
o

o

o

(..--.........,
(,

~

DOMAIN Graphics Primitive Resource
Call Reference

Apollo Computer Inc.
330 Billerica Road

Chelmsford, MA 01824

Order No. 007194
Revision 01

Copyright © 1986 Apollo Computer Inc.

All rights reserved.

Printed in U.S.A.

First Printing: January, 1987

®
This document was produced using the SCRllE document preparation system. (SCRmE is a
registered trademark of Unilogic, Ltd.)

APOLLO and DOMAIN are registered trademarks of Apollo Computer Inc.

AEGIS, DGR, DOMAIN/BRIDGE, DOMAIN/DFL-I00, DOMAIN/DQC-I00, DOMAIN/Dialogue,
DOMAIN/IX, DOMAIN/Laser-26, DOMAIN/PCI, DOMAIN/SNA, D3M, DPSS, DSEE, GMR,
and GPR are trademarks of Apollo Computer Inc.

Apollo Computer Inc. reserves the right to make changes in specifications and other information
contained in this publication without prior notice, and the reader should in all cases consult
Apollo Computer Inc. to determine whether any such changes have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF APOLLO COMPUTER INC. HARDWARE

PRODUCTS AND THE LICENSING OF APOLLO COMPUTER INC. SOFTWARE CONSIST SOLELY OF THOSE

SET FORTH IN THE WRITTEN CONTRACTS BETWEEN APOLLO COMPUTER INC. AND ITS CUSTOMERS. NO

REPRESENTATION OR OTHER AFFIRMATION OF FACT CONTAINED IN THIS PUBLICATION, INCLUDING

BUT NOT LIMITED TO STATEMENTS REGARDING CAPACITY, RESPONSE-TIME PERFORMANCE,

SUITABILITY FOR USE OR PERFORMANCE OF PRODUCTS DESCRffiED HEREIN SHALL BE DEEMED TO BE A

WARRANTY BY APOLLO COMPUTER INC. FOR ANY PURPOSE, OR GIVE RISE TO ANY LIABILITY BY

APOLLO COMPUTER INC. WHATSOEVER.

IN NO EVENT SHALL APOLLO COMPUTER INC. BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL OR

CONSEQUENTIAL DAMAGES ~TSOEVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS) ARISING

OUT OF OR RELATING TO THIS PUBLICATION OR THE INFORMATION CONTAINED IN IT, EVEN IF APOLLO

COMPUTER INC. HAS BEEN ADVISED, KNEW OR SHOULD HAVE KNOWN OF THE POSSffiILITY OF SUCH

DAMAGES.

THE SOFTWARE PROGRAMS DESCRmED IN THIS DOCUMENT ARE CONFIDENTIAL INFORMATION AND

PROPRIETARY PRODUCTS OF APOLLO COMPUTER INC. OR ITS LICENSORS.

/ - --",

o

o

Preface

The DOMAIN Graphics Primitive Resource Gall Reference describes the constants, data types,
and user-callable routines used by the DOMAIN@Graphics Primitive Resource (GPR) system for
developing two-dimensional graphics applications.

Audience

This manual is for programmers who use the GPR to develop application programs. Users of this
manual should have some knowledge of computer graphics and have experience in using the
DOMAIN system.

We suggest that you read the task-oriented handbook Programming with DOMAIN Graphics
Primitives before using this reference manual.

Organization of this Manual

This manual contains three chapters:

Chapter 1 Presents the constants and data types used by GPR.

Chapter 2 Presents a description of each routine including format and parameters. The
organization of routines is alphabetical.

Chapter 3 Presents a GPR error listing.

Additional Reading

Use this reference as a companion to the Programming With DOMAIN Graphics Primitives
manual (005808). .

The DOMAIN 3D Graphics Metafile Resource Gall Reference manual (005812 01) describes the
constants, data types, and user-callable routines used by the DOMAIN 3D Graphics Metafile
Resource (3D GMR) system for developing three-dimensional graphics applications.

The Programming With DOMAIN 3D Graphics Metafile Resource manual (005807) describes
how to write programs that use the DOMAIN 3D Graphics Metafile Resource.

The ·DOMAIN 2D Graphics Metafile Resource Gall Reference manual (009793) describes the
constants, data types, and user-callable routines used by the DOMAIN 2D Graphics Metafile
Resource (GMR) system for developing two-dimensional graphics applications.

The Programming With DOMAIN 2D Graphics Metafile Resource manual (005097) describes
how to write graphics programs using DOMAIN Graphics Primitives.

The Programming With General System Galls manual (005506) describes how to write programs
that use standard DOMAIN systems calls.

The DOMAIN Language Level Debugger Reference (001525) describes the high-level language
debugger.

ii Preface

The Programming With Graphics Service Routines (009797) manual describes how to write
programs ~hat use Graphics Service Routines.

The DOMAIN Graphics Instruction Set (009791) manual describes the instruction set used by
the Graphics Service Routines.

For language-specific information, see the DOMAIN FOI?TRAN Language Reference (000530),
the DOMAIN Pascal User's Guide (000792), and the DOMAIN C Language Reference (002093).

Documentation Conventions

Unless otherwise noted in the text, this manual uses the following symbolic conventions.

UPPERCASE

lowercase

[]

{ }

CTRL/Z

Uppercase words or characters in formats and command descriptions represent
commands or keywords that you must use literally.

Lowercase words or characters in formats and command descriptions represent
values that you must supply.

Square brackets enclose optional items in formats and command descriptions.
In sample Pascal statements, square brackets assume their Pascal meanings.

Braces enclose a list from which you must choose an item in formats and
command descriptions. In sample Pascal statements, braces assume their
Pascal meanings.

The notation CTRL/ followed by the name of a key indicates a control
character sequence. You should hold down the < CTRL > key while typing the
character.

Vertical ellipses represent additional information in a program fragment that is
either too lengthy to include or not relevant to the example.

Problems, Questions, and Suggestions

We appreciate comments from the people who use our system. In order to make it easy for you
to communicate with us, we provide the User Change Request (UCR) system for software-related
comments, and the Reader's Response form for documentation comments. By using these formal
channels, you make it easy for us to respond to your comments.

You can get more information about how to submit a UCR by consulting the DOMAIN System
Command Reference manual. Refer to the CRUCR (Create User Change Request) Shell
command. You can also view the same description on-line by typing:

$ HELP CRUCR <RETURN>

For your comments on documentation, a Reader's Response form is located at the back of this
manual.

Preface iii

~
I
\

o

o

C)

o

r-) L

Chapter 1
Constants and Data Types

This chapter describes the constants and data types used by the Graphics Primitive Resource
package (hereafter referred to as GPR). Each data type description includes an atomic data type
translation (Le., GPR_$LINESTYLE_T = 2-byte integer) as well as a brief description of the type's
purpose. The description includes any predefined values associated with the type. The following
is an example of a data type description for the GPR_$LINESTYLE_T type:

GPR _ $LINESTYLE _ T A 2-byte integer. Specifies the linestyle for line­
drawing operations One of the following predefined
values:

GPR $SOLID

Draw, solid lines.

GPR _ $DOTTED

Draw dotted lines.

This chapter also illustrates the record 'data types in detail. These illustrations will help
FORTRAN programmers construct record-like structures, as well as provide useful information
for all programmers. Each record type illustration:

• Shows FORTRAN programmers the structure of the record that they must construct
using standard FORTRAN data-type statements. The illustrations show the size and
type of each field.

• Describes the fields that make up the record.

• Lists the byte offsets for each field. Use these offsets to access individual fields. Bytes
are numbered from left to right and bits are numbered from right to left.

• Indicates whether any fields of the record are, in turn, predefined records.

1-1 Constants and Data Types

GPR DATA TYPES

CONSTANTS

MNEMONIC

GPR_ $BACKGROUND

GPR $BLACK

GPR $BLUE

GPR $BMF MAJOR_VERSION

GPR $BMF MINOR_VERSION

GPR $CYAN

GPR $DEFAULT ~LIST SIZE

GPR $GREEN

GPR $HIGHESr _PLANE

GPR $MAGENTA

GPR_ $MAX_BMF GROUP

GPR $MAX_X_SIZE

GPR $ MAX _ Y _ SIZE

GPR $NIL_BITMAP DESC

GPR $RED

GPR $STRING SIZE

GPR $TRANSP ARENT

GPR $WHITE

GPR $YELLOW

GPR $ROP ZEROS

Constants and Data Types

Value Explanation

-2 pixel value for window background

o color value for black

16#0000FF
color value for blue

1 major identifier for a bitmap file

1 minor identifier for a bitmap file

16#00FFFF
color value for cyan (blue + green)

10

16#OOFFOO
color value for green

7 max plane number in a bitmap

16#FFOOFF
color value for magenta (red + blue)

o max group in external bitmaps

8192 max bits in bitmap x dimension

8192 max bits in bitmap y dimension

o descriptor of nonexistent attributes

o descriptor of a nonexistent bitmap

16#FFOOOO
color value for red

256 number of chars in a gpr string

-1 pixel value for transparent (no change)

16#FFFFFF
color value for white

16#FFFFOO
color value for yellow (red + green)

o

1

1-2

~--,

~---"
(

\, ---/

o

o

c)

GPR DATA TYPES

GPR $ROP SRC AND NOT _ DST 2

GPR $ROP SRC 3

GPR $ROP NOT SRC _ AND DST 4

GPR $ROP _DST 5

GPR $ROP SRC OR DST 7

GPR $ROP NOT SRC AND NOT DST 8

GPR $ROP NOT DST 10

GPR $ROP SRC OR NOT _ DST 11

GPR $ROP NOT SRC 12

GPR $ROP NOT SRC OR_DST 13

GPR $ROP NOT SRC OR NOT DS 14

GPR $ROP ONES 15

DATA TYPES

GPR $ACCELERATOR_ TYPE_ T

GPR $ACCESS_ALLOCATION_T

A 2-byte integer. Unique number corresponding to
the graphics accelerator processor type One of the
following predefined values:

GPR _ $ACCEL _ NONE

None or not applicable.

GPR _ $ACCEL 1

3DGA.

A 2-byte integer. The legal allocated sizes of pixel
cells in bitmap sections for direct access. One of
the following predefined values:

GPR _ $ALLOC _1

One bit per pixel cell.

GPR _ $ALLOC _ 2

Two bits per pixel cell.

GPR _ $ALLOC _ 4

Four bits per pixel cell.

1-3 Constants and Data Types

GPR DATA TYPES

GPR $ACCESS MODE T

GPR $ACCESS SET T

GPR $ATTRmUTE_DESC T

GPR $BITMAP _DESC T

Oon8tant8 and Data Type8

GPR _ $ALLOC _ 8

One byte per pixel cell.

GPR_$ALLOC_16
Two bytes per pixel cell.

GPR _ $ALLOC _ 32

Four bytes per pixel cell.

A 2-byte integer. The ways to access an external
bitmap. One of the following predefined values:

GPR $CREATE
Create a file on disk.

GPR _ $UPDATE

Update a file on disk.

GPR $WRITE
Write to a file on disk.

GPR $READONLY
Read a file on disk.

A 2-byte integer. The set of legal allocated sizes of
pixel cells in bitmap sections for direct access.

A 4-byte integer. Identifies an attribute block.

A 4-byte integer. Identifies a bitmap.

1-4

-- --~~~----- -----

c

r-' (,

-\.._-

c

0

o

GPR $BMF GROUP HEADER T

predefined
type

byte:
offset

0:

2:

4:

6:

8:

10:

12:

14:

15

GPR DATA TYPES

The group header description for an external
bitmap. The diagram below illustrates the
GPR_$BMF _ GROUP _HEADER_ T data type:

field name
o

integer n_sects

integer

integer allocated_size

integer

integer

integer

integer
storage_offset

integer

Field Description:

n_sects
The number of sections in a group.

pixel_size
The number of bits per pixel in each section of a
group.

allocated SIze

bytes _ per _line
The number of bytes in one row of a bitmap.

bytes _ per _ sect
The number of bytes_per _line multiplied by
the height of the bitmap. This value must be
rounded up to a page boundary, or for small
bitmaps rounded up to the next largest binary
submultiple of a page.

storage _ offset
A pointer to the group storage area.

1-5 Constants and Data Types

GPR DATA TYPES

predefined
type

Constants and Data Types

byte:
offset

0:

2:

4:

6:

8:

10:

12:

14:

15

A gpr _$max_bmf_group-element array of
gpr _ bmf _ group _ header _ t record structures.
The diagram below illustrates a single element:

field name
o

integer

integer pixeLsize

integer allocated _size

integer

integer

integer

integer
storage_offset

integer

Field Description:

n_sects
The number of sections in a group.

pixel_size
The number of bits per pixel in each section of a
group.

allocated size

bytes _ per _line
The number of bytes in one row of a bitmap.

bytes _ per _ sect
The number of bytes _ per _line multiplied by
the height of the bitmap. This value must be
rounded up to a page boundary, or for small
bitmaps rounded up to the next largest binary
submultiple of a page.

storage _ offset
A pointer to the group storage area.

1-6

~
I

\~.- '

c)

" I (.-
~'

o

GPR $COLOR T

GPR $COLOR VECTOR T

GPR $CONTROLLER TYPE _ T

GPR $COORDINATE_ARRAY T

GPR_$COORDINATE_T

GPR DATA TYPES

A 4-byte integer. Defines a color.

A 256-element array of 4-byte integers. Stores
multiple color values. Arrays of this type are used
as input parameters of color values to be inserted
into consecutive slots of a color map. They are also
used as output parameters to store color values
when inquiries are performed on color maps.

A 2-byte integer. Unique number corresponding to
the display controller type. One of the following
predefined values:

GPR $CTL NONE
None or not applicable

GPR_$CTL_MONO 1
DNIOO/400/420/460

GPR_$CTL_MONO 2

DN300 /320 /330

GPR_ $CTL_ COLOR_l

DN600/660/550/560

GPR _ $CTL COLOR 2

DN580

GPR _ $CTL COLOR 3

DN570/570A

GPR _ $CTL _ COLOR _ 4

DN3000

GPR_$CTL_MONO 4

,DN3000

A lO-element array of 2-byte integers. Specifies
several coordinates in a bitmap. Generally, x
coordinates are passed in one array and y
coordinates are passed in another array.

A 2-byte integer. Specfies one coordinate in a
bitmap.

A 2-byte integer. Specifies a decomposition
technique. One of the following predefined values:

1-7

GPR _ $FAST _TRAPS
Decomposes polygons into trapezoids using
integer arithmetic.

GPR _ $PRECISE _ TRAPS
Decomposes polygons into trapezoids using
double integer arithmetic.

Con8tant8 and Data Type8

GPR DATA TYPES

GPR $DIRECTION T

Oonstants and Data Types

GPR $NON OVERLAPPING TRIS

Decomposes polygons into nonoverlapping
triangles.

GPR $RENDER EXACT
Renders polygons directly without
decomposing them into simpler polygons.

A 2-byte integer. Specifies the direction of
movement from one text character position to
another in a bitmap. One of the following
predefined values:

GPR $UP

GPR $DOWN

GPR $LEFT

GPR $RIGHT

1-8

c

",---"
(
\ '--_ ...

o

C)

c)

o

GPR $DISP CHAR T

predefined
type

byte:
offset

0:

2:

4:

6:

8:

10:

12:

14:

16:

18:

20:

22:

24:

26:

GPR DATA TYPES

Stores display characteristics. The diagram below
illustrates the-gpr _ $disp _ char _ t data type:

field name
15 0

integer controller_type

integer accelerator_type

integer

integer

integer

integer

integer

integer

integer x_extension_size

integer y_extension_size

integer

integer

integer

integer

1-9 Oonstants and Data Types

GPR DATA TYPES

predefined byte:
type offset

28:

30:

32:

34:

36:

gpr _ $overlap _ set_ t 38:

40:

42:

44:

46:

48:

gpr _ $format_set_t 50:

g pr _ $access _ set_ t 52:

54:

gpr_dispJnvert_t 56:

Field Description:

CONTROLLER TYPE

Oonstants and Data Types

field name

integer n_planes

int~ger n_buffers

integer

integer

integer

integer mem _overlaps

integer

integer

integer video _refresh_rate

integer n _primaries

integer

integer avail_formats

integer avail_access

integer

integer invert

A 2-byte integer. The type of graphics hardware
controller. One of the following predefined
values:

1-10

GPR $CTL NONE

none or not applicable. (~I-
\ '

c

o

GPR_ $CTL_MONO_1

DNIOO / 400 / 420 / 460

GPR_$CTL_MONO 2

DN300/320/330

GPR _ $CTL _ COLOR 1

DN600/550/560

GPR $CTL COLOR 2

580

GPR $CTL COLOR 3

DN570

GPR _ $CTL COLOR 4

DN.-3000 color.

For gpr_$no_display mode, gpr_$ctl_none is returned.

GPR DATA TYPES

Note that code which makes use of these values may not automatically
extend to new node types~ since as new controllers are released,
they will be given new values, and this list will be extended.

ACCELERATOR TYPE

NOTE:

A 2-byte integer. The type of graphics hardware
processing accelerator for the node. Only one of
the following values is returned. One of the
following predefined values:

GPR $ACCEL NONE

none or not applicable.

Code which makes use of these values may not
automatically extend to new.node types, since as
new controllers are released, they will be given
new values, and this list will be extended.

For gpr_$no_display mode, gpr_$accel_none is
returned.

X_ WINDOW ORIGIN
X origin of the frame or window in frame and direct mode respectively. For borrow
mode and no-display mode the origin is (0,0).

Y WINDOW ORIGIN
Y origin of the frame or window in frame and direct mode respectively. For borrow
mode and no-display mode the origin is (0,0).

X_ WINDOW SIZE
X dimension of the frame or window in frame and direct mode respectively. For
borrow mode this is the x dimension of the screen. For no-display mode this is the x
dimension of the maximum legal bitmap.

1-11 Oon8tant8 and Data Type8

GPR DATA TYPES

Y WINDOW SIZE
Y dimension of the frame or window in frame and direct mode respectively. For
borrow mode this is the x dimension of the screen. For no-display mode this is the y
dimension of the maximum legal bitmap.

X_ VISIBLE SIZE
X dimension of the visible area of the screen for frame, direct, and borrow modes.
For no-display mode this is the x dimension of the maximum legal bitmap size.

Y _VISIBLE SIZE
X dimension of the visible area of the screen for frame, direct, and borrow modes.
For no-display mode this is the x dimension of the maximum legal bitmap size.

X EXTENSION SIZE
The maximum x dimension of the bitmap after having been extended by
GPR_$SET _BITMAP _DIMENSIONS. For frame, direct and no-display modes,
this size is the same as X_ VISIBLE_SIZE. For borrow-mode, this size may be
bigger if the device has more display memory past the edges of the visible area.

Y EXTENSION SIZE
The maximum y dimension of the bitmap after having been extended by
GPR_$SET _BITMAP _DIMENSIONS. For frame, direct and no-display modes,
this size is the same as Y _ VISIBLE_SIZE. For borrow-mode, this size may be
bigger if the device has more display memory past the edges of the visible area.

X_ TOTAL SIZE
X dimension of total bitmap· memory. In particular, this is the number of
addressable pixel positions, in a linear pixel addressing space, between the first pixel
of a scan line and the first pixel of the next scan line. This value may be larger than
x _ extension _ size. For no-display mode this value is the x dimension of the
maximum legal bitmap.

Y _ TOTAL SIZE
Y dim~nsion of total bitmap memory. This value may be larger than
y _ extension_size. For no-display mode this value is the y dimension of the
maximum legal bitmap.

X_PIXELS PER OM
The number of physical pixels per centimeter on the screen in the x dimension. For
no-display mode, this value is set to zero.

Y _PIXELS_PER OM
The number of physical pixels per centimeter on the screen in the y dimension. For
no-display mode, this value is set to zero.

N_PLANES
The maximum number of planes of bitmap memory available on the device. For
no-display mode, this parameter is the maximum legal bitmap depth.

N_BUFFERS
The number of displayable refresh buffers available on the device, in borrow mode.
In frame, direct, and no-display modes, this parameter is set to one.

Oonstants and Data Types 1-12

o

o

o

()

o

GPR DATA TYPES

DELTA_X_PER BUFFER
The II distance II in x, in pixel addresses between refresh buffers on a device with
more than one buffer, in borrow mode. For frame, direct and no-display modes, and
for devices with only one buffer, this parameter is set to zero.

DELTA_ Y _PER BUFFER
The Iidistance ll in y, in pixel addresses between refresh buffers on a device with
more than one buffer, in borrow mode. For frame, direct and no-display modes, and
for devices with only one buffer, this parameter is set to zero.

DELTA PLANES_PER BUFFER
This parameter gives the IIdistance ll in pixel depth between refresh buffers on a
device with more than one buffer, in borrow mode. Currently no such device
capability is supported, but it may be in the future. For frame, direct and no­
display modes, and for devices with only one buffer, this parameter is set to zero.

MEM OVERLAPS

X_ZOOM_MAX

A 2-byte integer. This parameter gives the kinds
of overlap situations that can exist between
refresh buffer memory that may be used for
different purposes in the device. Sometimes a
device comes with extra refresh buffer memory
beyond what is used to hold the screen image.
There are several recognized purposes for
particular parts of such memory, and sometimes
some memory locations may be available for
more than one purpose. If so, the program using
this memory will have to take care not to use the
same memory for two different purposes at the
same time. In order to decide whether this is a
possibility, the program can inspect this
parameter. For frame, direct and no-display
modes, this parameter is set to the null set. Any
combination of the following predefined values:

GPR _ $HDM_ WITH_BITM_EXT

Hidden display memory (HDM), used for
loaded text fonts and HDM bitmaps,
overlaps with the area into which a bitmap
can be extended by use of the
GPR $SET BITMAP DIMENSIONS
call.

GPR $HDM_ WITH BUFFERS

HDM overlaps with extra displayable
refresh buffers.

GPR $BITM EXT WITH BUFFERS

The bitmap extension area overlaps with
displayable refresh buffers.

The maximum pixel-replication zoom factor for x on a device in borrow mode. For
frame, direct and no-display modes, and for devices which do not support pixel­
replication zoom, these parameters are set to 1.

1-13 . Constants and Data Types

GPR DATA TYPES

Y ZOOM_MAX
The maximum pixel-replication zoom factor for y on a device in borrow mode. For
frame, direct and no-display modes, and for devices which do not support pixel­
replication zoom, these parameters are set to 1.

VIDEO REFRESH_RATE
The refresh rate of the screen in Hertz. For no-display mode, this value is set to
zero.

N _ PRIMARIES
The number of independent primary colors supported by the video for the device.
For color devices, this value is three; for monochrome devices it is one. For no­
display mode, this value is set to zero.

LUT WIDTH_PER_PRIMARY
The value gives the number of bits of precision available in each column of a video
lookup table (color map) for representing the intensity of a primary color in an
overall color value. IT a primary color can only be on or off, this value is one. IT it
can have 16 intensities, this value will be four. IT it can have 256 intensities, this
value will be eight. For no-display mode, this parameter is set to zero.

AVAIL _FORMATS

AVAIL _ ACCESS

Constants and Data Types

A 2-byte integer. The set of available interactive
or imaging formats available on the device. Any
combination of the following predefined values:

GPR $INTERACTIVE

Interactive format

GPR $IMAGING 1024XI024X8

8-bit pixel format on a two-board
configuration

GPR $IMAGING 512X512X24

24-bit pixel format on a three-board
configuration

A 2-byte integer. This parameter gives the
possible legal pixel cell sizes, in bits, which are
available to a program making direct read or
write access to the refresh buffer. Currently, the
only supported pixel cell size is one bit. This
means that the refresh buffers can only be
accessed by plane. In the future, other pixel cell
sizes may be supported. Any combination of the
following predefined values:

GPR $ALLOC 1

One bit per pixel cell

GPR $ALLOC 2

Two bits per pixel cell

GPR $ALLOC 4

Four bits per pixel cell

1-14

c

o

o

o

o

GPR DATA TYPES

GPR $ALLOC 8

One byte per pixel cell

GPR $ALLOC 16

Two bytes per pixel cell

GPR $ALLOC 32

Four bytes per pixel cell

ACCESS ADDRESS SPACE
This parameter gives the amount of address space available for making direct access
to the refresh buffer of the device, in units of lK-byte pages. For example, if the
address space is of a size sufficient to cover 1024 scan lines, each of 1024 bits, its
extent will be 128K bytes, thus the value of this parameter will be 128.

INVERT

GPR $DISPLAY _ CONFIG T

A 2-byte integer. This parameter is intended for
monochromatic devices. It indicates how the
display manager's INV is implemented on the
device. One of the following predefined values:

GPR $ACCEL _ NONE

The display is not a monochromatic display
or there is no display.

GPR $~RT S~ATE

Color map is simulated in software.

GPR $~RT HARDWARE

Color map is implemented in hardware.

A 2-byte integer. Specifies the hardware
configuration. One of the following predefined
values:

GPR _ $BW _ 800XI024

A portrait black and white display.

GPR _ $BW _1024X800
A landscape black and white display.

GPR _ $COLOR _1024XI024X4

A four-plane color display.

GPR _ $COLOR _1024XI024X8

An eight-plane color display.

GPR _ $COLOR _1024X800X4

An four-plane color display.

GPR _ $COLOR _1024X800X8

An eight-plane color display.

GPR _ $COLOR _1280XI024X8
TW<rboard, eight-plane display.

1-15 Oon8tant8 and Data Type8

GPR DATA TYPES

GPR $DISPLAY INVERT T

GPR $DISPLAY _MODE_ T

GPR $EC KEY _ T

GPR $EVENT T

Constants and Data Types

GPR _ $COLOR1_1024X800X8
Two-board, eight-plane display.

GPR _ $COLOR2 _1024X800X4

One-board, four-plane display.

