O

O

Programming with DOMAIN
Graphics Primitives

Order No. 005808
Revision 00

Apollo Computer Inc.
330 Billerica Road
Chelmsford, MA 01824

Copyright © 1985 Apollo Computer Inc.
All rights reserved. Printed in U.S.A.

First Printing: July, 1985
Updated: January, 1987

This document was produced using the Interleaf Workstation Publishing Software (WPS). Interleaf and WPS are
trademarks of Interleaf, Inc.

APOLLO and DOMAIN are registered trademarks of Apollo Computer Inc.

AEGIS, DGR, DOMAIN/BRIDGE, DOMAIN/DFL-100, DOMAIN/DQC-100, DOMAIN/Dialogue, DOMAIN/IX,

DOMAIN/Laser-26, DOMAIN/PCI, DOMAIN/SNA, D3M, DPSS, DSEE, GMR, and GPR are trademarks of Apollo
Computer Inc.

Apollo Computer Inc. reserves the right to make changes in specifications and other information contained In this
publication without prior notice, and the reader should in all cases consult Apollo Computer Inc. to determine whether
any such changes have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF APOLLO COMPUTER INC. HARDWARE PRODUCTS AND
THE LICENSING OF APOLLO COMPUTER INC. SOFTWARE CONSIST SOLELY OF THOSE SET FORTH IN THE
WRITTEN CONTRACTS BETWEEN APOLLO COMPUTER INC. AND ITS CUSTOMERS. NO REPRESENTATION OR
OTHER AFFIRMATION OF FACT CONTAINED IN THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO
STATEMENTS REGARDING CAPACITY, RESPONSE-TIME PERFORMANCE, SUITABILITY FOR USE OR
PERFORMANCE OF PRODUCTS DESCRIBED HEREIN SHALL BE DEEMED TO BE A WARRANTY BY APOLLO

COMPUTER INC. FOR ANY PURPOSE, OR GIVE RISE TO ANY LIABILITY BY APOLLO COMPUTER INC.
WHATSOEVER.

IN NO EVENT SHALL APOLLO COMPUTER INC. BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS) ARISING OUT OF
OR RELATING TO THIS PUBLICATION OR THE INFORMATION CONTAINED IN IT, EVEN IF APOLLO COMPUTER INC,
HAS BEEN ADVISED, KNEW OR SHOULD HAVE KNOWN OF THE POSSIBILITY OF SUCH DAMAGES.

THE SOFTWARE PROGRAMS DESCRIBED IN THIS DOCUMENT ARE CONFIDENTIAL INFORMATION AND
PROPRIETARY PRODUCTS OF APOLLO COMPUTER INC. OR ITS LICENSORS.

/TN

SN

~—

UPDATING INSTRUCTIONS

The information in this package supersedes the contents of Programming with DOMAIN
Graphics Primitives, Order Number 005808, Revision 00. To update your manual,
remove and insert the new sheets as listed below. Insert this sheet behind the title
page as a record of the changes.

NOTE: The table of contents and the index will be updated when the
manual (005808) is revised

REMOVE INSERT

Title/Disclaimer Title/Disclaimer
Appendix E (tab divider)
Appendix E
Appendix F (tab divider)
Appendix F

Preface

Programming With DOMAIN Graphics Primitives describes the DOMAIN® graphics primitive
system. This manual shows how to use graphics primitive routines in application programs. For
a detailed description of these routines see the DOMAIN System Call Re frence (Volume I) .

Audience

This manual is for programmers who use the DOMAIN Graphics Primitives to develop
application programs. It is assumed that users of this manual have some knowledge of computer
graphics and have experience using the DOMAIN system.

All the programming examples used in this manual are presented in Pascal with translations into
FORTRAN and C in the appendices. In addition, all the programming examples are also on-line.
You can retrieve an example on-line by

Organization

This manual contains nine chapters and four appendices.

Chapter 1 Presents an overview of the graphics primitives package and a comparison with
other DOMAIN graphics packages.

Chapter 2 Describes display configurations, formats, and the modes within which the
graphics routines can operate.

Chapter 3 Describes the essentials of writing GPR™ application programs.

Chapter 4 Describes how to use GPR drawing and text routines.

Chapter 5 Describes cursor control and input operations.

Chapter 6 Describes the various types of bitmaps and the attribute blocks associated with
them.

Chapter 7 Discusses bitmaps outside display memory. It demonstrates how to use bit-

block transfers to copy information from one bitmap to another or from one
location to another location in the same bitmap.

Chapter 8 Describes color configurations, formats, color maps, and the operation modes
for color graphics.

Chapter 9 Discusses Graphics Map Files.
Appendix A Presents a glossary of graphics terms in relation to the Graphics Primitives
package.

iii Preface

Appendix B Ilustrates the 880 and low-profile keyboard and keyboard charts.

Appendix C Presents the Pascal program examples used in the manual translated into C.

Appendix D Presents the Pascal program examples used in the manual translated into
FORTRAN.

Additional Reading

For information about using DOMAIN Graphics Metafiles, see Programming With DOMAIN 2D
Graphics Metafiles Resource. For information about using the DOMAIN system, see the
DOMAIN System Command Reference Manual and the DOMAIN System User’s Guide. For
information about the software components of the operating system and user-callable system
routines, see the DOMAIN System Call Reference (Volumes I and II). For language-specific
information, see the DOMAIN FORTRAN User's Guide, the DOMAIN Pascal User’s Guide,
and the DOMAIN C User’s Guide. For information about the high-level language debugger, see
the Language Level Debugger Manual. ‘

Preface iv

N

~

)

Documentation Conventions

Unless otherwise noted in the text, this manual uses the following symbolic conventions.

UPPERCASE

lowercase

[]

{}

< >

CTRL/Z

Uppercase words or characters in formats and command descriptions represent
commands or keywords that you must use literally.

Lowercase words or characters in formats and command descriptions represent
values that you must supply.

Square brackets enclose optional items in formats and command descriptions.
In sample Pascal statements, square brackets assume their Pascal meanings.

Braces enclose a list from which you must choose an item in formats and
command descriptions. In sample Pascal statements, braces assume their
Pascal meanings.

Angle brackets enclose a key to be pressed.
The notation CTRL/ followed by the name of a key indicates a control

character sequence. You should hold down the <CTRL> key while typing the
character.

Problems, Questions, and Suggestions

We appreciate comments from the people who use our system. In order to make it easy for you
to communicate with us, we provide the User Change Request (UCR) system for software-related
comments, and the Reader’s Response form for documentation comments.

You can get more information about how to submit a UCR by consulting the DOMAIN System
Command Reference manual. Refer to the CRUCR (Create User Change Request) Shell

command description. You can view the same information on-line by typing:

$ HELP CRUCR <RETURN>

For your comments on documentation, a Reader’s Response form is located at the back of this

manual.

v Preface

TN

O

O

Contents

Chapter 1 Introduction to Graphics Primitives

1.1. Uses of Graphics Primitives
1.1.1. Characteristics of Graphics Primitives

Chapter 2 Displaying Graphics with GPR

2.1. Displaying Graphic Images
2.1.1. Pixels and Pixel Values
2.1.2. Bitmap Dimensions
2.1.3. The Display Controller

2.2. Display Devices

2.3. Generating Images Using a Bit-mapped Raster Scan Device

2.4. Operation Modes

2.5. Selecting an Operation Mode
2.5.1. Borrow-Display Mode
2.5.2. Direct Mode
2.5.3. Frame Mode
2.5.4. No-Display Mode

Chapter 3 GPR Programming Basics

3.1. Writing GPR Application Programs
3.1.1. Insert Files
3.1.2. Variables
3.1.3. Initializing the Graphics Package
3.1.4. Error Reporting
3.1.5. Developing an Algorithm to Perform a Task
3.1.6. Terminating a GPR Session

3.2. Examples Of Initializing GPR
3.2.1. Pascal Example to Initialize GPR
3.2.2. FORTRAN Example to Initialize GPR
3.2.3. C Example to Initialize GPR

Chapter 4 Drawing and Text Operations

4.1. The GPR Coordinate System
4.1.1. Current Position

4.2. GPR Drawing Routines

4.3. Line-drawing Examples
4.3.1. A Program to Draw a Single Line
4.3.2. A Program to Draw Connected Lines
4.3.3. A Program to Draw Disconnected Lines
4.3.4. A Program to Draw an Unfilled Circle

vii

1-1
1-2

2-1
2-2
2-2
2-2
2-2

2-3
2-4
2-4
2-5

2-6

3-1
3-1
3-1
3-2
3-3
3-3
3-3
3-3
3-4
3-5
3-6

4-1
4-2
4-2
4-3
4-4
4-6
4-8
4-10

Contents

4.4. GPR Fill Routines
4.5. Fill Examples
4.5.1. A Program to Draw and Fill a Triangle
4.5.2. A Program to Draw and Fill a Polygon
4.6. A Program to Draw Two Diagonal Lines
4.6.1. Extending the Line-Drawing Program
4.7. A Program to Draw a Simple Design
4.7.1. Extending the Design Program
4.8. Text Operations
4.9. A Program Using Text

Chapter 5 The Cursor and Input Events

5.1. Using Cursor Control
5.2. Implementation Restrictions On The Cursor
5.3. Display Mode and Cursor Control
5.4. Using Input Operations
5.4.1. Event Types
5.4.2. Event Reporting
5.4.3. Input Routine
5.5. A Program That Waits For An Event

Chapter 6 Initial Bitmaps and Attributes

6.1. Bitmap Structure
6.2. Bitmap Locations
6.3. Initial Bitmap Size
6.3.1. Initial Bitmap in Borrow Mode
6.3.2. Initial Bitmaps in Frame Mode
6.3.3. Initial Bitmap in Direct Mode
6.3.4. Initial Bitmap in No-Display Mode
6.4. The Current Bitmap
6.5. Bitmap Attributes
6.5.1. The Current Attribute Block
6.5.2. Creating Attribute Blocks
6.5.3. Making an Attribute Block the Current Attribute Block
6.6. Other Bitmaps
6.6.1. External Bitmaps
6.6.2. Hidden-Display-Memory Bitmaps
6.7. Listing of Bitmap Attributes and Bitmap Attribute Default Values
6.8. Changing Attributes
6.8.1. Retrieving Attributes
6.9. A Program Using Clipping
6.10. A Program To Demonstrate Rubberbanding

Contents viii

4-12
4-13
4-14
4-16
4-18
4-19
4-20
4-22
4-23
4-24

5-1
5-1
5-1
5-2
5-3
5-3
5-4
5-5

6-1
6-1
6-1
6-1
6-2
6-2
6-3
6-3
6-3

6-3
6-4
6-4
6-4
6-4
6-5
6-8
6-9
6-10
6-12

a2

o

O

Chapter 7 Bitmaps and Bit Block Transfers

7.1. Bitmaps In Main-memory, Hidden-display Memory and On Disk
7.1.1. Allocating Bitmaps In Main Memory
7.1.2. Making Main-memory Bitmaps Current
7.2. Hidden-display-memory Bitmaps
7.3. External Bitmaps
7.4. Using Blts With External Bitmaps and Hidden-display Memory
7.4.1. Using a Plane Mask With a BLT
7.4.2. Using Raster Operations With a BLT
7.4.3. Example of a BLT Operation
7.5. Example of A Blt With A Raster Operation
7.6. A Program To Draw A Checker Board
7.6.1. Procedure check __on__disk
7.6.2. Procedure draw __ design
7.6.3. Procedure blt__border
7.6.4. Procedure blt__checker __to_ border

Chapter 8 Color Graphics

8.1. Display Configurations
8.1.1. Two-Board Configuration
8.1.2. Three-Board Configuration
8.2. Displaying Colors On The Screen
8.2.1. The Color Map: A Set of Color Values
8.2.2. The Size of a Color Map
8.2.3. Color Map for Color Displays: 4-Bit and 8-Bit Formats
8.2.4. Color Map for Color Displays: 24-Bit Imaging
8.3. Establishing A Color Map
8.3.1. Using a Color Map
8.3.2. FORTRAN Example to Establish a Color Value
8.3.3. Pascal Example to Establish a Color Value
8.3.4. Modifying a Color Table
8.3.5. Changing Pixel Values
8.3.6. Color Map for Monochromatic Displays
8.3.7. Saving/Restoring Pixel Values
8.4. Using Color Display Formats
8.4.1. Using Imaging Display Formats
8.4.2. Routines for Imaging Display Formats
8.5. Color Zoom Operations
8.6. Color Examples
8.6.1. A Program to Draw a Rectangle and Text in Color
8.6.2. A Program to Draw a Design in Color
8.6.3. A Program to Draw Concentric Circles in Color

ix

7-1
7-1

7-2
7-2
7-3
7-4
7-5

7-5
7-7
7-10
7-11
7-12
7-13

8-1
8-2
8-2
8-3
8-3
8-5
8-5
8-5
8-5
8-7
8-7
8-8
8-9
8-9
8-9
8-9
8-10
8-10
8-10
8-11
8-12
8-13
8-14
8-16

Contents

Chapter 9 Graphics Map Files

9.1. A Graphics Map File
9.2. Insert Files
9.3. Error Messages
9.4. Programming Example
9.4.1. Comments on Programming Example

Appendix A Glossary

Appendix B Keyboard Charts

Appendix C C Programs

Appendix D FORTRAN Programs

Index

Contents X

9-1
9-1
9-2
9-2
9-2

Index~1

\\\\\\

O

Figure 2-1.
Figure 2-2.
Figure 4-1.
Figure 4-2.
Figure 4-3.
Figure 4-4.
Figure 4-5.
Figure 4-86.
Figure 4-7.
Figure 4-8.
Figure 4~9.
Figure 4-10.
Figure 5-1.
Figure 6-1.
Figure 6-2.
Figure 7-1.
Figure 7-2.

Figure 7-3.
Figure 7-4.
Figure 7-5.
Figure 8-1.
Figure 8-2.
Figure 8-3.
Figure 8-4.
Figure B-1.
Figure B-2.
Figure B-3.
Figure B-4.

Illustrations

A Raster Graphic System
DOMAIN Monochrome Display Configurations
A 500 x 500 Bitmap
A Single Line
Connected Lines
Disconnected Lines
A Circle
A Filled Triangle
A Filled Polygon
An "X" Across a Landscape Display
Four Filled Rectangles within a Box
Text On A Square
Cursor Origin Example
Frame Display
Clipping Window On A Bitmap
Information Required for Graphics BLT
BLT Example: Intersection of Source Bitmap, Source Window, Destination
Clipping Window
Example of BLT with Raster Op Code = 1 (Logical "AND")
Checker Board with Border
Border Design
Four Plane Color System
Color Value Structure
From Pixel to Color Map in 24-bit Imaging
Color Zoom
Low-Profile Keyboard Chart - Translated User Mode
Low-Profile Keyboard
880 Keyboard
880 Keyboard Chart - Translated User Mode

2-1
2-3
4-1
4-5
4-7
4-9
4-11
4-15
4-17
4-19
4-21
4-26
5-2
6-2
6-6
7-5
7-6

7-6
7-7
7-7
8-4
8-4
8-6
8-11
B-2
B-3
B-3
B-4

xi Tllustrations

Table 8-1.
Table 6-2,
Table 7-1.
Table 8-1.
Table 8-2.
Table 8-3.
Table 8-4.

Tables

Raster Operations and Their Functions

Raster Operations: Truth Table

GPR_ $OPEN_ BITMAP _ FILE Access Table
Two-Board Configuration for Color Display
Three-Board Configuration for Color Display
Default Color Map for Monochromatic Displays
Default Color Map for Color Displays

xii

6-7
6-8
7-3
8-1
8-2
8-7
8-8

N

Tables

Chapter 1
Q Introduction to Graphics Primitives

This chapter briefly outlines the uses and characteristics of the graphics primitives routines
(GPR). The graphics primitives library is built into your DOMAIN system. The routines
(primitives) that make up the library let you manipulate the least divisible graphic elements to
develop high-speed graphics operations. These elements include lines and polylines, other drawing
operations, text fonts, pixel values, display types, and bitmaps.

The DOMAIN system also provides the DOMAIN Graphics Metafile Resource system and an
optional DOMAIN Core Graphics package.

The DOMAIN Graphics Metafile Resource package (GMR) is a collection of routines that provide
the ability to create, display, edit, and store device-independent files of picture data. The
package provides routines for developing and storing picture data and displaying the graphic
output of that data. The graphics metafile package provides you with the necessary support to
@ build a graphics system "with a memory." The package integrates graphics output capabilities

with file handling and editing capabilities. For a detailed description, see Programming with
DOMAIN 2D Graphics Metafile Resource.

Core, an optional package, which is designed to meet industry standards, provides a high-level

graphics environment in which to build portable graphics application systems. For a detailed
description of Core graphics, see Programming With DOMAIN Core Graphics.

O 1.1. Uses of Graphics Primitives

The graphics primitives include the following capabilities:

e Drawing lines, circles, and rectangles
e Loading text fonts and manipulating text
(\\ e Manipulating graphics with bit block transfers
¢ Filling polygon areas
e Accommodating input operations
e Setting attributes
e Sharing the display with other processes using windows
o Imaging with an extended color range
¢ Storing bitmaps externally.

The GPR package uses the following components of the DOMAIN system.

O e A display

1-1 Introduction to Graphics Primitives

e Display memory
e Any portion of program memory
e A set of graphics primitive routines

e The Display Manager.

1.1.1. Characteristics of Graphics Primitives

Graphics primitives are device-dependent with respect to the display. However, they are
independent of the various display environments. The operating system provides two other sets
of calls to manipulate the display:

Display Manager interface
These program calls, (which begin with PAD), allow you to manipulate pads
and frames to display text. You cannot manipulate graphics using these calls.

Display driver interface
For monochrome displays, there is a lower level of software called the display
diriver (SMD) which can be used to do output to the display. Also, for all
displays, SMD includes the basic support for keyboard input and cursor
manipulation. Most of the display driver calls duplicate functions now
provided by the graphic primitives package.

For a description of the calls to the Display Manager interface and the display driver interface see
the Programming With General System Calls.

GPR routines are independent of the display environments in two ways. First, you can run a
program which uses GPR routines on any of the displays.

Second, graphics primitives routines can issue calls to either the Display Manager or the display
driver. Therefore, if you use the graphics primitives routines, you can easily change program
execution from one display mode to another by changing one option in the initialization routine

GPR _ $INIT.

Introduction to Graphics Primitives 1-2

O

Chapter 2
Displaying Graphics with GPR

This chapter describes display configurations, formats, and the modes within which the graphics
routines can operate.

