCTURE_INQ_OPEN returns the structure identification number of the current
open structure.

When you open a structure, the. 3D GMR package automatically assigns a unique
identifier, the structure ill. You can optionally give the structure a uinique name using
GMR_$STRUCTURE_SET_NAME.

NOTE: Assigning names within metafiles with a large number of structures
can become cumbersome because each name must be unique. Each
time you create a new name, the current list of names is checked
(affecting performance time slightly). Store the structure ill
whenever possible to avoid unnecessary calls to inquire the ill.

You can use the structure ill to create instances of the structure within other structures or
to view the structure. The identification number (and optional name) of a structure is
stored so that it is retained after you terminate the 3D GMR package.

~ -- .. '

c

Nb ote that vibewidn? 0IPeradtions are independent of editing operations. A structure need not C
e open to e ISP aye .

GMR_$STRUCTURE_CLOSE closes the current structure. You can specify whether or not
you want to save the changes you have made.

GMR_$STRUCTURE_INQ_ID returns the structure identification number of the named
structure. Use. GMR_$STRUCTURE_INQ_NAME to retrieve the name of any existing
structure in the current file for which you know the identification number; If necessary,
use GMR_$STRUCTURE_INQ_OPEN to retrieve the ill of the current open structure.

You may want to name an unnamed structure or rename an already named structure
before or during the process of editing it. To do this, use GMR_$STRUCTURE_SET_NAME.

You may set the name of any structure, not just the current structure.

Controlling 3D Metafiles 2-10

o

(J

o

GMR_$STRUCTURE_DELETE deletes the current structure. You must open a structure
before you can delete it. If there are any references to (instances of) this structure in
other structures of this file, the structure is not deleted.

GMR_$STRUCTURE_COPY copies the entire contents of another structure into the current
structure.

GMR_$STRUCTURE_ERASE erases the contents of a structure, leaving an empty structure.

GMR_$STRUCTURE_COPY/ERASE/DELETE are editing functions, which are described in
more detail in Chapter 11.

GMR_$STRUCTURE_INQ_COUNT returns the total number of structures in the metafile and
a structure number guaranteed to be greater than or equal to the largest structure number.
You can then examine every structure by checking structure numbers from 0 to the
maximum value.

GMR_$STRUCTURE_INQ_INSTANCES returns the number of instance elements that invoke
a particular structure and the maximum number of levels of instancing that occur beneath
the structure (see Chapter 5).

GMR_$STRUCTURE_INQ_BOUNDS returns the limits of the bounding box that encloses a
structure and any of its subtrees. See Section 13.1 for more information on bounding
boxes.

2.7 Structure Characteristics
Routines:

GMR_$STRUCTURE_SET_ VALUE_MASK

GMR_$STRUCTURE_INQ_ VALUE_MASK

GMR_$STRUCTURE_SET_TEMPORARY

GMR_$STRUCTURE_INQ_TEMPORARY o Characteristics such as visibility and pickability can be associated with a structure.

o

GMR_$STRUCTURE_SET_ VALUE_MASK assigns a value and mask to a structure. At
display-time, the value and mask are compared against viewport filters to specify whether
the structure and instanced structures will be visible and/or pickable in that particular
viewport (see Figure 2-3).

·2-11 Controlling 3D Metafiles

Structure Viewport Filters c
..lIII Visibility range

Structure mask -
~

....
~ Pick range

..lIII Visibility mask
Structure value - -....

~ Pick mask

Figure 2-3. Structure Visibility and Pickability

Using the structure value and mask to set visibility enables you to display a picture
without structures that may clutter it. For example, you may want to see a picture with or
without text. You can place text in a separate structure and then change the visibility
value of that structure to make it visible or invisible. r"'"

"--_.I
Using the structure value and mask to set pick eligibility enables you to specify which
objects can be selected by an input device. For example, there may be several different
objects in one area of the screen, but you can specify that the input device will only
identify a certain type of object.

You can also assign visibility and pickability characteristics to the elements within a
structure using name set attributes (see Chapter 4).

GMR_$STRUCTURE_INQ_ VALUE_MASK returns the value and mask of the specified
structure.

GMR_$STRUCTURE_SET_TEMPORARY sets the current structure as temporary or
permanent. A temporary structure is deleted when the file is closed (provided that it is
not instanced elsewhere in the file by a permanent structure). A temporary structure is
useful for picture data that you want to display but not store. This allows you to add a
graphic element, such as an enclosing box or a superimposed grid, which you do not want
to store in the metafile.

The following rules apply to temporary structures when you close the file:

1. Temporary structures that are not instanced by other structures are deleted.

2. Temporary structures that are instanced by permanent structures are not deleted.

2. A temporary structures that is instanced by other temporary structures is deleted if
all the temporary structures that instance it are deleted.

GMR_$STRUCTURE_INQ_TEMPORARY indicates whether the current structure is set to
temporary or permanent.

Controlling 3D Meta/iles 2-12

('
'-- /

c

o

o

o

o

2.8. Displaying Structures
Routines:

GMR_$VIEWPORT_SET_STRUCTURE

GMR_$VIEWPORT_INQ_STRUCTURE

GMR_$FILE_SET_PRIMARY_STRUCTURE

GMR_$FILE_INQ_PRIMARY_STRUCTURE

Because of the hierarchical nature of the metafile, displaying a structure also displays all
of its subtrees (structures that it instances). This is illustrated in Figure 2-4, a simplified
version of the metafile in Figure 2-1. Displaying structure 1 displays all of the structures
in the file (unless you selectively turn off visibility using structure values, masks, or name
sets). Displaying structure 2 shows structures 2, 4, 5, 6, and 7. Displaying structure 4
eliminates the display of any other structures.

Figure 2-4. Instanced Structures

Structures are not assigned to viewports by default. You must explicitly assign a structure
to a viewport using GMR_$VIEWPORT_SET_STRUCTURE.

The concept of a primary structure lets an application earmark one structure as special so
that a subsequent display program can find out which structure to assign to a viewport.

GMR_$FILE_SET_PRIMARY_STRUCTURE makes a structure the primary structure of the
current open metafile.

GMR_$FILE_INQ_PRIMARY_STRUCTURE returns the structure ID of the primary structure.

GMR_$VIEWPORT_INQ_STRUCTURE returns the structure ID and the file ID of the
structure assigned to a particular viewport.

2-13 Controlling 3D Metafiles

NOTE: GMR_$VIEWPORT_SET_STRUCTURE assigns a structure to a
viewport. To make the structure visible, clear (optional) and refresh
the viewport (see Chapter 9).

2.9 Writing 3D Application Programs
In the sections that follow, the steps required to produce a 3D GMR application program
are presented with a sample program.

2.9.1 Including Insert Files

To write 3D GMR application programs, you must include two insert files for the
language you are using. The first insert file allows you to use system routines:

Insert File

I sys/ins/base. ins. ftn

I sys/ins/base. ins. pas

I sys/ins/base. ins. c

Programming Language

FORTRAN

Pascal

C

The second insert file allows you to use 3D GMR routines:

Insert File

I sys/insl gmr3d. ins. ftn

Isys/ins/gmr3d.ins.pas

Isys/ins/gmr3d.ins.c

Programming Language

FORTRAN

Pascal

C

c

(
-~ In addition, you may require other insert files depending on the system utilities you are

using (for example Isys/ins/error.ins ...). \,~~

2.9.2 Declaring Variables

To use 3D GMR calls, you must declare the variables used as parameters so that they
correspond to the data types of the DOMAIN system. For information on data types, see
Chapter 1 of the DOMAIN 3D Graphics Metafile Resource Call Reference.

Controlling 3D Meta/iles 2-14

o

o

o

o

2.9.3 Initializing the 3D GMR Package

To execute 3D GMR calls in an application program, you must first initialize the package.
To do this, call GMR_$INIT in the application program.

2.9.4 Preparing an Algorithm to Perform a Task

The next step in the development of a 3D GMR application program is to prepare an
algorithm using 3D GMR routines to accomplish the task at hand.

2.9.5 Terminating a 3D GMR Session

Use GMR_$TERMINATE to end a 3D GMR session. This routine closes any open files and
structures and saves the changes.

2.1 0 Running 3D GMR
To use 3D GMR, you must execute an INLIB command for every process in which you
want 3D GMR to run. For example:

$ INLIB ILIB/GMR3DLIB

This procedure works on any node. However, performance is improved when you use the
version tailored to your node. Section 13.2.3 lists these specially tailored versions.

2.11 A Sample Program
This first sample program demonstrates the basic use of the 3D GMR package. The
program performs the following operations:

1. Initializes the 3D GMR package in direct mode and opens a metafile named
test_gmfile.

2. Creates a structure named object and inserts a 3D box into the structure.

3. Creates a structure named scene and instances the object structure twice within the
scene structure. The first instance is rotated around the Y and X axes. The
second uses the same rotation plus a scaling factor.

4. Assigns the scene structure to the default viewport and draws it.

2-15 Controlling 3D Metafiles

5. Closes the metafile and exits the 3D GMR package when the user moves the cursor C
into the shell input pad and presses RETURN. .-/"

Figure 2-5 shows the output of this first example.

(~
I
\

Figure 2-5. Example 1

Controlling 3D Metafiles 2-16

o

o

o

o

{***

*
* EXAMPLE_1

*

*
*
*

**}
PROGRAM example_1;

%INCLUDE '/sys/ins/base.ins.pas';
%INCLUDE '/sys/ins/error.ins.pas';
%INCLUDE '/sys/ins/pgm.ins.pas';
%INCLUDE '/sys/ins/gmr3d.ins.pas';

{ Global variables }

VAR
status
file_id
str
bitmap_size
plane_cnt
object_id
scene_id
mat
vpid
scale1

status_$t;
gmr_$file_id_t;
ARRAY [1 .. 100] OF
gmr_$i2_point_t :=
INTEGER := 8;
gmr_$structure_id_t;
gmr_$structure_id_t;
gmr_$4x3_matrix_t;
gmr_$viewport_id_t;
gmr_$f3_vector_t :=

{ status return variable
{ The returned file id

CHAR; {Place keeper for ending
[1024,1024] ; {The bi tmap size

{ Number of planes to use
{ The original structure id
{ The composite structure id
{ Matrix used for modeling
{ Viewport id number

0.5, 0.5, 0.5]; {Scaling factor

{**
*
* MAKE_OBJECT

*
* function:

* Generates a 3D box using polylines and multilines.

*

*
*
*
*
*
*

}
}
}
}
}

}
}
}
}

***}

PROCEDURE make_object;
VAR

pts_front
pts_back
pts_connect

BEGIN
pts_front[l] .x
pts_front[l] .y
pts_front[l] .z
pts_front[2] .x
pts_front[2] .y
pts_front[2] .z
pts_front[3] .x
pts_front[3] .y
pts_front[3] .z
pts_front[4] .x
pts_front[4] .y

ARRAY [1 .. 4] of gmr_$f3_point_t;
ARRAY [1 .. 4] of gmr_$f3_point_t;
ARRAY [1 .. 8] of gmr_$f3_point_t;

.- 0.6;

.- -0.6;

.- 0.0;

.- 0.6;

.- 0.6;

.- 0.0;

.- -0.6;

.- 0.6;

.- 0.0;

.- -0.6;

.- -0.6;

2-17 Controlling 3D Metafiles

pts_front[4] .Z .- 0.0;

GMR_$F3 _POLYLINE (4, pts_front, TRUE, status

pts_back[l] .x .- pts_front[l] .x;
pts_back[l] .y .- pts_front[l] .y;
pts_back[l] .z .- pts_front[l] .z + 0.5;
pts_back[2] .x .- pts_front[2] .x;
pts_back[2] .y .- pts_front[2] .y;
pts_back[2] .z .- pts_front[2] .z + 0.5;
pts_back[3] .x .- pts_front[3] .x;
pts_back[3] .y .- pts_front[3] .y;
pts_back[3] .z .- pts_front[3] .z + 0.5;
pts_back[4] .x .- pts_front[4] .x;
pts_back[4] .y .- pts_front[4] .y;
pts_back[4].z .- pts_front[4].z + 0.5;

GMR_$F3 _POLYLINE (4, pts_back, TRUE, status

pts_connect[l] .- pts_front[l] ;
pts_connect[2] .- pts_back[l] ;
pts_connect[3] .- pts_front[2] ;
pts_connect[4] .- pts_back[2] ;
pts_connect[5] .- pts_front[3] ;
pts_connect[6] .- pts_back[3] ;
pts_connect[7] .- pts_front[4] ;
pts_connect[8] .- pts_back[4] ;

GMR_$F3_MULTILINE(8, pts_connect, status);
END;

) ;

) ;

{***

* *
* CREATE_SCENE

*
* function:

* Generates two instances of the box.

* The first instance is rotated around the Y and X axes.

* The second has the same rotation and is also scaled by 0.5.

*

*
*
*
*
*
*
*

**}
PROCEDURE create_scene;
BEGIN
{ Get the identity matrix to use as a base matrix. }

{ Build a matrix that rotates and around Y and X axes. }

GMR_$ 4X3_MATRI X_ROTATE (gmr_$mat_post_mult ,gmr_$y_axis , 1 O.O,mat,status);
GMR_$4X3_MATRIX_ROTATE(gmr_$mat_post_mult ,gmr_$x_axis , 1 O.O,mat,status);

Controlling 3D MetaJiles 2-18

o

o

o

o

{ Use the matrix to create a rotated box. }

GMR_$INSTANCE_TRANSFORM(object_id,mat,status);

{ Add a scale factor to the matrix. }

GMR_$4X3_MATRIX_SCALE(gmr_$mat_post_mult,scale1,mat,status);

{ Create a second scaled box. }

GMR_$INSTANCE_TRANSFORM(object_id,mat,status);

END;

{***

* *
* MAINLINE

*
*
*

**}
BEGIN

{ Initialize the package and open the file. }

GMR_$INIT(gmr_$direct, stream_$stdout, bitmap_size, plane_cnt, status);
GMR_$FILE_CREATE(~test_gmfile', 11, gmr_$overwrite, gmr_$lw, file_id, status);

{ Create an object structure. }

GMR_$STRUCTURE_CREATE ('object', 6, object_id, status);
make_object;
GMR_$STRUCTURE_CLOSE (TRUE , status);

{ Create a scene containing two instances of the object. }

GMR_$STRUCTURE_CREATE ('scene~, 5, scene_id, status);
create_scene;
GMR_$STRUCTURE_CLOSE (TRUE, status);

{ Connect the scene structure to the default viewport and draw it. }
vpid :=.1;

GMR_$VIEWPORT_SET_STRUCTURE (vpid, scene_id, status);
GMR_$VIEWPORT_CLEAR(vpid, status);
GMR_$VIEWPORT_REFRESH(vpid, status);

{ Wait here until carriage return to exit.
{ Move the cursor into the shell input pad and press RETURN to exit. }
readln(str);

{ Clean up and exit. }
GMR_$FILE_CLOSE(TRUE, status);
GMR_$TERMINATE(status);

END.

2-19 Controlling 3D Metajiles

c

\,-....

c

o

o

o

o

Chapter 3

Using Drawing Primitives

This chapter describes the modeling routines that insert single primitive elements into the
current open structure of the metafile. The 3D GMR package reads these elements in the
course of displaying a file, causing something to be drawn. The primitive elements
include polylines (connected line segments), multilines (disconnected line segments),
polygons, polymarkers, meshes, and text. Generally, one primitive element is inserted
into the metafile each time one of these primitive routines is called. Each routine has a
complementary inquire routine that returns the values of a single primitive element.

Routines:

GMR_$F3_POL YLINE

GMR_$F3_POL YGON

GMR_$F3_POL YMARKER

GMR_$F3_MESH

GMR_$F3_MULTILINE

GMR_$TEXT

GMR_$INQ_F3_POLYLINE

GMR_$INQ_F3_POL YGON

GMR_$INQ_F3_POLYMARKER

GMR_$INQ_F3_MESH

GMR _ $ INQ_ F3 _MUL TILINE

GMR_$INQ_TEXT

3-1 Using Drawing Primitives

3.1 Polylines
GMR_$F3_POL YLINE inserts a primitive element into the current structure that draws a 3D
polyline (list of linked line segments). In using this routine, you specify a vertex count
and an array of 3D floating-point coordinates. GMR_$INQ_F3_POL YLINE returns the
parameters of an existing polyline. Line type is controlled by the current line type
identification number set for polylines and multilines. To specify line type, use
GMR_$LINE_TYPE (see Chapter 4).

Use GMR_$ABLOCK_SET_LINE_TYPE to set the line type for an attribute block (see
Chapter 6).

Color selection is controlled by the current color identification number and intensity value
for polylines and multilines. To specify color and intensity, use GMR_$LINE_COLOR and
GMR_$LINE_INTEN (see Chapters 4 and 12).

Use GMR_$ABLOCK_SET_LINE_COLOR and GMR_$ABLOCK_SET_LINE_INTEN to set the
line color and intensity for an attribute block (see Chapter 6).

3.2 Multilines
GMR_$F3_MULTILINE inserts a primitive element into the current structure that draws a
3D multiline. A multiline element draws a sequence of unconnected line segments (a
polyline draws connected line segments). In using this routine, you specify a vertex count
and an array of 3D floating-point coordinates. The number of points must be even.
GMR_$INQ_F3_MULTILINE returns the parameters of an existing multiline element. Line
type, color, and intensity selection is identical to polylines (see above).

3.3 Polygons
GMR_$F3_POL YGON inserts a primitive element into the current structure that draws a 3D
polygon. In using this routine, you specify a vertex count and an array of 3D floating
point coordinates. GMR_$INQ_F3_POL YGON returns the parameters of an existing
polyline. Color selection is controlled by the current color identification number and
intensity value for polygons. To specify fill color and intensity, use GMR_$FILL_COLOR

and GMR_$FILL_INTEN (see Chapters 4 and 12).

Use GMR_$ABLOCK_SET_FILL_COLOR and GMR_$ABLOCK_SET_FILL_INTEN to set the fill
color and intensity for an attribute block (see Chapter 6).

Using Drawing Primitives 3-2

C"
_/

\. -...

o

o

o

C)

0

0

3.4 Polymarkers
GMR_$F3_POLYMARKER inserts a primitive element into the current structure that draws a
set of markers. A marker is used to graphically identify a location in modeling coordinate
space. For example, you can use markers to represent the data points on a graph.

3D GMR currently supports five types of markers as shown in Table 3-1.

Table 3-1. Mark~r Types

Type ID Marker

1 • (single pixel)

2 +
3 4-
4 0

5 X

The default is marker type 1 (single pixel).

You can set the following marker characteristics (see Chapter 4):

Characteristic Routines

type GMR_$MARK_TYPE and
GMR_$ABLOCK_SET_MARK_TYPE

size GMR_$MARK_SCALE and
GMR_$ABLOCK_SET_MARK_SCALE

color GMR_$MARK_COLOR and
GMR_$ABLOCK_SET_MARK_COLOR

intensity GMR_$MARK_INTEN and
GMR_$ABLOCK_SET_MARK_INTEN

3-3 Using Drawing Primitives

GMR_$INQ_F3_POL YMARKER returns the number of markers in a polymarker element, and C:
the location of each marker in modeling coordinates.

The position of the marker is mapped from modeling coordinates to device coordinates.
However, the marker itself is not affected by any transformation. This means that if you
rotate the view, the marker may change position on the screen but it will not appear
rotated or skewed.

3.5 Mesh
GMR_$F3_MESH inserts a primitive element into the current structure that draws a mesh.
To create a mesh, you must supply all of the points that make up the patch corners of the
mesh. You can think of the mesh as a two-dimensional array with rows and columns
stored in row-major form (see Figure 3-1). This corresponds to the way the data is
stored. Specify the number of rows of points, the number of columns of points, and give
an array of 3D floating-point coordinates that contains all of the points.

For example, the mesh illustrated in Figure 3-1 has 6 rows of 5 columns, and requires an
array of 30 points.

Rows
(major
dimension)

(1,1)

(2,1)

Columns
(minor dimension)

(1,2) (1,3)

(2,2)

(6,3)

(1,4) (1,5)

(6,4) (6,5)

Figure 3-1. A Mesh with 5x4 Quadrilaterals Requires 30 Points

Using Drawing Primitives 3-4

C)

o

o

o

A Note to FORTRAN Users
Both C and Pascal store the points of the array in row-major form; that is, element (1,1),
(1,2), ... (1,n), (2,1), ... where n is the number of columns. The major dimension is the
row, the minor dimension is the column.

FORTRAN stores arrays in column-major form; that is, (1,1), (2,1) ... (m,1), (1,2), ... ,
where m is the number of rows. To use the mesh call from FORTRAN, the major
dimension must be the number of columns and the minor dimension must be the number
of rows.

Table 3-2 shows a point array in C, FORTRAN, and Pascal.

GMR_$INQ_F3_MESH returns the parameters of an existing mesh. To specify fill color and
intensity use GMR_$FILL_COLOR and GMR_$FILL_INTEN (see Chapters 4 and 12). To set
the color and intensity for an attribute block, use GMR_$ABLOCK_SET_FILL_COLOR and
GMR_$ABLOCK_SET_FILL_INTEN (see Chapter 6).

The rendering of a mesh is improved if the individual quadrilaterals are approximately
planar.

Table 3-2. Point Array in C, FORTRAN, and Pascal

Programming Language Syntax

C GMR_$F3 _POINT my_array [M] [N]

FORTRAN REAL MY ARRAY - (N) (M) (3)

Pascal

my_ array ARRAY [1 .. M] [1 .. N] of GMR_$F3 POINT T -

3.6 Text
GMR_$TEXT inserts a primitive element into the current structure that positions and draws
a text string. The routine expects a string length, a string, and a 3D floating-point triplet
representing the text's location in modeling space. Note that text position is specified in
modeling coordinates, but text height is specified in viewing coordinates (same as world
coordinates). GMR_$INQ_TEXT returns the parameters of the current (GMR_$TEXT)

element.

3-5 Using Drawing Primitives

You can specify the color, height, slant, spacing, and orientation of text using the text
attribute routines described in Chapters 4 and 6.

The first character of the text string is placed at the location you specify called the anchor
point. The path direction determines where the anchor lies (see Figure 3-2). Path
direction is an attribute set by GMR_$TEXT_PATH (see Chapter 4).

right left down up

t
Figure 3-2. Anchor Point and Text Path

You can control text clipping at display time. You can choose whether to clip an entire
text string at display time if its anchor point is outside of the viewport. This is the default
method and is the fastest way to clip text. You can turn the mode on and off using
GMR_$TEXT_SET_ANCHOR_CLIP.

Clipping by anchor point (default) will not display portions of text that are inside the
viewport if the text anchor point is outside the viewport. GMR_$TEXT_SET_ANCHOR_CLIP

is a display routine and is described in Section 9.7.

3.7 Examples Using Polylines and Mesh
The following two program fragments each create a cone. The first uses polylines and the
second uses a mesh.

{**
* *
* CONE1: Constructs a cone using polylines.

*
*
*

**}

PROCEDURE wire_cOne(IN detail: INTEGER);

CONST

VAR

n max 21; PI 3.1415927;

n , i I j

P, q

theta

INTEGER;
ARRAY [1
REAL;

Using Drawing Primitives 3-6

(
'- /

o
BEGIN

o

o

o

o

x, y, z
r

REAL;
REAL;
REAL;

IF detail < n_max THEN n .- detail ELSE n .- n_max - 1;
d_theta := 2.0 * PI / n;

IF detail <= 1 THEN BEGIN
p[1] .x .- 0.0;
p[1] .y .- 0.0;
p[1] .Z .- 0.0;
p[2] .x .- 0.0;
p [2] . y .- 0.0;
p[2].z .- 1.0;
gmr_$f3-polyline(2, p, FALSE, status); check;
RETURN
END;

FOR i := 1 TO n DO BEGIN
theta := i * d_theta;
p[i].x .- COS(theta);
p[i].y .- SIN(theta);
END;
p[n+1] .- p[l];

FOR i := 1 TO n DO BEGIN
r := i / (1.0 * detail);
FOR j := 1 TO n + 1 DO BEGIN
q[j].x .- r * prj] .x;
q[j].y .- r * p[j] .y;
q[j].z .- 1.0 - r;

END;
gmr_$f3_polyline(n+1, q, FALSE, status); check;
END;

q[l].x .- 0.0;
q[l].y .- 0.0;
q[l].z .- 1.0;
q[2].z .- 0.0;
FOR i := 1 TO n DO BEGIN
q[2].x := p[i] .x;
q[2].y := p[i] .y;
gmr_$f3_polyline(2, q, FALSE, status); check;
END;

END; {wire_cone }

3-7 Using Drawing Primitives

{**
* *
* CONE2: Constructs a cone of unit radius and unit height using a mesh, *
* *
**}
PROCEDURE cone(IN n : INTEGER);

VAR

BEGIN

i, j, k

mesh
c, s

INTEGER;
ARRAY [1 " 400] OF gmr_$f3_vector_t;
REAL;

IF (n <= 1) OR (n >= 20) THEN RETURN;
k ,- 0;
FOR i ,-

BEGIN
c := COS(
s ,- SIN(
FOR j ,-

BEGIN
k ,- k +
mesh[k] ,x

mesh[k] ,y

mesh[k] ,Z

END;
END;

I TO

2 *
2 *

I TO

I' ,
,-

,-

,-

n + 1 DO

i * PI / n) ;
i * PI / n) ;

n DO

c * j / n) ;

s * j / n) ;
I j / n) ;

gmr_$f3 mesh(n + I, n, mesh, status);
END; { cone}

Using Drawing Primitives 3-8

c

c

c:'

o

o

o

o

o

Chapter 4

Using Direct Attributes

A metafile can contain attribute elements that change individual characteristics such as
line type (for example, solid or dashed), color, and the size and orientation of text.

For each attribute element, there is a routine that inserts the element and a routine that
retrieves the parameters of an existing attribute element. For example:

GMR_$LINE_COLOR Inserts an attribute element into the current open structure.
This element sets the color of polylines and multilines.

GMR_$INQ_LINE_COLOR Returns the color identification number specified by a
GMR_$LINE_COLOR attribute element.

Attribute elements such as GMR_$LINE_COLOR are placed in the metafile. Inquire
routines such as GMR_$INQ_LINE_COLOR are used when editing the metafile to retrieve
the values set by a particular attribute element (see Chapter 11).

There are two ways to set attributes: direct and aclass. You specify which method is in
effect for a particular attribute type using an attribute source flag. These terms are
defined below:

direct attribute element An attribute element that affects one particular attribute
characteristic. For example, GMR_$LINE_COLOR controls only
the color of polylines and multilines. By inserting that
attribute element in a particular place in the metafile, you can
directly change the way that lines are drawn.

4-1 Using Direct Attributes

aclass element An attribute class element. One of a set of attributes called
an attribute block. You first set up an attribute block made
up of individual attribute elements. Then you insert aclass 01
elements in the metafile that point to the attribute block. ~'

attribute source flag An attribute source flag is an element inserted in the metafile
that specifies whether the current value of the direct or aclass
attribute is in effect for subsequently rendered primitives.
The default is direct for all attribute types.

Direct attributes are described in this chapter. Aclass attributes and attribute source flags
are described in Chapter 6.

4.1 Attributes and Structure Hierarchy
For this discussion, assume that all default attribute source flags are set and that only
direct attribute elements are encountered. Refer to Chapter 6 for a discussion of how to
switch between direct and aclass attributes.

At display time, 3D GMR traverses the metafile and renders (draws) structures according
to the current attributes in effect. When 3D GMR encounters a direct attribute element,
'the next structure is displayed with the new attribute value. This new attribute value also
applies to the structures subsequently instanced from this structure, but never to the
structure which instanced this structure.

For example, assume that the structures in Figure 4-1 are rendered in their numbered
order and that structure 1 uses the default line color. Structure 2 is drawn blue and
structures 3, 4, and 5 are green. Structure 6 is drawn blue and structures 7 and 8 use the
default line color (red).

set line color blue

set line color green

Figure 4-1. Attributes and Instancing

Using Direct Attributes 4-2

~.
\

o

C)

o

o

Attributes are like local variables in a programming environment: when you return from
executing an instance routine, you revert to the attribute values in effect at the time the
instance was invoked. This means that the scope of an attribute element (the part of the
metafile affected by the element) is the remainder of the structure in which the element
occurs and any structures instanced from that remainder.

The default attribute settings are shown in Table 4-1.

Table 4-1. Default Attribute Settings

Attribute Default Setting

Current name set All elements are members

Fill color ill 1

Fill intensity 1.0

Line type ill 1 (solid)

Line color ill 1

Line intensity 1.0

Marker color ill 1

Marker intensity 1.0

Marker scale factor 1.0

Marker type 1 (one pixel)

Text color ill 1

Text expansion 1.0

Text height 0.01

Text intensity 1.0

Text path angle o radians

Text spacing 0.0

Text slant 0.0

Text up vector (0.0, 1.0)

4-3 Using Direct Attributes

4.2 Direct Attribute Elements
The following sections describe direct attribute elements. Chapter 6 explains how to
create and use attribute blocks.

4.2.1 Line Types

Routines:

GMR_$LINE_TYPE
GMR_$INQ_LINE_TYPE

You can set the line type ill for subsequently rendered polylines and multilines.
Currently, four line types are supported:

1 = solid

2 = dashed

3 = dotted

4 = dashed-dotted

GMR_$LINE_TYPE inserts an attribute element into the current open structure. This

CI

element sets the line type ill (1 through 4) for polylines and multilines. (~
GMR_$INQ_LINE_TYPE returns the line type ill of the current (GMR_$LINE_TYPE) element. \,.'

Line types are particularly useful for echoing user-selected objects on a monochrome .
node (see Chapter 9).

Use GMR_$ABLOCK_SET_LINE_TYPE to set the line type ill for an attribute block (see
Chapter 6).

4.2.2 Basic Color Attributes

Routines:

GMR_$FILL_COLOR
GMR_$LINE_COLOR
GMR_$MARK_COLOR
GMR_$TEXT_COLOR
GMR_$INQ_FILL_COLOR
GMR_$INQ_LINE_COLOR
GMR_$INQ_MARK_COLOR
GMR_$INQ_TEXT_COLOR

This section describes the basic use of color. Chapter 12 describes more advanced color
features.

Using Direct Attributes 4-4

c'

o

o

o

o

o

Using a Default Color ID
To create a primitive element of a certain color, insert the corresponding color attribute
element before the primitive element in the metafile. This becomes the color for
subsequently rendered primitives of that type. To change color again, insert another
attribute element.

The following routines each insert an attribute element into the current open structure.
The element sets the color identification number for the specified primitive elements. This
color ill becomes the current color for the particular class of primitive. The
GMR_$INQ_ ... _COLOR routines return the value of the current (GMR_$... _COLOR) element.

polygons and meshes

polylines and multilines

polymarkers

text

GMR_$FILL_COLOR and
GMR_$INQ_FILL_COLOR

GMR_$LINE_COLOR and
GMR_$INQ_LINE_COLOR

GMR_$MARK_COLOR and
GMR_$INQ_MARK_COLOR

GMR_$TEXT_COLOR and
GMR_$INQ_TEXT_COLOR

To use the basic color feature, use GMR_$FILL_COLOR, GMR_$LINE_COLOR,

GMR_$MARK_COLOR, or GMR_$TEXT_COLOR and specify a color ill. Table 4-2 shows the
default colors that are available for color nodes. Table 4-3 shows the colors for
monochrome nodes.

The color ill maps to the color map index. This index maps to colors defined by the
default color map. Chapter 12 describes how to change these mappings.

Chapter 12 also describes color intensity. Direct attribute color intensity is established
and retrieved by the following routines:

GMR_$FILL_INTEN
GMR_$LINE_INTEN
GMR_$MARK_INTEN
GMR_$TEXT_INTEN
GMR_$INQ_FILL_INTEN
GMR_$INQ_LINE_INTEN
GMR_$INQ_MARK_INTEN
GMR_$INQ_TEXT_INTEN

4-5 Using Direct Attributes

Table 4-2. Default Colors for Color Nodes

C)
j

Color ID Default Color Map Index Default Color

0 0 black

1 1 red

2 2 green

3 3 blue

4 4 cyan

5 5 yellow

6 6 magenta

7 7 white

8 - 15 8 - 15 Colors used by the
Display Manager

16 - 255 7 white

Four-plane color displays have only the first sixteen color map entries.

Table 4-3. Default Colors for Monochrome Nodes

Color ID Default Color Map Index Default Color

0 0 black

1 1 white

2 - 255 1 white

. Using Direct Attributes 4-6

o

o

o

o

o

4.2.3 Polymarker Attributes

Routines:

GMR_$MARK_COLOR
GMR_$MARK_INTEN
GMR_$MARK_TYPE
GMR_$MARK_SCALE
GMR_$INQ_MARK_COLOR
GMR_$INQ_MARK_INTEN
GMR_$INQ_MARK_TYPE
GMR_$INQ_MARK_SCALE

Marker attributes allow you to set the color, intensity, type, and size of markers.

GMR_$MARK_COLOR inserts an attribute element into the current open structure. This
element sets the color ID for polymarker elements. GMR_$INQ_MARK_COLOR returns the
value of the current (GMR_$MARK_COLOR) element.

GMR_$MARK_INTEN inserts an attribute element into the current open structure. This
element sets the intensity of color for polymarker elements. Color intensity is described
in Chapter 12. GMR_$INQ_MARK_INTEN returns the value of the current
(GMR_$MARK_INTEN) element.

GMR_$MARK_TYPE inserts an attribute element into the current open structure. This
element establishes the type of markers that are drawn. 3D GMR currently supports five
types of markers (see Table 4-4).

Table 4-4. Marker Types

Type ID Marker

1 • (single pixel)

2 +
3 -*
4 0

5 X

The default is type 1 (one pixel).

4-7 Using Direct Attributes

GMR_$INQ_MARK_TYPE returns the value of the current (GMR_$MARK_TYPE) element.

GMR_$MARK_SCALE specifies the scale factor used for markers. To visualize the scale
factor, consider the marker in its own coordinate system with the marker's center at the
origin. Scale multiplies each coordinate that defines the marker by the scale factor and
truncates the result to an integer. For example, Figure 4-2 uses a scale factor of 1.5.

(0,7)

(0,3)
(-4,4) (4,4)

(-3,3) (3,3)

(-5,0) --~~-- (5,0)
(-7,0)

(7,0)

(-3,-3) (3,-3)

(0,-5)
(-4,-4) (4,-4)

(0,-7)

Scale 1 Scale 1.5

Figure 4-2. Polymarker Scale 1.5

The default scale factor is 1. Values less than 1 are ignored and result in a scale factor of
1. Scaling has no effect on marker type 1 (one pixel). GMR_$INQ_MARK_SCALE returns
the value of the current (GMR_$MARK_SCALE) element.

4.2.4 Text Attributes

Routines:

GMR_$TEXT_COLOR
GMR_$TEXT_EXPANSION
GMR_$TEXT_HEIGHT
GMR_$TEXT_INTEN
GMR_$TEXT_PATH
GMR_$TEXT_SLANT
GMR_$TEXT_SPACING
GMR_$TEXT_VP
GMR_$INQ_TEXT_COLOR
GMR_$INQ_TEXT_EXPANSION
GMR_$INQ_TEXT_HEIGHT
GMR_$INQ_TEXT_INTEN
GMR_$INQ_TEXT_PATH
GMR_$INQ_TEXT_SLANT
GMR_$ INQ_TEXT_S PACING
GMR_$INQ_TEXT_VP

Using Direct Attributes 4-8

o

o

o

C)

Text attributes allow you to control the rendering of text without display-time
interpretation.

GMR_$TEXT_COLOR inserts an attribute element into the current open structure. This
element sets the color ill used for rendering text. GMR_$INQ_TEXT_COLOR returns the
value of the current (GMR_$TEXT_COLOR) element.

GMR_$TEXT_INTEN inserts an attribute element into the current open structure. This
element sets the intensity of color for text. Color intensity is described in Chapter 12.
GMR_$INQ_TEXT_INTEN returns the value of the current (GMR_$TEXT_INTEN) element.

GMR_$TEXT_EXPANSION inserts an attribute element into the current open structure. This
element sets the ratio of width to height for text, as different from the font.
GMR_$INQ_TEXT_EXPANSION returns the value of the current (GMR_$TEXT_EXPANSION)

element.

GMR_$TEXT_HEIGHT inserts an attribute element into the current open structure. This
element sets the text height in viewing coordinates (same as world).
GMR_$INQ_TEXT_HEIGHT returns the value of the current (GMR_$TEXT_HEIGHT) element.

GMR_$TEXT_PATH inserts an attribute element into the current open structure. This
element sets the direction in which text is written. The angle is in radians measured
counter-clockwise. GMR_$INQ_TEXT_PATH returns the value of the current
(GMR_$TEXT_PATH) element.

GMR_$TEXT_SLANT inserts an attribute element into the current open structure. This
element sets the slant of text. A negative value produces a left slant. A positive value
produces a left slant. Zero is the default; greater than zero (for example, 0.5) yields an
italics-like character. GMR_$INQ_TEXT_SLANT returns the value of the current
(GMR_$TEXT_SLANT) element.

GMR_$TEXT_SPACING inserts an attribute element into the current open structure. This
element sets the spacing between text characters. Spacing is defined as a fraction of text
height. For more spacing between characters, make the spacing value positive. To make
characters appear to overlay, make the value negative. GMR_$INQ_TEXT_SPACING returns
the value of the current (GMR_$TEXT_SPACING) element.

GMR_$TEXT_VP inserts an attribute element into the current open structure. This element
specifies the up direction of text, in the viewing coordinate system (same as world
coordinates). Text is oriented on the projection plane. GMR_$INQ_TEXT_VP returns the
value of the current (GMR_$TEXT_VP) element.

4.2.5 Name Sets

Routines:

GMR_$ADD_NAME_SET
GMR_$REMOVE_NAME_SET
GMR_$INQ_ADD_NAME_SET o GMR_$INQ_REMOVE_NAME_SET

4-9 Using Direct Attributes

The visibility and pick eligibility of primitives within visible structures can be controlled
using name set attributes. Name sets allow you to classify objects by name. The current
name set is an attribute applicable to all primitives. At display time, the names in the
current name set are compared to the viewport's invisibility and pick filters (see Figure
4-3). Each filter consists of an inclusion set and an exclusion set that determines which
primitives are eligible for the operation.

GMR_$ADD_NAME_SET inserts an element into the metafile that adds names to the current
name set attribute, creating a new current name set.

GMR_$INQ_ADD_NAME_SET returns the names in the current (GMR_$ADD_NAME_SET)

element.

GMR_$REMOVE_NAME_SET removes names from the current name set attribute, creating
a new current name set.

GMR_$INQ_REMOVE_NAME_SET returns the list of names in the current
(GMR_$REMOVE_NAME_SET) element.

The current name set is compared to invisibility and pick filters that are associated with
each viewport. Section 9.4.4 describes viewport visibility filters. Section 10.4.2 describes
viewport pick filters.

VIEWPORT

Invisibility Filter

Inclusion Set

Exclusion Set
PRIMITIVE

Name Set

Pick Filter

Inclusion Set

Exclusion Set

Figure 4-3. Name Sets and Viewport Filters

GMR_$VIEWPORT_SET_INVIS_FILTER specifies which name sets will be invisible for a
particular viewport by specifying an inclusion set and an exclusion set.

GMR_$VIEWPORT_INQ_INVIS_FILTER returns the invisibility filters for a specified
viewport.

GMR_$VIEWPORT_SET_PICK_FILTER specifies which name sets will be pickable for a
particular viewport by specifying an inclusion set and an exclusion set.

Using Direct Attributes 4-10

o

(~'
,--~"

(=~

o

0

0

o

o

GMR_$VIEWPORT_INQ_PICK_FILTER returns the inclusion and exclusion name set lists
used to determine picking eligibility in a specified viewport.

4.3 A Program Using Text Attributes
This sample program creates text using several of the atttributes described in this chapter.
Figure 4-4 shows the output.