GPR _ $BW _1280X1024

Black and white display.

A 2-byte integer. The different color map
implementations on monochromatic displays. One
of the following predefined values:

GPR $NO INVERT

Not applicable, that is, a color monitor or no
display.

GPR $INVERT S~ATE

The color map is simulated in software.

GPR $INVERT_HARDWARE

The color map is in hardware.

A 2-byte integer. Specifies the mode of operation.
One of the following predefined values:

GPR $BORROW

Uses the entire screen.

GPR_$FRAME

Uses a frame of the Display Manager.

GPR $NO DISPLAY
Uses a main-memory bitmap.

GPR $DffiECT

Uses a display-manager window.

GPR $BORROW _NC
Uses the entire screen but does not clear the
bitmap.

A 2-byte integer. GPR_$INPUT _EO is a
predefined value.

A 2-byte integer. Specifies the type of input event.
One of the following predefined values:

GPR _ $KEYSTROKE

When keyboard character is typed.

GPR _ $BUTTONS

When you press button on the mouse or
bitpad puck.

1-16

-.. ---.---~---.-- .. -~~~~~~~---~~---

~
(
\
'---

o

C)

GPR $FORMAT SET T

o GPR $HORIZ SEG T

predefined byte:
type offset 15

C~\
~) 0:

2:

4:

GPR DATA TYPES

GPR_ $LOCATOR
When you move the mouse or bitpad puck or
use the touchpad.

GPR $LOCATOR_UPDATE
Only the most recent location when you move
the mouse or bitpad puck or use the
touchpad.

GPR $ENTERED WINDOW
When the cursor enters a window in which the
GPR bitmap resides. Direct mode is required.

GPR $LEFT WINDOW
When the cursor leaves a window in which the
GPR bitmap resides. Direct mode is required.

GPR $LOCATOR STOP
When you stop moving the mouse or bitpad
puck, or stop using_, the touchpad.

GPR $NO EVENT

A 2-byte integer. Specifies a set of imaging
formats.

Defines the left- and right-hand x coordinates and
the y coordinate of a horizontal line segment. The
diagram below illustrates the gpr _ $horiz _ seg _ t
data type:

0 field name

integer x_coordJ

integer x_coord_r

integer y coord

Field Description:

x_coord_l
The left-hand x coordinate of the line.

x_coord_r
The right-hand x _ coordinate of the line.

y _coord
The y coordinate of the line.

1-17 Constants and Data Types

GPR DATA TYPES

GPR_ $IMAGING FORMAT _ T

GPR $KEYSET T

GPR $LINESTYLE T

GPR $MASK_T

GPR $MEMORY OVERLAP T

Constants and Data Types

--- ._-----_ _._------_ ..

A 2-byte integer. Specifies an imaging or
interactive display format. One of the following
predefined values:

GPR _ $ INTERACTIVE

Specifies interactive format.

GPR _ $IMAGING _1024Xl024X8

Specifies 8-bit imaging format.

GPR _ $IMAGING _ 512X512X24

Specifies 24-bit imaging format.

An 8-element array of 4-byte integers. Specifies the
set of characters that make up a keyset associated
with the graphics input event types
GPR_$KEYSTROKE and GPR_$BUTTONS.
The maximum number of elements in a keyset is
256. Each element of the set is represented by one
bit.

A 4-element array of 2-byte integers. Specifies the
line-pattern to use for line-drawing operations

A 2-byte integer. Specifies the linestyle for line­
drawing operations One of the following predefined
values:

GPR_$SOLID
Draw solid lines.

GPR _ $DOTTED
Draw dotted lines.

A 2-byte integer. Specifies a set of planes to be
used in a plane mask.

A 2-byte integer. Kinds of memory overlaps
between different classes of buffer memory. One of
the following predefined values:

GPR _ $lIDM_ WITH _BITM _ EXT

Hidden display memory (HDM), used for
loaded text fonts and HDM bitmaps, overlaps
with the area into which a bitmap can be
extended by use of the
GPR $SET BITMAP DIMENSIONS call

GPR _ $lIDM _ WITH_BUFFERS
HDM overlaps with extra displayable refresh
buffers

GPR_$BITM_EXT WITH BUFFERS

The bitmap extension area overlaps with
displayable refresh buffers.

1-18

o

o

o

o

GPR $OBSCURED OPT T

GPR $OFFSET T

predefined
type

GPR $OVERLAP SET T

GPR $PIXEL _ARRAY T

GPR _ $PIXEL _ VALUE _ T

byte:
offset

15

0:

2:

GPR DATA TYPES

A 2-byte integer. Specifies the action when a
window is obscured. One of the following
predefined values:

GPR $OK IF OBS
Acquire the display even though the window is
obscured.

GPR $INPUT OK_IF _OBS
Acquire the display and allows input into the
window even though the window is obscured.

GPR $ERROR IF OBS
Do not acquire the display; return an error
message.

GPR $POP IF OBS
Pop the window if it is obscured.

GPR_$BLOCK IF OBS
Do not acquire the display until the window is
popped.

Specifies the width and height of a window. The
diagram below illustrates the gpr _ $offset _ t data
type:

field name
0

integer x_size

integer y_size

Field Description:

x_size
The width of the window in pixels.

y _size
The height of the window in pixels.

A 2-byte integer. Specifies a set of overlaps
between different classes of buffer memory.

A 131073-element array of 4-byte integers. Stores
multiple pixel values.

A 4-byte integer. Defines an index into a color map
to identify the color of an individual pixel.

1-19 Oonstants and Data Types

GPR DATA TYPES

GPR $PLANE T

GPR $POSITION T

predefined
type

GPR $RASTER OP ARRAY T

GPR $RASTER OP T

GPR $ROP PRIM SET ELEMS T

GPR $ROP PRIM SET T

byte:
offset

15

0:

2:

A 2-byte integer. Specifies the number of planes in
a bitmap.

Specifies the x and y coordinates of a point in a
bitmap. The diagram below illustrates the
gpr _ $position_ t data type:

field name
0

integer x_coord

integer y_coord

Field Description:

x coord
The x_ coordinate of the point in the bitmap.

y _coord
The y _ coordinate of the point in the bitmap.

A 8-element array of 2-byte integers. Stores
multiple raster operation opcodes

A 2-byte integer. Specifies raster operation
opcodes.

A 2-byte integer. Specifies the primitives to which
raster operations are applied. Any combination of
the following predefined values:

GPR_$ROP _BLT

Apply raster operations to block transfers.

GPR_$ROP _LINE

Apply raster operations to unfilled line .
primitives.

GPR $ROP FILL

Apply raster operations to filled primitives.

A 2-byte integer. Specifies the set of primitives
that can have a raster operation established with
GPR_$RASTER_OP _PRIM:_SET. In addition,
this set specifies the primitives for which a raster
operation can be returned with
GPR_$INQ_RASTER_OPS. The maximum
number of elements in the set is 3. Each element of
the set is represented by one bit.

Constants and Data Types 1-20

--------- ._._ ..•.. _---_.- _ .. _._---_._.---------------

(.
\ I '--.. '

o

0

0

()

o

GPR $RWIN _ PR T

GPR $STRING T

GPR $TRAP LIST T

predefined
type

Top

Bottom

byte:
offset

0:

2:

4:

6:

8:

10:

15

GPR DATA TYPES

A 4-byte integer. A pointer to a procedure used for
refresh-hidden display memory procedures.

A 4-byte integer. A pointer to a procedure used for
refresh-window procedures.

An array of up to 256 characters. Stores up to 256
characters.

A lO-element array of gpr _ $trap _ t record
structures. The diagram below illustrates a single
element:

field name

o
integer x_coordJ

integer

integer y coord

integer

integer

integer y coord

Field Description:

top.x _ coord_l
The leftrhand x_ coordinate of the top line.

top.x _ coord _ r
The right-hand x_ coordinate of the top line.

top.y _ coord
The y _ coordinate of the top line.
bot.x _ coord_l
The left-hand x coordinate of the bottom line.

bot.x coord r
The right-hand x _ coordinate of the bottom
line.

bot.y _ coord
The y _ coordinate of the bottom line.

1-21 Constants and Data Types

GPR DATA TYPES

GPR $TRAP T

predefined
type

Top

Bottom

Oonstants and Data Types

byte:
offset

0:

2:

4:

6:

8:

10:

Specifies the coordinates of the .top and bottom line
segments of a trapezoid. The diagram below
illustrates the gpr _ $trap _ t data type:

field name

15 0

integer x_coord_1

integer

integer

integer

integer

integer y coord

Field Description:

top.x _ coord_l
The left-hand x_ coordinate of the top line.

top.x _ coord _ r
The right-hand x_ coordinate of the top line.

top.y _ coord
The y _ coordinate of the top line.

bot.x _ coord_l
The left-hand x coordinate of the bottom line.

bot.x _ coord _ r
The right-hand x_ coordinate of the bottom
line.

bot.y _ coord
The y _ coordinate of the bottom line.

1-22

(""1
\ (....... -

o

0

o

o

GPR $TRIANGLE LIST T

predefined
type

gpr _$position_t

gpr_$position_t

g pr _ $position _ t

byte:
offset

I 0:

2:

I 4:

6:

Is' 10:

12:

GPR $TRIANGLE_FILL CRITERIA T

predefined byte:
type offset

gpr_$winding_set_t 0:

2:

GPR DATA TYPES

A 100element array of gpr _ $triangle _ t record
structures. The diagram below illustrates a single
element:

field name

15 0

15

integer

integer

integer y _coord (p2)

integer

integer

integer

integer winding

Specifies the filling criterion to use on polygons
decomposed into triangles or polygons rendered
with GPR _ $RENDER _ EXACT. The diagram
below illustrates the
gpr _ $triangle _ fill_ criteria _ t data type:

field name
0

integer wind_type

integer winding_no

Field Description:

wind_type
The type of fill criterion to use. That is,
GPR_$PARITY, GPR_$NONZERO, or
GPR $SPECIFIC.

1-23 Con8tant8 and Data Types

GPR DATA TYPES

GPR $TRIANGLE _ T

predefined
type

gpr _ $position_ t

gpr _ $position _ t

gpr _ $position_ t

Constants and Data Types

byte:
offset

I
0:

2:

I
4:

6:

la'
10:

12:

15

winding_no
The winding number to be used when the
wind_type is GPR_$SPECIFIC.

Specifies the coordinates of a triangle. The diagram
below illustrates the gpr _ $triangle _ t data type:

field name

o
integer

integer

integer x_coord (p2)

integer y_ coord (p2)

integer

integer

integer winding

Field Description:

p1.x_coord
The x coordinate of point 1.

pLy _coord
The y coordinate of point 1.

p2.x_coord
The x coordinate of point 2.

p2.y _coord
The y coordinate of point 2.

p3.x _ coord_
The x coordinate of point 3.

p3.y _coord
The y coordinate of point 3.

winding
The winding number.

1-24

----- -- ---- --------------------------------

C~

o

o

o

o

GPR $VERSION T

predefined
type

GPR $WINDING SET T

GPR $WINDOW LIST T

byte:
offset

15

0:

2:

GPR DATA TYPES

The version number of an external bitmap header.
The diagram below illustrates the gpr _ $version _ t
data type:

field name
0

integer major

integer minor

Field Description:

major
The major version number.

minor
The minor version number.

A 2-byte integer. Specifies a fill criterion. One of
the following predefined values:

GPR _ $P ARITY

Apply a parity fill.

GPR_$NONZERO
Apply a nonzero fill.

GPR $SPECIFIC
Fill areas with a specific winding number.

A lO-element array of gpr _ $window _ t record
structures. The diagram below illustrates a single
element:

1-25 Constants and Data Types

GPR DATA TYPES

predefined byte:
type offset

15

{
0:

window_base
2:

{ 4:
window_size

6:

Constants and Data Types

field name
0

integer x_coord

integer y_coord

integer x_size

integer y_size

Field Description:

window _ base.x coord
The x coordinate of the top left-hand corner of
the window.

window _ base.y _ coord
The y coordinate of the top left-hand corner of
the window.

window _ size.x size
The width of the widow in pixels.

window _ size.y _ size
The height of the window in pixels.

1-26

c--"
.... ~

GPR $WINDOW T

predefined byte:
type offset

15

{
0:

window_base
2:

{
4:

0 window_size
6:

o

GPR DATA TYPES

Defines a rectanglar section of a bitmap. X_coord
and y _ coord specify the coordinates of the top left­
hand corner of a rectangle. X_size and y _size
specify the width and height of the rectangle. The
diagram below illustrates the gpr _ $window _ t
data type:

field name
0

integer x_coord

integer y_coord

integer x_size

integer y_size

Field Description:

window _ base.x coord
The x coordinate of the top left-hand corner of
the window.

window _ base.y _ coord
The y coordinate of the top left-hand corner of
the window.

window _ size.x size
The width of the widow in pixels.

window _size.y _size
The height of the window in pixels.

1-27 Constants and Data Types

GPR DATA TYPES

STATUS $T

byte:
offset

A status code. The diagram below illustrates the
STATUS _ $T data type:

field name

31 0

0:1 ____ in_t_e_g_e_r ___ --II all

0:

1 :

2:

Constants and Data Types

or

fail

subsys

modc

integer
o

code

Field Description:

all
All 32 bits in the status code.

fail
The fail bit. If this bit is set, the error was not
within the scope of the module invoked, but
occurred within a lower-level module (bit 31).

subsys
The subsystem that encountered the error (bits
24 - 30).

modc
The module that encountered the error (bits 16 -
23).

code
A signed number that identifies the type of error
that occurred (bits 0 - 15).

1-28

---_. --- --.~

o

C)

c)

o

Chapter 2
GPR Routines

This chapter lists user-callable routine descriptions alphabetically for quick reference. Each
routine description contains:

• An abstract of the routine's function

• The order of the routine parameters

• A brief description of each parameter

• A description of the routine's function and use

If the parameter can be declared using a predefined data type, the description contains the phrase
"in:XXX format II , where :xxx is the predefined data type. Pascal and C programmers, look for
this phrase to determine how to declare a parameter.

FORTRAN programmers, look for the phrase that describes the data type in atomic terms, such
as "This parameter is a 2-byte integer. II For a complete description of each data type see
Chapter 1.

The rest of the parameter description describes the use of the parameter and the values it may
hold.

The following is an example of a parameter description:

event_type
The type of event that occurred, in GPR_$EVENT _ T format. This is a 2-byte integer.
One of the following predefined values is returned:

GPR_$KEYSTROKE
GPR_$BUTTONS
GPR $LOCATOR
GPR=$LOCATOR_UPDATE
GPR $ENTERED WINDOW
GPR-$LEFT WINDOW
GPR=$LOCATOR_STOP
GPR_$NO_EVENT

Input from a keyboard
Input from mouse or bitpad puck buttons
Input from a touchpad or mouse
Most recent input from a touchpad or mouse
Cursor has entered window
Cursor has left window
Input from a locator has stopped
No event has occurred

The GPR (Graphics Primitives) programming calls perform graphics operations within windows
and window panes. This section describes their data types, call syntax, and error codes. Refer to
the Introduction at the beginning of this manual for a description of data type diagrams and call
syntax format.

2-1 GPR Routines

GPR_ $ACQUIRE_DISPLAY

GPR_$ACQUIRE_DISPLAY

Establishes exclusive access to the display hardware and the display driver.

FORMAT

unobscured := GPR_$ACQUIRE_DISPLAY (status)

RETURN VALUE

unobscured
A Boolean value that indicates whether or not the window is obscured (false = obscured).
This parameter is always true unless the option GPR _ $OK _ IF _ OBS was specified to
GPR $SET OBSCURED OPT.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

While the display is acquired, the Display Manager cannot run. Hence, it cannot respond to
pad calls or to stream calls to input or transcript pads. If you need to call any of these
routines, you must release the display to do so.

Since no other display output can occur while the display is acquired, it is not a good idea
to acquire the display for long periods of time. The acquire routine automatically times out
after a default period of one minute; programs can change this time-out with the routine
GPR_$SET_ACQ_TIME_OUT.

Although this call is needed only in direct mode, it can be called from any of the other
display modes, where it performs no operation and returns the status code
GPR $NOT IN DIRECT MODE.

If the display is already acquired when this call is made, a count of calls is incremented such
that pairs of acquire/release display calls can be nested.

GPR Routines 2-2

~'.

u

C)

o

o

~\

U

GPR $ADDITIVE BLT

Transfers a single plane of any bitmap to all active planes of the current bitmap.

FORMAT

GPR_$ADDITlVE_BLT (source_bitmap_desc, source_window, source_plane,
dest_origin, status)

INPUT PARAMETERS

source _ bitmap _ desc
Descriptor of the source bitmap which contains the source window to be transferred, in
GPR $BITMAP DESC T format. This is a 4-byte integer.

source window
Rectangular section of the bitmap from which to transfer pixels, in GPR _ $WINDOW _ T
format. This data type is 8 bytes long. See the GPR Data Types section for more
information.

source _plane
The identifier of the source plane to add, in GPR _ $PLANE _ T format. This is a 2-byte
integer. Valid values are in the range 0 through the identifier of the source bitmap's
highest plane.

dest _ origin
Start position (top left coordinate position) of the destination rectangle, in
GPR _ $POSITION _ T format. This data type is 4 bytes long. See the GPR Data Types
section for more information. Coordinate values must be within the limits of the current
bitmap, unless clipping is enabled.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

Both the source and destination bitmaps can be in either display memory or main memory.

The source window origin is added to the coordinate origin for the source bitmap, and the
result is the actual origin of the source rectangle for the BL T. Similarly, the destination
origin is added to the coordinate origin for the current bitmap, and the result is the actual
origin of the destination rectangle for the BL T.

If the source bitmap is a Display Manager frame, the only allowed raster op codes are 0, 5,
A, and F. These are the raster operations in which the source plays no role.

If a rectangle is transferred by a BL T to a display manager frame and the frame is
refreshed for any reason, the BL T is re-executed. Therefore, if the information in the source
bitmap has changed, the appearance of the frame changes accordingly.

2-3 GPR Routines

GPR $ALLOCATE ATTRmUTE_BLOCK

GPR $ALLOCATE ATTRIBUTE BLOCK

Allocates a data structure that contains a set of default bitmap attribute settings, and
returns the descriptor for the data structure.

FORMAT

OUTPUT PARAMETERS

attrib _ block _ desc
Attribute block descriptor, in GPR_ $ATTRIBUTE_DESC _ T format. This is a 4-byte
integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

To associate an attribute block with the current bitmap, use
GPR $SET ATTRIBUTE BLOCK.

To deallocate an attribute block, use GPR_$DEALLOCATE_ATTRIBUTE_BLOCK.

GPR Routines 2-4

-------------.- ... --....•.. -~--- _.

c'

~.
I '
\'-. ...

o

C)

o

o

r""',
U

GPR $ALLOCATE BITMAP

GPR $ALLOOATE BITMAP

Allocates a bitmap in main memory and returns a bitmap descriptor.

FORMAT

INPUT PARAMETERS

size
Bitmap width and height, in GPR _ $OFFSET _ T format. Possible values for width and
height are 1 - 8192. This data type is four bytes long. See the GPR Data Types section for
more information.

hi _ plane _ id
Identifier of the highest plane which the bitmap will use, in GPR _ $PLANE _ T format.
This is a 2-byte integer. Valid values are 0 - 7.

attrib block dese
Descriptor of the attribute block which the bitmap will use, in
GPR $ATTRIBUTE DESO T format. This is a 4-byte integer.

OUTPUT PARAMETERS

bitmap _ dese
Descriptor of the allocated bitmap, in GPR_$BITMAP _DESe _ T format. This is a 4-
byte integer.

status
Oompletion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

To deallocate a bitmap, use GPR_$DEALLOOATE_BITMAP.

A program can not use a bitmap. after it is deallocated.

To establish an allocated bitmap as the current bitmap, use GPR _ $SET _ BITMAP.

2-5 GPR Routines

GPR $ALLOCATE_BITMAP NC

GPR $ALLOOATE BITMAP NO

Allocates a bitmap in main memory without setting all the pixels in the bitmap to zero, and
returns a bitmap descriptor.

FORMAT

INPUT PARAMETERS

size
Bitmap width and height, in GPR _ $OFFSET _ T format. This data type is 4 bytes long.
The maximum size for a main-memory bitmap is 8192 x 8192. See the GPR Data Types
section for more information.

hi _ plane _ id
Identifier of the highest plane which the bitmap will use, in GPR _ $PLANE _ T format.
This is a 2-byte integer. Valid values are 0 - 7.

attrib block dese
Descriptor of the attribute block which the· bitmap will use, in
GPR $ATTRIBUTE DESC T format. This is a 4-byte integer.

OUTPUT PARAMETERS

bitmap _ dese
Descriptor of the allocated bitmap, in GPR _ $BITMAP _ DESC _ T format. This is a 4-
byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

To deallocate a bitmap, use GPR_$DEALLOOATE_BITMAP.

A program can not use a bitmap "after it is deallocated.

To establish an allocated bitmap as the current bitmap, use GPR_ $SET _BITMAP

GPR _ $ALLOCATE _ BITMAP sets all pixels in the bitmap to zero; this routine does not.
As a result, GPR_$ALLOOATE_BITMAP _NC executes faster, but the initial contents of
the bitmap are unpredictable.

GPR Routines 2-6

~
I
\~.

(~
", ... _ .. /

o

o

o

GPR $ALLOCATE_HDM BITMAP

Allocates a bitmap in hidden display memory.

FORMAT.

GPR_$ALLOCATE_HDM_BITMAP (size. hi_plane_id. attrib_bloek_dese. bitmap_dese.
status)

INPUT PARAMETERS

size
The width and height of the bitmap, in GPR _ $OFFSET _ T format. This data type is 4
bytes long. See the GPR Data Types section for more information.

hi_plane_id
The identifier of the highest plane of the bitmap, in GPR _ $PLANE _ T format. This is a
~-byte integer.

attrib _ block _ dese
The descriptor of the bitmap's attribute block, in GPR _ $ATTRffiUTE _ DESC _ T
format. This is a 4-byte integer.

OUTPUT PARAMETERS

bitmap _ dese
The descriptor of the bitmap in hidden display memory, in GPR_$BITMAP _DESC _ T
format. This is a 4-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR_$ALLOCATE_HDM_BITMAP allocates a GPR bitmap in hidden display memory
for programs in borrow-display or direct mode. In frame mode, hidden display memory
bitmaps cannot be used.

In direct mode you must acquire the display before calling
GPR $ALLOCATE HDM_BITMAP.

The maximum size allowed for hidden display memory bitmaps is 224 bits by 224 bits.

Use GPR_$DEALLOCATE_BITMAP to deallocate a hidden display bitmap.

2-7 CPR Routines

GPR $ARO 3P

GPR $ARC 3P

Draws an arc from the current position through two other specified points.

FORMAT

INPUT PARAMETERS

point_2
The second point on the arc, in GPR_$POSITION_$T format. This data type is 4 bytes
long. See the GPR Data Type section for more information.

point_3
The third point on the arc, in GPR _ $POSITION _ T format. This data type is 4 bytes
long. See the GPR Data Types section for more information.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

The coordinates you specify are added to the corresponding elements of the coordinate
origin for the current bitmap. The resultant coordinate positions are the points through
which the arc is drawn.

After the arc is drawn, point _ 3 becomes the current position.

An error is returned if any of the three points are equal.

When you have clipping enabled, you can specify coordinates outside the bitmap limits.
With clipping disabled, specifying coordinates outside the bitmap limits results in an error.

GPR Routine8 2-8

(~.
,-----,/

(
'-_./.

o

o

o

GPR $ATTRffiUTE BLOCK

GPR $ATTRIBUTE BLOCK

Returns the descriptor of the attribute block associated with the given bitmap.

FORMAT

RETURN VALUE

attrib block desc
Descriptor of the attribute block used for the given bitmap, in
GPR $ATTRIBUTE DESO T format. This is a 4-byte integer.

INPUT PARAMETERS

bitmap-dese
Descriptor of the bitmap that is using the requested attribute block, in
GPR' $BITMAP DESC T format. This is a 4-byte integer.

OUTPUT PARAMETERS

status
Oompletion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

To set an attribute block as the block for the current bitmap, use
GPR $SET _ATTRIBUTE BLOCK.

2-9 GPR Routines

GPR $BIT _BLT

GPR $BIT BLT

Performs a bit block transfer from a single plane of any bitmap to a single plane of the
current bitmap.

FORMAT

G~R_$BIT_BLT (source bitmap desc, source window, source_plane,
dest_origin, dest_plane, status)

INPUT PARAMETERS

source _ bitmap _ desc
Descriptor of the source bitmap which contains the source window to be transferred, in
GPR $BITMAP DESC T format. This is a 4-byte integer.

source _ window
Rectangular section of the bitmap from which to transfer pixels, in GPR _ $WINDOW _ T
format. This data type is 8 bytes long. See the GPR Data Types section for more
information.

source _plane
Identifier of the single plane of the source bitmap to move, in GPR _ $PLANE _ T format.
This is a 2-byte integer. Valid values are in the range 0 through the identifier of the source
bitmap's highest plane.

dest _ origin
Start position (top left coordinate position) of the destination rectangle, in
GPR $POSITION T format. This data type is 4 bytes long. See the GPR Data Types
section for more information.

dest_plane
Identifier of the plane of the destination bitmap, in GPR _ $PLANE _ T format. This is a
2-byte integer. Valid values are in the range 0 through the identifier of the destination
bitmap's highest plane.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

Both the source and destination bitmaps can be in either display memory or main memory.

The source window origin is added to the coordinate origin for the source bitmap, and the
result is the actual origin of the source rectangle for the BLT. Similarly, the destination
origin is added to the coordinate origin for the current bitmap, and the result is the actual
origin of the destination rectangle for the BL T.