2.1. Displaying Graphic Images

DOMAIN displays are bit-mapped, raster-scan devices consisting of three main components:
display memory, also called a frame buffer, which stores a matrix of pixel values for images to be
displayed; a display monitor that can be monochrome or color; and a display controller that
converts digital data stored in frame buffers to video signals that can be displayed on the
monitor. See Figure 2-1.

bitmap

0000001000000
0000010100000 .
0000100010000 scan line
0001111111000
0010000000100
0100000000010
1000000000001

monitor

display
controller

Figure 2-1. A Raster Graphic System

2-1 Displaying Graphics with GPR

2.1.1. Pixels and Pixel Values

Within a bitmap, an image is stored as a matrix of pixel values. Each pixel value represents one
addressable picture element or pixel in an array of pixels, which is a raster. For monochrome
displays, possible pixel values are 0 and 1. A pixel value of 0O indicates that a particular pixel
should not be illuminated on the screen. A pixel value of 1 indicates that a particular pixel
should be illuminated. Obviously, only one bit is needed to store a pixel value for monochromatic

displays. Pixel values for color displays require more than one bit and are discussed in Chapter
8.

2.1.2, Bitmap Dimensions

Bitmap width is represented by an x coordinate ranging from zero on the left to a maximum
defined for the bitmap on the right. Bitmap height is represented by a y coordinate ranging from
0 on the top to a maximum defined for the bitmap on the bottom, in other words - upper-left-
hand origin.

Bitmap depth specifies the number of bits of information associated with each pixel value. If a
bitmap stores one bit of information for each pixel, as it does for a monochrome display, it need
only be one plane deep. If more than one bit of information must be stored for each pixel, the
bitmap is several planes deep: one plane for each bit of information. A color display that stores
four bits of information for each pixel will use a bitmap four planes deep. A pixel value that uses
four bits can have 16 unique values.

Chapter 6 contains more detailed information about bitmaps.

2.1.3. The Display Controller

The display controller is the interface between the bitmap and the display monitor or screen. Its
function is to read successive bytes of data from the bitmap and convert this data (0’s and 1’s) to
appropriate video signals which illuminate the pixels. To keep an image displayed, the display
controller must continually scan the bitmap one row at a time converting and sending image
information to the display. Each row of the bitmap is called a scan line.

2.2. Display Devices

Each Apollo## display device has either a monochrome display or a color display. Currently
there are two types of monochrome display devices and two color display devices.

Monochromatic Display Devices

The two types of monochromatic display devices are:
e Monochromatic portrait display
e Monochromatic landscape display.
The monochromatic portrait display is either black and white or black and green. The landscape

display is black and white. Each of these has a display memory 1024 pixels wide and 1024 pixels
high; however, they differ in the portion of display memory that is visible. The portrait visual

Displaying Graphics with GPR 2-2

TN

display is 800 pixels wide and 1024 pixels high, while the landscape visual display is 1024 pixels
wide and 800 pixels high. The portion of display memory that is not visible is called hidden-

Q display memory (HDM). Figure 2-2 shows the two monochromatic display configurations. Color
display configurations are covered in chapter eight.

PORTRAIT DISPLAY LANDSCAPE DISPLAY
800 PIXELS 224 PIXELS 1024 PIXELS
1024 VISIBLE VISIBLE
C) PIXELS DISPLAY DISPLAY 800 PIXELS

—4— HIDDEN
DISPLAY
I

224 PIXELS

Q Figure 2-2. DOMAIN Monochrome Display Configurations

2.3. Generating Images Using a Bit-mapped Raster Scan Device

Images are generated on raster-scan devices by computing the position of each pixel to be
illuminated in a raster and then illuminating it. This would be an enormous task without GPR
routines designed to do most of the work. For example, you can draw a line by calling a GPR
line-drawing routine. You supply the two end points of the line and GPR illuminates the correct

O pixels between the two end points. Geometric shapes are drawn in similiar fashon. You supply
the coordinates of the figure to the appropriate GPR routine, and GPR does the rest.

2.4. Operation Modes

Displaying graphics on a screen or storing graphics in memory is the objective of DOMAIN
graphics programs. The speed with which this process is accomplished and your ability to
perform multiple tasks on your node rely on the operation mode you choose.

GPR has four operation modes. Three of them allow you to display graphics on a screen; one is
used for storing graphic images in memory.

2-3 Displaying Graphics with GPR

The four operation modes are the following:

e Borrow mode and borrow-nc mode
e Direct mode

e Frame mode

e No display mode.

Your choice of operation mode will depend on the advantages of each in relation to your graphics
program and the display environment.

2.5. Selecting an Operation Mode

Programs select an operation mode when they initiate a graphics session with GPR__ $INIT.
Most of the graphics routines can operate within any of these modes, but there are some
exceptions. For example, you cannot use clipping in frame mode.

2.5.1. Borrow-Display Mode

In borrow-display mode, the program borrows the full screen and the keyboard from the Display
Manager and uses the display driver directly through GPR software. All Display Manager
windows disappear from the screen. The Display Manager continues to run during this time.
However, it does not write the output of any other processes to the screen or read any keyboard
input until the borrowing program returns the display. Input typed ahead into input pads may
be read while the display is borrowed. Borrow-display mode is useful for programs that require
exclusive use of the entire screen.

A variant of borrow-display mode, borrow-nc ("no clear") mode, allows you to allocate a bitmap
in display memory without setting all the pixels to zero. It is identical to borrow-display mode,
except that it does not clear the screen. This is useful for copying what is on the screen into a file

to save for later display or printing.

Advantages

¢ Borrow display mode usually provides the best graphics performance.
e You have the entire screen to use as a display area.
e You can use hidden-display memory.

e Borrow _nc mode gives you the option of not clearing the bitmap on initialization.

Displaying Graphics with GPR 2-4

e

O

Disadvantage

e You lose the features offered by the Display Manager while your program is running.
For example, you cannot have multiple windows displayed.

2.56.2. Direct Mode

Direct mode is similar to borrow-display mode, but the program borrows a window from the
Display Manager instead of borrowing the entire display. The Display Manager relinquishes
control of the window in which the program is executing, but continues to run, writing output
and processing keyboard input for other windows on the screen. Direct mode offers a graphics
application the performance and unrestricted use of display capabilities found in borrow-display
mode and, in addition, permits the application to coexist with other activities on the screen.
Direct mode should be the preferred mode for most interactive graphics applications.

In direct mode, the program repeatedly acquires and releases the display for brief periods for
graphics operations. This gives the advantages of speed of operation while preserving the Display

Manager’s control over display functions such as changing the window size and scrolling.

Advantages

e Performance is almost as good as in borrow-display mode.
e You retain the use of the Display Manager.
e You can use any rectangular part of the screen.

Disadvantages k

e You must synchronize with the Display Manager. (Calls are provided.)

e You must redraw the window when the screen is redrawn.

2.5.3. Frame Mode

Alternately, a graphics program that executes within a frame of a Display Manager pad calls the
Display Manager, which interacts with the display driver. A graphics program executes more
slowly in frame mode than in borrow-display or direct mode, but frame mode offers some
additional Display Manager features:

e A frame provides a "virtual display" that can be larger than the window, allowing
you to scroll the window over the frame.

e Frame mode makes it easier to perform ordinary stream I/O to input and transcript
pads.

e In frame mode, the Display Manager reproduces the image when necessary.

e The program can leave the image in the pad upon exit so that users can view it at
some later time.

Frame mode currently places some restrictions on the GPR operations that are allowed. The
programmer’s reference describes the individual routines, including their restrictions.

2-5 Displaying Graphics with GPR

Advantages

e Fasy to use: you take care of the graphics calls, and the Display Manager takes care of
everything. It is appropriate for simple, noninteractive applications.

e Synchronization with other processes is handled by the DM.
e Reserves an area within a pad for graphics display.

o Allows you to scroll an image out of view. The Display Manager redraws the image
when it is pushed or popped.

e Allows use of high-level I/O calls such as READ and WRITE.

Disadvantages

e Graphics programs run much slower than in the other modes.
e There are restrictions on the operations on bitmaps in a frame.

e "Player piano" effect: when an image has had many changes since the last call to
GPR _$CLEAR, all such changes are played back. This playing back, which occurs
when the window is redrawn for any reason, may take a noticeable period of time to
complete.

2.5.4. No-Display Mode

When the program selects no-display at initialization, the GPR initialization routine allocates a
bitmap in main memory. The program can then use GPR routines to perform graphic operations
to the bitmap, bypassing any screen display entirely. Applications can use no-display mode to
create a main memory bitmap, then call graphics map file routines(GMF calls) to write to a file,

or send the bitmap to a peripheral device, such as a printer.

Advantages

e You can perform graphic operations to the bitmap while bypassing the display.
e You can create bitmaps larger than the display.

Disadvantages

e Images are not visible on the display.

e You can not use the display after initializing GPR in no-display mode until you
terminate GPR and re-initialize it in one of the other modes.

Displaying Graphics with GPR 2-6

VN

\\\\\

Chapter 3
GPR Programming Basics

This chapter describes the essentials of writing GPR application programs.

3.1. Writing GPR Application Programs

Developing GPR application programs requires several steps. The following subsections describe
the steps needed to produce an application program. Some GPR routines are presented in these
sections along with brief explainations. For a complete description of these routines, see the

DOMAIN System Call Re ference (Volume I).

3.1.1. Insert Files

In order to write GPR application programs, you must include two insert files. The first one
defines certain commonly used system declarations. It must be one of the following:

FORTRAN Pascal C
/sys/ins/base.ins.ftn /sys/ins/base.ins.pas /sys/ins/base.ins.c

The second insert file allows you to use GPR routines. It must be one of the following:

FORTRAN Pascal C
/sys/ins/gpr.ins.ftn /sys/ins/gpr.ins.pas /sys/ins/gpr.ins.c

At times you may need other insert files. For example, if you use pad calls within your GPR
program, you have to include the appropriate pad insert file. You may also want to create your
own insert files to facilitate variable declarations. If you consistently use a particular set of
variables, you can put them in an insert file and then include the insert file in any program that
uses those variables.

Many of the programming examples used in this manual include the following insert file:

FORTRAN Pascal C
/sys/ins/time.ins.ftn /sys/ins/time.ins.pas /sys/ins/time.ins.c

This enables the programs to use the TIME _$WAIT routine, which keeps an image displayed on
the screen for a specified period of time.

3.1.2. Variables

Variables used as parameters in GPR calls must be declared to correspond to the data types used
on our system. The documentation listed with each GPR call defines the data-types of the
parameters. In cases where declaring the necessary variables might not be straightforward, for
example record types or enumerated types in FORTRAN, you are directed to the data-type
section at the beginning of the GPR calls in the DOMAIN System Call Refrence (Volume I).

3-1 GPR Programming Basics

3.1.3. Initializing the Graphics Package

T
\
To execute GPR calls in an application program, you must first initialize the package. You do N
this by calling the routine GPR _ $INIT in the application program. You are allowed to perform
non-GPR operations before initializing GPR, but you cannot execute any GPR routines except
GPR _ $INQ__ CONFIG until GPR is initialized.
The form of GPR__$INIT is the following:
GPR_$INIT(op_mode, unit, size, hi_plane_id, init_bitmap_disc, status)
Input Parameters
op__mode The operation mode for the application program. The possible values are the
following:
\
GPR_$BORROW (/
GPR_$BORROW_NC N
GPR_$DIRECT
GPR_$FRAME
GPR_$NO_DISPLAY
unit The value for this parameter depends on the operation mode. The possible
operation modes and the corresponding values that unit can hold are the
following: S
Operation Mode UNIT
GPR_$BORROW 1
GPR_$BORROW_NC 1
GPR_$FRAME Stream id of the window
GPR_$DIRECT or window pane in which the
graphics is to be performed. -
(
GPR_$NO_DISPLAY Any value R
size The width and height of the initial bitmap, in pixels.
hi__plane__id The identifier of the bitmap’s highest plane. Valid values are the following:
For display memory bitmaps:
0 For monochrome displays (1 plane)
0 - 8 For color displays in two-board configuration
(1 - 4 planes)
0 - 7 For color displays in three-board configuration
(1 - 8 planes).
For main memory bitmaps:
,/_\\
0 - 7 for all displays (1 - 8 planes). N

GPR Programming Basics 3-2

Output Parameters

init_bitmap __desc
A unique descriptor for the initial bitmap. All bitmaps have descriptors.

status The standard system error indicator.

3.1.4. Error Reporting

All GPR calls return a 32-bit status code, which indicates whether or not the call executed
successfully. If the call succeeded, the value of the status code is STATUS _$OK (0). If the call
failed, the returned value gives the nature of the failure and where it occurred.

The GPR insert file lists all the possible error codes. Error Reporting is covered in detail in the
Programming With General System Calls.

3.1.5. Developing an Algorithm to Perform a Task

The next step in the development of a GPR application program is to prepare an algorithm using
GPR routines to accomplish the task at hand. See Chapter 4 for some sample algorithms.

3.1.8. Terminating a GPR Session

Use GPR_$TERMINATE to terminate your GPR session . You can initialize and terminate
GPR as often as you like within a graphics program. For example, you may initialize GPR in
borrow mode and perform some task, terminate GPR, re-initialize GPR in direct mode, and
perform some other task.

3.2. Examples Of Initializing GPR

Three language-specific examples to initialize GPR in borrow mode with a bitmap having
dimensions of 500 x 500 are listed in this section.

3-3 GPR Programming Basics

3.2.1. Pascal Example to Initialize GPR

277N
\
Program example;
{insert files}
%nolist;
%include ’/sys/ins/base.ins.pas’;
%include ’/sys/ins/gpr.ins.pas’;
%list;
var
size . gpr_$offset_t; {size of the initial bitmap}
init_bitmap : gpr_$bitmap_desc_t; {descriptor of initial bitmap}
mode : gpr_$display mode_t; <{operation mode}
N
hi_plane_id : gpr_$plane_t; <{highest plane in bitmap}
delete_display : boolean; {This value is ignored in borrow mode.}
status : status_$t. {error code}
begin
size.x_size := 500; g
size.y size := 500; "
hi_plane_id := O; {bitmap with one plane}
gpr_$init(mode,1,size,hi_plane_id,init_bitmap,status);
gpr_$terminate(delete_display,status);
end.
=
N
TN

GPR Programming Basics 3-4

O

3.2.2. FORTRAN Example to Initialize GPR

Program example

%include '/sys/ins/base.ins.ftn’
%include ’/sys/ins/gpr.ins.ftn’

integer*2 size(2) <{array to hold the size of}
{the initial bitmap}

integer*4 init_bitmap {descriptor of the inital bitmap}

integer+*2 mode {data structure to hold the operation}
{mode}

integer*2 hi_plane_id {highest plane number in bitmap}
integer*4 status {error code}

logical delete_display {This value is ignored in borrow mode.}

size(1) = 500

size(2) = 500

mode = gpr_$borrow

hi_plane_id = 0

call gpr_$init(mode,1,size,hi_plane_id,init_bitmap,status)

call gpr_$terminate(delete_display,status)

end

3-5 GPR Programming Basics

3.2.3. C Example to Initialize GPR

/* Program example */

#nolist

#include "stdio.h"

#include "/sys/ins/base.ins.c"
#include “/sys/ins/gpr.ins.c"
#list

gpr_$offset_t size; /% Size of initial bitmap */

linteger init_bitmap; /*descriptor of initial bitmap. */

gpr_$display mode_t mode; /* operation mode */

gpr_$plane_t hi_plane_id; /* highest plane number in bitmap */

status_$t status; /% error code */

boolean delete_display; /* This value is ignored in */
/* borrow mode. */

main()

{

size.x_size = 500;
size.y_size = 500;
mode = gpr_$borrow;
hi_plane_id = 0;/

gpr_$init (mode, (short)1,size,hi_plane_id,init_bitmap,status) ;

gpr_s$terminate(delete_display,status) ;

GPR Programming Basics

I

Chapter 4
Drawing and Text Operations

This chapter introduces GPR drawing, filling and text routines. Several programming examples
are presented in order to demonstrate some of these routines in actual GPR application programs.

4.1. The GPR Coordinate System

The GPR coordinate system places the coordinate origin at the top left-hand corner of a bitmap.
The x values increase to the right, and y values increase downwards. Coordinates for all drawing

operations are relative to the coordinate origin. You can change the coordinate origin using the
routine: GPR_$SET_ COORDINATE _ ORIGIN.

If you initialize a 500 by 500 bitmap, the corners of your bitmap will have the coordinates
displayed in Figure 4-1.

0 499,0

0,499 499,499

Figure 4-1. A 500 x 500 Bitmap

4-1 Drawing and Text Operations

4.1.1. Current Position

All drawing and text operations begin at the current position. After an application program is
initialized with GPR__$INIT, the current position is set to the coordinate origin (0,0). After you
use some drawing or text operations, the current position gets updated to a new current position.
(See examples in this chapter. Not all drawing routines update the current position.) The routine,
GPR _$INQ_ CP returns the x and y coordinates of the current position.

To begin a drawing or text operation at a specific point in a bitmap, it is often necessary to move
the current position. The routine, GPR_$MOVE moves the current position to the coordinates
specfied without drawing a line.

4.2. GPR Drawing Routines

GPR provides several routines to draw geometric figures, lines, and arcs. The calls are listed
below followed by brief descriptions. The parameters have been omitted.

GPR _$ARC_3P
Draws an arc from the current position, through two other points. The current

position is updated to the coordinates of the second point, which is the last
point on the arc.

GPR _$CIRCLE Draws a circle with a specified radius around a specified center point. This
routine does not update the current position.

GPR _$DRAW _BOX
Draws an unfilled box given two opposing corners. This routine does not
update the current position.

GPR _$LINE Draws a line from the current position to the specified endpoint. The current
position is updated to the coordinates of the specified endpoint.

GPR _$MULTILINE

Draws a series of disconnected lines. The current position is updated with each
line that is drawn.

GPR_$POLYLINE

Draws a series of connected lines. The current position is updated with each
line that is drawn.

GPR_$SPLINE _ CUBIC_P
Draws a parametric cubic spline from the current position through a list of

control points. The current position is updated to the coordinates of the last
control point.

GPR _$SPLINE _CUBIC_X
Draws a cubic spline as a function of x from the current position through a list
of control points. The current position is updated to the coordinates of the last
control point.

GPR__$SPLINE_CUBIC_Y

Drawing and Text Operations 4-2

7N

Draws a cubic spline as a function of y from the current position through a list
of control points. The current position is updated to the coordinates of the last
control point.

4.3. Line-drawing Examples

Four programming examples are presented in this section to demonstrate how the following GPR
drawing routines work in relation to the coordinate origin and the current position:

e GPR_$LINE

o GPR_$POLYLINE

e GPR_ $SMULTILINE

e GPR_$CIRCLE.
Notice that some routines change the current position and some do not. Also, notice that all
drawing operations are relative to the coordinate origin. These examples are translated into
FORTRAN and C in the language-specific appendices.
TIME _ $WAIT, a call used in all the programs in this chapter and some of the programs in
other chapters, is not a GPR routine. It is used to keep an image displayed on the screen for a

specified period of time. This call is documented in the DOMAIN System Call Refrence
(Volume II).

4-3 Drawing and Text Operations

4.3.1. A Program to Draw a Single Line

This program draws a single line from the coordinate origin (0,0) to the endpoint with
coordinates (400,500).

After drawing the line, the current position is updated to (400,500). See Figure 4-2.