~~\\\\\
SLANT
SLANT

PACING
SPACING
SPACING

HEIGHT

HEIGHT

HEIGHT

~ c70 ~C0
~o ~C0

~~~ 
~V «c y /0 

~ ~ 

TEXT 

Figure 4-4. Sample Text Output 

4-11 Using Direct Attributes 



program test_text; { Overview: Creates text and draws it. } 

{ insert files } 
%include '/sys/ins/base.ins.pas'; 
%include '/sys/ins/error.ins.pas'; 
%include '/sys/ins/pfm.ins.pas'; 
%include '/sys/ins/gmr3d.ins.pas'; 

{ Constant variables } 
CONST 

sin45 = 0.707106781; 
cos45 = sin45; 
pi 3.1415926535; 

text_s 
height_s 
spacing_s 
slant_s 
path_s 
upvector_s 

{ Global variables } 
VAR 

4' , 
6; 

7; 

5 ; 
4; 

8 ; 

loc gmr_ $f3 _point_t; 
text_Ioc 
height_Ioc 
spacing_Ioc 
slant_Ioc 
path_Ioc 
upvector_loc 

gmr_ $f3 _point_t .- [0.0, 0.0, 0.0] ; 

text_t 
height_t 
spacing_t 
slant_t 
path_t 
upvector_t 

gmr_ $f3 _point_t .- [0.7, -0.3, 0.0] ; 
gmr_ $f3 _point_t .- [0.7, 0.2, 0.0] ; 
gmr_ $f3 _point_t .- [0.7, 0.7, 0.0] ; 
gmr_$f3yoint_t .- [-0.5, -0.5, 0.0] ; 
gmr_ $f3 _point_t .- [-0.5, 0.5, 0.0] ; 

array [1 .. text_s of char .-
array [1 .. height_s of char .-
array [1 .. spac ing_s of char .-
array [1 .. slant_s of char .-
array [1 .. path_s of char .-
array [1 .. upvector_s] of char .-

array [1 .. 5] of gmr_$text_up_t .- [ 

[ cos45, sin45 
[ -cos45, sin45 
[ -cos45, -sin45 
[ cos45, -sin45 

'TEXT' ; 
'HEIGHT'; 
'SPACING'; 
'SLANT'; 
' PATH' ; 
'UPVECTOR'; 

{ 45 
{135 
{225 
{315 

[ gmr_$text_up_x_def, 
gmr_$text_up_y_def ] 

] ; 

degrees 
degrees 
degrees 
degrees 

status 
str 
bitmap_size 
plane_cnt 

status_$t; 
ARRAY [1 .. 100] OF CHAR; 
gmr_$i2_point_t.- [1024,1024]; 
INTEGER := 8; 

{ Status return variable } 
{ Place keeper for ending } 
{ The bitmap size } 
{ Number of planes to use } 

Using Direct Attributes 4-12 

--------_._--_._---_._--

c 

c' 

c' 



0 

C) 

o 

o 

o 

char_name_cnt: INTEGER; { Number of chars in a string } 
file - id gmr_ $file _id_t; { The returned file ID } 
text - id gmr_$structure_id_t; { The id for the text structure } 
vpid gmr_$viewport_id_t; { Default viewport ID } 
text_normal gmr_ $f3 - vector - t .- [0.0, 0.0, -1.0] ; { View normal vector } 

{* * * * * * * * * 
PROCEDURE check; 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * } 

{ function: checks the status and exits if an error occurs } 
BEGIN 

END; 

IF (status. all <> gmr_$operation_ok) THEN 
BEGIN 

writeln( 'status in module example:' status.all); 
pfm_$error_trap( status ); 

END; 

{* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * } 
PROCEDURE create_text_structure; 
VAR 

height a 
expansion_a 
spacing_a 
slant_a 
path_a 

i : integer; 

gmr_$text_height_t; 
gmr_$text_expansion_t; 
gmr_$text_spacing_t; 
gmr_$text_slant_t; 
gmr_$text_path_t; 

BEGIN 
height_a := gmr_$text_height_def + 0.1; 

gmr_$text_height(height_a,status); check; 
gmr_$text(text_t,text_s,text_loc,status); check; {text} 

height_a := gmr_$text_height_def + 0.05; 
loc := height_Ioc; 
FOR i := 1 TO 3 DO 

BEGIN 
gmr_$text_height(height_a,status); check; 
gmr_$text(height_t,height_s,loc,status); check; {height} 
height_a := height_a + 0.025; 
loc.y := loc.y - (height_a +0.1); 
END; { FOR} 

spacing_a := gmr_$text_spacing_def - 0.2; 
loc := spacing_Ioc; 
FOR i := 1 TO 3 DO 

BEGIN 
gmr_$text_spacing(spacing_a,status); check; 

4-13 Using Direct Attributes 



END; 

gmr_$text(spacing_t,spacing_s,loc,status); check; { spacing} 
spacing_a := spacing_a + 0.2; 
loc.y := loc.y - 0.07; 
END; { FOR} 

slant_a := -0.5; 
loc := slant_Ioc; 
FOR i := 1 TO 3 DO 
BEGIN 

gmr_$text_slant(slant_a,status); check; 
gmr_$text(slant_t,slant_s,loc,status); check; 
slant_a := slant_a + 0.5; 
loc.y := loc.y - 0.07; 
END; { FOR} 

path_a : = pi/4. 0;, 
loc := path_Ioc; 
FOR i := 1 TO 4 DO 
BEGIN 

gmr_$text_path(path_a,status); check; 
gmr_$text(path_t,path_s,loc,status); check; 
path_a := path_a + pi/2.0; 
END; { FOR} 

loc := upvector_loc; 
FOR i := 1 TO 4 DO 
BEGIN 

gmr_$text_up (upvector_a [i] ,status); check; 
gmr_$text(upvector_t,upvector_s,loc,status); check; 
END; { FOR} 

gmr_$text_up (upvector_a [5] ,status); check; 

{* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * } 

PROCEDURE draw_view 
( IN struc_id 

IN vpid 
gmr_$structure_id_t; 
gmr_$viewport_id_t 

) ; 

{ function: draw a structure in a viewport} 
BEGIN 

gmr_$viewport_set_structure ( vpid, struc_id, status ); check; 
gmr_$viewport_clear( vpid, status); check; 
gmr_$viewport_refresh( vpid, status ); check; 

Using Direct Attributes 4-14 



o 

o 

o 

o 

END; { PROCEDURE 

{* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * } 

BEGIN 
{ Initialize the package and try to open the file. } 

gmr_$init ( gmr_$direct, stream_$stdout, bitmap_size, plane_cnt, status ); 
check; 

char_name_cnt := 11; 

'text_gmfile', char_name_cnt, gmr_$overwrite, 
gmr_$lw, file_id, status ); check; 

{ Set view plane normal. } 
gmr_$view_set_view_plane_normal(l, text_normal, status); check; 

END. 

{ create a text structure } 
char_name_cnt := 4; 
gmr_$structure_create ( 'text', char_name_cnt, text id, status); check; 
create_text_structure; 
gmr_$structure_close (TRUE, status); check; 

{ Connect the structure to the default viewport and draw it } 
vpid := 1; 
draw_view(text_id,vpid); 

{ wait here until carriage return} 
readln(str); 

{ clean up and exit} 
gmr_$file_close ( TRUE, status ); check; 
gmr_$terminate ( status ); check; 

4-15 Using Direct Attributes 



c 

I 

I 

C 



o 

o 

o 

o 

o 

Chapter 5 

Using Modeling Routines 

Instancing is an essential part of the structure hierarchy. This chapter describes how 
instancing affects attributes and uses transformation matrices. Examples include 
techniques for building transformation matrices and modeling objects using instancing. 

5.1 Instancing 
Routines: 

GMR_$INSTANCE_TRANSFORM 
GMR_$INQ_INSTANCE_TRANSFORM 
GMR_$INSTANCE_TRANSFORM_FWD_REF 
GMR_$STRUCTURE_INQ_INSTANCES 

Instancing provides an economical and efficient way to reuse structures. You can create a 
structure once in a metafile and reference it any number of times at different points in the 
metafile. Each new reference includes a transformation matrix that defines how the copy 
is to be translated, rotated, and/or scaled to the new location. In programming terms, 
instancing a structure is analogous to calling a subroutine. Figure 5-1 illustrates a box 
that is translated, rotated, and scaled via a modeling matrix that is supplied in an instance 
routine. 

5-1 Using Modeling Routines 



y y 
Instanced Structure 

Original Structure ~ 

x x 

z z 

Figure 5-1. Combined Rotation, Translation, and Scaling 

The following rules apply to instancing: 

• A structure must exist before you can instance it. 

• You must open a structure to edit it. Opening a structure does not open the 
structures that are instanced. 

• A structure may contain instances of other structures with one restriction: 
instancing cannot be circular (recursive) since there are no flow of control features 
(for example, if statements) to exit a recursive loop. In particular, a structure may 
not instance itself. 

• A structure can contain multiple instances of the same structure, with different 
attributes and transformation matrices. Interspersing instance elements and 
attribute elements makes it possible to display different instances with different 
attributes. 

GMR_$INSTANCE_TRANSFORM inserts an instance element into the current open structure. 
An instance element contains a reference to another structure of the metafile and a modeling 
4x3 transformation matrix. 

GMR_$INSTANCE_TRANSFORM_FWD_REF provides a forward referencing instance feature. 
This routine combines the features of GMR_$STRUCTURE_CREATE and 
GMR_$INSTANCE_TRANSFORM. The routine creates a new structure, returns the structure 
ill, and inserts the instance transform element into the current open structure. As with 
GMR_$STRUCTURE_CREATE, you do not have to actually name the new structure. 

GMR_$INQ_INSTANCE_TRANSFORM returns the structure ill and the transformation to be 
applied at rendering time of the current (GMR_$INSTANCE_TRANSFORM) element. This 
routine can also be used to retrieve the structure ill and transformation matrix of instance 
elements created by GMR_$INSTANCE_TRANSFORM_FWD_REF. 

Using Modeling Routines 5-2 

c 

o 
\ 
'-._ ... / 

C\I 



o 

o 

o 

o 

o 

GMR_$STRUCTURE_INQ_INSTANCES returns two parameters: 

1. The number of instance elements that invoke a particular structure. Because more 
than one of these instance elements may lie in another given structure, this number 
is not the same as the number of structures that instance this particular structure. 

2. The maximum number of levels of instancing that occur beneath the structure in 
the metafile. For example, a structure containing no instances has 0 levels of 
instancing. A structure containing instance elements that refer only to structures 
with no instances has 1 level of instancing. 

5.1.1 Instancing and Attributes 

Chapter 4 explains that elements which change individual attribute values affect all 
subsequent elements in that structure and all subsequent descendants. Attribute values 
are affected forward and downward in the hierarchy of structures and elements, but never 
upward. This allows different instancing structures to apply different attributes to a 
particular instanced structure. 

Example 
The following sequence of routines is an example that sets up two structures: 

gmr_$structure_create('bottom', 6, bottom_id, status); 
gmr_$polyline(n, point_arrayl, status); 
gmr_$line_color(color_idl, status); 
gmr_$polyline(n, point_array2, status); 
gmr_$structure_close(true, status); 

gmr_$structure_create('top', 3, top_id, status); 
gmr_$line_color(color_id2, status); 
gmr_$instance_transform(bottom_id, matrix_4x3, status); 
gmr_$polyline(n, point_array3, status); 
gmr_$structure_close(true, status); 

These two structures contain the following elements: 

Top Bottom 

Line color Jd2 Polyline (n, point_array1) 

Instance (' bottom') 

Polyline (n,point_array3) Polyline (n,point_array2) 

5-3 Using Modeling Routines 



When a viewing routine displays structure 'top', it does the following: 

• Draws the polyline (n,point_arrayl) using color_id2 because that attribute was C" 
set by the instancing structure and has not been changed. 

• Draws the polyline (n,point_array2) using color_idl, the most recent value 
assigned in this structure. 

• Draws the polyline (n,point_array3) using color id2 because attribute values 
changed by the instanced structure are restored to their previous values before 
returning control to the instancing structure. 

5.1.2 Instancing and Attribute Class Elements 

Attribute class elements are affected by the same hierarchy as attribute elements: the 
element changes the attribute values applied to all subsequent elements in that structure ~, 

(see GMR_$ACLASS in Chapter 6). This includes any other structures referenced using ~ ____ / 
instance elements. When the display of a structure containing the GMR_$ACLASS element 
is completed, the previous attribute class is restored before the display of elements in the 
instancing structure continues. 

5.2 Modeling Transformations 
Routines: 

GMR_$4X3_MATRIX_CONCATENATE 
GMR_$4X3_MATRIX_IDENTITY 
GMR_$4X3_MATRIX_INVERT 
GMR_$4X3_MATRIX_REFLECT 
GMR_$4X3_MATRIX_ROTATE 
GMR_$4X3_MATRIX_ROTATE_AXIS 
GMR_$4X3_MATRIX_SCALE 
GMR_$4X3_MATRIX_TRANSLATE 
GMR_$VIEWPORT_SET_GLOBAL_MATRIX 
GMR_$VIEWPORT_INQ_GLOBAL_MATRIX 

Modeling transformations map the model coordinate system to world coordinates. This 
transformation is the first step in the viewing pipeline (see Figure 5-2). 

Using Modeling Routines 5-4 



o 

o 

o 

o 

o 

3D Element data (modeling coordinates) 

Viewing Transformation 

3D Viewing Coordinates 

Window to Viewport Transformation 

3D Logical Device Coordinates 

Viewport to Screen Transformation 

20 Device Coordinates 

5-2. The Viewing Pipeline 

Modeling transformations are expressed as 4x3 modeling matrices. Each instanced 
structure has a modeling matrix. 

At display time, an additional modeling matrix known as the global modeling matrix is 
applied to the entire object being displayed. It is (conceptually) the last modeling 
transformation to be applied before the mapping to viewing coordinates. This creates a 
composite modeling transformation that achieves all at once the mapping from one 
structure's coordinate system to its instancing structure's systems and finally to world 
coordinates. A global modeling matrix is applied to each viewport by the 3D GMR 
package. 

Use GMR_$VIEWPORT_SET_GLOBAL_MATRIX to set the global modeling matrix directly. 
This matrix can be retrieved from an existing view or can be an application-derived 
matrix. GMR_$VIEWPORT_INQ_GLOBAL_MATRIX returns the global modeling matrix for a 
particular viewport. The default is the identity matrix. 

The following routines are utilities that help an application create 4x3 modeling 
transformations. 

• GMR_$4X3_MATRIX_CONCATENATE concatenates two given 4x3 matrices and 
returns the resulting matrix. 

• GMR_$4X3_MATRIX_IDENTITY returns the default modeling matrix referred to as 
the identity matrix. 

5-5 Using Modeling Routines 



• GMR_$4X3_MATRIX_INVERT returns the principle 4x3 portion of the inverse of a 
4x4 matrix. The 4x4 matrix is created by expanding a given 4x3 matrix with a 
column [0,0,0,1]. (;! 

\._-~/ 

• GMR_$4X3_MATRIX_REFLECT returns a 4x3 matrix that performs a reflection (or 
mirroring) through an arbitrary plane. You can optionally concatenate the new 
matrix with an existing matrix. 

• GMR_$4X3_MATRIX_ROTATE returns a 4x3 modeling matrix that performs a 
rotation about one of the coordinate axes. You can optionally concatenate the new 
matrix with an existing matrix. 

• GMR_$4X3_MATRIX_ROTATE_AXIS returns a 4x3 modeling matrix. that performs a 
rotation about an arbitrary axis. You can optionally concatenate the new matrix 
with an existing matrix. . 

• GMR_$4X3_MATRIX_SCALE returns a 4x3 modeling matrix that performs a scaling 
operation. You can optionally concatenate the new matrix ~ith an existing matrix. 

• GMR_$4X3_MATRIX_TRANSLATE returns a 4x3 modeling matrix that performs a 
translation operation. You can optionally concatenate the new matrix with an 
existing matrix. 

The point (0,0,0) in the coordinates of the instanced structure remains stationary through 
rotation and scaling. Therefore, structures that will be transformed in this way, and that 
are intended to remain centered, should be centered around (0,0,0) unless an appropriate 
translation is included. 

5.3 Sample Routines 
The following examples show how to use the matrix routines to create a modeling matrix 
and then use the resulting matrices in an GMR_$INSTANCE_TRANSFORM routine. 

5.3.1 Building a Modeling Matrix . 
You can create complex transformations for use in instancing routines by concatenating a 
series of simpler matrices. The following example concatenates three matrices to 
perform a scale, rotate, and translate operation (see Figure 5-3). 

Using Modeling Routines 5-6 

C~I 



o 

o 

o 

o 

o 

y y 

x x 

z z 
Original M 1 = Scale in X by factor of 2 

y y 

x 

z z 
M 2 = Rotate about Z by 90 degrees M 3 = Translate in X by 5 

Final Modeling Matrix: M = M M M 
123 

Figure 5-3. Building a Modeling Matrix 

5-7 Using Modeling Routines 



The following fragment performs the matrix operations shown in Figure 5-3: 

CONST 
PI 3.1415926535; 

VAR 
Scale :gmr_ $f3 _vector - t .- [ 2.0, 1.0, 1.0 ] ; 

Angle :gmr_ $f - t .- PI/2; 
Trans :gmr_ $f3 - vector - t .- [ 5.0, 0.0, 0.0 ] ; 

M :gmr_ $4X3 matrix t· - , 

GMR_$4X3_MATRIX_SCALE ( gmr_$mat_replace, Scale, M ); 
GMR_$4X3_MATRIX_ROTATE (gmr_$mat_post_mult, gmr_$z_axis, Angle, M ); 
GMR_$4X3_MATRIX_TRANSLATE (gmr_$mat_post_mult, Trans, M ); 
GMR_$INSTANCE_TRANSFORM (struc_id, M, status); 

The following occurs in the above example: 

1. GMR_S4X3_MATRIX_SCALE sets M to the new modeling matrix. The routine scales 
by 2 along the x axis while leaving the scale along the y and z axis unchanged. 

2. GMR_S4X3_MATRIX_ROTATE builds a rotation matrix and concatenates it with the 
previous matrix (M). 

3. GMR_S4X3_MATRIX_TRANSLATE builds a translation matrix and concatenates it 
with the previous matrix (M). Now M performs all three operations in order. 

4. GMR_SINSTANCE_TRANSFORM creates an instance of the structure identified by 
struc_id using the new matrix. 

5.3.2 Moving an Object to a New Location on the Screen 

The following fragment is from Sample3 (see Appendices A, B, and C). This fragment 
moves a picked structure to a new position by instancing it with a new transformation 
matrix. 

The new matrix is the product of two matrices: the first is the translation matrix 
computed from the position selected. The second is the inverse of the product of the 
matrices used to instance the structure's parent structures. All four viewports are 
displayed with the structure moved to its new position. 

Using Modeling Routines 5-8 

r" 
'~ ___ , 

(',: 



o 

o 

o 

o 

o 

PROCEDURE move(IN new_pos 

VAR 
i 
m 
m inv 
trans_mat 
trans_mat_p 
mat_i 

BEGIN 

integer; 
gmr_$4x3_matrix_t; 
gmr_$4x3_matrix_t; 
gmr_$4x3_matrix_t; 
gmr_$4x3_matrix_t; 
gmr_$4x3_matrix_t; 

{ Compute product of all matrices used to instance its parent 
structures -- m. } 

gmr_$4x3_matrix_identity(m, status); 
FOR i := 1 TO level - 1 DO 

BEGIN 
gmr_$structure_open(cur_pick-path[i] .structure_id, FALSE, status); 
gmr_$element_set_index(cur_pick_path[i] . element_index, status); 
gmr_$inq_instance_transform(cur_pick-path[i] .structure_id, mat_i, 

status); 
gmr_$4x3_matrix_concatenate(mat_i, m, m, status); 
gmr_$structure_close(FALSE, status); 
END; 

{ Compute inverse of m -- m inv. } 

{ Compute translation matrix from new position -- trans_mat. } 

{ Instance structure picked with new matrix -- trans_mat * m_inv. } 

gmr_$structure_open(cur_pick_path[level] .structure_id, FALSE, status); 
gmr_$element_set_index(cur_pick_path[level] . element_index, status); 

gmr_$replace_set_flag(TRUE, status); 
gmr_$instance_transform(cur_pick-path[level+l] .structure_id, trans_mat_p, 

status); 
gmr_$replace_set_flag (FALSE , status); 

gmr_$structure_close(TRUE, status); 

{ Display all four viewports. } 
FOR i := 1 TO num_views DO 

display_viewport(view_vpid[i]); 
no_last_pick .- TRUE; 

END; 

5-9 Using Modeling Routines 



- ---------------------- -------- -

5.3.3 Creating Objects Using Instancing 

This sample program uses three basic objects: a sphere, cone, and plane. The program 
creates two jacks by instancing the sphere and Cone with different transformations. 
Figure 5-4 shows the metafile displayed by a separate program. 

Figure 5-4. The Jack Metafile 

Using Modeling Routines 
5-10 



o 

o 

o 

{**************************************************************************** 

* * 
* JACKS: Creates a metafile called "gmfile.jacks" which contains the 

* 
* 
* 
* 

geometry for a very simple scene consisting or two jacks on a 
table. The primitives used are open and closed polylines and 
mesh. A four-level instancing hierarchy is used. 

* 
* 
* 
* 
* 

****************************************************************************} 
PROGRAM jacks; 

%INCLUDE '/sys/ins/base.ins.pas'; 
%INCLUDE '/sys/ins/error.ins.pas'; 
%INCLUDE '/sys/ins/gmr3d.ins.pas'; 

CaNST 

PI 3.1415926; 

VAR 

status_$t; status 
bitmap_size 
file id 

gmr_$i2_point_t .- [1024,1024]; 
gmr_$file_id_t; 

jack_part_id 
jack_id 
table_id 
sphere_id 
cone_id 
world_id 

scale1 
scale2 
scale3 

gmr_$structure_id_t; 
gmr_$structure_id_t; 
gmr_$structure_id_t; 
gmr_$structure_id_t; 
gmr_$structure_id_t; 
gmr_$structure_id_t; 

gmr_ $f3 - vector - t .-
gmr_ $f3 - vector - t .-
gmr_ $f3 - vector - t .-

gmr_ $f3 - vector - t .-

0.20, 0.20, 
0.23, 0.23, 
4.00, 4.00, 

0.00, 0.00, 

1.00 
0.23 
1.00 

1.00 trans1 
trans2 
trans3 
trans4 
trans5 

gmr_ $f3 vector t .- 0.00, 0.00,-1.00 - -
gmr_ $f3 - vector - t .- 0.00, 0.00, 1.30 
gmr_ $f3 - vector - t .- [-1.00, 1.00, 0.00 
gmr_ $f3 - vector - t .- [ 1.00,-2.00, 0.00 

mat1, mat2 gmr_$4x3~matrix_t; 

mat3, mat4 gmr_$4x3_matrix_t; 
mat5, mat6 gmr_$4x3_matrix_t; 
mat7, mat8 gmr_ $4x3 _matrix t· - , 
mat9, mat10 gmr_$4x3_matrix_t; 

5-11 

] ; 
] ; 

] ; 

] ; 
] ; 

] ; 
] ; 

] ; 

Using Modeling Routines 



{**************************************************************************** 

* * 
* CHECK: This routine prints out the error code returned from a GMR call. 

* 
* 
* 

****************************************************************************} 
PROCEDURE check; 

BEGIN 
IF ( status.all <> gmr_$operation_ok ) THEN error_$print( status ); 

END; 

{**************************************************************************** 

* * 
* SPHERE: Constructs a sphere of unit radius using closed polylines. * 
* * 
****************************************************************************} 
PROCEDURE sphere ( IN n : INTEGER ); 

VAR 

BEGIN 

i, j 

r, Z 

INTEGER; 
REAL; 

p ARRAY [ 1 .. 20 ] OF gmr_$f3_vector_t; 

IF ( n <= 1 ) OR ( n >= 20 
FOR i := 1 TO n DO BEGIN 
r := SIN( i * PI / ( n + 1 
Z .- COS( i * PI / ( n + 1 

FOR j .- 1 TO n DO BEGIN 

THEN RETURN; 

) ; 
) ; 

P [j ] . x .- r * COS( 
p[j] .y r * SIN( 

2 * 
2 * 

j 
j 

* PI / n ); 

* PI / n ); 
p[j].z .- z; 
END; 
gmr_$f3_polyline( n, p, TRUE, status ); check; 
END 
END; { sphere } 

{**************************************************************************** 

* * 
* PLANE: Constructs a plane ( flat grid) using single-vector polylines. * 
* * 
****************************************************************************} 
PROCEDURE plane( IN n : INTEGER ); 

VAR 

BEGIN 

i I j 
a, b 
s 

a[l] .Y 
a[l].z 
a[2] .y 
a [2] . z 

INTEGER; 
ARRAY [ 1 .. 2 ] OF gmr_$f3_vector_t; 
REAL; 

.- -1.0; b[l] .x .- -1.0; 
0.0; b[l] .z .- 0.0; 

.- 1.0; b[2] .x .- 1.0; 

.- 0.0; b[2] .z .- 0.0; 

Using Modeling Routines 5-12 

C~ 

I 
I 

~ 

(~' 

"--_. 

c' 



o 

o 

o 

o 

FOR i := 0 TO n DO BEGIN 
S := 2 * i / n - 1; 
a[1].x := s; b[1].y 
a[2].x := s; b[2].y 
gmr_$f3_polyline( 2, 
gmr_$f3_polyline( 2, 

.-

.-
a, 
b, 

END 
END; { plane } 

s; 
s; 
FALSE, 
FALSE, 

status ); check; 
status ); check; 

{**************************************************************************** 

* * 
* CONE: Constructs a cone of unit radius and unit height using a mesh. * 
* * 
****************************************************************************} 
PROCEDURE cone( IN n : INTEGER ); 

VAR 

BEGIN 

i, j, k 
c, s 

IF ( n <= 
k .- O· , 
FOR i .-
c := COS( 
s .- SIN( 
FOR j .-
k .- k + 
mesh[k] .x 
mesh[k] .y 
mesh[k] .z 
END; 
END; 

1 

1 

INTEGER; 
REAL; 

1 ) OR ( 

TO n + 
2 * i * 
2 * i * 

TO n DO 
l' , 
.- c * 
.- s * 
.- 1 

mesh 

n >= 20 ) THEN RETURN; 

1 DO BEGIN 
PI / n ) ; 
PI / n ) ; 

BEGIN 

j / n ) ; 
j / n ) ; 
j / n ) ; 

gmr_$f3_mesh( n + 1, n, mesh, status ); 
END; { cone} 

{*************************************************************~************** 

* * 
* DEFINE_WORLD: Creates the structures for building the jacks and table. * 
* * 
****************************************************************************} 
PROCEDURE define_world; 

BEGIN 

gmr_$structure_create( 'sphere', 6, sphere_id, status); check; 
sphere ( 10 ); 
gmr_$structure_close( TRUE, status ); check; 

gmr_$structure_create( 'cone', 4, cone_id, status); check; 
cone ( 5 ); 
gmr_$structure_close( TRUE, status ); check; 

5-13 Using Modeling Routines 



gmr_$structure_create( 'table', 5, table_id, status); check; 
plane( 10 ); 
gmr_$structure_close( TRUE, status ); check; 

gmr_$structure_create( 'jack_part', 9, jack_part_id, status); check; 
gmr_$instance_transform( cone_id ,matI, 
gmr_$instance_transform( cone_id ,mat2, 
gmr_$instance_transform( sphere_id, mat3, 
gmr_$instance_transform( sphere_id, mat4, 
gmr_$structure_close( TRUE, status ); check; 

status 
status 
status 
status 

) ; check; 
) ; check; 
) ; check; 
) ; check; 

gmr_$structure_create( 'jack', 4, jack_id, status); check; 
gmr_$instance_transform( jack_part_id, mats, status ); check; 
gmr_$instance_transform( jack_part_id, mat6, status); check; 
gmr_$instance_transform( jack_part_id, mat7, status); check; 
gmr_$structure_close( TRUE, status ); check; 

gmr_$structure_create( 'world', 5, world_id, status ); check; 
gmr_$line_color( 1, status ); 

END; 

gmr_$instance_transform( table_id, mat8 , status ); check; 
gmr_$line_color( 2, status ); 
gmr_$fill_color( 2, status ); 
gmr_$instance_transform( jack_id , mat9 , status ); check; 
gmr_$line_color( 3, status ); 
gmr_$fill_color( 3, status ); 
gmr_$instance_transform( jack_id , matl0, status ); check; 
gmr_$structure_close( TRUE, status); check; 

{**************************************************************************** 

* * 
* MAIN PROGRAM: Defines modeling matrices and creates the metafile. 

* 
* 
* 

****************************************************************************} 

BEGIN 

gmr_$4x3_matrix_scale 
gmr_$4x3_matrix_scale 
gmr_$4x3_matrix_scale 
gmr_$4x3_matrix_translate( 
gmr_$4x3_matrix_scale ( 
gmr_$4x3_matrix_translate( 

gmr_$mat_replace ,scalel, 
gmr_$mat_replace ,scalel, 
gmr_$mat_replace scale2, 
gmr_$mat_post_mult, transl, 
gmr_$mat_replace ,scale2, 
gmr_$mat_post_mult, trans2, 

gmr_$4x3_matrix_translate( gmr_$mat_replace 
gmr_$4x3_matrix_translate( gmr_$mat_replace 
gmr_$4x3_matrix_translate( gmr_$mat_replace 
gmr_$4x3_matrix_scale (gmr_$mat_replace 
gmr_$4x3_matrix_translate( gmr_$mat_replace 
gmr_$4x3_matr.ix_translate( gmr_$mat_replace 

, trans3, 
, trans3, 
, trans3, 
, scale3, 
, trans4, 
, trans5, 

Using Modeling Routines 5-14 

matI , 
mat2 , 
mat3 
mat3 , 
mat4 , 
mat4 
mats , 
mat6 , 
mat7 
mat8 , 
mat9 , 
matl0, 

status ) ; 

status ) ; 

status ) ; 

status ) ; 

status ) ; 

status ) ; 

status ) ; 

status ) ; 

status ) ; 

status ) ; 

status ) ; 

status ) ; 

o 

(" 
',,-_/ 

c 

(II 
~/ 

--- ~-~-~-------------------



o 

o 

o 

o 

o 

gmr_$4x3_matrix_rotate(gmr_$mat_pre_mult, gmr $x_axis, PI, mat2, status); 
gmr_$4x3_matrix_rotate(gmr_$mat_pre_mult, gmr_$x_axis, PI/2, mat6, status); 
gmr_$4x3_matrix_rotate(gmr_$mat_pre_mult, gmr_$y_axis, PI/2, mat7, status); 
gmr_$4x3_matrix_rotate(gmr_$mat_pre_mult, gmr_$z_axis, PI/g, mat10, status); 

gmr_$init( gmr_$no_bitmap, stream_$stdout, bitmap_size, 8, status); check; 

gmr_$file_create( 'gmfile.jacks', 12, gmr_$overwrite, gmr_$lw, file_id, 
status); check; 

define_world; 

gmr_$file_close(TRUE, status); 

gmr_$terminate(status); 

END. 

5-15 Using Modeling Routines 





o 

o 

o 

o 

Chapter 

Attribute Classes and 
Attribute Blocks 

6 

Primitive elements are displayed according to the values you assign to attributes. You can 
use these attribute elements to change characteristics such as the color of lines and the 
size of text. Chapter 4 describes how to insert attribute elements into the metafile to 
affect the appearance of primitive elements. 

This chapter describes attribute source flags, attribute classes, and attribute blocks. These 
features allow you to assign attributes when rendering an image instead of when building 
the image. Table 6-1 presents the procedure for using attribute classes. 

Table 6-1. Using Attribute Classes 

Procedure Calls 

1. Create attribute blocks. GMR_$ABLOCK_CREATE 

2. Assign attributes to attribute blocks. GMR_$ABLOCK_SET ... 

3. Assign attribute blocks to attribute GMR_$ABLOCK_ASSIGN_DISPLAY 
classes. GMR_$ABLOCK_ASSIGN_ VIEWPORT 

4. Enable the aclass attribute source flag for GMR_$ATTRIBUTE_SOURCE 
the attributes. 

5. Invoke attribute classes in the metafile. GMR_$ACLASS 

6-1 Attribute Classes and Blocks 



The following terms are discussed in this chapter: 

a ttribute block 

aclass element 

attribute source flag 

A collection of attribute values. You can use an attribute 
block to assign values to attribute classes when the file is 
displayed. 

An attribute class element. An element in a metafile that 
instructs the 3D GMR package to use the attribute values 
defined in the associated attribute block. You can define the 
association between attribute classes and attribute blocks 
when the file is displayed. 

An element inserted in the metafile that enables an attribute 
value either from the last specified ablock (aclass) or last 
direct attribute element routine. 

6.1 Attribute Source Flags 
Routines: 

GMR_$ATTRIBUTE_SOURCE 
GMR_$INQ_ATTRIBUTE_SOURCE 

GMR_$ATTRIBUTE_SOURCE sets the attribute source flag for an attribute type to direct or 
aclass. Attribute source flags are set one at a time (one call per attribute type). You use (~ 
a separate call for each attribute type. -~' 

At display time, an attribute type is not used unless its source flag has been set. The 
default is that all source flags enable direct attribute elements. 

GMR_$INQ_ATTRIBUTE_SOURCE returns the attribute source flag and type of the current 
(GMR_$A TTRIBUTE_SOURCE) element. 

6.2 Invoking Attribute Classes 
Routines: 

GMR_$ACLASS 
GMR_$INQ_ACLASS 

Attribute classes (aclasses) allow you to use attributes by changing between collections of 
attributes, rather than changing each attribute each time. This is useful when you have 
several frequently used combinations of attributes. 

Attribute class elements are signals to the 3D GMR package to switch among collections 
of attributes. These collections are read from attribute blocks at display time. You use 
attribute block routines to define the attributes associated with each collection when the 
file is displayed. 

Attribute Classes and Blocks 6-2 



o 

o 

o 

o 

The GMR_$ACLASS routine inserts an element into the metafile instructung 3D GMR to 
use the attributes currently associated with that attribute class. Here is an example: 

GMR $ATTRIBUTE SOURCE(gmr $attr line color, gmr $attribute aclass, status); 
GMR=$ATTRIBUTE=SOURCE(gmr=$attr=line=inten, gmr=$attribute=aclass, status); 

GMR $ACLASS(5, status); 
GMR=$F3_POLYLINE(n, point_arrayl, status); 

GMR_$ATTRIBUTE_SOURCE(gmr_$attr_line_type, gmr_$attribute_aclass, status); 

GMR $ACLASS(7, status); 
GMR-$F3 MULTILINE(n, point array2, status); 
GMR=$TEXT(string, size, position, status); 

The above sequence inserts eight elements into the metafile (see Table 6-2). 

Table 6-2. Elements in the Metafile 

Enable aclass for line color 

Enable aclass for line intensity 

Use aclass 5 

Polyline (n, point_array1) 

Enable aclass for line type 

Use aclass 7 

Multiline (n, point_array2) 

Text (string, size, position) 

This is what happens when the above elements are displayed: 

1. The polyline is displayed using color and intensity from aclass 5 and the default 
line type (solid). 

2. The multiline is displayed using the color, intensity, and line type from aclass 7. 

3. The text is displayed using default (direct) attribute values since its attribute 
source flag was not set to aclass. 

GMR_$INQ_ACLASS returns attribute class for the current (GMR_$ACLASS) element. 

6-3 Attribute Classes and Blocks 



At the start of a metafile, the default attribute class number is 1. This default is used 
until another class is designated using the element GMR_$ACLASS. Also, all attribute 
source flags are set to direct as a default. C 
6.3 Assigning Attributes to an Attribute Class 
Routines: 

GMR_$ABLOCK_ASSIGN_DISPLAY 
GMR_$ABLOCK_ASSIGN_ VIEWPORT 
GMR_$ABLOCK_INQ_ASSIGN_DISPLA Y 
GMR_$ABLOCK_INQ_ASSIGN_ VIEWPORT 

To assign attributes to an attribute class, first define the attribute blocks and then use 
display-time routines to associate the attribute blocks with attribute classes. Your input 
to the display-time routines is the identification of the attribute class and the attribute 
block to associate with the class. This association of attribute class and attribute block (~ 

I 

may be for all viewports in the display or for individual viewports. The two associated '''---._./ 
display-time routines are described below: 

• GMR_$ABLOCK_ASSIGN_DISPLA Y associates an attribute block with the entire 3D 
GMR display. 

• GMR_$ABLOCK_ASSIGN_ VIEWPORT associates an attribute block with a particular 
viewport. 

You can associate attribute classes with different sets of attributes depending on the type 
of node you are using. For example, a color node with eight bit planes configured can 
display more colors than a color node with four bit planes (see Chapter 12). 

This procedure also allows you to do the following: 

• Interactively modify attributes used to display the file without affecting the 
contents of the file 

• Assign different attributes to an attribute class in different viewports. 

If you do not assign attribute values to a particular attribute class, the default attribute 
values are used (GMR_$DEFAULT_ABLOCK). 

GMR_$ABLOCK_INQ_ASSIGN_DISPLA Y returns the ablock ID assigned to a specified 
attribute class for the 3D GMR display. 

GMR_$ABLOCK_INQ_ASSIGN_ VIEWPORT returns the ablock ID assigned to a specified 
attribute class for a particular viewport. 

Attribute Classes and Blocks 6-4 



6.4 Creating Attribute Blocks o Routine: 

C) 

o 

o 

GMR_$ABLOCK_CREATE 

An attribute block (ablock) is a data structure that holds a collection of attribute values 
in a form that allows you to modify or inquire about individual attributes. The attribute 
values in an attribute block define a set of characteristics that affect the appearance of the 
picture. To create an attribute block, use GMR_$ABLOCK_CREATE. 

Attribute block 1 contains the default collection of attribute values that is used when the 
package is initialized (see Table 4-1). You can use attribute block 1 as a starting point 
for creating new attribute blocks. However, you may not modify attribute block l. 

Use the following procedure to create a collection of attributes: 

1. Define an ablock using GMR_$ABLOCK_CREATE. This routine creates an attribute 
block identical to a specified existing attribute block (such as the default ablock 1), 
and assigns a new ablock identification number to it. 

2. Change attribute values in it using the GMR_$ABLOCK_SET ... routines discussed in 
Section 6.5. For example: 

GMR_$ABLOCK_CREATE(l, ablockid, status); 

GMR_$ABLOCK_SET_LINE_COLOR(ablockid, 2, change_state, status); 

The above routines create a new ablock with the number contained in ablockid. 
This new ablock contains all of the default attribute values (or no-change) except 
for line color, which is changed to 2 by the second routine. 

3. Associate this new ablock with a particular aclass by using the 
GMR_$ABLOCK_ASSIGN_DISPLA Y or GMR_$ABLOCK_ASSIGN_ VIEWPORT routines. 
For example, to associate this ablock ablockid with aclass 5, use the following: 

GMR_$ABLOCK_ASSIGN_DISPLAY(5,ablockid,status); 

or 

GMR_$ABLOCK_ASSIGN_VIEWPORT(5,ablockid,status); 

4. At display time, the routine 

GMR_$ACLASS(5, status); 

assigns this collection of attribute values to subsequently rendered primitive 
elements (provided that the corresponding attribute source flags are set to aclass). 

6-5 Attribute Classes and Blocks 



6.5 Assigning Attributes to Attribute Blocks 
Routines: 

GMR_$ABLOCK_SET_FILL_COLOR 
GMR_$ABLOCK_SET_FILL_INTEN 
GMR_$ABLOCK_SET_LINE_TYPE 
GMR_$ABLOCK_SET_LINE_COLOR 
GMR_$ABLOCK_SET_LINE_INTEN 
GMR_$ABLOCK_SET_MARK_COLOR 
GMR_$ABLOCK_SET_MARK_INTEN 
GMR_$ABLOCK_SET_MARK_SCALE 
GMR_$ABLOCK_SET_MARK_TYPE 
GMR_$ABLOCK_SET_TEXT_COLOR 
GMR _ $ABLOCK _SET_TEXT _ EXPANSION 
GMR_$ABLOCK_SET_TEXT_HEIGHT 
GMR_$ABLOCK_SET_TEXT_INTEN 
GMR_$ABLOCK_SET_TEXT_PATH 
GMR_$ABLOCK_SET_TEXT_SLANT 
GMR_$ABLOCK_SET_TEXT_SPACING 
GMR_$ABLOCK_SET_TEXT_UP 

Use the routines listed above to assign attributes to attribute blocks. To assign attributes 
to an attribute block, identify the attribute block that you want to change, and use the 
specific routine for each attribute to be changed. 

The general syntax for the these routines is as follows: 

GMR_$ABLOCK_SET_< attribute> ablock_id, < attribute_value >, 
enable_state, status) 

INPUT PARAMETERS 

ablock id The identification number of the ablock, in GMR_$ABLOCK_ID_T 

format. This parameter is a 2-byte integer. 

attribute value The attribute value being set. Its format and size depends on the 
value. 

enable state The enabled state of the attribute, in GMR_$CHANGE_STATE_T 

format. This parameter is a 4-byte integer (see below). 

OUTPUT PARAMETER 

status The standard status parameter returned by all 3D GMR calls, in 
STATUS_$T format. This parameter is 4 bytes long. 

Attribute Classes and Blocks 6-6 

,.,,------..... 
I ' 
\ 

''---_._ .. 

I 

01 



o 

o 

o 

o 

o 

Setting the Enabled State in an Attribute Block 
The three possible values of enable_state are defined as follows: 

1. Change the attribute and enable its use (GMR_$SET_ VALUE_AND_ENABLE). This 
changes the value stored in the attribute block and enables its use when the aclass 
associated with the ,block is active. 

2. Change the attribute, but disable its use (GMR_$SET_ VALUE_AND_DISABLE). This 
allows you to change the value but to continue to use the attribute value that was 
previously set. For example, if you used one attribute block to render text 
according to special attribute values but do not want to affect how lines are 
rendered, this state allows a way to specify "no-change" for any line attribute 
setting commands. 

3. Toggle an attribute value between a disabled (no change) state and an enabled 
state. GMR_$NO_ VALUE_AND_ENABLE and GMR_$NO_ VALUE_AND_DISABLE allow 
you to enable or disable the use of the attribute that was previously set. With 
either of these states, the attribute parameter in the command is ignored and the 
attribute value is not changed. 

A change/no-change state is associated with each attribute in an ablock. When an aclass 
element refers to an ablock that has an attribute in a no-change state, the attribute value 
of the previous aclass remains unchanged. This allows you to define attribute blocks that 
keep certain values constant while you change others. In this way, you can preserve 
existing attributes across changes in the attribute class without having to set the attributes 
explicitly each time. 

Attribute block ° (GMR_$NOCHANGE_ABLOCK) has all attributes set to the no-change 
state. Thus, assigning attribute block ° to an attribute class is a null operation (that is, it 
does not change any attribute values). As with attribute block 1, you may copy attribute 
block 0, but not change it. 

6.6 Reading Attribute Blocks 
Routines: 

G MR _ $ABLOCK _ INQ_ FILL_COLOR 
GMR_$ABLOCK_INQ_FILL_INTEN 
GMR _ $ABLOCK _ INQ_ LINE_TYPE 
GMR_$ABLOCK_INQ_LINE_COLOR 
GMR _ $ABLOCK _ INQ_ LINE _ INTEN 
GMR_$ABLOCK_INQ_MARK_COLOR 
GMR_$ABLOCK_INQ_MARK_INTEN 
GMR_$ABLOCK_INQ_MARK_SCALE 
GMR_$ABLOCK_INQ_MARK_TYPE 
GMR_$ABLOCK_INQ_TEXT_COLOR 
GMR_$AB LOCK_INQ_TEXT_EXPANS ION 
GMR _ $ABLOCK _ INQ_ TEXT_HEIGHT 
GMR_$ABLOCK_INQ_TEXT_INTEN 
GMR_$ABLOCK_INQ_TEXT_PATH 

6-7 Attribute Classes and Blocks 



GMR_SABLOCK_INQ_TEXT_SLANT 
GMR_SABLOCK_INQ_TEXT_SPACING 
GMR_SABLOCK_INQ_TEXT_UP 

The routines listed above return the current values of an individual attribute in the 
specified attribute block. The change/no-change state of the attribute is also returned. If 
the attribute is enabled, GMR_SSET_ VALUE_AND_ENABLE is returned in the state 
parameter. The value GMR_SSET_ VALUE_AND_DISABLE is returned if the attribute is 
disabled (no-change state). 

The default attribute values are shown in Table 4-1. 

6.7 Copying and Deleting Attribute Blocks 
Routines: 

GMR_SABLOCK_COPY 
GMR_SABLOCK_DELETE 

Once you have assigned attributes to the attribute block, you can copy these attributes to 
other existing attribute blocks. To do this, use GMR_SABLOCK_COPY. To establish a new 
attribute block identical to it, use GMR_SABLOCK_CREATE, as described in Section 6.4. 

Use GMR_SABLOCK_DELETE to delete an attribute block. This routine deletes the 
specified attribute block and releases the attribute block identification number for reuse. 
The no-change block (GMR_SNOCHANGE_ABLOCK) and the default attribute block 
(GMR_SDEFAULT_ABLOCK) cannot be deleted. 

6.8 Mixing Attribute Elements and Attribute Classes 
The current attribute source flag for an attribute type determines whether aclass or direct 
attributes are used. For example, the following fragment uses color ID 4 to render the 
line: 

GMR $ATTRIBUTE SOURCE(gmr $attr text color, gmr_$attribute_direct, status); 
GMR=$TEXT_COLOR(4, status); - -

GMR $ACLASS(aclass6, status); 
GMR=$F3_TEXT(string, length, position, status); 

After the above routines are executed, the polyine _color will be 4 regardless of the draw 
value in the attribute block which you have assigned to attribute class 6. 

The following fragment uses the text color specified by aclass 6 to render the line: 

GMR $ATTRIBUTE SOURCE(gmr $attr text color, gmr $attribute aclass, status); 
GMR=$TEXT_COLOR(4, status); - - - -

GMR $ACLASS(aclass6, status); 
GMR=$F3_TEXT(string, length, position, status); 

Attribute Classes and Blocks 6-8 

( 
"- ... 

(~ 

\ ... ' 

C' 
I 

I 



o 

o 

o 

o 

6.9 Modifying Attributes at Display-time 
The graphics metafile package provides three techniques for modifying attributes at 
display time. 

1. Change one attribute at a time within the file. To do this, put attribute elements 
into the file to change individual attributes. 

2. Change all attributes at once on the display as a whole. To do this, use 
GMR_$ACLASS to put elements into the file to specify the attribute class you want 
used. Then while viewing the file, change the collection of attributes assigned to 
attribute classes. To make this change, use GMR_$ABLOCK_ASSIGN_DISPLAY. 

3. Change all attributes at once for individual viewports of the display. The 
attributes in each viewport may be different. To .change attributes, use 
GMR_$ACLASS to put elements into a file to specify the attribute class. Then while 
viewing the file, change the collection of attributes assigned to attribute classes for 
individual viewports. Use GMR_$ABLOCK_ASSIGN_ VIEWPORT to make this change. 

The first technique assigns individual attribute values within a file. The second and third 
techniques associate attributes with attribute classes only when the file is displayed. With 
these two techniques, neither the attribute values nor the class assignment is stored in the 
file. See Chapter 9 for more information. 

NOTE: Attribute elements and ablock attributes will only be in effect if the 
corresponding attribute source flags are set. 

6.1 0 Sample Routines 
The following routines are part of Sample3, a program listed in Appendices A, B, and C 
(in Pascal, C, and FORTRAN). Sample3 is also on-line in three languages under the 
names: 

domain_examples/gmr3d/sample3.pas 
domain _ examples/gmr3d/sample3.c 
domain _ examples/gmr3d/sample3.ftn 

Sample3 creates a menu that is displayed in separate viewports on the screen. When the 
user scrolls over the menu buttons, the text within the button changes to italics. When a 
menu item is selected, the italic type is put in reverse video. 

6-9 Attribute Classes and Blocks 



6.10.1 Creating Menu Structures and Associating an Aclass Element 

This first routine section creates a structure for each of the buttons in the menu. Aclass1 
is associated with each structure. The arrays button_struct_name and button_text are 
initialized when they are declared globally. Button_struct_name is used to associate a 
name with each structure and button_text supplies the actual text for each structure. 

PROCEDURE create_menu_structure; 
VAR 

pos gmr_$f3-point_t; 
i integer; 

BEGIN 
pos.x .- 3.0; 
pos.y .- 4.0; 
pos.z .- 0.0; 

FOR i .- 1 TO num_buttons DO 
BEGIN 

{ The window for each button is } 
{ 150x10. Position text in lower} 
{ left corner. } 

gmr_$structure_create(button_struct_name[i], 8, button_id[i], status); 
gmr_$attribute_source(gmr_$attr_text_height, gmr_$attribute_aclass, 

END; 

status); 
gmr_$attribute_source(gmr_$attr_text_slant, gmr_$attribute_aclass, 

status); 
gmr_$attribute_source(gmr_$attr_text_color, gmr_$attribute_aclass, 

status) ; 
gmr_$aclass(l, status); 
gmr_$text (button_text [i] , 10, pos, status); 
gmr_$structure_close (TRUE , status); 
END; 

6.10.2 Creating the Att~ibute Blocks 

The fragment listed here creates three abloQks. The first is for unhighlighted menu button 
text, the second for italics (from setting the slant attribute), and the third for highlighted 
menu text (slanted and different color). A viewport is created for each button, the button 
structure is displayed in the viewport, and ablock1 is assigned to aclass1 for each 
viewport. 

This program assumes 10 buttons (the value of num_buttons) positioned vertically on the 
left-hand side of the screen. You can change the value of num_buttons and menu_vp_Idc 
to position an arbitrary number of buttons anywhere on the screen. 

CONST 
menu_xmin 0.025; 
menu_xmax 0.150; 

Attribute Classes and Blocks 

{ Menu area in logical device coordinates. } 

6-10 

c 

(~ 

\ 

~ 
\ , 
'--.' 

c' 



o 

o 

o 

o 

PROCEDURE init_menu_viewport; 
VAR 

real; 
integer; 

BEGIN 
menu vp_ ldc.xmin .- menu_xmin; 
menu_vp_ ldc.xmax .- menu _xmax; 
menu_vp_ldc.ymin .- 0.90; 
menu_vp_ldc.ymax .- 0.98; 
menu_vp_ ldc.zmin .- 0.0; 
menu _vp_ ldc.zmax .- 1.0; 

text_height := 3.0; 

{ Assign values to menu_vp_ldc } 
{ according to where you want } 
{ the first menu button. } 

gmr_$ablock_create(gmr_$nochange_ablock, ablock1, status); check; 
gmr_$ablock_set_text_color(ablock1, 7, gmr_$set_value_and_enable, status); 

check; 
gmr_$ablock_set_text_height(ablock1, text_height, gmr_$set_value_and_enable, 

status); check; 
gmr_$ablock_set_text_slant(ablock1, 0.0, gmr_$set_value_and_enable, status); 

check; 
gmr_$ablock_set_text_expansion(ablock1, 0.8, gmr_$set_value_and_enable, 

status); check; 

gmr_$ablock_create(ablock1, ablock2, status); check; 
gmr_$ablock_set_text_slant(ablock2, 0.5, gmr_$set_value_and_enable, 

status); check; 

gmr_$ablock_create(ablock2, ablock3, status); check; 
gmr_$ablock_set_text_colorcablock3, 0, gmr_$set_value_~nd_enable, status); 

check; 

FOR i := 1 TO num buttons DO 
BEGIN 

END; 

gmr_$viewport_create(menu_vp_ldc, button_vpid[i], status); check; 
gmr_$viewport_set_border (button_vpid [i] , menu_border, TRUE, 3, 1.0, 

status); check; 
gmr_$viewport_set_bg_color (button_vpid [i] , 2, 1.0, status); check; 
gmr_$view_set_window(button_vpid[i], menu_window, status); check; 

gmr_$view_set_view_plane_normal(button_vpid[i[, menu_normal, status); 
check; 

gmr_$viewport_set_structure(button_vpid[i], button_id[i], status); check; 
gmr_$ablock_assign_viewport(l, button_vpid[i], ablock1, status); check; 

menu_vp_ldc.ymin .- menu_vp_ldc.ymin - 0.09; 
menu_vp_ldc.ymax .- menu_vp_ldc.ymax - 0.09; 
END; 

6-11 Attribute Classes and Blocks 



6.10.3 Assigning the Italics and Reverse Video Ablocks 

The GMR_$ABLOCK_ASSIGN_ VIEWPORT routine listed above assigns the default text 
ablock (ablockl) to all buttons. The following fragments can be used to assign the italics 
and reverse video ablocks. Refer to the procedure named "Process_commands" in the 
main program to see the fragments in context (see Appendices A, B, and C). 

Italics 

gmr_$ablock_assign_viewport(l, button_vpid[menu_item] , ablock2, status); 
check; 

display_viewport(button_vpid[menu_item]); 

Reverse video 

gmr_$viewport_set_bg_color(button_vpid[menu_item] , 4, 1.0, status); check; 
gmr_$ablock_assign_viewport(l, button_vpid[menu_item] , ablock3, status); 

check; 
display_viewport(button_vpid[menu_item]); 

6.10.4 Clearing and Refreshing a Viewport 

This fragment clears and refreshes the viewport. 

BEGIN 

gmr_$viewport_clear(vpid, status); check; 
gmr_$viewport_refresh(vpid, status); check; 

END; 

Attribute Classes and Blocks 6-12 

c 

c\ 



o 

o 

o 

o 

Chapter 7 

Viewing Parameters 

This chapter describes the next step in the viewing pipeline: mapping the world 
coordinates of objects (structures) into a view volume in viewing coordinate space. This 
step is called the viewing transformation and its position in the viewing pipeline is shown 
in Figure 7-1. 

3D Element data (modeling coordinates) 

Modeling Transformations 

Viewing Coordinates 

Window to Viewport Transformation 

3D Logical Device Coordinates 

Viewport to Screen Transformation 

20 Device Coordinates 

Figure 7-1. The Viewing Pipeline 

7-1 Viewing Parameters 



The viewing coordinate system (also called the UVN coordinate system) is analogous to a 
camera. This "synthetic" camera takes perspective images (normal photos) or parallel 
images (high telephoto effects). Some viewing parameters determine the position and ~ 
orientation of the camera. Still other viewing parameters determine the rectangular , __ ) 
portion of the image that is clipped out for display. The synthetic camera also has "depth 
of field" adjustments that clip away objects that are too close or too far away. 

Viewing parameters determine the placement of the viewing coordinate system within the 
world coordinate system. In addition, viewing parameters determine the following: 

• The position of a 2D plane (view plane) in world coordinate space 

• The portion of the visible geometry that is projected onto the 2D plane 

• The type of projection that is used 

A separate viewing coordinate system is associated with each viewport. 

The 3D GMR package provides routines to facilitate these transformation operations. This 
chapter describes the routines and their parameters. 

The following terms are defined and discussed in this chapter. Rather than focus on these 
definitions now, you may find it useful to refer back to them as you read through the 
chapter. 

handedness 

hither distance 

reference point 

vertical (up) direction 

Viewing Parameters 

Used to describe the orientation of a coordinate system. In 
the viewing coordinate system, handedness controls how the U 
axis is related to the V and the N axes and how the hither and 
yon clipping planes are defined. 

Used to specify part of the view volume. The N coordinate of 
the hither (or near) clip plane in world coordinates. If the 
viewing coordinate system is left-handed, then points with N 
less than the hither distance are invisible. If the viewing 
coordinate system is right-handed, points with N greater than 
the hither distance are invisible. 

The point that is the origin of t~e viewing coordinate system 
specified in world coordinates. All scalar viewing parameters 
are relative to the reference point. Additionally, for 
perspective projections, the reference point is the center of 
projection. 

Implicitly orients the window on the view plane in terms of the 
up vector. The up vector is key in determining the V axis of 
the viewing coordinate system. This setting, with the view 
plane normal, also implicitly sets the right vector because two 
of three vectors determine the third in a right- or left-handed 
orthogonal coordinate system. 

7-2 

... _. __ ._ ... _ .... - --_ .•..... _---



view distance 

o 

C) 
view plane 

view plane normal 

o 
viewing transformation 

view volume 

o 

view window 

o 

The signed distance (in world coordinates) between the 
reference point and the view plane, along the direction of 
gaze. In other words, it is the N coordinate of the view plane. 

For an orthographic projection, the results are independent of 
view distance since the projection is parallel to the N axis. 

For perspective projections, the view distance alters the 
divergence of the projection rays between the center of 
projection (reference point) and the window bounds of the 
view plane. For perspective projections, view distance must 
be negative if the viewing coordinate system is right-handed 
and positive if the viewing coordinate system is left-handed. 

For plan oblique and elevation oblique projections, changing 
the view distance slides the projection across the view plane. 

The plane in the viewing coordinate system defined by N = 

view distance. This is the plane in which the view window is 
specified. 

The direction, specified in world coordinates, of the N axis of 
the viewing coordinate system. The view plane normal 
establishes the orientation in space of the view plane. The 
vector can have any length but the vector cannot be identically 
zero. 

The view plane normal is the gaze direction in a left-handed 
viewing coordinate system, and points opposite the gaze 
direction in a right-handed system. 

A process that maps world coordinate space into a view 
volume in viewing coordinate space. 

The set of points in world coordinates between the hither and 
yon planes whose projections on the view plane lie within the 
window. For parallel projections the view volume is a 
parallelepiped with a rectangular cross-section. For 
perspective projections, the view volume is a frustrum, that is, 
a truncated pyramid. 

A rectangular region of the viewplane that determines what 
portion of a projected image is displayed. Points in the region 
have coordinates satisfying: 

7-3 Viewing Parameters 



viewing coordinates 

yon distance 

umin < U < umax 

vmin < v < vmax 

N = view distance 

A three-dimensional coordinate system whose axes are labled 
U, V, and N. For prespective, orthographic, and elevation 
oblique projections the U axis always corresponds to "right" 
on the screen and the V axis always corresponds to "up" on 
the screen. The N axis points into or out of the screen 
depending on the handedness of the' viewing coordinate 
system. In a left-handed system +N points into the screen. 

The signed distance in world coordinates of the yon (or far) 
clip plane from the reference point. If the viewing coordinate 
system is left-handed, then points with N greater than the yon 
distance are invisible. If the viewing coordinate system is 
right-handed, points with N less than the yon distance are 
invisible. 

The routines described in this section provide control over the minimal set of parameters 
required to specify perspective and parallel viewing transformations. They provide 
complete generality and attempt to minimize unintuitive side effects. These routines 
provide a solid basis on which to build an effective user interface. ('" 

7.1 Specifying the Projection Type 
Routines: 

GMR_$VIEW _SET_PROJECTION_TYPE 
GMR_$VIEW _SET_OBLIQUE 
GMR_$VIEW _INQ_PROJECTION_ TYPE 
GMR_ $VIEW _INQ_ OBLIQUE 

There are two basic types of projection: parallel and perspective. Parallel projection is 
further divided into three types: 'orthographic, plan oblique, and elevation oblique (see 
Figure 7-2). Orthographic is the default. If you specify either plan oblique or elevation 
oblique, you can further modify the projection using GMR_$VIEW _SET_OBLIQUE. This 
section describes the different projection types. 

Viewing Parameters 7-4 

c' 



o 

o 

o 

o 

Projection 

Perspective 

Figure 7-2. Projection Types 

Elevation 
Oblique 

GMR_$VIEW _SET_PROJECTION_TYPE specifies the projection type of a specified viewport 
as one of the following: perspective, orthographic, plan oblique, elevation oblique. The 
default is orthographic. 

GMR_$VIEW _INQ_PROJECTION_TYPE returns the projection type of the specified viewport. 

7.1.1 Parallel Projection 

Parallel projection is used to represent the metric properties of an object (for example, 
distances and angles) at the expense of realism. For example, receding parallel lines 
remain parallel; this gives a somewhat distorted appearance to the drawing for the casual 
viewer. Parallel projection is well suited for working drawings. There are three types of 
parallel projection in 3D GMR: orthographic, plan oblique, and elevation oblique. 

Orthographic projection is typically used to show the exact shape of any side 
perpendicular to the view plane normal. It is well suited for rectangular objects. The user 
typically creates several orthographic views in order to see the object from several angles 
at once (for example, top, front, and right). 

A plan oblique projection is typically used to show the exact shape of one side of an 
object and uses a foreshortening ratio to shorten lines that are perpendicular to that one 
side. These shortened lines are always drawn vertically in a plan oblique projection. In 
the 3D GMR package lines receding from the viewer (lines perpendicular to the view 
plane and extending in the gaze direction) are drawn vertically downward on the screen. 
The side whose shape is preserved is drawn at an angle (the receding angle) to these 
vertical lines . The foreshortening ratio of a line is its projected length divided by its true 
length. 

The receding angle is measured counterclockwise from the horizontal ("right") direction 
at which the U axis is displayed. The V axis is displayed at right angles to the U axis. 

Elevation oblique is similar to plan oblique in that it also preserves the shape of one face 
of the object. Unlike plan oblique, that face is always shown upright. Lines receding 
from the viewer (that is, in the gaze direction) are foreshortened and drawn at a given 

7-5 Viewing Parameters 



angle to the horizontal. However, receding parallel lines give the illusion of divergence to 
the inexperienced viewer. 

Elevation oblique is well suited for objects with detail on mainly one face (for example, a C~ 
radio). It is also widely used for building elevations. 

Orthographic projection is the default. You can set it explicitly using 
GMR_$VIEW _SET_PROJECTION_TYPE. If you specify an oblique projection you can use 
GMR_$VIEW _SET_OBLIQUE to obtain various effects. These effects are based upon the 
foreshortening ratio and receding angle. 

The foreshortening ratio (F) specifies how much lines perpendicular to the view plane are 
shortened in projection. Note that orthographic projection corresponds to the special case 
F = 0 of. elevation oblique or plan oblique projections. 

When it is used for elevation oblique, the receding angle is measured counterclockwise 
from the positive U axis in the viewing coordinate system. The receding angle specifies 
the direction on the view plane onto which the positive gaze direction is projected. 

Use GMR_$VIEW _SET_OBLIQUE to specify the foreshortening ratio and the receding angle 
for viewports using an oblique projection. 

GMR_$VIEW _INQ_OBLIQUE returns the values of the foreshortening ratio and the receding 
angle if the specified viewport is using an oblique projection. 

7.1.2 Perspective Projection 

Perspective projection gives a realistic representation of an object as seen from an 
observer at a specific position. An object appears smaller the greater its distance from 
the observer. Parallel lines converge at a vanishing point (for example, railroad tracks 
give the apprearance of converging in the distance). 

Perspective projections are often used for presentation purposes and in advertising. They 
do not usually make good working drawings because it is difficult to judge metric 
properties such as distances, sizes, and angles. 

7.2 Specifying the View Plane 
Routines: 

GMR_$VIEW _SET_REFERENCE_POINT 
GMR_$VIEW _SET_ VIEW _PLANE_NORMAL 
GMR_$VIEW _SET_VIEW_DISTANCE 
GMR_ $VIEW _INQ_REFERENCE_POINT 
GMR_$VIEW _INQ_ VIEW _PLANE_NORMAL 
GMR_$VIEW _INQ_ VIEW_DISTANCE 

The view plane is specified by the reference point (R), the view plane normal (N), and the 
signed view distance (d) from the reference point to the plane, measured along the view 

(", 
,----. ' 

plane normal (see Figure 7-3). The view plane normal can have any length. CI 

Viewing Parameters 7-6 



o 

o 

o 

o 

y eye 

-y7 

~~j~ 3D Object 

............ ~""'------X 

y /+N 
/

eR 

-N 
Gaze Direction 

Observation position 

R = Reference Point 
N = View plane normal 

View Plane 

y y 