GPR Routines 2-10

(/~'"

"'- __ /1

c:

o

o

o

GPR $BIT _BLT

H the source bitmap is a Display Manager frame, the only allowed raster op codes are 0, 5,
A, and F. These are the raster operations in which the source plays no role.

H a rectangle is transferred by a BL T to a Display Manager frame and the frame is
refreshed for any reason, the BL T is re-executed. Therefore, if the information in the source
bitmap has changed, -the appearance of the frame changes accordingly.

2-11 GPR Routines

GPR $CIRCLE

GPR $CIRCLE

Draws a circle with the specified radius around the specified center point.

FORMAT

GPR_$CIRCLE(center, radius, status)

INPUT PARAMETERS

center
The center of the circle, in GPR _ $POSITION _ T format. This data type is 4 bytes long.
See the GPR Data Types section for more information.

radius
The radius of the circle. This is a 2-byte integer in the range 1 - 32767.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

The coordinates you specify for the paramenter "center" are added to the corresponding
coordinates of the origin for the current bitmap. The resultant coordinate position is the
center of the circle.

GPR _ $ CIRCLE does not change the current position.

When you have clipping enabled, you can specify coordinates outside the bitmap limits.
With clipping disabled, specifying coordinates outside the bitmap limits results in an error.

GPR Routines 2-12

C,'

o

o

o

o

o

GPR $CIRCLE FILLED

GPR $OmOLE FILLED

Draws and fills a circle with the specified radius around the specified center point.

FORMAT

GPR_$CIRCLE_FILLED (center. radius. status)

INPUT PARAMETERS

center
The center of the circle, in GPR _ $POSITION _ T format. This data type is 4 bytes long.
See the GPR Data Types section for more information.

radius
The radius of the circle. This is a 2-byte integer in the range 1 - 32767.

OUTPUT PARAMETERS

status
Oompletion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

The coordinates you specify for the paramenter IIcenter ll are added to the corresponding
coordinates of the origin for the current bitmap. The resultant coordinate position is the
center of the circle.

GPR _ $OmOLE _ FILLED does not change the current position.

When you have clipping enabled, you can specify coordinates outside the bitmap limits.
With clipping disabled, specifying coordinates outside the bitmap limits results in an error.

2-13 GPR Routines

GPR $CLEAR

GPR $CLEAR

Sets all pixels in the current bitmap to the given color/intensity value.

FORMAT

GPR_$CLEAR (index. status)

INPUT PARAMETERS

index
New color map index specifying a color/intensity value for all pixels in the current bitmap,
in GPR_$PIXEL_ VALUE_ T format. This is a 4-byte integer. Valid values are:

o - 1 for monochromatic displays
o - 15 for color displays in 4-bit pixel format
o - 255 for color displays in a-bit or 24-bit pixel format
-2 for all displays.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

A special case occurs if the specified index is -2. A value of -2 specifies clearing the bitmap
to the current background color/intensity value. For memory bitmaps and borrowed
displays, the background color/intensity index is zero. For Display Manager frames, the
background color/intensity value is the same as that used for the window background color.

For monochromatic displays, only the low-order bit of the color value is considered, because
bitmaps currently have only one plane. For color displays in 4-bit pixel mode, only the four
lowest-order bits of the color value are considered because these displays have four planes.

You can use GPR _ $SET _ COLOR _ MAP to establish the correspondence between color
map indexes and color/intensity values. This means that you can use
GPR_ $SET _ COLOR_MAP to assign the pixel value 0 to bright intensity, and then use
GPR _ $ CLEAR either to make the screen bright by passing the pixel value 0, or make the
screen dark by passing the value 1. This routine is subject to the restrictions of the current
clipping window and plane mask.

GPR Routines 2-14

o

o

o

GPR $CLOSE FILL PGON

Closes and fills the currently open polygon.

FORMAT

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR _ $CLOSE _ FILL _ PGON closes and fills the series of polygon boundaries created
with the routines GPR $START PGON and GPR $PGON POLYLINE.

GPR_$CLOSE_FILL_PGON does not use the current raster operation setting.

Filled areas rasterized when the decomposition technique is
G~R _ $NON _ OVERLAPPING _ TRIS contain fewer pixels than filled areas rasterized
with the decomposition technique set to either GPR _ $F AST _ TRAPS or
GPR $PRECISE TRAPS.

Abutting filled areas rasterized when the decomposition technique is
gpr _ $non_ overlapping_ tris do not overlap.

Abutting filled areas rasterized when the decomposition technique is either
GPR $F AST TRAPS or GPR $PRECISE TRAPS OVERLAP.

2-15 GPR Routines

GPR $CLOSE_RETURN PGON

GPR $CLOSE RETURN PGON

Closes the currently open polygon and returns the list of trapezoids within its interior.

FORMAT

INPUT PARAMETERS

list size
The maximum number of trapezoids that the routine is to return. This is a 2-byte integer.

OUTPUT PARAMETERS

trapezoid _list
The trapezoids returned. This is a GPR _ $TRAP _LIST _ T array of up to 10 elements.
See GPR Data Types section for more information ..

trapezoid _ number
The number of trapezoids that exist within the polygon interior. This is a 2-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR_$CLOSE_RETURN_PGON returns a list of trapezoids within a polygon interior
that the graphics program can draw at a later time with the routine
GPR $MULTITRAPEZOID.

The trapezoid_number parameter is always the total number of trapezoids composing the
polygon interior. If this number is greater than the list-size parameter, some trapezoids
were left out of the trapezoid _list for lack of space.

GPR Routines 2-16

/~
(,
\..... /'

(~.

\) ,-,

o

C)

o

o

GPR $CLOSE_RETURN PGON TRI

GPR $CLOSE RETURN PGON TRI

Closes the currently open polygon and returns a list of triangles within its interior.

FORMAT

INPUT PARAMETERS

list size
Maximum number of triangles that the routine is to return.

OUTPUT PARAMETERS

t list
Triangles returned. This is a GPR _ $ TRIANGLE _ LIST _ T array. See the GPR Data
Types section for more information.

n _ triangles
Number of triangles that exist within the polygon interior. This is a 2-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR_$CLOSE_RETURN_PGON_ TRI returns a list of triangles within a polygon
interior that the graphics program can fill at a later time with the routine
GPR $MUL TITRIANGLE.

GPR_$CLOSE_RETURN_PGON_ TRI returns a list of triangles when a polygon has
been defined using GPR_$START_PGON and GPR_$PGON_POLYLINE with the
decomposition technique set to gpr _ $non_ overlapping_ tris.

The n _ triangles parameter is always the total number of triangles composing the polygon
interior. If this number is greater than the list _ size parameter, some triangles were left
out of the t _list for lack of space.

2-17 GPR Routines

GPR $COLOR ZOOM

GPR $COLOR ZOOM

Sets the zoom scale factor for a color display.

FORMAT

GPR_$COLOR_ZOOM (xfactor. yfactor. status)

INPUT PARAMETERS

xfactor
A 2-byte integer that denotes the scale factor for the x-coordinate, in the range 1 through
16.

yfactor
A 2-byte integer that denotes the scale factor for the y-coordinate, in the range 1 through
16.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

If the x value is not equal to 1, then the y value must be not equal to 1.

GPR_$COLOR_ZOOM uses the integer zoom feature of the color hardware.

GPR _ $COLOR _ ZOOM works only in borrow-display mode.

GPR_$COLOR_ZOOM always zoom~ from the upper-left corner of the display.

GPR_$COLOR_ZOOM returns an error on models DN570/570A and DN3000 if any
values other than xfactor = 1, yfactor = 1 are entered.

DN580s allow the xfactor and yfactor to be 2.

GPR Routines 2-18

c

(r-",
\
",,,. ,,:

c'

o

o

o

o

C)

GPR $COND EVENT WAIT

Returns information about the occurrence of any event without entering a wait state.

FORMAT

RETURN VALUE

unobseured
A Boolean value that indicates whether or not the window is obscured; a false value means
that the window is obscured. This value is always true unless the program has called
GPR_$SET_OBSCURED_OPT and specified an option of GPR_$OK_IF _OBS.

OUTPUT PARAMETERS

event_type
The type of event that occurred, in GPR_$EVENT_ T format. This is a 2-byte integer.
One of the following values is returned:

GPR $KEYSTROKE
GPR=$BUTTONS
GPR $LOCATOR
GPR=$LOCATOR_UPDATE
GPR_$ENTERED_WINDOW
GPR $LEFT WINDOW
GPR=$LOCATOR_STOP
GPR_$NO_EVENT

event data

Input from a keyboard
Input from mouse or bitpad puck buttons
Input from a touchpad or mouse
Most recent input from a touchpad or mouse
Cursor has entered window
Cursor has left window
Input from a locator has stopped
No event has occurred

The keystroke or button character associated with the event, or the character that identifies
the window associated with an entered window event. This parameter is not modified for
other events.

position
The position on the screen or within the window at which graphics input occurred, in
GPR $POSITION ~ T format. This data type is 4 bytes long. See the GPR Data Types
section for more information.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

When called, this routine returns immediately and reports information about any event that
has occurred. Typically, this routine is called following return from an EC2 _ $W AIT call
involving the eventcount returned by GPR _ $GET _ EC. The routine allows the program
to obtain information about an event without having to suspend all of its activities.

2-19 GPR Routines

GPR $COND EVENT WAIT

Unless locator data has been processed since the last event was reported, II position II will be
the last position given to GPR_ $SET _ CURSOR_POSITION.

If locator data is received during this call, and GPR _ $LOCATOR events are not enabled,
the GPR software will display the arrow cursor and will set the keyboard cursor position.

Unlike GPR _ $EVENT _ WAIT, this call never releases the display.

The input routines report button events as ASCII characters. II Down II transitions range
from "a" to "d"; "Up" transitions range from "A" to "D". The three mouse keys start
with (a/A) on the left side. As with keystroke events, button events can be selectively
enabled by specifying a button keyset.

GPR Routine8 2-20

------------------ -----

o

o

o

o

o

GPR $DEALLOCATE ATTRffiUTE BLOCK

GPR $DEALLOCATE ATTRIBUTE BLOCK

Deallocates an attribute block allocated by GPR_$ALLOCATE_ATTRIBUTE_BLOCK.

FORMAT

INPUT PARAMETERS

attrib block desc - -
The descriptor of the attribute block to deallocate, in GPR _ $ATTRIBUTE _ DESC _ T
format. This is a 4-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

To allocate an attribute block, use GPR_$ALLOCATE_ATTRIBUTE_BLOCK.

To associate an attribute block with the current bitmap, use
GPR $SET _ATTRIBUTE BLOCK.

2-21 GPR Routines

GPR $DEALLOCATE_BITMAP

GPR $DEALLOCATE BITMAP

Deallocates an allocated bitmap.

FORMAT

INPUT PARAMETERS

bitmap _ dese
Descriptor of the bitmap to deallocate, in GPR_$BITMAP _DESC _ T format. This is a
4-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is' 4 bytes long. See the GPR
Data Types section for more information.

USAGE

To allocate a bitmap, use GPR_$ALLOCATE_BITMAP,
GPR_$OPEN_BITMAP _FILE, or GPR_$ALLOCATE_HDM_BITMAP.

GPR Routines 2-22

c

('\
\"'''-- ",./ I

o

o

(:J

o

GPR _ $DISABLE _ INPUT

GPR $DISABLE INPUT

Disables a previously enabled event type.

FORMAT

INPUT PARAMETERS

event_type
The type of event to be disabled, in GPR _ $EVENT_ T format. This is a 2-byte integer
Specify only one of the following events:

GPR $KEYSTROKE
Input from a keyboard. GPR $BUTTONS
Input from mouse or bitpad puck buttons. GPR _ $LOCATOR
Input from a touchpad or mouse. GPR _ $LOCATOR _ UPDATE
Most recent input from a touchpad or mouse.
GPR $ENTERED WINDOW
Cursor has entered window. GPR _ $LEFT _ WINDOW
Cursor has left window. GPR $LOCATOR _ STOP
Input from a locator has stopped. GPR $NO EVENT
No event has occurred.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

Following this call, no events of the given event type will be returned by
GPR $EVENT WAIT or GPR $COND EVENT WAIT.

In borrow-display mode, disabled events received by the GPR software will be ignored.

In direct mode or frame mode, disabled keystroke or button events are processed by the
Display Manager.

When locator events are disabled, the GPR software will display the arrow cursor and will
set the keyboard cursor position when locator data is received.

2-23 GPR Routines

GPR $DRAW BOX

GPR $DRAW BOX

Draws an unfilled box based on the coordinates of two opposing corners.

FORMAT

GPR_$DRAW_BOX (Xl, Yl, X2, Y2, status)

INPUT PARAMETERS

Xl
The x coordinate of the top left-hand corner of the box. This is a 2-byte integer.

YI
The y coordinate of the top left-hand corner of the box. This is a 2-byte integer.

X2
The x coordinate of the bottom right-hand corner of the box. This is a 2-byte integer.

Y2
The y coordinate of the bottom right-hand corner of the box. This is a 2-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

The coordinates you specify are added to the corresponding elements of the coordinate
origin for the current bitmap. The resultant coordinate positions are the top left-hand and
bottom right-hand corners of the box.

When you have clipping enabled, you can specify coordinates outside the bitmap limits.
With clipping disabled, specifying coordinates outside the bitmap limits results in an error.

GPR Routine8 2-24

c

C
-~

-_.,/

C~\

o

C)

o

o

GPR $ENABLE DIRECT ACCESS

GPR $ENABLE DIRECT ACCESS

Ensures completion of display hardware operations before the program uses the pointer to
access display memory.

FORMAT

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

If a program uses the GPR_$INQ_BITMAP _POINTER to get the address of display
memory for a monochromatic or color display, it should call
GPR_$ENABLE_DIRECT_ACCESS after any calls that change the display and before
using the pointer returned from the GPR_$INQ_BITMAP _POINTER.

2-25 GPR Routines

GPR $ENABLE _ INPUT

GPR $ENABLE INPUT

Enables an event type and a selected set of keys.

FORMAT

INPUT PARAMETERS

event_type
The type of event to be enabled, in GPR _ $EVENT _ T format. The types of events are:

key _set

GPR $KEYSTROKE
GPR-$BUTTONS
GPR=$LOCATOR
GPR $LOCATOR UPDATE
GPR-$ENTERED-WINDOW
GPR-$LEFT WINDOW
GPR-$LOCATOR STOP
GPR=$NO_EVENT

Input from a keyboard.
Input from mouse or bitpad puck buttons.
Input from a touchpad or mouse.
Most recent input from a touchpad or mouse.
Cursor has entered window.
Cursor has left window.
Input from a locator has stopped.
No event has occurred.

The set of specifically enabled characters when the event class is in GPR _ $KEYSET _ T
format. In Pascal, this is a set of characters. In FORTRAN and C this can be implemented
as an eight element array of 4-byte integers. This parameter is specified for event types of
GPR _ $KEYSTROKE and GPR _ $BUTTONS. See GPR Data Types section for more
information.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is four bytes long. See the GPR
Data Types section for more information.

USAGE

This routine specifies the type of event and event input for which GPR _ $EVENT _ WAIT
is to wait.

This routine applies to the current bitmap. However, enabled input events are>stored in
attribute blocks (not with bitmaps) in much the same way as attributes are. When a
program changes attribute blocks for a bitmap during a graphics session, the input events
you enabled are lost unless you enable those events for the new attribute block.

Program~ must call this routine once for each event type to be enabled.

No event types are enabled by default.

GPR Routines 2-26

------------- --_._ ... _- -----_. ._-----------------------_._------_.-

o

o

o

o

The keyset must correspond to the specified event type. For example, use ['#' .. '.-..,,'] (in
Pascal) to enable all normal printing graphics. Use [chr{O) .. chr{127)] to enable the entire
ASCII character set. Except in borrow-display mode, it is a good idea to leave at least the
CMD and NEXT _ WINDOW keys out of the keyset so that the user can access other
Display Manager windows.

The insert file /SYS/INS/KBD.INS.P AS contains definitions for the non-ASCII keyboard
keys in the range 128 - 255.

Events and keyset data not enabled with this routine will be handled by the Display
Manager in frame or direct mode and discarded in borrow-display" mode.

When locator events are disabled, the GPR software will display the arrow cursor and will
set the keyboard cursor position when locator data is received.

A group of calls is available for manipulating large sets. The calls are: LIB _ $INIT _ SET,
LIB_$ADD _TO _SET, LIB_$CLR_FROM_SET, and LIB_$:N.IEMBER_OF _SET.
The calls are fully described in Programming with General System Calls.

For an exact cursor path use GPR _ $LOCATOR with
GPR_$SET _ CURSOR_POSITION. Most applications can use
GPR _ $L 0 CAT OR _ UPDATE. With this value, GPR automatically tracks the most recent
cursor location and GPR $SET CURSOR POSITION is not needed.

GPR _ $LOCATOR _ UPDATE eliminates multiple locator events between
GPR _ $EVENT _ WAIT calls. Only one locator event will be delivered at a time, and the
reported position will be the most recent one.

Custom cursor patterns cannot be used with GPR_$LOCATOR_ UPDATE.

• 2-27 GPR Routines

GPR $EVENT WAIT

GPR $EVENT WAIT

Waits for an event.

FORMAT

unobscured - GPR_$EVENT_WAIT (event_type, event_data, position, status)

RETURN VALUE

unobscured
A Boolean value that indicates whether or not the window is obscured; a false value means
that the window is obscured. This value is always true unless the program has called
GPR_ $SET _ OBSCURED _ OPT and specified an option of GPR_ $OK_IF _ OBS.

OUTPUT PARAMETERS

event_type
The type of event that occurred, in GPR _ $EVENT _ T format. This is a 2-byte integer.
One of the following predefined values is returned:

GPR_$KEYSTROKE
GPR_$BUTTONS
GPR $LOCATOR
GPR-$LOCATOR UPDATE
GPR-$ENTERED-WINDOW
GPR-$LEFT WINDOW
GPR=$LOCATOR_STOP
GPR_$NO_EVENT

event data

Input from a keyboard
Input from mouse or bitpad puck buttons
Input from a touchpad or mouse
Most recent input from a touchpad or mouse
Cursor has entered window
Cursor has left window
Input from a locator has stopped
No event has occurred

The keystroke or button character associated with the event, or the character that identifies
the window associated with an entered window event. This parameter is not modified for
other events.

position
The position on the screen or within the window at which graphics input occurred, in
GPR $POSITION T format. This data type is 4 bytes long. See the GPR Data Types
section for more information.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

This routine suspends process execution until the occurrence of an event type enabled with
the GPR _ $ENABLE _ INPUT. If the event type is keystroke or button, this routine
reports only characters in the enabled keyset. Input routines report button events as ASCII
characters.

GPR Routines 2-28

c'

c'

o

o

o

GPR $EVENT WAIT

In direct mode, time-out values do not apply to calls to GPR _ $EVENT _ WAIT; that is,
GPR _ $EVENT _ WAIT waits indefinitely.

The input routines report button events as ASCII characters. II Down II transitions range
from "a" to "d"; "Up" transitions range from "A" to "D". The three mouse keys start
with (a/A) on the left side. As with keystroke events, button events can be selectively
enabled by specifying a button keyset.

Unless locator data has been processed since the last event was reported, II position .. will be
the last position given to GPR_$SET _ CURSOR_POSITION.

If locator data is received during this call, and GPR _ $LOCATOR events are not enabled,
the GPR software will display the arrow cursor and will set the keyboard cursor position.

The display does not need to be acquired to call GPR _ $EVENT _ WAIT.

This routine will implicitly release the display when the current process is waiting for an
event to occur, or when an event that has not been enabled occurs and that event must be
handled by the Display Manager.

2-29 GPR Routines

GPR $FORCE_RELEASE

GPR $FORCE RELEASE

Releases the display regardless of how many times it has previously been acquired.

FORMAT

OUTPUT PARAMETERS

acquire _ count
The number of times the display has been acquired. This is a 2-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

This call releases the display regardless of how many times GPR_$ACQUIRE_DISPLAY
has been called. .

GPR Routines 2-30

-------------_. _. __ .. _._ ... _.

c)

o

o

o

GPR $GET EC

Returns the eventcount associated with a graphic event.

FORMAT

INPUT PARAMETERS

gpr_key
The key that specifies which eventcount to obtain, in GPR_$EC _KEY _ T format.
Currently, this key is always GPR_$INPUT _EC.

OUTPUT PARAMETERS

event count _ pointer
A pointer to the eventcount for graphics input, in EC2 _ $PTR _ T format.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Type section for more information.

USAGE

GPR_ $GET _EC returns the eventcount pointer for the graphics input eventcount, which
is advanced whenever graphics input may be available.

When this eventcount is advanced, it. does not guarantee that
GPR_$COND_EVENT_ WAIT will return an event, or that GPR_$EVENT_ WAIT
will not wait. The advance is merely an optimization of a simple polling loop that suspends
execution of the process until an event might be available.

2-31 GPR Routines

..... _----------

GPR $INIT

GPR $INIT

Initializes the graphics primitives package.

FORMAT

INPUT PARAMETERS

op_mode

unit

size

One of four modes of operation. Graphics primitives routines can operate in two borrow­
display modes, within a Display Manager window, within a frame of a Display Manager
pad, or without using the display. Use GPR_$DISPLAY _MODE_ T format for this
parameter. This is a 2-byte integer. Possible values for this parameter are:

GPR $BORROW
Program borrows the full screen and the keyboard from the Display
Manager and uses the display driver directly through GPR software.

GPR $BORROW NC
Same as GPR _ $BORROW except that all the pixels are not set to zero.
(screen is not cleared.)

GPR _ $DffiECT Program borrows a window from the Display Manager instead of
borrowing the whole display.

GPR $FRA1v1E Program executes within a frame of a Display Manager Pad.

GPR $NO DISPLAY
GPR allocates a bitmap in main memory. No graphics is displayed on
the screen.

This parameter has three possible meanings, as follows:

1. The display unit, if the graphics routines are to operate in a borrowed display.
This is a 2-byte integer. Currently, the only valid display unit number for
borrow-display mode is 1.

2. The stream identifier for the pad, If the graphics routines are to operate in
frame or direct mode. Use STREAM_$ID _ T format. This is a 2-byte integer.

3. Any value, such as zero, if the graphics routines do not use the display.

The size of the initial bitmap (and the size of the frame, in frame mode), in
GPR _ $OFFSET _ T format. This data type is 4 bytes long. See the GPR Data Type
section for more information. Possible values are listed below.

GPR Routine8 2-32

. _._---_._----------"----------------

o

.---""
1-- ,"--.,)

o

Borrow-display or direct mode
(limits are reduced to display
or window size if necessary):
Display Manager Frame:
Main Memory Bitmap:

hi_plane_id

x

1 to 1024

1 - 32767
1 - 8192

y

1 to 1024

1 - 32767
1 - 8192 ,

GPR $INIT

Identifier of the bitmap's highest plane, in GPR _ $PLANE _ T format. This is a 2-byte
integer. Valid values are:

For display memory bitmaps:

o for monochromatic displays
o - 3 for color displays in two-board configuration
o - 7 for color displays in three-board configuration

For main memory bitmaps:

o - 7 for all displays

OUTPUT PARAMETERS

init _ bitmap _ dese
Descriptor of the initial bitmap, in GPR _ $BITMAP _DESC _ T format. This is a 4-byte
integer that uniquely identifies the bitmap.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Type section for more information.

USAGE

To use multiple windows, you must call GPR _ $INIT for each window.

GPR_$BORROW _NC allows you to allocate a bitmap in display memory without setting
all the pixels to zero .

. In GPR_$NO_DISPLAY mode, the program can manipulate only main memory bitmaps.

If a program executes in borrow-display mode or direct mode, the size of the initial bitmap
can be equal to or smallei than the display. If the program executes in a frame of a Display
Manager pad, "size" specifies the size of both the frame and the initial bitmap. (In frame
mode, the frame and the bitmap must be the same size.) If the program does not use the
display, GPR _ $INIT creates a bitmap in main memory. The program specifies the size of
this bitmap.

To use imaging formats, a program must be initialized in borrow-display mode.

2-33 GPR Routines

GPR _ $INQ _BITMAP

Returns the descriptor of the current bitmap.

FORMAT

OUTPUT PARAMETERS

bitmap _ dese
The descriptor of the current bitmap, in GPR_$BITMAP _DESC _ T format. This is a
4-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Type section for more information.

USAGE

To establish a bitmap as the current bitmap, use GPR_ $SET _BITMAP.

GPR Routines 2-34

\ ..

o

Returns the size and number of planes of a bitmap.

FORMAT

INPUT PARAMETERS

bitmap _ dese
The descriptor of the bitmap, in GPR_$BITMAP_DESC _ T format. This is a 4-byte
integer.

OUTPUT PARAMETERS

size
Width and height of the bitmap, in GPR _ $OFFSET _ T format. This data type is 4 bytes
long. See the GPR Data Types section for more information.

hi_plane_id
The identifier of the bitmap's highest plane, in GPR _ $PLANE _ T format. This is a 2-
byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

A program can use the information returned by this call to retrieve the actual bitmap size.
This could be useful, for example, if the program specified a bitmap size that was too large
for the display, causing a reduction in bitmap size.

2-35 GPR Routines

Returns a pointer to bitmap storage in virtual address space. Also returns offset in memory
from beginning of one scan line to the next.

FORMAT

INPUT PARAMETERS

bitmap _ dese
Descriptor of the bitmap, in GPR _ $BITMAP _ DESC _ T format. This is a 4-byte integer.

OUTPUT PARAMETERS

storage _ ptr
Start address of bitmap in virtual address space. This is a 4-byte integer.

storage _line _ width
Number of 16-bit words in virtual memory between the beginning of one of the bitmap's
scan lines and the next. This is a 2-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

A program can use the information returned by this call to access individual bits.