Program draw_a_ line;
%nolist;
%include '/sys/ins/base.ins.pas’;
%include °'/sys/ins/gpr.ins.pas’;
%include ’/sys/ins/time.ins.pas’;
%list;
const
one_second = 250000;
five_seconds = 5 * one_second;
var
init_bitmap _size : gpr_$offset_t; {size of the initial bitmap}
init_bitmap : gpr_$bitmap_desc_t: <{descriptor of initial bitmap}
mode . gpr_$display mode_t := gpr_$borrow;
hi_plane_id : gpr_$plane_t := O0; {highest plane in bitmap}
delete_display : boolean; {This value is ignored in borrow mode.}

pause : time_$clock_t;
status : status_$t; {error code}
begin
init_bitmap size.x_size := 700;

init_bitmap size.y_size := 700;
gpr_$init(mode,1,init_bitmap_size,hi_plane_id,init_bitmap,status);
gpr_$1ine(400,500,status) ;
{Keep figure displayed on the screen for five seconds.}
pause.low32 = five_seconds;
pause.highl6 := O;
time_$wait(time_$relative, pause, status);
gpr_S$terminate(delete_display,status); {Terminate gpr.}

end.

Drawing and Text Operations 4-4

TN

0,0

699,0

0,699

Figure 4-2. A Single Line

699,699

Drawing and Text Operations

4.3.2. A Program to Draw Connected Lines

This program draws three connected lines. The first line begins at the point with coordinates
(30,30), the second line at (200,300), and the third line at (400,400). The third line terminates at
(300,200). See Figure 4-3.

The routine GPR_$POLYLINE requires that the x and y coordinates of successive coordinate

positions be passed in two arrays. The number of coordinate positions is passed in a two-byte
integer.

The current position is updated to (200,300), (400,400) and (300,200) respectively.

Program draw_connected lines;
%nolist;
%include °’/sys/ins/base.ins.pas’;
%include ’/sys/ins/gpr.ins.pas’;
%include ’/sys/ins/time.ins.pas’;
%list;
const
one_second = 250000;
five_seconds = 5§ * one_second;

var
size . gpr_$offset_t: {size of the initial bitmap}
init_bitmap : gpr_$bitmap_desc_t; <{descriptor of initial bitmap}
mode . gpr_$display mode_t := gpr_$borrow;

hi_plane_id : gpr_$plane_t := O; <{highest plane in bitmap}
X : gpr_$coordinate_array_t := [200,400,300}; {an array of x coord.}
y © gpr_$coordinate_array t := {[300,400,200]; {an array of y coord.}
numb_of_pts . integer := 3;
delete_display : boolean; {This value is ignored in borrow mode.}
pause : time_$clock_t;
status : status_$t; {error code}
begin
size.x_size := 700;
size.y size != 700;
gpr_$init(mode,1,size,hi_plane_id,init_bitmap,status):
gpr_$move (30,30, status);
gpr_$polyline(x,y,numb_of_pts,status);
{Keep figure displayed on the screen for five seconds.}
pause.lowd2 = five_seconds;
pause.highl6é := 0O;
time_$wait(time_$relative, pause, status);
gpr_$terminate(delete_display,status) ;
end.

ay_
ay_

Drawing and Text Operations 4-6

O

O

0,0

699,0

0,699

Figure 4-3.

Connected Lines

699,699

Drawing and Text Operations

4.3.3. A Program to Draw Disconnected Lines

This program draws three disconnected lines. The coordinates of the endpoints of the first line are
(100,100), (400,100); the coordinates of the endpoints of the second line are (100,200), (400,200);
and the coordinates of the endpoints of the third line are (100,300), (400,300). See Figure 4-4.

The routine GPR_ $MULTILINE requires that the x and y coordinates of successive coordinate
positions be passed in two separate arrays. The number of coordinate positions is passed in a
two-byte integer. The current position is updated to (400,100), (400,200) and (400,300)
respectively.

Program disconnected_lines;
%nolist;
%include ’'/sys/ins/base.ins.pas’;
%include °’/sys/ins/gpr.ins.pas’;
%include '/sys/ins/time.ins.pas’;
%list;
const
one_second = 250000;
five_seconds = 5 * one_second;

var
size . gpr_$offset_t; {size of the initial bitmap}
init_bitmap : gpr_$bitmap desc_t; <{descriptor of initial bitmap}
mode © gpr_$display mode_t := gpr_$borrow;

hi_plane_id : gpr_$plane_t := O; <{highest plane in bitmap}
X ! gpr_$coordinate_array_ t:=[100,400,100,400,100,400] ;{an array of x coord.}
y : gpr_$coordinate_array t:=[100,100,200,200,300,300];{an array of y coord.}

numb_of pts : integer := 6; {number of coordinate positions}
delete_display : boolean; {This value is ignored in borrow mode.}
pause : time_$clock t;
status : status_$t; {error code}
begin
size.x_size := 700;
size.y size := 700;

gpr_$init(mode,1,size, hi_plane_id,init_bitmap,status);
gpr_$multiline(x,y.numb_of_pts,status);
{Keep figure displayed on the screen for five seconds.}
pause.low3d2 := five seconds;
pause.highié = O;
time_$wait(time_$relative, pause, status).
gpr_$terminate(delete_display,status):

end.

Drawing and Text Operations 4-8

0,0

0,699

699,0

——

Figure 4-4. Disconnected Lines

699,699

Drawing and Text Operations

4.3.4. A Program to Draw an Unfilled Circle

This program draws an unfilled circle centered at the coordinate position (300,300) with a radius
of 200. See Figure 4-5.

The routine GPR_ $CIRCLE requires that the x and y coordinates of the center point be passed
in a two-element array. This call does not update the current position.

Program draw_circle;
%nolist;
%include ’/sys/ins/base.ins.pas’;
%include */sys/ins/gpr.ins.pas’;
%include ’/sys/ins/time.ins.pas’;
%list;
const
one_second = 250000;
five_seconds = 5 * one_second;

var
size . gpr_$offset t; {size of the initial bitmap}
init_bitmap : gpr_$bitmap desc_t; {descriptor of initial bitmap}
mode . gpr_$display mode_t := gpr_ $borrow;
hi_plane_id : gpr_$plane_t := 0; <{highest plane in bitmap}
center : gpr_$position_t := [300,300];
radius : integer := 200;

delete_display : boolean; {This value is ignored in borrow mode.}
status : status_$t; {error code}

pause : time_$clock_t;
begin

size.x_size := 700;

size.y size := 700;

gpr_$init(mode,1,size, hi_plane_id,init_bitmap,status);
gpr_$circle(center,radius, status) ;
{Keep figure displayed on the screen for five seconds.}
pause.low32 = five_seconds;
pause.highil6 0;
time_$wait(time_$relative, pause, status);
gpr_$terminate(delete_display,status);

end.

Drawing and Text Operations 4-10

o

0,0

0,699

699,0

Figure 4-5. A Circle

4-11

699,699

Drawing and Text Operations

4.4. GPR Fill Routines

The rectangle, triangle, trapezoid and multitrapezoid routines fill in a specified rectangle,
triangle, trapezoid, or list of trapezoids. The rectangle routine fills a rectangle by writing the
current fill value into the rectangle without regard to its previous contents or the raster
operations in effect. (Raster operations are covered in section 6.7.)

The triangle, trapezoid, and multitrapezoid routines compute the current fill value the same way
as in the rectangle routine.

The polygon routines open and define the boundaries of a polygon, and either close and fill the
polygon immediately, or close the polygon and return its decomposition to the program for later
drawing and filling. The routine GPR_$PGON_POLYLINE does not draw a polygon; the
routine defines a series of line segments for decomposition for filling operations.

A polygon’s boundary consists of one or more closed loops of edges. The polygon routine
GPR _$START _PGON establishes the starting point for a new loop, closing off the old loop if
necessary. The polygon routine GPR__$PGON__POLYLINE defines a series of edges in the
current loop.

The polygon routines GPR_$CLOSE_ FILL _ PGON and GPR_ $CLOSE_ RETURN_ PGON
close a polygon by decomposing it. The graphics primitives define a trapezoid as a quadrilateral
with two horizontally parallel sides. The polygon routines examine the polygon and break it into
trapezoids that can be filled immediately or returned in an array to the program. At a later
time, the program can reconstruct the polygon by filling the saved trapezoids with the
multitrapezoid routine.

The polygon routines define the interior of a polygon to be all points from which a line can
originate and cross the polygon boundary an odd number of times. The graphics primitives fill
polygon interiors with the current fill value regardless of previous contents.

GPR _$CIRCLE _ FILLED ;
Draws and fills a circle with a specified radius around a specified center point.
The current position is not updated.

GPR _ $RECTANGLE
Draws and fills a rectangle. The current position is not updated.

GPR _ $TRIANGLE

Draws and fills a triangle. The current position is not updated.

GPR _$TRAPEZOID
Draws and fills a trapezoid. The current position is not updated.

GPR_ $MULTITRAPEZOID

Draws and fills one or more trapezoids. The current position is not updated.

GPR__$START _PGON

Defines the starting position to create a loop of edges for a polygon boundary.
The current position is not updated.

GPR_$PGON_ POLYLINE
Defines a series of line segments forming part of a polygon boundary. The
current position is not updated.

Drawing and Text Operations 4-12

-

™

GPR_$CLOSE_ FILL_PGON
Closes and fills the currently open polygon. The current position is not
updated.

GPR _ $CLOSE_ RETURN_ PGON

Closes the currently open polygon and returns the list of trapezoids within its
interior. The current position is not updated.

4.5. Fill Examples

Two programming examples are presented in this section to demonstrate how GPR fill operations
are performed. The following GPR routines are presented in the examples:

e GPR_$TRIANGLE
e GPR_$START _PGON
e GPR_$PGON_ POLYLINE

e GPR_CLOSE_FILL _PGON.

4-13 Drawing and Text Operations

4.5.1. A Program to Draw and Fill a Triangle

This program draws and fills a triangle with verticies at (100,100), (400,100), and (400,400). See
Figure 4-6.

The routine GPR_ $TRIANGLE requires that the x and y coordinates of each vertex be passed in
a two-element array. Three arrays, vertex__1, vertex__2, and vertex __3 are used. This call does
not update the current position after drawing and filling the triangle.

Program filled_triangle;
%nolist;
%include ’/sys/ins/base.ins.pas’;
%include °’/sys/ins/gpr.ins.pas’;
%include ’/sys/ins/time.ins.pas’;
%list;
const
one_second = 250000;
five_seconds = 5 * one_second;

var :
size . gpr_Soffset_t; {size of the initial bitmap}
init_bitmap : gpr_$bitmap_desc_t; {descriptor of initial bitmap}
mode . gpr_$display mode_t := gpr_$borrow;
hi_plane_id : gpr_$plane_t := 0; <{highest plane in bitmap}
vertex_1 . gpr_$position_t := [100,100];
vertex_2 . gpr_$position_t := [400,100];
vertex 3 . gpr_$position_t := [400,400];
delete_display : boolean; {This value is ignored in borrow mode.}
pause : time_$clock_t;
status : status_$t; {error code}
begin
size.x_size := 700,
size.y_size := 700;
gpr_$init(mode,1,size,hi_plane_id,init_bitmap,status):
gpr_$triangle(vertex_1,vertex_2,vertex 3, status);
{Keep figure displayed on the screen for five seconds.}
pause.low32 := five_seconds;
pause.highl6é := O;
time $wait(time_$relative, pause, status);
gpr_$terminate(delete_display,status);
end.

Drawing and Text Operations 4-14

SN

669669 669°0

—~ | 0669

Figure 4-8. A Filled Triangle

4-15 Drawing and Text Operations

4.5.2. A Program to Draw and Fill a Polygon Py
This program draws and fills a polygon with verticies at the points with coordinates (200,200),
(300,300), (300,400), (100,400), and (100,300). See Figure 4-7.

The routine GPR__$START _ PGON sets the starting position of the polygon at (200,200). The
routine GPR_$PGON_POLYLINE defines four lines. The endpoints of the first line are
(200,200), (300,300); the endpoints of the second line are (300,300), (300,400); the endpoints of the
third line are (300,400), (100,400); and the endpoints of the fourth line are (100,400), (100,300).
The routine GPR_$CLOSE_ FILL _ PGON closes the polygon by defining a line from the point
(100,300) to the point (200,200) and then fills the polygon.

Program fill pgon:
%nolist;
%include ’/sys/ins/base.ins.pas’;
%include '/sys/ins/gpr.ins.pas’;
%include ’/sys/ins/time.ins.pas’; —
%list;
const)
one_second = 250000;
five_seconds = 5 * one_second;
var
size . gpr_$offset_t. {size of the initial bitmap}
init_bitmap : gpr_$bitmap_desc_t; {descriptor of initial bitmap}
mode . gpr_$display mode_t := gpr_$borrow;
hi_plane_id : gpr_$plane_t := 0; <{highest plane in bitmap}
X : gpr_$coordinate_array t := [300,300,100,100];
y : gpr_$coordinate_array t := [300,400,400,300];
npositions : integer := 4;
delete_display : boolean; {This value is ignored in borrow mode.}
i . integer;
pause : time_$clock_t;
status : status_$t; {error code}
begin
size.x_size := 700;
size.y size := 700;
gpr_$init(mode,1,size ,hi_plane_id,init_bitmap,status); _
gpr_$start_pgon (200,200, status) ; N
gpr_$pgon_polyline(x.,y,npositions,status);
gpr_$close_fill pgon(status):
{Keep figure displayed on the screen for five seconds.}
pause.low32 := five_seconds;
pause.highl6 := 0O;
time_$wait(time_$relative, pause, status);
gpr_$terminate(delete_display,status);
end.

TN

Drawing and Text Operations 4-18

0,0

0,699

699,0

-+

Figure 4-7.

A Filled Polygon

4-17

699,699

Drawing and Text Operations

4.6. A Program to Draw Two Diagonal Lines

The program presented in this section initializes GPR in Borrow mode with dimensions of 1024 x
800. The program draws the first line across the screen from the top left-hand corner of the
bitmap to the bottom right-hand corner. After drawing the first line, the coordinates of the new
current position are (1023,799). To draw a line from the top right-hand corner of the bitmap to
the bottom left-hand corner, the current position is moved to the top right-hand corner of the
bitmap using GPR_ $MOVE.

If you are not using a node with a landscape display, you will have to modify the parameters used
in GPR_$MOVE and GPR_S$LINE to get the same results. For a portrait display the
parameters for GPR__$LINE are (799,1023) to draw the first line and (0,1023) for the second
line. The parameters for GPR__$MOVE are (799,0). On DN600 and DN660 color nodes the
parameters for GPR__$LINE are (1023,1023) and (0,1023), respectively. The coordinates for
GPR _$MOVE are (1023,0).

The bitmap dimensions used in this program represent a whole landscape display. When using
other displays you must modify these dimensions. If you wish, you can initialize GPR with
dimensions of 1024 x 1024 regardless of the display you are using. Fortunately, this does not
create an error. GPR_$INIT will automatically allocate a bitmap with dimensions of 800 x 1024
for a portrait display, 1024 x 800 for a landscape display and, 1024 x 1024 for a DN600 or DN600
color display. GPR _$INIT, however, will not allocate a bitmap larger than the dimensions you
provide. You can demonstrate this by initializing GPR with bitmap dimensions smaller than the
size of the display you are using.

Figure 4-8 shows an "X" drawn across a landscape display.

PROGRAM draw_an_X:

%NOLIST;
%INCLUDE ’/sys/ins/base.ins.pas’; {required insert file}
%INCLUDE '/sys/ins/gpr.ins.pas’; {required insert file}
%INCLUDE ’/sys/ins/time.ins.pas’;
%LIST;

const

one_second = 250000;
five_seconds = & * one_second;

var
status . status_$t;
delete_display : boolean;
disp_bm size : gpr_$offset_t.
init_bitmap : gpr_$bitmap desc t;
hi_plane_id : gpr_$plane_t := O;
i . integer;
pause : time_$clock t;

BEGIN

{Declare the size of the bitmap you will be using.}
disp_bm_size.x size := 1024;
disp_bm size.y_size := 800

{Initialize GPR}

gpr_$init(gpr_$borrow,1,disp_bm size,hi_plane_id,
init_bitmap,status) ;

{Draw one line.}

Drawing and Text Operations 4-18

SN

gpr_$1line(1023, 799, status);
{Move the current position}
gpr_$move (1023,0,status);
{Draw the second line.}
gpr_$1line(0, 799,status);
{Keep figure displayed on the screen for five seconds.}
pause.low3d2 = five_ seconds;
pause.highi6 := O;
time_$wait(time_$relative, pause, status);
gpr_$terminate(delete_display,status);
END.

0,0 1023,0

1023,799
0,799

Figure 4-8. An "X" Across a Landscape Display

4.6.1. Extending the Line-Drawing Program

A program to draw an "X" across any size window when using direct mode is presented below.
Notice that when using direct mode the display must be acquired using the routine
GPR_$ACQUIRE_ DISPLAY. The routine GPR_$RELEASE _DISPLAY releases the display.

You can see how this program operates in a frame by initializing GPR in frame mode.

4-19 Drawing and Text Operations

PROGRAM draw_an X;

%NOLIST;
%INCLUDE °'/sys/ins/base.ins.pas’; {required insert file}
%INCLUDE ’/sys/ins/gpr.ins.pas’; . {required insert file}
%INCLUDE °’/sys/ins/time.ins.pas’;
BLIST;

const

one_second = 250000;
five_seconds = 5 * one_second;

var

status : status_$t;

mode : gpr_$display mode_t = gpr_$direct;

pause : time_$clock_t;

delete_display : boolean;

disp_bm_size : gpr_$offset_t;

init_bitmap : gpr_$bitmap_desc_t;

hi_plane_id : gpr_$plane_t := O;

num_of_ planes : gpr_$plane_t:

i : integer:

unobscured, scure: boolean;

X,y : integer;

BEGIN
{Declare the size of the bitmap you will be using.}
disp_bm_size.x size := 1024;
disp_bm _size.y size := 1024:
gpr_$init(mode,1,disp_bm size,hi_plane_id,init_bitmap,status);
unobscured := gpr $acquire_display(status); {Acquire the display.}
{Find out the size of the bitmap.}
gpr_%$ing bitmap_dimensions(init_bitmap,disp_bm size,
num_of_planes,status);

X = disp_bm size.X_size:
y = disp_bm size.y size;
gpr_$line(x-1, y-1, status); {Draw one line.}
gpr_$move(x-1,0,status); {Move the current position}
gpr_$1line(0,y-1, status); {Draw the second line.}
gpr_$release_display(status);
{Keep figure displayed on the screen for five seconds.}
pause.low32 := five_seconds:
pause.highlé := O;
time_$wait(time $relative, pause, status);
gpr_$terminate(delete_display,status). <{Terminate GPR.}

END.

4.7. A Program to Draw a Simple Design

The program presented in this section draws the design in figure 4-9 on the screen.
This program initializes GPR in borrow mode with dimensions of 1024 x 800. The program
draws the outside unfilled box first, then it draws the four filled squares and finishes by drawing

the two connecting lines. There is no special reason or advantage to the order chosen.