~~~ ......... ~""'------X 

d = View Distance

z
x

Figure 7-3. Specifying the View Plane in a Right-Handed System

GMR_$VIEW _SET_REFERENCE_POINT specifies a point in world coordinates that is the
origin of the viewing coordinate system for a specified viewport. This is the point from
which to measure clipping plane distances (hither and yon distances), and the distance to
the view plane for both parallel and perspective projections. The default is (0, 0, 0) in the
world coordinate system. The reference point is the center of projection for perspective
viewing operations.

7-7 Viewing Parameters

GMR_$VIEW _INQ_REFERENCE_POINT returns the viewing reference point for a specified
viewport.

GMR_$VIEW _SET_VIEW _PLANE_NORMAL specifies a world coordinate vector that is
normal to the view plane of the specified viewport. This need not be a unit vector. The
default is (0, 0, 1), along the positive z-axis of the world coordinate system.

The view plane normal is the gaze direction in a left-handed viewing coordinate system,
and points opposite the gaze direction in a right-handed system (see Figure 7-4).

GMR_$VIEW_INQ_ VIEW_PLANE_NORMAL returns the view plane normal vector for the
specified viewport.

GMR_$VIEW _SET_VIEW _DISTANCE specifies the signed distance from the reference point
to the view plane. The distance is measured along the view plane normal for both right­
and left-handed coordinate systems. The default distance is -1.0. The view distance for
perspective projections must be negative for a right-handed viewing coordinate system
and positive for a left-handed system.

GMR_$VIEW _INQ_ VIEW _DISTANCE returns the distance from the reference point to the
view plane in the specified viewport.

7.3 Specifying the Viewing Coordinate System
Routines:

GMR_ $VIEW _SET_COORD _SYSTEM
GMR_$VIEW _SET_UP _VECTOR
GMR_$VIEW _INQ_COORD_SYSTEM
GMR_$VIEW_INQ_UP_ VECTOR

The viewing coordinate system (UVN) can be either a right- or a left-handed system. The
default is right-handed. GMR_$VIEW_SET_COORD_SYSTEM sets the viewing coordinate
system to right- or left-handed.

GMR_$VIEW_INQ_COORD_SYSTEM returns the coordinate system type (right- or C.'
left-handed) of the specified viewport. _

For perspective, orthographic, and elevation oblique projections U corresponds to right on
the screen and V corresponds to up. In a right-handed viewing coordinate system, N
points opposite the gaze direction (in the direction from the screen to the operator). In a
left-handed UVN system, N points in the gaze direction (see Figures 7-4, and 7-6, and
7-7).

In. general, the same view can be obtained in a right-handed UVN system as in a
left-handed system. The effects of chaning handedness are nullified by simultaneously
reversing the direction of the view plane normal and changing the signs of the view
distance and the hither and yon distances.

Viewing Parameters 7-8

c

o

n ,----"I

o

o

N

RIGHT-HANDED (default)

V

u

N points opposite the
direction of gaze.

V

LEFT-HANDED

N points in the
direction of gaze.

u

Figure 7-4. Right- and Left-handed Viewing Coordinate Systems

The reference point is the origin of the viewing coordinate system (UVN system). The
orientation of the viewing coordinate system is described as follows:

o The N axis is parallel to the view plane normal.

o The V axis is perpendicular to the N axis. More precisely, the V axis is the
projection of the view up vector onto the N = 0 plane (see Figure 7-5).

o The U axis is determined by the V axis, the N axis, and the handedness of the
UVN coordinate system. If U, V, and N are unit vectors, then U = N x V (cross
product) for a left-handed system and U = V x N for a right-handed system.

Projection of View up Vector
onto the N = 0 Plane

/

u

Figure 7-5. Determining the V Axis of the UVN Coordinate System

7-9 Viewing Parameters

GMR_$VIEW _SET_UP _VECTOR provides the final specification for orienting the viewing
coordinate system. The routine specifies the world coordinate vector for establishing the
orientation of the up direction (see Figure 7-5). The only restriction placed on this vector
is that it be linearly independent of view plane normal. The default for the up direction is
alignment with the positive y-axis of the world coordinate system (0, 1, 0).

GMR_$VIEW _INQ_UP _VECTOR returns a vector that represents the up direction of the
specified viewport.

Figu~e 7-6 shows a left-handed viewing coordinate system (UVN system) with a positive
view distance. Figure 7-7 shows a right-handed viewing coordinate system with a
negative view distance.

R = Reference Point
N = View plane normal

d = View Distance (positive)

z

y

Viewing Coordinate
System

+N

v

Figure 7-6. A Left-handed Viewing Coordinate System

Viewing Parameters 7-10

u

x

o

0

r:J \

o

o

Z

R =
N =
d =

y

Reference Point

Viewing Coordinate
System

-N

View plane normal

View Distance (negative)

v

u

X

Figure 7-7. A Right-handed Viewing Coordinate System

7.4 Specifying the View Volume
The view volume bounds the part of the world that is to be clipped and projected. After
the viewing coordinate system and "the view plane are established, the view volume is then
determined by adding the following:

o Window boundaries (minimums and maximums in U and V)

o Hither and yon clip planes

• Projection type (see Section 7.1)

7.4.1 Orthographic Projection View Volume

An orthographic projection is the default projection type. For an orthographic projection,
the view volume is in the shape of a rectangular parallelepiped (see Figures 7-8 and 7-9).
The window on the view plane can be any upright rectangle in viewing coordinates. The
window defines an infinite parallelepiped. An orthographic projection of a point (P) is

7-11 Viewing Parameters

defined as the intersection of the line through P (parallel to the N axis) with the view
plane.

The hither and yon clip planes restrict the volume to a finite region. In Figures 7-8 and C,'
7-9, both hither and yon values are positive (measured from R along the negative N axis). --

N

V projection
of P--.,

__ ----ft'!'

R

Window-"

View
Plane

v dist

Hither
Plane

h_dist

Vmax

;;;;,r--- View

Yon
Plane

y dist

Volume

Vmin

Figure 7-8. Right-handed Orthographic Projection View Volume

Viewing Parameters 7-12

C,'

o

o

o

o

o

Reference
Point

Yon
Plane

Hither
Plane

View Plane

Figure 7-9. Right-handed Orthographic Projection View Volume

Making either hither or yon negative places the reference point within the view volume.
This is the case in the default view volume (see Figure 7-10). Notice that the default view
volume in Figure 7-10 is not drawn to scale since the default hither and yon distances are
very large (-10 10 and 1010 respectively).

7-13 Viewing Parameters

h dist

Hither
Plane

View
Plane

h_dist = _1010 (not shown to scale)

y_dist = +1010 (not shown to scale)

v_dist = -1 (not shown to scale)

R = (0.0,0.0,0.0) in World Coordinate System

V = Positive y-axis in World Coordinate System

N = Positive z-axis in World Coordinate System

View Window = 1 X1 Square

Figure 7-10. The Default View Volume

7.4.2 Perspective Projection View Volume

Vmax

y_dist

~ __ View
Volume

Vmin

Yon
Plane

For a perspective projection, the view volume is in the shape of a frustum (see Figures
7-11, and 7-12). The window on the view plane can be any upright rectangle in view
coordinates. The window and the reference point together define the viewing pyramid.
This infinite pyramid is truncated by the hither and yon clip planes. A perspective
projection of a point (P) is defined as the intersection of the line through P and the
reference point with the view plane.

Viewing Parameters 7-14

o

o

o

C)

o

v

+N R

View
Plane

Hither
Plane

___ View
Volume

Yon
Plane

Figure 7-11. Right-handed Perspective Projection View Volume

7-15 Viewing Parameters

+N

Reference
Point

View
Volume

\

View Plane

Hither
Plane

Yon
Plane

Figure 7-12. Right-handed Perspective Projection View Volume

7.4.3 Routines that Set and Modify the View Volume

Routines:

GMR_$VIEW _SET_WINDOW
GMR_$VIEW_SET_HITHER_DISTANCE
GMR_$VIEW_SET_YON_DISTANCE

Viewing Parameters 7-16

c

c

C' I

o

o

GMR_$VIEW _INQ_ WINDOW
GMR _ $VIEW _ INQ_HITHER _ DISTANCE
GMR_$VIEW_INQ_YON_DISTANCE

The routines described in this section set and modify the view volume for both parallel
and perspective projections.

GMR_$VIEW _SET_WINDOW defines the "window" on the view plane by means of umin,
urnax, vmin, and vmax. The points in the window have UVN coordinates that satisfy:

N = v dist

umin < U < urn ax

vmin < V < vmax

The default window is a one-by-one square in world coordinates.

GMR_$VIEW _INQ_ WINDOW returns the umin, umax, vmin, and vmax coordinates for the
view window of a specified viewport.

GMR_$VIEW _SET_HITHER_DISTANCE specifies the N coordinate of a plane perpendicular
to the.N axis called the hither plane (the near clipping plane). Only the geometry between
the hither and yon clipping plane is visible on the display. The absolute value of the
hither distance is the geometric distance between the view reference point and the near
clipping plane.

GMR_$VIEW_SET_YON_DISTANCE specifies the N coordinate of a plane perpendicular to
the N axis called the yon plane (the far clipping plane). Only the geometry between the
hither and yon clipping planes is visible on the display. The absolute value of the yon
distance is the geometric distance between the view reference point and the far clipping
plane.

The default hither and yon distances are -1010 and 1010 respectively. This places the
reference point in the center of a large default view volume.

For a perspective projection, both hither and yon must be positive for a left-handed
viewing coordinate system and negative for a right-handed system. o GMR_$VIEW _INQ_HITHER_DISTANCE returns the hither distance for a specified viewport.

o

GMR_$VIEW _INQ_YON_DISTANCE returns the yon distance for a specified viewport.

7.4.4 Modifying Perspective Projections

Perspective projection allows the application to provide a wide-angle lens effect for
display, centered at any point within the world coordinate system. Moving the window
center away from the origin of the view plane gives the display the appearance of skewed
perspective (see Figure 7-13). This is accomplished by moving the window center with
GMR_$VIEW _SET_WINDOW. Most applications center the window at the origin of the view
plane.

7-17 Viewing Parameters

PERSPECTIVE PROJECTION

RIGHT-HANDED SYSTEM

+N

v

R

Specifying the
window off center
creates a view volume
in the shape of a skewed,
truncated pyramid.

-N

Figure 7-13. Specifying the View Window Off Center on the View Plane

Viewing Parameters 7-18

o

o

o

o

The center of projection for perspective projections is the reference point used in
establishing the view plane. To change the center of perspective projection while viewing
a stationary object, you must move the reference point using
GMR_$VIEW _SET_REFERENCE_POINT and then reset the gaze direction back to the object
using GMR_$VIEW _SET_ VIEW _PLANE_NORMAL.

Changing just the reference point translates the view volume as a whole. Moving the
reference point towards an object gives the same effect as physically moving towards the
object. The center of projection, the view plane window, and the clipping planes all move
together towards the object.

Increasing the magnitude of the view distance causes the perspective effect to decrease
(like a telephoto lens) for a fixed object by moving the window ·away from the center of
projection in the direction of the view plane normal. To do this, use
GMR_$VIEW _SET_VIEW _DISTANCE. This may cause part of the fixed object to be clipped
away unless the reference point is moved back at the same time.

Because the hither and yon clipping planes are tied to the reference point and not the view
distance, the two clipping planes remain stationary with respect to the object when you
change only the view distance. You can change the hither and yon clipping planes
directly with GMR_$VIEW _SET_HITHER_DISTANCE and GMR_$VIEW _SET_YON_DISTANCE.

Setting the view plane normal allows the application to position the view plane in any
direction except the up direction.

7.5 Copying View Parameters
Routines:

GMR_$VIEW_SET_STATE
GMR_$VIEW _INQ_STATE

Use GMR_$VIEW_INQ_STATE to retrieve the parameters of an existing view and then use
GMR_$VIEW_SET_STATE to transfer the parameters to another view or to restore a view to
a previous state. This allows you to set up standard view orientations (for example,
standard orthogonal views such as top, front, right, and isometric) and change quickly
between them.

GMR_$VIEW_SET_STATE accepts a record containing all viewing parameters. The default
is the identity view transform along with the initial defaults for the individual parameters.

7.6 Application Specific Viewing Transformations
Routines:

GMR_$VIEW _SET_TRANSFORM
GMR_ $VIEW _INQ_ TRANSFORM

7-19 Viewing Parameters

After you specify the viewing parameters, the 3D GMR package automatically calculates a
4x3 matrix that transforms world coordinates to viewing coordinates. You have the
option of supplying a 4x3 matrix directly using GMR_$VIEW _SET_TRANSFORM.

The transform may either be application generated or obtained from a previous view
transform inquiry. If it is application generated, it must map world coordinates to the
canonical viewing volume for correct results. There is no default as the defaults for the
individual parameters determine the viewing transformation.

If you use GMR_$VIEW _SET_TRANSFORM, you cannot obtain the view parameters using
GMR_$VIEW _INQ_TRANSFORM. The parameters cannot be derived directly from the
matrix.

7.7 A Viewing Parameter Example
This fragment sets viewing parameters that construct a view of an object centered at the
origin in world coordinates from a vantage point of (20.0, 20.0, 0). See Figure 7-14.

Up

N

x

Figure 7-14. A Viewing Parameter Example

Viewing Parameters 7-20

C'
_.-"

c

o

o

o

o

o

VAR
gmr_ $f3 _point_t .- 20, 20, °] ;
gmr_ $f3 - vector - t .- 1, 1, °] ;
gmr_ $£3 - vector - t .- 0, 1, °] ;
gmr_ $£2 - limits - t .- -4, 4, -4,4] ;
gmr_ $£ - t .- -1.0;
gmr_ $£ - t .- -5.0;
gmr_ $£ - t .- -30.0;

Ref_Point
Normal
Up_Vect
Window
H_dist
V_dist
Y_dist
coord_sys
proj
vpid

gmr_$coord_system_t:= gmr_$coord_right;
gmr_$projection_t:= gmr_$perspective;
gmr_$viewport_id_t;

st status_t;

GMR_$VIEW_SET VIEW_PLANE_NORMAL(vpid, Normal, st);
GMR_$VIEW_SET_REFERENCE_POINT(vpid, Ref_Point, st);
GMR_$VIEW_SET_UP_VECTOR(vpid, Up_Vec, st);

{
{
{

vpid is the viewport
id of the viewport we
wish to view the

}
}
}

GMR_$VI EW_SET_VI EW_D I STANCE (vpid, V_dist, st);
GMR_$VIEW_SET_HITHER_DISTANCE(vpid, H_dist, st);
GMR_$VI EW_SET_YON_D I STANCE (vpid, Y_dist, st);
GMR_$VIEW_SET_WINDOW(vpid, Window, st);
GMR_$VIEW_SET_PROJECTION_TYPE(vpid, proj, st);
GMR_$VIEW_SET_COORD_SYSTEM(vpid, coord_sys, st);

{ object in. These calls}
{ can be made in any }
{ order. }

7-21 Viewing Parameters

c

c

C~

o

o

o

o

o

Chapter 8

Displays and Viewports

This chapter describes the last two stages in the viewing pipeline: the transformation of
viewing coordinates to logical device coordinates and then to device coordinates. The 3D
GMR package performs these transformations automatically after you define a viewport
or use the default viewport.

8.1 Viewports
The 3D GMR package has four modes that control the display in relation to the screen:
borrow, direct, main-bitmap, and no-bitmap (see Chapter 2).

In borrow, direct, and main-bitmap modes, graphic output is produced according to the
mode established when the 3D GMR package is initialized:

o On the entire screen in borrow mode

e On a Display Manager window in direct mode

o In a main memory bitmap in main-bitmap mode

You can easily change your program to use one or another of these modes by changing
one option in the initialization routine GMR_$INIT.

Graphics output occurs· by way of viewports that are defined in logical device coordinates.
The view is a picture taken by the "synthetic camera" described in Chapter 7. Moving or
scaling a view moves or scales what you see through the viewport.

8-1 Displays and Viewports

When you initialize 3D GMR, the GMR_$INIT routine establishes a single viewport that
fills the default LDC area (see Chapter 2). The default viewing parameters are described
in Chapter 7. You can perform the following operations on viewports:

• Change the viewing parameters (see Chapter 7).

• Create additional viewports. The logical device coordinate area can be divided into
multiple viewports (see Figure 8-1). Up to 64 simultaneous viewports are
supported.

• Change the size and border width of a viewport.

• Change how a viewport presents a metafile (background color, echo type, refresh
method).

• . Specify that you want parts of the metafile displayed and moved independently in
separate viewports.

• Display different metafiles in different viewports simultaneously.

Displays and Viewporfs 8-2

c

C".'
"

o

o

o

o

Screen Display Manager Windows

Max Device Limits Viewports

Device Limits I LDe Limits

Figure 8-1. Two Viewports Created within Default LDC Limits

8.2 Device Coordinate Systems
Routines:

GMR_$INQ_CONFIG
GMR_$COORD_INQ_DEVICE_LIMITS
GMR_$COORD_INQ_MAX_DEVICE
G MR_ $ COORD _ INQ_ LDC _LIMITS
GMR_$COORD_SET_DEVICE_LIMITS
GMR_$COORD_SET_LDC_LIMITS

This section describes device coordinates and logical device coordinates (see Figure 8-6).
Device coordinates are an integer coordinate system. Logical device coordinates are a

8-3 Displays and Viewports

floating point system. Both are used to specify positions in the bitmap used by the 3D
GMR package.