Each scan line (horizontal line of a bitmap) starts on a word boundary. The parameter
storage _line _ width gives the offset in memory from the beginning of one scan line to the
beginning of the next, in units of 16-bit words.

When a program uses the parameter storage_ptr to access the screen bitmap on a
monochrome system that uses a simulated color map pixels which are white have a pixel
value of 1 and pixels that are black hav~ a pixel value of 0, regardless of any calls to
GPR_$SET _ COLOR_MAP. In other words, the pixel value itself specifies the color of
the pixel: the pixel value is not used as an index into the color map. On systems that have
the color map in hardware, the pixel value is used as an index into the color map. The
color of the pixel is determined by the color value in the color map.

On monochromatic devices, use GPR_$INQ_DISP _ CHARACTERISTICS to determine
whether the color map is simulated or in hardware. See the datatype gpr _ $disp _ char _ t
in Chapter 1 of this manual for more information.

If the cursor is active, the cursor pattern appears in the bitmap.

A program cannot use this routine on a bitmap which is a Display Manager frame.

GPR Routines 2-36

/~
I
\
'--- - ..

l
'---- .

o

o

(j

o

Returns the position of the upper left corner of the specified bitmap. This is normally the
screen position; although, it does have some significance for main memory bitmaps.

FORMAT

INPUT PARAMETERS

bitmap _ dese
The descriptor of the bitmap in GPR_ $BITMAP _DESC _ T format. This is a 4-byte
integer.

OUTPUT PARAMETERS

origin
The position of the upper left-hand corner of the bitmap in GPR _ $POSITION _ T format.
This data type is 4 bytes long. See the GPR Data Types section for more information.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

This call is not meaningful if the bitmap is a display manager pad (Le., a frame mode
bitmap).

2-37 GPR Routines

GPR _ $INQ_BM_BIT _ OFFSET

GPR _ $INQ_BM_BIT _ OFFSET

Returns the bit offset that corresponds to the left edge of a bitmap in virtual address space.

FORMAT

INPUT PARAMETERS

hitmap_ dese
The descriptor of the bitmap, in GPR_$BITMAP _DESC _ T format. This is a 4-byte
integer.

OUTPUT PARAMETERS

offset
The number of bits between a 16-bit word boundary and the left edge of the specified
bitmap. This is a 2-byte integer in the range 0 - 15.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

Each scan line (horizontal line of a bitmap) starts on a word boundary. For all scan lines,
this routine returns the number of bits in the most significant part of the first word that
are not part of the specified bitmap.

Currently, the offset will be zero for any bitmap other than a direct-mode window.

GPR Routine8 2-38

C
--'
-, ,.,.

r ."
~

o

o

o

f\
U

o

GPR_$INQ_BITMAP _FILE_COLOR_MAP

GPR_$INQ_BITMAP _FILE_ COLOR_MAP

Returns the specified entries from the external-bitmap color map.

FORMAT

INPUT PARAMETERS

bitmap

start

The bitmap descriptor for the bitmap file in GPR_ $BITMAP _DESC _ T format. This is a
4-byte integer.

The index of the first entry. This is a 2-byte integer.

entries
The number of consecutive color-map entries to return. This is a 2-byte integer.

OUTPUT PARAMETERS

color
The color values in UNN GPR _ $COLOR _ VECTOR _ T format. This is an array of long
in tegers (4-byte integers).

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

Each external bitmap is allocated its own color map. The external bitmap's color map is
copied into the system color map whenever the external bitmap becomes the current
bitmap.

You can inquire or change the values of the external bitmap's color map without making
the external bitmap current.

Use GPR _ $SET _ BITMAP _FILE _ COLOR _ MAP to change the values of an external
bitmap's color map.

For the monochromatic display, the default start-index is o. The value of entries is 2, and
the color values are GPR _ $BLACK and GPR _ $WHITE. Dark has the value
GPR _ $BLACK, and bright has the value GPR _ $WHITE.

For the monochromatic display, if the program provides fewer than two values, or if the
first two values are the same (both black or both white), the routine returns an error.

2-39 CPR Routines

GPR _ $INQ _ CHARACTER _ WIDTH

GPR_$INQ_ CHARACTER_ WIDTH

Returns the width of the specified character in the specified font.

FORMAT

INPUT PARAMETERS

font id
Identifier of the text font. This is a 2-byte integer.

character
The specified character. This is a character variable.

OUTPUT PARAMETERS

width
The width parameter of the specified character. This is a 2-byte integer. Possible values
are -127 to 127.

status
Completion st,atus, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

To set a character's width, use GPR _ $SET _ CHARACTER _ WIDTH.

The initial character widths are defined in the, font file.

This routine returns the character width in the local copy of the font. Initially, this is a
copy of the font file; but the local copy may have been changed. Change in the local copy
does not affect the font file or the use of the font by other processes.

GPR Routines 2-40

c

o Returns the current color map values.

FORMAT

INPUT PARAMETERS

start _ index
Index of the first color value entry, in GPR _ $PIXEL _ VALUE _ T format. This is a 4-
byte integer.

n entries

o Number of entries. This is a 2-byte integer.

OUTPUT PARAMETERS

values
Color value entries, in GPR _ $COLOR _ VECTOR _ T format. This is a 256-element
array of 4-byte integers.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

To set the color map, use GPR_ $SET _ COLOR_MAP.

o

o
2-41 GPR Routines

GPR_$INQ_CONFIG

GPR _ $INQ _ CONFIG

Returns the current display configuration.

FORMAT

GPR_$INQ_CONFIG (config. status)

OUTPUT PARAMETERS

contig
Display configuration, in GPR _ $DISPLAY _ CONFIG _ T format. This is a 2-byte
integer. One of the following predefined values is returned:

Returned Value Display Type

GPR_$BW_800xl024 monochromatic portrait
GPR_$BW_1024x800. monochromatic landscape
GPR $COLOR 1024x1024x4 color 1024 x 1024 -(DN6xx) 2-board config
GPR-$COLOR-1024X1024X8 color .1024 x 1024 (DN6xx) 3-board config
GPR-$COLOR-1024X800x4 color 1024 x 800 (DN5xx) 2-board config
GPR-$COLOR-1024X800X8 color 1024 x 800 (DN5xx) 3-board config
GPR=$COLOR1_1024X800X8 color 1024 x 800 (DN570) 2-board config
GPR $COLOR 1280X1024X8 color 1280 x 1024 (DN580) 2-board config
GPR=$COLOR2_1024X800X4 color 1024 x 800 (DN3000) 1-board config

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR _ $INQ _ CONFIG can be used before GPR _ $INIT. This is useful to determi~e the
number of possible planes in bitmaps on color displays before initializing GPR.

GPR Routines 2-42

C:

o

o

GPR _ $INQ_ CONSTRAINTS

GPR_$INQ_CONSTRAINTS

Returns the clipping window and plane mask used for the current bitmap.

FORMAT

GPR_$INQ_CONSTRAINTS (window. active. plane_mask. status)

OUTPUT PARAMETERS

window
The clipping window, in GPR_$WINDOW _ T format. This data type is 8 bytes long. See
the GPR Data Type section for more information.

active
Boolean (logical) value which specifies whether the clip window is enabled. If the value is
false, the clip window is disabled; if the value is true, the clip window is enabled.

plane_mask
The plane mask, which specifies the active bitmap plane(s), in GPR_ $MASK_ T format.
This is a 2-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

To establish a new clipping window for the current bitmap, use
GPR $SET CLIP WINDOW.

To enable the new clipping window, use GPR_$SET _ CLIPPING_ACTIVE.

To establish a plane mask, use GPR _ $SET _ PLANE _MASK.

2-43 GPR Routines

GPR_ $INQ_ CO ORDINATE_ ORIGIN

GPR _ $INQ _ COORDINATE _ ORIGIN

Returns the x- and y-offsets added to all x- and y-coordinates used as input to move,
drawing, and BL T operations on the current bitmap.

FORMAT

OUTPUT PARAMETERS

origin
The current coordinate origin for the bitmap, in GPR _ $POSITION _ T format. This data
type is 4 bytes long. See the GPR Data Types section for more information.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

To set a new coordinate origin, use GPR_$SET_COORDINATE_ORIGIN.

GPR Routines 2-44

(~'.
''-. '

C)

o

o

o

GPR_$INQ_CP

GPR _ $INQ _ CP

Returns the current position in the current bitmap.

FORMAT

OUTPUT PARAMETERS

x

y

The x-coordinate of the current position, in GPR _ $COORDINATE _ T format. This is a
2-byte integer.

The y-coordinate of the current position, in GPR _ $COORDINATE _ T format. 'This is a
2-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR_$INQ_CP can be used to verify that the current position is at the desired location.
If it is not, use GPR _ $MOVE to move the current position without drawing a line.

2-45 GPR Routines

GPR_ $INQ_ CURSOR

GPR_$INQ_CURSOR

Returns information about the cursor.

FORMAT

OUTPUT PARAMETERS

cursor _pat
Identifier of the cursor pattern bitmap, in GPR_$BITMAP _DESC_ T format. This is a
4-byte integer.

cursor _ raster _ op
Cursor raster operation code, in GPR_$RASTER_ OP _ARRAY _ T format. This is an
eight-element array of 2-byte integers. The default value is three. (The operation assigns all
source values to the new destination).

active
A Boolean (logical) value which indicates whether the cursor is displayed. The parameter is
set to true if the cursor is displayed; it is set to false if the cursor is not displayed.

position
The cursor's current position on the screen, in GPR _ $POSITION _ T format. This data
type is 4 bytes long. See the GPR Data Type section for more information.

origin
The pixel currently set as the cursor origin, in GPR _ $POSITION _ T format. This data
type is 4 bytes long. See the GPR Data Type section for more information.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

Cursor position: If. a program calls this routine when in borrow-display mode, the x- and
y-coordinates represent.an absolute position on the screen. If a program calls this routine
when the cursor is inside a frame of a display manager pad, the x- and y-coordinates are
relative to the top left corner of the frame.

GPR Routines 2-46

o

o

o

To alter the cursor, use one of the following:

GPR $SET CURSOR PATTERN
GPR-$ SET-CURS OR-AC T lVE
GPR-$SET-CURSOR-POSITION
GPR=$SET=CURSOR=ORIGIN

Currently, a program can not alter the cursor raster operation.

GPR _ $INQ_ CURSOR

If no cursor pattern has been set, the default rectangle cursor is returned.

2-47 GPR Routines

GPR_ $INQ_DISP _ CHARACTERISTICS

GPR _ $INQ _DISP _ CHARACTERISTICS

Allows the application program to obtain a variety of information about the nature of the
actual display device or external bitmap if the program is operating in no-display mode.

FORMAT

INPUT PARAMETERS

op
One of four modes of operation. Graphics primitives routines can operate in two borrow­
display modes, within a Display Manager window, within a frame of a Display Manager
pad, or without using the display. Use GPR_$DISPLAY _MODE_ T format for this
parameter. This is a 2-byte integer. Possible values for this parameter are:

GPR $BORROW
Returns information about to a borrowed display.

GPR $BORROW NC
Returns information about to a borrowed display.

GPR $DIRECT Returns information about to a direct-mode window.

GPR _ $FRAME Returns information about to a frame of a Display Manager Pad.

GPR $NO DISPLAY
Returns infomation about to a main-memory bitmap.

unit _ or _pad
This parameter has three possible meanings, as follows:

1. The display unit, if the graphics routines are to operate in a borrowed display.
This is a 2-byte integer. Currently, the only vaiid display unit number for
borrow-display mode is 1.

2. The stream identifier for the pad, if the graphics routines are to operate in
frame or direct mode. Use STREAM $ID T format. This is a 2-byte integer.

3. For gpr _ $no _ display this parameter is ignored.

GPR Routines 2-48

(~

'----

C)

o

o

o

GPR_ $INQ_DISP _ CHARACTERISTICS

disp_len
Size of the buffer (the DISP parameter described below) provided by the calling program,
which will contain the returned display or device information in bytes. For example, if the
buffer is ten 16-bit words in length, the program gives 20 as the value of this parameter.
No checking is (or can be) done to verify that this length is correct, so unpredictable results
are obtained if the program gives a size that is larger than the actual size of the buffer.
This parameter allows the calling program to request that less than the full set of
characteristics be returned. It also allows the program to continue to function correctly if
the list of returned characteristics is extended in the future.

OUTPUT PARAMETERS

disp
Returned display device characteristics in GPR _ $DISP _ CHAR _ T format. This is an
array of up 56 bytes. See the GPR data types section for more information.

disl> _len _ ret
Actual number of bytes of data returned in the "disp" parameter. This is a 2-byte integer.
It will always be less than or equal to the II disp _len II input parameter value. Presently,
the length of the full set'of characteristics is 28 16-bit words, or 56 bytes, so 56 is the
current maximum possible value for this parameter.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

Prior to SR9.2, programs using GPR could only obtain a value that identified a particular
display type, for example, a monochrome display, 1024 by 800 pixels. Programs then
derived the particular display characteristics from this value. As a result, a program that
wanted to determine display characteristics had to assign a value to each device type that it
might want to obtain. Each time we added new display types, user programs had to be
modified to identify the new display types.

GPR_$INQ_DISP _ CHARACTERISTICS eliminates the need for user programs to
include values that identify display device characteristics. This call returns all of a .node's
display characteristics as a data item in the "disp" parameter. If you use this call, you will
not need to extend your programs to support any future display types.

2-49 GPR Routines

GPR_$INQ_DISP _CHARACTERISTICS

You can call GPR_$INQ~DISP _CHARACTERISTICS at any time, regardless of whether
or not GPR has been initialized. If you have initialized GPR, calling this routine has no
effect on the current bitmap or its attributes.

When the program calls GPR_$INQ_DISP _ CHARACTERISTICS, the values it specifies
in the first two parameters are the same as the values it specifies to GPR _ $INIT. These
parameters identify the display mode and unit or stream to the call, which can then return
specific information about the window or bitmap to be used, as well as general information
about the display device. The application program must supply a buffer variable, typically
of a record type in Pascal, a structure type in C, or an array type in FORTRAN, in which
the data can be returned.

In the future, we may extend the list of data items that this call returns as we release new
display devices with new characteristics. However, programs written to use the existing set
of characteristics will continue to operate correctly.

GPR Routines 2-50

,/-----' (\

\". ,

(~
"'-.. _,

o

C)

0

o

Returns the color/intensity value. used for drawing lines.

FORMAT

OUTPUT PARAMETERS

index
The color map index that indicates the current color/intensity value used for drawing lines,
in GPR _ $PIXEL _ VALUE _ T format. This is a 4-byte integer. Valid values are:

0-1

0-15

0-255

-1

~2

status

For monochromatic displays

For color displays in 4-bit pixel Format

For color displays in 8-bit or 24-bit pixel Format

For all displays. This specifies that the background is transparent; that
is, the old values of the pixels are not changed.

For all displays. This specifies using the color/intensity value of the
bitmap background as the line drawing value. For borrowed displays and
memory bitmaps, the fill background is always zero. For Display
Manager frames, this is the pixel value in use for the window background.

Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

To set a new draw value, use GPR_$SET_DRAW _VALUE.

2-51 CPR Routines

GPR_$INQ_FILL_BACKGROUND_ VALUE

Returns the color/intensity value of the background used for tile fills.

FORMAT

OUTPUT PARAMETERS

index
The color map index that indicates the current color/intensity value used for tile fills, in
GPR _ $PIXEL _ VALUE _ T format. This is a 4-byte integer. Valid values are:

0-1

0-15

0-255

-1

-2

status

For monochromatic displays

For color displays in 4-bit pixel format

For color displays in 8-bit or 24-bit pixel format

For all displays. This specifies that the background is transparent; that
is, the old values of the pixels are not changed.

For all displays. This specifies using the color/intensity value of the
bitmap background as the tile fill background. For borrowed displays
and memory bitmaps, the fill background is always zero. For Display
Manager frames, this is the pixel value in use for the window background.

Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

To set a new background value, use GPR_$SET_FILL_BACKGROUND_ VALUE.

GPR Routine8 2-52

~ l_/I

(~\-
,

c

o

o

o

o

GPR _ $INQ_ FILL _ PATTERN

GPR _ $INQ _ FILL _ PATTERN

Returns the fill pattern for the current bitmap.

FORMAT

OUTPUT PARAMETERS

pattern

scale

The descriptor of the bitmap containing the fill pattern, in GPR_ $BITMAP _DESC _ T
format.

The number of times each bit in this pattern is to be replicated before proceeding to the
next bit in the pattern in both the x and y directions. This is a 2-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

To set a new fill pattern for the current bitmap, use GPR_$SET _FILL_PATTERN.

Currently, the tile pattern must be stored in a bitmap that is 32 x 32 pixels. The scale
factor must be one. Any other pattern size or scale value results in an error.

With a one-plane bitmap as the pattern, the pixel values used are those set by
GPR $SET FILL_ VALVE and GPR $SET FILL BACKGROUND VALVE. Pixels
corresponding to 11111 bits of the pattern are drawn in the fill value: pixels corresponding to
110

11 bits of the pattern are drawn in the fill background value.

2-53 GPR Routines

Returns the color/intensity value used to fill circles, rectangles, triangles, and trapezoids.

FORMAT

OUTPUT PARAMETERS

inde~

The color map index that indicates the current color/intensity fill value, in
GPR_$PIXEL_ VALUE_ T format. This is a 4-byte integer. Valid values are:

0-1 For monochromatic displays

0-15 For color displays in 4-bit pixel format

0-255 For color displays in 8-bit or 24-bit pixel format

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

To set a new fill value, use GPR_$SET_FILL_ VALUE.

GPR Routines 2-54

~,

~-_/

c'

----------------- ----_ .. _-

o

o

o

o

GPR_$INQ_HORIZONTAL_SPACING

Returns the parameter for the width of spacing between displayed characters for the
specified font.

FORMAT

INPUT PARAMETERS

font id
Identifier of the text font. This is a 2-byte integer.

OUTPUT PARAMETERS

horizontal_ spacing
The parameter for horizontal spacing of the specified font. This is a 2-byte integer.
Possible values are in the range -127 - 127.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

Use GPR_$SET_HORIZONTAL_SPACING to set the width of spacing for a font.

The initial width of horizontal spacing is defined in the font file.

This routine returns the horizontal spacing in the local copy of the font. Initially, this is a
copy of the font file; however, the local copy may have been changed. Change in the local
copy does not affect the font file or the use of the font by other processes.

2-55 GPR Routines

Returns the current imaging format.

FORMAT

OUTPUT PARAMETERS

format
Imaging format in GPR_$IMAGING_FORMAT _ T configuration. This is a 2-byte
integer. If you are using an interactive format, the returned value is
GPR _ $INTERACTIVE. If you are using the imaging 8-bit pixel format on a two-board
configuration, the returned value is GPR _ $IMAGING _1024xl024x8. If you are using the
imaging 24-bit pixel format, the returned value is GPR_$IMAGING_512x512x24.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

To set the imaging format, use GPR_$SET _IMAGING_FORMAT.

GPR Routines 2-58

-~-~-.-----------

~.

('
''--_ .. '

c

o

o

o

o

o

GPR _ $INQ_ LINE _ PATTERN

GPR_$INQ_LlNE_PATTERN

Returns the pattern used in drawing lines.

FORMAT

GPR_$INQ_LINE_PATTERN (repeat. pattern. length. status)

OUTPUT PARAMETERS

repeat
The replication factor for each bit in the pattern. This is a 2-byte integer.

pattern
The bit pattern, left justified, in GPR_$LINE_PATTERN_ T format. This is a four­
element array of 2-byte integers.

length
The length of the pattern in bits. This is a 2-byte integer in the range of 0 - 64.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR_$INQ_LlNE_PATTERN returns ,the current line pattern set explicitly with
GPR,_$SET _LINE_PATTERN or set implicitly with GPR_$SET _LINESTYLE.

Use GPR_$SET _LINE_PATTERN to specify a new line pattern. You can also use
GPR_$SET _LINESTYLE to set a line pattern within the limits of the parameter
GRP $DOTTED.

2-57 GPR Routines

GPR _ $INQ_ LINESTYLE

Returns information about the current line-style.

FORMAT

GPR_$INQ_LlNESTYLE (style. scale. status)

OUTPUT PARAMETERS

style

scale

The style of line, in GPR~$LlNESTYLE_ T format. This is a 2-byte integer. One of the
following predefined values is returned:

GPR $SOLID For solid lines

GPR $DOTTED
For dotted lines.

The scale factor for dashes if the style parameter is GPR_ $DOTTED. This is a 2-byte
integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

When the line-style attribute is GPR _ $DOTTED, lines are drawn in dashes. The scale
factor determines the number of pixels in each dash and in each space between the dashes.

To set the line-style attribute, use GPR _ $SET _ LINESTYLE.

GPR Routines 2-58

o

o

(j

o

o

Returns the mode which controls the algorithm used to decompose and rasterize polygons.

FORMAT

GPR_$INQ_PGON_DECOMP_TECHNIQUE(decomp_technique.status)

OUTPUT PARAMETERS

decomp _ technique
Returns a mode which controls the algorithm used to decompose and render polygons into
trapezoids in GPR_$DECONIP _ TECHNIQUE_ T format. This is a 2-byte integer. Only
one of the following predefined values is returned:

GPR $F AST T~S
This is the default value on DN3XX/4XXs, DN550/560s, and DN6XXs
which indicates that the faster but imprecise algorithm is to be used. This
is the only algorithm that existed prior to SR9.

GPR $PRECISE TRAPS
This value indicates that a slower but more precise version of the
decomposition algorithm is to be used.

GPR $NON OVERLAPPING TRIS
This is the default value on DN570/580s and DN3000s which indicates
that a triangle decomposition algorithm is to be used.

GPR $RENDER EXACT

status

This value indicates that the most precise rendering algorithm is to be
used. It provides the best performance for rectilinear and axis aligned
polygons, and it renders self-intersecting polygons more accurately than
any of the other techniques in the following situation: when the
intersection of two edges of the polygon is located at a noninteger.

Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR_$INQ_PGON_DECONIP _ TECHNIQUE returns a mode setting, not an attribute.

'.-

2-59 CPR Routines

GPR_ $INQ_RASTER_ OP _PRIM_SET

Returns the primitive(s) which will be affected by the next GPR_ $SET _RASTER_ OP
call, or the primitive(s) for which GPR_$INQ_RASTER_ OP will return the current
raster-op.

FORMAT

OUTPUT PARAMETERS

prim_set
The set of primitives (lines, fills, and bit-block transfers) in GPR_$ROP _PRIM_SET _ T
format for which raster-ops can be set or inquired with GPR_ $SET _RASTER_ OP or
GPR _ $INQ _ RASTER _ OP, respectively. See the GPR Data Types section for more
information.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

Use GPR_$INQ_RASTER_ OP _PRIM_SET to'return the set of primitives that will be .
affected by GPR_$SET_RASTER_OP. Use GPR $RASTER OP PRIM SET to
modify the set if necessary.

Use GPR_$INQ_RASTER_ OP _PRIM_SET to return the set of primitives that will
have a raster op returned with GPR_$INQ_RASTER_ OP.

If prim_set contains the values GPR_$ROP_LINE and GPR_$ROP _FILL, and the
raster-ops for these operations are different, GPR~$INQ_RASTER_ OP returns an error.
When the values in prim_set have different raster-ops, call
GPR_$RASTER_ OP _PRIM_SET to establish the set with one value; then call
GPR_$INQ_RASTER_ OP.

GPR Routines 2-60

c'

o

C)

(j

o

o

Returns the raster operation for the primitives (lines, fills, and bit-block transfers) specified
with GPR $RASTER OP PRIM SET.

FORMAT

OUTPUT PARAMETERS

raster _op
Raster operation codes, in GPR_$RASTER_ OP _ARRAY _ T format. This is an eight­
element array of 2-byte integers. Each element corresponds to the raster operation for a
single plane of the bitmap. Possible raster op values are zero through fifteen.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

To set a new raster operation for the primitives (lines, fills, and bit-block transfers)
specified with GPR_$RASTER_OP _PRIM_SET, use GPR_$SET_RASTER_OP.

If the set of primitives established with GPR _ $RASTER _ OP _PRIM _ SET have
different raster-ops, this call returns an error.

If the set of primitives established with GPR_$RASTER_ OP _PRIM_SET is empty,
this call returns an error.

Use GPR_$INQ_RASTER_ OP _PRIM_SET to return the set· of primitives established
with GPR $RASTER OP _PRIM SET.

When the values in the set of primitives established with
GPR_$RASTER_ OP _PRIM_SET have different raster-ops, call
GPR_$RASTER_ OP _PRIM_SET to establish the set with one value, then call
GPR_$INQ_RASTER_ OP.

2-61 GPR Routines

GPR _ $INQ_REFRESH_ENTRY

GPR _ $INQ_REFRESH_ENTRY

Returns two pointers: one to the procedure which refreshes the window; one to the
procedure which refreshes hidden display memory.

FORMAT

OUTPUT PARAMETERS

window _ procedure
Entry point for the application-supplied procedure that refreshes the Display Manager
window, in GPR_$RWIN_PR_ T format. This is a pointer to a procedure.

disp _ mem _ procedure
Entry point for the application-supplied procedure that refreshes the application's hidden
display memory, in GPR_$RHDM_PR_ T format. This is a pointer to a procedure.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

The returned routines apply to the current bitmap and current attribute block.

Applications can also direct the Display Manager to refresh the window automatically; see
the routine GPR $SET AUTO REFRESH.

GPR Routines 2-62

C
~

~ _ ,.,'

r-..
I

\

o

o

(~

o

o

---_ .. __ .- -------------------

GPR_ $INQ_SPACE_SIZE

GPR_$INQ_SPACE_SIZE

Returns the width of the space to be displayed when a character requested is not in the
specified font.