Notice that GPR_$DRAW__BOX takes the coordinates of two opposite corners while
GPR__$RECTANGLE requires a starting position (x and y coordinates) and a length and width.

Drawing and Text Operations 4-20

™

Figure 4-9. Four Filled Rectangles within a Box

GPR _$MOVE relocates the current position to (300,300) before GPR__$LINE draws the first
line (the choice of which line to draw first is arbitrary). After the line is drawn, the current
position changes to the destination of the line just drawn. To draw the second line,
GPR__$MOVE relocates the current position again, this time to (300,500). With this complete,
GPR __$LINE draws the second line.

program connect_four;

%NOLIST;
%INCLUDE ’/sys/ins/base.ins.pas’; {required insert file}
%INCLUDE °/sys/ins/gpr.ins.pas’; {required insert file}
%INCLUDE °’/sys/ins/time.ins.pas’;

%LIST;

const

one_second = 250000;
five_seconds = 5 * one_second;
var
init_bitmap : gpr_$bitmap_desc_t;
st : status_$t;
mode : gpr_$display mode_t := gpr_$borrow;
X,y.X1,yl !integer;
rectangle : gpr_$window_t;

4-21 Drawing and Text Operations

disp_bm size : gpr_$offset_t := [1024,800]; {size of initial bitmap}

pause . time_$clock_t;
hi_plane_id : gpr_$plane_t := O;
BEGIN

X = 200; x1 := 600; y := 200; y1 := 600; {dimensions of box}
{starting position of 1st rectangle}

rectangle.window_base.Xx coord .= 250;
rectangle.window_base.y coord := 250;
rectangle.window_size.x_size := 50; {width of each rectangle}
rectangle.window_size.y size := 50. {height of each rectangle}

gpr_$init(mode,1,disp_bm size,hi plane_id,init_bitmap,st);
gpr_$set_auto refresh(true st);
gpr_s$draw_box(x,y.x1,y1.st):; {Draw an unfilled box.}
gpr_$rectangle(rectangle,st); {Draw a filled rectangle.}

{Draw three more filled rectangles within the unfilled box.}

rectangle.window_base.x_coord := 500;
rectangle. w1ndow_base y_coord 1= 250;
gpr_$rectangle(rectangle,st) ;

rectangle.window_base.x_coord := 250;
rectangle.window_base.y coord := 500;
gpr_$rectangle(rectangle,st) ;

rectangle.window_base.x_coord := 500;
rectangle.window_base.y_coord := 500;

gpr_$rectangle(rectangle,st);

gpr_$move(300,300,st); {Move the current position.}
gpr_$1ine(500,500,st); {Draw a line connecting two rectangles.}

gpr_$move(300,500,st) ;
gpr_%$1ine(500,300,st); {Draw a line connecting two rectangles.}

{Keep figure displayed on the screen for five seconds.}
pause.low32 := five_seconds;

pause.highl6 := O;

time_$wait(time_$relative, pause, st);

gpr_$terminate(false, st); {Terminate the graphics session.}
END.

4.7.1. Extending the Design Program

Try changing the Operation mode for this program to Direct mode (Remember, you must acquire
the display in Direct mode.) Notice that only a portion of the design is visible unless you have a
large window. If this is the case, enlarge the window and run the program again.

At this time, there is a situation worth mentioning. Open a few windows on your screen and run
the program again in direct mode. With the design displayed in the window, pop one or more
windows so that the window with the display gets fully or partially obscured. Pop the window
with the design back up to the top. Notice that the window becomes blank. There are two
remedies for this situation.

1. You can include the call GPR_$SET__AUTO_REFRESH in the application

Drawing and Text Operations 4-22

SN

program. This will signal the Display Manager to automatically redraw the contents
of the window whenever the window grows or is popped. The Display Manager only
redraws what was in the window before it was obscured or had grown. For example,
if only a portion of a drawing is displayed in a window because the window was too
small (your drawing got clipped), only that portion of the drawing will be redrawn if
the window has grown. For this reason, GPR__$SET__AUTO _REFRESH is most
useful to handle redrawing when windows get popped.

2. You can write your own refresh procedure. This technique allows your application
program to call the actual procedures that created the drawing. This technique has
the advantage that your whole drawing gets redrawn. A program that draws the
design presented in this section, and uses a refresh procedure is given in Chapter 5.

4.8. Text Operations

Using the graphics package, a program can mix text characters and graphic images in a single
bitmap in a Display Manager frame, an acquired window, the borrowed display, or main memory.
The text routines are listed below. (Parameters are not included.)

GPR_$LOAD _FONT_FILE
Loads a font from a file into the font storage area of display memory. A single
program may load multiple fonts and then set them for use, one at a time.

GPR _$UNLOAD _FONT_FILE
Unloads a font.

GPR_$SET_ CHARACTER _WIDTH
Sets the parameter WIDTH of the specified character in the specified font.

GPR_$INQ__CHARACTER _WIDTH
Returns the width of the specified character in the specified font.

GPR _$SET_HORIZONTAL _ SPACING
Sets the parameter for the width of spacing between displayed characters for
the specified font.

GPR__$INQ_HORIZONTAL _SPACING
Returns the parameter for the width of spacing between displayed characters
for the specified font.

GPR _$INQ__SPACE _SIZE
Returns the width of the space to be displayed when a character requested is
not in the specified font.

GPR _$REPLICATE _FONT
Creates and loads a modifiable copy of a font.

GPR _$SET_SPACE _ SIZE
Specifies the width of the space to be displayed when a requested character is
not in the specified font.

4-23 Drawing and Text Operations

GPR_$SET_ TEXT_FONT

Selects a loaded font for use in subsequent text operations.

GPR_$INQ_TEXT

Returns the descriptor of the currently set text font.

GPR_$SET_ TEXT _PATH

Specifies the direction in which a line of text is written.

GPR_$INQ_TEXT _PATH
Returns the direction for writing a line of text.

GPR_$SET _TEXT_ VALUE

Specifies the pixel value to use for writing text.

GPR_$SET_ TEXT_BACKGROUND _VALUE

Specifies the pixel value to use for text background.

GPR_$INQ_ TEXT _VALUES

Returns the text and text background pixel values.

GPR_$TEXT Writes text in the current bitmap, beginning at the current position and
proceeding in the direction specified by the most recent wuse of

GPR_$SET_TEXT _PATH.

GPR_$INQ_TEXT _EXTENT

Returns the width and height, in pixels, of the area a text string would span if
it were written with GPR_ $TEXT.

GPR_ $INQ__ TEXT _ OFFSET
Returns the x and y offsets from the top left pixel of a string to be written by
GPR _$TEXT to the origin of its first character. This routine also returns the
x or y offset to the pixel that is the new current position after the
GPR _ $TEXT call. This is the y offset when the text path is vertical.

4.9. A Program Using Text

The program presented in this section demonstrates how to load a text font and how to write text
into a bitmap.

The program begins by drawing an unfilled square in the bitmap. The top left-hand corner of
the square is at the point with coordinates (100,100). The bottom right-hand corner is at
(500,500).

The routine GPR__$LOAD_FONT _FILE loads a font into hidden-display memory. The list of
fonts is in the directory /sys/dm/fonts.

The routine GPR__$SET_ TEXT _FONT establishes the font to be used in all text operations.
Notice that font__id is an output parameter in GPR_$LOAD_FONT_FILE and an input
parameter in GPR__$SET_TEXT _FONT. As with drawing operations, text operations begin

at the current position. To have text begin at the desired location, the current position is moved
using GPR_ $MOVE.

Drawing and Text Operations 4-24

TN

The routine GPR_$TEXT prints a specified string of text. The maximum length of a text
string is 256 characters.

To print vertical text, the program uses the routine GPR_$SET _TEXT_PATH to establish
the direction of text written into the bitmap as gpr__ $up.

Figure 4-10 shows the output of this program.

Program text_on_square;
%nolist;
%include ’/sys/ins/base.ins.pas’;
%include ’/sys/ins/gpr.ins.pas’;
%include ’/sys/ins/time.ins.pas’;
%list;
const
one_second = 250000;
five_seconds = 5 * one_second;

var
init_bitmap size : gpr_$offset_t: {size of the initial bitmap}
init_bitmap : gpr_$bitmap desc t; {descriptor of initial bitmap}
mode . gpr_$display mode_t := gpr_$borrow;

hi_plane_id : gpr $plane_t := 0. <{highest plane in bitmap}
delete_display : boolean; {This value is ignored in borrow mode.}

status . status_$t; {error code}
font_id : integer; {identifier of a text font}
i,j . integer32;
direction : gpr_$direction_t; {direction of text}
pause : time_$clock t;
begin
init_bitmap_size.x_size := 700;
init_bitmap_size.y size := 700;

gpr_$init(mode,1,init_bitmap_size,hi_plane_id,init_bitmap,status) ;
gpr_$draw_box (100, 100,500,500, status) ;

gpr_$load_font _file('f7x13.b’ ,SIZEOF(’'f7x13.b’),font_id, status);
gpr_$set_text_font(font_id, status);

gpr_$move (110,90, status) ;

gpr_$text(’'This is the top of the rectangle.’, 33, status):
direction := gpr_$up;

gpr_$set_text_path(direction,status);

gpr_$move (90, 490,status);

gpr_$text(’'This is the side of the rectangle.’, 34, status).

{Keep figure displayed on the screen for five seconds.}
pause.low32 = five_seconds;

pause.highl6 := O;

time_$wait(time_$relative, pause, status);

gpr_$terminate(delete_display,status);
end.

4-25 Drawing and Text Operations

This is the top of the rectangle.

This is the side of the rectangle.

Figure 4-10. Text On A Square

Drawing and Text Operations 4-26

Chapter 5
The Cursor and Input Events

This chapter describes cursor control and input operations. The input routines synchronize
program execution around input events. These events include keystroke, mouse or puck buttons,
locator and locator stop from mouse or touchpad, and window transition. Some of the
information in this chapter refers to attribute blocks, which are discussed in Section 6.5. You
may find it helpful to read about attribute blocks before reading this chapter.

5.1. Using Cursor Control

The complete set of cursor routines is available in Borrow-display and Direct mode. In Frame
mode, the cursor is controlled by the Display Manager and is always displayed. Therefore, in
Frame mode, you can change only the cursor’s position. Cursor routines include the following:

GPR_$SET_ CURSOR _ACTIVE
Specifies whether to display the cursor. Initially, the cursor is disabled.

GPR _$SET_ CURSOR _ PATTERN
Sets a bitmap pattern as the cursor pattern. This bitmap can be a maximum
of 16 x 16 pixels. The initial cursor size varies, depending on the standard font
the Display Manager uses.

GPR_$SET_ CURSOR _ POSITION
Sets a position on the screen for display of the cursor. The initial cursor
position is (0,0). Programs running in frame mode can call this routine.

GPR _$SET_ CURSOR _ ORIGIN
Designates one of the cursor’s pixels as the cursor origin. Thereafter, when the
cursor is moved, the pixel designated as the cursor origin moves to the screen
coordinate designated as the cursor position, as shown in Figure 5-1.

5.2. Implementation Restrictions On The Cursor

When the cursor is active, the cursor pattern is stored in display memory. Therefore, programs
that operate in Borrow-display or Direct mode, have the potential to interfere with the cursor
pattern and/or to cause the cursor to interfere with a bitmap pattern. To avoid this problem,
disable the cursor before performing output procedures to any area of the display in which the
cursor could be located.

5.3. Display Mode and Cursor Control

In Borrow-display and Direct mode, the program has complete control over the cursor. In Direct
mode, the program-defined cursor pattern and origin are in effect only within the Direct-mode
window. As the user moves the cursor between the direct window and other windows on the
screen, the system automatically changes the cursor pattern.

5-1 The Cursor and Input Events

If the program executes in frame mode, program control of the cursor is limited. The only cursor
control routine that operates in frame mode is GPR__$SET__ CURSOR _ POSITION, and the ah
program can move the cursor with this routine only if it lies within the frame when N

GPR_ $SET _ CURSOR_ POSITION is called.

BITMAP CONTAINING 2
CURSOR PATTERN .
0

0 7

ORIGIN WILL BE
SET HERE N

GPR_SET_CURSOR_ORIGIN(7,0,STATUS)
GPR_$SSET_CURSOR_POSITION(400,400,STATUS) N

Figure 5-1. Cursor Origin Example

5.4. Using Input Operations

The graphics primitives package includes a set of routines that enable graphics programs to
accept input from various input devices. The input routines synchronize program execution
around input events. Input routines function in all display modes except
GPR__$NO _ DISPLAY.

/’\.

The Cursor and Input Fuvents 5-2

5.4.1. Event Types

An event occurs when input is generated in a frame, Direct-mode window, or borrowed display.
The GPR package supports several classes of event, called event types. Programs use an input
routine to select the types of events that should be reported; this operation is called enabling an
event type. The event types are the following:

Keystroke A keystroke event occurs when you type specified keyboard characters.
Programs can select a subset of keyboard characters, called a keyset, to be
recognized as keystroke events. Except in borrow-display mode, keys that do
not belong to the keyset are processed normally by the Display Manager. In
Borrow-display mode, these keys are ignored.

Button A button event occurs when you press a button on the mouse or bitpad puck.

Locator A locator event occurs when you move the mouse or use the touchpad or bitpad
to move a locator around the display.

Locator stop A locator stop event occurs when you stop moving the mouse or stop using the
touchpad or bitpad.

Window transition
Except in borrow-display mode, the cursor may move into and out of the
window in which GPR input is being performed. When the cursor leaves a
window used for graphics display, the input routines report to the program an
event of type GPR_$LEFT_ WINDOW. When the cursor enters the window,
the routines report an event type of GPR__$ENTERED _ WINDOW.

Enabled input events are stored in attribute blocks (not with bitmaps) in much the same way as
attributes. However, you cannot set and inquire about input events in the same way that you can
attributes. You use GPR_$ENABLE_INPUT and GPR_ $DISABLE__INPUT instead of
GPR__$SET... and GPR_$INQ.... The effect of this difference is the following. When a
program changes attribute blocks for a bitmap during a graphics session, the input events you
enabled are lost unless you enable those events for the new attribute block.

5.4.2. Event Reporting

If an event type is enabled, the input routines report each event of the enabled type to the
program with event data and a cursor position. This position is relative to the upper left corner
of the window.

If the enabled event type is keystroke or button, the input routines return an ASCII character
from the enabled keyset. When defining a keyset for a keystroke event, consult the system insert
files /SYS/INS/KBD.INS.PAS, /SYS/INS/KBD.INS.FTN and /SYS/INS/KBD.INS.C. These
files contain the definitions for the non-ASCII keyboard keys in the range 128 through 255.

The input routines report mouse button events as ASCII characters. Down transitions range from
"a" to "d" (if the mouse has four buttons); up transitions range from "A" to "D*. The three
mouse keys start with (a/A) on the left side. As with keystroke events, button events can be
selectively enabled by specifying a button keyset.

Locator events merely report the x and y coordinates of the locator input. If the program has not

5-3 The Cursor and Input Events

enabled locator events, the GPR software handles any locator data itself by moving the arrow
cursor around the window. At the next occurrence of an enabled event, the GPR software reports
the locator final cursor position to the program as well as the enabled event.

As noted above, enabled input events are stored in attribute blocks (not with bitmaps) in much
the same way as attributes. When a program allocates more than one attribute block, different
sets of events are associated with each attribute block. The events enabled for a particular
bitmap are the events stored in the attribute block for that bitmap. You must enable the desired
events for each window.

GPR _$ENABLE_ INPUT and GPR__$DISABLE _ INPUT work on the attribute block of the
following bitmap: the current bitmap if it is a screen bitmap; otherwise, the screen bitmap that
was most current.

When you have more than one bitmap displayed, you can determine the source of input by:

1. Setting a distinct character as a window id with GPR_$SET _WINDOW __ID and
making certain that you have enabled entered-window events for all windows. Then
remember which window was the last entered. This window is the source of the input
event.

2. Using GPR _$INQ _ WINDOW __ID after each input event.

5.4.3. Input Routine

The graphics primitives provide the following routines to perform input operations:

GPR_$ENABLE _ INPUT
Enables events of a specific event type. If the event type is keystroke or
button, the routine also enables a specific keyset to select which keys or

buttons generate input events. Programs must call this routine once for each
bitmap.

GPR _$DISABLE __ INPUT

Disables events for the event type previously enabled with
GPR_$ENABLE_ INPUT.

GPR_$EVENT _WAIT

Suspends program execution until one of the events enabled by
GPR _$ENABLE_INPUT occurs. If the event type is keystroke or button,
this routine waits until a member of the specified keyset is input. The
information returned includes the type of event that occurred, the character (if
any) associated with the event, and the position at which the event occurred.
The position will be relative to the upper left corner of the window, or, if the
mode is borrow-display, the screen. Position information is not returned in
frame mode.

GPR_$COND _EVENT _ WAIT
Performs the same function as GPR__$EVENT _ WAIT except that if no event
has occurred, the routine returns to the program immediately with an event

type that indicates that no event has occurred (GPR_$NO _EVENT).

The Cursor and Input Events 5-4

O

GPR_$GET _EC
Returns the event count associated with a graphic input event. Programs'can
use this routine with GPR_$COND__EVENT_WAIT to wait for a
combination of system events as well as GPR input events. See the
Programming With General System Calls for more information on event
counts.

GPR_$SET_INPUT_SID
Establishes a selected stream as the standard input stream. The default
standard input stream is STREAM _ $STDIN. Programs can only use this call
in frame mode. In borrow-display and direct modes, input comes directly from
the keyboard.

GPR_$SET_WINDOW _ID
Establishes the character that identifies the current bitmap’s window. This
character is returned by GPR_$EVENT _ WAIT and
GPR_$COND _EVENT _ WAIT when they return
GPR_$ENTERED _ WINDOW events. The character indicates which window

was entered.

GPR_$INQ_ WINDOW _ID

Returns the character that identifies the current bitmap’s window.

5.5. A Program That Waits For An Event

This program is a modification of program connect__four that was presented in the previous
chapter. This version waits for the user to type a character on the keyboard before it exits.
Specifically, it waits for a character in the range "a".."d". In addition, this program uses a
refresh procedure, which refreshes the drawing in the window if the window is grown or popped.
Note that PROCEDURE draw, an external procedure, is used to draw the design initially and
any time a refresh is required. Refresh procedures must always be external.

The routine GPR_$SET__REFRESH_ENTRY obtains the starting address of the refresh
procedure.

The routine GPR_$ENABLE __ INPUT defines what type of event is enabled and what keys are
enabled. This program enables keyboard input and the set of keys "a"..*d".

The routine GPR_ $EVENT _ WAIT causes the program to wait for one of the enabled events
(the user pressing an "a", "b", "c" ,or "d") to occur before terminating.