8.2.1 Device Limits

3D GMR uses three types of device limits:

• Maximum device limits

• Device limits

• Logical device limits

These three types are provided to make 3D GMR device independent. You can run most
programs that include 3D GMR routines on any DOMAIN node without modifying the
program. The 3D GMR package rescales viewports and views according to the area

C:

available for logical device coordinates. This means that programs containing 3D GMR (.--~

display-time routines will display all viewports for any logical device coordinate area. \-----/

Maximum Device Limits
The maximum device limits are defined to be the size of the requested bitmap in pixels
after the bitmap is trimmed to fit into the Display Manager window (direct mode) or the
screen (borrow mode).

In direct mode the maximum device limits are smaller than the Display Manager window.
The Display Manager requires a 5-pixel border between the maximum bitmap size (that

is, the maximum device limits) and the Display manager window.

Device Limits
Device limits define the subregion of the maximum device limits that is available to 3D
GMR (see Figure 8-2). This is the only area in which 3D GMR can display. The default
is the largest centered square region within the maximum device limits. Your application
may change these limits to any values less than or equal to the maximum device limits
(most applications do not need to do this).

Displays and Viewporfs 8-4

('
\..._- '

c

o

o

o

o

o

Display Manager Window

(500,400)

Max. Device Limits

(0,0) (75,20)

Device Limits

Figure 8-2. Maximum Device Limits and Device Limits

Logical Device Limits
The logical device limits describe exactly the same area as the device limits (see Figure
8-3). The resulting- logical device coordinates provide a convenient coordinate system
that is independent of actual bitmap dimensions. The 3D GMR package uses this
coordinate system to map viewport data to device coordinates.

This is a three-dimensional coordinate system. The z-coordinate of the LDC limits
makes the viewport into a volume that is mapped to the view volume in world coordinates.
This correspondence is useful for coordinate conversions between LDC and world
coordinates. See GMR_$COORD_LDC_TO_WORLD and GMR_$COORD_LDC_TO_WORLD in
Section 8.4.

The default logical device coordinates range from (0.0, 0.0, 0.0) to (1.0, 1.0, 1.0).

8-5 Displays and Viewports

(425,380) ----ill.... (1.0,1.0)

(75,20) ----II.... (0.0,0.0)

Figure 8-3. Device Limits Mapped to Logical Device Limits

NOTE: Logical device and device coordinate systems have their origin in
the lower left-hand corner with y increasing up and x increasing to
the right. This is different from the DOMAIN Graphics Primitives
package which has (y = 0) in the top left-hand corner, with y
increasing down.

8.2.2 Device Limits and Window Grow Operations

After a Display Manager window-grow operation, the default is to maintain the same
aspect ratio (ratio of height to width) of the viewports. This means that the logical device
coordinates and device coordinates maintain the same aspect ratio.

You can change the default operation by writing your own refresh routines and calling
them through GMR_$DM_REFRESH_ENTRY (see Figure 8-4 and Chapter 9). For example,
you can keep the object in the window the same size but let the viewport grow, thus
showing more of a large object. Another option is to write a routine that refreshes
overlapping viewports in a particular order.

Displays and Viewporfs 8-6

c

o

o

f)
~

o

o

Default behavior. Possible user-defined action specified

Aspect ratio maintained.

Figure 8-4. Window Grow Operations

Use GMR_$INQ_CONFIG to determine the configuration of the display device. You can use
this information to assign different attributes to a metafile displayed on a color node than
to a metafile displayed on a monochrome node (see Chapter 12).

8-7 Displays and Viewports

GMR_$INQ_CONFIG returns the number of bit planes and the size of the screen. The size
is returned as a two-element array fo 2-byte integers. For example, on a 1024x800
display, the first integer contains 1024 and the second contains 800.

GMR_$COORD_SET_DEVICE_LIMITS specifies the limits of device space. This is a
subrange of the available maximum device limits.

GMR_$COORD_INQ_DEVICE_LIMITS returns the portion of the bitmap used to map to
logical device coordinates.

GMR_$COORD_INQ_MAX_DEVICE returns the maximum range of the device coordinates.
The device limits cannot be larger than the values returned by this routine.

GMR_$COORD_SET_LDC_LIMITS specifies the limits of 3D logical device coordinate space.

GMR_$COORD_INQ_LDC_LIMITS returns the 3D device coordinates to which the logical
device limits are mapped.

8.3. Window to Viewport Mapping
After you have defined the viewports, the 3D GMR package automatically transforms the
2D area defined by the window onto the viewport (see Figures 8-5 and 8-6).

Figure 8-5. Viewport to LOC Mapping

Notice in Figure 8-5 that the aspect ratio of the window and the viewport are the same. If
the aspect ratios are different, the image is stretched to fit into the viewport. Note that a
3D GMR window is not equal to a Display Manager window. Use the routine
GMR_$VIEW _SET_WINDOW to set the view window· (see Chapter 7).

After mapping the viewing coordinates to logical device coordinates, the 3D GMR
package automatically maps the logical device coordinates of the viewport to device
coordinates. This is the last step in the viewing pipeline (see Figure 8-6).

Displays and Viewports 8-8

c'

r

3D Element data (modeling coordinates)

o Modeling Transformations

3D I
World C ordinates

Viewing Transformation

3D Viewing Coordinates

o
20 Device Coordinates

Figure 8-6. The Viewing Pipeline

8.4 Coordinate Transformation Routines o Routines:

o

o

GMR_$COORD_DEVICE_TO_LDC
GMR_$COORD_LDC_TO_DEVICE
GMR_$COORD_LDC_TO_ WORLD
GMR_$COORD_ WORLD_TO_LDC

The routines described here make it possible to convert one set of coordinates to another
and to retrieve the values stored for specified coordinate systems.

GMR_$COORD_DEVICE_TO_LDC converts device coordinates to logical device coordinates.
The transformation from device coordinates to logical device coordinates is determined by
the limits returned by the routines GMR_$COORD_INQ_DEVICE_LIMITS and
GMR_$COORD_INQ_LDC_LIMITS (see Section 8.2).

GMR_$COORD_LDC_TO_DEVICE converts logical device coordinates to device coordinates.

GMR_$COORD_LDC_TO_ WORLD maps a point in logical device coordinates into world
coordinates via the viewing parameters associated with the given viewport.

GMR_$COORD_ WORLD_TO_LDC returns the logical device coordinates of a point specified
in world coordinates.

8-9 Displays and Viewports

8.5 Viewport Routines
Routines:

GMR_$VIEWPORT_CLEAR
GMR_$VIEWPORT_CREATE
GMR_$VIEWPORT_DELETE
GMR_$VIEWPORT_INQ_BG_COLOR
GMR_$VIEWPORT_INQ_BORDER
GMR_$VIEWPORT_INQ_BOUNDS
GMR_$VIEWPORT_INQ_STATE
GMR_$VIEWPORT_MOVE
GMR_$VIEWPORT_REFRESH
GMR_$VIEWPORT_SET_BG_COLOR
GMR_$VIEWPORT_SET_BORDER
GMR_$VIEWPORT_SET_BOUNDS
GMR_$VIEWPORT_SET_STATE

The viewport routines listed above allow you to create multiple viewports and manipulate
viewports in several ways.

8.5.1 Changing a Viewport's Appearance

The routines described in this section allow you to change the way the viewport looks on
the screen.

Setting Viewport Bounds
To change the dimensions of the viewport, use GMR_$VIEWPORT_SET_BOUNDS. To
redefine the viewport with this routine, you must provide the coordinates of any two
diagonally opposite corners. Coordinates are expressed in logical device coordinates
(LDC). By default, the lower left corner in x and y of LDC space is (0.0, 0.0, 0.0). The
upper right corner is (1.0, 1.0, 1.0).

GMR_$VIEWPORT_INQ_BOUNDS returns the bounds of a specified viewport, in logical
device coordinates.

Moving a Viewport
GMR_$VIEWPORT_MOVE translates a specified viewport, carrying the view with it.

Viewport Contents
Before you can view a structure, you must assign it to a viewport using
GMR_$VIEWPORT_SET_STRUCTURE. To display the structure you must clear and refresh
the viewport.

GMR_$VIEWPORT_CLEAR clears the specified viewport to the background color.

GMR_$VIEWPORT_REFRESH redraws the contents of a viewport according to the specified
viewport's associated refresh state.

Displays and Viewports 8-10

Backgrounds and Borders
GMR_$VIEWPORT_SET_BG_COLOR specifies the color ID and intensity used for the
background of the specified viewport.

GMR_$VIEWPORT_INQ_BG_COLOR returns the color ID and intensity used for the
background of the specified viewport.

To set, inquire, and clear the background color of the entire display (up to the maximum
device limits) use the following calls:

GMR_$VIEWPORT_SET_BORDER sets the border width of a viewport to the specified values o in pixels.

(j

o

GMR_$VIEWPORT_INQ_BORDER returns the border width of a specified viewport in pixels.
Borders extend outside the viewport and are optional.

The default width is 1 for each border. Viewport borders are drawn with color value 1 for
compatibility with monochrome nodes.

8.5.2 Using Multiple Viewports

The routines described in this section allow you to create and manipulate multiple
viewports.

Creating Viewports
When you initialize the graphics metafile package in direct, borrow, and main-bitmap
modes, the package does the following:

• Creates one viewport

• Makes the viewport fill the maximum device limits

o Assigns viewport ID number 1 to the viewport

To use multiple viewports, you can create additional viewports with
GMR_$VIEWPORT_CREATE. The 3D GMR package assigns numbers to viewports as they
are created. The viewport established with GMR_$INIT has the number 1. When you
create an additional viewport, it is assigned a number.

GMR_$VIEWPORT_CREATE creates a new viewport and assigns (and returns) a unique
viewport ID.

Currently, overlapping viewports are not supported or prevented. Overlapping may cause
a viewport to "pop" when not expected due to an update to the image.

8-11 Displays and Viewports

Before you create a second viewport, you may want to change the bounds of the first
viewport to provide sufficient room for the second viewport. If you want to have
overlapping viewports, you may want to create your own refresh routine to deal with
overlapping (see Figure 8-4). You can call your refresh routine using
GMR_$DM_REFRESH_ENTRY.

Deleting a Viewport
GMR_$VIEWPORT_DELETE deletes a specified viewport.

Modifying all Viewport Parameters
GMR_$VIEWPORT_INQ_STATE returns all of the parameters of an individual viewport. You
can use this call with GMR_$VIEWPORT_SET_STATE to set all or part of the viewing
parameters. These two calls are useful when you want to create a new viewport that is
similar to an existing viewport. For example:

GMR_$VIEWPORT_INQ_STATE(vpidl, array_size, size, view_state, status);
GMR_$VIEWPORT_SET_STATE(vpid2, view_state, status);
GMR_$VIEWPORT_REFRESH(vpid2, status);

8.6 Sample Procedures
The fragments included in this chapter are taken from Sample2, which is on-line in
Pascal, FORTRAN, and C under the following names:

domain _ examples/ gmr3d/sample2. pas
domain _ examples/ gmr3d/sample2.c
domain_examples/gmr3d/sample2.ftn

Sample2 is a menu-driven program which displays a wireframe teapot and accepts
commands to change the way the teapot is viewed. This program runs on all
configurations in either borrow or display mode. To move the cursor, you can use a
mouse, puck, or arrow keys. To pick a button, use the first mouse or puck button or the
space bar.

8.6.1 Initialize 3D GMR

This fragment prompts you for the display mode - borrow or direct. It then initializes 3D
GMR and inquires the configuration. The configuration determines the colors that are set
and the use of double buffer mode. It prompts you for the name of the metafile to
display and opens that metafile.

PROCEDURE init;

VAR mode : string;
display_mode : gmr_$display_mode_t;
picked : boolean;
i : integer;

Displays and Viewporfs 8-12

(')
\...---~/

o

o

o

o

BEGIN

write('Type B for Borrow mode, D for Direct mode: ');

REPEAT
picked := TRUE;
readln(mode);
('B'),

CASE mode[l] OF

('b') : display_mode := gmr_$borrow; ('D'),
('d') : display_mode := gmr_$direct;
OTHERWISE BEGIN
write('INVALID ANSWER. Type B for Borrow mode, D for Direct mode: ');
picked .- FALSE;
END;
END;
UNTIL (picked = TRUE);
writeln;

gmr_$init(display_mode, stream_$stdout, bitmap_size, 8, status); check;

gmr_$inq_config(display_mode, stream_$stdout, num_planes, size, status);
check;

END;

8.6.2 Procedures to Change a View

The following occurs in these program fragments:

1. Receive instruction from menu button to process menu_item.

2. Execute do_button depending on the value of menu_item.

3. Execute the "rotate" procedure if necessary.

4. Set the viewing parameters with set_object_viewyarms.

5. Refresh the viewport if the display flag is true.

1. Process menu Instruction.
In this fragment, assume that either a mouse button or the space bar is depressed while
the cursor is over a menu item.

PROCEDURE process_commands;

VAR
end_flag
display_flag
position
event
ch

boolean;
boolean;
gmr_$f3_point_t;
gmr_$event_t;
char;

8-13 Displays and Viewports

IF «(event = gmr_$buttons) AND (ch = 'a'» OR {1st mouse button}
«event = gmr_$keystroke) AND (ch = ' '») THEN {space bar}
BEGIN
do_button (menu_item , end_flag, display_flag); {calls do_button (#2)}
IF (display_flag) AND (menu_item <> 0) THEN
BEGIN
set_teapot_view_parms;
display_teapot;

{calls set teapot_view_parms (#4)}
{calls display_object (#5)}

END;
END;

2. Act on the value of menu item.

PROCEDURE do_button(IN menu_item integer; OUT end_flag
display_flag: boolean);

BEGIN

end_flag .- FALSE;
display_flag .- FALSE;

CASE menu_item OF

1: {Rotate counter clockwise.}
BEGIN
rotate(tea_ref.x, tea_ref.y, 10.0);
rotate(tea_normal.x, tea_normal.y, 10.0);
display_flag .- TRUE;
END;

2: {Rotate clockwise.}
BEGIN
rotate (tea_ref. x, tea_ref.y, -10.0);
rotate(tea_normal.x, tea_normal.y,-10.0);
display_flag .- TRUE;
END;

3: {Zoom in.}
BEGIN
tea_window.xmin .- tea_window.xmin * 0.8;
tea_window.xmax .- tea_window.xmax * 0.8;
tea_window.ymin .- tea_window.ymin * 0.8;
tea_window.ymax .- tea_window.ymax * 0.8;
display_flag .- TRUE;
END;

4 : {Zoom out.}
BEGIN
tea_window.xmin .- tea_window.xmin * 1.25;

Displays and Viewporfs 8-14

boolean; OUT

c'

c

I

C' i

o

o

o

END;

o

tea window.xmax .- tea_window.xmax * 1.25;
tea_window.ymin .- tea_window.ymin * 1.25;
tea_window.ymax .- tea_window.ymax * 1.25;
display_flag .- TRUE;
END;

5: {Perspective Projection.}
IF (tea_proj <> gmr_$perspective) THEN
BEGIN
tea_proj := gmr_$perspective;
display_flag .- TRUE;
END;

6: {Orthographic projection.}
IF (tea_proj <> gmr_$orthographic) THEN
BEGIN
tea_proj := gmr_$orthographic;
display_flag .- TRUE;
END;

7: {Single-buffer.}
IF num_planes >= 4 THEN IF buffer mode <> gmr_$single_buffer THEN
BEGIN
buffer_mode := gmr_$single_buffer;
gmr_$dbuff_set_mode (buffer_mode , status); check;
gmr_$display_clear_bg(status); check;
gmr_$display_refresh(status); check;
END;

8: {Double-buffer.}

9

IF num_planes >= 4 THEN
IF buffer_mode <> gmr_$double_buffer THEN
BEGIN
buffer_mode := gmr_$double_buffer;
gmr_$dbuff_set_mode(buffer_mode, status); check;
current_buffer := gmr_$lst_buffer;
gmr_$dbuff_set_select_buffer (current_buffer , tea_vpid, status);
check;
gmr_$display_clear_bg(status); check;
gmr_$display_refresh(status); check;
END;

{Exit.}
end_flag .- TRUE;

END; {case}

8-15 Displays and Viewports

3. Calculate viewing rotation if necessary.
This routine rotates x and y theta degrees.

PROCEDURE rotate(VAR x, y : REAL; IN theta REAL) ;

CONST
convert 0.01745329;

VAR
c, s, z REAL;

BEGIN
c .- COS(theta * convert) ;

s .- SIN(theta * convert) ;
z .- c * x + s * y;
y .- -s * x + c * y;
x .- z· ,

END;

4. Set viewing parameters.

BEGIN

gmr_$view_set_window(tea_vpid, tea_window, status); check;
gmr_$view_set_reference_point(tea_vpid, tea_ref, status); check;
gmr_$view_set_view_plane_normal(tea_vpid, tea_normal, status); check;
gmr_$view_set_up_vector(tea_vpid, tea_up, status); check;
gmr_$view_set_projection_type(tea_vpid, tea_proj, status); check;
gmr_$view_set_hither_distance(tea_vpid, tea_hd, status); check;
gmr_$view_set_yon_distance(tea_vpid, tea_yd, status); check;
gmr_$view_set_view_distance(tea_vpid, tea_vd, status); check;

END;

5. Display the object in the revised viewport.
This fragment displays the viewport with ID vpid. If double-buffer mode is in effect, the
current_buffer is updated and the new buffer is selected.

PROCEDURE display_teapot;

BEGIN

IF buffer_mode = gmr_$double_buffer THEN
BEGIN
IF current_buffer = gmr_$1st_buffer THEN
current_buffer .- gmr_$2nd_buffer
ELSE
current_buffer ,- gmr_$1st_buffer;

Displays and Viewports 8-16

r~

\
\ " ~/

(j

o

o

gmr_$dbuff_set_select_buffer (current_buffer , tea_vpid, status); check;
END;

{ You do not need to clear the viewport in double-buffer mode because the
opposite buffer is cleared in gmr_$dbuff_set_display_buffer.}

IF buffer_mode = gmr_$single_buffer THEN
BEGIN
gmr_$viewport_clear(tea_vpid, status); check;
END;

gmr_$viewport_refresh(tea_vpid, status); check;

IF buffer_mode = gmr_$double_buffer THEN
BEGIN
gmr_$dbuff_set_display_buffer(current_buffer, tea_vpid, status); check;
END;

END;

8-17 Displays and Viewports

CI

r -..

c

o

o

o

o

Chapter 9

Display-Time Features

Display-time routines allow you to control how graphic output is displayed. These
routines do not affect the contents of the file. They affect the portion, location, and
appearance of a structure on the screen.

9.1 Displaying a Structure
Use the following procedure to display a structure in a viewport:

1. Assign a structure to the viewport using GMR_$VIEWPORT_SET_STRUCTURE (see
Section 2.8).

2. Clear the viewport using GMR_$VIEWPORT_CLEAR (this is optional).

3. Refresh the viewport using either

GMR_$VIEWPORT_REFRESH or
GMR_$DISPLAY_REFRESH

9.2 Refreshing the Display
Routines:

GMR_$VIEWPORT_CLEAR
GMR_$VIEWPORT_REFRESH
GMR_$DISPLAY_REFRESH

o GMR_$VIEWPORT_CLEAR clears the specified viewport to the background color.

9-1 Disp/ay-Time Features

GMR_SVIEWPORT_REFRESH updates the display in a specified viewport.

GMR_SVIEWPORT_CLEAR and GMR_SVIEWPORT_REFRESH are often written into a single
procedure. For example: C~

PROCEDURE display_viewport(IN vpid: gmr_$viewport_id_t);
BEGIN
gmr_$viewport_clear(vpid, status);
gmr_$viewport_refresh(vpid, status);
END;

GMR_SDISPLAY_REFRESH redisplays all the viewports with a refresh state defined as
GMR_SREFRESH_WAIT, GMR_SREFRESH_UPDATE, or GMR_SREFRESH_PARTIAL.

9.2.1 User Defined Refresh

Routine:

GMR_SDM_REFRESH_ENTRY

GMR_SDM_REFRESH_ENTRY allows you to modify the way that the display is refreshed as
the result of a Display Manager command to refresh or pop a window. This routine calls a
user-defined routine to refresh the display. Some uses of this routine are the following:

• Refreshing overlapping views in a particular order.

• After a window grow operation, keeping the object the same size but letting the
viewport grow, thus showing more of a large object.

• Changing the logical device coordinate range

• Changing the device coordinate range

• Clearing the background.

• Invoking GMR_SDISPLAY_REFRESH to redisplay all viewports

This routine requires that you pass a pointer-to-procedure data type.
Pointer-to-procedure data types are an extension of the Pascal language (see the
DOMAIN Pascal Language Reference). Refer to the example in the DOMAIN 3D Graphics
Metafile Resource Call Reference for the calling sequence required in the user-defined
routine.

Successive calls to GMR_SDM_REFRESH_ENTRY override previously defined entry points.

FORTRAN Users
To pass procedure pointers in FORTRAN, first declare the subroutines to be passed as
EXTERNAL. Then pass their names using the IADDR function to simulate the Pascal
pointer mechanism. For example:

Display-Time Features 9-2

c'

o

o

o

o

o

EXTERNAL REFRESH_WINDOW

In FORTRAN, use 0 (not NIL) to indicate a zero value.

9.2.2 Establishing a Refresh State

Routines:

GMR_$VIEWPORT_SET_REFRESH_STATE
GMR_$VIEWPORT_INQ_REFRESH_STATE

GMR_$VIEWPORT_SET_REFRESH_STATE allows you to control the frequency at which the
display in a viewport is refreshed. This routine allows you to change the metafile and
have the package automatically update one or more viewports to incorporate these
changes, without calling a refresh routine. One use of this feature is during a fast
redrawing operation as an object is moved across the screen.

GMR_$VIEWPORT_SET_REFRESH_STATE allows you to set the refresh state of a specified
viewport.

GMR_$VIEWPORT_INQ_REFRESH_STATE returns the value of the refresh state of a
specified viewport.

Refresh states are described in Section 11.5.

9.2.3 Setting and Clearing the Background Color

Routines:

GMR_$DISPLAY_SET_BG_COLOR
GMR_$VIEWPORT_SET_BG_COLOR
GMR_$DISPLAY_CLEAR_BG
GMR_$DISPLAY_INQ_BG_COLOR
GMR_$VIEWPORT_INQ_BG_COLOR

GMR_$DISPLAY_SET_BG_COLOR sets the background color and intensity for the display.
You can specify the current Display Manager window background color, or specify a
particular color and intensity. Use GMR_$VIEWPORT_SET_BG_COLOR to set the
background color and intensity of individual viewports.

GMR_$DISPLAY_CLEAR_BG clears the background of the display to its color setting. The
background is cleared up to the device limits.

In direct mode, the default color is the Display Manager window color. In borrow mode,
it is color ID O.

9-3 Disp/ay-Time Features

GMR_$DISPLAY_INQ_BG_COLOR returns the current background color and intensity for the
display. Use GMR_$VIEWPORT_INQ_BG_COLOR to retrieve the background color and
intensity of individual viewports.

9.3 Using Double-Buffering
When an application rapidly changes images, double-buffering can improve the
appearance of this process. Double-buffering partitions the video memory into two
buffers and therefore limits the number of available colors (see Tables 12-1 through
12-6). For example, on an eight-plane system, the 3D GMR technique for
double-buffering allows the use of seven definable colors and black. On a four-plane
system, only black and white are used.

3D GMR maintains a separate color map and color range table for double-buffering
mode. The default single buffering mode has its own color map and color range table.
This makes it possible to switch between the two modes at rendering time. Switching to

c

or from double-buffering mode is a change in the color map; hence, the color map is sent (
to the display device at the next viewport update. This means that the colors displayed in \,-_/'
all viewports may change because of the switch between modes.

Calls to the routines for double-buffering are ignored when a monochrome display device
is used.

Refer to Chapter 12 for descriptions of the double-buffering routines.

9.4 Viewport-based Visibility Criteria
At display time, you can decide which structures and primitive elements will be visible.
This allows you to display specific types or combinations of structures and elements.

There are four ways to control visibility on a viewport basis: culling, the structure mask,
the structure value, and name sets. These routines are described in the five sections
below.

Culling lets you display structures based on their size (see Figure 9-1). At display time, r--",
the projection of the bounding box of a structure is compared to an area in square device ~ "
coordinates. If the projected area of the bounding box is smaller than the area, the
structure is not displayed. A bounding box includes all elements in a structure and all
structures that it instances (see Chapter 13).

Each structure has a value and a mask that you can assign using
GMR_$STRUCTURE_SET_ VALUE_MASK (see Section 2.7). At display time, the value and
the mask are compared to the viewport's visibility range and visibility mask to determine
whether the structure and its subtrees are displayed (see Figure 9-1).

Additionally, the visibility of primitives within visible structures can be controlled using
name sets (see GMR_$ADD_NAME_SET and GMR_$REMOVE_NAME_SET in Chapter 4). At
display time, the names in the current name set are compared to the viewport's invisibility
filters (see Figure 9-2). The invisibility filters consist of an inclusion set and an exclusion C
set that determine which elements are displayed (Section 9.4.3). _/~I

Display-Time Features 9-4

o

o

o

o

o

Structure Viewport

Structure Value Visibility range -
Structure Mask

.... Visibility mask -
Bounding Box ... Culling area -

For the structure to be visible:

1. The structure value must be within the viewport's visibility range.
2. The logical AND of the structure mask and the viewport visibility mask

must be non-zero.

3. The projected area of the bounding box of the structure (including its
subgraphs) must be larger than the culling area size.

Figure 9-1. Structure Visibility Criteria

VIEWPORT
PRIMITIVE

Inclusion Set
Name Set

Exclusion Set

For a primitive within a structure to be visible:

Either all names in the current name set must be absent from the viewport
invisibility inclusion set or at least one name must be in the viewport invisibility
exclusion set.

Figure 9-2. Primitive Visibility Criteria

9.4.1 Using Visibility Features

Use visibility values and masks when you want to control the display of entire subtrees.
This is the most efficient way to selectively display different parts of the metafile. A
structure that is not visible is not traversed, nor are any of its subtrees.

Use name sets when you want to control the display of primitives within a structure.
Name sets are a less efficient means of controlling visibility because they do not affect the
traversal of the metafile. If primitive elements within a structure are invisible because of
the current name set, the 3D GMR package still processes any instance elements that are
referenced by the structure.

9-5 Display-Time Features

Use culling when you want to control the visibility of the details of an object. For
example, in a zooming operation you can turn off the display of objects that are too small
to see clearly.

9.4.2 Culling

Routines:

GMR_$VIEWPORT_SET_CULLING
GMR_$VIEWPORT_INQ_CULLING

GMR_$VIEWPORT_SET_CULLING allows the display of only those structures that are larger
than a specific screen-space area. When culling is enabled, the following structures are
not rendered: all those structures with an approximate projected area in square device
coordinates (i.e., number of pixels covered) that is less than a specified value.

The projected area of a structure is approximated by the projection of its bounding box ~
(see Chapter 13). GMR_$VIEWPORT_INQ_CULLING returns the current minimum structure \._ .. /
size, and the enabled state of culling in the specified viewport.

When culling is turned on, structures are culled regardless of their visibility values or
name sets.

Use culling when you don't want to take the time to draw structures that are too small to
see clearly. For example, when you display a large assembly, you may not want to
display all of the bolts. But as you zoom up on a portion of the assembly the individual
bolts should be displayed. By turning culling on, the bolts will be displayed after they are
zoomed to a specified screen space size.

To make effective use of culling, details should be kept in structures that are spatially
separated. For example, if all of the bolts are in the same structure, then culling will not
affect their display because the structure covers a large screen space area. But if each
bolt is in a separate structure (or if one bolt is instanced multiple times in different
locations), then culling can be effective.

NOTE: If you turn anchor clipping off and turn culling on, then text within
a structure that would have been culled is still drawn.

9.4.3 Structure Mask and Visibility

Routines:

GMR_$VIEWPORT_SET_ VISIBILITY
GMR_$VIEWPORT _INQ_ VISIBILITY

The structure mask is used to identify certain classes of objects as candidates for visibility
and picking (see Chapter 10). The structure mask permits you to define up to 32 distinct
classes and to toggle them on and off independently. ~) ,,-,/

Display-Time Features 9-6

- ---------- --------------

o

o

o

o

o

Structure Mask Example
This example uses the structure mask to determine visibility for the floor plan, electrical
systems, and plumbing systems on a specific floor of a bUilding. The lowest bit (1) is set
in the mask in all structures containing floor plan data; the next lowest bit (2) in
structures containing plumbing data; and the third bit in structures containing data for
electrical systems. Higher bits can give higher structure values to other categories of
structures. Figure 9-3 shows the results for viewport visibility masks of 1, 2, 5, and 7.

Structure Mask

10101011 1
101011 101
1011 1010 1

Floor Plan Structures

Plumbing Structures

Electrical Structures

Viewport Visibility Masks

0 0 0 1 Displays only Floor Plan Structures

0 0 1 0 Displays only Plumbing Structures

0 1 0 1 Displays Floor Plan and Electrical Structures

0 1 1 1 Displays all three groups of Structures

Figure 9-3. Structure Mask Example

9.4.4 Structure Value and Visibility

The structure value is an integer and is subject to a range test. The structure value is
compared against the viewport's visibility and pick ranges to determine visibility and pick
eligibility (see Chapter 10). You can use this feature to identify specific combinations of
structures.

Structure Value Example
In this example, the display of a building, all of the objects on one floor can have
structure values within a certain range (see Figure 9-4).

9-7 Display-Time Features

Structure Values

IT] First Floor Structures

CD Second Floor Structures

o Third Floor Structures

Viewport Visibility Range

Min Max

IT] IT] Displays First Floor Structures only

o 0 Displays Third Floor Structures only

IT] 0 Displays Structures on all Three Floors

Figure 9-4. Structure Value Example

By combining the viewport visibility ranges and visibility masks in the above examples,
you can display different combinations of structures. For example, a viewport visibility
range of 2 - 2 combined with a viewport visibility mask of 0101 displays the floor plan
and electrical systems on the second floor. A viewport visibility range of 1 - 3 combined
with a viewport visibility mask of 0100 displays the electrical system of all three floors.

9.4.5 Name Sets and Visibility

Routines:

GMR_$VIEWPORT_SET_INVIS_FILTER
GMR_$VIEWPORT_INQ_INVIS_FILTER

Name sets provide a third way to determine visibility (in addition to structure value and
structure mask). This feature allows you to classify objects by name.

The current name set is an attribute applicable to all primitives. Refer to Chapter 4 for
descriptions of the GMR_$ADD_NAME_SET and GMR_$REMOVE_NAME_SET, the two
routines that add and subtract names from the current name set.

GMR_$VIEWPORT_SET_INVIS_FILTER specifies which name sets will be invisible for a
particular viewport by specifying an inclusion set and an exclusion set.

GMR_$VIEWPORT_INQ_INVIS_FILTER returns the inclusion set and the exclusion set of
names that will be invisible in a specific viewport.

Figure 9-5 shows the name set visibility criteria.

Display-Time Features 9-8

C:

o

o

o

Ii ~ Viewport invisibility inclusion set
Ei = Viewport invisibility exclusion set
Ip = Viewport pick inclusion set
Ep = Viewport pick exclusion set
N = Current name set
int = Set intersection

1. For a primitive within a visible structure to be visible:
Either all names in the current name set must be absent from the viewport
invisibility inclusion set or at least one name must be in the viewport
invisibility exclusion set.

Visible <=> (Ii int N = 0) OR (Ei int N ~ 0)

2. For a primitive within a visible structure to be invisible:
At least one name in the current name set must be in the viewport
invisibility inclusion set and all names in the name set must be absent
from the viewport invisibility exclusion set.

Invisible <=> (Ii int N ;f 0) AND (Ei int N = 0)

Figure 9-5. Name Set Visibility Criteria

Name Set Example
The following example creates a structure named "building" (see Figure 9-6).

1st Floor
Plumbing

Structure "Building"

Figure 9-6. Using Name Sets

9-9 Display-Time Features

floor_l :=1;
floor_2 :=2;
floor_3 :=3;
electrical :=4;
plumbing :=5;

GMR_$STRUCTURE_CREATE(~building~, 8, build_id, status)

nameset[l] := floor_I;
nameset[2] := electrical;
n_names := 2;
GMR_$ADD_NAME_SET (n_names, nameset, status);

{ Primitive elements or instanced structures representing
electrical components for the first floor.

nameset[l] := electrical;
n_names := 1;
GMR_$REMOVE_NAME_SET (n_names, nameset, status);
nameset[l] := plumbing;
GMR_$ADD_NAME_SET (n_names, nameset, status);

{ Primitive elements or instanced structures representing
plumbing components for the first floor. }

nameset[l] := floor_I;
n_names := 1;
GMR_$REMOVE_NAME_SET (n_names, nameset, status);
nameset[l] := floor_2;
n_names := 1;
GMR_$ADD_NAME_SET (n_names, nameset, status);;

{ Primitive elements or instanced structures representing
plumbing components for the second floor. }

nameset[l] := plumbing;
n_names := 1;
GMR_$REMOVE_NAME_SET (n_names, nameset, status);
nameset[l] := electrical;
n_names := 1;
GMR_$ADD_NAME_SET (n_names, nameset, status);

{ Primitive elements or instanced structures representing
electrical components for the second floor. }

nameset[l] := floor_2;
n_names := 1;
GMR_$REMOVE_NAME_SET (n_names, nameset, status);
nameset[l] := floor_3;
n_names := 1;
GMR_$ADD_NAME_SET (n_names, nameset, status);;

{ Primitive elements or instanced structures representing
electrical components for the third floor.

Disp/ay-Time Features 9-10

C:

o

u

o

o

nameset[l] := electrical;
n_names := 1;
GMR_$REMOVE_NAME_SET (n_names, nameset, status);
nameset[l] := plumbing;
GMR_$ADD_NAME_SET (n_names, nameset, status);

{ Primitive elements or instanced structures representing
plumbing components for the third floor. }

GMR_$STRUCTURE_CLOSE (save, status);

With the name sets created in the above example, the following data inclusion and
exclusion sets display the plumbing on all three floors and the electrical on the second
floor:

Inclusion set
electrical

Exclusion set
plumbing
floor 2

The following inclusion set displays only the plumbing data on the second floor:

Inclusion set
floor 1
floor 3
electrical

Exclusion set
(empty)

9.4.6 Summary of Viewport Visibility Features

A structure is displayed only if it meets the visibility mask and visibility range criteria.
The visibility mask criterion requires that the logical AND of the structure mask and the
viewport visibility mask be nonzero. The visibility range criterion requires that the
structure value be between the specified bounds of the viewport visibility range, including
the end values.

If a structure does not satisfy 'the structure visibility criteria, none of that structure is
displayed. Any structure that it instances is not checked for visibility and is not displayed.

In borrow, direct, and main-bitmap modes, you may assign separate visibility masks and
visibility ranges to each viewport. This allows different viewports to display separate
parts of a data base.

GMR_$VIEWPORT_SET_ VISIBILITY sets the visibility range and mask value for the
viewport.

GMR_$VIEWPORT_INQ_ VISIBILITY returns the visibility range and mask value for the
viewport.

9-11 Disp/ay-Time Features

Structures may be displayed on the basis of size using culling. When culling is enabled in
a viewport, only structures larger than a given screen-space area are displayed.

GMR_$VIEWPORT_SET_CULLING enables culling for a viewport and sets the minimum C
structure size.

GMR_$VIEWPORT_INQ_CULLING returns whether culling is enabled for a viewport and
returns the current minimum structure size.

Additionally, you can control visibility of primitives within visibile structures using the
viewport's invisibility inclusion and exclusion filters. At display time, the names in the
current name set are compared to the viewport's invisibility filters to determine whether
the elements will be displayed.

GMR_$VIEWPORT_SET_INVIS_FILTER specifies which name sets will be invisible for a
particular viewport by defining invisibility inclusion and exclusion sets.

GMR_$VIEWPORT_INQ_INVIS_FILTER returns the invisibility inclusion and exclusion sets
for the viewport.

The relationship between the invisibility inclusion and the exclusion sets is stated in
Figure 9-5.

9.5 Viewport Picking Eligibility
Picking operations use the same type of criteria as visibility operations. In order to be
eligible for picking, a structure must meet the viewport visibility range and mask criteria
as well as the viewport picking range and mask criteria.

GMR_$VIEWPORT_SET_PICK sets the pickability range and mask for the specified
viewport.

GMR_$VIEWPORT_INQ_PICK returns the pickability range and mask for the specified
viewport.

Additionally, you can control pick eligibility of primitives within visibile structures using
the viewport's pick inclusion and exclusion filters. At display time, the names in the
current name set are compared to the viewport's pick filters to determine whether the
elements will be eligible for picking.

GMR_$VIEWPORT_SET_PICK_FILTER sets the inclusion and exclusion name set lists for
picking eligibility.

GMR_$VIEWPORT_INQ_PICK_FILTER returns the inclusion and exclusion name set lists for
picking eligibility.

Refer to Section 10.4.2 for a description of pick eligibility.

Disp/ay-Time Features 9-12

C1

/
--"

9.6 Attributes and Display-Time Operations o Two techniques are available for changing attributes at display time:

o

o

o

o Inserting individual attribute elements into a metafile

o Inserting attribute classes into a metafile

An application program can define attribute blocks and apply them to attribute classes,
either for the entire graphics display or in individual viewports. A program can also apply
a particular attribute block to one or more viewports.

Chapter 6 describes attribute elements, classes, and blocks. This section briefly reviews
how to tie attribute blocks to attribute classes for the entire display and for individual
viewports.

Use the following procedures to establish attribute blocks and assign them to attribute
class elements.

o Use GMR_$ABLOCK_CREATE to create an attribute block equivalent to the source
block you identify. The routine returns the attribute block identification number.

o Change the attribute block with the GMR_$ABLOCK_SET ... calls (see Chapter 6). In
these calls you specify the value of the attribute and identify the attribute block to
which it belongs.

o Use GMR_$ABLOCK_ASSIGN_DISPLAY to assign the attribute block to a class. This
assignment is used for all viewports until you assign an attribute block to a class
for a particular viewport using GMR_$ABLOCK_ASSIGN_ VIEWPORT.

You may subsequently change attribute values in the assigned attribute blocks. When you
next display the picture, the result is the following: the new attribute values assigned to
this attribute block are used whenever an attribute class element associated with the
attribute block is encountered.

You may develop a program that creates attribute blocks and assigns them to attribute
classes. You can use such a program to display pictures that you have already created. At
display time use GMR_$ABLOCK_ASSIGN_DISPLA Y to associate the attribute class you
identified with the attribute block you want used.

GMR_$ABLOCK_ASSIGN_ VIEWPORT overrides the specification of an attribute block set up
by GMR_$ABLOCK_ASSIGN_DISPLAY.

GMR_$VIEWPORT_SET_HILIGHT_ABLOCK assigns a special highlighting attribute to a
viewport (see Section 10.5.2).

NOTE: Ablock attributes assigned by an aclass element are only used if the
corresponding attribute source flags have been set.

9-13 Display-Time Features

9.7 Clipping Text
Routines:

GMR_$TEXT_SET_ANCHOR_CLIP
GM~$TEXT_INQ_ANCHOR_CLIP

You can choose whether you want to clip text based on the anchor point position (see
Chapter 3). The default (and fastest) method is to clip an entire text string if its anchor
point is outside of the viewport. Figure 9-7 illustrates text clipping.

VIEWPORT

.. ,:. g two

xtext
x = anchor point

I \

Anchor clipping on Anchor clipping off

Figure 9-7. Clipping Text by Anchor Point

GMR_$TEXT_SET_ANCHOR_CLIP sets anchor clipping on or off.

GMR_$TEXT_INQ_ANCHOR_CLIP returns the mode for clipping text.

Clipping by anchor point (default) results in significantly faster rendering speed if you
have a lot of text elements in the metafile. Clipping by anchor point does not display
portions of text that are inside the viewport if the text anchor point is inside the viewport.

Display-Time Features 9-14

r
.\.. ,

c
l

I

o

o

o

o

o

Chapter 10

Interactive Techniques

This chapter describes the routines that enable you to implement effective interaction
between the user and graphics package. These routines make it possible to set work
planes, control the cursor, handle input, and select and echo elements and structures.

1 0.1 Work Planes
Routines:

GMR_$COORD_SET_ WORK_PLANE
GMR_$COORD_INQ_ WORK_PLANE
GMR_$COORD_LDC_TO_ WORK_PLANE

Each viewport has a work plane associated with it. The work plane provides a means of
mapping logical device coordinates into world coordinates (see Figure 10-1). This allows
you to use locator input to identify a position in 3D space.