FORMAT

INPUT PARAMETERS

font id
Identifier of the text font. This is a 2-byte integer.

OUTPUT PARAMETERS

space_size
The space size of the specified font. This is a 2-byte integer. Possible values are in the
range -127 to 127.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

To set a font's space size, use GPR_$SET _SPACE_SIZE.

The initial space size is defined in the font file.

The space size is the number of pixels to skip in the horizontal direction when a character
not included in the font is written.

2-6.3 GPR Routines

GPR_ $INQ_ TEXT

GPR_$INQ_TEXT

Returns the text font and text path used for the current bitmap.

FORMAT

OUTPUT PARAMETERS

font id
Identifier of the text font used for the current bitmap. This is a 2-byte integer.

direction
The direction of movement from one text character position to the next in the current
bitmap, in GPR _ $DffiECTION _ T format. This is a 2-byte integer. One of the following
predefined values is returned:

status

GPR_$UP.
GPR $DOWN.
GPR=$LEFT.
GPR_$RIGHT

Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

To set a new text font for the current bitmap, use GPR_ $SET _ TEXT _FONT.

To change the direction of text, use GPR_$SET _ TEXT _PATH.

GPR Routine8 2-64

(r"-"
'''-.

c·

o

o

o

GPR_ $INQ_ TEXT _EXTENT

GPR_$INQ_TEXT_EXTENT

Returns the x- and y-offsets a string spans when written by GPR _ $ TEXT .

FORMAT

INPUT PARAMETERS

string
A string, in GPR _ $STRING _ T format. This is a 256 element chararacter array.

string _length
Number of characters in the string. This is a 2-byte integer. The maximum value is 256.

OUTPUT PARAMETERS

size
Width and height of the area the written string will occupy, in GPR _ $OFFSET _ T
format. This data type is 4 bytes long. See the GPR Data Types section for more
information.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

When the text path is GPR _ $RIGHT or GPR _ $LEFT, the width is the x-offset. When
the text path is GPR_$UP or GPR_$DOWN, the height is the y-offset.

To change the direction of text, use GPR _ $SET _ TEXT _ PATH.

Figure GPR-l shows two examples of the extent of text in relation to offsets. For
horizontal text, use GPR _ $RIGHT with GPR _ $SET _ TEXT _ PATH. For rotated text,
use GPR $UP with GPR $SET TEXT PATH.

2-65 GPR Routines

GPR _ $INQ_ TEXT _ OFFSET

Horizontal Text

width = x-offset

f\ brown fox lumped over the fence) height = y offset

.r---" (,

'--- /

width = x-offset

height = y offset

Figure GPR-l. Height and Width for Horizontal and Rotated Text

GPR Routines 2-66

o

o

C)

o

o

GPR_ $INQ_ TEXT _ OFFSET

GPR_ $INQ_ TEXT _ OFFSET

Returns the x- and y-offsets from the top left pixel of a string to to the origin of the string's
first character. This routine also returns the x- or y-offset to the pixel which is the new
current position after the text is written with GPR _ $ TEXT .

FORMAT·

INPUT PARAMETERS

string
A string, in GPR _ $STRING _ T format. This is a 256-element character array.

string _length
Number of characters in the string. This is a 2-byte integer. The maximum value is 256.

OUTPUT PARAMETERS

start
X- and Y-offsets from the top left pixel of the string to the origin of its first character, in
GPR $OFFSET T format. This data type is 4 bytes long. See the GPR Data Type
section for more information.

xy _end
The X- or Y-offset from the top left pixel of the string to the pixel that will be the new
current position after the string is written with GPR _ $ TEXT . This is the X-offset when
the text path is specified as GPR _ $RIGHT or GPR _ $LEFT. This is The Y-offset when
the text path is specified as GPR_$UP or GPR_$DOWN. This is a 2-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

A program can use the information derived from the II start II output parameter to set the
current position to the character origin, rather than the top left corner of the string, before
writing the string with GPR_ $TEXT.

When the text path is GPR _ $RIGHT or GPR _ $LEFT, the offset is to the x-axis. When
the text path is GPR _ $UP or GPR _ $DOWN, the offset is to the y-axis.

See GPR_$SET_TEXT_PATH for use of GPR_$RIGHT, GPR_$LEFT, GPR_$UP,
and GPR $DOWN.

Figure GPR-2 shows an example of text offsets, after using GPR _ $RIGHT and
GPR $UP with GPR $SET TEXT PATH.

.2-67 GPR Routines

Top left pixel of
character string

Origin of first
character

GPR Routines

-- - ------ -------- - ------

Current Position
upon completion
of G PFL-$TEXT and
GPFL-$SET _TEXT_PATH
with GPFL-$RIGHT,-

Current position upon completion of
GPFL-$TEXT and GPFL-$TEXT_PATH with
GPFL-$UP

Text path Is up from origin,
letters reading up

Origin of first character

Figure GPR-2. Text Offsets

2-68

o

o

o

o

o

Returns the direction for writing a line of text.

FORMAT

OUTPUT PARAMETERS

direction
Direction for writing text, in GPR _ $DIRECTION _ T format. This is a 2-byte integer. One
of the following predefined values is returned: GPR_$UP, GPR_$DOWN,
GPR_$LEFT, GPR_$RIGHT

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

To set the current text path, use GPR_$SET _ TEXT _PATH.

2-69 GPR Routines

GPR_$INQ_TEXT_ VALUES

GPR_$INQ_TEXT_ VALUES

Returns the text color jintensity value and the text background color jintensity value used in
the current bitmap.

FORMAT

OUTPUT PARAMETERS

text_ value
A color map index that indicates the text color jintensity value, in
GPR_$PIXEL_ VALUE_ T format. This is a 4-byte integer.

text _ bkgd _ value
A color map index that indicates the text background color jintensity value, in
GPR_$PIXEL_ T format. This is a 4-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

To establish the text color jintensity value, use GPR _ $SET _ TEXT _ VALUE. To
establish the text background color jintensity value, use
GPR $SET TEXT BACKGROUND _ VALVE.

GPR Routines 2-70

c~

C)

o

o

GPR _ $INQ_ TRIANGLE _FILL _ CRITERIA

Returns the filling criteria used with polygons decomposed into triangles.

FORMAT

OUTPUT PARAMETERS

fill crit
Returns the filling criteria. This is a 2-byte integer. Possible values for this parameter are:

GPR _ $P ARITY Provides a means for filling polygons decomposed into triangles using an
odd parity scheme. Regions filled in these polygons will match regions
filled· in polygons decomposed into trapezoids.

GPR $NONZERO
Provides a means for filling all nonzero regions of a polygon.

GPR $SPECIFIC

status

Provides a means for filling specific regions of a polygon. This is done by
specifying a winding number. The only restriction is that regions with a
winding number of zero cannot be filled.

Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

Use GPR_$PGON_DECOMP _ TECHNIQUE to set a mode which controls the algorithm
used to decompose polygons.

Use GPR _ $SET _ TRIANGLE _ FILL _ CRITERIA to set the filling criteria used with
polygons decomposed into triangles or for polygons rendered with the render exact
algorithm.

2-71 GPR Routines

GPR_$INQ_ VIS_LIST

Returns a list of the visible sections of an obscured window.

FORMAT

INPUT PARAMETERS

slots available
Size of the array of visible window sections. This is a 2-byte integer, which is the maximum
number of visible rectangles that can be returned. If you want to list all existing sections,
you must specify a number that is greater than or equal to the number returned in the
slots _ total argument (see output parameters).

OUTPUT PARAMETERS

slots _ total
Number of existing visible rectangles. This is a 2-byte integer. If this value is greater than
the slots _ available parameter, then only the number of rectangles specified in
slots available is returned.

vis list
List of visible window sections. This,is an array in GPR_$WINDOW _ T format. This
data type is eight bytes long. See the GPR Data Types section for more information.

There is no set limit to the number of visible regions that may be returned.

status
Completion status, in STATUS_$T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

If the display has been acquired but the target window is obscured, programs can call
GPR_$INQ_ VIS_LIST to locate any visible sections of the window.

If the target window is visible, this rou"tine returns a base of (0,0) and the size of the entire
window.

If the window is obscured, the application should call GPR _ $SET _ CLIP _WINDOW once
for each rectangle returned by GPR_$INQ_ VIS_LIST before making calls to drawing
routines. Clipping is to rectangles only. The GPR software will not perform clipping
automatically.

GPR _ $INQ _ VIS _ LIST implicitly releases and reacquires the display in order to
communicate with the Display Manager.

GPR Routine8 2-72

o

o

o

o

GPR_$INQ_ WINDOW_ID

Returns the character that identifies the current bitmap's window.

FORMAT

OUTPUT PARAMETERS

character
The character that identifies the current bitmap's window.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

This character is returned by GPR _ $EVENT _ WAIT and
GPR _ $COND _ EVENT _ WAIT when they return GPR _ $ENTERED _ WINDOW
events. The character indicates which window was entered.

The character II A II is the default value of the window identification for all windows.

2-73 GPR Routines

GPR $LINE

GPR $LINE

Draws a line from the current position to the end point supplied. The current position is
updated to the end point.

FORMAT

GPR_$LlNE (X.y. status)

INPUT PARAMETERS

x

y

The x-coordinate, which designates the end point of the line and then becomes the current
x-coordinate. Use GPR _ $COORDINATE _ T format. This is a 2-byte integer. Its values
must be within the bitmap limits, unless clipping is enabled.

The y-coordinate, which designates the end point of the line and then becomes the current
y-coordinate. Use GPR _ $COORDINATE _ T format. This is a 2-byte integer. Its values
must be within the bitmap limits, unless clipping is enabled.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

The given coordinates are added to the corresponding elements of the coordinate origin for
the current bitmap. The resultant coordinate position is the destination of the line drawn.

When you have clipping enabled, you can specify coordinates outside the bitmap limits.
With clipping disabled, specifying coordinates outside the bitmap limits results in an error.

After the line has been drawn, its end point becomes the current position.

To set a new position without drawing a line, use GPR _ $MOVE.

GPR Routines 2-74

\ ",_ ..

o

o

o

o

GPR $LOAD FONT F~E

Loads a font from a file into the display's font storage area.

FORMAT

INPUT PARAMETERS

pathname
Pathname of the file containing the font, in NAME _ $PNAME _ T format. This is a
character string. Additional information on fonts can be found in the Command Reference
manual.

pathname _length
Number of characters in font file pathname. This is a 2-byte integer.

OUTPUT PARAMETERS

font id
Font identifier. This is a 2-byte integer. Available fonts are listed in the directory
/sys/dm/fonts.

status
Completion' status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

Use the font-id returned from this file as input for GPR_$SET _ TEXT _FONT.

To unload fonts loaded with this routine, use GPR_$UNLOAD _FONT _F~E.

2-75 GPR Routines

GPR $MOVE

GPR $MOVE

Sets the current position to the given position.

FORMAT

GPR_$MOVE (x. y. status)

INPUT PARAMETERS

x

y

The x-coordinate, which becomes the current x-coordinate, in GPR _ $ COORDINATE _ T
format. This is a 2-byte integer. Its values must be within bitmap limits, unless clipping is
enabled.

The y-coordinate, which becomes the current y-coordinate, in GPR _ $COORDINATE _ T
format. This is a 2-byte integer. Its values must be within bitmap limits, unless clipping is
enabled.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

The current position is the starting point for many drawing and text operations.

GPR _ $MOVE does not draw any lines.

The given coordinates are added to the corresponding elements of the coordinate origin for
the current bitmap. The resultant coordinate position is the destination of the move
operation.

When you have clipping enabled, you can specify coordinates outside the bitmap limits.
With clipping disabled, specifying coordin.ates outside the bitmap limits results in an error.

GPR Routine8 2-76

'''- ...•. /

(""" ,,-)

o

C--'l
.... ,/

o

GPR $MUL TILINE

GPR $MUL TILINE

Draws a series of disconnected lines.

FORMAT

GPR_$MULTILlNE (x. y. npositions. status)

INPUT PARAMETERS

x

y

List of the x-coordinates of all the successive coordinate positions in
GPR_$COORDINATE_ARRAY _ T format. This is an array of 2-byte integers. The
values must be within the bitmap limits, unless clipping is enabled.

List of the y-coordinates of all the successive coordinate positions in
GPR_$COORDINATE_ARRAY _ T format. This is an array of 2-byte integers. The
values must be within the bitmap limits, unless clipping is enabled.

npositions
Number of coordinate positions. This is a 2-byte integer in the range 1 - 32767.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Typ~s section for more information.

USAGE

GPR _ $MUL TILINE alternately moves to a new position and draws lines: it moves to the
first given position, draws a line from the first to the second given position, updates the
current ·position, moves to the third position, etc. Mter the last line has been drawn or the
last move has been made, the endpoint becomes the current position.

The given coordinates are added to the corresponding elements of the coordinate origin for
the current bitmap. The resultant coordinate position is the destination of the multiline
drawn.

When you have clipping enabled, you can specify coordinates outside the bitmap limits.
With clipping disabled, specifying coordinates outside the bitmap limits results in an error.

2-77 GPR Routines

GPR $MULTITRAPEZOID

GPR $MULTITRAPEZOID

Draws and fills a list of trapezoids in the current bitmap.

FORMAT

GPR_$MULTITRAPEZOID (trapezoid_list. trapezoid_number. status)

INPUT PARAMETERS

trapezoid _list
Trapezoids to fill, in GPR_$TRAP _LIST _ T format. This data type is 12 bytes long.
See the GPR Data Types section for more information.

trapezoid _ number
Number of trapezoids to fill. This is a 2-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR _ $MUL TITRAPEZOID fills in a list of trapezoids with the color/intensity value
specified with GPR_$SET_FILL_ VALUE.

To retrieve the current fill value, use GPR_$INQ_FILL_ VALVE.

Filled areas rasterized when the decomposition technique is
GPR _ $NON _ OVERLAPPING _ TRIS contain fewer pixels than filled areas rasterized
with the decomposition technique set to either GPR _ $F AST _ TRAPS or
GPR $PRECISE TRAPS.

Abutting filled areas rasterized when the decomposition technique is
gpr _ $non _ overlapping _ tris do not overlap.

Abutting filled areas rasterized when the decomposition technique is either
GPR $F AST TRAPS or GPR $PRECISE TRAPS OVERLAP.

CPR Routines 2-78

---------------_-.-.-----_ _- .

(
,r~

'-- '

(---
'\
................

o

o

o

o

o

GPR _ $MUL TITRIANGLE

GPR $MUL TITRIANGLE

Draws and fills a list of triangles in the current bitmap.

FORMAT

GPR_$MULTITRIANGLE (t_11st, n_tr1angles, status)

INPUT PARAMETERS

t list
Triangles to fill in GPR _ $TRIANGLE _ LIST _ T format. This data type is a variable size
array where each element of the array contains 14 bytes. See the GPR Data Types section
for more information.

n _ triangles
Number of triangles to fill. This is a 2-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

This call fills a list of triangles with the color jintensity value specified with
GPR $SET FILL VALVE.

To retrieve the current fill value, use GPR_$INQ_FILL_ VALVE.

When entering coordinates for each triangle, you must set a winding number. The winding
number must agree with filling criterion established with
GPR_ $SET _ TRIANGLE_FILL_ CRITERIA. For example, if the filling criterion is
gpr _ $parity, the winding number of triangles to be filled must equal 1. The default filling
criterion is gpr _ $parity.

Individual triangles can be assigned different winding numbers making it possible to fill
specific triangles in the list using GPR _ $SET _ TRIANGLE _ FILL _ CRITERIA.

Filled areas rasterized when the decomposition technique is <gpr _ $non_ overlapping_ tris
contain fewer pixels than filled areas rasterized with the decomposition technique set to
either gpr _ $fast _ traps or gpr _ $precise _ traps.

2-79 GPR Routines

GPR $MUL TITRIANGLE

Abutting filled areas rasterized when the decomposition technique is
gpr _ $non _ overlapping _ tris do not overlap.

Abutting filled areas rasterized when the decomposition technique is either
gpr _ $fast _ traps or gpr _ $precise _ traps overlap.

GPR Routine8 2-80

o

o

o

o

o

GPR $OPEN_BITMAP FILE

GPR $OPEN BITMAP FILE

Opens a file for external storage of a bitmap.

FORMAT

GPR_$OPEN_BITMAP_FlLE (access. filename. name_size. version. size. groups.
group_header. attributes. bitmap. created. status)

INPUT PARAMETERS

access
One of four ways to access external bitmap objects, in GPR _ $ACCESS _MODE _ T
format. This is a 2-byte integer. Specify only one of the following values:

GPR $CREATE
Allocates a new file on disk for storage of a graphic image.

GPR $UPDATE
Allows you to modify a previously created file or create a new one.

GPR $WRITE Allows you to write to an existing file.

GPR $READONLY
Allows you to read a previously created file.

filename
The pathname of the bitmap file, in NAME _ $PNAME _ T format.

name_size
The length of the file name. This is a 2-byte integer.

INPUT/OUTPUT PARAMETERS

version

size

The version number on the header of the external bitmap file, in GPR _ $VERSION _ T
format. This is a two-element array of two 2-byte integers: a major version number and a
minor version number. Currently, version is not used and is always returned as major
version 1, minor version 1.

Bitmap width and height, in GPR _ $OFFSET _ T format. This is a two-element array of
2-byte integers. The first element is bitmap width, in raster units; the second element is the
bitmap height, in raster units. Possible values for x are 1-4096; possible values for yare
1-4096.

groups
The number of groups in external bitmaps. This is a 2-byte integer. Possible values are
1..(GPR_$MAX_BMF _ GROUP +1). Currently, a bitmap can contain only 1 group.

2-81 GPR Routine8

group _ header
Description of the external bitmap, in GPR_ $BMF _ GROUP _HEADER_ARRAY _ T
format. This is an array [O .. GPR_$MAX_BMF _GROUP] of
GPR _ $BMF _ GROUP _HEADER _ T. A description of the fields in a group header and
the possible values are listed below.

N SECTS

PIXEL SIZE

The number of sections in the group. Currently, there must be 1 section
for each plane of a bitmap. N_SECTS is a 2-byte integer which can have
a value in the range 1 - 8.

The number of bits per pixel in each section of a group. Since each
section currently can contain only 1 plane of a bitmap, this value must be
1. PIXEL_SIZE is a 2-byte integer.

ALLOCATED SIZE
2-byte integer Currently, this value must be 1, but you can specify this
value as 0 and GPR will perform the necessary calculations.

BYTES PER LINE
The number of bytes in one row of one plane of the bitmap.
BYTES_PER_LINE is a 2-byte integer. The value inust be a multiple
of 4, but can be specified as 0 and GPR will perform the necessary
calculations.

BYTES PER SECT
The number of BYTES_PER_LINE multiplied by the height of the
bitmap. This value must then be either rounded up to a page boundary,
or for small bitmaps rounded up to the next largest binary submultiple of
a page, for example, one-half, one-fourth, or one-eighth. One page equals
1024 bytes. BYTES _PER_SECT is a 4-byte integer. This value can be
specified as 0 and GPR will perform the necessary calculations.

STORAGE OFFSET
UNIV PTR format

INPUT PARAMETERS

attribs .
The attributes which the bitmap will use, in GPR _ $ATTRIBUTE _ DESC _ T format.
This is a 4-byte integer.

OUTPUT PARAMETERS

bitmap
Descriptor of the bitmap, in GPR_$BITMAP _DESC _ T format. This is a 4-byte integer.

created
Boolean (logical) value which specifies whether the bitmap file was created. If the value is
true, the file was created.

GPR Routines 2-82

c----"
... ,.~"

0

o

GPR _ $OPEN _ BITMAP _FILE

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

Currently, a section is equivalent to one plane of a bitmap. N _SECTS may include up to
eight bit planes.

For ALLOCATED _SIZE, BYTES_PER_LINE and BYTES_PER_SECT, you can
specify values as 0, and the GPR package will calculate and return the appropriate values.

BYTES_PER_SECT is not necessarily a multiple of BYTES_PER_LINE. This means
that GPR will leave unused space at the end of one section to satisfy alignment constraints.
The result is that the next section starts on an alignment boundary, which is normally a
page boundary.

The access parameter specifies one of four ways to use external bitmaps. As shown in the
table below, the value given for this parameter determines whether four other parameters
are input (IN) or output (OUT). The values for these parameters are used to validate your
input with GPR _ $ CREATE and GPR _ $UPDATE.

GPR_$CREA TE GPR_$UPDATE GPR_$WRITE GPR_$READONL Y
fife exists
no yes

version,
size,

IN IN OUT OUT OUT groups,
gr0Lfe;
hea ers

GPR_$CREATE indicates that you want a new external bitmap file. GPR $UPDATE
means that you want to create a new file or overwrite an existing one.

When you specify GPR_ CREATE as the access parameter and you specify a file name that
already exists, the file is superseded only if it is a bitmap file. If the file is not a bitmap
file, you get the error message NAME_$ALREADY _EXISTS.

Attributes are not stored with the bitmap. You assign attributes when you open the
bitmap file. See the routines GPR_$ALLOCATE_ATTRIBUTE_BLOCK and
GPR $ALLOCATE BITMAP.

Figure GPR-3 is a global view of one group.

2-83 GPR Routines

i
BYTES

PER
SECTION

!

GPR Routines

BYTES PER LINE

./ SECTION 0

WITHIN A LINE

I I

/ \

< PIXEL J SIZE >
BOTH IN BITS

< ALLOCATED SIZE >

Figure GPR-3. View of One Group

2-84

SECTION 1

ETC.
• • •

(~
'--- '

o

()

o

o

o

GPR_ $PGON_DECOMP _TECHNIQUE

GPR_$PGON_DECOMP _TECHNIQUE

Sets a mode which controls the algorithm used to decompose and render polygons.

FORMAT

INPUT PARAMETERS

decomp _ technique
Sets a mode that controls the algorithm used to decompose and render polygons in
GPR _ $DECOMP _ TECHNIQUE _ T format. This is a 2-byte integer. Specify only one
of the following predefined values:

GPR $F AST TRAPS
This is the default value on DN3XX, DN4XX, DN550/560, DN600/660
which indicates that the fast but imprecise algorithm is to be used. This
is the only algorithm that existed prior to SR9.

GPR $PRECISE TRAPS
This value indicates that a slower but more precise version of the
trapezoid decomposition algorithm is to be used.

GPR $NON OVERLAPPING TRIS
This is the default value on the following models: DN570/570A/580 and
DN3000.

GPR $RENDER EXACT
This value indicates that the most precise rendering algorithm is to be
used. It provides the best performance for rectilinear and axis aligned
polygons, and it renders self-intersecting polygons more accurately than
any of the other techniques in the following situation: when the
intersection of two edges of the polygon is located at a noninteger.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR _ $PGON _ DECOMP _ TECHNIQUE establishes a mode setting, not an attribute.
Setting the decomposition technique applies to all polygons drawn during a particular
session of GPR (within a GPR_$INIT and GPR_$TERMINATE), not just the polygons
drawn in the current bitmap.

Polygons without self-crossing and IInormalli self-crossing polygons work with the
GPR _ $F AST _ TRAPS setting. Polygons with multiple self-crossings and/or vertices in
close proximity may not be filled correctly with the GPR_$FAST _ TRAPS setting. Fill
these polygons using the GPR _ $PRECISE _ TRAPS,
GPR _ $NON _ OVERLAPPING _ TRIS, or GPR _ $RENDER _EXACT setting.

2-85 GPR Routines

GPR _ $PGON _DECOMP _TECHNIQUE

See Appendix E of Programming with DOMAIN Graphics Primitives for infomation on
decomposition and rendering. . c

c

c
GPR Routines 2-86

o

C)

o

o

o

GPR $PGON . POLYLINE

Defines a series of line segments forming part of a polygon boundary.

FORMAT

GPR_$PGON_POLYLlNE (x .. y. npositions. status)

INPUT PARAMETERS

x

y

List of the x-coordinates of all the successive positions.
GPR_$COORDINATE_ARRAY _ T, a ten-element array of 2':'byte integers, is an
example of such an array. The actual array can have up to 32767 elements. The values
must be within the bitmap limits, unless. clipping is enabled.

List of the y-coordinates of all the successive positions.
GPR_$COORDINATE_ARRAY _ T, a ten-element array of 2-byte integers, is an
example of such an array. The actual array can have up to 32767 elements. The values
must be within the bitmap limits, unless clipping is enabled.

npositions
Number of coordinate positions. This is a 2-byte integer in the range 1 - 32767.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR _ $PGON _POLYLINE defines a series of line segments that comprise part of a
polygon to be filled in by either (1) GPR_$CLOSE_FILL_PGON , by (2)
GPR_$CLbSE_RETURN_PGON and GPR_$MULTITRAPEZOID, or by (3)
GPR_$CLOSE RETURN_PGON_ TRI and GPR_$MULTITRIANGLE. The lines are
not drawn on the screen until the polygon is filled in by either routines (1)', (2), or (3)
above. To draw an unfilled polygon, use GPR _ $POL YLINE.

GPR_$PGON_POLYLINE must be called only when the line segments of a polygon are
being defined. See the routine GPR_ $START _PGON for more information.

When you have clipping enabled, you can specify coordinates outside the bitmap limits.
With clipping disabled, specifying coordinates outside the bitmap limits results in an error.

2-87 GPR Routines

GPR $PIXEL _BLT

GPR . $PIXEL BL T

Performs a pixel block transfer from any bitmap to the current bitmap.