PROGRAM connect_four;

%NOLIST;

%INCLUDE '/sys/ins/base.ins.pas’; {required insert file}
%INCLUDE ’/sys/ins/gpr.ins.pas’; {required insert file}
RLIST;

VAR

5~5 The Cursor and Input Events

mode : gpr_$display mode_t := gpr_$direct. {gpr mode}
disp_bm size : gpr_$offset_t := [1024, 800]; {size of initial bitmap}
hi_plane_id : gpr_$plane _t := 0; <{high plane number of initial bitmap}
init_bitmap : gpr_$bitmap desc_t; <{gpr bitmap descriptor}
unobscured . boolean; {whether window is unobscured on acquisition}
ev_pos : gpr_$position_t; {input event position}
ev_type . gpr_$event_t; {input event type}
ev_char . char; {input event character}
keys . gpr_S$keyset_t. {set of input characters}
PROCEDURE draw (IN unobs : boolean; IN pos_change : boolean). EXTERN;
BEGIN
{Initialize GPR.}
gpr_$init (mode, 1, disp_bm size, hi_plane_id, init_bitmap, st);
{Do the graphics output.}
unobscured := gpr_$acquire_display (st): {Acquire the display.}
draw (FALSE, FALSE); {Draw the picture.}
{Establish the refresh procedure.})
gpr_$set_refresh_entry (addr(draw), nil, st): o
{Wait for user input.}
keys = [*a’.."d’]; {Create a key set.}
gpr_$enable_input (gpr_$keystroke, keys, st);{Enable input for the key set.}
{Wait for input.}
unobscured := gpr_$event_wait (ev_type, ev_char, ev_pos, st);
{Terminate the graphics session.}
gpr_$terminate(false, st): TN
END. b
MODULE draw;
%NOLIST;
%INCLUDE ’/sys/ins/base.ins.pas’; {required insert file}
%INCLUDE °/sys/ins/gpr.ins.pas’; {required insert file}
BLIST.
PROCEDURE draw (IN unobs : boolean; 1IN pos_change : boolean); o
VAR N

st . status_$t; {status code}

The Cursor and Input Events 5-6

st . status_$t; {status code}

xi, yl, x2, y2 : integer; {box corner coordinates}
rectangle : gpr_$window_t; {rectangle to be filled}
BEGIN

{Set coordinate variables.}
X1 = 200; X2 := 600; {Set dimensions of box.}
yl := 200; y2 := 600;
{set starting position of 1st rectangle}

rectangle.window_base.x coord := 250;
rectangle.window_base.y coord := 250;
rectangle.window_size.x size := 50; {Set width of each rectangle.}
rectangle.window_size.y size := 50; {Set height of each rectangle.}

{Draw outer box and first rectangle.}
gpr_$draw_box (x1, y1, x2, y2, st). {Drav an unfilled box.}
gpr_S$rectangle (rectangle, st); {Draw a filled rectangle.}

{Draw three more filled rectangles within the unfilled box.}
rectangle.window_base.x_coord := 500;

rectangle.window_base.y coord := 250;
gpr_$rectangle (rectangle, st);
rectangle.window_base.x_coord := 250;
rectangle.window_base.y coord := 500;
gpr_$rectangle (rectangle, st);
rectangle.window_base.x coord := 500;
rectangle.window_base.y coord := 500;
gpr_S$rectangle (rectangle, st);
{Draw diagonals.}
gpr_$move (300, 300, st); {Move the current position.}
gpr_$line (500, 500, st); {Draw a line connecting two rectangles.}
gpr_s$move (300, 500, st);
gpr_$line (500, 300, st); {Draw a line connecting two rectangles.}

5-7 The Cursor and Input Events

27N ‘

N

Chapter 6
Initial Bitmaps and Attributes

This chapter describes the various types of bitmaps and the attribute blocks associated with
them. This chapter also makes refrences to bit block transfers, which are discussed in the next
chapter. It may be helpful to read about bit -block transfers before reading this chapter.

6.1. Bitmap Structure

As discussed in Chapter 2, DOMAIN displays are raster scan devices. This type of display
requires the use of a bitmap to store the intensity values for each pixel in the raster.
Monochromatic displays require only one bit of information to be stored for each pixed in the
raster. Therefore, bitmaps for monochromatic displays are only one plane deep. Color displays
require several bits of information to be stored for each pixel and consequently color bitmaps are
composed of several planes. Bitmaps for color displays are discussed in Chapter 8.

6.2. Bitmap Locations

A bitmap may reside in display. memory, main memory, hidden display memory, or external
storage. The only bitmaps that are visible on the screen are those in display memory. To see the
contents of any other bitmap, you must copy it to display memory using a bit-block transfer.

When you initialize GPR using GPR _ $INIT, you are allocated an initial bitmap. You determine
the location of the initial bitmap when you select the operation mode. The dimensions of the
initial bitmap are determined by two things: size, an input parameter in GPR__$INIT; and the
type of display you are using.

Initializing GPR in borrow, direct, or frame mode allocates an initial bitmap in display memory.
Any graphics operations performed in this bitmap are immediately visible on the screen. If you
initialize GPR in no-display mode, the initial bitmap is allocated in main memory, and any
graphics operations performed in this bitmap are not visible on the screen.

6.3. Initial Bitmap Size

The size of an initial bitmap is determined by the operation mode, the dimensions you provide,
and, in borrow and direct mode, the type of display you are using. The operation mode and
dimensions are input parameters in GPR _ $INIT.

6.3.1. Initial Bitmap in Borrow Mode

In borrow mode the initial bitmap is allocated in display memory. If you provide bitmap
dimensions smaller than the display memory of the node you are using, the size of the bitmap will
match the dimensions you provide, and the origin of the bitmap will match the origin of the
screen. If, however, you provide dimensions larger than the size of the display memory, the size
of the initial bitmap is reduced to match the size of the display memory on your node.

6-1 Initial Bitmaps and Attributes

6.3.2. Initial Bitmaps in Frame Mode

In frame mode the initial bitmap is in display memory and you can assign bitmap dimensions up
to 4096 x 4096. If you provide dimensions larger than these dimensions, you will be allowed, by
default, the maximum size of 4096 x 4096. When you provide dimensions that are smaller than
the window, the bitmap is located in the top left-hand corner of the window. (See Figure 6-1 for
the relationship between frame, bitmap, and window.)

FRAME

DISPLAY
MANAGER
WINDOW

Figure 6-1. Frame Display

6.3.3. Initial Bitmap in Direct Mode

In direct mode the initial bitmap is also in display memory. The size of the bitmap is the size of
the display window regardless of the dimensions you provide in GPR__$INIT, unless you provide
dimensions smaller than the dimensions of the window. In this case, the bitmap is located in the
top left-hand corner of the window.

Bitmaps allocated to the size of a window can be troublesome if the window is smaller than the
bitmap you need. If you are using a window that is displayed on the screen before you initialize
GPR, you can adjust the size of the window before initializing GPR. Alternatively, you can use
PAD_$CREATE_WINDOW to create a transcript pad within a window of a user-defined size,
and then initialize GPR using the new pad’s stream id as the unit.

Initial Bitmaps and Attributes 8~2

6.3.4. Initial Bitmap in No-Display Mode

In no-display mode, the initial bitmap is allocated in main memory, not display memory. Main-
memory bitmaps can contain up to eight planes regardless of the display, and can have
dimensions up to 8192 x 8192. The contents of main memory bitmaps are not visible on the
screen.

6.4. The Current Bitmap

When you initialize GPR, the initial bitmap is also the current bitmap. This bitmap can be in
display memory or main memory. All graphics output operations performed take place on the
current bitmap. The initial bitmap remains the current bitmap until another is designated to be
current using GPR__$SET _ BITMAP. Only one bitmap can be current at a time.

6.5. Bitmap Attributes

Fach bitmap is associated with a set of attributes identified in an attribute block. These
attributes specify the characteristics that operations performed on that bitmap will have. For
example, with attributes you can specify that only a certain section of the bitmap be manipulated
in any subsequent operations (clipping attribute), that lines be drawn with dashed lines (line style
attribute), or that text written on the bitmap be displayed in a specific font (font id attribute).
You can change any of the attributes in an attribute block.

8.5.1. The Current Attribute Block

The current bitmap is associated with the current attribute block. When you initialize GPR, the
initial bitmap is allocated an attribute block with default settings. This attribute block is the
current attribute block and remains so until you change it. If the attribute settings in this block
are acceptable, you do not need to concern yourself with the attribute block. If, however, you
want to change some of the attributes, you can change them as follows:

e Change them in the current attribute block.

e Allocate a new attribute block, make it current, change the necessary attributes on
the new attribute block.

6.5.2, Creating Attribute Blocks

It is possible and often convenient to allocate additional attribute blocks using
GPR _$ALLOCATE _ATTRIBUTE _BLOCK. This call establishes a new attribute block with
default settings. The form of the call is the following:

GPR_$ALLOCATE_ATTRIBUTE BLOCK(attrib_block_desc, status)

6-3 Initial Bitmaps and Attributes

Output parameter

attrib__block __desc
The descriptor of the attribute block. This value is needed to make the
attribute block current.

8.5.3. Making an Attribute Block the Current Attribute Block

To make an attribute block the current one that will be associated with the current bitmap, use
gpr__$set__attribute__block. The form of the call is the following:

GPR_$SET_ATTRIBUTE BLOCK(attrib_block desc,status)

Input parameter

attrib_block __desc
' The describtor of the attribute block you want to make current. This
parameter is an output parameter in

GPR_ $ALLOCATE _ ATTRIBUTE _ BLOCK.

6.6. Other Bitmaps

In addition to bitmaps in visible display memory and main memory, there are two other types of
bitmaps: external and hidden-display-memory (HDM). The contents of these bitmaps are not
visible on the screen. To view them, you must perform a bit-block transfer to display memory.

6.8.1. External Bitmaps

External bitmaps allow you to allocate space on disk in order to store a bitmap for later use.
External bitmaps can be treated like any others. Their content, however, is not visible. In this
respect, they are similiar to main-memory bitmaps. See Chapter 7 for a sample program that uses
external bitmaps.

6.6.2. Hidden-Display-Memory Bitmaps

In either borrow or direct mode, you can allocate a bitmap in HDM using
GPR_$ALLOCATE _HDM _BITMAP. The advantage of HDM bitmaps is their location: they
are part of display memory, but their contents are not visible. This means that images can be
stored in HDM and transferred to visible display memory more quickly than from main memory.
The drawback of HDM bitmaps is their size. The largest bitmap can be 224 x 224 pixels.

On DN6XX and DN550 nodes in borrow mode, you can effectively use all of hidden-display-
memory by using GPR_$SET__BITMAP _DIMENSIONS and increasing the bitmap size to
1024 x 2048. To use the hidden portion, vary the y coordinate by 1024, and to see the contents
of hidden-display memory use either:

1. A bit-block transfer, where the current bitmap is both the source and destination
bitmap, and only the x and y offset changes.

Initial Bitmaps and Attributes 6-4

e

.’/’\\y

O

O

2. GPR_$SELECT _COLOR_FRAME to display:

e Frame 0 : normally visible display

e Frame 1 : normally hidden display

6.7. Listing of Bitmap Attributes and Bitmap Attribute Default Values

Bitmap attributes, their descriptions, and default values are listed below.

Clipping Window The clipping window attribute specifies a rectangular section of the bitmap,
outside which no pixels can be modified. (See Figure 6-2.) After a program
calls the routine GPR__$SET_ CLIP_ WINDOW to specify the dimensions of
a clipping window, it may call GPR__$SET__CLIPPING _ACTIVE to enable
the new clipping window. Otherwise, the default clipping window remains
active.

Default Same size as bitmap. If the program reassigns the attribute block from one
bitmap to a smaller bitmap, the clipping window is automatically reduced to
the new bitmap size.

NOTE In borrow and frame mode, clipping is disabled by default. In direct mode, it is
enabled, and the clip window is set to the size of the window.

Enabling and Disabling clipping has two effects:

1. With clipping enabled, you are restricted to the area of the bitmap
which is within the clipping window.

2. With clipping disabled, you are allowed access to the entire bitmap,
but some GPR routines, such as GPR_$TRIANGLE, will return
an errror status if any of the specified coordinate values are lie
outside bitmap limits. Other routines, such as GPR__$LINE, will
perform as if clipping were enabled but the clip window covered the
entire bitmap.

Coordinate Origin
The coordinate origin specifies a pair of offset values to add to all coordinate
positions. These values are subsequently used to calculate offsets for all
drawing, text, bit block transfers and move operations on the current bitmap.
For example, the coordinate origin affects calls to the routines GPR_ $MOVE,
GPR _$LINE, and GPR_ $PIXEL _ BLT.

Default (0,0)

Draw Value The draw pixel value specifies the value to which pixels will be set when
drawing lines.

Default 1
Fill Value The fill pixel value specifies the value to which pixels will be set when filling
areas.

6-5 Initial Bitmaps and Attributes

Default

Fill Pattern

Default

Text Value

Default

CLIPPING BITMAP

WINDOW

Figure 6-2. Clipping Window On A Bitmap
1
The fill pattern value specifies the pattern used to fill the current bitmap.
Solid.
The text pixel value specifies the value to which pixels will be set to write text.
1, for borrowed displays, direct mode displays, memory bitmaps, and display

manager frames on monochromatic displays; 0, for Display Manager frames on
color displays.

Text Background Value

Default

Text Font

Default

Line Style

Default

Plane Mask

The text background pixel specifies the value to which pixels will be set for text
background.

-2 (same as bitmap background, which is 0 for borrowed displays, direct mode
displays, and memory bitmaps, and the same as the window background for
display manager frames).

The text font attribute specifies the font in which to display text characters in
the bitmap.

No default. Program must load and set font.

The line style attribute specifies the style in which to display line segments in
the bitmap. Line style can be either solid or dashed; if dashed, the style scale
factor determines the length of the dash.

Solid line.

The plane mask specifies which planes of a bitmap can be modified by any
graphics operation and which planes are protected from modification.

Initial Bitmaps and Attributes 6-6

O

O

Default

All planes can be modified.

Raster Operation A raster operation specifies how pixel values are determined in each plane of a

destination bitmap for BLT, drawing and text operations. There are sixteen
different raster operations that form the set of rules for combining pixel values.
Assigning a raster operation code to a bitmap or to a plane of a bitmap alters
no values: it specifies how pixel values are determined when BLTs and drawing
operations are performed.

For BLTs, the raster operation compares each pixel value within the boundary
of the BLT in the source bitmap with each appropriate pixel value in the
destination bitmap. The ultimate value of a particular pixel in the destination
bitmap is then determined by combining these values using the current raster
operation.

For drawing and text operations there is no source bitmap. Destination pixel
values are determined as follows. For each pixel included in the drawing or
text, the draw value is compared with the value of all pixels affected by the
drawing or text operation with the current raster operation.

Default Op = 3, set all destination bit values to source bit values.
Table 8-1. Raster Operations and Their Functions
Op Code | Logical Function
0o Assign zero to all new destination values.
1 Assign source AND destination to new destination.
2 Assign source AND complement of destination to new destination.
3 Assign all source values to new destination. (Default)
4 Assign complement of source AND destination to new destination.
5 Assign all destination values to new destination.
6 Assign source EXCLUSIVE OR destination to new destination.
7 Assign source OR destination to new destination.
8 Assign complement of source AND complement of destination to
new destination.
9 Assign source EQUIVALENCE destination to new destination.
10 Assign complement of destination to new destination.
11 Assign source OR complement of destination to new destination.
12 Assign complement of source to new destination.
13 Assign complement of source OR destination to new destination.
14 Assign complement of source OR complement of destination to
new destination.
15 Assign one to all new destination values.

6-7 Initial Bitmaps and Attributes

Table 8-2. Raster Operations: Truth Table

Source | Destination Resultant Bit Values For The Following Op Codes:
Bit Bit
Value Value 0 1 2 383 4 5 6 7 8 910 11 12 13 14 15
0 (o] o o o oo o o0 o011 1 1 1 1 1 1
o] 1 o o0 o o011 11 0 0 0 0 1 1 1 1
1 (o} o o1 1 0 01 1 0 01 1 0 O 1 1
1 1 o1 01 0 1 01 01 01 0 1 O 1

6.8. Changing Attributes

To change an individual attribute, a program must call one of the attribute-setting routines.
These routines change the attributes on the current attribute block. To change the attributes on

an attribute block which is not current, you must make it current using
GPR_$SET_ ATTRIBUTE _ BLOCK before calling a routine to change an attribute.

The following guidelines may be helpful for using attribute blocks and changing attributes.

If you only have one bitmap, use multiple attribute blocks (if necessary) and use
GPR_$SET__ ATTRIBUTE _BLOCK to switch between them. If you are only changing one or
two attributes, just change the default attribute block as needed.

If you have multiple bitmaps, use one attribute block per bitmap. Use GPR_$SET_ BITMAP to
get the current bitmap and the current attribute block. Then modify the current attribute block
as necessary.

The routines for setting attributes are listed below:

GPR_$SET_ CLIP _ WINDOW
Changes the clipping window for the current bitmap.

GPR _$SET_ CLIPPING_ ACTIVE
Enables/disables a clipping window for the current bitmap.

GPR _$SET_ COORDINATE _ ORIGIN
Establishes x- and y-offsets to add to all x and y coordinates used as input for
these operations: moving the current position, drawing and text operations, and
block transfers.

GPR_$SET_DRAW _VALUE
Specifies the color/intensity to use to draw lines.

GPR_$SET_FILL _ BACKGROUND _ VALUE
Specifies the color/intensity value used for drawing the background of tile fills.

Initial Bitmaps and Attributes 6-8

O

GPR _$SET_FILL _ PATTERN
Specifies the fill pattern to use for the current bitmap.

GPR_$SET_FILL _VALUE
Specifies the color/intensity to use to fill rectangles.

GPR _$SET_LINESTYLE
Specifies the line style as solid or dashed.

GPR_$SET _LINE _PATTERN

Establishes the pattern used in drawing lines.

GPR_$SET_PLANE _MASK
‘ Establishes a plane mask that specifies which planes to use for subsequent write
operations.

GPR_$SET_RASTER _OP

Specifies a new raster operation for BLTs and lines.

GPR_$SET_ TEXT _ BACKGROUND _ VALUE
Specifies the color/intensity to use for text background.

GPR_$SET_ TEXT _FONT
Establishes a new font for subsequent text operations.

GPR_$SET_ TEXT _VALUE

Specifies the color/intensity to use for writing text.

8.8.1. Retrieving Attributes

Before you change an attribute, you may want to know the value it currently has. The following
routines return attribute values as output parameters:

GPR __$INQ_ CONSTRAINTS

Returns the clipping window and plane mask used for the current bitmap.

GPR _$INQ_ COORDINATE _ ORIGIN
Returns the x and y offsets added to all x and y coordinates used as input to
move, line drawing, and BLT operations on the current bitmap.

GPR _$INQ_DRAW _VALUE
Returns the color/intensity value used for drawing lines.

GPR_$INQ_FILL _BACKGROUND _VALUE

Returns the color/intensity value used for drawing the background of tile fills.

GPR_$INQ_FILL _PATTERN

Returns the fill pattern in use for the current bitmap.

GPR_$INQ_FILL _VALUE
Returns the color/intensity value used for filling rectangles.