GMR_$COORD_SET_ WORK_PLANE associates a work plane with a viewport. The work
plane is specified by a point on the plane in world coordinates and a normal vector (see
Figure 10-1). The mapping is valid even if the work plane is behind the window.

GMR_$COORD_INQ_ WORK_PLANE returns a point and a normal vector that define the work
plane associated with a viewport.

GMR_$COORD_LDC_TO_ WORK_PLANE maps a point in 3D logical device space (point "a"
in Figure 10-1) onto the work plane of the specified viewport. The result is a point in
world coordin"ates (point "b" in Figure 1 0-1) .

10-1 Interactive Techniques

Reference
Point

Work Plane

Point (a) is a point in LDC space.
Point (b) is a point on the work plane in world coordinates.

Figure 10-1. Work Plane

A viewport can only have one work plane associated with it at a time, but you can change
work planes frequently.

Any logical device coordinate can be mapped onto a workplane, even when the point is
outside the viewport. For points outside the viewport, 3D GMR returns an error code in
the status parameter.

Example - Setting the Work Plane
The following fragment is taken from Sample3 (see Appendices A, B, and C). The
routines in this fragment initialize each of the four viewports and the viewing parameters
for each viewport. The fragment associates the main structure with each viewport and
sets the work plane parallel to the view plane passing through the origin of the world
coordinate system.

PROCEDURE init_viewports;
VAR

i integer;
origin gmr_$f3_point_t;

tea normal

Interactive Techniques

ARRAY [1 .. num_views] OF gmr_$f3_vector_t .­
[[0.000, 0.000, -1.00],
[0.000, -1.00, 0.000],
[-1.00, 0.000, 0.000],

[5.000, -15.0, -4.50]];

10-2

---------'----------------- _.-.... _ -.... _---------_ .. _ _---.---

c

(
'---.- .

~,
I
'I
\,
'-'

()

o

C)

BEGIN
0.0; origin.x .­

origin.y 0.0;
.- 0.0; origin.z

FOR i := 1 TO num_views DO
BEGIN

END;

gmr_$viewport_create(view_vp_ldc[i], view_vpid[i], status); check;
gmr_$viewport_set_border(view_vpid[i], view_border, TRUE, 3, 1.0,

status); check;
gmr_$viewport_set_bg_color(view_vpid[i], 2, 1.0, status); check;

END;

10.2 Controlling the Cursor
Routines:

GMR_$CURSOR_SET_ACTIVE
GMR_$CURSOR_SET_PATTERN
GMR_$CURSOR_SET_POSITION
GMR_$CURSOR_INQ_ACTIVE
GMR_$CURSOR_INQ_PATTERN
GMR_$CURSOR_INQ_POSITION

The 3D GMR package has routines to control the activity, origin, and appearance of the
cursor. These routines enable you to design the cursor to suit the application and the
user. o GMR_$CURSOR_SET_ACTIVE turns the cursor on and off. Initially, the cursor is off.

o

GMR_$CURSOR_SET_PATTERN establishes a new cursor pattern (up to 16x16 pixels). The
cursor pattern is defined as a sequence of rows of bits from top to bottom. Within the
cursor pattern, you can specify which pixel is to correspond to the cursor origin. Figure
10-2 shows two possible cursor patterns. A third is shown in the programming fragment
in Section 10.3.1 along with the appropriate array.

10-3 Interactive Techniques

- - • - - I-

M •• •
~

16x16 pixels, cursor origin = (0,0) 15x15 pixels, cursor origin = (7,7)

Figure 10-2. Cursor Patterns

GMR_$CURSOR_SET_POSITION moves the cursor to a position that you specify in logical
device coordinates. This position corresponds with the cursor origin (see Figure 10-3).
The GMR_$CURSOR_INQ ... routines return the current values of the cursor parameters.

Position specified by GMR_$CURSOR_SET_POSITION Cursor Origin

+

Viewport Viewport

Figure 10-3. Cursor Origin

Refer to the example in Section 10.3.1.

1 0.3 Using Input Operations
Graphics programs can accept input from various input devices. The input routines
provide the means to synchronize program execution in relation to input events. These
input routines function only in direct and in borrow mode.

Interactive Techniques 10-4

c:)

c:

o

o

10.3.1 Event Types

Routines:

GMR_SINPUT_ENABLE
GMR_SINPUT_DISABLE

An event occurs when input is generated in a window (direct mode) or in the borrowed
display (borrow mode). 3D GMR supports several classes of event, called event types.
Programs use an input routine to select the type of event to be reported to them; this
operation is called enabling an event type. The event types follow:

Keystroke
A keystroke event occurs when you type a keyboard character. Programs can select a
subset of keyboard characters, called a keyset, to be recognized as keystroke events. In
direct mode, keys that do not belong to the keyset are processed normally by the Display
Manager. In borrow mode, keys not belonging to the keyset are ignored.

When defining a keyset for a keystroke event, consult the system insert files
ISYS/INS/KBD.INS.PAS, ISYS/INS/KBD.INS.FTN, and /SYS/INS/KBD.INS.C. These files contain
the definitions for the non-ASCII keyboard keys in the range 128 through 255.

Button
f') A button event occurs when the operator presses a button on the mouse or bitpad puck.
U Button events register as ASCII characters. "Down" transitions range from "a" to "d";

"up" transitions range from "A" to "D". The three mouse keys start with (a/A) on the left
side. As with keystroke events, button events can be selectively enabled by specifying a
button keyset.

o

o

Locator
A locator event occurs when the operator moves the mouse or the bitpad puck, or uses the
touchpad.

Locator Stop
A locator stop event occurs when the operator stops moving the mouse or bitpad puck or
stops using the touchpad.

Window Transition Event
In direct mode, the cursor may move into and out of the window specified by logical
device coordinates. When the cursor leaves the window, the input routines report to the
program an event of type GMR_SLEFT_ WINDOW; when the cursor enters the window, the
routines report an event of type GMR_SENTERED_ WINDOW.

GMR_SINPUT_ENABLE enables a single type of input event. To enable multiple input
types, call this procedure multiple times. No input events are enabled as a default.

10-5 Interactive Techniques

GMR_$INPUT_DISABLE disables a single type of input event. To disable multiple input
types, call this procedure multiple times.

Example - Setting the Cursor and Initializing Input
This fragment enables input as follows: for the spacebar with gmr_$keystroke, the mouse,
bitpad puck, or touchpad with gmr _ $locator, and the mouse or bitpad puck button with
gmr_$buttons. Cursor routines define the cursor pattern, set the initial position, and
activate it (see Section 10.2).

{ Cursor pattern info: }
cursor_pos gmr_Sf3_point_t .- [0.80, 0.40, 0.00] ;
cur_style gmr_Scursor_style_t .- gmr_Sbitmap;
cur_size gmr_Si2_point_t .- [15, 15] ;
cur_origin gmr_Si2_point_t .- [7,7] ;

cur_pattern gmr_Scursor_pattern_t.- [2#000000010000000,
2#000000010000000,
2#000000010000000,

BEGIN

2#000000010000000, {Notice the cross }
2#000000010000000, {formed by the ones.}
2#000000010000000, {This is the cursor}
2#000000010000000, {pattern. }
2#111111111111111,
2#000000010000000,
2#000000010000000,
2#000000010000000,
2#000000010000000,
2#000000010000000,
2#000000010000000,
2#000000010000000] ;

gmr_Sinput_enable(gmr_Skeystroke, [CHR(0) .. CHR(127)], status); check;
gmr_Sinput_enable (gmr_Slocator , [], status); check;
gmr_Sinput_enable (gmr_Sbuttons , [CHR(O) .. CHR(127)] ,.status); check;

gmr_Scursor_set_position(cursor_pos, status); check;
gmr_Scursor_set_pattern(cur_style, cur_size, cur_pattern, cur_origin,

status); check;
gmr_Scursor_set_active(TRUE, status); check;
END;

Interactive Techniques 10-6

C

c~

C',

u

o

10.3.2 Event Reporting

Routine:

When you enable an event type, the input routines report each event of the enabled type
to the program along with a cursor position in logical device coordinates. Use
GMR_$COORD_LDC_TO_WORLD to retrieve the world coordinates of the corresponding
point on the view plane. Use GMR_$COORD_LDC_TO_ WORK_PLANE to retrieve the
coordinates on the work plane.

The syntax for the call is:

GMR_SINPUT_EVENT_WAIT(wait, event_type, event_data, position, status)

The wait argument (a Boolean value) is the only input argument. TRUE instructs 3D
GMR to wait until an enabled event occurs. FALSE instructs 3D GMR to return control to
the calling program immediately whether or not an event has occured.

If the enabled event type is a keystroke or a button, an ASCII character from the enabled
keyset is returned in event_data. If the program has not enabled locator events, then at
the next occurrence of an enabled event, the 3D GMR software reports the locator final
cursor position to the program along with the enabled event.

In borrow mode, events which have not been enabled are ignored. In direct mode, all
events outside the Display Manager window in which 3D GMR is running are handled by
the Display Manager. In addition, events that have not been enabled are passed to the
Display Manager.

Example - Return a Position on the Work Plane
This fragment waits for the user to identify a position in one of the viewports using either
the second mouse button or the key p. GMR_$COORD_LDC_TO_WORK_PLANE returns the
position picked in world coordinates on the work plane. o PROCEDURE get_position(OUT new_pos : gmr_Sf3_point_t);
VAR

o

position
event
vpid
ch
picked

BEGIN
picked := FALSE;

gmr_Sf3_point_t;
gmr_Sevent_t;
gmr_Sviewport_id_t;
char;
boolean;

10-7 Interactive Techniques

REPEAT

gmr_$input_event_wait(TRUE, event, ch, position, status);
IF (status.all <> gmr_$locator_outside_dev_limits) THEN

check;
IF event = gmr_$locator THEN

BEGIN
WHILE (event = gmr_$locator) DO

BEGIN
gmr_$input_event_wait(FALSE, event, ch, position, status);
IF (status.all <> gmr_$locator_outside_dev_limits) THEN check;
END;

gmr_$cursor_set_position(position, status); check;
END;

IF «(event = gmr_$buttons) AND (ch = 'b'» OR
«event = gmr_$keystroke) AND (ch = 'p'») THEN
BEGIN
IF (find_viewport (position, vpid» THEN

BEGIN

END;

gmr_$coord_ldc_to_workylane(vpid, position, newyos, status);
check;
picked := TRUE;
END;

UNTIL (picked = TRUE);

END;

1 0.4 Picking
Routine:

GMR_$PICK

Picking is used to select elements in the metafile by location in a viewport. Pick
operations allow you to find and select structures within the metafile or elements within a
structure. For example, you can combine picking and echoing operations to echo an
entire structure when one of its elements is picked (see GMR_$INSTANCE_ECHO).

A list of terms associated with picking follows:

Terms

pick operation

instance path

Interactive Techniques

The process of selecting elements or structures . You use
GMR_$PICK to select a single element from a metafile and to
retrieve the path through the hierarchy of structures to that
element.

A pathname that uniquely defines a picked element. This
consists of a list of ordered pairs: (structure ID, element

10-8

c

o

o

o

pick aperture

pick mask

pick range

pick criteria

pick filter

index). An element index is the position of the element within
the structure.

The region in logical device coordinate space (within a
viewport) within which GMR_$PICK searches for structures and
elements.

A number assigned to a viewport that is compared bit by bit
to the structure's mask to determine if the structure is
pickable.

A range of numbers set for a particular viewport. Each
structure value is tested against this range to determine
whether the structure is eligible for picking.

Determines whether a structure is pickable in a particular
viewport. This lets you cut down on the number of objects
that can be selected by a pick operation. A structure is
pickable only if it meets the following criteria:

1. The structure value must be within the viewport visibility
range and within the viewport pick range.

2. The logical AND of the structure mask and the viewport
visibility and pick masks must be non-zero.

A viewport filter used with name sets. The filter includes an
inclusion set and an exclusion set. Name sets provide an
additional method of determining pick eligibility (see Section
9.4.2).

Given a specific viewport, GMR_$PICK traverses the metafile looking for elements that
intersect the pick aperture. This is like a mock drawing session to determine which
elements can be drawn through the pick aperture. The drawing operations are not
actually performed, however, so the pick operation does not involve the drawing processor
at all.

GMR_$PICK returns the element type, an instance path, and the path length. The instance
path is a list of ordered pairs (structure ID, element index) that uniquely identifies the
particular instance of the primitive draw element that has been picked.

For example, in Figure 10-4, the second element in structure 1 has an instance path of
(1,2). The twelfth element in structure 7 has an instance path of (1,5), (7,12).

10-9 Interactive Techniques

Structure 1: car

Element 1: attribute

Element 2: polyline

Element 5: wheel instance
(structure 7)

Last Element

Structure 7: wheel

Element 1: spoke 1
(polygon)

Element 12: spoke 12
(polygon)

Last Element

Figure 10-4. Two Structures for Picking

10.4.1 Picking Methods

Routines:

GMR_$PICK_SET_METHOD
GMR_$PICK_INQ_METHOD
GMR_$VIEWPORT_SET_PATH_ORDER
GMR_$VIEWPORT_INQ_PATH_ORDER

Currently, there is only one pick methods: pick the nth element that crosses the pick
aperture and also satisfies the pick criteria.

GMR_$PICK_SET_METHOD sets the pick method for a specified viewport.

GMR_$PICK_INQ_METHOD returns the current pick method of a specified viewport.

You can set the order of the instance path returned by GMR_$PICK. Two methods are
supported: top-first (picked element last) and bottom-first (picked element first). The (~
default is top-first. ~

GMR_$VIEWPORT_SET_PATH_ORDER sets the path order for a specified viewport.

GMR_$VIEWPORT_INQ_PATH_ORDER returns the current path order used in the specified
viewport. This ordering is used for both picking and instance echoing.

Interactive Techniques 10-10

----------------------_ .. _-_ _ ... _.

c

o

o

o

o

Example - Returning an Instance Path
The syntax for GMR_SPICK is the following:

GMR_$PICK (vpid, center, pick_index, pick_data_size, pick_data, status)

INPUT PARAMETERS

vpid

center

Identifies the viewport, in GMR_SVIEWPORT_ID_T format. This is a
2-byte integer.

Is the center of the pick aperture, in GMR_SF3_POINT_T format. This
is a point in logical device coordinates that is usually supplied from
locator input (for example, a mouse or touchpad).

Defines n. The nth element that crosses the pick aperture and also
satisfies the pick criteria is selected. This is a 4-byte integer. The
value of n is usually 1. Note that the current pick method is used.

pick_data_size Is the size in bytes of the output record pick_data. This is a 4-byte
integer.

OUTPUT PARAMETERS

pick_data Is a variable length record, in GMR_SPICK_DATA_T format. It
contains the following information:

element_type
The type of element that was picked, in gmr_$element_type_t
format This parameter is a 2-byte integer.

pick yath _depth
The length of the pick path, in gmr_$instanceyathlength_t
format. This is the number of levels to the picked element. This
parameter is a 2-byte integer. If pick_data_size indicates that the
pick_data is not large enough, 3D GMR only returns as much
data as will fit.

pickyath
The path of the picked element, in gmr _ $instance yath _ t format.
This parameter is an array of records specified as a list of
(structure ill, element index) pairs.

10-11 Interactive Techniques

Refer to the Data Types Section (Chapter 1) of DOMAIN 3D Graphics
Metafile Resource Call Reference for information on how to build this
record. ~

status Completion status, in STATUS_$T format. This data type is 4 bytes
long.

This fragment uses the two structures illustrated in Figure 10-5.

Structure 1: car

Element 1: attribute

Element 2: polyline

Element 5: wheel instance
(structure 7)

Last Element

Structure 7: wheel

Element 1: spoke 1
(polygon)

Element 12: spoke 1 2
(polygon)

Last Element

Figure 10-5. Picking Example

Assume that the operator identifies spoke 12 using a mouse button. Then the following
fragment:

:= 1; pick_index
pick_data_size := gmr_$pick_data_size;

GMR_$INPUT_EVENT_WAIT (TRUE , event, ch, center, status);
GMR_$PICK (vpid, center, pick_index, pick_data_size, pick_data, status);

returns the following information:

element type = polygon
path length = 2
instance path = 1,5

7,12

Interactive Techniques

level 1
level 2

10-12

f'
\ '-_ .. ,

c'

o

o

o

o

o

10.4.2 Limiting the Pick Search

There are three ways to limit the pick search:

1. Modifying the pick aperture

2. Setting the pick mask and pick range

3. Using name sets

Modifying the Pick Aperture
Routines:

GMR_$PICK_SET_APERTURE_SIZE
GMR_$PICK_INQ_APERTURE_SIZE
GMR_$PICK_INQ_CENTER

The search for structures or elements is limited to a specified range of logical device
coordinates, called the pick aperture (see Figure 10-6). The aperture is specified in terms
of height, width, depth, and center. The center is the point returned from the last
GMR_$PICK routine. GMR_$PICK searches for structures or elements that fall into the
following region:

(center.x - 0.5*width to center. x + 0.5*width,
center.y - 0.5*height to center.y + 0.5*height,
center.z - O.5*depth to center.z + 0.5*depth)

T
Height

y

~~-"
-~

Figure 10-6. Pick Aperture

- Default Pick Center

Use GMR_$PICK_SET_APERTURE_SIZE to define the pick aperture for a specified viewport.
The pick aperture is initialized to center (0.0, 0.0, 0.0) in logical device coordinates. The

10-13 Interactive Techniques

default depth is 1 which allows picking within the entire depth of the default viewport.
The default height and width is 0.1.

C~· GMR_$PICK_INQ_APERTURE_SIZE returns the width, height, and depth of the pick aperture .-/
in a specified viewport.

GMR_$PICK_INQ_CENTER returns the center point from the last pick operation on the
specified viewport.

Setting the Viewport Pick Mask and Pick Range
Routines:

GMR_$VIEWPORT_SET_PICK
GMR_$VIEWPORT_INQ_PICK

The above routines set and return the viewport pick mask and pick range . You can assign
a mask and a value to each structure using GMR_$STRUCTURE_SET_ VALUE_MASK (see
Chapters 2 and 9). The structure value and mask are used to set visibility and picking ("
eligibility. At display time, the structure value and mask are compared as follows: ',-., ,

• The structure value is compared against the viewport visibility range and viewport
pick range

• The structure mask is compared against the viewport visibility mask and the
viewport pick mask.

A structure is pickable only if it meets the following criteria:

1. The structure value must be within the viewport visibility range and within the
viewport pick range.

2. The logical AND of the structure mask and the viewport visibility and pick masks
must be non-zero.

If both of these criteria are true, the structure is pickable even though it may not be ('
visible on the screen. This means that you can pick an invisible object without redrawing ~ __
it as follows: change the viewport visibility range and mask to match the viewport
pickability range and mask and then pick the structure.

The default is that all structures are pickable.

GMR_$VIEWPORT_SET_PICK sets the pick range and pick mask for a viewport.

GMR_$VIEWPORT_INQ_PICK returns the pick range and pick mask of a viewport.

Refer to the visibility examples in Section 9.5 for more information on using these
routines. You can use pick range and pick mask values the same way that you use
visibility range and visibility mask values.

Interactive Techniques 10-14

,",,\
u

o

o

o

o

Using Namesets to Set Pick Eligibility for Primitives
Routines:

GMR_$VIEWPORT _SET _PICK_FIL TER
GMR_$VIEWPORT _INQ_PICK_FIL TER

Primitive pick eligibility can be controlled using the name set add and replace routines
(see Chapter 4). At display time, the current name set is compared to the viewport's pick
filter. The pick filter consists of an inclusion list and an exclusion list. In order to be
pickable, a primitive (or structure) must meet both the visibility and the pickable criteria.

The relationship between the inclusion set, the exclusion set, and the current name set is
stated in Figure 10-7.

Ii = Viewport invisibility inclusion set
Ei = Viewport invisibility exclusion set
Ip = Viewport pick inclusion set
Ep = Viewport pick exclusion set
N = Current name set
int = Set intersection

1. For a primitive within a visible structure to be visible:
Either all names in the current name set must be absent from the viewport
invisibility inclusion set or at least one name must be in the viewport
invisibility exclusion set.

Visible <=> (Ii int N = 0) OR (Ei int N I:. 0)

2. For a primitive within a visible structure to be invisible:
At least one name in the current name set must be in the viewport
invisibility inclusion set and all names in the name set must be absent
from the viewport invisibility exclusion set.

Invisible <=> (Ii int N I:. 0) AND (Ei int N = 0)

3. For a primitive to be eligible for picking:
The visibility criteria must be met (number 1 above) and at least one name
in the current name set must be in the viewport pick inclusion set and all
names in the name set must be absent from the viewport pick exclusion set.

Pickable <=> [(Ii int N = 0) OR (Ei int N I:. 0)] AND (Ip int NI:. 0) AND

(Ep int N = 0)

Figure 10-7. Name Set Visibility and Pick Criteria

10-15 Interactive Techniques

GMR_$VIEWPORT_SET_PICK_FILTER sets the inclusion and exclusion name set lists for
picking eligibility. An element is eligible for picking only if its name set is in the
inclusion list and not 'in the exclusion list. C
GMR_$VIEWPORT_INQ_PICK_FILTER returns the inclusion and exclusion name set lists for
picking eligibility.

Pick eligibility based on structure value and mask takes precedent over name set pick
eligibility.

In order to be pickable, a primitive must meet both the visibility and the pick criteria. This
does not mean that the primitive must be displayed on the screen. To pick an invisible
object, you can change the name set and then pick it without actually calling a viewport
clear/refresh combination.

Refer to the discussion and example in Section 9.4.

1 0.5 Echoing
Echoing is a means of visually differentiating elements or subtrees of interest from all
others. You can acheive this visual signal in two ways:

1. Redraw the element or subtree with a different color or line style. For this purpose
the 3D GMR package provides a highlighting attribute block that overrides
attributes set by individual attribute elements or other attribute blocks.

Redrawing the element or structure with a different line style is a particularly
useful echo method for monochrome nodes.

2. Draw a box around the structure that contains the picked element or subtree. This
method uses the bounding box associated with each structure. For more
information on bounding boxes, see Chapter 13.

You can specify echoing in selected viewports or specify a different type of echoing in
different viewports.

An echo lasts only until the next viewport clear/refresh operation. An echo may result in
an incorrect picture since the echoed object is redrawn over existing geometry.

10.5.1 Pick Echo and Instance Echo

3D GMR defines two types of echoing: pick echo and instance echo.

Pick Echo
Routines:

GMR_$PICK_SET_ECHO_METHOD
GMR_$PICK_INQ_ECHO_METHOD

Interactive Techniques 10-16

c

C
I

I

I
i

o

o

o

o

o

Pick echo is the 3D GMR package response to a pick operation. It provides visual
confirmation that a pick operation has been performed. This method allows you to echo
the primitive draw element at the end of the instance path.

GMR_$PICK_SET_ECHO_METHOD sets the pick echo method for a particular viewport. You
can use the highlighting attribute block method, the bounding box method, or turn pick
echoing off (default). When pick echo is in effect, the element at the end of the picked
instance path is automatically echoed.

GMR_$PICK_INQ_ECHO_METHOD returns the current pick echo method for a specified
viewport.

Instance Echo
Routines:

GMR_$INSTANCE_ECHO
GMR_$INSTANCE_ECHO_SET_METHOD
GMR_$INSTANCE_ECHO_INQ_METHOD

An instance echo uses an application supplied instance path to identify the echoed object.
Instance echo gives the application a means of customizing the echo, functionality. It can
be used as an echo to an application pick d~vice rather than the 3D GMR geometric pick
device. For example, an application can choose to echo all objects with a certain property
(i.e., size, price, etc.). The application can generate the path and then pass it to the echo
instance echo routine, GMR_$INSTANCE_ECHO.

Instance echo has the added feature of path depth. By specifying a path depth, you can
indicate how far down the path to begin echoing. In this way you can echo a single
element or an entire subtree.

GMR_$INSTANCE_ECHO echos an element or a subtree of an application-supplied instance
path in a specified viewport.

GMR_$INSTANCE_ECHO_SET_METHOD sets the instance echo method for a particular
viewport. As with pick· echo, you can use either the highlighting attribute block method or
the bounding box method. The default is the bounding box method.

GMR_$INSTANCE_ECHO_INQ_METHOD returns the instance echo method of a particular
viewport.

10.5.2 Setting the Highlighting Attribute Block

Routines:

GMR_$VIEWPORT SET_HILIGHT_ABLOCK
GMR_$VIEWPORT_INQ_HILIGHT_ABLOCK

GMR_$VIEWPORT_SET_HILIGHT_ABLOCK assigns a particular attribute block to a
viewport. You identify the attribute block by using its ablock identification number.

10-17 Interactive Techniques

GMR_$VIEWPORT_INQ_HILIGHT_ABLOCK returns the identification number of the current
"highlighting attribute block for a particular viewport.

Example - Setting a Highlight Attribute Block and Initializing Picking
All of the following fragments are from Sample3 (see Appendices A, B, and C).

This fragment initializes an ablock (ablock4) to be used for highlghting. The routines in
the fragment set the line color to 5 and intensity 1.0. The fragment also sets the pick path
order, echo method, and pick aperture.

PROCEDURE inityicking;
VAR

i := integer;

BEGIN

gmr_Sablock_create(gmr_Snochange_ablock, ablock4, status);
gmr_Sablock_set_line_color(ablock4, 5, gmr_Sset_value_and_enable,

status);
gmr_Sablock_set_line_inten(ablock4, 1.0, gmr_Sset_value_and_enable,

status);

FOR i := 1 TO num_views DO
BEGIN

END;

gmr_Sviewport_set_path_order(view_vpid[i], gmr_Stop_first, status);
gmr_Sinstance_echo_set_method(view_vpid[i], gmr_Selement_hl_bbox,

status) ;
gmr_Sviewport_set_hilight_ablock(view_vpid[i], ablock4, status);
gmr_Spick_set_aperture_size(view_vpid[i], 0.01, 0.01, 2.0, status);

Example - Picking and Echoing
This fragment picks a structure (given a point). It echos the structure picked using the
current echo technique (bounding box or ablock). The value of "level" is determined
from the procedure named do_button that follows this fragment.

PROCEDURE pick(IN position: gmr_Sf3_point_t);

VAR
pick_vpid
pick_index
pick_data

BEGIN
pick_index := 1;

gmr_Sviewport_id_t;
integer32;
gmr_Spick_data_t;

IF (find_viewport (position, pick_vpid) = FALSE) THEN
RETURN;

c

IF (no_lastyick = FALSE) THEN I

display_viewport(last_hl_vp); 0

Interactive Techniques 10-18

u

o

o

o

o

gmr_$pick_(pick_vpid, position, pick_index, gmr_$data_size, pick_data,
status) ;

IF «status.all <> gmr_$pick_path_empty) AND
(status.all <> gmr_$operation_invalid» THEN
BEGIN

END;

check;
gmr_$instance_echo(pick_vpid, level, pick_data. pick_path , status); check;
no_last_pick := FALSE;
last_hl_vp := pick_vpid;
cur_pick-path := pick_data. pick_path;
cur_level .- level;
END;

Example - Acting on a Menu Item
This fragment uses several of the routines discussed in this chapter. This fragment
includes a case on the button picked and performs the appropriate actions. The routines
included change the work plane, set the echoing technique, and change the level of
picking. If the viewport is to be refreshed, the display_flag is set to true. If the user picks
exit, the end_flag is set to true.

PROCEDURE do_button(IN menu_item: integer; OUT end_flag: boolean);

VAR
i
clock
new_pos

BEGIN

integer;
time_$clock_t;
gmr_$f3-point_t;

clock. low := 125000;
clock. high := 0;

end_flag := FALSE;

CASE menu_item OF

1: { Display a new teapot. }
new_teapot;

2: { Change the work plane.
BEGIN
display_message(3);
get_position(new_pos);
FOR i := 1 TO num_views DO

gmr_$coord_set_work_plane(view_vpid[i], new_pos,
tea_normal[i], status); check;

10-19 Interactive Techniques

END;

3: { Move the structure/element to a new location. }
IF (no_last_pick) THEN

display_message (4)
ELSE

BEGIN
display_message(2);
get-position(new_pos);
move (new_pos) ;
END;

4: { Delete an element/structure. }
IF (no_last_pick) THEN

display_message (4)
ELSE

delete;

5: { Echo with a bounding box. }
BEGIN
FOR i := 1 TO num_views DO

BEGIN
gmr_$instance_echo_set_method(view_vpid[i], gmr_$element_hl_bbox,

status); check;
END;

time_$wait(TIME_$RELATIVE, clock, status); check;
END;

6: { Highlight with a different color. }
BEGIN
FOR i := 1 TO num_views DO

BEGIN
gmr_$instance_echo_set_method(view_vpid[i], gmr_$element_hl_bbox,

status); check;
gmr_$viewport_set_hilight_ablock(view_vpid[i] ,

gmr_$element_hl_ablock, status); check;
END;

time_$wait(TIME_$RELATIVE, clock, status); check;
END;

7: { Allow picking at level 1 (i.e., entire teapot). }
BEGIN
ievel := 1;
time_$wait(TIME_$RELATIVE, clock, status); check;
END;

8: { Allow picking at level 2 (i.e., base or top). }
BEGIN
level := 2;
time_$wait(TIME_$RELATIVE, clock, status); check;
END;

Interactive Techniques 10-20

~
\

..... _--- ..

c:

o

-- ----.... -.... -------~----------------- .. -------- -~~~ -------

END;

C)

o

o

9: { Allow picking at level 3 (i.e., pot, spout, handle or cover, knob).}
BEGIN
level := 3;
time_$wait(TIME_$RELATIVE, clock, status); check;
END;

10: { Exit.
end_flag .- TRUE;

END; {case}

10-21 Interactive Techniques

c

('-~
,

...... _- ~.

I

C

o

C)

0

o

Chapter 11

Editing Metafiles

3D GMR has several functions for efficient editing of files. These functions allow you to
insert, delete, and replace elements and structures easily. Pick operations provide ready
access to the structures and elements that you want to edit (see Chapter 10).

11.1 Structure Editing
A structure is eligible for the following operations:

Create

Open

Erase

Delete

Copy

Set name

Creates an empty structure, assigns it an identification number, and
(optionally) assigns a unique name.

Prepares a structure for editing operations .and optionally creates a
backup version.

Deletes all elements leaving an empty structure.

Completely eradicates a structure.

Copies the contents of one structure into another.

Changes the name of a structure.

To edit an instanced structure, you must open the instanced structure. You cannot edit an
instanced structure from an instancing structure.

11-1 Editing Metafiles

GMR_$STRUCTURE_INQ_COUNT returns the number of structures in the metafile and a C
number guaranteed to be greater than or equal to the largest structure number. You can . ./,1

then examine every structure by checking structure numbers from 0 to the maximum
value (0 is used).

11.2 Element Editing
Routines:

GMR_$INQ_ELEMENT_TYPE
GMR_$ELEMENT_SET_INDEX

GMR_$ELEMENT_INQ_INDEX

An element is eligible for the following operations:

Delete Deletes an element.

Insert Inserts an element after the current element.

Replace Replaces an element with another element.

Inquire Inquires the element type and other element parameters.

GMR_$INQ_ELEMENT_TYPE returns the type of the current element in the current open
structure. Refer to the DOMAIN 3D Graphics Metafile Resource Call Reference for more
information on this routine.

In addition, you can set and inquire the element index.

An element index is used to keep track of elements within a structure. An element index
is like a line number in a text file. It positions you within a file so that you can edit
individual elements. The following rules apply when you use the element index for
editing:

1. To inquire or read back the nth element, set the index to n, inquire the element
type, and then inquire for more information.

2. To replace or delete the nth element, set the index to n and perform the replace or
delete function.

3. To insert new elements after the nth element, set the element index to nand
perform the insertion function.

4. To insert new elements before the first element, set the element index to 0 and
perform the insertion function. Inquiring, deleting, and replacing functions are
illegal when the index is set to O.

Editing Metafiles 11-2

(~
\
'--... , '

0 1

I

---_._-_._---------_ .. - .. _ .. _--

·u Except for the special case noted in 4 above, refer to an element by setting the element
index to the current element.

When you open a structure, the element index is set to 0 by default.

GMR_$ELEMENT_INQ_INDEX returns the current element index.

GMR_$ELEMENT_SET_INDEX sets the element index to a specified value.

11.3 Insert and Replace Modes
Insert and replace modes are two distinct modes in which the element insertion routines
operate.

o 11.3.1 Insert Mode

o

o

o

In the 3D GMR package, insert mode is the default. Each time you call an element
insertion routine, a new element is inserted after the current element. The new element
becomes the new current element and the element index is automatically incremented.

11.3.2 Replace Mode

In replace mode, the current element is deleted and the new element is put in its place.
The new element becomes the current element and the element index does not change.

Routines:

GMR_$REPLACE_SET_FLAG

GMR_$REPLACE_INQ_FLAG

To replace one element with another or a parameter within an element with another, use
GMR_$REPLACE_SET_FLAG. This routine instructs the 3D GMR package to continuously
replace the current element. This is a useful feature when editing with dynamic feedback,
such as when rubber banding a line.

GMR_$REPLACE_INQ_FLAG tells you whether the graphics metafile package is in the
(default) insert state or in the replace state.

11-3 Editing Metafiles

11.4 Deleting
You can delete an element or an entire structure.

11.4.1 Deleting Structures

Routine:

GMR_$STRUCTURE_DELETE

GMR_$STRUCTURE_DELETE deletes the current open structure. A structure must be open
before you can delete it.

Example
This fragment opens a structure and then deletes it.

gmr_$structure_open(struc_id, FALSE, status);
gmr_$structure_delete(status);

Deleting Instanced Structures
A structure cannot contain references to a deleted structure. Therefore, you must delete

c

all instances from containing structures before you delete the open structure. However, a ('
structure that contains instances can be deleted. "'-.._.

For example, consider the following four structures:

gmr_$structure_create('bolt', 4, bolt_id, status);

gmr_$structure_close(TRUE, status);

gmr_$structure_create('washer', 6, washer_id, status);

gmr_$structure_close(TRUE, status);

gmr_$structure_create('bracket', 7, bracket_id, status);

gmr_$instance_transform(bolt_id,matl,status);
gmr_$instance_transform(washer_id,matl,status);
gmr_$instance_transform(bolt_id,mat2,status);
gmr_$instance_transform(washer_id,mat2,status);
gmr_$structure_close (TRUE , status);

Editing Metafiles 11-4

c"

o

gmr_$structure_create('assembly', 8, assembly_id, status);
gmr_$instance_transform(bracket_id,mat3,status);
gmr_$instance_transform(bracket_id,mat4,status);
gmr_$structure_close (TRUE , status);

The above fragment creates the hierarchical metafile represented in Figure 11-1.

Assembly

bracket bracket

washer bolt

Figure 11-1. Assembly

..--"" U You can delete the structures as follows:

o

o

1. You can delete assembly without making any changes to the other structures.

2. You can delete bracket only after you take out both references to it in assembly. You
don't have to change washer or bolt to be able to delete bracket.

3. You can delete washer or bolt only after you have taken out the references to them
in bracket.

11.4.2 Deleting Elements

Routine:

GMR_$ELEMENT_DELETE

GMR_$ELEMENT_DELETE deletes the current element. When an element is deleted, there
are two possible situations:

1. There are more elements after the deleted element. In this case, the next element
becomes the current element and the element index remains unchanged.

11-5 Editing Meta/iles

2. The deleted element was the last element in the structure. In this case, the C
previous element (if any) becomes the current element and the element index is
decremented.

In the second case above, 3D GMR rescans the structure from the top to find the
beginning of the previous element. This can affect performance. Therefore, to delete a
whole series of elements, begin with the first one that you want to delete.

When you delete the only element in the structure, the structure is empty and there is no
current element. The element index is set to o.

11.5 Erasing
Routine:

GMR_$STRUCTURE_ERASE

GMR_$STRUCTURE_ERASE deletes all elements in the current structure and leaves the
structure open so that you may insert new elements.

Example
This fragment opens a structure, erases all elements within it, and then closes the
structure.

gmr_$structure_open(struc_id, FALSE, status);
gmr_$structure_erase(status);
gmr_$structure_close (TRUE , status);

11.6 Copying
Routine: GMR_$STRUCTURE_COPY

('"
/'

GMR_$STRUCTURE_COPY copies the entire contents of another structure into the current C-.'''
open structure. The specified structure is copied into the current open structure after the
current element. The element index is then set to the last copied element.

Example
The following fragment creates a new structure named newcopy that is an exact copy of an
existing structure. The identification of the existing structure is "source_seg_id".

gmr_$structure_create('newcopy', 7, structure_id, status);
gmr_structure_copy(file_id, source_seg_id, status);
gmr_$structure_close(TRUE, status)

You can use the file_id argument in GMR_$STRUCTURE_COPY to copy a structure from
one file to another file. However, structures containing instance elements cannot b_e
copied from one file to another.

Editing MetaJiles 11-6

o

o

o

o

o

Note the difference between GMR_$STRUCTURE_COPY and GMR_$INSTANCE_TRANSFORM

GMR_$STRUCTURE_COPY leaves you with two copies of the structure, allowing you to
modify the two copies separately. GMR_$INSTANCE_TRANSFORM leaves you with one
copy of the structure and a reference to that structure, so that all displayed instances can
be changed by modifying the single instanced structure.

11.7 Reflecting Editing Changes
There are two ways to reflect editing changes:

1. Set the viewport refresh state.

2. Use dynamic mode.

11.7.1 Viewport Refresh States

Routines:

GMR_$VIEWPORT_SET_REFRESH_STATE

GMR_$VIEWPORT_INQ_REFRESH_STATE

There are four viewport refresh states:

Refresh inhibit The viewport is rewritten
GMR_$VIEWPORT_REFRESH.

when you call

Refresh wait The viewport is rewritten when you call

Refresh update

Refresh partial

GMR_$VIEWPORT_REFRESH or GMR_$DISPLA Y_REFRESH.

The viewport is refreshed every time a change is made to the
metafile.

Individual elements are updated as they are changed in the
metafile.

Use refresh inhibit and refresh wait when you do not want editing changes reflected in the
display (for example, for increased speed when editing a metafile).

Refresh update is a relatively slow but exact update method. The entire displayed
structure is reprocessed. Use this technique when you want to reflect changes made to
the metafile (for example, when inserting a new element). The entire viewport is not
necessarily affected. If you use hierarchical structures, you can restrict the update to a
small area of the screen.

11-7 Editing Metafiles

Refresh partial is a faster but inexact method. An element is deleted by erasing it (that is C'
drawing it in the background color). A new element is inserted by drawing it without
regard to other elements already drawn on the display.

An element is replaced either by erasing and redrawing it without regard to other
elements, or by using an XOR raster operation. The replacement method is selected
using the routine GMR_$DYN_MODE_SET_DRAW_METHOD (see Section 11.7.2).

If the element is an instance element, then the entire subtree is redrawn.

GMR_$VIEWPORT_SET_REFRESH_STATE sets the refresh state of a viewport.

GMR_$VIEWPORT_INQ_REFRESH_STATE returns the refresh state of a viewport.

11.7.2 Dynamic Mode

Routines

GMR_$DYN_MODE_SET_DRA W _METHOD

GMR_$DYN_MODE_SET_ENABLE

GMR_$DYN_MODE_INQ_DRA W _ENABLE

GMR_$DYN_MODE_INQ_ENABLE

Dynamic mode is an option within partial refresh mode that allows you to change a single
element repeatedly with fast, relatively clean, refreshing of the screen. Use this technique ~~

when a fast redrawing capability is required in between major change to a metafile (for (\--____ .
example, when rubber-banding a line).

Dynamic mode works on one element. If the element is an instance element, then the
entire subtree is redrawn. The element is identified by an instance path. The path is a list
of (structure ID, element index) pairs that uniquely defines a particular element. The
path can be retrieved by GMR_$PICK or can be an application-supplied path.

GMR_$DYN_MODE_SET_ENABLE turns the dynamic mode on and off for viewports that are
in partial-refresh state.

GMR_$DYN_MODE_SET_DRAW_METHOD sets the redraw method that will be used when a
viewport is in partial-refresh state or when dynamic mode is enabled. There are two
different dynamic drawing modes:

Redraw

XOR

Each subsequent redraw operation erases the enabled· element
to the background color and then redraws the element in the
new position. This is done without regard for other elements
on the screen.