FORMAT

INPUT PARAMETERS

source _ bitmap _ desc
Descriptor of the source bitmap which contains the source window to be transferred, in
GPR $BITMAP DESC T format. This is a 4-byte integer.

source _ window
Rectangular section of the bitmap from which to transfer pixels, in GPR _ $WINDOW _ T
format. This data type is 8 bytes long. See the GPR Data Types section for more
information.

dest _ origin
Start position (top left coordinate position) of the destination rectangle, in
GPR $POSITION T format. This data type is 4 bytes long. See the GPR Data Types
section for more information.

OUTPUT PARAMETERS

status
Completion status, in STATUS _$T format. This data type is 4 bytes long. See· the GPR
Data Types section for more information.

USAGE

Use GPR_$SET _BITMAP to establish the current bitmap for this routine. '

Both the source and destination bitmaps can be in either display memory or main memory.

The source window origin is added to the coordinate origin for the source bitmap, and the
result is the actual origin of the source rectangle for the BLT. Similarly, the destination
origin is added to the coordinate origin for the current bitmap, and the result is the actual
origin of the destination rectangle for the BL T.

If the source bitmap is a Display Manager frame, the only allowed raster op codes are 0, 5,
A, and F. These are the raster operations in which the source plays no role.

If a rectangle is transferred by a BL T to a Display Manager frame and the frame is
refreshed for any reason, the BLT is re-executed. Therefore, if the information in the source
bitmap has changed, the appearance of the frame changes accordingly.

GPR Routine8 2-88

c

o

o

o

o

o

GPR _ $~OL YLlNE

GPR $POL YLINE

Draws a series of connected lines: drawing begins at the current position, draws to the first
given coordinate position, then sets the current position to the first given position. This is
repeated for all given positions.

FORMAT

GPR_$POLYLlNE (x, y, npositions, status)

INPUT PARAMETERS

x

y

List of the x-coordinates of all the successive positions.
GPR_$COORDINATE_ARRAY _ T, a ten-element array of 2-byte integers, is an
example of such an array. The actual array can have up to 32767 elements. The values
must be within· the bitmap limits, unless clipping is enabled.

List of the y-coordinates of all the successive positions.
GPR_$COORDINATE_ARRAY _ T, a ten-element array of 2-byte integers, is an
example of such an array. The actual array can have up to 32767 elements. The values
must be within the bitmap limits, unless clipping is enabled.

npositions
Number of coordinate positions. This is a 2-byte integer in the range 1 - 32767.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

The given coordinates are added to the corresponding elements of the coordinate <?rigin for
the current bitmap. The resultant coordinate position is the destination of the polyline
drawn.

When you have clipping enabled, yqu can specify coordinates outside the bitmap limits.
Wit~ clipping disabled, specifying coordinates outside the bitmap limits results in an error.

GPR Routines

GPR $RASTER_OP PRIM_SET

GPR $RASTER OP PRIM . SET

Specifies the primitive(s) which will be affected by the next GPR_$SET _RASTER_ OP
call, or the primitive(s) for which GPR_$INQ_RASTER_ OP will return the current
raster-op.

FORMAT

INPUT PARAMETERS

prim_set
The set of primiti~es (lines, fills, and bit-block transfers) in
GPR _ $ROP _ PRIM _ SET _ ELEMS _ T format for which raster-ops can be set or
inquired with GPR_ $SET _RASTER_ OP or GPR_ $INQ_RASTER_ OP, respectively.
See the GPR Data Types section for more information.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more informatIon.

USAGE

Use GPR_$RASTER_OP _PRIM_SET to specify which primitives will be affected when
a raster operation is set with GPR_$SET _RASTER_ OP. For example, if prim_set
contains the values GPR_$ROP _LINE and GPR_$ROP _FILL, only line and fill raster
operations will be affected with the next call to GPR_$SET_RASTER_OP.

Use GPR _ $RASTER _ OP _ PRIM _ SET to specify the primitives for which
GPR_$INQ_RASTER_ OP will return the raster-op. If the members of the set have
different raster-ops or if the set is empty, an error message is returned.

Raster-ops for lines, fills, and bIts can be different at the same time by making successive
calls to GPR $RASTER OP PRIM SET and GPR $SET RASTER OP.

The default prim_set contains GPR_$ROP _LINE and GPR_$ROP _BLT.

GPR _ $ROP _LINE affects the following routines: GPR _ $LINE, GPR _ $POL YLINE,
GPR_$MULTILINE, GPR_$DRAW _BOX, GPR_$CIRCLE, and GPR_$ARC_3P.

GPR _ $ROP _FILL affects the following routines: GPR _ $ TRIANGLE,
GPR _ $MUL TITRIANGLE, GPR _ $TRAPEZOID, GPR _ $CLOSE _ FILL _ PGON,
GPR_$CIRCLE_FILLED, and GPR_$RECTANGLE.

GPR _ $ROP _ BL T affects the following routines: GPR _ $BIT _ BL T,
GPR_$PIXEL_BLT, and GPR_$ADDITIVE_BLT.

GPR Routines 2-90

c

o

o

o

o

o

GPR $READ PIXELS

GPR $READ PIXELS

Reads the pixel values from a window of the current bitmap and stores the values in a pixel
array.

FORMAT

INPUT PARAMETERS

source _ window
Rectangular section of the current bitmap from which to read pixel values (color/intensity),
in GPR $WINDOW T format. This data type is 8 bytes long. See the GPR Data Types
section for more information.

OUTPUT PARAMETERS

pixel_ array
An array of the pixel values (color/intensity) in GPR_$PIXEL_ARRAY _ T format. This
is a 131,073-element array of 4-byte integers.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

The pixel values from the source window of the current bitmap are stored in the pixel array
in row-major order, one in each 4-byte integer.

To write pixel values from an array to the current bitmap, use GPR_$WRITE_PIXELS.

A program cannot use this routine on a bitmap corresponding to a Display Manager frame.

A program cannot read pixels values in imaging formats.

If you read more pixels than there are in pixel_array, unpredictable results may occur.

2-91 GPR Routines

GPR $RECTANGLE

GPR $RECTANGLE

Draws and fills a rectangle.

FORMAT

GPR_$RECTANGLE (rectangle. status)

INPUT PARAMETERS

rectangle
The rectangle in the current bitmap to be filled in. Rectangle is in GPR _ $WINDOW _ T
format. This data type is 8 bytes long. See the GPR Data Type section for more
information.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR _ $RECTANGLE fills in a rectangle with the color/intensity value specified with
GPR $SET FILL_VALVE. To retrieve the current fill value, use
GPR_$INQ_FILL_ VALVE.

To draw an unfilled rectangle use GPR _ $DRA W _ BOX or GPR _ $POL YLINE.

GPR Routines 2-Q2

o

C)

o

o

GPR $RELEASE DISPLAY

GPR $RELEASE DISPLAY

Decrements a counter associated with the number of times a display has been acquired.

FORMAT

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR $RELEASE DISPLAY decrements a counter whose value reflects the number of
times the display has been acquired. If the counter value reaches zero, the routine releases
the display, allowing other processes, including the Display Manager, to use the display.

Programs that call GPR _ $EVENT _ WAIT may not need to call
GPR_$RELEASE_DISPLAY, since GPR_$EVENT_ WAIT releases the display
implicitly whenever the process waits for input.

2-93 GPR Routines

GPR $REMAP COLOR_MEMORY'

Defines the plane in color display memory for which a pointer will be returned when using
GPR_$INQ_BITMAP _POINTER. This allows a single plane of color display memory to
be accessed directly.

FORMAT

INPUT PARAMETERS

plane
The plane in color display memory in GPR_$PLANE_ T. This is a 2-byte integer. A
pointer can be'returned to the plane using GPR_$INQ_BITMAP _POINTER. Valid
values are 0 - 7.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR

" Data Types section for more information.

USAGE

When accessing color display memory directly (i.e. by dereferencing the pointer returned by
GPR_$INQ_BITMAP _POINTER), the program can access only one plane at a time.
This is unlike access to multi-plane memory bitmaps, in which the first scan line of a plane
immediately follows the last scan line of the previous plane in virtual memory, or access to
bitmaps stored in bitmap files where bytes_per _section specifies the address difference
between planes. Therefore, a program must use GPR _ $REMAP _ COLOR _ MEMORY to
establish which plane of color display memory will be accessible through the II storage _ ptr"
returned by GPR_$INQ_BITMAP _POINTER.

CPR Routines 2-94

c

o

C)

o

o

GPR $REMAP COLOR_:MEMORY 1

Defines the plane in hidden color display memory for which a pointer is returned when
GPR_INQ_BITMAP _POINTER is used. This allows direct access to a single plane of
color display memory.

FORMAT

INPUT PARAMETERS

plane
The plane in hidden color display memory in GPR_$PLANE_ T. This is a 2-byte integer.
A pointer can be returned to the plane using GPR_$INQ_BITMAP _POINTER. Valid
values are 0 -7.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR_$REMAP _COLOR_:MEMORY _1 allows access to the normally hidden frame 1 of
color display memory. GPR_ $REMAP _ COLOR_:MEMORYallows access to frame O.

GPR $REMAP COLOR :MEMORY 1 returns an error on the following machine
models: DN570/570A/580 ~d DN3000.-

2-95 GPR Routines

GPR $REPLICATE_FONT

GPR $REPLICATE FONT

Creates and loads a modifiable copy of a font.

FORMAT

INPUT PARAMETERS

font id
Identifier of the original text font. This is a 2-byte integer.

OUTPUT PARAMETERS

repl_font_id
Identifier of the copied text font. This is a 2-byte integer.

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

To use routines which change fonts, you must first call GPR_$REPLICATE_FONT to
create a modifiable copy of a font. The font-modifying routines include
GPR _ $SET _ CHARACTER_ WIDTH, GPR _ $SET _HORIZONTAL _ SPACING, and
GPR _ $SET _ SPACE _ SIZE. These calls change only the local copy of the font. If you
unload a font and reload it, the font is reset to the values in the font file.

GPR Routine8 2-96

c

('
"-_/

o

o

C)

o

o

GPR $SELECT COLOR FRAME

GPR $SELEOT OOLOR FRAME

Selects whether frame 0 or frame 1 of color display memory is visible.

FORMAT

INPUT PARAMETERS

frame
This is a 2-byte integer. Denotes which frame is to be visible. Possible values are zero or
one. Normally, frame 0 is visible.

OUTPUT PARAMETERS

status
Oompletion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR $SELEOT COLOR FRAME returns an error if any value other than 0 is entered
on th;-following ~dels: DN570/570Aj580 and DN3000.

2-97 GPR Routines

GPR_ $SET _ACQ_ TIME _ OUT

GPR_$SET_ACQ_ TIME~OUT

Establishes the length of time the display will be acquired.

FORMAT

INPUT PARAMETERS

timeout
The maximum real time, in TIME _ $CLOCK_ T format, for which the program can
acquire the display.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

If the program has not released the display when the time-out expires and another process
(for example, the Display Manager) needs the display, an acquire time-out fault
(SNID _ $ACQUffiE _ TIMEOUT) is generated in the user process. The acquire time-out
fault is a warning fault that the program can intercept with a cleanup handler or static
fault handler. If the program does not release the display within a few seconds of the'
acquire timeout fault, a second fault occurs (with the status code FAULT _ $ QUIT) and the
program loses control of the display.

If this routine is not called, the default time-out value is one minute.

GPR Routines 2-98

o

o

o

o

o

GPR $ SET _ATTRffiUTE _BLOCK

GPR $SET _ATTRIBUTE BLOCK

Associates an attribute block with the current bitmap.

FORMAT

INPUT PARAMETERS

attrib _ block _ desc
Descriptor of the attribute block, in GPR_$ATTRIBUTE_DESC _ T format. This is a
4-byte integer.

OUTPUT PARAMETERS

status
Completion status, in ~TATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

To allocate and deallocate attribute blocks, use
GPR $ALLOCATE_ATTRIBUTE BLOCK and
GPR $DEALLOCATE_ATTRIBUTE BLOCK.

To request the descriptor of the current bitmap's attribute block, use
GPR $ATTRIBUTE BLOCK.

This routine may release and reacquire the display if the events enabled in the current and
new attribute blocks are different.

2-99 GPR Routines

GPR $SET AUTO _REFRESH

GPR $SET _AUTO _REFRESH

Directs the Display Manager to refresh the window automatically.

FORMAT

INPUT PARAMETERS

auto _ reti-esh
A Boolean value that indicates whether or not the Display Manager will automatically
refresh the application's window. A value of true means that auto-refresh is enabled; a
value of false (the default) means that auto-refresh is disabled.

OUTPUT PARAMETERS

status
Completion status, in STATUS_$T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

Automatic refresh of windows can affect system performance and reduce the amount of disk
space available, especially if the application's windows are large.

As an alternative, the application program can also provide procedures that refresh the
screen and hidden display. See the routine GPR_$SET_REFRESH_ENTRY.

GPR _ $AUTO _REFRESH implicitly releases and reacquires the display in order to
communicate with the Display Manager.

This routine applies to the current bitmap. When a program changes attribute blocks for a
bitmap during a graphics session, the auto refresh flag is lost unless you set it for the new
attribute block.

GPR Routine8 2-100

c

o

o

o

o

------.---

GPR $SET BITMAP

Establishes a bitmap as the current bitmap for subsequent operations.

FORMAT

INPUT PARAMETERS

bitmap _ dese
A unique bitmap descriptor, in GPR_$BITMAP _DESC _ T format. This is a 4-byte
integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS_$T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

The program can obtain the bitmap descriptor by using GPR _ $INQ _ BITMAP.

After a bitmap is established using GPR_$SET _BITMAP or GPR_$INIT, it is called the
II current bitmap. II

2-101 G PR Routine8

GPR _ $ SET _BITMAP _DIMENSIONS

GPR $SET BITMAP _DIMENSIONS

Modifies the size and the number of planes of a bitmap.

FORMAT

INPUT PARAMETERS

bitmap _ dese

size

The descriptor of the bitmap, in GPR _ $BITMAP _DESC _ T format. This is a 4-byte
integer.

New width and height of the bitmap, in GPR _ $OFFSET _ T format. This data type is 4
bytes long. See the GPR Data Types section for more information.

hi_plane_id
The hew identifier of the bitmap's highest plane, in GPR_$PLANE_ T format. This is a
2-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

A program can use this call to change the size of a bitmap after the bitmap has been
created. This is useful if the progr~m wishes to restrict itself to an upper-left subset of the
original bitmap or to use hidden memory on a borrowed display.

In direct mode when you allocate a bitmap, you request a size. You may get a smaller size
if the Display Manager window is smaller than the size you requested. These restrictions
apply to resizing bitmaps. Any bitmap can be shrunk" from its original dimensions in x, y
or the highest plane. Once the bitmap has been shrunk, it can grow up to its requested size.
The 'maximum allowed sizes for x, y and the highest plane for the various DOMAIN
displays are given in the following table.

GPR Routines 2-102

(~'\.
' ,.'

0

C)

o

o

o

GPR_$SET BITMAP DIMENSIONS

max X max Y max high plane

Monochromatic display 1024 1024 0
(either portrait or landscape)

Color display--Interactive format
4-bit pixeis 1024 2048 3
8-bit pixels 1024 2048 7

If a program uses hidden display memory, it must be careful not to modify areas that are
being used to store fill constants or text fonts. The following areas may be used by these
functions on the various DOMAIN displays.

Fill constants:

Both monochromatic displays: 800 <= X <= 1023 and Y = 1023.

Color displays: none.

Stand-alone font:

Monochromatic portrait display:

Monochromatic landscape display:

Color displays:

800 <= X <= 1023 and 0 <= Y <= 39.

800 <= X <= 1023 and 983 <= Y <= 1022.

same as monochromatic portrait display, plane 0
only, Y offset by 1024.

User text fonts: (only if text fonts are loaded)

Monochromatic portrait display:

Monochromatic landscape display:

Color displays:

800 <= X <= 1023 and 40 <= Y <= 1022,
allocated from top to bottom.

o <= X <= 1023 and 800 <= Y <= 1023, in
columns 224 bits wide, allocated top to bottom
and left to right.

same as monochromatic portrait display, plane 0
only, Y offset by 1024.

Note that these areas may move, grow or shrink in future DOMAIN software releases.
Therefore, only limited use should be made of hidden display memory in conjunction with
text or cursor operations.

2-103 GPR Routines

GPR $SET _BITMAP FILE COLOR_MAP

Establishes new values for the external-bitmap color map.

FORMAT

INPUT PARAMETERS

bitmap

start

The bitmap descriptor for the bitmap file in GPR _ $BITMAP _ DESC _ T format. This is a
4-byte integer.

The index of the first entry to be modified. This is a 2-byte integer.

entries

color

The number of consecutive entries to be modified. This is a 2-byte integer.

The color values in UNN GPR _ $COLOR _ VECTOR _ T format. This is an array of long
integers (4-byte integers).

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

Each external bitmap is allocated its own color map. The external bitmap's color map is
copied into the system color map whenever the external bitmap becomes the current
bitmap.

You can inquire or change the values of the external bitmap's color map without making
the external bitmap current.

For the monochromatic display, the default start-index is O. The value of entries is 2, and
the color values are GPR _ $BLACK and GPR $WHITE. Dark has the value
GPR _ $BLACK, and bright has the value GPR _ $wmTE. A program can use this
routine to redefine the pixel values corresponding to bright and dark intensity.

For the monochromatic display, if the program provides fewer than two values, or if the
first two values are the same (both black or both white), the routine returns an error.

Use GPR_$INQ_BITMAP _FILE_ COLOR_MAP to return the values of an extei'nal­
bitmap's color map.

GPR Routine8 2-104

~\
\, /
'-- -'

o

o

o

o

GPR $SET CHARACTER WIDTH

GPR $SET CHARACTER_WIDTH

Specifies the width of the specified character in the specified font.

FORMAT

INPUT PARAMETERS

font id
Identifier of the text font. This is a 2-byte integer.

character
The specified character. This is a character variable.

width
The width parameter of the specified character. This is a 2-byte integer. Possible values
are -127 to 127.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

To retrieve a character's width, use GPR _ $INQ _ CHARACTER _ WIDTH.

The initial character widths are defined in the font file .

. To use routines which change fonts, you must first call GPR_$REPLICATE_FONT to
create a modifiable copy of a font. The font-modifying routines include
GPR _ $SET _ CHARACTER_ WIDTH, GPR _ $SET _HORIZONTAL _ SPACING, and
GPR _ $SET _ SPACE _ SIZE. These calls change only the local copy of the font. If you
unload a font and reload it, the font is reset to the values in the font file.·

2-105 GPR Routines

GPR _ $SET CLIP WINDOW

GPR $SET CLIP WINDOW

Changes the clipping window for the current bitmap.

FORMAT

INPUT PARAMETERS

window
The new clipping window, in GPR _ $WINDOW _ T format. This data type is 8 bytes
long. See GPR Data Types section for more information.

Figure GPR-4 Clipping Window Origin, Width, Height

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

GPR Routine8 2-106

(~,

\ /

o

o

o

o

GPR $SET CLIP WINDOW

USAGE

The default clip window is the entire bitmap.

In direct mode, the clip window and coordinate origin are relative to the the upper left-hand
corner of the window.

A clip window.cannot be made larger than the dimensions specified for a bitmap. For
applications that run in windows that are dynamically enlarged, specify the size parameter
of GPR_ $INIT to be the size of the display. In this way, the clip rectangle will
automatically be enlarged with the window whenever the window is enlarged.

Pixels outside the clip window in the current bitmap are not modified by subsequent
operations.

To enable the clip window, use GPR_ $SET _ CLIPPING _ACTIVE.

To request the dimensions of the current clip window, use GPR_ $INQ_ CONSTRAINTS.

This call is not allowed on the bitmap corresponding to the Display Manager frame.

2-107 GPR Routines

GPR _ $SET _ CLIPPING _ACTNE

GPR $SET CLIPPING_ACTIVE

Enables/ disables a clipping window for the current bitmap.

FORMAT

INPUT PARAMETERS

active
A Boolean (logical) value which specifies whethe~ or not to enable the clipping window. Set
this value to true to enable the clipping window; set it to false to disable the clipping
window.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

To specify a clipping window, use the routine GPR_$SET _ CLIP _WINDOW.

Initially, in borrow-display, the clip window is disabled. In direct mode, the clip window is
enabled and clipped to the size of the window. Clipping cannot be enabled in a bitmap
corresponding to a Display Manager frame.

To inquire whether the clip window is enabled, use GPR_ $INQ_ CONSTRAINTS.

GPR Routine8 2-108

C~\

o

o

o

o

o

GPR _$SET COLOR MAP

GPR $SET COLOR_MAP

Establishes new values for the color map.

FORMAT

INPUT PARAMETERS

start _ index
Index of first color value entry, in GPR_$PIXEL_ VALUE_ T format. This is a 4-byte
integer.

n entries
Number of entries. This is a 2-byte integer. Valid values are:

2 For monochromatic displays

1- 16 For color displays in 4-bit pixel format

1 - 256 For color displays in 8-bit or 24-bit pixel format

values
Color value entries, in GPR _ $COLOR _ VECTOR _ T format. This is a 256-element
array of 4-byte integers.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

For the monochromatic display, the default start-index is 0, n-entries is 2, and the values
are GPR _ $BLACK and GPR _ $WHITE. Dark has the value GPR _ $BLACK, and bright
has the value GPR _ $WHITE. A program can use this routine to redefine the pixel values
corresponding to bright and dark intensity.

For the monochromatic display, if the program provides fewer than two values, or if the
first two values are the same (both black or both white), the routine returns an error.

On monochromatic devices, use GPR_$INQ_DISP _ CHARACTERISTICS to determine
whether the color map is simulated or in hardware. See the datatype gpr _ $disp _ char _ t
in Chapter 1 of this manual for more information.

On a monochrome system that uses a simulated color map pixels which are white have a
pixel value of 1 and pixels that are black have a pixel value of 0, regardless of any calls to
GPR _ $SET _ COLOR _ MAP. In other words, the pixel value specifies the color of the
pixel: the pixel value is not used as an index into the color map. On systems that have the

2-109 GPR Routines

GPR $SET COLOR MAP

color map in hardware, the pixel value is used as an index into the color map. The color of
the pixel is determined by the color value in the color map.

In direct mode, you must acquire the display before establishing new values for the color
map.

To retrieve the current color map, use GPR_$INQ_ OOLOR_MAP.

GPR Routines 2-110

C~

o

o

o

GPR $SET COORDINATE ORIGIN

GPR $SET COORDINATE ORIGIN

Establishes x- and y-offsets to add to all x- and y-coordinates used for move, draw, text,
fill, and BL T operations on the current bitmap.

FORMAT

GPR_$SET_COORDINATE_ORIGIN (origin. status)

INPUT PARAMETERS

origin
The new coordinate origin for the bitmap, in GPR _ $POSITION _ T format. This data
type is 4 bytes long. See the GPR Data Types section for more information.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type.is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

. To retrieve the current coordinate origin, use GPR _ $INQ _ COORDINATE _ ORIGIN.

The default coordinate origin is (0,0).

In direct mode, the clip window and coordinate origin are relative to the the upper left-hand
corner of the window.

This routine may not be used on a. bitmap corresponding to a Display Manager frame.

2-111 GPR Routines

GPR $SET CURSOR ACTIVE

GPR $SET CURSOR_ACTIVE

Specifies whether the cursor is displayed.

FORMAT

INPUT PARAMETERS

active
Boolean (logical) value that specifies whether to display the cursor. Set the parameter to
true to display the cursor; set it to false if you do not want to display the cursor.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

Initially, the cursor is not displayed.

To inquire whether the cursor is currently displayed, use GPR _ $INQ _ CURSOR.

A program may call this routine only while operating in borrow-display or direct mode.

GPR Routine8 2-112

C~

C"

o

o

o

o

GPR $SET CURSOR ORIGIN

GPR $SET CURSOR ORIGIN

Defines one of the cursor's pixels as the cursor origin.

FORMAT

INPUT PARAMETERS

origin
The position of one cursor pixel (the origin) relative to the entire cursor, in
GPR $POSITION T format. This data type is 4 bytes long. See the GPR Data Types
section for more information.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

A program uses GPR _ $SET_ CURSOR _ ORIGIN to designate one pixel in the cursor
pattern as the cursor origin. Thereafter, when the cursor is moved, the pixel designated as
the cursor origin moves to the screen coordinate designated as the cursor position.

The default cursor origin depends on the default cursor size, which depends on the size of
the Display Manager's standard font.

To inquire about the current cursor origin, pattern, position and whether the cursor is
enabled, use GPR_$INQ_ CURSOR.

2-113 GPR Routines

GPR _ $ SET CURSOR _PATTERN

GPR $SET CURSOR PATTERN

·Loads a cursor pattern.

FORMAT

INPUT PARAMETERS

cursor _ pattern .
The descriptor of the bitmap which contains the cursor pattern, in
GPR $BITMAP DESC T format. This is a 4-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

Initially, the cursor pattern is a rectangle, which varies in size according to the size of the
Display Manager',s standard font. A program can use
GPR_$SET _ CURSOR_PATTERN to redefine the cursor pattern. The bitmap that
represents the cursor pattern consists of one plane, which is a maximum of 16x16 pixels in
SIze.

To inquire about the current cursor pattern, use GPR_$INQ_ CURSOR.

GPR Routines 2-114

o

0

o

GPR $SET CURSOR_POSITION

GPR $SET CURSOR POSITION

Establishes a position on the screen for display of the cursor.

FORMAT

INPUT PARAMETERS

position
Screen coordinate position for display of the cursor, in GPR_$POSITION_ T format.
This data type is 4 bytes long. See the GPR Data Types section for more information.