6-9 Initial Bitmaps and Attributes

GPR__$INQ__LINE_PATTERN
Returns the pattern used in drawing lines. TN

GPR_$INQ_ LINESTYLE

Returns information about the current line style.

GPR_ $INQ_RASTER _ OPS
Returns the raster operations in use for the current bitmap.

GPR _$INQ _ TEXT
Returns the text font and text path used for the current bitmap.

GPR_$INQ__TEXT _OFFSET
Returns the x and y offsets from the top left pixel of a string to the origin of
the string’s first character. This routine also returns the pixel that is the new
current position after the text is written with GPR_ $TEXT.

GPR _$INQ_ TEXT_VALUES o
Returns the current values of color/intensity for text and text background in '
the current bitmap.

6.9. A Program Using Clipping

This program modifies the program in Section 4.6 that draws an "X" across the screen. This

version draws the "X" with dashed instead of solid lines. In addition, this program establishes a S
clipping window with a length and width of 100 pixels. The location of the clipping window is

the center of the Display-manager window

The routine, GPR_ $SET _ CLIP _ WINDOW requires that you define the coordinate position of
the top left-hand corner of the clipping window, and the length and width of the window.

Two methods are available for changing attributes for a particular bitmap:

1. You can change the attributes on the current bitmap’s current attribute block. This

may be the most convenient method when you are not changing the same attributes oo
several times within the same program.
2. You can create a new attribute block, associate it with the current bitmap, and
change the necessary attributes. This approach initially requires more work, but will
save time if you frequently use a particular set of attributes.
This program changes the necessary attributes on the current attribute block since the changes
are made only once.
PROGRAM clip an X;
%NOLIST;
%INCLUDE ‘/sys/ins/base.ins.pas’; {required insert file}
%INCLUDE */sys/ins/gpr.ins.pas’; {required insert file}
%LIST;
var '

st . status_$t;

Initial Bitmaps and Attributes 6-10

delete_display : boolean;

disp_bm size : gpr_$offset_t;
(:::) init bitmap : linteger;
i,x,y : integer;
bm size : gpr_S$offset_t;
num_of planes : gpr_$plane_t:
unobscured : boolean;
second_attr_block : integer32;
style : gpr_$linestyle_t.
scale : integer;
window : gpr_$window_t;
mid_x, mid_y : integer;
mode : gpr_$display mode_t := gpr_$direct;
ev_pos : gpr_$position_t:
ev_type : gpr_$event_t:
ev_char : char;
keys : gpr_$keyset_t. {set of characters}

BEGIN {Main program}

{Declare the size of the bitmap you will be using.}
disp_bm size.x_size := 1024; '
disp_bm size.y size := 1024;

{Initialize GPR}
gpr_$init(mode,1, disp_bm size, O, init_bitmap, st):

unobscured := gpr_$acquir€_disp1ay(st);
gpr_$ing_bitmap dimensions(init_bitmap,bm_size,num of_ planes,st):
X = bm size.x size;
y = bm_size.y size;
N {Change the attribute for line style in the attribute block associated}
(::) {with the initial bitmap. Make it dotted.}

style := gpr_$dotted;
scale := 5;
gpr_$set_linestyle(style, scale,st):

mid_x (x div 2); { Find the midpoint of one of}
mid y := (y div 2); { the lines.}

{Set the origin of the clipping window.}

,—\\ with window.window_base do
(\// begin
x_coord := mid_x - 50;
y_coord := mid_y - 50
end;

with window.window_size do {Set the width and height of the }
{clipping window.}

begin
X_size = 100;
y_size := 100
end;

gpr_$set_clip_window(window,st):; <{Set clipping active.}

{Draw the lines. This time, only pixels within the clipping window}
{will be visible. }
gpr $line(x., y. st); {Draw one line.}
gpr_s$move(x,0,st); {Move the current position}
gpr_$1ine(0,y,st); {Draw the second line.}
keys := [*a’..’d’']; {Create a key set.}
<::> gpr_$enable_input(gpr_$keystroke, keys, st);

6-11 Initial Bitmaps and Attributes

unobscured := gpr_$event_wait(ev_type, ev_char, ev_pos, st):
gpr_$release_display(st); {Release the display.} TN
gpr_$terminate(delete_display,st) {Terminate GPR}

END. {Main program}

6.10. A Program To Demonstrate Rubberbanding

This program is interactive and demonstrates how to perform rubberbanding. It allows the user
to define where a line starts by pressing:

o <F1>

o <F2>

o The left-most mouse button
. The middle mouse button.

It allows the user to rubberband (stretch) a line by moving the cursor either with the mouse or
the touch pad. The end of the line is defined when the user presses:

e <F1>

o <F2>

o <F3>

e The left-most mouse button
o The middle mouse button

e The right-most mouse button

//—\

The program ends when the user presses either <F3> or the right-most mouse button after a
line is drawn.
PROGRAM rubberband;
%nolist ;
%include '/sys/ins/base.ins.pas’
%include ’/sys/ins/gpr.ins.pas’ ;
%include °’/sys/ins/error.ins.pas’
%include ’/sys/ins/kbd.ins.pas’
%list
CONST

black = 0 ;

white = 1 ;
VAR

offset : gpr_$offset_t

.

Initial Bitmaps and Attributes 6-12

)

pos
i : integer :
b_desc

status : status_$t

size: gpr_$offset_t;

mouse_buttons
pfks
null buttons
first
et

ed char ;
last, anchor
wait boolean ;
rect

BEGIN

offset .x_size :=
offset.y_size :=

boolean ;

gpr_$event_t ;

gpr_$window

gpr_$keyset_t
gpr_S$keyset_
gpr_S$keyset_t

t

v

800
800

gpr_$position_t ;

gpr_$bitmap desc_t ;

= [.a-', 'b’, acn];

= [kbd_$£f1, kbd_$£f2. kbd_$£3]:

=01

gpr_$position t ;

gpr_$init (gpr_s$borrow, 1, offset, O, b_desc, status) ;

rect.window_base.Xx_coord
rect.window_base.y coord :=
rect.window_size.X size
rect.window_size.y size :=

200;

200;
200,
200;

I

gpr_$rectangle(rect, status);
{Enable the three mouse buttons.}
gpr_$enable_input (gpr_$buttons, mouse_buttons, status)
{Enable the three function keys.}
gpr_$enable_input (gpr_$keystroke, pfks, status);

REPEAT

first := true

{ Set ’exclusive or’ raster op. }
gpr_$set_raster_op (O, 6, status) ;

{ Wait for the inital mouse key to begin. }
gpr_$set_cursor_active (true, status)

wait =

gpr_$event_wait (et, ed, pos, status) ;

gpr_$set_cursor_active (false, status)
if ((ed = *c¢’) or (ed = kbd_$£3)) then exit;

anchor .x_coord
anchor.y_coord

:= pos.x_coord ;
!= pos.y_coord ;

gpr_$move (anchor.x_coord, anchor.y coord, status) ;
gpr_$enable_input (gpr_$locator, null_buttons, status) ;

{ Rubberband to the locator position until mouse key. }

REPEAT
wait

IF et = gpr_ $locator

THEN
begin

IF not first THEN

begin

gpr_$event_wait (et, ed, pos, status)

gpr_$move (anchor.x_coord, anchor.y_coord, status)
gpr_$line (last.x_coord, last.y coord, status)

end
ELSE
first

false ;

gpr_$set_draw_value(white, status):
gpr_$move (anchor.x_coord, anchor.y_coord, status)
gpr_$line (pos.x_coord, pos.y_coord, status) ;

last.x_coord

!= pos.x_coord

6-13

Initial Bitmaps and Attributes

last.y_coord := pos.y coord
end ; { if locator }

UNTIL ((et = gpr_$buttons) or (et = gpr_$keystroke)):
{ Now really draw the line with normal a raster_op. }
gpr_$set_raster_op (O, 3, status);
gpr_$move(anchor.x_coord, anchor.y coord, status).
gpr_$line (last.x_coord, last.y_coord, status) ;
gpr_$disable_input (gpr_ $locator, status) ;

UNTIL false;

gpr_s$terminate (false, status) ;

END.

Initial Bitmaps and Atiributes 6-14

AN

‘ Chapter 7
Bitmaps and Bit Block Transfers

This chapter discusses bitmaps outside display memory. It demonstrates how to use bit-block
transfers to copy information from one bitmap to another or from one location to another
location in the same bitmap.

7.1. Bitmaps In Main-memory, Hidden-display Memory and On Disk
For some graphics applications, it is necessary or convenient to establish bitmaps in locations
other than display memory. These bitmaps are used just like bitmaps in display memory except
that nothing appears on the screen. Therefore, these bitmaps can be used as scratch areas or as
areas to save images. To display images from any of these bitmaps, you must use a bit-block-
transfer operation (BLT) to transfer information to a bitmap in visual display memory.

7.1.1. Allocating Bitmaps In Main Memory

Use GPR_ $ALLOCATE _ BITMAP to allocate a bitmap in main memory. The form of the call
is the following:

GPR_$ALLOCATE BITMAP(size,hi_plane_id,attrib_block_desc,bitmap_desc,status)

Input Parameters

size The dimension of the memory bitmap. Main Memory bitmaps can have
dimensions up to 8192 x 8192.

hi__plane _id The number of the highest plane in the bitmap. Bitmap planes are numbered
from 0- 7.

attrib__block __ desc
The descriptor of the attribute block that the new main-memory bitmap will
use. This can be the current attribute block, or you can can designate an
already existing block which is not current. You can create a new attribute
block if necessary and use its descriptor.

Output Parameters

bitmap _desc The descriptor of the new main-memory bitmap.

7.1.2. Making Main-memory Bitmaps Current

You have a bitmap allocated in memory, but it is not the current bitmap. You can make it the
current by using the call:

GPR_$SET_BITMAP (bitmap_desc,status)

7-1 Bitmaps and Bit Block Trans fers

When you use this call, the attribute block associated with the bitmap becomes the current
attribute block (see attrib_block _desc in section 7.1.1). This call makes a bitmap current, not
visible.

7.2. Hidden-display-memory Bitmaps

In borrow-mode and direct-mode you can allocate additional bitmaps in hidden display memory
using GPR_$ALLOCATE _HDM _BITMAP. The parameters for this call are identical to the
parameters in GPR_ $ALLOCATE _ BITMAP.

The following restrictions apply to hidden-display-memory bitmaps:

o The maximum size allowed for a HDM bitmap is 224 x 224.
e In direct mode, if your program releases the display and another process acquires the
display (this could be the Display Manager or another program) before the original

program reacquires the display, the contents of hidden-display memory may be
written over.

7.3. External Bitmaps

To save a graphic image for use at a latter time, you must store it on disk using
GPR_$OPEN_BITMAP _ FILE. The form of the call is the following:

GPR_$0PEN_BITMAP FILE(access,filename,name_size, version,size
groups,group_headers,attribs,bitmap,created,status)

Input Parameters

access Specifies how you are going to use the file. There are four possible values:
gpr__ $create Allocates a new file on disk for storage of a graphic image.
gpr__$update Allows you to modify a previously created file, or create a
new one.
gpr__ $write Allows you to write to an existing file.

gpr__$readonly Permits you to read a previously created file.
filename The pathname of the bitmap file.
Input or Output Parameters

The following parameters can be input or output parameters depending on the value of access
and whether or not the file exists. See Table 7-1.

version The number on the header of the external bitmap file.

Bitmaps and Bit Block Trans fers 7-2

TN

7N

size Contains the dimensions of the bitmap.

groups The number of groups in external bitmaps. Currently, groups are not used; this
value must be 1.

group __headers The descriptors of the external bitmap group headers.
attribs The descriptor of the attribute block to be used by this bitmap.

Output Parameters

bitmap The descriptor of the bitmap on disk.

created A boolean value which specifies whether the bitmap file was created.

Table 7-1. GPR_$OPEN_BITMAP_FILE Access Table

GPR_$CREATE GPR_$UPDATE GPR_SWRITE GPR_$READONLY

flle exists
no yes
version,
size,
groups, IN IN OuUT ouT ouT
grou|
headers

7.4. Using Blts With External Bitmaps and Hidden-display Memory

If you have a bitmap in main memory, hidden-display memory, or on disk, and you want to
make all or part of it visible, use a bit-block transfer to a display memory bitmap. A BLT copies
a rectangle of pixels from one bitmap to another, or from one place in a bitmap to another place
in the same bitmap.

Bit-block transfers (sometimes called transfers) can be made from one bitmap to another or
within the same bitmap. When a BLT is performed from one bitmap to another, the bitmap that
contains the information being transferred is the source bitmap, and the bitmap that receives the
information is the destination bitmap. When a BLT is done within the same bitmap, this bitmap
serves as both the source and destination bitmap.

7-3 Bitmaps and Bit Block Trans fers

The three BLT subroutines are listed below. With each call, there is a description of its
parameters. Identical parameter descriptions are not repeated for each call.

GPR_$PIXEL BLT(source_bitmap_desc,source_window,dest_origin,status)

This routine copies a rectangle from all planes of the source bitmap to the corresponding planes
of destination bitmap.

Input Parameters

source _bitmap _desc

The bitmap descriptor of the source bitmap. The current bitmap is the
destination.

source__window The coordinates of the rectangle to be moved. This is the same format as -

window in GPR_ $SET_ CLIP_ WINDOW.

dest__origin The coordinates of the upper left corner of the rectangle in the destination
bitmap.

GPR_$BIT BLT(source_bitmap_desc,source_window, source_plane,
dest_origin,dest_plane,status)

This routine copies a rectangle from one plane of the source bitmap to one plane of the
destination bitmap. You specify the planes.

Input Parameters

source__plane The plane id of the plane from which the rectangle is to be moved.

dest _plane The plane id of the plane to which the rectangle is to be moved.

GPR_$ADDITIVE BLT(source_bitmap_desc,source window,source_plane,
dest_origin,status)

This routine copies a rectangle from one plane of the source bitmap (you specify the plane) to all
planes of the destination bitmap.

Input Parameters

source __plane The plane id of the plane from which the rectangle is to be moved.

7.4.1. Using a Plane Mask With a BLT

A program can mask planes of a bitmap to establish the following:

® Destination planes of a pixel BLT operation

o Destination planes of an additive BLT operation.

Bitmaps and Bit Block Trans fers 7-4

C

N

For plane masking procedures, see the routine GPR_$SET _ PLANE _MASK.

7.4.2. Using Raster Operations With a BLT

When a program invokes a BLT with the default raster operation, the BLT moves the rectangle
and retains all bit values. When the program uses a BLT with any other raster operation, the
BLT combines two rectangles and assigns the resultant bit values according to the raster
operation of the destination bitmap.

SOURCE BITMAP DESTINATION BITMAP
SOURCE
BITMAP ——t—— *
 ————]_ pEstinaTiON
WINDOW ORIGIN
ORIGIN
// }

SOURCE __—"] N
WINDOW '

SOURCE WINDOW _ SOURCE WINDOW

WIDTH HEIGHT

Figure 7-1. Information Required for Graphics BLT

7.4.3. Example of a BLT Operation

In a BLT operation, bits are transferred only on the rectangular area in which the source bitmap,
source window, and destination clipping window intersect (see Figure 7-2). Nothing is transferred
outside the bounds of the bitmap. For example, if the clipping window of the current bitmap
(the destination bitmap) excludes part of the destination rectangle that would otherwise receive
pixels, the size of the actual rectangle moved will be smaller than the source window. Similarly,
if the source window overflows the boundaries of the source bitmap, the size of the actual
rectangle moved will be smaller than the source window.

7.5. Example of A Blt With A Raster Operation

Figure 7-3 shows a source bitmap in main memory, a destination bitmap in display memory, and
the bitmap created by using a BLT with raster operation 1, the logical "AND" function. The
figure shows 0 bits as black, and 1 bits as white.

7-5 Bitmaps and Bit Block Trans fers

SOURCE BITMAP DESTINATION BITMAP

Ve ~\
SOURCE
WINDOW DESTINATION
WIDTH ORIGIN —
SOURCE
WINDOW ~__
ORIGIN /‘
RECTANGLE
MOVED AS
RESULT OF \
THEBLT
SOURCE o CLIPPING
WINDOW WINDOW
HEIGHT OF DESTINATION
(CURRENT) P
SOURCE RECTANGLE TO BE BITMAP ‘
WINDOW MOVED BY
THE BLT OUTLINE OF
SOURCE WINDOW
SUPERIMPOSED ON
DESTINATION. ONLY
SHADED RECTANGLE
IS ACTUALLY MOVED.
SN
Figure 7-2. BLT Example: Intersection of Source Bitmap, Source Window,
Destination Clipping Window
—
Figure 7-3. Example of BLT with Raster Op Code = 1 (Logical *"AND")

Bitmaps and Bit Block Trans fers 7-6

7.6. A Program To Draw A Checker Board

The program presented in this section draws the checker board in Figure 7-4.

e e

R P P mat e mas e mae e e

R P Pt P et e e e e e

e e e o o

Figure 7-4. Checker Board with Border

Figure 7-5. Border Design

7-7 Bitmaps and Bit Block Trans fers

The problem of drawing this design can be approached in several ways. In order to demonstrate
BLT operations and the various types of bitmaps, the program uses the following approach:

1. Draws and stores the checker board in a bitmap file.

2. Draws and stores the design in Figure 7-5 in hidden-display memory.

3. BLTs the design in Figure 7-5 into a display bitmap and create the border.

4. BLTs the checker board from the file on disk into the border in display memory.

Each of the steps above is performed in a separate procedure to facilitate explanations. The
program Checker _with __Border is listed first. Following this, each procedure is listed in a
separate subsection. All variables are global and are listed in the main program.

To create a checker board on an external bitmap, the program creates an external file using
GPR_$OPEN_BITMAP _FILE. After the program sets the external bitmap current, the
checker board is created in procedure CHECK _ ON _ DISK.

Once the checker board is drawn in the external bitmap, the program draws one square of the
border design in hidden display memory. This is performed in the procedure DRAW __DESIGN.

With one square of the design drawn in hidden display memory, the remainder of the border
design is drawn in visible display by transferring the design several times. This is done in
procedure BLT _BORDER. Notice that the current bitmap is both the source and the
destination.