I

Editing Metafiles

Uses the XOR raster operation to erase the enabled element
and and draw the new version. The background color is

11-8

C l

I

I

o

o

o

o

preserved but the redrawn element may have pixels turned off
when overlapped with other geometry.

GMR_$DYN_MODE_INQ_DRA W _METHOD returns the type of dynamic drawing that is
enabled for either viewports in partial refresh states or in dynamic mode.

GMR_$DYN_MODE_INQ_ENABLE tells whether a dynamic mode is enabled and if so,
returns the path, path depth, and path order.

11-9 Editing Metafiles

C,
~'

o

o

Chapter 12

Using Color

There are three basic methods for using color with the 3D GMR package:

1. Use the default color binding.

2. Modify portions of the color binding using linear interpolation of application
supplied specified colors.

3. Modify portions of the color binding using an application specified map.

The first method is described in Chapter 4. This Chapter describes the second two
methods.

o 12.1 3D GMR Color

o

3D GMR uses several parameters to specify color (color values, color map indices, color
identification numbers, and intensity values). These parameters are defined and used as
follows:

• A metafile contains attributes that specify color IDs and intensities.

• Each color ID corresponds to a range of one or more color map indices. When
there is more than one, then there is an "intensity minimum" and an "intensity
maximum" associated with the extremes of the range.

12-1 Using Color

• Each color map index corresponds to a value in the color map. A value can be
established with either a red-green-blue (RGB) triplet or a hue-saturation-value
(HSV) triplet (see Section 12.2). C

When a primitive has a color ID attribute that corresponds to a single color map index,
then that index is used to draw that primitive. When a primitive has a color ID attribute
that corresponds to a range of color map indices, then the intensity attribute of the
primitive determines which color map index is used.

The 3D GMR package allows you to set color in two stages. The first stage is to include
color attribute elements (color ID and intensity) in the metafile for particular modeling
elements, such as polygon and polyline. The second stage is to establish how the color ID
and intensity are translated to draw values by calling a set of color routines. This latter
process is called binding the colors to draw values and is performed at display time.

12.2 Color 10 and Intensities
Routines:

GMR_SCOLOR_SET_RANGE

GMR_SCOLOR_INQ_RANGE

A color indentification number (color ID) is an integer between 0 and
GMR_SMAX_COLOR_ID, where GMR_SMAX_COLOR_ID is at least 255.

An intensity is a floating-point value between 0 and 1. The value is used to select a single
color from the collection of colors associated with a color ID by means of its color
binding. This selection resolves the color ID/intensity pairs to set color map indices at
display time.

Color binding has two steps:

1. Associate a color ID with a starting color map index and a range of color map
indices. This establishes the 3D GMR color range table. One routine performs
this function:

GMR_SCOLOR_SET_RANGE

2. Set the color map values for each color map index. Use one of the following
routines to set the color map values:

GMR_SCOLOR_DEFINE_HSV
GMR_SCOLOR_DEFINE_RGB
GMR_SCOLOR_SET_MAP

The 3D GMR color range table is established with calls to GMR_SCOLOR_SET_RANGE.

Each call to this routine establishes an entry in the 3D GMR color range table for the
input color ID. For each color ID, there is a starting color map index and a range. The
range, which must be at least one, is the number of consecutive color map indices
associated with the color ID. The intensity selects a single color froIn the collection of
colors associated with the color ID. An intensity value of 1 sets the draw value to the

Using Color 12-2

c'

o

0

.---",\
(I
'-.-/

o

o

highest color map index in the range. An intensity of 0 sets the draw value to the lowest
color map index in the range.

For example, suppose a color ID maps to four different color map indices as shown in
Figure 12-1. If a primitive has a color ID attribute of 5 and an intensity attribute value of
0.2, then the smallest color map index belonging to color ID 5 (in this case 20) is used to
draw the primitive.

The following routine sets the range specified in Figure 12-1:

Start

Range

Color 10 = 5l
a 1 2 5 255

Color Range Table
Modified by GMR_SCOLOR_SET _RANGE

20 21 22 23

0.0 ~ Inten < 0.25

0.25 s: Inten < 0.5

0.5 ~ Inten < 0.75

0.75 s: Inten ~ 1.0

Color Map

Modified by
,GMR_SCOLOR_DEFINE_RGB

or
GMR_$COLOR_DEFINE_H.SV

or
GMR_SCOLOR_SET _MAP

Figure 12-1. Setting the C%r Binding

12-3 Using Color

Refer to Tables 12-1 through 12-7 in Section 12.5 for the default color maps and range
tables for single- and double-buffered modes.

GMR_$COLOR_SET_RANGE accepts a color ID number, a start index in the color map, and C
a range which is the number of contiguous color map indices to associate with the color
ID. Because this is a display-time routine, reallocation of the colors does not require
editing of the metafile. This allows application programs to trade off having many colors
with coarse intensity interpolation against having few colors with very smooth intensity
interpolation.

GMR_$COLOR_INQ_RANGE accepts a color ID and returns the starting color map index
and the range of color map indices values for the color ID.

12.3 Using RGB and HSV Color Models
Routines:

GMR_$COLOR_DEFINE_HSV

GMR_$COLOR_DEFINE_RGB

GMR_$COLOR_INQ_HSV

GMR_$COLOR_INQ_RGB

GMR_$COLOR_RGB_TO_HSV

GMR_$COLOR_HSV _TO_RGB

3D GMR supports two color models: red-green-blue (RGB) and hue-saturation-value
(HSV). GMR_$COLOR_DEFINE_RGB and GMR_$COLOR_DEFINE_HSV are used to change
the color map. GMR_$COLOR_RGB_TO_HSV and GMR_$COLOR_HSV_TO_RGB are utility
routines that convert between the two models and do not change the color map.

GMR_$COLOR_DEFINE_RGB and GMR_$COLOR_DEFINE_HSV establish the color map
values using linear interpolation. These two routines differ only in the color model, that
is, red-green-blue and hue-saturation-value, respectively.

A modified color map is sent to the display device when an action causes a viewport to be
updated. For example, a call to a routine to clear the viewport causes a· modified color
map to be loaded automatically if the viewport refresh state is in update mode.

GMR_$COLOR_DEFINE_HSV updates the section of the color ·map that corresponds to the
input color ID using the hue, saturation, and value color model. The range-of -color map
indices are linearly interpolated between the two input colors. Saturation and value must
both be between 0 and 1. Hue is not restricted in this way because the fractional
extraction takes place after the linear interpolation, if any. The fractional part of the hue
is used to determine the hue (see Figure 12-2).

Using Color 12-4

('
~-. .-'

o

o

o

o

o

1.0
red

5/6 magenta /"

1/3 green

Figure 12-2. The Fractional Part of Hue

Red has a hue of 0, green has a hue of 1/3, and blue has a hue of 2/3, and a hue of 1 is
also red. For example, if value = 1 and saturation = 1, varying the hue from 2/3 to 4/3
changes the color from blue to magenta to red to yellow to green.

A saturation of 0 gives white, and a saturation of 1 yields the "pure" hue. For example,
if hue = 0 and value = 1, then varying the saturation from 0 to 1 changes the color from'
white to pink to red.

A value of 0 gives black, and a value of 1 gives a bright color. For example, if saturation
= 0, then regardless of the hue, varying the value from 0 to 1 changes the color from
black to gray to white.

GMR_$COLOR_INQ_HSV returns the hue, saturation, and values at the low and high
extremes of the range for a color ID. Ambiguities can occur for gray colors.

GMR_$COLOR_DEFINE_RGB updates the section of the color map that corresponds to the
input color ID by specifying the amounts of red, green, and blue (all between 0 and 1).
The range of color map indices is linearly interpolated between the two input colors.

GMR_$COLOR_INQ_RGB returns the red, green, blue fraction at the low and high extremes
of the range for a color ID.

GMR_$COLOR_HSV _TO_RGB translates a color specification with hue, saturation, and
value to a color specification with red, green, and blue.

GMR_$COLOR_RGB_TO_HSV translates a color specification with red, green, and blue to a
color specification with hue, saturation, and value. This translation is ambiguous for
colors that are shades of gray from black to white as these values are independent of hue.
In these cases, the returned value always has hue of 0 (Red) and a saturation of O.

12-5 Using Color

Examples

The following examples illustrate color binding.

Example 1
The following fragment sets reference draw values in the color map shown in Figure
12-3. The same range is used as in Figure 12-1.

Color Map

20 21 22 23

...
Color 10 = 5

Figure 12-3. C%r Binding

This fragment sets the starting index and the range:

GMR_$COLOR_SET_RANGE(5, 20, 4, status);

/ \
Color ID Range

Start Index

These routines set the draw values in the color map:

e1 GMR_$RGB_COLOR_T
e2 : GMR_$RGB_COLOR_T .-

0.2, 0.0, 0.0];
[1.0, 0.0, 0.0];

GMR $COLOR DEFINE RGB(5, e1, e2, status);
- - - / '\

Color ID High Color

Low Color

Example 2

c

These fragments are taken from Sample3 (see Appendices A, B, and C). The first is
from procedure Init. GMR_$INQ_CONFIG inquires the configuration. The value returned
determines the colors that are set and the use of double-buffer mode. The number of
planes that a node has determines the number of colors that are available (see Section
12.5). C~\

Using Color 12-6

()

C)

o

o

PROCEDURE init;

gmr_$inq_config(display_mode, stream_$stdout, num_of~lanes, bitmap_size,
status); check;

END;

Based on the number of planes returned by the GMR_$INQ_CONFIG routine (above), colors
are initialized for both single- or double-buffer modes. The following ill numbers are
used:

ill 1 = text (white)

ill 2 = viewport background (dark blue-green on color, black on monochrome)

ill 3 = viewport border (bright blue-green on color, white on monochrome)

ill 4 = menu highlight (white)

ill 5 = pick echo (green on color, white on monochrome)

gmr_$rgb_color_t .­
gmr_$rgb_color_t .-

PROCEDURE set_colors;
BEGIN
IF num_of_planes > 1 THEN

BEGIN
{ By default, color map
gmr_$color_set_range (
gmr_$color_set_range (
gmr_$color_set_range (

0.00, 0.50, 1.00];
0.00, 0.25, 0.50];

location 7 is white, 2
I, 7, I, status); check;
4, 7, I, status); check;
5, 2, I, status) ; check;

is green. }

{ Viewport background color. This will change color map location 3. }
gmr_$color_set_range (2, 3, I, status); check;
gmr_$color_define_rgb(2, dark_bg, dark_bg, status); check;

{ Viewport border color. This will change color map location 4. }
gmr_$color_set_range (3, 4, 1, status); check;
gmr_$color_define_rgb(3, blue_g, blue_g, status); check;
END

ELSE { Monochrome node. Make the viewport background black. }

END;

{ This does not change the color map. }

BEGIN
gmr_$color_set_range (2., 0, I, status); check;
END;

12-7 Using Color

12.4 Redefining the Color Map Directly
Routines:

GMR_SCOLOR_SET_MAP

GMR_SCOLOR_INQ_MAP

The routines listed above are available for applications that need more than the linear
interpolation of the define ROB and define HSV routines. This section describes how to
update the color map directly.

You can think of the color map as a one-dimensional array of up to 256 4-byte integers.
Each 4-byte integer represents a color value that uses eight bits to represent the intensity
of each of the primary colors (red, green, and blue) as shown in Figure 12-4.

byte:
offset field name

31 0

0: integer unused

4: integer red

8: integer green

12: integer blue

Figure 12-4. An Element of the Color Map

Red, green, and blue values are each in the range [0, 255], inclusive. Using this model,
each color entry is constructed as follows:

color_vector[i] := (blue + 256(green + (256*red»);

Use GMR_SCOLOR_SET_MAP to update the color map. Supply the following information:

• A start index that represents the first color in the color map to be set.

• A range that identifies the number of contiguous color map entries to set.

• A color array in GMR_SCOLOR_ VECTOR_T format. Use the above formula to create
elements in the array.

GMR_SCOLOR_SET_MAP updates the current color map. The actual transfer of the color
map to the display device occurs immediately.

GMR_SCOLOR_INQ_MAP returns the values stored in the current color map.

Using Color 12-8

----------- --'-'" _

c

C~

('
\
'-.. ",

12.5 Using Double-Buffering Routines for the Display o Routines:

o

(J

o

GMR_SDBUFF _SET_MODE

GMR_SDBUFF _INQ_MODE

GMR_SDBUFF _SET_DISPLAY_BUFFER

GMR_SDBUFF _SET_SELECT _BUFFER

GMR_SDBUFF _INQ_SELECT_BUFFER

When an application rapidly changes images, the updating process can affect appearance.
3D GMR provides double buffering functions to improve the appearance of these rapid
changes. Double buffering partitions the video memory into two buffers and therefore
limits the number of available colors. For example, on an 8-plane system, the 3D GMR
technique for double buffering allows the use of six definable colors and black and white
(see Figure 12-5). On a 4-plane system, only black and white are used.

Plane 7 is Unused.

--~ Planes 4-6 are
for Buffer 2.

Plane 3 is the Toggle.

Planes 0-2 are
for Buffer 1.

Figure 12-5. Double-Buffer Allocation - 8 Planes

3D GMR maintains a separate color map and color range table for double buffering
mode. The default single buffering mode has its own color map and color range table.
This makes it possible to switch between the two modes at rendering time. Switching to
or from double buffering mode is a change in the color map; hence the color map is sent
to the display device at the next viewport update. This means that the colors displayed in
all viewports may change because of the switch between modes.

12-9 Using Color

Calls to the routines for double buffering are ignored when a monochromatic display
device is used.

GMR_$DBUFF _SET_MODE sets the current mode to single- or double-buffer mode. ~
Subsequent calls to modify the color range table or color map update the color map and ~
range for the current buffering mode only.

GMR_$DBUFF _INQ_MODE returns the current mode, which is either single- or
double-buffer mode.

GMR_$DBUFF _SET_DISPLAY_BUFFER displays the indicated buffer, which is either buffer
1 or buffer 2. This call is ignored if the current mode is single buffering.

GMR_$DBUFF _SET_SELECT_BUFFER indicates which buffer is to be updated: this is either
buffer 1 or buffer 2. In typical double-buffering applications, the buffer to be updated is
not the buffer currently displayed. This call is ignored if the current mode is single
buffering.

GMR_$DBUFF _INQ_SELECT_BUFFER tells you which buffer was selected the last time that
GMR_$DBUFF _SET_SELECT_BUFFER was executed.

12.6 Default Color Maps and Range Tables
The number of planes on a node determine the number of available colors. The number
of colors is also dependent on whether single- or double-buffer mode is used. The
Tables included in this section list the default color maps and range tables for 4 and
8-plane systems and for single- and double-buffering modes. (~

\ '--- '

Table 12-1. Single-Buffer Mode Default Color Map For 4 plane system

Color Table
Index Color Value Visible Color

R G B

0 0 0 0 black
1 255 0 0 red
2 0 255 0 green
3 0 0 255 blue
4 0 255 255 cyan
5 255 255 0 yellow
6 255 0 255 magenta
7 255 255 255 white

8-15 contains Display Manager colors

c\
Using Color 12-10

--- ~--- ~~~~~-~~ ~~~-~-

o

o

o

o

o

Table 12-2. Single-Buffer Mode Default Color Map For 8 plane system .

Color Table
Index Color Value Visible Color

R G B

0 0 0 0 black
1 255 0 0 red
2 0 255 0 green
3 0 0 255 blue
4 0 255 255 cyan
5 255 255 0 yellow
6 255 0 255 magenta
7 255 255 255 white

8-15 contains Display
Manager colors

16-255 0 0 0 black

Table 12-3. Single-Buffer Mode Default Color Range Table
(for both 4 and 8 plane systems)

Color ID Start Range

0 0 1

1 1 1

2 2 1

3 3 1

4 4 1

5 5 1

6 6 1

7 7 1

8 8 1

9 9 1

15 15 1

16-255 7 1

12-11 Using Color

Table 12-4. Double-Buffer Mode, a-Plane System, Default Color Map

c
Color Table

Index Color Value Visible Color

R G B

0 0 0 0 black

1 255 0 0 red

2 0 255 0 green

3 0 0 255 blue

4 0 255 255 cyan

5 255 255 0 yellow

6 255 0 255 magenta

7 255 255 255 white

8-15 contains Display
Manager colors

16-127 0 0 0 black

128 0 0 0 black

129 255 0 0 red

130 0 255 0 green

131 0 0 255 blue

132 0 255 255 cyan

133 255 255 0 yellow

134 255 0 255 magenta

135 255 255 255 white C:
136-143 0 0 0 black

144-151 same pattern as 128-135

152-159 255 0 0 red

160-167 same pattern as 128-135

168-175 0 255 0 green

176-183 same pattern as 128-135

184-191 0 0 255 blue

continued on next page

c'
Using Color 12-12

------- ----------------_._-----_._--_._- - --------------------- ---

Table 12-4.(continued) Double-Buffer Mode, a-Plane System, Default Color Map

o
Color Table

Index Color Value Visible Color

R G B

192-199 same pattern as 128-135

200-207 0 255 255 cyan

208-215 same pattern as 128-135

216-223 255 255 0 yellow

224-231 same pattern as 128-135

o 232-239 255 0 . 255 magenta

240-247 same pattern as 128-135

248-255 255 255 255 white

Table 12-5. Double-Buffer, a-Plane System, Default Color Range

Color ID Start. Range

0 0 1

1 1 1

2 2 1

o 3 3 1

4 4 1

5 5 1

6 6 1

7 7 1

8-255 7 1

o
12-13 Using Color

Table 12-6. Double-Buffer Mode, 4-Plane System, Default Color Map

c
Color Table

Index Color Value Visible Color

R G B

0 0 0 0 black
1 255 255 255 white
2 0 0 0 black
3 255 255 255 white
4 0 0 0 black
5 0 0 0 black
6 255 255 255 white
7 255 255 255 white

8-15 contains Display
manager colors

Table 12-7. Double-Buffer Mode, 4-Plane System, Default Color Range

Color ID Start Range

0 0 1

1-255 1 1

Using Color 12-14

o

o

o

o

Chapter 13

Programming Techniques

This chapter describes techniques for optimizing the performance of application packages
based on 3D GMR. For users of 2D GMR, a comparison of the two graphics packages is
presented. Additionally, for users of GPR, a list of known interactions when using 3D
GMR routines intermingled with GPR routines is presented.

13.1 Using Tags
Routines:

GMR_$TAG
GMR_$TAG_LOCATE
GMR_$INQ_TAG

Tags let you access a data base at a particular place. For example, you may have another
data base running alongside the metafile package. You can use a tag as a pointer in a
structure for accessing information in the specified data base.

Tags are used as pointers to application-specific information within the metafile. The
data stored in the tag is not interpreted or otherwise used by 3D GMR.

GMR_$TAG inserts a comment into the metafile.

GMR_$TAG_LOCATE locates a comment within a specified range of structures and
elements in the current metafile. The routine returns the index of the first element within

13-1 Programming Techniques

the lowest-numbered structure in which the comment is found, and a character count or C'
offset into the tag.

GMR_$TAG_LOCATE uses the wildcard options of the command line parser. For a
description of the command line parser, see the DOMAIN System Command Reference.

GMR_$INQ_TAG returns a requested portion of tag text and the tag-text length for the
current GMR_$TAG element.

13.2 Optimizing Performance
This section describes some techniques for making full use of the speed and efficiency
built into the 3D GMR package.

13.2.1 Creating Hierarchical Metafiles

When you instruct 3D GJ\1R to render a metafile either for display or picking, it performs
a top-down search (a traversal). Therefore, if the metafile has a top-down structure, the
efficiency of the search is greatly improved. The search can disregard entire portions or
subtrees of the metafile. The following is a review of some of the features affected by the
hierarchy of structures:

c

• Viewing all or part of a metafile. For example, if you set up your metafile so ~,

that all text is in one subtree, you can turn off all of the text in a model by (''-_ ...
setting the visibility mask of that subtree.

• Reusing structures by changing transformations (instancing). This decreases the
size of the metafile and allows quick updates of objects used repeatedly.

• Echoing an entire subtree or any portion of it.

• Increasing the speed of refreshing viewports. Clipping is a time consuming part of (--,
viewport refreshing. Entire subtrees can become ineligible for clipping (see "---
Figures 13-1 through 13-3).

The following is a description of how the hierarchy can affect clipping, echoing, and other
rendering techniques that depend on a traversal of the metafile.

Bounding Boxes
The 3D GMR package automatically associates a bounding box with each structure. The
bounding box includes the structure and all structures that it instances. Before a structure
is rendered, its bounding box is tested against the current view volume with three possible
outcomes:

Programming Techniques 13-2

o

o

o

o

o

1. Trivial reject - the bounding box lies entirely outside the view volume.

2. Trivial accept - the bounding box lies entirely inside the view volume.

3. Non-trivial - the bounding box is partly inside and partly outside the view volume.

Trivial reject and trivial accept cases do not require clipping.

Figures 13-1 through 13-3 show the relationship between performance and hierarchy.

Trivial Accept:

High Performance

Non-Trivial:

Low Performance

Figure 13-1. A Single-Structure Metafile

Figure 13-1 shows a flat metafile (only one structure). If the entire metafile is within the
view volume, then high performance is maintained. However, if part of the metafile is
outside the view volume, then each element in the structure must be tested to see whether
it requires clipping.

13-3 Programming Techniques

structure 1

structure 2 structure 3

structure 4 structure 5

structure 7

structure 6

Figure 13-2. A Hierarchical Metafile

Figure 13-2 shows an example of a hierarchical metafile. When part of this file is
outside the view volume, large portions of it are either trivial accept or trivial reject cases
(see Figure 13-3).

Programming Techniques 13-4

o

o

o

o

~ Trivial Accept
Viewport

Trivial Reject·

Non-Trivial

Figure 13-3. Increased Performance

Notice that in Figure 13-3, only three structures are non-trivial cases that must be tested
for clipping. The performance increase is significant over that of the single-structure
metafile shown in Figure 13-1.

13.2.2 Improving Rendering Performance

For fastest performance, either view on a scale selected to ensure that the bounding box
of the model is within the view volume (trivially accepted), or (if closer viewing is
required), use instancing to break the overall model into a number of small pieces. This
ensures that in anyone view, most of the displayed geometry is in structures that can be
trivially accepted (or trivially rejected if they lie entirely outside the view volume).

NOTE: You can retrieve the limits of the bounding box of a structure and its
subtrees using GMR_SSTRUCTURE_INQ_BOUNDS.

13-5 Programming Techniques

Hardware VS. Software
Trivial accept cases lead to even greater performance increases in software than in
hardware. This is because software clipping is serial, but hardware clipping is often done
at the same time as projections. In other words, each software clipping operation is done
separately, and clip testing is performed each time.

Size of the Metafile
Creating hierarchical metafiles can reduce the size of metafiles and therefore potentially
reduce paging. This can be important for very large metafiles.

Viewing Operations
For views in which only a fraction of the total scene is visible, good hierarchical grouping
can greatly increase performance.

Spatial vs. Logical Hierarchy
In general, grouping the hierarchy according to a spatial organization (so that structures
contain elements that are close to each other) results in faster performance than grouping
only by logical association.

13.2.3 Other Tips to Improve Performance

The following are additional suggestions to increase performance:

Inlib a Version of 3D GMR Tailored Specifically for Your Type of Node
To use 3D GMR, you must execute an INLIB command for every process in which you
want 3D GMR to run. For example:

$ INLIB /LIB/GMR3DLIB

This procedure works on any node. However, performance is improved when you use the
version tailored to your node. For example:

$ INLIB

. peb

. 460

. 881

/LIB/GMR3DLIB.peb
/LIB/GMR3DLIB.460
/LIB/GMR3DLIB.881

Any node equipped with a peb (performance enhancement board) .
A DN460 or DN660 .
Any node equipped with 68020 and 68881 processors .

Use NETSTAT -CONFIG to determine whether your node is equipped with a pep, a
68020 or a 68881. For example:

$ NETSTAT -CONFIG

Programming Techniques 13-6

------ -_._._---.. __ ._--

o Maximize the Average Length of Polylines

o

Some applications specify geometry in terms of separate vectors (polylines of length 1).
This adds to the number of points that must be transformed. If two polyline vectors abut,
then the point in the middle must be transformed twice. Hence, specifying geometry as
long polylines results in better performance.

Use Mesh Primitives When Appropriate
If you regularly create mesh-like objects, use mesh primitives. The reason for this is the
same as that for using long polylines instead of many short lines. If you use separate
polygons to represent mesh patches, each corner where two polygons meet is transformed
twice. In the extreme case where four polygons meet at one point, each point must be
transformed four times. In contrast, each point of a mesh is only transformed once.

Avoid Extreme Ratios of Drawing to Instancing
As too little instancing can affect performance, too much instancing before drawing can
also affect performance.

Avoid Naming Structures Unnecessarily
It takes time for 3D GMR to search through the list of names to make sure the name you
create is unique. For large metafiles with many names, this can affect performance.
Instead of assigning a name, use the structure ID that the 3D GMR package assigns.

Use Double Buffering
Double buffering greatly improves the appearance of updating for operations such as
zoom, rotate, and scroll. Instead of redrawing an object line by line, updating is done in a
separate buffer and the entire picture is displayed at once. No performance penalties are
associated with double buffering; it does, however, cut down on the number of colors that
you can use.

o 13.3 3D GMR Restrictions and Limitations

o

The following limitations and restrictions apply to 3D GMR:

1. You cannot write to standard output while the display is acquired by Direct
mode.

2. The maximum size of a 3D GMR metafile depends on the type of node you use to
display the file. DOMAIN nodes and cooresponding file size limitations are shown
in Table 13-1.

13-7 Programming Techniques

Table 13-1. Maximum Space Available to User Programs

DOMAIN Node Maximum Space Available to User Programs

DN460 DN660 240 megabytes

DN330 DN560 53-54 megabytes

DN300 DN320 9 megabytes
DN420DN550
DN600

13.4 Comparison of 20 GMR with 3D GMR
3D GMR and 2D GMR are similar in both concept and implementation. They both create
and operate on metafiles and both suppport structure hierarchy (segment hierarchy in 2D
GMR). The main applications for 2D GMR are in electrical CAD and mapping. The

C~

main applications for 3D GMR are in mechanical CAD/CAM and architecture. (~

\ '

NOTE: Currently you cannot use 2D GMR and 3D GMR routines
simultaneously in the same program. You must teminate one before
you can initialze the other.

Naming Conventions
3D GMR structures and elements are called segments and commands in 2D GMR. The
names structure and element conform to PHIGS standards.

Editing Metafiles
2D GMR only allows you to replace an element of the same type. 3D GMR allows you to
replace an element with any type of element.

Cursors
The use of the cursor is the same in both packages except that 3D GMR uses logical
device coordinates, whereas 2D uses fraction-of-bitmap coordinates.

Color 10
A 2D GMR color ID specifies a particular color. 3D GMR can bind colors to draw values
at display time. This feature establishes how color IDs and intensities are translated to
draw values by calling a set of color routines.

Programming Techniques 13-8

c

/~

U Text

o

o

o

c)

2D GMR allows you to define families of pixel or stroke text fonts. 3D GMR currently
supplies only one text font and you cannot define additional fonts.

Tags
The use of tags is almost identical in the two packages except that 3D GMR has the
following enhancements:

• After locating a tag, you can restart the search for a tag from the same point.

e After finding a tag, you can restart the search without picking up the same tag
again.

13.5 Using 3D GMR and GPR Together
The following is a list of known interactions when using 3D GMR routines intermingled
with Graphics Primitives (GPR) routines and may not include all the possible side affects
of using 3D GMR and GPR together. The list is subject to change as 3D GMR and GPR
continue development.

Initialization
The 3D GMR package must be initialized first. Inititaizing 3D GMR performs an implicit
GPR_SINIT, so if you call GPR_SINIT after GMR_SINIT, the system returns a status code
indicating that GPR has already been initialized.

DM window refresh entry pOints.
The GMR_SINIT routine sets the GPR refresh entry. Calling GPR_SSET_REFRESH_ENTRY

destroys 3D GMR's ability to react to a window move or grow. Any desired refresh action
should be coded in the routine passed to GMR_SDM_REFRESH_ENTRY.

GPR attributes.
The attributes of GPR used internally by 3d GMR should not affect the current attributes
status in the applications use of GPR. This is currently not true for plane masks.

DOMAIN/Dialogue
DOMAlNlDialogue also uses GPR internally. The DOMAIN/Dialogue User's Guide
describes how to use 3D GMR together with DOMAlNlDialogue.

Coordinate conversion
GMR_SCOORD_INQ_MAX_DEVICE returns the maximum device limits available to 3D
GMR. The (rounded) x and y components should correspond exactly to the GPR bitmap
size.

13-9 Programming Techniques

GMR_SCOORD_LDC_TO_DEVICE converts GMR's logical device coordinates to device
coordinates. The GPR y coordinate is calculated by rounding the result of subtracting the
3D GMR "device" y coordinate from the 3D GMR "max device" y coordinate. The GPR x
coordinate is calculated by roundi,ng the 3D GMR "device" y coordinate.

Event processing
GMR uses GPR's event processing internally. This means that a 3D GMR event loop
should not be used within a GPR loop, and vice versa. It is acceptable to use either one.
The 3D GMR coordinate information can be obtained from the GPR coordinates through
the use of the GMR_SCOORD_?* routines. The 3D GMR package does not return the
character indicating which pad or pane had the event.

Programming Techniques 13-10

o

o

o

o

o

Chapter 14

Output

This chapter describes the routines used to generate hard-copy output of the display or of
a particular viewport on printers that support POSTSCRIPT ™ •

14.1 Printing
Routines:

GMR_$PRINT_DISPLAY
GMR_$PRINT_ VIEWPORT

The print routines enable you to get hard-copy output of the entire 3D GMR display or of
a single viewport. This output must be on a printer that supports POSTSCRIPT. For
example, two printers that support POSTSCRIPT are the Genicom Model 3404 dot matrix
printer with optional POSTSCRIPT license and the Apple LaserWriter.

The procedure for creating and printing a POSTSCRIPT file is as follows:

1. At display time, use GMR_$PRINT_DISPLAY or GMR_$PRINT_ VIEWPORT to create a
POSTSCRIPT file.

2. Use the PRF command to output the POSTSCRIPT file to a printer that supports
POSTSCRIPT.

14-1 Output

GMR_$PRINT_DISPLAY creates a POSTSCRIPT file of the entire 3D GMR display. C
GMR_$PRINT_ VIEWPORT creates a POSTSCRIPT file of a single specified viewport. --""

The picture is centered on the paper and fills as much of either the x or y direction as
possible, while maintaining the aspect ratio of the screen display (the ratio of width to
height).

Currently, the picture is always positioned so that the longest side of the paper is vertical.

Examples
The following fragment prepares a POSTSCRIPT file named user/test. plot for output on
8.5 x 11.0 paper:

GMR_$PRINT_DISPLAY('user/test.plot', 14, gmr_$postscript, 8.5, 11.0, status);

The following command prints the POSTSCRIPT file:

$ PRF USER/TEST. PLOT -PR < printername > -TRANS

Samples of the output are shown in Figures 14-1 and 14-2. Figure 14-1 is a single
viewport of Sample3 (see Appendices A, B, and C) created by GMR_$PRINT_ VIEWPORT.

Figure 14-2 shows the entire display (created by GMR_$PRINT_DISPLAY).

The POSTSCRIPT File
The POSTSCRIPT file is an ASClI file. Do not edit the file unless you are familiar with
POSTSCRIPT. For more information about POSTSCRIPT, refer to the POSTSCRIPT
Language Reference (007765).

Figure 14-1. Output of GMR_$PRINT_VIEWPORT

Output 14-2

- ~------- .•. ----

o

new teapot

work plane

0 EJ
~

~ ,[I ~
EJ T

D
0 EJ
~
EJ • .,

0 EJ
EJ
I but t 017 1 or key 17)fE/Vii but t 017 ;:> or key p PICK

Figure 14-2. Output of GMR_$PRINT_DISPL4Y

o
14-3 Output

c

(=

c

o

c'

o

o

Appendix A

Sample Pascal Programs

The programs listed here are also listed in Appendices Band C in FORTRAN and C
respectively. These programs are on-line under the names

....... / domain _ examples/ gmr3d/ sample 1. pas
........ /domain_examples/gmr3d/sample3.pas

Sample1.pas
Sample1.pas is an example of the basic use of the 3D GMR package. The program
performs the following operations:

1. Creates a structure named "sphere" that contains a polyline sphere.

2. Creates a second structure "spheres" and instances "sphere" three times: each
time using a different transformation (scaling, translating, and rotating the sphere)
and attribute class.

3. Assigns the structure "spheres" to the default viewport and draws it.

4. Inquires the configuration of the device and if the device is a color node, redraws
"spheres" using different colors.

5. Exits the program when the user moves the cursor to the shell input pad and
presses RETURN.

Sample3.pas
Sample3.pas demonstrates picking, the use of multiple viewports, and the use of the work
plane for 3D input. The program displays a teapot in four different views and creates
several views that can be edited.

Sample3. pas creates viewports for the menu and prompt.· However, if your application
uses menus, we recommend that you use DOMAINlDialogue to create the menus. Then
you can run 3D GMR within DOMAINlDialogue. See the DOMAIN/Dialogue User's Guide
for more information on DOMAINlDialogue.

A-1

A.1. Sample1.pas

This program creates an instance of a sphere and draws it.

{***}
PROGRAM SPHERE;
{ insert files }

%include '/sys/ins/base.ins.pas';
%include '/sys/ins/error.ins.pas';
%include '/sys/ins/pfm.ins.pas';
%include '/sys/ins/gmr3d.ins.pas';

{ constant variables }

CONST
MAX_SPHERE_SECTION
MAX_CIRCLE_SECTION
PI = 3.1415926535;

{ global variables }

VAR

128;
128;

The number of z sections of the sphere }

The number of lines in a circle in a section

sph ARRAY [0 .. MAX_.SPHERE_SECTION - 1] OF
ARRAY [0 .. MAX_CIRCLE_SECTION - 1]

{ The array for the sphere }

of gmr_$f3_vector_t;
INTEGER;

cir_siz INTEGER;
status status_$t;
str ARRAY [1 .. 100] OF CHAR;
bitmap_size: gmr_$i2_point_t:= [1024,1024];
plane cnt INTEGER:= 8;
config gmr_$display_config_t;
char_name_cnt: INTEGER;
file id gmr_ $file id t· - - - ,
sphere_ id gmr_ $structure id t· - - ,
spheres_ id gmr_ $structure id t· - - ,
mat gmr_ $4x3 _matrix t· - ,
aclass1 gmr_ $aclass - id - t .- 3 ;
aclass2 gmr_ $aclass id_ t .- 5' - ,
scale1 gmr_ $f3 _vector - t .- 0.5, 0.5,
scale2 gmr_ $f3 - vector t .-- 0.2, 0.4,
rotate1 gmr_ $f3 - vector - t .- 1.8, 2.7,
rotate2 gmr_ $f3 _vector - t .- 5.4, 1.7,
trans1 gmr_ $f3 _vector - t .- 0.3, 0.3,
trans2 gmr_ $f3 vector t '- [-0.3, -0.2, - - .-
vpid gmr_$viewport_ id t· - ,
ablock1 gmr_ $ablock_ id t· - ,
ablock2 ·gmr_ $ablock_ id t· - ,
color1 gmr_ $colar - id - t .- 1;
color3 gmr_ $color - id - t .- 3 ;

A-2

{ The actual number of sections
{ The actual number of line/circle
{ status return variable

{ place keeper for ending
{ The bitmap size

{ Number of planes to use

{ Return con fig var for the node
{ Number of chars in a string name
{ The returned file ID
{ The returned structure ID

{ composite spheres ID

{ Matrix used for modelling
{ Special aclasses used in demo

0.5]; { Special scaling for demo}

0.6];{ Nonuniform scaling here}

4.4]; { Rotations about the axis

1.4] ;
0.3];{ Translation for demo

-0.5] ;
{ Viewport ID number

{ Ablock IDs used for demo

colors used

}

}

}

}

}

}

}

}

}

}

}

}

}

c~

---------------- ~~~~~- ----------------~--

(j

o

o

o

color4
color7
full inten
numylanes
size

%EJECT;

gmr_$color_id_t := 4;
gmr_$color_id_t := 7;
gmr_$intensity_t .- 1.0;
gmr_$i_t;
gmr_$i2_point_t;

{ Full intensity

{* }

PROCEDURE check;

function:
checks the status and exits if an error occurs

BEGIN
IF (status.all <> gmr_$operation_ok) THEN
BEGIN

END;
END;

writeln(~status in module example: ~ status.all);
pfm_$error_trap(status);

%EJECT;
{* }

VAR

function:
generates points for a sphere

parameters:

integer) ;

cir_sec - the number of points for determining a circle of latitude
sph_sec - the number of circles for the sphere

i,j
radians

integer;
double;

radius,z : real;

Loop control variables }

Current radian angle for circle }

The circle radius and z component

BEGIN

{ For all sections do }

FOR i := 0 TO sph_sec-1 DO
BEGIN

{ Compute z from -1 to 1 and determine the radius. }

z := -1.0 + 2.0*i/(sph_sec-1);
radius := sqrt(1.0 - (z*z»;

{ For all line segments of the circle compute x and y. }

FOR j .- 0 TO cir_sec - 1 DO
BEGIN

A-3

END;

radians := 2.0*PI*j/cir_sec;
sph[i] [j].x .- radius*cos(radians);
sph[i] [j].y .- radius*sin(radians);
sph [i] [j] . z . - z;

END ;

END; {procedure}

%EJECT;
{* }
PROCEDURE make_sphere_instance (IN cir_sec, sph_sec : integer);

VAR

{

function:
generates an instance of a polyline sphere

parameters:
cir_sec - number of points per section
sph_sec - number of sections of the sphere

pts ARRAY [0 .. 5] of gmr_$f3-point_t;
i,j,m : integer;

BEGIN

array to send to GMR }

loop controls }

{ For all sections, connect adjacent two to form polylines. }

FOR i := 0 TO sph_sec - 2 DO
BEGIN

FOR j := 0 TO cir_sec - 1 DO
BEGIN

pts[O].x := sph[i] [j] .x;
pts[O].y := sph[i] [j] .y;
pts[O].z .- sph[i][j].z;
pts[4].x .- sph[i] [j] .x;
pts[4].y := sph[i] [j] .y;
pts[4].z .- sph[i] [j].z;
m .- j + 1;
IF (m >= cir_sec) THEN

m .- 0;
pts[1] .x .- sph[i] [m].x;
pts[1].y .- sph [i] [m] . y;
ptS[1].z .- sph[i] [m] .z;
pts[2].x .- sph[i + 1] [m] . x;
pts[2] .y .- sph[i + 1] [m] .y;
pts[2] .z .- sph[i + 1][m].z;
pts[3] .x .- sph[i + 1][j].x;
pts[3] .y .- sph[i + 1][j].y;
pts [3] . z . . - sph[i + 1] [j] . z;
gmr_$f3_polyline(5, pts, FALSE,

END;
END;

END; {procedure

A-4

status) ; check;

c

c

c.~

o

o

o

o

o

%EJECT;

{* }

PROCEDURE create_instance
(IN struc_id gmr_$structure_id_t;

IN scale gmr_$f3_vector_t;
IN rotate gmr_$f3_vector_t;
IN trans gmr_$f3_vector_t

) ;

function:
create a modeling transformation and an instance of a structure

VAR
mat1 : gmr_$4x3_matrix_t;

BEGIN
{ do scaling, rotation, and translation
gmr_$4x3_matrix_scale(gmr_$mat_replace,scale,mat1,status);
gmr_$4x3_matrix_rotate(gmr_$mat_post_mult,gmr_$x_axis,rotate.x,mat1,status);
gmr_$4x3_matrix_rotate(gmr_$mat-post_mult,gmr_$y_axis,rotate.y,mat1,status);
gmr_$4x3_matrix_rotate(gmr_$mat_post_mult,gmr_$z_axis,rotate.z,mat1,status);
gmr_$4x3_matrix_translate(gmr_$mat_post_mult,trans,matl,status);
{ create instance }
gmr_$instance_transform(struc_id,mat1,status); check;

END; {PROCEDURE}

%EJECT;
{* }

PROCEDURE draw_view
(IN struc_id

IN vpid
gmr_$structure_id_t;
gmr_$viewport_id_t

) ;

function:
draw a structure in a viewport

BEGIN
gmr_$viewport_set_structure (vpid, struc_id, status); check;
gmr_$viewport_clear(vpid, status); check;
gmr_$viewport_refresh(vpid, status); check;

END; {PROCEDURE

%EJECT;
{* }

BEGIN
{ arbitrarily chose 21 and 25 }

sph_siz .- 21;
cir_siz .- 25;

A-5

{ Initialize the package and try to open the file. }
gmr_Sinit (gmr_Sdirect, stream_Sstdout, bitmap_size,

plane_cnt, status); check;

char_name_cnt := 14;
gmr_$file_open ('example_gmfile', char_name cnt, gmr_$wr, gmr_$lw,

file_id, status);

{ If couldn't open, create a new one. }

IF (status.all <> gmr_Soperation_ok) THEN
BEGIN

gmr_Sfile_create ('example_gmfile', char_name_cnt, gmr_$overwrite,
gmr_S1w, file_id, status); check;

{ create a sphere structure.

char_name_cnt := 6;
gmr_Sstructure_create ('sphere', char_name_cnt,

, status); check;
gen_sphere (cir_siz,sph_siz);
make_sphere_instance(cir_siz,sph_siz);
gmr_Sstructure_close (TRUE, status); check;

{ create a composite of spheres.

char_name_cnt := 7;
gmr_Sstructure_create ('spheres', char_name_cnt, spheres_id

, status); check;
gmr_Sfile_set_primary_structure(spheres_id, status); check;
{ Make the first as is. }

gmr_S4x3_matrix_identity(mat,status);
gmr_$instance_transform(sphere_id,mat,status); check;
{ make the next two with aclass bindings and modeling transformations

gmr_Sattribute_source(gmr_Sattr_line_color, gmr_Sattribute_aclass,
status); check;

gmr_Saclass(aclass1,status); check;
create_instance(sphere_id,scale1,rotatel,transl);
gmr_Saclass(aclass2,status); check;
create_instance(sphere_id,scale2,rotate2,trans2);
gmr_Sstructure_close (TRUE, status); check;

END
ELSE
{ Because the file existed, get the ID of the sphere structure. }

BEGIN

char_name cnt := 7;
gmr_Sstructure_inq_id('spheres' ,char_name_cnt,spheres_id,status); check;

END;

{ Connect the structure to the default viewport and draw it. }

vpid := 1;
draw_view(spheres_id,vpid);

A-6

c

c~

("
'----

o
END.

o

o

o

gmr_$inq_config(gmr_$direct, stream_stdout, num_planes, size, status);
{ Add other colors if not b/w, and redraw. }

IF (num_planes > 1) THEN
BEGIN
gmr_$viewport_set_bg_color(vpid,color3,full_inten, statu s); check;
gmr_$ablock_create(gmr_$default_ablock, ablock1 , status) ; check;
gmr_$ablock_assign_viewport(aclass1,vpid,ablock1,status); check;
gmr_$ablock_set_line_color(ablock1,color4,gmr_$set_value_and_enable,

status); check;
gmr_$ablock_create(gmr_Sdefault_ablock,ablock2,status); check;
gmr_$ablock_assign_viewport(aclass2,vpid,ablock2,status); check;
gmr_$ablock_set_line_color(ablock2,color7,
gmr_$set_value_and_enable,status); check;
draw_view(spheres_id,vpid);
END;

Wait here until carriage return. }

readln(str);

{ clean up and exit. }
gmr_$file_close (TRUE, status); check;
gmr_$terminate (status); check;

A-7

· A.2 Sample3.pas

This sample program demonstrates picking, the use of multiple viewports, and the use of C
work planes for input in 3D. A teapot is displayed in four viewports, each with different ./
viewing parameters.