The first element is the cursor position's x-coordinate; the second element is the y­
coordinate. Coordinate values must be within the limits of the display in use, as follows:

x y

Borrowed Display:

Monochromatic Portrait: o - 799 o - 1023

Monochromatic Landscape: o - 1023 0 - 799

Color: o - 1023 o - 1023

Color 550 o - 1023 0 - 799

Display Manager Frame: o - 32767 0 - 32767

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

Cursor position: If a program calls this routine when in borrow-display mode, the x- and
y-coordinates represent an absolute position on the screen. If a program calls this routine
when the cursor is inside a frame of a Display Manager pad, the x- and y-coordinates are
offsets from the top left corner of the frame.

2-115 GPR Routines

GPR $SET CURSOR POSITION

If the coordinate position would cause any part of the cursor to be outside the screen or
frame, the cursor moves only as far as the edge of the screen. The cursor is neither clipped
nor made to disappear.

To request the current cursor position, use GPR _ $INQ _ CURSOR.

In a Display Manager frame, this routine moves the cursor only if the cursor is in the
window viewing this frame when the call is issued. If not, a "next window" command
which moves to that window will move the cursor to its new position.

GPR Routine8 2-116

-------------- .-._._ .. __ .. _ .. ------.. _ .. -

c

o

o

o

o

GPR_$SET DRAW_VALUE

Specifies the color jintensity value to use to draw lines.

FORMAT

INPUT PARAMETERS

index
The color map index that indicates the current color jintensity value used for drawing lines,
in GPR_$PIXEL_ VALVE_T format. This is a 4-byte integer. Valid values are:

0-1

0-15

0-255

-2

For monochromatic displays

For color displays in 4-bit pixel format

For color displays in 8-bit or 24-bit pixel format

For all displays. This specifies using the color jintensity value of the
bitmap background as the line drawing value. For borrowed displays and
memory bitmaps, the fill background is always zero. For Display
Manager frames, this is the pixel value in use for the window background.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

To retrieve the current draw value, use GPR_$INQ_DRAW _VALVE.

The default draw value is 1.

For monochromatic displays, only the low-order bit of the draw value is considered, because
monochromatic displays have only one plane.

For color displays in 4-bit pixel format, only the four lowest-order bits of the draw value
are considered, because these displays have four planes.

2-117 GPR Routines

GPR $SET_FILL_BACKGROUND_ VALUE

GPR $SET FILL BACKGROUND _ VALUE

Specifies the color/intensity value used for drawing the background of tile fills.

FORMAT

INPUT PARAMETERS

index
The color map index that indicates the current color/intensity value used for tile fills, in
GPR _ $PIXEL _ VALUE _ T format. This is a 4-byte integer. Valid values are:

0-1

0-15

0-255

-1

-2

For monochromatic displays

For color displays in 4-bit pixel format

For color displays in 8-bit or 24-bit pixel format

For all displays. This specifies that the fill background is transparent;
that is, the old values of the pixels are not changed.

For all displays. This specifies using the color/intensity value of the
bitmap background as the fill background. For borrowed displays and
memory bitmaps, the fill background is always zero. For Display
Manager frames, this is the pixel value in use for the window background.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

To retrieve the current background value, use
GPR_$INQ_FILL_BACKGROUND_ VALUE.

The default fill background value is -2.

This routine defines the background fill value for 1-bit patterns. In all other fill patterns,
the values set with this routine are ignored.

GPR Routines 2-118

c

o

o

o

o

o

GPR $SET FILL PATTERN

GPR $SET FILL PATTERN

Specifies the fill pattern used for the current bitmap.

FORMAT

INPUT PARAMETERS

pattern

scale

The descriptor of the bitmap containing the fill pattern, in GPR _ $BITMAP _DESO _ T
format. This is a 4-byte integer. See restriction below.

The number of times each bit in this pattern is to be replicated before proceeding to the
next bit in the pattern. This is a 2-byte integer. See restriction below.

OUTPUT PARAMETERS

status
Oompletion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

Currently, the tile pattern must be stored in a bitmap that is 32x32 pixels by n planes. The
scale factor must be one. Any other pattern size or scale value results in an error.

To retrieve the current fill pattern for the current bitmap, use
GPR_$INQ_FILL_PATTERN.

With a one-plane bitmap as the pattern, the pixel values used are those set by
GPR $SET FILL VALUE and GPR $SET FILL BAOKGROUND_ VALUE.
Pixels corresponding to 11111 bits of the pattern are drawn in the fill value: pixels
corresponding to 110 11 bits of the pattern are drawn in the fill background value.

With a multiplane bitmap as the pattern, the pixel values used are those contained in the
pattern bitmap.

To re-establish solid fills, set the fill pattern descriptor to GPR _ $NIL _ BITMAP _ DESO.

2-119 GPR Routines

GPR $SET FILL VALUE

GPR $SET FILL_VALUE

Specifies the color/intensity value to use to fill circles, rectangles, triangles, and trapezoids.

FORMAT

INPUT PARAMETERS

index
The color map index that indicates the current fill color/intensity value, in
GPR $PIXEL _ VALUE T format. This is a 4-byte integer. The default fill value is 1.
Valid values are:

0- 1 for monochromatic displays 0 - 15 for color displays in 4-bit pixel format 0 - 255 for
color displays in 8-bit or 24-bit pixel format

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

To retrieve the current fill value, use GPR_$INQ_FILL_ VALUE.

For monochromatic displays, only· the low~order bit of the fill value is considered, because
monochromatic displays have only one plane.

For color displays in 4-bit pixel format, only the four lowest-order bits of the fill value are
considered, because these displays have four planes.

"Index" is a color map index, not a color value.

GPR Routine8 2-120

C~

(~' ,.
---. "

C~

C)

o

GPR $SET_HORIZONTAL SPACING

GPR $SET HORIZONTAL SPACING

Specifies the parameter for horizontal spacing of the specified font.

FORMAT

INPUT PARAMETERS

font id
The identifier of the text font. This is a 2-byte integer.

horizontal_ spacing
The horizontal spacing parameter of the specified font. This is a 2-byte integer. Possible
values are -127 - 127.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

Use GPR_$INQ_HORIZONTAL_SPACING to retrieve a font's horizontal spacing.

The initial horizontal spacing is defined in the font file.

To use routines which change fonts, you must first call GPR_$REPLICATE_FONT to
create a modifiable copy of a font. The font-modifying routines include
GPR _ $SET _ CHARACTER _ WIDTH, GPR _ $SET _ HORIZONTAL _ SPACING, and
GPR _ $SET _ SPACE _ SIZE. These calls change only the local copy of the font. If you
unloaq a font and reload it, the font is reset to the values in the font file.

Horizontal spacing is the space between each character in a string.

2-121 GPR Routines

GPR $SET IMAGING_FORMAT

GPR $SET IMAGING FORMAT

Sets the imaging format of the color display.

FORMAT

INPUT PARAMETERS

format
Color format in GPR $IMAGING FORMAT T. This is a two-byte integer. Valid
values are:

GPR $INTERACTIVE
Either two- or three-board

GPR $IMAGING l024xl024x8
Two-board only

GPR $IMAGING 512x512x24
Three-board only

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

To retrieve the current imaging format, use GPR_$INQ_IMAGING_FORMAT.

To use GPR_$SET_IMAGING_FORMAT, you must be in borrow display mode and be
using a color node.

Imaging formats support only limited GPR operations 0- displaying pixel data and changing
the color map. Other functions return error messages.

l024xl024x8 imaging format is not supported on a three-board system because it offers no
advantages over interactive formats.

GPR_$SET _IMAGING_FORMAT accepts only GPR_$INTERACTIVE on the
following models: DN570/570A/580 and DN3000.

GPR Routines 2-122

to
'---,

o

o

C)

o

o

GPR $SET INPUT SID

GPR $SET INPUT SID

Specifies the input pad from which graphics input is to be taken.

FORMAT

INPUT PARAMETERS

stream_id
The stream-id that GPR software will use for input in frame mode, in STREAM_ $ID _ T
format. The stream must be a Display Manager input pad.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

Programs use this call only when they call input routines in frame mode
(GPR_$EVENT_ WAIT and GPR_$COND_EVENT_ WAIT).

If this routine is not called, the default stream ID is STREAM_ $STDIN (a stream id of
zero).

To work properly, the input pad must be the pad associated with the transcript pad passed
to GPR_$INIT. STREAM_$STDIN is associated with STREAM_$STDOUT in this way
in a normal Shell process window. Other process input pads derive their association from
the PAD $CREATE call that created them.

2-123 GPR Routines

GPR _ $SET _LINE _ PATTERN

GPR $SET LINE PATTERN

Specifies the pattern to use in drawing lines.

FORMAT

INPUT PARAMETERS

repeat _ count
The replication factor for each bit in the pattern. This is a 2-byte integer. Specifying a
value of 0 results in a solid line.

pattern
The bit pattern, left justified, in GPR_$LlNE_PATTERN_T format. This is a four­
element array of 2-byte integers.

length
The length of the pattern in bits. This is a 2-byte integer in the range of 0 to 64.
Specifying a value of 0 results in a solid line.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR_$LlNE, GPR_$POLYLINE, GPR_$MULTILINE use the pattern/style most
recently defined by either GPR_$SET_LINE_PATTERN or
GPR _ $SET _ LINESTYLE. The actual bits in the integers define the line pattern. You
should set the first bit in the pattern; otherwise, the vectors you draw will not show the
beginning of the line correctly.

Specifying the value of 0 for either repeat or length results in a solid line.

You may also set a line pattern with GPR _ $SET _ LINESTYLE. The pattern is defined by
the parameter GPR_$DOTTED.

Within each element of the bit pattern, the bits are used in order of decreasing significance.
This starts with the most significant bit of entry 1 down to the least significant of entry 4.

Use GPR_$INQ_LINE_PATTERN to retrieve the current line pattern. This routine
returns the pattern set explicitly with GPR_$SET_LINE_PATTERN or set implicitly
with GPR $SET_LINESTYLE.

GPR Routine8 2-124

------•.. _ ... __ ... ----------~~-

c

---_._----------------

o

C)

o

GPR $SET LINESTYLE

GPR $SET LINESTYLE

Sets the line-style attribute of the current bitmap.

FORMAT

GPR_$SET_LlNESTYLE (style. scale. status)

INPUT PARAMETERS

style

seale

The style of line, in GPR _ $LINESTYLE _ T format. This is a 2-byte integer. Specify only
one of the following values:

GPR $SOLID For solid lines,

GPR $DOTTED
For dotted lines

The scale factor for dashes if the style parameter is GPR_ $DOTTED. This is a 2-byte
integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

When the line-style attribute is GPR_$DOTTED, lines are drawn in dashes. The scale
factor determines the number of pixels in each dash and in each space between the dashes.

For greater flexibility in setting line styles, use GPR _ $SET _ LINE _ PATTERN.

Use GPR _ $INQ _ LINESTYLE to retrieve the current line-style attribute.

2-125 GPR Routines

GPR $SET OBSCURED OPT

GPR $SET OBSCURED OPT·

Establishes the action to be taken when a window to be acquired is obscured.

FORMAT

INPUT PARAMETERS

if_obscured
If the window to be acquired by GPR_$ACQUffiE_DISPLAY is obscured, this argument
specifies, in GPR _ $OBSCURED _ OPT _ T format, the action to be taken. This is a 2-
byte integer. Specify only one of the following values:

GPR $POP IF OBS
Pop the window.

GPR $ERR IF OBS
Return an error and do not acquire the display.

GPR $BLOCK IF OBS
Block display acquisition until the window is popped.

GPR $OK IF OBS
Acquire the display even though the window is obscured.

GPR $INPUT OK IF OBS
Blocks display acquisitions, but allows input into the window even if the
window is obscured.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

If this routine is not called, the action to be taken defaults to GPR_ $ERR_IF _ OBS.

These options apply whenever the display is acquired, either by
GPR_$ACQUffiE_DISPLAYor implicitly by GPR_$EVENT_ WAIT.

If the program specifies the option GPR_$ERR_IF _ OBS, it must check the status code
returned from GPR_$ACQUffiE_DISPLAY or GPR_$EVENT _ WAIT before calling
any drawing routines.

Use GPR _ $INQ _ VIS _ LIST to retrieve a list of visible sections of an obscured window.

When a program specifies GPR_ OK_ $IF _ OBS, the output is performed even when the

GPR Routines 2-126

o

o

o

o

GPR _ $SET _ OBSCURED OPT

window is obscured. To avoid overwriting other Display Manager windows, the program
must inquire the visible areas by calling GPR_$INQ_ VIS_LIST and set clipping windows
accordingly.

When a program specifies GPR_INPUT _ OK_$IF _ OBS, the input is performed even
when the window is obscured.

The cursor state (cursor pattern and whether the cursor is active) is in effect at all times,
even when the display is not acquired. Two exceptions are: when the window is an icon,
when the window is in hold mode, and when the window is obscured and
GPR_$SET_OBSCURED_OPT does not specify GPR_$INPUT_OK_IF _OBS.

Setting if_obscured to GPR_$BLOCK_IF _OBS or GPR_$OK_IF _OBS has an effect
on the refresh pocedure specified by GPR_ $SET _REFRESH_ENTRY.

Setting if_obscured to GPR _ $BLOCK _ IF _ OBS causes only the hidden display memory
refresh routine to be called.

Setting if_obscured to GPR_$OK_IF _ OBS causes both the hidden display memory and
display memory refresh routines to be called.

2-127 GPR Routines

GPR $SET PLANE_MASK

GPR $SET PLANE_MASK

Establishes a plane mask for subsequent write operations.

FORMAT

INPUT PARAMETERS

mask
The plane mask, which specifies which planes to use, in GPR _ $MASK_ T format. This is
a two-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

The default mask specifies that all planes are used.

Operations occur only on the planes specified in the mask. A program can use this routine,
for example, to perform raster operations on separate planes or groups of planes in the
bitmap.

Using the mask, a program can partition the 8-bit pixels into subunits. For example, the
program can use planes 0 - 3 for one picture and planes 4 - 7 for another. Thus, one
bitmap may contain two color pictures. This does not, however, increase the number of
colors available for one bitmap.

To retrieve the current plane mask, use GPR_$INQ_ CONSTRAINTS.

GPR Routine8 2-128

/'----"
I, '-•.. ,,/

c

()

o

o

GPR $SET RASTER OP

Specifies a raster operation for the primitives established with
GPR . $RASTER OP PRIM: SET.

FORMAT

INPUT PARAMETERS

plane_id

GPR $SET RASTER OP

Identifier of the bitmap plane involved in the raster operation, in GPR _ $PLANE _ T
format. This is a 2-byte integer. Valid values are zero through the identifier of the
bitmap's highest plane. See GPR Data Types section for more information.

raster _op
Raster operation code, in GPR _ $RASTER _ OP _ T format. This is a 2-byte integer.
Possible values are zero through fifteen.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

Use GPR_ $INQ_RASTER_ OPS to retrieve the current raster operation for the
primitives which are specified by GPR_ $RASTER_ OP _PRIM:_SET.

The default raster operation for all primitives is 3.

The following is a list of the op codes and logical functions of the sixteen raster operations
and a truth table of the raster operations.

2-129 CPR Routines

GPR $SET RASTER OP

Op Code
o
1
2
3
4
5
6
7
8

9
10
11
12
13
14

15

Source
Bit
Value

0

0

1

1

GPR Routines

Raster Operations and Their Functions

Logical Function
Assign zero to all new destination values.
Assign source AND destination to new destination.
Assign source AND complement of destination to new destination.
Assign all source values to new destination.
Assign complement of source AND destination to new destination.
Assign all destination values to new destination.
Assign source EXCLUSIVE OR destination to new destination.
Assign source OR destination to new destination.
Assign complement of source AND complement of destination to

new destination.
Assign source EQUIVALENCE destination to new destination.
Assign complement of destination to new destination.
Assign source OR complement of destination to new destination.
Assign complement of source to new destination.
Assign complement of source OR destination to new destination.
Assign complement of source OR complement of destination to

new destination.
Assign 1 to all new destination values.

Raster Operations: Truth Table

Destination Resultant Bit Values for the following OP Codes:
Bit
Value 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

2-130

('"
~ /

u

o

o

o

o

GPR $SET REFRESH ENTRY

GPR $SET REFRESH ENTRY

Specifies the entry points of application-supplied procedures that refresh the displayed
image in a direct window and hidden display memory.

FORMAT

INPUT PARAMETERS

window _procedur~
Entry point for the application-supplied procedure that refreshes the Display Manager
window, in GPR_$RWIN_PR_ T format. This is a pointer to a procedure.

disp _ mem _ procedure
Entry point for the application-supplied procedure that refreshes the application's hidden
display memory, in GPR_$RHDM_PR_ T format. This is a pointer to a procedure.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

The Display Manager determines when the window needs to be redrawn based on the
amount of activity the user generates on the screen. When a redrawing operation is
necessary, the Display Manager calls the application-supplied procedure the next time that
the application acquires the display. Two input parameters are passed to the window
refresh procedure:

Callback of refresh routines are effected by your obscured option. See
GPR $SET OBSCURED OPT for more information .

• unobscured -- When false, this Boolean value indicates that the window is
obscured .

• position _ changed -- When true, this Boolean value indicates that the window
has moved or grown since the display was released.

The Programming With General System Calls describes the pointer data type.

See Programming With DOMAIN Graphic Primitives for an algorithm using procedure
pointers.

2-131 GPR Routines

GPR $SET SPACE_SIZE

GPR $SET SPACE SIZE

Specifies the size of horizontal spacing for the specified font.

FORMAT

INPUT PARAMETERS

font id
Identifier of the text font. This is a 2-byte integer.

space_size
Space size is the number of pixels to skip in the horizontal direction when you include a
character that is not in the font. This is a 2-byte integer. Possible values are -127 to 127.

OU.TPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

To retrieve a font's space size, use GPR _ $INQ _ SPACE _ SIZE.

The initial character widths are defined in the font file.

To use routines which change fonts, you must first call GPR_$REPLICATE_FONT to
create a modifiable copy of a font. The font-modifying routines include
GPR _ $SET _ CHARACTER _ WIDTH, GPR _ $SET _ HORIZONTAL _ SPACING, and
GPR _ $SET _ SPACE _ SIZE. These calls change only the local copy of the font. If you
unload a font and reload it, the font is reset to the values in the font file.

The space size is the number of pixels to skip in the horizontal direction when you write a
character that is not in the font. Space size is not the size of the space character. To set
the size of the space character use GPR ~ $SET _ CHAR _ WIDTH.

GPR Routine8 2-132

C~·

C"

o

o

()

o

GPR $SET TEXT_BACKGROUND _ VALUE

GPR $SET TEXT BACKGROUND_VALUE

Specifies the color/intensity value to use for text background.

FORMAT

INPUT PARAMETERS

index
The color map index that indicates the current color/intensity value used for the text
background, in GPR_$PIXEL_ VALUE_ T format. This is a 4-byte integer. This
parameter is an index into a color map; it is not a color value. Valid values are:

0-1

0-15

0-255

-1

-2

For monochromatic displays

For color displays in 4-bit pixel format

For color displays in 8-bit or 24-bit pixel format

For all displays. This specifies that the text background is transparent;
that is, the old values of the pixels are not changed.

For all displays. This specifies using the color/intensity value of the
bitmap background as the text background. For borrowed displays and
memory bitmaps, this value is always zero. For Display Manager frames,
this is the pixel value in use for the window background.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

To retrieve the current text background value, use GPR_$INQ_ VALUES.

The default text background value is -2.

For monochromatic displays, only the low-order bit of the text background value is
considered, because monochromatic displays have only one plane.

For color displays in 4-bit pixel mode, only the four lowest-order bits of the text
background value are considered, because these displays have four planes.

2-133 GPR Routines

GPR $SET TEXT_FONT

GPR $SET TEXT FONT

Establishes a new font for subsequent text operations.

FORMAT

INPUT PARAMETERS

font id
Identifier of the new text font. This is a 2-byte integer.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more inforination.

USAGE

Obtain the font-id when loading a font with GPR_$LOAD_FONT_FILE.

To request the identifier of the current font, use GPR _ $INQ _ TEXT.

There is no default text font. A program must load and set the font.

Call GPR_$SET _ TEXT _FONT for each main memory bitmap. Otherwise, an error is
returned (invalid font id).

GPR Routines 2-134

o

C)

()

o

GPR_ $SET _ TEXT _PATH

GPR $SET TEXT_PATH

Specifies the direction for writing a line of text.

FORMAT

INPUT PARAMETERS

direction
The direction used for writing text, in GPR_$DffiECTION_ T format. This is a 2-byte
integer. Specify only one of the following values:

GPR $UP

GPR $DOWN

GPR $LEFT

GPR $RIGHT

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

To retrieve the current text path, use GPR_ $INQ_ TEXT _PATH.

The initial text path is GPR _ $RIGHT.

2-135 GPR Routines

GPR $SET TEXT _ VALUE

GPR $SET TEXT_ VALUE

Specifies the color/intensity value to use for writing text.

FORMAT

INPUT PARAMETERS

index
The color map index that indicates the current color/intensity value used for writing text,
in GPR_$PIXEL_ VALUE T format. This is a 4-byte integer. The valid values are
listed below:

0-1 For monochromatic displays

0-15 For color displays in 4-bit pixel format

0-255 For color displays in 8-bit or 24-bit pixel format

OUTPUT PARAMETERS

status
Oompletion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

To retrieve the current text value, use GPR_$INQ_ VALUES.

The default text value is 1 for borrowed displays, memory bitmaps, and Display Manager
frames on monochromatic displays; 0 for Display Manager frames on color displays.

For monochromatic displays, only the low-order bit of the text value is considered, because
monochromatic displays have only one plane.

For color displays in 4-bit pixel format, only the four lowest-order bits of the text value are
considered, because these displays have four planes.

The color specification parameter is a color map index, not a color value.

GPR Routine8 2-136

o

o

o

o

o

GPR $SET TRIANGLE_FILL CRITERIA

GPR $SET TRIANGLE FILL CRITERIA

Sets the filling criteria used with polygons that are rendered directly (decomposition
technique set to render exact) or polygons that are decomposed into triangles before being
rendered.

FORMAT

INPUT PARAMETERS

fill crit
Sets the filling criteria. This is a 2-byte integer. Possible values for this parameter are:

GPR _ $P ARITY Provides a means for filling polygons decomposed into triangles using an
odd parity scheme. Regions filled in these polygons will match regions
filled in polygons decomposed into trapezoids.

GPR $NONZERO
Provides a means for filling all non-zero regions of a polygon.

GPR $SPECIFIC
Provides a means for filling specific regions of a polygon. This is done by
specifying a winding number. The only restriction is that regions with a
winding number of zero cannot be filled.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

This call allows you to choose how polygons decomposed into triangles or polygons that are
rendered without being decomposed (decomposition technique set to render exact) are filled.

Use GPR _ $PGON _DECO:MP _TECHNIQUE to choose a mode which controls the
algorithm used to decompose polygons into trapezoids or non-overlapping triangles.

2-137 GPR Routines

GPR $SET WINDOW_ID

GPR $SET _ WINDOW ID

Establishes the character that identifies the current bitmap's window.

FORMAT

INPUT PARAMETERS

character
The character that identifies the current bitmaps's window. This is a character variable.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

This character is returned by GPR _ $EVENT _ WAIT and
GPR _ $COND _ EVENT _ WAIT when they return GPR _ $ENTERED _ WINDOW
events. The character indicates which window was entered.

The character 'A' is the default value of the window identification for all windows.

You may assign the same character to more than one window. However, if you do so, you
cannot distinguish input from the two windows.

GPR Routines 2-138

c

o

o

o

c)

GPR $SPLINE CUBIC P

Draws a parametric cubic spline through the control points.

FORMAT

INPUT PARAMETERS

x

y

List of the x-coordinates of all the successive positions.
GPR_$COORDINATE_ARRAY _ T, a ten-element array of 2-byte integers, is an
example of such an array. The actual array can have up to 32767 elements. The values
must be within the bitmap limits, unless clipping is enabled.

List of the y-coordinates of all the successive positions.
GPR_$COORDINATE_ARRAY _ T, a ten-element array of 2:-byte integers, is an
example of such an array. The actual array can have up to 32767 elements. The values
must be within the bitmap limits, unless clipping is enabled.

npositions
Number of coordinate positions. This is a 2-byte integer in the range 1 - 32767.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR _ $SPLINE _ CUBIC _P draws a smooth curve starting from the current position,
through each of the specified points.

Mter the spline is drawn, the last point becomes the current position.

The specified coordinates are added to the corresponding elements of the coordinate origin
for the current bitmap. The resultant coordinate positions are the points through which the
spline is drawn.

An error is returned if any two consecutive points are equal.

When you have clipping enabled, you can specify coordinates outside the bitmap limits.
With clipping disabled, specifying coordinates outside the bitmap limits results in an error.

~-13g GPR Routines

GPR $ SPLINE_ CUBIC_X

GPR $SPLINE CUBIC_X

Draws a cubic spline as a function of x through the control points.

FORMAT

INPUT PARAMETERS

x

y

List of the x-coordinates of all the successive positions.
GPR_$COORDINATE_ARRAY _ T, a ten-element array of 2-byte integers, is an
example of such an array. The actual array can have up to 32767 elements. The values
must be within the bitmap limits, unless clipping is enabled.

List of the y-coordinates of all the successive positions.
GPR_$COORDINATE_ARRAY _ T, a ten-element array of 2-byte integers, is an
example of such an array. The actual array can have up to 32767 elements. The values
must be within the bitmap limits, unless clipping is enabled.

npositions
Number of coordinate positions. This is a 2-byte integer in the range 1 - 32767.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR _ $ SPLINE _ CUBIC _ X draws a smooth curve starting from the current position and
through each of the specified points.

Mter the spline is drawn, the last point becomes the current position.

The specified coordinates are added to the corresponding elements of the coordinate origin
for the current bitmap. The resultant coordinate positions are the points through which the
spline is drawn.

An error is returned if any x-coordinate is less than or equal to a previous x-coordinate.
The x-coordinate array must be sorted into increasing order.