The program finishes by transferring the checker board stored on disk into the border. This is
done in the procedure BLT _CHECKER _TO_ BORDER.

program checker_with_border;

%NOLIST;

%INCLUDE ’/sys/ins/base.ins.pas’; - {required insert file}
%INCLUDE ’/sys/ins/gpr.ins.pas’; {required insert file}
%LIST;

var
init_bitmap : gpr_$bitmap desc_t; {bitmap descriptor}
hdm_bitmap : gpr_$bitmap_desc_t; {bitmap descriptor}
i1.j : integer;
source gpr_$window t;
dest_pos : gpr_$position_t;
ev_type gpr_$event_t;
event_data,ev_char : char;
corner_1, corner_2 : gpr_$position_t;
st . status_$t;
keys : gpr_$keyset_t; {set of characters}
mode : gpr_$display mode_t;
x,x1,y.y1 : integer;
disp_bm size : gpr_$offset_t; {size of initial bitmap}
filename : array[1..256] of char;
name_size : integer;

Bitmaps and Bit Block Trans fers 7-8

version : gpr_$version_t;

size . gpr_$offset_t;

groups : integer:

group_headers : gpr_$bmf_group header_array t;

header : gpr_$bmf group header array t;

disk_bitmap : gpr_$bitmap_desc_t;

created : boolean;

attribs : gpr_$attribute_desc_t;

hdm_attr_block : gpr_$attribute_desc_t;

hi plane : gpr_$plane_t := O;

hdm_attr_blk desc : gpr_$attribute_desc_t;
BEGIN

disp_bm size.x size 1024; {width of bitmap for display}
disp_bm size.y size := 800; {height of bitmap for display}

{initialize graphics primitives}
gpr_$init(gpr_$BORROW, 1, disp bm_size, hi_plane, init_bitmap, st);

name_size := 7; <{number of characters in the pathname}
groups := 1;

header [0] .n_sects := hi_plane + 1;

header [0] .pixel size := 1;

header [0] .allocated size := O;

header [0] .bytes_per_line 0;

header [0] .bytes_per_sect := O;

{Declare the size of the external bitmap.}

size.x_size := 500;

size.y size := 500;

gpr_$allocate_attribute_block(attribs,st);

gpr_%$open bitmap file(gpr_$create, ‘checker’ name_size, version,size,
groups,header,attribs,disk_bitmap,created,st) .

gpr_$set_bitmap(disk bitmap,st); {Set the external bitmap current.}

CHECK_ON_DISK; {Procedure to draw a checker board in an external bitmap}

gpr_$allocate_attribute_block(hdm_attr_blk_desc,st);

size.x_size := 224; {width of bitmap for hdm}

size.y size := 224; {height of bitmap for hdm}

gpr_$allocate_hdm bitmap(size,0,hdm attr_blk_desc,hdm_bitmap,st):

gpr_$set_bitmap(hdm_bitmap,st); {Make the HDM bitmap current.}

gpr_$clear(0,st); {Clear the HDM bitmap.}

DRAW_DESIGN; {Procedure to draw one rectangle of the border design.}

gpr_$set_bitmap(init_bitmap,st); {Make display bitmap current.}

BLT BORDER; {Procedure to create the border on the screen.}

BLT_CHECKER_TO BORDER; {Procedure to BLT the checker board from}

{the external bitmap into the border which}
{is displayed on the screen.}

7-9 Bitmaps and Bit Block Trans fers

{Typing a lower-case a - d will end the program.}

keys := ['a’..’d’]; TN
GPR_$ENABLE_INPUT (GPR_$KEYSTROKE, KEYS, ST); \
UNOBSCURED := GPR_$EVENT WAIT(EV_TYPE, EV_CHAR, dest_POS, ST) e

gpr_$terminate(false, st)

end.

7.8.1. Procedure check _on__disk

This procedure creates a checker board with dimensions of 400 x 400. An unfilled box is drawn
as a border. Following this, two rows of the board are drawn and then these two rows are
transferred three times to complete the entire board. Notice that the external bitmap is used as
both the source and the destination of the BLT.

7N
Procedure check on_disk;
BEGIN
X = 0; x1 :=400; y := 0; y1 := 400; {dimensions of box}
gpr_$draw_box(x,y.x1,yl,st);
X =0,y :=0;
{Define the dimensions of the rectangle to be drawn.} S~
source.window_base.x_coord := x; {x coord. of rectangle} ‘
source.window_base.y coord := y; {y coord. of rectangle} ~
source.window_size.x _size := 50; {rectangle width}
source.window_size.y_size := 50; {rectangle height}
{This loop will draw two rows of rectangles. There are}
{eight rectangles per row but only four of them need be}
{drawn since four are filled and four are empty.}
for j := 1 to 2 do {Draw two rows of rectangles.}
1 N
begin ‘
for 1 := 1 to 4 do {Draw four rectangles 50 pixels apart.} N
begin :
source.window_base.x_coord := X;
gpr_$rectangle(source,st);
X = x + 100;
end;
y =y + 50, {Go to next row.}
X := 50; {Move over one position.}
source.window_base.y coord = y:
end;
{BLT the two rows of rectangles three times to get}
{eight rows. This is a BLT with the current bitmap}
{serving as both the source and the destination.}
{Define the area for the BLT.}
source.window base.y coord := O; TN

source.window_base.x_coord := O; (

Bitmaps and Bit Block Trans fers 7-10

source.window_size.x size := 400;
(:::> source.window size.y_ size := 100;

dest_pos.x_coord := 0; {Define x coordinate for the destination.}
{of the BLT.}
y = 100;
for 1 := 1 to 38 do {BLT figure 3 times.}
begin
dest_pos.y_coord := y; {Define y coordinate for the destination.}
{of the BLT.}
gpr_$pixel blt(disk_bitmap,source,dest_pos,st);
y :=y + 100; {Increment y value of destination.}
end;

END;

O 7.6.2. Procedure draw__ design

This procedure draws one square of the border design in hidden display. It is similiar to program
Connect __Four in Chapter 4.

Procedure draw_design;

begin
<::> X = 0; X1 := 49; y := 100; y1 := 149; {coordinates of box}
gpr_%$draw_box(x,y.x1,yl,st):

{Draw filled rectangles.}
rectangle.window_base.X coord := 10;
rectangle.window_base.y_coord 110;
rectangle.window_size.x_size := 10;

rectangle.window_size.y size 10;
gpr_$rectangle(rectangle,st);

<::> rectangle.window_base.Xx_coord := 30.
rectangle.window base.y coord := 110;
gpr_$rectangle(rectangle,st)
rectangle.window_base.x coord := 10;
rectangle.window_base.y coord := 130;
gpr_$rectangle(rectangle,st) ;
rectangle.window_base.Xx_coord := 30;
rectangle.window_base.y_coord := 130;

gpr_$rectangle(rectangle,st) ;

{Draw connecting lines.}
gpr_$move(20,120,st);
gpr_$1ine(30,130,st);

gpr_s$move(20,130,st);
gpr_$1ine(30,120,st);
end;

O

7-11 Bitmaps and Bit Block Trans fers

7.6.3. Procedure blt _border

This procedure transfers the design stored in hidden display to visible display memory. First the
design is transferred ten times vertically and then nine times horizontally. This creates one
corner of the border. Two more transfers are done in the procedure. These transfers take
advantage of the work already done and BLT a whole row and a whole column of squares. The
display bitmap is used as both the source and the destination bitmap.

Procedure blt_border;
BEGIN

{Define the area for the BLT.}
source.window_base.x_coord 0;
source.window_base.y coord := 100;
source.window_size.x_size 50;
source.window_size.y_size := 50;

dest_pos.x_coord := 290; {Define x coordinate for the destination.}
{of the BLT.}

y = 290;

for 1 := 1 to 10 do {BLT figure vertically 10 times.}

begin

dest_pos.y_coord := y; {Define y coordinate for the destination.}
{of the BLT.}
gpr_$pixel_blt(hdm_bitmap,source,dest_pos,st);

y =y + 50; {Increment y value of destination.}
end;
dest_pos.y coord := 740; {Define x coordinate for the destination.}
{of the BLT.}
X = 340;
for i := 1 to 9 do {BLT figure 9 times horizontally.}
begin
dest_pos.x_coord := x; <{Define y coordinate for the destination.}

{of the BLT.}
gpr_$pixel blt(hdm bitmap,source,dest_pos,st) ;
X := x + 50; {Increment x value of destination.}
end;

{Define the area for the BLT to the top row.}

source .window_base.X_coord := 340;
source.window_base.y coord := 740;
source.window_size.x_size := 450;
source.window_size.y size := 50;

{Define destination coordinates for BLT to the right-hand column.}
dest_pos.x_coord := 340;
dest_pos.y_coord := 290;

Bitmaps and Bit Block Trans fers 7-12

gpr_$pixel blt(init_bitmap,source, dest_pos,st)

{Define the area for the BLT.}

source.window_base.y_coord := 340;
source.window_base.Xx _coord := 290;
source.window size.x_size := 50;

source.window_size.y_size := 400;

dest_pos.x_coord := 740;
dest_pos.y_coord := 340;
gpr_$pixel blt(init_bitmap,source,dest_pos,st);

END;

7.6.4. Procedure blt _checker _to__border

This procedure BLTs the checker board stored on disk into the border in display memory. The
source bitmap is the disk bitmap (disk_ bitmap) and the destination bitmap is the display
bitmap (init_bitmap).

Procedure blt_checker_ to_border;
Begin

{Define the area for the BLT.}

source.window_base.y coord = O;
source.window_base.x coord := O;
source.window_size.x_size := 400;
source.window_size.y size := 400;

{Define the origin for the destination of the BLT.}
dest_pos.Xx_coord := 340; dest_pos.y coord :=340;
gpr_$pixel blt(disk_bitmap,source, dest_pos,st):

End;

7-13 Bitmaps and Bit Block Trans fers

O

Chapter 8
Color Graphics

This chapter describes color configurations, formats, color maps, and the operation modes for
color graphics. The information presented in this chapter builds upon the basic information
presented in Chapter 2.

8.1. Display Configurations

Similiar to monochrome displays, color displays are bit-mapped, raster-scan devices. Two
hardware configurations are available for this device.

e Two-board configuration, which has four planes.

e Three-board configuration, which has eight planes.
Within each of these configurations two formats are available.
e Interactive format
e Imaging format.
The formats are user-defined and specify the number of colors that can be displayed

simultaneously (see Figures 8-1 and 8-2). Imaging formats restrict GPR operations by decreasing
the number of calls that can be used, and with 24-bit imaging, screen resolution is reduced.

Table 8-1. Two-Board Configuration for Color Display

Format Pixel Dimensions
Visible Hidden Number of
Display Display Colors
DN6xxX 4-bit interactive (Default) 1024 x 1024 1024 x 1024 16
8-bit imaging 1024 x 1024 none 256
DN550 4-bit interactive (Default) 1024 x 800 1024 x 1024 ‘J 16
. plus 1024 x 22
8-bit imaging 1024 x 800 1024 x 224 256

8-1 Color Graphics

Table 8-2, Three-Board Configuration for Color Display

Format Pixel Dimensions

Visible Hidden Number of

Display Display Colors

DN6xXX 8-bit interactive (Default) 1024 x 1024 1024 x 1024 256

24-bit imaging 512 x 512 512 x 512 16.7
million

DN550 8-bit interactive (Default) 1024 x 800 1024 x 1024 256

plus 1024 x 224

24-bit imaging 512 x 400 512 x 512 16.7

plus 512 x 112 million

8.1.1. Two~-Board Configuration

The interactive 4-bit pixel format is the default for a two-board configuration. This means that
four bits are used to assign a pixel value (color map index) to each pixel. This format allows
sixteen different colors to appear on the screen at one time. On a DN6xx graphics processor, the
pixels are arranged 1024 x 1024 in visible display memory, and 1024 x 1024 in hidden-display.
On a DN550 graphics processor, there are two sections of display memory. Each section has the
dimensions of 1024 x 1024. Each section is divided into two subsections: one subsection has the
dimensions 1024 x 800 pixels and is viewable, the other subsection has the dimensions 1024 x 224
and is hidden. You can map only one section to the display at a time. Interactive formats
support all GPR operations.

Optionally, software can change a two-board configuration to an 8-bit imaging format, with eight
bits used to assign a pixel value (color map index) to each pixel. This format allows 256 colors to
appear on the screen at one time. The pixels are arranged 1024 x 1024 in the display memory.
Using a DN6xx graphics processor, you can view the entire display memory. Using a DN550
graphics processor, you can view only 1024 x 800 of the display memory. Hidden-display memory
is not available with imaging formats on a two-board configuration. Imaging formats support
only limited GPR operations.

8.1.2. Three-Board Configuration

The interactive 8-bit pixel format is the default for a three-board configuration. This means that
eight bits are used to assign a pixel value (color map index) to each pixel. This format allows 256
different colors to appear on the screen at one time. On a DN6xx graphics processor, the pixels
are arranged 1024 x 1024 in visible display memory, and 1024 x 1024 in hidden-display. On a

Color Graphics 8-2

O

DN550 graphics processor, there are two sections of display memory. Each section has the
dimensions of 1024 x 1024. Each section is divided into two subsections: one subsection has the
dimensions 1024 x 800 pixels and is viewable; the other subsection has the dimensions 1024 x 224
and is hidden. You can map only one section to the display at a time.

Interactive formats support all GPR operations. The 8-bit interactive format is compatible with
the 4-bit interactive format. For example, the Display Manager uses four planes, but runs on a
configuration using eight planes. In general, the operations performed in 4-bit format can also be
performed in 8-bit format.

Optionally, software can change a three-board configuration to a 24-bit imaging format. This
means that 24 bits are used to assign a pixel value (color map index) to each pixel, making it
possible to use over 16 million different colors. On a DN6xx graphics processor, the pixels are
arranged with 512 x 512 in visible display and 512 x 512 in hidden display. On a DN550 graphics
processor, the pixels are arranged 512 x 400 in visible display, 512 x 400 in hidden display.
Imaging formats support only limited GPR operations.

8.2. Displaying Colors On The Screen

The color of every pixel in a raster is determined by interpreting its pixel value. A pixel value is a
number that is used as an index into a color map where color values are stored. For drawing
operations, the pixel value is called the draw value, and for fill operations, it is called the fill
value. For text operations, it is the text value.

For monochrome displays, a pixel value can be represented by one bit, and a color map has only
two entries. A pixel value of 0 can represent white, and 1 can represent black or vice-versa For
color displays, pixel values must be represented by several bits, and the color map must have
several entries.

Colors are displayed on the screen as follows. Each pixel value is used as an index into the color
map to determine the correct color value. The intensity level for each primary color is then
calculated from the color value and sent to the appropriate color gun which illuminates the pixel
with the proper amount of light. Figure 8-1 illustrates the relationship between pixel values and
the color map.

8.2.1. The Color Map: A Set of Color Values

A color map is a set of indexed color values. Each color value is a 4-byte integer that uses eight
bits to represent the intensity of each of the three primary colors of this graphics package (red,
green and blue). The remaining eight bits are ignored. Figure 8-2 shows the format of a color
value.

The eight bits used to represent the intensity of each primary color provide 256 levels. Intensity
level 0 means none of that color, while intensity level 255 represents full intensity. Combinations
of the 256 levels of each of the three primary colors provide over 16 million colors.

8-3 Color Graphics

0

pixel value

4-plane bitmap

red green blue
01\]/_0 0000 | 50000000 | 00000000 | 00000011
0001 | 0000000 | 11111111 00001111
0010 o (o) o
0011 o o o]
0100
color map ° ° °
0101 o o o
0110 | 11111111 {o00001111 | 00000000
&) o o 0
0 o o o
1111 o 0 o
Figure 8-1. Four Plane Color System
Bit position 31 24123 16115 8|7
Ignored Red Green Blue
Component Component Component

- Color Graphics

Figure 8-2.

Color Value Structure

/‘\ .

8.2.2. The Size of a Color Map

The size of a color map is determined by the machine configuration and the color format being
used. These two taken together specify how many bits represent each pixel. For example, with a
2-board configuration using interactive format, each pixel is represented by four bits. Four bits
allow 16 different combinations, thus the color map can contain at most 16 colors. You can fill
the 16 places in the color map with any colors you wish, but you cannot have more than 16
colors.

8.2.3. Color Map for Color Displays: 4~Bit and 8-Bit Formats

For a color display in the 4-bit pixel format, the color map has 16 entries, with index values. 0-15.
For a color display in the 8-bit pixel format, the color map has 256 entries, with index values
0-255. In both formats, all entries are set to default values at the initialization of the graphics
primitives package. After initialization, either of these maps can be changed to contain any colors
from the over 16 million available colors.

The color map can be thought of as a one-dimensional array of 4-byte integers. The pixel values
can be thought of as the indices to that array. To set the color of a pixel, you assign it the value
of the index in the array that contains the color value you want.

8.2.4. Color Map for Color Displays: 24-Bit Imaging

Color maps for 24-bit imaging are slightly different. The color map can be thought of as a 256 x
3 matrix. The color value is still represented by a 4-byte integer, (however, only three bytes are
used), but each byte can be indexed separately. The rows of the matrix represent intensity levels
and the columns represent the primary colors.

In this format, the 3-byte pixel value is divided into three 8-bit fields. The value in each field is
associated with a particular column of the matrix. In other words, eight bits of the pixel value are
an index into the red column, eight bits of the pixel value are an index into the green column,
and eight bits of the pixel value are an index into the blue column. This allows you to choose the
intensity of each primary color. Figure 8-3 displays how the color map is used in 24-bit imaging.

With 24-bit imaging, the color map is the same size as it is for 8-bit interactive format or 8-bit
imaging format. You get access to more colors because you are using eight bits from the pixel
value as an index to each primary color (a column in the matrix).

8.3. Establishing A Color Map

At initialization of the graphics primitives package, a default color map is established. The
default color maps for monochromatic and color displays are displayed in Tables 8-3 and 8-4. In
frame mode or direct mode, a program cannot modify color map entries 0 and 7-15. These colors
are used by the display manager for window backgrounds and borders. All other entries in the
map can be modified.

8-5 Color Graphics

red green blue

00000000 | 00001111 | 11111111 \
pixel value

index for blue value
index for____|
red value
N
Index red green blue
24 16 8 0
00000000 | 00000000 | 00000000 [00000000
index for P,
green value
00001111 [00001111 [00001111 | 00001111
f\
\
— (11111111 | 11111111 11111111 11111111
This pixel value specifies no red, half green, and full blue.
Figure 8-3. From Pixel to Color Map in 24-bit Imaging

S~

Color Graphics 8-6

8.3.1. Using a Color Map

After a color map is established, a program can use it to specify the color/intensity to use for
displaying lines, text, text background, fill operations, and the full screen, as follows. The
program assigns a pixel value (color map index) to the draw value attribute, the text value
attribute, the text background value attribute, the fill value attribute, and/or uses the index to
clear the screen. See the description of the following routines in the DOMAIN System Call
Refrence (Volume I):

GPR_$SET_DRAW_VALUE
GPR_$INQ_DRAW_VALUE
GPR_$SET_TEXT_VALUE
GPR_$SET_TEXT_BACKGROUND_VALUE
GPR_$INQ_TEXT_VALUES
GPR_$SET_FILL_VALUE
GPR_$INQ_FILL_VALUE
GPR_$CLEAR

Table 8=3. Default Color Map for Monochromatic Displays

Color Table | Color Value Resultant
Index Visible Color/Intensity
(o} 0 black
1 16#FFFFFF white

To establish a particular color value, you must specify the amount of each primary color. This
can be done in FORTRAN and Pascal as shown in the following subsections.

8.3.2. FORTRAN Example to Establish a Color Value

The FORTRAN function presented in this section returns a 4-byte integer that contains intensity
values for each primary color. The parameters red, green, and blue must be assigned values in
the range 0 - 255.

Integer*4 Function color_entry(red,green,blue)
integer*2 red,green,blue

color_entry = (65536 * red) + (256 * green) + blue
return

end

8-7 Color Graphics

Table 8-4.