The user can set the picking level:

level 1 = entire teapot

level 2 = top or base

level 3 = knob, cover, pot, spout, or base

The user can set the highlighting method: bounding box (must be used for black and
white) or color (highlights in a different color).

The user can set the work plane. The cursor position determines two coordinates and the
work plane determines the third coordinate. Once a structure is picked, it can be deleted
or moved. If the move menu item is chosen, the user is prompted to indicate the new
location.

{**}

PROGRAM pick_demo;

%NOLIST;
%INCLUDE '/sys/ins/base.ins.pas';
%INCLUDE '/sys/ins/time.ins.pas';
%INCLUDE '/sys/ins/error.ins.pas';
%INCLUDE '/sys/ins/pgm.ins.pas';
%INCLUDE '/sys/ins/gmr3d.ins.pas';
%INCLUDE'sample3_pts.ins.pas';

%LIST;

%EJECT;

CONST

{ This data file comes on-line with the
the 3D GMR package. It is supplied
specifically for this sample program.

menu_xmin 0.025; {Menu area in Logical Device Coordinates}
menu_xmax 3.0.;
menu_ymin 0.090;
menu_ymax 0.990;

wind_xmin
wind_xmax
wind_ymin
wind_ymax

0.0;
30.0;
0.0;
10.0;

num_buttons = 10;
4' I

{Window for each menu button}

A-8

o

o

o

o

o

VAR
j

status
bitmap_size
num_of_planes

first_msg
menu_item
prev_menu_item

ablock1,
ablock2,
ablock3,
ablock4

integer;
status_$t;
gmr_$i2_point_t .- [1024,1024];
gmr_$i_t;

boolean;
integer;
integer;

ARRAY [1 .. num_buttons] OF name_$pname_t :=
['button1' 'button2' 'button3'
'button4 " 'button5' 'button6'
'button7 " 'buttonS' 'button9'

'button10'] ;

ARRAY [1 .. num_buttons] OF gmr_$string_t.- ['new teapot' ,
'work plane' ,
'move
'delete
'box

'color
'level 1
'level 2
'level 3
'exit '] ;

main_id,
pot_id,
handle_id,
spout_id,
knob_id,
cover_id,
base_id,
top_id,
teapot_id
button_id
message_id

gmr_$structure_id_t;
ARRAY [1 .. num_buttons] OF gmr_$structure_id_t;
gmr_$structure_id_t;

A-9

{ Cursor pattern info: }

cursorJ>os
cur_style
cur_size
cur_offset
curJ>attern

%EJECT;

.-

.-

.-

.-

[0.80, 0.40, 0.00] ;
gmr_$bitmap;
[15, 15] ;
[8,8] ;

{ Viewing parameters to associate with the menu viewport }

button_vpid
menu_vp_Idc
menu_border
menu_window
wind_ymax] ;
menu_normal

ARRAY [l .. num_buttons] OF gmr_$viewport_id_t;
gmr_$f3_limits_t;
gmr_$border_width_t .- [2, 2, 2, 2];
gmr_$f2_limits_t .- [wind_xmin, wind_xmax, wind_ymin,

0.000,0.000, 1.000];

{ Viewing parameters to associate with the teapot viewport}
{ view_vp_ldc sets xmin, xmax, ymix, ymax, zmin, and zmax }

view_vpid
view_vp_ ldc

view_border
tea_window
teaJ>roj

tea_ref

tea normal

ARRAY [1 .. num_views] OF gmr_$viewport_ id t· - ,
ARRAY [1 .. num_views] OF gmr_ $f3 - limits - t .-

[[0.175, 0.575, 0.545, 0.980, 0.0, 1.0] ,
[0.585, 0.975, 0.545, 0.980, 0.0, 1.0] ,
[0.175, 0.575, 0.100, 0.535, 0.0, 1.0] ,
[0.585, 0.975, 0.100, 0.535, 0.0, 1.0]] ;

gmr_$border_width_t := [1, 1, 1, 1];
gmr_$f2_limits_t := [-3.000, 3.000, -3.000, 3.000];
ARRAY [l .. num_views] OF gmr_$projection_t :=

[gmr_$orthographic, gmr_$orthographic,
gmr_$orthographic, gmr_$perspective];

ARRAY [1 .. num_views] OF gmr_$f3_vector_t .­
[[0.000, 0.000, 0.500],
[0.000, 0.000, 0.500],
[0.000, 0.000, 0.500],
[-5.00, 15.00, 5.000]];

ARRAY [1 .. num_views] OF gmr_$f3_vector_t .­
[[0.000, 0.000, -1.00],
[0.000, -1.00, 0.000],

A-10

c~

C'"

o

o

o

o

o

tea hd

%EJECT;

[-1.00, 0.000, 0.000],
[5.000, -15.0, -4.50]];

ARRAY [1 .. num_views] OF gmr_$f3_vector_t .­
[[1.000, 0.000, 0.000],
[0.000, 0.000, 1.000],
[0.000, 0.000, 1.000],
[0.000, 0.000, 1.000]];

ARRAY [1 .. num_views] OF real .­
[-50.0, -50.0, -50.0, 1.0];

ARRAY [1 .. num_views] OF real
[0.0, 0.0, 0.0, 12.0];

ARRAY [l .. num_views] OF real
[50.0, 50.0, 50.0, 50.0];

{ Viewing parameters for message viewport }

message_vpid
message_vp_ldc
cur_msg

gmr_$viewport_id_t;
gmr_$f3_limits_t .- [0.025, 0.975, 0.025, 0.075, 0.0, 1.0];
integer;

{ Colors for defining ranges }

gmr_$rgb_color_t .- [0.00, 0.50, 1.00];
gmr_$rgb_color_t .- [0.00, 0.25, 0.50];

{ Pick information }

cur_pick_path
no_last_pick
last_hl_vp
level
cur_level

gmr_$instance-path_t;
boolean := TRUE;
gmr_$viewport_id_t;
gmr_$i_t := 3;
gmr_$i_t;

{ Cumulative transformation matrix (cmt) for each instance }

base ctm
top_ctm
pot_ctm
spout_ctm
handle_ctm
cover_ctm
knob_ctm
teapot_ctm

%EJECT;

gmr_$4x3_matrix_t;
gmr_$4x3_matrix_t;
gmr_$4x3_matrix_t;
gmr_$4x3_matrix_t;

:-gmr_$4x3_matrix_t;
gmr_$4x3_matrix_t;
gmr_$4x3_matrix_t;
gmr_$4x3_matrix_t;

A-11

{**
*
* CHECK

*
* This routine prints out the error code returned from a GMR call.

*
***}
PROCEDURE check;

BEGIN

IF (status.all <> status_$ok) THEN
error_$print(status);

END;

%EJECT;

{**
*
* INIT

*
* This routine prompts you for the display mode -- borrow or direct.
* It then initializes GMR and inquires the configuration. This determines
* which colors are set and whether double buffer mode can be used.

*
***}

PROCEDURE init;

VAR mode : string;
file_id : gmr_$file_id_t;
display_mode : gmr_$display_mode_t;
picked : boolean;
i : integer;

BEGIN

write('Type B for Borrow mode, D for Direct mode: ');

REPEAT
picked := TRUE;
readln (mode) ;
CASE (mode[l]) OF
('B'),

('b') : display_mode .- gmr_$borrow;
('D') ,

('d') : display_mode .- gmr_$direct;
OTHERWISE

BEGIN
write('INVALID ANSWER. Type B for Borrow mode, D for Direct mode: ');
picked .- FALSE;
END;

A-12

c

o

o

o

o

o

END;

UNTIL (picked
writeln;

TRUE);

gmr_$init(display_mode, stream_$stdout, bitmap_size, 8, status); check;
gmr_$file_create('gmfile.pick', 11, gmr_$overwrite, gmr_$lw, file_id,

status); check;

gmr_$inq_config(display_mode, stream_$stdout, num_of_planes, bitmap_size,
status); check;

END;

%EJECT;

{**
*
* DISPLAY_VIEWPORT

*
*
* This routine displays the viewport with ID vpid.

*
***}
PROCEDURE display_viewport(IN vpid: gmr_$viewport_id_t);

BEGIN

gmr_$viewport_clear(vpid, status); check;
gmr_$viewport_refresh(vpid, status); check;

END;

%EJECT;
{***
*
* INIT_MESSAGE

*
* This routine initializes the menu structure and the viewing paramters for
* the menu viewport Different messages are displayed by "scrolling" the
* message window.

*
***}
PROCEDURE init_message;

VAR
pos

A-13

BEGIN

pos.x .- 3.0;
pos.z .- 0.0;

gmr_Sstructure_create('message', 7, message_id, status); check;
gmr_Stext_color(7, status); check;
gmr_Stext_height(4.0, status); check;
gmr_Stext_slant(0.5, status); check;

pos.y := 3.0;
gmr_Stext('button 1 or key m: MENU button 2 or key p: PICK', 50, pos,

status); check;

pos.y := 13.0;
gmr_Stext('Pick new location in any view with button 2 or key p', 52, pos,

status); check;
pOS.y .- 23.0;
gmr_Stext('Pick point on work plane in any view with button 2 or key p', 59,

pos, status);
pos.y .- 33.0;
gmr_Stext('Must pick structure first.', 26, pos, status); check;
gmr_sstructure_close (TRUE , status); check;

gmr_Sviewport_create(message_vp_ldc, message_vpid, status); check;
gmr_Sviewport_set_border(message_vpid, menu_border, TRUE, 3, 1.0, status);

check;
gmr_Sviewport_set_bg_color(message_vpid, 2, 1.0, status); check;
gmr_Sview_set_view~lane_normal(message_vpid, menu_normal, status); check;

gmr_Sviewport_set_structure(message_vpid, message_id, status); check;

END;

%EJECT;
{**
*
* DISPLAY_MESSAGE

*
* This routine displays message message_no by setting the appropriate window.

*
*
***}
PROCEDURE display_message(IN message_no: integer);

VAR

message_window

A-14

c

o

o

o

o

BEGIN

cur_msg := message_no;
message_window.xmin .- 0.0;
message_window.xmax .- 180.0;
message_window.ymin .- (message_no - 1) * 10.0;
message_window.ymax .- message_window.ymin + 10.0;

gmr_$view_set_window(message_vpid, message_window, status); check;
display_viewport(message_vpid);

END;

%EJECT;

{***
*
* CREATE_MENU_STRUCTURE

*
* This routine creates a structure for each of the buttons in the menu.
* Aclass1 is associated with the structure. Text for each button label is
* inserted into the structure.

*
***}

PROCEDURE create_menu_structure;

VAR
pos
i integer;

BEGIN
pos.x .- 3.0;
pos.y .- 4.0;
pos.z .- 0.0;

FOR i .- 1 TO num_buttons DO

BEGIN

END;

gmr_$structure_create(button_struct_name[i], 8, button_id[i], status);
check;

gmr_$attribute_source(gmr_attr_text_height, gmr_$attribute_aclass,
status); check;

gmr_$attribute_source(gmr_attr_text_slant, gmr_$attribute_aclass,
status); check;

gmr_$attribute_source(gmr_attr_text_color, gmr_$attribute_aclass,
status); check;

gmr_$aclass(l, status); check;
gmr_$text(button_text[i], 10, pos, status); check;
gmr_$structure_close(TRUE, status); check;
END;

A-15

%EJECT;

{**

*
* INIT_MENU_VIEWPORT

*
* This routine creates three ablocks. The first is for unhighlighted menu button
* text, the second for italics (from setting the slant attribute), and the third
* for highlighted menu text (slanted and a different color).

*
* A viewport is created for each button, the button structure is displayed in the
* viewport, and ablockl is assigned to aclassl for each viewport.

*
***}
PROCEDURE init_menu_viewport;

VAR
real;
integer;

BEGIN

menu _vp_ ldc.xmin .- menu _xmin;
menu _vp_ ldc.xmax .- menu _xmax;
menu_vp_Idc.ymin .- 0.90;
menu_vp_ldc.ymax .- 0.98;
menu _vp_ ldc.zmin .- 0.0;
menu_vp_ ldc.zmax .- 1.0;

text_height := 3.0;

gmr_$ablock_create(gmr_$nochange_ablock, ablockl, status); check;
gmr_$ablock_set_text_color(ablockl, 7, gmr_$set_value_and_enable, status);

check;
gmr_$ablock_set_text_height(ablockl, text_height, gmr_$set_value_an~_enable,

status); check;
gmr_$ablock_set_text_slant(ablockl, 0.0, gmr_$ set_value_and_enab Ie , status);

check;
gmr_$ablock_set_text_expansion(ablockl, 0.8, gmr_$set_value_and_enable,

status); check;

gmr_$ablock_create(ablockl, ablock2, status); check;
gmr_$ablock_set_text_slant(ablock2, 0.5, gmr_$set_value_and_enable,

status); check;

gmr_$ablock_create(ablock2, ablock3, status); check;
gmr_$ablock_set_text_color(ablock3, 0, gmr_$set_value_and_enable, status);

check;

A-16

----------_. __ . __ . __ ._----

c

c

o

o

o

o

FOR i .- 1 TO num_buttons DO
BEGIN

END;

gmr_$viewport_create(menu_vp_ldc, button_vpid[i], status); check;
gmr_$viewport_set_border(button_vpid[i], menu_border, TRUE, 3, 1.0,

status); check;
gmr_$viewport_set_bg_color(button_vpid[i], 2, 1.0, status); check;
gmr_$view_set_window(button_vpid[i], menu_window, status); check;

gmr_$view_set_view_plane_normal(button_vpid[i], menu_normal, status);
check;

gmr_$viewport_set_structure(button_vpid[iJ, button_id[i], status); check;
gmr_$ablock_assign_viewport(l, button_vpid[i], ablock1, status); check;

menu_vp_ldc.ymin .- menu_vp_ldc.ymin 0.09;
menu_vp_ldc.ymax .- menu_vp_ldc.ymax - 0.09;

END;

%EJECT;

{**
*
* INIT_TEAPOT_CTM

*
* This routine initializes the ctm (cumulative translation matrix) for each
* structure. Each structure is centered around its origin and its translation
* matrix positions it appropriately.

*
***}

PROCEDURE init_teapot_ctm;

BEGIN

gmr_$4x3_matrix_identity(top_ctm, status);
top_ctm[4] [3] := 0.9;

gmr_$4x3_matrix_identity(knob_ctm, status);
knob_ctm[4] [3] := 0.12;

gmr_$4x3_matrix_identity(spout_ctm, status);
spout_ctm[4] [1] := 0.68;

A-17

spout_ctm[4] [3] := 0.18;

gmr_S4x3_matrix_identity(handle_ctm, status);
handle_ctm[4] [1] .- -0.76;
handle_ctm[4] [3] := 0.18;

END;

%EJECT;

{**
*
* CREATE_TEAPOT_STRUCTURE

*
* This routine creates the tree of structures to be displayed,
* moved, and deleted.
* The tree is the following:

*
* main
*
* teapot
* / \
* base top
* / \ / \
* spout pot handle knob cover
*
*
* Each structure is instanced by its parent structure using its ctm.

*
***}

PROCEDURE create_teapot_structure;

VAR
index, i integer;

BEGIN

gmr_Sstructure_create('pot', 3, pot_id, status); check;
FOR i := 1 TO 96 DO

BEGIN
index := 4 * (i - 1) + 1;
gmr_Sf3-polyline(4, pot [index] , FALSE, status); check;
END;

gmr_Sstructure_close(TRUE, status); check;

gmr_Sstructure_create('handle', 6, handle_id, status); check;
FOR i := 1 TO 32 DO

BEGIN'
index := 4 * (i - 1) + 1;

A-18

c

c

o

o

u

o

o

gmr_$f3-polyline(4, handle [index] , FALSE, status); check;
END;

gmr_$structure_close(TRUE, status); check;

gmr_$structure_create('spout', 5, spout_id, status); check;
FOR i := 1 TO 32 DO

BEGIN
index := 4 * (i - 1) + 1;
gmr_$f3-polyline(4, spout [index] , FALSE, status); check;
END;

gmr_$structure_close(TRUE, status); check;

gmr_$structure_create('knob', 4, knob_id, status); check;
FOR i := 1 TO 32 DO

BEGIN
index := 4 * (i - 1) + 1;
gmr_$f3-polyline(4, knob [index] , FALSE, status); check;
END;

gmr_$structure_close(TRUE, status); check;

gmr_$structure_create('cover', 5, cover_id, status); check;
FOR i := 1 TO 32 DO

BEGIN
index := 4 * (i - 1) + 1;
gmr_$f3-polyline(4, cover [index] , FALSE, status); check;
END;

gmr_$structure_close (TRUE , status); check;

{* The base is made up of the pot, handle, and spout.

gmr_$structure_create('base', 4, base_id, status); check;
gmr_$instance_transform(pot_id, pot_ctm, status); check;
gmr_$instance_transform(handle_id, handle_ctm, status); check;
gmr_$instance_transform(spout_id, spout_ctm, status); check;
gmr_$structure_close (TRUE , status);

{* The top is made up of the cover and the knob.

gmr_$structure_create('top', 3, top_id, status); check;
gmr_$instance_transform(cover_id, cover_ctm, status); check;
gmr_$instance_transform (knob_id , knob_ctm, status); check;
gmr_$structure_close (TRUE , status);

{* The teapot is made up of the base and the top.

gmr_$structure_create('teapot', 6, teapot_id, status); check;
gmr_$instance_transform(base_id, base_ctm, status); check;
gmr_$instance_transform(top_id, top_ctm, status); check;
gmr_$structure_close (TRUE , status);

A-19

*}

*}

*}

{* Main structure which instances teapot -- used for moving

gmr_$structure_create('main', 4, main_id, status); check;
gmr_$instance_transform(teapot_id, teapot_ctm, status); check;
gmr_$structure_close (TRUE , status);

END;

%EJECT;

{**

*

* This routine sets the 'viewing parameters for the specified viewport.

*
***}

PROCEDURE set_view-parms(IN view: integer);

BEGIN

*}

gmr_$view_set_window(view_vpid[view] , tea_window, status); check;
gmr_$view_set_reference-point (view_vpid [view] , tea_ref [view] , status); check;
gmr_$view_set_view-plane_normal (view_vpid [view] , tea_normal [view] , status);

check;
gmr_$view_set_up_vector(view_vpid[view] , tea_up [view] , status); check;
gmr_$view_set-projection_type (view_vpid [view] , tea_proj[view] , status);

check;
gmr_$view_set_hither_distance(view_v~id[view], tea_hd[view] , status); check;
gmr_$view_set_yon_distance (view_vpid [view] , tea_yd[view] , status); check;
gmr_$view_set_view_distance (view_vpid [view] , tea_vd[view] , status); check;

END;

%EJECT;

{**

*
* INIT_VIEWPORTS

*
* This routine initializes each of the four viewports and the viewing parameters
* for each viewport. It associates the main structure with each viewport and
* sets the work plane to be parallel to the view plane passing through the
* origin of the world coordinate system.

*
***}

A-20

c

('

o

C)

o

o

PROCEDURE init_viewports;

VAR

i
origin

BEGIN

integer;
gmr_$f3J)oint_t;

origin.x := ,0.0;
origin.y .- 0.0;
origin.z := 0.0;

FOR i := 1 TO num_views DO
BEGIN

gmr_$viewport_create(view_vp~ldc[iJ, view_vpid[iJ, status); check;
gmr_$view_set_coord_system(view_vpid[iJ, gmr_$coord_left, status); check;
gmr_$viewport_set_border(view_vpid[iJ, view_border, TRUE, 3, 1.0,

status); check;
gmr_$viewport_set_bg_color(view_vpid[iJ, 2, 1.0, status); check;

set_viewJ)arms(i);

END;

END;

%EJECT;

{**
*
* SET_COLORS

*
* This routine initializes the colors for both single- and' double-buffer modes.
* ID 1 text
* ID 2 viewport background
* ID 3 viewport border
* ID 4 menu highlight
* ID 5 pick highlight

*
***}
PROCEDURE set_colors;

BEGIN

A-21

IF num_of-planes > 1 THEN

BEGIN
{ by default, color map location 7 is white, 3 is green}
gmr_$color_set_range 1, 7, 1, status); check;
gmr_$color_set_range 4, 7, 1, status); check;
gmr_$color_set_range 5, 2, 1, status); check;

{ viewport background color }
gmr_$color_set_range (2, 3, 1, status); check;
gmr_$color_define_rgb(2, dark_bg, dark_bg, status); check;.

{ viewport border color }
gmr_$color_set_range (3, 4, 1, status); check;
gmr_$color_define_rgb(3, blue_g, blue_g, status); check;

END

ELSE { monochrome node }

END;

BEGIN
gmr_$color_set_range (2, 0, 1, status); check;
END;

%EJECT;

{**

*
* SET_CURSOR_AND_INIT_INPUT

*
* This routine enables input for the spacebar (through gmr_$keystroke), the
* mouse, bitpad puck, or touchpad (through gmr_$locator) and the mouse or bitpad
* puck button (through gmr_$buttons). The cursor is defined, set to an initial
* position, and set active.

*
***}
PROCEDURE set_cursor_and_init_input;

BEGIN

gmr_$input_enable (gmr_$keystroke , [CHR(O) .. CHR(127)], status); check;
gmr_$input_enable (gmr_$locator , [], status); check;
gmr_$input_enable (gmr_$buttons , [CHR(O) .. CHR(127)], status); check;

gmr_$cursor_set_position(cursor-pos, status); check;
gmr_$cursor_set-pattern(cur_style, cur_size, cur_pattern, cur_offset,

status); check;
gmr_$cursor_set_active (TRUE , status); check;

END;

A-22

o

o

o

o

%EJECT;

{**
*
* INIT PICKING

*
* This routine initializes the ablock to be used for highlghting. It sets the
* line color and intensity. It also sets the pick path order, echo method,
* highlight attribute block, and pick aperture.

*
***}
PROCEDURE init-picking;
VAR

i := integer;

BEGIN

gmr_$ablock_create(gmr_$nochange_ablock, ablock4, status); check;
gmr_$ablock_set_line_color(ablock4, 5, gmr_$set_value_and_enable,

status); check;
gmr_$ablock_set_line_inten(ablock4, 1.0, gmr_$set_value_and_enable,

status); check;
FOR i := 1 TO num_views DO

BEGIN

END;

gmr_$viewport_set-path_order(view_vpid[i], gmr_$top_first, status);
check;

gmr_$instance_echo_set_method(view_vpid[i], gmr_$element_hl_bbox,
status); check;

gmr_$viewport_set_hilight_ablock(view_vpid[i], ablock4, status);
check;

gmr_$pick_set_aperture_size(viewpid[i], 0.01, 0.01, 2.0, status);
check;

END;

%EJECT;

{**
*
* FIND_VIEWPORT

*
* Given a point in ldc, this routine determines which viewport (if any) the
* point is in.

*
***}
FUNCTION find_viewport(IN position: gmr_$f3-point_t; OUT vpid :

gmr_$viewport_id_t): boolean;
VAR'

found boolean;

BEGIN

A-23

found := TRUE;

IF «position.x >= 0.175) AND (position.x <= 0.575» THEN
BEGIN
IF «position.y >= 0.545) AND (position.y <= 0.980» THEN

vpid := view_vpid[l]
ELSE IF «position.y >= 0.100) AND (position.y <= 0.535» THEN

vpid := view_vpid[3]
ELSE

found := FALSE;
END

ELSE IF «position.x >= 0.585) AND (position.x <= 0.975» THEN
BEGIN
IF «position.y >= 0.545) AND (position.y <= 0.980» THEN

vpid := view_vpid[2]
ELSE IF «position.y >= 0.100) AND (position.y <= 0.535» THEN

vpid := view_vpid[4]
ELSE

found .- FALSE;
END

ELSE
found := FALSE;

find_viewport .- found;

END;

%EJECT;

{**
*
* PICK

*
* This routine picks a structure (given a point). It highlights the structure
* picked using the current highlighting method (bounding box or ablock).

*
***}

PROCEDURE pick(IN position: gmr_$f3-point_t);

VAR
pick_vpid
pick_index
pick data

BEGIN

pick_index := 1;

gmr_$viewport_id_t;
integer32;
gmr_$pick_data_t;

IF (find_viewport (position, pick_vpid)
RETURN;

IF (no_last-pick = FALSE) THEN

A-24

FALSE) THEN

c·

~
......... _ ••• '",,1

-------------._--

o

o

o

o

o

display_viewport(last_hl_vp);
no_last-pick := TRUE;

gmr_Spick(pick_vpid, position, pick_index, gmr_Spick_data_size, pick_data,
status);

IF «status.all <> gsr_Sno_further-picks) AND
(status.all <> gmr_Soperation_invalid» THEN
BEGIN

END;

check;
gmr_Sins.tance_echo(pick_vpid, level, pick_data.pick-path, status); check;
no_last-pick := FALSE;
last_hl_vp := pick_vpid;
cur-pick-path := pick_data.pick-path;
cur_level .- level;
END;

%EJECT;

{**
*
* GET_POSITION

*
* This routine waits for the user to pick a position in one of the viewports
* using either the second mouse button or the key p. It returns the position
* picked in world coordinates.

*
***}
PROCEDURE get-position(OUT new-pos : gmr_Sf3-point_t);

VAR

position
event
vpid
ch
picked

BEGIN

picked .- FALSE;

REPEAT

gmr_Sf3-point_t;
gmr_Sevent_t;
gmr_Sviewport_id_t;
char;
boolean;

gmr_Sinput_event_wait (TRUE , event, ch, position, status);
IF (status.all <> gmr_Slocator_outside_dev_limits) THEN

check;
IF event = gmr_Slocator THEN

BEGIN
WHILE (event = gmr_$locator) DO

BEGIN

A-25

END;

gmr_Sinput_event_wait(FALSE, event, ch, position, status);
IF (status. all <> gmr_Slocator_outside_dev_limits) THEN check;
END;

gmr_Scursor_set-position(position, status); check;
END;

IF «(event = gmr_Sbuttons) AND (ch = 'b'» OR
«event = gmr_Skeystroke) AND (ch = 'p'») THEN
BEGIN
IF (find_viewport (position, vpid» THEN

BEGIN
gmr_Scoord_ldc_to_work_plane(vpid, position, new_pos, status);

check;

END;

picked .- TRUE;
END;

UNTIL (picked TRUE) ;

%EJECT;

{**
*

* This routine deletes all of the exisitng structures and calls
* create_teapot_structure to create a new teapot. It calls init_teapot ctm to
* initialize each ctm (i.e. no structures are moved). The new teapot is
* displayed in each viewport.

*
***}

PROCEDURE new_teapot;

VAR
i : integer;

BEGIN

gmr_Sstructure_open(main_id, FALSE, status); check;
gmr_Sstructure_delete(status); check;

gmr_Sstructure_open(teapot_id, FALSE, status); check;
gmr_Sstructure_delete(status); check;

gmr_Sstructure_open(base_id, FALSE, status); check;
gmr_Sstructure_delete(status); check;
gmr_Sstructure_open(top_id, FALSE, status); check;
gmr_Sstructure_delete(status); check;

A-26

o

o

o

o

o

gmr_$structure_open(cover_id, FALSE, status); check;
gmr_$structure_delete(status); check;
gmr_$structure_open (knob_id , FALSE, status); check;
gmr_$structure_delete(status); check;

gmr_$structure_open(spout_id, FALSE, status); check;
gmr_$structure_delete(status); check;
gmr_$structure_open(handle_id, FALSE, status); check;
gmr_$structure_delete(status); check;
gmr_$structure_open(pot_id, FALSE, status); check;
gmr_$structure_delete(status); check;

init_teapot_ctm;
create_teapot_structure;
FOR i := 1 TO num_views DO

display_viewport(view_vpid[i]);
no_last_pick .- TRUE;

END;

%EJECT;

{***

*
* MOVE

*
* This routine moves the picked structure to a new position by instancing it
* with a new transformation matrix. This new matrix is the product of two
* matrices. The first is the translation matrix computed from the position
* picked. The second is the inverse of the product of the matrices used to
* instance the structure's parent structures. All four viewports are displayed
* with the structure moved to its new position.

*
*
***}
PROCEDURE move(IN new_pos : gmr_$f3_point_t);
VAR

i
m
m_inv
trans_mat
trans_mat_p
mat_i
BEGIN

integer;
gmr_$4x3_matrix_t;
gmr_$4x3_matrix_t;
gmr_$4x3_matrix_t;
gmr_$4x3_matrix_t;

" gmr_$4x3_matrix_t;

{ Compute product of all matrices used to instance its parent
structures -- m }

FOR i := 1 TO level - 1 DO
BEGIN
gmr_$structure_open(cur_pick-path[i].structure_id, FALSE, status); check;

A-27

gmr_$element_set_index(cur-pick_path[i] . element_index, status); check;
gmr_$inq_instance_transform(cur-pick-path[i] .structure_id, mat_i,

status); check;
gmr_$4x3_matrix_concatenate(mat_i, m, m, status);
gmr_$structure_close (FALSE , status); check;
END;

{ Compute inverse of m -- m_inv }

{ Compute translation matrix from new position -- trans_mat }

{ Instance structure picked with new matrix -- trans_mat * m_inv }

gmr_$structure_open(cur_pick_path[level] .structure_id, FALSE, status); check;
gmr_$element_set_index(cur-pick-path[level] . element_index, status); check;

gmr_$replace_set_flag (TRUE , status); check;.
gmr_$instance_transform(cur_pick-path[level+l].structure_id, trans_mat_p,

status); check;
gmr_$replace_set_flag(FALSE, status); check;

c

gmr_$structure_close (TRUE , status); check; ('

{ Display all four viewports. }

FOR i := 1 TO num_views DO
display_viewport(view_vpid[i]);
no_last-pick .- TRUE;

END;

%EJECT;
{**
*
* DELETE

*
* Delete erases all of the elements in the structure to be deleted.

*
***}

PROCEDURE delete;

VAR
i : integer;

BEGIN

A-28

\
''-...

o

o

o

o

o

gmr_$structure_open(cur_pick-path[cur_level + 1] .structure_id, FALSE,
status); check;

gmr_$structure_erase(status); check;
gmr_$structure_close(TRUE, status); check;

FOR i := 1 TO num_views DO
display_viewport(view_vpid[i]);

END;

%EJECT;

{**
*

* This routine cases on the button picked and performs the appropriate actions.
* If the viewport is to be refreshed, set the display_flag to true. If
* you pick exit, set the end_flag to true.

*
***}

PROCEDURE do_button(IN menu_item: integer; OUT end_flag: boolean);

VAR
i
clock
new_pos

integer;
time_$clock_t;
gmr_$f3_point_t;

BEGIN

clock. low := 125000;
clock. high := 0;

end_flag := FALSE;

CASE menu_item OF

1: {* Display a new teapot. *}
new_teapot;

2: {* Change the work plane. *}
BEGIN
display_message(3);
get-position(new-pos);
FOR i := 1 TO num_views DO

gmr_$coord_set_work_plane (view_vpid [i] , new_pos,
tea_normal[i], status); check;

END;

A-29

3: {* Move the structure/element to new location. *}
IF (no_last-pick) THEN

display_message (4)
ELSE

BEGIN
display_message(2);
get-position(new-pos);
move (new-pos) ;
END;

4: {* Delete an element/structure. *}
IF (no_last_pick) THEN

display_message (4)
ELSE

delete;

5: {* Highlight with a box. *}
BEGIN.
FOR i := 1 TO num_views DO

BEGIN
gmr_Sinstance_echo_set_method(view_vpid[i], gmr_Selement_hl_bbox,

status); check;
END;

time_Swait(TIME_SRELATIVE, clock, status); check;
END;

6: {* Highlight with a ·different color. *}
BEGIN
FOR i := 1 TO num_views DO

BEGIN
gmr_Sinstance_echo_set_method(view_vpid[i] ,

gmr_Selement_hl_ablock,status); check;
gmr_Sviewport_set_highlight_ablock(view_vpid[i], ablock4,

status); check;
END;

time_Swait(TIME_SRELATIVE, clock, status); check;
END;

7: {* Allow picking at level 1, that is, entire teapot. *}
BEGIN
level := 1;
time_Swait(TIME_SRELATIVE, clock, status); check;
END;

.8: {* Allow picking at level 2, that is, base or top. *}
BEGIN
level := 2;
time_Swait(TIME_SRELATIVE, clock, status); check;
END;

9: {* 'Allow picking at level 3, that is pot, spout, handle or cover,
knob. *}

BEGIN

A-30

-----------_._-----_._-._. __ ..

c

o

o

o

o

o

END;

level := 3;
time_Swait(TIME_SRELATIVE, clock, status); check;
END;

10: {* exit *}
end_flag .- TRUE;

END; {case}

%EJECT;

{**
*
* CALC_MENU_ITEM

*
* This routine determines if a menu button is picked and if so, which button.
* It checks the cursor position against the bounds of the menu to accept or
* reject. If the cursor is in the menu, it determines which button by its
* relative position.

*
***}

BEGIN

IF (position.x >= menu_xmin) AND (position.x <= menu_xmax) AND
(position.y >= menu_ymin) AND (position.y < menu_ymax) THEN

menu_item .- num_buttons - TRUNC «(position.y - menu_ymin + 0.01) /
(menu_ymax - menu_ymin» * num_buttons);

END;

%EJECT;

A-31

{**
*

* This routine does the following: When the locator stops moving, it calls
* calc_menu_item to determine if it is on a button. If so, it highlights that
* button (and unhighlights the previous button picked). This is done by changing
* the background color of the viewport and assigning a different ablock to the
* viewport (i.e. change to italics to highlight). If a mouse button or the space
* bar is pushed and the cursor is on the menu, the action processes the
* associated command. After the command is processed, the viewport is refreshed
* if the display flag is set to true.

*
**}
PROCEDURE process_commands;

VAR
end_flag
position
event

boolean;
gmr_$f3J)oint_t;
gmr_$event_t;
char; ch

BEGIN

menu_item := 0;

display_message(l);

REPEAT

gmr_$input_event_wait(TRUE, event, ch, position, status);
IF (status.all <> gmr_$locator_outside_dev_limits) THEN check;

IF event = gmr_$locator THEN
BEGIN

WHILE (event = gmr_$locator) DO
BEGIN

{flush the queue}

gmr_$input_event_wait(FALSE, event, ch, position, status);
IF (status.all <> gmr_$locator_outside_dev_limits) THEN

check;
END;

gmr_$cursor_setJ)osition(position, status); check;
prev_menu_item := menu_item;
calc_menu_item(position, menu_item);

IF (menu~item <> prev_menu_item) THEN
BEGIN
IF (prev_menu_item <> 0) THEN

BEGIN
gmr_$ablock_assign_viewport(l, button_vpid[prev_menu_item],

ablockl, status); check;

A-32

o

o

o

o

display_viewport(button_vpid[prev_menu_item]);
END;

IF (menu_item <> 0) THEN
BEGIN

END;

IF (cur_msg <> 1) THEN
display_message(l);

END;

gmr_$ablock_assign_viewport(l, button_vpid[menu_item] ,
ablock2, status); check;

display_viewport(button_vpid[menu_item]);
E~;

IF «(event = gmr_$buttons) AND (ch = 'a'» OR
«event = gmr_$keystroke) AND (ch = 'm'») THEN

IF (menu_item <> 0) THEN
BEGIN
gmr_$viewport_set_bg_color(button_vpid[menu_item] , 4, 1.0,

status); check;
gmr_$ablock_assign_viewport(l, button_vpid[menu_item] ,

ablock3, status); check;
display_viewport(button_vpid[menu_item]);
do_button (menu_item, end_flag);
gmr_$viewport_set_bg_color(button_vpid[menu_item] , 2, 1.0,

status); check;
gmr_$ablock_assign_viewport(l, button_vpid[menu_item] ,

ablock1, status); check;
display_viewport(button_vpid[menu_item]);
E~;

IF «(event
«event
BEGIN

gmr_$buttons) AND (ch = 'b'» OR
gmr_$keystroke) AND (ch = 'p'») THEN

IF (cur_msg <> 1) THEN
display_message(l);

position.z := 0.0;
pick(position);
END;

UNTIL end_flag = TRUE;

{* flusk the queue *}
gmr_$input_event_wait(TRUE, event, ch, position, status);
WHILE (event = gmr_$buttons) DO

gmr_$input_event_wait(FALSE, event, ch, position, status);
END;

%EJECT;

A-33

{***
*
* CLOSE

*
* Closes the metafile 'gmfile.pick' and terminates gmr.

*
***}

PROCEDURE close;

BEGIN

gmr_$file_close (FALSE , status); check;
gmr_$terminate(status); check;

END;

%EJECT;

{**

*
* MAINLINE

*
***}

BEGIN

init;

set_colors;
set_cursor_and_init_input;

init_message;

create menu structure; init_menu_viewport;
FOR j := 1 TO num_buttons DO

display_viewport(button_vpid[j]);

init_teapot_ctm;
create_teapot_structure;
init_viewports;

FOR j := 1 TO num_views DO
display_viewport(view_vpid[j]);

initJ)icking;

process_com~ands;

close;

END.