When you have clipping enabled, you can specify coordinates outside the bitmap limits.
With clipping disabled, specifying coordinates outside the bitmap limits results in an error.

GPR Routines 2-140

c

----------------_._-_ __ ._.-_._-_._----- .-

o

o

o

o

GPR $SPLlNE _ CUBIC Y

GPR $SPLINE CUBIC Y

Draws a cubic spline as a function of y through the control points.

FORMAT

INPUT PARAMETERS

x

y

List of the x-coordinates of all the successive positions.
GPR_$COORDINATE_ARRAY _ T, a ten-element array of 2-byte integers, is an
example of such an array. The actual array can have up to 32767 elements. The values
must be within the bitmap limits, unless clipping is enabled.

List of the y-coordinates of all the successive positions.
GPR_$COORDINATE_ARRAY _ T, a ten-element array of 2-byte integers, is an
example of such an array. The actual array can have up to 32767 elements. The values
must be within the bitmap limits, unless clipping is enabled.

npositions
Number of coordinate positions. This is a 2-byte integer in the range 1 - 32767.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR _ $SPLINE _ CUBIC _ Y draws a smooth curve starting from the current position and
through each of the specified points.

After the spline is drawn, the last point becomes the current position.

The specified coordinates are added to the corresponding elements of the coordinate origin
for the current bitmap. The resultant coordinate positions are the points through which the
spline is drawn.

An error is returned if any y-coordinate is less than or equal to a previous y-coordinate.
The y-coordinate array must be sorted into increasing order.

When you have clipping enabled, you can specify coordinates outside the bitmap limits.
With clipping disabled, specifying coordinates outside the bitmap limits results in an error.

2-141 GPR Routines

GPR_$START_PGON

GPR $START _PGON

Defines the starting position of a polygon.

FORMAT

INPUT PARAMETERS

x

y

The x-coordinate, in GPR _ $COORDINATE _ T format. This is a 2-byte integer. Its
values must be within bitmap limits, unless clipping is enabled.

The y-coordinate, in GPR_$COORDINATE_ T format. This is a 2-byte integer. Its
values must be within bitmap limits, unless clipping is enabled.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR_$START _PGON defines the first point in a polygon boundary. This routine is
used in conjunction with GPR_$PGON_POLYLlNE to define a connected series of edges
composing one closed loop of a polygon's boundary. To see the polygon, you must fill it
using either GPR_$CLOSE_FILL_PGON or GPR_$CLOSE_RETURN_PGON and
GPR $MULTITRAPEZOID.

This routine closes any previously open loop of edges by connecting its last endpoint to its
first endpoint with an edge. Then, the routine starts the new loop.

GPR Routines 2-142

c ..

------. (,

\.~--

c-~

o

o

GPR _ $TERMINATE

GPR $TERMINATE

Terminates the graphics primitives package.

FORMAT

GPR_$TERMINATE (delete_display. status)

INPUT PARAMETERS

delete _ display
A Boolean (logical) value which specifies whether to delete the frame of the Display
Manager pad. If the program has operated in a Display Manager frame and needs to delete
the frame at the end of a graphics session, set this value to true. If the program needs to
close, but not delete the frame, set this value to false. If the prograIIl has not used a
Display Manager frame, the value is ignored.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR_$TERMINATE deletes the frame regardless of the value of the delete-display
argument in the following case. A BL T operation from a memory bitmap has been done to
a Display Manager frame since the last time GPR _ $CLEAR was called for the frame.

No GPR information is valid after calling GPR _ $TERMINATE.

2-143 GPR Routines

GPR $TEXT

GPR $TEXT

Writes text to the current bitmap, beginning at the current position.

FORMAT

GPR_$TEXT (string. string_length. status)

INPUT PARAMETERS

string
The string to write, in GPR _ $ STRING _ T format. This is an array of up to 256
characters.

string _length
Number of characters in the string. This is a 2-byte integer. The maximum value is 256.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR _ $TEXT always clips to the edge of the bitmap, regardless of whether clipping is
enabled.

GPR_$TEXT writes the characters in the current font which correspond to the ASCII
values of the characters in the specified string. If the font does not have a character which
corresponds to a character in the string, GPR _ $TEXT leaves a space. The size of the
space is set by GPR _ $SET _ SPACE _ SIZE.

Text is written at the current position. The origin of the first character of the character
string is placed at the current position. Generally, the origin of the character is at the
bottom left, excluding descenders of the character.

Upon completion of the GPR _ $TEXT routine, the current position is updated to the
coordinate position where a next character would be written. This is the case even if the
string is partly or completely clipped. However, the current position always remains within
the boundaries of the bitmap.

GPR Routine8 2-144

o

o

o

o

o

GPR $TRAPEZOID

GPR $TRAPEZOID

Draws and fills a trapezoid.

FORMAT

GPR_$TRAPEZOID (trapezoid, status)

INPUT PARAMETERS

trapezoid
Trapezoid in GPR _ $TRAP _ T format. This data type is 12 bytes long. See the GPR
Data Types section for more information.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR _ $TRAPEZOID fills in a trapezoid with the color/intensity value specified with
GPR_$SET_FILL_ VALUE or the pattern set by GPR_$SET_FILL_PATTERN. To
retrieve the current fill value, use GPR_$INQ_FILL_ VALUE.

The GPR routines define a trapezoid as a quadrilateral with two horizontally parallel sides.

To draw an unfilled trapezoid use GPR _ $POL YLINE.

Filled areas rasterized when the decomposition technique is
GPR _ $NON _ OVERLAPPING _ TRIS contain fewer pixels than filled areas rasterized
with the ~ecomposition technique set to either GPR _ $F AST _ TRAPS or
GPR _ $PRECISE _ TRAPS.

Abutting filled areas rasterized when the decomposition technique is
GPR_$NON_ OVERLAPPING_ TRIS do not overlap.

Abutting filled areas rasterized when the decomposition technique is either
GPR _ $F AST _ TRAPS or GPR _ $PRECISE _ TRAPS OVERLAP.

2-145 GPR Routines

GPR _ $TRIANGLE

GPR $TRIANGLE

Draws and fills a triangle.

FORMAT

INPUT PARAMETERS

vertex_l
First vertex of the triangle, in GPR _ $POSITION _ T format. This data type is 4 bytes
long. See the GPR Data Types section for more information.

vertex_2
Second vertex of the triangle, in GPR _ $POSITION _ T format. This data type is 4 bytes
long. See the GPR Data Types section for more information.

vertex_3
Third vertex of the triangle, in GPR _ $POSITION _ T format. This data type is 4 bytes
long. See the GPR Data Types section for more information.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

GPR _ $TRIANGLE fills in a triangle with the color/intensity value specified with
GPR_$SET_FILL_ VALUE or the fill pi1ttern set by GPR_$SET_FILL_PATTERN.

To retrieve the current fill value, use GPR_$INQ_FILL_ VALUE.

Filled areas rasterized when the decomposition technique is gpr _ $non _ overlapping _ tris
contain fewer pixels than filled areas rasterized with the decomposition technique set to
either gpr _ $fast _ traps or gpr _ $precise _ traps.

Abutting filled areas rasterized when the decomposition technique is
gpr _ $non _ over lapping _ tris do not overlap.

Abutting filled areas rasterized when the decomposition technique is either
gpr _ $fast _ traps or gpr _ $precise _ traps overlap.

G PR Routines 2-146

c

('
_----

o GPR $UNLOAD FONT FILE

Unloads a font that has been loaded by GPR_ $LOAD _FONT _FILE.

FORMAT

INPUT PARAMETERS

font id
Font identifier. This is a 2-byte integer.

OUTPUT PARAMETERS

() status
'-./ Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR

Data Types section for more information.

o

o

USAGE

The font_id is returned when a program loads a file with the routine
GPR $LOAD _FONT FILE.

2-147 GPR Routines

GPR $WAIT FRAME

GPR $W AIT FRAME

Waits for the current frame refresh cycle to end before executing operations that modify the
color display.

FORMAT

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

This routine is for use on color displays only.

Operations that modify the color display include block transfers and drawing and text
operations.

This routine is useful primarily for animation. It delays execution of display modifications
until the scan beam has completely covered the screen.

A program can also use this routine to synchronize changes to the color map with the
beginning of the frame.

GPR Routines 2-148

(~"

\ _ ...

o

o

o

o

GPR $WRITE_PIXELS

GPR $WRITE PIXELS

Writes the pixel values from a pixel array into a window of the current bitmap.

FORMAT

INPUT PARAMETERS

pixel_ array
A 131,073-element array of 4-byte integers in GPR_$PIXEL_ARRAY _ T format from
which to write pixel values (color/intensity).

destination window
Rectangular section of the current bitmap into which to write the pixel values, in
GPR $WINDOW T format. This data type is 8 bytes long. See the GPR Data Types
section for more information.

OUTPUT PARAMETERS

status
Completion status, in STATUS _ $T format. This data type is 4 bytes long. See the GPR
Data Types section for more information.

USAGE

The pixel values in the pixel array, one in each 4-byte integer, are stored in the destination
window of the bitmap in row-major order.

For monochromatic displays, only the low-order bit of each pixel value is significant.

For color displays in 4-bit pixel format, only the four lowest-order bits of each pixel value
are considered because the bitmaps have four planes.

GPR_$WRITE_PIXELS overwrites the old contents of the bitmap.

To read pixel values from the current bitmap into an array, use GPR_$READ _PIXELS.

A program cannot use this routine on a bitmap corresponding to a Display Manager frame.

2-149 CPR Routines

GPR $WRITE_PIXELS

c

GPR Routines 2-150

o

o

o

o

Chapter 3
GPR Errors

This chapter lists possible GPR errors. A brief explanation is provided with each error.

GPR $ALREADY INITIALIZED
Primitives are already initialized.

GPR $ARC OVERFLOW 16BIT BOUNDS
Distance between points on arc exceeds the allowable 16 bits of precision.

GPR $ARRAY_NOT SORTED
Array must be in ascending order.

GPR $BAD _ATTRffiUTE_BLOCK
The attribute block descriptor is incorrect.

GPR $BAD _BITMAP
The bitmap descriptor is incorrect.

GPR $BAD _DECO:MP TECH
Invalid decomposition technique.

GPR $BAD FONT FILE
Font file is incorrect.

GPR ~ $BITMAP IS READ ONLY
Bitmap is read-only.

GPR $BITMAP NOT _A_FILE BITMAP
Attempting to set or inquire a bitmap file color map when you have not passed a
bitmap descriptor to an external bitmap~

GPR $CANT DEALLOCATE
You cannot deallocate this bitmap.

GPR $CANT_MIX_MODES
You cannot mix display modes, for example, borrow and direct.

GPR_$CHARACTER NOT IN FONT
Character is not in a font.

GPR $COORD OUT OF BOUNDS
Coordinate value is out of bounds.

GPR $DEST OUT OF BOUNDS
Destination window origin is out of bitmap bounds.

GPR $DIMENSION TOO BIG
The bitmap dimension is too big.

GPR $DIMENSION TOO SMALL
The bitmap dimension is too small.

GPR_$DISPLAY _NOT_ACQ
Display has not been acquired.

GPR $DUPLICATE POINTS
Duplicate points are illegal.

3-1 GPR Rrrors

GPR $E:MPTY ROP PRIM: SET
Raster operation primitive set is empty.

GPR $FONT _ TABLE FULL
Font table is full.

GPR $FONT IS READ ONLY
The following calls cannot be used to modify a read-only font:
GPR _ $SET _ SPACE _ SIZE, GPR _ $SET _ HORIZONTAL _ SPACING, and
GPR $SET CHARACTER WIDTH.

GPR $ILLEGAL FILL PATTERN
Illegal bitmap for a fill pattern.

GPR $ILLEGAL FILL SCALE
Fill pattern scale must be one.

GPR $ILLEGAL FOR FRAME
Operation is illegal for DM frame.

GPR $ILLEGAL FOR PIXEL BITMAP

GPR $ILLEGAL PATTERN LENGTH
The length of a line pattern must be less than 64 and greater than o.

GPR $ILLEGAL PIXEL VALUE
Pixel value range is illegal.

GPR $ILLEGAL SOFTWARE _ VERSION
Pad is not compatible with current software version.

GPR $ILLEGAL_TEXT_PATH
Value is not in GPR $DIRECTION T.

GPR $ILLEGAL WHEN IMAGING
Operation is illegal in imaging format.

GPR $INCORRECT ALIGNMENT
Bitmap layout specifications do not satisfy GPR alignment constraints.

GPR $INCORRECT DECO:MP TECH
Attempting to close a polygon and return a set of trapezoids when the decomposition
technique is not set to one of the trapezoid techniques or attempting to close a
polygon and return a set of triangles when the decomposition technique is not set to
non _ overlapping _ tris.

GPR $INTERNAL ERROR
This is an internal error.

GPR $INVALID COLOR_MAP
The color map is invalid.

GPR $INV ALID FONT ID
Font id is invalid.

GPR $INVALID IMAGING_FORMAT
Format is invalid for display hardware.

GPR $INV ALID PLANE
The plane number is invalid.

GPR Error8 3-2

c

o

o

o

o

o

GPR $INV ALID RASTER OP
The raster operation value is invalid.

GPR_$INVALID _ VffiTUAL_DEVICE_ID
Invalid virtual device identification number.

GPR_$KBD_NOT_ACQ
Keyboard has not been acquired.

GPR $MUST BORROW DISPLAY
You must borrow the display for this operation.

GPR $MUST HAVE DISPLAY
Display must be acquired.

GPR $MUST RELEASE DISPLAY
You must release the display for this operation.

GPR $NO_ATTRffiUTES DEFINED
No attributes are defined for the bitmap.

GPR $NO COLOR_MAP IN FILE
Attempting to inquire a bitmap file color map when you have not passed a bitmap
descriptor to an external bitmap.

GPR $NO INPUT ENABLED
No input events are enabled.

GPR $NO MORE SPACE
No more bitmap space is available.

GPR $NO RESET DECO:MP IN PGON
Cannot set the decomposition technique between GPR_ $START _PGON and
GPR_$CLOSE_RETURN_PGON, GPR_$CLOSE_FILL_PGON, or
GPR $CLOSE RETURN PGON TRI.

GPR $NOT IN DffiECT _MODE
Display is not in direct mode.

GPR $NOT_IN_POLYGON
No polygon is being defined.

GPR $NOT INITIALIZED
Primitives are not initialized.

GPR_$ROP _SETS_NOT_EQUAL
Raster operations sets are not equal.

GPR $SOURCE OUT OF BOUNDS
Source window origin is out of bitmap bounds.

GPR $SPECIFIC NONZERO ONLY
Must specify a winding number when the fill criterion is GPR_$SPECIFIC.

GPR $UNABLE TO ROTATE FONT
Rotated character cannot fit into allocated character space.

GPR $WINDOW OBSCURED
Window is obscured.

3-3 GPR Errors

GPR_$WINDOW OUT OF _BOUNDS
Window origin is out of bitmap bounds.

GPR $WRONG DISPLAY _HARDWARE
The display hardware is wrong for this operation.

CPR.Errors 3-4

c'

C~,\

"

------.----~--. -_._._-----_ .. _. __ -~~~~--~~~~~~~~-

o

o

o

o

o

Index

GPR_$ACQumE_DISPLAY 2-2

GPR_$ADDITIVE_BLT 2-.3

GPR $ALLOCATE_ATTRmUTE_BLOCK 2-4

GPR_ $ALLOCATE _BITMAP 2-5

GPR $ALLOCATE_BITMAP NC 2-6

GPR_$ALLOCATE_HDM_BITMAP 2-7

GPR_$ARC 3P 2-8

GPR_$ATTRmUTE_BLOCK 2-9

GPR $BIT _ BLT 2-10

GPR $CIRCLE 2-12

GPR _ $CIRCLE_FILLED 2-13

GPR _ $ CLEAR 2-14

GPR $CLOSE_FILL_PGON 2-15

GPR_$CLOSE_RETURN_PGON 2-16

GPR $CLOSE_RETURN_PGON_TRI 2-17

GPR_$COLOR_ZOOM 2-18

GPn $COND EVENT WAIT 2-19

GPR_$DEALLOCATE_ATTRmUTE_BLOCK 2-21

GPR_$DEALLOCATE_BITMAP 2-22

GPR_ $DISABLE _INPUT 2-23

GPR $DRAW _BOX 2-24

GPR $ENABLE_DIRECT _ACCESS 2-25

GPR $ENABLE _ INPUT 2-26

GPR _ $EVENT _ WAIT 2-28

GPR $FORCE_RELEASE 2-30

GPR $GET_EC 2-31

GPR $INIT 2-32

GPR_$INQ_BITMAP 2-34

GPR_$INQ_BITMAP _DIMENSIONS 2-35

GPR_$INQ_BITMAP _FILE_COLOR_MAP 2-39

GPR_$INQ_BITMAP _POINTER 2-36

GPR_$INQ_BITMAP _POSITION 2-37

GPR_ $INQ_BM_BIT _ OFFSET 2-38

GPR _ $INQ_ CHARACTER _ WIDTH 2-40

GPR_$INQ_COLOR_MAP 2-41

GPR_$INQ_CONFIG 2-42

GPR_ $INQ_ CONSTRAINTS 2-43

GPR_$INQ_COORDINATE_ORIGIN 2-44

GPR_ $INQ_ CP 2-45

GPR_$INQ_CURSOR 2-46

GPR_$INQ_DISP _CHARACTERISTICS 2-48

GPR_$INQ_DRAW _VALUE 2-51

ID.dex-l

GPR_$INQ_FILL_BACKGROUND_ VALUE 2-52

GPR _ $INQ _FILL _P ATTERN 2-53

GPR_$INQ_FILL_ VALUE 2-54

GPR_$INQ_HORIZONTAL_SPACING 2-55

GPR_ $INQ_IMI\GING_FORMAT 2-56

GPR_$INQ_LINE_PATTERN 2-57

GPR_$INQ_LINESTYLE 2-58

GPR_$INQ_PGON_DECOMP _TECHNIQUE 2-59

GPR_$INQ_RASTER_OP _PRIM_SET 2-60

GPR_$INQ_RASTER_OPS 2-61

GPR_$INQ_REFRESH_ENTRY 2-62

GPR_$INQ_SPACE_SIZE 2-63

GPR_$INQ_TEXT 2-64

GPR _ $INQ_ TEXT _ EXTENT 2- 65

GPR _ $INQ _ TEXT _ OFFSET 2-67

GPR_$INQ_TEXT_PATH 2-69

GPR_$INQ_TEXT_ VALUES 2-70

GPR_ $INQ_ TRIANGLE_FILL_ CRITERIA 2-71

GPR_$INQ_ VIS_LIST 2-72

GPR_ $INQ_ WINDOW _ID 2-73

GPR $LINE 2-74

GPR . $LOAD_FONT_FILE 2-75

GPR $MOVE 2-76

GPR $MULTILINE 2-77

GPR $MUL TITRAPEZOID 2-78

GPR_$MULTITRIANGLE 2-79

GPR $OPEN_BITMAP FILE 2-81

GPR_$PGON_DECOMP _TECHNIQUE 2-85

GPR $PGON_POLYLINE 2-87

GPR $PIXEL BLT 2-88

GPR $POLYLINE 2-89

GPR $RASTER OP _PRIM_SET 2-90

GPR $READ_PIXELS 2-91

GPR $RECTANGLE 2-92

GPR $RELEASE DISPLAY 2-93

GPR_$REMAP _COLOR_MEMORY 2-94

GPR $REMAP COLOR MEMORY _1 2-95

GPR $REPLICATE_FONT 2-96

GPR $SELECT COLOR_FRAME 2-97

GPR_$SET _ACQ_ TIME_ OUT 2-98

GPR $SET_ATTRffiUTE_BLOCK 2-99

GPR $SET _AUTO _ REFRESH 2-100

GPR $SET BITMAP 2-101

GPR_$SET _BITMAP _DIMENSIONS 2-102

GPR $SET _ BITMAP FILE_COLOR MAP 2-104

Index-2

o

o

o

G

GPR $SET CHARACTER WIDTH 2-105

GPR $SET CLIP WINDOW 2-106

GPR _ $SET _ CLIPPING _ACTIVE 2-108

GPR $SET COLOR MAP 2-109

GPR_$SET _ CO ORDINATE_ ORIGIN 2-111

GPR $SET CURSOR ACTIVE 2-112

GPR $SET CURSOR ORIGIN 2-113

GPR $SET CURSOR PATTERN 2-114

GPR $SET CURSOR_POSITION 2-115

GPR_$SET_DRAW _ VALUE 2-117

GPR $SET FILL_BACKGROUND VALUE 2-118

GPR $SET _FILL PATTERN 2-119

GPR _ $SET _ FILL _ VALUE 2-120

GPR $SET _HORIZONTAL SPACING 2-121

GPR $SET IMAGING FORMAT 2-122

GPR $SET INPUT SID 2-123

GPR_$SET _LINE_PATTERN 2-124

GPR $SET _ LINESTYLE 2-125

GPR _ $SET _ OBSCURED _ OPT 2-126

GPR $SET _ P~ANE MASK 2-128

GPR $SET_RASTER OP 2-129

GPR $SET REFRESH_ENTRY 2-131

GPR $SET SPACE SIZE 2-132

GPR $ SET:. TEXT BACKGROUND _ VALUE 2-133

GPR _ $SET _ TEXT _FONT 2-134

GPR $SET TEXT_PATH 2-135

GPR $SET _TEXT _ VALUE 2-136

GPR $SET TRIANGLE_FILL CRITERIA 2-137

GPR _ $SET _ WINDOW _ ID 2-138

GPR $ SPLINE ~ CUBIC _ P 2-139

GPR $ SPLINE_ CUBIC X 2-140

GPR $SPLINE CUBIC_ Y 2-141

GPR_ $ START _PGON 2-142

GPR _ $TERMINATE 2-143

GPR _ $TEXT 2-144

GPR $TRAPEZOID 2-145

GPR $TRIANGLE 2-146

GPR $UNLOAD _ FONT _ FILE 2-147

GPR_$WAIT_FRAME 2-148

GPR $WRITE_PIXELS 2-149

Index-3

,,,,-- "

I~,

o

o

o

o

o

Reader's Response

Please take a few minutes to send us the information we need to revise and improve our manuals from
your point of view.

Document Title: DOMAIN Graphics Primitive Resource Call Reference
Order No.: 007194 Revision: 01 Date of Publication: January, 1987

What type of user are you?
__ System programmer; language
__ Applications programmer; language _________ _
__ System maintenance person __ Manager/Professional
__ System Administrator Technical Professional
__ Student Programmer Novice

Other

How often do you use the DOMAIN system? _____________________ _

What parts of the manual are especially useful for the job you are doing?

What additional information would you like the manual to include?

Please list any errors, omissions, or problem areas in the manual. (Identify errors by page, section, figure,
or table number wherever possible. Specify additional index entries.)

Your Name Date

Organization

Street Address

City State Zip

No postage necessary if mailed in the U.S.

FOLD

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 78 CHELMSFORD, MA 01824

POSTAGE WILL BE PAID BY ADDRESSEE

APOLLO COMPUTER INC.
Technical Publications
P.O. Box 451
Chelmsford, MA 01824

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

n
S
0 ..,
0' a:
S»
0"
:::J
co
a.
~
(0
Co

:::J
It)

---,
FOLD

C

c

o

o

o

o

o

Reader's Response

Please take a few minutes to send us the information we need to revise and improve our manuals from
your point of view.

Document Title: DOMAIN Graphics Primitive Resource Call Reference
Order No.: 007194 Revision: 01 Date of Publication: January, 1987

What type of user are you?
__ System programmer; language
__ Applications programmer; language _________ _

__ System maintenance person __ Manager/Professional
__ System Administrator Technical Professional
__ Student Programmer Novice

Other

How often do you use the DOMAIN system? _____________________ _

What parts of the manual are especially useful for the job you are doing?

What additional information would you like the manual to include?

Please list any errors, omissions, or problem areas in the manual. (Identify errors by page, section, figure,
or table number wherever possible. Specify additional index entries.)

Your Name Date

Organization

Street Address

City State Zip

No postage necessary if mailed in the U.S.

FOLD

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 78 CHELMSFORD, MA 01824

POSTAGE WILL BE PAID BY ADDRESSEE

APOLLO COMPUTER INC.
Technical Publications
P.O. Box 451
Chelmsford, MA 01824

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

0 s
0 ..,
0'
a:
DJ
0"
:J
!C
a.
2-
CD
a.
5'
CD

._--~
FOLD

C-~
-~/

o

o

o

Reader's Response

Please take a few minutes to send us the information we need to revise and improve our manuals from
your point of view.

Document Title: DOMAIN Graphics Primitive Resource Call Reference
Order No.: 007194 Revision: 01 Date of Publication: January, 1987

What type of user are you?
__ System programmer; language
__ Applications programmer; language _________ _

__ System maintenance person __ Manager/Professional
__ System Administrator Technical Professional
__ Student Programmer Novice

Other

What parts of the manual are especially useful for the job you are doing?

What additional information would you like the manual to include?

Please list any errors, omissions, or problem areas in the manual. (Identify errors by page, section, figure,
or table number wherever possible. Specify additional index entries.)

Your Name Date

Organization

Street Address

City State Zip

No postage necessary if mailed in the U.S.

0

S-
O .,
0' a:
$I)

0'
::J

CO

Co

2-
iD
Co

5'
CD

FOLD - ___ J

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 78 CHELMSFORD, MA 01824

POSTAGE WILL BE PAID BY ADDRESSEE

APOLLO COMPUTER INC.
Technical Publications
P.O. Box 451
Chelmsford, MA 01824

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

---~
FOLD

,r-------

(
'--.. _/

-~-~---- ----