Default Color Map for Color Displays

Color Table Color Value Resultant
Index Visible
Color/Intensity
R G B
o (o] 0 (o) (GPR_$BLACK) black
1 255 (o] 0 (GPR_$RED) red
2 0 255 0 (GPR_$GREEN) green
3 o] 0 255 (GPR_$BLUE) blue
4 0 255 255 (GPR_$CYAN) cyan
5 265 255 (0] (GPR_$YELLOW) yellow
6 255 0 255 (GPR_$MAGENTA) magenta
7 255 255 255 (GPR_$WHITE) white
8-15 contain colors used by the Display Manager
to display windows.
16-255 0 0 0 (GPR_$BLACK) black

8.3.3. Pascal Example to Establish a Color Value

The Pascal function presented in this section returns

a 4-byte integer

that contains intensity values for each primary color.

The parameters red, green, and blue must be assigned values in the

range 0 - 255.

Function color_e

begin
color_entry
end;

Color Graphics

ntry (IN red : integer;
IN green: integer:
IN blue : integer)

integer32;

:= (65536 * red) + (256 * green) + blue;

8.3.4. Modifying a Color Table

There is one system color table. To modify it, use GPR_$SET__COLOR_ MAP. The format
of the call is the following:

GPR_$SET_COLOR_MAP (start_index, n_entries, values, status)

This call allows you to set several consecutive color values in the color map with just one call.
Start __index is the index of the first entry to be modified. N__entries is the number of entries to
be modified; values is an array that contains the new color values that you are placing in the
color map.

If you want to modify the color map, but the entries you want to modify are not consecutive, you
have to use GPR_$SET__ COLOR _ MAP for each entry, or each group of consecutive entries.

8.3.5. Changing Pixel Values

To change the color of a pixel, line, text, etc., you can use either of two procedures.

1. You can change the color value that is stored in the location that corresponds to the
pixel value index. When you do this, any other pixels with the same pixel value index
will also change color because they look to that location for a color value.

2. You can change the draw value, text value, etc., if another location in the color map
stores the color value you need.

8.3.8. Color Map for Monochromatic Displays

For a monochromatic display, the color map has only two entries. The default color map assigns
the color value 0 to color map index 0, and the color value 1 to color map index 1 (see Table 8-3).
If a program wuses the default color map and sets a particular bitmap pixel to 1,
(GPR_$WHITE), the corresponding pixel on the screen appears bright. If it selects O,
(GPR _$BLACK), the corresponding pixel appears dark. On a monochromatic node, there are no
other choices -- you cannot get grey-scale output.

8.3.7. Saving/Restoring Pixel Values

In interactive formats, a program can read the pixel values of each pixel in a bitmap or section of
a bitmap and store the values in a pixel array. Imaging formats do not permit read operations.

In both interactive and imaging formats, a program can write the pixel values from a pixel array
into a bitmap. See the routines GPR_$READ _PIXELS and GPR_ $WRITE _ PIXELS.

8-9 Color Graphics

8.4. Using Color Display Formats

Interactive display formats fully support all GPR output operations -- bit-block transfer, area
filling, line drawing, text manipulation. Imaging display formats support only limited display
operations -- displaying (not reading) pixel data and changing the color map. Other functions
return error messages.

Imaging display formats make it possible to display images with more bits per pixel than are
available with interactive formats. Additionally, in 24-bit pixel format, operations to select a
frame (GPR__$SELECT _COLOR _FRAME) are allowed. These operations are used to look at
either half of display memory.

8.4.1. Using Imaging Display Formats

Switching the display between an interactive format and an imaging format causes the hardware
to reconfigure the refresh buffer memory and to rearrange the bitmap. This means that an
intelligible image in one format becomes unintelligible in another.

The imaging formats are supported only in borrow-display mode. To change from an interactive
to an imaging format, you must be in borrow-display mode.

8.4.2. Routines for Imaging Display Formats

Use the following routines and procedures for imaging display formats. For a detailed description
of these calls, see the GPR calls in the reference library.

1. Establish borrow-display mode:
GPR_$INIT

You may or may not first want to perform some graphics operations in
interactive format.

2. Set the display to 24-bit pixel format:
GPR_$SET IMAGING FORMAT

Use the format argument to switch to 8- bit or 24-bit imaging
format.

3. To inquire about the format, use:
GPR_$INQ_IMAGING_FORMAT

4. To establish new values for the color map, use:
GPR_$SET_COLOR_MAP

5. To write pixel data to the display, use:
GPR_$WRITE_PIXELS

6. To return to interactive format, use the following call with the

Color Graphics 8-10

Q

interactive argument:
GPR_$SET_IMAGING_FORMAT

7. To terminate the session and return the display to the Display Manager,
use:

GPR_$TERMINATE

8.5; Color Zoom Operations

The DOMAIN color displays have a hardware zoom feature, to make an image larger. This
feature only works on color displays and only in borrow-display mode. The zooming is done by
pixel replication.

You specify a separate zoom factor for the x and y directions. One pixel in display memory is
then shown on the screen in x by y pixels (see Figure 8-4).

one pixel in display memory.

A zoom with x = 3 and
Y = 2 gives this result.

Figure 8-4. Color Zoom

8-11 Color Graphics

If desired, you can keep the aspect ratio equal by making x and y equal. The zoom always starts
at the upper left corner of the screen.

8.6. Color Examples

Three programming examples are presented in this section to demonstrate how to load a color
map and how the following GPR routines work:

e GPR_$SET_ COLOR_MAP
e GPR_$SET_DRAW _ VALUE
" o GPR_$SET_FILL_VALUE

e GPR__$SET_ TEXT _VALUE.

Color Graphics 8-12

8.6.1. A Program to Draw a Rectangle and Text in Color

This program draws an unfilled rectangle with text. It is identical to the program in Section 4.9
except that routines to set the draw value and text value have been added. This program uses
the default color map.

Program color_rec_text;
%nolist;
%include ’'/sys/ins/base.ins.pas’;
%include */sys/ins/gpr.ins.pas’;
%include ’/sys/ins/time.ins.pas’;
%list;
const
one_second = 250000;
five_seconds = 5 * one_second;

var
init_bitmap_size : gpr_$offset_t; {size of the initial bitmap}
init_bitmap : gpr_$bitmap desc_t. <{descriptor of initial bitmap}
mode : gpr_$display mode_t := gpr_$borrov;
hi_plane_id : gpr_$plane_t := 4. <{highest plane in bitmap}
delete_display : boolean; {This value is ignored in borrow mode.}

status : status_$t. {error code}
font_id : integer; {identifier of a text font}
i.j : integer32;
direction : gpr_$direction_t; {direction of text}
pause : time_$clock t;
BEGIN
init_bitmap_size.x size := 700;
init_bitmap_size.y size := 700;

gpr_$init(mode,1,init_bitmap_size,hi_plane_id,init_bitmap,status)

gpr_$set_draw_value(4,status); {blue box}
gpr_s$draw_box (100, 100,500,500, status) ;

gpr_$load_font_file(’f7x13.b’',SIZEOF('F7X13.B’),font_id, status).
gpr_$set_text_font(font_id, status):

gpr_$move (110,90, status) ;

gpr_$set_text_value(3,status); {green text}
gpr_$text(’'This is the top of the rectangle.’, 33,status);
direction := gpr_$up;
gpr_$set_text_path(direction,status):

gpr_$move (90, 490,status);

gpr_$set_text_value(6,status) . {magenta text}
gpr_$text('This is the side of the rectangle.’, 34,status);

{Keep figure displayed on the screen for five seconds.}
pause.lowd32 := five seconds;

pause.highi6é := O;

time_$wait(time_$relative, pause, status);

8-13 Color Graphics

gpr_$terminate(delete_display,status);
end.

8.6.2. A Program to Draw a Design in Color

This program draws the design in Figure 4-9. It is identical to the program presented in Section
4.7 except that routines to change the default color map and routines to change the draw and fill
values have been added. '

program color4;

%NOLIST;
%INCLUDE ’/sys/ins/base.ins.pas’; {required insert file}
%INCLUDE ’/sys/ins/gpr.ins.pas’; {required insert file}
%INCLUDE ’/sys/ins/time.ins.pas’;
%LIST;

const

one_second = 250000;
five_seconds = 5 * one_second;

var
init_bitmap : gpr_$bitmap desc_t;
unobscured : boolean;
st . status_$t;

mode : gpr_$display mode_t := gpr_$borrow;

X,y.x1,yl integer;

rectangle : gpr_$window_t;

disp_bm_size : gpr_$offset_t := [1024,800]; {size of initial bitmap}
hi_plane_id : gpr_$plane_t := 4;

color_value :array [0..7] of gpr_$pixel value_t;

pause :@ time_$clock t:

function color_entry(IN red : integer;
IN green : integer;
IN blue : integer) : integer32;
begin ’
color_entry :=lshft(red,16) ! lshft(green,8) ! lshft(blue,O):
end;

BEGIN

color_ value[0]
color_value[1]
color_value[2]
color_value[3]
color_value[4]
color_value[5]
color_value[6]
color_value[7]

color_entry (0,0,0); {color--black}
color_entry (255,125,0); {color--orange}
color_entry (255,0,0):. {color--red}
color_entry (0,255,0); {color--greenl}
color_entry (0,0,255); {color--blue}
color_entry (255,255,0); {color--yellow}
color_entry (255,0,255); {color-—magenta}
color_entry (255,255,255); {color--white}

gpr_$init(mode,1,disp_bm size,hi_plane_id,init_bitmap,st);
gpr_$set_color_map(0.8,color_value,st); {modifies color table}

Color Graphics 8-14

X := 200; x1 := 600; y := 200; y1 := 600; {dimensions of box}
rectangle.window_base.x_coord := 250; {starting position of 1st rectangle}
rectangle.window_base.y_coord := 250;

rectangle .window_size.x size 50; {width of each rectangle}
rectangle.window_size.y size := 50; {height of each rectangle}

gpr_$set_auto_refresh(true,st) ;

gpr_$set_draw_value(4,st); <{blue box}
gpr_$draw_box(x.y.x1,yi,st): {Draw an unfilled box.}

gpr_$set_fill value(5.st); {yellowbox}
gpr_$rectangle(rectangle,st) . {Draw a filled rectangle.}

{Draw three more filled rectangles within the unfilled box.}
rectangle.window_base.x_coord := 500;
rectangle.window_base.y_coord := 250;

gpr_$set_fill value(l,st); {orange box}
gpr_$rectangle(rectangle,st) ;

rectangle.window_base.X_coord 250;
rectangle.window_base.y coord := 500;

gpr_$set_£ill value(7,st). {white box}
gpr_s$rectangle(rectangle,st);

rectangle.window_base.x coord
rectangle.window_base.y coord

500;
500;

gpr_$set_fill value(2,st);
gpr_$rectangle(rectangle, st) ;

gpr_$move(300,300,st); {Move the current position.}
gpr_$set_draw_value(7,st); {line}

gpr:$line(500,500,st); {Draw a line connecting two rectangles.}

gpr_$move (300,500,s%) ;
gpr_$set_draw_value(6,st); {line}
gpr_$1ine(500,300,st); {Draw a line connecting two rectangles.}

{Keep figure displayed on the screen for five seconds.}
pause.low32 := five_seconds;

pause.highl6é := O;

time_$wait(time_$relative, pause, st).

gpr_$terminate(false, st); {Terminate the graphics session.}

8-15 Color Graphics

8.6.3. A Program to Draw Concentric Circles in Color

This program draws seven concentric circles. The outer most circle is drawn first in dark blue.
Each addition circle is drawn in a lighter shade of blue except the last one which is drawn in
white. The various shades of blue are achieved by loading the color map with the desired shades
of blue. The darkest shade of blue has no red, no green, and the maximum amout of blue.
Lighter shades of blue have increasing amouts of red and green with the maximum amount of
blue.

Program color_circles;
%nolist;
%include ’/sys/ins/base.ins.pas’;
%include °’/sys/ins/gpr.ins.pas’;
%include °’/sys/ins/time.ins.pas’;
%list;
const
one_second = 250000;
five_seconds = 5 * one_second;

var
size : gpr_Soffset_t; {size of the initial bitmap}
init_bitmap : gpr_$bitmap desc_t; {descriptor of initial bitmap}
ev_pos : gpr_$position_t;
ev_type : gpr_$event_t;
event_data,ev_char : char;
unobscured : ‘boolean;
st . status_$t;
keys : gpr_$keyset_t. {set of characters}

mode . gpr_$display mode_t := gpr_$borrow;
hi_plane_id : gpr_$plane_t := 3; <{highest plane in bitmap}
center : gpr_$position_t := [300,300];

radius : integer; { := 200:}

delete_display : boolean; {This value is ignored in borrow mode.}
status : status_$t; {error code}

cv : integer;

pause : time_$clock t;

color_value :array [0..7] of gpr_$pixel_value_t;

function color_entry(IN red : integer;
IN green : integer;
IN blue : integer) : integer32;
begin
color_entry :=1lshft(red,16) ! lshft(green,8) ! 1lshft(blue,0):
end;

BEGIN
size.x_size := 700;
size.y_size := 700;
gpr_$init(mode,1,size, hi_plane_id,init_bitmap,status);

color_value [0] color_entry (0,0,0): {color--black}
color_value[1] := color_entry (0,0,255); {color--dark blue}

Color Graphics 8-16

O

color_value{2]
color_value{3]
color_value[4]
color_value[5]
color_value[6]
color_value[7]

.= color_entry
color_entry
color_entry
color_entry
color_entry
:= color_entry

1}

(50,50, 255) ;

(75.,75,255) ;

(100, 100,255) ;

(150, 150,255) ;

(200,200,255) ; {color--light blue}
(255,225,225) ; {color--white}

gpr_$set_color_map(0,8,color_value,st); {modifies color table}

radius := 300;

{Draw concentric circles - each a lighter color of blue.}
{ The last circle is white.}
for cv =1 to 7 do

begin

gpr_$set_draw_value(cv,status)
gpr_$circle(center,radius,status);

gpr_$set_fill value(cv,status);
gpr_$circle_filled(center,radius,status) ;
radius := radius - 50;

end; {for}

{Keep figure displayed on the screen for five seconds.}

pause.low32
pause.highié

;= five_seconds;
= 0;

time_$wait(time_$relative, pause, status);

gpr_$terminate(false, st);

END

{Terminate the graphics session.}

8-17

Color Graphics

O

Chapter 9
Graphics Map Files

9.1. A Graphics Map File

A graphics map file, or GMF, is an image of the graphic information in a bitmap. Each bit in
the GMF represents the state of one visible point on the display. On DOMAIN color nodes,
where more than one plane is used to represent visible information, a GMF stores the state of
only one plane, typically plane 0.

Once you have stored image data in a GMF, you can restore it to the display or produce a
printed copy of the image. The GMF contains information that helps the GMF manager or
application program interpret the contents of the GMF. For instance, the GMF may indicate the
following: the physical density of the original image, and the dimensions of the display area
stored in the GMF. A GMF can contain the contents of an entire plane or any specified
rectangular portion of the plane (subplane).

In Software Releases 6.0 and earlier, GMF's were called graphics metafiles. The calls to the GMF
manager begin with the letters GMF. To store image data in a GMF, you typically use
GMF _$OPEN to create or open the GMF, then use GMF_$COPY _PLANE to specify the
information to be copied into the GMF', then close the GMF with GMF _ $CLOSE.

The GMF _ $COPY _ PLANE routine copies a plane of display memory. To make a GMF of any
rectangular area on the display, regardless of its position, use the more general call

GMF _$COPY _ SUBPLANE.

The GMF _ $RESTORE _ PLANE call returns to the screen any image data that is stored in a
specified GMF. To use this call, the node must be in borrow-display mode. The call changes a
rectangular portion of the display, with the size determined by the size of the GMF you specify.

In place of graphic map files, it is strongly recommended that you use external bitmap files. For

a description of the routine for creating such files, see GPR_$OPEN__BITMAP _FILE in
Section 7.2 of this manual.

9.2. Insert Files

To use GMF calls in an application program, the following insert file must be included in your
program:

FORTRAN Pascal C
/SYS/INS/BASE.INS.FTN SYS/INS/BASE.INS.PAS SYS/INS/BASE.INS.C
/SYS/INS/GMF . INS .FTN SYS/INS/GMF .INS .PAS SYS/INS/GMF .INS.C

The GMF manager does not define any new data structures.

9-1 Graphics Map Files

9.3. Error Messages

Here are the possible error messages generated by the GMF calls described in this chapter:

GMF_$BAD_BPI -~ Bits/inch parameter is negative

GMF_$BAD_X DIM -—- X dimension parameter is not positive

GMF_$BAD_Y DIM -- Y dimension parameter is not positive

GMF_$BAD_WPL —-- Words/line parameter is too small for the
X dimension you specified

GMF_$BAD_POS —- Opening position parameter is illegal

GMF_$NOT_GMF —- The file you wanted to open is not a2 GMF

9.4. Programming Example

This example in Pascal shows how to combine the calls described in this chapter with GPR calls

see Cha,pter 11) to form a typical GMF operation. This example restores a previously saved
yp
GMF.

{Initialize the graphics primitive package in borrow-display mode . }
gpr_$init (gpr_$borrow, 1, scsize, O, disp_desc, sts).

{ Get the starting pointer. }
gpr_$ing_bitmap_pointer (disp_desc, ptr, width, sts);

{ Open the file. }
gnf_$open (’//pepsi/adm/gmf/turbine.pad’, 27, gmf_$read,id,sts);

{ Restore the screen. }
gnf_$restore_plane (id,scsize.x_size,scsize.y size,wpl,ptr,bpi,sts);

{ Close the file. }

gmf_$close (id,status);

9.4.1. Comments on Programming Example

The call to GPR_$INIT puts the screen in borrow-display mode. The next call obtains "ptr,"
the pointer to the start of the screen bitmap. The call to GMF _ $OPEN opens a GMF with the
specified name, returning the identification by which you subsequently refer to the GMF. The
next call restores the screen from this GMF. (Alternatively, you can use a call here to copy a
plane or subplane to the GMF.) The final call closes the GMF'.

Graphics Map Files 9-2

TN

5

Attribute

Bitmap

Bit plane

Appendix A
Glossary

Specification of the manner in which a primitive graphic operation is to be
performed, (for example line type or text value). Each bitmap has a set of
attributes.

A three-dimensional array of bits having width, height, and depth. When a
bitmap is displayed, it is treated as a two-dimensional array of sets of bits.
The color of each displayed pixel is determined by using the set of bits in the
corresponding pixel of the frame-buffer bitmap as an index into the color table.

A one-bit-deep layer of a bitmap. On a monochromatic display, displayed
bitmaps contain one plane. On a color display, displayed bitmaps may contain
more planes, depending on the hardware configuration and the number of bits
per pixel.

Borrow display mode

Button

Clipping window
Color map
Color table
Color table entry

Color table index

Color value

A mode for use of the DOMAIN display whereby a program borrows the entire
screen from the Display Manager and performs graphics operations by directly
calling the display driver.

A logical input device used to provide a choice from a small