A-34

c

C'

o
Glossary

Attribute

Attribute block

o Attribute class

Attribute element

o Bit plane

Bitmap

o
Borrow mode

Bounding box

o

A characteristic of the manner in which a primitive graphic
operation is rendered (for example, line color or text height).

A data structure that holds a collection of attribute values.

A means for referring to a collection of attribute values from
within a metafile. The particular attribute values are defined
in an attribute block. Attribute classes allow you to assign
attributes when rendering structures instead of when building
them.

An element in a metafile that specifies how subsequent
components of the picture are to be drawn and in what colors
and intensities they are to be displayed.

A one-bit-deep layer of a bitmap. On a monochrome
display, displayed bitmaps contain one bit plane. On a color
display, displayed bitmaps may contain more bit planes
depending on the hardware configuration and the number of
bits per pixel.

A three-dimensional array of bits having width, height, and
depth. When a bitmap is displayed, it is treated as a
two-dimensional array of strings of bits, called pixel values.
The color of each displayed pixel is determined by using the
set of bits in the corresponding pixel of the frame-buffer
bitmap as an index into the color table.

One of four 3D GMR display modes. The program borrows
the entire screen from the Display Manager.

A rectangular parallepiped that encloses a structure and all
structures that it instances. The 3D GMR package
automatically maintains a bounding box around each
structure. The bounding box is used to test for clipping,
culling, and echoing.

Glossary-1

Button

Color map

Color map entry

Color map index

Color value

Coordinate systems

Culling

Current element

Current file

Current structure

Device coordinates

A logical input device used to provide a choice from a small
set of alternatives. An example of a physical device of this
type is the selection buttons on a mouse.

A table of color values typically indexed by a pixel value.
Each color value contains red, green, and blue component
values. Each entry is accessed by a color table index.

One location in a color map. Each entry stores one color
value that can be accessed by a corresponding color map
index.

An index to a particular entry in a color map.

The numeric encoding of a color. A color value is stored·· in a
color map entry. Each color value consists of three
component values: the first stores the value of the red
component of the color, the second stores the value of the
green component of the color, and the third stores the value
of the blue component. Each component value is specified as
a real number in the range 0.0 to 1.0, where 0.0 is the
absence of the primary color and 1.0 is the full intensity color.

The five coordinate systems of 3D GMR: modeling
coordinates, world coordinates, viewing coordinates, logical
device coordinates, and device coordinates. See individual
entries.

Limits the display of structures to those that are larger than a
given screen-space area. This is a way of removing structures
from the display that have become too small to be useful (or
too small to be seen clearly).

The element in the current structure currently that you can
inquire about, replace, or delete. When you open a structure,
the first element becomes the current element.

The current element is identified by the element index.

The file in which operations are in progress. The current file
can be changed by selecting another previously opened file or
by opening (creating) an additional file.

The structure currently open for editing.

Used by the particular display device to map the image to the
DM window or screen. The 3D GMR package maps the
modeling coordinates that describe primitive positions and
shapes to device coordinates when it renders the metafile.

Glossary-2

c

c

r '-.-.

c

o

o

o

o

o

Direct mode

Display

Display Manager

Display Manager
window

Display mode

Echo

Element

Element index

File

One of four 3D GMR display modes. The program performs
graphics operations i.n a window borrowed from the Display
Manager. Direct mode allows graphics programs to coexist
with other activities on the screen.

noun - The entire monitor screen. verb - To render.
Displaying a structure implicitly includes displaying any
instances of other structures found in that structure.

The program that manages the display and allocates Display
Manager windows.

One section of the display, provided by the Display Manager.
This window does not include the edges reserved by the
Display Manager.

One of four modes for use of the 3D GMR package, selected
when the 3D GMR package is initialized. See Borrow mode,
Direct mode, Main-bitmap mode, and No-bitmap mode.

A method of visually differentiating elements or structures of
interest from all others. You can acheive this visual signal in
two ways:

1. Redrawing the element or subtree with a different color or
linestyle. For this pupose 3D GMR provides a highlighting
attribute block that can override attributes set by individ­
ual attribute elements or other attribute blocks.

2. Drawing a bounding box around the structure or subtree
containing the element of interest.

An echo lasts only until the next viewport clear/refresh
operation. An echo may result in an incorrect picture because
the echoed object is redrawn over existing geometry.

A single, indivisible component of a structure. Elements are
categorized as primitive elements, attribute elements, instance
elements, and tag elements.

An indicator used to keep track of the elements in a structure.
An element index is like a line number in a text file. It
positions you within a structure so that you can insert, delete,
replace, or copy elements.

See Metafile.

Glossary-3

Font

GM bitmap

Handedness

Hither distance in
world coordinates

Input device

Input event

Instance element

Instance path

Instanced structure

One set of alphanumeric and special characters. A font is
data that graphically describes a set of related character
images.

The bitmap in which the 3D GMR package is initialized. In
direct mode, this is part of the Display Manager window in
which the package was initialized. In borrow mode, this is the
entire current display. In main-bitmap mode, this is a
main-memory bitmap.

The orientation of a coordinate system. In the viewing
coordinate system, handedness controls how the U axis is
related to the V and the N axes and how hither and yon
clipping planes are defined. Two of three axes always
determine the third in a right- or left-handed orthogonal
system.

Used to specify part of the view volume. The N coordinate of
the hither (or near) clipping plane. If the viewing coordinate
system is left-handed, then points with N less than the hither
distance are invisible. If the viewing coordinate system is
right-handed, points with N greater than the hither distance
are invisible.

A device such as a function key, touchpad, or mouse that
enables an operator to provide interactive input to a program.

The result of a user's interaction with a device such as a
keyboard, button, mouse, or touchpad. An event occurs when
input is generated in a window (direct mode) or in the
borrowed display (borrow mode).

An element in a metafile that calls for another structure to be
displayed, with a particular transformation applied. This is
similar to a subroutine call. Instancing allows multiple uses
of a single sequence of elements.

The pathname of an instance of an element. This consists of
a list of ordered pairs (structure ID, element index) that
uniquely identify an element.

Given a hierarchy of structures, a given element can be
instanced many times. An instance path distinguishes
between those multiple elements. An instance path can either
be returned from a pick operation or can be supplied directly
by an application.

The structure referred to by an instance element in another
structure.

Glossary-4

C~

c

(

o

o

o

o

Instancing structure

Intensity

Keyboard

Locator

Logical device
coordina tes

Logical input device

Main-bitmap mode

Mesh element

Metafile

Modeling coordinates

Modeling routines

Multiline element

No-bitmap mode

The structure that contains the instance element that refers to
the instanced structure.

The intensity or brightness used for the display of a particular
element. A real number between 0 and 1 where 0.0 is the
least intense and 1.0 is the most intense.

A logical input device used to provide character or text string
input (e.g., the alphanumeric keyboard).

A logical input device used to specify positions in coordinate
space (e.g., a touchpad, data tablet, or mouse).

Used to define the viewport in which an image is displayed.
These are device independent, allowing the same metafile to
be displayed on different types of DOMAIN nodes.

An abstraction that refers to any of a group of physical input
devices that provide similar input data. For example, the
logical input device "button" can refer to physical buttons on
a mouse, or to physical buttons on a data tablet puck.

One of four 3D G:MR display modes. The program runs in a
bitmap allocated in main memory, without using the display.
This mode allows bitmaps larger than the full display.

A three-dimensional primitive element that draws a mesh.

A device-independent collection of picture data that can be
displayed and edited (also referred to as a file).

Used to specify geometric properties of primitive elements in
a structure. Each structure has its own modeling coordinate
system. Modeling coordinates are also used to rotate,
translate, and scale instanced structures.

Graphics metafile routines used to insert elements into
metafiles or to edit metafiles.

A primitive element that, given N positions, draws N/2
disconnected line segments (see also polyline).

One of four 3D GMR display modes. The program runs
without a main-memory or display bitmap. Viewing routines
may not be performed in this mode. This mode provides the
most efficient way to create a metafile from a data base. In
this mode one cannot monitor a graphics display of the
metafile during construction.

Glossary-5

Open file

Parallel projection

Perspective projection

Any of the files that have been opened during a session and
have not yet been closed. More than one file may be open at
one time.

Represents the metric properties of an object (for example,
distances and angles) at the expense of realism. For
example, receding parallel lines remain parallel giving a
somewhat distorted appearance to the drawing for the casual
viewer. Parallel projection is well suited for working
drawings. There are three types of parallel projection in 3D
GMR: orthographic, plan oblique, and elevation oblique.

Orthographic projection is typically used to show the exact
shape of any side perpendicular to the view plane normal. It
is well suited for rectangular objects. The user typically
creates several orthographic views in order to see the object
from several angles at once (for example, top, front, and
right).

A plan oblique projection is typically used to show the exact
shape of one side of an object and uses a foreshortening ratio
to shorten lines that are perpendicular to that one side. These
shortened lines are always drawn vertically in a plan oblique
projection. The side for which· the shape is preserved is
drawn at an angle (the receding angle) to these vertical lines.
In 3D GMR, lines receding from the viewer (Le., lines
perpendicular to the view plane and extending in the gaze
direction), are drawn vertically downwards on the screen.
The foreshortening ratio of a line is its projected length
divided by its true length.

Elevation oblique is similar to plan oblique in that it also
preserves the shape of one face of the object. Unlike plan
oblique, that face is always shown upright. Lines receding
from the viewer (i.e., lines in the gaze direction), are
foreshortened and drawn at a given angle to the horizontal.
However, receding parallel lines give the illusion of
divergence to the inexperienced viewer.

Elevation oblique is well suited for objects with detail on
mainly one face (for example, a radio). It is also widely used
for building elevations.

Gives a realistic representation of an object as seen from an
observer at a specific position. An object appears smaller the
greater its distance from the observer. Parallel lines converge
at a vanishing point (for example, railroad tracks give the
appearance of converging in the distance).

Glossary-6

c

C~

C~I

o
Pick aperture

Pick list

Pick operation

o Picture

Pixel

Pixel value

C)
Polygon element

Polyline element

Polymarker element

o Primary structure

Primitive element

Reference point

o

Perspective projections are often used for presentation
purposes and in advertising. They do not usually make good
working drawings because it is difficult to judge metric
properties such as distances, sizes, and angles.

The region in logical device coordinate space within which
pick routines search for structures and elements.

An instance path that names an instance of a primitive draw
elements in the metafile that meets a pick criterion.

The process of selecting an instance of a primitive draw
element from among the primitive draw elements in a
viewport. You use the GMR_$PICK routine to select a single
element from a file and to retrieve the path through the
hierarchy of structures to that element.

The entire contents of a file as drawn; it may be larger or
smaller than either the viewport or the bitmap in which the 3D
GMR package is running.

A single element of a two-dimensional displayed image or of
a two-dimensional location within a bitmap.

The set of bits at a two-dimensional location within a bitmap.
A pixel value is used as an index to the color map.

A primitive element that draws a polygon.

A primitive element that, given N positions, draws N-llinked
line segments (see also multiline).

A primitive element that draws a set of markers. A marker is
used to graphically identify a location in modeling coordinate
space.

The structure explicitly assigned to be the logical start of the
file for display purposes. This structure (or any other
structure in the metafile) can be assigned to a viewport for
display along with all of the structures that it instances.

An element in a structure that describes a single least divisible
graphic operation of a stored picture. There are six types of
primitive elements: polylines, multilines, polygons,
polymarkers, mesh, and text.

The point that is the origin of the viewing coordinate system
specified in world coordinates. All scalar viewing parameters
are relative to the reference point. Additionally, for

Glossary-7

Render

Routine

Scan line

Structure

Structure mask

Structure value

Tag element

Temporary structure

Vertical (up) direction

Viewport

View distance
in world coordinates

perspective projections, the reference point is the center of C
projection. .

To produce a visual representation from a non-visual
representation.

A procedure or function that operates on metafiles. The 3D
GMR package is a collection of routines that can edit elements
within metafiles and routines that can affect how elements are
displayed.

A row of pixels; one horizontal line of a bitmap.

A collection of elements in a metafile that can be referred to
as a group. See also current structure.

A number that you assign to a structure to determine if the
structure will be visible and/or pickable in a given vewiport.

A value that you assign to a structure to specify whether it will
be visible and/or pickable in a given viewport.

An element in a metafile that contains a comment. The
comment data can be retrieved by the user, but is ignored
when the file is displayed.

A structure that may be deleted when the file is closed. Useful
for picture data that you want to display but not store (e.g., an
enclosing box or superimposed grid). A temporary structure
is not deleted at file close if it is instanced by a permanent
structure.

Implicitly orients the window on the view plane in terms of the
up vector. The up vector is key in determining the V axis of
the viewing coordinate system. This setting, with the view
plane normal, also implicitly sets the right vector because two
of three vectors determine the third in a right- or left-handed
orthogonal coordinate system.

All or part of the window, excluding its border if one exists.
The viewport is the physical area in the window through which
graphic· output or other processes are visible. Moving the
viewport within the bitmap in which the 3D GMR package is
running does not scale the view.

The signed distance between the reference point and the view
plane, along the direction of gaze. In other words, it is the N
coordinate of the view plane.

Glossary-8

o

View plane

o View plane normal

View volume

o
View window

0

Viewing coordinates

Visibility

o

For an orthographic projection, the results are independent of
view distance since the projection is parallel to the N axis.

For perspective projections, the view distance alters the
divergence of the projection rays between the center of
projection (reference point) and the window bounds of the
view plane. For perspective projections, view distance must
be negative if the viewing coordinate system is right-handed
and positive if the viewing coordinate system is left-handed.

For plan oblique and elevation oblique projections, changing
the view distance slides the projection across the view plane.

The plane in the viewing coordinate system defined by N =
view plane distance. This is the plane in which the view
window is specified.

The direction of the N axis of the viewing coorinate system. It
establishes the orientation in space of the view plane centered
on the origin of the view plane. The view plane normal vector
can have any length but the vector cannot be identically zero.

The set of points in world coordinates between the hither and
yon planes whose projections on the view plane lie within the
view window. For parallel projections, the view volume is a
parallelepiped with a rectangular cross-section. For
perspective projections, the view volume is a frustum; that is,
a truncated pyramid.

A rectangular region of the view plane that determines what
portion of a projected image is displayed. Points in the region
have coordinates satisfying:

umin < U< umax
- -

vmin < v< vmax
-

N = view distance

A three-dimensional coordinate system with axes labeled U,
V, and N. Except for plan oblique projection, the U axis
always corresponds to "right" on the screen and the V axis
always corresponds to "up" on the screen. The N axis points
into or out of the screen, depending on the handedness of the
viewing coordinate system. In a right-handed coordinate
system (default) N points out of the screen. In a left-handed
system N points into the screen.

Determines whether or not a structure will be visible when it
is displayed. Three techniques determine visibility: visibility

Glossary-9

Visibility mask

Visibility range

World coordinates

Yon distance in world
coordinates

mask, visibility range, and name sets. A structure is C
displayed only if it meets the visible range, visible mask, and /
name set criteria.

A means of determining whether a structure is visible at
display time. The structure mask is compared to the
viewport's visibility mask. For the structure to be displayed,
at least one bit must be "1" in both the structure mask and
the viewport's visibility mask.

A range of visible values that is assigned to a viewport. A
structure can be displayed only if the structure value lies
between the specified bounds of the range, including the end
values.

The name given to the modeling coordinate system of a
structure displayed in a viewport. The world coordinate
system is a right-handed, three-dimensional Cartesian
coordinate system.

Used to specify part of the view volume. This value deter­
mines the signed distance of the yon (or far) clipping plane
from the reference point. If the viewing coordinate system is
left-handed, then points with N greater than the yon distance
are invisible. If the viewing coordinate system is
right-handed, points with N less than the yon distance are
invisible.

Glossary-10

--_._ .. _-~---.----------------------

o

o

o

o

o

Index

The letter f means '~and the following page"; the letters If mean "and the following pages". Symbols are
listed at the beginning of the index.

2D GMR
compared to 3D GMR 13-7
(see DOMAiN 2D Graphics Metafile Resource)

3D GMR routines
G:NIR_$4X3_MATRIX_CONCATENATE 5-4
GMR_$4X3_MATRIX_IDENTITY 5-4
GMR_$4X3_MATRIX_INVERT 5-4
GMR_$4X3_MATRIX_REFLECT 5-4
GMR_$4X3_MATRIX_ROTATE 5-4
GMR_$4X3_MATRIX_ROTATE_AXIS 5-4·
GMR_$4X3_MATRIX_SCALE 5-4
GMR_$4X3_MATRIX_TRANSLATE 5-4
GMR_$ABLOCK_ASSIGN_DISPLAY 6-4, 9-13
GMR_$ABLOCK_ASSIGN_ VIEWPORT 6-4, 9-13
GMR_$ABLOCK_COPY 6-8
GMR_$ABLOCK_CREATE 6-5
GMR_$ABLOCK_DELETE 6-8
GMR_$ABLOCK_INQ_FILL_COLOR 6-7
GMR_$ABLOCK_INQ_FILL_INTEN 6-7
GMR_$ABLOCK_INQ_LINE_COLOR 6-7
GMR_$ABLOCK_INQ_LINE_INTEN 6-7
GMR_$ABLOCK_INQ_LINE_TYPE 6-7
GMR_$ABLOCK_INQ_MARK_COLOR 6-7
GMR_$ABLOCK_INQ_MARK_INTEN 6-7
GMR_$ABLOCK_INQ_MARK_SCALE 6-7
GMR_$ABLOCK_INQ_MARK_TYPE 6-7
GMR_$ABLOCK_INQ_TEXT_EXPANSION 6-7
GMR_$ABLOCK_INQ_TEXT_HEIGHT 6-7
GMR_$ABLOCK_INQ_TEXT_INTEN 6-7
GMR_$ABLOCK_INQ_TEXT_PATH 6-7
GMR_$ABLOCK_INQ_TEXT_SLANT 6-8
GMR_$ABLOCK_INQ_TEXT_SPACING 6-8
GMR_$ABLOCK_INQ_TEXT_UP 6-8
GMR_$ABLOCK_SET_FILL_COLOR 6-6
GMR_$ABLOCK_SET_FILL_INTEN 6-6
GMR_$ABLOCK_SET_LINE_COLOR 6-6
GMR_$ABLOCK_SET_LINE_INTEN 6-6
GMR_$ABLOCK_SET_LINE_TYPE 6-6

Index-1

GMR_$ABLOCK_SET_MARK_COLOR 6-6
GMR_$ABLOCK_SET_MARK_INTEN 6-6
GMR_$ABLOCK_SET_MARK_SCALE 6-6
GMR_$ABLOCK_SET_MARK_TYPE 6-6
GMR_$ABLOCK_SET_TEXT_COLOR 6-6
GMR_$ABLOCK_SET_TEXT_EXPANSION 6-6
GMR_$ABLOCK_SET_TEXT_HEIGHT 6-6
GMR_$ABLOCK_SET_TEXT_INTEN 6-6
GMR_$ABLOCK_SET_TEXT_PATH 6-6
GMR_$ABLOCK_SET_TEXT_SLANT 6-6
GMR_$ABLOCK_SET_TEXT_SPACING 6-6
GMR_$ABLOCK_SET_TEXT_UP 6-6
GMR_$ACLASS 6-2
GMR_$ADD_NAME_SET 4-9f
GMR_$ATTRIBUTE_SOURCE 6-2
GMR_$COLOR_DEFINE_HSV 12-4
GMR_$COLOR_DEFINE_RGB 12-4
GMR_$COLOR_HSV_TO_RGB 12-4
GMR_$COLOR_INQ_HSV 12-4
GMR_$COLOR_INQ_MAP 12-7
GMR_$COLOR_INQ_RANGE 12-2
GMR_$COLOR_INQ_RGB 12-4
GMR_$COLOR_RGB_TO_HSV 12-4
GMR_$COLOR_SET_MAP 12-7
GMR_$COLOR_SET_RANGE 12-2
GMR_$COORD_DEVICE_TO_LDC 8-9, 8-9
GMR_$COORD_INQ_DEVICE_LIMITS 8-3
GMR_$COORD_INQ_LDC_LIMITS 8-3
GMR_$COORD_INQ_ WORK_PLANE 10-1
GMR_$COORD_LDC_TO_DEVICE 8-9
GMR_$COORD_LDC_TO_ WORK_PLANE 10-1
GMR_$COORD_LDC_TO_ WORLD 8-9
GMR_$COORD_SET_DEVICE_LIMITS 8-3
GMR_$COORD_SET_LDC_LIMITS 8-3
GMR_$COORD_SET_ WORK_PLANE 10-1
GMR_$COORD_ WORLD_TO_LDC 8-9
GMR_$CURSOR_INQ_ACTIVE 10-3
GMR_$CURSOR...:...INQ_PATTERN 10-3
GMR_$CURSOR_INQ_POSITION 10-3
GMR_$CURSOR_SET_ACTIVE 10-3
GMR_$CURSOR_SET_PATTERN 10-3
GMR_$CURSOR_SET_POSITION 10-3
GMR_$DBUFF _INQ_MODE 12-8
GMR_$DBUFF _INQ_SELECT_BUFFER 12-8
GMR_$DBUFF _SET_DISPLAY_BUFFER 12-8

GMR_$DBUFF _SET_SELECT_BUFFER 12-8
GMR_$DISPLAY_CLEAR_BG_COLOR 9-3
GMR_$DISPLAY_INQ_BG_COLOR 9-3
GMR_$DISPLAY_REFRESH 9-1
GMR_$DISPLAY_SET_BG_COLOR 9-3

Index-2

c

('
".

('

-~-.----------~.--------

o

o

o

o

o

GMR_$DM_REFRESH_ENTRY 9-2
GMR_$DYN_MODE_INQ_DRA W _ENABLE 11-8
GMR_$DYN_MODE_INQ_ENABLE 11-8
GMR_$DYN_MODE_SET_DRA W _METHOD 11-8
GMR_$DYN_MODE_SET_ENABLE 11-8
GMR_$ELEMENT_DELETE 11-5
GMR_$ELE~1ENT_INQ_INDEX 11-2
GMR_$ELEMENT_SET_INDEX 11-2
GMR_$F3_MESH 3-1
GMR_$F3_MULTILINE 3-1
GMR_$F3_POL YGON 3-1
GMR_$F3_POLYLINE 3-1
GMR_$F3_POLYMARKER 3-1
GMR_$FILE_CLOSE 2-8
GMR_$FILE_CREATE 2-8
GMR_$FILE_INQ_PRIMARY_STRUCTURE 2-12
GMR_$FILE_OPEN 2-8

GMR_$INPUT_DISABLE 10-5
GMR_$INPUT_ENABLE 10-5
GMR_$INPUT_EVENT_WAIT 10-7
GMR_$INQ_ADD_NAME_SET 4-9£
GMR_$INQ_ATTRIBUTE_SOURCE 6-2
GMR_$INQ_CONFIG 8-3
GMR_$INQ_F3_MESH 3-1
GMR_$INQ_F3_MULTILINE 3-1
GMR_$INQ_F3_POLYGON 3-1
GMR_$INQ_F3_POLYLINE 3-1
GMR_$INQ_F3_POLYMARKER 3-1
GMR_$INQ_FILL_COLOR 4-4
GMR_$INQ_INSTANCES 5-lf
GMR_$INQ_INSTANCE_TRANSFORM 5-lf
GMR_$INQ_LINE_COLOR 4-4
GMR_$INQ_LINE_TYPE 4-4
GMR_$INQ_MARK_COLOR 4-4
GMR_$INQ_MARK_INTEN 4-7
GMR_$INQ_MARK_SCALE 4-7
GMR_$INQ_MARK_TYPE 4-7
GMR_$INQ_REMOVE_NAME_SET 4-9£
GMR_$INQ_TAG 13-1
GMR_$INQ_TEXT 3-1
GMR_$INQ_TEXT_COLOR 4-8£
GMR_$INQ_TEXT_EXPANSION 4-8£
GMR_$INQ_TEXT_HEIGHT 4-8£
GMR_$INQ_TEXT_INTEN 4-8£
GMR_$INQ_TEXT_PATH 4-8£
GMR_$INQ_TEXT_SLANT 4-8£
GMR_$INQ_TEXT_SPACING 4-8£

Index-3

GMR_$INQ_TEXT_UP 4-8f
GMR_$INSTANCE_ECHO 10-17
GMR_$INSTANCE_ECHO_INQ_METHOD 10-17
GMR_$INSTANCE_ECHO_SET_METHOD 10-17
GMR_$INSTANCE_TRANSFORM 5-1f
GMR_$INSTANCE_TRANSFORM_FWD_REF 5-1f
GMR_$LINE_COLOR 4-4
GMR_$LINE_TYPE 4-4
GMR_$MARK_COLOR 4-4
GMR_$MARK_INTEN 4-7
GMR_$MARK_SCALE 4-7
GMR_$MARK_TYPE 4-7
GMR_$PICK 10-8
GMR_$PICK_INQ_APERTURE_SIZE 10-13
GMR_$PICK_INQ_ CENTER 10-13
GMR_$PICK_INQ_ECHO_METHOD 10-16
GMR_$PICK_INQ_METHOD 10-10
GMR_$PICK_SET_APERTURE_SIZE 10-13
GMR_$PICK_SET_ECHO_METHOD 10-16
GMR_$PICK_SET_METHOD 10-10
GMR_$PRINT_DISPLAY 14-1
GMR_$PRINT_ VIEWPORT 14-1
GMR_$REMOVE_NAME_SET 4-9f
GMR_$REPLACE_INQ_FLAG 11-3
GMR_$REPLACE_SET_FLAG 11-3
GMR_$STRUCTURE_CLOSE 2-9
GMR_$STRUCTURE_COPY 2-9, 11-6
GMR_$STRUCTURE_CREATE 2-9
GMR_$STRUCTURE_DELETE 2-9, 11-4
GMR_$STRUCTURE_ERASE 2-9, 11-6
GMR_$STRUCTURE_INQ_BOUNDS 2-9
GMR_$STRUCTURE_INQ_COUNT 2-9
GMR_$STRUCTURE_INQ_ID 2-9
GMR_$STRUCTURE_INQ_INSTANCES 2-9
GMR_$STRUCTURE_INQ_NAME 2-9
GMR_$STRUCTURE_INQ_OPEN 2-9
GMR_$STRUCTURE_INQ_TEMPORARY 2-11
GMR_$STRUCTURE_INQ_ VALUE_MASK 2-11
GMR_$STRUCTURE_OPEN 2-9
GMR_$STRUCTURE_SET_NAME 2-9
GMR_$STRUCTURE_SET_TEMPORARY 2-11
GMR_$STRUCTURE_SET_ VALUE_MASK 2-11
GMR_$TAG 13-1
GMR_$TAG_LOCATE 13-1
GMR_$TERMINATE 2-6
GMR_$TEXT 3-1
GMR_$TEXT_COLOR 4-8f
GMR_$TEXT_EXPANSION 4-8f
GMR_$TEXT_HEIGHT 4-8f
GMR_$TEXT_INQ_ANCHOR_CLIP 9-14
GMR_$TEXT_INTEN 4-8f

Index-4

c

c

o

o

o

o

o

GMR_$TEXT_PATH 4-8f
GMR_$TEXT_SET_ANCHOR_CLIP 9-14
GMR_$TEXT_SLANT 4-8f
GMR_$TEXT_SPACING 4-8f
GMR_$TEXT_UP 4-8f
GMR_$VIEW _INQ_COORD_SYSTEM 7-8
GMR_$VIEW _INQ_OBLIQUE 7-4
GMR_$VIEW _INQ_PROJECTION_TYPE 7-4
GMR_$VIEW _INQ_REFERENCE_POINT 7-6
GMR_$VIEW _INQ_STATE 7-19
GMR_$VIEW _INQ_TRANSFORM 7-19
GMR_$VIEW_INQ_UP_VECTOR 7-8
GMR_$VIEW _INQ_ VIEW_DISTANCE 7-6
GMR_$VIEW _INQ_ VIEW _PLANE_NORMAL 7-6
GMR_$VIEW _INQ_YON_DISTANCE 7-17
GMR_$VIEWPORT_SET_PATH_ORDER 10-10
GMR_$VIEWPORT_SET_PICK 10-14
GMR_$VIEW_SET YON_DISTANCE 7-16
GMR_$VIEW_SET_COORD_SYSTEM 7-8
GMR_$VIEW _SET_HITHER_DISTANCE 7-16
GMR_$VIEW _SET_OBLIQUE 7-4
GMR_$VIEW _SET_PROJECTION_TYPE 7-4
GMR_$VIEW _SET_PROTECTION_TYPE 7-4
GMR_$VIEW _SET_REFERENCE_POINT 7-6
GMR_$VIEW_SET_STATE 7-19
GMR_$VIEW _SET_TRANSFORM 7-19
GMR_$VIEW _SET_UP _VECTOR 7-8
GMR_$VIEW_SET_ VIEW_DISTANCE 7-6
GMR_$VIEW _SET_ VIEW _PLANE_NORMAL 7-6
GMR_$VIEW _SET_WINDOW 7-16
GMR_$VIEW_SET_YON_DISTANCE 7-16
GMR_$VIEWPORT_CLEAR 8-10
GMR_$VIEWPORT_CREATE 8-10
GMR_$VIEWPORT_DELETE 8-10
GMR_$VIEWPORT_INQ_BG_COLOR 8-10
GMR_$VIEWPORT_INQ_BORDER 8-10
GMR_$VIEWPORT _INQ_BOUNDS 8-10
GMR_$VIEWPORT_INQ_CULLING 9-6
GMR_$VIEWPORT_INQ_GLOBAL_MATRIX 5-4
GMR_$VIEWPORT_INQ_HILIGHT_ABLOCK 10-17
GMR_$VIEWPORT _INQ_INVIS_FIL TER 9-8
GMR_$VIEWPORT_INQ_PATH_ORDER 10-10
GMR_$VIEWPORT_INQ_PICK 10-14
GMR_$VIEWPORT_INQ_PICK_FILTER 10-15
GMR_$VIEWPORT_INQ_REFRESH_STATE 9-3, 11-7
GMR_$VIEWPORT_INQ_STATE 8-10
GMR_$VIEWPORT_INQ_STRUCTURE 2-12
GMR_$VIEWPORT_INQ_ VISIBILITY 9-6
GMR_$VIEWPORT_MOVE 8-10
GMR_$VIEWPORT_REFRESH 8-10, 9-1
GMR_$VIEWPORT_SET_BG_COLOR 8-10

Index-5

GMR_$VIEWPORT_SET_BORDER 8-10
GMR_$VIEWPORT_SET_BOUNDS 8-10
GMR_$VIEWPORT_SET_CULLING 9-6
GMR_$VIEWPORT_SET_GLOBAL_MATRIX 5-4
GMR_$VIEWPORT_SET_HILIGHT_ABLOCK 10-17
GMR_$VIEWPORT_SET_INVIS_FILTER 9-8
GMR_$VIEWPORT _SET _PICK_FILTER 10-15
GMR_$VIEWPORT_SET_REFRESH_STATE 9-3, 11-7
GMR_$VIEWPORT_SET_STATE 8-10
GMR_$VIEWPORT_SET_STRUCTURE 2-12
GMR_$VIEWPORT_SET_ VISIBILITY 9-6

Index-6

c

c~

(-~

''-- .

(

c'

o

o

o

o

A

anchor point
text 9-14

aperture
picking 10-9f

application programs
writing 2-13

architecture
graphics 1-3

attribute blocks 10-17, Glossary-1
change/no change state 6-7
copying 6-8
creating 6-5
deleting 6-8
modifying at display time 6-9
procedures for using 9-13
reading 6-7
routines for modifying 6-6

attribute source flags 6-2
attributes

blocks 6-1
classes 6-1
direct 6-1
elements 1-4, Glossary-1

mixing 6-8
display operations 9-13
instancing 5 - 3
name sets 4-9
polymarker 4-7
text 4-8f

B

background color
displaying 9-3

borrow mode 1-6f, 2-7f, Glossary-1
bounding box

clipping 13-2

button events 10-5

c
Cartesian coordinate system 1-11
clipping 2-5

bounding box 13-2

Index-7

plane 7-11
text 9-14

color 2-4
attribute routines 4-4ff
binding 12-2

sample program 12-5f
using default 4-5
default maps apd ranges 12-10ff
displaying background 9-3
double-buffer 12-8
HSV 12-4
identification number 4-5, 12-2
intensity 12-2
map index 12-3
range 12-2
RGB 12-4

comments
(see tag element)

controlling files 2-8
coordinate systems

device 1-14, 5-5, 8-9, Glossary-2
logical device 1-13, 5-5, 8-9
modeling 1-11, 5-5, 8-9
viewing 1-12, 5-5, 8-9
world 1-11, 5-5, 8-9

copying
attribute blocks 6-8
structures 11-6

Core
(see DOMAIN Core Graphics)

culling 9-6
cursor

controlling 10-3
sample program 10-6

o
data types 1-14

pointer-to-procedure 9-2
default color maps 4-5, 12-10ff
deleting

attribute blocks 6-8
elements 11-5
structures 11-4

device coordinate systems 1-14, 8-3
device independence" 1-5, 1-13
device limits 8-4

logical 8-5
maximum 8-4

direct mode 1-6, 2-7, Glossary-3
display

background color 9-3
mode 1-6
parameters 2-3
refreshing 9-1

displaying structures 9-1
Display Manager window 1-7
DOMAIN 2D Graphics Metafile Resource (2D

GMR) 1-15
DOMAIN Core Graphics 1-15
DOMAIN Graphics Primitives (GPR) 1-15
double buffering 9-4

and performance 13-7
routines 12-8

drawing primitives 3-1
dynamic mode 11-8

E

echoing 10-16f
sample program 10-18f

editing 1-5
dynamic mode 11-8
elements 11-2
metafiles 11-1
reflecting changes 11-7
refresh state 11-7
structures 11-1

elements 1-4
attribute 1-4
deleting 11-5
editing 11-2
erasing 11-6
index 11-2
inserting 11-3
instances 1-4
primitive 1-4
replacing 11-3
selecting 1-9
tag 1-4, 2-3, 13-1

elevation oblique projection 7-5f
events types 10-5

Index-8

F

files
insert 2-13
routines for controlling 2-8

floating point coordinates 1-14
foreshortening ratio 7-5
FORTRAN

pointer-to-procedure data type 9-2
mesh 3-5
point arrays 3-5

G

gaze direction 7-3
GPR

(see DOMAIN Graphics Primitives)
using with 3D GMR 13-9

graphics architecture 1-3

H

handedness 7-2, 7-8, Glossary-4
hierarchy 13-2

logical 13-6
spatial 13-6

highlighting
attribute block 10-17

hither distance 7-2, 7-11, Glossary-4
HSV (see Hue-Saturation-Value)
Hue-Saturation-Value 12-1, 12-4

index
element 11-2, Glossary-3

initializing
3D GMR 2-14
mode 2-5

input operations
routines 10-4

insert files 2-13'
inserting elements 11-3
instance echo 10-17
instance element 1-4, Glossary-4
instancing 5 -1 f

and hierarchy 2-2
mUltiple 2-3
recursive 2-3

intensity 12-2, Glossary-5

c

c

o

o

o

o

o

interactive techniques 10-1

K

keystroke events 10-5

L

LDC 1-13
(see also logical device coordinates)

left-handed system 7-S
limits

device S-4
logical device S-5

locator events 10-5
logical device coordinates 1-13, 10-1
logical hierarchy 13-6

M

main-bitmap mode 1-6, 2-S, Glossary-5
marker 3-3
mask

picking 10-9, 10-14
matrix 5-1
maximum device limits S-4
mesh 3-4

and performance 13-7, Glossary-5
meta files

defined 1-3
editing 11-1
size per node 13-S
size versus performance 13-6

modeling
coordinates 1-11
matrix 5-5
transformations 2-4, 5-5ff

modes
display

borrow 1-6, 2-7
direct 1-6, 2-7
main-bitmap 1-6, 2-S
no-bitmap 1-6, 2-S

dynamic 11-S
insert 11-3
replace 11-3

multilines 3-2

Index-9

N

name sets 4-9
picking 10-15
visibility 9-S

naming structures 2-10
and performance 13-7

no-bitmap mode 1-6, 2-S, Glossary-5

o
optimizing program performance 13-2
orthographic projection 7-5f
output 14-1

p

parallel projection 7-5
parameters

display 2-3
performance

hierarchy 13-2
improving 13-5

perspective projection 7-6
modifying 7 -17

picking 10-Sf
limiting search 10-13
mask 10-14
methods 10-10
path l-S
routines l-S
sample program 10-1Sf
viewport 10-14

plan oblique projection 7-5f
point array

in C 3-5
in FORTRAN 3-5
in Pascal 3-5

pointer-to-procedure data type 9-2
polygons 3-2
polylines 3-2

length vs performance 13-7
polymarkers 3-3

attributes 4-7
primary structure 2-13
primitive elements 1-4
primitives 3-1

routines 3-1
printing 14-1
programming techniques 13-1

projection
parallel 7-5
perspective 7-6

R

receding angle 7-5
recursive instancing 2-3
reference point 7-2, Glossary-7
refreshing viewports 2-5
replacing elements 11-3
restrictions and limitations 13-7
reusing structures 2-5
right-handed system 1-11, 7-8
routines

attribute block 6-4, 9-13
attribute classes 6-2
color 12-1
color attribute 4-4ff
coordinate transformation 8-9
copying 11-6
cursor 10-3
deleting structures and elements 11-4
display 1-5, 1-6, 9-1, 9-13
displaying structure 2-12
double buffering 12-8
drawing primitives 3-1
dynamic mode 11-8
echoing 10-16f
editing 1-5, 11-1
element index 11-2
erasing 11-6
for controlling files 2-8
for controlling structures 2-9
for instancing 5-1f
for picking 10-8
initializing 2-6
input operation 10-4
modeling transformation 5-4ff
perspective projection 7-1 T
refresh state 9-3
refreshing viewport 11-7
structure characteristics 2-11
tag 13-1
terminating 2-6
text attribute 4-8
view volume 7 -11
viewing coordinate system 7-8
viewing parameter 7-1
viewing transformation 7-19
visibility 9-4

work plane 10-1
rubberbanding 11-8

s
sample programs

attribute classes and blocks 6-:-9
building a modeling matrix 5-6ff
changing a view 8-13
color binding 12-5f
creating objects using instancing 5-10ff
initializing 3D GMR 8-12f
moving an object 5-8f
picking and echoing 10-16f
refreshing a viewport 6-12
returning an instance path 10-12f
setting cursor 10-6
sphere 2-15 ff
using mesh 3-8ff
using polyline 3-6ff
using text 4-11
viewing parameters 7-20
work plane 10-2f

selecting elements 1-9
spatial hierarchy 13-6
structures 1-4ff, 2-1

copying 11-6
deleting 11-4
displaying 9-1
editing 11-1
hierarchy 2-5
multiple instancing 2-3
naming 2-10
pick ability 1-8
primary 2-13, Glossary-7
reusing 2-5
routines for characteristics 2-11
routines for controlling 2-9
routines for displaying 2-12
temporary 2-11
visibility 1-8, 9-4

T

tag elements 1-4, 2-3, 13-1
temporary structure 2-11
terminating 3D GMR 2-14
text

attributes 4-8ff
placement 3-5

transformation matrix 5-4

Index-10

c--

o

o

o

o

o

traversal 2-5

u
user defined refresh 9-2
user input 1-8
user interface 1-3
UVN coordinate system 1-12, 7-4, 7-8

v
variables

declaring 2-14
vector cross-product 1-11
vertical (up) direction 7-2, Glossary-8
view 1-7

changing 1-8
coordinates 7-1
distance 7-3, 7-8, Glossary-8
plane 7-3, 7-6, Glossary-9
plane normal 7-3, 7-8ff
volume 7-1, 7-3, 7-11, Glossary-9
window 7-3, Glossary-9

viewing
coordinate system 1-12, 7-4, 7-8

(See also UVN)
parameters 7-1
pipeline 1-9, 5-5, 7-1
transformations 7-19

viewports 1-7, 8-1
creating 8-11
mapping 8-8
moving 1-7
multiple 8-11
picking 10-14
refresh states 11-7
refreshing 2-5
setting bounds 8-10
visibility criteria 9-5
work plane 10-2

visibility 9-4
culling 9-6
mask and range 2-11, 9-6
name sets 4-9, 9-8

w
window

limits 7-5
on viewplane 7-11

Index-11.

window transition events 10-5
work plane 10-1
world coordinates 1-11, 7-1, 10-1

y

yon distance 7-4, 7-11

('
\
'--

c'

